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Introduction

This manuscript is the result of three years of research in the Laboratory of Physics
of Interfaces and Thin Films in the group of optical characterization led by Prof. An-
tonello de Martino. It directly follows the work of Sami Ben Hatit who defended in
thesis in december 2008. More than just a addition to his work, this thesis actually was
a reengineering process. Whereas Ben Hatit’s work was more a proof of concept and
the assessment of the basic possibilities of the instrument in critical dimension metrol-
ogy, this work was more instrument oriented with the constant will to make it as close
to a first prototype as possible, yet driven by an application: the metrology of overlay
defects in microelectronics industry. Due to my background in optical design and in-
strumentation, I tried to be as accurate and thorough as possible inmy design to be able
to helpHoriba Jobin-Yvon in themaking of the first pre-industrial prototype. However,
things are always more complicated than one might expect and unfortunately some
choices in the design of the instrument, though driven by experimental evidences, can
still not be explained.

This manuscript is divided in four chapters.

The first chapter of this dissertation will focus on polarization and its formalism.
We will explicitly introduce all the concepts and notations and how to deal with them.
The different choices we made in terms of representation of polarization states and
the conventions will be justified. Therefore this chapter is a prerequisite for every-
thing that follows and will serve as a toolbox for th rest of our study. A discussion
about non-conventional Mueller matrices, namely Stokes non-diagonalizable matrices,
which were part of my research during my first year in the laboratory will conclude
this chapter. Tough their construction and their mathematical properties may seem
very abstract, we will see that they are quite simple indeed to generate and have some
directly interpretable physical properties.

The second chapter will focus on the instrument itself. After reviewing the basic
specifications of the system, wewill thoroughly dissect each part of it to fully described
it. After explaining the design of the instrument, wewill then introduce the calibration
methods we use in the laboratory and how we manage to accurately characterize the
microscope objective contribution and even calibrate the first element of the Mueller
matrix,m11 so we can quantitatively use it for fit purposes.

The third chapter will be dedicated to our collaboration with the group of Prof.
Hans Arwin from the University of Linköping, Sweden. Through this collaboration,
we were able to measure some very interesting and complex structures, yet very com-
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INTRODUCTION

mon and accessible to everyone : the exoskeleton of shiny beetles. The possible use of
the system to characterize samples in the real space had already been briefly discussed
by Sami Ben Hatit in the last part of his dissertation. But it is only through a very close
collaborationwith the group of Hans Arwinwho provided uswith a lot of specimen to
measure and a lot of good advice that we have been able to obtain qualitative and quan-
titative results on the beetles. After a review of current results and thoughts about the
exoskeleton of beetles, we will compare our spatially resolved Mueller matrices with
the spectroscopic data from Linköping. Different ways to extract the useful informa-
tion inspired by image processing and Mueller matrix decomposition theory will be
introduced.

The last chapter will describe themain project I worked on during these three years.
As I began my thesis, a new project called MuellerFourier and involving the group of
optical characterization of LPICM, Horiba Jobin Yvon and the CEA-LETI began too.
Angle resolved Mueller polarimetry in the back focal plane of a high numerical aper-
ture objective has already demonstrated a good potential for CD metrology. The pur-
pose of MuellerFourier was to demonstrate the ability of angle resolved Mueller po-
larimetry for measurements of the overlay error between two gratings at different lev-
els. This approach has the advantages of traditional optical methods (speed, low-cost,
non-destructive) and could alone provide all data needed for reliable characterization.

The final part of thismanuscriptwill be a global conclusion and a reflection on these
three years of research.
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Chapter 1

General Principles of Polarization

This introductory chapter is not intended to be exhaustive and consists only of clari-
fication of concepts and notations that will be used throughout this manuscript. We
will handle the Jones and Stokes vectors as well as the Jones and Mueller matrices. We
will see the different representations for the state of polarization of an electromagnetic
wave. We will focus only on monochromatic plane waves.

1.1 Polarization of a wave
An electromagnetic wave is fully characterized by two fields, the electric field E and
the magnetic field B. The vectorial product E ∧ B, also known as the Poynting vector,
defines thewave propagation. It then appears clearly that the fieldsE andH are always
in the plane orthogonal to the wave propagation direction. If the wave is propagating
along the z axis, then the electric field is confined in the xOy plane. Let us define the
polarization of the wave as the curve described by the vector E through time. It is use-
less to also focus on the magnetic field, its components and behavior can be calculated
from the Maxwell equations knowing the electric field.

1.1.1 Totally polarized light
Let E be the complex electric field. E can be expressed as:

E(r, t) = [Ex(r, t)ex + Ey(r, t)ey]e−iωt (1.1)

with :
• ex and ey, unitary orthogonal vectors

• r and t, space and time coordinates

• ω = 2πf is the angular frequency in radians per second
The deterministic vector [

Ex(r, t)
Ey(r, t)

]
(1.2)

is called Jones vector. One can see emerging the elliptic trajectory of the electric field
vector whose parameters are fully and explicitly given by the Jones vector.

<(E(r, t)) =

[
E0x cos(ωt− kz − Φx)
E0y cos(ωt− kz − Φy)

]
(1.3)

9



CHAPTER 1. GENERAL PRINCIPLES OF POLARIZATION

with E0x and E0y, amplitudes of the field; k = 2π
λ
, norm of the wave vector and Φx

and Φy phases.
The light polarization state, defined as the trajectory of the electric field, can be

easily seen, only in the case of a fully polarized wave, as an ellipse whose equation has
been previously given(1.3). We can thus extract a first graphic representation of the
polarization by plotting this ellipse and extract from it the first interesting parameters
of the polarization.

Figure 1.1: Representation of the polarization ellipse and its corresponding polarimetric angles

α, orientation of the rectangle surrounding the ellipse, takes value in [0; π/2] such
as tanα =

EOy

EOx

Φ, the phase difference between the x and the y components. Φ = Φx − Φy

We can also extract the relationships between the mathematical expression of the
ellipse and its geometrical form.

sin 2ε = sin 2α sin Φ

tan 2θ = tan 2α cos Φ

tan 2ε = sin 2θ tan Φ

(1.4)

θ, orientation of the ellipse takes value in [0; π/2]
ε, ellipticity, takes value in [0; π/4] with
ε = 0→ linear polarization
ε = ±π/4→ circular polarization. in this particular case, α is not uniquely defined.

The Jones vectors of some classical polarization states are listed in appendixes.

1.1.2 Partially polarized light
In the case of a partially polarized wave, the electric field can be characterized in a
deterministic way: the Jones vector is considered a random vector with zero mean.
The electric field vector is then the realization of a random field with zero mean. We
therefore characterize E by its coherency matrix (for a classical random variable, it

10



CHAPTER 1. GENERAL PRINCIPLES OF POLARIZATION

Figure 1.2: Possible polarization states of a totally polarized wave

would be called covariance matrix) defined as

Γ =

[
< |Eµ

x(r, t)|2 > < Eµ
x(r, t)Eµ

y∗(r, t) >
< Eµ

x∗(r, t)Eµ
y(r, t) > < |Eµ

y(r, t)|2 >

]
(1.5)

Note that to satisfy the conditions of homogeneity and stationarity, Γ must be inde-
pendent of both r and t.

The complete polarization state of the wave is described by Γ. Any covariance ma-
trix is symmetric, positive definite, we can decompose it into eigen values and eigen
vectors.

Γ = U∆U † with U unitary matrix UU † = I U †, conjugate transpose

and ∆ =

[
λ1 0
0 λ2

]
(1.6)

We can now define the degree of polarization as

P =
λ1 − λ2

λ1 + λ2

with λ1 > λ2 (1.7)

If P = 1⇒ λ2 = 0, totally polarized light, the two components Eλ
x and Eλ

y are totally
correlated. The eigen vector corresponding to the eigen value λ1 is the Jones vector
representing the polarization state.

if P = 0⇒ λ1 = λ2, totally depolarized light: the two conponents Eλ
x and Eλ

y are
totally decorrelated.

if 0 < P < 1, the light is partially polarized and the polarization state corresponding
to the eigen vector with the eigen value λ1 is called the principal polarization state.

To represent a partially polarized light, the Jones vector is not enough, the number
of available parameters is no longer sufficient: we need a new model.

We introduce the Stokes vector, S defined bijectively by the coherency matrix Γ.

S = A−→γ A =


1 0 0 1
1 0 0 −1
0 1 1 0
0 i −i 0


−→γ = [ΓXX ; ΓXY ; ΓY X ; ΓY Y ]

(1.8)

Due to the bijective nature of the relationship between them, Γ and S contain ex-
actly the same information. However, we note that S has real coefficients and its four
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CHAPTER 1. GENERAL PRINCIPLES OF POLARIZATION

components have a physical meaning.

S =


< |Eµ

x|2 + |Eµ
y|2 >

< |Eµ
x|2 − |Eµ

y|2 >
< Eµ

xEµ
y∗ + Eµ

x∗Eµ
y >

< i(Eµ
xEµ

y∗ − Eµ
x∗Eµ

y) >

 (1.9)

What emerges in the equation (1.9) is the expression of sums and differences of
electric field intensities. We can then rewrite (1.9) as

S =


I
Q
U
V

 =


Ix + Iy
Ix − Iy

I45◦ − I−45◦

Icirc left − Icirc right

 (1.10)

It is easier to use the normalized Stokes vector.

Snorm = S/I =


1

Q/I
U/I
V/I

 =


1

S1/S0

S2/S0

S3/S0

 (1.11)

Just like we have defined the degree of polarization in 1.7, we introduce a new def-
inition of the degree of polarization for a Stokes Vector [1, 2, 3] :

P =

√
Q2 + U2 + V 2

I
≤ 1 (1.12)

The Stokes vector can be represented in the 3 dimension space (we don’t take into
account the absolute intensity I). Because the degree of polarization is always less or
equal to 1, a point representing a physical Stokes vector is always confined in a sphere
in this space. The sphere is called the Poincaré sphere. An illustration is given in fig.
1.3. In this sphere, the cartesian coordinates are [S1/S0 S2/S0 S3/S0] and the spherical
coordinates are [P 2θ 2ε].

The Poles of the Poincaré sphere represent the circular states, the equator represents
the linear states. Every other point represents an elliptical state. On a meridian, the
azimuth θ is constant. On a parallel, the ellipticity ε is constant. The surface of the
sphere represents the totally polarized states. One can notice that two orthogonal states
are diametrally opposed on the sphere. We will see in a next section how the Poincaré
sphere can be useful to illustrate the transformation of a polarization state by amedium.

1.2 Interaction between polarized light and a medium

1.2.1 Totally polarized light
We have seen previously that the Jones formalism described in a simple and complete
manner the totally polarized light, we then use this formalism to analyse the interaction
between a totally polarized wave and a medium.

An homogeneous medium linearly interacting with a totally polarized wave can be
described by a 2x2 matrix T called the Jones Matrix.

Jout = T × Jin (1.13)

12



CHAPTER 1. GENERAL PRINCIPLES OF POLARIZATION

Figure 1.3: Poincaré Sphere

Figure 1.4: Interaction of a totally polarized wave with a medium

T =

[
TXX TXY
TY X TY Y

]
(1.14)

It should be noted that both the input and the output statesmust be totally polarized
for this formalism to be adapted. If themedium induces a loss of degree of polarization
(depolarization effect), the output polarization state cannot be represented by a Jones
vector and thus the medium cannot be represented by a Jones matrix. The matrical
formalism is well-adapted to polarization: if polarized light passes through N media
of Jones matrices given by Ti, the light will have a global change given by the product∏
Ti.
This matrix has complex coefficients, the total phase is of no interest, only 7 param-

eters are to be considered for this matrix. These parameters can be extracted from the
Jones matrix using its decomposition in eigenvalues and eigenvectors. Let be υ1 and υ2

the eigenvectors of T associated to the eigenvalues λ1 and λ2. T satisfies the following
equations. {

Tυ1 = λ1υ1

Tυ2 = λ2υ2
(1.15)

υ1 and υ2 represents two Jones vectors associated to two polarization states we will

13



CHAPTER 1. GENERAL PRINCIPLES OF POLARIZATION

call the eigen states of the medium. These eigen states pass through the mediumwith-
out any deformation. The eigenvalue λi is complex and its modulus |λi| expresses the
attenuation of the eigen state υi and its argument φi gives its dephasing.

We can now define two scalar parameters

D =
|λ1| − |λ2|
|λ1|+ |λ2|

(Diattenuation) (1.16)

R = |φ1| − |φ2| (Retardance) (1.17)

If υ1 and υ2 are orthogonal, the Jones Matrix is said to be homogeneous and the
matrix U whose columns are the eigen vectors υ1 and υ2] is unitary. Otherwise, the
Jones matrix is said to be inhomogeneous.

The Jones matrices of some classical polarization components are listed in appen-
dices.

1.2.2 Partially polarized light
We have briefly noticed in the previous section that in the case of a medium exhibiting
a depolarization effect, the Jones formalism cannot be used to model the medium.

Wehavedefined the Stokes vector starting from the coherencymatrixΓ =< Eµ.E
†
µ >

By definition of the Jones matrix T , we have [4] :

Eout,µ = T · Ein,µ ⇒< Eout,µ.E
†
out,µ >= Tµ· < Ein,µ.E

†
in,µ > ·T

†
µ (1.18)

Γout =< Tµ · Γin · T †µ > (1.19)

Γout,ij =
∑
k=X,Y

∑
l=X,Y

< Tµ,ik · T ∗µ,jl > ·Γin,kl (1.20)

Let us define γ = [ΓXX ; ΓXY ; ΓY X ; ΓY Y ]. We have a linear relationship between γin

and γout

γout = N · γin (1.21)

with N =


< Tµ,XX · T ∗µ,XX > < Tµ,XX · T ∗µ,XY > < Tµ,XY · T ∗µ,XX > < Tµ,XY · T ∗µ,XY >
< Tµ,XX · T ∗µ,Y X > < Tµ,XX · T ∗µ,Y Y > < Tµ,XY · T ∗µ,Y X > < Tµ,XY · T ∗µ,Y Y >
< Tµ,Y X · T ∗µ,XX > < Tµ,Y X · T ∗µ,XY > < Tµ,Y Y · T ∗µ,XX > < Tµ,Y Y · T ∗µ,XY >
< Tµ,Y X · T ∗µ,Y X > < Tµ,Y X · T ∗µ,Y Y > < Tµ,Y Y · T ∗µ,Y X > < Tµ,Y Y · T ∗µ,Y Y >


=< Tµ

⊗
T †µ >

with
⊗

being the Kronecker product.

In equation 1.8, we have seen the linear relationship betweenS and γ. By combining
1.8 and 1.21, we have :

Sout = A ·N · A−1 · Sin (1.22)

We then introduce the Mueller matrix M defined as [5]

M = A ·N · A−1 (1.23)

14



CHAPTER 1. GENERAL PRINCIPLES OF POLARIZATION

Sout = M × Sin (1.24)


Sout,1
Sout,2
Sout,3
Sout,4

 =


M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

×

Sin,1
Sin,2
Sin,3
Sin,4

 (1.25)

In the following of this manuscript, except if the contrary is clearly specified, we
will use the normalized Mueller matrix defined as:


M11 M12/M11 M13/M11 M14/M11

M21/M11 M22/M11 M23/M11 M24/M11

M31/M11 M32/M11 M33/M11 M34/M11

M41/M11 M42/M11 M43/M11 M44/M11

 (1.26)

Due to the equation 1.12, it is clear thatM11 > 0 and that |Mij ≤M11|,∀(i, j), which
means that the elements of the normalized Mueller matrix are always between -1 and
1.

Because this formalism is only useful for a medium exhibiting depolarization, it is

interesting to focus on where this depolarization effect comes from. Let J =

[
JXµ (t)
JYµ (t)

]
the Jones vector representing the polarization state of thewave at the instant t, sowe can

define an instantaneous Stokes vector Sµ(t) =


|JXµ (t)|2 + |JYµ (t)|2
|JXµ (t)|2 − |JYµ (t)|2

JXµ (t) · JY ∗µ (t) + JYµ (t) · JX∗µ (t)
i · [JXµ (t) · JY ∗µ (t)− JYµ (t) · JX∗µ (t)]

.
The mean polarization state of the wave is defined by the average of the random Stokes

vector previously defined < Sµ(t) >. We can either have time average (t) or space
average (µ) depending on the source of thewavewe are considering. For example, if the
light source is thermal light, the depolarization effect comes from the time fluctuations
of thewave emitted. If a laser beam is reflected on a rough surface, each speckle pattern
is totally polarized but with fluctuating polarization and then depolarization arises.

The Mueller matrices of some classical polarization components are listed in the
appendixes.

1.3 Analysis of a Mueller matrix

As seen in the previous section, a Mueller matrix enables us to model the interaction of
a totally or partially polarized wave with a medium. TheMueller matrices being at the
very core of this dissertation, we will focus more on how to deal with them and how
to understand them.

15



CHAPTER 1. GENERAL PRINCIPLES OF POLARIZATION

1.3.1 Physically realizable Mueller matrices
One must be very careful when dealing with Mueller matrices: contrary to Jones vec-
tor, Stokes vectors are not a vector space which means that every 4 × 1 vector is not
a physically realizable Stokes vector. A Stokes vector must satisfy the condition de-
fined in 1.12 thus imposing the same kind of condition for the Mueller matrix. Mueller
matrices are not a subalgebra of the 4 × 4 real matrices algebra because multiplying a
Mueller matrix by a negative scalar is a physical non-sense. However, multiplying (re-
spectively adding) twoMueller matrices corresponds to add (respectively incoherently
superimpose) two media.

We have seen in 1.23 that the Mueller matrix comes from the coherency matrix N.
Any coherency matrix must be positive-definite, we can then define a necessary and
sufficient condition for a Mueller matrix to be a physically realizable one [3, 6] :

M , physically realizable ⇔ N, coherency matrix,positive-definite
⇔ all eigenvalues of N positive (1.27)

Though this condition is necessary and sufficient, some of the measured matrices
we are going to deal with in this manuscript will be physically non-realizable. This is a
non-sense because wemeasured them from a physical sample. This problemmay arise
when noise becomes predominant. A very thorough study of conditions for a matrix
to be aMueller matrix for non-plane waves can be found in reference [7]. We have then
made the choice to present the filtered Mueller matrices.

Filtering of a Mueller matrix

We use the approach introduced by Cloude in [8] based on a sum decomposition of
the Mueller matrix. This decomposition is based on the coherency matrix associated
to theMueller matrix. An analysis of the eigenvalue λi of the coherencymatrix gives us
all the information on the different non-depolarizing contributions the Mueller matrix
contains. We will not explicitly detail how to obtain the elements of the coherency
matrix from the Mueller matrix as it can be easily found in [8].

The coherencymatrix is positive semidefinite and therefore should have 4 real non-
negative eigenvalues λi. Any physically realizable Mueller matrix can be written as
:

M = λ1 ·M1 + λ2 ·M2 + λ3 ·M3 + λ4 ·M4 (1.28)

withMi being a Jones-Muellermatrices whose elements are derived from the eigen-
vectors of the coherency matrix.

A non depolarizing Mueller matrix will have only one non-zero eigenvalue and
the Jones-Mueller matrix associated to this eigenvalue will be the non-depolarizing
Mueller matrix. Any negative or imaginary eigenvalue λ1 is set to zero. The filtered
Mueller matrix is obtained by replacing the corrected eigenvalues in eq. 1.28.

1.3.2 Change of Reference planes
The Jones and Stokes vectors clearly depends on the chosen reference system . It can
be helpful to be able to express the Stokes and the Mueller matrix in different planes
of reference.
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For a Jones matrix, the change of reference is easily described by classical transfor-
mationmatrices in algebra. However, forMueller matrices, this transformation is more
complex because the Stokes vector is defined via an intensity-based approach.

Rotation of the reference

Let S be a Stokes vector. A rotation of the reference planes by an angle θ transforms S
in S′.

S′ = R(θ) · S (1.29)

with R(θ), the rotation matrix given by the following expression

R(θ) =


1 0 0 0
0 cos(2θ) sin(2θ) 0
0 −sin(2θ) cos(2θ) 0
0 0 0 1

 (1.30)

We can now deduce the effect of a rotation on the Mueller matrix. After a rotation
of the reference planes by θ, the resulting Mueller matrix is given by

M(θ) = R(θ) ·M(0◦) ·R(−θ) (1.31)

Reflection on a dielectric surface at normal incidence

The conditions of continuity of the electric field require that at any time the field of the
incident wave and reflected wave are proportional.

So the temporal evolution of these two fields, for any point near the mirror is iden-
tical. However, the components of the Stokes vector describing the state depend on the
choice of reference for both waves. This reference, called xyz for the incident wave, is
supposed to be direct and the propagation is along the axis z. For the reflected wave,
the reference becomes x’y’z’ with z’ = -z. We shall define the axes x’y’ in the plane
where the electric field evolves.

Then we shall have to consider the two following choices:

• x’=x and y’=-y. This is the most common choice because in this case, x’y’z’ is

direct. The Mueller matrix of the mirror is thenMmirror =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1


• x’=x and y’=y. This is not that common because x’y’z’ is not direct. However,
we will use this reference throughout this manuscript because it enables us to
directly compare theM22 andM33 elements which is very convenient for mirror
and back scattering given that these elements will be equal and not opposed.
The Mueller matrix of the mirror is then considered to be the same as in vacuum.

Mmirror =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


It is of course very easy to switch from one convention to the other: we just have to

multiply the last two rows by -1.

17



CHAPTER 1. GENERAL PRINCIPLES OF POLARIZATION

1.3.3 Polarimetric properties of a Mueller matrix
Wewill investigate in this section the different properties of a Mueller matrix. We have
defined in equations 1.16 ans 1.17 the polarimetric properties for a Jones matrix. The
same quantities can be defined for the Mueller matrix as we will see in the following.

Diattenuation

As seen in 1.16, the diattenuation (also called dichroism, both terms will be used indif-
ferently) characterizes the change in amplitude of the components of the electric field.

We define the scalar diattenuation D characterizing the transmission of light with
respect to the incident polarization state.

D =
Tmax − Tmin
Tmax + Tmin

(1.32)

Tmax and Tmin are maximal and minimal transmissions. However, to completely
characterize diattenuation, we have to introduce the diattenuation vector because two
different diattenuators can have the same scalar diattenuation.

The direction of the vector is given by the orientation of the polarization state with
the highest transmission Tmax. Let [1; d1; d2; d3] be the normalized Stokes vector of this
state.

D is defined as :

D = D ·

 d1

d2

d3

 =

 Dhorizontal

D45◦

Dcircular

 (1.33)

The three components of the diattenuation vectorDdefine respectively the horizon-
tal, the 45◦ and the circular diattenuation. We also introduce the linear diattenuation
Dlinear defined as:

Dlinear =
√
D2
horizontal +D2

45◦ (1.34)

Being defined by the relationship between the intensity of the beam exiting the sys-
tem and the input polarization state, the diattenuation can be read straightforwardly
from the Mueller matrix by just looking at its first row.

D =

 M12/M11

M13/M11

M14/M11

 (1.35)

The Mueller matrix of a pure diattenuator is:

MD = Tunpol ·
[

1 Dt

D mD

]

mD =
√

1−D2 · Id+ (1−
√

1−D2)D·Dt

D2

(1.36)

Tunpol stands for the transmission of the unpolarized light and Id is the identity
matrix. mD is a symmetric 3 × 3 matrix with 3 degrees of freedom: the 3 components
of the diattenuation vector . The diattenuator Mueller matrix thus has 4 degrees of
freedom.
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Polarizance

If we consider an unpolarized beam coming on a medium characterized by its Mueller
matrix M, the polarization state emerging from the medium is entirely defined by the

first column of M: Sout =


M11

M21

M31

M41

. The degree of polarization of this Stokes vector is

called the scalar polarizance.

P =

√
M2

21 +M2
31 +M2

41

M11

(1.37)

By analogy with the diattenuation, we also define the polarizance vector given by:

P =
1

M11

·

 M21

M31

M41

 =

 Phorizontal
P45◦

Pcircular

 (1.38)

For a non-depolarizing system, one can demonstrate that D = P so the following
equality is true:

M2
21 +M2

31 +M2
41 = M2

12 +M2
13 +M2

14 (1.39)

One can also demonstrate that a necessary and sufficient condition for a non-depolarizing
Mueller matrix to be homogeneous is to satisfyD = P.

Birefringence

A retarder is characterized by the phase shift it induces between its two eigen states.
Its eigen states are orthogonal. A pure retarder does not change the amplitude of its
eigen states: the transmission is independent of the incident polarization state. We can
define R the retardation as the phase delay between both eigen states.

R = |δ1 − δ2| , 0 ≤ R ≤ π (1.40)

With δ1 and δ2 being the phase shift of the eigen states. The fast axis of the retarder
is defined as the orientation of the eigen mode first emerging from the retarder. Let
r = [1; r1; r2; r3] be the Stokes vector representing the fast axis of the retarder. Given
that a retarder does not change the amplitude we have:√

r2
1 + r2

2 + r2
3 = 1 (1.41)

Just like we introduced the diattenuation vector in eq. 1.33, we introduce the retar-
dation vectorR.

R = R ·

 r1

r2

r3

 =

 Rhorizontal

R45◦

Rcircular

 (1.42)

The linear retardation can be defined as:

Rlinear =
√
R2
horizontal +R45◦ (1.43)
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The Mueller matrix of a retarder is a unitary matrix, it is fully characterized by the
retardation vectorR.

MR =

(
1 0
0 mR

)
(1.44)

mR is a rotation matrix in <3, its full expression can be found in many references.
The retarderMueller matrix has three degrees of freedom, the three components of the
retardation vector.

Finding the scalar retardance R from the Mueller matrix is straightforward.

R = arccos
tr(MR)

2
− 1 (1.45)

The expression of the components of the retardation components can be found in
[9].

Depolarization

We introduce the quadratic depolarization ∆quadratic characterizing the mean depolar-
ization when integrating on all the Poincaré sphere.

∆quadratic = 1−

√
Tr(M t ·M)−M2

11

3M2
11

(1.46)

One should note that this definition is different from the one introduced by Gil and
Bernabeu in [10]. However, this definition is more convenient and better described
depolarization: for a non-depolarizing Mueller matrix, the quadratic depolarization is
null and is equal to 1 for a totally depolarizing Mueller matrix.

From the definition we have introduced, we can obtain a necessary and sufficient
condition for M to be a non-depolarizing Mueller matrix and thus to be equivalent to
a Jones matrix.

M, non-depolarizing⇔ Tr(M t ·M) = 4M2
11 (1.47)

A pure depolarizer can be expressed by its Mueller matrix

M∆ =

[
1 0
0 m∆

]
(1.48)

m∆ is a symmetric 3 × 3 matrix. It can then be diagonalized in an orthonormal base.
This matrix has 9 degrees of freedom and can be represented after the proper change
of reference by a diagonal matrix.

M∆ =


1 0 0 0
0 a 0 0
0 0 b 0
0 0 0 c

 (1.49)

a,b,c ∈ [−1, 1] define the depolarization along the eigen states of the depolarizer.
We can now introduce the principal depolarization ρ.

ρ = 1− |a|+ |b|+ |c|
3

= 1− Tr(|M∆|)−M11

3M11

(1.50)
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The trace being similarity-invariant, the last definition of the principal depolariza-
tion is valid no matter what base the matrix is expressed in.

The definitions listed above are not the only estimators for the depolarization effects
and many others exist and remain to be defined [11, 12].

1.3.4 Decomposition of a Mueller matrix
In the previous sectionswehavepresented somepolarimetric properties of pureMueller
matrices. However, an experimental Mueller matrix is never a pure polarimetric com-
ponent, all properties are mixed and one need a mean to extract these properties [13,
14, 15]. We have previously stated that the diattenuation can be read directly from
the first row of the Mueller matrix an that polarizance can be read from the first col-
umn. We then need to find a way to extract birefringence and depolarization. Various
kinds of decompositions ofMueller matrices have been proposed throughout the years
whether they involve product decompositions [16] or sum decompositions [8, 15]

Polar decomposition, Lu-Chipman algorithm

Introduced by Lu and Chipman in [9] the polar decomposition is probably the most
common and its understanding is quite easy. Lu andChipman proved that anyMueller
matrix M can be decomposed according to the following form:

M = M∆ ·MR ·MD (1.51)

M∆,MR andMD stand for respectively a depolarizer, a retarder and a diattenuator.
M can be expressed by the following expression :

M =

[
1 DT

P T m

]
(1.52)

withD the diattenuation and P the polarizance.
The first step of this decomposition is to extract the diattenuation vector D as the

first row of the Mueller matrix. MD can be constructed according to 1.36. If the matrix
MD is invertible (i.e. ifMD is not singular), we then define an intermediate matrix M’
as M ′ = M × M−1

D . This matrix has a null diattenuation but contains polarizance,
depolarization and birefringence.

It is important to note that the depolarization matrix has a non-null polarizance:
the depolarizer is not a diagonal one.

M ′ =

[
1 0T

P∆ m′

]
(1.53)

P∆ is defined by :

P∆ =
P−m ·D

1−D2
(1.54)

The sub-matrixm′ is a mix between the sub-matrixm∆ from the polarizance matrix
and the sub-matrixmR from the retardation part of the matrix.

The sub-matrix m∆ can easily be recovered from the global sub-matrix m′ and its
eigenvalues as described in [9].
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OnceM∆ has been reconstructed, one can easily extract the retardation matrixMR

using

MR = M−1
∆ ·M

′ (1.55)

Several extensions of the original algorithm have been introduced to enlarge the
scope of applications and be able to process more and more data. In [17], Ossikovski
et al extended the possibilities to experimental data exhibiting a negative determi-
nant. In [18], Arteaga and Canillas introduced a pseudo-polar decomposition M =
MR ·MD ·M1C ·M2C withM1C andM2C two corrections factors which arise from the
noncommutativity of the polarization properties.

Reverse decomposition

Thematrixmultiplication being not commutative, the Lu-Chipmandecompositionmay
seem quite reductive. In [19] , Morio and Goudail showed that the six possible de-
composition with a diattenuator, a retarder and a depolarizer can be reduced in only
two families of decomposition : the forward one (forward respect to Lu-Chipman def-
inition) and the reverse one (with components in the reverse order). In the reverse
decomposition, the depolarizer has a non-null diattenuation but a null polarizance.

Ossikovski introduced in [20] the method to retrieve the reverse decomposition.

M = MD ·MR ·M∆ (1.56)

This decomposition is very useful for the case where depolarization occurs before
the diattenuation as showed in [21] Although, in the most general case, the physical
interpretability of the outputs of these decompositions is not ensure due to this non-
commutativity. No one should take for granted the results of a polar decomposition,
either Lu-Chipman or reverse, without further investigation of the physical properties
of the sample [22].

Normal decomposition

However, in the most general case, the Lu-Chipman decomposition involves a depolar-
izer with non-zero polarizance, while for the reverse decomposition this element may
have nonzero diattenuation, which is somewhat at odds with respect to "real" depolar-
izers.

The symmetric decomposition was first introduced for Mueller matrices derived
from a Jonesmatrix [23, 24] but then themethod has been extended to any inputmatrix
M.

M = MD2 ·MR2 ·M∆ ·MT
R1 ·MD1 (1.57)

where and are the matrices of diattenuators and retarders, while the depolarizer is
actually diagonal as in eq 1.48. One should notice and be aware that eq 1.57 only holds
for Stockes diagonalizable matrices whereas this symmetric decomposition theory still
needs to be extended for Stokes non-diagonalizable matrices as stated in and will be
developed in another article yet to be published. This is a special case of the normal
form of Mueller matrices described previously in refs [25] and [26].

M = M2 ·M∆ ·M1 (1.58)
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where M1 and M2 are two non-depolarizing (i.e. which do not reduce the degree
of polarization of any totally polarized Stokes vector ) Mueller matrices bracketing the
diagonal depolarizer matrix. Each of these non-depolarizing matrices can then be de-
composed using a polar decomposition. We introduce the symmetric decomposition
of aMueller matrix by applying Lu-Chipman decomposition toM1 and reverse decom-
position toM2. Equation 1.58 can now be transformed in eq. 1.57 .

The central position of the depolarizer in the symmetric decomposition can be very
useful when trying to localize the various effects of the sample without any a priori
modeling, as most depolarizers occurring in practice are diagonal indeed. However
as stated in [27], a prior modeling of the medium can be useful: this decomposition
can only recover successfully all the constitutive elements if the depolarizer is not de-
generate, i.e. if all the diagonal coefficients are different enough. If the depolarizer
is degenerate (e.g. a back-scattering medium whose Mueller matrix would have two
equal elements), only the diattenuators and the global retarder (product of MR1 and
MR2) would be correctly extracted using this decomposition. Therefore, this decompo-
sition is best intended for media with a strong depolarization effect.

1.4 Particular case of a depolarizer: example of a nonStokes
diagonalizable depolarizer

1.4.1 Theoretical background

We have previously seen that any non-depolarizing Mueller matrix preserves the de-
gree of polarization of the input polarization state whereas a depolarizing matrix de-
creases it. Any depolarizing matrix can be regarded as the average of two or more
non-depolarizing matrices [28]. Any Mueller matrix can be factored using the equa-
tion 1.58. We can separate the Mueller matrix space into two groups depending on the
form of the central depolarizer and more precisely depending on whether this central
depolarizer is diagonal or not. We define the auxiliary matrix N = GMTGM , where
G = diag(1,−1,−1,−1), and compute its eigenvalue. If the eigenvector associated to
the highest eigenvalue corresponds to a partially polarized polarization state, then the
central depolarizer is diagonal, if it corresponds to a totally polarized state, the depo-
larizer cannot be diagonalized. These two groups are referred to as type I and type
II matrices [29, 30, 31] We renamed these groups with more physical-sense appeal-
ing denominations, respectively Stokes diagonalizable and Stokes non-diagonalizable
matrices [32]. Although encountering Stokes diagonalizable matrices in experiments
is quite common (eg. depolarization arising with back scattering events), an experi-
mental realization of Stokes non-diagonalizable matrices had not been proposed until
recently when Sudha et al. [33] proposed their experimental proof from quantummea-
surement theory able to generate both Stokes diagonalizable and nondiagonalizable
Mueller matrices. Nevertheless, their set-up is very complicated and we thought that
a simpler scheme must be feasible. We then built a very simple optical set-up compris-
ing only two non-depolarizing samples allowing us to generate a complete family of
Stokes non-diagonalizable Mueller matrices.

If we consider the weighted average M of an inhomogeneous [34] ideal polarizer
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MIP and voidMv :

M = α ·MIP + β ·Mv

= α/2


1 1 0 0
−1 −1 0 0
0 0 0 0
0 0 0 0

+ β


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


=


α/2 + β α/2 0 0
−α/2 −α/2 + β 0 0

0 0 β 0
0 0 0 β


(1.59)

with α and β are the corresponding weights.
It is straightforward to notice that the N matrix has a unique eigenvalue, fourfold

degenerate, associated to the Stokes vector S=[1 -1 0 0] which represents a totally po-
larized state. This matrix is thus of type II, Stokes non-diagonalizable. By varying the
weights α and β, we can generate a family of Stokes non-diagonalizable matrices.

1.4.2 Experimental realization
The first step of this experimental realization of a family of Stokes non-diagonalizable
Mueller matrices is to create the inhomogeneous polarizer. This is easily done by com-
bining an horizontal polarizer and an half-wave plate whose fast axis is oriented at 45◦
respect to the orientation of the polarizer.

MIP =


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 1

2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 (1.60)

The second step is to "add" the inhomogeneous polarizer and void to generate our
Stokes non-diagonalizable matrix. If multiplying two Mueller matrices is easily done
and straightforward, the addition of twomedia ismore subtle, it requires an incoherent
superposition of two media. We include the inhomogeneous polarizer in the aperture
plane of a Kohler illumination set-up. The illuminating beam cross section is larger
than the polarizer clear aperture, so due to the fundamental property of telecentric
systems (collimation of chief rays for all points across the image), the CCDpixels gather
the sum of the response of void and our inhomogeneous polarizer.

The experimental set-up used is described in figure 1.5. On this figure, PSG (resp.
PSA) stands for Polarization State Generator (resp. Polarization State Analyser), BFP
(Back Focal Plane). The two pairs of lenses L1-L2 and L2-L3 form telecentric systems.
The diaphragmplaced in the back focal plane BFP1 enables us to control the beam cross
section diameter of the sample and thus adjust β in eq. 1.59 and generate a family of
Stokes non-diagonalizable matrices. More about this set-up can be found in [21, 27].

We measured some realizations of matrices belonging to this family with our de-
vice. The Mueller matrices obtained for two different void fractions are shown in fig-
ure 1.6. These matrices are clearly of the form shown in eq. 1.59. Each element of the
Mueller matrix is a 256 × 256 image which enables us to extract more accurately the
void fraction. To assess the quality of our measurements, we can compute some very
simple estimators. We have selected the two following :
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Figure 1.5: (a) : experimental set-up (b) : cross section of the back focal plane BFP2 where the
sample is introduced

• E1 = M12 +M21 : should be equal to 0

• E2 = M21 +M33 −M22 :should be equal to 0

The results of these estimators for one of the measurements are shown in figure
1.7. The estimators are very inhomogeneous and display a clear deviation toward the
positive values. However, the mean values for both estimators is quite close to zero
(E1 = 0.02, E2 = 0.03) as well as standard deviation (σ1 = 0.01, σ2 = 0.02). The
measurements can then be used to recover the void fraction using the M33 element
which directly equal to β and M12 which is equal to α/2. The graphes in figure 1.8
show the mueller matrix elements evolution versus the void fraction. We notice that
the evolution of the matrix elements respect to the void fraction is nearly linear.

If you look closer at the algebraic properties of this family of matrices, we notice

Figure 1.6: Mueller matrices measured using our imaging polarimeter for two different void
fractions
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Figure 1.7: left : M12 +M21 - right : M21 +M33 −M22

Figure 1.8: Experimental elements of the normalized Mueller matrix versus the void fraction.
The experimental errors is smaller than the size of the square. The solid line is a guide for the
eye. All x axis between 0 and 1, all y axis between -1 and 1
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Figure 1.9: Equatorial cut of the Poincaré sphere. Blue line : equator (non-depolarizingMueller
matrix); black solid lines : experimental Stokes non-diagonalizable matrices; dashed red and
green lines : diagonal depolarizer

that the totally polarized eigen vector of the auxiliary matrix N is the only Stokes vec-
tor which is not depolarized by the medium. We can state it differently by saying that
a Stokes non-diagonalizable matrix decreases the degree of polarization of all the in-
put Stokes vectors except the one associated to the eigenvalue of the auxiliary matrix
N. This general property of the type II matrices can be demonstrated geometrically by
plotting the output ellipsoid of degree of polarization for our experimental matrices. If
the matrix is a non-depolarizing one, it means that any totally polarized state is trans-
formed into a totally polarized state: the Poincaré sphere is mapped onto itself. In
fig. 1.9, we only plot the equatorial cut of the Poincaré sphere because the polarization
states of interest are the linearly polarized ones.

We can now characterize the Stokes non-diagonalizable matrices using the number
of contacts between the Poincaré Sphere and the DOP ellipsoid. If the ellipsoid has
zero, two or more than two contact points with the Poincaré sphere, then the Mueller
matrix can be reduced to a Stokes diagonalizable matrix. On the other hand, if the
ellipsoid has only one contact point with the Poincaré sphere, the Mueller matrix be-
longs to the Stokes non-diagonalizable family and the contact point corresponds to the
totally polarized eigenvector of the auxiliary matrix N.
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Chapter 2

Mueller Microscope

This chapter aims at describing the experimental configuration chosen for implemen-
tation in the laboratory always keeping in mind the commercial purpose of the instru-
ment through its development by the company Horiba Jobin Yvon. We shall justify the
technical choices we made and the key points of design.

2.1 Experimental configuration of the microscope

We want to be as close as possible to a conventional microscope configuration. Abun-
dance of literature on this topic and commercial availability of blocks that can be as-
sembled oriented us toward this path. However, one quickly realizes that there is not
a conventional microscope, but a huge variety of designs [35, 36]. This number of de-
signs can be reeduced given that for the intended applications, only the inspections in
reflection are to be considered. It should be noted therefore that this is a reduction of
the possibilities of the instrument originally developed in our group by Sami Ben Hatit
[37]. In the original version, the inspection of samples in double-pass transmissionwas
also studied [38].

The constraint of the study imposes a reflectionmicroscope in epi-illumination: un-
der such arrangement, the microscope objective plays the dual role of condenser in the
illumination part and objective in the imaging part.

2.1.1 Illumination part

The illumination part has been designed like a Köhler illumination, this kind of illumi-
nation system is widely used in traditional microscopy [35] due to the total decoupling
it enables between the field and the aperture. In our system, this decoupling is cru-
cial because we need to be able to control the field we enlighten without changing the
numerical aperture.
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Figure 2.2: Classical scheme for a Köhler illumination. The light source is focused in both the
aperture diaphragm and the back focal plane of the objective

Figure 2.1: Sets of conjugate planes in Köhler illumination, courtesy of Carl Zeiss, Inc

The aperture diaphragm is used as a secondary source. However, the Köhler il-
lumination images the light source in the back focal plane of the condenser (in the
epi-illumination case, the objective). In classical microscopy (i.e. trans-illumination
and imaging in the real space), this design is optimal because the sample is evenly en-
lightened and the light source is not imaged at the same time as the sample (see fig.
2.2). We want thus to create some kind of Köhler illumination designed for the Fourier
space imaging where the sets of conjugate planes should be inverted.
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Figure 2.3: Output spectrum of the light source

Nevertheless, we specified as a key feature of our device its versatility with respect
to the imaging modes it offers: the illumination will be a trade-off between the real
space and the Fourier in order to have a good illumination quality no matter what the
imaging mode is. We then chose to slightly defocus the light source (Ocean Optics
HL2000 HP, 20W output which emission spectrum can be found in fig. 2.3) so it is not
directly imaged neither in the back focal plane of the objective nor in the sample plane.
This defocus of the source does not hinder the decoupling of the field and the aperture,
this property being granted by the arrangement of the lenses and the diaphragms. The
light emerges from the source through an optical fiber (diameterΦ = 600µm, numerical
aperture NA = 0.34). The lens L1 is said to be telecentric both in the image and the
object space. All lenses are commercially available lenses from Edmund Optics. We
chose the inked lenses so the reflection on the edges are limited.

"Telecentricity is a special property of certain lens designs inwhich the chief
rays for all points across the object or image are collimated. For example,
telecentricity occurs when the chief rays are parallel to the optical axis, in
object and/or image space. Another way of describing telecentricity is to
state that the entrance pupil and/or exit pupil of the system is located at
infinity." (definition by Edmund Optics, Inc).

By inserting a diaphragm in the front focal plane of the lens, we are imposing the exit
pupil to be located at infinity, and by placing a diaphragm in the back focal plane, we
are imposing the entrance pupil to be located at infinity too [39]. One should be careful
when dealing with the concept of telecentricity because the same term may describe
a lot of different things. Throughout this manuscript we will use the term telecentric
as previously defined. Let us notice that the pair of lenses L1 and L2 is sometimes
called a telecentric system or a telescope instead of a afocal system, we will try to avoid
ambiguous denominations when possible.

Figure 2.4 shows the images in the back focal plane of the objective: (a) with a good
focus of the light source and (b)with a slight defocus. One can notice that the back focal

31



CHAPTER 2. MUELLER MICROSCOPE

Figure 2.4: (a) : image of the source in the back focal plane when well focused - (b) : image of
the source in the back focal plane when slightly out of focus

Wavelength (nm) Ts Tp Ts − Tp
454 45,881049 44,208247 1,672802
532 45,381157 48,103459 -2,722302
633 46,292081 46,639766 -0,347685

Table 2.1: Transmission factors of the non-polarizing cube beam-splitter for the wavelengths
used during measurements

plane is then more evenly illuminated with the slight defocus, all the inhomogeneities
of the source not being imaged.

Figure 2.5 points out the changes brought to the classical Köhler illumination set-
up.

It is to be noticed that not all lens alignments are critical in the illumination system.
The first lens LColl only serves as a light collector and thus does not need to be very
accurately positioned whereas the lenses L1 and L2 should be positioned with extreme
caution: it is very important that the back focal plane of L1 is superimposed on the
front focal plane of L2 if we want the field and the aperture to really be decoupled.

The non-polarizing beam splitter

Although the system will be calibrated using a very powerful method, the choice of
the beam-splitter we are using is critical because the light passes twice in it, once in
the illumination part and once in the imaging part. We then use a broadband non-
polarizing cube beam-splitter which transmission curves are given in fig. 2.6. For our
measurements, we specifically use three different wavelengths: 454nm, 532nm and
633nm. Table 2.1 gives the transmission factor of the cube beam-splitter for these three
wavelengths.

This beam-splitter features a low polarization dependence of the dichroic coating
allowing the transmission of the s- and p- polarizations to be within 6% of each other.
It consists of a pair of precision high tolerance right angle prisms cemented together
with a metallic dielectric coating. A broadband antireflective coating is applied to each
face of the beam-splitter avoiding unwanted reflections. However, we notice during the
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Figure 2.5: New illumination system with source slightly defocused

Figure 2.6: s- and p- polarization transmission curves of the non-polarizing beam-splitter ver-
sus wavelength.
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Figure 2.7: Principles of a conoscopic inspection: Parallel rays with inclination θ and azimuth
ϕ, focused by the objective at a point with radius r = sin(θ) and same azimuth.

alignment of the system that the antireflective coating is not perfect and dual images
appear on the detector. Due to the incoherent superposition of two images on the de-
tector, depolarization arises and should then be accurately calibrated.

2.1.2 Imaging part
Our device should have two modes of imaging: real space and its conjugate space,
the Fourier space. Even though the measurements are performed in Fourier space,
imaging in real space is essential to be able to find the right spot on the samples.

In real space, images are spatially resolved, for each pixel located by its cartesian
coordinates (x,y), all angles defined by the aperture are averaged. This observation
mode will also be referred to as orthoscopic mode.

In the Fourier space, images are angularly resolved, for each pixel then located by its
cylindrical coordinates (θ,φ), all points defined by the field are averaged. This imaging
mode is often referred in the bibliography as conoscopic mode: we analyse the light
emitted (reflected, scattered or diffracted) in a cone of light which aperture is defined
by the numerical aperture of the microscope objective. In fig.2.7, one can see that every
collimated beam of light emitted with an angle θ at an azimuth ϕ exits the microscope
objective in a pixel which cartesian coordinates are (R sin θ cosϕ,R sin θ sinϕ). Cono-
scopic observation is nothing new to any microscopist, in a conventional microscope
it can be made either by replacing the regular ocular with a telescope that brings the
aperture plane into focus or by inserting a Bertrand lens (that serves as a telescope ob-
jective) in front of a regular ocular. These systems are commercially available and are
still a part of fundamental research in microscopy [40].

The key point of the imaging part design is to keep it simple, especially how to
switch from one space to the other. We chose to keep the general idea of the previous
design, a removable lens to switch from real to Fourier space. However, when we pre-
viously had to add the lens to be in the Fourier space, we now have the simpler design
for this space. The basics of the design are outlined in fig. 2.8. A very good introduc-
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Figure 2.8: Layout of the imaging part of the system. BFP : Back Focal Plane, FFP : Front Focal
Plane. In blue : ray tracing for the real image of the sample, in red : ray tracing for the imaging
of the back focal plane of the objective

tion to imaging optical system and some examples of ad-hoc lens configurations used
extensively during the design process can be found in [39].

Imaging the Fourier space means imaging the back focal plane of the microscope
objective. The first lens Lim1 is just performing a simple point-point conjugation be-
tween the back focal plane and an intermediate plane where, if needed, we can add an
aperture diaphragm to select the imaged angles. The intermediate plane is then im-
aged on a CCD camera using an afocal system comprising a 25mm lens (Lim3)and the
CCD camera with its objective set at the infinity. This system enables us to change very
easily the camera and its objective: we just have to match the global magnification of
the imaging part by choosing the proper focal for the objective with respect to the size
of the detector.

To image the sample (real space imaging), we just have to add a lens (Lim2) between
Lim1 and Lim3. This lens must conjugate the back focal plane of Lim1 and the front
focal plane of Lim3. By doing so, the sample and the Fourier plane can be both imaged
using the same configuration and without major change in the set-up (just switching a
retractable lens).

The detector

A badly chosen detector is the ruin of an imaging system The detector linearity, spatial
and temporal stability are the key factors of a good image. We use a Hamamatsu Orca
II BT LAG camera in our system. This is an air-cooled camera (cooling down to -60◦C)
with a 512× 512 CCD detector (pixel size : 24µm). The grayscale ranges from 0 to 4095
(12 bits). The quantum efficiency of the detector is given in fig.2.9
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Figure 2.9: Quantum efficiency of the detector versus wavelength

The linearity of the detector has been tested in previous work [41]. The changes
brought to the system especially the new light source impose a new study of the noise
and stray light causing ghost images which results are summarized in table 2.2. From
this study, it is pretty clear that the doors must be kept close during the experiments;
however, once the doors are closed, all secondary sources (halogen source and neon
lights in the experiment room) can remain switched on during measurement without
affecting the results. One should remain careful when measuring low reflectivity sam-
ples: as we can see, even without any sample, the stray light can go up to 40 on the
4096 level grayscale with the doors closed which means that for a low reflecting sam-
ple some intensity images we acquire can be completely ruined by this stray light and
then loose all their meaning.

For all measurements presented in this manuscript, we tried to keep the minimal
average signal (on the 16 images required to compute the Mueller matrix) around 10
times the stray light level, i.e. around 400 on the grayscale, by varying the exposure
time.

2.2 From a classical microscope to a polarization micro-
scope

Using polarization inmicroscopy is quite common and enables to observe anisotropy of
crystals for example. It is mostly used as a contrast enhancing method for birefringent
materials. Used solely by geologists in mineralogy and petrographic research for some
time, it has since been successfully used in biology, medicine, chemistry and material
research. However, polarization is not very often used quantitatively but rather quali-
tatively. The best known application of quantitative polarized microscopy is the study
ofminerals in thin sections of rocks [42]. Although very similar to common bright-field
microscopes, a polarized light microscope includes specific parts such as a strain free
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Experimental conditions Mean Max
camera shutter closed 4.35 26

(C1): shutter auto, all sources off, doors open 36 67
(C2): shutter auto, all sources off, doors closed 34 65

(C1) + low halogen source 112 190
(C1) + medium halogen source 370 610
(C1) + high halogen source 990 1700
(C2) + low halogen source 35 65

(C2) + medium halogen source 35 65
(C2) + high halogen source 37 68

Source on, black paper before Lcoll 37 70
Source on, black paper before PSG 37 70
Source on, black paper before NPBS 38 70

Source on, black paper between NPBS and objetive 42 75

Table 2.2: Noise signal during acquisition (Ti = 200ms) without sample respect to the different
experimental conditions

objective, a strain free condenser and a polarizer / analyzer couple. Figure 2.10 gives
an outlook of the different samples one can image using a polarized light microscope.

Figure 2.10: Examples of images acquired with a polarized light microscope (a) badger hair (b)
nylon fiber (c) actinolite schist (d) cholesterol
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2.2.1 Choice of the microscope objectives
During manufacturing of the objective, stress can be introduced into the glass which
then produces spurious optical effects under polarized light like diattenuation or re-
tardance which could compromise accuracy of the polarimeter. Objectives designed
for polarized light observation are distinguished from ordinary objectives with the in-
scription P, PO, or Pol on the barrel. These objectives can be used in our polarimeter
for inspection. We selected the CFI LU Plan Fluor EPI microscope fromNikon because
they offer the best trade-off between high numerical aperture and high working dis-
tances. They also are compliant with the evolution of the systemwe had in mindwhen
buying them: dark-field observations and UV illumination. It may seem difficult to
understand all the subtle differences between microscope objectives but all the infor-
mation needed are clearly listed on the barrel of the objective. Table 2.3 gives the most
common specifications of microscope objectives.

The numerical aperture of the objective gives us the maximum angle we can reach
[39] :

NA = n · sin(θmax) (2.1)

The numerical aperture and the maximum angle being proportional, we will some-
times refer to them using indifferently the term aperture.

Due to technical difficulties, we are not using immersion objectives so the working
medium is the air. In eq. 2.1, the refraction index n is then always equal to 1.

The CFI series ofNikon objectives use a tube length (TL) of 200mm contrary to some
other manufacturers who use different tube lengths. We can for example cite Olympus
who uses a 180mm tube length and Zeiss using a 165mm tube length. The tube length,
also called the reference focal length, helps us calculate the focal length of the objective
:

fobj =
TL

Magnification
(2.2)

The size of the exit pupil is then :

Dpupil = 2 ·NA · fobj (2.3)

Table 2.4 summarizes the principle features of the chosen objectives.
As we will see in next sections, though these objectives are better suited for quan-

titative polarization, they are not free of polarization effects and then require either a
proper modeling or calibration. Unfortunately, it has been impossible despite asking
several times to gain access tomore detailed information on the design of the objectives
and especially their remaining polarization effects when used in conoscopic mode.

2.2.2 General considerations on polarimeters
The main limitation of a polarized light microscope is that only one polarization state
is generated and only one polarization state is analyzed. We transformed the conven-
tional microscope described in 2.1 into a polarimeter by adding a polarization state
generator (PSG) and a polarization state analyser (PSA) in respectively the illumina-
tion and the imaging part of the microscope. We assume that the elements forming the
PSG and PSA are thin enough and well-aligned so we can neglect the defocus and the
change in position of the image when adding them in the light path. In some cases,
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abbreviation type
Plan Flat Field optical correction
Apo Apochromatic aberration correction

Fluor, Fl, Fluar, Neofluar, Fluotar Fluorite aberration correction
Achro, Achromat Achromatic aberration correction

LU Nikon Luminous Universal (Brightfield, Darkfield, DIC, and Polarized Light)
L, LL, LD, LWD Long Working Distance

ELWD Extra Long Working Distance
Oil, Oel Oil immersion

Water, W, Wasser Water immersion
DIC, NIC Differential or Nomarski Interference Contrast
CF, CFI Chrome-Free, Chrome-Free Infinity-Corrected (Nikon)

P, Po, Pol, SF Strain-Free, Low Birefringence, for polarized light
U, UV, Universal UV transmitting (down to approximately 340 nm)

EPI Epi illumination

Table 2.3: List of common abbreviations on microscope objectives

reference Magnification Numerical aperture Working Distance Exit pupil diameter
MUE10050 5X 0.15 23.5mm 12mm
MUE10200 20X 0.45 4.5mm 9mm
MUE10500 50X 0.80 1mm 6.4mm
MUE10901 100X 0.90 1mm 3.6mm

Table 2.4: Specifications of the chosen objectives

choosing some very well-suited polarization states can actually gives better results, ei-
ther for degree of polarization imaging[43] or in Mueller polarimetry [44]. We see that
the choice of the PSG (and the PSA) is a key point of the polarimeter. The upgraded
layout of the microscope is given in fig. 2.11.

As statedpreviously, the polarization state of light changeswhen reflected, diffracted
or scattered by a medium: the measurement of the Mueller matrix of the medium is
called polarimetry. A polarimeter is generally made of a light source, a polarization
state generator and a polarization state analyzer and a detector. To have a complete
measurement of the Mueller matrix, it is mandatory to generate a basis of the Stokes
vector space, which means that at least 4 independent Stokes vectors must be gener-
ated by the PSG and the same condition applies to the PSA. However, it is possible to
overdetermine the system and generatemore than four states if the benefits and costs of
such change in the set-up have been fairly considered in terms of time and complexity.

Let us call Wi, i ∈ [1, 2, 3, 4] the Stokes vectors generated by the PSG, and Aj, j ∈
[1, 2, 3, 4], the Stokes vectors generated by the PSA. The interaction between the Stokes
vectorWi generated by the PSG and theMueller matrix of the sampleM can be written
as the product M ·Wi. On the detector, we measure the intensity Iij at the exit of the
PSA characterized by the Stokes vector Aj .

Iij = Aj ·M ·Wi (2.4)

We generate 4 independent states for the PSG and the PSA, we can summarize the
16 measurements using the matrix formalism.
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Figure 2.11: Upgraded layout of the microscope

B = A ·M ·W (2.5)
with B, a 4×4 matrix, matrix of the measured intensities,A andWmatrices composed
of the concatenation of the generated Stokes vectors.

TheMueller matrixM of the sample can be extracted from themeasurement matrix
B with a matrix inversion.

M = A−1 · B ·W−1 (2.6)
Though it may seem simple to invert the matrices A and W, we have to check the

invertibility. For a matrix to be invertible, its columns must be linearly independent
which means in our case that the four states must be as linearly independent as possi-
ble. If we project the generated states on the Poincaré sphere, the states must be homo-
geneously scattered. A very simple guess clearly shows us that to be able to accurately
measure theMueller matrix of a linear polarizer, choosing four states very close to each
others would propagate more errors [45].

The computation of the inverse matrix may propagate errors throughout the calcu-
lus of the Mueller matrix, we then have to define a criterium to check the quality of the
matrix inversion. We then introduce the condition number associated to our matrix
inversion problem. Let A and B be two matrices. We define the equation

A · X = B (2.7)

We assume that all dimensions match so the equation exists and has a solution.
The condition can be roughly thought as the rate at which the solution of an equa-

tion will change with respect to the change in initial members. Thus, if the condition
number is large, even a small change in B in our equation may cause a large error on
X. On the other hand, if the condition number is pretty small, the errors on X will not
be bigger that the errors on B.
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Figure 2.12: Examples of possible polarization states generated by the PSG (PSA) (a): best a
priori choice for 4 linearly independent states. (b) bad choice: states are clearly not linearly
independent

The condition number of a matrix A is defined as:

C(A) = Norm(A−1) ·Norm(A) (2.8)

If we choose the L2 norm, and if the matrix A is normal (i.e. A† · A = A · A†) then
the condition number of the matrix A is defined as:

CA =

∣∣∣∣λmaxλmin

∣∣∣∣ (2.9)

With λmax and λmin, the biggest and smallest (by moduli) eigenvalues of A.
In the case of our polarimeter, equation 2.6 can be rewritten as:

M = Q−1 · B (2.10)

with M and B, written as 16 component vectors and Q, a 16 by 16 matrix defined
as:

Q = Wt
⊗

A (2.11)

The noise δM on the computed Mueller matrix is directly linked to the noise on the
measurement δB by the following relationship:

δM = Q−1 · δB (2.12)

By applying the norm on equations 2.12 and 2.10, supposing that the measurement
noise comes primarily from the matrices A and W, the relative error on the Mueller
matrix is bounded by:

‖δM‖
‖M‖

≤ ‖Q−1‖ · ‖Q‖ · ‖δB‖
‖B‖

(2.13)
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The condition number of the 16 by 16 matrix Q clearly arises in equation 2.13. To
minimize the relative errors on M, we have to minimize the condition number of Q.
Given that the condition number of the inverse of a matrix is equal to the condition
number of the matrix and that the condition number of a product is the product of the
condition number, it is straightforward that

C(Q) = C(W) · C(A) (2.14)

We have to optimize both condition numbers of the PSG and the PSA [46]. The
theoretical limit for the condition number of a matrix is 1 when the matrix is unitary.
However, thematricesA andW are specialmatrices: their rows (or columns) are Stokes
vectors representing totally polarized states which implies some theoretical bounds.
The condition number of the matrix of the PSG and the PSA is bounded by

√
3.

2.2.3 Design and optimization of the PSG (PSA)

The idea is to be able to generate 4 independent polarization states. The illumination
is provided by an unpolarized light source (Ocean Optics HL2000 HP, 20W output).
To generate our polarization states, we use a linear polarizer and two nematic liquid
crystals (LC) which are linear retarders. This is one of the many designs we could have
chosen for the PSG [43, 47, 48, 49, 50, 51].

We assume that all polarization elements are perfect which means that the linear
polarizer (resp. retarder) does not exhibit retardance (resp. diattenuation).

Figure 2.13: General layout of a PSG made of a linear polarizer followed by two nematic liquid
crystals

The PSG is then fully characterized by 4 parameters: the orientations of the fast axis
of the LCs with respect to the orientation of the linear polarizer (θ1 and θ2) and their
retardance (δ1 and δ2).

We can calculate the Stokes vector generated by this PSG.

S = Mθ2,δ2 ·Mθ1,δ1 ·
1

2
·


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 (2.15)
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As seen in the appendixes, the Mueller matrices of a linear retarder is:

Mθ,δ =


1 1 0 0
1 c2 + s2 cos δ cs(1− cos δ) s · sin δ
0 cs(1− cos δ) c2 + s2 · cos δ −c · sin δ
0 −s · sin δ −c · sin δ cos δ

 (2.16)

with c = cos 2θ and s = sin 2θ
The output Stokes vector is given by:

S =


1

(c2
2 + s2

2 cos δ2)(c2
1 + s2

1 cos δ1) + c1c2s1s2(1− cos δ1)(1− cos δ2)− s1s2 sin δ1 sin δ2

c2s2(1− cos δ2)(c2
1 + s2

1 cos δ1) + c1s1(1− cos δ1)(s2
2 + c2

2 cos δ2)− s1c2 sin δ1 sin δ2

s2 sin δ2(c2
1 + s2

1 cos δ1)− c2 sin δ2c1s1(1− cos δ1) + s1 sin δ1 cos δ2


(2.17)

The columns of the matrix W are the four Stokes vectors generated by switching
the retardations of the liquid crystals. Optimizing W is equivalent to optimizing the
orientations and retardations of the LCs.

A previous work by Blandine Laude-Boulesteix [52] using numerical optimization
demonstrated that this maximum of the condition number of W can be reached by
switching the liquid crystals between twowell-chosen states in the following sequence:

(δ1, δ2) = (∆1,∆1); (∆2,∆1); (∆1,∆2); (∆2,∆2) (2.18)

where the first value is the retardation applied to the first liquid crystal and the
second value is applied to the second liquid crystal. For this configuration, it has been
demonstrated that the following values of the retardations (∆1,∆2) are optimal.

∆1 = 315◦ + p · 90◦ ∆2 = 135◦ + p · 90◦ (2.19)

with p an integer having the same value for ∆1 and ∆2.
and the orientations of the liquid crystals are given by:

θ1 = ε27.4◦ + q · 90◦ θ2 = ε72.4◦ + r · 90◦ (2.20)

with q and r two integers and ε± 1
The evolution of the condition number with respect to ∆i and θi can be found in

the manuscript of Blandine Laude-Boulesteix [52]. The optimization presented here is
by no means the only one, it is one of the possibility to generate 4 polarization states
distributed along a tetrahedron but we can not choose the states generated and thus
optimize the input states by mapping the whole Poincaré sphere. To do so, one should
choose θ1 = 45◦ and θ2 = 0◦ and choose the retardation accordingly to the application.

We optimize the PSAwith exactly the samemethod: we switch the LC between two
well-chosen retardations ∆1 and ∆2. We takeA = Wt and therefore,A andW have the
same condition number.

About the liquid crystals

The selected nematic liquid crystals are liquid crystal variable retarders (LVR100) from
Meadowlark Optics. The principles of liquid crystals are outlined in fig. 2.14. With
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no voltage applied, the molecules lie parallel to the glass and the retardation is max-
imal. When the voltage is applied, the orientation of the molecules change and they
begin to tip perpendicular to the glass. The more the molecules tip, the smaller the re-
tardation. However, the molecules closer to the substrate are pinned at the alignment
layer and then unable to rotate freely which causes a residual retardation that can be
compensated if needed.

Figure 2.14: Liquid Crystal Variable retarder construction showing molecular alignment (a)
without and (b) with applied voltage.

The retardation of the liquid crystal strongly depends on the operating wavelength
and the temperature. According to the manufacturer, the overall retardation of the
liquid crystal decreases of approximately 0.4% / ◦C. Though we have a good control
on the wavelength with the use of interferometric filters with a 10nm bandwidth, we
have to add a temperature regulation system on the LCs. The room temperature is
kept quite constant around 22◦C with the air conditioning but this is not sufficient to
ensure that the retardation of the LCs is constant. Figure 2.15 gives the raw intensities
measured during almost 40 hours. The dependency of the intensity with respect to the
retardation of the LCs is outlined by eq. 2.4.

The same experiment has been carried out with a thermal regulation of the LCs. An
heating ribbon is inserted between the liquid crystals and the mount. A thermal probe
is introduced in the mount to control the temperature. We assume that the thermal
resistance of the mount is small enough so we have access to the temperature of the
liquid crystals. The curves obtained with these new experimental conditions are given
in fig. 2.16.

We can see that it is quite impossible experimentally to be sure that the retardations
used are exactly the ones we specify due to the very steep slope of the characteristics
of the liquid crystals (cf fig. 2.17). We then optimize "blindly" by varying the control
voltages of the liquid crystals to achieve the highest condition number.

2.3 Calibration of the system
Aswe have seen in eq. 2.6, the actualMuellermatrix of the sample can be characterized
by 16measurements only if the polarimeter is calibrated, whichmeans that we are able
to accurately know the matrices A and W and thus invert them to gain access to the
Mueller matrix M. We will shortly present the chosen calibration method we used to
calibrate our polarimeter.
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Figure 2.15: Evolution of the 16 raw intensities measured on the same sample, with the same
integration time, without thermal regulation of the liquid crystals.

2.3.1 Eigen Value Calibration Method

Introduced by Eric Compain in [53], the eigen value calibration method (later referred
as ECM) is a very powerful tool to calibrate any polarimeter without any prior model-
ing of the polarimeter itself. Using only linear dichroic retarders whose characteristics
don’t need to be accurately known, we calibrate the instrument and assess the quality
and validity of the calibration.

Choice of the reference samples

Asmentioned above, the reference samples are supposed to be linear dichroic retarders
whose Mueller matrix can be expressed by:

M(τ,Ψ,∆, ϕ) = τR(−ϕ)


1 − cos 2Ψ 0 0

cos 2Ψ 1 0 0
0 0 sin 2Ψ cos ∆ sin 2Ψ sin ∆
0 0 − sin 2Ψ sin ∆ sin 2Ψ cos ∆

R(ϕ)

(2.21)
with τ the transmission factor, Ψ the dichroism angle, ∆ the retardation and ϕ the ori-
entation of the fast axis. R(ϕ) is the rotationmatrix defined in 1.30. The key point of the
procedure is that the eigenvalues of the matrixM(τ,Ψ,∆, ϕ) are actually independent
of the parameter ϕ. This matrix has two real eigenvalues and two complex conjugate.

λR1 = 2τ cos2 Ψ λR2 = 2τ sin2 Ψ λC± = τ sin(2Ψ)e±i∆ (2.22)
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Figure 2.16: Evolution of the 16 raw intensities measured on the same sample, with the same
integration time, with thermal regulation of the liquid crystals.

Figure 2.17: Liquid Crystal Variable Retarder performance versus applied voltage at 632.8 nm,
21◦C.

The first estimator we can extract to assess the quality of the calibration is:

λR1λR2

λC+λC−
= 1 (2.23)

From the eq. 2.22, it clearly arises that knowing the eigen values of the Mueller
matrix we have just measured, it is fairly easy to recover the polarimetric properties
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τ,Ψ and ∆ with the following equations.

τ =
1

2
(λR1 + λR2) (2.24)

cos(2Ψ) =
λR1 − λR2

λR1 + λR2

(2.25)

sin(2Ψ) cos(∆) =
λC+ + λC−
λR1 + λR2

(2.26)

sin(2Ψ) sin(∆) = −iλC+ + λC−
λR1 + λR2

(2.27)

Experimental Procedure

The first step of the procedure is to measure without any sample,

B0 = AW (2.28)

We then measure our reference samples. Each sample gives us an experimental
matrix

Bi = AMiW (2.29)

withMi, the Mueller matrix of the sample which is of the form defined in 2.21.
The next step is to compute the matrix Ci defined by:

Ci = B−1
0 Bi = W−1MiW (2.30)

The interesting point and the key point of this method is that the matrix Ci has the
same eigenvalues as Mi which enables us to completely characterize it except for the
azimuth ϕ. For each reference sample, we can rewrite 2.30 as:

MiW−WCi = 0 (2.31)

We have a system of equations whose size is defined by the number of reference
samples we have measured. The indeterminacy of the azimuth angle ϕwill be treated
later so we assume that the matrixMi is fully characterized. In eq. 2.31,Mi and Ci are
known, the only unknown isW. For any real 4×4 matrix, we define the linear mapping
Ti defined by:

Ti : X 7−→MiX− XCi (2.32)

It is obvious that the matrix W belongs to the kernel (Ker) of Ti, which is true no
matter the value of i. We then have to wisely choose the n reference samples so⋂

Ker(Ti), i ∈ [1...n] = {W} (2.33)

If this equation is satisfied,W is uniquely defined by our set of reference samples.
Using the proper renumbering of the elements [53], a 4×4matrixX can be rewritten

as a 16 element vectorX16 and the linear mapping Ti can be rewritten as 16×16 matrix
Hi. Equation 2.32 can then be rewritten as:

HiX
16 = 0, i ∈ [1...n] (2.34)
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This overdetermined system can be resolved with a least-square method using the
well-known relation:

KX16 = 0 (2.35)

with

K =

 H1 H1
... ...
Hn Hn


T

=
∑
i

HT
i ·Hi (2.36)

K is symmetrical and semidefinite positive so it can be diagonalized. Given eq. 2.33,
it has 15 non-null eigenvalues and 1 null eigenvalue andW is the eigenvector associated
to the null eigenvalue.

Now that we have foundW, A is easily found using eq. 2.28.
We can now deal with the indeterminacy in the azimuth of the reference samples.

The matrices Hi are indeed ϕ dependent. K is then also a function of ϕ and its spec-
trum also depends on ϕ. However, if the azimuth value was not correct, the system of
equations would have no solution because K would have only non-null eigenvalues.
The correct azimuths of the reference samples can be determined if we minimize the
smallest eigenvalue of K.

This optimization of the smallest eigenvalue is well-suited for our experimental cal-
ibration given that measurements are never free of noise which prevents the smallest
eigenvalue to be equal to zero. If we sort the eigenvalues of K in decreasing order (λ1

highest eigenvalue and λ16 smallest eigenvalue), we can derive another estimator of the
quality of the calibration by computing:

Rλ = log10(
λ16

λ15

) (2.37)

The estimator Rλ will typically range from -2 to -3, which means that the small-
est eigenvalue is two or three orders of magnitude smaller than the second smallest
eigenvalue.

Optimal parameters for the reference samples

As seen in 2.3.1, the reference samples are linear dichroic retarders. We now have to
optimize the parameters of these reference samples so the calibration method is as ac-
curate as possible. The set of samples must fulfill two conditions:

• K must have only one null eigenvalue

• The other eigenvalues must be as different from zero as possible. This condition
is summarized by themaximization of the ration λ15

λ1
which is always smaller than

1.

To simplify evenmore the calibration method, we limit ourself to components com-
mercially available, i.e. polarizers and waveplates which are supposed to be perfect
(no retardation for the polarizers and no dichroism for the waveplates). The degrees
of freedom are the orientations of these components and the retardation of the wave-
plates. We futhermore assume that the generation and analysis matrices A and W are
close to the optimized ones described previously in 2.2.3.
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The conditions enounced previously are fulfilled for the following set of measure-
ments:

• measurement of B0, without any sample, just the product of A ·W

• polarizer alone, set at two different azimuths ϕ1 and ϕ2. ϕ1 azimuth will be con-
sidered as the zero afterwards without any loss of generality

• waveplate with a retardation ∆ and azimuth ϕwp
We then optimize the ratio R = λ15

λ1
by varying the parameters of the samples.

Though a pretty long numerical trial and error procedure, we obtain a maximum ratio
R=0.0105 which is apparently a global maximum. This value is reached for the values
of the parameters in table 2.3.1

ϕ1 ϕ2 ϕwp ∆
0◦ 90◦ 30.5◦ 109◦

Table 2.5: Optimal values of the parameters of the samples used fir calibration

A study of the variations of the ratio Rwith the different parameters can be found in
[52]. We will only remark that the retardation value is not very critical if the waveplate
is well oriented. As a consequence, we can afford to be less careful when choosing the
waveplate and the samewaveplate can be used for calibrations at differentwavelengths
although the retardation is not optimal.

2.3.2 Discussions on the Eigen Value CalibrationMethod and exper-
imental implementation

Though the ECM is a very versatile and powerful calibration method, it can not be
directly applied to fully calibrate our angle-resolved Mueller polarimeter. We have to
insert the calibration samples between the front lens of the objective and the mirror.
However due to the very short working distance of the 100X objective (1mm) it is im-
possible to do so. And even if samples sufficiently thin could be found, they should
be inserted perpendicular to the beam propagation direction which can not be defined
for highly convergent beam. We have to use a low numerical aperture objective (Nikon
MUE10050NA0.15 5XWD23.5mm) to calibrate the system. The longworking distance
of this objective enables us to easily insert our calibration samples.

Even though the system is calibrated in reflection, with the conditions enounced in
1.3.2, theMueller matrix of a mirror at normal incidence is the identity matrix. We also
previously stated that the objectives used in the set-up are supposed to be strain-free
and should have a Mueller matrix very close to the identity matrix. This assumption is
fairly reasonable for the low aperture ones because the curvature radius of the lens is
small enough to neglect the dichroism induced by a reflection or a transmission on a
surface. Except for a transmission factor we neglect for now, the Mueller matrix of the
5X objective can be considered equal to the identity matrix too.

Given that the system operates in reflection, light passes through the calibration
samples twice which means that their transmissions must be squared and the retarda-
tion of the waveplate is doubled. The eigenvalue calibration provides us the character-
istics of the samples in double-pass just like the systemwas calibrated in transmission.

49



CHAPTER 2. MUELLER MICROSCOPE

Figure 2.18: Mueller matrix of a polarizer set at different azimuths versus its orientation. Each
curve corresponds to a different measurement pixel. Black curve: simulation of the sample

Besides looking at the criteria provided by the calibration method itself, we can assess
the validity of the calibration by measuring a standard polarization element. We mea-
sured with the low numerical aperture a polarizer / retarder at different orientations
with 10◦increments. The measured Mueller matrices should be homogeneous given
that the maximal angle of collection is very small (below 5◦). We select 5 pixels on
the intensity image and plot the Mueller matrix elements for these 5 pixels versus the
orientation of the polarizer / retarder. The results are given in fig.s 2.18 and 2.19.

As one can see on the figures, the remaining error on the normalizedmatrix is about
2% (4%maximum). One can also see that the errors are not random and in fact display
a clear tendency which can be attributed by some mistakes in the A and W matrices.
These errors could be corrected using a perturbation method assuming the corrections
are small. By fitting the previous measurements on the polarizer and the retarder, on
can adjust the matricesW→W +δ W and A→ A +δ A

This procedure has not been implemented yet and should be demonstrated on real
samples.

2.3.3 Objective calibration
Once the quality of the calibrationwith the lowNAobjective has been verified, we have
to calibrate the high NA objective because most of our measurements are carried out
with this objective. Though all the other optical components of the set-up have been
calibrated during the ECM, the high NA objective cannot be calibrated with the same
method for the reasons previously stated. Instead of introducing calibration samples
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Figure 2.19: Mueller matrix of a retarder set at different azimuths versus its orientation. Each
curve corresponds to a different measurement pixel. Black curve: simulation of the sample

between the front lens of the objective and the mirror, we are measuring very well-
known (holy) samples in reflection.

Principles

The problem we have to resolve is quite similar to the ECM.

B = Mobjbackward ·M ·Mobjforward (2.38)

with B, the measured Mueller matrix; M , the "true" Mueller matrix of the sample;
Mobjbackward (resp. Mobjforward), the Mueller matrix of the objective in single-pass in the
backward (resp. forward) direction.

The problem is that we don’t have the same liberty of choice for the "holy" samples
as we had in the ECM.We choose to measure isotropic linear dichroic retarders whose
Mueller matrix for each pixel is given by 2.21M(τM ,ΨM ,∆M , ϕ) with ϕ is the azimuth
of the ray. The simulated Mueller matrix of a crystalline silicon wafer is given in fig
2.20.

We can see that the sample being isotropic, the dichroism and the retardance are
radially oriented and only depend on the polar angle θ.

We are assuming that the objective satisfies the following conditions:

• TheMuellermatrices in the forward and the backwarddirections are equal. Mobjbackward =
Mobjforward = Mobj
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Figure 2.20: Normalized angle-resolvedMuellermatrix of a crystalline siliconwafer. Maximum
aperture angle: 62◦. scale [-0.2 .02]

• The Mueller matrix of the objective in single pass is the one of an isotropic linear
dichroic retarderMobj(τo,Ψo,∆o, ϕ) given in 2.21.

It should be notice that in Sami Ben Hatit’s manuscript, only the first assumption is
made. Its seems that we are a bit more restrictive and then may lose some generality
but though the second assumption was not valid in Sami ben Hatit’s thesis, the choice
of the new objectives has been made so they are strain-free and thus do not exhibit
uniaxial birefringence.

In eq. 2.38, all the termswemultiply areMuellermatrices of isotropic linear dichroic
retarders so B is also a linear dichroic retarder Mueller matrix. Besides, two Mueller
matrices of linear dichroic retarders commute so we can rewrite eq. 2.38 as follows:

B = M ·M2
obj

= M2
obj ·M

(2.39)

For eachpixel, we extract the parametersΨB,∆B,ΨM and∆M through aLu-Chipman
decomposition (cf eq. 1.51).

We have a very simple relation between the dichroism and retardance of the matri-
ces B,M andMobj .

tan ΨB = tan ΨM · tan2 Ψo

∆B = ∆M + 2∆o
(2.40)

The A and W determined using the ECM can now be replaced by W’ = Mobj· W
and A’ = A ·Mobj . These new generation and analysis matrices take into account the
contribution of the objective in the measurements.

Experimental realization

Given that the objective calibration only uses one reference sample, the obtainedMueller
matrix may depend on the selected sample. We choose a crystalline silicon wafer (c-Si)
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covered with 1.5nm of native oxyde and a 92nm layer of thermal silica on a crystalline
silicon wafer (SiO2) as reference samples. Using the formula in eqs. 2.40 for both sam-
ples we calculate the objective Mueller matrix. Fig. 2.21 displays the dichroism and
retardance of the objective for both samples.

Figure 2.21: Dichroism and retardance of the Mueller matrix of the objective calculated for two
different reference samples. First row: c-Si, second row: SiO2. First column: retardance, second
column: dichroism

One can observe some small discrepancies between the computed matrices. The
main reason is that these so-called "holy" samples are not precisely characterized. The
thicknesses and refraction indexes of the layers of silica on both samples should be
more accurately characterized in order to increase the convergence of results.

The limitations of this method appear on fig. 2.22. The errors in the raw measure-
ment affecting the elements normally null (elements in the red squares on the figure)
in theMueller matrix of a linear dichroic retarder cannot be corrected. These elements,
however, remain small and are typically smaller than 5% on normalized elements and
the (Ψ,∆) elements exhibit errors close to the precision of the measurement which is
around 2%.

2.3.4 Intensity Calibration
In the procedure described before, W is obtained as the eigenvector corresponding
to the only null eigenvalue. W is defined up to the transmission factor. Because the
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Figure 2.22: Mueller matrix of c-Si. Left: raw measurement; Right: Corrected measurement
using the Mueller matrix of the objective (top)

Mueller matrix is extracted through intensity measurements (cf eq. 2.6), only the prod-
uct of the transmission factors of A and W really matters.

Principles

We adjust the first element of the A and W matrices so A11 = W11 = 1. We can now
express the intensity matrix B

B = τ ·A′ ·M ·W′ · Isource (2.41)

with τ the transmission factor of the system,A’ andW’ the matrices defined before, M
unnormalized Mueller matrix of the sample, Isource intensity of the source.

We introduce the coefficient c = τIsource.
We can rewrite 2.41:

M =
1

c
·A’−1 · B ·W’−1 (2.42)

We can deduce the factor c from the measurements of the matricesA’,W’ and B for
a known sample (M is then known). We also define the reflectance matrix R = 1

c
· B.

Experimental implementation

We combine our simulation of the normalized Mueller matrices of our reference sam-
ples (c-Si and SiO2) which first element is not calibrated and the simulation of the re-
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flectance of reference samples versus the angle of incidence (fig. 2.23).

Figure 2.23: Simulation @633nm of the reflectance of reference samples. Left: c-Si; Right: SiO2.

The fig. 2.24 shows the transmission factor c obtained for two reference samples.

Figure 2.24: Transmission factors calculated using two different reference samples.

The calibration of the M11 element of the Mueller matrix is then complete and the
M11 can be used to fitting purpose although we never tried. The calibration procedure
should nevertheless improved, especially regarding its repeatability. As we can see in
fig.2.24, the errors between the calibration with two different samples can reach 10% of
the total scale of M11.

2.4 Description of the measurements
After the calibration of the system (objective and intensity included), we are able to
measure theMuellermatrix of our sample. It is interesting to focus on themeasurement
itself to have a better and deeper understanding of how to extract the information. The
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imaging part images the back focal plane of the objective on our 512 × 512 pixel CCD
detector. Our measurement is a 512 × 512 × 16 matrix (512 × 512 images, each image
being an element of the Mueller matrix). The measurement of a silicon wafer with a
thin layer of native oxide is given in fig. 2.25.

Figure 2.25: Measurement of c-Si. Scale [-0.2 0.2]

This figure is very different from what we have previously shown in fig. 2.20. The
elements of the two Mueller matrices are not expressed in the same axis: in fig. 2.20
the elements are expressed in the variable axis defined by the polarizations s- and p-
whereas in fig. 2.25 the elements are expressed in the fixed axis x and y defined by the
orientations of the first polarizer during the calibration of the system and all the az-
imuths are measured in the same axis which is rotated with respect to the incident and
scattered light. This rotation can be numerically corrected by a point-by-point rotation
of the axis to obtain the matrix in fig. 2.20. We will try throughout this manuscript to
always specify the axis the Mueller matrices are expressed in.

To be able to use the data for fit purposes, we need to be sure that the numerical
aperture specified for the different objectives is fully imaged on the CCD. Several fac-
torsmay decrease the numerical aperture in the system. We use gratingswhose pitches
are very-well characterized.

The position of the diffraction orders in the Fourier plane with respect to the zero
order enables us to calibrate the angular scale of the images. Let Rmax be the radius of
the image corresponding to themaximum aperture θmax, d the shift (in pixels) between
the orders, λ the working distance and Λ the pitch of the grating.
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Figure 2.26: Description of the measurements and rotation of the axis

Figure 2.27: From left to right: real image of a 700nm pitch grating imaged with the 50x objec-
tive; Full aperture imaged in the Fourier plane; image of the Fourier plane with a mask placed
in the aperture plane. λ = 633nm

The maximum radius is given by:

R = α sin(θmax) (2.43)

The shift between the orders k and k + n is given by:

d = αn
λ

Λ
(2.44)

By combining eq. 2.43 and eq. 2.44,

θmax = arcsin(n
λ ·R
Λ · d

) (2.45)
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Wavelength (nm) Pitch of the grating (nm) Maximum angle (◦) Maximum aperture
633 700 62.25 0.8850
633 700 63.21 0.8927
633 500 62.46 0.8867
633 600 64.21 0.9004
633 800 63.40 0.8942
633 700 63.76 0.8970
532 900 63.30 0.8934
532 500 63.81 0.8973

Table 2.6: Maximum aperture (θmax) obtained using eq. 2.45

Figure 2.28: 700nm pitch grating with a mask in the aperture plane. λ=633nm Three diffraction
orders are visible: -1, 0 and 1.

It is very important to measure the distance d between the same points of the aper-
ture for both diffraction orders to avoid systematic errors on the aperture. Table 2.6
summarizes results obtained for different gratings.

The apertures we find in table 2.6 are very close to each others and are typically
equal to themaximumnumerical aperture specified for themicroscope objective. How-
ever, one should be careful with this apparent perfect adequation between the specifi-
cations of the objective and our results. The sample must be perfectly aligned to have
the maximum aperture and the center of the pupil must coincide with the center of the
image. Though, it may be difficult to check the quality of the alignment of the objective
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and the sample by looking at the intensity images, a small misalignment can easily be
discovered with the polar decomposition of the measurement. Figure 2.29 displays the
polar decomposition images of a misaligned sample.

Figure 2.29: Polar decomposition images of amisaligned sample. (a): retardation∆, (b) Dichro-
ism ψ

2.5 Conclusions
In this section, we have presented the new configuration of the angle resolved Mueller
polarimeter. The illumination part of the system has been re-engineered to accurately
decouple the field and the aperture thanks to a modified Köhler scheme. The classical
scheme for a Köhler illumination has the drawback of conjugating the light source in
the back focal plane of the objectivewhich is optimal for classical applications of bright-
fieldmicroscopes butwill increase noise and errorswhen imaging the back focal plane.
We proposed to slightly defocus the light source so its inhomogeneities don’t appear
in the back focal plane. By doing so we proposed a trade-off for the illumination arm
so it is both working for real and reciprocal imaging.

We also presented the new calibration method for the objective. When previously
an a-priori model and a heavy fitting procedure were required, now only a measure-
ment of a very accurately characterized sample is needed. The only assumption is that
the Mueller matrix of the objective can be regarded as a linear dichroic retarder. This
assumption seems acceptable given the new set of strain-free microscope objectives we
used for our applications. It is also confirmed by the results of the calibration itself.

The quality of the design of the set-up and its accurate calibration thanks to the
eigenvalue calibration method and the additional procedures that have been devel-
oped during my thesis improved the overall performances of the polarimeter and the
stability of the measurements. The maximal aperture has been increased up to 62◦ for
a 240pixel radius of the exit pupil of the 100x objective and the errors are found to be
smaller than 2%.

This set-up is now ready to be used for quantitative applications. In the following,
we will see various possible applications of our apparatus both in the real and the
reciprocal space.
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Chapter 3

Real space measurements on
Entomological structures

Aswe have previously described in chapter 2, the real space imaging configuration can
been used to align the samples wewant tomeasure with the Fourier configuration. But
itwould be a limitation of the possibilities of our systemnot to acquireMuellermatrices
in the real space too. Due to the versatility of our set-up, we can use our system as a
microscope with the polarization information added. Both theory and measurements
stated that using the same calibration, we can measure both in the Fourier and the real
space by just switching a retractable lensLim2 (cf fig.2.8). However, this lens is not taken
into account in the calibration of the system (calibration in the Fourier space).

In this chapter, we will present our work in collaboration with the group of Prof.
Hans Arwin at the University of Linköping, Sweden about the characterization of the
polarization effects of the cuticle of some species of beetles. This work is the direct
continuation of what Sami Ben Hatit started at the end of his thesis (see [41]).

3.1 Experimental validation of the measurements in real
space

3.1.1 Mueller matrices of known elements

Thefirst step of this validation is tomeasurewell-known sampleswith classicalMueller
matrices like polarizers. Figures 3.1 and 3.2 give the measured Mueller matrices of
circular polarizers. We remind that with the convention used here, the last two rows
of the Mueller matrix are the opposite of what normally would be expected and thus
should be multiplied by -1 to be compared with measurements carried out outside the
laboratory with other instruments. The matrices displayed with the corrected signs
will be explicitly identified.

In order to calibrate the handedness of the circular dichroism, wemeasured circular
polarizers. The results are given in fig.3.1 and fig.3.2. Thanks to these measurements,
we can unambiguously determine the handedness of the chirality of the beetles.
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Figure 3.1: Left circular polarizer measured in the real space with the 5X objective

Figure 3.2: Right circular polarizer measured in the real space with the 5X objective

3.1.2 Calibration of the imaged area

To be able to use the system as a microscope, we need to have access to the lateral
resolution. However, the positioning of the lens Lim2 is so critical that it is hard to
be able to know accurately the global magnification of the system therefore we image
very-well characterized gratings with our real space microscope configuration which
enables us to calibrate the area imaged by the different microscope objectives. Some
characteristic images are shown in fig.3.3. Using these images, we find the total imaged
areas shown in table 3.1.
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Commercial magnification Diameter of the imaged area
5X 360µm
20X 90µm
50X 36µm
100X 18µm

Table 3.1: Total imaged fields for different objectives

Figure 3.3: Real images of diffraction gratings with well-known pitches. (a): 15µm grating
imaged with the 20x objective. (b): 10µm grating imaged with the 50x objective. (c): 5µm
grating imaged with the 100x objective

These areas can be decreased by varying the field diaphragm in the illumination
part (cf fig.2.11). Fig.3.4 gives an outlook of the smallest area yet achievable with the
current pinhole.

Figure 3.4: Real image of a 900nm pitch grating with the smallest area yet achievable
(diameter ∼ 11.7µm)
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3.2 Measurements on entomological samples: Iridescence
and structural colors

Entomology (from greek εντoµoς , entomos "that which is cut in pieces", referring to the
three main constituent parts of the body, hence "insect" and λoγια, logia "the study of")
is the science that studies insects. This is a branch of the arthropodology, the study of
arthropods, the phylum of animals including insects, arachnids and crustaceans. We
focus on a specific group of insects, the coleoptera species (from greek, κoλεoς , koleos
"sheath" and πτερoν, pteron "wing" thus sheathed wing), often referred to as beetles.
The coleoptera contains more species than any other order in the animal kingdom and
constitutes around 25% of all known life-forms. The beetles can be found in almost all
habitats. They are generally characterized by a particularly hard exoskeleton and hard
forewings (elytra). This elytra separates them frommost other insect species except for
a few hemiptera species. This exoskeleton is made up of several plates called sclerites,
the precise shape and arrangement of the sclerites are used as features when recon-
structing the phylogenetic relationships between different lineages. The beetles un-
dergo a complete metamorphosis during their life, they physically develop after birth
and their body structure changes quite abruptly (see fig.3.5).

Figure 3.5: Chromatogenesis of a Cetonia aurata. 60hours span between the first and the last
pictures

Iridescence (also known as goniochromism) is the property of surfaces which ap-
pear to change colorwith the angle of view or the angle of incidence [54]. This property
must be clearly separated from the pigmentary colors of the sample, the iridescence
only comes from the structure of the sample. The structural colors of certain beetles
and their specific polarization properties had already been observed in 1911 by A.A
Michelson [55] who stated that "the effect must be due to some screw structure of ultra-
microscopic dimension." although references of studies about the creation of structural
colors can be tracked down to scientists such as Newton or Lord Rayleigh just to name
a few. Iridescent colors can be found on the bodies andwings ofmany birds, butterflies
[56] and all kinds of insects from moths to beetles [57, 58] (see fig.3.6). This has been
studied for centuries now and Newton was the first to suggest that these colors might
be due to the presence of thin film structures. The latter advances of the wave theory
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of light demonstrated that the interference phenomenon plays a key role in the gener-
ation of structural colors. Artists have always been attracted by this kind of structures
to create some new effects for their work of art [59] like Jan Fabre (see fig.3.7) did in the
LouvreMuseum in the exhibition L’Ange de la métamorphose in 2008. The study of struc-
tural colors enables to create bio-inspired structures that can be used for applications
ranging from anti-counterfeiting of banknotes [60] to anti-reflecting coatings.

Figure 3.6: Examples of structural colors in nature. From left to right: Urania riphaeus; peacock
feather; Red Humming bird

Figure 3.7: Some art pieces of Jan Fabre. Left: His decoration of the ceiling of the Royal Palace in
Brussels Heaven of Delight (made out of one million six hundred thousand jewel-scarab wing
cases), Top right: Skull, Bottom Right: Installation at the Louvre Museum

65



CHAPTER 3. REAL SPACE MEASUREMENTS ON ENTOMOLOGICAL
STRUCTURES

In this chapter, we will focus on the structural colors generated by some beetles.

3.3 Entomological description of the chosen beetles
Thanks to our collaboration with the group of Hans Arwin from the Department of
Physics, Chemistry and Biology, of the University of Linköping, we gained access to
various species of beetles. During our measurement sessions, we focused on 5 species
whose characteristics will be given in this section. They belong to different subfami-
lies of the Scarabaeidae family but have common features all presenting a high optical
activity and very bright metallic colors. A sixth species, Cyphochilus insulatus was also
measured, not for the metallic colors it exhibits, but for the total lack of it since it is a
completely white bug (see fig.3.8). Cyphochilus is a genus of beetle with an unusually
bright white body, occurring in Southeast Asia. The white beetle scales are brighter
than milk, tooth enamel and most white materials we find in nature. According to a
new study, they are also a number of times thinner thanwhite plastic [61]. Unlike other
colors, white is relatively rare in animals because the substance must be able to scatter
all the visible wavelengths in order to appear white. Researchers can learn from the
structure of these scales to increase thewhiteness of synthetic objects such as light emit-
ting devices. In an article published in Science [62], Pete Vukusic and his colleagues in
the UK describe the flat and overlapping scales covering the body, head and legs of the
beetle.

Figure 3.8: Cyphochilus insulatus, left: in our measurement system, right: in its natural habitat

To clearly identify the species and their connections, we are using the full name of
the specieswith details of the phylogenetic tree starting from the coleoptera order, even
if it may seem unnatural and quite heavy. The focus will be put on two subfamilies,
the rutelinae and the cetoniinae.

3.3.1 Cetoniinae
Wewill study three beetles from this subfamily, Cetonia aurata, Pseudochalcothea auripes.
and Potosia cuprea

Cetonia aurata (also known as the rose chafer) is common in its area of distribution
which is particularly wide from Western Europe (Portugal, France, Great Britain) as
far as Eastern Russia and China. This species has a large color change: usually metallic
green often more or less vivid, it is sometimes tinged with red, rarely blue, violet or
black.
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Figure 3.9: Cetonia aurata, left: in our measurement system, right: in its natural habitat

The appearance of Potosia cuprea is quite similar to Cetonia aurata. The taxon cuprea
is very variable, especially in the chromatism, and generally the specimens can be di-
vided in 2 large groups according to the punctuation of the posterior part of the elytra
which can be either very finely, superficially and sparsely punctuated, almost smooth,
or densely and deeply punctuated as on the pronotum. Its chromatic forms were the
subject of various descriptions.

Figure 3.10: Potosia cuprea, left: in our measurement system, right: in its natural habitat

The Pseudochalcothea auripes is a very shiny green beetle from the Southeastern Asia,
especially from Borneo.

Figure 3.11: Pseudochalcothea auripes

3.3.2 Rutelinae
From this subfamily, we will investigate the polarimetric response of Chrysina argente-
ola.

This beetle is quite rare and can only be found in tropical areas. Common spots to
find them include Honduras and Costa Rica. Its color is green with golden reflects.
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Figure 3.12: Chrysina argenteola, left: in our measurement system, right: in its natural habitat

3.4 Study of the exoskeleton structure

3.4.1 Previous studies and state of the art
In [63], Neville stated that the structure of the cuticle of some beetles is analoguous
to cholesteric crystals (see fig. 3.13). These helicoidal structures (also called Bouligand
structures) are twistedmultilayer structures and induce optical activity: they highly re-
flect circularly polarized light. Each layer consisting of a chitin structure have uniaxial
anisotropy. The study of the structures of these beetles is a very active domain where
we can cite in very recent years the work of Jewell and Vukusic [64] (University of Ex-
eter) for study of the Plusiotis boucardi with confocal microscopy, the contributions of
Hodgkinson [65] (University of Otago) and Arwin [66] and Järrendahl [67] (University
of Linköping) who studied the optical activity of different beetles using spectroscopic
ellipsometry, and the qualitative study of the localization of circularly polarizing effects
of some species of the Cetoniinae and Rutelinae carried out by Hegedus [68].

Figure 3.13: (a): The helical structure of cholesteric liquid crystal. Elongated molecules with an
orientational order and positional disorder with twist in a direction perpendicular to their long
axis. (b): Cholesteric representation in the form of the ’twisted’ plywood model (from [69])

However, these studies always focus on the spectral response of the beetles and
barely look at the localization of these effects on a microscopic scale. Jewell and Vuku-
sic presented some very interesting images in [64] which challenged us to combine
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the spatial resolution of a microscope and the polarization information brought by a
polarimeter.

The left-circular polarization of these beetles can easily be demonstrated by ob-
serving them through a right circular polarizer. This property already highlighted by
Michelson [55] for the Chrysina resplendens led to the widely accepted idea that beetles
reflect left circular polarization and Können [70] and Kattawar [71] even stated that
this was the common feature of the beetles but maybe that a right circular polarization
mutant species may be found although it had not been documented so far. However, in
[68], Hegedus et al showed that the handedness of the polarization reflected by beetles
was a much more complex matter given the wavelength dependency.

Using our system, we can both image the sample with a high magnification, seeing
the very fine structures of the beetles’ cuticle, and have access to the localization of
the polarization effects. Besides, the use of a white source and interferential filters
also enables us to use discrete wavelengths for our study. Three wavelengths were
selected: 454nm, 532nm, 633nm. Whenever it is possible, we measured the beetles on
the scutellum, the triangular plate on the dorsal side of the thorax, usually where the
wings attach (see fig.3.14). A picture of the sample was taken for every measurement
showing exactly the localization of the spot.

Figure 3.14: Picture of a Cetonia aurata and localization of its scutellum (circled in red)

In the following of this manuscript, we will focus on the selected beetles we have
previously described and compare them with the existing examples in the literature.
The taxons of the beetles studied and cited in this manuscript can be found in a very
exaustive article by Bouchard & al [72] and by Smith in [73, 74] for a more concise
version. Fig. 3.15 gives an overview of the phylogenetic tree of scarabs.
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Figure 3.15: phylogenetic tree of scarabs from Smith [73]. Circled in red are the two subfamilies
considered for this study.

3.4.2 Spatially resolved Mueller matrix measurements

In [75], Sharma & al showed that the cuticle of Chrysina gloriosa is a mosaic of mainly
hexagonal tiles but also 5 and 7-sized polygons which are more frequent on more
curved areas (see fig. 3.16). Fig. 3.17 shows an image of the exoskeleton of Chrysina
argenteola acquired with our system using the 20x microscope objective. The imaged
area is about 90µm showing the hexagonal and pentagonal structures on the cuticle of
the Chrysina argenteola. This image should be compared with the structures published
by Sharma & al [75] which are presented in fig.3.16.

Figure 3.16: (a) Optical micrograph of the exoskeleton of Chrysina gloriosa. (b) Voronoi analy-
sis of the corresponding image. Pentagons are colored blue, heptagons are red and hexagons
white.
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Figure 3.17: Voronoi diagram (pentagons: blue, heptagons: red, hexagons: white) superim-
posed to the intensity image of the exoskeleton of Chrysina argenteola acquired with our system
using 20X objective. The imaged area is approximately 90µm

We find a good agreement between the size of the cells of the exoskeleton extracted
for both our images and Sharma’s (∼ 10µm). We can also compare these images to
the ones presented by Jewell and Vukusic [64]. They found the same structures on the
exoskeleton of the Chrysina boucardi (formerly known as Plusiotis boucardi). It should
then be noticed that this beetle belongs to the same branch of the phylogenetic tree (see
fig. 3.15), the Chrysina genus of the rutelinae subfamily, and it is not very surprising
that they share the same exoskeleton structures with a similar parameters.

We present here the structures of the exoskeleton of species belonging to cetoniinae
subfamily, Potosia cuprea and Pseudochalcothea auripes. The structure of their exoskeleton
look very alike the one of the Rutelinae with hexagonal and pentagonal tiles. These
features are often listed as characteristic of the iridescent beetles.

Figure 3.18: Voronoi diagram (pentagons: blue, heptagons: red, hexagons: white) superim-
posed to the intensity image of the exoskeleton of Pseudochalcothea auripes acquired with our
system using 20X objective. The imaged area is approximately 90µm
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Figure 3.19: Voronoi diagram (pentagons: blue, heptagons: red, hexagons: white) superim-
posed to the intensity image of the exoskeleton of Potosia cuprea acquiredwith our system using
20X objective. The imaged area is approximately 90µm

However, all the species of beetles do not share the same structural characteristics.
Althoughwefind similar hexagonal structures on the cuticle ofCetonia aurata, we notice
that the sizes of the tiles may vary a lot.

Figure 3.20: Images of the Cetonia aurata’s exoskeleton. (a) 5x image, field ∼ 360µm. Size of the
characteristic features (wells) varies a lot. (b) 20x image, ∼ 90µm. The size of some wells can
reach 50µm. (c) 50x image, one can see very clearly the bouligand structures inside the well.

The image on the right of fig. 3.20 is very interesting because one can clearly see
the Bouligand structures inside the well on Cetonia aurata’s exoskeleton. Though the
origin of these bowls is still unknown, it is a common feature among beetles and their
study can bring a lot to the understanding of the structure as a whole.
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Figure 3.21: 50x image of the exoskeleton of Cetonia aurata. In red dashed line, selected cross-
section for analysis. In green dots, detected layers of fibrous chitin

To study the Bouligand structures, we select a cross-section (in red dashed line on
fig. 3.21), thanks to an automated procedure in Matlabr, we smooth the signal, filter
it and automatically detect the peaks with a adaptative threshold filter (see fig. 3.22);
we are then able to locate the layers of fibrous chitin on the image.

As we can see in fig.3.21, the layers seem to be thicker at the center of the bowls
which probably comes from higher curvature whereas the layers are equally spaced at
the edges.

Having calibrated the size of the imaged area for all the microscope objectives, we
can measure the apparent thickness of the fibrous chitin. The 512 × 512 image images
a 36µm area which means that each pixel represents a 70 nm × 70nm area. From the
graph in fig. 3.22, we extract the distance in pixels between peaks and thus we find
an apparent thickness ranging from 500nm to 1,3µm. This value has to be compared
with the pitch used for simulation. In the literature, we found that the value of 370nm
seems to arise very often [64, 67, 76]. Assuming this value of the pitch, we define θ the
angle of curvature with respect to the normal according to fig. 3.23.

Knowing the curvature angle, we can easily reconstruct the profile of the bowl. Fig-
ure 3.24 gives an outlook of what the bowl looks like according to our measurements
of the apparent thickness of the layers of fibrous chitin and assuming an even pitch of
370nm.
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Figure 3.22: Smoothed and filtered signal. In red diamonds, the detected peaks corresponding
to the chitin layers

Figure 3.23: Definition of θ, the angle of curvature with respect to the normal
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Figure 3.24: Reconstruction of the profile of the bowl according to the 50X image

3.4.3 Comparison of the Mueller matrices of selected beetles
We will compare the Mueller matrices obtained with our system which could be de-
scribed as a polarimetricmicroscopewith the ones obtainedwith a variable angle spec-
troscopic ellipsometer (VASE) (fig. 3.25, RC2 J.A.Wollam Co. Inc.). The measurements
on the dual rotating compensator systemwere carried out byHans Arwin and his team
at Linköping University, Sweden. The spectroscopic measurements are acquired at a
discrete angle between 20◦ and 75◦ with 5◦ increment. The wavelength range of inter-
est is 400-800nm, the system can however provide data in a much broader wavelength
region.

Figure 3.25: Variable Angle Spectroscopic ellipsometer RC2. Picture courtesy of Hans Arwin,
LiU

For the sake of comparison, all the measurements were carried on the scutellum
(see fig.3.14 for the location of the scutellum on the beetle and fig.3.26 for the spot on
the scutellum).
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Figure 3.26: Location of the 50µm× 100µm beam spot of the VASE on the scutellum

We remind here that the selectedwavelengths for our system are 454nm, 532nmand
633nm and that the numerical aperture and imaged areas of the microscope objective
are given in tab. 3.2.

Magnification Aperture (0-θ◦max Imaged area
5X 0− 8◦ 360µm
20X 0− 26◦ 90µm
50X 0− 53◦ 36µm
100X 0− 64◦ 18µm

Table 3.2: Numerical apertures and imaged areas on the microscope objective used for this
study.

The angular range we have to average the spectroscopic data on vary a lot with
respect to the chosen objective. Figures 3.27, 3.28, 3.29 show the Mueller matrices with
corrected signs obtained for various beetles with the 20X objective of our system and
the spectra acquired with RC2.

However, the smallest angle of the RC2 measurements is almost the limit of the an-
gular range of our 20X objective (20◦vs.26◦) which means that the comparisons could
be difficult. Moreover, the illumination method is not the same. In the Mueller po-
larimeter we are sending a cone of light which aperture is θmax (given in tab.3.2) on the
sample. We gather the light scattered in the same cone of light, whereas the spectro-
scopic measurements are instead carried out using a 2θ configuration. That is, the light
is emitted at a single incidence angle and the collection angle is equal to the incidence
angle thus only measuring the specular reflection.

To highlight the discrepancies in the polarimetric response due to the illumina-
tion and collection methods we compare the RC2 measurements with a Fourier space
Mueller matrix. We remind here that the Fourier space imaging, also referred to as
conoscopic mode, gives us an angle-resolved image of the light emitted by the sample.
The fig. 3.30 shows theM14 element of the angularly resolvedMuellermatrix ofCetonia
aurata and a cross-section of this element; we can clearly see the angular dependency
of the circular dichroism.
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Figure 3.27: Top: Mueller matrix of a Chrysina argenteola acquired with a 20Xmicroscope objec-
tive for 3 different wavelengths. Bottom: Polar plot (λ, φ) of Mueller matrix element M14 with
λ ∈ [245− 1000] and φ ∈ [20− 75◦] and spectra at specific incident angles of 20◦ and 75◦

Figure 3.30: Left: M14 element of the Mueller matrix in the Fourier space at 532nm, scale [-1
1] and direction of the cross-section in blue. Right: cross-section of the M14 element along the
blue line
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Figure 3.28: Top: Mueller matrix of a Cetonia aurata acquired with a 20X microscope objective
for 2 different wavelengths. Bottom: Polar plot (λ, φ) of Mueller matrix element M14 with
λ ∈ [245− 1000] and φ ∈ [20− 75◦] and spectra at specific incident angles of 20◦ and 75◦

That is, a direct comparison of this result with the polar plot presented in fig. 3.28 is
impossible. The resulting Mueller matrix is the integral of the Mueller matrix for each
incident beam weighted by the reflectance for this angle which explains the increase
in the circular dichroism with the angle. Given that we send a cone of light, each pixel
whose cylindric coordinates are (r. sin θout, ϕout) corresponding to the cartesian coordi-
nates (x, y) in the Fourier space will measure a polarimetric responsemxy equal to:

mxy = A−1
xy

θmax∫
0

360◦∫
0

Bxy(θin, ϕin)Wθinϕin
dθindϕin (3.1)

where

• Axy is the analysis matrix corresponding to pixel (x,y)

• Wθinϕin
is the modulation matrix corresponding to the ray of light illuminating

the sample with angles (θin, ϕin)
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Figure 3.29: Top: Mueller matrix of a Potosia cuprea acquired with a 20X microscope objective
for 2 different wavelengths. Bottom: Polar plot (λ, φ) of Mueller matrix element M14 with
λ ∈ [245− 1000] and φ ∈ [20− 75◦] and spectra at specific incident angles of 20◦ and 75◦

• Bxy(θin, ϕin) is the intensity matrix emitted by the sample in the pixel (x,y) from
an illumination coming from (θin, ϕin)

The intensity matrix B actually consists of two parts: the intensity reflectance and
the polarization information itself. In this case, it is some sort of generalization of the
notion of Bidirectional Reflectance Density Function (BRDF) for polarized light.

The cross-section of the M14 element also shows that the polarization effect on the
cuticle of beetle happens even for small incidence angles, the circular dichroism in-
creases linearly with the incidence angle (see fig. 3.30).

The discrepancies in the acquisition method of both systems will only enable to
qualitatively compare the measurements. The spectroscopic measurements will be
used for fitting purposes while spatial measurements will be used to precisely localize
the polarization effects on the cuticle.

The measurements presented here prove that our system can be used to measure
the circular dichroism in the real space. The results are consistent with the spectro-
scopic measurements carried out at Linköping even though a thorough comparison is
impossible.
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3.4.4 Study of the localization of circular dichroism

Ossikovski & al stated in [32] that beetles are natural occurrences of Stokes non di-
agonalizable Mueller matrices (see 1.4 for a description of Stokes non diagonalizable
Mueller matrices). This study was carried out on the Cetonia aurata but the results can
be generalized to any species exhibiting circular dichroism. In fact, large areas of the
cuticle of the Cetonia aurata can be seen as the incoherent superposition (ie weighted
average) of a circular polarizer, a mirror and a half-wave plate rotated at 45◦.

Mcuticle = α ·


1 0 0 −1
0 1 0 0
0 0 0 0
−1 0 0 1

+ β ·


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

+ γ ·


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 (3.2)

with α, β, γ, the respective weights.

The coefficientα directly gives us an outlook of the circular dichroism on the cuticle.
We compute the sum decomposition of the Mueller matrix introduced in eq. 3.2 for all
our measurements. 6 images are indeed generated by our Matlabr code: α, β and
γ, the coefficients of the sum decomposition; a false color image where each channel
represents a coefficient of the sumdecomposition (R = α,G = β,B = γ) which gives us
a direct interpretation of the localization of the different contributions; ε, the ellipticity
angle and p, the degree of polarization. Those 6 images for the Cetonia aurata can be
found in fig. 3.31
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Figure 3.31: Output images of the sum decomposition of the Mueller matrix. Color scales for
each image are given in colorbars. Background pixels are set to black. Sample: Cetonia aurata
imaged at 20X, λ = 532nm

One can typically distinguish two kinds of polarimetric responses on the cuticle:

• α ∼ 1, ε ∼ −45◦ and β ∼ 0. Red areas on the RGB image.

• α ∼ β ∼ 0.5 and ε� 45◦. Green areas on the RGB image.

For both areas, γ ∼ 0.
Pixels from the first area behave like an highly-elliptical (close to circular) polarizer

whereas the pixels from the second area behavemore like a non-diagonal depolarizers.
This is confirmed by the image of the degree of polarization which is lower in these
areas compared to the centers of the elliptical spots with a high-ellipticity. Figure 3.32
shows the DOP ellipsoid (how the Poincaré sphere is transformed by the sample) for
the different areas.
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Figure 3.32: DOP ellipsoid for different areas of the cuticle of Cetonia aurata

3.5 Toward a better understanding of the exoskeleton’s
structure?

Up to now, simulations of the exoskeleton have always been carried spectroscopically
using a simple 1D multi-layer optics model, assuming an homogeneous cuticle (see
fig.3.33). The first layer of the cuticle, called the epicuticle, is modeled as a dielectric
layer (Cauchy dispersion) with a thickness of depinm. The second and most important
layer, the exocuticle, is modeled as a uniaxial dielectric layer (Cauchy dispersion and
Urbach absorption), the chirality of this layer has a pitch p with a pitch distribution
∆p. Some variations of this model have been presented in the literature, we will here
note the contribution of Jewel [64] who split the exocuticle in two parts: an helicoidal
region with short pitch (310nm) followed by a region with long pitch (370nm). We
assume that the azimuth (in the x–y-plane) of the fast-axis of the anisotropic media in
the helicoidal layers varies linearly as a function of distance. The refraction indexes of
the different layers and model results can be found in [64] for Chrysina boucardi and in
[67] for Cetonia aurata. We present in fig.3.34 the results of the fit for the spectroscopic
Mueller matrix of Cetonia aurata by K.Järrendahl.

However, our real space measurements show that the cuticle of the beetles cannot
be regarded as homogeneous. To our knowledge, no simulation has ever taken into ac-
count the different polarimetric behaviors of the center of the hexagonal structures. As
shown in [75] and as confirmed by our intensity images, the Bouligand structures play
a very important role in the circular dichroism. Jewell et al. published some very inter-
esting images of the cuticle of Chrysina boucardi using microscopy in both bright-field
and dark-field configuration as well as confocal microscopy [64] showing the localiza-
tion of the reflected light depending on the wavelength. However, the absence of use
of polarization makes it hard to compare these results with our images.
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Figure 3.33: Model used to simulate the optical response of studied beetles. Image courtesy of
K.Järrendahl [67]

Figure 3.34: Results of the fit of the Mueller matrix of Cetonia aurata. Model and fit by
K.Järrendahl [67]

By using our spatially resolvedMueller polarimeter, we can also improve themodel
bymeasuring the actual variation of the orientation of the fast-axis of the uniaxial layer
by measuring the orientation of the polarimetric properties of the sample such as the
diattenuation or the retardance. Some results on Cetonia aurata measured with a 50x
microscope objective are given in fig. 3.35. We performed a Lu-Chipman decomposi-
tion of the Mueller matrix of this sample and extract the scalar values of the retardance
and the dichroism as well as their respective orientations.

The Mueller matrix images presented in this chapter are qualitative measurements
and cannot be interpreted directly. We find a good agreement between the observa-
tions made in other publications and our conclusions regarding the localization of the
polarimetric effects on the cuticle.
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Figure 3.35: Results of the Lu-Chipman decomposition on the Muller matrix of a Bouligand
structure imaged on Cetonia aurata with a 50x objective. From top left to bottom right: scalar
retardance, scalar dichroism, orientation of retardance, orientation of dichroism
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Chapter 4

Fourier space measurements:
Applications to overlay characterization
in Microelectronics

4.1 Generalities and motivations

4.1.1 Generalities about the semiconductor industry

Even though people are not always aware of it, microelectronics and semiconductors
have invaded our everyday life. The technology is always evolving, making the past
generation completely obsolete and old-fashioned. The Moore’s law introduced as
early as 1975 [77] describes the long-term evolution of microelectronics and predicts
that the number of transistors that can be placed inexpensively on an integrated circuit
doubles approximately every two years (though originally predicted every year). Fig-
ure 4.1 displays the actual evolution of the number of transistors per surface unit. This
trend has continued for more than half a century and is expected to continue until 2015
or 2020 or later. However, an increase in the number of transistors per surface unit also
means a decrease in their size. Table 4.1 gives an outlook of the drastic decrease in size
of the features.

The fabrication of transistors is a very complex process as we can see on fig. 4.2: it
includes a large number (actually hundreds) of steps alternating thin film deposition
(metal or resist), lithography (including insolation of resist by UV or electron beam in
a predefined pattern) and etching. We will focus on the different metrology challenges
of the lithography. A more detailed scheme of this process can be found in fig.4.3.

year 1971 1975 1982 1985 1989 1994 1995 1998 1999
Technology Node 10µm 3µm 1.5µm 1µm 800nm 600nm 350nm 250nm 180nm

2000 2002 2006 2008 2010 2011 2013 2015
130nm 90nm 65nm 45nm 32nm 22nm 16nm 11nm

Table 4.1: Semiconductors manufacturing processes: typical feature size (from the ITRS)
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Figure 4.1: evolution of the number of transistors on an integrated circuit

4.1.2 Challenges for the metrology
With new technology nodes, lithography tools and metrology tools have to evolve to
meet the standards required and are now highly entwined in what we call Integrated
Metrology (IM) which is now a rising trend in the field of Advanced Process Control
(APC). This problematic emerged a few years ago when the metrology requirements
became so demanding that a new visionwas needed. IntegratedMetrology is basically
the coupling of ametrology tool to a process / fabrication tool, themetrologyproviding
the measurements to correct the output of the process.

In a perfect integration scheme, the same instrument should be able to measure
various parameters such as the critical dimensions. However, along with the charac-
terization of the profile itself (referred to as Critical Dimension (CD)metrology), a very
precise relative positioning of the layers of a stack, called overlay, is needed. The over-
lay is defined as the misalignment between two layers of a stack. The influence of this
error could lead to defective transistors for example if there is no electrical contact be-
tween the different constitutive layers (see fig.4.4 for a cross-section of a transistor and
the importance of alignment between layers).

This feature is more and more challenging with the shrinking of the technology
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Figure 4.2: Different steps in the fabrication of semiconductors

Figure 4.3: Different steps in the lithography process for the fabrication of semiconductors
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Figure 4.4: cross-section of a transistor. In the case of a misalignment between layers, there
could be no electrical contact between the source and the doped region.

node (TN) and used to be of no interest at all when its effect was neglected compared
to the defect in critical dimension. Nowadays the overlay error must not exceed one
quarter of the CD and the measurement uncertainty is now around the nanometer
range (cf fig.4.5). Moreover, the overlay is not uniform on the wafer, it clearly depends
on the position on the wafer. To have an accurate characterization of the overlay on the
wafer, we need tomeasure a large number of calibrated targets spread on thewafer thus
imposing a very fast technique. Ausschnitt [78] introduced a utopian metrology target
called MOXIE (Metrology Of eXtremely Irrational Exuberance) to both measure CD
and overlay. This is the ultimate goal of themetrology andwe are going to demonstrate
that our technique could approach the MOXIE.

Figure 4.5: Evolution of the output overlay uncertainty versus the year (source: ITRS 2010)

The problematic of CD metrology using Mueller polarimetry has already been re-
viewed in details and was the focus of the thesis of Sami Ben Hatit [41]. We will not
insist more on the benefits and disadvantages of this method for CD measurements
and we will only focus on the use of Mueller polarimetry for overlay characterization.
If this overlay is higher than a set threshold, the whole batch cannot be processed to the
new step, this results in a rework, the wafer returns to the previous lithography step
and the resist is stripped. This means that the overlay metrology must be done right
after developing which could be difficult so the overlay is sometimes only measured
after etching. In this case, rework is not an option and the wafer just goes to scrap.
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4.2 Overview of the metrology techniques for microelec-
tronics

In this section, we will present the different techniques used for overlay characteriza-
tion in the microelectronics industry. We can separate them into two categories: the
non-optical techniques and the optical techniques, the latter being non-destructive in
contrary to the first. It is important to notice that there is no overlay standard and
there is no systematic way to verify and compare the accuracy of overlay metrology.
The programmed overlay offsets we introduce are very hard to control as we will see
in the following of this chapter.

4.2.1 Non-optical techniques
Electron microscopy

So far, scanning electron microscopy (SEM) has been the gold standard for CD mea-
surements because it provides real images of the wafer and the structures engraved in
the scribe lines. As SEM cannot see buried layers, it is then not a candidate for over-
lay measurements. Only in very special cases it can be used but we have to use Cross
Sectional SEM (X-SEM), these images are easily processed and give a direct charac-
terization of our sample. However, this technique is destructive, very very slow and
requires sample preparation which alters the profile of structure and then increase the
uncertainty of the measurements.

Atomic Force Microscopy (AFM)

The bottleneck of AFMmeasurements for overlay and critical dimensions (CD)metrol-
ogy is their tips. AFM can provide good measurements as long as the tip can reach the
bottom of the trench and as long as its asymmetry can be calibrated. However, AFM
is unable to access the buried layers of the structure and then cannot provide infor-
mation about the positioning of the layers. Moreover, for characterization of small
patterns, commercially available tips are too large and cannot grant reliable results.
The other disadvantage of both non-optical techniques is their very poor throughput.
Both methods are very lengthy and it is very hard to inspect the surface of a wafer fast
enough.

4.2.2 Optical techniques
A fast and non-destructive method to characterize overlay is required. Optical tech-
niques are very good candidates for this metrology. The main appeal of these tech-
niques is that light can penetrate several "layers" of the sample and then is sensitive to
the bulk structure of the sample even though structures are buried and are so inacces-
sible to other non-destructive techniques.

Image-based techniques

Image-Based Overlay (IBO) techniques rely on box in box (BiB) or bar in bar marks
imaged with a bright-field optical microscope and has been adopted as the standard
for overlay metrology for years. However, IBO is not free of artifacts [79] and the size
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of the marks it requires (at least 18µm × 18µm boxes repeated in the scribe lines) may
become a limitation in the future. New designs for the targets used are still a part
of research and help always push further the limits, the grating based AIM methods
introduced is a good example and provides better results than traditionnal BiB or FiF
targets [80].

Conventional BiB metrology has been the standard for many years but the global
overlay budget shrinking and the resolution of a bright field microscope being limited
by aberrations, we can see that the cost of such device will increase with new technol-
ogy nodes. The fundamental limitations of BiB metrology are listed in [81].

Figure 4.6: (a): Standard BiB mark. (b): AIM mark 30× 30µm2. (c): µAIM mark 15× 15µm2

Diffraction-based techniques

Diffraction based overlay (DBO) techniques, also called scatterometry, are spreading
very fast in the microelectronics industry. The instrument collects the light diffracted,
scattered and reflected by the sample and analyzes it as a function of a variable which
can be the angle of incidence or the wavelength, the latter being referred to as spec-
troscopic scatterometry. The signature of the sample is very rich and detailed, en-
abling very accurate fits. The most widespread DBO technique for overlay measure-
ments is the so-called Scatterometry for Overlay (or SCOL), which involves spectrally
resolved ellipsometric measurements in planar diffraction geometry, i.e. with the in-
cidence plane perpendicular to the grating lines. This technique is quite fast and non-
destructive, the measurements can be done in situ, however a fit of the experimen-
tal data by multiparemeter models is often required and the final results are model-
dependent. However, the signature of the measured samples and the use of dense
structures instead of isolated ones allow a rigorous modeling [82].

In the case of standard scatterometry, the spectra frompadswith same overlaymag-
nitude but opposite directions are identical due to symmetry. In the case of empirical
DBO (e-DBO), nomodeling of the structure is required and the measurement accuracy
can be increased by adding some reference structures. Model-based DBO (m-DBO)
adds the overlay in the parameters of the fit and provides both overlay and structure
profile information [83].

While a single pad of 3D structures should be enough to completely characterize the
overlay, actual DBO methods rely on measurements of 2D linear gratings, thus having
at least one test structure per axis. 2 pads are then sufficient for m-DBO while at least
4 pads are required for e-DBO while 6 or 8 are typically used [79, 82, 83, 84]. Standard
boxes for measurement of overlay using scatterometry are typically 40µm× 160µm but
new targets developed by ASML for their YieldStar device [85] of only 30µm × 60µm
(containing two x gratings of different biases and two y gratings of different biases)
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have been introduced recently [86]. However, this technique still requires specially de-
signed and dedicated structures that use too much space on the wafer and don’t reflect
exactly the actual in-chip overlay. DBO techniques typically provide better short term
reproducibility than direct optical imaging of BIB, AIM or "blossom" targets for overlay
measurements. This improvements of the reproducibility is the main advantage of the
DBO technique compared with IBO which will be soon limited especially in the case
of double patterning which requires a reproducibility better than 0.2nm [82, 84].

4.3 Intrinsic properties ofMuellermatrices in conical diffrac-
tion and simulations

Mueller polarimeters have already proved to be excellent candidates for the metrology
of CD in microelectronics either in spectroscopic [87, 88, 89, 90] or in conoscopic mode
[41, 37, 91]. This is the most general polarimetry technique and although Mueller po-
larimetry is way less wide-spread than classical ellipsometry, the development of such
instruments is a very active field [37, 48, 51, 92, 93, 94, 95]. In the first part of this sec-
tion we will introduce the fundamental and intrinsic properties of a Mueller matrix
which enables us to use this formalism for the characterization of overlay. Wewill then
focus on the Mueller matrices of simulated structures of interest which will lead to the
definition of linear estimators for overlay.

We here remind that we use a complete Mueller polarimeter mode which means
that the measurements are 4× 4 matrices contrary to other systems used for the same
purpose but that are only able tomeasure a partialMuellermatrix (3×4matrix [96, 97]).
Moreover, the measurements are performed at a single wavelength in a conoscopic
mode which means that we can access all the angle of incidence (AOI) and azimuth
whereas traditionallymeasurements are spectroscopically resolved at discrete AOI and
azimuth (see fig 4.7).

Figure 4.7: Geometry of conical light incidence in traditional ellipsometry for 1D grating
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4.3.1 Intrinsic properties of Mueller matrices
In the Stokes-Mueller formalism, light can be described by a 4-dimension vector called
the Stokes vector (see 1.1.2 for more details about Stokes vectors). The light-matter in-
teraction is then summarized by the 4× 4 matrix called Mueller Matrix. In the absence
of depolarization, as it is the case inmanymicroelectronics measurements, theMueller

matrix can directly be derived from the Jones matrix [28] (see eq. 4.1) J =

[
rpp rps
rsp rss

]
which depends on the azimuth, AOI, wavelength and also on the structure details on
the sample. The diagonal elements of the matrix describe the reflection coefficients for
parallel (p) and perpendicular (s) light. The off-diagonal elements of the matrix de-
scribe the polarization conversion between s- and p- polarizations that occurs when
the sample is anisotropic. Li demonstrated in [98] that the Jones cross-polarization re-
flection coefficients are anti-symmetric for symmetric structures as a result of the elec-
tromagnetic reciprocity theorem for the 0th-order diffraction of symmetrical gratings
and that this condition is not fulfilled when asymmetry occurs in the structure and
then can be used for overlay metrology. This result is generalized when the wave vec-
tor of the incident plane wave and the negative of the wave vector of the mth reflected
order are symmetrical with respect to the plane perpendicular to the grating grooves.
However, we will limit our study to the 0th order of diffraction (specular reflection) so
we are not limited by the period-wavelength ratio.

M =

〈
1
2

(|rpp|2 + |rss|2 + |rps|2 + |rsp|2) 1
2

(|rpp|2 − |rss|2 − |rps|2 + |rsp|2)
1
2

(|rpp|2 − |rss|2 + |rps|2 − |rsp|2) 1
2

(|rpp|2 + |rss|2 − |rps|2 − |rsp|2)
re(r∗pprsp + r∗psrss) re(r∗pprsp − r∗psrss)
im(r∗pprsp + r∗psrss) im(r∗pprsp − r∗psrss)

re(r∗pprps + r∗sprss) −im(r∗pprps + r∗sprss)
re(r∗pprps − r∗sprss) −im(r∗pprps − r∗sprss)
re(r∗pprss + r∗psrsp) −im(r∗pprss − r∗psrsp)
im(r∗pprss + r∗psrsp) re(r∗pprss − r∗psrsp)


〉
, (4.1)

By writing M has a 2× 2 block matrix,M =

[
M(2×2)

1 M(2×2)
2

M(2×2)
3 M(2×2)

4

]
, one can easily see

that in the case of a symmetric structure, we have the following relationships between
the elements of the off-diagonal blocksM(2×2)

2 andM(2×2)
3

M(2×2)
2 (i)±M(2×2)

3 (i) = 0 with i ∈ [1, 4], and the sign depending on i (4.2)

In the regime of small overlays, there is a linear relationship between the elements
of the off-diagonal blocks and the overlay∇ [96, 97, 99, 100, 101].

M(2×2)
2 (i)±M(2×2)

3 (i) = Ci · ∇ with i ∈ [1, 4], Ci a constant (4.3)

It has been shown that the choice of proper azimuthal configuration for the mea-
surements with spectroscopic polarimetry is extremely important for the overlay char-
acterization [96, 99]. Given that our apparatus gives an angular signature, we can also
exploit the fundamental symmetries of the grating to enhance our knowledge of its
angle-resolved signature. The sign of the off-diagonal blocks changes when the az-
imuth ϕ is changed into−ϕ. If the profile is symmetric, the signature is invariant when
ϕ→ ϕ+ 180◦ and for the special case of ϕ = 90◦ the previous two conditions can only
be fulfilled if the off-diagonal blocks are zero. A rupture of symmetry in the structure
will violate the above conditions and the off-diagonal blocks will take non-zero values
for ϕ = 90◦. Moreover, given that these blocks change sign upon a mirror symmetry,
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the information about the sign of the overlay can be unambiguously extracted. In or-
der to decrease the experimental artifacts due to noise, the information at ϕ should be
compared to −ϕ.

4.3.2 Simulation of structures of interest
The simulation method used for our purpose is inspired by the work of Novikova et
al. [99] but we replaced the spectral Mueller polarimetry for the sample characteriza-
tion by the angle-resolved Mueller polarimetry. The main difference is that with the
measurements in the Fourier spacewemeasure all the angles at once at one fixedwave-
length whereas with spectral Mueller polarimetry the entire spectrum is measured at
fixed angle of incidence and azimuthal angle. We defined for the simulations the pe-
riodic structure with the pitch Λ = 1000nm and filling factor of 0.5 (see fig. 4.8). We
simulated the same structure with overlay ranging from 0 to 25nm.

Figure 4.8: Simulated 1D periodic structure for the overlay characterization. Overlay: 25nm

RCWA simulations

This section is dedicated to a brief description of themostwidely useddigitalmethod to
solve the problem of direct diffraction and commonly referred to by its acronymRCWA
(for Rigourous Coupled Wave Analysis) [102, 103, 104, 105, 106, 107]. This method was
used for the interpretation of all polarimetric measurements on gratings carried out in
LPICM, from CDmetrology [41] to the work presented here, using codes developed in
the laboratory by Tatiana Novikova first and then by Martin Foldyna.

We assume the grating to be invariant along y and periodic x (1D structure). In-
side the structure, the complex permittivity εx and the field amplitudes are developed
in Fourier series, whose coefficients are functions of z. This development transforms
Maxwell’s equations into a system of coupled differential equations, which can be di-
rectly solve by differential methods. In addition, these equations separate according to
polarizations x and y if plane of incidence is in either of these two directions.

RCWAmethod, initially introduced by Knop [102] andMoharam andGaylord [105]
is a modal method perfectly adapted to the case of lamellar gratings. Indeed, in this
case, the coefficients of the coupled equations are constant, and it suffices to diagonalize
the matrix describing the coupling to find the natural modes of propagation, which
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are a superposition of the incident wave and diffracted waves, propagating without
distortion, with just a phase shift and attenuation.

However, in practice this diagonalization presupposes a truncation of the Fourier
basis, corresponding to a physical limitation to a given value N of the total number of
waves (propagating and evanescent) taken into account in the calculation. Themethod
only converges to the exact solution when N tends to infinity, and this convergence is
much slower for the TM mode (polarization p) than for the TE mode (s polarization ).
This problem was solved by Lalanne and Morris [103, 104] with a modification of the
rule of multiplication of functions developed in Fourier series (here the permittivity
and electric field).

Figure 4.9: Slicing of a one-dimensional grating, invariant following y in a superposition of
lamellar gratings.

If we now want to calculate the optical response of a grating of any a priori form
(but preferably reasonably close to a lamellar network), we can consider the structure
as a superposition ofM lamellar gratings approaching the real profile with a "staircase
structure" as shown in fig. 4.9.We then need to solve the problem for each lamellar
grating, then connect the solutions by the right continuity conditions at the interfaces.

4.3.3 Definition of the criteria for the overlay characterization
It is possible to determine the direction of the resist grating displacement with respect
to the Si grating. To highlight these effects we simulated the Mueller matrix M of the
structure depicted in fig. 4.8. We computed then the difference E = |M| − |M|t where
the superscript t denotes the transposed matrix. The grating is oriented and aligned
along the y-axis (vertical axis on the figure), the displacement is along the x-axis. The
resulting matrix is shown in fig. 4.10.

The elements of this matrix can reach the value of 0.25 (m14 and m41), ie 1/8 of the
total scale for a 25 nm overlay (however, as we will see in the following of this chapter,
the slope of the estimator versus the overlay highly depends on the structure profile).
In [96], the authors showed that their estimator (based onm13 andm31) was linear with
the overlay error up to ± 15nm. Linearity curve of this estimator calculated for the
structures with different overlays can be found in fig. 4.11. The linear regression is
excellent and these results can be extended to negative overlays, the sign of the esti-
mator becoming negative. So we can expect that the overlay errors can be accurately
determined provided that we are able to design an apparatus with small enough er-
rors. For this particular case, an error of 1% of an element of the matrix is associated
to a 1nm overlay. Another important feature is highlighted by this simulation: only
some incidence angles are sensitive to the x-overlay. We can see that the response for
the x-overlay is mainly located in the octants located near the y-axis. The limitation on
the location of the response enables us to decouple the overlay in x and y directions;
the last one should appear in the octants located near the x-axis. Thus we may sug-
gest a new way to measure overlay by analyzing the location of the maximal response
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Figure 4.10: Difference for the simulated structure (see fig. 4.8) displayed in (s,p) axis. All
elementsmij (i,j 6= 1) are normalized bym11, consequently 0 < |mij | < 1.

of the estimator and thus obtain the orientation of the overlay directly from only one
measurement. This possibility has not been investigated yet.

One of the drawbacks of this estimator is that it clearly suppresses the signal at
the configuration where it should be more sensitive, namely, along the grooves of the
grating. As it is specified in [99] and highlighted previously, when the plane of incident
light is parallel to the grooves, the off-diagonal elements of the matrix should vanish if
the profile is symmetrical while they will take non-zero value otherwise.

We havem(ϕ) = m(ϕ+ π) for the symmetrical grating profile and the off-diagonal
2 × 2 blocks are anti-symmetrical. So we can define another estimator for the overlay
measurements asmij(ϕ)−mij(ϕ+ 180◦). The values of this estimator are shown in fig.
4.12.

The second estimator seems to give better results, as the elements of this matrix can
reach the value of 0.5 (m14 andm41) for a 25 nmoverlay. But given the uncertainty in our
measurements it could be difficult to find the image pixel corresponding to azimuthal
angle ϕ + 180◦. Since even a small error in the estimator calculation could generate
the important artifacts in the overlay images, we have decided to use the first estimator
E = |M| − |M|t. No experimental validation of the second estimator has been carried
out up to this date.

The second step of the definition of our estimator is to be able to extract a scalar
value to characterize the overlay. We focus on them14 andm41 elements of the Mueller
matrix for several reasons: they show the best sensitivity to the overlay defects and
they are not mixed with the objective contribution given that the objective is circular-
dichroism free. If we only focus on these two elements, we don’t even need to char-
acterize the objective and we don’t need to subtract its contribution to our measure-
ments. We now have a 512 × 512 image, we call it the image estimator, representing
E14 = |m14| − |m41|. The use of the E14 estimator enables us to use both (s,p) and (x,y)
axis matrices given that them14 andm41 are invariant by this transformation.
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Figure 4.11: Scalar estimator calculated for the simulated structures with different overlays.

Figure 4.12: Differencemij(ϕ)−mij(ϕ+180◦) for the simulated structure (see fig. 4.8) displayed
in (s,p) axis. The scale is defined to match the one in fig.4.10 so pixels out of scale appear white.
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Figure 4.13: Effect of the chosen statistic on the estimator. We show here only two statistics:
mean and max.

We select in this image the region of interest (ROI) by defining a mask (manual
selection). This mask should only contain pixels belonging to the zero order and we
try to select the region around the maximum. The figure 4.13 shows the difference
between two statistics applied to the same mask of a simulated structure. We can see
that the slope is slightly different, themax gives higher value. However, it is impossible
to use the maximum for our experimental estimator due to the noise which alter it.
The estimator on the ROI is averaged and attributed to the scalar estimator E. Several
other statistics including standard deviation, median, different percentiles and linear
combinations of percentiles have also be investigated but none of them combines the
same robustness and sensitivity as themean. Figure 4.14 summarizes all the processing
steps to extract the scalar estimator E from the Mueller matrix M.

4.4 Validation of the estimator and description of the test
structures

4.4.1 Validation of the estimator on real samples

Before using our estimator on structures specially designed for the metrology of over-
lay, we validated it on real samples. In the following of this manuscript, we will use
the notation ∇ for the overlay.
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Figure 4.14: Processing steps to extract the scalar estimator E from the Mueller matrix M

Isotropic samples

The first two samples we tested were isotropic samples namely a crystalline silicon
wafer and a 89nm layer of silica on a c-Si substrate. These samples are the same used
for the calibration of the objective or the calibration of the reflectivity. Their matrices
are well-known and the samples being isotropic, the image estimator and the scalar
estimator should be both equal to zero. The results obtained are displayed in fig. 4.15
and 4.16. Because the samples are isotropic and thus should have a zero estimator on
the whole pupil, the selected ROI is the complete pupil.

Both scalar estimator are very close to zero and the remaining error is due to the
noise (up to 0.02 on each element). However, averaging on the ROI decreases the errors
on the scalar estimator. By measuring these isotropic samples, we confirm that our
estimator has a null bias and thus a non zero value of the estimator directly reflect a
rupture of symmetry in the structure.

Symmetric and asymmetric gratings

This estimator is meant to be used for gratings. As seen in [97], the asymmetry of the
structure profile also affects the value of the estimator. We compare the estimators
obtained for two types of gratings: resist gratings whose profiles are supposed to be
symmetric and a blazed grating whose profile is by definition asymmetric. The pitches
of the resist gratings are chosen so they are around the pitch of the blazed grating and
then are easily comparable. The estimator is only defined for the zero order so we crop
the images in order to keep only the zero order visible.

The asymmetry of the blazed grating profile can easily be spotted in the image esti-
mator. The resist grating profiles are symmetric as we can see by the very small value
of their estimators. We must nevertheless be careful because we limit the aperture and
the azimuths of the collection angles by cropping the images so only the zero order is
displayed. We could correct this by using a sliding aperture in the Fourier space whose
size is well adjustedwith respect to the angular distance between the diffraction orders,
the full zero order of the grating can then be reconstructed.

We experimentally showed that this estimator has a null bias for the asymmetry and
so that the selected estimator can be used for the characterization of gratings provided
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Figure 4.15: Left:m14 Mueller matrix element. Right: Image estimator. Scalar estimator E =
0.001

Figure 4.16: Left: m14 Mueller matrix element. Right: Image estimator. Scalar estimator E =
0.0035
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Figure 4.17: Left: m14 Mueller matrix element. Right: Image estimator. Scalar estimator E =
0.2578

Figure 4.18: Left: m14 Mueller matrix element. Right: Image estimator. Scalar estimator E =
0.0127
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Figure 4.19: Left: m14 Mueller matrix element. Right: Image estimator. Scalar estimator E =
-0.0014

that the profile is symmetric and that only the zero order of diffraction is gathered
by the microscope objective thus imposing a relationship between the measurement
wavelength and the pitch of themeasured grating to avoid the use of a sliding aperture.
At the end of chapter 2, we defined the relationships between the aperture, the pitch
of the grating and the positions of the orders of diffraction (see eq.2.43 and eq.2.44).
From these two equations, we deduce that in order to only image the zero order of
diffraction, the pitch of the grating must satisfy the following equation:

Λ ≤ λ

2 ·NA
(4.4)

where:

• Λ is the pitch of the grating

• λ is the working wavelength

• NA is the working numerical aperture of the selected microscope objective

In our case, for a wavelength λ = 633nm and a numerical aperture NA = 0.9, we
find that the pitch of the grating can not exceed Λmax = 350nm.

4.4.2 Description of the targets for overlay measurements
The test samples of superimposed gratings with intentional and controlled overlay er-
rors have been designed and manufactured at CEA/LETI (Grenoble, FRANCE), bot-
tom (1st) level Si grating and top (2nd) level resist grating with common pitch of 400
nm are separated by a silicon nitride layer. The bottom grating is placed on top of SiO2
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Nmod 1 2 3 4 5 6 7 8 9 10 11 12
CD0 Level 2 150 150 200 200 200 250 250 250 300 300 300 300

Level 1 250 300 100 200 300 100 200 300 100 150 200 250
CD1 Level 2 150 150 200 200 200 250 250 250 300 300 300 300

Level 1 280 330 110 220 330 110 220 330 110 170 220 280
CD2 Level 2 170 170 220 220 220 280 280 280 330 330 330 330

Level 1 250 300 100 200 300 100 200 300 100 150 200 250
CD3 Level 2 170 170 220 220 220 280 280 280 330 330 330 330

Level 1 280 330 110 220 330 110 220 330 110 170 220 280
CD4 Level 2 150 150 200 200 200 250 250 250 300 300 300 300

Level 1 220 270 90 180 270 90 180 270 90 130 180 220
CD5 Level 2 130 130 180 180 180 220 220 220 270 270 270 270

Level 1 250 300 100 200 300 100 200 300 100 150 200 250
CD6 Level 2 130 130 180 180 180 220 220 220 270 270 270 270

Level 1 220 270 90 180 270 90 180 270 90 130 180 220

Table 4.2: Nominal values of CDs (nm) for different fabricatedmodules; level 1- Si grating, level
2 - resist grating.

layer on Si substrate (see fig. 4.20). The pitch of this structure is slighly higher than
what we defined in eq.4.4 which means that we will gather a fraction of higher orders
of diffraction (-1 and 1).

Figure 4.20: Cross section of the layer stack of the designed target for overlay measurement.

A large panel of critical dimensions (CD) for the top and bottom gratings have been
investigated. The nominal values of CD are given in table 4.2.

Each test module includes 2 test structures whose cross sections have been pre-
sented in fig. 4.20. The test structures have perpendicular orientations with respect to
each other so we measure x-overlay on the y-oriented structure and y-overlay on the
x-oriented structure. AIM marks and other specific marks complete the reticule. A
schematic of the reticule is shown in fig. 4.21 and an intensity image acquired with our
device in real space is shown in fig. 4.22. The AIMmarks are in red. For our purpose of
overlay characterization, two test structures are actually engraved, one in a 20× 20µm2

box and one in a 5 × 5µm2 box. In order to sufficiently decrease the room dedicated
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to metrology on the wafer, if the results were good enough, only the 5 × 5µm2 box
could be engraved on the sample as the metrology target. However, due to the current
limitations of our device, investigations were carried out using the 20× 20µm2 .

Figure 4.21: Schematic of the reticule. AIM: red. Mueller Polarimetry: blue (x-overlay) and
green (y-overlay). All dimensions in µm

Figure 4.22: Real image of the wafer. Magnification: 5X.

Each test structure (see tab. 4.2) was fabricated with different nominal overlay val-
ues (0, ±10, ±20, ±30, ±40, ±50, ±100, ±150nm). The structures with different nom-
inal overlays are arranged row-wise whereas the variations in CD is column-wise. A
schematic of the complete measurement module can be found in fig. 4.23.
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Figure 4.23: Schematic of a complete module. The values of the CDs can be found in tab. 4.2.

4.5 Validation of the linearity of the estimator on test struc-
tures

4.5.1 Experimental procedure

We use our Mueller polarimeter in the back focal plane for our inspection. The 200mm
wafer specially designed by CEA-LETI with 12 modules in a field, repeated five times
over the wafer is placed on a XYZ translation stage (see fig.??). The X and Y axis en-
able us to accurately position the spot in the measurement box (positioning precision
around 1µm). The Z axis is used for focusing purpose.

The ability of our device to acquire both angularly-resolved and spatially-resolved
images enables a fine positioning of the sample and a visual control of the illuminated
spot on the sample. The distance between two measurement boxes is 50µm along the
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Figure 4.24: 12 modules in a field, repeated five times over the wafer on a 200mm silicon wafer.

x-axis and 100µm along the y-axis. The automatization of themeasurements for a com-
plete module has not been implemented due to lack of time and insufficient repeata-
bility in the positioning on the stage of the sample itself. The positioning of the sample
has been done manually for each measurement, thus ensuring that the measurements
are done in the correct boxes.

If no other indication, the working wavelength is set at 633nm.

We carried out intensive measurement campaign of the test wafer. 12 modules are
engraved on the wafer, each with seven different combinations of critical dimensions
for the top and bottom layers thus grating us 84 different measurement lines to charac-
terize the linearity of our estimator. We measured 19 lines, 10 were measured for both
x and y-overlay whereas the 9 remaining were only measured for y-overlay.

The Mueller matrix, the matrix estimator and the image estimator for one of our
measurements are summarized in fig. 4.25.

4.5.2 Use of AIM measurements

Each measurement box has also been measured using the KLA-TENCOR Archer 100
which has a total measurement uncertainty below 2nm [108]. We can thus compare
the results obtained with AIM technique and our Mueller polarimetry technique. The
results obtained with the Archer 100 are taken as the gold standard in the rest of this
section; we will rely on them and regard them as "true" overlay. We will then distin-
guish between the AIM overlay ∇AIM (Archer 100) and the nominal overlay (given on
the wafer)∇nom. The measurement targets for Mueller polarimetry and AIM are suffi-
ciently close to each other to safely assume that the overlay is the same for both targets.

We measured complete lines of x-oriented gratings with a specified overlay along
the y-axis and plotted our estimator versus the overlaymeasured by AIM at CEA-LETI.
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Figure 4.25: Measurement for the y-overlay box of module 7 N1 220 N2 280, Nominal overlay
+50nm. Matrices are displayed in (x,y) axis. Top left: Mueller matrix measurement. Bottom
left: matrix estimator. Right: Image estimator (MM14) with the manually selected mask for
averaging in black

Overlay on the module 10

Figure 4.26: Linearity curve for y-overlay in module 10 N1 150 N2 300. Scalar estimator versus
AIM overlay

These data confirm the excellent linearity of the estimator E versus the "true" (AIM)
overlay. The linear relationship between these two quantities can be rewritten as:
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E = S(∇AIM −∇0) (4.5)

where the sensitivity factor S is equal to 0.0016 and the offset∇0 is as small as 2nm.

However, these values are lower than what is predicted by the simulations as seen
in fig. 4.27. The sensitivity factor S is smaller for experimental data which hinders the
precision of our measurements. The origins of this decrease in sensitivity with respect
to simulations has yet not been explained.

Figure 4.27: Comparison between simulations and experimental data for module 10 N1 150 N2
300.

The results presented for y-overlay can be generalized to x-overlay with the same
linearity and small offsets as shown on the figures below.
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Figure 4.28: Linearity curve for y-overlay in module 10 N1 130 N2 300. Scalar estimator versus
AIM overlay

Figure 4.29: Linearity curve for x-overlay in module 10 N1 130 N2 300. Scalar estimator versus
AIM overlay
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Overlay on the module 1

Figure 4.30: Linearity curve for y-overlay in module 1 N1 250 N2 130. Scalar estimator versus
AIM overlay

Figure 4.31: Linearity curve for x-overlay in module 1 N1 250 N2 130. Scalar estimator versus
AIM overlay

4.5.3 Use of nominal overlays
Provided S is known, we can define the Mueller overlay∇M as:

∇M = E/S (4.6)
where E is the measured value of the estimator. Eq. 4.6 is thus derived from eq. 4.5

by neglecting the offset ∇0, which is quite small and should be zero from first princi-
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ples, as mentioned above. However, to experimentally determine S we need at least a
pair of neighboring targets with accurately known different overlays. In practice, what
is always available is the nominal overlay ∇nom, as defined by the process. This nomi-
nal overlay may be rather different from the actual one, as shown below. As a result, at
least two "gold standard" measurements are needed to determine S. Of course, to qual-
ify our technique as a possible alternative to established techniques in real world, it is
desirable to use as few AIM measurements as possible. As nominal overlays ∇nom are
always available, we now explore the link between theses nominal values and the AIM
ones, to determine to what extent the nominal overlays∇nom can be used to determine
S and then∇M .

Process characterization: nominal overlay versus AIM overlay

A typical plot of ∇nom versus ∇AIM obtained for module 9 (CD1 90 nm, CD2 300nm)
is shown in fig. 4.32. This plot, which includes the data for ∇nom between -50 nm and
50 nm, is almost linear, with a slope practically equal to 1 and an offset close to 20 nm.
We can then conclude that the process is accurate for overlay variations, with however
a large offset which is uncontrolled though constant, that we call excess overlay contri-
bution∇. Of course, if S is to be determined from two points only, then the best choice
is obviously the two extreme points.

Figure 4.32: Correlation between AIM and nominal overlay values for module 9 (CD1 90 nm,
CD2 300 nm)

4.5.4 Discussion
From the curves showed above, we can point out several important remarks. First,
the linearity of the estimator on our test structures is confirmed by the plots for the
"true" overlay. The correlation ratio is excellent and the offset is close to zero (a few
nanometers atmost). However, we notice that our estimator has a non-null value for the
zero nominal overlay pad, indicating either an offset in our estimator or a process-based
offset. The first option can be ruled out by the simulation and the second one is actually
confirmed by the overlay data acquired by other techniques as shown by the plot for
"true" overlay. The difference between the "true" overlay and the nominal overlay will
be called the excess overlay. This is the overlay that matters the most because it is not
controlled and is process-based. Measuring this excess will be the core of our method.
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Second, as one can clearly see on the curves, the values of the estimator highly de-
pends on the CDs of the different layers of the test structures. In the first case (module
10 N1 130 N2 300), the slope of the linearity curve is three times the one in the sec-
ond case (module 10 N1 150 N2 300). This clearly indicates that the CDs really mat-
ter when designing the target for overlay metrology. The direct consequences of the
smaller value in the second case is that the signal to noise ratio (SNR) is smaller (the
noise is supposed to be constant). However, the linearity of the curve described by
the correlation ratio (R2) is still very good despite the smaller SNR. This trend is also
confirmed by other measurement couples like in fig. 4.33.

Figure 4.33: Influence of the CD on the slope of the estimator

We have proven in this section that our estimator is linear to the overlay in the
regime of overlay up to 50nm in both directions. We showed that the slope of the curve
highly depends on the CDs of the constitutive layers of the target but that the linearity
remains excellent even for non-optimized structures.

4.6 Experimental characterization of the overlay

4.6.1 Comparison with AIM data
In [84], the authors introduced a formula to extract the excess overlay from two mea-
surements with opposite misalignments d and −d. Assuming a linear response to the
total overlay error,

E(−d) = S(−d+∇) (4.7)

E(d) = S(d+∇) (4.8)

where the sensitivity S is the same as that defined in eq. 4.5, because the slope of
the plot of ∇nom versus ∇AIM is practically unity.
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By simply adding or subtracting eq.4.7 and eq. 4.8

(4.8) + (4.7): E(d) + E(−d) ∝ 2∇
(4.8) - (4.7): E(d)− E(−d) ∝ 2d

(4.9)

The excess overlay∇ can then be found using the simple formula below:

∇ =
E(d) + E(−d)

E(d)− E(−d)
· d (4.10)

and the sensitivity factor can also be recovered with this method by:

S =
E(d)− E(−d)

2d
(4.11)

Of course, this method is only valid if the excess is the same for both d and −d
pads, a condition not always satisfied on our test structures. The clear advantage of
this method is that it only requires two measurements points. For each measurement
couple (d,-d), we compute the excess overlay∇ according to eq.4.10 and add this value
to the nominal overlay specified on the wafer. The corrected measurements will be
referred to as ’Jie Li corrected’ measurements.

This method could be very noise dependent because it only uses two measurement
points. To reduce this noise we prefer to determine S and ∇ by using all available
measurement points via a linear regression

linear model: E = S · ∇nominal + E0 (4.12)
E0 = S · ∇ (4.13)

The ∇M being just linked to the nominal overlay by linear relationship, the corre-
lation between ∇M and ∇AIM is the same as the correlation between ∇nom and ∇AIM ,
the only difference is the offset between them.

Figure 4.34 shows typical plots of the Mueller overlay ∇M , determined with the
value of S obtained by the linear regression and the Jie-Li corrected overlay versus the
AIM gold standard. The Mueller overlay∇M again exhibits a very good linearity, with
a slope very close to 1 and an offset as small as 2 nm. On the other hand, the ’Jie
Li corrected’ values are very close to the Mueller ones except for the central nominal
overlays (-10 nm, 10 nm). These discrepancies are obviously due the smaller value of
the 2d denominator in the expression of S when calculated from two points only and
the difference in excess overlay: the deviations from linearity observed in the central
region of the plot shown in fig. 4.32 are thus amplified with respect to the other ones.

However, some other modules have a quasi constant excess overlay ∇ like module
3. The result is a possible characterization for all the data included (-10,10) nominal
overlays.

To assess the validity of our measurements on a broader scale, we compare a large
number of measurement points with the standard AIM overlay measurements. We
take themeasurements from severalmodules and plot the correlation between theAIM
overlay and our measured overlay for all these values (see figs. 4.36 and 4.37).

Both directions X and Y show a very good correlation with a slope very close to 1.
However, we found an offset of nearly 1.5nm which should not be regarded as a limi-
tation and a lack of accuracy of our device. As previously stated, there is no systematic
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Figure 4.34: Module 10 N1 170 N2 300, Correlation between measured and AIM overlays

Figure 4.35: Module 3 N1 90 N2 200, Correlation between measured and AIM overlays

way to verify and compare the accuracy of overlay metrology. We have here made the
assumption that overlays measured by AIM are the true overlay without considering
the tool induced shift and the precision of the measurements carried out with AIM.
The remaining error after the tool induced shift correction can be estimated by looking
at the linearity curve we plotted in fig. 4.26 for example. We pointed that ∇0 = 2nm
which is approximately the value of our offset as well. Given the lack of a gold stan-
dard for overlay, it is very complicated to compare two different methods: here, we
can only notice that the two measurement methods have an excellent correlation and
a very small offset.
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Figure 4.36: Correlation between measured and AIM Y-overlay for 6 modules.

Figure 4.37: Correlation between measured and AIM X-overlay for 3 modules.

4.6.2 Map of the overlay over a complete field
As we have stated at the beginning of this chapter, the overlay error is not constant on
the wafer, we have to measure a large number of targets to get an idea of the spatial
distribution of the overlay error. We have access to 12modules spread out in a field (see
fig.4.24). Each module (except module 11) has been measured, some have even been
measured several times, the final overlay being the average of the overlay measured for
each line of this module. Table 4.3 gives the number of times each module has been
measured.

Module Id 1 2 3 4 5 6 7 8 9 10 11 12
Number of lines measured 1 1 1 1 1 1 4 2 2 3 0 2

Table 4.3: Repartition of the measurements on the Mueller Fourier targets

Modules 1,2,4,5,6,7,8,10 and 12 have been measured for both x and y-overlays. We
are then able tomeasure the overlay vector . Modules 3,and 9 have only beenmeasured
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for y-overlay. Only the overlay error along this direction will be included.
We plot the overlay vector on a map of the modules. The result is a map of the

overlay error over a complete field (see fig. 4.38). The scale is the same for all the
overlay errors so results can be compared for different modules.

Figure 4.38: Map of the overlay vector on a complete field. Only y-overlay is available for some
modules.

The results seem consistent, with all vectors pointing down which means that the
overlay error always has the same sign along the y direction. Two modules are found
to have very small overlay errors (module 4 and 5). Modules 6 and 12 have a different
sign on their x component which is consistent with a zero overlay error for module 5.

4.6.3 Measure of the quality of the overlay measurements
The standard measure of system quality is the Total Measurement Uncertainty (TMU)
defined as [82, 109]:

TMU =
√

(TIS2 + σ2
TIS + σ2

meas + σ2
match) (4.14)

where

• TIS is the average Tool Induced Shift

• σTIS is the variation of the Tool Induced Shift (TIS).

• σmeas is the measurement precision.
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Design Rule (DRAM half-pitch) 45nm 36nm
Overlay specification 9.0nm 7.1nm

Expected TMU (10% of specification) 0.9nm 0.7nmn
On-product TMU 2.1nm 1nm

Table 4.4: Lithography technology requirements from ITRS 2008 and expected TMU. Table from
[109]

• σmatch is the site-by-site variation in tool-to-tool matching (not measurable in our
case).

The corrected formula for the TMU is then:

TMU =
√

(TIS2 + σ2
TIS + σ2

meas) (4.15)

Table. 4.4 from [109] gives the TMU required by ITRS 2008 (not up to date).

Precision

The typical error on a pixel of the Mueller matrix measurement can be modeled by
a gaussian noise with a null mean and a standard deviation σ = 2/3%. Most of the
errors on the pixels of the Mueller matrix elements are below 3σ = 2%. Our estimator
being the difference between two elements of this Mueller matrix, the errors on the
estimator are bounded by 2 ·

√
2 ' 2.82%. Yet the scalar estimator of the overlay is

the average of the image estimator for the pixels on a mask manually selected. The
average number of pixels in the mask is around 500 (20 × 25 pixels selection). In the
case of a well distributed gaussian noise (totally uncorrelated pixels), the averaging
on the mask would decrease the standard deviation of a factor of

√
500 ∼ 22. In the

case of totally correlated pixels, averaging on the mask would not change the standard
deviation. Fig. 4.39 shows the actual histogram of the pixels in the selected mask of
the image estimator E14.
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Standard Deviation Excess Kurtosis Skewness
0.0294 0.0514 -0.0848

Table 4.5: Estimators for the pixels of E14 in the selected mask

Figure 4.39: Histogram of the pixels in the selectedmask for the estimator E14 along X. Module
10 N1 130 N2 300, Nominal overlay -50nm

The histogram confirms that the distribution is close to a normal one. To have a
better comparison of our distribution with a normal one, we calculate 3 basic statisti-
cal estimators: the standard deviation σ, the excess kurtosis γ2, the skewness γ1. The
formulas below recall the usual definitions of these estimators.

γ1 = E
[(

X−µ
σ

)3 ]
=
µ3

σ3
=

E
[
(X − µ)3

]
(E
[
(X − µ)2

]
)3/2

=
κ3

κ
3/2
2

(4.16)

where µ3 is the thirdmoment about themean µ, σ is the standard deviation, and E is the
expectation operator. The skewness is a measure of the asymmetry of a distribution.

The last equality expresses skewness in terms of the ratio of the third cumulant κ3

and the 1.5th power of the second cumulant κ2. This is analogous to the definition of
kurtosis as the fourth cumulant normalized by the square of the second cumulant.

γ2 =
κ4

κ2
2

=
µ4

σ4
− 3 (4.17)

The kurtosis is a measure of the "peakedness" of the distribution.
One should be careful when using the kurtosis. We clearly specified here that we

are using the excess kurtosis defined in eq. 4.17 whereas some scientific software (e.g.
Matlabr) gives the kurtosis β2 = µ4

σ4 = γ2 + 3.
We also remind that the skewness and excess kurtosis of a normal distribution are

both null.
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The values of the excess kurtosis and the skewness confirm that the distribution
is close to a normal one. On the selected mask, the standard deviation reaches 3%,
however this value should not be mistaken as the error on the pixels given that nothing
states that the mask should be homogeneous.

The error of the estimator is very hard to quantify and we are only able to give a
decent approximation of this error. Given the statistic error on a single pixel (2,82%)
and given the quasi-normal distribution of the noise on the selectedmask, we can fairly
assess that the noise on the estimator should not be higher than 0.5%.

To obtain the error on the overlay, we just have to look at the slope of the estimator.
Depending on the selected module, the slope of the estimator ranges from 0.001 to
0.007. The resulting error on the overlay then ranges from 0.7nm to 5nm. The upper
bound of this error is unacceptable, the module exhibiting such a small slope should
not be taken as a reference. The different modules give us a good exploration of the
parameter space for the critical dimensions to use for the gratings. The module 5 N1
300 N2 180 gives the best sensibility for both x and y-overlay with respective slopes of
0.0069 and 0.0057.

Given that the purpose of this study is to define the best parameters for the overlay
characterization, we keep as precision value the error on the module 5.

precisionX = 0.72nm (4.18)

precisionY = 0.88nm (4.19)

Tool Induced Shift

To calculate TIS, we assume that the AIM measurements provide us the true overlay
(same assumption as before). For each measurement, we can then calculate the differ-
ence between the overlay measured by our system and the true overlay. This difference
is the TIS for one measurement. The average is taken over a sample of N=55 measure-
ments to find the mean TIS.

TIS =
1

N

N∑
1

∇true −∇m (4.20)

Average TIS is -1.12nm. The contribution of precision has been removed from the
standard deviation of TIS, the standard deviation of TIS is 1.1nm. The relatively small
value of TIS indicates that on average AIM and Mueller polarimetry give the same
result but the high value of the standard deviation with respect to the average also
shows some large discrepancies between the two methods.

Resulting TMU

We recall here the three components of the TMU and their values:

• TIS = 1.12nm

• σTIS = 1.1nm

• precision = 0.88nm

118



CHAPTER 4. FOURIER SPACE MEASUREMENTS: APPLICATIONS TO
OVERLAY CHARACTERIZATION IN MICROELECTRONICS

The resulting TMU is:
TMU = 1.80nm (4.21)

This value is below the specifications for the 45nm DRAM half-pitch (2.1nm) but
remains very high with respect to the 36nm DRAM half-pitch design rule (1nm). It is
very important to note that the TMU for our method is equal to the TMU given by the
authors in [108]. Throughout this manuscript we have considered as gold standard a
method which may have the same uncertainty as the one we are trying to validate.

Nevertheless, this value should also be compared to previously published results
and commercial set-ups.

In [86], the author claims to reach a 0.2nmTMU through angle-resolved scatterome-
try platform developed byASML andNanometrics recently published a very thorough
study about the TMU of their instruments [82]. Most data of the TMU are under 0.4nm
even though some may reach 0.6nm for eDBO, mDBO results being slighly higher. In
chip overlay tool for DRAMhas proven to give better results thanwhatwe are currently
proposing [83].

4.7 Conclusion
The microelectronic industry is a very fast evolving one. When the MuellerFourier
started, the current technological node was the 45nm node and the required uncer-
tainty was around 2nm. In 2011, the current technological node is down to 22nm and
the output uncertainty on the overlay measurement down to 1.5nm. The requirements
imposed by IRTS become more and more challenging and bring the instruments to
their very limits. The main purpose of this chapter was to demonstrate the capability
of Mueller polarimetry to meet these requirements.

In this chapter, we assessed the validity of our image estimator E14 based on the
difference of two elements of the Mueller matrix. We showed that the correct choice
of statistic on a manually chosen mask leads to a linear relationship between the total
overlay and the estimator. This linear relationship has been demonstrated for both x
and y-overlay. We saw that the sensitivity of the chosen estimator depends a lot on
the choice of the critical dimensions of the two superimposed gratings in the target.
We found the signal on the most sensitive target to be sevenfold higher than the least
sensitive one. This huge difference may even lead to further optimization of the test
structure to improve the method sensitivity and accuracy.

We see that the lack of an international standard for overlaymeasurements severely
hinder any comparison between differentmethods. We chose in thiswork to rely on the
measurements provided by CEA-LETI using an Archer-100 system from KLA-Tencor
aswell as rely on the nominal overlayswritten on thewafer. These values are supposed
to be the overlay intentionally introduced in the test structures in addition to the excess
overlay due to the misalignment of the lithography tools between two steps. However,
theAIMmeasurements proved that these values could not be exactly trusted: the 10nm
increment is not respected and the four so-called zero overlaymeasurement pads show
highly different overlay even though the excess overlay should be similar for close pad.

This work is a first step toward the definition of a new metrology tool for overlay.
To measure overlay we used very often around 10 measurements on different pads to
extract the linear fit of the estimator. In the best case scenario, only two measurements
on pads with symmetric controlled overlays are sufficient to extract the excess overlay.
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We proved that the use of only two pads for the linear fit does not severely increase the
uncertainty of the estimator.

The next step for the project is the first prototype by Horiba Jobin Yvon and run the
first tests with the CEA-LETI on production lines.
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Chapter 5

Conclusions and perspectives

5.1 Improvements and perspectives on presented work
In this manuscript, we presented a new apparatus, the angle resolved Mueller po-
larimeter, and its potential applications. The development of the set-up itself and its
optimization has been a long process and may even be a never-ending one depending
on the latter applications chosen. The set-up is now as close as possible to a classical
microscope and offer the user the possibility to measure Mueller matrices in both real
and reciprocal spaces thus making it a very versatile measurement tool. However, as
seen in chapter 2, only the imaging part of the set-up has been designed towork in both
spaces, not the illumination part. A possible upgrade would be to have a switchable
Köhler illumination optimized for both real and reciprocal space. The classical Köhler
illumination scheme is optimized for imaging in real space so only illumination for the
Fourier space should be changed. This could be achieved by adding a lens in the light
collection part that would collimate the beam in the aperture diaphragm instead of
focusing it. By doing so, we could expect more homogeneous modulation and analy-
sis matrices A andW which could improve the repeatability of the measurements and
their overall quality.

The second possible upgrade of the system would be to change the PSG configu-
ration. As described in chapter 2, the PSG does not map the Poincaré sphere, some
polarization states cannot be generated which could be a limitation of our system. To
be able to generate any Stokes vector without major changes in the PSG design, we just
have to change the orientation of the liquid crystals: by setting the first LC orienta-
tion to 45◦with respect to the orientation of the polarizer and the second LC aligned
with the polarizer, any Stokes vector can be generated. In addition to this change in
configuration of the PSG, we should also accurately characterize the response of the
liquid crystals depending on the control voltage to be able to accurately control the
retardation of each LC and then the output Stokes vector. These two upgrades are the
key components to succeed in sending controlled and optimized Stokes vectors on the
sample to increase the measured signal which would decrease measurement time and
increase sensitivity.

Another possibleway of decreasingmeasurement timewould be to change the light
source. As shown in fig. 2.3 in chapter 2, the output power of the source almost varies
linearly with respect to the wavelength and the total power is relatively low. A more
powerful light source would decrease integration time thus decreasing artifacts and
noise, would allow us to decrease the size of the field we can measure in and would
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enable us to measure less reflective samples. A possible solution would be to use LED
source which are compact, powerful, customable and can be fibered to comply with
the current illumination scheme.

In chapter 4, we saw that the total measurement uncertainty achieved with this
technique is close to the commercial systems and the ITRS roadmap specifications. For
this study, only the 20×20µm boxesweremeasured due to the size of the spot. With the
use of proper pinholes, we could decrease the spot size down to 5µm and thenmeasure
in the 5× 5µm boxes.

We also noticed in chapter 4 that the estimator highly depends on the selectedmask.
During this thesis, the mask has always been manually selected and no automatic pro-
cedure has been tested. The introduction of such procedure would be a critical step
in the development of a commercial set-up able to measure wafers with a sufficient
throughput compatible with actual industry requirements. By combining the work
carried by Sami Ben Hatit [41] and the work presented in this thesis, we can approach
Ausschnitt’s concept of MOXIE (see introduction of chapter 4). The metrology of the
groove profile and overlay could be measured by the same instrument, namely our an-
gle resolvedMueller polarimeter. Further investigationswould be required to compare
the direct measurement of overlay without modeling of the structure (as presented in
chapter 4) associated to a fitting procedure to recover the groove profile (as described in
Sami Ben Hatit’s thesis) and the addition of overlay defect as a parameter of the fitting
procedure for CD reconstruction.

5.2 Perspectives for new applications
At the beginning of my thesis, I have developed and optimized a very versatile mea-
surement tool, with the constant will to be able to measure samples as diverse as possi-
ble to check the possibility of the instrument. During these three years, a lot of samples
have been measured by our Mueller polarimeter. A few examples are listed below.

5.2.1 Characterization of auto-organized and periodic structures
Periodic structures can be analyzed by electron microscopy, AFM or X-Ray diffraction
to characterize their periodicity. Our set-up could also bring a lot of valuable infor-
mation as we will see in a snapshot measurement both in real and reciprocal space.
In the reciprocal space, the symmetries of the Mueller matrix reveal the pattern of the
structure. Periodic structures developed in other laboratories have beenmeasuredwith
our angle resolved Mueller polarimeter. Some preliminary results and discussions are
gathered below.

Example of sol-gel deposited silica spheres

Samples of sol-gel deposited silica spheres have been prepared by Dr. Sabine Por-
tal Marco from the Department of Applied Physics and Optics of the University of
Barcelona. Two samples with different degrees of self-organization have been studied,
they will be referred to as S42a and S42b. We will only show the experimental Mueller
matrices obtained in reciprocal space as well as the intensity images. No modeling of
the structures has been investigated to compare with our measurements. We can see
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on figures 5.1 and 5.3 clusters where the silica spheres are self-organized in hexagonal
structures. This hexagonal pattern is also clearly visible both in Mueller matrices (cf
figs. 5.1 and 5.3) and Lu-Chipman decompositions (cf figs. 5.2 and 5.4). The difference
between the two samples is clearly the degree of auto-organization characterized by
the size of the clusters. Given the lack of light reflected by the sample, limiting the
field has proved difficult and the Mueller matrices displayed here should be regarded
as averaged for several clusters. This averaging effect explains both the difference in
Mueller matrices and in decompositions. However, common six fold features arise.

Figure 5.1: Left: 100X intensity image of sample S42a. Right: Muellermatrix in reciprocal space,
scale [-0.3 0.3] λ = 633nm

Example of periodic holes for photonic crystals

Dr. Gaelle Lehoucq provided us a GaAs photonic crystal fabricated at Thales Research
and Technology (Palaiseau). (cf fig. 5.5). Membrane photonic crystals are thin layers
of semiconductor suspended in a low index medium (e.g. air) with a two-dimensional
periodic pattern of holes [110].

Our instrument enables us to study the light scattered by the sample and thus to
retrieve the pattern parameters (just like with any scatterometer image) but we can also
analyze the polarimetric properties of such structures. The study of theses structures
is very important because the quality of the photonic crystals highly depends on the
periodicity of the holes [111]. The challenge is to be able to spot periodicity defects
in the structure. Imaging in the real space is mandatory for this application because
we are looking for localized spatial defects, it is then impossible to use Fourier space
imaging because the polarimetric properties would be spatially averaged preventing
any spatial characterization (though the angle resolved Mueller matrix and its decom-
position may be very interesting for other purposes, see fig. 5.6 and 5.7). In the Fourier
space, one can only check that the average periodicity is the right one.
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Figure 5.2: Lu-Chipman of the Mueller matrix of S42a. (a): Scalar retardance. (b): Orientation
of the scalar retardance. (c) Scalar dichroism. (d): Orientation of the scalar dichroism

The poor quality of the real space measurements on this sample makes them im-
possible to interpret: the next measurements should be done more carefully in a real
space oriented purpose not Fourier space oriented as we have previously done. How-
ever, the need for good spatial resolution (directly linked to the magnification of the
microscope) and the need to scan large areas to detect periodicity defects seem hard to
fulfill at the same time.

The next step for this potential application is to be able to define a periodicity quality
estimator. For the overlay characterization, we defined an alignment estimator, we have
to study the spatial polarimetric response of these structures and the effects of a small
defect in periodicity on the Mueller matrix to maybe be able to define this estimator.

5.2.2 Characterization of chiral nanorods

Samples of chiral nanorods of Al1−xInxN have been prepared by Dr. Jens Birch from
University of Linköping (LiU) according tomethod described in [112] and illustrated in
fig. 5.8. These structures enable us tomake a step toward the understanding of the rela-
tionship between heloical structures and circular dichroism and mimic biological phe-
nomena. The nanorods have been measured by spectroscopic ellipsometry (RC2 from
J.A.Wollam CO. Inc.) by RogerMagnusson from LiU [113]. Spectroscopic Mueller ma-
trices of left-handed and right-handed films clearly exhibit circular dichroism contrary
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Figure 5.3: Left: 100X intensity image of sample S42b. Right: Mueller matrix in reciprocal
space, scale [-0.3 0.3] λ = 633nm

to non-chiral films. The handedness of the chiral structures can be recovered from the
sign of the M41 element of the Mueller matrix.

One of these structures has beenmeasured by our angle resolvedMueller polarime-
ter at 454nm. However, as shown on the spectra in fig.5.9, even measuring this struc-
ture at 454nm is not sufficient to see a strong circular dichroism.Nevertheless, a circular
dichroism around 10% appear on our measurement which is consistent with the spec-
tra. Design and fabrication of structures optimized for circular dichroism in the visible
range is currently discussed at LiU and could be characterized during fall 2011. The
next step would be to quantitatively interpret the angle resolved measurements to ac-
curately describe the sample structures.

5.3 General conclusions
We believe that the work presented in this manuscript and the perspectives for the in-
strument clearly demonstrate the potential of angle resolved Mueller polarimetry and
Mueller polarimetry in general as a very general characterization toolwith applications
ranging from semiconductor industry to research laboratories studying exoskeletons
of beetles. Some further improvements have to be done on the design of the instrument
itself to make it evenmore reliable and accurate, new applications have been presented
but are not limited to these ones.

The new implementation of the set-upwith all the improvements suggested by Sami
Ben Hatit has been presented in chapter 2. This polarimeter works both in the real and
reciprocal space to keep it very versatile though we can clearly see the limitations of
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Figure 5.4: Lu-Chipman of the Mueller matrix of S42b. (a): Scalar retardance. (b): Orientation
of the scalar retardance. (c) Scalar dichroism. (d): Orientation of the scalar dichroism

Figure 5.5: Electron microscopy images of the periodic holes. 200 nm holes spaced 400 nm
(courtesy of S.Combrié & G.Lehoucq, Thales R&T)

working in two reciprocal spaces. The set-up currently enables us to measure the po-
larimetric response of samples for all azimuth angles (from 0 to 360◦) for incidence an-
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Figure 5.6: Mueller matrix of XXL 659. Scale [-0.3 0.3]

gles from 0 to 62◦. We notice that although we decrease the numerical aperture of the
microscope objective from 0.95 to 0.90, the actual numerical aperture of the complete
system actually increased from 60◦to 62◦. The smallest spot achievable on the sample
has been decreased from 30µm to 10µm and will be decreased even more (down to
5µm) with the use of smaller pinholes and more powerful light sources. We have pre-
sented a new optimized illumination system for our Mueller microscope inspired by
the Köhler illumination scheme used in classical bright-field microscopy. This system
allows us to decouple the field and the aperture, thus varying one without altering the
other. However, given the desired versatility of the apparatus, this system is a trade-off
between the best illumination for measurements in the real space and measurements
in the reciprocal space.

We also introduced an optimized detection arm with a retractable lens to easily
switch from real space to reciprocal space without any major change in the set-up.
Though this feature was also available in Ben Hatit’s design, we improved it by adding
a intermediate plane in which we can introduce more diaphragm in order for example
to move toward dark-field microscopy.

The general design of our Mueller polarimeter is now very close to a conventional
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Figure 5.7: Lu-Chipman decomposition of XXL 659 sample. (a): Scalar retardance. (b): Orien-
tation of the scalar retardance. (c) Scalar dichroism. (d): Orientation of the scalar dichroism

microscope and also offers different magnifications and apertures thanks to a set of
strain-free microscope objectives mounted on a rotating turret.

In chapter 3, we presented the first and preliminary results obtained on the spatial
characterization of the polarimetric response of the exoskeleton of some beetles. These
results, though not conclusive on their own, will hopefully shed some light on the com-
plex and yet neglected problem of the modeling and the understanding of the cuticle
of beetles exhibiting circular dichroism. We proved that circular dichroism only occurs
on some specific areas of the exoskeleton. Scientists have always studied beetles either
with classical microscope (bright-field, dark-field, confocal) or with spectroscopic el-
lipsometry. To our knowledge, the only attempt to mix polarization and imaging to
characterize the localization of circular dichroism on beetles only gave qualitative re-
sults onmacroscopic images. We believe that our instrument brings a lot of value to the
scientific community through the possibility to study the Mueller matrix of our sam-
ple under high magnification. We compared our first results with the ones from the
group of Prof. Hans Arwin from the University of Linköping, Sweden and common
features have been extracted. We proved thanks to our spatially resolved Mueller ma-
trices that the cuticle of these beetles can not be modeled by a homogeneous medium
but need to take into account some spatial variations. We also showed that our system
can accurately image the constitutive structures (namely the Bouligand structures) of
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Figure 5.8: Growth method of chiral nanorods of Al1−xInxN . figure from [112]

Figure 5.9: M41 element of the Mueller matrix for non-chiral, left-handed and right-handed
films versus wavelength

the exocuticle. However, as stated in chapter 3, further investigations should be carried
out to check the agreement of our measurements with previously published spectra.

The last part of this manuscript has been dedicated to the main project of this the-
sis. We introduced the new emerging challenges of semiconductor metrology and the
current state of the art techniques to address this problem. Based on RCWA simula-
tions, we clearly demonstrated the potential of angle resolved Mueller polarimetry for
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Figure 5.10: Left: Mueller matrix of VAI 5 (Al1−xInxN nanorods),scale [-0.3 0.3]. Right: M14
element of the Mueller matrix.

overlay characterization and defined an estimator for the overlay. Through our col-
laboration with the CEA-LETI, we developed new metrology marks to be engraved in
scribe lines to accurately measure the overlay on wafers. Though the smallest pinhole
can not be used for now to measure the 5× 5µm2 targets, the 20× 20µm2 measurement
boxes designed byCEA-LETI are among the smallest commercialmetrology toolswork
with which is a major advantages of our method. We proved that our estimator has an
excellent linearity with the overlay measured by the technique regarded as the current
gold standard, the Advanced Imaging Method (AIM) by KLA-Tencor. The Mueller
measurements are very well correlated to the AIM measurements with an offset close
to the uncertainty of AIM. The other very promising advantage ofMueller polarimetry
is that the overlay measurements are direct and do not require a modeling step of the
structure which eradicates all model dependency and errors which may derive from
that. The only requirement for our method is to dispose of two very-well character-
ized marks to calibrate our estimator. The resulting total measurement uncertainty is
around 2nm which is almost compatible with the current requirements of the semi-
conductor industry. The current drawback of the setup is the measurement time: with
the current light source, pinholes and filters, we need a 1s integration time per inten-
sity measurement. Given that we need 16 intensity measurements to recover the full
Mueller matrix, each Mueller matrix measurement takes around 16 seconds which is
unacceptable in the industry. Possible ways to decrease the measurement time have
been given at the beginning of this chapter.
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Usual Jones & Stokes vectors, Usual
Jones & Mueller matrices

Usual Jones vectors

H V 45◦ -45◦ RC LC Elliptic[
1
0

] [
0
1

]
1√
2

[
1
1

]
1√
2

[
1
−1

]
1√
2

[
1
−i

]
1√
2

[
1
i

] [
cos θ cos ε− i sin θ sin ε
sin θ cos ε+ i cos θ sin ε

]

Table 5.1: Jones vectors of classical polarization states. From left to right : linear 0◦(horizontal),
linear 90◦(vertical), linear 45◦, linear -45◦, right circular, left circular gauche and the elliptic
general case.

Usual Stokes vectors

H V 45◦ -45◦ RC LC Elliptic
1
1
0
0




1
−1
0
0




1
0
1
0




1
0
−1
0




1
0
0
−1




1
0
0
1




1
cos 2θ cos 2ε
sin 2θ cos 2ε

sin 2ε



Table 5.2: Stokes vectors of classical polarization states. From left to right : linear 0◦(horizontal),
linear 90◦(vertical), linear 45◦, linear -45◦, right circular, left circular gauche and the elliptic
general case.
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Usual Jones matrices

polarizer 0◦ polarizer 90◦ retarder ∆ 0◦[
1 0
0 0

] [
0 0
0 1

] [
ei∆ 0
0 1

]
reflection on an isotropic surface

τ

[
tan Ψei∆ 0

0 1

]

Table 5.3: Classical Jones matrices

Usual Mueller matrices

Air/vacuum Absorbing medium
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



a 0 0 0
0 a 0 0
0 0 a 0
0 0 0 a


Table 5.4: Mueller Matrices of simple elements.
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Linear Polarizer oriented at 0◦ Linear Polarizer oriented at 90◦
transmission factor τ

τ
2


1 1 0 0
1 1 0 0
0 0 0 0
0 0 0 0

 τ
2


1 −1 0 0
−1 1 0 0
0 0 0 0
0 0 0 0


Linear Polarizer oriented at 45◦ Circular Polarizer

transmission factor τ

τ
2


1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0

 τ
2


1 0 0 ±1
0 0 0 0
0 0 0 0
±1 0 0 1


Linear Dichroic at 0◦ Linear Dichroic at 45◦

transmission factor q, r

1
2


q + r q − r 0 0
q − r q + r 0 0

0 0 2
√
qr 0

0 0 0 2
√
qr

 1
2


q + r 0 q − r 0

0 2
√
qr 0 0

q − r 0 q + r 0
0 0 0 2

√
qr


Linear Dichroic at θ, transmission factor q, r

1
2


q + r (q − r) cos 2θ (q − r) sin 2θ 0

(q − r) cos 2θ (q + r) cos2 2θ + 2
√
qr sin2 2θ (q + r − 2

√
qr) sin 2θ cos 2θ 0

(q − r) sin 2θ (q + r − 2
√
qr) sin 2θ cos 2θ (q + r) sin2 2θ + 2

√
qr cos2 2θ 0

0 0 0 2
√
qr


Table 5.5: Dichroics.

Ideal depolarizer Partial depolarizer
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0




1 0 0 0
0 a 0 0
0 0 b 0
0 0 0 c


Table 5.6: Depolarizers.
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Ideal mirror or Half-wave plate Quarter-wave plate
1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1




1 0 0 0
0 1 0 0
0 0 0 1
0 0 −1 0


Linear retarder oriented at 0◦ Linear retarder oriented at 90◦

1 0 0 0
0 1 0 0
0 0 cos ∆ sin ∆
0 0 − sin ∆ cos ∆




1 0 0 0
0 1 0 0
0 0 cos ∆ − sin ∆
0 0 sin ∆ cos ∆


Linear retarder oriented at 45◦ Circular retarder

1 0 0 0
0 cos ∆ 0 − sin ∆
0 0 1 0
0 sin ∆ 0 cos ∆




1 0 0 0
0 cos ∆ ± sin ∆ 0
0 ∓ sin ∆ cos ∆ 0
0 0 0 1


Linear retarder oriented at θ

1
2


1 0 0 0
0 cos2 2θ + sin2 2θ cos ∆ sin 2θ cos 2θ(1− cos ∆) − sin 2θ sin ∆
0 sin 2θ cos 2θ(1− cos ∆) sin2 2θ + cos2 2θ cos ∆ cos 2θ sin ∆
0 sin 2θ sin ∆ − cos 2θ sin ∆ cos ∆


Elliptic retarder oriented at θ and ellipticity tan ε

1
2


1 0 0 0
0 D2 − E2 − F 2 +G2 2(DE + FG) 2(DF − EG)
0 2(DE − FG) −D2 + E2 − F 2 +G2 2(EF +DG)
0 2(DF + EG) 2(EF −DG) −D2 − E2 + F 2 +G2


D = cos 2ε cos 2θ sin ∆/2
E = cos 2ε sin 2θ sin ∆/2

F = sin 2ε sin ∆/2
G = cos ∆/2

Table 5.7: Retarders.
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Homogeneous linear dichroic retarder oriented at 0◦
1 − cos 2Ψ 0 0

cos 2Ψ 1 0 0
0 0 sin 2Ψ cos ∆ sin 2Ψ sin ∆
0 0 − sin 2Ψ sin ∆ sin 2Ψ cos ∆


Homogeneous linear dichroic retarder oriented at θ

1 −Cθ cos 2Ψ −Sθ cos 2Ψ 0
Cθ cos 2Ψ C2

θ + S2
θ sin 2Ψ cos ∆ CθSθ(1− sin 2Ψ cos ∆) −Sθ sin 2Ψ sin ∆

−Sθ cos 2Ψ CθSθ(1− sin 2Ψ cos ∆) S2
θ + C2

θ sin 2Ψ cos ∆ Cθ sin 2Ψ sin ∆
0 Sθ sin 2Ψ sin ∆ −Cθ sin 2Ψ sin ∆ sin 2Ψ cos ∆


Cθ = cos 2θ
Sθ = sin 2θ

Table 5.8: Homogeneous linear dichroic retarders
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Abstract
With the constant decrease of the size of the transistors in microelectronics, the char-
acterization tools have to be more and more accurate and have to provide higher and
higher throughput. Semiconductor manufacturing being a layer-by-layer process, the
fine positioning of the stack is crucial. The misalignment of the stack is called over-
lay and we here propose a new tool and method to accurately characterize overlay by
measuring a single target built in the scribe lines. The method uses the fundamen-
tal symmetry properties of the Mueller matrix acquired in the back focal plane of a
high-aperture microscope objective and enables a characterization of the overlay with
a total measurement uncertainty of 2nm. After a brief introduction to polarization and
the Mueller matrix, we describe the new design of the instrument and its complete
calibration. The main body of this manuscript is dedicated to the overlay characteri-
zation but the applications of this instrument are very diverse so we also detail how
our instrument can shed some light on the characterization and the understanding of
the auto-organization of some scarab beetles’ exoskeleton. These beetles exhibit a very
strong circular dichroism and many research groups around the world try to mimic
their exoskeleton. We conclude this manuscript with a brief overview of the main per-
spectives from our instrument.

Résumé
Avec la diminution constante de la taille des transistors dans la microélectronique, les
outils de caractérisation doivent être de plus en plus précis et doivent fournir un débit
de plus en plus élevé. La fabrication de semi-conducteurs étant un processus couche
par couche, le positionnement précis de la pile est crucial. Le mauvais alignement de
la pile est appelé overlay, et nous proposons ici un nouvel instrument et une nouvelle
méthode pour caractériser avec précision l’overlay en mesurant une cible unique con-
struite dans les lignes de découpe. La méthode utilise les propriétés fondamentales de
symétrie de la matrice de Mueller mesurée dans le plan focal arrière d’un objectif de
microscope à grande ouverture numérique et permet une caractérisation de l’overlay
avec une incertitude demesure totale de 2nm. Après une brève introduction à la polar-
isation et la matrice de Mueller, nous décrivons la nouvelle conception de l’instrument
et son étalonnage complet. Le corps principal de ce manuscrit est dédié à la carac-
térisation de l’overlay, mais les applications de cet instrument sont très diverses aussi
détaillerons nous comment notre instrument peut apporter des pistes pour la carac-
térisation et la compréhension de l’auto-organisation de l’exosquelette des scarabées.
Ces coléoptères présentent un très fort dichroïsme circulaire et de nombreux groupes
de recherche dans le monde entier essaient d’imiter leur exosquelette. Nous concluons
ce manuscrit par un bref aperçu des principales perspectives pour notre instrument.


