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Abstract

The pinning of vortices is used as a probe for the identification of disorder and

its effect on superconductivity in 122-type iron-based superconductors. Using a

new analysis method taking into account the interaction of individual vortices

with their neighbors, pinning energies and pinning forces in Ba(Fe1−xCox)2As2
are extracted from the vortex distributions in the regime of small fields. The

correlation of measurements of the critical current density jc with the spa-

tial distribution of vortices shows that pinning in this particular regime is

due to the heterogeneity of superconducting properties, on the scale of 20-

100 nm. Application of the same analysis procedure on the vortex structure in

BaFe2(As1−xPx)2 with less density fluctuations, shows that the pinning forces

and energies depend on the doping level x. Both jc measurements and pinning

force distributions independently yield a mean distance between pinning cen-

ters of about 90 nm, increasing with increasing P-content x. Combination of

the above results and critical current density measurements lead to the conclu-

sion that the low field plateau observed in jc curves, followed by a power-law

decrease, emerges from strong pinning due to nm scale heterogeneity of super-

conducting properties. Attention is also paid to the weak collective pinning

contribution that manifests itself at higher fields > 1 T. Notably, this contri-

bution is consistently analyzed in terms of quasiparticle scattering and mean

free path fluctuations. In order to test this premise irradiation of Co, Ni and

P-doped 122-type iron-based compounds with high-energy 2.5 MeV electrons

is performed for several doping levels of the materials and to different doses.

Such irradiation introduces atomic sized point-like defects. Following irradia-

tion it appears that the critical temperature Tc shows a similar depression for

all studied materials. The weak collective contribution to jc in Co-doped is

found to clearly increase. Moreover this contribution appears after irradiation

of the P-doped compound in which it was previously absent. This allows one

to confirm the role of atomic point-like pins as scatterers in Ni and Co-doped

compounds, as well as the hypothesis that these defects are at the origin of the

weak collective pinning contribution to jc at larger fields.



L’ancrage des vortex est utilisé comme une sonde pour l’identification du type

de désordre et son effet sur la supraconductivité dans la famille 122 des supra-

conducteurs à base de fer. Une nouvelle technique d’analyse obtenue d’images

de décoration de Bitter prenant en compte l’interaction de chaque vortex avec

ses voisins, a permis d’obtenir l’énergie et la force de piégeage dans

Ba(Fe1−xCox)2As2, dans le régime de bas champ magnétique. La corrélation

avec des mesures de courant critique jc a montré que le piégeage des vortex

dans ce composé est due à l’hétérogénéité des propriétés supraconductrices sur

une échelle de 20-100 nm. Application de la même méthode d’analyse pour les

vortex dans le BaFe2(As1−xPx)2 a montré que l’énergie et la force d’ancrage

dépendent du dopage x. Les mesures de jc et de la distribution des forces

de piégeage ont montré que la distance moyenne entre différents centres de

piégeage est de l’ordre de 90 nm et que cette distance augmente quand on aug-

mente le conteneur en P. La combinaison de ces résultats avec les mesures de jc
mène à la conclusion que l’ancrage fort des lignes de flux due à l’hétérogénéité

des propriétés supraconductrice à l’échelle de nm est à l’origine de la constante

observé à des champ faibles dans les courbes de jc ainsi que la diminution en

loi de puissance qui suit. On traite également la contribution d’ancrage faible

collectif à jc, qui se manifeste à des champs magnétiques plus importants, de

l’ordre de 1 T. Cette contribution a été analysée en terme de la diffusion des

quasiparticules et de la fluctuation spatiale du libre parcours moyen. Afin

de tester l’hypothèse avancé ci-dessus, l’irradiation aux électrons d’énergie 2.5

MeV, sur les composés dopé au Co, Ni et P de la famille 122 a été réalisé à des

différentes doses pour plusieurs dopage de ces matériaux. Ce type d’irradiation

introduit des défauts ponctuels de taille atomique dans le matériau. La tem-

pérature critique Tc de tous les matériaux étudiés diminue après irradiation de

façon similaire. Une claire augmentation de la contribution d’ancrage faible

collectif à jc dans le composé dopé au Co a été observée. De plus, cette contri-

bution qui, avant irradiation, était absente dans tous les dopages du composé

au P, apparait après irradiation. Les défauts ponctuels de taille atomique, dif-

fuseur des quasiparticules, dans les supraconducteurs à base de fer sont donc à

l’origine de la contribution d’ancrage faible collectif à jc.
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Chapter 1

Motivations

A new type of s± superconductivity involving strong coupling between electron and hole

bands and a sign change of the superconducting order parameter has been proposed for

iron-based superconductors (a new family discovered in 2008) as one goes from one band to

another. Several experimental studies have been performed on different compounds of this

new family of materials in order to probe the existence or the absence of sign-changing in

the order parameter. On the other hand, it is predicted that in the case of a sign-changing

s-wave symmetry, superconductivity is very sensitive to the crystalline disorder, and, more

particularly, to interband quasiparticle scattering.

The goal of the thesis is the identification of crystalline disorder in iron-based super-

conductors, and its effect on their electronic properties and superconductivity. For this,

different experimental approaches are used. The first, well recognized for applied aspects

of superconductivity, but less so for accessing more fundamental studies, is the characteri-

zation of crystalline disorder by the measurement of the vortex pinning properties and the

critical current density. The second is the measurement of the surface resistance, which,

in the superconducting state, is representative of the quasiparticle density of states and

scattering.

It was proposed that in iron based superconductors [44], for magnetic fields above 1 T

the critical current density is determined by the scattering of quasiparticles in the vortex

cores, a mechanism effective due to the small-scale (< 3 nm) fluctuations of the dopant

atom positions. In addition to this, the remarkable absence of this mechanism in the

isovalently substituted BaFe2(As1−xPx)2 material, in contrast to other compounds of the

same family, suggested that the charged carried by the dopant atoms might are responsible

for flux pinning mediated by quasiparticle scattering [44].

In addition to this, vortex imaging studies performed using different techniques and
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1. MOTIVATIONS

by several groups in a large range of magnetic field from 0.1 T up to 9 T have revealed

highly disordered vortex structure in all studied compounds. In our Bitter decoration study

performed on different compounds of the 122 family, we have pointed out by correlating

different experimental techniques (DMO, jc measurements, Bitter decoration) that spatial

heterogeneity of superconducting properties on nm scale is at the origin of flux pinning

mechanism and the critical current density for this particular regime of low magnetic fields.

These nm scale heterogeneity also reported on the STS/STM studies of the same compound

by different groups [75; 277] supported the existence of important spatial variations of

superfluid density, and, becomes a possible candidate as being at the origin of the so called

phase coexistence in the underdoped regime of 122 type compounds.

In order to test these ideas, high energy electron irradiation of the different materials

under study is performed using the Pelletron accelerator Sirius of the Laboratoire des

Solides Irradiés. This kind of irradiation introduces microscopic point defects (Frenkel

pairs), with a density proportional to the electron dose. The effect of these irradiations

on different physical properties of the iron-based superconductors, such as the critical

temperature Tc, the critical current density jc and surface resistance Rs were studied in

order to better understand the quasiparticle scattering mechanism and the effects of atomic

sized point-like disorder.

In the introduction 2 are discussed the basic phenomena of superconductivity, the char-

acteristic lengths such as the penetration depth λL and the coherence length ξ as well as

the superconducting gap. After the description the mixed state in Type II superconduc-

tors and vortices, the vortex dynamics and vortex pinning theories are discussed in details.

Chapter 3 is an introductory chapter for iron-based superconductors that presents the

generic phase diagrams and band structures for different type of compounds, the antifer-

romagnetic order of parent compounds and the superconducting gap structure are also

discussed. A summary of recent experimental results revealed by different techniques is

also presented in this chapter that ends with a state of art of the vortex pinning studies

performed on iron-based superconductors.

Chapter 4 is one of the experimental chapters where the magneto-optical imaging (MOI)

technique is described in details with the working principle of the setup and its physical ba-

sis. Faraday effect which is at the origin of this technique is also described. MOI technique

allows one to discard samples with macroscopic defects as well as those with important

chemical heterogeneities before further experimental studies. The temperature dependence

of the critical current density and the with of the superconducting transition can be mea-

sured with this technique. Few examples of these measurements were presented in this

chapter that ends by the description of an other complementary experimental technique,
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Hall probe magnetometry, that allowed us to perform local magnetic measurements at

larger fields up to 2 T.

In Chapter 5 one can find an historical overview of the Bitter decoration technique used

in this thesis. The physical basis of this technique and the experimental working principle

of the setup used in this work are also discussed.

In Chapter 6, a study of the vortex pinning in the Co-doped BaFe2As2 is presented.

Amorphous vortex configurations observed in this compound using Bitter decoration tech-

nique were studied using a new analysis technique, that takes into account the interaction

of individual vortices with their neighbors. Then the correlation of the Bitter decoration

datas and the critical current densities were presented. The latter revealed that the het-

erogeneity of the superconducting properties such as the spatial heterogeneity of Tc on the

nm scale is the origin of the observed highly disordered vortex ensembles as well as the

strong pinning mechanism at the origin of the low-field critical current density.

In Chapter 7 presents the study of vortex pinning , using the same data analysis

procedure, in the isovalently substituted BaFe2(As1−xPx)2. The study revealed vortex

ensembles with less density fluctuations in this compound. Analysis of the Bitter decoration

images allowed us to extract the pinning forces and pinning energies of this compound. It

is found that the mean distance between effective pins is about 90 nm and that increases

when one increases the P content x. This result is found in agreement with the evolution

of the mean free path of the β orbits with P content x reported in the literature by

Shishido et. al. The weak collective pinning contribution to the critical current density is

also considered for this compound and is found absent in all doping levels. This pinning

mechanism was proposed to be due to the quasiparticles in the vortex cores; it manifest

itself as a second plateau, at magnetic fields above a few tenths of a T to 1 T.

In order to link the flux pinning properties in the regime of quasi-particle scattering

rate, a new experimental setup based on the cavity perturbation method that is described in

Chapter 8. This chapter presents in details the cavity perturbation experiment established

for the measurements of the surface resistance Rs. In addition to this atomic-sized point like

disorder is introduced using high-energy 2.5 MeV electron irradiation with the Pelletron

accelerator SIRIUS of the Labpratoire des Solides Irradiés. In Chapter 9, a systematic

study of the evolution of different superconducting properties under the effect of electron

irradiation for Ba(Fe1−xCox)2As2 BaFe2(As1−xPx)2 and Ba(Fe1−xNix)2As2 single crystals

is presented. An important annealing effect (70 %) for the Co-doped samples is revealed

when the crystals are heated to room temperature after low temperature irradiation. The

magnitude of the contribution to the critical current density at larger fields above 1 T is

found clearly to increase in the Co-doped compound, while this contribution absent in all
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doping levels previously in the P-doped compounds appears clearly after the introduction of

point-like defects by electron irradiation. From the increase of the weak collective pinning

contribution to jc, the number of defects (Fe vacancies) created by irradiation is estimated.

The measured surface impedance for Ni and Co-doped samples before and after electron

after irradiation increases. These results allowed us to confirm the role of the atomic-sized

defects as scatterers in iron-based superconductors, as well as the hypothesis that these

defects are at the origin of the weak collective pinning contribution to jc.
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Chapter 2

Introduction

Superconductivity was discovered in 1911 by the physicist Heike Kamerlingh Onnes in

Leiden university in the Netherlands [105]. This remarkable phenomenon is a combination

of electric and magnetic properties that appear in certain metals when they are cooled

down to low temperature. Such low temperatures first became available in 1908 when

Heike Kamerlingh Onnes liquified helium and reached 4.2K. He then decided to study the

resistivity of metals at low temperatures and proposed to study Hg, the purest available

metal of that time. The repeated experiments confirmed that the resistance of mercury goes

sharply to zero at the critical temperature Tc=4.15 K (see Figure 2.1). Later on Kamerlingh

Onnes discovered that lead and tin (rather bad conductors at room temperature) also

present zero resistance below Tc=6 K and 3.7 K respectively. Kamerlingh Onnes recognized

that this was a new state of the material with electrical properties quite unlike those

previously known. This was "the superconducting state".

2.1 Basic phenomena

In 1933 W. Meissner and R. Ochsenfeld [245], discovered that a superconductor, cooled

down below Tc, excludes the magnetic field and behaves like a "perfect diamagnet". They

found that not only a magnetic field is excluded from entering a superconductor as might

be explained by the sole property of perfect conductivity, but also that a field in a sample

originally in the normal state is expelled as it is cooled through Tc. This could not be

explained by perfect diamagnetism which would trap the flux. From this it was under-

stood that it has to be an intrinsic property of the superconducting state. The existence

of a reversible Meissner effect implies that superconductivity will be suppressed by a crit-

ical magnetic field Hc determined by equating the energy 1
2µ0H

2 per unit volume to the
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Figure 2.1 Data from Onnes pioneering works. The plot shows the electric resistance of the
mercury vs. temperature.

superconducting condensation energy, i.e.

1

2
µ0H

2 = Fn(T )− Fs(T ) (2.1)

where, Fn(T ) and Fn(T ) are the Helmholtz energies per unit volume in zero field for the

normal and superconducting states respectively. The behavior of the critical magnetic field

with temperature was found empirically to be parabolic,

Hc(T ) ≈ Hc(0)

[

1−
(

T

Tc

)2
]

. (2.2)

In the absence of magnetic field at T=Tc the transition is of second order while in the

presence of an applied field the superconducting-normal transition is of first order with

associated an discontinuity in the specific heat.

An interesting observation leading to appreciate the role of phonons in superconduc-

tivity was the "isotope effect" [180; 184; 243]. It is found that the critical field in the limit

of low temperature and the transition temperature Tc vary as

Tc ≈ Hc(0) ≈
1

Mα
, (2.3)

where M is the isotopic mass of the material. Inspired by this result Daunt and Mendelssohn

suggested, in 1946, the existence of an energy gap ∆ of order of kBTc, between the ground

state and the quasiparticle excitations [116]. It was also predicted theoretically in 1953 by
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Ginzburg and in 1956 by Bardeen. Quantitative experimental evidence was reported by

Corak et. al. from precise measurements of the specific heat where the authors showed that

the electronic specific heat below Tc has an exponential dependence as following [246; 247],

Ces ≈ γTcae
−bTc/T (2.4)

here, the normal state electronic specific heat is given by Cen=γT, a and b are numerical

constants. This implies a minimum excitation energy per particle of about 1.5 Tc. The

presence of the energy gap in the spectrum of the elementary excitations has been observed

in many ways. The existence of the gap was confirmed experimentally by electromagnetic

absorption measurements performed by Glover and Tinkham in 1956 [187] . Figure 2.2

shows the threshold for the absorption of electromagnetic radiation, or the threshold voltage

for electron tunneling between two films of superconducting material separated by a thin

oxide layer, in this case Al.

Figure 2.2 The superconducting gap versus temperature in Al determined by electron tunneling.

2.2 London penetration depth λL

The London brothers H. and F. London [73] have proposed a phenomenological description

of the basic facts of superconductors with a theory based on a two-fluid type concept with

superfluid and normal fluid densities ns and nn associated with velocities vs and vn. The
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densities satisfy ns+nn=n, where n is the average electron number per unit volume. When

a time-varying magnetic field is applied on a superconductor, this produces an electric field

obeying the Maxwell’s equation ∇× ~E = −∂B/∂t. In a normal metal the presence of this

electric field is responsible for the generation of eddy currents, while in superconductors it

leads to the acceleration of the superfluid current. The resulting super-current give rise to

a magnetic field of direction opposite to that of the external field. If the external applied

field is weak enough, the magnetic field lines are totally excluded from the superconducting

volume screened by the super-current. This ’perfect diamagnetism’ can be described by

the theory of the London brothers [73].

The force exerted on the super-electrons (Cooper pairs )of mass m and charge -2e under

an electric field is given by
~F = m∗d~vs

dt
= −2e ~E (2.5)

where ~vs represents the velocity of superfluid carriers. The super-current density is

J = −2ens~vs, (2.6)

where ns is the local density of the superconducting carrier. By combining Equation (2.5)

and (2.6) one obtains the first London equation ("so called acceleration equation")

d ~Js
dt

=
nse

2

m
~E. (2.7)

We are only interested in the stationary state i.e., we assume nn and ns to be uniform

in space, this is the restriction of the London theory, which will overcome Ginzburg-Landau

theory. The curl of the first London equation is,

∂

∂t
∇× ~Js =

nse
2

m
∇ ~E = −nse

2

m

∂B

∂t
. (2.8)

This can be integrated in time to give,

∇× ~Js = −nse
2

m
B+C(r) (2.9)

where the last term is the integration constant at each point inside the superconductor.

C(r) should be determined from the initial conditions. If we start from a superconducting

material in zero applied magnetic field , one has ~Js ≡ 0 and B ≡ 0 initially so that

C(r) = 0. To describe the Meissner-Ochsenfeld effect, one has to consider the case of a

material becoming superconducting (by cooling) in a non-zero applied field. To account

for the flux expulsion, the Londons postulated that C ≡ 0 regardless of the history of the

8



2.3 Coherence length ξ

system. this leads to

∇× ~Js = −nse
2

m
B, (2.10)

the second London equation. Together with Ampére’s law,

∇×B = µ0 ~Js + µ0 ~Jn (2.11)

there is no displacement current in the stationary state, one has,

∇×∇×B = −4µ0nse
2

m∗ B+ µ0σn∇×E = −4µ0nse
2

m∗ B− µ0σn
∂B

∂t
. (2.12)

One drops the last term since we are interested in the stationary state using an identity of

vector calculus,

−∇(∇.B) +∇2B =
4µ0nse

2

m∗ B, (2.13)

or

∇2B =
1

λ2
B (2.14)

where λ is the London penetration depth of the superconductor (see Figure 2.3),

λ =

√

m∗

4µ0nse2
. (2.15)

In order to take into account the temperature dependence Gorter and Casimir [39]

considered n to be the total density of carriers and separated it into nn , the density

carriers in normal state and ns, the density carriers in the superconducting state. At low

temperature (T < Tc) n = ns and nn = 0, while above Tc, n=nn and ns=0. They derived

the relative on ns(T ) = n[1− (T/Tc)
4], correct especially for temperatures close to Tc. The

temperature dependence of the London penetration depth λL is given by

λ(T ) =
λ(0)

[

1−
(

T
Tc

)4
]1/2

. (2.16)

2.3 Coherence length ξ

The coherence length is the measure of the distance within which the density of super-

conducting electron pairs way change in a spatially varying magnetic field. Pippard has

proposed in 1953 a modification of the London equation in which the current density at a

9



2. INTRODUCTION

Figure 2.3 Penetration of magnetic flux into a superconductor, London penetration depth λL.

point is given by an integral of the vector potential over a region surrounding the point [4]

j(r) = − 3

4πcΛξ0

∫

R[R.A(r′)]
R4

e−R/ξdr′, (2.17)

where Λ = m/ne2, n is the number of superconducting electrons, R = r− r′ and the

effective coherence length 1
ξ = 1

ξ0
+ 1

l , where ξ0 is the coherence length and l is the mean

free path. The BCS theory evaluates the spatial distribution of the current density and

exhibit it in a form similar to that proposed by Pippard. They wrote the coherence length

as

ξ0 ≈
~v0
kTc

, (2.18)

where v0 is average velocity of electrons at Fermi surface and 0.18 is the theoretical value.

2.4 Energy gap and BCS theory

Conventional superconductivity was well described in the microscopic scale by the Bardeen,

Cooper and Schrieffer (BCS theory) [111]. They have proposed that even a weak attractive

interaction between electrons caused by the electron-phonon interaction leads to an insta-

bility in the Fermi sea ground state. This gives raise to the formation of bound pairs of

electrons that occupy states with equal and opposite momentum and spin (see Figure 2.4).

10



2.4 Energy gap and BCS theory

These bounded electrons are called Cooper pairs .

Figure 2.4 Cartoon of the formation of a Cooper pair mediated by phonon vibrations. Electrons
of the Cooper pair have momentum k and -kand are coherent within the length ξ.

Figure 2.5 Schematic diagram of Fermi surface at (a) Normal ground state (b) Superconducting
state

The bound pair is formed through the lattice polarization by the electrons. If the

11
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electron-phonon interaction V is sufficiently important to overcome the repulsive Coulomb

interaction, one will have an effective attractive interaction between the two electrons,

whence they will form a Cooper pair thus we will have e∗ = 2e (Figure 2.4). By this inter-

action electrons within a thin shell of ~ωD in the vicinity of the Fermi surface are attracted

to each other (Figure 2.5). In the superconducting state the electrons are described by a

macroscopic wave function,

Ψ =
√
nse

iφ (2.19)

The transition from the superconducting state to the normal state can be caused by

the Cooper pair breaking or by the presence of the heterogeneity’s which lead to the loose

of the phase coherence of the Cooper pairs (the superfluid density goes to zero). The firs

is classic scenario described as follows. The formation of Cooper pairs leads to an energy

gap in the vicinity of the Fermi level at T < Tc.. In BCS theory, the critical temperature

Tc and the superconducting energy gap ∆ depends as the density state in the vicinity at

the Fermi level and on the attractive potential V. This leads to a constant ratio between ∆

and Tc for onventional superconductors. This result was in agreement with experimentally

measured gap values [116; 164; 187]

2∆(0)

kBTc
≃ 3.53. (2.20)

For weak-coupling superconductors, in which ~ωD/kBTc≫1, ∆(T)/∆(0) is a universal

function of T/Tc that decreases monotonically from 1 at T=0 to 0 at Tc as depicted in

Figure 2.2. Close to T=0, the temperature variation is exponentially slow since e−∆/kT≈0.

In this case the gap function ∆ is nearly constant until an important number of quasi-

particles are thermally excited. Close to the critical temperature Tc ∆(T) drops to 0

approximately as,
∆(T )

∆(0)
≈ 1.74

(

1− T

Tc

)1/2

, T ≈ Tc. (2.21)

The elementary excitation energy can be expressed as

Ek =
√

ε2k +∆2. (2.22)

To break a Cooper pair, an energy of at least 2∆ energy is needed (see Figure 2.6).The

excitation energy is not constant as in a normal metal, but has the smallest value ∆ at εF
and larger for energies away from εF (see Figure 2.6). As temperature increases, more and

more pairs break and the gap becomes smaller. Tc is the temperature at which the gap

12



2.4 Energy gap and BCS theory

decreases to 0 as shown in Figure 2.2.

Figure 2.6 (a) Excitation energy spectrum for both superconducting and normal states. (b)
Density of states for a superconductor and quasiparticle excitations.

The superconducting gap is a very important quantity in superconductors, not only

because it determines their thermodynamic properties, but also it is closely related to

the Cooper pairing state. By measuring the gap, information about the pairing symme-

try which is determined by the pairing mechanism can be obtained. Figure 2.7 presents

a schematic representation of the superconducting gap ∆ in k space. Electron-phonon

coupling usually leads to the isotropic s-wave symmetry with L=0 and S=0; the supercon-

ductor is called "fully gapped". For the multiband iron-based superconductors (Chapter 3)

an antiferromagnetic spin fluctuation mechanism was proposed that leads to the so called

s± pairing symmetry. The superconductor is fully gapped on both the electron and the

hole sheets of the Fermi surface but with opposite signs between them. The anisotropic p-

wave gap symmetry (3He, Sr2RuO4) and d-wave gap symmetry characterizing the highTc
cuprates are also represented.

The magnitude of ∆ a function of polar angle in k-space for different gap symmetries

is clearly not the same. For different gap symmetries the angular dependence of the gap

can be written as

g(x) =



















1 isotropic s-wave

cos(2ϕ) dx2−y2 − wave

sin(2ϕ) dxy − wave

, (2.23)
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Figure 2.7 Different superconducting gap symmetry in k space.

thus the gap anisotropy is defined as

Ω ≡ A− 〈∆(k)〉2
〈∆(k)2〉 (2.24)

which is zero for isotropic s-wave and 1 for d-wave symmetry.

2.5 Ginzburg-Landau Theory: Type I and Type II Supercon-

ductors

The Ginzburg-Landau (GL) theory derived from the Landau theory for second order ther-

modynamic phase transitions, postulates the existence of a superconducting order param-

eter represented by a complex wave function ψ(~r) which depends on the spatial variable

(V.L. Ginzburg and L.D. Landau, 1950) [232; 237]. Its modulus is interpreted as being

directly related to the superfluid density, |ψ|2 = n∗s . This theory is a generalization of

the London theory in the case where the carrier density n∗s can vary in space. In the

superconducting state the GL free energy Fs is given by,
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2.5 Ginzburg-Landau Theory: Type I and Type II Superconductors

Fs = Fn +
∫

v

[

a(T ) |ψ (~r)|2 + b(T )
2 |ψ (~r)|4 + 1

2m∗

∣

∣

(

~

i∇− e∗A
)

ψ(~r)|2 + B2

2µ0

]

d3r (2.25)

where Fn is the free energy of the material in the normal state, V is the volume, m∗

and e∗ are the effective mass and the charge of the elementary carriers (Cooper pairs, the

charge e∗=2e). A is the vector potential, B is the local magnetic induction in the material

and a(T) and b(T) are two phenomenological constants. Sufficiently close to Tc, one can

write, a(T ) = a′(T − Tc) where a′ > 0 and b(T ) = b > 0. If one minimizes the free energy

Fs with respect to the order parameter ψ and the vector potential A one obtains two

differential equations (Ginzburg-Landau equations), which describe the order parameter

and the supercurrent density js. From these equations, one deduces two characteristic

lengths for superconductivity. The Ginzburg-Landau (GL) coherence length ξGL(T ) is the

length scale that determines the extent of the spatial variations of the order parameter,

the minimum distance on which the order parameter ψ vanishes. The coherence length

can be written as:

ξGL =

(

~
2

2m∗|a′(T − Tc|

)1/2

. (2.26)

The second characteristic length scale is the Ginzburg-Landau penetration depth λGL(T ),

the length scale of the spatial variations of the vector potential A the magnetic induction

B, and the current density j(r)

λGL(T ) =

(

m∗

(e∗)2µ0n∗s

)1/2

=

(

m∗β
(e∗)2µ0|a′(T − Tc)|

)1/2

. (2.27)

Thus we obtain the relation between the London penetration length and the Ginzburg-

Landau penetration length is given as following [232; 237]

λL = 1.35λGL (2.28)

Flux quantization in a type-II superconductor can be explained as doing analogy to the

quantization of angular momentum in an atomic system. F. London introduce the concept

of fluxoid Φ=
∫

B.dS associated to each normal region in the mixed state passing through
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Figure 2.8 Length scales density the spatial variation of the magnetic induction B(x) and the
order parameter ψ(x) in type I and type II superconductors.(a)In type I supercon-
ductors κ < 1/

√
2, the system will be minimum if there is only one superconductor-

normal interface at the surface of the sample the energy . (b) In a type II super-
conductor, κ > 1/

√
2, it will be energetically favorable to create as many as possible

superconductor-normal interfaces by the penetration of the vortices (flux line) inside
the sample.

the superconductor. His definition is the ordinary magnetic flux through an integration

circuit. It follows that the fluxoid has the same value for any path around a given hole.

Close to the critical temperature Tc , λGL(T ) and ξGL(T ) diverge as (T−Tc)−1/2. Although

the GL theory is valid at temperatures close to Tc, it gives consistent results over a large

part of temperature range on which superconductivity exists. The GL ratio κ is given by

κ =
λGL(T )

ξGL(T )
. (2.29)

This ratio allows one to classify superconductors in two types (type I and type II) such

as depicted in Figure 2.8. For κ < 1/
√
2 (ξGL>

√
2λGL) , the free energy increases due

to the penetration of the magnetic flux at a superconductor-normal (S-N) interface is not

compensated by the condensation energy loss of the superconducting state. Thus this is

energetically more favorable to limit the formation of these S-N interfaces (positive energy).

The material will exclude the magnetic flux (Meissner state) until the thermodynamic

critical field Hc where the condensation energy is totally compensated by the work done

for diamagnetic energy. At Ha=Hc the material will transit to the normal state; this is

the characteristic behavior of a type I superconductor. The thermodynamic critical field

is given by

Hc =
φ0√

8πµ0ξGLλGL

(2.30)
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2.5 Ginzburg-Landau Theory: Type I and Type II Superconductors

For κ > 1/
√
2 (ξGL<

√
2λGL), the superconducting state is stable against the formation

of superconductor-normal interfaces. In 1957 Abrikosov [3] showed that an unlimited of

subdivision into normal and superconducting domains until the limit ξ below which the

gradient energy term would be excessive. The material is in the Meissner state until flux

penetration which starts at a lower critical field called Hc1

Hc1 ≃
Φ0

4πµ0λ2GL

ln (κ) (2.31)

and reaching B = H at the upper critical field Hc2

Hc2 =
Φ0

2πµ0ξ2GL

. (2.32)

For applied fields in the range Hc1 < H < Hc2 the magnetic field penetrates inside the

superconductor as quantized flux lines called vortices each vortex carries a flux quantum

of Φ0 = h/2e (see Figure 2.9) first predicted theoretically by Abrikosov [3]. The phase

diagram of a type II superconductor is represented in Figure 2.9. Between Hc1 and Hc2

the superconductor is said to be in the mixed state or "Shubnikov phase", since there

is a mixture of normal (vortices) and superconducting regions. The superconductivity

persists until a certain upper limit of the applied magnetic field Hc2, above which the

superconductivity is suppressed.

2.5.1 Abrikosov vortex

Because of flux quantization, the phase of the wave function of the is then 2π after a

complete contour around the vortex. Thus each vortex can carry a quantum flux of

Φ0=h/2e=2.07×10−15 Wb. If one increases the average induction 〈B〉 in the supercon-

ductor this will only has an effect on the density of vortex inside the material which will

increase nv=〈B〉/Φ0.

Abrikosov predicted theoretically, that the most energetically favorable configuration

for a vortex lattice in the absence of any impurity in the superconducting material is the

square array. His prediction was the square lattice with a small numerical error which

was later rectified by Kleiner et. al. and showed that this is the hexagonal configuration

which is the most favorable situation for all possible periodic [248] (see Figure 2.10). In the

Meissner state Ha<Hc1 a superconducting surface current screens off the external magnetic

field so that the magnetic induction B in the bulk superconductor vanishes. In the mixed

state Hc1<Ha<Hc2 magnetic flux penetrates the superconductor in the form of vortices. As

the external field increases toward Hc2 the size of superconducting region between normal

17



2. INTRODUCTION

Figure 2.9 (a) Schematic (H-T) phase diagram for type I superconductors. For H <Hc the su-
perconductor is in the Meissner state and has a perfect diamagnetic behavior. For
H > Hc the magnetic field enter inside the totality of the superconductor and super-
conductivity vanishes. (b) Simplified phase digram for type II superconductors. For
H<Hc1 the superconductor is in the Meissner state. The magnetic flux penetrates the
superconductor at H>Hc1. For applied magnetic fields above Hc2 the material returns
to the normal state. (c) The induction in long cylinder as a function of the applied
field for Type I and Type II superconductors; (d) The reversible magnetization curve
of a long cylinder of Type I and Type II superconductor.
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2.5 Ginzburg-Landau Theory: Type I and Type II Superconductors

Figure 2.10 (a) Schematic representation of a vortex. The superconducting order parameter
vanishes in the core of the vortex which is in the normal state, through where the
magnetic field penetrate the superconductor and decreases exponentially over a dis-
tance of λL. (b) The hexagonal perfect lattice configuration of vortices with lattice
parameter a∆=1.075 (Φ0/B)1/2, (c) square lattice configuration of vortices with lat-
tice parameter a2=(Φ0/B)1/2
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vortex cores shrinks to zero and the sample makes a continuous transition to normal state.

The magnetization of a superconductor is defined as the magnetic moment per unit volume,

M=M

V = 1
V

∮

V ~r × ~j(r)d~r. The M(H) dependence of a defect free type-II superconductor is

reversible and after switching off the external field no magnetic flux is trapped inside.

2.6 Vortex dynamics

When a current density j is flowing inside a type-II superconductor in the mixed state, the

Lorentz force acts on the vortex ensemble such that ,

F = j× nvΦ0 = j×B. (2.33)

This force tends to move the vortices perpendicular to j and B as shown in Figure 2.11.

Due to the motion of vortices (flux quanta) with velocity v ,an electric field

E = v ×B (2.34)

is generated in the superconductor. In the absence of pinning the velocity is limited

by the friction γc undergone by the vortex cores, v=FL/γc. Hence the motion of an

unpinned vortex lattice gives rise to a non-zero resistivity called the flux flow resistivity

ρf≡B2/γc≈ρnB/B2; here ρn is the normal state resistivity [112].

To achieve a loss-free current flow, the flux lines have to be pinned in order to prevent

their motion. This role is fulfilled by crystalline inhomogeneities such as twin boundaries,

dislocations, disorder emerging from crystal growth or artificially induced pinning sites

(columnar or point defects). These defects will pin the vortex lines and prevent their

motion until a threshold Lorentz force Fp= jc×B is attained. Here jc is the critical current

density. At jc the pinning force Fp will balance the Lorentz force

jc = Fp/B. (2.35)

Pinning has several consequences: the first one is that the current-voltage curve of a

superconductor in a magnetic field is nonlinear (see Figure 2.11). The second one is the

irreversibility of the magnetization curves. As an example the magnetization curve as a

function of applied field for a bulk YBa2Cu3O7 is shown in Figure 2.15.

The electrodynamics in the presence of pinning is usually described by the Bean critical

state model. In this model, one assumes that jc is independent of the magnetic field and

of time. The flux lines can not penetrate freely at Ha=Hc1; their density is large at
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2.6 Vortex dynamics

Figure 2.11 (a) Schematic representation of the Lorentz force on vortices in a type-II supercon-
ductor in mixed the state. (b)The E-j characteristic curve for a type-II superconduc-
tor in the absence (purple) and in the presence (pink) of vortex pinning. The green
curve shows smoothing of the jump at jc due to thermally activated vortex creep.

Figure 2.12 Schematic illustration of the phase diagram of type-II superconductors taking into
account the vortex lattice transition due to thermal fluctuations. Vortices form the
Abrikosov vortex lattice between the critical fields Hc1 and Hirr. Due to thermal
fluctuations the vortex lattice is solid only between Hc1 and Hirr which is the irre-
versibility field along which the vortex solid transits to a liquid phase.
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the surface and decreases with increasing distance from the surface because their entry

is impaired by pinning. The pinning force exerted on the vortices by the defects in the

material exactly balances the driving force Eq. 2.33 acting on each flux line due to the

non-zero vortex density gradient and curvature. Therefore in the flux (vortex) penetrated

regions, the current density can only be equal to the critical current density. The critical

state equation ~∇ × ~B = µ0 ~Jc implies that the curl of the magnetic flux density in the

regions is given by the critical current density.

Figure 2.13 Example of the flux distribution in a type-II superconductor obeying Bean’s critical
state model. The Figure shows a type II superconducting infinite slab with the
magnetic field Ha applied along the z-axis. In Bean’s model, the slope of B(x) is
proportional to the critical current density such that ∇×B = µ0jcj/|j|

Consider the case of a superconducting slab with thickness 2w along the x-axis and

infinite in the other two directions, presented in Figure 2.13. The magnetic field is applied

along the z-axis. In Bean’s model, the screening current density may adopt only three

different values, : 0 and ±Jc. In the central zone, in which the magnetic induction is zero

(i.e. where there are no vortices ), the current density vanishes. As the applied field Ha is

increased, for a sample initially in the Meissner state, the current density distribution in
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the Bean critical state is given by equation (2.36),

Jy(x) =



















jc −w < x 6 −a
0 |x| < a

−jc a 6 x < w

, (2.36)

while the flux density distribution is given by [65; 66]

Bz(x) =



















0 0 6 |x| < a

µ0(|x| − a)jc a 6 |x| < w

Ha, |x| > w

, (2.37)

with the position of the flux front a determined by a = w −Ha/jc.

The situation is more complicated for other geometries. For the case of a thin film of

a thickness of d, occupying the region |x| < w, |z| < d/2, and exposed to a perpendicular

magnetic field, shown in Figure 2.13, the distribution of the current density and magnetic

induction is given by [66]

jy(x) =



















jc w < x 6 −a
−2jc

π arctan
(

x
W

√

W 2−a2

a2−x2

)

−a < x < a

−jc a 6 x < W

, (2.38)

Bz(x) =











0 |x| 6 a

Bf ln

(

|x|
√
W 2−a2+W

√
x2−a2

a
√

|x2−W 2|

)

|x| > a
. (2.39)

Here Bf = 1
πµ0djc and a = W/ cosh(µ0Ha/Bf ). These relations are illustrated in Fig-

ure 2.14.

Figure 2.15 relates the hysteretic magnetic moment to the field distribution in the su-

perconductor for several values of applied magnetic field. Where the applied field exceeds

Hc1, the magnetic field starts to penetrate the superconductor. At the field of full pene-

tration Hp, the internal magnetic flux front reaches the center of the superconductor. At

this field, the magnetization has its maximum diamagnetic value. For Hc1<Ha<Hp, the

irreversible magnetization curve deviates only gradually from the straight line of perfect

diamagnetism, demonstrating the strong shielding effect due to pinning. For applied fields

Ha>Hp Bean’s model predicts M=(H-〈B〉)=-12µ0Hp, whereas in Figure 2.15 the magne-

tization |M| starts to decrease. This is because of the reduction of the critical current
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Figure 2.14 Profiles of the reduced screening current density jy(x)/jc in (a) an infinite super-
conducting slab occupying the region |x| < w, and subjected to a parallel magnetic
field, and (d) a thin film of thickness d, occupying the region |x| < w, |z| < d/2, and
subjected to a perpendicularly oriented magnetic field. Profiles of the distribution
of the reduced magnetic induction Bz(x)/Bf for (a) the infinite superconducting
slab (c) the thin film with a thickness d. The arrows indicate the progression of the
profiles as Ha increases.
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2.6 Vortex dynamics

Figure 2.15 Field dependence of the magnetization in type-II superconductor. The small figures
show the flux density profile across the superconductor width at various points on
the magnetic hysteresis loop.

density with increasing magnetic field. As the external field is reduced the gradient of

the local field near the sample edge changes its sign, but has the same absolute value,

this corresponds to the sign reversal of the screening current. The magnetization now

becomes positive because vortices are trapped in the superconductor by the pinning. The

field profile obtained after switching off the external field is shown in the upper inset to

Figure 2.15. The consequence of this field distribution is that the maximum trapped field;

and therefore its magnetization, of a superconductor with pinning depends on its size.

The irreversible magnetization vanishes at the irreversibility field Hirr above which vortex

pinning is overcome by the thermal fluctuations acting on the vortex ensemble. In contrast

to the reversible magnetization, which only vanishes at H=Hc2.

2.6.1 Flux creep

The Bean critical state corresponds to the non-equilibrium vortex (flux density) distribu-

tion caused by the presence of pinning. However, at non-zero temperature vortex lines

can be unpinned by thermal fluctuations. Vortices then slowly progress along the flux

density gradient. Thus the non-equilibrium magnetization decays with time, a process

called flux creep. At current densities j close to the critical value, the free energy bar-

rier for the activation of vortex motion is small and may be linearly expanded in jc − j,
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U(j) = Uc(jc − j)/jc. Uc is the pinning energy or energy gained by the vortices occupying

the pins. j may be interpreted as being the energy gain due to the Lorentz force. This

approximation is known as the Anderson-Kim model [179] and results in a logarithmic

time dependence of the non-equilibrium part of the magnetic moment. In conventional low

temperature type-II superconductors flux creep is a slow process: the ratio Uc/kBT which

can be extracted from the creep rate S≡M−1dM/dlnt is typically order of the of 103-104.

The vortex velocity will be determined by the nucleation rate of a vortex-bundle that gives

rise to a thermally activated jump [166] and has the form

v ∝ v0e
(−U(j)/kBT ). (2.40)

The above expression can be combined with the Maxwell equations in order to get the

equation of motion for the induction and the current density,

− ∂B

∂t
= −∇×

[

B × ~voe
−U(j)/kBT

]

(2.41)

or

− ∂j

∂t
= ∇×∇×

[

~E0e
−U(j)/kBT

]

, (2.42)

where ~E0 = ~v0 ×B.

It is possible to derive the time dependence of the average screening current density

from the above equations. An approximate solution for js can be found as [42; 104; 159],

U(js(t)) = kBT ln

(

t0 + t

τ

)

, (2.43)

where the normalization time

τ ≡ τ̃

[

1

T

∫ t

0

js
Uc

(

−∂U(js)

∂js

)

dt′
]−1

(2.44)

describes the time scale of the relaxation [8] and

t0 ≡ τ exp

(

U(j0)

kBT

)

(2.45)

is the measure of the time regime in which transient contributions to js(t) are important.

j0 is the current density at the onset of relaxation, τ̃= Λ
ρf

kBT
Uc

and the self inductance of

the sample Λ≡1
2µ0d∂M/∂js. The temporal evolution for different flux creep models can

be found by applying Equation 2.43.
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2.6 Vortex dynamics

In the Kim-Anderson model [188] the solution is

M ∝
(

1− kBT

Uc
ln (

t+ t0
τ

)

)

. (2.46)

in the limit Uc≫kBT, j. jc. In the limit j ≪ jc or Uc 6 kBT , known as thermally assisted

flux flow [176] U≈Uc and Eq. 2.42 can be solved directly [52; 233]. The sustainable current

density js decays as js(T)=
∑∞

i=1
e−t/ti

β2
n

with ti=(Λ/ρf )exp(Uc/kBT).

For the case of U(j) = Uc ln
jc
j : the solution proposed for Eq. 2.43 is exact [176]. js

decays according to a power law

js(t) = jc

(

t+ ti
τ

)−kBT/Uc

, (2.47)

and the normalization time is given by τ=τ̃ .

In the collective creep model, U(j) = Uc(
jc
j )

µthere is no exact solution known [227].

With logarithmic accuracy the current decays as

js(T ) = jc

(

kBT

Uc
ln(

t+ ti
τ

)

)−1/µ

(2.48)

where τ≃τ̃/µ.

2.6.2 Theories of pinning

The problem of calculating the critical current density, that is, the maximum pinning force

exerted by the material disorder on the vortex ensemble, can be separated in two parts.

The first concerns the interaction of individual pins with an individual vortex, while the

second concerns the summation of the pinning forces acting on the vortex ensemble as a

whole.

2.6.3 Vortex-pin interaction

In the following, the attractive interaction between a vortex and a single pin is considered.

The attractive interaction at the origin of pinning arises from two different mechanisms.

The first one is the pinning of the vortex core, "core pinning", while the second one is

pinning due to the modification of the supercurrent distribution field circulating around

the vortex core; this is dubbed "electromagnetic pinning". For the case of core pinning

there are again two different mechanisms at play: pinning due to the spatial variation of

the critical temperature or the condensation energy "δTc-pinning" and pinning due to the

scattering of the quasiparticles in the vortex cores the so-called "δκ-mechanism".
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In the case of a defect of dimension DV ≪ξ smaller than the vortex core, only core

pinning will be effective. Depending on the nature of the defect and the type of the material,

either the "δTc-mechanism" or the "δκ-mechanism" will be at the origin of pinning. On

the other hand, the presence of a defect larger than the vortex core DV ≫ξ will render the

core pinning unimportant compared to the "electromagnetic pinning".

The δTc-mechanism arises because the vortex core which, is in the normal state, will

be attracted by any defect that confers a lower T c or a lower condensation energy to its

immediate surroundings. The elementary pinning energy, i.e. or the maximum energy

gained by having the vortex core coincide with such a single small pin, can be estimated

by taking the product of the condensation energy 1
2µ0B

2
c and the volume of the defect

4π
3 D

3
V ,

Up =
B2

c

2µ0

4π

3
D3

v =
Φ2
0

16π2µ0λ2ξ2
4π

3
D3

v =
π

3
ε0
D3

V

ξ2
. (2.49)

If one considers the pinning potential Up(r), that is the energy gained by placing the

center of the vortex core a distance r from the defect, the elementary pinning force is given

by fp =
∂Up(r)

∂r . The maximum pinning force fp is usually obtained for a displacement of

r = ξ so that

fp ≈
Up

ξ
≈ ε0

(

DV

ξ

)3

= ε0

(

Dz
V

ξ

)(

Dxy
V

ξ

)2

, (2.50)

where Dz
V and Dxy

V are the dimensions of the defect along and perpendicular to the field

direction. Thus the maximum force of a pin (vacancy, dopant atom) extent of Di ≪ ξ

can be estimated as the product of the fraction of the vortex core volume occupied by the

defect and the vortex line energy ε0 [41; 68].

For the case of the δκ-mechanism, it is energetically advantageous for the vortex core

to coincide with regions of stronger quasiparticle scattering [68] . The pinning force is

estimated as,

fp = 0.3g(ρD)ε0

(

σtr
πξ2ab

)(

ξ0
ξab

)

, (2.51)

where σtr=πD2
v is the transport scattering cross section, Dv is the effective range of the pin

and g(ρD) is the Gor’kov function. The disorder parameter is ρD=~vF /2πTcl∼ξ0/l, with

vF the Fermi velocity, l the mean free path and ξ0≈1.35ξ(0) the BCS coherence length.

In the limit of an extended defect, Di≫ξ the "electromagnetic pinning" will be dom-

inant. The defect will not occupy only the cortex core cross section, but also affect the

screening supercurrent. The pinning energy Up can be estimated by taking into account the

energy gain due to the decrease of line energy due to the coincidence of vortex core and the
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2.7 Statistical summation

Figure 2.16 A cartoon of vortex pinning by an extended defect.

defect, to which one adds the kinetic energy gain outside the core. For an extension of the

defect perpendicular to the field direction Dxy, the pinning energy can be approximated

as Up∼ε0Dz
V ln

(

Dxy
V
ξ

)

. The elementary pinning force can be thus estimated as

fp = ε0

(

Dz
V

ξ

)

ln

(

Dxy
V

ξ

)

. (2.52)

An interpolation between the limits of small and large defects in suggested in Ref. [82],

f ip,max ≈ F(T )ε0

(

Dz
i

4ξ

)

ln

(

1 +
D2

i

2ξ2

)

≡ ε0

(

Dz
i

4ξ

)

F(T ). (2.53)

Here F(T ) is a function that takes into account smearing of the pinning potential by

thermal fluctuations [166]. The maximum value of the elementary pinning force in either

limit is given by the above expression by taking into account the different limits DV ≫ ξ

and DV ≪ ξ in the logarithmic term of Eq 2.53.

2.7 Statistical summation

The critical current density in type-II superconductors is determined by the pinning force

which holds the lattice when an applied current pushes the vortex lattice into motion. This

pinning force arises from a large number of contributions from individual pins. In the pres-

ence of pinning sites, the vortex lattice deforms elastically to accommodate itself taking on

an energetically most favorable configuration. The pinning contribution to the free energy

of such a metastable vortex configuration, for a random distribution of pinning centers,

must be found from a statistical summation. Since vortices will try to accommodate to the

pinning landscape by shearing and bending in order to profit from the most favorable areas
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, the total free energy will depend on the exact balance between the elementary pinning

potential and the elastic energy loss from of the vortices’ elastic deformations.

The summation of the elementary pinning forces acting on a vortex can be considered

in two different limits, determined by the product of defect density nd and the extent of

the vortex core. In the limit nd ≫ ξ−3, a large number of small defects contributes to the

pinning of a given vortex: this is called "weak collective pinning". In this case the direct

summation of the elementary pinning forces of each pin yields a very small number or zero:

〈fp〉=0. Now if one considers that some of the regions in the random pinning potential

array have a total pinning force that is slightly larger than the average value, these regions

will act as trapping areas for the vortices. In other words, the pinning force will not

be zero only because 〈f2p 〉a2
0

6= 0. An important question for this summation problem is

over what length scale this averaging should be performed. Larkin and Ovchinnikov have

attacked the situation as follows. For vortex lattice pinning in the presence of weak dense

pins, averaging of the elementary pinning forces is performed over a unit cell (of sixfold

coordinated vortices) to yield 〈f2p 〉a2
0

, while for a single vortex it should be done over the

vortex core 〈f2p 〉ξ2 .
The limit between the two situations is again a question of length scales. If the pinning

is weak, the disorder-induced displacements of the vortices are correlated and one is in the

vortex lattice pinning regime. One may then define a correlation volume Vc = LcR
2
c . The

deformation of the vortex line will give rise to displacements of vortices from their lattice

positions which are described in the Larkin-Ovchinnikov theory using the displacement

correlators [82; 279]

B(r) = 〈|u(r, z)− u(0, z)|2〉1/2 (2.54)

B(z) = 〈|u(r, z)− u(r, 0)|2〉1/2. (2.55)

Here Lc and Rc are the longitudinal and transverse correlation lengths respectively,

which define the correlation volume Vc. The correlation lengths are calculated from

B(Rc) = 〈|u(Rc, z)− u(0, z)|2〉1/2 = ξ (2.56)

B(Lc) = 〈|u(r, Lc)− u(r, 0)|2〉1/2 = ξ. (2.57)

If the pinning is sufficiently strong, vortices will be sufficiently displaced by the disorder

for the transverse correlation length Rc to drop below the vortex spacing a0. The volume
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2.7 Statistical summation

pinning force Fp will ben determined by averaging over a single vortex. The limit between

the two regimes is determined by the condition Rc = a0. The average pinning force action

the vortex lattice (bundle) pinning regime can be described using the correlation volume

such that

Fp =

(

nd〈f2p 〉
Vc

)1/2

(2.58)

(units [N/m3]) where the pinning energy is defined as Up = FpVcrf , and rf is the range

of the pinning potential. In the limit of single vortex pinning the pinning energy is defined

as Up = F sv
p Lcξ. The expression for the average pinning force is given by,

F sv
p =

(

nd〈f2p 〉a2
0

Lc

)1/2

ξ, (2.59)

(units [N/m]). In the vortex lattice collective pinning regime the critical current density is

determined by jc =
Fp

B , while in the limit of single vortex pinning it can be expressed as

jc =
F sv
p

Φ0
=

(nd〈f2p 〉)1/2

Φ0L
1/2
c

=
〈f2p 〉1/2ξ

Φ0(n
−1
d Lc)1/2

. (2.60)

When the defect density decreases and the pins become more extended a crossover

from weak collective pinning to so-called strong pinning occurs. In the appropriate limit

nd ≪ ξ−3 the average pinning force 〈fp〉 acting on the vortex line is no longer zero. Namely,

when the individual pins are sparse the elementary forces of the individual pinning centers

no longer cancel. In this regime each pin will try to trap the vortex line, which will again

seek out a most favorable configuration. However, in exploring the pinning potential, the

vortex is limited by its own line tension (this will be dominant in the single vortex limit

of strong pinning), and by the repulsive interaction with other vortices ( this dominates

in the vortex lattice limit of strong pinning). In order to perform the summation, one

must now know the number of pins per vortex, length scale L, the mean distance between

effective pins. For the vortex lattice, the volume pinning force Fp =
fp
a2
0
L

(units [N/m3]) ,

while in the single vortex limit it is given by Fp =
fp
L

(units [N/m]).

In the vortex lattice limit of strong pinning, L is determined by the maximum allowable

transverse displacement of a vortex, u0, which can be estimated by by minimizing the

energy of elastic deformation given by

Uel = c66u
2L+ c44

u2

L
a20. (2.61)
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Minimization of Eq. 2.61 with respect to L yields the optimum length L0 = a0(c44/c66)
1/2 ≈

2εa0 , that is, the longitudinal scale of optimum vortex deformations. The distance u0, to

which a vortex may wander, is then obtained by equating the pinning energy gain Up to

Uel(u0, L0). This gives,

u20 =
Up

(c44c66)1/2a0
≈ Up

εε0
a0. (2.62)

In the single vortex limit of the strong pinning, one calculates the energy of the elastic

deformation as a function of displacement. Balancing the energy of the elastic deformation

of a single line with the pinning energy Up = ε1
(

u
L

)

, where ε1 ≈ ε2ε0 the line tension

of a single vortex and ε is the anisotropy parameter of the superconductor, thus one has

u2 = (Up/ε1)L. For a given Up, the average L is obtained in Ref [43] as

L = (
1√
π
)

(

ε1
ndUp

)1/2

. (2.63)

By inserting Eq. 2.63 one has u2 = (Up/πndε1)
1/2. The critical current density jc = fp/Φ0L

is given by

jc = n
1/2
d

fp
Φ0

(

πUP

ε2ε0

)1/2

. (2.64)
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Chapter 3

Iron-based superconductors

3.1 Introduction

Until 2008, researchers interested in unconventional superconductivity focused their work

mostly on the so called high-Tc ( high temperature superconductor) cuprates. The crys-

tal structure of these compounds is composed of alternating conducting CuO2 layers and

layers that act as charge reservoirs. 20 years after the discovery of the high-Tc superconduc-

tors in 2006 the first superconducting iron pnictide compound was discovered by the team

of professor Hosono in Japan [264]. This compound has some important characteristics.

Its composition is that of successive layers of ( La3+O2−) and iron pnictides (Fe2+P3−).

Its Tc=3.2 K could reach temperatures above 5 K when the oxygen was partially substi-

tuted by fluorine. Two years later the same group of researchers realized the synthesis of

La(O1−xFx)FeAs with Tc=26 K [265].

Figure 3.1 Crystal structures of (a) LaFeAsO (1111-family), (b) BaFe2As2 (122-family), (c)
LiFeAs (111-family), (d) FeSe (11-family) and (e) (Fe2P2)(Sr4Sc2O6) (22426-family).
Taken from Ref.[136] and Ref.[96].

Rapidly after their discovery , iron-based superconductors (IBS) have attracted the
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3. IRON-BASED SUPERCONDUCTORS

interest of the condensed matter physics community who considered IBS as competitors

for cuprates and even as potential candidates for future technological applications. Until

now, several families of iron-based superconductor have been discovered. They are all

characterized by a quasi- two dimensional crystallographic structure formed by successive

layers of iron pnictide (Fe2+Pn3−) ( here Pn represent the pnictogen atom, an element

situated in column V of the periodic table ) and by the presence of a magnetic order in

their phase diagram. At high temperature, the crystallographic structure of all iron-based

superconductors (IBS) is tetragonal at high temperature; Moreover, all superconducting

compositions have a tetragonal structure. For underdoped IBS a structural transition to

orthorhombic phase occurs at a temperature close to the transition to the antiferromagnetic

phase.

Up to now, at least five families of superconducting pnictides have been found (see

Figure 3.1). Disregarding the "111" LiFeAs type family and the end compounds LaFePO

and KFe2As2, the undoped parent compounds show antiferromagnetic spin density wave

(SDW) order. The metallic SDW phase present in the underdoped regime of iron based

superconductors is one of the important differences with cuprates, that feature an antifer-

romagnetic Mott insulator phase in the underdoped region of their phase diagram. Upon

doping or the application of pressure, the antiferromagnetic phase of the iron-based parent

compound is progressively suppressed, by the decrease of TSDW , until, at a critical doping,

superconductivity appears. The Fermi surface of the iron based-superconductors generally

consists of five different sheets: three hole pockets centered around the Γ point and two

electron pockets around the M point of the Brillouin zone [97; 136] (see Figure 3.5 (a)).

An exception is KFe2Se2, that has no hole-like sheets and KFe2As2 that has four distinct

petal-like electron pockets away from the M point.

The first discovered family of "1111" compounds are the RE(O1−xFx)FePn type mate-

rials. Here RE represents a rare earth element from lanthanide series [265], Their crystal

structure is given in Figure 3.2. Crystal growth is very difficult for the "1111" family of

compounds. The dimensions of the single crystals are quite small, of the order of one hun-

dred micron on the side. This limits experimental studies on them. Figure 3.1, shows the

phase diagram of the 1111-type IBS. No coexistence of the superconducting and magnetic

phase is observed in the underdoped regime of the "1111" family.

The second family of IBS is designated "11" and was discovered in 2008 [81]. This

family has the simplest chemical composition FeSe1−x. It has Tc=8 K, a value that can

go under pressure up to 27 K for some of the different compositions such as FeSe1−x Tex
[143] or FeT1−xSx [267].

The third family of iron pnictides, also discovered in 2008, is the so called "122" family.
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Figure 3.2 Phase diagram of LaFeAsO1−xFx from Ref. [95].

This describes the compounds of ATFe2As2 type where AT is an alkaline earth element.

The superconductivity can be induced into these systems by hole doping, that is by sub-

stitution of Ba with K or Sr [162] or by electron doping: that is by substitution of Fe with

Co or Ni [17; 147]. Superconductivity can also be observed by isovalent substitution of Ru

for Fe or P for As [207; 214]. All these dopant elements are different, so that one could

expect diverse physical behavior upon doping with charge carrier into the superconducting

layers, into the reservoir layers, or by isovalent substitution into the system. Nevertheless

, the phase diagram of all these differently doped systems is very similar, and all doped

compound have the same order of Tc (see Figure 3.3). The highest Tc in the "122" family

is 38 K for Ba1−xKxFe2As2 ,( x = 0.4) [162]. The high temperature crystal structure of

BaFe2As2 is tetragonal. In the non-magnetic state, it is in the space group I4/mmm. At

a temperature just above the antiferromagnetic transition, there is a structural transition

to an orthorhombic phase of the space group Fmmm. The body-centered tetragonal unit

cell and the orthorhombic unit cell are represented in Figure 3.6.

Finally, in december 2008, the "111" family is discovered. This has the typical compo-

sition AFeAs, where A is an alkali metal (Li, Na) [256]. These compositions are supercon-

ducting without any substitution or doping. Notably, LiFeAs becomes superconducting

beneath Tc = 18 K and for the NaFeAs compounds Tc can reach to 25 K [48].
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Figure 3.3 Generic phase diagram of the "122" compounds for different substitution.

3.1.1 Structure and phase diagram

The typical phase diagram of IBS features an orthorhombic low-temperature phase for the

undoped parent compound (on the left-hand side of Fig. 3.2 and at the center of Fig. 3.3).

This orthorhombic phase persists, for limited doping and / or applied pressure. The or-

thorhombic phase is associated with itinerant antiferromagnetism of spin-density wave

(SDW) type. Whereas the structural and antiferromagnetic Néel transition temperature

lie very close to each other in the 122-type compounds, they are quite clearly separated in

the "1111" family of materials. The antiferromagnetism opens a gap on part of the Fermi

surface, inducing the presence of petal-like reconstructed Fermi surface pockets. Generally,

when these petal-like pockets are present, there is no superconductivity. Chemical substi-

tution and/or the application of pressure induces (as one goes to the right in the phase

diagram of Fig. 3.2, or, away from the origin in Fig. 3.3), a gradual structural change,

reflected by the increase of the As-Fe-As bond angle to the value for a perfect tetrahedron,

and an accompanying change of the As height with respect to the Fe plane. Upon this

structural change, the Néel temperature of the SDW transition is gradually suppressed. It

is widely thought that, at least, the initial suppression is due to the demise of the Fermi

surface nesting between the hole-like cylinders in the center of the first Brillouin zone,

and the electron pockets at the M point on zone boundary (see Fig. 3.5). Thus, upon

substitution, the Fermi surface reconstruction disappears, and the full electron pockets
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appear.

Further substitution (or application of pressure) leads to the full demise of antifer-

romagnetism, and the appearance of superconductivity, around the point in the phase

diagram where TSDW tends to zero. The critical temperature Tc rises, goes through a

maximum, and tends back to zero in the overdoped region of the phase diagram. In some

materials, such as (Ba,K)Fe2As2, it is possible to go to the extreme overdoped side of the

phase diagram, in casu, KFe2As2, all the while retaining superconductivity.

The As-Fe-As bonding angles have a particular importance in iron-based superconduc-

tors. Figure 3.4 (b) shows that there are two non-equivalent angles denoted as α and

β. Their difference with respect to the bond angle of a regular tetrahedron (α=109.47◦)

is clearly related to the decrease of the critical temperature Tc. The structural change

incurred by chemical substitution may be an indication as to why superconductivity is in-

duced by isovalently substitution, as well as by hydrostatic pressure, which both modify of

the As-Fe-As bonding angle. Indeed, Tc is strongly influenced by the structural properties

such as the tetrahedron angle and pnictogen height with respect to the Fe-plane. Notably

P doping causes a reorganization of the crystal structure that influences Tc via its effect

on the bandwidth [161]. It is thought that this particular type of chemical substitution

causes many changes in band structure. For example Shishido et. al. reported that the

volumes of the electron and hole-like Fermi surface pockets shrink linearly with decreasing

x in isovalently substituted BaFe2(As1−xPx)2. This shrinkage is accompanied by a strong

increase in the quasiparticle effective mass as x is tuned toward the maximum Tc [97].

Liu et. al. argued from ARPES measurements that marked changes in the Fermi surface

accompany the onset of superconductivity in charged-doped Ba(Fe1−xCox)2As2 .

In the region of the phase diagram where TSDW tends to zero, superconductivity and

magnetism are thought by some to be competing states. On the other hand, the very anti-

ferromagnetic fluctuations near a possible quantum critical point in this region of the phase

diagram may well provide the bosonic interaction responsible for the formation of Cooper

pairs. The question of microscopic coexistence (or, on the other hand, phase separation) of

superconductivity and magnetism has therefore attracted much interest. For the case of the

K-doped "122" compound Nuclear Magnetic Resonance (NMR) [89], Muon Spin Rotation

(µSR) [173] and Magnetic Force Microscopy (MFM) measurements [173] have shown the

separation into non-magnetic regions, and regions with magnetic order. This might be

an indication for microscopic scale phase separation. Inosov et. al. have also supported

the argument of the possible phase separation. Their microstrain measurements on the

K-doped "122" compound using X-ray and neutron diffraction, were interpreted as being

consistent with electronic phase separation. For different doping levels of NdFeAsO1−xFx,
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both van der Beek et. al. [41] and Qiu et. al. reported the absence of coexistence evidence

for the superconducting and antiferromagnetic states for the studied compositions [272].

Shen et.al. argued, that there is phase separation (with superconducting islands) in their

single crystals of K0.8Fe1.6Se2 [20]. The latter authors, and as well as Lu et. al., from

their work on the K and Co-doped "122" compounds, raised the idea whether these phase

separation originates from crystalline heterogeneity [254]. It seems that coexistence of

superconductivity and magnetism is a property that depends on the type of material under

study.

For the Co-doped "122" material, both NMR [266] and µSR measurements [25] indicate

that all Fe sites participate in magnetic order as expected for the coexistence of SDW

magnetism and superconductivity. Last but not least, neutron diffraction measurements

on the underdoped Co-compound showed that the magnetic Bragg peak intensity decreases

when entering the superconducting region [6; 58]. These results were interpreted as being

an indication for a strong interaction between the superconducting and the SDW states,

and that the same electrons contribute both to the SDW and superconducting states.

Therefore, it is not easy to draw any clear conclusion from these observations.

Figure 3.4 (a) Tc vs As-Fe-As bond angle for various pnictide superconductors. Formulas of
parent compositions of superconductors are depicted in the inset. Crystal structure
parameters of samples showing almost maximum Tc in each system are selected. The
vertical dashed line indicates the bond angle of a regular tetrahedron ( α=109.47◦). (b)
As-Fe-As bond angles and are illustrated with an FeAs4-tetrahedron. From Ref.[27].
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3.1.2 Fermiology

Early ARPES work of Ding et. al. performed on the K-doped "122" system revealed

the general topology of the Fermi surface, the nature of pockets and the shape of cylin-

ders in the 122 compounds [88]. More recent work performed on both BaFe2As2 and

Ba(Fe1−xCox)2As2 showed significant variation of the size of the Fermi surface cylinders in

the kz-ky plane along the z-axis, particularly around the Γ point, yielding clear evidence

for the 3D character [244]. This 3D character is seen both in the undoped compound,

but was more pronounced around both the Brillouin zone hole Γ center and electron M

corner pockets in the Co-doped compound. This 3D character was also reported for other

substitutions of the "122"-type compound [22; 192; 220]. The fermiology of the parent

compounds exhibits a temperature dependence due to the strong influence of the magnetic

moment on the band structure below TSDW . Yi et. al. reported on detailed measurements

of the Fermi surface reconstruction in BaFe2As2, with multiple new bands appearing [168].

Their ARPES data show, in addition to two hole pockets centered at the Γ point, the

appearance of four small surrounding "petal shaped" electron pockets at the M point. Liu

et. al. followed the evolution of the magnetic-ordering induced additional hole-like pockets

revealed by Yi et. al. at the M point in Ba(Fe1−xCox)2As2 as a function of Co doping,

and found that they disappear at the point in the phase diagram where superconductivity

appears. Liu et. al. argued that the pairing interaction due to spin fluctuations is sup-

pressed by long range magnetic order, which is indicated by the additional Fermi surface

features [32]. Fuglsang Jensen et. al. performed an ARPES study on the undoped par-

ent compound BaFe2As2 they reported that the imperfect nesting between and electron

pockets can explain the formation of gaps and residual residual metallic pockets. Beyond

this nesting picture, they have observed shifts and splittings of numerous bands at the

transition [155; 230]. Brouet et. al. have reported on the Ru substituted "122" compound.

They showed, by resolving the different Fermi surface pockets and deducing the number

of hole and electron carriers from their volumes that Ru induces neither hole nor electron

doping. However, the Fermi surface pockets are about twice larger than in BaFe2As2 [229].

3.1.3 Band structures in "122" and "1111" type compounds

The key for the understanding of the superconductivity mechanism in the IBS are their

normal-state properties. The microscopic interaction determining the anti-ferromagnetism

in the orthorhombic phase, and the corresponding antiferromagnetic fluctuations around a

putative quantum critical point, is a very serious candidate for the pairing mechanism and

superconductivity. In order to elucidate the possible nesting origin of antiferromagnetism,
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many band structure calculations have been carried out for these systems. In IBS all five

Fe 3d-orbitals contribute to the density of states near the Fermi energy level. This is an

indication that the mechanism for the metallic conduction is due to charge carriers in the

FeAs layers. Results on band calculations using the density functional theory in the lo-

cal density approximation (LDA) for LaFeAsO primitive tetragonal structure are shown in

Figure 3.5 [50]. Figure 3.5 (a) shows the presence of hole-like Fermi surface sheets surround-

ing the Γ point of the Brillouin zone, and electron bands at the M points. Calculations

show that the energy bands are very sensitive to the distance of the As planes from the Fe

planes [138; 139; 140]. The density of states versus energy is given in Figure 3.5 (b). The

sates at EF are primarily of Fe , character indicating the predominant electronic conduc-

tion. LDA band calculation for the 122-type parent compound BaFe2As2 [150] is shown

in Figure 3.5. Again, the hole-like bands cross the Fermi surface around the Γ-point, as in

LaFeAsO, but due to the doubling of the unit cell the electron bands are at the X point

instead of the M point. The electron pockets in both compounds are at the same positions

in the reciprocal space with respect to the respective direct lattices. This means that the

nesting wave vector between the electron and hole pockets for all of the IBS and parent

compounds is the same Qnesting=(1/2,1/2) in tetragonal notation.

3.1.4 Origin of the antiferromagnetic ordering

The parent compounds of both the "1111" and "122"-type materials are metals and ex-

hibit antiferromagnetic spin density wave (SDW) order. The high temperature T > TSDW

paramagnetic state is characterized by a magnetic susceptibility with an unusual linear

temperature dependence (χ ∝ T ) [141; 191]. The magnetic structure in LaFeAsO is char-

acterized by the ordering wave vector (12
1
2

1
2)T=(1 0 1

2)O (where T and O correspond to the

tetragonal and orthorhombic structures respectively). The low temperature ordered mag-

netic moment is 0.36 µB. The SDW magnetic order on Fe atoms is depicted in Figure 3.6.

Neutron diffraction experiments on the "122"-type compounds show a larger ordered mag-

netic moment than in the "1111" materials (apart from NdFeAsO, in which the moment

in borne by the Nd atoms). The size of the ordered moment is fairly similar for different

members of the AFe2As2 family. One observes 0.99 µB [273] in single crystal BaFe2As2
(grown with Sn flux), µ = 0.87µB [185] in powder BaFe2As2, µ = 0.94µB in single crystals

of SrFe2As2, µ = 1.01µB [137] in SrFe2As2 powder and 0.8 µB in CaFe2As2 single crystals.

While the nature of the ordered state in these materials has been discussed widely,

there is growing consensus that it originates from the itinerant electrons; Namely, part of

the electron– and hole–like Fermi surface sheets map onto each other by a two-dimensional

commensurate nesting vector Q(π,π) (see Figure 3.5 (a)). With the exception for the "11"-
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Figure 3.5 (a) Fermi surfaces of LaFeAsO, shaded by the value of the Fermi velocity vF . The
centre of the Brillouin zone is shifted to the corners of the figure. The hole Fermi
surfaces sheets are at the corners of the figure, the Γ point, while the electron pockets
are in the center, surrounding the M point. (b) LDA band structure of LaFeAsO. The
solid black curves give the band structure for the observed crystal structure. Taken
from Ref. [50]. (c) LDA band structure for body-centered-tetragonal (bct) BaFe2As2.
One can clearly the hole-like Fermi surface crossings around the Γ–point, and the
electron-like crossings around the X-point. Taken from Ref. [150].

type IBS, this nesting vector is the same as the commensurate antiferromagnetic ordering

wave vector [74; 210]. Itinerant magnetism is also supported by the reduced magnetic

moments and the decrease of the density of states near the Fermi energy level in the

magnetic phase of IBS. In addition, it has been proposed that the nearest neighbour and

next-nearest neighbour interactions between Fe moments are both antiferromagnetic and

of comparable strength, leading to magnetic frustration [225]. The latter scenario is one of

the suggestions to provide an explanation for the structural phase transition, as the lattice

distortion relieves the magnetic frustration [225; 278]. It was suggested that the structural

transition from a "nematic" ordered phase at a temperature above the SDW transition.

In Ref. [154] it was expressed that one is dealing with local moment antiferromagnetism
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Figure 3.6 SDW order configuration in the parent compound BaFe2As2: the spin of Fe atoms are
represented by arrows.

with itinerant (RKKY-type) exchange. It was claimed that both the low temperature

magnetic order and structural distortions can be explained in this manner. Finally, it was

proposed in Ref. [27] that both the magnetic and structural transitions are driven by orbital

physics and that the structural transition is, in fact, a ferro-orbital ordering transition.

This proposal explains the coupling between the structural and magnetic transitions and

is consistent with the rather large ordering temperature .

3.2 Theoretical Approaches

The first theoretical proposal for the superconducting pairing mechanism IBS, immediately

after their discovery was that by Mazin et. al. [109]. The authors argued against conven-

tional superconductivity in these systems. They pointed out the very high value of the

magnetic susceptibility and LaFeAsO, higher than any that in known conventional super-

conductor in which superconductivity is ought to be suppressed by spin fluctuations. The

susceptibility in the pure compound is large; upon doping with F, it becomes even larger.

Very strong electron-phonon interactions would be required to overcome the destructive

effects of such spin fluctuations. The ab initio calculations performed by the same au-

thors on the electron-phonon spectral weight function and coupling revealed results which

can in no way explain the relatively high transition temperature in these compounds, i.e.
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Tc ≥ 26 K. The DFT Fermi surface calculations performed for the LaFeAsO as a function

of doping (with x in the region of 0.04− 0.05) shows that the 3D pocket fills with electron

doping, leaving a highly 2D electronic structure with two heavy cylinders and two lighter

(and larger) electron cylinders.

Upon doping, the broad antiferromagnetic spin fluctuations near the M point in the

Brillouin zone remain present; however the tendency to magnetism existing at zero doping

is suppressed. The fluctuations, too broad to induce stable magnetism, create a circularly

symmetric superconducting state with order parameter of opposite signs on the electron

and hole pockets. This state was dubbed s± superconductivity. One of the interesting fea-

tures of the proposed s± is that the coherence factor for exciting quasiparticles on the Fermi

surface sheets with opposite signs of the order parameter were reversed compared to con-

ventional coherence factors. Only slightly later, Kuroki et. al. proposed a model including

all five Fe d bands by applying the random phase approximation (RDA) [139]. The argued

that, indeed, extended s-wave pairing arises from the nesting of the disconnected Fermi

surfaces, but pointed out that d-wave pairing is also a candidate for these systems, notably

when the pairing interaction between different electron sheets, or different parts of the

same electron sheet, is important (RHS of Fig. 3.8). The premise of a pairing interaction

between electron-like Fermi surface sheets (β sheets), as well as the specific inclusion of the

different orbital character in the derivation of the pairing interaction, naturally lead Kuroki

et al. to propose the possibility of gap nodes intersecting the β Fermi surface. This is due

to the spin fluctuations arising from the β1-β2 nesting, which gives rise to a sign change

in the gap on that β1 and β2 Fermi surfaces. They have found that this nodal line moves

out of the β Fermi surface for parameter values for which spin fluctuations due to a β1-β2
nesting become less effective. They conclude that spin fluctuation modes realize uncon-

ventional, extended s-wave pairing where the gap changes sign when one crosses a nesting

vector [140]. The same authors also reported on the effect of the lattice structure on spin

fluctuations mediated superconductivity by adapting the five band model to the lattice of

LaFeAsO, NdFeAsO, as well as LaFePO [138]. Applying RDA calculations, they revealed

that the gap function and the strength of the superconducting instability were determined

by the cooperation or competition of spin fluctuation modes arising from different types

of nesting of the Fermi surfaces, which are, of course, sensitively affected by the lattice

structure. For example, Kuroki et al. have reported a competition between β1-β2 and α-β

nestings. This yields different superconducting gap structures such as low-Tc nodal and

high-Tc nodeless pairings. In a more recent study Kontani et. al. proposed that moderate

electron-phonon interaction due to the Fe ion oscillation can induce d-orbital fluctuations.

The latter give rise to strong pairing interaction yielding an s-wave state without sign
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change (s++-state) [92]. They argued that, as impurity concentration is increased, there

should be crossover from s± to s++-state.

3.3 Gap structure of iron-based superconductors

Approximately eight years after their discovery, the superconducting gap symmetry of the

cuprates has been established by Tsuei et. al. as being d-wave [26]. In less than half that

time, a significant number of experimental studies have reported evidence, of some kind or

another, for the s±-state predicted by Mazin et. al. [14; 92; 109; 228]. Most prominent is

the spin resonance by inelastic neutron scattering (INS), which is thought to demonstrate

the sign-change of the superconducting gap function [167; 269]. It was also proposed that

the possible coexistence of the superconducting order and SDW in the underdoped regime

of the phase diagrams is an indication for the s± symmetry [14].

Figure 3.7 (a) Calculated Fermi surfaces for Ba(Fe1.94Co0.06)2As2 and (b) K0.8Fe2Se2. Different
shades of red denote hole Fermi surfaces, and different shades of blue the electron
ones. The arrows show quasinesting vectors. Taken from Ref.[108].

On the other hand, multiple studies performed on iron-based superconductors have

shown that the multi-band nature of low-energy electronic excitations is expressly involved

in the physics of the pairing mechanism [14]. The experimental data show a very different

behavior of the superconducting gap structure from one family to another, and, even in the

same family as chemical doping or pressure is increased [177]. Various experimental studies
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reported the evidence of presence of gap nodes. ARPES measurements revealed that there

is a strong electron-phonon coupling in LiFeAs [2], and that the measured gap anisotropy

in that material cannot be explained with s± symmetry , but can be accounted for by

orbital fluctuations assisted by phonons [93; 211]. The recent discovery of "122∗-type"

(AxFe2−ySe2, A = K, Rb, Cs, and Tl ) materials [118] , with their large local moment

3.3µB/Fe [238] and different Fermi surfaces (no hole pockets) argues against the s±-state,

at least in some of the iron-based superconducting compounds.

Figure 3.8 Cartoon of order parameters under discussion in the Fe-pnictide superconductors rep-
resented in the 2-dimensional, 1-Fe Brillouin zone. Different colors stands for different
signs of the gap. Taken from Ref.[177].

In addition to this, the effect of impurities, induced either by chemical substitution

or by particle irradiation has been considered. Experiments [10; 27; 37; 271] show that

the Tc suppression rates are generally more slow than the maximum rate expected for s±
superconductivity, that is, supposing that the added impurities contribute to interband

scattering only. Given the many uncertainties on the actual effect of impurities, which

may not act simply as potential scatterers, but can also affect the electronic structure

and the pairing interaction, experiments in which the disorder is systematically varied

may not play a decisive role in the identification of the order parameter symmetry. This

does not refrain one from studying, the effect of disorder, induced either by substitution

or particle irradiation, with the pair-breaking model, i.e., the generalization of the con-

ventional Abrikosov-Gor’kov approach [151]. The presence of non-magnetic impurities in
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conventional multi-band superconductors leads to quasi-particle scattering between bands

or within the same band. This is sketched in Figure 3.9. In the case of a sign-changing

multi-band system the intra-band scattering will average the gaps and can lead to some

initial suppression of Tc, while, the inter-band scattering has a much more profound ef-

fect [1]. Namely, non-magnetic impurities with an inter-band component of the scattering

potential have a pair-breaking effect and can suppress Tc to zero at a critical concentration.

For the case of iron-based superconductors, related studies have been reported by several

groups [14; 109; 259]. The suppression of Tc was further discussed in detail in terms of

impurity scattering rates and the pair-breaking parameter in Ref. [60]. Recent experiments

on the penetration depth and the thermal conductivity have provided some consensus on

the evolution of the low-energy quasiparticle density over the phase digram of the "122"

type materials. Even very early experiments evoked the possibility that variations between

different samples of the same material can be explained by the effect of disorder [135]. The

role of different experiments probing the gap structure and the effect of disorder on the

low energy quasiparticle density of states will be outlined in the next paragraphs.

Figure 3.9 Schematic representation of two Fermi surface pockets with different superconducting
gap signs. Top: inter-band scattering by impurities. Bottom: intra-band scattering
states on each pocket. Taken from Ref.[177].
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3.4 Experimental techniques as a probe for the gap symme-

try and the nodal structure

3.4.1 Penetration depth measurements λL

Figure 3.10 shows an overview of magnetic penetration depth measurements performed on

several iron-based superconductors by different techniques and groups. The temperature

dependence of the low temperature penetration depth can be considered as a probe of the

quasiparticle excitations, which sensitively depend on the gap structure, and therefore pro-

vides evidence for the presence of shallow gap minima, subgap states, or nodal structures.

If a fit of λL to theory over the entire temperature range up to Tc is difficult for multi-band

superconductors, the information related to the gap structure given by low temperature

penetration depth measurement is unambiguous. The relation of different gap structure

with power law T 2 in temperature, ∆λL = λ(T ) − λ(0) ∼ Tn, was pointed out by Gross

et. al. [24; 71]. In fully gapped superconductors, at low temperature the temperature

dependence of ∆λL(T ) has an exponential behavior. This is the case in some iron-based

materials, such as the members of the 1111 family [135], as well as K-doped BaFe2As2
[135]. However, ∆λL(T ) can also commonly be fitted by a power law in T over some

intermediate temperature range. Thus the low temperature behavior may not be straight-

forward to interpret. Only a linear dependence ∆λL ∼ T may give the certitude concerning

the presence of line nodes. Such a behavior of the penetration depth has been reported

for both LaFePO [38] system and for isovalently substituted BaFe2(As1−xPx)2 [135] (see

Figure 3.10). On the other hand, for the charge-doped "122" materials; Ba(Fe1−xNix)2As2
and Ba(Fe1−xCox)2As2, a T 2 dependence is observed [34; 148]. It has been suggested that

T 2 dependence is evidence for a s± state [33; 196; 204; 236]. Namely, in the s±-state, the

presence of disorder was argued to lead to a residual density of states induced at the Fermi

level, and from there, to a T2 dependence of the penetration depth at low temperatures.

However, the critical temperatures of the materials at hand are still very high. Given

the disorder levels necessary to attain the given behavior of the penetration depth and

other thermodynamic parameters, superconductivity should be considerably suppressed.

Another possibility, is that of a dirty (line) nodal state in parallel with the situation in the

d-wave cuprate superconductors.

Experiments performed by Hashimoto et. al. in order to correlate the disorder to the

low-temperature penetration depth [134] report a T -exponential dependence for a given

sample, and a T 2 behavior for another, considered dirtier crystal. This was interpreted

as due to the pair-breaking mechanism caused by inter-band scattering in an s± state. A

similar analysis method was used by Kim et. al. to extract the low-energy density of states
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Figure 3.10 An overview of the temperature dependence of the London penetration depth,
measured by different groups on different compositions of iron-based super-
conductors. (a) underdoped Ba(Fe0.945Co0.055)2As2 [148], (b) optimally doped
Ba1−xKxFe2As2 [135], (c) optimally doped BaFe2(As1−xPx)2 [132], (d) several dop-
ing levels of Ba(Fe1−xNix)2As2 [34] and (e) LaFePO [38].

caused by pair-breaking inter-band scattering and its effect on the temperature dependence

of the penetration depth and the critical temperature Tc [91].

48



3.4 Experimental techniques as a probe for the gap symmetry and the nodal
structure

3.4.2 Specific heat C and thermal conductivity κ measurements

The measurements of the specific heat C

C/T = γ + βT 2, (3.1)

where γ is the electronic specific heat coefficient and β is the coefficient of the phonon

contribution, also probe the nodal structure of the superconducting gap. The first one is a

C ∼ T 2 dependence in the specific heat, which is indicative of line nodes in the gap. The

latter is, however, very difficult to verify experimentally, due to large , other contributions

to C, with other temperature dependences, such as shown for YBCO in Ref. [275].

The second way to probe the gap nodes is to measure the low temperature γ as a

function of magnetic field. This, under the assumption that the system does not contain

any magnetic impurities, since these latter obscure the magnetic field response of γ [208].

For a fully gapped symmetry, single gap-superconductor, γ will vary as H due to localized

states in the vortex cores.

For d-wave superconductors (with line nodes), the theory of Volovik [84] predicts γ ∝
H1/2 atH ≪ Hc2 as observed for YBCO by Moler et. al. in fields of up to 9 T [129]. For the

case of disordered superconductors with line nodes, a γ ∼ logH behavior is predicted [31].

Another explanation for the power law dependence, γ ∝ Hα, with α < 1, is the changing

size of the vortex cores, as observed experimentally in NbSe2 in fields up to 0.3Hc2 by

Sonier et. al. [115]. Studies of γ vs H in superconductors often, reveal more complicated

results than the simple, pure power law predictions. Volovik’s theory is only valid in the

low field limit, but the γ ∼ H1/2 law has been found at higher fields up to Hc2. An

explanation for this sub-linear behavior in γ is the presence of two or more gaps.

The third way for the specific heat to probe the gap symmetry is to measure γ as a

function of magnetic field angle in the nodal plane, where the minima will indicate direc-

tions of field that are perpendicular to the nodes. For perpendicularly applied magnetic

field, this will give a H1/2 dependence of γ. Due to its difficulties and the uncertainty

in the experimental results, this technique has only begun to be employed, on the iron-

chalcogenide [221]. Early measurements of the specific heat down to 2 K on both unan-

nealed Ni and Co-doped BaFe2As2 [216] showed a residual γ(T → 0) of ∼10 mJ/moleK2.

Gofryk et. al. performed specific heat measurements on slightly overdoped, x = 0.08, and

overdoped x = 0.1 Co-doped BaFe2As2, before annealing the samples. This gave values

ranging from 3.7 mJ/mole K2 to 14.6 mJ/mole K2. The values decreased after annealing

the samples to γ(T→0)=1.3-3.8 mJ/mole K2 [130].

Measurements of the thermal conductivity, κ,
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Figure 3.11 An overview of specific heat measurements at the critical temperature Tc showing
the discontinuity in the specific heat as a function of Tc for different compounds of
the "122" family. Taken from Ref. [216].

κ

T
= a+ bTα−1, (3.2)

where the first term on the right comes from the conduction electrons and the second

term is from phonons and magnons, were also performed on IBS compounds. Thermal

conductivity is a similar probe to the specific heat in sensing the nodal gap structure:

κ/T → 0 as T→0 indicates a fully gapped superconductor, while a finite value of κ/T

may indicate either a nodal structure, or gapless behavior due to pair-breaking scatter-

ing. For the case of a nodal gap structure, the magnetic field dependence of the thermal

conductivity κ/T ∼ H logH is also similar to that found for the specific heat. Several

publications on the thermal conductivity of iron-base superconductors have given clear

evidence for fully gapped behavior [126]. Several measurements were performed especially

on different compounds of the "122" family. Luo et.al. measured the zero magnetic field

thermal conductivity on hole-doped Ba1−xKxFe2As2 (with x = 0.25, 0.28), which revealed
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a negligible residual linear term in κ/T as T → 0 [251]. They interpreted these results as

showing the absence of zero-energy quasiparticles and nodes in the gap in the ab-plane.

But they also showed that the application of a small magnetic field may induces a large

κ/T , implying a minimum in the size of the superconducting gap somewhere on the Fermi

surface. Similar measurements have been performed on several doping levels of charge-

doped Ba(Fe1−xCox)2As2 single crystals by Tanatar et. al. (0.048 6 x 6 0.114) and

by Reid et. al. (0.038 6 x 6 0.0127). Tanatar et. al. reported similar results (i.e., a

negligible residual linear term in κ/T as T → 0), interpreted as in the K-doped "122":

there are no zero energy quasiparticles, hence the thermal current in the ab-plane has no

electronic contribution [72; 153]. However, Reid et. al. found a finite residual κ/T as

T → 0 (implying sub-gap states and nodes in the gap) for a thermal currents along the

c-axis in overdoped crystals.

Figure 3.12 Thermal conductivity divided by temperature, versus T for three different doping
levels of Ba(Fe1−xCox)2As2, in various applied magnetic fields Ha as indicated, with
the heat flow in the ab-plane ( ‖ to the FeAs layers). Taken from Ref. [153].

The application of a moderate field of Hc2/4 excites the quasiparticles that conduct

heat along the a-axis just as well as nodal quasiparticles along the c-axis. This gives an

indication of a small gap, also in regions of the Fermi surface that contribute to the in-

plane conduction [126]. For optimally Co-doped BaFe2As2 the residual κ/T shows κ ∼ H

for both directions. The appearance of quasiparticle thermal currents as one changes the

doping level x implies the possibility of quasiparticle subgap states induced by impurity

scattering, consistent with a sign changing s± symmetry. Similar measurements performed

on the Ni-doped "122" system have given results consistent with a nodeless multigap

symmetry [88]. For the isovalently substituted BaFe2(As1−xPx)2 single crystals, thermal

conductivity measurements have been performed by Hashimoto et. al. in zero field down

to 0.1 K. Measurements up to 12 T gave indications for a nodal gap [133], while the same
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experiments on the same material as a function of angle and field have given indications

for a the nodal s-wave symmetry [167].

3.4.3 ARPES

Low energy excitations, the existence of which is implied by the thermodynamic experi-

ments described above, should in principle be observable by angle-resolved photoemission

spectroscopy (ARPES). In fact, ARPES is the most direct probe of the superconducting

gap structure. Its latests developments signify that this tool can both resolve the Fermi

surfaces structure in momentum space and the spectra of the electronic states near the

Fermi energy. The size, shape, and position in momentum space of the predicted Fermi

surface pockets were measured by ARPES, allowing for the verification of the extent of

Fermi surface nesting, which is very important for the role of spin fluctuations in super-

conducting pairing. ARPES data can also show the evolution of the Fermi surface pockets

as a function of doping level. Brouet et. al. have reported a systematic ARPES study

on the charge-doped Ba(Fe1−xCox)2As2 compound [231]. Their study identified three dif-

ferent hole pockets, the outer one exhibiting a strong photon energy dependence. They

have attributed this to a stronger 3D character of this band, in good agreement with band

structure calculations. At large electron doping, 2D electron pockets, with rather circu-

lar shapes were observed. Mansart et. al. reported on an ARPES study of Co-doped

BaFe2As2 across the superconducting phase transition [19]. They have performed ARPES

study of the hole-like Fermi surface above and below the superconducting phase transition

in optimally doped Ba(Fe1−xCox )2As2 along high-symmetry directions in k space. Their

analysis confirms that the superconducting gap is isotropic for the outer hole pocket β,

while it shows slight anisotropies for the inner one, α. Their results are consistent with a

s± order parameter.

There are also several works performed on the "1111" family using ARPES. Kondo et.

al. reported the same fermiology for NdFeAsO1−xF x and LaFePO as proposed for the

"122" compounds and concentrate on measuring the gap magnitude [220].

3.4.4 Nuclear magnetic resonance (NMR)

Measurements of the temperature dependence of 1/T1T, where 1/T1 is the nuclear spin

lattice relaxation rate in the superconducting state, give information on the presence or ab-

sence of a residual density of states. However, the applied magnetic field used to carry out

the NMR measurements introduces vortices into the superconductor, and, thereby, a finite

low-energy density of states related to quasiparticle states in the vortex cores. Methods to

52



3.4 Experimental techniques as a probe for the gap symmetry and the nodal
structure

avoid this field induced DOS is to measure 1/T1 as function of field, and extrapolate the

data back to H = 0. Also, one may perform zero field nuclear quadrupole resonance (NQR)

measurements of 1/T1. NMR measurements performed on Ba1−xKxFe2As2 by Fukuzawa

et. al. gave similar results [89] as those found for LaFeAsO0.9F0.1, 1/T 1∼T2.6 [269]. These

were interpreted as an indication of line nodes in the gap in an extended s-wave symmetry.

Similar measurements have been performed on isovalently substituted BaFe2(As1−xPx)2
single crystals by Nakai et. al. They found a linear behavior response of 1/T1 in tempera-

ture, between 0.1 and 4 K, that constitutes evidence for a residual DOS at zero energy. In

addition to this, the penetration depth and thermal conductivity measurements performed

on the same compound confirm the existence of line nodes in the gap [270].

3.4.5 Neutron scattering

Neutron scattering is a very important tool to measure the dynamic susceptibility χs(q,ω).

For local interactions this parameter can be extracted in RPA from the electron-hole term

χ0(q,ω),

χs(q, ω) = [I − Usχ0(q, ω)]
−1χ0(q, ω), (3.3)

Here I is a unit matrix in orbital space, and other quantities are matrices as well. For a

given range of interactions entering the matrix Us, Imχ0=0, and the real part Reχ0 leads a

divergence in Imχs(q,iωm) according to Eq. 3.3. This increase in the spin susceptibility is

called a "spin resonance". This resonance appears at the exact position Ωres. The scatter-

ing between nearly nested hole and electron Fermi surfaces in iron-based superconductors

produces a peak in the normal state magnetic susceptibility at, or close to, q=Q=(π,0).

In the superconducting state, for a uniform s-wave gap function, there is no resonance

peak, while in the case of the sign changing s±-state, the nesting vector Q connects dif-

ferent Fermi sheets bearing gaps of different signs. This fulfills the resonance condition for

the interband susceptibility, hence a resonance peak is observed. The existence of a spin

resonance peak in IBS was first predicted theoretically and later reported experimentally.

A well defined spin resonance near (π,0) was reported in the "1111", "122" and "11" type

IBS families [6; 59; 272]. These measurements observe a magnetic neutron scattering "spin

resonance mode" in the superconducting state that has the same in-plane wavevector as

the antiferromagnetic nesting vector in the normal state above Tc. In the case of the

compounds of the "122" and "1111" family this wavevector is the same as the in-plane

component of the long range antiferromagnetic order in the parent compound. Results on

the Co-doped "122" gave Ωres/2∆=(0.79±0.15) [53; 54] which is close to the value 0.64

claimed to be a universal value for cuprates, heavy fermions and IBS. The temperature
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dependence of Ωres in Ba(Fe1−xCox)2As2 is found to be BCS-like. Thus, inelastic neutron

scattering measurements have constrained the order parameter symmetry in the doped

(Ca,Sr,Ba)Fe2As2 and "11"-type compounds [193]. Recently it was argued that the theo-

retically predicted resonance peak for isotropic s±-state is too sharp and too strong when

compared to the maximum observed in experimental studies. Onari et. al. have proposed

an explanation for the spin resonance in the case of the superconducting order parameter

without sign change [213]. They reported that if there is a collapse in the scattering rate

below the pair-breaking edge, the redistribution of the spectral weight when entering the

superconducting phase can lead to an increase of the spin response below Tc as compared

to the normal state. This response cannot be considered as a real spin resonance since it

does not lead to a divergence in Imχs. Also, similar experiments in cuprates gave sharper

spin resonance response than IBS so there may be some doubt that scattering involves a

sign-changing gap. The broadening of the spin excitation response may be due to several

other reasons, such as a significant anisotropy of the s± gap. The exact effect of neutron

scattering has been the subject of several debates [212; 268]. The fact that similar features

of spin excitations are reported for all families of IBS would go against the possibility of

an isotropic s±- wave gap.

3.4.6 Andreev spectroscopy, tunneling, and Raman scattering

Andreev spectroscopy is a strong experimental probe of the superconducting order param-

eter. Point contact Andreev reflection (PCAR) spectra measured on a ballistic microcon-

striction between a normal metal and a superconductor consists of pure Andreev reflection

and tunneling contributions, respectively [83]. At a normal metal/superconductor inter-

face, the injected current at a bias voltage within the gap must first be converted into

a supercurrent consisting of Cooper pairs of electrons with opposite spins. This can be

accomplished by having the injected electron from one spin band accompanied by another

electron from the opposite spin band. This is the well-known Andreev reflection process,

which is equivalent to reflecting a hole back into the metal, thus doubling the conductance

within the superconducting gap. Therefore, the first contribution yields a conductance

within the voltage region |V| < ∆/e that is twice as large as the normal state conductance,

or as the conductance at large bias at which the coupling via the gap is inefficient. The

PCAR conductance can be compared to the predictions of the Blonder-Tinkham-Klapwijk

(BTK) model, using as input parameters the energy gap ∆, the parameter z (a measure

for the transparency of the interface barrier) and a parameter Γ for spectral broadening.

The tunneling contribution reduces the conductance at zero bias due to the presence of

the superconducting gap. In the absence of the Andreev reflection contribution expected
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for high transparency junctions, two symmetrically located "coherence" peaks rise at the

gap energy.

Measurements of the differential conductance dI/dV (V ), where I is the current, V is

the bias voltage across the contact, and G is the conductance, were carried out on different

iron-based superconducting compounds [181; 183]. A negative V is defined as that arising

when electrons are injected from the tip into the superconductor. Andreev spectroscopy

provides a sensitive and quantitative measurement of the gap structure of superconductors.

Andreev spectroscopy performed on K-doped BaFe2As2, has revealed a single gap, but

strongly suggested that the measurement in the c-axis tunneling direction could be missing

bands in the ab-plane [255]. Szabo et. al. reported, Andreev spectroscopy of the same

compound, on two gaps in the ab-plane [183]. Recent work on Co-doped "122" [181] has

reported a single gap, while a more recent study has found two gaps in the optimally doped

material [165]. Andreev spectroscopy has also been performed on Co-doped thin film of the

"122" material. This showed evidence of unconventional pairing, with a superconducting

contribution to the conductivity, possibly due to fluctuations, to a temperature of up to

1.3Tc. Several studies of Andreev spectroscopy have also been performed on the "111"-type

materials. Evidence for a conventional single gap [224] or multiple gaps has been reported

[49; 199] with possible unconventional behavior in one of the gaps. Scanning tunneling

spectroscopy (STS) and STM performed on Co-doped "122" [75] and NdFeAsO1−xP x [190]

has revealed a single single gap.

Raman spectroscopy is also an important tool for probing the gap symmetry. Because

the momentum and polarization of incoming and outcoming photons can be controlled in

Raman scattering measurements, this technique is a useful to probe selectively different

parts of the Fermi surface. Zhang et. al. performed Raman spectroscopy measurements

on the single crystals of K0.8Fe1.6Se2 [150] and found a large number of phonon modes

which they analyzed consistently in terms of the Fe-vacancy ordering proposed by Bao et.

al. [238]. One of the observed phonon modes showed a change in the frequency at the

transition temperature indicating a connection between the superconductivity and phonon

modes.

3.4.7 Quasiparticle interference (QIP)

Another experiment providing information on the gap structure is the so-called quasipar-

ticle interference scattering (QIP). Any kind of impurity or defect in the metal is screened

by the conduction electrons. This gives rise, for example, to the well-known Friedel os-

cillations of the charge and spin density around the imperfection. The Fourier transform

of the electron density will reflect the charge susceptibility in reciprocal space. Scanning
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tunneling spectroscopy can be used to map out this local electronic density at energies

spanning the Fermi energy. In a scanning tunneling microscopy (STM) experiment on a

metallic surface, taken at a given bias V , the differential tunneling conductance dI/dV is

proportional to the electronic density of states at energy ~ω at the imaged position. The

presence of impurities in the material leads to the scattering of the conduction electrons

and ensuing interference of the refracted electronic wave functions, that can be probed by

STM. A Fourier transform of the intensity image yields the main wave vectors q contribut-

ing to the scattering at the bias energy E = eV . Hanaguri et. al. performed scanning

tunneling microscopy (STM) in FeSe1xTex at 10 T and concluded as to an s±-state [218].

For IBS, theoretical predictions for the dispersion E(q) of the QIP q-peaks have been

made for models with electron and hole pockets in the presence of an s± order parameter,

in the SDW state, and in the coexistence phase [226]. All gave different results, depending

on the evolution of the quasiparticle energy on the various Fermi surfaces. Wang et. al.

have pointed out that the Fourier transform of the STM (FT-STM) measurements can

distinguish between s± and s++ pairing scenarios [80]. Chuang et. al. have performed

QIP measurements in the magnetic phase of Ca-"122", slightly doped with Co that revealed

strong breaking of the tetragonal symmetry, consistent with the observed SDW [121] and

DFT calculations [226]. It was also pointed out that the scattering in this system may be

due to impurity states around the dopant atom Co sites.

3.4.8 Disorder

Experiments such as the measurement of the low temperature T -dependence of the London

penetration depth [132; 135; 198; 202; 203; 204; 236] and thermal conductivity [125; 126]

can be used as probes of the low-energy quasi-particle density of states (QPDOS). The

sensitivity to material disorder of the different physical parameters, such as the critical

temperature, superfluid density, and the critical fields, in another indirect method to allow

one to characterize the gap symmetry of the iron-based superconductors. In the case of a

sign-changing order parameter, impurity scattering by point-like defects, generally present

due to chemical substitution, or added artificially by irradiation, may lead to pair-breaking.

In iron-based superconductors, quasi-particle scattering between electron–like and hole–like

bands (with opposite sign of the order parameter) would lead to strong suppression of Tc [7;

94; 177; 211]. Superconductivity with a d–wave symmetry of the order parameter would

be even more sensitive than the s± symmetry, because of the pair-breaking effect of both

interband and intraband impurity scattering [60; 177]. As for now, the precise evolution of

superconducting properties of the iron-based superconductors under the effect of increasing

strength of disorder remains unknown. It is generally argued that the T 2 behavior of the
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low temperature penetration depth λab(T ) is indicative of a strong pair breaking [198; 202;

203; 204; 236]. Nevertheless, Tc of the material that show this behavior of the penetration

depth is generally quite high. A more quantitative characterization of native disorder in

iron based superconductors is therefore important. Also, the addition of artificial disorder

by chemical substitution or energetic particle irradiation can be an invaluable tool to probe

the evolution of superconducting parameters as function of increasing disorder strength.

Probing the sensitivity of iron-based superconductivity to disorder induced by chemical

substitution has the major drawback that the latter also induces changes of the structure

and of the chemical potential. It is therefore unclear in what sense the substitution exper-

iments of Ref. [147] are to be interpreted. This caveat can be avoided by using energetic

particle irradiation as a tool to controllably introduce disorder. Nakajima et. al. per-

formed proton irradiation in optimally doped Ba(Fe1−xCox)2As2 [271]. They reported

that the critical current density under self-field increases by a factor of 2.5 at T = 2 K

after irradiation. A significant Tc–reduction was observed, which was attributed to the

interband scattering effect of the point defects and point defect clusters introduced by the

proton irradiation. Tarantini et. al. reported that α-particle irradiation of NdFeAs(OF)

also leads to a reduction of the critical temperature Tc [37]. From the Kondo-like excess

resistance ∆ρ(T)ln(T ), observed over 2 decades in temperature above Tc, they argued that

the α–irradiation caused both nonmagnetic and magnetic scattering. However, the criti-

cal density of magnetic irradiation defects which suppresses Tc completely is found to be

much higher than for cuprates and multiband BCS superconductors. Tarantiniet al. sug-

gested that such anomalously weak pair breaking indicates that the magnetic scattering in

pnictides is coupled with the spin fluctuations.

Li et. al. have reported on the evolution of superconductivity in Ba0.5K0.5Fe2−xM2xAs2
by different chemical substitutions (M=Mn, Ru, Co, Ni, Cu and Zn). They investigated

the doping effect of magnetic as well as non-magnetic impurities. The superconductivity

of the system was found to be robust against Ru-doping, but is weakened by the inclusion

of Mn, Co, Ni, Cu and Zn impurities. However, the reported Tc suppression rate for all

types of impurities is much lower that what is expected for s± pairing. The same group

have also reported on Zn doping in BaFe1.89−2xZn2xCo0.11As2. They have observed a

depression rate in Tc (3.63 K/%) similar to what is expected for s±-wave pairing. They

interpreted their results as being more adequate for non-sign reversing s-wave pairing .

Lin et. al. have studied the effect of Zn doping impurity on the Fe site in (Pr,Sr)FeAsO.

As, in optimally electron doped "1111" LaFeAsO, they observed a negligible suppression

of Tc by non-magnetic Zn impurities [253].
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Material impurity kF ξ0 nd σtr ndξ
3
0 sin δ0 Γ

Å−1 nm nm−3 Å2 meV
PrFeAsO1−y O vacancy 0.33 2.4 1.5 6.7 21 0.3(2) 10
NdFeAsO0.9F0.1 [41] F 0.33 3.3 1.5 2.5 54 0.2 4
Ba0.72K0.28Fe2As2 [252] K 0.4 2.4 2.8 1.5 38 0.1(4) 3
Ba0.6K04Fe2As2 [103; 127] K 0.5 2.2 4 2.5± 1.3 43 0.2 8
Ba0.45K0.55Fe2As2 [44] K 0.5 2.2 5.5 1.5 59 0.2 10
Ba(Fe0.95Co0.05)2As2 [45] Co 0.25 1.6 1 2.5 8 0.17 5
Ba(Fe0.9Co0.1)2As2 Co 0.25 1.6 2 2.5 8 0.17 5
Ba(Fe0.76Ru0.24)2As2 [158] Ru 0.25 1.6 4.8 2.5 8 0.17 5
BaFe2(As0.67P0.33)2 P 0.3 [97] 1.6 3.3 14 – – –

Table 3.1 Fundamental parameters and contribution of dopant disorder to elastic scattering pa-
rameters of various iron pnictide superconductors, such as estimated from the weak
collective pinning contribution to the (flux pinning) critical current density, jcollc . Here,
kF is the Fermi wave-vector, ξ0 is the Bardeen-Cooper-Schrieffer coherence length, nd
is the atomic point defect density, σtr is the transport scattering cross-section, δ0 is the
scattering phase angle [68; 69], and Γ is the scattering rate. From Ref. [29]

3.5 Vortices in iron-based superconductors

Figure 3.13 (a) Gap map recorded by Yin et al. over a 20×20 nm2 area of BaFe1.8Co0.2As2 at
6.25 K and (b) Massee et al. over a 18.9 ×18.9 nm2 area of BaFe1.86Co0.14As2 at
4.2 K. Taken from Ref. [277].

3.5.1 Vortex pinning

Pinning of vortices in iron-based superconductors is discussed by several groups, which

have used different techniques such as magnetic measurements, magneto-optical imaging

as well as different vortex imaging methods.
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Figure 3.14 (a) Temperature dependence of the resistivity, and (b) Phase diagram indicating
Tmag and Tc for both Ba(Fe1−xNix)2As2 and Ba(Fe1−xCox)2As2 single crystals. In
order to allow a comparison between the two families, the Co content was divided
by 2. Lines are guides for the eye from Ref. [11]. (c) Resistivity as a function of
temperature and (d)phase diagram for Ba(Fe1−xCox)2As2 single crystals ( from Ref.
[77]).

The identification of different kinds of native disorder and their manifestation by vortex

pinning in the mixed state of iron-based superconductors was the subject of Refs. [41; 44;

206] (see also Chapter 7 and Chapter 6). In their work on PrFeAsO0.9 and NdFeAsO0.9F0.1

van der Beek et. al. have reported that both materials show significant spatial variations of

Tc and the critical current density jc. From local magnetic measurements of these system

they concluded that the critical current density arises from two different contributions. The

first is reported as being the weak-collective pinning by dopant atoms or vacancies. This

pinning mechanism comes from mean-free-path variations in the vortex core (δκ mecha-

nism). However, the pinning contribution that predominantly manifests itself at lowest

fields is the strong pinning theory for pinning by extended point-like defects. Typically,

the critical current density jc is maximum around zero field, and then drops off jc ∼ B−1/2.

The strong pinning contribution jsc to the critical current (see Fig. 9.9) was conjectured to
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be due to nm-scale heterogeneity of the superconducting properties [45; 206].The strength

of this strong pinning contribution allows one to estimate to what extent spatial variations

in the doping level ( of order of several dozen nm) occur. From there, it is induced that

the absolute magnitude of the variations of the average dopant atom density, on the scale

of 1 to 100 nm, is too small to allow for coexistence of the SDW and the superconducting

phases due to chemical disorder [41]. From high-field magneto-transport and magnetiza-

tion measurements on Ba(Fe0.9Co0.1)2As2 single crystals, Yamamoto et al. suggest that

there exists a dense vortex pinning nanostructure, that may result from the inhomoge-

neous spatial distribution of cobalt ions. They also concluded that the finite width of the

resistive transition R(T ) in the measured single crystals most likely results from the Tc
inhomogeneities due to the local variation of the dopant atoms density [15].

Later on van der Beek et. al. reported on the weak collective pinning mechanism in

iron-based superconductors [44]. In their work, the authors suggested the origin of the

weak-collective pinning contribution jcollc in iron-based superconductors to be the charged-

dopant atoms. This is because the latter contribution is observed in the jc curves ( at

fields above several tenths of a T to 1 T) of all charged-doped iron-based compounds, but

is absent in the isovalently substituted BaFe2(As1−xPx)2. They suggested that charged-

dopant atoms are responsible for the quasiparticle scattering in the Born limit. Estimations

of the scattering rates γ = nd[πN(0)]−1 sin2 δ0 of the doping impurities were obtained from

flux pinning parameters nd and δ0 in Ref. [29] (see Table 3.1). This yields rather large

values, which are again at odds with a superconducting ground state that would be sensitive

to point-like disorder. The occurrence of the quasi-particle scattering contribution to flux

pinning remarkably coincides with that of the T 2 behaviour of the penetration depth. On

the other hand, it is conspicuously absent in clean materials with a T -linear dependence

of λab, such as in BaFe2(As1−xPx)2 [135; 205]. The authors of Ref. [44] suggested that the

study of vortex pinning in the iron-based superconductors might be used as an alternate

route to qualitatively and quantitatively assess both native and artificial disorder in these

materials. This approach is to be explored in the chapters that make up this thesis.

Magnetic flux pinning and vortex penetration in Ba(Fe1−xCox)2As2 single crystals has

been also studied by Prozorov et al., [196; 197] who reported on the irreversible magne-

tization and flux creep by magnetic relaxation measurements. The authors discuss the

possibility of vortex pinning on intertwined orthorhombic/antiferromagnetic domains, no-

tably for underdoped (x=0-0.054) single crystals, and suggested, from the study of the

doping dependence of the critical current density, that structural domain walls may act as

effective pinning centers. Magnetization and relaxation measurements on various doping

levels of Ba(Fe1−xCox)2As2 single crystals (with x = 0.06-0.15) have been performed by
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Shen et. al. [21], who suggested that vortex pinning ought to be described within the col-

lective pinning framework, but with the spatial fluctuation of the transition temperature

(δTc-mechanism) on a sub-nanometer scale being responsible for the elementary pinning

force. Fang et. al. have reported recently on the systematic evolution of vortex pinning

in isovalently substituted BaFe2(As1−xPx)2 single crystals [146]. Their study in different

samples from optimally doped to overdoped showed that strong point pinning dominates

the vortex behavior at low fields whereas weak collective pinning determines the behavior

at higher fields.

Vortex imaging studies have been performed using different techniques by several groups

for the understanding of the pinning mechanism in iron-based superconductors [18; 59; 90;

102; 144; 148; 152; 171; 172]. Different techniques agree on the absence of vortex lattice

order in all studied iron-based materials. However, there is no clear consensus on the origin

of this disorder and pinning. In Chapter 6 and 7, the different pinning mechanisms are

identified by establishing a new vortex image analysis technique in iron-based supercon-

ductors, and by combining different experimental methods such as the Bitter decoration

technique and magnetic measurements. Spatial variations of superconducting properties

on the order of several dozen nm are identified as being at the origin of the strong pinning

mechanism in iron based superconductors. For the particular case of Ba(Fe1−xCox)2As2
(as well as several other compounds studied by different groups) the fingerprints of these

spatial variations show up in the disposition of their vortex structure. A candidate for this

kind of disorder in the vortex structure are the important superconducting gap variations

reported by different groups (see Figure 3.13). These spatial variations of the supercon-

ducting parameters on a microscopic scale, such as observed in the gap maps, and on a

macroscopic scale in the differential magneto-optical imaging (DMO) are suggested to be

due to the large scale spatial variations of the dopant atom density. The same pinning

mechanism is also studied in the isovalently substituted BaFe2(As1−xPx)2 compound. Con-

trary to what is reported by Fang et. al., no weak-collective pinning contribution is found

at any doping level of this material, from the under- to the overdoped region of the phase

diagram. In this particular compound, the disorder level is, however, found to depend of

the P-content in the crystal.
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Chapter 4

The magneto-optical imaging

technique and sample

characterization

4.1 Introduction

Before performing further experiments we characterize our samples using the magneto-

optical imaging method (MOI). The MOI technique notably allows one to discard sam-

ples with macroscopic defects as well as those exhibiting excessive chemical heterogeneity

emerging from the crystal grown process. Selection is possible by using the so called "dif-

ferential method" which allows one to obtain the spatial variation of Tc within a given

crystal. In our set-up the MOI technique is limited by the electromagnet and the magnet

power supply, which furnish applied fields of up to 50 mT. The technique is also limited by

the saturation field of the utilized garnet films, which is, depending on the type of film, 90

or 200 mT. For magnetic measurements at higher fields, we have used the superconduct-

ing Quantum Interference Device (SQUID)-based magnetometer, as well as the Hall probe

array magnetometry technique developed by M. Konczykowski in our laboratory[117].

In the framework of this thesis, we have characterized single crystals of several materials,

including Ba(Fe1−xCox)2As2, Sr(Fe1−xCox)2As2, Ba(Fe1−xNix)2As2 and BaFe2(As1−xPx)2,

for widely different doping levels x, as well as single crystals of the so-called (1111)- materi-

als such as PrFeAsO. All of the samples were first checked in the magneto-optical imaging

system. They were then usually cut using a wire saw in order to eliminate defective regions.
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4.2 Magneto-optical imaging method

One main tool for investigation of electrodynamic properties of superconducting materials

is the Magneto-Optical Imaging technique. This technique allows for the direct visualiza-

tion of the spatial distribution of magnetic flux in the material, and allows one to obtain a

number of superconducting parameters as the critical temperature Tc , the magnetic field

of first penetration Hc1, or the critical current density Jc. Another interesting application

of magneto-optical imaging technique is the non-destructive verification of the quality of

superconducting samples.

4.3 Faraday effect

The Magneto-Optical imaging technique is based on the Faraday effect, discovered by

Faraday in 1848. This consists of the rotation of the polarization plane of a linearly

polarized wave traveling through an optically active material under a magnetic field, or

with a non-zero spontaneous magnetization. This is illustrated in Figure 4.1. The rotation

of the polarization plane obeys Faraday’s law:

θf = v ×Hext × d, (4.1)

here θf is the Faraday rotation angle, v is the Verdet constant which is characteristic of

the material, Hext is the applied magnetic field and d is the thickness of the material.

The Faraday rotation has a direct relation with the behavior of the electrons under the

magnetic field and also with the magnetization of the optically active media. In a magnetic

material, the Faraday rotation is proportional to the magnetization component parallel to

the propagation direction of the light. Therefore, in a magnetic material with uniaxial

anisotropy and light propagating along the anisotropy axis, the Faraday rotation angle θf ∝
arctan

[

H⊥/
(

H‖ +Hk

)]

. Here Hk is the anisotropy field of the magnetic material. For

Hext > Hk the rotation angle θf saturates due to the total alignment of the magnetization

Ms and the applied magnetic field. The Faraday rotation depends on the direction of the

propagation of the light in the material with respect to its magnetic anisotropy axes.

In the case where the light traveling through the magnetic material is reflected from its

outer interface, such as, in our experiments, the Al mirror layer deposited on the garnet

indicator, the Faraday rotation angles of the impinging and reflected light are added,

θf = θf,incident + θf,reflected (4.2)
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Figure 4.1 Illustration of the Faraday effect: a linearly polarized incident light traverses the
medium (from the left to right) in the presence of an axial magnetic field B (along the
z-axis). k denotes the wave vector of the light. Over the path spanning the medium,
the direction of the electric field vector E is rotated over an angle θF = V BL. This
effect was discovered by M. Faraday in 1848.

From the fundamental mechanics law, the motion of the electrical charges in matter is

m
∂2r

∂t2
= −mω2

0~r − e( ~E +
∂~r

∂t
× ~B). (4.3)

Here m is the mass of the charged particle (ion, electron) set in motion, and e is its charge.

In our case, m is the electronic mass, and e the electronic charge. The volume polarization
~P can be as ~P = −ne~r. Writing the time-dependent electric field as ~E = ~E0exp(−iωt),
we obtain

m(ω2
0 − ω2)~P = ne2 ~E + iωeB ~P × ~ez. (4.4)

We deduce that
~E =

1

ǫ0χe
(~P − iβ ~P × ~ez), (4.5)

where χe =
(

ne2/mǫ0)
(

ω2
0 − ω2

)−1
= ω2

p/
(

ω2
0 − ω2

)

, and β = ωωc/
(

ω2
0 − ω2

)

, and ǫ0 is

the dielectric constant. ωpl is the plasma frequency and ωc is the cyclotron frequency. In

tensor notation one wil have

~E =
1

ǫ0χe







1 −iβ 0

iβ 1 0

0 0 1







~P =
1

ǫ0[χ]
~P . (4.6)

The electric susceptibility tensor can be expressed as

[χ] =







χe

1−β2 i βχe

1−β2 0

−i βχe

1−β2

χe

1−β2 0

0 0 χe






, (4.7)
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while the relative dielectric constant can be written as a function of the electric susceptibil-

ity tensor as [ǫr] = [1] + [χ]. On the other hand, ~∇ · ~B = 0 implies that ~kallowsfor ~B = 0.

In the absence of free charges ~∇. ~D = 0, so that

~k.[ǫr] ~E = 0 (4.8)

and

([ǫr] ~E)z = (1 + χ33)Ez = 0. (4.9)

The fields ~E and ~B are transverse. Faraday’s law andAmpère law can now be written out

as
~k × ~E − ω ~B = 0 (4.10)

and
~k × ~B +

ω

c2
[ǫr] ~E = 0; (4.11)

hence, we have

~k × ~k × ~E = k2 ~E = −ω
2

c2
([ǫr] ~E) = −k20([ǫr] ~E). (4.12)

The equation k2 ~E = −k20([ǫr] ~E) has non-trivial solutions for the polarization ~E = Ex ~ex +

Ey ~ey if the matrix determinant

[

1 + χ11 − n2 iβχ11

iβχ11 1 + χ11 − n2

]

(4.13)

vanishes, i.e.

n2± = 1 + χ11 ∓ βχ11. (4.14)

Inserting n2± in the wave equation, one obtains

(1 + χ11 − n2±)Ex + iβχ11Ey = n2Ex (4.15)

and

Ey = ±iEx. (4.16)

Here the minus sign - designates the left circularly polarized wave and the plus sign +

represents the right circularly polarized wave. A polarized wave can be considered as the

superposition of two circularly polarized waves of inverse direction of polarization. These

waves will have their propagation velocities as c/n+ and c/n−. When these two waves

traverse an optically active medium, their superposition yields a linearly polarized wave
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with a polarization plane rotated by an angle θf . The latter angle is the Faraday rotation

angle,

θf =
ωd(n− − n+)

2c
. (4.17)

In non-magnetic media, the Faraday rotation angle is proportional to the magnetic field

B, and to the distance travelled by the light in the media. θf = vBd , where the Verdet

constant v depends on the material, and on the wavelength. J. Larmor et. al. [122]

proposed a relationship between the Verdet constant v, its dependence on the wavelength,

and the refraction index of the media as ,

v = − e

2mc
λ
dn

dλ
. (4.18)

Here c is the light velocity, λ is the wave length. One may take into account the deviation

observed in solids by introducing a proportionality constant C, so that

v = −C e

2mc
λ
dn

dλ
. (4.19)

The Verdet constant for most materials is extremely small. Therefore, the Faraday effect of

magnetic materials, or "indicators", is used for magnetic measurements of superconductors

which typically have small Verdet constant. The indicator film is placed on top of the

superconductor under study. This indicator film allows one to detect the magnetic field at

the surface of the superconductor. The Faraday active layer of the indicator film that I used

for the experiments presented in this thesis is a ferrimagnetic bismuth doped Lutetium-iron

garnet layer.

4.3.1 Magneto-optical indicators

The indicator films are 5µm thick, and were grown by liquid-phase epitaxy on a transparent

(paramagnetic) gadolinium-gallium-garnet (GGG) substrate. A 100 nm thick layer of Al,

serving as a mirror, is evaporated on top of the garnet surface , to use it in the reflection

mode. The mirror is covered by a thin protective Ti-TiN layer and an anti-reflective layer

is deposited to the other surface of the substrate layer. A magnetic field applied at an

angle α with respect to the normal to the garnet film will force the magnetization vector

to turn out of the plane ( see Figure 4.2). Here the applied field can be decomposed into

the in-plane component Hx = H cosα, and the out of plane component Hz = H sinα. The

Faraday rotation angle is given by θF = vdMs sin θ, where d is the thickness of the Bi:YIG

layer.
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Figure 4.2 The perpendicular applied magnetic field B induces the rotation in the magnetization
vector Ms and the perpendicular component of Ms produces the Faraday rotation.

The presence of a parallel magnetic field yields a reduced Faraday rotation angle.

Considering the simplest form to find the equilibrium tilt angle θ, one has to minimize the

total magnetic energy composed of the anisotropy energy EA(1 − cos θ) and the dipolar

energy,

E(H, θ) = Ek(1− cos θ) +HMs(1− cos (αH − θ)). (4.20)

The condition ∂E/∂α = 0 yields

tanα =
Hz

Hk +Hx
; (4.21)

here Hk ≡ EA/Ms is the anisotropy field. The Faraday rotation angle is proportional to

the perpendicular component of Ms; therefore, one has

θF ∝ arctan

(

Hz

Hx +Hk

)

. (4.22)

This describes both the reduced Faraday rotation angle θF and also its saturation for large

Hz (sinα → 1 forHz ≫ Hk). Under normal operating conditions for magneto-optical

imaging, Hx should be small and the Faraday rotation angle is given by,

θF = V dMs
Hz

Hx +Hk
. (4.23)

Therefore, for sufficiently small values of Hz, the relation between θF and Hz is linear.
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4.4 Working principle of the magneto-optical imaging system

The magneto-optical imaging system consists of a polarized light microscope, below which

a flow-type liquid Helium cryostat is mounted. The sample is glued (with n-nonadecane)

on a small copper plate, which is then mounted on the cryostat sample holder. The sample

holder is situated directly beneath the optical window of the cryostat; the indicator - to

- window distance is about 1 mm. The linearly polarized light from the microscope first

traverses the substrate, then the garnet film; after reflection by the Al layer, it passes the

garnet film and the substrate a second time. Therefore, the total Faraday rotation angle is

doubled with respect to Eq. (4.22). The luminous intensity of the reflected light is observed

through an analyzing polarizer, rotated so as to be in a nearly perpendicular direction with

respect to the initial polarization of the incoming light. The luminous intensity is observed

using a 12 bit CCD camera mounted on the microscope (see Figure 4.3).

Figure 4.3 Schematic representation of the magneto-optical imaging system.

The magneto-optical garnet indicator is directly placed on top of the sample under

study. A map of the luminous intensity is thus obtained on the sample surface, revealing the

spatial distribution of the perpendicular component of the magnetic flux (see Figure 4.4).

The dark areas on the image correspond to the absence of Faraday rotation, and therefore

of any magnetic field (no Faraday rotation), while light areas correspond to the presence

of a non-zero magnetic induction (a non-zero Faraday rotation).

Defining Iin as the incident light intensity, and Ir as the reflected light intensity on
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Figure 4.4 Magneto-optical images of the magnetic flux distribution on the surface of
Ba(Fe1−xNix)2As2 single crystal (x = 0.035 #1.3) at an applied field of Ha = 500 Oe.
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Figure 4.5 Magneto-optical images of the magnetic flux distribution on the surface of
Ba(Fe1−xCox)2As2 single crystal (x = 0.065 #2) at an applied field from Ha = 170
to 270 Oe at T=12 K. Example for crystal with macroscopic defect, the dashed red
line denotes from where the crystal were cut in order to discard the defective region.
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Figure 4.6 Magneto-optical images of the magnetic flux distribution on the surface of
BaFe2(As1−xPx)2 single crystal (x = 0.23 #1) at an applied field from Ha = 100
to 500 Oe at different temperatures. Example for a crystal that has been totally
discarded due to the macroscopic defect inside .
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a magneto-optical indicator film with thickness d and absorption coefficient µ, one has

Ir = Iine
−2µd. The doubled Faraday rotation angle due to the reflection of the light across

the garnet will be written as θ = 2θF , where θF = VMOHd. Note also that the different

components present in the optical path induce some depolarization effects. Using Malus’

law, while taking into account depolarization effects by a parasitic luminosity K0, one has

for the light intensity,

I = K0 + E2
0 sin

2(θ), (4.24)

where E2
0 = Iie

−2βd. Taking into account that the analyzing polarizer is not perfectly

perpendicular to the polarization direction of the incoming light, but deviates from this by

an angle α, one has

I = K0 + E2
0 sin

2(θ + α). (4.25)

The analyzer angle is adjustable on the system, the value of α can be optimized in order

to get this term E2
0 sin

2(θ + α) to be large, thus reducing the effects coming from the

imperfections of the optical system. The variation of α is also used to augment the gain

and the contrast of the images.

4.4.1 Experimental setup

The sample, glued on a OFHC (Oxygen-free high conductivity) copper plate using n-

nonadecane, is fixed on the sample holder of the cryostat; the indicator film is directly

placed on the sample surface. The Helium flow cryostat (Oxford Instruments MicrostatHe)

provides temperatures as low as 5.5 K and has an optical access from above. Focusing on

the image and the displacement in the x-y plane is possible using the adjustable XYZ-stage

(see Figure 4.7). A split-coil magnet is wound on the Al lids of the cylindrical vacuum

chamber is used to apply a magnetic field of up to 500 Oe perpendicular to the sample

surface.

A transfer line links the liquid He dewar to the cryostat. The He flow is ensured with a

small diaphragm pump. The copper sample holder houses two temperature probes: a Pt-

sensor and an Allen-Bradley carbon sensor in order to measure the sample temperature.

The different components of the applied magnetic field are measured using three Hall

probes, these are positioned at 1 mm from the sample, on the opposite side of the sample

holder. We use a Hamamatsu C4742-98 (CCD) camera for the acquisition of the MOI

images, which are then acquired to the computer via a frame grabber and a Labview

interface. The spatial resolution of our apparatus is about 5 -10 µm and is limited by the

thickness of the indicator film, because the field contrast is attenuated when the distance

from the sample surface increases.
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Figure 4.7 A photograph of the magneto-optical imaging system installed in our laboratory.

4.4.2 Magnetic flux penetration profiles

Profiles of the perpendicular flux density By(x, y) at the surface and at the equatorial

plane of bars with different thickness-to-width ratios in a perpendicular applied magnetic

field were calculated by H. Brandt [62]. Figure 4.8 (a) shows the magnetic flux lines

during the penetration of perpendicular flux into a strip with aspect ratio b/a = 0.25 for

applied magnetic fields Ha/Hp= 0.2, 0.4, 0.8 and 1 where Hp= 0.374 jca. Here, Hp is

defined as the field value at which in a gradually increasing applied filed Ha the magnetic

flux has penetrated to the center and the current density has reached its saturation value

jc in the entire specimen. For the slabs and strips of rectangular cross section 2a × 2b

this field of full penetration in the parallel and perpendicular limits is given by Hp ≈
jca,for b ≫ a. The magnetic field component Bz parallel to the surface at the sample

top and bottom surfaces y = ±b is shown Figure 4.8 (b) for various values of increasing

Ba. This latter plot allows one to extract the calibration factor relating the magnetic

flux density measured at the surface of a superconducting slab or elongated rectangular

parallelepiped (with given aspect ratio) in a perpendicular magnetic field to the screening

current density. The extracted screening current densities for various Ba(Fe1−xCox)2As2
crystals are presented in Figure 4.11 , together with sustainable current density versus
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temperature curves obtained on other crystals using Brandt’s calculations in this manner

Figure 4.8 (a) Magnetic flux lines during penetration of perpendicular flux into a strip with
b/a= 0.25 at applied fields Ha/Hp=0.2, 0.4, 0.8, and 1. Here, Hp= 0.374 jca . (b)
Profiles of the perpendicular flux density By(x, y) at the surface (thin lines, y = ±
b) and equatorial plane (thick lines, y=0) of bars with side ratio b/a=0.25, 0.1, 0.05
at applied fields Ha/Hp=0.1, 0.2, 0.4, 0.6, 0.8, 0.9, and 1. Here for the field at the
central plane one has Bx(x, 0) = 0 because of the symmetry. The central field profile
for all aspect ratios b/a exhibits a sharp cusp at the sample edges and a sharp flux
front inside which B is zero. These features are smeared out into the surface field, but
for very thin strips this smearing is weak both fields profiles in the center and at the
surface nearly collapse into one curve.From Ref. [62]

In the magneto-optical images presented in Figure 4.4, the light intensity outside the

sample boundaries corresponds to the applied magnetic field, while the dark areas within

the sample boundaries correspond to Meissner screening of the magnetic flux (B = 0);

light areas along the sample boundaries correspond to the penetration of the magnetic

flux (vortices) in the critical state. A calibration of the luminous intensity using the know

values of the applied magnetic field allows one to obtain the profile of the penetration

of the magnetic flux . The penetration profiles obtained from the regions indicated in

Figure 4.9 are plotted in Figure 4.10. From the flux gradient dB⊥/dx of these profiles, one
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can obtain the sustainable current density jc of the crystal using the Bean model. In what

follows, the thickness-to-width ratio of the sample under study is taken into account in

the determination of the sustainable current density j. Figure 4.11 present the extracted

current density as a function of temperature for a number of samples of different doping

levels for Ba(Fe1−xCox)2As2 single crystals.

Figure 4.9 Magneto-optical images of the flux distribution on the surface of BaFe2(As1−xPx)2
single crystal ( x = 0.36 #1) at an applied field Ha = 400 Oe.

4.4.3 Differential method

The Differential magneto-optical imaging technique is used to determine the spatial dis-

tribution of the critical temperature of our samples. In this method, the experiments are

conducted after zero field cooling with a small field modulation ∆Ha = 1 Oe. A field

Ha + ∆H is applied and ten MOI images of the flux distribution above the sample are

acquired and summed. The magnetic field is then reduced to Ha, whence ten other images

are acquired and successively subtracted from the first sum. This procedure is repeated

several times (twenty times in this case) ; the resulting images were averaged to pro-

duce the final DMO image. These images should be interpreted as representing the map

of the local "permeability" of the sample. The grey level outside the sample represents
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Figure 4.10 Magnetic flux penetration profiles obtained of BaFe2(As1−xPx)2 single crystal (
x = 0.36 #1) from the regions indicated in Figure 4.9.
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Figure 4.11 Sustainable current density jc(T ) extracted from the MOI images for several crystals
of Ba(Fe1−xCox)2As2 single crystals over the whole phase diagram.
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∆B/∆H = 1. In Figure 4.12 the zero intensity "black regions" represent diamagnetic

screening, i.e. ∆B/∆H = 0.

Figure 4.12 Differential magneto-optical images of Ba(Fe1−xCox)2As2 crystal (x = 0.1 # 2) at
an applied field ∆Ha = 1 Oe.

From the obtained images one can determine quantitatively the width of the super-

conducting transition as well as the the spread of Tc within a given crystal. The Tc

heterogeneity is in each location in the sample quantified by the local transmittivity

TH =
[I(r, T )− I(r, Tc)]

[I(r, T ≫ Tc)− I(r, T ≪ Tc)]
, (4.26)

extracted from the luminous intensity I(r, T ) for different regions of a given crystal

(see Figure 6.2).

4.5 Hall-probe array magnetometer

Some of the local magnetic measurements presented in this work were performed by the di-

rect measurement of B(r) using the micron size Hall probes developed by M. Konczykowski

[117]. A typical measurement of the local gradient of the local induction B as a function

of applied field is presented in Figure 4.13. In this technique, the sample under study is

directly placed on a Hall probe or on a linear Hall probe array. The active area of these

probes ranges from 2×2 to 10×10 µm2. The measurement of the evolution of the magnetic
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flux density at a given Hall probe location is complementary to the magneto-optical imag-

ing technique, presented above. The information obtained using Hall probes, has a spatial

resolution which is much more limited, however the sensitivity of Hall probes which can

reach 10−7 T, is much better than for the magneto-optical imaging technique. With the

Figure 4.13 Hysteresis loop of the local gradient of the magnetic induction dB/dx as a function
of applied magnetic field measured using a Hall probe array.

Hall-probe array magnetometry technique, measurements can be performed in dc mode or

in ac mode. In ac mode, a periodic magnetic field of strength hac of the order of 10-100

µT is superposed with the static magnetic field. The frequency range of the ac field ranges

between 0.5 Hz and 2 kHz. The measured periodic voltage Vac(f, T ) on the Hall probe

is proportional to the magnetic flux measured in the active area of the probe. For super-

conducting materials, the measured datas are, again, represented by the "transmittivity"

,

TH =
Vac(f, T )− Vac(f, Tc)

Vac(f, Tc)− Vac(f, Tc)
. (4.27)

which is directly proportional to the time periodic magnetic flux (at the fundamental

frequency) which threads the sample at the probe location. One can also extract the

transmittivity at the third harmonic of the frequency of the applied magnetic field,

TH3 =
Vac(3f, T )

Vac(f, Tc)− Vac(f, Tc)
. (4.28)
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A non-zero signal at the third harmonic of the frequency signifies that the sample under

study obeys non-linear electrodynamics at the given frequency and amplitude of the time-

periodic component of the magnetic field, and at the particular temperature and static field

under consideration. For superconducting materials, the relation between the voltage and

current is non-linear due to the pinning of the magnetic flux lines by the defects present

in the sample.

Figure 4.14 (a) Transmittivity T ′
H measured on the crystal Ba(Fe1−xCox)2As2 x = 0.055 #1 at

an applied field of frequency 11 Hz. (b) norm of the third harmonics ‖TH3‖ for the
same crystal.

Magnetic relaxation measurements performed by different groups [21; 196; 223], and

the relaxation behavior of the magnetic flux penetration during the magneto-optical mea-

surements entails the following distinction. The "true" critical current density jc marks

the crossover between the regimes of free flux flow and (exponentially slow) flux creep;

at j = jc the current dependent activation barrier U(j/jc) for vortex escape from the

minima of the pinning potential vanishes. The sustainable current density j experimen-

tally measured in this work experimentally is always smaller than the critical current

density jc. Our measurements of the sustainable current density allow one to deter-

mine the usefulness of a particular superconducting material for current carrying appli-

cations. This measured sustainable current density is determined by the time window of

the experiment ∆t. It can be estimated from the logarithmic solution of the flux creep

equation,U(j/jc) = kBT ln [(t+ t0) /τ ] [82]. Here U(j/jc) is the barrier for thermal activa-
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tion and τ0 ∼ 10−5 − 10−7 s is the macroscopic characteristic time depends on the sample

size and shape, t0 describes the transient behavior at the onset of relaxation.

4.5.1 On the single crystalline iron-based superconductors studied in

this thesis

Single crystals of BaFe2(As1−xPx)2 studied in this thesis were grown by S. Kasahara from

the Research Center for Low Temperature and Materials Sciences in the Kyoto University

in Japan. The single crystals were grown from a stoichiometric mixture of Ba and FeAs,

Fe,P or FeP powders, placed in alumina crucible, and sealed in an evacuated quartz tube.

The x values are determined using energy dispersive x-ray analysis [209].

The charge doped Ba(Fe1−xCox)2As2 and Ba(Fe1−xNix)2As2 single crystals were grown

by D. Colson and A. Forget of the Service de Physique de l’Etat Condensé of the CEA-

Saclay. Single crystals of Ba(Fe1−xCox)2As2 were grown by first mixing the reagents of

high-purity Ba, FeAs and CoAs in the molar ratio 1 : (4 − x) : x, loaded in alumina

crucibles and then sealed in evacuated quartz tubes. For each doping level, chemical

analysis by an electron probe was performed on several crystals, yielding the Co content

to within 0.5% absolute accuracy. Chemical analysis was performed on several crystals of

each batch, with a Camebax SX50 electron microprobe, on several spots of the surfaces.

This technique gives a precision of typically 0.4% on the Ni content. The temperature

dependence of the resistivity is shown in Figure 3.14 (a) for Ba(Fe1−xNix)2As2 single

crystals and in Figure 3.14 (c) for Ba(Fe1−xCox)2As2 single crystals. Superconductivity

occurs for a Ni content in the range of x = 0.02 − 0.09. The resistivity goes to zero at

Tc over a temperature span of no more than 0.5 K, which shows that the samples are

very homogeneous. The optimum value of Tc is 19.5 ± 0.5 K, obtained for x = 0.045.

For x < 0.04, the samples present a strong increase of the resistivity as T decreases, in

the intermediate temperature range around 100 K. Similar behavior is observed for the

other member of the "122" family [77]. This signals the occurrence of the structural and

magnetic phase transitions. The phase diagram (Tc and Tmag) in Figure 3.14 obtained

from the resistivity data, is compared to that of Ba(Fe1−xCox)2As2 (indicated as empty

symbols and dotted lines). In this plot, the Co concentration was divided by 2 accounting

for the fact that only one electron is added to the electronic bands in this case.

The phase diagram of Ba(Fe1−xCox)2As2 obtained from transport measurements is

shown in Figure 3.14 [77]. The non-doped BaFe2As2 shows a transition; from a paramag-

netic metal to a spin density wave (indicated on figure 3.14 as SDW) at a Néel temperature

TSDW = 138 K. When one dopes the system with Co, which substitutes for Fe, TSDW de-

creases, before vanishing at x≈0.065. The superconducting phase is established at doping
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levels 0.036x60.15. The maximum Tc = 25 K is reached for x = 0.075. The width of the

superconducting transitions of Ba(Fe1−xCox)2As2 single crystals are represented in Fig-

ure 3.14 (c). The qualitative features of the resistivity measurements are displayed for a

series of samples, spanning the whole phase diagram. The drop of the resistivity at 135 K

for the undoped parent compound, which signals the structural and SDW transitions is

replaced by a an increase of ρ(T) when the Co is inserted into the system. With Co doping

this transition occurs at lower temperatures and the superconductivity is observed between

0.036x60.15 doping levels.
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Chapter 5

Bitter decoration technique

5.1 Historical overview

Magnetic decoration as a research technique has a relatively rich history. The starting

point for the development of this technique was in 1931 when F. Bitter [70] proposed to

use a suspension of tiny iron oxide particles to resolve inhomogeneities of the magnetic field

in ferromagnetic alloys. If such a suspension was allowed to settle on the sample surface,

the pattern of the deposited iron particles revealed the spots where intensity variations of

the magnetic flux occur. Soon after its invention, the original Bitter decoration technique

was improved by several researchers [30; 239]. The simplicity of the Bitter decoration

method and its wide applicability to a large range of magnetic materials has made it a

very useful tool in materials research. However, there are several limitations to the colloid-

based method [57; 128; 131]. Notably, the sample surface was liable to become stained

by prolonged contact with the colloid. Also, magnetic particles, when they are close to

the sample surface, tend to agglomerate and lose their mobility. Another restriction for

the resolution was set by the optical microscopes used for the observation of the decorated

Bitter patterns.

The magnetic decoration technique as we know it today was introduced in 1965 by

Hutchinson et al. [200], originally as a new method for the study of domain boundaries in

ferromagnetic materials. They found that when iron is evaporated in a dilute atmosphere

of a helium cloud, consisting of tiny magnetic particles is formed. If a ferromagnetic sample

is placed in this atmosphere, the magnetic particles are deposited on the surface, prefer-

entially at the domain boundaries, just as in the colloid-based decoration method. The

Bitter pattern so formed can be examined optically, or, for higher resolution by scanning

electron microscope (SEM). This new method did not required the sample to be immersed
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in any liquid and provided better resolution.

Experiments on flux visualization on superconductors have been reported as early as

1956, when Schawlow [16], and independently, Sharvin and Balashova [23] used ferromag-

netic powder to visualize the intermediate state in different materials. However only the

application of the high-resolution decoration method of Hutchinson et. al. [200] made it

possible to reveal the true complexity of the magnetic flux pattern in the superconduct-

ing samples. The pioneering work was done by Träuble and Essman [98], who decorated

the domains of the intermediate state in type-I superconducting Pb, showing the pecu-

liar structural variety at microscopic length scales. In 1967, Träuble and Essman [98]

began their classic work on decoration of individual vortices in superconductors. They

were the first to observe the vortex lattice with the decoration patterns on the surface of

a superconducting sample. Until now, their work remains the most comprehensive source

of information about vortex configurations in real samples. They made a classification

of topological defects in the vortex lattice and demonstrated the analogy with defects in

atomic lattices [99]. They studied how the vortex lattice sustains density gradients, and

how it responds to material defects [99]. In 1969, they also showed a way to use the deco-

ration technique for the study of the dynamics of magnetic flux. Several detailed reviews

on decoration [56; 110; 149; 263] written in the last years give a broad overview of the

contribution of this visualization technique, the better understanding of the behavior of

vortex lattice in superconductors, and discuss the frontiers and new opportunities for the

application of the method.

5.2 Bitter decoration:experimental setup and working prin-

ciple

Ten years after the theoretical prediction by Abrikosov of the existence of vortex lines

in type-II superconductors, the magnetic decoration technique was used by Essman and

Träuble [98] to image the vortex structure in real space. These studies were crucial in order

to provide irrefutable evidence for the existence of vortices and confirm that the magnitude

of the vortex flux quanta Φ0 = h/2e.

The magnetic decoration working principle is based on the spatial modulation of the

local magnetic induction inherent to the presence of vortices: h(~r) is maximum at the

center of a vortex line. For bulk superconductors, it decays exponentially as a function

of the distance to the vortex with a characteristic length λ [164]. As a result these are

attracted towards the vortex core and decorate a region of size λ. When vortices are

present in a superconducting sample they are responsible for the spatial variation of the
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Figure 5.1 Schematic representation of the decoration chamber.

magnetic induction h(~r)=h( ~r, z). The local gradients of the magnetic induction exert the

attractive force on the the pulverized iron clusters.

~F =| ( ~M.~∇)~h(r) | . (5.1)

Here ~M is the magnetic moment of the iron clusters. The agglomerated nano particles

remain attached to the sample surface due to the van der Waals force. This allows for the

observation of the vortex structure replica pattern at room temperature using SEM.

The spatial resolution of the Bitter decoration images is limited by the increasing

magnetic field when the h(~r) of neighboring vortices overlaps. If we consider that the

magnetic moment of an iron cluster is M = µV where µ is the magnetization per unit

volume. In order to decorate the vortex positions on the surface of the sample, the iron

cluster volume must exceed the threshold value [30].

Vth =
kBT

∆Hµ
=

kBT

2Hc1µ(1− 2exp(−a
2λ ))

(5.2)

Here ∆H = hmax − hmin, hmax ≈ 2Hc1 the maximum contrast of the magnetic

induction in the vortex core (approximated in the limit of low vortex densities) and

hmin ≈ 4Hc1exp(
−a
2λ ) [85; 169]. For a high magnetic field values the distance between

vortices (iron cluster volume ) will reach the threshold value Vth ∼ a3(B) (a is the vortex
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lattice parameter), and the imaging of individual vortices will be no longer possible.

In the experimental setup used for the vortex decoration in this thesis, the volume of the

iron clusters inside the decoration chamber is controlled by the Helium pressure increasing

as the pressure is increased. This makes the pressure the most important parameter to

succeed in the imaging of individual vortices. For the decoration experiments presented in

this thesis, a Helium pressure of 290 mTorr was typically used for a field of Ba = 20 and

200 mTorr for Ba = 10G.

The magnetic decoration experiment is performed by Joule evaporation of a magnetic

material such as (Fe,Ni,Co), Fe in our case. An iron wire coiled on a W filament is

prepared, and a copper shield is mounted between the filament and the sample holder such

as represented in Figure 5.1. This is in order to avoid excess radiation and heating of

the sample. The experimental procedure typically starts by the preparation of the sample

surfaces. Since a very clean and smooth sample surface is required, the samples are cleaved

just before the experiment. The freshly cleaved sample is then glued on top of the circular

sample holder using a special glue ( Figure 5.2) .

Figure 5.2 An image of crystal glued on Bitter decoration the sample holder designed in order
to fit with the decoration chamber and with the SEM sample chamber. The arrow
indicates the sample glued on the sample holder.

The sample holder, the filament and the copper shield are mounted in the decoration

chamber and the setup is pumped vacuum. The magnetic field is applied on the longitudinal

coil, and the system pre-cooled by putting it in a liquid nitrogen Dewar. The setup is

transferred to the Helium Dewar; one continues pumping until a pressure of roughly 20

mTorr below the pressure value at which the decoration is performed is reached. Then, a

current is applied on the W filament, and the decoration experiment is realized by Joule

heating of the iron wire coiled on it.

Since the mean free path of the gas molecules at this pressure range is of the order
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Figure 5.3 Bitter decoration images obtained of Ba(Fe1−xCox)2As2
singles crystals (a) and (b) with x=0.1#1 , and (c) and (d) with x=0.075 # 2.1 Scale bars
correspond to a length of 10 µm.
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of micrometers, the Fe atoms scatter with the inert gas molecules during their diffusive

spreading , thermalizing at the gas temperature, and forming clusters of roughly 50 nm

in diameter. These clusters then diffuse in the decoration chamber, and at distances, from

the sample, are attracted towards the vortex positions . The deposition of the clusters on

the sample surface occurs during seconds. After the experiment one waits for the setup to

warm up to room temperature whence the sample holder can be taken out of the decoration

chamber. For better resolution, and in order to ensure a good conductivity a thin gold

layer is sputter deposited on the decorated sample surface after this the decorated sample

is imaged using SEM.
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Chapter 6

Strong pinning and vortex energy

distributions in Ba(Fe1−xCox)2As2

single crystals

6.1 Vortex imaging in iron-based superconductors

Recent vortex imaging studies of iron-based superconductors performed by different groups

and different techniques reveal highly disordered vortex arrangements for all studied com-

pounds. In ideal superconducting samples without crystalline defects, the ground state

vortex structure is the Abrikosov crystal, [3] a periodic lattice with triangular symme-

try. In contrast, single crystals of iron based superconductors contain a large density

of atomic point defects, nanometric [276] and mesoscopic [41] disorder, or twin domain

boundaries [196] that pin the vortices and prevent the formation of an ordered lattice.

The imaging of the vortex structure in Type-II superconductors, in our case the iron-

based compounds is very important, because the vortex configuration was directly related

to the the flux line pinning. Vortex imaging was used to study phase diagrams of high-

Tc superconductors. Using Bitter decoration method M. V. Marchevsky observed a pin-

ning driven order-disorder transition in Bi2Sr2CaCu2O8+δ [174]. The author defined a

displacement correlator u(ri) for the presented vortex structure by generating a perfect

lattice with a lattice parameter equal to the mean intervortex distances of the decoration

image. The perfect lattice pattern was fitted to the real vortex structure with respect

to translations, and rotations. A displacement vector u(ri) is determined for each vor-

tex with respect to the closest point ri in the perfect lattice. From this, the correlator

< u2(r) >≡< [u(r) − u(0)]2] > was computed. It is found that the displacement of the
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vortex positions increases with decreasing magnetic field. The author suggests that the

normalized average displacements at 2 mT
√

< δu2r >/a0=0.12 is close to the expected

value of Lindemann number cL∼0.15 at which melting takes place [178]. From this, they

argue that the observed vortex structure is in the proximity of a melting or order-disorder

transition. Kim et al. have used the Bitter decoration technique for the visualization of

the flux line lattice in Bi2Sr2CaCu2O8+δ single crystals with weak disorder at large scales

(80-100 a0). They realized decoration experiments up to 120 G, and obtained large scale

dislocation-free images of the flux lattice, from which they extracted the displacement cor-

relator B(r) [179]. Quantitative analyze of the translational order indicated that the flux

lattice is in the random manifold regime, for length scales up to ∼80 a0. They argued that

large dislocation free regions in the vortex structure might be a signature of the existence

of the Bragg glass [217].

Due to the availability of high quality single crystals of these compounds vortex imag-

ing studies of iron pnictide superconductors have been mainly focused on the 122 fam-

ily. Many different experimental methods have been applied to the visualization of vor-

tices in iron based superconductors. Direct imaging methods at low field, such as Bitter

decoration, [152; 171] scanning SQUID microscopy, [18] and magnetic force microscopy

(MFM) [59; 148] have been complemented with methods useful at high fields such as scan-

ning tunneling microscopy (STM), scanning tunneling spectroscopy (STS) [277] and small

angle neutron scattering (SANS) [59; 171]. All these experiments have observed disordered

vortex structures at all investigated fields. The Bitter decoration and small-angle neutron

scattering (SANS) experiments were performed by Eskildsen, and Vinnikov et. al. [171] for

vortex imaging in the optimally doped Ba(Fe1−xCox)2As2 single crystals (with x = 0.07).

Inosov, and Shapoval et. al. [59] imaged the vortices in overdoped Ba(Fe1−xCox)2As2
single crystals (with x = 0.095) using SANS and magnetic force microscopy (MFM). Mea-

surements carried out in magnetic fields of up to 9 T have revealed a vitreous vortex

phase (vortex glass) with short range hexagonal order. The authors argued that pinning

remains anomalously strong even in overdoped crystals where static magnetism is fully

suppressed, and quantified the degree of disorder using a statistical analysis of multiple

MFM images. [59]. Vortex imaging in iron pnictide single crystals of the 122 type including

Ba1−xKxFe2As2 and Sr1−xKxFe2As2, as well as SmAsO1−xFx (of the 1111 type) was per-

formed by Vinnikov et. al. [152] using Bitter decoration in the magnetic field range from

0 to 200 Oe. They concluded that in all studied iron pnictide compounds, the disordered

vortex structure exists and is independent of the crystal structure type, doping and synthe-

sis method. They suggested the mechanism of strong pinning both in single crystals and

polycrystalline samples to be the same but did not specify its origin. The only reported
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ordering effect on the orientation of the vortex ensemble is that induced by twin-boundaries

in Ba(Fe0.949Co0.051)2As2 (with x = 0.051) reported by Kalisky et. al. This scanning Su-

perconducting Quantum Interference Device (scanning SQUID) microscopy study shows

that vortices avoid twin boundaries acting as a barrier for vortex motion [18] . Attempt

to correlate vortex positions with material heterogeneity include the scanning tunneling

spectroscopy (STS) and vortex imaging by Yin et al. STS and vortex imaging up to 9 T in

slightly overdoped Ba(Fe1−xCox)2As2 single crystals (x = 0.1) was performed by Yin et.

al. [277] but the highly disordered vortex positions could not be correlated with surface im-

purities observed in the same work. Furthermore, scanning tunneling spectroscopy studies

in different iron-based superconductors reveal nanoscale variations of the local supercon-

ducting gap [75; 261; 276]. In Ba(Fe1−xCox)2As2, the length scale on which the deviations

from the average gap value occur was claimed to be comparable to the average distance

between dopant atoms [75]. Nevertheless, no correlation between the vortex positions and

the superconducting-gap inhomogeneities or other defects has been found [277].

Hence, all techniques agree on the absence of vortex lattice order in the iron based

materials. However, there is no clear consensus on the origin of this disorder and pinning.

The aim of this work is the characterization of strong pinning. Below I present a quanti-

tative analysis of the pinning energy and force distributions, which indicate that the key

to understanding the disordered configurations is that these are arrested at temperatures

very close to Tc, in crystals that show notable spatial variations of the superconducting

parameters. The magneto-optical imaging technique is used to reveal the crystalline inho-

mogeneity before further experiments. The spatial variation of the transition temperatures

∆Tc for Co-doped crystals and the Co doping level dependence of the critical current den-

sities jc are presented in section 6.3.1. The configuration of vortices near surface steps is

discussed in detail, this is used to extract the high temperature value of the penetration

depth and the freezing temperature of the presented vortex ensembles is extracted from it

(see section 6.4.1). Results on the vortex structure imaging are presented in section 6.4.2 a

new method is developed to extract the pinning energies and pinning forces from the dec-

oration images (section 6.4.2). This latter yields more information that classical analysis

in terms of correlations functions of distance distributions because the typical quantities

describing individual vortices are not integrated out. The analysis shows that there is a

substantial local variation of the pinning energies and pinning forces in Ba(Fe1−xCox)2As2
single crystals. The magnitude of these variation has at the origin the nanoscale spatial

variations of Tc and/or the superfluid density due to an inhomogeneous distribution of

the dopant atoms. By linking these results to the measured critical current densities it is

shown that pinning in the low magnetic field regime is very likely due to heterogeneity of
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the superconducting properties of the crystals, on the scale of several dozen nm.

6.2 Experimental details

The penetration of magnetic flux into selected crystals of thickness 30µm was visualized

by the magneto-optical imaging (MOI) method. A ferrimagnetic garnet indicator film with

in-plane anisotropy is placed on top of the sample and a polarized light microscope is used

to observe it. The Faraday rotation of the indicator allows for the detection of regions with

non-zero perpendicular component of the magnetic flux density B⊥, revealed as bright when

observed through an analyzing polarizer. Dark regions correspond to B⊥ ≈ 0. In order to

characterize the inhomogeneity of the crystals in the vicinity of the critical temperature we

use the differential magneto-optical method (DMO) [41]. Images acquired at applied fields

Ha + ∆Ha and Ha are subtracted, and the differential images averaged by repeating the

procedure 50 times. In the present experiments µ0∆Ha = 0.1mT (with µ0 ≡ 4π × 10−7

Hm−1).

The field dependence of the global critical current density of selected crystals was ob-

tained from magnetization-loop measurements conducted using a Quantum Design SQUID

magnetometer. The critical current densities were extracted using the Bean-critical state

model. As discussed below, the assumption of this model is justified by the way flux pen-

etrates into the crystals. Within the Bean model, jc = 3M/V a, where M is the magnetic

moment, V is the sample volume, and 2a the sample width [63].

For the Bitter decoration experiments, [263] rectangles of dimension 200µm × 300µm

were cut from larger crystals using a 20µm wire saw and 1µm SiC grit. Bitter decora-

tions were only performed on crystals with x = 0.055, x = 0.075, and x = 0.1. The

sample surfaces were freshly cleaved before the experiments. The experiments were car-

ried out at liquid Helium temperature (4.2K) and He-exchange gas at pressures of the

order of 200mTorr. The images shown here are the result of field-cooling experiments at

a field µ0Ha = 1mT, applied parallel to the c-axis of the crystals. The decorated vortex

arrangements were observed by scanning electron microscopy at room temperature.

6.3 Results

6.3.1 Magneto-optical imaging

Figure 6.1 (c) shows examples of magneto-optical images, here obtained at T = 15 K

on single-crystal #2 of the composition with x = 0.075. The images reveal a globally

homogeneous penetration of the magnetic flux into the sample obeying the Bean critical
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Figure 6.1 a) Photograph of Ba(Fe0.925Co0.075)2As2 crystal # 2. (b) Scanning electron micro-
graph of the decorated sample #2.1 cut from the larger crystal #2. (c) Magneto-
optical images of Ba(Fe0.925Co0.075)2As2 crystal #2 at T = 15K and the indicated
values of the applied magnetic field. (d) Differential Magneto-Optical (DMO) images
in the vicinity of Tc, for µ0∆Ha = 0.1mT. The scale bar corresponds to a length of
100 µm unless indicated otherwise.
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Figure 6.2 Local transmittivity TH measured for three regions indicated in Fig. 6.1 (c)
Ba(Fe0.925Co0.075)2As2 crystal # 2 is concerned (a), and in panel (c) for
Ba(Fe0.9Co0.1)2As2 crystal #1 (b). (c) DMO images of Ba(Fe0.9Co0.1)2As2 crystal
#1, and the indications for the selected regions. Here the arrows indicate regions of
paramagnetic transmittivity at the superconducting transition. Scale bars correspond
to a length of 100 µ m.

state. [47; 66] We obtain the local value of the critical current density from jc ∼ 6 ∂B⊥/∂x

(the factor 6 is estimated from Ref. [63] for a crystal aspect-ratio of 0.1).

The DMO images in Figure 6.1 (d), and 6.2 (c) reveal the same Bean-like flux pen-

etration with an inhomogeneous jc arising from the spatial variation of Tc. This inho-

mogeneity can be quantified using a plot of the local transmittivity, defined as the ratio

TH = [I(r, T )− I(r, T ≪ Tc)]/[I(r, T ≫ Tc)− I(r, T ≪ Tc)] of the relative local luminous

intensities I(r, T ) in the DMO images. The temperature-dependence of TH measured on

different regions of crystals #2 and #1 is depicted in Figure 6.2 (a),(b). The local variation

of Tc-values within a given crystal is of the order of 0.5 – 1 K. In addition, regions of lower

Tc give rise to a paramagnetic signal at the transition due to flux concentration by the
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Figure 6.3 (a) Transition temperature, Tc, versus Co doping-level. The error bars denote the
local spread of Tc values within a given crystal. For each doping level, #1, #2 and
#3 denote different crystals. For x = 0.075 and 0.1, the numbering is the same as the
decorated crystals. (b) Co doping-level dependence of the critical current density jc
measured by MOI at B = 30mT and a reduced temperature of T/Tc = 0.47.

surrounding superconducting parts of the crystal.

Figure 6.3 (a) summarizes the width of the Tc distribution for a large number of

Ba(Fe1−xCox)2As2 single-crystals of different doping levels. Figure 6.3 (b) shows the Co

doping-level dependence of jc for the same series of single-crystals at a reduced temperature

of T/Tc = 0.47. A rather large sample-to-sample variation of the low–field (B⊥ = 30mT) jc
is observed. Certainly, no clear doping-dependent trend appears, as proposed in Ref. [195].

The obtained critical-current values are comparable to those reported in the literature for

the same material [197].

6.3.2 Vortex imaging in Ba(Fe1−xCox)2As2 single crystals

The Bitter decoration technique [263] was used to observe vortex structures on three of the

crystals used to compile Figure 6.3. These are crystal #1 of the composition with x = 0.1,
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Figure 6.4 Bitter decoration image of Ba(Fe1−xCox)2As2 single-crystal (a) with x = 0.075 #2.1,
and in (b), (c) and (d) different images from the crystal with x = 0.1 #1. The white
arrows indicate the vortex free regions near the surface step and/or at the edge of the
crystal.

crystal #2 with x = 0.075, and on crystal #2 with x = 0.055. The decoration of crystal

#2 with x = 0.055 was unsuccessful, presumably due to the large value of the penetration

depth at this low doping level. The decorated patterns reveal highly-disordered vortex

structures as in Refs. [18; 59; 148; 152; 171]. Figure 6.4 reveals regions of high and low

vortex density, as well as the formation of vortex-free zones near the crystals edges and

surface steps, due to the circulating Meissner current. These images are representative of

those obtained on other regions of the crystal surfaces after different cleavage runs, and on

other crystals. From the images, we extract the average value of the magnetic induction

as Bint = nvΦ0, where nv is the vortex density and Φ0 = h/2e is the flux quantum. For

all images we obtain an average induction Bint ≈ 0.8mT, 20% smaller than the applied

field Ha = 1mT.
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Figure 6.5 Delaunay triangulations of the images in Figure 6.4 respectively for single crystals (a)
with x = 0.075 #2.1, and b), (c) and (d) with x = 0.1 #1. Here blue dots are the
vortices with sixfold coordination number while red dots have a coordination number
different than six.

Figure 6.5 presents the Delaunay triangulations of the images presented in Figure 6.4

for x = 0.075 and x = 0.1, respectively. Here, the blue dots represent vortices with six-

fold coordination while the red dots represent vortices which have a different coordination

number. Fourier transforms of the vortex positions in the images of Figure 6.4 are in the

left hand panels of Figure 6.6 , while in the right-hand panels show the nearest neighbor

distance distribution. The insets to Figure 6.5 show the distributions of the coordination

numbers. All distance distributions have a mean value of ∼ 1.56 µm which corresponds

to the triangular perfect lattice parameter a△ = 1.075
√

Φ0

B for an applied magnetic field

µ0Ha=0.1 mT. Distance distributions show a large deviation from the perfect lattice con-

figuration, while the respective Fourier transforms of the vortex positions demonstrate the

absence of any order in the vortex structure.
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Figure 6.6 Fourier transforms of the vortex positions of the images presented in Figure 6.4 re-
spectively for single crystals (a) with x = 0.075 #2.1, and b), (c) and (d) with x = 0.1
#1. In the right-hand panel were presented the histograms for the distribution of
distances to nearest neighbors, the insets show the distribution of the coordination
number belong to the histograms.
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Figure 6.7 Representation of the behavior of vortex lines near a surface step under zero field-
cooled conditions, for j < jc (a), and for j > jc (b), and under field cooled-conditions
(c).

6.4 Discussion

6.4.1 Vortex configurations near surface steps

In what follows, the determination of the vortex pinning energies and forces from the

decoration images will be attempted. The correct determination of the distribution of

vortex pinning energies in the crystal and its interpretation requires knowledge of the

temperature at which the vortex ensemble was frozen in the observed configuration. To

determine this, we analyze the vortex distribution near the ubiquitous steps seen on the

surfaces of the crystals. Such steps result from the repeated crystal cleavage performed

during the Bitter decoration experiments. In zero-field cooled experiments, steps act as

obstacles for vortex entry into the sample; they were described in Ref. [76] as “vortex

diodes”.

However, the present decoration experiments are carried out under field-cooled condi-

tions and hence vortices nucleate in the sample at the temperature at which the mixed

state becomes stable. As one cools down, the Meissner screening current running along

the crystal edges, but also along the surface steps, increases as the penetration depth λab

for currents running in the ab–plane decreases. Thus, while cooling, vortices on the high-

side of a surface step are progressively repelled by the increasing Meissner current density

jM ∼ Ha/λab. At the same time, the proximity of the step surface results in an attrac-

tive force that can be described by an image vortex segment. Finally, the vortex lattice

elasticity tends to restore a homogeneous flux distribution near the step. The situation of

a vortex segment close to a surface step is therefore similar to vortex entry or exit over a
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surface barrier.

At the low fields of interest, the single vortex part of the tilt modulus dominates vortex

elasticity,[13] so that the force balance can be written

Bint

λab

[

Hae
−υ − Bint

µ0
e−2υ − ε2λε0

Φ0
ln

(

Bc2

2Bint

)

uλab
h2

]

=

Bint

λab

[

Hae
−υ − Bint

µ0
e−2υ − ε2λΦ0υ

4πµ0h2
ln

(

Bc2

2Bint

)]

= 0.

(6.1)

Here, ε1 = ε2λε0 is the vortex line tension, ε0 = Φ2
0/4πµ0λ

2
ab is the vortex line energy,

ελ = λab/λc is the penetration depth anisotropy, υ ≡ u/λab, represents the width of

the vortex-free zone behind the step, u, normalized to λab. The step running through

Fig. 6.4 (a) has a height h = 1.5µm determined by a profilometer measurement, while

the vortex-free region behind it has a width u = 1.8µm. Estimating the penetration

depth anisotropy ελ ≈ 0.16 from Refs. [196] and [120], and with all other parameters

known, Eq. 6.1 can be solved graphically to yield υ ∼ 1.5, that is, λab ∼ 0.6u ∼ 1.2µm.

Combining this number with λab(T)-data from Refs. [148] and [196], we conclude that the

observed vortex pattern is frozen at Tf ≈ 0.9Tc.

6.4.2 Pinning energies

The inter-vortex interaction energies are calculated from the vortex positions obtained

from the decoration images. First of all, we proceed with the identification of the position

of each vortex situated in each image with a program written in the C++ language, and

provided by Y. Fasano. This program recognizes the vortex positions from the luminous

intensity of the the iron clusters that decorate the vortex. Using the real SEM image the

vortex positions extracted by the program were crosschecked by hand where this was found

necessary.

A Matlab script was written to calculate the inter-vortex interaction energy (see Ap-

pendix 1),

E
i
int =

∑

j

2ε0K0

( |rij |
λab

)

(6.2)

per unit length along the vortices’ direction. Here K0(x) is the lowest-order modified

Bessel function, and the vortex line energy ε0 = Φ2
0/(4πµ0λ

2
ab) ∝ λ−2

ab is proportional to

the superfluid density. The script uses the position matrix as the input file to compute the

distance rij from vortex i to all other vortices j. The calculation, takes into account all
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vortices j situated at a distance smaller than 10λab from vortex i. This cutoff radius was

chosen after verifying that the interaction energy does not change significantly if greater

values of j are considered. For the determination of the energy distribution histograms,

only vortices situated away a distance larger than 4λab from the edges of images were

taken into account. The summing method was checked by calculating the interaction

energy distribution of a perfect Abrikosov lattice, which should be a δ-function. After

neglecting the contribution from the vortices situated less than 4λab from the edges of the

image,a well-defined δ-peak for the interaction energy distribution was indeed obtained for

the perfect lattice. In the calculations the penetration-depth value at the temperature at

which the vortex structure was frozen, λab(T/Tc = 0.9) was used (see Section 6.4.1).

A similar procedure yields maps of the pinning force acting on an individual vortex;

per unit length,

fi =
∑

j

2ε0
λab

rij

|rij |
K1

( |rij |
λab

)

, (6.3)

with K1(x) the first-order modified Bessel function. Since the system is stationary, New-

ton’s third law requires the repulsive force exerted by neighboring vortices to be balanced

by the pinning force. A map of the modulus |fi| thus represents a map of the minimum

pinning force acting on each vortex. In the case of a perfect lattice resulting, the sum

Eq.(6.3) vanishes. We present our results by color-coded maps spanning the decoration

images of Figure 6.4, and by histograms of the interaction energy distribution. The inter-

action energy maps with the energy-scale normalized by ε0, are shown in Figure 6.8 (a,e)

and Figure 6.9 (a,e). A granular structure of denser regions with larger interaction energy,

and dilute regions with smaller Eint is clearly visible. This granularity is translates to broad

vortex interaction-energy histograms, as shown in Figure 6.8 (b,f) and Figure 6.9 (b,f).

The histograms are reasonably well fitted by a Gaussian distribution. The standard

deviations of these histograms are of the order of 23 %, in contrast to 50 % for the

rather regular vortex structures [262] of the same density imaged in the high-Tc mate-

rial Bi2Sr2CaCu2O8+δ (see Figure 6.10 (b) ). However, as a result of the high reduced

temperature Tf/Tc at which the vortex ensemble is frozen, the mean interaction energy

(normalized by ε0) is ten times larger in Ba(Fe1−xCox)2As2 than in Bi2Sr2CaCu2O8+δ.

The histogram of the nearest-neighbor distance distribution in Bi2Sr2CaCu2O8+δ has a

sharp peak at rij = 1.56µm , which corresponds to the triangular perfect lattice parameter

a△ = 1.075
√

Φ0

B , for µ0Ha = 0.1mT. In order to compare the interaction energy distribu-

tions for Bi2Sr2CaCu2O8+δ and Ba(Fe1−xCox)2As2 Figure 6.10 (b) presents the histogram

for the distribution of the interaction energy of Bi2Sr2CaCu2O8+δ and Ba(Fe1−xCox)2As2

101



6. STRONG PINNING AND VORTEX ENERGY DISTRIBUTIONS IN
BA(FE1−XCOX)2AS2 SINGLE CRYSTALS

Figure 6.8 (a,e) Color-coded maps of the interaction energy normalized by ε0 calculated from
the images of Fig. 6.4 for Ba(Fe1−xCox)2As2 single-crystals with (a)x = 0.075 and
(b) x = 0.1. (c,g) Color-coded maps of the modulus of the individual vortex pinning
force per unit length from the same images. The histograms of the distribution of the
interaction energies and the modulus of the pinning forces are presented in (b,d), and
(f,h) respectively.

with x=0.075 # 2.1 with the interaction energy calculated using the low temperature value

of the penetration depth λ0(0) ∼ 300nm. The calculated distributions depend quite sen-
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Figure 6.9 (a,e) Color-coded maps of the interaction energy normalized by ε0 calculated from
the images of Fig. 6.4 for Ba(Fe1−xCox)2As2 single-crystals with (c,d) x = 0.1. (c,g)
Color-coded maps of the modulus of the individual vortex pinning force per unit length
from the same images. The histograms of the distribution of the interaction energies
and the modulus of the pinning forces are presented in (b,d), and (f,h) respectively.

sitively on the value of λab, and, by implication, on the temperature at which the vortex

ensemble was frozen. A larger λab yields a much larger energy scale as well as more sym-
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metric distributions. Analyzing data on Bi2Sr2CaCu2O8 and Ba(Fe1−xCox)2As2 using the

same (low temperature) value λab = 300nm [148] yields distributions that are three times

broader for Ba(Fe1−xCox)2As2, but with a mean value that is only 10% larger than for

Bi2Sr2CaCu2O8+δ. Figure 6.10 shows a Delaunay triangulation of Bi2Sr2CaCu2O8+δ single

crystal decorated at µ0Ha = 0.1mT while Figure 6.10 (c) and (d) give us information on

the vortex lattice homogeneity of the crystal. Figure 6.10 (c) shows the Fourier transform

of the vortex positions from the Delaunay triangulation, and we present an histogram of

the distribution of distances to the nearest neighbors in Figure 6.10 (d).

The reduced temperature Tf/Tc at which the vortex ensemble is frozen not only affects

the deduced interaction energies, but also has a profound effect on the (orientational)

order observed in the decorated vortex ensemble. Pardo et al. reported that in optimally

doped Tl2Ba2CuO6−δ superconductors with a broad magnetically reversible regime in the

temperature-field phase diagram, and concomitantly low Tf/Tc, Bitter decoration yields

a regular triangular lattice, while decorated vortex ensembles in the overdoped material

with a narrow reversible temperature range (and high Tf/Tc) are amorphous [76]. At

the origin of this effect is the high mobility of vortices just above Tf in materials with a

wide reversible regime, such as Bi2Sr2CaCu2O8+δ or optimally doped Tl2Ba2CuO6−δ. On

the other hand, the low mobility of the vortices just above Tf due to strong pinning in

the vortex liquid phase in materials [such as, apparently, Ba(Fe1−xCox)2As2 that have a

narrow reversible regime yields an amorphous vortex ensemble.

Fig. 6.8 (c), and (g), and Fig. 6.9 (c), and (g) show maps of the modulus of the pinning

force of individual vortices per unit length of the vortex lines. The pinning energy shows

some correlation with the interaction energy at the local scale: regions of large (small) Eint

generally correspond to regions of large (small) |fi|. There is noticeable inhomogeneity on

scales smaller than the apparent grain size. If the granularity would be due to microscopic

(µm scale) inhomogeneity of superconducting parameters such as the superfluid density

one would expect a larger pinning force at the interface only. In the images, fluctuations

of the pinning force within grains of similar Eint are observable. Therefore,inhomogeneity

of the superconducting parameters exists not only on the µm scale of the images, but

also on smaller length scales. It is interesting to note that the rendered pinning forces

are simply related to a metastable current density ji, running through each vortex, as

fi = (Φ0/|B|)B × ji. The average pinning force per unit length of 5 × 10−6 N/m, with

local maxima of up to 6× 10−5 N/m, imply local currents of the order of 2.5× 109 A m−2.

Maximum currents concentrated on vortex rich areas are of the order 3 × 1010 A m−2,

comparable to the low-temperature value of the critical current density in Figure 6.11.
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Figure 6.10 (a) Delaunay triangulation for Bi2Sr2CaCu2O8+δ single crystal, (b) comparative
graph with the histograms of the interaction energy distribution of Bi2Sr2CaCu2O8+δ

and Ba(Fe1−xCox)2As2 with x=0.075 # 2.1. (c) The Fourier transform of the vortex
positions , and (d) histogram of the distribution of distances to the nearest neighbors.

6.4.3 Effect of the spatial variations of Tc

Since the vortex locations result from the balance between inter-vortex repulsion and the

interaction Ep of individual vortices with the pinning impurities, one has, at Tf , Eint = Ep.

The position of the maximum and the width of the interaction-energy distributions in

Figures 6.8 (b,f), and in Figures 6.9 (b,f) are therefore determined by, respectively, the

mean and the standard deviation of the pinning energies, at Tf , of the individual vortices

in a given image. In particular, the displacement of the maximum of the distribution with

respect to the position of the δ-peak energy-distribution of a perfect vortex lattice of the

same density is a measure of the mean pinning energy. As far as the vortex densities

of Figure 6.8, and Figure 6.9 are concerned, the average Bint = 0.8mT would yield a

δ-peak-maximum at Eint = 2.5ε0 for the triangular perfect lattice.

By comparison, the maxima of the distributions for both investigated crystals in Fig-

ure 6.8 (b,f), and in Figure 6.9 (b,f) occur at Eint ≈ 3.2ε0. The average pinning energy per

unit length is therefore Ep ∼ 0.7ε0, while the variance in pinning energy is given by the

width of the distribution, (〈E2
p〉 − 〈Ep〉2)1/2 ∼ 0.5ε0. Note that 3.2ε0 corresponds to the
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interaction energy of a triangular vortex lattice with Φ0nv = 1mT, i.e. the external field

applied during the experiments. This means that the average interaction energy is deter-

mined by vortex-rich areas, with Φ0nv & 1mT. However, the vortex density also presents

vortex-poor areas so that the average Bint = 0.8mT.

The large absolute values of the inferred pinning energies can be understood if one

combines the notion that the crystals show local variations both of the critical temperature

Tc = Tc(r) and of the line energy ε0 = ε0(r, T ), and that Tf/Tc . 1. As the crystal is

cooled below Tc, vortices will avoid regions of higher Tc and ε0, and accumulate in regions

with lower values of these parameters.

They will remain trapped in such regions as the temperature is lowered below Tf .

The large absolute values and variances of the pinning energies revealed by the decoration

experiment are caused by the local variations of Tc(r), which manifest themselves through

the temperature dependence of the line energy, ε0(r, T ) = ε0(r, 0)[1 − T/Tc(r)]. More

specifically, the width of the inferred pinning-energy distribution (Figure 6.8 (b,f), and

Figure 6.9 (b,f))should correspond to the width ∆ε0(Tf ) of the line energy distribution,

0.5ε0(0)(1− Tf/Tc) ∼ ∆ε0(Tf ). (6.4)

Near to the critical temperature, ∆ε0(T ) = ε0(0)T∆Tc/T
2
c is determined mainly by the

width ∆Tc of the distribution of local Tc(r). Solving Eq. (6.4) then yields Tf = Tc/[1 +

∆Tc/0.5Tc]. Taking Tc = 24 K, and estimating ∆Tc ≈ 0.8 K from the DMO data of

Fig. 6.2, one obtains a freezing temperature Tf = 0.94Tc for x = 0.075; the same exercise

with Tc = 19K and δTc = 0.5K yields and Tf = 0.95Tc for the crystal with x = 0.1. Thus,

the analysis of the inhomogeneous and disordered vortex distribution, as well as the vortex

distribution near steps and edges, is fully consistent with the observed patterns having

been frozen between T = 0.9 and 0.95Tc. We can draw the same conclusion from the local

variations of the vortex density. For example, for the crystal #2 with x = 0.075, the largest

local vortex gradient correspond to 0.15mT/µm or 1×108 A m−2. This value is consistent

with the critical current density of Ba(Fe0.925Co0.075)2As2 crystal #2 at 23 K. In the case

of Bi2Sr2CaCu2O8+δ single crystals whith a wide reversible regime in their phase diagram

where the freezing temperature of the vortex structure is Tf ∼Tirr≪Tc. The Tc variations

are completely irrelevant since vortices have high mobility just above Tf .

6.4.4 Critical current density jc

At low temperatures, the spatial variations of the magnitude of the line energy ε0(r, 0)

are dominant for pinning. These correspond to the variations in space of the superfluid
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density, [18] and are responsible for the non-zero low-T pinning force associated from spatial

inhomogeneity. A spatially homogeneous superfluid density would imply a vanishing (or

logarithmically weak) pinning energy at low T , at odds with the existence of a large critical

current density (see, e.g. , Figure 6.11).

Figure 6.11 Critical-current densities in our Ba(Fe0.925Co0.075)2As2 crystals. (a) Temperature-
dependence of the low-field jc of crystals #1 (x = 0.1) and #2.1 (x = 0.075), as
obtained from MOI. Error bars represent the dispersion of jc within a given crystal.
(b) Field-dependence of jc for crystal #2.1, obtained from magnetic hysteresis mea-
surements using a SQUID magnetometer. Straight lines indicate fits with Eq. (6.6),
see section 6.4.

As in all charge-doped single-crystalline iron-based superconductors, the critical current

of Ba(Fe1−xCox)2As2 is composed of a contribution from strong, extrinsic pins, and from a

contribution from pinning by atomic sized-point pins. The latter dominates at high fields

(above 1 T at 5K, and above 0.2 T at 17.5 K), see Figure 6.11 (b) [41] while the former

contribution manifests itself as a low-field plateau [41; 43]

jc = π1/2
fp

Φ0ελ

(

Upni
ε̄0

)1/2

(B ≪ B∗) (6.5)
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followed by a power-law in the flux density B,[41; 43]

jc(B) =
fp

Φ0ελ

(

Upni
ε0

)(

Φ0

B

)1/2

(B ≫ B∗). (6.6)

The crossover field B∗ is that above which the number of effective pins per vortex is

limited by the intervortex repulsion, fp is the maximum pinning force exerted by a sin-

gle strong pin, ni is the pin density, and Up/[J] is the pinning energy gained by a vor-

tex line traversing such a pin. The measurement of the low-field critical current den-

sity jc(0) and the slope ∂jc(B)/∂B−1/2 allows one to eliminate ni and to obtain fp =

πΦ
3/2
0 ελ

{

j2c (0)/[∂jc(B)/∂B−1/2]
}

from experimental data without further assumptions.

We find that, at 5 K, fp ≈ 3 × 10−13 N for both Ba(Fe0.925Co0.075)2As2 crystal #2.1 and

Ba(Fe0.9Co0.1)2As2 crystal #1.

The identification of the strong pins with regions of lower ε0(T ) means that fp should

be interpreted in terms of the local maxima of the position-dependent force f(r) =
∫

δz ∇ε0(r)dz experienced by vortices as they move through the sample. Here δz is the

maximum extent of a region of low ε0(T ) along the field direction. We approximate

fp ∼ ∆ε0

(

δz

δ̺

)

, (6.7)

where δ̺ is the length scale characterizing the disorder in the direction perpendicular to

the field, and ∆ε0 is the standard deviation of the ε0(r) distribution in the crystal. The

pinning energy Up ∼ fpδ̺. A comparison of Eq. (6.7) with the value of fp obtained from

jc yields ∆ε0 ∼ 3× 10−13 J m−1 for a unit aspect ratio δz/δ̺.

In a next step, we evaluate the ratio of fp/ ¯|fi|; this yields the average distance between

effective pins, L̄ = 60 nm. Using Eq. (17) of Ref. [43], which has L̄ = (ε1/πniUp)
1/2, one

finds (niδz)
−1/2 ∼ 60 nm. With all parameters known, the low-field value of the critical

current density is reproduced as

jc ≈ π1/2
∆ε0
Φ0ελ

√

niδz
δz

δ̺

√

∆ε0
ε̄0

= 8× 109Am−2, (6.8)

in fair agreement with the data of Fig. 6.11 (a). The investigated features of vortex pin-

ning in Ba(Fe1−xCox)2As2, including the disordered vortex patterns and the critical current

density, are therefore consistently described by the presence of spatial variations of the su-

perfluid density on the scale of several dozen nanometers, in agreement with the conjecture

of Ref. [15].

Note that the observed spatial structures at the macroscopic (Figure 6.1) and meso-
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scopic (Figure 6.4 ) levels are not those responsible for the critical current. The random

vortex positions observed in the decoration experiments are determined by the underlying

nanoscale disorder, an observation consistent with the fact that disordered vortex struc-

tures have been observed up to high fields.[59; 171]

One may speculate about the possible link between the existence of nm-sized regions

of reduced superfluid density, the local variation of the dopant atom density, and the effect

of the overall doping level. For instance, one would expect the fluctuations of the Co

density to be more important at lower doping levels, yielding larger local fluctuations of

ε0. However, given the much larger values of the penetration depth at low doping, we have

not been successful in performing Bitter decorations on the relevant crystals. Recent STS

studies have reported substantial variations of the value of the superconducting gap on a

scale of 10 to 20 nm.[75; 277] These local variations of the gap magnitude should correspond

to the variations of the critical temperature and therefore lead to vortex pinning. Although

it is tempting to relate our results to the nanoscale disorder observed in the STS gap-maps,

it should be remarked that the spatial scale of the variations in the gap maps is a factor

of 3-6 smaller than that found from the analysis of the data presented here. This would

correspond to a concomitantly larger jc in the samples used in Refs. [75; 277].

6.5 Conclusion

Bitter-decoration imaging of the disordered vortex distribution in superconducting

Ba(Fe1−xCox)2As2 single-crystals with x = 0.075 and x = 0.1 reveals a substantial local

variation of pinning energies and pinning forces. The magnitude of these fluctuations is

suggested to stem from nanoscale spatial variations of Tc and/or the superfluid density due

to an inhomogeneous distribution of dopant atoms. The spatial scale of the variations is

inferred from the correlation of the features of the vortex distributions with global and local

critical current density measurements. The macroscopic spatial variations of the critical

temperature observed using magneto-optical imaging give an idea of the magnitude of the

Tc variations in the crystals, but are unrelated to the measured pinning properties. The

same can be said for mesoscopic disorder structures observed by single-vortex imaging.

An important corollary of our work is the fact that the observed vortex distributions are

frozen, at a length scale of the lattice spacing, at a high temperature close to Tc.
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Chapter 7

Disorder, critical current, and vortex

pinning energies in isovalently

substituted BaFe2(As1−xPx)2

7.1 Introduction

Recent vortex imaging studies performed on iron pnictide superconductors show evidence

of nanoscale inhomogeneity [46; 206] as being at the origin of the highly disordered vor-

tex structures in these materials [18; 59; 90; 102; 144; 148; 152; 171; 172]. Notably, in

Ba(Fe1−xCox)2As2, the critical current density jc and vortex distributions imaged by Bit-

ter decoration could be reconciled provided that spatial heterogeneity of both the critical

temperature Tc and the vortex line energy ε0, on a scale of several dozen nm, is taken

to be responsible for flux pinning. [206] At higher magnetic fields, of the order of sev-

eral tenths of T, nano-scale heterogeneities are no longer thought to be responsible for

pinning of flux lines. The critical current density is then most likely determined by the

scattering of quasiparticles in the vortex cores associated with the presence of atomic-size

defects in the crystal. [46] A good candidate for these defects are the dopant atoms them-

selves. [41; 44; 46; 206] The nature of the dopant atom is essential for this mechanism;

charged defects lead to different scattering than uncharged defects. [44] The latter so-

called “weak collective pinning” contribution to the critical current density manifests itself

as a plateau-like behavior in a jc(B) plot at higher magnetic field. It is present in all charge

doped iron-based superconductors, as well as in Ba(Fe1−xRux)2As2. [46; 206]

On the other hand, in isovalently substituted BaFe2(As1−xPx)2 there is no indication

of this contribution, which qualifies the material as “clean” with respect to charge-doped
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iron-based superconductors.[44] Thus, it is interesting to see whether the absence of weak

collective pinning has any impact on the spatial configuration of vortices, in particular,

given recent claims of more ordered vortex configurations than previously observed [18; 59;

90; 148; 152; 171; 172]. Vortex imaging in hole-doped Ba1−xKxFe2As2 (with x = 0.28 and

x = 0.4 ) by Yang et al. using magnetic force microscopy (MFM) at magnetic fields up to

100 Oe have lead to the claim of more ordered vortex configurations in that compound than

in, e.g. Ba(Fe1−xCox)2As2. [206] The authors of Ref. [102] argue that this is due to weaker

pinning. In fact, using the same analysis method as Ref. [206], they found pinning forces

that are, on average, one order of magnitude smaller. They even observed some local

triangular vortex order in the optimally doped Ba1−xKxFe2As2, as well as remarkable

vortex chains, both in the underdoped (x = 0.28) and optimally doped (x = 0.4) samples.

They related the presence of chains in the underdoped compound to pinning of vortices

near the twin boundaries arising from the orthorhombic structure. Furthermore, neutron

scattering experiments on the vortex lattice in isovalently substituted BaFe2(As1−xPx)2
were performed at T = 2 K by Kawano-Furukawa et al. [144]. No Bragg spots were

found for the optimally substituted compound. However, after annealing the samples at

500◦C, a distorted triangular vortex lattice was observed; this became more ordered as

the applied magnetic field was increased from 0.7 to 7 T. [144] Thus, the study of vortex

pinning in BaFe2(As1−xPx)2 is of interest because it casts light on the nature of crystalline

disorder, which, in turn is relevant for the understanding of the nodal structure of the

order parameter [167; 258] and that of possible phase coexistence [209; 219].

In this chapter we present and analyze critical current density measurements, magneto-

optical imaging, and Bitter decoration experiments performed on BaFe2(As1−xPx)2 single

crystals with different x. The spatial configuration of vortices in isovalently substituted

BaFe2(As1−xPx)2 is found to be more homogeneous (less density fluctuations) than was ob-

served in charge-doped Ba(Fe1−xCox)2As2 single crystals.[206] Nevertheless, there is still no

evidence for any triangular order in the vortex structure. At the same time, the quantitative

analysis of the vortex configurations in terms of the pinning energy leads to the conclusion

that disorder is less effective in BaFe2(As1−xPx)2 with respect to Ba(Fe1−xCox)2As2, and

that it depends on the P-content x. The cross-correlation of the pinning energies, pinning

forces, and the critical current density with P-content is discussed. The analysis of the

critical current density yields an estimate of the pin density that is in remarkable agree-

ment with that extracted from Bitter decoration. The pin density clearly decreases upon

increasing the P-content. The results also suggest that the pinning energy is proportional

to the vortex line energy, implying that local variations of the superfluid density might

be at the origin of the critical current density j. In contrast to what is reported in the
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literature [146] we find no weak collective pinning contribution or “fishtail effect” in j(B),

in magnetic fields up to 5 T.

Figure 7.1 Differential magneto-optical images of screening of a magnetic field of Ha = 1 Oe by
BaFe2(As1−xPx)2 single crystals (a) x = 0.27 # 2 , and (b) x = 0.49 #1. Squares
in (a) indicate the regions over which the local transmittivity data of Figure 7.2 (b)
are determined. The frames in (b) indicate the regions where the decoration images
presented in Figure 7.12 (b,d) are situated.
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Figure 7.2 (a) Transition temperatures Tc and transition widths versus P doping level. The
errors bars indicate the local spread of Tc inside a given crystal. For each doping
level, the numbering # 1, #2,. . . denotes different crystals from the same batch. (b)
TH measured on the three regions of the crystal with x = 0.27#2 indicated in Fig. 7.1.
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7.2 Experimental details

Experiments have been performed on BaFe2(As1−xPx)2 single crystals grown by the self-

flux method, [209] and characterized using Energy Dispersive X-Ray Spectroscopy (EDX)

and EDX mapping in a scanning electron microscope (SEM). Crystals with manifest chem-

ical heterogeneity were discarded from further study. The crystals described below present

no impurity phases, within the experimental limits of accuracy . %1.

Magnetic flux penetration in crystals with different doping levels (x = 0.27 − 0.49)

was characterized using the magneto-optical imaging (MOI) method [41; 46; 145] (see

Chapter 4) before further experiments. The MOI technique notably allows one to discard

samples with macroscopic defects, and also, to extract calibrated flux density profiles. The

sustainable current density j for magnetic fields up to Ha = 500Oe was obtained from the

gradient of the local magnetic flux density B perpendicular to the crystal surface, using the

Bean model [47; 66] (see Figs. 7.6,7.7). Given the thickness-to-width ratio of these crystals,

d/w ∼ 0.25, one has j ∼ 3 dB/dx. [62] The crystal inhomogeneity, and notably the local

distribution of Tc was characterized using the differential magneto-optical (DMO) method.

[12; 41] Measurements in higher magnetic fields were performed using micron-sized Hall

probe arrays,[157] tailored in a pseudomorphic GaAlAs/GaAs heterostructure, as well as

using a Superconducting Quantum Interference Device (SQUID)- based magnetometer. In

what follows, individual crystals will be identified as ( x = doping level, sample number

# ). Bitter decoration experiments at an applied field of Ha= 20 G were performed on

BaFe2(As1−xPx)2 single crystals at several doping levels (x = 0.33− 0.58 ).

7.3 Results

7.3.1 Spatial variations of the critical temperature Tc

Figures 7.1 (a) and (b) presents DMO images of the exclusion of an applied field Ha = 1 Oe

as one crosses the superconducting to normal transition of BaFe2(As1−xPx)2 single crystals

(x = 0.27#2) and (x = 0.49#1) respectively. These images reveal that Tc is spatially inho-

mogeneous. While spatial heterogeneity of Tc is especially pronounced in the underdoped

samples, see crystal (x = 0.27#2), it is also present in the overdoped crystals. A link be-

tween the heterogeneity observed in the underdoped samples and the possible coexistence of

superconductivity with the antiferromagnetic phase, and/or the coexistence of orthorhom-

bic and tetragonal structural domains is therefore not obvious. The Tc heterogeneity is

quantified by the local transmittivity TH = [I(r, T )− I(r, T ≪ Tc)] / [I(r, T ≫ Tc)− I(r, T ≪ Tc)]

extracted from the luminous intensity I(r, T ), in the different regions indicated in the DMO
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images of Fig. 7.1. The result is presented in the Inset to Fig. 7.2 for crystal (x = 0.27#2).

The width of the superconducting transition obtained for various crystals is presented in

Fig. 7.2 (a), where the error bar indicates the spread of Tc in a given crystal, and the data

points give the temperature value at which half the superconducting crystal has transited.

Element K-ratio Zaf Elm. wt % Norm wt % At. % At. prop. Nom.%

P 0.0619 1.6952 10.49 4.76 11.60 13.30 10.8
As 0.2883 2.1698 62.55 28.38 28.58 32.80 29.2
Fe 0.6528 0.9723 63.47 28.79 38.91 44.64 40
Ba 0.7747 1.0831 83.90 38.07 20.91 24 20

Total 220.41 100.00 100.00 114.74
P 0.0696 1.7002 11.83 4.60 11.21 12.89 10.8
As 0.3385 2.1619 73.18 28.43 28.67 32.95 29.2
Fe 0.7685 0.9717 74.68 29.01 39.24 45.10 40
Ba 0.9022 1.0832 97.72 37.96 20.88 24 20

Total 257.41 100.00 100.00 114.94

Table 7.1 Chemical analysis over the surface of the crystal BaFe2(As1−xPx)2 with x = 0.27#1
were presented as shown in Figure 7.3 obtained for the selected regions 1 and 2 respec-
tively using EDX with accelerating voltage: 15.00 keV and takeoff angle 30 degrees.

In order to investigate the link between chemical heterogeneity and spatial inhomogene-

ity of Tc revealed by the MO images, quantitative chemical analysis was performed using

the EDX mapping over the sample surface in a scanning electron microscope. Surfaces

of samples under study were etched chemically using an aqueous solution of 1.769 g KI

in 6.09 g of deionized water. The etching rate of such a solution as a function of time is

given in Ref. [240] as 256 Å/min. In our case the etching process takes 10 minutes. The

effect of the etchant on a superconducting YBCO film was also studied; after a 10 minute

exposure to the etchant, any physical attack on the films occurs at a rate less than about

30 Å/min. Figure 7.3 shows maps of chemical composition, obtained on the underdoped

crystal with x=0.27 # 1. In the color maps, the intensity of blue represents the occurrence

of the corresponding element (Ba, Fe, As, or P). The global spatial distribution seems ho-

mogeneous, however some heterogeneity might exist in a smaller scale than the resolution

of the figure. Chemical analysis was performed on selected regions on the surface of the

underdoped crystal (x=0.27 # 1). The surface maps and chemical analysis results are

shown in Figure 7.3 and in Table 7.1.

Table 7.1 shows small fluctuations on the atomic percentage of the dopant atom P

exist between different regions selected for chemical analysis. One also observes spatial

heterogeneity of the chemical analysis maps , but this kind of heterogeneity is due to the

surface roughness and/or surface state (dirt, steps). More particularly, we have observed
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Figure 7.3 (a) DMO images of the crystal that reveal the spatial heterogeneity. (b) SEM image
of the crystal with x=0.27 # 1. Regions selected for chemical analysis are indicated
with squares on the crystal image.(c) Maps of chemical analysis for each element,
performed using EDX on the surface of the crystal with x=0.27 # 1.
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an slight excess of P (% 29) and a deficit of As on the surface of the crystal with x = 0.27

# 1(see Table 7.1). In order to see whether this heterogeneity has a chemical origin or

exists only in the underdoped samples, similar analysis was performed on an optimally

doped sample with x=0.36 # 2 (see Figure 7.4). In Table 7.2 one can see the chemical

analysis results for this optimally doped sample that there is a deficit of P (% 31) on the

surface of the crystal with x = 0.36 # 1 . One can argue that the spatial heterogeneity

observed separately on the MOI images are supported by the spatial variations of the

chemical composition from nominal values on the sample surfaces.

Figure 7.4 SEM image and DMO images of the crystal with x=0.36 # 1. Regions selected for
chemical analysis are indicated with numbers on the crystal image.
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Element K-ratio Zaf Elm. wt % Norm wt % At. % At. prop. Nom.%

P 0.0328 1.6778 5.50 5.21 12.53 24 14.4
As 0.1265 2.1951 27.78 26.34 26.15 50.11 25.6
Fe 0.3321 0.9743 32.35 30.67 40.86 78.30 40
Ba 0.3679 1.0833 39.85 38.78 20.47 39.22 20

Total 105.48 100.00 100.00 191.63
P 0.0327 1.6799 5.49 5.27 12.68 24 14.4
As 0.1268 2.1890 27.75 26.65 26.50 50.18 25.6
Fe 0.3229 0.9742 31.45 30.21 40.29 76.30 40
Ba 0.3640 1.0835 39.44 37.87 20.54 38.90 20

Total 104.13 100.00 100.00 189.38
P 0.0329 1.6781 5.52 5.30 12.74 24 14.4
As 0.1252 2.1937 27.47 26.37 26.22 40.39 25.6
Fe 0.3241 0.9743 31.58 30.32 40.43 76.18 40
Ba 0.3655 1.0833 39.59 38.01 20.61 38.84 20

Total 104.16 100.00 100.00 188.41

Table 7.2 Chemical analysis over the surface of the crystal BaFe2(As1−xPx)2 with x = 0.36#1
as shown in Figure 7.4 obtained for the selected regions using EDX with accelerating
voltage: 15.00 keV and takeoff angle 30 degrees.

Figure 7.5 Magnetic flux density distribution in the BaFe2(As1−xPx)2 single crystals (a) (x =
0.33#1), and (b) (x = 0.36#2), for the indicated temperatures and applied magnetic
fields Ha. The top left of each subfigure is the image of the crystal. White bars
represent the lines along which the profiles in Figs. 7.6 are extracted.

7.3.2 Sustainable current density j

Figure 7.5 presents MOI of the magnetic flux penetration (after zero-field cooling) into su-

perconducting BaFe2(As1−xPx)2 single crystals with different doping levels, (x = 0.33#1)

and (x = 0.36#2) respectively. The former crystal is characterized by very weak bulk

pinning and, as a result, a large influence of geometrical [64] and surface barriers [35]. The
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Figure 7.6 Magnetic flux profiles in BaFe2(As1−xPx)2 single crystals (x = 0.33#1) at T = 19 K
and 26 K (a,b), and (x = 0.36#2) at T = 19 K and 22.2 K (c,d). The Bean–like
profiles in (c,d) are obtained from the MOI images of Figure 7.5 (b). The profiles
presented in (a,b) are influenced by a surface barrier and are obtained from images
on the crystal in Fig. 7.5 (a).

influence of the surface screening current leads to an inhomogeneous flux density distri-

bution as presented in Figure 7.5 (a). In contrast, crystal (x = 0.36#2) shows regular

flux penetration, in accordance with the Bean critical state model. The influence of a

surface barrier, present for both flux entry and flux exit, is also revealed by Hall probe

array measurements.

The flux density profiles across the same crystals (x = 0.33#1) and (x = 0.36#2),
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Figure 7.7 Temperature dependence of the sustainable current density j(T,B = 30mT) deter-
mined from t flux density profiles as obtained from MOI images for each presented
sample, for doping levels varying from x = 0.23 to x = 0.49. Dashed lines are guide
for eyes.

depicted in Figure 7.6 (a,b) and (c,d) respectively, were extracted from the calibrated

luminous intensities of the magneto-optical images in Figure 7.5. One sees that, even for

the same or comparable doping levels, very different flux density profiles can be obtained.

Figure 7.6 (c,d) shows the Bean-like penetration of the magnetic flux inside the crystal with

(x = 0.36#2), with no clear influence of a surface barrier, while the flux profiles for crystal

(x = 0.33#1) in Figure 7.6 (a,b) show, apart from inhomogeneity, a large discontinuity

in the magnetic induction at the sample edge, characteristic of a surface barrier. Given

the very different behavior for nearly the same sample composition, the origin of the bulk

critical current density in BaFe2(As1−xPx)2 must be extrinsic. This is underscored by the

temperature dependence of the sustainable current density j(T,B = 30mT) of the studied

samples, shown in Fig. 7.7 . The absolute value of j(T ) is widely disperse, even for crystals

with the same doping level.

In spite of the disparity, the flux pinning mechanism in all crystals is the same. Fig. 7.8

shows hysteresis loops of the local gradient of the magnetic induction dB/dx in fields

of up to 2 T, obtained on crystals of different doping levels, all clearly showing Bean-

like critical state flux profiles, using the Hall probe–array magnetometry technique [157].

The hysteresis loops were measured at 6 K, at which flux creep has only a moderate
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Figure 7.8 Hysteresis loops of the spatial gradient of dB/dx the local magnetic induction mea-
sured at T = 6 K, in BaFe2(As1−xPx)2 single crystals of different doping levels
(x = 0.27− 0.58) using the Hall probe magnetometry technique .

122



7.3 Results

influence. For all crystals, of all doping levels, one has the ubiquitous central peak at zero

field, believed to be due to strong pinning by nm-scale disorder.[41] The magnetic field

dependence of the sustainable current density j(B) was extracted from the width of the

measured hysteresis loops. Figure 7.9 shows the j(B) curves for optimally doped single

crystal (x = 0.36 # 2) at the indicated temperatures. Here the j(B) curve at the lowest

temperature in Figure 7.9 is representative of the critical density jc. At larger temperatures

and fields the curves are even more affected by flux creep.
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Figure 7.9 Magnetic field dependence of the sustainable current density j for the crystal with
x=0.36 # 2, obtained from magnetic measurements of the hysteresis loops using the
Hall probe magnetometry method [157]. Above µ0Ha=0.1 T, the low temperature
data follows j B−1/2.

7.3.3 Effect of flux creep

The influence of flux creep is assessed using relaxation measurements of the local flux den-

sity using the Hall probe magnetometry technique. Typical examples shown in Fig. 7.10(a)

show that the creep rate S ≡ d ln(dB/dx)/d ln t is typically less than 1%. Nevertheless, the

sustainable screening current density j is significantly affected, such that it is given by the
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equality U(j) = kBT ln [(t0 + t) /τ ] rather than by the critical current density jc [43; 235].

Here, t0 is a time describing transient effects at the onset of relaxation, and τ is a normal-

ization time related to the sample inductance.[43; 235] The dependence of the flux creep

barrier can be extracted using various methods, including those of Maley et al. [170] and

Abulafia et al. [156; 257]. Applying the latter, we find [see Fig. 7.10(b)] that the creep

barrier in optimally doped BaFe2(As1−xPx)2 follows

U(j) = Uc

(

jc
j

)µ

, (7.1)

with values of the exponent µ ∼ 1.5−2. Therefore, the time– and temperature dependence

of the screening current density is described by

j = jc

[

kBT

Uc
ln

(

t+ t0
τ

)]−1/µ

. (7.2)

The impact of flux creep on the temperature dependence of the sustainable current is

depicted in Fig. 7.10(c), which shows j(B, T )–curves for crystal (x = 0.33) #2). The curve

in zero applied field is little affected by creep, and roughly follows the expected temperature

dependence of the depairing current, j(0, T ) ∼ ε0(T )/Φ0ξ(T ). Here, the vortex line energy,

ε0(T ) = Φ2
0/4πµ0λ

2
ab is evaluated using the data for the in–plane penetration depth λab(T )

of Ref. [135] (Φ0 = h/2e is the flux quantum). The curves in non-zero field can then be well

described by taking the creep barrier prefactor Uc(T ) ∝ ε0(T ), jc(B, T ) ∝ j(0, T )B−1/2,

µ = 1.6, and ln [(t+ t0) /τ ] = 20 [156] .Therefore, the temperature dependence of the

screening current in fields larger than 0.1 T is essentially determined by flux creep.

7.3.4 Extraction of pinning parameters

We now analyze the j(B)–curves measured at low temperature, which bear the hallmarks

of strong pinning. These are the plateau at low magnetic field, [41; 43]

jc(0) = π1/2
fp

Φ0ελ

(

Upni
ε0

)1/2

(B ≪ B∗), (7.3)

followed by a power-law decrease as a function of the the flux density B,[41; 43] which can

be described as

jc(B) =
fp

Φ0ελ

(

Upni
ε0

)(

Φ0

B

)1/2

(B ≫ B∗). (7.4)

B∗=(Φ0/π)(Upni/ε0) is the crossover field above which the intervortex repulsion limits the

number of effective pins per vortex, and fp is the maximum pinning force exerted by a
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Figure 7.10 Magnetic relaxation in BaFe2(As1−xPx)2 crystal (x = 0.33#2) measured using the
Hall-probe array technique. (a) shows the relaxation of the magnetic flux density
at the center of the crystal surface, and positions 20 and 40 µm from the center,
respectively. Data were taken at 10 K, after field cooling in 200 mT and reducing
the applied field to zero. (b) Activation barrier versus shielding current density, as
obtained using the method outlined in Refs. [156; 257]. (c) Temperature dependence
of the sustainable current density in zero applied field, and applied fields of 0.14, 0.2,
1, and 2 T. Measurements using the Hall probe-array technique (open symbols) were
obtained from the width of the magnetic hysteresis loops such as those in Fig. 7.8 ,
while data from MOI are obtained from the flux-profile gradient. The lines depict
fits to the depairing current density (Ha=0) and to Eq. 7.2, taking the activation
energy Uc(T)∝ ε0(T), and jc(B,T)jc(0,T)B−1/2 (Ha 6= 0).
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single strong pin. Up/[J] is the pinning energy of a single strong pin, ni is the pin density,

and ελ is the penetration depth anisotropy. The contribution to j(B) due to weak collective

pinning of the vortex lines by atomic sized point pins, observed in all charge-doped iron

based superconductors as well as in Ba(Fe1−xRux)2As2, is clearly absent in Figure 7.9.

Furthermore, no second peak feature of the critical current, such as this was reported by

Fang et al. [146], was observed, in fields up to 5 T. The BaFe2(As1−xPx)2 system can

therefore be seen as an typical strongly pinning superconductor.

Figure 7.11 Average distance L between effective pins versus the P doping level, at T = 5 K (•
), and as determined from Bitter decoration ( ).

Equations (7.3) and (7.4) show that the pinning force of a single strong pin is given as

fp = πΦ
3/2
0 ελ{j2c (0)/[∂jc(B)/∂B−1/2]} and can therefore be obtained from the experi-

mentally measured low temperature, low-field critical current density jc(0), and the slope

∂jc(B)/∂B−1/2. Reserving our attention to the crystals used in the Bitter decoration ex-

periments presented below, we obtain, for an estimated ελ = 0.15,[196] fp ≈ 8×10−13 N for

both crystals, (x = 0.36#2) and (x = 0.49#1). This value is twice larger than that mea-

sured in Ba(Fe1−xCox)2As2.[206] An evaluation at the highest measurement temperature of

0.8Tc yields fp = 2×10−14 N; however, this value is likely to be overestimated due to creep.

One can also extract a “pinning efficiency" (Upni/ελε0) = (1/πΦ0)
[

(∂j(B)/∂B−1/2)/j(0)
]2

in units [m−2]. This number, involves a simple ratio of the slope ∂j(B)/∂B−1/2 and the

zero–field j(0), and should not be affected by material anisotropy. It is directly related to

the mean distance between effective pins in the low–field single–vortex regime of strong
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Figure 7.12 Bitter decoration images of BaFe2(As1−xPx)2 single crystal (x = 0.49#1), (a) and
(c) and (x = 0.36#2), (b) and (d). The white arrows indicate the vortex-free
Meissner belt observed (a) near a surface step and (d) at the edge of crystal (x =
0.49#1).

pinning, L = (πUpni/ελε0)
−1/2.[43] Figure 7.11 shows that the latter distance is of the

order of several dozen to several hundreds of nm, in accordance with the strong pinning

hypothesis. Moreover, the distance between effective pins clearly increases as function of

the doping x.

7.3.5 Vortex imaging by Bitter decoration

The Bitter decoration technique [206] was used to image the vortex ensemble in BaFe2(As1−xPx)2
single crystals with three different doping levels (x = 0.33, x = 0.36, x = 0.49). The

experiments were realized under field cooled (FC) conditions at a field Ha = 20 G ap-

plied parallel to the c-axis of the crystals. The decoration experiment for the crystal

with x = 0.33 was not successful, presumably due to the high value of the penetration

depth.[132; 209] The vortex configurations shown in Fig. 7.12 for samples (x = 0.36#2),

and (x = 0.49#1) are representative of what is observed over the entire crystals. From
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Figure 7.13 Delaunay triangulation of vortex ensembles presented in Fig. 7.12 for
BaFe2(As1−xPx)2 single crystals (x = 0.36#2), (a,c) and (x = 0.49#1), (b,d). Blue
dots represent vortices with sixfold coordination, while red dots represent differently
coordinated vortices.

the decoration images, we obtain, for both crystals, the average value of the magnetic in-

duction as Bint = nvΦ0 ≈ 19 G (with nv the vortex density). This is 1 G smaller than the

applied field during the experiment. In contrast to Ref. [194], there is therefore evidence

for Meissner exclusion of the magnetic flux. Moreover, the Meissner current manifests itself

as a vortex-free “Meissner belt" along the edges of the decorated crystal (x = 0.49#1) as

well as near the surface steps indicated with arrows in Figure 7.12. These appear during

preliminary cleavage of the samples. Long vortex chains reminiscent of those observed in

Ref. [102] are observed in the decoration images of both doping levels, however, these are

more pronounced in the crystal (x = 0.36#2).

The spatial distribution of vortices in both crystals appears to be more homogeneous

than was observed for the Co-doped compound,[206] but there is no evidence for true

vortex lattice order. This is brought out by the insets to Figure 7.13 (a,c) and (b,d), which

represent the Fourier transforms of the vortex positions in the respective images. The
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Figure 7.14 Distributions of the nearest neighbor distances in the respective triangulations pre-
sented in Fig. 7.13 for BaFe2(As1−xPx)2 single crystals (x = 0.36#2), (a,c) and
(x = 0.49#1), (b,d). The insets represent the distribution of the coordination num-
ber cn.

main panels of Fig. 7.13 (a,c) and (b,d) present the Delaunay triangulations of the vortex

ensembles in Figure 7.12. The blue dots represent vortices with sixfold coordination, while

red dots represent vortices which have a different coordination number. One can see that

the vortex structure contains some “ordered" regions with sixfold coordination number.

The insets to Figure 7.14 (a-d) reveal that almost half of the vortices have coordination

number cn = 6 (46% for the crystal with x = 0.49#1, and 43% for crystal x = 0.36#2).

The main panel represents the distributions of nearest neighbor distances for each vortex.

These have a mean value rij = 1 µm, while the lattice parameter for a triangular perfect

lattice of the same density is a△ = 1.075
√

Φ0/B = 1.12 µm. This shift indicates that

vortex pinning induces vortex density fluctuations. Note that the presence of chain-like

structures of more closely spaced vortices accentuates the decrease of the mean vortex

spacing with respect to what is expected for the triangular lattice.
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7.4 Discussion

7.4.1 Pinning energies

In that follows, we adopt the procedure of Ref. [206] to determine the vortex interaction

energy. For this, one needs to know the value of λab at the temperature Tf at which the

vortex ensemble is frozen. As in Ref. [206], we use the information that can be obtained

from vortex lines situated near surface steps.[206] Such steps may act as barriers, but,

due to the circulation of the Meissner current, they also prevent vortex lines from being

situated right at their edge. Inserting the height of the surface step in Fig. 7.12 (a),

h = 1.3 µm, and the width of the vortex free region close to the step, u = 1.2 µm, in

Eq. (1) of Ref. [206], the value of the penetration depth at the freezing temperature is

graphically estimated as λab(Tf ) ≈ 700 nm. Using the temperature dependence of λab(T)

from Ref. [135], this yields the freezing temperature of the vortex ensemble as Tf ≈ 0.87Tc.

Even though vortices are frozen at a relatively high temperature, Tf is lower than the value

of 0.95 Tc found in Ba(Fe1−xCox)2As2.

Using the estimated value λab(Tf ) ≈ 700 nm and the vortex positions extracted from

the SEM images in Fig. 7.12, we calculate the vortex interaction energy as

E
i
int =

∑

j

2ε0K0

( |rij |
λab

)

. (7.5)

Here K0(x) is the lowest-order modified Bessel function, and |rij | is the distance from

vortex i to vortex j. For each vortex i, only the neighbors j contained within a radius

of 10λab(T ) are taken into account. This cutoff radius was chosen after verifying that the

interaction energy E
i
int does not change significantly if greater values of j are considered.

Figure 7.15 (a) and Figure 7.16 (a) present the vortex interaction energies as color-coded

maps with energy scale normalized by ε0(Tf ), for the decoration images of Fig. 7.12 (a-d),

respectively. The maps show a globally homogeneous distribution, however a number of

denser regions exist. The histograms of the interaction energies for maps drawn in Fig-

ure 7.15 (c) and 7.16 (c) . Note that the presence of chain-like features with a denser

vortex arrangement adds to the width of the histograms for BaFe2(As1−xPx)2 single crys-

tal (x = 0.36#2). In spite of this, the energy distributions are considerably narrower

than those found in Ba(Fe1−xCox)2As2.[206] Furthermore, all distributions are centered

about the average Eint ≈ 3.5ε0, which corresponds to the interaction energy value (δ-

peak) of the Abrikosov lattice for this particular vortex density. Therefore, in contrast to

Ba(Fe1−xCox)2As2,[206] no pinning-induced shift of the average value of the energy dis-

tribution histogram with respect to the δ-peak value is observed. The large shift found in
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Figure 7.15 BaFe2(As1−xPx)2 single crystal (x = 0.36#2) (a) Normalized color-coded maps of
the vortex interaction energy calculated from the images of Fig. 7.12 (a,c) using
Eq. (7.5) , and (b) the modulus of the pinning force (per unit length), calculated
from the images of Fig. 7.12 (b,d) using Eq. (7.6). (c) Normalized interaction energy
distributions for BaFe2(As1−xPx)2 crystals (x = 0.36#2). The interaction energy
per vortex of the triangular lattice (δ-function) is represented by the central beam
in each histogram. (d) Pinning force distributions .
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Ref. [206] was interpreted in terms of a large average pinning energy in the vicinity of Tc,

which can only be a result of Tc heterogeneity. The absence of such a shift in isovalently

substituted BaFe2(As1−xPx)2 means that spatial inhomogeneity of Tc is irrelevant for vor-

tex pinning in this material. This can be due to a smoother temperature dependence of

the pinning potential, e.g. Up ∝ (1−T/Tc)2, or to a larger mobility of vortices due to more

pronounced flux creep. Figure 7.17 (a) shows the different temperature dependence of the

superfluid density for both the Co and P doped "122" compounds. It is seen that upon

approaching Tc, the dependense ns(T) for P-substitution BaFe2As2 is much smoother. If

εiint ∝ ε0 ∝ ns, this smoother T-dependence in BaFe2(As1−xPx)2 explains not only the

lack of pinning-induced shift in εint distribution but also the lower Tf∼0.87Tc. The sketch

in Figure 7.17 (b) depicting the mean vortex line energy for vortices situated in low Tc and

high Tc regions of the crystal that illustrates the situation even large spatial variations of

Tc at Tf approaching connot affect the vortex disposition (see Figure 7.17). In fact, the Tc
heterogeneity observed within the decorated areas does not lead to qualitatively different

vortex arrangements in different parts of the crystal [see Figure 7.1 (b)].

Maps of the modulus of the pinning force for each individual vortex, calculated from

fi =
∑

j

2ε0
λab

rij

|rij |
K1

( |rij |
λab

)

(7.6)

following a similar procedure as used for the determination of Ei
int, are shown in Fig. 7.16 (b)

and Fig. 7.15 (b) . Here K1(x) is the first order modified Bessel function. Since the

rendered vortices in Fig. 7.12 are in a stationary state at the freezing temperature Tf ,

the calculated intervortex repulsive force must be balanced by the pinning force. The

maps of Fig. 7.16 (b) and Fig. 7.15 (b) therefore represent the minimum local pinning

force for each vortex, min(|fi|). The distributions of these, shown in Fig. 7.16 (d) and

Fig. 7.15 (d) , allow one to estimate the average pinning force per unit length of vortex.

We obtain |f i| ∼ 3.5 × 10−6 Nm−1 for crystal (x = 0.49#1) and |f i| ∼ 4.5 × 10−6 Nm−1

for crystal (x = 0.36#2). These (high temperature) values are comparable to those found

in Ba(Fe1−xCox)2As2.[206] The moduli of the pinning forces mapped in Figure 7.16 (b)

and Fig. 7.15 (b) , are reasonably correlated with the interaction energy maps, with the

respective probability distributions, shown in Figs. 7.15 (d) and 7.16 (d), being clearly

broader for the lower doping level x = 0.36.

As in Ref. [206], the ratio of the elementary pinning force per pin fp, extracted from

the j(B) curves in section 7.3.1, and |f i| obtained from Bitter decoration, allows one to

evaluate an upper bound on the average distance L̄ between effective pins in an independent

manner. Using the low-temperature value fp ∼ 8 × 10−13 N, our analysis yields L̄ = 180
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Figure 7.16 BaFe2(As1−xPx)2 single crystal (x = 0.49#1) (a) Normalized color-coded maps of
the vortex interaction energy calculated from the images of Fig. 7.12 (b,d) using
Eq. (7.5) , and (b) the modulus of the pinning force (per unit length), calculated
from the images of Fig. 7.12 (b,d) using Eq. (7.6). (c) Normalized interaction energy
distributions for BaFe2(As1−xPx)2 crystals (x = 0.49#1). The interaction energy
per vortex of the triangular lattice (δ-function) is represented by the central beam
in each histogram. (d) Pinning force distributions .
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nm for crystal (x = 0.36#2) and L̄ = 230 nm for crystal (x = 0.49#1). Figure 7.11 shows

that these numbers correspond reasonably to those extracted from the pinning efficiency.

The increase with doping x of the distance L = (ελε0/πUpni)
1/2 between effective

pinning centers is quite remarkable. Among the three possible reasons, one can first invoke

the increase with doping of the vortex line energy, due to the decrease of the London

penetration depth with increasing x [132]. More rigid vortices that are less able to take

advantage of the pinning centers in the material. Second, the density ni of pinning centers

decreases as the doping x increases. If the pinning would be directly linked to the P dopant

atoms, this would be rather surprising: usually, disorder levels upon alloying increase, with

maximum disorder being attained at 50 % substitution. Nevertheless, the evolution with

x is reminiscent of that of the mean free path values extracted by Shishido et. al. from

de Haas-van Alphen oscillations of the magnetization [97] They reported that the mean

free path for the β orbits in BaFe2(As1−xPx)2 single crystals increases from l ∼ 170 Å to

800 Å when P content varies from x = 0.41 to 1. Last but not least, the penetration depth

anisotropy ε−1
λ decreases as function of x, leading to stiffer vortex lines and less pinning.

This hypothesis follows from the doping-dependent evolution of the Fermi surface.[97]

Another possible origin of disorder might be the different pnictogen height (P, As) upon

increasing the doping level x as reported by Rotter et. al. [161]. Given the heterogeneity

observed in DMO for all investigated x, and the inconsistence of the evolution of L(x)

with the increase in P dopant–induced disorder, we surmise that the main trends in the

doping–dependent pinning force and critical currents in BaFe2(As1−xPx)2 (see Figs. 7.8

and 7.11) are due to the evolution of the intrinsic superconducting parameters such as the

superfluid density ns(x) ∝ λ−2
ab (x) and the anisotropy parameter ελ(x).

The question concerning the origin of strong pinning in BaFe2(As1−xPx)2 remains. The

irrelevance of Tc–heterogeneity and the incompatible trend with increasing dopant disorder

argues against a major role of the P-atoms. We can ascertain that the relevant pinning

defects are of extrinsic origin, and have a size and separation on the scale of, perhaps,

several to several dozen nm. From Furukawa et al.,[144] we know that the disorder can be

readily annealed. This qualifies nanoscale defects structures such as vacancy clusters or

dislocation loops as possible pinning defects.

One can also compare rendered pinning energy distributions to the high-Tc material

Bi2Sr2CaCu2O8+δ of the same density imaged using Bitter decoration. Figure 7.18 presents

a decoration image of the vortex lattice in Bi2Sr2CaCu2O8+δ at Ha=20 Oe , the Delaunay

triangulation of the vortex positions and their Fourier transform. The rendered vortex

structure of Bi2Sr2CaCu2O8+δ appears to be more homogeneous than that presented pre-

viously in Fig. 6.10. This is due to the higher value of the applied magnetic field during the
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Figure 7.17 (a) Temperature dependence of the superfluid density for BaFe2(As1−xPx)2 and
Ba1−xKxFe2As2 single crystals from Ref. [135] and Ba(Fe1−xCox)2As2 single crys-
tals (see Chapter 8). (b) Sketch of the temperature dependence of mean vortex line
energy when approaching Tc.

decoration experiment. The corresponding Fourier transform of the vortex positions shows

perfect Bragg spots of the triangular lattice. One can compare the interaction energy dis-

tributions of the studied compound BaFe2(As1−xPx)2 and Bi2Sr2CaCu2O8+δ calculated

using the low temperature value of the penetration depth λL(0) ∼ 300 nm. The com-

parison of the interaction energy distributions are shown in Figure 7.19. The calculated

distributions depend on the value of λab, and also on the freezing temperature value of the

vortex ensembles. In spite of the lower of Tf/Tc of the vortex ensemble in BaFe2(As1−xPx)2
as compared to Ba(Fe1−xCox)2As2, the distributions calculated the sam low temperature

value λ=300 nm are still 3-4 times wider than for Bi2Sr2CaCu2O8+δ at the same field. The

mean value of the calculated interaction energies for BaFe2(As1−xPx)2 ( x = 0.36 # 2 and

x = 0.49 #1) are found to be Eint ≈ 0.6ε0, which is twice that in Bi2Sr2CaCu2O8+δ.

Finally, one can address the clear presence of the chain-like structures in the Bit-

ter decoration images. Since the latter are obtained after field–cooling, and since the

BaFe2(As1−xPx)2 under consideration show Meissner expulsion, a certain fraction of vor-

tices must exit the material before the vortex ensemble is frozen at Tf . A possible inter-

pretation of the chains is in terms of flow channels for these exiting vortices, the flux in

intermediate areas remaining pinned. Indeed, it was shown numerically [40] that, for a
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strongly pinned vortex system, vortex flow occurs along only a few preferential paths.

Figure 7.18 (a) Bitter decoration image of Bi2Sr2CaCu2O8+δ for an applied field Ha=20 G. (b)
Delaunay triangulation of the vortex positions. (c) Distribution of the coordination
number of vortices, and (d) Fourier transform of the vortex positions.

Figure 7.19 Comparaison of the interaction energy distributions calculated using λ(0)=300nm of
Bi2Sr2CaCu2O8+δ and Fe2(As1−xPx)2 with (a) x = 0.49 # 1 , (b) x = 0.36 # 2.
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7.5 Conclusion

We have presented an overview of vortex pinning in single crystals of the isovalently sub-

stituted iron-based superconductor BaFe2(As1−xPx)2 single crystals, in which we have

attempted to correlate the screening (critical) current density as function of temperature,

field, and doping x, with vortex lattice structures observed using Bitter decoration. The

critical current density in BaFe2(As1−xPx)2 is, overall, very well described by the strong

pinning scenario of Ref. [43], which allows one to extract elementary pinning forces (of

the order of 10−13 N) and the distance between effective pins. The latter are of the order

of 100 nm, and increase as a function of doping level x. Contrary to Ref. [146], we find

no contribution of weak collective pinning to the critical current. Critical current data

are rather significantly affected by flux creep, which prohibits one from drawing definite

conclusions concerning temperature dependence of pinning.

The decoration images reveal rather less density fluctuations in the vortex ensemble

with respect to what was observed in the charge doped Ba(Fe1−xCox)2As2 material. Also,

pinning energy and force distributions in BaFe2(As1−xPx)2 are much narrower than those

in Ba(Fe1−xCox)2As2, and are not shifted with respect to the interaction energy of a

triangular vortex lattice of the same density. These observations exclude a role of Tc–

variations in determining the frozen vortex state obtained upon field–cooling, and pinning

in general. This observation is underscored by the doping–dependence of our results, which

seems to be determined by the variation of intrinsic superconducting parameters, rather

than by a major role of the P-dopant atoms.

Finally, chain-like vortex configurations were observed in both studied doping levels;

we propose that these are due to heterogeneous vortex flow during Meissner expulsion of

part of the flux.
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Chapter 8

Cavity perturbation technique

8.1 Microwave electrodynamics of superconductors

The loss of the resistance and the Meissner effect in superconductors were first united in

a phenomenological picture by the London brothers [73]. Their model proposed the exis-

tence of superconducting carriers, with density number ns, whose electromagnetic response

is governed by the London equations. The generalized two fluid model, built on the Lon-

don model, supposes that besides the superconducting electrons there are normal charge

carriers obeying Ohm’s law. It assumes that the electromagnetic response of a supercon-

ductor can be divided into two components, that due to normal and to superconducting

electrons nn, and ns respectively. The results of the two fluid model roughly describe

the temperature dependence of electromagnetic response but imply that losses vanish at

T=0 or ω=0. Further details cannot be deduced from this model. The shortcoming of

the two-fluid model were remedied by the theory of Pippard which takes into account the

non-local electrodynamics of superconductors in microwave regime, and by the BCS theory

which derives the electromagnetic response taking into account the superfluid, but also the

quasiparticle excitations across the superconducting gap ∆.

8.1.1 Complex conductivity- Two fluid model

To understand the behavior of an ordinary conductor exposed to electromagnetic fields, the

permeability µ and the conductivity σ must be known. A useful form of the conductivity

can be obtained from the Drude model, which considers the equation of motion of an

electron in an applied electric field:

mv̇ = −m
∗v
τ

− eE. (8.1)
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The term −mv/τ characterizes the electrical resistance through τ , the relaxation time or

scattering time, which is the average interval between scattering events for the electron

within the conductor. Solving Equation (8.1) for a steady state driving force −eEeiωt,

noting that the local current density J=-env where n is the electron density gives

J =
ne2τ

m

1− iωτ

1 + ω2τ2
E. (8.2)

The complex conductivity is identified as,

σ(ω) ≡ σ1 − iσ2 = σ0
1− iωτ

1 + ω2τ2
(8.3)

with real and imaginary parts,

σ1 = σ0
1

1 + ω2τ2
(8.4)

σ2 = σ0
ωτ

1 + ω2τ2
, (8.5)

and a dc conductivity σ0=ne2τ/m∗. Integrating σ1(ω) over all frequencies gives a result

that is independent of both τ and ω:

∫ ∞

0
σ1(ω) dω =

π

2

ne2

m∗ . (8.6)

Equation (8.6) is a very general oscillator strength sum rule, and is derived from a Kramers-

Krönig transformation relating the imaginary and real parts of the response function σ(ω).

In the generalized two fluid-model, the total conductivity can be written as coming from

two parallel and independent sources, one due to the normal electrons, and other one due

to the superconducting electrons:

σ(ω) = [σ1n(ω)− iσ2n(ω)] + [σ1s(ω)− iσ2s(ω)]. (8.7)

The total electron density ne2/m∗ is temperature independent, and equal to the sum of the

normal fluid density nne2/m∗, and the superfluid density nse2/m∗. In reality the "normal"

conductivity arises from the quasiparticle excitations. In the clean limit, all of the charge

carriers are assumed to condense into the superconducting ground state at T=0 such that:

ne2

m∗ =
nse

2

m∗ (T = 0) =
nne

2

m∗ (T ) +
nse

2

m∗ (T ). (8.8)

Allowing τ in the superconducting state to go to infinity, one finds from Equation (8.4) that

σ1s becomes a δ-function at zero frequency. The δ-function represents the dc conductivity
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of the superconductor, and its coefficient is set by Equation (8.6):

σ1s(ω) =
π

2

nse
2

m∗ δ(ω). (8.9)

At nonzero frequency, σs is strictly determined by σ2s. In the same τ→ ∞ limit, σ2s
becomes:

σ2s =
nse

2

m∗ω
=

1

µ0ωλ2L(T )
, (8.10)

which is the same London penetration depth obtained from the second London equation,

but now related to σ2s. Remembering the definition of the magnetic penetration depth

λ2 = 1/µ0ωσ2 reveals that the measurement of λ will differ from λ2L = 1/µ0ωσ2s if there

is a significant contribution to σ2 from σ2n. Provided σ2s≫ σ2n, a measurement of the

magnetic penetration depth yields the superfluid density:

nse
2

m∗ω
≈ 1

µ0

1

λ2(T )
. (8.11)

When this is the case, the normal fluid plays a role in screening electromagnetic fields,

and cannot be experimentally distinguished from the superfluid. The total integrated

quasiparticle conductivity σ1n is again a measure of the normal fluid density nn:

nse
2

m∗ω
=

2

π

∫ ∞

0
σ1n(ω, T ) dω. (8.12)

8.1.2 Plane waves in superconductors: surface impedance

We will examine the electromagnetic properties of superconductors, by using Maxwell’s

equations for periodically varying fields, and observing that a wave equation can be de-

velop from them. From the wave equation, a propagation constant and impedance can

be extracted. These parameters will then be examined using complex conductivity. For a

sinusoidal time dependence and in a region in the space free of static charges, Maxwell’s

equations are:

~∇× ~B = µ
(

~J + jωǫ ~E
)

(8.13)

~∇× ~E = −jω ~B (8.14)

~∇. ~B = 0 (8.15)

~∇. ~E = 0 (8.16)
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Taking the curl of Equation (8.14), and one obtains

~∇× ~∇× ~E = −jω~∇× ~B (8.17)

Substituting Equation (8.13) , and introducing the complex conductivity σ one has

~∇× ~∇× ~E = −jω (σ + jωǫ) ~E (8.18)

where σ is complex in the case of a superconductor. Using the vector identity

~∇× ~∇× ~E = ~∇(~∇. ~E)−∆ ~E (8.19)

where ~∇(~∇. ~E) = 0 (no free charges), and Equation (8.15) , one has

~∇× ~∇× ~E = −∆ ~E (8.20)

Substitution into Equation (2.7) gives

∆ ~E = jωµ(σ + jωǫ) ~E, (8.21)

the wave equation for the electric field. A similar equation exists for ~H and is calculated

in a similar way. This equation can be rewritten as

∆2 ~E = γ2 ~E, (8.22)

where γ is the propagation constant. This equation is very general, and will be used to

obtain a better understanding of the propagation of electromagnetic waves in supercon-

ductors. This will now be simplified by assuming the case of plane waves.

For a plane wave traveling in the z direction the simplest expressions for the electro-

magnetic fields are

Ex = E0
xe

−j(kzz−ωt)e−γz (8.23)

Hy = H0
ye

−j(kzz−ωt)e−γz. (8.24)

Here the electric field is directed in the x direction and the magnetic field at a right angle

to this in the y direction. The variation with time is eiωt, but this has been dropped to

simplify the expressions. To verify that these equations are solutions to the wave equation,

they can be substituted into Equation (8.21) If this is done, it can be easily shown that
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the propagation constant is given by

γ =
√

k2z + jωµ(σ + jωǫ) (8.25)

This expression can be written as

γ = −jβ (8.26)

Defining the propagation constant in this manner allows separate consideration of the losses

(real part) and the phase (imaginary part) of the electromagnetic wave. It is interesting

to note that ~E and ~H are independent for the plane waves under consideration, and are

connected through Faradays law. For plane waves, Faraday’s law becomes

− jωµHy =
∂Ex

∂z
(8.27)

Substituting ~Ex and ~Hy gives

Zs =
Ex

Hy
=
jωµ

γ
=

√

jωµ

σ + jωǫ
(8.28)

This is the intrinsic impedance or surface impedance of the material, which is very general

and can be considered to be any material at the moment. Intrinsic impedance is used

for any material, while the surface impedance is usually used for good conductors. In the

case of superconductors, σ has to be replaced by the complex conductivity σ1 − jσ2, and

kz = ω/c. Hence the propagation constant becomes:

γ =

√

ωµσ2

(

1 + j
σ1
σ2

+
ǫ

µσ2

)

(8.29)

We will now assume ωǫ/−σ2 to be very small which is the situation when the displace-

ment current is much less than the super-current in a superconductor. This is always true

in a superconductor at low temperature because of the high conductivity. If one assumes

that at temperatures below the transition temperature σ2 ≫ σ1, a series expansion gives,

for the expression of the propagation constant

γ =

√

ωµσ2(1 + j
σ1
2σ2

). (8.30)

The real part of γ is the attenuation coefficient, which can be written as
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γ =
√
ωµσ2. (8.31)

This represents the decay of the amplitude of the electromagnetic wave as it travels in a su-

perconductor. This characteristic depth is equivalent of the skin depth for superconductors

and is again given by the penetration depth

λ =
1√
ωµσ2

(8.32)

The imaginary part of the propagation constant from Equation (8.30) is ,

β =

√

ωµσ21
4σ2

. (8.33)

Hence the velocity of an electromagnetic wave can be calculated as ,

c =
ω

β
=

√

4ωσ2
µσ21

. (8.34)

Now, using the expression for the surface impedance for a superconductor given by

Equation (8.28), and by substituting σ by the complex conductivity σ1 + jσ2, one gets

Zs =

√

−ωµ
σ2

(

− σ1
jσ2

+ 1− ωǫ

σ2

)−1/2

(8.35)

As described above the displacement current term can be neglected in the quasi-static limit

ωǫ≪ σ2, i.e. jωǫ
−jσ2

. If we also consider σ2 ≫ σ1 we get

Zs ≈
√

ωµ

σ2
{j + σ1

2σ2
+ ...} (8.36)

Starting from this expression it is possible to separate the surface impedance in terms of

resistive

Rs =
σ1
2σ2

√

ωµ

σ2
=
ω2µ2σ1λ

3

2
(8.37)

and reactive parts

Xs =

√

µω

σ2
= ωµλ (8.38)
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8.2 BCS theory: penetration depth λ(T ) and surface resis-

tance Rs

The BCS theory [111] provides the quantum description of the superconducting state

needed for a microscopic understanding of superconducting properties such as the surface

impedance. The BCS theory describe the correct condensate wave function, which is

a linear combination of two electron states , or Cooper pairs of electrons linked with

opposite spin and momenta. This coherence between Cooper pairs exists over a distance

ξ0 = ~vF /π∆(0), called the BCS coherence length. As a consequence of the condensated

state, there is an energy gap 2∆(T ) in the one electron excitation spectrum. The single

electron excitations are called quasiparticles, and their density of energy is illustrated in

Figure 8.1 . The density of thermally excited quasiparticles of energy ε is proportional to

the density of states times the Fermi distribution function f(ε) = 1/(eε/kT + 1).

Figure 8.1 The normalized density of states N(ε) of a superconductor versus the energy ε referred
to the Fermi energy EF (ε = E − EF ), ∆ = ∆(T ) is the gap parameter. [119]

8.2.1 Penetration depth

Below we use the description of the condensed state and quasiparticle excitation spectrum

to describe the surface impedance. Since the complex conductivity σ(ω) in the two fluid

model is an approximation, the description is restricted to frequencies well below the

energy gap frequency ωg. In the BCS description, the complementary regime where ω
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is comparable to the gap frequency ωg is taken into account. On the basis of the BCS

theory, one can directly obtain the expressions for the interaction of a superconductor

with a transverse electromagnetic field is represented by the vector potential A. The

kinetic particle momentum represented by p, is, in an electromagnetic field, supplemented

as p=v+eA. One can describe A(r) in terms of spatial Fourier components a(q), where

q is the wave vector. Since we are interested in weak fields, i.e., in the linear response, it

is sufficient to expand the operator for the kinetic energy, (p− eA)2 to first order in field.

This yields the interaction Hamiltonian

H =
e~

m

∑

k,q

k.a(q)c∗k+q,σck,σ; (8.39)

the corresponding operator for the current density is given by

J = −ne
2

m
a(q)− e~

m

∑

k

k.c∗k−qck. (8.40)

Equation (8.40) can be evaluated in terms of a(q) to yield a generalized current-field

relation,

J(q,ω, T ) =
−1

µ0
K(q, ω, T ).a(q, ω). (8.41)

Since the electric field E is given by E =− iωA, both the conductivity σ, and the surface

impedance Zs can be expressed in terms of the kernel K:

σ = σ1 − iσ2 =
−i
ωµ0

K(q, ω, T ) (8.42)

Zs = Rs + iXs =
iωµ0

[K(q, ω,T]1/2
(8.43)

The London penetration depth can be obtained from the response kernel K(q,→ 0, ω =

0, T ) for fields varying slowly in space. The first term in Equation (8.40) then reduces to

the London equation with the notation KL(0) = 1/λ2L; according to our earlier results,

σ2 = 1/ωµ0λ
2
L , and Xs = ωµ0λL. The temperature dependence of the penetration depth

(and equivalently that of σ2) is therefore determined by K(T ) = 1/λ2L(T ). Following the

analysis given in [164], resulting in the the local limit

λ2L(0)

λ2L(T )
1− 2

∫ ∞

∆
dE

Ns(E)

N(0)

(

−∂f(E)

∂E

)

. (8.44)
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In the BCS theory for s-wave superconductors, the gap ∆(T)=∆ can be considered

constant in the sense that i.e. if does not depend on the direction in the reciprocal space. At

temperatures T<Tc/2, the integral Equation (8.44) can be simplified, giving for the reduced

change in the penetration depth [119]. One finds that the low temperature dependence of

λ is determined by the topology of the possible nodes of the superconducting gap function.

λ(T )− λ(0)

λ(0)
∝















√

π∆
2kBT exp

(

− ∆
kBT

)

nodeless gap function

T line node and 3D Fermi surface

T 2 point node and 3D Fermi surface

The exponential temperature dependence uniquely reflects the singularity in the BCS

density of states, which is convoluted in the integral in Equation (8.44) with the bell shaped

weight function ∂f/∂E.

The expressions above are correct only for the case of a s-wave superconductor. However

the penetration depth in general also depends on the specifities of the crystal anisotropy

and/or the superconducting gap ∆(k) anisotropy. Chandrasekhar et.al. [24] derived the

complete expression for the superfluid density by taking into account these two possible

anisotropies,

ρSi(T ) =
µ0e

2

2π3~

{
∮

dSF
~vFi. ~vFi

vF
−
∮

dSF
~vFi. ~vFi

vF

∫ ∞

∆k

dEk

(

−df(Ek)

dEk

)

Ek

(E2
k −∆2

k)
1/2

}

.

(8.46)

In this expression above the first term corresponds to the total electronic density in

the i direction, from which one subtracts the excitations above the superconducting gap

∆. In order to understand the signification of the ”total electronic density" one considers

the plasma frequency ωPi (in cgs units),

ω2
Pi =

∮

dSF
~vFi. ~vFi

vF
=

4πρSe
2

mii
. (8.47)

This gives the anisotropy of the electronic transport, and therefore, the effect of the

anisotropy via the plasma frequency, while the gap anisotropy is in the term ∆k.

8.2.2 Surface resistance

Mattis and Bardeen, and independently Abrikosov, Gorkov, and Khalatnikov derived an-

alytical expressions for the complex conductivity within the framework of the BCS theory
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[55] on the basis of Equations (8.40), and (8.4), in the low frequency limit, ~ω ≪ ∆,

σ1
σn

=
2

~ω

∫ ∞

∆
dE

[E(E + ~ω) + ∆2]|f(E)− f(E + ~ω)|√
E2 −∆2

√

(E + ~ω)2 −∆2
(8.48)

and
σ2
σn

=
1

~ω

∫ ∆

∆−~

dE
[E(E + ~ω)]|1− 2f(E + ~ω)|√
∆2 − E2

√

(E + ~ω)2 −∆2
. (8.49)

These latter two equations are only valid in the dirty (l/ξ0 ≪ 1) or the extreme anoma-

lous (λL/ξ0 ≪ 1) limits [164], but the expressions seem to contain qualitatively the main

features characteristic of all BCS superconductors.

Figure 8.2 Temperature dependence of the quasiparticle conductivity σ1(T )/σ1(Tc evaluated from
BCS theory, in comparison with the expectation from the two fluid model [164].

Physically the conductivity peak in Figure 8.2 results from the phase coherent super-

position of the occupied quasiparticle states due to the pair interaction:The scattering,

creation or annihilation of quasiparticles reflects the coherence in the scattering, creation

or annihilation of the pair constituents. This coherence is not contained in the two fluid

model, resulting in the obvious difference represented in Figure (8.2) . When the temper-

ature decreases below Tc, more and more quasiparticle condensate in the superconducting

state. The conductivity σ1(T ) vanishes, as discussed in Ref. [119] for T < Tc/2 on the
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basis of the following expression,

σ1 ∝
1

kBT
ln(

4kBT

~ω
)exp(− ∆

kBT
). (8.50)

Comparing Equation (8.2) with the two fluid formulation, the exponential term can be

regarded as a Boltzmann factor, which describes the vanishing number xn on unpaired

charge carriers as the thermal energy drops below the gap energy. However , the phase co-

herence of the quasiparticles violates the two fluid assumption xn+xs = 1 at temperatures

close to Tc.

8.3 Experimental setup and working principle

For the surface resistance measurements by the cavity perturbation technique we realized

the conception of a new cryostat. The superconducting Nb cavity was fabricated in the

IFPAN (Institute of Physics, Polish Academy of Sciences) in Poland was and provided

to us by Dr. Gierloswki. All the RF (wave guides, coaxial cables) and the cryogenic

components were realized in LSI, in collaboration with the technical team specialized in

low temperatures. The details related to the realization of the entire cryostat are given in

Appendix B.

Figure 8.3 shows a drawing of the cryostat, realized in our laboratory, that I used for

the cavity perturbation measurements. The SRP-052A model Sumimoto Heavy Industries

(SHI) pulsed-tube refrigerator mounted on the cryostat provides the necessary power to

cool down the entire system. In Figure 8.3 the copper braid connections between the two

cold stages of the pulse tube and the 50 K, and 4 K plates of the cryostat are represented.

The cryostat is cooled down sequentially from 300 K to 50 K and then to 4.2 K; each

stage is protected from thermal radiation by gilded shields. Therefore it is possible to

reach 4.2 K on the inner plate of the cryostat, hosting the He gas switch assembly, the

sample holder, and the Nb cavity . The gas switch assembly is the most important part

of the cryostat where the proper cavity perturbation measurement process and the cooling

process necessary for it take place. This process is described in details in the following

section. A cylindrical cavity made out of the conventional superconductor niobium is used.

The sample is inserted into the cavity using a sapphire rod, which also serves as a thermal

connection to the Cernox thermometer and the heater mounted on the sample holder.

Figure 8.7 shows the cylindrical Nb cavity used for the measurements presented in this

work. The microwave cavity can be considered as a two port system, where microwaves

are sent down transmission lines (coaxial cables, and wave guides) which couple to the
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microwave cavity. The interaction of the superconducting sample with the cavity field leads

to changes in the response of the system. We consider perturbations from the temperature

changes of the sample. In this case the changes in the surface impedance are easily related

to the changes in the center frequency f0, and the quality factor Q0, of the cavity.

Figure 8.3 A drawing of the cryostat used for the cavity perturbation measurements.

8.4 He gas switch

The He gas switch assembly is represented in Figure 8.4. Its function is to couple or

decouple thermally the sample holder from the Nb cavity. In particular one needs to be

able to cool down the sample to 5 K, and to heat it without heating the cavity. The switch

is typically composed of two homocentric stainless steel tubes with two copper ends, and

a charcoal pump which adsorbs and desorbs the He gas as a function of temperature. A

heater is mounted on the charcoal pump to provide the necessary amount of power to
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Figure 8.4 Drawing of the assembly, the gas switch, the sample holder, and the Nb cavity.

desorb the He gas. The top copper end of the switch has a conical shape in order to

accommodate the sample holder, which needs a perfect thermal contact. The bottom part

of the switch perfectly fits with the bellows mounted between the switch and the 4 K plate

(see Figure 8.5). The bellow is screwed to the Nb cavity through the 4 K plate, thus

keeping the bottom part of the switch at low temperature. For this, copper braids are

mounted between the 4 K plate and the bottom of the switch (see Figure 8.5) .

A schematic representation of the Nb cavity ( Tc= 9 K) is shown in Figure 8.4. The

cavity has a cylindrical shape, and is made of copper and niobium pieces. The dark brown

pieces shown in that figure are made of copper and the gray parts are of niobium. The

length of the coupling microwave antenna is adjustable. The sapphire end of the sample

holder is inserted into the cavity through a 2 mm diameter hole situated in the top cover

of the cavity. This is the side which is connected to the 4 K plate (see Figure 8.5). The

conduction through the inner stainless steel tubes, and/or the He gas is discussed in the
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Appendix B.

Figure 8.5 A photo of the real ensemble of the gas switch mounted on the 4K plate inside the
cryostat

The realized configuration allows one attain 4.2K at the bottom of the gas switch. Our

goal in this design is to reach the lowest temperature at the end of the sample holder, which

is in thermal contact with the top of the switch (see Figure 8.6). When the He gas switch is

in the "off mode" ( without He gas ), the sample , through conduction through the stainless

steel tubes can only reach a temperature of 11 K. In order to reach lower temperatures, one

needs to go to the "on mode". He gas is then desorbed from the charcoal pump into the

space between two cylindrical walls of the switch. The charcoal pump, which is connected

to the switch via a thin stainless steel tube, contains small grains of active charcoal which

have the property to absorb He gas at low temperatures and desorb it when is heated above

20K ( see Figure 8.5 ). In our conception, we need to use both properties of the active

charcoal. Therefore we thermalize the pump on the 4 K plate by connecting it with copper

wires and we install an heater on it for the desorption of He gas above 20K. By using the

switch "on mode" of our design, one reaches 6 K at the sapphire end of the sample holder.

From this temperature we use the heater mounted on the sample holder in order to sweep

the whole temperature range necessary for a measurement.

Figure 8.6 shows a photograph of the sample holder. One can see the upper conical

shape which fits snugly with the top part of the switch, the Cernox thermometer mounted

close to the sapphire rod on which we glue the sample, and the heater that we use to

increase the temperature above 6 K. Calculations related to the design of the He gas

switch are discussed in the Appendix B.
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Figure 8.6 A photograph of the sample holder

8.4.1 Cavity measurement process

We start the measurement process typically by pumping the system vacuum to p = 1×10−3

mbar, whence we launch the cryocooler. After 10 hours, a vacuum of P = 3× 10−7 m bar,

is reached due to i.e. the low temperature conditions required for the measurement. The

second step is to put the switch to switch "on mode" (He gas inside) by applying a voltage

of 1.5 volt on the heater of the charcoal pump (see Figure 8.8). The latter process takes

half an hour to cool down the sample to 6 K.

The experiments at 26 GHz were performed using the cavity shown in Figure 8.7. The

coaxial lines, and the wave guides were used to couple inductively through the adjustable

cavity antenna. The cylindrical Nb cavity is operated in the TE011 mode, and has super-

conducting Nb inner surfaces as shown in Figure 8.7, which yield high quality factor Q.

The sample, glued on the sapphire rod using with n-nonadecane, is inserted into the cavity

up to the distance where optimum coupling is established (the maximum of the amplitude

of the magnetic field). This location gives the maximum shift in the quality factor and the

resonance frequency if the temperature of the sample is varied. The sample temperature

is controlled using a Lakeshore 340 temperature controller and the heater on the sample

holder (see Figure 8.8). The measurements are performed in the one-port S11 reflection

mode. A schematic view of the measurement procedure is represented in detail in Fig-

ure 8.8. The reflected power (wave) is received by the network analyzer HP 8510C, where

the resonance tracé is represented. All the datas points of the resonance loop recorded

for each temperature are saved on the computer hard disk via a Labview interface for the

network analyzer (see Figure 8.8).
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Figure 8.7 Schematic representation of the Nb cavity, and the sapphire rod.

8.5 Superconducting microwave cavity perturbation

The cavity perturbation technique exploits the manner in which the introduction of a sam-

ple changes the resonant properties of a cavity. This method depends on the shape of the

cavity which supports the resonant electromagnetic modes. A cylindrical electromagnetic

cavity can supports a number of electromagnetic resonant modes, the nature and the fre-

quency of which depend on the size and the shape of the cavity. One typically distinguishes

the transverse electric modes (TE), in which the microwave electric field in parallel to the

cavity equator, and transverse magnetic modes (TM), in which the magnetic field is par-

allel to the equator. The mode indices indicate the number of nodes in the vertical and

azimutal directions. When we operate in the TE011 mode, there is an electric field node

and a magnetic field antinode along the central axis of the cavity. At a given mode all

electromagnetic (EM) energy fed to the cavity is stocked in the cavity. Therefore the cavity

appears as an EM sink in a reflection measurement. The width ∆f of the absorption dip,

as function of frequency is a measure of the cavity quality factor (Q-factor) which is given

by,

Q = 2π
peak energy stored

energy dissipated per cycle
=

f

∆f
(8.51)

where, for a transmission geometry, ∆f is the full width at half maximum of the
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Figure 8.8 Schematic representation of the cavity measurement system: 1. cryostat , 2. switch
assembly , 3. Nb cavity , 4. Lakeshore 340 temperature controller for monitoring
the sample temperature , 5. Lakeshore 218 temperature monitor for monitoring the
temperature at different stages of the cryostat , 6. Agilent dc power supply for the
switch , 7. Rf coaxial cable , 8. HP 8516A network analyzer. Two wave guides are
situated on the 50 K, and 4 K plate to ensure the coaxial cable connection for the
microwave transmission line.

transmitted power. For an empty cavity, the energy dissipated per cycle is primarily due

to the dissipation of energy by the currents in the cavity walls. To maximize the cavity Q,

the copper cavity walls are coated with Nb. This is a conventional superconductor with a

transition temperature Tc = 9 K. In our cavity measurement the walls should be made of
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8. CAVITY PERTURBATION TECHNIQUE

a very low resistance material.

Now consider a superconducting sample that is introduced into the cavity. Because of

screening effects, the microwave magnetic field is expelled from the interior of the sample,

apart from a sheet of thickness the penetration depth λ. The expulsion of magnetic field

from the sample reduces the effective volume of the cavity and shifts the resonance to a

higher frequency f + δf . The sample also absorbs some of the microwave magnetic field

causing a broadening of the resonance width from ∆f0 to ∆f >∆f0. For a thin film

conductor of thickness d, the change in the resonance frequency and quality factor Q of

the cavity are given by [186]

δf

f
=

1

2

Vs
Vr

[

1− Re
{

tanh(Kd/2)

Kd/2

}]

, (8.52)

δ

(

1

Q

)

=
Vs
Vr

Im
{

tanh(Kd/2)

Kd/2

}

. (8.53)

Here K is the propagation constant of the electromagnetic field inside the sample, Vs is

the sample volume, Vr is the effective volume of the resonator (effective cavity volume-

sample volume). For a normal metal K = (1 + i)/δ and for a superconductor K = 1/λ.

Furthermore, in a superconductor c≫ λ except very close to Tc and for most normal metals

at microwave frequencies d ≫ δ. When d ≫ λ, δ, the hyperbolic tangents of Eqs. (8.52)

and (8.53) are good approximation equal to one, so that:

δf

f
=

1

2

Vs
Vr

(

1− δ

c

)

metallic, (8.54)

δf

f
=

1

2

Vs
Vr

(

1− 2λ

c

)

superconducting. (8.55)

If the sample temperature can be changed independently of the cavity temperature, thus

one can determine changes in δf caused by changes in λ as a function of temperature. The

frequency shift ∆f from a base temperature T0 can be defined as,

∆f ≡ δf(T )− δf(T0) = −fA
Vr

∆λ(T ), (8.56)

where A = Vs/c is the sample area and ∆λ(T ) ≡ λ(T ) − λ(T0). The measurement of the

cavity frequency shift as a function of temperature is therefore directly proportional to the

change in the magnetic penetration depth. Furthermore, the sensitivity of the measurement

is determined by the cavity filling factor Vs/Vr [249; 250].

The dissipation in the walls of the resonant cavity can be described in terms of surface
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8.5 Superconducting microwave cavity perturbation

resistance for both the normal and the superconducting states [113]. The power dissipation

takes place within a very thin layer near the cavity surface. The power lost per unit area,

p, is related to the surface resistance of the measured sample according to the following

expression,

p =
1

2
RsH

2
t (8.57)

where Ht is the peak value of the applied RF magnetic field tangential to the surface. For

a good conductor in the normal state, currents flow near the surface with a characteristic

skin depth, and surface resistance Rs at angular frequency ω is then given by

Rs = µ0ωδ = (
ωµ0
2σ

)1/2 (8.58)

where σ is the electrical conductivity and µ0 is the permeability of the vacuum. The surface

resistance in the superconducting state may be understood qualitatively in terms of the

London-two fluid model [241]. According to this model, as the temperature of the metal

is lowered below Tc, a fraction ns(T) of the conduction electrons condense into Cooper

pairs and move together through the lattice without dissipation. The penetration depth

of electromagnetic fields in a superconductor is given by the London penetration depth λ

λ = (
m∗

4nse2µ0
)1/2 (8.59)

where m∗ is the effective mass of electron, e is the charge of the electron, and ns the

density of superconducting electrons. For a BCS s-wave superconductor, the frequency

and temperature dependence of the superconducting surface resistance is described rather

well by the following simple formula

Rs ∝
ω2

T
exp(−∆(T )

kT
) (8.60)

where 2∆, corresponds to the energy needed to break into quasiparticles. The frequency

dependence can be explained as follows. The internal electric field induced by the change

of the current is

Eint ∝
dH

dt
∝ disc

dt
= ωisc (8.61)

where isc is the supercurrent density. The dissipated power by the quasiparticles will be

pd ∝ Eint (8.62)
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8. CAVITY PERTURBATION TECHNIQUE

where

iqp = σqpEint =
nqpe

2
qp

mqp
Eint. (8.63)

Here, nn is the quasiparticle density, and iqp is the quasiparticle current density. The

power dissipated may be thus expressed as

pd ∝ E2
intnn = ω2i2snqp (8.64)

so that

Rs ∝ ω2nqp. (8.65)

The number of electrons thermally excited above the gap, 2∆, is given approximately by

the Boltzmann factor, e−∆/kT . For niobium at T<Tc/2, ∆=1.9 Tc. The surface resistance

can be obtained from a measurement of the unloaded quality factor of the cavity Q(Q0), a

geometrical factor Γ determined by the shape, and the mode of the cavity. In what follows,

I shall describe how the surface impedance may be obtained from such a measurement.

8.5.1 Data analysis

The principle at the basis of the data analysis obtained from the cavity perturbation

technique, is the representation of experimental set-up as as resonant circuit and to consider

the possible losses. For a typical resonant circuit, these are the intrinsic losses Q0 =

ωWmax/P0, Qrad = ωWmax/Prad due to the the radiated power, and the coupling losses

Qex = ωWmax/Pext. Here Wmax is the energy stored per cycle and P0 is the power

dissipated per cycle. One has to take these losses into account in order to extract the

supplementary losses due to the presence of the sample inside the cavity.

Therefore, the total losses can be written as P = P 0+Prad+Pext+Psample i.e., for the

loaded quality one has ,

1

QL
=

1

Q0
+

1

Qsample
+

1

Qrad
+

1

Qext

=

(

1

Q0
+

1

Qsample

)

+
1

Qrad
+

1

Qext

=

(

1

Q

)

measured

+

(

1

Qrad
+

1

Qext

)

. (8.66)

Here the last term in brackets is corrected by calibration. Nevertheless, radiation losses

are usually negligible: they depend on the size of any apertures that may be present in the
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8.5 Superconducting microwave cavity perturbation

Figure 8.9 Typical signal obtained for a superconducting sample (in blue ) compared to the
background signal of the cavity with empty sample holder inserted on it (in red ).

cavity walls. Part of the cavity losses are accounted for by a "calibration" or "correction" of

the coupling coaxial line leading to the cavity using a calibrated open load,short current to

impedance. The measured loaded quality factor after calibration contains the information

as the surface impedance of the sample. The background signal due to different losses

has to be subtract from the measured signal of the sample. Test measurements have been

performed in order to extract the background signal of the sample holder (see Figure 8.9).

If the power dissipated by the sample is bigger, one will have a bigger (1/Q)measured

and so smaller QL. One now has to take into account the sample shape, its position inside

the resonant cavity, and the effective volume of the resonant cavity to extract the surface

impedance of the sample. The most adequate way for the data treatment of the cavity

perturbation method in the literature is suggested by M. R. Trunin [160]. In the case of

sample sizes which are relatively small compared to the inner wall of the resonant cavity, to

calculate the field distribution for sample with sharped edge geometry is not trivial. Trunin

et. al. proposed to consider rounded edge geometry for a slab-like sample, since under this

assumption the calculation of the field distribution can be quite possible by taking into

account the sample aspect ration and the dimensions. Following a similar procedure, the

author presented the measurements of the real Rs(T) and imaginary Xs(T) parts of the

surface impedance for a superconducting sample as derived from the experimental datas of

Qi(T) and ∆f i(T) obtained using a cylindrical cavity. These are described as the following
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8. CAVITY PERTURBATION TECHNIQUE

relations:

Rs(T ) = Γs

[

1

Q(T )
− 1

Q0(T )

]

Xs(T ) = −2Γs

f0
[∆f(T )−∆f0(T )] +X0 (8.67)

where Γs is the sample geometrical factor and X0 is an additive constant. In order to

overcome the difficulty of the calculation of the field distribution at the sharp edges of the

sample an assumption is made for the calculation of Γs. The sample is considered to be a

plate with rounded edges, and the corresponding geometrical factor is given by

Γs =
2πfµ0V

4γ0A

1

ln ( bc) + 1
. (8.68)

Here, A is the sample area, V is the cavity volume, and γ0 is a constant determined by the

field configuration of the resonant mode of the cavity [36]. In the following we will use a

similar procedure by taking into account the sample geometry.

If the simple transverse orientation (Figure 8.10) , the sample which has usually the

shape of a plate, is placed on the end of the sapphire rod, with that the crystal c-axis

is aligned with the microwave magnetic field. Then the high frequency currents which

determine the sample microwave response circulate in the ab-planes such as depicted in

Figure 8.10.

Figure 8.10 Transverse orientation of a sample with respect to the microwave magnetic field Hω

‖ c-axis , arrows on the surface and side edges of the sample show the directions of
the microwave currents. Figure adapted from [160].

We will assume that the sample is placed inside the cavity at the maximum of the
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8.5 Superconducting microwave cavity perturbation

magnetic field, and that the frequency is sufficiently high for the sample response to ben

in the skin depth regime. Then, the dissipated power by the sample is given by

Psample = P0χ
′′ = P0

δ

a

= P0

(

ρ

µ0fa2

)1/2

= P0
Rs

πµ0fa
. (8.69)

We will use the expression with the susceptibility χ′′ = δ/a in the skin-effect regime where

the skin depth is given by δ = (ρ/µ0f)
1/2. Here ρ is the resistivity, f is the resonance

frequency, a is the sample width and Rs = πµ0fδ is the surface resistance of the sample.

Therefore one can obtain the surface resistance of the measured sample by subtracting the

Q0 of the cavity as following,

(

1

Q

)

measured

−
(

1

Q

)

cavity

=
ωWmax

Psample
=
ωWmax

P0

Rs

πµ0fa
, (8.70)

from here one obtains,

Rs =

[

∆( 1
Q)measured

∆( 1
Q0

)cavity

]

× (πµ0fa). (8.71)

If one would take into account the sample geometrical factor and the cavity dimensions,

Qmeasured =
µ0H

2f

µ0H2fχ′′
Vcavity
Vsample

=
1

χ′′
Vcavity
Vsample

(8.72)

from this one obtains,

∆

(

1

Q

)

= χ′′ Vcavity
Vsample

=
δ√
ac

a2c

Vcavity
. (8.73)

From above expressions one get for the skin depth ,

δ = ∆

(

1

Q

) √
ac

a2c
Vcavity (8.74)
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8. CAVITY PERTURBATION TECHNIQUE

inserting this into Rs=πµ0fδ, one obtains for the surface resistance the following expres-

sion:

Rs = πµ0f
Vcavity

a3/2c1/2
∆

(

1

Q

)

(8.75)

where the geometrical factor is defined as Γs = πµ0f
Vcavity

a3/2c1/2
.

For the imaginary part Xs of the surface impedance we proceeded as following;

Xs = BΓs

(

∆f

f0

)

= ABΓs −BΓs

(

∆f

f0

)

(8.76)

here the first term corresponds to X0 additional constant, and the prefactor of the

second term gives 2Γs, where Γs = πµ0f0a.
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Chapter 9

Electron irradiation of iron-based

superconductors

The discovery of superconductivity in the iron-based superconductors and the subsequent

increase of the critical temperature up to 55 K in this family of compounds raised the

fundamental question of the superconductivity mechanism. Early studies have revealed

that electron-phonon interaction based superconductivity is not likely in these systems;

subsequently, a spin-fluctuation mediated pairing has been proposed [107; 138]. The nesting

between disconnected pockets of the Fermi surface is for itinerant anti-ferromagnetism and

the associated spin fluctuations. These can be at the origin of the superconducting pairing.

The ensuing gap has s-wave symmetry, but changes sign between different Fermi surface

sheets. This state is labelled s± or sign reversing s-wave as introduced by Mazin et. al.

[107].

Experimental studies, such as angle resolved photoemission (ARPES) [88; 142; 222],

muon spin relaxation (µ SR) [115] and penetration depth [132; 135] measurements showed

results consistent with fully gapped s-wave symmetry and sign reversing order parameter.

The sign reversing s-wave symmetry is also consistent with neutron scattering measure-

ments , that observed a resonance peak. On the other hand, the relatively small effect

on Tc of doping by transition metal atoms [17; 147; 207; 214] has cast some doubt on the

reality of a sign reversing gap function. On the other hand, theoretical studies have shown

that these experiments do not necessarily contradict the s± pairing [51; 215].

It has been widely suggested [7; 10; 27; 101; 153; 161; 162] that the charged atom doping

effects cannot be reduced to a shift of the Fermi level. It is also suggested by different

groups [7; 211] that the dopant atoms act as scattering impurities, which maybe pair-

breaking due to admixture of quasiparticle excitations on different Fermi surface sheets,
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9. ELECTRON IRRADIATION OF IRON-BASED SUPERCONDUCTORS

Figure 9.1 Representation of the fully gapped s wave top panel,the nodal s wave middle, and
the d-wave gap bottom. The solid red dashed blue curves represent positive negative
sign of the superconducting gap function. The arrows indicate the dominating nesting
vectors. From Ref. [138]

and henceforth cause the decrease in Tc in the overdoped region of the phase diagram

[236]. Onari et. al. studied the effect of impurities in iron pnictides, and by treating the

multi-orbital effect they revealed that the Anderson’s theorem is violated for s± symmetry

due to inter-band scattering. This fact means that the fully gapped sign-reversing s-

wave state, which is predicted by spin fluctuation theories, is very fragile against impurity

scattering [211]. Glatz et. al. who showed that scattering between different bands by

impurities has a pair-breaking effect and introduces considerable spectral weight inside the

gap. They studied the statistics of disorder-induced sub-gap states in s± superconductors

due to collective effects of impurities [7]. van der Beek et. al. proposed that charge dopant

atoms act as scatterers in iron-based superconductors, while isovalent substitutions do not.

They used the vortex pinning as a probe of impurities. In electron-doped PrFeAsO1−y,

NdFeAsO1−xFx and Ba(Fe1−xCox)2As2 as well as in the hole-doped Ba1−xKxFe2As2, the

critical current density jc at fields above 1 Tesla can be described by collective pinning due

to the spatial fluctuations of the quasiparticle mean free path [28? ]. They found that the

impurity density accounting for pinning corresponds to the dopant atom concentration.

Another manifestation of the disorder apart from the different pinning regimes in iron-

based superconductors is the temperature dependence of the magnetic penetration depth

λL. This sense the low-energy quasiparticle density of states (DOS) and is a probe for the

determination of the superconducting gap structure (see Figure 9.2), but also for the effect

of disorder. In particular, inter-band scattering of quasiparticles by point-like disorder was

predicted to lead to the appearance of a peculiar T2 dependence of the London penetration

depth at low temperature [198]. Other scenarios for superconductivity predict accidental
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gap nodes either in an s or d-wave symmetry, with the nodes being lifted in the presence

of inter-band scattering [60; 234]. In what follows the effects of electron irradiation of

iron-based superconductors on their physical properties such as the critical temperature

Tc , the critical current density jc as well as the surface resistance Rs is discussed. The

introduction of controlled disorder by irradiation is a powerful tool for the characterization

of the nature of superconductivity. In particular, sensitivity of superconductivity to point-

like defects introduced by energetic electron irradiation (at the SIRIUS Accelerator of the

LSI) may reveal the presence or not of exotic superconductivity (with a sign-reversing

order parameter). Figure 9.3 presents the photograph of the Pelletron accelerator installed

in LSI where the electron irradiation up to 2.5 MeV on iron-based superconductors were

performed.

Figure 9.2 Schematic representation of the theoretical temperature dependence of the magnetic
penetration depth explaining the gap structure for different dependence law. From
Ref.[5]

In order to test the sensitivity to disorder, the introduction of different kinds of point-

like defects were performed, this is possible either by chemical doping [123; 124; 175],

or by irradiation [37; 271]. Substitution of magnetic ions, which suppresses Tc rather

more effectively than non-magnetic substitutions was performed by Chen et.al. [124; 175].

Tarantini et al. reported on Tc–suppression by α–particle irradiation of NdFeAs(O,F);

However it was argued that it induces magnetic impurities and defect clustering. The 3

MeV proton irradiation experiments performed by Nakajima et al. on Ba(Fe1−xCox)2As2
leads to a monotonous Tc–depression as the residual resistivity increases and the authors

provided estimates for the critical pair-breaking parameter as Γ/2πTc ∼ 4−7 and Γ/2πTc ∼
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9. ELECTRON IRRADIATION OF IRON-BASED SUPERCONDUCTORS

Figure 9.3 A photograph of the SIRIUS Accelerator of the LSI. On the right-hand side the cryo-
stat used for the irradiation at low temperature is presented.

1.5−2.5, as one goes from underdoped to overdoped [271]. Apart from point defects, proton

and neutron irradiation are known to induce, in situ, point defect cascades and clusters,

which may play a different role than that of simple scatterers.

In this chapter, the effect of 2.5 MeV electron irradiation on differently substituted

BaFe2As2 such as Ba(Fe1−xCox)2As2, Ba(Fe1−xNix)2As2, and BaFe2(As1−xPx) single crys-

tals is compared. It is known from earlier studies that electron irradiation of high-Tc super-

conductors at low temperature with electrons of 2.5 MeV produces a random distribution of

Frenkel pairs (vacancies and intersitials) and provides a sound basis for the interpretation

of irradiation effects. Warming the irradiated samples even without continuing irradia-

tion there is some defect mobility from 100 K upwards [100]. Early studies reported in

the literature for high-Tc superconductors revealed that, a few exceptions like NbN, all

metallic superconductors exhibit a gradual decrease of the critical temperature Tc upon

electron irradiation. This was interpreted as a result of the pair-breaking mechanism. In

the high-Tc cuprates, electron-irradiation defects are known to be strong unitary scatterers,

comparable to Zn substitution. Therefore, they are responsible for the suppression of the

critical temperature [78; 79; 182], and the appearance of a T 2–temperature dependence of

the penetration depth [182].

For the electron irradiation of Ba(Fe1−xCox)2As2, Ba(Fe1−xNix)2As2, and

BaFe2(As1−xPx), similar suppression of Tc is observed. For the case of the charged-

doped Ba(Fe1−xCox)2As2 the decrease in Tc is larger in the underdoped crystals than

it is in the optimally doped one. A monotonic increase in the resistance was observed

for range of intermediate electron dose applied in this work. The temperature depen-

dence of the superfluid density shows very little or no change for all studied doping levels
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of charge-doped Ba(Fe1−xCox)2As2, Ba(Fe1−xNix)2As2 single crystals. While, in charge-

doped Ba(Fe1−xCox)2As2 clear increase of the weak collecting pinning contribution to jc is

observed, this contribution absent at all doping levels of pristine material appears clearly

in the isovalently substituted BaFe2(As1−xPx) after electron irradiation. In these above

materials, the finding of the weak collective pinning contribution allows one to estimate

the density of the produced defect per unit irradiation fluence. In Ba(Fe1−xNix)2As2 an

important suppression of jc is observed.
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Figure 9.4 Ba(Fe0.925Co0.075)2As2: Resistance as function of dose of 2.5 MeV electrons, measured
at 21 K. The sample transits to the normal state after a dose of 1.2 Ccm−2, after which
the resistance increases at a rate of ∆R/R = 0.14[Ccm−2]−1. The Inset shows the
effect of annealing. The resistance of the crystal is represented as function of time.
The protocol comprises initial measurements at 21 K following irradiation with 4.6
Ccm−2 2.5 MeV electrons. The crystal is then warmed to 300 K, cooled to 21 K, and
heated once again to 300 K. After the first anneal at 300 K, the resistance drops back
to the value reached after low-temperature irradiation with only 1.4 Ccm−2 (white
circle on the curve in the main panel).
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Figure 9.5 Differential magneto-optical images (a) of pristine Ba(Fe1−xCox)2As2 single crystal with x = 0.065 − 0.07 # 3 cut 1, (b)
Ba(Fe1−xCox)2As2 single crystal with x = 0.065 − 0.07 # 3 cut 1.1 2.5 MeV electron irradiated with 0.5 C/ cm2 and (c)
Ba(Fe1−xCox)2As2 single crystal with x = 0.065−0.07 # 3 cut 1.2 2.5 MeV electron irradiated with 2.7 C/ cm2 . The images
(a,b,c) show the progressive admission of an ac magnetic field of magnitude 1 Oe, applied perpendicularly to the sample
surface, as the temperature is raised. In these flux density maps, areas of high luminous intensity I correspond to the value
of the applied field, while dark areas correspond to zero field, (i.e. full screening). Crystals shown in (b,c) were cut out from
the big crystal shown in (a) with a dashed line. Here the squares represent the regions where the data is selected for the
transmittivity curves presented in Figure 9.6 .
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Figure 9.6 Local “transmittivity” (or “local ac susceptibility”) curves defined as [I(T ) − I(T ≪
Tc)]/[I(T ≫ Tc)− I(T ≪ Tc)] depicted in (a,b) determined from the regions indicated
as squares in Figure 9.5 on the pristine crystal with with x = 0.065 − 0.07 # 3 cut
1 and as a inset in (a,b) on each irradiated cut pieces. The shift of the curves after
irradiated with respect to the x-axis determine the local variation of the transition
temperature for the indicated regions. Here open markers represent data for pristine
samples while, filled markers were used to represent datas for the irradiated samples.

169



9. ELECTRON IRRADIATION OF IRON-BASED SUPERCONDUCTORS

Figure 9.7 Transition from the superconducting to the normal state of a Ba(Fe0.925Co0.075)2As2
single crystal before (a,c) and after irradiation with 2.1 Ccm−2 2.5 MeV electrons (b,d),
as imaged by the differential magneto-optical imaging (DMO) technique Ref. [206].
The images (a,b) show the progressive admission of an ac magnetic field of magnitude
1 Oe, applied perpendicularly to the sample surface, as the temperature is raised. In
these flux density maps, areas of high luminous intensity I correspond to the value of
the applied field, while dark areas correspond to zero field, (i.e. full screening). The
dark rectangle in the upper left hand panels of (a) and (b) correspond to the sample
outline, i.e., full Meissner expulsion of the magnetic field at the lowest temperature.
The white squares indicate the positions at which the “transmittivity” (or “local ac
susceptibility”) defined as [I(T ) − I(T ≪ Tc)]/[I(T ≫ Tc) − I(T ≪ Tc)] depicted in
the lower panels (c,d) was determined.
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9.1 Electron irradiation

9.1 Electron irradiation

Controlled point-like disorder is induced into Ba(Fe1−xCox)2As2, Ba(Fe1−xNix)2As2 and

BaFe2(As1−xPx) single crystals using the SIRIUS Pelletron facilty of the Laboratoire des

Solides Irradiés (LSI) at the Ecole Polytechnique in Palaiseau, France [106] (see Figure 9.3).

Samples of different composition irradiated to the same dose, were mounted together and

irradiated simultaneously with the 2.5 MeV electron beam. The irradiation experiments

were carried out in a liquid H2 bath (T = 20 K) using the cryostat installed on the beam

line. The irradiation is performed at low temperature in order to prevent in-situ defect

migration, recombination, and clustering. In–situ resistance measurements were carried

out on the Ba(Fe1−xCox)2As2 material in order to measure the increase of the residual

resistivity as a function of defect density at low temperature, as well as the effect of room-

temperature annealing. Figure 9.4 shows in-situ resistance measurements of the irradiated

sample and the measurement of the same sample after annealing at room temperature.
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Figure 9.8 Surface impedance Zs of Ba(Fe0.925Co0.075)2As2 crystals before and after various low–
temperature irradiation runs with 2.5 MeV electrons, and subsequent annealing at
300 K. Data points and thin lines show the surface resistance Rs and reactance Xs

respectively, for various electron doses. (b) Shift ∆f(T ) of the resonant frequency
of the superconducting Nb cavity, as function of temperature, normalized with re-
spect to the low–temperature extrapolated ∆f(0), for Ba(Fe0.925Co0.075)2As2 crystals
irradiated with various fluences of 2.5 MeV electrons.
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9.2 Measurements of Tc and the surface impedance Zs

We have studied the effects of electron irradiation on the charge-doped Ba(Fe1−xCox)2As2
, Ba(Fe1−xNix)2As2 and isovalently substituted BaFe2(As1−xPx)2 single crystals. Several

samples of different doping levels were irradiated, and each doping level was irradiated

at various irradiation fluence. Experiments discussed below are generally performed on

the same crystal before and after irradiation, if not on different pieces cut from a crystal.

We have first characterized each sample using the Magneto optical imaging method, in

order to measure the exact Tc and its spatial distribution within each crystal. This is

done in order to identify the effective changes in the critical temperature Tc for each

sample after irradiation process. However, even this precise method for the determination

of the exact change of Tc turned out to be not very adequate. Namely the Tc changes

in Ba(Fe1−xCox)2As2 are generally of order of the spatial variation of Tc over the whole

pristine crystal. In order to overcome this problem we have proceeded to the extraction

the local transmittivity TH curves before and after irradiation from the same region of the

sample under study; this gave us more adequate results (see Fig. 9.7).

The change in Tc was further quantified using (ex-situ ) measurements of the tempera-

ture dependent microwave surface impedance Zs = Rs+ iXs. These were performed using

the superconducting Nb cavity, cooled to 5 K using a 0.5 W cryocooler cold head, this

measurement technique has been previously described in details in Chapter 8. From the

temperature dependent resonance frequency f and unloaded quality factor Q0, the surface

resistance Rs and reactance Xs were determined as

Rs = µ0fG

[

1

Q0(T )
− 1

Q̃0

]

(9.1)

and

Xs(T ) = µ0G [f(T )− f(0)] +X0 (9.2)

respectively. Here f(0) and Q̃0 are the resonance frequency and the unloaded quality factor

in the absence of the sample, and the geometrical factor G = V/4πw
√
wd, with V the inner

volume of the cavity, d the thickness of the platelet-like single crystal sample, and w its

smaller width. The additive constant X0 was adjusted so that Rs = Xs in the normal

state.
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9.3 Critical current density and its analysis

The critical current density for the Ba(Fe1−xCox)2As2 and Ba(Fe1−xNix)2As2 single crys-

tals as function of the applied magnetic field Ha were extracted from the magnetization

measurements performed using a commercial SQUID magnetometer. From the the width

∆M(H) of the magnetic hysteresis loops, the field and temperature dependence of the

sustainable current density j = 3
2∆M/w was determined using the Bean model. The pref-

actor 3
2 is estimated from calculations of E.H. Brandt for rectangular bars of similar aspect

ratio as the measured crystals [62]. Data on BaFe2(As1−xPx)2 were acquired using the

local Hall probe magnetometry technique [156; 157] (see Chapter 4). The gradient dB/dx

( in G/µm ) measured by Hall sensors is directly proportional to the sustainable screening

current j, with dB/dx ∼ 1
6j for a crystal aspect ratio of ∼ 0.1 [62].
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Figure 9.9 Single crystalline Ba(Fe0.925Co0.075)2As2 # 2 : Hysteresis loops of the irreversible
magnetization at 5K, before and after irradiation with 5.5 ×1019 cm−2 2.5 MeV elec-
trons. Closed arrows depict the direction in which the loop is traversed upon cycling
the magnetic field. Dotted double arrows depict the width of the magnetization loop
in the low-field, strong pinning regime, and in the higher field regime in which only
the weak collective pinning contribution jccoll is relevant.
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For further analysis we will take into account only the lowest temperature ( 5 K )

measurements for j to be representative of the critical current density, since at higher

temperature, the measured current density can be significantly lower than the pinning

critical current density because of flux creep [156; 205]. The critical current density is

further analyzed along the lines of Refs. [41; 44]. The two main contribution to the critical

current density in all charge–doped iron-based superconductors from vortex pinning is

exemplified by Fig. 9.9.

The typical central peak observed in the hysteresis loops in Fig. 9.9 , at low applied

fields, is the indication of the first contribution jsc to the critical current from vortex pinning

called the strong–pinning contribution , while the constant contribution at higher fields

comes from “weak collective pinning” by the dopant atoms. These contributions can be

also identified on the critical current density - versus magnetic field plot (see Fig. 9.11

and Fig. 9.14): the strong pinning contribution is responsible for the low–field plateau and

the subsequent jc ∝ B−1/2 decrease, while the collective pinning contribution yields the

high–field constant jc. It can be written in terms of superconducting parameters, defect

density nd, and the elementary pinning force fp of a single defect, as

jcollc = j0

(

nd〈f2p 〉ξ3ab
ελε0

)2/3

. (9.3)

Here, j0 is the depairing current density, ξab and λab are the ab–plane coherence length

and penetration depth respectively, ε0 ≡ Φ2
0/4πµ0λ

2
ab is the vortex line energy, ελ is the

penetration depth anisotropy [46] , and Φ0 = h/2e is the flux quantum. The averaging

〈. . .〉 is performed over the vortex core.

The magnitude of jcollc is compatible with scattering of the quasi-particles in the vortex

cores as being at the origin of the weak collective pinning contribution in pristine iron-

based superconductors, provided that the dopant atoms are the scattering defects. This

gives rise to [68; 69]

fp = 0.3g(ρD)ε0

(

σtr
πξ2ab

)(

ξ0
ξab

)

(9.4)

which depends not only on the Gor’kov dirt parameter ρD = ~vF /2πTcl = ξ0/l, but

also on the transport cross-section σtr = (2π/k2F ) sin
2 δ0 (δ0 is the scattering phase angle,

and kF the Fermi wavevector). The analysis of the intermediate field critical current

density of several common iron based superconductors allows one to estimate the scattering

parameters compiled in Table 3.1. The weak collective pinning contribution is absent in

isovalently doped BaFe2(As1−xPx)2 for all doping levels x [see Ref. [205] and Fig. 9.17 (b),

Fig. 9.14 (b) ]; surprisingly, it is present in Ba(Fe1−xRux)2As2 [158] and LiFeAs [157].
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9.4 Results

9.4.1 Ba(Fe1−xCox)2As2

Electron irradiation of Ba(Fe1−xCox)2As2 single crystals of different doping level at several

doses were performed. The evaluation of some superconducting properties such as the

transition temperature Tc, the sustainable current density j and the surface resistance

Rs is discussed below. Fig. 9.4 shows the in-situ resistance measurement of an optimally

doped Ba(Fe0.925Co0.075)2As2 single crystal, performed during exposure to the 10 µA,

2.5 MeV beam, at T = 21 K. The superconducting-normal state transition takes places

at at a fluence of 1.2 Ccm−2, after which the resistance increases at a rate of ∆R/R =

0.14[Ccm−2]−1. The electron irradiation was stopped once we reach a fluence of 4.6 Ccm−2

and the sample holder was taken out of the cryostat. When the sample was heated to 300 K,

its resistance is measured again. Then the sample holder is put back into the cryostat and

the crystal was subsequently cooled down once again to 21 K, and the resistance measured

again (Inset to Fig. 9.4). After this cycle, 21 K(e− irradiated)–300 K–21 K, it appears that

the resistance has dropped to the value first measured after irradiation with a fluence of

1.4 Ccm−2. This shows that a large annealing effect exists whence the irradiated samples

are heated up to room temperature. Heating leads to the annihilation and clustering of the

point defects produced by the irradiation, with a resulting drop of the irradiation–induced

resistance change of 65 % . Since all data presented in the following sections concern ex-situ

experiments performed after heating the crystals to 300 K, the effect of annealing should

be taken into account.

The evolution of the reduced critical temperature Tc/Tc0 with electron fluence (after

300 K annealing) is shown for various Co-doping levels x in Fig. 9.10(a). Here, Tc0 is the

critical temperature of the crystal before irradiation. Given that the Tc changes are very

modest and that there is an important dispersion of Tc even in pristine crystals similarly

grown samples, as well as from the same batch,it is the relative change of Tc that is to be

compared.

Fig. 9.10(b) shows the same data, as function of the product of the induced change in

the scattering rate δΓ/2πTc and the electronic effective mass enhancement z = m∗/me.

Here, zδΓ = eρ/RHme (with me is the free electron mass, e the electronic charge, and m∗

the effective mass) is estimated from the resistive change after annealing, δR/R ∼ 0.05

[Ccm−2]−1, together with the published data for the resistivity ρ and the Hall coefficient

RH published in Ref. [77]. However, the resistivity change with electron dose depends on

x, and that, in order to produce the simulated δΓ values presented in Fig.9.10(b), we used

the data measured in− situ on crystals with different x. Estimates of the scattering rate
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9. ELECTRON IRRADIATION OF IRON-BASED SUPERCONDUCTORS

Figure 9.10 Ba(Fe1−xCox)2As2: evolution of Tc (normalized by the initial critical temperature
Tc0) as function of (a) the fluence of 2.5 MeV electrons (b) the estimated normal
state scattering rate δΓ (normalized by Tc0), for different doping levels x. The
small data points show the Tc–values after annealing at 300 K. The large green
triangle shows the drop of Tc following low-temperature irradiation of optimally
doped Ba(Fe0.925Co0.075)2As2, the arrow shows the effect of annealing at 300 K.

from critical current measurements (see below) yield qualitatively similar results.

The surface impedance of optimally doped Ba(Fe1−xCox)2As2 before and after electron

irradiation was measured using the cavity perturbation method (see Chapter 8) and is

depicted in Fig. 9.8. We have observed a monotonous increase of the surface resistance

after electron irradiation; even though in this series of experiments, the increase was not

linear as function of fluence. In particular, the crystal irradiated with 2.1 Ccm−2 electrons

did not conform to the general trend. We have extracted the temperature dependence of

the superfluid density ns ∝ λ−2
ab of our superconducting crystals, from measurements of

normalized frequency shift of the Nb cavity before and after irradiation for various Co-

doping levels x. This showed little change to a less marked temperature dependence, if

any. The observed trend is similar to that observed by Hashimoto et al. in Ba1−xKxFe2As2
crystals with varying degrees of disorder [135], but is much less marked here.

The low–temperature critical current density of single crystalline Ba(Fe0.925Co0.075)2As2
was measured before and after irradiation with electrons. Fig. 9.11 shows an increase in

the field-independent part of the critical current density above 1 Tesla, this increase in-

dicates that the weak collective pinning contribution jcollc that is enhanced, presumably
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Figure 9.11 Sustainable current density j of optimally doped Ba(Fe1−xCox)2As2 (x = 0.075)
before (open symbols) and after irradiation at 21 K with 5.5 × 1019 cm−2 2.5 MeV
electrons (closed symbols). The measurements were performed at 5 K, 11 K and
17.5 K.

by atomic-sized point defects introduced by the irradiation. The magnitude of the jcollc

part of the critical current density allows one to estimate the defect numbers created by

electron irradiation. It is known that the electron irradiation creates some vacancies and

interstitials and these are generally the defects caused by the atom with lowest atomic

weight. Assuming that the created defects are Fe vacancy-interstitial pairs, one can esti-

mate σtr ∼ πD2
Fe ∼ 2.6 Å2, from the the ionic radius of Fe2+ D2

Fe = 0.92 Å. The increase

of the critical current density is consistent, through Eqs. (9.3) and (9.4), with 0.006 dpa

Fe / Ccm−2. The increase of the low–temperature critical current density and the con-

comitant decrease of Tc after irradiation implies a steeper decrease of jc with temperature,

and a crossing of jc–values of the pristine and the irradiated crystal at an intermediate

temperature.
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Figure 9.12 Single crystalline Ba(Fe0.965Ni0.035)2As2 : Hysteresis loops of the irreversible magne-
tization at 5K, 7.5 K, 10 K, 12.5 K, 17 K (a) before and (b) after irradiation with 5.5
×1019 cm−2 2.5 MeV electrons. Decrease of the width of the magnetization loop in
low-field, strong pinning regime and in higher field regime is observed after electron
irradiation.

9.4.2 Ba(Fe1−xNix)2As2

Surface impedance measurements , SQUID measurements and DMO imaging were per-

formed on three different Ni-doping levels (x = 0.006−0.0045−0.0035) of Ba(Fe1−xNix)2As2
crystals before and after irradiation. The irradiated Ba(Fe1−xNix)2As2 crystals show

a more rapid depression of Tc with dose than in Ba(Fe1−xCox)2As2. The depression

rate in Tc for the Ni-doped compounds were comparable to that found in underdoped

Ba(Fe1−xCox)2As2 (see Fig. 9.20). The critical current density of the Ba(Fe1−xNix)2As2
crystals were extracted from the SQUID measurements of the hysteretic loops of magneti-

zation as a function of applied field (see Figure 9.12 and Fig. 9.13). The extracted critical

current densities and the width of the magnetization loops show a strong suppression af-

ter the irradiation for both measured doping levels as such can be seen in Fig. 9.14 and

Figs. 9.13 9.12. This is partially because the reduced measurement temperatures are lower

in Ba(Fe1−xNix)2As2 than in its Co-substituted counterpart, but mainly because the sup-

pression of the prefactor j0 ∝ nse(∆/hkF ) in Eq. (9.3) outweighs the increase in nd (∆ is

the superconducting gap amplitude). The surface impedance measurements performed on

the optimally Ni-doped crystal before and after electron irradiation with 5.5× 1019 cm−2
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Figure 9.13 Single crystalline Ba(Fe0.965Ni0.045)2As2 : Hysteresis loops of the irreversible magne-
tization at 5 K, 7.5 K, 10 K, 13 K, 16 K (a) before and (b) after irradiation with 1.3
×1019 cm−2 2.5 MeV electrons. Decrease of the width of the magnetization loop in
low-field, strong pinning regime and in higher field regime is observed after electron
irradiation.

2.5 MeV electrons are depicted in Figure 9.15. As in Ba(Fe1−xCox)2As2, the temperature

dependence of the superfluid density of Ba(Fe1−xNix)2As2 changes little or not at all, even

at the largest irradiation dose of 5.5× 1019 electrons cm−2.

9.4.3 BaFe2(As1−xPx)2

For comparison, magnetic measurements up to 2 Tesla for pristine and electron irradiated

BaFe2(As1−xPx)2 single crystals were performed using Hall probe magnetometry technique

by M. Konczykowski (see Chapter 4). The Inset to Fig. 9.16 shows an example of flux

density gradients measured on a BaFe2(As0.64P0.36)2 single crystal irradiated with 0.9×1019

electrons cm−2, after zero field cooling and the application of an external field of 100 mT.

The temperature dependence of the flux density gradient obtained after field-cooling in 400

mT, reduction of the applied field to the indicated target value, and subsequent warming

is shown in the main panel of the Figure. Fig. 9.16 (b) shows the shift on the irreversibility

line after irradiation with various electron doses.

The critical temperatures after electron-irradiation were determined as the extrapo-

lation to zero of the “irreversibility field” Hirr(T ) above which the nonlinearity of the
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Figure 9.14 Sustainable current density j of (a)slightly overdoped Ba(Fe1−xNix)2As2 (x = 0.045)
and (b) optimally doped Ba(Fe1−xNix)2As2 ( x = 0.035) before (open symbols) and
after irradiation at 21 K with 1.3 × 1019 cm−2 2.5 MeV electrons (closed symbols)
for (a) and with 5.5 × 1019 cm−2 2.5 MeV electrons (closed symbols) for (b). The
measurements were performed at 5 K, 7.5 K , 10 K , 11 K , 13 K , 16 K, and 17.5 K
.

current-voltage characteristic – and therefore the critical current density – vanishes. De-

tails on the determination of Hirr, can be found in, e.g., Ref. [156]). In all cases, the

Hirr(T ) values depend vary very little on the frequency of the ac field used to investigate

the screening by the superconducting sample; the corresponding Tirr(H) lie very close

to the temperatures at which the dc screening current vanishes in Fig. 9.16. The Tc–

values resulting from the extrapolation of Hirr(T ) to zero are gathered in Fig. 9.20. The

Tc–depression as function of electron fluence is comparable to that in Ba(Fe1−xNix)2As2.

Note that the resistivity increase of the irradiated BaFe2(As1−xPx)2 crystals corresponds

to ∆R/R ∼ 0.16 [Ccm−2]−1, three times higher than Ba(Fe1−xCox)2As2.

The hysteresis loops of the local flux density gradient measured on the pristine

BaFe2(As0.77P0.33)2 single crystal ad the same scystal irradiated at 23 K with 1.8 × 1019

electrons cm−2 is shown in Figure 9.17. The magnetic hysteresis loops for the pristine

crystal shows the typical behavior for a strongly pinning superconductor with a central

peak at zero field. After electron irradiation, the hysteresis loops open up due to the ap-

pearance of the field–independent collective pinning contribution from atomic-sized point

defects (see Figure 9.18 (b)). The flux density gradient is directly proportional to the
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Figure 9.15 Surface impedance Zs of Ba(Fe0.965Ni0.035)2As2 crystal before and after irradiation
runs with 2.5 MeV electrons 5.5×1019 e− cm−2, and subsequent annealing at 300 K.
Data points show the surface resistance Rs and reactance Xs respectively. (b) Shift
∆f(T ) of the resonant frequency of the superconducting Nb cavity, as function of
temperature, normalized with respect to the low–temperature extrapolated ∆f(0),
for Ba(Fe0.965Ni0.035)2As2 crystal before and after irradiation.

sustainable current density j. As in Ba(Fe1−xCox)2As2, the screening current in the ir-

radiated crystal exceeds that of the pristine crystal at low temperature, but drops below

it at higher temperature, due to the decrease of Tc. Fig. 9.19 shows the monotonic in-

crease (at low temperatures) of jcollc as a function of irradiation dose, which allows one

for a direct comparison with the theory for quasi-particle scattering mediated collective

vortex pinning. Here we will assume again that the created defects by electron irradiation

are Fe-vacancies. In this case the only unknown parameter, σtr will be the ionic cross–

section of a Fe-vacancy, using this value in Eq. (9.3) yields a defect density of 0.0035 dpa

/ Ccm−2. This number is taken as more precise than that obtained for Ba(Fe1−xCox)2As2
in subsection 9.4.1, in which only two points were available. Note that the hypothesis of

simple voids (non-scattering point defects) would necessitate an unphysical 1 dpa / Ccm−2

to explain the magnitude of the critical current density change. Measurements performed

in Kyoto university on the isovalently substituted BaFe2(As1−xPx)2 single crystals show

an appearence of a T2 dependence of the absolute value of the London penetration depth
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Figure 9.16 Temperature dependence of the flux density gradient dB/dx in a BaFe2(As0.64P0.36)2
single crystal before and after irradiation with 0.8×1019 electrons cm−2. Inset: Flux
density profile across the crystal after zero-field cooling, application of the applied
field µ0Ha = 100 mT, and subsequent warming.

as a function of electron dose after electron irradiation. This is another indication of the

controlled introduction of point like disorder into this system.

9.5 Discussion

The observed modifications after electron irradiation in the critical current density of the

charge-doped Ba(Fe1−xCox)2As2 and isovalently substituted BaFe2(As1−xPx)2 lead to the

conclusion that the contribution to jc apparent at high fields above 1 Tesla is indeed due to

collective pinning by atomic-sized point defects [207]. We have estimated the defect gener-

ation of the electron beam at 0.35% dpa / Ccm−2. In a first approximation we assume that

the most relevant produced defects by electron irradiation are Fe vacancies, and that these

vacancies are responsible for quasi-particle scattering mechanism which is at the origin of

the weak collective pinning contribution to jc. Our assumption is supported by the fact

that scattering rates estimated for Ba(Fe1−xCox)2As2 single crystals from the in-situ resis-

tivity measurement are comparable to Γ = nd/[πN(0)]/ sin2 δ0 estimated from the current

density (see Table 3.1). It also turns out that scattering cross-section for Fe vacancies is

comparable to that of Co and Ru impurities. Electron–irradiation of Ba(Fe1−xCox)2As2
and Ba(Fe1−xNix)2As2 does not lead to important changes of the temperature dependence
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Figure 9.17 (a) Hysteretic loops of the local flux density gradient versus local induction B, mea-
sured on the surface of a pristine BaFe2(As0.67P0.33)2 single crystal, at various tem-
peratures (indicated). The astroid-shaped hysteresis loops are determined by the
sole strong-pinning contribution to the critical current. (b) ibid, measured on the
surface of a BaFe2(As0.7P0.3)2 single crystal irradiated at 23 K with 1.8× 1019 elec-
trons cm−2, at the indicated temperatures. The opening of the loops at higher
flux densities reveal the emergence of a weak collective pinning contribution by the
atomic–sized point defects introduced by the irradiation.
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Figure 9.18 Sustainable current density as a function of applied field at various temperature (a)
of pristine BaFe2(As0.67P0.33)2 single crystal and (b) of BaFe2(As0.67P0.33)2 single
crystal # J-2 irradiated with electrons 2.5 MeV at 2.7 C/cm2. Apparition of the in
the the weak collective pinning contribution jccoll at higher field regime due to the
introduction of point-like impurities by irradiation. The sustainable current density
curves shown here were extracted from the hysteretic loops of the local flux density
gradient shown in Figure 9.17.

of the superfluid density shown in the surface impedance experiments of those materials,

which suggests that the effect of the dopant impurities overwhelms that of the defects

added by the irradiation. For the exact confirmation of this hypothesis , larger electron

doses are needed for further experiments.

The Tc suppression after irradiation on the underdoped Ba(Fe1−xCox)2As2,

Ba(Fe1−xNix)2As2 and BaFe2(As1−xPx)2 for a given dose are similar, while for the opti-

mally doped Ba(Fe1−xCox)2As2 the decrease is about twice less (see Figure 9.20). These

observations leads to the question of possible nodal structure of the order parameter in

the charge-doped Ba(Fe1−xNix)2As2, and, possibly, Ba(Fe1−xCox)2As2, as it is known for

the BaFe2(As1−xPx)2. The possibility was raised by different authors that nodal lines

might exist on the α– (hole–like) sheet, at finite kz [34; 126]. As it is mentioned above,

controlled point-like impurities can be used to test this premise by particle irradiation or

by chemical doping. Wang et. al. reported on the evolution of Tc in Ba1−xKxFe2As2 for

Co-doping [147]. The suppression of Tc after electron irradiation of our optimally doped

Ba(Fe1−xCox)2As2 samples is comparable to that found for Co-doping reported by Wang
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Figure 9.19 BaFe2(As1−xPx)2 (with x = 0.33, x = 0.36): Electron-fluence dependence of the
weak collective pinning contribution jcollc to the critical current density. The drawn
line denotes a fit to Eqs. (9.3,9.4). Assuming that the point defects most relevant for
quasi-particle scattering are Fe vacancies induced by the irradiation, the parameter
value 5.1× 108 would correspond to 0.0035 dpa / Ccm−2.

et. al., it is much less than that obtained by Co-doping of KFe2As2 studied by the same

authors. A comparison with chemical doping gives the conclusion that the suppression

in Tc for the underdoped Ba(Fe1−xCox)2As2, Ba(Fe1−xNix)2As2, and BaFe2(As1−xPx)2 is

similar to the Cu and Zn doping by those authors. Even if the comparison with chemical

doping is tenuous, the observed trend clearly indicates a much weaker sensitivity of the

materials studied here than what is expected for the scenario of s± superconductivity with

strong interband scattering, and sets the three materials even further from the d-wave

scenario. A comparison with the previous irradiation studies reveals that Tc–suppression

after electron irradiation is somewhat weaker than the results obtained by Nakajima by

3 MeV proton irradiation of optimally doped Ba(Fe1−xCox)2As2 [37] , and much weaker

than in the α–particle irradiation of NdFeAs(O,F) by Tarantini et al. [37].

9.6 Conclusions

Ba(Fe1−xCox)2As2 crystals of different doping levels x, as well as Ba(Fe1−xNix)2As2 and

BaFe2(As1−xPx)2 crystals, have been irradiated with high energy (2.5 MeV) electron at

low temperature (21 K). Annealing of created defects by electron irradiation is observed
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9. ELECTRON IRRADIATION OF IRON-BASED SUPERCONDUCTORS

Figure 9.20 (a) Dose–dependence of the Tc–change of Ba(Fe1−xCox)2As2, Ba(Fe1−xNix)2As2,
and BaFe2(As1−xPx)2, after irradiation with 2.5 MeV electrons and annealing at
300 K. The upper scale shows the density of point defects (presumably Fe vacancies)
added by the irradiation, such as determined from the dose-dependence of the critical
current density of BaFe2(As1−xPx)2 (see Fig.9.19). (b) Dose dependence of Tc/Tc0,
where Tc0 is the critical temperature of the pristine crystal.

during the in-situ resistivity measurements performed on a Ba(Fe1−xCox)2As2 single crys-

tal. The enhancement of the weak-collective pinning contribution after irradiation in

Ba(Fe1−xCox)2As2 and its appearance in the isovalently substituted BaFe2(As1−xPx)2 in

which it is absent in the pristine material, demonstrate that the irradiation produces

atomic-sized point defects. These latter are at the origin of the collective pinning contribu-

tion to the critical current density due to quasi-particle scattering in the vortex cores. The

increase in the magnitude of the weak collective pinning contribution is consistent with pin-

ning by Fe vacancies created by electron irradiation. In charge-doped Ba(Fe1−xCox)2As2
and Ba(Fe1−xNix)2As2 the introduction of point-like impurities does not lead to a signifi-

cant difference in the temperature dependence behavior of the superfluid density suggesting

that the pre-existing point-like disorder due to the dopant atoms in these systems coun-

terbalances the artificially introduced point-like impurities. For the case of isovalently

substituted BaFe2(As1−xPx)2, an induced T2 behavior by electron irradiation is observed

on penetration depth measurements performed by Shibauchi et. al. in parallel to the work

presented in this thesis.

Surprisingly, the critical temperature is similarly suppressed in all three materials.

This, in spite of the fact that the order parameter in BaFe2(As1−xPx)2 is thought to have

line nodes, while this possibility is much less certain in the other two materials. The
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Figure 9.21 Reduced critical temperature versus disorder induced resistivity change for different
crystals of Ba(Fe1−xCox)2As2.

Figure 9.22 (a) Normalized critical temperature Tc/Tc0 vs. disorder-induced resistivity change
∆ρ0 for isotropic s± wave paring for various values of the inter-/intraband scattering
ratio α (b) for anisotropic (nodal) s± wave paring.
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9. ELECTRON IRRADIATION OF IRON-BASED SUPERCONDUCTORS

results therefore lend credence to evidence for line nodes obtained from c-axis penetration

depth [34] and thermal conductivity measurements [126]. Figure 9.21 presents the reduced

critical temperature change versus disorder induced resistivity change for different crystals

of Ba(Fe1−xCox)2As2. We have compared these results to the theoretical work [274] of

Wang et. al. where they discussed how it is possible to distinguish the s± gap structure

from s++ gap structure in iron based superconductors. In Fig. 9.22 is presented the fit of

our results shown in Fig. 9.21 with the results proposed by Wang et. al. for the case of

a nodeless s± gap symmetry and nodal s± gap symmetry. Our results are in consistence

with the case of nodeless s± gap symmetry with a ration to intra-inter band scattering of

α=0.5.
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Chapter 10

Summary

In order to characterize the disorder in iron-based superconductors, several experimental

techniques have been used in this thesis. The first one, introduced in Chapter 4, is the

magneto-optical imaging technique which allows one to identify the spatial heterogeneity of

the critical current density; this cannot be neglected for an accurate interpretation of fur-

ther experimental results. Using the magneto-optical imaging technique in the differential

mode, maps of the magnetic flux distribution were established from the low temperature to

the critical temperature Tc. This work, performed on single crystals of Ba(Fe1−xCox)2As2 ,

Ba(Fe1−xNix)2As2 , Sr(Fe1−xCox)2As2 and BaFe2(As1−xPx)2, allows one to also establish

the spatial distribution of Tc.

The guiding principle in this manuscript is the characterization of flux pinning for

the identification of the type of disorder. The Bitter decoration technique, described in

Chapter 5, is used for the imaging of the vortex ensemble in different compounds of the

122-type family.

In Chapter 6, a study of the flux pinning properties in charge-doped Ba(Fe1−xCox)2As2
is presented. The highly disordered vortex ensembles observed in the Bitter decoration im-

ages is studied using a novel data analysis technique, that takes into account the interaction

of individual vortices with their neighbors. In the latter, the pinning energies and pinning

forces of each vortex are extracted from distribution the of vortices at small magnetic

fields. We then correlated our Bitter decoration datas with critical current measurements.

The spatial heterogeneity of Tc revealed in the DMO images of the decorated samples

allows one to pinpoint the origin of the amorphous vortex structure in single crystalline

Ba(Fe1−xCox)2As2. Heterogeneity of the superconducting properties is found to explain

these ensembles, with inhomogeneity on the nm scale the origin of the strong pinning

mechanism at the origin of the low-field critical current. Namely, the low-field value of the

critical current density can be explained as being due to the same material inhomogeneity
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10. SUMMARY

that gives rise to the disordered vortex configurations [46; 206].

In Chapter 7, we present a systematic study of the flux pinning, using the same data

analysis procedure, in the isovalently substituted BaFe2(As1−xPx)2. Vortex ensembles with

less vortex density fluctuations are observed in this compound. The pinning forces and

pinning energies extracted from the Bitter decoration images are analyzed. It is found that

they can be analyzed to yield a mean distance between effective pins of about 90 nm, that

increases when one increasing the P content x. This result is found in nice agreement with

the work of Shishido et. al. on the influence of the disorder o the normal state properties of

the same material. Namely, they reported that the mean free path of the β orbits increases

from l ∼ 20 nm to 80 nm when the P content x varies from x = 0.41 to 1 [97].

The "weak collective pinning" contribution is also considered for all studied compounds.

This pinning mechanism was proposed to arise from the quasiparticle in the vortex cores; it

manifests itself as a second plateau, at magnetic fields above a few tenths of a T to 1 T. In

the attempt to link the flux pinning properties in this regime to the quasi-particle scattering

rate, a new experimental set-up based on the cavity perturbation technique described in

Chapter 8 is established for the measurements of surface resistance Rs. In addition to this,

additional atomic-sized point like defects are introduced using high-energy 2.5 MeV elec-

tron irradiation with the Pelletron accelerator SIRIUS [106] of the Laboratoire des Solides

Irradiés. The introduction of such atomic sized point-like defects (vacancies,interstitials)

by this kind of particle irradiation is shown to, indeed, enhance the weak collective pinning

contribution to the critical current, at least in Ba(Fe1−xCox)2As2.

In Chapter 9, we present a study on the evolution of different superconducting proper-

ties under the effect of electron irradiation for Ba(Fe1−xCox)2As2, Ba(Fe1−xNix)2As2, and

BaFe2(As1−xPx)2 single crystals. An important annealing effect (70% of defects) is re-

vealed for Ba(Fe1−xCox)2As2 when the crystals are heated to 300 K after low-temperature

irradiation. The critical temperature is found to decrease similarly as function of dose

for all investigated materials, namely, 5% dpa induces a decrease of Tc by approximately

30 %. From the increase of the weak collective pinning contribution, the number of de-

fects created by the irradiation (Fe vacancies) is estimated. In isovalently substituted

BaFe2(As1−xPx)2, the initially absent weak collective pinning contribution appears after

irradiation. The measured surface impedance for Co and Ni-doped 122 compounds before

and after electron irradiation increases . These results allows one to confirm the role of the

atomic sized point-like defects as scatterers in iron-based superconductors, as well as the

hypothesis that these defects are at the origin of the weak collective pinning contribution

to jc.
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Appendix A

I include here the Matlab codes used for the calculation of the interaction energy and the

pinning force.
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Appendix B

B.1 Heat Transfer

In the following I discuss possible energy transfer contributions that one should take into

account during the design process of a cryostat.

B.1.1 Thermal conduction in a solid body

Heat transfer by conduction inside a solid is described by Fourier’s law [87]. This equation

expresses the transmitted power via thermal conduction between two different points which

are at different temperatures. The one-dimensional form for the thermal current Q̇ is given

by

Q̇ = −ktA
dT

dx
, (1)

where kt is the thermal conductivity of the material.

To simplify the study on heat transfer via conduction, we can assume a static model

system in one dimension; Eq. (1) can then be written as

Q̇
dx

A(x)
= −ktdT (2)

In the stationary regime the heat transfer is constant. Then Eq. (2) can be integrated.

The integration limits xh, and xc correspond respectively to the position on the hot surface

with temperature Th, and to the position on the cold surface with temperature Tc.

Q̇

∫ xc

xh

(

dx

A

)

= −
∫ Tc

Th

kt dT = +

∫ Th

Tc

kt dT (3)

Therefore,
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Q =

∫ Th

Tc
kt dT

∫ xh

xc

(

dx
A

) (4)

where
∫ xh

xc

(

dx
A

)

is a geometrical factor that determines the heat transfer through a material

under the effect of a temperature gradient. For a bar with a length l and a cross-sectional

area A, Eq. (4) becomes

˙Qcon =
A

l

∫ Th

Tc

kt dT. (5)

B.1.2 Thermal conduction in a gas

Thermal conduction in a gas is ensured by two well-defined regimes separated by a transi-

tion zone.The characteristic parameter separating this two regimes is the mean free path of

the molecules Lp. Assuming that d is the distance between two walls held at temperatures

T1 and T2 we will have :

classical conduction if Lp≪ d

molecular conduction if Lp≫ d

a transition zone for Lp≃ d.

In the classical conduction regime Lp is independent of the pressure and the heat exchange

is satisfied by the collisions of molecules. For molecular conduction at very low pressures

where the mean free path is now much larger than the distance d Lp≫ d the heat transfer

is essentially satisfied by the collisions of the molecules with the walls. In this latter

case the thermal exchanges are proportional to the quantity of gas, and therefore to the

pressure between the two walls. This thermal transfer mode is the most relevant case at

low pressures. The mean free path of the molecules is given by [201]

Lp = 8.6× 103
η

p

√

T

M
. (6)

Here Lp[cm] is the mean free path, η[P] is the viscosity in (P=poise= 1g.cm−1 s−1) at

temperature T, P[µHg] is the pressure ,T[K] is the temperature and M is the molecular

mass in unit of g.mole−1. The conduction in a gas between two spherical or cylindrical

surfaces at different temperatures is given by the formula of Knudsen [242], and Kennard

[67] as

Q̇gas cond = ka0PAi∆T, (7)
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B.1 Heat Transfer

where k is a constant (k=1.2 for air), P[Pa] is the pressure between two surfaces, Ai[cm2] is

the surface area ∆T[K] is the temperature difference and a0 is a non dimensional constant

related to the surface conditions; it has a value of 1 for classical geometries.

B.1.3 Contribution from convection

The contribution from convection to heat flow comes from the heat transfer incurred by

the displacement of a fluid from a hot surface to a cold surface. There are two types of

convections. One is forced convection, when the fluid is pumped, and the second one is

natural convection which occurs when there is movement of the fluid due to a difference

in density . In both cases, contribution to heat flow is given by

˙Qconv = hcA(Ts − Tf ) (8)

here hc is the transfer coefficient, Ts is the temperature at the surface and Tf is the

temperature of the fluid. However, we are working in our case with a system which is

under vacuum, i.e., the density of gas molecules is very low. Therefore, we will neglect the

contribution from convection.

B.1.4 Contribution from radiation

The predominant contribution to heat transfer inside a cryostat is the contribution from

thermal radiation. It is necessary to understand how this contribution acts. By definition, a

thermal radiator is a black body. A black body is an idealizes physical body that absorbs all

incident electromagnetic radiation, regardless of frequency or angle of incidence. In thermal

equilibrium, it is an ideal emitter: it emits as much or more energy at every frequency

than any other body at the same temperature. It is also a diffuse emitter: the energy

is radiated isotropically, independent of direction. Wien’s displacement law states that

there is an inverse relationship between the wavelength λmax at the peak of the emission

of a black body and its temperature. Planck’s law describes the energy distribution W(λ)

radiated as a function of temperature T of the black body. From Planck’ law this energy

has a maximum value Wmax at λmax. Wien’s law describes the relation between λmax and

the temperature T; it is given by

λmax =
hc

4.965kT
=

2.898× 10−3

T
, (9)
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where h is Planck’s constant, k is Boltzmann’s constant and c is the velocity of light.Thus

we can define Wien’s constant

λmaxT = 2897.8µ m.K (10)

In addition, one can also obtain the Stefan-Boltzman law: the total energy radiated per

unit surface area of a black body per unit time for all wavelength by integrating Planck’s

equations

q = σT 4; (11)

here σ=5.669 × 10−8 W/m2.K4 is the Stefan-Boltzman constant. Real materials emit

energy at some fraction of q, called the emissivity the radiation. By definition, a black

body in thermal equilibrium has an emissivity of ǫ=1. A source with lower emissivity

independent of frequency often is referred to as a gray body. apart from the emissivity

there are characteristic properties of the gray body such as the absorption, the reflectivity

and the transmittivity. The emissivity is the ratio between the energy emitted by a surface

at a given temperature T, and the emitted energy at the same temperature by a black

body. The reflectivity is the ratio between reflected energy from the surface and the

incident energy. The transmittivity is the ratio of energy transmitted through the material

and the incident energy. In general these properties depend on the wavelength, but here

we only focus on the emissivity of our materials. We shall see that the power transmitted

by radiation is directly proportional to the emissivity of the surface. When two gray

bodies exchange radiative energy, a part of the emitted energy is not intercepted by the

surface. The radiation configuration factor Fi−j describes the influence of radiation when

two surfaces have a radiative exchange. This factor is defined as the ratio of the energy

coming from surface 1, and the energy intercepted by surface 2. If the energy emitted by

surface 1 is totally absorbed by surface 2, one will have F1−2. Stefan-Boltzman’s equation

has to be modified in order to take this factor and the emissivity of the surfaces into

account,

QR = EF1−2σAcold(T
4
hot − T 4

cold). (12)

From this expression we can see that the contribution from thermal radiation is propor-

tional to ∼T4 and to the area of the cold surface Acold, in order to reduce this contribution

we installed some thermal screens between radiation emitter and receptor surfaces in our

design.
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B.1.5 Multi layer insulation of the cryostat

We have seen previously the thermal benefit of the installation of a screen inside the

cryostat to reduce thermal radiation. If we consider n interposed screens the transmitted

power by radiation will be divided by n+1. This is why it is recommended to use multi

layer insulation, very thin sheets of Al or aluminized mylar separated by veils of fiber glass

or nylon.

Figure 1 Multi layer insulation of the outer gold shielded copper screen with Al sheets

The thin sheets of mylar are contacted to the nylon veils only by some points . The

thickness of the mylar sheets is of the order of 10 µm; they are covered by 0.02 µm of

evaporated Al. One should take into account that even the slightest area not covered

will react like a gray body and will cancel the positive effect of the superinsulation (see

Figure 1) .

B.2 Description of the cryostat

Figure 2 shows a schematic view of our home designed cryostat housing the pulsed tube

cryocooler. For the experiment presented here we used a commercial two stage pulsed tube

SRP-052A series from SHI (Sumimoto Heavy Industries) Cryogenics group. This pulsed

tube has a cooling capacity of 20W in the first col stage at 45K and 0.5W at the second

cold stage at 4.2K. Figure 2 shows the outer stainless steel screen, as well as the two copper

thermal screens which are gilded to avoid thermal radiation inside the cryostat. The red

arrows indicate the thermal contribution from radiation and thermal conduction through
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solid components, the amount of which needs to be known to compile the total contributed

power, which influences the different cold stages.

Figure 2 Schematic cross sectional view of the cryostat, red arrows indicate the heat flows by
radiation QR from the screens and by conduction QC through different solid components

B.2.1 Power contribution from conduction through solids

The heat flow by thermal conduction through different components connected between the

300 K and the 50 K and 50 K and 4 K stages is calculated for the dimensioning of the

cryostat. First one has to take into account the power contribution between 300K and

the first cold stage at 50 K. The solid components involved are the three bars connected

between the 300 K and 50 K stages (see fig. 3). These are made of stainless steel with a

length l=18.2 cm and diameters φin=1.3cm, φout=1.5cm. Using eq. 5 we find a contribution

of Qcon=2.121 W. The same procedure is used for the three fiber glass bars connecting

the 50K and 4K stages. For three bars (see fig. 3) of length l=14.95cm and diameters

φin=1cm, φout=1.2cm one obtains a power contribution of Qcon=5.86 mW.
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B.2 Description of the cryostat

Figure 3 A rendered view from the drawings of the cryostat; red arrows indicate the heat flow by
radiation from the screens. Photographs show the copper braids mounted between the
two cold stage of the pulse tube, and the 50 K, and 4 K plates of the cryostat.

B.2.2 Power contribution from radiation

As we discuss in section B.1.4 the power transmitted by thermal radiation depends directly

on the emissivity, which is defined as the ability of the involved surface to emit energy by

radiation . We will consider the emissivity of different surfaces which act as gray bodies

inside the cryostat. Lets consider the power transmitted from the outer stainless steel

screen at 300 K with a diameter φ=0.464 m and an length l= 0.48 m and the inner copper

screen at 50 K with diameter φ=0.444 m and length l= 0.32 m. We have extracted the

emissivity between cylindrical surfaces from the following formula

E =
ε1ε2

ε2 +
S1

S2
(1− ε2)ε1

, (13)

where ε1=0.025 and ε2=0.15 are respective emissivities of the cylindrical walls, and Scold

and Shot are the respective areas of the surfaces.
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Figure 4 A screen shot of the labview program which shows the evolution of the temperatures of
different cold stages inside the cryostat

Using eq. 12 one obtain QR=7.832 W for the transmitted power between the 300 K and

50 K screens. The same procedure for the transmitted power via radiation between the 50

K and 4 K screens yields a power o Q̇R=13.88 mW (ε1 = ε2=0.025 and ). Figure 4 shows a

screen shot of the Labview interface where we can follow the evolution of the temperature

measured with diodes placed at different stages of the cryostat. The lowest temperature

reached at the second cold stage after a cooling process which takes ∼10 hours is ∼ 4

K. This value of the stable temperature at the second cold stage is a consequence of the

balance (compensation) between the power provided by the pulsed tube to the system,

and the different power contributions by conduction through components or by thermal

radiation.

Power test on the pulsed tube were performed to determine how much power the

pulsed tube needs to provide for the system to be stabilized at 4 K. In figure 5 shows

the constructor as well as the experimental power curves belong the pulsed tube used in

our cryostat. We see from the experimental curve that the pulse tube provides 500 mW to

stabilize the second cold stage temperature at 4 K. We will use this value in the following

sections for our calculations.
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Figure 5 Power curves belong to the pulse-tube mounted on the cryostat

B.3 Dimensioning of the gas switch

The gas switch is most particular part of our cryostat, since this part will allows the sample

to be cooled through the insertion on the top surface of the inner Cu tube in which the

sample holder will be inserted . The thermal contact between the two conical surfaces

will ensure the thermal flow between the top of the switch and the sample holder ( see

Figure 6). In this figure one can see a cross sectional cut of the gas switch presenting the

inner homocentric tubes, and the charcoal pump mounted on it, in the right-hand panel a

view of the sample holder .

The He gas switch is mounted on top of a support (see Figure 8.5) screwed to the Nb

resonant cavity through the the 4K plate. Thus the warm sample is separated from the

superconducting Nb (Tc =9K) cavity which can therefore be stabilized at low temperature.

This is very important for surface resistance measurements.The bottom part of the switch

is also stabilized at 4 K using three copper braids connected to the 4 K plate (see Figure 8.5

). If we perform a simple calculation for the heat conduction through the three copper

braids which contain 3900 wires with radius 0.07 mm and which are connected between
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Figure 6 A cross sectional rendered view from the drawings of the gas switch, and a photograph
of the sample holder with the sapphire rod.

the cold plate held at T1=4K and the bottom of the switch at temperature T2. One can

obtain from Qcon=A
l

∫ T2

T1
kt dT that T2=4.2K (see Figure 8 for the integral value table).The

temperature on the top of the gas switch determines that of the sample , which is in thermal

contact with it. To estimate the temperature that can be obtained on the top of the switch

, let us consider the different power contributions from radiation, conduction, or from the

heater. For the first, consider the total radiation received by the 4K plate (with a radius

of 426 mm), and which is housed under the same conditions as the switch. From the

equation of heat transfer by thermal radiation, QR=EF1−2σ Acold(T
4
2 − T 4

1 ) one obtains

QR=500mW for the 4K plate. If we consider that this value is directly proportional to the

surface area, and that other parameters are the same, one can assume that the top of the

switch which has a radius of 44 mm will receive a thermal radiation of QR ≈ 50 mW is ten

times smaller than that of the 4 K plate (see Figure 9 for the emissivity value table).

The charcoal pump, connected to the switch with a stainless steel tube contains small

grains of activated charcoal that have the property of absorbing He gas at low temperatures
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and desorbing it when it is heated above 20 K. In our conception, we need to use both

properties of the activated charcoal, therefore we thermalize the pump on the 4 K plate by

connecting it with copper wires, and we install an heater on it for the desorption of He gas

above 20K. For two copper wires of diameter 1mm the thermal flow by conduction will be

Qcon=5mW . This value tells us the amount of power that we should apply with the heater

of the pump to proceed to the desorption of the He gas. The latter gives us the power

contribution from conduction to the switch; thus we have the total power contribution

Qtot= QIR2+ QRad +Qwires≈ 60mW, here we neglect the conduction through the different

wires (for the heater on the pump and/or the temperature probes) which are thermalized

along the 4K plate.

To know the temperature that can be reached on the sample holder we have to consider

the conduction inside a gas in switch on mode. The total power received by the switch

will then flow through the He gas between the concentric tubes. We need first to known in

which conduction regime we are when we consider the conduction by the a gas: this can

be the laminar or the molecular regime (see section B.1.2). Proceeding to the calculations

for both cases we shall try to deduce in which we can expect to reach low temperature

on top of the switch ( in switch on mode: desorption of the He gas). One can obtain

for the transition pressure of He P=1×10−4 mbar from Equation (6) [201]. Lets consider

the conduction in the gas for the first case where the internal pressure is P≪Pa and lp≫d

(here d=1×10−3m is the distance between two walls inside the switch), this is the molecular

conduction regime .

From Equation 7), and taking P = 1× 10−3 bar and A=2054.5 × 10−6m2 as the average

value of the opposed surface areas the result is ∆T=106 K which is irrealistic for our case.

Therefore we must be in the laminar conduction regime , and the pressure that we should

apply inside the switch has to be comparable to the atmospheric pressure. In this regime

the mean free path is smaller that the inter-wall distance Lp≪d, and the conduction by

the gas is independent of the pressure. One can obtain the temperature on top of the

switch if we consider the equation Qcon=ktA ∆T
d , here T1=4.2K, the inter-wall distance

d=1×10−3m, and A is the average of the opposed surface areas. From this calculation

one obtains T2≈5K on the switch top ( in switch on mode ) due to the conduction in

the He gas. This result is in agreement with the experiment as can be seen on the screen

shot of the Labview program front panel that we use for reading the temperatures of

diodes see Figure 7. Therefore it is possible to obtain a relatively low temperature at

the end of the copper sample holder (sapphire rod) on which we place the sample during

the measurement. If one consider the thermal flow through the copper holder with the

sapphire end from Eq. 5, Qcon = A
l

∫ T3

T2
kt dT we obtain T3≈6K which is also in agreement
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Figure 7 Screen shot of the Labview interface for the Lakeshore 218 temperature monitor that
we use to read the temperature values indicated from different diodes installed inside
the cyostat

with the experimental result .
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Figure 8 Integral table of the thermal conductivity between 4K-300K for different materials.
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Figure 9 Emissivity E of different geometries as a function of emissive power of surfaces A1 and
A2 at temperatures T1 and T2.

Figure 10 emissive power e for different materials.
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Figure 11 Sketch of possible geometries.

Figure 12 Conduction shape factors for the geometries describe in Figure 11 .
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Figure 13 Cryogenic datas for different gas .
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