
HAL Id: pastel-00000489
https://pastel.hal.science/pastel-00000489

Submitted on 13 Feb 2004

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Network and Content Adaptive Streaming of
Layered-Encoded Video over the Internet

Philippe de Cuetos

To cite this version:
Philippe de Cuetos. Network and Content Adaptive Streaming of Layered-Encoded Video over the
Internet. domain_other. Télécom ParisTech, 2003. English. �NNT : �. �pastel-00000489�

https://pastel.hal.science/pastel-00000489
https://hal.archives-ouvertes.fr

Thèse en vue de l’obtention

du diplôme de docteur de

TELECOM PARIS

(Ecole Nationale Supérieure des Télécommunications)

Network and Content Adaptive Streaming of

Layered–Encoded Video over the Internet
—

Streaming de Vidéos Encodées en Couches sur Internet

avec Adaptation au Réseau et au Contenu

Philippe de Cuetos

philippe.de-cuetos@eurecom.fr

Institut Eurécom, Sophia–Antipolis

———–

Soutenue le 19 Septembre 2003 devant le jury :

S. Tohmé, ENST, président

C. Guillemot, IRISA, rapporteur

P. Frossard, EPFL, rapporteur

T. Turletti, INRIA, examinateur

B. Mérialdo, Institut Eurécom, examinateur

K. W. Ross, Polytechnic Univ., directeur de thèse

Abstract

In this thesis we propose new techniques and algorithms for improving the quality of Internet video
streaming applications. We formulate optimization problems and derive control policies for transmission
over the current best–effort Internet. This dissertation studies adaptation techniques that jointly adapt
to varying network conditions (network–adaptive techniques) and to the characteristics of the streamed
video (content–adaptive techniques). These techniques are combined with layered encoding of the video
and client buffering. We evaluate their performance based on simulations with network traces (TCP
connections) and real videos (MPEG–4 FGS encoded videos).

We first consider the transmission of stored video over a reliable TCP–friendly connection. We
compare adding/dropping layers and switching among different versions of the video; we show that the
flexibility of layering cannot, in general, compensate for the bitrate overhead over non–layered encoding.

Second, we focus on a new layered encoding technique, Fine–Granularity Scalability (FGS), which
has been specifically designed for streaming video. We propose a novel framework for streaming FGS–
encoded videos and solve an optimization problem for a criterion that involves both image quality and
quality variability during playback. Our optimization problem suggests a real–time heuristic whose
performance is assessed over different TCP–friendly protocols. We show that streaming over a highly
variable TCP–friendly connection, such as TCP, gives video quality results that are comparable with
streaming over smoother TCP–friendly connections. We present the implementation of our rate adapta-
tion heuristic in an MPEG–4 streaming system.

Third, we consider the general framework of rate–distortion optimized streaming. We analyze rate–
distortion traces of long MPEG–4 FGS encoded videos, and observe that the semantic content has sig-
nificant impact on the encoded video properties. From our traces, we investigate optimal streaming at
different aggregation levels (images, groups of pictures, scenes); we advocate scene–by–scene optimal
adaptation, which gives good quality results with low computational complexity.

Finally, we propose a unified optimization framework for transmission of layered–encoded video
over lossy channels. The framework combines scheduling, error protection through Forward Error
Correction (FEC) and decoder error concealment. We use results on infinite–horizon average–rewards
Markov Decision Processes (MDPs) to find optimal transmission policies with low–complexity and for
a wide range of quality metrics. We show that considering decoder error concealment in the scheduling
and error correction optimization procedure is crucial to achieving truly optimal transmission.

Résumé

Dans cette thèse nous proposons de nouvelles techniques et de nouveaux algorithmes pour améliorer la
qualité des applications de streaming vidéo sur Internet. Nous formulons des problèmes d’optimisation
et obtenons des politiques de contrôle pour la transmission sur le réseau Internet actuel sans qualité de
service. Cette thèse étudie des techniques qui adaptent la transmission à la fois aux conditions variables
du réseau (adaptation au réseau) et aux caractéristiques des vidéos transmises (adaptation au contenu).
Ces techniques sont associées au codage en couche de la vidéo et au stockage temporaire de la vidéo au
client. Nous évaluons leur performances à partir de simulations avec des traces réseau (connexions TCP)
et à partir de vidéos encodées en MPEG–4 FGS.

Nous considérons tout d’abord des vidéos stockées sur un serveur et transmises sur une connexion
TCP–compatible sans perte. Nous comparons les mécanismes d’ajout/retranchement de couches et de
changement de versions ; nous montrons que la flexibilité du codage en couches ne peut pas compenser,
en général, le surcoût en bande passante par rapport au codage vidéo conventionnel.

Deuxièmement, nous nous concentrons sur une nouvelle technique de codage en couches, la scal-
abilité à granularité fine (dite FGS), qui a été conçue spécifiquement pour le streaming vidéo. Nous
proposons un nouveau cadre d’étude pour le streaming de vidéos FGS et nous résolvons un problème
d’optimisation pour un critère qui implique la qualité des images et les variations de qualité durant
l’affichage. Notre problème d’optimisation suggère une heuristique en temps réel dont les performances
sont évaluées sur des protocoles TCP–compatibles différents. Nous montrons que la transmission sur
une connexion TCP–compatible très variable, telle que TCP, résulte en une qualité comparable à une
transmission sur des connexions TCP–compatibles moins variables. Nous présentons l’implémentation
de notre heuristique d’adaptation dans un système de streaming de vidéos MPEG–4.

Troisièmement, nous considérons le cadre d’étude général du streaming optimisé suivant les carac-
téristiques débit–distorsion de la vidéo. Nous analysons des traces débit–distorsion de vidéos de longue
durée encodées en MPEG–4 FGS, et nous observons que le contenu sémantique a un impact important
sur les propriétés des vidéos encodées. A partir de nos traces, nous examinons le streaming optimal à
différents niveaux d’agrégation (images, GoPs, scènes) ; nous préconisons l’adaptation optimale scène
par scène, qui donne une bonne qualité pour une faible complexité de calcul.

Finalement, nous proposons un cadre d’optimisation unifié pour la transmission de vidéos encodées
en couches sur des canaux à pertes. Le cadre d’étude proposé combine l’ordonnancement, la protection
contre les erreurs par les FEC et la dissimulation d’erreur au décodeur. Nous utilisons des résultats sur
les Processus de Décision de Markov (MDPs) à horizon infini et gain moyen, pour trouver des politiques
de transmission optimales avec une faible complexité et pour un large éventail de mesures de qualité.

v

Nous montrons qu’il est crucial de considérer la dissimulation d’erreur au décodeur dans la procédure
d’optimisation de l’ordonnancement et de la protection contre les erreurs afin d’obtenir une transmission
optimale.

Acknowledgments

Many people have contributed to the accomplishment of this thesis. Some of them deserve a bigger
slice of the thanks cake, starting with my advisor Keith Ross who allowed me to do this thesis in very
good conditions. I valued his mentorship, his constructive judgment, and I also enjoyed the friendly
discussions we had about everything, from movies to technology. I am grateful to Martin Reisslein for
giving me the opportunity to change my routine by inviting me to Arizona State University for three
months in 2002. I appreciated his enthusiasm and his guidance. I also wish to thank Despina, Jussi and
David for their collaboration and their fruitful discussions about my work.

I am indebted to the Région Provence–Alpes–Côte d’Azur and Institut Eurécom for providing the
financial support for this thesis, through a partnership with Wimba. I am grateful to the French Telecom-
munication Research Organism (RNRT) for giving me the opportunity to work with talented people
through the research project VISI, especially Philippe Guillotel (Thomson Multimedia), Christine Guille-
mot (IRISA), Thierry Turletti (INRIA) and Patrick Boissonade (France Telecom R&D). Christine and
Thierry, together with Prof. Samir Tohmé, Prof. Bernard Mérialdo, and Prof. Pascal Frossard, have
honored me by accepting to be part of the thesis committee.

Finally, I would like to thank warmly all those who supported me during this time, by simply be-
ing there and bearing my changes of mood (I know that it has not always been a piece of cake): my
family, and Sébastien; Sophie & Nicolas in Marseille; Emmanuelle & Raphaël, and Valérie & Fabien in
Toulouse; Séphane, Alexandre & Nicolas here in the French Riviera; Nadia & Guillaume, and Stéphane
& Sébastien in Paris; Hanna, Julia, Ike, and Leland in Tempe; Sabine, and Véronique in New York;
Maciej in Uppsala; Alain & Claire in Rennes; and, from Eurécom, Ana, Carine, Caroline, and all past
and present PhD students I hanged out with — I apologize for not citing everyone but I won’t risk to
forget anybody.

Contents

Abstract iii

Résumé iv

Acknowledgments vi

List of Figures xi

List of Tables xii

1 Introduction 1
1.1 Motivations . 1

1.2 Context of the Thesis and Main Contributions . 2

1.3 Outline of the Thesis . 4

1.4 Published Work . 5

2 Streaming Video over the Internet 7

2.1 The Internet . 7

2.1.1 The Best–Effort Internet . 7

2.1.2 Transport Protocols: TCP vs. UDP . 10

2.1.3 Evolution of the Internet . 11

2.2 Digital Videos . 14

2.2.1 Video Coding . 14

2.2.2 MPEG–4 . 16

2.2.3 Layered–Encoding . 18

2.2.4 Fine Granularity Scalability . 22

2.3 Transmission of Videos over the Internet . 25

2.3.1 General Application Issues . 25

2.3.2 Transport Issues . 27

2.4 Adaptive Techniques for Internet Video Streaming . 30

2.4.1 Network–Adaptive Video Streaming . 30

2.4.2 Content–Adaptive Video Streaming . 32

viii Contents

3 Multiple Versions or Multiple Layers? 35
3.1 Introduction . 35

3.1.1 Related Work . 36
3.2 Model and Assumptions . 36

3.2.1 Comparison of Rates . 37
3.2.2 Performance Metrics . 37

3.3 Streaming Control Policies . 39
3.3.1 Adding/Dropping Layers . 39
3.3.2 Switching Versions . 41
3.3.3 Enhancing Adding/Dropping Layers . 42

3.4 Experiments . 43
3.4.1 TCP–Friendly Traces . 43
3.4.2 Numerical Results . 44

3.5 Conclusions . 47

4 Streaming Stored FGS–Encoded Video 49
4.1 Introduction . 49

4.1.1 Related Work . 50
4.2 Framework . 51
4.3 Problem Formulation . 54

4.3.1 Bandwidth Efficiency . 56
4.3.2 Coding Rate Variability . 56

4.4 Optimal Transmission Policy . 57
4.4.1 Condition for No Losses . 57
4.4.2 Maximizing Bandwidth Efficiency . 58
4.4.3 Minimizing Rate Variability . 59

4.5 Real–time Rate Adaptation Algorithm . 61
4.5.1 Description of the Algorithm . 61

4.5.2 Simulations from Internet Traces . 63
4.6 Streaming over TCP–Friendly Algorithms . 66
4.7 Implementation of our Framework . 69

4.7.1 Architecture . 71
4.7.2 Simulations . 73

4.8 Conclusions . 76

5 Rate–Distortion Properties of MPEG–4 FGS Video for Optimal Streaming 77
5.1 Introduction . 77

5.1.1 Related Work . 78
5.2 Framework for Analyzing Streaming Mechanisms . 79

5.2.1 Notation . 79
5.2.2 Image-based Metrics . 80
5.2.3 Scene–based Metrics . 81

Contents ix

5.2.4 MSE and PSNR Measures . 84
5.2.5 Generation of Traces and Limitations . 85

5.3 Analysis of Rate–Distortion Traces . 86
5.3.1 Analysis of Traces from a Short Clip . 86
5.3.2 Analysis of Traces from Long Videos . 92

5.4 Comparison of Streaming at Different Image Aggregation Levels 100
5.4.1 Problem Formulation . 100
5.4.2 Results . 103

5.5 Conclusions . 108

6 Unified Framework for Optimal Streaming using MDPs 111
6.1 Introduction . 111

6.1.1 Related Work . 113
6.1.2 Benefits of Accounting for EC during Scheduling Optimization 114

6.2 Problem Formulation . 116
6.3 Experimental Setup . 118
6.4 Optimization with Perfect State Information . 122

6.4.1 Analysis . 122
6.4.2 Case of 1 Layer Video with No Error Protection 124
6.4.3 Comparison between EC–aware and EC–unaware Optimal Policies 125
6.4.4 Comparison between Dynamic and Static FEC 127
6.4.5 Performance of Infinite–Horizon Optimization 129

6.5 Additional Quality Constraint . 130
6.6 Optimization with Imperfect State Information . 131
6.7 Conclusions . 133

7 Conclusions 137
7.1 Summary . 137
7.2 Areas of Future Work . 138

Appendix A: Optimal EC–Aware Transmission of 1 Layer 141

Appendix B: Résumé Long en Français 145

Bibliography 165

List of Figures

1.1 Streaming system . 3

2.1 MPEG–4 system (c
�

MPEG) . 17
2.2 Example of temporal scalability . 19
2.3 Example of spatial scalability . 20
2.4 Implementation of SNR–scalability . 20
2.5 Example of truncating the FGS enhancement layer before transmission 22
2.6 MPEG–4 SNR FGS decoder structure . 23
2.7 Example of bitplane coding . 24

3.1 System of client playback buffers in layered streaming model 40
3.2 State transition diagram of a streaming control policy for adding/dropping layers 40
3.3 System of client playback buffers in versions streaming model 41
3.4 State transition diagram of a streaming control policy for switching versions 42
3.5 Average throughput over time scales of 10 and 100 seconds for traces A1 and A2. 44

4.1 Server model . 52
4.2 Client model . 53
4.3 Optimal state graph � . 60
4.4 1 second average goodput of the collected TCP traces 63
4.5 Rate adaptation for trace 1 . 64
4.6 Bandwidth efficiency as a function of the normalized base layer rate 65
4.7 Rate variability as a function of the normalized base layer rate 66
4.8 Network configuration . 67
4.9 Rate adaptation for TCP . 70
4.10 Rate adaptation for TFRC . 70
4.11 Architecture of the MPEG–4 streaming system . 71
4.12 Evolution of the enhancement layer coding rate and available bandwidth 74
4.13 Evolution of the playback delay . 74
4.14 Quality in PSNR for images 525 to 1200 . 75

5.1 Image quality in PSNR for all images of Clip . 87
5.2 Size of complete EL frames and number of bitplanes for all frames of Clip 87
5.3 Size of base layer images for Clip . 88

List of Figures xi

5.4 Improvement in PSNR as function of the FGS bitrate for scene 1 images of Clip 89
5.5 Average image quality by scene as a function of the FGS–EL bitrate for Clip 90
5.6 Std of image quality for individual scenes as a function of the FGS bitrate for Clip 91
5.7 Std of image quality and GoP quality as a function of the FGS bitrate for Clip 91
5.8 Autocorrelation coefficient of image quality for Clip 92
5.9 Scene PSNR (left) and average encoding bitrate (right) for all scenes of The Firm 96
5.10 Scene PSNR (left) and average encoding bitrate (right) for all scenes of News 96
5.11 Average scene quality as a function of the FGS bitrate 97
5.12 Average scene quality variability as a function of the FGS bitrate 97
5.13 Coeff. of correlation between BL and overall quality of scenes, as a function of the FGS

bitrate . 98
5.14 Autocorrelation in scene quality for videos encoded with high quality base layer 99
5.15 Partitioning of the video into allocation segments and streaming sequences 101
5.16 Maximum overall quality as a function of allocation segment number 104
5.17 Average maximum quality as a function of the enhancement layer (cut off) bitrate 105
5.18 Average maximum quality as a function of the enhancement layer bitrate for Clip 106
5.19 Min–max variations in quality as a function of the allocation segment number 107

6.1 Video streaming system with decoder error concealment 112
6.2 Example of distortion values for a video encoded with 3 layers 115
6.3 Example of scheduling policies transmitting 9 packets 115
6.4 PSNR of frames 100 to 150 of Akiyo after EC for different values of

�����������
	���
�����������

120

6.5 Frame 140 of Akiyo (low quality) when (left) (
��������������� �!�"�#�$�

) – %'&)(+* �$,�, dB,
(middle) (

�-�����'�.,����-���"���.�
) – %'&)(+* ��,0/�12, dB, (right) (

�-���"�3�4,
) – %'&)(+* �,�5�12,

dB. 121
6.6 Minimum average distortion for the case of 1 layer video 125
6.7 Comparison between EC–aware, EC–unaware and simple optimal policies without FEC

for Akiyo (low quality) . 126
6.8 Comparison between EC–aware and EC–unaware optimal policies with FEC for Akiyo

(low quality) . 127
6.9 Comparison between general and static redundancy optimal policies for Akiyo 128
6.10 Simulations for video segments containing up to 3000 frames. 129
6.11 Maximum quality achieved for different values of the maximum quality variability for

Akiyo . 132
6.12 Comparison between channels with perfect and imperfect state information for Akiyo . . 134

A.1 Graphical representation of the LP for optimal transmission of 1 layer 143
B.1 Système de streaming . 147
B.2 Exemple de coupure de la couche d’amélioration FGS avant transmission 151
B.3 Système de streaming vidéo avec dissimulation d’erreur au décodeur 160

List of Tables

2.1 Characteristics of common codec standards . 15

3.1 Summary of notations for Chapter 3 . 38
3.2 Summary of 1-hour long traces. 43
3.3 Results for trace A1 . 45
3.4 Results for trace A2 . 45

4.1 Summary of notations for Chapter 4 . 55
4.2 Simulations from Internet traces . 67
4.3 Performance as a function of network load . 68
4.4 Performance for varying

�
. 75

4.5 Performance for varying � . 75

5.1 Summary of notations for Chapter 5 . 83
5.2 Scene shot length characteristics for the long videos . 93
5.3 Base layer traffic characteristics for the long videos . 94
5.4 Scene quality statistics of long videos for the base layer and FGS enhancement layer . . 94
5.5 Average scene quality variation and maximum scene quality variation of long videos . . 95
5.6 Average maximum variation in quality for long videos and Clip 108

6.1 Summary of notations for Chapter 6 . 119
6.2 Simulations for Akiyo (low quality) . 130

Chapter 1

Introduction

1.1 Motivations

The Demand for Networked Video Applications

Networked video applications today are still in their infancy. However, as digital video technology

progresses and the Internet becomes more and more ubiquitous, the demand for networked video appli-

cations is likely to increase significantly in the next few years. Telecommunication operators worldwide

are starting to deploy new services to get more revenue from their deployed infrastructures (e.g., xDSL,

UMTS, WiFi), manufacturers are constantly creating new innovative products (e.g., cell phones, PDAs,

set–top boxes, lightweight laptops), and the battle rages among the top media companies to sell digi-

tal multimedia content online (e.g., Pressplay, iTunes, MovieLink). These giant corporations may not

change the way people work, communicate and entertain themselves within a year or two — as some

investors wrongly thought at the early days of the Internet — but they will succeed eventually, because

networked video applications can provide businesses and individuals with a real added value.

For businesses, networked video can provide faster and more efficient communication within com-

panies. For important occasions, executives of some big companies now address all their employees

through the company’s Intranet. The speech can be watched live, or stored and transmitted on demand

at any time of the day, for example to overseas employees. Video communication can also make training

more flexible and less expensive than regular training. Thanks to video conferencing and remote col-

laboration through video, employees can avoid traveling for business, thereby saving money and time.

Finally, businesses can use networked video applications to communicate about their products world-

wide, directly from their web page. As an example, some companies now advertise the launch of a new

product by posting the video of the launch event on the Internet.

Networked video applications also have the potential to improve communication and entertainment

2 Introduction

of individuals. In 2002, French people spent on average 3h20 daily watching television1. Networked

video can provide the user with a broader choice of programs than regular TV, as well as interactive

applications and user–centered content, such as user–specific news. Besides TV programs, home video

is also a popular application for entertainment (and an important source of revenue for the film industry2).

Delivering movies on demand over the Internet would allow users to access a wider range of content than

video stores, and in a much faster way. Finally, visual communication can enhance the ordinary telephone

communication among individuals, for instance allowing remote families to keep in touch visually thanks

to videophones.

Most of the previously mentioned applications require significant support from the network infras-

tructure, as well as specific hardware or software. The current evolution of the Internet and of commu-

nication terminals is favorable to networked video applications : these past few years, we have seen the

deployment of high–speed Internet connections; also, the processing capacities of terminals (PCs, PDAs)

has increased, and several video coding systems and standards have been designed specifically for video

streaming. Still, today, Internet video applications are usually of poor quality. Streamed videos are often

jerky and their quality can degrade significantly during viewing. The goal of this thesis is to propose new

techniques and algorithms for improving the quality of Internet video streaming applications.

1.2 Context of the Thesis and Main Contributions

In this dissertation, we focus on unicast Internet video streaming applications, i.e., videos that are trans-

mitted from one server (or proxy) to one client. We formulate optimization problems and derive con-

trol policies for video applications over the current best–effort Internet; we look particularly for low–

complexity optimization procedures that are suitable to servers that serve a lot of users simultaneously.

Figure 1.1 gives an overview of a typical Internet video streaming system. At the server, the source

video is first encoded. The encoded video images are stored in a file for future transmission, or they can

be directly sent to the client in real–time. Adaptive techniques at the server consist in determining the

way video packets are sent to the client, as a function of current network conditions and of reports that

can be sent back from the client. At the client, video packets are usually temporarily buffered before

being sent to the decoder. Finally, after decoding, the video images are displayed to the user.

In this dissertation, we study adaptation techniques that jointly adapt to varying network conditions

(network–adaptive techniques) and to the characteristics of the streamed video (content–adaptive tech-

niques). Adaptive techniques are combined with a particular form of video coding (layered encoding),

1According to France main audience measure company Médiamétrie (www.mediametrie.fr).
2At its peak, home video generated half of the film industry’s sales and three quarter of its profits (The Economist,

19/09/2002).

1.2 Context of the Thesis and Main Contributions 3

Decoder

Network-

& Content-

Adaptation

(buffering)

Network-

& Content-

Adaptation

Encoder
Source

Video

Video

File

Display

Internet

Server

Client

storage

real-time

transmission

video

packets

reports

Figure 1.1: Streaming system

which encodes the video into two ore more complementary layers; the server can adapt to changing

network conditions by adding/dropping layers.

This dissertation makes several major contributions:

– We compare adaptive control policies that add and drop encoding layers to control policies that

switch among different versions of the same video. We show, in the context of reliable TCP–

friendly transmission, that switching versions usually outperforms adding/dropping layers because

of the bit–rate overhead associated with layering.

– We present a novel framework for low–complexity adaptive streaming of stored Fine–Grained

Scalable (FGS) video over a reliable TCP–friendly connection. We formulate and solve an optimal

streaming problem, which suggests a real–time heuristic policy. We show that our framework

gives similar results with smooth or highly varying TCP–friendly connections. We present an

implementation of our heuristic in a platform that streams MPEG–4 FGS videos.

– We analyze rate–distortion traces of MPEG–4 FGS videos; we find that the semantic content and

that base layer coding have significant impact on the FGS enhancement layer properties. We

formulate an optimization problem to compare rate–distortion optimized streaming at different

aggregation levels; we find that scene–by–scene optimal adaptation can achieve good performance,

for a lower computational complexity than image–by–image adaptation.

4 Introduction

– We propose an end–to–end unified framework that combines scheduling, Forward Error Correc-

tion (FEC) and decoder error concealment. We use Markov Decision Processes (MDPs) over an

infinite–horizon to find optimal transmission policies with low–complexity and for a wide variety

of performance metrics. Using MPEG–4 FGS videos, we show that accounting for decoder error

concealment can enhance the quality of the received video significantly, and that a static error

protection strategy achieves near–optimal performance.

1.3 Outline of the Thesis

In Chapter 2 we give an overview of the Internet and digital video coding technologies. We focus on

the characteristics of today’s best–effort Internet and on video layered encoding techniques. We describe

general application issues and transport issues for networked video applications. Leveraging the existing

literature, we show that streaming applications should both adapt to changing network conditions and to

the characteristics of the streamed video.

In Chapter 3 we compare two adaptive schemes for streaming stored video over a reliable TCP–

friendly connection, namely, switching among multiple encoded versions of a video, and adding/dropping

encoding layers. We develop streaming control policies for each scheme and evaluate their performance

using simulations from Internet traces.

In Chapter 4 we focus on a new form of layered encoding, called Fine–Granularity Scalability (FGS).

Streaming FGS–encoded video is more flexible than adding/dropping regular layers, and switching ver-

sions. We present a novel framework for streaming stored FGS video over a reliable TCP–friendly

connection. Under the assumption of complete knowledge of bandwidth evolution, we derive an optimal

policy for a criterion that involves both image quality and quality variability during playback. Based on

this ideal optimal policy, we develop a real–time rate adaptation heuristic to stream FGS video over the

Internet. We study its performance using real Internet traces, and with simulations over different TCP–

friendly protocols. We also present its implementation in an end–to–end streaming application that uses

MPEG–4 FGS videos.

In Chapter 5 we continue to explore adaptive techniques for streaming FGS–encoded video, by con-

sidering fine adaptation to the characteristics of the streamed video. In the context of rate–distortion

optimized streaming, we analyze rate–distortion traces of MPEG–4 FGS encoded video. We define per-

formance metrics that capture the quality of the received and decoded video both at the level of individual

video frames (images) and at the level of aggregation of images: GoP (Group of Picture), scene, etc. Our

analysis of the rate–distortion traces for a set of long videos from different genre provides a number

of insights that are useful for the design of streaming mechanisms for FGS–encoded video. Using our

traces, we investigate the rate–distortion optimized streaming at different video frame aggregation levels.

1.4 Published Work 5

In Chapter 6 we extend our adaptive techniques for reliable transmission of layered video to the

case when the enhancement layer is transmitted with partial protection against packet–loss. We consider

streaming both regular and FGS layered–encoded video, and both streaming live and stored video. We

propose an end–to–end unified framework that combines scheduling, FEC error protection and decoder

error concealment. We formulate a problem for rate–distortion optimized streaming, which accounts

for decoder error concealment. We use the theory of infinite–horizon, average–reward Markov Decision

Processes (MDPs) with average–cost constraints to find optimal policies that maximize the quality of the

video. We present simulations with MPEG–4 FGS video, for when the sender has perfect information

about the state of the receiver and when it has imperfect information.

Finally, in Chapter 7, we summarize our contributions and give several areas of future work.

1.4 Published Work

Parts of the work presented in this dissertation have been published or are still in submission:

– P. de Cuetos, D. Saparilla, K. W. Ross, Adaptive Streaming of Stored Video in a TCP–Friendly

Context : Multiple Versions or Multiple Layers, Packet Video Workshop (PV’01), Kyongju, Korea,

April 30 – May 1, 2001.

– P. de Cuetos, K. W. Ross, Adaptive Rate Control for Streaming Stored Fine–Grained Scalable

Video, Workshop on Network and Operating Systems Support for Digital Audio and Video (NOSS-

DAV’02), Miami, Florida, May 12–14, 2002.

– P. de Cuetos, P. Guillotel, K. W. Ross, D. Thoreau, Implementation of Adaptive Streaming of Stored

MPEG–4 FGS Video over TCP, International Conference on Multimedia and Expo (ICME’02),

Lausanne, Switzerland, August 26–29, 2002.

– P. de Cuetos, K. W. Ross, Optimal Streaming of Layered Video: Joint Scheduling and Error Con-

cealment, to appear in ACM Conference on Multimedia, Berkeley, CA, November 2–8, 2003.

– P. de Cuetos, M. Reisslein, K. W. Ross, Evaluating the Streaming of FGS–Encoded Video with

Rate–Distortion Traces, submitted, June 2003.

– P. de Cuetos, K. W. Ross, Unified Framework for Optimal Video Streaming, submitted, July 2003.

6 Introduction

Chapter 2

Streaming Video over the Internet

In this chapter we give an overview of the main technologies that are involved in an Internet video

streaming application, i.e., the Internet (Section 2.1) and digital video coding (Section 2.2). Based on

these generalities, we focus on the particular issues of video streaming over the Internet (Section 2.3),

and we detail related works on adaptive techniques for Internet video streaming (Section 2.4).

2.1 The Internet

One of the main technologies which are involved in an Internet video streaming application is the under-

lying network itself, i.e., the Internet. We start this section by reviewing the main characteristics of the

current Internet that will influence the design of networked media applications. Then, we introduce the

two available transport protocols which are used by Internet applications, i.e., TCP and UDP. Finally, we

present some proposed changes in the current Internet infrastructure, which could improve the ability of

the Internet to transport media in the near future.

2.1.1 The Best–Effort Internet

The Internet is the largest computer network with millions of users. It is based on the Internet Proto-

col (IP) which allows routing data packets between any pair of computers. On its path from source to

destination, a data packet can be transported across many different sub–networks, on physical links with

different capacities. Internet routers store incoming packets into drop–tail queues. Packets are forwarded

to an output link after routing decision, which is based on the packet IP destination address. Most cur-

rent Internet routers implement the FIFO policy, i.e., they discard all arriving packets when the incoming

queue is full.

The current Internet is still Best–Effort. This means that it does not guarantee any Quality of Service

(QoS) to applications. The QoS metrics that are essential to most Internet applications are the end–to–

8 Streaming Video over the Internet

end transmission delay, the packet loss rate and the available connection bandwidth. The best–effort

Internet is characterized by both highly heterogeneous and varying network conditions.

Network Heterogeneity

Network heterogeneity comes from the diversity in topology of the Internet and the diversity in the hard-

ware used throughout the network, such as the physical links [43]. In particular, the heterogeneity in

available bandwidth for a given end–to–end connection can be related to what is commonly called the

"last mile problem", i.e., the bottleneck bandwidth1 for a connection is very often located on the link

between the end user and its connection to his provider (also called the access link). Today’s commonly

used Internet access links have different bandwidth capacities, which contributes to network heterogene-

ity.

Internet access networks can be grouped into three major categories [67]:

– Residential access networks: they connect a client to the Internet from his home. Today’s most

used access technologies are dial–up modems, ISDN (Integrated Services Digital Network), ADSL

(Asymmetric Digital Subscriber Line), and HFC (Hybrid Fiber Coaxial cable). Dial–up modem

speeds do not exceed 56 kbps, while ISDN telephone lines provide the user with an end–to–end

digital transport of data at rates up to 274.1 Mbps, the basic service being 128 kbps. ADSL is

an increasingly popular technology, which uses special modems over the existing twisted pair

telephone lines. The available access rates can vary as a function of several parameters, such as

the distance between the home modem and the central office modem, or the degree of the line

electrical interference. For a high quality line, a downstream transmission rate of up to 8 Mbps

is possible if the distance between the two modems is lower than
,

km. HFC is a concurrent

technology to ADSL for broadband Internet access. Fiber optics are used to connect the cable

head end to neighborhood level junctions, and regular coaxial cables connect the neighborhood

junction to the user’s homes. Transmission rates can go up to
� �

Mbps but, as with Ethernet, HFC

is a shared broadcast medium, so the bandwidth is shared among users connected to the same

neighborhood junction.

– Company access networks: all terminals are interconnected to an edge router via a LAN (Local

Area Network). The edge router is the access gate to the Internet for the company. The most used

technology today is Ethernet with shared transmission rates of 10 Mbps to several Gbps.

– Mobile access networks: mobile terminals (e.g., cellular phones, laptops, or PDAs) access the In-

ternet by using the radio spectrum to connect to a Base Station (BS). There are two types of mobile
1Note that the bottleneck bandwidth of a connection is the upper limit on how quickly the network can deliver data over this

connection, while the available bandwidth denotes how quickly the connection can transmit data while still preserving network

stability [95].

2.1 The Internet 9

access networks. Wireless LAN is an increasingly popular technology, which is used for sharing

Internet access within a short–range (tens of meters), typically within business offices, universities,

hotels, coffee shops, etc. The IEEE 802.11 standard defines transmission rates of up to 11 Mbps

(802.11b) and up to 54 Mbps (802.11a). Wide–area wireless access networks have a range similar

to today’s mobile phone service, i.e., the base station can be kilometers away from the clients.

Packet transmission standards like GPRS (General Packet Radio Service) can reach transmission

rates of 115 Kbps while the upcoming UMTS (Universal Mobile Telecommunications System)

promises to provide access rates of up to 2 Mbps.

The diversity in Internet access technologies is only partially responsible for the heterogeneity in net-

work conditions. Specifically, the heterogeneity in the average RTT (Round Trip Time) of a connection

is also due to the physical location of the communicating client and server. For instance, the average

RTT between two terminals connected to corporate LANs inside France is today typically at the order of

tens of milliseconds, while transatlantic connections between France and the USA have an average RTT

at the order of hundreds of milliseconds. Also, because of the presence of tail–drop queues inside routers

and TCP’s end–to–end congestion control algorithm (see Section 2.1.2), long–RTT connections tend to

get a smaller share of bandwidth than short–RTT connections [98]. Finally, the average packet loss rate

of a connection is usually between 1% and 5%. However, loss rates of more than 30% are also possible.

Varying Conditions

Besides having heterogeneous conditions, a given Internet connection also experiences short– and long–

term varying conditions during its lifetime, such as varying loss rates and delays, or varying available

bandwidth. These variations are mainly due to competing traffic inside network routers and to route

changes. Route changes usually follow a router failure, or a routing decision after the increase of the

traffic load inside a router.

Paxson [95] analyzed several TCP traces and showed that variations of the transmission delay (also

denoted by delay jitter) occur mainly at short time scales of 0.1 to 1 second. High variations in trans-

mission delay typically cause the reordering of packets, which has been shown to be very common in

the best–effort Internet. Loguinov and Radha [77] report experiments of Internet transmissions between

several U.S. cities, using dial–up modems. The average RTT was found to be around 750 ms, while some

sample RTTs reached several seconds and the minimum RTT was around 150 ms.

Concerning variations in the average packet loss rate of a connection, Yajnick et al. [144] found that

the packet loss correlation timescale is also 1 second or less. Packet loss episodes are often modeled

as i.i.d. (independent and identically distributed), or as a 2–state Markov Chain (also called the Gilbert

model). It has been shown that i.i.d. models give good approximations on time scales of seconds to

minutes. But packet losses on time scales of less than a second are better approximated by the Gilbert

10 Streaming Video over the Internet

model [148, 149]. The Gilbert model takes into account the observation that packet losses usually occur

in short–length bursts, for packets sent in a short time interval [19]. This can be partially explained by

buffer overflows inside high–loaded routers.

As we explain later in Section 2.1.2, because of TCP’s congestion control algorithm, the available

bandwidth of a TCP connection can have important short–term variations. However, Zhang et al. [148]

showed that the throughput of a long TCP connection does not widely fluctuate over a few minutes.

Therefore, one can estimate throughput from observations of minutes in the past with reasonable accu-

racy (however, note that estimations from past observations of more than an hour can be misleading).

The heterogeneity in network conditions, as well as the variability in available bandwidth, delay

and loss rate make the best–effort Internet both difficult to simulate [43] and difficult to predict [139].

This explains the difficulty in designing "QoS–sensitive" Internet applications, such as interactive video

streaming or Internet telephony.

2.1.2 Transport Protocols: TCP vs. UDP

The Internet transport layer can use one of the following two protocols to provide an Internet service to

applications. These are UDP (User Datagram Protocol) and TCP (Transmission Control Protocol).

UDP

UDP is a very simple transport protocol. It just provides multiplexing/demultiplexing service to the

application layer, i.e., it allows delivery of data from the source application process to the destination

application process [67]. Typical applications that run over UDP include streaming multimedia, Internet

telephony and Domain Name Translation (DNS).

UDP is a connection–less protocol, which means that it does not require the setup of a virtual con-

nection between the client and the server. It is datagram–oriented, i.e., it moves complete messages from

the application to the network layer.

TCP

TCP is a reliable transport protocol. Unlike UDP, TCP retransmits the segments that have been lost by

the underlying network. Typical applications that run over TCP include e–mail (SMTP), web (HTTP)

and reliable file transfer (FTP).

TCP is a connection–oriented protocol: it requires establishing a connection between the client and

the server before transmitting any application data (this is done through a 3–way handshake protocol).

Also, TCP is byte–oriented, i.e., the sender writes bytes into a TCP connection and the receiver reads

bytes out of the TCP connection. At the source host, TCP first buffers the incoming bytes from the

2.1 The Internet 11

sending application. The buffered bytes are sent to the IP layer, when the size of the buffer has reached

the Maximum TCP Segment Size (MSS), or after expiration of a Time Out (TO).

TCP implements two mechanisms to control the rate of the transmitted stream: flow control and

congestion control. Flow control limits the sending rate in order to prevent overflow of the receiver’s

reception buffer; congestion control prevents network congestion by reducing the sending rate upon

indication of network packet loss.

The congestion control algorithm which is implemented in the first version of TCP (TCP–Tahoe) is

explained in [56]. The congestion window size ������� denotes the maximum number of unacknowledged

segments that the sender can tolerate before transmitting new segments. During the initial phase called

slow–start, its value is increased by one for each acknowledgment (ACK) received. This results in

exponential growth of the congestion window. When ������� exceeds the threshold 	
	��
������	
� , the server

enters into the congestion avoidance phase, during which ������� is increased by one for each window of
������� segments acknowledged. Each TCP segment sent to the receiver triggers the start of a TO, which is

canceled upon reception of the positive acknowledgment for this segment. The expiration of the TO for

a given segment is considered as an indication that the segment is lost. In this case, the server re–enters

the slow–start phase with ������� � �
and 	�	��
������	
� � 	�	��������
	������ . Because of the linear increase of

the congestion window size during congestion avoidance and its sharp decrease upon the expiration of a

TO, TCP congestion control algorithm is called an Additive–Increase Multiplicative–Decrease (AIMD)

algorithm.

Other improved versions of TCP have been implemented since TCP–Tahoe, namely TCP–Reno and

TCP–Vegas. TCP–Reno is now implemented in most operating systems. It includes a mechanism which

triggers the retransmission of unacknowledged packets upon reception of 3 duplicate ACKs, without

entering slow–start (fast retransmit and fast recovery).

TCP’s congestion control algorithm has been designed to provide competing TCP connections with

an equal share of a bottleneck bandwidth2. In [92], Padhye et al. have given an analytic characterization

of the steady state TCP throughput. However, the AIMD nature of TCP also results in highly varying

throughput at short–time scales, which is often considered as an impediment for multimedia streaming

applications, as we discuss in Section 2.3.2. Still, TCP’s congestion control mechanism seems essential

to today’s Internet scalability and stability [66].

2.1.3 Evolution of the Internet

When the Internet was designed and deployed, it was tailored to transport data files with no requirement

on the transmission delay. Typical target applications were file transfer, e–mail and web. Now that

2in practice, this is only well verified for flows with the same propagation delay over an over–provisioned link [98].

12 Streaming Video over the Internet

the Internet is almost ubiquitous, it would be convenient to use it for real–time applications, such as

telephony or video–conferencing. However, such applications are difficult to implement in the current

best–effort Internet because, as we mentioned in Section 2.1.1, the network cannot guarantee any QoS,

such as the maximum end–to–end transmission delay. Less "QoS–sensitive" Internet applications such

as streaming stored–video or simple web browsing could also benefit from QoS guarantees, such as a

minimum available bandwidth or a maximum loss rate.

Two main proposals have been made by the IETF group (Internet Engineering Task Force) to offer

some quality of service guarantees to the Internet, namely Integrated Service (IntServ) and Differentiated

Service (DiffServ). Both proposals require the modification of the current Internet architecture.

IntServ

The IntServ architecture [22] provides absolute QoS guarantees for each individual flow, which are typ-

ically guarantees of a minimum available bandwidth, a maximum tolerable end–to–end delay, or a max-

imum loss rate. IntServ is generally used in conjunction with RSVP (Resource ReSerVation Protocol),

which provides signaling and admission control. Unlike in the current Internet infrastructure, IntServ

requires maintaining per–flow states in routers.

DiffServ

While IntServ provides QoS guarantees on each individual flow, DiffServ works on traffic aggregates,

i.e., a large set of flows with similar QoS requirements. The DiffServ architecture [18] distinguishes

between two classes of routers: core routers and edge routers. At the edge routers, packets are classified

(or marked) into different classes of service. The outgoing traffic is conditioned to match with a specified

SLA (Service Level Agreement), which has been negotiated between the client and its ISP (Internet Ser-

vice Provider). An SLA defines long–term expected traffic specifications in terms of various performance

metrics such as throughput, drop probability or latency. Core routers achieve service differentiation by

forwarding packets differently according to their class of service3. The IETF has standardized two router

forwarding services, namely the Assured Forwarding (AF) [50] and the Expected Forwarding (EF) [57]

services. The EF service gives absolute end–to–end guarantees of service to any class of traffic, in terms

of bandwidth or latency. It is comparable to a virtual leased line. The AF service defines different levels

of forwarding assurances for IP packets. The IETF has defined 4 different AF classes with 3 different

dropping priorities for each class. Several studies have presented new packet marking mechanisms for

providing applications with end–to–end QoS guarantees, such as throughput guarantees [28, 36, 112].

In [13], Ashmawi et al. present a video streaming application that uses the policing actions and rate

3In the simple case with only two different classes of service, packets corresponding to the highest class of service are

marked as in packets (by opposition to out packets) by edge routers. In periods of congestion, unmarked or out packets are

preferentially dropped by core routers inside the network.

2.1 The Internet 13

guarantees of the EF service.

Both IntServ and DiffServ proposals have attracted many research efforts in the past few years.

However, they are not deployed yet, so the current Internet is still best–effort. The main issue is the

deployment scalability of both approaches in the current Internet architecture. With IntServ, end–to–end

service guarantees cannot be supported unless all nodes along the path support IntServ; with DiffServ,

end–to–end service guarantees can only be provided by the concatenation of local service guarantees,

which requires SLA agreements at all customer/provider boundaries.

Other Changes

Besides the IntServ and DiffServ approaches, Internet applications could benefit from several other

changes in the Internet architecture, including:

– Active queue management. This consists in using queue management algorithms other than FIFO

inside routers. A popular queue management algorithm is RED (Random Early Detection) [42].

The main motivation is to control the average queueing delay inside routers, in order to prevent

transient fluctuations in the queue size from causing unnecessary packet drops [39].

– Explicit Congestion Notification (ECN). This allows routers to set the Congestion Experienced

(CE) bit in the IP header as an indication of congestion, rather than dropping the packet. In this

case, the TCP sender enters the congestion avoidance phase with no packet loss [39].

– Multicast protocols. Multicast communication consists in transporting data from one host to a

group of hosts, by aggregating unicast connections. In such an approach, multicast routers need to

replicate the datagrams that are sent to a given group, to each output link leading to hosts of the

group. Despite potential gains in bandwidth, multicast routing raises concerns about scalability,

because multicast routers need to maintain states for each multicast group [14].

– IPv6. Internet Protocol version 6 is the successor of the current protocol IPv4. It features several

new functionalities, such as the increase in the number of possible Internet addresses, the support

of multicast (avoiding the use of tunnels) and a simpler header than IPv4 [80]. However, IPv6 is

unable to inter–operate with IPv4, which has contributed to delay its deployment.

The changes in the Internet infrastructure which have been presented in this section could help to

make the current best–effort Internet more suitable to applications that have high quality of service

requirements, such as real–time transmission of videos. In particular, these can alleviate network het-

erogeneity and varying network conditions, by limiting congestion or by providing statistical guarantees

on the loss rate, the end–to–end transmission delay or the available bandwidth. However, the current

14 Streaming Video over the Internet

Internet is still best–effort, so networked applications have to cope with the lack of quality of service

guarantees.

2.2 Digital Videos

Since the Internet has limited transmission capacities, videos need to be compressed before transmission.

This is achieved by video coding. In Section 2.2.1, we recall some generalities about video coding, and

we present some of the main standards, which are currently used in commercial products. We present

the architecture of an MPEG–4 compliant system in Section 2.2.2. Finally, in Section 2.2.3 we focus

on layered–encoding, which is an encoding technique that is particularly tailored to networked video

applications.

2.2.1 Video Coding

The raw size of digital videos is usually very high. Video coding consists in exploiting the inherent

redundancy of videos in order to cut down their representation size. Redundancies in the video signal

can be spatial (within a same video frame) or temporal (within adjacent frames)4. As an example, the

commonly used full–motion 300–frame sequence Foreman, encoded in MPEG–4 with high quality and

CIF resolution (352x288 pixels), has an average bitrate of 1.23 Mbps, compared to 36.5 Mbps for the

uncompressed video.

The most used standard codecs (coder/decoder) can be grouped into two subsets [47]:

– The first subset is composed of the standards from the ITU (International Telecommunication

Union), mainly H.261 and H.263, which were standardized in 1990 and 1995, respectively. These

codecs are oriented towards videoconferencing applications. H.261 yields bitrates between 64 kbps

and nearly 2 Mbps. H.263 is an extension of H.261 for low bitrate video; it can produce small di-

mensional video pictures at 10 to 64 kbps, thus suitable for transmission over dial–up modems.

– The other subset is composed of the standards from the MPEG committee (MPEG stands for

Motion Picture Expert Group). MPEG codecs are oriented to storage and broadcast applications.

MPEG–1 was first standardized in 1992, followed by MPEG–2 in 1995 and MPEG–4 in 1999.

MPEG–1 focuses on digital storage of VCR image quality videos, at target bitrates between 1 and

1.5 Mbps. It is suitable for storage on CD–ROMs, which have output rates of at least 1.2 Mbps.

MPEG–2 was designed to match with a wider variety of applications, in particular the broadcast

of high interlaced video or HDTV (High Definition Television), at high bitrates from 4 to 9 Mbps.

Finally, the recent MPEG–4 standard introduces object–based coding and it can be used for a

4Throughout this dissertation, we use the terms image and frame interchangeably.

2.2 Digital Videos 15

Standard Target bitrate Target applications Year of standardization

H.261 ������� kbps, with �	� � ��

� Videoconferencing 1990

MPEG–1 ���
���
����� Mbps Storage 1992

MPEG–2 � � ����� Mbps Wide variety 1995

H.263 ������� ��� � kbps Videoconferencing 1995

MPEG–4 [5 kbps, 10 Mbps] Wide variety 1999

Table 2.1: Characteristics of common codec standards

broader range of target bitrates, from 5 kbps to 10 Mbps. It is suitable to almost all applications

requirements, such as broadcast, content–based storage and retrieval, digital television set–top

boxes, mobile multimedia and streaming over the Internet [9].

Table 2.1 summarizes the characteristics of the previously mentioned video codec standards. In this

dissertation, we mainly focus on MPEG standards, and especially on MPEG–4. In MPEG encoded

videos, images are grouped into GoPs (Group of Pictures). Inside a given GoP, frames can be of 3 types:

– I–frames (Intra–coded frames): they are independently encoded, i.e., without any temporal pre-

diction from other frames.

– P–frames (Predicted frames): they are predicted from the previous I–frame of the current GoP.

– B–frames (Bi–directional predicted frames): they are predicted both from the previous and the

next I or P–frame of the current GoP.

In digital video, each pixel is represented by one luminance value and two chrominance values. In

conventional MPEG coding, the pixels are grouped into blocks of typically 8x8 pixels. The 64 luminance

values in the block are transformed using the Discrete Cosine Transform (DCT) to produce a block of

8x8 DCT coefficients. The DCT coefficients are zig–zag scanned and then compressed using run–level

coding. The run–level symbols are then variable–length coded (VLC). (The chrominance values are

processed in similar fashion, but are typically sub–sampled prior to quantization and transformation.)

Videos can be encoded in VBR (Variable Bit–Rate) or CBR (Constant Bit–Rate). With VBR–

encoding, the quantizers used for each type of image (I, P, B) are constant throughout the video. The goal

of VBR–encoding is to achieve a roughly constant quality for all images of the video. The bitrate of the

compressed bitstream varies as a function of the visual complexity of the original images. In contrast,

CBR–encoded videos must respect a target average bitrate. This is achieved by a rate–control algorithm

which determines the appropriate quantizer step to use for each image. Limiting the output bitrate comes

with some degradations in quality compared to VBR–encoding [91].

16 Streaming Video over the Internet

Finally, note that videos have very strict real–time constraints during playback: every image has to

be decoded and presented to the user at fixed time intervals. This interval corresponds to the frame rate

of the video. The time at which a video packet should be decoded is called its decoding deadline.

2.2.2 MPEG–4

In this dissertation, we present experiments with MPEG–4 encoded videos. The MPEG–4 formal desig-

nation is ISO/IEC 14496 [6]. As we mentioned in the previous section, MPEG–4 is a recent codec that

has been designed for a broad range of applications, such as video streaming. One of the main objectives

of the standard is also the flexible manipulation of audio–visual objects. MPEG–4 introduces the concept

of an audio–visual scene, which is composed of one or many audio–visual objects [64]. Audio–visual

objects can be still images, video or audio objects.

The architecture of an MPEG–4 terminal is depicted in Figure 2.1. In the compression layer, the

composition of the media objects in the scene is defined by a specific language for scene description:

BIFS (BInary Format for Scene description). Each object is described by an Object Descriptor (OD),

which contains useful information about the object, such as the information required to decode the object,

its QoS requirements, or textual descriptors about the content (keywords) [51]. One object is composed

of one or more Elementary Streams (ES). Object descriptors and scene description information are also

carried in elementary streams.

An Access Unit (AU) is defined as the smallest element that can be attributed with an individual

timestamp. An entire video frame is a typical AU. The SyncLayer packetizes the AUs with additional

information such as timing. Timing is expressed in terms of decoding and composition timestamps [15].

The algorithms that are used to code video objects are defined in ISO/IEC 14496–2 [7]. A Video

Object (VO) can be a rectangular frame or an arbitrarily shaped object, corresponding to a distinct object

or the background of the scene. Each time sample of a video object is called a Video Object Plane (VOP).

The MPEG–4 standard does not specify how to segment video objects from a scene. Therefore, as of

today, most MPEG–4 encoded videos just comprise one video object, which is the rectangular–shaped

video itself. In this case, a VOP just denotes a video frame or image.

The architecture of MPEG–4 systems has been designed to be independent of the transport. The De-

livery Layer makes possible to access MPEG–4 content over a wide range of delivery technologies [44].

Delivery technologies are grouped into three main categories: interactive network technologies (Internet,

ATM), broadcast technologies (Cable, Satellite) and disk technologies (CD, DVD). The FlexMux is an

optional tool; it can be used to group elementary streams with similar QoS requirements, thus reducing

the total number of network connections required. Finally, the DMIF5 Application Interface (DAI) al-

lows to isolate the design of MPEG–4 applications from the various delivery layers. The implementation

5DMIF stands for Delivery Media Integration Framework.

2.2 Digital Videos 17

Multiplexed
 Streams

Interactive Audiovisual

Scene

Elementary Streams

Composition and Rendering

Display and

User

Interaction

Transmission/Storage Medium

(RTP)

UDP

IP

H223

PSTN

DAB

Mux

Delivery

Layer

FlexMux
 FlexMux

DMIF Application Interface

SL
 SL
SL
 SL
 ...
 Sync

Layer

Elementary Stream Interface

AV Object

data

Scene

Description

Information

Object

Descriptor

...
 Compression

Layer

SL

SL
 -
Packetized Streams

(PES)

MPEG
-
2

TS

AAL2

ATM

Upstream

Information

SL

SL

FlexMux

...

Figure 2.1: MPEG–4 system (c
�

MPEG)

18 Streaming Video over the Internet

of a streaming MPEG–4 system supporting DMIF is presented in [59]; [17] discusses architecture issues

for the delivery of MPEG–4 video over IP.

2.2.3 Layered–Encoding

Hierarchical encoding — also called scalable or layered encoding — is an encoding technique that is

particularly well suited to networked video applications. Layered–encoding appears first in the MPEG–2

standard, and later in H.263+ (enhanced version of H.263) [29] and in MPEG–4. It was proposed to

increase the robustness of video codecs against network packet loss [47]. The main concept of scalable

encoding is to encode the video into several complementary layers: the Base Layer (BL), and one or

several Enhancement Layers (ELs). The base layer is a low quality version of the video. It has to be

decoded in order to show minimum acceptable video quality. The rendering quality of the video is then

progressively enhanced by decoding each enhancement layer successively. All enhancement layers are

hierarchically ordered: in order to decode the enhancement layer of order � , the decoder needs all lower

order layers, i.e., the base layer and all enhancement layers of order
�

to �
�

�
.

In this dissertation, we focus on using layered–encoding for video streaming to gracefully adapt

the quality of the video to heterogeneous and variable network conditions. This property of scalable

encoding is particularly useful with the increased mobility of users. However, scalable videos can be

used for many other applications than streaming, such as universal media access (videos are layered–

encoded only once and can be played on a large range of devices from PDAs to HDTV screens), or

differentiated content distribution (the base layer is distributed free of charge, while the enhancement

layers are encrypted and distributed for a fee).

There are several types of video layered–encoding which have been defined in most recent codecs.

We detail these techniques below.

Data Partitioning

Data Partitioning (DP) is a simple video scalability scheme. All layers can be obtained directly from the

non–layered compressed video bitstream. Each layer contains a different set of DCT coefficients for all

image blocks. The base layer contains the first DCT coefficients, i.e., the lowest frequency coefficients.

The enhancement layers contain the remaining DCT coefficients, i.e., the ones that correspond to higher

frequencies. The number of DCT coefficients to allocate to each layer is given by what is called the

Priority Break Point (PBP) values.

Temporal Scalability

In temporal scalability, the base layer is encoded at a reduced frame rate. The enhancement layers are

composed of additional frames that increase the displayed frame rate of the video. For better coding

2.2 Digital Videos 19

I
 P
P

B
 B

Enhancement

Layer

Base

Layer

Figure 2.2: Example of temporal scalability

efficiency, the enhancement layer frames can be temporally predicted from the surrounding base layer

frames. Temporal scalability can simply be implemented from a regular non–layered video containing

all frame types I, P and B. Figure 2.2 shows the example of a video encoded into two layers, in which I–

and P–frames form the base layer, while B–frames are allocated to the enhancement layer.

Spatial Scalability

With spatial scalability, the base layer is of a smaller spatial resolution than the original video. The

enhancement layers contain information for higher spatial resolutions. We show in Figure 2.3 an example

of a spatial scalable video encoded into two layers. When the decoder decodes only the base layer

for a frame, it up–samples the frame to show it at full size but reduced spatial resolution. When the

decoder decodes both the base layer and the enhancement layer it can show the frame at full size and

full spatial resolution. For more coding efficiency, the enhancement layer encoding algorithm can use

spatial prediction from the corresponding base layer frame and/or temporal prediction from the previous

enhancement layer frames, as shown in Figure 2.3.

SNR Scalability

Signal–to–Noise Ratio (SNR) scalability consists in having layers with the same spatio–temporal resolu-

tion, but of different encoding qualities. As shown in Figure 2.4 for two layers, the base layer is obtained

by encoding the video regularly with a coarse quantizer
�

; the enhancement layer is obtained by en-

coding the error between the original video and the base layer decoded video, with a smaller quantizer
���

.

20 Streaming Video over the Internet

Enhancement

Layer

Base

Layer

P

I

B

P

B

P

Figure 2.3: Example of spatial scalability

Uncompressed

Video

encoder

Q

Base

Layer

decoder

+

-

encoder

Q’

Enhancement

Layer

Figure 2.4: Implementation of SNR–scalability

2.2 Digital Videos 21

Comparison

All types of scalability have different implementation complexities. Data partitioning is very easy to im-

plement, because it only requires multiplexing/demultiplexing a non–layered compressed video. Also,

as we mentioned earlier, temporal scalability may be simply obtained from a non–layered compressed

video, by grouping the different types of pictures into different layers. However, SNR and spatial scala-

bilities usually require as many regular non–layered codecs as layers.

For a given target video quality, layered encoding usually comes with a bitrate penalty, compared

to non–layered encoding. For data partitioning and temporal scalability, the overhead is only due to the

replication of header information in all layers, such as frame numbers. This usually results in a negligible

bitrate penalty. However, SNR and spatial scalabilities also replicate content information in all layers,

which yields significantly larger bitrate overheads [63, 137].

The performance of all types of scalability for transmission over lossy channels has been evaluated

in [12, 63]. It has been shown that, in general, layered encoding gives better resilience to transmission

errors than non–layered encoding, in terms of the achieved rendering quality (i.e., better graceful degra-

dation in quality in presence of transmission errors). Aravind et al. [12] compare the transmission, over

ATM, of DP, SNR and spatial scalable videos. When the base layer is transmitted with full reliability,

it is shown that spatial scalability provides the best performance, at the cost of a high implementation

complexity. Kimura et al. [63] compare the transmission of DP, SNR and temporal scalable videos over

a DiffServ–enabled Internet. The different layers are mapped into different priority levels. Temporal

scalability is shown to perform poorly compared to data partitioning. Also, because of the large bitrate

overhead associated with SNR scalability (in the range of 5% to 20%), data partitioning provides slightly

better quality than SNR scalability.

Content Scalability

Content–based scalability comes directly from the possibility, given by the MPEG–4 standard, to code

and decode different audio–visual objects independently [64]. The fundamental objects of the video can

be grouped into the base layer, and the objects that are not crucial to the understanding of the video can

be mapped into several enhancement layers6. As an example, during a videoconference, the head of

the speaker can be considered as the base layer, while the background of the setting is considered as an

enhancement layer. Note that content scalability requires the objects that are mapped to different layers

to be encoded separately. This can be achieved either by capturing the original objects separately before

6Note that, in the case when the objects that compose the different enhancement layers can be decoded independently from

lower layers, content scalability cannot be considered as a regular type of layered encoding. This is the case in [146] which

considers the allocation of bandwidth to the different media objects composing the video according to their relative importance

in the final rendered video quality.

22 Streaming Video over the Internet

Base

Layer

Enhancement

Layer

I
 P
 B

Figure 2.5: Example of truncating the FGS enhancement layer before transmission

encoding (for instance, by using a blue screen), or by segmenting a scene composed of several objects.

2.2.4 Fine Granularity Scalability

Fine Granularity Scalability (FGS) is a new type of layered encoding, which has been introduced in the

MPEG–4 standard specifically for the transmission of video over the Internet [8]. The particularity of

FGS encoding over the other types of scalability, is that the enhancement layer bitstream can be truncated

anywhere during transmission, and the remaining part can still be decoded. Figure 2.5 shows an example

of truncating the FGS enhancement layer before transmission over a network. For each frame, the shaded

area in the enhancement layer represents the part of the FGS enhancement layer which is actually sent

by the server to the client. Truncating the FGS enhancement layer for each frame before transmission

allows the server to adapt its transmission rate to the changing available bandwidth of the connection. At

the client side, the decoder can use the truncated enhancement layer to enhance the quality of the base

layer stream.

MPEG–4 SNR FGS

In this dissertation, we focus on the MPEG–4 Signal–to–Noise Ratio (SNR) Fine Granularity Scalabil-

ity [71, 72]. In SNR FGS, the FGS enhancement layer contains an encoding of the quantization error

between the original video and the corresponding base layer decoded video. Figure 2.6 illustrates the

architecture of a typical MPEG–4 SNR FGS decoder. According to the MPEG–4 standard, and as il-

lustrated in this figure, only the base layer frames are stored in frame memory and used for motion

compensation (predictive encoding). There is no motion compensation within the FGS enhancement

layer. This makes the enhancement layer highly resilient to transmission errors, and subsequently well

2.2 Digital Videos 23

Bit-plane

VLD

IDCT

VLD

Q
-1
 IDCT

Motion

Compensation

Frame

Memory

Enhancement

Bitstream

Base Layer

Bitstream

Clipping

Clipping

EL

video

BL

video

Figure 2.6: MPEG–4 SNR FGS decoder structure

suited to the transmission over error–prone networks such as the best–effort Internet. A typical scenario

for transmitting MPEG–4 FGS encoded videos over the Internet has been proposed by the MPEG–4

committee in [10]. In this scenario the base layer is transmitted with high reliability (which is achieved

through appropriate resource allocation and/or channel error correction) and the FGS enhancement layer

is transmitted with low reliability (i.e., in a best effort manner and with low error control). It has been

shown in [71] that FGS–encoding is more efficient than multilayer SNR–scalability.

The main difference between conventional MPEG encoding and FGS encoding is that the DCT co-

efficients of the enhancement layer are not run–level encoded in the FGS encoding, but instead bitplane

encoded, which we now illustrate with an example. Consider the 8x8 block of enhancement layer DCT

coefficients in the left part of Figure 2.7. The coefficients are scanned in zig–zag order to give the se-

quence of 64 integers starting with 7, 0, 5,
1 1 1

. Each integer is then represented in binary format (e.g.,

7 is represented by 111, 3 is represented by 011). The representation for each integer is written in a

vertical column as illustrated in the middle of Figure 2.7 to form an array that is 64 columns wide and

3 rows deep, as the largest integer in this example has a 3 bit binary representation (in practice 8 bit

representations are typically used). The bitplanes are obtained by scanning the rows of the array hori-

zontally. Scanning the row containing the most significant bit (the top row in the illustration) gives the

Most Significant Bitplane (MSB). Scanning the row containing the least significant bit (the bottom row

in the illustration) gives the Least Significant Bitplane (referred to as MSB-2 in this example, or more

generally, LSB)7. Next, each bitplane is encoded into
� * � (����� %
 symbols. * � (gives the number

7Note that, because they have higher entropy, less significant bitplanes are usually represented with more bits than higher

significant bitplanes [128].

24 Streaming Video over the Internet

Block of 8 x 8 DCT

coefficient differences

MSB

MSB-1

MSB-2, LSB

1
 0
 1
 0
 0
 0
 0
 0

1
 0
 0
 0
 0
 1
 0
 0

1
 0
 1
 0
 0
 1
 0
 0

0
 0

0
 0

0
 1

7
 0
 5
 0
 0
 3
 0
 0
 0
 1
 ...

...
 0

0

0

0

(0,0) (1,1)

(0,0) (4,1)

(0,0) (1,0) (2,0) (3,1)

7
 0
 3
 0
 0
 0
 0
 0

5
 0
 0
 0
 0
 0
 0
 0

0
 0
 0
 0
 0
 0
 0
 0

1
 0
 0
 0
 0
 0
 0
 0

0
 0
 0
 0
 0
 0
 0
 0

0
 0
 0
 0
 0
 0
 0
 0

0
 0
 0
 0
 0
 0
 0
 0

0
 0
 0
 0
 0
 0
 0
 0

bit-plane

coding

zig-zag

scanning

(RUN,EOP)

coding

Figure 2.7: Example of bitplane coding

of consecutive “0”s before a “1”.
��� % is set to 0 if there are some “1”s left in the bitplane; if there is no

“1” left in the bitplane then
��� % is set to 1, as illustrated in Figure 2.7. The

� * � (� ��� %
 symbols

are finally variable–length coded.

FGS Advanced Features

The MPEG–4 standard has specified several improvements for the basic FGS coding technique. These

include frequency weighting and selective enhancement. Frequency weighting consists in using different

weighting coefficients for the different DCT components. Bits pertaining to the most visually important

frequency components are put in the bitstream ahead of the bits from the least important components.

Selective enhancement consists in using different weighting for the different spatial locations of a frame.

Bitplanes of some parts of a frame are put into the enhancement layer bitstream ahead of the bitplanes of

other parts of the frame.

MPEG–4 also defines the FGS Temporal Scalability (FGST). This consists in adding a second FGS

enhancement layer which increases the frame rate of the video. Each FGST frame can be coded using bi–

directional prediction from the base layer. Like in regular temporal scalability, the temporal enhancement

layer frames can be dropped during transmission. However, with FGS temporal scalability, parts of the

FGST–EL can be used to increase the temporal quality of the video.

Finally, Progressive FGS (PFGS) is another improvement of the basic FGS technique, which has been

proposed recently in [143, 146]. Unlike the MPEG–4 FGS, PFGS features partial motion compensation

among the FGS bitplanes, while still achieving the fine granularity property. This usually improves the

coding efficiency of regular FGS, but at the cost of a decrease in error resilience [142].

2.3 Transmission of Videos over the Internet 25

2.3 Transmission of Videos over the Internet

In the previous sections we have presented the two main technologies that are involved in an application

that transmits videos over the Internet: the underlying best–effort transmission network and video coding.

In this section we now focus on the networked video application itself. We describe the main issues and

design choices of an Internet video application.

2.3.1 General Application Issues

Streaming vs. Downloading Stored Video

Transmission of stored video is also called Video on Demand (VoD). In such an application, the complete

video has been encoded off–line and is stored as a data file, located in a server or proxy. The video is

then delivered to the user upon request. There are two different ways of consuming stored video content

across the Internet: downloading and streaming.

Downloading a video is similar to downloading a data file: the user can start watching the video only

after the complete file has been received. With streaming, the user can start watching the video shortly

after the transmission of the video file has begun; the user is watching the parts of the video that have

been received, while the video server is transmitting future portions of the video.

When the user downloads a video, he has to wait for a large start–up delay, which corresponds to the

transmission time of the video file. This time depends on the size of the video file and on the current

characteristics of the Internet connection. The size of the video file is in turn a function of the source

video characteristics (duration, image complexity), as well as the particular video encoder used and the

target quality (image resolution). As an example, the size of a broadcast quality 30–mn video encoded

with the MPEG–4 DivX codec [1], which is one of today’s most advanced codecs, is around 100 MBytes.

Over high speed ADSL connections with maximum downstream rates of 1 Mbps, this makes a minimum

start–up delay of around 14–mns, i.e., almost half the total duration of the video. This delay is clearly

restrictive compared to today’s basic TV service. Also, this makes switching between different video

programs tedious: each time the user wants to watch a new program, he has to wait for the transmission

delay of the whole program.

The main goal of streaming is to reduce this start–up delay by allowing the user to start watching the

video before complete reception of the video file. However, because, as we mentioned in Section 2.1.1,

the current Internet does not provide any QoS to applications, there is no guarantee that the user will be

able to watch the full quality video without interruption. Therefore, video streaming applications require

specific network–adaptive techniques in order to maximize the rendered video quality.

26 Streaming Video over the Internet

Streaming Stored vs. Live Video

Unlike stored video applications that fully encode the video before its transmission, the transmission

of live video requires the video frames to be produced, encoded and transmitted almost at the same

time. Therefore, the transmission of live videos is only possible through streaming. Live videos can be

truly interactive, such as in video conferencing applications, or non–interactive, such as in live broadcast

applications (sports or other TV shows). Live streaming applications usually have more strict delay

requirements than stored video streaming applications. When the image is produced at the remote site,

it should be available at the client within a short delay. For instance, video conferencing applications

usually require that the total transmission time of video and audio signals be less that 150 ms, in order

to provide a seamless telecommunication service, while delays higher than 400 ms usually give poor

quality [67]. For non–interactive live events, delays can be a little higher, depending on the content.

Streaming Layered–Encoded Videos

Network heterogeneity and varying conditions are usually addressed by using appropriate video en-

coding techniques. There are four popular techniques for adapting the streaming to long–term varying

network conditions: on–the–fly encoding, switching among multiple encoded versions of the video,

adding/dropping layers and adding/dropping descriptions.

On–the–fly encoding consists in encoding (or transcoding) the video at the same time that it is trans-

mitted to the client. This is the default technique for live video applications, but it can be used also for

stored video and non–interactive live video applications. This technique allows to fine–tune the encoding

parameters, in order to match the video output rate to the current connection available bandwidth. In [21]

Bolot and Turletti present a rate adaptation scheme for streaming real–time videos, that controls the out-

put rate of the encoder by adjusting encoding parameters such as the frame grabbing rate, the quantizer

or the movement detection threshold. However, encoding is CPU intensive and thus generally regarded

as unsuitable for servers that stream a large number of videos simultaneously.

Switching versions is widely used in the industry. This technique consists in encoding the video at

different output bitrates, corresponding to different quality levels. Each version is stored and available at

the server. The server switches among the versions to adapt the transmission rate (and hence the quality

level) to the connection available bandwidth.

An alternative technique to switching versions, is using a scalable, or layered–encoded, video (lay-

ered encoding has been introduced in Section 2.2.3). Video layers can be added or dropped by the server

as a function of changing network conditions. Algorithms for optimal adaptation of layered–encoded

videos to varying network conditions are presented in Section 2.4. In particular, the use of MPEG–4

FGS videos for Internet streaming has received much interest lately [99, 100, 128, 150].

Finally, another technique is using Multiple Description Coding (MDC). This consists in coding the

2.3 Transmission of Videos over the Internet 27

video into several descriptions, each of equal importance. This is different from scalable encoding which

produces hierarchical layers (i.e., higher layers need lower layers to be decoded). Using MDCs is more

flexible than using scalable video; however, this flexibility comes with a bitrate penalty. Using MDC

for streaming video has been presented in [103, 123]; also, we refer the interested reader to [70, 104] for

studies that compare streaming media with MDC and layered coding.

In Chapter 3 we investigate the differences between adaptive streaming of layered–encoded video

and different versions of the same video, while in Chapters 4, 5 and 6 we focus on mechanisms that use

layered–encoded videos.

2.3.2 Transport Issues

Multicast vs. Unicast Streaming

Video streaming over multicast has received much attention (see [73,78] for comprehensive surveys). In

particular, scalable encoding has been found to be well suited to the heterogeneity of receivers involved in

a multicast video streaming application. McCanne et al. [81,82] derived a rate–adaptation protocol called

RLM (Receiver–driven Layered Multicast) which is combined with video layering. In this approach,

video layers are transported to different multicast groups; clients join and leave multicast groups accord-

ing to their network capacity. Other works on audio and video multicast include [25, 61, 122, 125, 131].

Multicast transport is well adapted to streaming popular videos, when many users are likely to watch

the same video at the same time (especially broadcast videos such as regular TV programs). The ag-

gregation of many unicast connections makes more efficient use of network bandwidth. However, as

we have mentioned in Section 2.1.3, this requires considerable network–layer support. Unicast transport

is more appropriate for the transmission of non–popular videos, or videos requiring a high interactivity

(such as a small start–up delay). In this dissertation we focus exclusively on unicast video streaming.

TCP vs. UDP

While transmission over multicast requires the use of UDP as a transport protocol, unicast networked

video applications can use either TCP or UDP transport. However, TCP is usually considered as in-

appropriate for video streaming. This is mainly due to the following two reasons. First, TCP’s full

reliability is not necessary for video streaming applications. Indeed, videos are error resilient: because

of the inherent redundancy of video, streaming applications over error–prone networks can usually tol-

erate a certain amount of packet loss without much degradation in perceived rendering quality. The full

reliability of TCP also comes with a higher average transmission delay caused by the retransmission

of lost packets, which may be an impediment for real–time video streaming. Secondly, TCP’s AIMD

congestion control algorithm is often considered inappropriate for video streaming applications because

28 Streaming Video over the Internet

the resulting throughput is highly varying at short–time scales. Throughput variations can result in fluc-

tuating rendering quality of the video frames, which is not desirable.

Because of these reasons, many researchers advocate streaming media over UDP rather than over

TCP [106, 121]. Since UDP only provides a multiplexing service to the application, this requires the

implementation of mechanisms for smooth–rate congestion control and partial error correction in the

application layer.

And yet, TCP’s additional delays for retransmissions are usually bearable for streaming stored or

non–interactive live videos. These delays are at the order of hundreds of milliseconds, and can therefore

be accommodated, in general, by small client buffering. Additionally, as we show in Chapter 4, larger

client buffering can smooth TCP’s short–term throughput variations. Finally, videos that are streamed

over the Internet are usually highly compressed, so they require transmission with a high amount of error

correction, close to full–reliability. Therefore, as do Krasic et al. [66], we strongly believe that streaming

over TCP is still an alternative to UDP, for stored video and non–interactive live video. TCP has many

practical advantages over UDP: TCP already implements congestion control and error correction, it is

widely available and has been proven to be stable. Another practical reason to use TCP instead of UDP

is that firewalls in corporate LANs usually block incoming UDP streams. As a matter of fact, a wide–

scale experimental study with RealVideos [3] has shown that almost half systems were still streaming

video over TCP [136]. An alternative approach to using TCP as it is now, is to modify TCP’s congestion

control mechanism such as in [53], so that it slows down its transmission rate without loosing packets by

using ECN (see Section 2.1.3).

TCP–Friendly Congestion Control

Because UDP does not have any congestion control mechanism, video streaming applications over UDP

should implement a mechanism to react to network congestion, in order to be fair to competing TCP

traffic [40]. This TCP fairness issue has lead to the notion of TCP–friendly streams.

TCP–friendliness is defined in [40] as the following: "A flow is said TCP–friendly if its arrival rate

does not exceed the arrival rate of a conformant TCP connection in the same network circumstances".

Several TCP–friendly rate adjustment protocols have been recently developed by researchers [93, 118,

125,130] (see [138] for a more extensive list). Among today’s most popular protocols, we find RAP [107],

TFRC [41] or SQRT [16]. All protocols have different limitations, and achieve TCP–friendliness only

under specific types of scenarios. For example, some of the proposed protocols are not TCP–friendly at

loss rates higher than
�
% [107, 118], others are specific to multicast applications [125, 130].

As does TCP, TCP–friendly algorithms react to indications of network congestion by reducing the

transmission rate of the application. The transmission rate of TCP–friendly algorithms is typically

smoother than that of TCP [145]. Nevertheless, because network congestion occurs at multiple time

2.3 Transmission of Videos over the Internet 29

scales [95], the bandwidth available to TCP–friendly streams still fluctuates over several time scales [41,

145].

Existing video streaming systems with TCP–friendly congestion control over UDP can be grouped

into two categories: those that implement their own TCP–friendly congestion control mechanism, such

as in [69, 106, 146], and those that do not rely on a specific TCP–friendly algorithm, such as in [27, 88,

113, 114]. In this dissertation, we consider TCP–friendly transmission, either over TCP or over UDP,

and our frameworks do not rely on a particular TCP–friendly mechanism.

Error Correction: Selective Retransmissions vs. FEC

In addition to TCP–friendly congestion control, video streaming applications over UDP also need to

implement partial error correction. Because streamed videos can be highly compressed, the loss of

only one video packet can degrade the quality of a given image significantly. Also, most encoders do

predictive encoding, i.e., they encode an image by prediction from surrounding images (e.g., I, P, B

frames in MPEG codecs). In this case, the loss of a packet pertaining to one single image can propagate

to all the images that are predictively encoded from that image. The most popular error correction

techniques for video communication are selective retransmissions and FEC (Forward Error Correction).

(An extensive study of all error correction techniques for video communication can be found in [137].)

FEC consists in adding redundancy to source video packets. The most used FEC codes are Reed–

Solomon (RS) codes. RS
� � � �

codes consist in adding �
�

�
redundant packets to

�
source packets before

transmission. The reception of any
�

packets from the � transmitted packets allows the receiver to recover

all
�

original source packets. FEC codes are generally used for interactive real–time communications,

such as Internet telephony (see [96] for a survey on loss recovery techniques for streaming audio). They

provide error correction with less delay than retransmissions, but at the cost of an increase in the required

transmission rate. They are also typically used in situations where a feedback channel cannot be used,

such as in multicast applications [89]. The analytical performance of FEC for multimedia streaming

applications has been studied in [45].

Selective retransmissions of continuous media consists in retransmitting packets that are likely to

be received before their decoding deadline. Selective retransmissions are typically used for streaming

stored video applications, that can accommodate a large playback delay [94].

Because, in the best–effort Internet, the packet loss rate of a connection can vary significantly during

its lifetime, error correction schemes should be adaptive to varying network conditions. In the next

section we present such network–adaptive mechanisms for error correction, as well as some other general

adaptive techniques for video streaming.

30 Streaming Video over the Internet

2.4 Adaptive Techniques for Internet Video Streaming

In this section we describe existing systems and previous research works for adaptive video streaming

over the Internet. Section 2.4.1 focus on general techniques that adapt the streaming to changing network

conditions. Because of the specificities of video, these network–adaptive techniques are usually comple-

mented with techniques that adapt the streaming to the characteristics of the streamed video. We present

such content–adaptive techniques in Section 2.4.2.

2.4.1 Network–Adaptive Video Streaming

Because of the varying and heterogeneous characteristics of the best–effort Internet, systems for video

streaming should implement mechanisms that adapt the transmission to the current state of the network.

Playback Buffering

Today’s most popular media streaming applications, i.e., Real Media [3], Windows Media [4] and Quick-

time [2], all require a small start–up delay (a few hundreds of milliseconds) before the video can be

rendered to the user. During this time, the server sends the initial portion of the video into a dedicated

client buffer, which we call playback buffer — this is also called playout buffer. After the rendering of

the video has started, the server continues sending new data to the end of the client playback buffer, while

the decoder consumes the data available at the beginning of the buffer. We denote by playback delay,

the delay between the moment an image is sent by the server and the moment it should be displayed to

the user at the client (this depends on the image decoding deadline). In this dissertation, we make a dis-

tinction between the initial playback delay and the start–up delay: the start–up delay is the waiting time

perceived by the user between the time he requests the video and the time the first image is displayed; the

the initial playback delay corresponds to the time–worth of video data that has been sent by the server

during the start–up delay.

During the streaming, the playback delay fluctuates as a function of varying network conditions,

such as the available bandwidth, and the end–to–end transmission delay. Adaptive playback buffering

mechanisms are designed to maintain a sufficient playback delay for the whole duration of the streaming,

in order to accommodate network jitter (variation of the transmission delay). Such mechanisms have been

derived for real–time audio applications in [87,110] and video applications in [37,68,119]. The problem

that is usually addressed is to find the minimum buffer size at the receiver that smoothes out network

jitter, so that the requirements of maximum late packets and maximum acceptable delays are satisfied.

In [116] Sen et al. present a technique that uses client playback buffering to accommodate the streaming

of VBR–encoded videos.

2.4 Adaptive Techniques for Internet Video Streaming 31

The playback delay should stay below a maximum value, denoted by the maximum sustainable

playback delay, which is determined by the service requirements of the application. Interactive live

streaming applications such as video conferencing typically require a maximum playback delay of tens

of milliseconds, while non–interactive live streaming applications can usually sustain playback delays of

hundreds of milliseconds.

Streaming stored video applications have relaxed delay requirements compared to live video stream-

ing applications. So, they can sustain a higher playback delay, usually up to a few seconds. A higher

playback delay allows the application to accommodate not only jitter, but also short–term variations of

the available bandwidth. Indeed, with stored video all future video images are available in the server

storage at any time. Therefore, in periods when the connection available bandwidth is higher than the

encoded video bitrate, the server can use the extra bandwidth to send future portions of the video to the

client, thereby increasing the playback delay. The extra buffered data can be used in periods when the

available bandwidth becomes lower than the video source bitrate. This approach is fully rewarding if the

server sends data at the maximum possible transmission rate. This is the rate given by the available TCP

bandwidth, in case of transmission over TCP, or the fair share TCP–friendly rate in case of transmission

over UDP. Maintaining a high playback delay can also allow the server to retransmit lost video packets

before their decoding deadline expires8.

Loss Adaptation Techniques

Error correction mechanisms through selective retransmissions or FEC should also adapt to changes in

network conditions.

Because video packets have strict decoding deadlines, mechanisms for selective retransmission should

be adaptive to varying end–to–end delays. Works on network–adaptive selective retransmission in-

clude [31,76,94,120,141]. In [31], Dempsey et al. propose a mechanism for selective retransmission for

interactive voice communication over a channel with varying delays. Papadopoulos and Parulkar [94]

present an implementation of a selective retransmission scheme with, playout buffering to increase the

time available for recovery, gap–based loss detection, and receiver conditional retransmission requests to

avoid triggering late retransmissions.

Network–adaptive FEC mechanisms have been studied for voice communication in [20,110]. Rosen-

berg et al. [110] show the need for coupling adaptive playback buffer algorithms and FEC. In [20], Bolot

et al. present a scheme which adapts the amount of FEC to the available bandwidth and the current loss

rate, in order to make the effective packet loss rate below a minimum target loss rate.

Finally, there are adaptive schemes that combine FEC and selective retransmission. In [109], Rhee

8Note that, in addition to the client playback buffer, decoders also have a very small buffer. In [99], Radha et al. present a

buffer model that eliminates the separation of the playback buffer from the video decoder buffer.

32 Streaming Video over the Internet

presents an error–recovery technique for layered–encoded videos. Late reference images are retransmit-

ted to stop error propagation; the base layer is protected by FEC.

Streaming Stored Layered–Encoded Video with Quality Adaptation

As we mentioned in Section 2.3.1, adding/dropping video layers is a popular technique to adapt the

transmission to varying network conditions. Using layered–encoded video to adapt to changing TCP–

friendly bandwidth has been addressed in [106, 113, 114].

Saparilla and Ross [113] study the optimal bandwidth allocation to the video layers. Their approach

asks for one playback buffer per layer. This work introduces threshold–based network–adaptive policies

that add/drop layers according to the amount of data available inside the receiver playback buffers. Sub-

sequently, in [114], Saparilla and Ross propose a heuristic for computing near–optimal playback buffer

thresholds that trigger the adding/dropping of layers. Simulations from TCP bandwidth traces show that

maintaining high playback delays (up to several minutes) can improve the quality of the rendered video

significantly.

In [106], Rejaie et al. define another mechanism to add and drop layers according to the state of

the network and the amount of data already stored in the client buffer. This mechanism is called long–

term coarse–grain adaptation. [106] also defines a fine–grain mechanism which allocates the bandwidth

dynamically among the layers to accommodate bandwidth variations due to congestion control (over

time–scales of RTTs); the available bandwidth is allocated to each layer so that the application can

survive one or many backoffs of the congestion control mechanism.

In contrast with the fine–grain inter–layer bandwidth allocation in [106], [114] always streams the

layers proportionally to their decoding rate and relies on a minimum playback delay to accommodate

short time–scales bandwidth variations. The mechanism in [114] is valid for any TCP–friendly scheme,

such as TCP, while [106] has only been derived for RAP, and subsequently for SQRT in [35]. RAP and

SQRT are two TCP–friendly rate control schemes that have a more regular sawtooth shape than TCP,

and whose properties are simpler to predict.

2.4.2 Content–Adaptive Video Streaming

Besides adapting to changing network conditions, streaming systems can benefit from adapting to the

specificities of the streamed videos. The techniques presented in the previous section aim to maximize

network–oriented performance measures, such as minimum loss rate or maximum bandwidth usage.

While these measures can provide good indications of overall quality, in general the achieved rendering

quality of the streamed video is not directly proportional to the number of bits received or the proportion

of packets received. Therefore, in order to truly maximize the perceived quality at the receiver, given

network conditions, network–adaptive streaming applications should also consider the specificities of the

2.4 Adaptive Techniques for Internet Video Streaming 33

source video and of the encoding used. This is what we call content–adaptive streaming of video9.

We first present two adaptation techniques that specifically account for the layered encoding of the

video: the control of quality fluctuations, and unequal error protection between video layers. Then, we

present the general framework of rate–distortion optimized streaming.

Control of the Quality Fluctuations for Layered–Encoded Video

Using layered–encoded video to adapt to changing network conditions can result in high variations in

quality in the rendered video. This occurs with network–adaptive systems that add and drop layers too

frequently in order to adapt closely to the changing available bandwidth. High variations in quality

between successive images may decrease the overall perceptual quality of the video. For example, a

video with alternating high and low quality images may have the same average image quality as when

the video is rendered with medium but constant image quality, but the quality perceived by the user is

likely to be much lower.

The network–adaptive mechanisms presented in [106,114] both try to enforce — but do not guarantee

— minimum fluctuations in quality of the rendered video. In [88], Nelakuditi et al. present an algorithm

that uses layered encoding and playback buffering to smooth variations in image quality for network–

adaptive video streaming. The authors design metrics that capture the smoothness of rendering of the

video, and develop an off–line and on–line adaptive algorithm to maximize these metrics. As in [106,

114], a given layer is transmitted to the client only if the amount of data available in the receiver playback

buffer is sufficient in order to maintain the streaming of the layer for a long time. This ensures a small

number of fluctuations in the rendering quality.

In this dissertation, we investigate quality variations for switching versions and adding/dropping

layers in Chapter 3. In Chapter 4 we formulate and analyze an optimization problem to find optimal

transmission policies that minimize the variations in quality for streaming FGS–encoded videos.

Unequal Error Protection for Layered–Encoded Video

One of the main properties of layered–encoded video is that lower layers need to be available at the client

in order to decode higher layers. In particular, without the base layer, any received enhancement layer

cannot be decoded. Therefore, lower layers should be more protected against packet loss than higher

layers. This is called Unequal Error Protection (UEP), by opposition to equal error protection (EEP).

In a QoS–enabled Internet such as DiffServ (see Section 2.1.3), UEP can be performed by allocating

each layer to a different class of service. In the current best–effort Internet, UEP is usually achieved

by protecting each layer with different amount of FEC packets, or by retransmitting the most important

9We stress that content–adaptive streaming techniques can account for both the characteristics of the encoding used and the

characteristics of the source video.

34 Streaming Video over the Internet

layers before the least important layers.

UEP through FEC for network–adaptive streaming of layered video has been addressed in [52, 128,

146]. Horn et al. [52] optimize the amount of redundancy to be added to each layer as a function of

network parameters. Van der Schaar and Radha [128] focus on UEP for MPEG–4 FGS videos. They

present a scheme to provide fine–grained unequal error protection within the FGS enhancement layer

through FEC.

Mechanisms that achieve UEP of video layers through retransmissions include [75, 97, 108]. Podol-

sky et al. [97] study optimal strategies for delay–constrained retransmission of scalable media. The

optimization problem is to find, at any given time, which packet to retransmit between an older, less

important layer that expires soon, and a newer, more important layer that expires later. Results for a

2–layer video indicate that, for given network conditions, the best transmission policy is time–invariant.

Rejaie and Reibman [108] propose a sliding–window approach that insures that losses of lower layers

are repaired before losses of higher layers.

Rate–Distortion Optimized Streaming

Rate–distortion optimized streaming denotes a family of systems that use the rate–distortion charac-

teristics of the particular streamed video (layered or non–layered), in order to maximize the rendering

quality at the receiver. Streaming applications evaluate the end–to–end distortion of the rendered video

after transmission, as a function of the distortion of the individual video packets, the interdependency

between the packets, and the state of the transmission channel. This results in optimal scheduling and

error correction policies that maximize the expected quality of the rendered video.

Chou and Miao [26, 27] give a general framework for evaluating the end–to–end distortion of a

video for a wide range of streaming environments. They develop a heuristic algorithm for finding a

sub–optimal scheduling policy. Zhang et al. [146] address rate–distortion optimized streaming in the

particular context of MPEG–4 layered video with UEP through FEC; they use their own TCP–friendly

algorithm, MSTFP. In [46], Frossard and Verscheure study the optimal allocation of bandwidth to the

source video and FEC codes that minimizes a measure of perceptual distortion; the transmission scheme

adapts to both the scene complexity and network parameters. Other works for rate–distortion optimized

streaming include [84,85,147], which describe new ways to estimate the expected end–to–end distortion

that can provide a tractable optimization.

In this dissertation, we present an analysis of the rate–distortion properties of MPEG–4 FGS–encoded

videos in Chapter 5. We find useful insights for streaming algorithms, and investigate rate–distortion op-

timized streaming at different video frame aggregation levels. In Chapter 6 we investigate rate–distortion

optimized streaming with accounting for decoder error concealment.

Chapter 3

Multiple Versions or Multiple Layers?

In this chapter we compare switching among multiple encoded versions of a video and adding/dropping

encoding layers. In the context of transmission of stored video over a reliable TCP–friendly connection,

we develop streaming control policies for each scheme and evaluate their performance using trace–driven

simulation.

3.1 Introduction

The most straightforward mechanism to adapt the video transmission rate to the varying available band-

width of an Internet connection, without re–encoding the video, is to store different quality versions of

the video at the server and to switch between the different versions. This requires designing streaming

control policies that should decide which version to stream, as a function of the current system state and

observed network conditions.

With a layered–encoded video, the server can adapt to varying network conditions by just adding

and dropping encoded layers. In this case, streaming control policies decide whether to add or drop

a layer. Although adding/dropping layers is an effective video transmission technique, layered encod-

ing increases the complexity of the video coding significantly, and results in inferior coding efficiency

than non–layered compression (see Section 2.2.3). Layering introduces a coding overhead at the source

coder and the transport layer, which is a function of several factors, including the particular layer-

ing structure employed (temporal, SNR, spatial scalability,
1 1 1

), the bitrate of the video stream, and

the spatial and temporal resolution of the source [12]. Nevertheless, when the base layer is delivered

with high reliability (by combining layered encoding with transport prioritization mechanisms, such as

FEC), adding/dropping layers offers a higher resilience to transmission errors relative to a non–layered

scheme [12,63]. Also, the storage requirement at the server is lower with adding/dropping layers, which

requires the storage of only one version of the video, than with switching between different versions of a

same video.

36 Multiple Versions or Multiple Layers?

In this chapter we make two main contributions. First, we design equivalent adaptive streaming

policies for adding and dropping layers, and for switching among versions. Second, we compare the two

schemes with simulations from TCP traces. Results show that, in the context of reliable TCP–friendly

transmission, switching versions usually outperforms adding/dropping layers because of the bit–rate

overhead associated with layering.

3.1.1 Related Work

The comparison between using layers and using versions for streaming video has been addressed in [49,

61]. Hartanto et al. [49] study caching strategies that use both versions and layers; they found that mixed

strategies provide the best overall performance. In [61], Kim and Ammar study the comparison between

both schemes in the context of multicast communication. In this dissertation, we focus on adaptive

streaming policies for unicast communication.

This chapter is organized as follows. In Section 3.2 we present our model and the performance met-

rics we use to compare the two schemes. We then design streaming control policies for adding/dropping

layers, and for switching versions. The heuristic streaming policies developed for each scheme are anal-

ogous, which permits a fair comparison of the two schemes. In Section 3.4 we compare the adaptive

streaming schemes in simulation experiments in which we vary critical conditions, such as (i) the aver-

age available bandwidth, and (ii) the percent bitrate of overhead that is associated with layered video. Our

simulation experiments use TCP throughput traces collected from Internet experiments. We conclude in

Section 3.5.

3.2 Model and Assumptions

Similarly to [113, 114], we develop a fluid transmission model to analyze the video streaming problem.

We denote by
� � �
 the TCP–friendly bandwidth that is available to the streaming application at time

� . For
� � �
 we use Internet traces, with each trace being averaged over 1–second intervals. Our model

allows for an initial playback delay, denoted by
� �

, which is set to four seconds in all numerical work.

We assume that the transmission delay between the server and the client is negligible. When streaming

stored video, this assumption is reasonable given that round trip times are relatively small, and often an

order of magnitude smaller than the maximum sustainable initial playback delay (*�������� � �).
We suppose that the source host always sends data at rate

� � �
 , and that all data sent into the network

are eventually consumed at the receiver (i.e., the server only transmits data that will meet their deadline

for consumption). The channel is supposed to be fully reliable: our model maintains a sufficient playback

delay between the server and the client, so that full reliability can be ensured by the retransmission of

all lost video packets. Thus, in our model, packet loss from the video stream occurs only due to client

3.2 Model and Assumptions 37

buffer starvation. Finally, we suppose that the playback buffer at the client is not restricted in size (this

assumption is motivated by disk sizes in modern PCs).

For simplicity, we suppose that the video is CBR–encoded. In the multiple versions scheme, we

consider two non–layered versions, each encoded at a different rate and stored at the server. We denote

the encoded bitrate of the low quality version by � � bits per second, and the encoded bitrate of the high

quality version by ��� bits per second. (Note that � � � ��� .) We refer to the low quality (low bitrate)

version as version � � and to the high quality (high bitrate) version as version � � . In the layered video

scheme, we suppose that the base layer (BL) can be decoded independently to generate a comparable

video quality to the the low quality version � � . We also suppose that there is a single enhancement layer

(EL), which, when decoded with the base layer, delivers a quality comparable to version � � . We let

��� and ��� denote the rates of the base and enhancement layers, respectively. Table 3.1 summarizes the

notations used in this chapter.

3.2.1 Comparison of Rates

In order to fairly compare the two streaming approaches, we need to define the relationship between the

encoding bitrates of the layers and those of the two versions. As we mentioned earlier, layered encoding

results in a lower compression gain than non–layered coding. The coding penalty of layering depends on

several factors, including the particular scalability technique used. Kimura et al. [63] evaluated the cod-

ing overhead of SNR scalability between 5 and 20%; Wang and Zhu [137] indicated that data partitioning

has about 1% overhead compared to non–layered coding.

We denote the overall percent coding overhead of layering by
�

. As explained in [137], the overhead

introduced by layering can be due to source coding or transport, including protocol and packetization

overheads. In data partitioning, for instance, the coding overhead is due to additional headers in the

enhancement layer stream, which are needed for synchronization with the base layer stream. In SNR

scalability, the enhancement layer is a re–quantization of the base layer at a finer resolution, so that both

layers include some information about all DCT coefficients.

In this study, we assume that the bitrate coding overhead is associated with the enhancement layer.

We identify the following relationships for rates ��� , ��� , and � � , � � :

���
	 ��� �4� � 	 �
�� � � and ��� � � � 1 (3.1)

3.2.2 Performance Metrics

We compare the performance of the two adaptive streaming schemes based on three metrics:

38 Multiple Versions or Multiple Layers?

� � �
 Available bandwidth at time �
��� Coding rate of the base layer

��� Coding rate of the enhancement layer
� �

Initial playback delay

� � low quality (low bitrate) version of the video

� � high quality (high bitrate) version of the video

� � Coding rate of the low quality version � �
� � Coding rate of the high quality version � �
�

Coding overhead of layering (in percent)

� � ��� � Fraction of high quality viewing time

� ��� ����� Fraction of time the decoder cannot display the video

(
	 ����
 Number of fluctuations in quality
� � � �
 Fraction of bandwidth allocated to the BL at time �
� � � �
 Fraction of bandwidth allocated to the EL at time �
� � � �
 Content of the client BL playback buffer at time �
� � � �
 Content of the client EL playback buffer at time ��

avg
� �
 Estimate of the available bandwidth at time �

� ��� � � Prediction interval of the available bandwidth
� � � �
 Content of the client playback buffer in version � � at time �
� � � �
 Content of the client playback buffer in version � � at time �
��� ��� � Ratio of the highest quality video bitrate over the average available bandwidth

Table 3.1: Summary of notations for Chapter 3

– Fraction of high quality viewing time. We denote by � � ��� � the fraction of time that the best quality

of the encoded video can be viewed at the client. In the case of layered video, � � ��� � is the fraction

of time both layers are delivered and decoded together. In the case of multiple versions, � � ��� � is

the fraction of time that version � � is rendered to the client.

– Fraction of time the decoder cannot display the video. We denote by � ��� ����� the fraction of time

during which the decoder cannot render a part of the video of either quality to the receiver. In the

case of layered video, � ��� ����� is the fraction of time that the base layer playback buffer is starved. In

the case of switching versions, � ��� ����� is the fraction of time that neither � � nor � � data is available

for consumption.

3.3 Streaming Control Policies 39

– Quality fluctuations. We denote by (����
 the total number of times that the video quality changes

at the decoder. In the case of layered video, there are quality fluctuations when the enhancement

layer is dropped or added, or when the enhancement layer playback buffer at the client is starved.

In the case of multiple versions, (����
 is the total number of switches among the two versions, i.e.,

switching from version � � to � � , and vice versa.

3.3 Streaming Control Policies

In this section we develop control policies for adding/dropping layers and for switching among ver-

sions. A control policy for adding/dropping layers determines when to add and drop the enhancement

layer, as well as how to allocate bandwidth among the layers (when both layers are being streamed).

Results in [113] have shown that control policies based on the content of the playback buffers at the

client attain good performance in a TCP–friendly context. Some simple threshold control policies were

introduced in [114] for layered–encoded videos. In this chapter we design equivalent control policies

for adding/dropping layers and for switching versions, so that we can fairly compare the two adaptive

streaming schemes.

3.3.1 Adding/Dropping Layers

We begin by describing the control policy for adding/dropping layers. At any time instant, the server

must determine how to allocate bandwidth among the layers. We first define some useful notation for

describing the bandwidth allocation problem. We denote � � � �
 and � � � �
 the fraction of available band-

width
� � �
 that is allocated to the base layer and the enhancement layer at time � , respectively. We

denote by
� � � �
 and

� � � �
 the contents of the base and enhancement layer playback buffers at the client

at time � , respectively. Figure 3.1 illustrates the system of client playback buffers. As shown in the figure,

at time � the base layer playback buffer is fed at rate � � � �
 � � �
 ; when nonempty, the buffer is drained

at rate � � . An analogous statement is true for the enhancement layer. We suppose that the server can

estimate the amount of data in the client playback buffers using regular receiver reports (e.g., RTP/RTCP

reports).

Based on the playback buffer contents at the client and on available bandwidth conditions, the server

decides at each time instant whether to add or drop the enhancement layer. The goal of our control policy

is to maintain continuous viewing of the base layer (i.e., avoid buffer starvation) while at the same time

maximize the perceived playback quality by rendering the enhancement layer for long periods. Figure 3.2

shows a state transition diagram for the adding/dropping layers policy. The server begins by streaming

only the base layer; in state 1, all available bandwidth is allocated to the base layer, i.e., � � � �
 � �
.

When the enhancement layer is added, the server begins sending data from both layers and the process

40 Multiple Versions or Multiple Layers?

Y
b
(t)

Y
e
(t)

X
(t)

r
b

r
e

 b
(t)X
(t)

 e
(t)X
(t)

Figure 3.1: System of client playback buffers in layered streaming model

State 2State 1
� � � �
 � � � � � �
�� �

�

�������	�
�
��� � ��� � ��� �

��
 avg
�����

�
� 	 ���
 and
� �

�

�
�

 ����� � � �
 � ���

�������	�
��� �

� ��� � ��� �
��
 avg

���	�
��� 	 �
�
 or

���������
�
� �

� �

Figure 3.2: State transition diagram of a streaming control policy for adding/dropping layers

transitions to state 2. In state 2, available bandwidth is allocated among the layers in proportion to each

layer’s consumption rate, i.e., � � � �
�� �
� where

�
�
� �
�

� � 	 ��� .
Two conditions control the transition from state 1 to state 2. The first condition requires that when the

server adds the enhancement layer, the amount of buffered base layer data at the client is enough to avoid

future buffer starvation. In particular the server adds the enhancement layer at time 	 if the following

condition holds:
� � � 	

� � � � ��� � ��� �

�

�
�

�
avg
� 	

� �

(3.2)

In the above expression,
�

avg
� 	
 is the most recent estimate of average available bandwidth. This es-

timate is obtained using a Weighted Exponential Moving Average (WEMA) of all previous bandwidth

observations at the server.
� � � � � is a constant denoting the prediction interval over which the estimate of

average bandwidth is considered useful. Condition (3.2) requires that the amount of buffered base layer

data at time 	 is enough to avoid starvation in the next
� � � � � seconds, given that the average available

bandwidth during the next
� ��� � � seconds equals the most recent bandwidth estimate

�
avg
� 	
 , and that a

fraction
�

� of the available bandwidth will henceforth be allocated to the base layer. The second condition

for adding the enhancement layer at time 	 requires that the estimated transmission rate of enhancement

3.3 Streaming Control Policies 41

layer data at time 	 (and during the prediction interval) exceeds the consumption rate, i.e.:

� �
�

�
�

 � �

avg
� 	
 � � � 1 (3.3)

Condition (3.3) aims at avoiding rapid quality fluctuations caused by frequently starving the enhancement

layer buffer. The server adds the enhancement layer at time 	 only if both conditions (3.2) and (3.3) hold.

The server drops the enhancement layer when the likelihood of base layer buffer starvation becomes

high. To avoid starvation of the base layer buffer, the server drops the enhancement layer at time 	
if (3.2) does not hold. The server also drops the enhancement layer, regardless of the estimated bandwidth

conditions, if the amount of buffered data drops below the amount needed to mitigate jitter and short time

scale bandwidth variations, i.e., if
� � � �
 � ��� � � � , where

� �
is the initial playback delay in seconds.

A key issue in the design of the adaptation mechanism for adding/dropping layers is determining

which portion of the enhancement layer to transmit once the layer has been added. A straightforward

implementation is to send the enhancement layer data with the same playback deadline as the base layer

currently being transmitted. In other words, the base and enhanced portions of each future frame are

transmitted together. As a result, the base layer data that are already in the client playback buffer are

consumed without enhancement.

3.3.2 Switching Versions

Now, we develop a streaming control policy for switching versions. Figure 3.3 shows the client playback

buffer in the version streaming model. We suppose that there is a unique playback buffer that contains

video parts from both versions1. We denote the playback buffer contents in version � � at time � by
� � � �
 .

Similarly, we denote the playback buffer contents in version � � at time � by
� � � �
 . As we shall see, to

minimize the risk of buffer starvation, the server should not stream highest version � � , unless a reserve of

future data exists in either one of the two versions. Once again, we suppose that the amount of buffered

data at the client can be estimated at the server using regular receiver reports.

Y
l
(t)
 Y
h
(t)
X
(t)

r
h
| r
l

Figure 3.3: System of client playback buffers in versions streaming model

1Our control policy is also valid for a model with one buffer for each version of the video.

42 Multiple Versions or Multiple Layers?

State 2State 1

stream � �

� � ���	�� � 	
��� ���	�
� � �

� ��� � � � �
�
������

���	�
� �

or
� � ���	�� � 	

��� ���	�
� � �

� �

� � ���	�� � 	
��� ���	�
� � � � ��� � � � �

�
������
���	�

� �

and
� ��� � � �
 � ���

stream � �

Figure 3.4: State transition diagram of a streaming control policy for switching versions

Figure 3.4 shows the state transition diagram for the switching versions policy. The server begins

by streaming version � � at the available bandwidth rate. After the initial playback delay, the client

begins to consume buffered data from version � � . Whenever
� � �
 exceeds � � , future portions of version

� � are stored into the corresponding client playback buffer. In a similar way as in the heuristic for

adding/dropping layers, the server switches to version � � if two conditions hold. The first condition

requires that the total amount of buffered data at the client is enough to avoid buffer starvation during the

next
� ��� � � seconds, i.e., the server switches to � � at time 	 if:

� � � 	

� � 	

� � � 	

� � � � � � � ��� �

�

�
avg
� 	

� �

 1

(3.4)

The second condition for switching to � � at time 	 requires that
�

avg
� 	
 � � � . Similar to the

adding/dropping layers heuristic, this condition minimizes the quality fluctuations caused by frequently

switching among the versions. The server continues streaming � � until the likelihood of buffer starvation

becomes high, or until the amount of data buffered at the client falls below the required initial build–up,

i.e., the server switches back to � � if condition (3.4) does not hold, or if
�
	������
��	 	

�
� �����
��� �

� �
. To permit

the fair comparison of adding/dropping layers and switching versions,
� ��� � � 	
 is computed using the

same estimation procedure (i.e., WEMA) as in the case of adding/dropping layers.

Similar to our implementation of adding/dropping layers, the server transmits data from � � beginning

with the first video frame that has not yet been buffered in � � . In this case, the data from � � that are in the

playback buffer are decoded and displayed in their entirety before the consumption of version � � data

begins.

3.3.3 Enhancing Adding/Dropping Layers

In our proposed mechanism for adding/dropping layers in Section 3.3.1, the server streams both layers

synchronously, i.e., it streams the base and enhanced streams pertaining to the same portion of the video

3.4 Experiments 43

Trace Source – date Throughput (Mbps)

Destination Peak Mean Std.

A1 US-FR 29-06-99 15:00 2.41 0.70 0.43

A2 US-FR 29-06-99 16:00 3.89 1.10 0.82

Table 3.2: Summary of 1-hour long traces.

at the same moment. This implementation does not fully take advantage of the flexibility offered by

layering. Indeed, when conditions are favorable enough to stream the enhancement layer, the server can

enhance the base layer stream that is stored in the client buffer, instead of simply enhancing the part of

the base layer currently being sent. By transmitting the enhancement layer data with the earliest playback

deadline, the playback quality at the client can be enhanced immediately. We refer to this variation of

the adding/dropping layers control policy as the immediate enhancement mechanism.

Immediate enhancement of the playback quality in the switching versions scheme can also be im-

plemented. The server can switch to version � � by transmitting the � � data with the earliest playback

deadline. We note, however, that in the case of versions, the immediate enhancement mechanism results

in a waste of bandwidth: the portion of the � � data stored in the playback buffer is useless, so it should

be deleted from the buffer.

3.4 Experiments

We compare adding/dropping layers and switching versions in simulation experiments. The simulations

implement the streaming control policies described in the previous section, and use TCP traces as ex-

plained below.

3.4.1 TCP–Friendly Traces

We do not use any of the TCP–friendly rate adjustment schemes in the literature to generate TCP–

friendly traces. Instead, it is natural to suppose that the perceived rate fluctuations of a TCP–friendly

scheme exhibit similar behavior as the fluctuations of TCP throughput over medium (seconds) and long

(minutes) time scales. To obtain TCP–friendly bandwidth conditions we use throughput traces from TCP

connections on the Internet.

We used two 1–hour long instantaneous throughput traces for TCP flows, denoted by A1 and A2.

These were collected at different times of the day between a host in the United States and a host in

France. Table 3.2 summarizes statistics for the two traces, and Figure 3.5 shows the average throughput

of these traces over time scales of 10 and 100 seconds. As shown in the figure, both traces exhibit a

44 Multiple Versions or Multiple Layers?

0 1000 2000 3000 4000
0

1

2

3

4x 10
6

bp
s

sec

US to FR −− 29/06 15:00

(a) Trace A1:
���

s avg.

0 1000 2000 3000 4000
0

0.5

1

1.5

2

2.5

3x 10
6

bp
s

sec

US to FR −− 29/06 15:00

(b) Trace A1:
�����

s avg.

0 1000 2000 3000 4000
0

1

2

3

4x 10
6

bp
s

sec

US to FR −− 29/06 16:00

(c) Trace A2:
���

s avg.

0 1000 2000 3000 4000
0

0.5

1

1.5

2

2.5

3x 10
6

bp
s

sec

US to FR −− 29/06 16:00

(d) Trace A2:
�����

s avg.

Figure 3.5: Average throughput over time scales of 10 and 100 seconds for traces A1 and A2.

high degree of variability and burstiness over both time scales. We denote by
��

the average available

bandwidth for the duration of the connection.

3.4.2 Numerical Results

Table 3.3 summarizes results obtained with trace A1. The two schemes are compared based on the

three performance metrics discussed in Section 3.2.2 when the percent bitrate overhead associated with

layering,
�

, varies between
�

and
� �

%. Metrics � � ��� � , � ��� ����� and (����
 are studied for different video

consumption rates. Although, the video consumption rate is approximately constant for a certain quality

video, we choose to vary the consumption rate in order to study the behavior of our heuristic policies

under several bandwidth conditions. Parameter � � ��� � is the ratio of the highest quality video consumption

rate for the case of versions (i.e. � �) over the average trace bandwidth,
��

. We distinguish between the

3.4 Experiments 45

Scheme ���������	� ���
 ����������� � ��� ����������� � ��

 �������
���� ����� ���������
 �������
���� ����� ���������
 �������
���� ����� ���������
Versions 98.42 0 1 85.12 0 1 52.68 0 7

Layers � � � % 98.42 0 1 85.12 0 1 52.68 0 7

Layers � � � % 98.42 0 1 81.92 0 3 48.1 0 7

Layers � � � % 98.22 0 1 77.23 0 3 49.15 0 9

Layers � � ��� % 95.92 0 3 72.82 0 1 43.23 0 10

Layers–imm � � � % 99.03 0 3 85.45 0 19 53.61 0 37

Layers–imm � � � % 98.97 0 3 83.68 0 21 51.01 0 41

Layers–imm � � � % 98.72 0 3 79.93 0 21 49.15 0 49

Layers–imm � � ��� % 97.25 0 5 75.99 0 23 44.38 0 55

Versions–imm 97.64 0 3 76.42 0 13 34.41 2.2 26

Table 3.3: Results for trace A1

Scheme � ������� � ���
 � ������� � � ��� � ������� � � ��

 �������
 ��� ����� � �������
 �������
 ��� ����� � �������
 �������
 ��� ����� � �������
Versions 94.31 0 5 57.66 0 5 43.78 0.4 5

Layers–imm � � �! 95.56 0 9 62.36 0 21 44.41 0.4 19

Layers–imm � � �� 95.06 0 11 62.07 0 21 43.94 0.4 21

Layers–imm � � �! 91.71 0 17 60.34 0 25 41.27 0.4 25

Layers–imm � � ���" 88.22 0 27 57.23 0 25 38.67 0.4 31

Table 3.4: Results for trace A2

following cases:

– ��� ��� � � �
means that the transmission channel can accommodate, on average, the streaming of the

high quality version of the video (� �),

– � � ��� �$# �
corresponds to the unfavorable case when the average available bandwidth is not suffi-

cient to stream the high quality version of the video, i.e. � �%# ��
,

– � � ��� � � �
corresponds to the favorable case when the average available bandwidth exceeds the

coding rate of the high quality version of the video, i.e. � � � ��
.

In Table 3.3, Layers-imm and Versions-imm represent the immediate enhancement mechanisms, for

adding/dropping layers and switching versions respectively.

The results shown in the first two rows of Table 3.3 indicate that the performance of adding/dropping

layers and switching versions are identical when
� ���'&

. This confirms that the adaptation mechanisms

46 Multiple Versions or Multiple Layers?

used in the two schemes are equivalent. When
� � � &

, the performance of adding/dropping layers

deteriorates as bandwidth conditions become less favorable (i.e., for � � ��� � � � 1 �
and � � ��� � � � 12,

). In

general, higher coding overhead results in further performance degradation of the adding/dropping layers

scheme. When
� � � �'&

, the fraction of high quality viewing time � � ��� � is lower in the case of layers

than in the case of versions under all � � ��� � values. The fluctuations in quality ((����
) generally increase

with
�

, although (����
 remains reasonably low in all cases. Finally, we note that � ��� ����� is in all cases

equal to
�
, indicating that the video is delivered to the client without interruption. The low value of � ��� �����

and (� ��
 demonstrate that our streaming policies for both schemes can adapt to the varying available

bandwidth with very good performance.

We next consider the performance of adding/dropping layers and switching versions when the im-

mediate enhancement mechanism is employed. Results in Table 3.3 indicate that with no overhead

(
� ���'&

), adding/dropping layers performs slightly better than switching versions in terms of the frac-

tion of high quality viewing time, � � ��� � . When � � ��� � � ��1 � , adding/dropping layers with immediate

enhancement attains higher � � ��� � than switching versions (regardless of whether immediate enhance-

ment is employed in the case of versions) for coding overhead values as high as
� &

. Under more adverse

bandwidth conditions (i.e., � � ��� � � � 12�
and � � ��� � � � 1 ,

), the immediate enhancement mechanism in the

case of layers does not offer sufficient improvement in performance in the presence of coding overhead.

Indeed, when bandwidth conditions are scarce, the amount of data buffered at the client at any time is

small. As a result the immediate enhancement scheme is overly aggressive, resulting in high (����
 and

no significant improvement in � � ��� � .

Our results also demonstrate the inefficiency of employing the immediate enhancement mechanism

in the case of versions: this results in both lower � � ��� � and higher (����
 . As discussed earlier in Sec-

tion 3.3.3, immediate improvement in playback quality results in a waste of bandwidth in the case of

versions. The utilization of available resources is less efficient, resulting in decreased overall perfor-

mance.

Table 3.4 shows results obtained with trace A2 for switching versions with no immediate enhance-

ment and adding/dropping layers with immediate enhancement. We observe that the adding/dropping

layers scheme can result in higher � � ��� � than switching versions, even in the presence of coding over-

head. This is true for coding overheads up to
� &

when � � ��� � � � 1 � or ��� ��� � � � 12,
, and up to

� &
when

� � ��� � � � 1 �
. Again, for all values of � � ��� � , increased performance in terms of � � ��� � is attained at the

expense of quality fluctuations. Note that for � � ��� � � � 1 ,
both schemes experience

��1�� &
of playback

buffer starvation, whatever the value for
�

.

3.5 Conclusions 47

3.5 Conclusions

In this chapter we have designed equivalent streaming policies for adding/dropping layers and for switch-

ing among versions, in order to compare the two adaptation schemes under different critical conditions.

In the context of reliable transmission of stored video, our simulations showed that our heuristics for both

schemes successfully adapt the streaming to exploit the available TCP–friendly bandwidth. But, in the

simplest implementation, the overhead introduced by layering makes switching versions always perform

better than adding/dropping layers.

When using the immediate enhancement implementation for adding/dropping layers, neither scheme

seems to dominate: for low values of the layering coding overhead, the enhanced flexibility provided by

layering can compensate the loss in high quality viewing time due to the overhead, but at the expense

of more fluctuations in quality. For high values of the coding overhead (
� � � �'&

), switching versions

reaches better performance than layers with immediate enhancement in all bandwidth situations.

In conclusion, when streaming video over a reliable connection, it is crucial to use efficient layered

encoding schemes, in order to keep the bitrate overhead of layering small; otherwise, switching among

different non–layered versions of the video achieves better performance2.

We have investigated the comparison between layering and versions, for conventional scalable encod-

ing schemes that encode the video into a specified limited number of layers. In contrast to conventional

scalable coding, Fine Granularity Scalability is a new coding scheme that allows the server to cut the

enhancement layer bitstream into an arbitrary number of layers, during transmission (see Section 2.2.4).

With the fine granularity property, streaming control policies for FGS–encoded layers can flexibly adapt

to changes in the available bandwidth. This constitutes a major advantage over conventional layered

encoding, as well as over switching versions, where the bitrate of each version is fixed. In Chapter 4 we

study optimal control policies for streaming of stored FGS–encoded videos.

2This result for a reliable connection contrasts with the case of a lossy connection, for which it has been shown that layering

gives better performance than using non–layered video [12, 63].

48 Multiple Versions or Multiple Layers?

Chapter 4

Streaming Stored FGS–Encoded Video

In this chapter, we investigate adaptive streaming of stored FGS video. We present a novel framework

for low–complexity streaming of FGS video over a reliable TCP–friendly connection. We derive an

optimal transmission policy for a criterion that involves both image quality and quality variability during

playback. Based on this ideal optimal policy, we develop a real–time heuristic to stream FGS video over

the Internet. We study its performance using real Internet traces, and simulations with an MPEG–4 FGS

streaming system.

4.1 Introduction

Fine Granularity Scalability (FGS) has recently been added to the MPEG–4 video coding standard [8]

in order to increase the flexibility of video streaming. With FGS coding the video is encoded into a base

layer (BL) and one enhancement layer (EL). In contrast to conventional scalable video coding, which

requires the reception of complete enhancement layers to improve upon the basic video quality, with

FGS coding the enhancement layer stream can be cut anywhere before transmission. The received part

of the FGS enhancement layer stream can be successfully decoded and improves upon the basic video

quality (see Section 2.2.4 for a more detailed overview of FGS coding). The FGS enhancement layer can

be cut at the granularity of bits. This fine granular flexibility was the key design objective of FGS coding,

along with good rate–distortion coding performance. With the fine granularity property, FGS–encoded

videos can flexibly adapt to changes in the available bandwidth. This flexibility can be exploited by

video servers to adapt the streamed video to the available bandwidth in real–time (without requiring any

computationally demanding re–encoding).

The first contribution of this chapter is a new framework for streaming stored FGS video over a

reliable TCP–friendly connection. Our framework is intended to be valid for any 2–layer FGS–encoded

video, and not only MPEG–4 FGS videos. This new framework calls for client playback buffering,

50 Streaming Stored FGS–Encoded Video

and synchronous transmission across base and enhancement layers. Policies that operate within this

framework require minimum real–time processing, and are thus suitable for servers that stream a large

number of simultaneous unicast streams.

Our second contribution is to formulate and solve an optimal streaming problem. Our optimization

criterion is based on simple and tractable metrics, which account for the total video display quality as well

as variability in display quality. We develop a theory for determining an optimal streaming policy under

ideal knowledge of the evolution of the future bandwidth. The optimal ideal policy provides bounds

on the performance of real–time policies and also suggests a real–time heuristic policy. Simulations

from real Internet traces show that the heuristic performs almost as well as the ideal optimal policy for a

wide-range of scenarios. We present an implementation of our framework and heuristic in an MPEG–4

streaming platform.

We also compare streaming stored–FGS video over an ordinary TCP connection to streaming over

a TCP–friendly connection. The performance of current TCP–friendly congestion control algorithms is

usually assessed in terms of their fairness with TCP, responsiveness to changes in network congestion and

smoothness of throughput [145]. Because popular TCP–friendly algorithms have an available bandwidth

that is typically smoother than TCP available bandwidth, one expects TCP-friendly algorithms to perform

better, particularly for reducing quality fluctuations. However, our experiments show that video quality

fluctuations are in the same range for both TCP and TCP–friendly algorithms.

4.1.1 Related Work

The streaming of FGS–encoded video has recently received significant attention. Tan and Zakhor [121]

describe a low–latency error resilient scheme for real–time streaming of fine granular videos over a

TCP–friendly connection. Fine granularity is achieved using a 3–D subband decomposition. General

frameworks for MPEG–4 FGS video streaming have been given by Radha et al. in [99, 100, 128]: [99]

presents a mechanism for retransmitting video packets using client buffering; [100] highlights the flex-

ibility of MPEG–4 FGS for supporting multicast and unicast streaming applications over IP; and [128]

focuses on the error resilience properties of the FGS enhancement layer.

An efficient approach for the decoding of streamed FGS video is proposed in [124]. Streaming of

FGS video over multicast [132] and to wireless clients [129] has also been considered, while issues

of FGS complexity scaling and universal media access are addressed in [24]. A streaming mechanism

for the FGS–temporal enhancement layer is studied in [62]. Finally, reducing quality variations when

streaming FGS–encoded videos, using specific encoding of the base layer, has been addressed in [150].

In this dissertation, we present a novel optimization framework for unicast streaming of stored FGS–

encoded videos over a TCP–friendly connection. We derive a real–time algorithm and compare its per-

formance with the performance of optimal policies. In Section 4.7, we present simulations with an

4.2 Framework 51

MPEG–4 FGS streaming platform. To our knowledge, our platform is one of the first implementations

of an Internet streaming application which combines the use of FGS–encoded video, a network–adaptive

algorithm, and video scene–based segmentation, in order to smooth perceptual changes in image quality,

while maintaining high bandwidth efficiency. In [146], Zhang et al. also present a complete end–to–end

system that streams FGS–encoded videos, but using a specific smooth TCP–friendly protocol (MSTFP);

as for the system from Radha et al. [99], it does not aim at smoothing fluctuations in image quality

between consecutive images.

This chapter is organized as follows. In Section 4.2 we present our framework for streaming FGS–

encoded video over a single TCP–friendly connection. In Section 4.3 we formulate the optimization

problem and define the performance metrics considered in this chapter. In Section 4.4 we develop a

theory for optimal streaming under ideal knowledge of future bandwidth evolution. In Section 4.5, we

present our real–time rate adaptation heuristic, which is inspired from the optimization theory. We use

simulations with Internet traces to study the performance of the heuristic. In Section 4.6 we compare

the performance of our heuristic when run on top of TCP to when run on top of popular TCP–friendly

algorithms. Finally, in Section 4.7 we present experiments with a streaming platform for MPEG–4 FGS–

encoded videos, and we conclude in Section 4.8.

4.2 Framework

As in Chapter 3, we denote by
� � �
 the available bandwidth at time � . By permitting playback buffering

into client buffers, our server streams the video at the maximum rate
� � �
 at each instant � . We suppose

that the connection is made reliable, e.g., by using retransmissions [76], so that losses may only occur

due to missed deadlines. Selective retransmissions are possible because of client buffering. Buffering

also allows us to neglect in our analysis the transmission delay between the server and the client.

The stored video is encoded into two layers, the base layer and the FGS enhancement layer. For

simplicity of the analysis, we assume that the video is CBR–encoded. We denote the encoding rates of

the base and enhancement layers by ��� and ��� , respectively. The length of the video is denoted by �
seconds.

Figure 4.1 shows the architecture of the server. The server stores the video as two separate files: one

file contains the bitstream pertaining to the base layer and the other file contains the bitstream pertaining

to the enhancement layer. Because the server transmits at maximum rate
� � �
 , at any given instant of

time the server may be sending frames to the client that are minutes into the future. To reduce the server

complexity, we require that the server always sends the base and enhancement instances of the same

frame together, thus acting synchronously. This implies that the number of base layer frames that are

stored into the client playback buffer is always equal to the number of stored enhancement layer frames.

52 Streaming Stored FGS–Encoded Video

�������������������������
�������������������������
�������������������������

�����������������������
�����������������������
�����������������������

���������
���������
���������
������������������������������������

���������
���������
���������

EL bitstream

BL bitstream

	�

�

	���

�

	���

�� �

� �

� �

� � � �

Figure 4.1: Server model

For each transmitted frame, the server sends the entire base layer of the frame and a portion of the

enhancement layer of the frame. Because of the fine granular property of the enhancement layer, the

server can truncate the enhancement layer portion of the frame at any level. Thus, at each instant, the

server must decide how much enhancement layer data to send. In our design, time is broken up in slots� �
� � �
� 	���
 , for
� ����� 1 1 1�� (� �����

�

�
, where � �'� � and ������� �"! � � . At the beginning of a slot

� �#� � �
� 	���
 ,
the server determines the enhancement layer level, denoted by $ � � �
 � ��� , that it streams for the duration

of the slot. Thus, as shown in Figure 4.1, all frames sent during slot
� �%� � �
� 	���
 include the entire base

layer and a same fraction of the enhancement layer, $ � � �
'&(� ��� �*)
. The frames sent during the slot may

be frames for display seconds or even minutes into the future. The length of a slot can be chosen so that

the slot is composed of one or more complete video scenes. This would keep constant the fraction of

enhancement layer that is transmitted for each video scene, avoiding changes in perceptual image quality

within the same video scene1. The length of a time slot should be on the order of seconds, which also

helps to maintain low server complexity. For simplicity, we assume that the slot length is equal to a

constant
� � �+� � , so that we can write � � � � � � � �+� � , for

� �$� � 1 1 1�� (� ����� .
The rate at which the server transmits frames into the network depends on the available bandwidth

during the slot, i.e
� � �
 for �#�-, � � �
� 	 � . Because we are requiring that the base and enhancement

layer components of a frame be sent at the same time, the available bandwidth dedicated to the base layer

and to the enhancement layer at time � &(� �#� � �
� 	���
 is respectively:

� � � �
�� � �
� � � �
 � � �
 and

� � � �
�� $ � � �
 � � �
� � � �
 � � �
 (4.1)

where � � � �
+� ��� 	.$ � � �
 � ��� is the total coding rate of the video being streamed between times

�/� and �/� 	�� . By extension, the total coding rate of the video being streamed at time � is denoted by

� � � �
�� ���
	0$ � � �
 � ��� .
1We address this matter into more details in Chapter 5.

4.2 Framework 53

�����������
�����������
�����������

�����������
�����������
�����������

���������
���������
���������

���������
���������
���������

����������������

������������

D
ecoderBL playback buffer

EL playback buffer
	�

�

	 �

�
� �

� � � �

� �

	 �

�

	 �

�

	 �

�

Figure 4.2: Client model

Figure 4.2 illustrates the architecture of the client. The client stores temporarily the data coming from

the network in base and enhancement layer playback buffers. Let
� � � �
 and

� � � �
 denote the amount of

data stored in the playback buffers at time � . At time � , the decoder drains both buffers at rates � � and

$
 � �
 � ��� , where $
 � �
'& �2� � �*)
is the fraction of enhancement layer available at the client for the frame

which is scheduled to be decoded at time � . The encoding rate of the video being displayed at the client

at time � can be expressed as �
 � �
�� ���
	 $
 � �
 � ��� .
As in Chapter 3, we denote by

� �
the initial playback delay between the server and the client. At

time � ��� , the client starts to decode the data from its playback buffers and to render the video, while the

server streams the rest of the video frames. To simplify our analysis, we suppose that, once the playback

starts at the client, the user is going to watch the video until the last frame without performing any VCR

command. Let � � ��� denote the time when the server stops sending video frames. We have � � ��� ��� if

the server has sent the last video frame before video is fully rendered; otherwise, we have � � ���'� � .

We denote
� � �
 for the playback delay at time � . Since we neglect transmission delays,

� � �
 cor-

responds to the number of seconds of video stored in the client playback buffers at time � . Since the

server acts synchronously and each layer is streamed in proportion to its encoding rate, the base and

enhancement playback buffers always have the same value of
� � �
 for each time � . Because the server

changes the encoding rate of the enhancement layer at each time �#� , the enhancement layer playback

buffer contains parts of the video encoded at different bit–rates. However, because the base layer is never

truncated, we can write at each time � , � � �
 � � � ���	�
� � . Since, at time � , the server streams a video frame

which is going to be decoded by the client
� � �
 seconds into the future, the total coding rate of the video

which is decoded at time � can be expressed as:

�
 � �
	 � � �
�
�� � � � �
"� or �
 � �
�� � � � � �

� � �
�
 (4.2)

(recall that � � � �
 is the total coding rate of the video being streamed at time �).

54 Streaming Stored FGS–Encoded Video

To simplify notation, we denote by
� � the playback delay at beginning of slot

� � � � � � 	��
 , i.e.
� � �

� � �
�
 . We assume that, at each time �#� , the server knows the value of
� � (e.g., through periodical

receiver reports).

Because we suppose that the connection is made reliable, losses at the client only occur when data

arrive at the client after their decoding deadline. Such data are not decoded. Assuming a playback delay

of
� � # � at time �/� , losses may only start to happen at time �#� � ��� �
� 	 � when

� � �
 � � and when� � �
 � � � � �
 , i.e., when the client buffers are empty and the available bandwidth is not high enough to

feed the decoder at the current video encoding rate. Since the server acts synchronously for both layers

and each layer is sent in proportion to its coding rate, losses can only happen for both layers at the same

frame time. When there is loss at time � & � �%� � �/� 	���
 , we do not suppose that the server is able to react:

it keeps streaming the current part of the video, even if the frames will not meet their decoding deadline.

Meanwhile, the client keeps incrementing its decoding time–stamp and waits for the part of the video

that has the new current decoding deadline. A negative
� � �
 indicates that the part of video arriving

from the server has an earlier decoding deadline than the part of the video that the client is waiting for.

Therefore, there is loss of data whenever
� � �
 � � .

Table 4.1 summarizes the notations used in this chapter.

4.3 Problem Formulation

A transmission policy, denoted by � � ��� � � ����
 � 1 1 1�� � � � (� �����
�

�
�

, is a set of successive video encoding

rates, each of which is chosen by the server at the beginning of a time slot
� �%� � �
� 	���
 , for video sequence

�
. In order to provide the user with the best perceived video quality, the transmission policy can minimize

a measure of total distortion [27,146], such as the commonly employed MSE (Mean Squared Error), and

can as well minimize variations of distortion between successive images. However, such optimization

problem is usually difficult to solve, because each video sequence may have different rate–distortion

characteristics. Also, as we show in Chapter 5, for a given video sequence
�

, the distortion of a frame

does not vary linearly with the sequence chosen coding rate � � � �

.

In this study, we restrict to transmission policies that (i) ensure a minimum of quality, by ensuring

the decoding of the base layer data without loss, (ii) maximize the bandwidth efficiency, i.e., the total

number of bits decoded given the available bandwidth, which gives a good indication of the total video

quality, and (iii) minimize the variations of the rendered coding rate between successive video sequences,

which gives an indication of the variations in distortion.

Although these metrics are simple and independent of the rate–distortion characteristics of a par-

ticular video, our analysis remains useful for deriving real–time heuristics, and for comparing different

transport protocols.

4.3 Problem Formulation 55

� � �
 Available bandwidth at time �
��� Coding rate of the base layer

��� Coding rate of the enhancement layer

� Length of the video (in seconds)

$ � � �

Proportion of the FGS–EL sent by the server at time � �

$
 � �
 Proportion of the FGS–EL decoded by the client at time �
� � � �

Total coding rate of the video sent between �#� and �
� 	��
�
 � �
 Total coding rate of the video decoded at time �

� � ����� Length of a server slot (in seconds)

(� �+� � Number of time slots� � � �
 Available bandwidth dedicated to the BL at time �� � � �
 Available bandwidth dedicated to the EL at time �
� � � �

Coding rate of the video that is sent between times �%� and �
� 	 �
� � Transmission policy at the server,

��� � � ���0
"� � � � �
 � 1 1"1�� � � � (� �����
�

�
�

� � ��� Ending time of the streaming
� � �
 Playback delay at time �
� � Playback delay at time � �
�

Bandwidth efficiency
�

Coding rate variability

(� � � � Last time slot of the streaming����� � � �

Average goodput of slot

�

� Smoothing factor

� �+��� Ratio of the base layer coding rate over the average available bandwidth

(� � � Number of video segments

��� � �

Coding rate of EL to stream to the client for video segment

�

� � ��� content of the client playback buffers when the server has finished streaming the video
� � � � Variability in quality between successive video segments

Table 4.1: Summary of notations for Chapter 4

56 Streaming Stored FGS–Encoded Video

4.3.1 Bandwidth Efficiency

We define the bandwidth efficiency
�

as the ratio between the average number of bits decoded at the

client by seconds over the total rate of the video:

� � ��

���
	 ��� where

��
 � total number of bits decoded
� (4.3)

Observing that the video data at the receiver may come either from the initial build up or from the

streaming, we can write :

�$� � � � � ��� 	 ���
 	 � � ������ � � �
 � � � (nb of bits lost)

�
��� ���
	 ���
 (4.4)

Recall that the “number of bits lost” is the number of bits sent by the server that do not make their

deadline at the client.

4.3.2 Coding Rate Variability

Previous studies in [88] have designed various measures to account for the rate variability in the case of

layered video with a small number of layers. Here, we propose a measure for the case of FGS encoding,

for which the displayed video encoding rate �
 � �
 can take continuous values between � � and � � 	 � � .
Since from (4.2), �
 � �
 � � � � � �

� � �
�
 , and since � � � �
)� � � � �

over all intervals

� �/� � �
� 	���
 , differences

in consecutive values for �
 � �
 at the client are accounted by differences in consecutive values for � � � �

at the server. Therefore the following measure accounts for differences in consecutive values for the

encoding rate of the video being displayed to the user:

� � �

�� �

���� �

(� � � �
� �	� ��!�
 ��

�
� �
� � � � �

� � � � � 	 �
)��
(4.5)

where (� � � � � (� ����� is the index of the last time slot during which the server has data left to stream, i.e.,

the streaming ends at time � � ��� &(� � � �	� ��! � � � �	� ��! 	��
 . �� � denotes the mean value of the time series ��� � � �
��
,

for
� �$��� 1 1 1�� (� � � � .
Because the human eye is more likely to perceive a high variation in quality than a small one, this

measure penalizes high differences in consecutive values for � � � �

. Moreover, in FGS coding, the less

important bit planes correspond to higher values of � � � �

. Therefore, for the same video with both layers

encoded at the same � � and � � , the higher the mean value of the transmitted coding rates � � � �

, the less

visible the differences in consecutive values for � � � �

. This is why our measure of rate variability is

normalized by
�� � .

4.4 Optimal Transmission Policy 57

4.4 Optimal Transmission Policy

In this section we assume that the available bandwidth for the connection,
� � �
 , from beginning to

end of transmission, is known a priori. This allows us to formulate and solve an optimal stochastic

control problem. The analysis and solution serves two purposes. First, it provides a useful bound on the

achievable performance when bandwidth evolution is not known a priori. Second, the theory helps us

design an adaptation heuristic for the realistic case when the bandwidth is not known. The optimization

criteria studied in this chapter prioritize three metrics: base layer loss, bandwidth efficiency, and coding

rate fluctuations.

4.4.1 Condition for No Losses

Losses of base layer data at the decoder degrade considerably the perceived video quality. Depending on

the level of error resilience used by the coding system, losses may cause freezing of the image for some

time. Thus, base layer losses can be more disturbing for the overall quality than the number of bits used

to code the video (represented by
� � ������ � � �
 � � in (4.4)). In this subsection we determine a necessary and

sufficient condition for the transmission policy � � � � � � ���0
"� 1 1 1�� � � � (� �����
�

�
�

, to have no base layer

loss. Recall that in our synchronous model no base layer loss implies no enhancement layer loss. To this

end, denote:

� � � �
�� �����
���	� ��
 	
��� ��
�� 	��

� ��
 � ����
 � �
� �

� �
� 	 �
 (4.6)

Theorem 4.1

The transmission policy
� � � � ��
"� 1 1 1�� � � � (� �+� �

�

�
�

yields no loss of data over the whole decoding dura-

tion if and only if, for all
� ����� 1 1 1�� (� �����

�

�
,

� � � �
 , � � � � �
 whenever
� � � � � ����� (4.7)

This theorem provides, for each slot, an upper–bound on the video coding rate that yields no loss. This

bound depends on the content of the playback buffers at the beginning of the slot,
� � , and on the available

bandwidth for the duration of the slot (in
� ���
 � ����
 � �).

Proof. Having no loss of data over
�2���
�)

is equivalent to having no loss of data over each interval� �
� � �
� 	���
 . Fix a
� & � ��� 1 1 1�� (� �+� �

�

� �
. If

� � � � � ����� , there is enough data in the client playback

buffers at time �/� to insure the decoding without loss during the current slot
� �%� � �
� 	���
 of length

� � �+���
seconds.

58 Streaming Stored FGS–Encoded Video

Now suppose that
� � � � � ����� . Clearly there is no loss in the interval � &(� � � � � � 	 � �)

, as the data in

the playback buffers at time �/� is sufficient to feed the decoder up through time �%� 	 � � . At time �/�
	 � �
all of the data that was already in the playback buffer at time �%� is consumed. Subsequently, the client

starts to consume data that was sent after time � � , which has been encoded at rate � � � �

. Thus, after time

�/� 	 � � , and at least up to time �#� 	�� , the client attempts to consume data at rate � � � �

.

It follows that there is no loss if and only if for every time � &(� � � 	 � � � �
� 	��) the total amount of data

that the decoder attempts to consume in
� � � 	 � � � �) is less than the amount of data that was transmitted

in the interval
� �/� � �) with coding rate � � � �

, that is, if and only if for all � &(� �/� 	 � � � �/� 	��)

� � � �
 � � � �

� � � 	 �
�
) ,
� �
��

� ����
 � � (4.8)

Rearranging terms in the above equation gives the condition in the theorem.

Definition 4.1

Let � � � �
 be the set of all possible transmission policies � � that satisfy Theorem 4.1:

� � � �
��2� � � � &(� ��� � ��� 	 ���) � ��� �"! � no loss in
�2���
�) �

(4.9)

4.4.2 Maximizing Bandwidth Efficiency

In this subsection we consider the problem of maximizing bandwidth efficiency over all policies that give

no loss. When the no loss condition in Theorem 4.1 holds, then the overall efficiency
�

given in (4.4) is

maximized if and only if
� � ������ � � �
 � � is maximized, which is equivalent to maximizing � � ��� .

Let � � ��� � � �
 , � be the time at which the server finishes streaming under transmission policy
� � & � � � �
 . For a fixed value of

� �
, we can define the maximum ending time of streaming under all

transmission policies in � � � �
 , as:

��� ���� ��� � �	��
� � ��
 � ��� � � � ��� � � �
 (4.10)

We can observe that � � ���� ��� only depends on
� �

and
� � �
 for � &-�2���

�)
.

Now, let
���

be the maximum value of
�

that can be attained by a policy � � & � � � �
 , and let � � � �

be the set of policies � � & � � � �
 that attain

���
. Since maximizing

�
is equivalent to maximizing � � ��� ,

we have:

Theorem 4.2

The set of transmission policies that maximizes
�

satisfies:

� � � �
�� � � � & � � � �
�� � � ��� � � �
�� � � ���� ��� �
(4.11)

4.4 Optimal Transmission Policy 59

In particular, the maximum value of E is given by:

� � � � �
� 	

� � � ������
�� � � �
 � �
�
� � ��� 	 ���
 (4.12)

This simply states that, in order to maximize bandwidth efficiency, the streaming application should

try to exploit the transmission channel as long as possible. A transmission policy which is not sufficiently

aggressive in its choice of � � � �

may have streamed all the video frames long before the end of rendering

at the client (� � ��� � � �
 � � � ���� ��� , �), and thereby not use the additional bandwidth that is available until

the end of rendering.

Let
�� � �

�
� �� � � �
 � � be the average available bandwidth during the playback interval

�2���
�)

. A

special case to consider is when � � ���� ��� � � , i.e., when there exists transmission policies in � � � �
 that can

maintain the streaming until the end of the rendering at the client. In this case, we have:
�	� � ���

� 	
�
�
� 	 � � .

Otherwise, when � � ���� ��� � � , we have:
� �
�

���
� 	

�
�
� 	 � � .

4.4.3 Minimizing Rate Variability

From all the transmission policies � � that yield no loss of data and maximize bandwidth efficiency
�

, i.e.
� � & � � � �
 , we now look for those which minimize the rate variability

�
, given the available bandwidth� � �
 . We show that this problem can be solved by finding the shortest path in a graph. Let

� �
be the

minimum value of
�

that can be attained by a policy � � & � � � �"
 .
Definition 4.2

We define the optimal state graph � of our system as the graph represented in Figure 4.3, whose nodes

represent, at each time �/� , all the possible sampled values for the playback delay at time �%� , i.e.,
� � . The

arcs represent the evolution of the playback delay after the streaming of the video from time � � to time

�
� 	 � , such that there is no loss of video data over the entire duration of the streaming. The initial state of

the graph represents the initial playback delay of
� ���0
�� � �

seconds of video data, present in the client

playback buffers at time � �$� . The final state is reached at the time when the server shall finish streaming

its video data in order to maximize the bandwidth efficiency
�

, i.e., at time � � � � ���� ��� &(� � � �	� ��! � ��� �	� ��! 	���
 .
Theorem 4.3

The problem of finding an optimal transmission policy �
�� & � � � �"
 which minimizes the variability

�

can be solved by finding the shortest path in the system state graph � .

Proof. From the definition of the optimal state graph � , the no loss condition expressed in Theorem 4.1

is satisfied. Considering the streaming of the video by the server between times � � and �
� 	�� , we can easily

60 Streaming Stored FGS–Encoded Video

 0

0

T - C
slot

0

T-k.C
slot

0

T-

(k+1)C
slot

 ’

 ’’

0

T-

N
last
C
slot

x

T-
t
end

t = 0
 t = C
slot
 t = k.C
slot
 t = (k+1)C
slot
 t =
N
last
C
slot

t = t
end

max

c
k
(

 ,

 ’)

 1
=

 k
=

 k+1
=

 N
=

last

 (
t
end
)
=
max

max

 k+2
=

Figure 4.3: Optimal state graph �

show that:

� � & � ��� 1 1 1�� (� � � � �

� �3� � � 	���� � � 	
� �
 � 	��
 � � �
 � �

� � � �
 �

� � �+� � (4.13)

This means that the transition from one state at time �%� to the next possible state at time �#� 	�� is

completely determined by the choice of � � � �

. Therefore, all the possible paths between the initial state

to the final state give all the possible transmission policies � � & � � � �
 .
The final state of the graph ensures that all these transmission policies satisfy � � ����� � �
)� � � ���� ��� , thus

ensuring by Theorem 4.2 that the maximum bandwidth efficiency is reached.

The cost of an arc from state
� � � � to

� � 	���� ��� is denoted � � � � � ���
 , as shown on Figure 4.3.

This cost is obtained recursively during the computation of the shortest path from the initial state to

the final state, obtained by dynamic programming. It is defined as
� � � � �
 � , where � is the unique

value of � � � �

that makes the system transition from state

� � � � to
� � 	 �'� ��� , and � � the value of

� � � � 	 �

that makes the system transition from state

� � 	�� � � � to the next state in the shortest path

4.5 Real–time Rate Adaptation Algorithm 61

from
� � 	 � � � � to the final state. This way, the shortest path from the initial state to the final state

yields �
�� which minimizes the measure of variability

�
, as defined in (4.5).

Given
� �

and
� � �
 , this theorem assumes the knowledge of the value of � � ���� ��� . Let’s assume that

� � � �"
 ���� (it also means that � � � �
 ���� , i.e., we can at least stream all the base layer without loss).

In this case, � � ���� ��� is defined in
�����
�)

. We first set its value to � and decrease it recursively until we find

a shortest path in the optimal state graph � . Indeed, if for a given possible value of � � ���� ��� there exists no

possible path in � from the initial state to the final state, it means that � � � �
���� , which contradicts our

hypothesis.

Given
� �

and
� � �
 , we have implemented the algorithm for finding the shortest path in graph � as

well as � � ���� ��� , yielding the minimum variability
� �

. Note that the actual number of nodes in the graph

depends on the size of � � � �
 , the value of � � ���� ��� , and the sampling precision of the buffering delays
� � .

4.5 Real–time Rate Adaptation Algorithm

Henceforth, we no longer assume that the available bandwidth
� � �
 is known a priori for the whole

duration of the streaming. Motivated by the theory of section 4.4, we provide a heuristic real–time policy

that adapts on–the–fly to the variations of
� � �
 . The theory of the previous section also provides a useful

bound to which we can compare the performance of our heuristic.

4.5.1 Description of the Algorithm

Algorithm 4.1 presents our real–time heuristic. At the beginning of each time slot of length
� � ����� seconds,

i.e., at each time �#� , the server fixes the encoding rate for the slot, i.e., it fixes � � � �

. Recall that, in our

model, the server knows the number of seconds of video data contained in the client playback buffers,
� � , at each time � � . The server can compute the average goodput as seen in the previous slot, between

time �
�
 � and �
� , denoted by
� � � � � �

�

�

. If there is no loss of data in the previous time slot, then��� � � � �

�

�

is expressed as:

����� � � �
�

�
�� � � � �
�

�
�� � � �

� �
 � 	 � � �����
� � �+� �

1
(4.14)

This is obtained by rearranging the terms in (4.13).

At the beginning of each slot
�

the algorithm operates according to the value of
� � :

– When
� � , � � �+��� , there is potential loss in the upcoming slot; because minimizing base layer loss

is our most important objective, we set � � � �
 � ��� , that is, we send only the base layer during

62 Streaming Stored FGS–Encoded Video

for
� � �

to (� �����
�

�
do

Retrieve/estimate the value of
� � from the client

Compute
� � � � � �

�

�

Compute the value of � � � �

:

if
� � , � � ����� then

� � � �
�� ���

else if
� � �+��� � � � , � � � � ����� then

� � � �
��
�
� � ��� � � �

�

�
 	 � �
� �

 � � � � �

�

�

else if
� � � � � � � ����� then

� � � �
��
�
� ����� � � �

�

�
 � �
� �
� ��� �"! 	

� �
� �

 � � � � �

�

�

Make sure � � � �

stays within bounds:

if � � � �

� ��� then � � � �
�� ���

if � � � �
 # ���
	 ��� then � � � �
�� ���
	 ���
end

Algorithm 4.1: Real–time heuristic

the slot. The no loss condition as expressed in Theorem 4.1, i.e., � � � �
 , � � � � �
 , would give a

less conservative choice for � � � �

, but

� � � � �
 strongly depends on the variations of the available

bandwidth in the next
� � �+��� seconds, which is very difficult to predict. Additionally, this choice

attempts to maintain a minimum of
� � �+� � seconds of data in the client buffer, which should be

sufficient to mitigate jitter and allow for retransmission of lost packets.

– When
� � �+��� � � � , � � � � �+��� , the server can start increasing the value of � � � �

. In order to maintain

a high bandwidth efficiency
�

, we know from Theorem 4.2 that we must make the streaming last

as long as possible, i.e., we need to maximize � � ��� . Therefore, we use a video encoding rate that

tracks the average available bandwidth of the connection. However, the values of the averages����� � � �

may have large fluctuations. So, we include a smoothing factor �

& � ��� �

, which aims to

smooth the variations of
� ��� � � �

. By choosing � � � �
��
�
� � � � � � �

�

�
 	 � �
� �

 � � � � �

�

�

, we try to

minimize the differences in consecutive values of � � � �

, while getting close to a smoothed average

of the available bandwidth. The value of � can be chosen to trade off small quality variability

(small �) with better overall bandwidth utilization (high �).

– When
� � # � � � � ����� , our heuristic is more aggressive with respect to the available bandwidth (by

a factor of
�
� �

� ��� �"!). The heuristic increases the value of � � � �

proportionally to the amount of data

stored in the playback buffers. This depletes the client buffers, thus preventing the streaming from

4.5 Real–time Rate Adaptation Algorithm 63

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time in s

ra
te

 in
 M

b/
s

trace 1

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time in s

ra
te

 in
 M

b/
s

trace 2

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

time in s

ra
te

 in
 M

b/
s

trace 3

0 50 100 150 200 250 300
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

time in s

ra
te

 in
 M

b/
s

trace 4

Figure 4.4: 1 second average goodput of the collected TCP traces

ending too early.

Finally, we make sure that the computed value of � � � �

stays within

� � � � � � 	 � �) .

4.5.2 Simulations from Internet Traces

We made simulations from real Internet TCP traces. We used snoop on Solaris to collect goodput

from 5mn–long TCP connections at different times of the day between University of Pennsylvania in

Philadelphia, and Institut Eurecom in France. The simulations presented here are made with a time slot

length of
� � �+� � � �

s, and a video length of �
� ,0���

s. The client playback buffers collect
� ��� /

s

of video data before the client starts decoding and rendering. We used the four traces whose 1 second

averages are depicted in Figure 4.4.

Figure 4.5 shows the results of a simulation, for which we used TCP trace 1 with average available

bandwidth
�� � � � 1 , �

Mbps. The coding rates of both layers are set to � � � ��� � ��1 � � � �� � � �

64 Streaming Stored FGS–Encoded Video

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

time in s

ra
te

 in
 M

b/
s

TCP goodput
r
s
 real−time

r
s
 optimal

0 50 100 150 200 250 300
0

5

10

15

20

25

time in s

tim
e

in
 s

playback delay − real−time
playback delay − optimal

Figure 4.5: Rate adaptation for trace 1

Mbps, so that the total coding rate of the video is strictly superior to the average available bandwidth

(���
	 ��� � � 1 �
Mbps). The smoothing factor is set to �

�$��1 � . The top plot shows the transmitted video

encoding rate of our real–time heuristic, the encoding rate of the optimal transmission policy (given by

Theorem 4.3) and the connection goodput. The plot below shows, at each time �#� , the amount of video

data in seconds in the client playback buffers,
� � , for both the real–time and the optimal transmission

policies. We observe that the optimal policy stores up to 24 seconds of video data into the client buffers

during playback to smooth bandwidth variations and achieve the maximum bandwidth efficiency. The

real–time transmission policy stores up to 12 seconds during playback to smooth bandwidth fluctuations,

although it does not smooth as well as the optimal transmission policy. The top plot shows that the

real-time algorithm adapts well to the varying available bandwidth. In particular, after time � � � �0� ms

the streamed video coding rate drops to its minimum value, � � , because the playback delay drops below
� � ����� � �

seconds, as shown on the bottom plot. The real–time transmission policy provides a bandwidth

efficiency
�

that is close to the maximum (
� � 1 /�,

compared to
� � � 12/05

). Indeed, the real–time policy

nearly satisfies Theorem 4.2: it does not stop transmitting video frames until just one time slot before the

4.5 Real–time Rate Adaptation Algorithm 65

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

10

20

30

40

50

60

70

80

90

100

110

r
low

E
 x

 1
00

E*
E

Figure 4.6: Bandwidth efficiency as a function of the normalized base layer rate

last one (� � � � � �
 ���
on the graph).

In order to study the performance of our real–time algorithm in various bandwidth situations with

respect to the video coding rate, we define, similarly to ��� ��� � in Chapter 3, the normalized base layer

coding rate � ����� � � �
�
 . We distinguish between the following cases:

– � ����� � �
corresponds to the situation when the average available bandwidth is sufficient to stream

only the base layer,

– � ����� � �
means that the average available bandwidth exceeds the average base layer rate, which

should allow for the streaming of a part of the enhancement layer (this is the target situation for

our study),

– � ����� # �
corresponds to the unfavorable situation when the average available bandwidth is not

sufficient to stream the base layer without any interruption.

For simplicity, we assume � � � ��� . Figures 4.6 and 4.7 show the evolution of the measures
�

and
�

as a function of � �+��� for the same trace as in Figure 4.5 and for the same parameter values. Fig-

ure 4.6 depicts the variations of
�

compared to the maximum achievable bandwidth efficiency
� �

given

in (4.12). We see that the real–time heuristic’s overall bandwidth efficiency is close to the maximum for

� ����� between
��1��

and
� 125

, corresponding to the favorable situation when the average available bandwidth

is high enough to sustain the streaming of the base layer and a part of the enhancement layer without loss.

When � �+� � # ��125 , the average available bandwidth is closer to the base layer coding rate, resulting in

66 Streaming Stored FGS–Encoded Video

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
0

20

40

60

80

100

120

140

r
low

V
Vel
V

Figure 4.7: Rate variability as a function of the normalized base layer rate

some loss of base layer data, which increases the difference between the achieved bandwidth efficiency

and the maximum.

Figure 4.7 shows the evolution of the variability
�

given by our adaptation heuristic. It also shows

the value of
�

, denoted by
� � � , obtained with the streaming policy which adds or removes the entire

enhancement layer just once for the whole duration of the streaming. We did not plot the minimum vari-

ability obtained by the optimal allocation because it is always very close to zero, and thus insignificant.

When we consider the variability of our real–time algorithm for FGS video, we notice from Figure 4.7

that
�

reaches a maximum at � ����� � ��12/ , then decreases as � ����� increases. Indeed, as � �+� � increases,

the average available bandwidth becomes lower than � � 	 � � , resulting in fewer opportunities to stream a

high bit–rate video, i.e., to choose high values for � � � �

. We also see that, in most bandwidth conditions,

the total variability obtained by our heuristic is lower or roughly equal to
� � � , which gives an indication

of the low level of rate variations achieved by our algorithm.

In Table 4.2, we give the results in terms of
�

,
�

and losses of video data for the three other traces in

Figure 4.4, and for different values of � ����� . These results confirm the good performance of our real–time

algorithm in terms of high bandwidth efficiency and low variability for a variety of bandwidth scenarios.

4.6 Streaming over TCP–Friendly Algorithms

In order to reduce image quality variation, a number of studies advocate the use of smooth–rate TCP–

friendly algorithms for streaming [41, 106, 121]. In this section we show that, for stored FGS–encoded

video, streaming over a highly varying TCP–friendly algorithm, such as the ordinary TCP, can achieve

4.6 Streaming over TCP–Friendly Algorithms 67

Trace 2 Trace 3 Trace 4
�� � � 12, �

Mbps
�� � � 12, �

Mbps
�� � � 1�� �

Mbps
�

/
� � � � � � � losses

�
/
� � � � � � � losses

�
/
� � � � � � � losses

� ����� ����12/ .83/.85 52/116 0 .84/.85 68/116 0 .83/.85 106/116 0

� ����� ����1 � �
.66/.69 33/97 0 .67/.69 46/97 0 .63/.69 86/97 0.7s

� ����� ����1 �
.56/.58 19/77 0 .56/.58 25/77 0 .52/.58 50/77 1.1s

Table 4.2: Simulations from Internet traces

1

R1
 R2

N

1

N

Sources
 Destinations

Bottleneck link

15 Mbs / 50 ms

10 ms

Figure 4.8: Network configuration

essentially the same low level of quality variability that can be achieved with a smooth–rate TCP–friendly

algorithm. We achieve this low–level of variability by combining playback buffering and coarse–grained

rate adaptation, as provided by our real–time heuristic of Section 4.5.

Our real–time adaptation algorithm can be run on top of TCP or on top of a TCP–friendly algorithm

such as TFRC (TCP-Friendly Rate Control), defined in [41]. We used ns to collect TCP and TFRC

traces under the same network conditions. The network topology is the commonly employed “single

bottleneck”, as shown in Figure 4.8, for which congestion only occurs in the link between routers R1 and

R2 (we used access links with delay
� �

ms and a
� �

Mbps bottleneck link with delay
� �

ms).

If the playback delay between the server and the client,
� � �
 , is maintained at an order of a few sec-

onds, the server has the ability to retransmit lost packets. Therefore we assume that our TFRC connection

can be made fully reliable. We use a RED bottleneck queue to avoid global TCP synchronization2. From

the collected traces, we run the real–time adaptation algorithm for different values of � �+��� and � , and

compare the results in terms of measures
�

and
�

. We define the network
����� � as the number of simulta-

2TCP connections with the same RTT transmitted over a Drop–Tail queue adjust their congestion window in synchrony,

which results in an underutilization of congested links and unfairness between the TCP streams; using RED queues makes the

global synchronization of TCP less pronounced [39, 98].

68 Streaming Stored FGS–Encoded Video

load
� �� 	 �
 � ��
 � � � 	 �
 � �
 � � � � � � 	 �
 � �
 �

5 6 6 42 74 97 0.15 0.01

10 6 10 61 55 97 0.01 0.01

15 5 8 42 43 97 0.07 0.04

20 7 12 8 85 97 0.02 0.02

25 6 8 49 93 97 0.15 0.01

30 6 9 50 23 97 0.15 0.01

35 6 6 49 82 97 0.05 0.2

40 6 11 83 116 97 0.01 0.04

Table 4.3: Performance as a function of network load

neous TCP and TFRC connections inside the bottleneck, apart from the connection which is monitored.

For example, a value of
����� � � � �

means that the bottleneck link is shared by
� �

TCP connections,
� �

TFRC connections, and by the TCP or TFRC connection which is monitored. In our simulations, we

vary the value of
����� � between 5 and 40.

The first two columns of Table 4.3 show, as a function of the network load, the minimum variability
� �� 	 �
 and

� ��
 � achieved by the optimal transmission policy, for the monitored TFRC or TCP connection,

respectively. We consider a base layer normalized coding rate of � ����� �$��1 � �
,

As we can see, the minimum variability when using TCP is only slightly higher than the minimum

variability that can be achieved when using TFRC, even though the TFRC long–term throughput is

considerably smoother than TCP, especially at low loss rates (low
����� � value) [41,145]. We also observe

that for both cases
� �

remains low for all network loads, which indicates that our application–layer

smoothing approach has the potential to work well in a wide range of network conditions.

We then applied our real–time algorithm to both the TCP and TFRC traces. For a given network

load, we varied the smoothing parameter � between
��12� �

and
��1 � �

, which gives different values for the

couple
� ��� �

. Then, among the choices of � that bring
�

to within 1% of the maximum, we keep the

� that minimizes the variability
�

. The last columns of Table 4.3 give the results for
� � 	 �
 and

� �
 � ,

along with the variability obtained with a transmission policy that would add the full enhancement layer

just once, denoted by
� � � . The last two columns show the corresponding value of � , denoted by � � 	 �

and � �
 � , respectively. We first observe that
� � 	 �
 is, for most network loads, less than

� �
 � . However,

both values remain low (usually less than
� � �); the difference may probably not be noticed by the user.

We also observe that for a network load with less than 30 competing TCP and TFRC connections, the

smoothing parameters that minimizes
�

while insuring a high
�

satisfy � � 	 �
 � � �
 � . Indeed, because

TFRC has smoother rate variations than TCP in a low loss environment, the application needs to smooth

4.7 Implementation of our Framework 69

bandwidth variations of TCP more than TFRC.

Finally, Figure 4.9 and Figure 4.10 show the rate adaptation provided by the optimal policy and the

real–time algorithm for TCP and TFRC connections, respectively. The bottleneck link is shared by 25

long–lived TCP and 25 long–lived TFRC connections, and the base layer normalized encoding rate is set

to � ����� �.��1 � �
. In both cases, we use the optimal value of the smoothing parameter � in our real-time

algorithm (as given in Table 4.3) for a network load of 25, i.e., we use � � 	 �
 �$��1 � �
and � �
 � �$��12� �

. As

in Figure 4.5, the top plot in both figures shows the coding rate of our real–time heuristic, the coding rate

of the optimal transmission policy, and the connection goodput. The bottom plot shows, at each time � � ,

the amount of data in seconds in the client playback buffers,
� � , for both the real–time and the optimal

transmission policies.

We first compare the real–time transmission policies in both figures. We see that the real–time rate

adaptation algorithm yields very smooth variations in the transmitted video coding rate for both TCP and

TFRC, which is consistent with the low values obtained for
� � 	 �
 and

� �
 � in Table 4.3 when
����� � � � �

.

Furthermore, the real–time algorithm sustains the duration of the streaming almost until the end of the

rendering in both cases, ensuring a high overall bandwidth efficiency. When comparing the playback

delays, we see however that the real–time algorithm needs to store up to 30 seconds of video into the

client buffers to smooth variations of TCP, while it needs to store only 13 seconds of video in the case of

TFRC. When comparing the optimal transmission policies in both figures, we see that, in both cases, the

variability attained is negligible and the optimal transmission policies require up to 10 seconds of video

data to be stored into client buffers.

4.7 Implementation of our Framework

In this section, we present an implementation of our framework and real–time heuristic for streaming

stored FGS video. The implementation consists of a video streaming server and a client with an MPEG–

4 FGS decoder3. Our implementation runs over TCP. As we mentioned in Section 2.1.2, we believe that

TCP is a viable choice for video streaming. TCP is still ubiquitous in the Internet, it has been proven

to be stable and is available to use. Also, as we have demonstrated in Section 4.6, combining adaptive

rate–control for FGS–encoded videos with sufficient playback buffering can accommodate bandwidth

fluctuations of TCP with very good performance. Nevertheless, the full–reliability of TCP is not neces-

sary for video streaming applications that can benefit from partially–reliable schemes such as selective

retransmissions or FEC. Therefore, our system has been designed to be potentially run over any partially

reliable TCP–friendly RTP/UDP connection.

3This system was implemented through the French national project VISI, together with Thomson Multimedia, Irisa, Inria,

Edixia and France Telecom R&D.

70 Streaming Stored FGS–Encoded Video

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time in s

ra
te

 in
 M

b/
s

TCP

TCP goodput
r
s
 real−time

r
s
 optimal

0 50 100 150 200 250 300
0

5

10

15

20

25

30

time in s

tim
e

in
 s

playback delay − real−time
playback delay − optimal

Figure 4.9: Rate adaptation for TCP

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time in s

ra
te

 in
 M

b/
s

TFRC

TFRC goodput
r
s
 real−time

r
s
 optimal

0 50 100 150 200 250 300
0

5

10

15

20

25

30

time in s

tim
e

in
 s

playback delay − real−time
playback delay − optimal

Figure 4.10: Rate adaptation for TFRC

4.7 Implementation of our Framework 71

SL

TCP

RTP/GP

rate

control

BL data

BL info

Video

pump
 RTP/GP

X(t)

RTP/

GP
-
1

SL

D

 e
c
o
d
e
r
Network

Server
 Client

EL data

EL info

Video

pump

r
e
(k)

BL

EL

(t)

(t)

Figure 4.11: Architecture of the MPEG–4 streaming system

4.7.1 Architecture

The end–to–end architecture of our system is depicted in Figure 4.11. We use the terminology of the

MPEG–4 system, as introduced in Section 2.2.2.

At the server, base layer and enhancement layer data are stored in separate files. Each data file is

associated with a meta–file containing pointers to the individual Access Units (AUs), or video frames,

as well as their composition and decoding timestamp. Video pumps push the AUs and their associated

information to the network module. The server network module encapsulates the AUs into RTP packets

in order to stay compatible with implementations over RTP/UDP4. The RTP payload format we used is

the Group Payload (GP) format defined in [48]. Both BL and EL RTP packets are multiplexed over the

same TCP connection to the client. Our server streams the video data at the maximum TCP available

bandwidth
� � �
 at time t. As in our framework, the server is required to send both layers of the same

frame together.

The client extracts the AUs and their associated information from the incoming RTP packets and

sends them into the corresponding playback buffers. In our implementation we used four playback

buffers at the client: two for the base layer and enhancement layer data, and two for the base layer and

enhancement layer meta–information. As we mentioned in Section 4.2, because the server streams both

layers of the same frame together, BL and EL buffers always contain the same number of frames. The

client sends back periodically to the server the value of the playback delay at time � , � � �
 . Individual

4Streaming RTP over TCP brings some overhead, although relatively small because AUs do not need to be fragmented into

several RTP packets in the case of transmission over TCP.

72 Streaming Stored FGS–Encoded Video

for
� � �

to (� � � �

�
do

Retrieve/estimate the value of
� � from the client

Compute
� � � � � �

�

�

Compute the value of � � � �

:

if
� � , �

then

��� � �
��$�

else if
�
�
� � , � � �

then

� � � �
��
�
� ��� � � � � �

�

�

� � � � �
�
 	 � �

� �

 � � � � �

�

�

else if
� � � � � �

then

��� � �
��
�
� ��� �

�
� �
� 	 � �

� �

 � ��� � �

�

�

Make sure ��� � �

stays within bounds:

if ��� � �

�
�

then ��� � �
��$�
if � � � �
 # � � then � � � �
�� � �

end

Algorithm 4.2: Implemented heuristic

AUs and their meta–information are then given to the decoder as SL packets, according to the MPEG–4

specification [6].

We study streaming of long videos (from tens of seconds to hours) that are composed of several

segments. We assume that the stored video has been partitioned into (� � � video segments. In our

experiments, the video has been segmented by hand so that all images within the same video segment

have similar visual characteristics (e.g., same video shot, same motion, or same image complexity).

Unlike in the previous sections, we suppose that the base layer is VBR–encoded, with coding rate

��� � �
 ; the FGS enhancement layer is still CBR–encoded with coding rate � � . According to the fine granu-

larity property, the server can cut the enhancement layer bitstream anywhere. In our implementation, the

rate control module fixes the coding rate of the enhancement layer to stream to the client for a given video

segment
�

. This is denoted by ��� � �
'& �2��� ���) (recall that in our previous framework � � � �
�� $ � � �
 � ���).
The video pump cuts the enhancement layer bitstream according to this rate. Note that, in this implemen-

tation, slot
� �/� � �
� 	���
 now corresponds to the streaming of video segment

�
and, unlike in our previous

simplified model, the successive slots can now have different length.

4.7 Implementation of our Framework 73

4.7.2 Simulations

We adapted the heuristic of Algorithm 4.1 to the case when the base layer is VBR–encoded and the

server slots have variable length. The new heuristic is given in Algorithm 4.2. The constant
�

, which

corresponds to the length of a server slot
� � ����� in the previous heuristic, is chosen empirically to trade

off video quality with playout interactivity. It is expressed in seconds–worth of video data. We denote

by ��� � �

the average base layer coding rate of video segment number

�
(this information can be stored

at the server because the video is pre–encoded).

We suppose that the client starts the playout of video data after having received
� � � �

seconds

of data. As in Algorithm 4.1, the smoothing factor � aims to smooth the variations of
� ��� � � �

, so that

the coding rate of successive video segments varies slowly (in order to minimize variations in quality

between successive video segments). The value of � is chosen empirically to trade off small quality

variability (small �) with better overall bandwidth utilization (high �). Similarly to Algorithm 4.1, when
� � # � �

, the coding rate of the enhancement layer to send is proportional to the time–worth of video

data stored in the playback buffers,
� � , in order to keep the playback buffers small.

For our experiments, we used a 4–mn video including both high and low motion scenes. We seg-

mented the video into
� �

segments of various length (in our tests, each segment actually corresponds to

a short scene shot). The base layer was VBR–encoded, with average encoding rate of
,�5 �

kbps. The

enhancement layer was coded at � � � / � /
kbps. The server and client were located at each end of a

dedicated LAN, and a Linux router was used to limit the end–to–end available bandwidth: cross traffic

was generated from the server to the client in order to make the available bandwidth for the streaming

application vary with time.

Figure 4.12 shows the available bandwidth
� � �
 given to the streaming application, as well as the

choices made by the server for the enhancement layer coding rate ��� � �

using our real–time heuristic

with
� � �

s and �
� ��1 �

. We see that the variations of the enhancement layer coding rate streamed to

the client roughly follow the variations of the available bandwidth5. Figure 4.13 depicts the variations of

the content of the client playback buffers, i.e.,
� � �
 . We see that it never empties, i.e., no video data was

lost. The application has stored up to 27 s of video into the client playback buffers. Finally, Figure 4.14

shows the image quality in PSNR after decoding video frames
� � �

to
� � ��� with our shot–based video

segmentation (segm), together with the image quality obtained when the video segments are of arbitrary

length of � ��� frames (no segm). The dotted vertical lines show the boundaries of the video shots. We

see that without shot–based segmentation the image quality can abruptly change within a same scene

shot (e.g., around frame number
� �����

), which degrades the perceived quality (the difference in quality is

around 1.1 dB in this example).

5Note that the coding rate of the VBR–encoded base layer should be added to the enhancement layer coding rate to make

the total coding rate of the video.

74 Streaming Stored FGS–Encoded Video

0

200

400

600

800

1000

1200

0
 50
 100
 150
 200

time (sec)

ra
te

 (
kb

ps
)

EL coding rate

bandwidth

Figure 4.12: Evolution of the enhancement layer coding rate and available bandwidth

0

5

10

15

20

25

30

0
 50
 100
 150
 200

time (sec)

tim
e-

w
or

th
 o

f
vi

de
o

(s
ec

)

playback delay

Figure 4.13: Evolution of the playback delay

4.7 Implementation of our Framework 75

30

31

32

33

34

35

525
 625
 725
 825
 925
 1025
 1125

image number

Q
ua

lit
y

(P
SN

R
)

segm

no segm

Figure 4.14: Quality in PSNR for images 525 to 1200

�
(s)

� � ��� (s)
� � � � (dB)

1 0 2.40

5 8.8 1.95

15 45.7 1.92

Table 4.4: Performance for varying
�

�
� � ��� (s)

� � � �
0.1 11.5 1.90

0.5 8.8 1.95

1.0 8.95 2.05

Table 4.5: Performance for varying �

We have run the same experiment with different parameters for our real–time adaptation heuristic.

We denote by
� � ��� the content of the client playback buffers when the server has finished to stream all

AUs. Lower values of
� � ��� result in higher total bit consumption, or bandwidth efficiency, and then

potentially higher overall video quality, because this minimizes the bandwidth left unused at the end of

the streaming. Similarly to
�

in (4.5), we define a metric that can account for the average variations in

quality between successive video segments:

� � � � �
�

(� � � �

�

� � � ��
��� �

� %'& (* � �

� %'& (+* � �

�

�
�� �
(4.15)

where %'&)(+* � �

is the average PSNR of video segment number

�
(we give more details about MSE and

PSNR quality measures in Chapter 5; this measure is similar to the
� � �
 measure defined in Chapter 5).

� � � � is expressed in dB.

Table 4.4 shows the performance of our real–time heuristic in terms of
� � ��� and

� � � � when
�

is

changed, for a fixed �
�$� 1 �

. On one hand, a low value of
�

causes higher variations in quality; indeed,

76 Streaming Stored FGS–Encoded Video

when
� � �

s, we observed the loss of several video frames because of playback buffer starvation. On

the other hand, a high value for
�

causes low bandwidth efficiency, because the adaptation is not reactive

enough with respect to the variations of the available bandwidth (since
� � � �

, this also makes the user

wait for a longer time before he can start watching the video).

In Table 4.5 we varied the smoothing parameter � for a fixed
� � �

s. As we can see, a high value

of � gives better bandwidth efficiency, at the price of a relatively higher variability in quality.

4.8 Conclusions

We presented a new framework for streaming stored FGS encoded videos. We derived analytical results,

and a method to find an optimal transmission policy that maximizes a measure of bandwidth efficiency

and minimizes a measure of coding rate variability. We then presented a real–time algorithm for adaptive

streaming of FGS video. Our simulations with TCP traces showed that our heuristic yields near–optimal

performance in a wide range of bandwidth scenarios. In the context of streaming stored FGS video using

client buffering, we have argued that streaming over TCP gives video quality results that are comparable

to streaming over smoother TCP–friendly connections. Finally, we have presented an implementation of

an end–to–end streaming application which uses MPEG–4 FGS videos to adapt in real–time and with

low complexity to varying network conditions. Tests in realistic network situations have shown that our

system gives good visual performance despite low efficiency of current FGS–encoding schemes.

In this chapter, we have introduced the concept of scene–based streaming: the server changes the

encoding rate of the streamed FGS enhancement layer at scene boundaries, in order to maintain a constant

rendering quality within a same video scene. In the next chapter, we study this concept of scene–based

streaming in more details. We evaluate streaming at different aggregation levels (images, GoPs, scenes),

based on the rate–distortion characteristics of FGS–encoded video.

Chapter 5

Rate–Distortion Properties of MPEG–4

FGS Video for Optimal Streaming

In this chapter, we analyze the rate–distortion properties of MPEG–4 FGS videos, in order to get in-

sights for optimal rate–distortion streaming. We define performance metrics and build a library of rate–

distortion traces for long videos. We use our traces to investigate rate–distortion optimized streaming at

different video frame aggregation levels.

5.1 Introduction

In our previous approach for streaming FGS–encoded videos, we have considered the problem of maxi-

mizing the video rendered quality by using network–oriented metrics, such as the bandwidth efficiency.

However, the rendered video quality is not directly proportional to the number of bits received. Receiving

more bits results generally in better video quality, but all video packets do not have the same importance

with respect to the final perceived quality of the video. Therefore, optimizing the rendered quality of

streamed video requires accounting for the specificities of actual video codecs and video sequences.

As mentioned in Section 2.4.2, the goal of rate–distortion optimized streaming is to exploit the rate–

distortion characteristics of the encoded video, in order to maximize the overall video quality at the

receiver while meeting the constraints imposed by the underlying network. The maximization of the

overall quality is generally achieved by maximizing the quality of the individual video frames and by

minimizing the variations in quality between consecutive video frames [146]. The optimization proce-

dure usually takes the rate–distortion functions of all individual video frames into account. With FGS–

encoded video the optimization procedure at the server is to find the optimal number of enhancement

layer bits to send for each image, subject to the bandwidth constraints.

In this chapter, we make two main contributions. First, we analyze FGS enhancement layer rate–

78 Rate–Distortion Properties of MPEG–4 FGS Video for Optimal Streaming

distortion curves for different videos. The provided rate–distortion curves make it possible to assess

the quality of the decoded video over lossy network transport with good accuracy1. Our analysis gives

several insights for rate–distortion optimized streaming systems; in particular, we find that the semantic

content and that base layer coding have significant impact on the FGS enhancement layer properties.

Secondly, we examine rate–distortion optimized streaming on the basis of different frame aggregation

levels. The optimization per video frame can be computationally demanding, which may reduce the

number of simultaneous streams that a high–performing server can simultaneously support. We explore

an alternative optimization approach where the server groups several consecutive frames of the video into

sequences and performs rate–distortion optimization over the sequences. In this approach, each frame

within a given sequence is allocated the same number of bits. We demonstrate that by exploiting the

strong correlations in quality between consecutive images, this aggregation approach has the potential

to decrease the computational requirement of the optimization procedure, and thereby the computational

load on video servers.

5.1.1 Related Work

Significant efforts have gone into the development of the FGS amendment to the MPEG–4 standard, see

for instance [71, 100] for an overview of these efforts. Following standardization, the refinement and

evaluation of the FGS video coding has received considerable interest [55, 74, 101, 102, 126, 127, 135,

143]. Recently, the streaming of FGS video has been examined in a number of studies, all of which are

complementary to our work (see Section 4.1.1 for related works on streaming of FGS–encoded videos).

In Chapter 4, we proposed a real–time algorithm for adaptive streaming of FGS–encoded video and

introduced the concept of scene–based streaming. However, the proposed algorithm does not take the

rate–distortion characteristics of the encoded video into consideration, and the scene–based streaming

approach was not evaluated with rate–distortion data.

This chapter is a follow–up of [38]. Fitzek and Reisslein [38] studied the traffic characteristics of

single–layer (non–scalable) MPEG–4 and H.263 encoded video for different video quality levels. The

quality level was controlled by the quantization scale of the encoder. However, neither the video quality

nor the relationship between video traffic (rate) and video quality (distortion) were quantitatively studied.

In [105], Reisslein et al. study the video traffic, quality, and rate–distortion characteristics of video

encoded into a single layer and video encoded with the conventional temporal and spatial scalability

modes. In contrast to [38] and [105], in this dissertation we consider the new Fine Granularity Scalability

mode of MPEG–4 and study quantitatively the video traffic (rate), video quality (distortion), as well as

their relationship (rate–distortion) for FGS encoded video.

1We note here that the subjectively perceived video quality is very complex to assess and the topic of ongoing research; our

framework allows for complex metrics, but uses the PSNR for numerical studies.

5.2 Framework for Analyzing Streaming Mechanisms 79

This chapter is organized as follows. In Section 5.2 we present our framework for analyzing FGS

video streaming. We define metrics based on individual video frames, and metrics based on aggregations

of video frames (such as Groups of Pictures or visual scenes). In Section 5.3 we analyze the traces

for a short video, and for a representative library of long videos from different genres2. Long traces

are essential to obtain statistically meaningful performance results for video streaming mechanisms,

and it is important to consider videos from a representative set of genres because the rate–distortion

characteristics depend strongly on the semantic video content. In Section 5.4 we compare the rate–

distortion optimized streaming at different video frame aggregation levels. We summarize our findings

in Section 5.5.

5.2 Framework for Analyzing Streaming Mechanisms

In this section, we present our framework for analyzing streaming mechanisms for FGS–encoded video:

we define metrics that characterize the traffic and quality on the basis of individual video frames and on

the basis of scenes (or more generally any arbitrary aggregation of video frames), we explain how to use

PSNR and MSE quality measures, and we detail our method for generating the rate–distortion traces.

5.2.1 Notation

We assume that the frame period (display time of one video frame) is constant and denote it by � 	
seconds. Let (denote the number of frames in a given video and let � , � � � � 1 1 1�� (, index the

individual video frames. Frame � is supposed to be decoded and displayed at the discrete instant � �
� �
� 	 . The base layer was encoded with fixed quantization scale, resulting in variable base layer frame

sizes (as well as variable enhancement layer frame sizes). Let
� �� denote the size of the base layer

of frame � (in bit or byte), and
�� � denote the average base layer frame size for the entire video. Let� �� �
"� � � denote the size of the complete FGS enhancement layer of frame � , i.e., the enhancement layer

without any cuts. The base layer is transmitted with constant bit rate � �� � � �� � � 	 during the period

from � ��� � �

�

� � 	 to � � � �
� 	
� � � � � 1 1 1�� (. Similarly, the complete enhancement layer would be

streamed at the constant bit rate � �� �
"� � � � � �� �
"� � � � � 	 from � ��� � �

�
�� � 	 to � � � �
� 	 . Recall that,

according to the fine granularity property, the FGS enhancement layer can be truncated anywhere before

(or during) the transmission through the network. The remaining — actually received — part of the FGS

enhancement layer is added to the reliably transmitted base layer and decoded. We refer to the part of

the enhancement layer of a frame that is actually received and decoded as enhancement layer subframe.

More formally, we introduce the following terminology. We say that the enhancement layer subframe is

encoded at rate � ���)� , � � , � �� �
"� � � , when the first � � � � 	 bits of frame � are received and decoded

2All traces and statistics are made publicly available at http://trace.eas.asu.edu/indexfgs.html

80 Rate–Distortion Properties of MPEG–4 FGS Video for Optimal Streaming

together with the base layer. In other words, the enhancement layer subframe is said to be encoded with

rate � � when the last
� � �� �
"� � � � � �
 � � 	 bits have been cut from the FGS enhancement layer and are not

decoded.

For the scene based metrics the video is partitioned into consecutive scenes. Let & denote the total

number of scenes in a given video. Let 	 , 	 � � � 1 1 1�� & , denote the scene index and (� the length (in

number of images) of scene number 	 . (Note that
���� � � (� � (.) All notations that relate to video

scenes can be applied to any arbitrary sequence of successive frames (e.g., GoP). In the remainder of the

report, we explicitly indicate when the notation relates to GoPs rather than to visual scenes.

5.2.2 Image-based Metrics

Let
� � � �
 , � � � � 1 1 1�� (, denote the quality of the � th decoded image, when the enhancement layer

subframe is encoded with rate � ; for ease of notation we write here and for all image related metrics

� instead of � � . Let
� �� � � � ����
 , denote the quality of the same image, when only the base layer is

decoded. We define
� �� � �
 � � � � �
 �

� �� as the improvement (increase) in quality which is achieved

when decoding the enhancement layer subframe encoded with rate � together with the base layer of

frame � .

The mean and sample variance of the image quality, are estimated as:

�� � �
 �
�

(
��
� � �

� � � �
 � (5.1)

� �� � �
 � �

(�

�

��
� � �

� � � � �
 �

�� � �
) � �
�

(�

�

� ��
� � �

� � � � �
) � �

� �� � �
) ��� 1 (5.2)

The coefficient of quality variation is given by:

� � � � � �
�� � � � �
�� � �

1

(5.3)

The autocorrelation coefficient of the image qualities � � � � � �

for lag

�
,

� � � � 1 1 1�� (, is estimated as:

� � � � � �
 � �

(�

�

�
 ��
� � �

� � � � �
 �

�� � �
) � � � � 	 � � �
 �

�� � �
)� �� � �
 1
(5.4)

Let
� � � � � �
 , 	 � � � 1 1 1�� & , � � � � 1 1 1�� (� , denote the quality of the � th decoded image of scene 	 ,

when the enhancement layer subframe is encoded with rate � . Similar to
� � � �
 , we denote

� � � � � �
)�
� �� � � 	 � �� � � � �
 . The mean and sample variance of the qualities of the images within scene 	 are denoted

by
�� � � �
 and � �� � � �
 . They are estimated in the same way as the mean and sample variance of individual

image quality over the entire video.

We denote the total size of image � by
� � � �
�� � �� 	 � �� � �
 , when the enhancement layer subframe

is encoded with rate � , whereby
� �� � �
 � � � � 	 .

5.2 Framework for Analyzing Streaming Mechanisms 81

The key characterization of each FGS encoded frame is the rate–distortion curve of the FGS enhance-

ment layer. This rate–distortion curve of a given frame � is a plot of the improvement in image quality
� �� as a function of the enhancement layer subframe bitrate � . This rate–distortion curve is very impor-

tant for evaluating network streaming mechanisms for FGS encoded video. Suppose that for frame � the

streaming mechanism was able to deliver the enhancement layer subframe at rate � . Then we can read

off the corresponding improvement in quality as
� �� � �
 from the rate–distortion curve for video frame � .

Together with the base layer quality
� �� , we obtain the decoded image quality as

� � � �
 � � �� 	 � �� � �
 .
In order to be able to compare streaming mechanisms at different aggregation levels, we monitor the

maximum variation in quality between consecutive images within a given scene 	 , 	 � � � 1 1 1�� & , when

the enhancement layer subframes of all images in the considered scene are coded with rate � . We denote

this maximum variation in image quality by
� � � � � �
 :

� � � � � �
�� �	��
� � � � ����� � � � �
� � � � � � �
 �

� � � �
 �
� �
�� � 1 (5.5)

We define the average maximum variation in image quality of a video with & scenes as:

� � � � �
��
�

&
��

� � �
� � � � � �
"1 (5.6)

We also define the minimum value of the maximum quality variation of a video with & scenes as:

��� � � � � � �
 � �������� � � � � � � � � �
"1 (5.7)

5.2.3 Scene–based Metrics

Typically, long videos feature many different scenes composed of successive images with similar visual

characteristics. Following Saw [115], we define a video scene as a sequence of images between two scene

changes, where a scene change is defined as any distinctive difference between two adjacent images.

(This includes changes in motion as well as changes in the visual content.)

In this section we define metrics for studying the quality of long videos scene by scene. We first

note that the mean image quality of a scene,
�� � � �
 defined in Section 5.2.2, may not necessarily give

an indication of the overall quality of the scene. This is because the quality of individual images does

not measure temporal artifacts, such as mosquito noise (moving artifacts around edges) or drifts (moving

propagation of prediction errors after transmission). In addition, high variations in quality between

successive images within the same scene may decrease the overall perceptual quality of the scene. For

example, a scene with alternating high and low quality images may have the same mean image quality

as when the scene is rendered with medium but constant image quality, but the quality perceived by the

user is likely to be much lower.

82 Rate–Distortion Properties of MPEG–4 FGS Video for Optimal Streaming

For these reasons we let
� � � �
 denote the overall quality of video scene number 	 , 	 � � � 1 1 1�� & ,

when the enhancement layer subframes have been coded at rate � for all images of the scene. Similar to

the measure of quality of the individual images, we define
� � � �
'� � �� 	 � �� � �
 , where

� �� � � � ���0

denotes the overall quality of scene 	 when only the base layer is decoded, and

� �� � �
 the improvement

in quality achieved by the enhancement layer subframes coded at rate � . We analyze the mean
�� � �
 ,

sample variance � �� � �
 , coefficient of variation
� � � � � �
 , and the autocorrelation coefficients � � � � � �

of the scene qualities. We denote the correlation coefficient between the base layer quality of a scene and

the aggregate base and enhancement layers quality of a scene by � � � � � � �
 . These metrics are estimated

in analogous fashion to the corresponding image–based metrics.

Note that our measure for overall scene quality,
� � � �
 , does not account for differences in the length

of the successive scenes. Our analysis with a measure that weighted the scene qualities proportionally

to the scene length gave very similar results as the scene length independent metric
� � � �
 . We consider

therefore the metric
� � � �
 throughout this study. Moreover, it should be noted that the perception of

the overall quality of a scene may not be linearly proportional to the length of the scene, but may also

depend on other factors, such as the scene content (e.g., the quality of a high action scene may have

higher importance than the quality of a very low action scene).

The rate–distortion characteristic of a given scene 	 is obtained by plotting the curve
� � � �
 , analo-

gous to the rate–distortion curve of an individual image.

The mean and variance of the scenes’ qualities give an overall indication of the perceived quality of

the entire video. However, the variance of the scene quality does not capture the differences in quality

between successive video scenes, which tend to cause a significant degradation of the perceived overall

video quality. To capture these quality transitions between scenes, we introduce a new metric, called

average scene quality variation, which we define as:

� � �
��
�

& �

�

��
� � �

� � � � �
 �

� �
 � � �
 � 1 (5.8)

Also, we define the maximum scene quality variation between two consecutive scenes as:

������� � �
�� �	��
� � � � � � � � � �
 �

� �
 �
� �
�� 1 (5.9)

Finally, we monitor the length (in video frames) of the successive scenes (� , 	 � � � 1 1 1�� & . We

denote the mean and sample variance of (� as
�(� (�0& and � �� .

Table 5.1 summarizes the notations used in this chapter3.

3Note that, in all notations, � denotes the encoding bitrate of the enhancement layer subframe.

5.2 Framework for Analyzing Streaming Mechanisms 83

� 	 Frame period

(Total number of frames in the video� �� Size of the base layer for frame �
�� � Average size of base layer frames� �� �
"� � � Size of the enhancement layer for frame �
� �� �
"� � � Total bitrate of the enhancement layer for frame �
& Number of scenes in the video

(� Number of frames in scene 	
� � � �
 Quality of the � th decoded image when the EL is encoded with rate �
�� � �
 Mean of the image quality� �� � �
 Variance of the image quality

� � � � � �
 Coefficient of quality variation� � � � � �

Autocorrelation coefficient of the image qualities for lag

�

� � � � � �
 Quality of the � th decoded image of scene 	
�� � � �
 Mean quality of the images within scene 	� �� � � � � Variance in quality of the images within scene 	
� � � � � �
 Maximum variation in image quality within scene 	
� � � � �
 Average maximum variation in image quality throughout the video
��� � � � � � �
 Minimum value of the maximum quality variation for all scenes of the video
� � � �
 Overall quality of video scene 	 for EL subframes coded at rate �
� �� � �
 Improvement in scene quality achieved by the enhancement layer
�� � �
 Mean of the scene quality

� � � � � �
 Coefficient of variation of the scene quality� � � � � �

Autocorrelation coefficient of the scene quality at lag

�

� � � � � � �
 Corr. coeff. between the BL and the aggregate BL+EL quality of a scene
� � �
 Average scene quality variation
������� � �
 Maximum scene quality variation between two consecutive scenes

Table 5.1: Summary of notations for Chapter 5

84 Rate–Distortion Properties of MPEG–4 FGS Video for Optimal Streaming

5.2.4 MSE and PSNR Measures

The evaluation metrics defined in the previous sections are general in that any specific quality metric

can be used for the image quality
� � � �
 and the overall scene quality

� � � �
 . In this section we explain

how to use the Peak Signal–to–Noise Ratio (PSNR) (derived from the Mean Square Error (MSE)) as

an instantiation of these general metrics. The choice of PSNR (MSE) is motivated by the recent Video

Quality Expert Group (VQEG) report [133]. This report describes extensive experiments that compared

several different objective quality measures with subjective quality evaluations (viewing and scoring

by humans). It was found that none of the objective measures (some of them quite sophisticated and

computationally demanding) performed better than the computationally very simple PSNR (MSE) in

predicting (matching) the scores assigned by humans.

For video images of size
� � �

pixels, the PSNR of the video sequence between images � � and
� � � � � is defined by:

PSNR
� � � � � �
�� � � ������� � �

MSE
� � � � � �

�
(5.10)

where � is the maximum value of a pixel (255 for 8–bit grayscale images), and MSE
� � � � � �
 is defined

as:

MSE
� � � � � �
 � �

� � � � � � � �

� � 	 �

� ��
� � � 	

��
� � �

�� � �
�
	 ��� � ��� �

��
	���������� �
) � � (5.11)

where
	 ��������� �
 and
	���� � ��� �
 are the gray–level pixel values of the original and decoded frame number

� , respectively. The PSNR and MSE are well–defined only for luminance values, not for color [140].

Moreover, as noted in [133], the Human Visual System (HVS) is much more sensitive to the sharpness of

the luminance component than to the sharpness of the chrominance component. Therefore, we consider

only the luminance PSNR.

To use the PSNR as an instantiation of the generic image quality
� � � �
 and scene quality

� � � �
 , we

set:

� � � �
�� PSNR
� � � �
 � (5.12)

� � � � � �
�� PSNR
� �

��

� � � (
� 	 � �

�
 ��
� � � (

� 	 �
"� (5.13)

� � � �
�� PSNR
� � 	

�
 ��
� � � (

� �
��

� � � (
�
"1 (5.14)

Equation (5.14) assumes that all enhancement layer subframes within scene 	 are encoded with constant

bitrate � . We mention again that we use the MSE and PSNR as an instantiation of our general metrics.

5.2 Framework for Analyzing Streaming Mechanisms 85

Our general evaluation metrics defined in Sections 5.2.2 and 5.2.3 accommodate any other quality metric,

e.g., the ANSI metrics motion energy difference and edge energy difference [5], in a similar manner.

(See [90] for an overview of existing objective quality metrics.)

5.2.5 Generation of Traces and Limitations

In our experiments, we used the Microsoft MPEG–4 software encoder/decoder [86] with FGS function-

ality. The Group of Pictures (GoP) structure of the base layer is set to IBBPBBPBBPBB. We encoded the

videos using 2 different sets of quantization parameters for the base layer: the high quality base layer was

obtained with the quantization parameters
� ��� ��� �

for (I,P,B) frames; the low quality base layer was ob-

tained with the quantization parameters
� � � � � ��� � /�

. For each base layer quality, we cut the correspond-

ing FGS enhancement layer at the increasing and equally spaced bitrates � � � ����� � ����� /�������1 1 1
kbps.

The frame period is � 	
� � � ,�� s throughout.

Due to a software limitation in the encoder/decoder, some PSNR results (particularly at some low

enhancement layer bitrates) are incoherent (outliers). This has a minor impact for the short videos,

because the trend of the rate–distortion curves for all individual images and video scenes is clear enough

to estimate the quality that will be reached without considering the outliers. However, for the long videos,

only the high quality base layer encoding gave valid results for most enhancement layer bitrates; thus,

we only consider the high base layer quality for long videos.

Since the automatic extraction of scene boundaries is still a subject of ongoing research [30, 54, 79,

134] (see [65] for a survey on existing techniques for video segmentation), we restricted the segmentation

of the video to the coarser segmentation into shots (also commonly referred to as scene shots). A shot

is the sequence of video frames between two director’s cuts. Since shot segmentation does not consider

other significant changes in the motion or visual content, a shot may contain several distinct scenes (each

in turn delimited by any distinctive difference between two adjacent frames). Nevertheless, distinct

scene shots are still likely to have distinct visual characteristics, so we believe that performing shot–

segmentation instead of a finer scene segmentation does not have a strong effect on the conclusions of

our analysis. A finer segmentation would only increase the total number of distinct video scenes, and

increase the correlation between the qualities of the frames in a scene. Many commercial applications

can now detect shot cuts with good efficiency. We used the MyFlix software [83], an MPEG–1 editing

software which can find cuts directly in MPEG–1 compressed videos. (For the shot segmentation we

encoded each video into MPEG–1, in addition to the MPEG–4 FGS encoding.)

86 Rate–Distortion Properties of MPEG–4 FGS Video for Optimal Streaming

5.3 Analysis of Rate–Distortion Traces

5.3.1 Analysis of Traces from a Short Clip

In this section, we present the analysis of a short video clip of 828 frames encoded in the CIF format. This

clip, which we denote by Clip throughout, was obtained by concatenating the well–known sequences

coastguard, foreman, and table in this order. We segmented (by hand) the resulting clip into 4 scenes

((� � ,0��� , (� � ,���� , (�
� � , �

, (� � � /
) corresponding to the 4 shots of the video (the table

sequence is composed of 2 shots).

Figure 5.1 shows the quality of the successive images
� �

when only the base layer is decoded and

when FGS enhancement layer subframes of rate � ��, Mbps are added to the base layer. We make the

following observations for both low and high base layer qualities:
� �
 First, the average image quality

changes from one scene to the other for both base layer–only and EL–enhanced streaming.
� � �
 For a

given scene, we see that for the base layer there are significant differences in the quality of successive

images. Most of these differences are caused by the different types of base layer images (I, P, B) —

the frames with the highest quality correspond to I–frames. When adding a part of the enhancement

layer (at rate � � , Mbps in the figures), we see that these differences are typically still present, but

may have changed in magnitude. This suggests to distinguish between the different types of images

in order to study the rate–distortion characteristics of the FGS enhancement layer.
� � � �
 We notice that

scenes 2 and 3 feature high variations of image quality even for a given frame type. Scene 2 corresponds

to the foreman sequence in which the camera pans from the foreman’s face to the building. A finer scene

segmentation than shot–based segmentation would have segmented scene 2 into two different scenes,

because the foreman’s face and the building have different visual complexities.

Figure 5.2 shows the size of the complete enhancement layer,
� �� �
"� � � , and the number of bitplanes

needed to code the enhancement layer of each image (we refer the reader to Section 2.2.4 for details

about FGS coding). First, we focus on a given scene. We observe that, in general, I images have fewer

bitplanes than P or B images and that the total number of bits for the enhancement layer images is larger

for P and B images than for I images. This is because I images have higher base layer quality. There-

fore, fewer bitplanes and fewer bits are required to code the enhancement layer of I images. For the

same reason, when comparing different high and low base layer qualities, we see that the enhancement

layer corresponding to the high base layer quality needs, for most images, fewer bitplanes than the en-

hancement layer corresponding to the low base layer quality. For low base layer quality, the enhancement

layer contains, for most images, 4 bitplanes, whereas, for the high base layer quality, it usually contains 2

bitplanes.

5.3 Analysis of Rate–Distortion Traces 87

30

35

40

45

50

0 100 200 300 400 500 600 700 800

scene1 scene2 scene3 scene4

EL, r = 3 Mbps
BL only

PSfrag replacements

PS
N

R
-

���

image number -
�

(a) low quality base layer

30

35

40

45

50

0 100 200 300 400 500 600 700 800

scene1 scene2 scene3 scene4

EL, r = 3 Mbps
BL only

PSfrag replacements

PS
N

R
-

� �

image number -
�

(b) high quality base layer

Figure 5.1: Image quality in PSNR for all images of Clip

0

50000

100000

150000

200000

250000

300000

0 100 200 300 400 500 600 700 800
0
1
2
3
4
5
6
7
8

scene1 scene2 scene3 scene4

EL frame size
Bitplane number

PSfrag replacements si
ze

in
bi

ts
-

� � � �

��
�	

image number -
� nu

m
be

ro
f

bi
tp

la
ne

s

(a) low quality base layer

0

50000

100000

150000

200000

250000

300000

0 100 200 300 400 500 600 700 800
0
1
2
3
4
5
6
7
8

scene1 scene2 scene3 scene4

EL frame size
Bitplane number

PSfrag replacements si
ze

in
bi

ts
-

� � � �
��
�	

image number -
� nu

m
be

ro
fb

itp
la

ne
s

(b) high quality base layer

Figure 5.2: Size of complete EL frames and number of bitplanes for all frames of Clip

88 Rate–Distortion Properties of MPEG–4 FGS Video for Optimal Streaming

0

50000

100000

150000

200000

250000

0 100 200 300 400 500 600 700 800

scene1 scene2 scene3 scene4

BL frame size

PSfrag replacements

si
ze

in
bi

ts
-

�� �

image number -
�

(a) low quality base layer

0

50000

100000

150000

200000

250000

0 100 200 300 400 500 600 700 800

scene1 scene2 scene3 scene4

BL frame size

PSfrag replacements

si
ze

in
bi

ts
-

��

�

image number -
�

(b) high quality base layer

Figure 5.3: Size of base layer images for Clip

Next, we conduct comparisons across different scenes. Figure 5.3 shows the size of the base layer

frames,
� �� . When comparing the average size of the enhancement layer frames for the individual scenes

(Figure 5.2) with the average size of the corresponding base layer frames (Figure 5.3), we see that the

larger the average base layer frame size of a scene the larger the average enhancement layer frame size

of the scene. This can be explained by the different complexities of the scenes. For example, for a given

base layer quality, we see that it requires more bits to code I images in scene 1 than in the first part of

scene 2. This means that the complexity of scene 1 is higher than the complexity of scene 2. Therefore,

the average number of bits required to code the enhancement layer of scene 1 images is larger than for

the first part of scene 2.

In Figure 5.4 we plot the rate–distortion functions
� � � � �

�
� �
 and

� � � � ��� � �
 (improvement in quality

brought by the enhancement layer as a function of the encoding rate of the FGS enhancement layer)

for different types of images within the same GoP. These plots give rise to a number of interesting

observations, which, in turn, have important implications for FGS video streaming and its evaluation.

First, we observe that the rate–distortion curves are different for each bitplane. The rate–distortion

curves of the lower (more significant) bitplanes tend to be almost linear, while the higher (less significant)

bitplanes are clearly non–linear. (Note that the most significant bitplane (BP1) for image 14 with low

quality base layer has a very small size.) More specifically, the rate–distortion curves of the higher

bitplanes tend to be convex. In other words, the closer we get to the end of a given bitplane, the larger the

improvement in quality for a fixed amount of additional bandwidth. This appears to be due to the bitplane

headers. Indeed, the more bits are kept in a given bitplane after truncation, the smaller the share of the

bitplane header in the total data for this bitplane. As a result, when designing streaming mechanisms, it

may be worthwhile to prioritize the enhancement layer cutting toward the end of the bitplanes.

5.3 Analysis of Rate–Distortion Traces 89

0

2

4

6

8

10

12

14

0 1000 2000 3000 4000 5000 6000 7000 8000

BP 1 BP 2 BP 3 BP 4

image #13 - type I

PSfrag replacements

� � �

in
dB

FGS rate in kbps -
�

FGS rate in kbps -

(a) image 13 — low quality base layer

0

2

4

6

8

10

12

14

0 1000 2000 3000 4000 5000 6000 7000 8000

BP 1 BP 2

image #13 - type I

PSfrag replacements

� � �

in
dB

FGS rate in kbps -
�

FGS rate in kbps -

(b) image 13 — high quality base layer

0

2

4

6

8

10

12

14

0 1000 2000 3000 4000 5000 6000 7000 8000

BP 2 BP 3 BP 4 BP 5

image #14 - type B

PSfrag replacements

� � �

in
dB

FGS rate in kbps -
�

FGS rate in kbps -

(c) image 14 — low quality base layer

0

2

4

6

8

10

12

14

0 1000 2000 3000 4000 5000 6000 7000 8000

BP 1 BP 2 BP 3

image #14 - type B

PSfrag replacements

� � �

in
dB

FGS rate in kbps -
�

FGS rate in kbps -

(d) image 14 — high quality base layer

Figure 5.4: Improvement in PSNR as function of the FGS bitrate for scene 1 images of Clip

Recall that the plots in Figure 5.4 are obtained by cutting the FGS enhancement layer every 200

kbps. We observe from these plots that a piecewise linear approximation of the curve using the 200 kbps

spaced sample points gives an accurate characterization of the rate–distortion curve. We also observe that

approximating the rate distortion–curves of individual bitplanes by straight lines (one for each bitplane)

can result in significant errors (typically in the range from
��1 �

–
��1 � �

dB and up to
�

dB). It is therefore

recommended to employ a piecewise linear approximation based on the 200 kbps spaced sample points.

An interesting avenue for future work is to fit analytical functions to our empirically measured rate–

distortion curves.

So far, we have considered the rate–distortion curves of individual frames. We now aggregate the

frames into scenes and study the rate–distortion characteristics of the individual scenes. Figure 5.5

shows the average image quality (from base plus enhancement layer) of the individual scenes in the

90 Rate–Distortion Properties of MPEG–4 FGS Video for Optimal Streaming

30

32

34

36

38

40

42

44

0 1000 2000 3000 4000 5000 6000 7000 8000

scene 1
scene 2
scene 3
scene 4

PSfrag replacements M
ea

n
im

ag
e

qu
al

ity
in

dB
-

� ���

FGS rate in kbps -
�

(a) low quality base layer

30

32

34

36

38

40

42

44

0 1000 2000 3000 4000 5000 6000 7000 8000

scene 1
scene 2
scene 3
scene 4

PSfrag replacements M
ea

n
im

ag
e

qu
al

ity
in

dB
-

� ���

FGS rate in kbps -
�

(b) high quality base layer

Figure 5.5: Average image quality by scene as a function of the FGS–EL bitrate for Clip

Clip as a function of the FGS enhancement layer rate. (The outliers at low FGS bitrates are due to the

software limitation discussed in Section 5.2.5.) We observe that the scenes differ in their rate–distortion

characteristics. For the low quality base layer version, the PSNR quality of scene 1 (coastguard) is about

2 dB lower than the PSNR quality of scene 2 (foreman) for almost the entire range of enhancement layer

rates. This quality difference falls to around 1 dB for the high quality base layer video. This appears to be

due to the higher level of motion in coastguard. Encoding this motion requires more bits with MPEG–4

FGS, because there is no motion compensation in the enhancement layer. Overall, the results indicate

that it is prudent to
� �
 analyze FGS encoded video on a scene by scene basis (which we do in the next

section for long video with many scenes), and
� � �
 to take the characteristics of the individual scenes into

consideration when streaming FGS video (which we examine in more detail in Section 5.4).

As noted in the introduction, the perceived video quality depends on the qualities of the individual

frames as well as on the variations in quality between successive frames. To examine the quality vari-

ations, we plot in Figure 5.6 the standard deviation of the image quality � � � for the different scenes.

For both base layer qualities, we observe that overall scene 2 (foreman) is the scene with the largest

variance. This is due to the change of visual complexity within the scene as the camera pans from the

foreman’s face to the building behind him. We also observe that for a given scene, the variance in quality

can change considerably with the FGS enhancement layer rate. To examine the cause for these relatively

large and varying standard deviations, we plot in Figure 5.7 the standard deviation of both image quality� � and GoP quality � � for the entire video clip. We see that the standard deviation of the GoP quality

is negligible compared to the standard deviation of the image quality. This indicates that most of the

variations in quality are due to variations in image quality between the different types of images (I, P,

and B) within a given GoP. Thus, it is, as already noted above, reasonable to take the frame type into

5.3 Analysis of Rate–Distortion Traces 91

0

0.5

1

1.5

2

2.5

3

0 1000 2000 3000 4000 5000 6000 7000 8000

scene 1
scene 2
scene 3
scene 4

PSfrag replacements

St
d

in
dB

-

�
���

FGS rate in kbps -
�

(a) low quality base layer

0

0.5

1

1.5

2

2.5

3

0 1000 2000 3000 4000 5000 6000 7000 8000

scene 1
scene 2
scene 3
scene 4

PSfrag replacements

St
d

in
dB

-

�
���

FGS rate in kbps -
�

(b) high quality base layer

Figure 5.6: Std of image quality for individual scenes as a function of the FGS bitrate for Clip

0

0.5

1

1.5

2

2.5

0 1000 2000 3000 4000 5000 6000 7000 8000

image quality std
gop quality std

PSfrag replacements

St
d

in
dB

FGS rate in kbps -
�

(a) low quality base layer

0

0.5

1

1.5

2

2.5

0 1000 2000 3000 4000 5000 6000 7000 8000

image quality std
gop quality std

PSfrag replacements

St
d

in
dB

FGS rate in kbps -
�

(b) high quality base layer

Figure 5.7: Std of image quality and GoP quality as a function of the FGS bitrate for Clip

92 Rate–Distortion Properties of MPEG–4 FGS Video for Optimal Streaming

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

BL only
EL, r = 1 Mbps
EL, r = 2 Mbps
EL, r = 3 Mbps

PSfrag replacements

ac
c

-

�

�

lag - �
(a) low quality base layer

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200

BL only
EL, r = 1 Mbps
EL, r = 2 Mbps
EL, r = 3 Mbps

PSfrag replacements

ac
c

-

�

�

lag - �
(b) high quality base layer

Figure 5.8: Autocorrelation coefficient of image quality for Clip

consideration in the streaming.

To take a yet closer look at the quality variations, we plot in Figure 5.8 the autocorrelation function � �
of the image quality for the base layer and the FGS enhancement layer coded at rates � � �

, � and
,

Mbps.

We observe periodic spikes which correspond to the GoP pattern. We verify that, at small lags there are

high correlations (i.e., relatively smooth transitions) in quality for the different types of images, especially

for high FGS enhancement layer rates. This means that a higher FGS enhancement layer rate smoothes

the difference in quality between near images. Indeed, for the same number of FGS enhancement layer

bits added to the base layer, the gain in quality is different for consecutive I, P, and B frames. In general,

the gain in quality for I frames is smaller than the gain in quality for P or B frames. As indicated earlier,

the base layer has higher quality for I frames; therefore, the enhancement layer bits provide higher (less

visible) spatial frequencies for the I frames than for the P and B frames.

5.3.2 Analysis of Traces from Long Videos

In this section we analyze the traces of long videos. All videos have been captured and encoded in QCIF

format (
� � / � � � �

pixels), except for the movie Silence (for Silence of the Lambs), which has been

captured and encoded in CIF format (
, � � � � 5�5 pixels). All videos have been encoded with high base

layer quality. The image–based metrics defined in Section 5.2.2 lead to similar insights for long videos

as found in Section 5.3.1. In contrast to Clip, the long videos contain many different scenes and thus

allow for a statistically meaningful analysis at the scene level.

Table 5.2 gives the scene shot length characteristics of the long videos. We observe that the scene

lengths differ significantly among the different videos. Toy Story has the shortest scenes, with an average

5.3 Analysis of Rate–Distortion Traces 93

run time & �(� � � � (����� � �(
The Firm 1h 890 121 0.94 9.36

Oprah+com 1h 621 173 2.46 39.70

Oprah 38mn 320 215 1.83 23.86

News 1h 399 270 1.67 9.72

Star Wars 1h 984 109 1.53 19.28

Silence (CIF) 30mn 184 292 0.96 6.89

Toy Story 1h 1225 88 0.95 10.74

Football 1h 876 123 2.34 31.47

Lecture 49mn 16 5457 1.62 6.18

Table 5.2: Scene shot length characteristics for the long videos

scene length of just about 2.9 seconds (= 88 frames/30 frames per second). Comparing Oprah with

commercials (Oprah 	 com) with Oprah (same video with commercials removed), we observe that the

commercials significantly reduce the average scene length and increase the variability of the scene length

in the video. The lecture video, a recording of a class by Prof. M. Reisslein, has by far the longest average

scene length, with the camera pointing to the writing pad or blackboard for extended periods of time.

The scene length can have a significant impact on the required resources (e.g., client buffer) and the

complexity of streaming mechanisms that adapt on a scene by scene basis. (In Section 5.4 we compare

scene by scene based streaming with other streaming mechanisms from a video quality perspective.)

Table 5.3 gives elementary base layer traffic statistics of our long videos. The base layer statistics

are quite typical for encodings with fixed quantization scales (4,4,4)4. Note that Oprah with and without

commercials have the highest base layer average bitrate among QCIF movies, with commercials increas-

ing the bitrate by around 60%; Star Wars has the lowest base layer bitrate, which is probably due to the

high number of scenes with dark backdrops or with little contrast in this type of movies.

Table 5.4 presents the average scene quality statistics for our long videos. Table 5.4 indicates that

the average scene PSNR is very different from one video to the other. In particular, while Oprah with

commercials and Oprah have the highest base layer encoding rates, the average overall PSNR quality

achieved for the base layer for both videos is low compared to the average PSNR quality achieved by the

other videos. This appears to be due to the high motion movie trailers featured in the show as well as

noise from the TV recording, both of which require many bits for encoding. We observe that for a given

video, each additional
�

Mbps of enhancement layer increases the average PSNR by roughly 3–4 dB.

(The relatively large bitrate and low PSNR for the Lecture video are due to the relatively noisy copy of

4We refer the interested reader to [38] for a detailed study of these types of traffic traces.

94 Rate–Distortion Properties of MPEG–4 FGS Video for Optimal Streaming

�� � (Mbps)
�� � (bits)

� � �

� � ������ � �� �

The Firm 0.65 21765 0.65 6.52

Oprah+com 2.73 91129 0.14 1.94

Oprah 1.69 56200 0.19 2.33

News 0.74 24645 0.54 5.30

Star Wars 0.49 16363 0.65 6.97

Silence (CIF) 1.74 57989 0.72 7.85

Toy Story 1.08 36141 0.49 5.72

Football 0.97 32374 0.53 3.90

Lecture 1.54 51504 0.29 2.72

Table 5.3: Base layer traffic characteristics for the long videos

BL only � � �
Mbps � � � Mbps

��
(dB)

� � � � ��
(dB)

� � � � � � � � � ��
(dB)

� � � � � � � � �
The Firm 36.76 0.013 40.10 0.017 0.92 43.70 0.003 -0.18

Oprah+com 35.71 0.015 38.24 0.013 0.99 42.30 0.010 0.83

Oprah 35.38 0.003 38.18 0.003 0.84 42.84 0.007 0.48

News 36.66 0.018 39.65 0.027 0.83 43.76 0.021 0.25

Star Wars 37.48 0.025 41.14 0.031 0.97 43.83 0.013 0.67

Silence (CIF) 37.88 0.015 NA NA NA 39.70 0.020 0.53

Toy Story 36.54 0.021 39.57 0.029 0.98 43.95 0.013 0.90

Football 37.42 0.034 40.69 0.041 0.97 43.97 0.018 0.81

Lecture 35.54 0.001 38.48 0.002 0.52 43.64 0.007 -0.17

Table 5.4: Scene quality statistics of long videos for the base layer and FGS enhancement layer

5.3 Analysis of Rate–Distortion Traces 95

base layer only � � �
Mbps � � � Mbps

� ������� � ������� � � ��� �

The Firm 0.06 1.83 0.16 2.37 0.00 1.26

Oprah+com 0.04 12.15 0.05 11.31 0.03 7.32

Oprah 0.00 0.36 0.00 0.42 0.00 1.13

News 0.11 3.15 0.29 3.17 0.12 2.36

Star Wars 0.29 8.25 0.57 8.83 0.13 6.28

Silence (CIF) 0.05 1.42 NA NA 0.25 4.45

Toy Story 0.19 9.77 0.40 11.25 0.12 6.23

Football 0.51 9.79 0.72 10.12 0.19 6.36

Lecture 0.00 0.14 0.00 0.20 0.00 0.64

Table 5.5: Average scene quality variation and maximum scene quality variation of long videos

the master tape.) We also observe from Table 5.4 that the coefficient of variation of the scene qualities

is relatively small. This is one reason why we defined the average scene quality variation
�

in (5.8) and

maximum scene quality variation
� �����

in (5.9), which focus more on the quality change from one scene

to the next (and which we will examine shortly). The other point to keep in mind is that these results are

obtained for fixed settings of the FGS enhancement layer rate � . When streaming over a real network, the

available bandwidth is typically variable and the streaming mechanism can exploit the fine granularity

property of the FGS enhancement layer to adapt to the available bandwidth, i.e., the enhancement layer

rate � will become a function of time as in Chapter 4.

In Table 5.5, we first observe that Oprah has the smallest average scene quality variation
�

at all

FGS rates, whereas the Football video has the largest average scene quality variation for the base layer

and � � �
Mbps. For most videos,

�
and

� �����
are both minimum at � � � Mbps. We see from

� �����

that the difference in quality between successive scenes can be as high as
� � dB and is typically larger

than � dB at all FGS rates for most videos. This indicates that there are quite significant variations in

quality between some of the successive video scenes, which may visibly affect the video quality.

Figures 5.9 and 5.10 give, for The Firm and News respectively, the scene quality as a function of

the scene number (
� � � �
) for the base layer and FGS cutting rates � � �

and � Mbps, as well as the

average encoding bitrates for the base layer and the base layer plus complete enhancement layer. The

plots illustrate the significant variations in scene quality for an enhancement layer rate of � = 1 Mbps.

The quality variations are less pronounced for the base layer, while, for � � � Mbps, the quality is almost

constant for most scenes. With � = 2 Mbps, most scenes are encoded at close to maximum achievable

quality.

96 Rate–Distortion Properties of MPEG–4 FGS Video for Optimal Streaming

34

36

38

40

42

44

46

48

0 100 200 300 400 500 600 700 800 900

EL, r = 2 Mbps
EL, r = 1 Mbps

BL only

PSfrag replacements

average bitrate in kbps

qu
al

ity
in

PS
N

R
-

� �
���
�

scene number -
�

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 100 200 300 400 500 600 700 800 900

BL + total EL
BL only

PSfrag replacements av
er

ag
e

bi
tr

at
e

in
kb

ps

quality in PSNR -

scene number -
�

Figure 5.9: Scene PSNR (left) and average encoding bitrate (right) for all scenes of The Firm

34

36

38

40

42

44

46

48

0 50 100 150 200 250 300 350 400

EL, r = 2 Mbps
EL, r = 1 Mbps

BL only

PSfrag replacements

average bitrate in kbps

qu
al

ity
in

PS
N

R
-

� �
� �
�

scene number -
�

0

500

1000

1500

2000

2500

3000

3500

4000

4500

0 50 100 150 200 250 300 350 400

BL + total EL
BL only

PSfrag replacements av
er

ag
e

bi
tr

at
e

in
kb

ps

quality in PSNR -

scene number -
�

Figure 5.10: Scene PSNR (left) and average encoding bitrate (right) for all scenes of News

5.3 Analysis of Rate–Distortion Traces 97

35

36

37

38

39

40

41

42

43

44

0 500 1000 1500 2000

The Firm
Oprah With Com.

Oprah Without Com.
News

PSfrag replacements

� �

in
dB

in dB

FGS rate in kbps -
�

Figure 5.11: Average scene quality as a function

of the FGS bitrate

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 500 1000 1500 2000

The Firm
Oprah With Com.

Oprah Without Com.
News

PSfrag replacements

in dB

� in
dB

FGS rate in kbps -
�

Figure 5.12: Average scene quality variability as a

function of the FGS bitrate

Figure 5.11 shows the average scene quality for The Firm, Oprah, Oprah with commercials and News,

as a function of the FGS rate (
�� � �
). We observe that the slope of the quality increase with increasing

FGS enhancement layer rate is about the same for all considered videos. We also observe that there is a

difference of around 1 dB between the average base layer quality for The Firm or News and the average

base layer quality for Oprah or Oprah with commercials; this difference roughly remains constant at all

FGS rates. This indicates that the average quality achieved by a video at all FGS rates strongly depends

on the visual content of the videos and on the average quality of the base layer. This is confirmed in

Figure 5.13 which shows the coefficient of scene correlation between the base layer, and the aggregate

base and enhancement layer quality as a function of the FGS rate (� � � � � � �
). The correlation decreases

slightly with the FGS rate but stays high at all rates (see Table 5.4 for complete statistics for all videos).

Figure 5.12 shows the average scene quality variation as a function of the FGS rate (
� � �
). As we

see, the difference in quality between the successive scenes first increases with the FGS rate for The Firm

and News. This is probably because some scenes can achieve maximum quality with a small number of

enhancement layer bits (low complexity scenes), while other scenes require a higher number of bits to

achieve maximum quality (high complexity scenes). At high FGS rates the variability starts to decrease

because all scenes tend to reach the maximum quality (as confirmed in Table 5.5 for most videos). For

Oprah and Oprah with commercials, the variability stays very low at all FGS rates, which is mainly due

to the fact that the VBR–base layer encoder has been able to smooth the differences in scene quality

effectively.

Finally, Figure 5.14 shows, for each video, the autocorrelation in scene quality � � for the base layer

and FGS rates � � � , �
, and � Mbps. For the four videos, we observe that the autocorrelation functions

drop off quite rapidly for a lag of a few scene shots, indicating that there is a tendency of abrupt changes in

quality from one scene to the next. Also, for a given video, the autocorrelation function for the aggregate

98 Rate–Distortion Properties of MPEG–4 FGS Video for Optimal Streaming

-0.2

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000

The Firm
Oprah With Com.

Oprah Without Com.
News

PSfrag replacements

�
�
���
�

FGS rate in kbps - �

Figure 5.13: Coeff. of correlation between BL and overall quality of scenes, as a function of the FGS

bitrate

base and enhancement layers follows closely the autocorrelation function for the base layer only, except

for Oprah with commercials at � � � Mbps. The difference in autocorrelation at low lags between Oprah

and Oprah with commercials can be explained by the higher diversity of successive scene types when

adding commercials.

5.3 Analysis of Rate–Distortion Traces 99

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

The Firm

BL only
EL, r = 1 Mbps
EL, r = 2 Mbps

PSfrag replacements

ac
c

-

�

�

lag in scenes - �
-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

News

BL only
EL, r = 1 Mbps
EL, r = 2 Mbps

PSfrag replacements

ac
c

-
�

�

lag in scenes - �

-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

Oprah+Commercials

BL only
EL, r = 1 Mbps
EL, r = 2 Mbps

PSfrag replacements

ac
c

-

�

�

lag in scenes - �
-0.2

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30 35 40 45 50

Oprah

BL only
EL, r = 1 Mbps
EL, r = 2 Mbps

PSfrag replacements

ac
c

-

�

�

lag in scenes - �

Figure 5.14: Autocorrelation in scene quality for videos encoded with high quality base layer

100 Rate–Distortion Properties of MPEG–4 FGS Video for Optimal Streaming

5.4 Comparison of Streaming at Different Image Aggregation Levels

In this section we use our traces and metrics to compare rate–distortion optimized streaming of FGS–

encoded video at different levels of image aggregation.

5.4.1 Problem Formulation

We suppose that the transmission of the base layer is made reliable, and we focus on the streaming of

the enhancement layer. When streaming video over the best–effort Internet, the available bandwidth

typically fluctuates over many time–scales. However, as we explained in Section 2.4.1, for non real–

time applications such as streaming stored video, the user can usually tolerate an initial playback delay,

during which some initial part of the video is stored into the client buffers before the start of the playback.

Maintaining a sufficient playback delay throughout the rendering allows the application to accommodate

future bandwidth variations, as we showed in Chapters 3 and 4.

To account for bandwidth variability, we model bandwidth constraints and client buffering resources

as follows. As shown on Figure 5.15, the video is partitioned into � allocation segments, with each

allocation segment � containing the same number of frames
� (� ��� . While the server is streaming

the video, for each allocation segment � , the server assigns a maximum bandwidth budget � ��� � �
* ��� � ��� (� ��� � � 	 bits to be allocated across all the frames in the segment, where the maximum average

bitrate * ����� varies from one segment to the next. In this section, we focus on the allocation of the

bandwidth budget to the individual frames within a segment. In our experiments, we use allocation

segments consisting of
� �����

frames, which correspond to about
,0�

seconds of a
,0�

f/s video.

Due to the client buffering, the server has great flexibility in allocating the given bandwidth budget

to the frames within a segment. Given the rate–distortion functions of all images, the server can optimize

the streaming within the segment by allocating bits from the bandwidth budget to the individual frames

so as to maximize the video quality. Alternatively, the server can group several consecutive images of an

allocation segment into sub–segments, referred to as streaming sequences, and perform rate–distortion

optimization on the granularity of streaming sequences. In this case, each frame in a streaming sequence

(that is sub–segment) is allocated the same number of bits. We denote by & � the number of streaming

sequences in a given allocation segment � , �
� � � 1 1 1�� � .

We consider five aggregation cases for streaming sequences:

– image: each image from the current allocation segment forms a distinct streaming sequence (& � �� (� ���).
– gop: we group all images from the same GoP into one streaming sequence. In this case, the

5.4 Comparison of Streaming at Different Image Aggregation Levels 101

1
 M
m
...
 ...

allocation

segment m:

N
s
frames

1
 S
m

...
 s
 ...

Video:

streaming

sequence s

 s

 max

Figure 5.15: Partitioning of the video into allocation segments and streaming sequences

number of streaming sequences in allocation segment � is equal to the number of distinct GoPs in

the allocation segment (& � � � (� � � � � �
 � with the 12 image GoP structure used in this study).

– scene: we group all images from the same video scene into one streaming sequence. In this

case & � � &
�
 � � �� , where & �
 �

� �� denotes the number of distinct scenes in allocation segment � ,

according to the initial segmentation of the video (shot–based segmentation in this study).

– constant: allocation segment � is divided into &
"� � � �
� � & �
 �

� �� streaming sequences, each con-

taining the same number of frames. Consequently, each streaming sequence contains a number of

frames equal to the average scene length of the allocation segment.

– total: all the images from allocation segment � form one streaming sequence (& � � �
).

In the following, we focus on the streaming of a particular allocation segment � . In order to simplify

the notation, we remove the index � from all notations whenever there is no ambiguity. Let & be the

number of streaming sequences in the current allocation segment. Let (� be the number of frames

in streaming sequence 	 , 	 � � � 1 1 1�� & (see Figure 5.15). For a given allowed average rate * ����� ,
let � � denote the number of bits allocated to each of the (� images in streaming sequence 	 . Define

�
� � � � � 1 1 1�� � �
 as the streaming policy for the current allocation segment. We denote by � ����� the

102 Rate–Distortion Properties of MPEG–4 FGS Video for Optimal Streaming

maximum number of enhancement layer bits that can be allocated to any image of the video (this depends

on the total coding rate of the enhancement layer).

Extending the scene quality metric defined in Section 5.2.3 to allocation segments, we define
� �

�

as the overall quality of the current allocation segment under the streaming policy � . We denote
� �

�

for the corresponding average distortion and � � �

for the total number of bits to stream under this

policy. As explained in Section 5.2.4, the distortion of a sequence of successive frames is measured in

terms of the average MSE, which is obtained by averaging the MSEs of individual frames. The overall

quality of a sequence is measured in terms of the PSNR and computed directly from the average MSE

of the sequence. We denote by � � � � � �
 the distortion (in terms of MSE) of image � � � � � � 1 1 1�� (� ,
of streaming sequence 	 , when its enhancement layer subframes are encoded with � bits. We denote

by
� � � �
�� �

� � � � �� � � � � � � � �
 , the average distortion of streaming sequence 	 when all enhancement

layer subframes contain � bits. With these definitions we can formulate the rate–distortion streaming

optimization problem as follows:

Problem 5.1

For the current allocation segment, a given bandwidth constraint * ����� , and a given aggregation case, the

optimization procedure at the server consists of finding the policy �
� ��� � �� � 1 1 1�� � ��
 that optimizes:

minimize
� �

�

�� ��

� � �
� �

(�
� ��
� � �

� � � � � � �
�

subject to: � � �

�� (� � � � 	 ����� 	 (� � � � , � ����� �

� � , � ��� � � 	 � � � 1 1 1�� & 1

We denote
� � � � �

�
�"

(respectively
� �

) for the minimum total distortion (maximum overall

quality) achieved for the current allocation segment. Our problem is a resource allocation problem, which

can be solved by dynamic programming5 [32]. The most popular technique to solve such an optimization

problem is called recursive fixing. This consists in evaluating recursively the optimal decisions from the

ending state to the starting state of the system. This is similar to the well–known Dijkstra algorithm

which is used to solve shortest–path problems (this is the method we used in the previous chapter for

Theorem 4.3).

As we have observed in Figure 5.4, the rate–distortion curves cannot easily be modeled by a simple

function. Therefore, we implemented recursive fixing by sampling the possible values of enhancement

5Dynamic programming is a set of techniques that are used to solve various decision problems. In a typical decision

problem, the system transitions from state to state according to the decision taken for each state. Each transition is associated

with a profit. The problem is to find the optimal decisions from the starting state to the ending state of the system, i.e., the

decisions that maximize the total profit, or in our context minimize the average distortion.

5.4 Comparison of Streaming at Different Image Aggregation Levels 103

layer bits per image in steps of
50,�,

bytes (
� � ��� kbps � � 12��,�, s � 5), with a maximum of � ����� �

5�,�,�,
bytes per image. Recall that our long traces have been obtained by cutting the enhancement layer

bitstream at � ��� kbps,
� ���

kbps,
/0���

kbps,
1 1 1

, � Mbps. A finer granularity solution to the optimization

problem could be obtained by interpolating the rate-distortion curve between the 200 kbps spaced points

and using a smaller sampling step size in the recursive fixing, which in turn would increase the required

computational effort.

The computational effort required for resolving our problem depends on the aggregation case which

is considered (image, gop, scene, constant, or total), on the length of an allocation segment, as well as

on the number of scenes within a given allocation segment. Since scene shots are usually composed of

tens to thousands of frames, the reduction in computational complexity when aggregating frames within

a shot (scene case) or aggregating an arbitrary number of frames (constant case) is typically significant.

For instance, in The Firm, with an encoding at
,��

frames per second, there are on average only around
5

scene shots in one allocation segment of
� �0���

frames.

5.4.2 Results

Figure 5.16 depicts the maximum overall quality
� �� as a function of the allocation segment number

� , for an average target rate of * ����� � � �0���
kbps for The Firm, Oprah, Oprah with commercials and

News. Not surprisingly, for all allocation segments, the overall quality with image–by–image streaming

optimization is higher than for the other aggregation cases. This is because the image–by–image opti-

mization is finer. However, the overall quality achieved by the other aggregation cases is very close to

that of image–by–image streaming: the difference is usually less than
�

dB in PSNR. This is due to the

high correlation between the enhancement layer rate–distortion functions of successive frames.

We show in Figure 5.17 the optimal quality averaged over all allocation segments for the entire

videos as a function of the target rate constraint * ����� . We observe that the gop, scene, constant and

total aggregation cases give about the same optimal quality for all target rates. Figure 5.18 presents

the results obtained for low and high base layer quality versions of Clip. For both base layer versions,

we see that the best quality is achieved for the image aggregation followed by gop, scene, constant and

total aggregation in this order. We observed in other experiments, which are not presented here, that the

qualities are very similar when the allocation segments contain more than 1000 frames.

As we have seen from the average MSE–based metrics plotted in the previous figures, there seems

to be very little difference between the maximum quality achieved for all allocation segments when

aggregating over scenes or arbitrary sequences. However, the actual perceived quality may be different.

The reason is that the MSE does not account for temporal effects, such as the variations in quality

between consecutive images: two sequences with a same average MSE may have different variations

104 Rate–Distortion Properties of MPEG–4 FGS Video for Optimal Streaming

38.5

39

39.5

40

40.5

41

41.5

0 20 40 60 80 100 120

image
gop

scene
constant

total

PSfrag replacements

allocation segment - �

�
�
� i

n
dB

(a) The Firm

38

39

40

41

42

43

44

45

0 20 40 60 80 100 120

image
gop

scene
constant

total

PSfrag replacements

allocation segment - �

�
�
� i

n
dB

(b) News

38

38.2

38.4

38.6

38.8

39

39.2

39.4

0 20 40 60 80 100 120

image
gop

scene
constant

total

PSfrag replacements

allocation segment - �

�
�
� i

n
dB

(c) Oprah with commercials

38.05

38.1

38.15

38.2

38.25

38.3

38.35

38.4

38.45

38.5

38.55

0 10 20 30 40 50 60 70

image
gop

scene
constant

total

PSfrag replacements

allocation segment - �

�
�
� i

n
dB

(d) Oprah

Figure 5.16: Maximum overall quality as a function of allocation segment number

5.4 Comparison of Streaming at Different Image Aggregation Levels 105

39

39.5

40

40.5

41

41.5

42

42.5

43

43.5

44

800 1000 1200 1400 1600 1800 2000

image
gop

scene
constant

total

PSfrag replacements

target FGS rate -
�������

� �
�

in
dB

(a) The Firm

39

39.5

40

40.5

41

41.5

42

42.5

43

43.5

44

800 1000 1200 1400 1600 1800 2000

image
gop

scene
constant

total

PSfrag replacements

target FGS rate -
�������

� �
�

in
dB

(b) News

37

38

39

40

41

42

43

800 1000 1200 1400 1600 1800 2000

image
gop

scene
constant

total

PSfrag replacements

target FGS rate -
� �����

� �
�

in
dB

(c) Oprah with commercials

37

38

39

40

41

42

43

800 1000 1200 1400 1600 1800 2000

image
gop

scene
constant

total

PSfrag replacements

target FGS rate -
� �����

� �
�

in
dB

(d) Oprah

Figure 5.17: Average maximum quality as a function of the enhancement layer (cut off) bitrate

106 Rate–Distortion Properties of MPEG–4 FGS Video for Optimal Streaming

33

33.5

34

34.5

35

35.5

36

36.5

37

37.5

38

38.5

1000 1500 2000 2500 3000

image
gop

scene
constant

total

PSfrag replacements

target FGS rate -
�������

� �
�

in
dB

(a) low quality base layer

38.5

39

39.5

40

40.5

41

41.5

42

1000 1500 2000 2500 3000

image
gop

scene
constant

total

PSfrag replacements

target FGS rate -
�������

� �
�

in
dB

(b) high quality base layer

Figure 5.18: Average maximum quality as a function of the enhancement layer bitrate for Clip

in image MSE, and thus different perceived quality. To illustrate this phenomenon, we monitor the

maximum quality variation between consecutive images
� � � � of a given streaming sequence (defined

in (5.5)). For the streaming sequence 	 , 	 � � � 1 1 1�� & � , with each enhancement layer subframe encoded

with � bits, the maximum variation is
� � � � � � � �
 � � ��
 � � � � ����� � � � � � � � � � � � � �
 �

� � � �
 �
� � � �
�� � .

For allocations segments of 1000 frames, Table 5.6 shows the average maximum variation in quality
� � � (defined in (5.6)) for different FGS rates. We observe that the average maximum variation in quality

for a given FGS rate is always smaller with scene aggregation than with constant or total aggregation.

This means that selecting a constant number of bits for the enhancement layer of all images within

a given video shot yields on average a smaller maximum variation in image quality than selecting a

constant number of bits for an arbitrary number of successive images. Therefore, it is preferable to

choose streaming sequences that correspond to visual shots rather than segmenting the video arbitrarily.

This result is intuitive; frames within a given shot are more likely to have similar visual complexity,

and thus similar rate–distortion characteristics, than frames from different shots. This is confirmed in

Figure 5.19, which shows the minimum value of the maximum variations in quality over all scenes of

a given allocation segment ��� � � � � (defined in (5.7)), for * � ��� � 5���� kbps. We observe that the

min–max variation in image quality is typically larger for arbitrary segmentation. This indicates that the

minimum jump in quality in the streaming sequences of a given allocation segment is larger for arbitrary

segmentation. In the case of shot segmentation the minimum jumps in quality are smaller; when the shot

consists of one homogeneous video scene, ��� � � � � � is close to 0 dB. As shown in Figure 5.19, for

some allocation segments, the difference with arbitrary segmentation can be more than
�

dB.

More generally, we expect the difference in rendered quality between shot–based segmentation and

arbitrary segmentation to be more pronounced with a scene segmentation that is finer than shot–based

5.4 Comparison of Streaming at Different Image Aggregation Levels 107

0

0.5

1

1.5

2

2.5

0 20 40 60 80 100 120

shot segmentation
arbitrary segmentation

PSfrag replacements

allocation segment

allocation segment �

�� �
� ��
� i

n
dB

(a) The Firm

0

0.5

1

1.5

2

2.5

3

0 20 40 60 80 100 120

shot segmentation
arbitrary segmentation

PSfrag replacements

allocation segment �
allocation segment

�� �
� ��
� i

n
dB

(b) News

0

0.5

1

1.5

2

2.5

3

3.5

0 20 40 60 80 100 120

shot segmentation
arbitrary segmentation

PSfrag replacements

allocation segment �
allocation segment

�� �
� ��
� i

n
dB

(c) Oprah with commercials

0.5

1

1.5

2

2.5

3

0 10 20 30 40 50 60 70

shot segmentation
arbitrary segmentation

PSfrag replacements

allocation segment �
allocation segment

�� �
� ��
� i

n
dB

(d) Oprah

Figure 5.19: Min–max variations in quality as a function of the allocation segment number

108 Rate–Distortion Properties of MPEG–4 FGS Video for Optimal Streaming

* ����� �$5���� kbps * ����� � � /��0�
kbps

scene const. total scene const. total

The Firm 1.84 1.99 2.51 0.81 0.92 1.44

OprahWith 2.64 2.77 2.99 2.68 2.76 2.93

Oprah 2.43 2.47 2.60 2.60 2.64 2.75

News 2.22 2.55 3.71 1.43 1.64 2.89

StarWars 1.90 2.11 3.44 0.85 0.97 1.84

Silence (CIF) 1.33 1.37 1.82 1.37 1.40 1.88

Toy Story 2.34 2.54 3.54 1.46 1.74 2.96

Football 2.21 2.56 4.92 1.09 1.38 3.49

Lecture 2.64 2.69 2.73 2.06 2.08 2.12

Clip high BL 2.27 2.44 4.75 1.67 1.88 2.72

Clip low BL 2.14 2.49 3.87 1.76 2.23 3.67

Table 5.6: Average maximum variation in quality for long videos and Clip

segmentation. A finer segmentation would further segment sequences with varying rate–distortion char-

acteristics, e.g., sequences with changes in motion or visual content other than director’s cuts. This would

increase the correlation between the qualities of the frames in a same scene, thereby further reducing the

quality degradation due to scene–based streaming over image–based streaming.

5.5 Conclusions

In this chapter we have analyzed rate–distortion traces of MPEG–4 FGS videos based on several per-

formance metrics. The defined metrics capture the quality of the received and decoded video both at

the level of individual video frames (images) as well as aggregations of images (GoP, scene, etc). The

rate–distortion traces provide the rate–distortion characteristics of the FGS enhancement layer for a set

of long videos from different genres. Our analysis of the traces provides a number of insights that are

useful for the design of streaming mechanisms for FGS–encoded video. First, the convex form of the

rate–distortion curves for individual bitplanes suggests to prioritize the cutting of the bitstream close to

the end of the bitplanes. (Note however that cutting the enhancement layer bitstream only at bitplane

boundaries would provide coarser granularity in adapting video quality to varying network conditions.)

Secondly, the base layer frame types (I, P, and B) and, in general, the base layer coding tend to have a

significant impact on the total quality obtained from the base layer plus FGS enhancement layer stream.

We observed that, for fixed FGS enhancement layer cut–off rates, significant variations in the base layer

quality correspond to significant variations in the total (base + enhancement layer) quality. This suggests

5.5 Conclusions 109

to take the different base layer frame types into consideration in the streaming of the FGS enhancement

layer frames. We also observed that, for fixed FGS enhancement layer cut–off rates, the total video qual-

ity tends to vary according to the different semantic content of the video scenes. This suggests to take

the scene structure into consideration in the enhancement layer streaming.

We have used our traces to investigate rate–distortion optimized streaming at different image ag-

gregation levels. We have found that the optimal scene–by–scene adjustment of the FGS enhancement

layer rate reduces the computational complexity of the optimization significantly compared to image–

by–image optimization, while having only a minor impact on the video quality. We have observed that

reducing the computational optimization effort by aggregating the images arbitrarily (without paying

attention to the scene structure) tends to result in quality deteriorations.

The goal of rate–distortion optimal streaming is to maximize the quality of the received video, by

evaluating the expected rendered quality at the server, as a function of network conditions and rate–

distortion properties of each video packet. However, current optimization approaches from the literature

do not account for the possibility of error concealment at the decoder. In the next chapter, we present a

unified framework for rate–distortion optimal streaming with accounting for decoder error concealment.

110 Rate–Distortion Properties of MPEG–4 FGS Video for Optimal Streaming

Chapter 6

Unified Framework for Optimal

Streaming using MDPs

In this chapter we consider streaming layered video (live and stored) over a lossy packet network. We

propose an end–to–end unified framework in which packet scheduling and error control decisions at the

sender explicitly account for the error concealment mechanism at the receiver. We show how the theory

of infinite–horizon, average–reward Markov decision processes with average–cost constraints, can be

applied to find optimal transmission policies. We demonstrate the framework and solution procedure

using MPEG–4 FGS video traces.

6.1 Introduction

In a typical streaming application, the sender schedules the transmission of media packets in order to

maximize the rendered video quality. The sender may choose not to transmit some media packets,

thereby not sending some layers in some frames (this is also called quality adaptation [108]). Over lossy

channels, scheduling is followed by error correction in order to mitigate the effects of packet loss on

the rendered video. Error correction for streaming media typically consists in the retransmission of lost

packets that can arrive at the receiver before their decoding deadlines, or the transmission of redundant

forward error correction packets (also called error protection). Both scheduling and error correction

should jointly adapt to the variations of network conditions, such as the available bandwidth and packet

loss rate of the connection. In our framework, error correction is provided by Reed–Solomon (RS) FEC

codes (see Section 2.3.2).

At the receiver, some of the media packets are available on time, that is, before their decoding dead-

lines. Other packets are not available, either because they were transmitted and lost, or simply because

the sender never scheduled them for transmission. At the time of rendering to the user, the decoder typ-

112 Unified Framework for Optimal Streaming using MDPs

Scheduler

Lossy

Channel

Decoder

with

Error

Concealment

.

.

.

Sender
 Receiver

layer L

layer 2

layer 1

Playback buffer

Error

Correction

Figure 6.1: Video streaming system with decoder error concealment

ically applies several methods of error concealment in order to best conceal the missing packets. Error

Concealment (EC) consists in exploiting the spatial and temporal correlations of audio or video to inter-

polate missing packets from the surrounding available packets [137]. For video, a simple and popular

method for temporal error concealment is to display, instead of the missing macro block from the current

frame, the macro block at the same spatial location from the previous frame.

Packet scheduling, error correction and error concealment are fundamental components in an end–to–

end video streaming system. Figure 6.1 illustrates their respective functions. At the sender, the scheduler

determines the layers that should be sent to the receiver for each frame of the video; the error protection

component determines the amount of FEC packets to be sent with each layer. At the receiver, incoming

packets are stored temporarily in the playback buffer; before rendering the media, the decoder performs

error concealment from the available layers. Traditionally, scheduling and error correction transmission

policies are normally optimized without taking into account the presence of error concealment at the

receiver [27, 85, 97].

In this dissertation, we argue that the scheduling and error protection components of a video stream-

ing system should be designed jointly with decoder error concealment. In particular, when designing a

scheduling and error correction transmission policy, not only should we account for the layered struc-

ture of the media, the channel characteristics, and the effects of missing packets on distortion, but we

should also explicitly account for error concealment at the receiver. Thus, we argue for a more unified,

end–to–end approach for designing video streaming systems.

In this chapter we make several contributions. We present a new unified optimization framework for

joint packet scheduling and error correction with considering temporal error concealment in the optimiza-

tion process. We show how the theory of infinite–horizon, average–reward Markov Decision Processes

(MDPs) with average–cost constraints can be applied to this optimization problem. To our knowledge,

infinite–horizon constrained MDPs have not been applied yet to video streaming. We show that con-

strained MDPs can be used for a wide variety of quality metrics, including metrics that take quality

6.1 Introduction 113

variation into account; infinite–horizon MDPs also permit to find optimal policies with computationally

tractable procedures. Using simulations from MPEG–4 FGS videos, we show that accounting for de-

coder error concealment during the joint optimization of scheduling and error protection can enhance the

quality of the received video significantly. We find that policies with static error protection strategy give

near–optimal performance. Finally, we find that degradations in quality for a channel with imperfect state

information are small; thus our MDP approach is suitable for networks with long end–to–end delays.

6.1.1 Related Work

In [26, 27], Chou and Miao have considered scheduling packetized media over a packet erasure channel

in order to minimize an additive combination of distortion and average rate. They develop a heuristic al-

gorithm for finding a sub–optimal scheduling policy, whose performance may be significantly below the

truly optimal scheduling policy; decoder error concealment is not a central part of their framework. Pre-

vious works that considered decoder error concealment for optimal streaming include [46,147]. Frossard

and Verscheure [46] study optimal FEC allocation for non–layered video; they consider the problem of

minimizing the PDM (Perceptual Distortion Metric), which can be simply expressed as a function of

the video source rate and a constant that depends on the error concealment scheme. The approach from

Zhang et al. [147] relies on a simple linear estimate for the expected distortion of GoPs after decoding,

that can account for decoder error concealment.

Unlike in these approaches, decoder error concealment is a central part of our framework, and our

constrained MDP approach provides a tractable means for determining the truly optimal transmission

policy. The framework provided in this chapter can also handle quality variability metrics in addition to

average distortion metrics.

Other closely related works on optimal streaming of media using a feedback channel include [97,

117]. These works do not consider error concealment. Podolsky et al. [97] study optimal retransmission

strategies of scalable media. Their analysis is based on Markov chains with a state space that grows

exponentially with the number of layers. Servetto [117] studies scheduling of complete GoPs encoded

in multiple description codes. The sender adapts the number of descriptions sent to the receiver as a

function of the network state, which is modeled as a HMM (Hidden Markov Model).

Finally, streaming layered video with unequal error protection (UEP) through FEC has been pre-

sented in [52, 121, 128, 146]. None of these approaches consider decoder error concealment in the opti-

mization process.

114 Unified Framework for Optimal Streaming using MDPs

6.1.2 Benefits of Accounting for EC during Scheduling Optimization

In this section we provide a simple example to highlight the benefits of accounting for error concealment

during the scheduling optimization. We consider a video segment composed of five frames, each of which

is encoded into three layers. We suppose in this example that each frame is independently encoded (there

is no motion–compensation); the only dependencies are due to layered encoding, i.e., a given layer of

a video frame needs all the lower layers of the same frame to be decoded. We suppose that each layer

fits exactly into one packet, all packets are the same size, and all frames have the same rate–distortion

functions.

On the left of Figure 6.2, we give the distortion values for each frame before EC at the decoder, as a

function of the number of layers which are available for the frame (the available layers at the decoder are

represented in grey on the figure). These are distortion values expected by the sender without accounting

for temporal EC at the receiver. On the right of Figure 6.2, we show the distortion values for frame
� after EC from the previous frame �

�

�
is used. These are the distortion values which are actually

obtained after decoding.

Figure 6.3 shows four possible scheduling policies at the sender (A, B, C, and D), when we require

each policy to send exactly nine packets. Initially, we suppose that there is no packet loss. For each

scheduling policy, we give the total distortion before and after EC at the decoder, which corresponds to

the distortion expected by the server without and with accounting for EC, respectively. Now consider the

optimal policy without accounting for EC and the optimal policy with accounting for EC. The optimal

policy without accounting for EC is policy B, which minimizes the distortion at the receiver before EC

(distortion before EC
� �

). After applying error concealment to policy B, the resulting distortion is 6.

Hence, the optimal policy without accounting for EC has a distortion of 6. But the optimal policy with

accounting for EC is policy A, which has a lower rendered distortion than policy B after EC. Therefore,

not considering decoder EC during the optimization at the server can result in choosing a sub–optimal

policy (i.e, policy B instead of policy A in this example).

This chapter is organized as follows. In Section 6.2, we formulate our optimization problem. Sec-

tion 6.3 gives the experimental setup of our simulations with MPEG–4 FGS videos. In Section 6.4 we

show how our optimization problem can be solved by using results from MDPs. In Section 6.5 we in-

vestigate how to incorporate additional quality metrics in our framework. Section 6.6 presents the more

general case with delayed receiver state information. Finally, we conclude in Section 6.7.

6.1 Introduction 115

7
 3
 1
 0

Distortion

before EC :
 1
 2
 3

Distortion

after EC :

frame # :
 n-1
 n
 n-1
 n
 n-1
 n

3
 4

n-1
 n
 n-1
 n

Figure 6.2: Example of distortion values for a video encoded with 3 layers

1 3 0 3 1 =
8

1 2 0 1 1 =
5

A
 B

C
 D

before EC :

after EC :

1 1 3 1 1 =
7

1 1 2 1 1 =
6

Distortion

after EC :

0 0 0 7 7 =
14

0 0 0 3 7 =
10

0 7 0 7 0 =
14

0 3 0 3 0 =
6

1 2 3 4 5
frame # :
 1 2 3 4 5

1 2 3 4 5
frame # :
 1 2 3 4 5

Distortion

before EC :

Figure 6.3: Example of scheduling policies transmitting 9 packets

116 Unified Framework for Optimal Streaming using MDPs

6.2 Problem Formulation

In this chapter, we consider video streaming, live or stored. When streaming layered–encoded video,

the reception of the base layer provides minimum acceptable quality. So, the base layer should be

transmitted with high reliability. This can be achieved by sufficient playback buffering at the client

to allow for the retransmission of most lost video packets before their decoding deadline expires [76],

or by protecting the base layer with a high amount of FEC codes. Additionally, transmitting the base

layer with high reliability permits the use of highly bit–rate efficient — despite poorly error resilient —

encoding methods such as motion–compensation. We suppose that the base layer is transmitted to the

client without loss, and we focus on determining optimal policies for the transmission of the enhancement

layers.

The video at the sender is encoded into
�

enhancement layers. Recall that the main property of

layered–encoded video is that layer
�
of a given frame cannot be decoded unless all lower layers

� � 1 1 1�� �
�

�
are also available at the decoder. Let (be the number of frames in the video.

We suppose that the
�

enhancement layers are not motion–compensated, i.e., the decoding of layer
�

of frame � does not depend on the decoding of the enhancement layers for previous frames. As we

explain in the next section, this assumption corresponds particularly to the case of the FGS enhancement

layer defined in the MPEG–4 standard [8]. However, our unified framework stays valid for any highly

error resilient layering scheme that does not encode the enhancement layers with motion–compensation.

For simplicity of the analysis, we suppose that all enhancement layers have the same size. Each layer

contains exactly
�

source packets. We consider that a given layer is useful at the decoder only if all
�

source packets of the layer are available.

We suppose that the additional quality brought by a given layer is roughly constant for all frames of

the video (i.e., layer
�

of frame � brings roughly the same amount of quality to frame � as does layer
�

of

frame � 	 � to frame � 	 �). More generally, for long videos containing multiple scenes with different

visual characteristics, the quality brought by a layer is likely to vary for different parts of the video (see

Chapter 5). In this case, we suppose that the video has been previously segmented into homogeneous

segments of video frames, such that the quality brought by each layer is roughly constant throughout the

segment. Therefore, throughout, we consider a single homogeneous segment containing (frames. In

the case of longer videos, we would apply our optimization framework to each separate segment.

Throughout this chapter, we suppose that the transmission channel is a packet–erasure channel. The

channel has a probability of success of � .

At the decoder, we suppose that, in order to conceal loss of packets for frame number � , only infor-

mation from previous frame �
�

�
is used. However, information from frame �

�

�
does not necessarily

fully conceal loss of packets from frame � . Note that, in practice, information from a set of consecutive

6.2 Problem Formulation 117

previous frames, and even from subsequent frames, can also be used to perform temporal error conceal-

ment for the current frame at the decoder. This has the potential to increase the accuracy in predicting

any missing packet, but at the cost of an increase in run–time complexity of the decoder [137]. The

theory presented here can be extended to handle these more sophisticated forms of error concealment;

however, in order to see the forest through the trees, we focus on using only the previous frame in error

concealment.

For a given scheduling and error correction transmission policy � , let � � ��� � � � � �
 denote the average

transmission rate for the video. It is defined as the average number of packets sent for a frame, normalized

by the total number of source packets for the frame (i.e.,
� � �). Let � � 	�� � � � � �
 denote the average

distortion of the rendered video after error concealment. A typical problem formulation of rate–distortion

optimized streaming is the following [27, 146]:

Problem 6.1

Find an optimal transmission policy � that

minimizes � � 	�� ��� � � �
 subject to � � ��� ��� � � �
 , � ,
where � is the maximum (normalized) transmission rate that is allowed by the network connection, or

alternatively, the rate budget that is allocated to the streaming. We denote by � � 	�� �� � � , the minimum

distortion achieved by an optimal policy for Problem 6.1.

It may be misleading to solely use the average image distortion, usually expressed in terms of av-

erage MSE (Mean Squared Error), to account for the quality of the rendered video. As we mentioned

in Section 5.2.3, the average image distortion does not measure temporal artifacts; in particular, high

variations in quality between successive images may decrease the overall perceptual quality of the video.

Therefore, the formulation of our problem should incorporate additional quality constraints. As in the

previous chapter, we treat as an example the case of variations in quality between consecutive images.

For a given transmission policy � , let � � � � � � � �
 denote the average variation in distortion between two

consecutive images. We can now formulate the following problem:

Problem 6.2

Find an optimal transmission policy � that

minimizes � � 	�� � � � � �
 subject to � � �
� � � � � �
 , � and � � � ��� � � �
 , � ,

where � is the maximum average variation in distortion that is allowed. (Its value can be found from

subjective tests.)

118 Unified Framework for Optimal Streaming using MDPs

Let
� �

denote the joint scheduling and error correction action that the sender takes for frame � .

This is defined as the total number of packets (source + FEC packets) to send for all layers of frame � :� � ��� � � � �"� 1 1 1�� ���

where

� � & � ��� � � � 	 � � 1 1 1�� � � �

� �
is the total number of packets to send

for layer
�
. (We restrict the number of FEC packets for each layer to be less than the number of source

packets, i.e.,
� � � � �). Note that the decision

� � �$� means that the sender does not send layer
�
at all. In

particular, this should imply that
� � 	���� 1 1 1 � ��� �$�

, because higher layers
� 	 � � 1 1 1�� �

will never be

decoded if the sender does not send layer
�
. Because of this hierarchy, our system should also give more

protection to lower layers than to higher layers (UEP). Therefore, we should have
� � � � � � 1 1 1 � ���

.

Let � denote the set of all possible decisions
� � �"� 1 1 1�� ���

for any frame1.

Let
� � &��4� � ��� � � 1 1"1�� � �

denote the state at the receiver for previous frame � �

�
, i.e., the number

of successive layers that are available at the decoder for frame �
�

�
. Let

� �
denote the distortion of

frame � after decoding.

We denote by � � , the distortion of a frame containing only the first
�

layers before temporal EC.

(Without loss of generality, we take � � ��� and � � � �
.) We have � � � � �
 � � 1 1 1 � � � � � � . For� , � �
	 , �

, we denote by � �
� the distortion of a frame after temporal error concealment, when � layers

of the previous frame and
	

layers of the current frame were received by the decoder. Whenever � , 	
,

the decoder cannot conceal lost layers of the current frame from the previous frame; therefore � � � � � �
when � , 	

. We denote by distortion matrix, matrix
� � � �) � � � � � � � . Table 6.1 summarizes the notations

used in this chapter.

In our system, we suppose that the sender knows the distortion matrix
� � � �) of the current video

segment. When streaming stored video, the distortion matrix can be computed off–line. It can be stored

at the sender, together with the video file. When streaming live video, the sender needs to estimate the

value of the distortion matrix before starting the encoding and transmission of the current video segment.

This estimate can be based on the previous video segments that have been already encoded and sent to

the receivers. Since in most applications of live video streaming, such as streaming of sporting events or

videoconferences, the consecutive video segments usually have recurrent or similar visual characteristics,

we expect that the distortion matrix of an upcoming segment can be estimated sufficiently accurately.

6.3 Experimental Setup

In order to illustrate our results, we use MPEG–4 FGS videos. As we mentioned in Section 2.2.4, Fine

Granularity Scalability has been specifically standardized for transmission of video over the best–effort

Internet [8]. We suppose that the FGS enhancement layer has been divided into
�

layers for the current

video segment. Recall that there is no motion compensation in the MPEG–4 FGS enhancement layer,

1Note that our system does not allow for retransmission of lost enhancement layer packets. This is a reasonable assumption

for live streaming. It is also reasonable for stored video systems with short playback delays and high VCR–like interactivity.

6.3 Experimental Setup 119

(Number of frames in the video
�

Number of enhancement layers
�

Number of source packets per layer

� � �
� ��� � � �
 Average (normalized) transmission rate of an image under transmission policy �
� � 	�� � � � � �
 Average distortion of an image under transmission policy �
� � � � � � � �
 Average variation in distortion between two images under policy �
� � 	�� �� � � Minimum average distortion of an image� Maximum target average transmission rate

� Maximum target average variation in distortion� �
Joint scheduling and error protection action for frame �

� Set of possible actions for a frame�
Set of possible receiver states���
Receiver state for frame �

�

�

� �
Distortion of frame � after decoding

� �
� Distortion of frame � when
� � � � and

� �
	�� � 	

Table 6.1: Summary of notations for Chapter 6

which makes it highly resilient to transmission errors. Therefore, our unified framework is particularly

well suited to the transmission of MPEG–4 FGS encoded video over the best–effort Internet. We apply

our framework to the
�

enhancement layers extracted from the FGS enhancement layer2.

In our experiments, we choose the simplest strategy for temporal error concealment, which consists

in replacing the missing layers in the current frame by the corresponding layers in the previous frame.

During our experiments, we have noticed that this strategy performs well for low motion video segments

but poorly for segments with high motion. Video segments with a high amount of motion, such as Coast-

guard or Foreman, would require an error concealment strategy which also compensates for motion. For

example, [23] presents a scheme for error–concealment in the FGS enhancement layer, which uses, along

with the layers from the previous frame, the motion information contained in the base layer of the current

frame. Since we suppose that the base layer is transmitted without loss, such a strategy would be easily

applicable to our system.

We present experiments with the low motion segment Akiyo. As in Chapter 5, we use the Microsoft

2Cutting the FGS enhancement layer into a fixed number of layers contrasts with the framework that we have introduced

in the previous chapters, in which the server cuts the FGS enhancement layer at the granularity of bits. However, this makes

our framework in this chapter applicable to both regular layered–encoded video and FGS–encoded video; the fine granularity

property of FGS videos can still be exploited by choosing a high value for the number of layers
�

(clearly, the higher the

number of layers extracted from the FGS enhancement layer bitstream, the finer the adaptation to bandwidth variations).

120 Unified Framework for Optimal Streaming using MDPs

100 105 110 115 120 125 130 135 140 145 150
33

34

35

36

37

38

39

frame number n

P
S

N
R

−,3
3,0
2,0
1,0
0,0

(a) low quality

100 105 110 115 120 125 130 135 140 145 150
35

36

37

38

39

40

41

42

43

44

45

frame number n
P

S
N

R

−,3
3,0
2,0
1,0
0,0

(b) high quality

Figure 6.4: PSNR of frames 100 to 150 of Akiyo after EC for different values of
�����������
	���
����������0

MPEG–4 software encoder/decoder [86] with FGS functionality. We encode the video using two target

qualities (low and high qualities), which can be used for different network capacities. Both low and

high quality videos are encoded into a VBR base layer, with average bitrate of
,�/

kbps and
� �

kbps,

respectively, and a complete FGS enhancement layer with average bitrate of 900 kbps and
,

Mbps,

respectively. For each quality version, we cut the FGS–EL into
,

layers of equal size (
� �$,

). The video

segment is encoded into the CIF format (
, � � � � 5�5 pixels), at a frame rate of 30 f/s. It contains (�$,0���

frames. In order to prevent too much fluctuations in quality between successive frames, the first base

layer frame is encoded as an I–picture and all following frames as P–pictures3.

Figure 6.4 shows, for a given frame � of the video, the quality in PSNR after error concealment when� � �$�
layers have been received for the previous frame �

�

�
and
� � 	����$�

layers have been received

for the current frame � . According to our simple temporal error concealment scheme, when more layers

have been received for frame �
�

�
than for frame � , i.e.

� # � , the decoder uses the additional
�

�

�
enhancement layers from frame �

�

�
for decoding frame � . We verify on the figures that, when no layers

have been received for frame � , i.e.
� � �

, the PSNR of frame � after error concealment increases with

the number of received layers for frame �
�

�
,
�
. This shows that temporal error concealment is effective

in increasing the quality of the rendered video. The increase in quality can be substantial. For example,

for frame 120 of the low quality version of Akiyo, simple error concealment from the first enhancement

layer of the previous frame can improve the quality of the current frame by almost � dB (when
�

= 0, the

PSNR of frame 120 goes from
,�,�1 � dB when

� �$�
to
, �

dB when
� � �

). Note that the upper graph on

3As observed in Chapter 5, our VBR base layer encoder gives important variations in quality between the different types of

frames.

6.3 Experimental Setup 121

Figure 6.5: Frame 140 of Akiyo (low quality) when (left) (
������� � ����� �!�"� � �

) – %'& (+* � ,�, dB,

(middle) (
�-����� �$,���� ���"���$�

) – %'&)(+* �$,�/ 12, dB, (right) (
�-�!�"�)�$,

) – %'&)(+* �$,�5 12, dB.

Figure 6.4 shows the maximum quality for a given frame � , which corresponds to the case when all the

layers of frame � have been received (
� �$,

).

Figure 6.5 shows a zoomed–in part of decoded frame
� � �

after error concealment when no enhance-

ment layer was received for frame 140 nor for frame 139 (left), no enhancement layer was received

for frame 140 but all 3 layers of previous frame 139 were received (middle), and when all 3 layers of

frame 140 were received (right). As we can see, the overall quality of frame 140 is better when all layers

of the previous frame have been received (middle picture) than when no layer is available at the receiver

for the previous frame (left picture). However, the quality is still lower than when all layers of frame 140

have been received and decoded (right picture).

We compute the average distortion over all frames of the video segment for all possible receiver

states. After normalizing, we obtain the following distortion matrices for high and low quality versions

of Akiyo :

� � � �)
high
�

������
�

� ��12, � ��12� � �
��1 � , ��12, � ��12� � �
��12, � ��1 � 5 ��12� � �
��1 � � ��1 � � ��12��/ �

�������
�
� � � � �)

low
�

������
�

� ��1 � � ��1 � � �
��12/ � ��1 � � ��1 � � �
��12,�, ��1 � � ��1 � � �
��1 � � ��12, � ��12��, �

�������
�
1

(6.1)

Note from (6.1) that, for the low quality version, � � � � � 1 � � # � � � � � 12,�, and � �
� � ��12, � #

� �
�'� ��1 � �

. This means that replacing all available layers from the current frame by the corresponding

layers from the previous frame achieves a lower distortion (better quality) than using the first layer of the

current frame and the subsequent layers of the previous frame. This is due to our simple temporal EC

strategy. Since we did not implement any motion compensation for EC, the replacement of layers of the

122 Unified Framework for Optimal Streaming using MDPs

current frame by layers of the previous frame create some visual impairments. These impairments are

usually minor for low–motion video segments. However, for some frames that are significantly different

from the previous frames, the resulting increase in distortion can be slightly higher than the decrease

in distortion brought by error concealment. As shown in (6.1), this does not occur for the high quality

version of the video.

6.4 Optimization with Perfect State Information

In this section we suppose that the sender can observe state
���

when choosing the action
� �

. This

implies a reliable feedback channel from the receiver to the sender, and a connection RTT that is less

than one frame time. This assumption is reasonable for interactive video applications, such as videocon-

ferencing, that require short end–to–end transmission delays. It is also reasonable for live streaming and

stored video systems with short playback delays and high VCR–like interactivity.

We show that Problem 6.1 can be formulated as a constrained MDP, which can in turn be solved

by linear programming [33, 58]. The problem is naturally formulated as a finite–horizon MDP with (
steps, where (is the number of frames in a video segment. However, the computational effort associated

with a finite–horizon MDP can be costly when (is large [11]. This may be a serious impediment for

real–time senders. Therefore, we instead use infinite–horizon constrained MDPs. They have optimal

stationary policies and have lower computational cost. The infinite–horizon assumption corresponds to

considering infinite–length video segments ((�
�). Throughout this study, the values � � ��� � � � � �
 ,

� � 	�� ��� � � �
 and � � � ��� � � �
 will be long–run averages.

6.4.1 Analysis

We consider the Markov Decision Process � � ��� � ��� � � ��� 1 1 1 � . Recall that
� �

denotes the distortion

for frame � after decoder error concealment. We define the reward when the receiver is in state
� � � �

and action
� � � � ��� � �"� 1 1 1�� ���

is chosen as:

� � � � �
�� �

� � � � � � � � � � � � � �)

�
�

��
� � �

� � � % � ���
	���� 	 � � � � �
"1 (6.2)

The cost is defined as:

� � � � �
�� �

� � �

��
� � �

� � 1 (6.3)

From these definitions, and given that
� � � ��� � � � �
) � �

� � � �)
, Problem 6.1 can be rewritten as

6.4 Optimization with Perfect State Information 123

finding an optimal policy � � which maximizes the long–run average reward:

� ������ � �

�
� � �

��
� � � �

��� � � � �
) s.t.
� ������ � �

�
� � �

��
� � �

� ��� � � � �
) , � � (6.4)

which falls into the general theory of constrained MDPs.

For a given layer, we denote by �
����

the probability that the layer is successfully transmitted to the

receiver, when
� & � ��� � � 1 1"1�� � � �

� �
is the total number of packets that have been sent for this layer.

�
����

is computed as the probability to transmit successfully at least
�

packets out of the
�

packets sent

for the layer. Assuming that the transmission channel is a packet erasure channel with success probability

� , we have:

�
����
��

�� � � �

	� � ��� �	 	 ��
 � 	 	 � � �
� �

 �
�	
 � for

� � �
�

for
������1 (6.5)

The reward can be expressed as:

� � � � �
�� �

�
 ��
� � �

� � � �
� � �
 �����

�
� � �
 � �

� �
� � � 	��
�
 (6.6)

(because we took the convention that � � � � � � ���). Recall that, in our model, a given layer is useful at

the decoder only if all
�

source packets of the layer are available.

For a randomized stationary policy � , let � ��� � % � � � � � � � � � � �
 . We denote by % ��� � �
% ��� � 	���� 	 � � � � � � � � � ��
 for the law of motion of the MDP. It is given by:

% ��� � �
�� � �
� � ��
 �����

�
� � �
 � �

� �
� � � 	���
�
 when

	
� �

�
� � ��
 �����

�
� ���

otherwise
1 (6.7)

This MDP is clearly a unichain MDP4. It therefore follows that the optimal policy for the constrained

MDP is a randomized stationary policy. Furthermore, randomization occurs in at most one state [111].

An optimal stationary policy � � may be obtained from the following procedure:

Step 1. Find an optimal solution
� � � � � ���� � � � � �
'&�� � � �

to the linear program (LP):

� ��
 �
� ��� �� ��� � � � � �
�� ��� s.t.

��������� ��������
� � ��� � �	��� � � � � �
�� ��� , � �� � ��� � �	��� ��� � � � % ��� �
�� ��� �$��� for all

	 &����� � ��� � �	��� � ��� � � �
� ��� � ��� for all �

& � � � & � �
(6.8)

4An MDP is said unichain if the Markov Chain induced by any pure (stationary and non–randomized) policy has one

recurrent class and a (perhaps empty) set of transient states [58, 111]. For a lossy channel (��� �
), Markov Chains induced by

our MDP have a unique recurrent class containing state ��� �
, which is accessible from any other state.

124 Unified Framework for Optimal Streaming using MDPs

with
� � � � �

if �
� 	

; otherwise
� � � �$� .

Let
� � �2� � � & � ��� ���� # � for some

� & � �
.

Step 2. Determine an optimal policy � � as follows:�� � for �
&�� � � � ���� � ������

� ���
	 ������

for � �&�� � � � ���� � �
for some arbitrary

� & � 1
(6.9)

Note that there are several algorithms to solve LPs. The most popular is the simplex algorithm

(Dantzig, 1947). It has exponential worst–case complexity, but requires a small number of iterations

in practice. There are other more elaborate algorithms which have polynomial complexity, such as the

projective algorithm by Karmarkar [60].

6.4.2 Case of 1 Layer Video with No Error Protection

As an example, first consider the particular case with 1 layer (
� � �

), no error protection and
� � �

(i.e.,

1 packet per layer). In this situation, the transmission action consists in deciding for each frame whether

to send the single layer or send nothing at all. For this special case, we can actually derive a closed–

form expression for the optimal policy (thereby circumventing linear programming). After analysis (see

Appendix), the optimal transmission policy can be expressed as:

� ��"� � � � � �
� � �

"� � ���� �$� if � , � � � � 	 �

��

(6.10)� ��"� � � � � ���� � � 	 � � �

�
 � � � �

otherwise. (6.11)

The optimal average transmission rate and distortion are given by:

� � �
� ���� � � � (6.12)

� � 	�� ���� � �
�� � �

� � �
� � �

� ���"
 if � , � � � � 	 �

"�

� �
� � �

 � �
� �
� �

�

� ���
�
 otherwise.
(6.13)

In Figure 6.6, we plot the minimum average distortion � � 	�� ���� � as a function of the maximum average

transmission rate � , for selected values of the channel success rate � and two different values of � ���
(normalized distortion when replacing the layer of a frame by the layer from the previous frame). For

a given � �!� , we observe that the difference between the values of � � 	�� ���� � for different channel success

rates increases with � . Indeed, for low values of � , optimal policies are likely to send very few frames

(� ��"��
 �
and � ���� � � in (6.10)), so channel losses do not have much effect; for higher values of � ,

optimal policies send a large number of frames (� �� � � �
and � ����
 �

in (6.11)), so the value of the

6.4 Optimization with Perfect State Information 125

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
L=1

q = 0.8
q = 0.9
q = 1

PSfrag replacements

�

� ���
����	

(a) � 	
� � �
� �

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
L=1

q = 0.8
q = 0.9
q = 1

PSfrag replacements

�

� ���
����	

(b) � 	
� � �
���

Figure 6.6: Minimum average distortion for the case of 1 layer video

channel success rate � has higher importance. Comparing Figures 6.6(a) and 6.6(b), we verify that for a

given � the minimum achievable distortion decreases with � ��� ; a low � ��� corresponds to a highly efficient

temporal error concealement, which is usually obtained with a video with high temporal redundancy.

Throughout the remaining of this chapter, we present simulations with the MPEG–4 FGS videos

Akiyo described in Section 6.3, i.e., with
� �$,

.

6.4.3 Comparison between EC–aware and EC–unaware Optimal Policies

We compare the scheduling and error protection optimization with accounting for error concealment, to

the optimization without accounting for error concealment:

– EC–unaware transmission: The sender determines and employs the optimal transmission policy,

which is obtained without accounting for error concealment at the receiver. Nevertheless, the

receiver applies error concealment before rendering the video.

– EC–aware transmission: The sender determines and employs the optimal transmission policy,

which accounts for error concealment. The receiver applies error concealment before rendering

the video.

It is important to notice that both schemes employ error concealment at the decoder, so that when com-

paring the rendered video quality of the two schemes, we are indeed making a fair comparison. Let

�
� � � ���� � denote the maximum quality of the video, i.e., the quality given by the optimal transmission

policy.

126 Unified Framework for Optimal Streaming using MDPs

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
33

33.5

34

34.5

35

35.5

36

36.5

37

37.5

38

EC−aware transmission
EC−unaware transmission
simple policy

PSfrag replacements

�

���
�� �	

(a) � � � � �
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

33

33.5

34

34.5

35

35.5

36

36.5

37

37.5

38

EC−aware transmission
EC−unaware transmission
simple policy

PSfrag replacements

�

���
�� �	

(b) � � �
� �

Figure 6.7: Comparison between EC–aware, EC–unaware and simple optimal policies without FEC for

Akiyo (low quality)

We first suppose no error protection (no FEC) and
� � �

. We study the comparison between optimal

dynamic transmission policies (EC–aware and EC–unaware) as given by our optimization framework,

and some simple static scheduling policies, i.e., that do not depend on the receiver state. We denote by

simple policy
� � ����

, the policy that sends alternatively
�

layers, with probability
�

and
�

�

�
layers with

probability
�

�

�
. Simple policy

� � � �

corresponds to a static non–randomized policy that sends

�
layers

for all frames of the video. Note that a simple policy that is optimal for Problem 6.1 among all simple

policies, should verify:

� � �
� ��� � � � ��� 	 � � �

�
�� � �
�

��
�� � 1 (6.14)

Figure 6.7(a) and Figure 6.7(b) show, for Problem 6.1, the value of �
� � � ���� � in PSNR as a function

of the target transmission rate � , for EC–unaware and EC–aware transmission optimal policies, as well

as optimal simple policies. We used the low quality version of Akiyo. We consider channel success rates

of �
� ��1 �

and �
� ��125

, which correspond to typical values in today’s Internet (the packet loss rate

is usually between 5% and 20%). We see on both figures that the maximum quality achieved by EC–

unaware optimal policies and optimal simple policies is similar, while EC–aware optimal policies achieve

the best quality for all target rates. The gain brought by optimizing scheduling with considering error

concealment is up to
� 1 �

dB5 for a channel with a high success rate (�
�$��1 �

). These results indicate that

optimizing the transmission without considering decoder error concealment in the optimization process

5We expect the difference in quality between EC–unaware and EC–aware optimal policies to be even higher with error

concealment schemes that compensate for motion, notably by using the base layer information.

6.4 Optimization with Perfect State Information 127

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
33.5

34

34.5

35

35.5

36

36.5

37

37.5

38

38.5

EC−aware transmission
EC−unaware transmission

PSfrag replacements

�

���
�� �	

(a) � � �
� �
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

33.5

34

34.5

35

35.5

36

36.5

37

37.5

38

38.5

EC−aware transmission
EC−unaware transmission

PSfrag replacements

�

���
�� �	

(b) � � �
� �

Figure 6.8: Comparison between EC–aware and EC–unaware optimal policies with FEC for Akiyo (low

quality)

can lead to an end–to–end performance that is no much better than very simple static policies.

We now consider joint scheduling and error protection through FEC. We suppose that
� � �

. Fig-

ure 6.8(a) and Figure 6.8(b) show curves similar to Figures 6.7 but with FEC. We verify on both figures

that the maximum quality achieved by EC–aware optimal policies is significantly higher than that of EC–

unaware optimal policies (for both values of � the difference in quality is up to 1.5 dB). This confirms the

need to account for decoder error concealment during joint scheduling and error protection optimization.

Simulations with the high quality version of Akiyo also give differences in quality that exceed 1 dB. Note

that for high values of � both schemes achieve the same performance. This corresponds to the extreme

case when the average bandwidth of the connection is much higher than the source bitrate of the video

(� # # �
). In this situation, both EC–aware and EC–unaware optimal policies transmit all layers with

additional FEC packets, thereby achieving maximum performance.

Throughout the rest of this study, we only consider EC–aware transmission policies.

6.4.4 Comparison between Dynamic and Static FEC

We also investigate solutions of Problem 6.1 for the particular case when the amount of FEC codes added

to each layer is constant throughout the video sequence. For this case, let
� , � � , �

�

�
denote the

number of FEC packets added to layer
�

for all frames of the current video sequence. The transmission

decision to take for frame � is still expressed as
� � � � � � � 1 1 1�� ���

, but now with
� � & � � � � 	 � � � .

We denote the corresponding transmission policies by static redundancy policies (in contrast to dynamic

128 Unified Framework for Optimal Streaming using MDPs

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
34

34.5

35

35.5

36

36.5

37

37.5

38

38.5

general policy
static redundancy
no FEC

PSfrag replacements

�

���
�� �	

(a) low quality

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
38

39

40

41

42

43

44

45

general policy
static redundancy
no FEC

PSfrag replacements

�

���
�� �	

(b) high quality

Figure 6.9: Comparison between general and static redundancy optimal policies for Akiyo

redundancy policies in the general case). Optimal static redundancy policies can be found by solving

LP (6.8) with the new set of possible actions � � � � ����
 � � , for all possible sets
� � � � 1 1 1�� � �

(brute–force

algorithm).

Figure 6.9 shows the maximum average quality �
� � � ���� � for the low and high quality versions of

Akiyo, as a function of � , for a transmission channel with �
� ��1 �

. We first compare optimal general

policies with optimal static redundancy policies. We can see that, for both quality versions of the video,

the maximum quality for the optimal general policy and for the optimal static redundancy policy is almost

the same for all � . (We noticed that both optimal policies are indeed identical for most values of � .) This

indicates that we can restrict our optimization problem to static redundancy policies. Simulations for

other values of � lead to the same conclusion.

We compare optimal general and static redundancy policies with FEC to optimal policies without

FEC. We see that the gain in quality achieved with FEC can be substantial. When �
� ��1 �

, for both

versions of the video, the difference in quality achieved by the optimal policy with FEC and without

FEC is more than 1 dB for all values of � � � 12/ . Note that when � � �
, the maximum quality achieved

by the optimal policy without FEC stays constant, while the quality achieved with FEC still increases

with � . Indeed, when � � �
, the channel can accommodate the transmission of all video source packets

plus some additional packets. So, the optimal policy without FEC can only send all source packets,

whereas the optimal policy with FEC can send additional FEC packets, which enhances the quality of

the rendered video.

6.4 Optimization with Perfect State Information 129

0 500 1000 1500 2000 2500 3000
35.9

36

36.1

36.2

36.3

36.4

36.5

36.6

maximum PSNR
achieved PSNR

PSfrag replacements

�

���
� �	

(a) average quality in PSNR

0 500 1000 1500 2000 2500 3000
0.47

0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55

target rate
achieved rate

PSfrag replacements

�

��
� �
�	

(b) transmission rate

Figure 6.10: Simulations for video segments containing up to 3000 frames.

6.4.5 Performance of Infinite–Horizon Optimization

We study the performance of our EC–aware optimal transmission policies, obtained by our optimization

framework over an infinite–horizon, in the practical case when the number of frames of the video se-

quence, (, is finite. We used the average distortion matrix
� � � �) �+� � given in (6.1) for all (frames of the

video. We show simulations for a target transmission rate of � ����1 �
, over a channel with success rate

�
�$��1 �

. We averaged our results over 100 channel realizations.

Figure 6.10(a) and Figure 6.10(b) plot the achieved average quality and average transmission rate,

respectively, as a function of the number of frames of the video (up to
,����0�

frames). We plot confidence

intervals that represent
� � &

of the channel runs. As we can see on both figures, as the number of frames

increases, the achieved transmission rate and quality averaged over all channel realizations converge

towards the target rate � and the maximum quality �
� � � ���� � , respectively. For a 50 frame segment, the

convergence errors are only of
��12��,

dB for the quality and � & for the transmission rate. However, the

confidence intervals can be large for segments with a low number of frames: for a 50 frame segment, the

transmission rate achieved for a given channel realization can be up to
5'&

higher than � , and the quality

up to
��12, �

dB lower than the target quality. For a 500 frame segment, these errors come down to
,'&

and��1 �
dB, respectively.

Since, in common videos, most homogeneous segments are composed of tens to thousands of frames

(homogeneous segments usually correspond to video scenes as we mentioned in Chapter 5), we expect

that our optimization framework over an infinite–horizon will achieve a good operational performance

in most cases. For video segments composed of a few frames only, it may be more appropriate to use

finite–horizon linear programming in order to find optimal policies for each separate frame, as mentioned

130 Unified Framework for Optimal Streaming using MDPs

quality in PSNR transmission rate

target avg. min. target avg. max.
�	� ����

 35.69 35.71 35.48 1.00 1.01 1.05
�	� �����
� 36.63 36.64 36.36 1.50 1.51 1.62
�	� ��� �
� 37.15 37.14 36.93 2.00 2.01 2.12

Table 6.2: Simulations for Akiyo (low quality)

at the beginning of Section 6.4.

Finally, Table 6.2 presents the results for the
,����

frames of the original low quality Akiyo sequence,

without FEC and for
� � �

. We show, for different values of the average target transmission rate� , the achieved quality in PSNR and the transmission rate, averaged over all channel realizations. We

also show the minimum quality and maximum transmission rate, which are achieved by one channel

realization. As we can see, the average achieved values are very close to the target values in all cases.

This shows that applying our infinite–horizon optimization framework to finite–length videos gives very

good performance. In this example, the difference between the minimum achieved PSNR and the target

quality is always lower than 0.3 dB. The difference between the maximum achieved transmission rate

and the target transmission rate is always lower than 8%.

6.5 Additional Quality Constraint

In Problem 6.2, we added a new quality constraint to our optimization framework. Specifically, besides

minimizing the average distortion, � � 	�� � � � , the optimal transmission policy should also maintain an

average variation in distortion between consecutive images, � � � � � � , below a maximum sustainable value
� . As in Problem 6.1, we consider that the video has infinite length. For a given transmission policy � ,

� � � ��� � � �
 is the long–run average defined by:

� � � � � � � �
�� � � ������ � �

�
�

�
�

�

�
��
� � �

� � �
�

� �
 � �) (6.15)

As for Problem 6.1, we analyze Problem 6.2 with a Markov Decision Process over an infinite–

horizon. We suppose that the sender can observe the state of the receiver as in Section 6.4. The expected

average distortion of a given frame � depends only on action
� �

and on the state for the previous

frame �
�

�
, i.e.,

� �
. However, the expected average variation in distortion for frame � depends also

on the value of the state for frame �
� � , i.e.,

� �
 � . Indeed, from (6.15), we have � � � ��� � � �
+�
�

�

� � � �
�

� �
 � �) , where
� �
 � is the distortion for frame �

�

�
, which depends on the number of layers

that have been received for frames � �

�
and �

� � , i.e,
� �

and
���
 � respectively.

We consider the MDP � � �
 � ������� � ��� � � ��� 1 1 1 � , where � � �
 � ����� � and � � � � are the state and

6.6 Optimization with Imperfect State Information 131

action processes, respectively. We define the reward and cost functions, when the receiver is in state�����
 ��� � ,
��� � 	

and action
� � � �

is taken, as:

� � � �
	 � �
)� �

� � � � � � � � 	 � � � � �) �
(6.16)

� � � �
	 � �
)� �

� � �

��
� � �

� � � (6.17)

� ��� � �
	 � �
)� � � � � �
�

� �
 � � � ���
 � � � ��� � � 	 � � � � �) 1
(6.18)

From these definitions, Problem 6.2 can be rewritten as finding an optimal policy � � which maxi-

mizes the long–run average reward:

� ������ � �

�
� � �

�
�
� � � �

��� �
 � ��� � � � �
) s.t.

�� � � ��� ��� � �� � � � � �
� � � � ��� �
 � ��� � � � �
) , � �

� ������� � �� � � � � �
� � � � � ��� �
 � ��� � � � �
) , � �

(6.19)

which falls into the general theory of Markov Decision Processes with multiple constraints. The optimal

policy can be found from a linear program similar to (6.8), but with a higher number of variables and one

additional constraint.

Note that the additional cost is expressed as follows:

� ��� � �
	 � �
��
�
 ��
��� �

� � � � �

� � � � �
� � �
 �����

�
� � �
 � �

� �
� � � 	���
�

	 � � � �
�

� � � � �
� � �
 �����

�
� ���

(6.20)

Figure 6.11 shows the optimal quality achieved as a function of � , for different values of the maxi-

mum variation in distortion � . We consider optimal EC–aware transmission policies without FEC, with
� � �

, over a channel with �
�4��125

. As we can see, the constraint on the variation in distortion comes

with a penalty in average quality, for � , ��1 � . For higher values of � , the quality is the same as without

the constraint on the variation in distortion because we have reached the variation in distortion of the

optimal transmission policies for Problem 6.1.

6.6 Optimization with Imperfect State Information

In this section we suppose that the sender cannot, in general, observe
���

when choosing the action
� �

.

In this case MDP � � ��� � � � is a Partially–Observable MDP (POMDP), i.e., an MDP with imperfect state

information. POMDPs are notoriously difficult6, but our POMDP is tractable due to its special structure.

6Solutions of unconstrained POMDPs with delayed state information have been obtained [34]. However, to our knowledge,

there is no theory for solving constrained POMDPs.

132 Unified Framework for Optimal Streaming using MDPs

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
33.5

34

34.5

35

35.5

36

36.5

37

γ = 0.5
γ = 0.3
γ = 0.2
γ = 0.1

PSfrag replacements

���
�� �	

�

(a) low quality

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
36

37

38

39

40

41

42

γ = 0.5
γ = 0.3
γ = 0.2
γ = 0.1

PSfrag replacements

���
�� �	

�

(b) high quality

Figure 6.11: Maximum quality achieved for different values of the maximum quality variability for Akiyo

We can suppose that the sender observes the state of a previous frame �
�

� � for which it has received

a feedback, i.e., we suppose that the sender can observe
� �
�� � 	�� when choosing the action

� �
(�
� � �

).

This corresponds to a RTT of less than �
�

frame time for transmission of frame �
�

� � .
When the state of reception for frame � �

�
,
� �

, is not immediately available (�
� # �

), the transmitter

can still take the decision for frame � , i.e.
� �

, from the history of past state observations and past actions.

Let
� � �������
�� � 	�� � � �
�� � 	��
� 1 1 1�� � �
 ��
 denote the state and action history when the transmitter takes

action
� �

. Consider the case when �
� � � # �

for all � , i.e., the maximum feedback delay for all frames

is constant. Now, � � ��� � � � is a MDP with perfect state information. We define the associated reward

and cost, when the receiver state is
� � ��� � �����
�� 	�� � � �
�� 	�� � 1 1 1�� � �
 ��
 and action

� � � �
is

chosen as:

� ���)� �
�� �

� � � � � � � ���)� � � � �)
(6.21)

�
�

� � � � � � �
 ��� � �
 � � � � � �) �
(6.22)

� ���)� �
�� �

� � �
��
� � �

� � 1 (6.23)

The reward only depends on
� �
 � and

� �
, because the distortion of frame � only depends on

� �
and� �
 � , which in turn only depends on

� �
 � . Subsequently, our MDP is equivalent as MDP � � �
 � � � � � .

(This is because, in our framework, we consider temporal error concealment from the previous frame

only.) Therefore, our optimization framework does neither depend on the maximum feedback delay,
� , nor on the reception of the feedback. It is particularly well suited to applications where a feedback

6.7 Conclusions 133

channel cannot be used, for example to applications that have strict delay requirements, such as video-

conferencing.

When
� �
 � � �

and
� � � � �

, the reward and cost of MDP � � �
 � � � � � for a packet erasure

channel are given by:

� � �)� � �
�� �

��
� � �

��
� � �

� � � � % ����� � � � � �
 ��� �#
 � % ��� �
	���� 	 � � � � � �
"� (6.24)

� � �)� � �
�� �

� � �
��
� � �

� �� 1 (6.25)

Figure 6.12(a), (b), (c) and (d) show, for both quality versions of Akiyo and different values of � , the

difference in performance between a channel model with perfect state information (immediate feedback)

and imperfect state information (delayed feedback), with and without FEC. On the figures, we see that

the difference in quality for the optimal policies with FEC is small (always less than 0.2 dB). Without

FEC, the difference in quality between both channel models is larger. For �
�$� 1 �

it is around 0.5 dB for

most values of � . Indeed, adding FEC increases the effective packet transmission success rate, which, in

turn, increases the knowledge of the sender about the actual receiver state.

These results indicate that our framework for joint scheduling and error control optimization can

achieve very good performance, even in the case when the receiver state can not be fully observed when

making new decisions. This corresponds to the usual situation of video streaming over the best–effort

Internet, where the feedback channel is unreliable and the connection has an average RTT which is higher

than the video frame rate.

6.7 Conclusions

We have proposed a unified optimization framework that combines packet scheduling, error control and

decoder error concealment. We used results on constrained Markov Decision Processes over an infinite–

horizon, to compute optimal transmission policies for a wide range of quality metrics.

We have analyzed the problem of minimizing the average distortion under a limited transmission rate.

Our analysis leads to a low–complexity algorithm, based on Linear Programming. We have evaluated

the performance of our optimization framework in the context of streaming MPEG–4 FGS videos.

We first considered a packet–erasure channel with perfect receiver state information. We showed the

potential quality gains brought by EC–aware transmission optimization over EC–unaware optimization.

Our simulations indicate that complex scheduling optimization procedures that do not consider decoder

error concealment in the optimization process can achieve results that are significantly lower than optimal

results. We have seen, through numerical simulations, that our infinite–horizon optimization framework

gives good performance for finite–length video segments composed of hundreds of video frames. We

134 Unified Framework for Optimal Streaming using MDPs

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
33.5

34

34.5

35

35.5

36

36.5

37

37.5

38

38.5

immediate feedback
delayed feedback
immediate no FEC
delayed no FEC

PSfrag replacements

�

���
�� �	

(a) � � �
� �
— low quality

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
33.5

34

34.5

35

35.5

36

36.5

37

37.5

38

38.5

immediate feedback
delayed feedback
immediate no FEC
delayed no FEC

PSfrag replacements

�

���
�� �	

(b) � � �
� �
— low quality

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
36

37

38

39

40

41

42

43

44

45

immediate feedback
delayed feedback
immediate no FEC
delayed no FEC

PSfrag replacements

�

���
�� �	

(c) � � � � �
— high quality

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
36

37

38

39

40

41

42

43

44

45

immediate feedback
delayed feedback
immediate no FEC
delayed no FEC

PSfrag replacements

�

���
�� �	

(d) � � � � �
— high quality

Figure 6.12: Comparison between channels with perfect and imperfect state information for Akiyo

6.7 Conclusions 135

showed that our framework allows to accommodate additional quality metrics other than the average

distortion, such as the variation in distortion between consecutive images.

Finally, we have shown that our optimization problem could be limited to static redundancy trans-

mission policies, and that our methodology can achieve good performance in the case when the receiver

state information is not available at the sender.

136 Unified Framework for Optimal Streaming using MDPs

Chapter 7

Conclusions

In this dissertation, we have formulated new frameworks and solved new optimization problems for

network and content adaptive streaming of layered–encoded video (regular and FGS). We have analyzed

optimal transmission policies and evaluated their performance based on simulations with network traces

and real videos.

7.1 Summary

After giving an overview of Internet video streaming in Chapter 2, in Chapter 3 we have designed equiv-

alent adaptive streaming policies for adding/dropping layers and for switching among versions, in the

context of reliable TCP–friendly transmission. Our simulations showed that, for low values of the layer-

ing overhead, the enhanced flexibility provided by layering over versions (i.e., immediate enhancement)

allows adding/dropping layers to achieve similar performance to switching versions in terms of high qual-

ity viewing time, but at the expense of higher fluctuations in quality. For moderate values of the layering

bitrate overhead (higher than
� � &

), switching versions reaches better performance than adding/dropping

layers in all bandwidth situations.

In contrast with regular layered encoding, using FGS–encoded video allows the streaming applica-

tion to adapt finely to changing network bandwidth. In Chapter 4 we have presented a new framework for

adaptive–streaming of stored FGS–encoded video. We derived optimal transmission policies that simul-

taneously maximize a measure of bandwidth efficiency and minimize a measure of coding rate variability.

We developed a real–time heuristic that is inspired from the optimal solution. Simulations with Internet

traces showed that our heuristic yields near–optimal performance in a wide range of bandwidth scenarios.

We have compared streaming over TCP with streaming over a reliable TFRC connection. Simulations

showed that, while TFRC goodput is smoother than that of TCP, our adaptive streaming policies can

reach similar performance over both protocols. This indicates that streaming stored FGS–encoded video

138 Conclusions

with sufficient client buffering does not require smooth–rate TCP–friendly algorithms to achieve good

video quality. Finally, we have presented an implementation of our framework and our heuristic in an

end–to–end system for streaming MPEG–4 FGS videos.

In Chapter 5 we have focused on the content characteristics of MPEG–4 FGS videos. We analyzed

the rate–distortion traces of long videos, using performance metrics that capture the quality of the re-

ceived and decoded video both at the level of individual video frames (images) as well as aggregations

of images (GoP, scene, etc). Our analysis suggests to prioritize the cutting of the FGS enhancement layer

bitstream close to the end of the bitplanes, and to take into consideration the different base layer frame

types and the scene structure of the video. We have investigated rate–distortion optimized streaming at

different image aggregation levels. Simulations from our traces have shown that aggregating successive

frames for the optimal adjustment of the FGS enhancement layer rate reduces significantly the computa-

tional complexity of the optimization, at the cost of a small loss in overall quality. However, aggregating

images arbitrarily tends to result in quality deterioration, compared to aggregating images on the basis

of visual scenes. Therefore, we advocate streaming video at the granularity of visual scenes.

Finally, in Chapter 6 we have studied rate–distortion optimized streaming of layered video over lossy

connections. We have proposed a unified optimization framework that combines packet scheduling, error

control and decoder error concealment. We solved the problem of minimizing the average distortion un-

der a limited transmission rate, using the theory of average–reward MDPs with infinite–horizon. We did

simulations with MPEG–4 FGS videos. Considering a packet–erasure channel with perfect receiver state

information, we showed that optimization procedures that do not consider decoder error concealment in

the optimization process can achieve results that are significantly lower than truly optimal results. We

demonstrated that our infinite–horizon optimization framework gives good performance for finite–length

video segments composed of hundreds of video frames, and that it can be limited to static redundancy

transmission policies. We extended our optimization problem by adding a constraint on the variation in

distortion between consecutive images; this illustrates that our framework permits to accommodate addi-

tional quality metrics other than the average distortion. In the case when the receiver state information is

not always available at the sender, we showed that our framework still achieves good performance; thus,

our MDP approach is also suitable for networks with long end–to–end delays.

7.2 Areas of Future Work

We can continue the work presented in this dissertation in several directions both in the areas of network

adaptation and content adaptation.

In the area of network adaptation, our frameworks could be first enriched by specifically accounting

7.2 Areas of Future Work 139

for retransmissions of lost video packets in the optimization procedure. While there are many studies

that propose mechanisms for delay–constrained retransmission of audio or video, optimal streaming with

retransmission has not received significant attention (see Section 2.4.2). Modeling and solving of such

problems is indeed particularly difficult, in part because of the correlation between losses and delays in

the best–effort Internet. Network adaptation could also benefit from models of long–term variations of

the TCP–friendly bandwidth given to an application. This would lead to a real–time streaming mech-

anism that performs closely to optimal policies obtained when the complete evolution of bandwidth is

known a priori, such as in Chapter 4. Unlike voice traffic over the POTS1, the Internet traffic cannot be

easily modeled by Poisson distributions; therefore specific models need to be derived for the Internet.

The availability of a QoS–enabled Internet, such as Diffserv or Intserv, would certainly be favorable to

video streaming applications. In particular, more work is needed on how to optimally combine layered

encoding with a packet marking strategy for streaming video over DiffServ. Finally, our frameworks

and algorithms could be adapted to other configurations than the simple client–server configuration. For

instance, in current CDNs (Content Distribution Networks) and peer–to–peer networks, different parts

of the content can be served simultaneously from different servers. In this case, we should determine

a global optimal transmission policy and we should find efficient ways to synchronize the transmission

from each server.

There are other avenues for future work in the domain of content adaptation. First, as most rate–

distortion optimized streaming algorithms presented in the literature, our algorithms would need to be

assessed with objective quality metrics other than the average distortion. Unfortunately, as of today, there

is no universal reliable objective metric for evaluating the quality of streamed videos, so extensive exper-

iments with actual users are generally required. Quality metrics that account for the variability in image

quality would be particularly relevant for our study. Our work would also benefit from finer temporal

segmentation than shot–based segmentation; the segmentation of scenes is still an active research area.

Finally, our schemes for content adaptation could be extended by complementing scene–based temporal

segmentation with spatial segmentation of the video into objects. Image spatial segmentation on videos

is another active research area in multimedia signal processing, which has been put forward by MPEG–

4. Combining object–based scalability, layered encoding and scene–based segmentation would lead to

an extended framework, in which the server could add/drop layers of individual objects, based on the

semantic importance of each object in the scene, as well as the rate–distortion properties of each layer.

1Plain Old Telephone System

140 Conclusions

Appendix A:

Optimal EC–Aware Transmission of 1

Layer

In this appendix, we derive the closed–form expression of the optimal policy for Problem 6.1 that is

given in Section 6.4.2. We have
� � �

,
� � �

and no error protection. In this case
� ��� � �-& � ��� � �

,

and the distortion matrix has the following form:

� � � �) �
�

� �
� ��� ��� (A.1)

Let � � � ��� &(�2��� �*)
. When

� � �
(1 packet per layer), we simply have �

����
����
and �

� �
��
� . The

reward and cost functions given in (6.6) and (6.3) are expressed as:��������� ��������
� ��� ����
 � �

�

� � � ����
 �
�

�

� ��� � �
 �
�

�
� � � 	 � �

� �

 � �
��

�

� �
� �

� � � � �
 �
�

�
� � � 	 � �

� �

 � �
��

�

� � �
� �

and

��������� ��������
� ��� ����
 ���
� � � ����
 ���
� ��� � �
 � �

� � � � �
 � �

1
(A.2)

LP (6.8) can be written as:

�	��
��
�

��� ��� 	 � � � ��� 	 � �
� �

�� �"� 	 � � �

� �

�� ���
��

(A.3)

s.t.

������������ �����������

� �"� 	 � ��� , � �
� �

� % �����
�� ��� 	 � �
� % �"���
�� �"� � % �!��� � ��� � % ����� � ��� �$� � 	 �$�0
"�

� % ���"��� ��� � % � ��� � �"� 	 � �
� % ���"��
�� ��� 	 � �

� % ������
�� ��� ���$� 	 � �
"�
� ��� 	 �"�"� 	 � ��� 	 � ��� � � �
� � � � ��� � � � � & � � � � � 1

(A.4)

142 Appendix

After replacing the laws of motion % � � � by their values from (6.7), we have:

����� ��� ��� 	 � � � �!� 	 � �
� �

�� � � 	 � � �

� �

�� ��� �

s.t.

��������� ��������
�"�"� 	 � ��� , � �
�
� �"�"�

�

� ���
�

� �
� �

�� ���#�����

� ��� 	 � �"� 	 � �!� 	 � ��� � � �
� � � � � for �

� � & � ��� � � 1
(A.5)

We replace
�"���

and
� ���

in the objective function by their expression from the constraint equations.

This yields:

����� � �
� �
� � �

�
��"� �
� �

� � ��� �
s.t.

��������� ��������
�"�"� 	 � ��� , � �
� ��� �

�
� � �"� 	 � � �

�
�� ���"�
�"��� � �

�

� � 	 �

��"� �

� �
� � ���"�

� � � � � for �
� � & � ��� � � 1

(A.6)

We pose
� �$� �"�

and
� �$� ���

, and obtain the following bi–dimensional LP:

� ��
 � � � �

�
 � 	 � � s.t.

��������� ��������
� 	 � , � �
�
� � 	 � � �

�
�� � ���
� � 	 �

 � 	 �
� � , � �

� � ����� � � 1
(A.7)

We show on Figure A.1 the graphical resolution of this LP if � � � � 	 �

, or if � , � � 	 �

. On

both figures, the shaded area represents the solution space of the LP; an optimal solution is the particular

vertice from the border of the solution space that maximizes the objective function
� � �

�
 � 	 � . The

optimal solution is:

� � � � � �$�
if � , � � � � 	 �

��
(A.8)

� � �
� �

� � � � ��� � 	 �

 � �

�
if � � � � � � 	 �

"1
(A.9)

This yields the optimal values for
� ���

,
� �"�

,
� ���

and
� ���

:��������� ��������
� ���� � �

�

� � 	 �

 �

� ��"� � �
� ���� �

�
� �

������ �$�
if � , � � � � 	 �

, and

��������� ��������
� ���� �$�
� ��"� � �

� �
� �

� ���� � �
� �

������ ��� � 	 �

 � �

�

if � � � � � � 	 �

 1

(A.10)

Optimal EC–Aware Transmission of 1 Layer 143

1

1

1/q

1/(1+q)

x

y

0

x
+
y

=

q
 .

x

+

(
q

 -
1

)
 y

 =

 0

(
1
+
q
)
x
 +
q
.
 y

 =

1

y=(d-2)x

(a) ��� ����� ��� �
	

1

1

1/q

1/(1+q)

x

y

0

x
+
y

=

q
 .

x

+

(
q

 -
1

)
 y

 =

 0

(
1
+
q
)
x
 +
q
.
 y

 =

1

y=(d-2)x

(b) ��� �
��� ��� �
	
Figure A.1: Graphical representation of the LP for optimal transmission of 1 layer

The optimal policies for Problem 6.1 are obtained after normalizing according to Step 2 in Sec-

tion 6.4.1:

� ��"� � � � � �
� � �

 � � ���� �$� if � , � � � � 	 �

��

(A.11)� ��"� � � � � ���� � � 	 � � �

�
 � � � �

otherwise. (A.12)

The maximum rate and minimum distortion are given by:

� � ��� ���� � �
��

� � �
��
� � �

� � � � �
 �"� �� � � � (A.13)

� � 	�� ���� � � �

��
� � �

��
� � � �

� � � �
 �"� �� � �
�� � �

� � �
� � �

� ���
 if � , � � � � 	 �

"�

� �
� � �

 � �
� �
� �

�

� ���"
�
 otherwise.
(A.14)

144 Appendix

Appendix B:

Résumé Long en Français

Chapitre 1 : Introduction

Motivations

Les applications vidéo sur réseau n’en sont encore aujourd’hui qu’à leurs balbutiements. Alors que

la technologie de la vidéo numérique progresse et que le réseau Internet devient de plus en plus om-

niprésent, il est probable que la demande d’applications vidéo sur réseau augmente de manière im-

portante dans les prochaines années. Les opérateurs de télécommunications commencent à déployer

de nouveaux services afin de mieux rentabiliser leurs infrastructures (ADSL, UMTS, WiFi), les fab-

riquants créent constamment de nouveaux produits innovants (téléphones portables, PDAs, décodeurs

numériques, ordinateurs portables légers), et les grands acteurs de l’industrie du film et des média ri-

valisent pour vendre du contenu multimédia numérique en ligne (Pressplay, iTunes, MovieLink). Ces

grandes compagnies ne vont peut-être pas changer en un an ou deux la manière dont les gens travaillent,

communiquent, et se divertissent — comme certains investisseurs l’on injustement pensé aux débuts de

l’Internet — mais ils vont certainement réussir à plus long terme, car les applications vidéo sur réseau

peuvent apporter une valeur ajoutée réelle aux entreprises et aux individus.

Pour les entreprises, les applications vidéo sur réseau peuvent apporter des moyens de communi-

cation interne plus rapides et plus efficaces. Lors d’événements importants, les dirigeants de certaines

grandes sociétés s’adressent dorénavant à leurs employés par le biais du réseau intranet de l’entreprise.

Le discours peut être suivi en direct, ou bien stocké et transmis à la demande à n’importe quel moment

de la journée (par exemple aux employés basés à l’étranger). La communication vidéo peut rendre la

formation plus flexible et moins onéreuse que la formation conventionnelle. Grâce à la visioconférence

et la collaboration à distance par la vidéo, les employés peuvent éviter des déplacements professionnels,

économisant ainsi du temps et de l’argent. Enfin, les entreprises peuvent utiliser les applications vidéo

sur réseau pour communiquer sur leurs produits dans le monde entier, directement à partir de leur page

146 Appendix

Web. Par exemple, certaines entreprises font maintenant la publicité du lancement d’un nouveau produit

en publiant la vidéo de l’événement sur Internet.

Les applications vidéo sur réseau ont aussi le potentiel d’améliorer la communication et le divertisse-

ment des individus. En 2002, les Français ont passé en moyenne 3h20 à regarder la télévision quotidi-

ennement2. La vidéo sur réseau peut apporter à l’utilisateur un plus grand choix de programmes que la

télévision conventionnelle, ainsi que des programmes interactifs et du contenu orienté vers l’utilisateur,

tel que des informations ciblées. En dehors des programmes télévisuels, la consultation de contenu

vidéos sur VHS ou DVD (également appelé "home video") est aussi une application de divertissement

populaire (et une source importante de revenus pour l’industrie du film3). Transmettre des films à la

demande sur Internet permettrait aux utilisateurs d’avoir accès à un contenu plus étendu que dans les

boutiques de location, et de manière plus rapide. Enfin, la communication visuelle peut améliorer la

communication téléphonique ordinaire, par exemple en permettant aux familles éloignées de garder le

contact visuel grâce aux visiophones.

La plupart des applications précédemment citées nécessitent un support important de l’infrastructure

réseau, ainsi que des logiciels et des matériels spécifiques. L’évolution actuelle du réseau Internet et des

terminaux de communication est favorable aux applications de vidéo sur réseau : ces dernières années ont

été marquées par le déploiement de connexions Internet haut-débit ; les capacités de calcul des terminaux

ont également augmenté, et plusieurs systèmes et standards de codage vidéo ont été conçus spécifique-

ment pour le streaming vidéo. Pourtant, aujourd’hui, les applications vidéo sur Internet sont souvent de

mauvaise qualité. Les vidéos transmises sont souvent saccadées et leur qualité peut se dégrader fortement

pendant la consultation. L’objectif de cette thèse est de proposer de nouvelles techniques et de nouveaux

algorithmes pour améliorer la qualité des applications de streaming vidéo sur Internet.

Contexte de la Thèse et Contributions Principales

Dans ce mémoire, nous nous concentrons sur les applications de streaming vidéo point–à–point (aussi

appelé "unicast" en anglais), c’est-à-dire que les vidéos sont transmises d’un serveur (ou proxy) à un

client. Nous formulons des problèmes d’optimisation et obtenons des politiques de contrôle pour des

applications vidéo sur l’Internet actuel dit "best–effort" ; nous cherchons particulièrement des procédures

d’optimisation de faible complexité, qui sont utilisables par des serveurs qui servent un grand nombre

d’utilisateurs simultanément.

2D’après la société Médiamétrie, principale société de mesure de l’audience en France (www.mediametrie.fr).
3A son apogée, le marché de la "home video" générait la moitié des ventes de l’industrie du film et le trois quart de ses

profits (The Economist, 19/09/2002).

Résumé Long en Français 147

Decodeur

Adaptation

au Réseau

et au

Contenu

(buffers)

Adaptation

au Réseau

et au

Contenu

Encodeur
Vidéo

Source

Fichier

Vidéo

Affichage

Internet

stockage

 transmission

temps-réel

paquets

vidéo

rapports

Figure B.1: Système de streaming

La Figure B.1 donne un aperçu d’un système typique de streaming vidéo sur Internet. La vidéo

source est d’abord encodée au serveur. Les images vidéos encodées sont stockées dans un fichier pour

transmission ultérieure, ou peuvent être envoyées au client directement en temps réel. Les techniques

adaptatives au serveur consistent à déterminer la manière dont les paquets vidéo sont envoyés au client,

notamment en fonction des conditions actuelles du réseau et des rapports qui peuvent être renvoyés par

le client. Du côté du client, les paquets vidéo sont en général temporairement bufferisés avant d’être

envoyés au décodeur. Enfin, après décodage, les images vidéo sont affichées à l’utilisateur.

Dans cette thèse, nous étudions des techniques qui adaptent la transmission à la fois aux condi-

tions variables du réseau (adaptation au réseau) et aux caractéristiques de la vidéo transmise (adaptation

au contenu). Les techniques adaptatives sont combinées avec une forme particulière de codage vidéo

(codage en couches), qui encode la vidéo en au moins deux couches complémentaires ; le serveur peut

s’adapter à des changements de condition du réseau en ajoutant/retranchant des couches.

Cette thèse apporte plusieurs contributions majeures :

– Nous comparons des politiques de contrôle qui ajoutent et retranchent des couches avec des poli-

tiques de contrôle qui changent la version de la vidéo transmise. Dans le contexte d’une transmis-

sion TCP–compatible fiable, nous montrons que le changement de versions atteint en général une

meilleure performance que l’ajout/retranchement de couches, à cause du surcoût en bande passante

associé au codage en couches.

148 Appendix

– Nous présentons un cadre d’étude nouveau pour le streaming adaptatif à faible complexité de

vidéos à granularité fine (FGS), sur une connexion TCP–compatible fiable. Nous formulons et

résolvons un problème d’optimisation, qui suggère une heuristique en temps réel. Nous montrons

que notre système donne des résultats similaires avec des connexions TCP–compatibles peu ou

très variables. Nous présentons une implémentation de notre heuristique dans une plateforme de

streaming de vidéos MPEG–4 FGS.

– Nous analysons des traces débit–distorsion de vidéos MPEG–4 FGS ; nous trouvons que le con-

tenu sémantique et le codage de la couche de base ont un impact important sur les propriétés

de la couche d’amélioration FGS. Nous formulons un problème d’optimisation pour comparer le

streaming optimal suivant les caractéristiques de débit–distorsion à différent niveaux d’agrégation ;

nous trouvons que le streaming optimal adaptatif scène par scène peut atteindre de bonnes perfor-

mances, pour une complexité de calcul plus faible que l’adaptation image par image.

– Nous proposons un cadre d’étude point–à–point unifié qui combine l’ordonnancement, la protec-

tion d’erreur (FEC) et la dissimulation d’erreur au décodeur ("error concealment"). Nous utilisons

des Processus de Décision de Markov (MDPs) sur un horizon infini pour trouver des politiques

de transmission optimales avec une faible complexité et pour une grande variété de mesures de

performance. En utilisant des vidéos MPEG–4 FGS, nous montrons que la prise en compte de

la dissimulation d’erreur au décodeur peut améliorer grandement la qualité de la vidéo reçue, et

qu’une stratégie de protection d’erreur statique atteint des performances quasi–optimales.

Chapitre 2 : Streaming Vidéo sur Internet

Dans le chapitre 2, nous donnons un aperçu des principales technologies mises en œuvre dans une appli-

cation de streaming vidéo sur Internet, c’est–à–dire le réseau Internet et le codage vidéo numérique. En

se basant sur ces généralités, nous nous focalisons sur les problèmes qui sont spécifiques au streaming

vidéo sur Internet, et nous détaillons les travaux de recherche existants.

Le Réseau Internet

Le réseau Internet est toujours "best–effort", c’est–à–dire qu’il ne garantie pas de qualité de service (QoS)

aux applications. Les mesures de QoS qui sont essentielles pour la plupart des applications Internet sont

le délai de transmission point–à–point, le taux de perte de paquets et la bande passante disponible pour

la connexion. Le réseau Internet actuel est caractérisé par des conditions de transmission à la fois très

hétérogènes et variables dans le temps.

Tout d’abord, l’hétérogénéité du réseau provient de la diversité structurelle de l’Internet et de la

Résumé Long en Français 149

diversité du matériel utilisé à travers tout le réseau, tel que les liens physiques [43]. En particulier,

l’hétérogénéité en bande passante pour une connexion point–à–point donnée peut être associée à ce que

l’on appelle le "problème du dernier kilomètre", c’est–à–dire que le goulot d’étranglement en bande

passante d’une connexion est souvent situé sur le lien entre l’utilisateur final et son fournisseur d’accès

à Internet. Les liaisons d’accès à Internet les plus utilisées actuellement (câble, ADSL, modems bas–

débit) ont des capacités en bande passante différentes, ce qui contribue à l’hétérogénéité du réseau.

Outre la diversité des technologies d’accès à Internet, l’éloignement variable des terminaux ainsi que la

concurrence des flux à l’intérieur du réseau contribuent également à l’hétérogénéité de l’Internet.

Ensuite, pendant sa durée de vie, une connexion Internet donnée voit ses conditions varier à court et

long terme. Ces variations sont principalement dues à la compétition du trafic dans les routeurs et aux

changements de route, qui résultent d’une panne ou d’une décision de routage.

Les applications sur Internet peuvent utiliser les protocoles de transmission TCP ou UDP. Alors

que le protocole UDP fournit un service minimum de multiplexage/démultiplexage sans connexion, le

protocole TCP fournit un service de transmission fiable qui nécessite l’établissement d’une connexion.

Outre la retransmission des paquets perdus, TCP implémente deux mécanismes pour contrôler le débit

sortant : le contrôle de flux et le contrôle de congestion. Le contrôle de congestion de TCP permet

d’assurer la stabilité du réseau, mais au prix de fortes variations à court terme de la bande passante

disponible.

Les caractéristiques "best–effort" du réseau Internet actuel que nous avons soulignées précédemment

sont peut-être suffisantes pour des applications de transfert de fichier, mais elles ne sont pas adaptées

aux applications temps–réel comme la visioconférence. Il existe des propositions pour apporter de la

qualité de service à l’Internet actuel, telles qu’IntServ ou DiffServ. Cependant, la plupart des propositions

nécessitent des modifications de l’architecture du réseau actuel, ce qui explique qu’elles n’ont pas encore

été déployées. Ainsi, les applications réseau telles que le streaming vidéo doivent s’adapter au manque

de qualité de service de l’Internet actuel.

Le Codage Vidéo

A cause des capacités de transmission limitées du réseau Internet, les vidéos doivent être compressées

avant d’être transmises sur le réseau. Le codage vidéo consiste à exploiter les redondances spatiales et

temporelles inhérentes au signal vidéo, afin de réduire la taille de représentation des vidéos. Les standards

de codecs (codeur/décodeur) les plus utilisés pour les applications vidéo sur Internet sont H.261 et H.263

pour la transmission en temps réel, et MPEG–1, 2 et 4 pour le streaming de vidéos stockées. Dans cette

thèse nous considérons plutôt les standards MPEG, en particulier MPEG–4. MPEG–4 est un standard

récent qui a été conçu pour un large éventail d’applications, notamment le streaming vidéo sur Internet.

150 Appendix

Un des objectifs principaux du standard est la manipulation flexible d’objets audio–visuels.

Le codage hiérarchique — également appelé codage scalable ou codage en couches — est une

technique de codage qui est particulièrement adaptée aux applications vidéo sur réseau. Le concept

principal est d’encoder la vidéo en plusieurs couches complémentaires : la couche de base (BL), et une

ou plusieurs couches d’amélioration (ELs). La couche de base est une version de basse qualité de la

vidéo. Elle doit être décodée afin d’afficher une qualité minimale acceptable de la vidéo. La qualité de la

vidéo affichée à l’utilisateur peut-être progressivement améliorée en décodant les couches d’amélioration

successives. Toutes les couches d’amélioration sont codées de manière hiérarchique : afin de décoder la

couche d’amélioration d’ordre � , le décodeur doit posséder toutes les couches d’ordre inférieur, c’est-

à-dire la couche de base et toutes les couches d’amélioration d’ordre
�

à �
�

�
. Il y a plusieurs types

de scalabilité : Data Partitioning, scalabilité temporelle, spatiale ou SNR (en anglais Signal–to–Noise

Ratio). Ces différents types ont des complexités d’implémentation différentes et des surcoûts en bande

passante différents par rapport à une vidéo non–scalable.

La scalabilité à granularité fine (en anglais "Fine Granularity Scalability" ou FGS) est une nouvelle

forme de codage en couches, qui a été introduite dans le standard MPEG–4 spécifiquement pour la

transmission de vidéos sur Internet [8]. La particularité du codage FGS est que le flux de données de la

couche d’amélioration peut être tronqué n’importe où lors de la transmission, la partie restante pouvant

toujours être décodée. La Figure B.2 montre un exemple de coupure de la couche d’amélioration FGS

avant la transmission sur réseau. Pour chaque image, la partie sombre dans la couche d’amélioration

représente la partie de la couche FGS qui est effectivement transmise du serveur au client. Le fait de

tronquer la couche d’amélioration FGS pour chaque image ou groupe d’images avant la transmission

permet au serveur d’adapter son débit de transmission à la bande passante variable de la connexion. Au

client, le décodeur peut utiliser la partie reçue de la couche FGS pour améliorer la qualité de la couche

de base.

Dans cette thèse nous considérons le scalabilité à granularité fine dite SNR. Il existe aussi la scalabil-

ité FGS temporelle, et plusieurs améliorations de la technique de codage FGS classique ont été proposées.

Transmission de Vidéos sur Internet

Nous nous concentrons à présent sur l’application même de transmission de vidéos sur réseau. Nous

décrivons tout d’abord les choix principaux de conception d’une telle application, choix applicatifs et

choix de transport.

Parmi les choix applicatifs à faire pour les vidéos stockées, il faut déterminer si la vidéo doit être

téléchargée (comme un fichier) ou bien "streamée". Avec le streaming, l’utilisateur peut commencer

à regarder la vidéo rapidement après que la transmission a débuté ; il peut visionner les parties de la

Résumé Long en Français 151

Couche de

base

Couche

d’amélioration

I
 P
 B

Figure B.2: Exemple de coupure de la couche d’amélioration FGS avant transmission

vidéo qui ont déjà été reçues, tandis que le serveur vidéo est en train de transmettre des parties futures

de la vidéo. Notons que la technique de streaming peut concerner à la fois les vidéos stockées ou les

vidéos envoyées en temps-réel (type visioconférence). Par rapport au téléchargement, le streaming réduit

considérablement le temps d’attente de l’utilisateur pour les vidéos stockées. Cependant, étant donné que

le réseau Internet actuel n’a pas de garantie de qualité de service, avec le streaming il n’y a pas de garantie

que l’utilisateur puisse regarder la vidéo jusqu’à la fin dans de bonnes conditions. Par conséquent, les

applications de streaming vidéo nécessitent des techniques spécifiques d’adaptation au réseau, afin de

maximiser la qualité finale de la vidéo affichée.

Il y a quatre familles de techniques de codage vidéo qui peuvent être utilisées pour le stream-

ing adaptatif : le codage à la volée, le changement de versions, l’ajout/retranchement de couches, et

l’ajout/retranchement de descriptions. En particulier, le changement de versions consiste à encoder la

vidéo à plusieurs débits, correspondant à plusieurs niveaux de qualité. Chaque version est stockée sur

le serveur ; le serveur change la version qui est transmise au client afin d’adapter le débit de la vidéo

transmise (et ainsi le niveau de qualité) à la bande passante disponible. Une technique alternative au

changement de versions consiste à utiliser une vidéo encodée en couches et à changer le nombre de

couches à envoyer au client en fonction des conditions du réseau (ajout/retranchement de couches).

Au niveau du transport, le concepteur d’une application de transmission de vidéos sur Internet a le

choix entre les protocoles TCP et UDP. TCP est habituellement considéré comme inapproprié pour le

streaming vidéo, à cause de (i) sa fiabilité (alors que la vidéo peut en général tolérer un certain taux

d’erreurs), (ii) des forts délais induits par les retransmissions, et (iii) des variations de débit engen-

drées par le mécanisme de contrôle de congestion AIMD. Pour ces raisons, il est en général préférable

d’utiliser UDP, en lui adjoignant un mécanisme de contrôle de congestion TCP–compatible à débit peu

152 Appendix

variable, et un mécanisme de correction d’erreur partiel : retransmissions sélectives ou codes correcteurs

d’erreur FEC (en anglais "Forward Error Correction"). Néanmoins, nous pensons que TCP a beaucoup

d’avantages sur UDP pour le streaming de vidéos stockées : sa fiabilité est un atout pour la transmission

de vidéos fortement compressées (et donc peu résistantes aux erreurs), et les forts délais ou les variations

de bande passante à court terme peuvent être contenus par des buffers placés au client, comme nous le

montrons dans la suite du mémoire.

Techniques Adaptatives pour le Streaming de Vidéo sur Internet

Dans cette section nous décrivons les systèmes existants et les travaux de recherche précédents concer-

nant les systèmes de streaming vidéo adaptatifs sur Internet. Nous considérons tout d’abord les tech-

niques générales pour adapter le streaming aux conditions variables du réseau (adaptation au réseau).

Du fait des spécificités de la vidéo, on adjoint en général à ces techniques des techniques qui adaptent le

streaming aux caractéristiques de la vidéo transmise (adaptation au contenu).

A cause des caractéristiques variables et hétérogènes de l’Internet "best–effort", les systèmes de

streaming vidéo doivent implémenter des mécanismes qui adaptent la transmission à l’état actuel du

réseau. Un mécanisme d’adaptation au réseau qui est présent dans la plupart des applications actuelles

(Real Media, Windows Media ou Quicktime) consiste à introduire un délai de playback de quelques

centaines de millisecondes avant que la vidéo puisse être affichée à l’utilisateur. Pendant ce temps, le

serveur envoie une portion initiale de la vidéo dans un buffer dédié du client, que nous appelons le buffer

de playback. Après le début de l’affichage, le serveur continue d’envoyer de nouvelles données vidéo

dans le buffer de playback du client, tandis que le décodeur consomme les données qui sont disponibles

au début du buffer. Des mécanismes d’adaptation ont été conçus pour maintenir un délai de playback

suffisant pendant la durée du streaming, afin de contenir la gigue du réseau. Les applications de streaming

de vidéos stockées ont des contraintes de délai moins strictes que les applications de streaming en temps–

réel de type visioconférence. Ainsi, elles peuvent supporter un délai de playback plus important, en

général jusqu’à plusieurs secondes. Un délai de playback important permet de contenir, au–delà de la

gigue, les variations de bande passante à court terme : le serveur peut utiliser les périodes d’excès de

bande passante pour envoyer en avance des portions futures de la vidéo, afin d’anticiper les prochaines

périodes de diminution drastique de la bande passante disponible.

Les mécanismes de correction d’erreur pour le streaming vidéo, c’est–à–dire les retransmissions

sélectives ou l’envoi de codes correcteurs, doivent également s’adapter aux variations de condition du

réseau. Plusieurs études ont présenté des techniques d’adaptation au réseau pour l’un ou l’autre de ces

mécanismes de correction d’erreur, ou même pour une utilisation combinée des deux mécanismes.

Enfin, comme nous l’avons mentionné précédemment, l’utilisation de vidéos encodées en couches

Résumé Long en Français 153

peut permettre d’adapter le streaming aux conditions actuelles du réseau, et plus précisément aux vari-

ations de la bande passante TCP–compatible disponible pour l’application. Saparilla et Ross [113, 114]

ont étudié l’allocation optimale de la bande passante aux couches de la vidéo, et ont proposé des poli-

tiques d’adaptation au réseau basées sur l’état de remplissage des buffers de playback au client. Rejaie

et al. [106] ont étudié un autre mécanisme d’adaptation, pour un protocole de transport TCP–compatible

particulier, RAP.

Les techniques précédentes visent à maximiser des mesures de performance orientées réseau, telles

que l’usage de la bande passante disponible. Bien que ces mesures peuvent donner de bonnes indications

de qualité globale, en général, la qualité de la vidéo affichée après transmission n’est pas directement

proportionnelle au nombre de bits reçus ou à la proportion de paquets reçus. Par conséquent, afin de

maximiser réellement la qualité perçue au récepteur, les applications de streaming avec adaptation au

réseau doivent aussi considérer les spécificités de la vidéo source et de l’encodage utilisé. C’est ce que

l’on appelle le streaming avec adaptation au contenu.

L’utilisation de vidéos codées en couches pour l’adaptation aux variations de conditions du réseau

peut engendrer de fortes variations de qualité dans la vidéo affichée au récepteur. Cela se produit avec

des mécanismes d’adaptation au réseau qui ajoutent et retranchent les couches trop fréquemment, afin

de s’adapter au mieux aux variations de la bande passante disponible. De fortes variations de qualité

entre les images successives peuvent diminuer la perception globale de la qualité de la vidéo. Des mé-

canismes ont ainsi été proposé afin de minimiser ces variations de qualité [88, 106, 114]. Dans cette

thèse, nous considérons les variations de qualité pour les mécanismes de changement de versions et

d’ajout/retranchement de couches dans le Chapitre 3. Dans le Chapitre 4, nous nous intéressons spéci-

fiquement au streaming de vidéos en couches FGS.

Une autre technique d’adaptation au contenu, qui est également spécifique aux vidéos encodées en

couche, est la protection inégale des couches. Cela consiste à protéger les couches basses (dont la couche

de base) plus fortement que les couches hautes, afin de s’assurer que les couches reçues au client peuvent

toutes être utilisées (c’est–à–dire qu’elles respectent la hiérarchie du codage en couches). La protection

inégale des couches est en général obtenue en protégeant chaque couche avec une quantité différente de

codes correcteurs d’erreur, ou bien en retransmettant les couches les plus importantes avant les couches

moins importantes.

Enfin, ce que l’on appelle le streaming optimisé suivant les caractéristiques débit–distorsion est

une famille de mécanismes adaptatifs qui consistent à évaluer l’espérance de la distorsion finale de la

vidéo après transmission, et de trouver des politiques de transmission optimales qui maximisent cette es-

pérance. Cela nécessite de connaître, au serveur, les caractéristiques débit–distorsion de chaque paquet

vidéo, ainsi que l’interdépendance entre les paquets. Chou et Miao [26,27] ont proposé un cadre général

pour évaluer la distorsion finale de la vidéo pour un large éventail d’environnements de streaming. Dans

154 Appendix

cette thèse, nous analysons les propriétés débit–distorsion de vidéos MPEG–4 FGS dans le Chapitre 5.

Dans le Chapitre 6, nous étudions le streaming optimisé suivant les caractéristiques débit–distorsion, en

prenant en compte la dissimulation d’erreur au décodeur.

Chapitre 3 : Streaming de Versions ou de Couches ?

Dans le Chapitre 3, nous comparons, pour des vidéos stockées, les mécanismes adaptatifs de changement

de version (à partir d’une vidéo non–scalable encodée à différents débits) et d’ajout/retranchement de

couches (à partir d’une vidéo scalable). Dans le cas du changement de versions, il faut concevoir des

politiques de contrôle qui permettent de décider quelle est la version qui doit être transmise, en fonction

de l’état actuel du système et des conditions du réseau. Dans le cas de l’ajout/retranchement de couches,

les politiques de contrôle consistent à décider s’il faut ou non ajouter ou supprimer la transmission

d’une couche. Bien que l’ajout/retranchement de couches soit une technique efficace de transmission

adaptative, le codage en couches augmente la complexité du codage de la vidéo, ce qui entraîne une

efficacité de codage inférieure au codage non scalable.

Nous présentons d’abord notre modèle et les mesures de performance qui sont utilisées pour com-

parer les deux mécanismes. Nous considérons un codage en 2 couches, et un mécanisme qui alterne

entre 2 versions (basse et haute qualité). Dans notre modèle, pour une même qualité, le débit total de la

couche de base et d’amélioration est supérieur au débit de la version de haute qualité : le surcoût en débit

du codage en couche est de
�

(en pourcentage). Nous considérons la transmission sur une connexion

TCP–compatible fiable. Le serveur envoie les données au taux maximal donné par la bande passante

disponible ; le client stocke les données dans un buffer de playback. Nous supposons un délai de play-

back de quelques secondes, ce qui nous permet de négliger les délais de transmission des paquets. Nous

supposons que les vidéos sont encodées à débit constant.

Nous concevons ensuite des politiques de contrôle analogues pour les deux mécanismes, qui perme-

ttent de faire une comparaison juste entre les performances du changement de versions, et de l’ajout et

retranchement de couches. Pour les deux mécanismes, ces politiques dépendent du niveau de remplis-

sage des buffers de playback au client (estimé au serveur à partir de rapports périodiques renvoyés par

le client). Elles visent à maintenir un affichage continu de la vidéo et à minimiser les changements de

qualité au client. Pour le mécanisme d’ajout/retranchement de couches, on considère deux implémenta-

tions du serveur. Dans la première implémentation, le serveur est contraint d’envoyer les deux couches

d’une même image au même moment ; dans la deuxième implémentation, le serveur peut améliorer la

qualité d’une partie de la vidéo qui est déjà stockée au client (en transmettant la couche d’amélioration

correspondant aux images dont la couche de base est déjà stockée au client).

Nous comparons les performances des deux mécanismes grâce à des simulations, à partir de traces

Résumé Long en Français 155

TCP d’une heure, collectées sur Internet. Nous faisons varier les conditions critiques du système, telles

que la bande passante moyenne disponible, et le surcoût en débit associé au codage en couches. Nos

simulations montrent que nos politiques de contrôle pour les deux mécanismes adaptent le stream-

ing aux variations du réseau de manière efficace. Néanmoins, dans la première implémentation de

l’ajout/retranchement de couches, le surcoût en débit du codage en couches entraîne, dans tous les cas,

une baisse des performances de l’ajout/retranchement de couches par rapport au changement de versions.

Lorsque l’on utilise la deuxième implémentation, plus flexible, de l’ajout/retranchement de couches,

aucun des deux mécanismes ne semble dominer : pour de faibles valeurs du surcoût du codage en couches
�

, la meilleure flexibilité du codage en couches peut compenser les pertes de qualité dues au surcoût.

Pour de fortes valeurs de
�

, le changement de versions atteint de meilleurs performances dans toutes

les situations de bande passante étudiées. Donc, pour le streaming de vidéos stockées sur une connexion

TCP–compatible fiable, il est très important d’utiliser des types de codage en couches efficaces, afin de

maintenir un faible surcoût en débit par rapport au codage scalable.

Chapitre 4 : Streaming de Vidéos FGS Stockées

Alors que dans le chapitre 3, nous avons étudié le mécanisme d’ajout/retranchement de couches, à partir

d’un codage en couches conventionnel, nous étudions dans le Chapitre 4, le streaming adaptatif de vidéos

encodées à granularité fine (FGS). La propriété de granularité fine du codage FGS permet de concevoir

des politiques de contrôle qui adaptent le streaming aux variations de bande passante du réseau, de

manière très fine (bit par bit). Cela constitue un avantage majeur par rapport aux mécanismes classiques

d’ajout/retranchement de couches, ainsi que par rapport au changement de versions pour lequel le débit

de chaque version est fixe.

Dans ce chapitre, nous présentons un nouveau cadre d’étude pour le streaming de vidéos FGS. Nous

résolvons un problème d’optimisation pour un critère de qualité orienté réseau. D’après l’étude des

politiques optimales, nous proposons une heuristique en temps réel, dont nous étudions les performances

à partir de traces Internet et d’une implémentation dans un système de streaming de vidéos MPEG–4.

Comme dans le Chapitre 3, nous considérons une connexion TCP–compatible fiable ; la vidéo est

encodée à débit constant, et des buffers de playback suffisamment remplis au client nous permettent

de négliger les délais de transmission des paquets. Nous supposons aussi que le serveur envoie les

données au taux maximal permis par la bande passante disponible ; le serveur peut connaître l’état de

remplissage des buffers de playback grâce aux rapports renvoyés par le client. Pour des raisons de

simplicité d’implémentation, nous contraignons le serveur à envoyer toutes les données d’une même

image (couche de base et couche d’amélioration tronquée) au même moment. Dans notre modèle, le

temps au serveur est divisé en intervalles de temps
� �%� � �
� 	��) . Au début de chaque intervalle de temps, le

156 Appendix

for
� � �

to (� �����
�

�
do

Estimer la valeur de
� � à partir des rapports du client

Calculer
� � � � � �

�

�

Calculer la valeur de � � � �

:

if
� � , � � ����� then

� � � �
�� ���

else if
� � �+��� � � � , � � � � ����� then

� � � �
��
�
� � ��� � � �

�

�
 	 � �
� �

 � � � � �

�

�

else if
� � � � � � � ����� then

� � � �
��
�
� ����� � � �

�

�
 � �
� �
� ��� �"! 	

� �
� �

 � � � � �

�

�

Vérifier que � � � �

reste dans les limites :

if � � � �

� ��� then � � � �
�� ���

if � � � �
 # ���
	 ��� then � � � �
�� ���
	 ���
end

Algorithm B.1: Heuristique temps–réel

serveur détermine le débit constant sur l’intervalle de temps
� �%� � �
� 	 �) de la couche d’amélioration FGS

à envoyer au client, noté � � � �

. Par simplicité, chaque intervalle de temps a une durée constante de

� � �+� �
secondes.

Nous formulons le problème d’optimisation suivant :

trouver une politique de transmission � � ��� � � ����
"� 1 1 1�� � � � (� �+���
�

�
�

qui :

– assure un minimum de qualité, en assurant une transmission de la couche de base sans perte de

données (c’est–à–dire sans famine du buffer de playback) ;

– maximise une mesure d’efficacité en bande passante,
�

, qui donne une bonne indication de la

qualité globale de la vidéo ;

– minimise une mesure de variation du débit de la vidéo affichée à l’utilisateur,
�

, qui donne une

indication des variations de distorsion des images affichées.

Nous analysons et résolvons ce problème par programmation dynamique, en supposant que la bande

passante disponible
� � �
 est connue a priori.

Résumé Long en Français 157

Dans une situation réelle de streaming vidéo, la bande passante disponible pour la durée du streaming

n’est pas connue a priori. Dans ce cas nous proposons une heuristique, à partir de l’étude des politiques

optimales lorsque la bande passante est connue a priori. Cette heuristique adapte à la volée le débit de

la couche d’amélioration pour chaque intervalle de temps, � � � �

, en fonction des conditions du réseau.

L’Algorithme B.1 présente notre heuristique. Les notations suivantes sont utilisées : � � et ��� représentent

les taux de codage respectifs de la couche de base et de la couche d’amélioration FGS ;
� � représente

le délai de playback au début de l’intervalle
� � � � � � 	��) ;

� ��� � � �
�

�

est la moyenne de bande passante

disponible sur l’intervalle
� �#�
 �
� �
�)

; � est une constante comprise entre 0 et 1, qui permet de réaliser un

compromis entre l’efficacité en bande passante
�

et la variation du taux de codage
�

.

Nous faisons des simulations tout d’abord à partir de traces TCP de 5 minutes, collectées sur Inter-

net. En faisant varier les conditions du réseau, nous montrons que notre heuristique atteint de bonnes

performances par rapport aux performances données par la politique optimale, c’est–à–dire celle obtenue

en connaissant a priori la bande passante disponible. L’efficacité obtenue est proche de l’efficacité de la

politique optimale dans la plupart des conditions de réseau ; la variabilité atteinte est en général inférieure

à la variabilité d’une politique de transmission qui ajouterait la couche d’amélioration entière seulement

une fois durant le streaming.

Nous effectuons d’autres simulations avec le logiciel ns (network simulator), pour comparer les per-

formances de notre heuristique et des politiques optimales dans le cas d’une transmission sur TCP ou

sur un autre protocole de contrôle de congestion TCP–compatible, TFRC. Pour des conditions de charge

du réseau différentes, nous observons que la variabilité minimale atteinte par la politique optimale sur

TCP est seulement légèrement supérieure à la variabilité de la politique optimale sur TCP, alors que le

débit de TFRC est beaucoup moins variable que celui de TCP. Lorsque l’on compare les performances

de l’heuristique sur TCP ou TFRC, nous observons des résultats similaires pour les deux protocoles.

Finalement, nous présentons l’implémentation de notre heuristique, adaptée au cas d’une couche de

base à débit variable, dans une plateforme de streaming de vidéos MPEG–4 FGS. Notre implémenta-

tion fonctionne sur TCP, mais pourrait également fonctionner sur n’importe quelle connexion RTP/UDP

TCP–compatible et partiellement fiable. Nous étudions le streaming d’une vidéo composée de plusieurs

segments ayant des caractéristiques visuelles homogènes ; dans notre implémentation, le module de con-

trôle de débit de la couche d’amélioration FGS fixe le débit à transmettre � � � �

pour chaque segment.

Nous effectuons des simulations sur un réseau LAN dédié, en présence de trafic concurrent. Ces simu-

lations permettent de mettre en valeur les compromis entre différents critères de qualité, en fonction des

paramètres de notre heuristique (comme le paramètre �).

158 Appendix

Chapitre 5 : Propriétés Débit–Distorsion de Vidéos MPEG–4 FGS pour le

Streaming Optimal

Dans notre approche précédente, nous avons considéré le problème de maximiser la qualité de la vidéo

affichée au client, en utilisant des mesures de performance orientées réseau, telles que l’efficacité en

bande passante. Cependant, la qualité finale de la vidéo affichée n’est pas directement proportionnelle

au nombre de bits reçus par le client. S’il est vrai que la réception d’un plus grand nombre de données

résulte en général en une meilleure qualité, tous les paquets vidéo n’apportent pas une même contribution

en qualité à la vidéo affichée. Par conséquent, l’optimisation de la qualité finale de la vidéo requiert la

prise en compte des particularités du type de codage utilisé et des séquences vidéos transmises. Dans

le Chapitre 5 nous analysons les propriétés débit–distorsion des vidéos encodées en MPEG–4 FGS, afin

d’obtenir des indications utiles pour le streaming optimal.

Nous présentons tout d’abord un cadre d’étude général pour l’analyse des performances de mécan-

ismes adaptatifs de streaming de vidéos FGS. Nous définissons des mesures qui caractérisent le trafic et

la qualité des images prises individuellement, et le trafic et la qualité de scènes vidéo (ou plus générale-

ment de n’importe quelle agrégation arbitraire d’images). Nous expliquons comment utiliser les mesures

de qualité objectives usuelles que sont le PSNR et le MSE, et nous détaillons les méthodes utilisées pour

générer les traces de débit–distorsion.

Nous analysons les traces d’une vidéo de courte durée (Clip), ainsi que d’une base de données de

vidéos de longue durée et de genres différents. Les résultats de notre analyse sont les suivants. Pre-

mièrement, la forme convexe des courbes débit–distorsion pour les plans–bit individuels des images de

la couche FGS, suggère de prioriser le découpage de la couche FGS au plus près de la fin d’un plan–bit.

(Notons cependant que le découpage de la couche d’amélioration seulement aux frontières des plans–

bit résulterait en une adaptation aux conditions variables du réseau avec une granularité plus grossière).

Deuxièmement, les différents types d’image de la couche de base (I, P, et B) et, en général, le codage

de la couche de base, ont une influence importante sur la qualité totale obtenue. Nous avons observé,

pour des débits constants de la couche d’amélioration, que des variations de qualité importantes dans la

couche de base correspondent à des variations également importantes dans la qualité totale (couches de

base et d’amélioration). Cela suggère de prendre en compte les différents types d’image du codage de

la couche de base, pour le streaming de la couche d’amélioration FGS. Finalement, nous avons observé

que, pour des débits constants de la couche FGS, la qualité totale de la vidéo a tendance à varier avec le

contenu sémantique des scènes vidéos successives. Cela suggère de prendre aussi en compte la structure

sémantique, en particulier en scènes, lors du streaming de la couche FGS.

Résumé Long en Français 159

Nous utilisons nos traces pour étudier le streaming optimal suivant les caractéristiques de débit–

distorsion à différents niveaux d’agrégation d’image. Nous supposons que la couche de base est trans-

mise sans pertes, et nous nous concentrons sur le streaming de la couche d’amélioration FGS. Nous

formulons un problème d’optimisation qui consiste à minimiser la distorsion totale de segments de vidéo

(appelés segments d’allocation), sous une contrainte de bande passante moyenne disponible. Etant don-

nées les fonctions de débit–distorsion de toutes les images, le serveur peut optimiser le streaming du

segment considéré en allouant des bits de la bande passante disponible aux images individuelles, afin de

maximiser la qualité totale du segment. Alternativement, le serveur peut grouper plusieurs images con-

sécutives d’un segment d’allocation en sous–segments, appelés séquences de streaming, et optimiser le

streaming sur la base de séquences de streaming (au lieu d’images individuelles). Dans ce cas, le serveur

alloue le même nombre de bits à chaque image d’une séquence de streaming.

Nous considérons les cinq cas d’agrégation suivants : image, GoP, scène, constant (le segment

d’allocation est divisé, de manière arbitraire, en séquences de streaming contenant un nombre constant

d’images), et total (toutes les images d’un segment d’allocation forment une seule séquence de stream-

ing). Nous résolvons notre problème d’optimisation par programmation dynamique, et nous étudions

les solutions optimales à partir de nos traces. Nous trouvons que l’ajustement de débit FGS scène par

scène réduit grandement la complexité de calcul de l’optimisation comparé à l’ajustement de débit im-

age par image, pour une diminution de qualité mineure. Nous avons aussi observé que l’agrégation

arbitraire d’images consécutives (c’est–à–dire sans porter attention à la structure scénique de la vidéo)

peut engendrer des détériorations de qualité.

Chapitre 6 : Cadre Unifié pour le Streaming Optimal utilisant les MDPs

Le but du streaming optimal suivant les caractéristiques de débit–distorsion est de maximiser la qualité

de la vidéo reçue au client, en évaluant, au serveur, l’espérance de qualité de la vidéo affichée, en fonction

des conditions du réseau et des propriétés de débit–distorsion de chaque paquet vidéo. Cependant, les

approches d’optimisation actuelles proposées dans la littérature ne prennent pas en compte la possibilité

de dissimulation d’erreur au décodeur. Dans le Chapitre 6, nous présentons un cadre d’étude unifié pour

le streaming optimal en tenant compte de la dissimulation d’erreur.

Dans une application typique de streaming audio ou vidéo, le serveur ou expéditeur effectue un

ordonnancement des paquets à transmettre afin de maximiser la qualité de la vidéo affichée. Le serveur

peut choisir de ne pas transmettre toutes les couches de certains paquets (ce mécanisme est aussi appelé

adaptation de qualité [108]). Sur des canaux de transmission à pertes, l’ordonnancement est suivi par

la correction d’erreur, afin de limiter les pertes de paquets et leurs effets sur la vidéo affichée. Pour

les applications de streaming de données multimédia, la correction d’erreur consiste à retransmettre les

160 Appendix

Ordonnan

ceur

Canal

à

pertes

Décodeur

avec

Dissimulation

d’erreur

.

.

.

Expéditeur
 Récepteur

couche L

couche 2

couche 1

Buffer de playback

Correction

d’erreur

Figure B.3: Système de streaming vidéo avec dissimulation d’erreur au décodeur

paquets perdus avant leurs échéances de décodage, ou bien de transmettre des paquets de redondance

(aussi appelé protection contre les erreurs). L’ordonnancement et la correction d’erreur doivent s’adapter

conjointement aux variations de conditions du réseau, telles que la bande passante disponible et le taux

de pertes de la connexion. Dans notre modèle, la correction d’erreur est effectuée par les codes FEC

Reed–Solomon (RS).

Au récepteur, certains paquets vidéo sont disponibles à temps, c’est–à–dire avant leurs échéances de

temps ; d’autres ne sont pas disponibles, soit parce qu’ils on été transmis et perdus, ou simplement parce

que le serveur a décidé de ne pas les transmettre. Au moment de l’affichage à l’utilisateur, le décodeur

applique plusieurs méthodes de dissimulation d’erreur afin de dissimuler au mieux les effets des paquets

perdus. La dissimulation d’erreur ("Error Concealment" ou EC, en anglais) consiste à exploiter les

corrélations spatiales et temporelles de l’audio ou la vidéo, afin d’interpoler les paquets manquants à

partir des paquets disponibles. Pour la vidéo, une méthode de dissimulation d’erreur élémentaire est

d’afficher, au lieu du macro–bloc manquant de l’image en cours, le macro–bloc à la même place dans

l’image précédente.

L’ordonnancement de paquets, la correction d’erreur et la dissimulation d’erreur sont des composants

fondamentaux d’un système de streaming vidéo point–à–point. La Figure B.3 illustre leurs fonctions

respectives. Traditionnellement, l’ordonnancement et la correction d’erreur sont optimisées sans prendre

en compte la présence de dissimulation d’erreur au récepteur [27, 85, 97].

Après avoir donné un exemple simple de l’utilité de prendre en compte la dissimulation d’erreur lors

de l’optimisation de la transmission au serveur, nous formulons notre problème d’optimisation. Dans

ce chapitre, nous considérons à la fois le streaming de vidéos stockées et le streaming de vidéos en

temps–réel. Nous supposons que la couche de base est transmise sans perte et nous nous concentrons

sur la transmission des couches d’amélioration. Nous supposons que les couches d’amélioration ne sont

pas encodées avec compensation de mouvement. Nous considérons une séquence vidéo homogène ;

le canal de transmission est un canal à pertes indépendantes et identiquement distribuées (i.i.d.). Au

Résumé Long en Français 161

décodeur, nous considérons une stratégie de dissimulation d’erreur temporelle simple : une couche man-

quante d’une image ne peut être remplacée que par la couche correspondante de l’image précédente.

Néanmoins, le remplacement s’effectue en général avec une perte de qualité. Nous supposons que le

serveur connaît, pour la séquence, les caractéristiques de distorsion de chaque couche après dissimula-

tion d’erreur. Notre problème d’optimisation consiste à trouver la politique de transmission optimale qui

minimise la distorsion moyenne avec une contrainte sur le débit moyen de transmission (correspondant

à la bande passante moyenne disponible).

Afin d’illustrer nos résultats, nous utilisons des vidéos encodées en MPEG–4 FGS. Nous divisons

la couche d’amélioration FGS en
�

sous–couches ; nous utilisons la vidéo à faibles mouvements Akiyo,

encodée suivant deux qualités.

Dans un premier temps, nous analysons notre problème d’optimisation en supposant que le serveur

peut observer l’état du récepteur au moment de décider de l’action à prendre pour l’image en cours

(c’est–à–dire le nombre de paquets source et FEC à envoyer pour chaque couche de l’image). Cela

implique d’avoir un canal de transmission retour du récepteur à l’expéditeur fiable, et une connexion

avec un délai aller–retour inférieur au temps d’affichage d’image. Cette hypothèse est appropriée pour

des applications de streaming vidéo interactives, telles que la visioconférence, qui requièrent des délais

de transmission point–à–point très faibles. Cela est aussi approprié pour le streaming de vidéos stockées

avec de faibles délais de playback et une forte interactivité.

Nous montrons que notre problème peut être formulé comme un Processus de Décision de Markov

(MDP, pour "Markov Decision Process" en anglais), contraint, qui peut–être résolu par programmation

linéaire [33,58]. Le problème est formulé naturellement comme un MDP à horizon fini, l’horizon corre-

spondant au nombre d’images dans le segment vidéo. Cependant, l’effort calculatoire associé à un MDP

à horizon fini peut–être très coûteux pour un large horizon [11]. Par conséquent, nous utilisons plutôt des

MDPs contraints à horizon infini. Ceux–ci ont des politiques optimales stationnaires et un coût de calcul

plus faible. L’approximation d’horizon infini correspond à considérer des segments vidéos de longueur

infinie.

Nous considérons le cas d’une vidéo encodée en une seule couche d’amélioration, pour lequel nous

donnons une expression formelle des politiques de transmission optimales. Dans le cas général d’une

vidéo encodée en plusieurs couches, et sans correction d’erreur, nous comparons les performances des

politiques optimales qui tiennent compte de la dissimulation d’erreur, avec celles qui n’en tiennent pas

compte lors de l’optimisation. Nous montrons les gains de qualité potentiels importants apportés , au

serveur, par la prise en compte de la dissimulation d’erreur du décodeur. Nos simulations indiquent

que les procédures complexes d’ordonnancement qui ne considèrent pas la dissimulation d’erreur dans

le processus d’optimisation peuvent atteindre des performances qui sont considérablement inférieures

aux performances optimales. Nous montrons que les performances alors atteintes sont similaires aux

162 Appendix

performances d’une politique optimale simple qui ajoute/retranche une couche suivant un seul paramètre.

Nous comparons les résultats de politiques optimales avec correction d’erreur dynamique, qui au-

torisent de faire varier le nombre de codes correcteurs d’erreur associées à chaque couche, avec les résul-

tats de politiques optimales avec correction d’erreur statique, qui doivent associer un nombre constant de

codes correcteurs pour chaque couche. Nous trouvons que les politiques avec correction d’erreur statique

atteignent des performances équivalentes aux politiques générales avec correction d’erreur dynamique.

Nous effectuons des simulations numériques pour étudier la validité de notre modèle à horizon infini

pour la transmission optimale de vidéos à nombre fini d’images. Nous montrons que notre modèle donne

de bonnes performances en terme de qualité et de débit pour des segments vidéo composés de plusieurs

centaines d’images.

Toujours dans l’hypothèse d’une transmission avec connaissance parfaite de l’état du système, nous

montrons comment ajouter à notre problème des contraintes de qualité autres que la distorsion moyenne.

Nous prenons l’exemple du problème de minimiser la distorsion moyenne avec une contrainte sur le

débit maximal et sur la variation maximale de distorsion entre deux images consécutives. Nous mon-

trons que notre formulation en MDP contraint à horizon infini est particulièrement adaptée à l’ajout

de contraintes de qualité supplémentaires, car le nouveau problème peut toujours être formulé par un

programme linéaire.

Dans un deuxième temps, nous relaxons l’hypothèse selon laquelle le serveur peut observer l’état

du récepteur. Dans ce cas notre MDP devient un MDP partiellement observable. Si de tels MDPs sont

généralement difficiles à résoudre, le nôtre est plus facile à résoudre en raison de sa structure particulière

: nous montrons qu’il revient à résoudre le MDP � � �
 � � � � � , et nous comparons les performances

obtenues avec ou sans connaissance de l’état du client. Les simulations indiquent que la perte de qualité

induite par l’absence de connaissance de l’état du client est mineure, notamment grâce à la correction

d’erreur qui permet d’avoir une meilleure assurance de l’état du client en fonction des décisions prises

précédemment.

Chapitre 7 : Conclusions

Dans cette thèse, nous avons formulé de nouveaux cadres d’étude et résolu de nouveaux problèmes

d’optimisation pour le streaming adaptatif au réseau et au contenu de vidéos codées en couches (codage

conventionnel ou FGS). Nous avons analysé des politiques de transmission optimales et évalué leurs

performances à partir de simulations avec des traces de réseau et des vidéos réelles.

Après avoir donné un aperçu de l’application de streaming vidéo sur Internet dans le Chapitre 2,

nous avons conçu, dans le Chapitre 3, des politiques de streaming adaptatives équivalentes pour l’ajout

Résumé Long en Français 163

et retranchement de couches, et le changement de versions, dans le contexte d’une transmission TCP–

compatible fiable. Nos simulations ont montré que, pour de faibles valeurs du surcoût en débit du

codage en couches, la flexibilité du codage en couches par rapport aux versions permet au mécanisme

d’ajout/retranchement de couches d’atteindre des performances similaires au changement de versions.

Pour des valeurs moyennes du surcoût du codage en couches (supérieures à
� �

%), le changement de

versions a une meilleure performance dans toutes les situations de bande passante.

L’utilisation de vidéos FGS permet à l’application de streaming de s’adapter aux variations de la

bande passante de manière plus fine qu’avec le codage en couches conventionnel. Dans le Chapitre 4,

nous avons présenté un nouveau cadre d’étude pour le streaming adaptatif de vidéos FGS stockées.

Nous avons obtenu des politiques de transmission optimales, qui maximisent une mesure d’efficacité

en bande passante et minimisent une mesure de variabilité du taux de codage. Nous avons ensuite

développé une heuristique temps–réel qui est inspirée de la solution optimale. Des simulations à partir

de traces Internet ont montré que notre heuristique atteint une performance quasi–optimale. Nous avons

comparé le streaming sur TCP avec le streaming sur une connexion TFRC fiable. Des simulations ont

indiqué que le streaming de vidéos FGS avec un stockage temporaire au client suffisant, ne nécessite

pas des algorithmes TCP–compatibles à débit peu variable pour pouvoir obtenir une bonne qualité de

vidéo. Enfin, nous avons présenté une implémentation de notre heuristique dans un système complet de

streaming de vidéos MPEG–4 FGS.

Dans le Chapitre 5 nous nous sommes concentrés sur les caractéristiques de contenu de vidéos

MPEG–4 FGS. Nous avons analysé les traces débit–distorsion de vidéos de longue durée, en utilisant

des mesures de performance qui rendent compte de la qualité des vidéos décodées, tant au niveau des

images individuelles qu’au niveau d’agrégation d’images (GoP, scène, etc.). Notre analyse suggère de

prioriser le découpage de la couche FGS à la fin des plans–bit, et de prendre en considération les dif-

férents types d’images de la couche de base et la structure scénique de la vidéo. Nous avons étudié le

streaming optimisé suivant les caractéristiques débit–distorsionà plusieurs degrés d’agrégation d’images.

Les simulations à partir de nos traces ont indiqué que l’agrégation permet de réduire la complexité de

l’optimisation au prix d’une faible perte de qualité globale. Cependant, l’agrégation arbitraire peut en-

traîner des détériorations de qualité par rapport à l’agrégation suivant les scènes visuelles. Par con-

séquent, nous préconisons d’effectuer le streaming vidéo en agrégeant des scènes visuelles.

Enfin, dans le Chapitre 6, nous avons étudié le streaming optimal sur des connexions avec pertes.

Nous avons proposé un cadre d’optimisation unifié qui combine l’ordonnancement, la correction d’erreur

et la dissimulation d’erreur au décodeur. Nous avons résolu le problème de minimiser la distorsion

moyenne suivant un taux de transmission limité, en utilisant la théorie des Processus de Décision de

Markov à gain moyen et à horizon infini. Nous avons effectué des simulations avec des vidéos MPEG–4

164 Appendix

FGS. Considérant un canal à pertes de paquets avec une information parfaite de l’état du récepteur, nous

avons montré que les procédures d’optimisation qui ne prennent pas en compte la dissimulation d’erreur

dans le processus d’optimisation, peuvent atteindre des résultats qui sont bien plus faibles que les ré-

sultats optimaux. Nous avons montré que notre cadre d’optimisation à horizon infini donne de bonnes

performances pour le cas de segments vidéos composés de plusieurs centaines d’images, et qu’il peut

être limité à des politiques de transmission avec une redondance statique. Nous avons étendu notre prob-

lème d’optimisation en ajoutant une contrainte sur la variation moyenne de distorsion entre les images

consécutives, afin d’illustrer que notre système permet de considérer des mesures de qualité autres que

la distorsion moyenne. Dans le cas où l’information sur l’état du récepteur n’est pas toujours disponible

au serveur, nous avons montré que notre système atteint de bonnes performances ; ainsi, notre approche

est aussi appropriée pour des réseaux avec de forts délais de transmission.

Nous pouvons continuer le travail présenté dans cette thèse dans plusieurs directions, à la fois dans

les domaines de l’adaptation au réseau et au contenu.

Dans le domaine de l’adaptation au réseau, nos systèmes peuvent être enrichis en considérant, dans

la procédure d’optimisation, les retransmissions sélectives de paquets perdus. Alors qu’il existe un grand

nombre d’études qui proposent des mécanismes de retransmission sélective pour l’audio ou la vidéo,

le streaming optimal avec retransmissions n’a pas reçu suffisament d’attention. La modélisation et la

résolution d’un tel problème sont en effet tout particulièrement difficiles. On pourrait également étendre

nos procédures d’optimisation avec adaptation au réseau au cas de la transmission sur un réseau Internet

avec qualité de service, tel DiffServ, et pour des configurations différentes de la configuration client–

serveur classique.

Il y a d’autres orientations futures dans le domaine de l’adaptation au contenu. Nos algorithmes

pourraient être testés avec des mesures de qualité objectives plus fiables que le PSNR, et notre travail

pourrait bénéficier d’une segmentation temporelle plus fine que la segmentation en plans–séquence (ou

"director’s cuts"). Enfin, nos mécanismes d’adaptation au contenu pourraient être étendus en utilisant

la segmentation spatiale des vidéos en objets, telle qu’elle est définie dans le standard MPEG–4. En

combinant la scalabilité en objets, le codage en couches, et la segmentation en scènes, nous pourrions

obtenir un nouveau système adaptatif selon lequel le serveur pourrait ajouter/retrancher des couches

d’objets individuels, en fonction de l’importance sémantique de chaque objet dans la scène, ainsi que des

propriétés débit–distorsion de chaque couche.

Bibliography

[1] DivX Codec. http://www.divx.com.

[2] Quicktime. http://www.apple.com.

[3] Real Media. http://www.realnetworks.com.

[4] Windows Media. http://www.microsoft.com.

[5] ANSI T1.801.03, Digital Transport of One–Way Video Signals — Parameters for Objective Per-
formance Assessment, 1996.

[6] ISO/IEC 14496–1, Coding of Audio–Visual Objects: Systems. ISO/IEC JTC1/SC29/WG11
N2501, October 1998.

[7] ISO/IEC 14496–2, Coding of Audio–Visual Objects: Visual. ISO/IEC JTC1/SC29/WG11 N2502,
October 1998.

[8] ISO/IEC 14496–2 / Amd X, Generic Coding of Audio–Visual Objects: Visual. ISO/IEC
JTC1/SC29/WG11 N3095, December 1999.

[9] MPEG–4 Applications. ISO/IEC JTC1/SC29/WG11 N2724, March 1999.

[10] Report on MPEG–4 Visual Fine Granularity Scalability Tools Verification Tests. ISO/IEC
JTC1/SC29/WG11 N4791, May 2002.

[11] ALTMAN, E. Constrained Markov Decision Processes. Chapman and Hall, 1999.

[12] ARAVIND, R., CIVANLAR, M. R., AND REIBMAN, A. R. Packet Loss Resilience of MPEG–2
Scalable Video Coding Algorithms. IEEE Trans. on Circuits and Systems for Video Technology 6
(October 1996), 426–435.

[13] ASHMAWI, W., GUERIN, R., WOLF, S., AND PINSON, M. On the Impact of Policing and
Rate Guarantees in DiffServ Networks: A Video Streaming Application Perspective. In Proc. of
SIGCOMM (San Diego, CA, August 2001), pp. 83–95.

[14] ATKINSON, R., AND FLOYD, S. Internet Architecture Board Concerns & Recommendations
Regarding Internet Research & Evolution. Internet Draft, February 2003.

166 Bibliography

[15] AVARO, O., ELEFTHERIADIS, A., HERPEL, C., RAJAN, G., AND WARD, L. MPEG–4 Systems:
Overview. Signal Processing: Image Communication 15 (2000), 281–298.

[16] BANSAL, D., AND BALAKRISHNAN, H. Binomial Congestion Control Algorithms. In Proc. of
INFOCOM (Anchorage, AL, May 2001), pp. 631–640.

[17] BASSO, A., VARAKLIOTIS, S., AND CASTAGNO, R. Transport of MPEG–4 over IP/RTP. In
Proc. of Packet Video Workshop (PV) (Cagliari, Italy, May 2000).

[18] BLAKE, S., BLACK, D., CARLSON, M., DAVIES, E., WAN G, Z., AND WEISS, W. An Archi-
tecture for Differentiated Services. IETF RFC 2475, December 1998.

[19] BOLOT, J.-C. End–to–End Packet Delay and Loss Behavior in the Internet. In Proc. of SIGCOMM
(Ithaca, NY, September 1993), pp. 289–298.

[20] BOLOT, J.-C., FOSSE-PARISIS, S., AND TOWSLEY, D. Adaptive FEC–Based Error Cotrol for
Internet Telephony. In Proc. of INFOCOM (New York City, March 1999), pp. 1453–1460.

[21] BOLOT, J.-C., AND TURLETTI, T. Experience with Control Mechanisms for Packet Video in the
Internet. ACM Computer Communications Review 28, 1 (January 1998), 4–15.

[22] BRADEN, R., CLARK, D., AND SHENKER, S. Integrated Services in the Internet Architecture:
an Overview. IETF RFC 1633, June 1994.

[23] CAI, H., SHEN, G., WU, F., LI, S., AND ZENG, B. Error Concealment for Fine Granularity
Scalable Video Transmission. In Proc. of the International Conference on Multimedia and Expo
(ICME) (Lausanne, Switzerland, September 2002).

[24] CHEN, R., AND VAN DER SCHAAR, M. Resource–Driven MPEG–4 FGS for Universal Multime-
dia Access. In Proc. of the International Conference on Multimedia and Expo (ICME) (Lausanne,
Switzerland, August 2002), pp. 421–424.

[25] CHOU, P., MOHR, A., WANG, A., AND MEHROTRA, S. Error Control for Receiver–Driven
Layered Multicast of Audio and Video. IEEE Trans. on Multimedia 3, 1 (March 2001), 108–122.

[26] CHOU, P. A., AND MIAO, Z. Rate–Distortion Optimized Sender–Driven Streaming over Best–
Effort Networks. In Proc. of the Workshop on Multimedia Signal Processing (MMSP) (Cannes,
France, October 2001), pp. 587–592.

[27] CHOU, P. A., AND MIAO, Z. Rate–Distortion Optimized Streaming of Packetized Media. sub-
mitted to IEEE Trans. on Multimedia (February 2001).

[28] CLARK, D., AND FANG, W. Explicit Allocation of Best–Effort Packet Delivery Service.
IEEE/ACM Trans. on Networking 6, 4 (August 1998), 362–373.

[29] CÔTÉ, G., EROL, B., GALLANT, M., AND KOSSENTINI, F. H.263+: Video Coding at Low
Bit Rates. IEEE Trans. on Circuits and Systems for Video Technology 8, 7 (November 1998),
849–866.

Bibliography 167

[30] DAWOOD, A. M., AND GHANBARI, M. Scene Content Classification From MPEG Coded Bit
Streams. In Proc. of the Workshop on Multimedia Signal Processing (MMSP) (Copenhagen, Den-
mark, September 1999), pp. 253–258.

[31] DEMPSEY, B. J., LIEBEHERR, J., AND WEAVER, A. C. On Retransmission–Based Error Control
for Continuous Media Traffic in Packet–Switching Networks. Computer Networks and ISDN
Systems 28, 5 (March 1996), 719–736.

[32] DENARDO, E. V. Dynamic Programming: Models and Applications. Prentice–Hall, 1982.

[33] DERMAN, C. Finite State Markovian Decision Processes. Academic Press, New York, 1970.

[34] ENGELBRECHT, S. E., AND KATSIKOPOULOS, K. V. Planning with Delayed State Information.
Tech. Rep. UM-CS-1999-030, University of Massachussets, Amherst, May 1999.

[35] FEAMSTER, N., BANSAL, D., AND BALAKRISHNAN, H. On the Interactions Between Layered
Quality Adaptation and Congestion Control for Streaming Video. In Proc. of the International
Packet Video Workshop (PV) (Kyongju, Korea, May 2001).

[36] FENG, W., KANDLUR, D., SAHA, D., AND SHIN, K. Adaptive Packet Marking for Maintaining
End–to–End Throughput in a Differentiated–Services Internet. IEEE/ACM Trans. on Networking
7, 5 (October 1999), 685–697.

[37] FENG, W.-C., KRISHNASWAMI, B., AND PRABHUDEV, A. Proactive Buffer Management for
the Streamed Delivery of Stored Video. In Proc. of the ACM Multimedia Conference (Bristol,
U.K., September 1998).

[38] FITZEK, F., AND REISSLEIN, M. MPEG–4 and H.263 Video Traces for Network Performance
Evaluation. IEEE Network 15, 16 (November 2001), 40–54.

[39] FLOYD, S. A Report on Recent Developments in TCP Congestion Control. IEEE Communica-
tions Magazine (April 2001).

[40] FLOYD, S., AND FALL, K. Promoting the Use of End–to–End Congestion Control in the Internet.
IEEE/ACM Trans. on Networking 7, 4 (August 1999), 458–472.

[41] FLOYD, S., HANDLEY, M., PADHYE, J., AND WIDMER, J. Equation–Based Congestion Control
for Unicast Applications. In Proc. of SIGCOMM (Stockholm, Sweden, August 2000), pp. 43–56.

[42] FLOYD, S., AND JACOBSON, V. Random Early Detection Gateways for Congestion Avoidance.
IEEE/ACM Trans. on Networking 1, 4 (August 1993), 397–413.

[43] FLOYD, S., AND PAXSON, V. Difficulties in Simulating the Internet. IEEE/ACM Trans. on
Networking 9, 4 (August 2001), 392–403.

[44] FRANCESCHINI, G. The Delivery Layer in MPEG–4. Signal Processing: Image Communication
15 (2000), 347–363.

168 Bibliography

[45] FROSSARD, P. FEC Performance in Multimedia Streaming. IEEE Communication Letters 5, 3
(March 2001), 122–124.

[46] FROSSARD, P., AND VERSCHEURE, O. Joint Source/FEC Rate Selection for Quality–Optimal
MPEG–2 Video Delivery. IEEE Trans. on Image Processing 10, 12 (December 2001), 1815–1825.

[47] GHANBARI, M. Video Coding: an Introduction to Standard Codecs. IEE Telecommunications
Series, 1999.

[48] GUILLEMOT, C., CHRIST, P., WESNER, S., AND KLEMETS, A. RTP Payload Format for
MPEG–4 with Flexible Error Resiliency. Internet Draft, March 2000.

[49] HARTANTO, F., KANGASHARJU, J., REISSLEIN, M., AND ROSS, K. W. Caching Video Objects:
Layers vs. Versions ? In Proc. of the International Conference on Multimedia and Expo (ICME)
(Lausanne, Switzerland, August 2002).

[50] HEINANEN, J., BAKER, F., WEISS, W., AND WROCLAWSKI, J. Assured Forwarding PHB
group. IETF RFC 2597, June 1999.

[51] HERPEL, C., AND ELEFTHERIADIS, A. MPEG–4 Systems: Elementary Stream Management.
Signal Processing: Image Communication 15 (2000), 299–320.

[52] HORN, U., STUHLMÜLLER, K., LINK, M., AND GIROD, B. Robust Internet Video Transmission
Based on Scalable Coding and Unequal Error Protection. Signal Processing: Image Communica-
tion 15 (1999), 77–94.

[53] HSIAO, P.-H., KUNG, H. T., AND K-S., T. Video over TCP with Receiver–based Delay Control.
In Proc. of NOSSDAV (Port Jefferson, New York, June 2001).

[54] HUANG, C.-L., AND LIAO, B.-Y. A Robust Scene–Change Detection Method for Video Seg-
mentation. IEEE Trans. on Circuits and Systems for Video Technology 11, 12 (December 2001),
1281–1288.

[55] HUANG, H.-C., WANG, C.-N., AND CHIANG, T. A Robust Fine Granularity Scalability using
Trellis–based Predictive Leak. IEEE Trans. on Circuits and Systems for Video Technology 12, 6
(June 2002), 372–385.

[56] JACOBSON, V. Congestion Avoidance and Control. In Proc. of SIGCOMM (Stanford, CA, August
1988), pp. 314–329.

[57] JACOBSON, V., NICHOLS, K., AND PODURI, K. An Expedited Forwarding PHB. IETF RFC
2598, June 1999.

[58] KALLENBERG, L. C. M. Linear Programming and Finite Markovian Control Problems. Mathe-
matisch Centrum, Amsterdam, 1983.

Bibliography 169

[59] KALVA, H., HUARD, J.-F., TSELIKIS, G., ZAMORA, J., CHEOK, L.-T., AND ELEFTHERIADIS,
A. Implementing Multiplexing, Streaming, and Server Interaction for MPEG–4. IEEE Trans. on
Circuits and Systems for Video Technology 9, 8 (November 1999), 1299–1312.

[60] KARMARKAR, N. A New Polynomial Time Algorithm for Linear Programming. Combinatorica,
4 (1984), 373–395.

[61] KIM, T., AND AMMAR, M. A Comparison of Layering and Stream Replication Video Multicast
Schemes. In Proc. of NOSSDAV (Port Jefferson, New York, June 2001), pp. 63–72.

[62] KIM, T., AND AMMAR, M. H. Optimal quality adaptation for MPEG–4 fine–grained scalable
video. In Proc. of INFOCOM (San Francisco, CA, April 2003).

[63] KIMURA, J.-I., TOBAGI, F. A., PULIDO, J.-M., AND EMSTAD, P. J. Perceived Quality and
Bandwidth Characterization of Layered MPEG–2 Video Encoding. In Proc. of the SPIE Interna-
tional Symposium on Voice, Video and Data Communications (Boston, MA, September 1999).

[64] KOENEN, B. MPEG–4 Multimedia for Our Time. IEEE Spectrum (February 1999), 26–33.

[65] KOPRINSKA, I., AND CARRATO, S. Temporal Video Segmentation: A Survey. Signal Process-
ing: Image Communication, 16 (2001), 477–500.

[66] KRASIC, C., LI, K., AND WALPOLE, J. The Case for Streaming Multimedia with TCP. In
Proc. of the Workshop on Interactive Distributed Multimedia Sytems (IDMS) (Lancaster, U.K.,
September 2001).

[67] KUROSE, J. F., AND ROSS, K. W. Computer Networking: A Top–Down Approach Featuring the
Internet. Addison Wesley, 2001.

[68] LAOUTARIS, N., AND STAVRAKAKIS, I. Adaptive Playout Strategies for Packet Video Receivers
with Finite Buffer Capacity. In Proc. of the International Conference on Communications (ICC)
(Helsinki, Finland, June 2001), pp. 969–973.

[69] LE LÉANNEC, F., TOUTAIN, F., AND GUILLEMOT, C. Packet Loss Resilient MPEG–4 Vompli-
ant Video Coding for the Internet. Signal Processing: Image Communication 15 (1999), 35–56.

[70] LEE, Y.-C., KIM, J., ALTUNBASAK, Y., AND MERSEREAU, R. M. Layered Coded vs. Multiple
Description Coded Video over Error–Prone Networks. Signal Processing: Image Communication
18 (2003), 337–356.

[71] LI, W. Overview of Fine Granularity Scalability in MPEG-4 Video Standard. IEEE Trans. on
Circuits and Systems for Video Technology 11, 3 (March 2001), 301–317.

[72] LI, W., LING, F., AND CHEN, X. Fine Granularity Scalability in MPEG–4 for Streaming Video.
In Proc. of the International Symposium on Circuits and Systems (ISCAS) (Geneva, Switzerland,
May 2000), pp. 299–302.

170 Bibliography

[73] LI, X., AMMAR, M., AND PAUL, S. Video Multicast over the Internet. IEEE Network 13 (April
1999), 46–60.

[74] LIN, E., PODILCHUK, C., JACQUIN, A., AND DELP, E. A Hybrid Embedded Video Codec using
Base Layer Information for Enhancement Layer Coding. In Proc. of the International Conference
on Image Processing (ICIP) (Thessaloniki, Greece, October 2001), pp. 1005–1008.

[75] LIU, C.-C., AND CHEN, S.-C. S. Providing Unequal Reliability for Transmitting Layered Video
Streams over Wireless Networks by Multi–ARQ Schemes. In Proc. of the International Confer-
ence on Image Processing (ICIP) (Kobe, Japan, October 1999), pp. 100–104.

[76] LOGUINOV, D., AND RADHA, H. On Retransmissions Schemes for Real–time Streaming in the
Internet. In Proc. of INFOCOM (Anchorage, AL, May 2001), pp. 1310–1319.

[77] LOGUINOV, D., AND RADHA, H. End–to–End Internet Video Traffic Dynamics: Statistical Study
and Analysis. In Proc. of INFOCOM (New York City, May 2002).

[78] LUI, J., LI, B., AND ZHANG, Y.-Q. Adaptive Video Multicast over the Internet. IEEE Multime-
dia (January–March 2003), 22–33.

[79] LUPATINI, G., SARACENO, C., AND LEONARDI, R. Scene Break Detection: a Comparison. In
Proc. of RIDE (Orlando, Florida, February 1998), pp. 34–41.

[80] MATHY, L., EDWARDS, C., AND HUTCHISON, L. The Internet : A Global Telecommunications
Solution. IEEE Network (July 2000).

[81] MCCANNE, S., JACOBSON, V., AND VETTERLI, M. Receiver–driven Layered Multicast. In
Proc. of SIGCOMM (Stanford, CA, August 1996), pp. 117–130.

[82] MCCANNE, S. R. Scalable Compression and Transmission of Internet Multicast Video. PhD
thesis, Univ. of California, Berkeley, 1996.

[83] MEDIAWARE SOLUTIONS. MyFlix 3.0. http://www.mediaware.com.au.

[84] MIAO, Z., AND ORTEGA, A. Optimal Scheduling for Streaming of Scalable Media. In Proc. of

Asilomar Conference on Signals, Systems, and Computers (Pacific Grove, CA, November 2001),
pp. 1357–1362.

[85] MIAO, Z., AND ORTEGA, A. Expected Run–time Distortion Based Scheduling for Delivery of
Scalable Media. In Proc. of International Conference of Packet Video (PV) (Pittsburg, PA, April
2002).

[86] MICROSOFT. ISO/IEC 14496 Video Reference Software. Microsoft–FDAM1–2.3–001213.

[87] MOON, S. B., KUROSE, J., AND TOWSLEY, D. Packet Audio Playout Delay Adjustment: Per-
formance Bounds and Algorithms. Multimedia Systems 6 (1998), 17–28.

[88] NELAKUDITI, S., HARINATH, R. R., KUSMIEREK, E., AND Z.-L., Z. Providing Smoother
Quality Layered Video Stream. In Proc. of NOSSDAV (Chapel Hill, North Carolina, June 2000).

Bibliography 171

[89] NONNENMACHER, J., BIERSACK, E., AND TOWSLEY, D. Parity–Based Loss Recovery for Re-
liable Multicast Transmission. In Proc. of SIGOMM (Cannes, France, September 1997), pp. 289–
300.

[90] OLSSON, S., STROPPIANA, M., AND BAINA, J. Objective Methods for Assessment of Video
Quality: State of the Art. IEEE Trans. on Broadcasting 43, 4 (December 1997), 487–495.

[91] ORTEGA, A. Variable Bit Rate Video Coding. In Compressed Video over Networks, M.-T. Sun
and A. R. Reibman, Eds. Marcel Dekker, 2001, ch. 9, pp. 343–382.

[92] PADHYE, J., FIROIU, V., TOWSLEY, D., AND KUROSE, J. Modeling TCP Throughput: A Simple
Model and its Empirical Validation. In Proc. of SIGCOMM (Vancouver, Canada, September
1998), pp. 303–314.

[93] PADHYE, J., KUROSE, J., TOWSLEY, D., AND KOODLI, R. A Model Based TCP–Friendly Rate
Control Protocol. In Proc. of NOSSDAV (Basking Ridge, NJ, June 1999).

[94] PAPADOPOULOS, C., AND PARULKAR, G. M. Retransmission–Based Error Control for Contin-
uous Media Applications. In Proc. of NOSSDAV (Zushi, Japan, April 1996).

[95] PAXSON, V. End–to–End Internet Packet Dynamics. IEEE/ACM Trans. on Networking 7, 3 (June
1999), 277–292.

[96] PERKINS, C., HODSON, O., AND HARDMAN, V. A Survey of Packet–Loss Recovery Techniques
for Streaming Audio. IEEE Network (Sept–Oct 1998), 40–47.

[97] PODOLSKY, M., VETTERLI, M., AND MCCANNE, S. Limited Retransmission of Real–Time
Layered Multimedia. In Proc. of the Workshop on Multimedia Signal Processing (MMSP) (Los
Angeles, CA, December 1998), pp. 591–596.

[98] QIU, L., ZHANG, Y., AND KESHAV, S. Understanding the Performance of Many TCP Flows.
Computer Networks 37, 3–4 (2001), 277–306.

[99] RADHA, H., CHEN, Y., PARTHASARATHY, K., AND COHEN, R. Scalable Internet Video Using
MPEG–4. Signal Processing: Image Communication 15 (September 1999), 95–126.

[100] RADHA, H., VAN DER SCHAAR, M., AND CHEN, Y. The MPEG–4 Fine–Grained Scalable Video
Coding Method for Multimedia Streaming over IP. IEEE Trans. on Multimedia 3, 1 (March 2001),
53–68.

[101] RAJENDRAN, R. K., VAN DER SCHAAR, M., AND CHANG, S.-F. FGS+: Optimizing the Joint
SNR–Temporal Video Quality in MPEG–4 Fine Grained Scalable Coding. In Proc. of the Inter-
national Symposium on Circuits and Systems (ISCAS) (Scottsdale, Arizona, May 2002), pp. 445–
448.

[102] REIBMAN, A. R., BOTTOU, U., AND BASSO, A. DCT–Based Scalable Video Coding with
Drift. In Proc. of the International Conference on Image Processing (ICIP) (Thessaloniki, Greece,
October 2001), pp. 989–992.

172 Bibliography

[103] REIBMAN, A. R., JAFARKHANI, H., WANG, Y., ORCHARD, M. T., AND PURI, R. Multiple–
Description Video Coding Using Motion–Compensated Temporal Prediction. IEEE Trans. on
Circuits and Systems for Video Technology 12, 3 (March 2002), 193–204.

[104] REIBMAN, A. R., WANG, Y., QIU, X., JIANG, Z., AND CHAWLA, K. Transmission of Multiple
Description and Layered Video over an EGPRS Wireless Network. In Proc. of the International
Conference on Image Processing (ICIP) (Vancouver, Canada, October 2000), pp. 136–139.

[105] REISSLEIN, M., LASSETTER, J., RATNAM, S., LOTFALLAH, O., FITZEK, F., AND PAN-
CHANATHAN, S. Traffic and Quality Characterization of Scalable Encoded Video: A Large–Scale
Trace-Based Study. Tech. rep., Dept. of Electrical Eng. Arizona State University, December 2002.

[106] REJAIE, R., ESTRIN, D., AND HANDLEY, M. Quality Adaptation for Congestion Controlled
Video Playback over the Internet. In Proc. of SIGCOMM (Cambridge, September 1999), pp. 189–
200.

[107] REJAIE, R., HANDLEY, M., AND ESTRIN, D. RAP: An End-to-End Rate-Based Congestion
Control Mechanism for Realtime Streams in the Internet. In Proc. of INFOCOM (New York,
March 1999), pp. 1337–1345.

[108] REJAIE, R., AND REIBMAN, A. Design Issues for Layered Quality–Adaptive Internet Video
Playback. In Proc. of the Workshop on Digital Communications (Taormina, Italy, September
2001), pp. 433–451.

[109] RHEE, I. Error Control Techniques for Interactive Low–bit Rate Video Transmission over the
Internet. In Proc. of SIGCOMM (September 1998), pp. 290–301.

[110] ROSENBERG, J., QIU, L., AND SCHULZRINNE, H. Integrating Packet FEC into Adaptive Voice
Playout Buffer Algorithms on the Internet. In Proc. of INFOCOM (Tel Aviv, Israel, March 2000),
pp. 1705–1714.

[111] ROSS, K. W. Randomized and Past–Dependent Policies for Markov Decision Processes With
Multiple Constraints. Operations Research 37, 3 (May–June 1989), 474–477.

[112] SAHU, S., NAIN, P., TOWSLEY, D., DIOT, C., AND FIROIU, V. On Achievable Service Differ-
entiation with Token Bucket Marking for TCP. In Proc. of SIGMETRICS (Santa Clara, CA, June
2001).

[113] SAPARILLA, D., AND ROSS, K. W. Optimal Streaming of Layered Video. In Proc. of INFOCOM
(Tel Aviv, Israel, March 2000), pp. 737–746.

[114] SAPARILLA, D., AND ROSS, K. W. Streaming Stored Continuous Media over Fair–Share Band-
width. In Proc. of NOSSDAV (Chapel Hill, North Carolina, June 2000).

[115] SAW, Y.-S. Rate Quality Optimized Video Coding. Kluwer Academic Publishers, 1999.

[116] SEN, S., REXFORD, J. L., DEY, J. K., KUROSE, J. F., AND TOWSLEY, D. F. Online Smoothing
of Variable–Bit–Rate Streaming Video. IEEE Trans. on Multimedia 2, 1 (March 2000), 37–48.

Bibliography 173

[117] SERVETTO, S. D. Compression and Reliable Transmission of Digital Image and Video Signals.
PhD thesis, University of Illinois, May 1999.

[118] SISALEM, D., AND SCHULZRINNE, H. The Loss–Delay Based Adjustment Algorithm: A TCP–
Friendly Adaptation Scheme. In Proc. of NOSSDAV (Cambridge, U.K., July 1998).

[119] SREENAN, C. J., CHEN, J.-C., AGRAWAL, P., AND NARENDRAN, B. Delay Reduction Tech-
niques for Playout Buffering. IEEE Trans. on Multimedia 2, 2 (June 2000), 88–100.

[120] SZE, H. P., LIEW, S. C., AND LEE, Y. B. A packet–loss–recovery scheme for continuous–media
streaming over the internet. IEEE Communications Letters 5, 3 (March 2001), 116–118.

[121] TAN, W.-T., AND ZAKHOR, A. Real–Time Internet Video Using Error Resilient Scalable Com-
pression and TCP–Friendly Transport Protocol. IEEE Trans. on Multimedia 1, 2 (June 1999),
172–186.

[122] TAN, W.-T., AND ZAKHOR, A. Video Multicast Using Layered FEC and Scalable Compression.
IEEE Trans. on Circuits and Systems for Video Technology 11, 3 (March 2001), 373–386.

[123] TANG, X., AND ZAKHOR, A. Matching Pursuits Multiple Description Coding for Wireless Video.
IEEE Trans. on Circuits and Systems for Video Technology 12, 6 (June 2002), 566–575.

[124] TUNG, Y.-S., WU, J.-L., HSIAO, P.-K., AND HUANG, K.-L. An Efficient Streaming and Decod-
ing Architecture for Stored FGS Video. IEEE Trans. on Circuits and Systems for Video Technology
12, 8 (August 2002), 730–735.

[125] TURLETTI, T., FOSSE-PARISIS, S., AND BOLOT, J.-C. Experiments With a Layered Transmis-
sion Scheme over the Internet. Tech. Rep. RR–3296, INRIA, France, November 1997.

[126] VAN DER SCHAAR, M., AND LIN, Y.-T. Content–based Selective Enhancement for Stream-
ing Video. In Proc. of the International Conference on Image Processing (ICIP) (Thessaloniki,
Greece, October 2001), pp. 977–980.

[127] VAN DER SCHAAR, M., AND RADHA, H. A Hybrid Temporal–SNR Fine–Granular Scalability
for Internet Video. IEEE Trans. on Circuits and Systems for Video Technology 11, 3 (March 2001),
318–331.

[128] VAN DER SCHAAR, M., AND RADHA, H. Unequal Packet Loss Resilience for Fine–Granular–
Scalability Video. IEEE Trans. on Multimedia 3, 4 (December 2001), 381–393.

[129] VAN DER SCHAAR, M., AND RADHA, H. Adaptive Motion–Compensation Fine–Granular–
Scalability (AMC–FGS) for Wireless Video. IEEE Trans. on Circuits and Systems for Video
Technology 12, 6 (June 2002), 360–371.

[130] VICISANO, L., RIZZO, L., AND CROWCROFT, J. TCP–like Congestion Control for Layered
Multicast Data Transfer. In Proc. of INFOCOM (San Francisco, CA, March–April 1998), pp. 996–
1003.

174 Bibliography

[131] VICKERS, B., ALBUQUERQUE, C., AND SUDA, T. Source Adaptive Multi–Layered Multicast
Algorithms for Real–Time Video Distribution. IEEE/ACM Trans. on Networking 8, 6 (2000),
720–733.

[132] VIERON, J., TURLETTI, T., HENOCQ, X., GUILLEMOT, C., AND SALAMATIAN, K. TCP–
Compatible Rate Control for FGS Layered Multicast Video Transmission Based on a Clustering
Algorithm. In Proc. of the International Symposium on Circuits and Systems (ISCAS) (Scottsdale,
Arizona, May 2002), pp. 453–456.

[133] VQEG. Video Quality Experts Group: Current Results and Future Directions. In Proc. of SPIE
Visual Communications and Image Processing (Perth, Australia, June 2000), pp. 772–753.

[134] WANG, J., AND CHUA, T.-S. A Framework for Video Scene Boundary Detection. In Proc. of
ACM Multimedia Conference (Juan-les-Pins, France, December 2002).

[135] WANG, Q., XIONG, Z., WU, F., AND LI, S. Optimal rate allocation for progressive fine granu-
larity scalable video coding. IEEE Signal Processing Letters 9, 2 (February 2002), 33–39.

[136] WANG, Y., CLAYPOOL, M., AND ZUO, Z. An Emirical Study of RealVideo Performance Across
the Internet. In Proc. of ACM Sigcomm Internet Measurement Workshop (San Francisco, CA,
November 2001).

[137] WANG, Y., AND ZHU, Q.-F. Error Control and Concealment for Video Communications: A
Review. Proceedings of the IEEE 86, 5 (May 1998), 974–997.

[138] WIDMER, J., DENDA, R., AND MAUVE, M. A Survey on TCP–Friendly Congestion Control.
IEEE Network 15, 3 (May–June 2001), 28–37.

[139] WILLINGER, W., AND PAXSON, V. Where Mathematics Meets the Internet. Notices of the
American Mathematical Society 45, 8 (August 1998), 961–970.

[140] WINKLER, S. Vision Models and Quality Metrics for Image Processing Applications. PhD thesis,
Swiss Federal Institute of Technology, 2000.

[141] WU, D., HOU, Y. T., AND ZHANG, Y.-Q. Transporting Real–Time Video over the Internet:
Challenges and Approaches. Proceedings of the IEEE 88, 12 (December 2000), 1855–1875.

[142] WU, D., HOU, Y. T., ZHU, W., ZHANG, Y.-Q., AND PEHA, J. M. Streaming Video over the
Internet: Approaches and Directions. IEEE Trans. on Circuits and Systems for Video Technology
11, 3 (March 2001), 1–20.

[143] WU, F., LI, S., AND ZHANG, Y.-Q. A Framework for Efficient Progressive Fine Granularity
Scalable Video Coding. IEEE Trans. on Circuits and Systems for Video Technology 11, 3 (March
2001), 332–344.

[144] YAJNIK, M., MOON, S., KUROSE, J., AND TOWSLEY, D. Measurement and Modelling of the
Temporal Dependence in Packet Loss. In Proc. of INFOCOM (New York City, March 1999),
pp. 345–352.

Bibliography 175

[145] YANG, Y., KIM, M., AND LAM, S. Transient Behaviors of TCP–Friendly Congestion Control
Protocols. In Proc. of INFOCOM (Anchorage, AL, May 2001), pp. 1716–1725.

[146] ZHANG, Q., ZHU, W., AND ZHANG, Y.-Q. Resource Allocation for Multimedia Streaming over
the Internet. IEEE Trans. on Multimedia 3, 3 (September 2001), 339–335.

[147] ZHANG, R., REGUNATHAN, S. L., AND ROSE, K. End–to–end Distortion Estimation for RD–
based Robust Delivery of Pre–compressed Video. In Proc. of Asilomar Conference on Signals,
Systems and Computers (Pacific Grove, CA, October 2001).

[148] ZHANG, Y., DUFFIELD, N., PAXSON, V., AND SHENKER, S. On the Constancy of Internet Path
Properties. In Proc. of ACM SIGCOMM Internet Measurement Workshop (San Francisco, CA,
November 2001).

[149] ZHANG, Y., PAXSON, V., AND SHENKER, S. The Stationarity of Internet Path Properties: Rout-
ing, Loss, and Throughput. Tech. rep., ACIRI, May 2000.

[150] ZHAO, L., KIM, J.-W., AND KUO, C.-C. J. Constant Quality Rate Control for Streaming
MPEG–4 FGS Video. In Proc. of the International Symposium on Circuits and Systems (ISCAS)
(Scottsdale, Arizona, May 2002), pp. 544–547.

