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Abstract 
 
This thesis is devoted to the analysis of high definition multispectral images of art painting 
masterpieces and to the reconstruction of the spectral reflectance in each pixel of these images.  
 
To this end, we were mainly interested in:  
 

1. the methods for spectral reflectance reconstruction of the surface of coloured materials in each 
pixel of an N-channel multispectral image (N > 3),  

2. the radiometrically controlled acquisition of multispectral images and the automatic 
calibration of the acquisition system.  

 
The problem of the spectral reconstruction being an ill posed inverse problem, multiple methods of 
reconstruction were developed in the scientific community. We propose a classification which enables 
us to better compare these techniques and to improve some of them. The improved methods have been 
implemented and tested. 
 
The methods usually used for the reconstruction of spectral reflectance from an N-channel image are 
mainly linear. To improve their precision and noise tolerance we introduced nonlinear techniques 
based on neural networks. Initially, multi-layer networks mixed with Principal Component Analysis 
(PCA) obtained good results. From this base we then worked on reconstruction using "Mixture 
Density Networks". This technique uses neural networks to estimate a probability distribution which is 
treated a posteriori to obtain a solution of the problem to be solved. The method was adapted to 
spectral reconstruction and very good results were obtained. This method was then enriched by 
developing an automatic system of architecture selection. Two strategies, genetic algorithms and 
random searches, were developed to this end. 
 
The radiometrically controlled acquisition of multispectral images and the automatic calibration of the 
acquisition system relate to the European project CRISATEL. The goal of this project is the spectral 
analysis and the virtual removal of varnish of art painting masterpieces. Within the framework of this 
project, we evaluated the performance of a new high definition multispectral camera. In particular, we 
studied the influence of the noise on the acquisition parameters and the spatial inhomogeneity of the 
light sources (two rotating elliptical projectors creating a luminous band synchronized with the 
movement of the camera CCD). We also characterized spectrally the filters, the CCD and the lamps. 
We evaluated the elements of the acquisition system. From the results of this evaluation an automatic 
calibration procedure was conceived and implemented. This automatic system determines the 
acquisition parameters (exposure time, CCD amplifiers gains and offsets). Its goal is to obtain the best 
dynamic range possible of the signal, and to gather the necessary data for the correction of the images. 
The elements to be corrected are dark noise, pixel sensitivity gain and the illuminant inhomogeneity. 
 
We also worked on other aspects related to multispectral imaging, i.e. the selection of the optical 
filters most adapted to the spectral reconstruction of a specific material, in our case oil pigments. For 
that we developed an optimisation technique which determines the parameters of a family of Gaussian 
filters which maximizes a quality criterion on the reconstruction obtained by using these filters. 
 
Finally, the work completed during this thesis was applied to art works. In the results chapter we 
present two examples: "Saint-Jacques le mineur" painted by George de la Tour and " Le départ pour 
Jersey" painted by Guillaume Fouace. The multispectral camera of the CRISATEL project is 
exploited by the Centre de Recherche et de Restauration des Musées de France (C2RMF). Currently, 
the camera is located in the Museum of Louvre where it indeed digitises art painting masterpieces. 
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Résumé 
 
Nos travaux de thèse ont été consacrés à l'analyse multispectrale en haute définition de tableaux de 
maître et à la reconstruction de la réflectance spectrale en chacun des pixels.  
 
Pour cela nous nous sommes intéressés principalement : 
 

1. aux méthodes de reconstruction de la réflectance spectrale de la surface du matériau imagé en 
chaque pixel à partir des valeurs des N canaux d'une image multispectrale (N>3), 

2. à l'acquisition en situation contrôlée des images multispectrales et au calibrage du système 
d'acquisition. 

 
Le problème de la reconstruction spectrale étant un problème inverse mal posé, de multiples méthodes 
de reconstruction ont été développées dans la communauté scientifique. Nous proposons une 
classification de ces méthodes qui nous permet de mieux les comparer et d'apporter à certaines d'entre 
elles des améliorations qui ont été implémentées et testées. 
 
Les méthodes couramment utilisées pour la reconstruction spectrale à partir d'une image à N canaux 
sont principalement linéaires. Pour améliorer la précision et la tolérance au bruit de la reconstruction 
nous avons introduit des techniques non linéaires à base de réseaux de neurones. Dans un premier 
temps des réseaux multicouches mélangés avec une approche par analyse en composantes principales 
ont permis d'obtenir de bons résultats. A partir de cette base nous avons ensuite travaillé sur la 
reconstruction en utilisant des "Mixture Density Networks". Cette technique s'appuie sur des réseaux 
de neurones pour estimer une distribution de probabilités qui est traitée à posteriori pour obtenir une 
solution du problème à résoudre. La méthode a été adaptée à la reconstruction spectrale et de très bons 
résultats ont été obtenus. Cette méthode a été ensuite enrichie en développant un système automatique 
de sélection de l'architecture des Mixture Density Networks. Deux stratégies, les algorithmes 
génétiques et les recherches aléatoires, ont été développées dans ce but. 
 
L'acquisition en situation contrôlée des images multispectrales et le calibrage du système d'acquisition 
est principalement lié à la problématique du projet européen CRISATEL, le but étant l'analyse 
spectrale et le dévernissage virtuel de tableaux de maîtres. Dans le cadre de ce projet, nous avons 
évalué les performances d'une nouvelle caméra multispectrale de haute définition. Nous avons 
notamment étudié l'influence du bruit sur les paramètres d'acquisition et l'inhomogénéité spatiale de 
l'éclairage à balayage produit par des projecteurs aux faisceaux lumineux synchronisés avec le 
mouvement du CCD. Nous avons également caractérisé spectralement les filtres, le CCD et les 
lampes. Nous avons évalué les éléments du système d'acquisition. A partir des résultats de cette 
évaluation un système automatique de calibrage a été conçu et implanté. Ce système automatique 
détermine les paramètres d'acquisition (temps de pause, gains et offsets des amplificateurs liés aux 
CCD). Son but est d'obtenir la meilleure dynamique possible du signal et de rassembler les données 
nécessaires pour la correction des images. Les éléments à corriger étant le bruit et le gain par pixel et 
l'inhomogénéité spatial de l'illuminant. 
 
Nous avons aussi travaillé sur d'autres aspects liés aux développements de nouvelles technologies de 
l'imagerie multispectrale, comme la sélection des filtres optiques les plus adaptés à la reconstruction 
spectrale de matériaux spécifiques comme les pigments à l'huile. Pour cela nous avons développé une 
technique d'optimisation qui permet de déterminer les paramètres d'une famille de filtres gaussiens qui 
maximise un critère de qualité sur les reconstructions obtenues en utilisant ces filtres. 
 
Les travaux de recherche réalisés au cours de cette thèse ont été appliqués à l'estimation spectrale de 
tableaux de maîtres. Nous présentons dans ce document des exemples de traitement de deux tableaux : 
"Saint-Jacques le mineur" de Georges de la Tour et " Le départ pour Jersey" de Guillaume Fouace. 
La caméra multispectrale du projet CRISATEL est à présent exploitée par le Centre de Recherche et 
de Restauration des Musées de France (C2RMF). Actuellement elle se trouve aux Musée du Louvre 
pour la numérisation d’une collection de tableaux de maîtres. 
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Introduction 
 
In digital multispectral imaging images with more than three bands are acquired and analysed. 
Conventional colour digital cameras producing three-band images appear to be limited when 
high-fidelity colour reproduction is to be performed. Over the last ten years multispectral 
imaging has focused on certain fields where colour fidelity is of the greatest importance. 
Prominent among these applications is that of imaging works of art, where an increasing 
demand for high-quality reproductions has emerged alongside a traditional scientific interest 
in multispectral imaging. In this framework, this thesis deals with the acquisition and analysis 
of multi-band images and it is more specifically concern with images coming from art 
paintings. 
 
Fundamental to this thesis and to multispectral imaging is the problem of the reconstruction of 
spectral reflectance curves from multi-band images. The pixel value of a channel in a 
multispectral image is the result of: 
 

1) the spectral interaction of the light radiant distribution with the reflectance of an object 
surface, 

2) the spectral sensitivity of the camera combined with the transmittance of the optical 
path including the filter corresponding to this channel.  

 
Retrieving the spectral reflectance function of the object surface at each pixel is highly 
desirable. We call this process spectral reflectance reconstruction or simply spectral 
reconstruction. It allows an intrinsic representation of an object surface property which is 
independent from light spectral distribution and from the spectral sensitivity of the camera 
used for the multispectral image acquisition. This representation can be used for many 
different purposes. A colour management system based on the spectral properties of materials 
is more general than a classical colour management based on colorimetry. Our main interest 
in this thesis is high fidelity colour management of fine art paintings. For instance, knowing 
the spectral reflectances in each pixel allows us to simulate the appearance of a painting under 
any virtual illuminant. Moreover, it allows virtual varnish removal which can be of great help 
for conservators in their planning of ancient art painting restoration. 
 
We can conceptually divide this thesis into two main parts. In the first part we study the 
problem of reconstructing the spectral reflectance of a material from a multispectral image. 
This problem presents both theoretically and practically interesting aspects. In the second 
part, this thesis is dedicated to the IST 1999 20163 European project CRISATEL 
(Conservation Restoration Innovation Systems for Image capture and Digital Archiving to 
Enhance Training Education and Lifelong Learning). In this European project a multispectral 
acquisition system taking 13-channel digital images of high spatial resolution (12,000 x 
30,000 pixels) has been developed in order to acquire high-fidelity images of art paintings in 
museums. This second part of our work is intimately related to the CRISATEL acquisition 
system. 
 
Both parts of this thesis mentioned above fusion properly in a Ph.D. in engineering. General 
methods of spectral reconstruction not proposed before can be found in this thesis along with 
their application to a actual acquisition systems. We choose first to start from the theoretical 
aspects and step by step show their applications in an existing cutting edge system. 
 
In the rest of this introduction we describe briefly the chapters that compose this document. 
The general ideas of this thesis are then structured here as they will be in the rest of the 
document. 
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Chapter 2. Nature of Data.  
 
We introduced in this chapter basic concepts about multispectral imaging including 
fundamental formulae and the main components of a multispectral system: light sources, 
filters, CCD and reflectances. Noise sources on multispectral acquisition systems are 
introduced. But this chapter goes further that an introduction to multispectral imaging. The 
spectral reflectance databases used on the rest of the thesis are presented and studied. Fourier 
analysis and Principal Component Analysis (PCA) are the mathematical tools used on their 
analysis.  
 
We emphasize that a new approach for the comparison of different spectral reflectance 
databases is also developed. This approach is simple and mathematically well founded. It is 
based on the Froebius distance between matrices. This distance is used as a measure of 
comparison of the orthogonal PCA bases associated to the studied spectral reflectance 
databases. Finally in this chapter, we present and analysed a new colour chart developed on 
the framework of the CRISATEL European project. 
 
Chapter 3. Basics of Spectral Reconstruction. 
 
This chapter introduces and describes the problem of spectral reconstruction, it also presents a 
state of the art on existing reconstruction techniques that are illustrated by using computer 
simulations.  
 
We propose a classification of the reconstruction techniques in three paradigms: 
 
i) direct reconstruction, which is based on the inversion of the camera model and needs 

the physical characterization of the acquisition system;  
ii) indirect reconstruction or learning-based reconstruction, where a calibrated colour 

chart and its multispectral image are used to construct a reconstruction operator;  
iii) reconstruction by interpolation, where the obtained camera responses are interpolated 

to find an approximation of the corresponding reflectance function.  
 
In our knowledge it is the first time that a survey with this classification is given. We believe 
it is useful to differentiate methods that have a very different conceptual origin. Our 
classification is physically and mathematically well founded and helps understanding the 
limits and requirements of the methods. 
 
Chapter 4. Improving Spectral Reconstruction Accuracy. 
 
In this brief chapter we describe two original ideas that we introduce to improve spectral 
reconstruction accuracy. These ideas are not themselves new reconstruction techniques but 
they can be applied to improve most of the existing spectral reconstruction methods. They are 
independent and they could even be integrated together if desired. 
 
The first idea relates with the generalisation abilities of existing linear reconstruction methods 
using a priori information about the objects to be imaged. Using the concept of generalisation 
we propose an algorithm based on intense random resampling that increases the generalisation 
capabilities of such methods. We present simulation results where an improvement of 50% of 
accuracy is obtained on the test sets used. This appears as a very promising result. 
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The second idea relates with the physical constraints to be respected by the reconstructed 
spectral curves. We have propose a spline projection operator which is simply applied after 
reconstruction and appears as a straightforward complement to any existing reconstruction 
technique. It guarantees that the obtained curves are bounded and at the same time smooth. 
 
Chapter 5. Spectral Reconstruction using Mixture Density Networks. 
 
We consider the problem of the reconstruction of spectral reflectance curves from 
multispectral images using techniques based on neural networks. In our knowledge, this is the 
first time that this approach is applied to the resolution of the spectral reconstruction problem. 
Our aim is to find a non-linear learning-based method able to provide noise resistance and 
good generalization. 
 
In this chapter two new methods are proposed. The first one uses a neural network to 
estimate, not directly, spectral curves. In fact, it estimates the coefficients associated to the 
orthogonal vectors obtained from a Principal Components Analysis (PCA) on a reflectance 
curves database. This method obtains good results on presence of quantification noise but we 
were not satisfy of its performance, compared to linear methods, when noise is not present. 
 
The second method applies Mixture Density Networks (MDN) to spectral reconstruction. The 
MDN method is based on the construction of conditional probability distributions between 
multispectral camera responses and sampled spectral reflectance functions. This approach 
leads to a reconstruction method obtaining good results when noise is present or not. The 
method has been tested using simulated and real data, the results being superior to linear 
methods. Moreover, we describe how the problem of architecture optimisation is solved. This 
last point makes the final method fully automatic with no parameters to be fixed by hand. 
 
Chapter 6. The CRISATEL Acquisition System. 
 
A high-resolution multispectral color imaging system has been developed for the European 
project CRISATEL. This system includes a multispectral camera and a dedicated high power 
lighting system, both developed by LUMIERE TECHNOLOGY, Paris, France. In this chapter 
we present and characterize the hardware of the CRISATEL camera. Afterwards, we evaluate 
this acquisition system and using the data obtained on the evaluation we propose and 
implement a calibration procedure. Finally, a correction system for the calibrated images is 
described. 
 
This is an experimental chapter where an actual multispectral acquisition system is studied. 
We have designed and implemented software intimately related to the acquisition system: the 
calibration and correction systems. These systems aim to acquire images that have not only 
high visual quality but also a radiometrically controlled signal. 
 
Chapter 7. Choosing Filters for accurate Spectral Reconstruction. 
 
We consider the problem of filter optimisation for increasing spectral reflectance 
reconstruction quality. The aim is to design camera filters with spectral transmittances which 
increase spectral reconstruction accuracy.  
 
We introduce a criteria for filter selection and the strategy for its optimisation. This criteria, 
called the v-measure, is originally used for colorimetric filter optimisation. We define a space 
that we call the Camera Visual SubSpace (CVSS). We apply the v-measure to the CVSS. This 
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allows optimisation of the transmittances without the introduction of a spectral reconstruction 
stage at each iteration of the optimisation algorithm. 
 
The proposed strategy appears to converge towards an acceptable solution. Moreover, it 
reveals very time-efficient. At the end of this chapter we apply the proposed algorithm to the 
optimisation of 10 Gaussian-shaped visible filters for the CRISATEL camera. The optimised 
set of filters are compared by simulation with the actual ones mounted on the camera. 
 
Chapter 8. General Results. 
 
This chapter presents a first set of spectral reconstruction results obtained by using the 
techniques already introduced in this thesis. The chapter is dedicated to data acquired on real 
experimental environments. No simulations appear here. Two different multispectral 
acquisition systems where used to obtain the data: 
 

i)  A multispectral camera used at the National Gallery of London. 
ii) The CRISATEL multispectral system using HQI lamps. 

 
Both systems have the common point of using the same set of 13 interference filters. The 
chapter is divided in two main parts: the first one dedicated to the data obtained at the 
National Gallery and a second part dealing with data from the CRISATEL project.  
 
The present thesis was finished before the CRISATEL project was completely achieved. The 
phase of art paintings scanning was starting at that time. A general test was first performed on 
several Georges de la Tour paintings that were scanned at the museum of Albi (France) 
between November 28th and December 3th, 2003. We show in this chapter one example of 
calibration, spectral reconstruction and illuminant simulation of one painting of this first test 
data, Saint Jacques le mineur. An intensive scanning stage followed this first test. We also 
show a painting of Guillaume Fouace, Le départ pour Jersey, that belongs to this stage. It was 
scanned by members of the CRISATEL project at the Musée Thomas Henry in Cherbourg. At 
this moment, changes are not expected on the CRISATEL system, at least fundamental 
changes. Data shown here are preliminary but representavive enough to be presented. 
 
 
Chapter 9. Conclusion and Future work. 
 
General conclusions and the future prospects open after this thesis are discussed on this brief 
chapter. 
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2.1 Introduction 
 
In this chapter we introduce fundamental facts about multispectral imaging. The chapter is 
divided in two sections. Firstly we present basic information about how a multispectral 
acquisition system works. Secondly, we introduce and give insight into the nature of spectral 
reflectance curves. 
 
In the first part the concept of multispectral imaging is introduced. Then, formulae of the 
image formation process are presented. Components involved in the image formation process 
of multispectral imaging are briefly introduced: usual light sources, filters and CCDs. We 
finish this part by treating a fundamental problem of any digital acquisition system: the noise 
sources.  
 
On the second part of the chapter we will focus on the analysis of spectral reflectance curves. 
This point is basic, before taking any decision concerning design or implementation; we want 
to understand the nature of spectral curves as much as possible. We first present the Spectral 
reflectances databases used on this thesis. We analyze them by using various established 
mathematical techniques and we give insight into their properties. Two sections are dedicated 
to Fourier analysis and Principal Component Analysis (PCA). In this context we introduce the 
Froebius norm as a measure of comparison of the orthogonal bases obtained from the PCA. 
This new approach allows the comparison of different databases. In order to complete the 
discussion about the nature of spectral reflectance curves we introduce the concept of noise on 
the measurements of these data. Finally, we present, analyse and compare a new colour chart 
developed on the framework of the CRISATEL European project. 
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2.2 Multispectral imaging 
 
We start the discussion about multispectral imaging by the term itself. This name is somehow 
controversial and its appropriateness is currently being discussed within the scientific 
community. In general, most people call multispectral camera a device based on a digital 
greyscale camera, normally using a non-masked CCD (Coupled Charge Device). Several 
optical filters are interposed in the optical path, and several greyscale images using N filters 
are obtained. Consequently a multispectral image is a compendium of N images that have 
been acquired using N different filters. In the case N = 3 we do not call the system 
multispectral, we call it a digital colour camera. When N is big, for instance 100 the system is 
call hyperspectral. Hyperspectral acquisition systems are typically found in remote sensing. 
The techniques used on this field are sometimes very similar to the ones used in multispectral 
imaging. For a brief survey of Remote Sensing made for the multispectral community see 
[Schott, 2003]. 
 
In Figure 2-1 we show a graphical representation of a multispectral acquisition system. In this 
case an external barrel containing 6 filters is shown. The barrel rotates to automatically 
change filters between acquisitions. This is a very common mechanical system found in 
multispectral imaging but not the only one. There exist systems that do not need any 
mechanical displacement in order to change the filter transmittance. Liquid Crystal Tunable 
Filters (LCTF) provide this technology. They are basically an accumulation of different 
layers, each layer containing linear parallel polarisers sandwiching a liquid crystal retarder 
element [Brettel et al., 2000].  
 
 

 
 
 
 

Figure 2-1 Graphical representation of an multispectral acquisition system. 

 
A multispectral camera is then a device using several filters, the exact number used depends 
on the system and normally varies between 4 and 20. For instance an acquisition system 
commercialised by ColorAixperts in Aachen, Germany, uses 16 filters, [Herzog and Hill, 
2003], and on the European project CRISATEL the camera developed by Lumiere 
Technologie, Paris, France, uses 10 filters on the visible range of the spectrum, [Cotte and 
Dupouy, 2003]. The older European project VASARI used seven filters, [Saunders and 
Cupitt, 1993]. The more extended application of multispectral imaging aims to produce high-
end colour images. These applications are not in the mass media market at the moment. They 
are highly specialized. Examples of application can be found in the textile industry [Herzog 
and Hill, 2003] or on the art-works reproduction [Saunders and Cupitt, 1993]. Recently a 

Observed Object Filter Barrel 

Greyscale 
Camera 

Multispectral 
Image 
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multispectral video camera for accurate colour reproduction has been developed using 6 
channels, [Ohsawa et al., 2003]. Due to this prominent high end colour reproduction 
application most of the filters used in multispectral imaging are bandpass filters into the 
visible range of the electromagnetic spectrum. Currently some researchers consider that the 
term multispectral imaging is too general. Different names are proposed and used. This 
wiliness of change is clear in the titles of some recent papers, examples are [Hardeberg, 2003] 
that uses Multispectral Colour Imaging and [Sun and Fairchild, 2003] that propose the 
interesting term Visible Spectral Imaging. 
 
In the rest of this section we introduce the basic concepts found in a multispectral acquisition 
system. 
 
2.2.1 Image acquisition system model 
 
The main components involved in an image acquisition process are depicted in Figure 2-2. 
We denote the spectral radiance of the illuminant by lR(λ) , the spectral reflectance of the 
object surface imaged in a pixel by r(λ), the spectral transmittance of the optical systems in 
front of the detector array by o(λ) , the spectral transmittance of the k-th optical colour filter 
by φk(λ) and the spectral sensitivity of the CCD array by α(λ). Note that only one optical 
colour filter is represented in Figure 2-2. In a multichannel system, a set of filters are used. 
 
 

 
 
 

Figure 2-2 Schematic view of the image acquisition process. The camera response depends on the 
spectral sensitivity of the sensor, the spectral transmittance of the colour filter and camera lens, the 

spectral reflectance of the objects in the scene, and the spectral radiance of the light source. 

 
Supposing a linear optoelectronic transfer function of the acquisition system, the camera 
response ck for an image pixel is then equal to: 

 

 
max max

min min

( )  ( )   ( )  ( )  ( )    ( )  ( )    k R k k k kc l r o d n r w d n
λ λ

λ λ
λ λ λ φ λ α λ λ λ λ λ= + = +∫ ∫ , (2.1) 
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where wk(λ) = lR(λ) o(λ) φk(λ) α(λ) denotes the spectral sensitivity of the k-th channel, and nk 
is the additive noise as it will be described in section 2.2.2. The assumption of system 
linearity comes from the fact that the CCD sensor is inherently a linear device. However, for 
real acquisition systems this assumption may not hold, for example due to electronic 
amplification non-linearities or stray light in the camera, [Farrell and Wandell, 1993], [Maitre 
et al., 1996]. Stray light may be strongly reduced by appropriate black anodised walls inside 
the camera. For residual stray light and electronic non-linearities appropriate corrections may 
be necessary. By modelling the nonlinearities of the camera as: 
 

 
max

min

( ( )  ( )    )k k kc r w d n= Γ +∫
λ

λ
λ λ λ , (2.2) 

 
we may easily obtain the response: 
 
 1( )k kc c−= Γ  (2.3) 
 
of an ideal linear camera by inverting the function Γ. 
 
By uniformly sampling the spectra at N equal wavelength intervals, we can rewrite equation 
(2.1) as a scalar product in matrix notation as: 
 
 t

k k kc n= +r w , (2.4) 
 
where r = [r(λ1)  r(λ2) ...  r(λN)]t and wk= [wk(λ1)  wk(λ2) ...  wk(λN)]t are vectors containing the 
sampled spectral reflectance function, and the sampled spectral sensitivity of the k-th channel 
of the acquisition system, respectively. Now, the vector cK= [c1 c2 ... cK ]t representing the 
responses of all K filters may be described using matrix notation as: 
 
 cK = Θ r + n, (2.5) 
 
where n = [n1 n2 ... nK ]t, Θ is the K-line, N-column matrix of filter transmittances multiplied 
by the camera characteristics, that is Θ =[wk(λn)]

t. This matrix represents the spectral 
sensitivity of each k-th channel at each n-th sampled wavelength. 
 
In the following subsections we introduce in more detail three important components that 
appear as functions on the image formation model of equation (2.1): the light source, the 
optical filters and the CCD. 
 
 
2.2.1.1 Light sources 
 
In this subsection we introduce one of the most important components of a multispectral 
system: light sources. We consider their spectral properties which are characterised by their 
relative spectral radiant distributions. The spectral range of these distributions is usually 
confined to the visible. However these distributions extent to the infrared and ultraviolet and 
can have “side effects” that are out of the scope of this thesis (e.g. fluorescence produced by 
ultraviolet lighting). 
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There exists a large variety of light sources obtained either by a natural phenomenon or by a 
physically created reaction. [Wyszecki and Stiles, 1982] gives the following classification of 
light sources: 
 

• Daylight 
• Thermal radiators 
• Electric discharge lamps 
• Electroluminiscent sources 
• Light Emiting Diodes (LED) 
• Lasers 

 
Multispectral images are normally taken in laboratories or places where the light source is 
stable, and can be properly controlled and measured. It is rare to find outdoors multispectral 
images because of the absence of stability and knowledge about the light source. Daylight is 
then not very commonly used as light source. Electroluminescent sources and LEDs are also 
not adapted as they use to have a too low radiant energy. We do not know any application of 
laser in multispectral imaging, even if possible this kind of light is by definition 
monochromatic and then it has no sense to use it in conjunction with optical filters. 
 
Finally, only two kinds of light sources are used in multispectral imaging: thermal radiators 
and electric discharge lamps. Well known thermal radiators are Tungsten and Tungsten-
Halogen lamps. Examples of electric discharge lamps are Mercury Vapour lamps, Xenon 
bulbs, Fluorescent lamps or Flashtubes. 
 

 
 

Figure 2-3 Two different emisivity functions of (left panel) an halogen lamp and (right panel) n 
discharge lamp. 

 
In Figure 2-3 we can see two spectral emissivity functions corresponding to a Tungsten-
Halogen and a Xenon discharge lamp. With this figure we illustrate two typical spectral 
distribution of illuminants which are used in multispectral imaging. We can easily imagine the 
effect of these different functions on equation(2.1). If all other functions are fixed the camera 
responses will be very different. We note that in the case of the discharge lamp its spectral 
emissivity function is not continuous. This fact makes that a discontinuous function appears 
under the integral sign of equation (2.1). We will come back to this point later in this section 
but this property can causes serious problems when performing spectral reconstruction. For its 
continuous shape halogen is one of the most used light sources on multispectral acquisition 
systems. 
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2.2.1.2 Optical Filters 
 
In the broadest sense, an optical filter is a device or material that changes selectively or non 
selectively the spectral distribution of the incident radiant flux, [Wyszecki and Stiles, 1982]. 
A filter may be designed to select a region of the spectrum within which a portion of the 
incident radiant flux is transmitted, whereas at all other regions of the spectrum the incident 
flux is not transmitted. This kind of filters is called bandpass and is often used in 
multispectral imaging. Depending on the size of the band they are classified as narrow or 
wide band filters. This classification is fundamental and has important consequences in the 
properties of the images. In Figure 2-4 we show two Gaussian-shaped filters centred at 600 
nm. The area contained under the spectral transmittance of a wideband filter is bigger than for 
narrowband filters, this implies low spectral resolution but high signal to noise ratio. On the 
other hand, the nature of the wideband integration performs a low pass filtering. Narrow band 
filters gives more useful information as they can be seen as an approximation to the Dirac 
sampling function. 
 
In multispectral acquisition systems we currently find three types of filter technology. We will 
briefly describe them here for completeness. 
 

• Absorption filters. They are made of glass, gelatine or liquids in which colouring 
agents are dissolved or suspended. The incident radiant flux on the first surface of the 
filter propagates throught the filter medium and emerges from the second surface. 
Portions of the radiant flux arriving at the first and second surfaces are lost by 
reflection, whereas the remaining portions are transmitted but reduced because of 
absorption within the filter medium. 

 
• Interference filters. They are multilayer thin-film devices. Wavelength selection is 

based on the property of destructive light interference. Incident light is passed through 
coated reflecting surfaces. The essential component of these filters is the simplest 
Fabry-Perot interferometer, two partially reflecting thin-film layers separated by a 
dielectric spacer. The distance between the reflective coatings determines which 
wavelengths destructively interfere and which wavelengths are in phase and will 
ultimately pass through the coatings. If the reflected beams are in phase, the light is 
passed through two reflective surfaces. If the multiple reflections are not in phase, 
destructive interference reduces the transmission of these wavelengths though the 
device to near zero. This principle strongly attenuates the transmitted intensity of light 
at wavelengths that are higher or lower than the optimal wavelength for which the 
multiple reflection are in phase. 

 
• Electronically Tuneable Filters (ETF). A tuneable filter is a device whose spectral 

transmission can be electronically controlled through the application of voltage or an 
acoustic signal. There are no moving parts and no discontinuity in the spectral 
transmission range, thus providing finer spectral sampling, and rapid and random 
switching between bands. A wide variety of different ETFs is commercially available. 
The majority of them can be classified under three categories: liquid crystal devices 
based on birefringence, acousto-optical based on diffraction, and Fabry-Perot based on 
optical interference. We will not give here more details about them, please, refer to 
[Poger and Angelopoulou, 2001] for an easy to read introduction to their properties. 
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Figure 2-4 Two Gaussian-shaped filters centred at 600 nm, (left panel) a wideband filter, (right panel) 

a narrowband filter. 

 
2.2.1.3 CCD sensitivity 
 
Existing multispectral cameras are based on Charge Coupled Devices (CCDs). A CCD is a 
silicon-based integrated circuit consisting of a dense matrix of photodiodes that operate by 
converting photons into electronic charge. Electrons generated by the interaction of photons 
with silicon atoms are stored in a potential well and can subsequently be transferred across the 
chip through registers and output to an amplifier. We will not get into details of the physics of 
a CCD that are complex and cumbersome. For the design of a multispectral system we need to 
know the CCD sensitivity as a function of wavelength. 
 

 
Figure 2-5, Two examples of CCD sensitivity functions: (left panel) Eikonix CCD, (right panel) 

Thompson linear array CCD. 

 
In Figure 2-5 we show the spectral sensitivity functions of two different CCDs. On the left 
panel we present the sensitivity of the CCD used in an Eikonix camera and on the right panel 
the sensitivity of the Thomson linear array that is used in the CRISATEL camera produced by 
Lumiere Technologie. Both curves are drawn as given by the manufacturers. In this figure we 
can already see one general feature of CCD sensitivity that is higher on the red part of the 
visible spectrum than on the blue region. This means, when combined with Tungsten-Halogen 
lamps, that the resulting imaging system needs to compensate this lack of sensitivity in the 
blue range by a higher exposure time. The result is that the signal in the blue range is more 
affected by noise. Currently, CCD manufacturers make efforts to compensate this problem, 
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lastest generation of CCDs for astronomical imaging perform better on the lower side of the 
visible spectrum. 
 
 
2.2.2 Noise into the image formation process 
 
We have seen that the image formation process presented in 2.2.1 is noisy. We rewrite here 
for clearness equation(2.5): 
 
 cK = Θ r + n , (2.6) 
 
where n is the vector of random noise. In this subsection we are interested in the nature of n. 
We will see that n can be decomposed into several components. 
 
Understanding the different sources of noise in a multispectral system can be of great use. In 
the following we describe the main sources of noise found in this sort of systems. 
 
2.2.2.1 Noise sources related to a CCD. 
 
We can classify noise sources into two types: temporal and spatial. Temporal noise can be 
reduced by frame averaging, while spatial noise cannot. However, some spatial noise can be 
removed by frame subtraction or gain/offset correction techniques. Examples of temporal 
noise that are discussed in this subsection include shot noise, output amplifier noise, and dark 
current shot noise. Spatial noise sources include photo response non-uniformity and dark 
current non-uniformity. According to [Eastman Kodak, 2001], we have the following noise 
sources associated with a CCD: 
 
• Dark Current is the result of imperfections or impurities in the depleted bulk silicon or at 

the silicon-silicon dioxide interface. These sites introduce electronic states in the 
forbidden gap which act as steps between the valence and conduction bands, providing a 
path for valence electrons to sneak into the conduction band, adding to the signal 
measured in the pixel. The efficiency of a generation centre depends on its energy level, 
with states near mid-band generating most of the dark current. The generation of dark 
current is a thermal process wherein electrons use thermal energy to hop to an 
intermediate state, from which they are emitted into the conduction band. For this reason, 
the most effective way to reduce dark current is to cool the CCD, decreasing electrons of 
the thermal energy required to reach an intermediate state. 
 
Dark current generates two types of noise: dark current non uniformity and dark current 
shot noise. Dark current non-uniformity is a noise that results from the fact that each pixel 
generates a slightly different amount of dark current. This noise can be eliminated by 
subtracting a dark reference frame from each image. The dark reference frame should be 
taken at the same temperature and with the same integration time as the image. This is 
normally performed at the calibration stage. Although the dark signal can be subtracted 
out, the shot noise associated with this signal cannot. As in the case of photon shot noise, 
the amount of dark current shot noise is equal to the square root of the dark signal, D: 
 

 Ddark =σ . (2.7) 
 
There exist sources of dark current that do not follow the general dark current equation 
and cannot be reliably subtracted out. Examples include dark current spikes, generated by 
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proton-induced cluster damage or by various metallic contaminants, contained in the bulk 
silicon. 

 
• Shot Noise is the noise associated with the random arrival of photons at any detector. It is 

the physical fundamental limit of light detection systems in noise performance. Since the 
time between photon arrivals is governed by Poisson statistics, the uncertainty in the 
number of photons collected during a given period of time is simply: 
 

 Sshot =σ , (2.8) 
 
where shotσ is the shot noise and S is the signal, both expressed in electrons. So a 10,000-
electron exposure will have a shot noise of 100 electrons. This implies that the best signal-
to-noise ratio possible for a 10,000-electron signal is 10,000/100 = 100. 

 
• Output Amplifier Noise is composed of two primary sources, white noise and flicker 

noise. Together, they make up the CCD’s “read out noise”: 
 

1. The output amplifier has a resistance that causes thermal noise. The effective 
resistance in this case is the output impedance of the source follower. This type of 
thermal noise is sometimes called ‘Johnson noise’ or simply ‘white noise,’ since 
its magnitude is independent of frequency. 

 
2. Flicker Noise, also called 1/f noise, is a noise that has an approximately inverse 

dependence on the amplifier frequency. The higher the frequency or pixel rate, the 
lower the noise. More specifically, the noise power decreases by a factor of 10 for 
each decade increase in frequency. 

 
In general, white noise increases with amplifier area. Assuming a constant drain current, 
Flicker noise decreases with amplifier area. The goal of amplifier design is to find the 
lowest-noise compromise between competing geometries for the desired operating 
frequency. But read out noise always exists. 
 

• Photo Response Non-Uniformity (PRNU): Due to process variations, not all pixels 
demonstrate the same sensitivity to light. The result at the pixel-to-pixel level is a faint 
checkerboard pattern in a flat-field image. Usually this variation is on the order of a 
percent or two of the average signal, and is linear with average signal. The noise 
associated with this variation in sensitivity can be removed by ‘flat-fielding,’ a process by 
which a previously-captured flat-field image is used to calibrate out the differences 
between pixels. This is obviously done at calibration step. Although this process removes 
the photo response non-uniformity, the subtraction of images introduces an increase in 
shot noise by a factor 2. 

 
Once we know the more important sources of CCD noise we realize that the model in 
equation (2.6) cannot take into account spatial noise sources. This is because the equation 
represents the acquisition process of one pixels. There is an underlying assumption: “all pixels 
in the CCD behave in the same way”. As a consequence, PRNU and spatial dark current noise 
must be treated in a pre-spectral reconstruction stage, let’s call it calibration. In any case 
errors introduced in the calibration are errors that will affect the spectral reconstruction. This 
source of error is normally not taken into account and we expect the result of the calibration 
stage to be as good as possible. 
 



 20 

The noise sources in a CCD camera normally taken into account in the multispectral 
community, see [Haneishi et al., 1997] or [Burns, 1997], are dark current NDC, read-out noise 
NRO and shot noise NS. Dark current and read-out noise are both signal-independent while 
shot noise NS is signal-dependent [Healey and Kondepudy, 1994]. Other noise sources are 
normally ignored. Consequently, CCD noise can be expressed as: 
 
 n = NDC + NRO + NS . (2.9) 
 
It is known that dark current noise has a positive mean and fluctuates around it, while read out 
noise and shot noise have zero mean. Representing the dark current noise by a positive mean 

DCN  plus fluctuation nDC we have: 
 
 NDC = DCN  + nDC . (2.10) 
 
Then equation (2.9) can be rewritten as: 
 
 n = DCN  + NC + NS , (2.11) 
 
where NC = nDC + NR . 
 

DCN  can be estimated at the calibration stage, and subtracted from the obtained image as part 
of pre-processing. The remainder consists of signal-independent noise NC and signal-
dependent noise NS. The variance of the remaining noise, 2

nσ , can be expressed as the sum of 
the variances of NC and NS because the occurrence of each one of these noises is independent 
of the other: 
 
 2 2 2

n C Sσ σ σ= + , (2.12) 
 
where 2

Cσ  and 2
Sσ  represent the variances of signal-independent noise and signal-dependent 

noise, respectively. 
 
The characterization of the noise requires some experimentation to obtain actual values of the 
parameters involve in the noise model. This requires access to dedicated equipment and is 
time consuming, normally it is done in a laboratory or a controlled environment. The data 
from this analysis can be exploited at the spectral reconstruction stage. We will see for 
instance the Wiener filter that integrates such data. 
 
2.2.2.2 Quantification Error 
 
The process of transforming an analog signal into its digital counterpart introduces noise, 
which is intrinsic to the quantization process and is a consequence of the loss of information 
that happens when an analog signal is packed into a finite representation. Consequently we 
are forced to deal with this kind of noise as all digital cameras provide quantized values for 
the image pixels. 
 
The relationship between the number of bits b used to quantize the camera response, and the 
signal-to-noise ratio (SNR) is given by: 
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where ( )bquant c represents the quantisation of c into b bits. Note that the camera responses 
are normalised before quantization so that the response of a perfect reflecting diffuser yields 
to the maximum value cmax = 1. 
 
2.2.2.3 Other sources of error 
 
In the two preceding subsections we spoke about sources of errors associated with the camera 
itself but noise errors can exist in other parts of the multispectral acquisition system. 
 
• In a multispectral system we use often calibrated colour charts. These charts are measured 

by a spectrophotometer. These measurements are not free of noise. 
 
• Differences in viewing/illumination geometry between the image acquisition setup and the 

reflectance measurements of the colour charts obtained with a spectrophotometer. 
 
• A dedicated illuminant is normally used in multispectral imagery. Any temporal 

instablility of the illuminant introduces errors. 
 
• Deviation from the linear acquisition model due to effects such as i) insufficiently 

corrected non-linear transfer function, ii) too coarse spectral sampling, iii) residual camera 
sensitivity outside of the wavelength interval used in the model, and iv) fluorescence. 

 
At this moment we understand that noise is significant in multispectral imaging. In the rest of 
this thesis we will come back to this problem extensively. We will study the noise in the 
framework of the real CRISATEL acquisition system in Chapter 6. 
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2.3 Nature of spectral reflectance curves 
 
 
In this section we are interested in the nature of spectral reflectance because it is a physical 
characteristic of object surfaces. Knowing the spectral reflectance of a surface is richer than 
just knowing colour as colour is a psychophysical concept while reflectance is physical. 
Reflectance is then attached to the imaged object while colour depends on several factors such 
as the illumination, the spectral sensitivity of the observer or the appearance of surrounding 
objects. Moreover, colour can easily be deduced from spectral reflectance. Here, we try to 
give some insight into the nature of spectral reflectances, specially into the ones we will use in 
the rest of the thesis. 
 
The section is organised as follows. We first present the spectral reflectance databases used on 
this thesis. Afterwards, we perform a Fourier analysis of these databases. This justifies the 
smoothness found on the spectral curves and the used sampling ratio. Then, we statistically 
analyse the databases by Principal Component Analysis (PCA). In this context we introduce 
the Frobenius norm as a measure of comparison of the orthogonal bases obtained from the 
PCA. This new approach allows the comparison of different databases. In order to complete 
the discussion about the nature of spectral reflectance curves we introduce the concept of 
noise on the measurements of these data. Finally, we present, analyse and compare a new 
colour chart developed on the framework of the CRISATEL European project. 
 
 
2.3.1 Spectral Reflectance Databases 
 
We use several databases of spectral reflectances in this thesis. We present them in the 
following. The first three of them are kindly provided by D. Saunders from The National 
Gallery, London, the last one is downloaded from the Color Research Laboratory at 
University of Joensuu [Jaaskelainen, 1994]: 
 

• the “Kremer” database contains 184 spectral curves of pigments produced by Kremer 
Pigmente, Germany. 

• the “Selected Artists” database contains 67 pigments chosen among a collection of 
artist’s paintings. 

• the “Restoration” database contains a selection of 64 pigments used in oil painting 
restoration. 

• the “Munsell” database is not issue from the same canvas painting environment. It 
contains  spectral curves corresponding to 1269 matte Munsell colour chart samples. 

• the “MacbethDC” database. We have scanned in our laboratory a GretagMacbethTM 
DC color chart using a Minolta CS-100 spectroradiometer. From this experiment we 
obtained 200 spectral curves from 380 to 780 nm sampled at 1 nm intervals, each 
curve corresponding to a colour patch of the chart. In Figure 2-6 we can see an image 
of the scanned chart. 

• the “Pine Tree” database. This database contains 370 spectral reflectances of the 
needles of young (less than 40 years old) individual Scots pines. This is part of an 
experiment to measure forest reflectances conducted by Vaisala Laboratory, 
University of Joensuu, Finland. In the same experiment Norway spruce and the leaves 
of a birch were also measured but we do not use them as dataset.. The data were 
collected in Finland and Sweden. Measurements using a PR 713/702 AM 
spectroradiometer were made in clear weather during the growing season in June 
1992. Each measurement represents the average spectrum of thousands of leaves of a 
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growing tree. For further reference on this experiment see [Jaaskelainen, 1994]. We 
include this database in some of our tests because its nature is fundamentally different 
from the others we presented above. 

 

 
Figure 2-6 Image of the GretagMacbethTM DC color chart. 

 
These databases having been acquired in different laboratories, consequently sampled at 
different rates and with different wavelength limits, we resampled them in order to represent 
each spectral reflectance curve as a sequence of regularly sampled values from 400 to 760 nm 
at 10 nm intervals, which corresponds to 37 values. This is a way of preparing data to be 
analysed homogeneously. 
 
2.3.2 Fourier Analysis. 
 
Spectral reflectances of pigments being smooth functions, they are band limited as shown by 
[MacDonald et al., 1999] who performed a Fourier analysis over several spectral reflectance 
data sets. In this section we apply the discrete Fourier transform (DFT) to our spectral data. 
We use the fast Fourier transform (FFT) for the analysis, that is a well known quick 
implementation of the DFT. Our aim is to show which frequencies are included in our 
particular data sets. 
 
As it is well known, the Fourier transform is based on the assumption that it is possible to take 
any periodic function of time x(t) and resolve it into an equivalent infinite summation of sine 
waves and cosine waves with frequencies that start at 0 and increase in integer multiples of a 
base frequency f0 = 1/T, where T is the period of x(t). The expansion is:  
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An expression of the form of the right hand side of this equation is called a Fourier Series. A 
Fourier Transform aims to calculate all the ak and bk values to produce a Fourier Series, given 
the base frequency and the function x(t). The a0 term can be understood as the cosine 
coefficient for k=0. There is no corresponding zero-frequency sine coefficient b0 because the 
sine of zero is zero, and therefore such a coefficient would have no effect. 
Of course, we cannot do an infinite summation of any kind on a real computer, so we have to 
settle for a finite set of sines and cosines. Our signals having a finite number of samples they 
are represented by a vector of 37 numbers as indicated in section 2.3.1. We can pretend that 
the function x(t) is periodic, and that the period is the same as the length of the elements 
vector representing the signal. In other words, this vector of 37 coefficients is repeated 
forever, and we call this periodic function x(t). The duration of the repeated section defines 
the base frequency f0 in the equations above. Then, f0 = samplingRate / N, where N is the 
number of samples (37). 
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The output of the Fourier Transform will be the sine and cosine coefficients ak and bk for the 
frequencies f0, 2* f0, 3* f0, etc. This pairs ak and bk are normally represented as a complex 
number. The FFT is an algorithm which converts a sampled complex-valued function of time 
into a sampled complex-valued function of frequency. In our case spectral reflectance curves 
are real-valued functions, so all the imaginary parts of the input are set to zero (this is done 
automatically for most FFT implementations).  
 
In order to properly understand the FFT, the following equation shows the relationship 
between the inputs and outputs that the FFT algorithm tries to approximate: 
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where xk is the kth complex-valued input (time-domain) sample, yp is the pth complex-valued 
output (frequency-domain) sample, and N is the total number of samples. Note that p is in the 
range [0..N-1]. This formula is the discrete version of the Fourier transform or DFT but it is 
not how the FFT algorithm is implemented. Raw DFT calculation requires O(N2) operations, 
whereas the FFT requires O(N*log2(N)). Clearly the FFT is quicker than the raw DFT, but the 
algorithm loses some precision and impose some conditions. In this sense an important point 
to take into account is N, the size of the array given as output by the FFT. The value of N in 
the FFT must be a positive integer power of 2. For example, an array of 1024 is allowed, but 
one of size 1000 is not. The smallest allowed array size is 2. There is no upper limit to the 
value of N other than limitations inherent in memory allocation. This limitation is imposed by 
the FFT algorithm to be able to execute in O(N*log2(N)). If this limitation does not hold a 
normal DFT could be computed, but the order of the algorithm becomes O(N2) as said above. 
We choose N (FTT output) as the smaller power of two containing the signal to be analysed. 
 
The ordering of the frequencies ak and bk in the output of the FFT merit some attention 
because they contain both positive and negative frequencies. Both of them are necessary for 
the method to work when the inputs are complex-valued (i.e. when at least one of the inputs 
has a non-zero imaginary component). Most of the time, the FFT is used for strictly real-
valued inputs, as it is the case in our analysis. The FFT, when fed with real-valued inputs, 
gives outputs whose positive and negative frequencies are redundant. They are complex 
conjugates, meaning that their real parts are equal and their imaginary parts are negatives of 
each other. Our inputs being real-valued, we can get all the needed frequency information just 
by looking at the first half of the output arrays. As a consequence just half of our N array is 
useful and intervals [0..N/2 - 1] and [N/2..N-1] present symmetric values. 
 
At this point, we have described the operation of the FFT in terms of speed and other 
important considerations to take into account, but in order to proceed with the analysis we 
need to describe the data obtained in the first half of the output array. The index N/2  is a 
special case: it corresponds to the Nyquist frequency, which is always half the sampling rate. 
Nyquist frequency is in our case f0 /2, that is the biggest frequency component of the original 
input signal that could be recover. FFT inputs being real numbers, the Nyquist frequency 
index N/2 -1 in the output will always have a real value (meaning the imaginary part will be 
zero, or something really close to zero due to floating-point roundoff errors). This is due to 
the symmetry mentioned above, so the Nyquist frequency is its own negative frequency 
counterpart. Therefore, it must equal its own complex conjugate, which in turn forces it to be 
a real number. 
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The first element of the FFT output array, i=0 contains the average value of all the input 
samples. For the output indices i = 0, 1, 2, ..., N/2-1, the value of the frequency expressed in 
Hz is f = samplingRate * i / N. The negative frequency counterpart of every positive 
frequency index i = 0, 1, 2, 3, ..., N/2-1, is i' = N - i. 
 
In our analysis we are mainly interested in the magnitude of each frequency component, 
normally called the power spectrum. In fact, this is sensible because one of the aims of our 
analysis is to see if our signals are bandlimited; for this purpose, only the magnitudes of the 
frequency components are important. We calculate the power spectrum as follow 
 
 powerSpectrum = FFToutput x ( FFToutput)* / N , (2.16) 
 
where * represents the complex conjugate and operation x is the multiplication of two vectors 
element by element. In Figure 2-7 we show some examples of reflectance curves with their 
calculated power spectrum. Note that because of the division by N in equation (2.16) the used 
power spectrum is a power spectrum distribution where the areas are normalised. Three 
important details are to be taken into account when looking at these curves: 
 

• Because Fourier analysis supposes that the curves are periodic, we have periodised the 
signals. This operation involves two steps: i) we modify the function in order to fit 
zero on the first at last elements of the signal, ii) we mirror (central symmetry) this 
modified signal. Due to this process our original of 37 samples curves become 
periodic signals of 72 samples. 

• Because the FFT algorithm just works on signals having number of samples equal to a 
power of two, we look for the closest power of two that contains our signals. In our 
case this power is 128, we complete our 72 samples signal with zeros up to 128 and 
we feed the FFT algorithm with this data. 

• Finally, the FFT algorithm outputs a 128 elements complex vector, we apply equation 
(2.16) on it to obtain the power spectrum. Due to the symmetrical structure of the 
output data just the first half 64 elements contain significant information going from 
the so called DC (smaller) frequency to the Nyquist (highest) frequency. 

 
In the three samples shown in Figure 2-7 we clearly see that most of the power spectrum is 
nearly zero, note that the vertical axis are different because the curves have the same area but 
different shapes. Values that can be consider non zero are concentrated in the left hand side of 
the power spectral graphs. In order to finish our analysis we perform the power spectrum for 
all the curves contained in our databases. This results are shown together in Figure 2-8. But 
some further analysis is needed to find a frequency threshold that will summarize numerically 
that our signals are clearly bandlimited. In order to find such a threshold, after performing the 
power spectrum for all curves in a database we calculate the mean power spectrum of all of 
them. As we normalize magnitudes of the frequency components between 0 and 1 we choose 
a value less than 0.0005 as being an indicator of no presence of these frequency components 
in the curves. Finally, we sequentially access the FFT output vector from the N/2-1 element 
(corresponding to the Nyquist frequency) in decreasing order. The frequency associated to the 
first element found having a magnitude bigger than 0.0005 is the searched frequency 
threshold. This threshold is graphically shown in Figure 2-8 as a vertical dashed line. 
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Figure 2-7 (left panels) three spectral reflectance curves coming from the Kremer database, (right 

panels) corresponding power spectrum distribution. 
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Figure 2-8 Power spectrum of 30 curves in the databases: Restoration (left top panel), Selected Artists 
(right top panel), Kremer (left central panel), MacbethDC (right central panel), Pine Tree (left bottom 

panel), Munsell (right bottom panel). Space between dashed lines and left vertical axes indicate the 
band where signals present frequency components higher than the threshold. 

 
 
In Table 2-1 we indicate the exact values of the calculated thresholds for all our databases. 
This threshold can be easily used to compare the databases. As a conclusion we can say that 
our databases are indeed bandlimited. 
 

Table 2-1: Fourier analysis results. 

 frequency threshold 
Kremer 17 
Selected Artists 19 
Restoration 20 
Macbeth DC 23 
Pine Tree 15 
Munsell 17 
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2.3.3 Principal Component Analysis. 
 
Principal Component Analysis (PCA) is a well known statistical tool that finds an orthogonal 
basis for the analysed data in which each vector of the basis has an associated energy that 
indicates the statistical relevance of the vector. PCA is a linear method based on second order 
moments over data (variance analysis). If the reader is not familiar with PCA he will find 
suitable introductions to this technique in most introductory textbooks to statistics or linear 
algebra as [Golub and VanLoan, 1983] or [Lawson and Hanson, 1974]. 
 
PCA has been extensively used in the context of multispectral imaging as a technique for 
compression. See for instance [MacDonald et al, 2001] for a complete paper on this subject. 
In order to reduce the number of coefficients representing a reflectance curve a few PCA 
coefficients keeping most energy of the signal are used. As an example, we show on the left 
panel of Figure 2-9 the accumulated variance per singular value for the Macbeth colour chart. 
On the right panel of the same figure we can see its normalized singular values plotted against 
a logarithmic scale. We want to note that keeping only the first singular values keeps most of 
the variance and consequently this basic fact can be directly used for compressing spectral 
reflectance functions. 
 

 
Figure 2-9. (left panel) Accumulated variance per singular values for the Macbeth colour chart, (right 

panel), normalized singular values plotted against a logarithmic scale 

 
We performed a principal component analysis over all our spectral databases because we want 
to understand the statistical nature of their spectral reflectance. In Table 2-2 the results of this 
analysis indicate the dimension of the orthogonal basis needed to keep 90% and 99% of signal 
variance. 
 

Table 2-2: PCA analysis results. 

 90 % 99 % 
Kremer 7 22 
Selected Artists 6 16 
Restoration 6 14 
Macbeth DC 6 15 
Pine Tree 4 21 
Munsell 6 21 
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With the performed analysis at 99% of signal variance we clearly see that the databases have 
very different complexity. But at the moment our analysis just deals with the effective 
dimensionality of data. This kind of results are very useful for compression. For instance, we 
could decide to use 22 PCA coefficients for representing the spectral curves of the Kremer 
database. Spectral curves being sampled at 10nm intervals on the visible range from 400 to 
760 nm. They are represented by a vector of 37 numbers. Reducing this vector to 22 
coefficients supposes a 1.7 compression ratio while keeping a high quality in the curves. For 
less exigent applications 7 components could be enough, giving a 5,3 compression ratio. 
 
In this chapter we are not directly interested in compression but we would like a way of 
comparing the spectral curves of different databases. The fact that two databases have equal 
PCA dimension at 90% or 99% variance does not mean that both databases are similar. In 
fact, they could contain very different sorts of curves while having similar dimensions. This 
fact motivated us to go further in the analysis of this datasets and to compare the spaces 
obtained by the PCA. These spaces are represented by reduced orthogonal basis that keep 
most energy (e.g. 99%) from the original analysed spaces. Mathematically, we seek for a 
measure of similarity between two subvectorial spaces of the same vectorial space. 
 
In the quest for this measure we come back to linear algebra and found the Froebius norm 
[Golub and Van Loan, 1983]. We recall its definition and some properties in the following: 
 
Froebius norm definition of a MxN matrix A is defined as: 
 

 
2

1 1

m n

ijF
i j

a
= =

= ∑∑A , (2.17) 

 
where aij is the i-th row j-th column element of matrix A. Froebius norm is invariant with 
respect to orthogonal transformations. 
 

F F=OAZ A , where O, Z are unitary matrices. 
 

2 2 2
1 ... pF σ σ= + +A , where σi , i=1,…,p are the singular values of A. 

 
It is interesting to see that Froebius norm is like the Euclidian norm applied for matrices or 
vectorial spaces. However, we are not interested in the norm of a subvectorial space but in 
comparing two subvectorial spaces. We introduced the Froebius distance, calculated as 
 

 ( ) ( )2
,U V U V u v

n m
t t

F i jF
i j

d = = ∑∑ , (2.18) 

 
where U is a l x m matrix, V a l x n matrix, ui a column vector of U and vj a column vector of 
V. ui and vj both belonging to the same vectorial space of dimension l. In the case of matrices 
containing orthogonal vectors in their columns we can clearly see that the measure 
corresponding to the square of this distance is closely related to the dimension of the 
intersection of the two subspaces defined by matrices U and V: for two orthogonal subspaces 

2
Fd  is zero and for one subspace with itself the measure is the dimension of this subspace. For 

two subsets of an orthogonal basis the measure is exactly the dimension of the intersection. In 
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a general case, the measure relates closely to the dimension of the intersection and the 
principal angles between subspaces. 
 
Principal angles 1 2, ,..., [0, / 2]αθ θ θ π∈  between the column vectors of matrices U and V, are 
defined recursively by, [Golub and Van Loan, 1983]: 
 
 cos( ) max max

u U v V
u v u vT T

k k kθ
∈ ∈

= = , (2.19) 

 
subject to: 
 1= =u v  (2.20) 

0T
i =u u     i=1,…,k-1 

0T
i =v v     i=1,…,k-1 

 
We calculated the square of the Frobenius distance among the reduced orthogonal set of PCA 
vectors associated to our spectral databases, keeping signal variance at 90% and 99%. Results 
are shown in Table 2-3 and Table 2-4 . 
 

Table 2-3: Square of Frobenius distances at 90% of variance. 
90% Kremer Selected 

Artists 
Restoration Macbeth 

DC 
Pine Tree Munsell 

Kremer 7 5.95 5.94 5.66 3.16 5.81 
Selected Artists -- 6 5.33 5.51 3.12 5.14 
Restoration -- -- 6 5.42 3.03 5.59 
Macbeth DC -- -- -- 6 2.98 5.55 
Pine Tree -- -- -- -- 4 2.85 
Munsell -- -- -- -- -- 6 

 
 

Table 2-4: Square of Frobenius distances at 99% of variance. 
99% Kremer Selected 

Artists 
Restoration Macbeth 

DC 
Pine Tree Munsell 

Kremer 22 15.83 13.95 14.92 14.50 19.22 
Selected Artists -- 16 13.86 14.56 11.18 15.83 
Restoration -- -- 14 13.61 13.61 13.92 
Macbeth DC -- -- -- 15 10.81 14.96 
Pine Tree -- -- -- -- 21 13.48 
Munsell -- -- -- -- -- 21 

 
Our databases are surprisingly related, the above analysis revealing that most signals of these 
databases are linear combinations of the other databases. In fact, the two small databases are 
practically included in the Kremer set either at 90 or 99% of signal variance. Kremer database 
is slightly different because its complexity is greater than the others as shown in Table 2-2. 
 
In Figure 2-10 we show the first 16 vectors of the orthogonal basis provided by the PCA for 
the Macbeth DC database. We observe that the spectral curves of the basis vectors oscillate 
more when their corresponding singular values decrease, last singular values being associated 
to vectors with high frequencies.  
 



 31 

 
 
 
 
 

 
 

Figure 2-10 First 16th PCA vectors form the Macbeth DC database. 
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2.3.4 Noise on the measurements of reflectance 
 
The curves of the spectral reflectance databases have been obtained by physical 
measurements which include different type of noise or errors. As we use these spectral 
reflectance curves as references the discussion and understanding of errors affecting them are 
important. 
 
Measurements are done by a spectrophotometer, which is an apparatus designed to measure 
the spectral transmittance and spectral reflectance of objects. It allows us to compare at each 
wavelength the radiant power leaving an object with that incident to it, [Wyszecki and Stiles, 
1982]. In a spectrophotometer there exist two fundamental elements, the light source and the 
detector. Sometimes the light source can be a monochromator, we will not deal with that case 
here, we suppose a usual light source having a spectral distribution over a defined spectral 
range. The measured sample can be placed inside a chamber, a usual from for this chamber, 
when existing, is a sphere. This sphere is called integrating sphere. 
 
The position of the detector, the light source and the sample to be measured must be fixed. 
This “spatial setup” is called the measurement geometry and the CIE (Commission 
Internationale de l’Eclairage) recommends four of them: 
 

• (45/0) 
The sample is illuminated by one or more beams whose axes are at an angle of 45 
from the normal to the sample surface. The angle between the direction of viewing and 
the normal to the sample should not exceed 10o. The angle between the illumination 
axis and any ray of the illuminating beam should not exceed 5o. The same restriction 
should be observed in the viewing beam. 

 
• (0/45) 

This geometry correspond to exchange the position of sensor and light source in the 
preceding (45/0) geometry. 

 
• (d/0) 

The sample is illuminated diffusely by an integrating sphere. The angle between the 
direction of viewing and the normal to the sample should not exceed 10o, sometimes 
this angle is known and noted as (d/α), e.g. (d/8) for a 8o angle. The integrating sphere 
may be of any diameter provided the total area of its apertures does not exceed 10% of 
the internal reflecting sphere area. 

 
• (0/d) 

This geometry corresponds to exchange the locations of sensor and light source in the 
preceding (d/0) geometry. 

 
From this above description we can already identify some sources of errors on the 
measurements. Different companies propose spectrophotometers with different sensors, light 
sources or integrating spheres, then there exists a variation on the measurements depending on 
the tool being used. But, another important source of variability between different 
spectrophotometers is their measurement geometry. Consequently, two main factors can 
generate errors: the inter apparatus variability (specially when produced by different 
companies) and the measurement geometry variability. 
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On the CRISATEL project we collaborate with people that studied the importance of both the 
above described sources of variability on the reflectance measurement. Details are given on 
[CRISATEL d13, 2003]. In the rest of this section we will summarize some of their results. 
 
A test colour chart  was measured at The National Gallery (London) with a spectrocolorimeter 
Minolta 2600d consisting of a Silicon photodiode array, an integrating sphere with a d/8 
geometry and a xenon flash lamp. Another spectrophotometer was used in Paris, on the 
laboratory of optics at University Paris 6, to measure the same chart. Both results had small 
differences. On the other hand, they compared a set of ceramic standards from the National 
Physical Laboratory (United Kingdom) under two different geometries, 0/45 and 8/d. The 
conclusion was that the spectral differences obtained with different geometric set ups are not 
negligible. 
 
As a conclusion we can say that the geometry of the measurements should always be the 
same. If we deal with measurements taken using the same geometry and desirably the same 
apparatus, we can consider our measures as comparable. 
 
2.3.5 The CRISATEL chart 
 
In the framework of the European Project CRISATEL a new colour chart has been developed 
by Pébéo, a company specialised in the production of pigments for fine arts. In this section we 
present and analyse this chart. An image of this chart is presented on Figure 2-11. The chart is 
a juxtaposition of three sets of patches. They contain exactly the same patches sorted in the 
same way. The difference between these sets is the application of varnish over the pigments. 
The first set has no varnish, the second set has a thin layer of matt varnish and the third set has 
a layer of brilliant varnish. Each set contains 117 colour patches, 81 are colour patches and 36 
forms a greyscale. 
 

 
Figure 2-11. Pébéo Chart. 

 
We will just analyse the set of non varnished patches of the chart. The influence of varnish on 
the appearance of the patches has already been studied on [CRISATEL d13, 2003]. This chart 
was measured by several spectrophotometers in different laboratories of London and Paris, 
the measures being performed between 360 and 700 nm at 10 nm intervals. We note that this 
is different from the sampling interval we normally used on this chapter and on the rest of this 
thesis.  
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The first analysis performed on the chart is the Fourier analysis. As the sampling interval is 
smaller than the one in section 2.3.2 we have fewer samples in our signal. The periodised 
version of the reflectance functions of this chart can be represented by a 64 dimensions vector 
instead of 128 for the analysis in section 2.3.2. We show on Figure 2-12 the power spectra of 
24 curves uniformly selected from the patches. Using the same criterion as in section 2.3.2 we 
find a threshold value of 11 for the spectral reflectances. To be comparable with the ones 
already presented on Table 2-1 an approximate factor of two is applied to the threshold on 
Figure 2-12 giving a new comparable threshold value of 22. 
 

 
Figure 2-12. Fourier analysis on 30 selected curves of the Pébéo colour chart. 

 
A PCA analysis is also performed on the Pébéo chart reflectances. Results are presented on 
Table 2-5 . We see that the found dimensions at 90% and 99% variance are similar to the ones 
found for the Macbeth DC database. This is interesting as both results are coming from 
commercial colour charts and their comparison can be of great use. 
 

Table 2-5. PCA analysis for the Pébéo Colour Chart 

 90% 99% 
Pébéo 6 14 

 
On Table 2-6 we use the Froebius norm to compare the Pébéo chart with the databases 
presented on section 2.3.1. This table provides useful information that can be directly 
compared to the one presented in Table 2-3 and Table 2-4. 
 

Table 2-6. Comparing the Pébeo colour charts with other refectances datasets 

 90% 99% 
Kremer 5.92 13.85 
Selected Artists 5.73 12.65 
Restoration 5.86 12.23 
Macbeth DC 4.87 11.90 
Pine Tree 3.29 11.55 
Munsell 4.90 13.81 
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Finally, we compared the Pébéo and the Macbeth DC colour charts. We projected the spectral 
reflectances of both charts on the CIELAB space using the D50 illuminant. We recall that 
CIELAB allows the specification of colour perceptions in terms of a three-dimensional space, 
see Apendix I for a brief introduction to basic colorimetry. The L*-axis is known as the 
lightness and extends from 0 (black) to 100 (white). The other two coordinates A* and B* 
represent redness-greenness and yellowness-blueness respectively. Samples for which a* = b* 
= 0 are achromatic and thus the L*-axis represents the achromatic scale of greys from black to 
white. On Figure 2-13 we show the projections of the reflectances of the CIELAB space on 
the LA, LB and AB planes. Asterisks represent patches of the Pébéo chart while crosses refer 
to patches of the Macbeth DC chart. This diagrams visually helps to understand the different 
distributions of the patches. Clearly, the Macbeth DC chart is based on the regular sampling 
of the lightness axis for its design. Pébéo chart is not regularly distributed on lightness, 
presents a larger greyscale, has less colour patches (less dense on the AB plane) and has a 
different colour gamut. A new Pébéo chart with three times more colour patches is under 
construction. 
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Figure 2-13. Comparing the CIELAB coordinates of the patches of Pébéo (right panels) and Macbetch 

(left panels) colour charts. 
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2.4 Conclusion 
 
In this chapter we have introduced basic concepts about multispectral imaging. Fundamental 
formulae were described and the main components of a multispectral system (light sources, 
filters, CCD and reflectances) have been described. Moreover, the spectral reflectance 
databases used on the rest of this thesis are presented and studied. Fourier analysis and 
Principal Component Analysis (PCA) are the mathematical tools used on their analysis.  
 
A new approach for the comparison of different databases is also developed. It is based on the 
Froebius norm as a measure of comparison of the orthogonal bases obtained from the PCA. 
This approach is simple and mathematically well founded. 
 
Noise sources on multispectral acquisition systems and on the measurements of reflectance 
are introduced. Their description helps understanding the basic limitations of an imaging 
system based on the concept of spectral reflectance instead of colour. 
 
Finally, we have presented, analysed and compared a new colour chart developed on the 
framework of the CRISATEL European project. 
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3 Basics of Spectral Reconstruction 
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3.1 Introduction 
 
 
We consider the problem of the reconstruction of spectral reflectance curves from 
multispectral images. The pixel value of a channel in a multispectral image is the result of: 
 

3) the spectral interaction of the light radiant distribution with the reflectance of an object 
surface and  

4) the spectral sensitivity of the camera combined with the transmittance of the optical 
path including the filter corresponding to this channel.  

 
Retrieving the spectral reflectance function of the object surface at each pixel is highly 
desirable. We call this process spectral reflectance reconstruction or simply spectral 
reconstruction. It allows an intrinsic representation of an object surface property which is 
independent from light spectral distribution and from the spectral sensitivity of the camera 
used for the multispectral image acquisition. This representation can be used for many 
different purposes. Our interest is in high fidelity colour reproduction of fine art paintings. As 
an example, knowing the spectral reflectances in each pixel allows us to simulate the 
appearance of a painting under any virtual illuminant. 
 
The aim of this chapter is to introduce the problem of spectral reconstruction and to present a 
survey on reconstruction techniques by the introduction of all necessary concepts for their 
understanding and analysis. We illustrate all the techniques by using computer simulations. 
These simulations allow us to give some insight to the behaviour of the techniques. 
Discussions are given along with simulation results. 
 
We propose a classification of the reconstruction techniques in three paradigms: i) direct 
reconstruction, which is based on the inversion of the camera model and needs the physical 
characterization of the acquisition system; ii) indirect reconstruction or learning-based 
reconstruction, where a calibrated colour chart and its multispectral image are used to 
construct a reconstruction operator; iii) reconstruction by interpolation, where the obtained 
camera responses are interpolated to find an approximation of the corresponding reflectance 
function. In our knowledge it is the first time that a survey with this classification is given. 
We believe it is useful to conceptually differentiate methods that have a very different 
conceptual origin. Our classification is physically and mathematically well founded and helps 
understanding the limits and requirements of the methods. 
 
This chapter contains five main sections. In the next section the problem of spectral 
reflectance estimation from camera responses is presented. Fundamental formulae is given 
and, based on them, the classification briefly described in the above paragraph is introduced. 
The following section 3.3 deals with the solution of least squares problems. Afterwards, a 
brief section 3.4 recalls the role and importance of noise when performing spectral 
reconstruction. Section 3.5 describes the metrics used in this thesis for the evaluation of 
spectral reflectance matches. Finally, a survey of the existing reconstruction techniques is 
presented. This survey is illustrated by computer simulations. The methods are discussed, 
analysed and compared with others to give a good understanding of their behaviours. 
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3.2  Spectral reflectance estimation from camera responses 
 
We now consider a multispectral image capture system consisting of a monochrome CCD 
camera and a set of K filters, for a given illuminant. The spectral sensitivity wk(λ), k=1 ... K, 
of the k-th channel of the acquisition system including the illuminant radiance, the filter 
transmittances, and the CCD sensitivity are supposed known. The camera response ck 
obtained with the k-th filter, discarding acquisition noise, is given by: 
 

 
max

min

( )   ( )  
λ

k k
λ

c r w dλ λ λ= ∫ . (2.21) 

 
The vector c = [c1 c2 ... cK ]t represents the response to the set of K filters. By uniformly 
sampling the spectrum at N equal wavelength intervals, we can rewrite equation (2.21) as a 
scalar product in matrix notation as: 
 
 t

k kc = w r , (2.22) 
 
where r = [r(λ1)  r(λ2) ...  r(λN)]t and wk = [wk(λ1)  wk(λ2) ...  wk(λN)]t, are vectors containing 
the sampled spectral reflectance function, and the sampled spectral sensitivity of the k-th 
channel of the acquisition system, respectively. Now, the vector c may be described using 
matrix notation as: 
 
 c = Θ r, (2.23) 
 
where Θ is the K-line, N-column matrix defining the imaging process, Θ =[w1 ,…, wK]t. The 
matrix element Θk,n = wk(λn) represents the spectral sensitivity of each k-th channel at each n-
th sampled wavelength. We note that the transposed N-line, K-column matrix Θ2 =[ w1 ,…, 
wK] is also commonly used in the multispectral scientific community, leading to the following 
equation equivalent to (2.23): 
 
 c = 2

tΘ  r. (2.24) 
 
The relationship Θ = 2

tΘ  is elementary but important to keep in mind when reading the 
multispectral literature. This is because the formulae of the reconstruction techniques take 
different forms depending on the choice of notation. 
 
We now address the problem of how to retrieve the spectrophotometric information r from 
the camera responses c . This is different from a direct colorimetric transformation that 
matches camera responses c into for example the CIELAB space. This transformation is 
constrained to a specific illuminant. This approach typically minimises the RMS error in a 
way similar to what is often done for conventional three-channel image acquisition devices. 
Given an appropriate regression model, this is found to give quite satisfactory results in terms 
of colorimetric errors [Burns, 1997]. However, for our applications we are concerned not only 
with the colorimetry of the imaged scene, but also with the inherent surface spectral 
reflectance of the viewed objects. Thus the colorimetric approach is not sufficient. 
 
In existing multispectral acquisition systems, the filters often have narrow bandpass shapes 
and are located at approximately equal wavelength intervals. For the reconstruction of the 
spectral reflectance numerous techniques have been proposed. 
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Adopting the linear-model approach of equation (2.23), the problem of the estimation of a 
spectral reflectance r from the camera responses c becomes a quest for an inverse linear 
operator Q  that reconstructs the spectrum from the K measurements as follows: 
 
 r̂  = Q c. (2.25) 
 
Our goal will thus be to determine the matrix Q that minimises a distance d(r, r̂ ), given an 
appropriate error metric d. Some solutions to this problems are presented and discussed in the 
following subsections. 
 
3.2.1 Spectral reflectance estimation as an ill-posed problem 
 
The notion of a well-posed problem, “un problème bien pose”, goes back to a famous paper 
by Jacques Hadamard published in 1902, [Hadamard, 1902]. In an earlier paper in 1901 he 
already mentioned “questions mal posées”, ill-posed problems. He argued that the problems 
that are physically important are both possible and determined, i.e., solvable and uniquely 
solvable. He gave examples of problems that are not well posed; he thought that these 
problems have no physical meaning. However, he was not right and plenty of important 
problems in technology, medicine, and natural sciences are ill-posed. In fact, any 
measurement, except for the most trivial ones, gives rise to an inverse problem that is ill-
posed. In our context the problem of spectral reconstruction is ill-posed, this is important to 
understand when looking for new methods to solve it. 
 
A well-posed problem in the sense of Hadamard is a problem that fulfil the following three 
conditions: 
 

1. The solution exists. 
2. The solution is unique. 
3. The solution depends continuously on the problem data. 

 
If any of these conditions is not respected the problem becomes ill-posed. Note that both first 
and second conditions deal with the feasibility of the problem, the last condition relates with 
the possible implementation of a stable numerical procedure for its resolution. The solution of 
a problem is always based on some data, typically obtained from experimentation. If the 
solution does not depend “smoothly” on the problem data a small variation on the data can 
create huge variations on the solutions, resulting in strong instability which is not acceptable. 
 
A classical example of ill-posed problems is a Fredholm integral equation of the first kind. 
They are equations involving a function f(x), and integrals of that function to be solved for 
f(x). If the limits of the integral are fixed, the equation is called a Fredholm integral equation. 
If one limit is variable, it is called a Volterra integral equation. If the unknown function is 
only under the integral sign, the equation is said to be of the first kind. If the function is both 
inside and outside, the equation is called of the second kind. If we consider the spectral 
reconstruction problem we see that equation (2.21) is based on a Fredholm integral equation 
of the first kind. Consequently, our reconstruction problem is an ill-posed problem. 
 
We can also observe that the problem is ill-posed when taking a look at the discrete system 
we want to inverse, 
 
 c = Θ r. (2.26) 
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The matrix Θ is in general not a square matrix (K ≠ N) then the system itself is over or 
underdetermined by definition. This means that either the system has no solution or it has 
many. Clearly this does not respect conditions 1 or 2 of Hadamard definition: the problem is 
ill-posed. Third condition is not as easy to see as the others but it must be respected since it is 
a big issue for numerical solutions. We will come back to this condition latter on this chapter. 
 
When solving ill-posed problems the word regularization immediately appears. 
Regularization is used to make well-posed a problem that is ill-posed. Once the problem is 
well-posed we can solve it. The so called Tikhonov regularisation is one of the oldest and 
more well-known techniques, see [Tikhonov, 1963] for the original paper of its inventor or 
[Tikhonov and Arsenin, 1977] for broadest references. 
 
Regularization is then very important for the spectral reconstruction problem. All the 
reconstruction methods we will describe on this thesis regularize the problem in someway, 
even when not explicitly said. 
 
3.2.2 The two spectral reconstruction problems 
 
Most people in the multispectral literature speak about spectral reconstruction as a unique 
problem. In fact, this is an abuse of language and strictly speaking there exist two problems. If 
we think about the equation (2.23) our aim is to find an inverse operator Q that will solve the 
problem, see equation (2.25). But, the direct operator Θ can be known or not. On this section 
we will explain this point in detail because the difference has important practical and 
theoretical consequences for the resolution of the problem. 
 
3.2.2.1 Direct reconstruction problem 
 
Knowing the operator Θ means that a physical characterization of the acquisition system has 
been performed. This characterization requires at least the measurement of the CCD 
sensitivity, filters transmittances and optics transmittance. The characterization involves the 
realization of physical experiments in which, typically, a monocromator is used for measuring 
the CCD sensitivity and a spectroradiometrer for measuring transmittances.  
 
Once the characterization has been performed, the operator Θ is known. We can then reach a 
method to inverse this operator. Θ is a matrix and corresponds to the discretization of the 
integral operator in equation (2.21) representing the system. But Θ not being a square matrix, 
its inverse does not exist. This is clearly an ill-posed problem. Furthermore, even if we find a 
pseudo-inverse (we will explain this technique in detail later) the solution cannot be stable. 
This is basically due to the effect of noise in the system. Knowledge on the model of noise or 
at least its covariance matrix is very useful. This implies more experiments because the 
characterization of noise needs in general a model which can be estimated by means of some 
statistical analysis over a series of images from the CCD taken in a dark room. 
 
3.2.2.2 Indirect or learning-based reconstruction problem 
 
On the other hand, the inverse operator can be constructed without knowing Θ. If we know 
the spectral reflectance curves of a set of P colour patches and we take an image of these 
patches with the multispectral camera then we have a set of corresponding pairs (cp , rp), for 
p=1,...,P, where cp is a vector of dimension K containing the camera responses and rp is a 
vector of dimension N representing the spectral reflectance of the p-th patch. In this case, we 
are confronted with a different kind of problem. We want to estimate the inverse operator 
from a set of known data. As the set of data is obtained experimentally this problem is ill-
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posed too. There is an easy way to see that the problem is ill posed. Let’s put in the columns 
of a NxP matrix R all the rp’s and in the columns of a KxP matrix C all their corresponding 
cp’s. The discrete expression of this problem if we do not take into account the presence of 
noise, becomes: 
 
 R = Q C , (2.27) 
 
where Q is a NxK matrix representing the inversion of the unknown matrix Θ. A 
straightforward solution of this linear system would be: 
 
 Q = R C-1 , (2.28) 
 
if C were a full rank square matrix, but usually P>>K. Moreover, the stability of the solution 
would not be assured because of the presence of noise. The problem is ill-posed in the sense 
of Hadamard. 
 
From the above discussion an important fact should be retained: spectral reconstruction can be 
formulated and treated as two different problems, both of them being ill-posed. This is a 
source of constant misunderstanding because when searching linear solutions of ill-posed 
problems the mathematical expressions of the solutions can look very similar even if the 
underlying problems are different. In practice this often mislead in the literature the 
comparison of solutions based on different problems. 
 
Practically, it is not always possible to completely characterize a camera. In comparison, 
taking a multispectral image of a calibrated colour chart is trivial when a multispectral system 
is operational. The results of the reconstructions obtained when solving one or the other 
problem should be carefully compared taking into consideration the difference in nature of the 
two approaches and the experimental conditions. 
 
3.2.3 Spectral reconstruction as interpolation: a third paradigm 
 
There exists a third paradigm for spectral reconstruction. A multispectral system can be seen 
as sampling spectral reflectance curves. Instead of using delta Dirac functions for the 
sampling as in the classical framework, the spectral transmittance functions of filters are 
considered to be the sampling functions. This is conceptually different from the two already 
presented paradigms. Moreover, it does not require information about the operator Θ or a set 
of spectral reflectances R. It just requires the camera response itself, c. 
 
The methods based on this paradigm interpolate the camera responses acquired by a 
multispectral camera by using a smooth curve. The smoothness properties of the interpolating 
curve introduce a natural constraint which regularizes the solutions. 
 
We will describe and give some insight to interpolation methods is subsection 3.6.7 when 
describing the existing spectral reconstruction techniques. 
 
3.2.4 An example of simulation for spectral reconstruction 
 
In the rest of this chapter we are going to compare linear methods for solving ill-posed 
problems applied to both direct and indirect spectral reconstruction problems. In order to 
illustrate these techniques, analyse their behaviours and give insight into their meaning, we 
have developed a computer simulation of a virtual multispectral system. 
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This virtual multispectral acquisition system is easy to manipulate and to study with no need 
of physical experiments. At this stage it reveals itself very useful for understanding, designing 
and testing the various presented spectral reconstruction techniques. Later on this thesis we 
will present and compare the results obtained by a selection of reconstruction techniques 
using data coming from real experiments. 
 
The virtual acquisition system is based on a 10 band multispectral system. The spectral 
response of the camera is based on the sensitivity function of the CCD array used in the real 
CRISATEL camera. The filters are simulated by 10 equispaced Gaussian-shaped functions 
covering the visible domain of the spectrum. We chose 10 because it is also the number of the 
interference filters used in the CRISATEL camera. This number is a parameter that can be 
easily modified. The expression used to produce these Gaussian-shape filter transmittances Mk 
, k=1,…,10, is: 
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where σκ controls the half-width of the k-th filter, and µk the position of its maximum. The 
range of µ is 400 to 760 nm, typically the µ ‘s of 10 equidistributed Gaussian-shaped filters 
going from µ1 = 416 to µ10 = 740 at constant step of 36 nm. σ represents 30 nm half-
bandwidth. The value 0.85 makes the simulated filters not to have perfect transmittance. 
 
The illuminant used in the simulation is a halogen lamp. This choice is justified as it is the 
light source normally used when performing multispectral image acquisition. Halogen has 
continuous shape and good physical stability. The virtual spectral reflectance curves are 
chosen among the databases already analysed in section 2.3 (Nature of Data). These databases 
are regularly sampled from 400 to 760 nm at 10 nm intervals, which corresponds to 37 values. 
 
Basic linear algebra allows us to approximate the virtual camera in the ideal case, when noise 
is not present, by determining the matrix Θ. The elements of this matrix are perfectly known 
and are obtained by multiplying the halogen lamp emissivity, the selected Gaussian filters 
transmittances and the CCD sensitivity. Figure 3-1 show a graphical representation for the 
construction of Θ. Each curve shown on the bottom panel of Figure 3-1 represents the k-th 
channel spectral sensitivity of the virtual camera. Each k-th channel is sampled from 400 to 
760 nm at 10 nm intervals, which forms a vector of 37 coordinates corresponding to wk, the k-
th column of matrix Θ. 
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Figure 3-1 Construction of the matrix Θ used in our simulations. 
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There is another important point to take into account in the simulations. On the bottom panel 
of Figure 3-1 we can see a graphical representation of the columns of matrix Θ. It is visually 
evident that the maximum values of the channel sensitivities are not the same. In this case the 
sensitivity on the red part of the visible spectrum is much higher than on the blue part. This 
corresponds to the physical reality because the illuminant is not energetic on the blue range 
and the CCD sensitivity is not high in this area. In Figure 3-2 we show a simulation aiming to 
obtain the virtual camera responses for a perfect reflecting surface, such a spectral reflectance 
corresponds to an ideal white material that does not exist in nature. As we can see on the 
obtained camera responses, shown on the right panel of this figure, the result is not 
satisfactory. We desire to obtain a flat response on the camera responses as the spectral 
reflectance is flat. A real multispectral camera is also confronted to this problem, a part of a 
radiometric calibration process is normally dedicated to solve it. We will speak further about 
how to solve this problem on a real camera on Chapter 6. 
 

 
Figure 3-2. Perfect white simulation 

 
The problem observed on Figure 3-2 appears in any spectral reflectance to be virtually 
imaged. It is avoided by the introduction of a normalisation matrix in the system, 
mathematically: 
 
 ΘΝ = Θ N , (2.30) 
 
where N is a KxK diagonal matrix and ΘΝ is the normalised matrix Θ. The diagonal elements 
of N contain the inverse of the K camera responses corresponding to a perfect white. 
 
Finally, to summarize this section we show in Figure 3-3 a complete diagram of the 
simulation system. A spectral reflectance curve (top panel) is properly transformed on its 
camera responses (bottom panel) by the use of the camera model (central panels). 
 

x =
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Figure 3-3 Diagram of the virtual multispectral system used in our simulations. 
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3.3 Least squares and pseudo-inverse 
 
This section aims to describe the pseudo-inverse applied to spectral reconstruction along with 
its close relation to the solution of the least square problem. We dedicate a section on this 
subject because the concepts introduced here are used in most existing spectral reconstruction 
techniques. An exception is given by those based on interpolation (described in section 3.6.7). 
 
3.3.1 Pseudo inverse 
 
We represent a general linear system of equations by 
 
 b = A x (2.31) 
 
where x and b are vectors and A is a matrix not necessarily square. We want to estimate the 
unknown vector x knowing b and A. This means that we are seeking for an inverse operator 
A-. In this framework we can have three different situations: 
 

• Matrix A is square and has full rank. A-1 exists and can be calculated and applied to 
obtain a unique solution. Unfortunately, this situation does not happen very often. In 
the case of spectral reconstruction it means that the number of filters must be the same 
as the number of wavelength samples of the spectral curves. Moreover, even in that 
case A must be full rank. 

 
• Matrix A is rectangular, dimension of x is smaller than b. There are more observations 

b than points x, the system is called overdetermined. In this case the inversion 
operator is defined as 

 
 A-over = (At A)-1 At. (2.32) 
 

This operator can be obtained by multipliying on the left by At both sides of equation 
(2.31), this leads to: 
 

 At b = At A x . (2.33) 
 
If the rank of A is equal to the dimension of x, At A is a square positive defined matrix 
and it is invertible. We then obtain an estimate of x as follows: 
 

 x̂  = (At A)-1 At b . (2.34) 
 

 
• Matrix A is rectangular, dimension of x is bigger than b. There are less observations b 

than points x, the system is called underdetermined. The inversion operator is defined 
as 

 
 A-under = At (A At)-1. (2.35) 
 
Both operators A-over and A-under satisfied the so called Moore-Penrose conditions: 
 

A A- = (A A-)t 
A- A = (A- A)t 
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A A- A = A 
A- A A- = A- 

 
Then, both operators are generalized inverses or pseudo-inverses. For more details on this 
subject please refer to chapter 8 of [Pratt, 1978] or the book of [Albert, 1972]. 
 
Consider now the following change of notation where we define the matrix A2 such that A2 = 
At. Then equation (2.31) is rewritten as: 
 
 2

t=b A x . (2.36) 
 
In the case of an overdetermined system the inverse operator is rewritten as follows: 
 
 1

2 2 2 2( ) ( )t over t− −=A A A A , (2.37) 
 
and in the case of an underdetermined system it is rewritten as: 
 
 1

2 2 2 2( ) ( )t under t− −=A A A A . (2.38) 
 
By just changing notation and choosing A2 instead of A (A2 = At) the literal expressions of the 
two inversion operators take a different form, when compared to equations (2.32) and (2.35). 
This is important to keep in mind, as already said, because different authors define the 
operator Θ differently, but related by a transposition. This fact can sometimes lead to 
confusion. 
 
In Table 3-1 we present all the forms that the pseudo-inverse can take, according to the two 
types of equations to be solved, b = A x or 2

t=b A x : 
 

Table 3-1 Different forms of the pseudo-inverse. 

 b = Ax b = 2
tA x 

Overdetermined A-over = (At A)-1 At 1
2 2 2 2( ) ( )t over t− −=A A A A  

Underdetermined A-under = At (A At)-1 1
2 2 2 2( ) ( )t under t− −=A A A A  

 
 
3.3.2 Least square solutions 
 
It is important to explain the close relation between the pseudo-inverse and the solution of a 
least square problem when working linearly. If we take any linear algebra introductory 
textbook, see for instance chapter 6 of [Golub and Loan, 1983], we find that the least squares 
method aims to solve a linear system of the form A x = b where, as in the previous section, A 
is a matrix, x is an unknown vector and b is the observations vector. The objective of this 
method is to find an estimation of x, named x̂ , which minimises the square of the Euclidean 
norm of vector b - A x, or equivalently the square of the Euclidean distance dE(A x, b) 
between vectors A x and b: 
 
 ˆ min  ( ) ( )t= − −

x
x Ax b Ax b  (2.39) 
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3.3.2.1 Overdetermined case 
 
This case is very popular in linear algebra as it corresponds physically to having more 
measures than variables. There is no exact solution, some information being in general not 
coherent. In this case we seek for a minimal norm solution which can be deduced by 
calculating the derivatives of 2−Ax b  with respect to x. Writing the derivatives equal to zero 
we find the expression of the minimum, the so called normal equations: 
 
 ˆ( ) 0t − =A b Ax  (2.40) 
 
which implies: ˆ( ) ( )tnullspace− ∈b Ax A . We then directly deduce the following equations: 
 

ˆt t=A b A Ax , 
1ˆ ( )t t−=x A A A b . 

 
That is exactly the definition of the pseudo-inverse. Let’s recall that the relationship A x = b 
does not necessary hold, in this fact resides the interest of the least square techniques. If an 
exact solution does not exist an approximate one is found. In this sense, we can already see 
the utility of this kind of methods in the solution of ill-posed problems where the existence of 
a solution or its uniqueness is not guaranteed. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3-4 Solution of the least squares problem. 

 
In Figure 3-4 we show a graphical interpretation of the linear least square problem. The vector 
b is outside the plane representing the acceptable set of solutions and the vector b – A x̂  
represents the orthogonal difference between b and the space of solutions. Its projection is 
 
 1 t t−=p A (A A) A b , (2.41) 
 
that gives us an acceptable solution that is considered to be the best in the sense of the least 
squares. 
 
As a summary we can say that the overdetermined pseudo-inverse is the operator that 
minimizes the Euclidian distance dE(b, A x̂ ) between the measures b and their linear estimate 
A x̂ . It is then optimal in that sense. 
 

b 

p=A x̂  

(b-A x̂ ) 
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3.3.2.2 Non Euclidian distances 
 
We have just seen that the pseudo-inverse is a solution minimizing the Euclidian norm of the 
residual vector b - A x. This corresponds to the minimization of: 
 
 (b - A x)t (b - A x). (2.42) 
 
But we are also interested in the minimization of other non Euclidean distances. We 
introduce: 
 
 (b - A x)t N (b - A x), (2.43) 
 
where N is a matrix. This family of distances is a generalization of the classical distance 
where the matrix N takes a central role while different matrices define different distances. 
When N = I this distance becomes Euclidian. 
 
The optimal least squares operator in the underdetermined case is given by: 
 
 N-1 Αt (Α N-1 Αt)-1. (2.44) 
  
Let’s note that this operator in a generalization of the pseudo-inverse. For further reference 
consult chapter 25 of [Lawson and Hanson, 1974]. 
 
 
3.3.3 Simulating the ideal spectral reconstruction problem 
 
We already explained the different nature of the two spectral reconstruction methods based on 
equation (2.23). In this section we compare simulated results of two basic methods of spectral 
reconstruction each one belonging to each paradigm. We suppose that noise is not present and 
the forward system is perfectly linear. This assumption is not realistic at all but we find 
interesting to discuss these results here for two reasons: 1) they give insight in the basic 
behaviour of each method and 2) the comparison itself helps to understand the 
appropriateness of the methods to a specific engineering problem. 
 
3.3.3.1 Direct method 
 
For the direct reconstruction method we want to determine the unknown r in equation (2.23), 
c = Θ r, where Θ is a known KxN matrix the k–row of which represents the sensitivity of the 
k-th camera channel. Note that K < N. An immediate solution for estimating the spectral 
reflectance consists in applying the underdetermined pseudo-inverse to the matrix Θ, which 
provides us with the following minimum norm solution: 
 
 r̂ = Θ-under c = Θt (Θ Θt)-1 c . (2.45) 
 
This method form the basis of other more sophisticated methods for spectral reflectance 
reconstruction. However it is not very well adapted in practical situations. In practice, this 
solution is very sensitive to noise. In fact, note that we minimise the Euclidian distance dE(Θr, 
cK) in the camera response domain. A small distance does not guarantee the spectra r and r̂  to 
be close, only that their projections into the camera response space are close. Nevertheless, 
this approach is used by [Tominaga,1996] to recover the spectral distribution of an illuminant 
from a six-channel acquisition. However, he applies a nested regression analysis to choose the 
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proper number of components in order to better describe the spectrum and to increase the 
spectral-fit quality. 
 
The pseudo-inverse method provides a unique solution, consequently Hadamard’s first and 
second conditions are respected. Unfortunately, in the presence of noise the constructed 
operator is not stable. This is the source of its inaccuracy, strongly related with Hadamard’s 
third condition. 
 
 
3.3.3.2 Indirect method 
 
The indirect method used is based on equation (2.28), R = QC. This method corresponds to 
the practical situation where a chart containing colour patches is imaged by a multispectral 
camera. The colour chart is calibrated, this means the spectral reflectance curves of its colour 
patches are known. Matrix R contains these N-sampled spectral reflectances in its columns, 
and matrix C contains in its P columns the corresponding K-channel camera responses.  
 
Let now consider the equation to be solved: 
 
 R = QC , (2.46) 
 
 
where Q is the NxK unknown matrix, R and C are NxP and KxP matrices respectively. We 
see that the unknown is on the left of the right side of the equation. By transposing this 
equation  we obtain: 
 
 Rt = Ct Qt , (2.47) 
 
Then, for the i-th row of R, ri, and for the i-th row of C, ci, the following equation holds: 
 
 t t t

i i=r C q  (2.48) 
 
This is equivalent to the solution of the following least square problem 
 

 
2

min
t
i

t t t
i i−

q
C q r . (2.49) 

 
This corresponds to a conceptually different way of seeing the problem but mathematically 
equivalent: a least square overdetermined problem. We can then estimate the lines qi of the 
operator Q using the pseudo-inverse: 
 
 ( ) ( )  q C r C C C rt t over t t t t

i i i
−= = . (2.50) 

 
Applying equation (2.50) to rows of Q and rows of R for any index i, i=1,…,N, we can 
express the estimation of the whole operator Q in the following way: 
 
 Qt = (C Ct)-1 C Rt . (2.51) 
 
Transposing (2.51) leads to: 
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 Q = R Ct (C Ct)-1. (2.52) 
 
That can be easily computed to solve the problem. 
 
 
3.3.3.3 Direct and indirect method: a comparison 
 
We start our comparison by a remark on equations (2.45) and (2.52). If we look carefully both 
equations we see that the pseudo-inverse expression used on both cases is exactly the same. 
This is a coincidence in this case as equation (2.45) comes from a least square 
underdetermined problem but (2.52) is the solution of an equation involving matrices that 
conceptually matches an overdetermined problem. For this reason we choose to modify our 
notation and to use the term pseudo-inverse, or pinv, in the rest of this thesis for the following 
expression: 
 
 pinv(A) = At (A At)-1. (2.53) 
 
Now, the direct and indirect problems can be simply solved as follows: 
 

• Direct method: 
 

For the direct inversion we apply the pseudo-inverse to the known operator Θ having 
 
 QpinvΘ = pinv(Θ). (2.54) 
 

This is probably the most evident method of the indirect paradigm we can find. This 
formula implies that a characterization of the multispectral acquisition system is 
already performed. We note that the constructed operator can be very sensitive to 
noise and then ill-posed. As we already said, we use it here just in simulation to give 
insight in the basics of this and others more complex methods. 

 
• Indirect method: 

 
 QpinvRC = R pinv(C) (2.55) 
 

This method corresponds to the practical situation where a chart containing colour 
patches is imaged by a multispectral camera. We decide to use this equation (2.55) as 
a prototype of all indirect methods. 

 
Table 3-2. Mean Squared Spectral Error over different databases. 

 R pinv(C) pinv(Θ) 
Kremer  0.00029467 0.0024152 
Macbeth DC (training) 0.00006719 0.0023151 
Selected Artists 0.00023387 0.0024289 
Restoration 0.00018397 0.0019890 
Munsell 0.00007019 0.0015919 

 
In Table 3-2 we can see the mean errors of these two operators when applied to the 
reconstruction of pigments of our databases. The matrix R used in the indirect method 
contains the spectral curves of the Macbeth DC chart in its columns. We clearly see the 
superiority of the indirect method using a priori knowledge (a colour chart and its 
multispectral image) over the direct inversion. In order to understand why we obtain such 
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large differences between both methods we first calculate the condition number (using the 
Euclidian norm) of the two constructed operators. Being A a matrix and amax and amin the 
maximum and minimum of its singular values obtained by a SVD, we remind that the 2-norm 
condition number of A can be estimated as the ratio between amax and amin. This number is 
directly connected to the numerical stability of the solutions. The condition numbers of the 
operators built from (2.55) and (2.54) are shown in Table 3-3. The condition numbers are 
similar. The condition number of the indirect method being only a little bigger than for the 
direct method, then the conditioning of the matrices seems not to be the source of disparity on 
the results. 
 

Table 3-3. Condition numbers for both linear operators. 
 R pinv(C) pinv(Θ) 
Condition Number  3.6312 3.1244 

 
We keep analysing the built operators in order to understand their behaviour. Next step is the 
graphical representation of the operators themselves. In the case of our simulations the 
operators are KxN = 10x37 matrices that transform a vector of 10 elements containing the 
camera responses for each channel into a 37 elements vector containing the samples of a 
spectral curve. These matrices can be interpreted as a discretization of a three dimensional 
function and when plotted they provide an interesting representation. Let’s see in Figure 3-5 
the contour plot of the operators. On the horizontal axis the numbers correspond to the 10 
input camera responses and on the vertical ones they represent the samples of the reflectance 
curves. 
 

 
 

Figure 3-5 Contour plots of the operator R pinv(C) (left panel) and pinv(Θ) (right panel) 

 
In this figure we can observe that the operator pinv(Θ) has a more regular structure than the 
operator R pinv(C). This fact is interesting because the symmetry of the operator can be 
interpreted intuitively as a lack of adaptation to some specific data. Reasoning that way we 
can say that the operator R pinv(C) shown in the left panel of Figure 3-5 is more adapted to a 
specific set of data. In our simulation R contains the Macbeth DC reflectances in its columns, 
this is the reason why the operator obtains the best results over the Macbeth DC datasets, see 
Table 3-2. We denote the Macbeth DC set as the training set used to build the operator. We 
should not forget that the other datasets presented in Table 3-3 are in fact coming from 
spectroradiometric measurements of oil pigments, whereas the painted Munsell patches are 
not made from oil pigments. As a consequence, it would be interesting to see the effect of 
both presented operators on a dataset not coming from the “oil pigments” or painting 
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environment. In Table 3-4 we present the results on the Pine Tree dataset already presented on 
Chaper 2 (Nature of Data). 
 

Table 3-4. Mean Squared Spectral Error for Pine Tree Leaves database. 
 Rpinv(C) pinv(Θ). 
Pine tree leaves  0.00034866 0.00027975 

 
In this case we see that the direct inversion method is superior to the one using a training set. 
We note that this dataset is very different in nature to the Macbeth DC one. Clearly we see 
one general property of both kinds of methods. The direct inversion is general and works for 
all kind of data. Using a training set helps adapting the method to specific data but losses 
generality. 
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3.4 Taking noise into account 
 
If we want to build a robust spectral reconstruction operator, its resistance to noise must be 
taken into account. In fact, when spectral reconstruction is performed over real data we 
always deal with noisy data. The noise level can vary for different applications but it always 
exists. Robust operators are then needed for real applications. 
 
When taking noise into account the direct system model we want to invert is not anymore the 
one in equation (2.23), it becomes  
 
 cK = Θ r + n (2.56) 
 
where we introduce n, a vector of additive random noise. This model was justified on Chapter 
2. We remind that n can be decomposed into several components because this noise has not a 
unique source. 
 
We will see on section 3.6 how some spectral reconstruction methods deal with this noise. For 
instance, Wiener filtering uses explicitly a model of n. An a priori requirement for such 
approach is the characterization of the noise. This needs experimental data and is then 
attached to the actual acquisition system used. At the moment we do not consider any real 
acquisition system, then this kind of approach cannot be illustrated with results. By now, we 
just deal with quantization noise that is not dependent on a specific system. 
 
We introduce several levels of quantization in the simulation. We are interested in 
quantization at 8, 10 and 12 bits. This is due to a practical reason, currently not cooled 
technology image systems use typically these range of quantization. In practice, the more bits 
we want to obtain the lower the CCD sources of noise must be. If we quantize a signal using a 
16 bits analog/digital (A/D) converter, but CCD noise is very strong, last bits of the digital 
signal will be completely corrupted by the noise. For instance, we can imagine a particular 
case where the last 6 bits are corrupted in a 16 bits signal. In this case, we could use a less 
expensive 10 bits A/D converter and obtain the same result. Cooled systems exist in high end 
multispectral applications and in astronomy. These apparatus are very cumbersome but noise 
is considerebly reduced and quantization can be augmented to more than 16 bits. 
 
In a simulation system the quality of the signal is as good as desired, we can simulate any 
quantization rate. We can consequently study the effect of the quantization itself. Other 
sources of noise are not as easy to simulate. For instance, if we want to simulate dark current 
noise, read-out noise and shot noise, three probability distributions of the appropriate form 
should be used and their parameters must be known. As long as these noise sources depend on 
a particular CCD, choosing their parameters is somehow arbitrary or too related to a specific 
hardware. We then prefer not to simulate them and later when studying noise we will use real 
data. 
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3.5 Metrics for evaluating reconstruction performance 
 
The choice of the metric used to evaluate the results of spectral reconstruction algorithms is 
not a trivial subject. In fact, much more attention is generally given to the reconstruction 
methods themselves than to the metrics involve in them. This is probably because there is no 
consensus on the metric to be used for spectral match in the multispectral scientific 
community. 
 
Any reconstruction technique can be generally seen as a method that minimises a criteria. The 
criteria is either explicit and or inherent to the method. In both cases knowing what we 
minimise is of great importance and not knowing what we minimise can lead to big 
application errors. On the other hand there is another question that should be asked when 
performing spectral reconstruction: for what purpose is the reconstructed spectrum used for? 
Depending on the application the response of this question can give us a different metric. For 
instance, if our aim is to fit spectral curves of oil pigments in order to identify pigments a 
measure based in the space of spectral curves will be used. On the contrary, if the 
reconstructed reflectance curve will serve for colour reproduction, then it will be better to use 
a measure of the errors produced in the reproduction of colours. 
 
Lots of metrics are commonly used but it is hard to give a general comparison. In this sense, 
an effort was made by [Imai et al., 2002, CGIV02] giving, in our knowledge, the only 
comparative study of metrics in spectral imaging. Their conclusion is that the appropriateness 
of a metric depends on its application. We consider this assessment to be right and a 
fundamental lesson can be extracted from it: when general spectral reconstruction is 
performed different metrics must be used to evaluate its results. In fact, in the same paper they 
classify the metrics for spectral match quality in four categories: 
 

• Spectral Curves Difference Metrics. 
• CIE Colour Difference Equations. 
• Metamerism Indices. 
• Weighted RMS Metrics. 

 
In the following section we describe the metrics we use for quality evaluation. Even if not 
said or shown explicitly in the rest of this thesis, all the measures presented here are 
systematically used in all our experiments.  
 
3.5.1 Spectral Curve Difference Metrics 
 
We call rm(λi) , i=1,…,N, a reference spectral reflectance curvewhere λi represents the 
wavelength, and N is the number of samples used to represent the curve. This curve is 
typically measured by a spectrophotometer. The function re(λi) is an estimation of rm(λi). We 
use in practice three different metrics: 
 

• The Root Mean Squared (RMS) error. This is the Euclidian or L2 distance applied to 
spectral curves, its formal definition is 

 

 2

1

1 ( ) ( )
N

m i e i
i

RMS r r
N

λ λ
=

= −∑ . (2.57) 

 



 60 

• The Absolute Mean Error (ABE). This metric is the L1 distance applied to spectral 
curves,  
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• The Goodness-of-Fit Coefficient (GFC) is a Metric developed in [Hernandez-Andres 
and Romero, 2001] to test reconstructed daylight spectra. The GFC is based on the 
inequality of Schwartz and it is calculated by 
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We find interesting this metric because its value is bounded to the interval [0,1] and it 
provides a easy interpretation. From [Hernandez-Andres and Romero, 2001], if 

0.999GFC ≥  the spectral match is consider as good and if 0.9999GFC ≥  the match 
is consider as excellent. 

 
3.5.2 CIE Colour Difference Equations 
 
We will deal in this subsection with metrics based in the CIELAB colour space. Complete 
understanding of this and other colour spaces requires basic knowledge on colorimetry. Even 
if the subject of this thesis requires knowledge in this field a chapter in spectral reconstruction 
is not the place for a introduction to colorimetry. Here we just deal with metrics in the 
CIELAB space, if the reader is not familiar with basic concepts of colorimetry we have 
prepared a brief compendium of them in Appendix I. For further information lots of textbooks 
exists on the subject. For a classical encyclopaedic reference of Colour Science see 
[Wyszecki, 1982], for a modern and comprehensive introduction we suggest [Berns, 2000] 
and for introduction and reference in French see [Sève, 1996]. 
 
CIELAB space was proposed by the CIE (Commission International de l’Eclairage) in 1976. 
Its origin is related to psychophysical experiments showing that the human eye's sensitivity to 
light is not linear. Colorimetric colour spaces as RGB or XYZ relate linearly to the spectrum 
of the coloured light. When changing the tristimulus values of XYZ (or RGB) for a colour 
stimulus, the observer will perceive a difference in colour for differences greater than the Just 
Noticeable Difference (JND). In both RGB and XYZ spaces the JND depends on the location 
in the colour space. The aim of CIELAB is to make JND constant, leading to a uniform colour 
space where the JND is not depending on the location. In practice, this condition is only 
fulfilled approximately, thus we normally use the term pseudo-uniform for CIELAB. Remark 
that the notion of JND is observer-dependent and resulting from psychophysical experiments, 
this makes CIELAB a psychometric colour space. 
 
The CIELAB pseudo-uniform colour space is defined by the quantities L*, a* and b*. L* 
represents the lightness of a colour, known as the CIE 1976 psychometric lightness. The scale 
of L* is 0 to 100, 0 being the ideal black, and 100 being the reference white. The chromacity 
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of a colour can be represented in a two-dimensional (a*, b*) diagram, a* representing the 
degree of green versus red, and b* the degree of blue versus yellow. 
 
When comparing two colours, specified by [ *

1
*
1

*
1 ,, baL ] and [ *

2
*
2

*
2 ,, baL ], one widely used 

measure of the colour difference is the CIE 1976 Lab colour-difference which is simply 
calculated as the Euclidean distance in  CIELAB space, as follows  
 

 * * * 2 * * 2 * * 2
1 2 1 2 1 2( ) ( ) ( )abE L L a a b b∆ = − + − + − . (2.60) 

 
For more information about this measure see [CIE, 1986]. The  interpretation of *

abE∆  colour 
differences is not straightforward. A rule for the practical interpretation of *

abE∆  when two 
colours are shown side by side is presented in Table 3-5. Another interpretation of *

abE∆ errors 
for the evaluation of scanners is proposed by [Abrardo et al., 1996]. They classify mean errors 
of 0-1 as limit of perception, 1-3 as very good quality, 3-6 as good quality, 6-10 as sufficient, 
and more than 10 as insufficient. We note the disagreement between these classifications, this 
underlining the fact that the evaluation of quality and acceptability is highly subjective, and 
dependent on the application.  
 

Table 3-5. Rule for the practical interpretation of *
abE∆  measuring the colour difference between 

two colour patches viewed side by side  
*
abE∆  Effect 

<3 Hardly perceptible 
[3 .. 6] Perceptible, but acceptable 

>6 Not acceptable 
 
An alternative representation of colours in the CIELAB space appears when using cylindrical 
coordinates, defining the CIE 1976 chroma, as the distance of the colour point from the L*-
axis: 
 

 * *2 *2
abC a b= + , (2.61) 

 
and the CIE 1976 hue-angle, as: 
 

 
*

*arctanab
bh
a

 
=   

 
. (2.62) 

 
The use of these quantities, lightness L*, chroma *

abC , and hue angle hab may facilitate the 
intuitive comprehension of the CIELAB colour space, by relating them to perceptual 
attributes of colours. It may also be interesting to evaluate the differences of each of the 
components of the CIELAB space separately. This is straightforward for L*,a*, b*, and *

abC , 
however, for the hue angle hab this merits some special consideration. Of course, the direct 
angle difference in degrees may be instructive. However, to achieve that colour differences 
can be broken up into components of lightness, chroma and hue, whose squares sum to the 
square of  *

abE∆ , a quantity *H∆  called the CIE 1976 hue-difference, is defined as 
 

 * * 2 * 2 * 2( ) ( ) ( )ab abH E L C∆ = ∆ − ∆ − ∆ . (2.63) 
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The colour-difference formula of equation (2.60) is supposed to give a measure of colour 
differences that is perceptually consistent. However, since it has been found that the CIELAB 
space is not completely uniform, the colour difference *

abE∆  is not perfect. Several attempts 
have been conducted to define better colour-difference formulae, e.g. the CMC formula 
[Clarke et al., 1984], [McLaren, 1986] and the BFD formula [Luo and Rigg, 1987, BFD1], 
[Luo and Rigg, 1987, BFD2]. A comparison of these and other uniform colour spaces using 
perceptibility and acceptability criteria is done by [Mahy et al., 1994].  
 
In 1994, the CIE defined the CIE 1994 colour-difference model [McDonald and Morovic, 
1995], abbreviated CIE94, denoted *

94E∆ , based on the CIELAB space and the previously 
cited works on colour difference evaluation. They defined reference conditions under which 
the new metric with default parameters is expected to perform well: 
 

• The specimens are homogeneous in colour.  
• The colour difference *

abE∆  is less than 5 units.  
• They are placed in direct edge contact.  
• Each specimen subtends an angle of more than 4 degrees to the assessor, whose colour 

vision is normal.  
• They are illuminated at 1000 lux, and viewed against a background of uniform grey, 

with L*=50, under illumination simulating D65. 
 
The colour difference is calculated as a weighted mean-square sum of the differences in 
lightness ( *L∆ ), chroma ( *C∆ ) and hue ( *H∆ ): 
 

 
2 2 2* * *

*
94

L L C C H H

L C HE
k S k S k S

     ∆ ∆ ∆
∆ = + +          

     
. (2.64) 

 
For a complete reference about this measure see [CIE, 1995]. The weighting functions SL, SC, 
and SH vary with the chroma of the reference specimen *C  as follows, 
 

SL = 1, SC = 1 + 0.045 *C  and SH = 1 + 0.015 *C . 
 
The variables kL, kC and kH are called parametric factors and are included in the formula to 
allow for adjustments to be made independently to each colour-difference term to account for 
any deviations from the reference viewing conditions that cause component specific variations 
in the visual tolerances. Under the reference conditions explained above, they are set to 
 

kL = kC = kH = 1. 
 
We note that under reference conditions, *

94E∆  equals *
abE∆ for neutral colours, while for more 

saturated colours, *
94E∆  becomes smaller than *

abE∆ . 
 
As a conclusion the two metrics, *

abE∆  and *
94E∆ , based on the CIELAB colour space will be 

used systematically in the rest of this thesis. The reference illuminant for this measure is D50. 
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3.6 Existing Reconstruction Techniques 
 
The aim of this section is to describe and analyse the existing reconstruction techniques. A 
survey is indeed needed before any new investigations are made. 
 
We start by presenting three direct reconstruction techniques where the spectral characteristics 
of the imaging system, the matrix Θ, is supposed known. First the smoothing inverse is 
introduced, this method inverts Θ and reinforces smoothness by the use of a regularizing 
matrix. Then, we present Wiener’s filter, this technique introduce knowledge about the noise 
on the inversion process to obtain better results. Finally, Hardeberg’s method is described 
which uses a priori information on the imaged objects to regularise the solutions. 
 
After direct methods three indirect or learning-based techniques are presented. The pseudo-
inverse and SVD method is a stabilised version of the paradigm presented on equation (2.55). 
The non-averaged pseudo-inverse is a recent and very promising method naturally introducing 
noise information in the constructed operator. The Non Negative Least Squares (NNLS) 
method deals with the problem of not obtaining negative values for the estimated reflectance 
curves. 
 
Finally, we present the methods based on interpolation, as an example we describe the 
Modified Discrete Sine Transform (MDST) method. This technique is based on Fourier 
interpolation and we compare it with a cubic spline interpolation. 
 
 
3.6.1 Smoothing inverse 
 
Smoothing is a well known way of linear regularization. Its sense is very general as we can 
see for instance in [Neumaier, 1999]. In fact, smoothing means that the solution we want to 
find (the vector r representing the reflectance in our case) can be express as 
 
 r = S w, (2.65) 
 
where w represents a vector with a reasonable norm and S is the smoothing matrix. This 
matrix S introduces qualitative knowledge on the smoothness to be modelled. Clearly, we can 
see that this definition is very wide and includes a family of methods. 
 
In the spectral reconstruction literature smoothing inverse is a more restricted term that 
defines a specific technique used to inverse the known direct system. From our knowledge, 
this technique was introduced by Mancill and Pratt, for reference see [Pratt and Mancill, 
1976] or chapter 16 section 3 of [Pratt, 1978] where the technique is applied to the similar 
problem of Spectral Radiance Estimation. Taking the definition given in [König, 1999], 
directly inspired from both the above cited references, the technique is basically the 
application of the generalisation of the pseudo-inverse to the non Euclidian distance as seen in 
(2.43),  
 
 smoothing_inv(N,Θ) = N-1 Θt (Θ N-1 Θt)-1, (2.66) 
 
where matrix Θ characterizes the direct problem and N is the following NxN matrix: 
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 N = N∆ = 

1 2 1 0 0 ... 0 0
2 5 4 1 0 ... ... 0

1 4 6 4 1 ... ... ...
0 1 4 6 ... ... 0 0
0 0 1 ... ... 4 1 0
... ... ... ... 4 6 4 1
0 ... ... 0 1 4 5 2
0 0 ... 0 0 1 2 1

− 
 − − 
 − −
 − 
 −
 

− − 
 − −
 

−  

. (2.67) 

 
This makes the built operator to minimize the average squared second differences ∆, where  
 
 ∆ = [ (r(λi+1) - r(λi)) – (r(λi) - r(λi-1)) ]2. (2.68) 
 
We note that ∆ is a measure of the curvature of the reflectance functions. Unfortunately, N∆ is 
a singular matrix and consequently it cannot be inverted. The method uses a modification of 
this matrix that is non singular. This is achieved by using 
 
 N’∆ = N∆ + ε I, (2.69) 
 
where I is the identity matrix and ε is a small positive constant (ε << 1). The way of founding 
this parameter is normally not specified. It is in general fixed a priori or optimised manually. 
Automatic optimisation is in general not needed. 
 
In the following Table 3-6 we present a comparison between the raw pseudo-inverse method 
and the smoothing inverse. We recall that this simulation results does not use any kind of 
noise. 
 

Table 3-6. Mean Squared Spectral Error over different databases. 
 smoothing_inv(N,Θ) pinv(Θ) 
Kremer  0.00012944 0.0024152 
Macbeth DC (training) 0.00025263 0.0023151 
Selected Artists 0.00012348 0.0024289 
Restoration 0.00007110 0.0019890 
Munsell 0.00010418 0.0015919 

 
In the preceding table we see that the smoothing inverse obtains much better results. This is 
already a very practical reason to prefer this method but we want to give some insight on why 
the concept of smoothing is natural when speaking about linear spectral reconstruction. In 
Figure 3-6 we show two measured spectral curves (on red) along with their reconstructed 
counterparts using a simple pseudo-inverse (green) and a smoothing inverse (blue), the 
smoothing matrix being N’∆, where ε is 0.01. Both curves are coming from the Macbeth DC 
set. We clearly see that the pseudo inverse reconstructed curves oscillate around its target. 
The idea of smoothing appears then adapted as a priori information to be included in the 
reconstruction technique.  
 



 65 

 
Figure 3-6 Spectral curves from the Macbeth DC set, red, along with their reconstruction using the 

pseudo-inverse, green, and the smoothing inverse, blue. (left panel) sample number 4 of the Macbeth 
DC set  (right panel) sample number 164. 

 
3.6.2 Wiener’s filter 
 
Wiener’s filter is probably the oldest technique using regularization. This technique has been 
applied extensively in signal and image analysis. We found its first application to 
multispectral image in [Pratt and Mancill, 1976]. Spectral reconstruction not being an 
exception we can see some simulations in [Konig, 1998] and a good example of application to 
a real camera in [Haneishi et al., 1997]. Wiener filtering builds a linear operator that is 
regularized by knowledge about the noise distribution affecting the system. The image 
formation model we want to invert is the one in equation (2.56),  
 
 cK = Θ r + n (2.70) 
 
where n is a vector of random noise. Wiener filtering is another technique that minimizes the 
mean average of the square error between the channel responses corresponding to the original 
and estimated spectral reflectances, respectively. Its main advantage is that it takes noise into 
account. The resulting operator is then a modification of the pseudo-inverse, 
 
 QWiener = Rrr Θ

t (Θ Rrr Θ
t + Rnn )-1, (2.71) 

 
where Rrr is the correlation matrix of the spectral reflectances and Rnn is the correlation 
matrix of the noise. They are given by 
 

Rrr = <rrt>   and   Rnn = <nnt> . 
 
As we see the Wiener estimation requires the second-order statistics with respect to the 
original spectral reflectance and noise, in addition to the system matrix Θ. It belongs to the 
inversion paradigm. It is important to say that the accuracy of estimation of the spectral 
reflectance depends on the system matrix Θ, and the correlation matrices Rrr and Rnn. We 
must estimate the correlation matrices accurately and that implies some experimental work. 
The correlation matrix of object reflectance, Rrr, is normally estimated from a patch set. On 
the other hand, the correlation matrix of noise, Rnn, is estimated by measuring the noise 
properties of the CCD camera actually used. 
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In the early work of [Pratt and Mancill, 1976] they propose some approximations of the 
covariance matrices. In fact, they model Rrr as a first-order Markov process covariance matrix 
of the form 
 

 Rrr = 

2 1

2
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, (2.72) 

 
where 0 1ρ≤ ≤  is the adjacent element correlation factor and 2

vσ  represents the variance of 
vector v. Pratt and Mancill chose to model observation noise as white noise process with 
covariance matrix 
 

 Rnn = 
2
n

Q
σ I , (2.73) 

 
where 2

nσ  is the noise variance and I is the identity matrix. This choice for the noise model is 
not justified in their paper and it becomes arbitrary when applied to spectral reconstruction. 
As we saw in the previous section about noise sources in multispectral images, this noise 
model can be much more complex in practice. See for instance [Haneishi et al., 1997] that use 
a more complete approach for modelling Rnn. 
 
3.6.3 Hardeberg’s modified Pseudo-inverse 
 
Jon Hardeberg developed a linear reconstruction technique exploiting a priori knowledge of 
the imaged objects. This technique is based on a pseudo-inverse. Information about the 
spectral reflectances of the objects that are to be imaged is introduced in the reconstruction 
operator. Good descriptions of the technique can be founded in [Hardeberg et al., 1999] or 
[Hardeberg, 1999, Thesis]. The technique belongs to the inversion paradigm, then the 
characterization of the direct system is necessary. 
 
Hardeberg’s operator Qhard minimises the Euclidian distance dE(r, r̂ ) between the original 
spectrum r and the reconstructed spectrum r̂  =  Qhard c. To achieve this minimisation it takes 
advantage of a priori knowledge on the spectral reflectances that are to be imaged. Spectral 
reflectances of typical objects are smooth. This fact is used by assuming that the reflectance in 
each pixel is a linear combination of a set of smooth basis functions. Typically Hardeberg 
uses a set of measured spectral reflectances as basis functions, but other sets of functions 
could be used, e.g. a Fourier basis. Denoting the basis function “reflectances'” as the usual 
matrix R the assumption implies that, for any observed reflectance r, a vector of coefficients a 
exists such that any reflectance r may be expressed as: 
 
 r = Ra. (2.74) 
 
Hence, we obtain r̂ : 
 
 r̂  = Qhard c = Qhard  Θ r = Qhard  Θ Ra. (2.75) 
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And the ideal expression r̂ = r becomes: 
 
 Qhard  Θ Ra = Ra. (2.76) 
 
Assuming that R is a statistically significant representation of the reflectances that will be 
encountered for a given application, the above equation should be true for any a, and hence: 
 
 Qhard  Θ R = R. (2.77) 
 
This gives then the reconstruction operator minimising the RMS spectral error by an 
underdetermined pseudo-inverse approach as: 
 
 Qhard = R pinv(Θ R)= R Rt Θt (Θ R Rt Θt)-1. (2.78) 
 
The choice of the spectral reflectances in R should be well representative of the spectral 
reflectances encountered in the applications. In his experiments on paintings Hardeberg used a 
set of 64 spectral reflectances of pure pigments utilized in oil painting and provided to him by 
the National Gallery in London [Maitre et al.,1996]. 
 
Some insight on this method can be given from its comparison with the one in equation (2.55) 
used above in this chapter to illustrate the learning paradigm of reconstruction methods. When 
noise is not present the equality  
 
 C = Θ R (2.79) 
 
holds, we then deduce: 
 
 Qhard = R pinv(Θ R) = R pinv(C). (2.80) 
 
Both methods are equivalent when noise is not present. We will thus not give any table of 
results for this method in this section as they are exactly the same as for results found for R 
pinv(C). But, we should not forget that the methods belong to a different paradigm. 
Hardeberg’s method is an inversion technique while the other is a learning technique. It is 
interesting to see that they converge for the ideal case because in well calibrated high quality 
multispectral system their performance should be similar. This point is still to be tested. On 
the other hand, in the presence of noise the methods diverge because their sources of noise are 
different. One method is affected by the errors performed in the measurements to estimate Θ, 
while the other suffers from noise associated to a real image acquisition. 
 
Finally, we want to remark the regularizing role played by matrix R in equation (2.78). Its 
role is related to Hadamard’s third condition, it stabilizes the operator using a set of existing 
spectral reflectances. As already said, Hardeberg tested its method using a matrix R 
containing pure pigments utilized in oil painting, but he proposed for other applications the 
use of sets such as the object colours of [Vrhel, 1994] or the natural colours of [Jaaskelainen, 
1990]. 
 
3.6.4 Pseudo-inverse and SVD 
 
This method is based on a principal component analysis method and the pseudo-inverse. The 
principal components of the spectral reflectances are estimated by a least mean square 
approach (a pseudo-inverse) from the camera responses. 
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The method was introduced by Burns, for reference see [Burns, 1997]. A set of spectral 
reflectances, R, typically coming from a colour chart are measured and a corresponding set of 
singular vectors, E, is calculated by Principal Component Analysis. Note that E is formally a 
matrix containing an orthogonal basis on its columns and A’ contains the projection of R on 
the vector space spanned by E. Then, the set of the most representative coefficients of A’ (in 
the sense of the PCA) form a reduced matrix obtained from A’ that we note A. A relationship 
between representative PCA coefficients (or equivalently singular values) and channel 
responses C, obtained from multispectral images of a colour chart, can be established by the 
operator 
 
 QpinvPCA = A Ct (C Ct )-1 . (2.81) 
 
This operator can be used to calculate some (the more representative) of the singular values of 
the spectral reflectance from the camera responses. Let’s note that another operation is needed 
to obtain the sampled spectral reflectance curve from the set of estimated singular values. This 
is obtained by a matrix multiplication, a projection from the orthogonal space defined by the 
PCA to the original reflectance space. If we call this matrix Ep, we can redefine the operator 
to estimate directly the spectral reflectance curves as 
 
 QpinvPCA =  Ep A Ct (C Ct )-1 . (2.82) 
 
If we compare this operator to the one used as a prototype of the learning paradigm (2.55) we 
see that they are very much similar. We repeat here the expression of the operator for better 
legibility: 
 
 QpinvRC = R Ct (C Ct )-1 (2.83) 
 
In fact the only difference between both above operators is that one uses the matrix R and the 
other introduces the product of two matrices Ep A. It is simple to deduce from the above 
explanation of the method that this Ep A is equivalent to the matrix R where an SVD has been 
performed, the “less representative” singular values being set to zero to form a new matrix R’, 
then R’ = Ep A. Of course the concept of “representative singular values” becomes 
fundamental for this method. We will not enter further into this concept that has been 
extensively treated in Chapter 2 (Nature of Data).  
 
In any case, the quantity of representative singular values should be chosen. One example of 
the application of this method is [Burns and Berns, 1996], where the authors use five singular 
values to represent a spectral reflectance curve. In this case the set of reflectance curves is 
coming from the Munsell Book of Color samples. We think this kind of a priori choice is 
arbitrary and cannot be claimed as general because the precision of the estimation or the 
resistance to noise of the reconstruction system depends on this parameter. In general 
different applications will require different number of singular values. From the same 
laboratory as [Burns and Berns, 1996], other works have justified their choice for the number 
of singular values used. [Imai et al., 2002] apply this method using as training set the spectral 
reflectances of a GretagMacbeth Checker DC colour chart. In this case they calculate 
reconstruction errors using from one to 31 singular values. They choose five as the error starts 
to stabilize on a plateau for this choice. 
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Figure 3-7 RMS reconstruction errors for the Macbeth DC chart using 12 bits quantization. Vertical 

axis represents the RMS error, horizontal axis contain the number of singular values used. 

 
Using our simulations we calculate optimal number of singular values in that case. In Figure 
3-7 we show the RMS reconstruction errors for the Macbeth DC chart using 12 bits 
quantization. Errors start to reach a plateau when 7 singular values are used. This is of course 
true in the case of our simulation but this calculation should be repeated when using real data. 
 

Table 3-7. Mean Squared Spectral Error over different databases. 
 QpinvPCA QpinvR 
Kremer  0.00065728 0.00029467 
Macbeth DC 0.00011259 0.00006718 
Selected Artists 0.00047047 0.00023387 
Restoration 0.00042320 0.00018397 
Munsell 0.00009908 0.00007020 

 
It is interesting to compare the results of QpinvPCA and QpinvRC in our simulations. In the ideal 
case when noise is not present operator QpinvRC should perform better as it contains all 
singular values. Table 3-7 shows the comparison and confirms these differences. QpinvPCA has 
been calculated using the 8 first singular values. Indeed the learning strategy not performing 
any SVD analysis performs approximately twice better on average. We will come back later 
on this thesis to this discussion but in presence of noise when analysing the performance of 
reconstruction methods on real data. 
 
3.6.5 Non averaged pseudo-inverse 
 
This technique is a modification of the preceding one. It uses a conceptually easy and very 
powerful way of introducing noise information in the system. We read its first applications in 
[Imai et al., 2002] this is the reason why we call it Imai’s linear operator. 
 
The key idea behind this technique is simple but an experimental detail must be explained in 
order to understand how this method works. First of all the method belongs to the learning 
paradigm where a matrix R of spectral reflectances and its corresponding matrix C of camera 
responses are known. An operator Q can be built using the pseudo-inverse. Knowing R and C 
implies classically a two steps experiment based on a chart containing colour patches: 
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1.  Measure all the patches of the colour chart using a spectrophotometer. Each measure 
is stored in a column of the matrix R. 

2. Take a multispectral image of the colour patch. A window (normally squared) is 
superposed to each patch and its mean value calculated per patch and per channel. The 
mean values of the window for all the channels form a vector of camera responses. 
This mean vector is stored in a column of the matrix C. This column has the same 
index as the corresponding spectral reflectance column in matrix R. 

 
The technique is based on taking advantage of the information acquired in the above step two. 
Instead of calculating a mean value for the windows superposed to the patches, this technique 
uses all the values contained in the window to build a large C matrix. Of course matrix R is 
expanded to have a corresponding spectral value for every column of C. This makes the 
matrices very large. For instance, a typical big colour chart can contain 200 patches. When 
using the classical mean value approach, if 10 filters are used and the spectral curves have 40 
samples, matrix R has dimensions 40 by 200 while matrix C is 10 by 200. When using this 
new approach and a small window of 10 by 10 pixels the sizes of the matrices are multiplied 
by 100. Matrix C becomes 10 by 20,000 and matrix R is 40 by 20,000. We can easily imagine 
that when the window increases its dimensions the size of the system formed by R and C can 
became huge. This implies much more computation time. 
 
The big advantage of this method is that it captures automatically the acquisition noise model. 
This holds when the patches of the colours chart used are uniform and the multispectral 
acquisition system corrected for spatial inhomogeneities of the illuminant and the CCD. In 
this case, we can consider every pixel of a window as a realization of a random noise process. 
Then, using all the values in the analysis windows as samples to solve the spectral 
reconstruction problem means that we implicitly take noise into account. In fact, this approach 
is interesting because noise is not explicitly modelled, no assumption about its distribution 
being required. Moreover, if the multispectral images of the colour chart are taken in the same 
experimental situation as the ones with which the system will be used, then all noise sources 
are captured implicitly. 
 
3.6.6 Non Negative Least Squares 
 
We found the application of this technique in [Imai et al., 2002]. The Non Negative Least 
Squares algorithm is used to build a reconstruction operator QNNLS from a set of spectral 
reflectances and their corresponding camera responses. For clarity we divide this section in 
two subsections: first we describe the NNLS algorithm, secondly we explain how it is used 
for building the reconstruction operator. 
 
3.6.6.1 NNLS algorithm 
 
The NNLS algorithm is due to [Lawson and Hanson, 1974] and it aims to solve the following 
problem: 
 min −

x
Ex f , (2.84) 

subject to the constraint 
 0≥x , (2.85) 
 
where E is a K by N matrix, f a K-vector and x a N-vector. In the following we will describe 
practically how the NNLS algorithm find a solution to this problem. For further reference or 
more theoretical considerations please refer to chapter 23 of [Lawson and Hanson, 1974]. 
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The solution of the above defined problem is subject to the Kuhn-Tucker theorem, which can 
be rewritten in this particular case as follows: 
 

Theorem (Kuhn-Tucker conditions for the NNLS problem) 
An N-vector x̂  is a solution for the NNLS problem if and only if there exists a M-
vector ŷ  and a partitioning of the integers {1,…M}into two subsets β and Η such that 
 

 ˆ ˆt= −y E (Ex f)  (2.86) 
and 

 ˆ 0ix = , ˆ 0iy ≥  for i β∈ ,      ˆ 0ix > , ˆ 0iy = for i H∈  (2.87) 
 
This theorem has a direct interpretation. The constraint (2.87) defines hyperplanes on the 
solution space. H is a set of numbers indexing the feasible halfspaces, β a set of indexes the 
boundaries of these halfspaces. 
 
The NNLS algorithm takes as input the m by n matrix E and the m-vector f. This algorithm is 
based on the evaluation of (2.86) and the manipulation of two sets of indices, P and Z, that are 
defined and modified at execution time. Variables indexed in the set Z are held at the value 
zero. Variables indexed in the set P can take values different from zero. If such a value takes a 
nonpositive value, the algorithm will either move the variable to a positive value or else set 
the variable to zero and move its index from set P to set Z. 
 
The algorithm is as follows: 
 

Initialisation: set P := {NULL}, Z := {1,2,…,n}, and x := 0 
Loop 1 

Loop 2 
Compute the N-vector w := t −E (f Ex)  
If (Z is empty ) OR ( 0jw ≤  for all j Z∈ ) 

Exit Loop 1 and 2 
end If 
Find index t Z∈  such that { }max /t jw w j Z= ∈   

Move the index t from set Z to set P 
Let EP denote the m by n matrix defined by 

Column j of EP := 
column  of  if 

0 if   
j j P

j Z
∈

 ∈

E
 

Compute the N-vector z as a solution of the least square problem P ≅E z f . 

If ( 0jz >  for all j P∈ )  

x := z 
end If 

End Loop 2 If  0jz∃ < , j P∈ ) 

Find an index q P∈  such that { }( ) min ( ) : 0,q q q j j j jx x z x x z z j P− = − ≤ ∈  

Set x := ( )q

q q

x
x z

+ −
−

x z x  

Move from set P to set Z all indices j P∈  for which xj = 0 
End Loop 1 
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On termination of this algorithm the vector x satisfies the positivity constraint and is a 
solution of the least square problem (2.84). The convergence has been proven, see [Lawson 
and Hanson, 1974] for details. These authors claim that Loop 1 of the algorithm requires 
typically ½ N iterations to find a solution. This is important to note because most 
reconstruction algorithms used in spectral reconstruction are based on non iterative 
algorithms. 
 
3.6.6.2 Building operator QNNLS 
 
Applying the NNLS algorithm directly to reconstruct individual spectral reflectance curves is 
possible but it would need the full execution of the algorithm for each pixel of the image. As 
long as NNLS execution time is finite but not bounded that is probably the main reason not to 
use it that way. In fact, in [Imai et al., 2002], the authors build an operator using the NNLS 
algorithm and this operator is used in the reconstruction process. They do not specify in this 
papers how they do it. We have implemented and tested a method using NNLS based in the 
same assumption as [Imai et al., 2002]. 
 
From equation (2.49) we know that the basic learning-based reconstruction operator is 
equivalent to the solution of the following least square problem: 
 

 
2

min
t
i

t t t
i i−

q
C q r . (2.88) 

 
where C is the matrix of camera responses, ri is the i-th row of R containing spectral 
reflectaces on its columns, and qi is the i-th row of the desired operator Q. Once the system is 
expressed in this way, the constraint 0≥x  can be imposed by using the NNLS algorithm to 
solve it. Solving the problems for all the i’s will give us the desired operator QNNLS. 
 
The operator QNNLS is the result of the application of the NNLS algorithm, consequently no 
negative values will be found on it. As our input camera responses are always normalised 
between zero and one, all the samples of the reconstructed spectral reflectance curves are 
guaranteed to be bigger or equal to zero. 
 
In Figure 3-8 we show a graphical representation of operator QNNLS calculated using the 
simulation presented in 3.2.4. On the left panel we plot a 3d graph while on the right panel a 
contour plot is shown. By the nature of the method lots of zeros are introduced in the operator. 
 

 
Figure 3-8  3d graph of the reconstruction operator calculated using NNLS on our simulation  (left 

panel), its corresponding contour plot (right panel) 
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3.6.7 Techniques based on Interpolation 
 
Spectral reconstruction using interpolation is based on the simple assumption that a 
multispectral system is sampling spectral reflectance curves. Instead of using delta Dirac 
functions for the sampling as in the classical framework, the spectral transmittance functions 
of filters are consider to be the sampling functions. In our simulation this fact is easy to see. 
On the left panel of Figure 3-9 we represent on red some camera responses along with its 
spectral reflectance curve in the same graph. On the right panel we perform a linear 
interpolation of the red points to show that simple interpolation roughly approximates the 
shape of the spectral curve. 
 

 
 

Figure 3-9 A spectral curve along with its camera responses  (left panel), linear interpolation of the 
camera responses (right panel) 

 
There are two underlying problems to take into account before representing the camera 
responses in the same space as spectral curves: 
 
• The position of the samples in the spectral range. In the case of our simulation the camera 

responses are draw at the positions of the centres of the Gaussians filters. Gaussians can 
be interpreted as basis functions of the spectral curves and its centres are an obvious 
choice for representing the position of the sample. Real filters are normally not Gaussians. 
In general, we can say that if a filter is narrow, positioning the camera responses can be 
done with low uncertainty. Unfortunately, when wide filters are to be used this uncertainty 
increases with the width of the filter. This is the reason why interpolation methods are 
used only with multispectral cameras using narrow band pass filters. 

 
• Camera responses must be normalised. In the case of our sample simulation the values of 

the camera responses belong to the interval ]0,1[ for all channels. In order to obtain this 
we multiply the simulated camera responses by a normalization matrix. This 
normalization matrix is obtained taking into account the responses of the system to the 
spectral curve of a “perfect white”. In our simulated case this perfect white is a spectral 
curve with all samples having a maximum unitary value. In a real case, normalising the 
responses is not so easy. In general, a standard white patch is imaged as a reference for 
normalisation as part of a calibration procedure. 
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In the case where camera responses are not normalised any interpolation method would 
provide very bad results. If we take a look at the Θ operator used in our simulation we clearly 
see that the filters on the low side of the spectrum allow less energy to pass through than the 
filters on the upper side. Interpolation without normalisation would give curves with errors 
depending on the energy the operator allows to pass trough. In Figure 3-10 we show the same 
information as in Figure 3-9 when normalisation is missing. On the left panel of Figure 3-10 
we see that camera responses (crosses) are not at all an approximation of its spectral 
reflectance curve. On the right panel we perform a linear interpolation to show how 
interpolation fails. 
 

 
Figure 3-10 A spectral curve along with its non normalised camera responses (left panel), linear 

interpolation of the camera responses (right panel) 

 
Before giving more details about interpolation based techniques for spectral reconstruction we 
want to emphasize that even if it seems that this kind of technique is directly applicable to the 
camera responses without any knowledge of the direct system, this is not true if good results 
are to be obtained. As we saw above these techniques are adapted to situations where we have 
a relatively high number of narrow band filters. [Keusen, 1996] mentioned the number of 16 
in its simulations. On the other hand a good calibration of the multispectral system is 
necessary to apply this technique. In general we have seen most practical application of 
interpolation in cases where the CCD used is cooled and Gaussian like filters are used, see 
[Herzog and Hill, 2003] for instance. Such methods are reported not to be well adapted to 
filters having more complex wide-band responses, and suffer from quite severe aliasing errors 
[Burns 1997, Thesis], [Konig 1999]. 
 
In the following we present the existing interpolation techniques that have been applied to the 
spectral reconstruction problem. 
 
3.6.7.1 Cubic Splines 
 
In their most general form, splines can be considered as a mathematical model that associate a 
continuous representation of a curve or surface with a discrete set of points in a given space. 
Spline fitting is an extremely popular form of piecewise approximation using various forms of 
polynomials of degree n, or more general functions, on an interval in which they are fitted to 
the function at specified points. The polynomial used can change, but the derivatives of the 
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polynomials are required to match up to degree n -1 between two intervals, or to meet related 
interpolatory conditions. Boundary conditions are also imposed on the end points of the 
intervals. The heart of spline construction resides on how the selected control points are 
effectively joined using the polynomial function of choice. 
 
Cubic splines are probably the most popular curve representation scheme at the moment. 
They are piecewise polynomials of degree three, cubic polynomials, with pieces smoothly 
connected together. In the multispectral community they have been used only for 
interpolation, not for approximation and they were introduced by [Keusen, 1996]. Splines are 
well adapted to the representation and reconstruction of spectral reflectance curves because 
they generate smooth curves, C2 continuity being assured in a cubic spline. 
 
Giving here an introduction to the mathematics of the splines is out of the scope of this 
section. The interested reader can find plenty of textbooks and papers on this subject. For a in 
depth description of this interpolation technique see chapter 9, Cubic Spline Interpolation, of 
[Farin, 1998]. A comprehensive introduction can be found in chapter 3, Hermite and Cubic 
Spline Interpolation, of [Bartels et al., 1987]. 
 
 
3.6.7.2 Modified Discrete Sine Transform (MDST) 
 
The MDST was introduced by [Keusen, 1996]. It is based upon Fourier Interpolation. This 
technique uses the DFT (Discrete Fourier Transform) to represent the data in the frequency 
domain. As the Fourier Transform decomposes a signal into an orthogonal basis, this basis 
can be used as an interpolating function. In the implementation of the technique the FFT (Fast 
Fourier Transform) is normally used. The key concept that is exploited is that the FFT uses 
integer positive numbers as indexes. The most usual way of performing the interpolation is 
based in two steps: 
 

1. a FFT is performed on the original signal, 
2. when performing the inverse FFT non-integer indexes are allow in the transformation. 

 
This way of performing Fourier interpolation works by summing together, in the time domain, 
the frequency components of the interpolation function which is created from the set of 
sinusoidal basic functions whose magnitudes are specified by the output of the FFT. This is 
the technique we are using in our implementations of the Fourier interpolation. There exist 
another way of Fourier interpolation by Frequency Domain Extension. We will not give here 
more details about these techniques, the interested reader can refer to [Merrit, 2002] for a 
good introduction to this subject. 
 
A main problem with the application of the DFT or FFT is that initially this transformation 
delivers good results only if samples of periodic functions are used. The samples considered 
in spectral reconstruction are typically limited around the range 380 to 780 nm, outside this 
range no samples are available. If a FFT is applied despite this fact, wrong-frequency 
components created at the edges of the sampled window produce errors. A pre and post 
processing method was developed by Keusen to solve this problem. The method works as 
follows:  
 

• In a first step, a linear function combining the edge values of the samples is subtracted 
from the sampled values. The result is a smooth function with zero values at the edges. 
A sample can be seen in left panel of Figure 3-11. On top the original function (solid 
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line) is shown along with its corresponding linear function. On the bottom we show 
the function after subtraction (dashed line). 

 
• Afterwards, this function is mirrored periodically with changing sign, as sketched in 

the right panel of Figure 3-11. This produces a smooth and periodic function, that we 
can call modified function. 

 

 
Figure 3-11 (left panel) Original camera responses on red along with its linear function, on the 

bottom same data after subtraction of the linear function. (right panel) mirrored function 

 
• Now, Fourier interpolation can be applied to derive an approximation of sampled 

values. We show the result on the left panel of Figure 3-12. 
 

• At last, the first half of the function is kept (bottom of right panel, Figure 3-12) and the 
linear function computed as first step is added. The final result is shown on the top of 
the right panel of Figure 3-12. 

 

  
Figure 3-12 (left panel) Modified function after interpolation on the Fourier domain. (right panel) On 
the bottom, first half of the modified function; on top, final result after addition of the linear function  

 
It is important to note that mirroring and Fourier expansion correspond to a sine transform. 
The Fourier transform of a real-odd function f(-x) = -f(x) is real-odd. Similar results hold for a 
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discrete Fourier transform, and thus for these symmetries the need for complex inputs/outputs 
is entirely eliminated. Moreover, we gain a factor of two in speed/space from the fact that the 
data are real, and an additional factor of two from the odd symmetry: only the non-redundant 
(first) half of the modified function needs to be stored. The result is the real-odd DFT, also 
known as the discrete sine transforms (DST). This is the reason why this method is called 
modified discrete sine transformation (MDST). 
 
3.6.7.3 Interpolation methods simulation results 
 
We show here some results using our simulation for the interpolation methods. Table 3-8 
contains a comparison between MDST and the cubic spline. 
 

Table 3-8. Mean Squared Spectral Error over different databases. 
 Cubic Splines MDST 
Kremer  0.00095983 0.0020281 
Macbeth DC 0.00075815 0.0013742 
Selected Artists 0.00084324 0.0016577 
Restoration 0.00050814 0.0010732 
Munsell 0.00036359 0.0006119 

 
In this case, cubic splines obtain much better results than the MDST method. This is not 
surprising as MDST was reported by [Keusen, 1996] to obtain good results for 16 filters while 
we are using 10. In this context the interpolation methods seem no satisfactory. If we look at 
Table 3-7 we see that results obtained by operators QpinvPCA and QpinvRC are, for all presented 
databases, clearly superior to interpolation. This fact confirms the idea that reconstructing 
reflectance curves by interpolation leads to good results only when a high number of narrow 
band filters is used. 
 
 



 78 

3.7 Conclusion 
 
The problem of spectral reconstruction has been presented and analysed on this chapter. Our 
analysis and the introduction of fundamental formulae lead to a classification of the methods 
depending on the type of problem to be solved. The proposed classification of the 
reconstruction techniques includes three paradigms: i) direct reconstruction, which is based 
on the inversion of the camera model a ii) indirect or learning-based reconstruction and iii) 
reconstruction by interpolation. Our classification is physically and mathematically well 
founded and helps understanding the limits and requirements of the methods. 
 
A survey on the existing reconstruction techniques was also presented. This survey is 
illustrated by computer simulations, discussions and some algebraic developments. We 
believe this is useful to give insight on the behaviour of the methods and their possible 
applications. 
 
The chapter intended to be self-contained. This is why data concerning noise, descriptions 
about solving least square problems and metrics for the evaluation of reconstructed spectral 
reflectances are included. 
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4 Improving Spectral Reconstruction Accuracy 
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4.1 Introduction 
 
In this chapter we introduce two ideas in order to improve spectral quality reconstruction. 
These ideas are not themselves new reconstruction techniques but they can be applied to 
improve most of the existing spectral reconstruction methods. In our knowledge, the proposed 
improvements have never been applied in the context of spectral reconstruction. Moreover, 
because they are not specific methods but general improvements they can be broadly used. 
 
The first idea relates with the generalisation abilities of existing linear reconstruction methods 
using a priori information about the objects to be imaged. As we show on Chapter 3 there are 
quite a lot of methods belonging to this category. Researchers using this type of methods have 
characterised and compared their errors over different test sets. But they do not treat the 
problem of how to increase the results over these test sets. Using the concept of generalisation 
we propose an algorithm based on intense random resampling that increases the generalisation 
capabilities of such methods. Even if our simulations are performed on a specific operator 
chosen as a reference, the algorithm remains general and can be apply to any reconstruction 
method using a priori information. 
 
The second idea introduced in this chapter relates with the physical constraints to be respected 
by the reconstructed spectral curves. For instance, a spectral curve cannot be negative because 
this has no physical meaning. In addition the curves should not contain values bigger than 
unity (when normalised) and should be continuous and smooth. These physical constraints are 
generally not taken into account. The only exception we know is in [Imai et al., 2002] where 
the authors build an operator that assures non-negative values on the reconstructed curves.  
 
We propose a projection operator that is applied after spectral reconstruction to fit the curves 
on a physically meaningful space. The curves become bounded while keeping their 
smoothness. The a posterior application of this projection operator makes it an easy and 
efficient complement to any existing reconstruction technique. 
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4.2 Generalization and linear systems 
 
In spectral reconstruction we have to deal with the problems of extrapolation, prediction or 
estimation of spectral curves. A reconstruction method can obtain bad results when 
confronted to a particular set of imaged objects while obtaining very good results for others. 
This is a delicate aspect that has not been treated at the moment on the multispectral scientific 
community. In fact, we have not seen any reference on the multispectral literature about how 
the existing methods generalise. 
 
When direct or interpolation methods are used, we can apply these methods to different data 
sets and measure their differences in accuracy. Improvements of the methods which go further 
than the stabilization of their singular values, [Burns, 1997], are not evident and would 
introduce new elements in the operators. This is, for instance, the case of [Hardeberg et al., 
1999] where a priori information about the objects to be imaged is introduced that modifies 
the inversion operator. This guarantees a better response over the set of spectral reflectances 
used as an “a priori information” but it still remains the question of what will happen when 
using other data sets. Exactly the same question arises when building operators on a set of 
camera responses and their corresponding spectral reflectances. We expect a good result on 
the data set used as training but the generalisation capabilities of the operators are practically 
not predictable. 
 
In this section we introduce a method for the improvement of the generalisation accuracy of 
spectral reconstruction. In order to present the method we choose the operator presented as 
reference for the learning paradigm, see Chapter 3, we rewrite here its equation for clearness: 
 
 Q = R pinv(C) (4.1) 
 
where pinv(C) = Ct (C Ct )-1, C being the matrix containing the camera responses on its 
columns, and R being the matrix containing the corresponding sampled spectral reflectances 
on its columns. 
 
Our method for generalisation is based on the idea of bootstrap. Bootstrap was introduced by 
[Efron, 1979]. This paper revolutionized the field of statistics and from there bootstrap has 
been extensively used. Originally the bootstrap method is a computer based resampling 
technique for assigning measures of accuracy to statistical estimates. It provides confidence 
intervals on the estimation of any population statistic. 
 
After more than twenty years from the original paper of Efron the bootstrap now broadly 
refers to a collection of methodologies in which data are resampled in order to incorporate, 
into statistical inference, the information contained in the data regarding its probability 
distribution. The method is conceptually simple yet computationally intense. As computers 
become faster and more powerful, the bootstrap becomes a more practical tool for data 
analysis. The method introduced in this section is a bootstrap method in the sense that it uses 
intense resampling to statistically improve the results of the spectral reconstruction. 
 
 
4.2.1 Proposed algorithm 
 
The algorithm is based on resampling matrices R and C by using a random selection of their 
columns. The probability distribution used for the selection is uniform. We then call 
resample(.) a function taking a matrix and returning another matrix with randomly resampled 
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columns. We note that the obtained matrix will contain repeated columns. Consequently, 
some columns of the original matrix will not be present on its resampled version. 
 
The proposed algorithm consists in building a reconstruction operator using the resampled 
matrices obtained from R and C. A big number of operators can be calculated along with their 
errors over a test set of data, Rtest and Ctest . Afterwards the operator showing the lowest RMS 
error on the test set is chosen. 
 
The algorithm in pseudo-code is as follows: 
 

For i=1,…,I 
Ri = resample(R) 
Ci = resample(C) 
Qi = Ri pinv(Ci) 
errori = || Qi Ctest - Rtest ||2  

End For 
Choose Qi having the smallest errori  

 
where I is the number of iterations. The function resample(.) transforms equally R and C by 
using the same random selection in each iteration because these two matrices need to contain 
corresponding columns. 
 
 
4.2.2 Results 
 
We applied the algorithm introduced on the preceding section using I=100 to some spectral 
reflectance databases. In this section we choose an example to illustrate the improvements 
obtained in our experiments. R in this example contains the spectral reflectances of the 
MacbethDC dataset. The corresponding matrix C is calculated by simulation considering a 
multispectral system with seven equidistributed Gaussian-shaped filters on the visible part of 
the spectrum. Twelve bits quantization is introduced on the system. The test reflectances used, 
Rtest, are the Kremer dataset. Ctest is calculated by simulation exactly as for C. 
 

Table 4-1. Comparing spectral accuracy results before and after bootstrapping 
 MacbethDC Kremer 
Without bootstrap 0.0001884 0.001081 
After bootstrap 0.0002069 0.000744 

 
In Table 4-1 we presents the results of the application of the algorithm on the training set of 
the reconstruction method and on the test set of our algorithm. We found that it indeed 
reduces the RMS error on the test set but the error is augmented on the set used to build the 
operator. This increase of the error on R is not necessarily bad, in fact poor generalisation 
implies normally high specialisation on a set of data used for training. In fact, by just 
considering data presented on Table 4-1 we cannot know if the generalisation capabilities of 
the built operator are increased. We then present on Table 4-2 the same results on the Selected 
Artists, Restoration, Munsell, and Pine Tree Leaves datasets. The effect on these datasets is 
very positive, a reduction of the RMS spectral error is clear on all cases. The mean increase in 
accuracy is 29.6% that can be considered very significant, even more when considering that 
they are generalisation results and the used datasets come from very different origins. 
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Table 4-2. Generalisation results before and after bootstrapping 
 Selected Artists Restoration Munsell Pine Tree 
Without bootstrap 0.0006915 0.0006445 0.0001538 0.0010293 
After bootstrap 0.0004822 0.0003969 0.0001326 0.0006592 
Improvement 30.3% 38.4% 13.8% 36.0% 

 
Even if the reduction of the RMS errors presented on Table 4-2 is very positive for I=100 
iterations we wanted to know if it was possible to improve the results further. For this we 
applied our algorithm iteratively, the best Ri matrix found after I=100 iterations of the 
algorithm being used as the matrix R for the next set of I=100 iterations. This strategy appears 
to indeed further reduce the error. Then, we decided to study closer the effect of the iteration 
of the algorithm. On the left panel of Figure 4-1 we can see the evolution of the error on the 
test dataset Rtest while iterating. Twenty algorithm iterations are enough to see that the error is 
reduced till a plateau is reached after 5 iterations. On the right panel of Figure 4-1 the 
evolution of the reconstruction error on R (the set used to train the reconstruction method) is 
shown. This error increases on each iteration and also reaches a plateau after 15 iterations. It 
is important to note that the plateau of error reduction on Rtest is reached before the plateau of 
error increase on R. 
 

 
Figure 4-1. RMS error evolution when applying the bootstrap based algorithm several times. (left 

panel) Data set used as test for the bootstrap, (right panel) data set used as learning set for the 
reconstruction operator. 

 
On Figure 4-2 we present in a similar graph as on left panel of Figure 4-1 the RMS spectral 
error on the Selected Artists, Restoration, Munsell, and Pine Tree Leaves datasets. We can see 
that the iteration of our algorithm also reduces the error on these datasets. A plateau or a 
minimum is reached around 5 iterations as for Rtest, the test set. An exception appears for the 
Pine Tree dataset that continues decreasing its error. The behaviour of the algorithm observed 
on these experiments indicates that the optimum number of iterations is five for this case. 
Iterating more does not decreases the generalisation capabilities of the reconstruction 
operation. On the contrary too many iterations degrade the reconstruction quality on the 
training set of the method and also on some datasets used to test the generalisation. 
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Figure 4-2. RMS error evolution on other data sets. 

 
Before concluding this section we quantify the improvements introduce for the proposed 
bootstrap based method. If we call rms the RMS reconstruction error without bootstrap and 
rmsb the RMS error obtained once the bootstrap has been applied, we can then easily calculate 
the per cent of improvement as: 
 

 %improvement = 100brms rms
rms
−

× . (4.2) 

 
On Table 4-3 we present the results obtained after five iterations of the proposed algorithm 
(with I=100). We present for comparison the results when the algorithm is not used and the 
calculated per cent of improvement using expression (4.2). The results for generalisation 
appear to be very satisfactory. We also observe that after 5 bootstrap iterations the RMS error 
is much more equally distributed on the various datasets used for testing generalisation. 
 

Table 4-3.RMS errors before and after bootstrapping (5 iterations) and % of improvement. 
 MacbethDC Kremer Selected Artists 
Without bootstrap 0.0001884 0.0010810 0.0006915 
After 5 bootstraps 0.0003009 0.0005168 0.0003467 
Improvement -59.7% 52.2% 49.9% 
 Restoration Munsell Pine Tree 
Without bootstrap 0.0006445 0.0001538 0.0010293 
After 5 bootstraps 0.0002742 0.0001141 0.0003194 
Improvement 57.5% 25.8% 69.0% 

 
In conclusion, we have proposed a method for improving the generalisation capabilities of 
linear reconstruction operators by using bootstrap. It is in our knowledge the first time that 
such an approach is taken on spectral reflectance reconstruction. We have tested the method 
by simulation and the obtained results are fully satisfactory. Even if the tests have been 
performed using a specific operator, the algorithm remains general and is applicable to any 
linear reconstruction method using a priori information over the imaged objects. 
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4.3 Respecting physical constraints 
 
A spectral reflectance of an object or material is defined as the ratio of its luminance to the 
luminance of a perfect white diffuser material at the same position. The measure of this 
physical property satisfies then physical constraints. For instance, there is no physical 
meaning for a negative reflectance. But when performing spectral reconstruction, negative 
reflectances can appear in the solutions. This is due to the mathematical formulation of the 
problem. In general, the reconstruction methods seek to minimise a measure of accuracy 
which sometimes leads to negative values. In our knowledge, the only effort to deal with this 
constraint is in [Imai et al., 2002] where the authors apply the Non Negative Least Squares 
(NNLS) algorithm to build reconstruction operators estimating curves without negative 
values. As this algorithm is based on the introduction of zeros (instead of negative values) on 
the constructed operator it is predictable that its accuracy decreases. In any case, the algorithm 
deals with the problem of non-negative values but not with others constraints. 
 
Three constraints are important on a spectral reflectance curve: 
 

1. the curve cannot be negative, 
2. it has an upper bound of 1 (we consider here only diffuse materials without specular 

reflection), 
3. the curve must be continuous and smooth. 

 
The third constraint has been extensively justified on Chapter 2. The reconstruction methods 
studied on Chapter 3 respect the third condition but not the others (NNLS being an 
exception). 
 
In the multispectral community there exists another problem that is sometimes solved by 
similar linear methods as the ones presented on Chapter 3. This is the problem of filter 
optimisation. In this context [Sharma and Trussell, 1996] introduced an estimation method for 
spectral sensitivity curves based on the method of Projections Onto Convex Sets (POCS). The 
method itself was not new, the first image processing application of POCS was on [Youla and 
Webb, 1982] where the aim was the restoration of images. POCS is a method that allows the 
use of non-linear maps in simple terms. Every known property of an original signal or image f  
can be restricted to lie in a well-defined closed convex set. Thus, m such properties place f in 
the intersection of the corresponding closed convex sets C1, C2, .. Cm . Given the projector 
operators Pi onto the individual Ci‘s, i=1…m, we find f by the recursive application of the 
operators Pi. The approach is conceptually simple and the major synthesis problem becomes 
the realization of operators Pi. 
 
[Sharma and Trussell, 1996] used several convex sets for filter transmittance optimisation, 
they are: the non-negative and upper bounded vector set, the noise variance set, the noise 
outliers set, the passive response set, the smoothness constraint set, the unimodal set and the 
set of vectors close to the Human Visual Space. Using projection operators onto these sets 
they solved their problem. As we can see two of this sets are adapted to the constraints of 
reconstructed spectral curves: the non-negative (and upper bounded) vectors set and the 
smoothness set.  
 
We can think about the application of POCS to spectral reconstruction. However, the non-
negative and upper bounded convex set and the smoothness set are not enough. In fact, they 
guarantee the reconstruction to be physically feasible but they do not guarantee a good 
reconstruction accuracy. Consequently, a projection operator minimising an accuracy criterion 
must be included. Once done, we could apply POCS for spectral reconstruction. But we must 
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not forget that POCS is an iterative method based on projection operators. Such a method is 
then not bounded on time and can converge slowly, depending on the case. It is then not 
adapted for spectral reconstruction where existing methods are bounded and fast. 
 
Even if we cannot consider the use of POCS for spectral reconstruction the underlying idea is 
still interesting. Based on this idea, in this section we seek for a projection operator that 
bounds estimated reflectance curves while respecting their smoothness and increasing their 
estimation accuracy. Such an approach cannot be called POCS because it considers an unique 
projection, performed in a single step and without any iteration. If the correct projection 
operator is found it could be apply as a postprocessing step for any reconstruction method. 
 
4.3.1 A spline-based projection operator 
 
Before speaking about the new operator let’s take a look at the basic orthogonal projection 
onto a set of bounded curves. This operator is given by a simple saturation. Be r(λ) the 
reconstructed curve and rp(λ) its orthogonal projection, the operator is defined as: 
 

 rp(λ) = 
0   ( ) 0
1   ( ) 1
( )

if r
if r

r elsewhere

λ
λ

λ

<
 >



 (4.3) 

 
It is easy to see that rp(λ) is not necessarily continuous, this is due to the two discontinuity 
points on 0 and 1 on the projection operator. When the projection is performed the 
smoothness of the resulting curve is not preserved. Our idea is to obtain an operator similar on 
shape but continuous. Mathematically smoothness is a characteristic of a curve belonging to 
class C2, containing the functions having continuous second derivatives. We remind that the 
composition of two functions g and h, h o g, is C2 when both functions are themselves C2. As 
spectral reflectance function are continuous and smooth if we construct a C2 projection 
operator the obtained curve is necessarily C2. We take then as a basis to model our operator a 
cubic spline which assures continuity and smoothness. On Figure 4-3 we can see the overall 
shape of two operators constructed with cubic splines. We can see that in the upper and 
bottom regions the operator is a third degree polynomial while on the rest it is a straight-line 
with unitary slope. 
 

  
Figure 4-3. (left panel) Proposed projection operator with its parameter fixed at 10%. (right panel) 

Some operator at 2%. 
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A question arises on how to define a priori the size of the curved upper and bottom parts of 
the operator in the regions close to its bounds. We have parameterised the size of these 
regions by a unique parameter. We express it in per cents (%) because it gives a good intuitive 
understanding of its effect. The family of operators defined by this parameter is easily 
obtained by the modification of some of the knots that form the spline. On the left panel of 
Figure 4-3 we show the resulting operator with parameter 10% while on the left panel we 
show the one with parameter 2%. In fact, the 10% operator appears not useful as it modifies 
too much the spectral curves inside the bounded area, this degrades the reconstruction errors. 
The 2% operator is more realistic. We will see its effects on the next section. 
 
 
4.3.2 Results 
 
Before presenting data obtained from statistical analysis on different databases we show an 
example of a projected reflectance curve. A simulation is performed considering a 
multispectral system with seven equidistributed Gaussian-shaped filters in the visible part of 
the spectrum. Twelve bits quantization is introduced on the system. In Figure 4-4 we show a 
measured spectral reflectance from the Kremer dataset (dashed line) and its reconstruction 
(solid line) using equation (4.1) as in the preceding section. Clearly the reconstructed curve 
does not respect physical constraints, it contains negative and “bigger than one” values. 
 

 
Figure 4-4. Original (dashed line) and reconstructed (solid line) spectral reflectance curves. Clearly 

the reconstructed curve does not respect physical constraints. 

 
On the left panel of Figure 4-5 we show the projection of the reconstructed curve using 
expression (4.3). The obtained curve is no more smooth and presents three points in which the 
curve is not of class C2. On the right panel of Figure 4-5 we see the projection using the 
proposed operator with parameter 2%. The projected curve is bounded and keeps being 
smooth. 
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Figure 4-5. Original spectral reflectance curve (dashed line) and projection of its reconstruction 

(solid line). (Left panel) Projection performed by a raw saturation. (Right panel) Projection operator 
is the proposed spline with its parameter at 2%. 

On the above example we can visually see that the 2% proposed operator is slightly better 
than the orthogonal projection of expression (4.3). If projection is applied to several databases 
we can quantify the errors. On Table 4-4 we present simulation results on our different 
datasets when using raw orthogonal projection and our 1% operator. Note that we do not use 
2% anymore, this choice will be justified at the end of this section. We also show the errors 
without projection for reference. We see that in all cases the best results are obtained by the 
new proposed projection. The increase of accuracy with respect to the raw projection is not 
very significant but we should keep in mind that this raw projection should not be used 
because it does not preserve the smoothness of the curve. Comparing when no projection is 
performed the proposed operator increases, in this simulation, the accuracy between 1% and 
12%. We must also say that this increment will be typically bigger when more noise is 
introduce on the system. In this simulation, the only source of noise is the quantisation of the 
signals on 12 bits which is considered as a good signal-to-noise ratio. 
 

Table 4-4. RMS errors using different projection operators 
 MacbethDC Kremer Selected Artists Restoration Munsell 
NO projection 0.0001884 0.0010815 0.0006915 0.0006445 0.00015385 
Raw projection 0.0001869 0.0008841 0.0006439 0.0005656 0.00015377 
Spline (1%) 0.0001858 0.0008697 0.0006365 0.0005555 0.00015365 

 
A last consideration can be done. It concerns the choice of the % parameter on the proposed 
operator. A priori we do not know if the value 1% is better than 2% or 3%. We know that the 
parameter cannot be big, 15% for instance would be too strong as the operator would modify 
30% of the curve. However, this parameter can be easily optimised using a test dataset. The 
value of the parameter giving the smallest RMS error on the test dataset can be kept as a 
solution. In the case of data presented in Table 4-4, 1% was the selected value. 
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4.4 Conclusion 
 
We have described two original improvements for existing reconstruction techniques which 
we propose to the multispectral community. 
 
The proposed algorithm to improve generalisation on linear reconstruction techniques using a 
priori information appears very efficient. The presented simulation results provide an 
improvement of 50% of accuracy on the test sets used. This is a very good and promising 
result. The idea of intense random resampling to increase the generalisation capabilities of the 
reconstruction is well justified by these results. In addiction, the idea itself is interesting and 
opens new research perspectives. For instance, the problem of selecting a subset of important 
spectral reflectance curves among a set of curves can be studied by this means. The kernel of 
spectral curves selected by the algorithm is worth to be carefully studied on the future. 
 
Regarding the problem of reconstructing curves that respect physical constraints, we have 
proposed a spline projection operator. This operator is simply applied after reconstruction and 
appears as a straightforward complement to any existing reconstruction technique. Its 
increment of reconstruction accuracy is not very significant, 12% in best cases of our 
simulations. But it guarantees that the obtained curves are bounded and at the same time 
smooth.  
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5 Spectral Reconstruction using Mixture Density Networks 
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5.1 Introduction 
 
We consider the problem of the reconstruction of spectral reflectance curves from 
multispectral images using techniques based on neural networks. 
 
In the particular case of colour images the number N of channels is limited to three. Efforts 
have been made in order to characterize spectral reflectances using just three colour channels. 
Some authors have proposed linear methods, as [Kotera et al., 1996]. Others have proposed 
non-linear approaches using neural networks, see for instance [Arai et al., 1996] and [Sato et 
al., 1999] where spectral characterization is performed from RGB and YMC tristimulus 
values. On the other hand, neural networks have also been used for other purposes in 
colorimetry, see for instance [Tominaga, 1999]. 
 
In our case, we consider multispectral images with a higher number of channels (N>3) and we 
aim for a more precise spectral reconstruction than a raw estimation just satisfactory for 
subjective colour reproduction purposes. Various methods (splines, modified discrete sine 
transform (MDST), pseudo-inverse, smoothing inverse or Wiener inverse) have already been 
proposed and are described on Chapter 3. 
 
In this chapter we consider non-linear reconstruction approaches based on neural networks. 
Our aim is to find a non-linear learning-based method able to provide noise resistance and 
good generalization. We firstly justify in section 5.2 the use of non-linear operators for 
spectral reconstruction. A general introduction on the subject of neural networks is presented 
in section 5.3. Afterwards, section 5.4 describes our first attempt to use neural networks as a 
spectral reconstruction method, proposed in the paper [Ribés et al., 2002]. We studied the 
resistance to quantization noise of the spectral reconstruction obtained with different 
conventional neural networks and compared them with a linear method already used for 
spectral reconstruction of fine art paintings in [Hardeberg et al., 1999]. Finding not adapted 
the raw application of neural networks for spectral reconstruction, we developed a new 
method mixing these techniques with Principal Components Analysis (PCA) that obtains 
good results on presence of quantization noise. 
 
Aiming to increase the performance of the existing methods we apply Mixture Density 
Networks in the context of spectral reconstruction. The technique is described in section 5.5. 
This approach has been initially presented by the authors in a conference [Ribés and Schmitt, 
2002], an extended paper was published in [Ribés and Schmitt, 2003]. The application of 
Mixture Density Networks to the problem of spectral reconstruction is presented in section 
5.6, along with a description of how the problem of architecture optimisation has been solved. 
This last point makes the final method fully automatic with no parameters to be fixed by hand. 
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5.2 Spectral Reconstruction with non linear operators 
 
Before starting to describe the non-linear methods which we applied to the problem of 
spectral reconstruction, a fundamental question arises before solving this problem: “why 
should we use non-linear methods while the nature of the physical underlying problem is 
mainly linear?”. This section aims to give a justification to this issue. 
 
We recall some basic facts and formulas already introduced on Chapter 2. Supposing a linear 
optoelectronic transfer function of the acquisition system, the camera response ck for an image 
pixel is equal to: 
 

 
max

min

( )  ( )    k k kc r w d n
λ

λ
λ λ λ= +∫  (5.1) 

 
where r(λ) is the spectral reflectance of the object surface imaged in a pixel, wk(λ) denotes the 
spectral sensitivity of the k-th channel, and nk is the additive noise. The assumption of system 
linearity comes from the fact that the CCD sensor is inherently a linear device. However, as 
we already said, for real acquisition systems this assumption may not hold, for example due to 
electronic amplification non-linearities or stray light in the camera. Then, appropriate 
nonlinear corrections may be necessary. By modelling the nonlinearities of the camera as  
 

 
max

min

( ( )  ( )    )k k kc r w d n
λ

λ
λ λ λ= Γ +∫ , (5.2) 

 
we may obtain the response: 
 
 1( )k kc c−= Γ  (5.3) 
 
of an ideal linear camera by inverting the function Γ. At this point we want to introduce some 
practical concepts affecting this theoretical representation of the system: 
 

• First of all the modelling of the function Γ implies the characterization and the careful 
study of the behaviour of the CCD. Moreover, CCDs are not perfectly produced and 
not all its photosensitive elements have the same response. A characterization is 
possible in a scientific environment where there exits the time, the necessary tools and 
knowledge for this to be performed. Of course, any correction always leaves residual 
errors, on some cases the correction is not performed and the error is assumed. 

 
• There is an important consideration about noise. When the noise level in (5.1) is small 

compared to the other elements on the equation the linear behaviour can be assumed. 
When noise starts to be stronger it is not evident if the system can be consider linear. 
We have already seen linear methods of spectral reconstruction taking noise into 
account. We could have a different regard on the problem and consider that the 
introduction of random variables on the system make the system “less linear”. 

 
• We remark that in our description of the camera the time never appears on the 

equations. We implicitly consider the phenomenon to be not affected by time. But 
acquiring two multispectral images at two different times leads to different images. 
Lots of factors are the consequence of this variability that can be bigger or smaller 
depending on the particular system. For instance, failures in the temporal stability of 
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light sources on their spectral and/or spatial characteristics are normally a source of 
errors. But others exist too. 

 
These considerations lead to two different strategies when dealing with any image acquisition 
system. We can characterize and correct all factors that introduce errors and non-linearities on 
the system. But we can also increase the resistance of the post-treatment methods to these 
defaults. It is this approach that we propose in this chapter by the introduction of non-linear 
techniques. 
 
As we already saw on Chapter 3 the aim of the spectral reconstruction is to find an operator Q 
that performs the transformation 
 
 r̂  = Q c (5.4) 
 
where c = [c1 c2 ... cK ]t is a vector representing the response to all K filters, r = [r(λ1)  r(λ2) ...  
r(λN)]t is a vector containing the sampled spectral reflectance and r̂  is its estimate. Operator 
Q has been always described linearly on the multispectral imaging community, but looking at 
the above equation (5.4) we can imagine that Q could be non-linear. 
 
The concept of operator being mathematically broad it refers normally to a mapping between 
two functional spaces. In our case these spaces are Hilbert spaces. We explore in this chapter 
the use of neural network as this desired non-linear operator Q. We will not make 
considerations about other possible non-linear approaches. 
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5.3 Introduction to Neural Networks 
 
Neural Networks are fundamental in the new spectral reconstruction methods investigated in 
this thesis. This section intends to give a brief introduction to the well known backpropagation 
Neural Network and it is included for completeness. This kind of network is the first and most 
classical one and abundant documentation can be found in the scientific literature. If the 
reader is already familiar with Neural Networks we recommend him to skip this whole 
section. 
 
First of all, when we are talking about a neural network, we should more properly say 
"artificial neural network" (ANN), biological neural networks are much more complicated 
than the mathematical models we use for ANNs. In fact, some ANNs are models of biological 
neural networks and some are not, but historically, much of the inspiration for the field of 
ANNs came from the desire to produce artificial systems capable of sophisticated, perhaps 
"intelligent", computations similar to those that the human brain routinely performs, and 
thereby possibly to enhance our understanding of the brain. In our case, we use ANN just as a 
tool and the models described in this chapter are very simple compared with others developed 
in order to understand biological models. Moreover we apply models that have already been 
studied and that can be easily found in the ANN literature. Our interest is the application of 
these models to the problem of spectral reflectance reconstruction. In the following of this 
chapter we will abuse of the term Neural Network and we will use it instead of ANN. 
 
There is no universally accepted definition of a Neural Network. But perhaps a Neural 
Network could be defined as a network of many simple processors (neurons), these neurons 
are connected by communication channels (connections) which usually carry numeric data, 
encoded by various means. The neurons operate only on the inputs they receive via the 
connections. 
 
Most Neural Networks have some sort of training rule whereby the weights of connections 
are adjusted on a set of training data. In other words, Neural Networks "learn" from examples 
and exhibit some capability for generalization beyond the training data. These two 
characteristics of ANN are useful in the context of our application as we will see later in this 
chapter. 
 
Neural Networks normally have great potential for parallelism, since the computations of the 
components are largely independent of each other. The models we will use provide this 
possibility, but at the moment we do not consider a parallel implementation of our Neural 
Networks even if remains an open possibility that could provide us with a very fast 
reconstruction method. 
 
5.3.1 Feed-forward Backpropagation Neural Networks. 
 
In the 1980's after a disappointing period for neural networks [Rumelhart and McClelland, 
1986] published their classical book and their new paradigm settled as a new basis for 
cognitive science. Much cognitive oriented research turned to this new paradigm. One of the 
main achievements was the analysis of multi-layer networks and their learning capabilities. 
 
A multi-layer feed-forward networks is composed of several layers of neurons. One layer is 
fully connected with its adjacent layers. It receives input coming from his layer directly below 
and send his output to the layer directly above. But first of all the reader should understand 
how a single neuron works. 
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5.3.2 A single Neuron. 
 
A neuron in a multi-layer feed-forward network is a processing unit that accepts several input 
signals (a vector of scalar numbers) and produces a single output signal that is a scalar 
number. Neuron activity can be view as a two steps process: 
 

• First of all, every input signal is multiplied by a weight (scalar number) associated to 
his channel. Obtained coefficients are summed together afterwards and, in general, 
there exists a bias term that can be seen as a special channel with a constant input of 
value 1. If we note wi the weight of channel i, xi the signal of channel i, n the number 
of input channels and θ the bias term. The neuron’s net output is defined as: 

 

 
1

n

i i
i

net w x θ
=

= +∑ . (5.5) 

 
• The second step consist in the so called activation function. In fact, we apply a 

function to the result coming from the first step leading to the neuron’s real output. 
The activation function can be linear or non-linear and that produces important 
differences in the capabilities of a neural network. In fact, the introduction of non-
linear activation functions in the 80’s was one of the reasons that lead neural networks 
to became so popular. 
 
If we note F the activation function the neuron’s activity is expressed as: 
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In Figure 5-1 a graphic representation of a single neuron is shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-1. Graphic representation of the activity of a single Neuron. 
 
 
5.3.3 Learning Laws. 
 
This document just deals with supervised learning for the problem of spectral reconstruction. 
Then, no references or information will be mentioned about neural networks and unsupervised 
learning methods. Even if this field is large and very popular, the basic learning paradigm 
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does not fit the problems we treat, since we have a priori knowledge on the spectral 
reflectance curves of pigments that we want to reconstruct. 
 
There exist a variety of supervised learning laws which are in common use. These laws are 
mathematical algorithms used to update the connection weights. Most of these laws are 
variations of the Hebb’s Rule. Human understanding of how neural processing actually works 
is very limited and learning is certainly more complex than the simplification represented by 
the learning laws currently developed. In any case, they appear useful for practical purposes. 
A few of the major laws are given as an example below. 
 
 

• Hebb’s Rule. 
The first and the best known learning rule was introduced by Donald Hebb, [Hebb, 
1949]. This basic rule is: if a neuron receives an input from another neuron, and if both 
are highly active, the weight between the neurons should be strengthened. 

 
• Hopfield Law. 

This law is similar to Hebb’s Rule with the exception that it specifies the magnitude of 
the strengthening or weakening. It states, "if the desired output and the input are both 
active or both inactive, increment the connection weight by the learning rate, otherwise 
decrement the weight by the learning rate." Most existing learning functions introduce a 
learning rate, or a learning constant. Usually this term is positive and between zero and 
one. 

 
• The Delta Rule. 

It is a further variation of Hebb’s Rule, and it is one of the most commonly used. This 
rule is based on the idea of continuously modifying the strengths of the input 
connections to reduce the difference (the delta) between the desired output value y  and 
the actual output y of a neuron. This rule changes the connection weights in the way that 
minimizes the mean squared error of the neuron. 
 

 
A single network learns by modifying its weights depending on its objective. This objective 
can be classifying elements into classes, performing a mapping between two spaces, etc. The 
learning rules specify how to calculate the modification of the weights based on the objective. 
The general framework for neuron learning is described in the next paragraphs. 
 
Training a neuron is an iterative procedure based on the modification of its weights and bias 
(which is a special kind of weight for a constant input), formally: 
 
 ( 1) ( ) ( )i i iw t w t w t+ = + ∆  (5.7) 
 ( 1) ( ) ( )t t tθ θ θ+ = + ∆  (5.8) 
 
Suppose we have a set of learning samples consisting of input vectors x and the corresponding 
desired output y  ∈R . The general algorithm for supervised training states as follows: 
 

1. Start with random weights for the connections. 
2. Select an input vector x from the set of training samples. 
3. Calculate )t(wi∆  according to a learning rule. ( )tθ∆  is considered as a weight and 

modified in the same way. 
4. Go back to 2. 
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As an example of a simple learning rule we can consider the Perceptron learning rule. The 
Perceptron was proposed by [Rosenblatt F., 1962] and was of great importance for the 
evolution of neural networks. Even if it is something more complex than the neuron we have 
presented we can show how it works in a single neuron with a threshold activation function as 
follows, 
 

 
1 0

( )
1

if net
F net

otherwise
>

= −
. (5.9) 

 
In that case this rule calculates the deltas in the following way: 
 

• If y y≠  (the Perceptron gives an incorrect response) modify all connections wi 
according to i iw yx∆ =  . 

• As θ  is considered a weight connection with a constant input signal 1, we obtain, 
 

 
0 if y y
y otherwise

θ
=

∆ = 


 (5.10) 

 
This procedure is basically the application of the Hebb’s rule, but when the neuron responds 
correctly no weights are modified. On the other hand, a convergence theorem exists for such 
learning rule, which states: 
 

If there exists a set of connection weights w* which is able to perform the 
transformation y= y , the perceptron learning rule will converge to some solution 
(which may or not be the same as w*) in a finite number of steps for any initial choice 
of the weights. 

 
The Perceptron learning rule is a good historical and easy example of a learning law, but it is 
not the most used one. In fact, the delta rule developed by [Widrow and Hoff, 1960], an 
application of the Least Mean Square (LMS) method, is probably the most commonly used 
learning rule. For a given input vector, the output vector is compared to the correct answer. If 
the difference is zero, no learning takes place; otherwise, the weights are adjusted to reduce 
this difference. The change in weight from wi(t) to wi(t+1) is given by: 
 
 i iw xγ δ∆ = , (5.11) 
 
where γ is the learning rate and δ is the difference between the expected output and the actual 
output of the neuron, y yδ = − . 
 
The delta rule is trivially extended to neural networks with just one layer of neurons with 
linear activation functions and with no hidden units (hidden units are found in networks with 
more than two layers). The LMS error when represented versus the weights takes a parabolic 
form in the weights space. Since the proportionality constant is negative, the graph of such a 
function is concave upward and has a minimum value. The vertex of this paraboloid 
represents the point where the error is minimized. The weight vector corresponding to this 
point is then the ideal weight vector. 
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This learning rule not only moves the weight vector nearer to the ideal weight vector, it does 
so in the most efficient way. The delta rule implements a gradient descent by moving the 
weight vector from the point on the surface of the paraboloid down towards the lowest point, 
the vertex. 
 
Formally, we can see this gradient descend clearly by considering the following error function 
to be minimized: 
 

 21 ( )
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p p p

p p

E E y y= = −∑ ∑ , (5.12) 

 
where Ep represents the error on pattern p, dp is the desired target output, and yp is the actual 
output. We recall that a pattern is a vector of dimension n, its associated delta being 

p p py yδ = − . 
 
From the expression of the error on pattern p, Ep, we deduce 
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The activation function p
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For one pattern p, the delta rule being p

p i iw xγ δ∆ =  equations (5.13) and (5.14) provides to 
us the following equation 
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that is a gradient descent of the error function, E, versus the weights wi. This clearly appears 
after applying the chain rule of calculus as follows: 
 

 
p

p
i iP

E E y
w wy

∂ ∂ ∂
=

∂ ∂∂∑ . (5.16) 

 

Each sample being considered as independent, we have 
p

p p
E E
y y

∂ ∂
=

∂ ∂
. We then deduce the 

following expression of the gradient of E: 
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The mean value of the delta rule on the p pattern is then proportional to the gradient of the 
error function. 
 
As a consequence, in the case of linear activation functions where the network has no hidden 
layers, the delta rule will always find the best set of weight vectors. However, it is not the case 
for hidden neurons belonging to a hidden layer: the error surface is no more a paraboloid and 
generally does not have a unique minimum point. There is no such powerful rule as the delta 
rule for networks with hidden units. There have been a number of theories in response to this 
problem. These include the generalized delta rule that we will see later in that section. 
 
5.3.4 Multi-layer feed-forward network. 
 
In a typical multi-layer feed-forward neural network the first level connects the input 
variables and is not consider as a layer, that is because no operation is performed at this level. 
The last layer connects the output variables and is called the output layer. Layers in-between 
the input level and the output layer are called hidden layers; there can be more than one 
hidden layer. All connections are feed forward; that is, they allow information transfer only 
from an earlier layer to the next consecutive layer. The processing units are the neurons as 
already discussed in previous sections; each of them is connected to the neighboring layer 
units. The parameters associated to each of these connections are called weights. Neurons 
within a layer are not interconnected, and neurons in non adjacent layers are not directly 
connected. Each node j receives incoming signals from every node i in the previous layer and 
each incoming signal xi is associated to a weight wij  
 
We can see a diagram of a two layers network in Figure 5-2. It consists on three inputs, four 
neurons on the hidden layer and two neurons in the output layer. In this example the hidden 
neurons are organized in one single hidden layer, but we could have a neural network with 
several hidden layers. 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-2. Multilayer feed-forward neural network. 

 
The major advantage of multilayer networks is that they can theoretically carve a pattern 
space into an arbitrary number of decision regions and therefore solve any pattern 
classification problem. Furthermore, it can be shown that such networks are also universal 
function approximators; that is, they are able to solve any function approximation problem to 
an arbitrary degree of precision. It should be noted that although these proofs of function 
approximation are theoretically powerful, they are not necessarily tractable from a practical 
sense. The reason for this is two-fold: 

hidden layer 

OUTPUT INPUT 
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(i) in order to determine the requisite weights for the model, these proofs assume a 

highly representative sample of the range and domain of the function, and 
(ii) no completely effective procedure is given for arriving at the requisite set of 

weights. 
 
One of the most appreciated characteristics of multi-layer networks is their ability to learn. 
Various training techniques have been proposed as the historical one by [Widrow and Hoff, 
1960]. We will not enter in cumbersome details but they were all limited to training only one 
layer of weights while keeping the other layers constant. A general learning rule for networks 
of arbitrary depth was desired, such that a relatively simple network with a generic learning 
algorithm could be applied to a wide-range of different tasks.  
 
It must be said that a multi-layer network using linear activation functions is not more 
powerful than a one-layer linear network. That is because a linear combination of linear 
systems remains a linear system. Consequently neuronal networks use, in general, non linear 
activation functions, at least in one hidden layer. One of the most popular non-linear 
activation function is the sigmoid: 
 

 1( )
1 kxsigmoid x

e−=
+

 (5.18) 

 
where k is a parameter that controls how quick a transition is perform between zero and one. 
This function closely relates with a threshold function but has the advantages of being non-
linear, monotonically increasing and has a smooth first derivative that is easy and quick to 
calculate. If k=1 its gradient (negative first derivative) can be expressed in a recursive form: 
 

 ( ) ( )(1 ( ))d sigmoid x sigmoid x sigmoid x
dx

− = −  (5.19) 

 
or in a numerically stable way as 
 

 ( )( )
(1 )x

d sigmoid xsigmoid x
dx e−− =

+
 (5.20) 

 
Figure 5-3 shows a graph of the sigmoid function and its derivative. 

  
Figure 5-3. Sigmoid function(left panel) and its derivative (right panel). 
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The next section introduces the Generalized Delta Rule, also known as the standard 
backpropagation algorithm. 
 
5.3.5 Generalized Delta Rule. 
 
The generalized delta rule can be considered as one of the most significant contributions to 
the neural networks research. It has allowed the training of multilayer networks. As the name 
implies, it is a generalization of the Delta Rule for training networks with a total number of 
layers L greater than one: L>1. The training procedure, however, is commonly referred to as 
backpropagation of error, or simply backpropagation. 
 
Since we are now considering neurons with non-linear activation functions we must 
generalize the already presented delta rule. The activation is now a differentiable function, F, 
of the net input: 
 
 ( ) ( ( ))p p

j jy l F net l= , (5.21) 
 
where l is the number of the current layer l ∈{1,..,L}, the quantities p

jnet and p
jy  are the 

outputs before and after activation of the j-th neuron of the l layer. They are converted into 
functions that depend on the number of layer to explicitly reinforce the concept of layer that is 
fundamental on the understanding of backpropagation. To correctly generalize the already 
presented delta rule the variation of the weights is set proportionally to the gradient of Ep: 
 

 ( )
( )

p

p ij
ij

Ew l
w l

γ ∂
∆ = −

∂
. (5.22) 

 
In (5.22), the error criteria Ep is defined as the total quadratic error for a pattern p at the output 
layer L: 
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1
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2
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p pp
j j
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E y y L
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= −∑ , (5.23) 

 
where p

jy  is the desired output or target for neuron j in the output layer L when pattern p is 
evaluated, and NL is the number of neurons in the output layer. At the same time the gradient 
can be decomposed by the chain rule of calculus giving to: 
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. (5.24) 

 
By the formula that calculates the net output of a neuron we deduce: 
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and by defining ( )
( )

p
p
j p

j

El
net l

δ ∂
= −

∂
 we obtain the delta rule as already found in the case of a 

single neuron: 
 
 ( ) ( ) ( 1)p p

p ij j iw l l y lγ δ∆ = − . (5.26) 
 
But the above formula is not new, it is just the delta rule using a slightly different notation that 
includes a subindex identifying the layer in which we apply this rule. The real innovation is 
how to calculate the δ’s for every layer. Let’s think just about the last layer and suppose that 
the activation function is linear, the delta rule will be calculated as already seen. But, for the 
hidden layer immediately below the last layer we cannot apply the delta rule because we do 
not know the error at the output of this layer, neither the values of δ’s for this layer. This big 
limitation was solved by propagating error signals backwards through the network in a 
procedure that is called backpropagation of errors. 
 
Let’s see formally how backpropagation works. In order to compute p

jδ  we apply the chain 
rule as the product of two factors, which reflect the change in error as a function of the output 
unit and of the input respectively. Thus, we have 
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 (5.27) 

 
The second factor correspond to the activation function derivative for the jth neuron: 
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( ( ))
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j p
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 (5.28) 

 
For computing the first factor it exists two different cases: 
 

• For the output layer, l=L and for the definition of Ep it follows that 
 

 ( ( ))
( )

p
p p
j jp

j

E y y L
y L
∂

= − −
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 (5.29) 

 
And the δ’s can be calculated as: 
 

 ( ) ( ( )) ( ( ))p p p p
j j j j

dL y y L F net L
dx

δ = −  (5.30) 

 
• We consider a hidden layer l, l<L. We do not directly know the contribution of the 

layer to the output error of the network. However, the error measure can be written as 
a function of the net inputs from the hidden layers to the output layer: 

 
 1( (1), {1.. },..., ( ), {1.. },...)p pp p

li iE E net i N net l i N= ∈ ∈ , (5.31) 
 
and we use the chain rule for writing 
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According to the equations (5.27), and using equations (5.28) and (5.32) the δ’s can be 
calculated as: 
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 (5.33) 

 
The formulas above give a recursive procedure for calculating the δ’s backwards through the 
network in the sequence of L, L-1, … l, …1. We can summarize one iteration of the network 
training in the following algorithm: 
 

For every pair of samples (p, p
jy ) in the training set do 

 
1. FORWARD PASS: The weights are fixed and input signals propagate through the 

network, outputs are calculated. Actual outputs ( )p
jy L  are compared with desired 

outputs p
jy ; the error signal ( ( ))p p

j jy y L−  is computed. 
 

2. BACKWARD PASS: Starting with the output layer recursively computes the local 
gradient ( )p ijw l∆  of equation (5.22) for each neuron in each layer. The δ’s are 
calculated using equation (5.30) for the output layer and equation 
Erreur ! Source du renvoi introuvable. for the hidden layers in descending 
order. Then the weights are updated using this gradient and equation (5.26). 

 
End For. 

 
The generalized delta rule allows multi-layer networks to be trained on any information 
processing problem. However, many limitations still exist with the generic multi-layer feed-
forward neuronal network architecture. One problem is that the general delta rule searches 
through an error space using gradient descent; although gradient descent on average moves 
towards a minimum it is not guaranteed to move towards a global minimum. There are 
techniques for trying to improve this. In fact, currently, not many researchers or engineers use 
neural network backpropagation as described above because these gradient descend 
limitations. But other more efficient global or local minimization methods are used following 
the same backpropagation inspiration. We can apply these different methods for calculating 
the weight increments or/and the δ’s in the backpropagation process. Techniques as conjugate 
gradient, Levenberg-Marquardt, momentum, simulated annealing, genetic algorithms and in 
general any function minimization procedure can be used. Describing further these possible 
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methods applied to multi-layer feed-forward networks is out of the scope of this introduction. 
But the procedure is highly similar as the one shown for the gradient descend. 
 
 
5.3.6 Algebraic description of a multilayer network 
 
A feed-forward neural network can be simply described using linear algebra. This change of 
notation reduces the number of indexes and sum operation and can be used to simplify 
cumbersome notation. We included here mainly because the vector-matrix expression of a 
neural network are generally used for implementation and simulation purposes. This gives 
insight on the method complexity. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-4. Graphic representation of the activity of a layer of a feed-forward neural network using 
algebraic notation. 

 
In a network the operation of a layer can be expressed in terms of linear algebra in a very 
similar way as the operation of a neuron. Let’s note x the vector containing all signals arriving 
to the layer, wj is a vector containing all the weights on one neuron where j=1..Nl indexes the 
neurons on a layer l. If we define W as a matrix containing vectors wj on its columns, W = 
[w1 w2 … w

lN ], the net output of the layer is made by: 
 
 net = x W + θ, (5.34) 
 
where net is a vector containing the net output, and θ is the bias vector. In this framework the 
activation functions is not scalar anymore and becomes a function acting over a vector. 
Consequently the complete layer activity becomes: 
 
 y = F(net). (5.35) 
 
We have at the moment described the operation of a single layer using linear algebra. The 
operation of the whole neural network is a merely extension of several layers. Introducing l, 
an index that indicates the number of layer is enough to characterize the network activity. 
 

xW+θ 

x 

F

θ 

 

net 
y W 
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5.4 Neural Networks and Spectral Reconstruction 
 
Our first approach to the application of non-linear operators for spectral reconstruction was 
the use of classical backpropagation networks. We tested these approach using simulations as 
the ones presented on Chapter 3. We started by mapping a virtual 7 channels camera signal to 
a vector of dimension 37 via a neural network with one hidden layer of neurons. The 
backpropagation networks used sigmoid functions as activation functions in the hidden and 
output neuron layers. For simplicity, we chose a linear reconstruction method as a reference 
for efficiency. We chose the method representing the paradigm of indirect reconstruction 
(Chapter 3, Section 3.2.2) because it belongs to the same approach, both of them mapping a 
dataset of known camera responses to a corresponding dataset of spectral reflectances. 
Moreover, this linear method was already introduced as the basic one representing this 
problem.  
 
Because our aim is the reconstruction of spectral reflectances of pigments, comparisons on 
this chapter are performed over the following databases: “Kremer” database containing 184 
spectral curves of pigments produced by Kremer Pigmente, Germany, “Selected Artists” 
database containing 67 pigments chosen among a collection of artist’s paintings, 
“Restoration” database containing a selection of 64 pigments used in oil painting restoration 
and “Munsell” database containing 1269 matte Munsell colour chart samples. 
 
When using backpropagation neural networks, we found a good reaction over the spectral 
error, specially in presence of quantization noise, but the reaction over the CIELAB space was 
not satisfactory compared to the pseudo-inverse based approach. 
 
Radial basis neural networks were tested too. We do not give a description of this kind of 
neural networks here because it could be cumbersome, if interested the reader can refer to any 
textbook on neural networks. They have the main advantage of a non iterative and very fast 
training, but have the drawback of being more sensitive to new data not well represented by 
the training set. Although the spectral reconstruction results were good without noise the 
resistance to noise was poor, and we had the same reaction as backpropagation neural 
networks on the CIELAB space. 
 
This different behaviour of backpropagation and radial basis neural networks over the spectral 
reconstruction error and the CIELAB error was studied in order to better understand its origin. 
We found that signed errors in the spectral space are not as centred as in a linear approach, 
their spectral reconstruction presenting a systematic bias. Consequently, even if the spectral 
error is small as this error is biased the delta CIELAB error is bigger than in the linear case 
where the oscillations in the reconstructed curves compensate the error when performing 
colorimetric calculations. We should not forget that the relationship between spectral curves 
and CIELAB quantities is not linear. 
 
Because of the systematic bias our first approaches using backpropagation and radial basis 
neural networks were abandoned. Hence, we will not present any results concerning these 
initial tests. But we tried to understand why neural networks perform no better than the 
pseudo-inverse based method over the spectral space. We found the used linear method to 
have an equally good response over the used spectral databases if noise is not present. As we 
already saw on Chapter 2 (Nature of Data), spectral reflectances of oil pigments are smooth 
bandlimited functions. It is important to keep in mind the performed principal component 
analysis (PCA) over the used spectral databases. In Table 2-2 of Chapter 2 we show the 
results that indicate the dimension of the orthogonal basis needed to keep 90% and 99% of 
signal variance. This is useful if we want to reduce the number of coefficients representing a 
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reflectance curve, various linear approaches have been proposed where different specific basis 
functions are used, see [Sato et al., 1999] or [Eem et al., 1994]. 
 
The PCA analysis is not enough by itself to explain the behaviour of the neural networks 
against the pseudo-inverse method. The already introduced Frobenius distance can give 
insight on this matter. We remind that it is calculated as: 
 

 ( ) ( )2
,

n m
T

F i j
i j

d a b= ∑∑A B , (5.36) 

 
where A is a l x m matrix, B a l x n matrix, ai a column vector of A and bj a column vector of 
B, ai and bj both belonging to the same vectorial space of dimension l. The calculated square 
of the Frobenius distance among the reduced orthogonal set of PCA vectors associated to the 
used spectral databases and keeping signal variance at 90% or 99% are shown in in Table 2-3 
and Table 2-4 respectively (in Chapter 2). 
 
The three used oil pigment databases are surprisingly related, most signals of these databases 
are linear combinations of the other databases. The Munsell database is closely related too. 
Consequently, we believe the pseudo-inverse reconstruction method works equally well on 
the different databases because of their highly linear dependencies. Neural networks being 
non linear methods, their results on a given database are normally worst than those obtained 
for the training database. 
 

 
Figure 5-5. PCA Neural Network. 

 
In order to study the robustness of these methods in presence of noise, several levels of 
quantization on the camera channels have been introduced. We observed that the pseudo-
inverse has very bad resistance to quantization noise and conversely a good reaction of neural 
networks. Looking for a compromise we trained several neural networks not directly over the 
spectral space but for estimating the coefficients associated to the orthogonal eigenvectors 
obtained from a PCA analysis keeping 99% of signal variance. A graphical diagram of this 
method of reconstruction is shown on Figure 5-5. Backpropagation neural networks were 

Neural Network 

PCA Coefficients 

Matrix Transformation 
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trained much faster using this PCA data reduction (noted PCA NN) because their output layer 
becomes smaller. They provide also better global results as shown in Table 5-1. 
 
In Table 5-1 we observe that if quantization noise is small the pseudo-inverse performs better 
except for the database on which the neural network has been trained. In contrast, the PCA 
neural network provides clearly better results in presence of quantization noise either over the 
spectrum or over the CIELAB space. The CIELAB errors are shown on Table 5-2. The 
degradation of the pseudo-inverse in presence of noise is obvious. We note that this modified 
neural network has equivalent behaviour over the spectral and CIELAB spaces. That is 
because the orthogonal eigenvectors are smooth oscillating curves. The signed error oscillates 
around the mean error in a similar way as in the pseudo-inverse method and the bias found for 
the first neural network approaches is not a problem anymore. 
 

Table 5-1.  Spectral Error over different databases. 
8 bits quantization pinv PCA NN 
Kremer 0.0264 0.0195 
Selected Artists 0.0222 0.0116 
Restoration 0.0218 0.0147 
Munsell 0.0188 0.0187 
10 bits quantization pinv PCA NN 
Kremer 0.0142 0.0182 
Selected Artists 0.0111 0.0098 
Restoration 0.0109 0.0132 
Munsell 0.0089 0.0174 
12 bits quantization pinv PCA NN 
Kremer 0.0126 0.0181 
Selected Artists 0.0094 0.0097 
Restoration 0.0089 0.0130 
Munsell 0.0075 0.0173 

 
In summary the PCA neural network reconstruction method could be use on presence of 
noise. But when noise is not present it is better to use linear methods. In our quest for non-
linear spectral reflectance reconstruction methods this results did not satisfy our expectations 
even if it could be use in case of noise acquisition system. Our aim being a non-linear method 
able to overcome linear ones on most possible situations we present in the rest of this chapter 
a better method based on Mixture Density Networks. 
 

Table 5-2.  CIELAB Error over different databases. 
8 bits quantization pinv PCA NN 
Kremer 6.3127 4.1719 
Selected Artists 4.9307 3.5243 
Restoration 4.6604 3.2379 
Munsell 2.9973 2.1833 
10 bits quantization pinv PCA NN 
Kremer 2.2708 3.6885 
Selected Artists 1.8685 1.7292 
Restoration 1.6956 1.9488 
Munsell 1.0451 1.3826 
12 bits quantization pinv PCA NN 
Kremer 1.8665 3.6331 
Selected Artists 1.1356 1.6905 
Restoration 1.0107 1.8009 
Munsell 0.7073 1.2796 
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5.5 Mixture Density Networks 
 
A Mixture Density Network (MDN) is a method for solving regression or classification 
problems that consists in building a conditional probability density function between outputs 
and inputs of a given problem, [Bishop, 1994]. In the following c represents an input vector of 
dimension c, and s represents an output vector of dimension s.  
 
The desired conditional probability density is modelled by a mixture of basis functions, 
usually chosen as Gaussians. The parameters of this mixture model are estimated from a set of 
known data (pairs of c and s vectors) using a neural network which can be any conventional 
neural network with universal approximation capabilities. In our case, the neural network 
used has a classical feedforward structure, already described on this chapter. The mixture 
model that represents the conditional probability density is of the form, 
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=∑s c c s c  (5.37) 

 
where m is the number of Gaussians used, αi(c) are mixing coefficients, and gi(s|c), i=1,…,m, 
represent the following multidimensional Gaussians functions 
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which are parameterized by m scalars iσ  for the standard deviation (all dimensions having the 
same one) and m vectors iµ  of dimension s representing their centres. Consequently, the 
vector v which parameterises the mixture model contains m(1+1+s) elements: αi,, σi, µi. All 
these parameters depend on c because they depend directly on the outputs of the neural 
networks which takes c as input. The outputs of the network associated to αi,, σi, µi  are called 

izα , izσ  and izµ  respectively. In Figure 5-6 we show a graphic representation of a mixture 
model.  
 
 
 
 

 
 
 
 
 
 
 
 

Figure 5-6. Mixture of Gaussians 

 
Expression (5.37) is called a mixture distribution and the coefficients αι are called mixing 
coefficients. Note that as prob(s|c) is a probability distribution it must satisfy the constraint: 
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 prob( | ) 1s c sd =∫  (5.39) 

 
and consequently 
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 0 1iα≤ ≤  (5.41) 
 
These constraints (5.40) and (5.41) are satisfied by choosing αi(c) to be related to the 
corresponding network outputs by a softmax function [Bridle, 1990]: 
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The variances represent scale parameters and so it is convenient to represent them in terms of 
the exponentials of the corresponding network outputs 
 
 exp( )i izσσ = . (5.43) 
 
Finally, µi is represented simply by the network output izµ :  
 

µi = izµ . 
 
A mixture model represents a probability density that is not restricted to its functional form. 
In general, density estimation approaches are divided into two big families, parametric and 
non-parametric. Parametric methods assume a specific form for the density distribution. This 
allows a the function to be evaluated rapidly but its shape can be very different from the true 
distribution. In contrast, non parametric methods allow very general forms of density 
distributions but they are slow to evaluate as they depend on the number of training data 
points. Mixture models can be consider as semi-parametric because its form is not restricted 
but they do not depend strongly in the data set. 
 
An important property of the used mixture model is that it can approximate any continuous 
density to arbitrary accuracy provided the model has a sufficiently large number of Gaussians 
and provided the parameters of the model, v = {αi,, σi, µi, i=1,…,m}, are chosen correctly. 
 
We have spoke about the mixture model saying that it represents a probability density 
function. But we should not forget that the probability density function we want to represent 
is a conditional density. The fact that the mixing coefficients αi(c) and the Gussians gi(s|c) 
depend on the input data c allows the system to estimate conditional probabilities. In Figure 
5-7 we show a diagram of a MDN. 
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Figure 5-7. Mixture Density Network 

 
5.5.1 Training a Mixture Density Network. 
 
As a Mixture Density Network is based on a neural network, it needs a training phase. In this 
phase the neural network learns the mapping between each input vectors c and its associated 
parameter vector v defining a conditional probability density function. The learning process is 
driven by the minimization of the negative logarithm of the likelihood, formally: 
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E ln prob( | )
P

p p
p=

= −∑ s c , (5.44) 

 

i.e. maximising '
1

E prob( | )
P

p pp=
=∏ s c  where the index p identifies a training pattern, P 

being the total number of patterns in the training set. Consequently, we are training the system 
over a set of P pairs (cp, sp). In the following section, for simplicity we will avoid the use of P 
and p. 
 
It is important to say that minimizing equation (5.44) is non-trivial. First of all there exist 
parameters values for which the likelihood goes to infinity. These arise when one of the 
Gaussian components collapses onto one of the data points. In addition, small groups of 
points that are close together can give rise to a local minimum in the error function which may 
give poor representations of the true distribution. 
 
The error function (5.44) is a smooth differentiable function of the parameters of the mixture 
model. Then, we can use standard non-linear minimization techniques. But as we said in the 
preceding paragraph, finding a global maximum is not assured and it depends on the initial 
estimates used. In any case using non-linear minimization techniques needs gradient 
information in order to be efficient. In the present case the derivatives of the likelihood can be 
found analytically. 
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We must not forget that the parameters of the mixture model are estimated by use of a back-
propagation neural network. Consequently, the derivatives of the error E with respect to the 
weights of this neural network are to be calculated. The neural network can be trained by 
using a standard back-propagation algorithm, provided we obtain suitable expressions for the 
derivatives of the error with respect to the outputs of the network. Since E is composed of a 

sum of terms 
1

E E
P

p

p=

=∑ , one for each pattern, we can consider the derivatives 

iE zp p
iδ =∂ ∂ for a particular pattern p and then find the derivatives of E by summing over all 

P patterns. If the neural network has linear activation transfer functions in the output layer, the 
p

iδ  quantities are the errors already seen in the preceding section about neural networks. 
These errors can be back-propagated through the network by using a standard back-
propagation algorithm. 
 
At this moment of the discussion it is useful to recall the definition of conditional probability: 
 

prob(c|s) = prob(c,s) / prob(s)  
 
where prob(c|s) is the probability of c conditional to s, prob(c,s) is the joint probability of c 
and s, and prob(s) is the probability of s. Using a simple transformation we obtain 
 
 prob(c,s) = prob(s) prob(c|s). (5.45) 
 
There exist a strong analogy between last formula (5.45) and (5.37). In fact, gi can be 
regarded as a conditional density function with prior probability αi. Consequently, from 
(5.45) we obtain 
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Note that the denominator of formula (5.46) is introduced in order to respect a basic 
theoretical constraint, probabilities must sum to unity: 
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Considering the derivatives of Ep with respect to those network outputs which correspond to 
the mixing coefficients αi; we obtain from equations (5.44) and (5.46): 
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As a result of the softmax function (5.42), the value of αk depends on all the network outputs 
which contribute to the mixing coefficients, so differentiating (5.42) we obtain 
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where 1ikδ =  if i=k and 0ikδ =  if i k≠ . As a consequence, from the chain rule we have: 
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Combining (5.48), (5.49) and (5.50) we obtain: 
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Using (5.44), (5.46) and (5.38) we obtain the following expression for the derivatives 
corresponding to the σi parameters [Bishop, 1994]: 
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and knowing (5.43): 
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we obtain: 
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Finally, since the parameters µik are given directly by the µ

ikz  network outputs, using (5.44), 
(5.46) and (5.38) we have 
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From the above presented equations we have all necessary information to train a Mixture 
Density Network and to modify its behaviour if necessary. 
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5.6 Estimating Spectral Reflectances with Mixture Density Networks 
 
Our aim is to estimate the spectral reflectance of pigments from multispectral images of 
canvas paintings. We are interested in the reconstruction of spectral curves in the visible 
domain of the spectrum. We consider each curve as a sequence of s regularly sampled values 
taken from 400 nm to 760 nm at constant d nm intervals. 
 
Our problem consists in the construction of a system that maps a vector c containing the 
camera values to a vector s representing a sampled spectral curve. As long as a sufficient large 
set of pairs (c, s) are known this problem can be solved by the construction of a MDN system 
from this data. 
 
In this context the probability prob(s|c) becomes the conditional probability of a spectral 
curve s being obtained from a particular camera response vector c. That means, we are 
building a function that assigns probabilities to all possible vectors s in a s dimensional space. 
Every point of this space represents the probability of a particular vector s being the 
counterpart of the given input c. 
 
By minimizing the negative logarithm of the likelihood over a database of training pairs (c, s) 
we can fix the weights of the neural network of the MDN. Once the neural network trained, 
the MDN provides a mapping between a camera response vector c and a parameter vector v, v 
= {α1,, … , αm,, σ1, … , σm, µ1 , … , µm}. Of course, we are interested in finding a single 
sampled spectral curve s that provides the best estimation given a vector c. For that purpose 
we need to chose a way to extract this vector s from the mixture model represented by the 
parameter vector v. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5-8. MDN spectral reflectance curve estimation. 
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Maximizing the obtained conditional density would give us the vector s with highest 
probability, that is indeed what we are looking for. But maximizing the mixture model is a 
problem not solved in closed form and implies the application of an iterative optimization 
procedure that is CPU consuming. We use a much quicker and simpler strategy by keeping as 
solution the vector s associated to the Gaussian with bigger mixing coefficient: 

 
 max{ ( )}i

i
α c , (5.56) 

such that ( )iµ=s c .Then s corresponds to the centre of the dominant Gaussian function in the 
Mixture Model. This strategy is justified as long as in our problem we systematically obtain 
mixture models in which one Gaussian has a much bigger mixing coefficient than the others. 
In fact, we have compared results coming from different strategies and the one used (max) 
and the actual optimization of the function provide mostly the same results. This means that, 
in our case, the maximum of the mixture model is well approximated by the centre of the 
biggest Gaussian. A graphical summary of the method is shown in Figure 5-8. 

 

5.6.1 Architecture Optimisation 
 
As long as the above described method is based on a Neural Network and a Gaussian Mixture 
Model there are several important parameters that have to be chosen: 
 
 the number of neurons in the hidden layer of the feed-forward backpropagation neural 

network, 
 the number of iterations of the backpropagation algorithm, 
 the number of Gaussians in the Mixture Model. 

 
Clearly these three questions correspond to three parameters that define the architecture of the 
chosen MDN based method. One MDN with an architecture not adapted to the problem will 
give very bad results. In fact, the number nhn of neurons (nhn = Nh) in a neural network hidden 
layer has a direct influence in the approximation capabilities of the network; the number ntc of 
training cycles is related to the generalization abilities of the network; and the number m of 
Gaussian in the Mixture Model will affect the shape and precision of the reconstructed curves. 
See Figure 5-9 for a diagram of our MDN architecture. 
 
In order to have a fully automatic training method that gives us an MDN that solves our 
problem satisfactorily we need to find appropriate values for these three parameters: nhn, ntc 
and m. We could think about a classical gradient based search over this parameter space but 
we should not forget that the training algorithm of a Neural Network does not necessarily find 
a global minimum. Moreover, the solution depends on the random initialisation of the 
network weights and on the shape of the error criteria that relates closely with the network 
topology. As a consequence, training twice the same neural network gives, in general, 
different weight values. On the other hand, training Neural Networks is very time consuming 
and we cannot afford an exhaustive search. Thus, we are dealing with a problem of 
combinatorial optimisation and a global optimisation technique is required for the search of a 
suitable architecture inside this parameter space. 
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Figure 5-9. Three dimensional parameters space defining the architecture of an MDN. 

 
A further comment must be made on the parameter representing the number of training 
cycles. In the neural network literature we find a lot of strategies to control this parameter for 
avoiding overfitting, the most popular one being probably early stopping. Early stopping is 
based in testing the network over a test set and stopping training when the errors on training 
and test sets diverge. The implementation of early stopping entails several problems, 
principally related to the stopping criteria. If this criterion is very strict the training could stop 
too early providing poor results. If an inertia term is used, stopping too early can be avoided. 
But if the inertia term is too high, overfitting will occur. Associated parameters are normally 
tuned to handle these problems. 
 
Even if our implementation of early stopping has provided positive results, we have chosen to 
avoid it in the training algorithm of the neural network, and have included the number of 
training cycles as part of the architecture. That means we consider overfitting as a 
consequence of the whole architecture. Hence, our search criterion is also a test of 
generalisation. This implies that we use an architecture optimisation criterion that is based on 
an error measure over a test set. In our particular case, this error measure can be either a mean 
spectral distance or a colorimetric similarity measure between reconstructed curves and their 
known real counterparts. If an overfitting remedy is to be introduced inside the training 
algorithm we prefer to consider a periodical test in the training loop and keep the network 
state corresponding to the minimal error over the test set. This strategy is simple, well-adapted 
to our problem and does not require the tuning of any extra parameters.  
 
In order to solve the problem of architecture optimisation we have applied two different 
methods: a random search and a genetic algorithm approach. Both approaches are not new, 
for instance, the field of optimising neural network architectures using genetic algorithms was 
already an active field of research in the nineties. 
 
Before applying any optimisation technique we restrict the size of our parameter space in 
order to deal with a feasible problem. We choose to code the parameter set in 10 bits, that 
means having a search space of 1024 elements, each element being an MDN. First two bits 
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are used for coding m, four bits for nhn and the last four bits for the number of training cycles. 
In the results presented later m takes values in the interval [6-9] for real data and value 1 for 
simulations, nhn ∈  [20-50] with samples every 2 neurons and ntc ∈  [3500-11000] with 
samples every 500 training cycles. 
 
Global optimisation approaches tested:  
 

• Random search. In this case the 10 bits representing the parameter space are generated 
randomly a number of times. In all our experiments we found that 60 samples are 
enough to find an acceptable solution. 

• Genetic Algorithm. We used a matlab implementation of a basic genetic algorithm 
taken from chapter III of the book of [Golberg, 1989], where the chromosomes are just 
a chain containing characters “1” or “0”. A chromosome represents one MDN. The 
algorithm uses a single point crossover operator and reproduction is driven by a 
roulette wheel selection. 

 
In our tests, both methods presented above find acceptable solutions. Probably, this is due to 
the nature of the optimisation problem where different architectures can perform comparably. 
In order to illustrate this point we have chosen one of our experiments where we apply the 
genetic algorithm to search for a suitable MDN that trains over a database of spectral curves 
acquired in our laboratory using the GretagMacbethTM ColorChecker® DC chart. This data set 
was already presented in detail in Chapter 2 (Nature of Data). We used, in the genetic 
algorithm, a crossover probability of 0.6, a mutation probability of 0.03 and populations of 14 
chromosomes, afterwards we left the algorithm to evolve for 10 generations. After this time 
70 different MDNs were trained. This number is lower than 140 MDNs corresponding to 14 
chromosomes x 10 generations because the genetic algorithm keeps alive a part of the 
population between generations. We have counted the acceptable individuals trained in all 
generations. As acceptable individual we considered an MDN giving a mean spectral error of 
approximately 35% less than the linear method used as reference, in that case we chose 0.017. 
We found 24 MDNs in this category. This means that there is 34% of acceptable MDNs 
among the 70 trained MDNs. This fact indicates that lots of acceptable solutions exist within 
our search space. Moreover, the acceptable architectures found can be quite different. As an 
example one of these 24 best individuals that produces a spectral error of 0.01627 has m = 9, 
nhn = 28 and ntc = 5000, while another MDN producing an error of 0.16098 presents a 
different architecture m = 6, nhn = 40 and ntc = 3500. 
 
In summary, we have tested two operational methods for architecture optimisation that are 
suitable for our application and make our quest for an MDN fully automatic. Both perform 
similarly because the number of acceptable solutions in our search space is high due to the 
nature of the problem. In the next section we present experimental results obtained with 
MDNs. The architectures have been chosen using these methods. 
 
5.6.2 Method Testing 
 
We have tested the proposed reconstruction approach by using both simulated and real data. 
We compare the results obtained using the mixture density network method with those 
obtained using the learning-based reconstruction method described on Chapter 3, Section 
3.2.2. The testing performed on this section is to be understood as a comprehensive and 
preliminary analysis on the performance of the MDN based method. Later on this thesis we 
will present further results and comparison with several other methods. At the moment, the 
presented results serve to illustrate the adequateness of the designed method to the problem of 
spectral reconstruction. 
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5.6.2.1 Testing on Simulated Data 
 
Comparisons are performed over four already well know spectral reflectance databases of 
pigments: the “Kremer” database contains 184 spectral curves (we use this database for 
training the MDN and to determine the linear transformation in the pseudo-inverse based 
method), the “Selected Artists” database contains 67 spectral curves of pigments, the 
“Restoration” database contains 64 spectral curves of pigments, and the “Munsell” database 
containing 1269 spectral curves.  
 
These databases are regularly sampled from 400 to 760 nm at d=10 nm intervals, which 
corresponds to s=37 values. To obtain the multispectral camera responses we use a simulated 
seven channel camera with equidistributed Gaussian filters over the range 400 to 760 nm, 
with 50 nm half-bandwidth. We choose as spectral sensitivity of the camera sensors a typical 
response of CCD arrays. If no noise is introduced in this simulation process, we remark that 
the theoretical camera model remains a perfect linear process. This is the reason that justifies 
the use of a linear based method as a reference method for spectral reconstruction. 
 
In order to study the robustness of these methods in the presence of noise, we simulate 
acquisitions with quantization noise by using different numbers of bits for representing the 
camera channels. We present simulation results that show the resistance of a Mixture Density 
Network for camera responses being quantized at 12, 10 and 8 bits. The choice of these three 
levels corresponds to the actual quantization levels observed on digital cameras currently 
available. The small signal to noise ratio (SNR) corresponding to 8 bits quantization is 
representative of most common digital images. The much larger SNR corresponding to 12 bits 
is available at the present time only on high-end digital cameras. Simulations performed with 
12 bit quantization are indeed close to simulations without noise, and they provide results 
very similar to a perfect linear theoretical model. On the other hand, for 8 bit quantization the 
linear relationship is strongly corrupted by noise and the robustness of a reconstruction 
method against noise becomes predominant, which does not argue in favour of linear 
reconstruction methods. 
 

Table 5-3.  Spectral Error over different databases. 
8 bits quantization pinv MDN 
Kremer (training) 0.0248 0.0138 
Selected Artists 0.0230 0.0154 
Restoration 0.0219 0.0136 
Munsell 0.0202 0.0144 
10 bits quantization pinv MDN 
Kremer (training) 0.0126 0.0094 
Selected Artists 0.0119 0.0110 
Restoration 0.0113 0.0086 
Munsell 0.0114 0.0098 
12 bits quantization pinv MDN 
Kremer (training) 0.0109 0.0089 
Selected Artists 0.0105 0.0107 
Restoration 0.0093 0.0081 
Munsell 0.0103 0.0094 

 
Using a random search for architecture optimisation as described in the previous paragraph 
we found the best MDN among 60 random trials. This MDN contains just one Gaussian 
(m=1, V-dimension=39). The associated neural network hidden layer contains nhn=28 neurons 
which correspond to a network with 1288 weights. 
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Table 5-4.  CIELAB Error over different databases. 
8 bits quantization pinv MDN 
Kremer (training) 4.6996 2.9995 
Selected Artists 4.2582 3.9300 
Restoration 3.8773 2.7178 
Munsell 2.8551 2.6556 
10 bits quantization pinv MDN 
Kremer (training) 1.6944 1.4398 
Selected Artists 1.7265 1.5712 
Restoration 1.4521 1.1781 
Munsell 1.3179 1.4599 
12 bits quantization pinv MDN 
Kremer (training) 1.3351 1.2227 
Selected Artists 1.1909 1.4603 
Restoration 1.0956 1.0041 
Munsell 1.0944 1.3353 

 
In Table 5-3 we can compare the mean spectral reconstruction errors obtained with the MDN 
method and with the pseudo-inverse (pinv) method. For a given database they are calculated 
as the average of the L1 distance (mean value of the absolute differences) between each real 
spectral curve and its reconstructed counterpart. We can see that at 8 bits this error is 
decreased about 40% for all databases tested. This result confirms that the MDN based 
method used is more robust in presence of noise than the linear reference one. It is also 
remarkable that the MDN response on 12 bits continues to be slightly better than the reference 
method, even if at this signal to noise ratio the reconstruction problem is nearly linear. 
Furthermore, we note that the MDN based method generalizes well over the three databases 
not used as training set, specially over the Munsell database since this database is not based 
on oil pigments as it is the case for the training set and the two other testing sets. 
 
In order to compare the colorimetric behaviour of the reconstructed curves with the original 
ones, Table 5-4 shows the CIELAB errors corresponding to the same experiments as Table 
5-3. For each database the CIELAB error is the average of the CIE 1976 CIELAB colour-
difference between each real spectral reflectance curve and its reconstruction, D50 being used 
as reference illuminant.  We observe the same general behaviour as in Table 1: the CIELAB 
error for the MDN method is always better in presence of strong noise than for the reference 
method and remains comparable when noise is low (12 bits quantization), although this is not 
so clearly stated as it is for the spectral error. 
 
5.6.2.2 Testing on Real Data 
 
We have scanned a GretagMacbethTM color chart using a Minolta CS-100 spectroradiometer 
and a PCO SensiCam 370 KL monochrome camera with an electronically tunable liquid 
crystal spectral filter VariSpec VIS2. From this experiment we obtained 200 spectral curves 
from 380 to 780 nm sampled at 1 nm intervals, each curve corresponding to a colour patch of 
the chart. We also acquired 12 images of the GretagMacbethTM chart using the PCO digital 
camera and 12 band-pass Gaussian-shaped filters using the tuneable filter, their centres being 
equally distributed from 400 to 740 nm with a mean half-bandwidth of 30 nm. 
 

Table 5-5.  Spectral Error over GretagMacbethTM chart. 

 pinv MDN 
Training Set 0.0267 0.0162 
Test Set 0.0239 0.0134 
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In Table 5-5 we compare the spectral reconstruction errors (L1 distance) obtained by the 
reference pseudo-inverse based method and a Mixture Density Network using m=8 Gaussians 
in its mixture model and nhn=40 neurons in the hidden layer of its feed-forward neural 
network (v-dimension=312). This comparison is performed over two complementary sets of 
measured patches belonging to the GretagMacbethTM chart. Set 1 contains 150 patches and is 
used for training. Set 2 contains 50 patches not included in the training set. We can see that 
the MDN based method globally decreases the errors about 40% on the training set and about 
44% on the test set. 
 
In order to briefly study the effect of the dimension of the training set on the solutions we 
took 50, 100 and 150 patches as training sets, each set being well distributed inside the colour 
gamut of the chart. The 50 remaining patches not included in any of the preceding training 
sets have been used as a test Set 2. We selected the best individuals for a random sampling 
over 60 MDNs. The best mean errors over the training set were 0.0183, 0.0166 and 0.0153 for 
50, 100 and 150 patches, respectively. We see a linear decreasing progression in this error, 
this is an interesting observation which indicates that the training set is still small and the 
introduction of more data would decrease the errors even more. 
 

Table 5-6.  CIELAB Error over GretagMacbethTM chart. 

 pinv MDN 
Training Set 3.9707 2.6730 
Test Set 4.1533 2.3248 

 
Table 5-6 shows the same information as Table 5-5 but for CIELAB errors. We observe that 
the MDN based method globally decreases CIELAB errors about 33% on the training set and 
about 44% on the test set. 
 

  
Figure 5-10. Histograms of the error for the pseudo-inverse based method (left panel) and the Mixture 
Density Network (MDN) based method (right panel). The histograms show 10 error bands going from 

the minimum (error bar 1) to the maximum error (error bar 10). Maximum error is 0.0972. 

 
In order to better compare the reconstruction behaviour of both methods we show in Figure 
5-10 the spectral error histograms for the pseudo-inverse based and the MDN based method. 
The error has been linearly quantized into ten bands represented by bars. Each bar indicates 
the number of spectral curves belonging to its error band. We clearly see that the error 
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distribution is much better for the MDN method, most of the spectral curve reconstruction 
errors remaining in the first three bands. 
 
In Figure 5-11 we include some examples of spectral curves in order to visually compare both 
reconstruction methods. Although we have observed that for some rare samples the linear 
method performs comparably or even better than the MDN method, a large majority of MDN 
reconstructed curves match the real reflectance curves better. This is understandable as MDN 
spectral errors are statistically 40% better than the errors obtained by the linear reference 
method. In Table 5-7 we present the reconstruction errors associated to the curves presented 
in Figure 5-11. 
 

Table 5-7.  Errors associated to curves shown in Figure 5-11. 

 pinv MDN 
Example 2 0.0316 0.0131 
Example 3 0.0582 0.0238 
Example 16 0.0466 0.0213 
Example 28 0.0171 0.0114 
Example 29 0.0118 0.0089 
Example 35 0.0427 0.0257 
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Figure 5-11. Six samples of reconstructed real curves taken from the GretagMacbethTM colour chart 
not belonging to the training set. Black continuous curves have been obtained by using a Minolta CS-

100 spectroradiometer, dotted curves are reconstructed by the linear reference method and half-dotted 
curves are reconstructed by the MDN based method. 
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5.7 Spectral Reconstruction Software 
 
We will start this discussion with a practical consideration of Mixture Density Networks. The 
good results shown in the previous section, whether noise is present or not, may justify the 
choice of this method. But there is another underlying important factor to consider in this 
choice. Our work is in the framework of CRISATEL and as part of it we will deal with 
multispectral images of canvas paintings and we desire the reconstruction of one spectral 
reflectance curve per pixel. In this project image size will be up to 12,000 by 30,000 pixels, 
i.e. images of 360 millions of pixels, with 10 channels per pixel in the visible range. For a 
current imaging system this is a lot of information. Consequently, we need a fast 
reconstruction method, limited on time and as quick as possible, in other words, with a fixed 
number of operations. This fact eliminates the choice of time consuming or iterative non 
bounded methods for our reconstruction system. 
 
Of course, linear methods are the quickest methods because they only require one matrix 
multiplication per pixel, but they have strong drawbacks as their weak robustness in presence 
of noise as illustrated in our preliminary results. 
 
Neural Networks are very time consuming in its training stage, specially if an architecture 
optimisation strategy is also used as we indeed do. Furthermore, using a Gaussian Mixture 
Model on top of a Neural Network increases the number of outputs, since a plain Neural 
Network approach needs s output neurons while a MDN with m Gaussians needs m(2+s) 
output neurons as previously mentioned. But once trained, MDNs are quick at the 
multispectral image processing stage, for each pixel they require: 
 

i) Two matrix multiplications. The neural network used in the MDN has two layers, 
then by equation (5.34) two matrix multiplications must be performed. 

ii) One sigmoid transformation per hidden layer neuron. This is due to equation 
(5.35). Let’s note that the activation function could be efficiently implemented in a 
look up table. Moreover, just one hidden layer is used in our case and as seen from 
equation (5.35) the function is the same for all neurons in a layer. 

iii) A max search among m scalars, from (5.56). 
 
In addition to these above presented points, the whole image processing can easily be 
implemented on parallel computers. 
 
Another important factor when considering time constraints is the choice of the 
implementation language. Our MDN based system has been implemented using ad hoc 
Matlab programs for multispectral image analysis, genetic algorithms and random sampling 
for architecture optimisation, as well as Netlab that is a Matlab toolbox designed at the 
University of Aston, United Kingdom. It is well known that Matlab is a prototyping tool not 
suitable for front-end applications. Our current system is acceptable for architecture selection 
and training of MDNs because time is not a strong requirement at learning stages. The 
reconstruction stage being simple it can be easily rewritten in C or C++ language in order to 
be used for processing large multispectral images in a more suitable way. 
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5.8 Conclusion 
 
 
We have developed and tested new non-linear methods for the reconstruction of spectral 
reflectance curves from multispectral images. These new techniques are based on neural 
networks. On our knowledge it is the first time that this approach is applied to the resolution 
of the spectral reconstruction problem. 
 
The first developed method uses a neural network to estimate, not directly, spectral curves. In 
fact, it estimates the coefficients associated to the orthogonal vectors obtained from a 
Principal Components Analysis (PCA) on a reflectance curves database, keeping 99% of 
signal variance. This method obtains good results on presence of quantification noise but its 
performance is worst than linear methods when noise is not present. 
 
Mixture Density Networks are applied in the context of spectral reconstruction. This approach 
leads to a reconstruction method obtaining good results when noise is present or not. Its 
performance has been tested using simulations with different levels of quantization noise and 
it overcomes the learning-based linear method used as reference. Moreover, the method has 
been tested using real data where the results are also positive. 
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6 The CRISATEL Acquisition System 
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6.1 Introduction 
 
 
A high-resolution multispectral color imaging system has been developed for the European 
project CRISATEL. This system includes a multispectral camera and a dedicated high power 
lighting system, both developed by LUMIERE TECHNOLOGY, Paris, France. In this chapter 
we present and characterize the hardware of the CRISATEL camera. Afterwards, we evaluate 
this acquisition system and using the data obtained on the evaluation we propose and 
implement a calibration procedure. Finally, a correction system for the calibrated images is 
described. 
 
On section 6.2 we present the multispectral acquisition system of the CRISATEL European 
project. The spectral characteristics of its filters and lighting system are described. The 
electronic architecture of the camera is then introduced. This led us to conduct a set of 
experiments which are presented in the rest of the chapter. 
 
On section 0 the system is evaluated. Experiments were performed in order to characterize the 
CCD array. Dark noise being an important matter, a complete characterization quantifiying its 
dependence from the camera parameters has been performed. The problem of chromatic 
aberration is briefly discussed. Finally, the spatial distribution of the lighting on the image 
plane is analyzed. 
 
On section 6.4 a calibration process is proposed based on the experiments performed. This 
calibration process is implemented in three steps: we first determine the parameters 
controlling the camera and obtain the spatial maps for lighting inhomogeneity correction, then 
we calculate the per pixel dark current offset, lastly the per pixel gain is determined to correct 
the differences of sensitivity between the CCD pixels. We show in detail how these operations 
are performed. 
 
Finally, on section 6.5 we present the correction process which is applied to calibrate the raw 
acquired images. 
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6.2 CRISATEL Multispectral camera description 
 
We describe in this section the basic features of the CRISATEL multispectral acquisition 
system. 
 
The CRISATEL multispectral camera is a digital camera based on a charge coupled device 
(CCD), a 12 000 pixel linear array. This linear array is mounted vertically and mechanically 
displaced by a stepper motor. The system is able to scan up to 30 000 horizontal positions. 
This means that images up to 12 000 by 30 000 pixels can be generated. The current camera is 
fitted with a system that automatically positions a set of 13 interference filters, ten filters 
covering the visible spectrum and the other three covering the near infrared. There is an extra 
position without filter allowing panchromatic acquisitions. 
 
The CRISATEL system is conceived for the digitalization of paintings. It includes a camera 
and a dedicated lighting system. The lighting system is composed of two elliptical projectors. 
In Figure 6-1 we show a diagram of the system. The optical axis of the camera should be 
perpendicular to the painting surface that we approximate as a plane. The two elliptical 
projectors of light are usually positioned at left and right sides of the camera and closer to the 
painting. Both projectors rotate synchronously with the CCD displacement and their projected 
light scans the surface of the painting. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6-1 Experimental camera configuration. 

 
6.2.1 Filter characterization 
 
The spectral reflectance curves of the 13 filters have been specified within the CRISATEL 
consortium. In the visible range they have 40 nm bandwidth and are equally spaced from 380 
to 780 nm at 40 nm steps. The filters were produced by Melles Griot. The filter transmittance 
of the 10 filters in the UV to Visible range were measured with a Hitachi U-4000 
spectrophotometer at the Victoria and Albert museum in London, see Figure 6-2. The Hitachi 
double beam spectrophotometer consists of a scanning monochromator, a Spectralon coated 
integrating sphere, a Tungsten Halogen lamp and a light-tight sample compartment. The 
system was set up to scan the wavelength range 340-1500nm, using a photomultiplier at short 
wavelength (<850nm) with a slit-width of 1nm and a scanning speed of 300nm/min, and a 
PbS detector in the NIR (>850nm) with a slit-width of 10nm and a scanning speed of 
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750nm/min. First, a baseline calibration was performed by comparing the sample beam (with 
no filter in the beam) with the reference beam. The transmittance of each filter was then 
obtained by taking the ratio between the sample and the reference beam. Most of the filters 
have significant second order response beyond ~1100nm, which should not introduce a 
significant error, since the CCD quantum efficiency cuts off at ~1100nm. 
 

 
Figure 6-2 Transmittance of the 10 UV-VIS filters measured with the Hitachi spectrophotometer. 

 
The transmittance of the above filters were also measured  with a Monolight 
spectrophotometer at the National Gallery in London. The Monolight system consists of a 
scanning monochrometer, a stabilised Tungsten Halogen light source, a photomultiplier 
detector  for 300-850nm, and a Si detector for 300-1100nm. Both the light source and the 
detector are connected with a optical fibre light guide and a collimated lens. The calibration 
procedure consists of a wavelength calibration with a He-Ne laser and a dark level 
measurement. The transmittance of the 10 filters obtained with the Monolight spectrometer 
were consistent with the Hitachi measurements within 2%. The transmittance of the 3 IR 
filters measured with the Si detector of the Monolight system (slit-width 0.45mm) is shown in 
Figure 6-3. 
 

 
Figure 6-3 Transmittance of the 3 IR filters measured with the Monolight spectrophotometer. 
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Since the transmittance of interference filters are known to depend on the angle of incidence, 
we have also measured the angular dependence of selected filters using the Monolight (e.g. 
Figure 6-4). There is a 1.5nm shift to the blue at 5 degrees and a 4.5nm shift at 10 degrees 
with no distortion to the spectral shape. Since the maximum angle of incidence for the 
CRISATEL system is ~7 degrees, the maximum wavelength shift is only ~3nm. 
 

 
Figure 6-4 Angular dependence of filter transmittance. 

 
The filter thickness and other optical properties being different for each filter, the focal 
distance for every channel will be different too. This is not a problem as the focus of the lens 
is precisely controlled by a stepper motor allowing independent focusing distance for every 
channel. But consequently the 13 channels result in images of slightly different scale. The 
CRISATEL multispectral camera provides a displacement system of the full camera body that 
can compensate these differences in scale. 
 
6.2.2 Lighting system characterization 
 
The lighting system is composed of two elliptical projectors positioned at left and right sides 
of the camera. Both projectors rotate and their projected light scans the surface of the 
painting. When synchronised, these projectors produce a luminous band that moves on the 
surface of the imaged plane. A photograph of one of this projectors can be seen in Figure 6-5. 
 

 
Figure 6-5 Photograph of an elliptical projector part of the CRISATEL system. 
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The projectors have an elliptical shape. An ellipse has two foci, the lamps are placed in one of 
these foci and the elliptical mirror concentrates the radiant energy on the other foci that we 
call focal point. When the projectors rotate their focal points move on the 3d space and not on 
the plane to be imaged. As a consequence, the band produced by one projector can be more or 
less thick and intense depending on the position on the plane. As long as there are two 
projectors, their produced bands are to be synchronised in order to obtain an illumination field 
as homogeneous as possible. This problem is solved at the moment by a pre-calibration 
procedure implemented on the camera software. We will not enter here into details about this 
algorithm. From our experience we found that the synchronisation problem is different when 
Halogen lamps or HQI bulbs are mounted on the projectors. Halogen lamps being a filament 
they produce a narrow band because the elliptical mirror projects its shape onto the plane to 
be illuminated. HQI bulbs produce a wider band. This fact makes the synchronization of the 
halogen lamps more complex.  
 
In this section, we are mainly interesting in the spectral emittance properties of the light 
source we can use for scanning paintings. We measured the spectral radiance of the available 
Halogen lamps and HQI bulbs. The spectral radiant energy distribution functions are shown 
on Figure 6-6. We show on the left panel the power distribution of the HQI bulbs and on the 
right panel the same graph for the halogen lamps. These measures were taken by a Minolta 
CS1000 spectrophotometer positioned normal to a white calibrated patch with a supposed 
perfect reflectance. We then placed the halogen lamps or HQI bulbs at 45 degrees from the 
normal. 
 

  
 

Figure 6-6 Measured spectral distribution of the radiant energy of the HQI bulbs (left panel) and the 
halogen filaments (right panel) used in the CRISATEL lighting system. 

 
When working with a lamp we expect its radiant energy to be stable with time. For halogen 
lamps it is well-known that they are stable if the applied electrical power is continuous and 
controlled. This is the case of the projectors used, but we still need to determine the time it 
takes to warm up the lamps before a stable image acquisition can be done. In order to answer 
this question we measured the temporal evolution of one of the CRISATEL projectors using 
halogen lamps. 
 
A Minolta CS1000 spectrophotometer was used with an acquisition geometry of 45/0. This 
time the experiment consisted on switching of the lamps and taking measures of the calibrated 
patch every 3 minutes, starting 30 seconds after the lamps switched on and finishing 30 
minutes afterwards. The results are presented on Figure 6-7. On its left panel we present all 
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the measured spectral curves, that gives an overall impression on the evolution of the radiant 
energy. We present on the right panel of Figure 6-7 a detail of these curves. This zoom shows 
the spectral curves identified by different line types. Following the times shown on the legend 
we see the following evolution: 
 

• the spectral curves initially decrease on absolute value, 
• they reach a minimum after around 13 minutes, 
• they increase again and stabilize after 20 minutes. 

 
We have drawn the last measure (at 29 minutes and 30 seconds) as a thick black line. As a 
consequence of these measures we recommend to warm up the lamps for at less 20 minutes. 
 

   
Figure 6-7 Measured spectral distributions of the radiant energy of the halogen filament at different 

stages of the warming up. (Left panel) Curves showing the evolution of the light source from 30s 
to29m30s at 3m intervals. (Right panel) Zoom over a region to better appreciate the evolution. 

 
We will now investigate the nature of the radiant distribution. Halogen lamps are generally 
known as good approximations of a blackbody radiator. A blackbody radiator is an object the 
radiance of which depends only on its temperature [Wyszeki and Stiles, 1982]. By Planks 
formula we can calculate the radiant exitance of a blackbody radiator. Its expression is 
 
 2 /5 1

1 ( 1)c T
eM c e λλ− −= − , (6.1) 

 
where λ is the wavelength and the two radiation constants c1 and c2 are obtained from 
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where c is the velocity of light, h is the Planck constant and k is the Boltzmann constant. 
 
Note that the only free parameter on Plank’s formula is the temperature. Giving different 
values to this parameter we can calculate the radiant energy distribution per wavelength of a 
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blackbody radiator at any temperature. When changing temperature the radiant distribution 
changes on absolute value and form. We are interested in its form. This is because we can 
compare the curve of a blackbody radiator with that of a halogen lamp. As long as the 
absolute values have no possible link between the absolutes values for theoretical or real data 
we just can compare its shape. In any case the shape of a blackbody radiator radiant energy 
distribution is completely defined by its temperature. 
 
On Figure 6-8 we simulate the curves for blackbody radiators from 3800 Kelvin to 4800 
Kelvin at 100 Kelvin intervals. These curves are drawn as black thin lines. The thick black 
curve represents the experimentally measured spectral emissivity of the halogen lamp used on 
the CRISATEL system after 30 minutes of warming up. We clamped all the curves at the last 
wavelength sample (800 nm) in order to better compare the shapes. The measured curve 
clearly diverges from the theoretical ones. The closest blackbody radiator to this lamp is the 
one having temperature of 3150 Kelvin. 
 

 
Figure 6-8 The thick black line represents the measured spectral distributions of the radiant energy of 

the halogen filament after 30 minutes of warming up. Thin curves are the radiant exitance of 
blackbody radiators at temperatures from 3800 to 4800 Kelvin, drawn at 100 Kelvin intervals. 

 
 
6.2.3 Camera electronic architecture 
 
The camera electronic architecture is based on the VSP2212 chip produced by Burr-Brown. 
This a complete mixed-signal integrated circuit that contains all of the key features associated 
with the processing of the CCD imager output signal in a digital still camera or similar 
applications. We will not show any block diagram or precise information not directly relevant 
to the camera control, for more details see the technical manual of [Burr-Brown, 2000]. 
 
The VSP2212 chip allows one, two or four parallel channels for the CCD readout operations. 
The current system uses two channels which process the pixels on the array occupying even 
or odd positions respectively. In each channel the raw signal coming from the CCD passes 
through an analog amplifier. Each amplifier has two control parameters, an offset and a gain. 
In our case, it is a set of two offsets and two gains which can be fixed for each individual 
channel before a multispectral acquisition. The analog signal delivered by the amplifier for 
each pixel is then quantized into 12 bits by an analog to digital converter (ADC). See Figure 
6-9 for a diagram of this process. 
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Figure 6-9 Electronic architecture of the VSP2212 chip. 

 
The VSP2212 chip includes the following units: a correlated double sampler (CDS), 
programmable gain amplifier (PGA), Analog-to-Digital Converter (ADC), input clamp, 
optical black (OB) level clamp loop, serial interface, timing control, reference voltage 
generator, and general purpose 8-bit Digital-to-Analog Converters (DAC). The PGA gain 
control, clock polarity setting, and operation mode selection can be made through the serial 
interface. In fact, this serial interface allows the camera hardware to be controlled. In 
particular, the gain and the offset are the parameters of this chip in which we are interested:  
 
- The PGA gain. The PGA provides a gain range of –6dB to +42dB, which is linear in dB. 

The gain is controlled by a digital code with 10-bit resolution, 1024 input values are then 
possible running from 0 to 1023. Knowing this we can build the relationship between the 
amplifier input control gain and the gain in dB, that is: 

 
 g = (48 / 1023) x – 6 , (6.4) 

where g is the gain in dB and x is the code accepted by the amplifier interface. 
 
Left panel of Figure 6-10 shows this relationship that was very helpful to express results 
in this chapter in decibel (dB). We found dB much more comprehensive than a scale of 
numbers attached to a specific electronic architecture. The dB is a logarithmic unit used to 
describe a ratio. The dB was first introduced to measure sound level, but it is also widely 
used in electronics, signals and communication. The ratio may be power, sound pressure, 
voltage, intensity or many other quantities. In our context we call it amplification, that is 
the factor by which the signal amplitude is increased in the amplification process. 
Mathematically the relationship is expressed as  
 

 g = 10 log10(a) , (6.5) 
 
where g is the gain on dB and a is the amplification factor. Right panel of Figure 6-10 
shows a graph of this relationship. 

even discharge channel odd discharge channel 

amplifier amplifier 

(gain, offset) (gain, offset) 
CCD linear array 
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Figure 6-10 (Left panel) Linear relationship between the input code for gain control of the amplifiers 
and the amplification gain on dB. (Left panel) Logarithmic relationship between amplification factor 

and decibels. 

 
- The “OB clamp level” (the pedestal level). Instead of the PGA, we are not interested here 

on the relationship between input code and the OB clamp level. We just need to know that 
16 clamp levels can be programmed through the serial interface. The VSP2212 has an 
auto-calibration loop to establish the OB level using black pixels output from the CCD 
imager. But this option must be inactive as we will always define by ourselves the OB 
clamp level. This OB clamp level correspond to the value we called amplifier offset on 
Figure 6-9. 

 
For a given scene and lighting, there still remain two physical parameters which allow us also 
to control the amplitude of the signal: the aperture of the optical lens and the exposure time. 
Both factors can modify the number of incident photons trapped in each individual CCD cell. 
The aperture of our dedicated optical lens not being controlled electronically, it is kept fixed 
during an acquisition. The exposure time can be automatically setup and changed from 1.3 ms 
to 200 ms by steps of 0.1 ms. Since the CCD readout speed is the limiting factor to the rate of 
acquisition, the minimum time of 1.3 ms could be reduced by using four parallel channels for 
the CCD readout. But in our case this value is already small enough and appropriate for 
applications to the scanning of paintings since the lighting irradiance remains limited and 
necessitates the use of larger exposure times. 
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6.3 Camera Evaluation 
 
In this section we present a series of tests aiming to characterize the physical aspects of the 
CRISATEL camera. The studied points relate closely with image quality. This 
characterization is not a mere description of the system but it provides both a study of the 
camera performances and a basis for the posterior analysis of the acquired image. 
 
6.3.1 CCD linearity 
 
To control the linearity of the CCD response, we use a calibrated white target under a 
CRISATEL lighting system equipped of HQI bulbs or halogen filaments. All the camera 
parameters are kept constant except for the exposure time. The offset of each electronic 
amplifier is set to its minimum and the gain is kept at 0 dB. The mean output signal 
corresponding to a white reference target should increase linearly with the exposure time. In 
Figure 6-11 we show the results of this test of linearity when using HQI bulbs (left panel) and 
halogen lamps (right panel). 
 

 

Figure 6-11. Curves showing the linear behaviour of the CCD array for all channels. Amplifier offset 
is fixed to its minimum level, amplifier gain is 0dB. (left panel) HQI bulbs, (right panel) halogen 

lamps. 

 
We observe on all the curves a perfect linear response, up to a certain response level where 
the CCD starts to be saturated and reaches a plateau where the acquired images are 
overexposed. The transition between the linear behaviour and the plateau is important to 
characterize in order to determine an optimal exposure time for which the CCD is not 
saturated and the images are not underexposed. When a channel sensitivity is too low as it is 
the case of the curves that do not saturate on the limits represented on Figure 6-11, the output 
response needs to be magnified by increasing the amplifier gain. 
 
We note that the upper limit for the exposure time is different in both graphs presented on 
Figure 6-11. In general, curves of linearity corresponding to the halogen lamps saturate faster. 
This is not an intrinsic property of the halogen technology but the design of these projectors 
that made the luminous flux to be more intense on this particular case. Anyway, this fact is of 
relevant practical importance because having more luminous flux implies smaller exposure 
times and consequently faster acquisitions. We have performed a comparison for each channel 
of the CRISATEL camera between halogen and HQI projectors. For this, we have taken at 
each channel an exposure time where no curve, neither for halogen nor for HQI, is saturated. 
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At this exposure time we calculate the signed difference between the digital counts obtained 
for the halogen lamps against the HQI bulbs expressed in percentage of the halogen lamps. 
The results are shown on Figure 6-12. 
 

 
Figure 6-12. Difference on luminous flux per channel between halogen lamps and HQI lamps for the 

CRISATEL acquisition system. Positive sense for the bars indicates halogen superiority. Channels 1 to 
10 correspond to the 10 filters in the visible spectral range, channels 11 to 13 to the three IR filters. 

 
Figure 6-12 shows the difference on luminous flux of both HQI and halogen projectors. A 
positive value of the bars indicates that halogen has more flux than HQI, the negative sense 
indicates more flux for HQI. From this analysis we prefer the use of projectors using halogen 
lamps as it provides much more luminous flux on most channel. HQI seems better for 
channels on the lower part of the visible spectrum but the difference is less than 10%. 
 

   

Figure 6-13. Relative channel sensitivity of the CRISATEL camera. Channels 1 to 10 correspond to 
the 10 filters in the visible spectral range, channels 11 to 13 to the three IR filters. (Left panel) uses 

HQI bulbs while (right panel) uses halogen lamps. 

 
We can compare the relative sensitivity of the channels represented in Figure 6-13 by 
measuring their respective responses at a given exposure time where all the curves remain 
linear (e.g. at 20 ms for the HQI and 5 ms for the halogen). The result of this comparison 
between the 13 channels of the CRISATEL camera is shown in Figure 6-12. Note that the 
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relative sensitivity depends strongly on the light source used. On the left panel of this figure 
we can see the relative sensitivity using HQI bulbs while on the right panel we show the same 
diagram calculated when using halogen lamps. The differences are visually very significant 
and the behaviour of the system will change considerably when using different types of light 
sources. 
 
The measured spectral distribution of the radiant energy of the HQI bulbs and the halogen 
lamps used in the experiment are shown in Figure 6-6. We comment these two bar diagrams 
in the following: 
 

• HQI bulbs. In left panel of Figure 6-13, channel 6 is the most sensitive. It corresponds 
to the filter centred at 600 nm. Channels 1, 9 and 10 are about 4 times less sensitive. 
They correspond to filters centred at 400 nm, 720 nm and 760 nm, respectively. 
Channels 11, 12 and 13 correspond to the three infrared filters centred at 800 nm, 900 
nm, 1000 nm, respectively. Their larger bandwidth, 100 nm instead of 40 nm, explains 
the increase in sensitivity of channels 11 and 12 compared to channel 10. Channel 13 
is the less sensitive, about 20 times less than channel 6. It is due to a strong decrease 
of the spectral sensitivity of the linear array in that part of the infrared. 

 
• Halogen filaments. In this case the behaviour is very different, we obtain a bell shaped 

diagram where the filter centred at 800 nm has a strong pick breaking the smoothness 
of this shape. The increasing smooth shape on the visible part of the spectrum is 
justified by the form of the spectral radiance of halogen filaments, see Figure 6-6. The 
peak on the first infrared channel is due to its wider band, 100 nm instead of 40 nm. 
The decrease on the 900 nm and 1000 nm channels is explained by the strong decrease 
of the spectral sensitivity of the linear array in that part of the infrared. 

 
 
6.3.2 Dark Noise Characterization 
 
One fundamental characteristic of a digital multispectral camera is its level of noise. In this 
section we present the results of a set of experiments performed to characterize the noise 
properties of the CRISATEL camera. Noise sources associated to a CCD have already been 
described on Chapter 2 (Nature of Data). In this section we mainly characterize noise 
encountered on the acquisition system, we call it dark current. In order to measure dark 
signals we block the camera by using a cap and scan “dark images”. We have conducted all 
our experiments in a dark room in order to avoid any stray light. 
 
Since we have a linear CCD array, we consider each line of a single large dark image as a 
population of samples of the corresponding CCD pixel and calculate on this line the mean and 
the variance. Then, the whole CCD array is summarized in one number by using the mean on 
all the pixels of a selected statistics. This mean is performed separately for even and odd 
pixels as their amplifiers are different. We recall that the output camera signal is 12 bits 
quantized in the range [0-4095]. The scales used in the various noise representations are then 
provided directly in units corresponding to that range, the so called digital counts. 
 
We first present two sets of curves which relate the mean level of dark noise and its standard 
deviation with the exposure time. In Figure 6-14 we observe clearly that the mean value of the 
dark noise is linearly dependent on the exposure time. We also observe on Figure 6-14 that 
the amplifier gain changes the slope of the curve. All these observations agree with simple 
theoretical expectations. Since the mean dark noise is predictable it is then possible to correct 
it by applying a negative offset of the same amount on the output signal delivered by the 
amplifier. In Figure 6-15 we present the standard deviation corresponding to the same 
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experiment as in Figure 6-14. We observe here that the standard deviation becomes constant 
for small values of the amplifier gain and for bigger values it is constant after a given amount 
of exposure time. This constant value increases with the amplifier gain. This indicate to us 
that it is better to use a longer exposure time in the available range, than to increase the 
amplifier gain, as far as the precision of the signal is concerned. 
 

 

Figure 6-14. Mean value of the CCD dark noise. Each linear curve represents the dark noise mean 
value versus the exposure time for a fixed amplifier gain. The amplifier gain changes the slope of the 

lines. 

 
We have calculated the slope of the lines shown on Figure 6-14. The results are presented on 
the following Table 6-1: 
 

Table 6-1. Slope of lines shown on Figure 6-14. 

Gain Slope 
0 dB 0.06173 
6 dB 0.12464 
12 dB 0.26288 
18 dB 0.57404 
24 dB 1.22290 

 
In this table we observe that there is approximately a multiplicative factor of 2 on the slope 
when augmenting the gain by 6 dB. This confirms that the amplification augments practically 
linearly with the gain expressed in dB. 
 
In order to better understand the information in Figure 6-14 and Figure 6-15 we generate a 
Signal to Noise graph. This is shown in Figure 6-16. We calculate it by considering the mean 
of the dark noise as the “signal” and its standard deviation as the “noise”. The graph in Figure 
6-16 is the simple division of each standard deviation curve in Figure 6-15 by the 
corresponding mean curve in Figure 6-14. This new representation helps the visual 
interpretation of our experiments. In Figure 6-16 we see exponential kind of curves and 
clearly that the inverse of this “signal to noise ratio” is smaller when the integration time is 
higher. It is important to see that for small values of the exposure time the noise standard 
deviation is significant when compared with the mean. In order to better illustrate this point, 
right panel of Figure 6-16 shows a zoom for small exposure times of the graph presented on 
the left panel. The relative importance of the standard deviation at these small exposure times 
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should be studied for applications requiring to perform fast image acquisitions. Knowing that 
scan velocity is not an issue for art painting applications this graph can be used to fix a 
minimal exposure time which guaranties a small level of noise. 
 
 

 

Figure 6-15. Standard deviation of the dark noise. Each curve represents the dark noise standard 
deviation versus the exposure time for a fixed amplifier gain. The standard deviation reaches a 

maximum which depends on the gain. 

 
 

 
Figure 6-16. (left panel) Division between mean and standard deviation of dark noise versus exposure 

time. (right panel) Zoom of the left panel graph for small exposure times. 

 
 
We can further study the mean and standard deviation of the CCD responses, in particular its 
dependency on the amplifier gain. In Figure 6-17 each curve represents the evolution of the 
mean (left panel) and standard deviation (right panel) versus the amplifier gain obtained with 
a fixed exposure time. On the horizontal axis the gain is given in decibels, from -6 dB to 42 
dB. Twenty curves are drawn for exposure times going from 1.3 ms to 20.3 ms every 1 ms. 
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Figure 6-17. Mean (left panel) and standard deviation (right panel) of the CCD dark noise. Each 
curve represents the dark mean or standard deviation measured on digital counts versus the amplifier 

gain. Each one is obtained with a fixed exposure time. Twenty curves are drawn going from 1.3 ms 
(bottom) to 20 ms (top) in 1 ms steps. 

 
From Figure 6-17 we clearly see the change of shape of the curves when augmenting the 
exposure time. This is justified by the integral nature of the acquisition system. Contrary to 
the always increasing mean, the standard deviation evolves quicker for small values of the 
exposure time. We want to illustrate how and why the standard deviation of the dark noise 
makes the acquisition system lose precision. We take as an example the curve in Figure 6-17 
relating standard deviation in digital counts with gain in dB when fixing exposure time at 10 
ms. This curve is shown alone on the left panel of Figure 6-18. On its right panel we show the 
same curve but gain is expressed as an amplification factor. We see that this curve can be 
approximated by a straight line, even if it does not fit perfectly. On this curve we take three 
points at 3, 10, 20 and 30 dB, these points correspond to an amplification factor of 2, 10, 100 
and 1000 respectively. 
 

  
Figure 6-18. (left panel) Standard deviation measured on digital counts versus the amplifier gain for a 

fixed exposure time of 10ms. (right panel) Same curve using a linear scale to represent the gain. 

 
Let’s focus on one of these points, for instance the one with gain = 10 dB. Its standard 
deviation value being 7 its correspondent mean is 154 (for a CCD offset of 8). If we suppose 
that the distribution is Gaussian the value of this pixel has 95.45% probably to be found on 
the interval [m-2 σ, m+2 σ], which corresponds to [140, 168]. Unfortunately, we have no way 
to decide which value in this interval is the real one, this fact implies a loose of precision on 
the signal. As the signal is coded on 12 bits we have 4098 possible values. For the case where 
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 σ = 7, the error interval contains 28 values, 4σ=28, which should be coded on 5 bits and 
implies the loose of 5 bits of precision. More precisely the lose of bits, qbits, is given by: 
 
 qbits = log2(4σ ), (6.6) 
 
i.e. 4.8 bits for  σ = 7. We can also measure this error as a relative error, e%, expressed in per 
cent of the number of possible values (4096), according to the following equation: 
 
 e% = (4σ / 4098) 100. (6.7) 
 
The information about our four sample points at 2, 10, 20 and 30 dB is summarized on Table 
6-2. We tabulate for each fixed gain: the corresponding amplification factor, the measured 
standard deviation and the calculated values for e% and qbits using the above formulas. 
 

Table 6-2. Noise evolution at 4 different amplifier gain for an exposure time of 10 ms. 

Gain Amplification 
Factor 

Noise Standard 
Deviation 

Error, 
e% 

Lost Bits, 
qbits 

3 dB 2 3 0.15% 3.6 
10 dB 10 7 0.34% 4.8 
20 dB 100 23 1.12% 6.5 
30 dB 1000 70 3.41% 8.1 

 
At the moment we have characterised the noise by considering the amplifier gain and 
exposure time. We should not forget that the amplifiers have an offset as well. We have then 
characterized the behaviour of the amplifier offset. In order to do this, we give different 
values to the offset and measure the dark noise by varying either the exposure time at a fixed 
gain or the gain at a fixed exposure time. The amplifier control unit allows 16 different levels 
of offset. 
 
On the left panel of Figure 6-19 we show a graph of dark noise versus exposure time. Four 
curves are drawn with values 0, 4, 8 and 12 for the offset. We visually observe that the offset 
increases all the values of a curve by a constant value. Care must be taken when using at the 
same time small values of the exposure time and offset=0. The curve corresponding to 0 
offset shows this point clearly since it becomes zero for values smaller than 10ms. This fact 
can seem surprising at first glance because signal information can be lost with such 
parameters. It is due to a design choice for the electronics, the underlying reason being that 
the dark offset of an image is visually related to its contrast. The choice of an offset=0 at 
exposure times smaller than 10ms loses signal information on dark areas of the images but 
augments the contrast. If high fidelity reproduction is the aim of an application this choice 
must be forbidden. We will discuss more this point in the calibration section of this chapter. 
 
On the right panel of Figure 6-19, mean dark current expressed in digital counts is plotted 
versus amplifier gain. For low values of the gain and for offset values 4, 8 and 12, the dark 
noise remains constant and behaves as expected. The curves are in fact translated by a 
constant value along the digital counts axis. But for offset = 0 the curve can no more be 
considered as a translated one. 
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Figure 6-19. Effect of four amplifier offsets on the mean of dark current. 

 
We have presented results based on the mean of dark noise. We have also studied the effect of 
the offset on the noise standard deviation. We do not present results here because the 
collected data shows that the offset does not modify the value of the standard deviation. This 
fact was the expected offset behaviour in well designed amplifiers. 
 
As a conclusion of this section and aiming to better visualize and summarize the data already 
presented, we show in Figure 6-20 two 3d diagram showing the dependence of dark current 
noise on exposure time and gain as the same time. The upper plot of this figure presents the 
noise mean in digital counts while the bottom panel shows the standard deviation of the noise 
measurements in digital counts These graphs summarize the behaviour of the camera 
parameters as far as noise is concerned. The combination of high amplification and big 
exposure time is seen as giving big levels of noise, both for the mean and the standard 
deviation.  
 
In this 3d representation we see that exposure time does not affect the standard deviation up to 
a certain amplifier gain value (~10dB in our case). Dark noise can be considered as an offset 
that linearly depends on the exposure time. We can either correct this offset in a post-
processing stage or integrate part of this correction in the calibration procedure by the use of 
the electronic offset of the CCD amplifiers. 
 
Three important considerations about the noise can be easily done by the use of these 
diagrams: 
 

• Noise offset subtraction. Even if the mean of the noise can be subtracted from the 
image signal, this subtraction can affect the quality of the signal. For instance, in the 
upper panel of Figure 6-20 we see that for 20 ms and a very high amplification (42dB) 
the mean of the noise is around 2500 digital counts. The range of possible values 
being 0 to 4095 (12 bits encoded), by systematically subtracting the value 2500 we 
obtain a practical range of 0 to 1595 values for the useful image signal. This smaller 
range can be coded on 11 bits. We have then lost one bit of precision. 

 
• Intrinsic noise. Looking at the bottom panel of Figure 6-20 we find a characterization 

of the dark noise of the CRISATEL camera. Indeed, the standard deviation cannot be 
corrected, but it can be quantify. Consequently this graphs characterizes the remaining 
level of dark noise that we will obtain from the camera after correction. Decisions 
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about the free parameters of the system (exposure time and gain) can be made 
depending on the desired final signal to noise ratio. 

 
• Amplifier offset. In general, this offset produces a translation on the Z axis of the 

diagrams of Figure 6-20. This allows us to produce an easy mental representation of 
the process. In some particular cases as offset=0 and short time exposures, care should 
be taken because some deformations are introduced. 

 
 

 
 

 
 
Figure 6-20. (Upper panel) Mean of the CCD dark noise shown as a function of the exposure time and 

amplifier gain. (Bottom panel) Same graph for the standard deviation. 

 
The results presented on this subsection indicate that it would be better to have a common 
gain for all the channels, when applicable, in order to keep the dark noise standard deviation 
per channel constant. We cannot correct the error introduced by the noise standard deviation, 
a common gain would provide a similar signal to noise ratio for all channels. 
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6.3.3 Chromatic Aberration 
 
In this section we consider the problem of geometric differences between the images acquired 
in the different channels induced by chromatic aberrations. The refractive index of glass 
varies with wavelengths. Furthermore, the interference filters used in our camera have 
different thickness. This makes the acquisition geometry of the channels slightly different. As 
a consequence, if the camera is fixed and the images focused individually for each channel, 
the resulting images will not have the same scale. A characteristic point of the scene may not 
be imaged in the same pixel in each channel. We illustrate this point by acquiring an image of 
the simple test chart shown in Figure 6-21 for two different channels. It is composed of a 
large white band limited by two black bands . The chart was placed vertically and its size 
chosen such that its image covers the linear array. 
 
 
 
 
 

Figure 6-21. Test chart used to correct the chromatic aberration . 

 
We chose one filter in the infrared area (centred at 1000 nm) and the other one in the visible 
spectrum (centred at 680 nm). The lens adjustment being motorised, for each filter the focus is 
tuned by using a software tool. In the two images we simply note the pixel positions 
corresponding to the two black/white transitions as shown in Table 6-3. 
 

Table 6-3. Pixel Distance between the black bands. 

Filter, [nm] Pixel position --> Distance  
680 10014-1606 = 8408 
1000 10041-1573 = 8468 

 
The distance calculated in pixels differs by 60 pixels between the two selected filters. This 
means that the acquired images need a postprocessing for inter-channel registration. To avoid 
this, the CRISATEL multispectral camera provides a displacement system that can 
compensate the differences in geometry for every spectral channel. The system mechanically 
displaces the whole camera along the optical axis. These displacements can be determined by 
a calibration process and incorporated in the control software providing the possibility of a 
fully automatic compensating system. This control software will be developed in the future by 
the camera constructor. 
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6.3.4 Spatial Inhomogeneities 
 
A general problem encountered with any imaging system is the spatial inhomogeneity of the 
lighting. Depending on the position of the lighting system, the camera and the imaged object, 
the imaged surface presents brighter and darker areas. We performed experiments in order to 
characterize these spatial inhomogeneities. In this section, we explain how we did it and we 
present results concerning the CRISATEL camera in a fixed experimental situation. 
 
In order to visualize the differences in energy at different positions of the image plane we 
proceed with the following experiment: 
 

1. Set up a homogeneous white surface as image plane. 
2. Fix the parameters of the system. Note that we will explain in detail how this is 

made automatically in the “Calibration” section. 
3. Take an image per filter of the white homogeneous surface. 

 

 

   
Figure 6-22. (Up) Image of a white homogeneous board using filter at 680nm, (down) its histogram. 

 
After this experiment we obtain a set of N=13 images containing information about the spatial 
distribution of the radiant energy. The images are taken at low resolution to avoid the effects 
of surface inhomogeneities of the board. We calculate the histograms of the obtained images, 
this allow the quantification of the error introduced by the irregular spatial distribution of 
light. In Figure 6-22 we show one of this images corresponding to the 680nm band along with 
its histogram. In Figure 6-22 we can already see that some areas of the image are brighter than 
others. If we take an image of a painting this pattern will reduce the quality of the result. 
Consequently, the identification and analysis of this phenomenon is of major importance for 
the final quality of the images. Calculating the level contours of the image, see Figure 6-23, 
we obtain a clearer visual information about the distribution of light over the imaged plane. 
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By definition a level contour is formed by the points of the image having exactly the same 
value. In fact, they can be calculated by dividing the histogram in m parts and taking the 
boundary points between these parts. In Figure 6-23 we chose m=12 and we observe that in 
this particular configuration of the camera and lighting system the energy is stronger on the 
left part of the image. 
 

 
Figure 6-23. Level contours of the image of a white homogeneous board using filter at 680nm. 

 
Of course we expect this “white map” to depend strongly on the position of the lighting 
system. One question that immediately arises is the dependence of the “white map” on the 
channel used for the acquisition. If filters are not homogeneous along the different optical 
paths they can change the spatial distribution of the radiant energy too. 
 
In Figure 6-25 we show the image of a white board, its histogram and its level contours for 
the 480nm filter. We can directly compare these images with the ones at 680 nm presented in 
Figure 6-22 and Figure 6-23. We clearly see that the distribution of the level contours is not 
the same even if the overall image looks similar. In order to better unsderstand this point we 
calculate the difference image between both the image at 480 and 680nm. This difference map 
is presented in Figure 6-24. This indicates that the lighting homogeneity must be characterize 
for each channel in order to correct the spatial inhomogeneities of the lighting. 
 

 
Figure 6-24. Difference map between images of a white panel using filters at 480 and 680 nm. 
Maximum and minimum values of the 12-bits image difference are white and black 
respectively. We appreciate that differences can be significant for different channels.
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Figure 6-25. (Up) Image of a white homogeneous board using filter at 480nm, (middle) its histogram, 

(down) corresponding level contours. 
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6.4 Calibration 
 
Once the system has been studied the definition and implementation of a calibration 
procedure is the following natural step. Data collected from the performed experiments form 
the basis for this definition. The calibration consists of a series of experiments which will 
allow us i) to set up the parameters to be used for the acquisition of images and ii) to collect 
experimental data for the a posteriori correction of the obtained multispectral images. At the 
end of the procedure, corrections should be applied and the corrected images are expected to 
have a high dynamic range and good spatial lighting homogeneity. 
 
In order to attain these objectives we distinguish between two factors: 
 
 Fixing the camera parameters. 
 Characterizing lighting and CCD inhomogeneities. 

 
6.4.1 Fixing camera parameters 
 
We start our discussion with the camera parameters. The most fundamental part of the 
calibration system aims to obtain a high dynamic range by appropriately fixing the camera 
parameters. These parameters are mainly the exposure time and the amplifier gain and offset. 
In our case two of these parameters, the amplifier gain and offset, can be fixed a priori. 
 
There are three preliminary steps that should be performed before calibration: 
 

i) The camera aperture is not electronically controlled. Consequently, this 
parameter cannot be optimised and should be fixed manually to obtain enough 
deep of field over the surface we desire to scan. 

ii) The camera should be on focus for all its channels. This is performed by a in-
built manual software provided by the camera constructor. 

iii) The hardware correction for inter-channel registration should be done. If this 
step is not implemented it can be substituted by a postprocessing stage where 
the registration is performed by software. 

 
The gain can be fixed depending on the quality we want to obtain. Figure 6-20 in section 6.3.2 
shows the relationship between this parameter and the dark noise introduced in the signal. 
There is a direct non-linear relationship between them. Due to our experiment with dark 
current this relationship is characterized and we know the expected error for every value of 
the amplifier gain. As a consequence, this parameter can be fixed to a value giving a 
compromise between low noise and an acceptable acquisition time. We choose this value to 
be 8dB. We note that this choice is dependent of what our application considers a compromise 
between acceptable scanning time (i.e. one hour) and good image quality (i.e. 10 
representative bits in the obtained digital signal). 
 
If the amplifier gain is fixed its offset can be fixed too. Ideally we should choose the smallest 
possible offset in order to obtain the maximum dynamic range. In practice this is not possible 
because the level of noise limits the minimal offset that can be used. Using a smaller offset 
would produce the lost of one part of the information received by the CCD. We want to keep 
all noise variability in the image. Considering a Gaussian distribution, the value of a pixel is 
on the interval [m-3σ, m+3σ] with 99.74% probability, where m is the mean of the dark noise 
distribution and σ is its standard deviation. As the level of noise for every value of the gain 
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has been measured and characterized (see Figure 6-17) the values of m and σ are then known. 
Consequently, we can directly choose an appropriate offset by the use of this information. 
 

 
Figure 6-26. Effect of the 16 offsets on the camera dark current experiment. Gain is 8 dB for the 

selected curve (pointed by the arrow). 

 
In Figure 6-26 we can see the effect on the mean value of the noise of some values of the 
offset accepted by the amplifier when gain is fixed at 8dB. The arrow indicates the chosen 
curve that correspond to the offset value 1. This value is the smallest possible, knowing that 
for a gain of 8dB the standard deviation of the dark noise is around 8 for a dynamic signal 
range of [0, 4096]. In order to better illustrate this point we show on Figure 6-27 two curves 
(solid lines) corresponding to the use of offset=0 (left panel) and offset=1 (right panel). Along 
with these curves we draw dashed lines representing the limits at -3σ and +3σ of the noise 
distribution. In the space between the two dashed lines 99.74% of the noise is included. Offset 
zero can not be used as noise information is lost for exposure times smaller than 12 ms. For 
offset=1 information is lost for exposure times less than 3 ms. Since we will normally work at 
values bigger than 5 ms, that means that the first level of offset can be chosen without loose of 
information. 
 

   
Figure 6-27. (Left panel) Curve for offset=0 showing the camera mean dark current represented by 

solid lines, with its confidence interval, represented by dashed lines. (Right panel) Same data for 
offset=1. 



 155 

 
Once both the amplifier gain and offset are fixed the only free parameter left is the exposure 
time. Finding the exposure time that gives the highest dynamic range is to solve a one-
dimensional optimization problem. Even if this problem is mathematically affordable, it is 
unfortunately very delicate in practice. A big part of our calibration system is indeed 
dedicated to the quest for this parameter. 
 
6.4.2 Characterizing lighting and CCD inhomogeneities 
 
Another part of the calibration procedure is the gathering of data that will be used for the 
correction of “perturbing” physical phenomena associated to the acquisition process. In the 
calibration procedure we take into account two important spatial phenomena: 
 

 The inhomogeneous spatial distribution of the lighting. 
 The varying behaviour between pixels of the CCD array. In this framework we will 

study the two following properties: 
1. dark current noise contribution on each individual pixel, 
2. individual pixel responses for the same level of incoming radiant energy. 

 
The way of dealing with these above phenomena is treated in detail in the next section. 
 
 
6.4.3 Three steps Procedure 
 
The defined calibration procedure consists in three stages. Step 1 is compulsory the first, both 
Step 2 and Step 3 depend on the parameters obtained from Step 1 and can be done in any 
order. 
 
 
6.4.3.1 Step 1: Preliminary exposure time adjustment and spatial maps definition 
 
Experimental configuration: A white homogeneous board must be positioned at the position 
of the paintings to be scanned and the lighting system should be warmed up. 
 
In this step our aim is to define a first appropriate value of the exposure time for each filter 
and the map of the spatial inhomogeneities of the lighting per filter. As the procedure is 
exactly the same for all filters we explain it only for one filter in the following. 
 
Procedure: 
 

1. We select an area, noted G, of the homogeneous white board and we determine by 
dichotomy the exposure time that does not saturate the CCD. As a basic criteria for the 
optimization we want the mean value of the area G to attaint a certain value s. This s is 
close to the maximum possible value or saturation of the signal (4096 in the case of 
12-bit quantisation) but it is not the maximum because we leave a security area, so 
called headroom. For instance, we use normally a value of 3800 where 296 levels are 
kept for security. The dichotomy algorithm finds a suitable exposure time whose mean 
camera response on the area G is equal to the value s. This is made in a reasonable 
time. The choice of a particular area is not important as we just seek for a first 
approximation of the exposure time. 
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2. Using this first approximation we acquire an image of the white board. This is 
important as we want to calculate the exposure time based on “the biggest and 
brightest” area of the white image. This, of course, requires some spatial analysis that 
we perform using the following automatic algorithm: 

 
• Binarization of the image based on the histogram. We set to one the brighter 

parts of the image and to zero the rest. This binarization implies the calculation 
of the gravity centre of the histogram, its maximum and the posterior selection 
of the brightest band. 

 
• After the above calculation we could identify the brightest parts of the image, 

but in a real situation it could happen that two or more very bright areas are 
found in different positions of the image. This is dependent of the relative 
position of the camera, the imaged plane and the lighting system. In order to be 
robust just select the largest of these areas. This is performed by a labelling 
algorithm that runs over the binarized image. Once the image is labelled we 
choose its biggest connected component. 

 
• At the end we determine the bounding box of the selected bright area. We then 

choose a smaller box inside this bounding box which is considered the biggest 
and brightest homogeneous area on the image. 

 
In Figure 6-28 we show a diagram of the process just described with results obtained 
with the 800 nm filter. 

 
3. By performing again a dichotomy search inside the area found in stage 2 we obtain a 

robust value of the exposure time. Once this value is known for the brighter places of 
the image we can acquire a full image of the white board using this value, knowing 
that most pixels of the image will not be saturated. If some of them are saturated this is 
due to specular reflections that are present on the reflectance surface. The obtained 
white image is stored for a posteriori image correction. 
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Figure 6-28. Diagram of the automatic calculation of the biggest and brighter area in a white image 

taken using filter at 800nm. 
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6.4.3.2 The problem of Step 1: complete exposure time optimization 
 
The above procedure which is the main part of Step 1 is robust and finds suitable values for 
the exposure times. But there is an underlying assumption that should be respected. This 
assumption is that the white panel positioned in front of the camera is a “perfect white” in the 
sense that its spectral reflectance function is perfectly flat (all wavelengths have the same 
reflectance factor) and its constant reflectance value is 100%. This is of course not achieved 
in reality. There are two kinds of solution to this problem: 
 

1. To introduce a calibrated reflectance patch on the system. 
2. To measure the spectral reflectance of the white board material used on the calibration 

and to introduce this a priori information for correcting the obtained exposure times. 
In fact, knowing its spectral reflectance and the spectral transmittance of a filter we 
can know if the imaged white board is going to appear not white but grey. This is the 
source of error that should be corrected. 

 
The first solution is usually chosen for calibration. In the following of this section we describe 
a calibration procedure to be added to Step 1 when a calibrated reflectance patch is used. This 
procedure has been implemented and tested. It is precise but cumbersome and time 
consuming for the user. This is the reason why our final version of the calibration system uses 
the second solution based on a priori measures of the white board reflectance. This second 
solution is presented at the end of the section. 
 
Procedure with a calibrated reflectance white. 
 
Experimental configuration: A black board (or curtain) must be positioned at the position of 
the paintings to be scanned. A calibrated reference white patch as the one shown in Figure 
6-29 is positioned on the board. The position of the reference white patch can be freely chosen 
by the user as the system automatically will detect its position on the dark board. 
 

 
Figure 6-29.Photograph of the calibrated white patch used in our experiments. 

 
In this step we look for a precise value of the exposure time. This value will be kept and reuse 
for the following multispectral image acquisition. This automatic procedure is described in 
more detail in the following. 
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Note that, as in Step 1, Step 2 consists in the repetition of the following algorithm for every 
filter: 
 

1. We take an image of the whole area using the exposure time found in step 1. 
2. As the experimental configuration consists in a white patch over a black board, finding 

the position of the white patch requires simply: 
 A binarization on the image based on a bimodal histogram. 
 The computation of the centre of gravity and of the bounding box of the 

binarized image. Note that as the histogram of the image should be bimodal 
we do not need a labelling algorithm as in step 1. However, this algorithm 
could be easily introduced in our implementation for robustness or if a 
more complex background needs to be set-up. 

 Knowing the bounding box and the shape of the white patch (a circle), it is 
trivial to determine an enclosed square box where all pixels belongs to the 
calibrated white patch. 

 
In Figure 6-30 we show a diagram of the above process. 

 
3. We proceed to a dichotomy search over the area of the included box which leads us to 

the final value of the exposure time. We calculate the mean intensity of the included 
box which has a sufficiently large population of pixels. 

 
 
 
 
 

       
Figure 6-30. Diagram of the automatic determination of the inscribed square from an image of a the 

white patch shown in figure 17 over a black background. 
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Procedure with known spectrophotometric measurements of the white board  
 
In order to determine the correction factor for each channel exposure time we must know the 
relationship between the “perfect” white and the white board we are using for calibration, for 
this specific channel. For that, we measured the spectral reflectance of the plastic white board. 
We used a Minolta CS-1000 spectrophotometer and an halogen lamp. The geometry of the 
experiment was 45/0, indicating that the camera view direction is along the normal direction 
to the surface to be measured and the lamp is at 45 degrees. We proceeded as follows: 
 

• We measured with the spectrophotometer the spectral radiant energy of our reference 
white patch, the calibrated labsphere shown in Figure 6-29. 

• We measured similarly the white board chart. The lamp and the spectrophotometer 
were kept on the same positions. The board was moved to take five measures in five 
different places. From these measures we took out the two extreme curves and 
calculate the spectral radiant energy as the mean of the three remaining curves. 

• The white board mean radiant energy has been divided by the measurements obtained 
on the labsphere. The resulting mean spectral reflectance with values normalized 
between 0 and 1, is presented on the left panel of Figure 6-31.  

 
On Figure 6-31 we observe that the spectral reflectance of the white board decreases 
considerably around 400 nm. On the other parts of the spectrum there are smaller differences 
between the board and the calibrated labsphere. This behaviour is typical of white materials 
without phosphorescent pigments that enhance the reflectance in the far blue part of the 
spectrum. Knowing its regular shape this spectral reflectance is acceptable as calibration 
target. We can mention that producing a large white homogeneous surface made of a material 
with a flat spectral response would be, at the present time, extremely expensive.  
 

  
Figure 6-31. (left panel) Mean spectral reflectance of the plastic white board used for calibration. 
(right panel) Mean spectral reflectance of the white board and filters spectral transmittance on the 

visible parts of the spectrum. 

 
We must correct the effect of the non flat response of the white board used for calibration. On 
the right panel of Figure 6-31 are superimposed the spectral transmittance of the ten filters 
belonging to the visible part of the spectrum with the reflectance of the white board, all 
expressed in per cents. A multiplicative correction factor has to be applied to the exposure 
time optimised for the white board for each channel. This takes into account that the white 
board is darker than a reference white patch. Without this correction factor an image including 
a reference white would be saturated. The ideal correction factor pk for channel k, k=1 ... K, 
would be defined, according to the image formation process modelled in Chapter 2, by: 
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where we denote the spectral transmittance of the k-th optical colour filter by φk(λ) and the 
spectral reflectance of the white board by rWB(λ). The lighting spectral distribution, lR(λ), the 
spectral sensitivity of the CCD array, α(λ), and the spectral transmittance of the optical 
systems in front of the detector, o(λ), can be considered constant at first approximation in the 
bandwidth of filter k. Then, we can estimate pk as follows: 
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When working with discrete signals, the vector pK = [p1 p2 ... pK ]t representing the correction 
to all K filters may be described using matrix notation as 
 
 pK = Φt rWB / Φt 1, (6.10) 
 
where Φ is the known matrix of filter transmittances, that is Φ =[φk (λn)], rWB is the vector 
containing the sampled spectral reflectance function of the white board and 1 is a vector 
representing perfect reflectance that contains the value 1 on all its elements. Note that 
operation “/” refers here to the element by element division between two vectors. 
 
The calculated correction factors per visible channel for the plastic white board are presented 
on Table 6-4. This correction is not a post treatment, it is applied to the exposure times in 
order to balance all the channels. We note that balancing the channels are more important than 
finding exposure times that match a perfect white reflectance surface to the maximum of the 
dynamic range. In effect, a headroom has to be introduced on the 12 bits scale in order to limit 
the risk of image saturation. This practical fact makes the concept of maximum of dynamic 
range rather fuzzy. Thus, the concept of balance and equal scaling per channel remains the 
most important factor and it is well taken into account by the use of the above defined 
correction factors. 
 

Table 6-4. Per filter correction factors for the plastic white board 

Filter, [nm] Factor  
400 0.5563 
440 0.8683 
480 0.8973 
520 0.9176 
560 0.9321 
600 0.9415 
640 0.9466 
680 0.9504 
720 0.9532 
760 0.9555 
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The three correction factors for the three channels on the infrared are chosen as equal to the 
factor obtained by the 760nm filter. This is justify because the reflectance remains very flat 
for most of the materials in this part of the spectrum. We use this property since the Minolta 
CS-100 spectrophotometer is not sensitive in the infrared. 
 
6.4.3.3 Step 2: Per pixel Dark Current 
 
Experimental configuration: The camera lens must be occluded by using an opaque (metallic) 
cap. In the case of the CRISATEL camera there is a built-in mechanism that allows the 
occlusion of the camera to be electronically controlled. No direct light reaches the CCD and 
we can take dark images. The lighting system should not be switched off. This test aims to 
measure the dark noise contribution per pixel along with the possible stray light getting to the 
CCD. 
 
This step is much simpler to implement than Step 1. We just need to take a dark image and 
calculate the mean and standard deviation of the lines of this image, this correspond to the 
mean and standard deviation of each pixel of the CCD. Afterwards combining this two 
statistics we build a correction table that will correct every pixel of the CCD in the acquisition 
stage. In order to illustrate the necessity of this step, we include Figure 6-32 where we 
represent the mean values of the pixels in even positions on the CCD (they are treated by the 
same amplifier). We clearly see that the variability of dark noise between pixels must be taken 
into account. 
 

 
(a) all even pixels 

 
(b) detail of an area of the CCD 

Figure 6-32. Mean value of the dark current per even pixel. 
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6.4.3.4 Step 3: Per pixel gain 
 
Experimental configuration: The previous white board must be positioned at the position of 
the paintings to be scanned and a diffuser introduced in the optical path. Using a diffuser we 
try all pixels of the CCD to locally receive the same amount of radiant energy. The 
CRISATEL camera has a built-in electronic mechanism that allows the interposition of the 
diffuser in the optical path. 
 
On the upper panel of Figure 6-33 we show the graph of the mean values of the even pixels of 
the CCD. Due to the use of a diffuser, this curve should be smooth, presenting only low 
frequencies. This is not the case. We observe medium frequencies which we assume as 
resulting of optical inhomogeneities of the diffuser. We also observe high frequencies which 
are due to pixel sensitivity inhomogeneity. A zoom is performed on the bottom panel of 
Figure 6-33 to show how the intensity of the pixels changes locally. In order to reinforce this 
observation we superimpose the same data after being low-pass filtered. In fact, this 
experiment aims to collect the necessary data to correct this local differences between both 
curves. 
 

 
(a) All even pixels 

 
 

 
(b) Detail of an area of the CCD, note the differences between a pixel and its filtered value (in red). 

 

Figure 6-33. Mean value of the CCD pixels imaging a white board with a diffuser. 

 
 

i 

ai 

bi 
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When the diffuser is introduced on the system, part of the light no more reaches the CCD and 
the exposure times calculated on Step 1 is not valid anymore. This creates the problem of 
determining which exposure times to use when performing the experiment. One evident 
solution would be to apply Step 1 again for determining the new exposure time. Step 1 being 
very time consuming, this would increase significantly the calibration time. 
 
In order to solve this problem we decide to determine an a priori multiplicative factor to be 
applied to the exposure times issue from Step 1 when using the diffuser. For that we perform 
the following experiment. We applied Step 1 on a white board without using the diffuser and, 
afterwards, we applied it again by using the diffuser. From this experiment we can calculate 
the sensitivity ratio “non diffuser/diffuser” per channel by dividing the two corresponding 
exposure times determined by Step 1. These ratios are shown in Figure 6-34. As we can see in 
this figure the channels have about 3 to 6 times more signal without the diffuser. We choose a 
trade-off value of 3, represented on the figure by a dashed line. This indicates clearly that the 
spectral transmittance of the diffuser is not flat in the wavelength range of the camera. 
However, as this transmittance will not change in time, we can tabulate this set of sensitivity 
ratios. For a given channel we will apply a multiplicative factor to the exposure time equal to 
the corresponding sensitivity ratio non-diffuser/diffuser. 
 

 
Figure 6-34. Sensitivity ratio “non diffuser/diffuser“ per channel. Dashed line represents the 

multiplicative factor applied to exposure times to work properly with the diffuser. 

 
We assume a good homogeneity of the spectral sensitivity on the linear CCD array. This 
assumption is justified by physical considerations but it appears very difficult to control 
experimentally. We can then determine the per pixel gain by performing the diffuser 
experiment in a single channel. 
 
The gain gi is to be calculated per pixel i, i=1,…, 12000, 12000 being the number of pixels of 
the CCD array. We note bi the actual i-th pixel value, ni the dark current noise offset per pixel 
and vi the underlying ideal signal. We note that in the case when the CCD array presents no 
dark noise and the pixels of the cells of the CCD has exactly the same sensitivity we would 
have bi = vi . In the real case where these elements are present this relationship becomes:  
 
 bi = gi vi + ni . (6.11) 
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Let’s note ai the value resulting from a mean on a window of W pixels centred on the i-th 
pixel, this leads to  
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By assuming that the mean of gi on the W values of the window is equal to 1 we estimate vi as  
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The gain is then defined as 
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6.4.3.5 Fully automatic calibration procedure 
 
In this section we emphasize the fully automatic character of our calibration system. In fact, 
this aspect is not a trivial consequence of our design but it was a prerequisite. The described 
calibration procedure have been studied carefully in order to require user interaction as 
minimal as possible. Let’s assume that the camera and the projectors have been properly 
installed to acquire paintings, the lens aperture selected and the focus properly adjusted for all 
channels. Then, the user has to proceed to the calibration before starting the multispectral 
image acquisition. Thus, the user is only supposed to warm up the lamps and position a white 
board in front of the camera before the calibration starts. Afterwards, all the operations 
performed are automatic. 
 
Occluding the camera optics and introducing a diffuser on the optical path are seemingly easy 
manual operations but, in practice, they can be delicate and time consuming. Our 
collaboration with Lumiere Technologie led this company to integrate two mechanical 
displacement systems on the camera. Figure 6-35 shows a photograph of these mechanisms. 
They allow occlusion and diffuser introduction to be controlled electronically and make the 
calibration self-contained 
 
In the design of Step 2 we avoided the use of a white reference patch over a black 
background, mainly not to introduce the change on scene elements that requires a strong user 
interaction. This also reduces operation time. 
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Figure 6-35. Photograph of the camera built-in diffuser and occlusion system. 
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6.5 Correction System 
 
Once the calibration has been performed in a particular configuration of the CRISATEL 
acquisition system, we can acquire multispectral images. At this stage the data collected in the 
three preceding calibration steps are used to correct and enhance the acquired images. This is 
done by a correction system which is intimately related with the steps of the calibration 
procedure. 
 
Some care must be taken when dealing with these corrections, even if they seem easy to 
perform, some details should be taken into account in order not to introduce problems. In this 
section, we first present these details and afterwards we give some results of the effectiveness 
of the correction system. 
 
6.5.1 Performing the corrections 
 
In the correction system we have to proceed channel by channel and pixel by pixel to the 
following sequential operations: 
 
 Correction of the individual behaviour of the CCD pixels by using the two following 

correction arrays: 
o per pixel dark current offsets (subtraction applied to the raw pixel value), 
o per pixel gains (multiplication by gi applied to the dark current corrected pixel 

value). 
 Correction of the spatial inhomogeneities. 

 
In Figure 6-36 we show a schema of the operations performed. The first operation being 
additive we could think that subtracting the mean value of the pixel black current should be 
enough to remove the noise. But knowing that the standard deviation of the noise distribution 
is not zero this operation would literary remove from the image one half of the noise 
variability for dark pixels. If we want to keep all noise variability in the image we should 
consider that in a Gaussian distribution the value of a pixel is on the interval [m-3σ, m+3σ] 
with 99.74% probability, where m is the mean of the distribution and σ is the standard 
deviation. Approximating dark noise as Gaussian the right subtraction value that keeps 
99.74% noise variability in the images is 
 

m-3σ . 
 
Of course, the choice of this value depends on the application. In our case the images will be 
used for spectral reconstruction and some of the methods that perform this operation take 
noise into account. If dark patches present erroneous noise distributions due to this cutoff, it 
could affect the post processing. In other applications the aim can be completely different. 
Dark noise limits image contrast, then an application aiming at a good visual render of the 
image could use the value m+3σ  for the correction. Hence, the dark areas of the images will 
show no dark noise effects while increasing contrast. 
 
The other delicate correction process is the lighting spatial inhomogeneity compensation, 
firstly because it has a division nature and secondly because we have to take into account the 
different resolutions between the inhomogeneity map and the image to be corrected: 
 
• The division is controlled in order to avoid saturation effects due to outliers (erroneous 

pixels having extreme values) on the uncorrected image. On the other hand outliers on the 
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map itself are more dangerous. We try to avoid this in two ways, implemented in the 
calibration stage: 

o by taking the maps on low spatial resolution. This introduces a spatial low filtering 
due to the CCD integration over larger areas of the image. This is because on low 
resolution the system performs binning of the pixels and a time integration during 
the linear array motion. 

o by slightly defocusing the camera before taking the map. We consequently 
introduce an optical low-pass filtering. 

 
• The different resolution level between the map and the image to be corrected is solved by 

resampling the map. The map is always taken at the smallest resolution. We then use a 
bilinear interpolation to resample it and correct an higher resolution image. This method 
respects the low frequency character of the lighting inhomogeneity. 

 
Figure 6-36. Schematic representation of the correction system. 

 
6.5.2 Evaluating corrections. 
 
In this subsection we present a correction example by using an image of the Macbeth chart 
taken by the CRISATEL camera using the 600nm filter. We can observe in Figure 6-37 the 
effects of the corrections: (top) raw image obtained by the camera, (bottom) corrected image. 
We keep on the image the white panel used as a background in order to better show the 
effects of correction. It is clear that the correction positively increases the visual properties of 
the image. 

Raw Image 

Corrected Image 

Per pixel dark noise offset 

Per pixel gain  

Interpolation 
Lighting spatial 

inhomogeneity map 
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To give more insight on the effects of the correction we analyse a particular patch of the 
imaged chart. We take a 80 by 80 pixels window inside the grey patch we can see on the 
rightist column and third raw of the chart as positioned on the image of Figure 6-37. In Figure 
6-38 we preset the histograms of this window before (left panel) and after (right panel) the 
correction has been performed. We help the visual analysis of these histograms by including 
in Table 6-5 the mean and standard deviation of the patch after and before correction. 
 

Table 6-5. Statistics over the pixels of a grey patch 

 Mean Standard 
Deviation 

Before correction 1550.3 56.2 
After correction 2595.6 59.4 

 
From this table we see that the standard deviation changes slightly. We studied more patches 
and we found that this variation remains always small and is not necessarily of the same sign. 
On Figure 6-38 we see that the overall shape of the pixel distribution inside the chosen patch 
is not significantly changed. This is positive as our correction method does not modify the 
nature of the images. On the other hand, the mean of the patch is affected, the correction is 
then mainly performed by the introduction of a correction offset. We also realize that the 
histogram is slightly less sharp after correction but this difference appears not very 
significant. 
 

 

 
Figure 6-37. (upper panel) Raw image of a Macbeth chart obtained from the CRISATEL camera. 

(bottom panel) same image after correction performed. 
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Figure 6-38. (left panel) Histogram of a 80 by 80 window inside a grey path of the Macbeth chart 
shown on Figure 6-37. (right panel) histogram of the same patch after correction performed. 

 
One particularly interesting test is to see the effects of the correction on a white image. We 
did this experiment by acquiring a low resolution image of the same white board used for 
calibration. As a result of the correction we expect to find a white image. To better visualize 
these results we take two profiles inside the image, one vertical and one horizontal. On the left 
panel of Figure 6-39 we present the vertical profiles of the raw and corrected images, on the 
right panel we present their horizontal profiles. Non corrected profiles are the bottom lines on 
these figures while corrected profiles are the upper curves. It is apparent that the horizontal 
compensation of lighting inhomogeneities is not complete. This is due to a slow 
desynchronisation of the lighting system which has been detected by this experiment. The 
lighting control problem has been recently corrected but not yet completely tested. 
 

  
Figure 6-39. (left panel) Vertical profile from a white board image obtained from the CRISATEL. 
(right panel) Vertical profile. Non corrected profiles are the bottom lines on these figures while 

corrected profiles are the upper curves. 

 
On Figure 6-40 we show a multispectral calibrated image of the Macbeth chart taken with the 
CRISATEL camera. Just the ten channels on the visible part of the spectrum are shown. We 
can appreciate the response in the different channels of the colour patches of this chart. 
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Figure 6-40. A multispectral calibrated image of the Macbeth chart taken with the CRISATEL camera. 
Just the ten channels on the visible part of the spectrum are shown. 
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6.5.3 The effects of acquisition geometry 
 
We already discussed in this thesis the effects of the acquisition geometry on the measures 
performed by a spectrophotometer. A multispectral digital camera can be seen as a measuring 
tool very similar in nature to a spectrophotometer. Consequently acquiring images using 
different viewing geometries could lead to different images. In the case of the CRISATEL 
camera the acquisition geometry differs depending on the pixel location because the elliptical 
projectors used in the lighting system rotate in synchronisation with the motion of the CCD 
linear array. This produces a complex situation in which the influence of this variable 
acquisition geometry is to be evaluated. 
 
We performed a basic experiment consisting of the acquisition of the Macbeth ColorChecker 
on three different positions in the image: on the left, centre and right sides of the white panel. 
Images on Figure 6-37 correspond in fact to the centre image of this series. Let’s consider the 
greyscale contained on this chart. This greyscale contains 6 patches, their colour names and 
brightness (from 0 to 100) are given on the first column of Table 6-6. From the corrected 
three images of the chart we calculated the mean and standard deviation of the patches using 
80 by 80 pixels windows on the obtained images. Intuitively we understand that if one of 
these statistics is correlated to the acquisition geometry, this statistic should be different on 
the centre than on both sides. Moreover on the side the statistic should present a similar 
behaviour due to the symmetry of the camera set up. 
 

Table 6-6. Standard deviation of the greyscale patches as function of their position 

 Left Centre Right 
White (90.0) 58.0 63.8 55.3 
Grey (59.1) 45.8 59.4 31.9 
Grey (36.2) 22.2 36.2 19.7 
Grey (19.8) 10.4 14.6 12.3 
Grey (9.0) 6.6 19.1 6.4 
Black (3.1) 12.3 14.5 12.1 

 
On Table 6-6 we present the standard deviation calculated on the greyscale patches of the 
Macbeth ColorChecker depending on its spatial position. We appreciate the behaviour 
intuitively expected. The central measure is systematically different from the ones on the 
sides. Moreover, right and left measures show a deviation from the centre of the same sign 
and of similar amount.  
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6.6 Conclusion 
 
This chapter has been dedicated to a specific multispectral acquisition system that was 
developed for the European project CRISATEL. We have performed two main tasks:  
 

i) the realization of experiments to characterize the components of the system and 
evaluate their performance,  

ii) the conception, design and implementation of software intimately related to the 
acquisition system. 

 
The physical experiments and the data analysis performed on sections 6.2 and 0 are of interest 
for the multispectral community and were presented to an international conference, see [Ribés 
et al., 2003, PICS]. These results are basic for the evaluation of the camera and are demanded 
for the European Community in the framework of CRISATEL, a preliminary report being 
presented to them, [Ribés et al., 2003, CRISATEL]. Moreover, these results are the basic 
elements for the design of software aiming to obtain high quality images from this acquisition 
system. 
 
The calibration and correction systems were designed, implemented and tested. These systems 
aim to acquire images that have not only high visual quality but also a radiometric controlled 
signal. This fact will allow us to properly perform spectral reconstruction afterwards. 
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7 Choosing Filters for Accurate Spectral Reconstruction 
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7.1 Introduction 
 
We consider the problem of filter selection for increasing spectral reflectance reconstruction 
quality. The problem of filter optimisation is not new, one of the first remarkable approaches 
was that of [Neugebauer, 1956]. From there most researches have been interested in choosing 
filters in the framework of colour applications. The developed methods search, in general, 
quality colour reproduction, see for instance [Tsumura et al., 1998]. Our approach is different 
because it aims to design spectral transmittances of filters that will decrease spectral 
reconstruction errors. Some authors as [Haneishi et al., 1997] or [Imai et al., 2001] have 
already performed some work on this problem. They minimize a spectral reconstruction 
accuracy measure which needs spectral reconstructions performed during the optimization 
process. 
 
In this chapter we first present some existing approaches to filter selection relevant to 
understanding our contribution. We then introduce the criteria used for filter selection and the 
strategy developed for its optimisation. The criteria used is originally applied for colorimetric 
filter optimisation, see [Vora and Trussell, 1993] and [Vora and Trussell, 1997, design] for 
reference. This criteria is called the v-measure. We give details about the meaning of this 
measure on linear algebra. This provides the understanding for the application of this measure 
on a different context. We define a space that we call the Camera Visual SubSpace (CVSS) 
useful in this new context. The proposed modified criteria allows the design of filters that 
decrease spectral reconstruction errors without performing spectral reconstruction. 
 
An algorithm for the optimization of the modified v-measure is presented. This strategy 
appears to converge towards an acceptable solution. Moreover, it reveals very time-efficient. 
Finally in this chapter we apply the proposed algorithm to the optimisation of 10 Gaussian-
shaped visible filter for the CRISATEL camera. The optimised set of filters are compared by 
simulation with the actual ones mounted on the camera. 
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7.2 Existing approaches to filter optimisation 
 
Existing approaches to filter optimisation are normally based on the assumption that we want 
to produce as best as possible colour reproductions to be seen by a human observer. It is 
natural then to introduce the concept of the Human Visual SubSpace (HVSS). This space is 
based on the space expanded by the CIE colour matching functions (often referred as 
[ ]x y z ) but introducing information about the light source. If we call L the diagonal 
matrix containing the spectral radiance of the illuminant, the HVSS is expressed as the space 
expanded by the set of vectors { }x y zL L L . The visual tristimulus values [x y z]T of a 
sampled spectral reflectance function r are determined by the projection values of r into this 
subspace: [x y z]T = AT r, where A is the Nx3 matrix containing the vectors xL , yL  and zL  
in its columns. Therefore, it is important to define the orthogonal projection PV(r) of the 
reflectance r onto the HVSS, as follows: 
 
 1( ) ( )T T

VP −=r A A A A r . (7.1) 
 
We verify that the projected reflectance PV(r) and r are metameric (same colour): 
 

AT PV(r) = AT r = [x y z]T . 
 
Using these concepts [Neugebauer, 1956] proposed the so called q factor for filter 
optimisation, this criteria is defined as 
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q =

m
m

m
, (7.2) 

 
where m represents the sampled spectral transmittance of a filter. But the q factor has some 
main problems. First of all it measures a single filter independently, it is then not a measure 
for a set of filters. Moreover, it is not valid for more than three filters. In case of using three 
filters they must be linearly independent. The q factor presents too much constraints to be 
used effectively as a design criteria. A criteria should fit some basic requirements to be 
considered as an effective measure. From [Vora and Trussell, 1993] these requirements are: 
 

• The measure must depend on the space spanned by the filters and not on individual 
properties. HVSS should be contained in the space spanned by the scanning filters: 

( ) ( )R R⊇M A , where M is the NxK matrix containing vectors mi in its columns, mi , 
i=1..K, being the sampled spectral transmittances of the filters and R(X) is the space 
spanned by the vectors composing the columns of X.  

• It should indicate a perfect set of filters. If they are not perfect a measure of goodness 
should differentiate the best set of filters. 

• The criteria must be generalizable to any number of filters. This is evidently important 
when we deal with multispectral imaging. 

 
These limitations refers to a criteria that measures the goodness of a set of filters. They can be 
overcome by different means. For instance, [Haneishi et al., 1997] used CIELAB differences 
over a set of reflectances as a measure of goodness. A more recent and very interesting 
criteria called Universal Measure of Goodness (UMG) presented by [Quan et al., 2000] is also 
based on the CIELAB space. Noise considerations along with physical constraints on the 
desired transmittances are taken into account by the authors for the optimisation. We will not 
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give more details about the UMG because our aim is quite different. As we already said we 
are looking for a criteria that decreases the reconstruction errors on a particular kind of 
materials, more specifically pigments in the case of art painting imaging. 
 
[Vora and Trussell, 1993] presented a criteria for filter selection based on the comparison of 
two subspaces of a same vector space. These authors called the criteria the v-measure and 
they define it as 
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where, 
 

• V is the Nx3 matrix which represents a base of the Human Visual Subspace (HVSS). 
• M is the NxK matrix that represents the set of filter transmittances. 
• R(L) is the vector space spanned by the columns of matrix L. 
• [ ]1 2 ...N n n nα=  is an orthonormal basis such that R(N)=R(V) and T =N N I  

• 1 2 ...O o o oβ =    is an orthonormal basis such that R(O)=R(M) and T =O O I , 

where β is the dimension of R(M), with Nβ ≤ . 
•  λ i(A) denotes the i-th singular values of a matrix A. 
•  α  is the number of singular values and acts as a normalisation factor, α=3 because V 

represents a base of the HVSS. 
 
This measure is a normalised measure of the goodness of the filter set. It is always inside the 
interval ]0, 1[ and perfect reproduction implies and is implied by v(V,M)=1. This means 
space R(V) is contained into space R(M). As we can see this criteria does not work on the 
CIELAB space as the ones cited above but it also takes into account the reference human 
observer. In this sense, it can seem not to be the kind of measure we are looking for. We give 
more details about these measure in the following of this subsection to give insight on the real 
nature of this criteria. This is needed to understand its application in a different context. 
 
Definition (7.3) implies several practical steps in order to obtain the value of the criteria. In 
fact, we must perform an orthogonalisation of the spaces R(V) and R(M) if we want to 
calculate the value v(V,M). This implies the use of the QR factorisation (or Gram-Schmidt 
orthogonalisation procedure). This fact can introduce numerical instabilities, then another 
form of the measure was defined in [Vora and Trussell, 1997], better adapted for 
implementation: 
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T T T TTrace
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α
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 =
V V V V M M M M

V M , (7.4) 

 
where 1( )T T−V V V V  and 1( )T T−M M M M  are the orthogonal projectors on R(V) and R(M) 
respectively. 
 
7.2.1 Some properties of the v-measure 
 
We want to note that the presented measure is just a particular application of the Froebius 
norm. This is not difficult to see by recalling the following definition and properties seen in 
Chapter 3, [Golub and Van Loan, 1983]: 
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• Frobenius norm definition: 
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= ∑∑A . (7.5) 

 
• Noting σi , i=1,…,p, the singular values of A, then: 

 
 2 2 2

1 ... pF σ σ= + +A  . (7.6) 
 

• Froebius distance definition: 
 

 ( ) ( )2
,U V U V u v

n m
t t

F i jF
i j

d = = ∑∑ . (7.7) 

 
Applying (7.6) and (7.7) it is straightforward to see that the v -measure (7.3) is a simple 
normalisation of the Froebius distance. Another important relationship [Vora and Trussell, 
1993] is: 
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where it is clear that the v-measure is a generalization of the q factor. Finally we want to 
emphasize that the v-measure is a measure of the difference between two vectorial subspaces. 
This is clearly seen when introducing the concept of principal angles, see [Golub and Van 
Loan, 1983] for further reference. Principal angles 1 2, ,..., [0, / 2]αθ θ θ π∈  between M and V 
are defined recursively as already seen in Chapter 2 by: 
 

cos( ) max max
m M v V

m v m vT T
k k kθ
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= =  

 
subject to: 

1m v= =  

0m mT
i =     i=1,…,k-1 
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Due to cos( ) ( )T

k kθ λ= O N , then relation (7.3) becomes  
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As a consequence, the v-measure is large when the angles between the two subvectorial 
subspaces are small. It is indeed a measure of similarity. 
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7.3 Spectral reconstruction and camera filters 
 
In the preceding section we spoke about measures of goodness of a set of filters and we 
presented in detail one of them, the v-measure. We explain on this section how we use the 
basic elements of this measure on the context of filter selection for spectral reconstruction 
accuracy. But, before a practical consideration must be done to properly understand our 
approach. Our aim being the increase of accuracy on a specific set of representative 
reflectances, we propose to minimise a measure of accuracy reconstruction on this set of 
reflectances. This approach is already taken by [Haneishi et al., 1997] where the measure of 
accuracy is not directly taken on the reconstructed spectral reflectance but on the CIELAB 
space. Closer to the approach implicit to our question is the paper of [Imai et al., 2001], where 
the authors propose a two step optimisation strategy. First they obtain three colorimetric 
filters and secondly add other filters to this kernel set in order to decrease spectral 
reconstruction errors. 
 
There exists one important common point between the methods of [Haneishi et al., 1997] and 
[Imai et al., 2001], in both cases spectral reconstruction is to be performed in order to 
calculate the criteria. This implies that a particular spectral reconstruction method is included 
on the optimisation loop.  
 
As we have extensively seen on this thesis, various spectral reconstruction methods with 
different characteristics exist. The fact of having a reconstruction method on the optimisation 
loop makes the measure depend on a particular reconstruction method. This choice is at the 
moment arbitrary and obviously introduces a source of variability. A priori, we do not know 
how a set of filters optimised using a particular method is going to react when performing 
spectral reconstruction using a different method. Moreover, in the case of methods requiring 
training, as the ones presented on Chapter 5, the optimisation loop becomes prohibitively time 
consuming. 
 
One important aim of this chapter is to find a criteria helping the design of filters for spectral 
accuracy estimation, but not requiring spectral reconstruction to be performed. This approach 
is indirectly implicit when performing progressive filter selection. One of the oldest examples 
in our knowledge is proposed by [Mahy et al., 1994] where they make use of the SVD to 
produce an orthogonal basis of industrial sets of spectral reflectances. They claim that optimal 
filter transmittances will be the vectors representing the orthogonal basis calculated by the 
SVD. This point is theoretically interesting but the basis vectors can have negative values or, 
when positive, its physical realisation could be not possible. A more realistic algorithm is 
proposed by [Hardeberg, 2003]. In this case a set of filters among a database of commercially 
available ones is progressively selected. The criteria is the maximization of the orthogonality 
of the projections of the real filters onto the space spanned by the considered set of spectral 
reflectances. In these approaches, the orthogonality criteria is not related to any reconstruction 
method. In any case, even if mathematically correct, empirically there is no evident reason to 
choose orthogonality as an optimal criteria, especially when progressive selection is not an 
issue. 
 
At this point of the discussion we explicitly seek the achievement of two requirements for the 
desired criteria: i) it should not introduce a spectral reconstruction method on the optimisation 
loop, ii) it should increase the spectral estimation accuracy on a set of predefined reflectances. 
In order to obtain this, we propose to look at the fundamental meaning of the v-measure, a 
comparison between two subvectorial spaces of the same space. We will not compare 
anymore a space spanned by filters with the human visual subspace. For us, a space that 
characterises a set of chosen pigments will be matched with the space spanned by the filters. 
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7.4 Designing Filters 
 
A measure of goodness can be applied to a set of existing transmittances of filters or it can be 
used as a criteria for its design. The difference between analysis and design leads to specific 
consideration for each case. See the twin papers [Vora and Trussell, 1997, analysis] and [Vora 
and Trussell, 1997, design] for further information on these subjects. In this section we are 
concern by the problem of filters design. We based our design procedure on two 
parameterizations of the filters that make the problem feasible and introduce useful 
constraints on the shape of the filter transmittances. Optimization is based on a gradient 
descend algorithm, consequently the derivative of the v-measure is calculated because 
gradient information is necessary. A consequence of this gradient based method is high 
sensitivity to initializations and the risk of being trapped by local minima of the criteria. In 
fact, the v-criteria is not convex. In order to avoid this problem and build a time-efficient 
optimization procedure we will present a two step algorithm using two different 
parameterizations of the filter transmittances. Moreover, random sampling over the space of 
the parameters that defines the filters is used to ensure convergence to an acceptable solution. 
 
Because the v-measure is normally used for the optimisation of colorimetric filters, the 
concept of Camera Visual SubSpace (CVSS) is introduced by similitude with the term Human 
Visual SubSpace (HVSS). The CVSS is defined as: 
 

CVSS = L S M, 
 
where L and S are diagonal matrices, L containing the illuminant and S the spectral 
sensitivity on the camera CCD. M is a matrix containing on its columns the sampled spectral 
transmittances of the camera filters. The v-measure then compares the CVSS with an 
orthogonal basis of a set of spectral reflectances. 
 
7.4.1 The first derivative of the v-measure 
 
In general, for optimising the criteria (7.4), it is useful to know its first derivatives; this will 
allow us using numerical methods based under gradient assumptions. We have calculated the 
first derivatives of v(V,M) with respect to the set of filters, that means with respect to the 
parameters of the matrix M. As we can parameterise our filters in multiple ways (for instance 

using Gaussian functions, sigmoids or splines) we represent by ( )
x

∂
∂

M  the first derivative of 

M with respect to a parameter x. At the moment, x can refer to any parameter in any 
parameterisation. 
 
As V and α on (7.4) do not depend on the filter parameters they are constants. Knowing that 

[ ]( )Trace Trace
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K1 and K2 are two NxN matrices not depending on x, then we deduce the following relation: 
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The problem reduces then to calculating the derivative of 1( )T T−M M M M . Knowing 
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where Y is an NxN matrix, then we deduce the following equation: 
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where  
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Knowing the trivial relationship 
T

T

x x
∂ ∂ =  ∂ ∂ 

M M  the only thing we still need to define is 

the derivative of the matrix M with respect to x. Once this matrix is defined we could 
calculate the derivative of the criteria with respect to x. This derivative depends on the 
parameterisation of the filters. In fact, the matrix M is a matrix whose columns contain the 
sampled spectral transmittance functions of the set of filters being used. Consequently, 

x
∂
∂

M contains the derivative of the filter transmittances and x is a parameter of the function 

modelling these transmittances. 
 
Finally, reporting equation (7.13) in equation (7.12) and equation (7.12) in equation (7.10) we 

can formally define the derivative ( , )v
x

∂
∂
V M of the v-criteria with respect to x. 

 
7.4.2 Filter parameterisation 
 
We have used two different parameterisations of a filter spectral transmittance function 
(STF): a squared-shaped function and a Gaussian function. The spectral transmittances 
functions are normalised between 0 and 1. 
 
7.4.2.1 Square-shaped functions. 
 
In this case we consider the filter transmittance as perfect (one) on an interval of wavelengths 
and zero for the rest of them. Of course, no real filter can be constructed with such a 
transmittance function but it will be useful for our method. We note that this function is not 
continuous and its derivative is zero when it exists. This fact makes impossible a gradient 
optimisation procedure based in this parameterisation.  
 
7.4.2.2 Gaussian-shaped functions. 
 
We can parameterise the STF of a filter as a Gaussian function. This approach has several 
advantages. Firstly, a Gaussian function has easy derivatives, is continue and presents no 
special numerical problems when implemented in a computer. Secondly, it is possible to 
construct a real filter with a nearly Gaussian transmittance. The fact that Gaussians have only 
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one global peack is a net advantage since it is easier to fabricate a single peaked filter than a 
multi-peaked one. The expression used for this parameterisation is 
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where λ is the wavelength, σ controls the half-width of the filter and µ the position of its 
peak. We note that the function is not normalised as for a probability distribution. In fact, we 
are not interested in having a function with an integral equal to unity. Equation (7.14) allows 
the two parameters to affect the form of the Gaussian independently. 
 
7.4.3 Optimisation procedure. 
 
Our optimisation method uses the v-measure presented in equation (7.4). As we already said, 
the two spaces compared by the v-measure are: a set of representative spectral reflectances 
and the CVSS. The optimisation is performed in two steps. The first step uses square-shaped 
functions to represent the filters and does not make use of derivatives. The second step 
parameterises the filter transmittances as Gaussians and minimises the same criteria but using 
a gradient search. Afterwards, several sets of random chosen parameters are used as 
initialisations of the method. The best solution is kept. 
 
7.4.3.1 First step. 
 
The filters are not parameterised individually. Our parameters are the position of the 
boundaries between two “perfect transmittance zones” of two filters. We illustrate this point 
on Figure 7-1. In this figure we can see a set of seven filters. Their “transmittive” zones cover 
the complete wavelengths range between 400 and 760 nm. We note that if our filters do not 
cover all spectral samples we would have zero division problems when performing 
calculations. This justify selecting the boundaries as parameters and not using two parameters 
per filter. At the same time, we reduce the number of them. Hence, we have a vector f of 
parameters containing these boundaries, each boundary position fi being a parameter for 
i=1,…,n , n being the number of filters to be chosen. 
 

 
Figure 7-1. Seven square-shaped filters covering the visible range of the spectrum. 
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In this case we work with a discretization of the variables. We cannot optimise the criteria 
using gradient based methods because the variables fi are discrete and we cannot compute the 
derivatives of M with respect to fi. Consequently, we have looked for a method not using this 
information. We have implemented an optimisation method moving each parameter one 
sampling step right and one sampling step left and comparing criteria’s values on the left, 
right and original position. The best one is chosen. We can see a scheme of this process in 
Figure 7-2, for simplicity just two filters cover the spectrum. Of course, superposition of two 
boundaries are prohibited by the algorithm and the filters are always kept inside the visible 
range of the spectrum. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7-2. Example of discrete optimisation of the boundary position between two square-shaped 
filters. 

 
7.4.3.2 Second step. 
 
The second step of our method is a gradient descend optimisation algorithm. Our criteria is 
always the same, (7.4), and our parameterisation consists of a Gaussian function per filter. 
Then, every filter depends on two parameters µ and σ that controls the position and the half-
width of the Gaussian respectively. Matrix M has n columns containing sampled Gaussian 

functions, n being the number of filters. ( )
µ
∂

∂
M  and ( )

σ
∂

∂
M  are easy to calculate and 

contain Gaussians in their columns because the derivative of a Gaussian function is another 
Gaussian function. 
 
This second step takes the results of the first step and builds the initial matrix M from them. 
For this construction, we take every transmittance function obtained from the first step and we 
transform it in a Gaussian defined as follows: µ is the centre of the perfect transmittance zone 
and σ is chosen to fit the half-width of this zone. We can see and example of this conversion 
in Figure 7-3. 
 

Filter1 Filter2 

v=0.5 

v=0.6 v=0.4 

We take the 
decision of 
going right 
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Figure 7-3. Conversion from a set of square-based filter to its Gaussian-shaped counterpart. 

 
Once matrix M is initialised using the filters created from results of the first step, our method 
iterates using the gradient for finding the values of the parameters µi and σi that maximises 
expression (7.4). This initialisation appears to be suitable and the method converges to values 
close to 1. 
 
7.4.3.3 Overall method 
 
We tested the method consisting of the sequential application of step 1 and step 2 and we 
found solutions strongly dependent on the initial configuration of the initial boundaries of step 
1. In other words, we can easily find a local minima of the criteria if our parameters 
initialisation is not close enough to the solution. In order to solve this problem we choose a 
family of randomly selected vectors f, we use each member of the family as initialisation of 
our method (Step 1 and Step 2), we compare all solutions and we take the best one. 
 
Other people have optimised Gaussian filters by the used of stochastic methods. [Haneishi et 
al., 1997] and [Tsumura et al., 1998], using simulated annealing. [Tsumura et al., 1998] deals 
with the optimisation of colorimetric filters for electronic endoscopes while [Haneishi et al., 
1997] applies it to the problem of multispectral imaging of art works. They do not provide 
details on the application of simulated annealing but it is well know that this method is very 
time consuming. Our proposed algorithm appears to be time-efficient. For instance the test 
that will be presented on the results section of this chapter converged on 1 minute 6 seconds 
on a SunBlade 100 workstation. Moreover the test was implemented on Matlab that is not a 
time efficient environment. 
 
There are some reasons that make this method efficient: 
 
• The paremeterisation of the filter boundaries used on step 1 is compact. This initially 

reduces the quantity of parameters. 
 
• Step1 is optimised on a discrete and finite space, this implies a fast optimisation. 
 
• Initialisation given to Step2 is already close to a solution, then the gradient based 

minimisation algorithm normally converges on few iterations. 
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7.5 Results 
 
The aim of this section is two-fold. On one hand we present positive results of spectral 
reconstruction after filter optimisation. This justifies the use of the v-measure for increasing 
spectral accuracy estimation. On the other hand, we base this section on a particular case. This 
corresponds to the optimisation of 10 visible filters to image oil pigments under an halogen 
light source. In fact, we fix our simulation conditions to be as close as possible to the real 
ones encountered on the already presented CRISATEL camera. Consequently the example 
presented here will deal with a CVSS composed by: i) the CRISATEL camera CCD, ii) the 
CRISATEL halogen illuminant and iii) 10 Gaussian-shaped filters. The elements to be 
optimised are the set of Gaussian filters. 
 
A first consideration must be done about the sampling ratio used on the simulations. Most of 
our spectral reflectance databases are sampled at 10 nm intervals. This value is at the moment 
accepted on the multispectral community as normal. In our Fourier analysis on Chapter 2 we 
presented results confirming this fact. But for filter transmittances nothing is said about the 
sampling rate. As the CRISATEL system uses narrow band filters its shape is modified by 
this sampling rate impose by the spectral reflectances. We show on Figure 7-4 the CRISATEL 
visible filter transmittances subsampled at 10nm intervals. If we compare this figure with the 
non subsampled one presented on Chapter 6, then we can see that this subsampling has a 
smoothing effect on the shape of the transmittances. A priori, this smoothing should help to 
obtain better results, even if we have not quantified this point we accept it as an error and we 
perform the comparisons under these conditions. 
 

 
Figure 7-4. CRISATEL visible filter transmittances subsampled at 10nm intervals. 

 
The algorithm presented on the preceding sections of this chapter was used to obtain a set of 
Gaussian filters optimising the v-measure between the CVSS and the Kremer database of oil 
pigments. As this procedure is based on random sampling, repeating the optimisation several 
times, we could obtain different solutions. We will not give details here but this point is 
interesting because different acceptable solutions present different distributions of the filters 
over the spectrum. The visualisation of not only one but a set of the best acceptable solutions 
of the random sampling gives intuitive information on the nature of the imaging process. 
 
In Figure 7-5 we present the best solution found by the algorithm. In this case the peaks of the 
Gaussians are close to an equidistant distribution while the half-widths varies more. 
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Figure 7-5. 10 optimised Gaussian-shaped filters. 

 
Once optimized, we compare the obtained filters with the ones chosen for the CRISATEL 
camera. The elements forming the simulation are the same, the only thing that is changed 
being the filter set used. Moreover, we introduce a new set of Gaussian-shaped equispaced 
filters for comparison. We believe to be interesting as a reference. 
 
In Table 7-1 we present the results of the comparison. We have introduce 12 bits quantization 
on the signal to conform with the 12 bits signal of the CRISATEL camera. The spectral 
reconstruction method used is the one representing linear methods learning from data 
presented on Chapter 2. 
 

Table 7-1. Spectral Root Mean Squared Error over different databases. 
12 bits quantization CRISATEL equispaced optimised 
Kremer (training) 0.00009637 0.00012492 0.00008045 
Selected Artists 0.00011133 0.00014384 0.00011797 
Restoration 0.00007539 0.00012333 0.00008473 
Munsell 0.00009052 0.00012559 0.00094379 

 
The optimised filters obtain a smaller spectral root mean squared error for the Kremer 
database as we desired. The reconstruction error is about 16% less on this case than when 
using the CRISATEL filters. For other databases the error is similar or worst to the one 
obtained by the CRISATEL filters. Knowing that the cost of producing a set of interference 
filters with a particular shape is at the moment very expensive, the commercial filters used on 
the CRISATEL camera appears to be a reasonable choice. Even if work can be done to 
optimise more the 16% obtain in our simulations, an increase of this order of magnitude in a 
particular set of reflectances does not justify the cost. Moreover, we can clearly see that when 
specialising the filters for a particular set of reflectances we lose generality. Once the filters 
would be physically built this choice will make the CRISATEL camera less adaptable to 
applications not related with the imaging of art paintings. 
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7.6 Conclusion 
 
We developed an algorithm for the optimization of Gaussian-shaped filter transmittances. The 
aim of the optimization is the accurate spectral reconstruction of a given set of reflectances. 
An existing criteria, the v-measure, is adapted to this new aim. The criteria applied to this new 
context allows the optimisation of the transmittances without the introduction on the 
algorithm of a spectral reconstruction stage at each iteration of the optimisation algorithm. 
Because the v-measure is normally used for the optimisation of colorimetric filters, the 
concept of Camera Visual SubSpace (CVSS) is introduced in a similar sense as the term 
Human Visual SubSpace (HVSS). 
 
The optimisation is very time-efficient. This is due to a two stages structure, each of them 
based on a different parameterisation of the filter transmittances. First, square-shaped filters 
are used, they are compactly parameterised and optimised on a discrete space. This is very 
time efficient and provides a good initial approximation for a gradient based optimisation 
procedure. We calculate the gradient of the v-measure analytically to increase the efficiency. 
This two-stage procedure can be trapped on local minima as the criteria is not convex. 
Application of this optimisation strategy to different initial sets of randomly selected filters 
appears to be a good solution of this problem.  
 
The developed method has been applied to choose 10 Gaussian-shaped filters for the 
CRISATEL camera, its aim being to increase the accuracy of the spectral reconstruction on a 
set of oil pigment reflectances. Using simulations we have compared the results obtained with 
optimized filters with the ones obtained using the actual CRISATEL filters. These results 
show that the optimised filters provide reconstructions of better accuracy on the selected set 
of reflectances. But this increase of accuracy remains small, 16%, and is accompanied by a 
lose of generality. As an important conclusion, the difficult construction of optimised 
Gaussian-shaped interference filters is not justify by the obtained results. 
 
The work developed on this chapter could easily be applied to the optimisation of 
electronically tuneable filters. In fact, the approach seems very adapted. For this kind of 
filters, the transmittance functions can be electronically changed and their shape belongs to a 
family of curves very close to Gaussians. 
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8.1 Introduction 
 
This chapter presents a first set of spectral reconstruction results obtained by using the 
techniques already introduced in this thesis. The chapter is dedicated to data acquired on real 
experimental environments. No simulations appear here. Two different multispectral 
acquisition systems where used to obtain the data: 
 

i)  A multispectral camera used at the National Gallery of London. 
ii) The CRISATEL multispectral system using HQI lamps. 

 
Both systems have the common point of using the same set of 13 interference filters. The 
chapter is divided in two main parts: the first one dedicated to the data obtained at the 
National Gallery and a second part dealing with data from the CRISATEL project.  
 
The present thesis was finished before the CRISATEL project was completely achieved. The 
phase of art paintings scanning was starting at that time. A general test was first performed on 
several Georges de la Tour paintings that were scanned at the museum of Albi (France) 
between November 28th and December 3th, 2003. We show in this chapter one example of 
calibration, spectral reconstruction and illuminant simulation of one painting of this first test 
data, Saint Jacques le mineur. An intensive scanning stage followed this first test. We also 
show a painting of Guillaume Fouace, Le départ pour Jersey, that belongs to this stage. It was 
scanned by members of the CRISATEL project at the Musée Thomas Henry in Cherbourg. At 
this moment, changes are not expected on the CRISATEL system, at least fundamental 
changes. Data shown here are preliminary but representavive enough to be presented. 
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8.2 Multispectral system at the National Gallery of London 
 
In this section we present results obtained with a multispectral camera currently used at the 
National Gallery of London. 
 
8.2.1 Description of the system 
 
The multispectral system used at the National Gallery is formed by a greyscale 12 bits cooled 
camera and a filter wheel containing the CRISATEL filters presented in Chapter 2. Normally 
halogen lamps are used on the acquisition images. The only not known component of this 
system is the CCD sensitivity. Haida Liang from the National Gallery scientific department 
kindly provided us some estimated quantum efficiency samples of the CCD. We show this 
data on the left panel of Figure 8-1 and we convert them into sensitivity. The conversion from 
quantum efficiency to sensitivity implies the multiplication of each sample by its wavelength 
and the posterior normalisation of the results. We show the converted curve on the right panel 
of Figure 8-1. 
 

    
Figure 8-1. (Left panel)quantum efficiency samples provided by the National Gallery of London, (right 

panel) quantum efficiency converted to sensitivity.  

 
There is a practical problem that must be taken into account if an inverse operator is to be 
build based on this data. Sampling rate of the original quantum efficiency is 50 nm and we 
need at least 10 nm. We perform a cubic spline interpolation of the sensitivity curve show on 
the right panel of Figure 8-1 and we resample it to 10 nm intervals. The result is shown in 
Figure 4-1. We note that this curve being an approximation of the real sensitivity this is a 
source of inaccuracy when building an inverse operator. 
 

 
Figure 8-2.Interpolated spectral sensitivity of the CCD at the National Gallery. 
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8.2.2 Calibration 
 
The National Gallery acquisition system have not an automatic calibration procedure as the 
one we designed and implemented for the CRISATEL system. The images we received are 
off-line corrected by several means, please refer to [Liang et al., 2004] for details:  
 

• Dark noise was obtained by taking a median frame from a set of 20-30 dark frames 
 

• A flatfield frame that includes the combined effect of spatial lighting inhomogeneity 
and pixel to pixel gain variation was used to correct all the dark subtracted frames. 
The flatfield was obtained by taking images of different sections of a whiteboard and 
taking a median frame of these images so that we can “filter” out the small scale 
spatial inhomogeneities of the surface of the whiteboard but retaining the effects of the 
lighting inhomogeneity and CCD pixel to pixel gain variation. 

 
• A reference white was taken per filter to correct for the spectral response of the 

system. 
 
8.2.3 CRISATEL chart experiment 
 
For this experiment an image of the CRISATEL chart was taken at the National Gallery. We 
recall that this chart was presented at the end of Chapter 2. The chart was measured by a 
different spectrophotometers at London and Paris, see report [CRISATEL, 2003] for more 
details. This experiment is based on the first test data obtained with the NG system in 
Aug/Sept. 2003, for details of the system and calibration refer to [Liang et al., 2004]. 
 
We take the 117 non varnish patches of the chart and we analyse them to obtain two different 
kinds of data: 

1. A matrix containing 117 columns with the mean camera responses of each colour 
patch. 

2. A matrix containing 117xS columns containing non averaged camera responses, S 
being the quantity of pixels analysed into each colour patch. 

 
Part of the methods presented on this thesis are based on learning over a training set of 
spectral reflectances and their corresponding camera responses. We then divide the 
CRISATEL chart into two sets, one will be used for training and the other for test. This leads 
to four different sets: averaged train set, non-averaged train set, averaged test set and non-
averaged test set. Train and test sets have the same size. The original matrix have been 
divided into two non intersecting sets by taking even elements for one set and odd for the 
other. We note that the averaged camera responses sets can be considered as less influenced 
by noise than the non-averaged ones that present a more realistic situation. 
 
In Table 8-1 we present spectral reconstruction errors, L1, obtained by using different spectral 
reconstruction techniques. We first note that direct inversion methods as smoothing inverse 
and Hardeberg inverse perform badly compared to the rest of the methods. This is justified by 
the lack of precision on the physical measurements and the factors not taken into account into 
the modelisation of the system. This illustrates the difficulties and great effort necessary to 
reach good spectral accuracy with direct methods. We also see that methods based on 
interpolation (MDST and cubic spline) perform worst than the leaning-based ones but much 
better than the direct inversion. 
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Table 8-1. Spectral reconstruction errors for the CRISATEL chart experiment 
 Train set Mean test set Non averaged test set 
Smoothing Inverse 0.051270 0.052479 0.052479 
Hardeberg Inverse 0.054312 0.055944 0.056674 
Learning Pseudo-inverse 0.008960 0.010854 0.012662 
Non-averaged Learning 
Pseudo-inverse (NApinv) 0.009183 0.010721 0.012198 
Bootstrapped Learning 
Pseudo-inverse 0.010068 0.011369 0.013344 
NNLS 0.012590 0.013354 0.014247 
SVD Pseudo-inverse 0.009306 0.011264 0.012951 
MDST Interpolation 0.022951 0.024837 0.025992 
Cubic Spline Interpolation 0.027512 0.029885 0.031269 
Mixture Density Network 0.004308 0.009316 0.011214 

 
Methods based on pseudo-inverse have a degradation of the error in the non-averaged test set, 
which is not positive as this set is considered as the more realistic one. Even for the pseudo-
inverse learning method trained using non-averaged data (NApinv). In any case, this 
degradation is not very strong; this is most probably due to the good quality of the CCD that 
is cooled in order to reduce the level of noise. 
 
Finally, the Mixture Density Network (MDN) used on this comparison presents the best 
performance. This MDN has 22 neurons in its hidden layer and presents 7 Gaussians in its 
mixture model. It is interesting to note that the MDN has been trained over the averaged 
samples (a non averaged train set has been used for early stopping test) but it slightly 
outperforms the Napinv method trained directly on the non averaged train set. 
 
In Table 8-2 we present the same results as Table 8-1 but using CIELAB colorimetric errors. 
The overall behaviour is similar but using this metric we obtain the same results on the non-
averaged test set for the Napinv method than for the MDN, those appear to be the best 
methods in this context. All the other methods perform not so well as Napinv and MDN. 
 

Table 8-2. CIELAB94 reconstruction errors for the CRISATEL chart experiment 
 Train set Mean test set Non averaged test set 
Smoothing Inverse 6.77 6.60 6.90 
Hardeberg Inverse 6.58 6.49 6.81 
Learning Pseudo-inverse 2.37 2.60 3.18 
Non-averaged Learning 
Pseudo-inverse 2.22 2.29 2.84 
Bootstrapped Learning 
Pseudo-inverse 2.68 2.72 3.33 
NNLS 3.07 3.05 3.41 
SVD Pseudo-inverse 2.35 2.62 3.22 
MDST Interpolation 2.77 2.71 3.34 
Cubic Spline Interpolation 5.41 5.52 5.99 
Mixture Density Network 1.02 2.04 2.84 
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8.3 CRISATEL multispectral system 
 
In this section we present comparisons of spectral reflectance curves reconstructed using 
images acquired by the CRISATEL multispectral system. We have already shawn in detail in 
Chapter 6 how this system is calibrated. Now, calibrated and corrected images are used to 
reconstruct spectral reflectances. 
 
Before starting the comparisons, we show in the right panel of Figure 8-3 the spectral 
sensitivity curve of the CCD used on the CRISATEL camera. This curve is necessary for the 
implementation of any direct reconstruction method. This data is obtained from an experiment 
using a monochromator performed at University of Paris VI. An integrated sphere was 
connected at the output of a monochromator. The wavelength of the monochromatic light was 
increased at 5 nm steps from 400 nm to 800 nm, its energy being controlled by a calibrated 
radiometric sensor. At each 5 nm increment an image of the aperture of the integrating sphere 
was taken, an extra dark image was also acquired for dark current correction. Afterward dark 
current correction and a mean value calculation over the imaged sphere aperture is performed. 
Representing every mean value against wavelength we obtain the sensitivity curve presented 
in the left panel of Figure 8-3.  
 

 
 

Figure 8-3. (Left panel) noisy CRISATEL camera CCD sensitivity curve measured by the use of a 
monochromator, (right panel) smoothed sensitivity. 

 
As we can see the curve obtained from the monochromator experiment (left panel of Figure 
8-3) is not smooth. This is physically not acceptable. In fact, the curve is noisy due to the low 
radiant energy of the light source used on the experiment. Moreover, the light source was an 
halogen lamp. As we already saw in Chapter 2 this kind of lamps presents much less energy 
on the low part of the visible spectrum than on the upper part. This is the reason why we see 
strong oscillations of the sensitivity curve on the left side of the curve presented on the left 
panel of Figure 8-3 while on the right side the curve is smooth.  
 
In practice we need a smooth curve if this information is used for building inverse operators. 
We then smooth the curve by a 7 elements window that performs a mean operation on the 
signal. We take care of the correct application of the mean on the limits of the signal and we 
do not apply this window on the right side of the curve as it is already smooth. We see the 
result on the right panel of Figure 8-3. 
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8.3.1 Calibration Results 
 
In this section we show a visual example of the effects of our calibration and correction 
systems in the framework of CRISATEL. On the right panel of Figure 8-4 we present a 
calibrated but non corrected image of a Georges de la Tour “Saint Jacques le mineur” 
painting. On the left panel of the same figure calibrated and corrected version is presented. 
The image is taken by the 1000 nm centred filter (infrared). The visual quality and contrast is 
clearly improve when visualising the images in a calibrated display. We note that Georges de 
la Tour produced very dark paintings where dynamic range is very small. We expect this 
calibration procedure to be even more effective when digitising colourful paintings. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8-4. (Left panel) calibrated and corrected image of a Georges de la Tour “Saint Jacques le 
mineur” painting, (right panel)calibrated but non corrected version. 

 
8.3.2 CRISATEL chart experiment 
 
We repeat the experiment performed for the National Gallery system in section 8.2.3 but 
using data obtained with the CRISATEL adquisition system. In this case the Mixture Density 
Networks clearly outperforms the rest of methods, see Table 8-3. Non-averaged pseudo-
inverse does not perform better than a simple averaged pseudo-inverse. This is most probably 
due to the inter-pixel sensitivity correction applied to the CRISATEL images that makes the 
pixels less noisy.  
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We note that as in section 8.2.3 the estimation accuracy of direct methods is worst than the 
one obtained by learning based methods. Now, the difference is not as big as in the National 
Gallery experiment. This is due to the reliable measures of the CCD and filters used to 
characterize the system. We recall that the transmittances of the CRISATEL filters were 
carefully measured using a spectrophotometer and the sensitivity curve is the result of an 
independent experiment using a monochromator. We believe that this lack of accuracy is 
justified by the fact that our trainings and tests sets all belong to a painting environment while 
the direct solution stays general. 
 

Table 8-3. Spectral reconstruction mean absolute errors for the CRISATEL chart experiment 
 Train set Mean test set Non averaged test set 
Smoothing Inverse 0.030948 0.034021 0.034203 
Hardeberg Inverse 0.021479 0.024172 0.024437 
Learning Pseudo-inverse 0.010225 0.01487 0.015390 
Non-averaged Learning 
Pseudo-inverse 0.010225 0.014741 0.015258 

Bootstrapped Learning 
Pseudo-inverse 0.010878 0.014594 0.015176 

NNLS 0.016108 0.018059 0.018454 
SVD Pseudo-inverse 0.010770 0.015380 0.015878 
MDST Interpolation 0.024060 0.027588 0.027842 
Cubic Spline Interpolation 0.020306 0.023558 0.023805 
Mixture Density Network 0.007171 0.011385 0.012161 

 
In order to give more insight in the behaviour of the method we calculate their error 
histograms (using test noisy data). We take the maximum error obtained in the worst case for 
all the methods and use it as a maximum for the histograms. We then divide the errors in 40 
zones and represent them by bars in a plot, bar number one represents the minimum error 
while bar number 40 represents the maximum. In Figure 8-5 we present the error histograms 
of the non-averaged pseudo-inverse and Mixture Density Networks. In Figure 8-6 we present 
the histograms of the other tested methods. The Mixture Density Network based method is the 
one that performs the best in this experiment. 
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Figure 8-5. Error histograms of the two spectral reconstruction methods obtaining the best 
results. 
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Figure 8-6. Error histograms of different spectral reconstruction methods. 
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All methods based in a pseudo-inverse present more or less the same performance, this is 
justified by the fact that the data obtained by the CRISATEL system after calibration is of 
good quality and present low noise. Consequently a simple pseudo-inverse obtains 
approximately the same errors as more complex methods. Note that the SVD Pseudo-inverse 
degrades the error; this means that all the singular values are needed for a good 
reconstruction, consequently the smallest ones are not corrupted by noise. We believe that 
Non-averaged Learning Pseudo-inverse increases just slightly the accuracy because the 
calibration system is efficient removing interpixel sensitivity inhomogeneities. Bootstrapped 
Learning Pseudo-inverse also slightly increases the error and NNLS obtains a clear 
degradation. We consider the results of the interpolation methods very interesting, the cubic 
spline interpolation obtain worst results compared to the learning-based methods but 
acceptable enough to perform acceptable spectral reconstruction (2.4% of error). As 
interpolation needs a strict calibration we think this acceptable error is a consequence of the 
success of the calibration system. 
 
In Table 8-4 we see the CIELAB94 errors associated to each method. We note that in this 
error space the Mixture Density Network performs the best. The results follow a very similar 
behaviour than the ones calculated for the absolute errors and shown in Table 8-3. 
 

Table 8-4. CIELAB94 reconstruction errors for the CRISATEL chart experiment 
 Train set Mean test set Non averaged test set 
Smoothing Inverse 4.69 4.42 4.51 
Hardeberg Inverse 4.74 4.33 4.44 
Learning Pseudo-inverse 2.48 3.33 3.38 
Non-averaged Learning 
Pseudo-inverse 2.45 3.28 3.33 
Bootstrapped Learning 
Pseudo-inverse 2.59 2.84 3.49 
NNLS 3.82 3.44 3.53 
SVD Pseudo-inverse 2.58 3.43 3.50 
MDST Interpolation 4.79 4.84 4.86 
Cubic Spline Interpolation 4.02 3.46 3.59 
Mixture Density Network 1.88 2.41 2.48 

 
In order to conclude this section we show in Figure 8-7 and Figure 8-8 two examples of 
spectral reflectance reconstruction. We choose two colour patches of the CRISATEL chart 
belonging to the mean test set. Spectral reflectance (solid line) is known as it has been 
measured by a spectroradiometer, we present the estimated curves (dashed lines) using the 
different reconstruction methods. 
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Figure 8-7. CRISATEL chart colour patch spectral reflectance (solid line) and its estimations(dashed 

lines) using different reconstruction methods. 
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Figure 8-8. . CRISATEL chart colour patch spectral reflectance (solid line) and its estimations(dashed 

lines) using different reconstruction methods. 
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8.3.3 Art work paintings spectral reconstruction 
 
In this subsection we show two illustrative examples of spectral reflectance reconstruction on 
real art work paintings: one art work painted by Georges de la Tour and another by Guillaume 
Fouace. 
 
8.3.3.1 Saint-Jacques le mineur 
 
Images of a painting of Georges de la Tour, “Saint-Jacques le mineur” were acquired at 
Musée Toulouse Lautrec, Albi, France, on December 2003 by a team of experts of the 
CRISATEL project. A colour reconstruction of this multispectral image is shown in Figure 
8-10. We note that the shown image is a highly subsampled version of the original one that is 
obtained at full resolution of the CRISATEL system (20,000x12,000 pixels). We also note 
that the colours are not realistic as the visualisation medium you see is not calibrated. The 
original multispectral image has been reconstructed and each spectral reflectance curve 
projected into sRGB using the d65 illuminant (daylight). 
 
From the image shown in Figure 8-10 we extract a crop of the hand of Saint-Jacques holding 
the stick. This crop is not extracted in high resolution as we wanted to keep a recognizable 
shape in the presented image. Much better zooms of the image can be obtained when working 
at high definition. We performed spectral reflectance reconstruction on two pixels of the 
extracted crop image. The two spectral curves are shown on Figure 8-9 along with the crop 
itself. The reconstruction method used was a Mixture Density Network with 12 neurons in its 
hidden layer and 7 gaussians composing the mixture model. 
 
 

     
 

Figure 8-9. Left panel: Crop of the hand of Saint-Jacques holding the stick, greyscale image using a 
filter centered at 720 n. Right top and bottom panels: reconstructed reflectance curves on two pixels of 

the image. The spectral reflectance curves have been estimated using a Mixture Density Network. 

 
The upper graph of Figure 8-9 shows a reconstruction on a pixel belonging to a “light” zone 
of the image. At a first glance it can seem that the reconstructed curve is not correct because 
the pixels shown in the crop image are very clear. We note that the image intensity levels 
have been modified to enhance contrast and better illustrate this document. The original 
images and the painting itself are very dark, this forms part of Georges de la Tour style. The 
reconstructed curve is conform to the original painting. 
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Figure 8-10. Painting Saint Jacques le mineur from Georges de la Tour acquired with the CRISATEL 

system. The spectral image has been projected into sRGB using the d65 illuminant (daylight). 
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8.3.3.2 Le départ pour Jersey 
 
Le départ pour Jersey was painted by Guillaume Fouace around 1883. It was scanned by 
members of the CRISATEL project at the Musée Thomas Henry in Cherbourg, France. Its 
dimensions are 60 x 73.5 cm. As with the previous example it was scanned at 20000x12000 
pixels. The image shown in Figure 8-12 is the projection of the reconstructed spectra into the 
sRGB colour space using daylight D65 illuminant.  
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Figure 8-11. Bottom: colour sRGB image of “Le départ pour Jersey” painted by Guillaume Fouace 
(Musée Thomas Henry in Cherbourg, France). Top: reconstructed reflectance curves on two pixels of 
the image. The spectral reflectance curves have been interpolated from the camera responses using a 
cubic spline. The camera responses themselves are shown as black starts, the three infrared channels 

are included even they are not used for spectral reconstruction in the visible spectrum. 
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The images of this painting were fully processed at the C2RMF where the Space Commander 
Ruven Pillay implemented in VIPS several of the reconstruction methods described in this 
thesis. VIPS, see [Cupitt and Martinez, 1996], is Open Source image processing software 
developed by the National Gallery in London for the efficient manipulation of very large 
images as those acquired on paintings. The image in Figure 8-12 has been produced using this 
software that will be the user interface for the museum photographers using the CRISATEL 
system. 
 
In Figure 8-11 we show the responses of all the thirteen camera channels in two pixels of the 
painting, one on the lady’s face (her cheek) and the other on the blue river to the right of her. 
The camera responses on the visible range of the spectrum where interpolated (a cubic spline 
was fitted) and the ones on the infrared are shown without reconstruction. This is to 
emphasize that only the 10 visible channels are used for colorimetric reconstruction. 
 

 

 
Figure 8-12. Colour sRGB image of “Le départ pour Jersey” painted by Guillaume Fouace around 

1883. The spectral image has been projected into sRGB using the d65 illuminant (daylight). 
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8.3.4 Illuminant Simulation 
 
The appareance of an object or a scene may change considerably when the illuminant 
changes. This is due to a combination of physical and psychophysical effects that we will not 
consider here. These effects are taken into account in most colour appareance models in 
somewhat heuristic manner. However, such models cannot predict correctly changes for 
arbitrary illuminants, one important reason for this being metamerism. In fact, to make 
quantitative predictions about the physical phenomena involved when the illuminant is 
changed, a complete spectral description of the illuminants and the scene is required. Working 
with multispectral imaging and a spectral reflectance reconstruction system provides a 
complete spectral description of the scene. Light sources can be measured simply by the use 
of a spectrophotometer and a reference white patch. Moreover, most common illuminants are 
already measured and standarized by the CIE. All this facts made illuminant simulation an 
straightforward application of the systems presented in the present thesis. 
 
In the framework of art paintings, a computer tool implementing illuminant simulation is of 
great aid. A curator having to decide the appropriate light sources for an art exhibition will be 
pleased to use such a tool. Illuminant simulation can became a central issue, for instance, 
when a high quality printed reproduction of a painting is to be produced. If the reproduction is 
to be seen on the streets for advertising purposes the illuminant will be daylight but if the 
reproduction is in a book on a library it will be probably seen with an halogen lamp. 
 
Simulating the illuminant from the spectral reflectance curve is mathematically simple. First 
of all a spectral reflectance curve r  is reconstructed from a multispectral image by any of the 
existing methods. We then calculated colorimetrically the estimated XYZ tristimulus values 
of the surface imaged in this pixel and lit by illuminant Lsim . Then: 
 

 , ,
t t

sim sim sim simX Y Z  =  A L r  (4.1) 
 
where Lsim is the diagonal matrix corresponding to the spectral radiance of the simulated 
illuminant, [ ]=A x y z  represents the colour matching functions (see Apendix 

I), ,  and sim sim simX Y Z  are the estimated XYZ tristimulus values. In our case the estimated 
XYZ tristimulus values are used to calculate their sRGB corresponding values. This is 
achieved by a simple linear transformation based on phosphor chromaticies and the white 
point corresponding to illuminant D65 : 
 

 
3.2406 1.5372 0.4986
0.9689 1.8758 0.0415

0.0557 0.2040 1.0570

sRGB

sRGB

sRGB

R X
G Y
B Z

− −     
     = −     
     −    

 (4.2) 

 
Then the Gamma-corrected sR’G’B’ values are defined as 
 

 1.0 / 2.4

12.92 , 0.00304
'

1.055 0.055,
sRGB sRGB

sRGB
sRGB

R R
R

R elsewhere

≤= 
−

 (4.3) 

 
and likewise for 'sRGBG  and 'sRGBB . The 8-bit digital values that should be transmitted to the 
display are finally calculated as 8 255.0 'bits sRGBR R= . In Figure 8-13 and Figure 8-14 we 
show examples of illuminant simulation. 
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Figure 8-13 Illuminant simulation to produce a sRGB colour image of the hand of Saint-Jacques le 

mineur. A Mixture Density Network was used for spectral reflectance reconstruction. The three 
images does not present big visual differences because of the red-yellowish nature of the pigments. 
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Figure 8-14. Illuminant simulation to produce a sRGB colour image of the head of the sitting fat man 

in “Le départ pour Jersey”. A cubic spline interpolation was used for spectral reflectance 
reconstruction. Note that blue being a prominent element in this painting, the visual appearance is 

seriously altered by the change of illuminant. 
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8.4 Conclusion 
 
This charter finishes the experimental part of this thesis. The methods developed or studied in 
the first part have been applied to existing multispectral acquisition systems. The two used 
multispectral acquisition systems (National Gallery of London and CRISATEL) are cutting-
edge systems designed for a high-quality demanding application as it is the digitalization of 
art paintings. 
 
We have been involved in the CRISATEL project from the beginning of this thesis. The 
colour reproductions being performed at the moment for this system show that our efforts 
have a direct application. At the present time, the CRISATEL project is not completely 
achieved. The first results shown in this thesis using Georges de la Tour and Guillaume 
Fouace paintings will be followed by much more analysis and acquisitions. The CRISATEL 
system is currently operational at the Museum of Louvre (Paris). 
 
The performed work opens new perspectives, in fact, the CRISATEL multispectral system is 
now used by the C2RMF (Centre de Recherche et de Restauration des Musées de France) for 
the digital acquisition of paintings from different periods and styles on a large scale in several 
museums in France, [Lahanier et al., 2003]. The main aims are to characterise the palette of 
the artists and, if possible, to identify the pigments by comparison of their spectral reflectance 
curves with a reference of pure and mixed pigments used by artists. The digital results are 
verified by measuring several areas on the paint surface with a spectrocolorimeter. Analysis 
by X Ray micro-fluorescence is additionally used to identify the chemical composition of the 
pigment.  
 
Further research on high fidelity colour reproduction and pigment identification will follow 
this work. 
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9 Conclusion and Future Work 
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The idea to create a high-fidelity colour acquisition system for imaging art paintings is central 
in this thesis. The application of multispectral imaging to works of art is a consequence of the 
very demanding representation and reproduction standards involved in this field. This driven 
force has moved us to perform methodological investigations in one hand and experimental 
testing and developments on the other hand. Probably, the most fundamental result of this 
thesis is that new methods for spectral reconstruction have been investigated and applied to 
existing cutting-edge multispectral acquisition systems. The present document has been 
divided into two main parts and both of them converge together into the results chapter where 
we showed examples of art paintings acquired and processed by methods developed by us 
during these past years. 
 
We note that a new classification of existing techniques for spectral reconstruction has been 
proposed. This new classification is physically and mathematically well founded. It is indeed 
use to give insight on the behaviour of the methods presented in our detailed survey. 
 
Concerning the methodological investigations performed we remark the introduction of non-
linear techniques for spectral reflectance reconstruction. We developed a fully-automatic 
technique based on Mixture Density Networks that is performing very satisfactorily at this 
moment when is being applied to real data. When tested on simulated data this approach leads 
to a reconstruction method obtaining good results when quantisation noise is present or not. 
This method appears suitable for any kind of multispectral camera and is not designed for a 
specific camera. 
 
We also developed techniques to improve the estimation accuracy of existing methods. In this 
sense, a bootstrap strategy has been introduced to increase the generalisation capabilities of 
existing linear reconstruction techniques. In the future, this strategy can be applied to other 
purposes as subset selection, the selection of representative spectral curves among a database. 
A spline projection operator has also been developed to force the reconstructed spectral 
curves respecting physical constraints. 
 
A large part of this thesis is dedicated to the CRISATEL system. Some methodological and 
theoretical work about the selection of filters for the CRISATEL camera has been done 
presenting an original approach to this issue. But, most of the work concerning the acquisition 
system has been experimental. One of our main tasks in this European project has been to 
obtain the best quality of image as possible from the hardware system designed by Lumiere 
Technology. We firstly characterised all the elements involved in the acquisition system, this 
characterization implied systematic and time consuming experimental work. Based on this 
precise characterization an autocalibration procedure and correction software were designed 
and implemented. They allow high quality images to be obtained and are being used at the 
moment as part of the CRISATEL system. 
 
The work developed for the CRISATEL system opens new axes of research and application. 
It is important to note that the system was designed to be used by the C2RMF (Centre de 
Restauration des Musées de France) for the scanning of fine art paintings in French 
Museums. This objective has been accomplished, currently the acquisition system is 
physically installed at the Musée du Louvre (Paris). There, it is used for the digitisation of fine 
art works. The results chapter of this thesis shows images of paintings (by Georges de la Tour 
and Guillaume Fouace) already acquired and some tests performed over the CRISATEL chart. 
 
 



 216 

The obtained images will be of great use in museological research due to their high spatial 
resolution and high-fidelity colour representation. The spectral reconstruction can be 
exploited in many ways: 
 

• Illuminant simulation can be performed for realistic visualisation under any given light 
sources. 

 
• Pigment identification and classification can be based in a good spectral 

reconstruction. This point needs to be investigated as a consequence of the work 
already performed. 

 
• Spectral printing becomes possible once the image is represented by spectral 

recflectances and not in a colour space. This involves the use of the spectral 
reflectance and not a colour space to produce the printing. Trying to match a spectral 
reflectance by using combinations of dyes is at the moment an open field of research. 

 
• All the colour management system can, indeed, be based on the concept of spectral 

reflectance instead of tristimulus colour values. This allows a more general and 
powerful system where the calibration of the devices and transfer of data becomes 
easier and scientifically controlled. 

 
• Devarnishing means getting the spectral reflectances of the pigments under the varnish 

layer of a painting. It aims to simulate the effect of a partial or full removal of the 
varnish under any lighting conditions. This is very important for restoration as most of 
the times restoring a painting involves the manual removal of old deteriorate varnish 
and the application of new one. This process is performed manually by specialist and 
is very expensive and time consuming. Virtual devarnishing of a painting being based 
on spectral reconstruction, it would be a very useful tool for conservators to decide 
which paintings are worth to be restored. 

 
• As a consequence of having a computerised system for storing works of art 

realistically, "printing on demand" becomes a straightforward application. Visitors of 
a museum can generate their own choice of prints. They will be able to specify a 
picture from the collection and use calibrated (eventually spectral) printing technology 
to carry home their own copy. This is already done at the National Gallery of London 
where its Sainsbury's Wing shop proposes prints on demand at Standard sizes (A4, A3 
and A2). 

 
 
Finally, we would like to remark that both theoretical and experimental developments 
performed in this Ph.D. have fused in an actual system. Moreover, the CRISATEL system is 
currently operational and the performed developments open new perspectives for 
museological and technological research. 
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10 Appendices 
 

Appendix I:  
Colorimetry in a Nutshell 
 
 
 
 
The retina of the human eye has two categories of light receptor: rods, which are active in dim 
light and have no colour sensitivity, and cones, which are active in bright light and provide us 
with the ability to discriminate colour. This fact was experimentally demonstrated in 1965 and 
the response curves for three different kinds of cones in the retina of the human eye were 
measured. The relative sensitivity of the three receptors for the "average" human eye, 
designated by letters S (short), M (medium) and L (long) are shown in Figure AI-1. The 
shapes of the curves are obtained by measurement of the absorption by the cones, but the 
relative heights for the three presented curves are normally set equal for lack of detailed data. 
The S and M sensors correspond closely to blue and green. An ink with the same spectral 
reflectance curve than the L sensor would appear yellow-orange. The eye/brain discriminates 
colour by processing the relative stimuli in the three sensors. 
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Figure AI-1. Spectral Sensitivities of the cones. 

 
In order to quantify human colour vision, the CIE (Commission Internationale de l’Eclairage) 
has established a set of imaginary primary colours that, when combined, cover the full range 
(gamut) of human colour vision. These primaries (shown on the left panel of Figure AI-2) 
present negative energy in portions of their spectra, consequently they are not physically 
realizable. This is because these curves are determined experimentally by performing 
mathematical matrix transformations of the results of a split screen matching experiment. 
These experiments, carried out in the 1920s, showed that three primaries (RGB) could indeed 
match all visual colours within a certain range called a gamut, but that they could not match 
all the spectral colours, particularly in the green range. It was found that if a certain amount of 
red light was added to the colour being matched, then all colours could be matched. The 
quantitative results were expressed in terms of tristimulus values for the RGB primaries, but it 
was necessary to allow negative values for the red tristimulus values in order to match all 
colours. 
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Figure AI-2. (Left panel) CIE RGB colour matching functions presenting negative energy in some 

parts of the curves, (right panel) CIE XYZ colour matching functions not presenting negative values.  
 

Duet to the problems presented by the RGB primaries the CIE derived a new set of primaries. 
This new set, called X, Y, and Z, have the following properties: 

1. They always produce positive tristimulus values.  
2. It is possible to represent any colour in terms of these primaries.  
3. They were derived so that equal values of X, Y, and Z produce white.  
4. They were arranged so that a single parameter Y determines the luminance of the 

colour.  
5. They are related to the sensitivity of the human eye by the use of colour matching 

functions which match to the CIE 1931 Standard Observer. 

On the right panel of Figure AI-2 we show these Colour Matching Functions for the Standard 
Colorimetric Observer. They are designated x , y , and z , and they never have negative 
values. The Colour Matching Functions are used to derive the XYZ tristimulus values that 
form the basis of CIE colorimetry; two objects with the same tristimulus values have identical 
colour appearance when viewed under the same conditions. The X, Y, and Z tristimulus 
values are calculated by integrating the product of the spectral reflectance r(λ), the illuminant 
l(λ), and the corresponding colour matching function normally from λmin = 380 to λmax =760 
nm: 
 

max

min

( ) ( ) ( ) X r l x d
λ

λ
λ λ λ λ= ∫ , 

max

min

( ) ( ) ( ) Y r l y d
λ

λ
λ λ λ λ= ∫ , 

max

min

( ) ( ) ( ) Z r l z d
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Although the tristimulus values uniquely define an object colour, they do not define the eye’s 
response to the colour, which depends on the environment and the eye’s adaptation. 
 
Colour spaces as XYZ (or RGB) relate linearly to the spectrum of the coloured light but 
psychophysical experiments showed that the human eye's sensitivity to light is not linear. 
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When changing the tristimulus values of XYZ (or RGB) for a colour stimulus, the observer 
will perceive a difference in colour for differences greater than the Just Noticeable Difference 
(JND). In both RGB and XYZ spaces the JND depends on the location in the colour space. 
 
CIELAB space was proposed by the CIE in 1976. The aim of CIELAB is to make JND 
constant, leading to a uniform colour space where the JND is not depending on the location. 
In practice, this condition is only fulfilled approximately, thus we normally use the term 
pseudo-uniform for CIELAB. Remark that the notion of JND is observer-dependent and 
resulting from psychophysical experiments, this makes CIELAB a psychometric colour space. 
The CIELAB pseudo-uniform colour space is defined by the quantities L*, a* and b*. They are 
calculated from X, Y, Z using: 
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The tristimulus values Xn, Yn and Zn are those of the nominally white stimulus. For a given 
illuminant l(λ), they are defined: 
 

max

min

1 ( ) ( ) nX l x d
λ

λ
λ λ λ= ∫ , 

max

min

1 ( ) ( ) nY l y d
λ

λ
λ λ λ= ∫ , 

max

min

1 ( ) ( ) nZ l z d
λ

λ
λ λ λ= ∫ . 

 
In the CIELAB space, L* represents the lightness of a colour and it is known as the CIE 1976 
psychometric lightness. The scale of L* is 0 to 100, 0 being the ideal black, and 100 being the 
reference white. The chromacity of a colour can be represented in a two-dimensional (a*, b*) 
diagram, a* representing the degree of green versus red, and b* the degree of blue versus 
yellow. 
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Appendix II:  
Résumé Long en Français 
 
 
 
 
 
 
L’imagerie numérique couleur multispectrale est une discipline de l’ingénierie où des images 
avec plus de trois bandes dans le domaine visible sont acquises et analysées. Les appareils 
photo-numériques couleur conventionnels produisent des images de trois bandes et sont 
limités pour la reproduction haute fidélité de la couleur. Ils ne permettent pas notamment de 
reproduire correctement une scène sous différents types d’éclairage. Au cours des dix 
dernières années l’image couleur multispectrale s'est concentrée sur certains domaines où la 
fidélité de la couleur est d’un grand intérêt scientifique, en particulier celui de l’analyse et de 
la reproduction des oeuvres d'art. Cette thèse s’inscrit dans cette continuité et traite de 
l'acquisition et de l'analyse des images couleur multispectrales haute résolution appliquées 
aux toiles de maître. 
 
Un des problèmes fondamentaux liés à l’imagerie multispectrale est la reconstruction des 
courbes de réflectance spectrale à partir des valeurs mesurées dans chacune des bandes 
multispectrales. Cette thèse aborde en profondeur ce sujet. La valeur d’un pixel d'un canal 
dans une image multispectrale est le résultat de :  
 

1) l'interaction de la distribution spectrale d’énergie radiante générée par la source de 
lumière avec la réflectance de la surface de l’objet éclairé, 

2) la sensibilité spectrale de l'appareil photo-numérique combinée à la transmittance 
spectrale du chemin optique comprenant l’objectif de l’appareil et le filtre 
correspondant à ce canal. 

 
La détermination de la fonction de réflectance spectrale de la surface de l'objet en chaque 
pixel de son image est primordiale. Nous appelons ce processus reconstruction de la 
réflectance spectrale ou simplement reconstruction spectrale. Celle-ci permet une 
représentation intrinsèque des propriétés visuelles de la surface d'un objet qui est 
indépendante de la distribution spectrale d’énergie de la source lumineuse et de la sensibilité 
spectrale de l'appareil photo-numérique utilisé pour l'acquisition de l'image. Cette 
représentation peut être employée dans de nombreuses applications. On peut ainsi concevoir 
un système de gestion de la couleur basé sur les propriétés spectrales des matériaux. Un  tel 
système serait beaucoup plus général qu'un système de gestion classique basée sur la 
colorimétrie. Dans cette thèse, notre principal intérêt est la gestion haute fidélité de la couleur 
des toiles de maître. Par exemple, connaître la réflectance spectrale en chaque pixel de 
l’image d'une peinture nous permet de simuler l'aspect de cette peinture sous n'importe quel 
illuminant virtuel. Il permet également de simuler l'enlèvement virtuel d’un vernis âgé, ce qui 
peut être d'un grand intérêt pour les conservateurs dans leur tâche de planification de la 
restauration de toiles de maître anciennes. 
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Nous pouvons conceptuellement diviser cette thèse en deux grandes parties distinctes. Dans la 
première partie nous étudions le problème de la reconstruction de la réflectance spectrale en 
un pixel d'une image multispectrale. Ce problème présente des aspects théoriques et pratiques 
intéressants et qui restent de portée générale. La deuxième partie est consacrée au projet 
européen IST-20163-1999 CRISATEL (Conservation Restoration Innovation Systems for 
Image capture and Digital Archiving to Enhance Training Education and Lifelong Learning). 
Dans ce projet un système multispectral d'acquisition d’images numériques à haute fidélité et 
à haute résolution spatiale (12.000 x 30.000) a été développé pour la numérisation des toiles 
de maître dans les musées. Il est composé d’une caméra multispectrale comportant 13 canaux 
(10 dans le visible et 3 dans l’infrarouge), et d’un système d’éclairage dédié qui balaye le 
tableau en synchronisation avec le mouvement de la barrette CCD équipant la caméra. La 
deuxième partie de notre travail est donc plus expérimentale et intimement liée au système 
d'acquisition développé par CRISATEL. Les deux parties de cette thèse se complètent de 
façon naturelle : les méthodes générales de reconstruction spectrale proposées dans un 
premier temps sont ensuite appliqués à un système réel d'acquisition. 
 
Dans la suite de ce résumé nous décrivons brièvement les chapitres qui composent ce 
document. Les idées générales de cette thèse sont alors structurées ici en français de la même 
façon qu’elles le sont en anglais dans le reste du document. 
 
 
Chapitre 1. Introduction. 
 
Ce bref chapitre donne une vision générale du contenu de cette thèse. Il introduit le sujet traité 
et présente, chapitre par chapitre, les informations plus remarquables que le lecteur va trouver 
dans le reste du document. 
 
 
Chapitre 2. La nature des données. 
 
Nous présentons dans ce chapitre les concepts de base sur la formation d’une image 
multispectrale, comprenant les formules fondamentales et une description des principaux 
composants d'un système d’acquisition multispectral : sources lumineuses, filtres, CCD et 
réflectances spectrales. Les sources de bruit entachant les systèmes d'acquisition et les 
mesures de la réflectance sont présentées. Leur description aide à comprendre les limitations 
d'un système de formation d’image basé sur le concept de réflectance spectrale au lieu de la 
couleur. 
 
Ce chapitre se veut plus qu'une simple introduction à la formation de l’image multispectrale. 
Dans sa deuxième partie nous nous concentrons en effet sur l'analyse des courbes de 
réflectance spectrale. Ce point est fondamental avant de prendre toute décision sur la 
conception d’un système d’acquisition ou d’une méthode de reconstruction spectrale. Nous 
voulons comprendre la nature des courbes spectrales autant que possible. Les bases de 
données de réflectances utilisées dans le reste de la thèse sont présentées et étudiées. L'analyse 
de Fourier et l'Analyse en Composantes Principales (ACP) sont les outils mathématiques 
utilisés pour leur analyse. 
 
Nous soulignons qu'une nouvelle approche pour la comparaison entre différentes bases de 
données de réflectances spectrales a été également développée. Cette approche est simple et 
mathématiquement bien fondée. Elle est basée sur la distance de Froebius entre matrices. 
Cette distance est employée comme une mesure de similarité pour des bases orthogonales 
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issues d’une ACP associée aux bases de données des réflectances spectrales étudiées. Enfin, 
nous présentons et analysons une nouvelle mire développée dans le cadre du projet européen 
CRISATEL. 
 
Chapitre 3. Bases de la reconstruction spectrale.  
 
Ce chapitre décrit le problème de la reconstruction spectrale et présente un état de l’art 
actualisé des techniques existantes de reconstruction illustrées en employant des simulations 
par ordinateur. Nous proposons une classification des techniques de reconstruction en trois 
paradigmes :  
 

i) la reconstruction directe, qui est basée sur l'inversion du modèle du système 
d’acquisition et qui a besoin de la caractérisation du système;  

ii) la reconstruction indirecte ou reconstruction par apprentissage, où une mire 
calibrée et son image multispectrale sont employées pour construire un opérateur 
de reconstruction ;  

iii) la reconstruction par interpolation, où les réponses obtenues par la caméra 
multispectrale sont interpolées pour trouver une approximation de la fonction de 
réflectance spectrale correspondante.  

 
A notre connaissance c'est la première fois qu’une telle classification est donnée. Nous 
croyons qu'il est utile de différencier des méthodes qui ont une origine conceptuelle très 
différente. Cette classification est physiquement et mathématiquement bien fondée et aide à 
comprendre les besoins intrinsèques et les limites à chaque méthode. 
 
Chapitre 4. Amélioration de la précision de la reconstruction spectrale. 
 
Dans ce bref chapitre nous décrivons deux idées originales que nous proposons pour 
améliorer la précision de la reconstruction spectrale. Ces idées ne sont pas en elles-mêmes de 
nouvelles techniques de reconstruction et peuvent être appliquées pour améliorer la plupart 
des méthodes de reconstruction spectrale existantes. Elles sont indépendantes et pourraient 
être intégrées ensemble. 
 
La première idée consiste à améliorer les capacités de généralisation des méthodes linéaires 
de reconstruction existantes en utilisant des informations a priori sur la réflectance des objets 
imagés. L’algorithme proposé utilise le concept de généralisation, il se base sur un 
rééchantillonnage aléatoire intense des données utilisées pour construire les opérateurs. Nous 
présentons des résultats de simulation où une amélioration de 50% de la précision est obtenue 
sur les ensembles d'essai utilisés. Ceci apparaît comme un résultat très prometteur. De plus, 
l'idée en elle-même est intéressante et ouvre de nouvelles perspectives de recherche. Par 
exemple, le problème du choix d’un sous-ensemble de courbes de réflectance spectrale 
représentatif d’un ensemble de courbes peut être étudié par ce moyen. Le sous-ensemble des 
courbes spectrales choisies par l'algorithme vaut la peine d'être soigneusement étudié dans le 
futur. 
 
La deuxième idée est liée aux contraintes physiques à respecter par les courbes spectrales 
reconstruites. Nous avons proposé un opérateur de projection spline qui est simplement 
appliqué après reconstruction, il apparaît comme un complément à n'importe quelle technique 
existante de reconstruction. Il garantit que les courbes obtenues sont continues et lisses en 
même temps. 
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Chapitre 5. Reconstruction spectrale en utilisant des Mixture Density Networks.  
 
Nous considérons à présent le problème de la reconstruction des courbes de réflectance 
spectrale à partir d’images multispectrales en utilisant des techniques basées sur les réseaux 
de neurones. A notre connaissance, c'est la première fois que ce type d’approche est appliqué 
à la résolution du problème de reconstruction spectrale. Notre but est ici de trouver une 
méthode non linéaire basée sur l’apprentissage, capable de fournir une bonne résistance au 
bruit et ayant également une bonne capacité de généralisation. 
 
Dans ce chapitre nous commençons par justifier l'utilisation des opérateurs non linéaires pour 
la reconstruction spectrale. Une introduction générale aux réseaux de neurones est d’abord 
présentée. Ensuite nous décrivons notre première tentative d'employer des réseaux de 
neurones comme méthode de reconstruction spectrale, [Ribés et al., 2002]. Nous avons étudié 
la résistance au bruit de quantification de la reconstruction spectrale obtenue avec différents 
réseaux de neurones conventionnels et les avons comparés à une méthode linéaire déjà utilisée 
pour la reconstruction spectrale des toiles de maître [Hardeberg et al., 1999]. Trouvant non 
adapté l'application directe des réseaux de neurones à la reconstruction spectrale, nous avons 
développé une nouvelle méthode mélangeant cette technique et l'Analyse en Composantes 
Principales (ACP). La méthode résultante fournit de bons résultats en présence d’un bruit de 
quantification mais elle n’est pas satisfaisante, comparée aux méthodes linéaires, quand le 
bruit n'est pas présent. 
 
Pour augmenter la précision des méthodes existantes nous appliquons des Mixture Density 
Networks (MDN) dans le contexte de la reconstruction spectrale. Cette approche a fait l’objet 
de plusieurs publications [Ribés et Schmitt, 2002, Ribés et Schmitt, 2003]. La méthode MDN 
est basée sur la construction de la fonction de distribution de la probabilité conditionnelle 
entre les réponses multispectrales de la caméra et les fonctions de réflectance spectrale 
associées. Cette approche mène à une méthode de reconstruction fournissant de bons résultats, 
que le bruit soit présent ou non. La méthode a été testée en utilisant des données simulées et 
des données expérimentales, les résultats étant supérieurs à ceux obtenus avec les méthodes 
linéaires. Pour terminer nous décrivons comment le problème de l'optimisation de 
l’architecture du MDN a été résolu. Ce dernier point rend la méthode finale entièrement 
automatique sans la nécessité de fixer des paramètres à la main. 
 
 
Chapitre 6. Expérimentation : le système d'acquisition CRISATEL.  
 
Un système d’acquisition multispectral à haute résolution a été développé pour le projet 
européen CRISATEL. Ce système inclut une caméra multispectrale et un système d'éclairage 
dédié d’une puissance élevée, les deux systèmes ayant été développés par Lumière 
Technology, Paris, France.  
 
Nous présentons d’abord le système d'acquisition multispectral du projet européen 
CRISATEL en décrivant les caractéristiques spectrales de ses filtres, son système de 
d'éclairage et l'architecture électronique de la caméra . Cette présentation générale est 
nécessaire pour comprendre l’ensemble des expériences présentées dans le reste du chapitre.  
 
Ensuite nous procédons à l’évaluation du système. Des expériences physiques ont été 
élaborées et implémentées afin de caractériser la linéarité de la réponse du CCD et son bruit 
au noir. Le bruit au noir étant un aspect très important, sa caractérisation complète et sa 
dépendance avec les paramètres de la caméra ont été étudiées en profondeur. Le problème de 
l'aberration chromatique est brièvement présentée. Finalement, la distribution spatiale non 
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homogène de l'éclairage sur l'image est analysée. Les expériences physiques et l'analyse des 
données obtenues se sont avérées d'intérêt pour la communauté multispectrale et ont été 
présentées à une conférence internationale [Ribés et al., 2003, PICS]. L’ensemble de ces 
résultats forme la base de l'évaluation du système d’acquisition et est contractuel pour la 
communauté européenne dans le cadre du projet CRISATEL. Ce sujet a fait l’objet d’un 
rapport technique préliminaire [Ribés et al., 2003, CRISATEL]. 
 
Suite à l'évaluation réalisée nous avons proposé une procédure de calibrage. Cette procédure 
est composée de trois étapes : nous déterminons d'abord les paramètres liés au contrôle de la 
caméra multispectrale et obtenons les cartes spatiales pour la correction de l'inhomogénéité de 
l'éclairage, ensuite nous procédons à l’étude du bruit au noir en chaque pixel (ou photo site) 
du CCD et finalement le gain en chaque pixel est déterminé afin de corriger les différences de 
sensibilité entre les pixels du CCD. Nous montrons en détail comment ces opérations sont 
effectuées. 
 
En résumé, nous avons effectué deux types de tâches dans ce chapitre expérimental consacré à 
l’étude du système d'acquisition multispectral réel développé dans le cadre du projet européen 
CRISATEL: 
 

i) la réalisation des expériences physiques pour caractériser les composants du 
système et pour évaluer leurs performances,  

ii) la conception et la mise en oeuvre logicielle des systèmes de calibrage et de 
correction intimement liés à l'acquisition. 

 
Ce travail expérimental effectué sur le système d’acquisition CRISATEL permet d’acquérir 
des images multispectrales qui ont non seulement une qualité visuelle élevée mais également 
un signal contrôlé radiométriquement. 
 
 
Chapitre 7. Choix des filtres pour une reconstruction spectrale précise. 
 
Nous considérons à présent le problème de l'optimisation du choix d’un ensemble de filtres 
pour une caméra multispectrale. Le but est de déterminer les transmittances spectrales d’un 
jeu de filtre de filtres permettant d’augmenter la précision de la reconstruction spectrale de 
manière  optimale. 
 
Nous présentons d'abord les quelques approches qui ont été proposées pour le choix d’un 
ensemble de filtres. Nous présentons alors le critère utilisé pour le choix des filtres et la 
stratégie développée pour son optimisation. Le critère utilisé (la v-mesure) a été à l'origine 
appliquée pour l'optimisation colorimétrique. Nous donnons des détails pour comprendre la 
signification de cette mesure en termes d'algèbre linéaire. Ceci fournit des éléments 
supplémentaires pour la compréhension de cette mesure et pour son application dans un 
contexte différent. Nous définissons alors un espace que nous appelons le sous-espace visuel 
de la caméra qui s’avère très utile dans ce nouveau contexte.  
 
Le critère modifié proposé (v-mesure modifiée) permet la conception de filtres diminuant les 
erreurs de reconstruction spectrale sans avoir besoin d’effectuer explicitement une 
reconstruction spectrale. Un algorithme pour l'optimisation de la v-mesure modifiée est 
présenté. Cette stratégie converge vers une solution acceptable qui s’avère également très 
rapide. Son efficacité en temps de calcul est due à une structure en deux étapes, chacune 
d'elles étant basée sur une paramétrisation différente de la transmittance spectrale des filtres. 
D'abord, des filtres représentés par des fonctions rectangulaires sont utilisés. Cette 
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paramétrisation compacte est optimisée sur un espace discret. Cette première étape, très 
rapide, fournit une bonne approximation initiale pour la seconde étape où les transmittances 
spectrales sont modélisées par des fonctions gaussiennes et où un procédé d'optimisation par 
gradient est utilisé. Nous avons calculé analytiquement le gradient de la v-mesure afin 
d'augmenter l'efficacité dans la descente du gradient. Il faut préciser que ce procédé en deux 
étapes peut tomber sur des minimums locaux car le critère qui le guide n'est pas convexe. 
Mais l'application de cette stratégie d'optimisation à différents ensembles initiaux de filtres 
aléatoirement choisis a permis d’atteindre une bonne solution à ce problème. 
 
Nous avons appliqué l'algorithme proposé à l'optimisation de 10 filtres de forme gaussienne 
pour la caméra  CRISATEL, le but étant d’augmenter la précision de la reconstruction 
spectrale sur un ensemble de réflectances correspondant à des pigments à l'huile. Par 
simulation nous avons comparé les résultats obtenus avec les filtres optimisés avec ceux 
obtenus à l'aide des filtres réels de la caméra CRISATEL. Ces résultats prouvent que les 
filtres optimisés fournissent des reconstructions d'une meilleure précision pour l'ensemble des 
réflectances choisies. Mais, cette augmentation de qualité demeure petite, 16%, et s’ 
accompagne d'une diminution de la généralité puisque restreinte à des pigments à l’huile. La 
conclusion importante qui découle finalement de ces résultats est que la construction difficile 
et coûteuse de filtres interférentiels de forme gaussienne optimisés n’est pas justifiée.  
 
L’approche développée dans ce chapitre peut facilement être appliquée à l'optimisation de 
filtres électroniquement réglables. Elle est en fait très adaptée pour ce genre de filtres car les 
fonctions de transmittance peuvent être électroniquement sélectionnées, leur forme 
appartenant à une famille de courbes très similaires aux gaussiennes. 
 
 
Chapitre 8. Résultats Généraux.  
 
Ce chapitre présente un ensemble de résultats de reconstructions spectrales obtenus en 
employant les techniques présentées dans cette thèse sur des données acquises dans de vrais 
environnements expérimentaux. Aucune simulation n'apparaît donc ici. Deux systèmes 
différents d'acquisition multispectral ont été utilisés pour obtenir les données :  
 

i) Une caméra  multispectrale appartenant à la National Gallery de Londres.  
ii) Le système multispectral CRISATEL avec les projecteurs équipés de lampes HQI.  

 
Ces deux systèmes ont pour point commun d'utiliser le même ensemble de 13 filtres 
interférentiels. 
 
Le chapitre est divisé en deux parties principales : la première est consacrée aux données 
obtenues à la National Gallery et la deuxième partie traite les données du projet CRISATEL. 
Nous signalons que cette thèse vient de se terminer avant que le projet de CRISATEL ait été 
complètement réalisé. La phase d’acquisition de toiles de maître ne fait que juste commencer. 
Nous présentons les premières acquisitions numériques sur un ensemble de tableaux de 
Georges de la Tour qui ont été scannés au Musée d'Albi (France) entre le 28 novembre et le 3 
décembre 2003. Après ce premier test une étape intensive d’acquisition a commencé au 
Musée du Louvre par le Centre de Conservation et de Restauration des Musées de France 
(C2RMF). Nous montrons également des images d’une toile de Guillaume Fouace, Le départ 
pour Jersey, qui appartient à cette étape d’acquisition.  
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Même si des modifications vont être apportées au système CRISATEL, celui-ci est dans une 
phase mature et des changements fondamentaux ne sont pas prévus. Les données utilisées ici  
sont donc encore préliminaires mais elles sont cependant suffisamment représentatives pour 
bien permettre d’illustrer  les performances obtenues avec les différentes approches proposées 
dans le cadre de cette thèse. 
 
 
Chapitre 9. Conclusion et travaux futurs.  
 
Des conclusions générales sont présentées et les perspectives de travail qui s’ouvrent après 
cette thèse sont discutées dans ce chapitre. 
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