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Spécialité : Signal et Images

Anahid SAFAVI

Contributions pour l’exploitation de la
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Résumé

Un des principaux défis pour la prochaine génération des systèmes de com-
munication sans fil est d’utiliser des ressources limitées telles que la bande
passante, d’une manière efficace pour fournir une qualité et une capacité qui
soient suffisantes pour la gamme grandissante de services.

Il est bien connu que les réseaux d’antennes peuvent améliorer la perfor-
mance et/ou le débit des systèmes de communication sans fil dans un environ-
nement évanouissement. Les réseaux d’antennes peuvent être employés du côté
de l’émetteur et/ou du côté du récepteur , créant de la diversité en transmission
et/ou en réception.

L’objectif de cette thèse est d’étudier, de développer et de combiner des
techniques de traitement du signal et/ou de codage afin d’exploiter la diversité
en transmission et/ou en réception dans des canaux évanouissement.

Dans la première partie de notre thèse, consacrée au côté émetteur, nous
traiterons particulièrement les aspects du codage spatio-temporel dans le systme
MIMO (multi-entrées multi-sorties) et nous fournirons une nouvelle architec-
ture spatio-temporelle adaptée au contexte CDMA (systèmes étalement de
spectre). Nous examinerons jusqu’oú nous pourrons aller en termes de perfor-
mance, quand nous utiliserons ces schémas de codage.

La plupart des contributions faites dans le contexte MIMO considèrent que
le canal de propagation est connu du côté de l’émetteur et/ou du récepteur.
Dans la réalité, le canal de propagation devrait être estimé au moins du côté
du récepteur. Habituellement, dans les systèmes de communication, on utilise
des séquences d’entrâınement afin d’estimer le canal de propagation. Cepen-
dant, des résultats récents montrent que les systmes utilisant les séquences
d’entrâınement dans le contexte MIMO sont sous-optimaux, particulièrement
faible SNR (rapport signal sur bruit). De plus, ils réduisent le flux des infor-
mations dans le système.

C’est pourquoi, dans la seconde partie de notre thèse, qui concerne le côté
récepteur, nous nous intéresserons aux techniques d’identification aveugle, et en
particulier aux méthodes sous-espace. Dans cette partie, nous considérerons les
principaux inconvénients des algorithmes d’identification de type sous-espace,
tels que le coût de calcul élevé et le manque de robustesse par rapport la sures-
timation d’ordre du canal de propagation. Dans ce cadre, nous présenterons
plusieurs algorithmes, qui pallient aux limites de cette technique. Tous les
algorithmes proposés ont été validés par des simulations.





Summary

One of the major challenges for the next generation of wireless communica-
tion systems is to utilize limited resources like spectrum, efficiently enough to
provide sufficient quality and capacity for the whole range of services.

It is well known that multiple-element antenna arrays can improve the per-
formance and/or data rate of wireless communication systems in a fading envi-
ronment. Antenna arrays can be employed at the transmitter and/or receiver
side creating transmit and/or receive diversity.

The aim of this PhD. thesis is to study, develop and combine efficient signal
processing and/or coding techniques to exploit transmit and/or receive antenna
diversity over wireless fading channels. Consequently, our document is divided
in two parts: transmitter side and receiver side.

In the first part of our document devoted to transmitter side, we deal espe-
cially with Space-Time coding aspects in MIMO (Multi-Input Multi-Output)
system and we provide a new Space-Time architecture adapted to CDMA
(Coded Division Multiple Access) context. We will examine how far we can
go in performance when we use these coding schemes.

Most of the contributions made in the MIMO context assume that the prop-
agation channel is known at the transmitter and/or receiver side. In practice,
the propagation channel might be estimated at least at the receiver side. In a
traditional communication context a training sequence is used in order to iden-
tify the propagation channel. However, recent results show that the training-
based schemes in MIMO context are suboptimal specially at low SNR (Signal
to Noise Ratio). Moreover, they reduce the through put of system.

That is why we focus in the second part of our document -receiver side- on
the practical blind identification techniques, specially subspace-based schemes.
In this part, we deal with main drawbacks of the subspace identification algo-
rithms such as high computational complexity and lack of robustness to order
over-estimation of propagation channel. Herein, we give several algorithms that
overcome limitations of this technique. All of these algorithms are validated by
simulations.
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Notations

Through out this report, small letters are used to denote scaler, complex or
real variables. In order to denote real, complex or integer vectors we use small
boldface letters and for real or complex matrices we use capital boldface letters.

ℜ(.) real part of complex variable or matrix
ℑ(.) imaginary part of complex variable or matrix
E(.) statistical expectation
||.||2 Euclidean (frobenious) norm
|.| absolute value
In identity matrix of size n
0n n × n matrix of zeros
0 matrix of zeros with appropriate size
A−1 inverse of matrix A
A# pseudo inverse of matrix A
AT transpose of matrix A
AH conjugate transpose of matrix A
Ai,j element (i, j) of matrix A
Ai,: i-th row of matrix A
A:,i i-th column of matrix A
tr(A) trace of matrix A
det(A) determinant of matrix A
diag(a1, · · · ,ak) a k × k (block) matrix with diagonal elements a1, · · · ,ak

vec(A) vector valued function of matrix A it can be written as :
vec

(
[a1, · · · ,ak]

)
= [aT

1 , · · · ,aT
k ]T

⊗ Kronocker Product. Let A be a n × m and B be a k × l matrix

A ⊗ B =





A1,1B A1,2B . . . A1,mB
A2,1B A2,2B . . . A2,mB

...
...

. . .
...

An,1B An,2B . . . An,mB





the resulted matrix is of dimension nk × ml.
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Abbreviations

AWGN Additive White Gaussian Noise
BSI Blind System Identification
BPSK Binary Phase Shift Keying
BLAST Bell Laboratories Layered Space Time
CMA Constant Modulus Approach
CSI Channel State Information
CDMA Coded Division Multiple Access
DOA Direction of Arrival
DTD Delay Transmit Diversity
DAST Digonalized Algebraic Space Time
HOS Higher Order Statistics
i.i.d. independent identically distributed
ISI Inter Symbol Interfrence
LSF Least Squares
LSF Least Squares Fitting
MNS Minimum Noise Subspace
MSE Mean Squares Error
MIMO Multiple-Input Multiple-Output
MMSE Minimum Mean Squares Error
OTD Orthogonal Transmit Diversity
OMNS Orthogonal Minimum Noise Subspace
PCS Properly Connected Sequence
QAM Quadratic Amplitude Modulation
SD Sphere Decoder
SS Spreading Sequence
SNR Signal to Noise Ratio
SOS Second Order Statistics
STC Space Time Codes
STS Space Time Spreading
SIMO Single-Input Multiple-Output
SMNS Symmetic Minimum Noise Subspace
STBC Space Time Block Codes
SVD Singular Value Decomposition
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Chapter 1

Motivations

One of the major challenges for the next generation of wireless communication

systems is to utilize limited resources i.e. spectrum, efficiently enough to provide

sufficient quality and capacity for the mixtures of services.

It was well known that multiple-element antenna arrays can improve the

performance and/or data rate of wireless communication systems in a fading

environment [58]. Antenna arrays can be employed at the transmitter and/or

receiver side creating transmitter and/or receiver diversity. However, several

year later (in 90’s) these techniques had not been fully exploited.

It has been shown later in [91], that the capacity of multiple-element an-

tenna arrays in a fading environment grow at most linearly with the number of

transmit antennas as long as the number of receiver antennas is greater than

or equal to the number of transmit antennas 1. Being sure of the capacity en-

hancement of multi-element antenna arrays was the first step, the second step

was to find the appropriate architectures and a know-how to use this capacity

in an optimal way.

Implementation of the first laboratory prototype of multiple-element an-

tenna arrays in Bell laboratories operating at high spectral efficiency [46], might

be seen as a starting point of a new challenge in the context of the wireless

communications. The substantial performance obtained using multi-element

antenna array, motivated the researchers to improve existing schemes or de-

velop new architectures.

Since then a lot of research efforts have been made in the context of so-

called Multiple-Input Multiple-Output (MIMO) systems (see [41] and references

therein for an overview of MIMO systems).

1Under assumption the fading is uncorrelated

1
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Main axes of research are focused on the information theoretic aspects of

MIMO systems leading to different contributions on capacity evaluation, the

modulation and coding/decoding aspects in MIMO system in order to propose

high spectral efficiency schemes adapted to Multi-element systems and finally

signal processing aspects which provide mainly the efficient way of extracting

information at the receiver side and canceling the interference.

1.1 Objectives of this document

The aim of this Ph.D. thesis is to study, develop and combine efficient signal

processing and/or coding techniques to exploit transmit and/or receive antenna

diversity over wireless fading channels. This document is divided on two parts

transmitter side and receiver side.

In the first part of this document, transmitter side, we deal especially with

Space-Time coding aspects in MIMO systems and we provide a new Space-Time

architecture adapted to CDMA context. We will examine how far we can go in

performance when we use these coding schemes.

Most of the contributions made in the MIMO context, assume that the

propagation channel is known at the transmitter and/or receiver side. In prac-

tice, the propagation channel might be estimated at least at the receiver side.

In a traditional communication context a training sequence is used in order to

identify the propagation channel. However, recent results [52] show that the

training based schemes are suboptimal specially at low SNR (Signal to Noise

Ratio). Moreover, training base schemes reduce the through put of system.

That is why we focus in the second part of this report on the practical blind

identification techniques, specially subspace based schemes. In this part, we

deal with main drawbacks of the subspace identification algorithms like com-

putational complexity and robustness to order over estimation of propagation

channel. Herein, we give several algorithms that overcome limitations of this

technique.

1.2 Contributions

Major contributions of this report should be divided into two different parts:
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1.2.1 Part I : Transmit diversity

In this part, we propose an approach which exploits the benefits of Space-

Time codes on CDMA framework. Contrary to other contributions for CDMA

systems in which only the inherent diversity in the system has been exploited,

we propose a Space-Time coding scheme that achieves the maximum diversity

gain and a good coding gain in a CDMA multi antenna context.

This scheme is obtained by a proper combination of available Spreading Se-

quences and Space-Time Algebraic codes over an arbitrary number of transmit

antennas. We also propose a coding scheme to adapt the proposed architecture

to the multi-user and multi-path case .

The receiver has one or several receive antennas and the decoding proce-

dure consists of decorrelating all users first, then applying Maximum Likelihood

Sphere Decoder (SD) to each user separately.

Under quasi-static fading assumptions, we propose a method of blind chan-

nel estimation based on the orthogonality between signal and noise subspaces.

1.2.2 Part II : Receive diversity

As mentioned before, we deal here with two important drawbacks of subspace

based methods: computational complexity and channel order overestimation.

1.2.2.1 Minimum Noise Subspace (MNS)

Our contributions are based on the concept of Minimum Noise Subspace (MNS).

MNS algorithm is a promising low computational cost subspace technique. The

main advantage of the MNS method is that the large matrix eigendecomposi-

tion is avoided and the noise vectors are computed in a parallel scheme as the

least eigenvectors of covariance matrices corresponding to an appropriate set of

combinations of system output that form a basis of the rational noise subspace.

We propose two extensions of MNS method called (Orthogonal Minimum

Noise Subspace) OMNS and (Symmetric Minimum Noise Subspace) SMNS.

We propose also an efficient implementation technique to compute the noise

subspace that converges rapidly in few iterations.

Symmetric Minimum Noise Subspace (SMNS)

Indeed, in the original MNS method, certain system outputs are used

more than others, depending on the chosen appropriate set . This might
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lead to poor estimation performance if the system outputs that are used

most correspond to the ‘worst system channels’. This raises the problem

of the ’best’ choice of appropriate set of outputs. In SMNS technique we

guarantee a certain symmetry between the system outputs.

SMNS method has the advantage of better robustness and estimation

accuracy at the cost of a slight increase of the computational cost in

comparison with original MNS.

Orthogonal Minimum Noise Subspace (OMNS)

Here the noise subspace is formed through computation of noise vectors

that correspond to an orthogonal set of noise polynomial vectors (Orthog-

onal basis of the rational noise subspace).

The orthogonality of the noise subspace in OMNS method improve quality

of parameter estimation. OMNS method is a recursive method contrary

to the MNS that can be implemented in a parallel scheme. The computa-

tional cost of OMNS method is much less than that of original subspace.

Efficient implementation

In all MNS-like methods we should compute the least eigenvector of the

output covariance matrix. Even though, computing 1 single eigenvector

costs O(n2) (n being the size of considered matrices), we found out that

existing algorithms for extracting minor subspaces or the minor eigen-

vectors are un-efficient and slowly convergent in comparison with those

dedicated to principal subspaces or principal eigenvectors.

For this reason, we propose an adaptive implementation in which we use

the power method in conjunction with a RLS-type algorithm to extract

the principal eigenvectors of each of the considered matrices.

1.2.2.2 Channel order overestimation

We propose in this part two different categories of algorithms robust to order

overestimation of propagation channel in a SIMO context. When an overesti-

mation of channel degree occurs, a specific structural property over estimated

channel can be derived. This structural property is used as a framework to

obtain several algorithms :

Least Squares Fitting Approach
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In this approach we minimize a least squares fitting cost function based on

observation and the estimated channel equalizer expression without any

additional assumption over input data. We propose here two methods

called ’Non-linear’ and ’Bilinear’ optimization approach. We also pro-

pose an efficient way for initialization of both algorithms to guarantee the

convergence of both algorithms in few iterations.

Constant Modulus Approach

In this approach we minimize a Constant Modulus Criterion, based on

the observations and the estimated channel equalizer expression. This

approach is valid only when the input sequence is of constant modulus.

1.3 Document organization

In chapter 2 of this document we first recall the main concept of Space-Time

codes together with their design criteria as first proposed in [90]. Construc-

tion and properties of Space-Time block codes from orthogonal design are then

presented. A powerful alternative to Space-Time block codes called Diagonal

Algebraic Space-Time (DAST) block codes are also described in this chapter.

In Chapter 3 we review Space-Time architectures proposed in the context

of CDMA for MIMO systems and we give a new Space-Time architecture for

CDMA system. We give also the coding and decoding algorithm for the case of

multi-user and multi path. At the end of this chapter we propose a blind iden-

tification algorithm in order to identify the coefficients of propagation channel.

In chapter 4 we give several advantages concerning the use of Blind System

Identification algorithms in a MIMO context. Later on in this chapter we focus

on subspace methods and algorithms for MIMO context and we give briefly

advantages and main limitations of subspace based methods in the MIMO con-

text. In the rest of the document we propose several techniques to overcome

these limitations.

Chapter 5 is devoted to the Minimum Noise Subspace (MNS) method and

its extensions. MNS method is a computationally efficient version of Subspace

method. We derive several extensions of this algorithm adapted to different

scenarios. We will give here the exact computational complexity of each method

and we propose an efficient way to implement the proposed algorithms.

Chapter 6 is devoted to identification algorithms robust to order overes-
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timation. Here, we exploit the structural properties of subspace method to

propose two categories of algorithms robust to order overestimation of channel

degree.

Finally, We conclude the report in chapter 7 and we propose several per-

spectives for further works.



Part I

Transmitter Side ...
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Chapter 2

Exploiting transmit diversity

Achieving transmit diversity through the use of several transmitter antennas

is a recent but important topic. There are several communication scenarios

(like broadcasting) where only transmit diversity can be applied in the sys-

tem. Moreover, for some applications, transmit diversity provides a substantial

gain comparing with that of the receive diversity. Several transmit diversity

strategies are already known [69].

Among other techniques we can mention that of the Bell Laboratories Lay-

ered Space-Time (BLAST) and Space-Time coding scenario. BLAST ([35])

transmits independent coded/uncoded bit-streams from each transmit antenna

using the spatial dimension available in a multi-element antenna array, whereas

Space-Time coding exploit both temporal and spatial diversity to construct

high performance coding designs. Otherwise, in the Space-Time coding, error-

correction coding and multiple-antenna techniques are combined to further im-

prove the performance of system, operating at the maximum possible diversity

advantage.

In this document, we address only the Space-Time coding schemes, more

precisely we address new algebraic coding scheme derived in [23].

This chapter is organized as follows : First in 2.1 we give some historical

perspectives which led to the Space-Time Code Concept. In section 2.2 we

will briefly introduce Space-Time codes and give the design criteria of such

codes in the multi-antenna context. Then, we will present the idea of Space-

Time Block Codes (STBC) and the well known Space-Time Block Codes from

orthogonal design. Section 2.3 is devoted to algebraic codes: a powerful tool

to construct STBC codes. In this section we present a STBC scheme called

Diagonal Algebraic Space-Time (DAST) codes, constructed based on algebraic

9
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codes. Finally, before conclusion, we compare two schemes presented in 2.6 in

terms of gain, decoding complexity and achievable data rate.

2.1 Historical perspectives

Although ST codes and their design criteria have been derived first in [90], the

idea of exploiting transmit diversity using several transmission antenna in order

to reduce the effect of multi-path fading was expressed and employed long time

before [105, 104, 76].

For example in [104], the same data symbol is transmitted from two anten-

nas simultaneously with a delay of one symbol interval. It has been shown that

[85, 104] this scheme provides a diversity gain of two. This scheme is an example

of delay diversity system operating over two transmit antennas. Looking this

scheme from a coding point of view rather than a signal processing problem,

Tarokh [90] recognized that the codeword transmitted over two transmit anten-

nas is a repetition code with transmit diversity of two. Thereafter, he tried to

find the channel codes which are better than repetition codes in term of per-

formance. This leads to a new category of codes adapted to multiple-antenna

systems called Space-Time codes.

In the other hand, during several years there are a lot of research activities

made at coding community in order to construct signal constellations matched

to the Rayleigh fading channel [42, 43, 15, 16, 17]. Although at the beginning

the idea was to find signal constellations over Single Input Single Output (SISO)

systems with good performance robust to fading effects, it has been shown later

[23], that some of these constellations can be also adapted to the context of

multiple-antennas providing significant coding and diversity gain.

2.2 Space-Time codes

Space-Time codes exploit both temporal and spatial diversity available in a

Multiple Input Multiple Output (MIMO) system in order to construct coding

designs which effectively mitigate fading effects and are able to send data over

several transmission paths within the propagation channel. As mentioned be-

fore, the important difference between Space-Time codes and the other transmit

diversity techniques which use multiple antenna at the transmitter side is that

it offers an intrinsic coding gain thanks to the coding procedure added at the
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transmitter side. Therefore, Space-Time code should be seen more than a sim-

ple transmit scheme which exploit space and time axes separately to access the

transmission channel.

Let us consider a wireless communication system with n transmit and m

receive antennas. Data is encoded using Space-Time codes before transmission.

The encoded data is then split into n sub-streams. At each time slot t, n data

samples are sent simultaneously over n transmit antennas. The received signal

at each receiver is the superposition of the encoded data which is corrupted by

additive noise and affected by Rayleigh Fading channel. Figure 2.1 represents

principal idea behind Space-Time coding scheme.
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Figure 2.1: Space-Time coding scheme

2.2.1 Construction criteria

The performance of Space-Time codes is determined by measuring their diver-

sity gain and coding gain. These two parameters are known as construction

tools when designing Space-Time codes over Fading channels. Design criteria

for multiple antennas are first established by Tarokh et al. in his quite well-

known paper [90]. Here, we recall briefly the construction criteria as it was

expressed at the original work in order to highlight the relationship between

these parameters and the matrices constructed from code sequences sent over

transmit antennas.

In a Multi-antenna system with the aforementioned characteristics, the error
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probability of sending code sequence

x = x1
1x

2
1 · · ·xn

1x1
2x

2
2 · · ·xn

2x1
l · · ·x2

l · · ·xn
l

1 and deciding in favor of

y = y1
1y

2
1 · · · yn

1 y1
2y

2
2 · · · yn

2 y1
l · · · y2

l · · · yn
l

is obtained by :

P (x → y|hij , i = 1, 2, ..., n, j = 1, 2, 3, ...m) ≤ exp (−d2(x, y)Es/4N0) (2.1)

where d2(x, y) can be written as:

d2(x, y) =
m∑

j=1

l∑

t=1

∣∣∣∣
n∑

i=1

hij(y
i
t − xi

t)

∣∣∣∣
2

x and y denote two different code sequences and hij is the path gain between

transmitter antenna i and the receiver antenna j. The channel is assumed quasi

static flat fading 2. i. e. path gains are assumed constant during a frame and

vary from one frame to another. N0/2 is the noise variance per dimension and

Es stands for the average energy per symbol of constellation. d2(x, y) can be

written in quadratic form as:

d2(x, y) =
m∑

j=1

ΩjAΩ†
j

where Ωj = [h1j , h2j , ..., hnj ], A = B(x, y)B(x, y)H and B(x, y) stands for:

B(x, y) =





x1
1 − y1

1 x1
2 − y1

2 · · · x1
l − y1

l

x2
1 − y2

1 x2
2 − y2

2 · · · x2
l − y2

l
...

...
. . .

...
xn

1 − yn
1 xn

2 − yn
2 · · · xn

l − yn
l





Next, expressing d2(x, y) in term of eigenvalues of A, (λi, i = 1, 2, ...n) and

computing the upper bound of (2.1), we obtain [90]:

P (x → y) ≤
(

1∏n
i=1(1 + λiEs/4N0)

)m

(2.2)

1xi
t denotes the transmitted data at time slot t over transmit antenna i.

2Channel is time invariant over the observation period and its coefficients are modeled

by independent samples of complex Gaussian random variables with zero complex mean and

variance 0.5 per dimension. Therefore, the signals transmitted from different antennas undergo

independent fades.
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Let r denote the rank of A therefore n − r eigenvalues of A are zero, then the

equation (2.2) implies:

P (x → y) ≤
( r∏

i=1

λi

)−m

(Es/4N0)
−rm (2.3)

Therefore, a diversity advantage of rm and a coding advantage of (λ1λ2λ3...λr)
1/r

is achieved. (λ1λ2λ3...λr) is the absolute value of the sum of the determinants

of all the principal r × r cofactors of A.

Remark : The diversity gain is the power of Signal to Noise Ratio (SNR) in

the denominator of Pairwise Error Probability expression and the coding gain

is the gain obtained over an uncoded system which provides the same diversity.

Having Pairwise Error Probability expression in mind, design criteria for

Space-Time codes over uncorrelated Rayleigh fading channel can be expressed

as :

• The Rank Criterion : In order to obtain the maximum diversity mn, the

matrix B(x, y) has to be full rank for any code word x and y. If B(x, y)

has minimum rank of r, then a diversity of rm is achieved. Diversity gain

was also derived in [51].

• The Determinant Criterion: Suppose that the diversity advantage of rm

is our target. The minimum of rth roots of the sum of determinants of all

r × r principal cofactors of A = B(x, y)B(x, y)† taken over all distinct

codewords x and y corresponds to the coding advantage. The design

target is making this sum as large as possible. If a maximum diversity

nm is our target, the minimum of the determinant of A taken over all

distinct codewords must be maximized.

The above mentioned criteria are used in the following in order to design

ST codes over flat fading channels. Using the appropriate expression of Pair-

wise Error Probability, the design criteria over fast fading channels also can be

obtained [90].

In this document we limit our discussion to the ST codes designed for the

flat fading channels. Even if, some of the proposed codes are also suitable for

the fast fading channels.

In his original paper [90], Tarokh has proposed trellis codes adapted for

multiple-antenna for coding and Viterbi decoder for decoding such constructed
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codes. The proposed ST codes are optimal; that is they produce a good tradeoff

between the transmission rate, diversity, trellis complexity, and constellation

size. Moreover, it is mentioned that it is possible to design ST codes in order

to obtain the highest rate, maintaining a fixed diversity advantage. Otherwise,

if it is necessary, the ST codes used in this document can be exploited in order

to construct some high date rate schemes [23].

Remark 1 : There is a tradeoff between data rate, diversity and coding gain

and implementation complexity when designing ST codes. The choice of one

scheme rather than another depends on the practical constraints and desired

objectives. Here, we focus on systems which are not working at rates greater

than the usual systems but operating at significantly lower signal-to-noise ra-

tios. Proposed systems exploit the maximum transmit diversity available in

a multi-antenna context and they guarantee a good coding gain with a good

performance. More details for these kind of constructions will be given in next

chapter.

Remark 2 : ST codes maintain their coding and diversity advantages in pres-

ence of channel estimation errors, mobility and multiple paths as shown in [89].

However, it is known that when the fading coefficients between channels are

correlated the capacity and consequently the performance of system degrades

dramatically [86, 13] and [24] 3.

2.2.2 Space-Time block codes from orthogonal design

ST trellis codes proposed in [90] have been designed by hand. Moreover, their

coding/decoding procedure is computationally complex (ML Viterbi decoding

for a 8-PSK constellation with 32 states). These considerations motivated the

researchers to find coding schemes simple to construct and easy to decode.

The reduced complexity of block decoding techniques and the existence

of a simple block scheme for two transmit antennas (Alamouti scheme [10])

motivated the research community to generalize such schemes.

Definition 1 An ST block code associates with each information vector x =

(x1, x2, ..., xn) an n × l matrix B(x) with elements bjt, j = 1, 2, ..., n and t =

1, 2, ..., l such that the element bjt is sent over transmit antenna j at time t.

3Generally speaking, the systems using orthogonal structures are more robust to the effect

of correlated fades. This fact is demonstrated via simulations in [14].
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2.2.2.1 Construction and properties

Mathematical framework of orthogonal designs [75], has been used in [88, 87]

to construct block ST codes.

In an ST block code from orthogonal design the aforementioned matrix

B(x) is an orthogonal matrix.

The reader can refer to [88] for construction and decoding details for more

information. Here, we just recall some properties of so called Space-Time Or-

thogonal design. The important advantages of orthogonal designs is summa-

rized in the following :

• They provide maximum possible achievable rate 4 of 1 symbol/sec at

full diversity order mn. We remember that n is the number of transmit

antennas and m denotes the number of receive antennas.

• Maximum-Likelihood decoding procedure is extremely simple. Indeed,

due to the orthogonal structure of these codes the ML decoding is possible

only by linear combining at the receiver side.

• The orthogonal structure of these codes makes them more robust (compar-

ing with trellis codes) when the channel fading coefficients are correlated

[14].

Some disadvantages of these codes are:

• Real orthogonal designs exist only for a limited number of transmit an-

tennas n = 2, 4 and 8.

• For complex orthogonal designs the maximum achievable rate for the fixed

diversity mn depends on n and it can be 2/3 symbol/sec.

The only complex orthogonal scheme with maximum rate of one is Alam-

outi scheme [10].

• To the author’s knowledge, the number of complex orthogonal designs are

also limited. They have been reported in [88] for only n = 2.

In the following we present an alternative scheme for exploiting the maximum

diversity in the Multi-antenna context. We introduce first, the special cod-

ing/decoding aspects of these schemes, then we compare it to the previous one,

i.e. the orthogonal design ST code.

4It has been shown that for a diversity order of mn it is possible to transmit 1 symbol per

time slot and that is the maximum possible rate.
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2.3 Algebraic codes : A powerful alternative

Among the existing techniques to build Space-Time block codes we can mention

a powerful approach using algebraic number theory to construct full diversity ST

codes. This theory has been used to construct appropriate modulation schemes

well adapted to Rayleigh Fading channel based on rotated constellations.

Here, we recall the main properties of such a constellation and we give a

brief review on the way these constellations have been constructed.

2.3.1 Rotated constellation

This idea has been first proposed by K. Boulle and J.-C. Belfiore in [15]. In this

work they have proved that an n-dimensional constellation where all pairs of

distinct symbols have all their coordinates distinct, leads to n-th order diversity.

In other words a two-dimensional rotated QAM constellation as shown in figure

2.2 has a diversity order of 2 comparing with a classical QAM constellation with

a transmit diversity of 1. Let’s consider the above mentioned example: if one of

Figure 2.2: The transmission diversity of 2 for the rotated constellation

the symbols of the resulted rotated QAM constellation is affected by fading, the

receiver can recover the transmitted symbol as all of the transmitted symbols

have their coordinates different from each other. Therefore the performance

of system can be enhanced using the appropriate rotated constellation over

a fading channel. This can be shown mathematically using the expression of

Cheroneff upper bound on the pairwise error probability. See [30, 15, 16] for

more details . Later on, it has been mentioned out that the diversity order

is not the only parameter which enhance performance of the system. For a

given signal-to-noise ratio it is known that maximizing the Minimum Product
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Distance (MPD) between two constellation points is another parameter which

affects the system performance.

At the beginning, these constellations were only used to improve the per-

formance of SISO system over Fading channels. M. O. Damen was the first

who applied these constellations on the context of Multiple-antennas in [23] by

imposing design criteria of 2.2.1 on algebraic codes. This idea was then gener-

alized in [27] to propose new block ST practical architecture, where the rotated

constellation are used to code information symbols.

A lot of research efforts have been made in coding community in order to

find the best rotations in term of diversity and coding gain. We can mention

here the work of [16] where a method for construction of best rotations for low

dimension n ≤ 8 has been derived. Best rotation means here the rotation with

full transmit diversity and the maximum values of MPD. In the following, for

n ≥ 8 we consider the quasi-optimum rotations proposed in [11] which provide

maximum diversity gain for certain number of transmit antennas and a good

coding gain.

The latter have been recently generalized in [36] to provide full transmit

diversity for any dimension.

2.3.1.1 Construction Procedure and Properties

We expressed that the idea behind the rotated constellation is to find rotations

with maximum diversity gain and a good value of coding gain. Here we present

first the exact definition of diversity gain and minimum product distance in this

context, then we give the algorithm used in order to construct such rotations.

Diversity Order Diversity order is referred to as the minimum number of

distinct components between two constellation points. It is also called signal

space diversity in [16] . In this report we use the rotations constructed for

n = 2q transmit antennas. These constellations provide maximum diversity

order over fading channels.

Minimum product distance is a design parameter defined by

dd,min
△

= min
y=x1−x2,x1 6=x2

d∏

j=1

|yj |

where x1 and x2 denote two distinct codewords and y = [y1, ..., yd].



18 Exploiting transmit diversity

Construction procedure For small dimensions of d = 2, 3, 6, the quasi-

optimal rotation matrix with the best value of the minimum product distance

is obtained using an iterative algorithm [16].

For larger values of d = 2q (q ≥ 3), the quasi-optimal rotation matrix with

a good value of the product distance is obtained using a general algorithm :

M=[];

for j=1:d

M(j,:)=sqrt(2/d)*cos((pi/(4*d))*(4*j-1)*(2*(1:d)-1));

end

where the resulted matrix corresponds to a d × d rotation matrix. For

example for d = 2 the optimal rotation matrix corresponds to :

M2 =

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

]
, with θ = 1.0172 radians. (2.4)

Remark : The optimal rotations are those that guarantee a maximum value

of minimum product distance. The relation between these parameters and the

design criteria established in 2.2.1 will be explained later when we describe the

practical schemes.

2.3.2 Sphere Decoder

Sphere decoder is used in order to decode the rotated constellations described

before. Here we give a brief review of this decoder and its properties.

Sphere decoder is a Maximum Likelihood decoder used to decode lattices5.

in presence of AWGN noise [99] with a moderate complexity. It has been shown

that each Multiple-antenna system has a lattice representation [23]. Therefore,

Sphere Decoder can be used to decode multiple-antenna communication systems

as well. Despite of Viterbi decoder, the complexity of the Sphere decoder is

quasi-independent of constellation size which makes it interesting for high data

5An n-dimensional lattice Λ can be written as

Λ = {y|y = Gx, x ∈ Zm}.

G is called the generator matrix and columns of G are linearly independent m-dimensional

vectors called the basis of Λ. x represents the information vector. Therefore, each point of

lattice y can be written as a linear combination of a basis vector (see [21] for more details on

lattice representation).
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rate communication systems. The Sphere decoder can easily be adapted to

decode coded/uncoded communication system. For example this decoder has

been used in the context of ST block codes [23, 27, 22]. In [18] Sphere Decoder

is also used in the context of multi-carrier CDMA systems.

We will show in 2.3.2.1 that the problem of ML decoding of a lattice can

be expressed geometrically as a problem of finding a basis of lattice with short

vectors. This problem is an important problem in geometry of numbers and it

has been investigated since the 80’s. We believe that M. Pohst was the first who

developed an efficient algorithm for this purpose [72]. Later on, some further

improvement of the algorithm has been made and a first complexity analysis

has been performed in [33]. Moreover in the same paper it has been pointed out

that the Lenstra Lenstra Lovasz (LLL) algorithm proposed by [61] is the best

numerical algorithm for complexity reduction of the proposed algorithm. The

Sphere Decoder algorithm has been applied first to the communication context

in [98, 99]. It has been highlighted that the so called Sphere Decoder algorithm

is well adapted to decode multidimensional modulation schemes in presence of

Fading. A Generalized Sphere Decoder specially adapted to Multiple-antenna

system has been proposed in [25] which makes possible the ML decoding of

Multiple-antenna system with arbitrary number of transmit and receive an-

tennas. Sphere Decoder was initially proposed for real valued systems . The

generalization of SD to complex valued systems has been made in [29].

The complexity issues concerning SD is still an open and interesting topic.

Related works on this topic are discussed later in section 2.3.2.2.

2.3.2.1 Algorithm Description

Here, we recall the structure and principals of Sphere Decoder algorithm. For

more details and a flew chart of algorithm the reader can see [99]. Let us

consider a Multiple-antenna system. The received vector r can be written as:

r = Mx + ν (2.5)

where x represents the information vector of size n and M is the lattice gener-

ator matrix. ν denotes the real AWGN noise in the system 6. The channel is

assumed to be known at the receiver side. The Maximum Likelihood decoding

6Here we consider the case of real information vector and real noise. The cases of complex

valued vectors and Fading channels are treated later.
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is based on the minimization of the following equation:

min
x

||r − Mx||2 (2.6)

Geometrically, the lattice decoding algorithm searches for the points of lattice

which are found in the Sphere of a radius
√

C centered at the received point r.

Therefore, there is no need to make an exhaustive search over all lattice points.

Moreover, if the radius of sphere is properly chosen one can limit the number

of operations used in order to find the desired point in sphere. Equation (2.6)

is equivalent to :

Q(x) = min
x′

||Mx′||2 (2.7)

= min
x′

(x′HMHMx′) (2.8)

= min
x′

(x′HQHQx′)

where x′ = x−ρ and ρ = M#r. QHQ is the result of cholesky factorization of

MHM . Therefore, Q is an upper triangular matrix. We denote the elements

of Q by qi,j for 1 ≤ i, j ≤ n.

Using the above mentioned transformation, sphere of radius
√

C is converted

into an ellipsoid centered at the origin of the new coordinate system defined by

x′. The problem of ML decoding can now be seen as a problem of finding the

shortest vector belonging to the new lattice represented above.

The corresponding range of two last elements of x, xn and xn−1 can be

expressed as:

⌈−
√

C

qn,n
+ ρn⌉ ≤ xn ≤ ⌊

√
C

qn,n
+ ρn⌋

⌈−
√

C − |qn−1,nx
′

n|
qn−1,n−1

+ ρn−1⌉ ≤ xn−1 ≤ ⌊
√

C − |qn−1,nx
′

n|
qn−1,n−1

⌋

(2.9)

where ⌈x⌉ and ⌊x⌋ denote respectively the integer ceil and the floor functions

and |.| denotes the absolute value. The expression of xn−2 can be also obtained

by the same procedure until all points inside the sphere are found.

More precisely, the decoding algorithm starts from the last component xn

and performs a bounded search over a fixed upper and lower bound defined in

[33] in order to find the shortest vector of lattice.At each step, the initial radius

of sphere
√

C is changed in order to find a new candidate closest point to the

received point. See [16, 53] for a complete description of the algorithm. The

Sphere Decoder program is also available on [1].



2.4. DIAGONAL ALGEBRAIC SPACE-TIME CODES 21

Remark 1 : This representation can easily been extended to the case of

complex constellation with complex AWGN noise (see [29] for more details).

The idea is to separate the complex and the real part of the received vector,

writing:

r′
△

= [ℜ(rT ) ℑ(rT )]T

=

[
ℜ(M) ℑ(M)

−ℑ(M) ℜ(M)

]
[ℜ(xT ) ℑ(xT )]T + [ℜ(νT ) ℑ(νT )]T

In this case the original dimension of lattice n is extended to 2n. Therefore,

the scheme is computationally complex. In [55] a Sphere Decoder algorithm

adapted to complex vectors has been proposed. This algorithm is computa-

tionally less complex than separating real and complex elements of received

vector. However, an exact analysis of complexity is not made in this paper.

Remark 2 : When the channel is Rayleigh Fading the Generator matrix

M contains also Fading coefficients. Therefore, the generator lattice is totally

arbitrary. In this case choosing the initial sphere radius becomes more crucial

and decoding procedure might be slower in this case. It seems that the choice

of initial sphere radius in the fading environments is not considered separately

in the related works on complexity [53].

2.3.2.2 Complexity issues

For rotated lattices, the search radius is set to C = 1, and the computational

complexity is approximated by O(n6) [99]. Recent results show that the decod-

ing of a lattice needs at most O(n4.5) operations for low signal-to-noise ratio

and O(n3) operations for high signal-to-noise ratio [28]. Complexity issues of

SD algorithm have also been addressed in [53, 77] for real data and the case

where the number of transmit and receive antennas are equal. In [19], a mod-

ified sphere decoding algorithm has been proposed where the performance is

independent of the initial choice of radius Sphere.

2.4 Diagonal Algebraic Space-Time codes

Rotated constellation and Sphere Decoder have been already introduced in

previous sections. In this section we will present Diagonal Algebraic Space-

Time codes constructed using these tools. DAST codes are constructed by
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combining the rotated constellations and Hadamard transforms of appropriate

dimensions. We will describe here the construction and properties of these

codes.

2.4.1 Construction and Properties

Let Mn be a rotation of dimension n× n and Hn be the Hadamard transform

of dimension n = 2q, then DAST block code Ξn, of dimension n is constructed

by :

x = Mna = [x1 x2 ... xn]T

Ξn =





x1~11 x2~12 · · · xn~1n

x1~21 x2~22 · · · xn~2n

...
...

. . .
...

x1~n1 x2~n2 · · · xn~nn





(2.10)

Where a = [a1 a2 ... an]T denotes the information vector and ~ij corresponds

to the element (i, j) of the Hadamard transform Hn. The proposed DAST code

spreads each component xj of the rotated vector x by the Hadamard transform

Hn. The spread component is then sent over n antennas at time instant j.

Diversity gain : The proposed block ST code has maximum transmit diver-

sity gain of n for n transmit antenna 7. We limit our designs to the case where

n = 2q. Using such constructed ST block codes with properly chosen algebraic

rotations Mn, we obtain the maximum achievable diversity order nm in the

system when rotated constellation is used.

7See [27] for the proof.
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Coding gain : The coding gain of DAST code can be obtained 8 by

min
y 6=0

det (Ξ†
nΞn) = min det

(
diag(y1, y2, ..., yn)†H†

nHndiag(y1, y2, ..., yn)

)

= min det

(
H

†
nHn diag(|y1|2, |y2|2, ..., |yn|2)

)

= min nn
n∏

j=1

|yj |2

(2.11)

Having H†
nHn = nIn in mind, taking the minimum of nth root of the above

equation, yield to the coding gain :

δn = n(dn,min)2/n

where dn,min denotes the minimum product distance.

It is proved in [27] that the DAST block code Ξn of dimension n has a

maximum coding gain over the ST block codes formed by the conjunction of

the rotated constellation and linear transformations with entries from {+1,−1}.
In the case of DAST codes with n = 2q there is only n orthogonal sequences

with entries {+1,−1} of length n. This makes the Hadamard transform the

unique transform maximizing the coding gain. We can see later that replacing

this transform by other matrices with entries coming from {+1,−1} which are

not necessary of length n permits us to construct other ST block codes.

Achievable data rate : Data rate of the DAST codes constructed here is 1

sym/sec/Hz.

Remark : The ST block codes designed here have full data rate of 1 symbol

per time slot, and they achieve full modulation diversity nm. If necessary, we

can also construct ST codes with higher data rates using the aforementioned

tools. Decoding procedure of ST block codes constructed above is made by SD

algorithm with moderate complexity 2.3.2.

2.5 Comparisons

The following table allows us to compare DAST codes and ST codes from

Orthogonal designs.

8By definition, coding gain is computed over all distinct codewords x and e, with y =

x − e = M n(a − b).
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DAST codes Orthogonal codes

Transmit antennas n = 2q n = 2, 4 and 8

Diversity gain full diversity for n full diversity for n

Coding gain good coding gain regarding n less than DAST codes

Decoding complexity ML decoding with O(n3) linear ML decoding

Data rate full rate for both real full rate for real,

and complex const. half rate for complex const.

System Performance achieve better performance for n > 2 –

Table 2.1: Diagonal Algebraic ST codes versus ST codes from Orthogonal de-

signs

More details can be found in [27]. However it is shown in [27] that for the

same spectral efficiency, DAST block codes overcome ST codes from orthogonal

design in term of performance for n > 2.

2.6 Conclusions

In this chapter we have provided a brief review on the advantages and targets

of Space-Time codes. We have also introduced two well known STBC schemes

called Space-Time codes from orthogonal design and DAST codes. Both of

these schemes are compared in term of diversity and coding gain, decoding

complexity, data rate and achievable performance. We have also proved that

the DAST codes is a good performing coding scheme that achieves maximum

diversity and a sufficiently large-valued coding gain in a MIMO context.

Other forms of DAST block codes can be obtained, replacing the Hadamard

transform by any other transform with {+1,−1} entries, even if the transform

matrix is not square. This idea is used in the next chapter to introduce ST

codes for Coded Division Multiple Access (CDMA) context. Motivated by

the same idea, similar constructions can be obtained depending on the desired

architecture.

Independent of ST block codes there are some topics that can be explored

separately. For example, turbo equalization with algebraic Space-Time codes

seems to be another interesting topic to be investigated. The need of a uni-

fied model for fading channel which takes into account different propagation

parameters is also important in practice.
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In this document, the focus is made on the physical layer aspects of multi-

antenna systems. However, appropriate protocols, if possible, might be devel-

oped in order to support the data flow obtained in the physical layer.
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Chapter 3

Transmit diversity scheme for

CDMA system

In this chapter we propose a new transmit diversity scheme for multi path

Fading channels 1. At the beginning, in section 3.2, we highlight the need

for transmit diversity in the CDMA context. Then in 3.3, we give a brief

overview on existing schemes and their limitations. In section 3.4 we deal with

a new approach which consists of using Space-Time codes on CDMA system. In

Section 3.4.1 we present the system model. Section 3.4.2 treats the single user

system; we give the ST codes construction, their properties and the decoding

algorithm. The generalization to multiuser systems is given in Section 3.4.4.

Multi path fading channel scenario is treated in Section 3.4.5. In Section 3.4.6

we tackle the problem of blind channel estimation in a multi-antenna quasi-

static fading environment. Simulation results are given in Section 3.4.7. In

Section 5.8 we discuss the obtained results.

3.1 Introduction to CDMA system

In this section we will give a brief review of CDMA system in order to highlight

the main properties of these schemes that are used or mentioned later in this

chapter. However, a large number of references on CDMA system exist. We

can mention [2] and [44, 97] for further reading.

1The results concerning this work have already been published in : M. O.Damen, A. Safavi

and K.Abed-Meraim, “ On CDMA with Space-Time Codes over Multi-path Fading channel

“, IEEE Transactions on Wireless Communications, Jan. 2003, pp. 11-19.

27
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Access schemes For radio systems there are two resources, frequency and

time. Division by frequency, so that each pair of communicators is allocated part

of the spectrum for all of the time, results in Frequency Division Multiple Access

(FDMA). Division by time, so that each pair of communicators is allocated

all (or at least a large part) of the spectrum for part of the time results in

Time Division Multiple Access (TDMA). In Code Division Multiple Access

(CDMA), every communicator will be allocated the entire spectrum all of the

time. CDMA uses codes to identify connections.

Spreading codes CDMA uses unique spreading codes to spread the base-

band data before transmission. The signal is transmitted in a channel, which

is below noise level. The receiver then uses a correlator to despread the wanted

signal, which is passed through a narrow bandpass filter. Unwanted signals will

not be despread and will not pass through the filter. Codes take the form of a

carefully designed one/zero sequence produced at a much higher rate than that

of the baseband data. The rate of a spreading code is referred to as chip rate

rather than bit rate.

CDMA codes are not required to provide call security, but create a unique-

ness to enable call identification. Codes should not correlate to other codes

or time shifted version of itself. Spreading codes are noise like pseudo-random

codes, channel codes are designed for maximum separation from each other and

cell identification codes are balanced not to correlate to other codes of itself.

Spreading process CDMA uses Direct Sequence spreading, where spreading

process is done by directly combining the baseband information to high chip

rate binary code.

Multi path and RAKE receivers One of the main advantages of CDMA

systems is the capability of using signals that arrive in the receivers with dif-

ferent time delays. This phenomenon is called multipath. FDMA and TDMA,

which are narrow band systems, cannot discriminate between the multipath ar-

rivals, and resort to equalization to mitigate the negative effects of multipath.

Due to its wide bandwidth and rake receivers, CDMA uses the multipath signals

and combines them to make an even stronger signal at the receivers. CDMA

subscriber units use rake receivers. This is essentially a set of several receivers.

One of the receivers (fingers) constantly searches for different multipaths and
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feeds the information to the other three fingers. Each finger then demodulates

the signal corresponding to a strong multipath. The results are then combined

together to make the signal stronger.

3.2 Why using transmit diversity in CDMA ?

Applications and services described in 3-rd Generation (3G) wireless systems

(based on CDMA) require significantly higher capacities than what is realized

today. Multiple receive antennas can be used at the user terminal to increase the

capacity of the CDMA system. Exploiting receive diversity in CDMA receivers

is a well known topic [97]. However, since 98 there was almost no proposition

exploiting transmit diversity in CDMA.

There are some scenarios where the receive diversity can not be implemented

or it is not useful. Because for certain applications, like Internet, data flow is

not balanced. This is the case when in the system down link, a considerable

flow of data is sent to the user under a simple request.

Moreover, some practical considerations like as physical implementation of

several antennas or complex processing units on the small handset is a big

problem.

On the other hand, it is well known [91] that MIMO configuration, if it is

well exploited, provide substantial improvement of the capacity.

Consequently, one possible solution to these limitations would be to intro-

duce antennas at the transmitter side to obtain also transmit diversity. At the

transmitter side (base station) it is possible to implement complex processing

units and there is not space-limitation in order to implement several antennas.

Moreover, the coding and diversity advantage obtained using transmit diversity

is more than that of receive diversity.

3.3 Overview of related works

Motivated by previously mentioned factors, a lot of research efforts have been

made in order to introduce transmit diversity in the CDMA communication

systems. Here, we focus on transmit diversity techniques where the propagation

channel is not known at the transmitter. These techniques are known as open

loop transmit diversity techniques. We can mention several propositions:
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Delay-Transmit-Diversity (DTD) In this proposition, the base station

transmits the signal and the delayed version of the signal over two transmit an-

tennas [103]. To the author’s knowledge it is the first proposition attempting to

combine multiple transmit antennas with CDMA system. This scheme exploits

the full spatial diversity, but the sources are not allocated properly. Other-

wise, the bandwidth and the number of spreading sequences used are two times

more than a simple scheme when the transmit diversity is not used. Moreover,

interference level due to the transmission scheme can not be neglected.

Orthogonal Transmit Diversity (OTD) The base station transmits or-

thogonally spread signals over multiple antennas [78]. This scheme provides

large improvement over DTD scheme and it has been adopted by third gener-

ation CDMA systems in the U.S.A. [78]. In this scheme no-extra sources are

needed in the transmitter side.

Space-Time Block Coded transmit diversity (STBC) This scheme is

also known as the Alamouti scheme [10]. In this scheme two symbols are sent

over two transmit antennas during two time slots. See [10] for more details and

ML decoding procedure. This scheme is also included in the UMTS standards

[3]. In this scheme spatial and temporal diversity advantage inherent in the

system is well exploited. Moreover, a simple decoding procedure has been

proposed for this scheme. But, extension of this scheme to more than two

transmit antennas is not straightforward.

Space-Time Spreading (STS) Space-Time Spreading is proposed in [54].

Contrary to the STBC, each user’s data is spread in a different fashion on each

transmit antenna. STS schemes proposed for two transmit antennas and STBC

have the same diversity advantage. This scheme is included in the IS-2000

standards [4]. It has been also extended to the case of more than two transmit

antennas [56]. However, there are limitation on these schemes. When using

more than two transmit antennas, the number of spreading sequences is larger

than the number of transmit antennas.

3.4 CDMA with Space-Time codes : A new approach

Here, we propose a different approach which exploits the benefits of Space-Time

codes, proposed in [90], over CDMA system. We include an appropriate coding
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procedure at the transmitter side in order to exploit maximum possible diver-

sity and coding gain available in the system2. More precisely, we consider a

CDMA system where each user has several antennas and by a proper combi-

nation of different Spreading Sequences (SS) and full spatial diversity rotated

constellations, the corresponding user satisfies the construction criteria of ST

codes [90] and achieves full transmit diversity. The receiver has one or possibly

several receive antennas and uses a linear multiuser detector based on the com-

bination of linear decorrelation with respect to all users, and the application of

the sphere decoder [29] to decode each user separately. Moreover, in a multi

path fading channel scenario we present a method of blind channel estimation

based on subspace decomposition.

3.4.1 System model

We consider a system of K users transmitting simultaneously and synchronously.

Each user has p transmit antennas and uses p spreading sequences of length N ;

in the sequel we only consider n
△

= Kp ≤ N 3. We assume that all the SS are

linearly independent, and denoted by:

sj = [sj(1), . . . , sj(N)]T , j = 1, . . . , n. (3.1)

where the superscript T denotes the transpose and sj(t), t = 1, . . . , N , denotes

the spreading coefficient at time t. The user i uses the sequences s(i−1)p+v,

i = 1, . . . , K, v = 1, . . . , p. We also suppose that the receiver has m receiver an-

tennas. The transmission is done by bursts of length l over a quasi-static fading

channel. Between each transmitter antenna j and receiver antenna k there are

L distinct paths, where the channel coefficients of each path are denoted here

by hq
kj , for q = 1, . . . , L. In other words, hkj(t) =

L∑

q=1

hq
kjδ(t − τ q

kj), where τ q
kj

denotes the time delay for the q-th path. The antennas are sufficiently spaced

so that hq
kj are assumed to be mutually uncorrelated fading coefficients.

2Contrary to the previous schemes where the available inherent diversity in the system is

exploited.
3In the case where multiple receivers are available, this limiting condition becomes Kp ≤

mN (where m is the number of receivers) [20].
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3.4.2 Single-user single-path

3.4.2.1 Coding algorithm

Consider a single user multi-antenna CDMA scenario where the user wants

to transmit the information symbols a1, a2, . . . , ap by using the spreading se-

quences s1, . . . , sp over p transmit antennas. We propose the following scheme.

First, we rotate the information symbol vector a = [a1, . . . , ap]
T by the rotation

Mp to obtain x = [x1, . . . , xp]
T = Mpa. Then we spread the symbol xj by

the SS sj and send it over the transmit antenna j = 1, . . . , p. We can write

the proposed ST code at the word x as a p × N matrix B(x) with entries

bjt, j = 1 . . . p, t = 1 . . . N , where bjt is sent at time t over the antenna j

B(x) =





x1 0 · · · 0

0 x2
. . .

...
...

. . .
. . . 0

0 · · · 0 xp





[
s1 . . . sp

]T

= diag(x1, . . . , xp)S
T . (3.2)

3.4.2.2 Example

Consider a single user system with two transmit antennas using the following

SS of length 4 (K = 1, p = 2, N = 4)

ST =
1

2

[
1 −1 1 −1

1 1 −1 −1

]
.

The optimal 2 × 2 real rotation which maximizes d2,min, M2 is given by [26]:

M2 =

[
cos(θ) sin(θ)

− sin(θ) cos(θ)

]
, with θ = 1.0172 radians.

Let a = [a1, a2]
T be the information symbol vector, then over two transmit

antennas and 4 chip periods we transmit:

B(x) =
1

2

[
x1 −x1 x1 −x1

x2 x2 −x2 −x2

]

with [
x1

x2

]
= M2

[
a1

a2

]
=

[
cos(θ)a1 + sin(θ)a2

− sin(θ)a1 + cos(θ)a2

]
.

The i-th column of B(x) represents the transmitted signals at antenna 1 (first

row) and antenna 2 (second row) at the i-th chip period.
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3.4.2.3 Properties

Proposition 1 The proposed ST code in (3.2) over p transmit antennas and

N periods of time has a transmit diversity gain of p.

Proof. Let y = x − e = Mp(a − b) such that a 6= b. Consider the ST code

B(y) at the word y. Since Mp generates a full spatial diversity constellation,

one has yj 6= 0 ∀ j = 1, . . . , p and ∀a 6= b in the considered constellation.

It follows that the matrix diag(y1, . . . , yp) has a rank p and thus the ST code

matrix B has a rank p over all the distinct codewords since the SS are linearly

independent. This implies that the ST code has a transmit diversity gain of p.

2

Note that the coding gain depends on the cross-correlation of the SS, and

it is equal to [90]:

δp
△

= min
x 6=e

(
det

(
B(y)BH(y)

))1/p

=



det(ST S) min
a 6=b

p∏

j=1

|yj |2



1/p

=
(
det(ST S)

)1/p
(dp,min)2/p (3.3)

when the SS are assumed to take real values, which is the case in this work.

The data rate of the proposed ST code is p/N symbol/Tc , where Tc denotes

the duration of a chip. During N chip periods the received signal at the k-th

receiver antenna, k = 1 . . .m, is given by

rk = Sdiag(hk)Mpa + νk (3.4)

where diag(hk) = diag(hk1, . . . , hkp) is a diagonal matrix which has the fading

coefficients of the k-th receiver antenna on its diagonal. The N × 1 vector νk

represents the additive white Gaussian noise (AWGN), and it is assumed to

have independent components with variance σ2 per dimension, i.e., E[νkν
H
k ] =

2σ2IN , with IN the N × N identity matrix.

3.4.3 Decoding algorithm

We suppose here that the channel is known at the receiver. Channel estimation

is addressed in Section 3.4.6. Let S# △

= (ST S)−1ST denote the p×N pseudo-

inverse matrix of S [47]. The decoding is performed as follows.
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1. First, we multiply the received signal by S# at each receiver antenna

r′
k = S#rk = diag(hk)Mpa + ν ′

k (3.5)

where ν ′
k is a colored Gaussian noise with covariance matrix equal to

2σ2S#S#T
. When the SS have good cross-correlation properties, ν ′

k can

be approximated by a white Gaussian process. Otherwise, the signal r′
k

needs to be whitened.

2. Next, we perform a channel phase inversion4 at each receiver antenna,

which can be expressed as

r′′
k = diag

(
e−iφk1 , . . . , e−iφkp

)
r′

k

= diag(|hk1|, . . . , |hkp|)Mpa + ν ′′
k, (3.6)

where hkj = |hkj |eiφkj , with i =
√
−1.

3. Finally, we collect the signals on all the receiver antennas

r =
[
r′′

1
T
, . . . , r′′

m
T
]T

=





diag(|h11|, . . . , |h1p|)
...

diag(|hm1|, . . . , |hmp|)



Mpa + ν

= HMpa + ν (3.7)

where H is an mp × p real-value matrix of rank p. In order to take ad-

vantage of all the available information on all the receiver antennas we

propose the following detection procedure based on singular value decom-

position (SVD) followed by sphere decoding [29]:

• [U ,Σ, V ] = SVD(H): H = UΣV T , where Σ is a p × p diagonal

matrix, U is an mp×p matrix and V is a p×p matrix with UT U =

V T V = Ip.

• r′ ←− UT r = ΣV T Mpa + ν ′, where ν ′ = UT ν.

• Apply the sphere decoder algorithm on the real and imaginary parts

of r′, in order to obtain transmitted symbol vector a.

4Even in blind channel identification, it is assumed that either the channel phase is known

or estimated by pilot symbols.
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The sphere decoder algorithm reaches near-ML decoding performance with a

complexity approximated by O(p6) arithmetical operations5 [29], in the sense

that it maximizes the least squares (LS) criterion

min
a∈A

wwwr′ − ΣV T Mpa
www

2
= min

a∈A

wwwr − HMpa
www

2

where A denotes the set of all symbol vector values. This criterion coincides

with the ML criterion when the additive noise is white Gaussian [74].

A suboptimal approach that avoids the computation of the SVD of H con-

sists of using a coherent receiver according to:

• Compute the p × 1 vector r̃ as:

r̃ =
m∑

i=1

r′′
i = diag

(
m∑

i=1

|hi1|, . . . ,
m∑

i=1

|hip|
)

Mpa + ν̃

where ν̃ is a p × 1 noise vector of covariance matrix E[ν̃ν̃H ] = 2σ2mIp.

• Apply the sphere decoder algorithm on the real and imaginary parts of r̃

, in order to obtain transmitted symbol vector a.

3.4.4 Generalization to multi-user

Now we consider K users transmitting simultaneously and synchronously so

that the user i uses the ST code expressed by (3.2) with the SS given by

s(i−1)p+v, i = 1, . . . , K and v = 1, . . . , p. All users use the same rotation

matrix Mp, and their information symbols are supposed to be independent

and identically distributed. At each receiver antenna k = 1, . . . , m, the received

signal is given by

rk = [s1, . . . , sn] diag(hk1, . . . , hkn)Ma + νk (3.8)

where n
△

= Kp, and a = [a1, . . . , an]T so that the user i transmits the informa-

tion symbols a(i−1)p+v, v = 1, . . . , p. The n × n block diagonal matrix M has

the matrix Mp on the p× p principal diagonal blocks and zeros elsewhere, i.e.,

5This complexity represents a rather “pessimistic” bound on the worst case complexity of

the sphere decoder algorithm. Recent results show that the efficient implementation of the

sphere decoder allows for much less complexity (roughly cubic in p), especially at moderate

and high SNR [28].
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M
△

= Ip ⊗ Mp, with ⊗ denoting the Kronecker product.

M =





Mp 0p . . . 0p

0p Mp
. . .

...
...

...
. . . 0p

0p 0p . . . Mp




, (3.9)

with 0p is a p × p matrix with all the entries equal to 0.

Comparing (3.8) and (3.4), one can represent the proposed multiuser ST-

CDMA scheme as a single user with n
△

= Kp transmit antennas with a trans-

mission rate of n/N symbol/Tc.

Proposition 2 The proposed multiuser ST-CDMA scheme has a transmit di-

versity gain of p.

Proof. This is a direct result when one represents the multiuser scheme by the

single user ST code B(x) in (3.2) with S = [s1, . . . , sn] and x = Ma. 2

One can also prove that the multiuser scheme has the same coding gain

as that of the single user ST code (3.3) with the smallest determinant of the

cross-correlation matrix. We have the additional property that the information

symbols a are encoded by the matrix M separately by blocks of size p, which

we exploit in order to simplify the decoding algorithm. Processing the received

signal over m receive antennas as in subsection 3.4.3, yields

r = HMa + ν

where ν is an mn × 1 complex Gaussian noise vector having the covariance

matrix 2σ2S#S#T
, and H is an mn × n matrix given by

H =





diag(|h11|, . . . , |h1n|)
...

diag(|hm1|, . . . , |hmn|)



 . (3.10)

Since M and H are block diagonal, we can separate the different users; user

i has its received symbols contained in ri = r(j−1)n+(i−1)p+v, v = 1, . . . , p,

j = 1, . . . , m.

ri = H
iMpai + νi (3.11)
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with ai = [a(i−1)p+1, . . . , aip]
T , and νi is an mp× 1 column vector contained in

ν. Hi is an mp × p matrix extracted from H such that

H
i =





diag(|h1,(i−1)p+1|, . . . , |h1,ip|)
...

diag(|hm,(i−1)p+1|, . . . , |hm,ip|)



 . (3.12)

Therefore, the sphere decoder algorithm can be applied separately on each user

in order to detect the transmitted information by the K users.

Remark 1: In most practical systems we have N ≫ p and N ≫ m, so

that the computational cost can be approximated by O(N2n)+O(2Kp6). This

cost is dominated by O(N2n) which is the cost of computing the decorrelation

matrix S#.

Remark 2: When choosing the SS with minimum cross-correlation per-

forming the sphere decoder without whitening the noise yields small degrada-

tion in performance. In that case the noise covariance matrix after decorrelating

the received signal is equal to 2σ2S#S#T ≈ 2σ2In when the SS are almost or-

thogonal. This is especially true when N ≫ n.

3.4.5 Generalization to multi-path fading channels

For simplicity’s sake we only consider a single user system in this section and

section 3.4.6. As shown in Section 3.4.4, we can always represent a multiuser

system by a single user system, where the information symbols are encoded

separately by blocks of size p. When sending the ST code in (3.2) over a

multipath fading channel of L paths, with L ≪ N , the inter-symbol interference

(ISI) is neglected [64]. Therefore, the received signal at the k-th receiver antenna

can be approximated as

rk =
[
S̃1, . . . , S̃p

]
H̃kMpa + νk

= ÃkMpa + νk (3.13)



38 Transmit diversity scheme for CDMA system

where νk is an N×1 AWGN with variance σ2 per dimension, and H̃k is an Lp×p

matrix which represents the channel fading coefficients at the k-th receiver

H̃k
△

=





h1
k1 0 . . . . . . 0
...

...
. . .

. . .
...

hL
k1 0 . . . . . . 0
...

. . .
. . .

...
...

...
. . .

. . .
...

...

0 . . . . . . 0 h1
kp

...
. . .

. . .
...

...

0 . . . . . . 0 hL
kp





. (3.14)

The modified SS matrix is

S̃j =





sj(1) 0 . . . 0

sj(2) sj(1)
. . .

...
...

...
. . . 0

sj(L) sj(L − 1) . . . sj(1)
...

...
. . .

...

sj(N) sj(N − 1) . . . sj(N − L + 1)





, N × L. (3.15)

Processing the received signal over m receiver antennas yields

r = ÃMpa + ν (3.16)

where Ã = [Ã1
T
, · · · , Ãm

T
]T . Inverting the mN × p complex matrix Ã gives

r′ = Ã
#

r = Mpa + ν ′. (3.17)

This matrix inversion results in a performance loss when compared to ML de-

coding performance, which depends on the conditioning of Ã. Nevertheless,

in the context of a multiuser system, the matrix inversion of Ã allows us to

separately perform the sphere decoder on each user which reduces the com-

putational cost from6 O((2Kp)6) to O(2Kp6). The noise term ν ′ is now a

colored Gaussian noise with a covariance matrix Σ = σ2
Ã

#
Ã

#H

. Under this

assumption, the ML criterion for estimating a leads to [73]
wwwwr′ − Mpa

wwww
2

Σ

△

= (r′ − Mpa)H Σ−1 (r′ − Mpa).

6Even at moderate and high SNR where the complexity of the sphere decoder can be cubic

in the lattice dimension [28], it is useful to decorrelate the users first then to perform the

sphere decoder because O((2Kp)3) can be much greater than O(2Kp3) for large K.
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This is equivalent to first whitening the observation using the inverse square

root matrix of Σ, r′′ = Σ−1/2r′, then computing min
a∈A

wwwr′′ − Σ−1/2Mpa
www

2
.

Since we apply the sphere decoder algorithm on real-value vectors, we perform

the whitening separately on the real and imaginary parts of r′ as follows

ℜ(r′) = Mpℜ(a) + ℜ(ν ′), ℑ(r′) = Mpℑ(a) + ℑ(ν ′)

r′′
1

△

= Wrℜ(r′), r′′
2

△

= Wiℑ(r′)

where WrW
T
r = cov(ℜ(ν ′))−1 and WiW

T
i = cov(ℑ(ν ′))−1, such that cov(·)

denotes the covariance matrix.

We note that our space-time codes (3.2) used in a multiuser and multi path

scenario do not explicitly take into account the diversity that can be obtained

by exploiting the presence of multi path environment since we suppose that the

channel state information (CSI) is not available at the transmitter. However,

as is proved in [89], the achieved diversity in a multi path environment is at

least equal to the achieved diversity without multi path. The additional gain

in diversity in the presence of multi path that can be obtained in our scheme

is merely due to the sphere decoder which exploits all the degrees of freedom

offered by the channel (see Figs. 3.6, 3.10, and 3.12 in Section 3.4.7).

3.4.6 Blind channel estimation

In previous sections we supposed that the CSI (Channel State Information) is

known at the receiver. Here we propose a blind channel identification scheme

to estimate the channel parameters. Blind channel identification is based on

exploiting the orthogonality between noise and signal subspaces Un and U s

respectively. Un and U s are computed from the covariance matrix of r in

(3.16) as follows

R
△

= E[rrH ] = ĒsÃÃ
H

+ 2σ2ImN (3.18)

= UΛUH = [U s Un]

[
Λs 0

0 Λn

] [
UH

s

UH
n

]

where Ēs is the average energy per symbol of the input signal7, Λs = diag(λs(1), . . . , λs(p))

with λs(1) ≥ λs(2) ≥ . . . ≥ λs(p) > 2σ2, and Λn = 2σ2ImN−p. Letting

Range(U) denotes the subspace generated by the column vectors of U , and

7The input sequence is assumed to be i.i.d., i.e. E[aaH ] = ĒsIp.
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noting that Range(Un) is orthogonal to Range(U s) (i.e., UH
n U s = 0), and that

Range(U s) = Range(Ã) [20], one has

UH
n Ã = 0 (3.19)

where Ã
△

= [s̃1, · · · , s̃p]. This is equivalent to

UH
n s̃j = 0, j = 1 . . . p. (3.20)

The column vectors of Ã are linear functions of the unknown channel pa-

rameters and can be written as [20]:

s̃j = (Im ⊗ Sj)h̃j

with h̃j
△

= [h̃T
1j , · · · , h̃T

mj ]
T , and h̃kj

△

= [h1
kj , . . . , h

L
kj ]

T , k = 1, . . . , m. In practice,

h̃j is uniquely estimated (up to a scalar constant) [101] as the LS solution of

(5)

h̃j = arg min
‖h‖=1

‖UH
n (Im ⊗ Sj)h‖2 = hHGjh (3.21)

where Gj = (Im ⊗ SH
j )UnUH

n (Im ⊗ Sj) is the associated matrix of a positive

quadratic form. The solution of (3.21) is given by the unit-norm least eigenvec-

tor of Gj (see [68] for more details). For comparison (see Fig. 3.12), we have

also considered a two step estimation approach consisting of:

• Blind channel estimation using the above subspace method.

• Symbol detection (using SD or eventually an MMSE detector) then chan-

nel re-estimation (in order to refine the channel estimation and improve

the performances) using a simple input-output least squares fitting.

3.4.7 Simulation results

In the simulations we use normalized QAM constellations with the average

energy per symbol Ēs = 1. The channel matrix is fixed over N chip periods

and is modeled as in Section 3.4.1. The received signal is corrupted by a complex

AWGN process. The plots are versus the SNR per symbol for the symbol error

rate or the SNR per bit for the bit error rate. We have chosen the Gold SS of

length N = 7 and 31 normalized such that sT
j sj = 1 [31].

Fig. 3.1 shows the performance of the ST single user codes for p = 2, 3, 4,

and 6 transmit antennas and one receiver antenna using 4-QAM constellation.

The used SS have a length of N = 7 and the data rate is 2p
N bits/Tc. For
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Figure 3.1: Single user, N = 7, p = 2, 3, 4, 6, m = 1, with 4-QAM.

comparison, we also present the performance of the uncoded 4-QAM over a

Rayleigh fading channel. It is shown that even though the spectral efficiency

increases when increasing p, an improvement in performance is also achieved

since the diversity gain also increases with p. For example, at the symbol error

probability of 10−4, the ST code with 6 transmit antennas has a gain of 6 dB

over the ST code with 2 transmit antennas. Moreover, the spectral efficiency of

the former ST code is 3 times more than the latter with no bandwidth increase.

Fig. 3.2 shows the performance of the same scheme as in Fig. 3.1 but when

using Gold SS of length N = 31. It is shown that the coding and the diversity

gain are almost not changed when increasing N .

Fig. 3.3 shows the performance of a ST-CDMA scheme for K = 1, 2, 3,

p = 2, N = 7, and m = 1 receiver antenna. We note that the proposed

detector based on decorrelation and the sphere decoder of each user achieves

near-optimum performance. It is shown, for example, that the 3-user system

has almost 1 dB loss compared to the single user system.

Fig. 3.4 presents the performance of a 15-user ST-CDMA scheme with

p = 2, N = 31 and m = 1 receiver antenna. The total data rate is 60
31 bits/Tc,

and the degradation of the error probability compared to that of the single user

is about 1.5 dB.

In Fig. 3.5, we compare a CDMA system using 16-QAM constellation with-
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Figure 3.2: Single user, N = 31, p = 2, 3, 4, 6, m = 1, with 4-QAM.

out transmit diversity with two other ST coded systems using transmit diversity

and keeping the same data rate ( 4
31 bits/Tc) for all the three systems. One sys-

tem with two transmit antennas (p = 2) using 4-QAM constellation, another

with four transmit antennas (p = 4) using BPSK modulation. We consider

a single user with Gold SS of length N = 31 and one receiver antenna. It is

shown that a significant gain in terms of bit error rate is obtained using transmit

diversity at the same data rate.

Fig. 3.6 illustrates the additional diversity and coding gain obtained in the

presence of multi path in a single user scheme with p = 2, m = 1 and Gold SS

of length N = 31. The channel between each transmitter antenna and the re-

ceiver antenna is modeled by L independent fading coefficients. Different paths

from different antennas are assumed to arrive with the same set of delays (see

Section 3.4.5). Since L ≪ N , the ISI can be neglected. Note that a significant

performance gain is obtained in this multi path context when increasing the

number of paths L.

Figs. 3.7 and 3.8 illustrate the performance of a single user system working

at the data rate 8
31 bits/Tc with two transmitter antennas (p = 2) for single path

(L = 1) and multi path (L = 3) respectively. In both figures we use 4-QAM

constellation and SS of length 31 and one receiver antenna. The curves denoted

by dash-dot line present the system performance when different spreading se-
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quences are assigned to different transmitter antennas without coding (i.e. that

is equivalent to choosing Mp = Ip). The curves denoted by square shows the

system performance when using the optimal rotation matrix Mp in conjunc-

tion with different spreading sequences. It is shown that a significant gain is

obtained when using optimal rotation matrix Mp in both single path and multi

path context.

Figs. 3.9 and 3.10 show the performance of a single user system with p =

1, 2 transmitter antennas and m = 1, 2 receiver antennas for L = 1 and L =

3, respectively. In both Figs. we use 4-QAM constellation. It is shown in

Fig. 3.9, that for a symbol error probability of 10−2 in a system using two

transmitter antennas, a gain of 5 dB is achieved over an uncoded system using

one transmitter antenna. This gain is reduced to 1 dB in the multi path case

(L = 3) as shown in Fig. 3.10.

In Fig. 3.11 we compare two systems with two receiver antennas with the

same data rate of 4
31 bits/Tc when using Gold SS of length N = 31. The

first system uses 16-QAM constellation without transmit diversity, whereas the

second system uses 4-QAM constellation over two transmit antennas. A gain

of almost 6 dB is obtained for the second system at a bit error rate of 10−3.

Finally, Fig. 3.12 shows the performance of the proposed blind channel

estimation method in the presence of multi path. Under quasi-static fading

assumptions, the channel coefficients are fixed over 100 symbol periods then are

changed randomly. We consider a single user system with Gold SS of length

N = 31, p = 2 transmitter antennas, m = 1 receiver antenna, L = 3 paths

per antenna, and 4-QAM constellation. Due to channel estimation errors we

note a performance loss when compared to perfect CSI. The performance loss

(especially for high SNR) is quite significant and might result in losing the gain

of ST code diversity.

3.4.8 Conclusions

We have studied in this chapter ST-CDMA multiuser systems, where we have

introduced and analyzed a new method of exploiting the transmit diversity by

the combination of spreading sequences and rotated constellations.

We have shown that a linear decorrelator followed by sphere decoding each

user separately yields near-optimum performance thanks to the good cross-

correlations properties of the used spreading sequences. This also helps us to

maintain a good coding gain for the proposed ST codes over multi path fading
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channels.

Under quasi-static fading assumptions, we have examined a method of blind

channel estimation based on the orthogonality between signal and noise sub-

spaces. It is shown that the performance loss in the system when we use blind

channel identification might be quite significant and can be lead to a diversity

loss. Therefore, some more reliable identification technique have to be consid-

ered.
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Figure 3.3: Multiuser ST-CDMA, K = 1, 2, 3, N = 7, p = 2, m = 1, with

4-QAM.
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Figure 3.5: Single user, Single path, N = 31, p = 1, 2, 4, m = 1, data rate of
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Figure 3.7: Single user, Single path, N = 31, p = 2, m = 1, with 4-QAM.
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Figure 3.8: Single user, multi path L = 3, N = 31, p = 2, m = 1, with 4-QAM.
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Figure 3.9: Single user, Single path, p = 1, 2, N = 31, m = 1, 2 with 4-QAM.
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Figure 3.11: Single user, Single path, N = 31, m = 2, data rate of 4/31 bits/Tc.
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Chapter 4

Exploiting receive diversity

Blind identification techniques are addressed in the rest of this document. These

techniques are classified in the receive diversity part of this report as they use

the spatial receive diversity to perform the channel identification.

In this chapter we review briefly the subspace based method for MIMO

system and we introduce the general notations that we will use later in next

chapters. This chapter is organized as follows:

In section 4.1, we highlight the motivation for Blind System Identification

(BSI). In 4.2, we focus on subspace based methods and we discuss advantages

and limitations of this method. Finally, in 4.3, we give the data model and

review the main subspace algorithm.

We will discuss in detail in next chapters proposed techniques developed in

order to overcome the limitations of subspace algorithm.

4.1 Motivation for Blind System Identification in MIMO

context

Generally, in the communication context a training sequence is used in order

to identify the propagation channel and to access the source signals. However,

the use of training sequence limits the through put of channel, especially when

the latter is time varying. For instance, in the case of MIMO systems q× p×L

1 channel coefficients must be identified in the coherence interval.

Moreover, there is a power limitation for the case of MIMO systems: when

the number of transmitter antennas increases less power can be devoted to an

1q and p denote respectively number of receivers and number of inputs. L represents

memory of channels.

53
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eventual training sequence per antenna and the channel identification becomes

more difficult and sometimes impossible.

For more information and some information-theoretic approach on training

based schemes over multi-antenna systems the reader can see [52], where it is

shown that in the case of small SNR the training based schemes are suboptimal

in sense of achieving the capacity available in the MIMO context.

For these reasons, Blind System Identification techniques, that estimate

channel impulse response using only its second order output statistics, form a

good alternative to training based schemes.

4.2 Subspace-based identification methods : Advan-

tages and Limitations

Beside HOS (Higher-Order-Statistics) approaches, we can mention the methods

developed in order to blindly identify the Single-Input Multiple-Output (SIMO)

systems from the Second-Order-Statistics (SOS) of data ([94, 62] and [92]).

An important class of blind SOS-SIMO identification method is based on

subspace decomposition ([68, 6]). This method has been first extended to the

MIMO context in [9].

One of the important advantages of subspace method is its deterministic

property. That is, the channel parameters can be recovered perfectly in the

absence of noise, using only a finite set of data samples, without any statistical

assumption on input data. Therefore, subspace method is promising for appli-

cations where only a few number of output data is available, or the input data

is arbitrary.

Another attractive property of subspace based methods is that the channel

estimates can be obtained from optimizing a quadratic cost function under a

simple constraint. Therefore, a closed form expression for the channel estimate

exists.

Despite their high estimation efficiency, subspace based identification meth-

ods have some drawbacks:

Computational complexity : Although the subspace method leads to a

minimization of cost function, which is easy to resolve under some constraint,

it remains computationally complex especially when there are a large number

of sensors in the system. This is mainly due to the fact that the subspace
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method requires the computationally expensive and non-parallelizable Eigen

Value Decomposition (EVD) of observed outputs (or their covariance matrix).

Therefore, finding some subspace based, low computational cost and paralleliz-

able technique is a key challenge.

Among others, we can mention the work of [57] where Minimum Noise

Subspace method has been introduced. The latter is a computationally efficient

and paralleziable version of subspace method.

Chapter 5 is devoted to this problem, where we introduce the original Min-

imum Noise Subspace (MNS) method and we present new extensions and im-

plementations of this method in the case of BSI. These methods are called Or-

thogonal Minimum Noise Subspace (OMNS) and Symmetric Minimum Noise

Subspace (SMNS). They have been already presented in [80, 82]. Moreover,

we propose a new algorithm to increase the convergence rate of MNS method

[82]. A general framework of Minimum Noise Subspace algorithms for array

processing applications will be presented later in [84].

Channel order estimation : A difficulty with the subspace method is its

sensitivity to mis-specification of the channel order.

It is shown in [9] that, subspace method requires the exact prior knowledge

or estimation of the channel order; otherwise it fails.

To address the problem of channel order estimation there are several ap-

proaches for SIMO communication system. Most of them are classified in [93].

We will review some of them in detail in chapter 6, where we propose a new

approach and several algorithms in order to overcome this limitation. These

algorithms are published in [83, 81]. A journal paper concerning this topic is

also under preparation [79].

4.3 Subspace method - A review

The subspace identification method is based on the fact that the subspace

spanned by a set of observation statistics derived from unknown parameter can

be used to estimate that parameter.

Here in this section, we give a brief review of subspace method. For more

information and details reader can refer to [6, 9].

Let y(n) be a q-variate discrete time stationary time series given by:
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y(n)
△

= [H(z)]s(n) + n(n)

=
M∑

k=0

H(k)s(n − k) + n(n) (4.1)

s(n) = [s1(n), ..., sp(n)]T is a p-dimensional unknown process and n(n) is an

additive q-dimensional white noise, i.e. E[n(n)n∗(n)] = σ2Iq with σ2 unknown.

H(z) is an unknown causal FIR q × p transfer function with q > p. It can be

written as :

H(z) =
M∑

k=0

H(k)z−k

△

=





h1,1(z) · · · h1,p(z)
...

. . .
...

hq,1(z) · · · hq,p(z)



 . (4.2)

M denotes the polynomial degree of scalar transfer functions hi,j(z) with 1 ≤
i ≤ q and 1 ≤ j ≤ p.

In the communication context, the input sequence s(n) denotes the trans-

mitted symbols, and the unknown FIR transfer function H(z) models the prop-

agation channel between sources and sensors.

We study here the estimation of H(z) from the observation y(n) under the

following assumptions:

rank(H(z)) = p for each z (4.3)

H(z) is column-reduced (4.3)

These assumptions are realistic if the distance between sensors are large enough,

with respect to the spatial variation of the channels so that the different prop-

agation channels are independent.

It has been shown in [34], that H(z) is identifiable up to a constant uni-

modular p×p matrix from a finite number of auto-covariance coefficients. This

is done by computing the covariance matrix of the output vector y(n).

Let yi(n) be a vector of N successive samples corresponding to the i-th

output of the system [80]. According to (4.1), it can be written as :

yi(n) = [yi(n), ..., yi(n − N + 1)]T

= TN (Hi,:)̄s(n) + ni(n) (4.3)
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s̄(n) denotes the vector of input samples, i.e.

s̄(n) = [sT
1 (n), ..., sT

p (n)]T (4.3)

where,

sj(n) = [sj(n), ..., sj(n − N − M + 1)]T (4.3)

for 1 ≤ j ≤ p, and

ni(n) = [ni(n), ..., ni(n − N + 1)]T (4.3)

TN (Hi,:) is the N × p(N + M) block Sylvester matrix given by:

TN (Hi,:) = [TN (hi,1), ..., TN (hi,p)] (4.3)

where, TN (hi,j) denotes the N × (N + M) Sylvester matrix associated to hi,j .

It can be written as:

TN (hi,j) =





hi,j(0) · · · hi,j(M) 0
. . .

. . .

0 hi,j(0) · · · hi,j(M)





Considering all of the outputs of the system and putting them together to obtain

ȳ(n), we have

ȳ(n) = [yT
1 (n), ...,yT

q (n)]T

= TN (H)̄s(n) + n̄(n) (4.3)

with

n̄(n) = [nT
1 (n), ...,nT

q (n)]T

TN (H) = [T T
N (H1,:), ..., T T

N (Hq,:)]
T (4.3)

TN (H) is qN × p(N + M) generalized Sylvester matrix of order N associated

to H(z). Let RN be the qN × qN covariance matrix of ȳ(n):

RN
△

= E[ȳ(n)ȳ∗(n)]

= TN (H)S̄T ∗
N (H) + σ2IqN (4.3)

where S △

= E [̄s(n)̄s∗(n)] > 0. Under assumptions (4.3) and (4.3), and for

N > pM (4.3)
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TN (H) has full column rank p(N + M) 2. In this case, the noise variance σ2 is

the smallest eigenvalue of RN . The eigenspace associated to σ2 referred to as

the noise subspace is of dimension qN − p(N + M). The noise subspace is the

orthogonal complement of Range (TN (H)), the signal subspace.

The eigen-decomposition of RN allows to identify the noise subspace Range(TN (H))⊥.

Denote by ΠN the orthogonal projection matrix onto Range(TN (H))⊥. Using

the orthogonality relation between noise and signal subspace we can write the

following equation:

ΠNTN (H) = 0 (4.3)

In order to estimate the propagation channel, we have to find all of the ma-

trix polynomials H(z) satisfying (4.3). The subspace identification method is

ultimately related at to following Theorem:

Theorem 1 ([34],[9],[50]) : Suppose that (4.3), (4.3) and (4.3) hold. Let

F (z) = [f1(z), · · · , fp(z)]

be a full-rank q × p polynomial matrix such that

deg(f1(z)) ≤ · · · ≤ deg(fp(z)) ≤ M (4.3)

The matrix equation

ΠNTN (F ) = 0 (4.3)

does not admit any solution if there exists an index i, 1 ≤ i ≤ p such that

deg(f i(z)) < M . If deg(f i(z)) = M for all 1 ≤ i ≤ p, then (1) admits solutions

of the form

F(z) = H(z)R

where R is a constant p × p invertible matrix.

Theorem 1 is the key stone of the subspace method. For instance, we limit

us to the case where deg(f i(z)) = Mi with Mi = M for all 1 ≤ i ≤ p.

2For N > pM we have

(p + 1)N > p(N + M)

As q > p,

qN > p(N + M).
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In practice the matrix equation (4.3) is solved in a least squares sense under

a suitable constraint. It can be written as:

ĥ = arg min
H

{
||ΠNTN (H)||2

}

= arg min
H

{
trace {(ΠNTN (H))∗(ΠNTN (H))}

}

= arg min
H

{
vec(ΠNTN (H))∗ vec(ΠNTN (H))

}

(4.1)

where ĥ denotes the channel parameter vector defined as :

ĥ
△

= vec([HT
1 , · · · ,HT

q ]T ) (4.0)

with

Hi = [HT
i (0), · · · ,HT

i (M)]T (4.0)

In the following we describe equations which are used to obtain the closed

form solution of (1).

The generalized Sylvester qN × p(N + M) matrix TN (H) depends linearly

on its parameters. Therefore, we can write:

vec(ΠNTN (H)) =

q∑

i=1

vec
(
Πi

NTN (Hi,:)
)

=

q∑

i=1

(
Ip ⊗ D(Πi

N )
)
Hi

(4.-1)

TN (Hi,:) denotes a N × p(N + M) matrix corresponding to the i-th block of

TN (H) and Πi
N denotes the sub-matrices of dimension qN × N corresponding

to the i-th block of ΠN . Therefore, ΠN can be written as:

ΠN = [Π1
N , · · · ,Πi

N , · · · ,Πq
N ] (4.-1)

where

Πi
N =

[
πi,1, · · · , πi,N

]
(4.-1)

πi,N correspond to vectors of dimension qN . D(Πi
N ), in (4.1), is a block-

toeplitz matrix of dimension qN(M + N) × (M + 1)
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D(Πi
N )

△

=





πi,1 0 · · · 0

πi,2 πi,1
. . .

...
...

. . .
. . . 0

...
. . . πi,1

πi,N πi,2

0 πi,N
...

...
. . .

. . .
...

0 · · · 0 πi,N





(4.-1)

Equation (4.1) can be written in matrix form as:

vec(ΠNTN (H)) =





(
Ip ⊗ D(Π1

N )
)

0 · · · 0

0
(
Ip ⊗ D(Π2

N )
)

· · · 0
...

. . .
. . .

...

0 0 · · ·
(
Ip ⊗ D(Πq

N )
)





︸ ︷︷ ︸
D(Π)

h

(4.-1)

therefore the minimization of equation (4.4) can be written as a quadratic

form:

ĥ = arg min
H

{
h∗

(
D∗(Π) D(Π)

)
h

}
(4.-1)

The solution of (4.3) is the eigenvector associated to the least eigenvalue of

D(Π)∗ D(Π).

Remark : Later, we will see that this form of arranging data as in (4.4) is

more convenient when we want to separate different sub-systems in the case of

MNS algorithm. It is important to know that, outputs of the system can be

arranged by putting them in a vector of N successive samples of all output of

the system like in [9]. However, the main properties of subspace method does

not depend on the way of arranging the output data.

4.3.1 Subspace algorithm

Subspace algorithm can be summarized as follows:
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• Choose a window length N such that N > pM and estimate the qN ×qN

covariance matrix R̂N from the observations.

R̂N =
1

T − N + 1

T−N+1∑

n=1

(
y(n)y∗(n)

)
(4.-1)

where T >> N denotes number of samples.

• Obtain the noise projector Π̂N onto the subspace spanned by the eigenvec-

tor associated to the qN−p(N +M) smallest eigenvalues of the covariance

matrice R̂N .

• Find Ĥ(z) (up to a constant non singular p×p matrix) as the eigenvector

associated to the smallest eigenvalue of qp(M + 1) × qp(M + 1) matrix

D(Π)∗ D(Π).

4.3.2 Discussions

In the following sections we discuss two aforementioned limitations of subspace

method.

4.3.2.1 Computational complexity

Computational cost of subspace method is dominated by SVD computation of

qN × qN covariance matrix R̂N .

Generally speaking, SVD computation of a qN × qN matrix costs O(qN3)

flops. Moreover, this decomposition can not be implemented in a parallel

way. This computational complexity is one of the main drawbacks of subspace

method, especially for large sensors array systems.

Example : Let us consider a two-input (p = 2) three-output (q = 3) MIMO

communication system with sub-channels of degree M = 4. The minimum size

of temporal window N must be N = pM +1 = 9. Therefore, SVD computation

of covariance matrix costs O(273).

In next chapter we will study and propose some computationally efficient

subspace based methods called as Minimum Noise Subspace (MNS). We will

see later that the computational complexity of the MNS-like algorithms are

much less than that of the original subspace method. Moreover, they can be

implemented in parallel scheme.
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4.3.2.2 Order overestimation

In this chapter we suppose that the order of sub-channel M is known or correctly

estimated. Based on this fact, the propagation channel can be estimated up to

a constant p × p matrix as presented in Theorem 1.

Indeed, when the exact channel order is not known or correctly estimated

the structural properties of matrix equation (1) are no more valid. Therefore,

the subspace method fails.

In practice, the exact channel order value is not known and it depends on

the application and the environment. One existing approach to estimate the

channel order consists of applying the Minimum Description Length (MDL)

criterion [102] to the covariance matrix. However, it is known that the MDL

criterion, tends to overestimate the exact channel order.

When an overestimation of a channel order occurs the main subspace The-

orem in 1 can be extended to the following one:

Theorem 2 ([34],[9],[50]) : Suppose that (4.3), (4.3) and (4.3) hold. Let

F (z) = [f1(z), · · · , fp(z)]

be a full-rank q × p polynomial matrix such that

deg(f1(z)) = · · · = deg(fp(z)) = M ′ ≥ M (4.-1)

The matrix equation

ΠNTN (F ) = 0 (4.-1)

admits solutions of the form

F(z) = H(z)R(z)

where R(z) is a polynomial p × p matrix of degree M ′ − M .

In chapter 6 we see that in the context of SIMO system solutions of equation

(2) have a specific structural property. Using this property, we propose there,

several algorithms robust to order overestimation of the propagation channel.

4.4 Conclusions

Subspace decomposition is known to be an important tool in array signal pro-

cessing for several years. Moreover, we have seen in this chapter that using the
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subspace method we can identify the MIMO propagation channel under several

assumptions without loss in capacity.

However, Subspace method is computationally expensive to implement.

That is why, we study and propose in the next chapter some computation-

ally efficient and parallelizable subspace method referred to as the Minimum

Noise Subspace (MNS) method.

Moreover, it is well known that subspace method fail to provide the exact

solution when the degree of channel is not exactly estimated. Therefore, we

have to improve existing subspace algorithm by using some order detection

process or finding robust algorithms. That is the subject of chapter 6.
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Chapter 5

Minimum Noise Subspace

5.1 Toward a computationally efficient subspace method

We have seen that existing subspace techniques despite their high estimation

efficiency, are computationally intensive and difficult to implement in real time,

especially for large sensor array systems. The main reason is that they re-

quire computationally expensive and non-parallelizable eigen value decomposi-

tion (EVD) to estimate the noise subspace1.

It has been shown in [57, 7] that the full noise subspace computation of the

system output covariance matrix is not necessary to yield the unique estimate

of the channel responses. This gives rise to the concept of Minimum Noise

Subspace (MNS). MNS technique is a promising technique for effective compu-

tation of the noise subspace. In this method, the noise vectors are computed

in parallel scheme from q − p sub-systems chosen so that the corresponding

rational noise subspaces are of minimum dimension equal to one.

This chapter is devoted to MNS techniques and their extensions. We start

by introducing, in section 5.2, the concept of rational Subspace and minimal

polynomial bases which are necessary to introduce the MNS concept. MNS

concept and algorithm is detailed in section 5.3. Several extensions of the main

MNS concepts and their properties are presented in section 5.4. In section 5.5,

we compare the computational complexity of proposed methods. In section 5.6,

we present different algorithms for the block implementation of MNS method.

In section 5.7, we compare the performance of different algorithms by simu-

lation. Finally, in section 5.8 we conclude this chapter and we propose some

perspectives.

1EVD of an n × n matrix costs O(n3) flops.

65
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5.2 Problem formulation

The system model used in this chapter is that of section 4.3.

Subspace identification method can be recast in a more general framework

by resorting to the concept of rational subspaces. As we shall see below, one

can express the signal and noise subspaces in the field of rational functions to

get more insights into the subspace method.

5.2.1 Rational subspace and polynomial bases

A qN × 1 vector g = [gT
1 , . . . ,gT

q ]T (where each vector gk = [gk(0), . . . , gk(N −
1)]T has dimension N × 1 ) belongs to the noise subspace of RN if and only if

g∗TN (H) = 0. The orthogonality condition is conveniently rewritten as:

g∗TN (H) = 0 ⇐⇒ g∗(z)H(z) = 0 for each z (5.0)

g(z) =





g1(z)
...

gq(z)



 and g∗(z) =





g∗1(z)
...

g∗q (z)





gk(z) =
N−1∑

l=0

gk(l)z
−l and g∗k(z) =

N−1∑

l=0

g∗k(l)z
−l (5.0)

We denote by Cq(z) the set of all q-dimensional rational functions or, in

other words, the q-dimensional vector space on the field of all scalar rational

functions. Such a vector subspace is referred to as rational space. Let S be

the p-dimensional rational subspace of Cq(z) spanned by the column vectors of

H(z) (S = Range(H(z)). Let B⊂Cq(z) denote the orthogonal complement of S
(i.e., the subspace of all q-dimensional rational transfer functions g(z) satisfying

g(z)f∗(z) = 0 for each f(z) ∈ S). It then follows that B has dimension q − p.

The subspace method can now be seen as a method of finding H(z) such

that H(z) ⊥ B. However, B can be uniquely spanned by a basis of q − p,

q-dimensional polynomial vectors. Therefore, to identify H(z), it suffices to

find a polynomial basis V(z) = [v1(z), ...,vq−p(z)] of B and to express the

orthogonality between vi and H(z) for i = 1, . . . , q − p, i.e.

v∗
i (z)H(z) = 0.
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Theorem 3 [60, 34] Let F(z) be a full column rank q × p polynomial matrix

with deg(F:,i(z)) = Mi = M for all 1 ≤ i ≤ p, and Range(V(z)) = B =

range(H(z))⊥. Then, the solution to

V∗(z)F(z) = 0

is given by F(z) = H(z)T, where T is a constant p × p invertible matrix.

Since V(z) contains the minimum number q − p of noise polynomial vectors to

span B, the estimation method is called Minimum Noise Subspace. Later on,

we will see that we can go beyond this assumption, under certain conditions.

5.3 Minimum Noise Subspace Concepts

In MNS method we can compute noise subspace in a parallel scheme using

a special set of system outputs which form a Properly Connected Sequence

(PCS). In the following, we will introduce this concept before starting algorithm

description.

5.3.1 Properly Connected Sequence

Denote the q system outputs by a set of members m1, · · · , mq. A combination

of p + 1 members T = (mi1 , · · · , mip+1
) is called a (p + 1)-tuple.

Definition 2 A sequence of q−p tuples is said to be properly connected if each

tuple in the sequence consists of p members shared by its preceding tuples and

another member not shared by its preceding tuples.

A properly connected sequence (PCS) is denoted by S(p, q) = {T1, T2, · · · , Tq−p}
where

Ti = (mi1 , · · · , mip , mip+1
), 1 ≤ i ≤ q − p

{mi1 , · · · , mip} ⊂ {mjk
| j < i, 1 ≤ k ≤ p + 1}

mip+1
6∈ {mjk

| j < i, 1 ≤ k ≤ p + 1}.

Example : Two examples of PCS called PCS1 and PCS2 are given below in

table 5.1 for a system with q = 6 outputs and p = 2 inputs
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T1 = (m1, m2, m3) T1 = (m1, m2, m3)

T2 = (m1, m2, m4) T2 = (m2, m3, m4)

T3 = (m1, m2, m5) T3 = (m1, m4, m5)

T4 = (m1, m2, m6) T4 = (m2, m5, m6)

PCS1 PCS2

Table 5.1: Example of two different Properly Connected Sequences PCS1 and

PCS2.

5.3.2 Parallel computation of MNS using PCS

Each tuple from S(p, q) can be used, by following equations (4.4)-(4.4), to form

a (p+1)N × (p+1)N covariance matrix Ri
N for i = 1, · · · , q−p. It is clear that

each Ri
N is a sub-matrix of the system output covariance matrix RN . Later

on, in section 5.3.3, we will see in detail the computation of Ri
N .

The least eigenvector of Ri
N is denoted by ṽi = [ṽT

i1
, · · · , ṽT

ip+1
]T . Each

N -dimensional sub-vector ṽik (where ṽik = [ṽik(0), ..., ṽik(N − 1)]T , for k =

1, ..., p+1) corresponds to a member in the i-th (p+1)-tuple of system outputs.

We will show later in this section that the set of obtained least eigenvectors

{ṽ1, · · · , ṽq−p} asymptotically determine H(z) up to a p×p constant matrix T

under a mild additional assumption.

Let Hi(z) consist of p + 1 rows of H(z), where each row corresponds to a

member in the i-th (p+1)-tuple of system outputs and TN (Hi) be a generalized

Sylvester matrix associated with Hi(z). Then similar to equation (5.2.1), we

have :

For i = 1, · · · , q − p

ṽ∗
i TN (Hi) = 0 or equivalently, ṽ∗

i (z)Hi(z) = 0 (5.-3)

where

ṽi(z) = [ṽT
i1(z), · · · , ṽT

ip+1
(z)]T (5.-3)

with

ṽij (z) =
N−1∑

k=0

ṽij (k)z−k. (5.-3)

Then, a set of independent “zero padded” qN -dimensional noise vectors

{vi}1≤i≤q−p is computed from the set of least eigenvectors {ṽi}1≤i≤q−p in a

parallel scheme, in the following way:
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For k = 1, · · · , q

vi,k =

{
ṽij if k = ij

0 otherwise
(5.-3)

where

vi =





vi,1

...

vi,q



 . (5.-3)

On the other hand zero padding correspond in adding zero at the index

that does not belong to the considered output. Table 5.2 demonstrates the

computation of independent noise vectors vi corresponding to the set of least

noise vectors ṽi, for two different PCS mentioned in the previous example (PCS

1 and PCS 2).

For example, let us consider Tuple T1 demonstrated in Table 5.2. This tuple

contains outputs 1, 2 and 3. Consequently, the corresponding zero padded

vector v1 contains blocks of zero in the positions 4, 5 and 6 of the resulted

vector (see the first column of the matrix corresponding to PCS1).

Remark : Provided none of the p×p sub matrices of Hi(z) for 1 ≤ i ≤ q−p

is singular, each entry of ṽi(z) is nonzero. Therefore, such constructed zero

padded vectors vi(z) belong to B.

tuple q−p

tuple i

tuple 1
~
v
1

~
v
i

q−p
~

i

v
q−p

1

q

N
R

R
N

R
N

y
1

y
i

y

Figure 5.1: Computation of the Minimum Noise Subspace.

Figure 5.1 summarizes the computation of the Minimum Noise Subspace.

Therefore, we have the following Theorem:
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v1 v2 v3 v4 v1 v2 v3 v4



ṽ11
ṽ21

ṽ31
ṽ41

ṽ12
ṽ22

ṽ32
ṽ42

ṽ13
0 0 0

0 ṽ23
0 0

0 0 ṽ33
0

0 0 0 ṽ43









ṽ11
0 ṽ31

0

ṽ12
ṽ21

0 ṽ41

ṽ13
ṽ22

0 0

0 ṽ23
ṽ32

0

0 0 ṽ33
ṽ42

0 0 0 ṽ43





PCS1. PCS2.

Table 5.2: Computation of independent noise vectors vi corresponding to the

set of least noise vectors ṽi, for PCS1 and PCS2

Theorem 4 [7] Assume none of the p×p sub matrices of Hi(z), 1 ≤ i ≤ q−p,

is singular, and F(z) is a full rank q × p polynomial matrix with deg(F:,i(z)) =

Mi = M , for all i with 1 ≤ i ≤ p. Then, the solution to

[v1, · · · ,vq−p]
∗TN (F) = 0 (5.-3)

is given by

F(z) = H(z)T (5.-3)

where T is a non-singular constant p × p matrix.

5.3.3 MNS algorithm

Here we briefly recall the estimation procedure given in [7].

• Select a set of q − p (p + 1)-tuples from the q system outputs such that

the set forms a PCS:

S(p, q) = {T1, · · · , Tq−p}.

Compute the covariance matrix Ri
N in parallel scheme for each tuple of

outputs i where i = 1, · · · , q − p.

Ri
N =

1

T − N + 1

T−N+1∑

n=1

yi(n)y∗
i (n) (5.-3)

with T being the sample size and :

yi(n)
△

= [yT
mi1

(n), · · · , yT
mip+1

(n)]T . (5.-3)
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• Compute a least eigenvector ṽi of each Ri
N . Note that the (p + 1)N × 1

vector ṽi satisfies

ṽ∗
i TN (Hi) = 0 ⇐⇒ ṽ∗

i (z)Hi(z) = 0

where

ṽi(z) = [ṽT
i1(z), · · · , ṽT

ip+1
(z)]T (5.-3)

with

ṽij (z) =
N−1∑

k=0

ṽij (k)z−k. (5.-3)

• Following (5.3.3), construct the q-dimensional noise polynomial vectors

vi(z) corresponding to ṽi(z):

For k = 1, · · · , q

vi(k) =

{
ṽij if k = ij

0 otherwise
(5.-3)

where

vi =





vT
i,1
...

vT
i,q



 . (5.-3)

• Estimate the channel transfer function H(z) (up to a constant p × p ma-

trix) minimizing the quadratic criterion (in terms of the channel coeffi-

cients)

Ĥ(z) = arg min
H(z)

‖V∗TN (H)‖2 (5.-3)

under some adequate constraint (see [7, 50] for more details).

Here, V = [v1, · · · ,vq−p] is the noise vector matrix of dimension qN×(q−
p) 2and TN (H) is the qN×p(N+M) block Sylvester matrix corresponding

to H(z).

5.4 Extensions of MNS method

In this section we introduce two possible extensions of the MNS method cor-

responding to the Symmetric MNS (S-MNS) and Orthogonal MNS (O-MNS)

2In MNS algorithm the noise vectors v1, · · · ,vq−p are not orthogonal.
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methods. The former method exploits the parallel computation of q noise vec-

tors and the latter is based on an iterative procedure to obtain an orthogonal

basis of noise subspace.

5.4.1 Symmetric MNS - SMNS

The idea of SMNS is to use q noise vectors instead of q − p as in the original

MNS in such a way that all system outputs are used identically.

Indeed, in the original MNS method, certain system outputs are used more

than others depending on the chosen PCS. This might lead to poor estimation

performances if the system outputs that are used most correspond to the ‘worst

system channels’. This raises the problem of the ’best’ choice of PCS.

Definition 3 A sequence of q, (p + 1)-tuple is said to be symmetric if all of

the system outputs are used p + 1 times.

Example: Symmetric tuples are given below in table 5.3 for q = 6 outputs and

p = 2 inputs.

T1 = (m1, m2, m3)

T2 = (m2, m3, m4)

T3 = (m3, m4, m5)

T4 = (m4, m5, m6)

T5 = (m5, m6, m1)

T6 = (m6, m1, m2)

Table 5.3: Example of Symmetric tuple

Note that the first q − p tuples correspond to a PCS and the last p tuples

correspond to the additional redundancy we introduce to guarantee the use of

all system outputs p+1 times. We guarantee here a certain symmetry between

the system outputs. It is obvious that the computation of the set of q noise

vectors can be made in parallel scheme as mentioned before. Computation of

symmetric MNS is illustrated on figure 5.2.

5.4.2 Orthogonal MNS - OMNS

An alternative method to compute the noise polynomial basis V(z) = [v1(z), ...,vq−p(z)]

is proposed in this section. The noise vectors are computed
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Figure 5.2: Computation of the Symmetric Minimum Noise Subspace.

• Recursively (contrary to standard MNS where noise vectors are computed

in a parallel scheme).

• Using all system outputs (in standard MNS each vector is computed using

only p + 1 system outputs).

• In such a way to form an orthogonal basis of B (this is not the case in

section 5.3.3), i.e.

v∗
i (z)vj(z) = 0 for i 6= j. (5.-3)

At the i-th step, we compute a q-dimensional polynomial noise vector vi(z)

orthogonal to H(z) and to the previously computed q-dimensional polynomial

noise vectors. Each noise vector is obtained by computing the least eigenvector

of a qNi × qNi, (i = 1, ..., q − p) matrix which is a function of the channel

outputs and the previously computed polynomial noise vectors. Ni is chosen in

order to obtain a tall matrix at each step.

5.4.2.1 OMNS algorithm

More precisely, we have the following algorithm.

1. Initialization:
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• Choose N1 a window length such that qN1 > p(M+N1) and estimate

the covariance matrix RN1
from the observations.

• Compute v1 as the least eigenvector of RN1
, the latter satisfies:

v∗
1TN1

(H) = 0 ⇐⇒ v∗
1(z)H(z) = 0 (5.-3)

where v1(z) is constructed as shown in section 5.2.

2. for i = 2, . . . , q − p:

• Choose Ni a window length such that:

qNi > p(M + Ni) +
i−1∑

j=1

(Nj − 1) (5.-3)

3 and then compute the matrix:

Mi = RNi
+

i−1∑

j=1

TNi
(vj)T H

Ni
(v

j
) (5.-3)

• Compute vi as the least eigenvector of Mi. The latter satisfies:

v∗
i TNi

(H) = 0

v∗
i TNi

(vj) = 0 for j = 1, . . . , i − 1 (5.-3)

or equivalently :

v∗
i (z)H(z) = 0

v∗
i (z)vj(z) = 0 for j = 1, . . . , i − 1 (5.-3)

3. Once the (q−p) noise vectors are computed, estimate the channel matrix

H(z) (up to a constant nonsingular p × p matrix) as:

Ĥ(z) = arg min
H(z)

q−p∑

i=1

‖vi
∗TNi

(H)‖2 (5.-3)

The minimization in (3) is done under a suitable constraint as shown in

[50].

3On the other hand at each iteration the Matrix containing the channel H(z) and the

previously computed noise vectors vi is a tall matrix.
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5.5 Computational complexity

The computational cost of the MNS method is O((q − p)(p + 1)2N2) flops

comparing to O(q(p + 1)2N2) flops for SMNS method and O(
∑q−p

i=1 (Niq)
2)

flops for OMNS method when it is O((qN)3) for the subspace method.

In this computational costs we did not include the cost of covariance matrix

estimations, i.e. the estimation of E[y(n + k)y∗(n)] for k = 0, . . . , M which is

almost equal for all considered methods.

Computational Complexity

SS method O((qN)3)

MNS method O((q − p)(p + 1)2N2)

OMNS method O(
∑q−p

i=1 (Niq)
2)

SMNS method O(q(p + 1)2N2)

Table 5.4: Computational complexity of SS, MNS, OMNS and SMNS

Therefore, MNS and SMNS methods have the least computational complex-

ity. However, when q >> (q − p) the SMNS method becomes computationally

more expensive.

The above computational cost does not take into account the parallel struc-

ture of MNS and SMNS method, which is an additional advantage of these

methods.

The OMNS method remains less complex than the original subspace method

in term of computational complexity but it is more complex than MNS method.

Table 5.5 provides some examples for the values of the window lengths used in

MNS and OMNS in function of the system parameters q, p and M .

Channel parameters NOMNS NMNS = pM + 1

Fig. 5.6 (a) 10 × 1 and M = 2 (1, 1, 1, 1, 1, 1, 1, 2, 4) 3

Fig. 5.6 (b) 10 × 2 and M = 2 (1, 1, 1, 1, 1, 2, 2, 4) 5

Fig. 5.5 (a) 4 × 1 and M = 2 (1, 2, 4) 3

Fig. 5.5 (b) 4 × 2 and M = 2 (3, 7) 5

Table 5.5: Channel parameters and length of the processing window used in

experiments.
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5.6 Efficient implementation

As we have seen before, the main advantage of the MNS-Like methods is that the

large matrix eigendecomposition is avoided and the noise vectors are computed

in a parallel scheme as the least eigenvectors of covariance matrices correspond-

ing to the (p + 1)-tuple of system outputs.

Even-though, computing 1 single eigenvectors costs O(n2) (n being the size

of considered matrices), we found out that existing algorithms (e.g., [5, 65])

for extracting minor subspaces or the minor eigenvectors are un-efficient and

slowly convergent in comparison with those dedicated to principal subspaces or

principal eigenvectors.

For this reason, we propose here to compute from the beginning the inverse

matrices using RLS-type technique followed by a power method to extract the

principal eigenvectors of each of the considered matrices. Therefore, using Schur

inversion lemma, the first step of MNS algorithm is replaced by the following:

For t = 1, · · · , T − N + 1

zi(t) = Pi(t − 1)yi(t)

Pi(t) = Pi(t − 1) − zi(t)z
∗
i (t)

1 + y∗
i (t)zi(t)

(5.-3)

where Pi represents the inverse matrix of Ri
N . The initialization is done by

choosing Pi(0) = αI, α being a small positive scalar4. The least eigenvector of

Ri
N becomes the principal eigenvector of Pi that can be computed using power

iterations according to:

For k ≥ 1

wi(k) = Piwi(k − 1)

wi(k) := wi(k)/‖wi(k)‖

where wi(k) represents the desired eigenvector estimate at the kth iteration.

The initialization vector wi(0) is chosen randomly.

Remark : To solve equation 3 in the single input case, one can use a sim-

ilar RLS+power iteration algorithm applied to the quadratic form matrix of

criterion 3. The latter can be rewritten as:

‖T ∗
N (H)Vn‖2 = H∗

(
q∑

i=1

DN (vi)
∗DN (vi)

)
H (5.-5)

4Note that the eigenvectors of Ri
N coincide with those of Ri

N + αI.
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where

DN (vi) = [DN (vi,1), · · · ,DN (vi,q)]

DN (vi,j) =





vi,j(0) 0 · · · 0
...

. . .
. . .

...
...

. . . 0

vi,j(N − 1) vi,j(0)

0
. . .

...
...

. . .
. . .

...

0 · · · 0 vi,j(N − 1)





.

However, in the multi-input case, the solution of 3 depends on the considered

constraint and thus it cannot be computed necessarily as a least eigenvector of

a given matrix [50].

Convergence rate : The average convergence rate of the RLS + power iter-

ation method is high (typically 5 to 10 iterations are sufficient) and overcomes

the one of the optimal step size gradient method in [65]. This has been observed

in different scenarios (see figures 5.10-5.13) at low and high SNRs and for single

and multiple (p = 2) input cases. Also, we have observed that the average

convergence rate remains quite high (see figure 5.13) even if the noise subspace

dimension is larger than one (this is the case if we choose N > pM + 1)5.

5.7 Simulation results and discussions

In this section, first the performance of the SS method is compared with that

of the MNS, SMNS and OMNS methods via several simulations. Then we

compare the convergence rate of efficient implementation proposed in 5.6.

For the first part, we consider two different case with p = 1 and p = 2 inputs

where each input sequence is an i.i.d., zero-mean, unit-variance QAM4 process.

All of MNS methods estimate the polynomial matrix H(z) up to a p × p

constant matrix Q. The output observation noise is a sequence of i.i.d., zero-

mean, Gaussian variables and the number of samples is held constant (T = 250).

For each experiment Nr = 100 independent Monte-Carlo runs are performed.

5Note that the convergence rate of power methods is exponential in terms of the ratio of

the two largest eigenvalues (λ2/λ1) of Pi.
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The performance is measured by the mean-square-error (MSE) defined by:

MSE = [

Nr∑

r=1

‖ĤrQr − H‖2/Nr]
1

2 (5.-7)

Where Ĥr is an estimate of H
△

= [HT (0), ...,HT (M)]T at the r-th run, and Qr

is chosen so that ‖ĤrQr − H‖ is minimum (This is to get rid of the constant

matrix indeterminacy).

The SNR value in the simulations is equal to :

SNR = 10log10

||H||2σ2
s

qσ2
n

.

In the figures the MSE of channel parameter estimates are plotted against

the SNR, defined as the inverse noise power.

Channel Characteristics Two different type of MIMO channels have been

used in our simulations :

The first one consists of using a physical propagation model and the second

one consists of choosing random complex Gaussian channel coefficients that are

changed for each monte-carlo run.

In the following we describe in detail the propagation model. In this model,

the channel transfer function associated with the first output corresponds to

the same impulse response. This can be written as (for the case of p = 2):

h1,1(k) = h1,2(k) =
L−1∑

t=0

λtg(kTs − τt) (5.-7)

L denotes the number of paths and g(t) is the raised cosine function with

the roll-off factor equal to 1/2. Then it is delayed and sampled at the rate of 270

kb/sec (Ts = 3.7 µs). The resulted channel impulse response is windowed such

that the polynomial degree is M . τt denotes the delay and λt the attenuation.

Attenuation is considered equal to 0 dB for λ0 and −5 dB for all of the other

paths and the delay τt is a multiple of path number. i.e. τt = t × 3.2µ sec (for

t = 0, . . . , L − 1).

Other channel transfer functions are generated by assuming a plane propaga-

tion model of each path with corresponding electric angles uniformly distributed

in [0, π/2], for l = 2, · · · , q

hk,l(z) =
M∑

t=0

h1,l(t)e
jlθt,lz−t with θt,l ∈ [0, π/2] (5.-7)
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Figures 5.3-5.7 are plotted using the physical propagation channel. For fig-

ures 5.7-5.9 the channel coefficients are generated randomly, following a complex

Gaussian distribution for each channel coefficient at each run. This helps us to

compare the mean performance of MNS, SMNS, SS and OMNS methods.
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Figure 5.3: Performance of SS and MNS methods.

Figures 5.3 and 5.4 compare performance of MNS and standard SS method

for different choices of channel parameters q, p and M . These figures show the

fact that SS method has better performance than MNS method.

Indeed, in MNS noise polynomial vectors are obtained using only p + 1

outputs for each of them (using q − p, p + 1 tuples in parallel scheme), while in

SS method each noise vector is computed from all the q system outputs (with

q > p).

This fact leads to an improved (a more robust) channel estimation especially

when the number of system outputs is much larger than the number of system

inputs. However, the computational complexity of MNS method is much less

than that of SS method. For example the computational complexity in figure

5.4 with a two-input ten-output (10 × 2) channel of degree M = 2 and N =

pM + 1 = 5, is O((q − p)(p + 1)2N2) = O(1800) flops for MNS comparing with

that of the SS which is almost O((qN)3) = O(125000) flops.

Figures 5.5 and 5.6 illustrate the performance of OMNS and MNS method
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Figure 5.4: Performance of SS and MNS methods.

for different values of channel parameters q, p, M and window length reported

also in Table 5.5.

As mentioned before, noise polynomial vectors in MNS method are obtained

using only p + 1 outputs for each of them, while in OMNS method each noise

vector is computed from all the q system outputs in an iterative manner. This

leads to an improved channel estimation especially when the number of system

outputs is much larger than the number of system inputs. Furthermore, the

orthogonality of noise subspace might improve the quality of the parameter

estimation.

However, it is shown in Figure 5.5 that for q − p small and large channel

degree, the performance of OMNS is slightly deteriorates in comparison with

that of MNS. This is possibly due (but need to be certified by a theoretical

study) to the large window sizes that are needed to compute the OMNS basis

leading to a large number of parameters (here the noise vector coefficients) to

be estimated.

We have also seen in section 5.5 that the computational complexity of OMNS

method is less than that of SS method. It is shown that the computational

complexity of OMNS method is more than that of MNS.

For example, in figure 5.6 for a one-input ten-output propagation channel
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(10× 1) of degree M = 2, with the values of window size reported in Table 5.5,

MNS method requires O((q − p)(p + 1)2N2) = O(2070) flops comparing with

O(
∑q−p

i=1 (Niq)
2) = O(3600) flops required by OMNS method.

Figure 5.7 compares performance of SS, MNS and SMNS methods. It is

shown that the SMNS method is more robust than the MNS method at the

cost of a slight increase of the computational cost in comparison with MNS 6.

However, SMNS is a good alternative of MNS method because all different

system outputs are used identically in order to compute the noise subspace.

Moreover, for a fixed number of sensors q, the larger the number of sources is,

the smaller is the number of noise vectors used by the MNS for channel identifi-

cation. Even though, this is theoretically justified, the estimation performance

is affected seriously as the parameter estimation problem becomes harder and

thus requires ‘more efforts’ when the number of sources increases.

Figures 5.8 and 5.9 present the performance results for the same parameters

as in figures 5.3 and 5.4 for random normalized channels. As we mentioned be-

fore the OMNS algorithm provide better results for the large number of sensors

(large values of q).

Figures 5.10-5.13 show the convergence rate of the RLS+power iteration

method and the optimal step size gradient method in [65] in different scenarios

corresponding to the single input case with an SNR of 30dB, the single input

case with an SNR of 10dB, the 2-input case with an SNR of 30dB, and the

single input case when the noise subspace dimension is strictly larger than one,

respectively. In all these scenarios, one can observe a relatively high convergence

rate of the proposed algorithm.

5.8 Conclusions and further work

This chapter is devoted to the MNS (Minimum Noise Subspace) methods for the

blind identification of the MIMO systems. These methods are computationally

more efficient than the original subspace method where all of the noise vectors

must be computed. Moreover, noise subspace can be computed in the MNS in

a parallel scheme. We have also introduced some new extensions of this method

called as OMNS and SMNS methods. Computational complexity of proposed

algorithms are also evaluated.

6O((q − p)(p + 1)2N2) = O(900) flops for MNS and O(q(p + 1)2N2) = O(1350) flops for

SMNS.
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It has been shown via simulations that the OMNS method is more perfor-

mant for large number of sensors and SMNS method works better because all

of the system outputs are used.

We have also proposed an efficient RLS-like implementation of MNS algo-

rithms to extract minor subspaces of covariance matrices.

MNS-Like algorithms are promising and some more topics can be studied

later :

Beyond the minimum Under additional assumptions on the channel trans-

fer functions, we can use less than q − p noise vectors (recall that without

any additional assumptions, q − p is the minimum number of noise vectors

needed to achieve unique channel identification). Just to present the basic

ideas, let consider the case p = 1 and assume that the channels are such that

hi(z) and hj(z) are co-prime 7 for all i 6= j. In that case, only ⌈ q
2⌉ + 1

noise vectors are sufficient for unique channel identification where ⌈.⌉ rep-

resents the integer rounding towards plus infinity. In fact, we can observe

that each of the following system output pairs: (1, 2), (3, 4), · · · , (q − 1, q) al-

lows a unique identification of the corresponding channel polynomials, i.e.,

(h1(z), h2(z)), (h3(z), h4(z)), · · · , (hq−1(z), hq(z)) up to unknown scalar con-

stants α1, α2, · · · , α⌈ q

2
⌉, respectively. To get rid of these scalar constant in-

determinacy, we need to use one extra relation that links all system outputs

together.

The MNS-like algorithm developed in this chapter can be extended to other

applications like as DOA estimation [8] and array calibration [66, 67].

The asymptotic performance analysis needs to be performed for the MIMO

system identification in order to analyze the behavior of these methods and the

effect of each parameter on their overall performance.

7This is a stronger assumption than that used previously when only global co-primeness is

required, i.e. h1(z), h2(z), · · · , hq(z) do not share common zeros.
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Figure 5.5: Performance of MNS and OMNS methods.
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Figure 5.7: Performance of SS, MNS and SMNS methods.
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Figure 5.10: Convergence rate comparison for p = 1, q = 2, N = pM + 1 and

SNR = 30 dB.
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Figure 5.11: Convergence rate comparison for p = 1, q = 2, N = pM + 1 and

SNR = 10 dB.
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Figure 5.12: Convergence rate comparison for p = 2, q = 3, N = pM + 1 and

SNR = 30 dB.
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Figure 5.13: Convergence rate comparison for p = 1, q = 2, N = pM + 2 and

SNR = 30 dB.
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Chapter 6

Identification algorithms

robust to channel order

overestimation

6.1 Overcome a well-known limitation : channel or-

der overestimation

It is shown that subspace method requires the exact prior knowledge of the

channel order [9], otherwise it fails : When the system order is known in a

(Single-Input Multi-Output) SIMO system, the channel can be estimated up to

a constant scalar factor. When an overestimation of system order occurs, there

is a linear space of all possible solutions.

In order to overcome with this limitation, and based on a simple observation

that is detailed in 6.3, we propose two categories of algorithms robust to channel

order overestimation. Both algorithms use side information on the input data;

temporal deconvolution of the input sequence and constant modulus property,

respectively.

Least Squares Fitting approach This approach, presented in section 6.4,

consists of choosing the appropriate solution which corresponds to the best

fit of the estimated channel and its relative equalized signal to the observed

signal. Based on this idea, we propose two block algorithms for robust channel

identification. Global convergence of the algorithms are guaranteed over a few

number of iterations due to the efficient initialization of algorithms detailed in

89
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section 6.4.3.

Constant Modulus approach The Constant Modulus (CM) approach is

detailed in section 6.5. It consists of choosing the appropriate channel estimate

(among the linear space of possible solutions of the SS criterion) which mini-

mizes the Constant Modulus (CM) criterion of the equalized signal. Based on

this idea and exploiting the relationship between Minimum Mean Square Error

(MMSE) and CM equalizer, we propose a new algorithm for robust channel

identification.

6.2 Overview of related works

For several years a lot of research efforts have been made in order to develop

new channel identification techniques and algorithms robust to channel order

overestimation.

Among other works we can mention a second order based approach in [38, 37,

39], where the authors propose a new algorithm robust to order overestimation

based on the properties of the shifted version of the output correlation matrix.

Another second order based method has been proposed in [40]. In this

approach, the authors propose an adaptive algorithm that minimizes an obser-

vation fitting cost function derived from observation and the expression of the

linear equalizer of the channel.

The aforementioned algorithms propose new approaches to robust channel

order overestimation in a general context using a least squares fitting or a

correlation approach. However, the robustness problem of subspace criterion

has been addressed in a few works.

In [48, 49], a robust blind channel identification approach for subspace al-

gorithm has been proposed. In this approach the authors propose an adaptive

order detection algorithm. In this proposition the subspace minimization cri-

terion is solved under different minimization linear constraints over channel.

Therefore, for an arbitrary order of channel, several possible subspace based

estimates (under new linear constraints) and a measure of proximity of the

estimates are computed. Then the best solution (the channel order) is the so-

lution that maximize the measure of the proximity of solutions (see [49] for

algorithm description.).

In [70] parametric robust subspace technique has been proposed. In this
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approach the authors consider a specific pulse shape filter at transmitter and

a specular model for the propagation channel. These assumptions lead to the

minimization of a convex function over a few parameter for subspace crite-

rion. It is shown in [70] that this approach gives consistent estimate of channel

parameters when an overestimation of channel order occurred.

In practice, the exact channel order value is not known and it depends on

the application and the environment. One existing approach to estimate the

channel order consists of applying the Minimum Description Length (MDL)

criterion [102] to the covariance matrix. However, it is known that the MDL

criterion, tends to overestimate the exact channel order. That’s why we focus

on algorithms robust to order overestimation of channel.

In next section, we recall first the notations used in the rest of this chapter.

6.3 Notations and Main idea

As mentioned before the algorithms of this chapter are derived for the SIMO

(Single-Input Multiple-Output) case 1. In this section, we recall the system

model and the related SIMO subspace method. Therefore, the system model

presented in 4.3 can be rewritten as :

y(n)
△

= [h(z)]s(n) + n(n)

=
M∑

k=0

h(k)s(n − k) + n(n) (6.0)

where h(z) =
∑M

k=0 h(k)z−k is a q × 1 polynomial transfer function modeling

the channel and {n(n)} is a measurement noise. It is assumed that {n(n)}
is white both temporally and spatially ( E(n(n)nT (n)) = σ2Iq, where σ2 is

unknown), and is independent from the symbol sequence.

The general hypotheses over the channel, expressed in section 4.3, are re-

duced to the fact that h(z) must be of full-rank for each z. It can be written

as :

h(z) 6= 0 for each z deg(h(z)) = M (6.0)

it has been shown in [94], that h(z) and σ2 are identifiable from a finite number

1The case of MIMO systems is more complex and might be developed later.
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of auto covariance coefficients.

Y(n) = [yT (n), ...,yT (n − N + 1)]T

= TN (h)SM+N (n) + N(n) (6.0)

where SM+N (n) = [s(n), ..., s(n−N −M +1)]T and N(n) = [nT (n), ...,nT (n−
N +1)]T . N is a chosen processing window length and TN (h) is a qN ×(N +M)

block Sylvester matrix associated to h
△

= [hT (0), ...,hT (M)]T .

Remark : It is important to notice that the observation vector Y(n) is

obtained by separating first all of the q-outputs of the system at desired time

instant t = n, · · · , n−N +1. This is different form the notations used in chapter

4 2. However, as mentioned before, the subspace properties remain unchanged

using different notations.

The covariance matrix of Y(n) may be expressed as:

RN = E(Y(n)YT (n)) (6.1)

= TN (h)ST T
N (h) + σ2IqN (6.2)

where S △

= E(SM+N (n)ST
M+N (n)).

The first term in the right hand side of (6.1) is singular as soon as qN >

(N +M) (this condition is assumed to hold throughout). In this case, the noise

variance σ2 is the smallest eigenvalue of RN . The eigenspace associated to σ2 is

referred to as the noise subspace. S is assumed to be positive-definite and thus

the noise subspace is the orthogonal complement of Range(TN (h)), the signal

subspace.

The eigen-decomposition of RN allows to identify the noise subspace Range(TN (h))⊥.

Denote by ΠN the orthogonal projection matrix onto Range(TN (h))⊥.

In order to estimate the channel, as in (4.3), we have to characterize the set

of all polynomials h′(z) of degree M ′, satisfying ΠNTN (h′) = 0. The following

Theorem holds:

Theorem 5 [34, 50] Assume (6.3) holds and N ≥ M . Denote by ΠN the or-

thogonal projection matrix onto the noise subspace of RN . The matrix equation

ΠNTN (h′) = 0 (6.2)

2In chapter 4, the observation vector is obtained over output number i, for all time instants

t = n, · · · , n − N + 1.
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does not admit any solution if M ′ < M (where M ′ = deg(h′(z)). If M ′ ≥ M ,

the solutions of (5) are of the form h′(z) = r(z)h(z) where r(z) is an arbitrary

scalar polynomial of degree M ′ − M .

Matrix equation (5) is solved in a least squares sense. Since the Sylvester matrix

depends linearly on its parameters, the least squares criterion can be rewritten

as a quadratic form

Tr(T H
N (h′)ΠNTN (h′)) = h′HQNh′ (6.2)

QN denotes a q(M ′+1)×q(M ′+1) symmetric matrix. When the degree M

of system is known or correctly estimated, h′(z) can be written as h′(z) = rh(z)

(where r is a complex scalar) according to Theorem 5. Therefore, the channel

can be estimated up to a scale factor by minimizing in h′ the above mentioned

criterion under a suitable constraint. On the other hand, when M ′ > M , there

are many solutions of the form h′(z) = r(z)h(z). In this case, we have the

following result:

Proposition 1 Under the above mentioned conditions, matrix QN is singular

with a null space of dimension d = M ′ − M + 1.

Consequently, the linear space of solutions can be obtained using L ≥ d eigen-

vectors, represented here by matrix UL, associated to the L least eigen-values

of QN . Mathematically it can be expressed as

h′
v = ULv (6.2)

where UL denotes a q(M ′+1)×L matrix, v stands for an L-dimensional vector

to be estimated and

h′
v = [h′T

v (0), ...,h′T
v (M ′)]T .

6.4 Least Squares Fitting Approach

As mentioned before, the key idea of this section is to find the L-dimensional

vector v which minimizes the distance between the estimated and the observed

signal in a least squares sense. The observation fitting cost function can be

written in two ways
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• It can be expressed as a function of only v. In this case, both channel

and equalizer expression are written as a function of v. The equalizer

corresponds to the MMSE filter.

• It can be obtained as a function of vector v and an equalizer w. A bilin-

ear approach, as in [40], should be adopted to estimate two parameters

alternatively.

Minimization of cost functions is performed using gradient-based or newton-

based algorithms. The initial point of these algorithms are chosen in order

to guarantee the convergence to the minimum in a few iterations. Efficient

initialization for both algorithms is discussed later in section 6.4.3.

6.4.1 Non-linear Optimization using MMSE equalizer

We assume here that the source signal is temporally white: i.e. E
(
s(n)s∗(m)

)
=

σ2
pδ(n − m). We consider here an MMSE equalizer as a function of v. In this

case, vector v corresponding to the desired solution is estimated by minimizing

the cost function given by :

minv J (v) = ‖Yobs − T (h′
v)Ŝv‖2 (6.2)

where Yobs = [yT (T − τ), ...,yT (N)]T is the block vector of observations (T

being the sample size), with an equalization delay of τ = M ′− 13 and Ŝv is the

estimated input sequence using the MMSE equalizer associated to h′
v according

to

Ŝv = Ỹ(R̂−1
N





h′
v(M ′)

...

h′
v(0)

0q(N−M ′−1),1




)

= ỸMv (6.2)

where

Ỹ =





YT (T )
...

YT (N + τ − M ′ + 1)



 (6.2)

3The delay value can be chosen arbitrary.
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and

M = R̂−1
N





UL,M ′

...

UL,0

0q(N−M ′−1),L




, (6.2)

UL,i denotes q × L matrix, corresponding to the i th block of matrix UL (i.e.

UL = [UT
L,0, ...,U

T
L,M ′ ]T ). Using T (h′

v) =
∑L

i=1 Tivi, with

Ti =





UL,0(:, i) · · · UL,M ′(:, i) 0
. . .

. . .

0 UL,0(:, i) · · · UL,M ′(:, i)





the cost function (6.4.1) can be written as

J (v) = ‖Yobs −
L∑

i=1

TiỸMviv‖2 (6.3)

= ‖Yobs − Q(v ⊗ v)‖2

with Q = [T1ỸM, ..., TLỸM] and ⊗ denotes the kronecker product.

6.4.1.1 Gradient Algorithm

Criterion J (v) is a 4th order polynomial function of v that is optimized via a

gradient algorithm. Gradient algorithm is based on the first order development

of the cost function. It is written as

v(t+1) = v(t) − λopt∇J (v(t)) (6.1)

t denotes the index number and λopt is the optimal step size. Gradient of J (v)

is driven by

∇ J (v) =





ŜT
vT T

1 (Yobs − Q(v ⊗ v))
...

ŜT
vT T

L (Yobs − Q(v ⊗ v))



 (6.1)

6.4.1.2 Optimal step size selection

In order to determine optimal step size λopt, the cost function J (v(t+1)), is

approximated by a quadratic function q(λ) :

q(λ) = aλ2 + bλ + c (6.1)
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Let us consider the cost function J (v) at iteration t + 1. It can be written as

Ju(λ) = J (v(t+1)) = J (v(t) − λ∇J (v(t))) (6.1)

Parameter c is obtained using the criterion value at the current point (which

corresponds to λ = 0) and b is obtained by derivating the criterion at the same

point

c = q(0) = J (v(t)) (6.2)

b =
dq(λ)

dλ

∣∣
λ=0

=
dJu(λ)

dλ

∣∣
λ=0

= −||∇J (v(t))||2

In order to obtain a, we impose that the quadratic function q(λ) at the point

λ1 = −2c
b has the same value as Ju(λ) (see [100] for more details). Therefore,

we have

a =
1

λ2
1

[ J (v(t) − λ1∇J (v(t))) + c] (6.0)

Parameters a, b and c are obtained using only one additional computation of

criterion J (v) at each iteration. The optimal step size which minimizes q(λ) is

therefore determined as

λopt =
−b

2a
.

6.4.2 Bilinear Optimization

The bilinear approach consists of minimizing the cost function J alternatively

over v and w, as in [40]4:

minv,w J (v,w) = ‖Yobs − T (h′
v)Ŝw‖2 (6.0)

where w is an ’equalizer’ vector and Ŝw an estimate of the input signal. It is

known that the equalizer vector belongs to signal subspace. Consequently, we

choose here an equalizer of the form Ûsw, where Ûs represents the estimated

signal subspace. Equation (6.4.2) can be written as a function of both v and

w according to:

T (h′
v)Ŝw = (T (h′

v)ỸÛs)w (6.1)

= Aw (6.2)

= Bv
4Note that in [40], the least squares fitting criterion was function of the channel parameter

vector h and MMSE equalizer w. While here it is function of the reduced parameter vector v

and a reduced equalizer vector restrained to belong to the signal subspace.
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with B = [T1Ŝw, ..., TLŜw]T .

6.4.2.1 Newton Algorithm

Newton algorithm is based on the second order development of the cost function.

The bilinear newton algorithm over two parameters v and w can be expressed

as

w(t+1) = w(t) − λw(∇2J (w(t)))−1∇J (w(t)) (6.2)

v(t+1) = v(t) − λv(∇2J (v(t)))−1∇J (v(t))

λw and λv denote two small step-sizes. The gradient of the cost function can

be written as

∇J (w) = −2AT (Yobs − Aw) (6.1)

∇J (v) = −2BT (Yobs − Bv)

and the Hessian of the cost function is given by

∇2J (w) = 2ATA (6.0)

∇2J (v) = 2BTB.

6.4.3 Efficient initialization

It is known that non-linear and bilinear algorithms do not converge to the global

minimum of the cost function if an efficient initialization is not performed.

For example, in [71] a way of detecting the nature of the minimum of such

cost functions has been proposed, but there is no indication on the way we

can efficiently initialize these algorithms. Here, we propose an efficient way of

initialization that guarantees the convergence of the algorithm to the global

minimum.

Initialization of proposed algorithms is based on the fact that the multichan-

nel structure ensures the existence of linear finite-length zero-forcing equalizer

under classical assumptions [68]. To well initialize the bilinear optimization

algorithm we chose τ = 0 and w0 according to:
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Ûsw0 ≈ R̂−1
N

[
h(0)

0q(N−1),1

]
⇔ R̂NÛsw0 ≈

[
h(0)

0q(N−1),1

]
(6.-2)

Therefore:

ŪsΛsw0 = 0q(N−1),1 (6.-2)

where Ūs is the sub-matrix of Us given by its last q(N − 1) rows. In practice,

w0 is estimated as the least eigen-vector of (ΛsŪ
H
s ŪsΛs). This choice of w0

corresponds to a good initial point as shown by the following proposition:

Proposition 2 In the noiseless case and for N > (M + 1), vector w0 so-

lution of (6.4.3) corresponds to a zero-forcing equalizer of delay τ = 0, i.e.

(Usw0)
TTN (h) = [β, 0, ..., 0], where β is a given scalar.

Proof. Let us consider the complete qN × 1 equalizer of channel noted w̃0 =

(Usw0) without loss of generality. Therefore, we have to prove the following

equation :

R̄Nw̃0 = 0q(N−1),1 ⇔ (w̃0)
TTN (h) = [β, 0, ..., 0] (6.-2)

R̄N denotes the q(N −1)×qN matrix that corresponds to the last q(N −1)

rows of the qN × qN covariance matrix RN . Following equations (6.1) and

(6.1), R̄N can be written as:

R̄N = E(Y(n − 1)YT (n)) (6.-2)

Y(n− 1) is the qN × 1 output observation vector, as in (6.1). It can be written

as :

Y(n − 1) = TN (h)SM+N (n − 1) (6.-2)

Having these expressions in mind, we will first demonstrate direct part of the

equation (6.4.3). We have :

R̄Nw̃0 = 0q(N−1),1

E(Y(n − 1)YT (n))w̃0 = 0q(N−1),1

TN (h)E
(
SM+N (n − 1)SM+N (n)T )

TN (h)T w̃0 = 0q(N−1),1 (6.-3)

TN (h) is full columns rank. Therefore we have :

E
(
SM+N (n − 1)SM+N (n)T )

TN (h)T w̃0 = 0q(N−1),1 (6.-3)
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E
(
SM+N (n − 1)SM+N (n)T )

can be written as:

E
(
SM+N (n − 1)SM+N (n)T )

= JM+N

where JM+N is a (M + N) × (M + N) shifted unitary matrix expressed as

JM+N =





0 0 · · · 0 0

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0





therefore we rewrite the equation (6.4.3) as :

JM+NTN (h)T w̃0 = 0q(N−1),1 (6.-3)

therefore

w̃T
0 TN (h) = [β, 0, ..., 0] (6.-3)

Reverse part of demonstration is proved in the following:

w̃T
0 TN (h) = [β, 0, ..., 0]

w̃T
0 TN (h)SM+N (n) = βs(n)

w̃T
0 Y(n) = βs(n) (6.-4)

multiplying both sides of previous equation by YT (n − 1) and taking the ex-

pectation on both parts we have:

w̃T
0 E(Y(n)YT (n − 1)) = βE(YT (n − 1)s(n)) (6.-4)

YT (n − 1) depends only on time instants n − 1, n − 2, ..., therefore the second

part of the equation (6.4.3) is equal to zero. Consequently we obtain:

R̄Nw̃0 = 0q(N−1),1 (6.-4)

2.

Remark 1 :In order to launch the non-linear optimization algorithm, the initial

point v0 is obtained from w0 in the same way, even if this equalizer is obtained

basically for zero-delay equalizer.

Remark 2 : To enhance the performance of bilinear optimization algorithm,
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at the first iteration we choose a delay value equal to zero, in order to estimate

a good initial point. Then we change the delay value to M ′ − 1 for the second

iteration to obtain a better equalizer quality.

6.5 Constant Modulus Approach

In this section, we mention first a well known property concerning the CM

criterion. Godard was the first who observed that the mean square error per-

formance of CMA is close to that of the MMSE equalizer [45]. For several

years, a lot of research efforts was made to confirm or prove that, under several

conditions, the CM minima remain in the vicinity of MSE minima for different

choices of delay and sign (see [32, 95] and [96]). Among other works, we can

cite an approach used in [59]. It consists of plotting the contour of CM cost

function in equalizer space and compare the location of CM minima and MMSE

equalizer. This approach confirms the above mentioned result, under certain

conditions.

As mentioned before, the main idea of this section is to find the L-dimensional

vector v, minimizing the CM cost function under the CM assumption i.e.

∀n |s(n)| = C. Where C > 0 is a given constant. More precisely, given

the channel estimate in (6.3), we can express an MMSE equalizer vector as a

function of v according to :

w = R̂−1
N





h′
v(M ′)

...

h′
v(0)

0q(N−M ′−1),1





= Wv (6.-4)

Where

W
△

= R̂N
−1





UL,M ′

...

UL,0

0q(N−M ′−1),L





UL,i denotes the q × L matrix corresponding to the i th block of matrix UL

(i.e. UL = [UT
L,0, ...,U

T
L,M ′ ]T ) and v is a given L-dimensional vector. The

desired vector v associated to the desired channel estimate (the desired channel



6.5. CONSTANT MODULUS APPROACH 101

estimate corresponds to

h′
v = α[0T

qk,1, hT , 0T
q(M ′−M−k),1]

T

for a given scalar constant α and a positive integer k) is obtained by minimizing

the following CM criterion:

min J (w) = minE(|wTY(n)|2 − r)2

= min
v

E( |vT Z(n)|2 − r )2 (6.-4)

where Z(n) = WTY(n) and r represents the dispersion constant.

In order to minimize equation (6.-3), we constrain v to be of unit norm and

we use a parameterization based on the following result [47]5 :

lemma 1 Each unit norm row vector can be represented as the last row of an

orthogonal matrix P given by:

P =
∏

1≤p≤it nb

( ∏

1≤i≤L−1

P (θi
p)

)
(6.-4)

where θi
p are a set of rotation angles in ] − π/2, π/2] and

P (θi
p) =





Ii−1

cos(θi
p) ... − sin(θi

p)
... IL−i−1

...

sin(θi
p) ... cos(θi

p)




(6.-4)

Consequently, we propose a recursive minimization algorithm, where at each

step, the cost function (6.-3) is written as a function of rotation angle θi
p :

min
θ

J (θi
p) = E( |vT

0 (P (θi
p))

T Z(n)|2 − r )2 (6.-4)

vT
0 is a row vector of length L with all components equal to zero except the last

one which is equal to one. This choice of vT
0 permits us to select the last row

of orthogonal matrix P (θi
p).

At each iteration, the angle θi
p that minimizes the cost function (6.5) is

computed. The algorithm is stopped when P (θi
p) are close to identity matrix

for all 1 ≤ i ≤ L − 1. More precisely, we have the following iterative process :

5Note that constraining v to be of unit norm is equivalent to constrain ||h′

v|| = 1 since UL

is unitary.
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1. Initialization 6:

v0
T = [0, ..., 0︸ ︷︷ ︸

L−1

, 1] (6.-4)

2. For i = 1, 2, ..., L − 1 and the current iteration p, find the rotation which

minimizes the cost function :

θi
p = argmin{J (θi

p)} (6.-4)

The minimization details are discussed below.

3. Compute the new values of Z and v:

Z := P (θi
p)

T
Z

v := P (θi
p) v

where Z
△

= [Z(N), ...,Z(T )] (T being the sample size).

4. If θi
p for all 1 ≤ i ≤ L− 1 are close to zero, then stop. Else, p = p + 1 and

go to step 2.

Here, we describe how the cost function J (θi
p) is minimized. This cost function

can be written as (we replace the expectation by time averaging):

J (θi
p) =

∑

n

(
| − sin(θi

p)Z
i(n) + cos(θi

p)Z
L(n)|2 − r

)2

=
∑

n

(
uT yi(n) + αi(n)

)2
(6.-6)

= uT
( ∑

n

yi(n)yi(n)
T )

︸ ︷︷ ︸
G

u + 2
( ∑

n

αi(n)yi(n)
)

︸ ︷︷ ︸
gT

u

where 7

u =

[
cos(2 θi

p)

sin(2 θi
p)

]
(6.-7)

and

yi(n) =

[ (
Zi(n)

2 − ZL(n)
2)

/2

−Zi(n)ZL(n)

]
,

αi(n) =
Zi(n)

2
+ ZL(n)

2

2
− r. (6.-7)

6This initialization corresponds to choosing at first the channel estimate of the standard

subspace algorithm that is given by the least eigenvector of QN , i.e. the last column vector

of UL.
7In (6.-5), we omit a constant term independent from θi

p.
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where Zi(n) denotes the i-th entry of Z(n). Therefore, minimizing J (θi
p) versus

θi
p is equivalent to minimizing the following equation subject to ||u||2 = 1.

min
||u||2=1

J̃ (u) = min
||u||2=1

(uTGu + 2gTu) (6.-7)

In order to minimize equation (6.5), we use the method of Lagrange multipliers

[12]. By zeroing the gradient of (6.5), we obtain the following expression of u:

u = −(G + λI)−1g (6.-6)

= −
[

(uT
1 g)

(λ + λ1)
u1 +

(uT
2 g)

(λ + λ2)
u2

]

where G = λ1u1u
T
1 + λ2u2u

T
2 is the eigen decomposition of G. Using the fact

that ||u||2 = 1, λ must satisfy:

[
(uT

1 g)

(λ + λ1)

]2

+

[
(uT

2 g)

(λ + λ2)

]2

= 1 (6.-7)

This corresponds to a polynomial equation of degree 4. By solving this equa-

tion and choosing λ equal to its real root, we obtain u from equation (6.-6).

Consequently, the corresponding θi
p can be found. If there are more than one

real root to the above equation then, the solution which minimizes the cost

function (6.5) is selected as the desired one.

Remark: In the case where the source signal is not of constant modulus, the

minima of MMSE and CM criteria do not coincide (or at least are not close) [59]

and thus the proposed algorithm fails to provide a consistent channel estimate.

6.5.1 Extension to complex case

For simplicity, we have considered previously the case where the signals and

the channels are real-valued. In the complex case, the proposed algorithm

remains essentially the same except for the fact that the rotation matrices are

function of two angle parameters θ and α (i.e., − sin(θ) and sin(θ) are replaced

by − sin(θ)ejα and sin(θ)e−jα, respectively).

In that case, optimizing the CM cost function versus these angle parameters

leads to:

min
||u||2=1

J (u) = min
||u||2=1

(uTGu + 2gTu) (6.-7)

where

G =
∑

n

yi(n)yi(n)
T

and g =
∑

n

αi(n)yi(n)
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u = [cos(2θ), sin(2θ) cos(α), sin(2θ) sin(α)]T ,

yi(n) =





(
|Zi(n)|2 − |ZL(n)|2

)
/2

−ℜe(Zi(n)ZL(n)
∗
)

−ℑm(Zi(n)ZL(n)
∗
)



 ,

αi(n) =
|Zi(n)|2 + |ZL(n)|2

2
− r,

that can be solved in the same way as equation (6.5).

6.6 Simulations

In this section we present simulation results for both least squares fitting and

Constant Modulus approach introduced respectively in 6.4.1,6.4.2 and 6.5 in

order to asses the performance of the proposed algorithms. The algorithm per-

formance is measured in terms of distance between estimated and real channel,

as in [38], by :

MSE(ĥ)
△

= min
α,k≥0

∥∥∥αĥ −





0qk,1

h

0q(M ′−M−k),1




∥∥∥

2

= min
k≥0

∥∥∥(I − ĥĥ
#

)





0qk,1

h

0q(M ′−M−k),1




∥∥∥

2

where ĥ
#

= ĥ
T
/‖ĥ‖2. Statistics are evaluated over 100 Monte-Carlo runs.

6.6.1 Simulation results for Least Squares Fitting Approach

We consider a two-output one-input system. The input sequence is an i.i.d. zero

mean unit variance BPSK process. The multi path channel impulse response

for the first output is generated from a raised-cosine spectrum pulse. Then it

is attenuated, delayed and sampled. Afterwards, it is windowed such that the

polynomial degree is M . The other channel transfer functions are generated by

assuming a plane propagation model for each path (see [7] for more details).

Here we choose two different sets of channel realizations. In the first realization,

the channel is generated assuming that there are three paths. The main path is

not attenuated, whereas two other paths are attenuated about 5 dB each. The
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delay corresponding to the main path is zero and for the two other paths delays

are integer multiples of path numbers. The resulted channel coefficients are :

h1(z) = −0.6046 + (0.0312)z−1 + (0.3089)z−2

h2(z) = −0.5978 + (0.0887)z−1 + (0.2521)z−2

For the second channel realization, the attenuation and delays of paths are

chosen in a way to obtain a channel impulse response where the energy is

concentrated in the middle of channel. The channel coefficients are :

h1(z) = 0.0021 + (0.0786)z−1 − (0.6953)z−2

+(0.5689)z−3 − (0.0009)z−4 + (0.0051)z−5

h2(z) = 0.0067 − (0.0168)z−1 + (0.2558)z−2

−(0.8727)z−3 + (0.0223)z−4 − (0.0116)z−5

For non-linear optimization algorithm, the equalizer delay is chosen to be

equal to M ′− 1. The number of considered iterations are 10. Optimal step size

is determined as explained in section 6.4. Simulation results are summarized in

following tables for several values of L and M ′.

Table 6.1 and 6.2 present the performance of both algorithms over the first

channel realization derived at SNR=10 dB and T = 500. It is shown that, the

bilinear optimization algorithm achieves better performance than the non-linear

optimization algorithm in only two iterations due to the better choice of initial

point, for a low value of SNR. For the second channel realization and low SNR

MSE (dB) Non-linear

M ′ L = M ′ − M + 1 L = M ′ − M + 2

3 −29.6 −28

4 −22.94 −22.3

5 −22.1 −21.8

6 −21.2 −21.03

Table 6.1: Channel estimates MSE using ’Non-linear’ Algorithm with

SNR=10dB.

(10 dB), both algorithms have almost the same performance. Tables 6.3 and

6.4 provide simulation results for SNR=40 dB over second channel realization.

Bilinear optimization algorithm shows better performance in this case. But is

computationally more expensive than the ’non-linear’ optimization algorithm.
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MSE (dB) Bilinear

M ′ L = M ′ − M + 1 L = M ′ − M + 2

3 −31.7 −31

4 −27.5 −31

5 −29 −27

6 −22.5 −26

Table 6.2: Channel estimates MSE using ’Bilinear’ Algorithm with SNR=10dB.

MSE (dB) Non-linear

M ′ L = M ′ − M + 1 L = M ′ − M + 2

6 −22.7 −21.3

7 −20.0 −20.2

Table 6.3: Channel estimates MSE using ’Non-linear’ Algorithm with

SNR=40dB.

6.6.2 Simulation results for Constant Modulus Approach

We have considered a one-input two-output system. The input sequence is an

i.i.d. zero mean unit variance BPSK process. We consider a channel of degree

2. The channel coefficients are :

h1(z) = −0.2931 − (0.0151)z−1 − (0.1497)z−2

h2(z) = 0.5029 + (0.7448)z−1 + (0.1505)z−2

Figure 6.1 presents the MSE of the estimated channel for different values of

SNR with a sample size T = 1000. For this simulation L is fixed to M ′−M +1.

The performance of the algorithm when an overestimation of channel order

occurs remain acceptable. For example, for a SNR = 25 dB, M ′ = M + 2 and

L = 3, the distance between estimated and real channel is -23 dB.

Table 6.5 provides simulation results for several values of M ′ and L. The

SNR is fixed to 30 dB. It is shown that even for large values of M ′ and L we

obtain relatively good performance.

Table 6.6 demonstrates the performance of proposed algorithm for a SNR=30

dB. Different values of T and M ′ have been considered. The value of L is equal

to M ′ −M + 1. The performance of the algorithm depends on the sample size.
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MSE (dB) Bilinear

M ′ L = M ′ − M + 1 L = M ′ − M + 2

6 −28.5 −31

7 −25.4 −24.5

Table 6.4: Channel estimates MSE using ’Bilinear’ Algorithm with SNR=40dB.
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Figure 6.1: MSE versus SNR

A sample size T = 500 seems to be sufficient to achieve acceptable MSE even

for large values of the estimated order M ′.

6.7 Conclusions

In this chapter we have proposed several subspace identification algorithms

robust to channel order overestimation in a SIMO context. When an overesti-

mation of channel order occurs, the subspace criteria can be used to obtain a

certain structural property related to estimated channel. We exploit this struc-

tural property in conjunction with Least Squares Fitting criteria and Constant

Modulus criteria respectively to obtain robust algorithms.

Least Squares Fitting Approach In this contribution, no additional as-

sumption is made over input data. Based on a Least squares Fitting Approach

we propose two identification algorithms called Non-linear optimization and Bi-

linear optimization algorithms. Non-linear optimization algorithm uses an opti-
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MSE (dB)

M ′ L=M ′−M+1 L=M ′−M+2 L=M ′−M+3

3 −32.15 −20.37 −26.45

4 −24.10 −23.22 −21.35

5 −19.77 −17.84 −18.18

6 −16.17 −18.76 −18.35

Table 6.5: Channel estimates MSE using CMA approach

MSE (dB)

T M ′ = M + 1 M ′ = M + 2 M ′ = M + 3

100 −15.23 −12.39 −7.65

250 −22.38 −18.96 −15.78

500 −28.42 −20.49 −18.27

Table 6.6: Channel estimates MSE using CMA approach

mal step size gradient algorithm, whereas Bilinear optimization uses a Newton

algorithm.

We also propose an efficient way of initialization for both algorithms that

guarantee the convergence over a few iterations. It is shown by simulation that

both algorithms achieve good performance in low/ moderate signal to noise

ratio.

Constant Modulus Approach This algorithm is based on the minimization

of a CM cost function in conjunction with the subspace based criterion. It is

shown by simulation that when constant modulus source signal is used, this

algorithm achieves good performance in low/moderate signal to noise ratio.

However, it is shown in simulations that the Least Squares Fitting approach

provides slightly better results than that of CM approach in a few iterations.



Chapter 7

Concluding remarks and

Perspectives

In this document several aspects concerning Multiple-antenna wireless systems

over fading channels have been considered. Main contributions have been di-

vided on two different parts : transmitter side and receiver side.

7.1 Transmitter Side

At the first part of this report we have focused on Algebraic Space-Time codes

that exploit maximum diversity gain and achieve a good coding gain in a

multiple-antenna environment 1.

In this part we have proposed a new approach to combine Algebraic Space-

Time codes with CDMA system. This approach consists of first using Algebraic

Space-Time codes to encode information data, then spread the encoded data

using appropriate spreading sequence and send the spread information over

several transmit antennas. At the receiver side, there are one or several receive

antennas and decoding procedure consists of decorrelating all users first, then

applying Maximum Likelihood Sphere Decoder (SD) to each user separately.

We have also proposed a technique for blind channel estimation based on

the orthogonality between noise and signal subspaces.

We have shown via several simulations the significant gain that is obtained

using Algebraic Space-Time codes over several transmit antennas versus a tradi-

1We do not use the inherent time and/or space diversity available in a multiple antenna

system which needs certain assumptions over propagation channel and can be used for a

limited number of transmit antennas.
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tional system that use only several transmit antennas without algebraic Space-

Time codes. We have also shown that when the number of transmit antennas

increase, an improvement of performance is also achieved since the diversity

gain increases with the number of transmit antennas. Moreover, the spectral

efficiency of the system increases with no band-width increase due to the struc-

ture of Algebraic Space-Time codes. We have shown also the improvements

achieved when several receiver antennas are used at the receiver. The proposed

scheme has been also adapted to the case of multi-user and multi-path. It is

shown that in the case of multi-user the Sphere Decoding of each user separately

yields near optimum performance. It is shown that, in the multi-path case we

obtain an additional gain due to the delay diversity added to the system.

It is shown that the performance loss in the system when we use blind chan-

nel identification might be quite significant and can be lead to a diversity loss.

Therefore, some more reliable identification techniques have to be considered

in future.

Moreover, several aspects concerning Space-Time codes might be investi-

gated in detail. For example, we can combine the Diagonal Algebraic Space-

Time codes with Turbo codes to further improve the performance of the system.

7.2 Receiver Side

In the second part of this report we focused on the main drawbacks of sub-

space based identification techniques : Computational complexity and lack of

robustness to the order overestimation of propagation channel.

7.2.1 Minimum Noise Subspace-like methods

MNS-like methods are promising because they are computationally more effi-

cient than standard subspace methods. In these methods the large matrix de-

composition is avoided and the noise vectors are computed in a parallel scheme

as the least eigenvectors of covariance matrix computed from a special set of

outputs.

We have proposed several extensions of MNS method called Symmetric

Minimum Noise Subspace (SMNS) and Orthogonal Minimum Noise Subspace

(OMNS). We introduced SMNS and OMNS algorithms and computed the exact

computational cost of each one. We have also compared the performance of the

proposed methods.
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We have shown that SMNS has the advantage of being more robust and more

performant because it uses all of the system outputs in a symmetric manner.

In the case of OMNS we have shown that the orthogonality of the noise vectors

can improve the performance of the system specially when there are a large

number of sensors.

We have also proposed an efficient way of computing the least eigen vec-

tors of the covariance matrix using a RLS-type technique followed by a power

method. We have shown in simulations that this method has a high convergence

rate and outperforms the other proposed methods.

MNS-like algorithms are promising and can be extended to other applica-

tions like as DOA estimation and array calibration. Actually a paper is under

preparation in order to unify and complete previousely obtained results.

It is important to compute the asymptotic performance of MNS algorithm

in the MIMO case in order to obtain more insight on the behavior of these

algorithms and the effect of each parameter on the overall performance.

We have seen that under an additional assumption we can go ’beyond the

minimum’. This must be studied later.

7.2.2 Robust subspace method

In this contribution we have exploited a structural property of the estimated

channel derived from subspace-based criterion in conjunction with least squares

criterion and constant modulus criterion to obtain robust algorithms.

It is shown by simulation that the approach using the Least Squares Fitting

approach achieve better performance especially when we use the efficient initial-

ization procedure proposed in this chapter. Moreover, no additional assumption

over input data is made when we use this algorithm.



112 Concluding remarks and Perspectives



Bibliography

[1] C-implementation: algorithm of fincke and pohst for computing short

vectors in lattices. Technical report, http://www.matha.mathematik.uni-

dortmund.de/ fv/.

[2] UMTS overview. Technical report, http://www.umtsworld.com/.

[3] Space-Time block coded transmit antenna diversity for WCDMA. Techni-

cal report, proposed TDOC No. 662/98 to ETSI SMG2 UMTS standards,

Dec. 1998.

[4] Downlink improvement through space-time spreading. Technical report,

proposed TDOC C30 − 19990817 − 014 to 3GPP2 IS200 standards, aug.

1999.

[5] K. Abed-Meraim, S. Attallah, A. Chkeif, and Y. Hua. Orthogonal Oja

algorithm. IEEE Signal processing letters, 7(5), May 2000.

[6] K. Abed-Meraim, J. Cardoso, A. Gorokhov, P. Loubaton, and

E. Moulines. On subspace methods for blind identification of single-input

multi-output FIR systems. IEEE Trans. on Signal processing, 45(1):42–

55, January 1997.

[7] K. Abed-Meraim and Y. Hua. Blind identification of Multi-Input

Multiple-Output system using Minimum Noise Subspace. IEEE Trans.

on Signal processing, 45(1):254–258, January 1997.

[8] K. Abed-Meraim, Y. Hua, and A. Belouchrani. Superfast noise subspace

computation: Application to array calibration and DOA estimation. Proc.

of 15th annual Benjamin Franklin Symposium, May 1997.

113



114 BIBLIOGRAPHY

[9] K. Abed-Meraim, P. Loubaton, and E. Moulines. A Subspace algorithm

for certain blind identification problems. IEEE Trans. on Information

Theory, 43:499–511, March 1997.

[10] S. M. Alamouti. A simple transmit diversity technique for wireless com-

munications,. IEEE J. Selec. Areas on Commun., 16:1451–1458, Oct.

1998.

[11] J.-C. Belfiore, X. Giraud, and J. Rodriguez. Optimal linear labeling for

the minimization of both source and channel distortion. In ISIT’2000,

Sorrento, Italy, June 2000.

[12] D. P. Berteskas. Constraint Optimization and Lagrange Multiplier Meth-

ods. New York Academic Press, 1982.

[13] H. Bolcskei and A. Paulraj. Performance of Space-Time codes in the

presence of spatial fading correlation. In Asilomar Conf., Pacific Grove,

CA, Oct. 2000.

[14] M. Borgmann and M. B. Pelaez. Performance of non-orhtogonal space-

time codes under transmitter-side spatial fading correlation. PhD thesis,

Stanford University, Dec. 2000.

[15] K. Boulle and J.-C. Belfiore. Modulation scheme designed for the Rayleigh

Fading channel. In CISS’1992, Princeton,NJ, March 1992.

[16] J. Boutros and E. Viterbo. Signal space diversity : A power and band-

width efficient diversity technique for the Rayleigh fading channel. IEEE

Trans. Information Theory, 44:1453–1467, July 1998.

[17] J. Boutros, E. Viterbo, C. Rastello, and J. C. Belfiore. Good lattice

constellations for both Rayleigh Fading and Gaussian channels. IEEE

Trans. Information Theory, 42(2):502–518, March 1996.

[18] L. Brunel. Optimum and sub-optimum multiuser detection based on

sphere decoding for multi-carrier code division multiple access systems.

In ICC 2002, 2002.

[19] A. M. Chan and I. Lee. A new reduced-complexity sphere decoder for

multiple antenna systems. IEEE Int. Conf. on Communications, 1:460–

464, 2002.



BIBLIOGRAPHY 115

[20] A. Chkeif, K. Abed-Meraim, G. Kawas-Kaleh, and Y. Hua. Spatio-

Temporal blind adaptive multiuser detection. IEEE Trans. Communi-

cations, 48:729–732, May 2000.

[21] J. H. Conway and N. J. Sloane. Sphere Packings, Lattices and groups.

New York: Springer-Verlag, 2nd edition edition, 1993.

[22] M. O. Damen, , A. Safavi, and K. Abed-Meraim. On cdma with Space-

Time codes over multipath fading channels. IEEE Trans. on Wireless

Communications, 2(1):11–19, January 2003.

[23] M. O. Damen. Joint coding/decoding in a multiple access system, Appli-

cation to mobile communications. PhD thesis, ENST, Paris, 1998.

[24] M. O. Damen, A. Abdi, and M. Kaveh. On the effect of the correlated

fading on several space-time coding and detection schemes. In VTC fall

2001, 2001.

[25] M. O. Damen, K. Abed-Meraim, and J.-C. Belfiore. Generalized Sphere

Decoder for asymmetrical space-time communication architecture. Elec-

tronics Letters, 36(2):166–167, January 2000.

[26] M. O. Damen, K. Abed-Meraim, and J.-C. Belfiore. Transmit diversity

using rotated constellations with Hadamard transform. in Proc. of AS-

SPCC’2000, Alberta, Canada, Oct. 2000.

[27] M. O. Damen, K. Abed-Meraim, and J.-C. Belfiore. Diagonal algebraic

space-time block codes. IEEE Trans. on Information Theory, 48(3):628–

636, March 2002.

[28] M. O. Damen, K. Abed-Meraim, and M. S. Lemdani. Further results

on the sphere decoder algorithm. In ISIT’2001, Washington, USA, June

2001.

[29] M. O. Damen, A. Chkeif, and J.-C. Belfiore. Lattice codes decoder for

Space-Time codes. IEEE Communications Letters, 4:161–163, May 2000.

[30] D. Divsalar and M. K. Simon. The design of the trellis coded MPSK for

Fading channels: Performance criteria. IEEE Trans. on Communicatins,

36(9):1004–1012, September 1998.



116 BIBLIOGRAPHY

[31] P. Fan and M. Darnell. Sequence Design for Communication Applications.

Taunton, Somerset, England: Research Studies Press Ltd., 1996.

[32] I. Fijalkow, A. Touzni, and J. R. Treichler. Fractionally spaced equaliza-

tion using CMA: robustness to channel noise and lack of disparity. IEEE

Trans. on Signal processing, 45:56–67, 1997.

[33] U. Finke and M. Pohst. Improved methods for calculating vectors of

short length in a lattice, including a complexity analysis. Matematics of

computations, 44(170):463–471, April 1985.

[34] G. Forney. Minimal bases of rational vector spaces, with applications to

multivariable linear systems. SIAM J. Contr., 13:493–520, March 1975.

[35] G. J. Foschchini, G. D. Golden, R. A. Valenzuela, and P. W. Wolniansky.

Samplified processing for high spectral efficiency wireless communication

emploing multi-element arrays. IEEE J. on Selected Areas in Communi-

cations, pages 1841–1852, Nov 1999.

[36] S. Galliou and J.-C. Belfiore. A new family of full rate, fully diverse Space

-Time codes based on Galois theory. In ISIT’2002, Lausanne, Switzerland,

July 2002.

[37] H. Gazzah and K. Abed-Meraim. Blind equalization with controlled delay

robust to order overestimation. In ISSPA 2001, Aug. 2001.

[38] H. Gazzah, P. Regalia, J. Delmas, and K. Abed-Meriam. A blind mul-

tichannel identification algorithm robust to order overestimation. IEEE

Trans. on Signal processing, 50(6):1449–1458, June 2002.

[39] H. Gazzah, P.-A. Regalia, and J.-P. Delmas. A blind identification algo-

rithm robust to order over estimation. In ICASSP 2000, June 2000.

[40] D. Gesbert and P. Duhamel. Robust blind joint data/channel estimation

based on bilinear optimization. Proc. 8th IEEE Int. Workshop on SSAP,

pages 168–171, June 1996.

[41] D. Gesbert, M. Shafi, D. S. Shui, P. Smith, and A. Naguib. From theory

to pactice: An overview of MIMO Space-Time coded wireless system.

Journal of Selected Areas in Communications, 21(3):281–303, April 2003.



BIBLIOGRAPHY 117

[42] X. Giraud and J.-C. Belfiore. Constellations matched to Rayleigh Fading

channel. IEEE Trans. Information Theory, 42(1):106–115, January 1996.

[43] X. Giraud, E. Boutillon, and J.-C. Belfiore. Algebraic tools to build mod-

ulation schemes for fading channels. IEEE Trans. Information Theory,

43(3):938–952, May 1997.

[44] S. Glisic and B. Vucetic. Spread Spectrum CDMA systems for wireless

communications. Artech House Inc., 1997.

[45] D. Godard. Self-recovering equalization and carrier tracking in two di-

mensional data communication systems. IEEE Comm., 28:1867–1875,

1980.

[46] G. D. Golden, C. J. Foschini, R. A. Valenzuela, and P. W. Wolonian-

sky. Detection algorithm and initial laboratory results using the v-blast

space-time communication architecture. Electronics Letters, 35(1):14–15,

January 1999.

[47] G. H. Golub and C. F. V. Loan. Matrix Computations. John Hopkins

University Press, 3-rd edition, 1996.

[48] A. Gorokhov, M. Kristensson, and B. Ottersten. Robust blind second

order deconvolution of multiple FIR channels. In GLOBECOM 98, Nov.

1998.

[49] A. Gorokhov, M. Kristensson, and B. Ottersten. Robust blind second-

order deconvolution. IEEE Signal processing letters, 6(1):13–17, January

1999.

[50] A. Gorokhov and P. Loubaton. Subspace based techniques for second

order blind separation of convolutive mixtures with temporally correlated

sources. IEEE Trans. Circuits Syst., 44:813–820, Sept. 1997.

[51] J.-C. Guey, M. P. Fitz, M. R. Bell, and W.-Y. Kuo. Signal design for

transmitter diversity wireless communication systems over Rayleigh Fad-

ing channels. In Proc. IEEE VTC’96, 1996.

[52] B. Hassibi and B. M. Hochwald. How much training is needed in multiple-

antenna wireless links? IEEE Trans. onInf. Theory, 49(4):951–963, April

2003.



118 BIBLIOGRAPHY

[53] B. Hassibi and H. Vikalo. On the expected complexity of Sphere Decoding.

In The 35th Asilomar Conf., Nov 2001.

[54] B. Hochwald, T. Marzetta, and C. Papadias. A novel Space-Time spread-

ing scheme for wireless CDMA systems. In in Proc. of 37 Allerton Conf.,

Monticello, IL, Sept. 1999.

[55] B. M. Hochwald and S. Brink. Achieving Near-Capacity on a Multiple-

Antenna channel. submitted to IEEE Trans. on Communications, 2001.

[56] B. M. Hochwald, T. Marzetta, and C. Papadias. A transmitter diversity

scheme for wideband CDMA systems based on Space-Time spreading.

IEEE J. of Selected Areas in Communications, 19:48 –60, Jan. 2001.

[57] Y. Hua, K. Abed-Meraim, and M. Wax. Blind system identification using

minimum noise subspace. IEEE Trans. on Signal processing, 45(3):770–

773, March 1997.

[58] W. C. Jakes. Microwave mobile communications. New York IEEE Press,

1974.

[59] C. R. Johnson, P. Schniter Jr., T. J. Endres, J. D. Behm, D. R. Brown,

and R. A. Casas. Blind equalization using the constant modulus crite-

rion: A review. Proc. IEEE, 86:1927–1950, Nov. 1998.

[60] T. Kailath. Linear Systems. Prentice-Hall, 3-rd edition, 1980.

[61] A. K. Lenstra, H. W. Lenstra, and L. Lovasz. Factoring polynomials with

rational coefficients. Mat. Ann., 261:515–534, Oct. 1982.

[62] Y. Li and Z. Ding. Blind channel identification based on second order

cyclostationary statistics. Proc. ICASSP, 4:81–84, 1993.

[63] A. P. Liavas, P. A. Regalia, and J.-P. Delmas. Blind channel approxi-

mation : Effective channel order determination. IEEE Trans. on Signal

processing, 47(12):3336–3344, December 1999.

[64] H. Liu and G. Xu. A subspace method for signature waveform estimation

in synchronous CDMA systems. IEEE Trans. on Communications, pages

1346–1354, Oct. 1996.



BIBLIOGRAPHY 119

[65] J. Manton. A new algorithm for computing the extreme eigenvectors of

a complex hermitien matrix. In Proc. of IEEE workshop on Statistical

Signal Processing, August 2001.

[66] S. Marcos. Calibration of a distorted towed array using a propagation

operator. Journal of Acoustical Society of America, Dec. 1991.

[67] S. Marcos, A. Marsal, and M. Benidir. The propagator method for source

bearing estimation. Signal Processing, 42:121–138, March 1995.

[68] E. Moulines, P. Duhamel, J. Cardoso, and S. Mayrargue. Subspace meth-

ods for the blind identification of the multichannel FIR filters. IEEE

Trans. on Signal processing, 43:516–525, Feb. 1995.

[69] A. Narula, M. D. Trott, and G. W. Wornell. Performance limits of coded

diversity methods for transmitter antenna arrays. IEEE Trans. On Inf.

Theory, 45(7):2418–2433, Nov. 1999.

[70] L. Perros-Meilhac, E. Moulines, K. Abed-Meraim, P. Chevalier, and

P. Duhamel. Blind identification of multipath channels : A parametric

subspace approach. IEEE Trans. on Signal processing, 49(7):1468–1479,

July 2001.

[71] E. Pite and P. Duhamel. Bilinear methods for blind channel equalization:

(no) local minimum issue. in Proc. of ICASSP’98, 4:2113 –2116, 1998.

[72] M. Pohst. On the computation of lattice vectors of minimal length, suc-

cesive minima and reduced bases with applications. ACM SIGSAM Bull,

15:37–44, 1981.

[73] B. Porat. Digital Processing of Random Signals. Prentice-Hall, Englewood

Cliffs, NJ, 1994.

[74] J. G. Proakis. Digital Communications. Mc. Grow-Hill series in Electrical

and Computer Engineering, 4-th edition, 2000.

[75] J. Radon. lineare scharen orthogonaler matrizen, pages 1–14. abhand-

lungen aus dem mathematischen seminar der hamburgishen universitat,

1922.

[76] G. C. Rayleigh and J. M. Coiffi. Spatio-Temporal coding for wireless

communications. IEEE Trans. on Communications, 46:357–366, March

1998.



120 BIBLIOGRAPHY

[77] G. Rekaya and J. C. Belfiore. Complexity of ML lattice decoders for the

decoding of linear full rate Space-Time Codes. submitted IEEE Trans. on

Wireless Communications, Dec. 2002.

[78] K. Rohani and J. Jalloul. Diversity for Direct Spread CDMA. Technical

report, ETSI SMG2 Wideband CDMA Concept Group, Sept. 1997.

[79] A. Safavi and K. Abed-Meraim. Blind channel identification robust to

order overestimation. to be submitted to IEEE trans. on Signal procesing.

[80] A. Safavi and K. Abed-Meraim. Orthogonal Minimum Noise Subspace

for Multi-Input Multi-Output system Identification. In Proc. of the 11th

IEEE Signal Processing Workshop on Statistical Signal Processing, Sin-

gapore, Oct. 2001.

[81] A. Safavi and K. Abed-Meraim. Blind channel identification robust to

order overestimation: a Constant Modulus Approach. In Proc. of the

IEEE International Acoustics, Speech, and Signal Processing (ICASSP),

Hong Kong, 2003.

[82] A. Safavi and K. Abed-Meraim. Symmetric Minimum Noise Subspace

for Multi-Input Multi-Output system Identification. In submitted to

GRETSI, France, Sept. 2003.

[83] A. Safavi, K. Abed-Meraim, and Ph. Ciblat. Blind channel identifica-

tion robust to order overestimation. In Conference Record of the Thirty-

Sixth Asilomar Conference on Signals, Systems and Computers, Califor-

nia, U.S.A., Nov. 2002.

[84] A. Safavi, K. Abed-Meraim, and Y. Hua. Minimun Noise Subspace array

processing. to be submitted to IEEE trans. on Signal procesing.

[85] N. Seshadri and J. H. Winters. Two signaling schemes for improving

the error performance of frequency-division-duples (FDD) transmission

systems using transmitter antenna diversity. Int. J. Wireless Inform.

Networks, 1(1), 1994.

[86] D. S. Shiu, G. J. Foschini, M. J.‘Gans, and J. M. Kahn. Fading correlation

and its effects on the capacity of multielement antenna systems. IEEE

Trans. on Communications, 48(3):502–513, march 2000.



BIBLIOGRAPHY 121

[87] V. Tarokh, H. Jafarkhani, and A. R. Calderbanck. The application of

orthogonal designs to wireless communication. In Information Theory

Workshop, Jun 1998.

[88] V. Tarokh, H. Jafarkhani, and A. R. Calderbanck. Space-Time block

codes from orthogonal designs. IEEE Trans. Information Theory,

45:1456–1466, July 1999.

[89] V. Tarokh, A. Naguib, N. Seshadri, and A. R. Calderbank. Space-Time

codes for high data rate wireless communications: performance criteria in

the presence of channel estimation errors, mobility, and multiple paths.

IEEE Trans. on Communications, pages 199–207, Feb. 1999.

[90] V. Tarokh, N. Seshadri, and A. R. Calderbank. Space-Time codes for

high data rate wireless communications: performance criterion and code

construction. IEEE Trans. Information Theory, 44:744–765, March 1998.

[91] E. Telatar. Capacity of multi-antanna Gaussian Channels. Technical

report, ATT Bell Laboraratories, Murray Hill, NJ, 1995.

[92] L. Tong and S. Perreau. Multichannel blind identification: From subspace

to maximum likelihood methods. Proc. IEEE, 86:1951–1967, Oct. 1998.

[93] L. Tong and S. Perreau. Multichannel blind identification: from ubspace

to maximum likelihood methods. Processing of the IEEE, 86(10):1951–

1968, Oct. 1998.

[94] L. Tong, G. Xu, and T. Kailath. A new approach to blind identification

and equalization of multi-path channels. 25th Asilomar Conf., pages 856–

860, 1991.

[95] J. R. Treichler and B. G. Agee. A new approach to multi-path correction

of constant modulus signal. IEEE Trans. on Signal processing, 31:459–72,

1983.

[96] J. R. Treichler, L. Tong, I. Fijalkow, C. R. Johnson, Jr., and C. U. Berg.

On the current shape of FSE-CMA behavior theory. In First IEEE signal

processing workshop on Signal processing advances in wireless communi-

cations, 1997.

[97] A. Viterbi. CDMA- Principals of Spread Spectrum Communication.

Addison-Wesley, 1995.



122 BIBLIOGRAPHY

[98] E. Viterbo and E. Biglieri. A universal lattice code decoder. In GRETSI,

Juan-les-Pins, France, Sept. 1993.

[99] E. Viterbo and J. Boutros. A universal lattice code decoder for Fading

channel. IEEE Trans. Information Theory, 45(5):1639–1642, July 1999.

[100] E. Walter and L. Pronzato. Identification de modèles paramétriques à
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