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Chapter 1
Introduction

During a few last ten years an essential progress has been achieved in generation
of ultra-short ultra-intense laser pulses. This progress is associated with a devel-
opment of compact solid-state lasers in the middle of 80-th, using chirped pulse
amplification technique [1]. The development of such systems is comparable by
~ importance with the invention of lasers themselves. Using the chirped pulse ampli-
fication it has become bossible to achieve intensities 4 orders of magnitude larger
than before. By focussing such pulses with powers up to hundreds of terrawatt
and higher, the intensity at the focus is achieved in the range of 10® W/cm? and
higher and electric field amplitude 10° V/cm and higher. These fields greatly ex-
ceed the atomic Coulomb electric fields that results in direct colisionless ionization
of atoms without tunneling. For such intensities and laser wavelength of the order
of 1 um (that is characteristic for lasers) plasma electrons oscillate with relativistic
velocities. It opens absolutely new regimes of interaction of laser radiation with
matter that have not been studied yet. At the same time the pulses have very small
duration: from 10 fs to 1 ps. It is less than characteristic time of hydrodynamic
motion and plasma thermalisation. Therefore, creation of non-equilibrium plasmas
with densities up to solid state densities becomes possible.

These revolutionary achievements in laser pulse generation technology enhanced
and in essential degree caused an interest to the questions of their interaction with
matter. The combination of high intensities and short pulse duration makes the

interaction of such pulses with matter unique.
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1.1 Main aspects of interaction of ultra-short ul-
tra-intense laser pulses with underdense plas-

mas

In the present thesis the problems of interaction of ultra-short ultra-intense
laser pulses with underdense plasmas (with densities much less than critical N, =
mw? /4ne?) are studied. The study of this interaction is necessary for different appli-
cations. It was suggested to use relativistically fast plasma waves, excited by short
intense laser pulses in underdense plasma for electron acceleration [2, 3]. The advan-
tages of this method of acceleration are associated with a possibility of producing
accelerating fields in plasmas a few orders of magnitude larger than presently achiev-
able in conventional radio-frequency linacs. Different applications exist in which a
propagation of ultra-short intense laser pulses over large distances in underdense
plasmas is required. It includes applications in which interaction with a more dense
plasma represents the main interest, if it is preceded by a region of underdense
plasma. These applications include nuclear fusion with fast ignition [4], X-ray lasers
[5], high order harmonic generation [6], and initiation of nuclear reactions when
ultra-short intense laser pulses interact with solid-state target plasma [7, 8].

When short intense laser pulses propagate in underdense plasma the main ef-
fects that determine their interaction are generation of relativistically fast plasma
waves, Raman scattering, and self-focusing. Ponderomotive forces, associated with
longitudinal and transversal gradients of laser pulse intensity, excite electron Lang-
muir waves in plasma. The amplitude of the excited plasma wave is maximum if
the laser pulse duration is of the order of a plasma period. In particular, in the
case of a Gaussian laser pulse with an intensity profile a> = a2 exp(—r?%/02 —£2/02),
€ = vyt — z (the pulse group velocity vy = c) the amplitude of electron density

perturbations in the plasma wake [2, 9, 10]

_AN VT 5 (/e 4 (7" )2 (kpo2)2/a
= = pae L+ oo 1= (o [kpor-e ], @y

this result is obtained for the case of a3,n; < 1, a = eA/mc? is the amplitude of the

n

laser field vector potential, Ny is the value of electron density in plasma. The phase
velocity of the plasma wave is close to the pulse group velocity and, consequently,
to the speed of light. Due to this fact such plasma waves are called relativistically
fast. Relativistically fast plasma waves are also excited in result of forward Raman
scattering and Raman scattering at very small angles with respect to the propagation

direction of laser pulses with duration larger than a plasma period. We will speak
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about this later.

Raman scattering takes place in a plasma with a density less than a quarter of
the critical density [11, 12]. In the general case Raman scattering is a decay of the
laser field with a frequency and a wave vector (wp, ko) in an electron plasma wave (w,
k) and two daughter waves, Stokes (wp —w, ko — k) and anti-Stokes (wo +w, ko +k).
Typically, w ~ wy, +iI', where I is the instability rate that is obtained from a linear
analysis. If the amplitude of the Stokes wave is much larger than the amplitude ‘of the
anti-Stokes one, the process is a 3-wave process; if these amplitudes are comparable
one speaks about a 4-waves process. Depending on the direction of the wave vector
of the scattered radiation Raman scattering at different angles is considered. One
distinguishes forward, backward Raman scattering, Raman scattering at large and
small angles with respect to the laser radiation propagation direction.

The particularities of Raman scattering for short ultra-intense laser pulses were
studied first in Refs. [12, 13, 14]. In Ref. [12] a dispersion equation was obtained for
Raman instability taking into account relativistic effects. Convective and absolute
nature of the instability and its particularities for ultra-short pulses were investigated
" in Ref. [14], where the dependence of the instability rate on the size and duration of
the pulse was analyzed. 2 characteristic regimes of Raman instability for short laser
pulses were obtained, corresponding to relatively large and small angles of scattering.
For the case of a large angle scattering the instability has a convective nature in
the frame moving with the pulse and the instability rate increases with the angle
of scattering. If a noise level in plasma is high, backward Raman scattering is the
strongest. At the same time, if one considers seed perturbations in the spectrum of a
Gaussian laser pulse, forward and near-forward scattering becomes more important.
The pulses that pass through a limited aperture before their propagation in plasma,
contain harmonics in the spectrum with large transversal wave numbers, that can be
strongly reinforced in plasma due to the scattering at large angles. Backward Raman
scattering and Raman scattering at large angles with respect to the propagation
direction lead to the depletion of the backward part of the pulse. At large intensity
and pulse duration the forward part of the pulse is scattered as it is shown by
numerical simulations [15, 16, 17] and experiment [18].

Forward Raman scattering and Raman scattering at small angles with respect
to the direction of the laser pulse propagation correspond to the absolute instability
in the frame, connected with the pulse. For relativistically strong laser pulses the
rate of this instability increases in the presence of relativistic self-focussing. Due
to this instability longitudinal modulation of the pulse intensity develops with a

plasma period. Simultaneously a relativistically fast plasma wave is excited with
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the phase velocity close to the pulse group velocity and, consequently, to the speed
of light. The amplification factor of this instability, which is also called resonant
modulationa] instability (or self-modulation), increases with the pulse amplitude and
duration. On the one hand, this.instability developing at the times of self-focusing
makes impossible a stable propagation of laser pulses with duration longer than a
plasma period. On the'other hénd,,"irelativistically fast plasma waves, ex(;i‘tedb in
result of the instability, can be used for acceleration of charged particles (eléCﬁIjOns)
to high energies. SRNNEEY 5 R

From the practical point of view the measurement of the Raman spectrum can
be used for obtaining an information about the value of plasma density. If the rate
of Raman instability is not too large (less than w,) one can observe harmonics in
the Raman spectrum with a frequency interval equal to w,. If the plasma frequency
becomes known, one can determine the plasma density. At the same time at large
int:ensitiesv of the laser radiation an essential broadening of the Raman spectrum is

_ possible. In particular, very wide spectra of the scattered radiation were observed
. for ba;ckward‘ Ram@r:i;ég:a;ttering,\when.it was impossible to determine picks at the
'~ combinational freduéﬁéieé" (18, 19].

When Langmuir waves are excited by ultra-intense laser pulses in plasma a loss of
their regular structure is very simply achieved [20, 21, 22, 23]. In result of breaking of
large amplitude plasma waves, bunches of fast electrons are produced that move at
different angles with respect to the laser axis. A part of electrons are trapped by the
plasma wave and accelerated to higher energies. As a rule, plasma thermalization
has not time to occur on the pulse duration. Correct description of the phenomenon
of the plasma wave breaking requires using a kinetic approach.

Relativistic self-focusing of laser beams in plasmas was investigated first in Refs.
[24] and [25]. Relativistic increase of electron mass in a high-frequency laser field

leads to an increase of the plasma refractive index as:
n~1— (w2f2wg)y ' ~1- (w2/2wd) (1 + a?)712, (1.2)

If the amplitude of the laser field (a) has maximum on the beam axis, refraction
leads to an additional focusing. The analysis of the paraxial wave equation with a
refractive index in the form (1.2) shows, that if the radiation power is larger that a
threshold value [26]: S

w2
P[GW] = 16.2—3,
wP
relativistic effects compensate diffraction and self-channeling of the beam is possible.

The full analysis of self-focusing requires an account of the ponderomotive effects
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as well. Inside the laser beam a transverse ponderomotive force acts on plasma
electrons: F ~ 0|a|?/Or, that pushes electrons out from the field region. The
redistribution of electron density leads to an increase of the refractive index in the
beam region and to an additional focusing. Thus, in general case the self-focusing
is relativistic and ponderomotive. According to Refs. [26, 27], the ponderomotive
mechanism does not change the value of the critical power P,, that was found for pure
relativistic self-focusing neglecting the transverse redistribution of electron density.
Numerical simulations that were done, show also that if the power of the beam is
already 10 % larger than critical, a total electron cavitation is observed. In these
numerical simulations the profile of the beam at the beginning was Gaussian with a
plane transverse phase front. It is evident, that after a total electron cavitation in
the region of the field a further growth of the refractive index becomes impossible
and a quasi-stationary structure can form, that means self-channeling of the laser
beam. Relativistic self-channeling of the laser radiation in plasma was observed in
numerous experiments, in particular in Refs. [28, 29, 30, 31, 32, 33, 34]. For powers

of the beam P > P, formation of a few (or several) filaments was observed with
| power in each filament larger than critical.

Finally, a finite duration of the pulse introduces its corrections in the process
of self-focusing of relativistically strong laser pulses in underdense plasma. Pulses
with a characteristic time of the intensity variation less than a plasma period, excite
plasma waves. Linear theory of the plasma wave excitation [9, 10] predicts an
increase of electron density at the forward slope of the pulse, if the intensity changes
on a time scale of the order of a plasma period. It is related either to the laser
pulses with duration of the order of a plasma period or to longer pulses with a sharp
forward edge. Electron density increase makes self-focusing of such short pulses or
forward edges of longer pulses essentially more difficult or impossible [35, 36, 37].
We will return to this problem of self-focusing of short pulses in our investigation in

paragraph 3.2.

1.2 Laser acceleration of electrons in plasma

Currently the most interesting application that stimulates studies of ultra-short
ultra-intense laser pulses interaction with underdense plasma is laser-driven elec-
tron acceleration in plasma. Electrons can be accelerated to large energies by the
longitudinal electric fields of the plasma waves, excited by intense laser pulses in
plasma. For the first time this idea of electron acceleration was discussed by Tajima

and Dawson in 1978 [2]. The main advantage of this scheme of electron acceleration
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with respect to the conventional one, with high-frequency linacs, is associated with
a possibility of production of essentially larger accelerating fields in plasmas. In the
modern radio-frequency linacs the maximum accelerating fields that are used are
limited first of all by a breakdown on the walls of the chamber and do not exceed
100 MV/m. At the same time accelerating (longitudinal) fields of the plasma waves
can be 4 orders of magnitude higher — of the order of a nonrelativistic plasma wave
breaking field [20] Ey = cmw,/e or '

Eo[V/em] ~ 0.96ng 2 [cm™], (1.3)

where w, = (4mnoe?/m)'/? is the Langmuir frequency and ny is the electron density
in plasma.

Up to now several schemes of laser-driven plasma-based electron accelerators
were proposed. These schemes differ by the method of the plasma wave excitation.
In the Laser Beat-Wave Accelerator two long laser pulses are used with frequencies

w; and we. If plasma density is chosen so that w, = w; — wy, resonant plasma wave

. excitation takes place on the beating of high-frequency fields of these pulses. The

main drawback of this scheme is the necessity of the plasma production with a precise
value of electron density, that is not a simple technical problem. Resonant excitation
of the plasma waves due to beating of the fields of two laser pulses was already
investigated both theoretically and experimentally [2, 38, 39, 40, 41, 42, 43, 44, 45].

In another, so-called standard scheme of electron acceleration or Laser Wake-
Field Accelerator [2, 9, 10, 35, 36, 46, 47, 48] the plasma wave is excited by a
laser pulse with a duration of the order of a plasma period. In this scheme plasma
electrons experience two pushes in the longitudinal direction, associated with the
ponderomotive force of the laser pulse, with an interval equal approximately to half
a plasma period, and a push in the transversal direction. In the case of a laser
pulse with a Gaussian shape the dependence of the plasma wave amplitude on the
duration and width of the pulse has been given above (1.1). Depending on the width
of the pulse the relation between the amplitudes of the longitudinal and transverse
components of the electric field in the wake changes: the longitudinal electric field
E, ~ exp(—r?/0?) and the transversal field E, ~ (2r/k,0?)exp(—7r%/0?); at the
same time the oscillations of the longitudinal and transverse fields are shifted in
phase by 7/2. Typically, for electrons accelerated in the plasma wave and deflected
from the axis a phase interval exists k,|A¢| = m/4, where they experience longitudi-
nal accelerating and radial focusing forces, simultaneously. In this thesis we report
on the first sufficiently reliable observation of electron acceleration in this scheme
(see paragraph 4.1 and Refs. [49, 50]).
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In one more scheme a fast plasma wave is excited in result of self-modulation
instability (SMI) of the laser pulse with a duration larger than a plasma period
(11, 12, 14, 15, 51, 52, 53, 54, 55, 56, 57, 58, 59]. In result of SMI longitudinal
modulation of the pulse intensity develops with a plasma period. Simultaneously a
large amplitude plasma wave is excited that can be used for electron acceleration.
The plasma wave excited due to the longitudinal inhomogeneity of the pulse intensity
profile acts as an initial seed perturbation for SMI. The SMI rate is high if the
pulse power is larger than the critical power for relativistic self-focusing. Many
experiments have been already performed on the observation of electron acceleration
in this scheme [32, 33, 60, 61, 62, 63, 64].

The last two schemes can be considered as more attractive than the first one
which requires using two laser pulses and a production of plasma with the precise
value of electron density. At the same time, comparing the last two schemes, one can
mention some advantages and disadvantages of both of them. The main advantage
of the standard scheme of electron acceleration is a possibility of a better control
~ of the process of the plasma wave excitation and, therefore, electron acceleration.
" At the same time in the scheme with self-modulation (Self-Modulated Laser Wake-

Field Accelerator) one can reach larger amplitudes of the plasma wave due to the
resonant character of its excitation by intensity modulations. Also the laser pulse
amplitude increases in the modulations due to the effect of self-focusing. In the
scheme with self-modulation the plasma wave breaking is reached simpler, in the
process of wavebreaking fast electrons are produced that can be trapped by the
plasma wave and, therefore, the electron injector can be unnecessary.

The main factors limiting the electron acceleration in these schemes are the
following. Diffraction of the laser pulse limits the length of the pulse propagation in
plasma and, consequently, the length of the region where the plasma wave is excited,
to two Raleigh lengths zp = mw?/), where w is the pulse width. Relativistic self-
channeling allows to overcome diffraction if the pulse power is larger than critical
power for relativistic self-focusing, P > P,. Plasma channels allow to overcome
diffraction of the laser pulses with P < P,. In the plasma channels with a density
minimum on the axis the radial profile of the refractive index is produced with a
maximum on the axis. Therefore, diffraction can be compensated by refraction.

Another factor that limits electron acceleration is a loose of the synchronism
between an accelerated electron and the plasma wave. In the process of acceleration
the electron outruns the plasma wave and comes from the accelerating phase do the
decelerating one. Corresponding maximum acceleration length (dephasing length)

can be found from simple considerations. It is a length when relativistic electron
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(moving with a velocity approximately equal to the speed of light) outruns the

plasma wave by a half of its period [2]:
ld - Ap’)’gh. (1.4) }

Here vpn = (1 — v2,/c?) 712 is the relativistic factor of the plasma wave. Often
in the determination of the dephasing length one substitutes the group velocity of
the laser pulse vy, = c(1 — w2/wd)*? instead of vy,. In result, one obtains that
’th = ’Yg ~ wo/wp a'nd

la = Ap(wo/wp)® = Ao(wo/wp)®. (1.5)
As we will see in paragraph 3.2, such an approximation is not always acceptable and
can lead to incorrect results for the dephasing length and the maximum electron
energy in the scheme of Self-Modulated Laser Wake-Field Accelerator. One more
factor that limits electron acceleration is depletion of the laser pulse itself due to
loosing of its energy during the excitation of the plasma wave.

Recently it has also become known that when an ultra-intense laser pulse prop-
agates in underdense plasma, electrons can be effectively accelerated not only by
the plasma wave but also directly by the laser radiation. Such an acceleration takes
place at the betatron resonance of electrons oscillating in a relativistic plasma chan-
nel produced due to self-focusing of the laser pulse [65, 66, 67]. It is necessary
to mention that this mechanism of electron acceleration is not studied completely
enough yet. In particular, reliable estimations of the maximum electron energy gain
in result of this acceleration are absent. We will return to the discussion of this
mechanism in paragraph 4.3. We only note here that this mechanism can play an
additional role in the scheme of electron acceleration with self-modulation of the
laser pulse. In this scheme laser pulses are used with duration larger than a plasma
period, for which self-focusing is effective, and the plasma wave is excited inside the
laser pulse. Acceleration of electrons by the plasma wave in this scheme can take

place simultaneously with the acceleration directly by the laser field.

1.3 Notation about the structure of the thesis

The present thesis consists of 4 Chapters (besides Introduction). In Chapter
2 the description of the code is presented, that was used for modeling laser pulse
propagation in plasma, and its improvements in the process of work on the thesis.
The problems of ultra-short ultra-intense laser pulses interaction with plasma are
divided in the thesis into two groups and presented in Chapters 3 and 4. Chap-

ter 3 includes investigations of problems that have a general physical and applied
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interest and are not related to particular experiments. These are (i) investigation
of photon acceleration by a plasma wave excited by a laser pulse; (ii) study of the
phase velocity of the plasma wave excited during the laser pulse self-modulation
and consequences for electron acceleration; study of self-similar solutions describ-
ing self-focusing of short laser pulses in plasma; (iii) study of ion motion during
the plasma wave excitation by laser pulses with duration of the order of a pla,sma
period. In Chapter 4 we report on the numencal simulations of 3 expenments on
the laser pulse propagation in plasma and electron acceleration in the laboratorles_ ,
Laboratoire pour I'Utilisation des Lasers Intenses (LULI) and Laboratoire d’Opthue
Appliquee (LOA), Ecole Polytechmque France. In Chapter 5 we formulate the main
results of the the51s

S .' S UEIEE



Chapter 2

Description of the code used for
numerical simulation of the laser

pulse propagation in plasma

For numerical simulation of the processes, studied in the present thesis we used
the code Wake [68, 69, 70]. This code was developed for modeling an ultra-short
ultra-intense laser pulse propagation in underdense plasma with N <« N,.. Actually
another more strict condition is necessary: € = w,/wo = (N/N,)Y/? « 1. This
condition permits to separate two characteristic time scales of the evolution of the
electromagnetic field and plasma: the period of the high-frequency field Ty ~ wy*
and the period of the plasma wave T, ~ w, 1. If the characteristic transversal size
of the laser field structure is much larger than the laser wavelength and the time
of evolution is much larger than the field period, the electron motion in plasma
is oscillations with the frequency of radiation and a low-frequency motion under
the influence of the ponderomotive force of the laser field and plasma fields. It is
possible to use averaged (ponderomotive) equations for electrons and equations for
the low-frequency plasma field for the determination of the low-frequency plasma

response.

The plasma response is found in the code using the method of particles, that
means that trajectories of particular electrons and ions in plasma are calculated.
The method of particles, that represents a kinetic description of the plasma dynam-
ics, has apparent advantages compared with the hydrodynamic description. In the
application to the propagation of short laser pulses in plasma it permits to describe
correctly such phenomena as plasma wave breaking, fast electrons generation, to-

tal electron cavitation in plasma, that can not be described by the hydrodynamic

14
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approach. The fact that the ponderomotive equations for particles are simulated
in our code permits to reduce the simulation time comparing to the case when full
equations are used, like it is in standard codes using the Particle-in-Cell method.
The economy of time and computer resources becomes especially effective in the
case of very underdense plasma.

The paraxial wave equation for the complex amplitude of the vector potential
including the field dispersion is used for the description of the dynamics of high-
frequency field. The code Wake is two-dimensional (2D). The dynamics of the field

and plasma can be investigated in axially symmetrical and plane geometry.

2.1 Equation for high-frequency field
We present the vector potential of the high-frequency laser field in the form:
A, = A (z,x1,1) exp[—iko&] + c.c., (2.1)

where kg = wp/c and € = ct — 2. It is possible to obtain the following equation for
the complex envelope of the vector potential A if one substitutes (2.1) in the wave

equation:
cot \ 0 o

here kpo = wpo/c, n = N/Np is the electron density in plasma normalized to its

2 - -
[ s, <Z‘k0 9 ) + Vi} A = kgo—_z:Al, (2.2)

background value; bar over the quantities, here and below, signifies their averaging
over the high-frequency period. The left-hand side of this equation represents the
wave operator in new variables (x, &, t) in which we neglect, however, the term with
(1/c*)8?/0¢*. The right-hand side includes the plasma response (current density
with a coefficient 47/c) neglecting harmonics generation.

We explain our approximations in this equation in more detail. We assume
always in the code, that the characteristic transversal size of the pulse structure
is plasma wavelength and, therefore, the characteristic diffraction length (Rayleigh
length) is much larger than (koe)~!. We also assume that a characteristic distance on
which the pulse profile changes due to nonlinear effects is much larger than (koe) L.
In particular, this is valid for the nonlinear length of interaction in one-dimensional
(1D) theory [48]: L,; ~ (koe?)~!. Thus, as in paraxial approximation we neglect the
term with 8%/0t? in Eq. (2.2). Although, we keep the term with mixed derivative
in the left-hand side in Eq. (2.2). This permits us to take into account dispersion
in plasma and not to be limited to the case of a quasi-monochromatic field. Eq.

(2.2) is valid for radiation with a wide spectrum, in which, however, harmonics
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with 0 < w < wp, must be absent. Keeping the term with mixed derivative is
also necessary for an account of the laser pulse energy depletion during the plasma
wave excitation. Besides, this term is important for modeling pure forward Raman
scattering. Eq. (2.2) as paraxial one assumes, strictly speaking, absence of plane
waves in the angular spectrum that propagate at large angles with respect to the
longitudinal axis.

Neglecting generation of harmonics of laser radiation is usually also justified in
underdense plasma. It is possible to show that this effect in underdense plésma is
much weaker than in dense plasma. Harmonics generation becomes noticeable and
essential for the description of the laser pulse dynamics only if sharp gradients of
the refractive index in underdense plasma appear |Vn| ~ n/X. It is not typical
for underdense plasmas, where the characteristic size of the plasma-field structures,
arisen in the result of self-focusing and plasma waves generation, is k, 1

We do not precise the polarization of the laser radiation. As we will see below, our
algorithm is applicable for an arbitrary polarization of the radiation. In numerical

simulations we usually assumed linear polarization, for definiteness.

2.2 Equations for low-frequency (plasma) fields

In this and the next three paragraphs we will limit ourselves by considering
the case of plane symmetry, for simplicity. The equations for fields and charged
particles in plasma for the case of axial symmetry can be obtained by analogy.
Let us suppose that the fields in plasma depend only on the coordinates z and
z (longitudinal and transversal coordinates, respectively), the motion of particles
along y coordinate is absent. The fact that the characteristic transversal size of
the plasma-field structure is plasma wavelength permits to simplify the equations
for low-frequency fields and particles essentially. In the first order with respect
to the small parameter € longitudinal and transversal components of the quasi-
stationary electric field E, and E, and only one component of the quasi-stationary
magnetic field B, exist in plasma. In this case Maxwell equation for the excited

quasi-stationary fields

— 4n- 10E
VxB=—j+-—
¢’ * c Ot
can be rewritten in the projection on the z and z axis as
0 — 4 _ 10FE,
B, =75 4= 2.3
Pt Ay LR T (23)
0 — dn_.  10FE,
B,=—j,+- 2.4
oz Y ¢ J: c ot’ (24)
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respectively.

Another important approximation in the code Wake is quasistatic approximation
[35, 36]. It supposes that the laser pulse amplitude does not change during the time
when the pulse passes its own length. This condition allows us to transfer to the
variable £ = ct — z instead of ¢ and z in the equations for the quasi-stationary fields
and particles. Here we neglect also the difference between the pulse group velocity
and the velocity of light. On the one hand, apparently, this quasistatic approxima-
tion is not valid for electrons, that can be trapped by the plasma wave. On the
other hand, neglecting the difference of the pulse group velocity and the velocity of
light we, in fact, exclude such electrons from consideration making their trapping by
the plasma wave field impossible [20, 21, 71]. Strictly speaking, this approximation
is applicable only in the absence of electrons in plasma with longitudinal velocities
close to the pulse group velocity, which can be trapped by the plasma wave. As we
will note in the next paragraph for such electrons the approximation of ponderomo-
tive force is not valid either. It is necessary to make sure in the absence of such fast
electrons each time in the simulations. Eqgs. (2.3) and (2.4) can be rewritten in the

quasistatic approximation:

0

_ = 4
0 — 0— 4m_
PR e @9

Then we introduce scalar and vector potentials for the quasi-stationary fields in the
gauge V, - A| = 0, we consider this gauge as the most convenient. In this gauge in
plane symmetry we can take the transversal component of the vector potential equal

to zero and write A = Ae,. Then we have for the components of the quasi-stationary
fields:

— 0o
E:C = "5
oz

— 0A
B,=——
Y ox’

5 _ 0% 104 00 04 _ 0

T 0z cot 0 9 €
Substituting these expressions in Egs. (2.5) and (2.6), we obtain the equations for

(@ — A).

potentials
0? 4m_
€0z (@~ 4) = —Js, (2.7)
L 4D o a3 28
e =g @A =TI 28)
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Differentiating Eq. (2.7) with respect to £ and z, we obtain

S me-A=205 29)
Combining this equation with Eq. (2.8) we get (here k2 = w?2/c?)
(aa; k2) ;; (@ — A) = 4: ai;§ k,%‘:—‘j + 47rk % (210)
We introduce an auxiliary function
52
G = (@ - 4). (2.11)

Substituting Eq. (2.11) in Egs. (2.10) and (2.8), we obtain the equations for func-
tions G and A:

02 4m 0 - 82A AT o=
— -k |G= + k2= k2 2.12
(8x2 ”) ¢ OzdE B§ P Q2 plz (212)
0? 4rr_
—~ A= — .
ssA=—(G+27.). (2.13)
We introduce then dimensionless quantities:
. eA b= e® G
mc?’ mc?’ 4mrnge
o eE, b, = eBy, 5:__.]__,
MwpC MWpC npec

In this case Egs. (2.11), (2.12), and (2.13) can be rewritten as

— 2.14
g= 852 (¢ a), (2.14)
02 9 ~ 0% ~
82 ~

Let us introduce one more function
Y =0¢—a (2.17)

note that the expression for the component of magnetic field has the form

Oa
by = — 5 (2.18)
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Then we can rewrite Eqgs. (2.14), (2.15), and (2.16) as

0? :
2, 2.19
) 3§2¢ g ( )
32 | s 3 32 I 6by ~
a~b _ (g n Jz) _ (2:21)

In the code Wake we simulate Eqs (2 19) (2 21) for b, and auxiliary functions ¥ and
g together with equations for particles (to find the quasi-stationary currents). We
will speak about the equations for. ﬁé;rticles in the next paragraph. The components
of the quasi-stationary electric ﬁeld can be expressed through the component of the
quasi-stationary magnetic ﬁeld b and functlon % in the following way:

8, 0
€ = —5=¢=—o=V+by, (2.22)

€ = ggd) (2.23)

2.3 Equations for electrons

The expression for the averaged Hamiltonian and the low-frequency equation for

electrons in plasma have the form (here ¢ = —e):
—_ 2 1/2
7 2 4 s JA 2 2°A 2
H=|m°c + P———c— c+q°A +q?, (2.24)
dp _ (= ¥V = o
—=¢q¢(E+—-xB) - 2 2
dt q( T ) me VA (225)
where
2 2 1/2
— b T 32
7= (1 + st m2c4A2> (2.26)
and .
= g
p=P- 1 (2.27)
c .

The ponderomotive force approximation used in these equations is valid only for
electrons with longitudinal velocity that is not high enough: 1—v,/c > w,/wp [68] (it
is necessary to make sure in the absence of such fast electrons in the simulations). In

the quasistatic approximation the Hamiltonian H depends on z and ¢ only through
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their combination £ = ¢t — 2. In this case we can obtain from the Hamiltonian

equations: _ i L
dP, 0H OH
== 2.2
dt 0z o€’ (2:28)
dH O0H O0H
_— = =, 2.29
it ot CoE (2:29)
Therefore, an integral of motion (quasistatic) exists:
H - cP, = mc® (2.30)
or
mc®y + q® — cp, — gA = mc?. (2.31)
Let us introduce dimensionless momentum, velocity and time:
f):L, /B:X:-E—’ T:wpt
me c
Then Egs. (2.25), (2.26), and (2.31) can be rewritten as
| i~——(e+ﬂ><1o)——1-'v“¥ (2.32)
arP = vy '
=\ 1/2
7=(1+p2+F)", (2.33)
T-P—9=L1 (2.34)
It is possible to resolve Egs. (2.33) and (2.34) with respect to 7 and p,:
~2 X2 1 2
7=1+pm+a + ( +¢)’ (2.35)
2(1+ 1)
=2 | =3 _ 2
PR kil Cak) (2.36)
2(1+9)
Taking into account that
d§ _ _de_ (B _ 1+
dt dt ¥y, 7’
we can rewrite the  component of Eq. (2.32) taking into account (2.22) as
. 1 (8, 18~
Pz - (4 Ly 227 -, 2.37
dZ 1+¢<"655¢ 235‘“) v (2:37)

For the determination of the electron motion we can use the x component of Eq.
(2.32) in the form (2.37) and the expressions for the electron relativistic factor and

longitudinal momentum Eqgs. (2.35) and (2.36). These equations are convenient for
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the determination of the plasma response using the method of particles. For small
¢ (before the laser pulse coming) all electrons move in the reference frame (§, x)
with the speed of light in the positive direction of the § axis. When the laser pulse
comes the electron trajectories are determined by the action of the ponderomotive
force of the laser pulse and quasi-stationary fields that arise in plasma. Eq. (2.37)
determines the evolution of the transversal electron momentum along the coordinate
€, Egs. (2.35) and (2.36) determine then the longitudinal momentum and relativistic
factor. i
Knowledge of the trajectories of particular electrons gives us the information
about the currents in plasma. In general case the expression for the electron current

density has the form
je = ZQka(S(I' - Tk) = —€ ZV]C(S(I' - Tk),
k k

where we sum with respect to all electrons in a unity of volume. Dimensionless

current density

v e 1 .
Je = J = ——Z,Bch(r—rk).
Uun k

ngec
In numerical simulations we deal with a limited number of particles, much less than
the number of electrons in real plasma. The region of plasma is divided in the
transversal direction into cells with a size coinciding with the mesh size Az of the
grid, on which the values of currents and fields are determined in the simulation.
The nodes of the grids for different grid functions are located on the boundaries or in
the centers of the cells. To find the values of current in the nodes we summarize the
contributions of particles in the nearest cells to the current. If initially (at & = 0)
there were n, particles per each cell, their contributions to the current must by
summarized with weights p = 1/n,. Also, each particle spends a time
Ar= B8 _ T AL
c—7, 14+9Y ¢
in the interval A§. “Density”, associated with each particle equals p¥/(1 + ¢). In

the method Cloud-in-Cell each particle contributes to the currents in the two nearest
nodes, proportional to §; = 1 — |Azi|/Ax, where |Azy| are the distances to these
nodes. The resulting expression for the current density in the node is:
< Ok VB Ok Pk
Je = pXk:Hwk— ka:IWk,

where we summarize with respect to the particles that are at a distance less than

one mesh size from the node of the grid in the positive and negative direction of the
z axis. This current together with ion current (we will speak about it in the next

paragraph) we substitute in the equations for low-frequency fields (2.19)-(2.21).
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2.4 Ions

Due to the large difference of electron and ion masses ion motion is not essential,
as a rule, for the study of a propagation of sufficiently short laser pulses, shorter
than a period of ion Langmuir oscillations 27 (wpi) ™%, wpi = (4mg2N;/m;)"/?, here g;,
N;, and m; are ch&rge, denSIty and mass of ions, respectively. Really, at radiation

intensities of the order of. 10° cm?: (and, a few orders of magnitude hxgher) it
is possible to neglect the oscﬂlatory motlon of ions in the h1gh—frequency laser and
quasi-stationary plasma. ﬁelds due to small amplitudes of oscillations. At the same
time the oscillatory motion of,;qllejpl;_ppns in these fields is already relativistic. But
ion motion can be important for ldhger pulses as well as for the study of the plasma
wake evolution behind short pulses Slmple estimations show that in the presence
of quasi-stationary electrlc fields in plasma E~ mwpc/ e with a characteristic time
of evolution of the’ vorder of wpi and larger, an essential redistribution of ion density
can occur. Besides, on the times of such an order the modulation instability of
electron Langmulr waves in plasma develops. So the ion motion is included in the
" code “Wake”. For
it is simple to obtam’thé followmg equatlons

.non-relatwlstlc lon motion in the quasistatic approximation

Diz = ¢,
here the dimensionless momentum p; is connected with the dimensional one P; as
p; = B;/mc. The ion contribution to the current density (j;) is taken into account

similar to the electron contribution and the total current j = j, + j; is substituted
in Egs. (2.19)-(2.21).

2.5 Notations about the structure of the numeri-

cal scheme

In the system of equations for high-frequency field, low-frequency fields and
particles the explicit dependence on time ¢ is present only in the equation for high-
frequency field (2.2). This fact allows us to solve the figl] system of equations nu-
merically in the following order. At each time step (at the moment ¢) for the known
distribution of the complex amplitude of high-frequency field in space we find the
plasma response, solving the equations for low-frequency fields and particles. Then

we find a new distribution of the complex amplitude of the high-frequency field at
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the next time step (at the moment of time ¢ + §t). Each moment of time ¢ all the
fields are absent and the particles are at rest (in the laboratory frame) at small &.
This circumstance allows us in the simulations at each time step consequently, in
the positive direction of the £ axis to find the solutions of all the equations for the
fields in space (z, £) and equations for particles, starting from known values at small
€.

It is necessary to mention that the equations for the fields must be supplemented
by boundary conditions at x = 0 and some large x = xo, correspondiﬁg to the
boundary of the region in which we calculate the fields. At x = 0 the boundary
conditions come from the transverse symmetry of the problem. At x = z; for the
high-frequency fields the condition of absence of the reflected wave is used that was
discussed in Ref. [14]; for the low-frequency fields the condition of their smallness
is used. Finally, the particles that intersect the symmetry axis are reflected from it
and the particles that leave the interaction region in the transversal direction (first
of all, these are electrons) are supposed to be on the boundary z = xo. The last
~ condition, obviously, is an approximation, but it permits, at least, to interrupt the
further leaving the interaction region by the particles with the same sign of charge.

For the complete problem statement we must also precise the distribution of
the complex amplitude of the laser pulse vector potential in space at the initial
moment of time. This distribution depends on the particular problem statement, in
particular, in most our simulations we supposed the laser pulse to be Gaussian at the
initial moment of time with respect to the longitudinal and transversal coordinates
and focused in plasma.

In developing this algorithm we assumed a scheme in which the distribution of
high-frequency field in space (z, £ = ¢t — z) evolves with time ¢. One can mention
that this algorithm does not change if we consider the evolution of the high-frequency
field in space (z, 7 = t — z/c) with coordinate 2 and the code Wake does not need
any modification or rewriting. At the same time, the second problem statement is
often more convenient from the point of view of experimental observation, where
a measuring device measures usually the characteristics of the processes that take
place in a particular place in space and evolve with time.

We did not speak so far about the mechanism of the plasma generation in which
the laser pulse propagates, in other words, we considered the plasma as preformed.
Although the code contains a part that permits to simulate gas ionization using
the ADK formula for tunnel ionization [72, 73]. We will not speak about this part
of the code in more detail, referring the persons who are interested to Ref. [70].

We mention only that the simulation of ionization in different gases is possible: in
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hydrogen, helium, and argon.

2.6 Acceleration of test electrons

As we discussed in the introduction one of the most interesting applications of
short intense laser pulses propagation in underdense plasma is electron acceleration.
In the frame of work on this thesis an additional part to the code Wake was developed
by the author of the thesis that permits to study acceleration of test electrons in the
plasma fields calculated with the code and in the high-frequency fields. In this part
of the code the motion of an electron beam is simulated, these electrons are injected
in plasma at some moment of time. The electrons are assumed to be non-interacting
and they do not change the fields in plasma. The laser pulse is assumed to be axially
symmetric and linearly polarized in z direction (z is the longitudinal direction). We
remember also that high-frequency field has a small longitudinal component that is
~ important to take into account in the equations for the electrons of the beam.

In the code Wake the equation for the transversal component of the complex
envelope of the laser field vector potential (2.1) is simulated. We suppose that the
characteristic scale of the transversal structure of the laser pulse is of the order of
(eko)™! and larger and the characteristic time scale of the variation is of the order
of (¢2wp)™! and larger. In this case it is possible to write an approximate expression
for the longitudinal and transversal components of the high-frequency field in the
first order with respect to the parameter € on the basis of the solution of Eq. (2.2)
for the transversal component of the vector potential. From the Coulomb gauge

condition divA = 0 we obtain:

diV_LA_L - 88‘22 + ik‘oAz =0. (238)

Taking into account Eq. (2.38) and that E = —9A/8(ct), B = rotA, A has z and
z components only, it is possible to obtain expressions for the high-frequency fields

up to the terms of the first order in €:

~ .. 0A A _,
E= [(’LAICO — 52) X0 — ZO%] e ko& + c.c., (239)
B= [(zAko - ?9?) Yo — zoa—y-} e 4 cc., (2.40)

where we take into account that A L = Ax,.
In the axially symmetric case quasi-stationary fields in plasma have in the first

order with respect to the parameter € the following components: electric field has
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longitudinal and radial components, E = E,zy + E,ro, and magnetic field has a
component directed along the azimuth B = Byf,.

For each electron injected in plasma we simulated its motion according to Newton

equation: p
P v
—=—e|E+—-xB 2.41
dt ¢ ( T > ’ (2.41)
where E=E+E,B=B+B. We pass to the dimensionless fields:
3(e) = eE(E), B(b) = eB(B),
MWpC MWpC
. eA(A,A) e® _
a(a,a)—*‘—m'cg‘—a ¢——rﬁ_c7’ Y=¢—a,.
We also introduce dimensionless momentum, electron coordinate, and time:
p
— = k _— t k .
— " P=15, pL — T, T = Wpt, p6 — &€

Eq. (2.41) has the following form in coordinates:

ar la’ -(1-58) b0} - + Qﬂy; — f(1=5.), (2.42)
dpy _ 19% _ 4 _ Y_o8Y

ek [ 5, (1 ﬁz)bol ~—af7, (2.43)

dpz _ a'd) bg T
i A G (2.44)

where ) _z'é i 9% »
f - p 55. € +c.c.,
= %e"f/e + c.c.

Egs. (2.42)-(2.44) were used for the simulation of test electrons motion. It was
supposed that all test electrons have the same energy « at the moment of injection.
The following procedure was used to determine their coordinates and velocities at
initial moment of time. The coordinates of each test electron were set initially in
the focal plane of the beam as if the electrons move freely in the absence of laser
and plasma fields. At the same time the focal plane of the beam and the plane
of injection may be different, generally speaking. The electron distribution with
respect to the transversal coordinate and angle between the velocity vector and the
beam axis in the focal plane was assumed to be Gaussian. The probability density
that r; is a distance of a particular electron from the beam axis in the focal plane

is

1 r2
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where o, = (rﬁ_)l/ ? is a root mean square (r. m. s.) value of the position from the
beam axis. Similarly, the probability that « is an angle between the velocity vector

of a particular electron in the focal plane and the longitudinal axis is

where a, = (a2)1/ ? (ae < 1). Both these probabilities are independent. The
transversal position and momentum are determined then by two angles ¢, and ¢,

that are chosen randomly in the interval of [0, 2],
T=7;C080,,

y=rysing,,
Py = psin a cos ¢q,
Py = psinasin @,
P, = pcosa,

where p = mcy/~Z — 1 is the absolute value of the momentum of the particle. As the
coordinates of a particular electron are determined in the focal plane of the beam,
it is simple to recalculate them to the plane of injection that can be, for instance,
a long distance before the focus outside the plasma. One more parameter of the
electron beam is its duration, the probability of different longitudinal positions of
electrons inside the beam was chosen to be the same.

After the simulation of test electrons motion we determined the variation of
different characteristics of the beam. We calculated the electrons energy spectra;
maximum electron energy in the result of acceleration, the dependence of the energy
on the phase of injection in the plasma wave; change of the space size of the beam
and of the angular divergence. To identify the mechanism of acceleration we studied
the characteristic electron trajectories. In the investigations that we report in the
present thesis we performed numerical simulations of test electron acceleration in

paragraphs 3.2, 4.1, and 4.3.



Chapter 3

Investigation of propagation of
ultra-short ultra-intense laser

pulses in underdense plasmas

3.1 Photon acceleration in a plasma wake

As it is known, the frequency of radiation changes when it propagates in a
medium with dielectric properties varying in time. If refractive index in the medium
increases the frequency of radiation decreases and when the refractive index de-
creases the frequency increases. The frequency of radiation increases during gas
ionization. Both the frequency of intense radiation that ionizes the gas or the
frequency of low-intensity radiation that propagates through the ionization front
can be shifted. The theory describing the frequency shift (photon acceleration) in
this scheme is already developed (see Ref. [74] and references therein) and labora-
tory experiments were done. Both the frequency shift of ionizing radiation and of
probe pulses propagating through the ionization front (co-propagating or counter-

propagating with the ionization front) were observed in experiments [75, 76, 77].

Another scheme of photon acceleration was also proposed — by relativistically
fast plasma waves excited by short intense laser pulses in plasma. In this scheme
the frequency shift is due to non-stationarity of the refractive index in the plasma
wave. Generally speaking, both the frequency of the pulse exciting the plasma wave
and the frequency of a probe pulse propagating in the plasma wave can be changed.
The frequency of the pulse (w) exciting the plasma wave down-shifts. It leads from
the conservation laws of energy and photons (see, for instance, Ref. [68]): the pulse

energy decreases due to the plasma wave excitation, but the number of photons

27
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is conserved; as the energy of photon is hw the frequency down-shifts. Another
explanation is__possll;le. During the plasma wave excitation either by a laser pulse
with duratiou less tllan half a plasma period or by a longer laser pulse modulated
with a plasma period (either in the Self-Modulated Laser Wake-Field Accelerator
or in the Plasma Beat-Wave Accelerator), the laser pulse or its modulations are in
the phase of growth of the refractlve 1ndex in the plasma wave and consequently,
their frequency decreases When a probe pulse propagates in the plasma Wake the
frequency shift of dlfferent mgns can take place dependmg on the phase of the
plasma wave in which the YERER A T : S

In a narrow sense the frequency Shlft of the probe pulse is called as photon

iy

acceleration (as’ m-‘t,he,scheme 10mz§.f11011 or in the scheme with a plasma wave).
In this thesis we studied the frequency shift of probe pulses in the plasma wave. We
considered an' mtense laser pulse with duratlon of the order of a half plasma period
as the mam source of the plasma wave excitation. Our results can be useful for

. other schemes of plasma wave excitation as well. Everywhere below we will speak

. _about photon accj leration only as a frequency shift of probe laser pulses.

3.1.1 Review of the results obtained before

The possibility of photon acceleration by plasma waves excited by ultra-intense
laser pulses was first suggested in 1989 by Wilks et al. [78]. They performed one-
dimensional (1D) numerical simulation confirming the possibility of photon accel-
eration and discussed the limits for the acceleration in this scheme. The theory of
photon acceleration in a plasma wave in the 1D case was developed by Esarey et

[79], who proposed a simple model describing modification of the laser pulse
parameters in this process: frequency, duration, energy. In Refs. [80] and [81] an
analogy between ultra-short laser pulse propagation and motion of a charged parti-
cle in a plasma wave was discussed. The theory of photon acceleration including the
Hamiltonian formalism based on the equations of geometrical optics was developed.
The self-sustained interaction of a short laser pulse with a plasma wave was studied
in the approximation of a weak relativistic nonlinearity in Ref. [82]. The energy
depletion of the plasma wave due to photon Landau damping was found in Ref. [83].

The frequency shift of a short probe pulse propagesing in a plasma wave can
be used as a plasma diagnostic tool. Because the frequency shift depends on the
probe pulse position in the plasma wave (the shifts are of the opposite sign in the
regions where the electron density increases or decreases) this allows a simple way of

plasma wave profiling: only the “center of mass”, or centroid, difference of the probe
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pulse power spectra, measured before and after the interaction with the plasma,
must be calculated [88]. Although this possibility has been widely discussed, the
measurement of the probe pulse frequency shift in exf)eriments and plasma wave
profiling in this way has not yet been reported. However, plasma wave profiling has
been performed in Refs. [84, 85, 86, 87, 88] by measurement of “dc” phase shift of a
probe pulse in the plasma wave. In these experiments a time-domain shift in qptical
phase of the probe pulse was recorded using frequency-domain interférometry, In
this technique multiple temporally separated coherent probe laser pulses are used.
The relative phase shift of these pulses is recovered from their frequency domain
interference spectra. In the experiments of Refs. [84] and [87] only the dc phase
shift was recorded. The longitudinal dependence of the recovered phase responsible
for frequency shift was not resolvable because of the small value of the frequency
shift and high level of the detector limited phase noise. The method of plasma wave
mapping based on frequency-domain interferometry has some advantages over the
- centroid-based method concerning issues of stray light, leakage of the pump pulse

“into the probe spectrum (if the spectra are overlapped), and detector defects [88)].
On the other hand, this method is complicated by using multiple coherent probe
pulses. The practical advantage of the centroid-based method is the simplicity and
speed, with which the power spectrum of the probe pulse can be measured.

In this thesis the study of photon acceleration in 1D plasma wave is continued
(sections 3.1.2 and 3.1.3). 1D numerical simulations confirm the results of the theory,
developed earlier, and show new particularities in dynamics of a probe pulse in the
process of its acceleration by the plasma wave. The most attention is given to
two-dimensional (2D) axially symmetrical case that was not studied before (section
3.1.4). An analytical formula is obtained describing photon acceleration in the
conditions close to the experimental ones. Numerical particle simulations show new
particularities of the probe pulse dynamics that have not been discussed and studied

yet.

3.1.2 Photon acceleration in the 1D case in a stationary

plasma wake

In this section we neglect the plasma wave profile dynamics caused by the evo-
lution of the plasma wave source (laser pulse or electron beam). This can be a
reasonable approximation if the time scale for evolution of the plasma wave source
is much greater than that for the accelerated laser pulse. Investigating photon ac-

celeration in such a stationary plasma wake can also help us to understand better
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the photon dynamics in a realistic nonstationary plasma wake. In our simulations
the plasma wave profile is taken to be the instantaneous profile of a plasma wake
excited by a short intense laser pulse propagating in plasma. As the phase velocity
of the plasma wave we take the group velocity of this pulse in the linear approxi-
mation v, = (1 — w2, /wd)!/?, where wy, = (4we>No/m)'/? is the plasma frequency
corresponding to the undisturbed density and wy is the frequency of the pulse.

Ray tracing equations describing the evolution of a wave packet in such a sta-
tionary plasma wave predict the photon trajectories similar to the traject,or(iés of
charged particles moving in the presence of a plasma wave [80, 81]. These trajec-
tories correspond to trapped and untrapped (moving backward and forward in the
plasma wave frame) laser pulses. In the 2D phase space (as the canonical variables
one must take a wave number and a coordinate in the plasma wave frame) these
trajectories are separated by a separatrix. The frequency of the photon ) in the
plasma wave frame obtained by a Lorentz transformation from the laboratory frame

is constant:

Yp(w — vprk) = 2 = const. (3.1)

Here v, = (1 — v3,/c?)™1/2 is the relativistic factor of the plasma wave, and k =
(1—w2(€)/w?)/*w/c is the photon wave number in the laboratory frame. In writing
the last expression for k& we have assumed the cold plasma dispersion relation, which
is valid for plasma waves with phase velocities much larger than the electron thermal
velocity. The plasma frequency w, = (4me’*N/ mry)'/? depends on the coordinate in
the plasma wave frame & = v,,t — 2z through both the electron density N and the
electron relativistic factor . On differentiating Eq. (3.1) with respect to time, and
taking into account that the laser pulse in the Wentzel-Kramers-Brillouin (WKB)
approximation propagates with its group velocity, we obtain equations describing

the evolution of the pulse frequency and coordinate in the plasma wave frame:

2
dw=v_p,ldwp

dt 2w dE’
d€ w2 1/2 (32)

The validity of the WKB approximation underlying this approach is limited
to the case of small radiation wavelength compared with the space scale of the
plasma density inhomogeneity. Further, the laser pulse is supposed to be short
in the time and narrow in the frequency domain in order to be characterized by
definite values of coordinate and frequency (wave number) and for the effects of

the group velocity dispersion to be negligible. In our simulations these conditions
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are not always fulfilled leading to some differences in the pulse dynamics from the
predictions of Egs. (3.1) and (3.2). In Figs. 3.1-3.3 we present the results of a
simulation where the background plasma density is Ny = 1.74 x 107 cm~3. The
profile of the plasma wake is shown in Fig. 3.1 (a). This is the instantaneous
profile of the wake behind a 0.4 ym laser pulse (for which wy,/wo = 0.005) with a
Gaussian temporal profile and a full width at half-maximum in intensity (FWHM)
of 30 fs. The maximum amplitude of the vector potential ag = eAyg/mc? = 1.8. We
have simulated the dynamics of probe pulses with initial wavelengths of 0.133 um,
0.2 pm, 1.33 pm and duration of 30 fs (FWHM). The pulses were “loaded” in the
first two cases in the minima and in the last case in the maximum of the plasma

wave. The averaged frequency of the probe pulse spectrum

- fledew

<= Timpa

is shown as a function of the pulse position in the plasma wave frame,

_ JE|EPdg

<&>=T\Epa

in Fig. 3.1 (b), where we use the dimensionless coordinate ( = (wp,/c) < & >=
k, < & >. The averaged frequency is plotted as a function of time in Fig. 3.2, where
we use the dimensionless time 7 = (w3 /w§)t. The dotted lines in Fig. 3.1 (b)
correspond to the phase space trajectories obtained as solutions to Egs. (3.1) and
(3.2).

The trajectory 2 shown in Fig. 3.1 (b) corresponds to a trapped laser pulse.
In Fig. 3.3 the corresponding pulse vector potential profiles and spectral composi-
tions are shown at different times during one oscillation. The other two trajectories
correspond to untrapped laser pulses: moving forward and backward (with respect
to the direction of the plasma wave propagation) in the plasma wave frame. The
difference between the “model” curves [solutions to Egs. (3.1) and (3.2)] and the
results of our direct simulations is caused first of all by the finite length of the pulse
(leading to different frequency shifts of the parts of the pulse and to variation of the
group velocity through its length) and group velocity dispersion. The untrapped
pulse moving backward in the plasma wave frame quickly becomes elongated and
the oscillations of the averaged frequency saturate when the pulse length becomes
of the order of one plasma wavelength. The trapped pulse broadens when it passes
backward at the bottom of the plasma density profile (Fig. 3.3). The central part
of the pulse is frequency shifted differently from the front and rear parts and the

averaged frequency of the pulse spectrum becomes greater than that predicted by
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<>/

Figure 3.1: Photon acceleration in the 1D case in a stationary plasma wake: (a) elec-
tron density in the plasma wave (normalized to its background value), the plasma
wave propagates in the —( direction; (b) averaged frequency of the probe pulse
spectrum as a function of the pulse position in the plasma wave frame (solid line),
and phase space trajectories, obtained as a solution to Eqgs. (3.1) and (3.2) (dot-
ted lines); ¢ = kp{ = (wpo/c)§, T = (w3, /w§)t. The parameters of the simulations
are given in the text. The indices 1, 2, and 3 correspond to pulses with initial

wavelengths 0.133 pm, 0.2 um, and 1.33 pm respectively.
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Figure 3.2: Averaged frequency of the probe pulse spectrum as a functlon of time

“.in the 31mulat10ns of: Flg 3 L

‘Eqs (3.1) and (3

rear parts of the pulse. When the pulse passes the turning points and moves forward

h,1s is essentlally due to the contrlbutlons from the front and

in the plasma wave frame it shortens again and the results of the simulation become
close to the predicted ones. In the simulation the tunneling of the pulse through
the density barriers is negligible though»itkca'n be important for pulses whose phase
trajectories are close to the separatrix. The untrapped pulse moving forward in
the plasma wave frame becomes somewhat shorter as it passes the maxima of the
density. Nonetheless, due to the inharmonic shape of the wake, its width there is
comparable with the density inhomogeneity scale. As a consequence, the average
frequency of the spectrum here is a little greater than the one predicted by Egs.
(3.1) and (3.2).

3.1.3 Photon acceleration in the 1D case in a nonstationary

plasma wake

The dynamics of the plasma wave source leads to a nonstationary plasma wake.
We have investigated photon acceleration in such a nonstationary plasma wake for

the case of a relativistically intense laser pulse plasma wave source.

The characteristic depletion time of the pulse producing the plasma wake (main
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Figure 3.3: Trapped pulse vector potential (on the left) and spectral intensity (on

the right) at different times during one oscillation in the simulation of Fig. 3.1.
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pulse) due to energy transfer to the plasma wake in 1D is given by [48]:

w8
w3 37 [ |a|2dg’

tdep =

where |a| = e|A|/mc? is the amplitude of the main pulse vector potential and ), is

the plasma wavelength. This equation was obtained for an ultra-intense laser pulse

(la] > 1) under the assumption that (w,,7)|a| < 1, where 7 is the pulse duration.
For a stationary plasma wake, the period of small oscillations of a photon near

the “O-type” equilibrium state according to Egs. (3.1) and (3.2) is

2
3/2 Wy [1—m
SR e
Do 1

where n; = 1 — Npin/No is the plasma wave amplitude at minimum density. This
expression becomes an equality for a linear plasma wave (n; < 1). In the linear
limit (Ja|] <« 1) for a linearly polarized main pulse with a normalized intensity profile
of the form a? = a2sin?(7¢/L) for 0 < € < L and a® = 0 for £ < 0 and £ > L, one
. can obtain, using the cold fluid equations, ny = (ag/4) sin(wL/X,)/[1—(L/A,)? [10].
" The time taken by a photon that is untrapped and moving forward in the plasma
wave frame to cross (in this frame) one plasma wavelength can be roughly evaluated
as Tp = 4nwj/w (here it is supposed that w? > w?, where w is the photon fre-
quency) and the corresponding time for the photon moving backward in the plasma
wave frame as T3 = 4nw?/wd (when w? < w}).

A comparison of these times in the parameter range where they are applicable
shows that in the practical case of a relativistically intense main pulse (Ja| > 1)
with a duration of the order of a plasma period, only untrapped photons moving
backward in the plasma wave frame will have full oscillations of their frequency
before the depletion of the main pulse, as T1,Ty ~ tgep and T3 < tiep (T3 <K taep
when w? < wi). This prediction is verified by our numerical simulations.

In Figs. 3.4-3.6 we present the results of the simulation for an untrapped photon
moving backward in the plasma wave frame. The parameters of the simulation are
the following: the background plasma density is Ny = 1.74 x 10! cm™3, the wake is
produced by a 30 fs (FWHM), 0.2 ym main pulse of Gaussian shape with maximum
vector potential amplitude ap = 1.3 at initial time, and a ratio w,,/wo = 0.0025.
The 30 fs (FWHM), 1 pum probe pulse was loaded in the minimum of the electron
density.

The evolution of the envelopes of the main and probe pulse vector potentials,
and of the plasma wave, is shown in Fig. 3.4. The main pulse first steepens and

increases in amplitude at its rear part [48] [see 7 = 1.6, 3.2, where 7 = (w3 /wd)t is
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Figure 3.4: Photon acceleration in the 1D case in a nonstationary plasma wake: main
pulse vector potential (solid line), probe pulse vector potential (dashed line), and
electron density in the plasma wake (dash-dot line) at different normalized times.

The parameters of the simulation are given in the text.
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Figure 3.5: Averaged frequency of the probe pulse spectrum as a function of time

in the simulation of Fig. 3.4.
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Figure 3.6: Probe pulse spectrum at different times in the simulation of Fig. 3.4.
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the dimensionless time| and then becomes very weak loosing its energy (7 = 6.4).
Due to the strong steepening and increase in amplitude of the main pulse the plasma
wave amplitude first becomes a little greater but then decreases due to the depletion
of the main pulse. The probe pulse frequency (Figs. 3.5 and 3.6) oscillates first with
an increasing and then with decreasing amplitude following the evolution of the

plasma wave amplitude.

We have also made simulations (not shown) that correspond to trapped photons
and untrapped photons moving forward in the plasma wave frame. For a relativisti-
cally intense main pulse with a duration close to the plasma period we observe only a
fraction of one frequency oscillation before the main pulse is depleted. Nevertheless
the maximum frequency shift was of the order of the initial frequency for both the
trapped photons and the untrapped photons moving forward in the plasma wave
frame (when the initial frequency of the last is not much larger than the main pulse

frequency).

Summarizing the results of this section we conclude that the acceleration of

. photons with w > wp in the plasma wake, behind a relativistically intense laser

pulse, is complicated by main pulse depletion. This depletion takes place on the same
time scale as photon acceleration. The theory of photon acceleration in the plasma.
wake with constant amplitude is not sufficient in this case. The “acceleration” time
is smaller than the depletion time of the main pulse only for untrapped photons
with w < wp. The theory of photon acceleration in the plasma wake with constant

amplitude is sufficient for untrapped photons with w? < w?.

3.1.4 Photon acceleration in the axially symmetrical 2D

case

Strong plasma wakes can be excited if intense laser pulses are focused in plasma.
Weak probe pulses can be used for their diagnostics. The information can be ob-
tained measuring the frequency (phase) shift of the probe pulses propagating in the
plasma wake. Usually for such measurements the focal plane of the laser beam is
imaged with a lens on the spectrometer measuring the spectrum of the probe pulse
after the propagation in plasma. Given the necessary magnification of the image it
is possible to measure not only the averaged frequency shift in the probe pulse but
also the frequency spectra at different r (transversal coordinate). It can give impor-
tant information about the plasma condition in the focal region with longitudinal

and transversal resolution.
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3.1.4.1 Analytlcal estlmatlon of the frequency and phase shift of the
probe pulse in the case of small refractlon

In this paragraph we W111 suppose tha.t the wake excitation is correctly described
by the 2D, nonrelat1v1st1c fluid mod‘ deVeloped in Ref. [9], and perturbations in the
probe pulse caused by the plasma wake. (due. to _refractlon) are small. Accordmg to

) }] [k o.e”®o M sink,e.  (3.3)

2 Ng. ’I‘,éhe evohitidn‘ of the width and amplitude
of the laser pulse along the laser axis 2 is

2\ 1/2 2
r — UYrg |+ A -
0 \:mr kga-?-‘o » Ym 0 0_3 }

The theory is strictly corré‘(‘:;{:v if on

where o, and ao are the waist (in the field intensity) and amplitude in the focus.
The pulse self-focusing and depletion due to the wake excitation are neglected here.
Let us consider a radially and longitudinally Gaussian probe pulse propagating in
the wake behind the main pulse. Evolution of the complex amplitude of its vector

potential (a,) is described here by the paraxial wave equation

2zkaai = —Aya, + klayn,.

In the absence of density perturbation (n; = 0) the solution to this equation is:

a r? —&)?
(0)(7‘ g, ) 1+ - €Xpy — - (52 2§O) ) (34)
iwt 207, (1+ip Y 2%
Tpo

where oy, and a,, are the waist (in the field intensity) and amplitude in the focus
(the focus is in the same point for the main and probe pulses), 0, is the half width

at 1/e in intensity, the pulse is centered in £ = &. The slippage between the probe
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pulse and the plasma wake will be neglected in this subsection. This slippage can
be neglected in the focal region of the main pulse (where there is a strong wake) if:

o(m) _ ()

gr Ugr w,
2hoo?, LT L 52 2
C w

wWo w

™
w W < Pk

where wy and w are the frequencies and vf,’,") and vs(;’) are the group velocities of
the main and probe pulses, respectively. We will suppose that density perturbations
change slightly this solution (the condition for this will be found later) and will find
a small perturbation induced by the wake azgl)(r, &, z) which in this case satisfies the

equation
3a(1)
Bz

Solving this equation first for the Fourier images

1 . .
1 1) —tkzxz—ik
AI(’) = _(271')2 // G,I(, e Wdxdy

21k

= ——Ala]()l) + kzaz(,o)nl.

(r* = 2% + y?) and then returning back to the originals we obtain:

a(l) — ____1_/00 — //da:’dy exp( (G 2)(z _(Z,) y )2]k> k2 (0) ni.  (3.5)

This formula can be simply understood: we first calculate the propagation of the

new radiation (perturbation) generated in the layer d2’ (at 2’) to the plane z using
the formula for the propagation in undisturbed plasma [integral on (z’,7')] and
then sum up the contributions (integral on 2’). The integration on (z’,3') can be
performed in terms of elementary functions [for az(,o) and n; of the form (3.3) and
(3.4)]. After this integration the integration on 2’ can be performed in terms of
elementary functions only for z = y = 0.

In obtaining (3.5) we have assumed that background plasma is homogeneous
and infinite. In realistic experiments plasma is created in a finite region and the
integration in Eq. (3.5) must be performed over this region. Besides, the propagation
of the probe beam must be analyzed inside the plasma and outside. Particularly, in
the case when ionization is produced by the same main pulse which produces the
wake, a transversal plasma boundary with the gas arises [86]. In this case the parts
of the probe pulse propagating inside the plasma and outside experience different
phase shifts. Evidently, in neglecting this effect our theory is not sufficient, if the
probe beam waist is larger than the transversal size of the plasma and an essential
part of the probe pulse propagates outside the plasma.

We will estimate the phase and frequency shift of the probe pulse which can be

measured in the scheme of plasma diagnostics mentioned at the beginning of the
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section, that is when the focal plane is imaged by a lens on the spectrometer. In the
absence of plasma density perturbations in the region z > 0 [except a short region
Az of transition to vacuum (or gas) before the diagnosti(;s line, that does not cause a
strong diffraction] the probe pulse field distribution in the focal plane is reproduced
with a magnification in the image plane of the lens (with an additional phase factor
depending on 7). The generation of perturbations due to the plasma wake i in z > 0
can be taken into account in the following way. Calculating the propagatlon of
new radiation back in z to z = 0 we obtain a field distribution similar to that
produced in this plane by the perturbation sources in z < 0 [az(,l)l given by (3 5):
the imaginary part is the same and the real part is of the opp031te sign. Thus we
conclude that the field

2iTma( .
0 . 1 ~ ~(0) P — (0) i®
(az(, )+ ZZImaf, ))|z=0 ~ a,’ exp {_a§,°’ } . ap’| _ €%,

where ® = 2Ima(V/ az(,o)l _, Will be reproduced in the image plane of the lens.
Because the integration in Eq. (3.5) can be performed in terms of elementary
* functions only for 7 = 0 we limit ourselves to estimate the phase (and frequency)

shift in the image! plé,he at 7 = 0. Calculating az(,1)|z_0 0 from (3.5) we obtain:

1+v1490 1
1) /(0 .
S (e N B
1) /(0 m .
Imaz(, )/ az(, )L=0,r=0 = EQP sin k&,

where NG

™ (ko

Q = —Z' [kpaze (kp )2/4] G/g,
kpor, 8

2\/1 +4 (1 +6)3/%’
_ 1.2 2
=k /K2 + 20T0/0%
® is the phase shift per unit length accumulated by the probe pulse. The longi-
tudinally averaged phase shift is:
S 2(§)la?dE _
[las”2d€
and the shift of the probe pulse spectrum is:

[ cK'|ay, (K')|*dK _
[lap, (k') |2dk’

mQPe o)/ sin k&

Aw =

—wprPe_(k””‘P)z/ 4 cos kp€o,

where )
ap, (k') = Dy / a,(€)e e de.
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Our perturbatlon theory is correct if |a{’| < |a{®|. The strongest refraction
i at the laser axis. Substltutmg the values of a{”) and a{!) in

r=z=0in tms ine uahty we get

which must be satisfied'in orderffgr’ *the theory of wake excitation by the main pulse
to be correctv (on < no). '

was assumed to be produced by the sdme main pulse focused into the center of a
helium gas jet of some Raylelgh lengths width. We have made simulations both with
a rectangular shaped gas jet (of two Rayleigh lengths width) and with a realistic jet
of a smooth shape. The main pulse enters the jet with a maximum intensity that is
much greater than the ionization threshold. Ionization then takes place at the front
slope of the pulse, a long time before the peak. It is only this small front part of
the pulse (whose energy is negligible compared with the total energy of the pulse)
that is subject to ionization-induced refraction, while the main part propagates as
in a preformed plasma.

The probe pulse was also focused at the center of the gas jet. We have varied
the delay between the main and probe pulses in order to obtain photon acceleration
in different phases of the plasma wave.

In order to obtain the maximum frequency shift, one needs to exclude the possible
longitudinal drift of the probe pulse with respect to the plasma wake due to both
a difference of the probe and main pulse group velocities and a change in plasma,
wavelength caused by nonlinear effects and variation of theget density. To do this, it
is better to use a gas jet with a nearly homogeneous density profile in the focal region.
It is possible to compensate for a slight nonlinear increase in plasma wavelength with
an increase in amplitude near the focal point increasing the jet density there. The

difference between the plasma wave phase velocity (equal to the main pulse group
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velocity) and the probe pulse group velocity can be compensated for by an additional
ramping of the jet density profile in the longitudinal direction [78].

In the simulation, the interaction with the plasma wave was followed by a probe
pulse optical collecting line with a 20 cm focal length lens of infinite aperture. Such
optical collecting lines with sufficiently large aperture are currently used in experi-
ments. We have calculated the pulse spectrum on the laser axis in the image plane
of the lens.

In Figs. 3.7-3.13 the results of two simulations are presented for the case of a
rectangularly shaped gas jet of two Rayleigh lengths in width. The wake is produced
by a 30 fs (FWHM), 0.8 um laser pulse of Gaussian shape. The frequency shifting
of a 30 fs (FWHM), 0.4 um probe laser pulse of Gaussian shape is investigated. The
other parameters of the two simulations are shown in Table 3.1. The total energy
of the main laser pulse is in both cases 0.5 J. We have also made a simulation
with the parameters corresponding to Figs. 3.7-3.9 but with a realistic smoothly
shaped gas jet N = Ny exp[—(|z|/2)%®%3], where the longitudinal coordinate z is in
A ‘mm. Although the last jet is rather inhomogeneous in the focal region the results of
simulation were approximately the same as in Figs. 3.7-3.9. The plasma wave profile
at the time when the main pulse passes its vacuum focus in the simulation with a
smaller density is shown in Fig. 3.7 (the corresponding plasma wave profile in the
simulation with a higher density is qualitatively the same and is not shown). In Figs.
3.8 and 3.10 the final spectrum of the probe pulse at the output of the collecting
line, and in Figs. 3.9 and 3.11 the averaged wavelength, are shown for different
delays between the main and probe pulses. As we see, the frequency shift in these
simulations is a few percent. For the parameters of the simulation of Figs. 3.7-3.9
the analytical estimates of the previous subsection give the maximum frequency shift
(when the probe pulse is on the longitudinal slope of electron density) Aw ~ 1.8w,,
or in terms of wavelength AX ~ 0.9 x 10~2um. In the simulation the maximum shift
AXMm) ~ 0,53 x 10~ 2um. The agreement with the theory of the previous subsection
can be considered as good, taking into account that the distance of interaction in our
simulation is 2 Rayleigh lengths of the main pulse instead of infinite distance in the
estimate. Also, we are near the limit of validity for the estimation: the amplitude of
density oscillations in the focal plane is close to 1 and the perturbation in the focus
becomes comparable with the zero-order solution.

For the parameters of the simulation with a higher density (the simulation of Figs.
3.10-3.13) our estimate is not acceptable, mainly because of the strong refraction of
the probe pulse. We show the detailed picture of the probe pulse interaction with the

plasma wake in this simulation in Figs. 3.12 and 3.13. We present the probe pulse
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Figure 3.7: Electron density in the plasma wake at the time when the main pulse
passes its vacuum focus for the simulation of Fig. 3.8. The transversal coordinate r

is in units of k; L

Table 3.1: Parameters of the simulations of photon acceleration in the axially sym-
metrical 2D case. The other parameters are given in the text. Ny is the unperturbed
electron density, wo is the main pulse waist, Iay is the maximum vacuum main pulse

intensity, and w; is the probe pulse waist.

Figure No(cm™) Wpo/Wo wo(um) Inax(W/cm?) w,(pm)

3.7—39 1.09 x 108 0.025 21.7 2.11 x 1018 26.5
3.10 — 3.13 2.79 x 1018 0.04 25.3 1.56 x 108 334
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Figure 3.8: Photon acceleration in the axially symmetrical 2D case: probe pulse
spectral intensity at the output of the optical collecting line for the different values
of the initial position of the probe pulse in the plasma wave frame (in units of k, 1

Zs. The parameters of the simulation are given in the text and in Table 3.1.
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Figure 3.9: Averaged frequency of the probe pulse spectrum at the output of the

optical collecting line as a function of Z; in the simulation of Fig. 3.8.

intensity and plasma density distributions at different times (longitudinal positions
z) in the simulations with the maximum up- (Fig. 3.12) and down- (Fig. 3.13)
shifts in frequency. The plasma density profiles in the instantaneous shots have a so-
called “horseshoe” shape [41, 89, 90, 91], because the plasma wavelength is greater
on the axis due to the nonlinear relativistic wavelength increase with amplitude
[16, 21, 35, 36, 46]. The plasma wave phase fronts in the periphery move uniformly
with the velocity of the main pulse. On the other hand, the axial plasma wave phase
fronts move backward (in the frame moving with the main pulse) as long as the on-
axis intensity increases, and then they move forward after the focal plane. This
effect as well as the difference between the main and probe pulse group velocities
lead to the slippage between the probe pulse and the plasma wake. When the probe
pulse approaches the focal plane it moves faster than the density humps. In the case
of down-shifting in frequency (Fig. 3.13), the forward part of the pulse is subject to
an additional defocusing as it approaches the density maximum in front of it. The
defocused radiation stays a sufficient time in the region of density decrease where it
is down-shifted in frequency. After the focal plane the density maximum in front of
the pulse shifts forward, a part of defocused radiation returns back to the laser axis
though a considerable part is diffracted. In the case of up-shifting in frequency (Fig.
3.12) the density maximum behind the probe pulse shifts backward when the pulse
approaches the focal plane. The pulse up-shifting becomes smaller. At the focal
plane the probe pulse finds itself attracted by the density minimum. The frequency
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Figure 3.10: Photon acceleration in the axially symmetrical 2D case, probe pulse
spectral intensity at the output of the optical collecting line for the different values
of the initial position of the probe pulse in the plasma wave frame (in units of k, b

Z,. The parameters of the simulation are given in the text and in Table 3.1.
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Figure 3.11: Averaged frequency of the’”probe pulse spectrum at the output of the
ine as ’aﬁ}.funqti()n of Z, in the simulation of Fig. 3.10.
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Figure 3.12: Probe pulse intensity distribution and elect;c% density distribution in
the vicinity of the probe pulse at different times (longitudinal positions z) for the
simulation with the maximum frequency up-shifting (Z, = 14.4) in Figs. 3.10 and
3.11.
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Figure 3.13: Probe pulse intensity distribution and electron density distribution in
the vicinity of the probe pulse at different times (longitudinal positions z) for the
simulation with the maximum frequency down-shifting (Z; = 17.3) in Figs. 3.10
and 3.11.
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shift in the density minimum is small and of opposite signs for the forward and
backward parts of the pulse. After the focal plane the density maximum behind the
pulse shifts forward, but because of the difference between the probe and the main
pulse group velocities the probe pulse generally outruns the wake and only a small
backward part of it is frequency shifted. Our simulation shows that, as a result,
down-shifting in frequency is more efficient than up-shifting.

In the simulation with a smaller density (Figs. 3.7-3.9) the probe pulse reﬁection
is weak, the difference between the main and probe pulse group velocities is‘sniallexj,
as well as the longitudinal size of the region of interaction (which is equel' to tWo

Rayleigh lengths of the mam pulse) The frequency up—shlftmg and down-shifting

of the probe pulse in this case are nearly as efficient. Ho er there is a slippage
between the probe pulse and the “horseshoe ‘shaped plasma wake: the curvature
and position of the plasma wave phase fronts change with z in the laser pulse frame.
This slippage somewhat reduces the amphtude of the frequency oscillations which
- we see in Fig. 3.9.

The effects caused by the difference in the probe and main pulse group velocities,
as well as other effects leadmg to the longitudinal motion of the probe pulse with
respect to the plaSma wake can be partially eliminated by choosmg special shape
for the gas jet.

Refraction of the probe pulse leads to a focusing effect in the regions of minimum
density of the plasma wave, and to a defocusing effect in the regions of maximum
density. This means that we can not make effective use of the regions of density
gradient of a highly nonlinear plasma wake that are close to the density maxima.
On the other hand, by focusing the probe pulse near the density minima one can
increase the length of collimated propagation and accelerate the probe pulse through

a greater interaction length.

3.1.5 Discussions

In this paragraph we have undertaken an investigation of photon acceleration in
a plasma wake using particle simulations. Our 1D simulations confirm the existence
of photon trajectories that are similar to the trajectories of charged particles in a
plasma wave. These trajectories correspond to laser pulses that are trapped and
untrapped by the plasma wave. The frequency of these laser pulses oscillates with
an amplitude that is dependent upon the relation between the plasma wave phase
velocity and the laser pulse group velocity. This amplitude is greater when the

velocities are close to each other.
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The plasma wave develops simultaneously with the evolution of the plasma wave
source. The source evolution is caused by the transfqr of energy to the plasma
wake and by additional self-modulation. When a plasma wake is produced by a
relativistically intense laser pulse with a duration of the order of a plasma period,
only the untrapped back-drifting probe pulse still has some full frequency oscillations
before the main pulse depletes.

Investigating photon acceleration in a 2D axially symmetrical case we have made
analytical estimates of photon acceleration (as well as phase shift in the probe pulse)
in the wake behind an ultra-intense short laser pulse. We have estimated the phase
and frequency shift in the probe pulse which can be observed in the image plane
of a lens imaging the focal plane. This estimate is applicable if the plasma-induced
phase shift and refraction of the probe pulse are small. We have also made 2D
axially symmetrical particle simulations of photon acceleration. We have simulated
a 30 fs, 0.4 um probe pulse interacting with a plasma wake produced in a gas jet
behind a relativistically intense 30 fs, 0.8 um laser pulse. We then calculated the
* Iprobe pulse propagation in a typical optical collecting line as used in laboratory
éxperiments. The probe pulse refraction in the presence of a nonlinear plasma
wave and slippage between the probe pulse and the plasma wake lead to a stronger
frequency down-shifting than up-shifting. The results of our analytical estimate and
numerical simulations in the 2D axially symmetrical case can be useful for plasma

diagnostics.
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3.2 Phase velocity of the plasma wave in the
scheme of Self-Modulated Laser Wake-Field
Accelerator and electron acceleration. Rela--
tivistic self-focusing and self-similar laser

pulse structures.

3.2.1 Phase velocity of the plasma wave in the scheme of
Self-Modulated Laser Wake-Field Accelerator

As it was mentioned in Introduction the scheme of Self-Modulated Laser Wake-
Field Accelerator is one of the promising schemes of electron acceleration in plasma.
In this scheme plasma wave is excited in result of resonant modulational instability
of a laser pulse. This instability leads to a longitudinal modulation of the pulse
~ width and amplitude with a characteristic wave number k, = wp/c. Simultane-
ously a plasma wave is excited with a wave vector close to the resonant k,. The
self-modulation instability can be of a pure 1D or three-dimensional (3D) nature
depending on the intensity and space size of the laser pulse and the value of plasma
density [14, 54, 58, 59, 92]. In spite of the difference of the mechanisms of 1D and
3D instabilities the presence of a feedback between the excited plasma wave and the
intensity modulation is common for them. In 1D the intensity modulation corre-
sponds to a redistribution of energy of the laser field in the longitudinal direction.
In the 3D case the effect occurs due to a redistribution of the laser field energy in
different transversal cross-sections of the pulse. The synchronization of the redis-
tributions is caused by the plasma wave. Physically it corresponds to the situation
when in some transversal cross-sections focusing of the laser radiation takes place
and in the others defocusing, that leads to the laser field modulation.

Resonant modulational instability was first observed in numerical simulations of
ultra-short laser pulses interaction with plasma [14, 51, 52, 53, 55]. Analytical inves-
tigation of the perturbations of electron density and laser field connected through
the pump wave based on the corresponding dispersion relation was performed in Ref.
[14]. Longitudinal modulation of the pulse in a pure 1D geometry was investigated
in Refs. [59, 92]. The initial stage of self-modulation of a laser pulse was studied
in aberrationless approximation first in Ref. [54]. In Ref. [58] a comparison of 1D
and 3D mechanisms of the instability was performed on the basis of the dispersion

relation and solution of the equations for perturbations of electron density and field
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in 1D and 3D+ (2D é;tle,lly symmetrical) cases in aberrationless approximation. It
was found tha.t for a aser pulse with a sharp forward edge 1D mechanism is not

essential if the follo mg condltlon is satlsﬁed

1nstab1hty rates and predlctlon of the. eXc1ted'plasma Wave amphtude For the esti-

matlon of posmble electron acceleratlon by "the plasma wave 1t Was usually assumed

that the plasma wave 1se velocﬁ;y 1s':so close to the laser pulse group veloc1ty tha.t

one can neglect the -dlfferehce between Yoh and Y- The phase of the plasma wave
excited i in result o 'fhe resonant modulational instability was investigated first in
" Refs. [58, 93, 94

regimes at the linear:: thgeﬁofé‘ins’ﬁ;é:lﬁility.:a-;lt ‘was shown, that the relativistic factor

hase wvelocity: of the plasma wave was found in different

of the plasma wave 7,,5 can be essentially, less than v, and this can be important for
using the regime of laser pulse self-modulation for acceleration of particles. However,
as it was mentioned this q§estlon xeqUires_an adclitional analysis as it is supposed
to accelerate electrons at the nonlinear stage of instability.

If it is supposed that , is close to 7, the use of a sufficiently underdense plasma
is required for the electron acceleration to high energies. Really, if one assumes for
an estimation that the amplitude of electric field of the plasma wave is of the order
of non-relativistic wavebreaking field (1.3) and electron acceleration length is equal
to the dephasing length (1.5) it is possible to obtain the following relation for the

maximum energy of electrons accelerated:
2
AW [MeV] ~ 10‘9(2/7T)E0[V/cm]ld[cm] ~2 (%) . (3.7)
p

The coefficient 2/7 here is due to the averaging of electric field over the accelerating
period (assuming that the longitudinal dependence of electric field is approximately
sinusoidal). Therefore, for a given frequency of the laseggradiation the maximum
electron energy is inversely proportional to the electron density. One must also
remember, estimating the maximum electron energy in particular cases, that Eq.
(3.7) can overestimate it and one needs to make corresponding corrections. First, the

acceleration length may be 2 times less than l; from Eq. (1.5) as electrons typically
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experience both longitudinal accelerating and radial focusing force in the phase
interval of the plasma wave k,|A§| = /4, that is only on half a total acceleration
interval /2. Electron acceleration in the plasma wave with a horse-shoe shape is
an exception. Such a form of the plasma wave develops in the result of dependence
of the plasma frequency on the amplitude of the wave and electron density which
depend in their turn on the transversal coordinate [41, 89, 90, 91]. In the last case
the phase interval where electrons experience both longitudinal accelerating and
radial focusing force increases up to m/2. Second, the plasma wave ainplitude in
experiments is usually somewhat less than Eo given by Eq. (1.3) [62, 95, 96] that
we have taken into account formally in the similar estimate (4.1), (5.1).

In the case of a sufficiently underdense plasma for moderate pulse lengths the
resonant modulational instability in plasma has a 3D character according to Eq.
(3.6). The values of the phase velocity and relativistic factor for 3D instability was
found in the aberrationless approximation in Refs. [58, 93, 94]. One can separate

two characteristic regimes of instability:

o (P/P.)k,L > 1 (large power and/or pulse duration), in particular, the condi-
tion P > P, can be satisfied, when relativistic channeling of the laser pulse is

possible; relativistic factor of the plasma wave in this regime of instability is:

1/2 .2 171/2
Voh _ P ) o :
” [1 +F ( Bl ksz} , (3.8)

e (P/P.)k,L < 1 (small power and/or pulse duration), that supposes P < P,
and diffractionless propagation in this regime is possible only in the presence

of a plasma channel; in this instability regime

42 -1/2
7_P’1=<1+ 79) . (3.9)

’)’g ksz

In these formulas L is the pulse length, zgr = kor3/2 is the Rayleigh length, F is a
coeflicient of the order of 1, this result is obtained for a wide laser pulse ro > k, L
As it is seen from Egs. (3.8) and (3.9), the relativistic factor of the plasma wave
can be essentially less than <, at the linear stage of instability.

The reduction of the plasma wave phase velocity (3.8) and (3.9) can be explained
in the following way. The modulations of the intensity and plasma density appearing
due to the self-modulation instability are shifted in phase, so that the electron
density maxima turn to be ahead (and the minima behind) the intensity maxima
by a quarter of a plasma period. The forward slopes of the intensity modulations

are defocused close to the electron density maxima due to refraction, at the same
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time the backward slopes are additionally focused close to the density minima. In
result, the intensity maxima in the modulations are shifted backward as well as all
the intensity structure as a whole. The electron density modulations excited by
intensity modulations are also shifted backward in their turn.

In Ref. [94] a numerical simulation of the self-modulation of a laser pulse was
performed as well. The system of equations in the simulations included the paraxial
wave equation for the complex amplitude of the laser pulse and the equation for the
electron density perturbations in the frame of hydrodynamic theory of cold pla,smé,.
Both the amplitude of the high-frequency field and electron density perturba,tions"
are supposed to be small in this approach (eA/mc?, én/ny < 1). The ratio of the
laser frequency to the plasma frequency in the numerical simulation was chosen
wo/wp = 22.5. The laser pulse profile at initial moment of time was Gaussian in
the transversal direction with a width of 28k, (waist) and homogeneous in the
longitudinal direction with a width of 54k, 1 and with a sufficiently sharp forward
 edge. The pulse power was less than the critical power for self-focusing, P = 0.68P,.
‘_;'The parameters of the simulation correspond to the first of the two regimes of self-
" modulation instability discussed above. According to the results of this simulation
the relativistic factor of the plasma wave is essentially less than 7, only at the initial
stage of instability, at the late stage of self-modulation they are close.

We studied the problem of phase velocity of the plasma wave excited in result of
the laser pulse self-modulation numerically using the code Wake. As our code is fully
relativistic, in numerical simulations we were not limited to the case of weak laser
fields and plasma density perturbations, and powers less than critical for relativistic
self-focusing. We also considered an important case of self-modulation of a laser
pulse with P < P, in a preformed plasma channel. It was suggested earlier to
use self-modulation in the plasma channel for electron acceleration [57, 97], but a
possible difference of v,, and 7, was not taken into account. As we will see below,
this difference is essential for electron acceleration in this scheme.

In our investigation we turned a special attention to the case of sufficiently weak
plasma when electron acceleration by the plasma wave up to energies in the range
of hundreds of MeV — GeV is possible, if the plasma wave phase velocity is equal
to the laser pulse group velocity. As our simulations show, it requires wp/w, > 30,
if the characteristic amplitude of electron density perturbations in the plasma wave
én ~ ng (large but the plasma wave is not broken yet, at least, just behind the
laser pulse) and the width of the pulse is of the order of k ! (it is the characteristic
transversal size of the laser pulse due to self-focusing). As the acceleration length

(1.5) in such an underdense plasma is essentially larger than Rayleigh length, rela-
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tivistic channeling of the pulse or using a preformed plasma channel is necessary to
compensate diffraction and to increase the propagation length. The results of two
simulations are shown in Figs. 3.14 and 3.15. In Fig. 3.14 the results of a simulation
are shown for the case of self-modulation of a laser pulse with P > P, in homoge-
neous plasma, and in Fig. 3.15 for the case of self-modulation of a pulse with P < P,
in a plasma channel. Laser radiation is linearly polarized, in both simulations the
pulse is initially Gaussian in the longitudinal and transversal directions with a width
of 20 pm (waist) and duration 300 fs (FWHM), the laser wavelength is O5pm In
the simulation in Fig. 3.14 the amplitude of the pulse in maximum a¢ = 0.;93, the
intensity 5 x 10'® W/cm?, power P = 1.2P,, electron density is 2.8 x 10'® cm™3,
wo/wp = 40. In the simulations of Fig. 3.15 the maximum amplitude of the pulse
ap = 0.61, intensity 2 x 10'® W/cm?, power P = 0.5P., the electron density profile in
the channel is n. = 2.8 x 1018 +0.353 x 1072, em™2, wo/wy|,—0 = 40. The specific
choice of parameters was determined, in particular, by the present possibilities for
~ the experiment at the laboratory LULI, one of advanced in this field. We show the
evolutioxi "of trhe' axial distributions of electron density and laser intensity in Figs.
' 3.14-3.15 (a) and (b), respectively. Straight lines v = v,k (k is some coefficient)
are trajectories of imaginary points that move in the direction of the laser axis with
constant velocities, « is the relativistic factors corresponding to these velocities. The
line parallel to the trajectories of the phase fronts (for instance, minima or maxima

of electron density) gives the relativistic factor of the plasma wave.

In the simulation of Fig. 3.14 the relativistic factor of the plasma wave is essen-
tially less than <, at small times. At the same time at large times, at the stage of
saturation of self-modulation instability v,, = ,. Self-modulation in this simulation
starts after the steepening of the longitudinal intensity profile of the pulse. The cen-
tral part of the pulse with P > P, is self-focused, while forward and backward parts
with P < P, are subject to diffraction. Self-modulation starts when the forward
slope of the pulse becomes sufficiently sharp and produces an initial perturbation
of electron density for self-modulation. The first intensity modulation arises in the
place of the central part of the pulse. Some other weaker modulations are behind
it. In this simulation the first modulation contributes mainly to the plasma wave
excitation at times ct > 10 mm. We simulated also the propagation of longer pulses
than in this experiment, keeping the other parameters the same. The beginning
of self-modulation in those experiments also coincided with the steepening of the
central part of the pulse. In the result of self-modulation a larger number of inten-
sity modulations arose, though the result for the phase velocity at the saturation

stage of self-modulation was the same: 4,, = 7,. Note that at the late stage of
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Figure 3.14: Self-modulation and relativistic self-channeling of a laser pulse in homo-
geneous plasma. The parameters of the simulation are given in the text. Evolution
of the distributions of: (a) electron density (normalized to its non-perturbed value)
and (b) radiation intensity (in the units of W/cm?) with time (with longitudinal
coordinate). (c) Dependence of the final energy of test electrons on the phase of

injection in the plasma wave.
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Figure‘”ﬁ"3.15: Self-modulation of a laser pulse in a pldsma channel.f Parameters of
the simulation are given in the text. Evolution of the distributions of (a) electron
density (normalized to its non-perturbed value) and (b) radiation intensity (in the

units of W/cm?) with time (with longitudinal coordinate).

_ | self-modulation, in result of total diffraction of the radiation at the electron density
o maxima, a field structure forms at the axis that is a succession of short pulses with a
period equal to the plasma period. These pulses resonantly excite the plasma wave,

existing some time close to the laser axis before a total diffraction loose.

At the late stage of self-modulation instability of the laser pulse in the plasma
channel on Fig. 3.15 the relativistic factor of the plasma wave is essentially less
(3 times less) than the relativistic factor corresponding to the laser pulse group
velocity 7,. In this numerical simulation the laser pulse diffraction is compensated
by refraction in the plasma channel. The main difference of this case from the
case of self-modulation in a homogeneous plasma is that at the developed stage
of self-modulation the forward parts of the modulations, defocused at the electron
density maxima, are not lost due to diffraction. They return back to the axis after
the refraction on the walls of the plasma channel. At this stage of self-modulation
transverse intensity oscillations arise in the system moving with the pulse. The
period of such transverse oscillations in the channel z, is of the order of Rayleigh
length associated with the characteristic width of the stationary transversal mode
in the plasma channel in the absence of self-modulation. In particular, in the case
of P <« P, the period of small oscillations of the pulse width in the self-consistent
plasma channel n = ng + An.(r?/r2) (where An, = 1/7wr.r2, r. = €*/mc? is the
classical electron radius) in the absence of self-modulation is z, = 7Tzg = wkor/2
[67]). However, in the case of self-modulation, unlike in the case when it is absent,

the phase of the transverse oscillations of intensity depends on the longitudinal
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coordinate i in the fr’ m',:movmg with the pulse. The region of the constant phase

moves backwa,rdv_"n 1is frame being; shifted at one plasma wavelength ), in a time
of z,/c. Such a scenanbs explains, in partlcular, the value of relativistic factor of
the plasma wave obtamed in lin '8915,}? for the case of (P/F)k,L < 1 for a wide

laser pulse (3.9): -/« . o

the' mammum elect on’

also mvestlgated el
electrons at the develo ‘ed' stage of self—modulatlon The real electron acceleration
length that‘f' 1ef_xgth ( und 4 mm in. this simulation, due to the
'.:"!”‘C'decrease of the plas,
simulation is 140 MeV

e phaSﬁ el&pslty The maxunum electron energy in this.

3.2.2 RelativiStic'éhaﬁ‘ﬁéli.ftigl‘~Self-'similar laser pulse struc-
tures. o |

Numerical simulation in Fig. 3.14 reveals one more very interesting characteristic
of the laser pulse propagation. At the saturation stage of self-modulation a quasi-
stationary field structure is produced, propagating in plasma more than 20 Rayleigh
lengths without essential diffraction. Simultaneously a plasma wave of a large ampli-
tude is excited. It can accelerate electrons effectively. The quasi-stationary structure
consists of modulations of the laser pulse, produced in the result of instability. How-
ever, the first modulation plays the most important role. It is just this modulation
that contributes mostly to the plasma wave excitation. The other weak modulations
do not diffract due to the focusing properties of this plasma wave.

First of all, we remind that the difficulties of relativistic self-channeling of laser
pulses with duration of the order or less than a plasmamggriod and leading edges
(0L < Ap) of longer pulses were noted in Refs. [35, 36, 37]. The reason is that such
pulses excite plasma waves. When the leading edge of the pulse excites the plasma
wave, electron density increases in the pulse region. It produces a contribution to the

refractive index of the opposite sign with respect to the contribution associated with
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the relativistic mass increase of oscillating electrons. Therefore, refractive index does
not increase in plasma just after the pulse coming but is set on a characteristic time
of the order of the plasma wave excitation time, that is Wy 1. This effect makes self-
focusing of short pulses and forward parts of long pulses more difficult. At the same
time the investigation in Refs. [51, 52, 53, 98] shows that it is possible to increase the
length of propagation using short laser pulses with a special profile. It is proposed to
use laser pulses with a power equal to the critical power for self-focusing and width
slowly decreasing with the longitudinal coordinate. As numerical simulation in Ref.
[98] shows such pulses propagate in plasma without essential damping more than 10
Rayleigh lengths calculated with respect to the pulse width in its backward part (this
width is of the order of k;'). In Refs. [51, 52, 53, 98] the following interpretation
of such a long pulse propagation was proposed. The forward part of the pulse is
subject to diffraction, however as it has a large width the corresponding Rayleigh
length is also large. Due to the smooth monotonic growth of the amplitude with the

- longitudinal coordinate the excitation of the plasma wave is practically absent in the
. region of the pulse. In the absence of the plasma wave the relativistic self-channeling
 of the intense backward part of the pulse is effective.

In Ref. [98] essential difficulties of producing such pulse structures with the width
varying with the longitudinal coordinate in laboratories are noted. The construction
of such structures from a series of partially overlapped ultra-short Gaussian pulses
with different widths is proposed. In this case a phase synchronism between the
pulses is very desirable (which is not simple to achieve at laboratories). Otherwise,
as the numerical simulation in Ref. [98] shows, self-modulation can develop and the
pulse can be broken in a number of shorter pulses.

As our simulation shows the pulse structures that are similar by their properties
to that suggested in Refs. [51, 52, 53, 98] for relativistic self-channeling arise in result
of natural evolution of available in laboratories Gaussian pulses. The structures with
weak diffraction damping are produced at the late stage of self-modulation of such
pulses with powers in the maximum larger than critical for relativistic self-focusing.
They are produced from the first (forward) modulation of the pulse. In the plasma
wake excited by this modulation other modulations propagate without an essential
diffraction; these modulations are already essentially damped to this moment due
to diffraction and energy loose for the plasma wave excitation at previous time. For
obtaining such pulse structures it is sufficient and probably the most reasonable to
use Gaussian laser pulses that are not too long, with a duration of the order of a few
(3 —5) plasma periods, and with a power in the central transverse cross-section only

a little exceeding the critical power for relativistic self-focusing. The parameters of
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the simulation in Fig. 3.14 just correspond to such conditions. Quasi-stationary
pulse structures excite regular plasma wakes of large amplitude, very convenient for
electron acceleration to large energies. -

In Ref. [99] an analytical formalism was developed describing quasi-stationary
diffractionless pulse structures in underdense plasma for the pulse duration much
less than a plasma period. We consider a_ generalization of this formalism to be

very useful for the case of pulse duration comparable with the plasma p‘e"r‘tio"di and

exceeding it. _ T

We will describe the evolution of the complex envelope of the vector pv(vjté’r'itial
of the quasi-monochromatic laser field a = eA/mc? (linear polarization is supposed
for definiteness) and plasma wave scalar potential ¢ = e®/ Tﬁc2 using the following

system of equations (see Ref. [54], for instance):

L 0

(2’&]{705; + A_L) a= kf,(ba, (3.10)
32 l“|2

(E_—Q‘ + wf,) (b = —sz. (311)

Here it is supposed that |a| < 1 and the width of the plasma-field structure is
larger than k, ! (we neglect the transverse ponderomotive force that acts on plasma
electrons), 7 =t — z/Vgr, Vg = c(1 — w2/wd)?, Ay = (1/r)(0/0r)(r0/0r) is the
transverse Laplacian, kg = wp/c is the wave number. This system of equations has

self-similar solutions
a=2U()f(r) exp[i7f2(r)wpkpz/2wo], (3.12)

¢ = V() f(r), (3.13)

where ¢ = k,rf(7), f(7) = exp(aw,T), @ and vy are positive constants. Self-similar

functions U(¢) and V' ({) are the localized solutions of the system of equations

ALU - (y+ VU =0, (3.14)

d*v dv 1 U?
Cz +5C—C'l—'+ (4+&—2)V: Y (315)

¢ T a?
(here the operator A, has the expression shown above, in which r is changed by ¢
and partial derivatives by full derivatives).

First of all we can mention that the value of the parameter « determines only the
position of the plasma-field structure along z axis as a whole: when we change the
value of 7 from 7 to 7' the plasma-field structure shifts at A7 = (1/2aw,) In(v/Y').
The only non-stationarity of the solution is in the phase of the high-frequency field
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a. The non—statlonar ty, of the phase is associated with an accumulation of the

frequency shift. a,l’ the ‘propagation length (with increase of z). A frequency

downshift of the wave ﬁeld takes place, which is associated with the excitation of
the plasma wave (as wé will see! below) ‘It is possible to find the frequency shift in

the pulse cross—sectlbn 7'-? dlfferéntlatmg the phase of the complex envelope a with

nentxally At the' S&nﬁ
(mzc"’/ez)(wz/” )

V(O)*' , ;U2(0')'/(1 +40? ) | | (3.16)

and we obtam that the electron dens1ty increases on the axis An/nolr—o = (¢ +
xp/(?2 ?,T)U 2(0)40z2/ (1 +4a?). We found the solutions of Egs. (3.14)
) posmg ’y = 1 for different values of o.. To find the solutions

| ‘we - used the foll
that

m%he radial. symmetry of the problem it follows

au av
. dcgovoi dCC'O 0.
For each a we found numerlcally the solutions of the Cauchy problem for Eqgs.
(3.14) and (3.15) with these initial conditions at {( = 0, different values of U at
= 0, and condition (3.16). The solution corresponding to the physical problem

statement is a localized solution (decreasing at large ¢) that is obtained as a result
of the solution of Cauchy problem at some definite value of U at { = 0. As we
have found for each a only one such a solution of Egs. (3.14) and (3.15) exists. On
Figs. 3.16 (a, b, ¢, d) as examples the solutions for o = 0.1, 0.3, 1, 3 are shown.
As it leads from Eq. (3.15) V = —U? for & — 0 and the localized solution of Eq.
(3.14) is the Townes mode [100]. For any « the solution is characterized by an
exponential decrease of U at large ¢, U ~ exp(—7(). V oscillates at large { with a
decreasing amplitude, V' ~ (=2 cos[¢o+(1/c) In¢]. For the plasma wave potential we
obtain ¢ ~ (k,r)~2 cos[¢o + w,T + (1/a)In(k,r)]. The oscillations of ¢ with plasma
frequency at large ( are associated with a plasma wave emgjtation by the laser pulse.
The amplitude and the phase of oscillations depend on the transversal coordinate
r. Indeed, as it leads from Eq. (3.12), the time profiles of |a|? differ for different
7 only in the value of amplitude (by a coefficient inversely proportional to 72) and

by a shift to the region of larger 7 when r increases. It gives that the plasma wave
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Figure 3.16: The solution of equations for self-similar functions U (solid line) and V
(dashed line shows the dependence for —V) for v =1 and (a) @ = 0.1; (b) a = 0.3;
(c)a=1;(d) a=3.

amplitude is also inversely proportional to r? and the phase increases with . We
also show the dependence of P/P, on « for the solutions found numerically in Fig.
3.17. At a > 1 P/P. ~ 6.8 in agreement with the results of Ref. [99].

In Ref. [98] the laser pulse dynamics was investigated using the source-dependent
expansion method (it is a sort of aberrationless approximation). In addition to our
approximations the pulse in Ref. [98] was approximated by a Gaussian mode in

radial direction:

A€ =ct — z,1,2) = Ao(&, z) exp[—T? T} (€, 2) + do(€, 2) + ba(€, 2)r?]

with width, amplitude, and phase (including dependent on r and r? components)
depending on £ and z. In result an equation was obtained for the laser pulse width
ri. It is simple to check that the exponential dependence of 7; on &, 7; ~ exp(ak,f),

when the dependence on z is absent, and while the power P ~ A2r? in each cross-
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80

P/P

Figure 3.17: Dependence of P/P, on « for the self-similar solutions found numeri-

cally.

section £ is the same, satisfies this equation for the width. The dependence of
B P/P, on a can be found analytically in this case (the expression will include special
functions). Qualitatively it is similar to the dependence in Fig. 3.17.

The self-similar solution Eqs. (3.12-3.13) describes the structure of the wide part
of the pulse capable to propagate in plasma without diffraction (its width is larger
than k& 1). It must be matched with the solution at the leading edge of the pulse,
which is not subject to nonlinear distortion due to the smooth switching-on of the
potential ¢. The local value of Rayleigh length at the leading edge is essentially
larger than its value in the intense part of the pulse. The self-similar solution also
does not describe the structure of the backward, narrow and most intense part of
the pulse.

It is necessary to remind that the paraxial wave equation for the complex ampli-
tude Eq. (3.10) is applicable only for a quasi-monochromatic high-frequency field.
The assumption of monochromaticity is not fulfilled, in particular, after the fre-
quency shift is accumulated along the propagation length.

The formalism suggested above indicates a possibility of long diffractionless prop-
agation of the laser pulse with a specific profile in underdense plasma. At the same
time it does not answer to the question if the solution, found, is stable with respect
to small perturbations. The dynamics of the pulse requires an additional study in
what it concerns the accumulation of the frequency shift and dynamics of the back-
ward intense and narrow part of the pulse. The simulations in Refs. [51, 52, 53, 98]

and our simulations [see Figs. 3.14 (a), (b)] give answers to these questions. The
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results of simulations confirm the stability of such pulse structures with respect to
small perturbations, at least for the case of powers a little larger than the critical
power for relativistic self-focusing. At the same time the saturation of nonlinearity
in the intense part of the pulse, frequency shift, and longitudinal energy transfer lead
to the difference of the profile of the complex envelope from that corresponding to
the quasi-stationary solution and to its dynamics, slow in a sufficiently underdense
plasma on Rayleigh times.

As the results of our numerical simulations show [Fig. 3.14 (a), (b)] quasi-
stationary structures are formed in result of a natural evolution of a laser pulse with
a Gaussian longitudinal profile, with duration larger than a plasma period and with
a maximum power larger than the critical power for relativistic self-focusing. In this
case a limitation on the length of such structures is associated with the resonant
self-modulation instability of the pulse — the length of its main intense part can
not be larger than a plasma period. At the same time an achievement of rather
large intensity values and pulse amplitudes ap ~ 1 becomes already possible on such

xlengths at small power excess over the critical power for self-focusing. Behind the
“'*V'l‘aSer pulse in this case a plasma wave is excited of a large amplitude. The plasma
wave structure practically does not change during all the period of existence of the
quasi-stationary pulse structure and the phase velocity of the plasma wave is close
to the pulse group velocity. As our numerical simulations confirm, the plasma wave
excited at long laser pulse propagation in the regime of relativistic self-channeling
can be used for electron acceleration up to large energies, including energies in GeV

range.
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3.3 Ion dynamics in the plasma wake of a short

laser pulse

When interaction of ultra-short terrawatt laser pulses with underdense plasmas
is studied ion motion is often neglected. As the ion mass is essentially larger than the
electron mass, 6 = m/m; < 1, it is possible to neglect the oscillatory ion motion in
the laser fields with amplitudes eE/mwoc ~ 1, when the oscillatory electronmotion
is already relativistic. However, strong quasi-stationary electromagnetic fields are
excited when such pulses interact with plasma. If the time of the quasi-stationary
electric fields existence in plasma and characteristic time of their variation is large
enough, these fields pass an essential momentum to plasma ions. When the laser
pulses with a power larger than critical for relativistic self-focusing are self-focused
in plasma, radial Coulomb fields of charge separation are produced. These fields
accelerate ions in the transverse direction and lead to the formation of a channel in
plasma. Such plasma channels were observed in experiments, theoretical estimates
E describing the channel formation in plasma due to the ponderomotive action of the
laser field were also obtained [33, 101, 102, 103].

In the present investigation we consider another aspect, important for under-
standing ion dynamics in plasma. Intense laser pulses propagating in underdense
plasma excite fast plasma waves. While the energy of the laser pulse used for the
plasma wave excitation is transformed into the energy of oscillatory electron motion
and the energy of the plasma fields, the momentum passes to plasma ions. Besides,
the ponderomotive force of the plasma wave displaces electrons in the radial direc-
tion. The electric field of the charge separation, that is produced, acts on plasma
ions. As we will see, it leads also to the formation of an ion channel in plasma. In
this part we consider, in fact, two problems that supplement each other. In Sec.
3.3.1 we study the longitudinal momentum transferred by a short laser pulse to
ions. This investigation is performed in 1D geometry. The longitudinal ion acceler-
ation takes place in this case simultaneously with the plasma wave excitation and
the value of ion momentum is determined by the plasma wave amplitude. In Sec.
3.3.2 we investigate the transverse ion momentum in the plasma wake excited by
the laser pulse. We investigate this problem in 2D geometry (with axial and plane
symmetry), and the case is considered when the length of the plasma wake behind
the pulse is much larger than the laser pulse length (later is of the order of a plasma
period). In this case ion acceleration in the transverse direction (due to the effects,

discussed above) in the wake region is more essential than in the pulse region. Ion
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acceleration in the transverse direction leads to the formation of a plasma channel.

3.3.1 Longitudinal ion momentum in the plasma wake
3.3.1.1 Basic equations and quasistatic approximation

We will investigate the laser pulse momentum transfer to plasma in this Section
in 1D geometry. According to the hydrodynamic theory of cold plasma the low-
frequency plasma response is described on the basis of the set of equations" (See’, ‘fo‘r
example, Ref. [68]):

T 42 (nave) =0, (3.17)
367:' + g—z— (n;) =0, (3.19)
% + vi% = %E, (3.20)
%f— = 4m(en. + e;n;), (3.21)

where E is the charge separation electric field, e, m, n., v, and e;, m;, n;, v; are the
charges, masses, densities and velocities of electrons and ions respectively, p. is the
momentum of the electron fluid per particle, related to the electron velocity by the

formula v, = p./(m~), where

2 271/2 A
Pe |a]
= |1 —) + — . 3.22

i [ * (mc 2 ] ( )
Here c is the speed of light, a is the slowly varying amplitude (envelope) of the
dimensionless high-frequency electron momentum in the laser field. The ion motion
is treated as nonrelativistic and their high-frequency motion is entirely ignored.
From the set of Egs. (3.17)-(3.21) the energy and momentum conservation laws

follow:

ow N S _ mc*n, Olal?

4y ZE = 2
ot 0z 4y Ot '’ (3:23)
oP 0T mc?n, O)al?
AR (3:24)
where W is the energy density
02 E2
W = nemc*y + n; mi% + —, (3.25)

2 8
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the enerl'g‘y\:derlsil;y; ﬂowS is

(3.26)

oted o
B A

the momentum density. P1s e f

| (3 éé)‘

If the cenergy and shape of a laser pulse va,ry 1ns1gn1ﬁcantly over the time of the
order of the pulse duratlon it is possible to consider all the values characterizing
. the plasma response as functmns of the vanable § = vgt -z only, where v, is the

it makes the plasma wave breakmg 1mposs1ble and corresponds really to hmltatmns
on the plasma wave amphtude [20 21, 71]
In this approximation Eqs (3 17) (3 20) take the form

e (1 - ?) = Tleq, (3.29)

7- =y, (330

n; (1 - %) = nyo, (3.31)

(1 _ %)2 1= 2y — 1), (3.32)

where n. and n;q are the electron and ion densities taken ahead of the pulse. They
have to satisfy the plasma neutrality condition n.g = Zn;, where Z is the ion charge
number. The quantity e = (Zm/m;) < 1 is a small parameter and 1) is the potential

determined by the relation:
el dy

me df -
and is equal to unity ahead of the pulse.
Using Egs. (3.29)-(3.33) we reduce Eq. (3.21) to the form

2 2

(3.33)

iz~ 2 ) —1—¢€(¥-1), (3.34)
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1/2 is the plasma frequency, we

where 7 = ky&, k, = wp/c, and w, = (4me’neo/m)
have also performed an expansion in the exact equation in power series of the small
parameter € = (Zm/m;) < 1 and have left only the terms linear with respect to
e. For the case of immobile ions (¢ = 0) Eq. (3.34) is well investigated (see, for
example, Refs. [35, 36, 46, 104, 105, 106]).

Keeping in mind that the laser pulse is absent at n — —oo, we integrate Eq.

(3.34) with the result

(%)2+¢+$—2+e(¢ /d,la(g)P [ww)]

All the hydrodynamical quantities characterizing the plasma response to the

(3.35)

laser pulse can be expressed via the potential 9:

B S I lal® 3.36
=55 +Yt =, (3.36)
Te =l: 1 1_{_,¢2 I |2 (337)
Neo ¢ 2¢ 2 ’ .
De _ 1 2 |a’|2
P _y= w(l—w ) (3.35)
Ve ¢_1—¢2+|a|2/2
ey T TR 529
B ! , (3.40)
MNig 1—2e(yp — 1)
% =1—/1—2e(3p — 1). (3.41)

Also more complicated functions (3.25)-(3.28) can be expressed in terms of v
(see Ref. [107], for the region behind the pulse we will write the corresponding
expressions below). The ion contributions to these hydrodynamic expressions are
negligibly small for ¢ — 0 except the expression for the ion momentum density, that

is finite for e = 0:
H = m;n;v; = neomc(l/) — 1)
Thus, we can conclude that ion motion plays an essential role only for the momentum

density of the plasma wave. Below we will neglect the small corrections proportional

to € for the other quantities, as well as in the equations for .
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3.3.1.2 The energy and momentum of the plasma wake

Let the trailing edge of the laser pulse be placed at n = 0. Then, in the region
n > 0, the laser pulse is absent and only generated nonlinear plasma wave may exist
there. Neglecting the ion motion where its influence is weak, we obtain from Egs.

(3.25)-(3.28) the following relatively simple expressions:

11—t »
= 42
U o) +1, (3.42)
11—t
. 3.43
N =" (3.43)
1—
@=q+a="2Y+w-, (3.44)
G—1_¢4+(¢—1)—I (3.45)
= I , )
* where the value I determines the result of the laser pulse action on a plasma,
1 0 d 1
I[=-2 / dnla(n)[? { ] 3.46
1 [ a4 oo (3.46)

This quantity may also be rewritten in another form:

— 1 | dn et (3.47)

It should be noted that the expressions for @) and G contain the same term ¢ —1,
though in Eq. (3.44) it originates from the ion motion, while in Eq. (3.45) it is of
the electron origin. The straightforward substitution of Egs. (3.42)-(3.45) into Egs.
(3.23) and (3.24), taken in the quasistatic approximation, clearly demonstrates that
the conservation laws are satisfied.

Behind the laser pulse the nonlinear plasma wave is a periodical function of 7.
This means that all the hydrodynamic variables characterizing this wave may be
represented as a sum of two parts. One of them is purely oscillatory and another
one is independent on 7. The latter one we shall call the average or mean part of a
variable. However, it can be shown that for such quantities, as the energy density
flow (3.43), the electron part of the momentum density in Eq. (3.44), and the
current density, the average parts are equal to zero. As an example, let us consider

the energy density flow (3.43), presenting it in the form

1—¢2 1+ 2

N= )2 2
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Eqgs. (3.34) and (3.35), written for € = 0, in the region 1 > 0, where |a|? = 0, give

1-92 & 1492 1 /[(dy)’
W2 a2 _1“§<_) 1

dn
Using these equations, we can rewrite N in the form:

_4d @ _1(dy
N=o [(H[)d?7 - (dn)] (3.49)

Due to the periodicity of ¢ (and therefore, its derivatives) the mean part of N equals

(3.48)

zero. In particular, it means, that the electron part of the momentum density is
purely oscillatory.

Analogously, one can prove that the average part of the electric current density
is zero. Really, according to Egs. (3.37), (3.39)-(3.41), and (3.34), in the wake-field

region (n > 0), the dimensionless current density is:

7 eNeVe + €;N;V; 1

(1+9%) - L _ 4y

= 3.50
EMe0C 29? 1—2(p—1) dn (3:50)

According to Eq. (3.44), the ion part of the momentum density of a plasma wave
is
Qi=v-1 (3.51)
Let us consider the averaged Eq. (3.51) integrating this expression over the plasma
wavelength and dividing the result of integration by the wavelength.
The dimensionless plasma wavelength 7o may be found by means of Eq. (3.48)

and has the form:

’70:2/1? @/dn) /¢¢ \/— —y) (32

where ¢, and ¥_ are the maximum and minimum values of 1 which may be found
from Eqgs. (3.48) as

Ye=14+IT+4/(1+1)2-1. (3.53)

Following the definition given above, the average ion momentum density is

vt dip - 1/1\/_
"70/— \/

-1 (3.54)
—9-)

The integrals in Eqgs. (3.52) and (3.54) may be reduced to the complete elliptic
integrals of the first [K(k)] and second [E(k)] kind [108]. As a result, we have:

2 K(k)
Qi = 3 (Y +-) -1~ —3——@ (3.55)
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where k? = (Y4 — 9-) /v =1 —¢2.

An essential simplification of Eq. (3.55) is achieved in the limit of small mag-
nitudes of I (I <« 1), corresponding to the small amplitudes of plasma waves
[(Yy — ¥-)/¥+ = k? < 1] for which 1 ~ 1 £ (2I)'/2. Using the expansion se-
ries for the complete elliptic integrals in the limit of small k2 [108], we find after
long routine calculations:

Q; ~ gl : (3.56)

Another way to simplify (3.55) is to assume a square form of the laser pulse. In

this case, from Eq. (3.46), it follows without any restriction that

I= %15- [1 _ ﬁ} , (3.57)

where a2 = |a|? characterizes the dimensionless intensity of the laser radiation and
¥(0) is the potential at the trailing edge of the pulse. The maximum possible value
~ of ¥(0) is

$(0) =9y =1+ag/2 (3.58)

and it is reached if the laser pulse length is equal to an odd number of the half
plasma wavelengths [46]. For such pulses from Egs. (3.57) and (3.58) it follows that

4
_%_ 1
- 81+a3/2 (3:59)
Using Egs. (3.59) and (3.53) we can rewrite Eq. (3.55) as
— 1 a2 ab Kk '
oL him, a Kk |
“Csmram T2 T TER)) (360

where k2 = 1 — (14 a/2)7!. A further simplification of Eq. (3.60) is possible for
small or large a?. In the former case of a low-intensity laser pulse (aZ < 1) we get:

4
3  ag

A 61
@ 161+ a3/2 (3.61)

which is in full agreement with the result (3.56) for a2 < 2.
For a relativistically strong laser pulse with a2 > 1, it follows from Eq. (3.60)

that ) ) o
_ ag —
P = — 2—-In|—=]]|. )
Q 3 + 302 [ n (a%)} (3.62)

Fig. 3.18 shows the plots for @; as a function of a2, corresponding to Egs.
(3.60)-(3.62). One can see from this picture that the formula (3.61) may serve as a
sufficiently good approximation to Eq. (3.60) for a2 < 1 as well as for a2 > 1.
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e

Flgure 3.18: The 4
1aser mtens;_._ : 01 1s:to'Eq. (3.60), dashed curve to Eq. (3.61),
and dash-dotted LI TR R T

e ion momentum density in the wake @; as a function of

3.3.1.3 Numerical simulatio‘ns

In order to confirm the analytlcal results and to treat pulse profiles more general
than the square shaped pulse proﬁle we carried out some numerical simulations using
the two-dimensional axially-symmetrical code Wake. We began with a square laser
pulse profile in longitudinal direction just to have conditions in which the simple
analytical results have been obtainéd. The radial pulse profile was Gaussian with the
radial size R strongly exceeding plasma wavelength (k,R = 31.4), to approximate
the one-dimensional case. The parameter ¢ was taken equal to 1/1836 (the hydrogen
plasma).

Fig. 3.19 shows the dimensionless momentum density of ions and electrons for
a short (k,L = 3.5, where L is the pulse length) intense (a3 = 1) laser pulse. This
pulse length is approximately equal to half a plasma wavelength inside the pulse.
In Fig. 3.19 the average magnitudes of ion and electron momenta are also shown.
It can be seen that the magnitude of average electron mgmentum density is quite
small (practically it is zero), while the average ion momentum density is 0.1244 in
excellent agreement with estimation equal 0.125 obtained by means of Eq. (3.61).

The dimensionless current density is shown in Fig. 3.20 for the same parameters

as in Fig. 3.19. The average current density on the pulse axis differs slightly from
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0.8

- Figure 3.19: The dimensionless ion (solid line) and electron (dashed line) momentum
: _ densities as the functions of variable 7 for a short (k,L = 3.5) intense (af = 1) square
profile laser pulse. The straight lines show the mean magnitudes of corresponding

values in the wake region.

zero ~ 1073, This effect is due to two-dimensional geometry used in numerical
simulations. We have verified that the average axial current increased as the laser
pulse radius decreased.

In Fig. 3.21, the ion momentum density is shown for a laser pulse with Gaussian
axial profile. The width of the pulse was k,R = 31.4, as before, while the length of
the pulse was taken equal to k,L = 3.14 (FWHM in intensity). The maximum value
of aZ was 3. It is evident that non-zero mean ion momentum density also arises here,

and its value is determined by the amplitude of the plasma wave.

3.3.1.4 Discussions

The process of the laser pulse momentum transfer to ions can be qualitatively
explained as follows, for the simplicity, for the case of a rectangular laser pulse.
The ponderomotive force, acting at the leading edge of a laser pulse, pushes the
plasma electrons forward and leads to the increase of electron density. The charge
separation electric field begins to accelerate ions in the direction of the laser pulse
propagation. Thus, the initial momentum produced by the ponderomotive force at

the pulse leading edge is conserved and transformed into the ion momentum. At
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Figure 3.20: The dimensionless current density J versus 7 (solid line) for a square
" ‘pulse with the same parameters as in Fig. 3.19. J (dashed line) is the mean value

of the current.

Figure 3.21: The ion momentum density (solid line) as a function of variable 7 for
a Gaussian laser pulse, shown by dotted line [a2 = 3, the pulse length k,L = 3.14
(FWHM in intensity)]. The dashed line shows the averaged ion momentum density.
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the trailing edge of the laser pulse the ponderomotive force pushes the electrons
backward. The electrons obtain the momentum directed opposite to the initial
momentum (see Fig. 3.19). However, the electron density at the trailing edge of
the laser pulse is less than that at the leading edge. Hence, the momentum paSsed
to electrons at the trailing edge is less than the momentum obtained by them at
the leading edge of the pulse. As a result of such two-step action of ponderomotive
forces, electrons as well as ions obtain momentum behind the pulse. In the limit
of weak laser pulse, a§ < 1, these momenta are Q. = —(a3/2)[1 — (3/4)a2] and
Q; = a2/2 respectively. Thus, the momentum is conserved in the form of average
currentless motion of the whole plasma including ions. Moreover, it turns out that

ions are the real carriers of the momentum.

It is interesting to mention another particularity of the laser pulse momentum
transfer to plasma. The transfer of the energy and momentum to the wake is deter-

mined by Eqgs. (3.42)-(3.45). Averaging them over a plasma period, we obtain:

T=IN=0. (3.63)

Q-G=1 (3.64)

Because of absence of the average energy density flow in the cold plasma model,
the average energy density of the wake U is equal to I, characterizing the amount
of work produced by the laser pulse in plasma. Unlike the average energy den?ity
flow, the average momentum density flow is not equal to zero [see, also, Eq. (3.4.5)].
According to Eq. (3.64) only the difference between the average momentum density
Q ~ Q; and average momentum density flow G equals the momentum lost by the
laser pulse. In general case the expressions for @ and G are quite complicated [see,
for example, Eq. (3.54)], but for nearly linear wake (I < 1) @ =~ (3/2)I [see, Eq.
(3.56)], and consequently G = (1/2)I. Note that opposite to the average momentum
of the wake, which is carried mostly by ions, the average momentum density flow is

determined by electrons.

To estimate the ion velocity v; and energy w; = m;v?/2, we use Eq. (3.61). In
accordance with the determination of Q; we find for hydrogen ions that v; = 1.8-10°
cm/s, w; ~ 2 eV for af = 1. For a2 = 10 the corresponding values are 4.5 - 107 cm/s
and 1.3 KeV. Note, that for modern experiments, where the relativistic intensities
are reached in extremely small focal spots, the radial effects are evidently more

essential than the axial one considered above.
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3.3.2 Transverse ion momentum in the plasma wake

In this section we consider transverse ion momentum in the plasma wake excited
by a short ultra-intense laser pulse. It is well known that ions can be accelerated in
the direction perpendicular to the laser axis by the electric field of charge separation,
that is produced after electron displacement by the ponderomotive force of the laser
pulse [33, 101, 102, 103]. At the same time short laser pulses excite plasma waves of
large amplitudes. Till now influence of these plasma waves on ion acceleration was
not taken into account. In our investigation we will consider only the case of laser
pulses with duration of the order of half a plasma period, which are supposed to be
used in the standard scheme of electron acceleration in plasma. Due to their small
duration ion acceleration in the pulse region is rather weak. At the same time such
pulses excite large amplitude plasma wakes. As we will see, ponderomotive force of
the plasma waves exists as well and it is sufficient to displace electrons transversally.
The transversal electric field of charge separation acts on ions and leads to formation

of a channel in plasma.

3.3.2.1 Analytical description of ion channel formation

An analytical description of the initial stage of ion channel formation due to the
ponderomotive force of the plasma wake is possible using the linear hydrodynamic
theory of cold plasma. The low-frequency (as compared to the laser frequency)

velocity of the electron fluid v is described by the equation [109]

22 T ¢ I+v(rt)]v+cVxVxv= —Z-a—twa] : (3.65)

where wyo = (4mn.e?/m)'/? is the unperturbed electron plasma frequency; m and
—e are the electron mass and charge, respectively; meo is the electron density of
plasma ahead of the laser pulse where the plasma is supposed to be neutral and
Neo = 2N (2 and n;p are the ion charge number and density, respectively). The right
hand side of Eq. (3.65) determines the action of the ponderomotive force of the laser
pulse, where a is the normalized amplitude of the vector potential (a = eA/mc?).
The quantity v = dne(r,t)/no = 0n;/n; is the dimensionless quasisteady and
quasineutral plasma density perturbation resulting from the ponderomotive force of

the wakefield. Behind the laser pulse v is governed by the equation

v 6
= A, ? .

TN (3.66)
where § = (2m/m;) < 1 and m; is the ion mass; A, is the transversal part of

Laplace operator; the brackets denote the averaging over plasma oscillations which
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are supposed to be high-frequency as compared with the temporal variation of v.
The set of Egs. (3.65) and (3.66) is valid for |v| < ¢, |a] < 1, and v < 1. Besides,
the axial scale length of v variation is supposed to be essentially larger than the
radial one.

For an axially-symmetric laser pulse moving along the z axis, the electron ve-
locity has a radial component v, and an axial component v,. In the quasistatic
approximation [35, 36] they depend on £ = ¢t — z and r, where the laser pulsé_group
velocity is taken to be equal to the speed of light. Following [109], we introduce an

auxiliary quantity ¢ = |a|?/4 — v,/c. Then the radial velocity is expressed via ¢ as

Uy 1 0%

T _ 27 3.67

c k2 0rog’ (3.67)
where k2 = k2)[1 + v(r,€)] and kyo = wyo/c. In the general case the equation for ¢
is written in Ref. [109]. A more simple form can be obtained for a laser pulse with

a focal spot size larger than kz;)lz

o2 2
a—g + ko[l 4+ v(r,6)l¢p = kg%. (3.68)
In terms of ¢, Eq. (3.66) is given by:
i) o 1 /(%)
o =™ (“’5 55 (e >) 309

The first and second terms in the right hand side of Eq. (3.69) describe the effects
arising from the axial and radial components of the wake electric field, respectively.

Here we are interested in the case of a short laser pulse with duration of the
order of w;}, exciting a long wakefield tail. In the frame of our approximation,
when |a| < 1, the value of ¢ is of the order of |a|?/4. Therefore, the ratio of the ion
velocity due to the wakefield action to the ion velocity due to the laser pulse itself
is roughly given by Nla|?/4, where N is the number of plasma wavelengths in the
wake tail. When N > (|a|?/4)7! the effect due to the wakefield is more important
than that due to the laser pulse itself.

To show the main features of the new physical effect discussed here, we neglect
the influence of the ion density perturbations on the wake-field structure itself and
limit ourselves by linear approximation. We consider a laser pulse with a Gaussian
form a = agexp(—7?/r — £2/£2), where o and & are the width and length of the
pulse respectively. Then, behind the pulse the solution of Eq. (3.68), vanishing
ahead of the pulse, has the form [3, 10]

2 9,2 2
¢ = _735“_0770 exp [———’0— — 179] sin 7, (3.70)
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4.5; 32, 2; 1.6, respectively.
where we mtrod ced the dimensionless variables 7 = kyo€ and p = kyor and denoted
sjoriless width and length of the pulse, respectively.

. by po and 7o the di
g (3.69), we‘?ﬁnd after 81mple Ca.lculatlons

Substiati

67 —"0/4 f(p) . (3.71)

SRR 2

where the function f(p), determlmng the radlal proﬁle of the plasma channel created
by the ponderomotlve actlon of the Wakeﬁeld 1s given by

I8 (LAY G (1 12) gp
fle) = /00e [(1 Po) 4P0 (1 Po) 64/)0} (372)

In Fig. 3.22, we have plotted f(p) for various values of pg. It is seen that the
plasma density has a minimum on the axis only for relatively wide laser pulses
with po > 2v/2. For narrower pulses, the plasma density has an on-axis maximum
which becomes higher when the pulse narrows. This effect is due to the radial
structure of ponderomotive forces produced by the axial and radial components of
the wakefield. The amplitude of the axial electric field has a maximum on the axis.
So, the corresponding ponderomotive force expels the plasma electrons from the
axis providing the density lowering there. On the other hand, the amplitude of
radial electric field is zero on the axis and reaches a maximum at p = py/2. Hence,
the corresponding ponderomotive force expels plasma elegfrons from a cylindrical
surface at the radius po/2, compressing them near the axis and producing an annular
channel.

It was shown earlier [20], that electron oscillations in a nonuniform plasma are

subject to the phenomenon of fine-scale phase mixing. A multi-stream electron
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motion arises in some time after the excitation of the electron oscillations. In our
problem, as the plasma channel depth grows with 7, the radial density gradient also
increases with a result that the phase mixing and plasma wave breaking arise. The
approximate criterion for this effect, obtained by a simple generalization of Refs.

[20, 71] for the case of a time dependent density gradient, has the form
/n dnlay(nI) p)
0 dp

where vy, is the amplitude of the radial velocity. Using Eqgs. (3.67), (3.70), and
(3.71), we obtain from (3.73) that the axial position of wave-breaking point is given
by

Vrm(P)
C

=2, (3.73)

1/3(9)5/6(r)—1/2 ¢7d/8 Us
n = 8(3)13(2)%/8(m) 12 Fo) ™

, 3.74
a% 3 6 ,’70 ( )
where 4| df(p)
P) _o 2/ 2
F(p) = = |p——=e P /Po|, 3.75

Eq. (3.74) determines the position of the wakefield break point in the (7, p) plane.
- As we will see below from the results of our numerical simulations, the plasma wave
is destroyed rather fast (during a few plasma periods) after the appearance of the
multi-stream electron motion. Hence, the most interest presents the plasma wave
break point, which is situated at the shortest distance from the laser pulse. To find
this point Nmin = 7. we have to know the maximum of the function (3.75). It is
located at the point p, where the derivative of (3.75) is zero. Substituting p, in Eq.
(3.74), we find n,. This routine procedure, however, results in a quite complicated
algebraic equation which we solved numerically and compared with the results of

simulations.

3.3.2.2 Remarks about numerical simulations using the hydrodynamic

code

Numerical simulations were performed with the axially symmetrical fluid code
[110]. They show the plasma wave dynamics and plasma channel formation before
the wavebreaking. We will discuss rather briefly the results of this numerical simu-
lation, that was performed without direct participation of the author of the thesis.
More complete information on the results of these simulations and their comparison
with the theoretical estimates presented above can be found in Ref. [111]. The
simulation was performed for the mass ratio 6 = 1/2000. This simulation shows the
formation of the annular plasma channels for narrow laser pulses and channels with

a plasma density minimum on the axis for sufficiently wide pulses. The results for
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Figure 3.23: Dimensionless distance between the laser pulse and the first location
of wavebreaking (7,) vs mass ratio 6 = zm/m; (a) and laser pulse amplitude ag
(b). The solid lines represent the analytical results, while the crosses correspond to

results of numerical simulations.

_ the first plasma wave breaking point somewhat differ from the results of the simple
. theory. This difference is, first of all, due to the variation of the wakefield structure
: m the plé.sma' channel that forms, which is not taken into account by the linear
theory. According to Eq. (3.74) it is possible to obtain the following expression for
the longitudinal coordinate of wavebreaking point:

% a% % )
where the factor C(no, po) depends on the pulse form only. Fig. 3.23 shows the
dependences of 7, on the mass ratio ¢ (a) and the pulse amplitude ao (b). The solid
lines and crosses correspond to the results of Eq. (3.76) and simulations, respectively.
To find the factor C in Eq. (3.76) we equalize it to the simulation result only in one

(upper) point.

3.3.2.3 Numerical simulation of ion channel formation and plasma wave
breaking with the code Wake

After plasma wave breaking the study of plasma dynamics requires a kinetic
approach. We have performed simulations with the code Wake. In this case we were
not limited by the hydrodynamic approximation. However, numerical difficulties did
not permit us to perform simulations for the real ratio of ion and electron masses
0 > 1836 in axially symmetrical case. We have performed simulations for the case of

0 = 200 in plane geometry. In Figs. 3.24-3.27 the results of a simulation are shown
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for a Gaussian'laser:pulse

a= 'ao}eip(-xz/XS —n%/nd), (3.77)

wave phase fronts become curved.j ; Slmultaneously the amplitude of the electron‘

i 'dep@f the transversal electrlc field increase in
same time the. amphtude of the longltudlnal electrlc ﬁeld decreases Note, that
such a dyngmncs of Ythe components of electric field is typical for the plasma wave

,"f‘."ha‘nnel [109].

¢ 5by the ponderomotlve force of the plasma wake. It means,

i that the comp the bond"’onotwe force, associated with the longitudinal
electron motion vln‘the'plasma Wake is more effective, than the component, associated
with the transversal motion. Indeed, study of the ponderomotive force of the plasma
wave for the case of plane geometry, similar to that performed above for the axially
symmetrical case, shows, that if the mﬂuence of the ion density perturbations on
the plasma wave structure is neglected, ion density minimum must arise on the
axis for xo > 2v/2 for the Gaussian laser pulse (3.77). At the same time at lérge
distances behind the laser pulse an ion density maximum arises on the axis and the
channel has an annular form in the simulation. It is associated with the growth of
the transverse component of the electric field in the plasma channel, that is formed,
and, consequently, with the growth of the transverse component of the plasma wave
ponderomotive force.

At n ~ 85 the character of the plasma wave evolution changes. As Fig. 3.24
shows, during 2—3 plaSma, periods its amplitude decreases essentially. As we will see
it is associated with plasma wave breaking. It is the most convenient to study the
plasma wave breaking and multi-stream electron motion, investigating the electron
phase space. In Figs. 3.25 and 3.26 the distributions of plassga electrons in the planes
(pz, x) and (p,, x) are shown for 16 values of the longitudinal coordinate n with an
interval of én = 7/2. Note, that the total number of electrons in the simulation is
much larger, than it is shown in these pictures. We have done an arbitrary sampling

from the numerical particles to reduce the total number of points and to have a
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possibility to observe the contrast of their density in the pictures. As we see from
these figures, the approximation of one-fluid hydrodynamics for electrons is satisfied
only for n < 84, when all electrons at each point (x, n)‘have the same momentum.
At n > 84 a multi-stream motion of electrons arises due to plasma wave breaking.
Wavebreaking arises for the first time at n ~ 84 at some distance from the axis.
When 7 increases the break point moves together with the plasma wave front to
the longitudinal axis. It stops close to the ion density minimum in the annular
plasma channel, that forms to this moment. '-‘Ar__lother‘ wavebreaking point arises
approximately in one plasma period after the first one. It appears again at some
distance from the axis (approximately the same, as in the first case) and moves to
the axis. New break points continue to appear with an interval of a plasma period.

On Figs. 3.25 and 3.26 three plasma periods after the first wavebreaking are shown.

The criterion of plasma wave breaking in our simulation can be formulated as a
generalization of the criterion for wavebreaking in 1D case, that is already known
[20, 71, 112, 113]. In a 1D plasma wave, excited in a nonuniform plasma (with the
inhomogeneouty gradient parallel to the plasma wave phase velocity) wavebreaking
- arises when the oscillatory electron velocity becomes equal to the plasma wave phase
velocity. In our 2D case of a plasma wave in ‘a nonuniform plasma wavebreaking
takes place when the component of the electron oscillatory velocity perpendicular
to the plasma wave phase front equals in some point in space to the plasma wave
phase velocity. In this case a part of electrons outrun the other electrons in this
point and a multi-stream electron motion arises. Our case corresponds to breaking
of a plasma wave excited in a sufficiently rare plasma when the plasma wave phase
velocity in the longitudinal direction is large (in the code the plasma wave phase
velocity is supposed to be equal to the speed of light in vacuum in the equations for
particles and low-frequency fields). It makes, in particular, the trapping of electrons
in the longitudinal direction impossible and leads to the generation of bunches of
fast electrons, moving at large angles with respect to the longitudinal axis (so called
transverse plasma wave breaking [91]). The curvature of the plasma wave fronts
increases with increase of 7 in the plasma channel. As electron oscillations take place
in different phases at different distances from the axis, the finite transverse phase
velocity arises for the plasma wave. The value of the transverse phase velocity at the
ion channel walls decreases with 7. The phase velocity in the direction perpendicular
to the phase fronts is even less. The amplitude of the transverse component of
electric field also increases with increase of 7, at the same time the longitudinal
component decreases. It leads to the increase of the transverse amplitude of the

electron oscillations, while the longitudinal amplitude of the oscillations decreases.
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Figure 3.24: The distributions of electron density (a), (b) and ion density (c), (d)

components of electric field, transverse (e), (f) and longitudinal (g), (h) in the plane
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(x, n). Electron and ion densities are normalized to their unperturbed values. The
components of electric field are in units of mw,c/e. The longitudinal and transverse

coordinates are in units of k L
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Figure 3.25: Plasma electrons in the space (p,, x) for 16 values of the longitudinal
coordinate 7, from 7 = 78.44 (a) to n = 102 (p), with an interval n = 7/2. The
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Figure 3.26: Plasma electrons in the space (p,, x) for 16 values of the longitudinal
coordinate 7, from n = 78.44 (a) to n = 102 (p), with an interval dn = 7/2. The

component of electron momentum is in units of mec.
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At the moment of wave breaking the transverse amplitude of the oscillations of
electron momentum is about two times larger than the longitudinal amplitude of
oscillations [Figs. 3.25, 3.26 (a-d)]. When the transverse phase velocity of the plasma
wave decreases sufficiently and the transverse amplitude of oscillations increases
the criterion of wavebreaking, formulated above, is fulfilled and the plasma wave
breaking arises. Our numerical simulation shows that wavebreaking arises on the
curves in space (X, 77)- .

We denote, that plasma wave breaking in our simulation takes place by a Some-
what different scenarios that it was suggested earlier in Ref. [91]. In Ref. [91] it is
proposed (mainly on the basis of qualitative considerations) that the self-intersection
of electron trajectories in the plasma wake with curved phase fronts takes place at
the moment when the electron displacement from the equilibrium state is large (or
maximum). At the same time in our case, as a detailed investigation of the electron
phase space shows, the plasma wake breaks at the moment when the value of the
oscillatory velocity is large, while the displacement from the position of equilibrium
is small or absent at all. An additional investigation of conditions is needed, when

" plasma wave breaking takes place by the first or by the second scenarios, in general
case.

As our simulation shows, bunches of fast electrons arise in plasma after the
plasma wave breaking. The distribution function of fast electrons in the bunches is
as narrow as the distribution function for electrons before the wavebreaking. Fast
electrons are separated from the initial distribution function in the phase of the
plasma wave when their transverse and longitudinal velocities are large (the electtbn
displacement from the equilibrium is small at this moment, because the coordinate
and velocity oscillate with the phase shift of 7/2). These electrons outrun the plasma
wave and continue to stay in its accelerating phase. As it follows from Figs. 3.25
and 3.26, they obtain in result a large transverse and longitudinal momentum. Fast
electrons cross the longitudinal axis and fly out at large distances from the axis,
moving from the other side of it.

The fast electrons take away the energy of the plasma wave with them. In Fig.
3.27 the energy balance in plasma is shown. We show the dependencies for the
energies of electrons, ions, and low-frequency fields in a short plasma layer 67 on
the longitudinal coordinate n in Figs. 3.27 (c), (d), and (e), respectively. In Fig.
3.27 (a) and (b) we show the dependence of the total energy in the layer én (that is
the sum of the three first energies) on 7, the instantaneous energy (a) and averaged
over a plasma period (with the center in the point 7) energy (b). All the quantities

are normalized in these figures in such a way that the total energy just behind the
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pulse, averaged over a plasma period, is equal to unity. Note, that small oscillations
of the averaged total nergy in Fig. 3.2T (b) are associated with the fact, that the
oscillation per1od 1 dlffereht for' different * X and n as the plasma channel forms. At

the same time, we averaged o)
x=0.1In F1g 3. 27 (f) we alsos
coming were ‘at x ‘<‘J £ ‘
It is clear, that these are f .

h plasma perrod just behind the laser pulse at
energy of electrons that before the laser pulse

In Flgs 3 27 (a) and (b) we observe an increase of the total energy in plasma in

S a short layer 517, When the’ Wavebreakmg takes place This phenomenon is simple to

behmd the pulse ist

- +divS =0, ' (3.78)
where W is the energy density, | :

mov?  E?*  B?
=

W =nemc(y—1) +n;

2 8t 8r’
and S is the energy density flow,
2 i'Ui2 C
S = neveme*(y — 1) + nyv; 5 T EE x B. (3.79)

Integrating Eq. (3.78) with respect to the transverse coordinate and taking into
account, that the energy density flow is absent at the boundaries of integration, we

obtain the energy conservation law in the layer of a unity thickness, perpendicular

to the axis: ot ot
'y + 5 0, (3.80)
where W' is the energy in the layer,
+o00 i,
Wt = Wdzx,
and S* is the total longitudinal energy flow,
+o0
St = S,dz.

-0
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Figure 3.27: Energy balance in plasma. The total energy (a), total energy, averaged

over a plasma period (b), electron energy (c), energy of the plasma wave fields (d),

ion energy (e), fast electron energy (see the explanation in the text) (f) in a narrow

transverse plasma layer én vs . All the energies are normalized in such a way that

the total averaged energy just behind the laser pulse is equal to unity.
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In the quasistatic approximation the energy conservation law (3.80) has the form:
d/dE(cWt — S*) =0 or ,
cW* — S = cW, = const. (3.81)

We can rewrite Eq. (3.81) in dimensionless variables: U*— N* = Uy, where U*(Up) =
WE(Wo)/negme?, Nt = St/n.omed. Wy has a sense of the laser pulse energy used
for the plasma wake generation. Actually, let us average Eq. (3.81) over a plasma
period: h ’
Wt — St = cW,. - (3.82)

Before the plasma wave breaks the averaged energy flow in a cold plasma is absent
(S* = 0) and Eq. (3.82) signifies that the energy, used by the laser pulse for the
excitation of electron oscillations in the layer, perpendicular to the axis, conserves,
on the average over the period of oscillations. After the wavebreaking fast electrons
have a longitudinal component of velocity (see Fig. 3.26) and contribute to the
longitudinal energy flow, it is not equal to zero on the average over the plasma

- period, S* # 0. It follows from Eq. (3.82), that the energy in plasma increases
" in this case. It eXﬁlainé the jump of the total energy in plasma observed in Fig.
3.27 (b). We calculated in the code the longitudinal energy flow in plasma (3.79)
and confirmed that the energy conservation law in the form (3.81) was fulfilled.
Our simulation shows as well, that in spite the longitudinal electron energy flow
is nonzero, the averaged over plasma oscillations and integrated on the transversal
coordinate longitudinal electric current in plasma is absent, as it is required by the

quasi-neutrality condition.

3.3.2.4 Discussions and conclusion

The results of our investigation show, that the ponderomotive force of the plasma
wake, excited by an ultra-short ultra-intense laser pulse, leads to a formation of an
ion channel in plasma. As the ion channel forms, the structure of the wake changes
and the plasma wake breaks. Therefore, the plasma wake consists of a limited
number of regular oscillations, that can be used for electron acceleration in the
standard scheme of electron acceleration. We have performed a detailed study of
the plasma wave breaking using numerical particle simulations. We have found the
transformation of the electron distribution function and described the scenarios of
wavebreaking. The plasma wave breaking leads to the generation of bunches of fast
electrons, that dissipate the most part of the plasma wave energy.

We have investigated the dynamics of the plasma wave, excited by a short laser

pulse in a uniform and infinite plasma. The ion acceleration in the transverse di-
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rection terminates soon after the plasma wave breaking. Thus, only a small part of
the plasma wave energy is transferred to the energy of transverse ion motion. The
other part of the plasma wave energy passes mostly to fast electrons, that transport
it to large distances from the axis. However, the situation can change, if the plasma
wake is excited in a plasma of a finite width in the transverse direction. In this case,
as our preliminary calculations and particle simulations show, the fast electrons,
produced after the plasma wave breaking, do not fly out at large distances from
the axis, but experience transverse oscillations through the plasma region under the
influence of the returning force of the positive space charge, non-compensated. The
cloud of fast electrons continues to accelerate ions in the transverse direction. Due
to this an essentially larger part of the plasma wave energy can be transferred to
ions. Such a situation takes place, in particular, when a short intense laser pulse
propagates in gas. In this case the pulse ionizes the gas in the axial region, where

its intensity is larger than the ionization threshold.



Chapter 4

Investigation of ultra-short
ultra-intense laser pulse
propagation in underdense plasma
in application to laboratory

- experiments

4.1 Acceleration of injected electrons in a laser

wakefield experiment

The standard scheme of electron acceleration in plasma is considered as rather
simple in theoretical plan but at the same time as one of most attracting for appli-
cation. In this scheme the relativistically fast plasma wave is excited by an intense
laser pulse with a duration of the order of half a plasma period. To our opinion
a particular simplicity and clearness characterize the mechanism of plasma wave
excitation in this scheme, being compared with the other schemes of electron ac-
celeration. The properties of the excited plasma wave are well predictable: its am-
plitude is a sufficiently simple function of the laser pulse amplitude and duration,
while the phase velocity is close to the laser pulse group velocity. Such a simplic-
ity of the mechanism of the plasma wave excitation is absent, in particular, in the
other perspective scheme of electron acceleration, in the scheme of Self-Modulated
Laser Wake Field Accelerator. In the latter scheme the plasma wave is excited in
result of Raman instability of the laser pulse and the initial noise level determines

the dynamics of this instability. It turns to be very difficult or even impossible to

92
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control the phase of the »élasma wave that is excited. In different regimes of the self-

modulatlon 1nst; bility he ‘plasma wave: phase velocity is less than the laser pulse
group velocity. that lea,ds to a decrease: :of the maximum energy to which electrons
can be accelerated. The ,plasma,,fwa,ve: is;also distorted in the result of its breaking
that is practically inevitable'in, thisischeme ':be"(j:a,,,llSé.Of usually large increments of

self-modulation.instability

In this paragraph W ;
of electron accelerationu

This experiment was’ perforf‘ne ; at fa&:o_ire ‘pour 1'Utilisation des LaSéré'i'Intens:es |
(LULI) at Ecole Polytechniquie: Th ‘
(with helium) where & burich: Of}
400 fs (FWHM), 1.057 pm ' la,se;r pulses were used with the' energy up to 4 — 9 J.

bout% 20 % of the laser beam energy was focused in the focal

yeam: was focused in a'gas-filled chamber

lectrons 'was injected as well.: In the experiment

After the compressr
spot wmhvtransversa dlmensmns 30 x 19 um in horizontal and vertical planes. For

the laser ‘pulse energ of 1.5'J in the focal region the Values of maximum power and

CAsit is ‘sho'w'n by additional diagnostics in this
experiment, refraction in io‘ﬁi'zatioﬂ region is not important for the gas pressures less
than 4 mbar.

For an estimation of optimal conditions for the plasma wave excitation and
electron acceleration one can use the linear theory of plasma wave excitation {9,
10]. If the time profile of the pulse intensity is described by exp[—(t/70)? the
longitudinal (accelerating) component of the electric field of the excited plasma wéve
is proportional to (w,7o)? exp[—(wp70)?/4], for the fixed duration of the laser pulse.
This function has a wide maximum at w,7y = 2, that is for w,7 = 4+/1n 2, where 7
is the pulse duration (FWHM). For 7 = 400 fs it corresponds to electron density of
2.2 x 10'® cm™3, plasma wavelength A, = 226 um, and the plasma wave relativistic
factor v, = 214. It is just for this value of electron density (corresponding to the
gas density of 0.45 mbar) the experiment on electron acceleration was performed. In
the linear theory the amplitude of the longitudinal (accelerating) electric field of the
plasma wave at resonance E,[GV/m] = 1.35 x 10718, [W/cm?] x (A[pm])?/7[ps].
The relative longitudinal perturbation of electron density<dy = E,/E,, where Ey =
mcwp/e. For the parameters in experiment d;, = 10 %. The ratio of transversal and
longitudinal components of electric field at r ~ w/v/2 in the linear theory E,/E, =
\/5)\1, /mwo here is equal to 4. The value of transverse electron density perturbation

in the plasma wave [84] 8,/ = (E./E,)? is equal to 16 for the experimental
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parameters. It means that the plasma wave in the experiment is excited in transverse
regime, that is transverse electric field is larger than longitudinal one.

An electron bunch with the energy of 3 MeV was injected in the interaction region
in the direction of the laser axis. The bunch duration is 0.4 ms and the maximum
current in the bunch is 3.15 £ 15 uA, corresponding roughly to 2000 electrons per
1 ps. The dispersion of electrons with respect to the transverse coordinate in the
bunch focal spot for its propagation in vacuum is equal to 30 ym (r. m. s.) and
angular emittence is 10 mrad (r. m. s.). After electrons interaction with the
plasma wave their energy spectrum was measured by the deflection of trajectories
in a constant magnetic field. Electron detector measured energies in the range of
3.3 — 5.9 MeV. A typical electron spectrum in experiment is shown in Fig. 4.1. In
this figure points show the number of electrons measured by different detectors. The
part of the spectrum for small energies (from 3.3 till approximately 4.5 MeV) can be
approximated by a decreasing exponent (dashed line on the figure). As it was found,
the signal measured by electron detectors corresponding to the values of energy
E > 4.5 MeV is a noise signal. Actually, as an additional verification shows [50], the
" most part of electrons detected by high energy detectors have an averaged energy
of 2 MeV. These electrons were detected by those detectors because of essential
deflection from the initial direction of motion (forward) in result of scattering in
the transversal direction by the plasma wave. Because of the noise signal it is not
possible to measure precisely the maximum electron energy in the experiment. For
an approximate value of the maximum energy one can take the value, for which the
approximating decreasing exponent is equal to 1 electron.

The maximum energy of electrons after the interaction can be estimated the-
oretically from the expression AW = ezyE,, which for the length of propagation
20 ~ mzr and Rayleigh length in experiment zr =~ 2.15 mm gives the energy of
10 MeV. We note that this length of propagation is less than the dephasing length
lq = 10 mm that is necessary for the estimate to be valid. At the same time the
maximum electron energy in experiment, determined as it is explained above, is less.
As we will see below this difference can be due to the influence of the transversal
component of the electric field, scattering the most of electrons a long time before
the focal plane. Besides, as we have already mentioned, the presence of a noise does
not permit to detect the small number of electrons accelerated to large energies.

Numerical simulations were performed for comprehension of the process of elec-
tron acceleration in the experiment. Different simulations of test electron acceler-
ation were performed: for the plasma wave profile known from the linear theory

of the plasma wave excitation by the laser pulse, as well as using the code Wake
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Figure 4.1: Typical electron spectrum in experiment. The part of spectrum for low

~_energies is approximated by a decreasing exponent (dashed line).

that takes into account the self-consistent nonlinear dynamics of the laser pulse and
plasma. We will report here only the simulations with the code Wake, performed
by the author of the thesis. The propagation of a laser pulse in gas with the param-
eters of the experiment was simulated. The axially symmetrical version of the code
was used and the radial size of the laser beam in the focal plane was taken to be
equal to 25 um (waist). The space distribution of the longitudinal and transversal
components of the electric field of the plasma wave, excited by the laser pulse at
the focus, is shown in Fig. 4.2. We see that the amplitude of oscillations of the
transverse component of the electric field at some distances from the axis exceeds
the amplitude of oscillations of the longitudinal electric field on the axis, more than
in two times. Therefore, we confirm that the plasma wake is excited in the radial
regime in the focal region. The dependence of the longitudinal electric field on the
axis on the distance behind the pulse in the moment, when the laser pulse crosses
the focal plane, is shown in Fig. 4.3. It leads from this picture that the characteristic

time of plasma wave damping is 10 ps.

We simulated the propagation of a test electron beam in the plasma wave excited
by the laser pulse. We used the parameters of experiment, except the duration: in
the simulations the duration of the beam is 4 plasma periods, that is approximately
3 fs. The electron beam propagates in plasma just behind the laser pulse. The total

electron number in the beam is 6000. The dynamics of 1000 electrons of the beam
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- Figure 4.2: The distributions of radial (£;,) and longitudinal (F,) components of the
plasma wave electric field in space in the moment when the laser pulse crosses the
focal plane. Electric field is in units of mw,c/e, radial and longitudinal coordinates

are in units of k 1
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Figure 4.3: Plasma wave longitudinal electric field (E,) calculated at the focal plane

and on the laser axis, as a function of time.
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10zp before focal plane 10zp after
the focal plane P - the focal plane

Figure 4.4: Evolution of an electron beam (3 ps duration) focused either under
vacuum (bottom) or in the electron plasma wave (top): 10zg before the focal plane,

at the focal plane, and 10zg after the focal plane.

(chosen randomly from their total number) and, for a comparison, their propagation
in vacuum is shown in Fig. 4.4. In vacuum the electron beam is focused to the size
of around 30 pm (r. m. s.) at the focal plane of the laser pulse. The beam radius
increases again when it propagates from the other side of the focal plane. Its radius
after 10 Rayleigh lengths behind the focal plane is the same as 10 Rayleigh lengths
before it. In the presence of the plasma wave the beam is scattered in the transversal
direction by a strong radial electric field of the plasma wake. So it can not be focused
as good as in vacuum: its size in the focal plane is 5 times larger than in vacuum. 10
Rayleigh lengths after the focal plane the radial size of the beam becomes essentially

larger than in vacuum.

On Fig. 4.5 the dependence of final electron energies on the phase of injection
in the plasma wave (the longitudinal interval of one plasma period is taken into
account that include 1500 test electrons) is shown for the simulated electron beam
in the experiment and, for a comparison, for electrons moving on the axis, which are
not subject to the transverse electric field of the plasma wave (speaking in another

way, for an electron beam with a zero emittence). The dashed curve corresponds
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Figure 4.5: Energy gain of electrons in the simulation as a function of their injection
phase in the plasma wave (dots). Energy gain of electrons propagating on the laser

axis (dashed line). The longitudinal interval of one plasma period is shown.

to the electrons on the axis and points to electrons in experiment. The electrons
of the beam are focused and defocused in different phases of the plasma wave due
to the transverse electric field. The electrons in the defocusing phase are deflected
from the axis and fly out from the accelerating region, so their energy gain is small.
But even in the focusing phase of the plasma wave the energy gain of the most
part of electrons is very small (or practically absent). Additional studies of the
trajectories of particular electrons show that it is associated with scattering of the
most of electrons under the influence of the strong radial electric field already a
long distance before the focal region. Later is also seen from Fig. 4.4: the radius
of the electron beam is essentially larger than the focal spot size of the laser pulse.
However, a small part of electrons in the focusing phase are accelerated to the
energies comparable with the energy of electrons on the axis. In this context, to
reduce scattering we can suggest using of a gas jet for a limitation of the longitudinal
size of the region, in which the plasma wave is excited, to a few Rayleigh lengths
close to the focal plane, where an effective electron acceleration is possible.

The energy spectrum of the electron beam with realistic emittence after the in-

teraction with the plasma wave is shown in Fig. 4.6. The width of the energy
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channels of the detectors is the same as in the experiment. In the low energy region
3.3 < W < 4.5 the spe tra of Figs. 4. 1 and 4 6 are similar, the spectrum in the simu-
lation can be also approx1mated by a decreasing exponent with a damping coefficient
close to the corresponding coefﬁc1ent for the exper1mental dependence In Fig. 4.6

we see that a part of electrons 1skaccelerated to large energies. To apprommate this

part of the spectrum by Some exp

entlal»"dependen(;e is not reasonable We remmd,

of the numerlcal snnulatlons (fr

electrons accelerated 1n the sunulatlons than the number of fast electrons in the

experiment. We remember that thefdampmg time of the plasma wave in the simula-
tion is of the order of 10 ps At the same time the duration of the electron beam in
the simulation is 3
Therefore, the totl I number of accelerated electrons must be even more than it leads
frorn Fig. 4. 6. The ‘reason of this dlfference is not clear ﬁnally In Refs. [49, 50]
e 1t is pr‘oposed'ﬂ bha

that is essentrally leSs than the pulse duration in experiment.

mpmg 1ength of the plasma wave is of the order of 1 ps

1n the experlment this case: for" he same number. of electrons accelerated on a
unity of the plasma wave length 1t is 'posmble to obtaln close numbers of accelerated \
electrons in the experlment and in the simulations. To our opinion, this explanatlon
is not absolutely satisfactory, as we do not see reasons for the damping length of the
plasma wave essentially less than in our simnlations.

In conclusion, we note that the numerical simulation performed with the code
Wake is useful for understanding different aspects of the laboratory experiment: the
laser pulse propagation, plasma wave excitation, and electron acceleration. The nu-
merical simulation of the nonlinear dynamics of the laser pulse and plasma wave
was necessary because the existing linear theory of the plasma wave excitation is
not sufficient. This linear theory was used in the present investigation only for esti-
mations. The investigation of the test electron dynamics explains the particularities
of their acceleration, observed in the experiment. The results of this investigation
can be used for the interpretation of the results of the other experiments on electron
acceleration and for the comprehension of general characteristics of this process.
The particularities of electron acceleration, which were observed, permitted us to

propose possible improvements of the experimental setup&r electron acceleration.
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Figure 4.6: Electron energy spectrum in the simulation after their interaction with

the plasma wave.

4.2 Propagation of a laser pulse in plasma in the

self-modulated regime

As we discussed in the previous paragraph, the acceleration of electrons in the
standard scheme of laser-driven electron acceleration in plasma is more predictable
and more “fine” than in the Self-Modulated Laser Wake Field Accelerator. How-
ever, the last scheme has some apparent advantages as well. The intensity of the
laser pulse increases due to the effect of relativistic and ponderomotive self-focusing.
Besides, the plasma wave is resonantly excited by a number of short laser pulses —
intensity modulations, produced in result of the instability. This permits to excite a
plasma wave of a larger amplitude. When the plasma wave is broken (that is simply
achieved in this scheme) fast electrons are produced, they can be trapped by the
plasma wave and accelerated to large energies. So the use of an electron injector in

this scheme can be unnecessary.

An experiment on the laser pulse propagation in the self-modulation regime was
performed at laboratory LULI (Ecole Polytechnique). The laser pulses were used
with the wavelength of 1.057 pum, duration from 370 fs to 4 ps, and energy up to
15 J. To avoid the refraction effects during the gas ionization and different effects

associated with the plasma profile inhomogeneity in the longitudinal direction, the
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laser pulse was focused on a sharp edge of a helium gas jet with a width of 4
mm and practically plane (close to rectangular) profile, shown in Fig. 4.7 (a). A
narrower gas jet was used as well to reach higher densities. The focal spot radius
was approximately 20 ym (waist). As the power up to 20 TW and intensities up to
4 x 10'® W/cm? were achieved, the radiation in the focus was ultra-intense. When
the pulse parameters and plasma density were changed, the radiation power became
more and less than the crltlcal power for relativistic self-focusing.

The laser pulse in experiment was preceded by a prepulse of a few nanoseconds
long and with intensity around 10** W/cm?. This prepulse was produced in result
of amplified spontaneous emission of the radiation in the laser chain. The level of
this emission depends, first of all, on the energy of the laser pulse. In the experiment
the prepulse ionized completely the helium along the propagation length of the laser
pulse. The hydrodynamic expansion of the heated plasma leaded to a formation of
a channel in plasma to the moment of coming of the main part of the laser pulse,
over all the width of the gas jet. Thus really the laser pulse propagated in a plasma
| channel and due to such a mechanism of its creation the perfect alignment of the
‘channel and the laser axis was achieved.

For obtaining the information about the laser pulse propagation and the plasma
profile different diagnostics were used. Interferometric measurements were per-
formed in experiment and the images of the propagation region were obtained at

different angles with respect to the direction of propagation, first of all, at the angle
of 90 degrees and in the forward direction. The interaction region was also imaged in
the forward direction on a spectrometer for obtaining the spectra of the transmitted
radiation. An electron spectrometer was also used (set up in the forward direction)
to measure the energy of fast electrons produced during the interaction.

A typical transversal profile of the plasma channel formed to the moment of com-
ing of the main part of the laser pulse, obtained with interferometric measurements,
is shown in Fig. 4.7 (b). The value of electron density on the axis n, = 1 x 10'°
cm ™3, electron density is 4 times larger at the distance of 100 ym from the axis. The
plasma density profile is approximately parabolic over the distance of r < 75 pm,
where an approximation n = ne + An.(r/wp)? with a coefficient An, =~ 2.1 x 107
cm™® (for wo = 20 pm) is possible. We remind that the condition of a diffrac-
tionless propagation of a Gaussian laser pulse with transversal size wo (waist) and
power much less than critical for relativistic self-focusing in a parabolic channel
n = Neo + Ang(r/wg)? is An, = 1/(nr,wd), where 7. = €?/mc? is the electron clas-
sical radius. The condition of the diffractionless propagation of a laser pulse with

wo = 20 pm is An, = 2.8 x 10!” cm™3. As the corresponding value in experiment
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Figure 4.7: (a) Neutral density profile from the 4 mm gas jet in experiment. (b)
Density profile retrieved from an interferogram (circles). Parabolic fit of the profile
around the axis (dotted line).
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is close to the theoretical one, the plasma channel can be used for a diffractionless
propagation of a laser pulse in experiment, if its power is less than critical for self-
focusing. The most of observations in the experiment were performed for laser pulses
of the same energy, in particular, the repeatability of the channel formation was in-
sured this way. At the same time different regimes of interaction were investigated
changing the pulse duration and, therefore, the pulse power and intensity.

For the pulse duration around 7 ps the maximum intensity is I = 2x 10" W/cm?
and the maximum power P < P, (P = 0.8F.). The interferometric measurements
for this case show, that the laser pulse propagates along all the length of the gas
jet, leaving a density depression behind — electrons and ions are expelled in the
transverse direction by the ponderomotive force of the laser pulse. The radial size
of the plasma depression region 20 ps after the laser pulse propagation is constant
along the gas jet width. This result shows that the laser pulse propagates without
a change of the transversal size, as otherwise the width of the plasma depression
region must increase along the propagation length. The study of the spectra of
~ the transmitted radiation [Fig. 4.8 (a)] shows an efficient generation of the second
" harmonic of the laser radiation, as well as distinct Raman satellites and Raman
satellites of the second harmonic of the radiation.

The experiments at P > P, reveal a more complicated dynamics of the laser pulse
and plasma. For the pulse duration of 370 fs the maximum power is P = 15F,,
the maximum intensity for the focusing in vacuum Iy = 4 x 10'® W/cm?. The
interferometric measurements for this case, performed after the pulse propagation,
show a long propagation of the radiation in plasma in the form of a narrow filament
along the longitudinal axis. At the same time at the beginning of the gas jet (at the
beginning of interaction) perturbations of plasma density at large distances from
the axis are observed. These perturbations exist along the distance of the pulse
propagation of the order of 1 mm, some of them have a form of filaments, that have
a characteristic angle with respect to the laser axis of 5 — 10 degrees. Self-focusing
and radiation scattering at large angles with respect to the propagation axis can
explain this phenomenon. We will discuss more this scattering below, when we will
analyze the results of our numerical simulations. The main filament propagates in
plasma along all the length of the gas jet. It is also seen from the plasma images
at 90 degrees, where there is a narrow bright region along all the length of the gas
jet. Its transversal size was not resolved in experiment, as the transversal resolution
limit of the system was 100 pm.

As the experiments show, for P > P, the pulse is subject to different instabilities.

The image in the transmitted light, obtained with a resolution of 5 um, reveals small
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Figure 4.8: Transmitted spectra in experiment. The electron density is always
1x 10" cm™2. (a) P/P, = 0.8, 7 = 7 ps (pulse duration); (b) P/P, = 2.2, T = 3 ps;
(c) P/P. =15, 7 =370 fs.
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intensity structures with a characteristic size of the order of the resolution limit.
The number of small structures increases with the power increase. Note that such
small structures were absent in the experiments for P < P,. The spectra of the
transmitted light obtained in the experiments for P > P, [Figs. 4.8 (b) and (c)]
show an efficient second harmonic generation, as it was for P < P,. What concerns
Raman satellites at the frequency of radiation, they become very broad for P > P,
and overlap each other, they can not be separated, in fact. At the same time, Raman
satellites at the second harmonic frequency are still narrow enough. We can also
observe a very wide satellite at the distance of 300 ym from the axis on Fig. 4.8
(c). This observation correlates with the observation of filaments, obtained from the
results of interferometric measurements.

It is important to mention, that in all the experiments discussed, performed
using a gas jet with the diameter of 4 mm, shown in Fig. 4.7 (a), there were no fast
electrons detected by the electron spectrometer. At the same time such electrons
were observed for the propagation of a laser pulse with a duration of 370 fs in a
\ narrower gas jet with a larger value of electron density of 2 x 10 cm™* and power
“P = 28P.. In the similar experiments in Ref. [62] broadening of the Raman satellites

with a simultaneous generation of a large number of fast electrons was identified as
a plasma wave breaking, distortion of its regular structure. At the same time this
interpretation is not fully applicable in the case of our experiment. We suppose that
in our experiment with P > P,, in which fast electrons were not detected, the plasma
wave breaking still took place due to a strongly nonlinear character of interaction,
observed in experiment and expected from theoretical implications. However, this
plasma wave breaking was transversal (see Ref. [91] and paragraph 3.3 of the present
thesis) and did not lead to the generation of a large number of trapped electrons.
For a comprehension of the physics of interaction of the laser pulse with plasma
and interpretation of the experimental data we performed numerical simulations
using the code Wake. Our code can be used only for simulations of a propagation
of sufficiently short laser pulses in plasma, with a duration less than 1 ps. So
we performed simulations only for the case of short laser pulses with the maximum
power P > P.. We present the results of a simulation, performed in plane symmetry,
with parameters: laser wavelength Ao = 1.057 um, laser beam waist wy = 23.8 pm
(zr = 1.68 mm), pulse duration (FWHM) 7 = 300 fs, power and intensity in the
maximum P/P, = 6.3, Iy = 1.2 x 10! W/cm?. As the plasma transversal profile we
took the density profile of the channel in experiment [Fig. 4.7 (b)]. We have also
checked the possibility of using our code at such large powers by a comparison of our

results with the results of simulations with a Particle-in-Cell code at the first 500
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Figure 4.9: Numerical simulation of the laser pulse propagation. Intensity distribu-
tions for different 2. Laser pulse parameters: P/P, = 6.3, 7 = 300 fs, wp = 23.8 um

(Gaussian pulse).

pm of the propagation in plasma. After propagation the first 500 um both codes
predicted strong scattering at large angles with respect to the laser axis and there
~ was a sufficiently good qualitative agreement between the two codes. The precise
values were somewhat different, because the noise, initiating the instability, can have
different causes in two codes.

Fig. 4.9 shows the results of our simulations. In Figs. 4.9 (a), (b), and (c)
the intensity distributions in the frame moving with the pulse are shown for dif-
ferent values of z, coordinate along the propagation direction. At the beginning of
interaction there is a strong scattering of radiation at large angles with respect to
the propagation direction in the backward part of the pulse [Fig. 4.9 (a)]. Then
the self-focusing of the forward and central parts of the pulse takes place and ithe
self-modulation instability develops [Fig. 4.9 (b)]. The instability increases when
the pulse propagates in plasma. An essential part of the pulse energy is scattered,
only a part of the energy is trapped in the channel. At the same time well distinct
intensity modulations propagate close to the axis [Fig. 4.9 (c)]. The investigation
of the intensity distributions in a more sensitive to its small values logarithmic scale
shows, that the plasma channel does not trap the radiation, produced in result of
large angle scattering at the beginning of the interaction. At the same time, the
radiation scattered later is trapped and propagates in the plasma channel. Also the
forward part of the pulse with power less than P, propagates practically without
changing the form.

We simulated the propagation of a pulse with the same parameters, but in homo-
geneous plasma (in the absence of a plasma channel). The nature of interaction was
very much the same, except very small details (in particular, a bit less maximum val-

ues of intensity). We can say that as a whole, the plasma channel plays a very small
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Figure 4.10: Simulated spectra of the radiation in plasma for the same values of z,

that the intensity distributions in Fig. 4.9.

role for a propagation of a pulse with a power larger than critical for self-focusing
on the distances of the order of 2 — 3 Rayleigh lengths, as in this simulation.

In Fig. 4.10 the spectra of the radiation in plasma are shown for the same values
of z as the intensity distributions in Fig. 4.9. We remind that the code Wake
~ does not describe harmonic generation (see, paragraph 2.1), so in the obtained
vspectra the radiation at the second harmonic of the laser frequency is absent. We
observe a generation of Raman satellites, Stokes and anti-Stokes, the amplitude of
the Stokes ones is larger. At large times the nonlinear dynamics of the laser pulse
leads to dramatic changes of the spectrum. At large z the pulse spectrum essentially
broadens, at the same time it shifts to small frequencies (large wavelengths) as a
whole. The last is associated with the decrease of the radiation energy used for the
plasma wave excitation, when the number of photons is conserved: it is possible
only if the radiation frequency decreases. However, in the experiment only a pért
of the spectrum was measured, corresponding to the wavelengths A < 1.2 ym. For
larger wavelengths the sensitivity of the spectrometer was too weak. In Fig. 4.11
we show separately the part of the radiation spectrum after the interaction with
plasma (z = 2.382r = 4 mm) for A < 1.2 um. As in experiment, we do not observe
distinct Raman (anti-Stokes) satellites in this picture.

The results of our numerical simulations can be interpreted as follows. For suf-
ficiently small z the backward part of the pulse is scattered. This scattering is a
consequence of Raman instability at large angles with respect to the propagation
direction. As it follows from the investigation of Ref. [14], this Raman instability
has the largest rate (together with backward Raman scattering, that is not taken
into account in our model) and it arises first during the propagation of the pulse.
Raman scattering at large angles with respect to the propagation direction is a 3-

wave process and leads to the generation of a Stokes radiation only. Self-focusing
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ing of the pulse at distances of z ~ zr/(P/F;). Substituting
lue of power, in the pulse maximum, we obtain that the pulse

central part is étielf‘—,jfocui_sedfza{t:  ~ 0.1625. The part of the forward slope for which

P > P, is also focused soon (at z < zg). Self-focusing, that takes place at different
times in different pulse transversal cross-sections, leads to a strong steepening of
the longitudinal intensity profile 'bf, the laser field. This steepening, as well as the
inhomogeneity of the profiles of intensity and plasma density due to Raman scatter-
ing at large angles with respect to the laser axis, act as initial perturbations for‘the
self-modulation instability. The self-modulation develops first in the central part
of the pulse and in the backward part, that was already essentially damped to this
moment; it develops in the forward part after its self-focusing as well. Due to the
large rates of the resonant modulation instability and strong initial perturbations

the saturation of the instability takes place in fractions of a Rayleigh length.

It is necessary to mention that our numerical simulations can underestimate some
effects in the experiment, such as self-focusing and ponderomotive electron expelling
from the pulse region. First, these effects are underestimated in the plane geometry,
and second, the power of radiation in numerical simulations is somewhat less than
in experiment. As a whole, the results of simulations @& in good agreement with
the results of experiment and can be used for its interpretation. In the experiment
with power P > P, a strong scattering of radiation at the beginning of interaction is
observed. As it follows from our numerical simulation, it takes place due to Raman

scattering at large angles with respect to the propagation direction. An essential
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part of the energy is not trapped in the relativistic filament when self-focusing takes
place because of the essential non-stationarity of the self-focusing process. Both in
experiment and in our simulations distinct anti-Stokes Raman satellites are absent
in the radiation spectrum after the interaction because of the large rates of the

self-modulation instability.
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4.3 Electron acceleration by the laser field and
plasma wave in the experiment on laser-driven

electron acceleration in plasma

Till recently in theoretical investigations of laser-driven electron acceleration in
plasma the main attention was devoted to electron acceleration by the pla,sma.Wave
excited by the laser pulse. At the same time a possible acceleration by the high-
frequency laser field of the pulse was not considered. But recent three-dimensional
Particle-in-Cell simulation [65] has shown that the high-frequency laser field can also
accelerate electrons. When a laser pulse with a power larger than P, propagates in
plasma, it produces an electron plasma channel, self-focusing and expelling electrons
from its region. In this plasma channel fast electrons, propagating in the forward
direction, oscillate in the transversal direction (experience betatron oscillations)

under the influence of the focusing electric field in the channel. Quasi-stationary

. magnetic field generated in plasma also leads to transversal oscillations of electrons in

' the plasma channel. Moving fast in the longitudinal direction the electrons observe
a laser frequency in their own frame less than in the laboratory frame (due to
the Doppler shift). At optimal longitudinal velocity this frequency becomes equal
to the frequency of the electron betatron oscillations in the plasma channel. In
this case favorable conditions for the electron acceleration by the laser field exist.
The electron, oscillating in the plasma channel in the accelerating phase of the
transversal component of the laser electric field, is effectively accelerated in ‘the
transversal direction. Lorentz force associated with the laser magnetic field, has a
component in this process in the longitudinal direction, and turns the electron in
the direction of the laser axis. Thus the energy of the transverse oscillatory electron
motion is transformed into the energy of its progressive forward motion. As electron
accelerates forward in such a way, it goes from the resonance with the high-frequency
field, as the frequency of its betatron oscillations changes (because of relativistic
mass increase) as well as the laser field frequency that it observes in its own frame
does. After that the electron acceleration terminates. We will also find from our
numerical simulation that the longitudinal laser field decelerates electrons in this
process, decreasing the effectiveness of the laser field energy transfer to electrons. It
is associated with the fact, that the electron accelerated by the transverse electric
field is at the same time in the decelerating phase of the longitudinal electric field of
the beam. Though the value of the longitudinal electric field is essentially less than

the value of the transverse one, the electron energy decrease due to the longitudinal
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field appears to be of the same order as its increase due to the acceleration by the
transverse field (approximately two times less). )

However, up to now a complete quantitative theory of this mechanism of electron
acceleration by the laser pulse field is absent. In particular, reliable estimations
of the maximum electron energy gain are absent, as well as a comparison of the
effectiveness of the electron acceleration by the laser field and the plasma wave field
is not performed. ,

Recently at Laboratoire d’Optique Appliquee (LOA) an experiment was per-
formed on the interaction of an intense laser pulse with underdense plasma, where
an effective generation of fast electrons was observed. The propagation of laser
pulses with the wavelength of 0.82 um, duration of 35 fs (FWHM) and. energy up
to 0.6 mJ was studied. To overcome refraction on the plasma inhomogeneouties
arising due to gas ionization, the laser pulse was focused on a sharp edge of a he-
lium gas jet with a profile close to rectangular one and the width of 2 mm. The
focal spot size was 6 ym (waist), that corresponds to a typical power of 20 TW and
intensity of 2 x 101 W /cm?. The plasma density was changed by changing the gas
aensity in the jet. In experiment the value of electron density was in the range of
1.5 x 10 — 1.5 x 102 cm~3. Changing the electron density in this range the pulse
duration becomes larger and less than a plasma period: increasing the electron den-
sity we go from the classical regime of plasma wake excitation by a short laser pulse
to the regime of self-modulation. Different diagnostics were used in experiment: the
spectra of the radiation, transmitted and reflected at 180 degrees, were measured;
Thomson scattering was studied and the images of plasma at 90 degrees with respéct
to the direction of the propagation were studied. The main attention was devoted to
the study of the spectra of fast electrons, produced during the interaction, measured
with an electron spectrometer.

Fast electron generation was observed in the experiment transferring from the
classical regime of the plasma wave excitation to the self-modulation regime. The
dependence of the maximum electron energy on the value of electron density in
experiment is shown in Fig. 4.12 for the case of a laser pulse with a duration of 35 fs
and energy of 0.6 J (roughly 50 % of this energy was focused in the focal spot). As
we see, the maximum electron energy decreases with the electron density increase.

The solid line denotes the theoretical dependence:
Winax = 472 (E./Eo)mc®. (4.1)

This formula assumes, that the maximum electron energy equals the product of the

force of the longitudinal electric field of the plasma wave and the dephasing length,
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Figure 4.12: Maximum electron energy as a function of the electron density. Squares
correspond to experimental values. Continues line corresponds to theoretical calcu-
lation Eq. (4.1) with a normalized electrostatic field (E,/E;) = 0.5. Laser pulse
parameters: 0.6 J, 35 fs, 2 x 10'® W/cm?.

Eq. (1.5). The amplitude of the plasma wave (E,/Ep) = 0.5 for the dependence
in Fig. 4.12. However, the dependence of Eq. (4.1) does not take into account the
electron acceleration by the laser field. The measurement of electron spectra also
shows a decrease of the fast electrons temperature with the plasma density increase
in the jet. It is necessary to mention, that in the experiment of Ref. [67], performed
recently, a different dependence for the maximum electron energy and temperature

was obtained, which increased with the plasma density increase.

We have performed numerical simulations of the laser pulse propagation in
plasma and electron acceleration in the experimental conditions, using the code
Wake. Due to the approximations in our code we were limited to the case of pulse
powers less than a few critical powers for relativistic self-focusing and pulse duration
not much exceeding a plasma period. For the maximum laser energy of the present
experiment it corresponds to electron densities up to 2 x 10 cm™3. We also made

simulations with larger densities but with smaller powers. We investigated accelera-
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tion of test elect-rens;,«(ngn—interacting), injecting them in the fields region at the time

of strong self- foeusing for short pulses and at the developed stage of self-modulation
for laser pulses longer ‘fthan a plasma perlod The results of our simulations confirm
decreasing of the maximum eleotron eher'gyy with increasing the background electron
density when thelength _overw_krmhself:focuslng-,ocgnrs is greater than the dephasing
length. = - e

In contrast to thej',eit;ﬁer ere direct laser acceleration of electrons

was inv‘estigated’ 65, 67] ;i

Siinul&‘tioﬁ"we’%ere able to sepa.réﬂ;é' the

traJectorles

(4.2)

Ly, represent the electron energy change due to the interaction with the low-frequen-
ey plasma wave field a d hlgh—frequency laser field, respectlvely The total electron
. energy is the st ’
I‘l dlffer from the

the quantities of a type of E': 'p‘-f ere’ calculated instead of E - v in our approach.

Therefore, in Ref. [67] the square of electron energy was calculated but not the
energy, though they called their-integrals as energies. Besides, in Ref. [67] the
contributions of E, and E; to electron acceleration were calculated instead of E,
and E; in our simulations to compare the effectiveness of the different mechanisms.
In Fig. 4.13 we show test electron distributions in the space (I',, I';) at differént
moments of time in a typical simulation. This simulation corresponds to the present
experiment, when the laser pulse with the energy of 0.6 J propagates in plasma
with electron density of 2 x 10'°® cm™3. In this simulation the length of the laser
pulse is close to one plasma period (FWHM). After the laser pulse self-focusing self-
modulation leads to emerging of two modulations, though the backward modulation
is rather weak. We injected a test electron beam, consisting of 3 x 10* particles after
the laser pulse propagation over one Rayleigh length in plasma. We see that both
mechanisms of electron acceleration are important. Because the acceleration length
is larger than the dephasing length in this simulation, electrons accelerated by the
plasma wave field at the beginning of interaction are decelgrated by this field later.
The energetic electrons propagate in the first period of the plasma wave, that is in
the plasma period inside the laser pulse. Initially they are accelerated by the laser
field and the plasma wave simultaneously, but after the propagation of a distance

equal to the dephasing length these electrons come to the decelerating phase of
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the plasma wave. At the same time, as our simulation shows, they continue to
be accelerated by the laser field, in such a way electrons appear with I', < 0 and
I'; > 0. We mention, that in this simulation the electrons with maximum energy are
accelerated mostly by the plasma wave field. We admit that at larger laser powers
(much larger, than P,), for the pulses, essentially longer than a plasma wavelength,
the most energetic electrons will come from the acceleration by the laser field, as it
is predicted in Ref. [65].
In Fig. 4.14 we show the electron distributions in space (I'y);, I';,1) at the same
times as in Fig. 4.13, here |
Ty = / 6ET;”CQ dt'\ Ty =— / eE;} Y (4.3)
represent the contributions of the longitudinal and transverse components of the
laser field to electron acceleration. It is necessary to mention that the longitudi-
nal electric field of the laser pulse decelerates electrons at the betatron resonance.

It leads also from the consideration of the phase of the longitudinal laser field, in

. which electron propagates at the betatron resonance. Such an electron experiences

 two picks of acceleration by the transverse electric field of the laser pulse over the
period of oscillation in the plasma channel (for laser field of a linear polarization).
The transverse acceleration is maximal when the electron crosses the longitudinal
axis, moving with the maximum velocity, and observes the maximum value of ac-
celerating electric field. At the same time, the oscillations of the longitudinal and
transverse laser fields are shifted in phase by 7/2. When the electron is at its largest
distance from the laser axis, it is in the maximum of the longitudinal electric field
decelerating it. Though the amplitude of the longitudinal electric field is essentially
less than the amplitude of the transversal one, |E,|/|E 1| ~ wp/wo, the longitudinal
electron velocity is essentially larger than the transversal one. The contribution to
the acceleration is proportional to the product of the velocity and the electric field
[see Eq. (4.3)]. Thus, the deceleration of electrons by the longitudinal field can be
of the same order of magnitude as the acceleration by the transversal one. As our
simulations show, the deceleration by the longitudinal electric field is approximately
two times less than the acceleration by the transversal one; in result the laser field
accelerates electrons. However, in Ref. [67] electron deceleration by the longitudinal
laser field was attributed to the plasma wave field.

We must mention that the effect of “beam loading” [115] is not taken into account
in our simulations. It consists in the excitation by fast electrons their own plasma
wave, if their number is sufficiently large. As a rule, in result of superposition of

the plasma waves, excited by the laser pulse and fast electrons, the amplitude of the
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Figure 4.13: Electron distribution in space (I, I';) at different moments of time in
the simulation. The electrons are injected at z = zg. The parameters of the laser
pulse coincide with the parameters in experiment and the plasma electron density

is 2 x 1019 cm™3.
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resulting plasma wave decreases.

In conclusion, our simulation of the laser pulse propagation and electron acceler-
ation in this paragraph explains the particularities of fast electron generation in the
conditions of the experiment at the LOA. In particular, we confirm the maximum
electron energy decrease in experiment with the plasma density increase. As we have
found, in the conditions of the experiment both mechanisms of electron acceleration
are important: the acceleration by the longitudinal electric field of the plasma wave,
excited by the laser pulse, and direct laser acceleration of electrons at the betatron
resonance of electrons in a relativistic plasma channel. We state the necessity of a
correct account of the work of the longitudinal laser field for the comparison of the

effectiveness of these mechanisms of electron acceleration.



Chapter 5
Main results of the thesis

This thesis is the result of a theoretical investigation of the problem of ultra-
short ultra-intense laser pulse interaction with underdense plasma. The work on
the thesis included, first, an additional development of the code, used for numerical
- simulations of this interaction, and second, the investigations themselves.

For numerical simulations of the laser pulse interaction with plasma the fully-
relativistic two-dimensional particle code Wake was used. It is described in Chapter
2 of the thesis. In the process of work on the thesis the author has performed a
modification of the module, responsible for the simulation of plasma ion motion.
This modification is necessary for the description of ion dynamics in the case of
large perturbations of ion density. Additional diagnostics were included in the code,
in particular, the diagnostics, permitting to investigate the electrons phase space
during the interaction. However, the development of an additional module of the
code describing the acceleration of a test electron beam is the main development,
performed by the author. This module permits to investigate the motion of test
(non-interacting) electrons in the high-frequency field of the laser pulse (linearly
polarized) and low-frequency plasma fields, simulated with the code Wake. At the
moment of injection the electron beam is assumed with a given finite emittence
and with a Gaussian electron distribution with respect to the coordinate and angle
in the beam focal plane. The electron energy is supposed to be the same for all
the electrons at the moment of injection. The focal planes of the laser pulse and
electron beam, the positions of the focal points in these planes and the symmetry axis
of the radiation and electron beam can be, generally speaking, different. Different
diagnostics can be used for the study of test electrons interaction with fields in
plasma and controlling the changes of the global parameters of the beam. First of
all, it is possible to control the change of the form of the beam in space and study

the trajectories of particular electrons. The electron energy and angular spectra are
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calculated at dlfferent .oments of time during the interaction. For the comparison of

the effectlvenessz ' fd1 rent mechanisms of electron acceleration the work of different

components of electnc ,eld (hxgh—frequency and quas1-stat10nary) is calculated. The
simulation of test electron acce,l ;atrgn,. was. used in the present. investigation in

tor, study of the se

: llaser pulses in plas :

In paragraph 3.1 we speak about photon acceleration by a relativistically-fast
plasma wave. Our 1D s1mulat10ns have conﬁrmed the existence of photon trajec-
tories that are similar to the traJectones of charged particles in a plasma wave.
These trajectories correspond to laser. pulses that are trapped and untrapped by the
plasma wave. The frequency of these laser pulses oscillates with an amplitude that
is dependent upon the relation between the plasma wave phase velocity and the
laser pulse group velocity. This amplitude is greater when the velocities are close to
each other.

The plasma wave develops simultaneously with the evolution of the plasma wave
source. The source evolution is caused by the transfer of energy to the plasma
wake and by additional self-modulation. When a plasma wake is produced by a
relativistically intense laser pulse with duration of the order of a plasma period,
only the untrapped back-drifting probe pulse still has some full frequency oscillations
before the main pulse depletes.

Investigating photon acceleration in the two-dimensiagal axially symmetrical
case we have made analytical estimates of photon acceleration (as well as phase
shift in the probe pulse) in the wake behind an ultra-intense short laser pulse. We
have estimated the phase and frequency shift in the probe pulse, which can be

observed in the image plane of a lens imaging the focal plane. This estimate is
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applicable if the plasma-induced phase shift and refraction of the probe pulse are
small. We have also made 2D axially symmetrical particle simulations of photon
acceleration. We have simulated a 30 fs, 0.4 ym probe pulse interaction with a
plasma wake produced in a gas jet behind a relativistically intense 30 fs, 0.8 um
laser pulse. We then calculated the probe pulse propagation in a typical optical
collecting line as used in laboratory experiments. The probe pulse refraction in the
presence of a nonlinear plasma wave and slippage between the probe pulse and the
plasma wave follow to a stronger frequency down-shift than up-shift. The results
of our analytical estimate and numerical simulations in the two-dimensional axially
symmetrical case can be useful for plasma diagnostics.

In paragraph 3.2 we studied the problem of phase velocity of the plasma wave,
excited in result of self-modulation of a short laser pulse in plasma. As our numerical
simulations show, at the late stage of the self-modulation of a laser pulse with a
power larger than the critical power for relativistic self-focusing, in homogeneous
plasma, the plasma wave phase velocity is so close to the laser pulse group velocity,

that one can neglect the difference of the plasma wave relativistic factor and the
| relativistic factor, corresponding to the group velocity of the laser pulse. It means
that the estimation of the maximum electron energy gain in the plasma wave, that

is usually used, is applicable:
Waax = 473 (E./ Eo)mc?, (5.1)

where 7, & wo/w, is the relativistic factor, corresponding to the laser pulse group
velocity, and E,/E, is the amplitude of the accelerating longitudinal electric field of
the plasma wave, normalized to Ey = cmw,/e. At the same time, our simulations
show, that for the self-modulation of a laser pulse in a preformed plasma channel the
relativistic factor of the plasma wave is essentially less than the relativistic factor,
corresponding to the laser pulse group velocity, both at initial and late nonlinear
stage of self-modulation. It is necessary to take into account this fact estimating the
maximum energy of electrons, accelerated by the plasma wave; the estimation of Eq.
(5.1) is not valid, the correct estimation is obtained by substituting the relativistic
factor of the plasma wave in Eq. (5.1) instead of ,.

In this paragraph we also investigated self-similar structures for relativistic self-
focusing of short laser pulses in plasma. We have generalized the formalism, de-
veloped earlier for ultra-intense laser pulses with duration much less than a plasma
period, for the case of laser pulses with duration of the order of a plasma period
and longer. The self-similar solutions are obtained in the weakly-relativistic limit.

They describe the quasi-stationary pulses with an amplitude increasing with the
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longitudinal coordinate exponentially and width, decreasing with the longitudinal
coordinate, so that the power in each transversal cross-section is the same. This
power is larger than critical for relativistic self-focusing and its excess over the crit-
ical power determines the value of the coefficient in the exponent rate. In the limit
of power equal to the critical power for relativistic self-focusing the dependence on
the transverse coordinate is given by the Townes mode. The refractive index on
the longitudinal axis is also characterized by a growing exponential function. The
oscillations of the refractive index at some distance from the axis describe‘a,"_plfé;sifha
wave, excited by the laser pulse. The self-similar solution describes the structure
of the wide part of the pulse (being compared with &, 1), propagating in plasma
without diffraction. It must be matched with the solution at the leading edge, that
is not subject to nonlinear distortion and the local value of Rayleigh length at the
leading edge exceeding essentially its value in the intense part of the pulse. The
self-similar solution does not describe also the structure of the backward, narrow
and the most intense part of the pulse.

 As our simulations show, the similar quasi-stationary structures form in result
‘of a natural evolution of a disposable in laboratories laser pulse with a Gaussian
longitudinal profile. In this case the limitation on the length of the structure is
associated with the self-modulation instability of the laser pulse — the width of its
main intense part can not be much longer than a plasma period. At the same
time even for powers a little exceeding the critical power for relativistic self-focusing
reaching of rather large values of intensity and laser pulse amplitude ag = eAg/ mc? ~
1 on such a duration is possible. In this case behind the laser pulse a plasma wave:of
large amplitude is excited. The structure of the plasma wave excited by the quasi-
stationary laser pulse practically does not change and the phase velocity of the
plasma wave is close to the laser pulse group velocity. As our simulation confirms,
the plasma waves, excited at long propagation of the laser pulse in the regime of
relativistic self-channeling, can be used for electron acceleration to large energies, in
particular to the energies in GeV range.

In paragraph 3.3 the dynamics of ions in the plasma wake, excited by a laser
pulse with duration of the order of a plasma period, is investigated. We investigated
the longitudinal momentum in one-dimensional approximation and the transverse
momentum in two-dimensional case with plane and axial symmetry.

Investigating the momentum conservation in plasma in one-dimensional case, we
have obtained that behind the laser pulse in the wake region a plasma flow exists
with an averaged momentum density, determined by ions. While the energy, used

by the laser pulse for the wake excitation, is transformed to the energy of oscillatory
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electron moti‘dh a;}" i“plasma fields, ‘the momentum passes to ions. The electron

momentum den31t the plasma wave is' mainly oscillatory and its contribution to

the averaged mo um dens.1ty is’ neghglbly small In the frame of nonlmear two—

pulse by a value ’({):'f"‘thé'

with eléctron motion);: d1v1de peed’ of hght’ ‘For the case of ‘a re‘ an ar

laser pulse with duration’ equalfrto ‘ha: f"‘a plasma period an expression is obtamedu
for the averaged mom'ntum"density 6ﬁ 10ns through the complete elliptic 1ntegrals
of the first and se¢ond kin 1

Sy ptotlc expressmns are obtained for the averaged
ion momentum for large and small valués of the laser pulse amplitude, a2 > 1 and

ag < 1, as well as a sitaplé expression, well approximating the exact value of the
averaged momentum for arbitrary | ad. o

Our. mvestlgatlon of ion dynamlcs in two-dlmensmnal case shows, that similarly

to the ponderomo,

i ‘wake, excited“by?a tr:
in plasma. The results of out approxlmate analytical descr1pt10n of the initial stage
of the ion channel formation show that for a laser pulse with a width less than k, 1
the ion channel has the form of a ring with an ion density maximum on the axis.
For wider laser pulses a minimium of ion density on the axis is produced. The depth
of the plasma channel increases with the distance behind the laser pulse. As the.ion
channel is produced the structure of the plasma wake changes. It results in pla%ma
wave breaking, after that ions acceleration in the transverse direction terminates.
It follows from our investigation, in particular, that the plasma wake behind the
laser pulse consists of a limited number of regular oscillations that can be used for
electron acceleration in the standard scheme of acceleration.

We have performed for the first time a detailed study of the plasma wave breaking
using numerical particle simulations. We studied the electron phase space and have
found the transformation of the distribution function in the process of wave breaking.
The plasma wave breaking leads to generation of fast electron bunches and plasma
wave energy dissipation. The wavebreaking takes place when the local phase velocity
of the plasma wave equals the component of oscillatory#glectron velocity in the
direction perpendicular to the phase front. In the case that we investigated, when the
longitudinal plasma wave phase velocity is too large for trapping the fast electrons,
electron bunches fly out from the axial region at large angles with respect to the

longitudinal axis. The analysis of the energy balance in the process of the plasma
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wave breaking shows, that the most part of the plasma wave energy is dissipated
and the energy part that is transferred to the energy of transverse ion motion is
rather small. .

In Chapter 4 we speak about numerical simulation of three experiments at lab-
oratories LULI and LOA performed in the frame of the thesis. In paragraph 4.1
we report on the experiment, performed at the laboratory LULI. In this experiment
electron acceleration in the standard scheme of acceleration was studied, when the
plasma wave is excited by a laser pulse with duration of the order of a plasma period.
In this experiment the laser beam was focused in a gas-filled chamber (with helium),
where an electron bunch was injected as well. In the experiment 400 fs (FWHM),
1.057 um laser pulses were used with the energy of 4 —9 J, they were focused in the
focal spot with a size of around 25 pum. The plasma electron density in experiment
was 2.2 x 106 cm~3, that corresponds to the optimal conditions for the plasma wave
excitation in the standard scheme of electron acceleration. A bunch of electrons
with the energy of 3 MeV was injected in the region of interaction in the direction
~ of the laser axis.

We have'performed numerical simulation of the laser pulse propagation in plasma
in the experimental conditions and simulated the acceleration of a test electron
beam. Our simulation confirms that the plasma wave is excited in transversal regime
in the experiment: the amplitude of the transverse component of the electric field
more than in two times exceeds the amplitude of the accelerating longitudinal com-
ponent at the focal plane. In these conditions, as our numerical simulation shows,
the most part of electrons is scattered by the transverse electric field already a long
distance before the focal plane of the pulse. This, first of all, explains the small
number of accelerated electrons in the experiment. In this context, to reduce scat-
tering we suggest using of a gas jet for a limitation of the longitudinal size of the
region in which the plasma wave is excited. We have obtained the dependence of the
energy of the accelerated electrons on the phase of injection in the plasma wave and
the energy spectrum of electrons. The spectrum, obtained, is qualitatively similar
to the electron spectrum in experiment, though predicts somewhat larger number
of accelerated electrons and maximum energy.

In paragraph 4.2 we report on the numerical simulation of another experiment,
performed at the LULI, where the laser pulse propagated in plasma in the self-
modulation regime. Laser pulses with the wavelength of 1.057 um were used, with
duration from 370 fs to 4 ps and energy up to 15 J. The pulses were focused at
the sharp edge of a helium gas jet with a width of 4 mm and rectangular profile.

The radius of the focal spot was around 20 um and the plasma electron density was
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12 x 10' cm™3. The laser pulse in experiment was preceded by a prepulse with
duration of a few nanoseconds, that completely ionized helium along the propagation
length of the pulse. The hydrodynamic expansion of the heated plasma leaded to a
formation of a channel in plasma to the moment of the main part of the pulse coming.
Thus, really the laser pulse propagated in a plasma channel. In most experiments
laser pulses of the same energy were used but the duration was different. Therefore,
different values of the pulse power and amplitude were reached and different regimes
of interaction were investigated, when the pulse power is larger and less thaﬁ the
critical power for relativistic self-focusing. We have performed numerical simulations
of the laser pulse propagation with duration of 300 fs in plasma with electron density
of 1 x 10'® cm™3 for the case of the maximum power P = 6.3P,. The results of our
numerical simulations explain the main particularities in the experiment for the case
of short laser pulses with the power exceeding the critical power for self-focusing. In
our simulation the laser pulse propagates along all the width of the gas jet due to
the effect of relativistic self-focusing. The comparison of the results of simulations in
~ a homogeneous plasma and with a plasma channel (that is produced in experiment)
“shows that the channel plays a very minor role when the pulse with power larger
than the critical power for self-focusing propagates on distances of a few (2 — 3 in
the simulation) Rayleigh lengths. At the beginning of interaction a strong scattering
of the backward part of the pulse is observed, which is the consequence of Raman
scattering at large angles with respect to the laser pulse propagation direction. The
self-focusing leads to an essential decrease of the transversal size of the pulse on the
distances of z ~ zg/(P/P.), after that the self-modulation instability starts. Due
to the large rates of the self-modulation instability and essentially nonlinear nature
of interaction a wide spectrum of the radiation is observed after the interaction, in

which distinct anti-Stokes Raman satellites are absent.

In paragraph 4.3 we report the results of our simulation of the experiment at
the LOA. In this experiment the propagation of laser pulses with the wavelength of
0.82 pm, duration from 35 fs, and energy up to 0.6 mJ was studies. The laser pulse
was focused on a sharp edge of a helium gas jet with a profile close to rectangular
and width of 2 mm. The focal spot size was 6 ym. The value of electron density
in experiment was in the range of 1.5 x 10'® — 1.5 x 10%® cm™3. When the plasma
density is changed the pulse duration is larger and smaller than a plasma period:
if the density is increased we pass from the classical regime of the plasma wave ex-
citation by a short laser pulse to the self-modulation regime. If the pulse power in
experiment was more than 3 — 5 times larger than the critical power for relativistic

self-focusing, generation of fast electrons was observed. The most attention in the
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experiment was devoted to this fast electron generation. We have performed numer-
ical simulations of the laser pulse propagation in plasma and electron acceleration
in the experimental conditions, using the code Wake. ‘Due to the approximations
in our code we were limited to the case of pulse powers less than a few critical
powers for relativistic self-focusing and pulse duration not much exceeding a plasma
period. For the maximum laser energy of the present experiment it corresponds to
electron densities up to 2 x 10!? cm™3. We investigated acceleration of test electrons
(non-interacting), injecting them in the region of the pulse and plasma wake. The
results of our simulations confirm the decreasing of the maximum electron energy
with the increasing of the background electron density when the length over which
self-focusing occurs is greater than the dephasing length.

Analyzing electron acceleration we devoted a special attention to the comparison
of the effectiveness of electron acceleration by the plasma wave and directly by the
laser radiation at the betatron resonance of electrons in relativistic plasma channel.
Unlike in the other numerical simulations (performed before us), in which direct laser
acceleration of electrons was observed, we were able in our simulation to distinguish
“the contributions of the laser field and low-frequency plasma field to the electron
acceleration. To compare these effects, we calculated the work of the high-frequency
and plasma electric fields on electrons independently. Our numerical simulation
shows, that for the plasma density in experiment in the range of 10*® — 10%° cm™3
and pulse power of the order of a few critical powers for relativistic self-focusing
both mechanisms of electron acceleration are approximately equally effective. We
admit that at larger laser powers (much larger, than P.), for the pulses, essentially
longer than a plasma wavelength, the most energetic electrons will come from the
acceleration by the laser field, as it is predicted in Ref. [65]. We denote also the
necessity of a correct account of the work of the longitudinal laser field for the
comparison of the effectiveness of these mechanisms of electron acceleration.

Finally, we present the list of publications that were performed on the subject
of the thesis:

e J. Faure, V. Malka, J.-R. Marques, F. Amiranoff, C. Courtois, Z. Najmudin,
K. Krushelnick, M. Salvati, A. E. Dangor, A. Solodov, P. Mora, J.-C. Adam,
and A. Heron. ”Interaction of an ultra-intense laser pulse with a nonuniform
preformed plasma,” Phys. Plasmas 7, 3009 (2000).

e L. M. Gorbunov, P. Mora, R. R. Ramazashvili, and A. A. Solodov. ”Ion
momentum driven by a short intense laser pulse in an underdense plasma,”
Phys. Plasmas 7, 375 (2000).
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J. Faure, V. Malka, J.-R. Marques, F. Amiranoff, C. Courtois, Z. Najmudin,
K. Krushelnick, M. Salvati, A. Dangor, A. Solodov, P. Mora, J.-C. Adam,
and A. Heron. ”Interaction of an ultra-intense laser pulse with a plasma
channel,” Scientific Report of LULI 1999 (Ecole Polytechnique, France, 2000, .
NTIS PB2000-105868), p. 30.

A. A. Solodov, P. Chessa, and P. Mora. ”Simulation of photon acceleration in
a plasma wake,” Phys. Plasmas 6, 503 (1999).

F. Dorchies, F. Amiranoff, V. Malka, J. R. Marques, A. Modena, D. Bernard,
F. Jacquet, Ph. Mine, B. Cros, G. Matthieussent, P. Mora, A. Solodov, J.
Morillo, and Z. Najmudin. ” Acceleration of injected electrons in laser wakefield
experiment,” Phys. Plasmas 6, 2903 (1999).

F. Dorchies, F. Amiranoff, S. Baton, D. Bernard, B. Cros, D. Descamps, F.
Jacquet, V. Malka, J. R. Marques, G. Matthieussent, Ph. Mine, A. Modena,
P. Mora, J. Morillo, Z. Najmudin, and A. Solodov. ”Electron acceleration in

laser wakefield experiment at Ecole Polytechnique,” Laser Part. Beams 17,
299 (1999).

A. Solodov and P. Mora. ”Plasma wave phase velocity and electron acceler-
ation in the scheme of self-modulated laser wakefield accelerator,” Scientific
Report of LULI 1998 (Ecole Polytechnique, France, 1999, NTIS PB99-130973),
p. 6.

J. Faure, V. Malka, F. Amiranoff, P. Mora, and A. Solodov. ”Scaling laws for
electron acceleration to GeV energies by self-modulated laser wakefields,” Sci-
entific Report of LULI 1998 (Ecole Polytechnique, France, 1999, NTIS PB99-
130973), p. 9.

F. Dorchies, F. Amiranoff, S. Baton, D. Bernard, B. Cros, D. Descamps, F.
Jacquet, V. Malka, J. R. Marques, G. Matthieussent, Ph. Mine, A. Modena,
P. Mora, J. Morillo, Z. Najmudin, and A. Solodov. ”Observation of electron

acceleration by a plasma wake excited by a laser pulse,” Scientific Report of
LULI 1997 (Ecole Polytechnique, France, 1998, NTIS PB98-152515), p. 8.

L. M. Gorbunov, P. Mora, and A. A. Solodov. ”Plasma ions dynamics in a
wakefield of a short laser pulse,” submitted to Phys. Rev. Lett.

V. Malka, J. Faure, J. R. Marques, F. Amiranoff, J. P. Rousseau, S. Ranc, J.
P. Chambaret, Z. Najmudin, B. Walton, P. Mora, and A. Solodov. ” Analysis



127

of the maximum energy of electrons produced in the self-modulated laser wake
field regime,” submitted to Phys. Rev. E.

e J. Faure, J.-R. Marques, V. Malka, F. Amiranoff, Z. Najmudin, B. Walton,
J.-P. Rousseau, S. Ranc, A. Solodov, and P. Mora. ”Study of the dynamics
of Raman instabilities using chirped laser pulses,” submitted to Phys. Rev.
Lett.
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Abstract

Interaction of ultra-short ultra-intense laser pulses with underdense plas-
mas

Different aspects of interaction of ultra-short ultra-intense laser pulses with un-
derdense plasmas are studied analytically and numerically. These studies can be
interesting for laser-driven electron acceleration in plasma, X-ray lasers, high-order
harmonic generation, initial confinement fusion with fast ignition. For numerical
simulations a fully-relativistic particle code WAKE was used, developed earlier at
Ecole Polytechnique. It was modified during the work on the thesis in the part of
simulation of ion motion, test electron motion, diagnostics for the field and plasma.

The studies in the thesis cover the problems of photon acceleration in the plasma
wake of a short intense laser pulse, phase velocity of the plasma wave in the Self-
Modulated Laser Wake-Field Accelerator (SM LWFA), relativistic channeling of
laser pulses with duration of the order of a plasma period, ion dynamics in the wake
of a short intense laser pulse, plasma wave breaking. Simulation of three experiments
on the laser pulse propagation in plasma and electron acceleration were performed.
' Among the main results of the thesis, it was found that reduction of the plasma
- wave phase velocity in the SM LWFA is crucial for electron acceleration, only if a
plasma, channel is used for the laser pulse guiding. Self-similar structures describ-
ing relativistic guiding of short laser pulses in plasmas were found and relativistic
channeling of initially Gaussian laser pulses of a few plasma periods in duration was
demonstrated. It was shown that ponderomotive force of a plasma wake excited
by a short laser pulse forms a channel in plasma and plasma wave breaking in the
channel was analyzed in detail. Effectiveness of electron acceleration by the laser
field and plasma wave was compared and frequency shift of probe laser pulses by
the plasma waves was found in conditions relevant to the current experiments.

Key words: ultra-short laser pulses, ultra-intense laser pulses, laser-plasma inter-
action.



Résumé

Interaction d’impulsions laser ultra-courtes et ultra-intenses avec des
plasmas sous denses :

Différents aspects de I'interaction d’une impulsion ultra-courte et ultra-intense
avec un plasma sous-dense ont été étudiés analytiquement et numériquement.” Ces .
études présentent un intérét pour I’accélération laser de particules dang les, plas-
mas;, 168 lasers A rayons X, la génération d’harmoniques d’ordre élevé,"le ‘concept
d’allumeur rapide pour la fusion par confinement inertiel. On a utilisé le code par-
ticulaire relativiste WAKE développé précédemment & I'Ecole Polytechnique. Ce
code & 6t& modifié au cours de la thése pour traiter le mouvement des ions, pour
calculer des trajéctoires d’électrons tests, et pour inclure des diagnostics divers sur
les champs et les particules. ' o

Les sujets traités dans cette thése sont les suivants: l’accélération de photons
dans le sillage d’une impulsion laser courte et intense, la vitesse de phase de I'onde
plasina dans le'sillage d’une impulsion laser auto-modulée, la canalisation relativiste
d’impulsions laser de durée de ’ordre de la période plasma, la dynamique ionique
" dans 19 sillage, le-déferlement. Enfin on a simulé 3 expériences de propagation d’onde
- laser et d’accélération d’électrons.

Voici les prinéipatix résultats de la thése: La réduction de la vitesse de phase de
I'onde plasma dans le cas d’une impulsion laser auto-modulée ne joue que dans le cas
d’un canal préformé pour le guidage de I’onde laser. On a trouvé des structures self-
similaires pour décrire le guidage relativiste d*une impulsion courte dans un plasma.
On a démontré la propagation auto-guidée d’impulsion initialement gaussiennes de
quelques périodes plasma. On a montré que la force pondéromotrice de ’onde plasgna,
excitée par 'impulsion laser forme un canal et le déferlement dans ce canal a;été
analysé en détail. Les efficacités de I'accélération d’électrons dans le champ laser
et dans l'onde plasma ont été comparées. Le décalage en fréquence d’une sonde se
propageant dans le sillage plasma a été étudié dans des conditions correspondant &
des expériences actuelles.

Mots clés: impulsions ultra-courtes, impulsions ultra-intenses, interaction laser-
plasma.



