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CONTENTS 5
Résumé.

Le but de ce travail est de proposer un systéme formel pour prouver
que I'ensemble des succés d’un programme logique est inclus dans ’ensemble
correspondant d'un autre programme. Cela permet de prouver que deux
programmes logiques, un qui représente la spécification et un représentant
Iimplantation sont équivalents.

Le langage logique considéré est CLPY qui est le langage de program-
mation logique avec contraines (CLP) auquel est ajouté le quantificateur
universel. Nous présentons les sémantiques des succés finis et infinis et mon-
trons qu’elles peuvent étre exprimées comme le plus petit et le plus grand
point fixe du méme opérateur.

Un systéme de preuve pour l'inclusion des succés finis est présenté. Le
gystéme utilise pour les opérateurs et les quantificateurs logiques les mémes
régles que la logique du premier ordre. Pour raisonner sur les prédicats récur-
sifs le systdme contient une régle d’induction. Nous prouvens la correction
du systéme sous certains conditions.

Un systéme analogue pour l'inclusion des succés infinis est présenté. La
régle d'induction est remplacée par une régle de coinduction. La correction
est démontrée sous conditions analogues. Le deux systémes sont équivalents
sous certains conditions.

Une implantation a été réalisée sous la forme d’assistant de preuve écrit
en Prolog. Le programme a environ 4000 lignes et contient des procédures
simples mais efficaces de recherche de preuves. Nous présentons des exemples
de preuves réalises avec ce programme parmi lesquels la preuve de correction
de guicksort.
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Preface

Summary. The goal of this work is to present a formal system that can
be used to prove the success equivalence of logic programs. By proving suc-
cess equivalence one can prove that a program representing the specification
and another one representing the implementation are equivalent. This can
be done by proving that the set of successes of each program is included in
the corresponding set of the other one.

The language studied is CLPY which is the Constraint Logic Program-
ming (CLP) language to which the universal quantifier was added. The set
of finite success of a program is defined by the finite success semantics of
the language. We define also the set of infinite success of a program by
extending the definitions for finite success to take into account infinite (non-
terminating) computations. This gives the infinite success semantics of the
language. We prove that the sets of finite and infinite successes are given by
the least and greatest fixed point of the same operator.

In order to prove success inclusion we propose a proof system based of
the first -order classical logic. The rules for logical operators and quantifiers
are the same as in first-order logic. In order to reason about recursively
defined predicates we add an induction rule and we prove the correctness of
the system under certain conditions. This constitutes the main contribution
of this work. The proof of other properties can be reduced to the proof of
success inclusion.

The same proof system can be used to prove infinite success inclusion by
replacing the induction rule with a coinduction rule. We prove the correct-
ness of the system under conditions analogous to those for finite successes.
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We also show that the two systems are equivalent under some conditions
related to the existence of negated constraints.

The implementation of a proof assistant written in Prolog is presented.
The software assists the user in building proof and has a simple but effective
proof-search procedure that reduces the user’s work.

Chapter structure. The first chapter is an introduction that begins
by briefly presenting the concept of logic programming, then the syntax and
gsemantics of CLP. In the last section we explain the goal of proving success
inclusion.

The second chapter is dedicated to the CLPY language. It presents its
syntax, the semantics of finite and infinite successes.

The third chapter defines the induction based formal system for proving
finite success inclusion. Its correctness is proved under two different condi-
tions.

The fourth chapter defines the coinduction based system for proving in-
finite success inclusion. Its correctness is proved under conditions that are
analogous to the ones for finite success. The equivalence of the two systems
is also proved.

The fifth chapter presents the implementation of the proof assistant.
Several examples of proofs realized with its help are presented, among which
the correctness of quicksort. A comparison with previous work closes the
chapter.

The sixth chapter consists in the conclusions and perspectives for future
developments of this work.

Acknowledgements. I would like to thank Frangois Fages, my thesis
advisor, for his supervision and useful suggestions which helped improve this
work. I would also like to thank Sylvain Soliman, Dale Miller and Slim
Abdennadher for interesting discussions and suggestions about various parts
of this work. Sylvain Soliman also contributed by pointing out errors in an
initial version of the manuscript.



Chapter 1

Introduction

In this chapter we present briefly the logic programming languages and
state our goal of proving success inclusion of logic programs.

In the first section we recall briefly the basic ideas of the Prolog language.
In the second section the syntax and semantics of the CLP {Constraint Logic
Programming) language is presented following [Mah99]. In the third section
we state the goal of proving success inclusion of logic programs which can be
used to prove success equivalence of a specification and its implementation.

1.1 Logical programming languages

The logical programming languages were introduced by Kowalski [Kow74]|
and Colmerauer [Col73]. They are based of the first order classical logic and
have a declarative nature.

The first incarnation of a logic language was Prolog [Col73]. While ini-
tially it was conceived for human-machine interfaces and later for artificial
intelligence it gradually became a full programming language. This was
achieved adding non logical (imperative) capabilities and therefore sacrific-
ing the simplicity and elegance given by its logic heritage.

In the following decades there were several developments of Prolog among
which Concurrent Prolog [Sha83], Constraint Logic Programming (CLP}[Jaf87],
Concurrent Constraint Programming (CCP)[Sar90], Linear Concurrent Con-

9



10 CHAPTER 1. INTRODUCTION

straint Programming (LCC) [FRS01].

Some of the most popular Prolog implementations are GNU-Prolog [Dia01],
SWI-Prolog [Wie], SICStus Prolog [Car91], Eclipse [Che03].

The basic operation of Prolog is the unification of terms represented
as {1 = t2. More complex expressions can be built using the conjunction

represented by comma “” and the disjunction represented by a semicolon “;”.
The syntax of (pure) Prolog is:

program = €|definition. program

definition = p(?) : —exp

exp n=ty =ty | p(F) |exp, exp|exp; exp
where

€ is the void string

t1,19 are terms

?, T are vectors of variables and terms, respectively

p(Y) : —exp represents the definition of the predicate p(Y) which is
analogous to the definition of a procedure in imperative languages. The
unification can be seen as a built-in predicate.

Practical implementations of Prolog have many other built-in predicates,
some of them - like var - having a non logical nature. A predicate can be
defined by more than one construct (called clause) of the form p(?) 1 —exzp
but this is redundant as the same effect can be achieved using the disjunction

LR
4

The following code in an example of a Prolog program:

nat (X) :-X=0
; X=s8(Y), nat(Y).

The interpretation of this definition is: nat(X) is true (or succeeds) if X =0

is true or there exists a term Y such that X = s(Y) and nat(Y’) are true.
For example nat(0) succeeds because 0 = 0 is true. Also nat(s(0)) suc-

ceeds because by taking Y to be 0 we have that s(s(0)) = s(s(0)) and nat(0)
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are true. In general the predicate nat(X) succeeds when X is a term of the
form s(s(...8(0)...)} which represent the natural numbers written in base one.

This example introduces intuitively the notion of set of successes of a
predicate. This notion will be central for the rest of this work.

1.2 The CLP language

The CLP {Constraint Logic Programming) language was introduced by
Jaffar and Lassez in 1987 [Jaf87]. It is an evolution or generalization of
Prolog. While in Prolog the basic operation is the unification of two terms,
in CLP it is adding a constraint to the global store.

The constraints are relations over some set. The set and the constraints
form the constraint system which is not fixed but can vary. Therefore we
can say that there are multiple instances of CLP languages. The constraint
domain X is a parameter of the CLP language, thus the notation CLP(X).

Examples of constraint domains are:

s the Herbrand domain composed of the set of terms and the unifica-
tion of terms as constraint. Hence Prolog is an instance of the CLP
languages

¢ the finite domains have finite sets of elements for example set of booleans
- in this case the constraints are logic relations

e the domains of integer, rational or real numbers - the typical constraints
are addition, multiplication, comparison operators, etc.

e more exotic domains like the domains of intervals, lists, etc..

An implementation of the CLP language must contain a solver for its domain
of constraints. A solver is a function that maps a constraint to either {rue,
false or unknown indicating that the constraint is satisfiable, unsatisfiable
or that the solver cannot tell.

In the rest of the section we will present briefly the CLP language fol-
lowing Maher [Mah99].
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The syntax of CLP is:

program = €|definition. program
definition == p(?) 1 —exp

—
exp z=c|p(t)|ezp, exp

where

e is the void string

c is a constraint

?, T are vectors of variables and terms, respectively.

A literal is either a constraint ¢ or a call p(?)

The operational semantics of CLP is given in terms of transitions between
states. A state is a pair < G|c > where G - the current goal - is a conjunction
of literals or o and c is a constraint which represents the current store.

The initial state is of the form < Gyl|true > where Gy is the initial goal.
We will denote the solver function by solv.

Let the current state be < Li,..,Lnjc >. It can be changed by the
following transitions:

o if L; is a constraint and solv(c A L;) # false then the current state
becomes < Ly, .., Li—1, Liy1, .., Ln|e A L; >

e if L; is a constraint and solv(c A L;) = false then the current state

becomes < o|false >

o if L; is a call p(?) and there exists a definition p(3) : —B in the
program then the current state becomes < Ly,..,L;—1,81 = #1,.., 85 =
tm, B, Li+1: "y Lnlc >

e if L; is a call p(_t)) and there is no definition p(@) : —B in the program

then the current state becomes < o|false >

For the last two transitions we suppose that the free variables in the defini-
tions have been renamed such that they are not used in the current state.
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The transition between states will represented by an arrow —. If <
Golc >— ... 7 < ole > and ¢ # false then we call an answer of the goal Gg
the constraint §,,,,,.,(Go)c which represents the existential quantification of ¢
over all its free variables with the exception of the free variables of G. The
answers correspond to the successes of a Prolog program.

1.3 Proving the success equivalence

One of the current goals of Computer Science is reducing the number of
faults (“bugs”) that appear in software, especially in complex software. Dif-
ferent approaches have been proposed like high level languages that simplify
programming, type systems that can detect common programming errors
and proving formally that programs have the intended properties.

We are interested in the last one: formal proofs of programs. In this
approach after the program is written one tries to prove that it has certain
intended properties. In this process the faults in the program can be found
and corrected. The formal proof can be checked by a computer which gives
a high degree of assurance that it is correct.

In the context of logic programming one of the most useful properties
to prove is the equivalence of programs: two programs are equivalent when
they give the identical outputs for the same input. One of the programs
- called the specification - can be written such as to be very simple and
easy to understand but possibly inefficient. The other one - called the im-
plementation - can be written to be efficient but possibly complex. The
specification has a higher probability of being correct. By proving that the
two programs are equivalent the number of faults in the implementation is
reduced dramatically.

For logic programs proving that two programs are equivalent reduces to
proving that their sets of successes are equal.

The goal of this work is to provide a proof system for proving the success
inclusion. In other words we want to be able to prove formally that the set
of successes of a goal G; is included in the set of successes of a goal Ga.
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Recall the previous example of a Prolog or CLP(H) program that defines
the predicate nat whose successes are the natural numbers. We can similarly
define the predicate int whose successes are the integer numbers.

The two predicates are:

nat (X):-X=0
; JY. (X=s(Y), nat(Y)).

int(X) :-X=0
; Y. (X=a(Y), int(Y))
; 3Z2.(X=p(Z), int(Z)).

Intuitively the set of successes nat(X) is included in the set of successes of
int(X).

Since our goal is to prove it formally and since the Prolog (and other
logic languages) use logic operators we can try using the first order logic as
proof system for success inclusion. For this purpose we have made explicit
that the local variables ¥ and Z in the previous definitions can be viewed
as existentially quantified.

Translating the definitions above into logic formulae gives:

nat(X) ¢+ X =0 v 3Y.(X = s(Y) A nat(Y))
int(X) ¢ X =0V V(X = s(Y) Aint(Y)) V 3Z.(X = p(Z) A int(Z))

Let Defs be a first order formula, the conjunction of the two formulae
above.

We try to derive
Defs,nat(X) F int(X)

using the Gentzen calculus for the first order logic:
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Defa, X = 0F X =gV, [haziom) @
Defs,X =0VAY.(.)F X =0V IV(.)VIZ(.
Defs, X =0v3Y.{..) Fint(X)
Defs,nat(X) F int(X)

5 (V)

(= L,aziom)

{(— L,aziom)

where {2 is the subtree:
Defa nat(Y) - int(Y)
Defs, X =s(Y),nat(Y)F X =0 Defs, X = s(Y), nat(Y) I ini(Y)
Defs, X = s(Y),nat(Y) F 3¥.(...)
Defs, X = a(Y),nat(¥) F X =0V 3Y{..) VIZ.(.) (VE,VE, wR, wR)
Defs,3Y(.)F X =0V 3Y.(.)V3IZ(.)
Therefore we start with Def s, nat(X) F int(X) and we obtain Defs, nat(Y) -

int(Y) where Y is a fresh variable. If we continue trying to derive Defs, nat(Y) -

(aziom) (wR)

(3R, AR)

(3L, AL)

int(Y) we will never be able to finish the derivation but instead we will obtain
an infinite derivation.

We conclude that the rules of the first order logic are not enough for
proving success inclusion. The solution we propose in chapter 3 is to add an
induction rule that will allow us to close the derivation. We will prove that
the corresponding proof system is correct under certain restrictions. The
work presented here was presented in an initial form in [Cra01] and [Cra02].

One of the early works about program equivalence in pure Prolog is
[Tam84] . The authors prove that the folding and unfolding of predicates
preserves program equivalence. Moreover they study the effects of combining
folding and unfolding with other useful transformations. They prove that
under certain conditions those transformations can be applied in any order
to any program and the resulting program is equivalent to the initial one.
The program equivalence in this case is defined as the equality between
the set of successful ground goals. Later works on transformations of logic
programs are [Tam92], [Ben98], [Kan86], [Pet39].

Another approach to proving program properties is using a formal proof
system, the approach we use in this work. This approach was used in
[BGMP97], [Stad8], etc.. A more detailed comparison with these works will

be presented in section 5.5.
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For Linear Concurrent Constraint Programming (LCC) languages the
approach proposed in [FRS01] uses the phase semantics of Linear Logic in
order to prove temporal properties like safety and liveness.



Chapter 2

The CLPY Language

This chapter is dedicated to the CLPYV language, its syntax and seman-
tics. The CLPV language is the Constraint Logic Programming language
(CLP) augmented with the universal quantifier. Like CLP, it is parametrized
by the constraint domain and therefore CLPY can be referred to as a class of
programming languages. In this work it will be referred to as a language for
simplicity and because the syntax, semantics and properties of all instances
considered here will be the same.

The first section presents the basic definitions used throughout the book
which are the usual definitions for first order logic: terms, substitutions, etc.

The second section presents the syntax of the CLPY language and con-
tinues definitions for the sets of expressions (or goals), free variables of an
expression, valid programs, etc..

The constraint domain is presented in section three. It is given by an
entailment relation between two constraints and its extension to entailment
between a conjunction and a disjunction of constraints. The entailment rela-
tion is subject to certain restrictions in order to have a meaningful semantics
and to ensure that the correctness of the proof systems presented in the fol-
lowing chapters hold.

The fourth section contains the finite success semantics of the language.
The notion of success of an expression (goal) is similar to the corresponding
notion for CLP. It is defined by means of a sequent calculus. Its rules are

17



18 CHAPTER 2. THE CLPY LANGUAGE

similar to the rules of first order logic, more so since the universal quantifier is
also present in the language. Proofs of some basic properties of the semantics
follow.

The fifth section presents the infinite success semantics. Intuitively an
infinite success corresponds to an execution that terminates successfully (like
a finite success) or doesn’t terminate. To define the set of infinite successes
we define the notion of infinite derivation, an extension of the notion of finite
derivation. We prove for the set of infinite successes the same properties that
we proved for the set of finite successes.

2.1 Basic definitions

This section contains basic definitions which will be used through the
rest of the document. They are the usual definitions found in the first order
logic books: the sets of variables, terms and substitutions.

A difference is the set of constraints which parallels the set of predicates.
Constraints are analogous to predicates, except that unlike constraints, pred-
icates can have definitions which allow one to reason about them. On the
other hand, the properties of constraints are “encapsulated” into the relations
Fp and Fpps defined in the next section.

We assume that all symbols defined below can be subscripted and/or
superscripted.

FunctN is the set of function names denoted by f, g.

PredsN is the set of predicate names denoted by p, g, 7.

ConstrN is the set of constraint names denoted by a,b which contains
true and false of arity 0.

ar : FunctN U PredsN U ConstrN —-» N is the function that gives the
arity of a function, predicate or constraint name.

Vars is the infinite set of variables denoted by U, V. W, X Y, Z.

Terms is the set of terms denoted by s,t which is the smallest set satis-
fying the following properties:



2.1. BASIC DEFINITIONS 19

Terms 2 Vars
Terms 2 {f(t1, - tn) | f € FunctN, ar(f) = n, t1,...,tn € Terms}

We use the upper arrow notation for vectors:
% denotes a vector (X1,Xs, ..., X;,) of variables and
7 denotes a vector (t1,%2, s tm) of terms.

ConstrA is the set of atomic constraints of the form a(¢1, ..., t,) where a
is a constraint name of arity » and %, ...,%, are terms .

Constraints is a set of constraints which are first order logical formu-
lae built from atomic constraints, the logical connectives —, AV, -+ and the
quantifiers 3,V. They will be denoted by ¢,d, e. Specifically Constraints is
the smallest set satisfying the following properties:

Constraints 2 ConsirA

Constraints 2 {~c|c € Constrainsis}
Constraints D {c1 A ez | €1, ¢z € Constrainsts}
Constraints D {c1 V ¢z | ¢1,¢2 € Constrainsts}
Constraints 2 {e) = ¢ | 1,2 € Constrainsts}
Constraints 2 {3c|c € Constrainsts}
Constraints 2 {Vc|c € Constrainsts}

Subst is the set of finite substitutions which are functions denoted by
o, T, such that ¢ : Vars = Terms and for which the set

{X e Vars|o(X) # X}

is finite. They can be written as compositions of a finite number of
substitutions o; that change the value of a single variable:

0 =0p0..001
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2.2 Syntax of the CLPY language

The CLPY language is the usual CLP (Constraint Logic Programming)
language augmented with the universal quantifier. In this section we specify
the syntax of CLPY and give some usual definitions like the set of expressions
and the free variables of an expression. The universal quantifier is part of
the language. In other works like [Bru93] the universal quantifier is used for
compiling negations of predicates.

The syntax of CLPY in Backus Naur form (BNF) is:

program = €|definition.program

definition = p(?) : ~exp

exp u=tell(c) |p(_t)) |exp, explezp; exp|3X.ezp|VX.exzp
where

€ is the void string

c is a constraint

Y, 7 are vectors of variables and terms, respectively.
A definition of the form

p(?) : —exp

is also called “clause”, p(?) is called “the head of the clause” and exp is
called “the body of the clause”. The variables in X are called the arguments
of the clause.

Ezp is the set of expressions defined by the rule ezp above and denoted
by E, F, G, Body. In other words, Ezp is the smallest set which satisfies the
following properties:

Ezp 2 {tell(c) | c € Constraints}
Exp D {p(t1,....t3) | p € PredsN, ar(p) = n, 1, ...,t, € Terms}
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Ezp 2 {(E\, B») | B\, B; € Exp}
Ezp 2 {(Ey; B»)| 1, B, € Exp}
Exp D {3X.E| X € Vars, E € Ezp}
Ezp 2 {VX.E|X € Vars, E € Ezp}

21

An atomic expression is an expression of the form tell(c) or p(t1, ..., ).

Remark: the notation Body for an expression is reserved for the case

where the expression is the body of a clause.

vars : TermsUConstraints U Ezp — Vars is the function that gives the

set of variables of a term, constraint or expression. It's defined inductively

the usual way:

vars(X) = {X}

vars(f(t1, .., tn)) = U=y, vars(ti)
vars(a(ty, .., tn)) = U1, vars(ts)
vars{(—¢)) = vars(c)

vars((c1 A ¢2)) = vars(e1) U vars(cz)
vars({cy V e2)) = vars(e;) Uvars(cz)
vars((e1 = ¢2)) = vars(c1) Uvars(eg)
vars((3X.c)) = {X} Uvars{c)
vars((VX.c)) = {X} Uwvars(c)
vars(tell(c)) = vars(c)

vars(p(ty, ... tn)) = U=y o vars(ts}
vars({Fy, Ep)) = vars(E;) Uvars(Ez)
vars((Ey; Ep)) = vars(E1) Uvars(E»)
vars((3X.E)) = {X} Uvars(E)
vars((VX.E)) = {X} Uvars(E)

fv : Terms U Constraints U Exp — Vars is the function that gives

the set of free variables of a term, constraint or expression. Its definition is

similar to the definition of vars except for the cases:
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fo((3X.¢)) = fo(e) - {X}
Fu((Ve.B)) = fo(c) - {X}
Fv((3X.E)) = fo(E) - {X}
fu{(VX.E)) = fo(E) - {X}

E{X/t} denotes the expression E where all the free occurrences of X
have been replaced by £. It can be defined inductively as:

X{X/t} =t

Y{X/t} =YY #£X

.t ){ X/} = f{X/t} o ta{X/th)
tell(c){ X/t} = tell(c{X/t})

Dltn, s ta WX/} = DLX/8}, o tal X))
(Br, B){X/t} = (B{X/t}, Ba{X/2))
(E1; B2){X/t} = (Br{X/[t}; Eo{X/t})
(3X.E){X/t} = (31X.E)

(AV.EMX/t} = QY.B{X/t})) f Y # X
(VX.E){X/t} = (VX.E)

(VY.EY{X/t} = VY.E{X/t}}) Y #X

The cases created by the structure of constraints are similar to those for
expressions and were omitted.

o F denotes the expression ¥ in which each free occurrence of a variable
X is replaced by o(X).

E(Xy,...,Xn) or E(?) denotes a parametric expression - an expression ¥
where some of its free variables, Xi,..., X, have been chosen as parameters.

E(ty,...,1,) is the expression FE where the free occurrences of its param-
eters have been replaced by the terms t;,..,%,. An equivalent but more
cumbersome notation is E{X) /t;}...{ X, /tn}. The parameters X1,.., X, are
to be deduced from the context.
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Progs is the set valid programs defined by the rule program above and
the following restrictions:

¢ a program can contain at most one definition for each predicate name
(of a given arity)

e there are no free variables in the body of any clause except for its

arguments.

Alternatively, the set of valid programs can be defined as the smallest set
which satisfies the following properties:

Progs D {e}
Progs D {p(X1,...,Xn) : —Body.P| P € Progs,
fv(Body) — { X1, ..., X} = 0}

A natural convention - borrowed from Prolog - is to consider that all free
variables in the body of clause which are not arguments of the clause are
existentially quantified over the entire body. This convention simplifies the
writing of source code in CLPY and other logical languages.

2.3 The constraint domain

Like CLP, the CLPV language is parametrized by a constraint domain.
In this section we introduce the relation Fp which, together with the set
of constraint names ConstrN, defines the domain of constraints. We also
introduce its extension Fpjs to multiple constraints.

As mentioned in the section 2.1 , constraints are similar to predicates.
While predicates can have definitions which characterize their properties, the
properties of constraints are given by the two relations presented above, p
and Fpps. Therefore, constraints can be seen as “black box™ predicates (their
definitions being unknown), their only known properties deriving from the
two relations.
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Fp is any binary relation on Constraints which satisfies the following
properties:

o for all ¢ € Constraints we have falselp ¢, ¢bp true and cbp c.
e if e1 Fp e and €3 Fp e3 then ¢; Fp c3.

o if ¢; Fp ¢ then Vi € Terms, VX € Vars we have ¢ {X/t} Fp
62{X/t}.

The first two properties imply that p is reflexive and transitive and the

third that it is stable with respect to variable substitution by terms.
Remark: the first-order entailment relation e Fpo @ between constraints

defined the usual way satisfies all the properties required for +p.
Intuitively the relation I p captures the notion that a constraint “implies”

another, e.g.
ekpd

is to be interpreted as "¢ implies d”. Some restriction must be imposed on
this relation in order for the soundness of the proof systems presented in the
next chapter to hold. In general it is desirable to impose as few restrictions
as possible. We believe that the definition of Fp achieves a good balance
between being simple and imposing few restrictions.

Constraints” is the set defined as

Constraints® = U Constraints™
neN*

where Constraints®™ = Constraints x ... X Constraints (n > 0 times).

Fpas is a binary relation on Constraints™for which we will use the fol-
lowing notation: if

z ={c1,..,cn) € Constraints™ and

y = (dy, ..,dm} € Constraints™
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then we will write z Fpps v a8

€1,.€2 Fpa dy; i dm

The relation is uniquely defined by the following property:

Cly s Cn FDM d1} .5 dm

iff for all e € Constraints such that Vi € 1,n, e Fp ¢ there exists
j € 1,m such that e Fp d;.

We now extend the notation Fpas to also stand for two unary relations
on Constraints™: e Fpar and Fpjps @ defined as follows:

® C1,...0n Foap i €1, .., 60 Fpar false

o Fpardy;..;dm iff true Fpar dy; . dy

Remark: Together, ConstrN, Fp and Fpps form the constraint domain D
which is a parameter of the CLPY language.

The relation Fpps is the natural generalization of |-p to more than one
constraint:

€1;.,6n FDM di; 5 dm

is to be interpreted as “the conjunction of ¢y, ..., ¢, implies the disjunction
of di,...,d" Moreover, by extending Fp to also have meaning for the
specific cases where n = 0 or m = 0 we capture the notion that a conjunction
of constraints “implies” false (is false) and that a disjunction of constraints
“s implied” by true (is true). The practical reason for this extension is to
simplify the side condition of the rule (tell) introduced in the next chapter
where the number of constraints in the left or right side of a sequent may be
Zero.

Remark: the relation Fpys doesn’t have to be totally computable for
the proof systems defined in the following sections to be sound. However,
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being only partially computable may reduce the number of proofs that can
be built in those systems.

The relation Fpys is easily computable if the constraint domain has the
Independence of Negated Constraints property (INC) [Mah99].

An important example of constraint domain is the Herbrand domain -
denoted by H - where the only constraint is the unification of terms (“=").
The instance of CLP where the constraint domain is H - CLP(H) - is the lan-
guage Prolog [L1087]. Hence CLPV(H) is Prolog extended with the universal
quantifier.

The Herbrand domain has Independence of Negated Constraints property
(INC) and therefore the relation Fpas on this domain is computable.

Example: the following program, named NI, is a CLPV(H) program
(and also a Prolog program as it doesn’t use the universal quantifier):

nat(X):-tell(X=0)
; Y. (tell(X=s(Y)), nat(Y)).

int (X) :-tell(X=0)
; dY. (tell(X=s(Y)), int(Y))
i JZ. (tell(X=p(Z)), int(2)).

It defines two predicates nat and int which have the following intuitive mean-

ing:

o nat(t) is true iff ¢ is either 0 or a term of the form s(s{...(0}...)). Hence
nat(t) is true if and only if ¢ is a unary representation of a natural

mimber.

e int(t) is true iff ¢ is either 0 or a term of the form s(s(p(...(0)...)))
where s and p can alternate freely. Hence int(t) is true if and only if ¢
is a unary representation of a natural number.
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Remark: it is obvious that an integer may have more than one represen-
tation: for example, 2 can be represented as s(s(0)) or p(s(s(s(0))). With
a slight complication we can modify int(f) to be true only when ¢ is 0, or
s(s(...(0)...)), or p(p(...(0)...)) (no alternation of p and s allowed).

2.4 Finite success semantics

This section contains the finite success semantics of the CLPV language.
First a logical semantics is presented in the form of a sequent calculus. The
finite successes of a goal are defined in relation to the (finite) derivations in
this calculus. We prove some useful properties of the set of successes which
will be needed in the following chapters.

An important notion for a logical language is the successes of an expres-
sion (or goal). In Prolog, the successes are substitutions of the existentially
quantified variables in the goal which make the goal true. In CLP and CLPY
the successes are constraints that “imply” the goal.

We will give the logical semantics of the CLPY language by a sequent
calculus of the form:

P ek E

which should be interpreted as “the constraint ¢ is a success (or solution)
of the expression (goal) E in the context of the program P". The subscript
s stands for (finite) “success”.

The rules of the calculus are:

P, ¢ 4 tell(co) (tell)

(tell) having the side condition: ¢; Fp ¢

Pect, By Pocky; B
P,C"a (E13E2)

(;)
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Pock By Pcr By
P, ct, (Ey; By) G1) P ch, (E1;E2)(’2)

Pcly Body(?

)
B, ok, p(7) )

where p(?) : —Bod'y(f) is a clause in the program P

P, ct; E(t)
B o, aX.ECD) )

P ck; B(Y)
P ch, VX.EX) )

(V) having the side condition: ¥ ¢ fv(c) U vars(E(X)).
False is the set defined by:

False = {c € Constraints|ctp false}

Suce : Progs x Exp —» p(Constraints) is the function that gives the set
of successes of an expression E in the context of a program P:

Suce(P, E) = {c € Constraints| (P, cl-; E)isderivable} — False

Sometimes we will omit the first parameter of Suce when it is implicit
from the context.

The definition of Succ given above has the drawback that an expression
F can have two successes ¢), ¢z such that ¢; Fp ¢ but e2 ¥p ;.

For example (X = 0AY = 0) and X = 0 are successes of tell(X = 0)
and (X =0AY =0 Fp X =0but X =0Fp (X =0AY =0). Knowing
that X = 0 is a success of tell{X = 0) implies that (X =0AY = 0) is also
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a success of fell(X = 0), therefore specifying (X = 0AY = 0) as a success
can be seen as “redundant”.

In practice we might be interested by the “non-redundant” successes of an
expression. These successes, called core successes are given by the following
function:

SuccH : Progs x Exp — p(Constraints) is a function defined as follows:

SuccH(P, E) = {c € Succ(P, E)|Vd € Suec(P,E),ctpd=dlpc}

By a slight abuse of language we may refer to the core successes simply

as successes.

Example: Recall the previous example (the program NIT):

nat(X):-X=0
; 3Y. (tell(X=s(Y))}, nat(Y)).

int (X):-X=0
; JY. (tell(X=s(Y)), int(Y))
3 32.(tell(X=p(Z)), int(Z)).

Using the F, calculus one can derive that X = s(0) is a success of the
expression (goal) nat(X):

Q
NI, X = 5(0) s 2el(X = 5(0)) °) NI, X = s(0) s nat(0)
NI, X = 3(0) F, 3Y.(tell{ X = 5(0)), nat{0)) G)
NI,X = o(0) F, tell(X =0, F¥(-)
NI, X = 5(0) s nat(X) )

(;2,3)

where  is:

NI, X = 5(0) b, tell(X = 5(0)) (tell) .
NI, X = s(Q) b, tell(X = 03 3Y.() o G1)
NI, X = 5(0) s nat(0) -

The predicates nat and int contain the following successes:
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Suce(NI,nat(X)) 2 {X =0,X = 3(0),...}
Succ(NI,int(X)) D {X =0,X = 5(0),..., X = p(0), X = p(s(0)), ...}

The core successes of nat and int are:

SuccH(NI,nat(X)) ={X =0,X = 5{(0),...}
SuccH(NI,int(X)) = {X =0,X = s{0), ..., X = p(0), X = p(s(0)), ...}

It’s obvious that Succ(NI,nat(X)) is included in Suce(NI,int(X)). A
proof system that can be used to prove success inclusion will be presented
in the next chapter. -

Remark: The successes of an expression can be ground or not. For
example true is a ground success of 3X.(tell{(X =2))and X =2and Y =2
are non ground successes of the same expression.

Remark: The -, calculus might be used to write an interpreter of CLPY
were it not for the rule (3). This rule needs the interpreter to “guess” a term
t which will replace the existentially quantified variable X. This problem is
solved in Prolog by making X an uninstatiated term which will be progres-
sively instantiated during the execution (proof search). The same solution
can be used for CLPV.

The next proposition gives some useful properties of the set of successes
which will be used for proving the soundness of the proof system presented
in the next chapter. It also confirms that the logical semantics have the
expected properties (e.g. Succ(P, (3X.E(X))) = |Jscrerms Suce(P, E(t))).

Proposition 2.1: For each CLPY program P, predicate p(?) defined
in P by p(?) : —Body(jf)), expressions E, Ey, E; and term ¢ the following
properties hold:

1. Suce(P,tell(c)) = {d € Constraints|dtp c} — False.
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2. Succ(P,p(T)) = Succ(P, Body(?)).

3. Suce(P,(Ey, By)) = Suce(P, E1) N Suce(P, By).
4. Succ(P,(Ey; By)) = Succ(P, By) U Succ(P, Ba).
5. Suce(P, (3X.E(X))} = Usererms Succ(P, E(2)).
6. Succ(P,(VX.E(X))) = MicTerms Suce(P, E(t)).

7. if Suce(P, E) C Succ(P, E») then Vi € Terms, Suce(P, E1{X/t}) C
Succ{ P, E3{ X/t}).

8. if Succ(P, Ey) C Succ(P, E2) then Vo € Subst, Suce(P,cE;) C Succ(P, 0E3).

Proof:

1. Succ(P,tell(c)) = {d € Constraints|dtp c} — False

If d € Suce(P, tell(c)) then P,d F, tell{c) is derivable and d ¥p false .
The only rule at the root of the derivation tree can be (tell):

P dr, telie) o

with d Fp ¢ hence d € {d € Constraints|dp ¢} — False and therefore
Suce(P, tell(c)) C {d € Constraints|dtp c} — False

If d € {d € Constraints|d Fp ¢} ~ False then d Fp ¢ and d ¥p false
therefore P, d |, tell(c) is derivable:

P ar, ey oD

and thus

Suce(P, tell{c)) D {d € Constraints|d-p c} — False

2. Suce(P,p(?)) = Succ(P, Body(7)).

44
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If ¢ € Suce(F, p(?)) then P,ct, p(?) is derivable. The only rule at the
root of the derivation tree can be (def):

P, cl, Body(T

)
P orip(?) )

where p(?) : —Body(?) is the definition of p. The same tree without
the root sequent, P, ¢, p(?), is a derivation for ¢ € Succ(P, Bady(?)).

Therefore:
Suce(P,p(?)) C Succ(P, Body(?))

If ¢ € Suce(P, Body(_t))) then P, c b, Body(_t)) is derivable. If €} is its
derivation tree then P,cl, p(?) is also derivable:

Therefore:
Suce(P,p(T)) 2 Succ(P, Body(?))

We conclude that Suce(P, p(?)) = Suec(P, Body(_t'))).

3. Succ(P, (E1, Ea)) = Succ(P, E1) N Suce(P, E).
If ¢ € Succ(P, (E1, E;)) then P, ¢, (E, E») is derivable. The only rule
at the root of the derivation tree can be (,):

P,c'_.gE]_ P,cl_sE‘z

P‘JCl-S (E11E2) (,)

Hence P, ¢+, Ey and P, ¢, E; are derivable therefore ¢ € Succ(P, Ey)
and ¢ € Succ(P, E») so

Succ(P, (E1, E3)) C Succ(P, Ey) N Succ(P, Es)



24. FINITE SUCCESS SEMANTICS _ 33

If ¢ € Suce(P, E))NSucc(P, Ez) then ¢ € Succ(P, E1) and ¢ € Succ(P, Ez)
so P,cFy By and P, ¢+, Es are derivable. If 2 and §2; are the derivation
trees than we can also derive P, ¢ b5 (1, Ea) :

Q Q )
P1C|_8 (E15E2) !

Therefore
Succ(P, (Er, Ez)) 2 Succ(P, By) N Suce(P, Ey)

and we conclude that Succ(P, (E1, E2)) = Suce(P, E1) N Succ(P, E).

4. Suce(P, (Ey; E2)) = Suce(P, B1) U Suce(P, Ez).

If ¢ € Succ(P, (Ey; B3)) then P, ¢b, (E1; E2) is derivable. The only rule
at the root of the derivation tree can be (;1) or (;2). The two cases being
symmetrical, we consider only the first one:

P, [+ I-s El
P, ck; (Ey; By)

;1)
Hence P, ¢ -, E; is derivable therefore ¢ € Succ(P, E1) so
Succ(P, (Ey; By)) C Succ(P, E1) U Succ(P, Es)

If ¢ € Succ(P, E;)USucc(P, E2) then ¢ € Succ(P, E,) or ¢ € Succ(FP, Ez)
so either P, ¢+, E; or P, c b, E; is derivable. Because of the symmetry
we only need to consider the first case: if 2 is the derivation tree then
P, ¢, (E1; E») is also derivable:

45 G
P,ct, (Ey; Eg)”

1)
Therefore

Suce(P, (Ey; E)) 2 Succ(P, E1) U Succ(P, Ez)
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and we conclude that Succ(P, (E1; B3)) = Suce(P, E1) U Succ(P, B).

5. Suce(P, (IX.E(X))) = UseTerms Suce(P, E(t)).

If c € Suce(P, (IX.E(X))) then P, ¢ ks 3X.E(X) is derivable. The only
rule at the root of the derivation tree can be (2):

P, clk, E(ty)
P, et; IX.E(X) )

for some term #;. Hence P, c 4 E(ty) is derivable which implies ¢ €
Suce(P, E(ty)) and therefore

Succ(P,(AX.E(X))) C | Succ(P,E(t))
te€Terms

If ¢ € Usererms Suce(P, E(t)) then there exists a term #p such that ¢ €
Succ(P, E(t)) which implies that P, ¢ F, E(ty) is derivable. If £ is its
derivation tree then P, ¢}, 3X -E(X) is also derivable:

0
P, ch, 3X.E(X) @

Therefore

Suce(P,(3X.E(X)) 2 |J Suce(P, E(t))

t€Terms

6. Suce(P, (YX.E(X))) = Myerprms Suce(P, E(t)).

If c € Suce(P, (VX.E(X))) then P, ¢+, VX -E(X) is derivable. The only
rule at the root of the derivation tree can be (¥):

P, ct, E(Y)
P, ck, YX.E(X) (¥)

with Y ¢ fu(c) Uvars(E(X)) hence P, ct,; E(Y) is derivable.

Lemma 2.1.1: Y ¢ fv(c) and P, ¢ I, E(Y) is derivable then Vi, €
Terms, P, ¢, E(ty) is derivable.
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Proof: by induction over the structure of the derivation tree of P, c b,
E(Y).
Some of the cases are trivial. The non trivial ones are:

o (tell):

P, ¢; F, tell(ca) (tell)

with ¢; Fp c3. By definition of -p we also have ¢;{Y/t} Fp co{Y/%s}.
Since Y ¢ fv(c) we have c;{Y/tp} = ¢1 therefore ¢1 Fp c2{Y/tg} hence

Py o s tll{¥ oD oD

e (A):

P'J c "a El(t) (3)
P, ch, 3X.E(X)

So E(Y) = 3X.E(X). We have two cases:

a. Y = X then E(ty) = AX.E1(X){X/to} = 3X.E(X) = E(Y). Since
P, ct, E(Y) is derivable, so is P, ¢ b5 E(tg).

b. Y # X then E(ty) = BX.BL(X){Y/to} = IX.(Ea(X){Y/to}) or
E(to) = 3X.(E1{Y/to}) so we want to prove that P, c l; 3X.{(E {Y/{o}) is
derivable.

Since Y ¢ fv(c) we have by induction hypothesis that P, ¢ 5 E1(t){Y/to}
which is the same as P, ¢+, By {X/t}{Y/to} is derivable.

If © is its derivation tree then we can put “on top” of £} the following
rule:

P, ctg By {Y/te HX/H{Y/to}}
P, ek AX.(E1{Y/to})

€)

This is because E1 {Y/to H{X/t{Y/to}} = E1{X/t}{Y/to} and therefore
we conclude that P, c b, E(ty) is derivable.
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o (V):

P, [ |—5 El(Z) (V)
P, ct, YX.E(X)

with Z ¢ fv(c) Uvars(E(X)).

So E(Y) = VX.E (X). We have two cases:

a. Y = X then E(tp) = (VX.E (X)){X/tp} = VX.E(X) = E(Y). Since
P, ¢k, E(Y) is derivable, so is P, cF; E(fp).

b. Y # X then E(ty) = (VX.E(X)){Y/to} = VX.(BE1(X){Y/to}) or
E(to) = VX.(E1{Y/te}) so we want to prove that P, ct, VX.(E1{Y/to}) is
derivable.

Since Y ¢ fu(c) we have by induction hypothesis that P, ¢ - Ey (£){Y/to}
which is the same as P, ¢ -5 En{X/Z}{Y/ts}, is derivable.

If Q is its derivation tree then we can put “on top” of Q the following
rule:

P, cts By{Y/to H{X/Z{Y/to}}
P, cby VX.(E1{Y/to})

(v)

This is because By {Y/to}H{ X/Z{Y/to}} = E1{X/t}{Y/1p} and therefore
we conclude that P, ¢ -, E(tp) is derivable.
This concludes the proof of lemma 2.2.1.

Since ¥ ¢ fu(c) we deduce by lemma 2.1.1 that ¥ty € T'erms, P, ¢
E(Y){Y/to}is derivable. Since Y ¢ vars(E(X)) we have that E(Y){Y/t} =
EB(X){X/YHY/to} = BE(X){X/to} = E(ty) so P, ct5 E(tp) is derivable.

Therefore

Suce(P,(VX.E(X))) C [ Succ(P,E(t))

te€Terms

If ¢ € Viererms Succ(P, E(t)) then ¢ € Succ(P,E(Y)) where Y is a
variable such that ¥ ¢ fv(c) Uvars(E(X)), hence P, cF, E(Y) is derivable.
If its derivation tree is §2, then P, ¢, VX.E(X) is also derivable:
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Q
B o vXED) "

Therefore

Succ(P, (VX.E(X))) 2 (| Suce(P,E(t))

teTerms

7. if Suce(P, By) C Succ(P, E;) then Vi € Terms, Suce(P, E1{X/t}) C
Succ(P, B2{ X/t}). :

We will prove it by induction over the structure of the expressions E,
and Fo.

Case E; = tell(c1), Ea = tell(ep):

From the definition of p we have that ¢; Fp ¢; s0 ¢ € Suce(P, Ei)
hence ¢; € Succ(P, E;) therefore P, ¢; b, tell(ca) is derivable. The only way
to derive it is by the rule (teil):

P ey tell(cz) (tell)

We deduce that ¢; Fp ¢z and from the definition of Fp we obtain Vi €
Terms, c1{ X[t} Fp ea{X/t}. If ¢ € Succ(P,tell{c;{X/t})) then c ¢ False
and ¢ Fp ¢1{X/t} by transitivity of Fp we have ¢ Fp co{X/t}and thefore
¢ € Suce(P, e {X/1}).

Hence Vt € Terms, Suce(P, E1{X/t}) C Succ(P, E{X/t}).

The other cases are trivial.

8. if Succ(P, E)) C Succ(P,Ep) then Yo € Subst, Succ(P,0F;) C
Succ(P, o E3).

Each finite substitution ¢ can be decomposed in a finite number of sub-
stitutions o; that change a single variable Xj into a term {;:

T=0pQ...00
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Let Ey; be 0;...01E, and Es; be g;...01 FE2 (with Ero = E; and Eyp =
Ey).

We use the previous property (lemma 2.1.7) n times: from Suce(P, B, ;) C
Succ(P, Ez,,') we deduce Succ(P, El,i+1) = Suce(P,0i11E1,:) = Suce(P, E]_,i{Xi/t;‘} -
Succ(PF, E2,i{Xi/ti} = SUCC(P, 0’,'+1E2,,') = Suce(P, E2,5+1).

We conclude that Suce(P,0E1) C Succ(P, o Es).

The finite success semantics of CLPV are conform to the semantics of
CLP as presented in chapter 1 and [Mah99].

The syntax of CLP and CLPY differ slightly: in CLP there can be mul-
tiple clauses for a predicate unlike CLPY. In CLPY the existential quantifier
is explicitely written while in CLP it is implicit in the predicate definitions.
In CLP the arguments of clause head can be terms while in CLPY they can
only be variables.

Definition: The translation TR! between CLP and CLPY is a function
that associates to each expression and program in CLP an expression or
program in CLPV. It is defined as follows:

efor an expression: TRI1(c) = tell(c) and TR1(p(T)) = p(F)

sfor a program: for each definition of a predicate p of arity mwhose
clauses are:

p(3t) : —Body.

p(33) : —Bodyp.

we have a predicate p in the CLPV program whose definition is:

p(?) : —Bodi1; ...; Bodyn

where Y is a vector of fresh variables of length m. Body; is defined
as 3V .(tell(siy = X1), o, tell(Sim = Xm), Bodyiz) where ¥ are all the free
variables in 3! and Body; and Body;s = T'R1{Body;).

Proposition: If < Glc >— ... =< o|d >,solv(d) # false,G' =
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TR1(G), for all constraints ¢/ we have
solv(c') = false if f ¢ Fp false
and Ve, c; € Constraints, cy Aca bp ¢1, 1 Ace Fp ¢z then

d € Succ(TR1(P), (G, tell(c)))

Proof: We use an induction on the length n of the derivation of the
answer ¢ in CLP.

e n=1:

< Glc >—< o|d > thefore G = ¢; and d = c; A c. We also have solu(d) #
false hence d ¥p false.
Thus:

d € Succ(TR(P1), (tell(c1), tell(c)))

because c; Ackpcpand ¢; Ackp e
e n>1:

< Gle >-< Gyler >—*< o|d > with solv(d) # false and d € Succ(TR1(P1), (G, tell(c1)))
where G} = TR1(G1). Thus d € Suce(TR1(P1),G}) and d € Suce(T'R1(P1),tell(c1))
hence d+p ¢; and d ¥p false.
We have the following cases:
-G = (G, c2) therefore the first transition is < G, cz|c >—=< GileAeg >
hence ¢; = ¢ A ez and solv(e;) # false. We have:

Suce(TR1(P1), (G}, tell(cp)), tell(c))) = Succ(TR1(P1), ((Gy, (tell(cz), tell(c)))))

Since ¢; = ¢ A ¢y and d Fp ¢; we obtain by definition of Fp that dFp ¢
and d Fp ¢; hence d € Succ{TR1{P1), (tell(cz), tell(c))) and therefore d €
Succ(TR1(P1), ((GY, (tell(ez), tell(c))))).
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-G = (G, p(?)) therefore the first derivation is < G, p(?)[c >
G2, 81 =11, . 8, = 1, Bie > where p(s) : — By is the definition of p in the
program P1 and p(#) : —B is the definition in which the free variables were
renamed such that they are fresh.

We have that G1 = (Gg,8; = b1y ooy 8 =< tg,B) and ¢; = . By induc-
tion hypothesis, d € Succ(TR1{P1), (G}, tell(s1 = ty),..., tell(t), = ), B))
where G = TR1(G;) and B’ = TR1(B).

We have that

Suce(TR1(P1), (G}, p(7))) = Suce(TRI(P1), Gy) N Succ(TR1(P1),p( 7))
If the definition of p in the CLPV program is
p(X) : —(3V3.(tell(sg, = X1), e, tell(som = Xi), BY)); ..

where 175 are all the free variables in 3} and By = TR1(By) then we
obtain

Succ(TR1(P1),p(?)) 2 Suce(TR1(P1), (tell(s1 = t1), ..., tell (3, = ty), B'))
by substituting 75 with the corresponding variables in 3 given by re-

naming mentioned above.

2.5 Infinite success semantics

In the previous section the notion of finite success was introduced. Tts
dual, presented in this section, is the infinite success,

A constraint c is a finite success of a goal E (in the context of a program
P) iff there exists a derivation of

Pck, E

In other words, a depth-first interpreter built from the rules of - D calcu-
lus will find a derivation in finite time iff c is a finite success of E. If ¢ is an
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infinite success of F then the same interpreter may find a derivation or may
not terminate. We define the infinite successes in a similar way to the finite
ones by taking into account the finite and infinite derivations.

Finally we prove that the infinite successes have the same properties as
the ones proved for finite successes.

In order to define the notion of infinite successes we will first define a
sequent calculus of the form:

P, [ l_is E

which should be interpreted as “the constraint ¢ is an infinite success of
the expression (goal) F in the context of the program P”. The subscript is
stands for “infinite successes”.

The rules of the sequent calculus are the following are identical to the
ones of the sequent calculus I; except for the rule (trim):

tell
P, e Fis tell(cz)( € )
(tell) having the side condition: ¢; Fp ¢

Pckiy By Pochy; By
P, ¢ Fig (En, En)

(;)

P, ctis B4 (1) P, clkis B (2)
P, cti; (B E2) " P ety (Br; Bg) "

P, ctis Body(?)
P oclyy p(?)

(def.)

where p(?) : —Body(?) is a clause in the program P

P, cti, E(t) @
P, ¢ ki 3X.E(X)
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.P, [+ I—,fs E(Y)
P cra VXE(X)

(V) having the side condition: ¥ ¢ fu(e) Uvars(B(X)).

Perup®)

?

Definitions: A derivation tree in the system k;, which contains no ap-
plication of the rule (trim) is called a complete derivation otherwise it is
called an incomplete derivation,

A branch that ends with an an application of the rule (trim) is called an
incomplete branch,

An extendable branch is an incomplete branch such that itg (trim) leaf
can be replaced by a derivation of height greater than 1. An extendable
derivation is an incomplete derivation such that all its incomplete branches
are extendable. An infinitely extendable derivation is an extendable deriva-
tion such that the derivation resulting after the replacement of all (trim)
leafs by derivations whose root is not (trim) is also infinitely extendable.

We will also call an infinitely extendable derivation an infinite derivation.

An i-derivation is a complete or infinitely extendable derivation.

Remark: A complete derivation in Fis is a also derivation in -5 and vice
versa.

ISucc : Progs x Ezp — p(Constraints) is the function that gives the
set of infinite successes of an expression F in the context of a program P:

ISucc(P,E) = {c e Constraints | (P, ¢ -y, E) has ani—derivation}— False

ISuccH : Progs x Ezp — p(Constraints) is the function that gives the
set of infinite core successes of an expression F in the context of a program
P
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ISuccH(P, E) = {c € ISucc(P, B} |Vd € ISucc(P,E),ctpd=dlFpc}

Remark: The notion of infinite success is related to the notion of non-
terminating computations: an expression {(goal) can have infinite successes
even if its execution doesn’t terminate. Useful non-terminating computa-
tions appear in reactive programs which are programs that interact with an
external envircnment. Examples of such programs are operating systems
and programs that control or monitor external devices.

ISuce parallels the function Succ for infinite successes. Moreover all the
properties of Suce given in proposition 2.1 hold also for ISucc as shown by
the following:

Propeosition 2.2: For each CLPY program P, predicate p(?) defined
in P by p(?) : -—Body(?), expressions E, Fy, F» and term ¢ the following
properties hold:

1. ISuce(P,tell(c)) = {d € Constraints|dtp c} — False.
9. ISucc(P,p(T)) = ISucc(P, Body(T)).

3. ISuce(P, (B1, By)) = ISuce(P, E1) N ISuce(P, Ez).

4. ISucc(P,(Ey; E3)) = ISucc(P, Ey) U ISucc(P, By).

5. ISuce(P, (3X.E(X))) = Uscrerms ISuce(P, E(2)).

6. ISucc(P, (VX.E(X))) = Nicrerms ISuce(P, E(t)).

7. if ISucc(P, Br) C ISucc(P, E;) then Vt € Terms, ISucc(P, E1{X/t}) C
ISucc(P, E;{X/t}).

8. if ISucc(P, Ey) C ISucc(P, E;) then Vo € Subst, ISuce(P,cE,) C
ISucc(P, o Fa).
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Proof: analogous to the proof or proposition 2.1.

Example: the following program called Lst defines two non-terminating
predicates list0 and list01:

listOo(L):-
JL1. (tell(L=[0 } L1]), 1listO{(L1)).

1list01{L):-
JL1.((tel1{L=[0 | L1]) ; tell(L=[1 | L1i])), list01(L1)).

Intuitively li5¢0(L) “checks” that L is an infinite list composed only of zeroes
and list01(L) “checks” that L is composed either of zeroes or ones.

They can be seen as models of reactive processes that monitor the state
of an external device (given here by the elements of the list L) and when the
state has an invalid value they trigger an action (here they fail).

We would like to say that one successes of [ist0(L) is the infinite list
composed of (. However we cannot explicitly write this success of list0(L)

i.e. we cannot write
L=]0,..]

as there are no infinite terms in the formalism.

A possible solution is to add infinite terms to the formalism. This would
result in a higher complexity which in our opinion is not worth.

Another solution is to have a special constraint system which contains
the following:

s a term infl0 representing an infinite list of elements equal to 0

¢ a constraint hl(L, H,T) whose is signification is: H,T are the head
and the tail of L. The following holds for the constraint:

true Fp hl(infl0,0,infl0)
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therefore hi(L,0,infi0) Fp hi(infl0,0,infl0) holds too.
We can derive

Lst, hi(L,0,infl0) b, list0(L)

by the following derivation (we omitted the name of the program Lst):

RIE, 0, infT0) Fou teA, 0, ingi0)) 00 © (
RI(L. 0. infi0) Fas tell(BI(L, 0, infl0)), liat0infia)) )
RI(L,0,infl0) b5, 3L (tell(RI(L,0, L1)),1list0(I1)) (def)

hi(L,0, inf10) Fe, listO(L) '

€}

where ) is the subtree:

)
RIE. 0, inf10) Fou tell(RIGnT 0,0, nf10) T2 RI(L, 0, infi0) ey st0(infi0) def..3)
RI(L, 0, infl0) Fi, list0(in I0) el

where © is the infinite branch.
Thus we have

hi(L,0,infl0) € ISucc(Lst,listO(L))
but
RI(L,0,infl0) ¢ Succ(Lst, list0(L))

Another solution is to “hide” the infinite terms and “expose” only parts of
them. This means that the free variables in a goal are not unified to infinite
terms but only to finite parts of them.

We can add to the previous program the following predicates:

1istO(L,N,LR):-
N=0,LR=[],1ist0(L)
;. N=s(Ni),
L=[0 | L1],
listO(L1, N1, R1).

list01(L,N,LR):-
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¥=0,LR=[],1iet01(L)

i N=s(N1),
(tell(L=[0 | L1]) ; tell(L=[1 | L11)),
list01(L1, N1, LR).

For readability we use the Prolog convention of considering the free variables
that appear in the body of a predicate but not in its head as existentially
quantified.

The predicate listO(L, N, LR) returns in LR the list composed by the
first N elements of the infinite list L whose elements are all 0. The predicate
list01(L, N, LR) is similar,

We have that

SueccH(Lst,3L.listO(L, N, LR)) =10

because listO(L, N, LR) does not terminate.
However

ISuccH(Lst,3L.list0O(L, N, LR))={(N=0,LR = D), (¥ =s(0),LR = [on...,}
We also have
ISucc(Lst,3L.Iist0(L, N, LR)) C ISucc(Lst, 3L.list01(L, N, LR))

In conclusion the notion of infinite successes extends the notion of finite
successes by taking into account the infinite derivations. More about infinite
successes and their relation with finite successes will be presented in chapter
4,



Chapter 3

An induction based proof
system for finite success

equivalence

In this chapter a formal system for proving success inclusion (and there-
fore success equivalence) is presented. The goal of the system is to enable
one to prove that the set of finite successes of a CLPY expression (goal) are
included in the corresponding set of another expression. The proof system
is based on the Gentzen calculus for the first order logic. We add an in-
duction rule that allows proving the success inclusion for recursively defined
predicates.

The first section introduces the increasing approximations of the pred-
icates. Intuitively the n-th degree approximation corresponds to unfolding
n times the original predicate. Its successes are the successes of the initial
predicate that can be obtained by at most n nested calls. We prove that the
set of successes of the initial predicate is the union of the set of successes of
all its approximations. Thus the increasing approximations provide a way
to eliminate recursion which will be used later in the chapter.

In the second section we prove that the set of successes is equal to the
least fixed point of an operator on the set of programs.

The third section presents a proof system for the inclusion of finite suc-

47
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cesses of CLPV expressions (goals) . The system contains rules from the
Gentzen calculus, an induction rule and a rule for the constraint domain.
We illustrate the system with an example.

In the fourth section we prove the correctness of the system when the
induction rule is not used. We show with an example that when the induction
is used the gystem is not correct without additional conditions.

The fifth section introduces a sufficient condition for the correctness of
the full system. The correctness proof based on the notion of finite approx-
imations is given.

The sixth section defines a weaker condition for the correctness of the
proof system and gives the corresponding proof.

In the seventh section we show that other useful properties of programs
like running time and memory consumption can be expressed with success
inclusion and therefore proved using the system described in this chapter.

3.1 Increasing approximations of predicates

In this section the approximations of a predicate will be defined. They
are nonrecursive predicates with increasing sets of successes that are included
in the set of successes of the predicate.

After introducing their definition we prove in proposition 3.1 their main
property, namely that each success of the predicate is a success of an ap-
proximation and vice versa. This property, together with the fact that their
definitions are nonrecursive will be used later in the chapter.

For the purpose of the following definitions we need to extend the set of
predicate names with the names of predicate approximations:

PredsN AI denotes the extended set of predicate names which includes
PredsNand for each predicate name p € PredsN, PredsNAI contains
the predicate approximations names p? ,n € N . We suppose that p} . ¢
PredsN.

Other definitions that depend on PredsN will be extended accordingly,

e.g.
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EzpAI, ProgsAI denotes the corresponding extended set of expressions
and programs.

SuccAl : ProgsAI x ExpAl — p(Constraints) denotes the extension
of the function Succ.

The definition of the sequent calculus -, must be extended to take into
account the extended programs and expressions.

For convenience we will henceforth refer to the elements of these extended
sets (e.g. FExzpAl, ProgsAl ) by the same names as the elements of the
original sets (e.g. “expressions” and “programs”).

Definition: Let P be a program, pj, ..., px be all the predicates defined
in P and ¢y, ..., q; be all the predicates that are called in the definitions of P.

ApzIne(P,n) where n € N is the program obtained by adding to P,
for each predicate p € {p;,...,px} defined as p(?) : —Body(?) in P the
following definitions (by definition of PredsNAI pl,., ¢, i € 0,n do not
appear in P):

Pl + —tell(false)
Phnc(X) : ~Body(X){a/gfuc}:

72(X) : —Body(X){a/a22'}-

Here Bady(?){q/q:fm} denotes the expression Body(?) where all the
calls g(7) have been replaced with calls g (7).

Body:, (%) will henceforth be another notation for Body(?){q/qﬁnc}.

Dhnes 0 € N are called the increasing approzimations of the predicate p.

n is called the degree of the approzimation p .

Example: for the previous CLPY program NI we can construct ApzIne(NI,n)
by adding to NI the following definitions:

pat? (X):-tell(false).

mc
natl (X):-tell(X=0)

me



S50CHAPTER 3. AN INDUCTION BASED PROQF SYSTEM FOR FINITE SUCCESS EQ

; Y. (tell(X=s(Y)), nat (Y)).

intd, . (X):-tell(false).

int]  (X):-tell(X=0)
; Y. (tell(X=s(Y)), intd (Y))
; 3Z.(tell(X=p(2)), int) .(2)).

We have that
SuccAI{ApzInc(NI,m), nat®(X)) = 0
We also have
SuccAI(ApzInc(NI,m),nat™(X)) 2 {X = 5(0), ..., X = 5(s(...s{(0)...))}

(the set of unary representations of numbers 0 to n) for all m > n.
It’s also obvious that the union of successes of the finite approximations
nat?,.(X) is equal to the set of successes of nat(X).

The generalization of this property is stated by the following proposition:

Proposition 3.1: For each program P and predicate p defined in P the
following property holds:

Suce(P,p(?)) = | ] SuccAI(ApzIne(P,n), phc(?))
neN

Proof: If ¢ € Succ(P,p(T)) then there exists a derivation of P,c F,
p(?) If the height of the derivation tree is h then we can build a derivation
tree for ApzInc(P,h),ct, p?nc(_t)) by replacing p(_t)) with p?nc(?) at the
root of the tree and propagating the change towards the leaves.

When propagating through the (def) rule the definition of the approxi-
mation p? . will be used instead of the definition of p:
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P, ct, Body(T})

Pch, p(%) (def)
becomes
ApzIne(P,k), ¢ty Body,-':,_c_l)(ﬁ) (def)
ApzInc(P, h), cts ol (1)
Therefore

Suce(P,p(T)) C | J SuccAI(ApzInc(P,n), plc(?))
neN

If ¢ € ey SuccAI(ApzInc(P, n), p?nc(?)) then for some n there exists
a derivation of ApzInc(P,n),c ks p?"c(?). We can build a derivation for
Pty p(?) by replacing p}‘m(?) with p(?) at the root of the tree and
propagating the change towards the leaves.

When propagating through the (def)} rule the definition of p will be used
instead of the definition of the approximation pf}.: m > 0 hence

ApzIne(P,n), ck, Bodym_l(ﬁ))

inc

ApzInc(P,n), cty p;’;‘w(t_l))

(def.)

becomes

P ch, Bady(t_f)
Pch, p(i1)

(def.)
We conclude that

Suce(P,p(T)) 2 | SuccAI(ApzInc(P,n), gl (7))
neN

E? . denotes the expression E where each predicate call p(?) has been

me

replaced with p}‘nc(?).
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Corollary: For each program P and expression E the following property
holds:

Succ(P,E) = U SuccAI(ApzInc(P,n), EL,.)
neN

The increasing approximations of a predicate p have nonrecursive defini-
tions. Their sets of successes form an increasing sequence i.e.

SuccAI{ ApzInc(P,n), p:,‘w(_t))) C SuccAI(ApzInc(P,n),pnt! (_t>))

where m + 1 < n. The set of successes of an approﬁmation pg‘m(?) is
included in the set of successes of p(¥):

SuccAI(ApzInc(P,n), p2,(T)) € Suce(P,p( 7))

where m < n. Therefore we can interpret p;-",‘m(_t)) as “approximating”
p(?) with respect to the set of successes, hence the name.

The fact that the approximations have nonrecursive definitions will be
used for the proof of the theorem of soundness of the proof system presented
later in the chapter . By proposition 3.1 in order to prove that the successes
of a recursive predicate have a certain property it suffices to prove that the
successes of its approximations have the property.

Remark: Another way of defining the increasing approximations of a
predicate is:

Phe(X) : ~Body(R){a/dfuc}-
Ph(X) : ~Body(X){a/afe.").
In this case pl,(X) is not defined. The drawback is that we cannot

define the decreasing approximations of a predicate (see section 4.1) in a
similar way.
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Yet another way of defining the increasing approximations of a predicate
is:

(X : —pc(X).
Phio(X) : ~Body(X }{a/ab..}

(X)) ¢ —Body(X){a/q27"}-

There is a definition for p? (X) namely 2 (R): —p% (R). It's obvious
that the property

Suce(P,pl,.(X)) = 0

still holds as there can be no derivation of the for P,ct, p?nc(?).
This definition of increasing approximation has the drawback that the
definition of g, (X) is recursive.

In the following sections we may drop the subscript ¢nc therefore writing
p" instead of p},, when there is no risk of confusion.

3.2 Least fixed point semantics of CLPY

In this section we will introduce the operator IE and will prove that the
set of finite successes of an expression is given by the least fixed point of I E.
In section 4.2 we will prove that the greatest fixpoint of IE gives the set of
infinite successes.

IE : Progs x (Ezp — p(Constrainis)) — (Ezp — p(Constraints)) is
an operator defined recursively as follows: if A : Ezp — p(Constraints)
and p(?) : —Body(?) is a predicate definition then

IE(P, A){tell(c)) = {d € Constraints|dtp c} — False
IE(P, A)((B\, Ep)) = IE(P, A)(E1) N IE(P, A)(Ez)
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IE(P, A\((By; B2)) = IE(P, A)(E1) UIE(P, A)(Es)
IE(P, A)(3X.E1(X)) = Usererms TE(P, A)(B1(2))
IE(P, AY(VX.E1(X)) = iezerms TE(P, A)(E1(t))
IE(P, A)(p(7)) = IE'(P, A)(Body(?))
where TE' is an operator defined identically to IE except that
IE'(P, A)(p(T)) = Alp(T)).

We will overcharge the function name Suce such that it also denotes a
function
Suce : Progs — (Ezp — p(Constraints)) such that

Succ(P)(E) = Succ(P, E)

In other words we take the liberty to use Succ as either unary or binary
function.
Similarly, IE will be overcharged to a unary function:

IE(P)(A) =1E(P,A)
An important property of IE is given by the following proposition:
Proposition 3.2: For each CLPV program P we have:
Succ(P) = pA.IE(P, A)
where y is the well-known notation for the least fixed point.
Proof: First we prove that Succ(P) is a fixed point of TE(P) i.e.
TE(P, Succ(P)) = Succ(P)
or VE IE(P, Succ(P))(E) = Succ(P)(E).

We proceed by induction over the structure of expression E. We have
the following cases:
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o F =tell(c) :

IE(P, Succ(P))(tell(c)) = {d € Constraints|dFp c}—False = Succ(P)(tell(c))
o E=(E, B):

1E(P, Succ(P))((Er, E2)) = IE(P, Succ(P))(E1) N IE(P, Succ(P))(Ez) =
Suce(P)(E1) N Succ(P)(Es) = Suce(P)((Ey, E))

o E=(E; ) :

IE(P, Succ(P))((Er; E2)) = IE(P, Succ(P))(E1) U IE(P, Succ(P))(Ez) =
Suce(P)(Ey) U Succ(P)(Es) = Succ(P)((E1; Es))

o E=3X.E(X):

IE(P, Succ(P))(3X.E(X)) = Usererms IE(P, Suce(P))(B(t)) =
Usererms Succ(P)(E(t)) = Succ(P)(IX.E(X))

¢ E=VYX.E(X):

IE(P, Succ{P)}(VX.E(X)) = NigTermsI E(P, Succ(P))(E(t)) =
ntETermssucc(P)(E(t)) = Succ(P)(VXE(X))

. E=p(?):

IE(P, Suce(P))(p(T)) = IE'(P, Suce(P))(Body(?)) = Succ(P)(Body(T))
- the last equality can be proven by a similar induction over the structure of
the expression Body(_t>).

We then prove that Succ(P) is the least fixed point of IE(P) i.e. VA :
Ezp — p(Constraints) such that IE(P, A) = A we have

VE € Ezp Succ(P)(F) C A(E)

Let Ag : Exzp — p(Constraints) be a function defined as YE € Ezp, Ay(E) =
@. We have IE(P)%(A4p) = Ap C A and by monotonicity of IE(P) we derive
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IE(P)*(Ap) CIE(P)"(A)=A
Therefore

|J IE(P)™(4) c A
neN

We also have
IE(P)*{(Ao)(E) = SuccAI(ApzInc(P,n), B}, )
We deduce

|J IE(P)™(Ao) = SuccAI(ApzInc(P)) = Succ(P)
neN

thus

Suce(P) = | IE(P)"(40) C A
neN

which concludes the proof.

3.3 An induction-based proof system

In this section we will present a proof system which allows one to prove
that the successes of an expression {goal) E are included in those of an
expression F' in the context of a program P. After defining the system we
will give an example of proof constructed in it.

In the next section we will prove its soundness with respect to the se-
mantics of the CLPY language.

The goal that we set is to be able to prove formally that for a program
P and two expressions F, F' we have:
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Suce(P, E) C Succ(P, F)

We will use for that purpose a proof system expressed by means of a
sequent calculus of the form:

PYXF,;EvF

where ¥ is a multiset of elements of the form F; v F;. They are called
“hypotheses” and are denoted by the letter H (possibly subscripted). The
subscript “si” stands for “success inclusion”.

The meaning of the sequent above is “in the context of the program P
and hypotheses X the successes of E are included in the successes of F”.

The meaning of the hypothesis F; » F is “in the context of the program

P the successes of E; are included in the successes of Fy”.

The elements of the multiset T will separated by “”. Therefore [(E; >
Fy), ¥] denotes the multiset composed by the hypotheses Ey > Fy and the
elements of the multiset .

To make the rules clearer we will also use ', A as symbols for CLPY

expressions,

The proof system is given by the following rules:

P, Tty B, E; A (i)

if F is an atomic expression

P, Yty By, By, En 12 A

(e P, Xl v Eyj By oy B
P YFy By, Eoo A

P, Yl ' Ey; . By

omm. L) L(comm. R)

P,zl"siEl,Eg,PDA( ) PXtuTvE;A P, 2k, EgjA
P, Tty (Ey, Ep), T AY P, E g ' (By, E2);A

(+R)



58CHAPTER 3. ANINDUCTION BASED PROOF SYSTEM FOR FINITE SUCCESS EQ

P,Sty E;, T A 1?,2|—,,-E2,1“>A(_L) Rz:t—,iruEl;Eg;A(_R)
P,EI","; (El;Ez),I‘DA ! RZ}I—,il‘D(El;Eg);A’

tell
P, X, tell(cy), .., tell(cn), T b tell(dy); ..; tell (dm); A( ell)
if e1,.y¢n Fpar dy;.;dm and n > 0 or m > 0.

P, Tt E(Y),Tp A
P, Tty 3X.E(X),T b A

P, ST E(t);A
P, Tr,;Tb3X.E(X): A

(3L) (3R)

(3L) having the side condition: Y ¢ vars(E(X)) U fu(T) U fu(A)

P, Tk, E(t),T> A
P, X FuVX.E(X), T oA

P, Th;TpEY)A
P, Lr;ToVX.E(X); A

(VL)

(VR)

(VR) having the side condition: ¥ ¢ vars(E(X)) U fu(T) U fo(A)

P, £ To Body(?); A
P, Sk op(T)A

P, T by Body(?),T> A
P, Tk p(T),ToA

(def. L)

(def. R)
(def. L) and (def. R) having the side condition: (p(?) : —Body(?)) €

P, El‘s,'E'DF'
Pty EvF

(gen.)

if 37 such that 7E' = E, 7F' = F.

P, [(FvG),Z] b, B\ To A
P, [(F5G), 5 Fy B,T oA

(hyp. L)

if 3r such that TF = E, 71G = F'.

P, [((p(?),T) > A), 5] by Body(?),Tp A
P, Sty p(?),ToA

(ind.)

(ind.) having the side condition: (p(?) : —Body(?)) €P.



3.3. AN INDUCTION-BASED PROOF SYSTEM 59

Remark: The proof system is based on the Gentzen calculus for the
first order logic. The rules for the conjunction “,” and the disjunction “;”
are identical to the rules for the logical connectors A and V. The rules for
the quantifiers 3 and V are also identical to their counterparts in first order
logic.

The CLPV language is parametrized by the constraint domain and the
proof system accounts for it by means of the rule (fefl): it is this rule that
captures the specifics of the constraint domain.

Finally there is the induction rule (ind) and the (hyp. L) rule that allow

for proofs by induction to be constructed in the system.

Remark: Some other rules can be added to the proof system, for ex-
ample weakening and duplication. However all sequents that can be derived
with these rules can be derived without (the rules are admissible).

Ancther rule that can be added is

P SFup(Z).loA (nodef. L)
if the predicate p is not defined in P.
It allows one to prove that the successes of an undefined predicate are
included in the successes of any expression. An alternate point of view is
that one shouldn’t be able to prove anything about an undefined predicate.
In general a call to an undefined predicate is a programming error, which
can be caught if this rule is absent.

Example: Lets recall the previous example of CLPV program, NI:

nat(X) :-X=0
; Y. (X=s(Y), nat(Y)).

int (X):-X=0
3 3Y. (X=s(Y), int(Y))
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s 32, (X=p(2), int(2)).
In the previously defined proof system we can prove that:
NI, {] bsi nat(X) v int(X)

is derivable.

Here is the derivation tree:

NI, [Hni] b tell{X = 0} b tell(X = 0) . 0
NI, [Hu] Fas tell(X = 00 imt(X)__ /B 1) NI vy ez 20 )
NI, [nat(X) v int(X)] s teli(X = 0);3Y.(..) b int(X),. d
NT, [] For nat(X) o int(X) {ind.)

(L)

where  is the following subtree (the subtree © was omitted):

® N T a0, b i), . - L id)

NT, [Hoi] Fot SY(El(X = 5(Y)), nak(¥)) » fell(X = 0); IV, (Geli( X = 807}, imt(¥)); ")

Here H,; is the hypothesis nat(X) v int(X).
In the next sections we will prove the soundness of the proof system. We
will be able to deduce that:

Succ(NI,nat(X)}) C Suce(NI,int{X))

3.4 Soundness of the proof system without induc-

tion

In this section we will prove the soundness of the proof system defined in
the previous section when the induction rule is not used. In the next sections
we will give sufficient conditions for the soundness of the system when the

induction rule is used.

The purpose of proof system defined in the previous section is to allow
one to prove that the successes of a an expression F are included into the
successes of another expression F' (in the context of a program P). This
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requires that the proof system is sound with respect to the semantics of
CLPV.

First we will prove its soundness for all the proofs that do not use the
induction rule (ind):

Proposition 3.4.1: If the sequent
P,XFgu EvF

where £ = [Ey > Fi,.., E; b Fp| has a derivation where the rule (ind}
doesn’t appear and '

Succ(P, E;) C Succ(P, F;),¥ie1l.p
then

Succ(P, E) C Succ(P, F)

Proof: We proceed by induction over the structure of the proof for the
sequent P, ¥ b, E > F. With respect to the rule at the root of the tree we
have the following cases:

o (id.):

P Tty ETvE A lid)

By proposition 2.1 Succ(P, (E,T')) = Suce(P, EYNSucc(P,T') C Succ(P, E)U
Succ(P, A) = Suce(P, (E; A)).

e (comm.L):

P’ )y ’_si Em El: --1Eﬂ.—1 >A
P.StF,; E,.. Bo A

{(comm. L)
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By proposition 2.1 and the induction hypothesis, Succ{P, (E, .., Ey,)) =
niGlTﬁ E’: = S‘U-CC(P, (Eﬂ: El: vy Eﬂ.—l)) - SUGC(P, A).

o (comm. R):

P, X |_si I'e Eﬂ.sEl: --:En—l
P, Yl e By .. Ey

(comm. R)

By proposition 2.1 and the induction hypothesis,
Succ(P,T') C Suce(P, (Ey, By, vy Bp1)) = Uieﬁ E; = Succ(P, (Ey;..; En)).

o (,L):

P,El‘siEhEz,FDA( )
P, Tk (Br, E2), T AY

By proposition 2.1, Suce(P, ((E1, E3),T)) = Suce(P, E1)N Succ(P, E2) N
Succ(P,T') = Suce(P, (E;, F3,T)} and by induction hypothesis, Suce(P, (E;, E2,T)) C
Suce(P, A).

* (,R):

R E|—3.,;I‘I>E1;A R El-sirbEz;

A
R
TN A

By proposition 2.1, Succ(P, ((Ey, E2); A)) = (Suce(P, By )NSucc(P, By))U
Suce(P, A) and by induction hypothesis,
Succ(P,T") C Suce(P, (By; A)) = Suce(P, Ey) U Suce(P, A) and
Succ(P,T") C Succ(P, (E2; A)) = Suce(P, E3) U Suce(P, A)
hence Suce(P,T") C Succ(P, ((E1, Es); A)).

o (;L):

PEFiE,IbA P EhryE,TpA
P, Ly (By; Bs), o A

L)
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By proposition 2.1, Suce(P, (( Ey; E2),T)) = (Succ(P, Ey)USucc(F, E2))N
Succ{P,T') and by the induction hypothesis
Succ(P, (E1,T) = Suce(P, E1) N Succ(P,T') C Suce(P, A) and
Suce(P, (E2,T)) = Suce(P, E2) N Succ(P,T') C Succ(P, A)
hence Suce( P, ((E1; E2),T)) C Suce(P, A).

¢ (;R):

P, Xty ' Ey; By A
P, X' (B Bp); A

(; R)

By proposition 2.1, Suce(P, ((E1; Fa); A)) = Suce( P, By )USuce(P, E3)U
Suce(P, A) = Succ(P, {E1; Ey; A)) and by the induction hypothesis, Suce(P,T") C
Succ(P, (Ey; B2; 8)).

o (tell):

P, T |; tell(cy), ..,tell(c,,,),[‘btell(dl);_,;teu(dm);A(teH)

if c1,..,6n DM dy; - dm.
If n > 0 and m > 0 then by proposition 2.1 we have
Suce(P, (tell(ct), .., tell(cn), ) = Nie1m Succ(P, tell(c;)) N Suce(P,T) and
Suce(P, (tell(dr); .. tell(dpm); D)) = Usci=m Suec( P, tell(d;)) U Suce(P, A)
If e € Suce(P, (tell(c,), .., tell(c,),T)) then Vi € I.n, e Fp ¢; and e ¥p
false. By definition of Fpps we deduce that 3j € 1..m such that e bp d;
hence e € Succ(P, tell(d;)) and therefore

Succ(P, (tell{c1), .., tell(c,),T')) C Succ(P, (tell(d1);..; tell(dn); A))

If m = 0 then n > 0 and by definition of -pps we have that ¢1,..,¢n Four
false. If d € Succ(P, (tell(c1), .., tell(cy),T')) then Vi € 1.n, d p ¢; and
d¥p false. By definition of I pps we deduce that d -p false, contradiction.
We deduce that d doesn’t exist therefore
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Succ(P, (tell(cy), .., tell(ca), I')) = 8 C Succ(P, (tell(dy); ..; tell(dm); A))

If n = 0 then m > 0 and by definition of Fpys we have that true Fpas
d1;..;dpy. By definition of Fpas we deduce that Vd € Constraints,d €

Suce(P, (tell(dy); ..; tell(dy); A)), therefore

Succ(P,T) C Succ(P, (tell(dy); ..;tell{dm); A))

o (3L):

P, Sty B(Y),Tp A

B %y AX.EX) To A )

where Y ¢ vars(E(X)) U fo(T) U fu(A).

By induction hypothesis, Suce(P, (E(Y),T')) C Suce(P,A) or
Suce(P,(E{X/Y},I'}) C Succ(P,A) hence, by proposition 2.1 prop. 7, we
obtain that ¥t € Terms, Succ(P, (E{X/Y},T){Y/t}) C Succ(P,A{Y/t}).
Since Y ¢ fv(I')Ufu(A) we have that Vi € Terms, Succ(P, (E{X/Y {Y/t},T)) C
Succ(P, A).

Since Y ¢ vars{(E(X)) we deduce that E{X/Y }{Y/t} = E{X/t} hence
Vt € Terms, Succ(P, (E{X/t}},T)) C Succ(P,A) and therefore by propo-
gition 2.1 prop. 7

Suce(P, @X.E(X),T)) = | ) Suce(P,(E(t),T)) C Suce(P,A)

teTerms

s (AR):

P, X FyTo E(t) A

P, Yy ToIX.E(X} A (3R)
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By proposition 2.1 and the induction hypothesis, Succ(P,I') C Succ(P, (E(t); A)) C
Succ(P, (3X.E(X); A)).

o (VL):

P, Sty Et),Tp A

P, T F,; VX.E(X),To A (vL)

By proposition 2.1 and the induction hypothesis, Suce(P, (VX.E(X),T')) C
Succ(P, (E(t),T)) C Suce(A).

» (VR):

P, Zt+yuToE(Y);A
P, EF,;ToVX.E(X); A

(VR)

where Y ¢ vars(E(X)) U fo(T) U fu(A).
By induction hypothesis, Succ(P,T') C Succ{P, (E{Y); A)) or Suecc(P,T) C
Suce(P, (E{X/Y}; A)) hence, by proposition 2.1 prop. 7, we obtain that
Vt € Terms, Succ(P,T{Y/t}) C Succ{P,(E{X/Y}; A){Y/t}). Since Y ¢
fo(T)Ufu(A) we have that Vi € Terms, Suce(P,T') C Succ(P, (E{X/Y H{Y/t}; A)).
Since Y ¢ vars(E(X)) we deduce that E{X/Y}{Y/t} = E{X/t} hence
Vt € Terms, Succ{P,T') C Succ(P, (E{X/t}; A)) and therefore by proposi-
tion 2.1 prop. 7

Suco(P,T) C (] Suce(P, (E{X/t};A)) = Suce(P,(VX.E(X); A))

teTerms

o (def.L):

P, Sk Body(T),Tp A
P,Ehei p(T),TpA

(def.L)

where (p(X) : —Body(X)) € P.
By proposition 2.1 and the induction hypothesis, Suce(P, (p(_f)),I‘)) =
Succ{P, (Body(7),T)) C Succ(P.A).
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o (def. R):

P, %+ T'> Body(T); A
P, EF;Top(T)A

(def. R)

where (p(jf)) : -—Bady(?)) € P.
By proposition 2.1 and the induction hypothesis,
Suce(P,T) C Succ(P, (Body(T); A)) = Suce(P, (p(T); A)).

® (gen.):

REI—E,;E’pF’(en)
P St EoF 9

if 37 such that 7E'= F and 7F' = F.

By induction hypothesis we have Suce{P, E') C Succ(P, F') hence, by
proposition 2.1 prop. 8 we deduce that

Succ(P, E,) = Suce(FP,TE') C Succ(P, 7F') = Succ(P, (F).

e (hyp. L):

P, [(F>G),3] by E',Tp A
P, [(FrG),ZlFs E,TH A

(hyp. L)

if 37 such that 7F = FE and 7G = F'.

By hypothesis Suce(P, F) C Succ(P,G) and by proposition 2.1 prop. 8
we deduce that Succ(P, E) = Succ(P,0F) C Suce(P,0G) = Suce(P, F'),
therefore by induction hypothesis we deduce that Succ(P, (E,T')) C Succ(P, A).

Remark: the previous proof is still valid if the program P is an extended
program as the proof doesn’t depend on the assumption that P is a normal
(non-extended) program.

This property will be used in the next sections.
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The proof system is not sound in general i.e. when the induction rule is
used. The following example illustrates this.

Example: It’s easy to prove that N1, [| bs; nat(X)pnat(s(X)) therefore
Succ(NI,nat(X)) C Suce(NI,nat(s(X))). Using nat(X) > nat(s(X)) as
hypothesis we can prove

NI, [nat(X) > nat(s(X))] Fs; nat(X) o tell(X = 0)

by the following derivation tree:

Q
NT, [Hon o] For tol(X = 015 2l =0 N7, [Han] Fat V()b tell(X = 0) )
NT, [Hun, ] Fas tell(X = 0} 37 )0 tell(X =0)
NI, [Han) Fai nat(X) v tell(X = 0) )

GL)

where € is the following subtree:

NI, [Hun, Hi] Fai tell(X = 8(Y)), 5(Y) = 00 tell(X = 0) (tell)
NI, [Huyn, Hi] Fyi tell{ X = 8(Y)), nat(s(Y)) > tell(X = 0) (hyp. L)
NI, [Han, Hi] Fo: teli(X = 8(V)), nat(Y) b tell(X = 0) - 0P

{(hyp. L)

Here H,, is the initial hypothesis nat(X) > nat(s(X)) and H; is the
induction hypothesis nat{X) o tell(X = 0).

Obviously the proof is incorrect as Succ(NI,nat(X)) is not included in
Suce(NI,tell{X = 0)). In the following sections we will present restrictions
on the proofs that insure the correctness of the system.

3.5 Soundness of the induction rule

In this section we extend the result of the previous section by giving
sufficient conditions for the soundness of the system when the induction rule
is used.

The main result in this section is theorem 3.5.4 which states that by
imposing the condition C0 {also defined in this section) on the proofs we
obtain a sound proof system.
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Definitions:For a rule (ind) of the form

P, [((p(¥),[) > A), 5] o Body(T),I'> A
P, It p(T),T>A

(ind.}

with (p(:f) : —Body(?)) € P we say that the hypothesis p(_f’),l" >A is
generated by the call p(?).

In this case the hypothesis is called induction hypothesis. All hypotheses
that are not induction hypotheses are called initial hypotheses. They where
present in the root sequent of the derivation tree.

For a rule (hyp. L) of the form

P, [(p(?),FvG),5] e E,Tp A
F, [(p(?’-I}LFD G): Z"] Fsi p(t_{)’E’ I'vA

(hyp- L)

with 7(p(%), F) = (p(%3),E) and G = E' where p(H),F> G is an
induction hypothesis. If the call p(t_l)) generated the hypothesis we say that
P(t—g) is its corresponding call in the rule (hyp. L).

Definition: We say that a sequent of the form
PLtlu;EbF

where ¥ = [Ey > A,..,E, > Fy| i8 correct if Succ(P, E) C Suce(P, F)
whenever Succ(P, E;) C Succ(P, F}), Vi € T..p.

Definition: We say that an application of a rule in a derivation tree
is correct if the lower sequent is correct whenever the higher sequents are

correct.
Definitions: If p (?&Y), ;pg(fg) are predicate calls in a proof tree we say
that pg(t_g") 18 derived from py (i‘._f) if one of the following conditions is true:
o p3(%) is the same as p1 (%)

¢ the rule where pl(t_l)) appears is (def. L) or (ind):
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P, ' by Body (8),T» A

def.L ind.
P S rap(t),Toa e/ Dor(ind)

Bodyl(t_f) contains pa(t_a)) and pg(t_%) is derived from p3(?3>).
In this case we say that the rule is interposed between pl(t_l)) and pg(t_z)).

e the rule where p; (t_f) appears is (def. R):

P, =, To Body (&); A
P,k Topi(F);A

(def. R)

Bodyl(fi)) contains p3(?3)) and pg(?g}) is derived from p3(?3)).
In this case we say that the rule is inferposed between p;(t_f) and m(g).

e (t_f) appears in the lower sequent in a rule

P, S Fg .pr(BD)...
P, S kg p1(F)-

which leaves p1(#]) unchanged and pz(‘f;’) is derived from p; (%) which
appears in the upper sequent.
In the case of the rule (hyp. L)

P, [(F>G),Z]Fs E'\I'b A
P,[(F>G),5]Fs B,Lo A

(hyp. L)

with 7F = E and 7G = E', py(%) is left unchanged by the rule if it
appears in I or A but not in E.

If pz(ﬁ) is derived from p; (%] ) which is contained in E; then we also say
that pg(t_g)) is derived from Ej.

Remark: The previous definition captures the notion of a predicate call
pg(?z}) which is derived from another pl(ﬁ)) by unfolding of pl(t_f): either
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_
o 03(%) is pu (%) or

° pg(t_g)) is obtained by unfolding several times p, (t_f) by one of the rules
(def. L), (def. R),(ind) or

. pz(t_g") appears lower in the proof tree and is left unchanged by the

rules in between.

Definition: If

P, [(F>G),%] s B, T'> A

P, [(Fv G),5] Fo B,To A (¥P-L)

with 7F = E and 7G = FE' is an application of the rule (Ayp.L) in
a derivation then we say that a predicate call p(?) is introduced by the
application if pl(ﬁ}) appears in E' and p(?) is derived from p, (t_f)

If a predicate call is introduced by an application of the rule (hyp. L)
then we also say that the predicate call is introduced by the rule (hyp. L).

Definition: If p; (t_l)), pz(?z)) are predicate calls in a proof tree and pg(t?)
is derived from py (ﬁ) then the degree distance dd between p; (t_l)) and pg(t_;)
is a natural number defined by the following conditions:

o ifpy (ﬁ’), pg(?g)) are the same then it is 0

e if the rule where pl(t_l’) appears is (def. L) or (ind):

P, X' by Body (7)), T A
P, Dkap(H),T>A

(def.L)or (ind.)

pg(g) is derived from p3(t_;;) which is contained in Body; ('t_l)) then dd is
1+ the degree distance between pg(t_;;)) and pg(t_;)

o the rule where p;(%]) appears is (def. R):
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P, S ki T'> Body (1), A
P, Bk Top(H),A

(def. R)

pz(t_z)) is derived from ps(t_;) which is contained in Body;(t_f) then dd is
i+ the degree distance between pg(fg) and pg(t_g).

. pl(t_f) appears in the lower sequent in a rule

P, T by vpi ().
P, B by p1(E)..

which leaves pl(?,_f) unchanged and pg(t_g) is derived from pl(ﬁ}) in the
upper sequent then dd is the degree distance between pl(H) in the upper
sequent and pg(t_z)).

We will also say distance instead of degree distance.

Remark: The degree distance between py (t_f) and pz(t_g) is equal to the
number of unfolding rules (def. L), (def. R),(ind) interposed between p; (ﬁ)
and pa(%3).

Definition: A derivation tree is said to satisfy the condition CO if for

each application of the rule (hyp. L) in the derivation,

P, [(p(?),F>G), 5] Fu G, Tp A
P, [(p(?),F> @), %) b5 p(7), A, T A

(hyp. L)

where 7p( ) = o(5}),7F = F;,7G = G; and p(7?), FoG is an induction
hypothesis generated by p(?), we have that p(ﬁ}) is derived from p(?)

Proposition 3.5.1: If a derivation tree satisfies the condition CO then
with the notations of the previous definition the distance between the calls
p(_t)) and p(ﬁ)) is strictly positive.
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Proof: As p(7) and p(%]) belong to different rules, they are different.
As p(fi)) derives from p(_t)) it’s obvious that the distance is strictly positive.

Definition: Let P, g po(?o)), Eyv Fy be a sequent that has a deriva-
tion whose root rule is (ind):

P, [Hy, £o] b4 Bodys(%3),To > Ag
P, 5o b4 po(%),To b Ag

(ind)

where Hy is po(t_o)),ro > Ap and (po(?) : —Bodyu(?)) € P.

Let the sequent P, Xy by pf(t_}),Ef > Fy be the lower sequent of a
(hyp. L) rule in the derivation and pf(ﬁ’) is derived from po(%3).

There are in general m € N applications of the rule (ind) different from
the root one:

P, [Hi, %) Foi Body;(8),T; b A;
P, B boi pi(B), Tiv A

(ind.)

with i € T..m where H; is pi(%), T > A; and (p,(Y) : —Bodyi(?)) € P.
Let d; > 0 be the distance between pg(t_g) and p,-(?,?).
Let n be a natural number and X,,.,, be a multiset of hypotheses:

Lrew = {(pf-‘(ﬁ?)’ Tiv Ai) |3' € O"ms ki €0.n— di - 1}

The transformation T0 of the proof tree starts at the root and propagates
towards the {hyp. L) rule:

o replace py(%g) with p{,"(t_g))
e replace P with ApzInc(P,n)

o replace Sowith &' where ' = 59 U Spew

To avoid writing the transformation twice, as we define it we will also prove
the following:
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Proposition 3.5.2: The transformation T has the following property:
if in the sequent P, X ,; Fi,I'> A,E; is replaced with Ejjthen

e E); is identical to F; except for a single call of the form q"(_t’) instead
of ¢(?)

e if the initial tree satisfies the condition CO the replacing rules are cor-
rect.

Proof: The changes propagate towards the leaves of the tree. The rules
are modified as follows:

e (;L):

PElgu E,TrA P Xhy Ez,PDA(_L)
P, X by (B B2), Tr A ’

If a call p(—t") in T' is replaced by p"(?) and pf(i})) is derived from I’
from the upper left sequent then the rule becomes:

ApzInc(P,n), L' tg B, T1pA P, Xl BT A
ApzIne(P,n), &' by (E1; F3),T1> A

(;L_a)

where T'; is the result of replacement of p(_t)) in T is by p"(?). It’s
obvious that Succ(ApzInc(P,n), (E2,T'1)) C Succ(Apzine(P,n), (B2, T)) =
Succ(P, (E2,T)).

o (def. L} or (ind):

P, 3 by Body(T),To A
P, St p(T),TpA

(def. L) or (ind)

where (p(Y) : —Body(?)) € P.
If p(7) is replaced by p*( ) with k > 0 the rule becomes:
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ApzIne(P,n), X' -y Body (_t)), ' A
ApzInc(P,n), &' Fy p’“(?), e A

(def. L)

where Body, (_t")is Body(?) where the call q(t_g) from which pf(f}}) is
derived is replaced by q"_l(t_g))

It’s obvious that Succ(ApzInc(P,n), p*( 7)) C Succ(ApzInc(P,n), Body, (T))
therefore Succ(ApzIne(P,n), (p"(_t)),l")) C Succ(ApzInec(P,n), A).

If k=0 then po(?) has no definition in ApzInc(P, n) therefore the rest
of the tree is replaced by the rule (nodef. L).

o (hyp.L):

P [p(?),F' >G5 Fyu G,Tp> A

P, [p(),F'> G", 5] b p(7), F,T > A(hyp' L)

where 'rp(?) = p(?), tF=F1G=G.

If ;p(_t)) is replaced by p* (_t)) then we have two cases:

1. the hypothesis p(?), F'p@' is one of the induction hypotheses p,-(?,?), >
A;.

The rule becomes:

Apzine(P,n}, &' k4 G,T'p A
ApzIne(P,n), ¥ bg p*(T), F,T b A

(hyp- L)

By proposition 3.5.1 the distance between the call p,-(fg) that generated
the induction hypothesis and the call p(?) is strictly positive. Therefore the
hypothesis p* (?), F' > G’ belongs to X' and the rule is correct.

The rule (hyp. L) “loses the approximations” meaning that in the sequent
above no predicate call is replaced by an approximation and therefore the
propagation of replacements with approximations stops at this rule.

2. the hypothesis p(?), F'> G’ is not one of the induction hypotheses
pi(%),Ti > A
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Therefore this rule (hyp. L} must be below the rule (hyp.L) with an
induction hypothesis (which stops the propagation of replacements with ap-
proximations). But in this case the condition CO0 is not true for the derivation
tree, contradiction.

Therefore this case cannot arise.

e a rule that leaves unchanged the predicate call affected by the propa-
gation:

P, Sk ..p(T)...
P, kg ..p(T)..

If the lower p(_t)) is replaced by p*(¥) then the upper p(7) is replaced
ke
by p*( 1) also:

ApzInc(P,n), X' by p"(?)
ApzIne(P,n), &' by pk(_t>)

Remark: The transformation T0 proceeds by replacing a predicate call
po(ig) contained in the root sequent of a derivation tree at the left of b
with p{,‘(t_o)) and propagates the change towards the lower sequent P, ¥ F;
pf(t_f)), Ef v Fyof arule (hyp. L).

The propagation is straightforward - the only interesting cases appear
when (def. L) or (ind) are applied to an approximation p*(7) introduced
by the propagation. In this case the call g(¢') from the body of p(?) from
which py(Z}) is derived will be replaced by ¢*~1(?').

Remark: The first property in proposition 3.5.1 proves that the defini-
tion of TO is well-founded.

Definition: The transformation T0a is very similar to T0O and can be
applied to the tree resulting from T0 or T0a.

Using the notations of the transformation T0, T0a is applied also to the
rules between the root of the tree and another rule (hyp. L) whose lower
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sequent is of the form P, X¢ I, pf(ff)),Ef > Fy . Its n parameter is the
same as the previous transformation.

T0a proceeds exactly as TO except that it doesn’t modify the rules that
were modified by a previous transformation. Specifically it modifies branches
above the rule (; L2) that weren’t modified by previous applications of T0
or T0a.

Proposition 3.5.3: If the initial tree satisfies the condition CQ the
replacing rules of a transformation T0a are correct.

Proof: The proof is very similar to the proof of proposition 3.5.2.

Definition: Using the notations of the transformation T0 and TOa the
transformation TOb is a sequence of transformations T0, T0a,T0a,...,T0a
such that all rules (hyp. L) that use one of the induction hypotheses p; (?,-)), | (T
A; with i € 0..m are replaced by a transformation T0 or T0a.

Remark: In the rule (; L_a) above the upper right sequent is P, I F,;
E, T'>A where ¥ contains one or more induction hypotheses among pg(?i}), Iiv
A; with i € 0..m. The purpose of the transformations T0a is to replace them
with hypotheses from Z,.,, in all (Ayp. L) rules that uses them. Therefore
the induction hypothesis would no longer be used anywhere in the derivation
tree and could be eliminated.

The following theorem gives a sufficient condition for the soundness of
the proof system when the induction rule is used.

Theorem 3.5.4: If the sequent
Pty EvF

where X = [E) p F,.., Bp > F}] is derivable, the derivation tree satisfies
the condition C0 and
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Suce(P, E;) C Succ{P, F;),Viel.p
then

Suce(P, E) C Succ(P, F)

Proof: We will use an induction on the structure of the derivation tree.

If the rule at the root is not (ind) then by proposition 3.4.1 we obtain
the desired result.

If the rule at the root is (ind) then with the notations used int the
definition of the transformation T0 and TOa let the rule at the root be:

P, [Hy, T} Fvi Bodyo(1),To > Ag
P, 5g F4i po(%3),To > Ag

(ind.)

where Hy is po(% ), To > Ag and (po(X) : —Bodyo(X)) € P.
We will prove by induction on n € N that

SuccAI(ApzInc(P,n), (p§(%), o)) C Suce(P, Ao)

Vn € N,Vi € 0.m, n > d; = (SuccAI(ApzInc(P,n), (pF~% (%),T4)) C Succ(P, A;))
and therefore by proposition 3.1 we deduce
Suce(P, (p0(7),Ta)) C Suce(P, Ao)
Case n = 0: we have that
SuccAI(ApzIne(P,n), (p)(%), To)) = @ € Succ(P,A)

Case n > 0: for all ¢ such that d; = n we have that
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SuccAI(ApzInc(P,n), (pfi~™(%),T3)) = 0 C Suce(P, A;)

For the rest we apply the transformation TOb to the root of the tree. We
obtain a tree where none of the induction hypotheses p,;(?.-}),l",r > A; with
i € 0..mare used in a (hyp. L) rule - they were replaced by the hypotheses
in ¥pew-

The tree we obtain has an equal or lesser height than the initial tree. By
induction hypothesis we obtain

SuccAI(ApzIne(P,n), (0]~ (&), T:)) C Succ(P, A;)

for all £ such that d; < n.

Remark: The main idea of the proof is to replace an (ind) rule which
introduces an induction hypothesis p; (T,?),I‘,- > A;with a (def.) rule and to
add as hypothesis pi"(‘ﬁ?),I‘,- > A;

for k; € 0.n — 1. By applying the transformation TOb the applications
of the rule (hyp. L) that use the induction hypothesis are replaced by others
that use the added hypothesis. Thus we obtain a proof tree for p} (E)), TivA;.

Example: The incorrect proof of NI, [nat(X)vnat(s(X))] Fsi nat(X)>
tell(X = 0) presented in the previous section does not satisfy the condition
C0 as an application of rule (hyp. L) with the initial hypothesis nat(X) v
nat(s(X)) is interposed between the call that generates the induction hy-
pothesis and its corresponding call in the application of rule (hyp. L) with
the induction hypothesis.

While the proof system is sound given the conditions in the previous
theorem it is not complete. Moreover it can be shown that it cannot be
complete by an argument using undecidability suggested by Francois Fages.

Suppose that we had a complete proof system for success inclusions of two
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CLPY expressions E; and Fs in the context of a program P. By enumerating
all proofs we obtain an algorithm which terminates whenever Suce(P, Ey) C
Succ{ P, F2).

If E; = tell(false) then Succ(P, E2) = 0. Suppose Fy has a determin-
istic execution i.e. it has at most one success or doesn’t terminate - it is
sufficient for simulating a Turing machine. We can build a program that
always terminates and can determine whether F; terminates. The program
has two execution threads:

e one that executes the algorithm determining whether Succ(P, Ei) C
Succ(P, false) = 0.

e one that executes F,

If B, terminates then the second thread finishes, hence the program can
report that E; terminates. If By doesn’t terminate than it has no success
therefore the first thread will terminate, hence the program can report that
E) doesn't terminate.

As termination is undecidable, we have a contradiction, therefore we
deduce that there can be no complete system for success inclusion.

3.6 A weaker condition for the soundness of the

system

In the previous section a sufficient condition for the soundness of the proof
system was given. In this section we will prove that a weaker condition is
also sufficient for the soundness of the system.

We proceed by extending the definition of degree distance and then prov-
ing the same result as in the previous section for the extended definition.

Definition: Let P be a CLPV program. A hypothesis of the form
By v Ey where pu(iﬁ), ...,pl,,(t_l,,b are the predicate calls contained in F;
and pg; (E{ ) . pgm(t?)m) are the predicate calls contained in FE; satisfies the
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condition C1 in the contert of the program P or simply satisfies the condition
C1 if there exists a set S of inequalities of the form

ki + cij < kg,

with c € N, i € I.n, j € T..m such that if the inequalities are satisfied
then

Succldpe(P, 1), By{pa(Fi) /75 (1)) € Suce(Apa(P1), Bafoos (B2)/2¥ G)))
where E,; {pli(fﬁ)/pf}‘ (t—ﬁ)} denotes the expression F; where the calls

P (t_lz), i € 1..n have been replaced with pf,-"' (t_l’,f). Here I > ky;, kz2; for all
ieln, jel.m.

Remark: For each pair (%, j) there exists in § at most one inequality of
the form

ki + cij < ko

Proposition 3.6.1: Let
PXty; Ev F

where £ = [Ey > F,.., By > Fy] be a sequent which has a derivation tree
which doesn’t use the rule (ind).

If each hypothesis in 3 satisfies the condition C1 then Eo F satisfies the
condition C1.

Proof: We proceed by induction on the structure of the proof tree. The
non-trivial cases for the rule at the root of the tree are:

o (id):
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PEF ETs B A

If E is not a predicate call then § = 0.
If E is a predicate call p(_t>) then Succ(P, p*! (“f))) C Suce(P, pkz(?)) if
k1 < ko therefore S = {k]_ < kg}

* (,R):

P, T B A P ZI“,iFDEz;A
P, Lk To (B, B A

(, R)

Let Sy, 5; be the sets of inequalities for the upper left and upper right
sequents and S3 = 51 U Ss.

If pli(fﬁ) is contained in I and py; (E;) is contained in A then in S3 there
might be two inequalities k1; + ¢; < kg; and ky; + c2 < kej.

If ¢ < e3 then we eliminate the first one to obtain S otherwise we

eliminate the second one.

e (;L):

P,EFy; Ey,ToA P, ShyE,ToA
P, Tty (B3 E;), T A

GL)

Let 57, S; be the sets of inequalities for the upper left and upper right
sequents and 53 = 51 U Sa.

If p1i(f7}) is contained in T and D2; (E;) is contained in A then in Sg there
might be two inequalities ki; + ¢; < kz; and ky1; + 2 < koj.

If ; < ey then we eliminate the first one to obtain § otherwise we

eliminate the second one.

e (def.L):

P, © F4; Body(T),T'> A
P X }-_,,;p(_t)),rbA

(def.L)
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where (p(X) : —Body(X)) € P.
Let S1 be the set of inequalities for the upper sequent. S is obtained
from S; by replacing all inequalities of the form

ki + ¢ < kyj

where ky; is the degree of a call contained in Body(?) and ! € 1..n; with
the inequality

k+maz(l,c) —1< kgj
where k is the degree of p(?) and ¢ = maz; 7 (cr)-

o (def. R):

P,y I's Body(T); A
P,StuTop(T)A

(def.R)

where @(7()) : —Body(?)) € P.
Let S; be the set of inequalities for the upper sequent. S is obtained
from S; by replacing all inequalities of the form

ki + e < kyj

where ko; is the degree of a call contained in Body(?) and ! € 1..ny with
the inequality

ki+c+1<k
where k is the degree of p(_t)) and ¢ = maz 1 o-(a)-

e (hyp. L):

P [(Fr@),E] by E\TD A
P, [(FvG),X[Fs ETbA

(hyp. L)
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if 37 such that 7F = E and 7G = E'.
Let S be the set of inequalities for the upper sequent. S; is obtained
from S by removing each inequality of the form

kiit+e< kgj

where ky; is the degree of a call contained in E'.

Let p (Tﬁ)) be contained in E (its degree is k1), ;1 (t—z)) is contained in F
(its degree is kg) such that 7p1 (%) = p1(T), ql('t'g) is contained in G (its
degree is k3), ql(t4) is contained in E’ (its degree is k4) such that 711(t3) =
ql(t4) and Q2(t5) is contained in A (its degree is ks).

In §; there is the inequality k4+¢; < ks and the hypothesis Fi-G satisfies
the inequality ks + 2 < k3.

By making k1 = k2 and k3 = k4 we obtain the inequality

ki+c1+e<ks

which will be added to S5 to obtain S.

Remark: The condition C1 can be satisfied by sequents who have a
derivation tree that use the rule (ind). For example in the context of the
program NI presented before nat(X) v int(X) satisfies the condition C1.

In general this is not true.

Example: In the following program called NN2 :

nat (X):-X=0
5 3Y. (X=s(Y), nat(Y)).

nat2(X}:-X=0
; JY. (X=s(Y), nat2{Y})
; 3Z.(X=s(s(Z)), nat2(Z)).

we have two predicates nat(X) and nat2(X) which have the same set of
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successes. The sequents NN2,[] Fs nat(X) > nat2(X) and NN2,[] by
nat2(X)enat(X) are derivable and the derivation trees satisfy the conditions
of theorem 3.5.4.

However
nat2(X) > nat(X)
does not satisfy the condition Cl. In fact for I > ky, ks
Suce(Apz(NN2,1), nat2¥ (X)) C Succ(Apz(NN2,1), nat*? (X))
iff

2ky < ko

The following definition extends the notion of degree distance to rules
(hyp. L) where the hypothesis used satisfies the condition C1:

Definition: If pl(t_l’), pz(t_g)) are predicate calls in a proof tree then
the degree distance ddl or just distance ddl between py ('"t'i}) and pg('fg) isa
natural number defined by the following conditions:

o if pz(t_;) is derived from pl(t_l}) then it is equal to the distance dd
- -
between p;(%1) and ps(i3)

o if there exists a rule (hyp. L)

P, [P(E}), F'o Q(H)s G')’E] Fai Q(t_ﬁ))1 G3F > A
P, [(0(%3), F' > q(21),G"), ] Fui p(%), F,T > A

(hyp. L)

where 7(p(%3), F') = (p(%), F), (a(), ") = (a(%), G) such that the
distance ddl between pl(t_f) and p(fg) is di and the distance ddl between
q(?s)) and pz(t_g)) is dg, the hypothesis p(fg),F’ > q(ﬂ), G' is an initial hy-
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pothesis and satisfies the condition C1 and the inequality between k3, the
degree of pl(t_g,}), and kj4, the degree of q(t_z) is

kste<ks

then ddl is dy +dy — c.
The rule is said to be interposed between py (%) and pz(t—g))

Definitions: The transformation T1 is defined similarly to TO between
two calls p(](t_u)) and pf('t})) such that the distance dd1 between po(-t—o)) and
pf(t—f}) is strictly positive. The only difference appears in the case of a rule
(hyp. L). With the notations of the previous definition if the rule is

P, [p(83), F' » ¢(11), @), 5] 5i ¢(%), G, T > A
P, (p(%3), F' > q(%1), "), =] Fsi p(83), F,T b A

(hyp. L)

and p(%3) is replaced with p* (t_5)) then the rule becomes

ApzInc(P,n), ¥ by (%), G, e A
ApzInc(P,n), &' by p*(33), F,T> A

(hyp. L)
where
ki=k+c

The transformations T1a and T1b are defined similarly to T0a and TO0b
where T0 is replaced by T1.

Definition: Let P be a CLPY program. Using the notations of the
definition of condition Cl, for a hypothesis of the form E;,T' > E5 where
pn(ﬁf), ...,pu(t_ﬁ) are the predicate calls contained in F; that satisfies the
condition C1 we define §' as the subset of S that contains the inequalities

kii +¢ij < kj
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withceN, i€ l.l, j € I.m.

We say that the hypothesis satisfies the condition Cla in the contezt of
the program P or simply satisfies the condition Cla if whenever the inequal-
ities from S; are satisfied we have

Succ(P, (B},T)) C Suce(P, Bj)

where B] = Ey{p; (t_I:) /p’f}i (ﬁt)} denotes the expression E); where the
calls pyi(f1}), i € 1.1 have been replaced with ok (1)) and Ej is Ey where
the calls pgj(t';}) have been replaced with pg;j (E}) if kg; appears in the
inequalities contained in §’. :

Proposition 3.6.2: Let
Pt EvF

where X = [Ey > F,.., Ep b Fy) be a sequent which has a derivation tree
which doesn’t use the rule (ind).

If each hypothesis in ¥ satisfies the condition Cla then F v F satisfies
the condition Cla.

Proof: We use an induction over the structure of the derivation tree:

e (id):

P Yty B, To 5 %)

If the common atomic F expression is contained in Ey then Fy = (E, Ey)
and By = (E, En).

We have two cases:

1. E is a predicate call p(7) then

Suce(P, (B {p(T) /9" (¥)},T)) C Suce(P, B {p(T)/p"*(T)})
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because in § we have the inequality k1 < ka.
2. E is not a predicate call. Then in § we have no inequality.
If E is not contained in F; then ! = @ therefore

Suce(P, (By{pui(82}) /0% (E8)}, 1)) = Suce(P, (Ey1,T)) C Suce(P, Ey) = Succ(P, Ep)

* (R):

P, Yk B1,Te Ep;A P, Xk, By, T Egg; A

P, X by B1,T o (Bop, Ea2); A . R)

Let 5155 be the sets of inequalities for the upper left and upper right se-
quents. Each inequality in those sets is implied by one from §’. By induction
hypothesis we obtain the desired result.

o (;L):

P, Z by By, 1o By P, Yy Ep, T b By
P, T ki (Br; Brg), Ty v By

G L)

where ((E11; E12),I1) = (E1,T).

If (Eyy; Eq2) is contained in F; then Let S7, S5 be the sets of inequalities
for the upper left and upper right sequents. Each inequality in those sets
is implied by one from S’. By induction hypothesis we obtain the desired
result.

Otherwise (E11; E1g) is contained in I' and therefore | = 0 hence By = E{
and Ey = Fj.

o (def.L):

P, Sty Body(¥),T1 > By
P, Tt p(7),T10 By

(def. L)

where (p(X) : —Body(X)) € P and (p(7),T1) = (E,T).
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If p(_t)) is contained in E; then each inequality from S| - the set of
inequalities for the upper sequent - is implied by one from $’. By induction
hypothesis we obtain the desired result.

Otherwise (Ey1; Eq3) is contained in I and therefore [ = 0 hence E; = Ej
and By = B},

o (def. R):

P, &ty By, T'> Body(T); A
P, Yty B, Top(T);A

(def.R)

where (p(X) : = Body(X)) € P and (p(F); A) = B».

Each inequality from S] - the set of inequalities for the upper sequent -
is implied by one from S§'. By induction hypothesis we obtain the desired
result.

o (hyp. L):

P, [(Fv G),X] Fg Efy, By2, 11, T2 > By
P, [(F> G),X] Fe E11, B12, 1,20 By

(hyp. L)

where Ey = (Ey1, By2), I' = (I'1,T2) and 7F = (E13,Tv), 7G = (Ef,, ).

Each inequality from S] - the set of inequalities for the upper sequent -
is implied by one from §’. Since the hypothesis F b G satisfies the condition
Cla by induction hypothesis we obtain the desired result.

Definition: A derivation tree is said to satisfy the condition Cl1t if the
following conditions are satisfied:

¢ the distance dd1l between any call that generates an induction hypoth-
esis and the corresponding call in any rule (hyp. L) that uses the in-
duction hypothesis is strictly positive

e all the initial hypotheses used in a rule (hyp. L) interposed between
those calls satisfy the condition Cla
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Proposition 3.6.3: If the initial tree satisfies the condition C1t the
replacing rules of a transformation Tla are correct.

Proof: It is similar to the proof of proposition 3.5.3 except for the case
of a rule (hyp. L). With the notations of the definition of transformation T1

we have:
ApzIne(P,n), B ks ¢ (%), G, T > A
; = (hyp. L)
ApzInc(P,n), 'ty p5(15), F,T b A
where

k]_ =k+e¢
- '_> '] _) - TR * - Y4
As the hypothesis p(i3), F' > ¢(#4), G’ is an initial one it appears in ¥

and we have k3 + ¢ < k4. Since the hypothesis satisfies the condition Cla
we have by proposition 3.6.2

Suce(ApzIne(P,n), (p*(8), F')) € Succ(ApzInc(P,n), (¢*T°(%1), )
and since k; = k + 1 we obtain that

Succ(ApzInc(P,n), (0" (R), F)) C Succ(ApIne(P,n), (¢ (%), G))

Theorem 3.6.3: If the sequent
P, Xt EvF

where I = [F) > F,.., By b F] is derivable, the derivation tree satisfies
the condition Clt and

Succ(P, E;) € Succ(P, F;), Vi € 1..p
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then

Suce(P, E) C Succ(P, F)

Proof: The proof is similar to the proof of theorem 3.5.4 except that the
transformation T1b will be used instead of the transformation T0b.

Example: The incorrect proof of
NI, [nat(X) > nat(s(X))] Fa nat(X) v tell(X = 0)

presented in section 3.4 does not satisfy the condition Clt. The initial
hypothesis nat(X) > not(s(X)) satisfies the condition C1 in the context of
the program NI

Suce(Apz(NI,1), nat™ (X)) C Succ{Apz(NI, 1), natt?(s(X)))

ifl > ky,ko and k1 +1 < ks.

However the distance ddl between the call that generates the induction
hypothesis and its corresponding one in the application of the induction
hypothesis is 0 (instead of strictly positive).

3.7 Proving other properties through success inclu-

sion

In this section we will show that other properties of logic programs can
be reduced to success inclusion and therefore they can be proved using the
proof system described previously.

Examples of useful properties that can be proved using these methods are
the running time and complexity of programs, memory consumption, etc..

In the previous section of this chapter a formal system for proving success
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inclusion was developed. While success inclusion in an important property
it is not the only one of interest.

The same system can be used for proving other properties by expressing
them as success inclusion. Two methods for achieving this will be presented.

The first method is to modify the code of the program such that during
its execution it collects the data needed for checking the property which
subsequently can be used by a predicate that checks the property.

Suppose that we want to prove that all executions of a predicate p(?)
verify some property prop. We modify the code of p and eventually the
predicates that it calls such as to collect during execution the data needed
for checking the property and return it in a vector of terms ”fi) Thus the
new predicate call will be p (7, ).

We create a predicate check_prop(t_{) which succeeds when the property
is satisfied for the data t_f Therefore for proving the property it is sufficient
to prove that

»1(T, 7)) b check_prop(#1)

Example: Consider the predicate member(E, L) that succeeds when E
is a member of the L. Its code is:

member(E, L):-
tell(L=[E]),

tell(L=[E1 | L1]),
member(E, L1).

Suppose we want to prove that the number of unifications made during all
its executions is smaller or equal to the number of elements of L. We modify
the code of member by adding a parameter whose value will be the number
the unifications:
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member(E, L, No):-
tell(L=[E]),
No=1

tell(L=[E1 | L1]),
member(E, L1, Nol),
plus_nat(Nol, 1, No).

where plus_nat(X,Y, Z) is a predicate which succeeds iff X, Y, Z are natural
numbers and Z =X + Y.
We have only to prove that

member(E, L, No) > list_len(L, Len),le_nat(No, Len)

where list_len(L, Len) is a predicate that succeeds iff Len is the length
of the list L and le_nat(X,Y) is a predicate that succeeds when X,Y are
natural numbers and X <Y.

The method has the drawback that the code of the program must be
modified and sometimes heavily so. Another method which avoids this uses
a meta-interpreter of the CLPY language. Instead of modifying the code of
the predicate p and of the predicates it calls we can write a meta interpreter
that provides the additional information in 'Ef
Suppose the interface of the meta-interpreter is the predicate ev(Goal, Prog, —Da_tct)
which succeeds iff Goal succeeds in the context of the program Prog and
returns in Dafd the additional data needed for checking the property. Goal
and Prog are encodings of the original goal and program into terms.

Then we only have to prove that
ev(p_enc,prog_enc, t_f) > check_prop(t_f)

where p_enc is the encoding of ;p(_t)) and prog_enc is the encoding of
the program that defines p.
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The advantage of this method is that the original code need not be mod-
ified. However it must encoded into a term but this can be done automati-
cally. The inconvenience is that the proof will be more complex because of
the encoding and meta-interpretation.

These methods can be used for proving useful properties like the running
time and complexity of programs, memory consumption, etc..
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Chapter 4

A coinduction based proof
system for infinite success

equivalence

In this chapter we present a formal system for proving the inclusion (and
therefore equivalence) of infinite successes. The system is dual to the one
presented in the previous chapter in that it uses a rule for coinduction instead
of induction.

The first section presents the decreasing approximations of predicates.
They are similar to the increasing approximations in that they are obtained
by unfolding 0,1,...,n,... times the initial definition of the predicate. We prove
that the set of infinite successes of a predicate is the intersection of the set of
successes of its decreasing approximations. We can therefore reason about
the set of infinite successes of a recursive predicates by reasoning about the
corresponding sets of its approximations whose definitions are not recursive.
This property will be used later in the chapter.

The second section proves that the set of infinite successes is the greatest
fixed point of the operator defined in the previous chapter. Thus the finite
and infinite successes are the least and greatest fixed points of the same oper-
ator. This result reveals the duality between the finite and infinite successes
which determines the duality between the proofs systems.

95
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In the third section we prove the correctness of the proof system. We
give two conditions for its correctness which are the counterparts to the
conditions of correctness in the previous chapter. The proofs of correctness
and the additional definitions are also symmetrical to those for the finite
successes.

The fourth section defines first the negation of a constraint, expression
and programs. Using this notion we prove that the two systems are equiva-
lent. The proof is based on the left-right symmetry between the two systems.

4.1 Decreasing approximations of predicates

In this section the decreasing approximations of a predicate are presented.
They are the duals of the increasing approximations presented in section 3.1.
Their definitions are also nonrecursive but their sets of infinite successes are
decreasing .

After introducing their definition we prove in proposition 4.1 their main
property, namely that each success of a predicate is a success of all approx-
imation and vice versa. This property, together with the fact that their
definitions are nonrecursive will be used later in the chapter.

We need to extend the set of predicate names like we did for the increasing
approximations:

PredsNAD denotes the extended set of predicate names which includes
PredsNand for each predicate name p € PredsN, PredsNAD contains
the predicate approximations names pj, ,n € N . We suppose that p},. ¢
PredsN.

Other definitions that depend on PredsN will be extended accordingly,
e.g.:

ExzpAD, ProgsAD denotes the corresponding extended set of expres-
sions and programs,

SuccAD : ProgsAD x ExpAD — p(Constraints) denotes the extension
of the function Succ.
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The definition of the sequent calculus ;; must be extended to take into
account the extended programs and expressions.

We will also refer to the elements of these extended sets (e.g. EzpAD,
ProgsAD) by the same names as the elements of the original sets (e.g.
“expressions” and “programs”).

Definition: Let P be a program, py, ..., o be all the predicates defined
in P and q, ..., q; be all the predicates that are called in the definitions of P.

ApzDec(P,n) where n € N is the program obtained by adding to P,
for each predicate p € {p1,...,px} defined as p(?) : —Body(?) in P the
following definitions (by definition of PredsNAD pi,,,q5,,, ¢ € 0,n do not
appear in P):

2 (R) : —tell(true).
P,lgec(?) : —Bady(?){q/qgec}_

p8..(X) : —Body(X){a/q1)-

Here Body(Y){q/qgec} denotes the expression Body(X) where all the
calls q(_t')) have been replaced with calls qiec(?)
Bodyéec(?) will henceforth be another notation for Body(i’)){q/q:;ec}.

P, n € N are called the decreasing approzimations of the predicate p.

n is called the degree of the approrimalion pj, .
The approximation of degree 0 of p(Y) has the following property:

ISuce(P, pgec(?)) = Constraints — False

Like for increasing approximations we may also define the decreasing
approximations of a predicate p(?) as:

P2o(X) : —pl(X).



98CHAPTER 4. A COINDUCTION BASED PROOF SYSTEM FOR INFINITE SUCCES¢
Phee(X) : ~Body(X){a/al,.}-
Pie®) : ~Body(R )/}
This definition is identical for the two kinds of approximations.

Example: For the previous program Lst we can construct ApzDec(Lst,n)
by adding to Lst the following definitions:

1ist03,, (L) :-tell(true).

ligt0},, (L) :-
3L1. (tell(L=[0 | L1]), 1listl O0(L1)).

1ist01},.(L) : -tell(true).
1ist01}, (L):-

JL1. ((tell(L=[0 | L11) ; tell(L=[1 | L1])), 1ist01f (L1)).

A similar property to the one stated in proposition 3.1 holds for the decreas-
ing approximations:

Proposition 3.1: For each program P and predicate p defined in P the
following property holds:

ISuce(P,p(?)) = (| SuccAD(ApzDec(P,n), plec(?))
neN

Proof: The proof is similar to the one of proposition 3.1.

4.2 Greatest fixed point semantics of CLPY

In this section we will prove a result that parallels the one in the section
3.2 namely that the set of infinite successes of an expression is given by the
greatest fixed point of the operator IE.
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Together, the two results expose the symmetry between the finite and
infinite successes. This symmetry will appear further is section 4.4.

Similarly to Succ we will use the function name ISuce to also denote a
function
ISuce : Progs — (Exp — p(Constraints)) such that:

ISucc(P)(E) = ISucc(P, E)
Thus ISucc can be used either as a unary or binary function.
Proposition 4.2: For each CLPY program P we have:
ISucc(P) =vAIE(P,A)
where v is the well-known notation for the greatest fixed point.
Proof: First we prove that ISuce(P) is a fixed point of JE(P) i.e.
IE(P, ISucc(P)) = ISucc(P)

or VE IE(P, ISucc(P))(E) = ISucc(P){ E).
We proceed by induction over the structure of expression E. We have
the following cases:

o E=teli(c):
IE(P,1Succ(P))(tell(c)) = {d € Constraints|dtp c}—False = ISucc(P)(tell(c))
e E= (Ela E2) :

IE(P, ISucc(P))(( By, By)) = IE(P, 18ucc(P))(E, )N E(P, ISucc(P))(E2) =
ISuce(P)(Ey) N ISucc(P)(Ey) = ISucc(P)((E1, Bs))

o E=(E;Ey):
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IE(P, ISucc(P))((E1; Ea)) = IE(P, ISucc(P))(E1)UIE(P, ISucc(P))(E,) =
ISucc{P)(EB1) U ISuce(P)(Ez) = ISucc(P)((E1; Ez))

o E=3X.E(X):

IE(P, I8ucc(P))(3X.E(X)) = Uscrerms TE(P, ISucc(P))(E(£)) =
UseTerms ISucc(P)(E(t)) = ISucc(P)(3X.E(X))

o E=VX.E(X):

TE(P, ISucc(P))(VX.E(X)) = MNicTermsI E(P, ISucc(P))(E(t)) =
NteTermsI Succ(P)(E(t)) = ISuce(P)(VX.E(X))

. E=p(?):

IE(P, ISucc(P))(p(_t))) = IFE'(P, ISucc(P))(Body(?)) = ISucc(P)(Body(?))
- the last equality can be proven by a similar induction over the structure of
the expression Body(—t)).

We then prove that ISucc{P) is the greatest fixed point of IE(P) i.e.
VA : Exzp — p(Constraints) such that IE(P, A) = A we have

VE € EzplSucc(P)(E) 2 A(E)

Let A; : Exp — p(Constraints) be a function defined as VE € Exzp, A1(F) =
Constraints. We have IE(P)°(A;) = A; O A and by monotonicity of
IE(P) we derive

IE(P)*(A1) 2 IE(P)*(4)= A

Therefore

(] IE(P)"(41) 2 A
neN*

We also have for ¥Yn € N*:

IE(P)*(A1)(E) = ISuccAD(ApzDec(P,n), Eg,.)
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As IE(P)°(A1) = A1 = 1gonstraints We have
() IE(P)*(A1) = () IE(P)"(A1)
neN: neN

and therefore from

() IE(P)"(A1) = ISuccAD(ApzDec(P)) = ISucc(P)
neN

we obtain

ISuce(P) = (| IE(P)"(A;) 2 A
neN*

which concludes the proof.

4.3 A coinduction-based proof system

In this section we will present a proof system for inclusion of infinife
successes which is dual to the one presented in chapter 3 for inclusion of
finite successes. A coinduction rule replaces the induction rule of the previous
system.

The condition for the soundness of the new system are dual to the con-
ditions for the previous one. The proofs of soundness are also dual.

In the previous chapter we have given a formal system for proving the
inclusion of finite successes. In this chapter we want to prove formally that
for a program P and two expressions F, F' we have:

ISuce(P, E} C ISucc(P, F)

We will use for that purpose a proof system expressed by means of a
sequent calculus of the form:

P,El‘,'siEDF
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where X is a multiset of elements of the form E) > F;. They are called
“hypotheses” and are denoted by the letter H (possibly subscripted). The
subscript isi stands for “infinite success inclusion”,

The meaning of the sequent above is “in the context of the program P and
hypotheses X the infinite successes of E are included in the infinite successes
of F7,

The meaning of the hypothesis £y > Fj is “in the context of the program
P the infinite successes of E are included in the infinite successes of Fy”.

The elements of the multiset ¥ will separated by . Therefore [(E;
F), X] denotes the multiset composed by the hypotheses E; b Fy and the
elements of the multiset X.

The rules of the proof system are identical to the rules of the system |;
presented in the previous chapter except that the rules (hyp. L) and (ind)
are replaced by the following rules:

P, [(FpG),E] i T E A
R [(FDGLE] l"iaiPDE;A

(hyp. R)

if 37 such that 7G = E, 7F = E'.

P, [(Tv ((p(7); A)), =] Fisi T > Body(T); A
P, S hi Top(ThA

(coind.)
(coind.) having the side condition: (p(?) : —Body(?)) € P.

Example: Recall the program Lst given in section 2.5:

listO(L):~
dL1. (tell(L=[0 | L1]), listO(L1)).

listO1(L):-
3L1. ((tell(L=[0 | L1]) ; tell{l=[1 | L11)), list01(L1)).

We can prove that

ISuce(Lst, listO(L)} C ISucc(Lst,list01({L))
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Lst, [| Fis; 1istO(L) > list01(L)

by the following derivation:

Lst, [H] Fiai tell(L = [0] L2]), list0(L2) v tell(L = [0] L2]) 0

TLat, [list0(L) b list01(LY] Fiat 3L1.(...) b SLL.((tell(L = 0] L1)); .
Lst, [| Fuo: List0(L) b 1it01(L)

Y (3L,2R,; R)
2} (coind.)

where H is the hypothesis list0{L) v list01(L) and Q if the following
subtree:

Tt [H] Fror tei(L = [0 | L2]), Tat0(L3) > tll(L = [0] L2]), Tiston(L2) P B )

The soundness of the proof system |;;; is obtained in a similar way to the
soundness of the system |,;, by imposing on the proofs addition conditions
which are the duals of the conditions imposed for the system ;.

All the definitions and properties for the finite successes given in sections
3.5 and 3.6 have their counterpart for the infinite successes. They are ob-
tained easily by replacing the rules (hyp. L) and (ind) with the rules (hyp. R)
and (coind) and by taking into account the left-right symmetry between the
two proofs systems.

In the rest of this section we give some of the most important definitions
and properties for the system F;5; which parallel those given for the system
F5; in sections 3.5 and 3.6.

Definitions: If p]_(?l)),pg(?g}) are predicate calls in a proof tree of the
system |;,; we say that pz(t_g)) is R-derived from p; ('ﬁ}) if one of the following
conditions is true:

o po(F3) is the same as p; (%)

e the rule where p1(35-1>) appears is (def. R) or (coind):
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P, ' by T' b Body, (3); A
P, i Top(f);A

(def. R) or (coind.}

Bodyl(t_f) contains pg(?a)) and m(?;.’) is R-derived from p3 (E})
In this case we say that the rule is R-interposed between p, (t_l}) and
_>

m(t2).

e the rule where p;(%;) appears is (def.L):

P, S bigi Body (11),T'> A
P, T his m(t),To A

(def.L)

Bodyl(t_f) contains p3 (t_;.;)) and pg(t—z)) is R-derived from p3(t_3,").
In this case we say that the rule is R-interposed between pl(?f) and
_)

pa(t2).

e pi(%1) appears in the lower sequent in a rule

P, T Figi .p1(5)...
P, T Figi .1 (81)--.

which leaves py (?1)) unchanged and pg(t_g)) is R-derived from p; (7]) which
appears in the upper sequent.
In the case of the rule (hyp. R)

P, [(F>G),X] Fin T EA
P, [(FrG), I Fumi Tv B; A

(hyp. R)

with 7G = E and 7F = F/, pl(ﬁ}) is left unchanged by the rule if it
appears in I or A but not in E.

If pg(t_g) is R-derived from p (ﬁ)) which is contained in F; then we also
say that pz(?z}) is R-derived from E;i.
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The previous definition are very similar to the ones given in section 3.5
for the notion of a predicate call being derived from another predicate call
in a proof tree. We only replaced (ind) with (coind), (def. L) with (def. R)
and (hyp. L) with {(hyp. R).

To reduce duplication, for the following definitions and properties we will
only specify the differences between them and their finite success correspon-
dent.

Definition: If

P, [(FDG),S] F‘isiI‘DEI;A
P, [(FvG),ZE]|Fix T E;A

(hyp. R)

with 7G = E and 7F = E' is an application of the rule (hyp. R) in a
derivation of the proof system |-;,; then we say that a predicate call p(_t)) is
R-introduced by the application if p1(%]) appears in B’ and p(F) is R-derived
from py(%7)-

If a predicate call is R-introduced by an application of the rule (hyp. R)
then we also say that the predicate call is R-introduced by the rule (hyp. R).

Definition: The R-degree distance ddR between two predicate calls
pl(l‘?) and pg(t_{) in a derivation of the proof system l;,; is defined sim-
ilarly to the notion of degree distance dd except that (ind) is replaced with
(coind) and (def. L) with (def. R).

Definition: A derivation tree is said to satisfy the condition COR if for

each application of the rule (Ayp. R) in the derivation,

P, [(p{(7),FvG),5] ke G1,T> A
P, [(o(T), F v G),Z] bui p(#), F1,T> A

(hyp. R)

where Tp(?) = p(t_l)), 7F = F,7G = G7 and p(_t)), Fr @ is an induction
hypothesis generated by p(_t>), we have that p(ﬁ)) is R-derived from p(_t>)

Definition: We define the transformations TOR, T0aR and TOR in
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a similar way to the transformations T0, T0a and T0Ob except that we re-
place finite successes with infinite successes, increasing approximations with
decreasing ones, {ind) with (coind), (hyp. L) with (hyp. R), etc..

The following theorem is the counterpart of theorem 3.5.4 for infinite
successes:

Theorem 4.3.1: If the sequent
P, = |‘,'3,7 Ep F

where X = [E; b Fy,.., E, > Fp) is derivable, the derivation tree satisfies
the condition COR and

ISucc(P, E;) C ISucc(P, F;), Vi € 1.p
then

ISucc(P, E) C ISucc(P, F)

Proof: The proof is similar to the proof of theorem 3.5.4. We use the
transformation TObR instead of TOb. The propositions 3.4.1 and 3.5.1-3.5.3
have their counterparts for infinite successes that have analogous proofs.

We can prove similar results to the ones in section 3.6 for infinite suc-
cesses, namely that a weaker condition analogous to the condition Clt is
sufficient for the soundness of the proof system F;,;.

Definition: Let P be a CLPY program. A hypothesis of the form
E) v E5 where py; (E{), ey pln(m) are the predicate calls contained in E,
and p21(£2-i),..., p2m(t2_>m) are the predicate calls contained in Es salisfies
the condition C1R in the contezt of the program P or simply satisfies the
condition C1R if there exists a set S of inequalities of the form
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kii +cij < ko

with ¢ € N, i € 1..n, j € 1..m such that if the inequalities are satisfied
then

ISuce(P, By {pyi(f3)/p% (F)}) € ISucc(P, Bz {pe;(Ea}) /o4 (22)})

where Fj {pl,-(fﬁ)/ p’f}‘(ﬁt)} denotes the expression F); where the calls
pli(ﬁ:), i € 1..n have been replaced with p’f}" (1,‘_1:)

Definition: If pl(t_l)), pz(‘f;) are predicate calls in a proof tree then the
degree distance dd1R or just distance dd1R between py (t_f) and pg(-t—g)) isa
natural number defined by the following conditions:

o if pz(t_g}) is R-derived from p; (t_l)) then it is equal to the distance ddR
between py(%7) and ps(73)

e if there exists a rule (hyp. R)

P, [p(B); F'> q(7d);G'), 5] Fisi To q(); G; A

P, (P8 5 o(2);C'), 2] Pt Do p(B) Fi 8 PP

where 7(p(%3); F') = (¢(8); ), 7(q(%); &') = (p(%); F) such that the
distance dd1R between pl(t_f) and p(#) is d, and the distance dd1R be-
tween g(%g) and pz(.i—z)) is da, the hypothesis p(t_3>); F bq(ﬂ)); G is an initial
hypothesis and satisfies the condition C1R and the inequality between kg,
the degree of ;; (t_;:,)), and k4, the degree of q(t_l) is

ks+c< ky

then ddl is d; + ds +c.
The rule is said to be R-interposed between pl(ff) and pg(g).
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Definitions: The conditions ClaR, CItR and transformations TIR,
T1aR, TIR

are defined similarly to the conditions Cla, Clt and transformations
T1,T1a,T1b by using the left-right symmetry of the proofs systems ,; and
Fisi.

Theorem 4.3.2: If the sequent
P, bH |_is:' FEe F

where ¥ = [E; b F, .., By > Fy] is derivable, the derivation tree satisfies
the condition Clt and

ISuce(P, E;) C ISucc(P, F;),Vie T.p
then

ISuce(P, E) C ISucc(P, F)

Proof: The proof is similar to the proof of theorem 3.6.3 using the
symmetry between the proof systems ,; and F;.

The proof uses the counterparts for infinite successes of the properties
stated in propositions 3.6.1-3.6.3 which hold also by symmetric proofs.

4.4 Equivalence of the two proof systems

In this section we begin by introducing the notion of negation of a con-
straint, then we define the negations of an expression and of a program.

Next, we show that the two proofs system for finite and infinite successes
are equivalent in the sense that a proof for successes inclusion exists in one
system if and only if a proof of inclusion exists in the other. We use the
negation for obtaining the program and the expressions for the second proof.
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Definition: we say that the relation Fp has the negation property if
for each constraint ¢ there exists a constraint € such that for all constraints
Cly sy, .o, &y With n,m € N we have

Cl,-Cn lhD ?13 ";a
if and only if we have

d1,.,dm Fp e1;..5¢n

Remark: The previous definition introduces the notion of negation of
constraints. The negated constraints do not posses all the properties associ-
ated with negation but the condition imposed in the definition is sufficient
for the main proof of this section (proposition 4.4.1).

Definitions: Let P be a CLPY program and suppose the relation +p
has the negation property. We define the negation P of a program P as a
program which contains the predicate non_p iff P contains the predicate p
(we suppose there is no name-clash). If p is defined by:

p(X) : ~Body(X)
then non_p is defined by:

non_p(?) : —Body(i)

We suppose that all the variables in Body(?) are either quantified or
appear in p(?). If this is not the case the remaining variables are treated
as they were existentially quantified at the scope of the clause body.

The negation E of an expression E is defined as follows:

A B=A4B 4AB=AB
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tell(c(T)) = tell(E(T))
VX.E(X)=3X.E(X) 3X.E(X)=VYX.E(X)

p(F) =non_p(t)

We define the negation T of a multiset 3 of hypotheses E; > F; as the
multiset containing the elements F; > E;. '

Proposition 4.4.1: There exists a derivation for
P Xty Ev F

iff and only if there exists a derivation for
B.Etriy Fo E

Proof: We use an induction on the structure of the proof tree, the
two proof systems being symmetrical with respect to negation and left-right
inversion.



Chapter 5

Implementation, examples and
comparison to previous work

In this chapter we present an implementation of a proof assistant for
the inclusion of success and several examples of proofs realized with it. A
comparison with existing work is also given.

The first section describes the implementation of the proof assistant. It
is a Prolog program of about 4000 lines of code. We describe the main data
structures and algorithms it uses. The main user commands are presented
and an example of interactive session for building a proof is given.

The second section contains some examples of proofs about predicates
over the natural numbers.

The third section contains a more complex example about permutations
defined as lists. We prove that if the list Lo is a permutation of the list Iy
then L; is a permutation of L.

The fourth section contains the proof of equivalence between an imple-
mentation of the algorithm gquicksort and the specification of sorting a list
of natural numbers. We prove that the set of successes of gquicksort and its
specification are equal by proving inclusion in both directions.

The fifth section contains a comparison of this work with previous ones.

111
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5.1 Implementation of a proof assistant

In this section we present the implementation of proof assistant for the
inclusion of success written in Prolog,

We give an overview of its data structures and its algorithms. We also
present an elementary proof search procedure that is reduces the user’s work
by applying automatically the “simple” rules of the proof system.

Finally we present an example of interactive session between the user and
the proof assistant.

We have implemented the proof system for inclusion of finite successes.
The program is written in Prolog and we tested it under SWI-Prolog [Wie].
It has about 4000 lines of code and it implements a text user interface.

The program is a proof assistant i.e. it is an interactive program where
the user inputs the formula to be proven and issues commands that instruct
the system to build parts of the proof. The proof is built from the root
towards the leafs. The system verifies the proof using the rules of the calculus
s and the condition C0. A simple interface between the main system and
constraint solvers was created. A constraint solver for the term unification
(Herbrand domain) is available by default.

Data structures. The main data structure used in the system repre-
sents the proof being built. It is a Prolog term of the form

pr(PCurrBr, Rootld, BrsList, Extl)
where

PCurrBr iz the current proof branch (or arc)
RootId is the identifier of the root branch
BrsList is a list of proof branches {(or arcs)

Extl is a list of additional terms

The whole proof tree is not memorized but only the leaves of its branches.
They are stored in the list BrsList.
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The identifier of the root branch is stored in Rootld and the current
branch (the one which the user commands act upon) is stored in PCurrBr.
A proof branch is stored in a term of the form:

prb(Id-PId, Goall, GoalC, PElems, Fork)
where

Id is the identifier of the branch
PId is the identifier of the parent branch
or ’n’ if the branch is the root branch
GoalI is (H->L->R) the initial goal where L,R are sequents
GoalC is (H->L->R) the current goal where L,R are sequents
PElems is a list of proof elements (added by base tactics)
Fork memorizes whether the branch forks or not and whether
the branch was closed or not

The field fork also memorizes the identifiers of the branches that fork from
the current one.

Among the data stored in a proof branch there are the initial and current
sequents Goall and GoalC which are terms of the form H->L->R where
H,L R are the hypotheses, the left and the right expressions of the sequent
HbFg; Lo R.

Ezit1 is a list of extensions to the initial data structure memorizing a
proof. It is of the form:

[GenPairs | _]
where
GenPairs is a list of pairs (FatherId, Id)

Id is the identifier of the call that derives from the call with identifier Fa-
therld.

Its role will be clear later when we will describe the algorithm used to
check condition CO.
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A sequent H b, L > R is represented as tree lists - one for each of its
components: H,L and R.
Each list contains elements of the form:

[Id, ElemDat, FatherId]
where

Id iz an element identifier
ElemDat is an element data (an encoded term)
Fatherld is an identifier of the element from which
thias ome derives
For hypotheses it is
0 if it is an initial hypothesis or
Id-Pos if it is an induction hypothesis where
Id is the id of the generating call
Pos is its position in the sequent

The field Fatherid is 0 if the current element doesn’t derive from any other
element, The role of the fields Id and Fatherld is also related to the verifi-
cation of condition CO.

Algorithms. The implementation is structured around the interaction
with the user. The user inputs the sequent to prove together with the initial
hypotheses. The system displays the current branch, waits for a command
from the user, executes it and display the new current branch. When all the
branches have been closed, the proof is finished.

The data structure presented above that memorizes the state of the proof
is manipulated only by a small number of predicates which are called “base
tactics”. They implement the rules of the proof system. Other tactics can
manipulate the proof state only by calling the base tactics. This ensures
that the proof is correct.

For storing the terms is a sequent a data structure is used where to each
variable is associated an index similar to the de Brujin indexes. Thus all the
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basic operations in Prolog like the unification, testing the equality of terms,
etc. have been rewritten.

We will present in detail how the verification of the condition CO is done.
The algorithm uses some fields of the data structures presented above.

The goal of the algorithm is to ensure that when the rule {(hyp. L) is
applied with an induction hypothesis the call that generated the induction
hypothesis is the one form which the corresponding call in the current sequent
derives.

For this goal each component of the sequent has associated two indexes:

e Id which is an unique identifier

e Fatherld which is the identifier of the component from which this one
derives

We will write E : Id : FId to denote that the component (or expression) E
has the identifier Id and FId is its father identifier.
Thus we could write the (, L) such that the identifiers are explicit:

P, YV, By :Id2: Idl, By : Id3: Id1,Tp A
P, ¥ Iy (E1, By) : Idl: FId1,T b A

(L)

The components of the root sequent have the field Fatherld equal to 0
as they do not derive from any other component.

The pairs of identifiers Id and Fatherld are stored in the field GenPairs.

When (hyp. L) is applied with an induction hypothesis the programs
checks that the corresponding call derives from the generating call by us-
ing the pairs. Also the sequent components (or expressions) introduced by
{(hyp. L) have the field Fatherld set to 0 which insures that no application
of (hyp. L) is interposed between the generating and the corresponding call.

Two simple tactics for automation of proof search have been implemented

and tested with good results.
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The first one is called det (from “deterministic”) a‘.nd_ it applies is order
the rules (id), (tell), (, L), (; R), (VR), (3R) as much as possible. Normally,
whenever one of these rules can be applied it is a good idea to apply it right
away.

The second one is called a0 (from “automation”) and it applies in order
the tactic det and the rules (; L), (, R), (VL), (3R) as much as possible. For
the rule (3R} the existentially quantified variable is replaced with a variable
that can be instantiated later (like Prolog does). The instantiation strat-
egy is a very simple “greedy” one: the first occurrence of the variable that
can be instantiated usefully is thus instantiated. The code for (VL) is still
experimental. '

In practice the tactic a0 reduces the size of the proofs that must be
manually input by the user from 4 to 5 times. However a certain “proof
discipline” must be observed when using this tactic because of its “greedy”
strategy.

User interface. As previously explained the user inputs the sequent to
prove and then issues commands that the proof assistant carries that modify
the state of the proof until the proof is complete.

The interface is a text based one - an illustration is given below;

Branch no. 3:

Hypotheses:

12 0 nat_max(A 13 u,B_14_u,C_15_u)->le_nat(A_13_u,C_15_u)
9 0 1t nat(A 9 u,B_10_u)->nat(B_10_u)

6 0 lt_nat{A 5 u,B_6_u)->nat(A_5_u)

3 0 lt_nat(A_ 1 u,B_2 u)->le_nat{A_1_u,B_2_u)

Left -> Right:

1 0 list(A_18_u)

-

2 0 permute_list(A_18_u,A_18_u)

7>ind(1).

Where the hypotheses are given under the word “Hypotheses” and the left
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and right part of the sequent are under “Left->Right” and are separated by
“,

“Branch no.” indicates the identifier of the current active branch.

“?>" is the command prompt. In the previous example the user has input
the command “ind(1)".

The variables are displayed as

VarName_Index_Type

where “Index” is the index of the variable (similar to the de Brujin index)
and “Type” can be “e” or “u” which indicates whether the variable has been
introduced by the existential or universal quantifier.

For each hypothesis and each component of the left and right parts of
the sequent are displayed the identifiers Id and Fatherld.

Some of the commands available to the user are:

e det: applies the rules (id), (tell), (, L), (; R), (VR), (3R)

e dupl([Ids]): duplicates the expressions given by the indexes in the list
Ids

e ol(Ind): applies (; L) to the expression of index Ind

¢ ar(Ind): applies (, R) to the expression of index Ind

¢ ul(Ind): applies (VL) to the expression of index Ind

e er(Ind): applies (3R) to the expression of index Ind

s dl(Ind): applies (def. L) to the expression of index Ind

e dr(Ind): applies (def. R) to the expression of index Ind

e ind(Ind): applies (ind) to the expression of index Ind

e hl(Inds, IdH): applies (hyp- L) to the expressions given by the list Inds
using the hypothesis given by IdH

e a0: applies the tactic a0

There are also commands that receive commands as arguments and com-
pose them to form composed commands. Some examples are:

e C1,C2 : executes the command C1 then C2

e C1;C2 : executes the command C1; if it fails then executes C2



118CHAPTER 5. IMPLEMENTATION, EXAMPLES AND COMPARISON TQ PREVIO:

o r(C) : repeats command C as many times as possible

An example of interactive session between the user and the proof assistant
is given below.
The goal is to build a proof of

NI,[] ksi nat(X) o int(X)

where N is the following program:
nat(X):-
X=0
3 X=a(Y), nat(Y).
int(X):-
1=0

; X=s(Y), int(Y)
; X=p(D), int(7).

At the beginning the user screen is:
Branch no. 3:
Hypotheses:
Left -> Right:
1 0 nat(A 1w
->
2 0 int{(A 1w

>ind(1).

The user enters the command ind(1)} and after the execution the following
screen is displayed:

Branch no. 3:

Hypotheses:
5 1-0 nat{A_1_uw)->int{A_1 u)
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Left -> Right:

4 1 ex(A_5_e,B_1_u=0;B_1_u=s(A_5_e),nat(A_5_e))
->

2 0 int{(B_i_u})

?>det.

We observe that the command has added the induction hypothesis to the
hypotheses list.
After the command det we have:

Branch no. 3:

Hypotheses:
5 1-0 mnat{A_1_u)->int(A_1_u)

Left -> Right:
6 1 A_1 u=0;A_1_u=s(C_5_u)},nat(C_6_u)

->
2 0 int(A_1_u)

?>01(6).

After the command ol(6) two new branches are created and the first one is
automatically selected:

Branch no. 9:

Hypotheses:
b 1-0 nat(A_1_u)->int(A_1_u)

Left -> Right:
7 1 A1 u=s0
->

2 0 dint(A_1_wu)

7>det.

After the command det the screen is:
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Branch no. 9:

Hypotheses:
5 1-0 nat(A 1 u)->int(A_i_uw)

Left -> Right:
->

2 0 int(0)

7>dr(2).

After the command dr(2) the screen becomes :

Branch no. 9:

Rypotheses:
5§ 1-0 nat(A_1_u)->int(A_1_u)

Left -> Right:
->

11 0 ex(A_9.6,0=0;0=s(A_9_e),int(A_9_e);0=p(A_9_e),int(A_9_ e))

Tror(il).

After the command er(11) the screen becomes:
Branch no. 9:

Hypotheses:
§ 1-0 nat(A_1_u)->int(A_1_u)

Left -> Right:
->

12 0 0=0;0=a(A_9 e),int(A 9 _a);0=p(A_9_e),int{A_9_a)

?>det.

After the command det the current branch is closed and a new one is auto-
matically selected:



5.1. IMPLEMENTATION OF A PROOF ASSISTANT 121

Branch no. 10:

Hypotheses:
§ 1-0 nat{(A. 1 _w)->int{A_1_u)

Left -> Right:
8 1 A_i_u=s(B_5_u),nat(B_5_u)
->

2 0 int(A_1_u)

?>det.

After the command det we obtain:
Branch no. 10:

Hypotheses:
5 1-0 nat(A_1_w->int(A_1_u)

Left -> Right:
16 1 nat(A_5_u)
->

2 0 int(s(A_b_u))

7>h1([16], 5).

The command hl{[16], 5) applies the induction hypothesis of index 5 to the
expression of index 16:

Branch no. 10:

Hypotheses:
5 1-0 nat(i.1_u)->int(A_1_u)

Left -> Right:

18 0 int(A_5_u)
->

2 0 int(s(A_5.w))

7>dr(2).
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After the command dr(2} the situation is:

Branch no. 10:

Hypotheses:
5§ 1-0 nat(A_1_u)->int(A_1_u)

Left -> Right:
18 0 int{A_6_u)
->

19 0 ex(B_11_e,s(A_5_u)=0;s(A_B_u)=s(B_11_e),int(B_11_e)
sa(A_5_u)=p(B_11_e),int(B_11_e)})

7>er{19).
After the command er(19) the screen is:
Branch no. 10:

Hypotheses:
5 1-0 nat(A_1_u)->imt(A_1_u)

Left -> Right:
18 0 int(A_5_u)
->

20 0 s{A_5.u)=0;s(A_6_u)=s(D_11_8),int(D_11_e)
;8(A_5_u)=p(D_11_e),int(D_11_¢e)

7>det.
After the command det we obtain:
Branch ne. 10:

Bypotheses:
5 1-0 nat(A_1_u)->int(A_1_u)

Left -> Right:

18 0 int(A_5_u)

->

23 0 s(A 5 u)=s(C_11_e),int(C_11_e)
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24 0 s(A_5_u)=p{C_11_e),int(C_11_e)
7>ar(23).

After the command det we obtain:

Branch no. 27:

Hypotheses:

§ 1-0 nat(A_1_u)->int(A_1_u)
Left -> Right;

18 0 int(A_5_w)

->

26 0 s(A_5_u)=s(C_11_e)
24 0 s(A_6_uw)=p{C_11_e),int(C_11_e)

7>det.

After the command det we have:

Branch no. 28:

Hypotheses:
B 1-0 nat{A_1_u)->int{A_1_u)

Left -> Right:

18 0 int(A_5.w)

-2

26 0 int(A_5_w)

24 0 s(A5.u)=p{A_5_u),int(A_5_w)

7>det.

The command det closes the last branch and the system acknowledges it:

The proof is: [ind(1), det, o0l(8), det, dr(2), er(il), det, det,
n1([16], 5), dr(2), er(19), det, ar(23), det, det]

Using the tactic a0 the proof can be shortened significantly: the command
sequernce is

[ind(1), a0, dr(2), a0, h1([16], 5), dr(2), a0]
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5.2 Natural numbers

In this section we present a few examples of proofs of success inclusion
concerning predicates whose arguments are natural numbers,

The following definitions are predicates over that set of natural numbers,
The natural numbers are represented here in unary base i.e. the number n
is represented as 5(s(...8(0)...)) (n times).

1t_nat(X, ¥):- % XI<Y
Y=s (X) I
nat (X)
Y=5(2),
lt_nat(x, Z).

le_nat(X, Y):- % X<=Y
X=Y,
nat(X)

1t_nat(X, Y),.

The predicates It_naet(X, Y),le_nat(X,Y) succeed when X,Y are natural
numbers such that X < Y and X < Y respectively.
First we will prove that

(1t_nat (X1, x2),
1t_nat (X2, x3))
->

It_nat(X1, 13)

or in the usual mathematical notation
(X1 < X) A (X2 < X3) = (X < X3)

We have:

Branch no. 3:
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Hypotheses:

Left -> Right:

1 0 1lt_nat(A_1_u,B_2_u),lt_nat(B_2_u,D_3 u)
->

2 0 lt_nat(A_i_u,D_3_u)

?>a0.

After the command a0 we obtain:
Branch no. 3:
Hypotheses:
Left -> Right:
4 0 1lt_nat(A_1 u,B_2_u)
5 0 lt_nat(B_2_u,D.3_u)
-

2 0 lt_nat(A_1_w,D_3_u)

?>ind{5).

The command ind(5) generates an induction hypothesis:
Branch no. 3:

Hypotheses:
7 5-i 1t _nat(A 1_u,B_2_u),lt_nat(B_2_u,D_3_u)->1t_nat(A_1i_u,D_3_u)

Left -> Right:

4 0 1lt_nat(A_i_u,B_ 2 u)

6 5 ex(C_16_e,D_3_u=s(B_2_u),nat(B._2_u)
;D.3_u=s({C_16_e),lt_nat(B_2_u,C_16_e))

->

2 ¢ 1lt_nat(A_1_u,D_3_u)

7>al.

After the command a0 we obtain:
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Branch no. 11:

Hypotheses:
7 6-1 1t nat(A_1_u,B_2_u),lt_nat(B_2_u,D_3_u)->1t_nat(A_1_u,D_3_u)

Left -> Right:

14 5 npat(A_2_u)

4 ¢ lt.nat(B_1 u,A 2 u)

->

2 0 lt_nat(B_i_u,s(A_2_u))

>dr(2).

The command dr(2) unfolds the call to It_nat:

Branch no., 11:

Bypotheses:
7 6-1 1t _nat(A_1_u,B.2_u},lt_nat(B_2_u,D_3_u)->lt_nat(A_i_u,D_3_u)

Left -> Right:
4 0 lt_nat(A_1_u,B_2_u)
14 5 nat(B_2_u)
->
16 0 ex(D_37_e,s(B_2_u)=s(A_1_u),nat(A_1_u)
;8 (B_2_u)=s(D_37_e},1t_nat (A_1_u,D_37_e))

T>a0.

The command al closes the current branch and selects a new one:

Branch no. 12:

Hypotheses:
7 5-1 1lt_nat(A_.1_u,B_2_ u),lt_nat(B_2_u,D_3_u)->lt_nat{i_1_u,D_3_u)

Left -> Right:

24 5 1lt_nat{i_2 u,B_16_u)
4 0 lt_nat{C_1_u,A_2_u)

-5

2 0 1lt_nat{C_1_u,s(B_16_u))
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7>h1([4,24]1,7).
The command hl([4,24],7) applies the induction hypothesis:
Branch no. 12:

Hypotheses:
7 6-1 lt_nat(A_1_u,B_2_u),it_nat(B_2_u,D_3_u)->lt_nat(A_1 u,D_3_u)

Left -> Right:
27 0 lt_mat(A_1_u,B_16_u)
->

2 0 lt_nat{A_1_u,s{B_16_u))
T>dr(2).

We need to unfold the call at the right by using the command dr(2):
Branch no. 12:

Hypotheses:
7 5-1 lt_nat(A_1_u,B_2_u),1lt_nat(B_2_u,D_3_u)->1t_nat(A_1_u,D_3 u)

Left -> Right:

27 0 lt_nat(A_1i_u,B_16_u)

>

28 0 ex(C_62_e,s(B_16_u)=s{A_1_u),nat(A_1_u)
;8(B_16_u)=s(C_62_e),1t_nat(A_1_u,C_62_a))

7>a0.

so that we can close the proof with the command a0.

Another example is the proof of

(le_nat(Xt, X2),
1t_nat{X2, X1))
->

fail
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where fail can be defined as tell(false) or can be left without definition (in
both cases Succ(fail) = 0).

For this proof we will first define a new predicate I _nat_2(X,Y) which
is equivalent to It_nat(X,Y) but has a different definition which facilitates
the proof:

lt_nat_2(X, Y):- % X<y
(

X=0,

Y=s8(Y1),

nat (Y1)

X=8(X1),
Y=5(Y1),
1t_nat_2(X1, Y1)

Then we will prove the following

1t_nat(X, Y)
->
1t_nat_2(X, Y)

which we will use as hypothesis for the first proof.

In order to save space we will omit the lower part of the screen which
contains the user command and the upper part of the screen which contains
the hypotheses. We will indicate the user commands and the hypotheses
used or generated.

We will use the following initial hypothesis:

nat (X)
>
lt_nat_2(X, s(X))

which can be proved simply using the proof assistant - we omit this less
interesting proof to save space.
In other words we will derive the sequent:
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[nat(X) o lt_nat_2(X,s(X))] e lt_nat(X,Y) b lt_nat_2(X,Y)

We have:

1 0 Jt_nat(A_6_u,B_7_u)
->
2 0 1t nat_2{(A_6_u,B_7_u)

We use induction on [t _naf and a0 which creates two branches (commands
ind(1), a0), the first being:

12 1 nat(A_6_u)
->
2 0 1t_nat_2(A_6_u,s(A_6_u)}

We apply the initial hypothesis mentioned above which allows us to close
the current branch and pass on to the next one (commands hl([12], 6), a0):

16 1 1lt_nat(A_9_u,B_15_u)
>
2 0 lt_nat_2(A_9_u,s(B_15_u))

We apply the induction hypothesis to obtain (command hl([16], 5)):

i8 0 1lt_nat_2(A_9_u,B_15_u)
->
2 0 1lt_nat_2(A_9 u,s(B_15_u))

In order to prove this we will again use induction (commands ind(18), a0).
The first created branch is:

30 18 npat(A_20_u}
->

2 0 1t_pat_2(0,s(=(A_20_u)))

which we close by unfolding at the right {commands dr(2), a0). The next
branch is:



130CHAPTER 5. IMPLEMENTATION, EXAMPLES AND COMPARISON TO PREVIO{

30 18 nat(A_20_u)
->
45 0 npat(s(A_20_u})

which we can also close simply by unfolding at the right (commands dr(45),
a0). The next branch is:

30 18 nat(A_20_n)

->

66 0 nat(s(i_20_u))
57 0 1lt_nat_2{(C_27_e,s(A_20_u))

which we close by unfolding at the right of the call nat (commands dr(65),
a0). The next branch is:

79 18 1t _nat_2(A_21_u,B_20_u)
>
2 0 lt_nat_2(s(A_21_u),s{s(B_20_u)))

By unfolding to the right (commands dr(2), a0} we obtain first the branch:

79 18 1t_nat_2(A_21 _u,B_20_u)
->
90 0 1t_nat_2(A_21_u,s{(B_20_u))

which we close by using the induction hypothesis (commands hl([79], 20),
a0}. Then we have the branch:

79 18 1t_mat_2(A_21 u,B_20_u)

->

100 ¢ nat{(s{(B_20_u))

90 0 lt_nat_2(A_21 u,s(B_20_u))
which we close using the induction hypothesis again (commands hl{[79], 20),
a0) thus finishing the proof.

Now we can prove the inclusion we set to prove namely:
[t_nat(X,Y)vlt_nat_2(X,Y)] b le_nat(Xy, Xa),lt_nat(Xz, Xq) v fail

We have:
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i 0 le_nat(A_13_u,B_i4_u),1lt_nat(B_14_u,A_13_u)
->
2 0 fail

The tactic a0 eliminates the conjunction at the left:

4 0 le_nat(A_13_u,B_14_.u}
E 0 lt_nat(B_14_u,A_13_u)
->

2 0 fail

We unfold le_nat (commands dl(4), a0) to obtain to branches, the first one
being:

12 0 nat(A_13_w)

5 0 lt.nat(A_13 u,A_13_u)
-2

2 0 fail

We apply the initial hypothesis It nat(X, V) > lt_nat_2(X,Y) to obtain
(command hi([5], 9)):

12 0 nat(A_13_u)

14 0 1t_nat_2(A_13_u,A_13.1)
->

2 0 fail

We apply induction on l{_nat_2 (command ind(14),a0):

30 14 lt_nat_2(A_22_u,A_22 u)
12 0 nat(s(A_22_u))

->

2 0 fail

We unfold nat (commands d1(12), a0):

38 0 mnat(A_28_u)

30 14 lt_nat_2(A_28_u,A_28 u)
=>

2 0 {fail
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and we apply the induction hypothesis nat(A),lt _nat_2(A, A)> fail to close
the branch and pass on to the last one (commands hl{[38, 30], 16),a0):

8 0 lt_nat(A_13 u,B_14_u)
B 0 1t nat(B_14_u,A_13_u)
->

2 0 fail

By applying twice the initial hypothesis /t_nat(X,Y) > li_nat_2(X,Y)
(commands hl([5], 9), hi([8], 9)) we obtain:

43 0 1t_nat_2(A.14_u,B_13_u)

45 0 1t_nat_2(B_13_u,A_14_u)

-
2 0 fail

After using induction (commands ind(43), a0):

57 43 nat(A_33_u)

45 0 1t_nat_2(s(A_33.u),0)
->

2 0 fail

we unfold twice l{_nat_2 to obtain (commands dl(45), a0, dl{45), a0):

87 O 1lt_nat_2(A_46_u,B_45_u)
T4 43 1t_nat_2(B_45_u,A_46_u)
->

2 0 fail

where we can apply the last induction hypothesis and finish the proof (com-
mands hi([74, 87], 47), a0).
The complete proofs are given in the appendix.

5.3 Lists and permutations

This section contains examples of proofs of success inclusion of predicates

that operate on lists.

Consider the following code:
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permute_list(L1, L2}:-
(
Li=(1,
L2=0

permute_list(L11, L22),
insert_into_list(E, L22, L2)

insert_inte_list(E, L1, L2):-

(
L2=[E | Li]
L1=[E1 {1 L11],
insert_inte_list(E, Li11, L22),
L2=[Et | 122]

).

The predicate permute_list(Ly, Lo) succeeds if the Ly, L are lists and Lo
is a permutation of L;. It calls the predicate insert_into_list(E, Ly, Ls)
which succeeds if Lg is the list L; into which the element F was inserted.

We want to prove that if L; is a permutation of L; then L; is a permu-
tation of Lo:

Succ(permute_list(Ly, L)) C Succ(permute_list(Lo, L))

For this purpose we need to prove first the following lemma:

1 0 permute_list{A_12_u,B_13_u),insert_into_list(C_14.n,A_12_u,E_15_u)
-2
2 0 permute_list(E_15_u,[C_14_ulB_13_ul)

The tactic a0 eliminates the conjunction at the left:

4 0 permute_list(A.12_u,B_13_u)

6§ O insert_into_list{(C_14_u,A_12_u,E_15_u)
->

2 0 permute_list(E_15_u,[C_14_u|B.13_u])
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We apply induction on insert_into_list and then the tactic a0 creates two
branches (commands ind(5), a0) the first being:

4 O permute_list(i_12_u,B_13 u)
->
2 0 permute_list([C_14_ulA_12_u],[C_14 u|B_13_ul)

We apply the following lemma lemma which is trivial to prove

permute_list (L1, L2)
->
permute_list([E | L11, {E | L2])

which allows us to close the branch (commands hl([4], 6), a0). The second
branch is:

19 6 insert_into_list(A_14_u,B_30_u,C.31_u)

4 0 permute_list([D_29_ul|B_30_ u]l,F_13_u)

->

2 0 permute_list([D_29_n|C_31_u],[A_14_u|F_13_u])

First we unfold the left permute_list (commands dl(4}, a0):

19 5 insert_into_list(A_14_u,B_95_u,C_31_u)

33 0 permute list(B_95_u,E_96_u)

34 0 insert_into_ list(F_94 u,E_96_u,H_13_u)

->

2 0 permute_list{[F_94_ulC_31_ul,[A_14_ulB_13_u])

then we apply the induction hypothesis (command hi{[33, 19], 7))

34 0 insert_into_list(A_94_u,B_96_u,C_13_u)

37 0 permute_list{(D_31_u,[E_14_ulB_96_u])

-

2 0 permute_list([A 94 u|D_31_ul,[E_14_u|C_13_ul)

By unfolding the right permute_list (commands dr(2), a0) we obtain two
branches the first one being:
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37 0 permute_list(A_31_u,[B_14_ulC_96_ul)
34 0 insert_into_list{D_94_u,C_96_u,F_13_u)
->

49 0 dinsert_into_list{(D_94_u,[B_14_u|C_96_ul,[B_14_u|F_13_u])

We close this branch by applying the trivial lemma

insert_into_list(E1, L1, L2)
->
insert_into_list(E1l, [E2 | Li], [E2 | L2])

(commands hl{[34], 3), a0). The second branch is identical

37 0 permute_list(A_31_u,[B_14_u|C_96_ul)
34 0 insert_into_list(D_94_u,C_96_u,F_13_u)
-

49 O insert_into_list(D_%4_u,[B_14_ulC_96_u],[B_14_ulF_13_ul)

hence we can close it by applying the same lemma (commands hl([34], 3),
a0).

We are now ready to prove our initial inclusion:

1 0 permute list(i 18 u,B_19_u)
->

2 0 permute_list(B_19 u,A_18_u)

We apply induction on permute_list (commands ind(1), a0). Two branches
are generated the first one being:

->
2 0 permute_list([1,[)

which we close by unfolding at the right (commands dr(2), a0). The second
branch is:

43 1 permute_list{A_25_u,B_26_u)

44 1 insert_into_list(C_24 u,B_26_u,E_19_u)
->

2 0 permute.list(E_19_u,[C_24_ulA_25_ul)
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By applying the induction hypothesis (command hl([43], 5}) we obtain

44 1 insert_into_list{(A_24_u,B_26_u,C_19_u)
46 0 permute_list(B_26_u,E_25_ u)

->

2 0 permute_list(C_19_u,[A_24_ulE_25_u])

We can now apply the lemma proved above to close the proof (commands
hi([46, 44], 9), a0).
The complete proofs are given in the appendix.

5.4 Proof of quicksort

In this section we will present a larger example of proof about the sorting
algorithm gquicksort. We first present the code of the algorithm and the
specification of list sorting for natural numbers. Then we prove with the
help of the proof assistant that gquicksort and the specification have the
same successes, therefore are equivalent.

The code in Prolog for the well-known algorithm gquicksort is given below.

quicksort_nat(L, $):-
(
L=[1,
8=0]

L=[E | L1],
quicksort_nat_1(E, L1, P1, Q1),
quicksort_nat(P1, P),
quicksort_nat{(Q1, Q),
append_list(P, [E | Q], S)

).

quicksort_nat_1(E, L, P, Q):-
(
L=0,
p=(1,
Q=0,
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nat (E)

L={E1 | L1],

(
le_nat(El, E),
P=[E1 | P1],
quicksort_nat_1(E, L1, P1, @)

1t_nat(E, E1),
o=[E1 | Q1],
quicksort_nat_1(E, L1, P, Q1)

The predicate quicksort_nat(L, S) succeeds when L is list of natural num-
bers and § is the same list sorted.

The specification of sorting a list of natural numbers is given below:

sort_list_nat(L, LS):-
permute_list(L, LS),
sorted_list_nat (LS) .

sorted_list_mat(L):-

L=[E]|
nat (E)

L=[E1, E2 | Li],
le_nat(E1, E2),
sorted_list_nat{[E2 | L1])

The predicate sort_list _nat(L, LS) succeeds if L is a list of natural numbers
and LS is the same list sorted.

Its definition specify that LS is a permutation of L and that LS is a sorted
list of natural numbers which is checked by the predicate sorted_list _nat(LS).



138CHAPTER 5. IMPLEMENTATION, EXAMPLES AND COMPARISON TO PREVIOl

This is a possible high-level specification of sorting a list which has the ad-
vantage of being simple and intuitive but it is not efficient as the running
time is exponential in the length of the list.

On the contrary quicksort_nat(L, S) is an much more efficient algorithm
but it’s correctness is much less obvious. We will combine the simplicity of
the specification with the efficiency of the implementation by proving that
they are equivalent.

We first prove that
Succ(quicksort_nat(L, LS)) C Succ(sort_list_nat(L, LS))

At the beginning we have:

1 0 quicksort_nat(A_103_u,B_104_u)
->
2 0 sort_list _nat(A_103_u,B_104_u)

By applying the commands dr(2}, dupl{[1]) we obtain:

1 0 quicksort_nat(A_.103_u,B_104_u)

5 0 quicksort_nat(A_3103_u,B_104_u)

->

4 0 permite_list(A_103_u,B_104_u),sorted_list_nat(B_104_u)

Then we apply induction on quicksort_nat, we use the hypothesis

quicksort_nat (L, LS}
-2
permute_list (L, LS)

and the tactic a0 to obtain (the commands are ind(1), ar(4), hi([5], 39), a0):

§ 0 quicksort_nat([1,[])
->
9 0 sorted_list_nat([])

This can be proved easily by unfolding at the right (the commands are dr(9)},
a0). We obtain:
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B 0 quicksort_nat([A_111_u|B_112_u),C_104_u)

35 1 gquicksort nat_1(A_111 u,B_112_u,F_113_u,G_114_u)
37 1 quicksort_nat(F_113_u,I_115_u)

39 1 quicksort_nat(G_114 un,K_116_u)

40 1 append_ list(I_115_u,[A_111_ulK_116_ul,C_104_u)
>

9 0 sorted_list_nat(C_104_w)

After duplicating the calls quicksort_nat we use the induction hypothesis
to obtain (the commands are dupl([39, 37]), hl([37, 41], 7)):

42 1 quicksort_nat(i_114_u,B_116_u)
5 0 quicksort_nat([C_111_.u|D_112_u],E_104_u)

35 1 quicksort_nat_1(C_11i_u,D_112 u,H 113 u,A 114 u)

39 1 quicksort_nat(A_114_u,B_116_u)

40 1 append_list(L_115_u,[C.111_ulB_116_u] ,E_104_u)

45 0 permute_list(H_113_u,L_115_u),sorted_list.nat(L_115_u}

->
9 0 sorted_list_nat(E_104_u)

We use again the induction hypothesis {(command hl([39, 42], 7)):

45 0 permute_list(A_113_u,B_115_u),sorted_list_nat(B_115_u)
40 1 append_list(B_115_u,[E_111_u|F_116_u],G_104_u)

35 1 quicksort_nat 1(E 111 u,I_112_u,A_113_u,K_114_u)

5 0 quicksort_nat([E_111_ulI_112_u],G_104_u)

48 0 permute_ list(X_114_u,F_116_u),sorted_list_nat(F_116_u)
->

9 0 sorted_ list_nat(G_104_u)

By applying the hypothesis

quicksort_nat_1(E, L, P, Q)
->

(list_elems_le(P, E},
list_elems_ge(Q, E)}

and

(list_elems le(Ll, E), permute_list{(L1, L2))
->
list_elems_le(L2, E}
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we obtain (commands hi{[35], 57), det, hl([55, 53], 51)):

56 0 1list_elems ge(A_114_u,B_111_u)
54 0 sorted list_nat(C_115_u)

52 0 sorted_list_mat(D_116_u)

61 0 permute_list(A_114 _u,D_116_u)

5 0 quicksort_nat([B_111 _u|H_112 ul,I_104_u)

40 1 append_list{(C_115_u,[B_111_ulD_116_u],I_104_u)
59 0 1liet_elems.le{C_115_u,B_111_u)

->

¢ 0 sorted_list_nat(I_104_un)

Finally by applying hypothesis

(list_elems_ge{L1, E}, permute_list(L1, L2))
->
list_elems_ge(L2, E),

and

(sorted_list_nat(L1),
list_elems_le(L1, E),
sorted_list_nat(L2),
list_elems, ge(l2, E),
append_list(Li, [E | L2], L3))
->

sorted_list_nat(L3)

we obtain (commands hl{[56, 51], 54), hl([54, 59, 52, 62, 40], 48))
5§ 0 quicksort_nat([A_1i1_uwl|B_112_u],C_104_u)
68 0 sorted list_nat(C_104_u)

-
9 0 sorted_list_nat(C_104_u)

which allows us to finish the proof (command a0).
The proofs of the lemmas used above are given in the appendix.

To prove the reciprocal
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Succ(sort_list_nat(L,LS)) C Succ(quicksort_nat(L, LS))

we must build a derivation of:

1 0 sort_list_nat{A_190_u,B_191_u)
->
2 0 quicksort_nat(A_190_u,B_191_u)

First we unfold sort_list_nat and apply the following lemma

permute_list (L1, L2)
->
permute_list (L2, L1)

to obtain (commands di(1), a0, hl{[5], 12)):

6 0 sorted_list mat(A_191_uw)

8 0 permute_list(A_191 u,C_190. u)
->

2 0 quicksort_nac(C_190_u,A.191_u)

We apply induction on sorted list_nat and obtain two branches {com-
mands ind(6), a0), the first one being

8 © permute_list([],A_180_u)
->
2 0 quicksort_nat(A.190_u,[])

We close it by unfolding at the left and right (commands di(8), a0), dr(2),
a(). We obtain two new branches the first one being:

81 6 nat(A_197_u)

8 0 permute_list([4_197_u],C_190_u)
->

2 0 quicksort_nat(C_190_u,[A_197_ul)

We close it by applying the lemma
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(nat(E),
permute_list([E], L2))
->
quicksort_nat(L2,[E]),

(commands h([81, 8], 18), a0) which leaves us with one branch:

8 0 permte list([A_198_u,B_199_u|C_200_u],D_190_u)
87 6 le.nat(A_198_u,B_199_u)

88 6 sorted list_pat([B_199_.u|C._200_ul)

=->

2 0 quicksort_nat(D_190_u,[A_198_u,B_199_u|C_200_ul}

By unfolding permute_list and duplicating sorted list nat (commands
d1(8), a0, dupl([88, 101])) we obtain

102 O insert_into_list(A_222_u,B_224 u,C_190_u)

101 0 permute_list([D_199_u|E_200_u],B_224_u)

B7 6 le_nat(A_222_u,D_199_u)

B8 6 sorted_list_nat{[D_199_u|E_200_u])

103 0 permute_list{[D_199_u|E_200_ul,B_224_un)

104 6 sorted.list _nat([D_199_ulE_200_u])

->

2 0 quicksort_nat{C_190_u,[A_222_u,D_199 ulE_200_u])

to which we can apply the induction hypothesis {(command hl([88, 101], 10))

104 6 sorted_list_nat([A_199_ulB_200_u])

103 0 permute_list([A_199_ulB_200_u],E_224_u)

87 6 lenmat(F_222_u,A_199_u)

102 0 insert_into_list(F_222 u,E_224 u,J_180_u)

107 0 quicksort_nat(E_224_u,[A_199 ulB_200_u])

->

2 0 quicksort_nat(J_190_u,[F_222 u,A 199 _uiB_200_u])

By applying the lemmas

(sorted_list_nat([E1 | L1]),
le_nat(E2, E1))

->

list_elems_ge([E1 | L1], E2)
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and

(permute_list(L1, L2),
list_elems_ge(L1l, E))
->

list_elems_ge(L2, E)

(commands hl({[104, 87], 93), hi{[103, 110], 96)) we obtain

102 0 insert_into_list(A_222 u,B_.224_u,C_190_u)

107 0 quicksort_nat(B_224_u,[E_199_ulF_200_u])

113 0 1list_elems_ge(B_224_u,A_222_u)

-2

2 0 quicksort_nat(C_190_u,[A_222_u,E_199_u|F_200_u])

and we can close the proof by applying the lemma

(insert_into_list{E1l, L11, L1},
list_elems_ge(L11, E1),
quicksort_nat(L11, L22))

->

quicksort_nat(L1, [El | L22])

{(commands h1([102, 113, 107], 84}, a0).
The proofs of the lemmas used above are given in the appendix.

5.5 Comparison with previous work

In this section we give an overview of a few existing proof systems and we
compare them with the proof systems for finite and infinite successes defined
in the previous chapters.

The proof systems presented previously allow one to prove success equiv-
alence of logic programs and therefore to prove that an implementation is
success equivalent to its specification. Moreover the implementation and
specification are written in the same logic language CLPYV, which is an ex-
tension of CLP.
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The proof systems are based on the Gentzen calculus for classical first or-
der logic and they are relatively simple. They use a unique induction/coinduction
rule for all proofs and do not require the addition of new axioms for new
predicates. They do not impose restrictions on the programs which can be
reasoned about.

There are several proof systems that can be used for reasoning about pro-
grams among which Coq[Bar], HOL{Gor93], Isabelle[Pau93], ACL2]KMMO00],
LPTP|[Sta98], FOXAN[McDO0).

Some of the most popular are the proof systems based on the theory of
types, e.g. Coq and HOL. The theory of types originates in the attempts of
formalization of mathematics [Chu40]. A main feature is the fact that proofs
can be expressed in the same language as propositions by the Curry-Howard
isomorphism. An expression of the form

P:T

has the meaning that P is the proof of the proposition T or alternatively
that the type of Pis T.

Inductive types can be defined in the language, for example the set of
natural numbers can be defined as an inductive type as follows:

Inductive nat : Set :=
0 : nat
| 8§ : nat->nat.

The system doesn’t have an unique induction rule for reasoning about recur-
gively defined objects. Instead for each inductive type the system generates
automatically a set of axioms that are added to the current ones. For exam-
ple for the type above the system generates the Peano’s induction:

nat_ind
: (P:(nat->Prop)) (P 0)->((n:nat) (P n)->(P (8 n)))
->(n:nat) (P n)
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Another class of recursively defined objects are the definitions of functions
using the least fixed point:

Fixpoint plus [n:nat] : nat -> nat :=
[m:nat]Cases n of
D =>m
| (8 p) => (S8 (plus p m))
end.

To guarantee the correctness of the system the system imposes restrictions
on the recursive definitions, for example that the last argument must be
strictly decreasing.

Although this restriction insures the correctness of the proof system,
it doesn’t allow one to reason directly about programs. Instead one can
reason about programs indirectly by encoding them as terms and introducing
axioms about them.

A proof system that provides for reasoning directly about programs is
LPTP [S5ta98]. The language used is full Prolog i.e. Prolog with non-logical
features such as the cut operation and the var predicate. The proof system
models the operation of a stack-based Prolog interpreter and has a large
number of axioms (>60).

The proof system presented in [BP92] and [BGMP97] is the closest to
the ones presented here. It allows one to prove that a program P satisfies a
property 1 in the context of a set of predicate definitions D written

D.Psaty

In the terminology used in this work that corresponds to saying that
an expression (goal) E satisfies a property ¢ in the context of a program
P. Therefore we call expression (goal) what they call program and program
what they call set of definitions.
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The language used is Concurrent Constraint Programming (CCP) which
is an extension of CLP where the construct ask(c) - E (where ¢ is a con-
straint and F an expression) has been added. There is no universal quantifier
in this language.

The proof system is given as a sequent calculus. The rules are:

P.stop sattrue (CO)

P.tell(c) sate (C1)

P.E sat ¢

P.ask(c) » Esatc — ¢(C’ll)

P.Eysat¢ P.Essaty
PE @ Eysat¢p Ve

(CI2)

P.El sat ¢ P.E2 sal ’I/J

P.E || Ezsatd Ay (©3)
PEsatd
P3X.Esat3X.¢ (C4)

P\ {p}.p(X)satd - P\ {p}.Body sat 1 (C5)
Pp(X)sat3X.¢

where (p(X) : —Body) € P

PAX.(p(X) | tell{z = y)) sat ¢
P.p(y) sat ¢ (C6)

Esat¢ TE¢—
Esaty €
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We made slight modifications in the original rules like replacing P (pro-
gram) with E (expression) and D (set of definitions) with P (program) such
that the rules use the same notation as used in this work.

The operators || and @ correspond to the conjunction “,” and respectively
disjunction “;” in CLPYV.

P\ {p} is the program P without the definition of p.

® - F sat ¢ where ® is a set of statements E' saf 4 stands for the exis-
tence of a proof of E sat ¢ using the rules of proof system with additional
axioms the statements of @.

The set of properties is defined by the grammar

¢ :=c|u(X) ¢ AY|~¢|IX.¢

where u(?) is a user defined predicate.

This proof system provides for reasoning directly about programs - here
CCP programs. However the languages for programs and properties are
different therefore one can only prove that a program satisfies a property
but not the reciprocal. The language of properties as first defined in the
paper doesn’t contain recursively defined properties.

Sequents of the form

P sat ¢1y.euy Pp S0t Py - Psat ¢

can be derived using the system. Their meaning is: P sat ¢ can be derived
using the axioms and the rules of the system (given above) and P; sat ¢;, ¢ €
T..n as additional axioms. This facility is similar to the initial hypotheses in
our systems but less powerfull.

As the languages of properties and programs are different one cannot
prove that P; sat P, and P; sat ¢.

Later in the paper properties defined by the least fixed point are added:

¢ = p(X) | pp(X).¢
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A rule for the least fixed point is given (Scott induction rule) which using
our notations is:

v{p/¢} — ¢
pp(X)4 = ¢

This rule is equivalent with a restriction of the rule (ind) with the con-
dition CO: instead of p(_t)),I‘ A we have p(_t)) > A. The authors do not do
not explicitely define a proof system nor prove its correctness.

The rules (ind) and (hyp. L) separate the introduction of an induction
hypothesis and its application. The Scott induction rule doesn’t separate
them. The rule C5 makes the separation but the initial hypotheses can be
used only as axioms. Thus both rules are not stronger than (ind) with the
condition C0.

Another proof system is the one described in [McD00] which uses higher
order A terms. It contains a rule which expresses the induction principle
of the natural numbers. This rules allows reasoning about derivation trees
whose length is a natural number, hence about programs.



Chapter 6

Conclusion and Future Work

The goal of this work was creating a formal system for proving the success
equivalence of logic programs. The main use of such a system is proving the
equivalence between two programs one being the specification and the other
bing the implementation.

To achieve this goal a proof system for finite success inclusion was pro-
posed. The programs are written in CLPV - a logic language obtained by
adding the universal quantifier to CLP. The rules of the system for logical
operators and quantifiers are those of the first order logic which makes it
more accessible to the users. The system contains a rule for the constraint
domain. It also contains an induction rule for reasoning about recursive or
mutually recursive predicates. This induction rule is unique and does not
depend of the program considered. The proof system is correct under certain
conditions. We give two such conditions and we prove their correctness.

An implementation of the system was realized. It consists in a proof
agsistant - a program that assists the user in building proofs. The proof
assistant contains tactics that automate the elementary parts of the proof
construction and thus reduce the user’s work significantly. Various examples
of proofs have been built using the proof assistant. The most complex of
them is proving the equivalence between an implementation of guicksort and
its specification.

A proof system dual to the one for the finite successes is proposed for

149
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proving the inclusion of infinite success. It uses a coinduction rule instead
of an induction one, We prove its correctness in a similarly way to the first
gystem.

The main result of this work is defining the two proof systems and proving
that they are correct. A side result is the duality between the finite and
infinite successes which are given by the least and greatest fixed point of the
same operator. A consequence is the symmetry between the induction and
the coinduction rules.

There are several directions for future work. An important property
in first order logic (and other logics) is the cut elimination property. An
analogous property for the proof systems presented would be the elimination
of the initial hypotheses i.e. if all the initial hypotheses of a proof are provable
then there exists a proof without initial hypotheses. It is not known whether
this property holds.

Another direction of research is to find conditions of correctness for the
proof systems that are weaker than the conditions presented. This would
increase the number of valid proofs and possibly facilitate the users’ work
for building proofs.

On the implementation side it would be useful to have stronger algorithms
for automatic proof search. This would also facilitate proof construction and
increase the practical applicability of the proof assistants based of these
systems.



Appendix: Example Proofs

This appendix contains the complete proofs of the examples given in
chapter 5. :

The format of proofs is the following:

%IdH

Exp_1

->

Exp_2
[Commands)

where
IdH is the index of the hypothesis (the one used in the command hl(Inds,

IdH))
Commands is the sequence of commands that generates the proof.

Proofs for Section 5.2
The complete proofs for the examples given in section 5.2 are:

%3
(1t_nat(El, E2),
1t_nat(E2, E3))
->

1t_nat(Eil, E3) [
[a0, ind(6), a0, dr(2), a0, hl([4, 241, 7}, dr(2), a0],

%6

1561
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nat(X)

->

1lt_nat_2(X, s(X)),
[ind(1), a0, dr(2), a0, dr{25), a0, dr(41), a0, dr(2), a0, h1([49], 5),
a0, hl([49], 5), a0O],

%9
1lt_nat(X, Y}
-»
1t_nat_2(X, Y),
(ind(1}, a0, h1([12], &), a0, h1({{16], 5), ind(18), a0, dr(2), a0,
dr(46), a0, dr(65), a0, dr(2), a0, h1{[79], 20), a0, h1([79], 20), a0],

%12

(le_nat(E1l, E2),

1t_nat(E2, E1))

->

fail,
[a0, d1(4), a0, h1([6], 9), ind(14), aQ, d1(12), a0, h1({[38, 30], 18},
a0, h1([6], 9), hi([8], 9), ind(43), a0, d1(45), a0, d1(45), a0,
h1([74, 871, 47}, a0]

Proofs for section 5.3

The complete proofs for the examples given in section 5.3 are:

%3
insert_into_list(Ei, L1, L2)
>
insert_into_list(Ei, [E2 | Lil, [E2 | L2]),
[dr(2), a0l,
%6
permute_list(L1, L2)
-
permute_list([E | L1], [E | L2]),
[dx{(2), a0, ar(16), a0, dr{15), al0],
%9

(permite_list (112, L21),
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insert_into_list(E, L12, L1))
-»
permute_list(L1, [E | L21]),
[a0, ind(5), a0, h1([4], 6), a0, di1(4), a0, h1([33, 19], 7}, dr(2), a0,
h1([34], 3), a0, h1([34], 3), a0],

%12
permute_list(L1, L2)
->
permute_list(L2, L1},
[ind(1), a0, dr(2), a0, h1([43], 5), h1{[46, 441, 9}, acC]

Proofs for section 5.4

The complete proofs for the examples in section 5.4 are given below.

The proof of correctness of quicksort uses several additional definitions
given below:

quicksort_nat_1_1(E, L, Q):~
quicksort_nat.1(E, L, _P, Q).

append_list_2(L1, L2, L3, L4):-
append.list(L2, L3, LX),
append_list(L1, LX, L4).

ins_appi(E, L1, L2, L3):-
append_list(Ll1, L2, LY),
insert_inte_list{E, LY, L3).

ins_app2(E1, E2, L1, L2, L3):-
append_list(Li, [E1 | L2], L¥),
insert_into_list(E2, LY, L3).

ins_ina{(E1, E2, L1, L3):-
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insert_into_list(E2, Li, LY),
insert_into_list(E1, LY, L3).

list_elems_lt{L, E):-

(
L=0,
nat (E)
L=[E1 | L1],
1t_nat(El1, E},
list_elems_lt(L1, E)
).

list_elems_le(L, E):-

(
L=[]
L=[E1 l Li]'
le_nat(El, E),
list_elems_le(L1, E)
).

list_elems_gt(L, E):-

(
L=0,
nat(E)
L=[E1 | L1],
1lt_nat(E, E1},
list_elems_gt (L1, E)
).

list_elems _ga(L, E):-
(
L=[1,
nat (E)



L=[E1 | Li],
le_nat(E, E1),
list_elems_ge(L1, E)

It_nat_2{X, Y):-
(
X=0,
Y=s(¥Y1),
nat (Y1)

XI=s(X1),
Y=s(¥Y1),
lt_nat_2(X1, Y1)

p-aux_1(E1, E2, P1, Q1, L2):-
list_elems_ge(P1, E1),
quicksort_nat_1(E2, L2, P2, Q1),
insert_into_list(E1, P1, P2).

app_app(El, E2, L1, L11, L21, L3):-
append_list(Lii, [E2 | L211, L4),
append_list{(L1, [Ef | L4], [E1 | L3]).

ql_qi(E1, E2, L11, Q1, P2, Q2):-
quicksort_nat_1(E1, L11, P2, @3),
quicksort_nat_1(E2, 03, 02, Q1).

The proof of

quicksort_nat(L,LS) > sort_list_nat(L, LS)

is:
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%3

%

%o

2

%15

%18

%21

%24

w27
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lt_nat(X, Y)->le_nat{X,Y),
{dr(2), det],

1t_nat(X, Y)->nat(X),
[ind(1), 20, h1([14], 5), a0],

1t_nat (X, Y)}->nat(Y),
[ind (1), a0, dr(2), a0, h1([22],5), dr(2), a0l,

nat_max(X, Y, Z)->le_nat(X, 2Z),
[d1(1}, a0, K1([9], 3), a0, h1{[13], 3), dr(2), a0, d1(16), a0,
hi([26], 9, a0],

list(L)->permute_list(L, L},
[ind(1), dr(2}, 20, hi([39], 5), a0, h1([39], 6), a0, dr{50), =0,
dr(50), a0],

append_list(_X, _Y, Z)->list(Z),
[ind(i), 8.0, hl([lg]s 5)) dr(z): a-o]n

(append_list{L1, L2, LT1), append_list(LT1, L3, L4))

-

append_list_2(L1, L2, L3, L4),
(a0, ind(4), a0, dr(2), a0, dr(22), a0, h1([6], 18), a0, h1([5], 18),
a0, h1([6], 18), a0, d1(6), a0, h1([71,85], 7}, d1(89), a0, dr(2),
a0, dr(g-’): ao]n

(insert_into_list(E, L1, LX), append list(LX, L2, L3))

->

ins_appi(E, L1, L2, L3),
[a0, ind(4), a0, d1(5}, a0, dr(2}, a0, dr(32), a0, d1(5), a0,
h1([43,57],7), d1(61), dr(2), a0, dr(68), a0, dr(69), all,

insert_into_list{El, L1, L2}
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->
insert_into_list(Ei, [E2 | L1], [E2 | L2]),
[ind (1), a0, dx(2), a0, dr(26), a0, dr(2), a0, h1([37], 5}, a0l,

%30
{insert_into_list(E, L1, L2), list{L2))
-
list (Ll) >
[a0, ind(4), a0, d1(B), a0, d1(5), a0, dr(2), a0, h1([26, 36], 7).,
a0] s
%33
{insert_into_list(E2, L2, LX), append list(Li, [E1 | LX], L3))
->
ins_app2(E1, E2, L1, L2, L3),
[a0, ind(5), a0, dr{2}, a0, dr(21), a0, d1{(18), a0, dr(40), al,
h1{[4, 51], 30}, a0, 41(18), a0, dr(73}, a0, hi{[4, B84], 30), a0,
h1([4], 27), a0, n1{[4, 101], 7), 4i(105), a0, dr(2),
&0, dr(ilﬂ) » a-°| hl([109] » 27) ’ a.O] »
%36
(insert_into_list(El, L1, LX), insert_into_list(E2, LX, L3))
->
ins_ins(El, E2, L1, L3),
[a0, ind(4), a0, d1(E), a0, dr(2}, a0, dr(25), a0, dr(26), a0,
dr(47), a0, dr(2), a0, dr(64), a0, d1(5), a0, dr(2), ad, dr(87),
a0, h1{[75], 27), d1(98), a0, h1([75, 1111, 7), d1(115), a0,
h1l¢[118], 27), dr(2), a0, h1([119], 27), al],
%39
quicksort_nat(L, LS)
->

permate_list(L, LS),
[ind(1), a0, &r(2), a0, h1([48]), 5), h1([50], 5), ind(46), a0,
d1(53), a0, d1(55), a0, 41(61), a0, h1([103], 15), a0,
d1(63), a0, h1{[135, 511, 24), d1(138), a0, h1([134, 121, 141, 55], 57),
d1(147), a0, hl([i61, 142], 36}, d1(164), a0, dr(2), a0, dr(179), a0,
dr(179), a0, d1(56), a0, h1([232, 51], 33), d1(236), a0,
h1([53, 218, 238, 231], 57), d1(244), a0, h1([2568, 239], 36), d1(261),
a0, dr(2), a0, dr(276), a0, dr(276}, a0,
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741
(sorted_list.nat(L),list_elems _ge(L, E)}
>
sorted_list_nat{[E | L]),
[a0, ind(4), a0, d1(5), a0, dr(2), a0, d1(5), a0, dr(2), a0, dr{89), a0,
d1(5), a0, dr(2), a0, dr(152), a0, dr(152), aCl,

%45

(sorted_list_nat([E1 | Li]1),

list_elems_le([E1 | Li]l, E),

sorted_list_nat(L2),

list_elems_ge(lL2, E),

append_list(L1, {E | L2], L3))

->

sorted_list_nat([E1 | L31),
[a0, ind{11), a0, h1([8, 101, 42), d1(6), a0, dr{2), a0,
di(4), a0, d1(6), a0, dr(2), a0, h1([78, 89, 8, 10, 58], 13), a0,
m([7s, 89, 8, 10, 58], 13), al],

%48
(sorted_list_nat(L1),
list_elems_le(L1, E),
sorted_list_nat{L2),
list_elems_ge(L2, E),
append_list(L1, [E | L2], L3))
->
sorted_list_nat(L3),
[a0, ind(11), a0, h1([8, 10], 42), a0, hl([4, 6, B, 10, 30, 45), a0],

%51
(list_elems_le(L1, E), permute_list{L1, L2))
->
list_elems_le(L2, E),
(20, ind(5), a0, d1(4), 20, h1([31, 191, 7), ind(20), a0, dr(2), a0,
d1(34), a0, h1({30, 69, T1l, 36), dr{2), a0l,

%54
(list_elems_ge(L1l, E), permute_list(Li, 1L2)}
->
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list_elems_ge(L2, E),

[a0, ind(5), a0, d1(4), a0, b1([33, 19], 7), ind(20), a0, dr(2), a0,
d1(36), a0, h1([32, 61, 75], 38), dr(2), al],
%57

quicksort_nat_1(E, L, P, Q)
->

(list_elems_le(P, E),
list_elems_ge(Q, E)),
[ind(1), a0, dr(20), a0, dr(21), a0, h1([63], 5), a0, dr{64), al,
h1([63]1, 5), a0, h1{[92], B), a0, b1([92]), 5}, a0, dr(94), a0, dr(114), a0,
dr{114), a0],
460

quicksort_nat(L, LS)
->

sort_list_nat(L, LS),
[dr(2), dupl({1]), ind(1), ar(4), h1([6], 39), a0, dr(9), a0,

dupl ([39, 371), h1{[37, 41], 7), h1([39, 423, 7), h1([36], 57), det,
n1([55, 53], 51), h1([56, 511, 54), n1([54, 69, 52, €2, 40], 48), a0]

The proof of

sort_list_nat(L,LS) > quicksort_nat(L, LS)

is (the proof marked as “external” is given above):

%3

insert_into_list(El, Li, L2)
>

insert_into_list(E1,

[E2 | L1], {E2 | L2]),
[dr(2), al],

%6
permute_list (L1, L2)
->
permute_list([E | 111, [E | L2]),
[dx(2), a0, dr(ib), a0, dr(15), all,
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%9
(permute_list(L12, L21),
insert_into_list(E, L12, L1))
->
permute_list (L1, [E | L211),
[a0, ind(6}, a0, h1({4], 6), a0, d1(4), a0, h1{[33, 191, 7), dr(2),
a0, h1({34]1, 3), a0, h1({34], 3), a01,
%12
permute_list (L1, L2)
->
permute_list (L2, Li),
[ind(1), a0, dr(2), 20, h1([43], 5), h1([46, 44], 9), al],
%15
nat (E)
->
quicksort_nat([E], (E]),
[dr(2), a0, dr(i7), a0, dr(17), a0, dr(281), a0, dr(291), a0,
dr(389), a0, dr(389), a0, dr(390), a0, dr(508), a0, dr(515), a0,
dr(632), a0, dr(541), a0, dr(390), a0, dr(564}, a0, dr(573), a0,
dr(590), a0, dr(599), a0],
%18
{nat(E),
permute_list ([E], L2))
-
quicksort_nat (L2, [E]),
[a0, d1(5), a0, d1(18), a0, d1(19}, a0, hi1([4], 16}, a0],
%21
append_list(L1, L2, L3)
->
append_list([E | L1], L2, [E | L3D),
[dr(2), a0],
424

(list_elems_ge(Ll, E1},
le_nat(El, E2),
quicksort_nat_1(E2, L1, P1, Q1))
->
list_elems_ge(P1, E1),
[0, ind(7), a0, d1(4), a0, h1([44, 6, 311, 9}, d4r(2), a0, d1(4),
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a0, hi{[78, 6, 65], 9), a0l,
%27
{quickesort_nat_1{Et, Li1, P1, Q1),
le_nat(E2, E1))
-
quicksort_nat_1(E1, [E2 | Lii], [E2 | P1], Qi),
[dr(2}, al],
%30
(quicksort_nat_1(E1, Li1, P1, Qi),
1t_nat(E1, E2))
->
quicksort_mat_1(Ei, [E2 | Li1}, P1, [E2 | @11},
{dr(2), a0],
%33
(list_elems_ge(L1, E1),
le_nat(E1, E2),
insert_into_list(Ei, Li, L2),
quicksort_nat_1({E2, L1, P1, Q1))
->
quicksort_nat_1_1(E2, L2, Q1),
[det, ind(9), a0, d41(8), a0, dr(2), a0, dr(35), a0, dr(58), a0, dr(58),
a0, dr{304), a0, dr(425), a0, dr(546), a0, dr(546), a0, d1(4), a0, d1(8),
a0, h1(¢[790, 7871, 27), h1{[814, €], 27), dr(2), a0, h1([803, 6, 822, 790], 11),
di1(828), a0, h1{[830, 7871, 27), dr(2), a0, d1(4), a0, d1(8), a0,
hl([839, 836], 30), hl([863, 6], 27), dr(2), a0, h1([852, 6, 871, 839], 11},
d1(877), aC, h1([879, 8361, 30), dr{(2), all,
%36
nat (X)
->
1t_nat_2(X, s(X)},
[ind(1), a0, dr(2), a0, dr(25), a0, dr(4l), a0, dr(2), a0, h1([49], 5), a0,
h1([49], 5), a0].
%39
1t_nat(X, ¥)
->
1t_nat_2(X, Y),
[ind(1), a0, h1([12], 36}, a0, h1([16], 5), ind(18), a0, dr(2), a0, dr(46),
a0, dr(65), a0, dr{2), a0, h1([79], 20), a0, h1([79], 20), a0],
%42
(le_nat(E1, E2),
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1t_nat(E2, E1))

-2

faii,
(a0, d1(4), a0, n1([5], 39), ind(14), 80, d1(12), a0, hi([38, 301, 16),
a0, h1([6], 39), n1([8], 39), ind(43), a0, d1(46), a0, d1(45), ag,
h1([74, 871, 47), ao0l,

%45
(quicksort_nat_1(E1, L1, Pi, qL),
quicksort_nat_1(E1, L1, P2, 02))
-3
{P1=P2, Q1=02),
[det, ind(4), a0, d1(6), a0, d1{5), a0, d1(b), a0, h1([72, 991, 7,
a0, hr([69, 1061, 42), a0, d1(5), a0, ni1{[72, 1361, 7), a0,
h1([69, 1431, 42), a0, di(5), a0, h1([178, 1611, 42), a0,
h1([154, 189], 7), a0, d1(5), a0, h1([215, 1511, 42), ag,
h1((154, 226], 7), a0l,

/48
(insert_into_list(Ei, L1, L2),
quicksort_nat_1(E2, Li, P1, q1),
quicksort_nat_1(E2, L2, P2, Q1))
->
insert_into_list(E1, P1, P2),
(a0, ind(4), a0, di1(7), a0, h1([6, 371, 45), a0, dr(2), a0,
k1([62, 61, 45}, a0, dl1(6), d1(7), a0, h1([60, 103, 95], 9,
hi([107], 3), a0, hl([92, 1i0], 42}, a0, h1([125, 1173, 42},
a0, h1([60, 135, 120], 9), a0],

%51

(list_elems_ge(L1, E1),

le_nat(E1, E2),

insert_into_list(E1, L1, L2),

quicksort_nat_1(E2, L1, P1, Q1))

->

p-aux_1(Ei, E2, P1, @1, L2),
[det, dupl([4, 6, g, g, 91), nl([4, 6, 9], 24), hi1([14, 13, 8, 10], 33),
d1(23), det, dupl{[26]), n1([12, 11, 26], 48), dr(2), a0],
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%54
{quicksort_nat_1(E, L1, P1, Q1),
quicksort_nat(P1, P),
quicksort_nat{Qi, Q),
append_list(P, [E | Q1, 8))
->
quicksort_nat([E | L1], §),

[dr(2), a0],

%s7
nat (E)
-
le_nat(E, E),
fdr(2), al],

%60
1t_nat (X, Y)->le_nat(X,Y),
[dr(2), det],

%63
(append_list(L1, L2, LT1), append_list(LT1, L3, L4))
->
append_1ist_2(L1, L2, L3, E4),
external,

%56
(append_list(L1, [E1 | L11], [E1 | L2]),
append_list(L2, [E2 | L21], L3))
->
(append_list(L1, [E1 | L11], [E1 | L21),
append_list([E1 | 121, [E2 | L21], [E1 | L3])),
[det, h1([5], 21), a0],

%69
(append_list(L1, [Ei | L11], [E1 | L2]),
append_list(L2, [E2 | L21], L3))
-
app_app(E1, E2, L1, Li1, L21, L3},
[a0, h1([4,5], 66), a0, h1([9, 10], 63), d1(13), a0, d1(16}, dr(2), al],
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%72
QQt_nat(E1, E2),
1t_nat (E2, E3))
-
1t_nat(E1, E3),
[a0, ind(5), a0, dr(2), a0, h1{[4, 24], 7), dr(2), a0dl,

%75

{quicksort_nat_1(E2, Lii, P1, Q1),

quicksort_nat_1(E1, F1, P2, Q2),

lt_nat (E1, E2})

=>

ql_qi(E1, E2, L11, Q1, P2, §2),
[a0, ind(4), a0, d1(6}, a0, dr(2), a0, dr(41), a0, dr(42), ao0,
dl(6), a0, h1([278, 299, 71, 9), d1(203), a0, dr(2), a0, dr(310},
a0, h1([278, 362, 7], 9), d1(366), a0, dr(2), a0, dr(373}, a0,
dr(374), a0, dupl([7]1), hi([446, 6, 71, 9), d1(451), a0, dr(2),
a0, hi([447, 443], 72), dr(458), a0, dr{459), all,

%78
(list_elems_ge(L11, E1),
quicksort_nat(Lil, 1L22))
->
quicksort_nat([E1 | L11], [E1 | L22]),
[20, ind(5), a0, d1(4), a0, h1([28], 15}, a0, d1(4), a0, dl1(52),
a0, dupl([60, 35]), hl([60], 57), dupl{[54]), h1([53, 64, 35], 24),
h1([69, 37], 7), nl([61, 68], 27), h1({40], 21), dr(2), a0,
dupl([53, 35, 56]), h1([103], 60), h1([105, 107, 1041, 24), dupl([111]),
hi([112, 371, 7), d1(115), a0, dupl{[B61}, h1([136, 40], 69), d1(140),
a0, b1({[35, 131, 137}, 75}, d1(148), a0, h1([152, 135, 39, 143), 54),
hi([151, 56], 30), hl([160, 133, 157, 144], 54), ao0l,
%81

(list_elems_ge(L1, E1),

le_nat(E1, E2))

-2

list_elems_ge([E2 | L1], E1),
[20, dr(2), a0l,
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484

{insert_into_list(El, L11, L1},

list_elems_ge(L11, E1),

quicksort_nat(L11, L22))

->

quicksort_nat (L1, [E1 | L22]),
[a0, ind(7), a0, d1(4), a0, d1(6), a0, h1{[38], 15}, a0, d1(6), a0,
d1(4), a0, h1{[47, 49, b1, 52], 54), hi1([65, 641, 81), hi({81, 78], 78),
a0, h1{[65, 64, 87, 471, 51), d1(93), a0, h1([99, 96, 49], 9},
h1([52], 21), hl([s8, 103, 51, 105], 54), a0],

%87
le_nat{El, E2)
->
nat(El),
[d1¢1), a0, ind{6), a0, h1([21], 12), a0],

%oo
(le_nat(E1, E2),
le_nat{E2, E3))
->
le_nat(E1, E3),
fa0, d1(4), 41(5), dr{2), a0, h1{[22, 12], 72), a0, h1([22, 12], 72), all,

%93
(sorted_list_nat([E1 | L1]),
le_nat(E2, E1))
-2
list_elems_ge([E1l | L1], E2),
[a0, ind(4), a0, Ar{2), a0, dr(32), a0, h1([E], 87), a0, h1([5], 87), a0,
h1([5], 87), a0, dupl([6]), h1([5, 681, 20), h1{[69, 73], 7), dr(2), al],

%96
(pernmte_list(L1, L2},
list_elems_ge(L1, E})
->
list_elems_ge(L2, EJ,
[a0, ind(4)}, 20, d1(5), a0, hi([19, 33], 7), ind(20), a0, h1([36, 32], 81}, a0,
d1(36), a0, h1([32, 51, 651, 38), dr(2), al],
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%909
sort_list_nat(L, LS)
->
quicksort_nat(L, LS),
[d1(1), a0, h1([6], 12), ind(6), a0, d1(8), a0, dr(2), a0,
n1({[81, 8], 18), a0, d1(8), a0, dupl([88, 101]), h1{[88, 1011, 10),
hi({104, 871, 93), h1([103, 110], 96}, h1([102, 113, 107], B4), a0]
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