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Chapitre 1

Résumé de la thèse

1.1 La vérification de matériel

Chaque année, les progrès réalisés dans la fabrication de semi-conducteurs
permettent l’intégration d’un nombre sans cesse croissant de transistors
sur une puce. Cette évolution est malheureusement concomitante d’une
augmentation dramatique des coûts non-récurrents de fabrication : un jeu
de masques atteint 2 millions de dollars en technologie 65nm. Ainsi, les
concepteurs doivent impérativement assurer la correction de systèmes aux
complexités sans cesse accrus. À cette fin, de 60% à 70% du temps de
développement est dédié à la simulation. Cette tendance ne peut que s’ac-
centuer d’où la nécessité de développer des outils automatiques d’aide à la
validation.

À la différence de la simulation, les méthodes formelles de vérification
peuvent être exhaustives. Elles permettent de montrer la conformité d’une
description de circuit à sa spécification. Cependant, les méthodes formelles
doivent, elles aussi, affronter l’effroyable complexité des descriptions. Ainsi,
elles souffrent souvent du problème d’explosion des états.

1.2 Objectif

Nous étudions la faisabilité d’un outil de vérification automatique qui
réunit trois caractéristiques : assurance de couverture, efficacité de calcul,
et intégration dans le flot de conception. Afin d’établir des propriétés de la
description, et non pas seulement de trouver des erreurs, l’outil doit être
exhaustif. Il doit couvrir l’ensemble des exécutions possibles. L’efficacité est
un point crucial. C’est cela qui, véritablement, déterminera l’acceptation
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10 CHAPITRE 1. RÉSUMÉ DE LA THÈSE

de la méthode par les ingénieurs de conception. Nous nous fixons l’objectif
d’être au moins compétitif avec la simulation traditionnelle. Enfin, l’outil
doit travailler à partir de la même description que celle qui est déjà utilisée
pour la simulation et la synthèse. De cette manière, l’intégration dans le flot
de conception classique est assurée.

La théorie de l’interprétation abstraite permet de concilier ces objectifs
apparemment contradictoires. L’interprétation abstraite formalise la notion
d’abstraction entre sémantiques de programme. Son application originelle
est la conception d’analyses statiques. L’idée consiste à calculer une ver-
sion approchée de la sémantique. La régularité de la sémantique approchée
est exploitée en utilisant des représentations en machine concises et des al-
gorithmes puissants. Il est ainsi possible d’obtenir efficacité de calcul sans
pour autant sacrifier l’exhaustivité. Cependant, abstraire a un coût : une
abstraction trop rude ne sera pas en mesure de démontrer la correction du
programme. Tout l’art de l’interprétation abstraite consiste donc à trouver le
compromis idéal entre efficacité et précision pour un domaine d’application
donné.

1.3 Résultats

Notre étude a pour objet le très répandu langage de description de
matériel VHDL. Nous formalisons l’algorithme de simulation défini par le
standard IEEE pour un noyau réaliste du langage. Chaque étape de calcul
d’un simulateur événementiel est définie par une sémantique opérationnelle à
la Plotkin. Essentiellement, une description VHDL se composée d’un nombre
fini de processus exécutés en parallèle. La communication entre les proces-
sus s’effectue à travers une mémoire partagée, des signaux, et uniquement
aux points de synchronisation. La synchronisation a lieu dès lors que tous
les processus sont suspendus. À ce moment, la mémoire partagée est mise à
jour, et certains processus sont réveillés par des événements de natures di-
verses : modification de la valeur d’un signal ou bien avancement du temps.
Nous montrons que le parallélisme à la VHDL est bénin. Il est donc in-
utile d’explorer l’ensemble des entrelacements d’exécution de processus. On
peut simplement se contenter de fixer leur ordre une fois pour toutes. Le
sous-ensemble de VHDL traité manipule des entiers, de la logique stan-
dard (valeurs 0, 1 et U) et des tableaux statiquement alloués. Il contient du
non-déterminisme par l’ajout de générateurs aléatoires et des fonctions de
conversion d’un type de donnée à l’autre.

À partir de ce modèle mathématique, nous avons dérivé, systématiquement
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par abstraction, une analyse statique pour VHDL. Cette analyse calcule
une approximation supérieure de l’ensemble des états accessibles. Elle est
paramétrée par le choix de l’abstraction de la mémoire. Ainsi, n’importe
quel domaine numérique peut-être adopté et donnera lieu à un compromis
original entre la précision des résultats et le coût du calcul. Nous avons
évidemment réalisé la preuve de correction de l’analyse.

Enfin, nous présentons une instance possible de notre analyse statique.
Elle est développée dans l’intention de valider des codes correcteurs d’er-
reurs linéaires. Le domaine numérique choisi est celui des égalités linéaires
entre variables booléennes, doublé du domaine des constantes. Nous avons
réalisé l’implémentation de l’analyse en OCaml. Il a aussi fallu écrire un
préprocesseur qui traduit les descriptions VHDL dans le noyau. Ces pro-
totypes nous ont donné l’occasion d’évaluer l’approche sur un cas concret.
Nous avons appliqué l’analyse sur une description matérielle de code cor-
recteur d’erreur de type Reed Solomon qui nous a été fourni par des parte-
naires industriels. Pour établir la correction du composant, il faut montrer
que la composition encodage/corruption/décodage résulte bien en l’identité.
Pour cela, nous comparons, automatiquement à l’aide de notre prototype,
chaque composant avec une spécification de haut-niveau. Nous expliquons
comment structurer cette spécification afin d’éviter l’explosion du nombre
d’états générés par la présence de pipeline dans les composants. Les résultats
sont remarquables : non seulement la vérification est un succès, mais de plus
elle s’avère efficace. Ainsi, les performances de l’outil sont bien meilleures
que le model checker VIS qui échoue par manque de mémoire. Notre proto-
type est aussi compétitif en terme de temps de calcul avec la simulation, tout
en apportant évidemment une assurance beaucoup plus forte de correction.

Nous avons conçu et réalisé un outil de vérification automatique efficace,
exhaustif et paramété. De plus, l’effort à consentir pour adjoindre à l’outil
une abstraction différente est relativement réduit. Il suffit de modifier uni-
quement le domaine numérique en paramètre et il est inutile de se soucier de
la sémantique de VHDL. Ce travail constitue une étape dans l’intégration
d’outils formels aux flots de conception existants.



12 CHAPITRE 1. RÉSUMÉ DE LA THÈSE



Chapter 2

Introduction

2.1 Semiconductors

Digital cameras, voice over IP phones, harvester guidance systems, factory
monitors, smart rifles, brake controllers and pacemakers, all these devices
incorporate integrated circuits. According to [MED04], the market of the
semiconductor industry totaled $141 billion in 2003, while the electronic
industry addressed a $800 billion market. Are there more tangible proofs
of the pervasive influence of semiconductors on our society? Innovation in
semiconductors contributes to the evolution of many industrial sectors. For
instance electronics equipment amounts for as much as 20% of the produc-
tion cost of a car.

The formidable proliferation of hardware in the world began not even
a century ago. Bell Labs researchers William Shockley, John Bardeen and
Walter Brattain created the first transistor in 1947. Schematically, see Fig.
2.1, a transistor operates like a switch: when voltage is applied to the gate
(G) then the current between the source (S) and the drain (D) flows, oth-
erwise source and drain are disconnected. Transistors constitute the basic
blocks of electronic circuits. The ability to integrate a whole circuit on a
single silicon wafer was invented a decade later. In 1958, Jack Kilby, while
working at Texas Instrument, built the first integrated circuit. In 1959, Jean
Hoerni and Robert Noyce at Fairchild developed the fabrication process still
in use today: planar technology, see Fig. 2.1. A set of masks, which can
be thought of the negatives for the various layers of the circuit, is manufac-
tured. Then, in a way similar to photography, light is used to transfer the
shape of the masks onto the silicon substrate, see Fig. 2.2.

Since then, the semiconductor industry has been driven by an exponen-
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14 CHAPTER 2. INTRODUCTION

Figure 2.1: Transistor schematics, first planar transistor (source: smithso-
nianchips.si.edu) and 90nm transistor (source: intel)

Figure 2.2: Interconnection structure of an SRAM (source: IBM Journal of
R&D, Vol. 39, No. 4)
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tial trend commonly known as Moore’s law: the number of transistors per
integrated circuits doubles every 18 months. In parallel to this evolution,
the size and price of transistors have also decreased exponentially. Today,
processors manufactured with the 90nm process, see Fig. 2.1, contain a few
hundred million transistors. Over the years, integrated circuits with ever
increasing functionality have created new applications and conquered new
markets. These trends have allowed the semiconductor industry revenue to
grow at an average of 14% per year [Jon03].

2.2 Verification crisis

Unfortunately the integration of numerous transistors on a chip has a high
cost. The investment necessary to build a semiconductor manufacturing
plant is evaluated in billion dollars. More importantly, the cost of mask
sets have reached prohibitive amounts: it exceeds the million dollars for the
90nm technology and almost tops 2 million dollars in 65nm. To offset such
high initial investments chips manufactured with the latest technology must
be sold in very high volumes [MP03].

Even worse, designs should be error free before they are sent to fabri-
cation: few companies can afford a million dollar re-spin. To ensure the
correctness of their designs, engineers use simulation. Simulation accounts
for 60% to 70% of the whole development time [MED02]. The number of
engineers allocated to simulation outstrips the number of designers. Appar-
ently, this proves not enough since almost as much as 50% of all designs
go through more than one spin. The situation is bound to deteriorate as
designs grow in size and complexity. Not only must the simulator handle
bigger designs, it has to run more test-vectors so as to exercise a substantial
fragment of all the behaviors, see Fig. 2.3. Largely because of the limita-
tions of verification, the gap between what can be manufactured and what
can be correctly designed quickly expands, see Fig. 2.4. According to the
International Roadmap for Semiconductors [Int03], the cost of design is the
greatest threat to continuation of the semiconductor roadmap. The situation
is quickly becoming a crisis. There is a desperate need for new automatic
tools that alleviate the task of verification.

2.3 Motivation

In contrast to simulation, formal verification methods can be exhaustive.
They provide the unique capability of proving the correctness of a design



16 CHAPTER 2. INTRODUCTION

Figure 2.3: Increasing load on simulation (source: ST)

Figure 2.4: Design productivity gap (source: [Int03])
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with respect to its specifications. However, formal methods too must cope
with the sheer complexity of designs and often suffer the well-known state-
explosion problem.

We study the feasibility of a formal verification tool that displays three
apparently irreconcilable characteristics:

• full coverage,

• efficiency,

• seamless integration.

The tool should be exhaustive. It must cover all possible executions so that
it is possible to prove properties of a design. Obviously, it must be sound
so as to never report incoherent results. Efficiency is crucial as it mostly
determines the acceptance of alternative methods to simulation. At least,
the tool should compete advantageously with simulation. In particular, this
means we are striving for automation. Tools that require too much manual
intervention tend to be difficult to manage but by experts. On top of that,
we don’t want to impose a modification of existing design flows. Hence,
the tool must input the same hardware description that is already used for
simulation and synthesis. As an additional benefit, this avoids semantics
mismatches that occur when distinct descriptions are used for verification
and synthesis.

The framework of abstract interpretation [Cou78, CC77] provides the
means to achieve all these goals. Abstract interpretation formalizes the
notion of abstraction between program semantics. One of its primary ap-
plication lies in the design of static analyses that compute approximate but
sound information about all behaviors of programs. Such analyses need not
retain all the details of the exact semantics. Instead, they can use concise
representations and powerful algorithms that take advantage of the regular-
ity enjoyed by the approximate semantics. Abstraction is the key concept
to obtain efficiency. Soundness ensures that the results of the analysis are
trustworthy and that erroneous conclusions about the design can not be
drawn.

Naturally, abstraction has a cost. Sometimes, the results are too un-
precise to attest the absence of errors in the design. Hence, the craft of
abstract interpretation is to attain the optimal tradeoff between efficiency
and precision.
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2.4 Results

We design a static analysis for the popular hardware description language
VHDL. It computes an approximation of the reachable states. We follow
the methodology of abstraction interpretation.

First, we formalize the simulation algorithm for a realistic kernel of
VHDL. We use the formalism of structural operational semantics. Very
roughly, the semantics of an event-based simulator for VHDL works as fol-
lows. A VHDL description consists of a finite number of processes that are
run concurrently. Communication between processes takes place through a
shared memory, the signals, and at synchronization points only. Synchro-
nization occurs after wait statements have suspended all processes. At this
point, the simulator updates the shared memory and resumes the activity
of some processes according to the events that just happened: a process was
sensitive on a signal that was modified or time was advanced. We proved
that the parallelism in VHDL is very weak. Indeed, it is useless to explore all
possible interleaving of processes. It is sufficient to fix the order of execution
of processes once and for all. The subset of VHDL that is considered manip-
ulates standard multi-valued logic, integers and statically allocated arrays.
Among others, it contains non-determinism thanks to random generators
and functions that convert from one datatype to another.

The static analysis is systematically derived by abstraction from this
mathematical model of the VHDL semantics. The abstract representation
of sets of memories is left as a parameter of the analysis. Hence, any abstract
numerical domain can be chosen and will lead to a distinct trade-off between
the precision of the results and the cost of the analysis. We prove the
soundness of the static analysis with respect to VHDL simulation semantics.

Then, we describe a possible instantiation of the analysis, which is tai-
lored at the verification of linear error correcting codes. To represent sets of
memories, we choose to combine the numerical domain of linear equalities
with the domain of constants. We implemented a prototype of the resulting
analysis in OCaml. We successfully applied the prototype to the verification
of a Reed-Solomon error correcting code. The VHDL components were pro-
vided by industrial partners and were not originally written for the purpose
of formal verification. The tool allows to automatically compare the descrip-
tion with high-level specifications. Because of the presence of a pipeline in
the component, the tool could incur a state explosion problem. However, we
explain how to structure the specifications so as to avoid this pitfall. The
results of the experimentation are excellent: verification is a success and the
tool proves to be efficient. It outperforms the BDD model checker VIS. It
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is also competitive with industrial verification techniques since it completes
in less time than what was allocated by the engineers for simulation.

This thesis is not specifically about a new semantics for VHDL; a new
general framework for static analysis or new algorithms for manipulating
linear constraints. It is rather about the holistic integration of these dis-
parate techniques. The work presented in this thesis appeared as [Hym02a,
Hym03, Hym04].

Organization of the thesis

Chapter 3 defines the simulation semantics of VHDL. Chapter 4 describes
the design by abstract interpretation of a generic static analysis for VHDL.
We show a possible instantiation of the analysis and explain the implemen-
tation choices of the tool in chapter 5. Eventually, chapter 6 presents the
verification of a Reed Solomon encoder and decoder with our prototype.
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Chapter 3

Semantics

3.1 Introduction

Very High Scale/Speed Integrated Circuits Hardware Description Language,
aka VHDL, is one of the most widely used hardware description languages.
In the early 1980s, the US Department of Defense was facing a crisis: its
suppliers all had different ways of documenting hardware. Since the doc-
umentations were bound to specific manufacturing technology, they were
reaching obsolescence very quickly. Needless to say that interoperability
was an inextricable nightmare. Hence, VHDL was initially created as a
language to describe the behavior of hardware. The ability to simulate de-
scriptions soon became apparent. Finally, logic synthesis tools made the
language even more attractive and gave rise to the modern hardware design
methodology. In 1987, VHDL was standardized as IEEE Std 1076 [IEE87].
The up-to-date revision is [IEE02]. IEEE standard 1164 [IEE93] adds an
important complement to the language: it defines a data-type to allow the
manipulation of multi-valued logic signals.

We favored VHDL for its wide acceptance in the industry. We could
have equally opted for Verilog [IEE01]. We strongly believe that a similar
methodology can be adopted to develop equally efficient verification tools
for Verilog. However, the case study, that professional hardware engineers
made available to us, was written in VHDL.

Today, engineers spend most of their time working with VHDL (or Ver-
ilog). Lower level descriptions, i.e. netlists in edif [EIA93] or blif [Uni92] for-
mats, are manipulated mostly by automatic tools. Higher level descriptions
are used to evaluate the impact of hardware (and software) architectural
decision early in the design cycle [DBB+02]. Performance/cost estimation

21
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[CMP+01], early power analysis [BJ03] and sometimes high-level synthesis
[SM01] can all be performed at this level. System level languages and tools
have not reached maturity yet and still constitute an active field of research.
Among others, system level design languages include SystemC used as in
the Metropolis framework [BWH+03], Esterel and Time Modeling Language
with the Archan approach [MC03], and Kahn Process Networks and C for
the SPADE methodology [vdWLGH99].

In order to reason about VHDL descriptions, their semantics must be
properly defined. This is the goal of the chapter.

3.2 Related work

Definitions of semantics for VHDL abound. This emphasizes the complexity
of the IEEE standard [IEE02] which is subject to multiple interpretations.
Semantics tend to vary according to their purpose, their presentation and
the aspect of the language they concentrate on.

Goossens defines an operational semantics for a realistic yet manage-
able subset of VHDL in [Goo95]. The semantics is a formalization of the
simulation algorithm as described in informal prose by the 1987 version of
the VHDL IEEE standard. [TE01] provides an extension of this work to
VHDL’93.

An interpreter for synchronous VHDL written in the pure functional lan-
guage GOFER is presented in [BFK94]. A more complete but fairly com-
plex implementation using evolving algebra pseudocode is given in [MBG94,
BGM95]. The main purpose of interpreters is to palliate the imprecision of
the IEEE standard by providing a reference implementation for simulators.

Van Tassel [Tas93] embeds an operational semantics of VHDL in HOL.
Russinoff [Rus95a, Rus95b] presents the semantics of a relatively simple
hardware description language close to VHDL and encodes it in the Boyer
More logic. Formalization in the ACL2 logic of the simulation algorithm for
a large and realistic subset of VHDL is described in [BG00, GBO02, DB97].
These embeddings in proof assistants allow the further undertaking of formal
proofs of correctness of VHDL descriptions. Furthermore, the formalization
in ACL2 [GBO02] immediately provides a symbolic simulator.

The compilation of VHDL descriptions into finite state machines for the
purpose of symbolic model checking has been explored. Such compilation
process is described in [LBPV94]. In [DB93, DB95, DSC98], designs are
translated into finite state machines where one transition of the machine
emulates one delta cycle. Encrenaz [Enc95] adopts a similar approach but
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descr → process { | process } (Parallel composition)
process → command; { command; } (Sequence)
command → lval := exp (Variable assignment)

→ lval <= exp (Signal assignment)
→ wait on sig list

until exp for timeout (Suspension)
→ while exp do process (Iteration)
→ Σi∈[1,n] exp i -> process i (Alternative)

→ display(x, . . ., x ) (Display)
→ lvec to int(x, n, x )

→ int to lvec(x, n, x ) (Conversion functions)
lval → x | lval [exp] (Memory accesses)
exp → ’0’ | ’1’ | ’U’

→ n ∈ Z | true | false (Constants)
→ lval | op exp | exp op exp

→ lrnd() | rnd() (Random generators)
→ rising edge(x ) (Edge detector)

op → not | or | and
→ lnot | lxor | land
→ - | + | < | =

where x is a variable or a signal identifier, sig list a possibly empty set
of signal names and timeout a positive integer or the keyword ever (to
denote the absence of timeout clause). The notation {. . .} reads “zero or
more instances of the enclosed”.

Figure 3.1: Syntax of mini-VHDL

uses petri nets as an intermediate representation.

Slightly more esoteric work include some denotational semantics [BFK95]
and [FM95], a Hoare logic implemented in Prolog [BSK94], a compilatory
semantics to the temporal logic of actions [Gol94].

Similar work has been done with the Verilog language [Gor95].

3.3 Syntax

As specified by the standard [IEE02], the elaboration phase translates de-
scriptions into an executable model. We have implemented a front-end to
automatically perform this preliminary step. It first parses the source files.
It instantiates all modules and produces a flat description. Then it normal-
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izes the various VHDL statements so that they all fit a more concise syntax.
At the same time, it renames all identifiers in order to safely hoist all defini-
tions at the global scope. It then checks and propagates type information.
At last, it scalarizes array assignments. For instance the following code:

a(i) := a(i) xor a(i + 1);

-- where the type of variable a is defined as

-- array(15 downto 0) of std_logic_vector(3 downto 0)

becomes:

a[i][3] := a[i][3] xor a[i + 1][3];

a[i][2] := a[i][2] xor a[i + 1][2];

a[i][1] := a[i][1] xor a[i + 1][1];

a[i][0] := a[i][0] xor a[i + 1][0];

All these transformations are very conventional: see for instance [WM95,
App98] for a description of basic type checking, the VHDL IEEE standard
[IEE02] describes hierarchy flattening and [SV00] explains the scalarisation
process for Verilog.

Elaborated descriptions belong to mini-VHDL, the language whose ab-
stract syntax is depicted in Fig. 3.1. A description consists of the parallel
composition of a fixed number of sequential processes. Each process is a
sequence of statements. A statement may either be a variable or signal as-
signment, a wait statement, a while loop, an alternative construct or a print
statement. The descriptions manipulate std logics, booleans, integers and
statically allocated multi-dimensional arrays. Of the std logic literals only
’0’, ’1’ and ’U’ are actually used. Operators that expect arguments of
the type std logic are prefixed by the letter l as in lnot, lxor and land.
The rising edge is necessary to detect rising edges of clocks. Functions
lvec to int and int to lvec convert an array of std logic to an integer
and back. Even though these three functions are not basic VHDL but de-
fined in external IEEE packages [IEE93], we consider them as primitive
operators. We also incorporate random generators rnd and lrnd to be able
to inject non-determinism in a design. We chose this subset of the language
because it allows to handle exactly all the features of the industrial case
study we present later in chapter 6. Notice we lack any dynamically allo-
cated datatypes. We also deliberately ban the delayed signal assignments
(signal assignments with after clause). As a result, the exact layout of the
memory is known at compile time.
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3.4 Intuition for the semantic model

The processes of a mini-VHDL description are run concurrently. Commu-
nication between processes happens through a shared memory (the signals)
and only at some specific synchronization points. Once all processes are
suspended, synchronization occurs: the memory is updated and the activity
of some processes is resumed. We call a simulation cycle, the execution of
the system between two consecutive synchronization points.

3.5 The kernel

We give an operational semantics in the style of Plotkin [Plo81] to mini-
VHDL. We introduce our semantics gradually. Let us start with a very
limited kernel language that nevertheless embodies the essential paradigm
of the VHDL language. It is reduced to only four statements:

command → x <= exp (Assignment)
→ wait on sig list for timeout (Suspension)
→ forever do process (Iteration)
→ if exp then process (Selection)

Memory holding elements are restricted to signals of the type std logic. We
denote by Sig the set of all signals defined in the design.

Example 3.1. We will illustrate our definitions on the following piece of
code:

1forever do
2clk <= lnot clk;
3wait on {} for 1;

|
4forever do

5if clk = ’1’ then 6o <= x land (lnot y);
7wait on {clk} for ever;

|
8x <= ’0’; 9y <= ’1’;
10wait on clk for ever;
11forever do

12x <= lrnd();
13wait on {clk} for ever;
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ρ ` ’0’ =⇒ ’0’ ρ ` ’1’ =⇒ ’1’ ρ ` ’U’ =⇒ ’U’

ρ ` true =⇒ true ρ ` false =⇒ false

v ∈ {true, false}

ρ ` rnd() =⇒ v

v ∈ {’0’, ’1’}

ρ ` lrnd() =⇒ v ρ ` x =⇒ ρ(x )

ρ ` exp =⇒ v

ρ ` op exp =⇒ [[op]](v)

ρ ` exp1 =⇒ v1 ρ ` exp2 =⇒ v2

ρ ` exp1 op exp2 =⇒ [[op]](v1, v2)

[[lnot]](v) =











’0’ if v = ’1’

’1’ if v = ’0’

’U’ otherwise

[[land]](v1, v2) =











’1’ if v1 = ’1’ and v2 = ’1’

’0’ if v1 = ’0’ or v2 = ’0’

’U’ otherwise

[[lxor]](v1, v2) =











’U’ if v1 = ’U’ or v2 = ’U’

’1’ else if v1 6= v2

’0’ otherwise

[[not]](v) = ¬v

[[and]](v1, v2) = v1 ∧ v2

[[or]](v1, v2) = v1 ∨ v2

[[=]](v1, v2) = v1 = v2

Figure 3.2: Semantics of expressions
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This description manipulates signals from the set Sig = {clk, x, y, o}. It is
made up of three processes. A clock generator toggles the clock signal every
one unit of time. The middle process computes the output signal o from the
input signals x and y on high edges of the clock. A testbench feeds values
to the input signals.

We assume each program statement lC is uniquely tagged with a label
l. The label of the unique statement which follows lC in the control flow
graph of the enclosing process can be fetched with next(l). The current
point of execution of an individual process is determined by a control point
c. For running processes, the control point simply amounts to the label of
the statement that has to be executed next. Whereas, the control point of
a suspended process is augmented with a list of signals W and a duration
t. The duration is either a strictly positive integer or ∞ to indicate the
absence of timeout. We denote by P the set of all control points.

For each signal x, defined in the description, a global environment ρ
stores its current and future value, respectively at address x and x+. So the
environment is a mapping from the set of all memory addresses A to values
in V. At this point of the exposition, V equates to the set of std logic values,
that is L = {’0’, ’1’, ’U’}.

We impose the syntactic restriction on descriptions that no signal can be
assigned by more than one process. That way, it is sufficient to store only
one future value for every signal. We could introduce resolution functions
as defined in the standard (see section 2.4 in [IEE02]) at the price of a slight
complexification of the semantics definition. It is also possible to emulate
resolution functions with additional processes.

At last, a state of execution is a tuple (c1, . . . , cn, ρ) of control points,
followed by a global environment. We denote by Σ, the set of all possible
states of execution.

An expression exp evaluates to a value v ∈ V in an environment ρ,
which we express by judgments of the form ρ ` exp =⇒ v. The meaning
of expressions is defined in Fig. 3.2 by structural induction in the classical
way [Plo81]. Let us simply point out that the function lrnd() arbitrarily
picks a std logic between ’1’ and ’0’.

Figure 3.3 depicts the sequential execution of an individual process. Sig-
nal assignments schedule modifications of the shared memory for the next
simulation cycle. The expression on the right-hand side of the statement is
evaluated. Then, the resulting value is stored at the address that holds the
future value of the assigned signal. Note that a subsequent assignment to
the same signal before the next synchronization would replace this value. A
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sig
lx <= exp ρ ` exp =⇒ v

(l, ρ) ⇀ (next(l), ρ[x+ ← v])

wait
lwait on W for t c = (next(l),W, t)

(l, ρ) ⇀ (c, ρ)

enter
lforever do l′C;P

(l, ρ) ⇀ (l′, ρ)

true

lif b then l′C;P

ρ ` b =⇒ true

(l, ρ) ⇀ (l′, ρ)
false

lif b then P

ρ ` b =⇒ false

(l, ρ) ⇀ (next(l), ρ)

Figure 3.3: Sequential execution

Π-i
(ci, ρ) ⇀ (c′i, ρ

′)

(c1, . . . , ci, . . . , cn, ρ)→ (c1, . . . , c′i, . . . , cn, ρ′)

∆

∀i : ci = (li,Wi, ti) ∃i : wake(Wi, ρ)

∀i : c′i =

{

li if wake(Wi, ρ)

ci otherwise
ρ′ = update(ρ)

(c1, . . . , cn, ρ)→ (c′1, . . . , c
′
n, ρ′)

Θ

∀i : ci = (li,Wi, ti) ∀i : ¬wake(Wi, ρ)
∃i : ti 6=∞

t = min{ti 6=∞}

∀i : c′i =











li if ti = t

(li,Wi, ti − t) if ti 6=∞

ci otherwise

ρ′ = update(ρ)

(c1, . . . , cn, ρ)→ (c′1, . . . , c
′
n, ρ′)

Figure 3.4: Simulation algorithm
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wait statement suspends the process. It augments the control point with
the conditions that control the awakening. The process will resume its ac-
tivity if an event occurs on some of the signals in the sensitivity list W or
the timeout t is elapsed. The last two statements control the flow of execu-
tion and the corresponding rules are classical. Execution simply enters the
body of the forever loop. The fact that execution returns to the head of the
loop is implicitly encoded by the next function. For the guard statement,
the point where execution is transfered depends on the evaluation of the
boolean condition.

Example 3.2. The operational semantics for the individual processes of
our running example 3.1 is:

⇀ = {(1, ρ) ⇀ (2, ρ)} ∪ {(2, ρ) ⇀ (3, ρ[clk+ ← [[lnot]](clk)]}

∪{(3, ρ) ⇀ ((1, ∅, 1), ρ)} ∪ {(4, ρ) ⇀ (5, ρ)}

∪{(5, ρ) ⇀ (6, ρ) | ρ(clk) = ’1’} ∪ {(5, ρ) ⇀ (7, ρ) | ρ(clk) 6= ’1’}

∪{(6, ρ) ⇀ (7, ρ[o+ ← [[land]](x, [[lnot]](y)])}

∪{(7, ρ) ⇀ ((4, {clk},∞), ρ)}

∪{(8, ρ) ⇀ (9, ρ[x+ ← ’0’])} ∪ {(9, ρ) ⇀ (10, ρ[y+ ← ’1’])}

∪{(10, ρ) ⇀ ((11, {clk},∞), ρ)} ∪ {(11, ρ) ⇀ (12, ρ)}

∪{(12, ρ) ⇀ (13, ρ[x+ ← v]) | v = ’0’ ∨ v = ’1’}

∪{(13, ρ) ⇀ ((11, {clk},∞), ρ)}

Now, the three rules of Fig. 3.4 are enough to completely characterize the
simulation algorithm of our kernel language. Processes are run concurrently
as long as possible thanks to the first rule. Successive steps of execution with
the first rule between the application of one of the last two rules constitutes
a simulation cycle.

Once all processes are suspended, one of the rules ∆ or Θ applies. The
first rule is taken whenever an event has occurred on some of the signals in
the sensitivity list of one of the processes.

wake(W,ρ) = ∃x ∈W : ρ(x) 6= ρ(x+) .

The ∆ rule revives any process which satisfies the predicate wake. Then, the
shared memory is updated, so that signal assignments encountered during
the previous simulation cycle now take effect:

∀x ∈ Sig : update(ρ)(x) = ρ(x+) .
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c1 c2 c3 clk/clk+ x/x+ y/y+ o/o+

1 4 8 ’0’/’0’ ’0’/’0’ ’0’/’0’ ’0’/’0’
2 4 8 ’0’/’0’ ’0’/’0’ ’0’/’0’ ’0’/’0’
3 4 8 ’0’/’1’ ’0’/’0’ ’0’/’0’ ’0’/’0’

1, ∅, 1 4 8 ’0’/’1’ ’0’/’0’ ’0’/’0’ ’0’/’0’
1, ∅, 1 5 8 ’0’/’1’ ’0’/’0’ ’0’/’0’ ’0’/’0’
1, ∅, 1 7 8 ’0’/’1’ ’0’/’0’ ’0’/’0’ ’0’/’0’
1, ∅, 1 4, {clk}, ∞ 8 ’0’/’1’ ’0’/’0’ ’0’/’0’ ’0’/’0’
1, ∅, 1 4, {clk}, ∞ 9 ’0’/’1’ ’0’/’0’ ’0’/’0’ ’0’/’0’
1, ∅, 1 4, {clk}, ∞ 10 ’0’/’1’ ’0’/’0’ ’0’/’1’ ’0’/’0’
1, ∅, 1 4, {clk}, ∞ 11, {clk}, ∞ ’0’/’1’ ’0’/’0’ ’0’/’1’ ’0’/’0’
1, ∅, 1 4 11 ’1’/’1’ ’0’/’0’ ’1’/’1’ ’0’/’0’
1, ∅, 1 5 11 ’1’/’1’ ’0’/’0’ ’1’/’1’ ’0’/’0’
1, ∅, 1 6 11 ’1’/’1’ ’0’/’0’ ’1’/’1’ ’0’/’0’
1, ∅, 1 7 11 ’1’/’1’ ’0’/’0’ ’1’/’1’ ’0’/’0’
1, ∅, 1 4, {clk}, ∞ 11 ’1’/’1’ ’0’/’0’ ’1’/’1’ ’0’/’0’
1, ∅, 1 4, {clk}, ∞ 12 ’1’/’1’ ’0’/’0’ ’1’/’1’ ’0’/’0’
1, ∅, 1 4, {clk}, ∞ 13 ’1’/’1’ ’0’/’1’ ’1’/’1’ ’0’/’0’
1, ∅, 1 4, {clk}, ∞ 11, {clk}, ∞ ’1’/’1’ ’0’/’1’ ’1’/’1’ ’0’/’0’

1 4, {clk}, ∞ 11, {clk}, ∞ ’1’/’1’ ’1’/’1’ ’1’/’1’ ’0’/’0’
2 4, {clk}, ∞ 11, {clk}, ∞ ’1’/’1’ ’1’/’1’ ’1’/’1’ ’0’/’0’
3 4, {clk}, ∞ 11, {clk}, ∞ ’1’/’0’ ’1’/’1’ ’1’/’1’ ’0’/’0’

1, ∅, 1 4, {clk}, ∞ 11, {clk}, ∞ ’1’/’0’ ’1’/’1’ ’1’/’1’ ’0’/’0’
1, ∅, 1 4 11 ’0’/’0’ ’1’/’1’ ’1’/’1’ ’0’/’0’
1, ∅, 1 5 11 ’0’/’0’ ’1’/’1’ ’1’/’1’ ’0’/’0’
1, ∅, 1 7 11 ’0’/’0’ ’1’/’1’ ’1’/’1’ ’0’/’0’
1, ∅, 1 4, {clk}, ∞ 11 ’0’/’0’ ’1’/’1’ ’1’/’1’ ’0’/’0’
1, ∅, 1 4, {clk}, ∞ 12 ’0’/’0’ ’1’/’1’ ’1’/’1’ ’0’/’0’
1, ∅, 1 4, {clk}, ∞ 13 ’0’/’0’ ’1’/’1’ ’1’/’1’ ’0’/’0’
1, ∅, 1 4, {clk}, ∞ 11, {clk}, ∞ ’0’/’0’ ’1’/’1’ ’1’/’1’ ’0’/’0’

Table 3.1: A run of the simulation algorithm
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In this case, no physical time has elapsed. In the VHDL phraseology, the
next cycle will be a delta cycle. Delta cycles are the way for an event driven
simulation to emulate the instantaneous propagation of electricity through
wires.

The ∆ rule has the priority over the last one, which advances the simu-
lation time by the smallest timeout. All the processes for which the timeout
has just expired resume their execution. It may be that neither the delta
nor the time-advance rule are fired. This happens when all sensitive sig-
nals remain unmodified and all processes wait for ever, in which case the
execution is simply blocked. However, simulation usually runs forever.

The initial configuration s0 of a description l1P1| . . . | lnPn is of the form
(l1, . . . , ln, ρ0). It is entirely determined by the initial environment ρ0 where
current and future values of signals must coincide. By default std logic sig-
nals begin with the ’U’ value and integers are initially equal to 0. However,
different initial value may be specified in the description.

Example 3.3. We tabulate, see table 3.1, the first four cycles of a possible
simulation run for the code introduced in example 3.1. All signals are given
the initial value ’0’.

3.6 More data types: integers and aggregates

Mini-VHDL descriptions not only handle std logic values but also integer
and multi-dimensional arrays:

β = int | std logic

τ = β | τ [l . . . u] .

We denote by x : τ the fact that signal x has been defined with the particular
type τ . The set of addresses that are created to store the values of a signal
are defined recursively. To build the address of an individual cell, its indices
are simply concatenated to the name of the signal:

{

@(x, β) = {x}

@(x, τ [l . . . u]) = {a.i | a ∈ @(x, τ), l ≤ i ≤ u} .

For any set X, we define X+, to be {x+ | x ∈ X}. The set of all addresses
allocated to store the current and future value of signals is:

A|Sig = {a ∈ @(x, τ) | x ∈ Sig, x : τ}

A = A|Sig ∪A|
+
Sig .
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The domain of the global environment now incorporates all these new ad-
dresses. In addition to std logics, its range also contains integers:

V = L ∪ Z

ρ : A → V .

Example 3.4. If the only signal defined in the description is an array b of
type std logic[1 . . . 3][0 . . . 3], then the set of memory locations is:

A = {b.1.0, b.1.0+, b.1.1, b.1.1+, b.1.2, b.1.2+, b.1.3, b.1.3+,

b.2.0, b.2.0+, b.2.1, b.2.1+, b.2.2, b.2.2+, b.2.3, b.2.3+,

b.3.0, b.3.0+, b.3.1, b.3.1+, b.3.2, b.3.2+, b.3.3, b.3.3+} .

The evaluation of expressions that manipulate integers is nothing but
usual:

ρ ` n =⇒ n

[[+]](v1, v2) = v1 + v2

[[-]](v1, v2) = v1 − v2

[[<]](v1, v2) = v1 < v2

We introduce the judgment ρ `L lval =⇒ a : τ that evaluates left values
to memory addresses and also returns their type:

x : τ

ρ `L x =⇒ x : τ

ρ `L lval =⇒ a : τ [l . . . u] ρ ` exp =⇒ i l ≤ i ≤ u

ρ `L lval [exp] =⇒ a.i : τ

Notice that this semantics checks that every index lies within correct bounds.
An out-of-bounds would block the execution. At last, the semantics of
memory accesses and signal assignments are modified accordingly as follows:

ρ `L lval =⇒ a : τ

ρ ` lval =⇒ ρ(a)

sig
llval <= exp ρ `L lval =⇒ a : β ρ ` exp =⇒ v

(l, ρ) ⇀ (next(l), ρ[a+ ← v])

During the update of the memory, the future value of each scalar signal
and of each element of signal array replaces its corresponding current value:

update(ρ)(a) =

{

ρ(a+) a ∈ A|Sig

ρ(a) otherwise .
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3.7 Local variables, conversion functions

We allow variables in mini-VHDL descriptions as long as their use is confined
to individual processes. Shared variables, as introduced in the ’93 version of
the standard, are risky as they possibly make the outcome of a computation
depend on the order into which processes are executed.

The domain of global environments is extended with the addresses for
the variables Var defined in the description:

A|Var = {a ∈ @(x, τ) | x ∈ Var, x : τ}

A = A|Var ∪A|Sig ∪A|
+
Sig .

Variables are assigned in an identical way to what happens with classical
programming languages:

var
llval := exp ρ `L lval =⇒ a : β ρ ` exp =⇒ v

(l, ρ) ⇀ (next(l), ρ[a← v])

Integer variables are particularly helpful to control iterations of while
loops. Let us recall the behavior of loops:

enter
lwhile b do l′C;P ρ ` b =⇒ true

(l, ρ) ⇀ (l′, ρ)

exit
lwhile b do P ρ ` b =⇒ false

(l, ρ) ⇀ (next(l), ρ)

Variables also play the rôle of intermediate storage when converting be-
tween integers and vectors of std logic. We have two conversion functions:
lvec to int behaves somewhat like the conv integer of the official VHDL
package std logic unsigned, and int to lvec is found in the std logic arith
package under the name conv std logic vector. The argument n denotes
the length of the array y. So we assume that y : std logic[0 . . . n− 1]. This
is checked during the preliminary typing phase. The semantics of the con-
version functions is developed in figure 3.5. By convention the left-most cell
of the array contains the strongest bit.

Example 3.5. At this point we have enough definitions to ascribe a seman-
tics to a piece of code like the following:

i := 0;

while i < 16 do
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llvec to int(y, n, x)

∀i ∈ [0, n− 1] : ρ(y.i) ∈ {’0’, ’1’} εi =

{

1 if ρ(y.i) = ’1’

0 otherwise

v =

i=n
∑

i=1

2n−iεi

(l, ρ) ⇀ (next(l), ρ[x← v])

lint to lvec(x, n, y)

v = ρ(x) ∀i ∈ [1, n] : εi =

{

’1’ if (v/2n−i)%2 = 1

’0’ if (v/2n−i)%2 = 0

ρ′ = ρ[y.0← ε0] . . . [y.(n− 1)← εn−1]

(l, ρ) ⇀ (next(l), ρ′)

Figure 3.5: Conversion functions

int_to_lvec(i, 4, tmp);

a[i][0] <= tmp[0];

a[i][1] <= tmp[1];

a[i][2] <= tmp[2];

a[i][3] <= tmp[3];

i := i + 1;

When this program terminates, the future value of the ith element of array
a contains the binary representation of i.

3.8 Rising edges and clocks

As explained in section 3.5, for each signal, we store the current value and
the value that is scheduled for the next simulation cycle. In addition, for
some signals, it is necessary to retain the value they had during the previous
simulation cycle. We denote by Clk the set of all such signals. Designs are
synchronized on the edges of clocks. Hence, the unique purpose of the
previous value is to detect rising edges, that is transitions from ’0’ to ’1’.

Let us update one last time the definition of the set of memory addresses
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and the memory update during synchronization:

A|Clk = {a ∈ @(x, τ) | x ∈ Clk, x : τ}

X− = {x− | x ∈ X}

A = A|Var ∪A|Sig ∪A|
+
Sig ∪A|

−
Clk ∪A|Clk ∪A|

+
Clk











update(ρ)(a) = ρ(a+) a ∈ A|Sig ∪A|Clk

update(ρ)(a−) = ρ(a) a ∈ A|Clk

update(ρ)(a) = ρ(a) otherwise .

We describe the semantics of the rising edge operator below:

v =

{

true if ρ(x−) = ’0’ ∧ ρ(x) = ’1’

false otherwise

ρ ` rising edge(x) =⇒ v

3.9 Remaining statements

3.9.1 Suspension

The VHDL full suspension statement is slightly richer than the one intro-
duced in section 3.5. In addition to the sensitivity list W and the timeout
t, a boolean condition b is another argument of the wait statement. The
semantics of wait becomes:

wait
lwait on W until b for t c = (next(l),W, b, t)

(l, ρ) ⇀ (c, ρ)

For a suspended process to wake up when some signal in the list W , the con-
dition b must evaluate to true in the environment after it has been updated.
The revised ∆ and Θ rules appear in Fig. 3.6.

3.9.2 Alternative

The alternative construct, introduced by Dijkstra in [Dij75], is somewhat
similar to the selection statement. It picks arbitrarily one of the guarded
processes whose guard evaluates to true and runs it:

choose
lΣi∈[1,n]bi -> liPi ρ ` bj =⇒ true

(l, ρ) ⇀ (lj , ρ)
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∆

∀i : ci = (li,Wi, bi, ti) ρ′ = update(ρ)

∃i : wake(Wi, bi, ρ, ρ′) ∀i : c′i =

{

li if wake(Wi, bi, ρ, ρ′)

ci otherwise

(c1, . . . , cn, ρ)→ (c′1, . . . , c
′
n, ρ′)

Θ

∀i : ci = (li,Wi, bi, ti) ρ′ = update(ρ) ∀i : ¬wake(Wi, bi, ρ, ρ′)

∃i : ti 6=∞

t = min{ti 6=∞}
∀i : c′i =











li if ti = t

(li,Wi, bi, ti − t) if ti 6=∞

ci otherwise

(c1, . . . , cn, ρ)→ (c′1, . . . , c
′
n, ρ′)

wake(W, b, ρ, ρ′) = (∃x ∈W : ρ(x) 6= ρ′(x)) ∧ (ρ′ ` b =⇒ true)

Figure 3.6: Synchronization rules

3.9.3 Display

The display command outputs the value of signals and variables to the
screen. However, here, it appears not to do much, since we decide not to
model screen outputs in our semantics. It proves useful later as a means to
report results of the analysis.

show
ldisplay(x, . . ., x )

(l, ρ) ⇀ (next(l), ρ)

3.10 A benign parallelism

To account for the concurrency in VHDL, we adopted an interleaving model:
according to the Π rule, processes can run in any possible order. It can be
computationally very expensive to fully explore all the interleaved executions
of processes. Fortunately, this is not necessary. In fact, VHDL’s parallelism
is very weak. It is sufficient to fix a particular ordering for the execution
of processes. We replace the Π rule by the more restrictive Ψ rule which
always evaluates the left-most awake process first:

Ψ-i
∀j < i : cj = (lj ,Wj, bj , tj) (ci, ρ) ⇀ (c′i, ρ

′)

(c1, . . . , ci, . . . , cn, ρ)→ (c1, . . . , c′i, . . . , cn, ρ′)
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Figure 3.7: Free swap.
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Figure 3.8: Non blocking.

In VHDL, processes modify distinct portion of the memory, so the order
into which processes are run during the simulation cycle does not matter.
This fact ensures the previous optimization of the semantics is safe.

To prove this claim, we concentrate on the transition relations
Π
−→ and

Ψ
−→

respectively induced by the Π and Ψ rules only. We wish to show that the
order of execution of the processes does not affect the set of states that are
reached at synchronization points. On the contrary to [Goo95], we can not

rely on the determinism of VHDL to deduce the confluence of
Π
−→. Operators

rnd() and lrnd() make mini-VHDL intrinsically non-determinist. Because

of the while loop, the relation
Π
−→ is not necessarily noetherian either.

So, it appears we have no choice but to exploit the independence of
processes in their concurrent execution. The intuition is formalized by the
two properties that are illustrated in Fig. 3.7 and 3.8. First, consecutive
execution steps of two distinct processes can be freely swapped:

Lemma 3.1.

∀s, u, v : s
Π-i
−−→ u ∧ u

Π-j
−−→ v ⇒ ∃u′ : s

Π-j
−−→ u′ ∧ u′

Π-i
−−→ v .

Second, performing one step of a process does not eliminate the possi-
bility of executing another:

Lemma 3.2.

∀s, s′, u : s
Π-i
−−→ s′ ∧ s

Π-j
−−→ u ∧ i 6= j ⇒ ∃u′ : s′

Π-j
−−→ u′ .
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The proofs of these two lemmas is immediate by inspection of the various
cases that define the operational semantics.

We can now state the theorem that warrants the soundness of the op-
timized version of our semantics. The maximal execution of the transition
relations

Π
−→ and

Ψ
−→ exactly yield the same set of final1 states:

Theorem 3.1.

∀s : {s′ | s
Π
−→!s′} = {s′ | s

Ψ
−→!s′} .

Proof. The fact that {s′ | s
Ψ
−→!s′} ⊆ {s′ | s

Π
−→!s′} is straightforward, since

Ψ
−→ is a restriction of

Π
−→.

For the converse inclusion, we must establish that if s
Π
−→!s′, then s

Ψ
−→!s′.

This is proved by induction on the length of the derivation of
Π
−→ from s to

s′.

• The base case is trivial, since s is terminal and s = s′,

• For the induction step, consider the derivation:

s0
Π-i0−−→ s1 . . .

Π-in−−−→ sn+1 .

We set j to be the index of the process that would be executed from

s0 with
Ψ
−→. More precisely, j is such that there exists some state s′

and s0
Ψ-j
−−→ s′.

Now, let k be the smallest integer such that ik = j. It necessarily
exists. Indeed, if it doesn’t then repetitive application of lemma 3.2

allows us to establish that there is sn+2 and sn+1
Π-j
−−→ sn+2. This is

clearly impossible, since sn+1 is terminal.

If we can show that there exists a derivation:

s0
Π-j
−−→ s′1 . . .

Π
−→ sn+1 ,

whose first step is to execute process j, then we can apply the induction

hypothesis and conclude that s0
Ψ
−→!sn+1.

To build this derivation, the idea is to exchange the Π-j step between
state sk and sk+1 with the one occurring between s0 and s′1. This is

1Notation s →!
s
′ stands for s →∗

s
′ ∧ s 6→
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done by degrees thanks to lemma 3.1. We prove by induction on k
that if:







s0
Π-i0−−→ s1 . . .

Π-ik−1

−−−−→ sk ∧ ∀l ∈ [0, k[: il 6= j

sk
Π-j
−−→ sk+1 ,

then, there exists s0
Π-j
−−→ s′1

Π-i0−−→ s′2 . . .
Π-ik−1

−−−−→ sk+1. This is trivial
for the base case. For the induction step, by lemma (3.1), we can
swap the two last transitions. It comes that there is s′k+1 such that

sk
Π-j
−−→ s′k+1

Π-ik−−−→ sk+2. We can then apply the induction hypothesis
to complete the construction. This argumentation is pictured below:

s0
Π-i0

- s1
Π-i1

- . . . sk

Π-ik
- sk+1

s′1
Π-i0

-

Π
-j

-

s′2
Π-i1

-

Π
-j

-

. . . s′k+1

Π-ik
-

Π
-j

-

sk+2

Π
-j

-

3.11 Discussion

We recapitulate the domains of the semantics definition, the evaluation of
expressions, the sequential execution of processes and the formalisation of
the simulation algorithm in Fig. 3.9, 3.10, 3.11, 3.12, 3.13 and 3.14.

This formalization of the simulation algorithm is the basis to the verifi-
cation tool that is developed in the next chapters. The tool is designed so
as to be sound with respect to this particular semantics. Hence, we here
make the implicit assumption that synthesis tools that translate VHDL de-
scriptions into physical hardware are coherent with the same semantics. We
believe this choice to be acceptable since we strived to be consistent with
the only official reference of the VHDL language, that is the IEEE stan-
dard. We hope that synthesis tools comply with the same interpretation
of the standard as us. If this is not the case, then even when verification
succeeds, the final hardware can not be certified correct. Let me back up
this claim with a small VHDL example:

if (x = ’0’) then
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y <= ’1’;

else

y <= ’0’;

end if;

Now, suppose signal x is initialized by the simulator with the value ’U’.
Then it is correct to state that y takes the value ’0’. However, this piece
of code is probably compiled into a multiplexor gate. So, post-synthesis the
signal x initially takes one of the value ’0’ or ’1’ which results in y being
either ’0’ or ’1’ too. A similar argument is made in [Fos02] with a Verilog
example.

Gaps between semantics allow bugs with daunting consequences to lurk
unnoticed through the design flow. So, in practice, it is of the uttermost
importance that the various tools that manipulate the design have a common
interpretation of its semantics. To convince oneself this is indeed the case is
an orthogonal matter, see for instance [Riv04]. This difficult yet necessary
task far exceeds the scope of the thesis. Thus, the convenient assumption
that synthesis tools are consistent with our view of semantics, is needed to
separate concerns.

Alternatively, we could have introduced a simple ad-hoc hardware de-
scription language that would suit our verification goals best. We feel this
approach is not realistic as it ignores issues that could be lost in potential
over-simplifications. Also, hardware engineers work with VHDL models and
use VHDL synthesizers. If we want to demonstrate that integration into
existing design practice is feasible, we believe it is necessary to work from
the same input. Hopefully, we can confine ourselves to the fraction of the
language that is actually used by engineers. To aim at providing a formal
semantics for whole VHDL is unrealistic. The formalization would be so
complex as to become useless. To our relief, the subset we have identified
in actual hardware designs seems reasonable. It lends itself well to concise
and relatively simple semantics definitions.

We nevertheless believe the essential characteristics of VHDL are present
in our semantics. Hence, the semantics embeds a sufficient amount of com-
plexity so as to be realistic for our feasibility study. Also, minor discrepancies
can be corrected later and the design of our verification tool can be readily
adapted.
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l and (l,W, b, t) ∈ P

β = int | std logic

τ = β | τ [l . . . u]

{

@(x, β) = {x}

@(x, τ [l . . . u]) = {a.i | a ∈ @(x, τ), l ≤ i ≤ u}

A|Var = {a ∈ @(x, τ) | x ∈ Var, x : τ}

A|Sig = {a ∈ @(x, τ) | x ∈ Sig, x : τ}

A|Clk = {a ∈ @(x, τ) | x ∈ Clk, x : τ}

A = A|Var ∪A|Sig ∪A|
+
Sig ∪A|

−
Clk ∪A|Clk ∪A|

+
Clk

L = {’0’, ’1’, ’U’}

V = L ∪ Z

ρ : A → V

Figure 3.9: Control points, types, memory locations, values and environ-
ments
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[[lnot]](v) =











’0’ if v = ’1’

’1’ if v = ’0’

’U’ otherwise

[[land]](v1, v2) =











’1’ if v1 = ’1’ and v2 = ’1’

’0’ if v1 = ’0’ or v2 = ’0’

’U’ otherwise

[[lxor]](v1, v2) =











’U’ if v1 = ’U’ or v2 = ’U’

’1’ else if v1 6= v2

’0’ otherwise

[[not]](v) = ¬v

[[and]](v1, v2) = v1 ∧ v2

[[or]](v1, v2) = v1 ∨ v2

[[=]](v1, v2) = v1 = v2

[[+]](v1, v2) = v1 + v2

[[-]](v1, v2) = v1 − v2

[[<]](v1, v2) = v1 < v2

Figure 3.10: Operators
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x : τ

ρ `L x =⇒ x : τ

ρ `L lval =⇒ a : τ [l . . . u] ρ ` exp =⇒ i l ≤ i ≤ u

ρ `L lval[exp ] =⇒ a.i : τ

Figure 3.11: Left values

ρ ` ’0’ =⇒ ’0’ ρ ` ’1’ =⇒ ’1’ ρ ` ’U’ =⇒ ’U’

ρ ` n =⇒ n ρ ` true =⇒ true ρ ` false =⇒ false

v ∈ {true, false}

ρ ` rnd() =⇒ v

v ∈ {’0’, ’1’}

ρ ` lrnd() =⇒ v

ρ `L lval =⇒ a : τ

ρ ` lval =⇒ ρ(a)

ρ ` exp =⇒ v

ρ ` op exp =⇒ [[op]](v)

ρ ` exp1 =⇒ v1 ρ ` exp2 =⇒ v2

ρ ` exp1 op exp2 =⇒ [[op]](v1, v2)

v =

{

true if ρ(x−) = ’0’ ∧ ρ(x) = ’1’

false otherwise

ρ ` rising edge(x) =⇒ v

Figure 3.12: Evaluation of expressions
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sig
llval <= exp ρ `L lval =⇒ a : β ρ ` exp =⇒ v

(l, ρ) ⇀ (next(l), ρ[a+ ← v])

var
llval := exp ρ `L lval =⇒ a : β ρ ` exp =⇒ v

(l, ρ) ⇀ (next(l), ρ[a← v])

wait
lwait on W until b for t c = (next(l),W, b, t)

(l, ρ) ⇀ (c, ρ)

enter
lwhile b do l′C;P ρ ` b =⇒ true

(l, ρ) ⇀ (l′, ρ)

exit
lwhile b do P ρ ` b =⇒ false

(l, ρ) ⇀ (next(l), ρ)

choose
lΣi∈[1,n]bi -> liPi ρ ` bj =⇒ true

(l, ρ) ⇀ (lj , ρ)

show
ldisplay(x, . . ., x )

(l, ρ) ⇀ (next(l), ρ)

llvec to int(y, n, x)

∀i ∈ [0, n− 1] : ρ(y.i) ∈ {’0’, ’1’} εi =

{

1 if ρ(y.i) = ’1’

0 otherwise

v =

i=n
∑

i=1

2n−iεi

(l, ρ) ⇀ (next(l), ρ[x← v])

lint to lvec(x, n, y)

v = ρ(x) ∀i ∈ [1, n] : εi =

{

’1’ if (v/2n−i)%2 = 1

’0’ if (v/2n−i)%2 = 0

ρ′ = ρ[y.0← ε0] . . . [y.(n− 1)← εn−1]

(l, ρ) ⇀ (next(l), ρ′)

Figure 3.13: Sequential process execution
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Ψ-i
∀j < i : cj = (lj ,Wj , bj , tj) (ci, ρ) ⇀ (c′i, ρ

′)

(c1, . . . , ci, . . . , cn, ρ)→ (c1, . . . , c
′
i, . . . , cn, ρ′)

∆

∀i : ci = (li,Wi, bi, ti) ρ′ = update(ρ)

∃i : wake(Wi, bi, ρ, ρ′) ∀i : c′i =

{

li if wake(Wi, bi, ρ, ρ′)

ci otherwise

(c1, . . . , cn, ρ)→ (c′1, . . . , c
′
n, ρ′)

Θ

∀i : ci = (li,Wi, bi, ti) ρ′ = update(ρ) ∀i : ¬wake(Wi, bi, ρ, ρ′)

∃i : ti 6=∞

t = min{ti 6=∞}
∀i : c′i =











li if ti = t

(li,Wi, bi, ti − t) if ti 6=∞

ci otherwise

(c1, . . . , cn, ρ)→ (c′1, . . . , c
′
n, ρ′)











update(ρ)(a) = ρ(a+) a ∈ A|Sig ∪A|Clk

update(ρ)(a−) = ρ(a) a ∈ A|Clk

update(ρ)(a) = ρ(a) otherwise

wake(W, b, ρ, ρ′) = (∃x ∈W : ρ(x) 6= ρ′(x)) ∧ (ρ′ ` b =⇒ true)

Figure 3.14: Simulation algorithm
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Chapter 4

Abstract Interpretation

4.1 Collecting semantics

To show the absence of errors in a VHDL design, we need to estimate the
states that are reachable from some initial configuration s0:

O = {s | s0 →
∗ s} .

This set can be equivalently expressed as the least fixpoint of the continuous
function F on the complete lattice of set of states (℘(Σ), ∅,Σ,∪,∩) where:

F(X) = {s0} ∪ {s
′ | ∃s ∈ X : s→ s′} .

Unfortunately, because of the excessive size of the state space, the compu-
tation of this fixpoint often turns out to be too expensive.

4.2 Abstract Interpretation

We follow the methodology of abstract interpretation [Cou78, CC77, Cou81,
CC92] to design a tool that computes a superset of the reachable states. We
proceed in two steps. First, we need to choose our representation for sets of
states. In other words, we must pick an abstract domain. In our case, the
abstract domain is a complete partial order (D],v,⊥,t). The meaning of
an element of D] is given, in terms of set of states, thanks to a monotonic
concretization function:

γ : D] → ℘(Σ) .

The bottom element ⊥ provides us with an abstraction of the empty set and
the abstract join t computes an upper-bound of two elements in D].

47
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Second, we systematically derive from F a monotonic function that op-
erates on the abstract domain:

F
] : D] → D] .

The abstract operator F
] must be sound. Namely the application of F

] yields
a result that contains all the states obtained when applying F:

F ◦ γ ⊆ γ ◦ F
] .

This local soundness condition ensures that the least fixpoint of F
] is a sound

over-approximation of the reachable states:

Theorem 4.1 (Soundness).

lfp∅F ⊆ γ(lfp⊥F
]) .

Proof. Let Fn and F
]
n respectively be the nth iterate from ∅ and ⊥ of F and

F
]. We prove by induction, that for all integer n, Fn ⊆ γ(F]

n). The base

case is immediate since ∅ ⊆ γ(⊥). Suppose we know Fn ⊆ γ(F]
n), then by

monotonicity of F, it comes that F(Fn) ⊆ F(γ(F]
n)). We deduce thanks to

the local correctness that Fn+1 ⊆ γ(F](F]
n)). This ends the induction.

Since γ is monotonic, we may establish that γ(F]
n) ⊆ γ(

⊔

n F
]
n). So we

have that Fn ⊆ γ(
⊔

n F
]
n). By definition of the least upper bound, it is also

true that:
⋃

n

Fn ⊆ γ(
⊔

n

F
]
n) .

On one hand, since F is a continuous map on the complete lattice of set
of states, by Kleene’s theorem [Kle52], it comes that:

lfp∅F =
⋃

n

Fn .

On the other hand, the constructive version of Tarski’s fixpoint theorem
[CC79a], guarantees the existence of the least fixpoint of the monotonic map
F

] on the complete partial order (D],v,⊥,t). By a simple induction one

checks that
⊔

n F
]
n v lfp⊥F

]. By monotonicity of γ, we have:

γ(
⊔

n

F
]
n) ⊆ γ(lfp⊥F

]) .

We have established the following sequence of inequalities:

lfp∅F =
⋃

n

Fn ⊆ γ(
⊔

n

F
]
n) ⊆ γ(lfp⊥F

]) .

We conclude by transitivity.
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When the abstract domain is of finite height, the constructive version
of Tarski’s theorem [CC79a] yields a naive algorithm to obtain the abstract
semantics. It suffices to compute the successive iterates ⊥, F

](⊥), F
](F](⊥)),

... until stabilization.

4.3 Abstract domain

We suppose we are given an abstract numerical domain to describe sets
of environments. A numerical domain is a complete partial order (N ,vN
,⊥N ,tN ). The meaning of its elements is given in terms of sets of environ-
ments by a monotonic concretization function:

γN : (N ,vN ) −→ (℘(A → V),⊆) .

The abstract bottom and join operators must be such that:

∅ = γN (⊥N )

γN (X) ∪ γN (Y ) ⊆ γN (X tN Y ) .

We abstract a set of states by a function Y that maps each tuple of
program points to an abstract environment:

Y : Pn → N .

This mapping represents all the states (c1, . . . , cn, ρ) for which the environ-
ment ρ satisfies the constraints associated to the program points (c1, . . . , cn):

γ(Y ) = {(c1, . . . , cn, ρ) | ρ ∈ γN (Y (c1, . . . , cn))} .

Monotonicity of γ is readily checked. The abstract domain (Pn → N ,v
,⊥,t) is a complete partial order whose operations are the pointwise exten-
sions of the ones on the numerical domain N .

4.4 Abstract semantics transformer

4.4.1 Expressions

There is no way we can reference the future value of signals or the past
value of clocks with the current syntax of expressions. In order to have
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access to any single memory location, we extend the syntax of left values in
the following manner:

lval = loc

| future(loc)

| past(loc)

loc = x

| loc [exp ] .

While the semantics of modifiers future and past is:

ρ `L loc =⇒ a : τ

ρ `L future(loc) =⇒ a+ : τ

ρ `L loc =⇒ a : τ

ρ `L past(loc) =⇒ a− : τ

We can now safely replace any rising edge(x) by the semantically equiv-
alent:

past(x ) = ’0’ and x = ’1’ .

It will also be helpful to generate arbitrary integers, so that we add the
integer random generator irnd():

i ∈ Z

ρ ` irnd() =⇒ i

4.4.2 Sequential statements

The equations in Fig. 4.1 specify the abstract semantics for each sequential
statement in the language. They rely on the existence of a few primitives
that manipulate the numerical domain N : assign undertakes assignments,
select asserts boolean conditions and get val returns the value of an expres-
sion when possible, Ω otherwise. Each operation must obey a soundness
condition:

{

ρ[a← v]

∣

∣

∣

∣

∣

ρ ∈ γN (R) ∧ ρ `L lval =⇒ a

ρ ` exp =⇒ a

}

⊆ γN (assignlval←exp (R))

{ρ | ρ ∈ γN (R) ∧ ρ ` exp =⇒ true} ⊆ γN (selectexp (R))

{v | ∃ρ ∈ γN (R) ∧ ρ ` exp =⇒ v} ⊆ γV(get valexp (R))

with γV(Ω) = V

γV(v) = {v} .
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[[llval <= e ]]]R = {(next(l), assignfuture(lval )←e (R))}

[[llval := e ]]]R = {(next(l), assignlval←e (R))}

[[lwait on W until b for t]]]R = {(c,R) | c = (next(l),W, b, t)}

[[lwhile b do l′C;P ]]]R = {(l′, selectb(R))}

∪{(next(l), selectnot b(R))}

[[lΣi∈[1,n]bi -> liPi]]
]R = {(li, selectbi

(R)) | i ∈ [1, n]}

[[ldisplay(x, . . ., x )]]]R = {(next(l), R)}

[[llvec to int(y, n, x)]]]R = {(next(l), lvec to inty,n,x(R))}

[[lint to lvec(x, n, y)]]]R = {(next(l), int to lvecx,n,y(R))}

where:

lvec to inty,x(R) = assignx←v(R)

v =



























i=n−1
∑

i=0
2n−1−iεi if ∀i ∈ [0, n− 1] : get valy[i](R) ∈ {’0’, ’1’}

and εi =

{

1 if get valy[i](R) = ’1’

0 otherwise

irnd() otherwise

and:

int to lvecx,y(R) =

i=n−1
⊙

i=0

assigny[i]←εi
(R)

v = get valx(R)

∀i ∈ [1, n] : εi =











lrnd() if v /∈ Z

’1’ if (v/2n−i)%2 = 1

’0’ if (v/2n−i)%2 = 0

Figure 4.1: Equations for the abstract sequential execution
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The equations mimic all the possible executions of the sequential statements
in the abstract domain. Note that the abstract conversion functions are
not very precise. For instance, the conversion lvec to int(y, n, x) is
performed only when every element of the array y is known exactly. In
all other cases, the conversion statement is handled as if it assigned any
random integer value to the target x. It is likewise for int to lvec(x, n,
y), where all cells of the array y must be assigned in turn.

As long as the previous conditions hold about the numerical operators,
we can show that the abstract semantics [[lC]]] is sound:

Proposition 4.1. If ρ ∈ γN (R) and (l, ρ) ⇀ (c′, ρ′) then there exists R′

such that (c′, R′) ∈ [[lC]]]R and ρ′ ∈ γN (R′).

Proof. Assume ρ ∈ γN (R) and (l, ρ) ⇀ (c′, ρ′). We examine all cases de-
pending on the statement that is labeled with l:

• Assignments. If the statement is of the form llval <= exp , then
necessarily:

c′ = next(l) ;

and

∃a, v : ρ′ = ρ[a+ ← v] ∧ ρ `L lval =⇒ a ∧ ρ ` exp =⇒ v .

Thanks to the semantics of the modifier future the later property is
equivalent to:

∃a, v : ρ′ = ρ[a← v] ∧ ρ `L future(lval) =⇒ a ∧ ρ ` exp =⇒ v .

From the soundness condition imposed on the operator assign, it im-
mediately comes that:

ρ′ ∈ γN (assignfuture(lval )←exp (R)) .

This concludes, since we have:

[[llval <= exp ]]]R = {(next(l), assignfuture(lval )←exp (R))} .

Variable assignment is even more straightforward.

• Suspension. When C = lwait on W until b for t, then

[[C]]]R = {(c,R) | c = (next(l),W, b, t)} .
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The semantics of ⇀ is defined such that:

c′ = (next(l),W, b, t) ,

and the environment is kept unmodified:

ρ′ = ρ .

So in this case soundness is trivial.

• Control. If C = lΣi∈[1,n]bi -> liPi, then there exists i for which:

c′ = li ∧ ρ′ = ρ

ρ ` bi =⇒ true .

Thanks to the soundness condition put on select we have:

ρ′ ∈ selectbi
(R) .

This ends the proof for this case, since:

[[C]]]R = {(li, selectbi
(R)) | i ∈ [1, n]} .

Soundness of while statements is performed in an almost identical way.

• Conversions. Consider llvec to int(y, n, x). Necessarily,

ρ′ = ρ[x← v]

∀i ∈ [0, n− 1] : ρ(y.i) ∈ {’0’, ’1’} ,

where

v =

i=n
∑

i=1

2n−iεi

εi =

{

1 if ρ(y.i) = ’1’

0 otherwise .

There are two possibilities:

– Suppose first that for all i ∈ [0, n− 1] :

get valy[i](R) ∈ {’0’, ’1’} .
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So, from the soundness condition of get val, it comes that:

{w | ∃% ∈ γN (R) ∧ % ` y[i] =⇒ w} ⊆ {get valy[i](R)} .

Since, ρ ∈ γN (R), this means in particular that:

{w | ρ ` y[i] =⇒ w} ⊆ {get valy[i](R)} .

In other words, by definition of the evaluation of expressions, it
must be the case that:

ρ(y.i) = get valy[i](R) .

This implies that:

v = v′

where v′ =

i=n
∑

i=1

2n−iε′i

and ε′i =

{

1 if get valy[i](R) = ’1’

0 otherwise .

By soundness of the abstract assignment, it comes that:

ρ′ ∈ γN (assignx←v′(R)) .

Which ends the proof of this case.

– If there is an i for which:

get valy[i](R) /∈ {’0’, ’1’} ,

then [[llvec to int(y, n, x)]]]R is equivalent to:

assignx←irnd()(R) .

By definition of the evaluation of expressions, we have:

v ∈ {w | ρ ` irdn() =⇒ w} .

It follows, by soundness of the abstract assignment, that:

ρ′ ∈ γN (assignx←irnd()(R)) .

The case of lint to lvec(x, n, y) follows a similar thread of rea-
soning.
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Ψ]-i
∀j < i : cj = (lj ,Wj , bj , tj) ci = li (c′i, R

′) ∈ [[liC]]]R

(c1, . . . , ci, . . . , cn, R) (c1, . . . , c′i, . . . , cn, R′)

∆]

∀i : ci = (li,Wi, bi, ti)

(c′1, . . . , c
′
n, R′) ∈ explore(c1, . . . , cn, R) ∃i : c′i 6= ci

(c1, . . . , cn, R) (c′1, . . . , c
′
n, update(R′))

Θ]

∀i : ci = (li,Wi, bi, ti) (c1, . . . , cn, R′) ∈ explore(c1, . . . , cn, R)

∃i : ti 6=∞

t = min{ti 6=∞}
∀i : c′i =











li if ti = t

(li,Wi, bi, ti − t) if ti 6=∞

ci otherwise

(c1, . . . , cn, R) (c′1, . . . , c
′
n, update(R′))

Figure 4.2: Abstract simulation semantics

4.4.3 Abstract simulation algorithm

We systematically derive from the simulation algorithm, the abstract tran-
sition relation  found in Fig. 4.2. The first rule uses the equations previ-
ously introduced to run processes concurrently. The synchronization rules
∆] and Θ] are slightly more complex. First, explore generates all the possi-
ble awakenings (and lack thereof) of processes according to the evaluation of
predicate wake. Then, update modifies the abstract environment to reflect
the memory update that occurs during synchronization.

We begin with the exact specification of operator update:

update(R) = update present(update past(R))

update past(R) =
⊙

a∈A|Clk

assignpast(lval(a))←lval(a)(R)

update present(R) =
⊙

a∈A|Clk∪A|Sig

assignlval(a)←future(lval(a))(R) .

In the previous definition lval inputs an address and returns a left value that
always evaluate to this address. It is trivial to check that update is indeed
sound with respect to its concrete counterpart:

Lemma 4.1.

{update(ρ) | ρ ∈ γN (R)} ⊆ γN (update(R)) .
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Recall that the predicate wake(W, b, ρ, ρ′) which governs the resumption
of processes is composed of two clauses:

∃x ∈W : ρ(x) 6= ρ′(x)

ρ′ ` b =⇒ true .

Remark that when ρ′ is equal to update(ρ), the first clause boils down to:

∃x ∈W : ρ(x) 6= ρ(x+) .

It is possible to build an expression sensitive(W ) that evaluates to true if
and only if the previous assertion is true:

event(x) = not (lval(x) = future(lval(x)))

sensitive(∅) = false

sensitive({x} ∪W ) = event(x) or sensitive(W ) .

Lemma 4.2. For all environment ρ and W ⊆ A|Sig∪A|Clk, are equivalent:

∃x ∈W : ρ(x) 6= update(ρ(x))

ρ ` sensitive(W ) =⇒ true .

We introduce the transformation delay. It shifts any memory reference
that appears in an expression by one step into the future:

delay(x[e1]. . .[en]) =

{

future(x[e1]. . .[en]) x ∈ Sig ∪ Clk

x[e1]. . .[en] otherwise

delay(past(e)) = e

delay(op e) = op delay(e)

delay(e1 op e2) = delay(e1) op delay(e2)

otherwise delay(e) = e .

For the sake of simplicity, we assume the expressions e1, . . . , en used as array
indices in x[e1]. . .[en] do not contain any reference to a signal. As long as
expression b does not contain any reference to the future value of a signal,
it is easy to show that evaluating delay(b) in ρ amounts to evaluating b in
update(ρ):

Lemma 4.3. For all environment ρ, value v and expression b. If b has
no sub-expression of the form future(e), then the following assertions are
equivalent:

update(ρ) ` b =⇒ v

ρ ` delay(b) =⇒ v .
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Proof. Straightforward by structural induction on expression b.

Hence, we are able to compile (W, b) into the following expression that
evaluates to true in an environment ρ if and only if wake(W, b, ρ, update(ρ))
is true:

wake(W, b) = sensitive(W ) and delay(b) .

Lemma 4.4. For all environment ρ, W ⊆ A|Sig ∪ A|Clk and expression b,
the following propositions are equivalent:

ρ ` wake(W, b) =⇒ true

wake(W, b, ρ, update(ρ)) .

Proof. Follows from lemma 4.2 and lemma 4.3.

We now have all the elements to properly define the operation explore:

explore(~c,⊥N ) = ∅

explore(R) = {R}

explore(c1,~c, R) =

{(c1, c
′
2, . . . c

′
n, R′) | (c′2, . . . c

′
n, R′) ∈ explore(~c, selectnot (wake(W1, b1))(R))}

∪ {(l1, c
′
2, . . . c

′
n, R′) | (c′2, . . . c

′
n, R′) ∈ explore(~c, select(wake(W1,b1))(R))}

where (l1,W1, b1, ) = c1 .

Essentially, explore constrains the abstract environment according to which
processes wake up. For every control point (l,W, b, t), two options are exam-
ined: either wake(W, b) is satisfied and the control point becomes l, or if not
(wake(W, b)) holds, then the control point remains unmodified. To reduce
the cost of this operation, we stop the exploration as soon as the abstract
environment equals to ⊥N . It is sound to do so because γN is ⊥-strict, i.e.
γN (⊥N ) = ∅. The soundness of explore is set forth as follows:

Lemma 4.5. If ρ ∈ γN (R) and

∀i : c′i =

{

li wake(Wi, bi, ρ, update(ρ))

ci otherwise ,

then, there exists R′ such that (c′1, . . . , c
′
n, R′) ∈ explore(c1, . . . , cn, R) and

ρ ∈ γN (R′).
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Proof. First, remark that, when R = ⊥N , the implication immediately holds
on a false premise because γN (⊥N ) = ∅. For the rest of the proof, we proceed
by induction on the number n of control points:

• If n = 0, then explore(R) = R. Thus, assuming that ρ ∈ γN (R), it is
trivial to establish that ρ ∈ γN (explore(R)).

• For the inductive case, we assume the property is true for n.

Suppose first that c′1 = l1 and so wake(W1, b1, ρ, update(ρ)) is true.
This implies by lemma 4.4 that:

ρ ` wake(W1, b1) =⇒ true .

From the soundness condition imposed on select, we deduce that:

ρ ∈ γN (selectwake(W1,b1)(R)) .

We apply the induction hypothesis and it yields R′ such that:
{

(c′2, . . . , c
′
n+1, R

′) ∈ explore(c2, . . . , cn+1, selectwake(W1,b1)(R))

ρ ∈ γN (R′) .

By definition, (l1, c
′
2, . . . , c

′
n+1, R

′) ∈ explore(c1, c2, . . . , cn+1, R).

The case when c′1 = c1 is almost identical.

To increase the precision of explore, we propagate the constraints that
the environment must satisfy through the recursive calls:

gen(~c,⊥N , e) = ∅

gen(R, e) = {R}

gen(c1,~c, R, e) = {c1, c
′
2, . . . c

′
n, R′) | (c′2, . . . c

′
n, R′) ∈ gen(~c, select

b̃
(R), b̃)}

∪ {l1, c
′
2, . . . c

′
n, R′) | (c′2, . . . c

′
n, R′) ∈ gen(~c, selectb(R), b)}

where











(l1,W1, b1, ) = c1

b̃ = e and not (wake(W1, b1))

b = e and wake(W1, b1) .

The soundness proof of explore as defined below is almost identical as before
and is therefore not included.

explore(c1, . . . , cn, R) = gen(c1, . . . , cn, R, true) .

Soundness of the whole abstract simulation algorithm  ensues:
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Proposition 4.2. If ρ ∈ γN (R) and (c, ρ) → (c′, ρ′), then there exists R′

such that (c,R) (c′, R′) and ρ′ ∈ γN (R′).

Proof. Suppose ρ ∈ γN (R) and (c, ρ)→ (c′, ρ′) We examine all the possible
cases in turn. They depend on the rule that was used to derive (c′, ρ′):

• Case Ψ-i: we know (ci, ρ) ⇀ (c′i, ρ
′). We apply proposition 4.1 and it

comes that there exists R′ such that (c′i, R
′) ∈ [[liC]]]R and ρ′ ∈ γN (R).

It is then straightforward to construct a derivation with rule Ψ]-i.

• Case ∆: We have that ρ′ = update(ρ) and

∀i : c′i =

{

li wake(Wi, bi, ρ, ρ′)

ci otherwise .

Then, by application of lemma 4.5, it comes that there exists R ′ such
that (c′, R′) ∈ explore(c,R) and ρ ∈ γN (R′). Since, by lemma 4.1,
ρ′ ∈ γN (update(R′)) this case succeeds.

• Case Θ: this is fairly similar to the previous case.

4.4.4 Semantics transformer

The abstract representation of the initial configuration s0 = (l1, . . . , ln, ρ0)
is:

X0(c1, . . . , cn) =

{

singleton(ρ0) ∀i : ci = li

⊥N otherwise .

The additional operator singleton yields an abstract environment that is a
sound approximation of a concrete environment. It must thus obey the
soundness condition:

ρ ∈ γN (singleton(ρ)) .

We complete the theoretical design of the static analysis with the abstract
counterpart of the semantics transformer F:

F
](X)(c′) = X0(c

′) tN
⊔

N
{R′ | ∃(c,R) : X(c) = R ∧ (c,R) (c′, R′)} .

The monotonicity of F
] is readily checked. Besides, the properties enforced

on the basic operators ensure its soundness:
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Proposition 4.3 (Soundness).

F(γ(X)) ⊆ γ(F](X)) .

Proof. First, we show that:

{s0} ⊆ {(c
′, ρ′) | ρ′ ∈ γN (X0(c

′))} . (4.1)

Assuming that the initial configuration s0 is equal to (l1, . . . , ln, ρ0), then
X0(l1, . . . , ln) = singleton(ρ0). From the soundness condition of singleton,
the validity of equation (4.1) is ensured, since:

ρ0 ∈ γN (singleton(ρ0)) .

Second, we need to establish that:

{(c′, ρ′) | ∃(c, ρ) : ρ ∈ γN (X(c)) ∧ (c, ρ)→ (c′, ρ′)}

⊆ {(c′, ρ′) | ∃R′ : ∃(c,R) : R = X(c) ∧ (c,R) (c′, R′) ∧ ρ′ ∈ γN (R′)} .
(4.2)

Assume (c′, ρ′) belongs to the set on the left-hand side of equation (4.2).
Then, we know there is (c, ρ) such that:

ρ ∈ γN (X(c)) ∧ (c, ρ)→ (c′, ρ′) .

By proposition 4.2, it comes that there exists R′ such that:

(c,X(c))  (c′, R′) ∧ ρ′ ∈ γN (R′) .

This shows (c′, ρ′) also belongs to the set on the right-hand side of (4.2).
Putting (4.1) and (4.2) together, we get:

{s0} ∪ {(c
′, ρ′) | ∃(c, ρ) : ρ ∈ γN (X(c)) ∧ (c, ρ)→ (c′, ρ′)} ⊆

{(c′, ρ′) | ρ′ ∈ γN (X0(c
′))}

∪ {(c′, ρ′) | ∃R′ : ∃(c,R) : R = X(c) ∧ (c,R) (c′, R′) ∧ ρ′ ∈ γN (R′)} .
(4.3)

On one hand we have:

{s0} ∪ {(c
′, ρ′) | ∃(c, ρ) : ρ ∈ γN (X(c)) ∧ (c, ρ)→ (c′, ρ′)}

= {s0} ∪ {(c
′, ρ′) | ∃(c, ρ) : (c, ρ) ∈ γ(X) ∧ (c, ρ)→ (c′, ρ′)}

= F(γ(X)) .
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On the other hand, it comes that:

{(c′, ρ′) | ∃R′ : ∃(c,R) : R = X(c) ∧ (c,R) (c′, R′) ∧ ρ′ ∈ γN (R′)}

= {(c′, ρ′) | ρ′ ∈
⋃

{γN (R′) | ∃(c,R) : R = X(c) ∧ (c,R) (c′, R′)}}

⊆
{

(c′, ρ′) | ρ′ ∈ γN

(

⊔

N
{R′ | ∃c : (c,X(c))  (c′, R′)}

)}

.

We then have:

{(c′, ρ′) | ρ′ ∈ γN (X0(c
′))} ∪

{

(c′, ρ′) | ρ′ ∈ γN

(

⊔

N
{R′ | ∃c : (c,X(c))  (c′, R′)}

)}

⊆ {(c′, ρ′) | ρ′ ∈ γN (F](X)(c′))}

= γ(F](X)) .

From these remarks we may deduce that (4.3) implies:

F(γ(X)) ⊆ γ(F](X)) .

4.5 Example

As an illustration, we show how to perform the verification on the small
VHDL description introduced in example 3.1 of section 3.5. We recall this
piece of code below:

1forever do
2clk <= lnot clk;
3wait on {} for 1;

|
4forever do

5if clk = ’1’ then 6o <= x land (lnot y);
7wait on {clk} for ever;

|
8x <= ’0’; 9y <= ’1’;
10wait on clk for ever;
11forever do

12x <= lrnd();
13display(o);
14wait on {clk} for ever;



62 CHAPTER 4. ABSTRACT INTERPRETATION

We would like to check that the display instruction at label 13 can
never print ’1’ out. To perform this automatically, we use the generic
static analysis described in the previous section to compute a superset of
the reachable states. We need to instantiate the analysis with a particular
numerical domain so that:

• the computation is as efficient as possible,

• the result is precise enough and allows to check the property.

The literature about numerical domains is vast, see [Kil73, CC77, CH78,
Min01, Min02, Fer01, Kar76, Gra91, SKH02, MC04, HK01, CKZR02, GB03,
GB04, SSM04, RCK04, BT00, Fer04, Mau94]. We could encode environ-
ments using BDDs [Bry86]. This would without any doubt produce accurate
information about the behaviour of the circuit. However, this would clearly
be an overkill: it is unnecessarily expensive for the purpose of showing that
signal o is never ’1’.

We would like to choose a non-relational domain. Non-relational do-
mains do not track the relationships between the various variables of the
environment. As such, their computational costs and memory requirements
are low. An abstract element is simply a vector R, that maps each variable
x to an approximation R(x) of the values it may take:

γN (R) = {ρ | ∀x ∈ A : ρ(x) ∈ γV(R(x))} .

In the previous equation, the γV is the concretization function of the abstract
domain V

] necessary to approximate sets of values. At first, since we want
to show that signal o is never equal to ’1’, we could set V

] to be:

>N

not one

⊥N

γV(>N ) = V

γV(not one) = V \ {’1’}

γV(⊥N ) = ∅ .

Obviously this domain is not precise enough. Inevitably, to establish the
desired property, it is necessary to check that the expression x land (lnot

y) always evaluates to ’0’. Hence, we need the fact that signal y is always
’1’. So we adopt the domain of constants. The domain of constants was
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originally used in optimizing compilers [Kil73] to suppress superfluous code.
The corresponding Hasse diagram and concretization function are as follows:

>N

’0’ ’U’ ’1’

⊥N

γV(>N ) = V

γV(’0’) = {’0’}

γV(’U’) = {’U’}

γV(’1’) = {’1’}

γV(⊥N ) = ∅ .

The operation of the domain of constant are standard: see for instance
[Cou99] and the associated implementation for a thorough description. We
run the analysis, starting from an initial state where all signals are set to ’0’.
The table below shows the successive steps of computation. Each step adds
a new abstract environment which is merged with the information collected
so far.

c1 c2 c3 clk/clk+ x/x+ y/y+ o/o+

1 4 8 ’0’/’0’ ’0’/’0’ ’0’/’0’ ’0’/’0’
2 4 8 ’0’/’0’ ’0’/’0’ ’0’/’0’ ’0’/’0’
3 4 8 ’0’/’1’ ’0’/’0’ ’0’/’0’ ’0’/’0’

1, ∅, 1 4 8 ’0’/’1’ ’0’/’0’ ’0’/’0’ ’0’/’0’
1, ∅, 1 5 8 ’0’/’1’ ’0’/’0’ ’0’/’0’ ’0’/’0’
1, ∅, 1 7 8 ’0’/’1’ ’0’/’0’ ’0’/’0’ ’0’/’0’
1, ∅, 1 4, {clk}, ∞ 8 ’0’/’1’ ’0’/’0’ ’0’/’0’ ’0’/’0’
1, ∅, 1 4, {clk}, ∞ 9 ’0’/’1’ ’0’/’0’ ’0’/’0’ ’0’/’0’
1, ∅, 1 4, {clk}, ∞ 10 ’0’/’1’ ’0’/’0’ ’0’/’1’ ’0’/’0’
1, ∅, 1 4, {clk}, ∞ 11, {clk}, ∞ ’0’/’1’ ’0’/’0’ ’0’/’1’ ’0’/’0’
1, ∅, 1 4 11 ’1’/’1’ ’0’/’0’ ’1’/’1’ ’0’/’0’
1, ∅, 1 5 11 ’1’/’1’ ’0’/’0’ ’1’/’1’ ’0’/’0’
1, ∅, 1 6 11 ’1’/’1’ ’0’/’0’ ’1’/’1’ ’0’/’0’
1, ∅, 1 7 11 ’1’/’1’ ’0’/’0’ ’1’/’1’ ’0’/’0’
1, ∅, 1 4, {clk}, ∞ 11 ’1’/’1’ ’0’/’0’ ’1’/’1’ ’0’/’0’
1, ∅, 1 4, {clk}, ∞ 12 ’1’/’1’ ’0’/’0’ ’1’/’1’ ’0’/’0’
1, ∅, 1 4, {clk}, ∞ 13 ’1’/’1’ ’0’/> ’1’/’1’ ’0’/’0’
1, ∅, 1 4, {clk}, ∞ 14 ’1’/’1’ ’0’/> ’1’/’1’ ’0’/’0’
1, ∅, 1 4, {clk}, ∞ 11, {clk}, ∞ >/’1’ ’0’/> >/’1’ ’0’/’0’

We stop at this point to underscore the difference between the two ver-
sions of the operator explore. We let c1, c2 and c3 respectively be (1, ∅, 1),



64 CHAPTER 4. ABSTRACT INTERPRETATION

(4, {clk},∞) and (11, {clk},∞). We also define Q = R[clk ← ’1’] and
clk evt to be not (clk = future(clk)). The first version of explore produces
the following results:

explore(c1, c2, c3, R)

= {(c1, c
′
2, c
′
3, R

′) | (c′2, c
′
3, R

′) ∈ explore(c2, c3, selecttrue(R))}

∪{(1, c′2, c
′
3, R

′) | (c′2, c
′
3, R

′) ∈ explore(c2, c3, selectfalse(R))}

= {(c1, c2, c
′
3, R

′) | (c′3, R
′) ∈ explore(c3, selectnot clk evt(R))}

∪{(c1, 4, c
′
3, R

′) | (c′3, R
′) ∈ explore(c3, selectclk evt(R))}

= {(c1, c2, c3, R
′) | R′ ∈ explore(c3, selectnot (clk evt)(Q))}

∪{(c1, c2, 11, R
′) | R′ ∈ explore(selectclk evt(Q))}

∪{(c1, 4, c3, R
′) | R′ ∈ explore(selectnot clk evt(R))}

∪{(c1, 4, 11, R
′) | R′ ∈ selectclk evt(R)}

= {(c1, c2, c3, Q), (c1, 4, c3, R), (c1, 4, 11, R)} .

Whereas the second version yields1:

explore(c1, c2, c3, R)

= gen(c1, c2, c3, R, true)

= {(c1, c
′
2, c
′
3, R

′) | (c′2, c
′
3, R

′) ∈ gen(c2, c3, selecttrue(R), true)}

∪{(1, c′2, c
′
3, R

′) | (c′2, c
′
3, R

′) ∈ gen(c2, c3, selectfalse(R), false)}

= {(c1, c2, c
′
3, R

′) | (c′3, R
′) ∈ gen(c3, selectnot clk evt(R), not clk evt)}

∪{(c1, 4, c
′
3, R

′) | (c′3, R
′) ∈ gen(c3, selectclk evt(R), clk evt)}

= {(c1, c2, c3, R
′) | R′ ∈ gen(selectnot clk evt(Q), not clk evt)}

∪{(c1, c2, 11, R
′) | R′ ∈ gen(selectfalse(Q), false)}

∪{(c1, 4, c3, R
′) | R′ ∈ gen(selectfalse(Q), false)}

∪{(c1, 4, 11, R
′) | R′ ∈ gen(selectclk event(Q), clk event)}

= {(c1, c2, c3, Q), (c1, 4, 11, R)} .

Without any doubt the second version is more precise. The difference
arises because select does not filter out the case when clk event is succes-
sively true then false:

selectnot clk event(selectclk event(R)) = R .

1We simplify the conditions on the fly, as is done in the implementation.
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This leads to the unwanted abstract state (c1, 4, c3, R) to appear in the
result. The second version of explore easily removes this case since:

selectclk event and not clk event(R) = selectfalse(R) = ⊥N .

Eventually, the computations are led to their end:

c1 c2 c3 clk/clk+ x/x+ y/y+ o/o+

1 4, {clk}, ∞ 11, {clk}, ∞ ’1’/’1’ >/> ’1’/’1’ ’0’/’0’
2 4, {clk}, ∞ 11, {clk}, ∞ ’1’/’1’ >/> ’1’/’1’ ’0’/’0’
3 4, {clk}, ∞ 11, {clk}, ∞ ’1’/’0’ >/> ’1’/’1’ ’0’/’0’

1, ∅, 1 4, {clk}, ∞ 11, {clk}, ∞ >/> >/> >/’1’ ’0’/’0’
1, ∅, 1 4 11 >/> >/> ’1’/’1’ ’0’/’0’
1, ∅, 1 5 11 >/> >/> ’1’/’1’ ’0’/’0’
1, ∅, 1 6 11 >/> >/> ’1’/’1’ ’0’/’0’
1, ∅, 1 7 11 >/> >/> ’1’/’1’ ’0’/’0’
1, ∅, 1 4, {clk}, ∞ 11 >/> >/> ’1’/’1’ ’0’/’0’
1, ∅, 1 4, {clk}, ∞ 12 >/> >/> ’1’/’1’ ’0’/’0’
1, ∅, 1 4, {clk}, ∞ 13 >/> >/> ’1’/’1’ ’0’/’0’
1, ∅, 1 4, {clk}, ∞ 14 >/> >/> ’1’/’1’ ’0’/’0’
1, ∅, 1 4, {clk}, ∞ 11, {clk}, ∞ >/> >/> >/’1’ ’0’/’0’

1 4, {clk}, ∞ 11, {clk}, ∞ >/> >/> ’1’/’1’ ’0’/’0’
2 4, {clk}, ∞ 11, {clk}, ∞ >/> >/> ’1’/’1’ ’0’/’0’
3 4, {clk}, ∞ 11, {clk}, ∞ >/> >/> ’1’/’1’ ’0’/’0’

1, ∅, 1 4, {clk}, ∞ 11, {clk}, ∞ >/> >/> >/’1’ ’0’/’0’

The abstract environment associated with control point number 13 that
was computed by the analysis is:

c1 c2 c3 clk/clk+ x/x+ y/y+ o/o+

1, ∅, 1 4, {clk}, ∞ 13 >/> >/> ’1’/’1’ ’0’/’0’

From this information, we can safely deduce that, when execution reaches
the display command, the value ’0’ is necessarily printed out. Thus, we
have automatically proved the property of interest. It is noteworthy that if
both signals clk and x were to start with the value ’1’ this property would
not hold.

This example is fairly simple. Its purpose was merely to present the
static analysis in action. Also, it allowed to introduce the methodology
associated with the tool:

• identify the properties of interest,

• choose an appropriate abstract domain and instantiate the static anal-
ysis,
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enter

lwhile b do l′C;P ρ ` b =⇒ true

κ′ = κ[l ← min(κ(l) + 1,max unfold(l))]

(l, κ, ρ) ⇀c (l′, κ′, ρ)

exit

lwhile b do P ρ ` b =⇒ false

κ′ = κ[l ← 0]

(l, κ, ρ) ⇀c (next(l), κ′, ρ)

Figure 4.3: Instrumented semantics of loops

• run the resulting tool and check the correctness of the design.

It must be pointed out that the first two steps should be done by an expert
once and for all for a given domain of application. Only the last step is
performed by the end user.

4.6 Loop unfolding

To increase the precision of the tool, we wish to distinguish between distinct
executions of loop bodies. To do so, we simply unfold loops at analysis time.

In order to formalize the construction, we augment the state (c, ρ) of
sequential process with counters κ ∈ K. The counter κ(l) is associated
to the loop whose entry node is labeled with l. It tracks the number of
times execution goes through the loop up to a maximum max unfold(l).
The instrumented semantics of loops is depicted in Fig. 4.3. For all the
other constructs, the semantics is almost the same: the counters are simply
dragged around unchanged.

The rule for the parallel execution of processes in replaced by:

Ψ-i
∀j < i : cj = (lj ,Wj , bj , tj) (ci, κ, ρ) ⇀ (c′i, κ

′, ρ′)

(c1, . . . , ci, . . . , cn, κ, ρ)→ (c1, . . . , c′i, . . . , cn, κ, ρ′)

The remaining rules just carry the counters along. Initially, all counters are
set to 0.

Semantics equivalence

If we ignore counters, the standard and instrumented semantics are equiva-
lent. Indeed the transition systems ⇀ and ⇀c are in a strong bisimulation
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[Mil90]. The bisimulation relation ∼ is induced by a translation π from
nonstandard to standard states:

σ ∼ υ ⇐⇒ σ = π(υ) .

The translation function π simply erases counters:

π(l, κ, ρ) = (l, ρ) .

The equivalence between standard and nonstandard semantics is expressed
as:

Theorem 4.2. The relation ∼ is a strong bisimulation. In other words,
whenever σ = π(υ):

• if σ ⇀ σ′ then there is υ′ such that υ ⇀c υ′ and σ′ = π(υ′),

• if υ ⇀c υ′ then there is σ′ such that σ ⇀ σ′ and σ′ = π(υ′).

Proof. Trivial by inspection of the various rules of the transition relations.

The previous bisimulation implies in particular that both simulation al-
gorithms generate the same set of reachable states:

Corollary 4.1. For any initial configurations σ0 and υ0, if σ0 = π(υ0),
then:

{σ | σ0 →
∗ σ} = {π(υ) | υ0 →

∗
c υ},

where
π(c0, . . . , cn, κ, ρ) = (c0, . . . , cn, ρ) .

Proof. Easy by induction on the number of steps necessary to reach each
state.

Abstract interpretation

We now use:
Pn ×K → N ,

as our abstract domain. Finiteness of the abstract domain is ensured because
the number of loops in a description is finite and each of them can not be
unfolded more than some limit. The concretization function γ is defined as:

γ(Y ) = {(c1, . . . , cn, κ, ρ) | ρ ∈ γN (c1, . . . , cn, κ)} .



68 CHAPTER 4. ABSTRACT INTERPRETATION

The abstract counterpart of the semantics is mostly similar to what was
done in section 4.4. It is exhaustively described in the summary section 4.7
of the current chapter. For now, we just unveil the abstract semantics for
loops:

[[lwhile b do l′C;P ]]](κ,R) =

{(l′, κ′, selectb(R)) | κ′ = κ[l ← min(κ(l) + 1,max unfold(l))]}

∪ {(next(l), κ′, selectnot b(R)) | κ′ = κ[l ← 0]} .

4.7 Recapitulation

We spend the remaining pages of this chapter to recapitulate the whole
abstract interpretation of VHDL. The analysis is generic in the underlying
numerical domain. In other words, it is expressed in terms of a few operators
that manipulate any numerical domain of choice. This means we can rapidly
adapt the tool to reach the best compromise between precision and efficiency.
To do so, we must pick a numerical domain (N ,vN ) to encode abstract
environments. The meaning of elements of the numerical domain must be
specified thanks to a monotonic concretization function γN . Finally, we
must describe and implement the various primitives: ⊥N , tN , assign, select,
get val and singleton. We must check that they all verify their respective
soundness condition:

∅ = γN (⊥N )

γN (X) ∪ γN (Y ) ⊆ γN (X tN Y )
{

ρ[a← v]

∣

∣

∣

∣

∣

ρ ∈ γN (R)

ρ `L lval =⇒ a ∧ ρ ` exp =⇒ a

}

⊆ γN (assignlval←exp (R))

{ρ | ρ ∈ γN (R) ∧ ρ ` exp =⇒ true} ⊆ γN (selectexp (R))

{v | ∃ρ ∈ γN (R) ∧ ρ ` exp =⇒ v} ⊆ γV(get valexp (R))

ρ ∈ γN (singleton(ρ)) .

We would like to emphasize that the tool is in no way limited to syn-
thesizable VHDL descriptions only. Its definition directly stems from a
formalization of the simulation algorithm. Hence, it does not require VHDL
description to be translated into a finite state machine (or any finite model
whatsoever).

The challenge of verifying a design, or in general a family of designs
with common traits, is reduced to the choice of an appropriate numerical
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domain. We need not worry about the idiosyncrasies of the VHDL dialect
anymore. The last chapters present a possible instantiation of the abstract
interpretation. It is tailored for the specific application domain of linear
error correcting codes. In the next chapter, we describe the main features of
the implementation. Then, chapter 6 explains how we successfully used the
prototype implementation to verify a Reed Solomon error correcting code.
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[[llval <= exp ]]](R, κ) = {(next(l), κ, assignfuture(lval )←exp (R))}

[[llval := exp ]]](R, κ) = {(next(l), κ, assignlval←exp (R))}

[[lwait on W until b for t]]](R, κ) = {(c, κ,R) | c = (next(l),W, b, t)}

[[lwhile b do l′C;P ]]](R, κ) =

{(l′, κ′, selectb(R)) | κ′ = κ[l← min(κ(l) + 1,max unfold(l))]}

∪ {(next(l), κ′, selectnot b(R)) | κ′ = κ[l ← 0]}

[[lΣi∈[1,n]bi -> liPi]]
](R, κ) = {(li, κ, selectbi

(R)) | i ∈ [1, n]}

[[ldisplay(x, . . ., x )]]](R, κ) = {(next(l), κ,R)}

[[llvec to int(y, n, x)]]](R, κ) = {(next(l), κ, lvec to inty,n,x(R))}

[[lint to lvec(x, n, y)]]](R, κ) = {(next(l), κ, int to lvecx,n,y(R))}

where:

lvec to inty,x(R) = assignx←v(R)

v =



























i=n−1
∑

i=0
2n−1−iεi if ∀i ∈ [0, n− 1] : get valy[i](R) ∈ {’0’, ’1’}

and εi =

{

1 if get valy[i](R) = ’1’

0 otherwise

irnd() otherwise

and:

int to lvecx,y(R) =
i=n−1
⊙

i=0

assigny[i]←εi
(R)

v = get valx(R)

∀i ∈ [1, n] : εi =











lrnd() if v /∈ Z

’1’ if (v/2n−i)%2 = 1

’0’ if (v/2n−i)%2 = 0

Figure 4.4: Abstract equations for sequential processes
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Ψ]-i
∀j < i : cj = (lj ,Wj , bj , tj) ci = li (c′i, κ

′, R′) ∈ [[liC]]](R, κ)

(c1, . . . , ci, . . . , cn, κ,R) (c1, . . . , c′i, . . . , cn, κ′, R′)

∆]

∀i : ci = (li,Wi, bi, ti)

(c′1, . . . , c
′
n, R′) ∈ explore(c1, . . . , cn, R) ∃i : c′i 6= ci

(c1, . . . , cn, κ,R) (c′1, . . . , c
′
n, κ, update(R′))

Θ]

∀i : ci = (li,Wi, bi, ti) (c1, . . . , cn, R′) ∈ explore(c1, . . . , cn, R)

∃i : ti 6=∞

t = min{ti 6=∞}
∀i : c′i =











li if ti = t

(li,Wi, bi, ti − t) if ti 6=∞

ci otherwise

(c1, . . . , cn, κ,R) (c′1, . . . , c
′
n, κ, update(R′))

Figure 4.5: Abstract simulation algorithm

X0(c1, . . . , cn, κ) =

{

singleton(ρ0) ∀ici = li ∧ ∀l : κ(l) = 0

⊥N otherwise

F
](X)(c′, κ′) =

X0(c
′, κ′) tN

⊔

N
{R′ | ∃(c, κ,R) : X(c, κ) = R ∧ (c, κ,R) (c′, κ′, R′)}

S] = lfp⊥F
]

Figure 4.6: Generic abstract interpretation of VHDL
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Chapter 5

Implementation

We have implemented the analysis in a prototype. There are two tools. A
preprocessor vhdlc inputs VHDL files and transforms them into a format
suitable for the analysis. Then, the abstract simulator vhdla performs the
analysis itself. Both tools are written in OCaml [LDG+02].

5.1 Preprocessor

The purpose of the preprocessor is to simplify as much as possible the in-
put of the static analysis. The powerful but complex VHDL constructs are
broken down into smaller parts. Ambiguous operations are clarified. The
numerous VHDL commands are translated into the small kernel presented
in section 3.5. The preprocessor performs multiple steps. Each step indi-
vidually is fairly simple. However, their effects add up to the point that an
important burden is relieved from the static analysis.

The various preprocessing stages are depicted in Fig. 5.1. First the tool
parses the input files. For each of them, it produces a corresponding abstract
syntax tree. Then, the design hierarchy is flattened. Beginning from the top
level module, the tool recursively goes through the various abstract syntax
trees. Component instantiation statements are replaced by the body of the
module they are referring to. While visiting the nodes of the abstract syntax
tree, the tool also normalizes the various VHDL statements. At last, local
variables and signals are brought to the global scope. Obviously, identifiers
are renamed so as to avoid potential clashes between names. For instance,
consider the following process:

process(A, B)

begin

73
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normalizep ars e f lat t en

t y p e
c h ec k s imp lif y

Figure 5.1: Phases of the preprocessor

if (A = ’1’) then

O <= B;

else

O <= ’0’;

end if;

end process;

It is sensitive on the two std logic signals A and B. It will be normalized to:

while true do

(v0 = ’1’) -> v2 <= v1;

+ (not (v0 = ’1’)) -> v2 <= ’0’;

wait on {v0, v1} until true for ever;

This first phase is somewhat similar to the elaboration procedure as de-
scribed in the IEEE standard.

The resulting normalized abstract syntax tree is then type checked. The
type checking algorithm is very standard, see [App98, DM82]. The only
unusual detail is that the length of arrays must be part of the type infor-
mation. In fact, the following is a valid VHDL expression which eases the
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creation of arrays of constants:

(’0’, ’0’, ’1’, others => ’0’)

It denotes an array whose first elements are ’0’, ’0’, ’1’. The remaining
cells are filled with the value ’0’. The length of this array entirely depends
on the context where the expression is put. For instance, in the following
statement, it must be the same as the length of array a:

a <= (’0’, ’0’, ’1’, others => ’0’);

Similarly, most VHDL operators are overloaded. As an example, the and

operator is not only defined for booleans but also for one-dimensional arrays.
When its operands are arrays, they must have the same length and the
operation is applied between matching elements.

Thanks to the type information, we can simplify the description a step
further. Array assignments are scalarized. Namely, they are transformed
into an equivalent sequence of simple scalar assignments. So, if a, b and c

are arrays with respective range 0 to 2, 2 to 4 and 2 downto 0, then the
piece of code:

a <= b xor c;

becomes:

a[0] <= b[2] xor c[2];

a[1] <= b[3] xor c[1];

a[2] <= b[4] xor c[0];

Care must be taken to perform this simplification in a safe way. In fact, it
is sometimes necessary to introduce intermediate variables. It is obviously
incorrect to translate:

a := (a(2), a(1), a(0));

into:

a[0] := a[2];

a[1] := a[1];

a[2] := a[0];

Rather, it must become:
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tmp[0] := a[2];

tmp[1] := a[1];

tmp[2] := a[0];

a[0] := tmp[0]; a[1] := tmp[1]; a[2] := tmp[2];

In depth description of scalarization (for Verilog) can be found in [SV00].

Of course, the link between the entities of the resulting code and the ones
from the original description is kept. This is necessary to provide readable
feedback to the user after the analysis is run. All in all, the preprocessor
accounts for approximately 2000 lines of OCaml code.

5.2 Abstract simulator

The abstract simulator implements the static analysis described in chapter
4. It is relatively compact: only 3000 lines of OCaml code.

Initialization

The abstract simulator reads the output provided by the preprocessor. Dur-
ing a preliminary initialization phase, it labels each sequential statement in
the description with a unique integer. It also builds the abstract sequential
equations that were presented in chapter 4, Fig. 4.4. These equations will
be interpreted during the fixpoint computation phase. They are stored in
an array for easy retrieval. At last, the abstract simulator creates the initial
abstract configuration. It is a tuple of the first label of each sequential pro-
cess, followed by a set of loop counters all equal to 0 and the initial abstract
environment.

Fixpoint engine

We use a hashtable to implement the abstract domain. The keys of the
hashtable are tuples of control points and loop counters, while the data are
abstract environments. Naturally, the abstract environments equal to ⊥N
are not stored in the hashtable.

To compute the fixpoint, we can choose from a variety of algorithms, see
[Yi01] for an exhaustive survey. We opted for the simple yet efficient worklist
algorithm of [HDT87]. Figure 5.2 contains a pseudo-code description of
the fixpoint engine. Initially, the hashtable is created with a unique entry:
the initial abstract environment init r is associated to the initial tuple of
control points and loop counters init c. The worklist, a priority queue, is
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reachable(init_c, init_r) {

tbl := create_hashtbl();

add(tbl, init_c, init_r);

worklist := create_heap();

insert(worklist, init_c);

while not empty(worklist) {

c := extract(worklist);

r := get(tbl, c);

succ := run(c, r);

for (c’, r’) in succ {

previous_r’ := get(tbl, c’);

if not contains(previous_r’, r’) {

r’ := merge(previous_r’, r’);

add(tbl, c’, r’);

insert(worklist, c’);

}

}

}

}

Figure 5.2: Fixpoint engine
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filled with a single element. While the heap is not empty, we extract the
head element. We retrieve the corresponding abstract environment from
the hashtable. The set of successors reached by one step of the abstract
simulation algorithm from chapter 4 table 4.5 is computed by the function
run. If necessary, the hashtable is updated and the heap is filled with new
elements. Once the heap becomes empty, we have reached the fixpoint.
For the worklist, we picked the data-structure of a heap so that the body
of loops and alternative constructs is visited before the next instruction.
In this piece of code, functions contains and merge are operations of the
numerical domain. They respectively implement vN and tN . In the next
section, we explain the choice of the numerical domains we put as a back-end
to the tool.

5.3 The back-end: a numerical domain

For the back-end of the analyzer, there is a tremendous variety of numerical
domains that we can choose from. To cite but a few see [Kil73, CC77, Min01,
SKH02, MC04, Kar76, CH78, Gra91, GB04, RCK04]. We implemented
a numerical domain which we believe is well adapted to the verification
of linear error correcting codes (ECCs). The set B

n of all binary vectors
of length n is a vector space over B of dimension n. The addition and
multiplication by an element λ ∈ B are defined as:

(u1, . . . , un)⊕ (v1, . . . , vn) = (u1 ⊕ v1, . . . , un ⊕ vn)

λ ∧ (v1, . . . , vn) = (λ ∧ v1, . . . , λ ∧ vn) .

A map f from B
n to B

m is linear if for all λ ∈ B and u, v ∈ B
n, we have:

f(u⊕ v) = f(u)⊕ f(v)

f(λ ∧ v) = λ ∧ f(v) .

Alternately, a linear map f : B
n → B

m can be characterized by the existence
of an m× n matrix A = (aij) such that for all v ∈ B

n:

∀i ∈ [1,m] : f(v)i =
n

∑

j=1

aij ∧ vj .

Linear ECCs are defined by linear maps.
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5.3.1 Boolean affine relationships

The domain (KV , γK) of Karr [Kar76] tracks the affine equalities that hold
between integer valued variables in V . An element of Karr domain is a sys-
tem of linear constraints. The system is kept in row-echelon normal form
thanks to the Gauss pivot algorithm. Karr describes all the primitives we
need to manipulate the domain: ⊥K, tK, assignK, selectK, singletonK and
get valK. Each of these operations obey their respective soundness condi-
tion. We also need two additional primitives: extend and project. They
respectively add and remove variables from the domain. If V and W are
sets of variables such that V ⊆W then:

{ρ | ρ|V ∈ γK(R)} ⊆ γK(extendW (R))

{ρ|V | ρ ∈ γK(R)} ⊆ γK(projectV (R)) .

It is completely straightforward to adapt the algorithms of Karr so that
they manipulate boolean affine equalities. Unfortunately, we can not use
this domain as is: VHDL implementations embed B into the type std logic.
But variables of type std logic do not only take the values ’0’ or ’1’ but
also ’U’. So we must track the set b of std logic variables which are definitely
different from ’U’. Our numerical domain for linear relationships between
std logic is then:

D = {(b, k) | b ⊆ V ∧ k ∈ Kb} ∪ {⊥}

γ(b, k) = {ρ | ρ|b ∈ γK(k)}

γ(⊥) = ∅ .

Abstract inclusion and union are defined as:

(b1, k1) v (b2, k2) = b2 ⊆ b1 ∧ projectb2(k1) vK k2

(b1, k1) t (b2, k2) = (b, projectb(k1) tK projectb(k2))

where b = b1 ∩ b2 .

The assignment of an expression e to variable x is carried on in the Karr
domain only when we are sure that e evaluates to ’0’ or ’1’:

assignx←e(b, k) =

{

(b1, assignKx←e(extendb1(k))) if in01b(e)

(b2, projectb2
(k)) otherwise

where b1 = b ∪ {x} and b2 = b \ {x} .
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Predicate in01 is given by:










































in01b(c) = true if c ∈ {’0’, ’1’}

in01b(lrnd) = true

in01b(x) = (x ∈ b)

in01b(lnot e) = in01b(e)

in01b(e1 op e2) = in01b(e1) ∧ in01b(e2) if op ∈ {land, lxor}

in01b(e) = false for all other expressions .

Whenever the predicate in01b(e) is equal to true, we can be sure that e
evaluates to ’0’ or ’1’:

Lemma 5.1. For any environment ρ and set of variables b such that:

∀x ∈ b : ρ(x) ∈ {’0’, ’1’},

if in01b(e) = true and ρ ` e =⇒ v then v ∈ {’0’, ’1’}.

Proof. By a straightforward structural induction.

In a similar way to assignments, the selection operation refines the Karr’s
component of our domain only when possible:

{

selecte1 = e2
(b, k) = (b, selectKe1 = e2

(k)) if in01b(e1) ∧ in01b(e2)

selecte(b, k) = (b, k) otherwise .

We do not need a precise get val operator, so we may define it as:

get vale(b, k) = Ω .

The singleton primitive is simply:

singleton(ρ) = (b, singletonK(ρ|b)) with b = {x | ρ(x) ∈ {’0’, ’1’}} .

We check that the primitives obey their respective soundness condition:

Proposition 5.1. The following propositions are true:

R v R′ =⇒ γ(R) ⊆ γ(R′)

∅ = γ(⊥)

γ(R) ∪ γ(R′) ⊆ γ(R tR′)

{ρ[x← v] | ρ ∈ γ(R) ∧ ρ ` e =⇒ v} ⊆ γ(assignx←e(R))

{ρ | ρ ∈ γ(R) ∧ ρ ` e =⇒ true} ⊆ γ(selecte(R))

{v | ∃ρ ∈ γ(R) ∧ ρ ` e =⇒ v} ⊆ γV(get vale(R))

ρ ∈ γ(singleton(ρ)) .
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Proof. We examine each primitive in turn:

• Inclusion: Assuming that (b1, k1) v (b2, k2), we have the following
sequence of relations:

γ(b1, k1)

= {ρ | ρ|b1 ∈ γK(k1)} bby definitionc

⊆ {ρ | ρ|b2 ∈ γK(projectb2(k1))} bsoundness of project and b2 ⊆ b1c

⊆ {ρ | ρ|b2 ∈ γK(k2)} bsoundness of vKc

= γ(b2, k2) bby definitionc

• Bottom element: trivial by definition.

• Union: By definition of γ, we have:

γ(b1, k1) = {ρ | ρ|b1 ∈ γK(k1)} .

Obviously b1 ∩ b2 ⊆ b1 so soundness of project implies that:

γ(b1, k1) ⊆ {ρ | ρ|b1∩b2 ∈ γK(projectb1∩b2(k1))} .

A similar inclusion holds with (b2, k2). So thanks to the soundness of
tK we conclude by:

γ(b1, k1) ∪ γ(b2, k2)

⊆ {ρ | ρ|b1∩b2 ∈ γK(projectb1∩b2
(k1) tK projectb1∩b2

(k2))}

= γ((b1, k1) t (b2, k2)) .

• Assignment: Assume ρ ∈ γ(b, k) and ρ ` e =⇒ v. This means that
ρ|b ∈ γK(k). So we can safely assert that:

∀x ∈ b : ρ(x) ∈ {’0’, ’1’} .

There are now two possibilities depending on the value of in01b(e):

– If in01b(e) is true, then by lemma 5.1, e must evaluate to some
value in {’0’, ’1’}. This ensures that assignKx←e(extendb∪{x}(k))
is well defined. Moreover, the soundness conditions on extendK
and assignK imply that:

ρ|b∪{x}[x← v] ∈ γK(assignKx←e(extendb∪{x}(k))) .

Hence, for this case, it comes that ρ[x← v] ∈ γ(assignx←e(b, k)).
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– If in01b(e) is false, the proof is easy. The soundness of project
implies that ρ|b\{x} ∈ projectb\{x}(k). Whatever the value v,
ρ[x← v] ∈ γ(b \ {x}, projectb\{x}(k))

• Selection: this case is similar to the proof for the assignment.

• Value extraction: trivial since γV(Ω) = V.

• Singleton: Because of the soundness of singletonK:

ρ|b ∈ γK(singletonK(ρ|b)) .

So, by definition of γ, this implies that:

ρ ∈ γ(b, singletonK(ρ|b)) .

In the implementation, we adopt a sparse matrix representation for the
system of linear equalities. The set of variables in {’0’, ’1’} is encoded by
a bitfield. We let n be the maximum number of variables. The memory
usage of the abstract domain is of the order of n2 while the complexity of
the most expensive operation is in n3.

We do not necessarily need to always collect all the linear equalities
of a design. In particular, sometimes we only care about the functional
relationship that hold between each variable y and some variables in a set
X. If this is the case, we may safely trim the system of constraints to speed
up the computation and free some memory. To do so, we first normalize
the system in row-echelon form. We use an ordering of the column where
the variables in X come last. Then, we discard any constraint that involves
more than one variable not in X.

Example 5.1. We illustrate on the following system of equalities:

y2 ⊕ y3 ⊕ y4 = 1

y1 ⊕ y3 ⊕ x1 = 0

y3 ⊕ x2 = 1 .

Suppose X = {x1, x2}. We put the system in normalized row-echelon form
with the order (y1, y2, y3, x1, x2):

y1 ⊕ x1 ⊕ x2 = 1
y2 ⊕ y4 ⊕ x2 = 0

y3 ⊕ x2 = 1 .
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Any constraint with more than one variable not belonging to X is removed:

y1 = x1 ⊕ x2 ⊕ 1

y3 = x2 ⊕ 1 .

We implemented a tool, called vhdla+, where this optimization is per-
formed after each join operation.

5.3.2 Constants

In addition to the domain of linear equalities, we also use the domain of
constants [Kil73]. Among others, the domain of constants allows us to iden-
tify undefined std logic variables (value ’U’) and to evaluate the indices
of arrays. Following the indication of [BCC+03], constants information are
stored in a balanced binary tree. The major advantage is to improve shar-
ing, which in turn speeds up many operations. To improve the precision
of the operations, we implemented the various techniques that [Cou99] re-
counts: backward interpretation of expressions, on the fly simplifications of
conditions and reductive iterations [Gra92].

To summarize, our abstract domain for environments is the product
of two domains: constants and boolean linear equalities. The product is
reduced [CC79b] to (⊥,⊥) as soon as one component becomes the bottom
element.

5.3.3 Arrays

Noticeably, references to array elements were absent from the previous ex-
positions of the linear equality or constant domains. The reason is that we
handle arrays in a very conventional way, as in [BCC+03]. All arrays are
expanded, so that each array cell corresponds to a distinct location in the
abstract environment. Expression are simplified: any array reference for
which we can not exactly evaluate the indices is replaced by the expression
lrnd or irnd according to its type. Assignments fall into two categories:
strong or weak update. If the location denoted by the left hand side can be
uniquely determined, then a strong update to that location occurs. Other-
wise, a weak update takes place. In this case, all cells in the array are either
the target of the assignment or retain their previous values. Weak update
are performed by merging together the results of all the possible outcomes.
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5.4 A trial run

We launch the prototype on our running example. First, we compile the
description to the intermediate language:

$ vhdlc running.vhd > running.khl

Now, the content of the file running.khl is:

let

signal v0 : logic with (v0 := ZERO);

signal v1 : logic with (v1 := ZERO);

signal v2 : logic with (v2 := ZERO);

signal v3 : logic with (v3 := ZERO);

in

v0 <= (lnot v0);

wait on {} until true for 1;

|

if

| (v0 =l= ONE) ->

v1 <= (v2 land (lnot v3));

| (bnot (v0 =l= ONE)) ->

fi;

wait on {v0} until true for ever;

|

v2 <= ZERO;

v3 <= ONE;

wait on {v0} until true for ever;

while true do

v2 <= lrnd;

@(419, 426)display(v1);

wait on {v0} until true for ever;

od;

where

v0 -> clk : std_logic;

v1 -> o : std_logic;

v2 -> x : std_logic;

v3 -> y : std_logic;

Then, we launch the abstract simulator:

$ vhdla running.vhd running.khl
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The abstract simulator outputs its results in html formal. All display

directives are clickable. The constraints inferred about the arguments of the
display command appear in the box below the code. Figure 5.3 shows a
screenshot of the results after we clicked on the only display command.
The analyzer tells us that the signal o is equal to ’0’. This is a superset
of the possible values of x at this point. So it must be understood as: if
execution ever reaches instruction display, then the only possible value for
x is ’0’. Value ’1’ is definitively ruled out by the tool. Verification of this
simple property is a success.

In the next chapter, we apply the tool on a more realistic example: a
Reed-Solomon error correcting code.
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Figure 5.3: Results presented by the tool



Chapter 6

Reed Solomon error

correcting code

6.1 Motivation

Our prototype is exercised on a hardware implementation of a Reed Solomon
(RS) error correcting code (ECC). Before revealing the technical details, let
us briefly expose the motivations for the automatic verification of compo-
nents like the RS code. In order to design today’s complex system-on-a-
chips (SoCs), the ability to reuse existing Intellectual Properties (IPs) has
become a necessity. Ideally, IP reuse shortens time-to-market and bounds
design costs. However, in practice, the assembly of components from multi-
ple sources on a single chips turns out not to be simple. First, the behavior
of each IP must be clearly documented. Second, it must be checked that
the IP matches its documentation. If it doesn’t, then finding the origin of a
flaw during whole chip simulation becomes a nightmare. In this chapter, we
carry out both tasks of specification and verification for the RS component.
Its expected behavior is described by non-deterministic testbenches written
as behavioral VHDL processes. Then, the tool automatically establishes the
correctness of the design. It is important to note that the VHDL descrip-
tion was provided to us by industrial hardware engineers. In no way was it
written purposely for formal verification.

6.2 Reed Solomon

Data transmitted over a communication channel or stored on a memory
device may undergo corruption. Error correcting codes elude possible infor-

87
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for i = 0 to 65535 loop -- for any possible input

-- conversion of an integer into an array of 16 std_logic

din := conv_std_logic_vector(i, 16);

enc := ref_enc(din);

for s = 0 to 5 loop -- for any of the 6 symbols

-- for any possible corruption of that symbol

for x := 0 to 15 loop

cor := enc;

-- the sth symbol is corrupted

cor(4*s+3 downto 4*s) := conv_std_logic_vector(x, 4);

dout := ref_dec(cor);

if (dout /= din) then -- output different from input?

report "Property failed.";

end if;

end loop;

end loop;

end loop;

report "Property ok.";

Figure 6.1: Exhaustive simulation of the high-level specifications

mation loss by adding redundancy. In our information based society1, ECCs
have become ubiquitous: CDs, modems, digital television and wireless com-
munication all incorporate them. We wish to validate a synthesizable Regis-
ter Transfer Level (RTL) VHDL description of a Reed Solomon ECC [RS60]
encoder and decoder. The informal documentation of the components ex-
plains how 16 bits messages are encoded by adding 8 bits of redundancy.
The bits are packed in groups of 4 consecutive bits called symbols. The
decoder is able to recover from a corruption that affects a unique symbol,
i.e. at most 4 bits in the same block. The set of all recoverable corruptions
of a vector of bits x is:

corrupt(x) = {y | ∃s ∈ [0 . . . 5] : ∀i /∈ [4 ∗ s . . . 4 ∗ s + 3] : yi = xi} .

Then, the characteristic property of the RS code can be stated by:

∀x ∈ B
16 : ∀y ∈ B

24 : y ∈ corrupt(ref enc(x)) =⇒ ref dec(y) = x . (6.1)

We write VHDL behavioral implementations of the encoding ref enc and
decoding functions ref dec. These descriptions are going to be our golden

1or is it rather based on cheap energy?
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ref.  en c o d er
+  reg i s t ers

d es i g n  
u n d er v eri fi c a t i o n
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Figure 6.2: Design and verification harness

reference model. Hence, we need to make sure they observe property 6.1.
This is checked by simulation of the code in Fig. 6.1. Note how booleans are
encoded in the VHDL type std logic. The function conv std logic vector

translates an integer into a std logic vector, i.e. an array of std logic. It will
be translated into the directive lvec to int by the preprocessor.

6.3 Encoder

6.3.1 Verification harness

It may seem that it is as simple to validate the actual components as it is
to check the specification. This is far from true. Let us consider the en-
coder. Its role is not to encode one 16 bits message and then terminate.
Rather, at every clock cycle it takes a different 16 bits message and encodes
it. The design is pipelined, so that encoding is performed in 2 clock cycles.
Our goal is not to show that the encoder encodes correctly one, or two, or
a bounded number of messages. Rather, we want to ensure it will func-
tion correctly forever. At all times and whatever the input, the component
must compute exactly the same sequence of values as the ref enc function
would. This property is expressed by the non-deterministic testbench of
Fig. 6.3. The testbench is put together with the decoder and a clock gen-
erator. A graphical explanation of the configuration is given by Fig. 6.2.
The signals din and dout are respectively the input and output signals of
the encoder. The function lvec rnd generates a vector of std logics taking
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-- input generator

process begin

din <= lvec_rnd(16); wait until rising_edge(clk);

end process;

-- cycle-accurate, bit-accurate reference implementation

process begin

tmp_dout <= ref_enc(din); ref_dout <= tmp_dout;

wait until rising_edge(clk);

end process;

-- monitor

process begin

wait until rising_edge(clk); wait until rising_edge(clk);

wait until rising_edge(clk);

-- the encoder has an asynchronous active ’0’ reset so:

rst <= ’1’;

wait until rising_edge(clk); wait until rising_edge(clk);

wait until rising_edge(clk);

while true loop

if (dout /= ref_dout) then report "Failure."; end if;

wait until rising_edge(clk);

end loop;

end process;

Figure 6.3: Testbench for the RS encoder

arbitrary value among ’0’ and ’1’. The monitor first resets the decoder.
Then, it asserts that the output of the decoder and the result computed
by the reference implementation are forever equal. Put in other terms, we
simply compare a simple cycle-accurate, bit-accurate description with the
detailed RTL synthesizable description of the RS encoder. At this point,
showing the correctness of the encoder boils down to proving that no sim-
ulation run ever executes the report ¨Failure.¨; statement. We use our
tool to check this automatically.

6.3.2 Results

Figure 6.4 displays the results computed by the tool. The tool statistics
indicate that computation took 110 seconds and that the maximum memory
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Figure 6.4: Results and statistics
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Figure 6.5: Monitor

consumption was 64Mb. We scroll down to the reference monitor of Fig. 6.5.
Then we click on the display labeled with 1 in Fig. 6.5 to find out that the
output of the RS encoder (here crcrs clk66m and its specification (crc out)
are always equal:

This allows the tool to conclude that the failure statement at label 2 in Fig.
6.5 is:
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The automatic verification of the encoder is a success. Note that if we click
on the display labeled by 3 in Fig. 6.5, we can check that indeed crc out(0)

= ’U’.

6.3.3 Coding style

The whole description (RS encoder and the testbench) takes up 250 lines of
VHDL code. The description is optimized for synthesis. It is therefore quite
easy to understand the structure of the circuit that will be generated. But it
can be somewhat difficult for a human reader to understand its functionality.
The abstract simulator must handle this kind of code without any loss of
precision. Here is a short but representative example:

process

type t is array(7 downto 0) of std_logic_vector(3 downto 0);

constant lut : t:=(x"9",x"6",x"E",x"1",x"F",x"F",x"C",x"5");

variable x : std_logic_vector(7 downto 0);

variable tmp : t;

variable y : std_logic_vector(3 downto 0);

variable i : integer range 0 to 8;

begin

x := lvec_rnd(8);

i := 0;

while i < 8 loop

if (x(i)=’1’) then tmp(i) := lut(i);

else tmp(i):=(others=>’0’); end if;

i := i + 1;

end loop;

i := 0;

while i < 8 loop

tmp(i) := tmp(i) xor tmp(i+1); i := i + 2;
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end loop;

i := 0;

while i < 8 loop

tmp(i) := tmp(i) xor tmp(i+2); i := i + 4;

end loop;

y := tmp(0) xor tmp(4);

display(x, y);

end process;

This description computes the vector y in terms of the 8 std logics from x.
In the first loop, each element from the vector x is combined with some mask
by an and operation. The masks are defined in hexadecimal notation in the
constant lookup table lut. Then, the last part of the code builds four trees
of xors whose root are the four std logics of the vector y. Once the loops
are unfolded, the tool discovers, thanks to the integer constant domain,
the exact index of each vector access. At the same time, it tracks the
affine relationships that link the various std logic variables. It propagates
this information down to the display directive. It eventually obtains the
following constraints:

y(0) xor x(0) xor x(2) xor x(3) xor x(4) xor x(7) = ’0’

y(1) xor x(2) xor x(3) xor x(5) xor x(6) = ’0’

y(2) xor x(0) xor x(1) xor x(2) xor x(3) xor x(5) xor x(6)=’0’

y(3) xor x(1) xor x(2) xor x(3) xor x(5) xor x(7) = ’0’

The abstract simulator is thus able to precisely infer the input-output re-
lationship for this piece of code. If some constant in the lookup table is
incorrect, or if the array accesses are wrong, then this description could be
faulty. However, from these constraints, the tool would be able to catch
possible mismatch with a reference implementation.

6.3.4 Combinational processes

The description is also optimized for simulation. Blocks of combinational
logic, that is logic without memory elements, are implemented as stand-
alone processes. All the signals that are read by a combinational process are
included in its sensitivity list. As a consequence, a combinational process
executes only when one of the signals it depends on is modified. This has the
effect of speeding up simulation, as most of the time only a few combinational
processes will have to be executed.

However, combinational processes make verification harder. For each of
them, the abstract simulator must consider two cases: either it wakes up or
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not. In case the process does not wake up, it is important that the abstract
simulator uses the information that the input signals are unchanged. Oth-
erwise, it cannot establish the input/output relation of the combinational
process.

Consider the example below:

process(a, b) begin y <= a xor not b; end process;

process begin

a <= ’0’; b <= ’0’; wait for 1 ns;

while true loop

a <= lrnd(); b <= lrnd(); wait for 1 ns;

display(a, b, y);

end loop;

end process;

The first process is combinational. Its sensitivity list contains signals a and
b. It is compiled by our preprocessor vhdlc into the following code:

while true do

y <= a lxor (lnot b);

wait on {a, b} until true for ever;

The abstract simulator is able to infer the link between a, b and y at the
display:

y xor a xor b = ’1’

Combinational processes speed up conventional simulation, but unfortu-
nately slow down abstract simulation. It is easy to write small pieces of code
for which the abstract simulator exhibits terrible performances. Here is an
example where 100 combinational processes copy a vector of 100 elements:

process (x(99)) begin y(99) <= x(99); end process;

process (x(98)) begin y(98) <= x(98); end process;

...

process (x(0)) begin y(0) <= x(0); end process;

Fortunately, such critical situations do not show up in the cases we have
examined. Hence, combinational processes do not dramatically hurt the
performances of our tool.
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6.4 Decoder

6.4.1 Specification

The description of the decoder is much harder to validate than the encoder.
The main reason is that the function computed by the decoder is not linear.
The reference implementation ref dec for the decoder works as follows:

syndrome := control(din);

dout := correct(din, syndrome);

The linear map control computes the syndrome of the message. The func-
tion correct then modifies the message according to the value of the syn-
drome. If we fix the syndrome, then correct(din, syndrom) becomes lin-
ear in din. The syndrome is made up of two symbols. Each symbol is 4 bits
(here std logics) wide. Consequently, we can split the domain of the refer-
ence decoding function ref dec into 256 pieces. The restriction of ref dec

on any of these pieces is linear.
Moreover, the decoder is pipelined with a depth of five cycles. With the

initial row of registers put on the inputs, this means that at most six different
messages may be at the same time in different stages of the pipeline. If we
naively distinguish the 256 cases for each of these stages then we are bound
to suffer from the state explosion problem since:

2566 = 248 ≈ 280000 billions .

We formulate the correctness property so as to circumvent this problem. Let
us consider a run of a conventional simulator on the decoder. We restrict
our observation to the input din and output dout of the component at rising
edges of the clock. We want to ensure that, 6 clock cycles after the input of
a message, the expected result shows up:

∀t : ∀x : dint = x =⇒ doutt+6 = ref dec(x) . (6.2)

To check this property, we drive the component with the process in Fig. 6.6.
First, the component is reset. Then, the component is fed with arbitrary
values for some time. This first part of the driver expresses the ∀t in the
equation (6.2). Then, an input message x is randomly chosen. We wait
6 cycles for it to reach the output of the component. At last, the result
from the component and the expected value y are compared. Again here,
the statement report "Failure" must be shown unreachable. Since the
function ref dec is not linear, the verification can’t be performed in one
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process begin

-- reset phase

din <= (others => ’0’);

wait until rising_edge(clk); wait until rising_edge(clk);

wait until rising_edge(clk); wait until rising_edge(clk);

rst_na <= ’1’;

-- operating phase

while rnd() loop

din <= lvec_rnd(24); wait until rising_edge(clk);

end loop;

-- testing phase

x := lvec_rnd(24); y := ref_dec(x);

din <= x;

wait until rising_edge(clk); din <= lvecrnd(24);

wait until rising_edge(clk); din <= lvec_rnd(24);

wait until rising_edge(clk); din <= lvec_rnd(24);

wait until rising_edge(clk); din <= lvec_rnd(24);

wait until rising_edge(clk); din <= lvec_rnd(24);

wait until rising_edge(clk); din <= lvec_rnd(24);

if (dout /= y) then report "Failure"; end if;

end process;

Figure 6.6: Driver for the RS decoder

run the current abstract simulation. Instead, we can equivalently check 256
simpler properties. We specialize the previous driver for each possible value
of the syndrome. For instance, for a syndrome equal to "10110111", the
following code simply replaces the last part of the driver:

-- testing phase for a syndrome equal to "10110111"

x := lvec_rnd(24); syndrome := control(x);

if (syndrome = "10110111") then

y := correct(x, syndrome);

din <= x;

wait until rising_edge(clk); din <= lvec_rnd(24);

wait until rising_edge(clk); din <= lvec_rnd(24);
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wait until rising_edge(clk); din <= lvec_rnd(24);

wait until rising_edge(clk); din <= lvec_rnd(24);

wait until rising_edge(clk); din <= lvec_rnd(24);

wait until rising_edge(clk); din <= lvec_rnd(24);

if (dout /= y) then report "Failure"; end if;

end if;

The driver and description amount to 400 lines of VHDL code. After
preprocessing, the intermediate code is approximately 1000 lines long. It is
fed to the analyzer.

6.4.2 Inlining combinational processes

To our surprise and dismay the tool fails. After inspection of the results, we
find out it needs to establish intermediate invariants that involve non-linear
constraints. Consider the following example:

process begin

a <= lrnd(); b <= lrnd();

wait for 1 ns;

display(a, b, y);

a <= ’1’; b <= lrnd();

wait for 1 ns;

display(a, b, y);

end process;

process(x) begin y <= a and b; end process;

The abstract simulator is unable to infer the linear equality

b = y

that holds at the second display statement. This problem arises because
of the combinational process. Let us follow the computation of the tool. At
the first display statement, the value of signal a, b and y are linked by the
relationship:

a and b = y .

However, simply because this constraint is not a boolean linear equality, it
is not inferred. Then, when the tool reaches the second wait statement, it
must explore the two possible outcomes of the combinational process. Either
it wakes up and y is assigned the value of ’1’ and b = b. Or, it stays idle
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in which case y is not modified. Unfortunately, the tool already lost all
information about y. The restraint y = b can not be deduced.

The exact same sequence of events prevents the analysis of the decoder
from being conclusive. To resolve this problem, we inline the code of each
combinational process wherever the signals it is sensitive on may be modi-
fied. As for now, this is done by hand. In the future it can be easily made
automatic and integrated as a final phase of the preprocessor vhdlc. On
the previous example, the transformation produces:

process begin

tmp_a := lrnd(); tmp_b := lrnd();

a <= tmp_a; b <= tmp_b;

y <= tmp_a and tmp_b;

wait for 1 ns;

display(a, b, y);

tmp_a := ’1’; tmp_b := lrnd();

a <= tmp_a; b <= tmp_b;

y <= tmp_a and tmp_b;

wait for 1 ns;

display(a, b, y);

end process;

At last, the abstract simulator succeeds. It computes during 849 seconds
on an AMD Athlon MP 2200+ and consumes 141 megabytes at its peak.
Of course, to completely validate the decoder, the abstract simulator must
be run 256 times, i.e. one time for each possible syndrome.

6.4.3 Debugging

The tool may also be useful for the purpose of debugging. To trace the origin
of errors in a faulty design, we can issue display commands at various places
in the description. For instance, it is possible to discover the conditions on
the input signals that lead the design into an abnormal state. Also, the
driver described in Fig. 6.6 lets us easily follow the data flow through the
pipeline. We can locate the first state in the pipeline where signals in the
design do not match their expected values.

6.4.4 Statistics

We compared with the BDD-based model checker VIS [Gro96]. To our
knowledge there is no freely available model checking tool that inputs VHDL



100 CHAPTER 6. REED SOLOMON ERROR CORRECTING CODE

Size in various metrics
program VHDL lines IR lines Verilog lines VIS latches

encoder 251 338 235 337

decoder 395 963 519 647

dec. 1 215 370 206 286

dec. 1–2 265 484 310 486

dec. 1–3 305 602 358 529

dec. 1–4 358 828 415 617

Verification time (s)
program vhdla vhdla+ vis static vis dynamic

encoder 58 45 1666 4379

decoder 849 593 >960 >172800 (48h)

dec. 1 37 37 >840 2774

dec. 1–2 152 166 >845 4540

dec. 1–3 259 261 >1826 78037 (21h)

dec. 1–4 513 420 >895 >172800 (48h)

Peak memory consumption (Mb)
program vhdla vhdla+ vis static vis dynamic

encoder 50 37 693 173

decoder 141 88 >2000 >374

dec. 1 23 20 >2000 233

dec. 1–2 44 37 >2000 243

dec. 1–3 66 49 >2000 277

dec. 1–4 98 73 >2000 >333

Benchmarks dec. 1 to dec. 1–4 are troncated versions of the decoder: dec.
1 contains only the first stage of the pipeline, dec. 1–2, the first two stages
and so on.

Table 6.1: Statistics on an AMD Athlon MP 2200+ with 2GB of memory
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code. This is the reason why we chose VIS which reads synthesizable syn-
chronous Verilog descriptions. The VHDL descriptions were translated by
hand. The asynchronous reset had to be removed completely. We also
transformed the driver of Fig. 6.6 into a form suitable for synthesis. The
control flow must be made explicit by encoding the program point into a
register. For instance, the behavioral code in Fig. 6.7 is rewritten into the
synthesizable code of Fig. 6.8.

initial begin

@(posedge clk);

x = 1;

@(posedge clk);

x = 0;

end

Figure 6.7: Behavioral Verilog

always @(posedge clk) begin

case (cp)

0: begin x = 1; cp = 1; end

1: begin x = 0; cp = 2; end

2: begin end

endcase end

Figure 6.8: Synthesizable version

Table 6.1 displays various statistics of our benchmarks. The sizes of the
descriptions are expressed in number lines of VHDL code, of the interme-
diate representation and of Verilog. The number of latches of the circuit
synthesized by VIS is also shown. Then, time and memory consumption are
summed up. Line vhdla+ is the implementation of the stronger abstraction.
We ran VIS with the check invariant command. We tried both static and dy-
namic variables ordering for the BDDs. For the dynamic ordering, we used
the window method. Dynamic ordering improves the memory consumption,
but at the cost of increased computation time. Both methods failed: static
ordering burns the 2GB of available memory very quickly, whereas dynamic
ordering does not finish within a timeout of 48 hours. The last benchmarks
are performed on restricted versions of the decoder where only the first few
stages of the pipeline are considered. These benchmarks show specialized
tools outperform general algorithms like BDD based model checking.

It is difficult to compare our technique with conventional simulation.
Simulation lacks the full coverage that abstract simulation ensures. However,
at the time the component was designed, the hardware engineers allocated
two days to simulation. The whole verification effort to fully validate the
encoder and decoder would take less than two days with our prototype
implementation. So, we believe abstract simulation is competitive: for a
similar amount of time, it produces a much higher valued result.
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6.5 Related work

There exists numerous formal verification tools for hardware. Before we
enumerate a few of them, let us point out that most, if not all, input syn-
thesizable hardware descriptions. This crucial hypothesis greatly simplifies
the task of verification. Indeed, the description can be compiled into a fi-
nite representation, be it a circuit, a transition system or an automaton,
with few constructs and a clear and compact semantics. From there, it is
not necessary to deal with std logic variables, with the value undefined ’U’

or with integers. Boolean is the only data-type. There is no loops and no
problem arises because of the peculiar semantics of combinational processes.
In return, and in contrast to our approach, these tools are strictly limited
to synthesizable descriptions. Thus, making them unfit for an early use in
the design cycle. Moreover, they rely on the correctness of the compilation
from the hardware language to their internal representation, a point which
is often overlooked.

We have compared our approach with traditional BDD [Bry86] based
model checking [CES83, VW86, BCL+94, LP85]. Using the model checker
VIS [Gro96], we observed an undeniable blowup in the size of the BDDs or
the time devoted to simplify them on the fly.

In bounded model checking [BCC+99, SSS00, CBRZ01], a violation of
the property reachable in less than a bounded number of steps is searched for.
The task is reduced to a propositional satisfiability problem and solved with
regular sat-solvers [DP60, MMZ+01]. The tool described in [CKY03] checks
the consistency of a Verilog design with its specification written in ANSI-
C. In theory, since synthesizable descriptions give rise to finite transition
systems, the bound can be large enough so as to make bounded model
checking complete. Essentially, in contrast to symbolic model checking,
SAT based methods trade memory consumption for computation time. It
proves very efficient to quickly find errors in designs. However, when the
property holds, bounded model checking too tends to suffer from the state
explosion problem.

Symbolic simulation algorithms [Bry90, WDB00] extend the power of
traditional simulators by manipulating symbolic expressions instead of plain
values. In particular, ternary symbolic simulation operates on BDDs whose
nodes are variables denoting the input to the circuit and whose leaves are 0,
1 or X (for unknown). Symbolic trajectory evaluation [SB95] and its gener-
alized form [Jai97] improve on ternary symbolic simulation by providing a
logic to express the property to check. Symbolic trajectory evaluation was
shown to be an abstract interpretation in [Cho99]. The efficiency of symbolic
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simulation stems from the limited number of variables needed for the BDDs.
Indeed, this number depends only on the property to check and not on the
design. For instance, to establish the correctness of the RS decoder, only
24 variables would be needed. In comparison to the domain of linear con-
straints, which is polynomial, there is still the possibility of an exponential
blowup. We couldn’t find any implementation of symbolic simulation. So,
unfortunately, we didn’t have the opportunity to experiment thoroughly and
compare with our technique. The implementation of a symbolic simulation
for RT-level Verilog is described in [KKD01]. The authors claim to support
the full IEEE 1364-1995 semantics. However, they do not state, even less
prove, the soundness of their algorithm with respect to a formalization of
the Verilog semantics.

As for the specification part, we could have used more complex for-
malisms like LTL [Pnu77], PSL/sugar [BBDE+01], itself an extension of
CTL [CE81] or even the logic of constraints [BBL+01]. These logics are
useful to specify complex control properties or liveness properties. But as
we have seen, for the simple case study of RS, VHDL augmented with non-
determinism is already expressive enough.
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Chapter 7

Conclusion

We described a static analysis for the hardware description language VHDL.
The analysis computes an approximation of the states that would be reached
during any run of a conventional simulator. Following the methodology of
abstract interpretation, it is derived from a formalization of the simulation
semantics of VHDL. A proof of soundness was produced, thus filling the gap
between the analysis and the hardware description language. The analysis
is parametric in the underlying representation of sets of states. Various
numerical abstract domains may be plugged in and allow to achieve the
right balance between cost and precision. We instantiated and implemented
the analysis with a domain particularly suitable for the verification of linear
error correcting code. The validation of a synthesizable implementation
of a Reed Solomon error correcting code was achieved. The tool revealed
excellent performances in practice.

This study demonstrates it is feasible to apply formal methods to the
same description that hardware engineers already use for both synthesis and
simulation. This is a step forward toward the integration of formal tools into
existing design flows.

Also, this work confirms that, with the right abstraction, both precision
and efficiency can be combined in one tool. Obviously there is a setback: we
had to give up on generality. Fortunately, the cost we pay is relatively low,
since only the back-end, i.e. the numerical domain, needs to be adapted for
each application domain. Maybe, for hard verification problems, domain-
specific verification tools have become a necessity.

The full potentiality of our analysis remains largely untapped. The case
study was done on a synthesizable code, once the design is nearing comple-
tion. Yet, our tool can handle behavioral code too. It would, therefore, be
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interesting to use it at an earlier stage in the design cycle. Also, the explo-
ration of application domains, other than just linear error correcting codes,
will certainly give rise to fascinating novel abstractions. Much future work
is left. For now, we simply hope this study contributes to make abstract
interpretation evolve from a craft to an engineering practice.
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