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Ph.D. students (Jasmine, Yong, Céline, Carlos, Eve, Daniel, Alejandro, Tony, Dalila,
Saeid, David, Antonio and others). It was my pleasure to work and communicate with
them.

1



Abstract

In this thesis we study interpolation methods for irregularly distributed spatial data.
We consider the resampling problem applied to the altimetry measures on an irregular
grid obtained by airborne laser scanning. This type of data is irregularly spaced and a
resampling on a regular grid is necessary in order to generate a digital elevation model
(DEM). Some well-known methods are considered: linear triangle-based interpolation,
nearest neighbor interpolation, and kriging. We propose an energy minimization ap-
proach which allows to avoid the drawbacks of the methods mentioned above. This
approach imposes a model of a surface that corresponds to urban areas. The energy
function is adapted for irregularly distributed data. The methods are tested on two
sets of irregularly distributed spatial points acquired by a laser scanner on Brussels
and Amiens. These data sets have different sampling patterns and therefore let us
better analyse the performance of the methods. We also applied these methods as well
as binning for determination of cosmic microwave background.
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Résumé

Les problèmes d’interpolation sont fondamentaux dans de nombreux domaines des
sciences appliquées, en particulier en traitement du signal et des images. L’avènement
des technologies numériques a en effet contribué au développement de techniques de
mesure fournissant des valeurs discrétisées des signaux à acquérir. Il apparâıt capital
de disposer de méthodes d’interpolation adaptées à la physique du signal, et donc à
l’éventuelle irrégularité spatiale des grilles discrètes représentant ces mesures. Dans ce
cadre, un modèle a priori du signal est souvent utile.

Si de nombreuses méthodes de traitement d’image sont bien connues pour les
traitements de données construites sur une grille régulière, il n’en est pas de même
pour les données sur grille irrégulière et sur grille avec gigue. Ces types de grilles se
rencontrent en particulier en télédétection : bien que, dans le meilleur des cas, les
mesures soient régulièrement échantillonnées dans le référentiel du capteur, les points
3D géoréférencés correspondants sont irrégulièrement espacés dans le référentiel ter-
restre. L’interpolation et le rééchantillonnage des données originales sur une grille
régulière permettent de les traiter et de les analyser. En effet, des traitements tels que
la visualisation, la segmentation, la fusion, etc. nécessitent souvent d’avoir une grille
régulière.

Le nombre important de techniques d’interpolation disponibles aujourd’hui se réduit
considérablement lorsque l’on veut interpoler des valeurs distribuées sur une grille
irrégulière. C’est la problématique que l’on considère dans le cadre de cette thèse.
Nous traiterons en particulier la question complexe de l’interpolation d’un signal à
bande non limitée et dont les mesures sont dispersées dans l’espace. Cette question est
envisagée à partir de données du levé laser aéroporté acquises sur des zones urbaines.
En effet, dans les zones urbaines, les bords des bâtiments forment des discontinuités
conduisant à un signal à bande non limitée.

La création de modèles 3D de villes est importante pour plusieurs raisons. Elle per-
met par exemple la création et la mise à jour des systèmes d’information géographiques,
la planification urbaine et les projets de développement censés empêcher la disper-
sion des substances polluantes, ou encore la planification de réseau de transport et
le positionnement des antennes de télécommunication. La télédétection sur des zones
urbaines est un des outils permettant de construire les représentations des villes en
réalité virtuelle 3D. Cette technique autorise, par levé laser aéroporté, une acquisition
rapide et précise de données en cours de test sur des zones urbaines. Dans la première
partie de cette thèse, nous nous intéressons à cette technique en présentant l’état des
recherches qui la concernent. Ceci nous permet de comprendre la nature des données
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acquises, notamment en ce qui concerne le bruit et la précision des mesures. De tels
paramètres sont également utiles au développement d’une méthode d’interpolation
appropriée.

La deuxième partie de la thèse est consacrée à l’interpolation des données du fond
cosmologique primordial (CMB - Cosmic Microwave Background). Ce type de données
se caractérise également par une grille irrégulière et représente une surface à interpoler
lisse en l’absence de déconvolution. L’acquisition et le traitement des données du fond
cosmologique primordial est d’un grand intérêt scientifique. En effet, la cosmologie
(science qui étudie l’origine de notre univers) a construit des modèles de l’univers, dont
les paramètres peuvent déterminer son âge, sa forme et la matière qui la constitue. Ces
paramètres, qui doivent être calculés à partir des cartes du CMB, nécessitent une grille
régulière, ce que les mesures originelles ne fournissent pas. Nos travaux permettent de
résoudre, de manière originale, cette difficulté.

La thèse s’organise plus précisément de la façon suivante. Dans le chapitre 1,
on s’intéresse aux aspects théoriques d’échantillonnage. Avant de nous attaquer aux
théories d’échantillonnage irrégulier, nous commençons ce chapitre par le théorème
bien connu de Shannon, fondamental pour la recherche ultérieure sur l’échantillonnage.
Nous mettons en évidence, parmi des problèmes d’échantillonnage irrégulier, celui de
la taille optimale de grille. Ce problème difficile n’a pas été traité en profondeur
dans cette thèse, et il pourrait constituer un axe de recherche à part. Cependant,
certaines voies à envisager pour le résoudre sont possibles. Par exemple, on peut
proposer les suivantes : les mesures de densité de l’information, l’étude des degrés
de liberté ou encore l’approche en termes de minimum d’entropie. Dans ce chapitre,
nous considérons une classification des grilles d’échantillonnage en prenant en compte
une ou deux dimensions. Nous étudions également la théorie de l’échantillonnage non-
uniforme et aléatoire qui correspond aux données dont nous disposons. Ceci constitue
un domaine particulièrement important de la recherche actuelle en mathématiques
pures et appliquées.

Dans le chapitre 2, nous étudions la technique du levé laser aéroporté : sa précision,
ses propriétés, ainsi que les paramètres des systèmes existants de balayage à laser.
Les applications pratiques de ce type de données sont aussi envisagées. De nom-
breux points techniques sont abordés dans ce chapitre dans la mesure où, dans les
méthodes d’interpolation présentées et appliquées dans les chapitres suivants, nous
voulons tenir compte non seulement de la forme et des propriétés de la surface balayée,
mais également de la technique d’acquisition. Nous analysons également les sources
de bruit. Nous montrons l’intérêt porté par la recherche à cette technique et son
application à l’étude des zones urbaines.

Le chapitre 3 décrit les approches générales pour l’interpolation de données irréguliè-
rement espacées et présente également les méthodes que nous employons dans les
expérimentations sur les données réelles. Les deux premières méthodes décrites sont
l’interpolation au plus proche voisin et l’interpolation linéaire basée sur le triangle.
Ces méthodes présentent l’avantage d’être rapides et simples mais aussi certaines lim-
ites. Nous les envisageons à travers des résultats obtenus afin de pouvoir proposer une
approche mieux adaptée à nos données. La troisième méthode décrite est le krigeage.
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Elle est développée en géostatistique pour l’interpolation de données irrégulièrement
espacées. Nous montrons que ses hypothèses restent valides pour les anisotropies
du fond cosmologique primordial. Nous présentons également les résultats de cette
méthode sur des données de laser aéroporté. En effet le problème de l’interpolation de
données irrégulièrement espacées peut être considéré comme un problème inverse mal-
posé. Nous présentons enfin une méthode de minimisation d’énergie que nous adaptons
aux données de laser. Nous utilisons les fonctions potentielles qui sont connues pour
leur propriété de préservation des discontinuités. Nous proposons une définition du
voisinage adaptée à notre problème, ainsi que l’expression de la fonction de coût et le
choix de l’algorithme d’optimisation.

L’application de ces méthodes conduit à des résultats qui sont présentés dans le
chapitre 4. Nous appliquons les méthodes sur deux ensembles de données réelles et
évaluons ainsi les méthodes d’interpolation. En effet, les deux ensembles étant acquis
par différents systèmes de balayage possèdent des propriétés différentes en termes
d’échantillonnage. Cela nous permet, par comparaison des résultats avec les références,
de conclure sur la performance des méthodes d’interpolation retenues.

Dans le chapitre 5, nous proposons une courte introduction à la théorie du CMB
ainsi qu’à la technique d’acquisition de données de CMB. Cette technique sera utilisée
en 2007 par l’Agence Spatiale Européenne, une fois le satellite Planck lancé. Cette
mission fournira les données les plus précises et les plus complètes jamais acquises sur
le CMB.

Le chapitre 6 présente quelques résultats sur les données simulées du CMB. Ces
données respectent l’échantillonnage qui sera utilisé pour la mission Planck. Nous
appliquons les méthodes d’interpolation présentées ci-dessus à ce type de données.
Nous mettons également en application la technique de binning - technique utilisant
une moyenne locale - souvent utilisée en astronomie. La différence principale entre les
données d’anisotropies du CMB et les données de laser se situe non seulement dans le
type de la surface qui est balayée mais également dans l’existence d’un bruit très fort
dans les mesures d’anisotropies du CMB. Aussi ajoutons-nous un bruit blanc. Nous
étudions alors les performances des méthodes retenues sur les données bruitées.

Enfin, le dernier chapitre présente les conclusions générales et propose quelques
directions pour de futurs travaux.

Il existe actuellement de nombreux problèmes théoriques et appliqués qui utilisent
des interpolation et échantillonnage de données spatiales irrégulièrement espacées.
Dans le cadre de la thèse nous considérons certaines questions théoriques et pratiques
pour deux applications dans le domaine de la télédétection :

- l’interpolation de données laser aéroporté sur des zones urbaines ;

- la détermination du fond cosmologique primordial (CMB - Cosmic Microwave
Background).

L’échantillonnage de données irrégulièrement espacées constitue un champ parti-
culièrement fécond de la recherche. Fondée sur les théorèmes de Shannon et de Pa-

5



poulis, la théorie de l’échantillonnage, ainsi que les méthodes d’interpolation actuelles,
sont pour l’essentiel adaptées à des signaux et à des images à bande limitée.

Avant d’interpoler les données, nous étudions leurs techniques d’acquisition, leur
précision et leurs propriétés. Cette étape est en effet essentielle puisque, même si
les grilles d’échantillonnage sont semblables pour les données laser et les mesures
d’anisotropies du CMB, les techniques d’acquisition diffèrent beaucoup.

Nous pouvons raisonnablement supposer que les données laser ont une bonne
précision et n’ont pratiquement pas de bruit. Au contraire, les données de CMB sont
très perturbées par le bruit et par les rayonnements. De plus, ces dernières sont le
résultat de la convolution de la carte du ciel avec la réponse impulsionnelle du capteur.

Les propriétés de la surface à reconstruire ainsi que les techniques d’acquisition
doivent donc être prises en compte. Pour l’interpolation de données laser, nous con-
sidérons que le problème est mal-posé et adaptons une fonction de coût pour les
données irrégulièrement espacées. Les bords des bâtiments dans des zones urbaines
formant de fortes discontinuités, nous utilisons des fonctions potentielles qui préservent
les discontinuités. La minimisation d’une telle fonction de coût permet d’obtenir
la surface recherchée. Les résultats de cette approche sont comparés à quelques
méthodes bien connues pour l’interpolation de données irrégulièrement espacées, à
savoir l’interpolation linéaire, l’interpolation au plus proche voisin et le krigeage. En
utilisant la corrélation et l’erreur absolue moyenne, nous montrons que ces méthodes
fournissent des résultats moins bons que la minimisation d’une fonction de coût, qui
impose les propriétés désirées à la surface résultante. Quand on les compare visuelle-
ment avec l’image de référence, les images qui ont une faible erreur absolue moyenne
sont plus satisfaisantes que celles avec une bonne corrélation. Les expérimentations
sont faites sur deux ensembles de données réelles. Pour chacun d’entre eux, la stratégie
de balayage et la densité des points étaient différentes.

Nous adaptons la fonction de coût à l’interpolation de données laser. Pour ce faire,
nous avons défini un voisinage adéquat. Nous présentons et discutons les résultats
obtenus avec différentes fonctions potentielles et en faisant varier le coefficient du
terme de régularisation. Nous étudions de manière approfondie l’influence du choix
des fonctions potentielles sur les propriétés de la surface reconstruite représentant
des zones urbaines. Pour choisir la fonction potentielle d’attache aux données dans
la fonction de coût, nous utilisons des résultats théoriques récents. Pour les données
laser, le choix classique de la fonction quadratique pour le terme d’attache aux données
ne mène pas à des résultats satisfaisants sur des zones urbaines.

En dehors de l’interpolation au plus proche voisin, de l’interpolation linéaire et
du krigeage, nous essayons également la méthode de binning et la minimisation de
fonction de coût pour les mesures simulées d’anisotropies du CMB. La surface com-
posée par ces mesures est lisse si l’on ne fait pas la déconvolution. Dans ce cas, la
régularisation de Tikhonov est appliquée aux données bruitées. Le krigeage n’avait
pas été appliqué auparavant pour interpoler des données du CMB. Nous avons montré
que cette méthode donne de bons résultats. Le krigeage sur un voisinage fixe permet
l’exécution rapide sur de grands ensembles de données. C’est donc un avantage pour
l’interpolation des données réelles. Cependant, bien que le krigeage surpasse la min-
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imisation de fonction de coût, celle-ci peut être adaptée à la fois à la déconvolution
et à l’interpolation. Il vaut alors mieux dans ce cas utiliser une fonction quadratique
tronquée pour le terme de régularisation, afin de reconstruire les sources ponctuelles.

Les conclusions suivantes résultent de nos travaux sur les méthodes d’interpolation
pour des données irrégulièrement espacées :

- l’interpolation au plus proche voisin convient quand la densité de la grille régulière
imposée est inférieure à la densité des données originelles irrégulièrement es-
pacées. Les données ne doivent cependant avoir aucun bruit. L’avantage de
cette méthode est sa vitesse et simplicité ;

- l’interpolation linéaire basée sur triangle fonctionne bien quand la densité des
points de grille est inférieure ou égale à la densité de données originale ;

- le krigeage est basé sur les paramètres de variogramme et nécessite leurs estima-
tions avant d’employer cette méthode. L’évaluation des paramètres est souvent
faite manuellement, même s’il est possible de la faire automatiquement. A la
différence des deux méthodes précédentes, le krigeage peut supprimer le bruit,
dans la mesure où le paramètre de pépite contient dans l’algorithme les informa-
tions sur le bruit ;

- le binning, souvent utilisé en astronomie, fait la moyenne des valeurs des données
à l’intérieur de chaque pixel et peut ainsi diminuer le bruit. L’inconvénient de
cette méthode est que la densité des points des données doit être au moins dix
fois supérieure à la densité de la grille régulière pour obtenir de bons résultats.
Il est également souhaitable d’avoir des points distribués de façon homogène ;

- l’approche par fonction de coût a l’inconvénient de faire intervenir un coefficient
pour le terme de régularisation. Les avantages de la méthode sont sa flexibilité
et sa capacité pour interpoler différents types de surfaces en utilisant différentes
fonctions potentielles. Des gradients calculés sur les données originales pour-
raient être incorporés dans le terme d’attache aux données.

Grâce aux expérimentations utilisant la minimisation d’une fonction de coût pour
les données laser, nous avons mis en évidence les résultats suivants :

- les valeurs du coefficient du terme de régularisation doivent être supérieures ou
égales à 1 ou pour obtenir de bons résultats ;

- le voisinage d’un pixel de la grille a d’abord été défini comme étant l’ensemble
des échantillons inclus dans le plus petit cercle contenant les huit plus proches
pixels voisins du pixel ; les expérimentations ont prouvé qu’un tel voisinage est
un bon choix quand :

1) la densité des points de la grille régulière est approximativement égale à la
densité des points des données ;

2) les points des données sont espacés de façon homogène ;
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- quand une des deux conditions, mentionnées ci-dessus n’est pas rencontrée,
nous proposons une autre définition du voisinage qui doit inclure des points
des données dans différentes directions par rapport au pixel. Cette stratégie est
définie suite aux expérimentations faites sur les données laser d’Amiens, où les
échantillons forment les lignes parallèles très espacées ;

- la taille recommandée du voisinage doit être approximativement égale à la dis-
tance entre les lignes de balayage. Cette distance peut être calculée avant même
l’acquisition de données, en tenant compte des paramètres techniques du système
de balayage et de la vitesse prévue de l’avion ou de l’hélicoptère employé.

Plusieurs directions sont envisageables pour améliorer les résultats sur l’interpolation
de données laser. En ce qui concerne la technique de minimisation d’une fonction de
coût, les travaux futurs suivants pourront être envisagées. La définition du voisinage
peut d’abord être changée : nous pourrions ainsi choisir les points voisins du pixel
selon le diagramme de Voronoi. Le premier avantage de ce choix serait l’anisotropie
des données choisies. Le deuxième avantage serait d’avoir un paramètre en moins :
il n’y aurait alors aucun besoin de fixer la taille du voisinage, puisque celui-ci chang-
erait automatiquement à chaque fois selon la proximité des échantillons. Une autre
amélioration consisterait à changer de fonction de coût pour que le choix des fonc-
tions potentielles dépende de l’évaluation locale du gradient des échantillons. Nous
pourrions également employer différentes fonctions potentielles dans différentes direc-
tions à l’intérieur d’une clique, en essayant de renforcer les discontinuités de la surface.
Une forme et une taille différentes des cliques pourraient être envisagées pour tenir
compte de quelques propriétés géométriques évidentes des zones urbaines, telles que
les lignes droites. Indépendamment de l’interpolation basée sur la fonction de coût,
nous pourrions étudier des fonctions d’ondelettes pour l’interpolation de la surface
avec des discontinuités. Une autre possibilité reviendrait à tenir compte de la struc-
ture des grilles d’échantillonnage. Le filtrage itératif de médiane constitue également
une perspective intéressante pour de futurs travaux. C’est une technique simple et
rapide qui est connue pour avoir les propriétés de la diffusion anisotrope. Elle aiderait
ainsi à préserver les discontinuités. Enfin, les résultats de l’interpolation linéaire sur
les données laser pourraient être améliorées en utilisant la géométrie stochastique à la
triangulation de Delaunay sur les bords des bâtiments.

Concernant les données du CMB, les recherches pourraient porter sur l’adaptation
de la fonction de coût et sur quelques autres méthodes. La fonction de coût pourrait
être adaptée à la déconvolution tout en interpolant les données. Cette modification
pourrait prendre en compte la forme elliptique de la réponse, qui est importante pour
les mesures réelles d’anisotropies du CMB. Les données du CMB pourraient être con-
sidérées comme somme de la surface lisse, représentant les anisotropies du CMB, et
de la surface composée des sources ponctuelles. Les différentes contraintes, imposées à
chacune des deux surfaces, pourraient ainsi améliorer les résultats. Plusieurs méthodes
de reconstruction pour les signaux à bande limitée pourraient enfin être appliquées aux
données du CMB. Cependant, dans ce cas, le signal devrait être échantillonné selon le
critère de Nyquist à la moyenne.
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Le but des expérimentations avec interpolation de données du CMB est d’obtenir
une méthode qui fonctionne pour des coordonnées sphériques. Les données réelles du
CMB sont en effet en coordonnées sphériques. Or, les méthodes présentées dans la
thèse utilisent des voisinages locaux qui peuvent être considérés comme localement
plans.

En conclusion, cette thèse nous aura permis de reposer le problème de l’échantillonnage
sur des données irrégulièrement espacées et de montrer que celui-ci constituait un
problème inverse mal posé. Nous avons également pu définir des modèles mathématiques
adaptés aux données originales afin d’obtenir des résultats concluants. De plus, en
analysant ceux-ci, nous avons pu proposer de nombreux perspectives visant à les
améliorer.
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Introduction

Interpolation problems have been widely considered in many areas of applied science,
and one of them is signal and image processing. Development of digital technologies
leads to the measurement techniques that provide discretized values of the signals one
wants to acquire. These measurements may be obtained at odd positions and not on
regular grids as expected. In this framework it is very important to have interpolation
methods that correspond to the physics of the signal to measure. In other words, an
a-priori model of the signal is often useful for its interpolation.

Nowadays a lot of methods allow different types of image processing. Most of
these methods have been well studied both in theory and practice. But very often
they can only be applied to the data on a regular grid. In the same time, some
acquisition techniques are able to get the measurements either on a jittered or on
an irregular grid. This is the case for many airborne or spaceborne remote sensing
techniques. Even though sometimes the sampling is performed on the regular grid in
the reference system of the sensor, the resulting georeferenced points are scattered.
Therefore interpolation and resampling of the original data will produce the data
on the regular grid and will enable us to perform further processing and analysis:
visualization, segmentation, fusion, etc.

The wide range of the interpolation techniques, available at the present time, gets
smaller when one wants to interpolate the values that are initially distributed on an
irregular grid. It is the topic that we consider in the thesis. Moreover, interpolating a
signal that is non-bandlimited and whose measurements are scattered in space is not a
trivial problem and requires some studies to be done. This problem is considered in the
thesis while working with airborne laser scanning data. The data has been acquired
over the urban areas. Since the urban areas often consist of streets and buildings,
the edges of the buildings form discontinuities and so the signal to interpolate is non-
bandlimited.

Obtaining 3D city models is important for several reasons. They include creation
and updating of Geographical Information Systems for towns, urban planning and
development projects that are supposed to prevent distribution of polluting substances,
or provide transport network planning, telecommunication antennas placements. 3D
cities in virtual reality are also one of the possible applications of remote sensing on
urban areas. Airborne laser scanning is a fast and precise data acquisition technique
that has been tested over urban areas. This technique itself is still a subject of research
and development. We present a review on the laser scanning acquisition technique since
it leads to the understanding of the nature of the acquired data, for example the noise
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and the precision of the measurements. Such parameters are helpful for developing
the suitable interpolation method.

The second part of the thesis is devoted to cosmic microwave background (CMB)
data interpolation. This kind of data is also on an irregular grid. The surface to
interpolate is considered to be smooth as long as no deconvolution is made. Acquiring
and treating the cosmic microwave background data has been an area of great scientific
interest during the last decades. It is a topic of cosmology - the science about the origin
of our Universe. There are models of the Universe, developed by astronomers, and it is
considered that some parameters may determine the age, the shape and the matter of
the Universe. However, these parameters are to be calculated from the maps of CMB.
These maps must be on a regular grid, while the original measurements are not. So
the problem of irregularly spaced data interpolation should be considered in this case.

The manuscript is organized in the following way. In Chapter 1 the theoretical
aspects of sampling are considered. Though we are interested in the irregular sampling
theories, we start this chapter by the well known theorem of Shannon, because it served
as a starting point for most of the later research in sampling. We realize that among
problems of irregular sampling there is a problem of the optimal grid size. It could be
a subject of research of the thesis. Several approaches could be tried in this direction:
information density measures, degrees of freedom or minimum of the entropy approach.
In this chapter we pay attention to the theory of non-uniform and random sampling
which is the case of the data we have. We consider a classification of sampling sets in
one and in two dimensions. Random sampling of non-bandlimited signals is the area
of interest in the current research in applied and pure mathematics.

In Chapter 2 we consider the laser scanning technique, its precision and properties,
as well as the range of parameters for the existing laser scanning systems and practical
applications of such kind of data. In the interpolation methods presented and imple-
mented in the following chapters we would like to take into account not only the form
and properties of the scanned surface, but also the acquisition technique. That is why
many technical details are given in this chapter. For example, it would be interesting
to simulate the airborne laser scanning acquisition. In this case the analysis of the
sources of noise must be done. As we will see in this chapter, the performance of
laser scanning is still a subject of research, especially when it concerns urban areas.
In this chapter we also name the applications of the airborne laser scanning which ex-
plain why this technique has received so much attention of the remote sensing research
community in recent years.

Chapter 3 describes the general approaches for scattered data interpolation and
also contains the description of the methods to be used in experiments with the real
data. The first two described methods are nearest neighbor and triangle based linear
interpolation. These methods are fast and simple and we would like to know what
results they give in order to be able to introduce a better approach more suited for
our data. The third described method is kriging. It is developed in geostatistics for
irregularly spaced data interpolation. The assumptions used by this method are valid
for the cosmic microwave background anisotropies. Nevertheless, we will present the
results of this method on airborne laser scanning data too. The problem of scattered
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data interpolation can be regarded as an ill-posed inverse problem. Therefore we
present an energy minimization method and we adapt it to laser scanning data. We
will use the potential functions that are known for their edge preserving properties.
We present the definition of the neighborhood for our problem, expression of the cost
function as well as the choice of the optimization algorithm.

These methods are implemented and their results are presented in Chapter 4. We
apply the methods to two real data sets. It will help us to evaluate the interpolation
methods, because the two sets are acquired by different laser scanning systems and
therefore have different properties: sampling patterns are very different. We compare
the results with the reference and make conclusions about their performance.

In Chapter 5 there is a short introduction to the CMB theory as well as to the
CMB data acquisition technique. The described technique will be used in 2007 by
the European Space Agency when it launches the Planck satellite. This mission will
provide the most precise and complete data ever acquired on the CMB.

Chapter 6 presents some results and their comparison over the simulated CMB
data. The simulated data respects the sampling pattern as it is supposed to be for
the Planck mission. We apply the interpolation methods presented above to this kind
of the data and we also implement binning - an averaging technique, often used in
astronomy. The main difference between the CMB anisotropies data and the laser
data is not only in the type of the surface that is scanned but also in the fact of having
very strong noise in the CMB anisotropies measurements. We simulate it as white
noise and we study the performance of the methods on the noisy data.

The chapter of conclusions presents the summary and proposes some directions for
the future work.
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Chapter 1

Sampling theory

1.1 Introduction

This chapter presents some theoretical aspects of the sampling theory. This theory
has received a lot of attention in the several recent decades. Especially is important
if we take into account the fast development of digital technologies. When real world
signals are acquired through digital devices, they are often sampled on the regular grids
with equal distances between nodes. For images, the most widely used grid are square
grids, though there are some cases when hexagonal ones are preferred. The theory
of sampling is supposed to answer many questions on the optimal acquisition of data
and its reconstruction and further processing afterwards. In this framework signals
may be divided on bandlimited and non-bandlimited ones, and grids are divided on
uniform and nonuniform.

The chapter contains three sections. In the first section we consider uniform sam-
pling and the theorems of Shannon and Papoulis. These theorems are now considered
as classical ones, and we present them in the text, because most of the later research
and development of the sampling theory relies on them. The second section contains a
classification of sampling sets from the theoretical point of view. It shows the possible
variety of sampling sets, some of which are already applied in technology and allow
reconstruction and resampling. It should be emphasized that after the regular square
grids, one can consider hexagonal grids as quite well studied and applied ones. In the
third section we consider nonuniform grids. Taken into account the classification made
in the previous section, we notice, that most of the theories are developed either for
jittered or for irregular sampling.

1.2 Uniform sampling

1.2.1 Shannon sampling theory

The basics of the sampling theory was developed in the beginning of the last century.
It is often associated with names of Nyquist, Whittaker, Kotel’nikov and Shannon
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[Jerri, 1977]. The sampling theorem given by Shannon is the following [Shannon, 1949].
If a function f(t) contains no frequencies higher than W cps, it is completely deter-
mined by giving its ordinates at series of points spaced 1/2W seconds apart. The
rate 1/2W is called Nyquist rate. Let xn be the nth sample, then the function f(t) is
represented by

f(t) =
∞
∑

n=−∞

xn

sinπ(2Wt− n)

π(2Wt− n)
.

Emphasizing that only stable sampling is meaningful in practice, Landau proved that
it cannot be performed at a lower rate than the Nyquist rate [Jerri, 1977]. Considering
the Shannon sampling theorem and using the Parseval equation, Landau gave an in-
terpretation that relates the Nyquist rate with the stability of the sampling expansion.

1) Every signal f(t) of finite energy, i.e.
∫∞
−∞ f 2(t)dt < ∞, and bandwidth W

may be completely recovered in a simple way, from the knowledge of its samples
taken at the Nyquist rate of 2W per second. The recovery is stable in the
sense of Hadamard, such that a small error in sample values produces only a
correspondingly small error in the recovered signal.

2) Every square-summable sequence of numbers may be transmitted at the rate of
2W per second over an ideal channel of bandwidth W by being represented as
the samples of an easily constructed band-limited signal of finite energy.

In relation to the required Nyquist rate for the transmitted sequence of samples or
the recovered ones, Landau considered other configurations, besides the band-limited
finite energy signals, in order to improve such rates. He proved the following two
results.

1) Stable sampling cannot be performed at a lower rate than the Nyquist rate.

2) Data cannot be transmitted as samples at a rate higher than the Nyquist rate
regardless of the location of sampling instants, the nature of the set of frequencies
which the signal occupy, or the method of construction.

These results also apply to bounded signals besides finite energy signals.

For the multidimensional sampling theorem [Marks, 1991] let’s consider

- x(~t) as a multidimensional bandlimited function;

- X(~u) as its spectrum; the function x(~t) is defined to be bandlimited if X(~u) = 0
outside of an N -dimensional sphere of finite radius;

- S(~u) as the replication of |detP |X(~u) as a result of sampling, where the period-
icity matrix P must be chosen so that the spectral replications do not overlap
and therefore alias.

17



The multidimensional sampling theorem can be summarized in the following way:

x(~t) =
∑

~m

x(Q~m)fc(~t−Q~m),

where

fc(~t) = |detQ|
∫

~u∈C
exp(j2π~uT~t)d~u,

C is a periodicity cell for the spectrum, the Q matrix it the sampling matrix and it
dictates the geometry of the uniform sampling. The sampling density (samples/unit
area) corresponding to Q is

SD =
1

|detQ|
= |detP |.

The Nyquist rate can be generalized to higher dimensions. In this case it is called
Nyquist density - the density resulting from maximally packed unaliased replication of
the signal’s spectrum. For the case of two dimensions the Nyquist density corresponds
to the hexagonal sampling geometry.

There have been a number of significant generalizations of the sampling theorem
[Marks, 1991, Jerri, 1977]. Some are straightforward variations on the fundamental
cardinal series. Oversampling, for example, results in dependent samples and allows
much greater flexibility in the choice of interpolation functions. It can also result
in better performance in the presence of sample data noise. Kramer generalized the
sampling theorem to signals that were bandlimited in other than the Fourier sense.

Bandlimited signal restoration from samples of various filtered versions of the
signal is the topic addressed in Papoulis’ generalization of the sampling theorem
[Papoulis, 1977]. Included as special cases are recurrent nonuniform sampling and
simultaneously sampling a signal and one or more of its derivatives.

New generalizations of the sampling theorem are still being developed [Unser, 2000,
Vaidyanathan, 2001].

For example, in [Unser, 1994] the theoretical framework for a general sampling
theory is given. The theory restates the theorem of Shannon. The main goal of
the general sampling theory presented in the paper is to adapt the process of signal
reconstruction to non-ideal acquisition devices. The matter is that on the theorem of
Shannon the signal is considered to be sampled by Dirac functions, while on practice
one has to deal with an impulse response of a sensor. The convolution with this impulse
response function is performed before the signal is sampled. The paper proposes a
reconstruction and a correction filters in order to reconstruct the signal. The signal
may not be bandlimited. Lifting the condition of a bandlimited signal leads to the
approximation of it. It is proved that in theory one can reconstruct a signal, sampled by
non-ideal acquisition devices, and this reconstruction will be consistent. It means that
if we reinject the reconstructed signal into the acquisition device, then the samples will
be the same as the ones of the signal reconstructed previously. The presented theory
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is developed only for 1D case, though it is supposed that it can be extended to more
dimensions. Another remark concerns the fact that noise is not taken into account,
and more development should be done to adapt the presented theory for a noise.

1.2.2 Papoulis generalization of the sampling theorem

There are a number of ways to generalize the manner in which data can be ex-
tracted from a signal and still maintain sufficient information to reconstruct the signal
[Marks, 1991]. Shannon noted that one could sample at half the Nyquist rate without
information loss of it, at each sample location, two sample values were taken: one of
the signal and one of the signal’s derivative. The details were later worked out by
Linden who generalized the result to restoring from a signal sample and samples of its
first N − 1 derivatives taken every N Nyquist intervals. It is also possible to choose
any N distinct points within N Nyquist intervals. If signal samples are taken at these
locations every N Nyquist intervals, it is the question of restoration from interlaced
(or bunched) samples.

All of these cases are subsumed in a generalization of the sampling theorem de-
veloped by Papoulis (1977). The generalization concerns restoration of a signal given
data sampled at 1/N th the Nyquist rate from the output of N filters into which the
signal has been fed.

Let {Hp(u)|p = 1, 2, ..., N} be a set of N given filter frequency responses and let
f(t) have bandwidth B. As shown in Figure 1.1, f(t) is fed into each filter.

Figure 1.1: Generation of sample data from Papoulis’ generalized sampling theorem.
The encircled S is a sampler.

The outputs are
gp(t) = f(t) ∗ hp(t); 1 ≤ p ≤ N.
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Each output is sampled at 1/N th the Nyquist rate. The signal of samples obtained
from the pth filter are

sp(t) =
∞
∑

n=−∞

gp(nTN )δ(t− nTN),

where TN = 1/2BN and BN = B/N . The problem is to restore f(t) from this set of
functions or, equivalently, the sample set

gp(nTN |1 ≤ p ≤ N,−∞ < n <∞).

According to Papoulis’ theorem,

f(t) =
N
∑

p=1

∞
∑

n=−∞

gp(nTN)kp(t− nTN)

where

kp(t) =
∫ B

B−2BN

Kp(u; t)e
j2πutdu

and the Kp(u; t)’s are the solutions of the simultaneous set of equations

2BN

N
∑

p=1

Kp(u; t)Hp(u− 2mBN) = exp(−j2πmt/TN )

over the parameter set 0 ≤ m ≤ N , B − BN < u < B and −∞ < t < ∞. If N = 1
and H1(u) = 1, then the Shannon sampling theorem results.

The theorem of Papoulis can be used for signal interpolation after recurrent nonuni-
form sampling. Let αp|p = 1, 2, ..., N denote N distinct locations in N Nyquist inter-
vals (Figure 1.2).

Figure 1.2: Illustration ofN th order recurrent nonuniform sampling. In eachN Nyquist
intervals, samples are taken at these same relative locations.

A signal is sampled at these points every N Nyquist intervals. Thus there is
knowledge of the data

{f(αp +
m

2BN

)|1 ≤ p ≤ N,−∞ < m <∞}.
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Such sampling is also referred as interlaced (or bunched) sampling.

The generalized sampling theorem is applicable here if the filters are

Hp(u) = exp(j2παpu); 1 ≤ p ≤ N.

On the interval (0, TN) the resulting interpolation functions are:

kp(t) = sinc[2BN (t− αp)]
N
∏

q=1; q 6=p

sin[2πBN(t− αq)]

sin[2πBN (αp − αq)]
.

By utilizing the Papoulis’ generalized sampling expansion, it was demonstrated
[Cheung, 1993] that there is a class of sampling theorems which are ill-posed. In
particular, given the samples are contaminated with noise, the interpolation noise
variance is unbounded for these ill-posed sampling theorems.

The multidimensional extension of Papoulis’ theorem is utilized to reduce the sam-
pling density of multidimensional band-limited functions. The reduction leads to the
minimum sampling density, which is equal to the area of the support of the function’s
Fourier spectrum.

For the data we want to interpolate on this thesis, there are two limitations for using
the theorem of Papoulis. At first, the signal to interpolate is non-bandlimited. It is
true when we consider the airborne laser data over urban areas, which we will describe
in the following chapter. At second, the sampling strategy in the real data cannot be
modeled as recurrent nonuniform sampling. Especially it is valid for the areas where
the scanning strips overlap. The cosmic microwave background anisotropies also can
be described as non-bandlimited signals when we consider the point sources.

The theory of Papoulis has been extended for the case of non-bandlimited signals,
but in this case it is possible to obtain an approximation of a signal instead of a
reconstruction [Unser et al., 1998].

1.2.3 Extension of Papoulis theorem for non-bandlimited sig-

nals

In this section we describe the work of Unser and Zerubia on the generalized sampling
theory [Unser et al., 1998]. The main point of the theorem of Papoulis is that there are
many possible ways of extracting data from a signal for a complete characterization.
The standard approach of taking uniform signal samples at the Nyquist rate is just
one possibility among many others. Typical instances of generalized sampling that
have been studied in the literature are interlaced and derivative sampling. Later, an
interest has been strengthen in such alternative sampling schemes for improving image
acquisition. For example, in high resolution electron microscopy there is an inherent
tradeoff between contrast and resolution. It is possible, however, to compensate for
these effects by combining multiple images acquired with various degrees of defocus-
ing. Super-resolution is another promising application where a series of low resolution
images that are shifted with respect to each other are used to reconstruct a higher
resolution picture of a scene.
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Papoulis’ generalized sampling theory provides an attractive framework for ad-
dressing most restoration problems involving multiple sensors or interlaced sampling.
However, the underlying assumption of a bandlimited input function f(x) is very re-
strictive. It is because most of the real world analog signals are time or space limited
which is in contradiction with the bandlimited hypothesis. Another potential difficulty
is that Papoulis did not explicitly translate his theoretical results into a practical nu-
merical reconstruction algorithm.

The main contributions of the work of Unser and Zerubia are as follows. First,
they propose a much less constrained formulation where the analog input signal can
be almost arbitrary, typically in the space of finite energy functions (Figure 1.3). This

Figure 1.3: Generalized sampling procedure [Unser et al., 1998]. The left part of the
block diagram represents the measurement process which is performed by sampling
the output of an m channel analysis filterbank. The sampling operation is modeled
by a multiplication with a sequence of dirac impulses. The right part describes the
reconstruction process which involves the synthesis functions. The system produces
an output function that is a consistent approximation of the input signal f(x).

is only possible because the Papoulis and Shannon’s principles of a perfect recon-
struction are replaced by the weaker requirement of a consistent approximation. That
means that the reconstructed signal provides exactly the same measurements as the
input signal if it was reinjected into the system. The second contribution is the con-
sideration of a more general form of the reconstruction subspace. In this way the
results are applicable for non-bandlimited signal representation models. At third, the
implementation issue is addressed explicitly and a practical reconstruction algorithm
is proposed, though the results on the signals with discontinuities are not presented.

1.2.4 Sources of errors

Various errors may arise in the practical implementation of the sampling theorems
[Jerri, 1977, Jerri, 1993, Feichtinger et al., 1993]. This includes the truncation error
which results when only a finite number of samples are used instead of the infinite
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samples needed for the sampling representation, the aliasing error which is caused
by violating the band-limitedness of the signal, the jitter error which is caused by
sampling instants different from the sampling points, the round-off error, and the
amplitude error which is the result of the uncertainty in measuring the amplitude of
the sample values.

For the band-limited signal

f(t) =
∫ a

−a
F (u)eiutdu

and its sampling representation

f(t) =
∞
∑

n=−∞

f(
nπ

a
)
sin(at− nπ)

(at− nπ)

the truncation error ǫT is the result of considering the partial sum fN(t) with only
2N + 1 terms of the infinite series,

ǫT = f(t) − fN(t) =
∑

|n|>N

f(
nπ

a
)
sin(at− nπ)

(at− nπ)
.

In practice, the signals are not necessarily band-limited in the sense required by
the Shannon sampling expansion. The aliasing error ǫA(t) = f(t) − fs(t) is the result
from applying the sampling theorem representation fs(t) to signals f(t) with samples
f(nπ/a) even when they are not band-limited or band-limited to different limits than
those used in sampling expansion.

The amplitude error is caused by the uncertainty in the sample values due to either
quantization or to some fluctuation where the round-off error may be considered as a
special case.

The jitter error results from sampling at instants tn = nT + γn which differ in a
random fashion by γn from the required Nyquist sampling instants nT .

1.3 Classification of sampling sets

1.3.1 One-dimensional sampling sets

For one-dimensional sampling sets the possibilities for creating different types of sets
are not as large as they are in two dimensions. The following description of sampling
geometries is sorted by the different steps of irregularity [Schmidt, 1997].

The geometry of the regular sampling sets depends on the length of the signal. If
n is the length of the vector and k is the amount of sampling points (k is a divisor of
n), then the difference between the regular sampling structures is determined only by
the density k/n of the sampling points.

The periodic sampling sets are a more general way of creating geometries in the
one-dimensional case. No strict regular periodicity is demanded, a sampling set may
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be composed of some shifted subsets of it. Then the resulting set is periodic in the
way that the shifted subsets are repeated periodically. So such a periodic sampling
set is not regular, but has some properties left. In the two-dimensional case this form
of sampling is called bunched sampling. The two-dimensional periodicity gives more
information about the sampling set, than in irregular sampling, and can be used to
improve the reconstruction.

Irregular (random) sampling sets mean just making a random sampling. There are
different parameters which can be varied (as the density of the sampling set), but the
structure of irregularity is granted.

1.3.2 Two-dimensional sampling sets

In the two-dimensional case the variability of different sampling sets is increasing
rapidly in comparison with the one-dimensional case, because there are not only the
product sampling sets of the corresponding one-dimensional possibilities, but also some
new variations which do not have an equivalent in the 1-D problem (for example, spiral
sampling). The following two-dimensional sampling sets are arranged by increasing
irregularity and at the same time by increasing the number of possible sampling sets
depending on the sampling method [Schmidt, 1997].

A square (or regular) sampling set in two dimensions (Figure 1.4) can be treated
like a multiplication of two one-dimensional sampling sets. The square sets can be
described in matrix form by multiplying two regular one-dimensional sets a, a′, which
have the same coordinates and where ′ denotes the transpose: C = a′ ∗ a.

Figure 1.4: A square sampling set (regular geometry).

A rectangular sampling set (Figure 1.5) differs from a square set, because the
multiplication is not done by two similar regular vectors but it is performed by two
different regular vectors.
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Figure 1.5: A rectangular sampling set.

As the result the grid has two different step widths. The rectangular sets are more
general than the square sets.

The double periodic sampling sets (Figure 1.6) are created through multiplication
of two one-dimensional periodic vectors.

Figure 1.6: A periodic sampling set.

They are a special type of the product sampling sets because they need to be
periodic in both directions.

Product sampling sets are the easiest way of getting a two-dimensional sampling
geometry because they can be generated by just multiplying two arbitrary vectors. An
example of image reconstruction from product sampling set is given in [Feichtinger et al., 1994].
Superposition of three different product sampling sets is used for RGB color coding
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for some cameras. The grid received by this method is called Bayer mask.

Bunched sampling sets (Figure 1.7) can be obtained by first taking a sparse matrix
with regular or periodic entries and then defining some shift vectors with components
in both directions to define an overlay of two or more of these matrices.

Figure 1.7: A bunched sampling set.

The bunched set can also be described as a form of irregular sampling because it
is possible to look on it as a simple product set with missing points inside. But this
description is less useful because of the loss of information about the structure of the
set and way of generating it. Hexagonal sampling sets and octagonal sampling sets
are examples of bunched sets.

Elliptic, polar or spiral sampling sets (Figure 1.8) occur in astronomical obser-
vations. When the astrophysical data acquisition is performed with the equipment
installed on Earth, spiral sampling sets will be caused by the movement of the Earth.
Polar sampling is used both in biomedical imaging (computer tomography) and in
remote sensing (radar data).

There are interpolation methods developed for this kind of sampling sets [Stark, 1993].

Quasiregular sampling sets are generated by thinning out or filling in some amount
of points (i.e. 10 percent) from a regular hexagonal, octagonal or product sampling
set. Normally, a structure of a quasiregular sampling set is still visible for a human
eye. Quasiregularity also means that regularly distributed sampling points may be
distorted from their original position by a small amount. That is also not a regular
set, but the irregularity is not too large.

Irregular sampling sets (Figure 1.9) have no internal structure to exploit and so all
algorithms have to be kept generally.

In general, the classification of sampling sets, presented in this section, is mostly
of a theoretical interest, because most of the real sampling sets have either jittered
regular structure (like images taken in some remote sensing applications) or they are
irregular, random. Considering the sampling pattern of airborne laser scanning, pre-
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Figure 1.8: A linear expanding spiral sampling set.

Figure 1.9: An irregular sampling set.
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sented later in this thesis, we can say that the sampling set strongly depends on the
scanning system. Airborne laser scanning in theory can be represented by a sampling
set composed of circles, or by jittered hexagonal grid, or by a particular periodic set.
But in practice scan lines overlap and then it is difficult to find a structure in the
obtained data (Figure 1.10, 1.11). Recently it has been clear that for urban areas it

Figure 1.10: An irregular grid produceed by laser scanning over an area of 200 × 200
meters.

is necessary that large parts of scan lines overlap, because it will provide more dense
data and therefore more information on the area to scan, especially on the edges of
buildings.

1.3.3 Hexagonal sampling

The hexagonal sampling (Figure 1.12) offers substantial savings in machine storage and
arithmetic computations [Schmidt, 1997]. There exist some methods for processing
2D signals sampled on 2D hexagonal arrays. The rectangular sampling set can be
treated as a special case of the general non-orthogonal sampling strategy. Especially
for bandlimited signals over a circular region of the Fourier plane the hexagonal setting
seems to be fruitful and optimal since it reduces the necessary sampling density to the
amount of almost 13%. This might lead to a very efficient implementation since this
percentage might be won at each iteration of applied iterative algorithms.
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Figure 1.11: A sampling pattern of a real laser data: a gap in the data appears because
two neighboring stips don’t overlap.

Figure 1.12: A hexagonal sampling set.
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A review of hexagonal sampling is given in [Almansa, 2002]. The motivation of
this study was the development of imaging systems, that would use hexagonal sam-
pling grids, at the French Space Agency (CNES). In the conclusions of this review,
two reasons are given that prevent the extensive use of hexagonal grids and algo-
rithms: the fact that display, acquisition and processing hardware is most often better
suited for square grids; and the increased complexity of the algorithms under certain
circumstances.

1.4 Nonuniform sampling

There are some cases where there is no choice but to process nonuniform data. Some
of the examples are:

- data measured in a moving vehicle with fluctuations in speed for applications in
remote sensing, where random or uniform samples with jitter are often inevitable;

- data tracked in digital flight control;

- data read from and recorded on a tape or disk with speed fluctuations;

- data loss due to channel erasures and additive noise.

Interpolation techniques are developed to reconstruct the signal from nonuniform sam-
ples.

Unlike uniform sampling, there is no guarantee of the uniqueness of a band-limited
signal reconstructed from arbitrary nonuniform samples [Marvasti, 1993]. This is true
even when the average sampling rate is equal to the Nyquist rate. For example,
let’s suppose there is one solution to a set of nonuniform samples at instances {tn},
and assume that it is possible to interpolate a band-limited function of the same
bandwidth at the zero-crossings {tn}. Now, if one adds this interpolated function to
the first solution, one will get another band-limited function (of the same bandwidth)
having the same nonuniform samples. Thus, nonuniform samples do not specify a
unique band-limited signal. For a given bandwidth, this ambiguity is related to the
set {tn}. Therefore, the {tn} instances must be chosen such that the existence of a
unique solution is guaranteed. A set of these sampling instances that assures unique
reconstruction is called a sampling set.

The following lemma has been derived: if the nonuniform sample locations {tn}
satisfy the Nyquist rate on the average, they uniquely represent a band-limited signal
if the sample locations are not the zero-crossings of a band-limited signal of the same
bandwidth. This lemma implies the following corollary: if the average sampling rate
of a set of sample locations {tn} is higher than the Nyquist rate, the samples uniquely
specify the signal and {tn} is a sampling set.

In general, the requirements [Feichtinger et al., 1992] for the reconstruction meth-
ods for irregularly sampled band-limited functions are:
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- constructivity, i.e. a possibly iterative algorithm should allow numerical recon-
struction;

- multidimensionality, so that it can be used in signal and image processing or for
the interpolation of sequences of images;

- locality, so that the value of a band-limited function at a point is essentially
determined by the adjacent sampling values, and more distant sampling values
have no influence;

- stability, so that small perturbations of the parameters cause only small errors
in the reconstruction.

1.4.1 Nonuniform sampling for bandlimited signals

The main question here is to recover a signal with a limited band-width and known
spectral support from irregularly spaced sampling values. The irregular sampling
problem for bandlimited 1D and 2D signals has found much interest during the last
decade. Most of the results concern 1D case, though. For the case of irregular sampling
values no simple formula for reconstruction, such as the one given by Shannon in the
case of regular samples, can be expected. Nevertheless, it is still possible to recover
a bandlimited irregularly sampled signal completely, if the sampling set is not too
sparse.

There are various techniques to reconstruct signals [Strohmer, 1991], such as iter-
ative algorithms, the frame method, direct methods (based on the solution of linear
equations using pseudoinverse matrices) and others [Cenker et al., 1991, Feichtinger et al., 1995].
Iterative algorithms received a lot of attention recently [Almansa, 2002], and we will
describe their idea.

Iterative algorithms use the irregularly spaced sampling information about the
signal f and the information about the spectral support of f . Iterative two-step
algorithms are typical for most of the methods. They are based on a recursion of the
form:

fr+1 = PB(Afr),

where A is some approximation operator using only the original irregularly spaced
sampling values, and PB is mapping a given signal onto the space of bandlimited
signals with spectrum B. One may think of this mapping as of a smoothing operation,
which eliminates the discontinuity of Af . This projection P can be described as a
low-pass filter or as a convolution using a sinc-type kernel with the spectrum defined
over the set B.

There are several choices available for the approximation operatorA [Strohmer, 1991,
Feichtinger et al., 1991]. The Wiley-Marvasti method uses just the sampled signal
multiplied by a global relaxation factor. The Sauer-Allebach algorithm takes classical
interpolation methods in order to obtain the first approximation. Among these meth-
ods are: Voronoi method, Sample and Hold method, piecewise linear interpolation,
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spline interpolation. The Voronoi method can also be called nearest neighbor inter-
polation. In higher dimensions the corresponding construction makes use of Voronoi
regions, that is a step function is used, which is constant in the nearest neighborhood
of the sampling points. The Sample and Hold method requires twice the Nyquist rate
for a complete reconstruction [Strohmer, 1991]. For large gaps this method for con-
structing an approximation of the signal is divergent. Piecewise linear interpolation is
suitable only when the gaps between samples are not much larger than the Nyquist rate
[Strohmer, 1991]. Spline interpolation gives a good approximation of the signal but
requires much more computational expenses comparing with the linear interpolation.
The adaptive weights method is a more flexible version of the Wiley-Marvasti method
and it derives different appropriate weights from the sampling geometry. In 1D case
the distances between subsequent points are considered [Feichtinger et al., 1991].

1.4.2 Nonuniform sampling for non-bandlimited signals

There is a class of non-band-limited signals that can be represented uniquely by a set
of nonuniform samples. If a band-limited signal goes through a monotonic non-linear
distortion, y(t) = f [x(t)], then, although y(t) is a non-band-limited signal, it can be
represented by nonuniform samples if tn is a sampling set for the band-limited signal
x(t) [Marvasti, 1993]. The reconstruction scheme is shown in Figure 1.13.

Figure 1.13: Reconstruction of a non-bandlimited signal from nonuniform samples.

Necessary and sufficient conditions for such non-band-limited signals have been
established [Marvasti and Jain, 1986]. If a band-limited y(t) is transformed into a non-
band-limited x(t) through an unknown analytic and monotonic nonlinear operation
f(•), then y(t) can be recovered from x(t) within a constant factor, provided that one
of the following conditions is satisfied:

1) dy(t)/dt has only real zeros (zero crossings), but f(•) is only analytic and
monotonic;

2) dy(t)/dt may have any kind of zeros, but f(•) has the additional condition that
df/dy is also monotonic.

Another example is a set of non-band-limited signals generated by a time varying
filter when the input is a band-limited signal. If the system has an inverse, then
the samples of the output (the non-band-limited signal) are sufficient to reconstruct
the signal. This non-band-limited signal is essentially a time-warped version of the
band-limited signal.
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The results presented above in this section have not been extended for 2D signals
and stay to be a purely theoretical setting for the 1D case, because no practical ap-
plication was developed. It makes the use of these results impossible for the real data
sets treated in this thesis, because the sampling sets we have are in two dimensions
and demand a practically applicable algorithm.

1.4.3 Jittered sampling

Jittered samples are nonuniform samples that are clustered around uniform samples
either deterministically or randomly with a given probability distribution. This ran-
dom jitter is due to uncertainty of sampling at the transmitter end. For deterministic
jitter, Papoulis has proposed a method for the recovery. The problem is recovery of
x(t) from the jittered samples, x(nT − µn), where µn is a known deviation from nT .
The main idea is to transform x(t) into another function g(τ) such that the nonuniform
samples at tn = nT − µn are mapped into uniform samples τ = nT (Figure 1.14).

Consequently, g(τ) can be reconstructed from g(nT ) if g(τ) is band-limited (W ≤
1

2T
). x(t) can be found from g(τ) if the transformation is one-to-one [Marvasti, 1993].

Let’s take the one-to-one transformation as t = τ − θ(τ), where θ(τ) is a band-limited
function defined as

θ(τ) =
∞
∑

n=−∞

µnsinc[πW2(τ − nT )],

where W2 ≤ 1
2T

is the bandwidth of θ(τ). Since the transformation is one-to-one, the
inverse exists and is defined by τ = γ(t). If θ(nT ) = µn and tn = nT − θ(nT ), then
g(τ) = x[τ − θ(τ)] and g(nT ) = x[nT − θ(nT )] = x(tn). Using the uniform sampling
interpolation for g(τ),

g(τ) =
∞
∑

−∞

g(nT )sinc[
π

T
(τ − nT )].

Using the substitution τ = γ(t) gives

x(t) = g[γ(t)] ≈
∞
∑

n=−∞

x(tn)sinc[
π

T
(γ(t) − nT )].

When x(t) is not band-limited, this approximation becomes an exact representation.

Satellite images, which are sampled on a slightly perturbed grid, are an example
of jittered sampling. The sources of the grid perturbations include micro-vibrations of
the satellite while it takes the image, and irregularities in the position of the sensors
on the image plane [Almansa, 2002]. Physical models of the satellites exist, which
allow to predict vibration modes, that can be activated at one time or another. This
perturbation can be estimated with high accuracy, but it must be also corrected in
the images for certain stereo and multi-spectral applications.

If the positions of the samples are

Λ = {λk}k∈Z2 , λk ∈ R2
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Figure 1.14: Jittered samples.
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then in the perturbed (jittered) sampling case

λk = k + µ(k),

where some properties may be assumed about the perturbation function µ, for example,
about its amplitude. The main results on the limits of perturbed sampling were given
by Kadec [Almansa, 2002, Almansa et al., 2001]. For the one-dimensional case the
limit is the following. If there is a constant c such that

|µ(k)| = |λk − k| ≤ c <
1

4
,

then there exists a stable reconstruction formula of any band-limited function x from
its irregular samples x(λk).

For two dimensions: if the perturbation µ is such that

|µ(k)| = ||λk − k|| ≤ 0.11,

then there exists a stable reconstruction formula of any band-limited function x from
its irregular samples x(λk).

There are two factors that limit the application of the results presented in this
section. At first, as it is mentioned in [Almansa, 2002], the theorems of Kadec give
the theoretical results for the acceptable bounds of jitter for 1D and 2D cases, but
the practical algorithms consider only the 1D case. And the generalization for two
dimensions is difficult for most of the cases and doesn’t exist at the moment. The
second factor is related to the framework of this thesis, because the data sets we have
do not satisfy the theorems of Kadec. The sampling strategy used to acquire our data
leads to irregular sampling and not to a jittered one.

1.4.4 Wavelets on irregular grids

The fundamental property of wavelets is that they allow representations which are
efficient and which can be computed fast. Wavelets are capable of quickly capturing
the essence of a data set with only a small set of coefficients. This is based on the fact
that most data sets have correlation both in time (or space) and frequency. Because of
the time-frequency localization of wavelets, efficient representations can be obtained.
This is the key to applications.

Wavelet function are traditionally defined as the translates and dilates of one partic-
ular function, the “mother” wavelet. Such wavelets are called first generation wavelets.
In [Sweldens, 1997] a more general setting is introduced where the wavelets are not
necessarily translates and dilates of each other, but still enjoy all the powerful prop-
erties of first generation wavelets. These wavelets are referred to as second generation
wavelets. The lifting scheme is presented in [Sweldens, 1997], this scheme is a simple,
but powerful tool to construct second generation wavelets.

The construction of wavelets as initiated by Daubechies and co-workers essentially
consists of three stages. The algebraic stage involves constructing the filters that are
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used in the fast wavelet transform, which allows to pass between the function and
its wavelet coefficients. In the analytic stage one shows that wavelets associated with
these filters exist and that they form a basis for the proper function space. In the
geometrical stage one checks the smoothness of the basis functions.

One of the applications, which illustrates the need of the second generation wavelets,
is that many real life problems require algorithms adapted to irregularly sampled data,
while first generation wavelets imply a regular sampling of the data. The basic idea
of the lifting scheme is to start with a simple multiresolution analysis and gradually
work one’s way up to a multiresolution analysis with particular properties. The lifting
scheme allows one to custom-design the filters, needed in the transform algorithms,
to the situation at hand. In this sense it provides an answer to the algebraic stage of
a wavelet construction. Whether these filters actually generate functions which form
a stable basis (analytic stage) or have smoothness (geometric stage), remains to be
checked in each particular case. In the lifting scheme, instead of using scaling func-
tions on the finer level to build a wavelet, one uses an old, simple wavelet and scaling
functions on the same level to synthesize a new wavelet [Sweldens, 1997].

In [Daubechies et al., 1999] there are some practical examples given for 1D and 2D
cases. It is emphasized that in 1D case there are much more results obtained with
semi-regular grids than with irregular ones. The key assumption made in this article
for both 1D and 2D cases is the smoothness of the sought signal. The examples refers
to simplification of meshes in computer graphics applications.

Wavelets can also be adapted for non-smooth functions. An example is the tech-
nique called wavelet probing [Sweldens, 1997]. The short description of it is the follow-
ing. Consider a function which is smooth except for jump discontinuities at isolated
points. We know that the decay of the wavelet coefficients is fast away from the jumps
and slow in the neighborhood of the jumps. Suppose that we know the location of
the jumps. If we use interval wavelets on each interval between two jumps, and thus
segment the signal accordingly, we would get fast convergence everywhere. Wavelet
probing is a technique which allows us to locate the jumps. It simply tries every lo-
cation between two samples and checks whether it would pay off to segment at this
location. The pay-off can be measured with, for example, the entropy of the wavelet
coefficients. Wavelet probing allows quick localization of the edges in a image, and
then builds wavelets on the segments defined by those edges.

1.5 Conclusion

The irregular sampling theory started as an extension of the Shannon sampling theo-
rem. This theorem was at first proved for the one-dimensional signal and then extended
for the multidimensional case. A powerful generalization of many sampling theorem
extensions was given in 1977 by Papoulis. The Papoulis’ theorem included the cases
of sampling with derivatives and jittered sampling. However, this theorem treated
only band-limited functions. So later there were generalizations of the Papoulis the-
ory in order to treat the non-bandlimited signals [Unser et al., 1998]. Since the class
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of admissible input functions is enlarged, one looks for an approximation instead of an
exact reconstruction. This approximation is consistent in the sense that it produces
exactly the same measurements as the input of the system. There are also some other
approaches for nonuniform sampling of nonband-limited signals [Ferreira, 1995].

As for the classification of sampling sets, there are regularly spaced samples, struc-
tured sampling sets and irregular sampling sets. Regularly spaced samples normally
mean equal distances between them in all directions. Structured sampling sets keep
some periodicity. The number and complexity of such sets increases rapidly with
increasing the dimension of the considered signal. Many methods are developed
to reconstruct band-limited signals from irregularly spaced samples [Strohmer, 1997,
Feichtinger et al., 1994]. These methods sometimes classified as iterative and non-
iterative ones.

An important aspect of the theory of irregular sampling is a necessary density of
sampling needed to recover the signal from its samples. The first results were obtained
by Landau in 1967 and there is still research conducted in this area [Unser, 2000].

The theory of irregular sampling is applied in many areas, like geophysics, computer
tomography, astronomy, control theory, missing data problem and others, and this
theory is currently being developed [Martin, 1998, Almansa, 2002].

In this chapter we have considered the existing theories on the regular and irregular
sampling. We conclude that in the present state of the sampling theory there are
no practical methods on the reconstruction preserving discontinuities for randomly
sampled signals. In the following chapters we describe the data to be interpolated as
well as the methods we choose to apply.
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Chapter 2

Airborne laser scanning

2.1 Introduction

Airborne laser scanning is a relatively new data acquisition technique regarding the
start of its practical usage with high precision. It gives us the possibility to recover the
information on the scanned area in the form of 3D coordinates of the scanned points.
This scanning technique is a subject of research and a lot of interest has been shown to
its performance over different types of surfaces. Also this technique is often compared
with the other, more traditional, stereo photography methods. This chapter presents a
short introduction to airborne laser scanning, discusses its accuracy and properties as
well as the main fields of laser data application. We analyse laser scanning technology
in detail because we believe that understanding of the nature of data is necessary for
developing a suitable interpolation approach, which is the goal of this thesis.

2.2 Acquisition technique

Laser ranging instruments placed on aircraft or spacecraft platform are capable of high
resolution altimetry measurements of the topography of earth, lunar, and planetary
surfaces [Bufton, 1989]. First laser altimeters appeared in 1970 [de Joinville, 2003].
The first measurements didn’t have the same precision as now. With the development
of GPS and INS (Inertial Navigation System) technologies, airborne laser scanning is
used more widely in remote sensing, for example in data acquisition for urban areas.
This technique can be considered as a good complement to the existing well known
and well studied photogrammetry methods. In photogrammetry, optical stereo images
to reconstruct the surface of the photographed zone. In this thesis we reconstruct the
surface by interpolating the laser scanning data. It is certainly possible to combine
the both acquisition techniques while seeking for the more accurate results. Later in
this chapter we will consider the principal differences between photogrammetry and
laser scanning.

Airborne laser scanner is an active sensing system that uses a laser beam as
the sensing carrier [Wehr, Lohr, 1999]. Airborne laser scanning produces irregularly
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spaced 3D points of an area over which a flight is performed. These points provide the
elevation values of the terrain and of the objects rising from the ground, like buildings
and vegetation.

The technique is determined by three main components (Figure 2.1): the laser
rangefinder (LRF), the INS and the DGPS (Differential Global Positioning System).
The GPS is a navigation system which uses signals transmitted from 21 satellites
orbiting the Earth in 6 orbital planes to provide the location of a receiver antenna
anywhere on or above ground [Morshed, 2000]. The transmitted radio signals contain
information on the ionosphere transmission parameters and positions of the satellites
at the transmission time from which the location of the receiver can be referenced to
the satellite orbits. These orbits have been determined to accuracies of better than 1
m by Earth stations. Given the speed of the signal and the time of its propagation,
the distance from the GPS receiver and a satellite can be calculated. The three-
dimensional position of the receiver is located via intersection of three spheres. Each
sphere has a satellite as its center and a radius equal to the distance from the satellite to
the receiver [Kaplan, 1996]. Using DGPS means having a reference ground station on
the Earth. This station has known 3D coordinates and it receives the signals from the
GPS satellites. The coordinates of the receiver are then adjusted using the time delay
calculated with the ground station. That improves the precision. Accelerometers and
gyroscopes are used in INS in order to determine the attitude of an aircraft. The laser
scanner and the GPS/INS system have different measurement frequencies. Therefore
in most cases at the exact time of a range measurement no directly measured position
and attitude is available and interpolations are necessary [Haala et al., 1996].

Airborne laser scanning components include [Baltsavias, 1999c]:

- an LRF, that contains the laser, transmitting and receiving optics, the signal
detector, amplifier, time counter and necessary electronic components;

- computer, operating system and software for control of the on-line data acquisi-
tion;

- storage media for laser, GPS, INS and possibly some other data;

- GPS and INS;

- ground reference GPS station;

- software for mission planning and for various stages of postprocessing;

- optionally, other sensors, for example, video and digital cameras.

The basic idea is to get polar coordinates of a point hit by a laser beam. The
direction of the beam is calculated by combining the angle of the scanning system
with the aircraft angles, given by the INS. The laser rangefinder measures the distance
between the aircraft and the laser point. Most of the airborne laser scanning systems
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Figure 2.1: Airborne laser scanning acquisition principle (©Eurosense).

are using pulsed laser. In this case the distance between the aircraft and the laser
point is

R = c
t

2
,

where c is the speed of light, the time t is given by a time interval counter. The time
is measured when the signal voltage has reached a predetermined threshold value.
To avoid confusion in the pulses arriving at the time interval counter, it is usually a
requirement that no pulse is transmitted until the echo of the previous pulse has been
received [Baltsavias, 1999a]. The pulse rate depends on the laser scanning system
and can differ from several kHz till 83 kHz (for the TopoSys system). The maximum
range (and flying height) are limited by laser power and beam divergence, atmospheric
transmission, target reflectivity, detector sensitivity. The position of a target hit by a
laser is calculated using the transformations from one coordinate system to another,
that is applying translation and rotation operators. At first, the coordinate system,
centered at the laser firing point is rotated to compensate the angle of the laser beam.
Then a rotation and transformation are performed to transform the laser coordinate
system into the local INS system. After that a transformation from the local INS
coordinate system to the local GPS coordinate system, centered on the GPS antenna, is
performed. The last transformation is for getting the points in the WGS-84 coordinate
system [Schenk, 2001]. An additional transformation may be done to convert the
coordinates for a national system (for France - Lambert system).

Some technical parameters of airborne laser scanning systems [Baltsavias, 1999c]
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are given in Table 2.1.

Minimum value Maximum value Typical values
Scan angle (◦) 14 75 20−40
Pulse rate (kHz) 5 83 5−15
Scan rate (Hz) 20 630 25−40
Flying height (m) 20 6100 500−1000 (for airplane)
GPS frequency (Hz) 1 10 1−2
INS frequency (Hz) 40 200 50
Beam divergence (mrad) 0.05 4 0.3−2
Across-track spacing (m) 0.1 ≈10 0.5−2
Along-track spacing (m) 0.06 ≈10 0.3−1
Angle precision
(roll, pitch/heading) (◦) 0.004/0.008 0.05/0.08 0.02−0.04/0.03−0.05
Range accuracy (cm) 2 30 5−15
Height accuracy (cm) 10 60 15−20
Planimetric accuracy (m) 0.1 3 0.3−1

Table 2.1: Overview of major technical parameters of airborne laser scanning systems.

The laser footprint is described by two angles γ and Θ shown in Figure 2.2. Re-
ceived pulse energy depends on these two angles: e(γ,Θ). The range is R(γ,Θ) and
the time of propagation t(γ,Θ) = 2

c
R(γ,Θ). The reflected light at a position γ,Θ is

ρ(γ,Θ)e(γ,Θ), where ρ is the reflectivity of the target. The time response is

r(t) =
∫

γ

∫

Θ
ρ(γ,Θ)e(γ,Θ)δ(t−

2

c
R(γ,Θ))dΘdγ

.

Figure 2.2: The two angles that describe a laser footprint.

A laser footprint on the ground has a diameter from 10 cm till 100 cm, depending
on altitude and other factors [Mercer, 2001]. The minimum detectable object within
the laser footprint does not depend on the object’s size, but primarily on its reflectivity
[Baltsavias, 1999a]. Often the beam meets two or more obstacles, especially in forest
areas (Figure 2.3).

Then two or more reflections return to the rangefinder. Most of the systems can
record these echoes or at least the first and the last pulse. Normally, the last pulse is
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Figure 2.3: The first pulse comes from the top of the tree and the last one - from the
ground (©TopoSys).

the one reflected from the ground and the first one comes from tops of trees or roofs of
buildings. A laser pulse can penetrate partly into and possibly through the vegetation
cover of the terrain. This potential of passing through forest canopies was the original
motivation to study laser systems at the University of Stuttgart for the purpose of
generating DTMs (Digital Terrain Models) of forest areas [Ackermann, 1999]. A DTM
defines the ground surface without buildings and vegetation. Airborne laser scanning
provides elevation values of the ground even in dense forests, especially if the footprint
size is not too small. So a DTM can be produced easier and faster [Petzold et al., 1999].

To get strips of laser points, scanners use mirrors or fiber optics. Oscillating mirror
technique (used in Eurosense company, for example) produces a z-line pattern of the
laser points on the ground (Figure 2.4).

Figure 2.4: Laser scanning that produces a z-line pattern.

The TopoSys system uses fiber optics and produces a pushbroom measurement
pattern resulting to parallel lines on the ground. For this system the point density on
the flight direction is very high.

The most commonly used laser scanning systems are Optech ALTM, Saab TopEye,
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Toposys and Azimuth [Baltsavias, 1999c].

The data acquired by airborne laser scanning is supposed to be evenly distributed
regarding the planimetric coordinates of points. Though the density of the points
varies considerably because the scanned strips overlap. It is done to avoid the gaps
in the data shown in Figure 2.5. Also overlapping strips allow some quality control
procedure since the same zone is scanned twice.
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Figure 2.5: The sampling pattern of a real laser data: a gap in the data appears
because two neighboring stips don’t overlap.

With the development of laser scanning systems large amounts of data can be
collected in a short time. For example, for the data of Amiens and its suburbs we have
more the 72 million of points. Though we are only interested in the urban zone and
we will interpolate only a part of it.

We dispose two real laser data sets for the experiments. The first data set was
acquired on Brussels (Belgium) by the Eurosense company. They used an ALTM laser
scanning system produced by the Optech company. Though the recent ALTM systems
allow to acquire two echoes, the system used to scan the city of Brussels can register
only one single echo. This acquisition system uses an oscillating mirror technique. It
produces a sampling set formed by zig-zags. The second real data set is obtained on
Amiens (France). The data acquisition is done by the TopoSys company and they
use their own laser scanning technology. It has very high acquisition frequency (83
kHz) and uses fiber optics. The resulting sampling set is formed by parallel lines.
The distance between points inside a line is several times smaller than the density
between the lines. The distance between the lines is about 1.5 meters. A big part of
the scanned area is covered twice by the laser scanning. Two echoes are received: the
first and the last one. The last echo data is used for the experiments. The size of the
laser beam in the both cases for Brussels and Amiens is about 30-50 centimeters.
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2.3 Laser data accuracy and properties

The accuracy of 3D coordinates depends on many factors [Baltsavias, 1999a]. The
main factors are the accuracy of the range, of the laser beam position and the accuracy
of the laser beam direction. Since the results of laser scanning are usually in WGS84
(World Geodetic System 1984), the final results also depend on the accuracy of the
transformation from WGS84 to the local coordinate system.

The range accuracy of pulse lasers depends on the ability to select the same relative
position on the transmitted and received pulse in order to measure the time interval.
Laser pulse waveforms for range measurement and waveform digitization is shown
in Figure 2.6 [Bufton, 1989]. An example of the return pulse waveform for a zone

Figure 2.6: Laser pulse waveforms for the sent and received pulses.

with vegetation is given in Figure 2.7. It is obvious that recording and analyzing the

Figure 2.7: Return pulse waveform for airborne laser scanning vegetation
[Blair et al., 1994].

waveform, instead of one or two echoes, will lead to much more precise information
about the area hit by the laser beam. Another useful information for such analysis,
especially for urban areas, will be the reflectivity of the objects on the ground.

The time interval measurement accuracy is limited by noise, signal strength and
sensitivity of the threshold detector. The main factor here is the steepness of the
received signal, that is the rise time of the pulse. Also important are the accuracy,
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with which fixed time delays in the system are known, e.g. counter instability. The
time counter has a resolution of approximately 0.1 ns (typical values are 0.05-0.2 ns),
which would correspond to a range resolution of 1.5 cm. Among other factors, that
affect the range accuracy, there are effects from the optical elements, properties of the
detector, reflectivity and the form of the target.

Position accuracy depends mainly on the quality of the DGPS postprocessing.
Other factors: GPS hardware, GPS satellite constellation during flight, number, dis-
tribution and distance of the ground reference station from the aircraft (values of
10-100 km have been reported), accuracy of offsets and misalignment between GPS
and INS, and INS and laser scanner. Typically, with DGPS and postprocessing, accu-
racies of 5-15 cm can be achieved [Baltsavias, 1999a].

Attitude accuracy depends on the quality of the INS, the INS frequency, the method
of postprocessing and integration with the GPS. The effect of attitude errors on the
3D accuracy increases with the flying height and the scan angle. Due to gyro drift
and other errors INS forms the weakest part of the system since it is characterized
by a good short term but a poor long term stability [Lemmens, 1997]. Orientation,
position and range are to be taken at the same time in order to produce accurate data.
If there is a time offset and this is not known precisely, it will cause a variable error.

The height accuracy of the airborne laser scanning data is about 5-20 cm and is
2-5 times better than the planimetric one. These are the estimations for a rather flat
surface. With increase of terrain slope and roughness both planimetric and height
errors increase: the height accuracy deteriorates to 0.5-1 m [Baltsavias, 1999b].

Scan angle also influences the accuracy. The angle may vary for different systems
and applications from several degrees to ±30 [Ackermann, 1999]. The distance between
laser points on the ground depends on the flying height, on the scan angle, acquisition
system and can be from several centimeters till several meters (Figure 2.8).
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Figure 2.8: Planimetric coordinates of (a) laser points acquired using oscillating mirror
technique (b) two strips overlap for the data taken using fiber optics.

The density of points is normally higher along scan lines than between them. Laser
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scanning data is captured in strips with sufficient overlap to ensure that no gaps appear
between the strips. The width of strips can be between 70 m and 800 m, depending
on the flying height of the platform and on the system used [Behan, 2000]. If there are
two strips that overlap, then elevation values of the laser points for the same area may
not coincide, especially when the ground surface is not flat (Figure 2.9). In general,

(a) (b)

Figure 2.9: (a) Two strips overlap (b) laser data profiles in the overlap region (source:
TU Delft).

airborne laser scanning systems are considered to be highly automated, with short
data processing time and high precision [Ackermann, 1999, Murakami et al., 1998].

The output data is given by a text file that contains X,Y and Z coordinates of the
acquired points. X and Y coordinates do not lie on a regular grid. This means that
the data can’t be presented as an image as long as no interpolation is performed. The
laser data can be visualized like three-dimensional points or triangulated and then
visualized (Figure 2.10).

As for a laser altimeter in earth orbit, ice and terrain topography can be measured
at sub-meter vertical resolution and approximately 100 m horizontal separation with
50-100 m diameter laser footprint. Ice and terrain roughness can be measured via laser
pulse waveform analysis [Bufton, 1989].

2.3.1 Comparison with photogrammetry

The major differences between photogrammetry and airborne laser scanning are the
following [Baltsavias, 1999b]: passive versus active sensing; sensors with perspective
geometry versus point sensors with polar geometry; full area coverage versus pointwise
sampling; indirect versus direct encoding of 3D coordinates; geometrically high qual-
ity images with multispectral capabilities versus no imaging; and ability for airborne
laser scanning to ‘see’ object much smaller than the footprint (small openings below
vegetation, power lines, etc.). All other differences are a consequence of the above

46



Figure 2.10: Triangulated laser scanning data of Brussels (©Eurosense).

mentioned ones. The advantage of using airborne laser scanning for DEM (Digital
Elevation Model) generation is that, being produced by active systems, they are in-
sensitive to illumination shadows. Furthermore, laser images are already geocoded,
that is no orthoimage generation is necessary.

Density and distribution of raw measurements is a decisive factor with respect to
DEM quality. With manual and matching photogrammetric measurements, one could
measure theoretically as dense as possible. For airborne laser scanning the smallest
reasonable grid spacing is assumed to be a half of the laser footprint. The grid sizes
for both photogrammetry and laser scanning depend on the height of flight during
which the data was acquired. In this regard the two technologies are more or less
equivalent. In practice, manual photogrammetric measurements never need to be that
dense, while matching usually delivers less dense results than those of airborne laser
scanning.

As for the error budget and accuracy, the comparison between photogrammetry
and airborne laser scanning is not easy to make [Baltsavias, 1999b]. In manual pho-
togrammetric measurements, the height accuracy, assuming an image measurement
accuracy of 15 micrometers for an image of average quality and texture, mainly de-
pends on the flying height and the accuracy of the sensor orientation. With airborne
laser scanning, there are much more factors that can influence the results. Thus mak-
ing derivation of theoretical accuracy models, prediction of the achieved accuracy and
error propagation much more complicated. Furthermore, with passive optical sensors
the behavior of planimetry and height is quite independent of each other and can be
analyzed separately. In addition, with airborne laser scanning the error budget has a
substantial constant term which in photogrammetry is lower. Accuracy with passive
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optical sensors is also more homogeneous within the image format, while with airborne
laser scanning, attitude errors lead to a rapid height accuracy decrease with increasing
scan angle, especially for high flying height.

With increasing terrain slope and roughness, the height accuracy of airborne laser
scanning deteriorates to 0.5-1 m for 1000 m flying height. Airborne laser scanning be-
comes more accurate than photogrammetry for terrain slopes less than 30%. Ignoring
the effect of terrain slope and target reflectivity on the laser accuracy, the expected
height accuracy from a laser scanner consists coarsely of a fairly constant error of 5-20
cm (mainly due to GPS and ranging) and an error of 0.5-2 cm per 100 m of flying
height for typical attitude errors and a scan angle of 30% (in reality the height er-
ror is not linear but rather exponential; for medium to large scan angles, it increases
rapidly with increasing flying height). Photogrammetry also has a constant term as-
sumed to lie at 2-5 cm and an additional error of about 1.6 cm per 100 m of flying
height. Comparing the accuracy values for identical flying height in the range 400-1000
m, the photogrammetric accuracy is on the average slightly better than the airborne
laser scanning one, although the latter can in good cases be more accurate. It is in
the higher flying heights where laser could outperform photogrammetry, if attitude
determination is accurate enough and the received target reflection is sufficient.

In photogrammetry, planimetry is typically more accurate than height, while with
airborne laser scanning 2-6 times less accurate. Such planimetric errors will also
severely influence the height accuracy of urban areas.

2.4 Applications of laser data

Satellite laser altimeters are used for high-resolution measurements of ice sheet topog-
raphy, landform topography and cloud-top height on a global basis [Bufton, 1989].

The most important applications of airborne laser scanning include the following
ones [Baltsavias, 1999b]:� Mapping the surfaces with very little or no texture or poor definition. There,

image matching delivers very poor results, and manual measurements are also
poor and slow and cumbersome. Examples include ice or snow surfaces, sand
(coasts, dunes, desserts), swamps and wetlands.� Mapping of forests and vegetated areas. Airborne laser scanning systems can
provide measurements on the ground. The penetration rate mainly depends on
type of trees (deciduous or coniferous) and season. Useful results, depending also
on the terrain roughness, can be achieved even with penetration rates of 20-30%.
Experimental systems of NASA using a very large laser footprint (10-30 m) have
achieved results in dense tropical forests with a ground obstruction of 95%. In
addition, through appropriate data processing, both ground and tree height can
be determined. Airborne laser scanning systems that record first and last echoes
or even more than two echoes of each pulse, can more easily provide tree and
ground height and those with more than two echoes can, in addition, measure

48



a vertical object profile, thus enabling derivation of other important parameters
like biomass estimation, tree type, etc.� Mapping of long, narrow features. This includes road mapping, planning and
design, powerline corridor planning, coastal erosion monitoring, coastal zone
management, riverways and water resources and traffic management, mapping
of railway lines, pipelines, etc. Since airborne laser scanning systems have a
narrower swath in comparison to optical sensors, they are more cost-effective in
capturing the information needed for such applications.� High point density, high accuracy mapping applications like monitoring of open
pits, flood mapping, mapping of local infrastructures (airports, for example), oil
and gas exploration.� Mapping of very small objects, for example, power lines, which are hardly visible
in optical images, or whose measurement cannot be automated. This application
is possible when the laser scanning system is well calibrated.� Fast response applications. Since airborne laser scanning provides digital range
measurements, this information can be quickly converted to 3D coordinates. It
can be important in some cases, for example, involving natural disasters. This
application as well as several others may require automated classification, in
other words - filtering, of clouds of points acquired by airborne laser scanning
[Sithole, Vosselman, 2004].� DEM generation of urban regions for urban planning, roof-top heights for com-
munication antennas, etc. Since airborne laser scanning provides very dense
and accurate measurements, detection, reconstruction and modeling of 3D ob-
jects with sharp discontinuities, especially buildings, is possible [Wang, 1998,
Axelsson, 1999, Haala, Brenner, 1999].

The quality of a DEM depends on [Lemmens, 1997]:

- amount of outliers and undesired terrain objects;

- accuracy of the individual points;

- interpolation method to compute heights at wanted locations from the measured
points;

- point density (the sampling distance should sufficiently well correspond to the
terrain relief fluctuations).

2.5 Conclusion

The airborne laser scanning is explained in this chapter. The interpolation methods,
described later in this thesis, will be applied to two real data sets acquired by this
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technique. We are interested in the laser scanning acquisition method, because it
characterizes the nature of our data. In this regard, it makes sense to investigate the
accuracy of laser scanning which is closely connected to the hardware performance
in the laser scanning system. Studying laser scanning we realize that at present no
conclusions can be made about the surface inside a laser beam. A measurement we get
comes from the laser beam that often has an elliptical form, but it is not clear what
object inside the beam caused this measurement: inside the same beam we may have
several objects of different height and different reflectivity. So one of the accuracy limits
of laser scanning data is the size of the beam. Other limits come from the performance
of the hardware and the type of the surface to scan. Post-processing of the data after
the flight is also important. A new generation of laser altimeters additionally records
the shape of the returning pulse. This waveform carries information on the reflecting
objects (terrain, vegetation, etc.) within the pulse diameter. In this chapter we present
an approximate shape of the waveform as we realize that its analysis will lead to better
accuracy and therefore to better interpolation results.

We will perform several interpolation methods on two airborne laser scanning data
sets and we will present and analyse the results in this thesis. As we have seen in this
chapter, the first echoes of laser scanning come from the top parts of the vegetation
and the last echoes - from the ground. We will take it into account for the data of
Amiens and will use only the second echoes. It will allow us to avoid the vegetation in
the data and so to be closer to the reference used for this zone, because the reference
contains no vegetation.
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Chapter 3

Interpolation for airborne laser

data of urban areas

3.1 Introduction

Many interpolation methods are adapted for image interpolation. The methods for
irregularly spaced data interpolation are not that numerous and we will consider some
of them in this chapter. Both of the applications of this thesis demand irregularly
spaced data interpolation methods. For the laser data on urban areas we need a
method that allows discontinuities on the surface. These discontinuities will represent
the edges of the buildings and therefore will delimit streets and buildings. Simple
and fast approaches that can give such surfaces are nearest neighbor interpolation and
triangle-based linear interpolation. We describe them in this chapter. We also present
an energy minimization approach which allows to impose the desired properties on
the surface to find. Since we know the characteristic properties of an urban area,
we choose the appropriate potential functions and we adapt the cost function for the
irregularly spaced samples. In this chapter we also describe kriging - the method
developed in geostatistics for spatial data interpolation. We will mostly benefit from
this method later, when we deal with the cosmic microwave background anisotropies
measurements.

The chapter is organized in the following way. In the beginning we present the
general approaches to the spatial data interpolation. Then we describe the methods
that we will apply in the following chapters to the real data. The methods are presented
by increasing their complexity. We start by the nearest neighbor interpolation, then
we describe triangle-based linear interpolation and kriging, and we finish by the energy
minimization method. Several issues are considered for the energy minimization. We
define two kinds of neighborhoods - one for the data samples and one for the pixels
on a regular grid. Then we formulate the expression for the cost function that will be
minimized. The choices for potential functions and for the optimization algorithm are
then discussed. Each of the presented methods is illustrated by simple examples on a
synthetic model of an urban area. It gives the general idea about the advantages and
drawbacks of the methods before their application to the real data.
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3.2 General approaches

Originally, the data, obtained by airborne laser scanning, is scattered, and the task is
to put it on the regular grid. We consider square regular grid, although a triangular
grid also exists. Some essential aspects of ideal interpolation can be summed up by
the following generalizations [Watson, 1992].

1. The interpolated surface fits the data to a nominated level of precision, that is,
it agrees with the individual data points to within arbitrary, user prescribed,
limits.

2. Each interpolated value depends only on a local subset of data, and the members
of this subset are determined solely by the configuration of the data situated near
the interpolation point. Such a restriction is necessary to prevent the masking
or submerging of low amplitude surface forms by more dominated features, and
prevent widespread propagation of an error in a datum. This insures that the
generated surface is stable in the sense that a small change in any datum cannot
cause a large change in the surface.

3. The interpolation method can be applied to all configurations and density pat-
terns of data. It is in order to have consistency of interpretation, for example,
between two data sets of the same region but with different sampling patterns.

The choice of interpolation approaches is very broad, but dealing with irregularly
scattered points upon urban areas restricts the variety of possible solutions. There are
two reasons for it: one needs to have a method, adapted for a scattered initial data
and preserving discontinuities and slopes of a surface.

As described in [Watson, 1992], there are two interpolative approaches - fitted
functions and weighted averages.

Fitted function methods first determine the parameters of an analytic bivariate
function that represents a regional, or local, aggregate of data influences. Then, using
these parameters, the function is evaluated at a given location to obtain the height
of the representative surface. Fitted function interpolation techniques utilize surfaces
that can be described by a set of coefficients in a polynomial function of geographical
coordinates. These surface parameters usually are extracted by solving a system of
linear equations expressing the combined influences of the data and the criteria con-
trolling the fit of the polynomial function. Once the parameters, which in a sense are
a summary of the data, have been determined, they may be applied to a series of loca-
tions for explicit evaluations of the surface. Fitting a function can impose a prescribed
general behavior on the surface to override anomalous, or noisy, data. Therefore,
fitting a function is a smoothing approach, that is not very suitable for urban areas,
where edges, i.e. discontinuities, contain critical information, since they delimit streets
and buildings.

The alternative approach, to obtain a representative surface height at a given
location, is by directly summing the data influences that are within range; these are
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weighted average methods. This approach uses a direct summation of data influences
at each interpolation point, without using an intermediate parametric surface. The
weight applied to each datum is the evaluated influence, relative to the interpolation
point, for that datum. A set of weights must be computed for each interpolation point.
Conceptually, the difference between the two approaches is that weighted average
methods emphasize local detail whereas fitted functions methods summarize global
behavior. Computationally, weighted average representative surfaces require more
time per interpolation point than do fitted function surfaces. On the other side, fitted
functions tend to overshoot in situations where a sharper curve established by weighted
averages would give a more conservative surface. A principal advantage in computing
a weighted average surface is that local details, implied by the small-scale trends in the
data, can be developed to a degree of surface complexity not possible for a parametric
surface with a reasonable number of parameters. This approach also is applicable to
data sets of unlimited size because each computation involves only moderately sized
subsets of data. Most importantly, weighted average methods produce surfaces that
are dominated by local trends in the data.

Triangle-based linear interpolation, nearest neighbor interpolation and kriging can
be considered as well-known methods for scattered data interpolation. Since the prob-
lem of 3D scattered data interpolation is ill-posed, it makes sense to introduce a
regularized solution imposing desirable properties on the resulting surface. An energy
minimization approach is proposed which allows to get a surface model corresponding
to urban areas. In the following sections we will give the details on these methods.

3.3 Nearest neighbor interpolation

The simplest approach is nearest neighbor interpolation. At first, the given data must
be triangulated. Triangulation of the spatial data is the way how to put the data in
order to prepare them for some interpolation methods or, simply, visualize the data. In
a triangulation every region, except for the external region, is a triangle. The Delaunay
triangulation of a set V = {xi} of r points on the plane is usually defined in terms of
another geometric structure, the Voronoi (Thiessen) tesselation, which describes the
proximity relationship among the points V [Preparata et al., 1985, Rauth, 1998]. The
Voronoi tesselation of a set V of r points is a subdivision of the plane into r convex
polygonal regions, called Voronoi polygons, each associated with a point xi of V . The
Voronoi polygon of xi is the set of points of the plane which lie closer to xi than to
any other point in V . A Voronoi tesselation always is unique and unbounded, because
the xi on the perimeter are unbounded. The Delaunay graph of V is a plane graph
T , whose edges join pairs of points xi, xj , i 6= j, such that xi and xj are Voronoi
neighbors (Figure 3.1).

Then we superimpose the regular grid, on which the interpolated values should lie
(Figure 3.2).

For each node of the grid we find the triangle which contains this node. The value
of height of this node is the height value of nearest vertex. The resulting surface is
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Figure 3.1: a) scattered points, b) Voronoi tesselation, c) Delaunay triangulation.
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Figure 3.2: Scattered points of laser data (represented by stars) and nodes of a regular
grid (represented by circles). Delaunay triangulation is performed on the laser data.
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composed by flat zones (Voronoi polygons) divided by sharp transitions.

It actually means that during the triangle-based nearest neighbor interpolation the
pixel takes the value of the closest vertex of the triangle which contains the pixel. When
the samples are evenly distributed, then such a vertex will be the closest neighbor in
most of the cases. But if the samples are organized in a particular way, for example
the sampling set of the Amiens laser data is composed by lines, then the closest vertex
may not be the closest sample as it will be illustrated in Figure 3.3. We will use the

Figure 3.3: Point P is in the triangle ABC, but the closest neighbor for this point is
D.

triangle-based nearest neighbor interpolation for the data of Brussels and the nearest
neighbor interpolation based just on the distances between the pixel and data samples
for the data of Amiens.

We have generated a synthetic model of an urban area (Figure 3.4) which will help
us to check the performance of the interpolation methods, presented in this chapter.
The proportions of a real urban zone are kept for this model. We estimated the
approximate proportions from the digital elevation models of Brussels and Amiens,
which will be presented in the following chapter. We designed the synthetic model
taking into account differences in the shapes of roofs, in the heights of buildings and
in the widths of streets. The synthetic model is designed through the equations of
lines and planes. Therefore it is possible to get this model with any resolution. We
generate the data to interpolate in the following way. At first we extract a piece of
the real laser scanning data of Brussels, we need only x and y coordinates (Figure
3.5). The more detailed description of this data can be found in the following chapter.
Knowing the altitude for any pair of x and y coordinates, we can sample our synthetic
model according to the real laser data. The synthetic model, sampled according to
the laser data of Brussels, is shown in Figure 3.6.

Figure 3.7 shows the result of the nearest neighbor interpolation on the synthetic
model when the size of the pixel is 1.5 meters. Figure 3.8 shows the reference model
generated with the same pixel size. We can easily see that the nearest neighbor
interpolation distorts edges of the buildings. If a pixel, that should represent a roof,
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Figure 3.4: Synthetic model of an urban area.
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Figure 3.5: x versus y coordinates for a piece of the laser data acquired on Brussels.
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Figure 3.6: Plot of the 3D points for the synthetic model sampled according to the
real laser scanning data of Brussels.
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Figure 3.7: Nearest neighbor interpolation on the synthetic model.
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Syntetic model with pixel size 1.5 meters
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Figure 3.8: Synthetic model with the pixel size 1.5 meters.

has the nearest neighbor on the ground, then this pixel will take the altitude value of
this nearest sample, and so it will represent the ground instead of representing the roof.
This is the way how we loose some pixels from the roofs of the buildings. In the same
manner some pixels get the altitude values of roofs while they should represent the
ground. This explains the distortions of edges by the nearest neighbor interpolation.
Another observation that we can make is the fact that nearest neighbor interpolation
does not let us using all the samples available, especially when the samples compose
lines. Only the value of the closest sample point will be taken into account.

We do not adapt the imposed regular grid to the original irregular one. It means
that we don’t optimize the distance between the nodes of the two grids. For some
particular cases it is possible, but in the general framework of this thesis we consider
our data to be on irregular grid and it is normally difficult to extract a structure from
the data, because the scan lines overlap and the direction of movement of the plane
(or satellite - for CMB measurements) changes.

In the following section we will consider triangle based linear interpolation since we
suppose it to give more realistic representation of an urban area. This interpolation
leads to a piece-wise linear surface, composed by planes determined by the triangles.

3.4 Triangle-based linear interpolation

When the data is triangulated, then interpolating of the planar surface of a triangle
can only require applying barycentric coordinates to the data at the vertices of the
triangle [Watson, 1992]. This is a weighted average method and the elevation of the
interpolated surface at some interpolation point (x, y) within the triangle is
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L(x, y) =
3
∑

i=1

Wif(xi, yi),

where the weight Wi is the ith barycentric coordinate of the interpolation point
with respect to the triangle, and f(xi, yi) is the observed value at the data point
(xi, yi). The sum of the barycentric coordinates always is one for any interpolation
point. Calculating of barycentric coordinates is shown below. Any interpolation point
X, within the triangle IJK, subdivides it as shown in Figure 3.9.

Figure 3.9: Barycentric local coordinates

The areas of these subtriangles, XIJ , XJK and XKI, each calculated as fractions
of the area of the triangle IJK, are the barycentric coordinates of the interpolation
point for each opposite vertex, respectively. Each coordinate refers to the data point
that is opposite that subtriangle so that WK, the coordinate with respect to data
point K, is proportional to the area of XIJ in Figure 3.9. A calculating of barycentric
local coordinates for the point X with respect to the triplet IJK is following:

WI = ((Jx −Xx) ∗ (Ky −Xy) − (Kx −Xx) ∗ (Jy −Xy))/DetIJK

WJ = ((Kx −Xx) ∗ (Iy −Xy) − (Ix −Xx) ∗ (Ky −Xy))/DetIJK

WK = ((Ix −Xx) ∗ (Jy −Xy) − (Jx −Xx) ∗ (Iy −Xy))/DetIJK

where subscripts x and y are the Cartesian coordinates and
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DetIJK = (Jx − Ix) ∗ (Ky − Iy) − (Kx − Ix) ∗ (Jy − Iy).

Because it is piecewise linear, the surface formed by this method has a discontinuous
slope at the edges of each triangular facet.

Figure 3.10 shows the result of the triangle-based linear interpolation on the syn-
thetic model, sampled according to the real laser data. We can observe that, unlike

Triangle−based linear interpolation, pixel size is 1.5 meters
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Figure 3.10: Triangle-based linear interpolation on the synthetic model.

the interpolation by the nearest neighbor, on the edges of the buildings there are pixels
that have average values between the ground and the roof. The reason for it is the
planar interpolation: for example, if the pixel is situated in the triangle, which has
two vertices that are the samples taken from the roof and one vertex which is the
sample of the ground, then the pixel will get the value of the linear combination of
these three pixels. The resulting value of such a pixel will be neither on the roof nor
on the ground, it will be in between. That is why we can see a kind of smoothing effect
as the result of the triangle-based linear interpolation. Otherwise, this interpolation
is quite good for most of the simple shapes of roofs.

It should be noticed that triangle-based linear interpolation provides the value
of the pixel calculated using the three vertices of the triangle containing the pixel.
These three vertices are not necessarily the three closest points to the considered
pixel. Delaunay triangulation is used for this interpolation.

There exist some other methods for irregularly spaced spatial data interpolation
[Watson, 1992]. Recently the method by spline functions has received a lot of attention
in image processing [Unser, 1999]. Kriging - the method described below, is linked
to the interpolation by spline functions [Billings et al., 2002] and leads to smooth
surfaces.
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3.5 Kriging

Kriging is a geostatistical method first mentioned by Krige and developed by Matheron
[Journel et al., 1978, Cressie, 1991, Rauth, 1995, Rauth, 1998]. The idea is to regard
all measurements zi as a realization of a random process and to analyze the spatial
behavior of the corresponding parameters. Normally, it is supposed that the expected
value of the random function Z(u) is constant all over the domain D and that the
covariance of two random variables corresponding to two locations depends only on
the vector h separating these two points:

E[Z(u)] = m for all u ∈ D,

and
E[(Z(u+ h) −m)(Z(u) −m)] = Cov(h).

For ordinary kriging it is supposed that the mean value of the data is unknown.

The first step is the analysis of the spatial variability expressed by a function
called variogram γ, which is defined as half the averaged squared difference between
pairs of data points separated by the distance h. The variogram (also referred as
semi-variogram) can be calculated from the data according to

γ(h) =
1

2N(h)

∑

N(h)

(vi − vj)
2,

where vi, vj are the data point values and N(h) is the number of data point pairs
approximately separated by h.

The experimental variogram is then replaced by a theoretical one (Figure 3.11),
often by a spherical model:

γ(h) =











0, h = 0
C0 + C(1.5(h

a
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a
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a
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C0 + C, h
a
> 1

The model variogram is generally chosen to match the experimental one as close
as possible (Figure 3.12).

The variogram γ(h) is the key to the flexibility of kriging [Groenigen, 2000]. The
theoretical variogram is described by a mathematical expression, relating the difference
in the dependent values of two points a distance h apart. A model variogram equation
has three parameters: scale (C), nugget effect (C0) and range (a). These parameters
are illustrated graphically [Carter et al., 1997] in Figure 3.13.

The scale is the maximum difference in possible for two points with a nonzero
distance between them. The nugget effect gives the difference value as the distance
between two points tends to zero. The sill is the sum of the scale and nugget effect.
If the stationary conditions are met, i.e. there is no underlying trend in the data,
then there will be a separation distance above which the variation is constant. This
distance is denoted as the range of the variogram.
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Figure 3.11: Shapes of some commonly used model variograms.

Figure 3.12: Fitting the theoretical variogram to the experimental one.

Figure 3.13: A typical model variogram. The parameters used in the mathematical
expressions describing variograms are illustrated.
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Ordinary kriging is known as best linear unbiased estimator [Pham et al., 1999,
Pham et al., 2000]. It is linear because its estimates are based on weighted linear
combinations of available data. It is unbiased since it tries to have the mean error to
be zero. It is best because the error variance is minimized.

Let v̂p be an estimated value at location xp based on a weighted linear combination
of available samples at locations xi, i = 1, ..., n:

v̂p =
n
∑

i=1

wivi.

The error will be

ǫp = v̂p − vp,

where vp is the true value. The variance of the estimation error can be computed as

V ar(ǫp) = V ar(vp − v̂p)

or

V ar(ǫp) = V ar(vp) − 2Cov(vp, v̂p) + V ar(v̂p),

giving

V ar(ǫp) = V ar(vp) − 2
n
∑

i=1

wiCov(vi, vp) +
n
∑

i=1

n
∑

j=1

wiwjCov(vi, vj).

Let σ2
e , σ

2, σip and σij stand for V ar(ǫp), V ar(vp), Cov(vi, vp) and Cov(vi, vj)
respectively. Then the previous expression can be rewritten as

σ2
e = σ2 +

n
∑

i=1

n
∑

j=1

wiwjσij − 2
n
∑

i=1

wiσip.

To satisfy the unbiased condition,

n
∑

i=1

wi = 1.

The optimization technique of Lagrange multipliers is applied to minimize the
variance σ2

e of the error, which is subject to the unbiased condition:

L = σ2
e + 2λ(

n
∑

i=1

wi − 1)

n
∑

i=1

wi − 1 = 0,
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where λ is a Lagrange multiplier.

Setting the partial first derivatives of the function L to zero with respect to λ and
the weights, after n + 1 differentiations, the set of weights that minimize the error
variance can be obtained as

{

∑n
j=1wjσij + λ = σip, i = 1, ..., n

∑n
i=1wi = 1.

This system of equations is called the ordinary kriging system [Pham et al., 2000].
In order to be consistent with the variogram symbols, let σij = γij and σip = γip. The
system can be rewritten in a matrix form:

[A]{w} = {b}

where

[A] =

















γ11 γ12 ... γ1n 1
γ21 γ22 ... γ2n 1
. . ... . .
γn1 γn2 ... γnn 1
1 1 ... 1 0

















,

and [A] is symmetrical and its diagonal elements are zeros;

{w} = {w1 w2 ... wn λ}T ,

and
{b} = {γ1p γ2p ... γnp 1}T .

In case of large data sets one uses only a small subset of the samples in the neigh-
borhood of the point to be estimated. This splits the problem into subproblems and
keeps computational expenses reasonably low. The biggest advantage of kriging is the
fact that the spatial behavior of the resulting surface can be controlled via the vari-
ogram. The main disadvantage is the strong influence of the variogram, which in most
of the cases has to be fitted interactively. The parameters of the theoretical variogram
can be received by observing the experimental one. It is also possible to fit the func-
tion of the theoretical variogram to the experimental one through analytical formulas,
minimizing the error between the two variograms: theoretical and experimental one
[Cressie, 1991]. If there is no precise information a-priori on the surface which has to
be interpolated, then one can verify through the form of the experimental variogram
whether the hypotheses of kriging are preserved. Since we know the formulas of the
theoretical variograms, we can check if the experimental variogram has an approxi-
mately the same form or not. For the experiments we take ordinary kriging. This
version of the methods supposes that the surface to interpolate is a random stochastic
process of the second order with an unknown mean value.

Kriging methods are used not only for statistical interpolation of images [Leung et al., 2001],
but also for irregular image subsampling [Stoffel et al., 2001].
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The performance of kriging depends on the sampling set. The method presented
above is supposed to work on the evenly distributed points in the sampling set. We
show it on the synthetic model of an urban area. We sample this model according
to two sampling sets: the sampling set of the data of Brussels (Figure 3.5) and the
sampling set of the data of Amiens (Figure 3.14). Then we compute the experimental
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sampling set from Amiens data for the synthetic model

Figure 3.14: x versus y coordinates for a piece of the laser data acquired on Amiens.

variograms for the both sets of data. They look very similar and so the parameters for
kriging obtained from both variograms will be practically the same (Figure 3.15), as it
should be, because the original synthetic model was the same for both sampling sets.
The following parameters are chosen from the visual observation of the variograms:

0 2 4 6 8 10 12 14
0

5

10

15

20

25

30

35
variogram for the synthetic model; Brussels sampling

0 2 4 6 8 10 12 14
0

5

10

15

20

25

30

35
variogram for the synthetic model; Amiens sampling

Figure 3.15: Variograms for the synthetic model sampled according to the Brussels
laser data (left) and Amiens laser data (right).

range - 10; sill - 32; nugget - 0. The spherical theoretical variogram is taken. We
perform kriging on the neighborhood and we take the square window 10 × 10 meters
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for the model sampled by the laser data of Brussels and the square window 1 × 1
meters for the model sampled by the laser data of Amiens. The results of kriging are
presented on Figure 3.16. Kriging produces smooth surfaces as we can see from the
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Figure 3.16: Kriging for the synthetic model sampled according to the Brussels laser
data (left) and Amiens laser data (right).

result on the synthetic model sampled by the Brussels laser data. The distortions,
which are obvious from the results on the Amiens sampling set, are caused by the
problem of the choice of the neighborhood. The sampling set of the Amiens data is
not favorable for kriging and makes it very difficult to get acceptable results without
major changes in the strategy of the neighborhood choice.

In the following chapter we will apply kriging to the real data sets: two sets of
laser data and the simulated CMB data. It is to be noticed, that the hypotheses of
kriging are well verified for the CMB anisotropies measurements and therefore good
results can be obtained with kriging as we will see in the experimental results on this
data.

The following section describes the energy minimization method for spatial data
interpolation. We especially concentrate on this method for urban areas interpolation,
because, unlike the previously described approaches, this method allows to impose the
desired properties on the surface to find. We will describe these properties and the
details of the method.

3.6 Energy minimization approach

A problem is considered to be well-posed in the sense of Hadamard, if the solution of
this problem exists, it is unique and stable: small changes in the input data will not lead
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to large changes of the result [Chalmond, 2000]. An example of an inverse problem can
be image enlargement. In this case the enlargement is presented as the inverse problem
of image reduction [Calle, 1999]. Resampling of irregularly spaced data also can be
considered as an ill-posed problem. Regularization methods are applied to such kind of
problems to ensure the computation of a meaningful solution. These methods impose
some constraints on the solution. The constraints are often related to the a-priori
knowledge about the result to be obtained [Blanc-Féraud, 2000, Kybic et al., 2002].

Image discontinuity-preserving restoration and interpolation is often based on the
total variation minimization [Rudin et al., 1992, Guichard et al., 1998, Dibos et al., 2000].
One of methods for image restoration with edge preserving is based on energy mini-
mization approach [Geman et al., 1992, Blanc-Féraud, 2000, Blanc-Féraud et al., 1995,
Charbonnier, 1994]. In this approach a solution is a surface which minimizes a cost
function, i.e. which minimizes an energy. An expression for energy has two terms:� data-fidelity term, which penalizes variations between a surface and experimen-

tally measured data� regularization term, which penalizes surfaces if they don’t have properties defined
a priori.

The optimization of such an energy, in the general case, is too expensive. One generally
chooses to introduce assumption of markovianity which makes it possible to ensure that
a minimum can be obtained as sum of local terms (this seems reasonable in our case,
since it is probable that the quality of reconstruction of a roof of building does not
concern the geometry of other distant buildings).

F is said to be a Markov random field on the set S with respect to a neighborhood
system N if and only if the following two conditions are satisfied [Li, 1995]:

1) P (f) > 0 ∀f ∈ F (positivity);

2) P (fi|fS−{i}) = P (fi|fNi
) (Markovianity),

where f - is a configuration of F , corresponding to a realization of the field.

During the reconstruction, one makes iterative calculations of the surface so that
a minimum of energy is obtained. Several elements are significant for the method:
the definition of the neighborhood considered around each point, the definition of the
terms of energy and the corresponding potentials, finally a method to decrease an
energy.

The interpolation method based on the energy minimization, described below,
does not require any previous data resampling. It has been one of our major goals:
to develop a method which takes the original data and produces the output which
should be as close as possible to the sampled surface. We try to avoid as much as
possible any pre- or post-processing. So the initialization for the energy minimization
can be just noise. Though taking a surface consisting of interpolated data will help to
avoid some local minima during the energy minimization with non-convex potential
functions. For convex potential functions the initialization does not matter.
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3.6.1 Definition of neighborhood

There are following requirements for the irregularly spaced data neighborhood defini-
tion [Watson, 1992].

1. The selection method should not allow excessively large or small subsets. If
the selected subset is large, the combined effect will tend to submerge the local
details. On the other hand, if a subset is too sparse, there will not be enough
information to obtain a robust and stable surface.

2. The subset should be distributed uniformly around the interpolation point as
nearly as possible.

3. Individual data points should not mask other data in the subset. This occurs
when two or more data are in line with the interpolation point. Subsets need to
be selected so that the maximum of local information can be extracted.

There are mainly three selection criteria for the neighborhood on the irregularly
spaced data: fixed number, fixed area, natural neighbors [Watson, 1992]. We will
describe each of them.

The first method of selection is the selection by the fixed number. This method
causes the running subset to always be the same size. Therefore this selection criterion
approaches the problem of excessively large, or insufficiently small, subsets. However,
the unsatisfactory effect is that the nearest fixed number of scattered data often are not
arranged evenly around the interpolation point in regions where the density of data is
changing. Therefore, effects due to uneven distribution of data about the interpolation
point remain, and this method is particularly susceptible to problems of masking of
nearby data by more distant data. Selecting a subset with a fixed number of data is
suitable only when the data are distributed evenly over the region.

By the criterion of the fixed distance, subsets are selected on the basis of fixed
distance by including every datum that is closer than some fixed distance from the
interpolation location. All the data within a circular region centered on the inter-
polation location belong to the subset. This approach works well for data that are
uniformly and regularly spaced so that subsets are nearly always the same or similar
size. However, whenever the data are more dense in one region of the data set than
in another, this approach tends to select too many in the densest region, and too few
in the sparse area. Preferably, the fixed distance may be varied, according to local
density of data, to prevent excessively large or small subsets. This, however, requires
monitoring of either density or number of data obtained in subsets. If the samples are
more densely spaced in one direction than another, fixed distance subsets may include
too many data and still not provide an adequate local subset with respect to the sparse
direction. Fixed area subsets are a conceptual variation of fixed distance that allows
an anisotropic subset to be selected. The use of fixed distance subsets implies that all
the data within a circular window are included in the subset. To allow for data that
are unequally dense in some directions, a variation on fixed distance allows the number
of data in the running subset to be controlled by the size and shape of the window that
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includes the subset data. The window containing the data to be included in the subset
may be rectangular, or elliptical. The orientation of the rectangle, or ellipse, is chosen
so that the maximum and minimum widths correspond to the directions of least and
greatest density of data. The ratio of width to length for these windows should be
similar to the ratio of directional densities, so this approach remains unsuitable if the
data density is strongly anisotropic or this ratio varies.

When the samples in data sets are distributed unevenly, the size and shape of the
region covered by the subset need to be adjusted to suit the local configuration of data
locations, and this is done by natural neighbor subsets. The natural neighbors are
determined by the Voronoi diagram. Such a subset adjusts automatically if necessary
for the irregular data distributions. It is also possible to use k-order Voronoi neighbors
[Zhao et al., 2002] as it is shown in Figure 3.17.

Figure 3.17: First order and second order Voronoi neighbors of point P
[Zhao et al., 2002].

We use the fixed distance criterion for the choice of neighboring data samples. Let
observed data samples be {z(xk, yk)} at positions (xk, yk) for k = 1, ..., K. We are
looking for samples u(i, j) on a regular grid (i, j).

The neighborhood consists of points inside a circle, which includes 8 nearest points
on the regular grid (Figure 3.18). So the neighborhood of each point is

N(i, j) = M(i, j) ∪ P (i, j),
where

M(i, j) = {(i′, j′) : dist((i′, j′), (i, j)) ≤ r}

P (i, j) = {(xk, yk) : dist((xk, yk), (i, j)) ≤ r},

dist((x, y), (i, j)) =
√

(x− i)2 + (y − i)2 - a distance between two points.

The radius r is chosen to encompass the 8 nearest neighbors on a regular grid. The
indexes of the points z(xk, yk) which are in the neighborhood of a regular grid point
(i, j):

K(i, j) = {k : (xk, yk) ∈ P (i, j)}.
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Figure 3.18: Definition of the neighborhood of a pixel: the neighborhood is repre-
sented by all the points located inside the circle. The stars represent the irregularly
distributed original data (set P (i, j)), the circles are the regular points (set M(i, j))
which one wants to determine.

3.6.2 Expression for the cost function

The form of the energy generally consists of 2 terms, data-fidelity term and regularization-
term [Geman et al., 1995]. For our problem, we have chosen a following cost function:

F (u) =
∑

i,j





∑

K(i,j)

ψ

(

z(xk, yk) − u(i, j)

dist((xk, yk), (i, j))

)

+ α
∑

M(i,j)

ϕ

(

u(i′, j′) − u(i, j)

dist((i′, j′), (i, j))

)



 ,

where ψ and ϕ - potential functions, the multiplier α gives a weight to the regular-
ization term. The first summation (on i and j) will be made on all the points of the
regular grid. The second summation (on the set K) is done on all the points of the
irregular grid inside the circle of neighborhood of the current point i,j (Figure 3.19).

Figure 3.19: Cliques considered for the neighborhood over the irregular grid of the
laser data points (the current pixel of the regular grid is in the center of the circle,
white circles determine the pixels in the neighborhood, black ones form a clique).

The third summation is done on the 8 neighbors of the current point i,j (Figure
3.20).

Sometimes the position of a laser point may coincide with a node of the regular
grid. In this case the denominator of the data-term will become zero. In order to
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Figure 3.20: Cliques considered for the neighborhood over the regular grid (the current
pixel is in the middle, white circles determine the pixels in the neighborhood, black
ones form a clique).

avoid division by zero, one can add a constant, which is much smaller than 1, to this
denominator. The solution û will be a surface which minimizes the cost function:

û = arg minF (u).

The cost function F (u) can be considered as the variational approach for the in-
verse problem [Blanc-Féraud, 2000, Nikolova, 2004]. It can also be presented as an
anisotropic diffusion by partial differential equation [Blanc-Féraud, 2000]. In this case
a set of images is considered, parameterized by the variable of time t. And the evo-
lution of f is studies as a function of t through a partial differential equation. It will
lead to the minimization of a function, which consists of two terms, like the energy
presented above: the data-term and the regularization term. As it is described in
[Blanc-Féraud, 2000], the data term is the squared difference between the observed
image and the surface to find, and the regularization term is a potential function
whose argument is the total variation of the gradient of the sought surface. The regu-
larization coefficient, which determines the strength of the imposed properties on the
surface, will appear as the time t. The potential functions, proposed for the anisotropic
diffusion in the literature, are not convex. On the contrary to this representation, we
do not limit ourselves by the only choice of the quadratic function for the data term,
we will explore different choices of the potential functions for the data-term of the en-
ergy to minimize. It concerns also the regularization term of our energy function: we
will consider both convex and not convex potential function, even though in the case
of anisotropic diffusion the preference is given to the functions which are not convex.
Indeed, using concave potential functions should lead to better edge preserving, but
in the same time it may complicate the optimization procedure.

3.6.3 Potential functions

The choice of the potential functions ϕ and ψ is supposed to lead us to the best solution
which is determined by features of altimetric reconstruction in urban environment. Let
us express some common-sense remarks about urban environment.

1. A lot of surfaces are horizontal (or about): streets, pavements, terraces, gardens
and yards, etc.
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2. Other surfaces are flat, but oblique, in particular the sides of the roofs.

3. Many discontinuities have to be found in the vertical ortho-photographic projec-
tion which we want to make of the city, the frontages in particular. Nevertheless,
these surfaces can give measurements which do not correspond the real model
because of the angle of scanning of the laser which can hit the frontages or cling
on convex objects: balconies, canopies, etc.

4. Finally, a small number of objects do not correspond to any of these models.
It happens for vegetation, vehicle surfaces of car parks where these vehicles are
gathered in a very dense way.

A lot of studies have been done to determine potential functions for filtering images
while recovering edges [Nikolova, 2000, Charbonnier et al., 1997, Bouman et al., 1993,
Blanc-Féraud, 2000]. Some potential functions are convex, some are not. They can be
smooth or non-smooth at the origin. Spatially adaptive potential functions have been
developed for noisy images [Park et al., 2000].

We limit our interest to four choices for potential functions. Each of them, except
for total variation, has a parameter to tune (denoted by β).

Huber function (Figure 3.21(a)):

ϕ(t) = t2I(|t| < β) + (β2 + 2β||t| − β|)I(|t| ≥ β) (3.1)

where I(p)=1 if p is true and I(p)=0 otherwise. This function is supposed to preserve
slopes on the surface.

Total variation function (Figure 3.21(b)):

ϕ(t) = |t|. (3.2)

Since this function is non-smooth at zero, it causes steplike zones on the surface
[Nikolova, 2000]. Using the total variation potential function for the regularization
term is a common choice when a surface with discontinuities is needed [Acar et al., 1994].
The total variation potential function, i.e. the modulus, for the regularization term
leads to a surface composed of flat zones which are separated by sharp boundaries. In
general, total variation methods for image restoration were introduced by Rudin and
Osher [Rudin et al., 1992]. In these methods the regularization is a L1-norm of the
derivatives of the unknown signal. Such regularizations have been observed to produce
“blocky estimates”. It is established that strongly homogeneous zones in the resulting
surface are both recovered from noisy data and preserved intact from small variations
of the data, if the potential function is nonsmooth at zero [Nikolova, 2000].

Generalized Gaussian function (Figure 3.22(a)):

ϕ(t) = |t|β 1 ≤ β ≤ 2. (3.3)

Truncated quadratic function (Figure 3.22(b)):

ϕ(t) = min{t2, β}. (3.4)
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Figure 3.21: (a) Huber and (b) total variation function.
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Figure 3.22: (a) generalized Gaussian and (b) truncated quadratic function.
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It is a common choice to take a smooth function as a potential function for the
data-term. Most often the quadratic function is taken. Recently it has been proved
that the choice of a non-smooth potential function for the data-term may be useful in
order to eliminate outliers or impulse noise. This choice also leads to the exact fitting
for the most of the original data [Nikolova, 2002, Nikolova, 2004].

3.6.4 Optimization algorithm

In order to find an optimum of the cost function several algorithms may be used
[Li, 1995]. These algorithms may be classified in two groups - deterministic and sto-
chastic ones [Charbonnier, 1994]. The problem is that the energy function can have
local minima, if a potential function is not convex. While the best solution is in
the global minimum, some algorithms lead to a local one. This is the case when
a deterministic algorithm is applied for minimizing a non-convex function. The re-
sult of such a minimization will depend on an initialization. If the initial surface is
close to the global maximum, it is possible to recover a good solution. iterated condi-
tional modes (ICM) [Li, 1995] and graduated nonconvexity [Nikolova, 1999] algorithms
are deterministic and often used for cost function minimization in image processing
[Charbonnier, 1994].

The ICM algorithm requires only the knowledge of the cost function in a local
neighborhood. It was used in our case and it has the following steps.

1. Initialization of the surface;

2. For each point� compute cost function values for all possible values the surface can have� attribute to the point the value which minimizes the cost function

3. Stop calculations if there are no changes at step 2; otherwise - come back to step
2.

ICM algorithm is a relatively fast optimization technique which unfortunately does
not converge towards the global optimum unless the initial point is close from it. An-
other very known technique is simulated annealing which theoretically gives a global
optimum. This algorithm is a stochastic optimization algorithm. It is based on an
analogy with a physical process of cooling for metals and freezing for liquids. A pa-
rameter that represents a temperature is introduced, and according to the theory it
should decrease very slow. When the temperature is high enough, there is the prob-
ability of choosing not the values that minimize the cost function, but the ones that
maximize it. It insures avoiding local minima. Simulated annealing is considerably
more expensive in calculation time [Picard et al., 1995].

Among other available minimization algorithms are graduated non-convexity al-
gorithm, half-quadratic regularization and graph cuts method. The graduated non-
convexity algorithm [Charbonnier, 1994] starts by minimizing a convex criterion and
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the non-convexity is introduced gradually during the process of minimization. This
technique leads to a local minimum. The half-quadratic regularization uses the Legen-
dre transform in order to represent a concave function by two convex ones. Then the
iterative gradient-based minimization is performed on these convex functions. This
method is developed in [Charbonnier, 1994]. Graph cuts method is the newest ap-
proach proposed for energy minimization. It is based on combinatorial optimization
and allows to change several values of the sought surface in the same time. It is also
shown that this method converges faster than simulated annealing to a better local
minimum. This method is presented in [Boykov et al., 2001].

For our energy function we choose the ICM method: in the case of convex potential
function it will lead us to the global minimum and for the concave ones with a good
initialization we will get a local minimum which is good enough. Most of the functions
we have to minimize are convex, though not necessarily having derivatives at the origin.

3.6.5 Example on the synthetic model

The result of the interpolation based on energy minimization is in Figure 3.23. The
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Figure 3.23: Energy minimization result on the synthetic model sampled according to
the laser data of Brussels; pixel size is 1.5 meters, regularization coefficient α = 5.

performance of the regularization is more obvious when we decrease the size of the
pixel, that is we impose a more dense regular grid (Figure 3.24). We can see that
energy minimization leads to the better preservation of edges. The radius for the
circle, inside which the data samples are searched, is taken to be equal to 1.41 meters.
It corresponds to the circle including 8 nearest neighboring pixels for the regular grid
size 1.5 meters. It leads to having practically no pixel without data samples in their
neighborhood.

For the examples, presented above, we take the result of the linear interpolation as
the initialization of the surface for the optimization algorithm. The algorithm should
always converge to the same solution as long as convex potential functions are used
in the cost function. It means that actually the surface can be initialized by noise
or by zeros at every pixel. We will demonstrate the results of energy minimization
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Figure 3.24: Left image: triangle-based linear interpolation. Right image: energy
minimization, regularization coefficient α = 5. For both images the synthetic model
is sampled according to the laser data of Brussels; pixel size is 50 cm.

on different initial surfaces in the following chapter. When we take the result of the
linear interpolation as an initial surface, then we have a good starting point for the
minimization algorithm and the solution should be found quicker.

3.7 Conclusion

The choice of interpolation approaches is very broad, but dealing with irregularly scat-
tered points upon urban areas restricts the variety of possible solutions. There are two
reasons for it: one needs a method, adapted for a scattered initial data and preserving
discontinuities and slopes of a surface. Two kinds of interpolation (linear and near-
est neighbor interpolation) are done by using Delaunay triangulation of original data.
Triangle-based linear interpolation applies barycentric coordinates to the data at the
vertices of the triangle. We don’t consider interpolation of higher orders, because it is
known to produce smooth surfaces which will not represent properly an urban area.
Kriging is a geostatistical method, which considers all the elevation values as samples
from a realization of a stationary random process and analyses the spatial behavior of
the corresponding parameters. This approach also can be applied to the laser data.

Since the problem of 3D scattered data interpolation is ill-posed, it makes sense to
introduce a regularized solution imposing desirable properties on the resulting surface.
One of methods for image restoration with edge preserving is based on energy min-
imization approach. In this approach a solution is a surface which minimizes a cost
function, i.e. which minimizes an energy. An expression for energy has two terms:
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a data-fidelity term and a regularization term. The regularization term is weighted
by a multiplier so that the larger is the multiplier the more regularized the resulting
surface will be. Several elements are significant for the method: the definition of the
neighborhood considered around each point, the definition of the terms of energy and
the corresponding potentials, and a method to minimize an energy. For each point of
a regular grid, where one wants to get an elevation value, two kinds of neighborhood
are introduced. The first one consists of eight nearest neighbors on the regular grid,
the second neighborhood has all the scattered points inside a circle, which contains
eight nearest regularly spaced points. We consider four choices for potential functions:
total variation, generalized Gaussian, Huber and truncated quadratic function. The
quadratic potential function is often used for regularization, but it imposes a smooth-
ness constraint on the resulting surface. A discontinuous surface can be achieved with
the requirement that the solution be of bounded variation rather than smooth. This
means using the total variation potential function. Generalized Gaussian and Hu-
ber function have edge-preserving properties too. These functions are convex and it
ensures finding the global minimum of the cost function. The truncated quadratic
function leads to smoothing as long as the gradient values are lower then a threshold.
When the gradient is larger then the threshold, no penalties are introduces. And so
the edges are preserved. To start, the same functions for both data and regularization
terms will be taken. To minimize the cost function the iterated conditional modes
algorithm is used. The energy minimization is supposed to lead to surfaces well repre-
senting urban areas, where edges contain important information because they delimit
buildings and streets.

In this chapter we described the methods that we have chosen for the interpolation
of the airborne laser data. The results of these methods, applied to the real data sets,
are presented in the following chapter. We also will apply these methods, as well as
binning, described in the last chapter, for the simulated data of cosmic microwave
background anisotropies.
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Chapter 4

Experimental results on laser data

4.1 Introduction

In this chapter we present the experimental results on two real sets of airborne laser
scanning data. We apply the methods described in the previous chapter: nearest
neighbor interpolation, linear interpolation, kriging and energy minimization method.

The first data set that we consider is the data of Brussels acquired by the Eurosense
company. We describe the data and then apply the methods mentioned above. We
have a reference image for the considered area and it will allow us to evaluate the
quality of the obtained results.

The second data set is acquired the TopoSys company with a different laser scan-
ning technique. It is the data of Amiens, and we also have a reference image for this
town. So we are interested in applying the interpolation methods to this data in order
to verify how the performance of these methods is linked to the properties of surfaces
representing urban areas. Having two data sets acquired by different laser scanning
systems, with different precision, will let us evaluate the methods not depending on
one particular data set.

4.2 Data of Brussels

4.2.1 Data description

The airborne laser scanning data of Brussels, taken for the experiments, was acquired
over the area shown in Figure 4.1.

The size of the area covered by the laser scanning data is 200 × 200 meters. The
laser data over this area contains 15288 points. The laser points form a zigzag scanning
pattern (4.2).

Figure 4.3 shows that the laser points are irregularly distributed: x coordinates of
the laser points are plotted versus y coordinates (in meters). The range of altitudes
is from 14 to 42 meters. The values of about 14 meters represent the ground. Large
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Figure 4.1: The aerophoto of the studied area of Brussels: source Eurosense.

Figure 4.2: Laser scanning data points form zigzags.
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Figure 4.3: The primary irregular grid.
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values of altitudes correspond to the roofs and the tops of trees. The histogram of the
altitude values is in Figure 4.4.
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Figure 4.4: Histogram of the altitude values of Brussels laser scanning data.

The peak of the histogram shows the laser points that are on the ground: roads
and pavements. The heights of most of the buildings and vegetation are lower than 20
meters. Laser scanning points are also visualized on Figure 4.5, where colors represent
altitudes.

The density of primary laser data is about 1 point per 3,24 m2. The value 3,24 m2

will thus be taken as a grid size for regular sampling. It corresponds to a sampling on
the grid with a step 1,8 m.

Now, when we have given a description of the laser scanning data of Brussels, we
apply the interpolation methods to this set of data. We start by the nearest neighbor
interpolation and the results are presented below.

4.2.2 Nearest neighbor interpolation

The results of the nearest neighbor interpolation are in Figures 4.6 - 4.7. Figure 4.6
represents altitude values as gray levels. The colorbar on the right side of an image
shows the correspondence between the gray levels and the height. The larger is the
altitude assigned for a pixel, the lighter is its color on the image.

The drawback of nearest neighbour interpolation is that the surface is very discrete,
there are no slopes, and changes between groups of values are very steep. It is especially
obvious when the density of a regular grid is higher than the density of laser points.

In the following section we present the results of the linear interpolation.

81



Figure 4.5: Laser scanning points, colors represent altitude values (green points are
on the roofs, blue - on the ground).

Figure 4.6: Result of nearest neighbor interpolation based on Delaunay triangulation
of initial data (site of Brussels, data of Eurosense).
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Figure 4.7: 3D model of the nearest neighbor interpolation result.

4.2.3 Linear interpolation

Triangle-based linear interpolation results are in 4.8 - 4.9.

The linear interpolation results look quite realistic, but there are problems with
edges. The edges are distorted and smoothed.

In the following section we describe how kriging is applied to the data.

4.2.4 Kriging

Spherical variogram is taken to adapt the parameters for kriging. This type of var-
iogram is often used in different applications. This variogram is less smooth than
Gaussian or exponential ones. Linear variogram can also be used, though it is not
expected to change the results considerably. First an experimental variogram was cal-
culated from the laser data, then the parameters were chosen so that they correspond
to this experimental variogram. Initially, the parameters of the theoretical variogram
are chosen from the visual observation of the experimental one. While running krig-
ing on the data set, singular matrices occur sometimes. That creates a problem with
matrix inversion and therefore it is desirable to have a set of variogram parameters
that helps to avoid singular matrices. That is why the parameters obtained from the
experimental variogram were a bit tuned. For the spherical variogram used to perform
kriging, the range is equal to 25, nugget is 4 and sill is 40. The experimental variogram
and the corresponding theoretical one are in 4.10. Only the left part of the variogram
is shown in this figure. The variogram values which correspond to distances between
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Figure 4.8: Triangle-based linear interpolation result.

Figure 4.9: 3D model of the triangle-based linear interpolation result.
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points larger than 110 meters are not presented. The influence of such distant point
on each other doesn’t matter, because in order to calculate a value in a grid point, we
use only values that lie in a neighborhood of the current point. So not all the data
points are used, only local ones are considered. The neighborhood size for each pixel
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Figure 4.10: Experimental variogram (points) and the theoretical spherical variogram.

is a square 10×10 meters. There are around 20-50 samples that fall in each neighbor-
hood. The resulting surfaces are in 4.11 - 4.12. Kriging gives smooth areas. We use
ordinary kriging method. We can see that kriging is not well adapted for the surfaces
representing urban areas. It can be noticed already from the experimental variogram
whose form does not correspond to a theoretical one. The software for performing
ordinary kriging was developed in the TSI department of the ENST.

The following section is devoted to the comparison between the results, obtained
above on the real set of laser scanning data of Brussels, and the reference. We describe
the reference and make the comparison.

4.2.5 Comparison of results

Obviously, the quality of results is not to be determined only visually. Correlation
values with ground truth can be used as quality measures in this case. The Digital
Elevation Model (DEM), obtained from high resolution optical images, is taken as a
reference here (Figures 4.13 and 4.14) [de Joinville, 2001, Fradkin et al., 1999]. For
some points of this reference the altitude values are not determined. These points
have black color in Figure 4.13. The reasons for not having the elevation values are
the following. At first, the stereo-photos of the area are taken. Then a correlation
method is applied to calculate the elevation values. In the sites where the correlation

85



Figure 4.11: Kriging result with a spherical model of variogram.

Figure 4.12: 3D model of the kriging result with a spherical model of variogram.
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method fails, the elevation is unknown. At second, plane fitting is performed over the
parts of the received surface [Roux et al., 1999]. If a fitted plane is considered to be
reliable, then the resulting elevation values will belong to this plane. If it is unreliable,
no interpolation is made. Since in the areas of vegetation it is difficult to fit a plane,
it leads to many undetermined elevation values there. This area is on the top of the
image in 4.13.

Figure 4.13: DEM obtained from stereo photos. The sampled version to adapt the res-
olution (1.8 meters) for comparisons. Black color corresponds to pixels where altitude
values are not determined.

If we put z values of original scattered laser data on one axis and corresponding
the same locations z values of the DEM on another axis, then we get Figure 4.15. In
the ideal case this Figure must show a line y = x.

The image in Figure 4.16 represents in levels of gray the altitude values of the laser
data versus the altitude values of the reference DEM: the darker is a points, the more
times it was hit while plotting the laser data z values versus the DEM z values. The
values along the colorbar indicate how mane times a point fell on a site of the image.

Subtracting the reference DEM from the linear interpolation result, the problems
on the edges is obvious (Figure 4.17).

The large errors that appear on the top part of the image are due to the vegetation.
The reference DEM has a smooth surface in this part, while the laser data penetrates
the vegetation and the resulting surface is very irregular: some points lie on the ground,
some - on the tops of trees.

A correlation coefficient is calculated between two vectors: a vector X of the DEM
elevation values and a vector Y of a resultant surface elevation values:
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Figure 4.14: 3D reference DEM model.

Figure 4.15: Original z values of the laser data versus z values of the DEM, 15288 points
(the points on the horizontal axis mean the points for which there is no information
in the DEM) The correlation between the two data sets is 0.6740.
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Figure 4.16: Original z values of the laser data versus z values of the DEM, in gray
scale.
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Figure 4.17: The absolute values of the difference between the reference DEM and the
linear interpolation result.

89



zx =
X − X̄

std(X)
, zy =

Y − Ȳ

std(Y )

r =
< zxzy >

N − 1

where X̄, Ȳ - mean values of the vectors X and Y respectively, std(X), std(Y ) - their
standard deviations, N - a number of elements in a vector, r - a correlation coefficient.
A perfect correspondence between interpolated measurements and the DEM should
lead us to a coefficient r equal to 1.

The resolution of the DEM is 10cm. The resolution of a resultant surface is 1m
80cm. In order to get values of the DEM for comparison we do the following. For each
point of a resultant surface we find a corresponding point of the DEM. Then a value
for comparison will be a median value of all the points inside the window 5x5 pixels
on the DEM. There are some points where the DEM doesn’t provide any information
(Figure 4.13) (absence of textures on very uniform surfaces or hidden parts during
the construction of the DEM). In the first case, the median value makes it possible
to correct this absence, in the second (too large zones) the point is ignored in the
correlation calculation.

We also noticed that the area of study contained 2 different zones:� the large part of the image has buildings in an urban zone,� but in the part of the area located in the top of the image, closer to the right
side, has vegetation with much more irregular geometry.

This second zone is of a less interest for the study we made a study with and without
this zone.

In the following section we apply the energy minimization method and compare the
results with the reference. We evaluate this method relatively to the previous results
obtained by using the well known approaches: nearest neighbor interpolation, linear
interpolation and kriging.

4.2.6 Energy minimization method

In the beginning of making experiments we supposed the multiplier α for the regular-
ization term to be less or equal to 1 (in order to stay close to original data). The cost
function is:

F (u) =
∑

i,j





∑

K(i,j)

ψ

(

z(xk, yk) − u(i, j)

dist((xk, yk), (i, j))

)

+ α
∑

M(i,j)

ϕ

(

u(i′, j′) − u(i, j)

dist((i′, j′), (i, j))

)



 ,

To start, we took both potential functions the same: ψ = ϕ. We initialized the
optimization algorithm with different surfaces:
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� white noise,� results of triangle-based linear interpolation,� results of nearest neighbour interpolation,� results of kriging.

The method of optimization will be the ICM for its more reduced calculating time.
A significant parameter in this algorithm is the choice of the step in altitude (the
height discretisation). A too small step significantly increases the calculations since
it is necessary to calculate the potential function for all these altitudes. A too coarse
step leads to a too schematic description of the buildings but can also produce false
minima. We chose a step of 50 cm, quite compatible with the required space resolution.
For these initial surfaces, we obtained the following results of correlation.

Initialization On the complete test area Only on the area with buildings

White noise 0.0170 0.0177

Linear interpolation 0.9060 0.9311

Nearest neighbour interpolation 0.8627 0.8989

Kriging 0.9193 0.9406

Table 4.1: Initializations of the optimization and the correlation values between them
and the DEM.

We can see that kriging gives better results than the linear interpolation, the nearest
neighbor interpolation is worse. We also can see that the zone of vegetation has
tendency to degrade the correlation.

Figures 4.18-4.21 show results for various α values for the complete area (with
vegetation).

The horizontal line determines the best correlation between the DEM and an ini-
tialization surface (it is kriging for all the figures) in order to see if energy minimization
approach outperforms the classical ones or not. A curve located below this line indi-
cates that optimization degrades the initial solution. Results for the same area but
without vegetation (only for the area with buildings) are in Figures 4.22-4.25.

From the pictures we can see that the larger is α, the better results we get. So we
continue increasing α. We take linear interpolation results as an initial surface, because
they give better output according to previous plots. The parameter for the truncated
quadratic function must be adjusted. So for the following results it is equal to 50. It
means that if the difference between heights of two points is larger than approximately
5 meters, then the penalty introduced by the truncated quadratic potential function
will not increase. Results are presented in Figures 4.26, 4.27.

For the generalized Gaussian function we take β = 1.2, because it gives better
correlation results than other values of β. We can see the results for four potential
functions, where truncated quadratic function gives the best results for the complete
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Figure 4.18: Results for Huber potential function (parameter is equal to 1)
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Figure 4.19: Results for total variation potential function
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Figure 4.20: Results for generalized Gaussian potential function (parameter is equal
to 1,5)
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Figure 4.21: Results for truncated quadratic potential function (parameter is equal to
1)
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Figure 4.22: Results for Huber potential function (parameter is equal to 1)
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Figure 4.23: Results for total variation potential function
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Figure 4.24: Results for generalized Gaussian potential function (parameter is equal
to 1,5)
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Figure 4.25: Results for truncated quadratic potential function (parameter is equal to
1)
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Figure 4.26: Search for an optimum α for the area with vegetation.

0 1 2 3 4 5 6 7 8 9 10
0.91

0.915

0.92

0.925

0.93

0.935

0.94

0.945

0.95

0.955

alpha

co
ef

fic
ie

nt
s 

de
 c

or
re

la
tio

n

fontion à variation totale
fonction gaussienne généralisée
fonction de Huber
fonction quadratique tronquée

Figure 4.27: Search for an optimum α for the area without vegetation.

96



area and generalized Gaussian and truncated quadratic functions are better for the
area without vegetation. Huber potential function is the most sensitive to the change
of the coefficient α, whereas total variation function gives worse results, but guaranteed
for a very broad set of parameters.

Taking the results that correspond to the maximums of the curves, when α is equal
to 2 or 3 (Figures 4.26, 4.27) are in Figures 4.28 - 4.31.

Figure 4.28: Both potential functions are total variation.

The common choice for the data-term potential function is quadratic function.
We have tried each of the four potential functions for the regularization term, having
the quadratic function for the data-term, but the results do not outperform the ones
presented above. The 3D model with colors, projected from an optical photo on the
result with truncated quadratic function and α = 2 is in Figure 4.32.

In the following section we repeat the experiments, which are done on the data of
Brussels in this chapter, applying the interpolation methods to the second real data
set - the laser scanning data of Amiens.

97



Figure 4.29: Both potential functions are generalized Gaussian.

Figure 4.30: Both potential functions are Huber functions.
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Figure 4.31: Both potential functions are truncated quadratic.

Figure 4.32: 3D model with colors: energy minimization result, potential functions -
truncated quadratic, α = 2.
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4.3 Data of Amiens

4.3.1 Data and ground truth description

The Toposys company, using laser scanning system with fiber optics, has acquired the
laser data of Amiens. The laser data used for the experiments is taken over the area
in Figure 4.33.

Figure 4.33: The orthophoto of the studied area of Amiens, resolution is 40 cm.

The interpolation is performed on the zone of 140× 140 meters. There are 193990
laser scanning points in this area. The altitude values vary from 27.6 to 54.6 meters.
The histogram of the altitude values is in Figure 4.34.

The first peak of the histogram is due to the points that lie on the ground. The sec-
ond peak appears because of the buildings and vegetation. Laser points form parallel
lines Figure 4.35.

The density of points along lines is much higher than across them: the distance
between lines is about two meters, and the distance between points in a line is some
centimeters. So the points are spaced very irregularly. For a big part of the area, the
scanning strips overlap (Figure 4.36, 4.37).

The size of the grid for interpolation corresponds to the average density of the
laser points and it is 40cm. Previously, a DEM of the same area was made in IGN
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Figure 4.34: Histogram of altitude values for Amiens laser scanning data.
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Figure 4.35: Laser scanning points form parallel lines.
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Figure 4.36: Laser scanning points over the studied zone of Amiens.
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Figure 4.37: Laser scanning points over a piece of the studied zone (colors represent
altitude values).

(Institut Géographique National). It was done using the information on building
edges [de Joinville, 2001]. This DEM served us as the reference model. It contains
only buildings and pavements, there is no vegetation there (4.38).

The reference DEM corresponds to the laser data quite well. The correlation
coefficient between the laser data and the reference is 0.9372 (Figure 4.39, 4.40).

Considering the evaluation of results for the laser data of Brussels, the correlation
coefficient, as the evaluation of quality, prefers smooth surfaces. So for the quality
evaluation for the data of Amiens two measures are considered: mean absolute error
and correlation coefficient. Root mean square error gives results proportional to the
ones of the correlation coefficient. That is why it is not presented here. The mean
absolute error (MAE) between two vectors X and Y is calculated using the formula

MAE =
1

N

N
∑

i=1

|xi − yi|.

4.3.2 Classical interpolation approaches

Considering the classical interpolation methods, triangle-based linear interpolation
gives better results than nearest neighbor interpolation (Figure 4.41) or kriging (Figure
4.42). The distribution of points is not favorable for kriging, neither for calculating
the experimental variogram nor for the interpolation. If a large size of a neighborhood
for kriging is taken, then the result is too smooth, but small neighborhoods don’t
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Reference TRAPU, subsampled with resolution 40 cm
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Figure 4.38: DEM used as a reference for Amiens.
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Figure 4.39: Laser points versus the reference values. The correlation between the two
data sets is 0.9372.
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Figure 4.40: Laser points versus the reference values. The darker is a point, the more
times it was hit while plotting z values of laser data versus z values of the reference.

Nearest neighbor interpolation on the Amiens laser scanning data
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Figure 4.41: Nearest neighbor interpolation on the laser scanning data of Amiens.
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Kriging result on the Amiens laser scanning data

range is 12, nugget is 0.5, sill is 30; neighborhood (in meters) is 1x1
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Figure 4.42: Kriging on the laser scanning data of Amiens.

contain enough information and lead to distorted images.

For the data of Amiens there are two echo pulses available, that is first and last
echoes of the laser. Only the last echo pulses were considered for interpolation, because
the first echo pulses contain more information on the vegetation which is not present
on the reference model. The correlation coefficient for the linear interpolation result
(Figure 4.43) is 0.9460, the mean absolute error is 1.0198 meters. Since the reference
DEM was done some years before the laser scanning data acquisition, there are some
parts of buildings that appeared meanwhile, and they contribute to the error value.

4.3.3 Energy minimization method and comparison of results

To perform the energy minimization method, the solution is initialized with the result
of the triangle-based linear interpolation. The step for the ICM algorithm is 20 cm. In
this case the choice of the neighbourhood size for the laser data was more important
than the choice of a potential function for the regularization term. Data values in
different directions are required, therefore for each pixel the values in a circle with the
radius 1 m are taken. The radius that corresponds to the 8 nearest neighbors on the
regular grid should be 0.57 m, but in this case a large part of pixels doesn’t have any
laser data points in the neighborhood. The correlation coefficients for different values
of α are in Figure 4.44.

The mean absolute error is in Figure 4.45.

The horizontal line shows the linear interpolation result.

According to the correlation coefficient, the generalized Gaussian function provides
the best result (Figure 4.46), and the Huber potential function is the best (Figure 4.47)
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Figure 4.43: Triangle-based linear interpolation.
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Figure 4.44: Search for an optimum α value for the data of Amiens.
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Figure 4.45: Search for an optimum α value for the data of Amiens.

according to the mean absolute error.

The best result according to the mean absolute error is visually better than the
one preferred by the correlation coefficient.

The effect of the regularization can be seen in Figures 4.48 - 4.51. In Figures 4.49 -
4.51 solid line represents the profile of the resulting surface after interpolation, and the
points are the laser scanning data samples. The linear interpolation distorts edges
because of the triangulation made on the points situated around the discontinuities.

The colors projected on the result of energy minimization with Gaussian potential
functions is in Figure 4.52
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Figure 4.46: Both potential functions are generalized Gaussian - the best result ac-
cording to the correlation coefficient.

Figure 4.47: Both potential functions are Huber functions - the best result according
to the mean absolute error.
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energy minimization with Huber potential functions
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Figure 4.48: The effect of the regularization on a piece of the data of Amiens.

Figure 4.49: Left image - profile of the linear interpolation result; right image - profile of
the surface obtained by energy minimization. The distortions of the edges or buildings
are eliminated by applying the energy minimization to the laser scanning data.

Figure 4.50: Left image - profile of the linear interpolation result; right image - profile of
the surface obtained by energy minimization. The distortions of the edges or buildings
are eliminated by applying the energy minimization to the laser scanning data.
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Figure 4.51: Left image - profile of the linear interpolation result; right image - profile of
the surface obtained by energy minimization. The outliers are suppressed by applying
the energy minimization to the laser scanning data.

Figure 4.52: A result for Amiens as 3D model with colors.
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4.4 Conclusion

The well-known interpolation methods for scattered data were applied for the laser
scanning data over urban areas. There are two different data sets (Brussels and
Amiens) for the tests: the distribution, the density of the laser points and the scanning
system are different for them. For the Brussels data the result of kriging is the best
according to the correlation coefficient. The correlation coefficient as a quality mea-
sure chooses smooth surfaces as the best ones. So while treating the data of Amiens,
two quality measures are utilized: correlation coefficient and mean square error. For
Amiens, triangle-based linear interpolation outperforms nearest neighbor interpolation
kriging. Most of the distortions in the interpolation results are obviously on the edges.
We can see that kriging does not lead to satisfactory results, the hypotheses of this
method are not verified on surfaces representing urban areas.

Taking into account the drawbacks of the classical methods, we propose an energy
minimization approach. The results with the same potential functions for the both
data- and regularization-term are presented, though more experiments were made. It
is because other compositions of potential functions or different parameters for each
term of the energy didn’t lead to better results. The choice of potential functions as
well as their parameters obviously determine the quality of reconstruction. Different
initializations for the optimization algorithm were tried, but they didn’t influence the
results too much. In general, initialization is important when the truncated quadratic
function is used, because this function is not convex. Choice of a strong parameter
of regularization (for example, when it is equal to 3) improves the quality criterion
of correlation. It happens because often there are more than 8 laser points in the
neighborhood of the pixel, and then a strong regularization coefficient is needed to
compensate their influence on the result and to regularize the surface. Also the value of
the regularization parameter depends on the choice of potential functions for the data-
term and regularization-term. As for the choice of the neighborhood, it is important
to have data points in several directions. Fixed distance approach, proposed here, can
be substituted by a neighborhood based on Delaunay triangulation of the laser data.

We also saw that the potential functions guided the reconstruction well towards
theoretically foreseeable specific profiles (Figure 4.53). The theoretical properties of

Figure 4.53: Preferable choices of potential functions on urban areas.

the potential functions have been confirmed during our experiments. The total varia-
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tion potential function is working well when one wants to get a surface composed of
strongly homogeneous zones divided by sharp edges. In the case of an urban area it
is a building with a flat roof. Truncated quadratic potential function helps to pre-
serve edges, and the parameter of truncation is of a great importance. Huber function
performs well on the slopes and therefore it is a good choice for roofs of most of build-
ings. Generalized Gaussian function produces the smoother solutions the larger is its
parameter. The model of the cost function adopted today does not make it possible
however to control locally the type of a solution. It would certainly be useful to be
able to vary the criterion locally.

A visual observation of the reconstructed images shows that the correlation prefers
surfaces a little too smoothed whereas the human observer is less disturbed by local
noises if the transitions are strictly respected. That is why we propose the mean
absolute error to measure the quality of the results.

The quality of the results is supposed to increase when both echoes are used: the
first and the last one. These echoes will provide more laser points around edges. As
far as the quality of the results is concerned, we should mention that the references
we use to verify it are not perfect representations of the studied areas. Evaluation of
the quality of such a reference itself is also an issue of research [de Joinville, 2001].
The reference image that we have for Brussels is obtained by a plane fitting technique
which makes the roofs to be simpler than they are in the reality (Figure 4.54). The

Figure 4.54: Roofs of buildings in an urban area.

model contains some distortions in the area of vegetations. As for the data of Amiens,
the reference we have is also simplified and not containing vegetation. It is obtained
from the some polygons which delimit the edges of buildings [de Joinville, 2001].

In the following two chapters we will describe the CMB data properties and the
acquisition technique as well as the interpolation results obtained by using the same
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methods as the ones applied for the laser data. We will use binning as the reference
method in order to evaluate the performance of the interpolation approaches described
earlier in this thesis and applied to the laser data in this chapter.
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Chapter 5

Cosmic microwave background

5.1 Introduction

Previously we considered the irregularly spaced data interpolation for the airborne
laser scanning data. The second application considered in the thesis is the Cosmic Mi-
crowave Background (CMB) anisotropies measurements interpolation. In this chapter
we consider the nature of the data as well as the acquisition techniques. The de-
scription of the Archeops and Planck instruments, and the results presented in the
next chapter, are a part of the large project aiming to produce the most precise and
complete CMB measurements ever accomplished.

The Archeops experiment is supposed to test the equipment which will be used for
the Planck satellite mission. We present a short overview of these two instruments,
because they let us understand how the measurements are acquired and what kind of
noise is supposed to be present in them.

We will also describe the simulated CMB anisotropy measurements made according
to the Archeops acquisition technique. This set of data will be used for testing the
interpolation methods in the next chapter.

5.2 CMB radiation

The CMB radiation constitutes one of the most powerful tools of cosmology. This
photon radiation is a relic from a hot and dense past of the universe, produced at
the Big Bang and freely propagated 300000 years after it [Barreiro, 2000]. In the
framework of Big Bang theory, the universe started with the hot and dense phase
about 15 billion years ago and cooled down while expanding. As the universe ex-
pands, the temperature decreases and drops to about 3000K (2727�), allowing free
electrons and protons to form neutral atoms. At this time, known as decoupling, the
universe becomes transparent, the photons can freely propagate, giving rise to the
CMB. It is supposed that after the decoupling there was no interaction between mat-
ter and the CMB radiation. With time the temperature of the CMB has dropped
and now is T0 = 2.73K (-270�). This temperature is almost perfectly isotropic, the
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anisotropies being about one part to 100000. Measuring the properties of these temper-
ature anisotropies will constrain drastically the seeds for structure formation as well as
the cosmological parameters describing the matter content, the geometry and the evo-
lution of our universe. The accuracies, required for precision tests of the cosmological
models and measurements of the cosmological parameters, are such that it is necessary
to separate the contribution of several distinct astrophysical sources, all of which emit
radiation in the frequency range used for CMB observations, i.e. the 10 GHz - 800
GHz range [Delabrouille et al., 2002]. The separation of astrophysical components is
possible essentially because the components have distinct emission spectra as a func-
tion of radiation wavelength. Subtraction of slow drifts and the straylight problem are
also important issues for CMB anisotropies experiments [Delabrouille, 2001].

The existence of the CMB was first predicted by Gamow and his collaborators in
1948, when studying the light-element synthesis in the primordial universe. They pre-
dicted that this relic radiation should still be ubiquitous today, with a temperature of
about 5K (-268�). In 1964 the discovery of the CMB was made by Penzias and Wil-
son. They detected a noise in their antenna with a temperature of about 3K (-270�)
coming from all directions in the sky and being very uniform. The temperature of
the CMB has been measured by the FIRAS (Far Infrared Absolute Spectrophotome-
ter) instrument on board of the COBE (Cosmic Background Explorer) satellite to be
T0 = 2.728 ± 0.004K. These measurements were done by NASA (National Aeronau-
tics and Space Administration) in 1989 [Henrot-Versillé, 2003]. The prediction and the
subsequent detection of the CMB is one of the strongest supports for the Big Bang
model.

Since the CMB freely propagated after the decoupling time, it carries information
about how the universe was much time ago. The fact that the CMB is very homoge-
neous, means that so was the primitive universe. However, the matter in our universe
clusters on a wide range of scales, forming all the structures we see today. If all theses
structures were formed via gravitational instability, those density fluctuations should
already be present at early times, leaving their imprint as temperature anisotropies in
the CMB.

The temperature anisotropies of the CMB are described by a 2-dimensional random
field ∆T

T
(~n) ≡ T (~n)−T0

T0

, where ~n is a unit vector on the sphere. It is usual to expand
the field in spherical harmonics.

There have been many ground based, balloon-borne and satellite experiments
to measure the CMB anisotropies. They acquired data at different resolutions and
different frequencies. Among ground based experiments there are APACHE, CAT,
Python, VLA and others. Balloon-borne experiments: Archeops, ARGO, BAM,
BOOMERanG, FIRS, MAX, MAXIMA, MSAM, QMAP, TopHat [Barreiro, 2000]. In
2001 NASA has launched the WMAP (Wilkinson Microwave Anisotropy Probe) satel-
lite to measure the CMB anisotropies [Bennett et al., 2003]. The WMAP satellite has
provided much more detailed data comparing to the COBE (see Figure 5.1 - from the
web-page of NASA: http://map.gsfc.nasa.gov/). The ESA (European Space Agency)
project for the Planck satellite is to be completed in 2007. Both satellites are meant
to provide full sky covering measures.
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Figure 5.1: COBE and WMAP sky maps of CMB anisotropies (from the web-page of
NASA: http://map.gsfc.nasa.gov/).
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5.3 Archeops experiment

Archeops is a balloon-borne instrument dedicated to measuring CMB temperature
anisotropies at high angular resolution (about 8 arcminutes) over a large fraction
(about 30%) of the sky in the millimeter domain. To achieve this, the 1.5 meter
diameter telescope (Figure 5.2) is suspended below a stratospheric balloon, pointing
45 degrees from vertical, and spun at about 2 rotations per minute [Hamilton, 2001].
The general design of Archeops is based on Planck High Frequency Instrument (HFI)
technology [Benôıt et al., 2002]. With this scanning strategy, as much as one third of

Figure 5.2: Archeops instrument (from [Hamilton, 2001]).

the sky can be covered during a 12 hour flight. After a test flight from Sicily to Spain
in 1999, the instrument has flown 3 times from Kiruna (Sweden) to Russia. Winter
night flights from above the Arctic Circle are necessary to avoid the combined effects
of the Moon and Sun. In February 2002, the flight from Kiruna lasted during 19 hours,
providing 12 hours of scientific data at an altitude of 33 km. Observations of a single
night cover a large fraction of the sky as the circular scans (Figure 5.3) drift across
the sky due to the rotation of the Earth.

The detectors, that are capable to measure the temperature differences on the sky
of one part in 100000, are bolometers. They measure the temperature change of a
crystal cooled to one tenth of a degree above absolute zero (−273.15◦C) by a special
cooling system. The frequency bands are centered at 143 GHz, 217 GHz, 353 GHz
and 545 GHz [Benôıt et al., 2003].
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Figure 5.3: Typical Archeops sky coverage: each line represents a circle, the time
separation between the circles is 1 hour [Amblard, 2001].

Several data products are being prepared from Archeops data: timelines, maps of
the sky, maps of components, spatial power spectra [Delabrouille et al., 2004].

The goals of Archeops are twofold:

- from the scientific point of view, it has to provide CMB temperature anisotropies
at high angular resolution, and it will add some precision to the calculation
of the CMB anisotropies power spectrum, used for determining cosmological
parameters [Benôıt et al., 2003];

- from the technical side, Archeops is a test for Planck HFI, because it uses very
similar hardware, has similar scanning strategy and data processing.

5.4 Planck mission

The Planck mission is to be launched by ESA in 2007 and it has been designed primar-
ily for the ultimate mapping of CMB temperature anisotropies. The Planck satellite
is constituted by two different instruments: the Low Frequency Instrument (LFI) and
the High Frequency Instrument (HFI). The LFI will measure the microwave sky at
frequencies 30-100 GHz. The HFI will cover frequencies 100-900 GHz [Barreiro, 2000].
Planck will provide multifrequency all-sky maps an angular resolution of about 4.5
arcminutes and a sensitivity ∆T

T
∼ 2× 10−6. A study has been done in order to select

an optimal scanning strategy for the Planck mission (Figure 5.4).

Planck will observe the sky from the L2 Sun-Earth Lagrange point, in a very
stable thermal environment, away from sources of spurious radiation due to the Earth,
the Moon, and the Sun. The scanning is made along large circles at a rate of 1
rotation per minute. The full sky should be covered in slightly more than 6 months
[Delabrouille, 2004]. As mentioned in [Delabrouille et al., 1998], a good scan strategy
should meet, as much as possible, the following requirements:
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Figure 5.4: Planck scanning strategy: the trajectory of the field of view of one single
detector is shown [Delabrouille et al., 2002].
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- redundancy and robustness - there should be enough redundancy to test and
correct for the presence of systematic effects in the data such as sidelobe stray
signals, in order to obtain after processing the cleanest maps possible and reliable
error estimation; the scan strategy should be such that the inversion of the data
(i.e. obtaining full sky maps from the data streams and useful cosmological and
astrophysical information from the maps) is possible even if a few days of data
are lost or if one detector fails during the mission;

- sky coverage - Planck should provide full sky maps;

- adaptability - it should be possible if necessary to select the best scan strategy in
the light of the information gathered during the verification phase after injection
at L2.

- minimization of systematics - as much as possible the scan strategy should min-
imize the level of signal contamination by such systematic effects in the data
streams;

A fundamental requirement in the new generation of high resolution Cosmic Microwave
Background imaging experiments is a strict control of systematic errors. Some of these
errors are of celestial origin, while others will be generated by periodic fluctuations
of the satellite environment. These environment instabilities will cause fluctuations
in the measured signal output thus generating correlated effects in the reconstructed
maps [Mennella et al., 2002]. Spin synchronous fluctuations are not damped by the
measurement redundancy, while spin resonant fluctuations, instead, are such that for
every pixel the average fluctuation after N consecutive measurements is zero.

5.5 Data description

The simulated data is considered to be close to the real Archeops data in the sense of
scanning strategy. The data is composed of simulated normalized CMB fluctuations
and 1000 point sources of a medium size. There is also one large point source in the
data. Though the real cosmological measurements are considered to be made on a
sphere and therefore are determined using angles, we consider Cartesian coordinates.
The simulated measurements are presented in the same way as the laser scanning data.
There are three columns: x coordinates, y coordinates and measures.

Figure 5.5 shows x coordinates plotted versus y coordinates of the data. From
this plot one can see the lines formed by the scanning pattern. The histogram of the
measurement values is in Figure 5.6. Most of the measurements are in the interval
between -2.5 and 4. The total amount of points is 47914, and only 13 of them exceed
the value of 4: they correspond to the large point source in the data. The data points
are visualized in Figure 5.7.

The real measurements of Archeops are affected by noise. This is modeled by
adding a Gaussian noise with the standard deviation equal to 1. The resulting data is
shown in Figure 5.8.
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Figure 5.5: Simulated CMB measurements: x coordinates versus y coordinates.
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Figure 5.6: Histogram of the measurements.
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Figure 5.7: Simulated measurements.

Figure 5.8: Simulated measurements with noise.
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In the following chapter we will present the experiments with the simulated CMB
data. Our goal is to determine the method, best suited for the interpolation of the
data.
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Chapter 6

Experiments on simulated CMB

data

6.1 Introduction

The processing of the CMB anisotropies measurements often needs the data on the
regular grid. Here we present several techniques that may be used for the CMB
measurements interpolation. We are interested in several aspects. At first, the density
of the measurements is not constant: for some regions it is much higher than for
the others. The simulated data contains such different regions and allow to make
conclusions on the methods performance depending on the density of measurements.
At second, we would like to choose the best interpolation method according the root
mean square error (RMSE) for the region with high sampling density and for the one
with the varying density of sampling. Apart from the methods applied in our previous
work to the laser data, we also consider binning. This is our reference method and
we compare it with the others. Binning is very simple and fast interpolation which is
often used in astronomy. So it is interesting to consider it and to find out in which
cases which method is better. Binning will be presented in Section 6.2.4. At third we
will try two data sets - with and without noise. The case with noise is closer to the
real measurements expected from the Plank mission.

6.2 Interpolation methods

The tasks set for the experiments with the simulated CMB data will differ on two
points:

- density of the original data set;

- presence or absence of noise.

Therefore three different tasks will be the following.
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Task 1. For x values from 0 to 255 and for y values in the same interval, make an
image 64× 64, 128× 128 and 256× 256. More than a half of the data will fall outside
of the considered area. In this case the interpolation will be performed over an area
with high density of the measures. This task should be performed on the data without
noise (Figure 5.7).

Task 2. For x and y coordinates varying between 0 and 511, make an image with
the size 128 × 128, 256 × 256 and 512 × 512. This task considers the complete zone,
with low density of measures in some regions. This task should also be performed on
the data without noise.

Task 3. The requirements are the same as in the second task, but the data is noisy
(Figure 5.8).

6.2.1 Nearest neighbor interpolation

The results of the nearest neighbor interpolation, corresponding to the first task, are
in Figures 6.1 - 6.3.

Figure 6.1: Nearest neighbor interpolation, x and y vary between 0 and 255, pixel size
is 4 units.

The results, corresponding to the second task, are in Figures 6.4 - 6.6.

The upper right part of the images is not covered by measurements, therefore it
should not be considered for quality evaluation of the results. It is obvious especially
from the interpolation results on the smaller area (when x and y are between 0 and
255), that the higher is the resolution the more distortion is introduced by the nearest
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Figure 6.2: Nearest neighbor interpolation, x and y vary between 0 and 255, pixel size
is 2 units.

Figure 6.3: Nearest neighbor interpolation, x and y vary between 0 and 255, pixel size
is 1 unit.
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Figure 6.4: Nearest neighbor interpolation, x and y vary between 0 and 511, pixel size
is 4 units.

Figure 6.5: Nearest neighbor interpolation, x and y vary between 0 and 511, pixel size
is 2 units.

128



Figure 6.6: Nearest neighbor interpolation, x and y vary between 0 and 511, pixel size
is 1 unit.

neighbor interpolation. This interpolation is not suitable for the noisy data, because
it is not able to avoid the effects of noise (Figure 6.7).
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Figure 6.7: Nearest neighbor interpolation on the noisy data, x and y vary between 0
and 511, pixel size is 4 units.
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6.2.2 Triangle-based linear interpolation

The results of the triangle-based linear interpolation are in Figures 6.8 - 6.11.

Figure 6.8: Linear interpolation, x and y vary between 0 and 255, pixel size is 4 units.

These images are smoother than the ones of the nearest neighbor interpolation.
But triangle-based linear interpolation doesn’t give good results on the noisy data
(Figure 6.14).
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Figure 6.9: Linear interpolation, x and y vary between 0 and 255, pixel size is 2 units.

Figure 6.10: Linear interpolation, x and y vary between 0 and 255, pixel size is 1 unit.
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Figure 6.11: Linear interpolation, x and y vary between 0 and 511, pixel size is 4 units.

Figure 6.12: Linear interpolation, x and y vary between 0 and 511, pixel size is 2 units.
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Figure 6.13: Linear interpolation, x and y vary between 0 and 511, pixel size is 1 unit.

Figure 6.14: Triangle-based interpolation on the noisy data, x and y vary between 0
and 511, pixel size is 4 units.
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6.2.3 Kriging

Most of the research on the nature of the CMB anisotropies characterizes them as a
stationary random process of the second order. So the assumptions for kriging are well
verified for the CMB data. For the calculation of the experimental variogram and for
the implementation of the ordinary kriging we use the software developed in the TSI
department of ENST.

Before using kriging it is necessary to determine the three parameters of the var-
iogram. So the experimental variograms are calculated first. Figure 6.15 shows first
halves of the experimental variograms, for the simulated data divided on 4 parts.

Figure 6.15: First halves of the experimental variograms for the simulated data without
noise.

The lower left part of the data contains the large point source. From Figure 6.15
we can see that this point source doesn’t change the statistics of the area considerably.
The kriging interpolation will be performed on neighborhoods. It means that for
calculating a value at a regular grid point, only the neighboring data points will be
considered, and not all the data points. It will speed up the calculations and make
them more precise in the presence of large point sources. In the case of kriging on a
neighborhood, only the beginning of the variogram curve is of interest, because this
part of curve describes the statistics for the points that are close to each other, i.e.
the points in a neighborhood. The spherical model of the variogram is chosen. The
parameters, deduced from the experimental curves are: range is 45, nugget is 0 and
sill is 0.81. Figure 6.16 shows the experimental variogram and the fitted theoretical
one.

The size of the neighborhood is taken to be 10 by 10 units, because it allows having
several data points around each regular grid point, even in the areas with low density
of sampling.
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Figure 6.16: Experimental (points) and theoretical (solid line) spherical variograms.

In average there are around 17 measurements in each block that is defined by the
neighborhood. It means that the matrix to inverse will have in general 18 ∗ 18 = 324
elements. The highest density of the considered data will lead to having 133 points in
the neighborhood 10× 10 units. Then the matrix to inverse will have 17956 elements.

Kriging results on the data without noise are in Figures 6.17 - 6.22.

For the noisy data the variogram will not be the same. Noise will make the value
of nugget to be above zero (Figure 6.23). And it will lead to approximation of the data
rather than interpolation. The variations lower than the nugget value can be neglected
by the kriging algorithm as they will be considered as noise. The parameters chosen
for the theoretical variogram for the noisy data are: range is 43, nugget is 1, sill is 1.8
(Figure 6.24).

The resulting images are in Figures 6.25 - 6.27.

For all the experiments ordinary kriging is used. From the kriging results on the
noisy data it is evident that the algorithm suppresses noise. But from the colorbars
on the right parts of the images one can see that the range of the values is no longer
the same. The largest value for the data without noise was about 12, and the largest
value for the noisy data after kriging is approximately 6. But it mainly concerns the
large point source.
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resolution is 4 units

Kriging: range is 45, nugget is 0, sill is 0.81
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Figure 6.17: Kriging without noise, x and y vary between 0 and 255, pixel size is 4
units.

resolution is 2 units

Kriging: range is 45, nugget is 0, sill is 0.81
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Figure 6.18: Kriging without noise, x and y vary between 0 and 255, pixel size is 2
units.
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resolution is 1 unit

Kriging: range is 45, nugget is 0, sill is 0.81
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Figure 6.19: Kriging without noise, x and y vary between 0 and 255, pixel size is 1
unit.

resolution is 4 units

Kriging: range is 45, nugget is 0, sill is 0.81
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Figure 6.20: Kriging without noise, x and y vary between 0 and 511, pixel size is 4
units.
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resolution is 2 units

Kriging: range is 45, nugget is 0, sill is 0.81
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Figure 6.21: Kriging without noise, x and y vary between 0 and 511, pixel size is 2
units.

resolution is 1 unit

Kriging: range is 45, nugget is 0, sill is 0.81
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Figure 6.22: Kriging without noise, x and y vary between 0 and 511, pixel size is 1
unit.
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Figure 6.23: First halves of the experimental variograms for the simulated data with
noise.
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Figure 6.24: Experimental (points) and theoretical (solid line) spherical variograms.
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resolution is 4 units

Kriging: range is 43, nugget is 1, sill is 1.8
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Figure 6.25: Kriging on the noisy data, x and y vary between 0 and 511, pixel size is
4 units.

resolution is 2 units

Kriging: range is 43, nugget is 1, sill is 1.8
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Figure 6.26: Kriging on the noisy data, x and y vary between 0 and 511, pixel size is
2 units.
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resolution is 1 unit

Kriging: range is 43, nugget is 1, sill is 1.8
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Figure 6.27: Kriging on the noisy data, x and y vary between 0 and 511, pixel size is
1 unit.
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6.2.4 Binning

A common and simple approach, that is often used in astronomy, is binning. The
method consists of averaging the data values inside each pixel. At first, one should
find the data points situated inside the area of a pixel. The pixel takes the average
of these points values. If there are no data points inside a pixel, then this pixel stays
empty, no value is assigned to it. The higher is the sampling density, the more points
will fall inside pixel’s area, and the more precise will be the interpolation. Averaging
helps to avoid the effects of noise, because it smoothes the surface. Figure 6.28 shows
the amount of data points inside pixels of an image with 4 units pixel size.
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Figure 6.28: Hit counts when the resolution is 4 units.

If the pixel size is taken to be 2 units, then much less points fall inside pixels.
And when the pixel size is 1 unit, then more than 80% of the pixels are empty. The
pixels that have data points, assigned to them, have just one point. So in this case
averaging is not possible. Figures 6.29 and 6.30 show results of binning. This means
that binning reduces the image resolution.

The next section is devoted to the comparisons between the reference image and the
obtained interpolation results. Since the data is simulated, we can trust the reference
and be sure that the calculated errors are only due to the faults of an interpolation
method.
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resolution is 4 units

Binning on the simulated CMB data
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Figure 6.29: Binning, the resolution is 4 units.

resolution is 4 units

Binning on the noisy simulated CMB data
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Figure 6.30: Binning on the noisy data, the resolution is 4 units.
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6.3 Comparisons with the reference

Figure 6.31 represents the reference provided for the simulated data. The root mean

resolution is 1 unit

Reference image (sky map convolved with the sensor impulse response)
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Figure 6.31: Reference for the simulated data.

square errors (RMSE) between the reference and interpolation results are in Tables
6.1 - 6.3.

Interpolation method Resolution

1 unit 2 units 4 units

Binning 1.2809 0.0804 0.0903

Nearest neighbour 0.1103 0.1086 0.0968

Linear 0.0475 0.0445 0.0428

Kriging 0.0314 0.0310 0.0344

Table 6.1: RMSE between the reference and the results without noise when x and y
coordinates vary between 0 and 255.

From the RMSE values it is obvious that kriging gives better results than the
other three interpolation methods, but linear interpolation also gives good results
when noise is low. It is true for the noisy data as well as for the data without noise.
The performance of binning becomes better if the size of the pixel increases, when
one treats the data with noise. It happens because the larger is pixel, the more data
points will fall inside it. Then the averaging is done on more samples, and it suppresses
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Interpolation method Resolution

1 unit 2 units 4 units

Binning 1.2749 0.0682 0.0732

Nearest neighbour 0.0966 0.0958 0.0926

Linear 0.0586 0.0570 0.0573

Kriging 0.0323 0.0315 0.0320

Table 6.2: RMSE between the reference and the results when x and y coordinates vary
between 0 and 512.

Interpolation method Resolution

1 unit 2 units 4 units

Binning 0.9836 0.9238 0.6827

Nearest neighbour 1.0110 1.0112 1.0048

Linear 0.7152 0.7146 0.7085

Kriging 0.2930 0.2928 0.2900

Table 6.3: RMSE between the reference and the results on the noisy data, x and y
coordinates vary between 0 and 512.

the noise, because of the gaussian probability of noise, averaging provides an optimal
filtering. It is possible that binning gives quite good results when the pixel size is larger.
For example, considering the interpolation results for the data with noise, we can see
that the best result according to the RMSE error is produced by kriging. The RMSE
in this case is equal to 0.2900 when the regular grid size is 4 units. The same value of
the RMSE is obtained for binning when the regular grid size is 13 units. It means that
if the pixels are more than three times larger, then we can get the comparable quality
of binning. However, in this case it is certain to destroy large point sources and small
scale fluctuations in the data. Kriging has an advantage over binning, because of using
weighted average of the data and because the weights depend on the data statistics.
Figure 6.32 is the comparison between the reference, kriging and linear interpolation
results on the data with noise.

Figures 6.33 and 6.34 show the search for the optimal size of the neighborhood for
kriging. It is done in order to check whether the choice made previously was correct.
The neighborhood is a square, the length of the side was taken to be 10 units. The
criterion for this choice was to have approximately 8 neighbors, desirably in different
directions, for each regular grid point. We can see that is a valid choice when the
data has no noise. However, considering the noisy data, it is better to enlarge the
neighborhood to suppress the effect of noise. The larger is the neighborhood, the
more time it takes to perform kriging, especially on high sampling density areas.

The quality of binning results obviously depends on the density of data points per
regular grid pixel. The Figures 6.35 and 6.36 demonstrate it. In both cases - with
and without noise - we can see that averaging on 10 or more pixels often leads to the
smaller errors than the ones of kriging. So binning can outperform kriging only when
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Figure 6.32: Absolute errors and their histograms for linear interpolation (left column
of images) and kriging (right) on the data with noise; resolution is 1 unit.
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Figure 6.33: Search for the optimal neighborhood size for kriging; the data is without
noise. The 10 × 10 window size is sufficient for an excellent reconstruction.
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Figure 6.34: Search for the optimal neighborhood size for kriging; the data is with
noise. The 10 × 10 window size is not sufficient for an optimal reconstruction.
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Experiments on the data without noise, pixel size is 4x4
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Figure 6.35: Hit counts versus RMSE for binning interpolation. The horizontal line
represents the RMSE value for kriging (with 10×10 window size) with the same pixel
size on the same data.
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Experiments on the data with noise, pixel size is 4x4
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Figure 6.36: Hit counts versus RMSE for binning interpolation for the data with noise.
The horizontal line represents the RMSE value for kriging with the same pixel size on
the same data.

the density of points is quite high.

The application of the energy minimization technique to the simulated CMB data
interpolation is illustrated in the next section.
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6.4 Energy minimization

The considered data has been obtained by adding point sources to the simulation of
CMB anisotropies and by smoothing the result by the convolution with an expected
impulse response of the sensor. It means that the surface, obtained in this way, doesn’t
have discontinuities. So the result of the interpolation of such data should lead to a
smooth result, as long as deconvolution is not done. That is why we take the energy
function to minimize the square differences:

F (u) =
∑

i,j





∑

K(i,j)

ψ

(

z(xk, yk) − u(i, j)

dist((xk, yk), (i, j))

)

+ α
∑

M(i,j)

ϕ

(

u(i′, j′) − u(i, j)

dist((i′, j′), (i, j))

)



 ,

where ψ(t) = ϕ(t) = t2. This cost function is Tikhonov regularization and it has been
successfully applied to the CMB maps [Vio et al., 2003]. Though in [Vio et al., 2003]
the regularization is used for CMB maps deconvolution, the initial data is considered
on a regular grid.

We applied energy minimization method for the simulated CMB data with noise,
when the pixel size is 4 units. The surface to find is initialized with the results of
the linear interpolation, though it is of no importance, because the both potential
functions are convex. It means that there is the only one global minimum that will
be reached with the ICM optimization method as well as with any gradient based
approach. Changing the α coefficient for the regularization term and comparing the
obtained images with the reference, we get the plot in Figure 6.37.

The results (Figure 6.37) show that the method outperforms binning, linear and
nearest neighbor interpolation, but cannot eliminate the noise as well as kriging does:
the RMSE for kriging is about 0.29 on the same area. Figure 6.38 shows the comparison
for the kriging and energy minimization images.

We can see that the energy minimization method gives the results that are worse
than kriging. So kriging is the method that deserves more analysis and investigation
as it is done in the next section.
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Figure 6.37: Search for an optimal regularization term coefficient α for the noisy CMB
data interpolation.
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Figure 6.38: Right column: energy minimization. Left column: kriging. Pixel size is
4 units.
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6.5 Kriging versus binning: performance analysis

From the previous results it is obvious that kriging outperforms several other methods
that we tried. The reference method - binning - works worse especially in the cases of
small grid sizes, i.e. high resolution. Though we considered the simulated data with
and without noise, now we would like to limit our interest on the case of the noisy
data. The main reason for it is that the data with noise corresponds much more to
the real measurements. In the same time the random noise that we add to our data
is Gaussian, and probably can be considered as a very simple model of noise. For the
real data the noise will have a systematic component and it can make it more difficult
to deal with.

From the experiments presented above we can see that when there is no noise in
the data, then kriging or linear interpolation is a good choice. Linear interpolation is
a bit worse than kriging according to the RMSE error, but it is much easier and faster
method.

As for the noisy data interpolation, kriging is the best, but binning can improve
its performance if the size of the pixel is enlarged. The goal of performance analysis
between binning and kriging is the detailed study if these methods applied to the
simulated CMB data. This study takes into account two parameters: the level of
noise and the size of the pixel. We take the white noise with zero mean and we use
five different values for the standard deviation: 0.2; 0.4; 0.6; 0.8; 1. When the standard
deviation of noise is 1, it is the case for the Archeops acquisition system. We also vary
the pixel size in order to see how it influences the interpolation results.

The parameters of the theoretical spherical variograms are found by analysing
the experimental values of variograms. The theoretical variograms plotted versus
experimental ones are shown in Figures 6.39 - 6.42, 6.24.

In general, the parameters of the theoretical variogram are easy to predict in the
case of simulated data. The value of range does not depend on the noise considerably.
The value of nugget is approximately the variance of the noise, so one has to square
the standard deviation to obtain it. The value of sill will change according to the
nugget effect. Kriging is performed on neighborhoods, each neighborhood is a block
10× 10 units. That is why the theoretical variogram is adjusted only for the first half
of the experimental one: the points which are far apart will not be taken into account
while performing kriging.

Figures 6.43 - 6.47 demonstrate the RMSE measured between the reference and
kriging or binning interpolation results for different sizes of the pixel. Solid line rep-
resent kriging, dashed - binning.

It is easy to see that the larger is the size of pixel, the better is the binning result.
The important advantage of kriging is that its performance does not depend on the
choice of the resolution for the image. The stronger is the noise, the larger pixel size is
needed in order to get binning results as good as the ones of kriging. In fact, binning
reaches kriging only in the case of very large pixels. The resolution should drastically
degrade before these both methods perform equally good. This degradation of the
resolution depends on the standard deviation of noise. But even for the case with
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Figure 6.39: Fitting the theoretical spherical variogram: dotted line - experimental
variogram, solid line - theoretical variogram. The standard deviation of noise is 0.2.
Theoretical variogram is built with the following parameters: range is 45, nugget is
0.035, sill is 0.85.
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Figure 6.40: Fitting the theoretical spherical variogram: dotted line - experimental
variogram, solid line - theoretical variogram. The standard deviation of noise is 0.4.
Theoretical variogram is built with the following parameters: range is 43, nugget is
0.12, sill is 0.97.
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Figure 6.41: Fitting the theoretical spherical variogram: dotted line - experimental
variogram, solid line - theoretical variogram. The standard deviation of noise is 0.6.
Theoretical variogram is built with the following parameters: range is 43, nugget is
0.35, sill is 1.16.
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Figure 6.42: Fitting the theoretical spherical variogram: dotted line - experimental
variogram, solid line - theoretical variogram. The standard deviation of noise is 0.8.
Theoretical variogram is built with the following parameters: range is 43, nugget is
0.62, sill is 1.44.
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Figure 6.43: Kriging versus binning performance, standard deviation of noise is 0.2.
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Figure 6.44: Kriging versus binning performance, standard deviation of noise is 0.4.
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Figure 6.45: Kriging versus binning performance, standard deviation of noise is 0.6.
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Figure 6.46: Kriging versus binning performance, standard deviation of noise is 0.8.
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Figure 6.47: Kriging versus binning performance, standard deviation of noise is 1.
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quite a small standard deviation of noise the size of the grid should be at least 7 units,
then binning is as good as kriging. And the grid size is 10 units when both methods
start having the same performance in the presence of strong noise.

From the practical point of view, the size of the grid equal to 7 or to 10 is much
too coarse. If one wants to have the size of the grid the same as the average density
of the original scattered CMB data, then it should be approximately 3 units.
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6.6 Conclusion

Several methods can be used for the interpolation of the CMB anisotropies. These
measurements are irregularly distributed 3D points. In practice, they are affected
by noise and by other radiation sources. We have considered the simulated data,
composed by the CMB anisotropies and point sources. Two cases are taken: with and
without noise.

Four interpolation methods are tried on the data without noise. These methods are:
binning, nearest neighbor interpolation, linear interpolation and kriging. At first, these
methods were used on an area where the sampling density is relatively constant and
high. At second, the whole data was considered, in this case the density of points varies
considerably from one part of the data to another. As a conclusion, it can be noticed
that the performance of the methods doesn’t depend on the points density changes:
kriging outperforms the other three approaches in the both cases. Obviously, the
quality of the results is better when the density of points is higher. Apart from kriging,
linear interpolation also gives good results. The advantage of kriging is the good results
it provides. The disadvantage is that this method needs the preliminary treatment of
the data in order to get the parameters of the variogram. Linear interpolation can be
faster and simpler but it will be less precise. The nearest neighbor interpolation and
binning give worse results than kriging and linear interpolation. For the experiments
described above, the pixel size is taken to be 1, 2 and 4 pixels. When the pixel size
is larger, binning is expected to give better results, especially it is valid for the noisy
data.

For the data with noise we tried the four methods described above and also the
cost function minimization for the data interpolation. Adding the noise made the
problem more complicated, especially because the range of the noise is almost as large
as the range of the data. In this case an interpolation technique should be able to
decrease the effect of noise as much as possible. The best results are obtained with the
kriging technique, because it allows take the noise into account through the parameters
of the variogram. The satisfactory results are also obtained with the cost function
minimization, when it performs Tikhonov regularization while interpolating the data.
Since the sensor impulse response is considered to be known, this cost function can be
adapted for the deconvolution. The disadvantage of the cost function minimization is
the use of the coefficient for the regularization term. The change of this coefficient will
change the results. For the CMB data it is crucial, because the interpolation is only a
intermediate step in the data processing. The resulting CMB maps are used for power
spectra estimation and other calculations, for which the precision is important.

After completing the experiments mentioned above, we noticed that good results
can be obtained with kriging. The advantage of kriging over energy minimization
is that the parameters for kriging are obtained by the analysis of the experimental
variogram, that is obtained from the original data, while the coefficient for the regu-
larization term in the energy expression is the parameter to tune. Taking binning as
the reference method often used in astronomy for interpolation, we make a detailed
comparison between this method and kriging. We find that these two methods can
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be equally good when the regular grid size of the image to find is very coarse. Other-
wise, for acceptable grid sizes kriging outperforms binning, especially in the presence
of noise. The modelling of noise is necessary since it will be present in the real mea-
surements.
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Conclusions

Many theoretical and applied problems deal with interpolation and resampling of
irregularly spaced 3D data. In the framework of the thesis we consider some theoretical
and practical issues for two applications in the remote sensing domain:

- airborne laser data interpolation over urban areas;

- determination of the CMB (cosmic microwave background).

Theoretical aspects of irregularly spaced data resampling are the subject of current
research. The basics for the theory is developed in the theorems of Shannon and
Papoulis. Most of the theoretical works as well as interpolation methods are for
bandwidth-limited signals and images.

Before interpolating the data, we have studied their acquisition techniques, accu-
racies and properties. Though the resulting distribution of points on XY plane is not
much different for laser data and CMB anisotropies measurements, the acquisition
techniques differ a lot.

It is considered that the laser data has a good accuracy and practically no noise. On
the contrary, the CMB data is very much affected by noise and foreground radiations.
Also, CMB data is a result of convolution of the sky map with the sensor impulse
response.

The expected properties of the surface to reconstruct should be taken into consid-
eration as well as the acquisition techniques. For the airborne laser data interpolation,
we consider the problem to be ill-posed, and we adapt a cost function for the irregularly
spaced data. Since the edges of the buildings in urban areas form strong discontinu-
ities, we use edge preserving potential functions. Minimization of such a cost function
leads to the sought surface. The results of this approach were compared to some well-
known methods for irregularly spaced data interpolation, namely linear interpolation,
nearest neighbor interpolation and kriging. These methods were outperformed by the
cost function minimization, because it imposed the desired properties on the result-
ing surface. We used correlation and mean absolute error to verify that. The visual
quality of the results, preferred by the mean absolute error, is better, while correlation
criterion chooses smooth surfaces. The experiments were made on two different real
data sets. For these two data sets the scanning strategy and the density of points were
different.

Adapting the cost function for the airborne laser data interpolation, we present
the choice of the neighborhood, results with different potential functions and we try
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different values of coefficients for the regularization term. We have studied excessively
the influence of the choice of potential functions on the properties of the reconstructed
surface which represents an urban area. We have used the recent theoretical results
on the choice of the potential functions for the data-term in the cost function. We
propose using a Huber function for the data-term or using just the same function for
both data- and regularization terms. For laser data the classical choice of the quadratic
function for the data-term will not lead to satisfactory results on urban zones.

Except for the well-known nearest neighbor, linear interpolation methods and krig-
ing, we also try binning method and the cost function minimization for the simulated
CMB anisotropies measurements. These measurements are smooth, as long as no de-
convolution is made. So in this case Tikhonov regularization was made on the noisy
data. Kriging was not applied before to the interpolation of the CMB data and we
proved that this method gives good results. Kriging on a fixed neighborhood allows
quick performance on large data sets - it is an advantage for the real data interpola-
tion. Though kriging outperforms the cost function minimization, the cost function
can be adapted for deconvolution and interpolation in the same time. In this case it
is better to use a truncated quadratic function for the regularization term in order to
reconstruct the point sources.

Our experience with the several interpolation methods for irregularly spaced data
led to the following conclusions:

- nearest neighbor interpolation is suitable as long as the density of the imposed
regular grid is lower than the density of the original irregularly spaced data;
the data has to have no noise; the advantage of this method is its speed and
simplicity;

- triangle-based linear interpolation works well when the density of the grid points
is less or equal to the original data density;

- kriging is based on the variogram parameters, that makes it necessary to esti-
mate them before using the method; the parameters estimation is often done
manually, though it is possible to make it automatic; unlike the two previous
methods, kriging can cope with noise, because the nugget parameter introduces
the information about the noise in the algorithm;

- binning is often used in astronomy, it averages the values of the data inside
each pixel and so can decrease the noise; the disadvantage is that the density of
data points should be at least ten times higher than the density of the regular
grid in order to get good results; it is also desirable for binning to have evenly
distributed data points;

- cost function minimization has a disadvantage of tuning the coefficient for the
regularization term, this parameter depends on the potential functions, when not
the same one is used for the data term and the regularization term, and on the
choice of neighborhood - more study has to be done about that; the advantages
of the method are its flexibility and capacities for interpolating different kinds
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of surfaces using different potential functions; in the cost function the gradient
values of the data points are not explicitly present, a future work can be on
incorporating them in the model.

Making the experiments with the cost function minimization for the airborne laser
scanning data, we have learnt the following:

- the values of the coefficient for the regularization term should be equal to 1 or
higher to get good results;

- irregularly spaced data points around a regular grid point were initially chosen
to be inside the circle that includes the eight nearest regular grid points; the
experiments showed that such a neighborhood is a good choice when:

1) the density of the regular grid points is approximately the density of the
data points;

2) the data points are evenly distributed on the XY plane;

- when one of the two requirements, mentioned above, is not met, then we pro-
posed another definition of the neighborhood - it should include data points
from different directions relatively to a current considered regular grid point;
this conclusion is made after the experiments with the airborne laser scanning
data of Amiens, where the data points form parallel lines, and the density of
points along a line is many times higher than across lines;

- the advisable size of the neighborhood should be approximately equal to the
distance between the scanning lines, this distance can be calculated even before
the data acquisition, taking into account the technical parameters of the laser
scanning system and the expected speed of a plane or a helicopter to be used.

Improving the presented results of laser data interpolation is possible in several
directions. Considering the cost function minimization technique, the future work
can be the following. The definition of the neighborhood can be changed: one can
take data points that are neighbors of a regular grid point according to the Voronoi
diagram. The first advantage of such a choice is the anisotropy of the chosen data
points and the second advantage is that the model will have one parameter less: there
is no need to fix the size of the neighborhood, it will change automatically for each
location according to the proximity of data points. Another adjustment can be in
changing the cost function so that the choice of potential functions will depend on local
gradient estimation of the data points. One can also use different potential functions
in different directions inside a clique, trying to reinforce the discontinuities of the
surface. Another form and size of the cliques may be considered in order to introduce
some obvious geometric properties of urban areas, such as straight lines. Apart from
the cost function based interpolation, one can consider wavelet functions regarding
their use for surface interpolation preserving discontinuities. Another way to try is
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to take into account the structure present in many sampling sets and to use methods
that profit from this fact. Iterative median filtering is also a good perspective for the
future work. It is a simple and fast technique which is known to have the properties
of anisotropic diffusion. It will help to preserve discontinuities. The results of linear
interpolation on the laser data can be better if the triangulation of Delaunay on the
edges of the buildings is improved using stochastic geometry.

As for the CMB data, the indications for future work include the adaptation of the
cost function as well as trying some other methods. For the methods, that we tried
for the CMB data, it is interesting to study the dependence of their performance from
the standard deviation of the additive noise. It concerns the performance of kriging
and cost function minimization. Further, the cost function can be adapted for making
deconvolution while interpolating the data: the convolution with the impulse response
of the sensor should be done for the sought surface used in the data term. Such
a modification allows taking into consideration the elliptical shape of the response,
which is important for the real CMB anisotropies measurements. The CMB data can
be considered as a sum of the smooth surface, representing the CMB anisotropies,
and the surface that consists of point sources. Imposing different constraints on each
of these two surfaces can improve the results. There are also some reconstruction
methods for randomly sampled band-limited signals, they can be applied to the CMB
data as well. But in this case the signal should preferably be sampled at the Nyquist
rate at average.

The goal of the experiments with CMB data interpolation is to get a method that
works for spherical coordinates. The real CMB data is considered to be on the sphere.
The methods, presented in the thesis, work on local small patches of the data. In such
cases the sphere can be approximated by a plane.

The general conclusion is that we formulated the irregularly spaced data resampling
as an ill-posed inverse problem, and we received good results applying the appropriate
mathematical model.
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