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Résumé

Le but de cette these est d’étudier des différents sujets de la programma-
tion semidéfinie non linéaire (SDP). Ainsi, dans les deux premiers chapitres
nous presentons certains aspects algorithmiques, dans les chapitres 3 et 4 nous
travaillons sur des aspects théoriques comme 'analyse de perturbations de ce
probleme.

Le premier chapitre développe un algorithme global qui étend l’algorithme
local S-SDP. Cet algorithme est basé sur une fonction de pénalisation de Han
et une stratégie de recherche linéaire. Le second chapitre est consacré a ’étude
des méthodes de pénalisation ou fonctions barriere pour résoudre des problemes
semidéfinis convexes. Nous démontrons la convergence des suites primale et
duale obtenues par cette méthode. De plus, nous étudions l'algorithme a deux
parametres en étendant les résultats connus dans le cadre restreint de la pro-
grammation convexe usuelle.

Dans une deuxieme partie, constituée des chapitres 3 et 4, nous nous inté-
ressons a la caractérisation de la propriété des solutions fortement régulieres
en fonction des certaines conditions optimales de deuxieme ordre. Ainsi, dans le
troisieme chapitre nous nous consacrons au probleme de second-ordre, lequel est
un cas particulier du probleme SDP, dont on obtient cette caractérisation. Enfin
dans la chapitre 4, nous donnons des conditions nécessaires et suffisantes pour
la condition de régularité forte dans le cas SDP, en revanche, sa caractérisation
reste un probleme ouvert.

Mots Clés. Optimisation Semidéfinie Nonlinéaire, Optimisation de Second-
ordre, Régularité Forte, Méthodes de Pénalisation, Reduction des Contraintes,
Analyse Convexe.



Abstract

This work deals with different subjects on nonlinear semidefinite program-
ming (SDP). Thus, while in the first two chapters we show some algorithmic
aspects, in chapters 3 and 4 we study theoretical aspects as the perturbation
analysis of this problem.

In the first chapter we develop a global algorithm that extends the local one
S-SDP. This algorithm is based on a Han penalty function and a line search
strategy. The second chapter is focused on penalty and barrier methods for
solving convex semidefinite programming problems. We prove the convergence
of primal and dual sequences obtained by this method. Moreover, we study the
two parameters algorithm and extend to semidefinite case the results that are
known in usual convex programming.

In the second part, that involves chapters 3 and 4, we are interested on the
characterization of the strong regularity property in function of second-order
optimality conditions. So, in chapter 3, we mainly deal with second-order cone
programming problems, whose are a particular instance of semidefinite program-
ming problems. We thus obtain a characterization in this particular case. Finally
in chapter 4, we give necessary and sufficient conditions to obtain the strong
regularity property in the semidefinite case. However, its characterization is still
an open problem.

Keywords. Nonlinear Semidefinite Programming, Second-order Cone Pro-
gramming, Strong Regularity, Penalty Methods, Reduction Approach, Convex
Analysis.



Introduction

Ce travail de these est dédié a 1’étude de différents sujets en programma-
tion semidéfinie. Ce probleme d’optimisation consiste en la minimisation d’une
fonction de colit f, dont I'ensemble réalisable sont tous les vecteurs z tel que
G(z) soit une matrice semidéfinie négative dans le sens classique de Panalyse
matricielle. Ici, opérateur G est a valeurs matricielles symétriques.

Concretement, dans ce travail nous considérons le probleme :

min {/(x); G(z) < 0}, (SDP)

zcIR™
ou f: R" - IR, G : IR" — S™, S™ dénote 'espace vectoriel des ma-
trices symétriques de taille m dont on considére le produit scalaire A - B :=
trace(AB) = 31" _) AijBij avec A = (Ayj), B = (Bjj) € S™, et < est lordre
inducé par S™ le cone des matrices semidéfinies négatives, c’est a dire, A < B
ssi A — B € S™. La régularité des opérateurs f et G sera spécifiée dans chaque
chapitre.

L’intérét apparu par ce type de probleme est justifié par ses multiples appli-
cations, on peut mentionner par exemple 'optimisation combinatoire, I’optimi-
sation robuste, les applications en statistique, etc. (voir, par exemple, [35, 36]).
Pour cela, on a considéré principalement le probleme SDP linéaire

i =c'z; = iAdi =2
min {f(2) :=c'w; G(2) A0+;xA <0}, (LSDP)

ol c € IR" et A; € S™ pour tout indice i = 0, ..., m. Toutefois, on trouve des
applications dont la formulation linéaire (LSDP) n’est plus suffisante pour les
modéliser (cf. [15, 19, 24]).



Dans la prochaine section, nous verrons principalement des exemples as-
sociés & la formulation linéaire (LSDP). Pour étudier les exemples associés a la
formulation nonlinéaire, nous nous adressons au lecteur aux articles mentionnés
ci-dessus.

Exemples

Programmation Linéaire

Considérons le probleme de programmation linéaire

. T
; Az < LP
i te v Arsth (L)

ontccR", bec IR" et Ac R™™.
En effet, on écrit Ay := —diag(b) et A; := diag(a;), ¢ = 1,...,n, ou les
vecteurs a; sont les colonnes de la matrice A, et pour tout vecteur a € IR™ on a

dénoté par diag(a) & la matrice diagonal de taille m dont ses composants sont
les composants de a. Alors, on retrouve la formulation (LSDP).

Programmation Nonlinéaire Quasi-convexe

Considérons le probleme

min {(CTx)Q - Az < b} : (QCP)

z€IR™ dTz '’

outc,de R", be R™ et A€ IR™ ™, et on a supposé que d' z > 0 pour tout
point réalisable de (QCP). Ce probléme est nonlinéaire, pourtant on verra qu’il
existe une modélisation linéaire semidéfinie (cf. (LSDP)).

D’apres les compléments de Schur, si d'z > 0 on obtient I’équivalence

T..)2 T
> (C z) ssi <7I ¢ x> > 0.

~— d'z c'e d'z

Ceci implique que le probleme (QCP) peut s’écrire comme le probléme semidéfini
diag(Axz — b) 0

r;lin n; 0 [ n c'x =<0
" c'x dz

Notons que dans ce cas-ci toutes les matrices A;, dans la formulation (LSDP),
sont diagonales par bloc. On a m blocs de taille 1 x 1 et un seul bloc de taille
2x 2.



Programmation de Second Ordre

Nous considérons le probleme de programmation sur un cone de second ordre
ou cone de Lorentz:

min {f(x)v gj(x) = 3j7 (Sj)O > ||§j||7 J=1... 7‘]}5 (SOCP)

z€R™,sicR™it!

ot f:R" — Retgl:R"— R™T j=1,...,J. Nous utilisons la convention
usuelle qui consiste en indexer les composants des vecteurs appartenant & R™ T
de 0 & m;, pendant que les vecteurs dans IR™ sont indexés de 1 a n. Alors, étant
donné s € R™ ™, on éberit 5 := (s1,... ,Sm;) . Dénotons le cone du second

ordre par
Qi1 ={s € R™" : s> l3]|},

et posons Q := H;-Ilemj_H. Le probleme (SOCP) peut s’écrire alors comme
minger-{f(2); g(x) € Q}, avec g(z) = (9" (2),....97 (x)).

Plusieurs problemes d’optimisation peuvent étre aussi modélisés comme un
probleme de second ordre (SOCP). Un article récent a ce sujet est Alizadeh et
Goldfarb [2].

Le cone de second ordre Q,,4+1 peut étre décrit en utilisant une inégalité
matricielle grace a I’équivalence suivante (voir par exemple [2]):

. . <so 5" >
5 € Qm+1 ssi Arw(s) := [ =0, (1)

5 soly,

ou I, dénote la matrice identité dans IR™*™, et Arw(s) est la matrice fleche
du vecteur s. Donc, le probleme (SOCP) s’écrit trivialement comme le probleme
semidéfini suivant :

zréli%{f(x) i GI(x) = Arw(g? (2)) =0, j=1,...,J}.

Programmation Linéaire Robuste

L’idée de ce type de problemes est de traiter des données incertaines. Plus
précisément, nous considérons le probleéme linéaire (LP) dans lequel il y a une
certaine incertitude ou variation des parameétres A, b et c. Pour simplifier cette
idée, nous supposons que les donnés b et ¢ sont fixes, et que chaque vecteur ligne
a; de A se trouve dans ellipsoide

&= {ai+ Pu : [Jull <1},
ou P, = PiT = 0. On obtient alors le probleme linéaire robuste suivant

mligcl {c"w;a]x<b; Va; €&, i=1,.,m}. (RLP)
zeR™



Nous allons d’abord montrer que le probleme (RLP) peut s’écrire comme un
probleme (SOCP). En effet, la contrainte

a;—x < b; pour tout vecteur a; € &;
est équivalente a
max{a; v : a; € &} =a; x + | Pix| < by,

laquelle est une contrainte du type

bi—aT.’B
( Pil'l >€Qn+1'

Ceci nous montre que le probleme (RLP) s’écrit sous la forme (SOCP) dont la
fonction f est linéaire et les fonctions g7, j = 1,...,J, sont linéaires affines.

Ensuite, nous réécrivons ce probléme-ci comme un probléme semidéfini li-
néaire (LSDP) en utilisant ’équivalence (1).

Optimisation Quadratique Non-convexe

Considérons par exemple le probleme quadratique
min {fo(x); fi(e) S0, i=1,...,L}, (QP)

ott fi(z) =" Ajx+2b] x+¢;, i = 0,...,L. Ici, les matrices A4; € S™ peuvent étre
indéfinies, et donc le probleme (QP) est tres difficile & résoudre. Par exemple, ce
probleme-ci inclut tous les problemes d’optimisation avec une fonction objective
et des fonctions contraintes polynomiales (cf. [29, Sect. 6.4.4]).

Dans la pratique, c’est tres important d’avoir des bonnes estimations infé-
rieures de la valeur optimale de (QP) qui soient calculables efficacement. Une
maniere d’obtenir ces estimations est de résoudre le probleme semidéfini

. Ap bo A by AL bp
. .« .. >_
iR {t’ (bg co — t) tn (bI 01) Tt (bZ CL) =0 (QP)
7 >0, i:l,...,L}.

En effet, supposons que z est réalisable pour le probleme (QP), c’est & dire

.
ﬁ(m)zm (ng i) mgo Vi=1,...,L

Alors, si les variables ¢ et 7;, 1 = 1,... L, satisfont les contraintes du probléme
(QP), on déduit que

-
x Ay by A b A b x
o<[i] [Gr &) en G o) ren G 2] 1]

= fo(z) —t+ 1 fi(z) +... +7ofr(z)
< fo(z) —t.



Donc, t < fo(x) pour tout point = réalisable pour le probleme (QP).

Par ailleurs, le probleme dual de (QP) est donné par [36, Sect. 3] :

min {AO-X+2ng+c0; A X420z 4e, <0, i=1,...,L
Tz€R", XeSn

On note que la contrainte

()= @

équivaut & X > zz ', qui peut étre considérée comme une relaxation de la
contrainte X = zx . Alors, le probleme (DQP) peut directement se considérer
comme une relaxation du probleme

min {AO-X+2bS—x+CO;Ai~X—|—2b:x—|—cz-§0,i:17...,L,
zER™, XS
X ::ch},

qui est une formulation équivalente au probleme (QP).

Optimisation Combinatoire

Regardons une application de ’approche décrite dans la section précédente.
Considérons le probleme quadratique

min {xT Az +2b"x; 22 =1,i=1,...n}, ((-1,1)-QP)
zeIR™

ol A € S™ et b € IR". Ce probleme NP-dur. Pourtant, la contrainte entiere
2? =1 (i.e. ; = 1) peut étre relaxée comme z? > 1, donc, d’apres (2), on sait
que le probleme semidéfini

. T . X T _
. X — — .-
e ITP,IQGS" {A X+2 z; Xy=1, i=1,....n, (xq— A= 0p. (QP)

nous donne une estimation inférieure de la valeur optimale du probleme ((-1,1)-

QP).

Goemans et Williamson [21] ont prouvé que pour le probléme de coupe maxi-
mum (MAX-CUT problem), lequel est un cas spécifique du probleme ((-1,1)-
QP) ot b = 0 et les composantes de la diagonal de la matrice A sont égaux a
0, Pestimation inférieure donnée par le probléme (@) est au moins 14% sous
optimale. Celle-ci est la meilleure estimation inférieure connue jusqu’a présent.



Résolution du Probleme (SDP)

Pour le probleme (SDP) non-convexe, on peut mentionner entre autres ’al-
gorithme S-SDP (Sucessive SemiDefinite Programming) développé par Fares,
Noll et Apkarian dans l'article [19], lequel est inspiré de lalgorithme SQP (Se-
quentally Quadratic Programming) pour la programmation mathématique non-
linéaire classique (voir par exemple [8]). On prouve que cet algorithme converge
quadratiquement si certaines hypotheses sont satisfaites.

Les mémes auteurs proposent dans [18] un algorithme du type Lagrangien
Augmenté pour résoudre un cas particulier du probleme (SDP).

D’autre part, on trouve dans Uarticle de Jarre [24] un algorithme de point
intérieur pour résoudre le probleme (SDP) non-convexe.

Auslender propose dans ’article [5] une approche unifiée pour résoudre des
problémes convexes en utilisant des différents classes des fonctions barrieres ou
de penalisation. En particulier, on peut appliquer cette approche au probleme
(SDP) convexe.

Dans le cas (SDP) convexe, on peut aussi appliquer l'approche de point
intérieur de Nesterov et Nemirovskii qui est basée sur des fonctions auto con-
cordantes (cf. [11]).

Le probleme (LSDP) est convexe, donc il peut étre résolu dans un temps
polynomial & n’importe quelle précision fixe en utilisant la méthode d’ellipsoide
introduite par Khachiyan [27].

Malheureusement, le temps de fonctionnement de cette méthode-ci est pro-
hibitivement haut dans la pratique.

En revanche, les méthodes de points intérieurs, introduites originalement
par Karmarkar [26], se sont avérées étre les plus rapides dans la pratique. Dans
la prochaine section nous présentons ces méthodes et ses principaux résultats.
Pour étudier des autres algorithmes, nous nous adressons au lecteur a ’article
de Todd [35], ou le livre “manuel” sur la programmation semidéfinie [37].

Méthode de Points Intérieurs

Les méthodes de point intérieurs pour la programmation semidéfinie linéaire
ont été introduits par Nesterov et Nemirovskii (voir [11]). Voir aussi Alizadeh

1.



Réécrivons le probleme (LSDP) de la maniére suivante:

i T = A = — - .
erlin o, {c x; G(z) := Ao+ ;%Az S, S*= O} (LSDP)
Donc son probleme dual est
}glé%i(n{Ao-Y;Ai-Y—&—ci:O,izl,...,m Y = 0}. (DLSDP)

Notons que si on définit la fonction © — A(z) := Y " | x;4; son opérateur
adjoint est donné par

ZeSm - AZ)=(A1-Z,....A,-2)".

Ecrivons alors les conditions d’optimalité associées aux problemes (LSDP) et
(DLSDP):

G(x)—!—S:Ao—i—inAi—FS:O; S =0, (3.2)
i=1

AY)+¢=0; Y =0, (3.b)

SY =0. (3.c)

Dans cette section nous supposons que les problemes (LSDP) et (DLSDP)
sont tout les deux strictement réalisables, autrement dit, nous supposons qu’il
existe (z,5,Y) satisfaisant les conditions (3.a) et (3.b), associées a la réalisabilité
de ces problemes, tel que S, Y > 0.

Cette hypotheése implique que les valeurs optimales des probléemes (LSDP)
et (DLSDP) sont égaux (dualité forte), et que les ensembles solutions de ces
probléemes sont nonvides et compacts.

Considérons une perturbation de la condition (3.c) de la forme SY = ul,,
ou u > 0. Si on ignore les contraintes d’inégalité S, Y > 0, on obtient le systeme
des equations

G(xz)+ S
Fu(z,8Y):=[ AY)+c | =0. (4)
SY —ul,,

Sous I'hypothese de strict réalisabilité, il existe une unique solution (z,,S,,Y,)
pour tout g > 0 (voir par exemple [37, Chapitre 10]). Il est possible aussi
de prouver que I'ensemble {(z,,S,,Y,) : p > 0} définit une courbe réguliere
paramétrée par u, laquelle est usuellement appelée le chemin central.

Si nous résolvons (4) par une méthode de Newton, nous obtenons le systeme

7



des equations linéaires suivant :

> AziA;+AS =0, (5.a)

i=1
A(AY) =0, (5.b)
ASY + SAY = pul,, — SY. (5.c)

Car la matrice SY n’est pas forcement symétrique, le systéme (5) est composé
par m(m +1)/2+n+m? équations mais seulement par m(m + 1) + n variables.
Alors, la solution AY risque de ne pas étre symétrique et puis Y + AY ne
appartiendra jamais au cone ST des matrices symétriques semidéfinies positives.

Pour surmonter ce probleme, Zhang [38] introduit Popérateur
1 ~1 N
Hp(M) := E(PMP +(PMP™H)"), (6)

ou P est une matrice non-singuliere donnée, et il I'utilise pour symétriser ’équation
(5.¢) en la remplagant par

Hp(ASY + SAY + SY) = ul,,..

Il y a plusieurs possibilités pour choisir la matrice P. Todd étudie des
différents variantes dans Darticle [34]. Pourtant jusqu'a présent il n’y a pas
un clair “vainqueur” dans le sens d’avoir une matrice P qui soit supérieur au
niveau théorique et pratique.

En particulier, on peut considérer la direction H.K.M. donnée par P = S %,
laquelle peut étre obtenue en remplagant AY par %(AY + AY'T) dans (5.c)
(voir Helmberg et al. [25]).

Nous allons expliciter ’algorithme de point intérieur en suivant I'interprétation
de Helmberg et al. [25]:

Algorithme Primal-Dual de Point Intérieur

Considérons les donnés A;,i = 0,...,n, b et ¢, et un point initial (22, 5%, Y?)
satisfaisant que F),(z°, 5%, Y?) =0 et S°, Y - 0. Sans perte de généralité nous
supposons que u = 1, c’est & dire que S°Y° = I,,,.

Les parametres initiaux de I’algorithme sont 1 = 1, 7 > 0 tel que §(z%, 5%, YY)
< 7, et la tolérance € > 0. Ici, on a dénoté par §(z, S,Y) une mesure de proximité
entre le point (z,5,Y) et le chemin central {(z,,S,,Y,) : > 0}.

8



Pas 1. Réduire le parametre p.

Pas 2. Sid(z,S,Y) > 7, calculer (Az, AS, AY) en résolvant (5), et
remplacer AY par %(AY +AYT).

Pas 3. Trouver a € (0,1] tel que S+ aAS > 0,Y +aAY >0 et la
distance §(z, S,Y") soit réduite.

Pas 4. Actualiser (2,5,Y) = (x + @AY, S + aAS,Y + aAY).

Pas 5. Si S Y < e alors l'algorithme arréte,
Sinon et §(x,S,Y) < 7 alors on va au pas 1,
Si non, on va au pas 2.

Utilisant cette méthode de point intérieur, on peut résoudre le probléeme
(LSDP) dont les donnés A;, b et ¢ sont rationnels et la tolérance est égal & €
avec O(y/mlog(1/e)) itérations réalisables (cf. [34]). Ceci est le méme résultat
théorique qu’on obtient dans le cas linéaire (LP).

Pour des différents détails sur la complexité associée a chaque itération de
lalgorithme de point intérieur, voir 'article Krishnan et Terlaky [28].

Quelques Remarques sur la Complexité du Probléme (LSDP)

Nous avons dit que, sous I’hypothése de strict réalisabilité, les problemes
(LSDP) et son dual (DLSDP) peuvent étre résolus a une tolérance fixe dans un
temps de fonctionnement polynomial en utilisant la méthode de point intérieur.
Pourtant, méme si tous les donnés du probleme, A;, b et ¢, sont rationnels, on ne
peut pas établir des bornés polynomiales pour la longueur de bits des nombres
intermédiaire calculés par I’algorithme de point intérieur. Alors, la méthode de
point intérieur pour résoudre (LSDP) n’est polynomial que dans le modele des
nombres réels, car il n’est pas polynomial dans le modele des nombres de bits
utilisés dans ses calculs.

En effet, il existe des problemes (LSDP) avec des donnés rationnels dont
la solution n’est plus rationnel. Par exemple, considérons les contraintes se-

midéfinies
1 =z 2r 2
<x 2) =0 et ( 2 x) =0

dont I'unique point réalisable est © = /2. Clairement, cette solution ne peut
pas étre décrite en utilisant un nombre polynomial de bits. Cette situation-ci
constitue une différence importante entre le probléme (LSDP) et le cas linéaire
classique (LP).

Une autre situation “pathologique” qui peut arriver dans le cas semidéfini



est que tous les points réalisables soient doublement exponentiels. Par exemple,
considérons les fonctions Q1 (z) := (z1 — 2) et

Qi(x) := ( ! xi_l) Vi=2,...,n.

Ti-1 Ty
Alors, la contrainte semidéfinie et diagonale par blocs

Q(z) := diag(Q1(x), Q2(x), ..., Qn(x)) = 0

est satisfaite ssi Q;(z) = 0 pour tout i = 1,...,n, ce qui implique que
T; > 92'-1 pour tout ¢ =1,... n.

Donc, tout point réalisable et rationnel a aussi une longueur exponentielle de
nombre de bits.

Plan de la Theése

Cette these est constituée de quatre chapitres:

“A Global Algorithm for Nonlinear Semidefinite
Programming”

Dans ce chapitre nous proposons un algorithme global pour la résolution des
problémes semidéfinis nonlinéaires de la forme
min {f(); A(x) < 0, h(x) = 0}, ()
rcIR™
ouf:R"— R, A:R" — S™eth:IR" — IRP sont des fonctions suffisamment
différentiables. Pour cela, on utilise une stratégie de recherche linéaire, et une
fonction de pénalisation nondifférentiable

0o (x) = f(z) + o (A (A(@))+ + [[R(2)]), (7)

ot o > 0 est le parametre de pénalisation, A;(A) := max, z ' Az dénote la plus
grande valeur propre de la matrice A, et (a)+ := max{0,a} pour tout a € IR.

Y

Récemment, une méthode nommée “Sequentially Semidefinite Programming’
(S-SDP) a été introduite dans Particle [19]. Cette méthode résout localement
notre probleme et est fortement inspirée de la méthode classique “Sequen-
tially Quadratic Programming” (SQP) pour la programmation nonlinéaire. Les
résultats de Particle [19] ont été une base pour notre travail, et nous avons suivi
certaines de ses idées.
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Sur les résultats a remarquer dans ce chapitre, on peut mentionner par
exemple que nous prouvons que la fonction Lagrangienne Augmentée
L, : R" x S™ x IR — IR définie par (voir par exemple la fonction Lagrangienne
Augmentée Prozimale dans [32])

Lo(@.2) = f(z) + \h(z) + Tr(Z[A(x) + (~0 ' Z = A(@))])
+2 (In@)I2 + I A@) + (~07'2 = A@)+l3,).

et la fonction de pénalisation de Han (cf. (7)) sont fonctions de pénalisation
exacte pour le probleme semidéfini nonlinéaire (P), autrement dit, ces fonc-
tions atteignent un minimum local dans la solution de (P) (voir des différents
théorémes associés & ce sujet dans la Section 3 du Chapitre 1 ou dans [16, Sect.

3)).

Notre résultat principal est la démonstration de la convergence de notre al-
gorithme sous des hypotheses minimales en profitant de la structure matricielle.
Ceci est montré dans le Théoreme 4.4 du Chapitre 1.

Ces résultats étendent la théorie connue pour la programmation nonlinéaire
classique (cf. [10]) et ont inspiré des travaux récents sur le méme sujet (voir, par
exemple, [20]).

“Penalty and Barrier Methods for Convex Semidefinite
Programming ”

Dans ce chapitre nous présentons des méthodes de pénalisation et de fonc-
tions barriere pour résoudre des problemes de programmation semidéfinie conve-
xe. Plus précisément, nous travaillons avec le probleme (SDP) dont la fonction
de coiit f est convexe et I'opérateur G satisfait la propriété de convexité sui-
vante :

GAx+ (1 =MNy) X AG(z)+ (1 —NG(y) Vz,ye R", VAel0l].

En effet, nous étudions des méthodes qui consistent en la résolution “ap-
proximative” des problémes de minimisation sans contraintes

vy = inf{¢,(z) | z € R"}, P,)

avec



ot A\1(A) > Xa(A) > ... > A\ (A) sont les valeurs propres de la matrice A, le
réel > 0 est un parametre de pénalisation qui converge vers 0, la fonction
a: IRy — IR, satisfait les conditions suivantes:

lim «a(r) =0 et lim inf alr)

> 0,
r—0+ r—0t r

et 0 est une fonction de pénalisation qui appartient a la classe suivante [3]:

F={0:R— RU{+c0}, convexe, sci, propre et non décroissante t.q.
Oso(1) >0, lim 0(t) = +o0, et dom @ =] — oo,n[, o n € [0, + c0]}.
t—n—

Cette classe de méthodes est une extension des méthodes de pénalisation et
de fonctions barriere dans le cadre de loptimisation convexe usuelle (cf. [6]), et
dans le cas ou l'opérateur convexe G est linéaire (cf. [4]).

Nous donnons un critere d’arrét implémentable pour obtenir la suite pri-
male {z,} (le point z, est une solution de (P,)), et des formules explicites pour
la suite duale (ce qui n’avais pas été fait dans le cadre restreint de [4] et [6]).
Nous montrons alors la convergence des suites primales et duales obtenues par
ces méthodes sous des hypotheses minimales: a savoir, ’ensemble des solutions
optimales du probléme (SDP) est un compact non vide, et la condition de Sla-
ter: il existe 2 tel que G(2°) soit une matrice définie négative, est vérifiée.
L’analyse de la convergence est ici plus complexe que dans [4] et [6]. En ef-
fet, cette derniere repose sur I’Analyse Asymptotique, et ici on doit calculer la
fonction asymptote d’'une fonction composée ou intervient 'opérateur convexe
G. Or pour l'instant on n’a aucune notion permettant le calcul d’une fonction
asymptote d’'un opérateur convexe général.

Finalement, nous étendons aussi 'approche des méthodes de pénalisation
a deux parametres introduite dans [23] & la programmation semidéfinie, lequel
consiste en résoudre “approximativement” les problemes

v, = inf{eh(z) | = € R}, (P)

avec

Uele) = 1) + r@ée (MG,

Ici, le parametre r > 0 est toujours décroissant pendant que le parametre G, > 0

croit si la solution z, de (P,) n’est pas réalisable pour le probleme (SDP).

Cette approche est particulierement intéressante pour des problemes dans
lesquels il est difficile de trouver une solution admissible de départ permet-
tant de calculer la suite primale, et aussi dans lesquels 'admissibilité des so-
lutions approchées est importante. Ces deux difficultés sont ici surmontées et
le théoreme de convergence de la suite primale montre ici en plus, qu’a partir
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d’un certain rang la suite primale est admissible. Ceci est démontré sous les
conditions minimales usuelles. Les résultats obtenus sont non seulement une ex-
tension a la programmation semidéfinie mais améliorent aussi dans le cas usuel
les résultats donnés dans [23]. D’abord on donne une reégle implémentable de
solutions approchées ce qui n’est pas le cas dans [23], ensuite au lieu de suppo-
ser que ’ensemble des contraintes est compact, on ne fait cette hypothese que
sur ’ensemble des solutions optimales. Enfin, on associe a la suite primale, une
suite duale de multiplicateurs donnés par une formule explicite et I’on démontre
que cette suite est bornée et que chacun de ses points limites est une solution
optimale du dual. Cet aspect n’apparait pas dans [23].

“Perturbation Analysis of Second-Order Cone
Programming Problems”

Dans ce chapitre nous travaillons avec le probleme de programmation sur
un cone de second ordre ou coéne de Lorentz (SOCP), ol les fonctions f et g7,
j=1,...,J, sont deux fois continiiment différentiables (i.e. C?).

Dans une premiere partie nous faisons une comparaison avec sa représenta-
tion SDP dont nous montrons que ces problémes ne sont plus équivalents du
point de vue dual. En effet, des propriétés importantes comme 'unicité du mul-
tiplicateur dual ne sont plus satisfaites simultanément pour les deux problemes.
Des résultats similaires sont obtenus par Siam et Zhao dans [33] en utilisant une
différente approche.

Cette partie de notre travail est développée dans un cadre général et ap-
pliquée a nos problemes. Nous introduisons aussi une notion de partition opti-
male (cf. Lemme 2.3 dans le Chapitre 3 ou [12, Lemme 3]) laquelle nous permet
démontrer certaines propriétés.

Dans une deuxiéme partie nous donnons le résultat principal de notre ar-
ticle: La caractérisation de la condition de régularité forte [30] pour le probleme
(SOCP) en fonction des conditions optimales de second ordre. En effet, consi-
dérons la fonction lagrangienne associée au probleme (SOCP)

J
L(zy) = f(x)+ Y ¢ (@)"y VeeR"yelll_ R™", (9)

j=1
et le cone de directions critiques suivant :
C(z*) :=={h € R" : Dg(z*)h € To(g(z*)),Vf(z*)"h =0}, (10)

avec Tk (A) le cone tangent & Pensemble K dans le point A € K. Cette ca-
ractérisations vient donnée par le résultat ci-dessous:

13



Théoréme. Soient x* une solution local de (SOCP) et y* son multiplicateur
de Lagrange. Alors, (z*,y*) est une solution fortement réguliére (des conditions
de premier ordre associées a (SOCP)) ssi x* est nondégéneré (définition 4.3 du
Chapitre 3), et la condition de second ordre suivante est satisfaite :

RTV2 L(z*y*)h+hTH(z"y*)h >0, YheSp(C(z*)\{0}.  (11)

ot Sp(C) := R (C — C) est l’espace vectoriel généré par l’ensemble C, et la
matrice H(x*y) est définie par H(x*y) = ijl HI(z*,y7), dont pour s/ =
¢’ (z*), j =1,....J, et I, la matrice identité dans S™, on denote

Wi )= ~Bog ey (o ) oo (12)
0 m;

si 87 # 0 appartient a la frontiére de Qm,+1, et HI(z*,y7) := 0 si non.

Ce sujet est bien développé dans la programmation mathématique non-
linéaire classique. On peut citer par exemple deux différents approches: [14]
et [17], lesquelles montrent la caractérisation de la propriété de régularité forte
en fonction de conditions optimales de second ordre, mais ce travail-ci est le pre-
mier ou on donne une caractérisation précise pour un probleme d’optimisation
sur un cone différent d’un cone polyédral.

“A note on Strong Regularity for Semidefinite
Programming”

Nous considérons un probléme de programmation semidéfinie nonlinéaire (cf.
Probleme (SDP)) et analysons le comportement des solutions de ce probleme
quand une petite perturbation est appliquée. En particulier, nous étudions la
propriété des “solutions fortement régulieres” (dans le sens de Robinson [30])
et sa relation avec des conditions optimales de second ordre. Comme on a déja
mentionné, ce genre de résultats est bien connu pour la programmation non-
linéaire classique.

Dans cet article nous donnons des conditions nécessaires et suffisantes pour le
probléme (SDP), en revanche, sa caractérisation est encore un probléme ouvert.
Pour cela, on a utilisé des résultats connus dans le contexte d’optimisation sur
un cone convexe et fermé quelconque, ainsi que des techniques matricielles bien
précises.

En effet, il est bien connu que la régularité forte est satisfaite ssi la condition
de croissance quadratique uniforme est satisfaite et la solution primal Z est
nondégéneré (cf. [13]). Cette dernitre condition veut dire que la fonction linéaire
Yz : IR™ — S™~" définie par

Yz(h) :== ETDG(Z)hE

14



est surjective. Ici, le réel r est le rang de G(Z), et on denote par E € IR™*™™"
une matrice dont ses colonnes sont une base orthonormale de Ker G(Z).

Il suffit donc de caractériser la condition de croissance quadratique uni-
forme en fonction des conditions optimales de second ordre sous I’hypothese de
nondégénérescence.

Dans ce contexte, notre condition optimale nécessaire améliore les condi-
tions nécessaires connues sur deux points: elle considere un terme quadratique
additionnel associé a la géométrie du cone des matrices semidéfinies négatives,
et le cone des directions critiques dont la condition est satisfaite est plus grand
que ceux considérés antérieurement dans la littérature. En effet, considérons la
fonction lagrangienne associée au probleme (SDP)

L(z)Y):=f(z)+G(x)-Y VreR"Y eS™, (13)
et le cone de directions critiques suivant :
C(z) :={h € R" : DG(Z)h € Tsn (G (7)), Vf(z) h =0}, (14)
avec Tk (A) le cone tangent & Pensemble K dans le point A € K.

Alors, la condition nécessaire est donnée par le théoréeme ci-dessous:

Théoréme. Soient T une solution local de (SDP) et Y son multiplicateur de
Lagrange. Si (z,Y) est une solution fortement réguliére (des conditions de pre-
mier ordre associées & (SDP)), alors T est nondégéneré et la condition du second
ordre suivante est satisfaite :

RTV? L(z,Y)h+h"H(Z,Y)h >0, VYhe Sp(C(z))\ {0}. (15)

ot Sp(C) := IR, (C — C) est l’espace vectoriel généré par l'ensemble C, et les
composants de la matrice H(Z,Y) sont

H(&Y)i; = —2Y - (ID,,G(2)]G(2)'[Ds, G(2)))- (16)

avec At = Ziw#o /\i_lqiqiT la matrice pseudo-inverse de A = >, Niqiq; (sa
décomposition spectrale).

Nous pensons que la condition (15) est aussi suffisante, pourtant, la condi-
tion optimale suffisante qu’on a montré ne considere pas le terme quadratique
décrit par (16), et en plus, le cone des directions critiques de cette condition suf-
fisante est plus petit que celui de la condition nécessaire. Voyons cette condition
suffisante.

Théoréme. Soient T une solution local de (SDP) et Y son multiplicateur de
Lagrange. Si T est nondégéneré et si la condition de second ordre suivante est
satisfaite : ~ -

R'V2 L(z,Y)h >0, Vh#0;, DG(Z)h-Y =0, (17)

alors (z,Y) est une solution fortement réguliére.
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On a donc un écart entre les conditions optimales nécessaires et suffisantes.

16



Bibliographie

1]

2]

[3]

[4]

[5]

F. Alizadeh. Interior point methods in semidefinite programming with
applications to combinatorial optimization. SIAM J. on Optimization, Vol.
5, pp. 13-51, 1995.

F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathema-
tical Programming, 95:Ser. B, pp. 3-51, 2003.

P. Apkarian and D. Noll, A prototype primal-dual LMI-interior algorithm
for nonconvex robust control problems, Technical Report 01-08, MIP, UMR
5640, 2001. http://mip.ups-tlse.fr/publi/publi.html.

A. Auslender. Penalty and barrier methods: a unified framework. STAM J.
Optimization, 10:211-230, 1999.

A. Auslender. Variational inequality over the cone of semidefinite positive
symmetric matrices and over the Lorentz cone. Optimization Methods and
Software, 00:pp. 1-18, 2003.

A. Auslender, R. Cominetti, and M. Haddou. Asymptotic analysis of pe-
nalty and barrier methods in convex and linear programming. Mathematics
of Operations Research, 22:43-62, 1997.

A. Auslender and H. Ramirez C. Penalty and barrier methods in nonlinear
semidefinite programming. Soumis a Zeitschrift fiir Operations Research.
Ce travail sera presenté a la “French-Latin American Conferences on Ap-
plied Mathematics” (FLACAM), Janvier 2005, Santiago, Chili.

P. T. Boggs and J. W. Tolle. Sequentally quadratic programming. Acta
Numerica, 4:pp. 1-50, 1995.

J. F. Bonnans, R. Cominetti, and A. Shapiro. Second-order optimality
conditions based on parabolic second-order tangent sets. SIAM J. on Op-
timization, 9(2):pp. 466-492, 1999.

J. F. Bonnans, J.-C. Gilbert, C. Lemaréchal, and C. Sagastizabal. Nume-
rical Optimization. Springer-Verlag, Berlin, 2002.

17



BIBLIOGRAPHIE

[11]

J. F. Bonnans and H. Ramirez C. A note on strong regularity for semide-
finite programming. Presenté au colloque d’optimisation “French-German-
Spanish Conferences on Optimization”, septembre 2004, Avignon, France.
En preparation.

J. F. Bonnans and H. Ramirez C. Perturbation analysis on second-order
cone programming problems. Technical Report 5293, INRIA, Rocquen-
court, France, 2004. Soumis a Mathematical Programming Series B.

J. F. Bonnans and A. Shapiro. Perturbation analysis of optimization pro-
blems. Springer-Verlag, New York, 2000.

J. F. Bonnans and A. Sulem. Pseudo power expansions of solutions of ge-
neralized equations and constrained optimization problems. Mathematical
Programming, 70:pp. 123-148, 1995.

B. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, Linear matriz in-
equalities in systems and control theory, vol. 15 of STAM Studies in Applied
Mathematics, STAM,Philadelphia, 1994.

R. Correa and H. Ramirez C. A global algorithm for nonlinear semidefi-
nite programming. Research Report 4672 (2002), INRIA, Rocquencourt,
France. A paraitre en STAM J. on Optimization.

A. L. Dontchev and R. T. Rockafellar. Characterization of Lipschitzian
stability in nonlinear programming. In A. V. Fiacco, editor, Mathematical
Programming with Data Perturbations, pages 65—82, 1998.

B. Fares, P. Apkarian, and D. Noll. An augmented Lagrangian method
for a class of LMI-Constrained problems in robust control theory. Int. J.
Control, 74:pp. 348-360, 2001.

B. Fares, D. Noll, and P. Apkarian. Robust control via sequential semide-
finite programming. SIAM J. Control Optim., 40(6):pp. 1791-1820, 2002.

R. W. Freund and F. Jarre. A sensivity analysis and a convergence result
for a sequential semidefinite programming method. Technical Report 03/4-
08, Scientific Computing Interest Group, Bell Labs, Lucent Technologies,
2003.

M. X. Goemans and D. P. Williamson. .878-Approximation Algorithms for
MAX CUT and MAX 2SAT. ACM Symposium on Theory of Computing
(STOC), 1994.

G. H. Golub and C. F. Van Loan, editors. Matriz Computations, Third
Edition. The Johns Hopkins University Press, Baltimore, 1996.

C. C. Gonzaga and R. A. Castillo. A nonlinear programming algorithm
based on non-coercive penalty function. Mathematical Programming, 96:pp.
87-101, 2003.

F. Jarre. An interior method for nonconvex semidefinite programs. Optim.
Eng., 1(4): pp. 347-372, 2000.

C. Helmberg, F. Rendl, R. Vanderbei and H. Wolkowicz An interior point

method for semidefinite programing. SIAM Journal on Optimization, 6:
pp. 673-696, 1996.

18



BIBLIOGRAPHIE

[26]
[27]

[28]

[32]

[33]

[34]

N. K. Karmarkar. A new polynomial time algorithm for linear programing.
Combinatorica, 4: pp. 373-395, 1984.

L. G. Khachiyan. A polynomial algorithm in linear programming. (Russian)
Dokl. Akad. Nauk SSSR, vol. 244 (no. 5): 1093-1096, 1979.

K. Krishnan and T. Terlaky. Interior point and semidefinite approaches in
combinatorial optimization. AdvOl Report 2004/2, McMaster University,
Ontario, Canada.

Y. N. Nesterov and A. S. Nemirovski. Interior Point Polynomial Algorithms
in Convex Programing. STAM Publications. STAM, Philapdelphia, USA,
1994.

S. M. Robinson. Strongly regular generalized equations. Mathematics of
Operations Research, 5:43-62, 1980.

S. M. Robinson. Generalized equations and their solutions, part IT: Applica-
tions to nonlinear programming. Math Programming Stud., 19:pp. 200—221,
1982.

R. T. Rockafellar and R. J-B. Wets. Variational analysis. Springer-Verlag,
Berlin, 1998.

C. Sim and G. Zhao. A note on treating second-order cone problems as
a special case of semidefinite problems. Mathematical Programming. To
appear.

M. J. Todd. A study of search directions in primal-dual interior-point me-
thods for semidefinite programming. Optimization Methods and Software,
11:pp. 1-46, 1999.

M. J. Todd. Semidefinite programming. Acta Numerica, 10:pp. 515-560,
2001.

L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM Review,
38(1):pp. 49-95, 1996.

H. Wolkowitz, R. Saigal, and L. Vandenberghe, editors. Handbook of Semi-
definite Programming: Theory, Algorithms and Applications. Kluwer’s In-
ternational Series in Operations Research and Management Science, 2000.
Y. Zhang. On extendig some primal-dual interior-point algorithms from
linear programming to semidefinite programming. SIAM Journal on Opti-
mization, 8:pp. 365-386, 1998.

19



BIBLIOGRAPHIE

20



CHAPITRE 1

A Global Algorithm for
Nonlinear Semidefinite
Programming

21



CHAPITRE I. A GLOBAL ALGORITHM FOR NONLINEAR
SEMIDEFINITE PROGRAMMING

A Global Algorithm for
Nonlinear Semidefinite Programming!

Rafael Correa? & Héctor Ramirez C.3

Abstract. In this paper we propose a global algorithm for solving nonli-
near semidefinite programming problems. This algorithm, inspired in the classic
SQP (sequentially quadratic programming) method, modifies the S-SDP (se-
quentially semidefinite programming) local method by using a nondifferentiable
merit function combined with a line search strategy.

1 Introduction

We consider the nonlinear programming problem

minimize  f(x)
(P) subject to A(x) <0,
h(z) =0,

where z € IR", A is a smooth function whose values are symmetric matrices, <
denotes the negative semidefinite order (that is, A < B if and only if A— B is a
negative semidefinite matrix), h is a smooth vector function with values in IR?,
and f is the smooth objective function. The smoothness of all these functions
is specified at each statement.

This problem becomes interesting when the linear matrix formulation [23]

minimize  f(z) = T

(LMT) subject to A(x) = Ao+ Y 1w, xiA; <0
does not give a satisfactory model for certain problems, particularly those from
control theory [1, 5, 8, 9].

This paper is organized as follows. In section 2 the optimality and constraint
qualification conditions for problem (P) are presented. The results contained in
this section are adaptations of known results (see [17, 21]). Here only the opti-
mality conditions that are useful in our context are discussed. Other conditions

1. Accepted for publication in SIAM J. Opt. (in revised form) September 6, 2003.

2. Centre for Mathematical Modelling, UMR 2071, University of Chile-CNRS, casilla 170-3,
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ment of Mathematical Engineering, University of Chile, casilla 170-3, Santiago 3, Chile (hra-
mirez@dim.uchile.cl).
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2. OPTIMALITY CONDITIONS REVIEW

can be found in [2, 6]. In Section 3 we demonstrate some exactness results as-
sociated with the Lagrangian, the augmented Lagrangian and the Han penalty
function. The first one is well known and we review it to make our exposi-
tion self-contained. The exactness of the augmented Lagrangian and the Han
penalty function are extensions of the corresponding classical mathematical pro-
gramming results [3, 15]. In Section 4 we propose a global S-SDP (sequentially
semidefinite programming) algorithm and prove its convergence. The conver-
gence of a local S-SDP algorithm has been proved by Fares, Noll, and Apkarian
[9]. Other works concerning the global convergence of methods for solving opti-
mization programs with nonlinear matrix inequalities constraints are [8, 16].

1.1 Notations

Throughout we denote by S™ the set of all symmetric matrices of dimension
m, by ST the set of all symmetric positive semidefinite matrices, and by S7",
the set of all symmetric positive definite matrices. The sets S™ and S™_ are
defined similarly. For all these sets of matrices we use the trace product (A4,B) =
Tr(AB), and the Frobenius norm ||A| g, = /Tr(A?). For a given matrix A,
Aj(A) denotes its jth eigenvalue in nonincreasing order and A, denotes the
matrix defined by
Ay = Pdiag((M)4ses(Am) 1) PT, (1.1)

where (A); = max{0,A\} and P is the matrix in the spectral decomposition
A = Pdiag(\1,...,Am ) PT. Tt is easy to see that A, is the orthogonal projection
of Aon ST

Given a matrix-valued function A(-) we will use the notation

8A(x*)>" :<8A(a:*) 8A(a:*))T

dzxy 7 Oz

3:52-

DA(z,) = (

i=1
for its differential operator evaluated at x,. This notation comes from the fact
that

"\ OA(w.
DAy =Y o)

i=1
Finally, if we define the linear operator V from R" to S™ by Vy = > 1", y;Vi,
where V; € S™ for all i € {1,...,n}, we have for the adjoint operator V* the
formula

Yy € R". (1.2)

V*Z = (Tt(WL Z),... Te(V,,Z))T VZ € §™. (1.3)

2 Optimality Conditions Review

In this section we state the first- and second-order optimality conditions
for (P) and discuss their implications. To this end, we consider the Lagrangian
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L:R" x S™ x IR — IR of problem (P) defined by

L(x,Z\) = f(z) + Tr(ZA(x)) + A\ h(x). (2.1)

2.1 First order optimality conditions

The Karush—Kuhn—Tucker necessary optimality conditions for a feasible
point z, of (P) are given by the existence of Z, € S™ and A\ = (A1, Aup) T €
IR? such that

Vf(zy) + DA(z)* Z, + Zp: AjVhj(zy) = 0

(KKT) =1
Tr(Z. A(z.))
Zs

0
0.

Yl

The pair (Z,,\s) is called the (KKT)-multiplier associated with x,. The com-
plementarity condition Tr(Z,.A(z.)) = 0 has the following two useful equivalent
forms:

N (ZIN(A@)) =0 ¥ je{l,..m} (2.2)

and
ZAz,) = 0. (2.3)

Both forms are easily obtained from the Von Neumann—Theobald inequality:

m

Te(AB) < 3 A (AN (B), (2.4)
j=1
where the equality holds if and only if there is a matrix P such that P~1AP

and P~!BP are diagonal [22, 24].

Condition (2.2) allows us to define the strict complementarity condition in
(KKT) as follows

Nj(Z,) =0 ifandonlyif X;j(A(z.)) <0 Vje{l,...,m} (2.5)
As is well known, the (KKT) conditions are not a consequence of the optima-

lity of x., and to ensure this consequence, we must assume an extra condition.
In this paper, we will use Robinson’s constraint qualification condition [18]

. A(z,) DA(x.) n sm
0e mt{( h(z.) ) + ( Vh(z.) R" — (0} , (2.6)
where int C' denotes the topological interior of the set C'. A direct consequence
of [12, Chapter 3, Prop. 2.1.12] is the equivalence between condition (2.6) and
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the Mangasarian—Fromovitz constraint qualification condition

{Vh;(z.)} is linearly independent, and (2.7a)
5 n Vh(z.)d =0
Jde R" s. t. { and A(d) < 0. (2.7b)

where A, : R" — S™ is the linear affine function defined by A.(y) := A(z.) +

Sy y1%£) It can be shown that under (2.6) the set of (KKT) Lagrange
multipliers is nonempty and also bounded [14].

We will also consider the transversality condition which asks that the func-
tion ¢ : IR™ — IRP x S, defined by

(d) = ((vmx*)d)T,NTidi“(m*)N) (28)

ox;
i=1 ¢

be surjective, where

N = [v1...v,] (2.9)

is the matrix whose columns v; are an orthonormal basis of Ker A(z.). We
set N = 0 if Ker A(z,.) = {0}. This condition has originally been defined
in the context of smooth manifolds [10] and implies the Robinson’s constraint
qualification condition (2.7); moreover, (2.8) guarantees the uniqueness of the
(KKT)-multiplier. Unfortunately, this condition can be very strong, because it
forces n > p+r(r 4+ 1)/2, where r = dim[Ker A(z,)].

It is clear that the transversality condition (2.8) cannot hold when the matrix
A(z,) has a diagonal block structure. Indeed, in this case the multiplier Z, is not
unique, and therefore the transversality condition does not hold. This difficulty
can be easily avoided if we assume the transversality condition for each block
of A(x,). For example, if A(z,) has two diagonal block structure with sizes my
and meo, then the mapping v should be considered into the cross-product space
S™1 % S™2 rather then the larger space S™ ™2, For simplicity of notation we
only consider the case where A(x,) is a one-block matrix. More details about
the transversality condition in the semidefinite programming context can be
seen in [21] and the references within.

2.2 Second-Order sufficient conditions

In this section we introduce only the second-order sufficient conditions that
will be used in this paper as well as results that involve transversality condition
(2.8). We assume that f, h, and A are twice differentiable at ..

Given a set B C IR™ we define

S™(B):={M e S™:w"Mw <0 VYw e B}. (2.10)
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Proposition 2.1. A sufficient condition to obtain the isolated optimality of T,
for problem (P), is the existence of (Z«,Ax) € S™ X IRP such that (x.,Z.,\x)
satisfies (KKT) and

dT'V2 L(zs,Z,\)d > 0 (2.11)

for all nonzero vectors d € C(x.), where

O(zy) = {d eR":Y 4, ag(x*) € S™(Ker A(z.,)),
i=1 i (2.12)
Vh(z,)d = 0 and V f(z.)7d = 0}
is a cone of critical directions for problem (P) at the point x..
Proof. See, for example, [19, Thm. 2.2] and note that
Tsm (A(z,)) = ST (Ker A(z.)).
|

Remark 2.2. Condition (2.11) can be far from necessary. For instance, in the
problem (LMI), mentioned in the introduction, we always have V2,L = 0; thus,
if C(x.) # {0}, condition (2.11) never holds. This is because condition (2.11)
does not consider the geometry of S™. This kind of problem was the motivation
for works such as [2, 6, 21] in the 1990s. We will just consider the nonlinear
problem (P), where the algorithm S-SDP makes sense.

Let us define now a larger cone of critical directions C’(x,Z,), which consi-
ders the (KKT)-multiplier Z, associated with the matrix inequality A(z) < 0,
as follows:

OA(x)
8$i

C' (24,2, = {d €R":Im Z, CKer Pry d;

and Vh(z,)d = O} ,
i=1

(2.13)
where Pr is the orthogonal projection in IR™ over Ker A(z.). Note that Pr =
NNT with N defined in (2.9).

The next proposition relates both cones of critical directions and the function
1 used in the tranversality condition.
Proposition 2.3. Let z, be a solution of (P) and (Z.,\«) be a (KKT)-multiplier.
Let us also consider the function 1, defined in (2.8), and the cones of critical
directions defined above. Then

Ker ¢ C C(xy) C C'(24,24), (2.14)
with equality when the strict complementarity condition (2.5) holds.
Proof. First, note that we can write (2.3) in the equivalent form

Z,=N¢,NT, (2.15)
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with ¢, € S;F and r = dim Ker A(z,). Then, to prove the first inclusion in
(2.14), it is sufficient to show that Vf(z.)Td = 0. This comes from the first
equation in (KKT) and the equality

Tr (Z* zn:di agg@) —Tr <¢*NT Zn:di agz*)N> . (2.16)
i=1 i=1

For the second inclusion, if d € C(z.) then Vf(z.)Td = 0 and Vh(z.)d = 0,
and we obtain from (2.16) and the first equation in (KKT) that

OA(z)
8%—

Tr(¢.N" > d; N) =0.
=1

Since Y1, di%ri*) € S™(Ker A(z,)), we see that NT Y"1 d; 6“3(;?*)N €S,
and using (2.4), we deduce from the last equality that

"L 0A(x,)
NTN g, N¢. =0, 2.17
; o VO (2.17)
which is equivalent to
—~ 0A() ,, e, OA(.) T _
P]r;dz 3, Z,=NN ;dz a0, N¢, . NT =0, (2.18)

and we conclude that d € C'(x.,Z,).

If, in addition, we assume the strict complementarity condition (2.5), we
have that ¢, is nonsingular, and from the equivalence between (2.18) and (2.17)
we deduce the converse inclusion C'(z.,Z,) C Ker ). |

A direct consequence of propositions 2.1 and 2.3 is the following stronger
second-order sufficient condition for optimality.
Proposition 2.4. Under the hypotheses of Proposition 2.1, where the critical
cone C(x,) is replaced by C'(x.,Z,), the point x. is an isolated local minimum

of (P).

3 Exact Penalty Functions

A pair (z.,y.) in the product set X x Y is said to be a saddle-point of the
function p : X x Y — Ron X x Y if

0(Tx,y) < o(T4,yx) < @(2,y.), Ve e X, VyeY.

We say that a function @ : IR™ — IR is an ezact penalty function for a local
minimum z, of (P) if z, is a local minimum of ® too.
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In this section we study different penalty functions associated with problem
(P) and state necessary and sufficient conditions for exactness. A general ap-
proach for the study of exact penalty functions can be found in [4, Sect. 3.4.2].

3.1 The Lagrangian Function in the Convex Case

Let us consider the particular case of (P) when h : IR™ — IR? is an affine
function h(z) = ho+ Hz, with H € IRP*"™ and ho € IR?, f : IR" — IR is convex,
and A(+) is convex in the sense of the semidefinite order, that is,

Alte + (1 —t)y) <tA(z) + (1 —t)A(y) Vte[0,1]Vr,y € R"™

With these assumptions, (P) will be denoted by (P¢) (convex problem). For
(24,724, ) satisfying (KKT), it can be shown that the function L(-,Z,,\,), defi-
ned in (2.1), is an exact penalty function for (P¢). This is an immediate conse-
quence of the fact that (z.,Z.,As) is a saddle-point of the Lagrangian function
on R" x ST x IRP (see [25, Thm. 4.1.3]). However, it is known that the La-
grangian is no longer an exact penalty function in the nonconvex case, which
is the reason other penalty functions are introduced to obtain exactness results
for our general problem (P).

3.2 The Augmented Lagrangian

We define the augmented Lagrangian function L, associated with problem
(P) as

Lo(2,Z,)) = f(x) + ATh(z) + Te(Z[A(2) + (071 Z — A(2))+])

o 3.1
L2 (M@ + 4@ + (-0 Z - A@) ),

where o > 0 is the penalty parameter. In [20], L, is called the prozimal aug-
mented Lagrangian.

If (z4,Z4,A) is any point satisfying (KKT), from (2.2) it can be shown that
LU(‘T*7Z*7)‘*) = f(l'*) (32)

In the next theorem we prove that L, (-,Z.,A«) is an exact penalty function
when o is sufficiently large.
Theorem 3.1. Let us assume that f, h, and A are twice differentiable at x,
and that (z.,Z«,\) satisfies (KKT) conditions and the second-order sufficient
condition (2.11). Then, there is a neighborhood V' of x. and a real & > 0 such
that for all 0 > &, (v«,Z«,\) is a saddle-point of Ly on V x (S™ x IRP).
Moreover,

Lo(mvz*v)\*) > Lo’(x*,Z*a)\*) > Lg(x*;Zv)‘)
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for all (x,Z\) € V x S™ x IRP with x # x..

Proof. Since the operator (-), defined in (1.1), is the projection on S, we
have that

(=072 = A@)+ = (=07 Z = A@)|[ 7y < W = (07" Z = A()) I (3-3)

for all W € ST, and then

SN=071Z = A@)s + A@) [}, + Te(Zl(—07'Z = A@))+ + AW@)) o
< TZIW + A@) + ZIW + A@) .

for all W € ST Taking # = x, and W = —A(x,) (which belongs to ST), we
get

%H(—U_lZ = A(@))+ + A@) | Er + Tr(Z[(—071Z = A(w2))+ + Az)]) < 05

hence

Lo (24,Z)\) < f(xy) = Lo(24,Z:,M) VYZ € 8™ VX € IRP,Vo > 0.

Let us now prove the second inequality. Let B.(z.) be a closed ball with
center x, and radius e such that f(z) > f(x.) for all feasible points z € B.(z.),
x # x,. We prove that for all o > 0 sufficiently large, x, is the unique point
satisfying inf,cp_(5,) Lo(2,Z4,Ax) = f(2.). For this purpose, we define the pro-
blem:

— ; T g 2 2
vo= o inf ) T 4 XThG) + 21+ W) )
A(z) = W
(3.5)
and from inequality (3.4) we can deduce that
Yo = inf  Ly(x,Z:\). (3.6)
TzEB:(x4)

To conclude, we show that (x,,0,Z,,0) is a point that satisfies the Karush—
Kuhn—Tucker and the second-order sufficient conditions for the optimization
problem (3.5). The Lagrangian associated with minimization problem (3.5) is

L(a,Wa) = f(2) + Te(ZW) + M h(z) + Z[[h(@)|

+2IW I, + 5 (e - 2]? = €2) + Tr(Q(A() - W),
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and the (KKT) conditions are

Vf(z)+ Vh(z)" A\ + oVh(z)Th(z) + a(z — z.) + DA(z)*Q =0
Zi+ oW =Q
S(le—a.]? —€%) =0

Te(Q(A(z) — W) =0

a>0, Q>0
|z — 2. —e <0
A(z) =W =<0.

It can be easily seen that (z,W,Q,a) = (24,0,Z,,0) satisfies all these condi-
tions.

In what follows we will state the second-order sufficient condition

(d*U)V2L(x,,0,Z,.,0) ( g > > 0, (3.8)

for any nonzero vector (d,U) € C(.,0).

The Hessian of L with respect to the variables (x,W) at (24,0,Z,,0) is given

by
- H| 0
v%w,W)L(x*vanMO) = (ﬁ) ) (3.9)

02 A(x.) )}

with

Hi=V2f(z.)+ > AyV2hj(z.) + [Tr(Z

——
= 8$18IJ

; (3.10)
+0 Y hy(2.)Vhy(2.) + oVh(2.) Vh(.),

j=1

and the cone of critical directions for problem (3.5) is

C(z.,0) = {(d,U) e R x 8™ : Vf(z.)Td+ Te(Z.U) + \TVh(z,)d = 0,

idi OA@-) _ 17 ¢ gm(Ker A(x*))}.

i=1 Oz;
Thus, condition (3.8) can be written as

p
A"V f(2.)d+ Y Aeyd"V?hj(2,)d+d  Hd+o||Vh(z,)d|*+o||U||F, > 0 (3.11)

Jj=1

for any nonzero vector (d,U) € C(z.,0), where H := [Tr(Z* %2;‘(%2) )} .
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3. EXACT PENALTY FUNCTIONS

The case when d = 0 and U # 0 is trivial. Another easy case is when we
take (d,U) € C(x,,0) satisfying either |U||p, > 0||d|| or ||Vh(z.)d| > &||d|| for
some fixed § > 0, indeed

A"V f(x. d+z/\deV2 j(@)d+d"Hd + o([[Vh(z.)d|* + |U|E,)
j=1

p
>d"V2f(z)d+ Y Ayd"Vhy(2.)d + d"Hd + 06| d]>

j—l

> —[|V?f(z) +Z)\*N2 i(@) + HIld)* + o82||d] %,
j=1

and (3.11) is verified by taking o > o4 := 6%||V2f(x*)+2§=1 AejV2hj(z)+H].

Finally, we show that such a § > 0 always exists. We proceed by contradic-
tion. Let us suppose that there is a sequence {(dy,Uy)} in C(x,,0) such that

1
WUkl pr < k]l (3.12)
1
IVA(z.)dell < —ldil (3.13)
and
p
AEV2f(@)de + Y Adf V2h(w.)dy, + df Hde <0 Yk, (3.14)

Jj=1

If we divide (3.14) by ||dx||*> and suppose that m — d, by taking the limit in
this inequality we get . R
dT'N2 L(2.,Z M\ )d < 0, (3.15)

which means, by Proposition 2.1, that d ¢ C(x.).

On the other hand, since (dy,U,) € C(x,,0), we have that

Tzdlm

and using the fact that ||Ug| g > “Hvlﬁ’;”, for all v # 0, together with (3.12) we
obtain

v <vTUw Yo € Ker A(z,),Vk,

l

vl z:d;ﬂ v < f||dk||\|v||2 Vo € Ker A(z,)Vk

which implies that

Z 8% ESm(Ker A(z,)).
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The equality Vh(z,)d = 0 follows directly from (3.13) and since V f (z,)Tdy, =
— Tr(Z,.Uy) = ATV h(x.)dy, from (3.12) and (3.13) we obtain that V f(z,)Td = 0.
In this way we conclude that d € C(z.), which contradicts (3.15). |

3.3 The Han penalty function

We now define another penalty function associated with problem (P), which
will be a key issue in the global algorithm that we will describe in section 4. For
o > 0 we define

0o () = f(2) + o (M (A(z))+ + [[R(2)])- (3.16)

This function comes from the Han penalty function in mathematical program-
ming [3, 11]. In the rest of this section we will prove some properties of 6, and
its exactness.

In order to compute the directional derivative @/ (z;d), we start by recalling
a particular chain rule.
Lemma 3.2. Let ¢ : R" — IR™ be a function with directional derivative
¢ (x;d) = limy_o+ t™Hp(x +td) — ¢(x)), and let ¢ : R™ — IRP be a Lipschitz
function in a neighborhood of w(x) with directional derivative ¢'(o(x); @' (x;d)).
Then, the function (¢ o ¢) has a directional derivative at x in the direction d
given by
(¢ op) (w:d) = ¢'(p(2); ¢’ (23 d)). (3.17)

Proof. By using the usual notation o(t) for a function verifying lim; .o t~to(t) =
0, we can write for ¢t > 0

tH (@ o p)(z +td) — (¢ 0 p)(a)] =t [p(¢(z) + t¢' (x;d) + o(t)) — (¢ 0 p)(2)]
=17 ¢(p(2) + 1/ (w:d)) — P ()] + 1~ o(t),
and we can conclude by taking the limit when t — 07, |

As a consequence of this result we give in the next lemma the directional
derivative of the penalty function 6,,.
Lemma 3.3. If f, h, and A in (3.16) have directional derivatives at x in the
direction d, where x is a feasible point for (P), then 0, also has a directional
derivative that can be characterized by

O (w;d) = f'(w;d) + oM (NTA (25 d)N ) 4 + [[B (2 d)]]),
where N is the matriz defined in (2.9).

Proof. Let x be a feasible point. From Lemma 3.2, we have that

0, (x;d) = f'(x;d) + o (M (AC) 4] (2;.d) + [0 (25 d)]])
fl@sd) + o (M) 4] (Alx); A d)) + (|11 (2 d)])).
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For A € S™ and B € S™, we easily check that

R 0! if \(A) <0
Pa()+]'(45 B) —{ N(A;B)y  if \i(A) =0,

and using formula (2.8) in [7] for the calculus of the directional derivative of
A1 (A) = max{zT Az : ||z]| = 1}, we obtain that A} (4; B) = max{z? Bz : ||z|| =
1 and 27 Az = A (A)}. Then, if \;(4) = 0, we can write A} (4; B) = A (NTBN)
where N is a matrix whose columns are an orthonormal base of Ker A.

We conclude replacing A by A(x), B by A’(x;d) and recalling that N is the
matrix 0 when A;(A) < 0. |

Remark 3.4. If f, h, and A are differentiable at z, then

0, (x;d) = Vf(z)d+o (Al (NT > d 8?;;?) N) + ||Vh(m)d||> :
+

i=1

In the following proposition we give a lower bound for the parameter ¢ in
order to obtain the exactness of 0, .
Proposition 3.5. If x, is a feasible point of (P) and 0, has a (strict) local
minimum at T, then x, is a (strict) local minimum of (P). Furthermore, if
fih and A are differentiable at x,. and if the transversality condition (2.8) is
verified, then o > max{Tr(Z,),|| |}

Proof. If z, is a local minimum of 6, there is a neighborhood V' of x, such that
for all x € V' we have that 6, (z.) < 0,(x), and since z, is feasible we obtain

flz) =0,(x) < O,(x) VeV
= f(z) Va €V, x feasible,

which means that . is a local minimum of (P). When the minimum x, is strict,
the proof is identical.

Now, let us assume that f, h and A are differentiable at z, and that the
transversality condition holds. Since z. is a local minimum of 6,, we have that
0! (z.;d) > 0 for all directions d, and using Lemma 3.3 we can write

"
i=1 Oz;

0< Vi) Td+o ()\1 (NT S 4 M(““’*)N) + IIVh(x*)dH) Vd e IR,
! (3.18)

Let us first consider the case when Ker A(z,) = {0}. This implies Z, = 0
and N = 0; hence from inequality (3.18) and the first equation in (KKT), we see

AL Vh(z.)d
that o > &30 5]

that o > ||\, |-

for all nonzero d € IR". The surjectivity of Vh(z.) shows
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Let us suppose now that Ker A(x,) # {0}. From the first equation in (KKT),
inequality (3.18) and equality (2.15), we can write for all d € IR"

o <||Vh(x*)d|| + A1 (NT Zn:di a“gif”N) >
n

i=1

> \'Vh(z.)d + Tr (Z* znj d; aA(w”)

»
i=1 Oz;

"L 0A(x)

Then the transversality condition (surjectivity of ¢) allows us to say that
o (vl + At (W)4) = ATv + Tr(6.W) (3.19)

for all (v,W) € IR x S,., and we can conclude from the inequality

[W ]|z := v/max{)\2 : \ is an eigenvalue of W} > X\, (W)
and the equality
1A @)llp 2= sup{[ATv + Te(@ W)« vl + [[W ]2 = 1} = max{[| A, Te(Z,)}.

We conclude this section establishing sufficient conditions for exactness of
the Han penalty function 6,. In Proposition 3.7 we consider the convex case
and in theorem 3.8 the general one.

The following useful lemma is a direct consequence of inequality (2.4).
Lemma 3.6. If Z »= 0 and o0 > max{Tr(Z),|A||}, then L(-,Z,\) < 0,(-).
Proposition 3.7. Let us consider the convex problem (Pc), defined in sec-
tion 3.1, and let us suppose that f, h and A are differentiable at a solution
. of (Pg). Then, if (Z«,Ai) are (KKT)-multipliers associated with x, and
o > max{Tr(Z,),| ||}, we have that 0, has a global minimum in x..

Proof. Let us suppose that (z.,7Z.,\,) satisfies the (KKT) conditions. For the
convex problem (P¢), it can be easily seen that L(-,Z.,\.) has a global minimum
at x., that is, 0,(x,) = f(xs) = L(xs,Ze, ) < L(x,Z M) for all . If ¢ >
max{Tr(Z,),||A«||}, from lemma 3.6 we have L(-,Z.,A\.) < 0,(-), which leads to
the desired result. ]

Theorem 3.8. Let us suppose that f, h, and A are differentiable at .. Let
(24,Z4,M\s) be a point that satisfies the (KKT) conditions and the second-order
sufficient condition (2.11). If o > max{Tr(Z,),||\c||}, then 0, has a strict local
MINIMUM 1N T .
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Proof. Taking Z = Z, and W = (—A(z))+ = —(A(z))- in (3.4) we have that

<ZT - A(:z:)) ot A(x)] )

< Tr(Z.A@)1) + 5| A@)+ -
(3.20)

2

r
2 r

<Z* - A(x)) ot A(z)

+ Tr <Z*

Fr

Hence, using the Cauchy—-Schwarz inequality and the Von Neumann—Theobald
inequality (2.4), we obtain

Ly(2.Z.).) < f(2) + ATh(z) + S [h(@) |2 + Tr(ZeA()+) + 51 A@)+ ],

< f(@) + [R@ (Al + Z1R)]

FAA@)4 | TH(Z) + 5 3 A (AR | -

=1

The last inequality follows from A\ (A(z)+) = A1 (A(x))4+. Since o > max{Tr(Z,),
| A«]|}, for any fixed r > 0 there is a neighborhood V. of x, such that

Li(2,Z0) < f(@) + o([W@) | + M (A2))4) = 05(z) Vo eV,

From Theorem 3.1, we know that there is an # > 0 and a neighborhood V' of
T, where z, is a strict minimum of L (-,Z«,A«). This implies that . is a strict
minimum of 0, on V (| V;. [ |

4 Sequentially Semidefinite Programming

In this section we propose a global S-SDP algorithm for solving problem (P).
This algorithm is inspired by the classical sequentially quadratic programming
(SQP). We begin by recalling the local S-SDP algorithm proposed in [9] and its
convergence theorem.

Given an initial point (zg,Zo,\g) close to a point (z.,Z.,\«) that satisfies the
(KKT) conditions, we generate a sequence (x,Zx, i) by solving the linearized
problem:

minimizegegn  V f(2r)Td + $dT Myd

(Tx) subject to A (d) <0,
h(zk) + Vh(xg)d =0,

where Ay (d) := A(zg)+Y iy di% and the matrix M}, replaces the Hessian
V2, L(xk,Zk,\k), emulating the so-called quasi-Newton methods.
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If dj, is the solution of problem (Tg), we define xg+; = x + di. The point
(dkyZr+1,Ak+1) is obtained from the (KKT) conditions for the minimization
problem (Tj), that is

Vf(wk) + DA(k)* Zis1 + Vh(zg) T M1 + Mydi, = 0 (4.1a)
Ag(dy) 20 (4.1b)

h(zy) + Vh(xg)dr =0 (4.1¢)

Zi1 =0 (4.1d)

Tr(Zg 1 Ax(dy)) = 0 (4.1e)

These equations will be called (KKT}) in the sequel.

Theorem 4.1. Let (x.,Z.,\) be a point satisfying the (KKT) conditions and
the second-order sufficient condition (2.11). Suppose that (DA(x,),Vh(z.)")T
has full rank and that My, — V2, L(z.,Z.,\). Then there is § > 0 such that if
2o = .|| < 6, (ZoAo) — (ZeA)l| < 6 and [|My — V2, L(z., ZoA)|| < 8 for
all k, the sequence (xy,Zk, ) generated by the algorithm S-SDP is well defined
and converges superlinearly to (x.,Z.«,\). The convergence is even quadratic if
My, — V2, L(ws,Z0 M) = Ollak — 2. + | (Ziohe) — (ZeA)-

Our purpose here is to extend the S-SDP algorithm to obtain global conver-
gence. For this, we consider the Han penalty function, defined in (3.16), and an
Armijo line search.

In the following proposition we prove that the solution dy, of (T}) is a descent
direction for 8, at the point x; when M}, is positive definite and o is sufficiently
large.

Proposition 4.2. Suppose that f,h, and A are C' functions and that their
derivatives are locally Lipschitz at xy. Using the penalty function 65, defined in
(3.16), if the point (dk,Zk+1,\k+1) verifies the (KKTy) conditions, written in
(4.1), then

0! (xr;di) <V f(zp)Tdp — oM (Axr)) s + |h(z)]])
= — df Mydi + Tr(Zps1 Azr) (4.2)
+ M h(zk) — o (A (A(ze))+ + |h(z)]))-

Furthermore, if o > max{Tr(Zi4+1),/|[\e+1||} we obtain

0, (w; di) < —df Mydy. (4.3)

Proof. Let us fix ¢t € [0,1]. By (4.1c) we have that

[h(zk) + V(g )di | = (1 = D)[h(zx)],
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and by the convexity of A;(-)4 and (4.1b) we obtain

A (Ap(tde))+ = M1 (A(ij) + tzdki a-/g(xk)>

i=1 @

< (L=t A(Alze))+ + tAa(Ai(dr))+ = (1 = A (Alzk)) -

From these relations we have that

1N (Pl); V() di) = = ), (4.4a)

M)+ ( (z1); dea’g;’“ ) < A1 (A(z))s- (4.4D)

and applying Lemma 3.2 we get
0y (zx;di) < V() dx — o (M (A(z))+ + [[h(zp)]),
and from (4.1a), (4.1c) and (4.1e) we obtain
0 (w13 di) < Tr(Zisr A(ar))+h(ze) Aerr—o ([Aw) [ +A1 (A(wr)) +) —di Midy.

Finally, if 0 > max{Tr(Zx+1),|| e+1]}, the Cauchy—Schwarz inequality and
the Von Neumann—Theobald inequality (2.4) lead to the result. |

We are now ready to describe the iteration k of the global algorithm for
solving problem (P). We suppose that zj is known and that M} is positive
definite.

Step 1. Compute a point (di,Zk+1,Ax+1) satisfying (KKTy) in (4.1).

Step 2. Compute oy, satisfying oy, > max{Tr(Zk+1),||A\e+1]} in such a way
that the sequence {o}} satisfies the following properties:

(a) ox = max{Tr(Zps1), | Aer1([} + 0.
(b) For all k > kq,
if ox—1 > max{Tr(Zg4+1),/|\k+1]|} + 7, then o = o)—1.
(¢) If {o}} is bounded, then o} is modified just finitely many times,

(4.5)

where k1 € IN and ¢ > 0 are fixed parameters. A simple way to update oy,
verifying (4.5) is defining o}, = max{1.50%_1, max{Tr(Zx+1),||\e+1]}+7} when
(b) fails.

Step 3. The step length ay is computed by using an Armijo search rule,
that is, oy is an approximation of the maximum « € (0,1] which verifies

05, (x + ady) < 05, (xr) + waly, (4.6)
where 0 < w < 1 and Ay, is the upper bound of 07, (x3;dy) given in (4.2). More

precisely, ay can be computed as follows:

Step 0. j:=0, r;:=1
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Step 1. If (4.6) is satisfied with a = r; then ay = r; and stop the line search.

Step 2. If not, take r;11 = fr;, increase j by one and go to Step 1 with 8 € (0,1)
a fixed constant.

Step 4. Define zp 1 = x + aydy.

Remark 4.3. The existence of the Armijo step « satisfying (4.6) is a conse-
quence of inequality (4.3) and the fact that My, is chosen positive definite.

Theorem 4.4. Let us suppose that f,h, and A are C* functions and that their
derivatives are Lipschitz. If we consider the global algorithm described in the
steps 1 to 4 and suppose that the matrices My are chosen positive definite such
that the sequence { My} is bounded together with the sequence {M, *}. Then one
of the following situations occurs for the sequence {(Tk,Zk+1, \k+1)}:

1. The sequences {o} and {(Zx+1,\k+1)} are unbounded.

2. There is an index ko such that oy is constant for all k > ko. In this case
one of the following situations occurs:

(a) 05, (x)) — —00, or
(b) me(xk,Zk+1a)\k+1) — 0, h(l’k) — 07 )\1(¢4(.’E}C))+ — 07 and
’I‘I‘(Zk+1¢4(l‘k)) — 0.

Proof. 1. The equivalence between the unboundedness of {0} } and {(Zx+1, \k+1)}
is direct from (4.5) Parts (a) and (b).

2. Let us suppose that {04} is bounded. By (4.5)(c) we know that there is
an index ko such that oy = 0 := oy, for all k > ks.

To conclude we prove that if (a) is not true then (b) holds. From (4.6), with
a = ay, we know that the sequence {0,, (z)} is decreasing for all k > ks, and
then 0,,(z) > C for some constant C, obtaining again from (4.6) the limit
OzkAk — 0.

All limits in (b) are consequences of the existence of & > 0 such that oy >
@ for all k > ko, which implies from the limit above that Ay — 0. Indeed,
inequalities
A < — dngdk + Al(A(l'k))Jr Tr(Zk+1)
+ Xeallllp(ze)ll = ok (A (Alzr))+ + R (zx)])
< = dy Mydy, + (o1 = 0) (A (A(zn)) 4 + 7))
— ok (A (A(z))+ + [|h(z)]])

prove that

Ai < —df Mydy, — o\ (A() s + [h(2)]) < 0, (4.7)
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which implies that if A — 0, then

)\1(¢4(.’Ek))+ — 0 and h(l‘k) — 0.

Inequality (4.7) also shows that —d} Mydy, — 0, and together with the fact
that {M, '} is bounded, it is easy to conclude that dj, — 0. This, together with
(4.1a) and the boundedness of {M}}, implies that

me(xk,Z]H_l,)\k_;,_l) — 0.

Finally, by definition of Ay we know that
Vi(@r)"di = Ak + ou (M (Alwr))+ + b)) — 0,

and from (4.1a) we see that

i=1 v

Y
Tr (ZkH > dii 8;“) ) A Vh(z)di = —dE Mydy, — V £ (zx)"di — 0.

This limit and the equalities (4.1e) and (4.1c), together with the boundedness
of {Ag+1}, allow us to write

= klirf M1 Vh(z)dy = lim —)\,th(xk)—O

—>+oo

k—+4o0

- 0A
lim Tr(Z = lim —-Tr|Z dri
kiffw v(Zk+1A(zr)) 1m f( k+1§ k

Let us prove now that ap > a > 0. If a, < 1, by the Armijo search rule,
there is an r; € (0,1] such that oy, = fr; and

Oo, (1 +1jd) > 05, (x1) + wrjAg. (4.8)

Let us consider the first-order Taylor expansion

flay 4+ rjde) = f(zr) + 7V f(ze) di, + O(ng'”dkHQ)’
h(wy, +rjdy) = h(zy) + 1) Vh(zg)dy + 02| di|),

= (1= rj)h(z) + rj(h(zx) + Vh(zy)dy) + O(rF|ldy]?),
Ao+ rid) = Alwn) +y D s 25

i=1

= (1—7’j)./4($k)+’f‘j ( :L‘k "l‘zdkz

+0(rlde )

) + Ol [*)-

’L
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Since r; < 1, from the convexity of A1 (-)4 and the relations (4.1b) and (4.1c)
we obtain

1h(zr +ridi)ll = 1 = r)|[R(zx)l| + O(rF I dell),
M(A(r +rjdi))4 < (1= 1) M (A(zr))4 + O3 |di?),

which imply from (4.8) the inequality
O, (x1) + 1A% + C1rf||di]|® > b0, (x1) + wrj Ay,

that is, —(1—w)r; A < C177]|dy||* for some constant Cy > 0. Due to inequality
(4.7), the boundedness of {M, '} and the fact that My, is positive definite, we
see that Ay < —Cy||dk||* for some constant Cy > 0. The last two inequalities
show that

C

and the proof is complete. |

Remark 4.5. The notion of “global convergence” characterized by the situations
1 and 2 in Theorem 4.4 is fairly standard. However, it should remark that the
“pathological” situations 1 and 2(a) can happen.
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Abstract. In this paper we present penalty and barrier methods for solving general convex
semidefinite programming problems. More precisely, the constraint set is described by a convex
operator that takes its values in the cone of negative semidefinite symmetric matrices. This
class of methods is an extension of penalty and barrier methods for convex optimization to
this setting. We provide implementable stopping rules and prove the convergence of the primal
and dual paths obtained by these methods under minimal assumptions. The two parameters
approach for penalty methods is also extended. As for usual convex programming, we prove

that after a finite number of steps all iterates will be feasible.

1 Introduction.

Let S™ be the space of symmetric real m X m matrices endowed with the
inner product A - B = trace(AB) denoting the trace of the matrix product AB,
and let ST* be the cone of positive semidefinite symmetric matrices. Related to
ST we define the partial ordering > via

A=B & B=XA & A-BecS} VABecS™

We denote A = 0or 0 < Aif A € ST, , the cone of positive definite symmetric
m x m matrices. Similar relations can be established for S™ and S™_, the cones

——

of negative semidefinite and definite symmetric m x m matrices, respectively.

1. Submitted to Zeitschrift fiir Operations Research.
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1. INTRODUCTION.

Throughout the general development, we denote by IR™ an arbitrary finite
real dimensional space, and by (-,-) an arbitrary inner product on IR".

This paper is focused on convex optimization with constraint sets described
mainly by > convex maps, which are defined as follows: let X be a convex set
in IR", amap G : X — S™ is said to be = convex if

GOz + (1 —Ny) 2 AG(z) + (1 = NG(y) Va,y e X, VA€ 0,1].

Simple examples of > convex maps that show the interest of this notion are
affine maps as G(z) = B+ Y7, #;A; with B, A; € S™, or functions of the
form G(z) = B+327_, g;(x)A; where the g;(-)’s are convex functions while the
Aj’s are positive semidefinite matrices. Similarly, matrix convex functions, for
instance z2 : ™ — S™ and —logz : S, — ST, are = convex maps defined
on a matrix space. Other examples, properties and applications of such maps
can be found in the books of Bathia [5, Chapter 5], Bonnans and Shapiro [6,
Chapter 5], and Ben-Tal and Nemirowski [7, Chapter 4].

Throughout this paper, we suppose that G is a > convex map, continuously
differentiable (C1) on IR", and f; : IR" — IRU{+o0},i = 0,1,...,p, are convex,
lower semicontinuous(lsc) functions. Thus, we define

D={xeR": fi(z)<0,Vi=1,...p},E={x € R": G(z) 20},C = DnNE,
and consider the optimization problem

(P) v =1inf{fo(z) | z € C}.

The aim of this paper is to propose penalty and barrier methods for solving
(P). Methods of this kind has been widely developed in nonlinear optimization
(i.e. C = D). In this context, Auslender, Cominetti and Haddou [3] have propo-
sed a unified framework containing most of the methods given in the literature.
The article [3] also provides a systematic way to generate penalty and barrier
methods.

In the case when C'= DN E and G is an affine map into S™, Auslender [1]
proposed a general framework for solving (P). Roughly speaking, a systematic
way for building penalty and barrier functions ¢, with parameter r > 0 going
ultimately to 0 was presented. These functions are defined in order to solve a
family of unconstrained minimization problems of the form

(B,) v =nf{fo(e) + érla) |z € B},

In [1], the existence of optimal solutions z, of (P,) is guaranteed by suppo-
sing Slater’s condition and the usual hypothesis that the optimal set S of (P)
is nonempty and compact. Then, it was proven that the generalized sequence
{z,}r>0 is bounded with all its limit points in S.
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In the first part of this paper our objective is to improve the results establi-
shed in [1] in three directions. Firstly, we give an implementable stopping rule
that ensures the obtainment of x, in a finite numbers of steps by any usual
unconstrained descent method. This avoids the exact minimization used in [1]
to obtain z,.

Secondly, here G is no longer affine but > convex. Hence, the convergence
analysis is now much more complicated than in the affine case. Indeed, the
computation of the recession function of ¢, by a useful formula is actually
no longer available when G is = convex, contrary to the case when G is affine.
Unfortunately, the recession functional analysis is a key element in our approach.
The only known result when G is > convex appears in Grana-Drummond and
Peterzil [16], where they use the classical log-barrier function in semidefinite
programming (SDP) composed with G(z) instead of a more general penalty or
barrier function ¢, (x). In [16], convergence properties are obtained under a very
restrictive assumption (cf. [16, Assumption 2]). Here, the convergence is proved
for general penalty and barrier functions assuming the two usual hypotheses
in constrained convex programming, that is, the optimal set is nonempty and
compact, and Slater’s condition holds.

A third direction is the improvement of the duality results given in [1] and
[3], where the exact solution of the Fenchel dual problem of (P,, ) is supposed to
be computed ({ry} is a sequence of positive real numbers going to 0). Obviously
this is a theoretical result. Here we associate with x,, a multiplier Y} given by
an explicit formula. Then we prove that the sequence {Y;} is bounded and that
each limit point of this sequence is an optimal solution of the usual Lagrangian
dual of (P).

Penalty and barrier methods introduced in Section 3 are based on a smooth
procedure and depend on a single parameter. This smooth procedure involves
two possible classes of penalty functions. The first class deals with the indicator
function of IR” x S™, while the second class concerns an exact penalty function.
However, when C' = D, i.e. when we only consider the classical convex constrai-
ned programming problem, a second approach can be used. This approach is
only applied to functions of the second class mentioned above and its basic idea
consists of distinguishing two parameters: the “smoothness parameter” r and
the penalty weight 3. This two-parameter approach has been firstly developed
by Xavier [23] for a specific hyperbolic function and has been also the base of
a recent work of C. Gonzaga and R. A. Castillo [15]. Indeed, C. Gonzaga and
R. A. Castillo introduce a method that uses a smooth approximation 6(-) of
the exact penalty function ¢t — max{0,t} and two parameters, r and 3, so that
the penalized function ¢, g(z) = fo(z) + Br>_1", 0 (fi(x)/r) is minimized at
each iteration. The parameters play different roles: r always decreases in order
to improve the precision of the approximation, and [ increases to penalize an
infeasible iteration. Thus, the aim of the second part of this article is to ex-
tend this approach to more general feasible sets C. Particularly, we consider
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C = DN FE instead of C' = D, that is, a feasible set that involves semidefinite
constraints. Nevertheless, our results are an improvement of those in [15] even
in the nonlinear programming case where C = D. Indeed firstly, we only work
in the convex case which allows us to give an implementable stopping rule (this
is not the case in [15]). Secondly, we do not suppose neither the assumption
named “Hypothesis” in [15] nor the compactness of the feasible set. Finally, we
associate with the primal sequence a dual sequence of multipliers given by an
explicit formula. Hence we prove that this dual sequence is bounded with each
limit point being an optimal solution of the usual Lagrangian dual of (P). Such
a result is not given in [15].

The outline of this paper is as follows. In the next section we recall material
concerning recession functions, convex analysis in SDP and matrix properties
which will be needed in the sequel. In Section 3 we present the penalty and
barrier methods, including the convergence analysis concerning the primal path.
Section 4 deals primarily with the dual path. Finally in Section 5 we consider
the penalty approach with two parameters.

2 Preliminaries

2.1 Asymptotic cones and functions.

We recall some basic notions about asymptotic cones and functions (see for more
details the books of Auslender and Teboulle [4] and of Rockafellar [20]).

The asymptotic cone of a set Q C IR™ is defined to be

Qoo ={y : Ity — +00, 2, € Q withy = klim f—k} (2.1)

When @ is convex and closed, it coincides with its recession cone

0M(Q):={y :x+ y€Q VA>0,Vr € Q}. (2.2)

Let f : R" — IR U {+o0} be lower-semicontinuous (lsc) and proper (i.e.,
Jz € dom f := {x : f(x) < 400}). We recall that the asymptotic function foo
of f is defined by the relation

epifoo = (epif)oo;

where epif := {(z,r) : f(z) <r}. As a straightforward consequence, we get (cf.
[4, Theorem 2.5.1])

foo(y) = inf {lim ing £ @xtr)

st 2.3
k—+oo 1 ko T y} 23)
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where the sequences {t;} and {zx} belong to IR and IR", respectively.
Remark 2.1. This formula is fundamental in the convergence analysis of un-
bounded sequences and is often used in the following way: let {xx} be an un-
bounded sequence satisfying

T

—d+#0.

li =
kLH;onkH oo, (e

Suppose that foo(d) > —o0, and let a € IR so that fo(d) > «. Then it follows
from (2.3) that for all k sufficiently large we have

o) = f (“nxkn) > aflall.

[l
Note also that f., is positively homogeneous, that is
foo(Ad) = Afoo(d) Vd, VYA > 0. (2.4)

When f is a convex, lIsc, proper function its asymptotic function coincides
with its recession function

flz+M\y) = f(x)

0" f(y) = /\Erf-loo 3 Yz € dom f, (2.5)
deducing immediately that
t
fooly) = . liin @ Vy € dom f. (2.6)

Furthermore, if f(x) denotes the (convex) subdifferential of f at x, we also
have

fooly) = sup{{c,y) | c € Of(x), x € dom Of}. (2.7)

Now consider the lsc functions f, g : R" — IR U {400} satisfying fo(d) >
—00 and goo(d) > —oo. Then

(f + 9)c(d) = foo(d) + 9o (d), (2.8)

with equality in the convex case. Recall that fo(d) > —oo always holds when f
is convex, lIsc and proper.

When f is convex, a useful consequence of (2.2) and (2.5) is the following
{z : f(&) <Aoo ={d : foo(d) <0}, (2.9)
for any A such that {x : f(x) < A} is nonempty.

The following proposition is crucial in the convergence analysis. The reader
can see a proof in [4, Chapter 3].
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Proposition 2.2. Let C be a closed conver set in IR" and let f : R" —
R U {400} be a convez, lsc, proper function such that dom f N C' is nonempty.
Consider the optimization problem

(P) a=inf{f(z) |z € C},

and let S be the optimal set of (P). Then a necessary and sufficient condition
for S to be nonempty and compact is given by

foold) >0 Vd e Cx,d#0,
or equivalently

f(@) = +oo.

1im
[|z]|| =00, zeC

In this case (P) is said to be coercive.

In our analysis, the asymptotic function of a composite function is of a
particular interest. More precisely, we will consider the composition between a
penalty or barrier function 6 and the > convex function G(-).

Let us consider the following class of functions F' introduced in [3] by Aus-
lender, Cominetti, and Haddou

F={6:R— IRU/{+o0}, Isc, convex, proper and non-decreasing with
0so(1) >0, lim 0(t) = +o0, and dom 6 =] — co,n| where n € [0, + co]}.
t—n—
We divide F' into two subclasses Fy and Fy (cf. [3] and [9], respectively)
defined by
Fi={0€F: 0isC"on dom#, 0,(1) = +00, 5 (—1) = 0},

Fy={0cF:domf=IR,0isC", 0,(1)=1, lim 6(t) =0}

t——o0

For example, the functions

01(u) = exp(u), domé6 = IR — exponential penalty [10],

O2(u) = —log(l —u), dom6 =] —oc0,1[, — modified log barrier [19],

03(u) = %=, dom#é =] — 00,1, — hyperbolic modified barrier [8],
04(u) = —log(—u), domé =] —00,0[, — log barrier [12],

O5(u) = —u~1, dom@ =] — 00,00 — inverse barrier method [11],

belong to the class Fy, while the functions
s(u) = log(1 + exp(u), B2(w) = 27 (u+ /o + 4)

belong to F,. Furthermore, systematic ways to generate classes of functions 6
belonging either to Fy or to Fy are described in [3] and [9].
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The following result was proved in [3].

Proposition 2.3. Let 0 € F, f be a convex, Isc, proper function with dom 6 N
F(R™) # 0 and consider the composite function

g(x) =0(f(x)) ifredomf, +oo otherwise.
Then the function g is a convex, lsc, proper function and we have
Joo(d) = 0o (fo(d)) ifd € dom foo, +o00  otherwise.
2.2 Convex Analysis over the cone of symmetric semidefinite po-
sitive matrices

Let S™ be equipped with the inner product A - B := trace(AB) where
trace(A) denotes the trace of the matrix A. Let A € S™ with the eigenvalue
decomposition A = QAQ?. Thus @ is an orthogonal matrix whose columns

¢, i =1,...,m, are the orthonormalized eigenvectors of A, and A is a diagonal
matrix whose entries \;(A), i =1,...,m, are the eigenvalues of A in nonincrea-
sing order.

Let ¢;(A) := qiq}. The spectral decomposition of A can be written as

Now let g : IR — IRU {+oc0}. For any A € S™ such that \;(4) € dom g for
each 7, we set

m
9°(4) ==Y g(Ni(A))es(A), (2.10)
i=1
the usual matrix function associated with g. We are particularly interested here

in the function ¥, : S™ — IR U {400} defined by

m

U, (A) = Zg()\i(A)) if \;(A) € dom g for each i, + oo otherwise, (2.11)

i=1
or equivalently
U, (A) = trace(9°(A)) if A;(A) € dom g for each i, + oo otherwise.

The function ¥, is a spectrally defined function and the following properties
hold (see e.g. [2, Proposition 2.2])

Proposition 2.4. Suppose that g € F. Then

(1) Vg is a proper, lsc, convex function.
11) dom U, is open.
(it) g P
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(iii) If g is C' on domg, then ¥, is C' on domV, with V¥ ,(A) = (¢')°(4),
for all A € dom V.
(iv) (¥g)oo(D) =V, (D), for all D.
(v) For g € F, U, is isotone, i.e., A= B = U, (A) > ¥, (B).
(vi) For all D € S™ it holds that

(T9)eo(D) = 0dgm (D), if 0€ Fy, (2.12)
= \IjaJr (D)a Zf 0 F27 (213)
where dgm is the indicator function of S™ = —ST and where at =

max(0,a) with a € IR.

Consider the functions # € F given in Section 2.1 and set L := Wy. For
6 € Fy, we have the following examples from [1]:

L, (D) = trace(exp D),

Ly(D) = —log(det(I — D)) if D <1I, +oo otherwise,
L3;(D) = trace(( D)D) if D <1, + oo otherwise,
Ly(D) = log(det( D)) ifD <0, +oo otherwise,
Ls(D) = trace(—D~1) if D <0, + oo otherwise.

And for 6 € F» we get

L¢(D) = log(det(I +exp D)), Lz(D) = trace (D—i—\/DQ—-HH) ]

2

It is worthwhile to note that L, is the classical log-barrier function used in
semidefinite programming (see, for example, [13]).

To end this subsection we recall two characterizations of > convexity. First,
it is easy to show that G : IR"™ — S™ is = convex iff for each u € IR™ the map
x — u'G(z)u is convex. Then, if in addition G is continuously differentiable
(C1), these last assertions are also equivalent to

u'G(y)u > v'G(z)u +u'DG(z)(y — x)u Vz,y € R™, Yu € R™. (2.14)

2.3 Matrix Properties Review

We start this section recalling the well-known Debreu’s lemma.
Lemma 2.5. (Debreu’s lemma) Let A < 0, we have that v!Bv < 0, for all
v € Ker A\ {0} if and only if there exists r > 0 such that B+ 1A < 0.

Consider a symmetric matrix A € S™. Let lo(A) and 14 (A) be the number of
their null and nonnegative eigenvalues, respectively, and let E(A) € R™* ()
and Et(A) € R™ '+ be matrices whose columns are orthonormalized eigen-
vectors of A associated with their null and nonnegative eigenvalues, respectively.
The following relations are directly established

ImE(A)=Ker ACImE'T(A) =Im A"t = Ker A~
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and hence
lo(A) = dim(Ker A) <1, (A) = dim(Im A") = dim(Ker A7),

where AT (A7) denotes the orthogonal projection of A € S™ onto the cone
ST (S™) of m x m positive (negative) semidefinite symmetric matrices. This is
given by

At = Q diag(\ (AT, 2 (A)DQY,

where @ is an orthogonal matrix such that its i-th column is an eigenvector of
A associated with \;(A). Matrix A~ is similarly stated.

So, if A <0, then A = A~ obtaining that Im F(A) = Im E*(A) and lo(A) =
I+ (A) = dim(Ker A).

When x € IR", similar relations hold for F(G(z)) and E*(G(x)).
Lemma 2.6. Consider a matriz A < 0. If A, — A, then for all k sufficiently

large, we have that 1 (Ag) < lo(A).

Proof. It is a direct consequence of the continuity of the eigenvalue function

Ai(+). Indeed, by definition we have \;(A) < 0 for all i = ly(A) + 1,...,m. Since

A — A, it follows that \;(Ax) < 0 for all i = lo(A) + 1,...,m and for all k

sufficiently large, i.e., the matrix Ay has at least m—1Iy(A) negatives eigenvalues,

that iS, l+(Ak) S l()(A) |

The next lemma will be very useful in the rest of this article. Its proof
appears in [6, Ex. 3.140] and is included here in order to make this work as
selfcontained as possible.

Lemma 2.7. Considgr a matriz A <0. If Ay, — fl, then we can construct a
matriz Ej, € R™ "X whose columns are an orthonormal basis of the space

spanned by the eigenvectors associated with the lo(A) biggest eigenvalues of Ay,

such that E, — E(A).

Proof. Consider E := E(A) and [ := ly(A) = 1, (A) (because A < 0). For a
given A, let e;(A),...,e;(A) be a set of orthonormal eigenvectors of A associated
with their [ biggest eigenvalues A;(A4) > ... > Ai(A). Denote by L(A) the space
spanned by the eigenvectors ej(A),...,e;(A) and let P(A) be the orthogonal
projection matrix onto L(A). Note that L(A) = Im E = Ker A.

It is known that the projection matrix P(A) is a continuous (and even analy-
tic) function of A in a sufficiently small neighborhood of A (see, for example, [17,
Theorem 1.8] and [14, Corollary 8.1.11]). Consequently the function F'(A) :=
P(A)E is also a continuous function of A in a neighborhood of A, and mo-
reover F(A) = E. It follows that for all A sufficiently close to A, the rank of
F(A) is equal to the rank of F(A) = E, ie., rank F(A) = [. It means that
the [ columns of F(A) are linearly independent when A is sufficiently close to
A. Now let U(A) be a matrix whose columns are obtained by applying the
Gram-Schmidt orthonormalization process to the columns of F/(A). The matrix
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U(A) is well defined and continuous in a neighborhood of A. Even more, the ma-
trices U(A) satisfy that their columns are orthonormalized, i.e. U(A)'U(A) = I,
and ImU(A) = L(A), for all A sufficiently close to A. We also have that

U(A) = F(A) = E. Hence the theorem follows by setting Ej := U(Ay). |

From Lemmas 2.2 and 2.3 we get directly the following corollary concerning
a feasible set C = {z : G(z) X 0} where G : R" — S™ is = convex and
continuous.
Corollary 2.8. Consider a point T such that G(Z) 2 0. If z;, — T, then for all
k sufficiently large, we have that 11 (G(xy)) < lo(G(Z)). Furthermore, we can
construct a matrix E), € R™E@) yhose columns are an orthonormal basis
of the space spanned by the eigenvectors associated with the lo(G(Z)) biggest
eigenvalues of G(xy), such that Ey, — E(G(Z)).

The notions introduced in this subsection allow us to characterize Slater’s
condition: there exists 2 such that G(z°) < 0, as follows.
Proposition 2.9. Suppose that G is a > convex map C* on IR"™. Then Slater’s
condition is equivalent to Robinson’s constraint qualification condition

for all T such that G(&) < 0 there exists h € IR" such that G(z)+DG(z)h < 0.
(2.15)
Moreover, Robinson’s condition (2.15) is always equivalent to

for all T such that G(z) < 0 there exists h € IR" such that

ot = ~ (2.16)
E(G(2))!DG(Z)hE(G(Z)) < 0.

Proof. That Robinson’s condition (2.15) implies Slater’s condition is well-
known and follows directly from the differentiability of G and the convexity
of the set S™. This is true even when G is not > convex. Conversely, Slater’s
condition and inequality (2.14) implies in a straightforward way condition (2.15).
Finally, the equivalence between conditions (2.15) and (2.16) is due to Debreu’s
lemma 2.5. |

3 Penalty and barrier methods: description and conver-
gence analysis

For the sake of simplicity we consider here the optimization problem (P)
described in the introduction when C = FE, i.e., problem (P) only contains
semidefinite constraints. Then throughout this paper G : R" — S™ is a =
convex map C' on IR", f : IR" — IR is a C"' convex function, and we consider
the optimization problem

(P) v =inf{f(z) [z € C},
where C' = {x € R" : G(z) < 0}.
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Indeed, if we define D = {x € R" : F(z) = 0} when F(z) is the diagonal
matrix whose entries are given by the functions f;’s (obviously F'(-) is a < convex
map), then the constraint set C = D N E is given by a convex operator that
takes its values in S™.

From now on we assume
(A7) The optimal set of (P), denoted by S, is nonempty and compact,

(Ay) Slater’s condition holds, i.e. there exists 2° such that G(z%) < 0.

Let » > 0 be a penalty parameter which will ultimately go to 0 and « :
IR, — IR, such that

lim a(r) =0 and liminf a(r)
r—0t r—0t r

> 0. (3.1)

We associate with each § € F' the function ¥y : S™ — R U {400} given by
formula (2.11), and define the function H" : IR" — IR U {400} by

Gi@) =§:9<W> (3.2)
i=1

where \;(A) denotes the i-th eigenvalue in nonincreasing order of A (A1(A4) is
the largest eigenvalue of A).

H"(2) = Ty (

In this section, we study methods that consist of solving “approximatively”
the unconstrained minimization problems

(P,) v = inf{¢,(z) |z € R"}, where ¢.(z) = f(x)+a(r)H (x). (3.3)

It is worthwhile to note that when C = D we recover the methods introduced
in [3].

As in [1, 3], we consider two classes of methods; 6 € Fy and 6 € F5.

Throughout we denote by S, the optimal set of (P) and assume that

a(ry=r, if6eF; and lim o(r) =+4o00, iff€F,. (3.4)

r—0t T

More precisely, we set

re >0, €, >0, >0 with klim €r = klim Ve = klim rr = 0. (3.5)

Solving approximatively (P,,) means to compute x; € IR" such that if we
set n := Vo, (xx) = Vf(xg) + a(ry) VH™ (xy,) then

wll < er Alnwl] - ]l < . (3.6)
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Note that if the optimal set Sy of (P, ) is nonempty and compact, then any
usual descent method (gradient type, Newton or quasi-Newton type method)
provides in a finite number of steps a point xj, satisfying the stopping rule (3.6).
Consequently, we will prove first that Sy is nonempty and compact. Indeed, it
is true for all k£ when 6 € Fy, and for k sufficiently large when 6 € F5. The next
proposition will be a key result on this subject, and also for other purposes.
Proposition 3.1. Fori=1,...;m and r > 0, let \i(z) = \(G(z)), hi(z) =
0 (@) Then

(i) Ni(-) and hi(-) are continuous functions on IR™.
(ii) (Ai)oo(d) > —00, for all d.
(i11) (h])so(d) >0, for all d.

(iv) A1 is a convex continuous function on IR™ and

AM)oo(d) <0 iff deCs. (3.7)
Furthermore, hY is an lsc proper convex function, and for each d € IR"™ we
have
r _ (M) _ | O (M)(d))  if0 € Fi,
(A1)oo(d) = === = ((Du(@)* if0 e k. (3.8)

Proof. (i) Since \;(-) and G(-) are continuous, their composition X(-) is also
continuous. In order to prove that hf(-) is continuous, let y = limg_, Yy, then

since A;(+) is continuous we have )‘i(ry’“) — S‘iﬁy). If (S\iZ(y) ¢ Odom6 then, by

continuity of # on intdom, we have hl (y;) — hl(y). If w € 0dom#6, that
S\i(y) —
— =1

is, the same limit holds thanks to the property lim,_,,- 6(u) = +oo.

(ii) Let d" — d,t — +o0, and let 2° satisfy Slater’s condition (A3). Since G
is > convex, for each u € IR" we get (cf. (2.14))

u'G(td)u > u'G(z")u + u' DG (2°) (td — 2°)u.

Taking u = u; such that ||u;|| = 1 and G(td")u; = A;(G(td'))u;, this last inequa-
lity yields

Ai(G(td G(a° 0
t t t
Passing to the liminf in (3.9) we obtain
< i (G(td
(@) = timint MO 5 ingeo)) . jay

(iii) Since 6 is nondecreasing we have from (3.9) with G(-)/r instead of G(-)

)

20

i

.’,UO
R e I
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Passing to the liminf in this last inequality and using formula (2.3) we get

(hD)oo(d) =  liminf hi (td')

t—oo, d'—d t

>

o0(t
lim inf (tw)
t—o00, u——21||DG(z0)||-|d]| t

~ 0 (~HIDGE] ).

and, by virtue of the inequality 8, > 0, it follows that (A7) (d) > 0.

(iv) Since A\i(z) = max{u'G(z)u ; |jul|l = 1, v € IR™} and since G is
> convex, we have that A;(-) is convex as a supremum of convex functions.

Furthermore since C' = {z : \(x) < 0}, it follows from (2.9) that Coc = {d :
(AM)oo(d) < 0} and then equivalence (3.7) holds.

So, by Proposition 2.3 we get that hl(-) is Isc, convex and proper. Moreover,
since o, is positively homogeneous, and dom 6, is either equal to IR_ or IR,
using again Proposition 2.3 we obtain

(W) (d) = %900(@1)00(@) it (3)a(d) € domfa, + o0 otherwise,

so that (W) ()
- hi)oo(d
(1)) = 2212,
Finally, equality (3.8) is a immediately consequence of these formulas and the
definition of 0. [ |

Now we proceed to prove that the optimal set S, is nonempty and compact.
As we mentioned before, this condition is enough to show that the rule defining
the point xj is implementable.
Theorem 3.1. (i) Suppose that either 0 € Fy, or 6 € Fy and foo(d) > 0 for all
d. Then S, is nonempty and compact for all r > 0.
(ii) If 0 € Fy then S, is nonempty and compact for all v > 0 sufficiently small.

Proof. (i) By Proposition 3.1 we have (h])oo(d) > 0, for all d, i = 1,...,m and
r > 0, and since ¢, (x) = f(z) + a(r) > -, ki (z) we have from inequality (2.8)
and formula (3.8) that

(6:)oe(d) 2 o) + (1)) v (310)

Suppose that 0 € Fy. We get from (3.10) and Proposition 3.1 Part (iv) that
(Pr)oo(d) > fool(d) if d € Cooy (¢r)oo(d) = +00 otherwise.

Hence, since S is nonempty and compact it follows from Proposition 2.1 that
(dr)oo(d) > 0, for all d # 0, which is equivalent to saying that S, is nonempty
and compact.
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Now suppose that § € F5 and fo(d) > 0, for all d. Inequality (3.10) and
Proposition 3.1 Part (iv) imply again that (¢,)eo(d) > 0, for all d # 0, and the
same conclusion holds.

(ii) Assume that § € F5. We shall prove that S, is nonempty and compact
for » > 0 sufficiently small. By contradiction, suppose the existence of sequences
ry — 07, di, — d # 0 such that

a(ry)
T

foo(dy) + (h}) oo (dr) < 0.

Due to the lower semicontinuity of fo, and (hi)s, and the fact that liminfj,_, ..
%’;’“) = +00, we apply liminf to the last inequality to obtain (h{)s(d) = 0 and
foo(d) < 0. However, Proposition 3.1 tells us that (h})s(d) = 0 is equivalent to
d € Cw implying that foo(d) < 0 for some d € Cy, d # 0, which is impossible
because S is nonempty and compact. |

Remark 3.2. (i) Note that if f is an extended lsc function satisfying that
inf{f(x)|z € R"} > —o0, then condition fo(d) >0, for all d, always holds.

(ii) When 0 € Fy and is strictly increasing (which is the case of all the
current examples), we can suppose, without loss of generality, that foo(d) > 0
for all d. Indeed, if we set g(x) := 0(f(x)), then problem (P) is equivalent to
convex problem

(P,) a=inf{g(z) |z € C}
in the sense that problems (P) and (Py) share the same optimal set. This is due
to the strict monotonicity of function 6. Hence condition go.(d) > 0 for all d,
follows from the fact that 0 is nonnegative.

Theorem 3.2. Let {x;} be a sequence satisfying relations (3.6). Then, this
sequence is bounded and each limit point of this sequence is an optimal solution

of (P).

Proof. Let 2° be an arbitrary interior point of C (i.e. 2° satisfies Slater’s condi-
tion (As)). Since function z — ¢,.(z) = f(z) + a(r)H"(x) is convex, it follows
from the definition of = and n = V¢, (zx) (cf. (3.6)) that

Flar) + alr) H™ (xr) < f(2°) + a(re) H™ (2°) + (gien — 27),

Hence, as a consequence of the monotonicity of 6 we get for k sufficiently large

P+ Y oo (LAY < 100) a0 GO+ =),

(3.11)

First, we proceed to prove that the sequence {xj} is bounded. We argue by
contradiction. Without loss of generality we can assume that

X
lok]] = 400,  lim o =d#0,
koo [[ak ]
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Proposition 3.1 Part (ii) says that (A;)so(d) > —00. So, we define €; < (X;)oo(d).
By formula (2.3) (see Remark 2.1) we have for all k sufficiently large

Rolen) = (|| ||||xk||)z@||a:k|.

By dividing (3.11) by ||x|| we obtain from the last inequality

]. ’l"k eszkH
Iz k||) ( <
IEA (II k| ZHﬂa‘kll Tk

f(xo) +m (k)a()\l(G( 0))+<77k,1‘k—330>.
(E (E [EA

Taking the limit when k& — +o0 and using relations (3.5)-(3.6) and formula (2.3)
we get

o)

(d) + 1 0. () < 0. 3.12
foold) + fim =22 0o (i) (3.12)
Now recall that if 0 € Fy, then a(r) =7, 05 (—1) = 05(0) = 0 and 0, (1) = +o0.
Then we obtain from (3.12) that

Oso(e;) = 0. (3.13)

In the case when 6 € F5,, we have limy_, %’;’“) = 400, Ooo(—1) = 0,(0) =0
and 0 (1) = 1, and therefore (3.13) also holds. Thus, inequality (3.12) implies
that f(d) < 0. Furthermore, since 6 is positively homogeneous it follows from
(3.13) that ¢; < 0. Hence, letting e; — (A1)so(d) we get that (A )so(d) < 0, which
is equivalent to d € Co (cf. Proposition 3.1). This together with fo(d) < 0 and
d # 0 implies a contradiction with the fact that the optimal solution set S is

nonempty and compact.

We have proved that the sequence {zj} is bounded. Now let  be an limit
point of the sequence {xj}. For simplicity of notation, we suppose that x =
limg_ o0 2. We shall show that x is an optimal solution of (P).

Let 0 < f(x), 6; < X\i(G(x)) for all ¢ = 1,...,m. By continuity of functions
f and X\;(G(-)), we have for all k sufficiently large that

0 < flxg), 0; < Mi(G(zg)) Vi=1,...,m

Then, from inequalities (3.6) and (3.11), and the monotonicity of it follows

m

0 (fk) < (&) +malry) (0 (G(2°)) + (ex[2°] | +7%). (3.14)

On the other hand, the following relations are satisfied (cf. (3.1) and (3.5))

lim ¢, = hm Ve = hm arg) = hm riy = 0.
k—o0
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So, passing to the liminf in (3.14) we get

a(

. %) S ) 0
5+ lim - ;900(51) < f(a2),

k—oo T

which implies that 6..(5;) = 0, for all i, and also § < f(2°). In particular,
00(91) = 0 which means that §; < 0. Hence, by letting 6 — f(z) and §; —
A1(G(z)) we deduce that

reC and f(z) < f(z") Va° €intC.

Finally, continuity of f implies that f(z) < f(u) for all u € C, that is,  is an
optimal solution of (P). We thus obtain the desired result. |

4 Duality Results

We associate with problem (P), defined in Section 3, the following Lagran-
gian functional

L(z,Y)= f(z)+Y -G(z) VxelR" VY €S™,
as well as the following dual functional
p(YV)=—inf{L(2,Y) |z € R"} ifY =0, 4 oo otherwise.
Thus the (Lagrangian) dual problem of (P) is given by

(D) v =inf{p(Y)[Y €5™}.

As in Section 3, we suppose that f is a C'!' convex function, G is > convex
and that Assumptions (A1) — (Az) and (3.4) still hold. Thus, if the primal path
{z}} satisfies the stopping rule (3.6), the convergence Theorem 3.2 still tells us
that the sequence {x} is bounded and that each of its limit points is an optimal
solution of (P). It is also well known that there is no duality gap between (P)
and (D), and that the set T' of optimal solutions of (D) is nonempty and compact
under these assumptions (see e.g. [6, Theorem 5.81]). Furthermore, the matrix
Y = 0 will be an optimal solution of (D) iff there exists Z € C such that

V.L(Z,Y)=Vf(z)+DGx)'Y =0 and G(z)-Y =0. (4.1)

Note that, for a linear operator Ay :=>""" | y;A; with A; € S™, as DG(x), we
have for its adjoint operator A? the formula:

A'Z = (A2, Ay 2)" VZeES™ (4.2)
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Let

_alr) o (Glan)) _ alrk) < 0 ((Ai(Glaw)) :
v= Sy (T) = T S e (MO ey, )

Tk Tk

where (0')° is the matrix function associated with ', defined in (2.10), and
ek’s are orthonormal eigenvectors of G(zy) associated with the eigenvalues

Ai(G(xr))-
Using the derivation rule given in Proposition 2.4 Part (iii), we get

The aim of this section is to prove that the sequence {Y;} is bounded and
that each limit point of this sequence is an optimal solution of the dual problem
(D).

Theorem 4.1. Consider a sequence {xy} satisfying relations (3.6), and let {Yy; }
be the sequence defined by formula (4.3). Then, {Y}} is bounded and each of its
limit points is an optimal solution of (D).

Proof. It was proven in theorem 3.2 that the sequence {z;} is bounded and that
each of its limit points is an optimal solution of (P). Let Z be a limit point of
{x3,} and [ := lo(Z) be the number of the null eigenvalues of G(Z). For simplicity
we suppose without lost of generality that limg_, o zx = T.

Now by Lemma 2.7 there exist sequences of orthonormal vectors {ef}, i =
1,...,m, which are eigenvectors of G(xy) associated with \;(G(zy)), converging
toward €; such that the set {e;: ¢ = 1,...,m} is an orthonormal eigenbasis of the
matrix G(Z).

In order to prove that the sequence {Y%} is bounded, we will show that each
sequence {a(fk’“)Q’ (’\i(i(w’“)))} is bounded. Particularly, we will show that, for

k

all i = [+ 1,...,m, these sequences converge to 0. This will be very useful to
conclude that any limit point of {Y}} is a solution of (D).

First let us prove that
lim 6'(t) = 0. (4.5)

t——o0

Indeed, since 6’ is nonnegative and nondecreasing it follows that lim;_, . 6’(t) =
e >0 and 6'(u) > 0, for all u € dom . Now formula (2.7) implies

Ooo(—1) = sup{(—1,0'(t)) : t € dom O} = —e,
which together with the equality 0. (—1) = 0 allows us to conclude (4.5).

Now we proceed to show that

a(rk)e, </\7(G(xk))

Tk Tk

) —0 Vi=Il+1,..m. (4.6)
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Lemma 2.6 tells us that 14 (G(xy)) < lo(G(Z)) =: I. This implies that for k
sufficiently large we have

)\i(G(xk))g%(j))<0 Vi=1+1,...,m.

In the case when 6 € Fy, we know that a(r) = r and limit (4.6) follows directly
from (4.5). Suppose then that § € F5. Since €’ is nonnegative and nondecreasing
the last inequality yields to

o< 2y (MGl  alrn)y (MG W

Tk Tk T 27y,

Also from the fact that 6 is nonnegative and convex we get

alry) 5 <A1(G(f) Ai(G(7)

0<
- 2r 27 27y,

) Cxte@) < atr 00 -0 ()| < amono)

which together with limy_,o a(ry) = 0 and inequality (4.7) implies condition
(4.6).

Now let us prove that, for all i = 1,...,l, the sequences {O‘g,zk)tﬁ)' (Ai(G(‘T’“)))}

Tk
are bounded. We argue by contradiction. Since §’(-) > 0 we can suppose without
lost of generality that

T
_ ) a(r
khi{.lo pp = +oo with puy := E 5“:)0/ <

i=1

EEY

Tk

Then set

I
. 1 i
i = EVf(xk) + DG(CL’k)t kaef(ef)t )
i=1

(4.8)
with € = 20y (Ai(G(mk))> € [0,1].
HETE Tk
Dividing (4.4) by ux and using (4.6) we get
lim e = 0. (4.9)

We can consider, passing to a subsequence if necessary, that each sequence {52}

converges to some €' € [0,1]. Moreover, since Zi:l & =1 for all k, it follows
that 20, & = 1.

Letting ¥ — +oc in (4.8) and using that e — &;, condition (4.9) implies
that

i
DG(z)* Zfiéi(éi)t =0, (4.10)
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with £ > 0 satisfying that Z§=1 € = 1. We will verify that (4.10) contradicts
Robinson’s condition (2.16) (which is equivalent to Slater’s condition). Indeed,
by definition of the adjoint operator, condition (4.10) can be written as

T T
& (eie)') DG = (&) [DG(@)h]e; =0 Vhe R".  (4.11)
i=1 i=1

Let h be the direction appearing in Robinson’s condition (2.16). Since £ >0
and (&;)" [DG(j)h} €; <0foralli=1,.,/, we immediately get that every term
of the sum in (4.11) is equal to 0, and consequently &' = 0 for all 7 = 1,...,[. This
contradicts the equality Zi‘:l £ = 1. Hence, we have proved that the sequences
{a(;;k)e’ (A”’(G(z’“)))} are bounded for all 4 = 1,...,l. This together with (4.6)

Tk

implies the boundedness of {Y%}.

Finally, let Y be a limit point of {Y}. Since Y} = 0 (because 0 is nondecrea-
sing), it directly follows that Y = 0. On the other hand, condition (4.4) implies
that V,L(z,Y) = Vf(z) + DG(z)'Y = 0. Furthermore, from (4.6) and since

the sequences {O‘E;’“)G’ ()‘i(G(x’“)))} are bounded for all i = 1,... ., it follows

Tk

that ¥ = 22:1 5;€;et with 6; > 0, which implies

Gx@)-Y=0.

Hence Y satisfies optimality conditions (4.1). We thus conclude that Y is an
optimal solution of (D). |

5 Penalty methods with two parameters

We consider again in this section the convex optimization problem (P) defi-
ned in Section 3 and suppose assumptions (A;) and (As). Additionally, we will
also suppose

(4s) foo(d) 20 Vd.

It was noted in Remark 3.1 that there is no lost of generality to do such an
assumption.

In this section we will only work with penalty functions 8 that belong to F5.
In this way, for any real rg, G > 0 we consider

P (x) = rH"™ (x) = 13 29 (M) :

Tk

and we define

Yr(x) = f(z) + Brp™ (2).
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The main computation of the forthcoming algorithm will be to solve ap-
proximatively, at each iteration k, the unconstrained optimization problem

(P,) v = inf{yYp(z) | z € R"}.

Let Sy be the optimal set of (P, ), and let {ex} and {yz} be sequences such
that
Vk: € >0, >0, klim € = klim Y = 0. (5.1)

As in Theorem 3.1 we can show that Sy is nonempty and compact for each
k. Hence, following the discussion of Section 3, we can compute for each k a
point xzj, satisfying

0kl < er Mmllllzrl] < vk,  where m, = Vi (). (5.2)

As we seen before this can be done in a finite number of steps with any usual
descent method.

Now we proceed similarly to [15]. The parameters r, and Sy play two different
roles: r; always decreases in order to improve the approximation of the function
t — tT by the mapping t — r,0(t/r)), while f, is a penalty weight that increases
only at an infeasible iteration point xg.

The algorithm proposed in this article is the following

1. Let fo=ro=1and k =0.
2. Compute xy satisfying (5.2).

3. Update r1 = 73, and if xy is feasible then set 811 = Bk, otherwise set
Br+1 = 20k. Finally set k =k + 1.

When C = D and ¢, = 0 (that is, xj is an exact minimizer of (Py)), our
algorithm coincides with the proposed one by C. Gonzaga and R. A. Castillo in
[15]. We refer the reader to this article for a detailed discussion of this scheme.

In addition to the hypothesis made in this section we denote by {xx}, {rr}
and {0 } the sequences generated by our algorithm. In this context, the following
convergence result holds.

Theorem 5.1. The sequence {xy} is bounded and all its limit points are optimal
solutions of (P).

Proof. We start this proof establishing five conditions that will be important
in the sequel. First, by construction of the algorithm we have

1 < ﬁk, ﬁkrk < 1 Vk. (53)

Second, since lim;_,_ ., 6(t) = 0 we obtain

i 0
lim 6 (W> =0 Vi=12,...,m,Vz" € int C.

k—o0 Tk
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Consequently

Ai(G(a?))

Tk

kli}rrolo Brp™* (xo) = klingo BT 20 (

i=1

> =0 vV2'cintC.  (5.4)
Third, since for all ¢ > 0 the function » — r(6(¢/r) — 6(0)) is nondecreasing on
IR, , and since 6(0) > 0, we deduce that

r(t/r) > 0(t) — 0(0) Vie R, Vr € (0,1]. (5.5)

Fourth, convexity of the function 1), and the definition of 7y := Vi (zx) imply
that

f(@e) + Bep™ (wr) < f(2°) + Bep™ (2°) + (,ze — 2°) Va® € intC. (5.6)

Finally, since 6 is nonnegative we get from (5.2)—(5.4) and (5.6)

O e R R}

with lim g (2°) =0 Va0 €intC.
k—o0

(5.7)

Now let us show that the sequence {z;} is bounded. By contradiction, we
can suppose, passing to a subsequence if necessary, that

d+#0.

. X
|lzg|| = +o0, lim —F— =
k—oo |||

_ By Proposition 3.1 Part (ii) it follows that (AM)oo(d) > —o0. Set oy <
(AM)oo(d). From formula (2.3) (see Remark 2.1) we have for all k sufficiently
large

« T
M@@=M<W%Mm02aMmL

This together with the monotonicity of § and inequality (5.7) yields to

f(iCk)+ Tk 9<0é1||$k|> < f($0)+uk($0)

llexll o]l Tk = ]| IEA

By passing to the liminf in this last inequality we get

fool(d) + boc(a1) < 0. (5.8)

Since fo, and ., are nonnegative we obtain that 6. () = 0, and conse-
quently fo(d) = 0. Furthermore, due to relations 0. (—1) = 0 and 0(1) = 1
it follows that oy < 0. Then letting a; T (A1)oo(d) it follows that (A1) (d) <0,
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or equivalently, d € C. This together with f(d) < 0, d # 0 contradicts the
fact that S is nonempty and compact.

Let Z be a limit point of the sequence {z}. For the sake of simplicity, we
can suppose that z = limy_, o xg.

Firstly, we proceed to prove that Z is feasible. This is obviously true if for all
k sufficiently large the iteration point xy is feasible for problem (P), i.e. z € C.
If this is not the case, we have from the construction of the algorithm

lim S = +oo. (5.9)

k—o0

At the first iteration, the convexity of function 1y implies
f(xo) +p'(wo) < flzx) + ' (zk) + (M0,T0 — T). (5.10)
Using inequality (5.5) we get
0N (G(zy))/ri) = 0(Ni(G(xg))) —60(0) Vi=1,...,m,

which yields to
P (zk) 2 p'(r) — mb(0).
Adding this last inequality to (5.10) we obtain

f(@o) + p' (o) —mb(0) < f(x) + p™ (zk) + (0,0 — 1),

deducing from relation (5.6) that

m . 0
(B — D™ (0) < Byre >0 (”G““”) T Imollell + Il — 20 + K.
i=1

Tk

where K is a constant. Hence, from the boundedness of {x}} and relations (5.1),
(5.2) and (5.4) we can give an upper bound K for the right hand side of the
last inequality. Thus, from the fact that 6 is nonnegative it follows for all k
sufficiently large that

(M) <

Passing to the liminf and using formula (2.3) and (5.9) we get 0o (A1 (G(Z))) < 0.
As a consequence we conclude that A(G(Z)) < 0, that is, T is feasible for
problem (P).

Secondly, we shall prove that Z is an optimal solution of (P). Since () > 0
and inequality (5.7) we have

fx) < f(@%) + pup(2®) Vva® €int C.
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We thus obtain at the limit that f(z) < f(2°) for all 2° € int C. Hence, conti-
nuity of function f implies that Z is an optimal solution of (P). |

In the next theorem we extend to our semidefinite framework the main result
of the article [15] (cf. Theorem 1). For this purpose, we denote by F; the subset
of functions 6 € Fy satisfying the inequality 6'(0) > 0. We remark that 65 and
07 belong to Fy.

The following theorem says that for 6§ € Fj and k sufficiently large, the
point zj will be feasible. This result is important for optimization problems
where feasibility is a key issue. Of course, there are some examples of 6 € F}
(—log(x), 1/x,...) for which x is strictly feasible, but in these cases the starting
point of the numerical methods used to obtain x; must also be strictly feasible,
which can be a difficult task for some problems. Thanks to the next theorem
this difficulty is avoided when 6 € F3.

Theorem 5.2. Suppose in addition to hypothesis of Theorem 5.1 that 6 € Fy'.
Then, there exists ko such that for all k > kg, x is feasible.

Proof. We argue by contradiction. So, since {z} is bounded, we can assume the
existence of a convergent but infeasible subsequence of {x} (which for simplicity
will be also called {z}). Hence, by construction of our algorithm, 3, — +o0.
Let Z := limg_, o x%. It follows from Theorem 5.1 that Z is an optimal solution

of (P).

In the rest of this proof we consider that k is large enough. If G(z) < 0
then by smoothness of the function G we get G(zx) < 0, obtaining directly a
contradiction. We then suppose Im F(G(Z)) = Ker G(Z) # {0}, that is, G(Z) is
singular.

By Proposition 2.9, Slater’s condition (As) is equivalent to Robinson’s condi-
tion (2.16), which can be written at Z as follows

There exists h € IR" and p > 0 such that E(G(7))'DG(2)hE(G(Z)) <= —plm,

where I,,, is the identity matrix in S™. Hence, continuity of DG(-) implies that
- 1
E}.DG(zy)hE}, < —ipfm, (5.11)

where Ej, € R™*(E@) are the matrices given by Corollary 2.8, that is, the
columns of matrices Ej, are the orthonormalized eigenvectors of G(xy,) associated
with their {o(G(Z)) largest eigenvalues, and E, — E(G(Z)). Corollary 2.8 also
tells us that 1 (G(zy)) < lp(G(Z)). Actually we have

Ni(G(zg)) <p<0 Vi=1(G(®))+1,....,m, (5.12)
where p > ji :=max{\;; \; = \;(G(Z)) < 0}.

We proceed to compute the inner product (nk,h) = nth, where ny = Vi (1)
and h is the vector appearing in (5.11).
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From the derivation rule given in Proposition 2.4 Part (iii) we get

*zp)th = ZH’ (W) ci(zy) - DG(x1)h
N (MGED Y v Do e
=0 (MO ) e oat et

k

(5.13)

where ¢;(z) := e¥(eF)! and vectors ef’s are the columns of Ej, such that each

ek corresponds to the eigenvector of G(Ik) associated with A;(G(zy)).
Condition (5.13) implies that
i(G(zr))

Tk

() = Vf () h+ﬁkzo’<

i=1

) () (DG (an)R)et,

which can be rewritten as

) T Snp (Ge)

) () (DG (ar)R)ek =

B B i=lo(G(2)+1 "
ZO(Gf))G'( MEDDY by (DG an ek
(5.14)
Taking the limit when & — 400 we have that the terms — <7”“’E) and W

converge toward 0 due to relations (5.1) and (5.2), and 8 — +oo By (5.12),
we obtain \;(G(zy)/ry) — —oo for all i = lo(G(Z)) + 1,...,m. This together
with the limit lim; ., o, 6'(t) = 0 implies that 9'()\¢(G(9L‘k)/rk)) — 0 for all
i1 =1p(G(Z))+1,...,m. Then we deduce that the entire left hand side of (5.14)
converges toward 0.

We will obtain a contradiction by showing that the right hand side of (5.14)
is strictly posmve Indeed, condition (5.11) implies that (e¥)*(DG(zy)h)ef <
—p/2 for i = 1,. lO(G(*)), and since 6 is nondecreaslng, 0'() > 0 and
I+ (G(xg)) < ZO(G(a_:)) it follows that

Io(G(Z)) 4 . - lo(G(2)) , r

i=1 Tk — Tk
I+ (G(zk))
p , [ i(G(zy))
>
2 1:21 0 ( T'Ek
> Looy
> L0/ (O)1 (a1,

But 0’(0) > 0 (because 0 € Fy) and xy is infeasible, i.e. {4 (zr) > 1. Hence
the right hand side of (5.14) has a strictly positive lower bound. The theorem
follows. |
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As for penalty and barrier methods with one parameter we can associate
with the sequence {x} a sequence {Y;} of dual multipliers defined by

=) (22) - s, fje (M) ety s

r

where (6’)° is the matrix function associated with ', defined in (2.10), and
ek’s are orthonormal eigenvectors of G(zj) associated with the eigenvalues
Ai(G(zk)). Then we have

e = Vir(zx) = V (k) + DG (xr)" Y. (5.16)

As in Section 4, we prove in the next thorem that the sequence {Yj} is
bounded with each of its limit points being an optimal solution of (D).
Theorem 5.3. Suppose that the assumptions of Theorem 5.2 are satisfied.
Consider a sequence {xy} satisfying relations (5.2), and let {Yi} be the se-
quence defined by formula (5.15). Then, {Y;} is bounded and each of its limit
points is an optimal solution of (D).

Proof. By Theorems 5.1 and 5.2 we can assume, without lost of generality, that
the sequence {x} converges to an optimal solution Z of (P) and for & sufficiently
large zy, is feasible and B = (3 > 1. Since zy, is feasible and by the monotonicity
of 0'(-), we have that 6'(\;(G(xg))/rx) < 0'(0) for all i, which proves that the
sequence {Y;} is bounded.

Let Y be a limit point of {Y3}. The proof is now similar to the one given in
Theorem 4.1. Since Yy, = 0, it directl}_z follows that Y > 0. (_)n the other hand,
condition (5.16) implies that V. L(z,Y) = Vf(z) + DG(z)'Y = 0.

Let [ := lo(Z) be the number of null eigenvalues of G(Z). Since lim;_, _ . 6’ (t)
=0 (cf. (4.5)), we get

Th LA

(G -
B0’ ((T(I’“))) 0 Vi=I+1,..,m, (5.17)
k
and since the sequences {ﬂ;ﬁ’ (M)} are bounded for all i = 1,...,[, it

follows that Y = 22:1 d;€;et with §; > 0, which implies that G(z) - 1:/ = 0.
Hence Y satisfies optimality conditions (4.1). We thus conclude that Y is an
optimal solution of (D). [ |
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Perturbation Analysis
of Second-Order Cone Programming Problems!

J. Frédéric Bonnans? & Héctor Ramirez C.3

Abstract. We discuss first and second order optimality conditions for nonli-
near second-order cone programming problems, and their relation with semidefi-
nite programming problems. For doing this we extend in an abstract setting the
notion of optimal partition. Then we state a characterization of strong regularity
in terms of second order optimality conditions.

1 Introduction

Consider the nonlinear second-order cone programming problem

Min fl@); g/ (x) =", (o > 18], G =1,....J, (SOCP)
z€R™,sicR™it!
where f and ¢/, j = 1,...,J are C* mappings from R" into IR and R™ !,
respectively. We use the standard convention of indexing components of vectors
of R™ ™! from 0 to m;, while vectors in IR" are indexed from 1 to n. Given
s € IR™ T we also denote 5 := (s, ... ,sm].)—'—.

The second-order cone (or ice-cream cone, or Lorentz cone) of dimension
m + 1 is defined as

Qm1 = {s € R™ "5 50 > ||3]},

and the order relation =¢, ., induced by Q41 is given by

n+1

$=0n, 0 iff  se R™ s> 3.

The interior of this cone is the set of s € IR™ such that sy > ||5]|. In that case
we say that s »q,,,, 0. We also denote Q := H]J:1Qmj+1. A second-order cone
@ = Qm+1 can be described as a linear matrix inequality by using the known
equivalence (e.g. [1])

=T

. S0 S
- wi(s) = - .
s=q0 iff Arw(s) ( 5 SOIm) 0, (1.1)

1. Technical Report 5293, INRIA, Rocquencourt, France, 2004. Submitted to Mathematical
Programming Series B.

2. Projet Sydoco, INRIA Rocquencourt, B.P. 105, Le Chesnay, France, e-mail: Frede-
ric.Bonnans@inria.fr.

3. Department of Mathematical Engineering, Universidad de Chile & Centre for Mathema-
tical Modelling, UMR 2071, Universidad de Chile-CNRS. Casilla 170-3 Santiago 3, Chile &
INRIA Rocquencourt, e-mail : hramirez@dim.uchile.cl.
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where I,,, denotes the identity matrix in IR™*™, Arw(s) is the arrow matriz of
the vector s, and > denotes the positive semidefinite order, that is, A = B iff
A, B are symmetric matrices and A — B is a positive semidefinite matrix. We
also denote the set of m+1 by m+1 symmetric matrices by S™*!, indexed from
0 to m, equipped with the inner product A- B := Tr(AB) = ZZ;ZO A;;B;j; the
subset of symmetric positive semidefinite matrices is denoted Sf“. Finally, for
two arbitrary vectors = and z of any dimension we set z -z ==z 'z = DTz
the corresponding Euclidian inner product, and for an arbitrary optimization
problem (P) we denote by S(P), F(P) and val(P) its solution set, feasible set
and optimal value, respectively. The equivalence (1.1) implies that (SOCP) is
SDP-representable, i.e., can be written as the nonlinear semidefinite problem

Min f(x); G(z) == Arw(g?(z)) =0, j=1,...,J. (SDP)

For a general view of semidefinite programming problems, see [18, 19]. A first ob-
jective in this paper is to compare the linear second-order programming problem
(see (LSOCP) below) and its linear SDP-representation (see (LSDP) below) in
terms of duality results. We show that their dual problems are no longer equi-
valent, and some important notions as the uniqueness of Lagrange multipliers
(or equivalently, dual problems solutions) do not simultaneously hold for both
problems (LSOCP) and (LSDP). We perform this analysis in an abstract fra-
mework. When specialized to second order cone problems, we recover some of
the results of Sim and Zhao [17]. Still our main result is the characterization
of the strong regularity property for SOCP problems in terms of second-order
optimality conditions. This is a well studied subject in nonlinear programming
and the reader can see two different approaches in the articles of Bonnans and
Sulem [7], and Dontchev and Rockafellar [9]. Nevertheless, it is still an open
problem in a general conic optimization framework, even in particular instances
as semidefinite programming. Necessary and sufficient second-order conditions
to obtain the strong regularity property in SDP are studied by the authors in
[4].

The paper is organized as follows. Section 2 breaks into three subsections. In
the first one, we review the main duality results concerning the linear second-
order programming problem (LSOCP) and their comparison to linear SDP pro-
blems. Section 2.2 deals with an abstract framework involving two equivalent
linear conic optimization problems with constraints in product form, that are
related by a linear mapping (as in relation (1.1)). It introduces a notion of
optimal partition of active constraints. It allows us to deduce several duality
statements and related properties. Subsection 2.3 applies this abstract frame-
work to linear problems (LSOCP) and (LSDP). In Section 3 we discuss briefly
the duality theory for nonlinear SOCP problems. Section 4 recalls some key
notions as the nondegeneracy condition and the reduction approach, mainly for
their use in Section 5 where is stated our main result: the characterization of
the strong regularity property for SOCP problems in terms of second-order op-
timality conditions. For this, we use the concepts given in Section 4 as well some
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suitable known theorems and SOCP techniques.

2 Duality theory for linear SOCP problems

2.1 Dual linear SOCP problems

We assume in this section that f(z) = c-z and ¢/ (v) = Alo—b/, j=1,...,J,
where ¢ € IR" and A7 are (m; + 1) x n matrices. In that case we speak of a
linear SOCP problem:

Min coxy Ale—b =57 (s7) > |5, j=1,...,J. (LSOCP)
z€R",s7€R™it!

The dual problem of (LSOCP) is given by

J J
iy NT o — Ne > G0 i=1 . .
yJ?ﬁﬁ”%*ljZ:;b Yy ;(A ) Y (&) (y )O = ||y H’ J 1) ’J (LSOCP )
Since both the primal and dual problems are convex, we have the following
results of convex analysis (cf. Rockafellar [14]). The weak duality inequality
val (LSOCP) > val (LSOCP*) holds, with the convention that the optimal value
(val) of problem (LSOCP) (resp. (LSOCP*)) is equal to 400 (resp. —o0) if this
problem is infeasible. If the value of (LSOCP) is finite, it is known that (LSOCP)
is strictly feasible, i.e., there exists a point & such that 472 — b’ € int Qm,+1
for all j = 1,...,J, iff the set of solutions of the dual problem is nonempty and
bounded. In that case we have the strong duality property, i.e., val (LSOCP) =
val (LSOCP*). A symmetric statement holds by permuting the words “primal”
and “dual” (we will see in lemma 2.2 a refinement of this statement). If the
strong duality property holds, then a pair of primal-dual solution (z*,y*) €
R"™ x Hleﬂ%mj *1is characterized by the following optimality system

ATy* =¢, Az*—be Q, y*e€Q, (Az* —b)oy* =0, (2.1)
where we have defined A := (A';---; A7) as the matrix whose rows are those
of A to A7 and whose columns a; are equal to vec(a;,...,a;), with a] the i-th
column of A7, b := vec(b',... b7) and the operation o (e.g. [1]) is given by

z's +1
zos:=Arw(z)s = : _ ], forall z,s € R™"",
oS + ST
and for z, s in 1’[34]=11Rm"+1 we set
ros:=vec(ztost,... 27 os?).

We may write (Az* —b) - y* = 0 instead of the last relation in (2.1), in view of
the well known property (e.g. [1, Lemma 15])

For all z,s € Qupy1, zos=0iff x-s=0. (2.2)
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In fact it is easily checked that relations in (2.2) are satisfied iff x and s belong
to Q41 and

Either x = 0 or s = 0, or there exists a >0 s.t. sg =arg and § = —aZX.
(2.3)
Similar duality results hold for the linear semidefinite problem, which can be
written as

n
: . (Y Joos
ml\e/[#Lox, Z;szi =Gl i=1,...,J, (LSDP)
where we have set
G} = Arw(b) and G = Arw(al), i=1,...n. (2.4)

In this case, the dual problem of (LSDP) is

J J
J . yi. 3 (yi — J e 1
ng/é%“ ;GO Y ,;g Y 4¢c¢=0,Y7 =0, j=1,....J, ¢,
4 (LSDP*)
where the mappings Y € ™+t — GI(Y) := (G - Y,...,GJ - V)T are the ad-
joint operators of G/, and a primal-dual solution (z,Y) € IR" x II/_; 8™ is
characterized by

J
SN GFEY +e=0 G2)=0Y =0, G2)Y/ =0, j=1,....J (25)
j=1

In the sequel we denote G(Y) := Z;’Zl GI(Y*)d.

Note that a linear second-order cone programming problem as (LSOCP)
satisfies the strong duality property if both problems (LSOCP) and its dual
(LSOCP*) are feasible, see Shapiro and Nemirovski [16], whereas this is no
longer true for a linear semidefinite programming problem, see [18, page 65].

2.2 An abstract framework

The aim of this section is to clarify some properties of optimization pro-
blems with constraints in product form, as well as relations between the dual
solutions of (LSOCP) and (LSDP). For this, we consider a general linear conic
optimization problem with constraints in product form, i.e.,

Mlglc-x;ij—bjeKj,j:l,...,J, (COP)
zelR™

where K are closed convex cones in IR¥. We set K := K; x --- x K, and
define A = (AY;---; A7) as the matrix whose rows are those of A! to A7, and
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b= vec(b!, ... ,b7) so that (COP) is equivalent to Minge gn{c-z; Az —b € K}.
The dual problem is

J J

i g NT, 5 j + *

yMa:);,Zb]yJ7 Z(Aj) y]*C’ yJ EK] ) ]*17"'7‘]7 (COP )

j=1 j=1

where the (positive) polar of a set C C IR™ is defined as C* := {y € R™; y-2 >

0, for all z € C}. If the primal and dual values are equal, a pair (z,y) of the
primal and dual problems is characterized by the optimality system

Az —b e K, o EKJT", y (Az—v)=0j=1,....J; Aly=c

(COPOS)

We denote by S(COPOS) the set of solutions of relations (COPOS). In the

sequel we introduce notions of componentwise strict feasibility and strict com-

plementarity.

Definition 2.1. We say that strict primal (resp. dual) feasibility holds for j €

{1,...,J} if there exists v € F(COP) such that Az — b € int K; (resp. y €

F(COP*) such that y? € int K;‘)

Lemma 2.2. Let j be strictly primal (resp. dual) feasible. Then the set {y’;y €

S(COP*)} (resp. {Alx — b2 € S(COP)}) is bounded.

Proof. If j is strictly primal feasible, there exists € > 0 such that s = Az — b
satisfies s’ + B C Kj, or equivalently eB C s/ — K. Let y € S(COP*). Since
Yy e K;r, it follows that e||y?|| <y - s7. Using also 47" - s7" > 0, for all j/, we get

O=z-(c—A"y)=cz—y-Azv=c-z—b-y—y-s<c-z—b-y—e||.

In other words, ¢||y/|| < c-x—b-y = c¢-x —val(COP*), which gives the desired
estimate. The proof for the dual statement is similar. |

One says (e.g., [6, Def. 4.74]) that the strict complementarity hypothesis
holds for problem (COP) if there exists a pair (z,y) solution of the optimality
system, such that —y € ri N (Az — b), where Nk is the normal cone of convex
analysis. Since K is a closed convex cone, we have for s € K that

Ni(s) = (-KT)nst, (2.6)

(where s+ denotes the set of all orthogonal vectors to s) and Ng(s) = () if
s¢ K.

For problems with constraints in product form, it is worthwhile to introduce
the concept of componentwise strict complementarity hypothesis, which for each
component j means that there exists a pair (z,y) € S(COPOS), such that
—y) € 1i Nk, (Alz —b7).

We can extend and refine for this framework the notion of optimal parti-
tion, well known for linear programming and monotone linear complementarity
problems, see e.g. [3, Section 18.2.4].
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Lemma 2.3. If S(COPOS) is not empty, there exists a partition (B,N,R,T)
of {1,...,J} such that, () The set B is the union of j such that there exists
(z(5),y(4j)) € S(COPOS) satisfying Alz(j) — b' € int K, (ii) The set N is
the union of j such that there exists (z(j),y(j)) € S(COPOS) satisfying y’(j) €
int K;, (iii) The set R is the union of j, not belonging to B or N, such that there
exists (z(j),y(j)) € S(COPOS) with —y’ (j) € ri Nk, (Alx(j) — v7), and (iv) for
all j € T, every (z,y) € S(COPOS) does not satisfy strict complementarity for
component j.

Proof. Let (B,N,R,T) be defined as in the lemma; we have to check that this is
a partition. The definition of T implies that their union equals {1,...,J}, and
by definition of R and T', we have that (BUN,R,T) is a partition of {1,...,J}. It
remains to prove that BN N = (. Since S(COPOS) is not empty, we know that
S(COPOS) = S(COP) x S(COP*). Therefore & := |B|7} > jep (j) satisfy
z € S(COP). We see that A7 — b € int K;, for all j € B. Therefore any
y € S(COP*) is such that 7 = 0, for all j € B. This proves that BON = (). B
Remark 2.4. Note that, for monotone linear complementarity problems the
optimal partition is of the form (B,N,T), since in that case a strictly com-
plementary component belongs either to B or N. Therefore the main novelty
consists in introducing the set R.

Definition 2.5. Any pair (x,y) € S(COPOS) satisfying the relations below is
said to be of maximal complementarity:

{ (i) Az —b' € int K;, Vi€ B, (ii) v’ €intK;", Vi € N, 27)

(iii) — ¢’ € ri Nk, (Alz — b%), Vi € R.

Let z(j) and y(j) be as in lemma 2.3. We define

ie=(BI+R)T YD 2(): g=(NIHIRD)T YD w).

JEBUR JENUR

Let us state some properties of the set of maximal complementarity solutions.
We need a preliminary lemma.

Lemma 2.6. Let K be a closed conver cone. Let s' € K, fori =12, —y' €
Nk (s'), and —y? € ri Nk(s?). Given o €]0,1], set (s,y) = a(sty!) + (1 —
a)(s%,y?). If —y € Ni(s), then —y € ri Nk (s).

Proof. Since —Ng(s) = KT N st, we have that —y € ri Ng(s) iff, for all
2 € Nk(s), y+ez € KT for small enough € > 0. As KV isa cone, y+ez € KT
always holds. Therefore we have to prove that for z € Nk(s), y —ez € KT
for small enough £ > 0. Using Nx (s) = Ng(s') N Nx(s?), obtain 2z € Nx(s?),
and hence, y?> — ¢’z € K for some ¢ > 0. Let ¢ := (1 — a)¢’. Then y — ez =
ayt + (1 — a)(y? — €'z) belongs to K. The conclusion follows. |
Lemma 2.7. (i) The pair (&,5) is of mazimal complementarity. (ii) Any pair
(z,9) € riS(COPOS) (set equal to riS(COP) x ri S(COP*)) is of mazimal
complementarity.
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Proof. (i) That A72—b’ € int K, for all j € B, is a classical property. Similarly,
# € int K, for all j € N. Finally, that —j7 € ri N, (A7 — b7), for all j € R,
is consequence of lemma 2.6.

(ii) Let (#,9) € ri S(COPOS), and (£,5) € S(COPOS) be of maximal comple-
mentarity. Then there exists ¢ > 0 such that (#,9) — £(Z,5) € S(COPOS). Set
a=1/(1+¢) € (0,1). We may write

a(d,g) = a[(2,9) —(Z,9)] + (1 — a)(Z,9)-
Similarly, setting § := A% — b and § := A% — b, we have that
a(8).9) = o (8 57) — (57 57)] + (1 — ) (57 7).
We conclude by applying lemma 2.6 to the above relation. |

We now introduce another problem related to (COP), having in mind the
relations between SOCP and SDP problems. Let L = KC; x - -+ X K be another
finite family of closed convex cones in IR™, j = 1 to J, and M7 be r; x g;
matrices such that

e K; iff MisPeKj,j=1,...,J. (2.8)

Let M = (M?%;---; M”) be the matrix whose rows are those of M7. Then (COP)
is equivalent to the linear conic problem

I\E/Ilizglc-x;Mj(ij—bj)ele,j:L...,J, (MCOP)

whose dual is

J J
Max VoM Y (AN (M) z=¢ ek, j=1,....J. (MCOP¥)
zek = =
If the primal and dual values are equal, a pair (z,y) of the primal and dual
problems is characterized by the optimality system

{ MI(Aiz — V) € K;, zjelC;“, 2 MI(Alx — b)) =0,5=1,...,J; (2.9)

Y ()T (M) T2 =

We first state two lemmas that deal with properties that do not involve explicitly
the product form.

Lemma 2.8. The following relations hold: (i) MS(COP) = S(MCOP), MTK*
C Kt, and M"S(MCOP*) C S(COP*). (ii) If M K™ is closed, then MTK+ =
K* and MTS(MCOP*) = S(COP*). (iii) Closeness of MK+ holds if M is
coercive on Kt , i.e., if |[M " z|| > ¢||z|| for all z € K*. In that case, S(MCOP*)
is bounded iff S(COP*) is bounded.

Proof. (i) That MS(COP) = S(MCOP) is a consequence of (2.8). Since
MK C K, any z € K* is such that M "z € K. It follows from the expression
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of dual problems that M " S(MCOP*) C S(COP¥).

(ii) Assume now that K := M TK™ is closed. Since we know that M TKT ¢ K,
we have to prove the converse inclusion. If this is not true, then there exists
ye Kt y¢ K. By the separation theorem there exists h € K+ such that
hTy < 0. That h € K+ is equivalent to Mh € K, hence to h € K; but since
y € KT, this contradicts h'y < 0. This proves M Kt ¢ K7, from which
MTS(MCOP*) = S(COP*) follows easily.

(iii) Finally, that the closeness of M 'Kt is a consequence of coercivity of M T
is easy and left to the reader, as well as the equivalence of boundedness of
S(MCOP*) and S(COP*). |
Lemma 2.9. Assume that M is one to one. Then the following holds. (i) The
mapping M is onto, and M int KT C int K*. (ii) If in addition MK+
is closed, then M T int K+ = int KT and M " int S(MCOP*) = int S(COP*).
(iii) Under the same assumptions as in (ii) we also have that, for all s € K,
MTri(Ktn(Ms)*) cri(Kt Nst).

Proof. (i) That the transposition of an injective mapping is surjective is well-
known. If z € int KT, then there exists € > 0 such that z + eB C KT (where B
denotes the Euclidean ball). Since MT is onto, MT B D aB for some a > 0, and
hence, K* D M T (2 +eB) D M "z + eaB, which proves that M "z € int K.
(ii) Since M T is onto, M T int K is an open set. As M " Kt is closed, the closure
of MTint Kt is MTK™*, and the latter is equal to K+ by lemma 2.8. This
means that M " int KT = int K. The equality between M " int S(MCOP*)
and int S(COP*) is proved in a similar manner.

(iii) We know that MK+ = K*, and that for all z € K*, z- Mz = 0 iff
(MT"2)-x=0.TIt follows that M T (KT N (Ms)+) = (K Nst).

Let z € ri(Kt N (Ms)t), and set y = M " 2. Let 3y € KT Nst. We know that
there exists 2’ € K+ N (Ms)* such that y' = M T2, Since z € 1i(K*+ N (Ms)1),
there exists & > 0 such that z £ ez’ € KT N (Ms)*+. It follows that y + ey’ €
K* N s*. The conclusion follows. [ ]

We denote by (Bcop, Ncop, Reop, Tcop) and (Bucor, Nucops Rucor,
Trarcop) the optimal partitions of (COP) and (M COP), respectively.

Lemma 2.10. Assume that M TK7T is closed, that M is one to one, and that
For all s € K;,M’s’ € 0K; iff s’ € 0K;. (2.10)
Then the following relations hold between the optimal partitions of problems

(COP) and (MCOP):

Bcop = Bucopr, Ncop = Nmcor, Rcop D Rucor, Tcop CTucop.

(2.11)
In particular, the strict complementarity hypothesis holds for (COP) if it holds
for (MCOP).

Proof. That Bcop = Bucop is an immediate consequence of (2.8) and (2.10).
Applying the first part of lemma 2.9(ii) to (K;,K;,M?) we deduce that Ncop =
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Nycop- Finally that Reop D Rycop follows from lemma 2.9(iii) applied to
(K;,K;,M?"). The relation Tcop C Tarcop follows from the three others.

As a consequence, if Thrcop is empty then Toop is also empty, which
means that the strict complementarity hypothesis holds for (COP) if it holds
for (MCOP). |

2.3 Application of the abstract framework

We apply the results of the above section. Here K; = Qp,, 11, Kj := Sfj+1,
and M’s? = Arw s?. Note that we can write

sT

Arw(s) = (so — ||5]]) Lm+1 + (z” ||88||Im> . (2.12)

This shows that for s € Q41 \ {0}, Arw(s) is of rank m iff s € Q. +1, and of
rank m+1 otherwise. In particular, Arw 0Q.,+1 C 38_7_”“, and Arwint Q11 C
int ST'H. Therefore (2.10) holds. Let us decompose any matrix Y € S™*! as

follows T
Y = (}-EOO 5}} ) , (2.13)
where Yoo € R, Yo € IR™ and Y € 8™. We note that for any s € R™" we get
Arw(s) Y = 50 Tr(Y) + 25 - Y. (2.14)

It follows that Arw ' : 8™+ — JR™T! is nothing but

Arw'Y = <T;§}0/)> . (2.15)

Consequently

MT(YY,. .. Y7) = vec ((T;%l)> e, (T;%,J))) . (2.16)

Proposition 2.11. (i) We have that y is solution of (LSOC P*) iff there exists
z solution of (LSDP*) such that y = MTz. (ii) One of these dual problems
has a bounded set of solutions iff the other one has the same property. (iii) One
of these dual problems has an interior feasible point iff the other one has the
same property. (iv) Problems (LSOCP) and (LSDP) have the same optimal
partition.

Proof. Since Arw' is coercive on ST‘H, M is also coercive. By lemma 2.8,
we have that S(LSOCP*) = M"S(LSDP*) and S(LSDP*) is bounded iff
S(LSOCP*) is bounded. This proves points (i) and (ii). Point (iii) is conse-
quence of lemma 2.9(ii). We now prove (iv). By lemma 2.10, Brsocp = Brspp,
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Nrsocp = Nrspp,and Rrsocp O Rrpspp; it remains to prove that Ry, socp C
Rpspp since (B,N,R,T) is a partition. Let j € Rrsocp. Then there is a pair
(x,y) solution of (2.1) such that s/ # 0 # 7, and both s/ and 3’ belong to
the boundary of Q,,; 1. As observed after (2.12), this implies that Arw s/ is of
rank m?, and hence, the corresponding set of normals is a half line (of rank one
semidefinite positive matrices, orthogonal to Arw s’). Since the corresponding
multiplier Y for problem (LSDP) is such that 0 # y/ = Arw' Y7, we have that
Y7 # 0, proving that —Y7 belongs to the relative interior of the normal cone
(to the set of semidefinite positive matrices) at Arw s7. |

The above analysis shows that strong duality holds for problem (LSOCP) iff
it holds for problem (LSDP). The next proposition states an interesting relation
between the solutions of (LSOCP*) and (LSDP*).

Proposition 2.12. Let the strong duality property hold for problem (LSOCP).
Let I be the set of indexes in 1,...,J such that there exists * € S(LSOCP)
satisfying Aix* # b7. Then every Y € S(LSDP*) is such that, for some y €
S(LSOCP*), the following relation holds:

j e L7 )" ) :
Y’ =0, ify =0; Yl = ("2 " _. X .|, otherwise. 2.17
£y ("5 e e (217

Proof. Let j € I, * be the associated solution of (LSOCP), and let ¥ €
S(LSDP*). We claim that

YooY? - (Y (¥d) T =0, (2.18)
where Yy, Y7 and Yy are given by (2.13). Since Y7 € S} *1 by Schur com-

plement the matrix Y3, Y7 — (Y§)(Y§)T is positive semidefinite, and hence, it is
enough to show that

Tr (YO{)W - (Yg)(Yg)T) <. (2.19)

By strong duality, any primal-dual solution (z*,y*) of (LSOCP) is solution of
(2.1). Since AJx* # bjl, the complementarity condition implies that any y €
S(LSOCP*) satisfies ) = ||7/||. Taking y/ = Arw' Y7, we deduce Tr(Y7) =
yd = 17| = 2[|Y7 ||, which implies

Tr (Yoo ¥? — (V)T ) = i T (¥7) — (%g)* = %5 1P

2 (2.20)
—— (Y% - I%1) <o,

proving (2.19) and therefore also (2.18). Combining (2.15) and (2.20), obtain

) . 1.
Yoo = IY5' = 51151l (2.21)
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Now, we distinguish two cases: a) If Yy, = 0, we obtain from (2.21) that Yg =

77 = 0 and then Tr(Y7) = y_é = 0. Hence, since Y7 is positive semidefinite this

implies Y7 = 0. b) Else if Yy, # 0, we get directly from (2.18) and (2.21) that
i i 1, .. . i

= m(.@ﬂﬂ)(zﬂ/?)T = g(yj)(yJ)T/llyjll,

which, combined with (2.21), allows to conclude the proof. |

Y= (Yo0) (V¥

3 Duality theory for nonlinear SOCP problems

The Lagrangian function associated with problem (SOCP) (stated in the
introduction) is L(z,y) := f(x) — >, v’ - ¢’(x), and the dual problem is
Max inf L(z,y), (DSOCP)
yeEQ T
where we have set Q := I;Q,,, +1. If problems (SOCP) and (DSOCP) have the
same finite value, then a pair (z,y) of primal and dual solution is characterized
by the optimality system
L(z,y) = min L(2',y);
_ A o ’ (3.1)
9 () € Qmyv1; ¥ € Qmy+1; Y og(r)=0,7=1,...,J

The above statement is of special interest when problem (SOCP) is convex, i.e.
(see e.g. [6, Def 2.163]) if f(x) is convex, and the mapping g(z) is convex with
respect to the set Q' := —Q. The latter means [6, Section 2.3.5] that

gtr + (1 —t)a") =g tg(x) + (1 — t)g(x’), Vaz,z' € R" andt e [0,1]. (3.2)

Since Q is in product form, this is equivalent to say that ¢/ (z) is convex w.r.t.
Qm,+1 for all j, that is, z — [|g’(z)|| — g{ (2) is convex for all j. This holds, for
instance, if g/ () is affine and g () is concave for all j.

The results of the previous sections have a natural extension to nonlinear
second order cone problems. Since, for smooth problems, Lagrange multipliers
are solutions of the dualization of the linearized problems we have that, for a
nonconvex problem, there is a natural notion of optimal partition of constraints
(B,N,R,T). For convex nonlinear second order cone problems, we can in the
same way define the optimal partition of constraints (B,N,R,T), defined as
follows. The set B is the union of j such that there exists x € S(SOCP)
satisfying g} (z) > g’(x), the set N is the union of j such that there exists
y € S(DSOCP) satisfying yg > ||#’||, the set R is the union of j, such that
there exists x € S(SOCP) and y € S(DSOCP) satisfying g’ (z) # 0 # y’, and
forall j € T, z € S(SOCP) and y € S(DSOCP), either ¢/ () or 4/ is equal to
0, or both are zero, and neither ¢7(z) or 3’ belong to the interior of Qm;+1-
Remark 3.1. For second order cone problems we can even partition T as Ty, Tp

and Tp, with Ty the set of j for which, if x € S(SOCP) and y € S(DSOCP),
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then g/ (z) = 0 = yJ, Tp is the set of j € T such that there exists x € S(SOCP)
with ||g? (z)|] > 0, and Tp is the set of j € T such that there exists y €
S(DSOCP) with ||y?|| > 0. It is easy to see that such a refined partition is
invariant under the reformulation as a semidefinite programming problem.

4 Nondegeneracy Condition and Reduction Approach

We recall the basic concepts of the reduction approach, see [6, Sec. 3.4.4].

Definition 4.1. Let X and Y be two finite dimensional spaces. Let K C X and
K CY be closed, convex sets. We say that the set K is reducible to Kats* € K
if there exist a meighborhood V' of s* and a smooth mapping ¢ : V — Y such
that: i) for alls € V, s € K iff ¢(s) € K, and it) Do(s*) : X = Y is onto. If the
set K is reducible to K at all s* € K, we just say that the set K s reducible
to K. If in addition ¢(s*) =0, and Kisa pointed cone, we say that K is cone
reducible.

For our purposes, a smooth mapping will be a twice continuously diffe-
rentiable (C?) mapping. For problems with constraints in product form, i.e.
K = K; x---x Ky, the reduction approach has the following obvious decompo-
sition property: cone reducibility holds whenever it holds for each set K, j =1
to J.

Lemma 4.2. The second-order cone Q.mt1 is cone reducible at every point
$ € Qm+1, in the following way: (i) If § =0, take K = Q41 and o(s) = s, (ii)
If 30 > ||3]|, take K = {0} and ¢(s) = 0, (iii) If 0 # 5 = ||5]|, take K = IR_
and ¢(s) = ||5|| — so-

Definition 4.3. Consider an arbitrary problem (P) Mingex{f(x); g(z) € K},
where f,g are smooth functions, X, Y and Z are finite dimensional spaces and
K C Y is a closed convex cone, reducible to a closed convex cone K C Z at
g(z*) € K by a mapping ¢. We say that x* is nondegenerate (with respect to
the reduction given by ¢) if the derivative DA(x*) of the function A := ¢og is
onto.

This notion, introduced in [5], generalizes to problems with general constraints
the corresponding concept used in linear or nonlinear programming. Note that
there are other definitions of nondegeneracy, e.g. [1, Def. 18] and references
therein. In the case of second order cones all these definitions are essentially
equivalent.

One of the main implication of nondegeneracy is stated in the next proposi-
tion, proved in [6, Prop. 4.75].
Proposition 4.4. Consider the problem (P) given in definition 4.3. Let x*
be a solution of (AP) and suppose that the set K is reducible to a pointed clo-

sed convex cone K at the point g(x*). If x* is nondegenerate then there exists
a unique Lagrange multiplier y* associated. Conversely, if the pair (z*,y*) is
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strictly complementarity, and y* is the unique Lagrange multiplier associated
with x*, then =* is nondegenerate.

Proposition 4.5. Let z* be a solution of the second-order problem (LSOCP)
with J = 1. Set s* = Az* — b and m = my. Then, x* is nondegenerate if and
only if one of the following conditions holds: a) s* € int Qt1, b) s* =0 and

s
the matriz A is onto, ¢) AT Ry,,(Az* — b) # 0, where R, = ((1) _0] )

Proof. The result is a direct consequence of lemma 4.2. |

We extend the above result to the case J > 1.

Proposition 4.6. Let x* be a solution of the second-order problem (LSOCP),
and set 87 = Alx* — b, Set I* = {1 < j < J;s/ € int Qmj_H}, Zr={1<
j<J;s? =0}, and B* = {1 < j < J;s) € 0Qm;+1 \{0}}, where 0 Q41 is
the boundary of Qm,+1. Then, * is nondegenerate if and only if the following
conditions holds: The matriz A whose rows are the union of those of A7, for
j € Z*, and the vectors rows (AJz* — bj)TijAj, for j € B*, is onto.

Proof. This is once again a consequence of lemma 4.2. Indeed, for A’(x) :=
(g7 (z)) = ¢(ATx—b7), where ¢ is the reduction map of lemma 4.2, its derivative
at x* is given by

DA (z*) = {0, el A, ifje 7"
— ()T (A" V) R A7, if j € B* .

So, the derivative DA(z*) of function A := (A';...; A7) is onto iff the matrix
A is onto. u

Remark 4.7. We recover the result of [1, Thm 20]. Obviously, if (A';---; A7)
is onto, then any feasible point is nondegenerate.

For problem (LSOCP), the Lagrange multipliers y* are the solutions of
(LSOCP*), so, if z* is nondegenerate then proposition 4.4 tells us that the
dual problem (LSOCP*) has a unique solution y*.On the other hand, we know
from proposition 2.11 that any Y* € S(LSDP*) is such that y* = Arw'Y™* €
S(LSOCP*). By proposition 2.12, if A7z* # b’ for all j, uniqueness of solution
of (LSOCP*) implies uniqueness of the solution of (LSDP*). Yet it may happen
that S(LSDP*) is not a singleton, even when z* is nondegenerate for problem
(LSOCP), as the next example shows.

Example 4.8. Consider just one block J = 1. Let A = I5 € IR®*® the identity
matriz, m = 2, b = 0 and ¢ = (1,0,0)7. It follows that x* = 0 is the unique
solution of (LSOCP) (and then of (LSDP)), which is actually nondegenerate,
andy* = (1,0,0)7 is the unique solution of (LSOCP*). Using proposition 2.11(i)
and (2.15), and since Az*—b = 0, we see that Y € S(LSDP*) iffY = 0, Tr(Y) =
1 and Yy = 0. For instance, y*(y*)" and Y* = 113 belong to S(LSDP*).
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5 Strongly Regular Solutions of SOCP
In this section we consider the problem (SOCP) defined in the introduction
as follows:

Min flx); ¢(x) =8 Z Qo1 0,7=1,...,J, (SOCP)

zelR™,sicR™it!

where f: IR" — IR and ¢/ : R" — IR™ ™! are smooth functions (at least C?).
The first-order optimality system is

J

D,L(xz*y) = Df(z*) = > Dg’(z*) "¢/ =0, (5.1a)
j=1

F@) =820, 1 0, ¥ 2Q, 1 0, oy =0, j=1,....0,  (5.1b)

where L : R™ x R™™' — IR is the Lagrangian function of problem (SOCP)
J . .
Ly) =)= S g (o). (5.2)
j=1

If (z*,y*) satisfies (5.1), then z* will be called a critical or stationary point of
(SOCP). Let us recall the definition of strongly regular solutions [13]:
Definition 5.1. We say that (z*,y*) is a strongly regular solution of KKT-
conditions (5.1) if there exists a neighborhood V' of (x*,y*) such that for every
§ := (01,02) € R™ x HszllRmf‘H close enough to 0, the “linearized” system:

D2, L(z*y*)(z — 2*) — Dg(«*) " (y — y*) = &1, (5.3a)
g(@*) oy + Dg(z")(z —x") oy =20y, (5.3b)
g(z") + Dg(z*)(x — 2*) = 02 =0 0,y =0 0, (5.3¢)

has a unique solution (x,y) = (x*(0),y*(8)) in V', which is a Lipschitz continuous
map of §.

It can be shown that the strong regularity condition implies Robinson’s
constraint qualification condition:

There exists h* € IR" such that g(x*) + Dg(x™)h" € int Q, (5.4)

which coincides with the Slater (or primal strict feasibility) condition for linear
problem (LSOCP). This condition is discussed in [6, Section 2.3.4].

In this section we characterize the strong regularity in the context of problem
(SOCP) by using second order optimality conditions. This characterization is
a consequence of a well developed theory in a general conic optimization fra-
mework given by problem (P) stated in definition 4.3. Note that the strong
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regularity condition (definition 5.1) can be written in this general framework as

DgzL(x*,y*)(m—x*)—Dg(a:*)T(y—y*):61, (553‘)
(9(z7) + Dg(z")(z — 27) = 62) -y = 0, (5.5b)
g(x*)+ Dg(a™)(x —a*) —d € K,y € K. (5.5¢)

In order to establish our main result we will recall some key notions and theo-
rems. For instance, a useful definition involved in this section is the following
uniform second order growth condition [12]. For this, we define a family of per-
turbation of (P), denoted (P,,), as follows

Min{f(z,u); g(z,u) € K}, (5.6)

where X, Y and U are finite dimensional spaces, u € U (perturbation space)
is the perturbation parameter and the functions f(z,u) : X x U — IR and
g(z,u) : X x U — Y are at least twice continuously differentiable and satisfy
f(-,0) == f(-) as well as g(-,0) := g(+).

Definition 5.2. Let 2* be a stationary (or critical) point of problem (P). It is
said that the uniform second order growth condition holds at x* if there exist
a > 0 and a neighborhood N of x* such that for any u € U (perturbation
space) close enough to 0 and any stationary (or critical) point x*(u) € N of the
perturbed problem (P,), we have that

flzu) > fla*(u)u) +allz —z*(w)|?, Vee N, g(zu) € K. (5.7)

We say that the second order growth condition holds at x* if (5.7) holds for
problem (P), that is, there exist « > 0 and a neighborhood N of x* such that
condition (5.7) is satisfied at u =10 and x*(0) = x*.

We need the next result, obtained in [6, Th. 5.24], that states a first charac-
terization which is valid in a general context.
Theorem 5.3. Let x* be a local solution of problem (P) and y* its corresponding
Lagrange multiplier. Suppose that K is reducible to a pointed closed convex cone
K C Z at the point g(z*). Then (z*,y*) is a strongly regular solution of the
Karush-Kuhn-Tucker conditions if and only if x* is nondegenerate (definition
4.8) and the uniform second order growth condition holds at z*.

Theorem 5.3 means that we can completely characterize the strong regula-
rity condition by giving sufficient and necessary conditions to obtain the uniform
second order growth condition, under a nondegeneracy hypothesis. Unfortuna-
tely, such a characterization (in terms of derivatives of data at the nominal
point) is known only in very specific examples as for nonlinear programming
problems with C? data, see e.g. Bonnans and Sulem [7] and Dontchev and
Rockafellar [9] and their references. For conic optimization problems, such a
characterization is not known. In fact the (non uniform) second order growth
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condition itself can be characterized essentially in two situations. The first is
when the cone is second order regular, see Bonnans, Cominetti and Shapiro
[2], and the second is when reduction to a pointed cone holds. We will apply
this second approach later in this section. Let us denote by A(z*) the set of
Lagrange multiplier associated with x* for problem (P), i.e., y* € A(z*) iff
D, L(z*y*) =0 and —y* € Nk (g(z*)) (the normal cone to K at g(x*)), where
L(z,y) := f(z) — y - g(x) is the Lagrangian function of problem (P). We define
the tangent cone to the set K C Y at the point y € K as

Tr(s):={deY : s+td+o(t) € K,Vt >0}, (5.8)
and the critical directions cone at x* for problem (P) as follows
C(a*) = Df(z*)= N Dg(a*) " Tk (g(z")) (5.9)
or equivalently, if A(z*) is not empty, say contains some y*:
C(z*) := {h € X : Dg(z*)h € Tk (g(z")) N (y*)"}.
Lemma 5.4. Consider the second order cone @ := Q41 and let s € Q. Then,

Rm«#l’ ENSS intQ)
To(s) =4 Q, ; =D 10
de R™ . d-5—sody <0, s € 0Q \ {0}.

Proof. The cases when s € int ) and s = 0 follow directly from the definition
of T(s) and the fact that Q is a cone. Suppose then that s € 9Q \ {0}, that is,
so = [|5]| # 0.

Since the set @ can be written in the form Q = {s € R™"" : ¢(s) < 0},
where ¢(s) := ||35]| — so is a convex differentiable function at all s such that
5#0, by [6, Prop. 2.61] the tangent cone T (s) is given by

To(s) = {d € R™" . ¢/(s;d) < 0}.

Therefore, we conclude by noting that the directional derivative ¢’(s;d) when
5 # 01is equal to ¢/(s;d) = D¢(s)-d = 5-d/| 5| — do, and using 0 # so = ||5]|. B
Corollary 5.5. Let z* be a stationary (or critical) point of problem (SOCP) and
y € A(z*). Given h € IR", denote d’(h) := Dg?(z*)h, as well as s’ = g’ (x*).
Then, the critical directions cone C(x*) is given by

heR" : forallj=1,...,J,

& (h) € TQij(SJ)7 Yyl =0,

C(z*) = dJ:(h) =0, ‘ y]: € int Qpm; 41, ‘
d](h) E‘ZR (y(j)a_gj)v yJ' elan]“‘l’l\{O}?sJ :07
d?(h) -y’ =0, Y, 87 € 0Qm,+1 \ {0}

(5.11)
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Proof. Since the constraints are in product form, the critical cone has the
following decomposition property:

O(z*) = {h € R"; di(h) € Ty, ,.(s), d(h) -y =0,j=1,... ,J} . (5.12)

It suffices to establish the equivalence between the relations in (5.11) and (5.12)
concerning a given j. The case when y/ = 0 is obvious. If 3/ € int Qm;+1,
then s = 0 (by (5.1b)), and hence, TQij(sj) = Qum,+1, concluding that

TQmJH(Sj) N(y)* = Qm;+1N (y7)+ = {0} and the result follows.

Suppose now that 3/ € 0Qm,+1 \ {0}. If s/ = 0 then, Tg,, ,,(s7) = Qum,+1
again. Using (2.2), we obtain after elementary computations that Q41N (y7)*
is the set of &’ satisfying & (h) = ||d? (h)|| as well as d?(h) € IR_g’. If s7 # 0, we
obtain by similar computations that Tg,, ., (s')N(y’ )1 is the set of &/ satisfying

di(h) -5 — shd?(h) = 0. The conclusion follows. |

For the second-order analysis we need the notion of (outer) second order
tangent set at s € K in the direction d € Tk (s), defined as follows

1
T%(s,d) ;== {w e Y; I, | 0s.t. s+t d+ 5zt,%w +o(t?) € K}. (5.13)

Let us characterize this set when K = Q.
Lemma 5.6. Let s € Q = Qu1, and d € To(s). Then,

R™, d € int Tg(s),
T3 (s,d) = To(d), ) s=0,
{we R™™: w-5—woso < di — ||d||?}, otherwise.
(5.14)

Note that the last case in (5.14) is when s € 0Q \ {0} and d € 9T(s), the
latter being, by lemma 5.4, equivalent to d - 5 — sgdy = 0.

Proof. The first two cases follow directly from the definitions of second order
tangent set, and the fact that @ is a cone. Suppose now that s € 9Q \ {0} and
d € OTg(s). As in lemma 5.4, since Q has the form Q = {s € R™"" : ¢(s) < 0},
where ¢(s) := ||5]| — so, by [6, Prop. 3.30], the set T3 (s,d) is given by

T3(sd) = {d € R™ : ¢/ (s;dw) < 0},
where

1 N +td + L2 - —t¢/(s;d
@"(s;dw) = 1561 (s 2 wiﬁ (s) (s;d)

is the (parabolic) second order directional derivative of ¢. But ¢ is twice diffe-
rentiable at all s such that § # 0 which implies that (e.g. [6, Eq. 2.81])
= a2z (d.s2
o (sidaw) = Dols)u + D*0(s)(dd) = it —wa+ -~ (2R (519
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and the desired result follows using so = ||3]| and doso = d - 5 (the latter being
consequence of lemma 5.4 and the fact that d € 0Tg(s)). [ |

Roughly speaking, the characterization of the second order growth condition
(definition 5.2), established in [2, Th. 3.2], assumes a notion of set regularity on
K, called second order regularity, that holds under the hypothesis that the set
K is reducible to a cone K (e.g. [6, Prop.3.136]). The result presented below is
a simplified version of this characterization. (cf. [6, Th. 3.137].)

Theorem 5.7. Let x* be a feasible point of problem (P) satisfying Robinson’s
constraint qualification condition

0 € int{ g(z*) + Dg(2")X — K} (5.16)

Suppose that the set K is reducible to a closed convexr cone K at the point
g(z*). Then, the second order growth condition holds at x=* iff the next second
order condition holds:

sup DLy )(hh) — o(—ysT2) >0, Yhe )\ {0},  (517)
y*€A(z*)

where o(-; T?) denotes the support function of the set T2 := T%(g(z*),Dg(z*)h).
In the case of problem (SOCP) (i.e., K = Q), the set
T2 :=Tg(9(x"),Dg(a")h)

can be written in the product form 7% = 7;? x ... x T} such that each 77 is
given by formula (5.14) where Q = Qm,+1, s = s*/ and d = d’(h). We have
set s* 1= g(z*) and d(h) := Dg(z*)h. Since —y* € Ng(s*) Ndt, we always
have that y* - w > 0, for all w € T2. So, formula (5.14) implies that 0 € 72
and hence o(—y*;7?) = 0, except in the case when s*7 € 9Qm, 11 \ {0} and
d’(h) € 8TQmj+1(s*j) \ {0}, for some index j € {1,...,J}. Dealing with the
latter case means, thanks to (5.14), to maximize —(yowo + 4 - W) over the set of
w satisfying @ - 5 — wosg < d2 — ||d||?, where we have considered the notation
y = y*, and s and d given above, with j given by the case. Since § = —(yo/50)3,
we have that —(yowo + 7 - @) = (yo/S0)(W - § — wpsp). It follows that

o=y T?) = Y (yo' /53" )(d (W) — [l (W)II?), (5.18)
JjeET
where J is the set of index j s.t. s*7 € OQpm, 41\ {0} and &7 (h) € 0T1Q,, 11 (s*7)\
{0}. On the other hand, we know that Q is reducible, (cf. lemma 4.2), so we
can apply theorem 5.7 to problem (SOCP) and state the following theorem.

Theorem 5.8. Let x* be a feasible point of the problem (SOCP) satisfying Ro-
binson’s constraint qualification condition (5.4). Then, the second order growth
condition holds at x* iff the following second order condition holds:

sup D2 L(z*y)(h,h) +h  H(z*y)h >0, Vhe C(z*)\ {0}, (5.19)
yEA(z*)
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where the critical directions cone C(x*) is established in (5.11), and the n X n
matriz H(x*,y) is defined by H(z*y) = 23'121 HI(z*,y7), where for s7 = g7 (x*),
j=1toJ,

G(ox 0 yg G\ T G (% yg T (1 0" G (%
0 0 m;
(5.20)

if 87 € 0Qm,+1 \ {0}, and H7 (z*,y7) := 0 otherwise.

In the next theorem we give a characterization of the strong regularity condi-
tion.
Theorem 5.9. Let x* be a local solution of problem (SOCP) and y* its cor-
responding Lagrange multiplier. Then, (x*,y*) is a strongly regular solution of
optimality conditions (5.1) iff * is nondegenerate (definition 4.3) and the next
second order condition holds at x*:

Qo(h) := D% L(2z*,y*)(h,h)+h"H(z*y*)h >0, Vh € Sp(C(z*))\{0}. (5.21)

Proof. a) We establish some preliminary results. By theorem 5.3 we know
that (x*,y*) is a strongly regular solution of (5.1) iff z* is nondegenerate and
the uniform growth condition holds at z* for problem (SOCP). So, under the
nondegeneracy hypothesis, we just need to prove that second order condition
(5.21) is equivalent to the uniform growth condition. It is not difficult to check
that, under this hypothesis, the linear space generated by the critical cone has
the following expression:

heR" : forall j=1,....,J,

dj(h) =0, yj € int Qmj-i-lv

dj(h> € IR(y(JJa - :Uj)a yj € anjJrl \ {0}’5j = 07
& (h) -y’ =0, Y, 87 € 0Qm,+1\ {0},

Sp(C(z")) = (5.22)

where throughout this proof we will denote by y? the j-th vector block of y*.
(In particular, there is no condition on d’(h) if y7 = 0.)

b) Let us prove that the uniform growth condition implies (5.21). Consider the
vector space E defined by

he R" : forall j =1,...,J,
E:=q d'(h)=0, Yy € int Qum, 41, (5.23)
d’ (h) ' yJ = 07 yj € an_7’+1 \ {0}

(Again, there is no restriction of d’(h) if 37 = 0.) We have that Sp(C(z*)) C E.
The key idea is to consider a perturbed version of problem (SOCP) in such a
way that z* is still a local solution with the same Lagrange multiplier y*, but
with a bigger critical cone, equal to F. This perturbed problem is of the form

1\6/[%}1 f(z); gj(a:,u) = gj(a:) + ud? iQij 0, 7=1,...,J, (SOCP,,)
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where for all j, e denotes the first element of the natural basis of IR™ ™ u > 0
is the perturbation parameter, and

' el , if 47 =0,
=9 (g, — 7)) if 87 =g/ (a*) = 0,97 € IQm,41\ {0}, (5.24)
0 otherwise.

This means that, if y = 0, the constraint ¢/(z) =q,, ,, 0 is made inactive (in a
neighborhood of 2*), and if s/ = 0 and 3/ € OQm,;+1 \ {0}, then the constraint
g’ (z) ZQum, 1 018 still active, but at a point different from 0 where the set of
tangent directions to @Q,,,+1 is a half space. The point (z*,y*) is still solution of
the optimality system of (SOCP,). It is easily seen that the expression of the
critical cone for problem (SOCP,,) at the point (z*,y*) is given by (5.23).

Define , )
I'={1<j<J; ¢(a") =0,y € 0Qm, 41\ {0}}.

Let H(z*,y7 ,u) denote the matrices in the expression of second order conditions,
for the perturbed problem. We have that H(z*,y7 u) = H(z*,y?) for all j & I,
whereas for j € I we obtain

_ _ 1 .. .
H (JU*,yJ,U) = EHJ (x*ay])a
Gk ] j %\ T 1 OT j (o
where H’(z*,y’) := —Dg’ (z™) 0 I Dy’ (z*).
Set
Quh) =D TR @y )h =) ([l (B)]* = (@ (h)o)?) (5.26)
jel jel
Note that, if h € E, then since d/(h) -4/ = 0 and 3 = [|77|:
| (h)o| = |d” (h) - |/ < |l (M), (5.27)
with equality iff d7(h) € IR(y, — %’). Combining with (5.26), we obtain that,
for all h € E, Q1(h) > 0, and that Q1 (h) = 0 iff h € Sp(C(z*)).

We see that the uniform second-order growth for the perturbed problem
implies

Qo(h) + %Ql(h) >0 forall heE\{0} (5.28)

for u small enough. This implies that Qg(h) > 0, for all h € E such that
Q1(h) = 0. Therefore, the uniform second-order growth condition implies (5.21).
¢) Conversely, assume that the second order condition (5.21) holds. If the uni-
form second order growth condition at x* is not satisfied, then there exists a
family of perturbed functions f(x,u) and g(x,u) such that, for some sequences
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u, — 0, there exist (z,,y,) solution of the optimality system (5.1) of the per-
turbed problem satisfying z,, — z*, h, — 0 in IR", with h,, # 0, such that
Zp + hy, is a feasible point of (P, ) (cf. (5.6)) (that is, g(xn + hn,un) € Q) and
they also satisfy that

J(@n + hpyun) < fon,u,) + 0(th||2)' (5.29)

The nondegeneracy condition being stable under small perturbations, for large
enough n, there exists a unique Lagrange multiplier ¥, associated with each
stationary (or critical primal) point z, of (P,, ), and since z, — x*, we have
that y, — y*.

Extracting if necessary a subsequence, we may assume that h,, /||h,|| converges
to some h* # 0. Let us check that h* € Sp(C(2)). Since ¢/ (2, +hn,tn) € Qm;+1
we have that

7 (0 + hnstn) = ¢ (Tn,un) + Dig” (Tn,tn) by + o[ hn) Z Q1 00 (5.30)
Since ¢7 (w,,,un) and (y,)’ are orthogonal this implies
(yn)j ’ ngj(xmun)hn + o(|[hnl]) = 0. (5.31)

Dividing by ||hy, ||, setting @7 (h*) := Dg? (z*)h*, and passing to the limit, obtain
yJ - Dg?(z*)h* > 0 for all j. Passing to the limit in (5.29) and combining with
(5.1a), we obtain 0 > Vf(z*) - h* =y - Dg(ax*)h* = Z}]=1 y? - Dg? (z*)h*. We
have proved that

)y =0, j=1,...,J. (5.32)

Consider the case when 3/ € int Qm,;+1- Since y) — y?, we have that ¢/ (x,,,u,) =
0 for large enough n. Let € > 0 be such that y/ + 2eB C Qy;+1. Then for all
unit vector z, yj, +¢ez € (Qm,;+1 for large enough n. Computing the scalar pro-
duct of (5.30) by y? + £z, and passing to the limit as was done before, obtain
(y? +e2) - Dg’ (x*)h* > 0. Using (5.32), since this is true for any unit norm z,
we get

& (h*) =0, forall j; ¥/ € int Q1. (5.33)

Now in the case when y/ € 9Qum,+1 \ {0} and ¢’(z*) = 0, we have that
G (Tn,un) € O0Qm, 11 for all n large enough (otherwise we obtain from com-
plementarity condition that yJ = 0 for some sequence y} — y7 # 0). Let us
set g) = ¢’ (xp,upn) and dJ, := D, g% (2, upn)hy. Of course d, /||hy|| — d7 (h*) :=
Dg’ (z*)h*. By the very definition of Qm,+1, condition (5.30) can be equivalently
written as follows

(920 + (d)o = 1|35 + || + o[l nl)-
Since gn, € 0Qm,+1, that is (¢)o = |32 ||, we obtain that
(o = llgs, + | = lghll + o(llrall) = ]| + o([|hnl])-
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Hence, by dividing by ||h,|| and tending n — +o0o, we deduce that d’(h*) €
Qm+1 =10, 4, (g7 (z*)). This together with relations (5.32)-(5.33) proves that
h* € Sp(C(x*)).

We now use the same reduction argument as in lemma 4.2. It suffices for
indexes in

I={1<j<J: ga*)#0#y"}. (5.34)
to change the formulation of corresponding constraint of the perturbed problem,
that is, ¢’ (z,u) =q,, ., 0, into ¢(g’(z,u)) < 0, where ¢(s) := ||5]| — so. The
corresponding component of Lagrange multiplier is yg (see the discussion of
relation between Lagrange multipliers before and after reduction in [6, Section
3.4.4], especially equation (3.267)). We have that, for each feasible point of the
perturbed problem (P, ), and denoting by y,, the Lagrange multiplier associated
with z,,

D () g (@) + > (yn)hblg’ (z,u)) > 0. (5.35)
Je1 Jjel
Writing this inequality at point (2, + h,,u,) and noticing that equality holds
at (zp,uy) in view of the complementarity conditions, obtain

J¢I
+ WA (20 + hnstn) = &g (n,un)) = 0. (5-36)

jel

Adding it to (5.29), in order to get a difference of Lagrangian functions, and
after a second-order expansion (using the fact that the derivative of Lagrangian
function w.r.t. x, at (z,,u,), is zero), it follows that

D?cmf(xnaun)(hmhn) - Z(yn)J : Dixgj (xnvun)(hmhn)
: i . . (5.37)
=Y W D2, (g (i sun)) (@, (hn) ) () < || Fn ),

jel

where dJ (h,) := D¢’ (2p,un)h,. Using the expression of the expansion of ¢,
computed in (5.15), and passing to the limit in n, obtain Q¢(h*) < 0. Since
h* € Sp(C(x*)) \ {0}, this contradicts (5.21). The conclusion follows. |
Remark 5.10. A related result is [6, Thm 5.25], where it is proved that a
necessary condition for uniform quadratic growth, assuming uniqueness of the
Lagrange multiplier, is that the Hessian of Lagrangian function is positive defi-
nite over the space spanned by radial critical directions. By contrast, our result
s a characterization involving additional terms in the quadratic form, and space
spanned by all critical directions. There is also a second part in [6, Thm 5.25]
that involves the space spanned by all critical directions, but under a certain
“strong extended polyhedricity condition” that is not satisfied here.
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SEMIDEFINITE PROGRAMMING

A note on Strong Regularity
for Semidefinite Programming

J. Frédéric Bonnans! & Héctor Ramirez C.2

Abstract. In this work, we consider a semidefinite programming problem
that minimizes a nonlinear objective function subject to a nonlinear matrix
inequality constraint. We assume that these functions are at least twice conti-
nuously differentiable.

We state some necessary or sufficient conditions for strong regularity, in the
sense of Robinson, in terms of nonnegativity or positivity of some quadratic
forms on some subspaces. Although this improves the known results, there is
still a gap between the necessary and sufficient conditions.

1 Introduction

We consider the following problem

min {f(z); G(z) = 0}, (P)
xER7l
where f : IR" — IR and G : R" — S™ are C?-functions, S™ denotes the
linear space of m X m symmetric matrices equipped with the inner product
A-B :=trace(AB) = Zzlj:l A;;B;; for all matrices A = (A;;), B = (B;;) € S™,
and =< denotes the negative semidefinite order, that is, A < B iff A — B is a
negative semidefinite matrix. The order relations < , > and > are defined

similarly.

Throughout this article we denote by (Z,Y) € IR" x S™ a solution of the
following Karush-Kuhn-Tucker (KKT) conditions:

V.L(zY)=Vf(z) + DG(z)*Y =0, (1.1a)
G(z)Y =0, (1.1b)
G(z) 2 0,Y =0, (1.1c)

where L : IR" x S™ — IR is the Lagrangian function of problem (P)
L(zY) = f(z)+Y - G(2). (1.2)

1. Projet Sydoco, INRIA Rocquencourt, B.P. 105, Le Chesnay, France, e-mail: Frede-
ric.Bonnans@inria.fr.

2. Department of Mathematical Engineering, Universidad de Chile & Centre for Mathema-
tical Modelling, UMR 2071, Universidad de Chile-CNRS. Casilla 170-3 Santiago 3, Chile &
INRIA Rocquencourt, e-mail : hramirez@dim.uchile.cl.
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We say that Y is a Lagrange multiplier associated with Z. Note that, for a
linear operator Ay := > " y;A; with A; € S™, as DG(z), we have for its
adjoint operator A* the formula:

AZ=(AZ,... Ay 2)T, NZeS™ (1.3)

A pair (2,Y) satisfying (1.1) will be also called critical pair or KKT-point of
problem (P), and the set of Lagrange multipliers associated with z will be
denoted by A(Z). Finally, Z is called a critical point or critical solution of (P) if

A(z) #0.

In this work, we investigate the behavior of the pair (z,Y’) when a perturba-
tion u € IR" is applied to problem (P), obtaining then the perturbed problem

Jmin {f(zu); G(z,u) <0}, (Pu)

where f: R" x R* — IR and G : R" x IR¥ — S™ are C%-functions satisfying
that f(-,0) := f(-) and G(-,0) := G(-).

We recall that Robinson’s constraint qualification condition holds at a fea-
sible point Z of (P) if

There exists h € IR" such that G(z) + DG(z)h < 0. (1.4)

Since Z is assumed to be a local solution of (P), condition (1.4) is equivalent
to say that the set of Lagrange multipliers A(Z) is nonempty and compact.
Obviously, condition (1.4) is stable under small perturbations of problem (P),
and hence, (1.4) also implies the existence of a Lagrange multiplier (and such
multipliers are uniformly bounded) associated with a solution Z(u) of (P,,), close
enough to 7, i.e., for all u close enough to 0, there exists a pair (z(u),Y (u))
satisfying the KKT-conditions of problem (P,,):

Vo L(z(u),Y (u),u) = Vi f(Z(u),u) + D.G(z(u),u)*Y (u) = 0, (1.5a)
G(z(u),u)Y (u) =0, (1.5b)
G(z(u),u) < 0,Y (u) = 0, (1.5¢)

where the Lagrangian function L : IR" x S™ x IR* — IR of the perturbed problem
(Py) is defined as L(z,Y,u) := f(z,u) + Y - G(z,u).

The outline of this paper is as follows. In Section 2 we present a review of
optimality conditions for our semidefinite problem and introduce the hypotheses
that will be used in the sequel. Section 3 deals with the main subject of this
paper: the strong regularity condition (in the sense of Robinson). Here we recall
some known results and establish a necessary condition to obtain the strong
regularity condition in the SDP case. Finally in Section 4, a sufficient condition
is shown.
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2 Review of optimality conditions

2.1 General properties of critical points

In this subsection we state some properties that are valid without any hy-
pothesis on a solution (Z,Y") of the KKT system.

With G(Z) and a Lagrange multiplier Y is associated a certain decomposition
of IR" that we present now. Let r be the rank of G(Z), and denote by E €
R™*™™" a matrix whose columns are an orthonormal basis of Ker G(Z), i.e.,
ETE = I,,_, and G(Z)E = 0. Define also FE € IR™" as the matrix whose
columns are an orthonormal basis of Im G(Z). Such a matrix is characterized
by the relations ETE =1, and ETE = 0.

Since Y and —G(Z) are positive semidefinite, the complementarity relation
Y -G(Z) = 0 is equivalent to ImY C (Im G(Z))* = Ker G(z). Therefore, we can
write
Y =EYLE' =EW¢W'ET, (2.1)
where Yi; := ETYE is an (m —r) x (m — r) matrix, 7 := dim(KerY), and
the matrix W € R 7)X("=7) gatisfies that WTW = I,,_» and that ¢ =
W Y11 W is positive definite.

~ We also define W e RmmxF-m) by the relations WTW = I, and
WTW =0.

We next need some basic concepts of convex analysis. The inner tangent
cone, to the set K C Y at the point A € K, is defined as

Tr(A):={M €Y : dist(A+tM,K) = o(t), ¥Vt > 0}. (2.2)
When K = S™ we have the following characterization
Tsm(A)={M € 8™ : v' Mv < 0,Vv € Ker A}.
Therefore, Tsm (G(Z)) = {M € S™ : ETME =< 0}.
The critical cone is defined to be
CO(z) :={h € R" : DG(Z)h € Tsn (G (7)), Vf(z) h = 0}. (2.3)
Using the KKT conditions and (2.1), we have that, if h is critical,
0=-Vf(@) "h=DGE)h-Y =¢-W'E"DG(Z)hEW. (2.4)
Since ¢ = 0 and W' ETDG(z)hEW =<0, (2.4) is equivalent to
WTETDG(Z)hEW = 0. (2.5)
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It follows that
C(z)={h€ R" : E"DG(z)hE < 0; W' E"DG(z)hEW = 0}. (2.6)

A negative semidefinite matrix with a null diagonal block is characterized by
null corresponding non diagonal blocks and the other diagonal block negative
semidefinite. Therefore, using the columns of W and W as a base, we obtain an
equivalent expression of the critical cone:

C(z)={h e R" : E"DG(Z)hEW =0; W'E"DG(Z)hEW <0}.  (2.7)

Given two points A, B of a vector space Y, let [4,B] = {aA+(1—a)B;a € [0,1]}
denote the segment from A to B. The radial cone to a set K C Y at the point
A € K is defined by

Rg(A):={MeY :3t>0,[A,A+tM] € K}. (2.8)
It is known [4, Prop. 5.68] that H € Tsm (G(Z)) belongs to Rgm (G(7)) iff
FTETHG'HEF =0, (2.9)

where F € R™** is a matrix whose columns are an orthonormal basis
of Ker ETHE, and M denotes the Moore-Penrose inverse of the matrix M,
defined by M1 := Z;:1 A;lmjm;r, where \; are the nonzero eigenvalues of M
and m; the associated orthonormal eigenvectors.

Define the radial critical cone [4, Def. 3.52] as
Cr(z):={h € R" : DG(Z)h € Rg=(G(Z)); Vf(Z) h=0}. (2.10)

Radial critical directions satisfy (2.7) as well as F}| ET H,G'Hy, EF}, = 0, where
now Hyp = DG(Z)h and Fj, is a matrix whose columns are an orthonormal basis
of Ker ETDG(Z)hE. Since ET is a basis of the range space of G(z), (2.9) is
equivalent to BT H, EF), = 0. Since Im F;, D Im W by complementarity, Cr(z)
is the set of directions h € IR™ satisfying

H,EW =0; E'H,EF, =0; W' ETH,EW < 0. (2.11)
Using E"H, EF}, = 0, we obtain finally
Cr(z)={h e R" : H,EF, =0; W' ETH,EW < 0}. (2.12)

Remark 2.1. That Cr(Z) is convex is not immediate from expression (2.12).
However, we have that, if h; € Cg(Z) for i = 1,2, and a € (0,1), then h =
ahy + (1 —a)hg is such that Im(Fy) = Im(Fy, ) NIm(F}p,) (this is in fact true for
all critical directions defined above and follows from the first relation in (2.6)).
Therefore HoEF, = 0, whereas the second relation in the r.h.s. of (2.12) is
clearly satisfied.
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We will need in the sequel expressions of the spaces spanned by the criti-
cal cone and the radial critical cone. Therefore we prove the following general
lemma.

Lemma 2.2. Let C be the cone defined by
C:={heR": A(h) =0; B(h) <0}, (2.13)

where A and B are finite dimensional linear mappings, with B having its range
in a space of symmetric matrices. Let h € 1i(C) (relative interior of C), and D
matriz whose columns are an orthonormal basis of the kernel of B(h). Then

Sp(C) = {h € R™ : A(h)=0; D"B(h) = 0}, (2.14)

where Sp(C) := R4 (C — C) is the linear space generated by C.

Proof. Let h € C. Since h € 1i(C), there exists € > 0 such that h+eh € C.
In particular, B(h) < eB(h) < 0. This implies Ker B(h) C Ker B(h), and hence,
DTB(h) = 0 for all h € C, implying that Sp(C) is included in the r.h.s. of (2.14).

Conversely, let h belong to the r.h.s. of (2.14). We want to show that h €

Sp(C). Since h = e~Y(h — (h — ¢h)), it is sufficient to check that h —eh € C
for small enough €. Let D be a matrix whose columns are an orthonormal
basis of the range of B(h). Then DTB(h)D is negative definite, and hence,
DTB(R)D = eDTB(h)D < 0 for small enough e. Since DTB(h) = 0, this
implies B(h) < eB(h), hence h — eh € C. The conclusion follows. |

This lemma allows to compute the space spanned by the critical cone.

Corollary 2.3. The existence of a critical direction h € C(%) such that
WTETDG(Z)hEW < 0 characterizes the equality

Sp(C(z)) = {h € R" : ETDG(z)hEW = 0}. (2.15)
We cannot apply lemma 2.2 for the computation of the space spanned by

the radial critical cone, since (2.12) is not of the form (2.13). However, we can
get the following result.

Lemma 2.4. (i)Let h € ri(Cr(z)), H := DG(Z)h, and F be the matriz whose
columns are an orthonormal basis of Ker ETHE. Then

Sp(Cr(Z)) C {h € R" : H,EF = 0}. (2.16)
(ii) Conversely, if in addition WT ETHEW <0, (i.e., if F = W), then

Sp(Cr(z)) = {h € R" : H,EW = 0}. (2.17)
Proof. Let h € Cr(%). Since h — eh € Cg(7) for some £ > 0, we have that

WTETHEW < sWTETHEW =< 0; since HEW = eHEW = 0, we have in
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fact ETHE < eETHE < 0. This implies Im /' C Im F. Using (2.12), we deduce
that Sp(Cr(z)) belongs to the r.h.s. of (2.16).

Conversely, let h belong to the r.h.s. of (2.16). Since h = ¢~ *((h +€h) — h),
it suffices to prove that h. := h + ch € Cgr(%) for small enough ¢. Set H. :=
DG(%)he; the associated null space Im F. is equal to Im F' = Im W. Obviously
H.EW = 0. Since E" HE is negative definite on the orthogonal of Im F', which
is the space spanned by the columns of W, we have that WTETH.EW < 0 for
small enough €. The conclusion follows. |

Let us define now another set of directions related to a particular Lagrange
multiplier Y € A(Z), defined as follows

C(z,Y):={h e R" : [PrDG(z)h]Y =0}, (2.18)

where Pr is the matrix representation of the orthogonal projection over Im Y C
IR™. The cone C(z,Y) defined in (2.18) can be equivalently written as

C(z,Y):={h e R":Tm Y C Ker[Pr DG(Z)h]}.
We set C(z) := C(z,Y) if Y is unique.
We note that Pr = EWW T ET, so, if h € C(z), then
[Pr DG(2)h]Y = [EWW T ET DG (z)h]Y
= [EWW'TE"DG(z)h|EWeW TET = 0.

Multiplying the last equality at the left side by WTET and at the right side by
EW ¢!, we obtain the characterization

C(z) ={h e R": W' E"DG(z)hEW = 0}. (2.19)
Comparing with (2.7) we see that
C(z) C C(z). (2.20)
Note that we also have

C(z) c C(z) :={h € R": E' DG(z)hEW = 0}. (2.21)

2.2 Specific hypotheses

In this article we will sometimes use the following assumptions:

A1l Strict Complementarity Condition We say that the strict comple-
mentarity condition holds at T if there exists a Lagrange multiplier Y associated
with Z satisfying that

G(z)—Y <0, (2.22)

103



CHAPITRE IV. A NOTE ON STRONG REGULARITY FOR
SEMIDEFINITE PROGRAMMING

or equivalently (when Ker G(z) # {0})
The matrix F'Y E is nonsingular. (2.23)

There are some other equivalent ways to define the strict complementarity condi-
tion in our context but conditions (2.22) and (2.23) are the most useful.

In that case we can take W = I[,,_, and W = 0. Denote the linear space
generated by the set S by Sp(S) := R, (S —S). It follows from (2.7) and (2.11)
that, under the strict complementarity hypothesis,

Sp(C(z))=C(z) = {heR": E'DG(z)hE =0}, (2.24)
Sp(Cr(7)) = Cr(z) = {h€R"™: DG(Z)hE = 0}. (2.25)

A2 Nondegeneracy (or Transversality) Condition We say that the
point Z, feasible for problem (P) of section 1, is nondegenerate if the mapping
Yz : IR — S™~" defined by

Yz(h) := ETDG(z)hE (2.26)
is onto. This notion was introduced by Shapiro and Fan in [13, Sec. 2].

The KKT system implies
—Vf(@)"h=Y-DG(Z)h =Yy, - ETDG(Z)hE, for all h € IR".

The tranversality condition implies uniqueness of the solution Y7 of this infinite
system of equations. Therefore, the tranversality condition implies uniqueness
of the Lagrange multiplier.

Obviously )
Kery; C C(z) € C(z.Y), (2.27)

with equality when the strict complementarity condition (2.22) holds (see e.g.
[8, Prop. 2]).

Note that Robinson’s constraint qualification condition (1.4) can be written
as
There exists h € IR"™ such that z(h) < 0.

Thus, nondegeneracy (or transversality) condition is stronger than Robinson’s
constraint qualification condition. Hence, if Z is nondegenerate then there exists
a (necessarily unique) Lagrange multiplier Moreover, under the strict com-
plementarity condition (2.22), the existence and uniqueness of the Lagrange
multiplier Y is equivalent to the nondegeneracy condition [4, Prop. 4.75]. For
more details about the nondegeneracy condition in the semidefinite program-
ming context see e.g. [4, 21], and in a general cone optimization framework see

2].
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It is known that assumptions A1l and A2 are stable under small perturbations
of problem (P), as shown by the lemma below:

Lemma 2.5. Let (z,Y) be a critical or KKT-point of problem (P), and
(Z(u), Y (u)), solution of (1.5), converge to (Z,Y) asu | 0.

i) We can construct a matriz B, € R™* ™" whose columns are an ortho-
normal basis of the space spanned by the eigenvectors associated with the m —r
biggest eigenvalues of G(Z(u)), such that E, — E.

ii) If A1 holds, then (z(u),Y (u)) satisfies the strict complementarity condi-
tion for problem (P, ), when wu is close to 0, i.e.,

The matriz E, Y (u)E, is nonsingular, (2.28)
iii) If A2 holds, then any ((P.,)-feasible) point T(u), which converges to T

as u | 0, is nondegenerate for problem (P,) when the perturbation u is small
enough, i.e., the following mapping is onto:

Yu(h) := Bl D,G(Z(u),u)hE, (2.29)
Proof. Part i) was shown in [4, Ex. 3.140]. Parts ii) and iii) are a direct conse-

quence of the continuity of F, and Y (u) as functions of u, and the smoothness
of G. |

A3 Second Order Optimality Conditions

Let us state for future reference various conditions for necessary or sufficient
optimality, involving second order derivatives of data. We will relate them later
to local optimality.

Let (7,Y) be a solution of the KKT system. These second order conditions
involve the following matrix, introduced in [11]:

H(Z,Y )i = —2Y - ([DxG(:E)]G(f)T[Dsz(E)]) (2.30)
We call standard second order sufficient condition the following [2, Th. 3.2]:

sup h' V2, L(z,Y)h+h"H(z,Y)h >0, VheC(z)\{0}, (2.31)
YeA(z)

where the cone of critical directions C(Z) was defined in (2.3).

The term h " H(Z,Y)h, related to the geometry (or curvature) of the cone S™
of m X m symmetric negative semidefinite matrices, being nonnegative, implies
that (2.31) is weaker than the classical sufficient second order condition (e.g.
[19, Th. 2.2]): there exists Y € A(Z) such that

h'V2, L(z,Y)h >0, VheC(z)\{0}. (2.32)
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See also [4, §5.3] and [11]. Condition (2.31) is a sufficient condition for optimality
of Z when Robinson’s constraint qualification condition (1.4) holds (See theorem
3.2 below). On the other hand, a second order necessary condition to be Z
optimal (when (1.4) holds) is the following [21, Th. 8]

sup h' V2, L(z,Y)h+h"H(Z,Y)h >0, Vhe C(z). (2.33)
YeA(T)

There is a no-gap relation between the necessary condition (2.33) and the
sufficient one (2.31), in the sense that an inequality is changed into a strict
equality.

Condition (2.31) and the second inclusion in (2.27) allows us to state a
stronger second order sufficient condition given by the existence of Y € A(Z)
such that

W'V2 L(zY)h+h H(Z,Y)h >0, VYheCY)\{0}. (2.34)

This condition will be particularly useful when the multiplier Y is unique (for
example, if the nondegeneracy assumption A2 is satisfied). A direct consequence
of (2.27) is the following lemma (see [4, Ex. 3.140]).

Lemma 2.6. Assume that the Lagrange multiplier Y € A(Z) is unique (this is
the case when A2 holds) and the strict complementarity condition (2.22) (i.e.
A1). Then we have that second order sufficient conditions (2.31) and (2.34) are
equivalent to

V2 L(z,Y)h+h"H(z,Y)h >0, VheKeri;\ {0} (2.35)

Sufficient condition (2.35) was established by Shapiro in [21, Th. 9]. Finally,
under Al and A2 condition (2.35) will be called assumption A3.

On the other hand, the second order sufficient condition (2.35) at the critical
point (Z(u),Y (u)) for problem (P,) is written as follows

hTV2 L(Z(u),Y (u),u)h + hTH(Z(u),Y (u),u)h > 0, Vh € Kerp, \ {0}, (2.36)
where H(Z(u),Y (u),u) € S™ is the matrix whose components are

H(i(u)vy(u)au)l] =
—2Y (u) - ([Ds, G(T(u),0)]G (T (u),u) [ Dy, G (T (w) u)]).

3 Strong Regularity Condition

Let us recall the definition of strong regular solution [10].
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Definition 3.1. We say that (2,Y) is a strong regular solution of KK T-conditions
(1.1) if there exists a neighborhood V of (z,Y) such that for every § := (61,02) €
R™ x S™ close to 0, the “linearized” system:

V2. L(z,Y)(x —Z) + DG(@)*(Y - Y) = 6y, (3.1a)
G@)Y + DG(z)(x — )Y = 69Y, (3.1b)
G(Z)+ DG(Z)(x — %) — 62 < 0,Y = 0, (3.1c)

has a unique solution (z,Y) = (Z(6),Y (8)) in V, which is a Lipschitz continuous
function of 4.

Remark 3.2. It is known that the strong regularity condition implies Robinson’s
constraint qualification condition (1.4). See for example [4, pp. 416] or [3].

In this section we present the results concerning the strong regularity in the
semidefinite context of problem (P). Some of these results are also true in a
general cone optimization framework

min{f(z); G(z) € K}, (3.2)

where K C Y is a convex cone and X and Y are Banach spaces. We can refer
the reader to [2, 3] in order to find out the different results available for problem
(3.2).

A useful definition involved in this work is the (uniform) second order growth
quadratic condition [10] stated below.
Definition 3.3. Let T be a critical point of problem (P). It is said that the
uniform second order growth condition holds at T if, for any smooth perturbation
of the form (P, ), there exist a > 0 and a neighborhood N' of T such that for
any u € IR* close enough to 0 and any critical point T(u) € N of the perturbed
problem (P, ), we have that

flau) > f(@(u)u) +allr — z(u)|?, Vo eN,G(zu) 20. (3-3)

We say that the second order growth condition holds at T if condition (3.3) just
holds for problem (P), it means, there exist o > 0 and a neighborhood N of T
such that condition (3.3) is satisfied at w = 0 and Z(0) = Z.

The following characterization (cf. [4, Th. 5.24]) plays an important role in
the rest of this section. It is also valid for the general optimization problem (3.2)
when the convex cone K is C?-reducible to a pointed cone (cf. [4, Sec. 3.4.4]).
Theorem 3.1. Let & be a local solution of problem (P) and Y its corresponding
Lagrange multiplier. We have that (%,Y) is a strongly regular solution of KKT
system (1.1) if and only if T is nondegenerate (assumption A2) and the uniform
second order growth quadratic condition holds at T.

The next result was introduced by Bonnans, Cominetti and Shapiro in [1]
using Fritz John conditions instead of KKT-conditions (1.1) (i.e. without as-
suming Robinson’s constraint qualification condition (1.4)) in a more general
context (see problem (3.2)). The reader can see also [4, Ch. 3] for more details.
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Theorem 3.2. Let T be a critical point of problem (P) satisfying Robinson’s
constraint qualification condition (1.4). Then, the second order growth condition
(definition 3.3) holds at T iff the second order sufficient condition (2.31) is
satisfied.

Theorem 3.1 shows us that we can completely characterize the strong re-
gularity condition by giving sufficient and necessary conditions to obtain the
uniform second order growth condition, as it was done for the second order
growth condition in theorem 3.2.

We start by recalling a necessary condition for uniform second order growth
condition, valid in a more general context. Remind that we have stated in lemma
2.4 some relations satisfied by Sp(Cr(Z)).

Theorem 3.3. Let T be a local solution of problem (P), and Y the unique La-

grange multiplier associated with T. If the uniform second order growth condition
holds at T, then

RTV2 L(z,Y)h > 0,Yh € Sp(Cr(z)) \ {0}. (3.4)

Proof. This is an application to SDP problems of [4, Th. 5.25]. |

Let us now state a stronger necessary condition for uniform second order
growth. We recall an easy extension of lemmas on pair of quadratic forms, see
Hestenes [9].

Lemma 3.4. Let C C IR™ be a closed, nonempty and convex cone, and P and
Q two quadratics forms satisfying that Q(x) > 0 for all x € C. Then the next
two conditions are equivalent:

P(z) +rQ(z) > 0,Vz € C\ {0}, for all large enough r, (3.5)

P(z) >0, for all nonzero x in C N Q™1(0). (3.6)

By lemma 2.2, the nondegeneracy assumption A2 implies
Sp(C(z)) = {h € R" : ETDG(z)hEW = 0}. (3.7)

Theorem 3.4. Let & be a local solution of problem (P) and Y its correspon-
ding Lagrange multiplier. If (Z,Y) is a strongly regular solution of KKT system
(1.1), then T is nondegenerate (assumption A2) and the following second order
condition holds at T :

hTV2,L(EY)h+h"H(ZY)h >0, VheSp(C(z)))\{0}. (3.8)
Proof. Consider the perturbed problem (P,) where
f(zw) == f(x) and G(zu) == G(z) —uEWW ET, (3.9
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for u > 0 small enough. Then (Z,Y) is a solution of the KKT system for (P,,).
Recall that the columns of W is an orthonormal basis of the orthogonal of Im Y’
in Ker G(Z), and hence, the columns of EW are a basis of Ker G(Z,u), and the
strict complementarity hypothesis is satisfied. Therefore the critical cone of the
perturbed problem is the set C(Z) defined in (2.19).

By theorem 3.1, Z is nondegenerate and the uniform second order growth
condition holds at (z,Y).

Thus, the uniform second order growth condition implies that condition
(3.3) holds at z(u) = Z when w is small enough. By lemma 2.5.ii), the perturbed
nondegeneracy condition (2.29) holds. Using theorem 3.2, we see that condition
(3.3) is equivalent to the second order sufficient condition (2.31) for (P,,). Since
this pertubed problem satisfies the strict complementarity condition (2.28), the
quadratic growth is equivalent to (2.36). Due to the special structure of (3.9)),
this may be written as

hTV2,LEY)h+hTH(u)h >0, VheC(x)\{0}, (3.10)
where H(u) € S™ is defined by its components as
H(u)ij == =2V - ([D,,G(2)(G(z) —uEWW T ET)'[D, G(z)]).

We claim that condition (3.10) is equivalent to (3.8). Indeed, since (G(Z) —
uEWWTEN = G(z)! —u 'EWWTET, we obtain that

KT H(u)h = hTH(E,T ) + %Y (DGEHREWWTETDG@)R).  (3.11)

On the other hand, since inequality (3.10) holds for the small values of u > 0
and the second term in (3.11)

2y . (DG(z)hEWW TETDG(z)h) =
26 - (WTETDG(z)hEW][W T ET DG(z)hEW])

is a nonnegative quadratic form on h, by using lemma 3.4, we obtain that the
second order necessary condition (3.10) holds if and only if

hTV2, L(z,Y)h+h"H(z,Y)h > 0,
for all nonzero direction h € C(z) (i.e., WT ET DG(z)hEW = 0) satisfying that
¢- ((WTETDG(z)REW|[W T ETDG(z)hEW]) = 0. (3.12)
Since ¢ is positive definite, this is equivalent to W T ET DG(z)hEW = 0. In view

of the expression of the critical cone for the perturbed problem, we see that a
necessary condition for uniform quadratic growth is

h'V2 L(Z,Y)h+h"H(z,Y)h >0, Vh#0,E"DG(Z)hEW =0,
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from which the conclusion follows. ]

Remark 3.5. Theorem 3.4 implies theorem 3.3, since the set of directions is
larger, and the additional term of the quadratic form (which is nonnegative) is
zero on Sp(Cr(Z)) as we show now. Indeed, let h € Sp(Cr(Z)). Relation (2.30)
implies

h"H(z,Y)h = —2H,] Y H;, - G(z)1. (3.13)

From the expression (2.12) of Cr(Z), and the fact already noticed that Im Fj, D
ImW by complementarity if h € Cgr(Z), it follows that Ho,EW = 0 for each
h € Cr(z), and hence, for each h € Sp(Cr(z)). Replacing Y in (3.13) by its
expression given in (2.1), we obtain that h" H(z,Y)h = 0, as was to be shown.

4 Sufficient condition for strong regularity

Here is the main result of this section.
Theorem 4.1. Let & be a local solution of problem (P) and Y its corresponding
Lagrange multiplier. If T is nondegenerate (assumption A2) and the next second
order sufficient condition holds

h'V2 L(zY)h >0, VheC()\ {0}, (4.1)

then (z,Y) is a strong regular solution of KKT-system (1.1), where C(z) was
defined in (2.18) and characterized in (2.19).

Proof. We argue by contradiction. By Theorem 3.1 we know that the nonde-
generacy condition always holds. If the uniform second order growth condition
does not hold at z, then there exist sequences u,, — 0, x, — Z, h,, — 0, with
hy # 0, such that z,, and z,, + h,, are feasible points of the perturbed problem
(Py, ), and

f@n + hnyun) < f(Tnun) + O(th”2)' (4.2)

We can suppose (passing to a subsequence if necessary) that h,/|hn| — h.
Feasibility of x,, 4+ h,, implies

G(zp + hpyun) = G(xn,up) + Dy G2, un)hy + o(||ha||) 2 0. (4.3)

Let the columns of E, be an orthonormal basis of kernel of G(x,,u,), then
E,.! D.G(yun)hnEn = o(|[hn])-

Since Robinson’s condition (1.4) is stable under small perturbations, we
know that there exists a Lagrange multiplier Y,, associated with z,, for problem
(Pu, ). Even more, since z,, — it follows that ¥;, — Y.

Note that ImY = Im(EW) and ImY,, C Im E,,. Let y € ImY, ie.,, y = Y2
for a certain z. Set y,, := Y,,z; since y,, € Im E,,, we have that y;'L—DzG(xn,un)hnyn
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< o(||hn ). Dividing by |/hy|| and passing to the limit, obtain y " DG(z)hy < 0.
Since ImY = Im(EW), it follows that

WTETDG(z)hEW =< 0. (4.4)
On the other hand, passing to the limit in (4.2) we get that Df(ic)ﬁ < 0. This
together with the first KKT-condition (1.1a) implies that Y - DG(Z)h > 0,
obtaining the equality ~ -

Y - DG(z)h =0,
which can be written as
¢-W'E"DG(z)hEW = 0. (4.5)

Since ¢ is positive semidefinite and (4.4) holds, this implies

WTETDG(Z)hEW = 0. (4.6)

We now prove that h' V2 L(Z,Y)h is nonpositive. By using the first (per-
turbed) KKT-condition (1.5a) and a Taylor’s expansion we have

L(xn + hi,Yn,tn) — L(20, Yy un) = b)Y D2 L(2,Y Yy + o || hn||?). (4.7)

Since L(xy,Yn,un) = f(@n,un) and Lz, + hp, Yo, un) < f(zn + han,uy), relations
(4.2) and (4.7) yield to

hy D2 L(2,Y Y < o[ ]?).

D1V1d1ng by ||hy|/* and passing to the limit n — +oo, we conclude that
hTV.L(Z,Y)h < 0. Since (4.6) holds, this contradicts (4.1). |
Remark 4.1. We could have taken for y, an arbitrary element of Im E,,. Then
(4.4) improves to

WTETDG(Z)hEW <0, (4.8)

where the columns of W span the vector space of limit points of such y,. Ob-
viously Im(W) D Im(W). Since (4.6) holds, the additional information is equi-
valent to

~ T x
W ETDG(Z)hEW <0, (4.9)

where the columns of W span the subspace of Tm(W) orthogonal to ITm(W). This
is not, unfortunately, so useful since we cannot say much on W.
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