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financièrement pendant mon doctorat : CONICYT, MECESUP, le programme
franco-chilien ECOS-CONICYT, l’association EGIDE (France) et le gouverne-
ment français.
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Résumé

Le but de cette thèse est d’étudier des différents sujets de la programma-
tion semidéfinie non linéaire (SDP). Ainsi, dans les deux premiers chapitres
nous presentons certains aspects algorithmiques, dans les chapitres 3 et 4 nous
travaillons sur des aspects théoriques comme l’analyse de perturbations de ce
problème.

Le premier chapitre développe un algorithme global qui étend l’algorithme
local S-SDP. Cet algorithme est basé sur une fonction de pénalisation de Han
et une stratégie de recherche linéaire. Le second chapitre est consacré à l’étude
des méthodes de pénalisation ou fonctions barrière pour résoudre des problèmes
semidéfinis convexes. Nous démontrons la convergence des suites primale et
duale obtenues par cette méthode. De plus, nous étudions l’algorithme à deux
paramètres en étendant les résultats connus dans le cadre restreint de la pro-
grammation convexe usuelle.

Dans une deuxième partie, constituée des chapitres 3 et 4, nous nous inté-
ressons à la caractérisation de la propriété des solutions fortement régulières
en fonction des certaines conditions optimales de deuxième ordre. Ainsi, dans le
troisième chapitre nous nous consacrons au problème de second-ordre, lequel est
un cas particulier du problème SDP, dont on obtient cette caractérisation. Enfin
dans la chapitre 4, nous donnons des conditions nécessaires et suffisantes pour
la condition de régularité forte dans le cas SDP, en revanche, sa caractérisation
reste un problème ouvert.

Mots Clés. Optimisation Semidéfinie Nonlinéaire, Optimisation de Second-
ordre, Régularité Forte, Méthodes de Pénalisation, Reduction des Contraintes,
Analyse Convexe.



Abstract

This work deals with different subjects on nonlinear semidefinite program-
ming (SDP). Thus, while in the first two chapters we show some algorithmic
aspects, in chapters 3 and 4 we study theoretical aspects as the perturbation
analysis of this problem.

In the first chapter we develop a global algorithm that extends the local one
S-SDP. This algorithm is based on a Han penalty function and a line search
strategy. The second chapter is focused on penalty and barrier methods for
solving convex semidefinite programming problems. We prove the convergence
of primal and dual sequences obtained by this method. Moreover, we study the
two parameters algorithm and extend to semidefinite case the results that are
known in usual convex programming.

In the second part, that involves chapters 3 and 4, we are interested on the
characterization of the strong regularity property in function of second-order
optimality conditions. So, in chapter 3, we mainly deal with second-order cone
programming problems, whose are a particular instance of semidefinite program-
ming problems. We thus obtain a characterization in this particular case. Finally
in chapter 4, we give necessary and sufficient conditions to obtain the strong
regularity property in the semidefinite case. However, its characterization is still
an open problem.

Keywords. Nonlinear Semidefinite Programming, Second-order Cone Pro-
gramming, Strong Regularity, Penalty Methods, Reduction Approach, Convex
Analysis.



Introduction

Ce travail de thèse est dédié à l’étude de différents sujets en programma-
tion semidéfinie. Ce problème d’optimisation consiste en la minimisation d’une
fonction de coût f , dont l’ensemble réalisable sont tous les vecteurs x tel que
G(x) soit une matrice semidéfinie négative dans le sens classique de l’analyse
matricielle. Ici, l’opérateur G est à valeurs matricielles symétriques.

Concrètement, dans ce travail nous considérons le problème :

min
x∈IRn

{f(x) ; G(x) ¹ 0}, (SDP)

où f : IRn → IR, G : IRn → Sm, Sm dénote l’espace vectoriel des ma-
trices symétriques de taille m dont on considère le produit scalaire A · B :=
trace(AB) =

∑m
i,j=1 AijBij avec A = (Aij), B = (Bij) ∈ Sm, et ¹ est l’ordre

inducé par Sm
− le cône des matrices semidéfinies négatives, c’est à dire, A ¹ B

ssi A−B ∈ Sm
− . La régularité des opérateurs f et G sera spécifiée dans chaque

chapitre.

L’intérêt apparu par ce type de problème est justifié par ses multiples appli-
cations, on peut mentionner par exemple l’optimisation combinatoire, l’optimi-
sation robuste, les applications en statistique, etc. (voir, par exemple, [35, 36]).
Pour cela, on a considéré principalement le problème SDP linéaire

min
x∈IRn

{f(x) := c>x ; G(x) := A0 +
n∑

i=1

xiAi ¹ 0}, (LSDP)

où c ∈ IRn et Ai ∈ Sm pour tout indice i = 0, ..., m. Toutefois, on trouve des
applications dont la formulation linéaire (LSDP) n’est plus suffisante pour les
modéliser (cf. [15, 19, 24]).
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Dans la prochaine section, nous verrons principalement des exemples as-
sociés à la formulation linéaire (LSDP). Pour étudier les exemples associés à la
formulation nonlinéaire, nous nous adressons au lecteur aux articles mentionnés
ci-dessus.

Exemples

Programmation Linéaire

Considérons le problème de programmation linéaire

min
x∈IRn

{c>x ; Ax ≤ b}, (LP)

où c ∈ IRn, b ∈ IRm et A ∈ IRm×n.

En effet, on écrit A0 := − diag(b) et Ai := diag(ai), i = 1,...,n, où les
vecteurs ai sont les colonnes de la matrice A, et pour tout vecteur a ∈ IRm on a
dénoté par diag(a) à la matrice diagonal de taille m dont ses composants sont
les composants de a. Alors, on retrouve la formulation (LSDP).

Programmation Nonlinéaire Quasi-convexe

Considérons le problème

min
x∈IRn

{
(c>x)2

d>x
; Ax ≤ b

}
, (QCP)

où c, d ∈ IRn, b ∈ IRm et A ∈ IRm×n, et on a supposé que d>x > 0 pour tout x
point réalisable de (QCP). Ce problème est nonlinéaire, pourtant on verra qu’il
existe une modélisation linéaire semidéfinie (cf. (LSDP)).

D’après les compléments de Schur, si d>x > 0 on obtient l’équivalence

η ≥ (c>x)2

d>x
ssi

(
η c>x

c>x d>x

)
º 0.

Ceci implique que le problème (QCP) peut s’écrire comme le problème semidéfini

min
x,η



η ;




diag(Ax− b) 0

0 −
(

η c>x
c>x d>x

)

 ¹ 0



 .

Notons que dans ce cas-ci toutes les matrices Ai, dans la formulation (LSDP),
sont diagonales par bloc. On a m blocs de taille 1 × 1 et un seul bloc de taille
2× 2.
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Programmation de Second Ordre

Nous considérons le problème de programmation sur un cône de second ordre
ou cône de Lorentz :

min
x∈IRn,sj∈IRmj+1

{f(x) ; gj(x) = sj , (sj)0 ≥ ‖s̄j‖, j = 1, . . . ,J}, (SOCP)

où f : IRn → IR et gj : IRn → IRmj+1, j = 1, . . . ,J . Nous utilisons la convention
usuelle qui consiste en indexer les composants des vecteurs appartenant à IRmj+1

de 0 à mj , pendant que les vecteurs dans IRn sont indexés de 1 à n. Alors, étant
donné s ∈ IRmj+1, on écrit s̄ := (s1, . . . ,smj )

>. Dénotons le cône du second
ordre par

Qm+1 = {s ∈ IRm+1 : s0 ≥ ‖s̄‖},
et posons Q := ΠJ

j=1Qmj+1. Le problème (SOCP) peut s’écrire alors comme
minx∈IRn{f(x) ; g(x) ∈ Q}, avec g(x) := (g1(x),...,gJ (x)).

Plusieurs problèmes d’optimisation peuvent être aussi modélisés comme un
problème de second ordre (SOCP). Un article récent à ce sujet est Alizadeh et
Goldfarb [2].

Le cône de second ordre Qm+1 peut être décrit en utilisant une inégalité
matricielle grâce à l’équivalence suivante (voir par exemple [2]) :

s ∈ Qm+1 ssi Arw(s) :=
(

s0 s̄>

s̄ s0Im

)
º 0, (1)

où Im dénote la matrice identité dans IRm×m, et Arw(s) est la matrice flèche
du vecteur s. Donc, le problème (SOCP) s’écrit trivialement comme le problème
semidéfini suivant :

min
x∈IRn

{f(x) ; Gj(x) := Arw(gj(x)) º 0, j = 1, . . . ,J}.

Programmation Linéaire Robuste

L’idée de ce type de problèmes est de traiter des données incertaines. Plus
précisément, nous considérons le problème linéaire (LP) dans lequel il y a une
certaine incertitude ou variation des paramètres A, b et c. Pour simplifier cette
idée, nous supposons que les donnés b et c sont fixes, et que chaque vecteur ligne
a>i de A se trouve dans l’ellipsöıde

Ei := {āi + Piu : ‖u‖ ≤ 1},
où Pi = P>i º 0. On obtient alors le problème linéaire robuste suivant

min
x∈IRn

{c>x ; a>i x ≤ bi ∀ai ∈ Ei, i = 1,...,m}. (RLP)
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Nous allons d’abord montrer que le problème (RLP) peut s’écrire comme un
problème (SOCP). En effet, la contrainte

a>i x ≤ bi pour tout vecteur ai ∈ Ei

est équivalente à

max{a>i x : ai ∈ Ei} = ā>i x + ‖Pix‖ ≤ bi,

laquelle est une contrainte du type(
bi − ā>i x

Pix

)
∈ Qn+1.

Ceci nous montre que le problème (RLP) s’écrit sous la forme (SOCP) dont la
fonction f est linéaire et les fonctions gj , j = 1,...,J , sont linéaires affines.

Ensuite, nous réécrivons ce problème-ci comme un problème semidéfini li-
néaire (LSDP) en utilisant l’équivalence (1).

Optimisation Quadratique Non-convexe

Considérons par exemple le problème quadratique

min
x∈IRn

{f0(x) ; fi(x) ≤ 0, i = 1, . . . ,L}, (QP)

où fi(x) = x>Aix+2b>i x+ci, i = 0,...,L. Ici, les matrices Ai ∈ Sm peuvent être
indéfinies, et donc le problème (QP) est très difficile à résoudre. Par exemple, ce
problème-ci inclut tous les problèmes d’optimisation avec une fonction objective
et des fonctions contraintes polynomiales (cf. [29, Sect. 6.4.4]).

Dans la pratique, c’est très important d’avoir des bonnes estimations infé-
rieures de la valeur optimale de (QP) qui soient calculables efficacement. Une
manière d’obtenir ces estimations est de résoudre le problème semidéfini

min
t, τi∈IR

{
t ;

(
A0 b0

b>0 c0 − t

)
+ τ1

(
A1 b1

b>1 c1

)
+ . . . + τL

(
AL bL

b>L cL

)
º 0,

τi ≥ 0, i = 1, . . . ,L
}

.

(QP)

En effet, supposons que x est réalisable pour le problème (QP), c’est à dire

fi(x) =
[
x
1

]>(
Ai bi

b>i ci

)[
x
1

]
≤ 0 ∀ i = 1, . . . ,L

Alors, si les variables t et τi, i = 1, . . . ,L, satisfont les contraintes du problème
(QP), on déduit que

0 ≤
[
x
1

]> [(
A0 b0

b>0 c0 − t

)
+ τ1

(
A1 b1

b>1 c1

)
+ . . . + τL

(
AL bL

b>L cL

)][
x
1

]

= f0(x)− t + τ1f1(x) + . . . + τLfL(x)
≤ f0(x)− t.
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Donc, t ≤ f0(x) pour tout point x réalisable pour le problème (QP).

Par ailleurs, le problème dual de (QP) est donné par [36, Sect. 3] :

min
x∈IRn, X∈Sn

{
A0 ·X + 2b>0 x + c0 ; Ai ·X + 2b>i x + ci ≤ 0, i = 1, . . . ,L,

(
X x
x> 1

)
º 0

}
.

(DQP)

On note que la contrainte
(

X x
x> 1

)
º 0 (2)

équivaut à X º xx>, qui peut être considérée comme une relaxation de la
contrainte X = xx>. Alors, le problème (DQP) peut directement se considérer
comme une relaxation du problème

min
x∈IRn, X∈Sn

{
A0 ·X + 2b>0 x + c0 ; Ai ·X + 2b>i x + ci ≤ 0, i = 1, . . . ,L,

X = xx>
}

,

qui est une formulation équivalente au problème (QP).

Optimisation Combinatoire

Regardons une application de l’approche décrite dans la section précédente.
Considérons le problème quadratique

min
x∈IRn

{x>Ax + 2b>x ; x2
i = 1, i = 1, . . . ,n}, ((-1,1)–QP)

où A ∈ Sn et b ∈ IRn. Ce problème NP-dur. Pourtant, la contrainte entière
x2

i = 1 (i.e. xi = ±1) peut être relaxée comme x2
i ≥ 1, donc, d’après (2), on sait

que le problème semidéfini

min
x∈IRn, X∈Sn

{
A ·X + 2b>x ; Xii = 1, i = 1, . . . ,n,

(
X x
x> 1

)
º 0

}
. (Q̂P)

nous donne une estimation inférieure de la valeur optimale du problème ((-1,1)–
QP).

Goemans et Williamson [21] ont prouvé que pour le problème de coupe maxi-
mum (MAX-CUT problem), lequel est un cas spécifique du problème ((-1,1)–
QP) où b = 0 et les composantes de la diagonal de la matrice A sont égaux à
0, l’estimation inférieure donnée par le problème (Q̂P) est au moins 14% sous
optimale. Celle-ci est la meilleure estimation inférieure connue jusqu’à présent.
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Résolution du Problème (SDP)

Pour le problème (SDP) non-convexe, on peut mentionner entre autres l’al-
gorithme S-SDP (Sucessive SemiDefinite Programming) développé par Fares,
Noll et Apkarian dans l’article [19], lequel est inspiré de l’algorithme SQP (Se-
quentally Quadratic Programming) pour la programmation mathématique non-
linéaire classique (voir par exemple [8]). On prouve que cet algorithme converge
quadratiquement si certaines hypothèses sont satisfaites.

Les mêmes auteurs proposent dans [18] un algorithme du type Lagrangien
Augmenté pour résoudre un cas particulier du problème (SDP).

D’autre part, on trouve dans l’article de Jarre [24] un algorithme de point
intérieur pour résoudre le problème (SDP) non-convexe.

Auslender propose dans l’article [5] une approche unifiée pour résoudre des
problèmes convexes en utilisant des différents classes des fonctions barrières ou
de penalisation. En particulier, on peut appliquer cette approche au problème
(SDP) convexe.

Dans le cas (SDP) convexe, on peut aussi appliquer l’approche de point
intérieur de Nesterov et Nemirovskii qui est basée sur des fonctions auto con-
cordantes (cf. [11]).

Le problème (LSDP) est convexe, donc il peut être résolu dans un temps
polynomial à n’importe quelle précision fixe en utilisant la méthode d’ellipsöıde
introduite par Khachiyan [27].

Malheureusement, le temps de fonctionnement de cette méthode-ci est pro-
hibitivement haut dans la pratique.

En revanche, les méthodes de points intérieurs, introduites originalement
par Karmarkar [26], se sont avérées être les plus rapides dans la pratique. Dans
la prochaine section nous présentons ces méthodes et ses principaux résultats.
Pour étudier des autres algorithmes, nous nous adressons au lecteur à l’article
de Todd [35], ou le livre “manuel” sur la programmation semidéfinie [37].

Méthode de Points Intérieurs

Les méthodes de point intérieurs pour la programmation semidéfinie linéaire
ont été introduits par Nesterov et Nemirovskii (voir [11]). Voir aussi Alizadeh
[1].
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Réécrivons le problème (LSDP) de la manière suivante :

min
x∈IRn, S∈Sm

{
c>x ; G(x) := A0 +

n∑

i=1

xiAi = −S, S º 0

}
. (LSDP)

Donc son problème dual est

max
Y ∈Sm

{A0 · Y ; Ai · Y + ci = 0, i = 1, . . . ,n, Y º 0} . (DLSDP)

Notons que si on définit la fonction x → A(x) :=
∑n

i=1 xiAi son opérateur
adjoint est donné par

Z ∈ Sm → A(Z) = (A1 · Z, . . . ,An · Z)>.

Écrivons alors les conditions d’optimalité associées aux problèmes (LSDP) et
(DLSDP) :

G(x) + S = A0 +
n∑

i=1

xiAi + S = 0 ; S º 0, (3.a)

A(Y ) + c = 0 ; Y º 0, (3.b)
SY = 0. (3.c)

Dans cette section nous supposons que les problèmes (LSDP) et (DLSDP)
sont tout les deux strictement réalisables, autrement dit, nous supposons qu’il
existe (x,S,Y ) satisfaisant les conditions (3.a) et (3.b), associées à la réalisabilité
de ces problèmes, tel que S, Y Â 0.

Cette hypothèse implique que les valeurs optimales des problèmes (LSDP)
et (DLSDP) sont égaux (dualité forte), et que les ensembles solutions de ces
problèmes sont nonvides et compacts.

Considérons une perturbation de la condition (3.c) de la forme SY = µIm

où µ > 0. Si on ignore les contraintes d’inégalité S, Y º 0, on obtient le système
des equations

Fµ(x,S,Y ) :=




G(x) + S
A(Y ) + c
SY − µIm


 = 0. (4)

Sous l’hypothèse de strict réalisabilité, il existe une unique solution (xµ, Sµ, Yµ)
pour tout µ > 0 (voir par exemple [37, Chapitre 10]). Il est possible aussi
de prouver que l’ensemble {(xµ, Sµ, Yµ) : µ > 0} définit une courbe régulière
paramétrée par µ, laquelle est usuellement appelée le chemin central.

Si nous résolvons (4) par une méthode de Newton, nous obtenons le système
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des equations linéaires suivant :

n∑

i=1

∆xiAi + ∆S = 0, (5.a)

A(∆Y ) = 0, (5.b)
∆SY + S∆Y = µIm − SY. (5.c)

Car la matrice SY n’est pas forcement symétrique, le système (5) est composé
par m(m+1)/2+n+m2 équations mais seulement par m(m+1)+n variables.
Alors, la solution ∆Y risque de ne pas être symétrique et puis Y + ∆Y ne
appartiendra jamais au cône Sm

+ des matrices symétriques semidéfinies positives.

Pour surmonter ce problème, Zhang [38] introduit l’opérateur

HP (M) :=
1
2
(PMP−1 + (PMP−1)>), (6)

où P est une matrice non-singulière donnée, et il l’utilise pour symétriser l’équation
(5.c) en la remplaçant par

HP (∆SY + S∆Y + SY ) = µIm.

Il y a plusieurs possibilités pour choisir la matrice P . Todd étudie des
différents variantes dans l’article [34]. Pourtant jusqu’à présent il n’y a pas
un clair “vainqueur” dans le sens d’avoir une matrice P qui soit supérieur au
niveau théorique et pratique.

En particulier, on peut considérer la direction H.K.M. donnée par P = S
1
2 ,

laquelle peut être obtenue en remplaçant ∆Y par 1
2 (∆Y + ∆Y >) dans (5.c)

(voir Helmberg et al. [25]).

Nous allons expliciter l’algorithme de point intérieur en suivant l’interprétation
de Helmberg et al. [25] :

Algorithme Primal-Dual de Point Intérieur

Considérons les donnés Ai, i = 0,...,n, b et c, et un point initial (x0, S0, Y 0)
satisfaisant que Fµ(x0, S0, Y 0) = 0 et S0, Y 0 Â 0. Sans perte de généralité nous
supposons que µ = 1, c’est à dire que S0Y 0 = Im.

Les paramètres initiaux de l’algorithme sont µ = 1, τ > 0 tel que δ(x0, S0, Y 0)
≤ τ , et la tolérance ε > 0. Ici, on a dénoté par δ(x, S, Y ) une mesure de proximité
entre le point (x, S, Y ) et le chemin central {(xµ, Sµ, Yµ) : µ > 0}.
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Pas 1. Réduire le paramètre µ.

Pas 2. Si δ(x, S, Y ) > τ , calculer (∆x, ∆S, ∆Y ) en résolvant (5), et
remplacer ∆Y par 1

2 (∆Y + ∆Y >).

Pas 3. Trouver α ∈ (0,1] tel que S + α∆S Â 0, Y + α∆Y Â 0 et la
distance δ(x, S, Y ) soit réduite.

Pas 4. Actualiser (x, S, Y ) = (x + α∆Y, S + α∆S, Y + α∆Y ).

Pas 5. Si S · Y ≤ ε alors l’algorithme arrête,
Si non et δ(x, S, Y ) ≤ τ alors on va au pas 1,
Si non, on va au pas 2.

Utilisant cette méthode de point intérieur, on peut résoudre le problème
(LSDP) dont les donnés Ai, b et c sont rationnels et la tolérance est égal à ε
avec O(

√
m log(1/ε)) itérations réalisables (cf. [34]). Ceci est le même résultat

théorique qu’on obtient dans le cas linéaire (LP).

Pour des différents détails sur la complexité associée à chaque itération de
l’algorithme de point intérieur, voir l’article Krishnan et Terlaky [28].

Quelques Remarques sur la Complexité du Problème (LSDP)

Nous avons dit que, sous l’hypothèse de strict réalisabilité, les problèmes
(LSDP) et son dual (DLSDP) peuvent être résolus à une tolérance fixe dans un
temps de fonctionnement polynomial en utilisant la méthode de point intérieur.
Pourtant, même si tous les donnés du problème, Ai, b et c, sont rationnels, on ne
peut pas établir des bornés polynomiales pour la longueur de bits des nombres
intermédiaire calculés par l’algorithme de point intérieur. Alors, la méthode de
point intérieur pour résoudre (LSDP) n’est polynomial que dans le modèle des
nombres réels, car il n’est pas polynomial dans le modèle des nombres de bits
utilisés dans ses calculs.

En effet, il existe des problèmes (LSDP) avec des donnés rationnels dont
la solution n’est plus rationnel. Par exemple, considérons les contraintes se-
midéfinies (

1 x
x 2

)
º 0 et

(
2x 2
2 x

)
º 0

dont l’unique point réalisable est x =
√

2. Clairement, cette solution ne peut
pas être décrite en utilisant un nombre polynomial de bits. Cette situation-ci
constitue une différence importante entre le problème (LSDP) et le cas linéaire
classique (LP).

Une autre situation “pathologique” qui peut arriver dans le cas semidéfini
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est que tous les points réalisables soient doublement exponentiels. Par exemple,
considérons les fonctions Q1(x) := (x1 − 2) et

Qi(x) :=
(

1 xi−1

xi−1 xi

)
∀i = 2, . . . ,n.

Alors, la contrainte semidéfinie et diagonale par blocs

Q(x) := diag(Q1(x), Q2(x), . . . , Qn(x)) º 0

est satisfaite ssi Qi(x) º 0 pour tout i = 1, . . . ,n, ce qui implique que

xi ≥ 22i−1 pour tout i = 1, . . . ,n.

Donc, tout point réalisable et rationnel a aussi une longueur exponentielle de
nombre de bits.

Plan de la Thèse

Cette thèse est constituée de quatre chapitres :

“A Global Algorithm for Nonlinear Semidefinite
Programming”

Dans ce chapitre nous proposons un algorithme global pour la résolution des
problèmes semidéfinis nonlinéaires de la forme

min
x∈IRn

{f(x) ; A(x) ¹ 0, h(x) = 0}, (P)

où f : IRn → IR, A : IRn → Sm et h : IRn → IRp sont des fonctions suffisamment
différentiables. Pour cela, on utilise une stratégie de recherche linéaire, et une
fonction de pénalisation nondifférentiable

θσ(x) = f(x) + σ(λ1(A(x))+ + ‖h(x)‖), (7)

où σ > 0 est le paramètre de pénalisation, λ1(A) := maxx x>Ax dénote la plus
grande valeur propre de la matrice A, et (a)+ := max{0,a} pour tout a ∈ IR.

Récemment, une méthode nommée “Sequentially Semidefinite Programming”
(S-SDP) a été introduite dans l’article [19]. Cette méthode résout localement
notre problème et est fortement inspirée de la méthode classique “Sequen-
tially Quadratic Programming” (SQP) pour la programmation nonlinéaire. Les
résultats de l’article [19] ont été une base pour notre travail, et nous avons suivi
certaines de ses idées.
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Sur les résultats à remarquer dans ce chapitre, on peut mentionner par
exemple que nous prouvons que la fonction Lagrangienne Augmentée
Lσ : IRn×Sm×IRp → IR définie par (voir par exemple la fonction Lagrangienne
Augmentée Proximale dans [32])

Lσ(x,Z,λ) = f(x) + λT h(x) + Tr(Z[A(x) + (−σ−1Z −A(x))+])

+
σ

2

(
‖h(x)‖2 + ‖A(x) + (−σ−1Z −A(x))+‖2Fr

)
,

(8)

et la fonction de pénalisation de Han (cf. (7)) sont fonctions de pénalisation
exacte pour le problème semidéfini nonlinéaire (P), autrement dit, ces fonc-
tions atteignent un minimum local dans la solution de (P) (voir des différents
théorèmes associés à ce sujet dans la Section 3 du Chapitre 1 ou dans [16, Sect.
3]).

Notre résultat principal est la démonstration de la convergence de notre al-
gorithme sous des hypothèses minimales en profitant de la structure matricielle.
Ceci est montré dans le Théorème 4.4 du Chapitre 1.

Ces résultats étendent la théorie connue pour la programmation nonlinéaire
classique (cf. [10]) et ont inspiré des travaux récents sur le même sujet (voir, par
exemple, [20]).

“Penalty and Barrier Methods for Convex Semidefinite
Programming ”

Dans ce chapitre nous présentons des méthodes de pénalisation et de fonc-
tions barrière pour résoudre des problèmes de programmation semidéfinie conve-
xe. Plus précisément, nous travaillons avec le problème (SDP) dont la fonction
de coût f est convexe et l’opérateur G satisfait la propriété de convexité sui-
vante :

G(λx + (1− λ)y) ¹ λG(x) + (1− λ)G(y) ∀x,y ∈ IRn, ∀λ ∈ [0,1].

En effet, nous étudions des méthodes qui consistent en la résolution “ap-
proximative” des problèmes de minimisation sans contraintes

vr = inf{φr(x) | x ∈ IRn}, (Pr)

avec

φr(x) := f(x) + α(r)
m∑

i=1

θ

(
λi(G(x))

r

)
,
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où λ1(A) ≥ λ2(A) ≥ ... ≥ λm(A) sont les valeurs propres de la matrice A, le
réel r > 0 est un paramètre de pénalisation qui converge vers 0, la fonction
α : IR+ → IR+ satisfait les conditions suivantes :

lim
r→0+

α(r) = 0 et lim inf
r→0+

α(r)
r

> 0,

et θ est une fonction de pénalisation qui appartient à la classe suivante [3] :

F = {θ : IR → IR ∪ {+∞}, convexe, sci, propre et non décroissante t.q.
θ∞(1) > 0, lim

t→η−
θ(t) = +∞, et dom θ =]−∞,η[, où η ∈ [0, +∞]}.

Cette classe de méthodes est une extension des méthodes de pénalisation et
de fonctions barrière dans le cadre de l’optimisation convexe usuelle (cf. [6]), et
dans le cas où l’opérateur convexe G est linéaire (cf. [4]).

Nous donnons un critère d’arrêt implémentable pour obtenir la suite pri-
male {xr} (le point xr est une solution de (Pr)), et des formules explicites pour
la suite duale (ce qui n’avais pas été fait dans le cadre restreint de [4] et [6]).
Nous montrons alors la convergence des suites primales et duales obtenues par
ces méthodes sous des hypothèses minimales : à savoir, l’ensemble des solutions
optimales du problème (SDP) est un compact non vide, et la condition de Sla-
ter : il existe x0 tel que G(x0) soit une matrice définie négative, est vérifiée.
L’analyse de la convergence est ici plus complexe que dans [4] et [6]. En ef-
fet, cette dernière repose sur l’Analyse Asymptotique, et ici on doit calculer la
fonction asymptote d’une fonction composée où intervient l’opérateur convexe
G. Or pour l’instant on n’a aucune notion permettant le calcul d’une fonction
asymptote d’un opérateur convexe général.

Finalement, nous étendons aussi l’approche des méthodes de pénalisation
à deux paramètres introduite dans [23] à la programmation semidéfinie, lequel
consiste en résoudre “approximativement” les problèmes

vr = inf{ψr(x) | x ∈ IRn}, (P̂r)

avec

ψr(x) = f(x) + rβr

m∑

i=1

θ

(
λi(G(x))

r

)
.

Ici, le paramètre r > 0 est toujours décroissant pendant que le paramètre βr > 0
crôıt si la solution xr de (P̂r) n’est pas réalisable pour le problème (SDP).

Cette approche est particulièrement intéressante pour des problèmes dans
lesquels il est difficile de trouver une solution admissible de départ permet-
tant de calculer la suite primale, et aussi dans lesquels l’admissibilité des so-
lutions approchées est importante. Ces deux difficultés sont ici surmontées et
le théorème de convergence de la suite primale montre ici en plus, qu’à partir
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d’un certain rang la suite primale est admissible. Ceci est démontré sous les
conditions minimales usuelles. Les résultats obtenus sont non seulement une ex-
tension à la programmation semidéfinie mais améliorent aussi dans le cas usuel
les résultats donnés dans [23]. D’abord on donne une règle implémentable de
solutions approchées ce qui n’est pas le cas dans [23], ensuite au lieu de suppo-
ser que l’ensemble des contraintes est compact, on ne fait cette hypothèse que
sur l’ensemble des solutions optimales. Enfin, on associe à la suite primale, une
suite duale de multiplicateurs donnés par une formule explicite et l’on démontre
que cette suite est bornée et que chacun de ses points limites est une solution
optimale du dual. Cet aspect n’apparâıt pas dans [23].

“Perturbation Analysis of Second-Order Cone
Programming Problems”

Dans ce chapitre nous travaillons avec le problème de programmation sur
un cône de second ordre ou cône de Lorentz (SOCP), où les fonctions f et gj ,
j = 1, . . . ,J , sont deux fois continûment différentiables (i.e. C2).

Dans une première partie nous faisons une comparaison avec sa représenta-
tion SDP dont nous montrons que ces problèmes ne sont plus équivalents du
point de vue dual. En effet, des propriétés importantes comme l’unicité du mul-
tiplicateur dual ne sont plus satisfaites simultanément pour les deux problèmes.
Des résultats similaires sont obtenus par Siam et Zhao dans [33] en utilisant une
différente approche.

Cette partie de notre travail est développée dans un cadre général et ap-
pliquée à nos problèmes. Nous introduisons aussi une notion de partition opti-
male (cf. Lemme 2.3 dans le Chapitre 3 ou [12, Lemme 3]) laquelle nous permet
démontrer certaines propriétés.

Dans une deuxième partie nous donnons le résultat principal de notre ar-
ticle : La caractérisation de la condition de régularité forte [30] pour le problème
(SOCP) en fonction des conditions optimales de second ordre. En effet, consi-
dérons la fonction lagrangienne associée au problème (SOCP)

L(x,y) := f(x) +
J∑

j=1

gj(x)>yj ∀x ∈ IRn, y ∈ ΠJ
j=1IR

mj+1, (9)

et le cône de directions critiques suivant :

C(x∗) := {h ∈ IRn : Dg(x∗)h ∈ TQ(g(x∗)),∇f(x∗)>h = 0}, (10)

avec TK(A) le cône tangent à l’ensemble K dans le point A ∈ K. Cette ca-
ractérisations vient donnée par le résultat ci-dessous :
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Théorème. Soient x∗ une solution local de (SOCP) et y∗ son multiplicateur
de Lagrange. Alors, (x∗,y∗) est une solution fortement régulière (des conditions
de premier ordre associées à (SOCP)) ssi x∗ est nondégéneré (définition 4.3 du
Chapitre 3), et la condition de second ordre suivante est satisfaite :

h>∇2
xxL(x∗,y∗)h + h>H(x∗,y∗)h > 0, ∀h ∈ Sp(C(x∗)) \ {0}. (11)

où Sp(C) := IR+(C − C) est l’espace vectoriel généré par l’ensemble C, et la
matrice H(x∗,y) est définie par H(x∗,y) =

∑J
j=1Hj(x∗,yj), dont pour sj :=

gj(x∗), j = 1,...,J , et Im la matrice identité dans Sm, on denote

Hj(x∗,yj) := −yj
0

sj
0

Dgj(x∗)>
(

1 0>

0 −Imj

)
Dgj(x∗), (12)

si sj 6= 0 appartient à la frontière de Qmj+1, et Hj(x∗,yj) := 0 si non.

Ce sujet est bien développé dans la programmation mathématique non-
linéaire classique. On peut citer par exemple deux différents approches : [14]
et [17], lesquelles montrent la caractérisation de la propriété de régularité forte
en fonction de conditions optimales de second ordre, mais ce travail-ci est le pre-
mier où on donne une caractérisation précise pour un problème d’optimisation
sur un cône différent d’un cône polyédral.

“A note on Strong Regularity for Semidefinite
Programming”

Nous considérons un problème de programmation semidéfinie nonlinéaire (cf.
Problème (SDP)) et analysons le comportement des solutions de ce problème
quand une petite perturbation est appliquée. En particulier, nous étudions la
propriété des “solutions fortement régulières” (dans le sens de Robinson [30])
et sa relation avec des conditions optimales de second ordre. Comme on a déjà
mentionné, ce genre de résultats est bien connu pour la programmation non-
linéaire classique.

Dans cet article nous donnons des conditions nécessaires et suffisantes pour le
problème (SDP), en revanche, sa caractérisation est encore un problème ouvert.
Pour cela, on a utilisé des résultats connus dans le contexte d’optimisation sur
un cône convexe et fermé quelconque, ainsi que des techniques matricielles bien
précises.

En effet, il est bien connu que la régularité forte est satisfaite ssi la condition
de croissance quadratique uniforme est satisfaite et la solution primal x̄ est
nondégéneré (cf. [13]). Cette dernière condition veut dire que la fonction linéaire
ψx̄ : IRn → Sm−r définie par

ψx̄(h) := E>DG(x̄)hE
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est surjective. Ici, le réel r est le rang de G(x̄), et on denote par E ∈ IRm×m−r

une matrice dont ses colonnes sont une base orthonormale de Ker G(x̄).

Il suffit donc de caractériser la condition de croissance quadratique uni-
forme en fonction des conditions optimales de second ordre sous l’hypothèse de
nondégénérescence.

Dans ce contexte, notre condition optimale nécessaire améliore les condi-
tions nécessaires connues sur deux points : elle considère un terme quadratique
additionnel associé à la géométrie du cône des matrices semidéfinies négatives,
et le cône des directions critiques dont la condition est satisfaite est plus grand
que ceux considérés antérieurement dans la littérature. En effet, considérons la
fonction lagrangienne associée au problème (SDP)

L(x,Y ) := f(x) + G(x) · Y ∀x ∈ IRn, Y ∈ Sm, (13)

et le cône de directions critiques suivant :

C(x̄) := {h ∈ IRn : DG(x̄)h ∈ TSm
− (G(x̄)),∇f(x̄)>h = 0}, (14)

avec TK(A) le cône tangent à l’ensemble K dans le point A ∈ K.

Alors, la condition nécessaire est donnée par le théorème ci-dessous :

Théorème. Soient x̄ une solution local de (SDP) et Ȳ son multiplicateur de
Lagrange. Si (x̄,Ȳ ) est une solution fortement régulière (des conditions de pre-
mier ordre associées à (SDP)), alors x̄ est nondégéneré et la condition du second
ordre suivante est satisfaite :

h>∇2
xxL(x̄,Ȳ )h + h>H(x̄,Ȳ )h > 0, ∀h ∈ Sp(C(x̄)) \ {0}. (15)

où Sp(C) := IR+(C − C) est l’espace vectoriel généré par l’ensemble C, et les
composants de la matrice H(x̄,Ȳ ) sont

H(x̄,Ȳ )ij := −2Ȳ · ([DxiG(x̄)]G(x̄)†[Dxj G(x̄)]). (16)

avec A† :=
∑

i;λi 6=0 λ−1
i qiq

>
i la matrice pseudo-inverse de A =

∑
i λiqiq

>
i (sa

décomposition spectrale).

Nous pensons que la condition (15) est aussi suffisante, pourtant, la condi-
tion optimale suffisante qu’on a montré ne considère pas le terme quadratique
décrit par (16), et en plus, le cône des directions critiques de cette condition suf-
fisante est plus petit que celui de la condition nécessaire. Voyons cette condition
suffisante.

Théorème. Soient x̄ une solution local de (SDP) et Ȳ son multiplicateur de
Lagrange. Si x̄ est nondégéneré et si la condition de second ordre suivante est
satisfaite :

h>∇2
xxL(x̄,Ȳ )h > 0, ∀h 6= 0; DG(x̄)h · Ȳ = 0, (17)

alors (x̄,Ȳ ) est une solution fortement régulière.
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On a donc un écart entre les conditions optimales nécessaires et suffisantes.
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A Global Algorithm for
Nonlinear Semidefinite Programming 1

Rafael Correa 2 & Héctor Ramı́rez C. 3

Abstract. In this paper we propose a global algorithm for solving nonli-
near semidefinite programming problems. This algorithm, inspired in the classic
SQP (sequentially quadratic programming) method, modifies the S-SDP (se-
quentially semidefinite programming) local method by using a nondifferentiable
merit function combined with a line search strategy.

1 Introduction

We consider the nonlinear programming problem

(P)
minimize f(x)
subject to A(x) ¹ 0,

h(x) = 0,

where x ∈ IRn,A is a smooth function whose values are symmetric matrices, ¹
denotes the negative semidefinite order (that is, A ¹ B if and only if A−B is a
negative semidefinite matrix), h is a smooth vector function with values in IRp,
and f is the smooth objective function. The smoothness of all these functions
is specified at each statement.

This problem becomes interesting when the linear matrix formulation [23]

(LMI) minimize f(x) = cT x
subject to A(x) = A0 +

∑m
i=1 xiAi ¹ 0

does not give a satisfactory model for certain problems, particularly those from
control theory [1, 5, 8, 9].

This paper is organized as follows. In section 2 the optimality and constraint
qualification conditions for problem (P) are presented. The results contained in
this section are adaptations of known results (see [17, 21]). Here only the opti-
mality conditions that are useful in our context are discussed. Other conditions

1. Accepted for publication in SIAM J. Opt. (in revised form) September 6, 2003.
2. Centre for Mathematical Modelling, UMR 2071, University of Chile-CNRS, casilla 170-3,

Santiago 3, Chile (rcorrea@dim.uchile.cl).
3. Centre for Mathematical Modelling, UMR 2071, University of Chile-CNRS & Depart-

ment of Mathematical Engineering, University of Chile, casilla 170-3, Santiago 3, Chile (hra-
mirez@dim.uchile.cl).
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2. OPTIMALITY CONDITIONS REVIEW

can be found in [2, 6]. In Section 3 we demonstrate some exactness results as-
sociated with the Lagrangian, the augmented Lagrangian and the Han penalty
function. The first one is well known and we review it to make our exposi-
tion self-contained. The exactness of the augmented Lagrangian and the Han
penalty function are extensions of the corresponding classical mathematical pro-
gramming results [3, 15]. In Section 4 we propose a global S-SDP (sequentially
semidefinite programming) algorithm and prove its convergence. The conver-
gence of a local S-SDP algorithm has been proved by Fares, Noll, and Apkarian
[9]. Other works concerning the global convergence of methods for solving opti-
mization programs with nonlinear matrix inequalities constraints are [8, 16].

1.1 Notations

Throughout we denote by Sm the set of all symmetric matrices of dimension
m, by Sm

+ the set of all symmetric positive semidefinite matrices, and by Sm
++

the set of all symmetric positive definite matrices. The sets Sm
− and Sm

−− are
defined similarly. For all these sets of matrices we use the trace product 〈A,B〉 =
Tr(AB), and the Frobenius norm ‖A‖Fr =

√
Tr(A2). For a given matrix A,

λj(A) denotes its jth eigenvalue in nonincreasing order and A+ denotes the
matrix defined by

A+ := P diag((λ1)+,...,(λm)+)PT , (1.1)

where (λ)+ = max{0,λ} and P is the matrix in the spectral decomposition
A = P diag(λ1,...,λm)PT . It is easy to see that A+ is the orthogonal projection
of A on Sm

+ .

Given a matrix-valued function A(·) we will use the notation

DA(x∗) =
(

∂A(x∗)
∂xi

)n

i=1

=
(

∂A(x∗)
∂x1

,...,
∂A(x∗)

∂xn

)T

for its differential operator evaluated at x∗. This notation comes from the fact
that

DA(x∗)y =
n∑

i=1

yi
∂A(x∗)

∂xi
∀y ∈ IRn. (1.2)

Finally, if we define the linear operator V from IRn to Sm by V y =
∑n

i=1 yiVi,
where Vi ∈ Sm for all i ∈ {1,...,n}, we have for the adjoint operator V ∗ the
formula

V ∗Z = (Tr(V1Z),...,Tr(VnZ))T ∀Z ∈ Sm. (1.3)

2 Optimality Conditions Review

In this section we state the first- and second-order optimality conditions
for (P) and discuss their implications. To this end, we consider the Lagrangian
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L : IRn × Sm × IRp → IR of problem (P) defined by

L(x,Z,λ) = f(x) + Tr(ZA(x)) + λT h(x). (2.1)

2.1 First order optimality conditions

The Karush–Kuhn–Tucker necessary optimality conditions for a feasible
point x∗ of (P) are given by the existence of Z∗ ∈ Sm and λ∗ = (λ∗1,...,λ∗p)T ∈
IRp such that

(KKT)
∇f(x∗) + DA(x∗)∗Z∗ +

p∑

j=1

λ∗j∇hj(x∗) = 0

Tr(Z∗A(x∗)) = 0
Z∗ º 0.

The pair (Z∗,λ∗) is called the (KKT)-multiplier associated with x∗. The com-
plementarity condition Tr(Z∗A(x∗)) = 0 has the following two useful equivalent
forms:

λj(Z∗)λj(A(x∗)) = 0 ∀ j ∈ {1,...,m} (2.2)

and
Z∗A(x∗) = 0. (2.3)

Both forms are easily obtained from the Von Neumann–Theobald inequality :

Tr(AB) ≤
m∑

j=1

λj(A)λj(B), (2.4)

where the equality holds if and only if there is a matrix P such that P−1AP
and P−1BP are diagonal [22, 24].

Condition (2.2) allows us to define the strict complementarity condition in
(KKT) as follows

λj(Z∗) = 0 if and only if λj(A(x∗)) < 0 ∀ j ∈ {1,...,m}. (2.5)

As is well known, the (KKT) conditions are not a consequence of the optima-
lity of x∗, and to ensure this consequence, we must assume an extra condition.
In this paper, we will use Robinson’s constraint qualification condition [18]

0 ∈ int
{( A(x∗)

h(x∗)

)
+

(
DA(x∗)
∇h(x∗)

)
IRn −

(
Sm
−
{0}

)}
, (2.6)

where intC denotes the topological interior of the set C. A direct consequence
of [12, Chapter 3, Prop. 2.1.12] is the equivalence between condition (2.6) and
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the Mangasarian–Fromovitz constraint qualification condition

{∇hj(x∗)} is linearly independent, and (2.7a)

∃d̄ ∈ IRn s. t.
{ ∇h(x∗)d̄ = 0

and A∗(d̄) ≺ 0, (2.7b)

where A∗ : IRn → Sm is the linear affine function defined by A∗(y) := A(x∗) +∑n
i=1 yi

∂A(x∗)
∂xi

. It can be shown that under (2.6) the set of (KKT) Lagrange
multipliers is nonempty and also bounded [14].

We will also consider the transversality condition which asks that the func-
tion ψ : IRn → IRp × Sr defined by

ψ(d) :=

(
(∇h(x∗)d)T ,NT

n∑

i=1

di
∂A(x∗)

∂xi
N

)T

(2.8)

be surjective, where
N = [v1...vr] (2.9)

is the matrix whose columns vi are an orthonormal basis of Ker A(x∗). We
set N = 0 if Ker A(x∗) = {0}. This condition has originally been defined
in the context of smooth manifolds [10] and implies the Robinson’s constraint
qualification condition (2.7); moreover, (2.8) guarantees the uniqueness of the
(KKT)-multiplier. Unfortunately, this condition can be very strong, because it
forces n ≥ p + r(r + 1)/2, where r = dim[KerA(x∗)].

It is clear that the transversality condition (2.8) cannot hold when the matrix
A(x∗) has a diagonal block structure. Indeed, in this case the multiplier Z∗ is not
unique, and therefore the transversality condition does not hold. This difficulty
can be easily avoided if we assume the transversality condition for each block
of A(x∗). For example, if A(x∗) has two diagonal block structure with sizes m1

and m2, then the mapping ψ should be considered into the cross-product space
Sm1 × Sm2 rather then the larger space Sm1+m2 . For simplicity of notation we
only consider the case where A(x∗) is a one-block matrix. More details about
the transversality condition in the semidefinite programming context can be
seen in [21] and the references within.

2.2 Second-Order sufficient conditions

In this section we introduce only the second-order sufficient conditions that
will be used in this paper as well as results that involve transversality condition
(2.8). We assume that f , h, and A are twice differentiable at x∗.

Given a set B ⊆ IRm we define

Sm
− (B) := {M ∈ Sm : wT Mw ≤ 0 ∀w ∈ B}. (2.10)
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Proposition 2.1. A sufficient condition to obtain the isolated optimality of x∗
for problem (P), is the existence of (Z∗,λ∗) ∈ Sm × IRp such that (x∗,Z∗,λ∗)
satisfies (KKT) and

dT∇2
xxL(x∗,Z∗,λ∗)d > 0 (2.11)

for all nonzero vectors d ∈ C(x∗), where

C(x∗) =
{

d ∈ IRn :
n∑

i=1

di
∂A(x∗)

∂xi
∈ Sm

− (KerA(x∗)),

∇h(x∗)d = 0 and ∇f(x∗)T d = 0
} (2.12)

is a cone of critical directions for problem (P) at the point x∗.

Proof. See, for example, [19, Thm. 2.2] and note that

TSm
− (A(x∗)) = Sm

− (KerA(x∗)).

¥
Remark 2.2. Condition (2.11) can be far from necessary. For instance, in the
problem (LMI), mentioned in the introduction, we always have ∇2

xxL = 0; thus,
if C(x∗) 6= {0}, condition (2.11) never holds. This is because condition (2.11)
does not consider the geometry of Sm

− . This kind of problem was the motivation
for works such as [2, 6, 21] in the 1990s. We will just consider the nonlinear
problem (P), where the algorithm S-SDP makes sense.

Let us define now a larger cone of critical directions C ′(x∗,Z∗), which consi-
ders the (KKT)-multiplier Z∗ associated with the matrix inequality A(x) ¹ 0,
as follows:

C ′(x∗,Z∗) :=

{
d ∈ IRn : Im Z∗ ⊆ Ker Pr

n∑

i=1

di
∂A(x∗)

∂xi
and ∇h(x∗)d = 0

}
,

(2.13)
where Pr is the orthogonal projection in IRm over Ker A(x∗). Note that Pr =
NNT with N defined in (2.9).

The next proposition relates both cones of critical directions and the function
ψ used in the tranversality condition.
Proposition 2.3. Let x∗ be a solution of (P) and (Z∗,λ∗) be a (KKT)-multiplier.
Let us also consider the function ψ, defined in (2.8), and the cones of critical
directions defined above. Then

Ker ψ ⊆ C(x∗) ⊆ C ′(x∗,Z∗), (2.14)

with equality when the strict complementarity condition (2.5) holds.

Proof. First, note that we can write (2.3) in the equivalent form

Z∗ = Nφ∗NT , (2.15)
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with φ∗ ∈ S+
r and r = dim Ker A(x∗). Then, to prove the first inclusion in

(2.14), it is sufficient to show that ∇f(x∗)T d = 0. This comes from the first
equation in (KKT) and the equality

Tr

(
Z∗

n∑

i=1

di
∂A(x∗)

∂xi

)
= Tr

(
φ∗NT

n∑

i=1

di
∂A(x∗)

∂xi
N

)
. (2.16)

For the second inclusion, if d ∈ C(x∗) then ∇f(x∗)T d = 0 and ∇h(x∗)d = 0,
and we obtain from (2.16) and the first equation in (KKT) that

Tr(φ∗NT
n∑

i=1

di
∂A(x∗)

∂xi
N) = 0.

Since
∑n

i=1 di
∂A(x∗)

∂xi
∈ Sm

− (Ker A(x∗)), we see that NT
∑n

i=1 di
∂A(x∗)

∂xi
N ∈ S−r ,

and using (2.4), we deduce from the last equality that

NT
n∑

i=1

di
∂A(x∗)

∂xi
Nφ∗ = 0, (2.17)

which is equivalent to

Pr
n∑

i=1

di
∂A(x∗)

∂xi
Z∗ = NNT

n∑

i=1

di
∂A(x∗)

∂xi
Nφ∗NT = 0, (2.18)

and we conclude that d ∈ C ′(x∗,Z∗).

If, in addition, we assume the strict complementarity condition (2.5), we
have that φ∗ is nonsingular, and from the equivalence between (2.18) and (2.17)
we deduce the converse inclusion C ′(x∗,Z∗) ⊆ Ker ψ. ¥

A direct consequence of propositions 2.1 and 2.3 is the following stronger
second-order sufficient condition for optimality.
Proposition 2.4. Under the hypotheses of Proposition 2.1, where the critical
cone C(x∗) is replaced by C ′(x∗,Z∗), the point x∗ is an isolated local minimum
of (P).

3 Exact Penalty Functions

A pair (x∗,y∗) in the product set X × Y is said to be a saddle-point of the
function ϕ : X × Y → IR on X × Y if

ϕ(x∗,y) ≤ ϕ(x∗,y∗) ≤ ϕ(x,y∗), ∀x ∈ X,∀y ∈ Y.

We say that a function Φ : IRn → IR is an exact penalty function for a local
minimum x∗ of (P) if x∗ is a local minimum of Φ too.
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In this section we study different penalty functions associated with problem
(P) and state necessary and sufficient conditions for exactness. A general ap-
proach for the study of exact penalty functions can be found in [4, Sect. 3.4.2].

3.1 The Lagrangian Function in the Convex Case

Let us consider the particular case of (P) when h : IRn → IRp is an affine
function h(x) = h0 +Hx, with H ∈ IRp×n and h0 ∈ IRp, f : IRn → IR is convex,
and A(·) is convex in the sense of the semidefinite order, that is,

A(tx + (1− t)y) ¹ tA(x) + (1− t)A(y) ∀t ∈ [0,1],∀x,y ∈ IRn.

With these assumptions, (P) will be denoted by (PC) (convex problem). For
(x∗,Z∗,λ∗) satisfying (KKT), it can be shown that the function L(·,Z∗,λ∗), defi-
ned in (2.1), is an exact penalty function for (PC). This is an immediate conse-
quence of the fact that (x∗,Z∗,λ∗) is a saddle-point of the Lagrangian function
on IRn × Sm

+ × IRp (see [25, Thm. 4.1.3]). However, it is known that the La-
grangian is no longer an exact penalty function in the nonconvex case, which
is the reason other penalty functions are introduced to obtain exactness results
for our general problem (P).

3.2 The Augmented Lagrangian

We define the augmented Lagrangian function Lσ associated with problem
(P) as

Lσ(x,Z,λ) = f(x) + λT h(x) + Tr(Z[A(x) + (−σ−1Z −A(x))+])

+
σ

2

(
‖h(x)‖2 + ‖A(x) + (−σ−1Z −A(x))+‖2Fr

)
,

(3.1)

where σ > 0 is the penalty parameter. In [20], Lσ is called the proximal aug-
mented Lagrangian.

If (x∗,Z∗,λ∗) is any point satisfying (KKT), from (2.2) it can be shown that

Lσ(x∗,Z∗,λ∗) = f(x∗). (3.2)

In the next theorem we prove that Lσ(·,Z∗,λ∗) is an exact penalty function
when σ is sufficiently large.
Theorem 3.1. Let us assume that f , h, and A are twice differentiable at x∗
and that (x∗,Z∗,λ∗) satisfies (KKT) conditions and the second-order sufficient
condition (2.11). Then, there is a neighborhood V of x∗ and a real σ̄ > 0 such
that for all σ ≥ σ̄, (x∗,Z∗,λ∗) is a saddle-point of Lσ on V × (Sm × IRp).
Moreover,

Lσ(x,Z∗,λ∗) > Lσ(x∗,Z∗,λ∗) ≥ Lσ(x∗,Z,λ)

28



3. EXACT PENALTY FUNCTIONS

for all (x,Z,λ) ∈ V × Sm × IRp with x 6= x∗.

Proof. Since the operator (·)+, defined in (1.1), is the projection on Sm
+ , we

have that

‖(−σ−1Z −A(x))+ − (−σ−1Z −A(x))‖2Fr ≤ ‖W − (−σ−1Z −A(x))‖2Fr (3.3)

for all W ∈ Sm
+ , and then

σ

2
‖(−σ−1Z −A(x))+ +A(x)‖2Fr + Tr(Z[(−σ−1Z −A(x))+ +A(x)])

≤ Tr(Z[W +A(x)]) +
σ

2
‖W +A(x)‖2Fr,

(3.4)

for all W ∈ Sm
+ . Taking x = x∗ and W = −A(x∗) (which belongs to Sm

+ ), we
get

σ

2
‖(−σ−1Z −A(x∗))+ +A(x∗)‖2Fr + Tr(Z[(−σ−1Z −A(x∗))+ +A(x∗)]) ≤ 0;

hence

Lσ(x∗,Z,λ) ≤ f(x∗) = Lσ(x∗,Z∗,λ∗) ∀Z ∈ Sm, ∀λ ∈ IRp,∀σ > 0.

Let us now prove the second inequality. Let B̄ε(x∗) be a closed ball with
center x∗ and radius ε such that f(x) > f(x∗) for all feasible points x ∈ B̄ε(x∗),
x 6= x∗. We prove that for all σ > 0 sufficiently large, x∗ is the unique point
satisfying infx∈B̄ε(x∗) Lσ(x,Z∗,λ∗) = f(x∗). For this purpose, we define the pro-
blem:

ψσ := inf
(x,W ) ∈ B̄ε(x∗) × Sm

A(x) ¹ W

{
f(x) + Tr(Z∗W ) + λT

∗ h(x) +
σ

2
(‖h(x)‖2 + ‖W‖2Fr)

}
,

(3.5)
and from inequality (3.4) we can deduce that

ψσ = inf
x∈B̄ε(x∗)

Lσ(x,Z∗,λ∗). (3.6)

To conclude, we show that (x∗,0,Z∗,0) is a point that satisfies the Karush–
Kuhn–Tucker and the second-order sufficient conditions for the optimization
problem (3.5). The Lagrangian associated with minimization problem (3.5) is

L̃(x,W,Ω,α) := f(x) + Tr(Z∗W ) + λT
∗ h(x) +

σ

2
‖h(x)‖2

+
σ

2
‖W‖2Fr +

α

2
(‖x− x∗‖2 − ε2) + Tr(Ω(A(x)−W )),

(3.7)
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and the (KKT) conditions are

∇f(x) +∇h(x)T λ∗ + σ∇h(x)T h(x) + α(x− x∗) + DA(x)∗Ω = 0
Z∗ + σW = Ω

α
2 (‖x− x∗‖2 − ε2) = 0
Tr(Ω(A(x)−W )) = 0

α ≥ 0, Ω º 0
‖x− x∗‖ − ε ≤ 0
A(x)−W ¹ 0.

It can be easily seen that (x,W,Ω,α) = (x∗,0,Z∗,0) satisfies all these condi-
tions.

In what follows we will state the second-order sufficient condition

(dT ,U)∇2L̃(x∗,0,Z∗,0)
(

d
U

)
> 0, (3.8)

for any nonzero vector (d,U) ∈ C̃(x∗,0).

The Hessian of L̃ with respect to the variables (x,W ) at (x∗,0,Z∗,0) is given
by

∇2
(x,W )L̃(x∗,0,Z∗,0) =

( H̃ 0
0 σIm

)
, (3.9)

with

H̃ := ∇2f(x∗) +
p∑

j=1

λ∗j∇2hj(x∗) +
[
Tr(Z∗

∂2A(x∗)
∂xi∂xj

)
]

i,j

+σ

p∑

j=1

hj(x∗)∇2hj(x∗) + σ∇h(x∗)T∇h(x∗),

(3.10)

and the cone of critical directions for problem (3.5) is

C̃(x∗,0) =
{

(d,U) ∈ IRn × Sm : ∇f(x∗)T d + Tr(Z∗U) + λT
∗∇h(x∗)d = 0,

n∑

i=1

di
∂A(x∗)

∂xi
− U ∈ Sm

− (Ker A(x∗))
}

.

Thus, condition (3.8) can be written as

dT∇2f(x∗)d+
p∑

j=1

λ∗jdT∇2hj(x∗)d+dTHd+σ‖∇h(x∗)d‖2+σ‖U‖2Fr > 0 (3.11)

for any nonzero vector (d,U) ∈ C̃(x∗,0), where H :=
[
Tr(Z∗

∂2A(x∗)
∂xi∂xj

)
]

i,j
.
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The case when d = 0 and U 6= 0 is trivial. Another easy case is when we
take (d,U) ∈ C̃(x∗,0) satisfying either ‖U‖Fr > δ‖d‖ or ‖∇h(x∗)d‖ > δ‖d‖ for
some fixed δ > 0, indeed

dT∇2f(x∗)d+
p∑

j=1

λ∗jdT∇2hj(x∗)d + dTHd + σ(‖∇h(x∗)d‖2 + ‖U‖2Fr)

> dT∇2f(x∗)d +
p∑

j=1

λ∗jdT∇2hj(x∗)d + dTHd + σδ2‖d‖2

≥ −‖∇2f(x∗) +
p∑

j=1

λ∗j∇2hj(x∗) +H‖‖d‖2 + σδ2‖d‖2,

and (3.11) is verified by taking σ ≥ σδ := 1
δ2 ‖∇2f(x∗)+

∑p
j=1 λ∗j∇2hj(x∗)+H‖.

Finally, we show that such a δ > 0 always exists. We proceed by contradic-
tion. Let us suppose that there is a sequence {(dk,Uk)} in C̃(x∗,0) such that

‖Uk‖Fr ≤ 1
k
‖dk‖, (3.12)

‖∇h(x∗)dk‖ ≤ 1
k
‖dk‖ (3.13)

and

dT
k∇2f(x∗)dk +

p∑

j=1

λ∗jdT
k∇2hj(x∗)dk + dT

kHdk ≤ 0 ∀k. (3.14)

If we divide (3.14) by ‖dk‖2 and suppose that dk

‖dk‖ → d̂, by taking the limit in
this inequality we get

d̂T∇2
xxL(x∗,Z∗,λ∗)d̂ ≤ 0, (3.15)

which means, by Proposition 2.1, that d̂ /∈ C(x∗).

On the other hand, since (dk,Uk) ∈ C̃(x∗,0), we have that

vT
n∑

i=1

dki
∂A(x∗)

∂xi
v ≤ vT Ukv ∀v ∈ Ker A(x∗),∀k,

and using the fact that ‖Uk‖Fr ≥ vT Ukv
‖v‖2 , for all v 6= 0, together with (3.12) we

obtain

vT
n∑

i=1

dki
∂A(x∗)

∂xi
v ≤ 1

k
‖dk‖‖v‖2 ∀v ∈ Ker A(x∗)∀k,

which implies that
n∑

i=1

d̂i
∂A(x∗)

∂xi
∈ Sm

− (Ker A(x∗)).
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The equality∇h(x∗)d̂ = 0 follows directly from (3.13) and since∇f(x∗)T dk =
−Tr(Z∗Uk)−λT

∗∇h(x∗)dk, from (3.12) and (3.13) we obtain that∇f(x∗)T d̂ = 0.
In this way we conclude that d̂ ∈ C(x∗), which contradicts (3.15). ¥

3.3 The Han penalty function

We now define another penalty function associated with problem (P), which
will be a key issue in the global algorithm that we will describe in section 4. For
σ > 0 we define

θσ(x) = f(x) + σ(λ1(A(x))+ + ‖h(x)‖). (3.16)

This function comes from the Han penalty function in mathematical program-
ming [3, 11]. In the rest of this section we will prove some properties of θσ and
its exactness.

In order to compute the directional derivative θ′σ(x; d), we start by recalling
a particular chain rule.
Lemma 3.2. Let ϕ : IRn → IRm be a function with directional derivative
ϕ′(x; d) = limt→0+ t−1(ϕ(x + td)− ϕ(x)), and let φ : IRm → IRp be a Lipschitz
function in a neighborhood of ϕ(x) with directional derivative φ′(ϕ(x); ϕ′(x; d)).
Then, the function (φ ◦ ϕ) has a directional derivative at x in the direction d
given by

(φ ◦ ϕ)′(x; d) = φ′(ϕ(x); ϕ′(x; d)). (3.17)

Proof. By using the usual notation o(t) for a function verifying limt→0 t−1o(t) =
0, we can write for t > 0

t−1[(φ ◦ ϕ)(x + td)− (φ ◦ ϕ)(x)] = t−1[φ(ϕ(x) + tϕ′(x; d) + o(t))− (φ ◦ ϕ)(x)]

= t−1[φ(ϕ(x) + tϕ′(x; d))− φ(ϕ(x))] + t−1o(t),

and we can conclude by taking the limit when t → 0+. ¥

As a consequence of this result we give in the next lemma the directional
derivative of the penalty function θσ.
Lemma 3.3. If f , h, and A in (3.16) have directional derivatives at x in the
direction d, where x is a feasible point for (P), then θσ also has a directional
derivative that can be characterized by

θ′σ(x; d) = f ′(x; d) + σ(λ1(NTA′(x; d)N)+ + ‖h′(x; d)‖),
where N is the matrix defined in (2.9).

Proof. Let x be a feasible point. From Lemma 3.2, we have that

θ′σ(x; d) = f ′(x; d) + σ([λ1(A(·))+]′(x; d) + ‖h′(x; d)‖)
= f ′(x; d) + σ([λ1(·)+]′(A(x);A′(x; d)) + ‖h′(x; d)‖).
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For A ∈ Sm
− and B ∈ Sm, we easily check that

[λ1(·)+]′(A; B) =
{

0 if λ1(A) < 0
λ′1(A; B)+ if λ1(A) = 0,

and using formula (2.8) in [7] for the calculus of the directional derivative of
λ1(A) = max{xT Ax : ‖x‖ = 1}, we obtain that λ′1(A;B) = max{xT Bx : ‖x‖ =
1 and xT Ax = λ1(A)}. Then, if λ1(A) = 0, we can write λ′1(A; B) = λ1(NT BN)
where N is a matrix whose columns are an orthonormal base of Ker A.

We conclude replacing A by A(x), B by A′(x; d) and recalling that N is the
matrix 0 when λ1(A) < 0. ¥
Remark 3.4. If f , h, and A are differentiable at x, then

θ′σ(x; d) = ∇f(x)d + σ

(
λ1

(
NT

n∑

i=1

di
∂A(x)
∂xi

N

)

+

+ ‖∇h(x)d‖
)

.

In the following proposition we give a lower bound for the parameter σ in
order to obtain the exactness of θσ.
Proposition 3.5. If x∗ is a feasible point of (P) and θσ has a (strict) local
minimum at x∗, then x∗ is a (strict) local minimum of (P). Furthermore, if
f, h and A are differentiable at x∗ and if the transversality condition (2.8) is
verified, then σ ≥ max{Tr(Z∗),‖λ∗‖}.

Proof. If x∗ is a local minimum of θσ, there is a neighborhood V of x∗ such that
for all x ∈ V we have that θσ(x∗) ≤ θσ(x), and since x∗ is feasible we obtain

f(x∗) = θσ(x∗) ≤ θσ(x) ∀x ∈ V

= f(x) ∀x ∈ V, x feasible,

which means that x∗ is a local minimum of (P). When the minimum x∗ is strict,
the proof is identical.

Now, let us assume that f , h and A are differentiable at x∗ and that the
transversality condition holds. Since x∗ is a local minimum of θσ, we have that
θ′σ(x∗; d) ≥ 0 for all directions d, and using Lemma 3.3 we can write

0 ≤ ∇f(x∗)T d + σ

(
λ1

(
NT

n∑

i=1

di
∂A(x∗)

∂xi
N

)

+

+ ‖∇h(x∗)d‖
)

∀d ∈ IRn.

(3.18)

Let us first consider the case when Ker A(x∗) = {0}. This implies Z∗ = 0
and N = 0; hence from inequality (3.18) and the first equation in (KKT), we see
that σ ≥ λT

∗∇h(x∗)d
‖∇h(x∗)d‖ for all nonzero d ∈ IRn. The surjectivity of ∇h(x∗) shows

that σ ≥ ‖λ∗‖.
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Let us suppose now that Ker A(x∗) 6= {0}. From the first equation in (KKT),
inequality (3.18) and equality (2.15), we can write for all d ∈ IRn

σ

(
‖∇h(x∗)d‖+ λ1

(
NT

n∑

i=1

di
∂A(x∗)

∂xi
N

)

+

)

≥ λT
∗∇h(x∗)d + Tr

(
Z∗

n∑

i=1

di
∂A(x∗)

∂xi

)

= λT
∗∇h(x∗)d + Tr

(
φ∗NT

n∑

i=1

di
∂A(x∗)

∂xi
N

)
.

Then the transversality condition (surjectivity of ψ) allows us to say that

σ(‖v‖+ λ1(W )+) ≥ λT
∗ v + Tr(φ∗W ) (3.19)

for all (v,W ) ∈ IRp × Sr, and we can conclude from the inequality

‖W‖2 :=
√

max{λ2 : λ is an eigenvalue of W} ≥ λ1(W )+

and the equality

‖(λ∗,φ∗)‖D := sup{|λT
∗ v + Tr(φ∗W )| : ‖v‖+ ‖W‖2 = 1} = max{‖λ∗‖, Tr(Z∗)}.

¥

We conclude this section establishing sufficient conditions for exactness of
the Han penalty function θσ. In Proposition 3.7 we consider the convex case
and in theorem 3.8 the general one.

The following useful lemma is a direct consequence of inequality (2.4).
Lemma 3.6. If Z º 0 and σ ≥ max{Tr(Z),‖λ‖}, then L(·,Z,λ) ≤ θσ(·).
Proposition 3.7. Let us consider the convex problem (PC), defined in sec-
tion 3.1, and let us suppose that f , h and A are differentiable at a solution
x∗ of (PC). Then, if (Z∗,λ∗) are (KKT)-multipliers associated with x∗ and
σ ≥ max{Tr(Z∗),‖λ∗‖}, we have that θσ has a global minimum in x∗.

Proof. Let us suppose that (x∗,Z∗,λ∗) satisfies the (KKT) conditions. For the
convex problem (PC), it can be easily seen that L(·,Z∗,λ∗) has a global minimum
at x∗, that is, θσ(x∗) = f(x∗) = L(x∗,Z∗,λ∗) ≤ L(x,Z∗,λ∗) for all x. If σ ≥
max{Tr(Z∗),‖λ∗‖}, from lemma 3.6 we have L(·,Z∗,λ∗) ≤ θσ(·), which leads to
the desired result. ¥
Theorem 3.8. Let us suppose that f , h, and A are differentiable at x∗. Let
(x∗,Z∗,λ∗) be a point that satisfies the (KKT) conditions and the second-order
sufficient condition (2.11). If σ > max{Tr(Z∗),‖λ∗‖}, then θσ has a strict local
minimum in x∗.
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Proof. Taking Z = Z∗ and W = (−A(x))+ = −(A(x))− in (3.4) we have that

r

2

∥∥∥∥∥
(
−Z∗

r
−A(x)

)

+

+A(x)

∥∥∥∥∥

2

Fr

+ Tr

(
Z∗

[(
−Z∗

r
−A(x)

)

+

+A(x)

])

≤ Tr(Z∗A(x)+) +
r

2
‖A(x)+‖2Fr.

(3.20)

Hence, using the Cauchy–Schwarz inequality and the Von Neumann–Theobald
inequality (2.4), we obtain

Lr(x,Z∗,λ∗) ≤ f(x) + λT
∗ h(x) +

r

2
‖h(x)‖2 + Tr(Z∗A(x)+) +

r

2
‖A(x)+‖2Fr

≤ f(x) + ‖h(x)‖
(
‖λ∗‖+

r

2
‖h(x)‖

)

+ λ1(A(x))+


Tr(Z∗) +

r

2

m∑

j=1

λj(A(x)+)


 .

The last inequality follows from λ1(A(x)+) = λ1(A(x))+. Since σ > max{Tr(Z∗),
‖λ∗‖}, for any fixed r > 0 there is a neighborhood Vr of x∗ such that

Lr(x,Z∗,λ∗) ≤ f(x) + σ(‖h(x)‖+ λ1(A(x))+) = θσ(x) ∀x ∈ Vr.

From Theorem 3.1, we know that there is an r̄ > 0 and a neighborhood V̄ of
x∗ where x∗ is a strict minimum of Lr̄(·,Z∗,λ∗). This implies that x∗ is a strict
minimum of θσ on V̄

⋂
Vr̄. ¥

4 Sequentially Semidefinite Programming

In this section we propose a global S-SDP algorithm for solving problem (P).
This algorithm is inspired by the classical sequentially quadratic programming
(SQP). We begin by recalling the local S-SDP algorithm proposed in [9] and its
convergence theorem.

Given an initial point (x0,Z0,λ0) close to a point (x∗,Z∗,λ∗) that satisfies the
(KKT) conditions, we generate a sequence (xk,Zk,λk) by solving the linearized
problem:

(Tk)
minimized∈IRn ∇f(xk)T d + 1

2dT Mkd
subject to Ak(d) ¹ 0,

h(xk) +∇h(xk)d = 0,

where Ak(d) := A(xk)+
∑n

i=1 di
∂A(xk)

∂xi
and the matrix Mk replaces the Hessian

∇2
xxL(xk,Zk,λk), emulating the so-called quasi-Newton methods.
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If dk is the solution of problem (Tk), we define xk+1 = xk + dk. The point
(dk,Zk+1,λk+1) is obtained from the (KKT) conditions for the minimization
problem (Tk), that is

∇f(xk) + DA(xk)∗Zk+1 +∇h(xk)T λk+1 + Mkdk = 0 (4.1a)
Ak(dk) ¹ 0 (4.1b)

h(xk) +∇h(xk)dk = 0 (4.1c)
Zk+1 º 0 (4.1d)

Tr(Zk+1Ak(dk)) = 0 (4.1e)

These equations will be called (KKTk) in the sequel.
Theorem 4.1. Let (x∗,Z∗,λ∗) be a point satisfying the (KKT) conditions and
the second-order sufficient condition (2.11). Suppose that (DA(x∗),∇h(x∗)T )T

has full rank and that Mk → ∇2
xxL(x∗,Z∗,λ∗). Then there is δ > 0 such that if

‖x0 − x∗‖ < δ, ‖(Z0,λ0) − (Z∗,λ∗)‖ < δ and ‖Mk − ∇2
xxL(x∗,Z∗,λ∗)‖ < δ for

all k, the sequence (xk,Zk,λk) generated by the algorithm S-SDP is well defined
and converges superlinearly to (x∗,Z∗,λ∗). The convergence is even quadratic if
Mk −∇2

xxL(x∗,Z∗,λ∗) = O(‖xk − x∗‖+ ‖(Zk,λk)− (Z∗,λ∗))‖.

Our purpose here is to extend the S-SDP algorithm to obtain global conver-
gence. For this, we consider the Han penalty function, defined in (3.16), and an
Armijo line search.

In the following proposition we prove that the solution dk of (Tk) is a descent
direction for θσ at the point xk when Mk is positive definite and σ is sufficiently
large.
Proposition 4.2. Suppose that f, h, and A are C1 functions and that their
derivatives are locally Lipschitz at xk. Using the penalty function θσ, defined in
(3.16), if the point (dk,Zk+1,λk+1) verifies the (KKTk) conditions, written in
(4.1), then

θ′σ(xk; dk) ≤∇f(xk)T dk − σ(λ1(A(xk))+ + ‖h(xk)‖)
=− dT

k Mkdk + Tr(Zk+1A(xk))

+ λT
k+1h(xk)− σ(λ1(A(xk))+ + ‖h(xk)‖).

(4.2)

Furthermore, if σ ≥ max{Tr(Zk+1),‖λk+1‖} we obtain

θ′σ(xk; dk) ≤ −dT
k Mkdk. (4.3)

Proof. Let us fix t ∈ [0,1]. By (4.1c) we have that

‖h(xk) + t∇h(xk)dk‖ = (1− t)‖h(xk)‖,
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and by the convexity of λ1(·)+ and (4.1b) we obtain

λ1(Ak(tdk))+ = λ1

(
A(xk) + t

n∑

i=1

dki
∂A(xk)

∂xi

)

+

≤ (1− t)λ1(A(xk))+ + tλ1(Ak(dk))+ = (1− t)λ1(A(xk))+.

From these relations we have that

‖ · ‖′(h(xk);∇h(xk)dk) = −‖h(xk)‖, (4.4a)

(λ1(·)+)′
(
A(xk);

n∑

i=1

dki
∂A(xk)

∂xi

)
≤ −λ1(A(xk))+. (4.4b)

and applying Lemma 3.2 we get

θ′σ(xk; dk) ≤ ∇f(xk)T dk − σ(λ1(A(xk))+ + ‖h(xk)‖),
and from (4.1a), (4.1c) and (4.1e) we obtain

θ′σ(xk; dk) ≤ Tr(Zk+1A(xk))+h(xk)T λk+1−σ(‖h(xk)‖+λ1(A(xk))+)−dT
k Mkdk.

Finally, if σ ≥ max{Tr(Zk+1),‖λk+1‖}, the Cauchy–Schwarz inequality and
the Von Neumann–Theobald inequality (2.4) lead to the result. ¥

We are now ready to describe the iteration k of the global algorithm for
solving problem (P). We suppose that xk is known and that Mk is positive
definite.

Step 1. Compute a point (dk,Zk+1,λk+1) satisfying (KKTk) in (4.1).

Step 2. Compute σk satisfying σk ≥ max{Tr(Zk+1),‖λk+1‖} in such a way
that the sequence {σk} satisfies the following properties:

(a) σk ≥ max{Tr(Zk+1),‖λk+1‖}+ σ̄.
(b) For all k ≥ k1,

if σk−1 ≥ max{Tr(Zk+1),‖λk+1‖}+ σ̄, then σk = σk−1.
(c) If {σk} is bounded, then σk is modified just finitely many times,

(4.5)

where k1 ∈ IN and σ̄ > 0 are fixed parameters. A simple way to update σk

verifying (4.5) is defining σk = max{1.5σk−1, max{Tr(Zk+1),‖λk+1‖}+σ̄} when
(b) fails.

Step 3. The step length αk is computed by using an Armijo search rule,
that is, αk is an approximation of the maximum α ∈ (0,1] which verifies

θσk
(xk + αdk) ≤ θσk

(xk) + wα∆k, (4.6)

where 0 < w < 1 and ∆k is the upper bound of θ′σk
(xk; dk) given in (4.2). More

precisely, αk can be computed as follows:

Step 0. j := 0, rj := 1.
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Step 1. If (4.6) is satisfied with α = rj then αk = rj and stop the line search.

Step 2. If not, take rj+1 = βrj , increase j by one and go to Step 1 with β ∈ (0,1)
a fixed constant.

Step 4. Define xk+1 = xk + αkdk.

Remark 4.3. The existence of the Armijo step α satisfying (4.6) is a conse-
quence of inequality (4.3) and the fact that Mk is chosen positive definite.
Theorem 4.4. Let us suppose that f, h, and A are C1 functions and that their
derivatives are Lipschitz. If we consider the global algorithm described in the
steps 1 to 4 and suppose that the matrices Mk are chosen positive definite such
that the sequence {Mk} is bounded together with the sequence {M−1

k }. Then one
of the following situations occurs for the sequence {(xk,Zk+1,λk+1)}:

1. The sequences {σk} and {(Zk+1,λk+1)} are unbounded.
2. There is an index k2 such that σk is constant for all k ≥ k2. In this case

one of the following situations occurs:
(a) θσk

(xk) → −∞, or
(b) ∇xL(xk,Zk+1,λk+1) → 0, h(xk) → 0, λ1(A(xk))+ → 0, and

Tr(Zk+1A(xk)) → 0.

Proof. 1. The equivalence between the unboundedness of {σk} and {(Zk+1,λk+1)}
is direct from (4.5) Parts (a) and (b).

2. Let us suppose that {σk} is bounded. By (4.5)(c) we know that there is
an index k2 such that σk = σ := σk2 for all k ≥ k2.

To conclude we prove that if (a) is not true then (b) holds. From (4.6), with
α = αk, we know that the sequence {θσk

(xk)} is decreasing for all k ≥ k2, and
then θσk

(xk) ≥ C for some constant C, obtaining again from (4.6) the limit
αk∆k → 0.

All limits in (b) are consequences of the existence of ᾱ > 0 such that αk ≥
ᾱ for all k ≥ k2, which implies from the limit above that ∆k → 0. Indeed,
inequalities

∆k ≤− dT
k Mkdk + λ1(A(xk))+ Tr(Zk+1)
+ ‖λk+1‖‖h(xk)‖ − σk(λ1(A(xk))+ + ‖h(xk)‖)

≤− dT
k Mkdk + (σk − σ̄)(λ1(A(xk))+ + ‖h(xk)‖)
− σk(λ1(A(xk))+ + ‖h(xk)‖)

prove that

∆k ≤ −dT
k Mkdk − σ̄(λ1(A(xk))+ + ‖h(xk)‖) ≤ 0, (4.7)
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which implies that if ∆k → 0, then

λ1(A(xk))+ → 0 and h(xk) → 0.

Inequality (4.7) also shows that −dT
k Mkdk → 0, and together with the fact

that {M−1
k } is bounded, it is easy to conclude that dk → 0. This, together with

(4.1a) and the boundedness of {Mk}, implies that

∇xL(xk,Zk+1,λk+1) → 0.

Finally, by definition of ∆k we know that

∇f(xk)T dk = ∆k + σk(λ1(A(xk))+ + ‖h(xk)‖) → 0,

and from (4.1a) we see that

Tr

(
Zk+1

n∑

i=1

dki
∂A(xk)

∂xi

)
+ λT

k+1∇h(xk)dk = −dT
k Mkdk −∇f(xk)T dk → 0.

This limit and the equalities (4.1e) and (4.1c), together with the boundedness
of {λk+1}, allow us to write

lim
k→+∞

Tr(Zk+1A(xk)) = lim
k→+∞

−Tr

(
Zk+1

n∑

i=1

dki
∂A(xk)

∂xi

)

= lim
k→+∞

λT
k+1∇h(xk)dk = lim

k→+∞
−λT

k+1h(xk) = 0.

Let us prove now that αk ≥ ᾱ > 0. If αk < 1, by the Armijo search rule,
there is an rj ∈ (0,1] such that αk = βrj and

θσk
(xk + rjdk) > θσk

(xk) + wrj∆k. (4.8)

Let us consider the first-order Taylor expansion

f(xk + rjdk) = f(xk) + rj∇f(xk)T dk + O(r2
j‖dk‖2),

h(xk + rjdk) = h(xk) + rj∇h(xk)dk + O(r2
j‖dk‖2),

= (1− rj)h(xk) + rj(h(xk) +∇h(xk)dk) + O(r2
j‖dk‖2),

A(xk + rjdk) = A(xk) + rj

n∑

i=1

dki
∂A(xk)

∂xi
+ O(r2

j‖dk‖2)

= (1− rj)A(xk) + rj

(
A(xk) +

n∑

i=1

dki
∂A(xk)

∂xi

)
+ O(r2

j‖dk‖2).
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Since rj ≤ 1, from the convexity of λ1(·)+ and the relations (4.1b) and (4.1c)
we obtain

‖h(xk + rjdk)‖ = (1− rj)‖h(xk)‖+ O(r2
j‖dk‖2),

λ1(A(xk + rjdk))+ ≤ (1− rj)λ1(A(xk))+ + O(r2
j‖dk‖2),

which imply from (4.8) the inequality

θσk
(xk) + rj∆k + C1r

2
j‖dk‖2 > θσk

(xk) + wrj∆k,

that is, −(1−w)rj∆k < C1r
2
j‖dk‖2 for some constant C1 > 0. Due to inequality

(4.7), the boundedness of {M−1
k } and the fact that Mk is positive definite, we

see that ∆k ≤ −C2‖dk‖2 for some constant C2 > 0. The last two inequalities
show that

rj ≥ C2

C1
(1− w) > 0,

and the proof is complete. ¥
Remark 4.5. The notion of “global convergence” characterized by the situations
1 and 2 in Theorem 4.4 is fairly standard. However, it should remark that the
“pathological” situations 1 and 2(a) can happen.
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Abstract. In this paper we present penalty and barrier methods for solving general convex

semidefinite programming problems. More precisely, the constraint set is described by a convex

operator that takes its values in the cone of negative semidefinite symmetric matrices. This

class of methods is an extension of penalty and barrier methods for convex optimization to

this setting. We provide implementable stopping rules and prove the convergence of the primal

and dual paths obtained by these methods under minimal assumptions. The two parameters

approach for penalty methods is also extended. As for usual convex programming, we prove

that after a finite number of steps all iterates will be feasible.

1 Introduction.

Let Sm be the space of symmetric real m ×m matrices endowed with the
inner product A ·B = trace(AB) denoting the trace of the matrix product AB,
and let Sm

+ be the cone of positive semidefinite symmetric matrices. Related to
Sm

+ we define the partial ordering º via

A º B ⇔ B ¹ A ⇔ A−B ∈ Sm
+ ∀A,B ∈ Sm.

We denote A Â 0 or 0 ≺ A if A ∈ Sm
++, the cone of positive definite symmetric

m×m matrices. Similar relations can be established for Sm
− and Sm

−−, the cones
of negative semidefinite and definite symmetric m×m matrices, respectively.

1. Submitted to Zeitschrift für Operations Research.
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1. INTRODUCTION.

Throughout the general development, we denote by IRn an arbitrary finite
real dimensional space, and by 〈·,·〉 an arbitrary inner product on IRn.

This paper is focused on convex optimization with constraint sets described
mainly by º convex maps, which are defined as follows: let X be a convex set
in IRn, a map G : X → Sm is said to be º convex if

G(λx + (1− λ)y) ¹ λG(x) + (1− λ)G(y) ∀x,y ∈ X, ∀λ ∈ [0,1].

Simple examples of º convex maps that show the interest of this notion are
affine maps as G(x) = B +

∑n
j=1 xjAj with B, Aj ∈ Sm, or functions of the

form G(x) = B +
∑p

j=1 gj(x)Aj where the gj(·)’s are convex functions while the
Aj ’s are positive semidefinite matrices. Similarly, matrix convex functions, for
instance x2 : Sm → Sm and − log x : Sm

++ → Sm
++, are º convex maps defined

on a matrix space. Other examples, properties and applications of such maps
can be found in the books of Bathia [5, Chapter 5], Bonnans and Shapiro [6,
Chapter 5], and Ben-Tal and Nemirowski [7, Chapter 4].

Throughout this paper, we suppose that G is a º convex map, continuously
differentiable (C1) on IRn, and fi : IRn → IR∪{+∞}, i = 0,1, . . . ,p, are convex,
lower semicontinuous(lsc) functions. Thus, we define

D = {x ∈ IRn : fi(x) ≤ 0, ∀i = 1, . . . ,p}, E = {x ∈ IRn : G(x) ¹ 0}, C = D∩E,

and consider the optimization problem

(P) v = inf{f0(x) | x ∈ C}.

The aim of this paper is to propose penalty and barrier methods for solving
(P). Methods of this kind has been widely developed in nonlinear optimization
(i.e. C = D). In this context, Auslender, Cominetti and Haddou [3] have propo-
sed a unified framework containing most of the methods given in the literature.
The article [3] also provides a systematic way to generate penalty and barrier
methods.

In the case when C = D ∩E and G is an affine map into Sm, Auslender [1]
proposed a general framework for solving (P). Roughly speaking, a systematic
way for building penalty and barrier functions φr with parameter r > 0 going
ultimately to 0 was presented. These functions are defined in order to solve a
family of unconstrained minimization problems of the form

(Pr) vr = inf{f0(x) + φr(x) | x ∈ IRn}.

In [1], the existence of optimal solutions xr of (Pr) is guaranteed by suppo-
sing Slater’s condition and the usual hypothesis that the optimal set S of (P)
is nonempty and compact. Then, it was proven that the generalized sequence
{xr}r>0 is bounded with all its limit points in S.
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In the first part of this paper our objective is to improve the results establi-
shed in [1] in three directions. Firstly, we give an implementable stopping rule
that ensures the obtainment of xr in a finite numbers of steps by any usual
unconstrained descent method. This avoids the exact minimization used in [1]
to obtain xr.

Secondly, here G is no longer affine but º convex. Hence, the convergence
analysis is now much more complicated than in the affine case. Indeed, the
computation of the recession function of φr by a useful formula is actually
no longer available when G is º convex, contrary to the case when G is affine.
Unfortunately, the recession functional analysis is a key element in our approach.
The only known result when G is º convex appears in Graña-Drummond and
Peterzil [16], where they use the classical log-barrier function in semidefinite
programming (SDP) composed with G(x) instead of a more general penalty or
barrier function φr(x). In [16], convergence properties are obtained under a very
restrictive assumption (cf. [16, Assumption 2]). Here, the convergence is proved
for general penalty and barrier functions assuming the two usual hypotheses
in constrained convex programming, that is, the optimal set is nonempty and
compact, and Slater’s condition holds.

A third direction is the improvement of the duality results given in [1] and
[3], where the exact solution of the Fenchel dual problem of (Prk

) is supposed to
be computed ({rk} is a sequence of positive real numbers going to 0). Obviously
this is a theoretical result. Here we associate with xrk

a multiplier Yk given by
an explicit formula. Then we prove that the sequence {Yk} is bounded and that
each limit point of this sequence is an optimal solution of the usual Lagrangian
dual of (P).

Penalty and barrier methods introduced in Section 3 are based on a smooth
procedure and depend on a single parameter. This smooth procedure involves
two possible classes of penalty functions. The first class deals with the indicator
function of IRp

−×Sm
− , while the second class concerns an exact penalty function.

However, when C = D, i.e. when we only consider the classical convex constrai-
ned programming problem, a second approach can be used. This approach is
only applied to functions of the second class mentioned above and its basic idea
consists of distinguishing two parameters: the “smoothness parameter” r and
the penalty weight β. This two-parameter approach has been firstly developed
by Xavier [23] for a specific hyperbolic function and has been also the base of
a recent work of C. Gonzaga and R. A. Castillo [15]. Indeed, C. Gonzaga and
R. A. Castillo introduce a method that uses a smooth approximation θ(·) of
the exact penalty function t → max{0,t} and two parameters, r and β, so that
the penalized function ψr,β(x) := f0(x) + βr

∑m
i=1 θ (fi(x)/r) is minimized at

each iteration. The parameters play different roles: r always decreases in order
to improve the precision of the approximation, and β increases to penalize an
infeasible iteration. Thus, the aim of the second part of this article is to ex-
tend this approach to more general feasible sets C. Particularly, we consider
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C = D ∩ E instead of C = D, that is, a feasible set that involves semidefinite
constraints. Nevertheless, our results are an improvement of those in [15] even
in the nonlinear programming case where C = D. Indeed firstly, we only work
in the convex case which allows us to give an implementable stopping rule (this
is not the case in [15]). Secondly, we do not suppose neither the assumption
named “Hypothesis” in [15] nor the compactness of the feasible set. Finally, we
associate with the primal sequence a dual sequence of multipliers given by an
explicit formula. Hence we prove that this dual sequence is bounded with each
limit point being an optimal solution of the usual Lagrangian dual of (P). Such
a result is not given in [15].

The outline of this paper is as follows. In the next section we recall material
concerning recession functions, convex analysis in SDP and matrix properties
which will be needed in the sequel. In Section 3 we present the penalty and
barrier methods, including the convergence analysis concerning the primal path.
Section 4 deals primarily with the dual path. Finally in Section 5 we consider
the penalty approach with two parameters.

2 Preliminaries

2.1 Asymptotic cones and functions.

We recall some basic notions about asymptotic cones and functions (see for more
details the books of Auslender and Teboulle [4] and of Rockafellar [20]).

The asymptotic cone of a set Q ⊆ IRn is defined to be

Q∞ = {y : ∃tk → +∞, xk ∈ Q with y = lim
k→∞

xk

tk
}. (2.1)

When Q is convex and closed, it coincides with its recession cone

0+(Q) := {y : x + λy ∈ Q ∀λ > 0, ∀x ∈ Q}. (2.2)

Let f : IRn → IR ∪ {+∞} be lower-semicontinuous (lsc) and proper (i.e.,
∃x ∈ dom f := {x : f(x) < +∞}). We recall that the asymptotic function f∞
of f is defined by the relation

epif∞ = (epif)∞,

where epif := {(x,r) : f(x) ≤ r}. As a straightforward consequence, we get (cf.
[4, Theorem 2.5.1])

f∞(y) = inf
{

lim inf
k→+∞

f(xktk)
tk

: tk → +∞, xk → y

}
(2.3)
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where the sequences {tk} and {xk} belong to IR and IRn, respectively.
Remark 2.1. This formula is fundamental in the convergence analysis of un-
bounded sequences and is often used in the following way: let {xk} be an un-
bounded sequence satisfying

lim
k→∞

‖xk‖ = +∞, lim
k→∞

xk

‖xk‖ = d 6= 0.

Suppose that f∞(d) > −∞, and let α ∈ IR so that f∞(d) > α. Then it follows
from (2.3) that for all k sufficiently large we have

f(xk) = f

(
xk

‖xk‖‖xk‖
)
≥ α‖xk‖.

Note also that f∞ is positively homogeneous, that is

f∞(λd) = λf∞(d) ∀d, ∀λ > 0. (2.4)

When f is a convex, lsc, proper function its asymptotic function coincides
with its recession function

0+f(y) = lim
λ→+∞

f(x + λy)− f(x)
λ

∀x ∈ dom f, (2.5)

deducing immediately that

f∞(y) = lim
t→+∞

f(ty)
t

∀y ∈ dom f. (2.6)

Furthermore, if ∂f(x) denotes the (convex) subdifferential of f at x, we also
have

f∞(y) = sup{〈c,y〉 | c ∈ ∂f(x), x ∈ dom ∂f}. (2.7)

Now consider the lsc functions f, g : IRn → IR ∪ {+∞} satisfying f∞(d) >
−∞ and g∞(d) > −∞. Then

(f + g)∞(d) ≥ f∞(d) + g∞(d), (2.8)

with equality in the convex case. Recall that f∞(d) > −∞ always holds when f
is convex, lsc and proper.

When f is convex, a useful consequence of (2.2) and (2.5) is the following

{x : f(x) ≤ λ}∞ = {d : f∞(d) ≤ 0}, (2.9)

for any λ such that {x : f(x) ≤ λ} is nonempty.

The following proposition is crucial in the convergence analysis. The reader
can see a proof in [4, Chapter 3].
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Proposition 2.2. Let C be a closed convex set in IRn and let f : IRn →
IR ∪ {+∞} be a convex, lsc, proper function such that dom f ∩ C is nonempty.
Consider the optimization problem

(P) α = inf{f(x) | x ∈ C},
and let S be the optimal set of (P). Then a necessary and sufficient condition
for S to be nonempty and compact is given by

f∞(d) > 0 ∀d ∈ C∞, d 6= 0,

or equivalently
lim

||x||→∞, x∈C
f(x) = +∞.

In this case (P) is said to be coercive.

In our analysis, the asymptotic function of a composite function is of a
particular interest. More precisely, we will consider the composition between a
penalty or barrier function θ and the º convex function G(·).

Let us consider the following class of functions F introduced in [3] by Aus-
lender, Cominetti, and Haddou

F = {θ : IR → IR ∪ {+∞}, lsc, convex, proper and non-decreasing with

θ∞(1) > 0, lim
t→η−

θ(t) = +∞, and dom θ =]−∞,η[ where η ∈ [0, +∞]}.

We divide F into two subclasses F1 and F2 (cf. [3] and [9], respectively)
defined by

F1 = {θ ∈ F : θ is C1 on dom θ, θ∞(1) = +∞, θ∞(−1) = 0},
F2 = {θ ∈ F : dom θ = IR, θ is C1, θ∞(1) = 1, lim

t→−∞
θ(t) = 0}.

For example, the functions

θ1(u) = exp(u), dom θ = IR → exponential penalty [10],
θ2(u) = − log(1− u), dom θ =]−∞,1[, → modified log barrier [19],
θ3(u) = u

1−u , dom θ =]−∞,1[, → hyperbolic modified barrier [8],
θ4(u) = − log(−u), dom θ =]−∞,0[, → log barrier [12],
θ5(u) = −u−1, dom θ =]−∞,0[ → inverse barrier method [11],

belong to the class F1, while the functions

θ6(u) = log(1 + exp(u)), θ7(u) = 2−1(u +
√

u2 + 4)

belong to F2. Furthermore, systematic ways to generate classes of functions θ
belonging either to F1 or to F2 are described in [3] and [9].
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The following result was proved in [3].
Proposition 2.3. Let θ ∈ F , f be a convex, lsc, proper function with dom θ ∩
f(IRn) 6= ∅ and consider the composite function

g(x) = θ(f(x)) if x ∈ dom f, +∞ otherwise.

Then the function g is a convex, lsc, proper function and we have

g∞(d) = θ∞(f∞(d)) if d ∈ dom f∞, +∞ otherwise.

2.2 Convex Analysis over the cone of symmetric semidefinite po-
sitive matrices

Let Sm be equipped with the inner product A · B := trace(AB) where
trace(A) denotes the trace of the matrix A. Let A ∈ Sm with the eigenvalue
decomposition A = QΛQt. Thus Q is an orthogonal matrix whose columns
qi, i = 1, . . . ,m, are the orthonormalized eigenvectors of A, and Λ is a diagonal
matrix whose entries λi(A), i = 1, . . . ,m, are the eigenvalues of A in nonincrea-
sing order.

Let ci(A) := qiq
t
i . The spectral decomposition of A can be written as

A =
m∑

i=1

λi(A)ci(A).

Now let g : IR → IR ∪ {+∞}. For any A ∈ Sm such that λi(A) ∈ dom g for
each i, we set

g◦(A) :=
m∑

i=1

g(λi(A))ci(A), (2.10)

the usual matrix function associated with g. We are particularly interested here
in the function Ψg : Sm → IR ∪ {+∞} defined by

Ψg(A) =
m∑

i=1

g(λi(A)) if λi(A) ∈ dom g for each i, +∞ otherwise, (2.11)

or equivalently

Ψg(A) = trace(g◦(A)) if λi(A) ∈ dom g for each i, +∞ otherwise.

The function Ψg is a spectrally defined function and the following properties
hold (see e.g. [2, Proposition 2.2])
Proposition 2.4. Suppose that g ∈ F . Then

(i) Ψg is a proper, lsc, convex function.
(ii) domΨg is open.
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(iii) If g is C1 on dom g, then Ψg is C1 on domΨg with ∇Ψg(A) = (g′)◦(A),
for all A ∈ domΨg.

(iv) (Ψg)∞(D) = Ψg∞(D), for all D.
(v) For g ∈ F , Ψg is isotone, i.e., A º B ⇒ Ψg(A) ≥ Ψg(B).
(vi) For all D ∈ Sm it holds that

(Ψθ)∞(D) = δSm
− (D), if θ ∈ F1, (2.12)

= Ψa+(D), if θ ∈ F2, (2.13)

where δSm
− is the indicator function of Sm

− = −Sm
+ and where a+ =

max(0,a) with a ∈ IR.

Consider the functions θ ∈ F given in Section 2.1 and set L := Ψθ. For
θ ∈ F1, we have the following examples from [1]:

L1(D) = trace(exp D),
L2(D) = − log(det(I −D)) if D ≺ I, +∞ otherwise,
L3(D) = trace((I −D)−1D) if D ≺ I, +∞ otherwise,
L4(D) = − log(det(−D)) if D ≺ 0, +∞ otherwise,
L5(D) = trace(−D−1) if D ≺ 0, +∞ otherwise.

And for θ ∈ F2 we get

L6(D) = log(det(I + exp D)), L7(D) = trace

(
D +

√
D2 + 4I

2

)
.

It is worthwhile to note that L4 is the classical log-barrier function used in
semidefinite programming (see, for example, [13]).

To end this subsection we recall two characterizations of º convexity. First,
it is easy to show that G : IRn → Sm is º convex iff for each u ∈ IRm the map
x → utG(x)u is convex. Then, if in addition G is continuously differentiable
(C1), these last assertions are also equivalent to

utG(y)u ≥ utG(x)u + utDG(x)(y − x)u ∀x,y ∈ IRn, ∀u ∈ IRm. (2.14)

2.3 Matrix Properties Review

We start this section recalling the well-known Debreu’s lemma.
Lemma 2.5. (Debreu’s lemma) Let A ¹ 0, we have that vtBv < 0, for all
v ∈ KerA \ {0} if and only if there exists r > 0 such that B + rA ≺ 0.

Consider a symmetric matrix A ∈ Sm. Let l0(A) and l+(A) be the number of
their null and nonnegative eigenvalues, respectively, and let E(A) ∈ IRm×l0(A)

and E+(A) ∈ IRm×l+(A) be matrices whose columns are orthonormalized eigen-
vectors of A associated with their null and nonnegative eigenvalues, respectively.
The following relations are directly established

Im E(A) = Ker A ⊆ ImE+(A) = ImA+ = Ker A−,
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and hence

l0(A) = dim(Ker A) ≤ l+(A) = dim(Im A+) = dim(Ker A−),

where A+ (A−) denotes the orthogonal projection of A ∈ Sm onto the cone
Sm

+ (Sm
− ) of m×m positive (negative) semidefinite symmetric matrices. This is

given by
A+ := Q diag(λ1(A)+,...,λm(A)+)Qt,

where Q is an orthogonal matrix such that its i-th column is an eigenvector of
A associated with λi(A). Matrix A− is similarly stated.

So, if A ¹ 0, then A = A− obtaining that ImE(A) = Im E+(A) and l0(A) =
l+(A) = dim(Ker A).

When x ∈ IRn, similar relations hold for E(G(x)) and E+(G(x)).
Lemma 2.6. Consider a matrix Ã ¹ 0. If Ak → Ã, then for all k sufficiently
large, we have that l+(Ak) ≤ l0(Ã).

Proof. It is a direct consequence of the continuity of the eigenvalue function
λi(·). Indeed, by definition we have λi(Ã) < 0 for all i = l0(Ã) + 1,...,m. Since
Ak → Ã, it follows that λi(Ak) < 0 for all i = l0(Ã) + 1,...,m and for all k
sufficiently large, i.e., the matrix Ak has at least m−l0(Ã) negatives eigenvalues,
that is, l+(Ak) ≤ l0(Ã). ¥

The next lemma will be very useful in the rest of this article. Its proof
appears in [6, Ex. 3.140] and is included here in order to make this work as
selfcontained as possible.
Lemma 2.7. Consider a matrix Ã ¹ 0. If Ak → Ã, then we can construct a
matrix Ek ∈ IRm×l0(Ã) whose columns are an orthonormal basis of the space
spanned by the eigenvectors associated with the l0(Ã) biggest eigenvalues of Ak,
such that Ek → E(Ã).

Proof. Consider Ẽ := E(Ã) and l̃ := l0(Ã) = l+(Ã) (because Ã ¹ 0). For a
given A, let e1(A),...,el̃(A) be a set of orthonormal eigenvectors of A associated
with their l̃ biggest eigenvalues λ1(A) ≥ ... ≥ λl̃(A). Denote by L(A) the space
spanned by the eigenvectors e1(A),...,el̃(A) and let P (A) be the orthogonal
projection matrix onto L(A). Note that L(Ã) = Im Ẽ = Ker Ã.

It is known that the projection matrix P (A) is a continuous (and even analy-
tic) function of A in a sufficiently small neighborhood of Ã (see, for example, [17,
Theorem 1.8] and [14, Corollary 8.1.11]). Consequently the function F (A) :=
P (A)Ẽ is also a continuous function of A in a neighborhood of Ã, and mo-
reover F (Ã) = Ẽ. It follows that for all A sufficiently close to Ã, the rank of
F (A) is equal to the rank of F (Ã) = Ẽ, i.e., rank F (A) = l̃. It means that
the l̃ columns of F (A) are linearly independent when A is sufficiently close to
Ã. Now let U(A) be a matrix whose columns are obtained by applying the
Gram-Schmidt orthonormalization process to the columns of F (A). The matrix
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U(A) is well defined and continuous in a neighborhood of Ã. Even more, the ma-
trices U(A) satisfy that their columns are orthonormalized, i.e. U(A)tU(A) = Il̃,
and ImU(A) = L(A), for all A sufficiently close to Ã. We also have that
U(Ã) = F (Ã) = Ẽ. Hence the theorem follows by setting Ek := U(Ak). ¥

From Lemmas 2.2 and 2.3 we get directly the following corollary concerning
a feasible set C = {x : G(x) ¹ 0} where G : IRn → Sm is º convex and
continuous.
Corollary 2.8. Consider a point x̄ such that G(x̄) ¹ 0. If xk → x̄, then for all
k sufficiently large, we have that l+(G(xk)) ≤ l0(G(x̄)). Furthermore, we can
construct a matrix Ek ∈ IRm×l0(G(x̄)) whose columns are an orthonormal basis
of the space spanned by the eigenvectors associated with the l0(G(x̄)) biggest
eigenvalues of G(xk), such that Ek → E(G(x̄)).

The notions introduced in this subsection allow us to characterize Slater’s
condition: there exists x0 such that G(x0) ≺ 0, as follows.
Proposition 2.9. Suppose that G is a º convex map C1 on IRn. Then Slater’s
condition is equivalent to Robinson’s constraint qualification condition

for all x̄ such that G(x̄) ¹ 0 there exists h̄ ∈ IRn such that G(x̄)+DG(x̄)h̄ ≺ 0.
(2.15)

Moreover, Robinson’s condition (2.15) is always equivalent to

for all x̄ such that G(x̄) ¹ 0 there exists h̄ ∈ IRn such that

E(G(x̄))tDG(x̄)h̄E(G(x̄)) ≺ 0.
(2.16)

Proof. That Robinson’s condition (2.15) implies Slater’s condition is well-
known and follows directly from the differentiability of G and the convexity
of the set Sm

− . This is true even when G is not º convex. Conversely, Slater’s
condition and inequality (2.14) implies in a straightforward way condition (2.15).
Finally, the equivalence between conditions (2.15) and (2.16) is due to Debreu’s
lemma 2.5. ¥

3 Penalty and barrier methods: description and conver-
gence analysis

For the sake of simplicity we consider here the optimization problem (P)
described in the introduction when C = E, i.e., problem (P) only contains
semidefinite constraints. Then throughout this paper G : IRn → Sm is a º
convex map C1 on IRn, f : IRn → IR is a C1 convex function, and we consider
the optimization problem

(P) v = inf{f(x) | x ∈ C},
where C = {x ∈ IRn : G(x) ¹ 0}.
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Indeed, if we define D = {x ∈ IRn : F (x) ¹ 0} when F (x) is the diagonal
matrix whose entries are given by the functions fi’s (obviously F (·) is a ¹ convex
map), then the constraint set C = D ∩ E is given by a convex operator that
takes its values in Sm

− .

From now on we assume

(A1) The optimal set of (P), denoted by S, is nonempty and compact,

(A2) Slater’s condition holds, i.e. there exists x0 such that G(x0) ≺ 0.

Let r > 0 be a penalty parameter which will ultimately go to 0 and α :
IR+ → IR+ such that

lim
r→0+

α(r) = 0 and lim inf
r→0+

α(r)
r

> 0. (3.1)

We associate with each θ ∈ F the function Ψθ : Sm → IR ∪ {+∞} given by
formula (2.11), and define the function Hr : IRn → IR ∪ {+∞} by

Hr(x) = Ψθ

(
G(x)

r

)
=

m∑

i=1

θ

(
λi(G(x))

r

)
, (3.2)

where λi(A) denotes the i-th eigenvalue in nonincreasing order of A (λ1(A) is
the largest eigenvalue of A).

In this section, we study methods that consist of solving “approximatively”
the unconstrained minimization problems

(Pr) vr = inf{φr(x) | x ∈ IRn}, where φr(x) = f(x)+α(r)Hr(x). (3.3)

It is worthwhile to note that when C = D we recover the methods introduced
in [3].

As in [1, 3], we consider two classes of methods; θ ∈ F1 and θ ∈ F2.

Throughout we denote by Sr the optimal set of (Pr) and assume that

α(r) = r, if θ ∈ F1 and lim
r→0+

α(r)
r

= +∞, if θ ∈ F2. (3.4)

More precisely, we set

rk > 0, εk ≥ 0, γk > 0 with lim
k→∞

εk = lim
k→∞

γk = lim
k→∞

rk = 0. (3.5)

Solving approximatively (Prk
) means to compute xk ∈ IRn such that if we

set ηk := ∇φrk
(xk) = ∇f(xk) + α(rk)∇Hrk(xk) then

||ηk|| ≤ εk, ||ηk|| · ||xk|| ≤ γk. (3.6)
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Note that if the optimal set Sk of (Prk
) is nonempty and compact, then any

usual descent method (gradient type, Newton or quasi-Newton type method)
provides in a finite number of steps a point xk satisfying the stopping rule (3.6).
Consequently, we will prove first that Sk is nonempty and compact. Indeed, it
is true for all k when θ ∈ F1, and for k sufficiently large when θ ∈ F2. The next
proposition will be a key result on this subject, and also for other purposes.
Proposition 3.1. For i = 1, . . . ,m and r > 0, let λ̃i(x) = λi(G(x)), hr

i (x) =
θ
(

λ̃i(x)
r

)
. Then

(i) λ̃i(·) and hr
i (·) are continuous functions on IRn.

(ii) (λ̃i)∞(d) > −∞, for all d.
(iii) (hr

i )∞(d) ≥ 0, for all d.
(iv) λ̃1 is a convex continuous function on IRn and

(λ̃1)∞(d) ≤ 0 iff d ∈ C∞. (3.7)

Furthermore, hr
1 is an lsc proper convex function, and for each d ∈ IRn we

have

(hr
1)∞(d) =

(h1
1)∞(d)

r
=

{
δIR−((λ̃1)∞(d)) if θ ∈ F1,
((λ̃1)∞(d))+

r if θ ∈ F2.
(3.8)

Proof. (i) Since λi(·) and G(·) are continuous, their composition λ̃i(·) is also
continuous. In order to prove that hr

1(·) is continuous, let y = limk→∞ yk, then
since λ̃i(·) is continuous we have λ̃i(yk)

r → λ̃i(y)
r . If (λ̃i)(y)

r /∈ ∂ dom θ then, by

continuity of θ on int dom θ, we have hr
i (yk) → hr

i (y). If λ̃i(y)
r ∈ ∂ dom θ, that

is, λ̃i(y)
r = η, the same limit holds thanks to the property limu→η− θ(u) = +∞.

(ii) Let d′ → d, t → +∞, and let x0 satisfy Slater’s condition (A2). Since G
is º convex, for each u ∈ IRn we get (cf. (2.14))

utG(td′)u ≥ utG(x0)u + utDG(x0)(td′ − x0)u.

Taking u = ui such that ||ui|| = 1 and G(td′)ui = λi(G(td′))ui, this last inequa-
lity yields

λi(G(td′))
t

≥ −||G(x0)||
t

− ||DG(x0)|| ·
∥∥∥∥d′ − x0

t

∥∥∥∥ . (3.9)

Passing to the liminf in (3.9) we obtain

(λ̃i)∞(d) = lim inf
t→∞, d′→d

λi(G(td′))
t

≥ −||DG(x0)|| · ||d||.

(iii) Since θ is nondecreasing we have from (3.9) with G(·)/r instead of G(·)
that

1
t
hr

i (td
′) ≥ 1

t
θ

(
t

r

[
−||G(x0)||

t
− ||DG(x0)|| ·

∥∥∥∥d′ − x0

t

∥∥∥∥
])

.
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Passing to the liminf in this last inequality and using formula (2.3) we get

(hr
i )∞(d) = lim inf

t→∞, d′→d

hr
i (td

′)
t

≥

lim inf
t→∞, u→− 1

r ||DG(x0)||·||d||
θ(tu)

t
= θ∞

(
−1

r
||DG(x0)|| · ||d||

)
,

and, by virtue of the inequality θ∞ ≥ 0, it follows that (hr
i )∞(d) ≥ 0.

(iv) Since λ̃1(x) = max{utG(x)u ; ‖u‖ = 1, u ∈ IRm} and since G is
º convex, we have that λ̃1(·) is convex as a supremum of convex functions.
Furthermore since C = {x : λ̃1(x) ≤ 0}, it follows from (2.9) that C∞ = {d :
(λ̃1)∞(d) ≤ 0} and then equivalence (3.7) holds.

So, by Proposition 2.3 we get that hr
i (·) is lsc, convex and proper. Moreover,

since θ∞ is positively homogeneous, and dom θ∞ is either equal to IR− or IR,
using again Proposition 2.3 we obtain

(hr
1)∞(d) =

1
r
θ∞((λ̃1)∞(d)) if (λ̃1)∞(d) ∈ dom θ∞, +∞ otherwise,

so that

(hr
1)∞(d) =

(h1
1)∞(d)

r
.

Finally, equality (3.8) is a immediately consequence of these formulas and the
definition of θ∞. ¥

Now we proceed to prove that the optimal set Sr is nonempty and compact.
As we mentioned before, this condition is enough to show that the rule defining
the point xk is implementable.
Theorem 3.1. (i) Suppose that either θ ∈ F1, or θ ∈ F2 and f∞(d) ≥ 0 for all
d. Then Sr is nonempty and compact for all r > 0.
(ii) If θ ∈ F2 then Sr is nonempty and compact for all r > 0 sufficiently small.

Proof. (i) By Proposition 3.1 we have (hr
i )∞(d) ≥ 0, for all d, i = 1, . . . ,m and

r > 0, and since φr(x) = f(x) + α(r)
∑m

i=1 hr
i (x) we have from inequality (2.8)

and formula (3.8) that

(φr)∞(d) ≥ f∞(d) +
α(r)

r
(h1

1)∞(d) ∀d. (3.10)

Suppose that θ ∈ F1. We get from (3.10) and Proposition 3.1 Part (iv) that

(φr)∞(d) ≥ f∞(d) if d ∈ C∞, (φr)∞(d) = +∞ otherwise.

Hence, since S is nonempty and compact it follows from Proposition 2.1 that
(φr)∞(d) > 0, for all d 6= 0, which is equivalent to saying that Sr is nonempty
and compact.
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Now suppose that θ ∈ F2 and f∞(d) ≥ 0, for all d. Inequality (3.10) and
Proposition 3.1 Part (iv) imply again that (φr)∞(d) > 0, for all d 6= 0, and the
same conclusion holds.

(ii) Assume that θ ∈ F2. We shall prove that Sr is nonempty and compact
for r > 0 sufficiently small. By contradiction, suppose the existence of sequences
rk → 0+, dk → d 6= 0 such that

f∞(dk) +
α(rk)

rk
(h1

1)∞(dk) ≤ 0.

Due to the lower semicontinuity of f∞ and (h1
1)∞, and the fact that lim infk→∞

α(rk)
rk

= +∞, we apply liminf to the last inequality to obtain (h1
1)∞(d) = 0 and

f∞(d) ≤ 0. However, Proposition 3.1 tells us that (h1
1)∞(d) = 0 is equivalent to

d ∈ C∞ implying that f∞(d) ≤ 0 for some d ∈ C∞, d 6= 0, which is impossible
because S is nonempty and compact. ¥
Remark 3.2. (i) Note that if f is an extended lsc function satisfying that
inf{f(x) |x ∈ IRn} > −∞, then condition f∞(d) ≥ 0, for all d, always holds.

(ii) When θ ∈ F2 and is strictly increasing (which is the case of all the
current examples), we can suppose, without loss of generality, that f∞(d) ≥ 0
for all d. Indeed, if we set g(x) := θ(f(x)), then problem (P) is equivalent to
convex problem

(Ps) α = inf{g(x) | x ∈ C}
in the sense that problems (P) and (Ps) share the same optimal set. This is due
to the strict monotonicity of function θ. Hence condition g∞(d) ≥ 0 for all d,
follows from the fact that θ is nonnegative.
Theorem 3.2. Let {xk} be a sequence satisfying relations (3.6). Then, this
sequence is bounded and each limit point of this sequence is an optimal solution
of (P).

Proof. Let x0 be an arbitrary interior point of C (i.e. x0 satisfies Slater’s condi-
tion (A2)). Since function x → φr(x) = f(x) + α(r)Hr(x) is convex, it follows
from the definition of xk and ηk = ∇φrk

(xk) (cf. (3.6)) that

f(xk) + α(rk)Hrk(xk) ≤ f(x0) + α(rk)Hrk(x0) + 〈ηk,xk − x0〉,
Hence, as a consequence of the monotonicity of θ we get for k sufficiently large

f(xk)+
α(rk)

rk

m∑

i=1

rkθ

(
λi(G(xk))

rk

)
≤ f(x0)+mα(rk)θ(λ1(G(x0)))+〈ηk,xk−x0〉.

(3.11)

First, we proceed to prove that the sequence {xk} is bounded. We argue by
contradiction. Without loss of generality we can assume that

||xk|| → +∞, lim
k→∞

xk

||xk|| = d 6= 0,
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Proposition 3.1 Part (ii) says that (λ̃i)∞(d) > −∞. So, we define εi < (λ̃i)∞(d).
By formula (2.3) (see Remark 2.1) we have for all k sufficiently large

λ̃i(xk) = λ̃i

(
xk

||xk|| ||xk||
)
≥ εi||xk||.

By dividing (3.11) by ||xk|| we obtain from the last inequality

1
||xk||f

(
xk

||xk|| ||xk||
)

+
α(rk)

rk

m∑

i=1

rk

||xk|| θ
(

εi||xk||
rk

)
≤

f(x0)
||xk|| + m

α(rk)
||xk|| θ(λ1(G(x0))+

〈ηk,xk − x0〉
||xk|| .

Taking the limit when k → +∞ and using relations (3.5)-(3.6) and formula (2.3)
we get

f∞(d) + lim
k→∞

α(rk)
rk

m∑

i=1

θ∞(εi) ≤ 0. (3.12)

Now recall that if θ ∈ F1, then α(r) = r, θ∞(−1) = θ∞(0) = 0 and θ∞(1) = +∞.
Then we obtain from (3.12) that

θ∞(εi) = 0. (3.13)

In the case when θ ∈ F2, we have limk→∞
α(rk)

rk
= +∞, θ∞(−1) = θ∞(0) = 0

and θ∞(1) = 1, and therefore (3.13) also holds. Thus, inequality (3.12) implies
that f∞(d) ≤ 0. Furthermore, since θ∞ is positively homogeneous it follows from
(3.13) that εi ≤ 0. Hence, letting ε1 → (λ̃1)∞(d) we get that (λ̃1)∞(d) ≤ 0, which
is equivalent to d ∈ C∞ (cf. Proposition 3.1). This together with f∞(d) ≤ 0 and
d 6= 0 implies a contradiction with the fact that the optimal solution set S is
nonempty and compact.

We have proved that the sequence {xk} is bounded. Now let x be an limit
point of the sequence {xk}. For simplicity of notation, we suppose that x =
limk→∞ xk. We shall show that x is an optimal solution of (P).

Let δ < f(x), δi < λi(G(x)) for all i = 1, . . . ,m. By continuity of functions
f and λi(G(·)), we have for all k sufficiently large that

δ < f(xk), δi < λi(G(xk)) ∀i = 1, . . . ,m.

Then, from inequalities (3.6) and (3.11), and the monotonicity of θ it follows

δ+
α(rk)

rk

m∑

i=1

rkθ

(
δi

rk

)
≤ f(x0)+mα(rk)θ(λ1(G(x0)))+(εk||x0||+γk). (3.14)

On the other hand, the following relations are satisfied (cf. (3.1) and (3.5))

lim
k→∞

εk = lim
k→∞

γk = lim
k→∞

α(rk) = lim
k→∞

rk = 0.
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So, passing to the liminf in (3.14) we get

δ + lim
k→∞

α(rk)
rk

m∑

i=1

θ∞(δi) ≤ f(x0),

which implies that θ∞(δi) = 0, for all i, and also δ ≤ f(x0). In particular,
θ∞(δ1) = 0 which means that δ1 ≤ 0. Hence, by letting δ → f(x) and δ1 →
λ1(G(x)) we deduce that

x ∈ C and f(x) ≤ f(x0) ∀x0 ∈ intC.

Finally, continuity of f implies that f(x) ≤ f(u) for all u ∈ C, that is, x is an
optimal solution of (P). We thus obtain the desired result. ¥

4 Duality Results

We associate with problem (P), defined in Section 3, the following Lagran-
gian functional

L(x,Y ) = f(x) + Y ·G(x) ∀x ∈ IRn, ∀Y ∈ Sm,

as well as the following dual functional

p(Y ) = − inf{L(x,Y ) | x ∈ IRn} if Y º 0, +∞ otherwise.

Thus the (Lagrangian) dual problem of (P) is given by

(D) γ = inf{p(Y ) | Y ∈ Sm}.

As in Section 3, we suppose that f is a C1 convex function, G is º convex
and that Assumptions (A1)− (A2) and (3.4) still hold. Thus, if the primal path
{xk} satisfies the stopping rule (3.6), the convergence Theorem 3.2 still tells us
that the sequence {xk} is bounded and that each of its limit points is an optimal
solution of (P). It is also well known that there is no duality gap between (P)
and (D), and that the set T of optimal solutions of (D) is nonempty and compact
under these assumptions (see e.g. [6, Theorem 5.81]). Furthermore, the matrix
Ȳ º 0 will be an optimal solution of (D) iff there exists x̄ ∈ C such that

∇xL(x̄,Ȳ ) = ∇f(x̄) + DG(x̄)tȲ = 0 and G(x̄) · Ȳ = 0. (4.1)

Note that, for a linear operator Ay :=
∑n

i=1 yiAi with Ai ∈ Sm, as DG(x), we
have for its adjoint operator At the formula:

AtZ = (A1 · Z, . . . ,An · Z)t ∀Z ∈ Sm. (4.2)
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Let

Yk =
α(rk)

rk
(θ′)0

(
G(xk)

rk

)
=

α(rk)
rk

m∑

i=1

θ′
(

λi(G(xk))
rk

)
ek
i (ek

i )t, (4.3)

where (θ′)0 is the matrix function associated with θ′, defined in (2.10), and
ek
i ’s are orthonormal eigenvectors of G(xk) associated with the eigenvalues

λi(G(xk)).

Using the derivation rule given in Proposition 2.4 Part (iii), we get

ηk = ∇f(xk) + DG(xk)tYk. (4.4)

The aim of this section is to prove that the sequence {Yk} is bounded and
that each limit point of this sequence is an optimal solution of the dual problem
(D).
Theorem 4.1. Consider a sequence {xk} satisfying relations (3.6), and let {Yk}
be the sequence defined by formula (4.3). Then, {Yk} is bounded and each of its
limit points is an optimal solution of (D).

Proof. It was proven in theorem 3.2 that the sequence {xk} is bounded and that
each of its limit points is an optimal solution of (P). Let x̄ be a limit point of
{xk} and l̄ := l0(x̄) be the number of the null eigenvalues of G(x̄). For simplicity
we suppose without lost of generality that limk→+∞ xk = x̄.

Now by Lemma 2.7 there exist sequences of orthonormal vectors {ek
i }, i =

1,...,m, which are eigenvectors of G(xk) associated with λi(G(xk)), converging
toward ēi such that the set {ēi : i = 1,...,m} is an orthonormal eigenbasis of the
matrix G(x̄).

In order to prove that the sequence {Yk} is bounded, we will show that each
sequence

{
α(rk)

rk
θ′

(
λi(G(xk))

rk

)}
is bounded. Particularly, we will show that, for

all i = l̄ + 1,...,m, these sequences converge to 0. This will be very useful to
conclude that any limit point of {Yk} is a solution of (D).

First let us prove that
lim

t→−∞
θ′(t) = 0. (4.5)

Indeed, since θ′ is nonnegative and nondecreasing it follows that limt→−∞ θ′(t) =
ε ≥ 0 and θ′(u) ≥ 0, for all u ∈ dom θ. Now formula (2.7) implies

θ∞(−1) = sup{〈−1,θ′(t)〉 : t ∈ dom θ} = −ε,

which together with the equality θ∞(−1) = 0 allows us to conclude (4.5).

Now we proceed to show that

α(rk)
rk

θ′
(

λi(G(xk))
rk

)
→ 0 ∀i = l̄ + 1,...,m. (4.6)
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Lemma 2.6 tells us that l+(G(xk)) ≤ l0(G(x̄)) =: l̄. This implies that for k
sufficiently large we have

λi(G(xk)) ≤ λi(G(x̄))
2

< 0 ∀i = l̄ + 1, . . . ,m.

In the case when θ ∈ F1, we know that α(r) = r and limit (4.6) follows directly
from (4.5). Suppose then that θ ∈ F2. Since θ′ is nonnegative and nondecreasing
the last inequality yields to

0 ≤ α(rk)
rk

θ′
(

λi(G(xk))
rk

)
≤ α(rk)

rk
θ′

(
λi(G(x̄))

2rk

)
. (4.7)

Also from the fact that θ is nonnegative and convex we get

0 ≤ α(rk)
2rk

θ′
(

λi(G(x̄)
2rk

)
(−λi(G(x̄))) ≤ α(rk)

[
θ(0)− θ

(
λi(G(x̄)

2rk

)]
≤ α(rk)θ(0),

which together with limk→∞ α(rk) = 0 and inequality (4.7) implies condition
(4.6).

Now let us prove that, for all i = 1,...,l̄, the sequences
{

α(rk)
rk

θ′
(

λi(G(xk))
rk

)}

are bounded. We argue by contradiction. Since θ′(·) ≥ 0 we can suppose without
lost of generality that

lim
k→∞

µk = +∞ with µk :=
l̄∑

i=1

α(rk)
rk

θ′
(

λi(G(xk))
rk

)
.

Then set

η̂k =
1
µk
∇f(xk) + DG(xk)t




l̄∑

i=1

ξi
kek

i (ek
i )t


 ,

with ξi
k :=

α(rk)
µkrk

θ′
(

λi(G(xk))
rk

)
∈ [0,1].

(4.8)

Dividing (4.4) by µk and using (4.6) we get

lim
k→∞

η̂k = 0. (4.9)

We can consider, passing to a subsequence if necessary, that each sequence {ξi
k}

converges to some ξ̄i ∈ [0,1]. Moreover, since
∑l̄

i=1 ξi
k = 1 for all k, it follows

that
∑l̄

i=1 ξ̄i = 1.

Letting k → +∞ in (4.8) and using that ek
i → ēi, condition (4.9) implies

that

DG(x̄)t




l̄∑

i=1

ξ̄iēi(ēi)t


 = 0, (4.10)
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with ξ̄i ≥ 0 satisfying that
∑l̄

i=1 ξ̄i = 1. We will verify that (4.10) contradicts
Robinson’s condition (2.16) (which is equivalent to Slater’s condition). Indeed,
by definition of the adjoint operator, condition (4.10) can be written as

l̄∑

i=1

ξ̄i
(
ēi(ēi)t

) ·DG(x̄)h =
l̄∑

i=1

ξ̄i(ēi)t [DG(x̄)h] ēi = 0 ∀h ∈ IRn. (4.11)

Let h̄ be the direction appearing in Robinson’s condition (2.16). Since ξ̄i ≥ 0
and (ēi)t

[
DG(x̄)h̄

]
ēi < 0 for all i = 1,...,l̄, we immediately get that every term

of the sum in (4.11) is equal to 0, and consequently ξ̄i = 0 for all i = 1,...,l̄. This
contradicts the equality

∑l̄
i=1 ξ̄i = 1. Hence, we have proved that the sequences{

α(rk)
rk

θ′
(

λi(G(xk))
rk

)}
are bounded for all i = 1, . . . ,l̄. This together with (4.6)

implies the boundedness of {Yk}.
Finally, let Ȳ be a limit point of {Yk}. Since Yk º 0 (because θ is nondecrea-

sing), it directly follows that Ȳ º 0. On the other hand, condition (4.4) implies
that ∇xL(x̄,Ȳ ) = ∇f(x̄) + DG(x̄)tȲ = 0. Furthermore, from (4.6) and since
the sequences

{
α(rk)

rk
θ′

(
λi(G(xk))

rk

)}
are bounded for all i = 1, . . . ,l̄, it follows

that Ȳ =
∑l̄

i=1 δ̄iēiē
t
i with δ̄i ≥ 0, which implies

G(x̄) · Ȳ = 0.

Hence Ȳ satisfies optimality conditions (4.1). We thus conclude that Ȳ is an
optimal solution of (D). ¥

5 Penalty methods with two parameters

We consider again in this section the convex optimization problem (P) defi-
ned in Section 3 and suppose assumptions (A1) and (A2). Additionally, we will
also suppose

(A3) f∞(d) ≥ 0 ∀d.

It was noted in Remark 3.1 that there is no lost of generality to do such an
assumption.

In this section we will only work with penalty functions θ that belong to F2.
In this way, for any real rk, βk > 0 we consider

prk(x) = rkHrk(x) = rk

m∑

i=1

θ

(
λi(G(x))

rk

)
,

and we define
ψk(x) = f(x) + βkprk(x).
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The main computation of the forthcoming algorithm will be to solve ap-
proximatively, at each iteration k, the unconstrained optimization problem

(Pk) vk = inf{ψk(x) | x ∈ IRn}.

Let Sk be the optimal set of (Pk), and let {εk} and {γk} be sequences such
that

∀k : εk > 0, γk > 0, lim
k→∞

εk = lim
k→∞

γk = 0. (5.1)

As in Theorem 3.1 we can show that Sk is nonempty and compact for each
k. Hence, following the discussion of Section 3, we can compute for each k a
point xk satisfying

||ηk|| ≤ εk, ||ηk||||xk|| ≤ γk, where ηk = ∇ψk(xk). (5.2)

As we seen before this can be done in a finite number of steps with any usual
descent method.

Now we proceed similarly to [15]. The parameters rk and βk play two different
roles: rk always decreases in order to improve the approximation of the function
t → t+ by the mapping t → rkθ(t/rk), while βk is a penalty weight that increases
only at an infeasible iteration point xk.

The algorithm proposed in this article is the following

1. Let β0 = r0 = 1 and k = 0.
2. Compute xk satisfying (5.2).
3. Update rk+1 = rk

2 , and if xk is feasible then set βk+1 = βk, otherwise set
βk+1 = 2βk. Finally set k = k + 1.

When C = D and εk = 0 (that is, xk is an exact minimizer of (Pk)), our
algorithm coincides with the proposed one by C. Gonzaga and R. A. Castillo in
[15]. We refer the reader to this article for a detailed discussion of this scheme.

In addition to the hypothesis made in this section we denote by {xk}, {rk}
and {βk} the sequences generated by our algorithm. In this context, the following
convergence result holds.
Theorem 5.1. The sequence {xk} is bounded and all its limit points are optimal
solutions of (P).

Proof. We start this proof establishing five conditions that will be important
in the sequel. First, by construction of the algorithm we have

1 ≤ βk, βkrk ≤ 1 ∀k. (5.3)

Second, since limt→−∞ θ(t) = 0 we obtain

lim
k→∞

θ

(
λi(G(x0))

rk

)
= 0 ∀i = 1,2, . . . ,m, ∀x0 ∈ intC.
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Consequently

lim
k→∞

βkprk(x0) = lim
k→∞

βkrk

m∑

i=1

θ

(
λi(G(x0))

rk

)
= 0 ∀x0 ∈ intC. (5.4)

Third, since for all t > 0 the function r → r(θ(t/r)− θ(0)) is nondecreasing on
IR++, and since θ(0) ≥ 0, we deduce that

rθ(t/r) ≥ θ(t)− θ(0) ∀t ∈ IR, ∀r ∈ (0,1]. (5.5)

Fourth, convexity of the function ψk and the definition of ηk := ∇ψk(xk) imply
that

f(xk) + βkprk(xk) ≤ f(x0) + βkprk(x0) + 〈ηk,xk − x0〉 ∀x0 ∈ intC. (5.6)

Finally, since θ is nonnegative we get from (5.2)–(5.4) and (5.6)

f(xk) + rkθ

(
λ1(G(xk))

rk

)
≤ f(x0) + µk(x0),

with lim
k→∞

µk(x0) = 0 ∀x0 ∈ intC.
(5.7)

Now let us show that the sequence {xk} is bounded. By contradiction, we
can suppose, passing to a subsequence if necessary, that

||xk|| → +∞, lim
k→∞

xk

||xk|| = d 6= 0.

By Proposition 3.1 Part (ii) it follows that (λ̃1)∞(d) > −∞. Set α1 <
(λ̃1)∞(d). From formula (2.3) (see Remark 2.1) we have for all k sufficiently
large

λ̃1(xk) = λ̃1

(
xk

||xk|| ||xk||
)
≥ α1||xk||.

This together with the monotonicity of θ and inequality (5.7) yields to

f(xk)
||xk|| +

rk

||xk||θ
(

α1||xk||
rk

)
≤ f(x0)
||xk|| +

µk(x0)
||xk|| .

By passing to the liminf in this last inequality we get

f∞(d) + θ∞(α1) ≤ 0. (5.8)

Since f∞ and θ∞ are nonnegative we obtain that θ∞(α1) = 0, and conse-
quently f∞(d) = 0. Furthermore, due to relations θ∞(−1) = 0 and θ∞(1) = 1
it follows that α1 ≤ 0. Then letting α1 ↑ (λ̃1)∞(d) it follows that (λ̃1)∞(d) ≤ 0,
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or equivalently, d ∈ C∞. This together with f∞(d) ≤ 0, d 6= 0 contradicts the
fact that S is nonempty and compact.

Let x̄ be a limit point of the sequence {xk}. For the sake of simplicity, we
can suppose that x̄ = limk→∞ xk.

Firstly, we proceed to prove that x̄ is feasible. This is obviously true if for all
k sufficiently large the iteration point xk is feasible for problem (P), i.e. xk ∈ C.
If this is not the case, we have from the construction of the algorithm

lim
k→∞

βk = +∞. (5.9)

At the first iteration, the convexity of function ψ0 implies

f(x0) + p1(x0) ≤ f(xk) + p1(xk) + 〈η0,x0 − xk〉. (5.10)

Using inequality (5.5) we get

rkθ(λi(G(xk))/rk) ≥ θ(λi(G(xk)))− θ(0) ∀i = 1, . . . ,m,

which yields to
prk(xk) ≥ p1(xk)−mθ(0).

Adding this last inequality to (5.10) we obtain

f(x0) + p1(x0)−mθ(0) ≤ f(xk) + prk(xk) + 〈η0,x0 − xk〉,

deducing from relation (5.6) that

(βk − 1)prk(xk) ≤ βkrk

m∑

i=1

θ

(
λi(G(x0))

rk

)
+ ‖η0‖‖xk‖+ ‖ηk‖‖xk − x0‖+ K,

where K is a constant. Hence, from the boundedness of {xk} and relations (5.1),
(5.2) and (5.4) we can give an upper bound K̂ for the right hand side of the
last inequality. Thus, from the fact that θ is nonnegative it follows for all k
sufficiently large that

rkθ

(
λ1(G(xk))

rk

)
≤ K̂

(βk − 1)
,

Passing to the liminf and using formula (2.3) and (5.9) we get θ∞(λ1(G(x̄))) ≤ 0.
As a consequence we conclude that λ1(G(x̄)) ≤ 0, that is, x̄ is feasible for
problem (P).

Secondly, we shall prove that x̄ is an optimal solution of (P). Since θ(·) ≥ 0
and inequality (5.7) we have

f(xk) ≤ f(x0) + µk(x0) ∀x0 ∈ intC.
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We thus obtain at the limit that f(x̄) ≤ f(x0) for all x0 ∈ intC. Hence, conti-
nuity of function f implies that x̄ is an optimal solution of (P). ¥

In the next theorem we extend to our semidefinite framework the main result
of the article [15] (cf. Theorem 1). For this purpose, we denote by F ∗2 the subset
of functions θ ∈ F2 satisfying the inequality θ′(0) > 0. We remark that θ6 and
θ7 belong to F ∗2 .

The following theorem says that for θ ∈ F ∗2 and k sufficiently large, the
point xk will be feasible. This result is important for optimization problems
where feasibility is a key issue. Of course, there are some examples of θ ∈ F1

(− log(x), 1/x,...) for which xk is strictly feasible, but in these cases the starting
point of the numerical methods used to obtain xk must also be strictly feasible,
which can be a difficult task for some problems. Thanks to the next theorem
this difficulty is avoided when θ ∈ F ∗2 .
Theorem 5.2. Suppose in addition to hypothesis of Theorem 5.1 that θ ∈ F ∗2 .
Then, there exists k0 such that for all k ≥ k0, xk is feasible.

Proof. We argue by contradiction. So, since {xk} is bounded, we can assume the
existence of a convergent but infeasible subsequence of {xk} (which for simplicity
will be also called {xk}). Hence, by construction of our algorithm, βk → +∞.
Let x̄ := limk→∞ xk. It follows from Theorem 5.1 that x̄ is an optimal solution
of (P).

In the rest of this proof we consider that k is large enough. If G(x̄) ≺ 0
then by smoothness of the function G we get G(xk) ≺ 0, obtaining directly a
contradiction. We then suppose ImE(G(x̄)) = Ker G(x̄) 6= {0}, that is, G(x̄) is
singular.

By Proposition 2.9, Slater’s condition (A2) is equivalent to Robinson’s condi-
tion (2.16), which can be written at x̄ as follows

There exists h̄ ∈ IRn and ρ > 0 such that E(G(x̄))tDG(x̄)h̄E(G(x̄)) ≺ −ρIm,

where Im is the identity matrix in Sm. Hence, continuity of DG(·) implies that

Et
kDG(xk)h̄Ek ≺ −1

2
ρIm, (5.11)

where Ek ∈ IRm×l0(G(x̄)) are the matrices given by Corollary 2.8, that is, the
columns of matrices Ek are the orthonormalized eigenvectors of G(xk) associated
with their l0(G(x̄)) largest eigenvalues, and Ek → E(G(x̄)). Corollary 2.8 also
tells us that l+(G(xk)) ≤ l0(G(x̄)). Actually we have

λi(G(xk)) ≤ µ < 0 ∀ i = l0(G(x̄)) + 1, . . . ,m, (5.12)

where µ > µ̄ := max{λi ; λi = λi(G(x̄)) < 0}.
We proceed to compute the inner product 〈ηk,h̄〉 = ηt

kh̄, where ηk = ∇ψk(xk)
and h̄ is the vector appearing in (5.11).
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From the derivation rule given in Proposition 2.4 Part (iii) we get

∇prk(xk)th̄ =
m∑

i=1

θ′
(

λi(G(xk))
rk

)
ci(xk) ·DG(xk)h̄

=
m∑

i=1

θ′
(

λi(G(xk))
rk

)
(ek

i )t(DG(xk)h̄)ek
i ,

(5.13)

where ci(xk) := ek
i (ek

i )t and vectors ek
i ’s are the columns of Ek such that each

ek
i corresponds to the eigenvector of G(xk) associated with λi(G(xk)).

Condition (5.13) implies that

〈ηk,h̄〉 = ∇f(xk)th̄ + βk

m∑

i=1

θ′
(

λi(G(xk))
rk

)
(ek

i )t(DG(xk)h̄)ek
i ,

which can be rewritten as

−〈ηk,h̄〉
βk

+
∇f(xk)th̄

βk
+

m∑

i=l0(G(x̄))+1

θ′
(

λi(G(xk))
rk

)
(ek

i )T (DG(xk)h̄)ek
i =

−
l0(G(x̄))∑

i=1

θ′
(

λi(G(xk))
rk

)
(ek

i )T (DG(xk)h̄)ek
i .

(5.14)

Taking the limit when k → +∞ we have that the terms − 〈ηk,h̄〉
βk

and ∇f(xk)th̄
βk

converge toward 0 due to relations (5.1) and (5.2), and βk → +∞. By (5.12),
we obtain λi(G(xk)/rk) → −∞ for all i = l0(G(x̄)) + 1, . . . ,m. This together
with the limit limt→−∞ θ′(t) = 0 implies that θ′(λi(G(xk)/rk)) → 0 for all
i = l0(G(x̄)) + 1, . . . ,m. Then we deduce that the entire left hand side of (5.14)
converges toward 0.

We will obtain a contradiction by showing that the right hand side of (5.14)
is strictly positive. Indeed, condition (5.11) implies that (ek

i )t(DG(xk)h̄)ek
i <

−ρ/2 for i = 1, . . . ,l0(G(x̄)), and since θ is nondecreasing, θ′(·) ≥ 0 and
l+(G(xk)) ≤ l0(G(x̄)) it follows that

−
l0(G(x̄))∑

i=1

θ′
(

λi(G(xk))
rk

)
(ek

i )t(DG(xk)h̄)ek
i ≥

ρ

2

l0(G(x̄))∑

i=1

θ′
(

λi(G(xk))
rk

)

≥ ρ

2

l+(G(xk))∑

i=1

θ′
(

λi(G(xk))
rk

)

≥ ρ

2
θ′(0)l+(xk).

But θ′(0) > 0 (because θ ∈ F ∗2 ) and xk is infeasible, i.e. l+(xk) ≥ 1. Hence
the right hand side of (5.14) has a strictly positive lower bound. The theorem
follows. ¥
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As for penalty and barrier methods with one parameter we can associate
with the sequence {xk} a sequence {Yk} of dual multipliers defined by

Yk = βk(θ′)0
(

G(xk)
rk

)
= βk

m∑

i=1

θ′
(

λi(G(xk))
rk

)
ek
i (ek

i )t, (5.15)

where (θ′)0 is the matrix function associated with θ′, defined in (2.10), and
ek
i ’s are orthonormal eigenvectors of G(xk) associated with the eigenvalues

λi(G(xk)). Then we have

ηk = ∇ψk(xk) = ∇f(xk) + DG(xk)tYk. (5.16)

As in Section 4, we prove in the next thorem that the sequence {Yk} is
bounded with each of its limit points being an optimal solution of (D).
Theorem 5.3. Suppose that the assumptions of Theorem 5.2 are satisfied.
Consider a sequence {xk} satisfying relations (5.2), and let {Yk} be the se-
quence defined by formula (5.15). Then, {Yk} is bounded and each of its limit
points is an optimal solution of (D).

Proof. By Theorems 5.1 and 5.2 we can assume, without lost of generality, that
the sequence {xk} converges to an optimal solution x̄ of (P) and for k sufficiently
large xk is feasible and βk = β ≥ 1. Since xk is feasible and by the monotonicity
of θ′(·), we have that θ′(λi(G(xk))/rk) ≤ θ′(0) for all i, which proves that the
sequence {Yk} is bounded.

Let Ȳ be a limit point of {Yk}. The proof is now similar to the one given in
Theorem 4.1. Since Yk º 0, it directly follows that Ȳ º 0. On the other hand,
condition (5.16) implies that ∇xL(x̄,Ȳ ) = ∇f(x̄) + DG(x̄)tȲ = 0.

Let l̄ := l0(x̄) be the number of null eigenvalues of G(x̄). Since limt→−∞ θ′(t)
= 0 (cf. (4.5)), we get

βkθ′
(

λi(G(xk))
rk

)
→ 0 ∀i = l̄ + 1,...,m, (5.17)

and since the sequences
{

βkθ′
(

λi(G(xk))
rk

)}
are bounded for all i = 1, . . . ,l̄, it

follows that Ȳ =
∑l̄

i=1 δ̄iēiē
t
i with δ̄i ≥ 0, which implies that G(x̄) · Ȳ = 0.

Hence Ȳ satisfies optimality conditions (4.1). We thus conclude that Ȳ is an
optimal solution of (D). ¥
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Perturbation Analysis
of Second-Order Cone Programming Problems 1

J. Frédéric Bonnans 2 & Héctor Ramı́rez C. 3

Abstract. We discuss first and second order optimality conditions for nonli-
near second-order cone programming problems, and their relation with semidefi-
nite programming problems. For doing this we extend in an abstract setting the
notion of optimal partition. Then we state a characterization of strong regularity
in terms of second order optimality conditions.

1 Introduction

Consider the nonlinear second-order cone programming problem

Min
x∈IRn,sj∈IRmj+1

f(x) ; gj(x) = sj , (sj)0 ≥ ‖s̄j‖, j = 1, . . . ,J, (SOCP)

where f and gj , j = 1, . . . ,J are C1 mappings from IRn into IR and IRmj+1,
respectively. We use the standard convention of indexing components of vectors
of IRmj+1 from 0 to mj , while vectors in IRn are indexed from 1 to n. Given
s ∈ IRmj+1, we also denote s̄ := (s1, . . . ,smj )

>.

The second-order cone (or ice-cream cone, or Lorentz cone) of dimension
m + 1 is defined as

Qm+1 := {s ∈ IRm+1 ; s0 ≥ ‖s̄‖},
and the order relation ºQm+1 induced by Qm+1 is given by

s ºQm+1 0 iff s ∈ IRm+1, s0 ≥ ‖s̄‖.
The interior of this cone is the set of s ∈ IRm+1 such that s0 > ‖s̄‖. In that case
we say that s ÂQm+1 0. We also denote Q := ΠJ

j=1Qmj+1. A second-order cone
Q = Qm+1 can be described as a linear matrix inequality by using the known
equivalence (e.g. [1])

s ºQ 0 iff Arw(s) :=
(

s0 s̄>

s̄ s0Im

)
º 0, (1.1)

1. Technical Report 5293, INRIA, Rocquencourt, France, 2004. Submitted to Mathematical
Programming Series B.

2. Projet Sydoco, INRIA Rocquencourt, B.P. 105, Le Chesnay, France, e-mail : Frede-
ric.Bonnans@inria.fr.

3. Department of Mathematical Engineering, Universidad de Chile & Centre for Mathema-
tical Modelling, UMR 2071, Universidad de Chile-CNRS. Casilla 170-3 Santiago 3, Chile &
INRIA Rocquencourt, e-mail : hramirez@dim.uchile.cl.
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where Im denotes the identity matrix in IRm×m, Arw(s) is the arrow matrix of
the vector s, and º denotes the positive semidefinite order, that is, A º B iff
A,B are symmetric matrices and A − B is a positive semidefinite matrix. We
also denote the set of m+1 by m+1 symmetric matrices by Sm+1, indexed from
0 to m, equipped with the inner product A ·B := Tr(AB) =

∑m
i,j=0 AijBij ; the

subset of symmetric positive semidefinite matrices is denoted Sm+1
+ . Finally, for

two arbitrary vectors x and z of any dimension we set x · z := x>z =
∑

i xizi

the corresponding Euclidian inner product, and for an arbitrary optimization
problem (P) we denote by S(P ), F (P ) and val(P ) its solution set, feasible set
and optimal value, respectively. The equivalence (1.1) implies that (SOCP) is
SDP-representable, i.e., can be written as the nonlinear semidefinite problem

Min
x∈IRn

f(x) ; Gj(x) := Arw(gj(x)) º 0, j = 1, . . . ,J. (SDP)

For a general view of semidefinite programming problems, see [18, 19]. A first ob-
jective in this paper is to compare the linear second-order programming problem
(see (LSOCP) below) and its linear SDP-representation (see (LSDP) below) in
terms of duality results. We show that their dual problems are no longer equi-
valent, and some important notions as the uniqueness of Lagrange multipliers
(or equivalently, dual problems solutions) do not simultaneously hold for both
problems (LSOCP) and (LSDP). We perform this analysis in an abstract fra-
mework. When specialized to second order cone problems, we recover some of
the results of Sim and Zhao [17]. Still our main result is the characterization
of the strong regularity property for SOCP problems in terms of second-order
optimality conditions. This is a well studied subject in nonlinear programming
and the reader can see two different approaches in the articles of Bonnans and
Sulem [7], and Dontchev and Rockafellar [9]. Nevertheless, it is still an open
problem in a general conic optimization framework, even in particular instances
as semidefinite programming. Necessary and sufficient second-order conditions
to obtain the strong regularity property in SDP are studied by the authors in
[4].

The paper is organized as follows. Section 2 breaks into three subsections. In
the first one, we review the main duality results concerning the linear second-
order programming problem (LSOCP) and their comparison to linear SDP pro-
blems. Section 2.2 deals with an abstract framework involving two equivalent
linear conic optimization problems with constraints in product form, that are
related by a linear mapping (as in relation (1.1)). It introduces a notion of
optimal partition of active constraints. It allows us to deduce several duality
statements and related properties. Subsection 2.3 applies this abstract frame-
work to linear problems (LSOCP) and (LSDP). In Section 3 we discuss briefly
the duality theory for nonlinear SOCP problems. Section 4 recalls some key
notions as the nondegeneracy condition and the reduction approach, mainly for
their use in Section 5 where is stated our main result: the characterization of
the strong regularity property for SOCP problems in terms of second-order op-
timality conditions. For this, we use the concepts given in Section 4 as well some
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suitable known theorems and SOCP techniques.

2 Duality theory for linear SOCP problems

2.1 Dual linear SOCP problems

We assume in this section that f(x) = c·x and gj(x) = Ajx−bj , j = 1, . . . ,J ,
where c ∈ IRn and Aj are (mj + 1) × n matrices. In that case we speak of a
linear SOCP problem:

Min
x∈IRn,sj∈IRmj+1

c · x ; Ajx− bj = sj , (sj)0 ≥ ‖s̄j‖, j = 1, . . . ,J. (LSOCP)

The dual problem of (LSOCP) is given by

Max
yj∈IRmj+1

J∑

j=1

bj · yj ;
J∑

j=1

(Aj)>yj = c, (yj)0 ≥ ‖ȳj‖, j = 1, . . . ,J. (LSOCP∗)

Since both the primal and dual problems are convex, we have the following
results of convex analysis (cf. Rockafellar [14]). The weak duality inequality
val (LSOCP) ≥ val (LSOCP∗) holds, with the convention that the optimal value
(val) of problem (LSOCP) (resp. (LSOCP∗)) is equal to +∞ (resp. −∞) if this
problem is infeasible. If the value of (LSOCP) is finite, it is known that (LSOCP)
is strictly feasible, i.e., there exists a point x̂ such that Aj x̂ − bj ∈ int Qmj+1

for all j = 1, . . . ,J , iff the set of solutions of the dual problem is nonempty and
bounded. In that case we have the strong duality property, i.e., val (LSOCP) =
val (LSOCP∗). A symmetric statement holds by permuting the words “primal”
and “dual” (we will see in lemma 2.2 a refinement of this statement). If the
strong duality property holds, then a pair of primal-dual solution (x∗,y∗) ∈
IRn ×ΠJ

j=1IR
mj+1 is characterized by the following optimality system

A>y∗ = c, Ax∗ − b ∈ Q, y∗ ∈ Q, (Ax∗ − b) ◦ y∗ = 0, (2.1)

where we have defined A := (A1; · · · ; AJ) as the matrix whose rows are those
of A1 to AJ and whose columns ai are equal to vec(a1

i , . . . ,a
J
i ), with aj

i the i-th
column of Aj , b := vec(b1, . . . ,bJ) and the operation ◦ (e.g. [1]) is given by

x ◦ s := Arw(x)s =
(

x>s
x0s̄ + s0x̄

)
, for all x,s ∈ IRm+1,

and for x, s in ΠJ
j=1IR

mj+1 we set

x ◦ s := vec(x1 ◦ s1, . . . ,xJ ◦ sJ).

We may write (Ax∗ − b) · y∗ = 0 instead of the last relation in (2.1), in view of
the well known property (e.g. [1, Lemma 15])

For all x, s ∈ Qm+1, x ◦ s = 0 iff x · s = 0. (2.2)
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In fact it is easily checked that relations in (2.2) are satisfied iff x and s belong
to Qm+1 and

Either x = 0 or s = 0, or there exists α > 0 s.t. s0 = αx0 and s̄ = −αx̄.
(2.3)

Similar duality results hold for the linear semidefinite problem, which can be
written as

Min
x∈IRn

c · x ;
n∑

i=1

xiG
j
i º Gj

0, j = 1, . . . ,J, (LSDP)

where we have set

Gj
0 := Arw(bj) and Gj

i := Arw(aj
i ), i = 1, . . . ,n. (2.4)

In this case, the dual problem of (LSDP) is

Max
Y j∈Smj+1





J∑

j=1

Gj
0 · Y j ;

J∑

j=1

Gj(Y j) + c = 0, Y j º 0, j = 1, . . . ,J,



 ,

(LSDP∗)
where the mappings Y ∈ Smj+1 → Gj(Y ) := (Gj

1 · Y,...,Gj
n · Y )> are the ad-

joint operators of Gj , and a primal-dual solution (x,Y ) ∈ IRn × ΠJ
j=1Smj+1 is

characterized by

J∑

j=1

Gj(Y ∗)j + c = 0, Gj(x) º 0, Y j º 0, Gj(x)Y j = 0, j = 1, . . . ,J. (2.5)

In the sequel we denote G(Y ) :=
∑J

j=1 Gj(Y ∗)j .

Note that a linear second-order cone programming problem as (LSOCP)
satisfies the strong duality property if both problems (LSOCP) and its dual
(LSOCP∗) are feasible, see Shapiro and Nemirovski [16], whereas this is no
longer true for a linear semidefinite programming problem, see [18, page 65].

2.2 An abstract framework

The aim of this section is to clarify some properties of optimization pro-
blems with constraints in product form, as well as relations between the dual
solutions of (LSOCP) and (LSDP). For this, we consider a general linear conic
optimization problem with constraints in product form, i.e.,

Min
x∈IRn

c · x ; Ajx− bj ∈ Kj , j = 1, . . . ,J, (COP)

where Kj are closed convex cones in IRqj . We set K := K1 × · · · × KJ , and
define A = (A1; · · · ; AJ) as the matrix whose rows are those of A1 to AJ , and
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b := vec(b1, . . . ,bJ) so that (COP ) is equivalent to Minx∈IRn{c ·x; Ax− b ∈ K}.
The dual problem is

Max
y1,...,yJ

J∑

j=1

bj · yj ;
J∑

j=1

(Aj)>yj = c, yj ∈ K+
j , j = 1, . . . ,J, (COP∗)

where the (positive) polar of a set C ⊂ IRm is defined as C+ := {y ∈ IRm; y ·z ≥
0, for all z ∈ C}. If the primal and dual values are equal, a pair (x,y) of the
primal and dual problems is characterized by the optimality system

Ajx− bj ∈ Kj , yj ∈ K+
j , yj · (Ajx− bj) = 0, j = 1, . . . ,J ; A>y = c.

(COPOS)
We denote by S(COPOS) the set of solutions of relations (COPOS). In the
sequel we introduce notions of componentwise strict feasibility and strict com-
plementarity.
Definition 2.1. We say that strict primal (resp. dual) feasibility holds for j ∈
{1, . . . ,J} if there exists x ∈ F (COP ) such that Ajx − bj ∈ intKj (resp. y ∈
F (COP ∗) such that yj ∈ intK+

j ).
Lemma 2.2. Let j be strictly primal (resp. dual) feasible. Then the set {yj ; y ∈
S(COP ∗)} (resp. {Ajx− bj ; x ∈ S(COP )}) is bounded.

Proof. If j is strictly primal feasible, there exists ε > 0 such that s = Ax − b
satisfies sj + εB ⊂ Kj , or equivalently εB ⊂ sj −Kj . Let y ∈ S(COP ∗). Since
yj ∈ K+

j , it follows that ε‖yj‖ ≤ yj · sj . Using also yj′ · sj′ ≥ 0, for all j′, we get

0 = x · (c−A>y) = c · x− y ·Ax = c · x− b · y − y · s ≤ c · x− b · y − ε‖yj‖.
In other words, ε‖yj‖ ≤ c ·x− b · y = c ·x− val(COP ∗), which gives the desired
estimate. The proof for the dual statement is similar. ¥

One says (e.g., [6, Def. 4.74]) that the strict complementarity hypothesis
holds for problem (COP ) if there exists a pair (x,y) solution of the optimality
system, such that −y ∈ ri NK(Ax− b), where NK is the normal cone of convex
analysis. Since K is a closed convex cone, we have for s ∈ K that

NK(s) = (−K+) ∩ s⊥, (2.6)

(where s⊥ denotes the set of all orthogonal vectors to s) and NK(s) = ∅ if
s 6∈ K.

For problems with constraints in product form, it is worthwhile to introduce
the concept of componentwise strict complementarity hypothesis, which for each
component j means that there exists a pair (x,y) ∈ S(COPOS), such that
−yj ∈ riNKj (A

jx− bj).

We can extend and refine for this framework the notion of optimal parti-
tion, well known for linear programming and monotone linear complementarity
problems, see e.g. [3, Section 18.2.4].
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Lemma 2.3. If S(COPOS) is not empty, there exists a partition (B,N,R,T )
of {1, . . . ,J} such that, (i) The set B is the union of j such that there exists
(x(j),y(j)) ∈ S(COPOS) satisfying Ajx(j) − bj ∈ intKj, (ii) The set N is
the union of j such that there exists (x(j),y(j)) ∈ S(COPOS) satisfying yj(j) ∈
intK+

j , (iii) The set R is the union of j, not belonging to B or N , such that there
exists (x(j),y(j)) ∈ S(COPOS) with −yj(j) ∈ ri NKj (A

jx(j)− bj), and (iv) for
all j ∈ T , every (x,y) ∈ S(COPOS) does not satisfy strict complementarity for
component j.

Proof. Let (B,N,R,T ) be defined as in the lemma; we have to check that this is
a partition. The definition of T implies that their union equals {1, . . . ,J}, and
by definition of R and T , we have that (B∪N,R,T ) is a partition of {1, . . . ,J}. It
remains to prove that B ∩N = ∅. Since S(COPOS) is not empty, we know that
S(COPOS) = S(COP ) × S(COP ∗). Therefore x̂ := |B|−1

∑
j∈B x(j) satisfy

x̂ ∈ S(COP ). We see that Aj x̂ − bj ∈ intKj , for all j ∈ B. Therefore any
y ∈ S(COP ∗) is such that yj = 0, for all j ∈ B. This proves that B∩N = ∅. ¥
Remark 2.4. Note that, for monotone linear complementarity problems the
optimal partition is of the form (B,N,T ), since in that case a strictly com-
plementary component belongs either to B or N . Therefore the main novelty
consists in introducing the set R.
Definition 2.5. Any pair (x,y) ∈ S(COPOS) satisfying the relations below is
said to be of maximal complementarity:

{
(i) Aix− bi ∈ intKi, ∀i ∈ B, (ii) yi ∈ intK+

i , ∀i ∈ N,
(iii) − yi ∈ ri NKi(A

ix− bi), ∀i ∈ R.
(2.7)

Let x(j) and y(j) be as in lemma 2.3. We define

x̂ := (|B|+ |R|)−1
∑

j∈B∪R

x(j); ŷ := (|N |+ |R|))−1
∑

j∈N∪R

y(j).

Let us state some properties of the set of maximal complementarity solutions.
We need a preliminary lemma.
Lemma 2.6. Let K be a closed convex cone. Let si ∈ K, for i = 1,2, −y1 ∈
NK(s1), and −y2 ∈ ri NK(s2). Given α ∈]0,1[, set (s,y) := α(s1,y1) + (1 −
α)(s2,y2). If −y ∈ NK(s), then −y ∈ ri NK(s).

Proof. Since −NK(s) = K+ ∩ s⊥, we have that −y ∈ ri NK(s) iff, for all
z ∈ NK(s), y± εz ∈ K+ for small enough ε > 0. As K+ is a cone, y + εz ∈ K+

always holds. Therefore we have to prove that for z ∈ NK(s), y − εz ∈ K+

for small enough ε > 0. Using NK(s) = NK(s1) ∩NK(s2), obtain z ∈ NK(s2),
and hence, y2 − ε′z ∈ K+ for some ε′ > 0. Let ε := (1 − α)ε′. Then y − εz =
αy1 + (1− α)(y2 − ε′z) belongs to K+. The conclusion follows. ¥
Lemma 2.7. (i) The pair (x̂,ŷ) is of maximal complementarity. (ii) Any pair
(x̂,ŷ) ∈ ri S(COPOS) (set equal to riS(COP ) × ri S(COP ∗)) is of maximal
complementarity.
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Proof. (i) That Aj x̂−bj ∈ intKj , for all j ∈ B, is a classical property. Similarly,
ŷj ∈ intK+

j , for all j ∈ N . Finally, that −ŷj ∈ riNKj
(Aj x̂− bj), for all j ∈ R,

is consequence of lemma 2.6.
(ii) Let (x̂,ŷ) ∈ ri S(COPOS), and (x̃,ỹ) ∈ S(COPOS) be of maximal comple-
mentarity. Then there exists ε > 0 such that (x̂,ŷ) − ε(x̃,ỹ) ∈ S(COPOS). Set
α = 1/(1 + ε) ∈ (0,1). We may write

α(x̂,ŷ) = α[(x̂,ŷ)− ε(x̃,ỹ)] + (1− α)(x̃,ỹ).

Similarly, setting ŝ := Ax̂− b and s̃ := Ax̃− b, we have that

α(ŝj ,ŷj) = α[(ŝj ,ŷj)− ε(s̃j ,ỹj)] + (1− α)(s̃j ,ỹj).

We conclude by applying lemma 2.6 to the above relation. ¥

We now introduce another problem related to (COP ), having in mind the
relations between SOCP and SDP problems. Let K = K1× · · · ×KJ be another
finite family of closed convex cones in IRrj , j = 1 to J , and M j be rj × qj

matrices such that

sj ∈ Kj iff M jsj ∈ Kj , j = 1, . . . ,J. (2.8)

Let M = (M1; · · · ; MJ) be the matrix whose rows are those of M j . Then (COP)
is equivalent to the linear conic problem

Min
x∈IRn

c · x ; M j(Ajx− bj) ∈ Kj , j = 1, . . . ,J, (MCOP)

whose dual is

Max
z∈K+

J∑

j=1

bj ·M>zj ;
J∑

j=1

(Aj)>(M j)>z = c; zj ∈ K+
j , j = 1, . . . ,J. (MCOP∗)

If the primal and dual values are equal, a pair (x,y) of the primal and dual
problems is characterized by the optimality system

{
M j(Ajx− bj) ∈ Kj , zj ∈ K+

j , zj ·M j(Ajx− bj) = 0, j = 1, . . . ,J ;∑J
j=1(A

j)>(M j)>zj = c.
(2.9)

We first state two lemmas that deal with properties that do not involve explicitly
the product form.
Lemma 2.8. The following relations hold: (i) MS(COP ) = S(MCOP ), M>K+

⊂ K+, and M>S(MCOP ∗) ⊂ S(COP ∗). (ii) If M>K+ is closed, then M>K+ =
K+ and M>S(MCOP ∗) = S(COP ∗). (iii) Closeness of M>K+ holds if M> is
coercive on K+, i.e., if ‖M>z‖ ≥ c‖z‖ for all z ∈ K+. In that case, S(MCOP ∗)
is bounded iff S(COP ∗) is bounded.

Proof. (i) That MS(COP ) = S(MCOP ) is a consequence of (2.8). Since
MK ⊂ K, any z ∈ K+ is such that M>z ∈ K+. It follows from the expression
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of dual problems that M>S(MCOP ∗) ⊂ S(COP ∗).
(ii) Assume now that K̂ := M>K+ is closed. Since we know that M>K+ ⊂ K+,
we have to prove the converse inclusion. If this is not true, then there exists
y ∈ K+, y 6∈ K̂. By the separation theorem there exists h ∈ K̂+ such that
h>y < 0. That h ∈ K̂+ is equivalent to Mh ∈ K, hence to h ∈ K; but since
y ∈ K+, this contradicts h>y < 0. This proves M>K+ ⊂ K+, from which
M>S(MCOP ∗) = S(COP ∗) follows easily.
(iii) Finally, that the closeness of M>K+ is a consequence of coercivity of M>

is easy and left to the reader, as well as the equivalence of boundedness of
S(MCOP ∗) and S(COP ∗). ¥
Lemma 2.9. Assume that M is one to one. Then the following holds. (i) The
mapping M> is onto, and M> intK+ ⊂ intK+. (ii) If in addition M>K+

is closed, then M> intK+ = intK+ and M> intS(MCOP ∗) = intS(COP ∗).
(iii) Under the same assumptions as in (ii) we also have that, for all s ∈ K,
M> ri(K+ ∩ (Ms)⊥) ⊂ ri(K+ ∩ s⊥).

Proof. (i) That the transposition of an injective mapping is surjective is well-
known. If z ∈ intK+, then there exists ε > 0 such that z + εB ⊂ K+ (where B
denotes the Euclidean ball). Since M> is onto, M>B ⊃ αB for some α > 0, and
hence, K+ ⊃ M>(z + εB) ⊃ M>z + εαB, which proves that M>z ∈ intK+.
(ii) Since M> is onto, M> intK+ is an open set. As M>K+ is closed, the closure
of M> intK+ is M>K+, and the latter is equal to K+ by lemma 2.8. This
means that M> intK+ = int K+. The equality between M> intS(MCOP ∗)
and intS(COP ∗) is proved in a similar manner.
(iii) We know that M>K+ = K+, and that for all x ∈ K+, z · Mx = 0 iff
(M>z) · x = 0. It follows that M>(K+ ∩ (Ms)⊥) = (K+ ∩ s⊥).

Let z ∈ ri(K+∩ (Ms)⊥), and set y = M>z. Let y′ ∈ K+∩s⊥. We know that
there exists z′ ∈ K+ ∩ (Ms)⊥ such that y′ = M>z′. Since z ∈ ri(K+ ∩ (Ms)⊥),
there exists ε′ > 0 such that z ± εz′ ∈ K+ ∩ (Ms)⊥. It follows that y ± εy′ ∈
K+ ∩ s⊥. The conclusion follows. ¥

We denote by (BCOP , NCOP , RCOP , TCOP ) and (BMCOP , NMCOP , RMCOP ,
TMCOP ) the optimal partitions of (COP ) and (MCOP ), respectively.
Lemma 2.10. Assume that M>K+ is closed, that M is one to one, and that

For all sj ∈ Kj ,M
jsj ∈ ∂Kj iff sj ∈ ∂Kj . (2.10)

Then the following relations hold between the optimal partitions of problems
(COP ) and (MCOP ):

BCOP = BMCOP , NCOP = NMCOP , RCOP ⊃ RMCOP , TCOP ⊂ TMCOP .
(2.11)

In particular, the strict complementarity hypothesis holds for (COP ) if it holds
for (MCOP ).

Proof. That BCOP = BMCOP is an immediate consequence of (2.8) and (2.10).
Applying the first part of lemma 2.9(ii) to (Ki,Ki,M

i) we deduce that NCOP =
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NMCOP . Finally that RCOP ⊃ RMCOP follows from lemma 2.9(iii) applied to
(Ki,Ki,M

i). The relation TCOP ⊂ TMCOP follows from the three others.

As a consequence, if TMCOP is empty then TCOP is also empty, which
means that the strict complementarity hypothesis holds for (COP ) if it holds
for (MCOP ). ¥

2.3 Application of the abstract framework

We apply the results of the above section. Here Kj = Qmj+1, Kj := Smj+1
+ ,

and M jsj = Arw sj . Note that we can write

Arw(s) = (s0 − ‖s̄‖)Im+1 +
(‖s̄‖ s̄>

s̄ ‖s̄‖Im

)
. (2.12)

This shows that for s ∈ Qm+1 \ {0}, Arw(s) is of rank m iff s ∈ ∂Qm+1, and of
rank m+1 otherwise. In particular, Arw ∂Qm+1 ⊂ ∂Sm+1

+ , and Arw intQm+1 ⊂
intSm+1

+ . Therefore (2.10) holds. Let us decompose any matrix Y ∈ Sm+1 as
follows

Y =
(

Y00 Ȳ >
0

Ȳ0 Ȳ

)
, (2.13)

where Y00 ∈ IR, Ȳ0 ∈ IRm and Ȳ ∈ Sm. We note that for any s ∈ IRm+1 we get

Arw(s) · Y = s0 Tr(Y ) + 2s̄ · Ȳ0. (2.14)

It follows that Arw> : Sm+1 → IRm+1 is nothing but

Arw>Y :=
(

Tr(Y )
2Ȳ0

)
. (2.15)

Consequently

M>(Y 1, . . . ,Y J ) = vec
((

Tr(Y 1)
2Ȳ 1

0

)
, . . . ,

(
Tr(Y J)
2Ȳ J

0

))
. (2.16)

Proposition 2.11. (i) We have that y is solution of (LSOCP ∗) iff there exists
z solution of (LSDP ∗) such that y = M>z. (ii) One of these dual problems
has a bounded set of solutions iff the other one has the same property. (iii) One
of these dual problems has an interior feasible point iff the other one has the
same property. (iv) Problems (LSOCP ) and (LSDP ) have the same optimal
partition.

Proof. Since Arw> is coercive on Sm+1
+ , M> is also coercive. By lemma 2.8,

we have that S(LSOCP ∗) = M>S(LSDP ∗) and S(LSDP ∗) is bounded iff
S(LSOCP ∗) is bounded. This proves points (i) and (ii). Point (iii) is conse-
quence of lemma 2.9(ii). We now prove (iv). By lemma 2.10, BLSOCP = BLSDP ,
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NLSOCP = NLSDP , and RLSOCP ⊃ RLSDP ; it remains to prove that RLSOCP ⊂
RLSDP since (B,N,R,T ) is a partition. Let j ∈ RLSOCP . Then there is a pair
(x,y) solution of (2.1) such that sj 6= 0 6= yj , and both sj and yj belong to
the boundary of Qmj+1. As observed after (2.12), this implies that Arw sj is of
rank mj , and hence, the corresponding set of normals is a half line (of rank one
semidefinite positive matrices, orthogonal to Arw sj). Since the corresponding
multiplier Y for problem (LSDP ) is such that 0 6= yj = Arw> Y j , we have that
Y j 6= 0, proving that −Y j belongs to the relative interior of the normal cone
(to the set of semidefinite positive matrices) at Arw sj . ¥

The above analysis shows that strong duality holds for problem (LSOCP) iff
it holds for problem (LSDP). The next proposition states an interesting relation
between the solutions of (LSOCP∗) and (LSDP∗).
Proposition 2.12. Let the strong duality property hold for problem (LSOCP).
Let I be the set of indexes in 1, . . . ,J such that there exists x∗ ∈ S(LSOCP)
satisfying Ajx∗ 6= bj. Then every Y ∈ S(LSDP∗) is such that, for some y ∈
S(LSOCP∗), the following relation holds:

Y j = 0, if yj = 0; Y j =
1
2

(‖ȳj‖ (ȳj)>

ȳj ȳj(ȳj)>/‖ȳj‖
)

, otherwise. (2.17)

Proof. Let j ∈ I, x∗ be the associated solution of (LSOCP), and let Y ∈
S(LSDP∗). We claim that

Y j
00Ȳ

j − (Ȳ j
0 )(Ȳ j

0 )> = 0, (2.18)

where Y j
00, Ȳ j and Ȳ j

0 are given by (2.13). Since Y j ∈ Smj+1
+ , by Schur com-

plement the matrix Y j
00Ȳ

j − (Ȳ j
0 )(Ȳ j

0 )> is positive semidefinite, and hence, it is
enough to show that

Tr
(
Y j

00Ȳ
j − (Ȳ j

0 )(Ȳ j
0 )>

)
≤ 0. (2.19)

By strong duality, any primal-dual solution (x∗,y∗) of (LSOCP) is solution of
(2.1). Since Ajx∗ 6= bj , the complementarity condition implies that any y ∈
S(LSOCP∗) satisfies yj

0 = ‖ȳj‖. Taking yj = Arw> Y j , we deduce Tr(Y j) =
yj
0 = ‖ȳj‖ = 2‖Ȳ j

0 ‖, which implies

Tr
(
Y j

00Ȳ
j − (Ȳ j

0 )(Ȳ j
0 )>

)
= Y j

00 Tr
(
Y j

)− (Y j
00)

2 − ‖Ȳ j
0 ‖2

= −
(
Y j

00 − ‖Ȳ j
0 ‖

)2

≤ 0,
(2.20)

proving (2.19) and therefore also (2.18). Combining (2.15) and (2.20), obtain

Y j
00 = ‖Ȳ j

0 ‖ =
1
2
‖ȳj‖. (2.21)
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Now, we distinguish two cases: a) If Y j
00 = 0, we obtain from (2.21) that Ȳ j

0 =
ȳj = 0 and then Tr(Y j) = yj

0 = 0. Hence, since Y j is positive semidefinite this
implies Y j = 0. b) Else if Y j

00 6= 0, we get directly from (2.18) and (2.21) that

Ȳ j = (Y j
00)

−1(Ȳ j
0 )(Ȳ j

0 )> =
2

‖ȳj‖ (ȳj/2)(ȳj/2)> =
1
2
(ȳj)(ȳj)>/‖ȳj‖,

which, combined with (2.21), allows to conclude the proof. ¥

3 Duality theory for nonlinear SOCP problems

The Lagrangian function associated with problem (SOCP) (stated in the
introduction) is L(x,y) := f(x)−∑m

j=1 yj · gj(x), and the dual problem is

Max
y∈Q

inf
x

L(x,y), (DSOCP)

where we have set Q := ΠjQmj+1. If problems (SOCP) and (DSOCP) have the
same finite value, then a pair (x,y) of primal and dual solution is characterized
by the optimality system

L(x,y) = min
x′

L(x′,y);

gj(x) ∈ Qmj+1; yj ∈ Qmj+1; yj ◦ gj(x) = 0, j = 1, . . . ,J.
(3.1)

The above statement is of special interest when problem (SOCP) is convex, i.e.
(see e.g. [6, Def 2.163]) if f(x) is convex, and the mapping g(x) is convex with
respect to the set Q′ := −Q. The latter means [6, Section 2.3.5] that

g(tx + (1− t)x′) ºQ tg(x) + (1− t)g(x′), ∀ x,x′ ∈ IRn and t ∈ [0,1]. (3.2)

Since Q is in product form, this is equivalent to say that gj(x) is convex w.r.t.
Qmj+1 for all j, that is, x → ‖ḡj(x)‖ − gj

0(x) is convex for all j. This holds, for
instance, if ḡj(x) is affine and gj

0(x) is concave for all j.

The results of the previous sections have a natural extension to nonlinear
second order cone problems. Since, for smooth problems, Lagrange multipliers
are solutions of the dualization of the linearized problems we have that, for a
nonconvex problem, there is a natural notion of optimal partition of constraints
(B,N,R,T ). For convex nonlinear second order cone problems, we can in the
same way define the optimal partition of constraints (B,N,R,T ), defined as
follows. The set B is the union of j such that there exists x ∈ S(SOCP )
satisfying gj

0(x) > ḡj(x), the set N is the union of j such that there exists
y ∈ S(DSOCP ) satisfying yj

0 > ‖ȳj‖, the set R is the union of j, such that
there exists x ∈ S(SOCP ) and y ∈ S(DSOCP ) satisfying gj(x) 6= 0 6= yj , and
for all j ∈ T , x ∈ S(SOCP ) and y ∈ S(DSOCP ), either gj(x) or yj is equal to
0, or both are zero, and neither gj(x) or yj belong to the interior of Qmj+1.
Remark 3.1. For second order cone problems we can even partition T as T0, TP

and TD, with T0 the set of j for which, if x ∈ S(SOCP ) and y ∈ S(DSOCP ),
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then gj(x) = 0 = yj, TP is the set of j ∈ T such that there exists x ∈ S(SOCP )
with ‖gj(x)‖ > 0, and TD is the set of j ∈ T such that there exists y ∈
S(DSOCP ) with ‖yj‖ > 0. It is easy to see that such a refined partition is
invariant under the reformulation as a semidefinite programming problem.

4 Nondegeneracy Condition and Reduction Approach

We recall the basic concepts of the reduction approach, see [6, Sec. 3.4.4].
Definition 4.1. Let X and Y be two finite dimensional spaces. Let K ⊆ X and
K̂ ⊆ Y be closed, convex sets. We say that the set K is reducible to K̂ at s∗ ∈ K
if there exist a neighborhood V of s∗ and a smooth mapping φ : V → Y such
that: i) for all s ∈ V , s ∈ K iff φ(s) ∈ K̂, and ii) Dφ(s∗) : X→ Y is onto. If the
set K is reducible to K̂ at all s∗ ∈ K, we just say that the set K is reducible
to K̂. If in addition φ(s∗) = 0, and K̂ is a pointed cone, we say that K is cone
reducible.

For our purposes, a smooth mapping will be a twice continuously diffe-
rentiable (C2) mapping. For problems with constraints in product form, i.e.
K = K1×· · ·×KJ , the reduction approach has the following obvious decompo-
sition property: cone reducibility holds whenever it holds for each set Kj , j = 1
to J .
Lemma 4.2. The second-order cone Qm+1 is cone reducible at every point
ŝ ∈ Qm+1, in the following way: (i) If ŝ = 0, take K̂ = Qm+1 and φ(s) = s, (ii)
If ŝ0 > ‖¯̂s‖, take K̂ = {0} and φ(s) = 0, (iii) If 0 6= s̄0 = ‖s̄‖, take K̂ = IR−
and φ(s) = ‖s̄‖ − s0.
Definition 4.3. Consider an arbitrary problem (P) Minx∈X{f(x) ; g(x) ∈ K},
where f, g are smooth functions, X, Y and Z are finite dimensional spaces and
K ⊆ Y is a closed convex cone, reducible to a closed convex cone K̂ ⊆ Z at
g(x∗) ∈ K by a mapping φ. We say that x∗ is nondegenerate (with respect to
the reduction given by φ) if the derivative DA(x∗) of the function A := φ ◦ g is
onto.

This notion, introduced in [5], generalizes to problems with general constraints
the corresponding concept used in linear or nonlinear programming. Note that
there are other definitions of nondegeneracy, e.g. [1, Def. 18] and references
therein. In the case of second order cones all these definitions are essentially
equivalent.

One of the main implication of nondegeneracy is stated in the next proposi-
tion, proved in [6, Prop. 4.75].
Proposition 4.4. Consider the problem (P) given in definition 4.3. Let x∗

be a solution of (P) and suppose that the set K is reducible to a pointed clo-
sed convex cone K̂ at the point g(x∗). If x∗ is nondegenerate then there exists
a unique Lagrange multiplier y∗ associated. Conversely, if the pair (x∗,y∗) is
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strictly complementarity, and y∗ is the unique Lagrange multiplier associated
with x∗, then x∗ is nondegenerate.
Proposition 4.5. Let x∗ be a solution of the second-order problem (LSOCP)
with J = 1. Set s∗ = Ax∗ − b and m = m1. Then, x∗ is nondegenerate if and
only if one of the following conditions holds: a) s∗ ∈ int Qm+1, b) s∗ = 0 and

the matrix A is onto, c) A>Rm(Ax∗ − b) 6= 0, where Rm :=
(

1 0>

0 −Im

)
.

Proof. The result is a direct consequence of lemma 4.2. ¥

We extend the above result to the case J > 1.
Proposition 4.6. Let x∗ be a solution of the second-order problem (LSOCP),
and set sj = Ajx∗ − bj. Set I∗ = {1 ≤ j ≤ J ; sj ∈ int Qmj+1}, Z∗ = {1 ≤
j ≤ J ; sj = 0}, and B∗ = {1 ≤ j ≤ J ; sj ∈ ∂ Qmj+1 \ {0}}, where ∂ Qmj+1 is
the boundary of Qmj+1. Then, x∗ is nondegenerate if and only if the following
conditions holds: The matrix A whose rows are the union of those of Aj, for
j ∈ Z∗, and the vectors rows (Ajx∗ − bj)>Rmj A

j, for j ∈ B∗, is onto.

Proof. This is once again a consequence of lemma 4.2. Indeed, for Aj(x) :=
φ(gj(x)) = φ(Ajx−bj), where φ is the reduction map of lemma 4.2, its derivative
at x∗ is given by

DAj(x∗) =
{

0, if j ∈ I∗; Aj , if j ∈ Z∗;

− (sj
0)
−1(Ajx∗ − bj)>Rmj A

j , if j ∈ B∗
}

.

So, the derivative DA(x∗) of function A := (A1; . . . ;AJ ) is onto iff the matrix
A is onto. ¥
Remark 4.7. We recover the result of [1, Thm 20]. Obviously, if (A1; · · · ; AJ)
is onto, then any feasible point is nondegenerate.

For problem (LSOCP), the Lagrange multipliers y∗ are the solutions of
(LSOCP∗), so, if x∗ is nondegenerate then proposition 4.4 tells us that the
dual problem (LSOCP∗) has a unique solution y∗.On the other hand, we know
from proposition 2.11 that any Y ∗ ∈ S(LSDP∗) is such that y∗ = Arw>Y ∗ ∈
S(LSOCP∗). By proposition 2.12, if Ajx∗ 6= bj for all j, uniqueness of solution
of (LSOCP∗) implies uniqueness of the solution of (LSDP∗). Yet it may happen
that S(LSDP∗) is not a singleton, even when x∗ is nondegenerate for problem
(LSOCP), as the next example shows.
Example 4.8. Consider just one block J = 1. Let A = I3 ∈ IR3×3 the identity
matrix, m = 2, b = 0 and c = (1,0,0)>. It follows that x∗ = 0 is the unique
solution of (LSOCP) (and then of (LSDP)), which is actually nondegenerate,
and y∗ = (1,0,0)> is the unique solution of (LSOCP∗). Using proposition 2.11(i)
and (2.15), and since Ax∗−b = 0, we see that Y ∈ S(LSDP∗) iff Y º 0, Tr(Y ) =
1 and Ȳ0 = 0. For instance, y∗(y∗)> and Y ∗ = 1

3I3 belong to S(LSDP∗).
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5 Strongly Regular Solutions of SOCP

In this section we consider the problem (SOCP) defined in the introduction
as follows:

Min
x∈IRn,sj∈IRmj+1

f(x); gj(x) = sj ºQmj+1 0, j = 1, . . . ,J, (SOCP)

where f : IRn → IR and gj : IRn → IRmj+1 are smooth functions (at least C2).
The first-order optimality system is

DxL(x∗,y) = Df(x∗)−
J∑

j=1

Dgj(x∗)>yj = 0, (5.1a)

gj(x) = sj ºQmj+1 0, yj ºQmj+1 0, sj ◦ yj = 0, j = 1, . . . ,J, (5.1b)

where L : IRn × IRm+1 → IR is the Lagrangian function of problem (SOCP)

L(x,y) := f(x)−
J∑

j=1

yj · gj(x). (5.2)

If (x∗,y∗) satisfies (5.1), then x∗ will be called a critical or stationary point of
(SOCP). Let us recall the definition of strongly regular solutions [13]:
Definition 5.1. We say that (x∗,y∗) is a strongly regular solution of KKT-
conditions (5.1) if there exists a neighborhood V of (x∗,y∗) such that for every
δ := (δ1,δ2) ∈ IRn ×ΠJ

j=1IR
mj+1 close enough to 0, the “linearized” system:

D2
xxL(x∗,y∗)(x− x∗)−Dg(x∗)>(y − y∗) = δ1, (5.3a)

g(x∗) ◦ y + Dg(x∗)(x− x∗) ◦ y = δ2 ◦ y, (5.3b)
g(x∗) + Dg(x∗)(x− x∗)− δ2 ºQ 0, y ºQ 0, (5.3c)

has a unique solution (x,y) = (x∗(δ),y∗(δ)) in V , which is a Lipschitz continuous
map of δ.

It can be shown that the strong regularity condition implies Robinson’s
constraint qualification condition:

There exists h∗ ∈ IRn such that g(x∗) + Dg(x∗)h∗ ∈ intQ, (5.4)

which coincides with the Slater (or primal strict feasibility) condition for linear
problem (LSOCP). This condition is discussed in [6, Section 2.3.4].

In this section we characterize the strong regularity in the context of problem
(SOCP) by using second order optimality conditions. This characterization is
a consequence of a well developed theory in a general conic optimization fra-
mework given by problem (P ) stated in definition 4.3. Note that the strong
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regularity condition (definition 5.1) can be written in this general framework as

D2
xxL(x∗,y∗)(x− x∗)−Dg(x∗)>(y − y∗) = δ1, (5.5a)

(g(x∗) + Dg(x∗)(x− x∗)− δ2) · y = 0, (5.5b)

g(x∗) + Dg(x∗)(x− x∗)− δ2 ∈ K, y ∈ K−. (5.5c)

In order to establish our main result we will recall some key notions and theo-
rems. For instance, a useful definition involved in this section is the following
uniform second order growth condition [12]. For this, we define a family of per-
turbation of (P), denoted (Pu), as follows

Min
x∈X

{f(x,u) ; g(x,u) ∈ K}, (5.6)

where X, Y and U are finite dimensional spaces, u ∈ U (perturbation space)
is the perturbation parameter and the functions f(x,u) : X × U → IR and
g(x,u) : X × U → Y are at least twice continuously differentiable and satisfy
f(·,0) := f(·) as well as g(·,0) := g(·).
Definition 5.2. Let x∗ be a stationary (or critical) point of problem (P). It is
said that the uniform second order growth condition holds at x∗ if there exist
α > 0 and a neighborhood N of x∗ such that for any u ∈ U (perturbation
space) close enough to 0 and any stationary (or critical) point x∗(u) ∈ N of the
perturbed problem (Pu), we have that

f(x,u) ≥ f(x∗(u),u) + α‖x− x∗(u)‖2, ∀x ∈ N , g(x,u) ∈ K. (5.7)

We say that the second order growth condition holds at x∗ if (5.7) holds for
problem (P), that is, there exist α > 0 and a neighborhood N of x∗ such that
condition (5.7) is satisfied at u = 0 and x∗(0) = x∗.

We need the next result, obtained in [6, Th. 5.24], that states a first charac-
terization which is valid in a general context.
Theorem 5.3. Let x∗ be a local solution of problem (P) and y∗ its corresponding
Lagrange multiplier. Suppose that K is reducible to a pointed closed convex cone
K̂ ⊆ Z at the point g(x∗). Then (x∗,y∗) is a strongly regular solution of the
Karush-Kuhn-Tucker conditions if and only if x∗ is nondegenerate (definition
4.3) and the uniform second order growth condition holds at x∗.

Theorem 5.3 means that we can completely characterize the strong regula-
rity condition by giving sufficient and necessary conditions to obtain the uniform
second order growth condition, under a nondegeneracy hypothesis. Unfortuna-
tely, such a characterization (in terms of derivatives of data at the nominal
point) is known only in very specific examples as for nonlinear programming
problems with C2 data, see e.g. Bonnans and Sulem [7] and Dontchev and
Rockafellar [9] and their references. For conic optimization problems, such a
characterization is not known. In fact the (non uniform) second order growth
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condition itself can be characterized essentially in two situations. The first is
when the cone is second order regular, see Bonnans, Cominetti and Shapiro
[2], and the second is when reduction to a pointed cone holds. We will apply
this second approach later in this section. Let us denote by Λ(x∗) the set of
Lagrange multiplier associated with x∗ for problem (P), i.e., y∗ ∈ Λ(x∗) iff
DxL(x∗,y∗) = 0 and −y∗ ∈ NK(g(x∗)) (the normal cone to K at g(x∗)), where
L(x,y) := f(x)− y · g(x) is the Lagrangian function of problem (P). We define
the tangent cone to the set K ⊆ Y at the point y ∈ K as

TK(s) := {d ∈ Y : s + td + o(t) ∈ K, ∀t > 0}, (5.8)

and the critical directions cone at x∗ for problem (P) as follows

C(x∗) := Df(x∗)⊥ ∩Dg(x∗)−1TK(g(x∗)) (5.9)

or equivalently, if Λ(x∗) is not empty, say contains some y∗:

C(x∗) := {h ∈ X : Dg(x∗)h ∈ TK(g(x∗)) ∩ (y∗)⊥}.

Lemma 5.4. Consider the second order cone Q := Qm+1 and let s ∈ Q. Then,

TQ(s) =





IRm+1, s ∈ intQ,
Q, s = 0,
d ∈ IRm+1 : d̄ · s̄− s0d0 ≤ 0, s ∈ ∂Q \ {0}.



 (5.10)

Proof. The cases when s ∈ intQ and s = 0 follow directly from the definition
of TQ(s) and the fact that Q is a cone. Suppose then that s ∈ ∂Q \ {0}, that is,
s0 = ‖s̄‖ 6= 0.

Since the set Q can be written in the form Q = {s ∈ IRm+1 : φ(s) ≤ 0},
where φ(s) := ‖s̄‖ − s0 is a convex differentiable function at all s such that
s̄ 6= 0, by [6, Prop. 2.61] the tangent cone TQ(s) is given by

TQ(s) = {d ∈ IRm+1 : φ′(s; d) ≤ 0}.

Therefore, we conclude by noting that the directional derivative φ′(s; d) when
s̄ 6= 0 is equal to φ′(s; d) = Dφ(s) ·d = s̄ · d̄/‖s̄‖−d0, and using 0 6= s0 = ‖s̄‖. ¥
Corollary 5.5. Let x∗ be a stationary (or critical) point of problem (SOCP) and
y ∈ Λ(x∗). Given h ∈ IRn, denote dj(h) := Dgj(x∗)h, as well as sj = gj(x∗).
Then, the critical directions cone C(x∗) is given by

C(x∗) =





h ∈ IRn : for all j = 1, . . . ,J,
dj(h) ∈ TQmj+1(s

j), yj = 0,

dj(h) = 0, yj ∈ intQmj+1,

dj(h) ∈ IR+(yj
0,− ȳj), yj ∈ ∂Qmj+1 \ {0}, sj = 0,

dj(h) · yj = 0, yj , sj ∈ ∂Qmj+1 \ {0}.
(5.11)
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Proof. Since the constraints are in product form, the critical cone has the
following decomposition property:

C(x∗) =
{

h ∈ IRn; dj(h) ∈ TQmj+1(s
j), dj(h) · yj = 0, j = 1, . . . ,J

}
. (5.12)

It suffices to establish the equivalence between the relations in (5.11) and (5.12)
concerning a given j. The case when yj = 0 is obvious. If yj ∈ intQmj+1,
then sj = 0 (by (5.1b)), and hence, TQmj+1(s

j) = Qmj+1, concluding that
TQmj+1(s

j) ∩ (yj)⊥ = Qmj+1 ∩ (yj)⊥ = {0} and the result follows.

Suppose now that yj ∈ ∂Qmj+1 \ {0}. If sj = 0 then, TQmj+1(s
j) = Qmj+1

again. Using (2.2), we obtain after elementary computations that Qmj+1∩(yj)⊥

is the set of dj satisfying dj
0(h) = ‖d̄j(h)‖ as well as d̄j(h) ∈ IR−ȳj . If sj 6= 0, we

obtain by similar computations that TQmj+1(s
j)∩(yj)⊥ is the set of dj satisfying

d̄j(h) · s̄j − sj
0d

j
0(h) = 0. The conclusion follows. ¥

For the second-order analysis we need the notion of (outer) second order
tangent set at s ∈ K in the direction d ∈ TK(s), defined as follows

T 2
K(s,d) := {w ∈ Y ; ∃tn ↓ 0 s.t. s + tnd +

1
2
t2nw + o(t2n) ∈ K}. (5.13)

Let us characterize this set when K = Q.
Lemma 5.6. Let s ∈ Q = Qm+1, and d ∈ TQ(s). Then,

T 2
Q(s,d) =





IRm+1, d ∈ intTQ(s),
TQ(d), s = 0,
{w ∈ IRm+1 : w̄ · s̄− w0s0 ≤ d2

0 − ‖d̄‖2}, otherwise.
(5.14)

Note that the last case in (5.14) is when s ∈ ∂Q \ {0} and d ∈ ∂TQ(s), the
latter being, by lemma 5.4, equivalent to d̄ · s̄− s0d0 = 0.

Proof. The first two cases follow directly from the definitions of second order
tangent set, and the fact that Q is a cone. Suppose now that s ∈ ∂Q \ {0} and
d ∈ ∂TQ(s). As in lemma 5.4, since Q has the form Q = {s ∈ IRm+1 : φ(s) ≤ 0},
where φ(s) := ‖s̄‖ − s0, by [6, Prop. 3.30], the set T 2

Q(s,d) is given by

T 2
Q(s,d) = {d ∈ IRm+1 : φ′′(s; d,w) ≤ 0},

where

φ′′(s; d,w) := lim
t↓0

φ(s + td + 1
2 t2w)− φ(s)− tφ′(s; d)

1
2 t2

is the (parabolic) second order directional derivative of φ. But φ is twice diffe-
rentiable at all s such that s̄ 6= 0 which implies that (e.g. [6, Eq. 2.81])

φ′′(s; d,w) = Dφ(s)w + D2φ(s)(d,d) =
s̄ · w̄
‖s̄‖ − w0 +

‖d̄‖2
‖s̄‖ − (d̄ · s̄)2

‖s̄‖3 , (5.15)
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and the desired result follows using s0 = ‖s̄‖ and d0s0 = d̄ · s̄ (the latter being
consequence of lemma 5.4 and the fact that d ∈ ∂TQ(s)). ¥

Roughly speaking, the characterization of the second order growth condition
(definition 5.2), established in [2, Th. 3.2], assumes a notion of set regularity on
K, called second order regularity, that holds under the hypothesis that the set
K is reducible to a cone K̂ (e.g. [6, Prop.3.136]). The result presented below is
a simplified version of this characterization. (cf. [6, Th. 3.137].)
Theorem 5.7. Let x∗ be a feasible point of problem (P) satisfying Robinson’s
constraint qualification condition

0 ∈ int{ g(x∗) + Dg(x∗)X−K} (5.16)

Suppose that the set K is reducible to a closed convex cone K̂ at the point
g(x∗). Then, the second order growth condition holds at x∗ iff the next second
order condition holds:

sup
y∗∈Λ(x∗)

D2
xxL(x∗,y∗)(h,h)− σ(−y∗; T 2) > 0, ∀h ∈ C(x∗) \ {0}, (5.17)

where σ(· ; T 2) denotes the support function of the set T 2 := T 2
K(g(x∗),Dg(x∗)h).

In the case of problem (SOCP) (i.e., K = Q), the set

T 2 := T 2
Q(g(x∗),Dg(x∗)h)

can be written in the product form T 2 = T 2
1 × . . . × T 2

J such that each T 2
j is

given by formula (5.14) where Q = Qmj+1, s = s∗j and d = dj(h). We have
set s∗ := g(x∗) and d(h) := Dg(x∗)h. Since −y∗ ∈ NQ(s∗) ∩ d⊥, we always
have that y∗ · w ≥ 0, for all w ∈ T 2. So, formula (5.14) implies that 0 ∈ T 2

and hence σ(−y∗; T 2) = 0, except in the case when s∗j ∈ ∂Qmj+1 \ {0} and
dj(h) ∈ ∂TQmj+1(s

∗j) \ {0}, for some index j ∈ {1, . . . ,J}. Dealing with the
latter case means, thanks to (5.14), to maximize −(y0w0 + ȳ · w̄) over the set of
w satisfying w̄ · s̄ − w0s0 ≤ d2

0 − ‖d̄‖2, where we have considered the notation
y = y∗j , and s and d given above, with j given by the case. Since ȳ = −(y0/s0)s̄,
we have that −(y0w0 + ȳ · w̄) = (y0/s0)(w̄ · s̄− w0s0). It follows that

σ(−y∗; T 2) =
∑

j∈J
(y∗j0 /s∗j0 )(dj(h)20 − ‖d̄j(h)‖2), (5.18)

where J is the set of index j s.t. s∗j ∈ ∂Qmj+1 \{0} and dj(h) ∈ ∂TQmj+1(s
∗j)\

{0}. On the other hand, we know that Q is reducible, (cf. lemma 4.2), so we
can apply theorem 5.7 to problem (SOCP) and state the following theorem.
Theorem 5.8. Let x∗ be a feasible point of the problem (SOCP) satisfying Ro-
binson’s constraint qualification condition (5.4). Then, the second order growth
condition holds at x∗ iff the following second order condition holds:

sup
y∈Λ(x∗)

D2
xxL(x∗,y)(h,h) + h>H(x∗,y)h > 0, ∀h ∈ C(x∗) \ {0}, (5.19)
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where the critical directions cone C(x∗) is established in (5.11), and the n × n

matrix H(x∗,y) is defined by H(x∗,y) =
∑J

j=1Hj(x∗,yj), where for sj = gj(x∗),
j = 1 to J ,

Hj(x∗,yj) := −yj
0

sj
0

Dgj(x∗)>Rmj
Dgj(x∗) = −yj

0

sj
0

Dgj(x∗)>
(

1 0>

0 −Imj

)
Dgj(x∗),

(5.20)
if sj ∈ ∂Qmj+1 \ {0}, and Hj(x∗,yj) := 0 otherwise.

In the next theorem we give a characterization of the strong regularity condi-
tion.
Theorem 5.9. Let x∗ be a local solution of problem (SOCP) and y∗ its cor-
responding Lagrange multiplier. Then, (x∗,y∗) is a strongly regular solution of
optimality conditions (5.1) iff x∗ is nondegenerate (definition 4.3) and the next
second order condition holds at x∗:

Q0(h) := D2
xxL(x∗,y∗)(h,h)+h>H(x∗,y∗)h > 0, ∀h ∈ Sp(C(x∗))\{0}. (5.21)

Proof. a) We establish some preliminary results. By theorem 5.3 we know
that (x∗,y∗) is a strongly regular solution of (5.1) iff x∗ is nondegenerate and
the uniform growth condition holds at x∗ for problem (SOCP). So, under the
nondegeneracy hypothesis, we just need to prove that second order condition
(5.21) is equivalent to the uniform growth condition. It is not difficult to check
that, under this hypothesis, the linear space generated by the critical cone has
the following expression:

Sp(C(x∗)) =





h ∈ IRn : for all j = 1, . . . ,J,
dj(h) = 0, yj ∈ intQmj+1,

dj(h) ∈ IR(yj
0,− ȳj), yj ∈ ∂Qmj+1 \ {0}, sj = 0,

dj(h) · yj = 0, yj , sj ∈ ∂Qmj+1 \ {0},
(5.22)

where throughout this proof we will denote by yj the j-th vector block of y∗.
(In particular, there is no condition on dj(h) if yj = 0.)
b) Let us prove that the uniform growth condition implies (5.21). Consider the
vector space E defined by

E :=





h ∈ IRn : for all j = 1, . . . ,J,
dj(h) = 0, yj ∈ intQmj+1,
dj(h) · yj = 0, yj ∈ ∂Qmj+1 \ {0}.

(5.23)

(Again, there is no restriction of dj(h) if yj = 0.) We have that Sp(C(x∗)) ⊂ E.
The key idea is to consider a perturbed version of problem (SOCP) in such a
way that x∗ is still a local solution with the same Lagrange multiplier y∗, but
with a bigger critical cone, equal to E. This perturbed problem is of the form

Min
x∈IRn

f(x) ; gj(x,u) := gj(x) + uδj ºQmj+1 0, j = 1, . . . ,J, (SOCPu)
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where for all j, ej
1 denotes the first element of the natural basis of IRmj+1, u > 0

is the perturbation parameter, and

δj =





ej
1 if yj = 0,

(yj
0,− ȳj) if sj := gj(x∗) = 0, yj ∈ ∂Qmj+1 \ {0},

0 otherwise.
(5.24)

This means that, if yj = 0, the constraint gj(x) ºQmj+1 0 is made inactive (in a
neighborhood of x∗), and if sj = 0 and yj ∈ ∂Qmj+1 \ {0}, then the constraint
gj(x) ºQmj+1 0 is still active, but at a point different from 0 where the set of
tangent directions to Qmj+1 is a half space. The point (x∗,y∗) is still solution of
the optimality system of (SOCPu). It is easily seen that the expression of the
critical cone for problem (SOCPu) at the point (x∗,y∗) is given by (5.23).

Define
I := {1 ≤ j ≤ J ; gj(x∗) = 0, yj ∈ ∂Qmj+1 \ {0}}.

Let H(x∗,yj ,u) denote the matrices in the expression of second order conditions,
for the perturbed problem. We have that H(x∗,yj ,u) = H(x∗,yj) for all j 6∈ I,
whereas for j ∈ I we obtain

Hj(x∗,yj ,u) =
1
u
Ĥj(x∗,yj),

where Ĥj(x∗,yj) := −Dgj(x∗)>
(

1 0>

0 −Imj

)
Dgj(x∗).

(5.25)

Set

Q1(h) :=
∑

j∈I

h>Ĥj(x∗,yj)h =
∑

j∈I

(‖d̄j(h)‖2 − (dj(h)0)2
)
. (5.26)

Note that, if h ∈ E, then since dj(h) · yj = 0 and yj
0 = ‖ȳj‖:

|dj(h)0| = |d̄j(h) · ȳj |/yj
0 ≤ ‖d̄j(h)‖, (5.27)

with equality iff dj(h) ∈ IR(yj
0, − ȳj). Combining with (5.26), we obtain that,

for all h ∈ E, Q1(h) ≥ 0, and that Q1(h) = 0 iff h ∈ Sp(C(x∗)).

We see that the uniform second-order growth for the perturbed problem
implies

Q0(h) +
1
u

Q1(h) > 0 for all h ∈ E \ {0}, (5.28)

for u small enough. This implies that Q0(h) > 0, for all h ∈ E such that
Q1(h) = 0. Therefore, the uniform second-order growth condition implies (5.21).
c) Conversely, assume that the second order condition (5.21) holds. If the uni-
form second order growth condition at x∗ is not satisfied, then there exists a
family of perturbed functions f(x,u) and g(x,u) such that, for some sequences
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un → 0, there exist (xn,yn) solution of the optimality system (5.1) of the per-
turbed problem satisfying xn → x∗, hn → 0 in IRn, with hn 6= 0, such that
xn + hn is a feasible point of (Pun

) (cf. (5.6)) (that is, g(xn + hn,un) ∈ Q) and
they also satisfy that

f(xn + hn,un) ≤ f(xn,un) + o(‖hn‖2). (5.29)

The nondegeneracy condition being stable under small perturbations, for large
enough n, there exists a unique Lagrange multiplier yn associated with each
stationary (or critical primal) point xn of (Pun

), and since xn → x∗, we have
that yn → y∗.

Extracting if necessary a subsequence, we may assume that hn/‖hn‖ converges
to some h∗ 6= 0. Let us check that h∗ ∈ Sp(C(x̄)). Since gj(xn+hn,un) ∈ Qmj+1

we have that

gj(xn + hn,un) = gj(xn,un) + Dxgj(xn,un)hn + o(‖hn‖) ºQmj+1 0. (5.30)

Since gj(xn,un) and (yn)j are orthogonal this implies

(yn)j ·Dxgj(xn,un)hn + o(‖hn‖) ≥ 0. (5.31)

Dividing by ‖hn‖, setting dj(h∗) := Dgj(x∗)h∗, and passing to the limit, obtain
yj ·Dgj(x∗)h∗ ≥ 0 for all j. Passing to the limit in (5.29) and combining with
(5.1a), we obtain 0 ≥ ∇f(x∗) · h∗ = y · Dg(x∗)h∗ =

∑J
j=1 yj · Dgj(x∗)h∗. We

have proved that
dj(h∗) · yj = 0, j = 1, . . . ,J. (5.32)

Consider the case when yj ∈ intQmj+1. Since yj
n → yj , we have that gj(xn,un) =

0 for large enough n. Let ε > 0 be such that yj + 2εB ⊂ Qmj+1. Then for all
unit vector z, yj

n + εz ∈ Qmj+1 for large enough n. Computing the scalar pro-
duct of (5.30) by yj

n + εz, and passing to the limit as was done before, obtain
(yj + εz) ·Dgj(x∗)h∗ ≥ 0. Using (5.32), since this is true for any unit norm z,
we get

dj(h∗) = 0, for all j; yj ∈ intQmj+1. (5.33)

Now in the case when yj ∈ ∂Qmj+1 \ {0} and gj(x∗) = 0, we have that
gj(xn,un) ∈ ∂Qmj+1 for all n large enough (otherwise we obtain from com-
plementarity condition that yj

n = 0 for some sequence yj
n → yj 6= 0). Let us

set gj
n := gj(xn,un) and dj

n := Dxgj(xn,un)hn. Of course dj
n/‖hn‖ → dj(h∗) :=

Dgj(x∗)h∗. By the very definition of Qmj+1, condition (5.30) can be equivalently
written as follows

(gj
n)0 + (dj

n)0 ≥ ‖ḡj
n + d̄j

n‖+ o(‖hn‖).

Since gn ∈ ∂Qmj+1, that is (gj
n)0 = ‖ḡj

n‖, we obtain that

(dj
n)0 ≥ ‖ḡj

n + d̄j
n‖ − ‖ḡj

n‖+ o(‖hn‖) ≥ ‖d̄j
n‖+ o(‖hn‖).
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Hence, by dividing by ‖hn‖ and tending n → +∞, we deduce that dj(h∗) ∈
Qmj+1 = TQmj+1(g

j(x∗)). This together with relations (5.32)-(5.33) proves that
h∗ ∈ Sp(C(x∗)).

We now use the same reduction argument as in lemma 4.2. It suffices for
indexes in

I := {1 ≤ j ≤ J : gj(x∗) 6= 0 6= yj}. (5.34)

to change the formulation of corresponding constraint of the perturbed problem,
that is, gj(x,u) ºQmj+1 0, into φ(gj(x,u)) ≤ 0, where φ(s) := ‖s̄‖ − s0. The

corresponding component of Lagrange multiplier is yj
0 (see the discussion of

relation between Lagrange multipliers before and after reduction in [6, Section
3.4.4], especially equation (3.267)). We have that, for each feasible point of the
perturbed problem (Pun), and denoting by yn the Lagrange multiplier associated
with xn, ∑

j 6∈I

(yn)j · gj(x,u) +
∑

j∈I

(yn)j
0φ(gj(x,u)) ≥ 0. (5.35)

Writing this inequality at point (xn + hn,un) and noticing that equality holds
at (xn,un) in view of the complementarity conditions, obtain

∑

j 6∈I

(yn)j · (gj(xn + hn,un)− gj(xn,un))

+
∑

j∈I

(yn)j
0(φ(gj(xn + hn,un)− φ(gj(xn,un)) ≥ 0.

(5.36)

Adding it to (5.29), in order to get a difference of Lagrangian functions, and
after a second-order expansion (using the fact that the derivative of Lagrangian
function w.r.t. x, at (xn,un), is zero), it follows that

D2
xxf(xn,un)(hn,hn)−

∑

j 6∈I

(yn)j ·D2
xxgj(xn,un)(hn,hn)

−
∑

j∈I

(yn)j
0D

2
xxφ(gj(xn,un))(dj

n(hn),dj
n(hn)) ≤ o(‖hn‖),

(5.37)

where dj
n(hn) := Dxgj(xn,un)hn. Using the expression of the expansion of φ,

computed in (5.15), and passing to the limit in n, obtain Q0(h∗) ≤ 0. Since
h∗ ∈ Sp(C(x∗)) \ {0}, this contradicts (5.21). The conclusion follows. ¥
Remark 5.10. A related result is [6, Thm 5.25], where it is proved that a
necessary condition for uniform quadratic growth, assuming uniqueness of the
Lagrange multiplier, is that the Hessian of Lagrangian function is positive defi-
nite over the space spanned by radial critical directions. By contrast, our result
is a characterization involving additional terms in the quadratic form, and space
spanned by all critical directions. There is also a second part in [6, Thm 5.25]
that involves the space spanned by all critical directions, but under a certain
“strong extended polyhedricity condition” that is not satisfied here.
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A note on Strong Regularity
for Semidefinite Programming

J. Frédéric Bonnans 1 & Héctor Ramı́rez C. 2

Abstract. In this work, we consider a semidefinite programming problem
that minimizes a nonlinear objective function subject to a nonlinear matrix
inequality constraint. We assume that these functions are at least twice conti-
nuously differentiable.

We state some necessary or sufficient conditions for strong regularity, in the
sense of Robinson, in terms of nonnegativity or positivity of some quadratic
forms on some subspaces. Although this improves the known results, there is
still a gap between the necessary and sufficient conditions.

1 Introduction

We consider the following problem

min
x∈IRn

{f(x) ; G(x) ¹ 0}, (P)

where f : IRn → IR and G : IRn → Sm are C2-functions, Sm denotes the
linear space of m × m symmetric matrices equipped with the inner product
A·B := trace(AB) =

∑m
i,j=1 AijBij for all matrices A = (Aij), B = (Bij) ∈ Sm,

and ¹ denotes the negative semidefinite order, that is, A ¹ B iff A − B is a
negative semidefinite matrix. The order relations ≺ , º and Â are defined
similarly.

Throughout this article we denote by (x̄,Ȳ ) ∈ IRn × Sm a solution of the
following Karush-Kuhn-Tucker (KKT) conditions:

∇xL(x̄,Ȳ ) = ∇f(x̄) + DG(x̄)∗Ȳ = 0, (1.1a)
G(x̄)Ȳ = 0, (1.1b)

G(x̄) ¹ 0,Ȳ º 0, (1.1c)

where L : IRn × Sm → IR is the Lagrangian function of problem (P)

L(x,Y ) := f(x) + Y ·G(x). (1.2)

1. Projet Sydoco, INRIA Rocquencourt, B.P. 105, Le Chesnay, France, e-mail : Frede-
ric.Bonnans@inria.fr.

2. Department of Mathematical Engineering, Universidad de Chile & Centre for Mathema-
tical Modelling, UMR 2071, Universidad de Chile-CNRS. Casilla 170-3 Santiago 3, Chile &
INRIA Rocquencourt, e-mail : hramirez@dim.uchile.cl.

98



1. INTRODUCTION

We say that Ȳ is a Lagrange multiplier associated with x̄. Note that, for a
linear operator Ay :=

∑m
i=1 yiAi with Ai ∈ Sm, as DG(x), we have for its

adjoint operator A∗ the formula:

A∗Z = (A1 · Z, . . . ,An · Z)>, ∀Z ∈ Sm. (1.3)

A pair (x̄,Ȳ ) satisfying (1.1) will be also called critical pair or KKT-point of
problem (P), and the set of Lagrange multipliers associated with x̄ will be
denoted by Λ(x̄). Finally, x̄ is called a critical point or critical solution of (P) if
Λ(x̄) 6= ∅.

In this work, we investigate the behavior of the pair (x̄,Ȳ ) when a perturba-
tion u ∈ IRk is applied to problem (P), obtaining then the perturbed problem

min
x∈IRn

{f(x,u) ; G(x,u) ¹ 0}, (Pu)

where f : IRn × IRk → IR and G : IRn × IRk → Sm are C2-functions satisfying
that f(·,0) := f(·) and G(·,0) := G(·).

We recall that Robinson’s constraint qualification condition holds at a fea-
sible point x̄ of (P) if

There exists h̄ ∈ IRn such that G(x̄) + DG(x̄)h̄ ≺ 0. (1.4)

Since x̄ is assumed to be a local solution of (P), condition (1.4) is equivalent
to say that the set of Lagrange multipliers Λ(x̄) is nonempty and compact.
Obviously, condition (1.4) is stable under small perturbations of problem (P),
and hence, (1.4) also implies the existence of a Lagrange multiplier (and such
multipliers are uniformly bounded) associated with a solution x̄(u) of (Pu), close
enough to x̄, i.e., for all u close enough to 0, there exists a pair (x̄(u),Ȳ (u))
satisfying the KKT-conditions of problem (Pu):

∇xL(x̄(u),Ȳ (u),u) = ∇xf(x̄(u),u) + DxG(x̄(u),u)∗Ȳ (u) = 0, (1.5a)
G(x̄(u),u)Ȳ (u) = 0, (1.5b)

G(x̄(u),u) ¹ 0,Ȳ (u) º 0, (1.5c)

where the Lagrangian function L : IRn×Sm×IRk → IR of the perturbed problem
(Pu) is defined as L(x,Y,u) := f(x,u) + Y ·G(x,u).

The outline of this paper is as follows. In Section 2 we present a review of
optimality conditions for our semidefinite problem and introduce the hypotheses
that will be used in the sequel. Section 3 deals with the main subject of this
paper: the strong regularity condition (in the sense of Robinson). Here we recall
some known results and establish a necessary condition to obtain the strong
regularity condition in the SDP case. Finally in Section 4, a sufficient condition
is shown.
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2 Review of optimality conditions

2.1 General properties of critical points

In this subsection we state some properties that are valid without any hy-
pothesis on a solution (x̄,Ȳ ) of the KKT system.

With G(x̄) and a Lagrange multiplier Ȳ is associated a certain decomposition
of IRn that we present now. Let r be the rank of G(x̄), and denote by E ∈
IRm×m−r a matrix whose columns are an orthonormal basis of KerG(x̄), i.e.,
E>E = Im−r and G(x̄)E = 0. Define also Ê ∈ IRm×r as the matrix whose
columns are an orthonormal basis of Im G(x̄). Such a matrix is characterized
by the relations Ê>Ê = Ir and Ê>E = 0.

Since Ȳ and −G(x̄) are positive semidefinite, the complementarity relation
Ȳ ·G(x̄) = 0 is equivalent to Im Ȳ ⊂ (Im G(x̄))⊥ = Ker G(x̄). Therefore, we can
write

Ȳ = EȲ11E
> = EWφ̄W>E>, (2.1)

where Ȳ11 := E>Ȳ E is an (m − r) × (m − r) matrix, r̄ := dim(Ker Ȳ ), and
the matrix W ∈ IR(m−r)×(m−r̄) satisfies that W>W = Im−r̄ and that φ̄ :=
W>Ȳ11W is positive definite.

We also define Ŵ ∈ IR(m−r)×(r̄−r) by the relations Ŵ>Ŵ = Ir̄−r and
Ŵ>W = 0.

We next need some basic concepts of convex analysis. The inner tangent
cone, to the set K ⊆ Y at the point A ∈ K, is defined as

TK(A) := {M ∈ Y : dist(A + tM,K) = o(t), ∀t > 0}. (2.2)

When K = Sm
− we have the following characterization

TSm
− (A) = {M ∈ Sm : v>Mv ≤ 0,∀v ∈ Ker A}.

Therefore, TSm
− (G(x̄)) = {M ∈ Sm : E>ME ¹ 0}.

The critical cone is defined to be

C(x̄) := {h ∈ IRn : DG(x̄)h ∈ TSm
− (G(x̄)),∇f(x̄)>h = 0}. (2.3)

Using the KKT conditions and (2.1), we have that, if h is critical,

0 = −∇f(x̄)>h = DG(x̄)h · Ȳ = φ̄ ·W>E>DG(x̄)hEW. (2.4)

Since φ̄ Â 0 and W>E>DG(x̄)hEW ¹ 0, (2.4) is equivalent to

W>E>DG(x̄)hEW = 0. (2.5)

100



2. REVIEW OF OPTIMALITY CONDITIONS

It follows that

C(x̄) = {h ∈ IRn : E>DG(x̄)hE ¹ 0; W>E>DG(x̄)hEW = 0}. (2.6)

A negative semidefinite matrix with a null diagonal block is characterized by
null corresponding non diagonal blocks and the other diagonal block negative
semidefinite. Therefore, using the columns of W and Ŵ as a base, we obtain an
equivalent expression of the critical cone:

C(x̄) = {h ∈ IRn : E>DG(x̄)hEW = 0; Ŵ>E>DG(x̄)hEŴ ¹ 0}. (2.7)

Given two points A, B of a vector space Y, let [A,B] = {αA+(1−α)B;α ∈ [0,1]}
denote the segment from A to B. The radial cone to a set K ⊆ Y at the point
A ∈ K is defined by

RK(A) := {M ∈ Y : ∃ t > 0, [A,A + tM ] ∈ K}. (2.8)

It is known [4, Prop. 5.68] that H ∈ TSm
− (G(x̄)) belongs to RSm

− (G(x̄)) iff

F>E>HG†HEF = 0, (2.9)

where F ∈ IR(m−r)×k is a matrix whose columns are an orthonormal basis
of Ker E>HE, and M† denotes the Moore-Penrose inverse of the matrix M ,
defined by M† :=

∑r
j=1 λ−1

j mjm
>
j , where λj are the nonzero eigenvalues of M

and mj the associated orthonormal eigenvectors.

Define the radial critical cone [4, Def. 3.52] as

CR(x̄) := {h ∈ IRn : DG(x̄)h ∈ RSm
− (G(x̄)); ∇f(x̄)>h = 0}. (2.10)

Radial critical directions satisfy (2.7) as well as F>h E>HhG†HhEFh = 0, where
now Hh = DG(x̄)h and Fh is a matrix whose columns are an orthonormal basis
of Ker E>DG(x̄)hE. Since E> is a basis of the range space of G(x̄), (2.9) is
equivalent to Ê>HhEFh = 0. Since Im Fh ⊃ Im W by complementarity, CR(x̄)
is the set of directions h ∈ IRn satisfying

HhEW = 0; Ê>HhEFh = 0; Ŵ>E>HhEŴ ¹ 0. (2.11)

Using E>HhEFh = 0, we obtain finally

CR(x̄) = {h ∈ IRn : HhEFh = 0; Ŵ>E>HhEŴ ¹ 0}. (2.12)

Remark 2.1. That CR(x̄) is convex is not immediate from expression (2.12).
However, we have that, if hi ∈ CR(x̄) for i = 1,2, and α ∈ (0,1), then h :=
αh1 +(1−α)h2 is such that Im(Fh) = Im(Fh1)∩Im(Fh2) (this is in fact true for
all critical directions defined above and follows from the first relation in (2.6)).
Therefore HhEFh = 0, whereas the second relation in the r.h.s. of (2.12) is
clearly satisfied.
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We will need in the sequel expressions of the spaces spanned by the criti-
cal cone and the radial critical cone. Therefore we prove the following general
lemma.
Lemma 2.2. Let C be the cone defined by

C := {h ∈ IRn : A(h) = 0; B(h) ¹ 0}, (2.13)

where A and B are finite dimensional linear mappings, with B having its range
in a space of symmetric matrices. Let h̄ ∈ ri(C) (relative interior of C), and D
matrix whose columns are an orthonormal basis of the kernel of B(h̄). Then

Sp(C) = {h ∈ IRn : A(h) = 0; D>B(h) = 0}, (2.14)

where Sp(C) := IR+(C − C) is the linear space generated by C.
Proof. Let h ∈ C. Since h̄ ∈ ri(C), there exists ε > 0 such that h̄ ± εh ∈ C.
In particular, B(h̄) ¹ εB(h) ¹ 0. This implies KerB(h̄) ⊂ KerB(h), and hence,
D>B(h) = 0 for all h ∈ C, implying that Sp(C) is included in the r.h.s. of (2.14).

Conversely, let h belong to the r.h.s. of (2.14). We want to show that h ∈
Sp(C). Since h = ε−1(h̄ − (h̄ − εh)), it is sufficient to check that h̄ − εh ∈ C
for small enough ε. Let D̂ be a matrix whose columns are an orthonormal
basis of the range of B(h̄). Then D̂>B(h̄)D̂ is negative definite, and hence,
D̂>B(h̄)D̂ ¹ εD̂>B(h)D̂ ¹ 0 for small enough ε. Since D>B(h) = 0, this
implies B(h̄) ¹ εB(h), hence h̄− εh ∈ C. The conclusion follows. ¥

This lemma allows to compute the space spanned by the critical cone.
Corollary 2.3. The existence of a critical direction h̄ ∈ C(x̄) such that
Ŵ>E>DG(x̄)h̄EŴ ≺ 0 characterizes the equality

Sp(C(x̄)) = {h ∈ IRn : E>DG(x̄)hEW = 0}. (2.15)

We cannot apply lemma 2.2 for the computation of the space spanned by
the radial critical cone, since (2.12) is not of the form (2.13). However, we can
get the following result.
Lemma 2.4. (i)Let h̄ ∈ ri(CR(x̄)), H̄ := DG(x̄)h̄, and F̄ be the matrix whose
columns are an orthonormal basis of KerE>H̄E. Then

Sp(CR(x̄)) ⊂ {h ∈ IRn : HhEF̄ = 0}. (2.16)

(ii) Conversely, if in addition Ŵ>E>H̄EŴ ≺ 0, (i.e., if F̄ = W ), then

Sp(CR(x̄)) = {h ∈ IRn : HhEW = 0}. (2.17)

Proof. Let h ∈ CR(x̄). Since h̄ − εh ∈ CR(x̄) for some ε > 0, we have that
Ŵ>E>H̄EŴ ¹ εŴ>E>HEŴ ¹ 0; since H̄EW = εHEW = 0, we have in
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fact E>H̄E ¹ εE>HE ¹ 0. This implies Im F̄ ⊂ Im F . Using (2.12), we deduce
that Sp(CR(x̄)) belongs to the r.h.s. of (2.16).

Conversely, let h belong to the r.h.s. of (2.16). Since h = ε−1((h̄ + εh)− h̄),
it suffices to prove that hε := h̄ + εh ∈ CR(x̄) for small enough ε. Set Hε :=
DG(x̄)hε; the associated null space Im Fε is equal to Im F̄ = Im W . Obviously
HεEW = 0. Since E>H̄E is negative definite on the orthogonal of Im F̄ , which
is the space spanned by the columns of Ŵ , we have that Ŵ>E>HεEŴ ≺ 0 for
small enough ε. The conclusion follows. ¥

Let us define now another set of directions related to a particular Lagrange
multiplier Ȳ ∈ Λ(x̄), defined as follows

Ĉ(x̄,Ȳ ) := {h ∈ IRn : [PrDG(x̄)h]Ȳ = 0}, (2.18)

where Pr is the matrix representation of the orthogonal projection over Im Ȳ ⊆
IRm. The cone Ĉ(x̄,Ȳ ) defined in (2.18) can be equivalently written as

Ĉ(x̄,Ȳ ) := {h ∈ IRn : Im Ȳ ⊆ Ker[Pr DG(x̄)h]}.
We set Ĉ(x̄) := Ĉ(x̄,Ȳ ) if Ȳ is unique.

We note that Pr = EWW>E>, so, if h ∈ Ĉ(x̄), then

[PrDG(x̄)h]Ȳ = [EWW>E>DG(x̄)h]Ȳ

= [EWW>E>DG(x̄)h]EWφ̄W>E> = 0.

Multiplying the last equality at the left side by W>E> and at the right side by
EWφ̄−1, we obtain the characterization

Ĉ(x̄) = {h ∈ IRn : W>E>DG(x̄)hEW = 0}. (2.19)

Comparing with (2.7) we see that

C(x̄) ⊂ Ĉ(x̄). (2.20)

Note that we also have

C(x̄) ⊂ C̄(x̄) := {h ∈ IRn : E>DG(x̄)hEW = 0}. (2.21)

2.2 Specific hypotheses

In this article we will sometimes use the following assumptions:

A1 Strict Complementarity Condition We say that the strict comple-
mentarity condition holds at x̄ if there exists a Lagrange multiplier Ȳ associated
with x̄ satisfying that

G(x̄)− Ȳ ≺ 0, (2.22)
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or equivalently (when Ker G(x̄) 6= {0})

The matrix E>Ȳ E is nonsingular. (2.23)

There are some other equivalent ways to define the strict complementarity condi-
tion in our context but conditions (2.22) and (2.23) are the most useful.

In that case we can take W = Im−r and Ŵ = 0. Denote the linear space
generated by the set S by Sp(S) := IR+(S−S). It follows from (2.7) and (2.11)
that, under the strict complementarity hypothesis,

Sp(C(x̄)) = C(x̄) = {h ∈ IRn : E>DG(x̄)hE = 0}, (2.24)
Sp(CR(x̄)) = CR(x̄) = {h ∈ IRn : DG(x̄)hE = 0}. (2.25)

A2 Nondegeneracy (or Transversality) Condition We say that the
point x̄, feasible for problem (P ) of section 1, is nondegenerate if the mapping
ψx̄ : IRn → Sm−r defined by

ψx̄(h) := E>DG(x̄)hE (2.26)

is onto. This notion was introduced by Shapiro and Fan in [13, Sec. 2].

The KKT system implies

−∇f(x̄)>h = Ȳ ·DG(x̄)h = Ȳ11 · E>DG(x̄)hE, for all h ∈ IRn.

The tranversality condition implies uniqueness of the solution Ȳ11 of this infinite
system of equations. Therefore, the tranversality condition implies uniqueness
of the Lagrange multiplier.

Obviously
Ker ψx̄ ⊆ C(x̄) ⊆ Ĉ(x̄,Ȳ ), (2.27)

with equality when the strict complementarity condition (2.22) holds (see e.g.
[8, Prop. 2]).

Note that Robinson’s constraint qualification condition (1.4) can be written
as

There exists h̄ ∈ IRn such that ψx̄(h̄) ≺ 0.

Thus, nondegeneracy (or transversality) condition is stronger than Robinson’s
constraint qualification condition. Hence, if x̄ is nondegenerate then there exists
a (necessarily unique) Lagrange multiplier Moreover, under the strict com-
plementarity condition (2.22), the existence and uniqueness of the Lagrange
multiplier Ȳ is equivalent to the nondegeneracy condition [4, Prop. 4.75]. For
more details about the nondegeneracy condition in the semidefinite program-
ming context see e.g. [4, 21], and in a general cone optimization framework see
[2].
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It is known that assumptions A1 and A2 are stable under small perturbations
of problem (P), as shown by the lemma below:
Lemma 2.5. Let (x̄,Ȳ ) be a critical or KKT-point of problem (P), and
(x̄(u), Ȳ (u)), solution of (1.5), converge to (x̄,Ȳ ) as u ↓ 0.

i) We can construct a matrix Eu ∈ IRm×m−r whose columns are an ortho-
normal basis of the space spanned by the eigenvectors associated with the m− r
biggest eigenvalues of G(x̄(u)), such that Eu → E.

ii) If A1 holds, then (x̄(u),Ȳ (u)) satisfies the strict complementarity condi-
tion for problem (Pu), when u is close to 0, i.e.,

The matrix E>
u Ȳ (u)Eu is nonsingular, (2.28)

iii) If A2 holds, then any ((Pu)-feasible) point x̄(u), which converges to x̄
as u ↓ 0, is nondegenerate for problem (Pu) when the perturbation u is small
enough, i.e., the following mapping is onto:

ψu(h) := E>
u DxG(x̄(u),u)hEu (2.29)

Proof. Part i) was shown in [4, Ex. 3.140]. Parts ii) and iii) are a direct conse-
quence of the continuity of Eu and Ȳ (u) as functions of u, and the smoothness
of G. ¥

A3 Second Order Optimality Conditions

Let us state for future reference various conditions for necessary or sufficient
optimality, involving second order derivatives of data. We will relate them later
to local optimality.

Let (x̄,Ȳ ) be a solution of the KKT system. These second order conditions
involve the following matrix, introduced in [11]:

H(x̄,Ȳ )ij := −2Ȳ · ([DxiG(x̄)]G(x̄)†[Dxj G(x̄)]). (2.30)

We call standard second order sufficient condition the following [2, Th. 3.2]:

sup
Ȳ ∈Λ(x̄)

h>∇2
xxL(x̄,Ȳ )h + h>H(x̄,Ȳ )h > 0, ∀h ∈ C(x̄) \ {0}, (2.31)

where the cone of critical directions C(x̄) was defined in (2.3).

The term h>H(x̄,Ȳ )h, related to the geometry (or curvature) of the cone Sm
−

of m×m symmetric negative semidefinite matrices, being nonnegative, implies
that (2.31) is weaker than the classical sufficient second order condition (e.g.
[19, Th. 2.2]): there exists Ȳ ∈ Λ(x̄) such that

h>∇2
xxL(x̄,Ȳ )h > 0, ∀h ∈ C(x̄) \ {0}. (2.32)
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See also [4, §5.3] and [11]. Condition (2.31) is a sufficient condition for optimality
of x̄ when Robinson’s constraint qualification condition (1.4) holds (See theorem
3.2 below). On the other hand, a second order necessary condition to be x̄
optimal (when (1.4) holds) is the following [21, Th. 8]

sup
Ȳ ∈Λ(x̄)

h>∇2
xxL(x̄,Ȳ )h + h>H(x̄,Ȳ )h ≥ 0, ∀h ∈ C(x̄). (2.33)

There is a no-gap relation between the necessary condition (2.33) and the
sufficient one (2.31), in the sense that an inequality is changed into a strict
equality.

Condition (2.31) and the second inclusion in (2.27) allows us to state a
stronger second order sufficient condition given by the existence of Ȳ ∈ Λ(x̄)
such that

h>∇2
xxL(x̄,Ȳ )h + h>H(x̄,Ȳ )h > 0, ∀h ∈ Ĉ(x̄,Ȳ ) \ {0}. (2.34)

This condition will be particularly useful when the multiplier Ȳ is unique (for
example, if the nondegeneracy assumption A2 is satisfied). A direct consequence
of (2.27) is the following lemma (see [4, Ex. 3.140]).
Lemma 2.6. Assume that the Lagrange multiplier Ȳ ∈ Λ(x̄) is unique (this is
the case when A2 holds) and the strict complementarity condition (2.22) (i.e.
A1). Then we have that second order sufficient conditions (2.31) and (2.34) are
equivalent to

h>∇2
xxL(x̄,Ȳ )h + h>H(x̄,Ȳ )h > 0, ∀h ∈ Ker ψx̄ \ {0}. (2.35)

Sufficient condition (2.35) was established by Shapiro in [21, Th. 9]. Finally,
under A1 and A2 condition (2.35) will be called assumption A3.

On the other hand, the second order sufficient condition (2.35) at the critical
point (x̄(u),Ȳ (u)) for problem (Pu) is written as follows

h>∇2
xxL(x̄(u),Ȳ (u),u)h + h>H(x̄(u),Ȳ (u),u)h > 0, ∀h ∈ Kerψu \ {0}, (2.36)

where H(x̄(u),Ȳ (u),u) ∈ Sm is the matrix whose components are

H(x̄(u),Ȳ (u),u)ij :=
−2Ȳ (u) · ([DxiG(x̄(u),u)]G(x̄(u),u)†[Dxj G(x̄(u),u)]).

3 Strong Regularity Condition

Let us recall the definition of strong regular solution [10].
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Definition 3.1. We say that (x̄,Ȳ ) is a strong regular solution of KKT-conditions
(1.1) if there exists a neighborhood V of (x̄,Ȳ ) such that for every δ := (δ1,δ2) ∈
IRn × Sm close to 0, the “linearized” system:

∇2
xxL(x̄,Ȳ )(x− x̄) + DG(x̄)∗(Y − Ȳ ) = δ1, (3.1a)

G(x̄)Y + DG(x̄)(x− x̄)Y = δ2Y, (3.1b)
G(x̄) + DG(x̄)(x− x̄)− δ2 ¹ 0,Y º 0, (3.1c)

has a unique solution (x,Y ) = (x̄(δ),Ȳ (δ)) in V, which is a Lipschitz continuous
function of δ.
Remark 3.2. It is known that the strong regularity condition implies Robinson’s
constraint qualification condition (1.4). See for example [4, pp. 416] or [3].

In this section we present the results concerning the strong regularity in the
semidefinite context of problem (P). Some of these results are also true in a
general cone optimization framework

min
x∈X

{f(x) ; G(x) ∈ K}, (3.2)

where K ⊆ Y is a convex cone and X and Y are Banach spaces. We can refer
the reader to [2, 3] in order to find out the different results available for problem
(3.2).

A useful definition involved in this work is the (uniform) second order growth
quadratic condition [10] stated below.
Definition 3.3. Let x̄ be a critical point of problem (P). It is said that the
uniform second order growth condition holds at x̄ if, for any smooth perturbation
of the form (Pu), there exist α > 0 and a neighborhood N of x̄ such that for
any u ∈ IRk close enough to 0 and any critical point x̄(u) ∈ N of the perturbed
problem (Pu), we have that

f(x,u) ≥ f(x̄(u),u) + α‖x− x̄(u)‖2, ∀x ∈ N , G(x,u) ¹ 0. (3.3)

We say that the second order growth condition holds at x̄ if condition (3.3) just
holds for problem (P), it means, there exist α > 0 and a neighborhood N of x̄
such that condition (3.3) is satisfied at u = 0 and x̄(0) = x̄.

The following characterization (cf. [4, Th. 5.24]) plays an important role in
the rest of this section. It is also valid for the general optimization problem (3.2)
when the convex cone K is C2-reducible to a pointed cone (cf. [4, Sec. 3.4.4]).
Theorem 3.1. Let x̄ be a local solution of problem (P) and Ȳ its corresponding
Lagrange multiplier. We have that (x̄,Ȳ ) is a strongly regular solution of KKT
system (1.1) if and only if x̄ is nondegenerate (assumption A2) and the uniform
second order growth quadratic condition holds at x̄.

The next result was introduced by Bonnans, Cominetti and Shapiro in [1]
using Fritz John conditions instead of KKT-conditions (1.1) (i.e. without as-
suming Robinson’s constraint qualification condition (1.4)) in a more general
context (see problem (3.2)). The reader can see also [4, Ch. 3] for more details.
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Theorem 3.2. Let x̄ be a critical point of problem (P) satisfying Robinson’s
constraint qualification condition (1.4). Then, the second order growth condition
(definition 3.3) holds at x̄ iff the second order sufficient condition (2.31) is
satisfied.

Theorem 3.1 shows us that we can completely characterize the strong re-
gularity condition by giving sufficient and necessary conditions to obtain the
uniform second order growth condition, as it was done for the second order
growth condition in theorem 3.2.

We start by recalling a necessary condition for uniform second order growth
condition, valid in a more general context. Remind that we have stated in lemma
2.4 some relations satisfied by Sp(CR(x̄)).
Theorem 3.3. Let x̄ be a local solution of problem (P), and Ȳ the unique La-
grange multiplier associated with x̄. If the uniform second order growth condition
holds at x̄, then

h>∇2
xxL(x̄,Ȳ )h > 0, ∀h ∈ Sp(CR(x̄)) \ {0}. (3.4)

Proof. This is an application to SDP problems of [4, Th. 5.25]. ¥

Let us now state a stronger necessary condition for uniform second order
growth. We recall an easy extension of lemmas on pair of quadratic forms, see
Hestenes [9].
Lemma 3.4. Let C ⊆ IRm be a closed, nonempty and convex cone, and P and
Q two quadratics forms satisfying that Q(x) ≥ 0 for all x ∈ C. Then the next
two conditions are equivalent:

P (x) + rQ(x) > 0, ∀x ∈ C \ {0}, for all large enough r, (3.5)

P (x) > 0, for all nonzero x in C ∩Q−1(0). (3.6)

By lemma 2.2, the nondegeneracy assumption A2 implies

Sp(C(x̄)) = {h ∈ IRn : E>DG(x̄)hEW = 0}. (3.7)

Theorem 3.4. Let x̄ be a local solution of problem (P) and Ȳ its correspon-
ding Lagrange multiplier. If (x̄,Ȳ ) is a strongly regular solution of KKT system
(1.1), then x̄ is nondegenerate (assumption A2) and the following second order
condition holds at x̄:

h>∇2
xxL(x̄,Ȳ )h + h>H(x̄,Ȳ )h > 0, ∀h ∈ Sp(C(x̄)) \ {0}. (3.8)

Proof. Consider the perturbed problem (Pu) where

f(x,u) := f(x) and G(x,u) := G(x)− uEŴŴ>E>, (3.9)
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for u > 0 small enough. Then (x̄,Ȳ ) is a solution of the KKT system for (Pu).
Recall that the columns of Ŵ is an orthonormal basis of the orthogonal of Im Ȳ
in KerG(x̄), and hence, the columns of EW are a basis of Ker G(x̄,u), and the
strict complementarity hypothesis is satisfied. Therefore the critical cone of the
perturbed problem is the set Ĉ(x̄) defined in (2.19).

By theorem 3.1, x̄ is nondegenerate and the uniform second order growth
condition holds at (x̄,Ȳ ).

Thus, the uniform second order growth condition implies that condition
(3.3) holds at x(u) = x̄ when u is small enough. By lemma 2.5.ii), the perturbed
nondegeneracy condition (2.29) holds. Using theorem 3.2, we see that condition
(3.3) is equivalent to the second order sufficient condition (2.31) for (Pu). Since
this pertubed problem satisfies the strict complementarity condition (2.28), the
quadratic growth is equivalent to (2.36). Due to the special structure of (3.9)),
this may be written as

h>∇2
xxL(x̄,Ȳ )h + h>H(u)h > 0, ∀h ∈ Ĉ(x̄) \ {0}, (3.10)

where H(u) ∈ Sn is defined by its components as

H(u)ij := −2Ȳ · ([DxiG(x̄)](G(x̄)− uEŴŴ>E>)†[Dxj G(x̄)]).

We claim that condition (3.10) is equivalent to (3.8). Indeed, since (G(x̄) −
uEŴŴ>E>)† = G(x̄)† − u−1EŴŴ>E>, we obtain that

h>H(u)h = h>H(x̄,Ȳ )h +
2
u

Ȳ · (DG(x̄)hEŴŴ>E>DG(x̄)h). (3.11)

On the other hand, since inequality (3.10) holds for the small values of u > 0
and the second term in (3.11)

2
u Ȳ · (DG(x̄)hEŴŴ>E>DG(x̄)h) =

2
u φ̄ · ([W>E>DG(x̄)hEŴ ][Ŵ>E>DG(x̄)hEW ])

is a nonnegative quadratic form on h, by using lemma 3.4, we obtain that the
second order necessary condition (3.10) holds if and only if

h>∇2
xxL(x̄,Ȳ )h + h>H(x̄,Ȳ )h > 0,

for all nonzero direction h ∈ Ĉ(x̄) (i.e., W>E>DG(x̄)hEW = 0) satisfying that

φ̄ · ([W>E>DG(x̄)hEŴ ][Ŵ>E>DG(x̄)hEW ]) = 0. (3.12)

Since φ̄ is positive definite, this is equivalent to Ŵ>E>DG(x̄)hEW = 0. In view
of the expression of the critical cone for the perturbed problem, we see that a
necessary condition for uniform quadratic growth is

h>∇2
xxL(x̄,Ȳ )h + h>H(x̄,Ȳ )h > 0, ∀h 6= 0, E>DG(x̄)hEW = 0,
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from which the conclusion follows. ¥
Remark 3.5. Theorem 3.4 implies theorem 3.3, since the set of directions is
larger, and the additional term of the quadratic form (which is nonnegative) is
zero on Sp(CR(x̄)) as we show now. Indeed, let h ∈ Sp(CR(x̄)). Relation (2.30)
implies

h>H(x̄,Ȳ )h = −2H>
h Ȳ Hh ·G(x̄)†. (3.13)

From the expression (2.12) of CR(x̄), and the fact already noticed that Im Fh ⊃
Im W by complementarity if h ∈ CR(x̄), it follows that HhEW = 0 for each
h ∈ CR(x̄), and hence, for each h ∈ Sp(CR(x̄)). Replacing Ȳ in (3.13) by its
expression given in (2.1), we obtain that h>H(x̄,Ȳ )h = 0, as was to be shown.

4 Sufficient condition for strong regularity

Here is the main result of this section.
Theorem 4.1. Let x̄ be a local solution of problem (P) and Ȳ its corresponding
Lagrange multiplier. If x̄ is nondegenerate (assumption A2) and the next second
order sufficient condition holds

h>∇2
xxL(x̄,Ȳ )h > 0, ∀h ∈ Ĉ(x̄) \ {0}, (4.1)

then (x̄,Ȳ ) is a strong regular solution of KKT-system (1.1), where Ĉ(x̄) was
defined in (2.18) and characterized in (2.19).

Proof. We argue by contradiction. By Theorem 3.1 we know that the nonde-
generacy condition always holds. If the uniform second order growth condition
does not hold at x̄, then there exist sequences un → 0, xn → x̄, hn → 0, with
hn 6= 0, such that xn and xn + hn are feasible points of the perturbed problem
(Pun), and

f(xn + hn,un) ≤ f(xn,un) + o(‖hn‖2). (4.2)

We can suppose (passing to a subsequence if necessary) that hn/‖hn‖ → h̄.
Feasibility of xn + hn implies

G(xn + hn,un) = G(xn,un) + DxG(xn,un)hn + o(‖hn‖) ¹ 0. (4.3)

Let the columns of En be an orthonormal basis of kernel of G(xn,un), then
E>

n DxG(xn,un)hnEn ¹ o(‖hn‖).
Since Robinson’s condition (1.4) is stable under small perturbations, we

know that there exists a Lagrange multiplier Yn associated with xn for problem
(Pun). Even more, since xn → x̄ it follows that Yn → Ȳ .

Note that Im Ȳ = Im(EW ) and Im Yn ⊂ Im En. Let y ∈ Im Ȳ , i.e., y = Ȳ z
for a certain z. Set yn := Ynz; since yn ∈ Im En, we have that y>n DxG(xn,un)hnyn
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≤ o(‖hn‖). Dividing by ‖hn‖ and passing to the limit, obtain y>DG(x̄)h̄y ≤ 0.
Since Im Ȳ = Im(EW ), it follows that

W>E>DG(x̄)hEW ¹ 0. (4.4)

On the other hand, passing to the limit in (4.2) we get that Df(x̄)h̄ ≤ 0. This
together with the first KKT-condition (1.1a) implies that Ȳ · DG(x̄)h̄ ≥ 0,
obtaining the equality

Ȳ ·DG(x̄)h̄ = 0,

which can be written as

φ̄ ·W>E>DG(x̄)h̄EW = 0. (4.5)

Since φ̄ is positive semidefinite and (4.4) holds, this implies

W>E>DG(x̄)h̄EW = 0. (4.6)

We now prove that h̄>∇2
xxL(x̄,Ȳ )h̄ is nonpositive. By using the first (per-

turbed) KKT-condition (1.5a) and a Taylor’s expansion we have

L(xn + hh,Yn,un)− L(xn,Yn,un) = h>n D2
xxL(x̄,Ȳ )hn + o(‖hn‖2). (4.7)

Since L(xn,Yn,un) = f(xn,un) and L(xn +hh,Yn,un) ≤ f(xn +hn,un), relations
(4.2) and (4.7) yield to

h>n D2
xxL(x̄,Ȳ )hn ≤ o(‖hn‖2).

Dividing by ‖hn‖2 and passing to the limit n → +∞, we conclude that
h̄>∇xxL(x̄,Ȳ )h̄ ≤ 0. Since (4.6) holds, this contradicts (4.1). ¥
Remark 4.1. We could have taken for yn an arbitrary element of Im En. Then
(4.4) improves to

W̃>E>DG(x̄)hEW̃ ¹ 0, (4.8)

where the columns of W̃ span the vector space of limit points of such yn. Ob-
viously Im(W̃ ) ⊃ Im(W ). Since (4.6) holds, the additional information is equi-
valent to

˜̃W
>

E>DG(x̄)hE ˜̃W ¹ 0, (4.9)

where the columns of ˜̃W span the subspace of Im(W̃ ) orthogonal to Im(W ). This
is not, unfortunately, so useful since we cannot say much on W̃ .
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