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Introduction générale

Des inclusions de petits encombrements sont sources de perturbations pour les
champs électromagnétiques ambiants (ceux qui existeraient en leurs absences, par
exemple). Il est facilement imaginable que la mesure de ces perturbations puisse
fournir des informations permettant l'identi�cation des inclusions, où par iden-
ti�cation l'on signi�e au minimum leur localisation, mais où l'on pourrait aussi
signi�er quanti�cation de leurs paramètres électriques, voire dans la meilleure des
hypothèses, caractérisation de leurs encombrements et formes. Récemment, une
théorie mathématique a été développée pour préciser de petites inclusions à partir
de mesures de frontière, voir [7] et références citées.

Cette thèse porte principalement sur l'identi�cation d'inclusions homogènes (de
nombre inconnu a priori) d'un milieu donné à partir de mesures d'amplitudes de
di�raction lors de l'éclairement approprié de ce milieu. Premièrement, nous four-
nissons de nouvelles formules asymptotiques, tant robustes que précises, des champs
électromagnétiques résultant du phénomène de di�raction. Ensuite, nous les ex-
ploitons pour la construction d'algorithmes d'identi�cation non itératifs pertinents.

Le problème est traité en trois grandes parties, chacune étant dédiée à une
géométrie spéci�que :

1) Le milieu d'enfouissement de la collection est homogène, l'espace libre.

2) Le milieu est constitué de deux demi-espaces séparés par une interface plane,
la collection étudiée se situant dans le demi-espace inférieur et sources et
capteurs se situant dans le demi-espace supérieur.

3) Le milieu est un guide d'ondes, et la collection est dans le c÷ur de ce guide
d'ondes.

Dans les deux premières situations nous considérons le problème d'identi�cation des
inclusions à partir de mesures d'amplitudes de di�raction à fréquence �xée pour
un nombre �ni d'angles d'incidence et d'angles d'observation. Dans la troisième
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situation nous nous intéressons à l'identi�cation des inclusions à partir de mesures
de la propagation des modes excités par des ondes incidentes.

Notons à ce stade que l'analyse numérique e�ectivement conduite dans cette
thèse est restreinte à une géométrie bidimensionnelle (les inclusions sont cylin-
driques et les cas de polarisation transverse électrique et transverse magnétique
sont considérés), mais l'analyse asymptotique développé au départ est valide pour
une con�guration tridimensionnelle. Ceci ouvre la porte, au delà de ce travail par-
ticulier, à des investigations sur la reconstruction d'inclusions 3-D limitées dans
le cadre d'un formalisme vectoriel des champs (en considérant qu'il est possible
d'envisager de réduire le problème tridimensionnel, via une succession de projec-
tions, à une résolution de trois problèmes bidimensionnels).

S'appuyant sur les formules asymptotiques obtenues nous proposons deux al-
gorithmes non itératifs pour la localisation des inclusions et la caractérisation de
leurs géométries. Dans la seconde et la troisième situation, nous faisons face à
un problème de di�raction inverse dit d'aspect limité, problème qui peut devenir
sévèrement mal posé si l'ouverture d'illumination et/ou d'observation est de petite
étendue.

Le premier algorithme proposé réduit le problème de reconstruction des inclu-
sions à un calcul de transformée de Fourier inverse. L'idée sous-jacente à cette
méthode de Fourier est semblable à celle utilisée par Calderon [19] dans sa preuve
d'unicité de la solution du problème de conductivité, puis par Sylvester et Uhlmann
dans leur travail important [61] sur l'unicité du problème de di�raction inverse
tridimensionnel. Notre méthode a par ailleurs des ressemblances avec l'approche
dite de tomographie par di�raction, qui est basée sur une formule de perturba-
tion aux petites amplitudes (l'approximation de Born) a�n de réduire le problème
de reconstruction a un calcul de transformée de Fourier inverse. La résolution,
critère évidemment majeur, est montrée de l'ordre d'une demi-longueur d'onde dans
l'environnement immédiat, bien que, dans quelques cas, celle-ci peut être signi�ca-
tivement meilleure.

Le second algorithme est du type MUSIC (qui vaut ici pour MUltiple Signal Clas-
si�cation). En général, MUSIC s'utilise en traitement de signal a�n d'estimer des
fréquences individuelles d'harmoniques multiples d'un signal [65]. Cet algorithme
est basé sur la décomposition singulière de la matrice de données dite "Multi-Static
Response" ou matrice MSR. Plus d'information sur cette méthode peut être trou-
vée dans [27] et [21] ainsi que dans [57] et [43] si l'on s'intéresse en particulier aux
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méthodes, proches, de retournement temporel.
Le travail s'est composé de deux parties : explicitation des propriétés des valeurs

et vecteurs singuliers de la matrice de données, et application de la méthode MUSIC
pour la localisation des inclusions, dans les trois cas d'intérêt, espace libre, espace
strati�é et guide d'ondes.

Des résultats numériques variés sont présentés dans chacun des cas a�n de met-
tre en évidence les performances et possibles limitations des algorithmes de re-
construction non itératifs proposés. Une comparaison avec la méthode de Fourier
précédemment introduite mais spécialisée et explicitée dans le cas bidimensionnel a
été e�ectuée en sus.

Dans tout ce manuscrit, tous les matériaux impliqués sont linéaires, isotropes,
passifs et au repos, et ils sont considérés comme entièrement caractérisés par leurs
permittivités diélectriques et leurs perméabilités magnétiques à une fréquence don-
née d'opération (de manière correspondante, si nous étions intéressés à des champs
acoustiques, les paramètres pertinents des inclusions et de leurs environnements
seraient la compressibilité et la densité volumique).

Un domaine d'application fondamental qui a motivé ce travail à l'origine est la
formation d'images de mines antipersonnel à partir de données électromagnétiques,
cette formation étant formulée comme un problème inverse où il s'agit de localiser
la collection de petites inclusions à partir l'amplitude de di�raction. Les mines
possèdent di�érents paramètres électriques du sol environnant et elles sont petites
relativement au secteur investigué. Dans cette application il n'est souvent pas
nécessaire de reconstruire les valeurs précises des paramètres électriques des mines
ou de leurs formes. La seule information d'intérêt consiste en leurs positions.

Au meilleur de notre connaissance, le travail actuel est la première tentative de
concevoir des algorithmes e�caces non itératifs pour localiser de petites inclusions
possédant des constantes diélectriques et magnétiques di�érant de celles de leur
milieu d'enfouissement en utilisant des mesures d'amplitude de di�raction à une
fréquence �xe pour un nombre �ni d'angles d'incidence et d'observation. La taille
et d'autres paramètres géométriques de ces petites inclusions peuvent également
être reconstruits, en principe tout au moins. Insistons aussi sur le fait que si part
du travail a été mené avec une fonction de Green "simple" (celle de l'espace libre), la
complexi�cation de celle-ci (espace strati�é et surtout guide d'ondes) a été a�rontée
avec succès même si l'analyse de la structure singulière devient di�cile et si les
résultats (de par de moins bonnes propriétés de focalisation) se dégradent.
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Comme déjà suggéré, l'utilisation de l'équivalence formelle entre l'électromagné-
tisme et l'acoustique linéaire, dans une con�guration bidimensionnelle, en rem-
plaçant de manière convenable la constante diélectrique et la perméabilité par la
compressibilité et la densité volumique, et le champ électrique scalaire par la pres-
sion acoustique caractéristique des milieux �uides soumis à des ondes de compres-
sion ouvrent la recherche ci-dessous à beaucoup d'autres applications, le type des
matériaux et de con�gurations géométriques à étudier et la gamme des valeurs des
deux ensembles de paramètres dans l'une ou l'autre discipline pouvant cependant
di�érer considérablement dans la pratique.

Bien évidemment, un niveau considérable d'expérimentation numérique est néces-
saire dans chaque situation rencontrée jusqu'à présent. Ceci est particulièrement
important pour des inclusions magnétiques, ou diélectriques et magnétiques. La
même chose (le besoin d'expérimentation numérique) est vraie avec l'échantillonnage
de l'espace de recherche, puisque l'on a même observé que cela peut masquer une
inclusion dans certains cas. Quant à l'impact du bruit et autres erreurs de mesure et
de modèle, nous en prétendons pas ici avoir mené une étude exhaustive, et nous re-
connaissons que la mener aurait exigé beaucoup plus de travail, particulièrement si
l'on avait voulu se rapprocher vraiment du monde réel. Finalement, le passage à des
situations tridimensionnelles impliquant des inclusions multiples de forme générale
(e.g., ellipsoïdale), peut-être proche l'une de l'autre ou proches des interfaces du
milieu les contenant, reste un challenge fort même si une partie signi�cative de
l'appareil théorique est déjà disponible.

Des questions ouvertes demeurent en sus. Nous en noterons, sans élaborer,
trois. (i) Pouvons-nous utiliser l'idée d'une inversion de Fourier a�n d'obtenir un
bon critère de division de la matrice de réponse entre signal et bruit, cette di�culté
de division étant évidente notamment dans le cas général d'inclusions magnétiques
et diélectriques ? (ii) Pouvons-nous utiliser la décomposition en valeurs singulières
de la matrice de réponse a�n de calculer la continuation analytique des données
de di�raction ? (iii) Comparant la résolution achevée par l'inversion de Fourier
et MUSIC, pouvons-nous appliquer l'idée de MUSIC à l'algorithme de Fourier qui
utilise la continuation analytique ?

Des améliorations peuvent aussi être envisagées. Nous noterons particulière-
ment, pour MUSIC, l'usage d'une procédure récursive dans laquelle la fonction
coût est changée après chaque mise en évidence d'une inclusion [51], et en présence
de données bruitées (une hypothèse naturelle), l'usage de plus de vecteurs singuliers
que théoriquement nécessaires pourrait être d'intérêt [58].
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En concluant cette introduction générale, nous voudrions nous référer à l'article
de revue de Colton, Coyle, et Monk [23] pour une présentation d'un certain nombre
d'autres algorithmes de reconstruction dans la di�raction inverse pour l'équation
de Helmholtz, dont particulièrement la méthode d'échantillonnage linéaire. Cette
approche a en e�et quelques similitudes aux algorithmes de type Music développés
ici.

Les résultats de ce manuscrit sont apparus dans les publications [6, 4, 5, 3].
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Introduction

Inclusions of small diameter in some background medium perturb ambient elec-
tromagnetic �elds. It is easily conceivable that measuring these perturbations for
given illuminations could provide information relevant to the identi�cation and the
characterization of the inclusions. Recently, a mathematical theory was developed
to recover small inclusions from boundary measurements, see [7] and references
therein.

This work is concerned with the reconstruction of such small inclusions from
scattering data. First, we provide a mathematically rigorous derivation of the
leading-order term in the scattering perturbations due to the presence of a col-
lection of small inclusions. Then we exploit these asymptotic formulae to design
non-iterative algorithms for e�ciently determining locations and or/shapes of the
small inclusions.

We consider the following three important situations:

1) The collection of inclusions is located in homogeneous (free) space.

2) The collection of inclusions is buried in a strati�ed medium, which consists of
two half spaces separated by a horizontal planar interface.

3) The collection of inclusions is buried in the core of an open waveguide.

In the two �rst situations we consider the problem of recovering the collection of
inclusions from scattering amplitude measurements at a �xed frequency for a �nite
number of angles of incidence and observation whilst in the third situation we are
interested in reconstructing the inclusions from measurements of propagated modes
excited by incident waves.

Let us emphasize at this stage that the numerical analysis e�ectively led in the
thesis is restricted to a two-dimensional geometry (the inclusions are cylindrical ones
and transverse electric or transverse magnetic polarization cases are considered) yet
the asymptotic analysis developed in the beginning is valid for a three-dimensional
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con�guration, which opens the door, beyond this particular work, to forthcoming
investigations of the retrieval of 3-D bounded inclusions in a vector �eld framework.

Based on asymptotic formulae for the scattering data, we develop two non-
iterative algorithms for locating the inclusions and recovering some important ge-
ometric information, such as their size and orientation. In the second and third
situation, we are faced with an aspect-limited inverse scattering problem, which
can become quite severe if the aperture of illumination and/or observation is of
small extent.

The �rst algorithm we develop reduces the reconstruction problem to the cal-
culation of an inverse Fourier transform. The idea behind the Fourier method
is quite similar to the one used by Calderon [19] in his proof of uniqueness of the
linearized conductivity problem and later by Sylvester and Uhlmann in their impor-
tant work [61] on uniqueness of the three-dimensional inverse conductivity problem.
Our Fourier method has also some similarities to so-called di�raction tomography,
which amounts, by way of a low-magnitude perturbation model (the Born approx-
imation), to the reduction of the reconstruction problem to the calculations of an
inverse Fourier transform.

The second algorithm is of MUSIC type. Recall that MUSIC (standing for
MUltiple Signal Classi�cation) is generally used in signal processing problems as a
method for estimating the individual frequencies of multiple-harmonic signals [65].
This algorithm makes use of a singular value decomposition of the so-called Multi-
Static Response (MSR) matrix. A more detailed description of this algorithm can
be found in [27] and [21]. See also [57] and [43] for further background on closely
related time-reversal methodologies.

A variety of numerical results are presented to highlight the potential and the
limitations of our non-iterative reconstruction algorithms. The pros and cons of
our Fourier and MUSIC algorithms are also discussed and the link between them
is investigated.

Throughout this manuscript, all materials involved are linear, isotropic, time-
invariant, and passive and they are considered as fully characterized by their elec-
trical permittivity and magnetic permeability at a given frequency of operation
(conversely, if one would be interested into acoustic �elds, the pertinent parameters
of the inclusions and of the embedding space would be compressibility and volume
density of mass).

One underlying application area which motivated this work is the imaging of
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anti-personnel mines from electromagnetic data, formulated as the inverse scattering
problem of locating the collection of small inclusions from the scattering amplitude.
Mines have di�erent electrical parameters from the surrounding soil and they are
small relative to the area being imaged. In this application it often not necessary
to reconstruct the precise values of the electrical parameters of the mines or their
shapes. The only information of interest is their positions.

To the best of our knowledge, the present work is the �rst attempt to design
non-iterative e�cient algorithms to determine the location of small inclusions with
both di�erent electric permittivities and magnetic permeabilities from those of their
embedding medium using scattering amplitude measurements at a �xed frequency
for a �nite number of angles of incidence and observation. The size and some other
geometric features of small inclusions can also be reconstructed.

As hinted to in the above, in two-dimensional (cylindrical) con�gurations, formal
equivalence between electromagnetics and linear acoustics enables us to replace
permittivity and permeability by compressibility and volume density of mass, and
the scalar electric �eld by the scalar acoustic pressure characteristic of compressional
waves inside �uid media. This opens up the investigation below to many other
applications, being said that the type of materials and of geometrical con�gurations
investigated and the range of values that are allowed to be taken by the two sets of
parameters in either discipline may di�er considerably in practice.

In concluding this introduction, we would like to refer to the survey paper by
Colton, Coyle, and Monk [23] for a presentation of a number of other reconstruc-
tion algorithms in inverse scattering for the Helmholtz equation, emphasizing the
linear-sampling method. This approach has some similarities to the MUSIC-type
algorithms developed here. We shall also mention, in connection with our asymp-
totic expansions of the scattering amplitude, the interesting work by Vogelius and
Volkov [66].

Results from this manuscript appeared in papers [6, 4, 5, 3].



4 INTRODUCTION



Chapter 1

Asymptotic formula for the
scattering amplitude

We rigorously derive the leading order term in the asymptotic expansion of the
scattering amplitude of a collection of a �nite number of electromagnetic inclusions
of small diameter.

1.1 Introduction
In this chapter, we consider electromagnetic scattering from a collection of small
electromagnetic inclusions in the two and three dimensions. We suppose that there
is a �nite number of electromagnetic inclusions in Rd, d = 2 or 3, each of the form
zj + αBj, where Bj ⊂ Rd is a bounded, smooth (C∞) domain containing the origin.
This regularity assumption could be considerably weakened. The total collection of
inclusions thus takes the form

Iα = ∪m
j=1(zj + αBj).

The points zj ∈ Rd, j = 1, . . . , m, that determine the location of the inclusions are
assumed to satisfy

0 < d0 ≤ |zj − zl| ∀ j 6= l. (1.1)

We also assume that α > 0, the common order of magnitude of the diameters of
the inclusions, is small enough such that the inclusions are disjoint.

Our goal in this chapter is to provide a rigorous derivation of the asymptotic
expansion of the scattering amplitude for such a collection of small electromagnetic
inclusions. Our technique for studying the scattering problem is to reduce the
problem to a bounded domain with the aid of integral equation methods. On the
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bounded domain, the derivation of the asymptotic expansion of the solution relies
heavily on the results of [66]. Our asymptotic formulas will form in Chapter 2
and 3 the basis for computational identi�cation algorithms, aimed at determining
information about the small inclusions from the scattering amplitude measurements.

1.2 Setting of the problem and de�nition of the po-
larization tensors

Let µ0 > 0 and ε0 > 0 denote the permeability and the permittivity of the free
space; we shall assume that these are positive constants. Let µj > 0 and εj > 0

denote the permeability and the permittivity of the jth inclusion, zj + αBj; these
are also assumed to be positive constants. Using this notation, we introduce the
piecewise constant magnetic permeability

µα(x) =

{
µ0, x ∈ Rd \ Īα,

µj, x ∈ zj + αBj, j = 1, . . . , m.
(1.2)

and electric permittivity

εα(x) =

{
ε0, x ∈ Rd \ Īα,

εj, x ∈ zj + αBj, j = 1, . . . ,m
(1.3)

If we allow the degenerate case α = 0, then the function µ0(x) and ε0(x) equal the
constant µ0 and ε0, respectively.

We need to introduce some additional notation. Let γj, 1 ≤ j ≤ m, be a set of
positive constants. In e�ect, {γj} will be the set {1/µj}. For any �xed 1 ≤ j0 ≤ m,
let γ denote the coe�cient given by

γ(x) =

{
γ0, x ∈ Rd \ B̄j0 ,

γj0 , x ∈ Bj0 .
(1.4)

By φl, 1 ≤ l ≤ n, we denote the solution to

∇y · γ(y)∇yφl = 0 in Rd,

φl − yl → 0 as |y| → ∞.
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This problem may alternatively be written as




∆φl = 0 in Bj0 , and in Rd \Bj0 ,

φl is continuous across ∂Bj0 ,

γ0

γj0
(∂νφl)

∣∣∣∣
+

− (∂νφl)

∣∣∣∣
−

= 0 on ∂Bj0 ,

φl(y)− yl → 0 as |y| → ∞.

Here ν denotes the outward unit normal to ∂Bj0 ; superscripts + and − indicate
the limiting values as we approach ∂Bj0 from outside Bj0 and from inside Bj0 . It
is obvious that the function φl depends only on the coe�cients γ0 and γj0 through
the ratio c = γ0/γj0 . The existence and uniqueness of this φl can be established
using single layer potentials with suitably chosen densities. It is essential here that
the constant c, by assumption, cannot be 0 or a negative real number.

We now de�ne the polarization tensor Mj0(c) = [mj0
kl(c)] ∈ Rd×d of the inclusion

Bj0 (with aspect ratio c), by1

mj0
kl(c) = c−1

∫

Bj0

∂yk
φl dy. (1.5)

It is quite easy to see that the tensor mj0
kl(c) is symmetric; since c is a positive real

number, it is furthermore positive de�nite. Note that if the inclusion Bj0 is a ball
then its polarization tensor Mj0 has the following explicit form:

Mj0(c) =
d

(d− 1)c + 1
|Bj0|Id, (1.6)

where Id is the d× d identity matrix. See [20] and [36].

1.3 Asymptotic formula for the solution
Consider in this section a homogeneous background medium in all of Rd with electric
permittivity ε0 and magnetic permeability µ0, and let εα and µα be the correspond-
ing dielectric functions in the presence of the small inclusions described above. Let
uα be the solution to the Helmholtz equation

∇ · 1

µα

∇uα + ω2εαuα = 0 in Rd, (1.7)

1It is worth mentioning that the de�nition of the polarization tensor is slightly di�erent from
that used in the book [7].
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with the radiation condition as |x| → ∞,
∣∣∣∣∂|x|(uα − eikξ̂·x)− ik(uα − eikξ̂·x)

∣∣∣∣ = O
(|x|1−d

)
(1.8)

where ω is the frequency, k2 = ω2ε0µ0, ξ̂ is a vector on the unit sphere Sd−1 in
Rd, ξ̂ · ξ̂ = 1, and u0 = eikξ̂·x is an incident plane wave. Note that u0 satis�es the
homogeneous Helmholtz equation

∇ · 1

µ0
∇u0 + ω2ε0u0 = 0 in Rd. (1.9)

In this section, we �nd and prove a formula, asymptotic with respect to the inclusion
diameter α, for uα in terms of u0. We begin by de�ning the outgoing Green's
function G(x, y) to satisfy

∆yG(x, y) + k2G(x, y) = −δx(y) in Rd, (1.10)

∣∣∣∣∂|x|G− ikG

∣∣∣∣ = O
(|x|1−d

)
, as |x| → ∞.

In fact, we know G explicitly:

G(x, y) =





i

4
H1

0 (k|x− y|), d = 2,

eik|x−y|

4π|x− y| , d = 3.

(1.11)

Let Ω denote some �xed domain in Rd that contains the inclusions and

dist(zj, ∂Ω) ≥ d0 > 0, ∀j. (1.12)

Without loss of generality, we can assume that k2 is not an eigenvalue of −∆ in Ω

corresponding to Dirichlet boundary conditions on ∂Ω. We know that Lemma 1.3.3
(Proposition 1 in [66]), which is based on properties of collectively compact oper-
ators, guarantees that, for α su�ciently small, the trivial solution is the unique
solution to (∇ · (1/µα)∇ + ω2εα)vα = 0 in Ω, with the boundary condition vα = 0

on ∂Ω.
If we consider the equation for uα in the exterior of Ω, multiply G, and integrate

by parts, we get that, for x ∈ Rd \ Ω,

uα(x) = u0(x) +

∫

∂Ω

∂νyGuα(y) dσy −
∫

∂Ω

G∂νuα(y) dσy,
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where ν is the unit outward normal to ∂Ω.
Of course, this equation does not hold up to the boundary of Ω, but if we take

the limit as x → ∂Ω, we get (see, for example, [24] and [52])

1

2
uα|∂Ω = u0|∂Ω +

∫

∂Ω

∂νyG uα(y) dσy −
∫

∂Ω

G∂νuα(y) dσy (1.13)

for x ∈ ∂Ω. Now de�ne the Dirichlet-to-Neumann map (DtN)

Nα : H1/2(∂Ω) → H−1/2(∂Ω),

Nα(f) = ∂νvα,

where vα is the solution to

∇ · 1

µα

∇vα + ω2εαvα = 0 in Ω, (1.14)

vα = f on ∂Ω.

Hence
Nα(uα|∂Ω) = ∂νuα|∂Ω.

Similarly, let
N0 : H1/2(∂Ω) → H−1/2(∂Ω)

be the DtN map for the limiting problem so that

N0(u0|∂Ω) = ∂νu0|∂Ω.

We also de�ne the single and double layer potential operators

S : H−1/2(∂Ω) → H1/2(∂Ω)

and
D : H1/2(∂Ω) → H1/2(∂Ω),

where
S : g →

∫

∂Ω

G(x, y)g(y) dσy

and
D : f →

∫

∂Ω

∂νyG(x, y)f(y) dσy.

Using this operator notation, we see that from (1.13) we have
(

I

2
−D + SNα

)
(uα|∂Ω) = u0|∂Ω.
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Similarly, u0 satis�es
(

I

2
−D + SN0

)
(u0|∂Ω) = u0|∂Ω.

De�ne
Tα : H1/2(∂Ω) → H1/2(∂Ω)

by
Tα =

I

2
−D + SNα, (1.15)

and let
T0 =

I

2
−D + SN0. (1.16)

By subtracting the two above equations, we have that

Tα(uα|∂Ω)− T0(u0|∂Ω) = 0,

and hence
Tα((uα − u0)|∂Ω) = S(N0 −Nα)(u0|∂Ω).

We will need the following proposition. The reader is referred to the last section
of this chapter for its proof. In the following proposition and in the remainder of
this chapter, all asymptotic terms and constants may depend on the separation d0

of the inclusions.

Proposition 1.3.1 Let Tα be de�ned by (1.15) and T0 by (1.16). Then we have
the following:

(a) Tα converges to T0 pointwise.

(b) Tα − T0 is collectively compact.

(c) There exists a constant C that is independent of α and the set of points {zj}m
j=1

such that, for any f ∈ H1/2(∂Ω), T−1
α exists and

‖T−1
α f‖H1/2(∂Ω) ≤ C‖f‖H1/2(∂Ω).

(d) The following asymptotic formula holds:

(T0 − Tα)(u0|∂Ω)(x) = S(N0 −Nα)(u0|∂Ω)(x)

= αd

m∑
j=1

[
γj

µ∇yG(x, zj) ·Mj

(
µj

µ0

)
∇u0(zj)

+ k2γj
ε G(x, zj) u0(zj)

]
+ o(αd), (1.17)
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where γj
µ and γj

ε are given by

γj
µ =

µj

µ0
− 1, (1.18)

γj
ε =

εj

ε0
− 1 (1.19)

and the asymptotic term o(αd) is independent of x ∈ ∂Ω and the set of points
{zj}m

j=1.

De�ne the correction

u(1)(x) =
m∑

j=1

[
γj

µ∇yG(x, zj) ·Mj

(
µj

µ0

)
∇u0(zj) + k2γj

εG(x, zj) u0(zj)

]
, (1.20)

for x 6= zj, j = 1, . . . , m. We have therefore shown that

Tα((uα − u0)|∂Ω) = αdu(1)|∂Ω + o(αd) (1.21)

uniformly for x ∈ ∂Ω. Note that, from the de�nition of G, u(1) satis�es

−(∆ + k2)u(1) =
m∑

j=1

[
γj

µ∇δzj
·Mj

(
µj

µ0

)
∇u0(zj) + k2γj

ε δzj
u0(zj)

]
, (1.22)

in the sense of distributions, where δzj
is the Dirac delta function at the point zj.

Lemma 1.3.1 Let the correction term u(1) be de�ned by (1.20). Then we have

T0(u
(1)|∂Ω) = u(1)|∂Ω.

Proof. Multiplying (1.22) by G, integrating by parts over Ω, and taking the limit
as x → ∂Ω, we get

1

2
u(1)|∂Ω −

∫

∂Ω

∂νyGu(1)(y) dσy +

∫

∂Ω

G∂νu
(1)(y) dσy = 0

for x ∈ ∂Ω. De�ne v(1) as the unique solution to
{

∆v(1) + k2v(1) = 0 in Ω,

v(1) = u(1) on ∂Ω;

that is,
∂νv

(1) = N0(u
(1)|∂Ω).
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Green's formula yields, for any x ∈ Ω away from the centers of the inclusions,
∫

∂Ω

G(x, y)∂ν(u
(1) − v(1))(y) dσy = u(1)(x)− v(1)(x)−

m∑
j=1

[
γj

µ∇yG(x, zj) ·Mj

(
µj

µ0

)
∇u0(zj) +

k2γj
εG(x, zj) u0(zj)

]

= −v(1)(x).

Hence, for x ∈ ∂Ω,
∫

∂Ω

G(x, y)∂ν(u
(1) − v(1))(y) dσy = −u(1)(x).

Using this, we can rewrite
∫

∂Ω

G∂νu
(1)(y) dσy =

∫

∂Ω

GN0(u
(1))(y) dσy +

∫

∂Ω

G(∂νu
(1)(y)−N0(u

(1))(y)) dσy

=

∫

∂Ω

GN0(u
(1))(y) dσy − u(1)(x),

from which it follows that
1

2
u(1)|∂Ω −

∫

∂Ω

∂νyGu(1)(y) dσy +

∫

∂Ω

GN0(u
(1))(y) dσy = u(1)(x)

for x ∈ ∂Ω. This just says exactly that T0(u
(1)|∂Ω) = u(1)|∂Ω. ¤

Lemma 1.3.2 The following estimate holds:

‖uα − u0 − αdu(1)‖H1/2(∂Ω) = o(αd), (1.23)

where the term o(αd) goes to zero faster than αd independent of the set of points
{zj}m

j=1.

Proof. From (1.21) it follows that

Tα((uα − u0 − αdu(1))|∂Ω) = αdu(1)|∂Ω − αdTα(u(1)|∂Ω) + o(αd).

Lemma 1.3.1 yields

Tα((uα − u0 − αdu(1))|∂Ω) = αd(T0 − Tα)(u(1)|∂Ω) + o(αd).
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Therefore, due to the pointwise convergence of Tα to T0, we obtain

Tα((uα − u0 − αdu(1))|∂Ω) = o(αd),

which leads, by using point (c) in Proposition 1.3.1, to the desired estimate (1.23). ¤

From this lemma, we obtain the following theorem.

Theorem 1.3.1 Let uα be the solution to (1.7), and let Mj(µj

µ0 ) be the polarization
tensors for the shapes Bj de�ned by (1.5). Then, for x ∈ Rd \ Ω bounded away
from ∂Ω, we have the pointwise expansion

uα(x) = eikξ̂·x (1.24)

+αd

m∑
j=1

eikξ̂·zj

[
ik γj

µ∇yG(x, zj) ·Mj

(
µj

µ0

)
ξ̂ + k2 γj

ε |Bj|G(x, zj)

]

+ o(αd).

Here the remainder term o(αd) is independent of x and the set of points {zj}m
j=1.

Proof. From Lemma 1.3.2, it follows that uα − u0 satis�es in Rd \ Ω





∆(uα − u0) + k2(uα − u0) = 0 in Rd \ Ω,

(uα − u0) = αnu(1) + o(αd) on ∂Ω,

|∂|x|(uα − u0)− ik(uα − u0)| = O(|x|1−d), as |x| → ∞.

Let G denote the outgoing Dirichlet Green's function that is de�ned by




∆G + k2G = −δ in Rd \ Ω,

G = 0 on ∂Ω,

|∂|x|G − ikG| = O(|x|1−d), as |x| → ∞.

It is easy to see that uα − u0 has the following integral representation in Rd \ Ω:

(uα − u0)(x) =

∫

∂Ω

∂G
∂νy

(x, y)(uα − u0)(y) dσ(y) ∀ x ∈ Rd \ Ω.

Moreover, for any x ∈ Rd \ Ω which is bounded away from ∂Ω, we obtain from the
asymptotic expansion of the boundary condition in Lemma 1.3.2 that

(uα − u0)(x) = αd

∫

∂Ω

∂G
∂νy

(x, y)u(1)(y) dσ(y) + o(αd),
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where o(αd) is independent of x and the set of points {zj}m
j=1. Since, for any

x ∈ Rd \ Ω and z ∈ Ω, we have by standard integration by parts the identities
∫

∂Ω

∂G
∂ν

(x, y)G(y, z) dσ(y) = G(x, z)

and ∫

∂Ω

∂G
∂ν

(x, y)∇zG(y, z) dσ(y) = ∇zG(x, z),

the expression of the correction term u(1) immediately leads to the promised asymp-
totic expansion. ¤

The following lemma is of use to us. Its proof can be found in [66] and [10].

Lemma 1.3.3 Suppose that k2 is not an eigenvalue for the operator −∆ in L2(Ω)
with homogeneous Dirichlet boundary conditions and (1.12) are satis�ed. Let aα,
α ≥ 0, be the sesquilinear form given by

aα(ϕ, φ) =

∫

Ω

1

µα

∇ϕ∇φ− ω2

∫

Ω

εα ϕφ, ϕ, φ ∈ H1
0 (Ω).

There exists a constant α0 > 0, such that given any α0 > α ≥ 0 and any bounded,
conjugate-linear functional b on H1

0 (Ω), there is a unique ϕα ∈ H1
0 (Ω) which sat-

is�es aα(ϕα, φ) = b(φ) for all φ ∈ H1
0 (Ω). Furthermore, there exists a constant C,

independent of α and b, such that

||ϕα||H1(Ω) ≤ C sup
φ∈H1

0 (Ω),||φ||H1(Ω)=1

|b(φ)|.

We can also obtain the next proposition on the norm convergence of the solutions.

Proposition 1.3.2 There exists a constant C that is independent of α and the set
of points {zj}m

j=1 such that the following energy estimate holds:

‖uα − u0‖2
L2(Ω) + ‖∇uα −∇u0‖2

L2(Ω) ≤ Cαd. (1.25)

Proof. Let ũα be de�ned as the unique solution to
{

∆ũα + k2ũα = 0 in Ω,

ũα = uα on ∂Ω.

We have {
∆(ũα − u0) + k2(ũα − u0) = 0 in Ω,

(ũα − u0) = uα − u0 on ∂Ω,
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which leads to
‖ũα − u0‖H1(Ω) ≤ C‖uα − u0‖H1/2(Ω),

where the constant C is independent of α. Using Lemma 1.3.2, we get that ‖ũα −
u0‖H1(Ω) is of order αd. Now note that the function (uα − ũα) is in H1

0 (Ω), and for
any v ∈ H1

0 (Ω)

∫

Ω

1

µα

∇(uα − ũα) · ∇v − ω2

∫

Ω

εα(uα − ũα)v =
∫

Ω

1

µα

∇uα · ∇v − ω2

∫

Ω

εαuαv

−
∫

Ω

1

µ0
∇ũα · ∇v + ω2

∫

Ω

ε0ũαv

+
m∑

j=1

(
1

µ0
− 1

µj

) ∫

zj+αBj

∇ũα · ∇v

+ k2

(
εj

ε0
− 1

) ∫

zj+αBj

ũαv.

Next we can bound
∣∣∣∣
∫

zj+αBj

∇ũα · ∇v

∣∣∣∣ ≤ ‖∇ũα‖L2(zj+αBj)‖∇v‖L2(Ω)

and ∣∣∣∣
∫

zj+αBj

ũαv

∣∣∣∣ ≤ ‖ũα‖L2(zj+αBj)‖v‖L2(Ω).

However, using the triangle inequality,

‖∇ũα‖L2(zj+αBj) ≤ ‖∇(ũα − u0)‖L2(Ω) + ‖∇u0‖L2(zj+αBj),

and
‖ũα‖L2(zj+αBj) ≤ ‖(ũα − u0)‖L2(Ω) + ‖u0‖L2(zj+αBj).

Therefore, since
‖u0‖H1(zj+αBj) = O(αd/2)

and
‖(ũα − u0)‖H1(Ω) = O(αd),

we obtain
∣∣∣∣
∫

Ω

1

µα

∇(uα − ũα) · ∇v − ω2

∫

Ω

εα(uα − ũα)v

∣∣∣∣ ≤ Cαd/2‖v‖H1(Ω)
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for any v ∈ H1
0 (Ω). From Lemma 1.3.3, it then follows that

‖(uα − ũα)‖H1(Ω) = O(αd/2);

hence

‖(uα − u0)‖H1(Ω) ≤ ‖(uα − ũα)‖H1(Ω) + ‖(u0 − ũα)‖H1(Ω) ≤ Cαd/2,

exactly as desired. ¤

1.4 Asymptotic formula for the scattering ampli-
tude

We now use the results derived in the previous section to prove an asymptotic
formula for the scattering amplitude. The scattering amplitude, Aα(x̂, ξ̂), is de�ned
to be a function which satis�es

uα(x) = eikξ̂·x + Aα

(
x̂, ξ̂

) eik|x|

|x|(d−1)/2
+ o

(|x|(1−d)/2
)
, (1.26)

as |x| → ∞, uniformly with respect to x̂ = x/|x| and ξ̂ on Sd−1.

Recall that

G(x, zj) =





i

4
H1

0 (k|x− zj|), d = 2,

eik|x−zj |

4π|x− zj| , d = 3.

One can show from a simple calculation that, as |x| → ∞,

G(x, zj) =
eik|x|
√
|x| γd e−ik x

|x| ·zj + o
(|x|(1−d)/2

)
, (1.27)

∇yG(x, zj) = − eik|x|
√
|x| γd

x

|x|e
−ik x

|x| ·zj + o
(|x|(1−d)/2

)
, (1.28)

where γd is de�ned by

γd =





k2(1 + i)

4
√

kπ
, d = 2,

k2

4π
, d = 3.

(1.29)

The following asymptotic formula for the scattering amplitude holds.
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Theorem 1.4.1 The scattering amplitude

Aα(x̂, ξ̂) = αd γd

m∑
j=1

e−ik(x̂−ξ̂)·zj

[
γj

µ x̂ ·Mj

(
µj

µ0

)
ξ̂ − γj

ε |Bj|
]

+ o(αd) (1.30)

for any x̂ and ξ̂ ∈ Sd−1, d = 2 or 3, where γd is de�ned by (1.29) and o(αd) is
independent of the set of points {zj}m

j=1.

Proof. This follows from (1.27), (1.28), and the expansion in Theorem 1.3.1. ¤

1.5 Proof of Proposition 1.3.1
Recall that Ω is some �xed domain in Rd, d = 2 or 3, containing the inclusions.
De�ne Ĝ(x, x′) to be the Dirichlet Green's function for Ω,

∆x′Ĝ(x, x′) + k2Ĝ(x, x′) = −δx in Ω, (1.31)
Ĝ(x, x′) = 0 on ∂Ω.

Recall that
Nαf −N0f =

∂vα

∂ν
− ∂v0

∂ν
,

where vα is the solution to

∇ · 1

µα

∇vα + ω2εαvα = 0 in Ω, (1.32)

vα = f on ∂Ω,

and v0 is the solution to

∇ · 1

µ0
∇v0 + ω2ε0v0 = 0 in Ω, (1.33)

v0 = f on ∂Ω.

Integration by parts gives

vα(x) = −
∫

Ω

(∆x′Ĝ + k2Ĝ)vα(x′) dx′ (1.34)

= −
∫

∂Ω

f
∂Ĝ

∂νx′
dσx′ +

∫

Ω

∇x′Ĝ · ∇x′vα dx′ −
∫

Ω

k2Ĝ vα dx′

= v0(x) +
m∑

j=1

∫

zj+αBj

[
γj

µ

µ0

µj
∇x′Ĝ · ∇x′vα + k2γj

ε Ĝ vα

]
dx′,
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since by (1.32) and (1.33)
∫

Ω

1

µα

∇x′Ĝ · ∇x′vα dx′ − ω2

∫

Ω

εα Ĝ vα dx′ = 0

and
v0(x) = −

∫

∂Ω

f
∂Ĝ

∂νx′
dσx′ .

We �rst derive a uniform asymptotic expansion for ∂vα/∂ν on ∂Ω. We note that
this is similar to Theorem 1 in [66], where the authors derived an expansion when
d = 2 using the free space Green's function. We use the Dirichlet Green's function
because it is more convenient for our purposes.

Lemma 1.5.1 Let vα and v0 be de�ned as above. Then we have the pointwise
expansion

(Nα −N0) (f)(x′) =

=
∂vα

∂ν
(x′)− ∂v0

∂ν
(x′)

= αd

m∑
j=1

[
γj

µ∇v0(zj) ·Mj

(
µj

µ0

)
∇x

∂

∂νx′
Ĝ(x′, zj)

+ k2γj
ε v0(zj)

∂

∂νx′
Ĝ(x′, zj)

]
+ o(αd), (1.35)

where the term o(αd) is uniform for x′ ∈ ∂Ω, d = 2 or 3.

For reasons of brevity, we restrict a signi�cant part of the derivation of the
asymptotic expansion (1.35) to the case of one inclusion (m = 1). We suppose that
this inclusion is centered at the origin, so it is of the form αB. The general case
may be veri�ed by a fairly direct iteration of the argument we will present here,
adding one inclusion at a time. We will as usual make the change of variables

y = x′/α,

where
Ω̃ =

1

α
Ω

and
B =

1

α
Bα.
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De�ne the correction wα(y) to be the unique solution to




∆ywα + α2ω2ε1µ1wα = 0 in B,

∆ywα + α2ω2ε0µ0wα = 0 in Ω̃ \B,

wα is continuous across ∂B,
µ1

µ0

∂wα

∂νy

∣∣∣∣
+

− ∂wα

∂νy

∣∣∣∣
−

= −
(

µ1

µ0
− 1

)
∇x′v0(0) · ν on ∂B,

wα = 0 on ∂Ω̃.

(1.36)

Also, de�ne w(y), which is independent of α and a sort of limit of wα, as the unique
solution to




∆yw = 0 in B,

∆yw = 0 in Rn \B,

w is continuous across ∂B,
µ1

µ0

∂w

∂νy

∣∣∣∣
+

− ∂w

∂νy

∣∣∣∣
−

= −
(

µ1

µ0
− 1

)
∇x′v0(0) · ν on ∂B,

lim|y|→∞ |w(y)| = 0.

(1.37)

We recall that the function w satis�es the following bounds (decay estimates) at
in�nity

w(y) =





O(|y|−1), d = 2,

O(|y|2−d), d ≥ 3,

and

∇yw(y) =





O(|y|−2), d = 2,

O(|y|1−d), d ≥ 3.

This decay ensures that for any d ≥ 2 we have

||w||L2(Ω̃) ≤ Cα−
1
2 .

We now need some additional lemmas before we can proceed with the derivation of
the asymptotic formula (1.17).
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Lemma 1.5.2 Let vα, v0, and wα be given by (1.32), (1.33), and (1.36), respec-
tively. Let

zα(y) = vα(αy)− v(αy)− αwα(y).

Then there exists a constant C independent of α such that

‖zα‖L2(Ω̃) ≤ Cα,

and

‖∇yzα‖L2(Ω̃) ≤ Cα2.

Proof. Using the equations (1.32), (1.33) and (1.36) we compute that zα solves





∆yzα + α2ω2ε0zα = 0 in Ω̃ \B,

∆yzα + α2ω2µ1ε1zα =

(
µ1

µ0
− 1

)
∆yv0(αy) + α2ω2µ1(ε0 − ε1)v0(αy)

in B,

zα is continuous across ∂B,
µ1

µ0

∂zα

∂νy

∣∣∣∣
+

− ∂zα

∂νy

∣∣∣∣
−

= −α

(
µ1

µ0
− 1

)
∇x′(v0(αy)− v0(0)) · ν on ∂B,

zα = 0 on ∂Ω̃.

For any φ ∈ H1
0 (Ω), integration by parts gives us that

∫

Ω̃

1

µα

∇yzα · ∇yφ(αy) dy − α2ω2

∫

Ω̃

εαzα(y)φ(αy) dy

=

(
1

µ0
− 1

µ1

) ∫

∂B

α∇x′(v0(αy)− v0(0)) · νφ(αy) dσy −
∫

B

[(
1

µ0
− 1

µ1

)
∆yv0(αy)φ(αy)− α2ω2(ε0 − ε1)v0(αy)φ(αy)

]
dy

=

(
1

µ1
− 1

µ0

) ∫

B

α2∆x′v0(0)φ(αy) dy − α2ω2(ε0 − ε1)

∫

B

v0(αy)φ(αy) dy

+

(
1

µ0
− 1

µ1

) ∫

B

α∇x′(v0(αy)− v0(0) · ∇yφ(αy) dσy
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Next we change variables back to the small domain on the left-hand side and mul-
tiply by αd−2 to obtain∫

Ω

1

µα

∇x′zα · ∇x′φ dx′ − ω2

∫

Ω

εαzαφ dx′

= −αdω2(ε0 − ε1)

∫

B

v0(αy)φ(αy) dy

+ αd−1

(
1

µ0
− 1

µ1

) ∫

B

∇x′(v0(αy)− v0(0) · ∇yφ(αy) dσy

= −ω2(ε0 − ε1)

∫

αB

v0(x
′)φ(x′) dx′

+

(
1

µ0
− 1

µ1

) ∫

αB

∇x′(v0(αy)− v0(0)) · ∇x′φ(x′) dx′. (1.38)

We start with estimating the term
∫

αB
v0φ. Extend φ to the entire Rd as zero and

denote Φ this extension to �nd that∣∣∣∣
∫

αB

v0(x
′)φ(x′) dx′

∣∣∣∣ ≤
∣∣∣∣
∫

αB

v0(x
′)Φ(x′) dx′

∣∣∣∣ = αd

∣∣∣∣
∫

B

v0(αy)Φ(αy) dy

∣∣∣∣

≤ Cαd

(∫

B

|Φ(αy)|2 dy

)1/2

≤ Cα3

(∫

R3

|Φ(αy)|2
1 + |y|2 dy

)1/2

, (d = 3)

≤ Cα2

(∫

R2

|Φ(αy)|2
(1 + |y|2) log (2 + |y|2)2 dy

)1/2

, (d = 2).

Since the function Φ(α·) has compact support and as

∇Φ(α·) ∈ L2(Rd),

it follows from the weighted Sobolev compact embedding [1] that for d = 3
(∫

R3

|Φ(αy)|2
1 + |y|2 dy

)1/2

≤ C

(∫

R3

|∇Φ(αy)|2 dy

)1/2

≤ Cα−1/2

(∫

R3

|∇Φ(x′)|2 dx′
)1/2

≤ Cα−1/2‖φ‖H1(Ω),

while for d = 2(∫

R2

|Φ(αy)|2
(1 + |y|2) log (2 + |y|2)2 dy

)1/2

≤ C

(∫

R2

|∇Φ(αy)|2 dy

)1/2

≤ C

(∫

R2

|∇Φ(x′)|2 dx′
)1/2

≤ C‖φ‖H1(Ω).
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A combination of the three last estimates gives:
∣∣∣∣
∫

αB

v0(x
′)φ(x′) dx′

∣∣∣∣ ≤ Cαd/2+1‖φ‖H1(Ω) for any φ ∈ H1
0 (Ω). (1.39)

Now, using the interior regularity of v0, we obtain the estimate for the second term
in (1.38):

∣∣∣∣
∫

αB

∇x′(v0(αy)− v0(0)) · ∇x′φ(x′) dx′
∣∣∣∣

≤ αd/2‖∇x′(v0(αy)− v0(0))‖L∞αB
‖φ‖H1(Ω)

≤ Cαd/2+1‖φ‖H1(Ω). (1.40)

A combination of the estimates (1.39) and (1.40) yields
∣∣∣∣
∫

Ω

1

µα

∇x′zα · ∇x′φ dx′ − ω2

∫

Ω

εαzαφ dx′
∣∣∣∣ ≤ Cαd/2+1‖φ‖H1(Ω).

By Lemma 1.3.3, it follows that

‖zα‖H1(Ω) ≤ Cαd/2+1.

The result then follows from another scaling. ¤

Lemma 1.5.3 Let wα and w be de�ned by (1.36) and (1.37), respectively. Then
there exists C independent of α such that

‖wα − w‖L2(Ω̃) ≤ Cα−1/2,

and
‖∇y(wα − w)‖L2(Ω̃) ≤ Cα1/2.

Proof. Consider wα(x′/α) − w(x′/α). Since wα and w share the same jump
condition on the boundary of the ball, their di�erence satis�es an equation across
this boundary. It is not hard to see that in fact we have

∇x′ · 1

µα

∇x′(wα − w) + ω2εα(wα − w) = −ω2εαw in Ω,

wα − w = −w on ∂Ω,

which leads to

‖wα − w‖H1(Ω) ≤ C
(‖w‖L2(Ω) + ‖w‖H1/2(∂Ω)

)
,
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where the constant C is independent of α. Due to the decay of w we have

‖w(x′/α)‖L∞(∂Ω) ≤ Cα, d = 2,

‖w(x′/α)‖L∞(∂Ω) ≤ Cαd−2, d ≥ 3,

and
‖w‖L2(Ω) ≤ Cαd/2−1/2.

Hence
‖wα − w‖H1(Ω) ≤ Cαd/2−1/2,

which by rescaling proves the lemma. ¤

De�ne
rα(y) = vα(αy)− v0(αy)− αw.

The previous two lemmas together imply that

‖∇yrα‖L2(Ω̃) ≤ Cα3/2

and
‖vα − v0‖L2(Ω̃) ≤ Cα1/2.

Then, from (1.35),

vα(x)− v0(x) =

∫

αB

[
γ1

µ

µ0

µ1
∇x′Ĝ(x, x′) · ∇x′vα(x′)

+ k2γ1
ε Ĝ(x, x′) vα(x′)

]
dx′

= αd

∫

B

[
γ1

µ

µ0

µ1
∇x′Ĝ(x, αy) · ∇x′vα(αy)

+ k2γ1
ε Ĝ(x, αy) vα(αy)

]
dy

= αd−1 γ1
µ

µ0

µ1

∫

B

∇x′Ĝ(x, αy) · ∇y[v0(αy) + αw(y)] dy

+ αd−1 γ1
µ

µ0

µ1

∫

B

∇x′Ĝ(x, αy) · ∇yrα(αy) dy

+ k2αd γ1
ε

∫

B

Ĝ(x, αy) v0(αy) dy

+ k2αd γ1
ε

∫

B

Ĝ(x, αy) (vα(αy)− v0(αy)) dy (1.41)
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By expanding Ĝ in a Taylor series and using the above estimates for rα and vα−v0,
we have that

∫

B

∇x′Ĝ(x, αy) · ∇yrα dy = O(α3/2),
∫

B

Ĝ(x, αy) (vα(αy)− v0(αy)) dy = O(α1/2).

Hence

αd−1 γ1
µ

µ0

µ1

∫

B

∇x′Ĝ(x, αy) · ∇yrα dy = O(αd+ 1
2 ),

k2αd γ1
ε

∫

B

Ĝ(x, αy) (vα(αy)− v0(αy)) dy = O(αd+ 1
2 ).

Inserting this into (1.41), we have shown that

vα(x)− v0(x) = αd−1 γ1
µ

µ0

µ1

∫

B

∇x′Ĝ(x, αy) · ∇y[v0(αy) + αw(y)] dy

+ k2αd γ1
ε

∫

B

Ĝ(x, αy) v0(αy) dy + o(αd).

From this expression, we now derive the formulae with the polarization tensor:

vα(x)− v0(x) = αd γ1
µ

µ0

µ1

[∫

B

∇x′Ĝ(x, αy) · ∇x′v0(αy) dy

+

∫

B

∇x′Ĝ(x, αy) · ∇yw(y) dy

]

+ k2αd γ1
ε

∫

B

Ĝ(x, αy) v0(αy) dy + o(αd)

= αdγ1
µ

µ0

µ1
|B| ∇x′Ĝ(x, 0) · ∇x′v0(0)

+ αdγ1
µ

µ0

µ1
∇x′Ĝ(x, 0) ·

∫

B

∇yw(y) dy

+ k2αd γ1
ε |B| Ĝ(x, 0) v0(0) + o(αd), (1.42)

by Taylor expansions for v0 and Ĝ. Note that
∫

B

∇yw dy =

∫

∂B

∂w−

∂νy

y dσy

and
ψ(y) = w(y) +∇xv0(0) · y =

n∑

l=1

∂v0

∂x′l
(0) φl(y),
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where the φl(y) are de�ned by (1.5). Hence

|B|∇xv0(0) +

∫

B

∇yw(y) dy =

∫

B

∇yψ(y) dy,

from which we may rewrite (1.42) as

vα(x)− v0(x) = αnγ1
µ∇x′Ĝ(x, 0) ·M1

(
µ1

µ0

)
∇v0(0)

+ k2γ1
ε Ĝ(x, 0) v0(0) + o(αd) (1.43)

for M1
(

µ1

µ0

)
de�ned by (1.5). By standard elliptic regularity, we obtain (1.35),

where the term o(αd) is uniform for x ∈ ∂Ω.

We are now ready to prove Proposition 1.3.1. Integration by parts yields
∫

∂Ω

G(x, y)
∂

∂νy

(∇x′Ĝ(y, 0)) dσy =−∇x′G(x, 0) and
∫

∂Ω

G(x, y)
∂

∂νy

(Ĝ(y, 0)) dσy =−G(x, 0).
(1.44)

By applying the operator S to (1.35) and using (1.44), we arrive at the promised
asymptotic expansion (1.17), which, along with the boundedness of the operator S,
implies that Tα converges to T0 pointwise, which is the claim in point (a). Further-
more, since the points zj are away from the boundary ∂Ω, it follows from (1.17)
that the family of operators Tα−T0 is collectively compact, and so point (b) holds.
Rewriting Tα = T0 + (Tα − T0) and recalling that the operator T0 is invertible, it
follows immediately from [14] that T−1

α is well de�ned, and point (c) in Proposi-
tion 1.3.1 holds. ¤
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Chapter 2

Fourier method

Our goal is to use the expansion derived in Chapter 1 for e�ciently determining
the locations and/or shapes of the small inclusions from scattering amplitude mea-
surements at a �xed frequency by reducing the reconstruction problem of the small
inclusions to the calculation of an inverse Fourier transform.

2.1 Introduction
In this chapter, we present a �rst linear non-iterative method to determine the loca-
tions and the polarization tensors of the small inclusions from scattering amplitude
measurements for a �xed frequency. Based on the asymptotic expansion (1.30), we
reduce the reconstruction of the small electromagnetic inclusions from the scattering
amplitude to the calculation of an inverse Fourier transform. Our method has some
similarities to the Di�raction Tomography, which is, by the way of a low-amplitude
perturbation formula (Born approximation), to reduce the reconstruction problem
to the calculations of an inverse Fourier transform.

For convenience, we are going to assume that the domains Bj, for j = 1, . . . ,m,
are balls in the three dimensions or disks in the two-dimensional case. Numerical
experiments examining the feasibility of this approach are presented.

To the best of our knowledge, this is the �rst attempt to design an accurate
method to determine the location of small inclusions with both di�erent electric per-
mittivities and magnetic permeabilities from scattering amplitude measurements.
Our method is quite similar to the ideas used by Calderon [19] in his proof of unique-
ness of the linearized conductivity problem and later by Sylvester and Uhlmann in
their important work [61] on uniqueness of the three-dimensional inverse conductiv-
ity problem. The current work is a natural extension of the identi�cation procedure
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presented in [11], where its accuracy and stability are demonstrated numerically.
Making use of our formula (1.30), Volkov [68] has proposed and successfully

tested an e�cient algorithm for reconstructing the inclusions in the three-dimensional
case. His algorithm is based on projections on three planes to reduce the three-
dimensional problem to solving three times a two-dimensional problem.

For discussions on other closely related inverse scattering problems, the reader
is referred, for example, to [24], [41], [42], [30], [31], [32], [63], [64], [40], [54], [37],
[55], [60], and [28].

2.2 The three-dimensional case
In this section, we suppose that d = 3 and all the domain Bj are balls. In this case,
in view of (1.6), the polarization tensors Mj

(
µj

µ0

)
have the following explicit forms:

Mj

(
µj

µ0

)
= mjI3,

where I3 is the 3× 3 identity matrix and the scalars mj are given by

mj = 3|Bj| µ0

µ0 + 2µj
.

Introduce

A(1)
α (x̂, ξ̂) = α3

m∑
j=1

e−ik(x̂−ξ̂)·zj

[
γj

µ mj x̂ · ξ̂ + γj
ε |Bj|

]
, x̂, ξ̂ ∈ S2. (2.1)

We �rst observe that

A
(1)
α (x̂, ξ̂) = A

(1)
α (−ξ̂,−x̂),

A
(1)
α (x̂, ξ̂) = A

(1)
α (−x̂,−ξ̂), ∀x̂, ξ̂ ∈ S2,

(2.2)

where A
(1)
α denotes the complex conjugate of A

(1)
α .

Let {ξ̂l′}L′
l′=1 ⊂ S2 be a �nite set of directions of incidence and {x̂l}L

l=1 ⊂ S2 be a
�nite set of observation directions. De�ne the MSR (Multi-Static Response) matrix
A = [all′ ] ∈ CL×L′ by

all′ :=
4π

k2
Aα(x̂l, ξ̂l′).

Our reconstruction procedure is divided into three steps.
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Step 1. Given that
A(1)

α (x̂l, ξ̂l′) ≈ all′ ,

we can compute by the fast Fourier transform (FFT) an accurate approximation
of A

(1)
α (x̂, ξ̂) on S2 × S2.

Step 2. Let M denote the following complex variety:

M = {ξ ∈ C3, ξ · ξ = 1}.

It is easy to see that A
(1)
α (x̂, ξ̂) has an analytic continuation to M × M. Let

(Ypq)−p≤q≤p, p=0,1,..., denote the normalized (in L2(S2)) spherical harmonics. Denote
by Cpq the Fourier coe�cients of A

(1)
α :

A(1)
α (x̂, ξ̂) =

∑
p,q

Cpq(x̂)Ypq(ξ̂) ∀ x̂, ξ̂ ∈ S2. (2.3)

Recall that, from Step 1, we are in fact in possession of an accurate approximation
of Cpq(x̂) on S2 for p ≤ P for some P . In view of (2.3), the analytic continuation
of the truncated Fourier series

∑
p,q; p≤P

Cpq(x̂)Ypq(ξ̂)

of A
(1)
α (x̂, ξ̂) onM×M can be obtained by using the standard analytic continuation

of the spherical harmonics (Ypq(ξ̂))p,q on the complex varietyM followed by another
analytic continuation of the Fourier expansion in x̂. We know that the analytic
continuation of A

(1)
α from S2 × S2 to M×M is unique.

Step 3. Recall that, given all′ for l = 1, . . . , L and l′ = 1, . . . , L′, we have
constructed by Steps 1 and 2 an accurate approximation of the function A

(1)
α (x̂, ξ̂)

that is analytic on M×M and is such that

A(1)
α (x̂l, ξ̂l′) ≈ all′ , ∀ l = 1, . . . , L and l′ = 1, . . . , L′.

However, for any ξ ∈ R3, we know that there exist ξ1 and ξ2 in M such that
ξ = k(ξ1 − ξ2). It su�ces to choose

ξ1 =
ξ

2k
+ rζ + iη, ξ2 = − ξ

2k
+ rζ + iη, (2.4)

with r ∈ R and ζ, η ∈ R3 such that

ξ · ζ = ξ · η = ζ · η = 0, |ζ| = 1
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and

|η|2 =





0 for |ξ| ≤ 2k

|ξ|2
4k2

+ r2 − 1 for |ξ| > 2k.

In particular, if ξ = 0 we may choose ξ1 = ξ2 = ( 1√
2
, 1√

2
, 0).

Let us now view [all′ ] as a function of ξ ∈ R3. We have

A(1)
α (ξ1, ξ2) = α3

m∑
j=1

e−ikξ·zj
[
γj

µ mj ξ1 · ξ2 + γj
ε |Bj|

]
(2.5)

and since
ξ1 · ξ2 = 1− |ξ|2

2k2
,

we can rewrite A
(1)
α as follows:

A(1)
α (ξ) = α3

m∑
j=1

e−iξ·zj

[
γj

µ mj

(
1− |ξ|2

2k2

)
+ γj

ε |Bj|
]

. (2.6)

Note that we are now in possession of an approximation to A
(1)
α (ξ) for any ξ ∈ R3.

Here we rely on the fact that the analytic continuation is unique.

Recall that e−iξ·zj (up to a multiplicative constant) is exactly the Fourier trans-
form of the Dirac function δzj

(a point mass located at zj). Multiplication by powers
of ξ in Fourier space corresponds to di�erentiation of the Dirac function. Therefore,
using the inverse Fourier transform, F−1, we obtain

F−1(A(1)
α ) =

1

(2π)3/2

∫

R3

A(1)
α (ξ) eiξ·zdξ =

m∑
j=1

Lj(δzj
),

where Lj are, in view of (2.6), second-order constant coe�cient di�erential opera-
tors.

Hence A
(1)
α (ξ) is the inverse Fourier transform of a distribution with its support

at the locations of the centers of inhomogeneities zj. Therefore, a numerical Fourier
inversion of a sample of (A

(1)
α (ξ)) will e�ciently pin down the zj's. The method

of location of the points zj is then similar to that proposed for the conductivity
problem [11] from boundary measurements. Once the locations {zj}m

j=1 are known,
we may calculate |Bj| by solving the appropriate linear system arising from (2.6). If
Bj are general domains, our calculations become more complex, and eventually we
have to deal with pseudo-di�erential operators (independent of the space variable x)
applied to the same Dirac functions.



2.3. THE TWO-DIMENSIONAL CASE 31

To arrive at some idea of the number of data (sampling) points needed for an
accurate discrete Fourier inversion of A

(1)
α (ξ) we remind the reader of the main as-

sertion of the so-called Shannon's sampling theorem [29]: A function f is completely
speci�ed (by a very explicit formula) by the sampled values {f(c0 + πn/L)}+∞

n=−∞
if and only if the support of the Fourier transform of f is contained inside [−L,L].
For our algorithm this suggests two things: (i) if the inclusions are contained inside
a cube of side 2L, then we need to sample A

(1)
α (ξ) an uniform, in�nite, rectangular

grid of mesh-size π/L to obtain an accurate reconstruction; (ii) if we only sample
the points in this grid for which the absolute values of the coordinates are less than
K, then the resulting discrete inverse Fourier transform will recover the location of
the inclusions with a spatial resolution of δ = π/K. In summary: we need (con-
servatively) of the order (2L/δ)3 sampled values of A

(1)
α (ξ) to reconstruct, with a

resolution δ, a collection of inclusions that lie inside a cube of side 2L.

2.3 The two-dimensional case
Suppose that d = 2 and all the domain Bj are balls. In this case, in view of (1.6),
the polarization tensors Mj

(
µj

µ0

)
have the forms:

Mj

(
µj

µ0

)
= mjI2,

where I2 is the 2× 2 identity matrix and the scalars mj are given by

mj =
µ0

µ0 + µj
|Bj|.

Analogously to the three-dimensional case we introduce

A(1)
α (x̂, ξ̂) = α2

m∑
j=1

e−ik(x̂−ξ̂)·zj

[
γj

µ mj x̂ · ξ̂ + γj
ε |Bj|

]
, x̂, ξ̂ ∈ S 1 . (2.7)

We �rst observe that A
(1)
α veri�es (2.2).

Set, in the polar system of co-ordinates, x̂ = (cos φ, sin φ), ξ̂ = (cos θ, sin θ), and
zj = |zj|(cos ζj, sin ζj). Then

A(1)
α (θ, φ) = α2

m∑
j=1

e−ik|zj |(cos(φ−ζj)−cos(θ−ζj))
[
γj

µ mj cos(φ− θ) + γj
ε |Bj|

]
(2.8)
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Let k|zj| = xj. Since eiz sin α =
∑+∞

n=−∞ Jn(z)einα, we can write

e−ixj cos(φ−ζj) = eixj sin(φ−ζj−π
2
) =

+∞∑
p=−∞

Jp(xj)e
ipφe−ip(ζj+

π
2
), (2.9)

where Jq(z) denotes the Bessel function of the �rst kind and order q. Similarly, we
have

eixj cos(θ−ζj) = eixj sin(θ−ζj+
π
2
) =

+∞∑

l=−∞
Jl(xj)e

ilθe−il(ζj−π
2
). (2.10)

By multiplying (2.9) by (2.10) we get

e−ixj(cos(φ−ζj)−cos(θ−ζj)) =
+∞∑

p=−∞

+∞∑

l=−∞
c̃plJp(xj)Jl(xj)e

ipφeilθ, (2.11)

where

c̃pl = e−ip(ζj+
π
2
)e−il(ζj−π

2
). (2.12)

Making use of the trigonometric formula cos(φ− θ) = 1
2
(eiφe−iθ + e−iφeiθ) we get

+∞∑
p=−∞

+∞∑

l=−∞
c̃plJp(xj)Jl(xj)e

ipφeilθ cos(φ− θ) =

=
1

2

+∞∑
p=−∞

+∞∑

l=−∞
(c̃p−1,l+1Jp−1(xj)Jl+1(xj) + c̃p+1,l−1Jp+1(xj)Jl−1(xj)) eipφeilθ.

From the recurrence formulae

Jq−1(z) + Jq+1(z) =
2q

z
Jq(z), Jq−1(z)− Jq+1(z) = 2J ′q(z), q ∈ Z,

together with the fact that c̃p−1,l+1 = c̃ple
iπ, c̃p+1,l−1 = c̃ple

−iπ, it immediately follows
that

+∞∑
p=−∞

+∞∑

l=−∞
c̃plJp(xj)Jl(xj)e

ipφeilθ cos(φ− θ) =

=
+∞∑

p=−∞

+∞∑

l=−∞
c̃pl

(
− J ′p(xj)J

′
l (xj) +

pl

xj
2
Jp(xj)Jl(xj)

)
eipφeilθ.

(2.13)

Finally, using (2.8) and ( 2.13), we obtain that for θ and φ on the real axis, A(1)
α (φ, θ)

is given by its Fourier series:

A(1)
α (θ, φ) =

+∞∑
p=−∞

+∞∑

l=−∞
Cple

ipφeilθ, (2.14)
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where the Fourier coe�cients Cpl are given by

Cpl = α2c̃pl

m∑
j=1

cj
pl, (2.15)

and

cj
pl =

(
−J ′p(xj)J

′
l (xj) + Jp(xj)Jl(xj)

pl

x2
j

)
γj

µ mj + Jp(xj)Jl(xj)γ
j
ε |Bj|.

The procedure in the two-dimensional case is the same as in 3-D.

Let again, {ξ̂l′}L′
l=1 ⊂ S 1 be a �nite set of directions of incidence and {x̂l}L

l=1 ⊂ S 1

be a �nite set of observation directions. De�ne the MSR (Multi-Static Response)
matrix A = [all′ ] ∈ CL×L′ by

all′ :=
4
√

kπ

k2(1 + i)
Aα(x̂l, ξ̂l′).

Step 1. Given that
A(1)

α (x̂p, ξ̂l) ≈ apl,

we can compute by the fast Fourier transform (FFT) an accurate approximation
of A

(1)
α (x̂, ξ̂) on S 1 × S 1 .

Step 2. In view of (2.14), and from Step 1, for θ and φ on the real axis, A
(1)
α (φ, θ)

is given by its Fourier series

A(1)
α (θ, φ) =

n−1∑

p,l=0

Cple
ipφeilθ (2.16)

for some n. Now, for any ξ ∈ R2, we know that there exist ξ1 and ξ2 in M = {ξ ∈
C2, ξ · ξ = 1} such that ξ = k(ξ1 − ξ2); for example

ξ1 =
ξ

2k
+ iη, ξ2 = − ξ

2k
+ iη, (2.17)

where η ∈ R2 such that ξ · η = 0, and

|η|2 =





0 for |ξ| ≤ 2k

|ξ|2
4k2

− 1 for |ξ| > 2k.

In particular, if ξ = 0 we may choose ξ1 = ξ2 = ( 1√
2
, 1√

2
).
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Then, for any ξ ∈ R2 one determines the values for φ̃ and θ̃ (via the vectors ξ2

and ξ1) in order to satisfy (2.17). Plugging these values into the truncated Fourier
series (2.16) yields Cpl the pl-th Fourier coe�cient of A

(1)
α as

A(1)
α (φ̃, θ̃) =

n−1∑

p,l=0

Cple
ipφ̃eilθ̃. (2.18)

Now we give some remarks about the convergence of (2.18). Letting φ̃I =

max |imag (φ̃)| and θ̃I = max |imag (θ̃)| for the complex values of φ̃ and θ̃, the
su�cient condition for convergence of (2.18) is

∣∣Cn/2−1,n/2−1

∣∣ e(n/2−1)φ̃Ie(n/2−1)θ̃I→0 as n →∞. (2.19)

It follows that one can estimate A
(1)
α for those complex values φ̃ and θ̃ that are close

to the real axis if n is large enough, being emphasized that the choice of the number
n depends upon the value of k, and upon the locations of the inclusions themselves
(i.e., |zj|, j = 1, . . . , m). Moreover, in view of (2.15) and (2.19), involving the
asymptotic forms for Bessel functions Jq(x), in comparing the argument x to the
integer order q (see A.5) we conclude that for su�ciently small values of x and for
not su�ciently large n, A

(1)
α can be estimated for those complex values φ̃ and θ̃ that

are far enough to the real axis. Note that, to (numerically) compute (2.18) the
regularization technique developed by Franklin in [34] can be used.1

Step 3. The location of the inclusions can be determined by using the appropri-
ate Fourier inversion of A

(1)
α (φ̃, θ̃) = A

(1)
α (ξ).

Let R be such that 2R is the radius of the disk where (2.19) holds. The function
A

(1)
α is then estimated within the square Ω(R) = [−√2R,

√
2R]2, letting the spectral

radius R be larger than k. In view of the above, we have two cases of interest:

1) there exist φ̃ and θ̃ which are complex-valued and one is zero-padding the
Fourier domain by A

(1)
α (φ̃, θ̃) := 0, for all complex values of φ̃ and θ̃;

2) there exist φ̃ and θ̃ which are complex-valued and one applies the method of
analytic continuation by Fast Fourier Transform (FFT) in order to estimate
A

(1)
α .

1 Franklin's method for solving the regularized analytic-continuation problem bases on the
three-circles theorem of Hadamard, which proves logarithmic convexity for the maximum norm:
for an analytic function f(z) in the annulus 1 < |z| < R and for a �xed r, 1 < r < R: µ(r) ≤
µ(1)1−θµ(R)θ, where µ(ρ) = max |f(z)| for |z| = ρ and θ = log r/ log R.
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According to the Shannon's sampling theorem, we need (conservatively) of the
order (2L/δ)2 sampled values of A

(1)
α (ξ) to reconstruct a collection of inclusions

that lies inside a square of side 2L, where the (spatial) resolution for zero padding
algorithm is δ = π/2k while it is given by δ = π/

√
2R for the method of analytic

continuation.

2.4 Examples of Fourier reconstruction
In this section a number of numerical examples illustrate the reconstruction by the
Fourier method for two-dimensional case.

A1

A

0ε

ε

A
j

θj

Ω

µ0

µ

y

x

j j
n

Figure 2.4.1: The full-view measurement set-up

The con�guration of interest is schematized in Fig. 2.4.1. One is considering
an array of n ideal antennas that are hypothetically radiating from and receiving
at in�nity in R2. That is, one assumes that, at one (and only one, which is a
rather adverse situation) circular frequency ω one knows the values alp of the far
�eld pattern A

(1)
α (−ξ̂l, ξ̂p), l, p = 1, . . . , n, for a small �nite number of equidistantly

distributed directions of illumination ξ̂p = −(cos θp, sin θp), and for the opposite set
of directions of observation, letting θp = 2π(p− 1)/n, p = 1, . . . , n.

These directions are taken all around (i.e., one is speaking of a full-view inverse
problem) an unknown �nite number of homogeneous inclusions located at unknown
positions within some prescribed domain of free space (air). These inclusions may
have their dielectric permittivity or magnetic permeability or both that are di�ering
(then, always with superior real-positive values) from those, µ0 = 1 and ε0 = 1, of
the embedding medium.
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In all examples, the function A
(1)
α is estimated within the square Ω(R) = [−√2R,√

2R]2, letting the spectral radius R be larger than k.

The con�guration involves two small homogeneous circular disks of diameter
α = 0.1 denoted as D1 and D2 and respectively centered at z1 = (−0.45, 0.43) and
z2 = (0.52,−0.44), with ε1 = 3 and ε2 = 2.5, and/or µ1 = 3 and µ2 = 2.5. The
assumption is made that, for the inversion carried out at frequency ω = 1 (k = 1),
such inclusions lie inside the square [−6, 6]2, for which 3D plots of |F−1(A

(1)
α )|

calculated by an inverse Discrete Fourier Transform (DFT) will thus be given, the
pertinent contour plots being drawn for visibility only within the smaller square
[−3, 3]2. Notice that one is using 16 angles θ and φ in [0, 2π] in order to compute
the Fourier coe�cients.

The retrieval of purely dielectric inclusions is illustrated in Fig. 2.4.2 and Fig. 2.4.3
via 3D plots and contour plots of |F−1(A

(1)
α )| which are obtained by carrying out

either zero padding (Fig. 2.4.2) or analytic continuation (Fig. 2.4.3), noticing that
the number of data (sampling) points N2 that are needed for an accurate discrete
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Figure 2.4.2: Retrieval of two purely dielectric inclusions with di�erent contrasts by
zero padding at k = 1 (the resolution δ achieved is ≈ 1.57).
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Figure 2.4.3: Retrieval of two purely dielectric inclusions with di�erent contrasts by
analytic continuation at k = 1 (the resolution δ achieved is ≈ 0.43).
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Fourier inversion of A
(1)
α (ξ) in the square Ω(R = 5) is equal to 282.

The results show that the zero-padding approach does not enable to discriminate
between the two inclusions, and the corresponding resolution δ is appraised to be
of the order of half a wavelength (1.57). On the contrary, the analytic continuation
succeeds in providing this discrimination, associated to a much sharper resolution,
of the order of one seventh of a wavelength and even less (about 0.43 as con�rmed
by the �gure).

Correspondingly, the retrieval of purely magnetic inclusions is illustrated in Fig.
2.4.4 and Fig. 2.4.5 via 3D plots and contour plots of |F−1(A

(1)
α )| obtained by

carrying out either zero padding (Fig. 2.4.4) or analytic continuation (Fig. 2.4.5)
(with a slightly smaller Ω than before, R = 4.5), noticing that the number of data
(sampling) points N2 that are needed for an accurate discrete Fourier inversion of
A

(1)
α (ξ) in the square Ω(R = 4.5) is equal to 242.
The same conclusion as with the dielectric inclusions holds, failure of the zero-

padding approach (which is yielding a complicated image from which one cannot
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Figure 2.4.4: Retrieval of two purely magnetic inclusions with di�erent contrasts by zero
padding at k = 1 (the resolution δ achieved is ≈ 1.57).
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Figure 2.4.5: Retrieval of two purely magnetic inclusions with di�erent contrasts by
analytic continuation at k = 1 (the resolution δ achieved is ≈ 0.5).
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infer much, except the fact that some object is in the search domain) and e�ciency
of the analytic continuation, though with a slightly lower resolution (of the order of
0.5) as is easily seen by comparing Fig. 2.4.5 with Fig. 2.4.3, both being computed
in close conditions.

Lastly, simultaneously dielectric and permeable inclusions are tackled, previous
values of permittivity and permeability being those chosen. This is illustrated in
Fig. 2.4.6 and Fig. 2.4.7 via 3D plots and contour plots of |F−1(A

(1)
α )| obtained by

carrying out either zero padding (Fig. 2.4.6) or analytic continuation (Fig. 2.4.7),
noticing that the number of data (sampling) points N2 that are needed for an
accurate discrete Fourier inversion of A

(1)
α (ξ) in the square Ω(R = 4.5) is now equal

to 242. Again the analytic continuation is the only successful method to retrieve the
two inclusions, the resolution (and the visual aspect of the 3D and contour plots)
being like the one observed with the purely magnetic inclusions (the poorer result,
in e�ect).

X axis

Y
 a

xi
s

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Figure 2.4.6: Retrieval of both dielectric and magnetic inclusions with di�erent contrasts
by zero padding at k = 1 (the resolution δ achieved is ≈ 1.57).
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Figure 2.4.7: Retrieval of both dielectric and magnetic inclusions with di�erent contrasts
by analytic continuation at k = 1 (the resolution δ achieved is ≈ 0.5).
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In the second set of numerical examples (for brevity, only purely dielectric inclu-
sions are considered) one still keeps the number of inclusions equal to two, yet one
of them is located much far away from the center of the search domain than before,
at z1 = (−4.0, 0.43), the other being located about as before, at z2 = (0.42,−0.44).
Also, the inclusions are now identical, with ε1 = 3 and ε2 = 3. The assumption
of the inversion is that they lie within the square [−12, 12]2, contour plots being
displayed in the smaller square [−5.5, 5.5]2. The frequency of operation chosen is
the same as previously, at ω = 1 (k = 1).

In Fig. 2.4.8 and Fig. 2.4.9 one displays 3D plots and contour plots of |F−1(A
(1)
α )|

obtained by carrying out either zero padding (Fig. 2.4.8) or analytic continuation
(Fig. 2.4.9), noticing that the number of data (sampling) points N2 that are needed
for an accurate discrete Fourier inversion of g(ξ) in the square Ω(R = 1.8) is equal
to 202.

Let us emphasize here that one has been using 32 angles θ and φ in [0, 2π],
because of the eccentricity of the �rst inclusion, for the angles θ and φ in order to
suitably calculate the Fourier coe�cients, and, as a matter of fact, one is able at
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Figure 2.4.8: Retrieval of identical dielectric inclusions, one remote from the center of
the search domain, by zero padding at k = 1 (the resolution δ achieved is ≈ 1.57).
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Figure 2.4.9: Retrieval of identical dielectric inclusions, one remote from the center of
the search domain, by analytic continuation at k = 1 (the resolution δ achieved is ≈ 1.2).
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best to extend the function A
(1)
α on the square Ω(R = 1.8) � choosing a higher R

yields divergent results.
Now, contrarily to what was observed before, both approaches (zero-padding

and analytic continuation) tend to behave likewise, as evidenced by the similarity
of Fig. 2.4.8 and Fig. 2.4.9. That is, there seems no interest to perform the analytic
continuation as exempli�ed by the low maximal value of R, since one is not able
to perform this continuation far enough in the spectral plane to improve upon the
zero-padding results.



Chapter 3

MUSIC algorithm

A MUSIC (standing for MUltiple Signal Classi�cation) algorithm for locating small
electromagnetic inclusions from the scattering amplitude at a �xed frequency is
developed. This algorithm makes use of the SVD (Singular Value Decomposition)
of the MSR (Multi-Static Response) matrix. A careful mathematical study of the
focusing properties of the singular values and singular vectors of this matrix is
provided. A variety of numerical results is presented to highlight its potential and
limitations.

3.1 Introduction

In this chapter, we �rstly show how the MUSIC algorithm can be applied to the
problem of locating m small inclusions with di�erent electromagnetic parameters
from those of the free space from the MSR matrix A = [apl] ∈ Cn×n, where the
element matrix apl is the measured scattered �eld Aα(−ξ̂p, ξ̂l) at the receiver number
p for antenna number l. Then we present a complete mathematical study of the
focusing properties of singular values and singular vectors of this matrix. To the
best of our knowledge, these qualitative results are new. The singular vectors
corresponding to signi�cant singular values span some kind of signal subspace in
the sense that they contain nearly all information about the inclusions which can be
extracted from the MSR matrix. The others span some kind of noise subspace. The
aim of the MUSIC-type of algorithm is to use the singular system analysis of the
MSR matrix to determining the location and recovering some geometric features
(namely, the polarization tensors de�ned by (1.5)) of the small inclusions from the
signal space.
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We consider separately the following three cases, which we believe to be repre-
sentative from the pros and cons of our MUSIC type reconstruction:

1. γj
µ = 0 for all j = 1, . . . , m.

2. γj
ε = 0 for all j = 1, . . . , m.

3. γj
µ 6= 0 and γj

ε 6= 0 for all j = 1, . . . , m.

The �rst case corresponds to inclusions whose permittivity contrast (equiva-
lently, compressibility contrast in acoustics) is non-zero. This is the simplest case,
in particular due to the fact that each inclusion is seen to scatter the primary �eld
in isotropic fashion (independently of the orientation of observation for a given ex-
citation) in the chosen asymptotic regime. This is also the most frequently case
studied in the literature, evidently with MUSIC, or/and within the time reversal
framework, and/or in Born and Born-extended solution methods at least whenever
they are applied to larger penetrable objects. See [27], [44], [21], [47], and [43].

The second case corresponds to inclusions whose permeability contrast (equiv-
alently, density contrast in acoustics) would be non-zero. The fact that we have
no more the isotropy of scattering, but a dipolar scattering greatly complicates the
theoretical problem, and corresponding studies appear to be few. Notice that in the
H-polarization case, variations of permittivity play the same role as those of perme-
ability here. Dipolar scattering occurs, and similar observations about eigenvalue
behavior as those made next could be made. See [48].

The third case is the most expected/ demanding, and a complex combination
of the two simpler ones. It corresponds to inclusions whose both permittivity and
permeability (or equivalently compressibility and density) contrasts would be non-
zero.

It is worth mentioning that the case where the data is a discrete version of
the Neumann-to-Dirichlet boundary map, Brühl, Hanke and Vogelius [18] used a
corresponding asymptotic perturbation formula for small conductivity inclusions in
combination with MUSIC idea to design an e�ective algorithm to determine the
locations of the inclusions.
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3.2 The �rst case: dielectric inclusions
We suppose n ≥ m and de�ne the MSR matrix A = [apl] ∈ Cn×n by

apl := A(1)
α (x̂p, ξ̂l)

∣∣
x̂p=−ξ̂p

=
m∑

j=1

τje
ik(ξ̂p+ξ̂l)·zj ,

for p, l = 1, . . . , n, where τj = α2γj
ε |Bj|.

De�ning the matrices T ∈ Rm×m and S = [s1 . . . sm] with each sj ∈ Cn by

T = diag(τ1, . . . , τm) and sj =
(
eikξ̂1·zj , . . . , eikξ̂n·zj

)T
, j = 1, . . . ,m,

we observe that A admits the following decomposition

A = STST , (3.1)

where ST ∈ Cm×n denotes the transpose of S . Using (3.1), we immediately see that
A is symmetric, then A∗ = A, where A denotes the complex conjugate and A∗ the
adjoint of A, respectively.

Now a standard argument from linear algebra yields that, if n ≥ m and if the
matrix S has maximal rank m, then the ranges R(S) and R(AA) coincide. Thus

R(AA) = R(S) = span{s1, . . . , sm}.

Let a ∈ R\{0}, for any point z ∈ R2 we de�ne the vector gz,a ∈ Cn by

gz,a =
(
aeikξ̂1·z, . . . , aeikξ̂n·z)T

. (3.2)

We note that gz1,a, . . . , gzm,a are the columns of the matrix aS.

Throughout this chapter, we consider {ξ̂p}p∈N ⊂ S 1 to be a countable set of
directions with the property that any analytic function which vanishes in ξ̂p for
all p ∈ N vanishes identically on S 1 . This technical assumption is necessary to
rigorously prove Propositions 3.2.1, 3.3.1, and 3.4.1.

Now we present the main tool for the identi�cation of the locations zj, j =

1, . . . , m.

Proposition 3.2.1 There exists n0 ∈ N such that for any n ≥ n0, the vector gz,a,
de�ned by (3.2), belongs to R(S) if and only if z ∈ {z1, . . . , zm}.
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The proof of this proposition follows from [43]. We give it for the reader's
convenience.

Proof. De�ne the operator Λ : Cm → C (S 1 ) by

(Λλ)(x̂) :=
m∑

j=1

λje
−ikx̂·zj , x̂ ∈ S 1 , λ ∈ Cm.

First, we show that Λ is one-to-one. Indeed, let λ ∈ Cm with (Λλ)(x̂) = 0 for all
x̂ ∈ S 1 . Then the far �eld pattern of the function

∑m
j=1 λj G(·, zj) vanishes in all

of S 1 and therefore, by Rellich's lemma (see Appendix A.6),
∑m

j=1 λj G(x, zj) = 0

for all x ∈ R2\{z1, z2, . . . , zm}. By letting x tend to one of the points zj a simple
argument now yields that λj = 0 for every j = 1, . . . , m.

Next we show the existence of n0 ∈ N such that the operator

λ → ((Λλ)(x̂1), . . . , (Λλ)(x̂n))T

from Cm to Cn is one-to-one for n ≥ n0. Here x̂p = −ξ̂p, p ∈ N. If there existed
no such n0, then there existed sequences {nl}l∈N in N and {λ(l)}l∈N in Cm with∑m

j=1 |λj| = 1 and (Λλ(l))(x̂j) = 0 for all p = 1, . . . , nl. The sequence {λ(l)}l∈N has
accumulation points. Without loss of generality we assume that λ(l) → λ, l → ∞,
with

∑m
j=1 |λj| = 1. For any p ∈ N and l with nl ≥ p we estimate by the triangle

inequality

|(Λλ)(x̂p)| ≤ |Λ(λ− λ(l))(x̂p)|+ |(Λλ(l))(x̂p)|︸ ︷︷ ︸
=0

≤
m∑

j=1

|λj − λ
(l)
j ||eikξ̂p·zj | =

m∑
j=1

|λj − λ
(l)
j |

and this converges to zero as l tends to in�nity. Therefore, (Λλ)(x̂p) = 0 for every
p ∈ N. Since Λλ is analytic on S 1 by our assumption we conclude that Λλ vanishes
on all of S 1 which yields λ = 0 by the �rst part of the proof. This contradicts the
fact that

∑m
j=1 |λj| = 1. The proof of this proposition is complete. ¤

Since the locations zj are well-separated, from the proof above, it can be imme-
diately seen that there exists n0 ≥ m such that for any n ≥ n0 the matrix S has
maximal rank m.

Let the SVD (Singular Value Decomposition) of the MSR matrix A be de�ned by
A = UΣV∗, where U and V ∈ Cn×n are unitary and Σ = diag(σ1, σ2, . . . , σn) is a real
nonnegative diagonal matrix, where σ1 ≥ σ2 ≥ . . . σm > 0 and σi, i = m + 1, . . . , n,
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are all zero (or could merely be very small)1. The numbers {σi} are the nonnegative
square roots of the eigenvalues of AA∗ = AA. The columns of U are the eigenvectors
of AA and the columns of V are the eigenvectors of AA (arranged in the same order
as the corresponding eigenvalues σ2

i ). We note that the SVD of A can be written
in the form A = UΣUT (which is Takagi's factorization or a special singular value
decomposition for symmetric matrices). The �rst m columns of U, {u1, u2, . . . , um},
provide a basis for column space of A which is denoted by US, and the rest of the
matrix U, {um+1, um+2, . . . , un}, provides a basis for left null (or the noise) space
of A, denoted by UN . Then the best rank approximation for A is (USU∗

S)A with
error E = A− (USU∗

S)A.
From Proposition 3.2.1 we have that a test point z coincides with one of the

positions zj if and only if gz,a ∈ R(AA), or equivalently, if Pgz = 0, where P =

I− (USU∗
S) is the orthogonal projection onto the left null (or the noise) space of A.

Thus we can form an image of zj, j = 1, . . . , m, by plotting, at each point z, the
quantity

Wa(z) =
1

||Pgz,a|| .
The resulting plot will have large peaks at the positions zj, j = 1, . . . ,m.

3.2.1 SVD of the MSR matrix
By virtue of (3.1), the MSR matrix A can be written as follows

A = STST =
m∑

j=1

τjsjs
T
j . (3.3)

First, we consider m independent problems, one for each inclusion:

Aj = τjsjs
T
j , j = 1, . . . , m, (3.4)

or

AjAj = τ 2
j ||sj||2sjs

∗
j ,

AjAj = τ 2
j ||sj||2sjs

T
j ,

for j = 1, . . . , m , where ||sj||2 = s∗jsj = n. It follows from the above-given equations
that the eigenvectors uj and vj of the matrices AjAj and AjAj , having non-zero
eigenvalues σ2

j , are given by

uj =
sj

||sj|| =
sj√
n

, vj =
sj

||sj|| =
sj√
n

, (3.5)

1if A is the noisy MSR matrix.
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and

σj = n|τj|. (3.6)

Now let us turn to the matrix A, de�ned by (3.3), and consider the singular
system

AAûj = σ̂2
j ûj (3.7)

AAv̂j = σ̂2
j v̂j, (3.8)

where j labels the singular system v̂j, ŵj, σ̂j.
Since R(AA) = span{s1, . . . , sm} = span{u1, . . . , um}, then the singular vectors

ûj are linear combinations of the array vectors uj while v̂j are linear combinations
of the array vectors vj = uj, i.e.,

ûj =
m∑

l=1

cjlul, v̂j =
m∑

l=1

cjlul, (3.9)

where cj = (cj1, . . . , cjm)T ∈ Cm, with ‖cj‖ = 1, as a normalization.
Introduce

Hjl = u∗jul, j, l = 1, . . . , m. (3.10)

If we substitute (3.3) and (3.9) into (3.7) and (3.8) we obtain that

LLcj = σ̂2
j cj, (3.11)

LLcj = σ̂2
j cj, (3.12)

where matrix L = [Lpq] ∈ Cm×m is given by Lpq = nτpHpq, p, q = 1, . . . , m. From
(3.10) follows that L is Hermitian.

Following [27, 33], the vectors {sj}m
j=1 are orthogonal, i.e. the inner product

Hjl = δjl, j, l = 1, . . . , m.

Here δjl is the Kronecker delta function. From (3.11) and (3.12) we get

σ̂j = n|τj|

and we conclude that the vectors cj, j = 1, . . . , m are the orthonormal basis in Rm.
It follows that the singular vectors, having non-zero singular values, are given by

ûj = uj, v̂j = vj,
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for j = 1, . . . , m.
From the discussion above, we conclude that the m non-zero singular values of

the MSR matrix A of the problem for m inclusions are the same as those for m

independent problems, one for each inclusion. The same conclusion holds for the
singular vectors. Moreover, the singular values contain the information about the
characteristics of the inclusion (i.e. dielectric constants and size of the inclusions)
and the singular vectors contain the information about the positions of the centers
of the inclusions.

In general, [Hpq] ∈ Cn×n will not be a diagonal matrix and the spectral anal-
ysis of A must be led from the general form given in (3.3) without the previous
simpli�cations. From (3.10) we have

Hjl = u∗jul =
1

n

n∑
p=1

eik(zl−zj)·ξ̂p ≈ J0(k|zj − zl|), (3.13)

j, l = 1, . . . , m, for su�ciently large n. Here, J0 is the Bessel function of the �rst
kind and order zero. It is easy to see from the above approximation that Hjl, j 6= l

is not always zero. However, if k|zl − zj| is large enough then Hjl is small.
Using (3.13) the matrix L becomes real, symmetric, then (3.11) and (3.12) can

be reduced to

Lcj = λjcj, j = 1, . . . , m, (3.14)

where λj ∈ R is the eigenvalue of the matrix L associated with the eigenvector
cj ∈ Rm, and |λj| = σ̂j.

Let τj = |τj|e2iφj , j = 1, . . . ,m. Since in our case the constants τj are real, then
φj = 0 if τj is positive and φj = π/2, if τj is negative.

The matrix L admits the following decomposition

L = DL̃D−1,

where the matrices D ∈ Cm×m and L̃ = [L̃pq] ∈ Cm×m are given by

D = diag(
√
|τ1|eiφ1 , . . . ,

√
|τm|eiφm),

L̃pq = n
√
|τp||τq|ei(φp+φq)Hpq, p, q = 1, . . . , m.

Therefore, the matrices L and L̃ are similar, so they have the same eigenvalues,
counted with their multiplicity.
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Now we will investigate the singular values and eigenvectors of the matrix L

which is similar to L̃ written as L̃ = Λ + E, where Λ = diag(nτ1, . . . , nτm) and E is
some (symmetric) perturbation matrix.

Let us assume that the values |τj| are arranged in decreasing order |τ1| ≥ . . . ≥
|τm|. Let

Rp(L̃) =
m∑

q=1
q 6=p

√|τp||τq|
|τ1| |Hpq|, p, q = 1, . . . , m. (3.15)

Then, by Ger²gorin disk theorem (see Appendix A.4), all eigenvalues of L̃ (which
are in our case real) are located in the union of m intervals

m⋃
p=1

{
x′ =

x

n
∈ R :

∣∣∣∣
x′

|τ1| −
τp

|τ1|

∣∣∣∣ ≤ Rp(L̃)

}
≡ G(L̃). (3.16)

Furthermore, if an union of p of the m intervals forms a connected region that is
disjoint from all the remaining m−p intervals, then there are precisely p eigenvalues
of L̃ in this region. Now, from (3.15) we conclude that if

|τ1| À . . . À |τm|, (3.17)

all Ger²gorin's intervals are disjoint and λp is close to nτp, or equivalently σ̂p is close
to σp = n|τp|. It implies that the left and right singular vectors of A become close
to up = sp/||sp|| and vp = sp/||sp||, respectively, for p = 1, . . . , m.

On the other hand, as part of the localization of the inclusions under the con-
dition (3.17), the weakest inclusions can be lost.

If all inclusions are identical, i.e. |τ1| = . . . = |τm| = |τ |, all eigenvalues L̃ are
located in the interval

{
x′ =

x

n
∈ R : |x′ − τ | ≤ |τ |

m∑
q=1
q 6=p

|Hpq|
}

, p = 1, . . . , m.

Let λ1(E) ≥ . . . ≥ λm(E) be the ordered eigenvalues of E, then λp = nτ + nτλp(E),
for all p = 1, . . . , m. The maximal error is n|τ |ρ(E), where ρ(E) is the spectral
radius of E, which is the radius of the smallest disk centered at the origin in the
complex plane that includes all the eigenvalues of E. By the Ger²gorin disk theorem
we have ρ(E) ≤ min

{
maxp

∑n
q=1 |Hpq|

}
, from which it may be concluded that it is

not always possible to give a good approximation of the value |τ | and of the singular
vectors of A. Of course, we could change the frequency so that the inner product
Hjl will be zero. In other words, the argument k|zj − zl| corresponds to a zero of
the function J0. That is, it is necessary to know the distance |zj − zl|.
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3.3 The second case: permeable inclusions
In this case the MSR matrix A = [apl] ∈ Cn×n is de�ned by

apl := A(1)
α (x̂p, ξ̂l)

∣∣
x̂p=−ξ̂p

= −
m∑

j=1

eik(ξ̂p+ξ̂l)·zm ξ̂p · βj ξ̂l,

for p, l = 1, . . . , n, where βj = α2γj
µ Mj ∈ R2×2.

We de�ne the matrix D = [d1 . . . d2m] with each dj ∈ Cn by

d2(j−1)+p =
(
ep · ξ̂1e

ikξ̂1·zj , . . . , ep · ξ̂neikξ̂n·zj
)T

, j = 1, . . . , m, p = 1, 2,

where {ep}p=1,2 denotes an orthonormal basis in R2.
Then we observe that A admits the following decomposition

A = DBDT , (3.18)

where B = diag(−β1, . . . ,−βm) ∈ R2m×2m. It then follows immediately that A is
symmetric.

Analogously to case 2, if n ≥ 2m and if the matrix D has maximal rank 2m,
and the ranges R(D) and R(AA) coincide. Thus

R(AA) = R(D) = span{d1, . . . , d2m}.

Let b ∈ R2\{0}, for any point z ∈ R2 we de�ne the vector gz,b ∈ Cn by

gz,b =
(
b · ξ̂1e

ikξ̂1·z, . . . , b · ξ̂ne
ikξ̂n·z)T

. (3.19)

We note that gzj ,b is the linear combination of the vector columns d2j−1 and d2j,
j = 1, . . . , m, of the matrix D. The following proposition holds.

Proposition 3.3.1 If b ∈ R2\{0} and gz,b ∈ Cn is de�ned by (3.19 ) then there
exists n0 ∈ N such that for any n ≥ n0, the vector gz,b ∈ R(D) if and only if
z ∈ {z1, . . . , zm}.

Proof. We de�ne the operator Λ : Cm×2 → C(S 1 )

(Λλ)(x̂) :=
m∑

j=1

λj · x̂ e−ikx̂·zj , x̂ ∈ S 1 , λ ∈ Cm×2.
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Now, the fact that Λ is one-to-one and the existence of n0 ∈ N such that the
operator

λ → ((Λλ)(x̂1), . . . , (Λλ)(x̂n))T
∣∣
x̂p=−ξ̂p, p∈N

from Cm×2 to Cn is one-to-one for n ≥ n0 can be shown by similar arguments as
those used for the Proposition 3.2.1. ¤

It can be immediately seen now that, since the locations zj are well-separated,
from the proof above, there exists n0 ≥ 2m such that for any n ≥ n0 the matrix D

has maximal rank 2m.

Let once again the SVD of the MSR matrix A be de�ned by A = UΣV∗. Since
the rank of AA∗ = AA is 2m then the �rst 2m columns of U, {u1, u2, . . . , u2m},
provide a basis for column space of A which is denoted by US, and the rest of
the matrix U, {u2m+1, u2m+2, . . . , un}, provides a basis for left null space of A,
denoted by UN . Then the best rank approximation for A is (USU∗

S)A with error
E = A− (USU∗

S)A.
From Proposition 3.3.1 we have that a test point z coincides with one of the

positions zj if and only if gz,b ∈ R(AA), or equivalently, if Pgz,b = 0, where P =

I− (USU∗
S) is the orthogonal projection onto the null space of A. Thus we can form

an image of zj, j = 1, . . . , m, by plotting, at each point z, the quantity

Wb(z) =
1

||Pgz,b|| .

The resulting plot will have large peaks at the positions zj, j = 1, . . . , m.

3.3.1 SVD of the MSR matrix
We assume for simplicity that all matrices Mj

(
µj

µ0

)
are diagonal. This holds when all

the Bj are disks or ellipses with the same axes. Let the matrix βj = α2γj
µ Mj ∈ R2×2

be represented as −βj = diag(β1,j, β2,j). By virtue of (3.18) the MSR matrix A can
be written as follows

A = DBDT =
m∑

j=1

β1,jd2j−1d
T
2j−1 + β2,jd2jd

T
2j. (3.20)

Analogously to the �rst case, we �rst consider m independent problems, each
corresponding to one inclusion:

Aj = β1,jd2j−1d
T
2j−1 + β2,jd2jd

T
2j, j = 1, . . . , m. (3.21)
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Let ξ̂t = (ξ̂1,t, ξ̂2,t) = (cos θt, sin θt), where θt = 2π(t−1)
n

is the angle of observation,
t = 1, . . . , n. From the de�nition of the vector columns d of the matrix D we have

||d2j−1||2 = d∗2j−1d2j−1 =
n∑

t=1

ξ̂2
1,t =

n∑
t=1

cos2 θt =
n

2
, (3.22)

||d2j||2 = d∗2jd2j =
n∑

t=1

ξ̂2
2,t =

n∑
t=1

sin2 θt =
n

2
, (3.23)

d∗2j−1d2j =
n∑

t=1

ξ̂1,tξ̂2,t =
n∑

t=1

cos θt sin θt = 0. (3.24)

Consequently, from (3.21), (3.22), (3.23), and (3.24), we obtain that

AjAj = β2
1,j||d2j−1||2d2j−1d

∗
2j−1 + β2

2,j||d2j||2d2jd
∗
2j,

AjAj = β2
1,j||d2j−1||2d2j−1d

T
2j−1 + β2

2,j||d2j||2d2jd
T
2j,

for j = 1, . . . ,m. It follows that the eigenvectors u2j−1, u2j and v2j−1, v2j of the
matrices AjAj and AjAj, having non-zero eigenvalues σ2

j , are given by

u2(j−1)+p =
d2(j−1)+p

||d2(j−1)+p|| =

√
2

n
d2(j−1)+p (3.25)

v2(j−1)+p =
d2(j−1)+p

||d2(j−1)+p||
=

√
2

n
d2(j−1)+p, (3.26)

σ2(j−1)+p =
n

2
|βp,j|, for p = 1, 2 and j = 1, . . . , m. (3.27)

Now, let us turn to the matrix A, de�ned by (3.20), and consider the singular
system

AAûl′ = σ̂2
l′ ûl′ (3.28)

AAv̂l′ = σ̂2
l′ v̂l′ . (3.29)

Since R(AA) = span{d1, . . . , d2m} = span{u1, . . . , u2m}, then the singular vec-
tors ûl′ are linear combinations of the array vectors ul′ while the vectors v̂l′ are
linear combinations of the array vectors vl′ = ul′ , for l′ = 1, . . . , 2m.

Let

Hl′,q′ = u∗l′uq′ , l′, q′ = 1, . . . , 2m. (3.30)

De�ne
l′ = 2(l − 1) + p,

q′ = 2(q − 1) + p′, l, q = 1 . . . m, p, p′ = 1, 2.
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Using the polar co-ordinates zq − zl = |zl − zq|(cos αlq, sin αlq), we compute

Hl′,q′ =

∑n
t=1 ξ̂p,t ξ̂p′,t e

ik|zl−zq | cos(θt−αlq)

√∑n
t=1 ξ̂2

p,t

√∑n
t=1 ξ̂2

p′,t

.

For l = q we compute Hl′,q′ from (3.22), (3.23), and (3.24) while for l 6= q we have

Hl′,q′ ≈ J0(k|zl − zq|)− J2(k|zl − zq|) cos 2αlq, if p = p′ = 1,

Hl′,q′ ≈ J0(k|zl − zq|) + J2(k|zl − zq|) cos 2αlq, if p = p′ = 2,

Hl′,q′ ≈ sin(2αlq)J2(k|zl − zq|), if p 6= p′.

(3.31)

Here, J0 and J2 are the Bessel functions of the �rst kind and of order 0 and 2,
respectively.

Now by virtue of the above approximations of the inner product Hl′,q′ , if the
locations zj are well-separated, then a "weak" approximation of Hl′,q′ reads as

Hl′,q′ ≈ δl′,q′ , l′, q′ = 1 . . . , 2m.

Then we obtain
σ̂l′ = σ̂2(j−1)+p ≈ n

2
|βp,j|.

Moreover, the singular vectors, having non-zero singular values, are given by

ûl′ ≈ ul′ , v̂l′ ≈ vl′ ,

for l′ = 1, . . . , 2m. Note that this approximation now is worse then in the �rst case.

From the discussion above, we conclude that the 2m non-zero singular values
of the MSR matrix A of the problem for m inclusions are the same as those of
the m independent problems, one for each inclusion. It is the same for the singular
vectors. Again, the singular values contain the information about the characteristics
of the inclusion (i.e. permeable constants and polarization tensors) and the singular
vectors contain the information about the positions of the centers of the inclusions.
Note that, at each inclusion, correspond two singular values.

A natural question would be whether one could identify two singular values (or
singular vectors) from 2m non-zero singular values which would correspond to one
inclusion. In the general case the answer is no. In practice this problem can be
resolved by plotting the inner product of the singular vectors by gz,b. See numerical
examples. However, if all inclusions are disks then because β1,j = β2,j = β∗,j, j =

1, . . . , m, the two singular values corresponding to the same inclusion coincide and
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the two �rst singular values correspond to the inclusion with the highest γj
µ Mj, the

next two singular values correspond to the immediately lower γj
µ Mj and so on.

Now, analogously to the �rst case, the following conclusion can be made if all
the quantities γj

µ Mj are di�erent enough: let us suppose that the values βp,j, j =

1, . . . , m, p = 1, 2 are distributed as

|β1,1| À |β2,1| À |β1,2| À |β2,2| À . . . À |β1,m| À |β2,m|,

then the singular value σ̂2(j−1)+p is close to σ2(j−1)+p. It implies that the singular
vector û2(j−1)+p becomes close to u2(j−1)+p, j = 1, . . . , m, p = 1, 2. Note that this
condition implies a better approximation of the values γj

µ Mj, j = 1, . . . , m, but as
part of the localization of the inclusions the more weak inclusions can be lost. In
the case of identical inclusions we make the same remarks as in case 1.

Finally, following [18], the quantities γj
µ Mj, j = 1, . . . ,m, could be recovered

from the singular values of the MSR matrix, once the positions of the inclusions
have been determined.

3.4 The third case: dielectric and permeable inclu-
sions

In this case the MSR matrix A = [apl]
n ∈ Cn×n is de�ned by

apl = A(1)
α (x̂p, ξ̂l)

∣∣
x̂p=−ξ̂p

=

= −
m∑

j=1

eik(ξ̂p+ξ̂l)zj ξ̂pβj ξ̂l +
m∑

j=1

τje
ik(ξ̂p+ξ̂l)·zj ,

for p, l = 1, . . . , n, where βj = α2γj
µ Mj 6= 0 and τj = α2γj

ε |Bj| 6= 0, for j = 1, . . . ,m.
By virtue of (3.1) and (3.18) we have

A = DBDT + STST = HFHT ,

where H = [d1 . . . d2m|s1 . . . sm] ∈ Cn×3m and F = diag(B, T) ∈ C3m×3m.
As previously, observe that if n ≥ 3m and if the matrix H has maximal rank

3m, the range of R(H) and R(AA) coincide. Thus

R(AA) = span{d2j−1, d2j, sj, j = 1, . . . , m}.

Let c ∈ R3\{0}, for any point z ∈ R2 we de�ne the vector gz,c ∈ Cn by

gz,c =
(
c · hξ̂1

eikξ̂1·z, . . . , c · hξ̂n
eikξ̂n·z)T

, (3.32)



54 MUSIC ALGORITHM

where hξ̂p
= (e1 · ξ̂p, e2 · ξ̂p, 1)T ∈ R3, p = 1, . . . , n. We note that gzj ,c is a linear

combination of the vector columns d2j−1, d2j and sj , j = 1, . . . , m of the matrix H.
Following similar arguments as those for cases 1 and 2, the following result can

be shown.

Proposition 3.4.1 If c ∈ R3\{0} and gz,c ∈ Cn is de�ned by (3.32) then there
exists n0 ∈ N such that for any n ≥ n0, the vector gz,c ∈ R(H) if and only if
z ∈ {z1, . . . , zm}.

Analogously to the two above cases, since the locations zj are well-separated,
then there exists n0 ≥ 3m such that for any n ≥ n0 the matrix H has maximal rank
3m.

As previously, let the SVD of A be de�ned by A = UΣV∗. Since the rank of
AA∗ = AA is 3m then the �rst 3m columns of U, {u1, . . . , u3m}, provide a basis
for column space of A which is denoted by US, and the rest of the matrix U,
{u3m+1, u3m+2, . . . , un}, provides a basis for left null space of A, denoted by UN .
Then the best rank approximation for A is (USU∗

S)A with error E = A− (USU∗
S)A.

From Proposition 3.4.1 we have that a test point z coincides with one of the
positions zj if and only if Pgz,c = 0, where P = I − (USU∗

S) is the orthogonal
projection onto the null space of A. Thus we can form an image of zj, j = 1, . . . , m,

by plotting, at each point z, the quantity

Wc(z) =
1

||Pgz,c|| .

The resulting plot will have large peaks at the locations of zj, j = 1, . . . , m.

3.4.1 SVD of the MSR matrix
This case is the superposition of cases 1 and 2. As in case 2, we assume for simplicity
that all the matrices Mj

(
µj

µ0

)
are diagonal. The MSR matrix A can be written as

follows

A =
m∑

j=1

β1,jd2j−1d
T
2j−1 + β2,jd2jd

T
2j + τjsjs

T
j . (3.33)

Let us again consider m independent problems, each corresponding to one in-
clusion:

Aj = β1,jd2j−1d
T
2j−1 + β2,jd2jd

T
2j + τjsjs

T
j , j = 1, . . . , m. (3.34)
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Set again ξ̂t = (ξ̂1,t, ξ̂2,t) = (cos θt, sin θt), where θt = 2π(t−1)
n

is the angle of
observation, t = 1, . . . , n. Then

d∗2j−1sj =
n∑

t=1

ξ̂1,t =
n∑

t=1

cos θt = 0, (3.35)

d∗2jsj =
n∑

t=1

ξ̂2,t =
n∑

t=1

sin θt = 0. (3.36)

Consequently, from (3.34), (3.22), (3.23), (3.24), (3.35), and (3.36), we obtain that

AjAj = β2
1,j||d2j−1||2d2j−1d

∗
2j−1 + β2

2,j||d2j||2d2jd
∗
2j + τ 2

j ||sj||2sjs
∗
j ,

AjAj = β2
1,j||d2j−1||2d2j−1d

T
2j−1 + β2

2,j||d2j||2d2jd
T
2j + τ 2

j ||sj||2sjs
T
j ,

for j = 1, . . . , m. It follows that the eigenvectors u3j−2, u3j−1, u3j and v3j−2, v3j−1,

v3j of the matrices AjAj and AjAj, having non-zero eigenvalues σ2
j , are thus given

by

{u3j−2, u3j−1, u3j} =
{ d2j−1

||d2j−1|| ,
d2j

||d2j|| ,
sj

||sj||
}

, (3.37)

{v3j−2, v3j−1, v3j} =
{ d2j−1

||d2j−1||
,

d2j

||d2j||
,

sj

||sj||
}

, (3.38)

and

{σ3j−2, σ3j−1, σ3j} =
{n

2
|β1,j|, n

2
|β2,j|, n|τj|

}
. (3.39)

Since R(AA) = span{d1, . . . , d2m, s1, . . . , sm} = span{u1, . . . , u3m}, then the
singular vectors ûl′ are linear combinations of the array vectors ul′ while v̂l′ are
linear combinations of the array vectors vl′ = ul′ , for l′ = 1, . . . , 3m.

Let

Hl′,q′ = u∗l′uq′ , l′, q′ = 1, . . . , 3m. (3.40)

De�ne

l′ = 3(l − 1) + p,

q′ = 3(q − 1) + p′, l, q = 1 . . .m, p, p′ = 1, 2, 3.

Using the polar co-ordinates zq − zl = |zl − zq|(cos αlq, sin αlq), we compute

Hl′,q′ =

∑n
t=1 ξ̂p,t e

ik|zl−zq | cos(θt−αlq)

√
n
√∑n

t=1 ξ̂2
p,t

, p = 1, 2, p′ = 3, l 6= q. (3.41)
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For l = q we compute Hl′,q′ from (3.22), (3.23), (3.24), (3.35), and (3.36). Suppose
now that l 6= q. For p, p′ = 1, 2 we refer to section 3.3.1; for p = p′ = 3 we refer to
section 3.2.1. Otherwise, the following holds:

Hl′,q′ ≈ i
√

2 cos(αlq)J1(k|zl − zq|) if p = 1, p′ = 3,

Hl′,q′ ≈ i
√

2 sin(αlq)J1(k|zl − zq|) if p = 2, p′ = 3,
(3.42)

where J1 is the Bessel function of the �rst kind and order one.

Now from (3.13), (3.31) and (3.42), and if the locations zj are well-separated,
as before, a "weak" approximation of Hl′,q′ reads as

Hl′,q′ ≈ δl′,q′ , l′, q′ = 1 . . . , 3m.

Then we obtain

σ̂3(j−1)+p ≈ n

2
|βp,j|, p = 1, 2; σ̂3j ≈ n|τj|.

Furthermore, the singular vectors, associated to non-zero singular values, are given
by

û3(j−1)+p ≈ u3(j−1)+p, v̂3(j−1)+p ≈ v3(j−1)+p,

for j = 1, . . . , m, and p = 1, 2, 3.
From the discussion above, we conclude that the signal space of A is spanned

by the eigenvectors of Aj, j = 1, . . . , m. Note that three singular values are corre-
sponding with each inclusion.

A natural question would be whether one could identify three singular values
(or singular vectors) from 3m non-zero singular values which would correspond to
one inclusion. In the general case the answer is no. In practice this problem can be
resolved like in the second case by plotting the inner product of the singular vectors
by gz,c, but these maps might be di�cult to interpret in the absence of any prior
knowledge on the inclusions. See numerical examples.

Now, analogously to cases 1 and 2, the following conclusion can be made if all
the quantities γj

µ Mj and γj
ε |Bj| are di�erent enough: let us suppose that the values

βp,j, j = 1, . . . , m, p = 1, 2 and τj, j = 1, . . . m are distributed as

|β1,1| À |β2,1| À |β1,2| À |β2,2| À . . . À |β1,m| À |β2,m|,

|τ1| À . . . À |τm|,
then the singular value σ̂3(j−1)+p is close to σ3(j−1)+p. It implies that the singular
vector û3(j−1)+p becomes close to u3(j−1)+p.
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3.5 Examples of MUSIC reconstructions
As discussed in the theoretical examination the nature (dielectric and/or magnetic)
of the inclusions with respect to the one of the embedding medium (here a purely
dielectric and non magnetic medium), is essential to the results expected.

So, below, one is displaying and brie�y analyzing a restricted number of numer-
ical results from synthetically generated data, so as to provide the reader with a
fair vision of the pros and cons of the method. Furthermore, the MUSIC recon-
struction method should be tailored to the practical application envisaged, should
account at best for all user's priors, and should cope with traditional constraints
like the number of illuminations and observations, and the choice of the frequency
of observation (one hereafter stays within the very adverse hypothesis of one single
frequency). So one acknowledges that one only considers rather generic situations
herein.

The con�guration is the same as in the previous chapter on Fourier algorithm.
It involves two small homogeneous circular disks of diameter α = 0.1 denoted as
D1 and D2 and respectively centered at z1 = (−0.45, 0.43) and z2 = (0.52,−0.44),
to be retrieved using 20 illuminations and the corresponding observations within a
prescribed search box, being the square one Ω = [−2, 2]× [−2, 2] ⊂ R2.

Corresponding dielectric permittivities εj, j = 1, 2, are equated to 5 and 2 and
magnetic permeabilities µj, j = 1, 2, are equated to 5 and 2. Speci�c examples
tailored to the analysis of the singular values assume identical values εj = 3 and/or
µj = 3, j = 1, 2. Unless stated otherwise for the study of the behavior of the
approach versus frequency, the circular frequency of operation is �xed to ω = 4,
µ0 = 1 and ε0 = 1 for the embedding medium. The number of antennas will be set
to 20 in all examples.

Within the above setting, the retrieval of the inclusions involves the calculation
of the SVD, A = UΣV∗, of the matrix A = [apl] ∈ Cn×n. Denote by {ei}d

i=1 the
orthonormal basis in Rd, d = 2 or 3. Then, for each discrete location z ∈ Ω (the
sampling step henceforth is h = 0.05), the identi�ers of interest are

• in the �rst case: Wa(z), a = 1,

• in the second case: Wb(z), b = {e1, e2, e1 + e2

∣∣ ei ∈ R2, i = 1, 2} ,

• in the third case: Wc(z), c = {e1 + e2, e3, e1 + e2 + e3

∣∣ ei ∈ R3, i = 1, 2, 3},
calculated within Ω, the speci�c values of b and c here having being inferred from
the numerical experimentation. Plots of z → W·(z) illustrate the result achieved,
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sharp peaks being expected to occur at the locations of the inclusions, zj, j = 1, 2.
Other accompanying results displayed consist of the singular values of A, using a
standard log scale, and also of color or gray-level maps of appropriate norms of
"back-propagated" singular vectors or combinations.

3.5.1 The �rst case: dielectric inclusions
In this purely dielectric case, the singular values are displayed in Fig. 3.5.1.1, the
identi�er Wa(z), a ∈ R \ {0}, where one has let for simplicity a = 1, is displayed
in Fig. 3.5.1.2, and the amplitudes of the scalar products of the singular vectors uj

with gz,a are displayed in Fig. 3.5.1.3. The distribution of the non-zero singular
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Figure 3.5.1.1: Case 1 (dielectric contrasts only): distribution of the singular values of A

for n = 20 illuminations.
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Figure 3.5.1.2: Case 1 (dielectric contrasts only): 3D-plot and gray-level (or color) map
of Wa(z), a = 1, for all points z in Ω (refer to Fig. 3.5.1.1).
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Figure 3.5.1.3: Case 1 (dielectric contrasts only): gray-level (or color) maps of the am-
plitudes of the scalar products of the singular vectors u1, u2 (ordered from left to right)
with gz,a, a = 1, for all points z in Ω (refer to Figs.3.5.1.1 and 3.5.1.2).
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Figure 3.5.1.4: Case 1 (dielectric contrasts only): distribution of the non-zero singular
values of A as a function of frequency, ω = 1 : 10, for di�erent or identical inclusions.
(a) depicts the �rst (circles) and second (squares) singular values of A, for ε1 = 5 and
ε2 = 2; (b) depicts the �rst (circle) and second (square) singular values of A, for ε1 = 3

and ε2 = 3. In both cases the full line denotes the values taken by n|τj |, j = 1, 2.

values of A as a function of frequency ω = 1 : 10 is shown in Fig. 3.5.1.4 either for
di�erent inclusions (ε1 = 5, ε2 = 2) or for identical ones (ε1 = 3, ε2 = 3).

Results obtained as such are easy to interpret. Two singular values emerge from
the 18 others in the noise subspace, and they range in accord with the contrast of
the corresponding inclusions. The two said inclusions are sharply retrieved, with a
resolution no more than a small fraction of the wavelength (and isotropic, in tune
with the fact that the search space is illuminated and seen from all around). As
for the singular vectors, once operated upon by gz,a, they focus onto the inclusions
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as expected in the con�guration under study. Finally, the evolution as a function
of frequency of the singular values con�rms that permittivity contrasts that are
di�erent enough lead to singular values that are very close to the n|τj| values on the
whole frequency band, whereas this is not true anymore with identical contrasts for
which the singular values appear to oscillate in opposite phase above or below the
common value of n|τj|.

3.5.2 The second case: permeable inclusions
In this purely magnetic case (in terms of the inclusions), the singular values are
displayed in Fig. 3.5.2.1, the identi�er Wb(z), b ∈ R2 \ {0} is displayed in Fig.
3.5.2.2 for b = e1, in Fig. 3.5.2.3 for b = e2, and in Fig. 3.5.2.4 for b = e1 + e2, and
the 2-Norm of the matrix

Uperm
j (z) =

[
u2j−1 · gz,e1 u2j · gz,e1

u2j−1 · gz,e2 u2j · gz,e2

]
, j = 1, 2 (3.43)

is displayed in Fig. 3.5.2.5, each sub-plot (j = 1, 2) being calculated from the combi-
nation of two singular vectors associated with the same inclusion. The distribution
of the non-zero singular values of A as a function of frequency, ω = 1 : 10 is shown
in Fig. 3.5.2.6 either for di�erent inclusions (µ1 = 5, µ2 = 2) or for identical ones
(µ1 = 3, µ2 = 3).
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Figure 3.5.2.1: Case 2 (permeability contrasts only): distribution of the singular values
of A for n = 20 illuminations.
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Figure 3.5.2.2: Case 2 (permeability contrasts only): 3D-plot and gray-level (or color)
map of Wb(z), b = e1 ∈ R2, for all points z in Ω (refer to Fig. 3.5.2.1 ).
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Figure 3.5.2.3: Case 2 (permeability contrasts only): 3D-plot and gray-level (or color)
map of Wb(z), b = e2 ∈ R2, for all points z in Ω (refer to Fig. 3.5.2.1 ).
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Figure 3.5.2.4: Case 2 (permeability contrasts only): 3D-plot and gray-level (or color)
map of Wb(z), b = e1 + e2 ∈ R2, for all points z in Ω (refer to Fig. 3.5.2.1 ).
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Figure 3.5.2.5: Case 2 (permeability contrasts only): gray-level (or color) maps of the
2-Norm of the matrix Uperm

j (z), j = 1, 2, de�ned by (3.43), for all points z in Ω (refer to
Figs. 3.5.2.1 to 3.5.2.4 ).
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Figure 3.5.2.6: Case 2 (permeability contrasts only): distribution of the non-zero singular
values of A as a function of frequency, ω = 1 : 10 for di�erent or identical inclusions. (a)
depicts the four non-zero singular values of A, for µ1 = 5, µ2 = 2; (b) depicts the four
non-zero singular values of A, for µ1 = 3, µ2 = 3. In both cases the full line denotes the
values taken by n|βj |/2, j = 1, 2.

As previously, the results obtained are easy to interpret. Four singular values
only emerge from noise, each couple (with almost identical value) being associated
to one speci�c inclusion, and those couples range according to the permeability
contrast. The inclusions, be they observed via di�erent Wb(z), are clearly discrimi-
nated from the background, the visual aspect depending upon the choice of b. The
focusing of the singular vectors as seen from displays of the 2-Norm of the vector
couples de�ned in the above, is rather good, noticing that u1 and u2 are associated
to D1, u3 and u4 are associated to D2, i.e., from the most permeable inclusion to the
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least one. Finally, the evolution as a function of frequency of the singular values,
as previously observed in the dielectric case yet in less obvious fashion due to the
doubling of the number of singular values, exempli�es that permeability contrasts
that are di�erent enough lead to singular values that are very close to (here, often
almost identical with) the n|βj|/2 values on the whole frequency band, whereas this
is not true anymore with identical contrasts for which the singular values appear to
oscillate in opposite phase above or below the common value of n|β|/2.

3.5.3 The third case: dielectric and permeable inclusions
In this full case, the singular values are displayed in Fig. 3.5.3.1, and the identi�er
Wc(z), c ∈ R3 \ {0} is displayed in Fig. 3.5.3.2 for c = e1 + e2, in Fig. 3.5.3.3 for
c = e3 and in Fig. 3.5.3.4 for c = e1 + e2 + e3. The 2-Norm of the matrix

Uj(z) =





Udiel
j (z) = uj · gz,1, for j = 1, 2,

Uperm
j (z) =

[
u2j−3 · gz,e1 u2j−2 · gz,e1

u2j−3 · gz,e2 u2j−2 · gz,e2

]
, for j = 3, 4

(3.44)

is shown in Fig. 3.5.3.5 for j = 1, 2 and Fig. 3.5.3.6 for j = 3, 4. Each sub-plot is
calculated from the singular vectors (or a combination thereof) associated with the
same inclusion and the same property of this inclusion (dielectric or magnetic). As
for the distribution of the non-zero singular values of A as a function of frequency
considered before, it is left aside for simplicity in view of the large number of singular
values.
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Figure 3.5.3.1: Case 3 (permittivity and permeability contrasts): distribution of the
singular values of A for n = 20 illuminations.
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Figure 3.5.3.2: Case 3 (permittivity and permeability contrasts): 3D-plot and gray-level
(or color) map of Wc(z), c = e1 + e2 ∈ R3, for all points z in Ω (refer to Fig. 3.5.3.1).
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Figure 3.5.3.3: Case 3 (permittivity and permeability contrasts): 3D-plot and gray-level
(or color) map of Wc(z), c = e3 ∈ R3, for all points z in Ω (refer to Fig. 3.5.3.1).
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Figure 3.5.3.4: Case 3 (permittivity and permeability contrasts): 3D-plot and gray-level
(or color) map of Wc(z), c = e2 + e2 + e3 ∈ R3, for all points z in Ω (refer to Fig. 3.5.3.1).
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Figure 3.5.3.5: Case 3 (permittivity and permeability contrasts): gray-level (or color)
maps of the 2-Norm of the matrix Udiel

j (z), j = 1, 2, de�ned by (3.44), for all points z in
Ω (refer to Figs. 3.5.3.1 to 3.5.3.4).
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Figure 3.5.3.6: Case 3 (permittivity and permeability contrasts): gray-level (or color)
maps of the 2-Norm of the matrix Uperm

j (z), j = 3, 4, de�ned by (3.44), for all points z in
Ω (refer to Figs. 3.5.3.1, 3.5.3.2, 3.5.3.3 and 3.5.3.4).

The results obtained are evidently less easy to interpret than before due to the
more complicated character of the inclusions. Still, the singular values of the signal
subspace emerge from noise, six of them, each triplet being associated to one speci�c
inclusion, but no obvious ranging being observed. The inclusions, again, be they
observed via di�erent Wc(z), are clearly discriminated from the background, the
visual aspect depending upon the choice of c. As for the focusing of the singular
vectors as seen from displays of the 2-Norms de�ned in the above, it works for the
most contrasted inclusion, D1, both for the vectors u3 and u4 involved with the
permeability and those, u1, involved with the permittivity, but it does less with the
least contrasted one D2, for which the maps would be di�cult to interpret in the
absence of any prior knowledge on the inclusions.
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Chapter 4

Link between the Fourier and
MUSIC algorithms

We explain the link between the Fourier and MUSIC algorithms.

4.1 Basis idea
In this chapter, we establish a direct link between the Fourier and MUSIC algo-
rithms. We recall that the points zj, which determine the location of the inclusions,
can be recovered by performing the appropriate Fourier inversion, that is,

F−1(A(1)
α ) =

1

πK2

∫

|ξ|≤K

A(1)
α (ξ) eikξ·z dξ =

m∑
j=1

Lj(δzj
), (4.1)

where A
(1)
α (ξ) is given by (1.30), ξ = k(x̂ − ξ̂) and K = 2k or 2R (for the analytic

continuation algorithm). See Chapter 2.
Suppose that K = 2k for the sake of simplicity. Let, in the polar coordinates:

ξ = ρ (cos φ, sin φ), where ρ = |k(x̂− ξ̂)|, to rewrite (4.1) as follows

F−1(A(1)
α ) =

1

4πk2

∫ 2π

0

∫ 2k

0

A(1)
α (ξ) eikξ·z ρ dρ dφ. (4.2)

We recall that we form the MSR matrix A = [apl] ∈ Cn×n by

apl :=
4
√

kπ

k2(1 + i)
Aα(x̂p, ξ̂q)

∣∣
x̂p=−ξ̂p

≈ A(1)
α (−ξ̂p, ξ̂q).

Let ρ = [ρpq] ∈ Rn×n, where ρpq = k|ξ̂p + ξ̂q|. De�ne the matrix G ∈ Cn×n by

G = A⊗ ρ, (4.3)



68 LINK BETWEEN THE FOURIER AND MUSIC ALGORITHMS

where the symbol ⊗ denotes the element-by-element product of the matrices A and
ρ. Using this notation, the Fourier inversion can be written in the matrix form:

F−1(A(1)
α )(z) =

1

kn2
gT

z G gz, (4.4)

where the vector gz ∈ Cn is given by

gz = (eikξ̂1·z, . . . , eikξ̂n·z)T , (4.5)

for any point z ∈ R2. Note that gz is equal to gz,a

∣∣
a=1

, where gz,a is de�ned by (3.2)
in Chapter 3.

Now we establish the link between the Fourier inversion (4.4) and MUSIC al-
gorithm (more precisely between the Fourier inversion and the SVD of the MSR
matrix A). We will again consider separately three cases as in the previous chap-
ter: dielectric inclusions, permeable inclusions and both dielectric and permeable
inclusions.

In each case, we provide numerical examples to illustrate our observations. We
use the same numerical data as for the MUSIC algorithm in Chapter 3, that is, we
consider two small homogeneous circular disks of diameter α = 0.1 denoted as D1

and D2 and respectively centered at z1 = (−0.45, 0.43) and z2 = (0.52,−0.44), in
the square Ω = [−2, 2]× [−2, 2] ⊂ R2, to be retrieved using 20 illuminations and the
corresponding observations. In the second case (permeable inclusions) the positions
of the centers of the disks are changed to z1 = (−0.88, 0.63) and z2 = (0.77,−0.78),
to have a good image of the Fourier inversion.

Corresponding dielectric permittivities εj, j = 1, 2, are equated to 5 and 2 or 3

and 3 and/or magnetic permeabilities µj, j = 1, 2, are equated to 5 and 2 or 3 and
3. The circular frequency of operation is �xed to ω = 4 in all examples.

4.2 Dielectric inclusions
We recall that the MSR matrix A can be written as

A = STST =
m∑

j=1

τjsjs
T
j .

Let us de�ne
Ddiel

j (z) =
1

kn2
gT

z

((
uju

T
j

)⊗ ρ
)
gz, (4.6)

where uj is the left singular vector of A.
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As already said, the non-zero singular values of the matrix A with corresponding
left singular vectors are given by

σj ≈ n|τj|, uj ≈ sj√
n

,

for j = 1, . . . , m. From (4.4) and (4.6) it follows that

F−1(A(1)
α ) ≈

m∑
j=1

σjDdiel
j , (4.7)

which means that the Fourier inversion of A
(1)
α is the superposition of Ddiel

j .
Firstly we propose numerical results for two di�erent inclusions with ε1 = 5 and

ε2 = 2. Results are shown in Fig. 4.2.1 (the amplitudes of Ddiel
1 , Ddiel

2 ) and Fig.
4.2.2 (the amplitudes of the Fourier inversion of A

(1)
α and

∑2
j=1 σjDdiel

j ).
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Figure 4.2.1: Case of two di�erent inclusions (dielectric contrasts only): gray-level (or
color) maps of the amplitudes of Ddiel

1 (z), Ddiel
2 (z) (ordered from left to right), for all

points z in Ω (refer to Fig. 3.5.1.3 in Chapter 3).
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Figure 4.2.2: Case of two di�erent inclusions (dielectric contrasts only): gray-level (or
color) maps of the amplitudes of Fourier inversion of A

(1)
α (left) and

∑2
j=1 σjDdiel

j (right).
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Figure 4.2.3: Case of two identical inclusions (dielectric contrasts only): gray-level (or
color) maps of the amplitudes of Ddiel

1 (z), Ddiel
2 (z) (ordered from left to right), for all

points z in Ω.
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Figure 4.2.4: Case of two identical inclusions (dielectric contrasts only): gray-level (or
color) maps of the amplitudes of Fourier inversion of A

(1)
α (left) and

∑2
j=1 σjDdiel

j (right).

In the second example we consider two identical inclusions with ε1 = ε2 = 3.
The amplitudes of Ddiel

j , j = 1, 2 are displayed in Fig. 4.2.3, the amplitudes provided
by Fourier inversion of A

(1)
α and by superposition of σjDdiel

j are displayed in Fig.
4.2.4.

The resolution achieved in all examples is equal to 2δ = π/k ≈ 0.78 - red circle
in color. We know that in the case of di�erent inclusions the singular vectors of
the matrix A are close to sj/||sj||, j = 1, 2 and they focus onto the inclusions as
expected in the con�guration under study. Fig. 4.2.1 can be compared with Fig.
3.5.1.3 in Chapter 3, where the amplitudes of gT

z uj, j = 1, 2 are displayed. In the
case of identical inclusions we can see the coupling e�ect, which is such that a good
localization of the inclusions cannot be reached. Note that the magnitude of the
peaks of Fourier inversion are equal to |τj|. In short the Fourier inversion appears
as providing us with the "best image" of the singular system of the matrix A.
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On the e�ect of noise

The far-�eld data are perturbed both in amplitude and phase by a white Gaussian
noise with 12 dB signal-to-noise ratio.

Results for ε1 = 5, ε2 = 2 are shown in Fig. 4.2.5 (the singular values), in Fig.
4.2.6 (the amplitudes of Ddiel

j , j = 1, 2) and Fig. 4.2.7 (the amplitudes provided by
Fourier inversion and by MUSIC using the 6 �rst singular vectors (associated to the
6 largest singular values)).
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Figure 4.2.5: Case of two di�erent inclusions (dielectric contrasts only): distribution of
the singular values of A for n = 20 illuminations in the case of noisy data with 12 dB
signal-to-noise ratio.
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Figure 4.2.6: Case of two di�erent inclusions (dielectric contrasts only): gray-level (or
color) maps of the amplitudes of Ddiel

1 , Ddiel
2 (ordered from left to right) in the case of

noisy data with 12 dB signal-to-noise ratio.

Results for ε1 = 3 and ε2 = 3 are shown in Fig. 4.2.8 (the singular values) and
Fig. 4.2.9 (the amplitudes provided by Fourier inversion and by MUSIC either the
6 �rst singular vectors (associated to the 6 largest singular values)).
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Figure 4.2.7: Case of two di�erent inclusions (dielectric contrasts only): gray-level (or
color) maps of the amplitude of Fourier inversion of A

(1)
α (left) and MUSIC (right) in the

case of noisy data with 12 dB signal-to-noise ratio.
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Figure 4.2.8: Case of two identical inclusions (dielectric contrasts only): distribution of
the singular values of A for n = 20 illuminations in the case of noisy data with 12 dB
signal-to-noise ratio.
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Figure 4.2.9: Case of two di�erent inclusions (dielectric contrasts only): gray-level (or
color) maps of the amplitudes of Fourier inversion of A

(1)
α (left) and MUSIC (right) in the

case of noisy data with 12 dB signal-to-noise ratio.
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In both examples above the resolution achieved by Fourier inversion is equal to
2δ ≈ 0.78, but MUSIC appears to perform better. As one said already in Chapter
3, in the case of di�erent inclusions the weakest inclusions can be lost, see Figs.
4.2.5 and 4.2.7.

4.3 Permeable inclusions
We always assume for simplicity that all Bj are disks or ellipses. The matrix
βj = α2γj

µ Mj ∈ R2 is represented as −βj = diag(β1,j, β2,j). Note that for the
numerical tests the Bj are disks and therefore, β1,j = β2,j = β∗,j. We also assume
that |β1,j| ≥ |β2,j|. Then the MSR matrix A can be written as

A = DBDT =
m∑

j=1

β1,j d2j−1d
T
2j−1 + β2,j d2jd

T
2j. (4.8)

Let us de�ne

Dperm
2(j−1)+p(z) =

1

kn2
gT

z

((
u2(j−1)+pu

T
2(j−1)+p

)⊗ ρ
)
gz, (4.9)

where u2(j−1)+p is the left singular vector of the matrix A.
Since the non-zero singular values of A with corresponding singular vectors are

given by

σ2(j−1)+p ≈ n

2
|βp,j|, u2(j−1)+p ≈

√
2

n
d2(j−1)+p,

for p = 1, 2 and j = 1, . . . , m. Then from (4.4) and (4.9) it follows that

F−1(A(1)
α ) ≈

m∑
j=1

σ2j−1Dperm
2j−1 + σ2j Dperm

2j . (4.10)

In the �rst numerical experiment we take µ1 = 5 and µ2 = 2. Results are
shown in Fig. 4.3.1 (the amplitudes of Dperm

2j−1 + Dperm
2j , j = 1, 2) and Fig. 4.3.2

(the amplitudes provided by Fourier inversion of A
(1)
α and by superposition of

σ2(j−1)+pDperm
2(j−1)+p, p, j = 1, 2).

In the second numerical experiment we take µ1 = µ2 = 3. The amplitudes of
the Fourier inversion of A

(1)
α and the superposition of σ2(j−1)+pDperm

2(j−1)+p, p, j = 1, 2

are displayed in Fig. 4.3.3.

The resolution achieved in all examples is equal to 2δ ≈ 0.78. As already
said, in the case of di�erent inclusions the singular vectors of the matrix A are
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Figure 4.3.1: Case of two di�erent inclusions (permeability contrasts only): gray-level
(or color) maps of the amplitudes of Dperm

1 + Dperm
2 , Ddiel

3 + Dperm
4 (ordered from left to

right).
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Figure 4.3.2: Case of two di�erent inclusions (permeability contrasts only): gray-
level (or color) maps of the amplitudes of Fourier inversion of A

(1)
α (left) and

∑2
j,p=1 σ2(j−1)+pDperm

2(j−1)+p (right).

close to dj/||dj||, j = 1, . . . , 4. We see again that the singular vectors focus onto the
inclusions as expected in the con�guration under study. Fig. 4.3.1 can be compared
with Fig. 3.5.2.5 in Chapter 3, where the amplitudes of the 2-Norm of the matrix
Uperm

j (z), j = 1, 2, de�ned by (3.43) are displayed. In the case of identical inclusions
we see the coupling e�ect, which is such that a good localization of the inclusions
cannot be reached. Note that the magnitude of the peaks of Fourier inversion now
are equal to |β∗,j|maxz∈R+ J2

1 (z) ≈ 0.36|β∗,j|, where J1 is the Bessel function of
the �rst kind and order one. (This follows from (3.42), (4.4) and (4.8)). Again,
the Fourier inversion remains the "best image" of the singular system of the MSR
matrix A. In this case is more di�cult to have the best approximation of the singular
vectors compared to the �rst case (dielectric inclusions). Note also that in the simple
case where all inclusions are disks, we can arrange the singular values (see case 2
(permeable inclusions) in Chapter 3). However, in other cases, this is not easy, and



4.3. PERMEABLE INCLUSIONS 75

 X axis

 Y
 a

xi
s

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0.5

1

1.5

2

2.5

3

x 10
−3

 X axis

 Y
 a

xi
s

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

0.5

1

1.5

2

2.5

3

3.5

4

x 10
−3

Figure 4.3.3: Case of two identical inclusions (permeability contrasts only): gray-
level (or color) maps of the amplitudes of Fourier inversion of A

(1)
α (left) and

∑2
j,p=1 σ2(j−1)+pDperm

2(j−1)+p (right).

causes di�culties to correctly compute quantities such as σ2j−1Dperm
2j−1 + σ2j Dperm

2j .

On the e�ect of noise

The far-�eld data are again perturbed both in amplitude and phase by a white noise
with 12dB signal-to-noise ratio.

Results for µ1 = 5, µ2 = 2 are shown in Fig. 4.3.4 (the singular values), in Fig.
4.3.5 (the amplitudes of Dperm

2j−1 + Dperm
2j , j = 1, 2) and Fig. 4.3.6 (the amplitudes

provided by Fourier inversion and by MUSIC using the 8 �rst singular vectors
(associated to the 8 largest singular values)).
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Figure 4.3.4: Case of two di�erent inclusions (permeability contrasts only): distribution
of the singular values of A for n = 20 illuminations in the case of noisy data with 12 dB
signal-to-noise ratio.
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Figure 4.3.5: Case of two di�erent inclusions (permeability contrasts only): gray-level
(or color) maps of the amplitudes of Dperm

1 +Dperm
2 , Dperm

3 +Dperm
4 (ordered from left to

right) in the case of noisy data with 12 dB signal-to-noise ratio.
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Figure 4.3.6: Case of two di�erent inclusions (permeability contrasts only): gray-level
(or color) maps of the amplitude of Fourier inversion of A

(1)
α (left) and MUSIC (right) in

the case of noisy data with 12 dB signal-to-noise ratio.
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Figure 4.3.7: Case of two identical inclusions (permeability contrasts only): distribution
of the singular values of A for n = 20 illuminations in the case of noisy data with 12 dB
signal-to-noise ratio.
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Figure 4.3.8: Case of two identical inclusions (permeability contrasts only): gray-level
(or color) maps of the amplitudes of Fourier inversion of A

(1)
α (left) and MUSIC (right) in

the case of noisy data with 12 dB signal-to-noise ratio.

Results for µ1 = 3 and µ2 = 3 are shown in Fig. 4.3.7 (the singular values) and
Fig. 4.3.8 (the amplitudes provided by Fourier inversion and by MUSIC using the
8 �rst singular vectors (associated to the 8 largest singular values)).

In both examples above the resolution achieved by Fourier inversion is equal to
2δ, but MUSIC again appears to perform better. As one said already in Chapter 3,
in the case of di�erent inclusions the weakest inclusions can be lost, see Figs. 4.3.4
and 4.3.6.

4.4 Dielectric and permeable inclusions
The MSR matrix A is given by the formula (3.33). From the formula (3.42) it
follows that √

2

n
d∗2(j−1)+psj ≈ 0,

for p = 1, 2 and j = 1, . . . , m. Then we can split the 3m non zero singular values
σq of the MSR matrix A into the 2m singular values σperm

2(j−1)+p which correspond to
permeabilities µj, j = 1 . . . , m and the m singular values σdiel

j which correspond to
permittivities εj, j = 1, . . . , m. Then by combining the results of the two previous
sections we obtain

F−1(A(1)
α ) ≈

m∑
j=1

σperm
2j−1 Dperm

2j−1 + σperm
2j Dperm

2j + σdiel
j Ddiel

j . (4.11)

In the �rst numerical experiment we take µ1 = ε1 = 5 and µ2 = ε2 = 2. In
this case the two �rst non-zero singular values correspond to permittivities ε1, ε2,
that is σ1,2 = σdiel

1,2 ≈ n|τ1,2| and the last four non-zero singular values correspond
to permeabilities µ1, µ2: σ3,4 = σperm

1,2 ≈ n|β∗,1|/2, σ5,6 = σperm
3,4 ≈ n|β∗,2|/2.
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Figure 4.4.1: Case of two di�erent inclusions (permittivity and permeability contrasts):
gray-level (or color) maps of the amplitudes of D̃j , j = 1, 2 (ordered from left to right).
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Figure 4.4.2: Case of two di�erent inclusions (permittivity and permeability contrasts):
gray-level (or color) maps of the amplitudes of Fourier inversion of A

(1)
α (left) and the

superposition of σD̃j , j = 1, 2 (right).

The amplitudes of D̃j = Ddiel
j +Dperm

2j−1 +Dperm
2j , j = 1, 2, are shown in Fig.4.4.1.

Fig. 4.4.2 shows the amplitudes provided by Fourier inversion of A
(1)
α with the same

resolution and by superposition of σD̃j = σdiel
j Ddiel

j +σperm
2j−1 Dperm

2j−1 +σperm
2j Dperm

2j , j =

1, 2.

In the second numerical experiment we take µ1 = µ2 = 3, ε1 = ε2 = 3. The 6
non-zero singular values here are splited like in the �rst numerical example (Fig.
4.4.3). The two �rst singular values correspond to permittivities ε1, ε2. The ampli-
tudes provided by Fourier inversion of A

(1)
α and by superposition of σD̃j, p, j = 1, 2,

are displayed in Fig. 4.4.4.

As already said, the �gures in this numerical experiments are similar to the
�rst case (dielectric inclusions). This is because the permeability contrasts here are
weaker than the dielectric contrasts and then the magnitude of the peaks of Fourier
inversion are now equal to |τj|. Again we see that the singular vectors focus onto the
inclusions as expected in the con�guration under study. Fig. 4.4.1 can be compared
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Figure 4.4.3: Case of two identical inclusions (permittivity and permeability contrasts):
distribution of the singular values of A for n = 20 illuminations.
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Figure 4.4.4: Case of two identical inclusions (permittivity and permeability contrasts):
gray-level (or color) maps of the amplitudes of Fourier inversion of A

(1)
α (left) and the

superposition of σD̃j , j = 1, 2 (right).

with Figs. 3.5.3.5 and 3.5.3.6 in Chapter 3, where the images of the amplitudes of
the 2-Norm of the matrix Uj(z), j = 1, 2, de�ned by (3.44) are presented.

On the e�ect of noise

The far-�eld data are again perturbed both in amplitude and phase by a white noise
with 12dB signal-to-noise ratio.

Results for µ1 = ε1 = 5, µ2 = ε2 = 2 are shown in Fig. 4.4.5 (the singular
values) and in Fig. 4.4.6 (the amplitudes of D̃j, j = 1, 2) and Fig. 4.4.7 (the
amplitudes provided by Fourier inversion and by MUSIC using the 8 �rst singular
vectors (associated to the 8 largest singular values)).

Results for µ1 = µ2 = 3 and ε1 = ε2 = 3 are shown in Fig. 4.4.8 (the singular
values) and Fig. 4.4.9 (the amplitudes provided by Fourier inversion and by MUSIC
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Figure 4.4.5: Case of two di�erent inclusions (permittivity and permeability contrasts):
distribution of the singular values of A for n = 20 illuminations in the case of noisy data
with 12 dB signal-to-noise ratio.
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Figure 4.4.6: Case of two di�erent inclusions (permittivity and permeability contrasts):
gray-level (or color) maps of the amplitudes of D̃j , j = 1, 2 (ordered from left to right) in
the case of noisy data with 12 dB signal-to-noise ratio.
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Figure 4.4.7: Case of two di�erent inclusions (permittivity and permeability contrasts):
gray-level (or color) maps of the amplitude of Fourier inversion of A

(1)
α (left) and MUSIC

(right) in the case of noisy data with 12 dB signal-to-noise ratio.
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Figure 4.4.8: Case of two identical inclusions (permittivity and permeability contrasts):
distribution of the singular values of A for n = 20 illuminations in the case of noisy data
with 12 dB signal-to-noise ratio.
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Figure 4.4.9: Case of two identical inclusions (permittivity and permeability contrasts):
gray-level (or color) maps of the amplitudes of Fourier inversion of A

(1)
α (left) and MUSIC

(right) in the case of noisy data with 12 dB signal-to-noise ratio.

using the 8 �rst singular vectors (associated to the 8 largest singular values)).

In both examples above the resolution achieved by MUSIC appears to be better.
We see as before that, in the case of di�erent inclusions, the weakest inclusions can
be lost, see Figs. 4.4.5 and 4.3.6. Note that, in practice, it is not easy to split non
zero singular values σq into the singular values which correspond to permittivities
and permeabilities, respectively. Of course, we can plot the products Dperm and
Ddiel for all singular vectors, which correspond to the non zero singular values of
the matrix A, but these maps might be di�cult to interpret in the absence of any
prior knowledge on the inclusions.
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Chapter 5

Buried inclusions

A MUSIC algorithm for the location of small inclusions buried in a half-space from
the scattering at a �xed frequency is developed. The algorithm makes use of a
new asymptotic expansion of the scattering amplitude. A derivation of the leading
order term in this asymptotic expansion and its application for designing a MUSIC
algorithm are presented. The viability of this algorithm is documented by a number
of numerical results. The new di�culties to overcome arise from the limited aspect
of the apertures of illumination and observation.

5.1 Introduction
In this chapter, we consider a two-dimensional electromagnetic scattering from a
�nite number (in practice, it may be an unknown number) of small homogeneous
electromagnetic inclusions buried in a strati�ed medium. This medium consists
of two half-spaces separated by a horizontal planar interface. The inclusions are
embedded within the lower half-space, R2

− = {x = (x1, x2)
T ∈ R2 : x2 < 0}, and

illuminated by an incident plane wave from the upper one, R2
+ = {x = (x1, x2)

T ∈
R2 : x2 > 0}.

The collection of inclusions which we are interested in has certain properties
which are to be stated carefully. The geometry of each of them may take the form
of zj + αBj, where Bj is a bounded, smooth domain containing the origin. The
total collection of inclusions thus takes the form Iα = ∪m

j=1(zj + αBj). The points
zj ∈ R2, j = 1, . . . , m, that determine the location of the buried inclusions are
assumed to satisfy

0 < d0 ≤ |zj − zl| ∀ j 6= l and dist(zj, ∂R2
−) > d0,
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where ∂R2
− = {x = (x1, 0)}. The value of α, the common order of magnitude of

the diameters of the inclusions, is taken as a small fraction of the wavelength of the
wave�eld in the lower half-space at the operation frequency, which enables us to
speak of small inclusions, and to use a speci�c asymptotic approach inspired from
earlier analysis. The value of d0 is large with respect to α (d0 may still remains
a fraction of the wavelength, yet very small inclusions are de facto assumed to be
separated enough from one another so as to be treated as uncoupled scatterers in
the physical wave�eld experience of our interest). The collection Iα itself remains
in some �nitely-sized box fully contained inside the lower half-space, the distance
of any inclusion to the interface being enforced to be larger than d0.

Let µ± > 0 and ε± > 0 denote the magnetic permeability and the electric per-
mittivity of the upper and lower half-spaces. Let µj and εj denote the permeability
and the permittivity of the jth inclusion, zj +αBj; these are also assumed to be pos-
itive constants. Using this notation, we introduce the piecewise constant magnetic
permeability

µα(x) :=





µ+, x ∈ R2
+,

µ−, x ∈ R2
− \ Iα,

µj, x ∈ zj + αBj, j = 1, . . . , m.

If we allow the degenerate case α = 0, then the function µ0(x) equals the constant µ+

in R2
+ and µ− in R2

−. The piecewise constant electric permittivity εα(x) is de�ned
analogously.

Correspondingly, the piecewise positive real-valued wavenumber k is de�ned by

k :=

{
k+ = ω

√
ε+µ+, x ∈ R2

+,

k− = ω
√

ε−µ−, x ∈ R2
−,

where ω > 0 is a given frequency of operation (positive circular frequency, the
time-harmonic dependence exp(−iωt) being henceforth implied).

Analogously to (1.18) and (1.19), contrasts, to be used later in these speci�c
forms, between the electromagnetic parameters of the inclusions and those of the
lower half-space, thereupon follow as

γj
µ =

µj

µ−
− 1,

γj
ε =

εj

ε−
− 1.

We are interested in the scattering behavior of the perturbed environment, thus
aiming at the retrieval of the collection of small inclusions (by which we mean at
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least numbering, and location, possibly characterization of electrical parameters or
secondary quantities linked to them, and even some geometric features).

Let ξ̂ = (ξ̂1, ξ̂2) be a two-dimensional vector on the unit sphere S 1 in R2.
Suppose that the plane wave uI = eik+ξ̂·x is incident from the upper half-space onto
the interface ∂R2

−. We begin by constructing the plane-wave solution u0(x) to the
unperturbed Helmholtz equation, no inclusions thus being present,

(∇ · 1

µ0

∇+ ω2ε0) u0 = 0, in R2.

The weak formulation of the above unperturbed Helmholtz equation shows that u0

together with its x2-derivative at x2 = 0 satisfy the transmission conditions

[u0] = [
1

µ0

∂x2u0] = 0.

Straightforward calculations show that u0 is made of the incident plane wave uI , of
a re�ected plane wave which is propagating back into the same upper half-space,
and of a transmitted plane wave propagating away in the lower half-space, i.e.,

u0(x) =

{
uI + uR, for x2 > 0,

uT , for x2 < 0,

where
uR = Reik+ξ̂R·x, uT = Teik−ξ̂T ·x.

Here
ξ̂R = (ξ̂1,−ξ̂2), ξ̂T =

(
θξ̂1, signξ̂2

√
1− θ2ξ̂2

1

)
, θ =

k+

k−
,

and R and T are the standard Fresnel re�ection and transmission coe�cients given
by

R =
θµ−ξ̂2 − µ+ξ̂T

2

θµ−ξ̂2 + µ+ξ̂T
2

, T =
2µ−θξ̂2

θµ−ξ̂2 + µ+ξ̂T
2

.

See, for example, DeSanto [26].

Let the electric �eld uα be de�ned as the solution to the Helmholtz equation

(∇ · 1

µα

∇+ ω2εα) uα = 0 in R2, (5.1)

with, in each half-space, the Rellich-Sommerfeld radiation condition as r = |x| →
+∞

lim
r→∞

√
r

(
∂r(uα − u0)− ik(uα − u0)

)
= 0. (5.2)
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As is well known, notably from its weak form (5.1), the �eld uα and its normal
derivative enjoy the following transmission condition across all the boundaries (the
planar interface, the boundary contours of the inclusions). They read as

[uα] = [
1

µα

∂x2uα] = 0 on ∂R2
− (5.3)

and

[uα] = [
1

µα

∂νuα] = 0 on ∂Iα,

where ν denotes the outward normal to ∂Iα.

Let us emphasize that throughout this chapter the electromagnetic sources con-
sist of electric line sources of currents orientated along the x3-axis, set at in�nity
(plane waves being generated), which create E-polarized �elds (Transverse-Magnetic
or TM for some authors), the electric �eld being orientated along this axis (with
scalar values) and the magnetic �eld being contained within the incidence plane
(x1, x2). The far less investigated case of H-polarization (Transverse-Electric, TE,
with converse orientations of the electric and magnetic �elds, and hypothetical mag-
netic line sources) would simply see here u being a magnetic �eld, the permittivity
being replaced by the permeability and vice-versa in the wave equations, leading us
in particular to continuity of [ 1

εα
∂νuα] instead of the one of [ 1

µα
∂νuα].

The uniqueness of solutions to the above problem follows by using the Rellich-
Sommerfeld radiation condition (5.2) in each half-space. The existence of solutions
can be easily proved by the method of limiting absorption. See, for example, Odeh
[56]; Roach and Zhang [59]. We shall also refer to Coyle and Monk [25] who have
given a variational proof of existence for a more general scattering problem for the
Helmholtz equation.

De�ne the scattering amplitude at the �xed frequency ω, Aα(x̂, ξ̂), to be the
function which satis�es

uα(x) = u0(x) + Aα

(
x̂, ξ̂

) eik|x|
√
|x| + o

(
1√
|x|

)

as |x| → ∞, uniformly with respect to x̂ = x/|x| and ξ on the unit sphere S1 in R2.

Our �rst goal in this chapter is to provide a rigorous derivation of the asymptotic
expansion of the scattering amplitude Aα for the collection of small electromagnetic
inclusions Iα as α goes to zero. Our second goal is to use this formula for e�ciently
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determining the locations and/or shapes of the small inclusions from measurements
of Aα at a �xed frequency ω. We design a robust numerical method of MUSIC type
for identifying Iα.

Let us emphasize here that when sources and receivers are located above the
interface, i.e., in R2

+, one is faced with an aspect-limited inverse scattering problem
in the re�ection mode, which can become quite severe if the aperture of illumination
and/or observation is of small extent. The present setting enables us also to consider
that the two half-spaces are identical (a free-space case), but one still remains within
the framework of an aspect-limited problem since one keeps sources and receivers
inside R2

+ �in that case of free-space, if sources and receivers are possibly set all
around the collection, one can evidently model the so-called full-view situation, and
apply the methods developed in the previous chapters.

5.2 Green's function
Let G(x, z) be the outgoing Green's function of the unperturbed two-half-space
environment, that is, the solution to

(∆x + k2)G(x, z) = −δz(x) in R2
+ ∪ R2

−, (5.4)

[G(x, z)] = [
1

µ0

∂x2G(x, z)] = 0 on x2 = 0, (5.5)

with, in each domain, the Rellich-Sommerfeld radiation condition as r = |x| → +∞

lim
r→∞

√
r (∂rG− ikG) = 0. (5.6)

We refer to [26] for the existence and the uniqueness of G.
The Green's function G can be computed using Sommerfeld technique. Details

of these computations can be found in [25]. See also the last section of this chapter.

For any vector x̂ = (x̂1, x̂2) ∈ S 1 we de�ne the vector v ∈ C2 by

v := v(x̂) =

(
θx̂1, sign x̂2

√
1− θ2x̂2

1

)T

, v · v = 1, θ =
k+

k−
, (5.7)

and introduce the function T (x̂) ∈ C given by

T (x̂) =
2θµ−x̂2

θµ−x̂2 + µ+sign x̂2

√
1− θ2x̂2

1

. (5.8)
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We note that v(−x̂) = −v(x̂) and T (−x̂) = T (x̂) for any x̂ ∈ S 1 . Indeed, with the
help of this notation we can rewrite for all z ∈ R2

−

u0(z) = T (ξ̂) eik− v(ξ̂)·z and ∇u0(z) = ik−T (ξ̂) v(ξ̂) eik− v(ξ̂)·z.

One can show that for all x ∈ R2
+ and z ∈ R2

−

G(x, z) =
eik+|x|
√
|x|

1 + i

4
√

k+π
T (x̂)e−ik−v(x̂)·z + o(|x|−1/2), (5.9)

∇yG(x, z) = −eik+|x|
√
|x|

i(1 + i)k−

4
√

k+π
T (x̂)v(x̂)e−ik−v(x̂)·z + o(|x|−1/2), (5.10)

as |x| → +∞, where x̂ = x/|x|. See the last section of this chapter of details.

5.3 Asymptotic formula for the scattering ampli-
tude

If we multiply (5.1) by the Green's function G and integrate by parts, we get by
making use of the radiation condition (5.2) that, for x ∈ R2,

uα(x) = u0(x) +
µ0(x)

µ−

[ m∑
j=1

µ−

µj
γj

µ

∫

zj+αBj

∇G(x, y) · ∇uα(y) dy

+
m∑

j=1

(k−)2γj
ε

∫

zj+αBj

G(x, y)uα(y) dy

]
.

By arguments similar to those used for the proof of Proposition 1.3.1, we can easily
establish the following pointwise expansion, for x bounded away from the inclusions,

uα(x) = u0(x) + α2µ0(x)

µ−

[ m∑
j=1

γj
µ∇yG(x, zj) ·Mj∇u0(zj)

+
m∑

j=1

(k−)2γj
εG(x, zj)|Bj|u0(zj)

]
+ o(α2).

(5.11)

Here the remainder term o(α2) is independent of x and the set of points {zj}m
j=1. The

matrix Mj( µj

µ− ), j = 1, . . . , m, de�ned by (1.5), is the polarization tensor associated
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with the domain Bj and the magnetic permeability µj. Recall that if Bj is a disk
then the polarization tensor Mj has the following explicit form

Mj =
2µ−

µ− + µj
|Bj|I2,

where I2 is the 2× 2 identity matrix. See (1.6).

Let S 1
+ = {x ∈ R2

+ : |x| = 1} and S 1
− = {x ∈ R2

− : |x| = 1}.
In accord with what was said before, on the aspect-limited inverse scattering

problem and the re�ection mode con�guration, we restrict the analysis of the far-
�eld pattern Aα to the case of uα being observed in the upper half-space {x2 > 0}
for all ξ̂ ∈ S 1

−.
Invoking (5.9), (5.10) and formula (5.11), we immediately obtain the following

result 1.

Theorem 5.3.1 For all x̂ ∈ S 1
+ and ξ̂ ∈ S 1

−, the scattering amplitude Aα has the
following asymptotic expansion

Aα(x̂, ξ̂) =

α2 (k−)2µ+(1 + i)

4µ−
√

πk+
T (x̂)T (ξ̂)

m∑
j=1

e−ik−(v(x̂)−v(ξ̂))·zj

[
γj

µ v(x̂) ·Mj v(ξ̂) + γj
ε |Bj|

]

+o(α2),

(5.12)
where the asymptotic term o(α2) is independent of the set of points {zj}m

j=1, x̂ ∈ S 1
+,

and ξ̂ ∈ S 1
−.

Analogously to the previous chapters we henceforth exclude the constant
(k−)2µ+(1 + i)/(4µ−

√
πk+) from the above expansion of Aα and denote by A

(1)
α the

leading order term in the above asymptotic expansion, that is,

A(1)
α (x̂, ξ̂) := α2T (x̂)T (ξ̂)

m∑
j=1

e−ik−(v(x̂)−v(ξ̂))·zj

[
γj

µ v(x̂) ·Mj v(ξ̂) + γj
ε |Bj|

]
.

Let us notice that the above �rst-order asymptotic expansion (5.12) involves
an isotropic monopole contribution, the magnitude of which is linked to the per-
mittivity contrast, and an angularly-dependent dipole contribution, the magnitude
of which is linked to the permeability contrast and the values e�ectively taken by
the polarization tensor. Let us also remind that this asymptotic expansion is not

1Note that formula (5.12) yields to formula (1.30) in the particular case k+ = k−.
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identical with the one that would be yielded by application of the Born approxima-
tion to scattering by small homogeneous obstacles observed at long wavelengths, a
di�erent amplitude factor indeed emerging for the dipole contribution2.

5.4 MUSIC algorithm
We will explain how the MUSIC algorithm can be applied to the problem of locating
m small inclusions with di�erent electromagnetic parameters from those of the
background from the scattering amplitude pattern Aα at di�erent angles of incidence
and observation.

Analogously to Chapter 3 we consider separately the following three cases:

1. γj
µ = 0 for all j = 1, . . . , m.

2. γj
ε = 0 for all j = 1, . . . , m.

3. γj
µ 6= 0 and γj

ε 6= 0 for all j = 1, . . . , m.

5.4.1 The �rst case: dielectric inclusions
Suppose n ≥ m. Let us introduce the MSR matrix A = [apl] ∈ Cn×n de�ned by

apl := A(1)
α (x̂p, ξ̂l)

∣∣
x̂p=−ξ̂p

=

= T (x̂p)T (ξ̂l)
m∑

j=1

τje
−ik−(v(x̂p)−v(ξ̂l))·zj

∣∣
x̂p=−ξ̂p

= T (ξ̂p)T (ξ̂l)
m∑

j=1

τje
ik−(v(ξ̂p)+v(ξ̂l))·zj

for p, l = 1, . . . , n, where τj = α2γj
ε |Bj|. Here we have used the fact that T (−ξ̂p) =

T (ξ̂p) and v(−ξ̂p) = −v(ξ̂p).
De�ning the matrices F ∈ Rm×m and S = [s1 . . . sm] with each sj ∈ Cn by

F = diag(τ1, . . . , τm) and sj =
(
T (ξ̂1)e

ik−v(ξ̂1)·zj , . . . ,T (ξ̂n)eik−v(ξ̂n)·zj
)T

,

j = 1, . . . , m,

2The case of circular disks is easily amenable to simple analytical calculations. One recovers
here standard results (at least in free space [50]), the di�erence between our asymptotic apparatus
and the Born-based one being also easily emphasized in this case.
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we then observe that A admits the following decomposition

A = SFST . (5.13)

Using the above decomposition, we immediately see that A is symmetric, and A∗ =

A.

Now a standard argument from linear algebra yields that, if n ≥ m and if the
matrix S has maximal rank m, then the ranges R(S) and R(AA) coincide. Thus

R(AA) = R(S) = span{s1, . . . , sm}.

Let a ∈ R\{0}, for any point z ∈ R2
− we de�ne the vector gz,a ∈ Cn by

gz,a =
(
aT (ξ̂1)e

ik−v(ξ̂1)·z, . . . , aT (ξ̂n)eik−v(ξ̂n)·z)T
. (5.14)

We note that gz1,a, . . . , gzm,a are the columns of the matrix aS.

Throughout this chapter, we consider {ξ̂p}p∈N ⊂ S 1
− to be a countable set of

directions with the property that any analytic function which vanishes in ξ̂p for
all p ∈ N vanishes identically on S 1

−. This technical assumption is necessary to
rigorously prove Propositions 5.4.1, 5.4.2, and 5.4.3.

By analogy with the case 1 in Chapter 3 the following proposition holds.

Proposition 5.4.1 There exists n0 ∈ N such that for any n ≥ n0, the vector gz,a,
de�ned by (5.14), belongs to R(S) if and only if z ∈ {z1, . . . , zm}.

Proof. We de�ne the operator Λ : Cm → C(S 1
+)

(Λλ)(x̂) :=
m∑

j=1

λjT (x̂)e−ik−v(x̂)·zj for x̂ ∈ S 1
+, λ ∈ Cm.

We then show that Λ is one-to-one. Let λ ∈ Cm with (Λλ)(x̂) = 0 for all x̂ ∈ S 1
+.

Then the far �eld pattern of the function
∑m

j=1 λjG(·, zj) vanishes in all of S 1

and therefore, by Rellich's lemma (see Appendix A.6),
∑m

j=1 λjG(z, zj) = 0 for all
z ∈ R2\{z1, z2, . . . , zm}. By letting z tend to one of the points zj a simple argument
now yields that λj = 0 for every j = 1, . . . , m.

The existence of n0 ∈ N such that the operator

λ 7→ ((Λλ)(x̂1), . . . , (Λλ)(x̂n))T
∣∣
x̂p=−ξ̂p, p=1,...,n
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from Cm to Cn is one-to-one for n ≥ n0 can be shown by the similar arguments as
those used for the proof of Proposition 3.2.1. ¤

Since the locations zj are well-separated then using the above proof it can be
immediately seen that there exists n0 ≥ m such that for any n ≥ n0 the matrix S

has maximal rank m.

Next we de�ne the singular value decomposition of the MSR matrix A by A =

UΣV∗ and analogously to the case 1 in Chapter 3 we can form an image of zj, j =

1, . . . , m, by plotting, at each point z, the quantity

Wa(z) =
1

||Pgz,a|| ,

where P = I−(USU∗
S) is the orthogonal projection onto the null (or the noise) space

of A in which US denotes an orthonormal basis for column space of A, provided by
the �rst m columns of U, {u1, u2, . . . , um}.

5.4.2 The second case: permeable inclusions
In this case the MSR matrix A = [apl] ∈ Cn×n is de�ned by

apl := A(1)
α (x̂p, ξ̂l)

∣∣
x̂p=−ξ̂p

=

= T (x̂p)T (ξ̂l)
m∑

j=1

e−ik−(v(x̂p)−v(ξ̂l))·zjv(x̂p) · βjv(ξ̂l)
∣∣
x̂p=−ξ̂p

= −T (ξ̂p)T (ξ̂l)
m∑

j=1

eik−(v(ξ̂p)+v(ξ̂l))·zjv(ξ̂p) · βjv(ξ̂l)

for p, l = 1, . . . , n, where βj = α2γj
µ Mj ∈ R2×2.

We de�ne the matrix D = [d1 . . . d2m] with each dj ∈ Cn by

d2(j−1)+j =
(
ep · v(ξ̂1)T (ξ̂1)e

ik−v(ξ̂1)·zj , . . . , ep · v(ξ̂n)T (ξ̂n)eik−v(ξ̂n)·zj
)T

for j = 1, . . . , m, where {ep}p=1,2 denotes an orthonormal basis in R2.
We observe that A has a decomposition in the form

A = DBDT , (5.15)

where B = diag(−β1, . . . ,−βm) ∈ R2m×2m. It then follows immediately that A is
symmetric.
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If n ≥ 2m and if the matrix D has maximal rank 2m, then the ranges R(D) and
R(AA) coincide. Thus

R(AA) = R(D) = span{d1, . . . , d2m}.

Let b ∈ R2\{0}, for any point z ∈ R2
− we de�ne the vector gz,b ∈ Cn by

gz,b =
(
b · v(ξ̂1)T (ξ̂1)e

ik−v(ξ̂1)·z, . . . , b · v(ξ̂n)T (ξ̂n)eik−v(ξ̂n)·z)T
. (5.16)

We note that gzj ,b is the linear combination of the vector columns d2j−1 and d2j,
j = 1, . . . , m, of the matrix D.

The following proposition holds.

Proposition 5.4.2 If b ∈ R2\{0} and gz,b ∈ Cn is de�ned by (5.16 ) then there
exists n0 ∈ N such that for any n ≥ n0, the vector gz,b ∈ R(D) if and only if
z ∈ {z1, . . . , zm}.

Proof. Introducing the operator Λ : Cm×2 → C(S 1
+) by

(Λλ)(x̂) :=
m∑

j=1

λj · v(x̂)T (x̂)e−ik−v(x̂)·zj x̂ ∈ S 1
+, λ ∈ Cm×2,

the proof can be shown by the similar arguments as those used for the proof of
Proposition 3.3.1. ¤

Similarly to the case 2 in Chapter 3, since the locations zj are well-separated
then from the proof above there exists n0 ≥ 2m such that for any n ≥ n0 the matrix
D has maximal rank 2m.

Next by de�ning the singular value decomposition of the MSR matrix A by
A = UΣV∗ we can form an image of zj, j = 1, . . . , m, by plotting, at each point z,
the quantity

Wb(z) =
1

||Pgz,b|| ,

where P = I−(USU∗
S) is the orthogonal projection onto the null (or the noise) space

of A in which US denotes an orthonormal basis for column space of A, provided by
the �rst 2m columns of U, {u1, u2, . . . , u2m}.
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5.4.3 The third case: dielectric and permeable inclusions
In this case the MSR matrix A = [apl]

n
p,l=1 ∈ Cn×n is de�ned by

apl := A(1)
α (x̂p, ξ̂l)

∣∣
x̂p=−ξ̂p

=

= −T (ξ̂p)T (ξ̂l)
m∑

j=1

eik−(v(ξ̂p)+v(ξ̂l))·zjv(ξ̂p) · βjv(ξ̂l)

+T (ξ̂p)T (ξ̂l)
m∑

j=1

τje
ik−(v(ξ̂p)+v(ξ̂l))·zj

for p, l = 1, . . . , n, where βj = α2γj
µMj 6= 0 and τj = α2γj

ε |Bj| 6= 0.
By virtue of (5.13) and (5.15) we have

A = (DBDT + SFST ) = HKHT ,

where H = [d1 . . . d2m|s1 . . . sm] ∈ Cn×3m and K = diag(B, F) ∈ C3m×3m.

As previously, observe that if n ≥ 3m and if the matrix H has maximal rank
3m, then the range of R(H) and R(AA) coincide. Thus

R(AA) = span
{

d2j−1, d2j, sj, j = 1, . . . , m

}
.

Let c ∈ R3\{0}, for any point z ∈ R2
− we de�ne the vector gz,c ∈ Cn by

gz,c =
(
c · hξ̂1

T (ξ̂1)e
ik−v(ξ̂1)·z, . . . , c · hξ̂n

T (ξ̂n)eik−v(ξ̂n)·z)T
, (5.17)

where hξ̂p
= (e1 · ξ̂p, e2 · ξ̂p, 1)T ∈ R3, p = 1, . . . , n. We note that gzj ,c is the linear

combination of the vector columns d2j−1, d2j and sj , j = 1, . . . , m of the matrix H.
Following similar arguments as those for cases 1 and 2, we can show the following

result.

Proposition 5.4.3 If c ∈ R3\{0} and gz,c ∈ Cn is de�ned by (5.17) then there
exists n0 ∈ N such that for any n ≥ n0, the vector gz,c ∈ R(H) if and only if
z ∈ {z1, . . . , zm}.

Analogously to the two previous cases, we conclude that there exists n0 ≥ 2m

such that for any n ≥ n0 the matrix D has maximal rank 2m and by de�ning the
singular value decomposition of the MSR matrix A by A = UΣV∗ we can form an
image of zj, j = 1, . . . ,m, by plotting, at each point z, the quantity

Wb(z) =
1

||Pgz,c|| ,
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where P = I−(USU∗
S) is the orthogonal projection onto the null (or the noise) space

of A in which US denotes an orthonormal basis for column space of A, provided by
the �rst 2m columns of U, {u1, u2, . . . , u3m}.

5.5 Numerical examples
As easily understood from studying the three previous cases de�ned in terms of the
nature of the inclusions with respect to the embedding medium, and taking into
account as well that the wavenumber in the lower half-space to be probed can be
chosen equal to, larger than, or smaller than the one in the source and receiver
space, a full numerical experimentation might be enormous.

So, below, one is displaying and brie�y analyzing only a restricted number of
numerical results from synthetically generated data in the three generic scattering
cases previously studied.

The con�guration of interest is reminded in Fig. 5.5.1. Note that, throughout
this section, we have changed the coordinate's notation x1 by X and x2 by Y . One is
considering an array of n ideal antennas that are hypothetically radiating from and
receiving at in�nity in the upper half-space. That is, one assumes again that one
knows approximate values apl of the far �eld pattern A

(1)
α (−ξ̂p, ξ̂l), p, l = 1, . . . , n,

for a small �nite number (10 in the �rst case, 14 in the second, 20 in the third)
of equidistantly distributed directions of illumination ξ̂p = −(cos θp, sin θp), and for
the opposite set of directions of observation, letting θp = γ +(β−γ)(p−1)/(n−1),
p = 1, . . . , n, where one henceforth assumes a fairly limited angular coverage, γ =

π/4 and β = 3π/4. (Let us remind that if the upper half-space wavenumber k+ is
larger than the lower half-space one k−, the number ne of e�ectively propagating
transmitted waves is lesser than n.)

This far �eld pattern, which may be a�ected by noise as seen in one example later
on, evidently contains information on inclusions to be numbered and located, or
more fully characterized, within the lower half-space. The latter are taken as three
small homogeneous disks of diameter α = 0.1 henceforth denoted as D1, D2, and
D3 that are centered at z1 = (0.63,−2.47) , z2 = (1.72,−4.97), z3 = (−2,−3.63),
respectively, within a squared search box prescribed as Ω = [−3, 3]× [0,−6] ⊂ R2

−.
Material parameters of the two half-spaces are set to ε+ = 5 and ε− = 1, or

to the converse, for the purely dielectric �rst case (µ+ = µ− = 1), with, whether
identical, ε+ = 1 and ε− = 1; nonmagnetic inclusions therein are characterized by
permittivities εj equal to 2, 4 and 3, from j = 1 to 3.
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Figure 5.5.1: Sketch of the aspect-limited measurement set-up

Those material parameters are set to µ+ = 5 and µ− = 1 or the converse for
the purely magnetic second case (ε+ = ε− = 1), with identity implying µ+ = 1 and
µ− = 1, and nondielectric inclusions being characterized by permeabilities µj equal
to 2, 4 and 3, from j = 1 to 3.

In the third case, one makes similar choices; the three inclusions now are both
dielectric and permeable, with the above parameter values, only the case of two
nonmagnetic half-spaces being considered for simplicity, µ+ = 1 and µ− = 1.

Notice that what matters in �ne are contrasts γj
ε , those being positive (resp.

negative) if εj is larger (resp. smaller) than ε−, and/or contrasts γj
µ multiplied by

the amplitude of the polarization tensor for a disk, those being also positive (resp.
negative) if µj is larger (resp. smaller) than µ−. (The higher the discrepancy of the
permittivity or of the permeability to the embedding half-space value, the larger
the magnitude of the resulting weight factor.)

As for the circular frequency of operation, it is �xed to ω = 3 save otherwise
indicated (for one example, one will introduce ω = 6). This choice means that the
wavenumber k− in the lower half-space k− is either valued to 3 (whenever ε− = 1

and µ− = 1), which is corresponding to a search box whose side is about three
wavelengths large (one wavelength is 2.09), or valued to 6.7 (whenever ε− or µ− is
equal to 5) for a side about two times electrically smaller (one wavelength is 0.94).
Usual half-a-wavelength far-�eld resolutions are also commensurate, about 1 and
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0.47, respectively, and are to be compared to the MUSIC reconstructions next.

Within the above setting, the retrieval of the inclusions involves the calculation
of the singular value decomposition A = UΣV∗ of the matrix A = [apl] ∈ Cn×n.
Denote by {ei}d

i=1 the orthonormal basis in Rd, d = 2 or 3. Then, for each z ∈ Ω

� this requires the choice of a certain sampling step in both directions, hereafter
taken of the order of 0.05 � the identi�ers of interest are

• in the �rst case: Wa(z), a = 1,

• in the second case: Wb(z), b = e1 + 5e2, ei ∈ R2, i = 1, 2,

• in the third case: Wc(z), c = e1 + e2 + 5e3, ei ∈ R3, i = 1, 2, 3,

within Ω, the speci�c values of b and c being inferred from numerical experimenta-
tion as seen later on. Plots of z → W·(z) are given to that e�ect. It is expected that
large peaks should occur at the locations of the three inclusions, zj, j = 1, 2, 3. Fur-
ther results displayed consist of the singular values of A, using a standard log scale,
and also of color or gray-level maps of appropriate norms of "back-propagated"
singular vectors or combinations thereof.

5.5.1 The �rst case: dielectric inclusions in a dielectric half-
space

In this purely dielectric case, µj = µ− = µ+ = 1, j = 1, 2, 3, and εj = 2, 4, 3,
j = 1, 2, 3, n = 10 incidences being employed as already indicated. The three
situations of interest are as follows.

k+ = k−; ε+ = ε− = 1;
The singular values are displayed in Fig. 5.5.1.1, the identi�er Wa(z), letting for
simplicity a = 1, is displayed in Fig. 5.5.1.2, and the amplitudes of the scalar
products of the singular vectors uj with gz,a are displayed in Fig. 5.5.1.3. In e�ect,
this is a rather classical situation (homogeneous dielectric embedding space) with
respect to already developed MUSIC applications.

The three singular values associated to the three point-like scatterers appear
well discriminated from the seven others (linked to the null space), and they range
accordingly to the (strictly positive) values of τj of the matrix F ∈ R3, which means
that the scatterers are e�ectively well separated in the present experiment. This
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Figure 5.5.1.1: Case 1 (dielectric contrasts only) - the two identical half-spaces: distri-
bution of the singular values of A found for n = 10 illuminations.
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Figure 5.5.1.2: Case 1 (dielectric contrasts only) - the two identical half-spaces: 3D-plot
and gray-level (or color) map of Wa(z), a = 1, for all points z in Ω (refer to Fig. 5.5.1.1).
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Figure 5.5.1.3: Case 1 (dielectric contrasts only) - the two identical half-spaces: gray-
level (or color) maps of the amplitudes of the scalar products of the singular vectors u1,
u2 and u3 (ordered from left to right) with gz,a, a = 1, for all points z in Ω (refer to Figs.
5.5.1.1 and 5.5.1.2).
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conclusion is con�rmed by the maps associated with the singular vectors, u1 being
associated to the most refractive inclusion D2, u2 being associated to the median
refractive inclusion D3, and u3 being associated to the least refractive inclusion D1.

Nevertheless, notice the longitudinal (vs. depth Y ) spreading of the plots of
Wa(z). That is, one is achieving an excellent transverse (vs. X) resolution (say, a
very small fraction of the wavelength) and a poorer longitudinal one (say, of the
order of a quarter of a wavelength), which is still good for tomography of buried
scatterers since such a con�guration involves aspect-limited data in the re�ection
mode.

As for the back-propagation which is epitomized here by the scalar products
of the singular vectors with gz,a, it leads to a rather mediocre focusing onto the
inclusions, evidently worst longitudinally, though, as indicated in the above, the
overall behavior is in good accord with the respective strength of these inclusions.

k+ > k−; ε+ = 5, ε− = 1;
The singular values are displayed in Fig. 5.5.1.4, the identi�er Wa(z), letting again
a = 1, is displayed in Fig. 5.5.1.5, and the amplitudes of the scalar products of the
singular vectors uj with gz,a are displayed in Fig. 5.5.1.6.

In contrast to the previous example, the two half-spaces now di�er, the upper
one being more refractive than the lower one, which thus leads to a much lesser
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Figure 5.5.1.4: Case 1 (dielectric contrasts only) - the more refractive upper half-space:
distribution of the singular values of A found for n = 10 illuminations and ne = 6 trans-
mitted waves.
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Figure 5.5.1.5: Case 1 (dielectric contrasts only) - the more refractive upper half-space:
3D-plot and gray-level (or color) map of Wa(z), a = 1, for all points z in Ω (refer to Fig.
5.5.1.4).
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Figure 5.5.1.6: Case 1 (dielectric contrasts only) - the more refractive upper half-space:
gray-level (or color) maps of the amplitudes of the scalar products of the singular vectors
u1, u2 and u3 (ranged from left to right) with gz,a, a = 1, for all points z in Ω (refer to
Figs. 5.5.1.4 and 5.5.1.5).

number of directions of the transmitted wave (ne = 6, for n = 10 directions of
incidence.

As previously however, the three singular values associated to the three point-
like scatterers appear well discriminated from the three others (linked to the null
space), and they again range accordingly to the (here strictly positive) values of τj

of the matrix F ∈ R3, which means that the scatterers are still well separated in the
present experiment. Notice that the number of "useful" directions (6) here is not
very large with respect to the number of inclusions, the reduction from n to ne = 6

being function of the wavenumber ratio θ (here, equal to
√

5), the larger that ratio
the stronger this reduction. So, better results will be observed with a higher n.

But, if the singular values are retrieved in fashion quite similar with what is
happening for the homogeneous embedding medium, as just noticed, one has to
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emphasize that other results di�er to a good extent. Indeed, the resolution with
depth is signi�cantly improved (compare Figs. 5.5.1.5 and 5.5.1.2) whilst the sin-
gular vectors' focusing is much better (compare Figs. 5.5.1.6 and 5.5.1.3). (The
causes of this behavior are still open to discussion at this stage of the investigation.)

k+ < k−; ε+ = 1, ε− = 5;
The singular values are displayed in Fig. 5.5.1.7, the identi�er Wa(z), letting still
a = 1, is displayed in Fig. 5.5.1.8, and the amplitudes of the scalar products of the
singular vectors uj with gz,a are displayed in Fig. 5.5.1.9.

In contrast to the previous example, the upper half-space is less refractive than
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Figure 5.5.1.7: Case 1 (dielectric contrasts only) - the less refractive upper half-space:
distribution of the singular values of A found for n = 10 illuminations and ne = 10

transmitted waves.
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Figure 5.5.1.8: Case 1 (dielectric contrasts only) - the less refractive upper half-space:
3D-plot and gray-level (or color) map of Wa(z), a = 1, for all points z in Ω (refer to Fig.
5.5.1.7).
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Figure 5.5.1.9: Case 1 (dielectric contrasts only) - the less refractive upper half-space:
gray-level (or color) maps of the amplitudes of the scalar products of the singular vectors
u1, u2 and u3 (ordered from left to right) with gz,a, a = 1, for all points z in Ω (refer to
Figs. 5.5.1.7 and 5.5.1.8).

the lower one, as is standard in electromagnetic subsurface sensing (with obstacles
in soil imaged from air), so one has identical numbers of directions (ne = 10, for
n = 10). However, the ranging of the singular values now di�er since the values
τj of the matrix F ∈ R3 are strictly negative. That is, the �rst singular value and
singular vector correspond with the least refractive inclusion D1, the second ones
to D3, then the third ones to D2.

Also, if the transverse resolutions remain as usual excellent, the longitudinal
ones are poorer than for the homogeneous embedding case (compare Fig. 5.5.1.8 to
Fig. 5.5.1.2), and the focusing (compare Fig. 5.5.1.9 to Fig. 5.5.1.3) accordingly
lowers, though the number of transmitted waves remain the same.

This loss of resolution must also be weighted in with respect to the decrease of the
wavelength in the immediate environment of the inclusions, since this wavelength
(about 1) is twice smaller now, so the imaging procedure entails a resolution that has
become no better than about one wavelength as seen from Fig. 5.5.1.8. Evidently,
the peculiar behavior of the previous case (more refractive upper half-space) does
not reproduce here.

In e�ect, further numerical experimentation has shown that the more refractive
the lower half-space, the poorer the results, with, even, spreading out of the search
box. This observation is not surprising however, since a strong re�ection also occurs
at the interface, tending to hide the buried scatterers, whilst the absence of the
evanescent spectrum may be more and more prejudicial to a good imaging.
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5.5.2 The second case: permeable inclusions in a permeable
half-space

In this purely permeable case, εj = ε− = ε+ = 1, j = 1, 2, 3, and µj = 2, 4, 3,
j = 1, 2, 3, the number of incidences being increased to n = 14 so as to tune in with
the expected increase of the number of pertinent singular values (two per inclusion
instead of one previously in the purely dielectric case). In addition to the two-half-
space hypothesis, this situation, with dipolar-like scattering behavior of the sought
inclusions, appears novel with respect to already developed MUSIC applications
mostly involving monopole (isotropic) scattering. The three situations of interest
are as follows.

k+ = k−; µ+ = µ− = 1;
The singular values are displayed in Fig. 5.5.2.1, and the identi�er Wb(z), where,
after numerical experimentation, one has set b = e1 + 5e2 ∈ R2 in order to get
a resolution which is suitable in both transverse and longitudinal directions, is
displayed in Fig. 5.5.2.2.

The six singular values associated to the three point-like scatterers appear well
discriminated from the eight others (linked to the null space), whilst the choice
of b e�ectively brings out comparable transverse and longitudinal resolutions as is
illustrated by Fig. 5.5.2.2. (Some adverse e�ects might arise, e.g., the fact that
some bridges appear in between the peaks of the plots of Wb(z), but this remains
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Figure 5.5.2.1: Case 2 (permeability contrasts only) - the two identical half-spaces: dis-
tribution of the singular values of A found for n = 14 illuminations.



104 BURIED INCLUSIONS

 X axis

 Y
 a

xi
s

−3 −2 −1 0 1 2 3
−6

−5

−4

−3

−2

−1

0

5

10

15

20

25

30

35

40

45

50

55

Figure 5.5.2.2: Case 2 (permeability contrasts only) - the two identical half-spaces: 3D-
plot and gray-level (or color) map of Wb(z), b = e1 + 5e2 ∈ R2, for all points z in Ω (refer
to Fig. 5.5.2.1).

minor.)

k+ > k−; ε+ = ε− = 1; µ+ = 5; µ− = 1;
The singular values are displayed in Fig. 5.5.2.3, the identi�er Wb(z), with same
b = e1 + 5e2 ∈ R2 as above, is displayed in Fig. 5.5.2.4, and the 2-Norm of
[u2j−1 ·gz,e1 , u2j ·gz,e2 ] is shown in Fig. 5.5.2.5. The latter has also been chosen after
numerical experimentation, being noticed that each sub-plot (from j = 1 to j = 3)
is calculated from a combination of two singular vectors associated with the same
inclusion.
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Figure 5.5.2.3: Case 2 (permeability contrasts only) - the more permeable upper half-
space: distribution of the singular values of A found for n = 14 illuminations and ne = 8

transmitted waves.
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Figure 5.5.2.4: Case 2 (permeability contrasts only) - the more permeable upper half-
space: 3D-plot and gray-level (or color) map of Wb(z), b = e1 + 5e2 ∈ R2, for all points z

in Ω (refer to Fig. 5.5.2.3).
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Figure 5.5.2.5: Case 2 (permeability contrasts only) - the more permeable upper half-
space: gray-level (or color) maps of the 2-Norm of [u2j−1 · gz,e1 , u2j · gz,e2 ] (refer to Figs.
5.5.2.3 and 5.5.2.4).

In contrast to the previous example, the two half-spaces now di�er, the upper
one being more permeable than the lower one, which thus leads to a much lesser
number of directions of the transmitted wave (ne = 8, for n = 14 directions of
incidence).

As previously however, the six singular values associated to the three point-like
scatterers appear well discriminated from the remaining two others (linked to the
null space). Notice that the number of "useful" directions (8) here is quite close to
to the number of singular values of the signal space (6), the reduction from n to
ne = 8 which is causing it being function of the wavenumber ratio θ (here, equal to√

5) �as usual, the larger that ratio the stronger this reduction.

In some contradiction with the purely dielectric case (refer to Figs. 5.5.1.4,
5.5.1.5, and 5.5.1.6), one cannot say that the results improve signi�cantly from the
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ones in the homogeneous embedding medium (conversely, they do not degrade).

As for the singular vectors' focusing as seen from displays of the 2-Norm of
the vector couples de�ned in the above, it is rather good, noticing that u1 and u2

are associated to D1, u3 and u4 to D3, and u5 and u6 to D2, i.e., from the least
permeable inclusion to the most permeable inclusion.

k+ < k−; ε+ = ε− = 1; µ+ = 1; µ− = 5;
The singular values are displayed in Fig. 5.5.2.6, and the identi�er Wb(z), with
same b = e1 + 5e2 ∈ R2 as above, is displayed in Fig. 5.5.2.7.
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Figure 5.5.2.6: Case 2 (permeability contrasts only) - the less permeable upper half-
space: distribution of the singular values of A found for n = 14 illuminations and ne = 14

transmitted waves.
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Figure 5.5.2.7: Case 2 (permeability contrasts only) - the less permeable upper half-space:
3D-plot and gray-level (or color) map of Wb(z), b = e1 + 5e2 ∈ R2, for all points z in Ω

(refer to Fig. 5.5.2.3).
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Results overall look like those obtained previously, though the way the singular
values are distributed does change somewhat from previous cases in link with the
fact that the contrast factors (µj−µ−)/(µj+µ−) which matter (disk case) are strictly
negative and respectively equal to −3/7, −1/9, −1/4 for D1, D2, D3 instead of 1/3,
3/5, 1/2, so far.

Let us emphasize at this stage that the resolution in the purely permeable case
appear to be always a small fraction of the wavelength, both vs. depth Y and vs.
lateral position X, this being obvious from plots of Wb(z) (Figs. 5.5.2.2, 5.5.2.4,
5.5.2.7), and even the maps associated to the singular vectors show proper focusing
(Fig. 5.5.2.5).

5.5.3 The third case: dielectric and permeable inclusions in
a dielectric and permeable half-space

In this full case, the inclusions are both dielectric and permeable, with respective
values of µj as 2, 4 and 3, and of εj as 2, 4 and 3 for inclusions D1, D2 and D3 the
parameters of which always di�er from those of their embedding half-space. In view
of the larger number of singular values expected, n = 20 incidences are employed
as already indicated. The three situations of interest are as follows.

k+ = k−; µ+ = µ− = 1; ε+ = ε− = 1;
The singular values are displayed in Fig. 5.5.3.1, and the identi�er Wc(z), letting
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Figure 5.5.3.1: Case 3 (permittivity and permeability contrasts) - the two identical half-
spaces: distribution of the singular values of A found for n = 20 illuminations at the usual
frequency ω = 3 (left) and at the higher frequency ω = 6 (right).
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Figure 5.5.3.2: Case 3 (permittivity and permeability contrasts) - the two identical half-
spaces: 3D-plot and gray-level (or color) map of Wc(z), c = e1 + e2 + 5e3 ∈ R3, for all
points z in Ω (refer to Fig. 5.5.3.1).

after numerical experimentation c = e1 +e2 +5e3 ∈ R3, which is tending to privilege
the role of the permittivity contrast in view of the ordering of the matrices dealt
with, is displayed in Fig. 5.5.3.2.

The nine singular values associated to the three point-like scatterers appear well
discriminated from the eleven others (linked to the null space), a twice higher fre-
quency than the usual ω = 3 yielding somewhat larger singular values but no overall
improvement otherwise, whilst the choice of c e�ectively brings out comparable (and
excellent) transverse and longitudinal resolutions as is illustrated by Fig. 5.5.3.2.

k+ > k−; ε+ = 5, µ+ = 1; ε− = 1, µ− = 1;
The singular values are displayed in Fig. 5.5.3.3, and the identi�er Wc(z), letting
again c = e1 + e2 + 5e3 ∈ R3 , is displayed in Fig. 5.5.3.4.

Here one has ne = 12 transmitted waves only from the n = 20 initially incident
upon the less refractive lower half-space (one has kept for simplicity its permeability
equal to the one of the upper half-space), which is not that large with respect to
the 9 singular values to be expected. However, the results, be they in terms of the
calculation of the singular values of the signal space or in terms of the plots of the
identi�er Wc(z), remain very good, and they compare quite well with the previous
ones (refer to Figs. 5.5.3.1 and 5.5.3.2).
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Figure 5.5.3.3: Case 3 (permittivity and permeability contrasts) - the more refractive
upper half-space: distribution of the singular values of A found for n = 20 illuminations
and ne = 12 transmitted waves.
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Figure 5.5.3.4: Case 3 (permittivity and permeability contrasts) - the more refractive
upper half-space: 3D-plot and gray-level (or color) map of Wc(z), c = e1 + e2 + 5e3 ∈ R3,
for all points z in Ω (refer to Fig. 5.5.3.3).

k+ < k−; ε+ = 1, µ+ = 1; ε− = 5, µ− = 1;
The singular values are displayed in Fig. 5.5.3.5, and the identi�er Wc(z), letting
still c = e1 + e2 + 5e3 ∈ R3, is displayed in Fig. 5.5.3.6. In addition one considers
Wc(z), with c = e3 ∈ R3 in Fig. 5.5.3.7.

Results given here do not change with respect to those previously displayed
in the two previous sets of examples. The same identi�cation of nine pertinent
singular values and the excellent resolution of the images are observed again. Let
us emphasize however that the singular values are distributed within two subsets,
the �rst one is made of the three singular values associated to the permittivity
contrasts, the second one is made of the six singular values, the magnitude of
which is smaller than the one of the previous three, associated to the permeability
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Figure 5.5.3.5: Case 3 (permittivity and permeability contrasts) - the less refractive upper
half-space: distribution of the singular values of A found for n = 20 illuminations.
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Figure 5.5.3.6: Case 3 (permittivity and permeability contrasts) - the less refractive upper
half-space: 3D-plot and gray-level (or color) map of Wc(z), c = e1 + e2 + 5e3 ∈ R3, for all
points z in Ω (refer to Fig. 5.5.3.5).
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Figure 5.5.3.7: Case 3 (permittivity and permeability contrasts) - the less refractive upper
half-space: 3D-plot and gray-level (or color) map of Wc(z), c = e1 + e2 + 5e3 ∈ R3, for all
points z in Ω (in contrast with Fig. 5.5.3.6, where the �rst nine singular vectors are used,
the matrix of projection only involves the �rst three).
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contrasts. (These six values themselves clearly divide here in three couples, each in
one-to-one correspondence with an inclusion.)

In relation to the above, it is interesting to note that if one displays Wc(z), with
c = e3 ∈ R3 (see Fig. 5.5.3.7), the three inclusions well emerge from the background,
yet with the usual spreading along the depth axis. Results are comparable with
those obtained in the purely dielectric case (case 1), since this peculiar choice of
c means that one is working only with the �rst three singular vectors, associated
to the dielectric contrasts. Then, adding some data linked to the other singular
vectors, those linked to the permeability contrasts, does improve the results as seen
from Fig. 5.5.3.6.

5.5.4 On the e�ect of noise
Up to now, one has considered synthetic data and somehow committed an "inverse
crime". In this subsection one wishes to show that, even if the analysis led so far is
rather ideal, the proposed solution method is robust with respect to noise.

Results are shown in Fig. 5.5.4.1 (the singular values) and in Figs. 5.5.4.2 and
5.5.4.3 (Wa(z), a = 1), then using either the three �rst singular vectors (associated
to the three largest singular values) or the six �rst singular vectors (associated to the
six largest singular values). This has been done for the particular, purely dielectric
case, letting µj = µ− = µ+ = 1, j = 1, 2, 3 and εj be 2, 4 and 3, respectively, in the
most usual subsurface sensing case where k+ < k−, with ε+ = 1 and ε− = 5. n = 10

directions of incidence are chosen for the identi�cation, and the far-�eld data are
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Figure 5.5.4.1: Case 1 - the less refractive upper half-space: distribution of the singular
values of A found for n = 10 illuminations in case of noisy data.
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Figure 5.5.4.2: Case 1 - the less refractive upper half-space: 3D-plot and gray-level
(or color) map of Wa(z), a = 1, for all points z in Ω in the hypothesis of a matrix of
projection P based on the �rst three singular vectors, in the case of noisy data with 20

dB signal-to-noise ratio.
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Figure 5.5.4.3: Case 1 - the less refractive upper half-space: 3D-plot and gray-level
(or color) map of Wa(z), a = 1, for all points z in Ω in the hypothesis of a matrix of
projection P based on the �rst six singular vectors, in the case of noisy data with 20 dB
signal-to-noise ratio.

perturbed both in amplitude and phase by a white noise so as the signal-to-noise
ratio is 20 dB.

Those show that one can indeed �nd proper singular values, yet with signal
and noise spaces being blurred, in view of the fact the three or four singular values
following the �rst three are not so small. The retrieval itself of the inclusions is
close to what is achieved in the absence of noise, and there is a slight improvement
when one projects onto the six �rst vectors instead of keeping only the �rst three,
as already underlined by workers in the �eld of time-reversal.
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5.6 Asymptotic behavior of the Green's function
Following [26] and [22], we �rst derive an explicit formula for the Green's func-
tion G. Then, we analyze its far �eld expansion. Since we were not able to �nd
such calculations in the literature we provide them in details here for the reader's
convenience.

Take the Fourier transform of (5.4) in the x1-variable to deduce that

d2

dx2

Ĝ(ζ, x2, y2) + (k2 − ζ2)Ĝ(ζ, x2, y2) = −δy2(x2).

Now if we set λ± =
√

(k±)2 − ζ2, we �nd

Ĝ+(ζ, x2, y2) =

{
C+

1 eiλ+x2 + C+
2 e−iλ+x2 for x2 > 0,

C−
1 eiλ−x2 + C−

2 e−iλ−x2 for x2 < 0.

The coe�cients C±
i , i = 1, 2, depend on whether y2 is positive or negative and are

di�erent in the regions separated by the origin and the point x2 = y2. When x2 is
larger than both 0 and y2, the fact that Ĝ is upgoing implies that C+

2 is zero; when
x2 is less than both 0 and y2, the condition that Ĝ is downgoing implies that C−

1 is
zero. Thus, invoking the radiation condition, we see for case y2 > 0 that

Ĝ(ζ, x2, y2) =





A1e
iλ+x2 , for x2 > y2

A2e
iλ+x2 + A3e

−iλ−x2 , for y2 > x2 > 0

A4e
−iλ−x2 , for x2 < 0

and analogously, if y2 < 0 then

Ĝ(ζ, x2, y2) =





B1e
iλ+x2 , for x2 > 0

B2e
iλ−x2 + B3e

−iλ−x2 , for y2 < x2 < 0

B4e
−iλ−x2 , for x2 < y2.

The function Ĝ and its x2 derivative are continuous except at x2 = y2, where Ĝ

is continuous but its x2 derivative jumps by one. Invoking the jump relations (5.5)
and solving for the As and Bs in both cases, we readily get




for y2 > 0 :

Ĝ(ζ, x2, y2) = i
2λ+

{
eiλ+|x2−y2| + R(λ+, λ−)eiλ+(x2+y2), for x2 > 0

T (λ+, λ−)eiλ+y2e−iλ−x2 , for x2 < 0
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and



for y2 < 0 :

Ĝ(ζ, x2, y2) = i
2λ−

{
T (λ−, λ+)e−iλ−y2eiλ+x2 , for x2 > 0

eiλ−|x2−y2| + R(λ−, λ+)e−iλ−(x2+y2), for x2 < 0,

where

R(λ+, λ−) =
µ−λ+ − µ+λ−

µ−λ+ + µ+λ−
, T (λ+, λ−) =

2µ−λ+

µ−λ+ + µ+λ−
.

The Green's function G itself is obtained from its Fourier transform by

G(x, y) =
1

2π

∫ +∞

−∞
ei(x1−y1)ζĜ(ζ, x2, y2) dζ. (5.18)

Now we are ready to study the asymptotic behavior of the Green's function
G(x, y) as |x| goes to in�nity with x2 > 0 and y2 < 0. In this case, (5.18) gives

G(x, y) =
i

4π

∫
2µ−

µ−λ+ + µ+λ−
ei(x1−y1)ζei(λ+x2−λ−y2)dζ. (5.19)

We assume that k+ > 0, k− > 0 are real constants; the imaginary and the real
parts of λ+ and λ− are non-negative.

If we write x = (x1, x2) in polar coordinates: x = |x|(cos α, sin α), α ∈ (0, π)

and set

ζ =

{
k+ cos ϕ, if |ζ| < k+,

k+ cos iη, if |ζ| > k+,

then we can rewrite (5.19) as follows

4π

i
G(x, y) =

∫ π

0

2µ−k+ sin ϕ e−ik+y1 cos ϕ−iy2

√
(k−)2−(k+)2 cos2 ϕ

µ−k+ sin ϕ + µ+
√

(k−)2 − k2
1 cos2 ϕ

eik+|x| cos (ϕ−α)dϕ

+i

∫ 0

∞

2µ−k+ sin iη e−ik+y1 cos iη−iy2

√
(k−)2−(k+)2 cos2 iη

µ−k+ sin iη + µ+
√

(k−)2 − (k+)2 cos2 iη
eik+|x| cos (iη−α)dη+

i

∫ −∞

0

2µ−k+ sin (iη + π) e−ik+y1 cos (iη+π)−iy2

√
(k−)2−(k+)2 cos2 (iη+π)

µ−k+ sin (iη + π) + µ+
√

(k−)2 − (k+)2 cos2 (iη + π)
eik+|x| cos (iη+π−α)dη.

Now let us consider the contour γ(α) in the complex z plane, with z = ψ + iη,
α ∈ (0, π), as shown in Fig. 5.6.1.
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Figure 5.6.1: Contour of integration for G(x, y).

We introduce the functions T (z, α) and g(z, α) as follows

T (z, α) =
2µ−k+ sin(z + α)

µ−k+ sin(z + α) + µ+
√

(k−)2 − (k+)2 cos2(z + α)
, (5.20)

g(z, α, y) = −ik+y1 cos(z + α)− iy2

√
(k−)2 − (k+)2 cos2(z + α). (5.21)

Thus, we can write G(x, y) in the following form

G(λ, α, y) =
i

4π

∫

γ(α)

F (z, α, y)eiλ cos zdz, (5.22)

where F (z, α, y) = T (z, α)eg(z,α,y) and λ = k+|x|.

We wish now to study, in detail, the asymptotic behavior of (5.22) as λ → +∞.

Firstly, we remark that the functions F (z, α, y) and i cos z are 2π periodic in
ψ =Re z. Let us therefore focus our attention on the analysis of the strip −π <

ψ < π. The shaded regions D1 and D2 of Fig. 5.6.1 are the regions where Re
(i cos z) = sin ψ sinh η < 0; that is, the real part of eiλ cos z that is monotonically
decreasing towards 0 as λ → +∞.

The functions F (z, α, y) = T (z, α)eg(z,α,y) and i cos z are analytic in the strip
−π < ψ < π. Moreover, ∀α ∈ (0, π)

max
z∈D1∪D2

|T (z, α)| < µ−

min{µ+, µ−} ,

Re g(z, α, y) < 0 as |z| → ∞, for any point in D1 ∪ D2. By the Cauchy theorem,
the given contour of integration γ(α) in (5.22) can be replaced by the contour γ̃ on
which Re (i cos z) < 0; which is γ̃ is situated in D1 ∪ D2 and passes through the
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point z = 0. At this point Re (i cos z) = 0, which means that the exponent eiλ cos z

at z = 0 does not monotonically decrease towards 0 as λ → +∞. Thus, the leading
term of (5.22) along γ̃ as λ → +∞ is an integral along a small arc, which contains
the point z = 0. For this reason, we will choose γ̃ along which the value eiλ cos z is
rapidly decreasing away from z = 0.

We denote by s and θ the polar coordinates of z. Then for any small s we have

i cos z = i cos (seiθ) = i(1− s2

2
e2iθ + . . .) =

=
s2

2
sin 2θ + i(1− s2

2
cos 2θ) + . . .

We can see here that for Re (i cos z) = s2

2
sin 2θ, the point s = 0 is the saddle

point: this function vanishes at s = 0; the direction θ = θ0 = −π
4
is the direction

of steepest descent of s2

2
sin 2θ. Consequently, s = 0 is the saddle point of |eiλ cos z|

and θ0 is the direction of steepest descent at s = 0.

Now we replace the contour γ(α) by the contour γ̃, which consists of the linear
segment γε (−ε < s < ε), where ε is a �xed, small, positive constant, which passes
through the point z = 0 under the angle θ0 = −π

4
and the branches γ1, γ2, which

are situated in D1 ∪D2. See Fig. 5.6.2.
The integrand function of (5.22) is exponentially decreasing away from s = 0.

Therefore

G(λ, α, y) =
i

4π

∫

γ̃

F (z, α, y)eiλ cos zdz ∼ i

4π

∫

γε

F (z, α, y)eiλ cos zdz.

Because ε is assumed to be small and F (z, α, y) = F (se−i π
4 , α, y) is analytic at

s = 0, with F (0, α) 6= 0, we approximate F on the interval (−ε, ε) by F (0, α, y).

π−α
−α 0−π π

ψ

η

s=-

 

s
γ

θ
s= ε

ε

γ

γ

1

2

ε

D

D2

1

Figure 5.6.2: Contour γ̃.
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Then we have

G(λ, α, y) ∼ i

4π
F (0, α, y)

∫ ε

−ε

eλ(− s2

2
+i)dse−i π

4 .

Here, z = se−
π
4 , dz = e−

π
4 ds, i cos z ≈ − s2

2
+ i. By setting t = s

√
λ
2
, β =

√
λ
2
, we

get

G(x, y) ∼
√

2

4π

eiλ

√
λ

ei π
4 F (0, α, y)

∫ εβ

−εβ

e−t2dt. (5.23)

The approximation (5.23) presumably improves as ε → 0 with βε →∞. In that
event we can write

G(x, y) ∼
√

2

4π

eiλ

√
λ

ei π
4 F (0, α, y)

∫ ∞

−∞
e−t2dt. (5.24)

Since
∫∞
−∞ e−t2dt =

√
π, we can explicitly evaluate the integral in (5.24) to obtain

G(x, y) ∼
√

2

4

eiλ

√
πλ

ei π
4 F (0, α, y) =

i
√

2

4

eiλ

√
πλ

e−i π
4 T (0, α)ek−g(0,α,y). (5.25)

But from (5.20), (5.21) we have

T (0, α) =
2θµ− sin α

θµ− sin α + µ+
√

1− θ2 cos2 α
, (5.26)

and

g(0, α, y) = −iθy1 cos α− iy2

√
1− θ2 cos2 α, (5.27)

where θ = k+/k−. Utilizing (5.25), (5.26), and (5.27) we can conclude that, for λ

su�ciently large,

G(x, y) ∼ eiλ

4
√

λ

√
2

π
T (0, α)ei π

4
−ik−x̃y,

where x = |x|(cos α, sin α), x̃ = (θ cos α,
√

1− θ2 cos2 α), and λ = k+|x|.
For any vector x̂ = (x̂1, x̂2) ∈ S 1 we de�ne the vector v ∈ C2 by (5.7) and

introduce the function T (x̂) ∈ C given by (5.8) to �nally arrive at formulae (5.9)
and (5.10).
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Chapter 6

Open waveguide

We consider wave propagation in a perturbed open waveguide. We provide a new
asymptotic expansion for the scattered wave when the inclusion is of small diameter.
We design a MUSIC type of algorithm for locating an inclusion buried in the core
of an open waveguide and illustrate its viability in a numerical example.

6.1 Introduction
In this chapter, we discuss wave propagation in a perturbed waveguide. The pertur-
bation in the electromagnetic characteristics of the waveguide is caused by a small
electromagnetic inclusion. The waveguide we consider is half space (y > 0) with the
Dirichlet boundary condition on y = 0. The region 0 < y < h is considered the core
of the �ber, while the remainder is considered the cladding. The electromagnetic
characteristics of the waveguide are constant in each part. The electric permittivity
and the magnetic permeability are then given by

ε(y) =

{
ε1 in ]0, h[,

ε2 in ]h, +∞[

and

µ(y) =

{
µ1 in ]0, h[,

µ2 in ]h, +∞[,

where ε1µ1 ≥ ε2µ2 and µ1 6= µ2.

We suppose that there is an electromagnetic inclusion D in the core of the
waveguide, of the form D = Z + αB, where B ⊂ R2 is a bounded, smooth (C∞)
domain containing the origin. The point Z = (zx, zy) ∈]0, h[×R, that determines
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the location of the inclusion, is assumed to satisfy: h−d0 ≥ zy ≥ d0 > 0. The value
of α is the order of magnitude of the diameter of the inclusion.

Let µ∗ and ε∗ denote the magnetic permeability and the electric permittivity
of the inclusion D; we shall assume that these are positive constants. Using these
notations, we introduce the piecewise constant magnetic permeability

µα(x, y) :=





µ∗ in D ,
µ1 in R×]0, h[\D̄ ,

µ2 in R×]h, +∞[ .

If we allow the degenerate case α = 0, then

µ0(x, y) :=

{
µ1 in R×]0, h[ ,

µ2 in R×]h, +∞[ .

The piecewise constant electric permittivity εα(x, y) is de�ned analogously.
An incident wave u0, in the form of a guided mode, is sent along the perturbed

waveguide. It encounters the inclusion D in the core region of the waveguide, and
is scattered. Our �rst goal in this work is to provide an asymptotic formula for the
scattered wave when α goes to zero. Our second goal is to use this expansion for
e�ciently determining the location and the shape of the inclusion D.

To set the problem mathematically, let uα satisfy the Helmholtz equation

(∇ · 1

µα

∇+ ω2εα) uα = 0 in R×]0, +∞[, (6.1)

and uα − u0 satisfy some form of radiation condition. Unfortunately, not much is
known about the exact form of this condition due to the fact that the waveguide
extends from −∞ to +∞. We avoid this issue by �rst obtaining a representation of
the Green's function of the homogeneous waveguide. The Green's function we give
is based on the requirement that waves be outgoing and remain bounded. Using
the obtained Green's function we derive an asymptotic expansion of the solution uα

of the inhomogeneous waveguide problem.
The chapter is organized as follows. In section 6.2, we construct the Green's

function corresponding to the unperturbed waveguide. The main ingredient for
doing this is an inverse transform formula from [12]. A similar formula was �rst
derived by Magnanini and Santosa [45]. Section 6.3 is devoted to the derivation
of the leading-order term in the asymptotic expansion of the scattered wave. In
section 6.4 we exploit this formula for recovering the location and the shape of
the inclusion. A MUSIC-type of algorithm is developed for locating the inclusion.
Numerical examples are given in section 6.5. A discussion section ends the chapter.
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6.2 Green's function for the unperturbed waveg-
uide

This section is devoted to the derivation of an expression of the Green's function.
We will separate the Green's function into three components: the guided compo-
nent, the radiated component, and the evanescent component. We will also provide
asymptotic results that show how the non-guided part of the Green's function decay
along the core of the waveguide. Our approach for constructing the Green's func-
tion follows [45]. We note that one can also employ complex analysis for deriving
an explicit representation of the Green's function, starting with the assumption of
its separability in the variables x and y, and a representation in terms of a contour
integral in the separation parameter, see [26].

For a function f , continuous of compact support, let u satisfy the Helmholtz
equation

(∇ · 1

µ0

∇+ ω2ε0) u = f in R2
+ := R×]0, +∞[, (6.2)

with the boundary condition u = 0 on y = 0.
We introduce the following notation:

q(y) = ω2(ε1µ1 − ε(y)µ(y)),

d2(ω) = ω2(ε1µ1 − ε2µ2) ≥ 0.

Let g(y, λ) be de�ned by




∂yyg(y, λ) + (λ− q(y))g(y, λ) = 0 in ]0, h[ ∪ ]h, +∞[,

[g(., λ)] = 0 on y = h,[
1

µ
∂yg(., λ)

]
= 0 on y = h,

g(0, λ) = 0 and ∂yg(0, λ) =
√

λ.

(6.3)

Setting φ(y, λ) = sin(
√

λy), we then write

g(y, λ) =





φ(y, λ) if y ∈]0, h[,

φ(h, λ) cos
[√

λ− d2(y − h)
]

+
µ2

µ1

∂yφ(h, λ)√
λ− d2

sin
[√

λ− d2(y − h)
]

if y ∈ ]h, +∞[.

For λ ≥ d2, g(y, λ) is bounded. For λ < d2, in view of the above expression of
g, we impose the dispersion relation

φ(h, λ) +
µ2

µ1

∂yφ(h, λ)√
d2 − λ

= 0,
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or equivalently, √
d2 − λ tan

√
λh +

µ2

µ1

√
λ = 0 (6.4)

to make g(y, λ) bounded in R+. It is straightforward to see that there is a �nite
number of roots λl(ω) to (6.4) with associated solutions: g(y, λl) for l = 1, 2, . . . , n.
Moreover, the set of eigenfunctions g(y, λ), λ ∈ ]0, +∞[ is complete in L2(R+).
When the magnetic permeabilities µ1 and µ2 are equal (µ1 = µ2), the completeness
of the associated eigenvalue problem has been proved and an inverse transform
formula has been rigorously derived in [45]. See also [69], [70], where the spectrum
of the Pekeris operator is investigated. Here the following more general inverse
transform formula from [12] will be needed. Let f ∈ L2(R+, dy

µ(y)
). We have the

inverse transform formula:

f(x) =
n∑

l=1

2µ1

√
d2 − λl

∫ +∞
0

g(y, λl)f(y) dy
µ(y)

µ1

µ2
φ(h, λl)2 + 2

√
d2 − λl

∫ h

0
φ(y, λl)2dy

g(x, λl)

+
1

π

∫ +∞

d2

µ2

√
λ− d2

∫ +∞
0

g(y, λ)f(y) dy
µ(y)

(λ− d2)φ(h, λ)2 + (µ2

µ1
)2∂yφ(h, λ)2

g(x, λ)dλ, (6.5)

almost everywhere.
We now return to the Helmholtz equation (6.2). Let

U(x, λ) =

∫ +∞

0

u(x, y)g(y, λ)
dy

µ(y)
.

Multiplying (6.2) by 1
µ(y)

g(y, λ) and integrating with respect to the variable y over
the interval ]0, +∞[, we obtain after some straightforward manipulations for x ∈ R

∂xxU(x, λ) + (ω2ε1µ1 − λ)U(x, λ) =

∫ +∞

0

f(x, η)g(η, λ)
dη

µ(η)
. (6.6)

The solution of (6.6), which is outgoing for 0 ≤ λ < ω2ε1µ1 and decays expo-
nentially for λ > ω2ε1µ1 as |x| → +∞, is readily given for x ∈ R by the following
expression:

U(x, λ) =

∫ ∞

−∞

ei|x−ζ|
√

ω2ε1µ1−λ

2i
√

ω2ε1µ1 − λ

∫ +∞

0

f(ζ, η)g(η, λ)
dη

µ(η)
dζ. (6.7)

By the inversion formula (6.5), we have

u(x, y) =
n∑

l=1

2µ1

√
d2 − λlU(x, λl)

µ1

µ2
φ(h, λl)2 + 2

√
d2 − λl

∫ h

0
φ(y, λl)2dy

g(y, λl)

+
1

π

∫ +∞

d2

µ2

√
λ− d2U(x, λ)

(λ− d2)φ(h, λ)2 + (µ2

µ1
)2∂yφ(h, λ)2

g(y, λ)dλ ∀ (x, y) ∈ R2
+;
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hence, by (6.7) and by interchanging the order of integration, we obtain that the
solution u of (6.2) corresponding to the case where no energy is radiated from the
far �eld (x2 + y2 → +∞, y > 0) can be represented by

u(x, y) =

∫

R2
+

G(x, y, ζ, η)f(ζ, η) dζdη,

where the Green's function G is given by

G(x, y, ζ, η) =

n∑

l=1

2µ1

√
d2 − λl

µ1

µ2
φ(h, λl)2 + 2

√
d2 − λl

∫ h

0
φ(y, λl)2dy

ei|x−ζ|
√

ω2ε1µ1−λl

2i
√

ω2ε1µ1 − λl

g(y, λl)g(η, λl)+

1

π

∫ +∞

d2

µ2

√
λ− d2

(λ− d2)φ(h, λ)2 + (µ2

µ1
)2∂yφ(h, λ)2

ei|x−ζ|
√

ω2ε1µ1−λ

2i
√

ω2ε1µ1 − λ
g(y, λ)g(η, λ)dλ.

Note that the Green's function G has been constructed so that all the waves are
outgoing.

Following [45] we now separate the Green's function G into three components
G = Gg + Gr + Ge. The guided component

Gg(x, y, ζ, η) =
n∑

l=1

2µ1

√
d2 − λl

µ1

µ2
φ(h, λl)2 + 2

√
d2 − λl

∫ h

0
φ(y, λl)2dy

ei|x−ζ|
√

ω2ε1µ1−λl

2i
√

ω2ε1µ1 − λl

g(y, λl)g(η, λl)

corresponds to the solution is concentrated near the core. The radiated component

Gr(x, y, ζ, η) =

1

π

∫ ω2ε1µ1

d2

µ2

√
λ− d2

(λ− d2)φ(h, λ)2 + (µ2

µ1
)2∂yφ(h, λ)2

ei|x−ζ|
√

ω2ε1µ1−λ

2i
√

ω2ε1µ1 − λ
g(y, λ)g(η, λ)dλ

and the evanescent component

Ge(x, y, ζ, η) =

1

π

∫ +∞

ω2ε1µ1

µ2

√
λ− d2

(λ− d2)φ(h, λ)2 + (µ2

µ1
)2∂yφ(h, λ)2

ei|x−ζ|
√

ω2ε1µ1−λ

2i
√

ω2ε1µ1 − λ
g(y, λ)g(η, λ)dλ

are radiated away from the source at (ζ, η).

We will need to estimate Gr and Ge for �xed y and η. Following once again [45]
we can apply Laplace's method [16] and obtain for |x− ζ| → +∞ that

Ge(x, y, ζ, η) = O(
1

ω|x− ζ|). (6.8)
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Moreover, making use of the method of steepest descent [16], one can show that

Gr(x, y, ζ, η) = O(
1

ω|x− ζ|) as |x− ζ| → +∞. (6.9)

We can therefore conclude that for a �xed y, as one looks down the core of the
waveguide, the non-guided components of the waves die o� like O(1/ω|x|).

Let X = (x, y) and Y = (ζ, η). Observe that the Green's function for the
problem





(∇X · 1
µ0
∇XG0(X, Y ) = δY in R×]0, h[∪R×]h, +∞[,

1

µ2

∂G0

∂y

∣∣∣∣
+

=
1

µ1

∂G0

∂y

∣∣∣∣
−

on y = h,

G0 = 0 on y = 0,

is given by the following explicit formula.
If 0 < η < h, then

G0(X, Y ) = µ1×



2µ2

µ1 + µ2

[
Γ(X − Y )− Γ(X − Y )

]
, y > h,

[
Γ(X − Y )− Γ(X − Y )

]
+

µ2 − µ1

µ1 + µ2

[
Γ(X − Y + (0, 2h))− Γ(X − Y − (0, 2h))

]
,

0 < y < h.

(6.10)

Here Γ(X) = (1/(2π)) log |X| is the fundamental solution for the Laplacian and
X = (x,−y).
If η > h, the formula takes the form

G0(X, Y ) = µ2×



[
Γ(X − Y )− Γ(X − Y )

]
+

µ1 − µ2

µ1 + µ2

[
Γ(X − Y + (0, 2h))− Γ(X − Y − (0, 2h))

]
,

y > h,
2µ1

µ1 + µ2

[
Γ(X − Y )− Γ(X − Y )

]
, 0 < y < h.

(6.11)

We will need the following lemma.

Lemma 6.2.1 For each M and a �xed but arbitrary (ζ, η) with 0 < η < h,

R(x, y, ζ, η) := G(x, y, ζ, η)−G0(x, y, ζ, η) (6.12)
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is C1 in (x, y) for |x − ζ| ≤ M and 0 ≤ y ≤ h and the C1-norm is bounded
independently of (ζ, η).

Proof. Fix (ζ, η) and let v(x, y) := G(x, y, ζ, η) and w(x, y) := G0(x, y, ζ, η).
Choose M > 0 so that on the domain ΩM := (ζ −M, ζ + M)× (0,M) the problem





(∇ · 1

µ0

∇+ ω2ε0) u = 0 in ΩM ,

u = f on ∂ΩM ,

is well-posed. Since (∇ · 1
µ0
∇ + ω2ε0)v = δ(ζ,η) and ∇ · 1

µ0
∇w = δ(ζ,η), R given by

(6.12) satis�es
(∇ · 1

µ0

∇+ ω2ε0) R = −ω2ε0w in ΩM .

Moreover, R|∂ΩM
is a piecewise C1-function and R(x, y) = 0 if y = 0. De�ne

W (x, y) := −ω2ε0

∫

ΩM

G0(x, y, ζ, η)w(ζ, η)dA.

Then one can easily see from the explicit forms (6.10) and (6.11) of G0 that W is
C1 on ΩM and ‖W‖C1(ΩM ) ≤ C uniformly in (ζ, η). Observe that R−W satis�es

(∇ · 1

µ0

∇+ ω2ε0) (R−W ) = −ω2ε0W in ΩM ,

and hence by the standard regularity theorem for the elliptic equations we get

‖R−W‖C1(ΩM/2) ≤ C

for some C uniformly in (ζ, η). This completes the proof. ¤

6.3 Asymptotic expansion of the scattered wave
In this section we derive an asymptotic formula for the perturbation uα − u0 due
to the presence of the inclusion D = Z + αB as α tends to 0.

For k > 0, let the fundamental solution Γk be de�ned by

Γk(X) = −(i/4)H
(1)
0 (k|X|) for X 6= 0,

where H
(1)
0 is the Hankel function of the �rst kind of order 0. For a bounded

Lipschitz domain D in R2, let Sk
D be the single layer potential de�ned by Γk, that

is, for φ ∈ L2(∂D),

Sk
Dφ(X) =

∫

∂D

Γk(X − Y )φ(Y )dσ(Y ), X ∈ R2.
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Let S̃D be the single layer potential de�ned by G, that is, for ψ ∈ L2(∂D),

S̃Dψ(X) =
1

µ1

∫

∂D

G(X,Y )ψ(Y )dσ(Y ), X ∈ R2.

Suppose that the following assumption (H1) holds: the trivial solution is the
unique outgoing solution to the Helmholtz equation

(∇ · 1

µ0

∇+ ω2ε0) u = 0 in R2
+,

with the boundary condition u = 0 on y = 0 and the decay estimate |u(x, y)| =

O(1/|x|) as |x| → +∞.

Following [8], an integral representation formula for the outgoing solution uα of
(6.1) can be proved.

Lemma 6.3.1 Suppose that ω
√

ε1µ1 is not a Dirichlet eigenvalue of −∆ on D,
and let k∗ := ω

√
ε∗µ∗. The solution uα of (6.1) can be represented by

uα(X) =





u0(X) + S̃Dψ(X), X ∈ R2
+ \D,

Sk∗
D φ(X), X ∈ D,

(6.13)

where the pair (φ, ψ) ∈ L2(∂D) × L2(∂D) is the unique solution to the system of
integral equations





Sk∗
D φ− S̃Dψ = u0 on ∂D,

1

µ∗

∂Sk∗
D φ

∂ν

∣∣∣∣
−
− 1

µ1

∂S̃Dψ

∂ν

∣∣∣∣
+

=
1

µ1

∂u0

∂ν
on ∂D.

(6.14)

Here ν denotes the outward unit normal to ∂D; subscripts + and − indicate the
limiting values as we approach ∂D from outside D and from inside D.

Proof. De�ne an operator T : L2(∂D)× L2(∂D) → L2(∂D)× L2(∂D) by

T (φ, ψ) =

(
Sk∗

D φ− S̃Dψ,
1

µ∗

∂Sk∗
D φ

∂ν

∣∣∣∣
−
− 1

µ1

∂S̃Dψ

∂ν

∣∣∣∣
+

)
.

By (6.12), T is a Fredholm type of operator. Thus, in order to prove the existence
and uniqueness of a solution to (6.14), it is enough to show that T is injective.
But it immediately follows from (H1) and the unique continuation for the operator
∆ + ω2ε1µ1 that

S̃Dψ =

∫

∂D

Ggψ in (R×]0, h[) \D,
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where Gg is the guided component of the Green's function G. Since (∆+ω2ε1µ1)×
× ∫

∂D
Ggψ = 0 in D and ω

√
ε1µ1 is not a Dirichlet eigenvalue of −∆ on D then

S̃Dψ =
∫

∂D
Ggψ in R×]0, h[ which leads to a contradiction because of the jump of

the normal derivative of S̃Dψ on ∂D. ¤

The derivation of the asymptotic formula for uα−u0 relies on the representation
formula (6.13) and is parallel to that in [8]. However, there are some technical
di�erences and so we include the main steps for its derivation.

Let us introduce two more layer potentials: De�ne

SDφ(X) =

∫

∂D

Γ(X − Y )φ(Y )dσ(Y ), X ∈ R2,

where Γ(X) is the fundamental solution for the Laplacian ∆. We also de�ne

S0
Dφ(X) =

1

µ1

∫

∂D

G0(X, Y )ψ(Y )dσ(Y ), X ∈ R2.

Let
φ̂(Y ) := φ(Z + αY ), ψ̂(Y ) := ψ(Z + αY ), Y ∈ ∂B. (6.15)

Because of (6.12), we have

G(Z + αX, Z + αY ) = G0(Z + αX, Z + αY ) + C + O(α|X − Y |)
= G0(X, Y ) + C + O(α|X − Y |), X, Y ∈ ∂B,

for some constant C. Therefore,

S̃Dφ(Z + αX) = αS0
Bφ̂(X) + C + O(α2), X ∈ ∂B,

where O(α2) ≤ Cα2‖φ̂‖L2(∂B). Here and in what follows C denotes a constant which
may be di�erent at each occurrence. Since Γk∗(X)− Γ(X) is C1(R2), we also have

Sk∗
D φ(Z + αX) = αSBφ̂(X) + C + O(α2), X ∈ ∂B.

Since u0(Z + αY ) = u0(Z) + α∇u0(Z) ·Y + o(α), the integral equation (6.14) takes
the form





SBφ̂− S0
Bψ̂ = C +∇u0(Z) · Y + O(α) on ∂B,

1

µ∗

∂SBφ̂

∂ν

∣∣∣∣
−
− 1

µ1

∂S0
Bψ̂

∂ν

∣∣∣∣
+

=
1

µ1

∇u0(Z) · ∂Y

∂ν
+ O(α) on ∂B.

(6.16)
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Let (f, g) be the solution to




SBf − S0
Bg = C +∇u0(Z) · Y on ∂B,

1

µ∗

∂SBf

∂ν

∣∣∣∣
−
− 1

µ1

∂S0
Bg

∂ν

∣∣∣∣
+

=
1

µ1

∇u0(Z) · ∂Y

∂ν
on ∂B.

(6.17)

Then
ψ̂ = g + O(α) on ∂B. (6.18)

Since C +∇u0(Z) · Y is harmonic in B, the �rst equation in (6.17) yields

SBf(Y )− S0
Bg(Y ) = C +∇u0(Z) · Y, Y ∈ B,

and hence
∂SBf

∂ν

∣∣∣∣
−
− ∂S0

Bg

∂ν

∣∣∣∣
−

= ∇u0(Z) · ∂Y

∂ν
on ∂B.

Combining this with the second equation in (6.17) we get

∂S0
Bg

∂ν

∣∣∣∣
+

− µ1

µ∗

∂S0
Bg

∂ν

∣∣∣∣
−

=

(
µ1

µ∗
− 1

)
∇u0(Z) · ∂Y

∂ν
on ∂B. (6.19)

Observe that for each h ∈ L2(∂B) with
∫

∂B
hdσ = 0, there exists a unique solution

g ∈ L2(∂B) with
∫

∂B
gdσ = 0 to the equation

∂S0
Bg

∂ν

∣∣∣∣
+

− µ1

µ∗

∂S0
Bg

∂ν

∣∣∣∣
−

= h on ∂B.

This fact can be proved using the method in Chapter 1 of [7] and so we omit its
proof.

Let Y = (y1, y2) and ψj, j = 1, 2, be the solution to

∂S0
Bψj

∂ν

∣∣∣∣
+

− µ1

µ∗

∂S0
Bψj

∂ν

∣∣∣∣
−

=

(
µ1

µ∗
− 1

)
∂yj

∂ν
on ∂B. (6.20)

It then follows from (6.18) and (6.19) that

ψ̂ =
2∑

j=1

∂u0

∂xj

(Z)ψj + O(α) on ∂B. (6.21)

We are now ready to derive an asymptotic formula for uα − u0. According to
(6.13),

uα(X) = u0(X) +

∫

∂D

G(X, Ξ)ψ(Ξ)dσ(Ξ).
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Making a change of variables Ξ → Z + αY , Y ∈ ∂B, we get

uα(X) = u0(X) + α

∫

∂B

G(X, Z + αY )ψ̂(Y )dσ(Y ),

where
ψ̂(Y ) := ψ(Z + αY ), Y ∈ ∂B.

Since
G(X, Z + αY ) = G(X, Z) + α∇Y G(X,Z) · Y + o(α)

for X away from D, we get

uα(X) = u0(X) + αG(X,Z)

∫

∂B

ψ̂dσ + α2∇Y G(X, Z) ·
∫

∂B

Y ψ̂(Y )dσ(Y ) + o(α2)

(6.22)
for X away from D.

By (6.14) we have

ψ =
µ1

µ∗

∂Sk∗
D φ

∂ν

∣∣∣∣
−
− ∂u0

∂ν
− ∂S̃Dψ

∂ν

∣∣∣∣
−
,

and hence it follows that

α

∫

∂B

ψ̂dσ =

∫

∂D

ψdσ

=
µ1

µ∗

∫

D

∆Sk∗
D φ−

∫

D

∆u0 −
∫

D

∆S̃Dψ

=
µ1

µ∗
ω2ε∗µ∗

∫

D

Sk∗
D φ− ω2ε1µ1

∫

D

u0 − ω2ε1µ1

∫

D

S̃Dψ

= ω2µ1(ε∗ − ε1)

[∫

D

u0 +

∫

D

S̃Dψ

]
,

where the last equality follows from (6.14). Note that
∫

D

u0 = α2u0(Z)|B|+ O(α3).

We also have ∫

D

S̃Dψ = O(α3). (6.23)

In fact, since
∫

∂B
ψjdσ = 0, (6.21) yields

∫
∂B

ψ̂dσ = O(α), and hence

S̃Dψ(Z + αX) = αS0
Bψ̂ + O(α)O(α).
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Thus we have (6.23). Therefore, we obtain

α

∫

∂B

ψ̂dσ = α2ω2µ1(ε∗ − ε1)u0(Z)|B|+ O(α3). (6.24)

On the other hand, it follows from (6.21) that
∫

∂B

Y ψ̂(Y )dσ(Y ) =

(
µ∗
µ1

− 1

)
M∇u0(Z) + O(α), (6.25)

where M = [mij] and

mij =
µ1

µ∗ − µ1

∫

∂B

yjψi(Y )dσ(Y ), i, j = 1, 2. (6.26)

By (6.22), (6.24), and (6.25), we �nally arrive at the following theorem.

Theorem 6.3.1 Let uα be the solution of (6.1), and let M be the polarization
tensor de�ned by (6.26). Then, for X = (x, y) bounded away from D, we have the
pointwise expansion

uα(X) = u0(X) + α2

[(
µ∗
µ1

− 1

)
∇Y G(X,Z) ·M∇u0(Z)

+ ω2µ1ε1

(
ε∗
ε1

− 1

)
|B|G(X,Z)u0(Z)

]

+o(α2).

(6.27)

A few words are in order on the matrix M de�ned by (6.26). It follows from the
jump relation of the single layer potential and (6.20) that

∫

∂B

yjψidσ =

∫

∂B

yj

[
∂S0

Bψj

∂ν

∣∣∣∣
+

− ∂S0
Bψj

∂ν

∣∣∣∣
−

]
dσ

=

(
µ1

µ∗
− 1

) ∫

∂B

yj
∂Φi

∂ν

∣∣∣∣
−
dσ,

where
Φi(Y ) = yi + S0

Bψi(Y ), Y ∈ R2.

Note that Φi(Y ) for Y = (y1, y2) is the solution to



∆Φi = 0 in B ∪ (R×]− zy/α, (h− zy)/α[\B) ∪ R×](h− zy)/α, +∞[,

Φi is continuous across ∂B and y2 = (h− zy)/α,

∂Φi

∂ν

∣∣∣∣
+

− µ1

µ∗

∂Φi

∂ν

∣∣∣∣
−

= 0 on ∂B,

∂Φi

∂y

∣∣∣∣
+

− µ2

µ1

∂Φi

∂y

∣∣∣∣
−

= 0 on y2 = (h− zy)/α,

Φi(Y )− yi → 0 as |Y | → ∞,

Φi(Y ) = 0 on y2 = −zy/α.
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In its appearance mij may seem to be dependent on α. However, M = [mij] =

constant + O(α). To see this let us investigate three typical cases: (i) When D =

Z + αB is away from the interface y2 = h and the boundary y2 = 0, (ii) when D is
close to the interface, (iii) when D is close to the boundary.

(i) Suppose that D is away from the interface and the boundary. In this case, after
scaling, the distance from B to the interface y2 = (h − zy)/α and the boundary is
of order 1/α. Thus one can see from (6.10) that

G0(X,Y ) = µ1Γ(X − Y ) + O(α), X, Y ∈ ∂B,

and hence (6.20) can written as

∂SBψj

∂ν

∣∣∣∣
+

− µ1

µ∗

∂SBψj

∂ν

∣∣∣∣
−

=

(
µ1

µ∗
− 1

)
∂yj

∂ν
+ O(α) on ∂B. (6.28)

Let gj be the solution of (6.28) without O(α)-term on the right-hand side. Then,
M

(
µ∗
µ1

)
given by

mij

(
µ∗
µ1

)
:=

µ1

µ∗ − µ1

∫

∂B

yjgidσ

is the Pólya-Szegö polarization tensor de�ned by (1.5). We get from (6.28) that

M = M

(
µ∗
µ1

)
+ O(α),

and hence, in this case, the formula (6.27) holds with M replaced with M
(

µ∗
µ1

)
.

Recall that if the inclusion B is a disk then its polarization tensor M
(

µ∗
µ1

)
takes the

following explicit form:
M

(
µ∗
µ1

)
=

2µ1

µ1 + µ∗
|B| I2, (6.29)

where I2 is the 2× 2 identity matrix.

(ii) Suppose that D is close to the interface and the distance between them is of
order α. In this case, one can see from (6.10) that

G0(X, Y ) = µ1

(
Γ(X − Y )− µ2 − µ1

µ1 + µ2

Γ(X − Y − (0, 2h))

)
+ O(α), X, Y ∈ ∂B.

By a similar argument one can show that

mij =
µ1

µ∗

∫

∂B∗
yj

∂Φ̂i

∂ν

∣∣∣∣
−
dσ + O(α) := Pij

(
µ∗
µ1

,
µ1

µ2

)
+ O(α),
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where B∗ = B − (0, (h− zy)/α) and Φ̂i is the solution to




∆Φ̂i = 0 in B∗, and in (R×]−∞, 0[\B∗) ∪ R×]0, +∞[,

Φ̂i is continuous across ∂B∗ and y2 = 0,

∂Φ̂i

∂ν

∣∣∣∣
+

− µ1

µ∗

∂Φ̂i

∂ν

∣∣∣∣
−

= 0 on ∂B∗,

∂Φ̂i

∂y

∣∣∣∣
+

− µ2

µ1

∂Φ̂i

∂y

∣∣∣∣
−

= 0 on y2 = 0,

Φ̂i(Y )− Ŷi → 0 as |Y | → ∞.

Here

Ŷ = (Ŷ1, Ŷ2) =

{
(y1, y2) for y2 > 0,

(y1,
µ1

µ2
y2 + 1) for y2 < 0.

So in this case, we obtain that for X = (x, y), 0 < y < h, bounded away from D,
the following pointwise expansion holds

uα(X) = u0(X) + α2

[(
µ∗
µ1

− 1

)
∇Y G(X, Z) · P

(
µ∗
µ1

,
µ1

µ2

)
∇u0(Z)

+ ω2µ1ε1

(
ε∗
ε1

− 1

)
|B|G(X, Z)u0(Z)

]
+ o(α2).

The feature of the above formula is that it is expressed in terms of the new polar-
ization tensor P = (Pij).

The case when D is close to the boundary can be treated in a similar way, which
we omit.

6.4 Reconstruction of the inclusion
In this section we develop a MUSIC algorithm for recovering the inclusion D from
measurements of propagated modes excited by incident waves.

Let βl =
√

ω2ε1µ1 − λl and let

cl = −i
µ1

√
d2 − λl

µ1

µ2
φ(h, λl)2 + 2

√
d2 − λl

∫ h

0
φ(y, λl)2dy

,

for 1 ≤ l ≤ n.

When the incident wave is a guided mode (of the unperturbed waveguide), then

u0(x, y) = g(y, λl0)e
−iβl0

x,



6.4. RECONSTRUCTION OF THE INCLUSION 133

for some 1 ≤ l0 ≤ n. Recall that X = (x, y) and Z = (zx, zy).
We compute

∇u0(Z) =

(
iβl0g(zy, λl0)

g′(zy, λl0)

)
e−iβl0

zx ,

and, by making use of (6.8) and (6.9), we obtain that

∇G(X,Z) ≈
n∑

l=1

cl

βl

eiβlxe−izx(βl0
+βl)

(
−iβlg(zy, λl)

g′(zy, λl)

)
g(y, λl),

as x → +∞.

Suppose for the sake of simplicity that B is a disk then, using (1.5), it follows
that

(uα − u0)(X) ≈ |D|
n∑

l=1

cl

βl

eiβlxg(y, λl)e
−izx(βl0

+βl)

×
[
2(µ∗ − µ1)

µ∗ + µ1

(
βl0βlg(zy, λl)g(zy, λl0) + g′(zy, λl)g

′(zy, λl0)

)

+ ω2µ1ε1

(
ε∗
ε1

− 1

)
g(zy, λl)g(zy, λl0)

]
,

as x → +∞.

The coe�cients of the scattered modes Cll0 , which are excited by the incident
wave u0, are then approximated by

Cll0 ≈ |D|e−izx(βl0
+βl)

[
2(µ∗ − µ1)

µ∗ + µ1

(
βl0βlg(zy, λl)g(zy, λl0) + g′(zy, λl)g

′(zy, λl0)

)

+ ω2µ1ε1

(
ε∗
ε1

− 1

)
g(zy, λl)g(zy, λl0)

]
.

De�ne the (response) matrix C = [Cll0 ]
n
l,l0=1. We now show how to apply the

MUSIC algorithm for recovering the location Z and the volume |D| of the inclu-
sion from the above approximate formula for the matrix C ∈ Cn×n. We consider
separately three cases to state the following lemma.

Proposition 6.4.1 1. Suppose µ∗ = µ1. For X = (x, y) in the core of the
waveguide, de�ne the vector gx,y ∈ Cn by

gx,y =
(
g(y, λ1)e

−ixβ1 , . . . , g(y, λn)e−ixβn
)T

, (6.30)

where T denotes the transpose. Then

gx,y ∈ Range(C) i� x = zx and y = zy.
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2. Suppose ε∗ = ε1. For X = (x, y) in the core of the waveguide, de�ne the
vector gx,y ∈ Cn×2 by

gx,y =
(
(β1g(y, λ1), g

′(y, λ1))
T

e−ixβ1 , . . . , (βng(y, λn), g′(y, λn))
T

e−ixβn

)T

.

(6.31)
Then

gx,y ∈ Range(C) i� x = zx and y = zy.

3. Suppose µ∗ 6= µ1 and ε∗ 6= ε1. For X = (x, y) in the core of the waveguide,
de�ne the vector gx,y ∈ Cn×3 by

gx,y =
(
(β1g(y, λ1), g

′(y, λ1), g(y, λ1))
T

e−ixβ1 , . . . ,

. . . , (βng(y, λn), g′(y, λn), g(y, λn))
T

e−ixβn

)T

. (6.32)

Then
gx,y ∈ Range(C) i� x = zx and y = zy.

Proof. The idea of the proof of the characterization of the location of the inclusion
in terms of the range of the matrix C is the same for the three cases above. Let
us then for the sake of simplicity consider only the �rst case. Let for X = (x, y)

suppose that gx,y ∈ Range(C) and X 6= Z. Then

gx,y is proportional to the vector
(
g(zy, λ1)e

−iβ1zx , . . . , g(zy, λn)e−iβnzx
)T

. (6.33)

Consider now the Green's functions G(·, X) and G(·, Z). Identity (6.33) yields that
the guided components of these Green's functions are proportional. This implies
that the Green's functions G(Y,X) and G(Y, Z) are proportional for any Y in the
core, Y /∈ {X, Z}. The singularity of G(·, X) at the source X(see Lemma 6.2.1)
leads then to a contradiction. ¤

The MUSIC algorithm is as follows. Denote P the orthogonal projection onto
the left null space (noise space) of C. The operator P is computed via a singular
value decomposition (SVD) of the matrix C. We can form an image of the location
Z by plotting, at each point X = (x, y), the quantity

1. W = ‖gx,y‖/‖P gx,y‖, if µ∗ = µ1.

2. Wb = ‖gx,y b‖/‖P (gx,y b)‖, for b ∈ R2 \ {0} if ε∗ = ε1.
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3. Wc = ‖gx,y c‖/‖P (gx,y c)‖, for c ∈ R3 \ {0} if µ∗ 6= µ and ε∗ 6= ε1.
In the jth-case (j = 1, 2, 3), the matrix C has j signi�cant singular values. The
image space of C is of dimension j.

This MUSIC algorithm can be used to recover the location of m well-separated
electromagnetic inclusions provided that n > m (case 1), n > 2m (case 2), and
n > 3m (case 3).

6.5 Numerical results
As discussed in the theoretical examination the nature (dielectric and/or magnetic)
of the inclusion with respect to the one of the embedding medium, is essential to
the results expected.

So, below, one is displaying and brie�y analyzing only a restricted number of
numerical results from synthetically generated data a�ected by white Gaussian noise
for both the amplitude and the phase of the scattered modes with 12 dB signal-to-
noise ratio in the three cases described in previous section.

In the �rst numerical experiment we take one small homogeneous circular disk
of diameter α = 0.1 denoted as D and centered at Z = (−0.45, 2.03) within a
rectangle search box prescribed as Ω = [−3, 3] × [d0, h − d0] ⊂ R2, where d0 = 0.3

and h = 4. Corresponding dielectric permittivity ε∗ and magnetic permeability µ∗
are equated to 5.

In the second numerical experiment one still keeps the number of inclusions is
equal to two (for brevity, both dielectric and permeable inclusions are considered).
The con�guration involves two small homogeneous circular disks of diameter α = 0.1

denoted as D1 and D2 and respectively centered at Z1 = (1.53, 2.03) and Z2 =

(−1.03, 2.03) within the same rectangle search box Ω. Corresponding dielectric
permittivity ε∗,j j = 1, 2 and magnetic permeability µ∗,j, j = 1, 2 are equated to 5.

µ1 = 2, ε1 = 2 and µ2 = 1, ε2 = 1 for the embedding medium in all numerical
experiments. In the �rst numerical experiment the circular frequency of operation
is �xed to ω = 4. In the second experiment we take ω = 6.

Let the function f(λ) be de�ned by

f(λ) =
√

d2 − λ tan
√

λh +
µ2

µ1

√
λ, λ ∈]0, d2[.

From (6.4), the isolated eigenvalues λl, l = 1, . . . , n, are de�ned by

f(λl) =
√

d2 − λl tg
√

λlh +
µ2

µ1

√
λl = 0, l = 1, . . . , n.
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Within the above setting, the retrieval of the inclusions involves the calculation
of zeros λl, l = 1, . . . , n, of the function f(λ) (n = 8 in the �rst and 12 in the second
numerical experiments) and the SVD C = UΣV∗ of the matrix C = [Cpl] ∈ Cn×n.
Denote by {ei}d

i=1 the orthonormal basis in Rd, d = 2 or 3. Then, for each discrete
location z ∈ Ω (the sampling step henceforth is ∆ = 0.05), the identi�ers of interest
are

• in the �rst case: W (z),

• in the second case: Wb(z), b = {e1, e2,
∣∣ ei ∈ R2, i = 1, 2} ,

• in the third case: Wc(z), c = {e1, e2, e3

∣∣ ei ∈ R3, i = 1, 2, 3},

calculated within Ω, the speci�c values of b and c here having being inferred from the
numerical experimentation. Plots of z → W·(z) illustrate the result achieved, sharp
peaks being expected to occur at the locations of the inclusion, Z. Other accompa-
nying results displayed consist of the singular values of C, using a standard log scale,
and also of color or gray-level maps of appropriate norms of "back-propagated" sin-
gular vectors or combinations.

6.5.1 Reconstruction of one inclusion
Dielectric inclusion

The singular values of the symmetric matrix C ∈ C8×8 and those in the case of
noisy data are displayed in Fig. 6.5.1.1, the identi�er W (z) using �rst singular
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Figure 6.5.1.1: Case 1 (dielectric contrast only): distribution of the singular values of C

(left) and in the case of noisy data with 12dB signal-to-noise ratio (right).
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Figure 6.5.1.2: Case 1 (dielectric contrast only): gray-level (or color) maps of the
amplitudes of W (left) and Ddiel (right) in the case of noisy data with 12dB signal-to-
noise ratio.

vector (associated to the �rst singular value) and the amplitude of the product
Ddiel = (u1u

∗
1) gx,y, where the vector gx,y ∈ C8 is given by (6.30), are displayed in

Fig. 6.5.1.2 . Here u1 denotes the �rst left singular vector of the matrix C (i.e. the
�rst eigenvector of CC∗).

Results obtained as such are easy to interpret. One singular values emerge from
the 7 others in the noise subspace. As for the singular vector, once operated upon
by gx,y, it focuses onto the inclusion as expected in the con�guration under study.
Note that, in this simple case u1 = gzx,zy/||gzx,zy || with corresponding singular value
σ1 = ||gzx,zy ||2|D|ω2ε1µ1 (ε∗/ε1 − 1).

Permeable inclusion

Introduce the following notation:

g1
x,y =

(
β1g(y, λ1)e

−ixβ1 , . . . , βng(y, λn)e−ixβn
)T

, (6.34)
g2

x,y =
(
g′(y, λ1)e

−ixβ1 , . . . , g′(y, λn)e−ixβn
)T

. (6.35)

Using this notation the vector gx,y, de�ned by (6.31), can be rewritten as gx,y =

[g1
x,y g2

x,y].

The singular values of the matrix C ∈ C8×8 and those in the case of noisy data
are displayed in Fig. 6.5.1.3, the identi�er Wb, b = e1, e2 using two �rst singular
vectors (associated to the two �rst singular values) is displayed in Fig. 6.5.1.4, and
the amplitude of the product Dperm = (u1u

∗
1) g1

x,y + (u2u
∗
2) g2

x,y is displayed in Fig.
6.5.1.5. Here the vectors u1 and u2 denote the two �rst eigenvectors of the matrix
CC∗.
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Figure 6.5.1.3: Case 2 (permeability contrast only): distribution of the singular values
of C (left) and in the case of noisy data with 12dB signal-to-noise ratio (right).
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Figure 6.5.1.4: Case 2 (permeability contrast only): gray-level (or color) maps of the
amplitudes of Wb, b = e1, e2 ∈ R2 (ordered from left to right) in the case of noisy data
with 12dB signal-to-noise ratio.
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Figure 6.5.1.5: Case 2 (permeability contrast only): gray-level (or color) map of the
amplitude of Dperm in the case of noisy data with 12dB signal-to-noise ratio .

As previously, the results obtained are easy to interpret. Two singular values
emerge from noise. The inclusion, be they observed via di�erent Wb(z), are clearly
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discriminated from the background, the visual aspect depending upon the choice of
b. The focusing of the singular vectors as seen from displays of the product de�ned
in the above, is rather good. The di�erence between the two �rst singular values
of C can be computed by the similar arguments as those used for the case 1 in
Chapter 3 (see subsection 3.2.1, the case of identical inclusions). So, σ1 − σ2 =

2|β (g1
zx,zy

)∗g2
zx,zy

|, where β = |D|2(µ∗ − µ1)/(µ∗ + µ1). Since the vectors g1
zx,zy

and
g2

zx,zy
are not orthogonal, the di�erence σ1−σ2 can be su�ciently large. Comparing

the contour-maps obtained by plotting the quantities (uju
∗
j) gj

x,y, j = 1, 2, one has
concluded that the �rst singular vector u1 corresponds to g1

zx,zy
.

Dielectric and permeable inclusion

The singular values of C and those in the case of noisy data are shown in Fig. 6.5.1.6,
the identi�ers Wc, c = e1, e2, e3 ∈ R3 using three �rst singular vectors (associated
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Figure 6.5.1.6: Case 3 (permittivity and permeability contrasts): distribution of the
singular values of C (left) and in the case of noisy data 12dB signal-to-noise ratio (right).

to the three �rst singular values) is displayed in Figs. 6.5.1.7 and 6.5.1.8 (left), and
the amplitude of the product D = (u1u

∗
1) g1

x,y + (u1u
∗
1) gx,y, where gx,y is de�ned by

(6.30), is displayed in Fig. 6.5.1.8 (right).

The results obtained are evidently less easy to interpret than before due to the
more complicated character of the inclusion. Still, the singular values of the signal
subspace emerge from noise, three (one in the case of noisy data) of them. The
inclusion, again, be they observed via di�erent Wc(z), are clearly discriminated
from the background (except We2), the visual aspect depending upon the choice of
c. Comparing the contour-maps obtained by plotting the quantities (uju

∗
j) gp

x,y and
(uju

∗
j) gx,y, j = 1, 2, 3; p = 1, 2, one has concluded that the �rst singular vector u1
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Figure 6.5.1.7: Case 3 (permittivity and permeability contrasts): gray-level (or color)
maps of the amplitudes of Wc, c = e1 ∈ R3 (left), c = e2 ∈ R3 (right) in the case of noisy
data with 12dB signal-to-noise ratio.
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Figure 6.5.1.8: Case 3 (permittivity and permeability contrasts): gray-level (or color)
maps of the amplitudes of Wc, c = e3 ∈ R3, (left) and D (right) in the case of noisy data
with 12dB signal-to-noise ratio.

corresponds to g1
zx,zy

, u2 corresponds to gzx,zy and only two �rst singular vectors
focus onto the inclusion as expected in the con�guration under the study.

6.5.2 Reconstruction of multiple inclusions
In this subsection we consider two identical inclusions.

Results are shown in Fig. 6.5.2.1 (the singular values of C and those in the case
of noisy data) and in Figs. 6.5.2.2 and 6.5.2.3 (the identi�er Wc, c = e1, e2, e3 ∈ R3

using seven �rst singular vectors (associated to the seven �rst singular values)).
As previously, the singular values of the signal subspace emerge from noise, six

(two in the case of noisy data) of them. The inclusions, again, be they observed
via di�erent Wc(z), are clearly discriminated from the background (except We2).
The analysis of the focusing of the singular vectors of the matrix C becomes more
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Figure 6.5.2.1: Case 3 (permittivity and permeability contrasts): distribution of the
singular values of C (left) and those in the case of noisy data 12dB signal-to-noise ratio
(right).
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Figure 6.5.2.2: Case 3 (permittivity and permeability contrasts): gray-level (or color)
maps of the amplitudes of Wc, c = e1 ∈ R3 (left), c = e2 ∈ R3 (right).
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Figure 6.5.2.3: Case 3 (permittivity and permeability contrasts): gray-level (or color)
map of the amplitude of Wc, c = e3 ∈ R3.

complicated in this stage due to the more complicated character of the inclusions
and the form of the Green's function G of the unperturbed waveguide.
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Conclusion

Three important scattering problems have been studied in this thesis:

1) The collection of inclusions is buried in a homogeneous medium.

2) The collection of inclusions is buried in a strati�ed medium. The medium
consists of two half spaces separated by a horizontal planar interface.

3) The collection of inclusions is buried in the core of an open waveguide.

For the two �rst problems the asymptotic expansions for the scattering amplitude
have been derived; for the third problem the formulae for the coe�cients of the
scattered modes have been obtained. Our goal was to use these formulae for e�-
ciently determining the locations and some important geometric information about
the small inclusions. Two non-iterative algorithms have been developed.

As one already indicated, the �rst algorithm, described in Chapter 2, reduces
the reconstruction problem to the calculation of an inverse Fourier transform. This
algorithm is proposed for the three and the two-dimensional scattering problems.
We did not give here numerical results for the three-dimensional case. However,
based on projections on three planes we could reduce the three-dimensional problem
to solving three two-dimensional problems.

As it has been shown by the numerical results, the corresponding resolution
achieved by an inverse Discrete Fourier Transform of the measured scattered data
is appraised to be of the order of half a wavelength, though, in some particular
cases, it can be signi�cantly reduced.

The second algorithm is described in Chapter 3. It has been developed on an
asymptotic �eld formulation for dielectric and magnetic embedding materials and
inclusions within them.

Note that this method can be also applied to a three-dimensional scattering
problem again by reducing the problem to three two-dimensional problems.
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The one-to-one correspondence between inclusions and singular vectors was
proven. It has been shown how we can use the singular vectors to localize the
inclusions. In view of the numerical experimentations, more singular vectors than
theoretically needed should be used in presence of a fair amount of noise.

Looking to the results provided in Chapter 4, we believe that the main weakness
of MUSIC is the following: one has no obvious criterion to split the response matrix
into an orthonormal basis and noise (especially in the cases of permeable inclusions
and of dielectric and permeable inclusions). Moreover, we know that the singular
vectors of the response matrix are not always a good approximation of the vectors
sj or/and dj (for example, the case of identical inclusions). So, we lose a lot of
information in this "split-step". On the other hand, Fourier inversion is ignoring it.
As already said, Fourier inversion seems to yield the "best image" of the singular
system of the response matrix.

However, there are many questions still open: (i) Can we use the idea of Fourier
inversion to get a good criterion to split the response matrix into basis and noise?
(ii) Can we use the SVD of the response matrix to compute the analytic continuation
of the scattering data? (iii) Comparing the resolution achieved by Fourier inversion
and by MUSIC, a natural question can be asked: can we apply the idea of MUSIC
(i.e. computing the cost function W·(z)) to the Fourier algorithm, which uses the
analytic continuation of the scattering data?

We note that the reconstruction procedures by Fourier inversion and MUSIC
depend on the Green's function. If the Green's function is more complex, the
Fourier inversion loses a nice property (due to the emerging of delta functions); at
the same time reconstruction by MUSIC becomes more di�cult and the one-to-one
correspondence between singular vectors and inclusions is not clear.

From Chapter 5, one can easily conclude that the MUSIC method as it has
been developed on an asymptotic �eld formulation for an aspect-limited, far-�eld
data con�guration and dielectric and magnetic embedding materials and inclusions
within them, performs quite well, even in presence of a fair amount of noise, with
some expected limitations (the case of a strongly refractive lower half-space for
purely dielectric inclusions).

Also, even if one has a one-to-one correspondence between inclusion and singular
vectors, it is not possible at this stage, except in the purely dielectric case, as it
can be argued from theoretical examination, to order the singular values in terms
of the contrast of the inclusions with respect to their embedding half-space; for
example, in the purely magnetic case, though similar results however are observed
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using proper couples of singular vectors with successive focusing, no argumentation
seems to be available yet.

Improvements may include the use of a recursive procedure in which the function
W·(z) is changed after each inclusion is found; i.e., a new function W·(z) is adjusted
recursively by projecting the signal space away from the subspace spanned by the
inclusions found [51]. Similarly, in presence of noisy data, using more singular
vectors than theoretically needed could be useful [58].

In the general case, a mathematical study of the properties of the singular system
of the MSR matrix can be made following the argumentation in Chapter 3. But
the analysis becomes more complex with an aspect-limited far �eld con�guration
and/or a more complex Green's function. That is why the focusing properties of the
singular values and singular vectors of this matrix should disappear. Let us however
emphasize the excellent resolution one can achieve in both cases, without su�ering
from possible spreading of the images along the longitudinal (depth) direction.

In Chapter 6 we have derived a new asymptotic formula for the scattered wave
in an open waveguide in the presence of an inclusion of small diameter. Then,
we successfully used this formula for the purpose of locating the inclusion from
measurements of the propagated modes excited by incident waves, in the form
of guided modes of the reference structure. In the case of multiple inclusions,
improvements again may include the use of a recursive procedure as indicated in
the above.

A mathematical study of the properties of the singular system of the response
matrix C can be made following the arguments given in Chapter 3. Again the
analysis is rather demanding because of the complex form of the Green's function
of the unperturbed waveguide.

To conclude, a good level of numerical experimentation is necessary in every sit-
uation which one has considered so far. This is especially important in the case of
permeable (or dielectric and permeable) inclusions since a proper choice of testing
functions (the b and c) means much. The same (the need of numerical experimen-
tation) is true with the sampling of the search space, since one has observed that an
improper sampling might even hide an inclusion in some cases. As for the impact
of noise and other measurement and model errors one does not claim to have led
a comprehensive study in this manuscript, and we recognize that doing so would
need much more work, especially if one wishes to get much closer than now to real
world situations. Finally the passage to three-dimensional situations involving mul-
tiple inclusions of general shape (e.g., ellipsoidal one), maybe close to one another
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or close to the interfaces of the embedding medium, remains a challenging matter
even though a good part of the theoretical apparatus is already available.



Appendix A

Some basic mathematical facts

In this appendix, we collect some basic mathematical facts for the convenience of
the reader.

A.1 Collectively compact operators
Let {Kn}+∞

n=1 be a sequence of bounded, linear operators of a Banach space B (into
itself). We say that the family of operators {Kn}+∞

n=1 is collectively compact i� the
set {Kn(x) : n ≥ 1, ||x|| ≤ 1} is relatively compact (its closure is compact) in B.
The following result is the �rst assertion in Theorem 4.3 in [14].

Theorem A.1.1 Let K and Kn, n ≥ 1, be bounded, linear operators of a Banach
space B. Assume that Kn → K, pointwise, and that {Kn − K}+∞

n=1 is collectively
compact. For any scalar, λ, the following two statements are equivalent

(i) λI −K is an isomorphism.

(ii) There exists N such that λI −Kn is an isomorphism for n ≥ N, and the set
{(λI −Kn)−1 : n ≥ N} is norm bounded.

A.2 The Shannon's sampling theorem
We call a function (or distribution) in Rd, d ≥ 1, whose Fourier transform vanishes
outside |ξ| ≤ L band-limited with bandwidth L. The Shannon's sampling theorem
is the following
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Theorem A.2.1 Let f ∈ L2(R) be band-limited with bandwidth h, and let 0 <

∆x ≤ π/L. Then f is uniquely determined by the values f(l∆x), l ∈ Z. The
smallest detail represented by such a function is then of size 2π/L. We also have
the explicit formula

f(x) =
∑

l∈Z
f

(
lπ

L

)
sin(Lx− lπ)

Lx− lπ
.

A.3 The singular value decomposition
Let A be a bounded operator of a Hilbert space H into the Hilbert space K. By
the singular value decomposition (SVD) we mean a representation of A in the form

Af =
∑

l

σl(f, fl)gl,

where (fl), (gl) are orthonormal systems in H,K, respectively, and σl are positive
numbers, the singular values of A. The sum may be �nite or in�nite. The adjoint
of A is given by

A∗g =
∑

l

σl(g, gl)fl,

and the operators

A∗Af =
∑

l

σ2
l (f, fl)fl, AA∗g =

∑

l

σ2
l (g, gl)gl

are self-adjoint operators in H,K, respectively. The spectrum of A∗A,AA∗ consists
of the eigenvalues σ2

l and possibly the eigenvalue 0, whose multiplicity may be
in�nite.

The spectral theorem applied to the positive semi-de�nite matrices AA∗ and
A∗A gives the following singular value decomposition of a matrix A ∈ Cm×n.

Theorem A.3.1 Let A ∈ Cm×n be given, and let q = min{m, n}. There is a matrix
Σ = (Σij) ∈ Cm×n with Σij = 0 for all i 6= j and Σ11 ≥ Σ22 ≥ . . . ≥ Σqq ≥ 0, and
there are two unitary matrices V ∈ Cm×m and W ∈ Cn×n such that A = V ΣW ∗.
The numbers {Σii} are the nonnegative square roots of the eigenvalues of AA∗,
and hence are uniquely determined. The columns of U are eigenvectors of AA∗

and the columns of V are eigenvectors of A∗A (arranged in the same order as the
corresponding eigenvalues Σ2

ii).
The "diagonal entries" Σii, i = 1, . . . , q = min{m,n} of Σ are called the singular

values of A, and the columns of U and the columns of V are the (respectively, left
and right) singular vectors of A.
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A.4 The Ger²gorin disk theorem
Theorem A.4.1 Let A = [aij] ∈ Cn×n, and let

Ri(A) =
n∑

j=1
j 6=i

|aij|, 1 ≤ i ≤ n,

denote the deleted absolute row sums of A. Then the eigenvalues of A are located
in the union of n disks

n⋃
i=1

{z ∈ C : |z − aii| ≤ Ri(A)} ≡ G(A).

Furthermore, if an union of k of these n disks forms a connected region that is
disjoint from all the remaining n − k disks, then there are precisely k eigenvalues
of A in this region.

The region G(A) is called the Ger²gorin region (for rows of A); the individual
disks in G(A) are called Ger²gorin disks1, and the boundaries of these disks are
called Ger²gorin circles. Since A and AT have the same eigenvalues (T standing
for transpose), to AT to obtain a region that contains the eigenvalues of A and is
speci�ed in terms of deleted absolute column sums

Cj(A) =
n∑

i=1
i6=j

|aij|, 1 ≤ i ≤ n.

Corollary A.4.1 Let A = [aij] ∈ Cn×n, then the eigenvalues of A are located in
the union of n disks

n⋃
j=1

{z ∈ C : |z − aii| ≤ Cj(A)} ≡ G(AT ).

Furthermore, if a union of k of these n disks forms a connected region that is disjoint
from all the remaining n − k disks, then there are precisely k eigenvalues of A in
this region.

1Intervals in the real case.
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A.5 Bessel functions
The Bessel function of the �rst kind of real order ν is de�ned by

Jν(x) = (
x

2
)ν

+∞∑

l=0

(−x2/4)l

l!Γ(ν + l + 1)
,

where Γ is the gamma function.
For n ∈ Z, we have the integral representation

Jn(x) =
1

2π

∫ π

−π

eix sin φ−inφdφ,

i.e., the functions Jn(x) are the Fourier coe�cients of eix sin φ. Therefore

eix sin φ =
∑

n∈Z
Jn(x)einφ. (A.5.1)

By the principle of analytic continuation, (A.5.1) is valid for all complex φ. See
[53].
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Figure A.5.1: Bessels functions Jn(x) of the �rst kind and order n, n = 1, . . . , 5.

For arguments x < ν, the Bessel function look qualitatively like simple powers
law, with the asymptotic form for 0 < x ¿ ν

Jν(x) ∼ 1

Γ(ν + 1)

(x

2

)ν

.

For x > ν, the Bessel function look qualitatively like cosine wave whose ampli-
tude decays as x−1/2. The asymptotic form for x À ν is

Jν(x) ∼
√

2

πx
cos

(
x− νπ

2
− π

4

)
.
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In the transition region where x ∼ ν, the typical amplitude of the Bessel function
is

Jν(ν) ∼ 21/3

32/3Γ
(

2
3

) 1

ν1/3
∼ 0.4473

ν1/3
,

which holds asymptotically for large ν.

A.6 Rellich's lemma
We �nally recall the following important result from the theory of the Helmholtz
equation. For its proof we refer to [24] (Lemma 2.11).

Lemma A.6.1 Let R0 > 0 and BR(0) = {|x| < R}. Let u satisfy the Helmholtz
equation ∆u + k2

0u = 0 for |x| > R0. Assume, furthermore, that

lim
R→+∞

∫

∂BR(0)

|u(x)|2 dσ(x) = 0 .

Then, u ≡ 0 for |x| > R0.

Note that the assertion of this lemma does not hold if k0 is imaginary or k0 = 0.
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