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Preface

THE THEORY OF decoherence was my initial interest for modern quantum mechanics.
This first encounter was promoted by W. H. Zurek at Los Alamos National Laboratory
with whom I learned also quantum information. The first part of this thesis is the
result of this fruitful and enjoyable collaboration. In essence, it introduces information
theoretical quantities for the study of the quantumn-classical transition. The first two
chapters of this first part aim at giving basic notions of quantum mechanics and of the
theory of decoherence. They are followed by two research articles in their almost original
version ([OZ02a] in collaboration with W. H. Zurek, and [OPZ03a] in collaboration with
D. Poulin and W. H. Zurek). The first one shows that an absence of quantum correlation
is not only a prerequisite for decoherence, but also a possible signature. The second
investigates the emergence of objective information for quantum systems. In particular,
it explains that an environment monitoring a quantum system broadcasts with high
sensitivity a single type of information about the system; which later acquires the status
of objective information.

The second topic of this work concerns error correction for quantum information
devices. This part starts with two brief introductions to the field of quantum information
and of quantum error correction. About this second point, I would like to encourage the
interested reader to focus first on Gottesman’s PhD thesis [Got97a] for the exceptional
clarity of this work concerning quantum block codes. Those two chapters are followed
by an attempt toward a theory of quantum convolutional codes. Some of these results
were presented in [OT03a, OT04a] with J.-P. Tillich. I would also like to mention that
part of this work was accomplished while visiting R. Laflamme at Perimeter Institute
thanks to D. Poulin's initiative.

Finally, my last interest concerns some implementations of quantum information
processing on physical devices. Being in Paris, I had the great opportunity to work on
the wonderful experiment of Haroche’s group. My confributions were quite modest since
those are only propositions of experiments. However, 1 particularly appreciated to work
with P. Milman on two different topics, cloning in cavity QED [MOR03a, MOY+03a]
and an implementation of the Toffoli gate [OMO03a].

H. Ollivier

Waterloo, Canada
October, 2004
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1 Introduction to quantum mechanics

- 1.1 Prologue

A LOT OF attention has been drawn to quantum mechanics in the past decade. Part of
this renewal is due to the discovery of unexpected computational capabilities of quantum
information processors [Pre98a, NC00a, KSV02a] — devices that use quantum systems
to process information. Quantum computing, as a new interdisciplinary field, motivates
most of the current experimental as well as theoretical researches on quantum mechan-
ics {for an overview of the goals and achievements of quantum information processing
see {HH02a]). It also promotes the analysis of the links between quantum theory and
computer science. Therefore, unlike classical' computer science, which does not necessi-
tate a deep understanding of the nature of the physical principles at work in a computer,
quantum information processing requires to spend some time learning quantum mechan-
ics. Time is needed to develop an intuition about quantum mechanics.

This chapter introduces some important concepts partly in the perspective of the
quantum processing of information. However, it would be misleading to think about
quantum mechanics solely through this specific application. This part, devoted to the
emergence of a classical world out of the quantum substrate, is an example of a more
complicated picture in which quantum information processing and other areas of quan-
tum mechanics are deeply inter-related: on the one hand, various interpretations of
quantum mechanics appeal to a process called decoherence (for an introduction to de-
coherence, see [Zur9la, Zur02a] and references therein) to insure the transition from a
quantum to a classical world, while on the other, the very same process is responsible
for the presence of errors in quantum computers (for an introduction to quantum error
correction, see [Pre98aj Chap. 7).

More precisely, the following sections will focus both on the interpretation problems
of the theory and on their relationship with the concept of information in quantum
mechanics. The presentation will deliberately emphasize a reiatively new trend among
physicists: information is the only relevant quantity in our incessant{ attempt to un-
derstand the world we live in [Har00a, Har0la, Fuc02b]. In this perspective, quantum
mechanics will be reduced to a small set of axioms. These axioms are a reasonable choice
because they lead to a theory whose predictions are confirmed by our everyday expe-
rience: computer hardware — based on quantum effects in solids — and laser pointers
are some examples of applications directly derived from quantum mechanics.

! Here classical must be understood as being the opposite of quantum.



6 1 Introduction to quantum mechanics

1.2 Foundations

1.2.1 General considerations about physical theories

Has science finally triumphed over obscurantism? Darwinism has undoubtedly been
one of the most significant advances in the comprehension of the organization of life
on earth — if not about the origin of life. However, it is being increasingly opposed to
other sorts of arguments. Even if the answer to this question is not yet definitive, science
should finally win the battle. Its advantage is that it does not require faith to establish
results. On the contrary, it only proceeds from the elementary observation of events
repeating themselves over time. This repeatability is the most fundamental statement
one could formulate about the universe: it allows the learning process to take place, and
simultaneously gives the intuition of a causal structure. The goal of any scientific theory
is to take into account this causality to extract laws and principles that will, in some
sense, crystallize our empirical understanding: I. Newton, by observing apples falling,
had the intuition of the existence of a universal law governing the attraction of masses.

Such simple remark constraints what a reasonable theory can be. In short, it must
summarize our experimental knowledge and propose an interpretation for the observed
phenomena. More technically, a theory that describes physics must predict the outcomes
of experiments carried out by a fair observer on a given particular system. Of course,
when predictions and experiments disagree, it is time to modify the theory. Because,
logic and mathematics are also concerned with statements that are repeatable — the-
orems hold as long as their associated assumptions are fulfilled — it seems natural to
express the laws of physics in mathematical terms. In turn, the mathematical structure
of the theory will have to:

¢ include a description of the state of the system, all the necessary — and only the
necessary — information about it to predict outcomes of experiments;

* give a way to compute the evolution in time of the latent properties of the system,
its state — it might necessitate to input some additional objective parameters such
as coupling constants, etc. —;

e describe how information can be extracted from the state of the system, define
measurement processes.

While the first two requirements are rather natural and expected, the last one seems
so trivial in classical physics that it is almost never mentioned. For quantum mechanics,
it has however a prominent place in the theory. It is also at the source of the main dif-
ference between quantum and classical information which W. H. Zurek summarizes as:
“in classical physics what is known about the state can be dissociated from that state,
while in quantum physics what is known about the state cannot be treated separately
from the state” [Zur03b]. Indeed, the measurement of quantum systems has always been
a subject of puzzlement. It was partly responsible of A. Einstein’s discontent about the
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new theory which he expressed as “God doesn’t play dice”. Researches on the measure-
ment process together with its associated interpretation problems did undergo a revival
under the impulse of quantum information processing. Some thought experiments have
been implemented on physical devices confirming the validity of quantum mechanics,
but more surprisingly the constraints imposed by the measurement process appeared
to be fruitful for cryptographic purposes: E. Knill said “Quantum information is about
what you can’t do” and we shall see that because of quantum measurements, we can’t
do much!

The other parts of this manuscript will be devoted to applications of quantum infor-
mation, but here we shall pursue on the theoretical implications raised by the quantum
measurement problem and more generally the quantum-classical transition — the emer-
gence of an objective reality out of the quantum substrate.

1.2.2 Axioms

Before introducing the fundamental axioms of quantum mechanics, it is important to
mention a few facts. First of all, these axioms, since they define a physical theory,
must satisfy the constraints evoked earlier. They must define the state of a system
mathematically, give its possible evolutions and explain what are the measurements,
This program will guide us throughout the rest of this section. Second, the reader
should keep in mind that different variants of this axiomatic description exist, but all
lead to the same physical theory. Of course, a particular choice of axioms is, in some
sense already an interpretation of the theory. The motivation of the particular choice
made here was to have a compact and comprehensive description of the theory.

Definition 1.2.1 (State). The state of a physical system is a compact description of
the properties of the system.

Axiom 1 (Pure state). The state of a quantum system is represented by a ray in a
Hilbert space.

For sake of simplicity, in the rest of this manuscript we will only consider the case
where the Hilbert space is finite dimensional. Infinite or continuous Hilbert spaces
are of course important. Their definition, uses, and interest can be found in standard
textbooks [CTDL7T7al, but for our purpose they will be an unnecessary complication.
Mathematically, a ray is the equivalence class of a non-zero vector with respect to the
multiplication by a complex number — a one-dimensional subspace. However, the con-
vention in quantum mechanics is not to manipulate the whole equivalence class directly,
but to access it through one of its elements. Such element, which symbolizes the state
of the system, is called the state vector or the ket vector |¢) in Dirac’s notation. Its
complex conjugate, also corresponding to linear forms over the state space, is the bra
{(¢|. The inner product, the braket, of |¢) by |¢) written (|¢), is the canonical inner
product of the Hilbert space. The convention in quantum mechanics is to impose a nor-
malization condition for state vectors, i.e. (¢|¢} = 1. Because this condition does not
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fully characterize a single vector in a ray, the normalized state vectors |1) and e [¢)
correspond to the same physical state. This is the so called invariance by a global phase.
Finally, the projection onto the vector |1) is noted |¢X#|.

Definition 1.2.2 (Evolution). The evolution of a quantum system is responsible for
the change of its presumed properties, the change of its state.

Axiom 2 (Evolution of pure states). The time evolution of a quantum system is
given by the Schrédinger equation,

d .
5 [P0) = —iH(2) [%()), (1.1)
where H(t) is a hermitian matrix called the Hamiltonian of the system.

Because the Hamiltonian is hermitian, the evolution operator that allows to compute
the evolved state vector at time ¢ from the initial condition at ¢t = 0 is unitary. For
instance, with an Hamiltonian H independent of ¢, one of its eigenstate, |3;), associated
to the eigenvalue E; evolves according to,

s} — e~ 5 ) (1.2)
while a generic state is transformed according to
Dacln) = ) e (1.3)
i i

Here, it is important to note that quantum mechanical evolutions are linear and invert-
ible — properties that are usually not encountered in classical physics. The linearity
is thought to be responsible for the quantum parallelism and the power of quantum
computers. It is also involved in one of the most famous no-go theorem of quantum
information, the no-cloning theorem [WZ82a, Die82a]. Finally, remark that evolutions
in quantum mechanics are deterministic: there is no randomness involved neither in
the description of the state nor in its evolution. Randomness will come only through
measurements.

Definition 1.2.3 (Measurement). A measurement is an action that leads to extrac-
tion of classical information about the state of a physical system.

Axiom 3 (Born’s rule). Each measurement on a quantum system is associated to a
hermitian matrix O called observable. The possible outcomes o; of the measurement are
the eigenvalues of O. When the state of the system is |¢), the probability of getting a
particular outcome oy, is given by

pi = (Y| 1I; [¥) (1.4)

where II; is the orthogonal projector onto the subspace associated to the eigenvalue o;.

[or——

——

i .

[ T———
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Quantum measurements are therefore inherently random. Even though the state
of a quantum system is perfectly known, some measurement results are known only
probabilistically.

Such situation is never encountered in classical physics where a perfectly known state
implies deterministic results — at least with perfect measuring devices. For instance,
suppose that the state of a classical object, e.g. a ball, is perfectly known. Then, mea-
suring its position and its momentum gives deterministic values. On the other hand,
suppose that a two-dimensional quantum system with basis {|0),|1)} is prepared in
the state (|0) + |1))/v/2. This corresponds to a perfectly known state since it gives a
complete description of its state vector |[¢/). Nonetheless, the measurement of the ob-
servable {0X0| — |1)(1] gives the value +1 with probability 1 and —1 with probability 3.
In quantum theory, there are measurement results that are intrinsically uncertain.

This is not the only surprising consequence of Born’s rule. The example above shows
that quantum measurements are an extremely poor tool — but nevertheless the only one
available — for gaining information about the state of a system: only one bit of infor-
maiion about the state of the system is extracted by such measurement whereas, on the
other hand, the state itself is parametrized by two complex numbers. In fact, when o; is
observed, this bit of information only tells that before the measurement the state |1) was
not orthogonal to I[1;. In quantum mechanics, there exists a gap between the state vector
description and the actual information one can obtain about the system through one-shot
measurements [Fuc96a, Fuc98a]. Once again such situation is not encountered in classi-
cal physics: the state of a system is equally parametrized by its properties, e.g. position
and momentum, but all these quantities can in principle be determined simultaneously
and with arbitrary accuracy in a single operation. The realization of this fundamental
difference should already point toward the potential difficuities of controlling quantum
systems in the perspective of quantum information processing. Surprisingly such control
is possible and quantum error correcting codes are an example of a feedback mechanism
involving measurements of quantum systems (see Part II).

This concludes this rapid presentation of the axioms of quantum mechanics. They
answer to three fundamental questions: how is a state represented, how does it evolve,
and what does the theory predict about the reality?

1.2.3 Collapse of the wave-function

The reader familiar with quantum mechanics is probably accustomed to find a fourth
axiom in the description of the theory. It was a choice to let it aside and not to consider
it as fundamental. In fact, called equivalently the collapse of the wave-packet or the
collapse of the state vector, it can be derived from the previous comstruction. The
approach proposed here will try to give an appropriate explanation of its relevance
rather than stating it as a postulate.

To arrive at the necessity of the collapse of the wave-function, we will first examine
quantum measurements in the light of classical physics. Namely, quantum mechanics
has been introduced to explain physics at the atomic or subatomic level — to explain the
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behavior of the fundamental constituents of classical objects. Under certain conditions,
it is should thus be possible to recover classical mechanics from quantum mechanical
laws. In particular, classical measurements should be quantum measurements restricted
to macroscopic objects.

Let us now analyze briefly what happens in the course of classical measurements.
There are two main motivations to conduct a measurement on a physical system: either
its state is unknown and the measurement is meant to give information about it, or
we know the state of the system at a given time and we want to check whether its
dynamics follows a given set of laws. The latter case can also serve to infer information
about another system (the one which is measured acts as a probe). Our everyday
experience shows us that, when a system is being measured, in most of the cases, this
measurement can be conducted in a way that does not disturbs the system: by looking
at a ball we learn its position without ever modifying it. However, because of the newly
acquired information our description of what we are thinking about the properties of
the system changes. We update the state of the system because we have reduced our
ignorance about it. This procedure is well known in probability theory and is called the
Bayes rule [CT91a]. Namely if two random variables X and Y have a joint probability
distribution pxy (i, 7) the observation of a particular realization, e.g. jo, of the random
process for ¥ leads us to update our description of X. Conditionally to the information
about Y, the probability distribution of X becomes pxy (%, j0)/ 3= pxv (%, jo). We shall
see that the collapse of the wave-function is the exact analog of the Bayes rule.

We now return to the fully quantum case. As a probabilistic theory, quantum me-
chanics is also subject to the Bayes rule. When an observer gets aware of a measurement
result, he should update the probability distribution of the results so that it corresponds
to his current knowledge of the system. The particularity of quantum mechanics is that
all probabilities derive from a more fundamental description, the state vector. Hence,
he should translate the Bayes rule to state vectors in order to properly account for a
gain of information. The collapse of the wave function corresponds precisely to this
updating procedure: the state of the system, after the outcome o; of observable O has
been obtained, must be such that, in absence of dynamical evolution, if O is measured
again the same result o; occurs deterministically.

Proposition 1.2.1. For a non-degenerate observable O — whose eigenspaces are one-
dimensional — the update of the state vector when outcome o; associated with the
projector I1; is obtained must follow the simple rule:

) — IL; |} _
VL )

Proof 1.2.1. To arrive at this conclusion it is sufficient to realize that for having a
deterministic result when the same subsequent measurement is performed the state vec-
tor must have support only in the subspace given by the projection operator II;. Since
this subspace is one-dimensional it defines a ray in the Hilbert space, and therefore the
state of the system. The square root factor is added to respect the quantum mechanical
conventions that represent rays by vectors normalized to 1. [

(1.5)

I
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1.3 Open quantum systems ‘ 11

I hope that this simple derivation,

e justifies the choice of removing the collapse of the wave function from the axiomatic
description of quantum mechanics;

» tackles the almost mystical origins of this collapse;
s shows that information is required to claim for a collapse.

This third remark points out that even though the collapse is instantaneous, it only
concerns the knowledge we have about the state of a system and, most importantly,
is conditional to a measurement result. Hence, there is no instantaneous action at a
distance.?

1.3 Open quantum systems

After this short review of the foundations of quantum mechanics, we will start to elab-
orate on them. In this perspective, open quantum systems are the first obvious gener-
alization once the quantum formalism is introduced. They are particularly important
for understanding the quantum-classical transition as well as the origins of the errors
in quantum computers. Contrarily to closed quantum systems, open systems are not
explicitly described by state vectors. Their openness, synonymous of interaction and
exchange of energy with other quantum systems such as an environment, requires a
probabilistic treatment at the level of the state. These systems tend to get correlated to
other sysiems that are inaccessible to measurements and which perturb them at random.
While this case is not directly taken into account by the axioms that we introduced ear-
lier, it derives from them: open quantum systems can always be viewed as subsystems
of a bigger closed quantum system.

The mathematical treatment of open quantum systems must take into account these
new possibilities. It appeals to a slight modification of their definition: the state of a
system is a linear form f over the algebra of its observables. The value of f for a given
observable O is the average of O for a collection of many quantum systems all prepared
in the state corresponding to f. Since any linear form f over the observables can be

written
f:0—Trp0O, (1.6)

where p is another hermitian matrix. The state of a system is thus completely described
by p itself, and the state of the system is consequently identified with p, which is called
the density matrix.

Of course this formalism also takes into account closed quantum systems. If we note
that the average value of O for a state |¢) is (¥} O |¢) = Tr })1} O we conclude that

2Hence, using the collapse of the wave-fanction in bipartite quantum correlated systems for the
purpose of superluminal communication is bound to fail. One party cannot collapse the other party’s
description of the overall state without sending information — which takes place at a speed lower than
the speed of light.
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the system is equally described by the density matrix p = |¢))}4|. By definition, the
observable [ = (1] should average to 1 for any state, thus valid density matrices

1
0
must satisfy Trp = 1. Similarly, for any physical state the average value of a positive
operator must be positive as well, which imposes density matrices to be positive semi-
definite.

Note also that pure states — the states whose density matrix is a one-dimensional
projector — are extremal points of the convex set of admissible density matrices. All
others — the mixed states — can be viewed as the result of a lack of information about

- the preparation of the state of the system. Any density matrix can be written as

p= ZP:‘ | Xabi| » (1.7)

where |¢/;} are pure states and {:}: is a probability distribution over these states. Hence,
p can be obtained by preparing the state [1;) with probability p;. However, even though
the above decomposition is not unique, different preparations of the same p cannot be
distinguished by a measurement. This is a direct consequence of the definition of p it
is the mapping between observables and their average values. Thus, by construction, p
contains all the information about the physical system. Note that this indistinguishably
principle has had in the recent years a quite astonishing application as it ensures the
unconditional security of some quantum cryptographic schemes (for the most simple
examples, see [BB84a, SP00a}).

The introduction of this new formalism was motivated by the necessity to describe
the state of a system interacting with its environment. We shall now pursue this goal and
explain how these mixed states arise from pure states of a larger bipartite system. As we
already mentioned, quantum mechanics was originally constructed for isclated systems.
It is nevertheless possible to consider just a single subsystem of a bigger quantum system
containing it. The whole is supposed to be in a pure state, [1), and to follow the usual
axioms of quantum mechanics. Affecting a state to the subsystem .A — we suppose .A-B
constitutes a closed system — consistently to the density matrix formalism implies to
find a matrix p4 such that for any observable O of A we get the correct average value
by computing Tr p4O. Note that measuring O on the system A without doing anything
to B is equivalent to measure O ® I on the whole — I does not bring information about
B. Hence, we must have

Tr p40 = Tr (¥} 0 ® I). (1.8)
This defines the following application
Trp : [9)d] — pa (1.9)

which is called the partial trace over B. For example, suppose that A and B are two-
dimensional systems, and that their combined state is {|0) |0y +|1) |[1))/v/2. The partial
trace over B gives the result

Trs (500103 + 1) (01 01+ 41 1)) = 5 ( o) ) , (110)

et
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which is not a pure state anymore: this matrix does not correspond to a one dimensional
projector. In short, mixed states of Eq. (1.7) can also arise as the result of a lack of
information about the correlations of a system: here, the correlations of A and B are
simply ignored and lead to uncertainty about A. Any non-degenerate observable will
have a % probability for each of its outcomes.

The possible evolutions of open quantum systems are obtained in a similar way. The
system of interest is considered as part of a larger and closed quantum system which
follows Schrédinger’s equation. The effect of this evolution for the system of interest is
obtained by taking the appropriate partial trace. The complete mathematical treatment
will not be reproduced here, but instead will give the result directly [Kra83a, Pre98a,
NCO00a] : allowed evolutions for open quantum systems are through completely positive
trace preserving maps. Note that while the positivity of an operator L is defined as the
positivity of the operators L{p) for p positive, the complete positivity is the positivity
of L @ I for all finite size identity matrices I. This result is fundamental both for its
theoretical and practical implications. However, in this manuscript, we will not use it
directly but rather specify our environment and its interaction with the quantum system
under scrutiny. We will compute the evolution of the combined quantum state and take
the partial trace in order to find the exact transformation of the open system of interest.

Pursuing the idea of considering larger systems, it is also possible to define generalized
measurements. They are historically related to open quantum systems but also apply to
closed quantum systems [neud3a, Neu54a, Kra83a]. They are constructed by letting the
system interact with an ancillary quantum system and by measuring the combined state.
In this case, we are not any more confronfed to observables but to Positive Operator
Value Measures (POVM). It is given mathematically as a decomposition of the identity
into trace decreasing positive semi-definite operators, {E;}; such that 3 ; E; = I. The
probability of getting the outcome E; is given by

pi = Tr (pEs). (1.11)

Note that this equation is the analog of Eq. (1.4) when E; is replaced by the projector
I;. However, contrarily to standard measurements, there is no direct way to deduce into
what state the wave-function collapses when a measurement result has been obtained.
To arrive at a result, one must come back to the description of the POVM as a projective
measurement onto the larger Hilbert space of the system and the ancillas. There, the
result about the collapse of the wave-function can be applied. When this procedure
is followed, each operator E; is decomposed as E; = A,—A:r for some A;’s. When the
particular outcome ¢ is obtained, the state of the measured system must be updated
according to:
- AipAl _
Tr A;pAl
Unfortunately, the operators A; generally depends on the specific implementation of the
POVM (see the discussion in [Pre98a]). Thus, to correctly update the state of a system
after a measurement, one must have a precise description of the measuring device itself.

p (1.12)
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This concludes our short presentation of quantum mechanics for open quantum sys-
tems. Of course a lot more could be said but this would be unnecessary: while open
quantum systems are of fundamental interest, the concepts used in this manuscript are
simple enough to be understood with the help of these elementary notions.

1.4 Superposition and entanglement

Quantum theory differs from classical mechanics partly because of the linearity of the
Schrédinger equation: given the evolution of two state vectors, the evolution of any linear
combination of the evolutions is the linear combination of the evolutions, Eq. (1.3). For
example, suppose the position of a particle is governed by quantum mechanics and two
trajectories are known. Then, the trajectory composed of the superposition — in the
sense of the superposition of the state vectors describing these trajectories — also satisfies
the Schrédinger equation. Nothing prevents these states to exist. Actually, interference
experiments with one photon, and even quite large molecules [NAZ02a, HHB-04a],
prove that they describe the physical reality. This superposition principle of quantum
mechanics is analogous to the one of elementary electricity with Kirchhof’s laws.

However, note that this concept is totally different from the one introduced earlier
about the density matrices: a mixed state is a convex combination of pure states, but
in this case the addition is carried out for density matrices representing the state and
not for state vectors (i.e. vectors in a Hilbert space).

As a preview of the potential problems of the quantum-classical transition, one can
ask the following question: why are superpositions of trajectories for classical objects
never observed even though they are ultimately made of quantum particles? In other
words, what prevents the observation of superpositions of macroscopic states, while
nothing in the axioms of quantum mechanics suggests the presence of a selection principle
that would eliminate them?

A possible rephrasing of this question would lead to consider the origin of the viola-
tion of the basis invariance of quantum mechanics at a macroscopic level. For instance,
the state [+) = (|0) + |1))/v/2 of a two-dimensional system is a superposition of the
vectors [0) and |1). But if one defines |—) = (|0) — |1))/v2, we have the identity
[0) = (I+) + |~))/v2 which shows that |0) can also be considered as a superposition of
[+) and |-). In fact, this kind of relation holds in more general situations. Then, one
usually concludes that there is no preferred basis in quantum mechanics that would lead
to a sensible interpretation of superpositions. However, for large systems a preferred
basis emerges and rules out superpositions of its states. Those are the classical states of
macroscopic objects: for a ball there is no superposition in the position basis.

The superposition principle could be just a curiosity of quantum mechanics allowing
strange manifestations, but this is not the end of the story. R. P. Feynman realized
its before-then unexpected implications [Fey82a, Fey84a, Fey86a). A generic state of n
two-dimensional systems is a superposition of the 2 basis states. Hence, to represent
the state of such system, it generally requires to store about 2" complex numbers. This

[——-}
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rapidly exceeds the capacities of the biggest computers to simulate interacting quantum
gystems. However, if the information about the combined state is stored directly into
quantum mechanical systems it requires only n two level systems. Therefore, such
representation could enhance our abilities to simulate large quantum systems. This
simple remark is certainly at the source of quantum computation, but it took some time
before D. Deutsch proved that this assertion was indeed correct [Deu85aj, and that the
quantum computing idea could work, at least in principle.

Finally, and before concluding this chapter, we should mention an additional man-
ifestation of the superposition principle for composite quantum systems, called entan-
glement. This notion is best explained by considering the following example: the state
(]0} [0) + {1} [1))/VZ of two systems .A and B each having two dimensions cannot be
written as a product state — a state [¢/4) [¢5). Proving such statement is not a difficult
task, and is a consequence of the fact that product states can only be transformed into
other product states by changes of basis on each composite system separately. In addi-
tion, it is possible to prove that this kind of correlations cannot be created by classical
means [Bel64a]. It thus becomes a physical resource when A and B cannot interact
with each other in a quantum way. The immense interest for entanglement is due partly
to its very fundamental consequences for quantum theory (e.g. it constraints through
the Bell inequalities [Bel64a] to abandon A. Einstein’s local realism point of view); its
applications in quantum communication (e.g. [BW92a] or [BBC+93a]); its implication
in the speed-up of pure state quantum computers [JLO2a).

- 1.5 Conclusion

After this brief introduction to quantum mechanics, the manuscript will deal with to
different subjects. The first one will explore the interpretations of quantum mechan-
ics and how the classical world emerges from the quantum realm. The other subject
concerns quantum information and scme of its implementations. It will focus on er-
ror correcting codes and on the design of experiments aimed at realizing elementary
gquantum operations.

If one thing should be remembered from this introduction it would be undoubtedly
the role of information. Information constraints the mathematical representation of the
state of quantum system. It also explains the collapse of the wave-function. It gives
the intuition that quantum systems might have a greater ability to store information
than classical bits. Finally, the next chapters will exemplify its use as a powerful tool
to investigate the emergence of a classical world out of the quantum realm.
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2 Introduction to decoherence and einselection

2.1 The need for an interpretation

QUANTUM THEORY HAS been verified by an impressive amount of experiments such
as tests of Bell’s inequalities [AGR81a|. Physicists have no doubt about of its predic-
tions. However, there is still a domain in which quantum theory fails to provide an
unquestionable framework of understanding: the existence of a macroscopic and clas-
sical world made of microscopic quantum particles. In the same vein, the universe as
a closed quantum system should allow superpositions as a consequence of the linearity
of Schrédinger’s equation. Such superpositions are nonetheless never observed. This
simple example seems to violate the basis invariance of quantum mechanics: the uni-
verse exhibits classical features. Less singular examples can be taken in our everyday
life but show always the same behavior: only one alternative emerges from the possible
superpositions. Even though quantum theory does not indicate a limit to the validity of
Schrodinger’s equation, a single classical world exists.

The easiest way to solve this problem raised by the quantum theory is to impose a
limit to the validity of the quantum description. That is to prescribe the impossibility
to apply quantum mechanics to macroscopic objects. Mesoscopic physics therefore con-
stitutes a fuzzy border line between the quantum and the classical regimes. Nonetheless,
this solution does not bring any answer to the initial question: why would quantum the-
ory not be applicable to macroscopic systems? This question became even more acute
since the discovery that macroscopic systems must sometimes be considered as quantum
objects: Weber bars—gravity wave detectors weighting about a ton—must be described
in terms of quantum mechanical oscillators.

2.2 The measurement problem

In the perspective of a rigorous analysis, the quantum-classical transition is often reduced
to a more restrictive framework. This framework is the one of quantum measurements.
The translation of the emergence of a classical world—of the choice of classical outcomes
in a measurement—is then called the measurement problem.

More precisely, the typical quantum measurement context consists in two quantum
systems—the system S and the apparatus .A—, which interact in a carefully controlled
way. Because of this interaction, & and A get correlated. When A is initially in a
perfectly known state—a pure state—, this process corresponds to a transfer of infor-
mation from the system to the apparatus. For instance, a two dimensional system &
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in the state ([0} + |1))/+/2 could interact with an apparatus .A in the initial state |0}.
For some Hamiltonian and for some interaction time, the combined state of S~A4 can be
transformed in the following way:
1
%(IO) +{1)10) — (10} 10) + [1} 1))/ v2. (2.1)

Here, an obvious one-to-one correlation between the {|0),]1)} bases of the system and of
the apparatus is created. Then, it might seem legitimate to claim that the measurement
of the system with respect to the {|0),|1)} basis has been performed. This is not the
case. If we rewrite the above correlated state with the help of |0) = (|+) + |—))/v2 and
[1) = (J+) — [-))/V2, we get the following identity,

(10)(0) + (1} [1))/V2 = (|4} |+) + |-} |-))/ V2. (2.2)

At this stage, it is impossible to maintain that the measurement process is complete.
With respect to the state of the pair, each basis of S, {|0), |1)} as well as {|+), [-)}, is
equally correlated with a set of perfectly distinguishable states of the apparatus.

Indeed, this matter of fact is the consequence of the presence of quantum corre-
lations between the system and the apparatus. Before considering this idea in detail
(see Chap. 3), we shall continue with our initial example and describe quickly how such
problem can be effectively solved. Suppose that there is a transformation applied to
the state of the apparatus which maps any superposition of states, a |0) + 8|1} into the
density matrix |a|? [0X0] + |8/% |1){(1]. When applied to the entangled state of S — — .4,
Eq. (2.2), this transformation leads to 3(|0X0| ® |OX0] + 1)1} ® [1X1[). In such case,
the basis invariance exemplified earlier does not hold anymore: there is only one basis
in which the system and the apparatus keep a one-to-one correlation in spite of this
process. Then, and only then, would it be possible to conclude that the system has been
measured in the {|0),|1}} basis.

The aim of the various interpretations of quantum mechanics is to provide an ex-
planation for this transformation which conveniently removes the basis invariance of
the apparatus. As a consequence, it will also give a way to understand the quantum-
classical transition as an effect of the emergence of a preferred basis for quantum systems
interacting with an environment.

In the following sections, we briefly describe how the measurement problem is taken
into account in the most common interpretations of quantum mechanics.

2.3 Copenhagen interpretation

The core of Copenhagen interpretation (see [Boh63a] and references therein) is simply
to appeal for a limit to the validity of quantum mechanics: the question of deciding
what is measured is answered by requiring the presence of classical measuring devices
to obtain information about quantum systems. In this case, there is no need to search
for pointer states nor to eliminate entanglement between the system and the apparatus.
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Because of its classical description, the apparatus cannot explore the basis invariance of
quantum mechanics nor can it be entangled with the to-be-measured quantum system.
In fact, this point of view turns out to push the difficulty a step further: why are
there classical objects, and where do they come from? Indeed, N. Bohr suggested to
allow the border between the quantum and the classical to be movable. Ultimately, it
should be possible to regard any system as quantum mechanical as long as the proper
classical apparatus can be found. Human observers are no exception to the rule.

To rephrase the Copenhagen interpretation, it postulates the existence of a classi-
cal world outside the quantum one, and from which we can observe quantum effects.
However, the fact that apparatuses themselves must sometimes be described in quan-
tum mechanical terms also suggests that a quantum description underlies the classical
existence of measuring devices. Unfortunately, this interpretation does not provide a
satisfying a satisfying description of such more fundamental structure.

2.4 Many world interpretation

The many world interpretation was introduced by H. Everett in 1957 [Eve57a] and
takes apparently a radically different approach. It attempts at describing quantum
theory from inside rather than from outside: when one considers the universe as a
whole there cannot be appropriate classical measuring devices nor external observers to
record measurement results. Rather, the whole measurement process has to be described
within the deterministic framework of the theory {i.e. without appealing to the existence
of classical objects).

This interpretation postulates the existence of a preferred basis for writing superpo- -
sitions of the state vector of the universe. This basis is chosen in a way such that if a
measurement is made in this basis, the resulting states of subsystems continue to be pure
states. Each element of the preferred basis is called a branch of the universe. By defini-
tion, the branches correspond to mutually exclusive events, which appears deterministic
to an observer who has access only to a single branch. The many world interpretation
actually states that this is the way of looking at the measurement problem: each time
a system and an apparatus interact, the state vector of the universe branches and leads
to mutually exclusive events. The observers can only see a single definite outcome since
they are described by the branching process of the state vector of the universe.

This interpretation seems to remove cleverly the possibility of seeing consequences
of the superpositions principle. However, it does not really define the preferred basis
in an unambiguous way: Eq. (2.2) defines two legitimate decompositions in branches
for the same superposition. Why only some branches are selected and when does this
selection happen are questions that arise naturally and that are not answered by the
many world’s view.
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2.5 Existential interpretation

2.5.1 A transition to the classical reality

The two interpretations that we reviewed above fail in properly solving the measurement
problem. Both of them in fact push this problem a little further, into regions where it
is more difficult to argue rigorously. On the other hand, facts are still striking: classical
states exist and quantum mechanics is verified for systems of increasing size. Once again,
it leads to the intuition that the classical world can certainly be explained consistently
within the quantum mechanical framework. .

‘Progress on this path started when H. D. Zeh, among others (see [GJK+96a)] and
references therein}, realized that macroscopic systems are usually not closed systems.
Thus, they are not bound to follow Schrédinger’s equation and could probably escape
the constraint set by its linearity. This idea was developed by W. H. Zurek [Zur8la,
ZurB2a, Zur9la, Zur93b, Zur98a, Zur03a)], and constitutes the heart of the theory of
decoherence and einselection—environment induced superselection—as a solution to the
measurement problem: under certain conditions, the interaction of an uncontrolled en-
vironment can actually select a preferred basis and impose all density matrices to be
diagonal in this basis. For a quantum measuring device, this means that its pointer can-
not be anymore in a superposition of states. It destroys the basis invariance of entangled
quantum states. What is measured and when it is measured are the two fundamental
questions that can be answered by the theory of decoherence.

The rest of this section will define this process. It will provide the fundamental
material required by more elaborate constructions. One such construction is used to
analyze the emergence of objective properties for classical systems, Chap. 4.

2.5.2 Decoherence and einselection

Definition 2.5.1 {Decoherence). Decoherence is the process by which a quantum
system loses its possibility of being in a superposition of states.

Such definition is voluntarily vague because decoherence can take many aspects.
However, one possible source of misconceptions should be tackled readily: it is always
possible to express the density matrix of a quantum system into its diagonal basis. Then,
it will appear as a discrete probability distribution over the set of its eigenstates, and
will therefore not appeal to the superposition principle. Did decoherence take place? Of
course not. Contrarily to this trivial case, the decoherence basis—or the set of pointer
states—for a system should not depend on its current state. It is fixed in advance. The
decoherence process reduces any density matrix of the system to a classical mixture in
this basis.

Einselection is the general possibility of quantum systems to violate the superposition
principle. Thus, it must have its origin in the interaction with an unobserved quantum
system. This is usually embraced by the term environment. It can be of course consti-
tuted by any quantum system or even by internal and unaccessible degrees of freedom of
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the quantum system of interest. Finally, note that the study of einselection is a search
for criteria and conditions that lead to the appropriate viclation of the superposition
principle. Decoherence is not about proving that any interaction with an environment
will proceed in the emergence of classicality. Other phenomena can happen to open
quantum systems besides decoherence. Noise or dissipation are some examples of such
other possible processes.

The next chapters are based on the following toy model: an environment £ interacts
with the quantum system S, and continuously performs a pre-measurement on it. This
pre-measurement step is the one that lead to an entangled state between the system and
the apparatus when we explained the measurement problem, Eq. (2.1). Most of the time,
it is assumed that the environment is in fact made of NV subsystems which independently
interact with &. This interaction is the same for all subsystems, except mayhe for their
coupling strength. Such decomposition in subsystems of the environment can be, for
instance, the phonons for an electron in solid, or thermal photons for an atom in a
cavity.

A generic Hamiltonian that realizes such pre-measurement has the form

N
Hr=) gA®B;, (2.3)
=1
where each A is an observable of the system and B; are non-degenerate observables acting
on each subsystem of the environment independently. In addition, and to simplify the
analysis, the coupling constants are chosen randomly over some real interval. The effect
of each of these terms in the Hamiitonian is to impose a conditional evolution to the
state |¢;) of the i-th environment according to the eigenstates of A, Jai):

N N
Iak)® [%:) — lax) ®GXP(*i9éAkBit) |4} (2.4)

=1 i=1
The full dynamics for the system S—after the partial trace over the environment—leads
to a density matrix at time ¢ of the form

N
p(t) = lowl? laxXar| + Y onof zu(t) laxXal , (2.5)
k= kAL

where z(t) is a complex function which satisfies for ¢ large enough (zx(t)) = 0 and
{|zk()]?) = O(exp(—N)), with {.} denoting the average over the distribution of coupling
constants.

It is now obvious that a set of states has emerged: the eigenstates of A are left un-
touched by the open dynamics, while those involving superpositions of the latter become
the corresponding mixtures. Einselection is the result of an environment induced super-
selection rule—a rule that forbids superposition of quantum states because it reduces
the algebra of observables to a direct sum of such algebras. Decoherence has taken place
within this simple model. This gives an explicit example of the emergence of classical
reality within the standard quantum mechanical framework (i.e. in absence of additional
postulates).
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2.5.3 Several criteria, pros and cons

Our next goal is to provide criteria to analyze the evolution of open quantum systems
in the perspective of finding pointer states.

The most obvious one is probably the commutation of an observable O with the
interaction Hamiltonian used to induce the conditional dynamics of the environment,

(0, H)) = OH; — H{O = 0. (2.6)

In the Heisenberg picture of quantum mechanics—obtained by evolving the observables
rather than the states—the commutation of H; and O is equivalent to require that O does
not change under the combined dynamics of the system and its environment [CTDL77a).
The eigenstates of those observables will remain pure, while others will be transformed
into mixtures. The algebra of such observables is precisely forming a direct sum of
smaller algebras, signature of a superselection rule.

However, even though this criterion has proved its utility in simple situations, its
ability to analyze more complex situations is very limited. In essence, quantum systems
usually have their own dynamics acting together with the Hamiltonian of interaction. In
such cases, dissipation generally occurs and the only observable satisfying the commuta-
tion relation is the identity: all states eventually lead to the maximally mixed state. It
is nonetheless possible to motivate the use of the commutation relation with the interac-
tion Hamiltonian for certain well identified cases. In general, it appeals for yet another
criterion.

Until now, we have defined classical states as the states that do not get affected at
all by the openness of the dynamics. This is in some sense too restrictive to account for
the complexity of the decoherence process. At least intuitively, even when dissipation
occurs, there must exist states that are almost not affected by the openness of the
dynamics—the pointer ones—while the others are very sensitive to the interaction with
the environment. We thus arrive quite naturally at a second criterion for deccherence:
the predictability sieve. Pointer states are the ones that produce the smallest amount of
von Neumann’s entropy' over the characteristic time of the interaction {Zur93b, Zur98a].

This criterion applied to the case detailed previously gives the same results than
the commutation rule. An advantage of the predictability sieve is that it works in
more complicated situations. For instance, it played a crucial role in understanding
why Gaussian states for the quantum Brownian motion can be considered as classical
states [PHZ93a]. This single discovery has actually given rise to an impressive literature
on the subject (see [PZ01a] and references therein).

£ 'Von Neumann’s entropy, —Tr plog p, is an indicator of the disorder of the system or equivalently
of its unpredictability. Thus, the production of von Neumann’s entropy characterizes the perturbation
induced by the environment on the system.
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~ 2.5.4 Summary

To come back to our original questions, we have found that under certain circumstances,
a quantum system can exhibit a preferred classical basis. It emerges from the quantum
description via the interaction of the system with an unaccessible environment. While
einselection explains what are the alternatives for the collapse of the wave-function,
it does not tell why a particular outcome is actually chosen. The consensus among
physicists ig that the latter is a truly random process. This matter of fact is actually
confirmed by all the experiments until now. We have also seen that a way to recover
classical states out of quantum theory is to search for the most stable states, those that
are least perturbed by the interaction with the environment. W. H. Zurek’s aphorism
holds [Zur98a): “states that exist are states that persist”.

In the next chapters we will continue to investigate decoherence and einselection.
First we will describe a tool to analyze the quantumness of the correlations between a
system and an apparatus. As a second step, we will see that the einselected states can
also acquire other features of classical states such as an objective description.
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THE ORIGINAL MOTIVATION for the pointer states—states that are monitored by the
environment but do not entangle with it, and are therefore stable in spite of the open-
ness of the system—comes from the study of quantum measurements [vN32a, WZ82a,
Die82a, Per93a]. When the quantum apparatus A interacts with the system & (pre-
measurement), the S—A pair becomes entangled. The nature of the resulting quantum
correlations makes it impossible to ascribe any independent reality to, say, the state of
the apparatus [Zur8la]. One dramatic manifestation of this “unreality” of the state of
the apparatus is its malleability: a measurement of different observables on the state
of the system will force the apparatus into mutually incompatible pure quantum states.
This is a consequence of the basis ambiguity. It is best exhibited by noting that the S-.A4
state after the pre-measurement

s =3 ailsi) las) (3.)

is typically entangled. One can rewrite it in a different basis of, e.g. the system, and one-
to-one correlation with a corresponding set of pure, but not necessarily orthogonal, states
of the apparatus will remain. Thus, it is obviously impossible to maintain that before
the measurements the apparatus had an unknown but real (i.e. existing independently
of the system) quantum state.

Decoherence leads to environment-induced superselection (or einselection) which sin-
gles out the pointer states and thus removes quantum excess of correlation respon-
sible for the basis ambiguity. The density matrix of the decohering quantum appa-
ratus loses its off-diagonal terms as a result of the interaction with the environment
[Zur93b, GJK-+96a, PZ01a, Zur03a}:

By = Wsa) Wsal®

= Y leal® |si) (sil ® fa:) {asl = o5 (3.2)

Above {a;| a;) = &;; following the ideal einselection process, which transforms a pure
pE 4 into a decohered pZ 4 satisfying the superselection identity [BLOT90a, Giu00a]:

pEa =" PAAPA. (3.3)

Above P;A correspond to the superselection sectors of the apparatus, e.g. the record

states of its pointer (in our example P = |a;) (a;}). One implication of this equation is
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that—once einselection has forced the apparatus to abide by Eq. (3.3)—its state can be
consulted (measured) in the basis corresponding to the superselection sectors PA leaving
p8 4 unchanged [Zur93b, Zur03a).

Einselection, Eq. (3.2), obviously decreases correlations between S and A. Yet, in a
good measurement, one-to-one correlation between the pointer states of the apparatus
and a corresponding set of system states must survive. We shall use two classically
equivalent formulas for the mutual information to quantify the quantum and the classical
strength of the correlations present in a joint density matrix ps 4, and study the difference
between these two as a measure of the quantum excess of correlations—the quantum
discord—in ps.4. :

3.1 Mutual Information

In classical information theory [CT91a] the Shannon entropy, H (X), describes the ig-

norance about a random variable X, H(X) = — 3, px(é)logpx(¢). The correlation
between two random variables X and Y is measured by the mutual information:
J(X :Y) = H(X) - HX]Y), (3.4)

where H(X|Y} = 35, py (/)H(X|Y = j) is the conditional entropy of X given Y. All
the probability distributions are derived from the joint one, Pxy (i, )

px (i) = E_PX,Y('E_-J'), Py =) pxy(i,5) (3.5)
i 1

pxty(%,7) = pxy(3,7)/py(5) (Bayes rule). (3.6)

Hence, the mutual information measures the average decrease of entropy on X when Y
is found out. Using the Bayes rule, Eq. (3.6), one can show that H(X Y)=H(X,Y)-
H(Y'). This leads to another classically equivalent expression for the mutual information:

I(X:Y)= H(X)+ H(Y) - H(X,Y). (3.7)

One would like to generalize the concept of mutual information to quantum systems.
One route to this goal, motivated by discussions of quantum information processing, has
been put forward [SN96a, CA97a]. We shall pursue a different strategy, using Egs. (3.4)
and (3.7). We start by defining Z and .7 for a pair of quantum systems.

All the ingredients involved in the definition of Z are easily generalized to deal with
arbitrary quantum systems by replacing the classical probability distributions by the
appropriate density matrices ps, p4 and ps4 and the Shannon entropy by the von
Neumann entropy, e.g. S(S8) = S(ps) = —Trs ps log ps:

T(S : A) = S(S) + S(A4) — 5(S, A). (3.8)

In this formula, S(S) + S(A) represents the uncertainty of S and A treated separately,
and S(S, A) is the uncertainty about the combined system described by pg 4. However,

Femomani ¢y
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in contrast with the classical case, extracting all information potentially present in a
combined quantum system described by ps4 will, in general, require a measurement on
the combined Hilbert space Hs4 = Hs ® H4. The quantum version of 7 has been used
some years ago to study entanglement [Zur83a}, and subsequently rediscovered [BP89a).

On the other hand, the generalization of .7 is not as automatic as for Z, since defining
a quantum conditional entropy S{(S|.A) requires us to specify the state of S given the
state of 4. Such statement in quantum theory is ambiguous until the to-be-measured
set of states .4 is selected. We focus on perfect measurements of .A defined by a set of
one-dimensional projectors {H;‘}. The label j distinguishes different outcomes of this
measurement.

The state of &, after the outcome corresponding to H;-“ has been detected, is

Psimp = I ps ATl /Trs ATl ps a, (3.9)

with probability p; = Trsa H;-"pSA. S(psm;q) is the missing information about §. The
entropies S{p 6'11'1*-")’ weighted by probabilities, p;, yield to the conditional entropy of &
3

given the complete measurement {H;—"} on A,
S(SHIZ'Y) = 2_p; S(psp)- (3.10)
3
This leads to the following gquantum generalization of J:
TS : Aynay = 5(S) - SSHIIAD. (3.11)

This quantity represents the information gained about the system & as a result of the
measurement {I'I;‘l}.

3.2 Quantum discord

The two classically identical expressions for the mutual information, Egs. (3.4) and (3.7),
differ in a quantum case [Zur{)Oa\].1 The quantum discord is this difference,

5(S: Ampy = T(S: A =TS : Ay (3.12)
= S(A) - 5(S, A) + S(SH{IIY). (3.13)

It depends both on ps4 and on the projectors {Hf}.

'The equality for classically correlated systems can be seen directly on the density matrix represen-
tation. pgs.4 is diagonal in a basis made of product states on S and A. Therefore, the diagonal entries
of this matrix describe the joint probability distribution of two random variables, say X of the system
and Y of the apparatus. As a consequence, we have Z(S§ : A) =T(X : V)= J(X : ) = J(S : A)
when .A is measured in the basis which allows diagonalization of ps.a.
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The quantum discord is asymmetric under the cha.nge S « A since the definition of
the conditional entropy S(S& |{1'I3A}) involves a measurement on one end (in our case the
apparatus A), that allows the observer to infer the state of S. This typically involves
an increase of entropy. Hence S(S |{I'.E;4}) 2 S(S, A) ~ 5(.A), which implies that for any
measurement {II7'},

The proofs are postponed to the end of this chapter.

We shall usually be concerned with the set {HJA} that minimizes the discord given a
certain ps4. Minimizing the discord over the possible measurements on .4 corresponds
to finding the measurement that disturbs least the overall quantum state and that, at the
same time, allows one to extract the most information about S. Decoherence picks out
a set of stable states and converts their possible superpositions into mixtures, Eq. (3.2).
Moreover, an unread measurement {1'[;-4} on the apparatus has an effect analogous to
einselection in the corresponding basis through the reduction postulate [vN32a]. Hence
it is rather natural to expect that when the set {II;“} corresponds to the superselection
sectors {P‘-A} of Eq. (3.3), there would be no extra increase of entropy:

psa = Ufpsallf = 6(S: A) @y =0. (3.15)
J

Thus, following einselection, the information can be extracted from S-A with a local
measurement on .4 without disturbing the overall state. The state of S can be inferred
from the outcome of the measurement on A only. The converse of Eq. (3.15) is also true:

8(S : Aympy = 0= psa = Y Tf psally (3.16)
i

Hence, a vanishing discord can be considered as an indicator of the superselection rule,
or—in the case of interest—its value is a measure of the efficiency of einselection. When
& is large for any set of projectors {H;-“}, a lot of information is missed and destroyed by
any measurement on the apparatus alone, but when 4 is small almost all the information
about & that exists in the §-A correlations is locally recoverable from the state of the
apparatus.

The quantum discord can be illustrated in a simple model of measurement. Let
us assume the initial state of S is (0} + |1))/v/2. The pre-measurement is a c-not
gate yielding js A)P = (00) + |11))/v/2. If |0} and |1) of A are pointer states, partial
decoherence will suppress off-diagonal terms of the density matrix:

psa = 5 (100X00] + JLIX11]) +  (j00)11] + [11)00)), (3.17)

with 0 < z < 1. Figure 3.1 shows J for various values of = and various bases of measure-
ment parametrized by 8,

{cos(8) |0) + e®sind|1),e™*sin @ |0) — cos # mj, (3.18)

—
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with ¢ = 1rad. Only in the case of complete einselection (z = 0) there exist a basis for
which discord disappears. The corresponding basis of measurement is {|0},|1}} (¢ = 0),
i.e. it must be carried out in the pointer basis.

" 3.3 Classical aspect of quantum correlations

Separability has been often regarded as synonymous of classicality. The temptation that
leads one to this conclusion starts with an observation that—by definition—a separable
density matrix is a mixture of density matrices

PSA= Y DiPsa (3.19)

that have explicit product eigenstates,

poa= SR i)
J

DY/

and hence classical correlations. One might have thought that mixing such obviously
classical density matrices cannot bring in anything gquantum: after all, it involves only
loss of information—forgetting of the label i in p& 4. Yet this is not the case. One
symptom of the quantumness of a separable psa4 with non-zero discord is immediately
apparent: unless there exists a complete set of projectors {Hf} for which ¢(S : A) mpy =

(3.20)

0, psa is perturbed by all local measurements. By contrast, when (S : A) (mpy = 0,

then the measurement {1'1;4} on A, and an appropriate conditional measurement (i.e.
conditioned by the outcome of the measurement on .A) will reveal all of the information
in §-A, i.e. the resulting state of the pair will be pure. Moreover this procedure can be
accomplished without perturbing the ps4 for another observer, a bystander not aware
of the cutcomes.

Thus, for each outcome j there exist a set {Wfk} of conditional one dimensional
projectors such that

psa =3 Tirll psalli'n iy, (3.21)
i k

and wfkl'lfps AL wfk is pure for any j and k. Above, the sets {Trfk} for different j will
not coincide in general ({wfk} is a function of j) and do not need to commute. Classical
information is locally accessible, and can be obiained without perturbing the state of the
system: one can interrogate just one part of a composite system and discover its state
while leaving the overall density matrix {as perceived by observers that do not have access
to the measurement outcome) unaltered. A general separable ps 4 does not allow for such
insensitivity to measurements: information can be extracted from the apparatus but only
at a price of perturbing ps.4, even when this density matrix is separable. However, when
discord disappears, such insensitivity (which may be the defining feature of “classical

reality”, as it allows acquisition of information without perturbation of the underlying
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state) becomes possible for correlated quantum systems. This quantum character of
separable density matrices with non zero discord is a consequence of the superposition

principle for A, since more than one basis { a:(ii)>}_ for the apparatus is needed in
i

Eq. (3.20) in order to warrant a non vanishing discord.

The difference between separability and vanishing discord can be illustrated by a
specific example. Fig. 3.2 shows discord for a Werner state ps4 = l{-zuI + z |¢¥X9| with
|3} = (J00) + ]11))/v/2. It can be seen that discord is greater than 0 in any basis when
z > 0, which contrasts with the well-known separability of such states when z < 1 /3.

3.4 Conclusion

The quantum discord is a measure of the information that cannot be extracted by the
reading of the state of the apparatus (i.e. without joint measurements). Hence the
quantum discord is a good indicator of the quantum nature of the correlations. The
pointer states obtained by minimizing the quantum discord over the possible measure-
ments should coincide with the ones obtained with the predictability sieve criterion
[Zur93b, PZ01a)], hence showing that the accessible information remains in the most
stable poinier states.

3.5 Proofs

Proposition 3.5.1. The following equality holds
SSHII'Y) = S(p24) — S(o3), (3.22)
with p8, = 35 Tl ps allf.

Proof 3.5.1. pg 4 18 block-diagonal. The j-th block equals PiPsimp- By doing calcula-
tions block by block one has:

S(psa) = .S (Pipsima) (3.23)
7
=2 _piS(psinp) — 3_p;logps (3.24)
J J
— S(SHIEY) + H(eR), (3.25)
which completes the proof. 5

Proposition 3.5.2. §(S: A){H,_s} > 0.
J

Proof 3.5.2. This is a direct consequence of the previous proposition and of the con-
cavity of S(psa) — 5(p.4) with respect to ps.a[Weh78a). n

e —
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Figure 3.1: Value of the discord ¢ as a function of z and 8, for the states given by
(100X00] + {11X11] + 2100¥11| + =|11)00|)/2, and a measurement basis {cos(f) |0) +
e'sinf|1),e " sind [0) — cos@|1}}.
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Figure 3.2: Value of the discord 0 as a function of z for Werner states %I + z [P X,
with [} = (|00) + |11})/v2. Discord does not depend on the basis of measurement in
this case because both I and |¢) are invariant under local rotations.
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Proposition 3.5.3. §(S: A) [y = 0= psa=1%; Hj‘p.SAﬂ;“-

Proof 3.5.3. Proposition 3.5.1 already shows the converse. To prove the direct imphi-
cation we will start with ps4 and {H;-“}, a complete set of orthogonal projectors, such
that §(S : A) mpy = 0. Without loss of generality, we can write the density matrix of
S-A as
psa = Y_T{psTl} + additional terms. (3.26)
i

If we choose {|s;)} a basis of S, and {Ia"‘fj>}" a basis of the subspace of A defined by 1'134,
the general form of the additional terms in the above formula will be c(sq, 837, k> Grryjr ) X
I8: Xs¢}® |Ek|j><ﬂk'|j'| with j # 7. Suppose that one of those coefficients is non-zero. By
changing the basis {|s;) };, we can suppose ¢ 3 ¢'. We introduce now a new density matrix
Psa obtained from psa by removing the preceding matrix element and its complex

conjugate. This ensures that js4 is associated with a physical state. This state thus
satisfies

S(Bsa) > S(psa) and S(5.a) = S(pa). (3.27)
The concavity of 5(S,.A) — S{.A) implies inequalities:

S{psa) —S(pa} < 8(psa)—S5(pa)
S(psa)—5(pa) < S(p84) — S(pR).

Then 4(S : A) {4} < 0, which contradicts our primary assumption and proves our last
¥
result. [ ]

Remark 3.5.1. We defined J with the help of a measurement associated to one-
dimensional projectors. One can be interested in looking at multi-dimensional projective
measurements. Depending on the context, two different generalization can be used.

For measurement purposes, one may adopt

psimp = Tra If' ps.a/Trs A i ps.a, (3.28)

since all the correlations (quantum as well as classical) between § and the subspace of

the apparatus defined by H;-“ are not observed. Proposition 1 no longer holds, but using

the same techniques we still have §(S : A) 4y = 0 and if 6(S : A) (mpy = 0, then
7

psA =1 ; I ps AT,

For decoherence purposes, one may prefer to define J as S(S) + S(A4)2 — 3(5, A)P.
With this definition, Proposition 3 is valid. 7 now represents the average information,
quantum and classical that remains in the pair S—A4 after a decoherence process leading
to einselection of the superselection sectors {H}"}. [




4 Objective properties from subjective quantum states: environment
- as a witness

THE KEY FEATURE distinguishing the classical realm from the quantum substrate is
its objective existence. Classical states can be found out through measurements by
an initially ignorant observer without getting disrupted in the process. By contrast,
an attempt to discover the state of a quantum system through a direct measurement
generally leads to a collapse [Boh28a, vN32a, Dir47a): after a measurement, the state
will be what the observer finds out it is, but not—in general—what it was before. Thus,
it is difficult to claim that quantum states exist objectively in the same sense as their
classical counterparts [Boh27a, EPR35a, FP00a).

It is by now widely appreciated that decoherence, caused by persistent monitor-
ing of a system by the environment, can single out a preferred set of states. In sim-
plest models, such pointer states [Zur93b, Zur98a, Zur00a, PZ0la, Zur03a, GJK+96a]
are (often degenerate) eigenstates of the pointer observable which commutes with the
system-environment interaction [Zur82a]. This concept can be generalized using the
predictability sieve: only pointer states evolve predictably in spite of the openness of the
system of interest [Zur93b, PZ01a, Zur03a]. They exist in the sense that in absence of
any perturbations-—save for the monitoring by the environment—they or their dynam-
ically evolved descendants will continue to faithfully represent the state of the system.
Thus, when an observer knows what is the set of pointer states, he can learn which of
them represents the system without perturbing it. However, when an initially ignorant
observer attempts to find out the state of the system directly, he still faces, even in the
presence of decoherence, the danger of collapsing its wave packet.

Here, we build on the idea that a direct measurement of the system is not how
observers gather data about the Universe: rather, a vast majority (if not all) of our
information is obtained indirectly by probing a small fraction of the environment [Zur93b,
Zur98a, Zur00a, Zur03a]. One may think that this twist in the story can be accounted for
by adding a few links to the von Neumann chain [vIN32a], but this is not the case: we shall
show that the monitoring environment acquires information about the system selectively.
More importantly, this selective spreading of information through the environment—in
essence “quantum Darwinism” [Zur03a]—accounts for the objective existence of some
preferred quantum states: by probing the system indirectly, hence without perturbing
it, many independent observers can obtain reliable information, but only about the
pointer states.

33
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This chapter is organized as follows: first, we introduce our operational definition of
objectivity. We then derive two requirements for the objective existence of an observ-
able in the context of einselection (environment-induced superselection). Next, these are
translated into an information theoretical framework. We prove that these requiremernts
imply a unique observable: the usual pointer observable. Finally, we show that, because
of quantum Darwinism, information about the pointer states is robust and, hence, objec-
tive: it can be extracted from fragments of the environment in realistic settings, where
measurements are restricted and imperfect.

4.1 Requirements for objectivity

Objectivity of a property of a quantum system should not rely on pre-existence of an
underlying reality as it is presumed in the classical setting. Rather, we demand that an
objective property of the system of interest should be (i) simultaneously accessible to
many observers, (i) who should be able to find out what it is without prior knowledge
and (#4) who should arrive at a consensus about it without prior agreement. As we
already mentioned, the collapse of the wave packet following a direct measurement gen-
erally precludes this. However, when the system of interest S interacts with an environ-
ment £ composed of many subsystems, £ = ®kN=1 &k, the situation changes dramatically.
When a property leaves a complete and redundant imprint on the environment, all three
criteria are satisfied: because many copies are available (1) is straightforward. Moreover
fractions of the environment can be measured without perturbing either the system or
the rest of £. Therefore, ignorant observers can vary their measurement strategies in-
dependently, corroborate their own results and arrive at a common description of the
properties of the system. Hence, (i) and (i), also follow from redundancy. We shall
thus identify the existence of an objective property with the existence of its complete
and redundant imprint in the environment. As a consequence, our approach will focus
on the study of the correlations between parts of the environment and the system of
interest.

4.2 Information theoretical framework

A natural way to characterize such correlations is to use the mutual information I{o : ¢)
between an observable ¢ of § and a measurement ¢ on €. In short, I{o : ¢) measures
one’s ability to predict the outcome of measurement o on S after having “peeked at the
environment” through e. Formally, for a given density matrix p°¢ of § ® £, the mea-
surement results are random variables characterized by a joint probability distribution
(03, ¢5) = Tr{(0: ® ¢;)p5¢}, where o; and ¢; are the spectral projectors of observables o
and e. By definition, the mutual information is the difference between the initially miss-
ing information about ¢ and the remaining uncertainty about ¢ when ¢ is known [CT91a].
Using Shannon entropy as a measure of missing information, H(o) = — 3, p(o:) log p{o;)
and H(o,¢) = ~ 3, ;p(0i, ¢;) log p(0:, ¢;), the mutual information is naturally defined
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as I{o : ¢) = H(o) + H(e) — H(o, ).

The first requirement for objectivity states that only when the direct measurement
o on 8 can be replaced by a measurement on £ without noticeable loss of information,
can we hope to find out about o from the environment. This is characterized by the
information about ¢ which can be optimally extracted from m typical environmental
subsystems I(0) = maX{eeam,,} 1(0 : ¢), where MMy, is the set of all measurements on
those m subsystems.! Then, with £ acting as a medium, the ability to eventually gain
nearly all—all but a fraction v < 1—of the information from the environment,

Ine) 2 (1-7H(o) (4.)

corresponds to the complete imprinting of 6 on £. Above, N is the number of subsystems
in the whole environment.

However, as a consequence of basis ambiguity [EPR35a, Eveb7a, Zeh73a, Ken90a,
Zur82a), information about many observables o can be deduced by an appropriate mea-
surement on the entire environment. Therefore, the total transfer of information, while
a prerequisite for objectivity, is not a very selective criterion (see Fig. 4.1a). Clearly, to
claim objectivity, it is not sufficient to have a complete imprint of the candidate prop-
erty of § in the environment. There must be many copies of this imprint that can be
accessed independently by many observers: information must be redundant.

4.3 Redundancy and its consequences

A rough estimate of the redundancy of the information about & present in the environ-
ment can be derived from the average information about o that can be obtained from
a single subsystem of £, i (o). We can expect that the corresponding redundancy will
be of order N x fi(¢)/In(o), which is indeed a useful estimate [Zur03a], but an over-
estimate. This is because successive measurements are likely to confirm the information
about ¢ the observer already has. Only some of the newly acquired data will be really
new: redundant information is not extensive [CT91a}, [;n(c) # m x I1(0).

To obtain a measure of redundancy which takes this into account, one must count
the number of copies of the information fy(c) embedded in £. To arrive at a formal
definition, however, we must agree to acquire almost all—all but a fraction §—of the
information about o present in the entire environment £. Redundancy is thus quantified
by the number of disjoint subsets of £ containing almost all the information about o:

Rs(o) = Nf/ms(o). (4.2)

Above ms(o) is precisely the smallest number m of environmental subsystems that
contain almost all the information about o, i.e. Ly(e) > (1 — §)In(o)).!

'For sake of simplicity we assume that I{e : ¢} does not depend crucially on a particular choice of
subsystems of the environment on which e is applied. However, the generalization of our results to such
cases is possible and straightforward.
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Figure 4.1: Quantum Darwinism can be illustrated using a model introduced in [Zur82a).
The system &, a spin-% particle, interacts with N = 50 two-dimensional subsystems of
the environment through HS¢ = E,?;l gres ® 05" for a time t. The initial state of
S®Eis :}5(|O) +1) @05 ®...® [0y, Al the plotted quantities are function
of the system’s observable (i) = cos(u)o, + sin(u)o., where p is the angle between
its eigenstates and the pointer states of S—here the eigenstates of 2. a) Information
acquired by the optimal measurement e on the whole environment, fy(o), as a function
of the inferred observable o(u) and the action ax = gt = a for all k. A large amount of
information is accessible in the whole environment for any observables o (i) except when
the interaction action ay is very small. Thus, complete imprinting of an observable of S
in £ is not sufficient o claim objectivity. b) Redundancy of the information about the
system as a function of the inferred observable o(u) and the action ay = gyt = a. It is
measured by Rj;—g.1(c)}, which counts the number of times 90% of the total information
can be “read off” independently by measuring distinct fragments of the environment. For
all values of the action a; = gyt = @, redundant imprinting is sharply peaked around
the pointer observable. Redundancy is a very selective criterion. The number of copies
of relevant information is high only for the observables o (i) falling inside the theoretical
bound (see text) indicated by the dashed line. c) Information about o(x) extracted by an
observer restricted to local random measurements on m environmental subsystems (e.g.
e =¢1@...®¢" where each ¢* is chosen at random). The interaction action ax = git is
randomly chosen in [0, w/4] for each k. Because of redundancy, pointer states—and only
pointer states—can be found out through this far-from-optimal measurement strategy.
As our theorem establishes, the information about any other observable o(4) is equal to
the information that can be obtained through its correlations with the pointer observable
o7 . Information about any other observable o (1) is restricted by our theorem to be equal
to the information brought about it by the pointer observable o2, Eq. (4.3).

i e
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We now analyze what information about S can be shared among many fragments of
€. The answer is supplied by our main result:

Proposition 4.3.1. When an observable ¢ is (i) completely, In(¢) = H(C), and (ii)
redundantly, Rs—q{¢) > 1, imprinted on the environment, there exists an observable n
such that,

e 7 satisfies (i) and (ii) ;

® the information about any other observable o, completely and redundantly im-
printed on the environment, attainable by measuring m = ms=o(0) is equivalent
to the information about o that can be obtained through its correlations with m:

fm(e) = I(o : 7). (4.3)
The observable © is then called the maximally refined observable.

The proof of this proposition is given at the end of this chapter.

Two important consequences of this proposition readily follow. (i) An observer who
probes only a fraction of the environment is able to find out the state of the system
ag if he had carried out the direct measurement of w on §. (ii) On the other hand,
information about any other cbservable o of & will inevitably be limited by the available
correlations existing between o and 7. In essence, our proposition proves the uniqueness
of redundant information, and therefore the selectivity of its proliferation.

Quantum Darwinism—the idea that the perceived classical reality is a consequence of
the selective proliferation of information about the system [Zur03a]—is consistent with
previous approaches to einselection, such as the predictability sieve, but goes beyond
them. The existence of redundant information about the system, induced by specific
interactions with the environment, completely defines what kind and how information
can be retrieved from £: Eq. (4.3) shows that an efficient strategy for inferring o consists
in estimating 7 first, and deducing from it information about . It also explains the
emergence of a consensus about the properties of a system. Observers attempting to
gain information about 7—the only kind of information available in fragments of £—will
agree about their conclusions: their measurement results are directly correlated with ,
and are therefore correlated with each other. Hence, observers probing fractions of the
environment can act as if the system had a state of its own—an objective state (one
of the eigenstates of 7). By contrast, such consensus cannot arise for superpositions of
pointer states, e.g. Schrodinger cats, since information about them can only be extracted
by probing the whole environment, and thus cannot be obtained independently by sev-
eral observers. Objectivity comes at the price of singling out a preferred observable
of & whose eigenstates are redundantly recorded in €. Cloning of quanta is not possi-
ble [WZ82a], but amplification of a preferred observable happens almost as inevitably
as decoherence and leads to objective classical reality. The impossibility of cloning and
the capacity for amplification imply selection—Darwinian “survival of the fittest”.
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4.4 Emergence of objectivity exemplified

In Figure 4.1b, we show for a specific model the redundancy as a function of the inferred
observable o () (whose eigenstates are tilted by an angle i from the pointer ones) and of
the interaction action, ax = git (e characterizes the strength of the correlations between
§ and &). By carefully tracking all orders of ¥ and & in Eqs. (4.1-4.3), one can show that
the existence of a complete and redundant imprint of obhservable ¢ (i) in the environment
requires Hy(cos? §) < 8, where Ha(p) = —[plogp + (1 — p)log(l — p)]. Inserting the
actual values of the parameters chosen for our simulation, the above equation indicates
that only observables with |u} < 0.23 leave a redundant imprint on the environment.
This bound is in excellent agreement with our numerical results. Objective properties of
the system are indeed defined uniquely by the value of the usual pointer observable oS,
Surprisingly, and as confirmed by our simulation, the interaction action ay, only plays
a role in setting the value of the redundancy at its maximum, but does not affect the
selectivity of our criterion. Which observable becomes objective is largely decided by
the structure of the interaction Hamiltonian, (i.e. the set of pointer states), but not by
its details such as strength and duration of the interaction. This ensures the stability of
the pointer observable deduced from redundancy.

4.5 Robustness of information

One can gain further insight into the role of redundancy by considering an analogy
between the environment and a noisy communication channel. As in classical coding
theory, a high redundancy protects the information against a wide range of errors. In
the context of environment-induced superselection, it also holds the key to the objective
existence of pointer states: the most common “error”—which as a rule happens always
in the course of our everyday measurements, and which can be only rarely avoided in
carefully controlled laboratory experiments—is the loss of most environmental subsys-
tems. However, thanks to redundancy, information about the einselected states is still
available from small fragments of £.

Non-optimal measurements on the environment is another form of error which should
be also overcome by redundancy. Objective information must be extractable through
“realizable”—hence, not necessarily optimal—measurements for many observers to arrive
at an operational consensus about the state of a system. For instance, human eyes can
only measure photons separately, yet we can still learn about the position of objects.
This issue is considered for our model in Fig. 4.1c. Here, even local (i.e. spin by spin)
random measurements eventually acquire the entire information available in £ about
the pointer states. Though surprising, this result naturally follows from quantum Dazr-
winism. Almost any observable of § is completely imprinted on the environment (see
Fig. 4.1a). However, as our proposition establishes and Fig. 4.1b illustrates (for non
and 4 small), only the observables which can be completely deduced from the maximally
refined one, oo, are imprinted redundantly in the environment. Therefore only infor-
mation about pointer states can tolerate errors, i.e. can be extracted by non-optimal
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measurements. In short, not only is the information about the pointer observable easy to
extract from fragments of the environment, it is impossible to ignore!

4.6 Conclusion

Quantum Darwinism capitalizes on some ideas that arose in the context of decoherence
and einselection, but goes beyond them in an essential fashion. Existence of records
in the environment has been noted before [Zur93b, GJK+96a, Zur98a, Zur(0a, Zur82a,
Hal99b, BHJ03a], and the fact that it is easiest to find out about the pointer observable
has been also appreciated [DDZ01a]. Here, however, we have described an even more
dramatic turn of events—environment as a broadcast medium—, which may seem fan-
ciful until we realize that it describes rather accurately what happens in the real world.
For instance, human observers acquire all of their visual data by intercepting a small
fraction of their photon environment. An operational notion of objectivity emerges from
redundant information as it enables many independent observers to find out the state
of the system without disturbing it. Furthermore, objective observables are robust—
insensitive to changes in the strategy through which the environment is interrogated, as
well as to variations of the strength and duration of the interaction between S and £,
etc.

4.7 Proof
First, we briefly introduce the notation that used in the proof.

o The system & has interacted with an environment £ = ®kN=1 &g, and their common
state is represented by the combined density matrix p°¢. From this common state

we derive reduced density matrices for the system, or the system and part of the
environment, p° = Trg p°¢, p% = Tre_g, p5%, ete.

e 7, o, and { are (possibly degenerate) observables on the system S, and {m;};, {0:}s,
and {¢;}: their spectral decompositions.

o pf, 5% and 3** are measurements on the environment &k, and {pEk}J-, {55k Y,
{3%*}; their respective spectral decompositions.

Theorem 4.7.1. Suppose that I{o : s°) = H(o), and I(¢ : 5’8") = H({) for all k.
Then, there exist a measurement p on the environment & such that it gives complete
information about an observable m on & which commutes with both o and {. This
observable is more refined than o and ¢ in the sense that I{(o : 7} = H(o)} and I{( :

m) = H(C).

Note that for simplicity we assumed that the partition of the environment is such
that each subsystem £ has one copy of the information about o or {. This can be
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obtained from the general case by grouping subsystems of the environment to make
larger subsystems that satisfy this property.
Before going to the proof we give an intermediate proposition.

Proposition 4.7.1. Under the asumptions of the theorem, the observables ¢ and ¢
commute on the support of p®.

Proof 4.7.1. We start the proof by noting the following fact. The hypotheses impose
that for any k:
H(ols®) =0 =" p*(j)H(clst*), (4.4)
J

where the different probabilities involved are defined by, p*(i,5) = Tr (p%¢0: ® sf-"),

P*(7) = Tip*(i, ), and pF(ilj) = p*(i,5)/p"(4). The equality of Eq. (44) can be

satisfied if and only if there exist a function i*(5) such that p(i*(5){5) = 1 for all j’s.
We now construct a new measurement 5% whose pro jectors are defined by:

g = > 5?". (4.5)

i, i (f)=i

This very same construction can be performed to obtain 3. Now, these two measure-
ments retain the original property,

H(o|5%) = H(¢|5%) = 0, (4.6)

but now also satisfy
H(5%|0) = H(3™|() = 0. (4.7)

Hence, Tr p%¢0; = Tt p560; @ Ef" =Tr p‘s‘gﬁf", from which we deduce that
0ip’toi=0;® Ef" p%Co: ® Efk = Ef" psgéf . (4.8)

In other terms, because of the one-to-one correspondence between measurements on the
system and measurement on the environment, making an indirect measurement of & by
using 5%* leads to the same update rule of the reduced density matrix p5¢ as if the direct
measurement o was performed.

The same series of equalities also hold for ¢ and 3°*, and for all values of k.

Suppose that 5! and 3%* are performed. Because these two measurements are ap-
plied to different parts of the environment, they commute and we must have (using the
equalities above and taking the partial trace over &):

(J‘,'_(_;.'[JSCJ'O';' = CjO’,;pSO’,;Cj. (49)

Using (07)% = 0; and (¢;)® = ¢{;, we conclude that ¢joiCjo: = {jo; on the support of p°
(o€ is trace decreasing). Therefore g;¢; is a projector on the support of o5, and we have
¢j0: = 0;(; on the support of 5. ]
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The theorem now follows easily:

Proof 4.7.2. Let us consider the observable m = {m;; }i;j = {0i(;}i;. Thisis a legitimate
observable since it is hermitian as a consequence of the previous proposition.

By the same kind of argument as the one employed for showing that o and ¢ commute,
it is straightforward to show that for any &, g and 3%* commute. Therefore, p&& =
{p‘:';!‘ bi= {E‘g"gf" }i; defines a legitimate measurement.

Firstly, because ¢ and ¢’ commute, once m;; has been obtained, the outcome of any
subsequent measurement o or { is deterministic:

Tra,-fr,;jpsm-jai = ’1‘1‘1r,-jp57r,-,-, (4.10)

and similarly for {;. Hence, we have I(0 : ) = H(o) and I{{ : n) = H(().

The last part of the proof consists in showing that the measurement p&* allows
to retrieve all the information about «. This is easy to check, using the commutation
relations established earlier and the fact that each outcome of §°* (resp. 3¢) corresponds
to a given outcome of o (resp. {). For each value of (3, j) we have:

TesP 505580 = Trg; @ (305)0°°¢ ® (355) (411)

TrG; @ (355 )0°°¢ ® (E57) (4.12)

Tr(gos) @ &E‘EE‘)P‘SE(U'G) ® (37'35) (4.13)

= Trm; @ ppSEm; @ pl} (4.14)

which leads to J{m;; : pf’}) = H(r), and concludes the proof. =

Prop. 4.3.1 is obtained by successively refining in this way any pair of completely
and redundantly imprinted observables.
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5 Quantum information processing: basics

THE FIRST HALF of the 20st century has ended the industrial revolution started in
the middle of the 19th century. It also announced our modern world made of science,
technology and information. It was a time of great scientific discoveries. General rela-
tivity is certainly the most widely “kmown” in the non-scientific public. Less spectacular,
quantum mechanics and information theory had probably more impact on our everyday
life. The ever increasing use of computers and more generally of information processing
devices is the indicator of such a fruitful collaboration: quantum mechanics serves to

design and understand semiconductors — the support of information —, while infor-
mation theory and computer science define the potential uses and limits of automated
treatment.

Both fields continue to grow very rapidly. New techniques are developed constantly,
but recent years have witnessed the emergence of another kind of interaction between
those theories: quantum information processing. It is a new computational paradigm re-
sulting in the storage and manipulation of information in a quantum mechanical way. In
quantum computers, quantum mechanics is not only used to design the physical devices
but also to directly process information in a completely new and before unaccessible
way.

This chapter will give a brief overview of the concepts and achievements in this field.
It will only use some elementary notions of classical information theory, complexity and
quantum mechanics. Before actually entering into the details of quantum information
processing, we shall first explain rapidly the reasons that made the encounter of infor-
mation with the quantum almost unavoidable.

5.1 Information and the quantum

The seminal work of A. Turing [Tur36a] had prepared the basis of modern computer
science even before World War I1. However, it remained quite a theoretical construction
until it was used in practice to design machines aimed at decyphering texts automatically.
In parallel, information theory was discovered by C. Shannon in 1948 [Shad8a|. Together
with Turing’s work it demonstrated the validity of the fundamental concepts related to
information. For the very first time, it was realized that information was an abstract
concept that could lead to a mathematical analysis: information is fungible — it is
independent of its physical representation.

The discovery of this property of course promoted an abstract treatment of infor-
mation. Simultaneously, it also encouraged the search for physical representations of

45
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information in order to build processing units. Among all the candidates, it is the repre-
sentation as an electrical charge which allows the greatest variety of uses. It is the only
one — beside the representation of information in the brain — to allow not only storage
and broadcast but automated processing. The first devices were build with vacuum
tubes, but after the invention of transistors, the semiconductor technology became the
only used for reliable memories and processors.

The advantages of the new technology were immediately recognized for information
processing: the size of the devices was smaller than ever, thus allowing for a greater
complexity in terms of the possible operations performed by the circuits. As an example
of this unexpected breakthrough, Popular Mechanics wrote in 1949: “Computers in the
future may weight no more than 1.5 tons”. Even more unexpected was the rate at
which these techniques developed. The complexity of processors started an incredible
growth summarized by G. Moore [Moo65a]: “the number of transistors in a chip doubles
approximately every 18 months”. 40 years after this statement, this empirical law is
still up to date. However, specialists of processor design seem more and more convinced
that we will soon reach a fundamental limit to Moore’s law. To continue building these
always more complex devices, an exponential increase of the density of integrated circuits
is needed to keep their size reasonable. A simple extrapolation of Moore’s law shows
that the size of transistors will approach the atomic scale around 2017 [Moo97a]. At
this time, there will be no choice but to cooperate with quantum mechanics. Better be
prepared to the new rules.

Will this be a limit to the capacity of performing more complex tasks with com-
puters? If the quantum effects arising at this scale are seen only as limiting factors for
information processing, the answer will be yes. But what if quantum mechanics could
help? Part of the motivation in favor of the quantum computing idea relies on this
hope. Various results confirmed the idea that, at least theoretically, quantum mechanics
is improving our capacity to compute [Sho94a, Sim97a, Gro96a, KSV02a] and to com-
municate [Raz99a, BCT99, Lo00aj. But large scale physical devices are still quite a
way beyond our experimental achievements.

From a more physical point of view, information has gained all along the past century
an increasing role. In fact, through the concepts of ignorance and disorder — two
fundamentals of thermodynamics — physicists had an idea of the nature of information.
This notion was first exploited in Boltzmann’s formula for the entropy of a particle with
fixed energy,

S =kglogW, (5.1)

where kp is a constant — converting bits into Joules — and W is the number of equiv-
alent states with a fixed energy!. The entropy is then presented as the amount of
ignorance about the state of the system, once its energy is fixed. Thermodynamics fur-
ther developed the use of entropy to a high degree of refinement and naturally introduced
information theoretical notions.

'More elaborated versions of the significance of W exists. In general, W is the number of states that
satisfy a given set of constraints.
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One of the best example illustrating the emergence of information in physics dates
back to 1929 [Szi29a]. According to its 2°¢ law, thermodynamics forbids extraction of
work out of a single heat bath. Nevertheless, Maxwell’s demon seem to violate this
principle. More precisely, suppose a single particle gas is contained in a box divided in
two by a mobile piston. Initially, the position of the particle is unknown. The Maxwell’s
demon measures it, and transmits this information to a reversible mechanism, which will
extract work from this situation by letting the piston relax in one or the other direction.
This cycle can be started again by removing the piston, and by putting it reversibly
back to the central position of the box. For each cycle, the whole device would then
violate the 2" law of thermodynamics — work is extracted from pressure fluctuations
from a single heat bath. The solution to this paradox is to properly account for all
the resources, and in particular those required by the information processing. For each
pressure measurement, a properly initialized memory cell is needed. A reset operation
must be performed after each movement of the piston. In turn, this reset is necessarily
accompanied by entropy production which in this case just compensate for the extraction
of work [Szi29a, Lan6la, Ben82b].

After all the efforts by the information theory community to promote information
as an abstract concept, R. Landauer realized that [Lan91a} “information is physical”. In
other words, in spite of its fungibility information must be represented in a physical way
to allow its automated treatment [Zur94a): “no information without representation”.

This success, proving the relevance of information for physics, was related to other
questions. Among them, was the question of minimal energy and entropy requirements to
make a calculation. Bennett concluded that any classical information processing could be
done entirely in a reversible way [Ben73a]. Fredkin and Toffoli later proposed reversible
circuit models of computation [F'T82a]. This result contributed to draw attention to the
ways of processing information at the physical level, i.e. according to the laws of physics.

It is thus quite naturally that quantum systems were examined on the basis of their
computational capabilities. In 1982, R. P. Feynman promoted the study of the com-
puting capabilities of quantum systems for simulating many-body quantum mechan-
ics [Fey82a, Fey84a]. As we already mentioned in the first chapters of this manuscript,
the classical simulation of n two-level quantum systems generally requires O(2™) complex
numbers for classical computers whereas only O(n) quantum bits? should be sufficient for
a quantum computer. This conjecture was later proved by D. Deutsch {Deu85a, Deu89al.
Quantum computing is one alternative to continue performing more complex operations
in spite of the inevitable stop in the miniaturization of classical electronic devices.

%A proper definition of a quantum bit is given in the next section.
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5.2 Fundamentals

5.2.1 The qubit

The qubit is the elementary unit of quantum information. Like its classical analog —
the bit — it is an abstract object which can be implemented in many different ways.

Definition 5.2.1 (Qubit). A qubit is any system whose state space has a two dimen-
sional Hilbert space available for information storage and manipulation according to the
laws of quantum mechanics.?

The canonical example of a qubit is a two-level quantum system — for instance NMR.
quantum processors use the nuclear spin of 'H or 13C. Here, the whole state space is
used to perform information processing. It is the quantum computing convention to
express the state of a qubit in a fixed but arbitrary orthonormal basis {|0), 1)}, called
the computational basis. In spite of this canonical example, it is important to realize that
qubits are not necessary two-level systems. In fact any system with a two-dimensional
subspace can serve as a qubit as well. This remark holds the key to error protection
strategies such as quantum error correcting codes and noiseless subsystems [ZR97b,
ZR97c, VKLODa).

The evolution of an isolated qubit is given by the axioms of quantum mechanics: it
can undergo any unitary evolution of SU(2). A useful set of such transformations is
given by the Pauli matrices:

10 0 1 0 —i 10
I=(01)’X=(10)’Y=(i J)’Z=(n-q)’ (5.2)

together with the Hadamard transform,

H=%(ii), (5.3)

where the above transformations are defined for the computational basis.

The measurements follow Born’s rule and the state of the qubit is updated according
to the collapse of the wave function. Positive Operator Value Measures (POVM), which
were introduced for open quantum systems, are also available for single qubits. In
practice, they are often implemented as projective measurements on a larger Hilbert
space.

Instead of going directly to the many-qubit case, we can detail a little the informa-
tion storage capabilities of a single qubit. Since its beginning, quantum mechanics was
expected to fit into the wide framework of thermodynamics. There was no apparent

*A slightly more general definition relies on the existence of a subalgebra of observables isomorphic
to the one generated by the usual 2-dimensional Pauli matrices (see next paragraph).
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reason justifying quantum systems as exceptions to the general rule of thermodynamics.
Von Neumann proposed a generalization of the entropy for density matrices p,

S(p) = —Tr plog p. (5.4)

It was later shown that this natural candidate was the only choice sharing many prop-
erties with its classical analog, Shannon’s entropy. In essence, von Neumann’s entropy
is the entropy of the probability distribution {p;}: of the eigenstates of p:

S(p) =S (Z_ps I¢i)(¢i|) = H({p:}) (5.5)

Since orthogonal states are perfectly distinguishable by a single-shot measurement pro-
cess, S(p) can be seen as the information content of a measurement of p in its eigenbasis.
Therefore, a single qubit in the maximally mixed state,

p=%(,}, ‘1’) (5.6)

has an information content of one bit, thus leading to the fortunate conclusion that
an isolated qubit can store exactly one classical bit [Hol73al. In fact, it is through
the correlations that can exist between many qubits that the difference between the
classical and the quantum arises, as it can be seen in very simple examples of quantum
communication protocols such as teleportation [BBC-+93a} or dense-coding.

5.2.2 Many qubits

Processing many qubits is not conceptually different from the single qubit case. As a
whole, they simply constitute a bigger quantum system which follows the axioms of
quantum mechanics. The only difference lies in the greater complexity of the operations
that can be performed. The analysis of this structure has been analyzed in detail to
define the notion of quantum complexity.

The state space of n qubits taken together is the n-fold tensor product of the single
qubit Hilbert space. The computational basis is the canonical basis of the tensor product
space, {@®i-; l€i)}e,=0,1. The evolutions permitted by quantum mechanics for a closed
system of qubits are transformations from SU(2"). We have seen earlier that, for open
systems, completely positive trace preserving maps are possible evolutions. In the con-
text of quantum information processing, these maps are usually implemented as unitary
transformations on a larger Hilbert space: the qubits of interest are complemented with
ancillary qubits initially in the fiducial state |0); a unitary transformation is performed
on the whole; finally, the ancillary qubits are traced out to recover only the qubits of
interest.

Similarly, each measurement is reduced to a projective measurement in the com-
putational basis. This reduction is possible because any other measurement can be
obtained as a preliminary evolution which maps the to-be-measured observable onto the
computational basis and the above projective measurement.
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5.2.3 Circuit model

For classical and quantum processing, algorithms are simple recipes for solving a given
problem. The complexity of an algorithm can be simply considered as an arbitrary
accounting rule [KSV02a). It counts the number of elementary or of costly steps required
to arrive at the solution of a problem. Here, the definition of elementary step is the key
concept which is defined by the computational model.

For instance, classical complexity in the classical framework can be determined by
counting the access to memory cells or by counting the number of floating point opera-

tions required to map an instance of the problem to its solution. For quantum complexity,

the situation is quite similar: the accounting rule of the standard quantum computing
model — or circuit model — consists in counting the number of elementary gates in the
quantum algorithm.

More precisely, each qubit start in a definite state of the computational basis. This
state constitutes the — classical — input of the algorithm. The algorithm itself is a
succession of elementary unitary operations — i.e. acting on a small number of qubits
at a time — leading, after a measurement in the computational basis, to the result with
high probability — typically greater than % A general result about unitary evolutions
states that they can be approximated up to arbitrary accuracy by a finite product of
gates drawn from a finite universal set (This result is due to Solovay and Kitaev but
has never been published by the authors. However, it can be found in [NC00a]). Thus,
within this context, the complexity of a quantum algorithm is naturally defined as the
number of universal gates that need to be applied before the final measurement. A
possible set of universal gates is the Hadamard gate, the phase rotation of /8 and the
c-not gate:

1000
1 {1 1 1 0 0100
H=_\/§(1*1)’R=(0 eiw/8)'°‘n°t= o001 67
0010

where the action is defined on the computational basis. Other sets exists such as the
Toifoli gate and the Hadamard transform. Graphically, each qubit is represented by
a horizontal line, and gates as boxes overlapping the qubits it acts on. The circuit is
then run from left to right, indicating in which order to apply the different elementary
operations.

The above decomposition as universal gates, although very useful for theoretical
purposes, is often replaced by a decomposition into slightly more complex gates -— a
finite set which is not minimal but still universal — in order to simplify the circuit
description or in order to take advantage of the specificities of the physical device that
implements them. For example, the control-Pauli operations are quite often seen on
encoding circuits for error correction (see Chap. 7).

The model that we have presented here is certainly the most widely used in quantum
computation. However, other models, such as the one-way quantum computer [Bri0la],
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exist, and do have a priori another appropriate definition of complexity. In the rest of
this manuscript, and especially for the description of the convolutional quantum convo-
lutional codes, we will only use the circuit model of quantum computing.

5.3 Alorithms and communcation tasks

When one is asked to tell what is the most important achievement in quantum computing
the obvious answer is Shor’s algorithm [Sho94a]. It shows how a quantum computer
can be used to factor an n-digit number efficiently — with only a polynomial circuit
complexity. The work of P. W. Shor is based on the possibility of efficient itnplementation
of another primitive, the quantum Fourier transform (see [NC00a] for a clear presentation
of the quantum circuit). Indeed, the accomplishment of P. W. Shor was the result of
a long research investigating the possibilities of quantum information processing. The
Deutsch-Jozsa algorithm [DJ92a] was certainly one of the important step to this result
together with Simon’s period finding algorithm [Sim94a, Sim97a]. The importance of
Shor’s algorithm itself is due to the supposed difficulty of factoring large integers on a
classical computer. This difficulty is used to guarantee the security of one of the mostly
used asymmetric cryptographic protocol, RSA.

The discovery of this algorithm is certainly one of the main reasons for the invest-
ment in both time and money for building a quantum computer. In paralle], it also
motivated a more systematic research to know which algorithms could be implemented
in a more efficient way on a quantum computer. One other result has been obtained for
the unstructured database search by L. K. Grover [Gro96a). Here, it does not result in
an exponential speed-up but in a more modest quadratic speed-up. Contrarily to the
previous case, it can be proved that it is better by a square-root than any classical algo-
rithm. It thus opens a firm gap between quantum and classical information processing.
This type of speed-up is nowadays thought to be possible for many other problems. In
fact it seems to result from the manipulation of probability amplitudes rather than of
probabilities.

Naturally, since their discovery these two specific examples have been widely studied
and improved. Shor’s algorithm was a particular case of a more general framework: the
Abelian hidden subgroup problem. Grover’s search has also been extended to different
kind of databases, not only unstructured ones. But all these require to have a fully
functional quantum computer able to perform long computations without errors and
which are able to use many qubits.

Following the initial ideas that brought interest onto quantum information processing
several results have been obtained about the simulation of quantum systems by quantum
computers, e.g. [GS0la, BCMS0la]. The evolution of a large number of interacting
systems — an a priori difficult task for classical computers — is tractable on a quantum
computer, at least for a wide class of Hamiltonians. Even more interesting is the fact
that some of these simulations are actually far less resources demanding than solving
general mathematical problems. Therefore, this kind of algorithms could be run in a
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quite near future on primitive quantum information processors. Experimental results
tend to confirm this possibility.

Quantum communication, which also includes quantum cryptography, is another
very active area where our currently limited abilities to manipulate the quantum are
nonetheless very useful. The achievements in this domain also set a gap between quan-
tum and classical information processing: some tasks are impossible to perform without
a help from the quantum world.

One of the first application is quantum key distribution discovered by C. H. Bennett
and (. Brassard in 1984 [BB84a]. Using this protocol, two parties could after an au-
thentication phase generate a shared random key with unconditional security [SP00a].
A closer look at the protocols in fact indicates that the security of this scheme is a
consequence of the restricted abilities offered by quantum mechanics to eavesdrop the
channel — it is impossible to measure a qubit in an unknown state without perturbing
it [Fuc98a).

Many other primitives useful for cryptography have been under scrutiny leading to
quantum protocols for secret sharing or coin flipping. Quantum data hiding and quantum
fingerprinting are other possible examples.

More astonishingly some protocols prove the superiority of quantum information over
its classical counterpart (see for example [Raz99a, BCT99a, Lo00a]): the possibility to
teleport an unknown quantum state to another location with the use of a pre-established
entangled pair and a classical communication channel is one of them. But more gen-
erally, quantum communication complexity — equivalent to counting the number of
qubits needed to be sent to perform a task between two parties — has also proved some
gaps between quantum and classical versions of the same problem. For a review of
these algorithms, the reader in invited to refer to “Quantum Computation and Quantum
Information” by Nielsen and Chuang [NC00a].
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6 Quantum error correction

6.1 Decoherence and control

THE PREVIOUS CHAPTER exemplified how quantum information processing changed
computer science. Quantum computing has triggered important theoretical advances
such as solving difficult problems but also helped proving results in classical complexity.
However, the road leading to functioning devices is paved with many serious difficulties.
Namely, quantum computers need to manipulate entangled states involving many qubits
in order to outperform their classical counterparts [JL02a]. These states are particularly
sensitive to the presence of noise or interaction with their environment. The challenge
which consists in avoiding the decoherence process—which turns these computers into
at most classical devices—seems overwhelming.

To be more precise, entanglement can be destroyed by an unwanted evolution acting
on a single qubit of the entangled state. Unfortunately, these evolutions are almost
inevitable when these rather small systems are manipulated by macrescopic objects—i.e.
the classical device which contains the quantum registers. Hence, quantum information
is very often subject to errors in the course of a computation. In fact, present day
technologies allow at best about 100 elementary gates to be performed before an error
occurs. This figure can be compared to the 10712 error rate of a CD-writer...As a
consequence, error correction strategies to protect the quantum states must be applied
at each step of the algorithms.

One obvious but naive solution to the problems of errors and noise induced by the en-
vironment would be to isclate the quantum registers. The evolution of the qubits would
be closer than the ideal unitary evolutions. Unwanted interactions will certainly be sup-
pressed, but this option would also have some disadvantages: the rate at which designed
operations can be performed will decrease. In fact, algorithms that run on quantum
computers are made of classical data—e.g. a pulse sequence in an NMR spectrometer—
later used by other classical devices to manipulate the qubits. A better insulation of
the quantumn registers would therefore reduce the coupling with the classical parts of
the quantum computer. Hence, even though the decoherence time would increase, the
number of gates that can be realized before complete loss of information is not expected
to be significantly improved by this strategy. Another element against it is the necessity
to perform measurements. They extract some information and amplify it to the macro-
scopic level. This again requires the presence of classical devices close to the quantum
register and might cause unwanted decoherence.
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As we can see, decoherence and control of the quantum registers are two contradicting
objectives that need to be met before real quantum computers can be build. One path to
this goal was the creation of a theory of quantum error correcting codes [Sho95a, Got97a).
It allowed the study of the requirements on the codes and on the physical device in order
to effectively reduce the noise and decoherence processes during a computation. This
specific issue is the focus of fault tolerant proposals for quantum computers {Sho96a,
Got97a, Pref8a]—a combination of error correction schemes that reduce the noise even
though it requires a large overhead in the number of gates and qubits to perform the
algorithm.

In this chapter we will describe some of the results obtained in the past years. We
will emphasize the similarities with classical error correcting codes and try to build some
intuition about some of the problems encountered in the quantum domain. Finally, note
that other noise protection schemes exist. The theory of noiseless subsystems [ZR97b,
ZR97c, VKL00a] is one of them and has some advantages over error correcting codes for
some specific applications.

6.2 Classical error correction

6.2.1 Error model

An obvious, but nevertheless essential, point to consider before studying error correction
strategies is the error model. It is a probabilistic description of the errors that can affect
the bits during the transmission. In the classical domain one of the most widely used
is the binary symmetric memoryless channel. In this framework, errors affect each bit
independently with a fixed probability. Hence, it is defined by a real number p such that
with probability 1 — p the bit is transmitted without error, while with probability p its
value is flipped during the transmission.

6.2.2 Linear codes

The goal of coding theory is to analyze ways for improving the stability of information
given a particular error model. Even though classical coding theory is a very developed
field, we will only give a basic overview of some specific codes whose formalism is similar
to the one developed in the quantum setting. These are linear codes [JZ99a].

Definition 6.2.1 ((n, k) binary code). A (n,k) binary code is a set of 2¢ n-dimen-
sional binary vectors. Each vector in the set is called a codeword.

Intuitively, such structure can protect information because each possible k-bit string
corresponds to a unique codeword, and because this codeword contains some redundancy:
it uses n bits instead of the original % bits of the to-be-encoded string. When the
codeword is sent instead of the original string, noise might affect some of the bits.
Fortunately, the presence of redundant information might prevent the erasure of all the
copies of the information that needs to be transmitted. The error correction procedure
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uses redundancy to recover the original codeword and therefore the initial bit string.
The goal of coding theory is to describe ways to generate this redundancy and to exploit
it to later correct the maximum number of errors for an overhead of n — k bits for each
k-bit string of to-be-transmitted information.

Additional structure is often added to the set of codewords to ease the encoding,
decoding and error correction as well as the analysis of the code itself. A linear structure
is such a possible additional constraint on the codewords. Namely, if y and ¥/ are two
codewords, it requires that y + y' obtained by adding modulo two each components
must also be a codeword. In other terms, there exists an n x k& matrix G such that
any codeword is obtained via Gx where x is a k-dimensional binary vector. Most of
the time this also specifies an easy encoding procedure which consists in associating =
to the codeword Gz. The matrix G is called the generating matrix of the code. The
linearity of the code also allows to describe the set of codeword by a very small number
of parameters—polynomial in n and k—whereas one would expect it to be exponential
in k for a random code.

The error correction procedure for linear codes is based on the calculation of the
syndrome. One defines a matrix H—called a parity check matrix—such that HG = 0
where H is (n — k) X n and of rank n — k. This equivalently defines the code since y is
a codeword if and only if Hy = 0. In the case of a received signal z, each component
of the vector Hz—the whole vector is called a syndrome—brings information about the
possible error that happened during the transmission. The error correction algorithm
uses this information together with the error model to infer what has been really sent.

6.2.3 Example

The simplest example of error correcting code is the 3-bit repetition code. It is obtained
by introducing redundancy in the form of copying three times the to-be-protected infor-
mation. When 0 has to be transmitted (0,0, 0) is sent over the channel, while (1,1,1) is
associated to 1. The generating matrix is therefore equal to

g=|1]. (6.1)
1

For the binary symmetric channel', when we receive (0,1,0) we conclude that the
most likely sent codeword is (0,0,0), which corresponds to the to-be-protected bit 0.
To arrive at this conclusion, two methods are available: either through a majority vote,
which also decodes the protected information, or through the parity check mairix H. In
this specific example a possible choice for H is:

110
H=(011)' (6.2)

'Further suppose that the error probability p is less than 1/2.
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Calculating the syndrome, here (1,1), indicates that the received signal does not cor-
respond to a valid codeword. The error correction procedure should find the binary
string which is the closest to the received signal and which has an all-zero syndrome.
This notion of distance between binary strings is given by the error model, and in our
example corresponds to the error model is the Hamming distance—the number of bits
that differ in the two strings.

Of course both result coincide. However, in the latter procedure if we suppose that
instead of transmitting 0 the emitter wanted to transmit 1 and the same error occurred on
the emitted codeword—a bit flip on the second bit—, then the received signal would have
been (1,0, 1). It is important to note that this vector corresponds to the same syndrome
(1,1). This particular point of syndrome based error correction procedures will be used
later in the quantum case: the value of the syndrome is completely independent from
the information that has been sent over the channel. It only characterizes the error that
happened during the transmission.

6.3 Quantum error correction

6.3.1 Error model

Like for classical codes an error model is required for a proper discussion of the error
correction capabilities of a code. In this work we will only mention the depolarizing
channel. It is the generalization to the quantum case of the binary symmetric memoryless
channel. It acts on each qubit independently and applies the identity with probability
(1 - p), a bit flip X with probability p/3, a phase flip Z with probability p/3 and a
combination of those two, Y, with probability p/3. For a qubit state p the corresponding
trace preserving completely positive map is given by:

p (L—p)p+ 2(XpX + Yp¥ + ZpZ). (6.3)

Hence, for a n-qubit string the possible errors are all the elements of the Pauli group
Gn =sp{I,X,Y, Z}®". Theaim of the error correction procedure will be to find the most
likely element of G, which could have affected the qubit state during the transmission.

6.3.2 Example

Instead of directly describing the theory of quantum codes, it is suitable to have an idea
of the difficulties that arise in the quantum framework. We abandon temporarily the
error model just introduced and turn into an even simpler case. The channel we will use
is the quantum binary symmetric channel for the computational basis: with probability
1 — p nothing happens, while with probability p a bit flip X is applied to the qubit.
We can try to adapt the 3-bit error correcting code to the quantum domain. To
protect [0) and |1) we need two three-qubit states, [0} [0} |0} and |1} |1} {1). Hence, when
a generic state a [0) + 3|1) has to be protected, |0} |0) [0) + 3|1} {1} |1) is sent instead.
With a bit flip on the second qubit, the received state becomes o [0} [1) [0) + 5 1) |0} |1).

rrvem—
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The receiver must then apply an error correction step to recover the initial information.
At this stage only one strategy is possible. If the receiver were to recover the information
by a majority vote, it would collapse the state vector onto |0} {1} |0) or |1} |0) |1} with
probability |e|? and |8|? respectively. It will thus destroy irremediably the quantum
superposition. On the other hand, if he applies a syndrome extraction step with two
ancillary qubits, the overall state would be

(a}0) [1}10) + 11} [0} |1} {1} (1), (6.4)

which does not induce a collapse even if the last two qubits are measured. Then, the same
error estimation procedure as in the classical case can be applied and would successfully
correct the error, The initial quantum informaticn is preserved.

Syndrome extraction procedures are mandatory in the guantum domain as it is the
only way to preserve essential superpositions. This is one of the fundamental character-
istics of quantum codes. One might further ask whether it is always possible to find a
circuit transforming the to-be-protected quantum information into codewords, and how
the syndrome can actually be measured. The answers to these questions are brought by
the stabilizer formalism.

6.3.3 Stabilizer formalism

Definition 6.3.1 ({n, k) binary quantum code). A (n,k) binary quantum code is a
2%_dimensional subspace of the Hilbert space of n qubits.

Defining a code is thus equivalent to define a particular subspace in a larger Hilbert
space. In the stabilizer formalism (see [Got97a] and references therein), it is done
by considering an Abelian subgroup S of the Pauli group G, over n qubits, G, =
sp{I,X,Y,Z}®"*. The code subspace is by definition the set of all vectors |1/} such
that |¥) = S|¥). It is possible to show that to have a (n,k) code the number of inde-
pendent generators of S must be equal to n — k. Note that this definition of the code
is somewhat very similar to the one involving the parity check matrix H for a classical
linear code.

In fact, the analogy between S and H can be pushed further way. A set of inde-
pendent generators {M;}; of S is equivalent to the rows of H in that they allow to
calculate the syndrome for the corresponding quantum code. Because operators in G
have only two eigenvalues +1 and —1, and because these operators either commute—
ABB'At = I—or anti-commute—ABBYA' = —I— if an error operator E € G, is
applied to the transmitted state vector, either at least one generator anti-commutes
with F or all the elements of S commute with E.

To know whether F commutes with all the M; is a relatively easy task, which can be
conducted without knowing E itself. The only needed ingredient is the received signal
|): if M; anti-commutes with E then we have M; ) = — |¢). This phase difference
can be measured by a quantum circuit. In this case, it is possible to gain information
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about the error without ever gaining information about the state itgelf, without inducing
a collapse of the state vector.

For the example given earlier, the stabilizer group is generated by ZZI and I1ZZ
which are equivalent to the syndrome (1, 1,0) and (0,1, 1) for the classical code.

As in the classical case, the error estimation procedure infers the error that affected
the transmitted state according to a particular error model. Correction can take place
followed by the decoding operation to recover the initial k-qubit state.

6.3.4 Specific issues

The encoding of a classical code is a very easy task obtained by multiplying the to-
be-protected k-bit string by the generating matrix of the code, G. The situation is
more complicated in the quantum case. The no-cloning theorem forbids to blindly copy
the quantum state. This is a big restriction for introducing redundancy. In fact, the
procedure for encoding is rather complicated. From the description of the stabilizer
group by its generators, one can obtain a matrix which can be put in a standard form to
produce an encoding network for the code. With this circuit, the decoding procedure is
simply implemented by running the encoding one backward: in the stabilizer formalism,
the gates used for encoding are their own inverses.

We voluntarily do not mention fault-tolerance issues nor the criteria to know whether
an error is detectable or correctable. These concepts will not be used in the next chapters
as we focus only on defining a particular class of codes. We do not analyze their intrinsic
performance in terms of error correction as new tools need to be developed for these
specific issues. However, for understanding quantum error correction as a whole, the
interested reader should refer to Gottesman’s PhD thesis [Got97a].
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7 Quantum convolutional codes

7.1 Introduction

QUANTUM INFORMATION SCIENCE has been developed in the past two decades as a
way to process information more efficiently than with classical means. It lead to great
theoretical advances and to impressive experimental realizations (see [Pre98a, NC00a] for
a review). The main results motivating the interest for quantum computation concern
integer factorization [Sho94a} and unsorted database search [Gro97a]. Both contribute
to the widely accepted idea that quantum computers are intrinsically more powerful
than their classical analogs, and justify the ever increasing interest for this new model
of computation.

In parallel to these developments, the difficulty of building quantum information
processing devices has been throughly pointed out: the quantum world is extremely
sensitive to interactions with its surrounding environment [Zur9la, Zur02a, Zur03a].
This process, called decoherence, is responsible for the instability of the fragile quantum
superpositions necessary to obtain a speedup over classical computation [JL02a]. In
absence of any control over the decoherence process, these quantum devices would be
turned into—at best—classical computers. Fortunately, the discovery of quantum error
correction schemes [Sho95a), together with their fault-tolerant implementation [Got98a]
cleared the future of quantum computation: quantum codes protect from unwanted evo-
lutions and noise, whereas their fault-tolerant implementation gnarantees that, below a
certain error rate, quantum information processing can be done without loss of coher-
ence [DS96a, Zal96a, Got98a, AB97a]. However, fault-tolerant quantum computation
usually requires a large overhead in costly quantum resources.

On the other hand, quantum communication protocols—e.g. quantum key distri-
bution-—achieve the production of large numbers of qubits often represented by some
degrees of freedom of light modes. For most protocols, the manipulation of quantum bits
is very limited and errors occur mainly during the transmission—loss of photons, noise,
etc. In the perspective of quantum communication, we develop a theory of quantum
convolutional error correcting codes. These codes are largely inspired by their classical
analogs [Lee97a, JZ99a] and share many of their properties: efficient encoding and de-
coding circuits and an efficient maximum likelihood error estimation procedure for any
memoryless channel.

Even more crucially, and as it is the case in the classical context, these codes can
deal with infinitely long streams of “to-be-protected” information without introducing
unacceptable delays in the transmission, and yet being inequivalent to block codes. This
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is one of the motivations for the introduction of such error protection schemes. Indeed, it
is expected that convolutional codes transform memoryless channels into channels with
correlated errors once decoding has been performed. Thus, by concatenating a convo-
lutional code with a suitably chosen block code, it would be possible to take advantage
of this specific biais, and to improve the general performance of concatenated schemes.
This study has not been performed yet, but is subject to future research.

This chapter is organized as follows: sec. 7.2 describes the structure of quantum
convolutional codes and introduces an appropriate formalism; sec. 7.3 provides an en-
coding circuit for this class of codes; sec. 7.4 studies error propagation properties, and
sec. 7.5 details the efficient maximum likelihood error estimation algorithm. Through-
out the text, abstract concepts are readily applied to a previously introduced example
of quantum convolutional code [OT03a].

7.2 Structure of quantum convolutional codes

All error protection strategies share many common ingredients. They are specifically
designed to enhance communication for a given error model. Once this error model is
known, they define the structure in which quantum information will be stored and, as
second step, explain how information can be manipulated within this structure. Quan-
tum error correcting codes impose the information to be stored in a subspace of the total
Hilbert space of the physical qubits. This subspace, C, is called the code subspace. C
is usually further decomposed into—e.g. single qubit—subspaces for which elementary
operations are then provided.

However, to arrive at a practical definition of a quantum error correction scheme,
it is usually necessary to further restrict the possibilities offered by the above general
program. One such restriction leads to stabilizer codes. Those are often compared to
classical linear codes: they are defined by a set of linear equations—called syndromes—
which allow an efficient description of C together with a great flexibility in their design.
To facilitate the introduction of quantum convolutional codes, we will use abundantly
the stabilizer formalism, even though convolutional codes can be generalized to a wider
framework!.

More precisely, the code subspace C of any stabilizer code is defined as the largest
subspace stabilized by an Abelian group S acting on the NV physical qubits of the code.
In practice, S is a subgroup of the multiplicative Pauli group Gy =sp {I, X,Y, Z}®V,
where I, X, Y, Z are the well known Pauli matrices. The description of C is further
simplified by the introduction of a set of independent generators {M;} of S. This leads
to the definition of C in terms of syndrome equations:

Vi, [¢) = Mil$) & |¢) €C. (7.1)

The code vectors are common eigenstates with eigenvalue +1 of all the operators M;.

'In particular, our main theorem concerning error propagation in sec. 7.4 does not rely on the
stabilizer formalism.
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7.2.1 Definition

S Y

The particularity of convolutional codes is to impose a specific form to the generators of
the stabilizer group such that on-line encoding, decoding and error correction become
possible even in the presence of an infinitely long to-be-protected stream of information.

However, convolutional codes do not consider groups of qubits independently of each
other: the encoding operation cannot be decomposed into a tensor product of encoding
operations acting on a small number of qubits. By contrast, an (N, K)-block code can
protect such stream only by cutting it into successive K-qubit blocks. As a result,
the code subspace defined by these independent applications can be decomposed as a
tensor product of the N-qubit subspaces of each output block. Furthermore, increasing
the parameter K is usually not an option as it requires, in most cases, a quadratic
overhead in the complexity of the encoding circuit [Got97a] and, more dramatically, an
exponentially growing complexity of the error estimation algorithm?2.

Quantum convolutional codes are especially designed to offer an alternative to small
block codes in counteracting the effect of decoherence and noise over long-distance com-
munications while using a limited overhead of costly quantum resources.

Definition 7.2.1 ({n, k,m) convolutional code). The stabilizer group S of a convo-
lutional code with parameters (n, k,m) is given by:

S =sp{M;; =I®*"@My;, 1<i<n—k, 0<j}, (7.2)

where Mo ; € Gnim. Above M;;’s are required to be independent and to commute with
each other.

Remark 7.2.1. As expected, the length of the code (i.e. the number N of physical
qubits of the code) as well as the number of logical qubits are left unspecified. In fact, the
maximum value of the integer j controls this length implicitly. However, and contrarily
to block codes, this maximum value does not need to be known in advance for encoding
and decoding qubits. Instead, it will be fixed a posteriori when the transmission ends.
This specific issue will be addressed in sec. 7.3. Hence, in most situations the length
of the code can simply be set to infinity. The only associated restriction is to consider
operators whose support? has size of order 1. This also explains why in Eq. (7.2) the
M; i’s seem to have different length: in the rest of the article we simply assume that the
operators are “padded” by identities on the right-most physical qubits to adjust them to
the appropriate length. =

With this remark in mind, the structure of the stabilizer group generators can be

*This holds for random codes without particular structure—not belonging to a restricted class— and
with constant rate as K increases.

®In this article the definition of support of an element A of the Pauli group is — rather unconven-
tionally — the smallest block of consecutive qubits on which A acts non-trivially.
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summarized easily with the help of a semi-infinite matrix M:

Mo 1 \
My n—x
M= NIBEE (7.3)
| .
= i Ml,n—k
\ m ‘T& - . . )

Each line of the matrix represents one of the M;; and each column a different qubit. A
given entry in M is thus the Pauli matrix for the corresponding qubit and generator. The
rectangles represent graphically which qubits are potentially affected by the action of
the generators. The form of Eq. (7.3) visually emphasizes the structure of convolutional
codes:

e M has a block-band structure;

® the overlap of m qubits between two neighboring sets of generators forces to con-
sider the code subspace as a whole.

By contrast, for a block code used repeatedly to protect an infinitely long stream of
qubits, the above parameter m would be equal to 0.

Remark 7.2.2. In addition to the above generators, and in order to properly account
for the finiteness of real-life communications, a few other generators will be added to the
matrix M. This will however not interfere with the rest of this section. n

Example 7.2.1 (5-qubit convolutional code). The following generators satisfy the
conditions for defining a quantum convolutional code with parameters n = 5, k = 1 and

m=2:
Myy = ZXXZ1 11,

My = 1 ZXXZ1TI..,

Mys = 1T ZXXZ1I..., (7.4)
Myy = 111 ZXXZ...,

Mj; = I®I@ My, 0<j.

7.2.2 Polynomial representation

Although, it is in principle possible to carry out a complete the analysis of the code with
the matrix M only, we will introduce a polynomial formalism which greatly simplifies this
task. Such formalism is the exact translation of the polynomial formalism for classical
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convolutional codes. Its advantage is to capture in a convenient and efficient way the
fact that the generators in M are n-qubit shifted versions of the Mp;’s.

More precisely, for a (n,k, m) convolutional code, we define the delay operator D
acting on any element A of the Pauli group of the physical qubits with bounded support?®
by:

D[A] = I®*" @ A4, (7.5)

with the same “padding rule” as before. Naturally, one can consider powers of D as
repeated applications of the delay operator. For instance, the generators of the code can
now be written as:

Mj;=Di[Mog), 0<j, 1Si<n—k. (7.6)
Therefore, and to further continue with simplifications, it is obviously not necessary to
keep more than the first n — & lines of the matrix M defined in Eq. (7.3). All the omitted
ones can be easily recovered by applying D the appropriate number of time.

In addition to applying a single D¥ to an element of the Pauli group, it is, under
certain conditions, passible to consider more complex operations—for instance, these
will be necessary for deriving the encoding circuit. Namely, consider A, an element of
the Pauli group with bounded support, such that A and D?[A] commute for any value
of j. Then, the full polynomial ring GF3[D] can act on A. For P(D) = 3_;a;D7, the
action of P(D) on A is naturally defined as:

P(D)[4] = [ o; D[4} 7.7
2

Above, the commutation relation is crucial: the sum operation in GFy{D] is commu-
tative and must therefore be translated into another commutative operation—here the
product—on the multiplicative group spanned by {D7[4]};.

Finally, we will sometimes use a short hand in our notation and, instead of restricting
ourselves only to polynomials in I), consider formal Laurent series acting on A. In such
case, we do not really need to define the action of negative powers of D, but we impose
that, at the end of the calculation—possibly concerning several operators—, all the
negative powers of D are removed by globally? applying the smallest possible positive
power of D. For instance, if we end with

q
L(D)[4] = (Z a,-DJ') 4], (7.8)

F=—p
it will be turned into

P(D)4] = (DP zq: a,—DJ') (4]
= (Zq: ajDi+P) [A]. (7.9)

4This means on all the operators involved in the calculation.
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In practice, the representation of the code generators as a matrix M with entries
I, X, Y, Z is often replaced by the one of [CRSS97a]. In this representation, the
first n — k generators of an (n, k, m) convolutional code would be written as a pair of
(n+m) x (n — k) binary matrices arranged side by side®. Each line corresponds to a
generator and each column to a qubit. A 1 for the left matrix indicates the presence
of an X or Y and, similarly, a 1 for the right matrix indicates the presence of a Y
or Z. Within this framework, it is easy to realize that the polynomial formalism can
be fruitfully extended to lead an even more compact notation for the generators of the
stabilizer group.

First, recall that the addition of two pairs of binary vectors simply results in the mul-
tiplication of the corresponding generators provided that these commute. For instance,
suppose A and B are two elements of G, and (Ax|Az), (Bx|Bz) their respective
representations as pair of binary vectors. In such case, the operator A ® B is repre-
sented by (Ax : Bx|Az : Bz) where *” indicates the concatenation of the vectors.
With the polynomial formalism, we also have A ® B = A x D|[B], which leads to®
(Ax : Bx|Az : Bz) = (Ax|Az) + D[(Bx|Bz)]. Here, the commutation of A and D[B]
is trivially verified since their supports do not intersect.

This last equality suggests the following modification of the representation. A generic
element P of the Pauli group of the physical qubits with bounded support is represented
by a pair of length n vectors with coefficients in GF[D] such that, by definition,

(PxIPz) = (PQ:PQ:PP .. 1Y PP ..
= PP +DxPP+D*x PP +...1PY + Dx PP +..), (7.10)
where the P)((j »s and Pg) ’s are length n binary vectors.
Example 7.2.2 (5-qubit convolutional code). These new concepts can be used to

give the representation of the generators found in Ex. 7.2.1 as a pair of polynomial
matrices.

0 1 1 0 011 o0 o0 1 0
0o 0 1 1 0 {0 1 0 0 1

M= 0 0o o0 1 1 1|D 0 1 0 o0 (7.11)
D o o 0 1|0 D o 1 o

The correspondence between this notation and the usual notation as pairs of binary
matrices is given by Eq. 7.10 The above matrix corresponds to the first 4 generators of
the code. The others are derived by multiplying both matrices by successive powers of
D, which induces shifts of 5 qubits. =

3This representation as a pair of binary vectors or matrices is not restricted to elements of the
stabilizer group, and can indeed be used for any element of Grim.
SHere again we apply the implicit “padding rule” to adjust the length of the vectors.
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7.2.3 Generalized commutator

In the context of block codes, the main reason justifying the introduction of the represen-
tation of the elements of the Pauli group as pairs of binary vectors [CRSS97a, Got97a] is
the existence of an easy way to compute the group commutator. We shall see below that
the same kind of advantage holds for the representation as pair of polynomial vectors.

First, consider two elements A = (Ax|Az) and B = (Bx|Bz) of Gn. It is then easy
to check on their representation as pair of binary vectors that,

AB=BA & AxBz+ AzBx =0, (7.12)

where we use the standard inner product of two vectors of length N and addition modulo
2.

Now suppose that P and Q are two elements of the Pauli group of the physical
qubits of an (n,k,m) convolutional code, and (Px(D)|Pz(D)), (Qx(D)|Qz(D)) their
representation as pair of polynomial vectors. Using the above method, one can conclude
that the commutation of P and @ is simply expressed by:

PQ=QP & Y. PYQP + PYQY =o, (7.13)
I

where Px(D) = 3; P)({j)Dj with P)((j) a binary vector of length n and similarly for
Pz(D), Qx(D), Qz(D). This also leads to,

D'[PID*[Q) = D°[QID"IP] & S PEHIQut™ 4 pitiQhta 0. (7.14)
i

The last equation is particularly interesting since its right hand side is the coefficient
of D°7" in Px(D)Qz(1/D) + Pz(D)Q(1/D). Therefore, one can readily conclude that
the representation as pair of polynomial vectors allows an easy computation of the
“generalized commutation relation”—i.e. the commutation of any n-qubit shifted version
of P with any n-qubit shifted version of Q—:

Vr,s, D'[PID°|Q] = D*[Q|D"Q)}
& (7.15)
Px(D)Qz(1/D) + Pz(D)Qx(1/D) = 0.
We will see below that this property of the polynomial representation is crucial as it

allows the derivation of almost all the encoded Pauli operators by considering only the
first n — k generators My ;’s of the stabilizer group.

7.2.4 Encoded Pauli operators

The enceded Pauli operators for a quantum error correcting code are some operators of
the Pauli group of the physical qubits which allow the manipulation of the information
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without requiring any decoding. More precisely, these are operators that leave the code
subspace C globally invariant, but which have a non-trivial action on it. Indeed, it is
possible to require such operators to reproduce exactly the commutation relations of the
Pauli group for the encoded qubits. This is mathematically expressed by [Got97a]:

X:, Z: € N(S)/S, (7.16)
XuX;] = 0, (7.17)
(2:,Z;) = o, (7.18)
[X,',_Z—j] = Os":#j: (7'19)
X.,Z} = 0, (7.20)

where the index i in X; and Z; denotes the i-th logical qubit.

In the rest of this paragraph we exploit Eq. (7.15) to find an algorithmic procedure
for deriving the Xi’s and Z;'s. First we define the standard polynomial form of M and,
as a second step, we translate Eqgs. (7.16-7.20) into a set of equations for polynomial
vectors which can be solved easily.

To obtain the standard polynomial form for the generators of the stabilizer group
one can perform two Gaussian eliminations® on M written in its representation as pair
of polynomial matrices over GF3[D]. This can be done by using line additions, column
swaps and multiplication of a line by a power of D:

r n—k—r k r n—k—r k
Moy = ( m EZ};}\ EE-’?) ’E_(’-F) ﬁBi ’E(’Bj‘ )}T (7.21)
s 0 0 0 |JD) K(D) LD) |IJn—k—r '

where A(D) and K (D) are diagonal matrices with polynomial coefficients, and where r
is the rank of the X-part of M.

By definition, A(D) has full rank. In fact, this holds for K(D) as well: if it was not
the case, then there would exist a line with zeroes everywhere except for at least one
position in the first r columns of the Z-part. Then, the operator corresponding to this
line cannot commute in the generalized sense with all the other generators, which would
contradict the assumption that the stabilizer group S generated by M4 is Abelian.

We now turn to the determination of the encoded Pauli operators. Here, we restrict
our search to operators that preserve the convolutional nature of the code: we want to
find a finite set of independent operators with bounded support which generate through
n-qubit shifts—almost all—the encoded Pauli operators?. This can be accomplished by
considering a k-line matrix,

X = (U1(D), Ua(D), Us(D)|Vi(D), Va(D), Va(D)), (7.22)

In all this article, and following the notation of {Got97a], the encoded Pauli operators are denoted
by, e.g. X and Z.

#See also [Got97a] for a similar procedure for block codes

For the purpose of introducing the theory of quantum convolutional codes, it is not necessary to
consider encoded Pauli operators that do not respect the convolutional structure of the code. However,
in more elaborated error correction scheme, this might prove to be useful.
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representing the encoded X operators—the rest of the discussion shows that such en-

.- coded Pauli operators exist. Since these operators can be multiplied by any element of
the stabilizer group, U1(D) and V2(D) can be set to 0. The generalized commutation
with the lines of M imposed by Eq. (7.16) can be simply written:

Vi{(1/D)
0
(A(D) B(D) C(D)‘E(m F(D) G(D)) V& (/D)
0 0 0 |JD) KD) LD ]|~ 0
| ' uf(1/D)
Uf(1/D)

1]
(). _—

On the other hand, Eq. (7.17) is expressed by
Us(D)V{' (1/D) + V3(DYUZ (1/D) = 0, (7.24)

which can be trivially satisfied with V3(D) = 0 and U3(D) = A(D) x I, where A(D)
is a non-zero polynomial of GFy[D]. This choice guarantees that the operators in X
together with their n-qubit shifted versions are independent of each other and from the
generators of 5. In this case, Eq. (7.23) becomes,

ADWA(1/D)T + F(D)Ux(1/D)T + G(DYUs(1/DYT \ _ [ © .
K(D)Ux(1/D)T + L(DYU3(1/D)T =10/ (7.25)

Then we can write the encoded X operators:

Uy(D)y = 0 (7.26)
Uy(D) = LT(1/DYK~Y(1/D)A(D) (7.27)
Us(D) = AD)xI (7.28)
Vi(D) = (Ux(D)F(1/D)T + AD)G(1/D)T) A74(1/D) (7.29)
Va(D) = © (7.30)
(D) = 0. : (7.31)

One must realize that the encoded Pauli operators X are not yet properly defined as the
division by polynomials is in general problematic. The reason is that generic polynomial
fractions cannot be written as finite formal Laurent series. Thus, the operators that they
describe have an unbounded support. In such case, and without further modifications,
the formalism introduced earlier imposes transmissions of infinite length. However, when
the result of the division can be written with a finite Laurent series, such operation is
permitted.
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Definition 7.2.2 (Conditioning polynomial). The non-zero polynomial A(D) with
minimum degree such that the equations (7.26-7.31) only involve finite Laurent series is
called the conditoning polynomial of the code.

As it can be seen easily, the conditional polynomial always exists, and the X’s operators
are well defined. They correspond to operators with a finite support, respecting the
convolutional structure of the code.

We now turn to the derivation of some Z'’s by applying the same tools. First note
that once the X's are fixed, there is a unique set of valid Z's. Quite surprisingly, we
will also see here that it is not always possible to impose to the Z's the convolutional
structure—the invariance by n-qubit shifts.

For instance, first define the k-lineé matrix

Z = (0,U3(D), U3(D)|V{(D), 0, V3(D)). (7.32)

Above, the zeroes have been set for the same reason as in the derivation of the X ’s. In
addition to satisfying an equation similar to Eq. (7.23), the matrix Z must anti-commute
in the generalized sense with X, Eq. (7.20). Equivalently, this can be expressed as
3(D)Us(1/D)T = I, which can be fulfilled if and only if V{ = I/A(D). As discussed
above, only when A(D) is a monomial in D does V(D) correspond to a valid polynomial
vector (i.e. 1/A(D) is a bounded Laurent series). In this latter case, we obtain Z:

(D) = 0 (7.33)
D) = 0 (7.34)
UiD) = 0 ©(7.35)
Vi(D) = CT(1/D)A(1/D)™*/A(1/D) (7.36)
ViD) = 0 (7.37)
Va(D) = I/A(1/D). (7.38)

Note that for A(D) to be a monomial, all the 4,;(D)’s must be monomials as well, so
that Eq. (7.36) is automatically well defined.

Remark 7.2.3. The obvious question raised by this derivation concerns the case where
A(D) is not a monomial. The rigorous answer will be given in sec. 7.4 where it will be
shown that if such code were to be used, it would have bad error propagation proper-
ties.!® One can also consider the following hand-waving argument: when A(D) is not
a monomial, and for a finite length communication, the Z’s have a support with a size
of the order of the length of the.code. Thus, if one implements an encoded phase flip
by applying individual Z’s on the physical qubits with finite precision, then for long
streams of to-be-protected information this will result in an error with probability close
to 1. [ |

12QOnly the X operators are used to derive the encoding circuit. Then, if one renounces to manipulate
information in its encoded form, the code can be, in principle, successfully used to protect quantum
information.

—
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Finally, and to conclude this section on the structure of convolutional codes, we
should count how many logical qubits are described by our construction in the case of
a finite transmission. To simplify this discussion, we define the integer A as the highest
degree in the polynomial matrices X and Z. This sets an upper bound on the size
of the support of any of the X'’s and Z’s: they extend on at most A + 1 consecutive
n-qubit blocks. Further consider the stabilizer group S generated by the {M;;} for
D<i<n-—kand0<j<pwith p> A In this case, the above derivation leads to
at least!! k x (p+ [m/n] — A) logical qubits while we used {n — k) X p generators and
(p+ [m/n]) x n physical qubits. Therefore, only [m/n] x (n— k) + Ak logical qubits—a
number independent of p—do not follow the convolutional structure of the code. These
will simply be discarded in the encoding process as this does not change the asymptotic
rate of the code. This can be done consistently with the stabilizer formalism by adding
their encoded Z operators to the generators of S.

One should further note that the presence of these sacrificed qubits i3 due to an
uneven protection against errors at the beginning and at the end of the stream. There,
each physical qubit is involved in a smaller number of generators of the stabilizer group
than those in the middle of the stream. Therefore, extra logical qubits with poor error
protection capabilities are created. To ensure an even protection, it is then natural to
simply discard them.

Example 7.2.3 (56-qubit convolutional code). By working out the method given
above with the polynomial matrix of Ex. 7.2.2, it is easy to find the standard form

of M,
Do o o 1|0 Do 1 o
o 1 0o 0o 1 |14D 1 1 1 1
Maa=19 0o 1 0o 1 |D 1 1 0 1 (7.39)
0o 0 0 1 1|D o0 1 0 o0

The X operators are obtained from a single 5-dimensional vector, with the conditioning
polynomial A(D) equal to 1:

(0! 07 0) 0’ 1107 1? 1! 0! 0)’
(0,0,0,0,0|D, 1,1,1,1).

N
|

]

(7.40)

7.3 Encoding

This section provides an operational method to arrive at an encoding circuit which
respects the convolutional structure of the code: a simple unitary operation—indepen-
dent of the length of the to-be-protected stream—and its n-qubit shifted versions will be

UHere, we consider an integer number of physical n-qubit blocks. I wrote “at least” because it is
possible that the support of some of the X and Z is smaller than n x (A 4+ 1).
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applied successively to arrive at the protected state. Therefore, the complexity of this
scheme in terms of number of gates in the encoding circuit only grows linearly with the
number of encoded qubits. This is of particular relevance since dealing with convolutional
codes as if they were generic block codes would lead to an encoding circuit with quadratic
gate complexity. It would also require increasing precision in the applications of the
enceding gates and would cause severe delays in the transmission of the information.

The derivation of the encoding circuit will nonetheless be very similar to the one for
block codes [Got97a). Here, instead of the usual standard form for the generators, we
use the standard polynomial form. The circuit that will be obtained is relative to the
encoding of g X k logical qubits. “The encoded Pauli operators corresponding to these
qubits will be denoted X ; 44 and ZJ ;. For instance, X, 0, is defined as the i-th line of the
X matrix derived in the previous section, X ji=D’ [)—(n i], and similarly for the Z’s

The encoding circuit maps the to-be-protected qubits ¢;; onto the code subsPace.
Its action on the computational basis can be written as:

1 +Ml ¥ Car
|CO,1, sy Cq—l,k) - (H "'\/—T’) HXs,;- 0,...,0}, (7'41)
if Lt

foresr € {0,1},0<i<n—k,0<j<g+A0<s<qgand1<r<k!? This operation
can be decomposed in two steps. The first one, I'[”X,,’,’, applies the different flip
operators depending on the value of the to-be-protected qubits in the computational
basis. The second, [[; ;(1 + M;;)/v2, projects this state onto the code subspace.'?

We first focus on the conditional application of the X'’s:

a1y - -5 Cq—1.4) —* HT’ - ,0}. (7.42)

The number of n-qubit blocks involved in the right hand side of Eq. (7.41) is equal to
g+ A+ [m/n]. Hence, the first requirement is to supplement the to-be-protected stream
of information with some ancillary qubits prepared in the |0} state. Both are arranged
in the following way:

ICO,].! veay Cq—l,k) —
nxi—k n—k n—k [m/n]xn (743)
i\ P, i Ny R
|0. ..0,¢c0,1 ...cu‘k,U...0,(:1,0...cl,k,o...O,Cq_l,k...cq_.llk, 0...0).

The notation X *T means that X, s, Needs to be applied on the all-zeroes state if and
only if csr = 1. Now, in the standard polynomial form, b¢ s+ has a factor X exactly at

?Here A is defined as the in the previous section. With this definition, the operators X have support
on at most A + 1 consecutive n-qubit blocks. The choice 7 < g +4- A then ensures that the support of
each logical qubit is covered by the same number of generators of the stabilizer group.

13The way of writing this projection follows from the realization that any element of the stabilizer
group is a product where each generator appears at most once—any element of the Pauli group is its
own inverse.
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the position of ¢, in the state of the right hand side of Eq. (7.43). Therefore, if all the
other logical qubits are set to zero, the output state of Eq. (7.42) can be obtained from
the right hand side of Eq. (7.43) by applying X ; ,—without the above mentioned X—
conditioned on qubit ¢s;. Unlike for quantum bock codes, these conditional operations
can confuse each other when the conditioning polynomial A(D) (see sec. 7.2) is not a
monomial'®. In this situation, applying X,, might flip some control qubits cy, for
s’ < s. Therefore, these modified qubits ¢y, cannot be used anymore to condition the
application of X ,. This also indicates the way-out of this problem: when the X’s are
applied by increasing successively the index s by one, there is no risk that one application
flips a qubit later used to condition another X.

The rest of the encoding circuit must implement the effect of the projection onto the
code subspace for this partially encoded state:15

[Ixro,... (H 2+ M ) [1x5 10,....0). (7.44)

T3

There are two classes of M;;'s. Either M;; is a tensor product of I's and Z’s only, or
there is a polynomial 4;; on the i-th column of the X part when it is expressed in the
standard polynomial form (see sec. 7.2). In the first case, nothing needs to be done. In
the latter, consider the i-th qubit of the {j + deg A; ;(D))-th n-qubit block in Eq. (7.44).
The resulting state is an equal weight superposition of a state with a |0) and a state
with a [1) on the previously mentioned qubit. This can be created by first applying a
Hadamard gate for this qubit, which later controls the application of M;;—ignoring the
X factor for the control. If there is a Z factor for the control qubit, it does not need to be
conditioned on anything and can be applied right after the Hadamard gate. Once again,
since A;;'s are not required to be monomials, the above operations might confuse each
other when a control qubit, supposedly still in its initial |0) state, has indeed already
been modified. As before, this can be overcome by applying the conditional gates and
increasing the index j one by one successively.

Remark 7.3.1. For sake of simplicity in the presentation of the whole encoding circuit,
the usual simplifications corresponding to the removal of control-Z gates acting on a
target in state |0) have not been described. Of course, these should be performed to
obtain a simpler circuit. (]

Remark 7.3.2. Note also that the circuit described in this section encodes the qubits
on-line;

“Here, for sake of generality, we describe the encoding circuit without imposing A{D) to be a mono-
mial even though, in this case, the encoding shows bad error propagation properties.

*The method described here details how to obtain the encoding circuit when the generators M;;
have a positive sign. When this is not the case, the procedure described here must be modified so that
a Z gate is applied to the qubit conditioning the application of those particular M;,; with a negative
sign.
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e the second step rotating the partially encoded state into the code subspace can
start before all the X's are applied;

e sending the qubits can be done before all the stream has been encoded.

This is a simple consequence of the fact that each conditional gate in the circuit acts
only on the last A + 1 n-qubit blocks. [

Example 7.3.1 (5-qubit convolutional code). For the code given in Ex. 7.2.1, the
circuit realizing the application of the encoded X operators, Eq. (7.42) is given in Fig. 7.1.
The full encoding circuit is presented in Fig. 7.2, where all the simplifications have been
implemented (it consisted in removing all Z operations applied to qubits in the |0) state).

Here, the existence of a sacrificed logical qubit is clearly apparent: the first qubit is
never involved in any gate and does not contain any quantum information (it remains
in the |0} state). This comes from the finiteness of the to-be-protected sequence: at the
beginning and at the end of the stream, there are less commutation constraints for the
encoded Pauli operators imposed by the generators in M. Thus, it is not surprising that
there exist a finite number of encoded Pauli operators that do not follow the convolu-
tional structure. The encoding procedure given in this section forces these logical qubits
to be in their logical [0} state: it is taken care of by setting the first A n-qubit blocks to
the all-zerces state. n

7.4 Error propagation and on-line decoding

The previous section was devoted to the derivation of the encoding circuit for quantum
convolutional codes. It showed how the standard polynomial form for the generators of
the code leads to an automated procedure for finding an on-line encoding circuit. In
this section, the focus shifts to decoding quantum convolutional codes. The need for a
clear discussion on this issue comes from the specificity of convolutional codes: usual
decoding circuits—obtained by running the encoding one in reverse direction—require
to wait for the last logical qubit before running them. This is not a practical option as
it would cause long transmission delays.

Here, we show that the existence of an on-line decoding circuit is implied by a more
fundamental property of the encoding operation: the absence of catastrophic errors.
These errors will be defined carefully below, but we can already mention that they are
not specific to quantum codes. Rather they, and more generally all the error propaga-
tion problems considered in this section, are also encountered in the theory of classical
convolutional codes [Lee97a, JZ99al.

'To build our intuition on the error propagation problems that might arise when using
convolutional codes, consider a generic encoding circuit as derived in the previous section
(see also Fig. 7.3). Because of the overlap between the generators on m qubits as defined
in Eq. (7.3), quantum information is propagated from one n-qubit block to another. As
a consequence, even though the to-be-protected stream of information is in a separable
state, say |0,...,0), the encoded state is not, in general, separable with respect to any
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Figure 7.1: Circuit for generating the state [],, (X,,,.) 0,...,0) for the 5-qubit con-
volutional code. For obvious reasons, the control-Z operations have been kept even

though they act on {0) and should be simplified: this part of the encoding circuit would
be reduced to no circuit at alll
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Figure 7.2: Circuit for encoding the first three qubits of a stream of quantum information
with the 5-qubit convolutional code. Here, we have removed unnecessary Z gates acting
on quibts in the |0) state. Note that the first physical qubit corresponds to a sacrificed
logical qubit: in our encoding procedure, it is not used to store information, since it
offers no protection to errors. For “pedagogical purposes”, it has not been removed from
the circuit, but in practice, it is not necessary to transmit it.
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bipartite cut. In spite of their relatively simple form—invariant by shifts of n-qubit—
encoding circuits apply global unitary transformations that cannot be casted in tensor
products of smaller unitary operations.

The good spreading of quantum information induced by the particular structure of
convolutional codes might in some cases have a bad consequences: nothing prevents an
error affecting a finite number of qubits before the complete decoding of the stream to
propagate infinitely through the decoding circuit. Such error is called catastrophic.

Definition 7.4.1 (Catastrophic error). Consider the encoding scheme of a (n, k, )
quantum convolutional code protecting q x k logical qubits. A catastrophic error is an
error that affects O(1) qubits before the end of the decoding operation and that can
only be corrected by a unitary transformation whose size of support grows with g, for
large q.

Remark 7.4.1. The theory of classical convolutional codes explicitly shows the exis-
tence of catastrophic errors for some convolutional encoders. As these are a special case
of quantum codes—their generators are tensor products of I's and Z's—it proves the
existence of catastrophic errors for some quantum encoding circuits. m

7.4.1 Catastrophicity condition

In this paragraph, we will find a catastrophicity condition for convolutional encoders
without relying on the stabilizer description of the code. Instead, we simply assume a
generic form for the encoding operation of g x k to-be-protected qubits:

C(g) = Term x DT U] x ... x D[U] x U x Iy, (7.45)

where Ipiy and Tom are two fixed unitary transformations, respectively the initiali-
zation—acting at the beginning of the to-be-protected stream of information—, and
the termination-—acting on the last qubits of the stream.'® The unitary U has a finite
support independent of g. In the standard encoding presented in the previous section,
U corresponds to the encoding of k consecutive qubits containing information—i.e. it
corresponds to applying some X’s and some M;;i's. The presence of I and Torry, is due
to the sacrificed logical qubits at the beginning and at the end of the encoded stream.
The typical arrangement of the unitary operations D[U] far from the beginning and the
end of the stream of information is depicted in Fig. 7.3.

Proposition 7.4.1. A quantum convolutional encoder is non-catastrophic if and only
if the encoding operation C(q) can be decomposed in the following way for large g:

) la/te] la/t) :
C(q) = Torm(g) x (I] D"*[Utl) X ... X ( I p* [Uﬂ) x Tuir(q), (7.46)

i=0 =0

"®The delay operator, initially introduced only for elements of the Pauli group with finite support, is
easily generalized to handle unitary matrices with finite support.
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where Init(q) and Tem(g) are modified initialization and termination steps which can
vary with g, but whose support is bounded; {U;}; is a finite set of unitary operators
independent of q—thus with bounded support—such that D¥[U;] and D¥ [U;] commute;
and l;’s are integers independent of q.

Even though this condition might seem at first sight quite complicated, it corresponds
to a reordering of the unitaries—or gates—in the quantum circuit which is eagy to
understand. The new circuit must have the following form: first an initialization step
is performed;!? then, there are ¢ layers of unitaries (each of them made out of a single
unitary, e.g. U;, and its n-qubit shifted versions) such that the gates inside a layer
commute with each other; finally it is followed by a termination step, Term(g) with
bounded support. This structure resembles a pearl-necklace as it can be seen on Fig. 7.4.

Proof 7.4.1 (Sufficiency). To simplify the discussion, we will consider the case where
the error £ occurs before the beginning of the decoding operation. This is not general,
since the definition of non-catastrophicity also imposes to consider errors occurring on a
partially decoded stream. Nonetheless, the proof presented here can be easily adapted
for this other case.

Here, we have to show that for g large, whenever E has bounded support, C ()T EC(q)
has a bounded support as well. Since Term(g) has a bounded support at the end of the
stream, it is always possible to increase g such that £ and Term(g) commute. Therefore,
after simplifying C(g)! EC(q) by Term, we have:

i=0 i=0

- lg/hl la/t]
C(@)'EC() = (o) x (H D‘“[UI]) X ..o X (H D"’t[vﬂ) x E x

lgfte) lg/hl _
x ( H D"lt[Ut]) X...X ( H pi [Ul]) X Init(q). (7.47)
i=0 =0

Similarly, in the above equation all the D¥*t[U;} whose support does not intersect the one
of E commute with it and can be simplified (recall also that the D*[[/;] also commute
with each other). Only a finite number of the D% [[;]’s remain, say {D* [U;]}ics,. Note
that for g large, this number is independent of 4. We thus have

_ lg/li] la/ti—1]
C(Q'EC(q) = IL(q)' x (H D*"[UI]) X ... % ( II D“‘“[Uf_ll) X

i=0 =0
xFj x (7.48)
lg/te—1] ta/l1]
X ( I1 D“*-'[Ut_ﬂ) X e X (H D"“{Ull) x Tnin(q)
i=0 i=0

"Because of possible side effects fnit{g) can depend on g but the size of its support must be of order
1 and it can act non-trivially only on the first few qubits
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Figure 7.3: Typical encoding circuit for a convolutional code. The circuit is run from
left to right. Horizontal lines of a given type (i.e. with single or double vertical bar)
always represent the same number of qubits. The unitary operation U is implemented
as a series of elementary gates acting only on the qubits with which it intersects.
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Figure 7.4: Example of pearl-necklace structure for the encoding circuit. We have
depicted four layers of unitaries, U; through U;. Here, the condition of commutation
inside a layer is guaranteed by the disjointness of the support of the different unitaries

{D7[U]};.
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where E; = (Hie I, Dike [Ug ]) x E x (Hie I D“{Ug]) has a bounded support, independent.
of g. The rest of the proof follows immediately by applying the same technique to the
remaining layers: another step generates Fa, by considering E) instead of E and U;_4
instead of U;. Following the same arguments, £, has a bounded support independent
of ¢ and so will Eis,...,E;. Thus it proves that C(q)'EC(q) = fni;(q)fEJnit(q) has
bounded support. [ ]

Proof 7.4.2 (Necessity). To prove that this condition is necessary, we will show that
a non-catastrophic encoding operation C(g) can be put in the special form of Eq. (7.46),
for g large. The outline of the proof is the following: we will work on the circuit of
the decoding operation C(g)?, obtained by running the encoding circuit in the reverse
direction {see Fig. 7.5). Our goal is to convert this decoding circuit into an equivalent
one which displays the pearl-necklace structure. To do so, we will consider a possible—
but yet very particular—error which could occur on the physical qubits during the
transmission. The chosen error indeed corresponds to a local reordering of the unitaries
in C(q)f. Since the encoding is supposed to have no catastrophic errors, this local
reordering can be compensated by applying a unitary operation with finite support after
complete decoding. This will give us an identity between two decoding circuits, which
we can apply as many times as required to arrive at the pearl-necklace structure.
More specifically, consider the decoding unitary operation,

Clt =1 xUT x DU x ... x DUt x TT_. 7.49
it erm

ik

We define the integer I such that U and D¢[U] have disjoint support for |i| > [.}® The
circuit identity that will be derived is:

Cg)f = DT [V1] x Co), (7.50)
where V has finite support extending on !’ n-qubit blocks, and where (3‘(q)’r is obtained
from C(g)! by locally reordering its last 2! + 1 unitaries U:

Clg)t = I, xUtx...x DT3[t x
x DA DU x Ul x DA DHI U « U x ... (7.51)
X DITERDH U < U x T,
Consider E, a unitary operation, defined by:
E = (D"[Ufx U x DD U x UM x ... x DD U x Ut] x
xD¥H U] x D¥[U} x ... x D[U] x U. (7.52)
An illustration of the arrangement of the unitaries in E is presented on Fig. 7.6 for { = 1.
By construction, F satisfies:

Cla)f = I;{it x Ul x...x D330t x ...
x DI~2-2[B] x (7.53)
x DI U] DIE U] x L x DITHUY x Ty,

18Thig integer exists because I/ has finite support.
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which simply corresponds to the initial decoding operation C(g)! with an error E hap-
pening between the unitaries DI-2~3[U] and D*"#-2[U]. Since, the encoding is non-
catastrophic, there exists a unitary V! with finite support—also obviously independent
of g—such that C{g)t = D*¥ [V x C(q), where I' is the size of the support of V' counted
in number of n-qubit blocks, which gives the circuit identity (see Figs. 7.7 & 7.8 for the
local reordering implied by Eqs. (7.49-7.53).

Moreover, this identity concerns only the unitary operations around the position
where E is applied. It is then possible to apply it at repeated intervals—e.g. separated
from max(, ') + 1 n-qubit blocks—in the decoding circuit. It is then straightforward to
show that C{g)'—and similarly C(g)—has the form of Eq: (7.46), and to conclude the
proof (see Figs. 7.9 & 7.10). [

Remark 7.4.2. Note also, that this demonstrates the possibility of on-line decoding for
non-catastrophic quantum convolutional codes: in this form, the “directionality” of the
quantum circuit which imposed to begin the decoding at the end of the received stream
disappeared. ™

Example 7.4.1 (5-qubit convolutional code). A possible arrangement of gates ex-
hibiting the pearl-necklace structure for the encoding circuit of the convolutional code
defined in Ex. 7.2.1 is given in Fig. 7.11. [

7.4.2 Catastrophicity condition for standard encoders

Proposition 7.4.2. Encoders derived from the standard polynomial form are non-
catastrophic if and only if A(D) is a monomial.

Proof 7.4.3. Simple commutations rules between controlled gates can be used to show
that when A(D) is 2 monomial, the quantum circuit can be put in the form of Eq. (7.46).
To prove the necessity, suppose A(D) is not a monomial and consider the decoding
circuit for this code. More precisely, focus on the qubits that control the application
of Yg,l, ... Xg-11- If the decoding circuit is restricted to those qubits only, the only
two-qubit gates that are used are controlled-NOT's. Thus, this part of the quantum
circuit in fact implements a rate 1 classical convolutional encoder with feedback. This
encoder links its output stream y(D) with its input x(D) through (see [Lee97a] for a
rapid introduction to classical convolutional codes and their polynomial formalism),

y(D) = =(D) + (A(1/D) - Ny(D). (7.54)

Thus, an error affecting the input stream—corresponding to a bit flip in the quantum
case—propagates to an infinite number of output bits when A{D) is not a monomial:

2(D)
¥P) = Xa/oy

(7.55)

Similarly, in the quantum case, a single bit flip could propagate to an infinite number of
qubits. Thus non-catastrophic standard encoders have a monomial A(D). [
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Figure 7.5: Typical decoding circuit for a convolutional code. The circuit is obtained
by running the encoding circuit in reverse direction and with appropriate Hermitian
conjugates.
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Figure 7.6: Error operation E as defined in Eq. (7.52). Here, [ = 1 because D[U]
commutes with U for ¢ > 1. When introduced in the decoding circuit, such operation
induces a local reordering of the unitaries UT.
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Figure 7.7: Derivation of a circuit identity for decoding. Because there is no catastrophic
error, the effect of applying E as defined in Eq. (7.6) in the decoding circuit can be
corrected by a unitary operation V' with finite support: this circuit induces the same
unitary transformation on the received stream of information.
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Figure 7.8: Local reordering in the decoding circuit. By using the specific form of E,
this circuit is equivalent to the ones given in Figs. 7.5 & 7.8
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Figure 7.9: Global reordering of the decoding circuit. Exploiting the circuit identity
described in Fig. 7.8, the fact that it corresponds to a local reordering only (i.e. only a
finite number of unitaries with bounded support are involved in this identity), and the
invariance of the initial decoding circuit by n-qubit shifis, it is possible to induce local
reorderings at regular intervals in the decoding circuit.
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Figure 7.10: Pearl-necklace structure after global reordering of the decoding circuit.
Each layer of the structure is identified by a dashed box. The necessity of introducing
new definitions for the initialization and termination steps, Iy and Tepm, is due to the
impossibility of applying the local reordering when few Ut’s remain at the beginning or
at the end of the decoding circuit (less than the number of n-qubit blocks involved in
the support of V).
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Remark 7.4.3. Note also that the condition “A(D) is a monomial” is equivalent to
having the Z operators efficiently described with the polynomial formalism. These two
questions are in fact intimately related. The application of a Z can be done before
encoding by applying the corresponding Z to the physical unprotected qubit. It is
well known that phase flips propagate through controlled-NOT gates from the target to
the control. Here, this phase flip propagates in the same way the bit flip of the proof
propagates in the decoding circuit. The number of qubits affected by this Z operation
after running the encoding increases linearly with g, the number of k-qubit blocks to
be protected. More generally, the non-catastrophicity condition shows that contrarily
to classical convolutional codes, an operation with finite support acting before encoding
cannot propagate to an infinite number of qubits after encoding. |

7.5 Error estimation algorithm

The last subject that must be addressed to arrive at a theory of quantum convolutional
codes is the error estimation algorithm. A naive attempt at finding the most likely
error could be to search among all the possible errors. In turn, this usually implies
an exponential complexity in the number of encoded qubits, thus making this scheme
impractical for large amounts of to-be-protected information. In this section, a maximum
likelihood estimation algorithm with a linear complexity is provided. This algorithm is
similar to its classical analog, known as the Viterbi algorithm [Vit67a, Lee97a, JZ99a).

7.5.1 Notation

To simplify the description of the algorithm, some additional notation will be useful.
Recall Eq. (7.3) which defines the generators of the stabilizer group M;;. The expression
“block j” will refer to the qubits involved in M;; for i = 1,...,n — k. The qubits are
numbered in increasing number from left to right, so that the first m qubits and the
last n qubits of the second block are those separated on Eq. (7.3) by a dashed line.
Note also that due to the convolutional nature of the code and because of the definition
of m, the last m qubits of block j are the same as the first m qubits of block j + 1.
The syndrome s;; for a received stream of information is the result of the projective
measurement associated to the M;;. It is equal to +1 (resp. —1) if the measured state
belongs to the +1 (resp. —1} eigenspace of M;;. An element of the Pauli group of the
transmitted qubits is said to be compatible with the syndrome s;; if it commutes (resp.
anti-commutes) with Mj;; when s;; = 1 (resp. —1). An error candidate up to block 7 is
an operator of the Pauli group defined on all the qubits up to block j and which satisfies
all the syndromes up to block j. The likelihood of an error candidate is the logarithm of
the probability of getting this particular error pattern according to the channel model.
Since we consider memoryless channels, the likelihood is the sum of the logarithms of
single-qubit-error probabilities.
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7.5.2 Quantum Viterbi algorithm

The algorithm examines the syndromes block by block and updates a list of error candi-
dates among which one of them coincides with the most likely error. All this algorithm
is classical except the syndrome extraction procedure.

The value of the syndrome is obtained by the usual phase estimation circuit: an
ancillary qubit is prepared in the |0} state; undergoes a Hadamard gate; conditionally
applies M; ;; is once again modified by a Hadamard gate; and is measured according to
the Z observable. The result of this measure is the value of the syndrome s; ;.

Algorithm 7.5.1 (Quantum Viterbi algorithm).
Inputs:

1. The list of syndromes {s;j41:}i fori=1,...,n~k;

2. alist {E;e) }eE{ 1.X.Y,Z}®m Of error candidates up to block j such that the element

EJ(-e) corresponding to the index e has a tensor product decomposition ending by
e for its last m qubits and maximizes the likelihood given the previous constraint.

The list {E}e)}e is constructed recursively.
Step j + 1: For a given value of ¢ €€ {I,X,Y,Z}®™, consider all the possible
n-qubit extensions of the elements of Ege) such that:

e they satisfy the syndromes s;41; fori=1,...,n—k;
e they have the prescribed tensor product decomposition € on their last m positions.

By construction, these extensions are error candidates up to block j+1. For each element
¢ of {I,X,Y,Z}®™ select one such extension with maximum likelihood—take one at
rand::;m among them in case of tie. This constitutes the new list of error candidates
{E _'sj-)l }e’ .

When all the syndromes have been taken care of in this way, select the most likely
error candidate of the list. This error candidate is one of the most likely errors compatible
with all the syndromes.

Proof 7.5.1. Consider a most likely error E, for the whole p blocks of syndromes.
The truncation of this error to the first p — 1 blocks, E,_1, is by construction an error
candidate up to block p — 1. This error candidate has maximum likelihood given iis
decomposition on the last m qubits. If it was not the case, another error candidate,
E‘p_l, with the same decomposition on the last m qubits could be extended up to bleck p
by concatenation with the last n Pauli operators of F. It would therefore have a strictly
greater likelihood than E. Recursively, this property holds for E;: it has maximum
likelihood given its tensor product decomposition on the last m positions. Thus, at each
step j of the algorithm, one element of the list coincides with the most likely error up
to block 7. [
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Remark 7.5.1. Note that in the encoding of quantum convolutional codes, we chose
to set to |0) some logical qubits that were not described by the polynomial formalism.
This was done formally by adding their Z operators to the stabilizer group of the code.
Hence either the first and last steps of the algorithm should be modified to take into
account these extra syndromes. (]

Remark 7.5.2. It is also important to understand that in the error estimation algo-
rithm presented above, the most likely error is known only at the end of the algorithm.
However, in practice the error candidates considered at step 7 all coincide except on the
last few blocks. Hence, the most likely error is known except on the last few blocks.
Some simulations for a depolarizing channel with error probability less than 0.05 showed
that keeping two blocks in the 5-qubit convolutional code was enough to estimate the
most likely error with high probability. ]

7.6 Conclusion

This chapter showed the basis of quantum convolutional coding. An appropriate poly-
nomial formalism has been introduced to handle the codes efficiently and to make calcu-
lations consistently with their specific structure. A procedure for deriving an encoding
circuit with linear gate complexity has been given together with a condition which war-
rants the good behavior of this circuit with respect to error propagation effects. Finally,
the quantum Viterbi algorithm has been given explicitly. This algorithm finds the most
likely error with a complexity growing linearly with the number of encoded qubits.

More importantly, as the reader familiar with classical convolutional codes can notice,
other error estimation algorithms, such as Bahl’s [BCJR74a] algorithm—a stepping stone
toward turbo-decoding—, can readily be employed with the codes described here. Hence,
quantum convolutional codes open a new range of efficient error correction strategies.

Further studies on this subject will include characterizations of errors that remain
after decoding, as well as appropriate concatenation schemes. Theoretical quantities
such as the free distance, the constraint length, etc, should also be generalized to the
quantum case. Of course, finding an example of turbo code will be another subject of
attention.
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Figure 7.11: Encoding circuit for the 5-qubit convolutional code with the pearl-necklace
structure. Each dashed box represents a different layer in which the unitaries commute.

Note that the first three Hadamard gates cannot be put into a layer, but rather form
the umtary In'“;.
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8 Building a quantum computer

IN PARALLEL TO the theoretical developments induced by the emergence of quantum
computing, many efforts have been dedicated to implement these novel ideas with phys-
ical devices. The inherent instability and sensitivity of quantum information makes the
task extremely challenging.! Currently, a large number of different experimental options
are under scrutiny. Some are specifically designed for quantum information processing,
while others have been built to perform tests of quantum mechanics, but have now been
successfully recycled.

In this chapter, we will review five stringent requirements that ensure that a quan-
tum system is well suited for being a building block of quantum computer. Even though
they might not be necessary, they are often considered as such, and are definitely a good
starting point for analyzing experimental proposals of quantum information processors.
These requirements are summarized in the “DiVincenzo criteria” [Div00a]. After a brief
review of these criteria, we will lock at some widely used experimental setups for quan-
tum information processing. Finally, we will detail one of them—cavity QED—as a
preparation for the next two chapters dedicated to umiversal quantum cloning and the
making of an elementary gate.

8.1 DiVincenzo Criteria

When quantum information appeared, most of the researchers thought that the speed-
up of quantum computers was due to computing in a Hilbert space rather than with
real numbers. DiVincenzo studied this assertion more carefully. He popularized the idea
that a Hilbert space is not enough to gain over classical computers. Through simple
criteria, he defines the necessary improvements for any experimental setting to become
a viable quantum information processor. However, not meeting all of these requirements
does not necessarily mean that nothing interesting can be done with those devices.

'In my opinion, this unescapable matter of fact is a consequence of the physical nature of quantum
information. Classical information—mainly because of its discreteness—benefits from the existence of
intrinsic error correction at the physical level. For instance, the electric charge of a capacitor in a
memory cell, representing the value of a bit, might well decrease over time, but yet it will retain the
original value of the bit long enough so that the content of the memory can be refreshed only once in
a while. However, any continuous transformation for an unencoded qubit corresponds to a change of
the quantum information it contains. As a consequence, quantum information requires encoding at the
physical level, which is not necessary for classical information.

89
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¢ The implementation must be scalable with well characterized qubits. It is probably
the most important of all criteria because it states that our efforts in studying
small scale quantum information processing devices should help us in building
large scale ones. More precisely, building a large quantum computer should be
reduced to allow many small elementary devices exchange quantum information.
The history of classical computers exemplifies this concept as new generations
of processors usually reuse most of the technology developed at earlier stages.
On the quantum side, it seems that this requirement is hardly met by any of
the proposed implerentations. Optical networks are the exception among them
because they offer quite easily scalability, but having a thousand-qubit optical
quantum computer would probably require a whole building by itself.

It is important to note, that this requirement has another important justifica-
tion: it imposes a natural tensor product structure to each of the qubits to avoid
the exponential growth of resources associated with unary representations of the
Hilbert space used in the computation. It is in this sense prior to any other re-
quirements. For instance, quantum computer that would use the Hilbert space of
a single circular Rydberg atom is not scalable since doubling the size of the state
space requires to access directly twice as many energy levels. In comparison, using
well characterized qubits reduces the energy requirements of this simple scheme to
only a logarithmic growth.

e It must be possible to initialize the qubits to a simple fiducial state. As users
of classical computers, we all know what this requirement is: there should be
a reset button to reboot the computer once in a while. However, for quantum
computers rebooting is an operation that must be performed very carefully at
the begining of each new calculation. Any algorithm starts with each qubit in a
given initial state—often taken to be |0} of the computational basis. The qubits
that are used in error correcting codes also need a reset as they cool the qubits
used for the computation. They need to evacuate the excess of entropy from the
quantumn register. This operation is far from being granted as qubits in quantum
computers follow reversible evolutions. In fact, this reset imposes an interaction
of the register with a cold environment in order to drive them to a fixed given
state.? Once again, this operation puts forward the inevitable trade-off between
decoherence and control in quantum computers: qubits must be isolated as much
as possible to follow unitary transformations, and at the same time they should
also be measurable which necessitates an interaction with the external classical
world.

?Here the environment can actually be a measuring device and a control device. The contrel makes a
conditional evolution upon the measurement result to transform the measured state into the initial one.
The classical registers recording the measurement result extract entropy from the qubit and evacuate
it when another initialization is required. Note that this setting is very similar to the Maxwell’s demon
setting seen earlier.

P ——

—



[P}

8.1 DiVincenzo Criteria 91

o The decoherence time must be long compared to the gate operation time. In other

words, the natural behavior of the system should allow for keeping the quantum
information during a sufficiently long time so that some quantum gates can be
applied to the qubit before an error occurs. In the worst case scenario, most
of those gates would be used to implement error correction, while only very few
of them would actually perform the useful calculation. Note that such schemes
explicitly require scalability as adding layers of error correction requires adding
more physical qubits.
The study of the efficiency of error correction for quantum computation is the
goal of fault-tolerance. For given codes and error models it gives a threshold
value such that: #} below the threshold, error correction scheme actually improve
the number of operations that can be performed before an error occurs, while
i) above the threshold, error correction scheme actually introduces more errors
because quantum information is manipulated too often. In simple cases, it is
possible to derive the value of the threshold, thus obtaining indications on the
real value of this threshold. Currently derivations have provided numbers varying
between 10712 up to 10~5, depending on the model used. However, the main point
here is not that the value of the threshold is low, but that a threshold exists, and
that it is independent of the length of the computation and the number of qubits
involved in the scheme.

On the practical side, most experimental schemes have a decoherence versus gate
operation time ratio of the order 0.05 and still need a tremendous amount of work
to reach the safe 1074 zone.

o It must be possible to implement a universal set of gates. Any quantum algorithm
is a succession of elementary gates which in turn have to be casted into universal
gates. Failing to implement a universal set simply restricts the kind of algorithms
that can be performed on the computer. It does not allow the state to explore the
full Hilbert space at its disposal.

e [t must be possible to measure each qubit specifically. In all the quantum algorithms,
the qubits contain the information about the solution of the problem at the end
of the unitary evolution. Therefore, it is imperative to be able to extract this
information from the qubits themselves. There is no possibility of a read-out
directly at the quantum level. Most of the new techniques develop for satisfying
this requirement will actually be greatly appreciated by other areas of physics as
they provide very sensitive detectors.

These criteria have been a subject of focus for all experimental groups around the
world in the past few years. Recently the criteria were also used to grant money to
different experimental propositions according to the potential satisfaction to these re-
quirements. However, a closer examination indicates that not meeting some of these
does not ruin the future of an experimental proposal for processing quantum informa-
tion. For example scalability is often mentioned to be the main problem of NMR based
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quantum processors. But, on the other hand, this technology is the only one at the
moment for which we can hope that it will offer a few tenths of useful qubits in a quite
near future. Certainly factoring large integers will still be impossible but interesting
physics problems could be tackled quite easily with such computational power.

In conclusion, these criteria should be taken as guidelines, but not borderlines to
differentiate good and evil.

8.2 Experimental achievements

Present day techniques just allow for building very small scale quantum information
processing devices. None of them actually meet all the DiVincenzo criteria [HH02a], but
they must be regarded as incredible experimental achievements. First of all they improve
our knowledge about quantum mechanics itself: most of the thought experiments that
were designed by the founding fathers of the quantum theory have been conducted and
have confirmed the predictions of the theory. Quantum information helped rephrasing
these into a new communication oriented framework and shed a new light on quantum
mechanics. However, in most cases, this was not the original motivation for building
these devices. They were thought to test how some algorithms could be implemented
effectively by using quantum systems. The result of such research is that the field
is achieving goals that everybody thought inaccessible for the next 50 years at least:
factoring the number 15 using Shor’s was performed at MIT in 2001.

The relevance of these experiments is also due to the importance of evaluating the
capacity of specific devices to process information in a quantum way. Note also that,
because all of them are going toward a unique goal, they share many common aspects and
difficulties, and many solutions to their problems as well. Most techniques used to reduce
noise or to improve the precision of the control on the qubits are not device-specific: the
robust one qubit pulse sequence for implementing a m-rotation was developed for NMR
but could be used for trapped ions, or cavity QED as well.

It is of course well possible that none of these techniques and implementations will
ever succeed in building a quantum computer, but they increase our knowledge of the
behavior of quantum systems in general. This knowledge will be crucial when the ap-
propriate approach will be found.

8.2.1 Cavity QED

This will be described in greater details in the following section. In short it uses the
electronic structure of neutral atoms to store quantum information. The interaction
between atoms is mediated by a micro-wave or optical cavity and allows the multi-qubit
gates to be performed. Detection of the state varies between the different proposals: ion-
ization is one possible method, but will destroy the carrier of the quantum information,
shining a laser pulse onto the atom is less destructive but achieves lower performances
while keeping the atom intact.
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8.2.2 Optical networks

Photons are good prototypes for storing qubits. Moreover, all the techniques to manip-
ulate them individually are mastered since quite a time. The information itself can be
stored into the polarization or the mode of the field. Their evolution is simply obtained
by placing onto the light path different optical elements such as plates and crystals.
However, because photons do not interact effectively with each other, building two-
qubit gates remains a difficult challenge. This can be done with the use of non-linear
optics, but at relatively low success rate. A wonderful scheme has been proposed recently
to build an all-linear optics quantum information processor[KLMO0la]. Unfortunately,
to implement it, an enormous overhead in terms of optical elements is needed. This
scheme is scalable, but still very difficult to build. On the other hand, because photons
rarely interact with other residual fields, they have very long decoherence time. Another
problem inherent to this technique is the necessity of having single photon sources on
demand, because synchronization of the different beams that must cross and interact in
a very small volume is crucial. This is still a challenge to be overcome even if a lot of
new and promising ideas did emerge in the last few years.

8.2.3 Solid state

Solid state proposal are numerous. From quantum Josephson junctions to quantum
dots, many problems arise due to the very poor insulation of the quantum information
carrier from its environment—the rest of the solid. Most of this propositions actually
struggle for having a single qubit. Many probletmns also seem to come from the very low
efficiency of the measurement. Two-qubit gates are the next big challenge to address
and it is nowadays hard to make a guess on one or the other of the possible options. The
advantage of these schemes is the very strong interactions between qubits giving gate
operation times of the order of 10 ns which balances the short decoherence time. Also,
they can rely on the existing technology for building integrated circuits.

8.2.4 NMR-based quantum processors

NMR stands for Nuclear Magnetic Resonance. It is a tool used by many chemists
and material scientists to study spatial configurations of molecules or defects in solids.
The working principle is to use the spin of some atoms inside the molecule. A typical
experiment consists in exciting the spins with a strong magnetic field and to record their
response. Because each spin is interacting with its neighbors one can deduce from the
recorded signal some information about the environment of each spin.

For manipulating quantum information, the situation is quite modified: the sample
used by the NMR spectrometer is made of a carefully designed molecule whose structure
is very well characterized and which has been chosen accordingly to its capability to hold
and process quantum information—+they have very long decoherence times for each of the
spins. There, nuclear spins of the molecule can represent qubits, which are manipulated
individually by an external magnetic field tuned to the adequate frequency—each spin
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in the molecule rotate constantly at a frequency depending upon its position in the
molecule. The two-qubit gates rely on the existence of interactions between the different
spins inside the molecule: depending on the state of the neighboring spins, the frequency
of rotation is slightly shifted which allows conditional operations.

Decoherence for this kind of systems is relatively small compared to the gate opera-
tion time. The ratio is about 1072 which indicates that 100 operations can be performed
before the system completely relaxes to the thermal equilibrium.

This relatively favorable situation lead to several proposals and some experimental re-
alizations [HSTC99a, CLK+00a], for which error correction schemes were demonstrated
[KLMNO1a]. The advantage of NMR spectrometers is that they are commercially avail-
able and are almost ready to implement simple algorithms. However, the choice of the
molecule is a crucial point, which benefits from interactions with chemists. Another
more serious problem is that the description of the state of the quantum registers is not
exactly the one expected in a quantum computer: there are around 10 molecules in
the sample, but only a very small fraction of them is actually useful for the computation.
Hence, there are no pure states inside the computer, but only mixed ones. More pre-
cisely, only a small deviation from the completely mixed state is induced by the magnetic
field. In the preparation of the state the |0) ... [0) fiducial state, the deviation decreases
exponentially with the number of qubits. In principle this can be overcome by algorith-
mic cooling techniques, but they require so many qubits that they are impractical with
the available molecules. NMR quantum processors are thus currently not scalable, but
they are still the most powerful ones and did achieve the most complicated algorithms
to date.

8.2.5 lon traps

This approach shares many common aspects with NMR. It can actually be thought of
as an NMR spectrometer that works with a single molecule—each qubit is now carried
by the electronic structure of ions in the trap, and the molecular binding is replaced
by electrical repulsion of the ions. The detection and manipulation of single qubits is
actually performed by lasers instead of a radio antenna for NMR. Multi-qubit gates ben-
efit from the vibrational motion inside the trap to induce conditional evolution between
neighboring ions.

The decoherence rate in these experiments is much higher than for NMR or optical
networks. But on the other hand it seems quite possible to make the whole scheme
scalable because there is no ensemble computation as in NMR. Making the whole scheme
scalable would imply moving the ions inside a more complex trap with an interaction
zone without actually destroying quantum coherences. Some experiments did achieve
encouraging results, but once again the technical difficulties are still tremendous.

[Eo—
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8.3 Cavity QED: experimental setting

In the following chapters, two experimental proposals for realizing simple algorithms
in cavity QED are described. More specifically, the setting they rely on is the one at
Ecole Normale Supérieure in the S. Haroche, J.-M. Raimond and M. Brune group. This
experiment was originally built to explore quanfum electrodynamics for simple systems
and decoherence. Nowadays, most of the propositions are expressed in the framework
of quantum information (see [RBHOla, Ber02a] and references therein). Many simple
algorithms have already been implemented and many more propositions benefit from
the exceptional qualities of the cavities which give a decoherence versus gate operation
time of the order 10.

8.3.1 Circular Rydberg atoms

In this scheme quantum information is stored in the electronic structure of circular
Rydberg atoms. Rydberg states for an atom are states with a large principal number
and a maximal orbital number. The valence electron is on a circular orbit which is well
approximated by the classical Bohr orbit. More precisely, three levels |}, |g} and |e)
are populated in this experiment and they have a principal number of 49, 50 and 51
respectively. The different transitions, |e) < |g) and |g) « |i}, happen at a frequency
of 51.1 GHz and 54.3 GHz. To avoid transitions between elliptical and circular states
which would otherwise happen at the same frequencies, a small electrical field lifts the
degeneracy between the levels. This field can also be used to change the detuning
between the cavity and the transition using the Stark effect. These atoms persist in
their state as long as they do not emit a photon spontaneously. This radiative lifetime
has been estimated to be around 30 ms, which is much longer than the time each atom
spends in the experiment (= 0.2 ms).

These atoms are obtained by heating rubidium at 190°C in an oven. Atoms with
a specific velocity are selected for preparation by Doppler selective optical pumping
techniques. Theses atoms are then excited by lasers and radio-frequencies to obtain the
circular states. The circular state purity reaches 98%. The speed uncertainty is about
2 m/s and the time interval in which the atoms are prepared is of order 2 us. Since the
number of atoms per packet follows a Poisson statistics, 0.1 atom per pulse is produced
on average to warrant that two-atom events are rare.

The atoms then cross the superconducting cavity in which all the interactions aimed
at processing quantum information will be performed. One very big constraint in this
setting with a single cavity is that once an atom leaves the cavity, no more operation
can be done. :

. 8.3.2 Superconducting cavity

The superconducting cavity is made of two polished niobium mirrors capable of holding
an electromagnetic field at a frequency close the {e) ~ |g} transition. This resonance
frequency can be modified and controlled by piezo-electrical crystals. The quality factor
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Figure 8.1: Diagram representing the cavity QED scheme. The atoms follow the path
in red, from left to right. They come from the oven (white cylinder); then, they are
prepared in their circular state; enter the first Ramsey zone (yellow and blue); enter
the single mode high finesse cavity; go through the second Ramsey zone; and are finally
detected by ionization between the red plates.
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of the cavity is around 3.2 x 10® which corresponds to a photon-lifetime of about 1 ms.
To obtain these values, it is actually necessary to dispose a closing ring around the gap
between the mirrors. This ring has entrance and exit holes for the atomic beam. But as a
result of the very inhomogeneous electrical fields around the holes, all coherence between
atomic levels is lost. Hence, the coherent manipulations must be performed inside the
cavity. The single atoms manipulations are actually resulting from an interaction with
a classical microwave field which is injected perpendicularly to the path of the atoms by
wave guides ending in the ring.

- 8.3.3 Detectors

The detectors measure in which state |i), |g) or |e} the atom exits the cavity. This
is performed by a selective ionization of the atoms: depending on the state, the field
strength required to ionize the atom varies. Thus, by setting a low voltage in the detector
only |e) will loose its electron in the detector. This electron is then multiplied to obtain
a macroscopic signal with a 40% efficiency. Two detectors are used and are set to observe

le) and |g).

8.3.4 Comments

This cavity QED scheme is a wonderful tool to explore very simple algorithms and
elementary quantum gates. Due to the difficulty of having many cavities, and of having
atoms on demand, it does not really seems reasonable to think of it as a good proposal for
building quantum computers. However, many groups study neutral atoms traps which
could stay longer times inside such cavities. Holding information inside the cavity would
then be possible and would allow many more gates to be performed. It will then be
straightforward to adapt most of the schemes that were developed in the above setting
to this new configuration.
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QUANTUM THEORY PROVIDES new and unexpected effects when compared to classical
physics. Among them, the no-cloning theorem, derived in 1982 by Wooters and Zurek
[WZ82a, Die82al], plays a particularly important role: While classical information can
be copied perfectly and many times, quantum information cannot. This fundamental
difference is a consequence of the unavoidable creation of quantum correlations. Since
perfect cloning is not possible, an important question naturally arises: What is the best
gquantum copying operation? The answer to this question is context-dependent. On the
one hand, there is a single transformation that produces the best identical copies of a
qubit prepared in any input states. This universal quantum cloning machine (UQCM)
has been discussed for the first time in [BH98a]. On the other hand, many other rules
of the game can be considered, such as state dependent cloning [BDE+98a, BCDMO00a],
cloning of 3-dimensional states [CDGO0la] and cloning of orthogonal qubits [FIMC01a].

The quality of a copy is usually measured by the quantum fidelity [Joz94a]. This
quantity is discussed, in the context of UQCM, in [BH96a] and [GM97a]. When M copies
are produced from N identical pure two-dimensional states, the fidelity of the copies is
given by F(N,M) = (NM + N + M)}/(M(N -+ 2)). For the simplest case of two copies
produced from one input state, this expression reduces to F(1,2) = 5/6. The com-
plete understanding of the fidelity behavior versus NV and M is still a subject of debate,
with connections to the measurement and state estimation problems [Ban0la, BEM98a).
Beyond these fundamental problems, the interest of quantum cloning machines also en-
compasses a wide area of quantum information processing, including quantum cryptogra-
phy, teleportation [GGO1b], eavesdropping, state preservation and measurement-related
problems, as well as quantum algorithm improvements [GHO00a).

The derivation of the optimal UQCM transformation has led to several proposals
[SWZ00a, KSWO00a] for its experimental implementation. Most of them, based on the
Buzek and Hillery quantum logics netwerk [BBHB97a}, use the quantum optics frame-
work. Experimental quantum cloning has been realized up to now only with photons
as the carriers of quantum information. This information was either encoded in differ-
ent degrees of freedom of the same photon (polarization and position) [HLL+01a] or in
the photon polarization only [LSHB02a, FGR-+02a]. An alternative network adapted to
NMR-based quantum information processors has also been proposed and experimentally
implemented [CJF+02a)l.

In this paper, we propose an implementation of the 1 — 2 UQCM operating for
atomic states in the Cavity QED (CQED) context [RBHO1a]. The quantum information
is coded on electronic levels of long-lived highly excited Rubidium (Rb) atoms. Qur
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protocol realizes, with four atoms, the transformation described in [BH96a], with an
original quantum logics network based on the resonant interaction between the atoms
and two high-Q niobium superconducting microwave cavities C, and C;. We discuss, at
the end of this paper, an adaptation of the scheme using two different modes of a single
cavity [RBO+01a, BOM-02a], making the proposal implementation more realistic with
our present cavity QED set-up. This paper focuses on the quantum logics protocol. The
interested reader can find more details about the experimental techniques in [RBHO1a).

Let us first recall the optimal 1 — 2 UQCM transformation [BH96a]. To account for
all the possibilities leading to a correct transformation—in particular, the many ways
ancillas can be used in the process—, we introduce three particular states |B), |.4),
and |A1). |B) represents the intial fiducial state of all the resources—but the to-be-
cloned qubit—that are available before the cloning process. It includes ancillas together
with some blank qubits that will receive the cloned information. |.4) and |4, ) are two
orthogonal states that correspond to the state of the cloner—the machine itself, not its
output—after the process has been completed. When the computational basis of the
qubits is defined by {[{+),|—)}, the UQCM must perform the transformation

-)1B) = /EI-) =) 1) + /3 19) | AL)
HYB) — R0 ) 1AL +/318)14),

where the first ket of the Lh.s represents the input qubit and |B) is the initial state of the
blank copies and of possible ancilla qubits involved in the process. In the r.h.s, the first
two kets are the quantum clones, |{®) = {|+) |-} +|—-) |+))/v2. The third ket represents
two possible orthogonal final states, |.A) and |.A;) for the ancilla qubits. Tracing with
respect to the ancilla will leave us with a two-bit mixed state. By tracing again with
respect to each one of them, we obtain the same one-qubit mixed state, which has a
fidelity of 5/6 when compared to the original state.

Our scheme makes use of three atomic levels, |e), |g) and |¢). The transition between
levels |e) and |g) can be set in and out of resonance with the cavity mode using the
Stark effect induced by an electric field applied between the Fabry Perot cavity mirrors
[RBHO1a]. The auxiliary level |i) is far off-resonant from the cavity fields and is not
coupled to them. However, it can be accessed via classical microwave pulses either from
level |g) {one-photon transition) or from level |e} (two-photon transition). The atomic
qubit encoding is |[+} = 1/v/2(|i} + |g)) and |—) = 1/+/2(li) — |g}). The photon number
states of each cavity mode are denoted as |r),, where i = (a, b).

(9.1}

9.1 Description of the protocol

The sequence of operations achieving the UCQM transformation is depicted in Fig. 9.1.
It presents, in a space-time diagram, the space lines of the two cavity modes and of the
four Rydberg atoms, A;_4, involved in the process. The atom-cavity resonant interac-
tions are represented by black lozenges. Classical microwave pulses mixing the atomic
levels are represented as gray circles.

F———
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Position

Figure 9.1: Detailed scheme of the atom field interactions in each cavity. A; enters the
first cavity in state /1/3 e}, + +/2/3|g),, prepared via a classical pulse in the Ramsey
zone R._; and transfers its state to the cavity field in a 7 Rabi pulse. The cavity
performs thus a QPG in Az, the atom carrying the state to be cloned a|+), + 8|—},.
After being manipulated by microwave classical fields in the Ramsey zones R._; and
R;_g, Az also transfers its state to the second cavity, which is now entangled to the first
one. A third atom Aj, prepared in state |g),, crosses the first cavity performing a 7/2
Rabi pulse. The first cavity field’s state is completely recovered by the atomic states via
the passage of a fourth atom, A4, also prepared in |g),, which makes a 7 Rabi pulse.
Both of these atoms will interact resonantly with the second cavity field after classical
microwave pulses manipulation in R._; and H;_;. They will perform a resonant QPG,
which will leave the total combined atom-+second cavity field in the desired final state,
corresponding to the cloning transformation.
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The cavity fields are initially prepared in the vacuum state |0), [RBHO1a]. The first
atom, A, initially in state |g),, is prepared in state

9 = /2 la)s +4/S e, 0:2)

by a classical pulse resonant with the |g) — |e) transition. The coefficients in the equa-
tion above are set by adjusting the duration of the classical pulse to a ¢ = arcsin(4/1/3)
rotation (see Fig. 9.1). The production of {9.2) can be checked in auxiliary experiments
measuring the population of states |g), and |e), and the quantum coherence. The atomic
state (9.2) is then transferred to C,, through a 7 pulse of resonant quantum Rabi oscil-
lation [MHN+97a, BSKM+96a). Atom A; finally leaves C, in state |g); and the cavity
field is left in state |#)), = +/2/310), + v/1/3|1),. The first atom’s final state being
factored out, it will no longer be considered here.

Atom Aj, carrying the state to be cloned, crosses then C,. It is prepared in the
arbitrary state

WYy = al+)y + 81-),, (9.3)

where o and § are complex coefficients. Note that the preparation of this state, which
is not part of the quantum cloning process, is not represented in Fig. 9.1. In an actual
experiment, an additional microwave pulse acting on A can be used to prepare this
state. This atom interacts with the cavity field, performing a 27 quantum Rabi pulse.
The purpose of this interaction is to realize a Quantum Phase Gate (QPG) as described
in {RNO-+99a]: it produces a 7 phase shift of the atom-cavity quantum state if and only

if the atom is in state |g), and the cavity in state |1),. As it is well know, a QPG, when

expressed in the conjugate basis of the target {|+},|—)}, amounts to a controlled not
gate (CNOT), where the control qubit is the field state. After this interaction the total
entangled atom-field state thus becomes

V2@, + 81000, + /S lh + 811, - 0.0

We then send a third atom, Aa, prepared in state [g);. It interacts resonantly with
Ca, for a time interval corresponding to a 7/2 quantum Rabi pulse, producing the state

V@l + 10105 00, +  H@ =) + B0 ), + s [0). ©05)

The state of Cj, is finally transferred to a fourth atom, Ay, initially in |g), via a resonant
7 quantum Rabi pulse, creating the three-atom entangled state:

\/g(a [+)e+ B1=)s) l9)319)4 + \/%(0‘ |=)e + B1+)2)(9)3 leds +leds 19)4), (9.6)

and leaving C, in the vacuum state, which factors out.
Classical microwave pulses then address the three atoms in the Ramsey zones, de-
picted in Fig. 9.1 as R._; and R,_;. In R._;, {€) is transformed into |} via a two-photon

uipern s v
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# pulse. This does not affect state |g). Then, another classical /2 pulse is applied in
Rg_; on the three atoms, combining states |g) and |©}. The sequence of transformations
produced by these classical pulses can be summarized as follows:

lg) > lg) — /3 (1) — 1)) = |-),
Je) e i) «— /3 (1) + 1g3) = [4).

The remaining part of the protocol involves the second cavity, Cp. Atom Ay inter-
acts resonantly with C; for a time interval corresponding to a # quantum Rabi pulse,
transferring its state to the field mode. The final state of Az is |g), and also factorizes
out. The total state of Az, A4 and C} is then :

(9.7)

V2 @iy + 810 1) 1)e+ 5 @10+ 81D (s o+ s 110 (08)

Atoms Az and A4 interact then independently and successively with Cp. They perform
a resonant QPG, corresponding to a CNOT in the {{+),|—)} basis. The final state of
these three systems writes, after a simple rearrangement of terms:

o [3 1) 1)1 14) + /3154 141)]
+ B2l AL + /H@)g 4],

where |4} = |g);19)210}4 10}y, AL} = |9)119)310)411), and [®)3, = (I+)3]—)s +
|-)31+)4)/V2. In Eq. (9.9), the second cavity field ensures the orthogonality of |.A)
and |4, ) and hence is the important qubit in the ancilla’s final state. This achieves the
implementation of the optimal 1 — 2 cloning process.

Eq. (9.9) shows that this sequence actually implements the UCQM transformation
given by Eq. (9.1). In this proposal, the blank state |B) corresponds to the initial state
of atoms A;, A3 and A4 and of both cavity fields:

(9.9)

8= (/5 10 + 2100 ads 934 00, 10 (.10

9.2 Discussion

We can now discuss the feasibility of an experimental implementation of the UQCM in a
CQED system. The basic operations (quantum gates and classical field pulses) involved
in the scheme have already been thoughtfully tested [RBHO01a]. Their implementation
thus does not present any major difficulty. The availability of an experimental con-
figuration with two cavities can be considered as natural development of the present
configurations where only one cavity is present. Note also some other interesting pro-
posals require at least a two-cavity system [DZB-+94a].

Atoms interact with C, or Cj for a time corresponding at most to a 27 quan-
tum Rabi pulse. The single photon Rabi frequency [MHN+-97a, BSKM+96a] being
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§/2r = 50 kHz, the atomic velocity should be = 500 m/s, in the range used in present
experiments. Cavity and atomic relaxation are of course important issues. The circular
Rydberg atoms lifetime is much longer than the protocol duration and is not bound to
be a limiting factor. The main cause of decoherence in the present set-up is the cavity
mode relaxation. The quantum information is stored in C,, only during the time interval
between the passage of A; and A4. Each atom may enter the cavity immediately after
the preceding one has left it. The total quantum information storage time is of the order
of four full atomic transit times, i.e. & 2.10™* 5. This is shorter than present cavity
damping times (about 1 ms). The cavity Cp stores quantum information for an even
shorter time interval. Note finally that the atomic transit time between the two cavities
does not matter to evaluate the influence of damping, since the quantum information is
then carried by long-lived atomic systems.

An alternative implementation of our UCQM scheme uses two modes of a single
cavity. In the present experimental set-up, the cavity sustains two gaussian modes,
M, and M, with orthogonal linear polarizations. Due to mirrors imperfections, these
two modes have slightly different resonant frequencies (splitting 130 kHz). Since this
splitting is much larger than the atom-field coupling ), the atoms resonantly interact
with one mode only at same time. Stark tuning can be used to tailor atomic interactions
with the two modes during the atomic transit time through the cavity.

In this scheme, Ay leaves its state in M,. Then, A performs the CNOT operation
in M,. It is set off-resonance with both modes for a short time interval during which the
microwave classical pulses are applied. Atom Aj is then tuned to resonance with M, for
its final quantum Rabi pulse. A3 and A4 interact first resonantly with M, undergo the
classical pulses while being off-resonance from the two modes and finally interact with
M, as described above. This implementation of the UCQM, requiring a single cavity,
would be much simpler to realize. Each atom should interact with the cavity for a total
time corresponding at most to a 37 quantum Rabi pulse {the duration of the classical
puises is negligible}). The atomic velocity should be about 330 m/s, still well within the
available range. The quantum information is stored in the cavity modes for a slightly
longer time than in the two-cavity arrangement (four times the full transit time at the
slower 330 m/s velocity). Cavity damping should thus be somewhat smaller.

The UQCM operation verification can, in principle, be performed by the usual de-
tection techniques [RBHO1a]. As mentioned above, the fidelity is, ideally, 5/6 while the
trivial production of a maximally mixed state gives an average fidelity of 2/3. This
means that the fidelity should be measured with a precision greater than ~ 92% (=
1-— —(5/6 — 2/3)). Note that, in the NMR quantum cloning experiment [CJF-+02a],
this degree of precision was not reached, so that the improvement due to the cloning
process could not be verified. In our proposal, all the elementary operations, quantum
Rabi or classical field pulses, are prone to errors. The total number of these operations
is sixteen if we take into account the detection and preparation process. The necessary
precision could only be reached if each pulse has a fidelity greater than %/0.92. This
value, being about 0.995 is still out of the experimental reach (present pulse imper-
fections are between 3 and 10%). This figure, however, sets an interesting goal to be
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reached. We can also think of measuring the quality of our copy using the Ramsey in-
terferometer technique. It consists in applying two 7/2 classical pulses in the produced
state which differ by a phase ¢, making the transformations |+) — 1/v2(]+) + €% |-})
and |-} — 1/v/2(—~e"* |+)+|~)). The measurement of the probability of finding atoms
in states |4+) or |—) has a sinusoidal dependence on the phase ¢. If the atom is in maxi-
mally mixed state, the contrast of these fringes is zero, and it reaches the maximal value
of one for atoms in a pure state. For an atom in a state prepared by the cloning trans-
formation, the ideal value of this contrast is 2/3. We should naturally expect a decay
of this value given all the experimental imperfections. Considering the imperfections in
the interation times of the order of 3%, the expected value of the fringe contrast is of
the order of 0.42. This value shows that the Ramsey fringes contrast allows one to make
a better distinction between the cloning proccess and the maximally mixed state for a
more realistic experimental situation.

9.3 Conclusion

We described a protocol implementing the universal optimal copying transformation in
CQED. Basic quantum information operations have already been implemented in the
cavity QED context [RNO+99a], and proposals that could extend these experimental
realizations to more elaborated quantum information algorithms [YMB-+02a, SZ02a] are
naturally appealing.

The quantum logics network used in our scheme is simpler than previous ones by
making use of auxiliary degrees of freedom which are discarded in the end of the pro-
cess. Note also that the same protocol can be applied to the cloning of equatorial
qubits [BDE+98a, BCDMO00a, ie. |¢) = +/1/2 (lO) + € ll)) by sending A; in state

V1/2(le) +l9)).



Prr——

e —



10 Proposal for realization of a Toffoli gate via cavity-assisted
- atomic collision

THE RECENT DEVELOPMENT of quantum information processing has shed new light on
complexity and communication theory. It is now widely accepted that some problems are
solved more efficiently by quantum computers than by their classical analogs [Sho94a,
Gro96a). This matter of fact has triggered in the past years a lot of studies on theoretical
and practical aspects of quantum computation. In particular, finding universal sets of
gates for processing quantum information is of paramount importance: the possibility of
implementing universal gates is a key requirement for building interesting quantum in-
formation processing devices. Consequently, many different physical systems have been
studied for their quantum information processing capabilities (for a review see [NC00a}).
Some important results concerning the implementation of gates can be found for exam-
ple in [WSMOla, EJPP00a, PSD-+99a), while more general questions concerning broad
classes of interaction Hamiltonians (such as their universality for quantum computation)
are addressed for example in {[BHLS02a, BKD+-01a].

One of the next challenges that need to be overcome is to design robust implementa-
tions of these sets of gates. Several constructions have already been proposed and realized
for various experimental settings [THL+95a, RNO-+99a, MMK-+95a, GC97a, JMH98a).
These results currently serve as benchmarks for other implementations and do provide
deep insights into the ability of the chosen devices to manipulate quantum systems ef-
ficiently. In this article, we describe a protocol for realizing the Toffoli gate—a three
qubits “control-control-NOT”—in the Cavity QED context (CQED). This gate, together
with one qubit rotations, form a universal set for quantum computing [Deu89a]. We
will see that the combination of techniques used makes our protocol optimal in term
of number of interactions within the constraints of our experimental setting. It is thus
less resources demanding than the standard implementation as a sequence of control-
NOT gates [DS94a]. Finally we estimate the performance of our protocol by taking into
account imprecisions as well as decoherence effects during the protocol.

10.1 Cavity-QED toolbox

In this paragraph we review briefly the different techniques used for implementing the
Toffoli gate. Further experimental details concerning our particular setting are exposed
with great care in [RBHOla]. In our protocol, qubits, ie physical systems with a two-
dimensional Hilbert space available for information processing, will be stored in circular
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Rydberg states of highly excited Rubidium atoms and in the cavity field. The very long
lifetime of these atoms together with the transition frequencies of the chosen transitions
allow to deal with those complex atoms as if they had only three levels noted |g), |e)
and [i). Transformations between those three states can be driven coherently by a clas-
sical microwave pulse adjusted nearly resonantly to the proper transition frequency. For
example, if the classical field is tuned with respect to |i) < |g), a 7 pulse will trans-
form any pure quantum state of the form «|e) + B|g) into a|e) + B|i). Indeed, those
transformations are the analogs of the well known one qubit gates for our three level
systems. In order to process quantum information in a non-trivial way, we also need

- an equivalent for the two-qubit gates. Within the CQED context, this involves a cou-

pling between the atoms and a high-@Q Niobium superconducting microwave cavity. The
frequency of the mode inside the cavity can be adjusted in and out of resonance with
the |g) « |e} transition. Thus, we can consider two distinct approaches for processing
quantum information. The first one, which has been throughly used in recent experi-
ments [NRO+99a], relies on a resonant interaction with a single mode of the cavity. As
an example, for a well chosen interaction time, an initial atom-field state of the form
(xlg) + Be)) |0) will evolve into |g) (@ |0) + A |1}). This transformation is called m-Rabi
rotation. Similarly, continuing the interaction for an equal amount of time leads to the
state (a]g) — Ble}) [0). In the perspective of information processing, the first half of
the transformation corresponds to transferring quantum information from the atom into
the cavity, while the second half can be applied to a second atom which would thus
retrieve the initial quantum information: the field inside the cavity acts as a temporary
quantum memory. The second approach for building atom field interactions, referred to
as cavity assisted atomic collision, has been proposed [ZG00a, Zhe0la] and experimen-
tally tested [OBA+01a] more recently. In this setting, two atoms enter the cavity at the
same time and follow an evolution conditioned upon the state of the cavity field. More
precisely, the cavity is detuned from the |e) « |g) transition. In this regime, where
the detuning 4 is much larger than the atom-field coupling constant €2, the effective
Hamiltonian can be derived using second order perturbation theory:

H, = Xle) (e1] aa™ —|g1) (a]ata
+ le2) {e2| aat ~ |ga) (2] a*a (10.1)
+ le1) (91] ® |g2) {e2| + |91} (e1] @ e2) (g2),

where A = 02/46, and where the operators a and a* are the annihilation and creation
operators for the cavity field. In the above formula, we see that any exchange of energy
between the field and the atoms present in the cavity is forbidden, but this still allows
conditional dynamics upon the photon number in the cavity mode. This interaction will
be our main tool to perform the Toffoli gate in the CQED setting.

g
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10.2 Description of the protocol

Before going into the details of the protocol, recall that the Toffoli gate is a three qubits
gate. Its action on the computational basis of the three qubits is to perform a “control-
control-NOT". Thus, only two basis vectors are affected by this evolution:

110} — |1y (1) |1)
1111 — (1)1} j0) (10.2)

where the control qubits are the first two ones, and the target is the last one. Taking into
account the specific CQED setting, we chose an implementation with one cavity mode
and two atoms. The photon number states of the cavity mode will be denoted |n,),
while the energy levels of the atoms will be written as {ic:), |gc,t) , l€ct) (the subscripts
¢ and ¢ are short hands for control and target). The relation between those states and
the computational basis of the Toffoli gate is summarized below {obvious normalization
factors have been omitted):

Computational Control 1 Control 2 Target
basis {cavity mode) | (Rb atom 1) | (Rb atom 2) (10.3)
10} Ie) |5c) |ge} + lez) '
by [0c) lge) |ge) — les)

For sake of simplicity we will concentrate on the realization of the gate assuming
that the preparation of the cavity has been already performed.

Since all our manipulations are done coherently, it is sufficient to describe the quan-
tum evolution for basis vectors of the whole system (ie, our three qubits). The protocol
can be decomposed into three distinct phases: encoding, atomic collision, and decoding.
The encoding and decoding operations only involve resonant interactions between the
cavity mode (control 1) and a single Rb atom (control 2). Decoding is performed by
applying the encoding evolutions in reverse order. The heart of the evolution is the
cavity assisted atomic collision which realizes the equivalent of the Toffoli gate on the
encoded quantum information. More precisely, it realizes a control phase gate between
the encoded information of the two control qubits and the target qubit. Thus, the first
atom (control 2) is sent at a relatively low speed into the cavity. After the encoding, it
collides with the faster moving second atorn (target). When the second atom has left
the cavity, the first one interacts with the cavity mode to accomplish the decoding step.
Figure 10.1 summarizes the different steps required to perform the gate. Each of them
will be described in detail in the following paragraphs.

‘The encoding starts when the atom identified as Control 2 (A.) is sent into the cavity.
First, it interacts resonantly with the cavity field and undergoes a w-Rabi rotation. In
terms of the basis vectors given in Eq. (10.3), only one of them is affected by the
evolution: '

|13) Igc> -+ — IUc) |ec) . (10.4)

At this point, for a generic input state of the Toffoli gate, all three levels of the con-
trol atom can be populated: the overall state of the cavity and Rb atom 1 cannot be



110

10 Proposal for realization of a Toffoli gate

represented by a two-qubit state. However, coherent manipulation of the quantum infor-
mation remains possible through the cavity assisted collision. The main purpose of the
decoding operation is precisely to restore the two-qubit structure of the cavity mode and
Rb atom 1. The state obtained in Eq. (10.4) almost corresponds to the needed prepara-
tion of the cavity and control atom before the atomic collision: a microwave pulse tuned
to the |gc) < [ic) transition, and corresponding to a basis rotation exchanging lic) and
|9c), completes this first step of the protocol.

The main part of the protocol can now be achieved: the cavity assisted atomic
collision. Thus, the cavity detuning & is set such that the interaction Hamiltonian is
given by Eq. (10.2). The target atom (A:) then enters the cavity and interacts with
the field and the control atom. The evolution of the basis states is easily computed by
diagonalizing the effective Hamiltonian. After an interaction time f. = #x /A, all states
remain unaffected except the following ones:

[0c) [ic) (196) + lec)) — 10c) lic) (Ige) — lee))
[0c) lic) (1ge) — lec))  — 10c) lic) (Ige} + let)).

All operations done before the atomic collision can be considered as the preparation
of the quantum systems such that they undergo the proper overall evolution described
by the Hamiltonian of Eq. (10.5). Hence, to complete the whole protocol, we only need
to undo all the preparatory steps: after A, left the cavity (recall A: is the fast moving
atom), we apply the resonant pulse on A. exchanging [i.} and |g.), followed by a 7-Rabi
rotation to extricate from A the information initially contained in the cavity.

This completes the overall protocol and leads to:

(L) ic) (loe) +lee)) = (16} i) Clgw) + ec))

L) fie) loe) —lee)) = [16) i) (lge) — Jeo))

[1e)19¢) (196) + lex)) = [Lc) lge) (la) + lee))

110} 192) (19e) = lea)) = [Lc} lge) (1) ~ lec)) (10.6)

00 i o0 +le) = 1001l + e '
00 ~led) 109 ) 199 — e

s

(10.5)

9c) (lge} + [ex)) 10c) |gc) (lg:} — lex))
9¢) {I92) — lex)) [0c) lgc) (lge) + lee})

which, in turn, exactly corresponds to the Toffoli gate in the computational basis of
Eq. (10.3). The pulses and interactions sequence are summarized in Fig. 10.1.

L A A A A

10.3 Discussion

The scheme presented here proposes to use the atomic collision as the key interaction
in the making of the Toffoli gate. The most fundamental reason that lead to this choice
is that using only resonant interactions would not allow us to perform the gate in this
very specific one mode CQED setting: it has been shown [RNO+99a], that resonant
interactions can be used to design CNOT gates and hence lead to universal quantum

[
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computation. However, implementating the Toffoli gate with CNOT gates together
with one qubit gates, as presented in [DS94a], requires to address the qubits separately
between each CNOT gate. Our particular experimental single mode cavity scheme does
not allow such addressing, as the differents atoms are inditinguishable when they are
inside the cavity. Hence, to implement the circuits of [DS94al], we would need to have
more than one mode.

This fact also leads to the proof of optimality of the proposed scheme: the impossi-
bility of manipulating the atoms individually inside the cavity imposes that atoms can
only interact once with each other. This is far from enough for realizing a Toffoli gate,
if these interactions are restricted to be pairwise. Therefore, at least a three quantum
system interaction is required. This can be accomplished through the cavity assisted
atomic collision. Then, only two options have to be considered: either a three Rb atom
interaction with an empty cavity or a collision of only two Rb atoms inside a cavity
containing a quantized field in a non-vacuum state. The first case is ruled out easily
by noting that there do not exist a set of 8 orthogonal vectors that have a periodic
evolution under the Hamiltonian of Eq. (10.2) and that would realize the phase gate
associated with the Toffoli gate (ie the gate that does nothing except for the following
state |1) |1} |1} — —|1)|1}|1}). Since this gate is equivalent to the Toffoli gate up to
local unitary operations, we can conclude that even with an appropriate encoding and
decoding phase, this interaction will not lead to the desired evolution. On the other
hand, the second option is more successful and is the one presented in this paper. Sets
of 8 orthogonal vectors with the proper evolution can be found, but since none of them
can be written as a tensor product of single qubit sets, encoding and decoding involving
at least a two qubit interaction are required. This last remark thus proves the optimality
of our protocol.

Let us now discuss the practical feasibility of this proposal. The atomic collision can
only happen when the cavity is detuned from the |e) « |g) transition by an amount
6 > 1, where the cavity-field coupling constant /27w = 50kHz [RBHO1a]. This can
be done at any time and in the presence of Rb atoms inside the cavity by applying an
external electric field to the mirrors. The time needed to change the cavity detuning is
sufficiently small compared to the interaction times so that the change in Hamiltonians
can be considered instantaneous. Here we choose d/2m = 4§}, which gives an interaction
Hamiltonian well approximated by Eq (10.2) with A = 02/45. With these figures,
the interaction time to realize a #-Rabi rotation is 210755 and for the atomic collision
1.2510-%s. The time required to perform the interaction with the classical microwave
cavity is negligible. This imposes a velocity of the atoms of order 50m.s~!. This value
can be reached by means of simple atomic beam techniques with transverse laser cooling.
The total interaction time with the cavity field is of order 0.18ms, still much smaller
than the cavity lifetime (1ms). Decoherence effects due to the loss of a photon should
then be relatively small. We present in Fig. 10.2 the result of a numerical simulation
to estimate the fidelity of the gate. Dissipation effects during the realization of the
gate have been accounted for by letting a photon escape from the cavity with a Poisson
probability law according to various cavity lifetime. QOther imperfections, like for instance
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imprecision in the velocity of the atoms or misalignment of the atomic beam, can all be
translated into an imprecision in the interaction time with all other parameters set at
their nominal value. This defines the effective interaction time tg for the i-th interaction.
The imperfection strength € = Atiz/tic has been taken equal for all interactions, and
the average fidelity has been computed by accumulating results for different realizations
of the gate. The currently achievable precision (around 3%) and cavity lifetime (1 ms)
yield an estimated fidelity above 70%. Thus, the practical realization of the Toffoli gate
through this protocol is not out of reach and could set an interesting benchmark for
comparing the efficiency of quantum information processing approaches using CQED.
Moreover, we can see that even small improvements on either the precision of the pulses
or the cavity lifetime result in achieving a fidelity of nearly 90%, thus making this
realization of the gate very attractive for analyzing its experimental behavior.

We now return to the preparation of the cavity field, before the above protocol takes
place. This can be done in full generality by sending a Rydberg atom (Ap) containing
the desired quantum information, and by transferring its state to the cavity through a
w-Rabi rotation. The protocol is then started when this ancillary atom leaves the cavity.
The retrieval is accomplished by transferring the state of the cavity back into an atom
(Ar) initially in the |g) state. Thus, the result of the Toffoli gate is contained in the
state of the atoms A., A; and A,. This state, and hence the behavior of the gate, can be
easily analyzed using standard quantum tomography techniques for cavity QED, ie the
observation of resonant Rabi oscillations: the analysis of the gate requires only single
atom rotations and accumulation of statistics.

10.4 Conclusion

We have presented a realistic scheme for implementing the Toffoli gate with currently
available CQED techniques. We have shown that using a cavity assisted collision instead
of only resonant interactions makes our scheme optimal given the restrictions of the ex-
perimental setting. It thus enlarges the range of possible applications of CQED to process
information for realizing basic logical operations [RNO+99a, NRO+99a, OBA+01a] as
well as more complicated protocols [YMB+02a, MOR03a, ZPMO03a, 5Z02a]. The esti-
mated achievable fidelity (around 70% for current imprecision and deccherence levels)
ensures that the behavior of the gate can be tested experimentally. The corresponding
experimental results could be compared to analogous quantities for other sets of uni-
versal gates and thus provide a deeper insight into the quantum information processing
capability of the CQED setting with non resonant interactions.

Err—
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Position

Time

Figure 10.1: Detailed scheme of the atom-field and atom-atom interactions in the cavity.
Circles are interactions with a classical microwave field tuned to the }i} « |g) transition.
This field is generated in two Ramsey zones denoted R;g. Squares symbolize the resonant
interaction with the quantum field stored into the high-Q cavity. The duration time of
each interaction is set either by controlling the length of the pulse or by applying a
voltage to the mirrors of the cavity to change the atom-field coupling constant 3.

Fidelity
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= >
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Figure 10.2: Fidelity of the Toffoli gate as a function of the photon lifetime, 7, and of
the uncertainty on the effective interaction times, €. For current day values, 7 = lms
and € = 3% a fidelity of 0.7 is expected.
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Appendix Résumé

LA DECOUVERTE DE la mécanique quantique au début du xx*™ siécle a profondément
marqué le développement de la physique moderne. Moins connue du grand public que la
relativité générale, c’est 4 elle que 'on doit la révolution du traitement de 1'information
grace & 'emploi des structures de bandes du silicium, les lasers, I'imagerie médicale par
résonance magnétique nucléaire, etc.

Depuis quelques années l'intérét pour cette théorie du microscopique connait un
renouveau sans précédent. D'une part, un premier mouvement consacre la convergence
de l'informatique et de la physique: l'informatique quantique. La “pose de la premiére
pierre” de cette discipline est attribuée & R. P. Feynman [Fey82a, Fey84a] au début
des années 80. On pensait alors que les machines quantiques seraient principalement
dévolues & la simulation de systémes physiques complexes. Dans les faits, les travaux
accomplis jusqu'a maintenant mettent en avant les capacités inédites de ces machines 3
résoudre efficacement certains problémes mathématiques réputés difficiles. On peut par
exemple citer la factorisation des grands nombres entiers [Sho95a), ou encore la recherche
dans des bases de données non-ordonnées. Il faut également noter que cette convergence
s’est opérée au travers de la découverte d’un protocole inconditionnellement sir pour
I’échange de clefs cryptographiques [BB84a, SP00a]. Cette derniére avancée a eu pour
effet de sceller définitivement le sort de la mécanique quantique & celui de 'information
et de participer & la création d’une théorie de Pinformation quantique.

D’autre part, depuis le début des années 80, une nouvelle approche du phénoméne de
décohérence — ce phénomeéne expliquant la coexistence d’un monde microscopique quan-
tique et d'un monde macroscopique classique — semblait vouloir se dessiner {Zur81a,
Zur82a]. Elle promettait une résolution élégante de certains problémes liés aux fon-
dations de la mécanique quantique, problémes qui avaient résisté A Panalyse depuis
I'invention de la théorie. En particulier, elle exhibe un mécanisme physique empéchant
de conduire dans la pratique la fameuse expérience du chat de Schrédinger. Mais ce ne
fut pas 14 son seul mérite. En effet, parallélement aux développements théoriques de
I'informatique quantique, de nombreux groupes ont essayé de mettre en pratique la ma-
nipulation quantique de I'information. Bien que séduits par I'idée d’effectuer des calculs
& 'échelle atomique, ils ont trés rapidement constaté les difficultés de ce programme de
recherche. IlIs se heurtérent 4 un obstacle qui paraissait insurmontable: la décohérence.
Ce processus survient malheureusement de fagon presque inévitable lorsque le registre de
calcul n’est pas parfaitement isolé de son environnement. Heureusement, I'approche pro-
mue en ce début des années 80 a permis d’analyser rigoureusement et quantitativement
ce phénoméne, mais surtout a permis de montrer qu’il était concevable d’en combattre
les effets au travers de stratégies de correction d’erreurs.

119



120

Résumé

Finalement, on peut aussi noter que P'information quantique s’est infiltrée dans de
nombreux domaines de la physique du microscopique, aidant 3 la formalisation de notions
connues, majs également permettant la résolution élégante de problémes expérimentaux
[SV98a, BGL+03a)-

Le travail présenté ici refléte dans sa structure et dans les sujets qu’il aborde une
partie de ces évolutions. La premiére partie est consacrée aux problémes d’interpréta-
tion de la mécanique quantique, la seconde & la correction d’erreurs quantiques et enfin
la troisiéme & quelques propositions expérimentales visant 4 démontrer nos capacités a
traiter 'information de fagon quantique.

La transition quantique-classique : une approche via la théorie de I'information

Depuis son invention dans les années 1920, la mécanique quantique a toujours suscité de
nombreuses questions quant & son interprétation. En effet, malgré des prédictions sans
cesse confirmées, la mécanique quantique a une place un peu 3 part dans ’ensemble des
grandes théories de la physique.

D'une part les axiomes qui la définissent ne peuvent &tre exprimés qu’en employ-
ant des notions mathématiques abstraites et pour lesquelles 'intuition physique semble
absente. D’autre part, et contrairement 3 la relativité générale qui est une extension
manifeste de la mécanique Newtonienne, il semble difficile de définir la mécanique clas-
sique comme un cas limite de la théorie quantique.

Afin de comprendre les enjeux mais aussi les solutions qui ont été apportées durant
les décennies précédentes il convient de faire quelques rappels de notions élémentaires
de mécanique quantique.

Axiomes de la mécanique quantique (Chapitre 1)

Ce qui différencie une théorie mathématique et une théorie physique c’est que la derniére
rend compte d'une certaine “réalité”. Ce que 'on entend par 13 c’est que la construction
axiomatique d'une théorie se doit de répondre & trois questions incontournables :

® quels sont les systémes physiques étudiés et comment s’écrit leur état ;
e quelle est leur évolution ;

» quelles sont les quantités relatives a P'état du systéme qui peuvent étre mesurées
expérimentalement,

Les axiomes de la mécanique quantique apportent une réponse précise & chacun de ces
points (cf. [CTDL77a, Prea, NC00a]) :

o l'état d'un systéme est un vecteur |1/} de norme unité d'un espace de Hilbert
complexe ;
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e ]'évolution des états est régie par ’équation de Schrédinger,

d
z [¥(0) = —iH(2) R(2)) , (7)
ol H(t) est une matrice hermitienne ;

e les quantités cbhservables sont représentées par des matrices Hermitiennes et leur
valeur moyenne lorsque le systéme est dans I'état |1)) est donnée par (O)y =
(¥| O |). De fagon équivalente, un résultat de mesure correspond a l’obtention
d'une valeur propre, e.g. ¢, de O associée au projecteur Fy. La probabilité d’un
tel résultat sachant que le systéme est dans I'état |¢) est donnée par (| Py |¢).
L’acquisition d'information correspondante force & mettre 4 jour ’état du systéme.
Aprés Pobtention du résultat 8, le systéme est dans Pétat Py |o) /+/ (0] Pg ).

Décohérence et superselection induite par |'environnement (Chapitre 2)
Le probléme de la mesure

Tout d’abord on peut se demander ce que ces axiomes ont de si étrange pour que 'on
soit encore, prés de 80 ans apres leur formulation, en train de débattre i leur sujet.

Premiérement, comme cela a été déjd mentionné, ils sont techniques et ne font pas
référence 4 un principe physique fort. Pour prendre I’exemple de la relativité restreinte,
un des axiomes est “la vitesse de la lumiére est une constante indépendante du référentiel
inertiel considéré”, alors que la mécanique quantique se contente de ‘“I’état d’un systéme
est un vecteur de norme unité dans un espace de Hilbert complexe™ Dans le premier cas,
on pergoit nettement le caractére fondamental d’une telle assertion, tandis que dans le
second il ne semble s’agir que d’une construction ad-hoc permettant, certes, de prédire le
résultat d’expériences mais qui appelle une autre théorie plus compléte et mieux motivée
physiquement.

Mais ce n’est pas 13 le souci principal qui préoccupait et préoccupe toujours une
grande partie des physiciens théoriciens. D’'une part, on peut constater que la mécanique
quantique telle qu'elle est décrite plus haut est une théorie linéaire : ainsi, lorsque |1(t)}
et |¢(t)) sont deux solutions de I'équation de Schrodinger, alors (|¢(£)} +|¢(£)))//(2) est
également une solution. C’est ce que ’on appelle le principe de superposition. D’autre
part, les objets macroscopiques régis par la mécanique classique, et bien que constitués
de systémes microscopiques obéissant 4 la mécanique quantique, ne satisfont en général
pas & un tel principe de superposition.

L’expérience du chat de Schrodinger Schrédinger a mis en avant l'insoutenable contra-
diction entre physique quantique et physique classique gréce 4 sa fameuse expérience de
penseée.

Pour cela, il considére une boite parfaitement isolée et contenant un mécanisme un
peu particulier. Il s’agit d’'un atome commandant, en fonction de son état quantique, la
libération d'un gaz toxique. Lorsque 'atome est dans son état excité, rien ne se passe,
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tandis que le poison est libéré dés que 1’atome est dans 1’état fondamental. Si maintenant,
on enferme un chat dans la boite et que 1’atome est préparé dans une superposition
de I'état excité et de I'état fondamental, alors I'état du chat est impliqué dans une
superposition macroscopique oli un des termes correspond 3 un chat vivant et ’autre 4 un
chat mort. Manifestement jamais une telle situation ne se produit et tous les fondateurs
de la mécanique quantique en étaient bien conscients. Ce que Schrédinger soulignait de
cette maniére c’était la nécessité de répondre A la question de la transition quantique-
classique : pourquoi et comment se fait le passage entre la mécanique quantique et la
mécanique classique alors qu’aucune d’elles ne spécifie dans ses axiomes une limite & son
champ d’application.

Le modéle de von Neumann Préoccupé par cette question von Neumann {[vN32a] a mis
en place un cadre générique permettant d’étudier rigoureusement et quantitativement
cette question. Ce cadre est appelé “modeéle de mesure”. Il s’agit d’un systéme quantique
S qui interagit avec un appareil de mesure A selon les lois de la mécanique quantique.
Initialement, le systéme et 'appareil de mesure ne sont pas corrélés, c’est & dire que leur
état global s’écrit |1,b5> @ |'¢'A>. Au cours du temps, ils interagissent selon les lois de la
mécanique quantique. Ils sont donc soumis & 1'équation de Schrédinger avec un terme
d'interaction décrit par le Hamiltonien Hin. Aprés un temps bien défini, ils se séparent
et I'interaction prend fin. Leur état générique global correspond donc & un état couplé
— plus précisément & un état enchevetré.

Pour comprendre pourquoi un tel modéle rend compte de la question posée par Schro-
dinger, il suffit de considérer pour § un atome 3 deux niveaux, |0) et |1), ainsi qu’un
appareil de mesure possédant deux positions possibles pour son aiguille, |d) et [g). Si
Yon considére que le Hamiltonien d'interaction induit 1’évolution suivante,

[0)|d) — [0} |} (8)
(1) idy — 11} g}, (9)

alors pour un systéme préparé initialement dans I'état (|0} + |1))v/2, 'état final doit étre
(10) [d)+11) |g))v2. Autrement dit, 'appareil de mesure doit &tre dans une superposition
impliquant I'aiguille dans I'état |d) et P'aiguille dans ’¢tat |g). Comme pour le chat de
Schriodinger, de telles superpositions n’ont jamais été observées. Seul 'un des deux
résultats est choisi et conduit & P’exclusion de P’'autre. Cette situation qui semble en
contradiction avec 1'expérience est appelé probléme de la mesure.

Interprétations

Devant 'absence d'une réponse apportée par la théorie elle méme, les physiciens ont
tenté de trouver des explications appropriées A cet état de fait. C’est ce que I'on appelle
les interprétations de la mécanique quantique.

L'école de Copenhague La plus fameuse d’entre elle, 'interprétation de Copenhague, a
été promue par N. Bohr et suspend par décret le principe de superposition. Il motive
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cette solution par le fait que contrairement au domaine quantique, le domaine classique
ne souffre pas de problémes d’interprétation. Ainsi il en fait un élément de référence
pour analyser les phénoménes quantiques. Plus précisément, il postule qu’une mesure
n’est réalisée que lorsque son résultat est retranscrit dans le monde classique. Ainsi, dans
le modéle de von Neumann présenté plus haut, la finalisation de la mesure ne se fait
que lorsque A est mis en contact avec un systéme classique. Ce n’est qu’'a ce moment
13 qu'un résultat particulier est choisi. Cependant, comme le soulignait Schréodinger,
tout systéme classique peut étre en principe décrit par la mécanique quantique. Ainsi
en repoussant peu i peu les limites du domaine quantique, on est contraint de faire se
produire la transition vers le monde classique dans la conscience des observateurs.

Toutefois, il faut reconnaitre que 'interprétation de Copenhague décrit bien la réalité
pratique : il n’est pas envisageable de maintenir un observateur vivant suffisamment
isolé du reste du monde pour qu'il soit effectivement décrit par la mécanique quantique.
Pour toutes les situations rencontrées dans les expériences de laborateire, une mesure
se termine bien par un contact avec le monde classique — i.e. la mesure est effective
lorsqu’un nombre est ingcrit sur une feuille de papier ou dans la mémoire d’un ordinateur.
Dans le cas de l'interprétation de Copenhague, le probléme de la transition quantique-
classique se réduit donc & comprendre pourquoi certains objets peuvent &tre qualifiés de
“classiques” et pourquoi ils sont alors & méme de finaliser les mesures sur les systémes
quantiques.

Les univers multiples L’interprétation de Copenhague n’est cependant pas la seule pos-
sible. Parmi les candidates, celle des univers multiples d’Everett [Eve57a, Whe57a] a
connu un regain d’intérét depuis le début des années 1970. Tout comme 'interprétation
de Copenhague, elle ne permet pas vraiment de répondre au probléme de la mesure,
mais elle a le mérite de mettre ’accent sur un autre aspect de la transition quantique-
classique : l'invariance de base [Zeh73a]. En effet, dans sa formulation, la mécanique
quantique ne fait pas référence a des états particuliers. Ainsi, si ’on reprend 'exemple
d’un systéme & deux niveaux |0} et |1), ’état |[+} = (J0) + |1))v/2 est tout autant une
superposition que I’état |0) = (|+) + |—))v/2, & condition de définir [-) = (|0} — |1))+v/2.
Si on pense que la mécanique quantique doit permettre 1'’émergence de la mécanique clas-
sique, alors il convient d’expliquer pourquoi certains états de systémes macroscopiques
correspondent aux états classiques tandis que les autres — leurs superpositions — ne
sont jamais observés.

Décohérence

Ainsi, depuis les débuts de la mécanique quantique, la compréhension de la transi-
tion quantique-classique restait une question ouverte. C’est dans les années 1980, que
W. H. Zurek y apporta un élément de réponse concret [Zur8la, Zur82a]. En effet,
il a explicité un mécanisme simple permettant de comprendre pourquoi les propriétés
quantiques ne se manifestent généralement pas & notre échelle : interaction avec un
environnement.
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Ce mécanisme peut-&tre explicité dans le cas simple qui nous a servi & illustrer le
modele de mesure de von Neumann et 3 formuler le probléme de la mesure. On se
souvient que I’état final du systéme quantique et de I’appareil de mesure aprés leur in-
teraction est donné par (|0} |d) +}1) |g))v/2 lorsque le systéme est initialement dans 1’6tat
(I0)+[1))/v2. Prenons maintenant en compte un environnement quantique initialement
dans I'état |e) évoluant soit dans I'stat Jegq) si I'appareil de mesure est dans état |d),
soit dans I'état |eg) si I'appareil de mesure est dans I’état |g). Alors, 'état “systéme +
appareil de mesure + environnement” aprés que toutes les interactions ont cu lieu est
donné par:

7510014 lea) + 1)l ). (10)

En quoi cela résout-il spécifiquement le probléme de la mesure? La réponse est simple.
Pour cela, il faut se pencher sur ’état “systéme -+ appareil de mesure”. Dans le cas on
les états |es) et |e,) sont orthogonaux, on obtient la matrice densité (JOXO| @ |d)d| +
[1X1|®|g}g]). Le processus d’interaction avec ’environnement permet donc de passer de
corrélations quantiques — I'état enchevétré explicité plus haut — & des corrélations clas-
siques — une variable aléatoire classique pour 1'appareil de mesure corrélée avec certains
états du systéme. L’avantage de ces corrélations classiques est ’absence d’ambiguité par
changement de base. En effet, une seule base de 'appareil de mesure permet d’exhiber
des corrélations dont la nature peut étre expliquée a ’aide d’une variable aléatoire clas-
sique pour I’appareil de mesure — i.e. en employant uniquement des états orthogonaux
pour décrire son état. Bien entendu, il s’agit 13 d’un cas d’école. Dans la pratique, les
interactions entre systémes quantiques sont complexes et il est parfois bien difficile de
distinguer dans quelles circonstances un tel mécanisme permet de résoudre le probléme
de la mesure.

Avant de procéder 3 une étude plus détaillée, il est important de noter qu’a une
question fondamentale, la réponse apportée est de nature opérationnelle. Il ne s'agit
pas d’ajouter un axiome 4 la mécanique quantique comme le requiert 'interprétation de
Copenhague, mais seulement de reconnaitre que les systémes quantiques macroscopiques
sont rarement des systémes isolés. L’effet de ’environnement — un systéme quan-
tique légitime — sur la capacité des systémes quantiques & étre dans des superpositions
d'états “classiques” doit donc &tre prise en compte. De facon plus précise, de nom-
breux travaux théoriques étayés par des résultats expérimentaux ont montré que ’effet
de l'environnement sur l'existence de superpositions d’'états est en général exponentiel
avec le nombre de particules quantiques élémentaires qui composent le systéme étudié.
En résumé, le mécanisme proposé par W. H. Zurek donne une explication raisonnable a
I’émergence d'un monde classique  partir de la mécanique quantique.

D’autres éléments viennent confirmer cette approche. Tout d'abord il existe des
systémes macroscopiques qui obéissent aux lois de la mécanique quantique (par exemple
les barres de Weber, pesant plus d'une tonne) ce qui indique que la transition quantique-
classique n’est pas fondamentalement liée 4 la taille des objets considérés mais bien a
leur capacité & étre ou ne pas &tre en interaction avec leur environnement. Ensuite, et
ce sujet occupe la seconde partie de cette thése, 'ensemble des travaux effectués sur les
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codes correcteurs d’erreurs quantiques s’appuie directement sur le fait que la décohérence
est un phénomene, certes réel, mais pas fondamental [Prea, Preb, NC00a, Got97a]. Elle
peut donc &tre combattue. Les années qui viennent confirmeront certainement ce point
de vue, qui est maintenant partagé par une trés large majorité de la communauté des
expérimentateurs et des théoriciens de la mécanique quantique.

Concernant le travail que j’ai effectué sur la transition quantique-classique, il consiste
en deux sujets distincts:

1. La classification des différents types de corrélations présentes dans les systémes
quantiques, avec pour application ’obtention d’un critére permettant d’analyser
la résolution effective du probléme de la mesure ;

2. L’étude de I'émergence de propriétés objectives sous 1'effet d’'une interaction avec
un environnement.

A propos de ce second point, il est important de noter qu'il s’agit d’une approche nou-
velle tranchant radicalement avec les discussions habituelles concernant la présence ou
I’absence de principe de superposition comme seule caractéristique déterminant la na-
ture quantique ou classique des systémes physiques. Le travail effectué s’attache 3 une
autre caractéristique du monde classique: l'existence d’une représentation objective des
états des systémes physiques.

Discorde quantique [OZ02a] (Chapitre 3)

Comme cela vient d’étre brievement mentionné, parallélement au développement de la
théorie de la décohérence, la théorie de 'information quantique a commencé a progres-
sivement réinterpréter les différentes expériences de pensées chéres aux fondateurs de la
mécanique quantique. En particulier, la violation des inégalités de Bell par des états
enchevétrés peut étre vue comme la ressource fondamentale permettant des applications
nouvelles comme la téléportation quantique [BBC+93a] ou encore le codage super-dense
[Prea). C’est dans le but de participer 4 une analyse des fondations de la mécanique
quantique 4 l'aide de la théorie de l'information que j’ai travaillé sur la discorde quan-
tique.

Pour paraphraser une fois de plus le probléme de la mesure, la mécanique quantique
des systémes fermés ne privilégie aucune base de 'espace de Hilbert des états. Ainsi, il
est impossible de justifier I'émergence d’états classiques pour des systémes fermés. C’est
I'invariance par changement de base : 'état d’un systéme ne dépend pas de la base dans
laquelle son vecteur d’état est exprimé. En revanche, dans le cadre des syst2mes quan-
tiques ouverts, et sous certaines conditions, une base classique peut étre dynamiquement
privilégiée comme étant I’ensemble des états quantiques les plus stables.

La discorde quantique s'attaque précisément 4 la reconnaissance d'une telle situ-
ation & 'aide du modéle de la mesure. Elle s’attache donc 4 déterminer quelle est la base
classique de I’appareil de mesure .A qui émerge lorsqu’il interagit avec son environnement.
Pour cela, elle propose de classer les différents types de corrélations entre le systéme
mesuré S et A aprés l'interaction de ce dernier avec son environnement.
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Sa définition est fondée sur le calcul de l'information mutuelle entre & et .4 selon
deux définitions identiques pour le cas de probabilités classiques, mais différentes dans
le cas de systémes quantiques :!

il

I(S:A) = S(S)+S(A) - S5(S,A) (11)
J(S:A) = S(5)-S(S|A). (12)

Alors que l'on a pour des probabilités classiques Z(S : A) = J(S : A), dans le cas
quantique, on obtient facilement, Z(S : A} > J(& : A). La discorde quantique est
donc définie par § = I(S : A) — J(S : A). Une analyse plus détaillée montre que
J(S : A) mesure la quantité d’information sur le systéme S qui peut &tre retirée de
ses corrélations avec une mesure particuliére sur A, et que Z(S : A) est une mesure
globale des corrélations entre les deux systémes quantiques. La différence entre ces deux
quantités est donc une mesure de I'information qui ne peut &tre extraite par la meilleure
deg mesures sur A, mais qui est effectivement présente dans les corrélations entre S et
A.

Le résultat central du chapitre 3 montre que lorsque § = 0 pour une certaine base
de mesure sur .4, alors les deux systémes quantiques sont corrélés uniquement de fagon
classique au travers de cette base de mesure de A. Lorsqu’une telle situation se produit,
on peut reconnaitre que 'invariance par changement de base inhérente 4 la mécanique
quantique des systémes fermés est levée: la matrice densité représentant 1’état “systéme +
appareil de mesure” peut-étre décrit en employant une variable aléatoire pour 'appareil
de mesure corrélée avec certains états du systéme. En conclusion, c’est ’environnement

‘qui impose & l'appareil de mesure quelles corrélations garder avec le systéme mesuré et

donc quels sont les résultats possibles, éliminant du méme coup leurs superpositions.

Une autre conséquence mise en avant par I’étude de la discorde est la conversion
progressive de l'information quantique en une information classique : au cours d’une
interaction avec un environnement, deux systémes quantiques partageant initialement
de V’enchevétrement vont peu & peu voir ces corrélations diminuer tout en gardant (sous
certaines conditions) leurs corrélations classiques intactes. La discorde quantique est
a ce titre un indicateur de la présence du phénoméne de décohérence : il s’agit d’une
mesure de la diminution des ressources disponibles pour effectuer de la communication
quantique.

On peut cependant noter que la définition d’information quantique donnée par
I'emploi de la discorde ne correspond pas a la définition de l’enchevétrement. En ef-
fet, le chapitre 3 fournit I’exemple des états de Werner [Wer89a] dont ’enchevétrement
est nul, mais dont la discorde est toujours positive. Ceci est da A la diffarence de point
de vue adoptée dans la définition de la discorde et de ’enchevétrement : dans un cas

'Pour &tre précis, il faut noter que la définition de 7 dépend du choix d'une base de projecteurs
orthogonaux agissant sur 'espace de Hilbert de .A. Afin de ne pas alourdir les notations ni la discussion
qui suit, cet élément technique mais néanmoins important a été omis.

2Certaines corrélations quantiques ne peuvent étre efficacement utilisées qu’a condition de permettre
I'emploi de communication classique entre les deux systémes quantiques.

ePR——
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la nature des corrélations est décrite dans la perspective d’une mesure, tandis que dans
I'autre la nature quantique se manifeste au moment de la création de ces corrélations.

C’est grace & cette spécificité que la discorde quantique a pu &tre utilisée pour anal-
yser & nouveau le paradoxe du démon de Maxwell, ou encore pour quantifier les ressources
nécessaires aux protocoles de synchronisation d’horloges.

Objectivité [OPZ03a] (Chapitre 4)

Bien que la théorie de la décohérence puisse étre considérée comme un grand pas en
avant sur le chemin de la compréhension de la transition quantique-classique, nous ne
somimes pas encore au bout du chemin.

En effet, la décohérence met en avant un mécanisme autorisant 'apparition d'une
base privilégiée pour les systémes quantiques en interaction [Zur8la, Zur82a, Zur%la,
PZ0la, Zur03a]. Il s’agit d’états classiques dans le sens ol toute superposition de ces
états est intrinséquement instable et est transformée en un mélange statistique d’états
stables. En revanche, une partie de la nature quantique de ces états stables subsiste :
lorsqu’un systéme subit une mesure, il est inévitablement perturbé par cette derniére.
Malgré la décohérence, une mesure aboutit toujours & une re-préparation. C’est la con-
séquence inévitable de ’axiome relatif 4 I’acquisition d’information & propos des systémes
quantiques : toute mesure induit une acquisition d’information et par conséquent doit
étre accompagnée d'une mise & jour de I'état du systéme mesuré. En d’autre termes,
méme pour les états stables, on observe une extréme sensibilité aux mesures.

Cette simple constatation est en contradiction presque totale avec une des caracté-
ristiques fondamentales de la mécanique classique : I'existence d’'une réalité sous-jacente
indépendante de I'observateur, ou encore celle de propriétés objectives. La lune existe
qu’on la regarde ou non, et son état n’est pas modifié par ’observation qu’on en fait.
Une explication satisfaisante de la transition quantigue-classique doit donc permettre
de comprendre comment une réalité objective peut émerger d'un substrat quantique
intrinséquement dépendant de la facon dont il est observé.

Pour répondre & cette attente, nous nous sommes penchés sur la fagon utilisée pour
appréhender les propriétés des systémes classiques. Nous avons mis en avant le fait
qu’aucun systéme classique n’était en fait mesuré directement comme c’est le cas en mé-
canique quantique. En fait, ce n’est qu’en interceptant une fraction de I’environnement
d’un systéme classique que nous déduisons ’ensemble de ses propriétés.

De ce point de départ, nous avons promu 'environnement d'un réle passif, des-
tructeur des corrélations quantiques, 4 un rdle actif, canal de communication entre
le systéme et ses observateurs. En étudiant comment l'information est propagée par
|'environnement 3 différents observateurs nous pouvons comprendre l’existence de pro-
priétés objectives pour des systémes macroscopiques.

Dans le chapitre 4, une mesure de redondance est introduite pour les systémes quan-
tiques. Elle s’appuie sur un comptage précis du nombre de fois qu’une méme information
peut étre extraite par des mesures sur des fragments disjoints de l'environnement.

Definition .0.1 (Redondance). La redondance de niveau & d’une observable A du



128

Résumé

systéme est donnée par:
Rs(A) = o RCY Ie,(4) > (1 - 8)Ig(A)}, (13)

K OES
ot f;-(A) = maxy, mesure sur 7 1(A, X) et I(A, X) est I'information mutuelle entre les
variables aléatoires correspondant aux résultats des mesures A sur le systéme et X sur
un fragment F de P'environnement €. =

Une étude approfondie de cette quantité montre qu’une seule observable A du sys-
téme peut voir son information diffusée de fagon complate — fg(A) ~ H (A) — et
redondante dans P'environnement. Ainsi, lorsqu'une propriété d’un systéme quantique a
une grande redondance, on peut en déduire que cette quantité jouera le role de grandeur
objective pour peu que son empreinte dans l’environnement est suffisamment fidele.
En effet, on peut montrer que la redondance, associée & 'unicité de cette information,
permet & plusieurs observateurs indépendants et honnétes d’arriver 4 un consensus sur
certaines propriétés d'un systéme quantique. Dés qu'un tel consensus peut &tre atteint,
il est possible de définir de fagon opérationnelle la réalité objective comme ’ensemble
des propriétés des systémes physiques sur lesquels de tels observateurs peuvent se mettre
d’accord.

Par ailleurs, il a &t possible de montrer analytiquement que redondance et fidélité de
I'information conduisent 4 la suspension de I'invariance par changement de base évoquée
plus haut. De fait, 'existence d’information redondante est un critére plus restrictif que
'analyse standard de la décohérence qui ignore le rdle actif que joue D'environnement
dans la transition quantique-classique.

Une fois encore, on peut remarquer qu’une question qui semblait fondamentale finit
par trouver un élément de réponse de nature opérationnelle. Cependant, ce serait aller
trop vite que de croire que tous les problémes soulevés par la mécanique quantique peu-
vent etre résolus de cette fagon. En effet, cette étude préliminaire améne déja  considérer
de nouvelles questions relatives a 'interprétation de la mécanique quantique. En partic-
ulier le cadre employé pour la définition de la redondance donne une place prépondérante
a la décomposition de ’environnement en sous-systémes élémentaires. Pourquoi et com-
ment une telle structure émerge de la théorie quantique sera certainement le prochain
sujet anquel il faudra s’atteler. Par ailleurs, il est clair que la mécanique quantique ne
peut étre considérée comme une théorie ultime 4 elle seule puisqu’elle ne permet pas une
description de ’espace-temps cohérente avec le principe de relativité.

Cependant, 'étude d’autres modéles menant 2 une réalité objective au travers de la
mécanique quantique usuelle devra étre poursuivie, avec I'espoir que cela permette de
répondre au moins partiellement au programme formulé par C. Fuchs [Fuc02c] visant a
justifier les axiomes de la mécanique quantique par la théorie de I'information.

Codes correcteurs d'erreurs quantiques

Alors que la théorie de la décohérence a été initialement introduite pour répondre & un
manque d’explications satisfaisantes concernant les fondations de la mécanique quan-
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tique, elle est également au cceur des difficultés rencontrées pour fabriquer les ordinateurs
quantiques. Avant de résumer les résultats obtenus, il est approprié¢ de présenter le con-
texte dans lequel s’est effectuée cette recherche, celui de I'informatique quantique (pour
une introduction compléte au calcul quantique on peut se référer a [Prea, Preb, NC00al]).

Informatique quantique (Chapitre 5)

Il y a vingt ans, naissait I'idée du calcul quantique [Fey82a, Fey84a]. Il s’agissait alors de
simuler ’évolution de systémes quantiques complexes avec d’autres systémes quantiques,
un peu a la maniére dont les ordinateurs classiques simulent 1'évolution de systémes
classigues. L’idée sous-jacente & cette proposition était la remarque simple que toutes
les simulations classiques de systémes quantiques semblent requérir une quantité de
mémoire croissant de fagon exponentielle avec le nombre de systémes simulés.

Faire calculer 4 des systémes quantiques 1’évolution d'autres systémes quantiques
permettrait donc de s’affranchir de cette contrainte. Mais finalement, les recherches
dans le domaine ont pris une tournure un peu différente A partir du moment ot ont été
trouvés des algorithmes résolvant des problémes difficiles ou supposés tels, comme c’est le
cas de la factorisation des nombres entiers par exemple [Sho94a]. Le principe de base de
fonctionnement d’un ordinateur quantique est I'utilisation du principe de superposition.
En effet, puisque les évolutions quantiques sont linéaires, il est possible, en préparant le
registre de 1'ordinateur dans une superposition de valeurs d’entrée, d’effectuer plusieurs
calculs & la fois. C’est ce qui est communément appelé le parallélisme quantique.

Cependant, la situation décrite ici est un peu simpliste. En effet, si tous les calculs
ont bien é&té effectués en méme temps, ’obtention d*un résultat particulier reste lié a4 un
processus probabiliste. Si aucun traitement n’était effectué sur I'état du registre quan-
tique, rien ne distinguerait une telle machine d’un ordinateur classique probabiliste. La
détermination des transformations a effectuer est la véritable difficulté de I’algorithmique
quantique.

Dans certains cas, comme pour la factorisation d’entiers, ces transformations appor-
tent un gain exponentiel par rapport au meilleur algorithme classique connu. Dans
d’autres cas, comme celui de la recherche dans une base de données non-ordonnée
[Gro97a], le gain n’est que quadratique, mais ’existence d'un ’gap’ entre le meilleur
algorithme classique possible et I’algorithme quantique peut étre démontrée.

Cependant, comme nous I'avons vu plus haut, le taux auquel disparaissent les super-
positions d’états est en général exponentiel dans le nombre de systémes impliqués dans
la superposition. Ici le nombre de ces systémes est directement proportionnel au nombre
de bits quantiques utilisables dans le registre de I'ordinateur. Par conséquent, méme si
la décohérence n’est pas un phénomeéne fondamental, elle semble dresser une barriére
insurmontable qui remet en cause le bien-fondé de tout programme de recherche visant
i construire un ordinateur quantique.
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Stratégies de suppression d’erreurs (Chapitre 6)

A premiére vue, une solution simple semble pourtant s’imposer : en isolant les registres
de calcul de toute interaction involontaire avec un environnement incontrslé, on diminue
d’autant I'importance de la décohérence. Malheureusement, une telle stratégie n’est pas
toujours applicable aux différentes propositions expérimentales visant & la construction
d'un ordinateur quantique. Plus fondamentalement, une isolation acerue des registres
signifie une dégradation dans la méme proportion du contréle qui peut étre effectué sur
ce registre. Ainsi, une meilleure isolation prolonge le temps de cohérence mais également
le temps nécessaire pour accomplir une porte élémentaire donnée (pour une introduction
a la problématique contréle-décohérence on peut lire [Bac01a]).

Il faut donc mettre en place des stratégies actives de correction d’erreurs. Plusieurs
outils sont désormais 4 notre disposition :

® Les codes correcteurs d’erreurs quantiques, analogues aux codes classiques (pour
une introduction aux codes voir [Got97a, Preb, NCO00a)) ;

¢ Les sous-systémes protégés de la décohérence, sous-systémes qui, pour des raisons
de symétrie de leur interaction avec l’environnement, ne subissent pas de décoheé-
rence [Zan99%a, LBKW9%a, BKLW00a, KBLWO01a] ;

¢ Les contréles actifs induisant une interaction effective connue et maitrisée [LV00a,
VKL99a, VKL00a).

~ Durant ce travail de thése je me suis plus principalement penché sur les codes cor-
recteurs d’erreurs quantiques. Je vais donc domner ici quelques bases permettant de
comprendre le travail qui a été effectué sur la définition de codes quantiques convolutifs
et les difficultés qui ont été résolues.

La plupart des codes correcteurs connus 4 I’heure actuelle dérivent d’un formalisme
appelé formalisme stabilisateur [Got97a). Ce formalisme permet une analogie simple
avec les codes classiques. En effet, le sous-espace C d'un code protégeant k qubits dans
n est défini comme le plus grand sous-espace stabilisé par un sous groupe abélien S du
groupe de Pauli des qubits physiques, span{X,Y, Z, I}®",

Sans entrer dans les détails de la définition de chacun de ces objets, il est important
de noter que cette procédure identifie le sous-espace du code & 1’aide d’équations linéaires
sur le vecteur représentant I’état du systéme physique composite dans lequel est stockée
Vinformation. En d’autre termes, ces équations peuvent &tres assimilées aux équations
de syndromes des codes classiques linéaires (cf. Table 1). De fagon plus précise, le groupe
stabilisateur est généré par n — k opérateurs indépendants, {M;}, qui commutent deux
a deux. Alors, un vecteur |4) est dans le sous-espace du code si et seulement si:

Vie{l,...,n—k}, M) = |). (14)

Le grand avantage de cette formulation est qu’elle contourne un résultat bien connu
qui semblait compromettre a jamais la correction d’erreurs quantiques. En effet, en
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1982 W. Wootters et W. H. Zurek ont montré [Die82a, WZ8§2a] qu'il était impossible
de copier parfaitement 1'état d’un systéme quantique inconnu. Par conséquent, intro-
duire de la redondance dans le but de protéger de I'information contre des erreurs au
moyen d'un code correcteur semblait irréalisable. En fait, la description d'un code
au moyen de ses équations de syndromes ne fait aucune référence 4 une nécessité de
copier 'information pour introduire de la redondance. Ici, la redondance n’est que la
conséquence de l'espacement des différents mots de codes. Elle ne provient pas d'une
répétition éventuelle de I'information. Cette capacité fut donc exploitée pleinement pour
la définition des codes stabilisateurs.

Une autre question délicate que cette définition permet de résoudre concerne la procé-
dure d’estimation d’erreurs. Comme nous 1’avons vi précédemnment dans un autre con-
texte, toute mesure change I'état du systéme mesuré détruisant par la méme occasion
une partie des superpositions quantiques dans lesquelles il pouvait étre impliqué. Il
est donc impossible de mesurer les qubits recu pour effectuer Vopération d’estimation
d’erreur sans détruire de cette fagon toute 'information quantique qu'ils contenaient.

L’avantage de I'introduction d’un analogue quantique des équations de syndromes est
de proposer une méthode permettant de préserver la nature quantique de 'information
4 protéger tout en acquérant le maximum d'information sur I'erreur qui a pu se pro-
duire pendant la transmission. Cette méthode consiste 4 réaliser la mesure quantique
correspondant & chacune des observables représentées par les générateurs M; du groupe
S. Ceci s'effectue trés facilement au moyen d’un qubit auxiliaire (cf. Fig. 3) Alors,
les seules superpositions détruites au cours de la mesure sont des superpositions d’états
correspondant & des erreurs différentes, ce qui n’affecte pas I'information protégée. Aussi
surprenant que cela puisse paraitre, les axiomes de la mécanique quantique nous perme-
ttent ici de limiter les erreurs & corriger  un petit nombre (appelé base d’erreurs) sans
avoir A se préoccuper de leurs éventuelles superpositions [Knig6b].

Par ailleurs, le formalisme stabilisateur offre I'avantage d’une description simple du
circuit quantique de codage : pour étre utilisable en pratique, il faut ajouter A la de-
scription du code, celle de son circuit de codage, c’est & dire la description en terme
de portes logiques élémentaires de la transformation permettant le passage de I’état des
bits quantiques non-protégés a 1’état des qubits physiques appartenant au sous-espace
du code. La difficulté provient des exigences spécifiques au calcul quantique. Toutes
les manipulations doivent étre effectuées de fagon réversible ce qui rend parfois ardue la
détermination de la séquence de portes élémentaires permettant de réaliser une trans-
formation donnée. Dans le cas des codes stabilisateurs, cette transformation est déduite
facilement et de fagon algorithmique de Iécriture des générateurs du groupe S corre-
spondant au code étudié. Ceci accroit donc l'intérét des codes stabilisateurs par rapport
4 des descriptions alternatives de codes guantiques.

Finalement, et c’est la question cruciale, il a fallu déterminer si les code quantiques
permettent de combattre efficacement le phénoméne de décohérence. Autrement dit,
les codes quantiques sont-ils suffisamment puissants pour rendre le calcul quantique
a4 méme de franchir la barriére de la décohérence — i.e. pour balancer la tendance
des systémes quantiques de grande taille & perdre leur faculté & se superposer. Une
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Résumeé

Classique Quantique
P — P S
n bits : (0,1,...,0) n qubits : [¢¥) E Ha®...® Ha

Code (n,k) : ensemble C de 2¢ | Code (n,k) : sous espace C de
mots de code parmi les 2" chatnes | dimension 2k de HE"

de n bits
Code linéaire : w € C & V i € | Code stabilisateur : |) € € <
[[lin - k]]-; h’!w =0 Vi € [[l,ﬂ - k]]’Mt ld’) = l’llb)
e
h; chaine de n bits M;=3C®Y®...®Z, ce sont

les générateurs du groupe stabi-
lisateur. Is vérifient [M;, M;] =
0.

Table 1: Analogies entre les codes linéaires classiques et les codes stabilisateurs

(o) + 11))\/_2——I—Mesure de X

M;

Figure 3: Mesure associée au générateur M; du groupe stabilisateur S. Lorsque le
résultat de la mesure de I'opérateur X sur le premier qubit est +1, ’erreur survenue
dans la transmission commute avec M;. Lorsque le résultat est —1, ’erreur anti-commute
avec M;.

[a—
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réponse affirmative fut apportée dés 1996 [Sho96a, AB96a]. En utilisant des schémas de
concaténation et sous des hypothéses raisonnables, il est possible d'effectuer un calcul
quantique arbitrairement long avec un taux d’erreur arbitrairement bas pourvu que la
décohérence soit suffisamment faible. La grande surprise ici est donc l'existence d’un
seuil pour le taux d’erreur par qubit, appelé seuil pour le calcul quantique tolérant a la
faute, en dessous duquel tout calcul devient théoriquement possible.

- Codes convolutifs quantiques [0T03a, OT04a] (Chapitre 7)

Dans la lignée de ces travaux concernant I’étude des codes pour le calcul quantique, je
me suis intéressé & la définition d'un analogue quantique des codes convolutifs. Comme
nous I'avons vu, la plupart des codes quantiques ont pour vocation d’&tre utilisés pour
protéger de la décohérence un registre de calcul an sein méme d’un ordinateur quantique.
Les codes convolutifs sont quant & eux plus orientés vers la protection de I'information
dans le contexte des transmissions quantiques & longue distance, et en particulier pour
la cryptographie quantique. On peut en fait penser que certains de ces codes pourraient
étre utilisés dans un avenir relativement proche pour améliorer les performances des
systémes de cryptographie quantique.

La principale difficulté rencontrée dans la définition des codes quantiques convolutifs
est I'absence de registres a décalages. En effet, le concept méme d’une mémoire dont le
contenu peut étre utilisé au cours d’un calcul arithmétique ne peut étre employé dans le
cadre quantique en raison de I'impossibilité de copier la valeur d’un bit inconnu. Ainsi,
une généralisation directe des codes convolutifs classiques (qui utiliserait les registres a
décalages) est vouée & I’échec. La solution & ce probléme a été de ne retenir que la défi-
nition des codes convolutifs classiques impliquant leurs syndromes. Utilisant ’analogie
syndromes-générateurs du groupe stabilisateur, une définition adéquate a ensuite pu étre
trouvée : un code convolutif de paramétres (k,n,m) est la donnée de n — k opérateurs,
chacun agissant sur au plus n + m bits quantiques. Les générateurs du sous-groupe
stabilisateur du code sont obtenus par décalage a droite de n position de ces n — &
opérateurs.

Definition .0.2 (Code convolutif (n,k,m)). Le groupe stabilisateur $ pour un code
convolutif de paramétres (n, k,m) est défini par

S =sp{M;; =I®*" @ My;,1<i<n—k, 0<j}, (15)

ot Mo; est un élément du groupe de Pauli pour n + m qubits. Les M;; doivent étre
indépendants et commuter deux 4 deux.

Malgré les similitudes entre cette définition et une définition des codes convolutifs
classiques en terme de leurs équations de syndromes (cf. Table 2}, il reste 4 prouver que
ces codes quantiques ont bien les propriétés désirées. Ces propriétés sont les suivantes:

1. Possibilité de protéger 'information en ligne — sans devoir attendre la fin du
message pour réaliser ’encodage — tout en maintenant une taille de bloc aussi
longue que le message protégé ;
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2. Algorithme d’estimation d’erreur au maximum de vraisemblance de complexité
linéaire vis & vis du nombre de qubits protégés lorsque le canal est sans mémoire.

Outre la définition du code, il faut donc en particulier se pencher sur le circuit de
codage permettant de protéger V'information 4 I’aide de ce nouveau type de codes. Bien
que cette question puisse paraitre incongrue a qui est habitué aux codes classiques, elle
revét une importance particuliére dans le cadre quantique. En effet, comme cela a déja
€t& mentionné plus haut, introduire la redondance nécessaire a la correction d’erreur est
une question non-triviale lorsqu’il est impossible de copier la valeur des bits que I'on
désire protéger. . .

Bien que cette tdche puisse toujours &tre accomplie pour les codes stabilisateurs,
elle requiert la description d’une méthode générale produisant un circuit d’encodage
en terme de portes quantiques élémentaires, c’est & dire réversibles et linéaires. Pour
se faire, il a d’abord été nécessaire d’adapter le formalisme des codes stabilisateurs
pour prendre en compte la spécificité des codes convolutifs quantiques. Pour cela un
formalisme polynomial a été développé (cf. Table 3). Il permet le calcul des relations de
commutation entre un opérateur gquelconque et un générateur du groupe stabilisateur,
ainsi qu’avec tous ses décalés de n positions. On se raméne donc 4 une situation proche
de celle des codes en blocs : on peut trouver un circuit d’encodage assez similaire 3 celui
des codes stabilisateurs habituels tout en maintenant la contrainte d’un délai constant
entre le flot de bits & protéger et le flot de bits protégés. Ce dernier point fait de
cette construction le véritable analogue des codes convolutifs classiques. En effet, cette
propriété de délai fixe entre I'arrivée de bits non protégés et la sortie de bits protégés
peut étre considérée comme une définition alternative des codes convolutifs.

D’autre part, une étude plus poussée montre que le décodage peut s’effectuer de la
méme maniére (avec un délai constant). Cette possibilité est cependant conditionnée par
P'absence d’erreurs catastrophiques pour ’encodage envisagé. Cette absence d’erreurs se
propageant a4 un nombre infini de bits quantiques aprés décodage peut, comme dans le
cas classique, &tre exprimée sous la forme d'une condition simple, vérifiable de maniére
algorithmique. En revanche, la dérivation ainsi que le résultat lui méme different trés
sensiblement de ceux donnés par Sain et Massey pour les codes classiques [MS68a] (cf.
Table 4). La différence principale réside encore une fois dans les contraintes supplémen-
taires imposées par la mécanique quantique sur le circuit de codage : la linéarité et la
réversibilité du calcul limite les possibilités de circuits effectuant ’opération de décodage.

Enfin, ’étude menée sur les codes convolutifs quantiques se termine par la description
d’un algorithme d’estimation de l'erreur la plus probable pour les canaux sans mémoire
analogue de I'algorithme de Viterbi [Vit67a} (cf. Table 5), mais prenant en compte les
spécificités quantiques — seule une mesure du syndrome peut étre effectuée.

Les résultats présentés dans ce manuscrit ne correspondent qu’aux premiers pas dans
Pétude de ces codes. Ils montrent que la définition que nous avons proposée est un bon
analogue de la définition des codes convolutifs classiques. Cependant, un travail complé-
mentaire devra &tre mené pour accroitre notre connaissance de ces codes. En particulier,

S
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Table 2: Similitudes entre la définition d’un code convolutif classique & ’aide de sa
matrice de parité et la définition des générateurs du groupe stabilisateur pour les codes
convolutifs quantiques. La matrice M contient en chaque position une matrice de Pauli.
Une ligne correspond & un générateur, une colonne 4 un qubit.

Mo, = Z XX2Z1T1T1..

0.1 ’ 01100 |10010
My = I ZXXZ1TI...,

. 00110 |[01001
My = 11 ZXX21I., M=

’ 00011 |D0O10O
Myy = 111 2ZXX2Z..., Dooo1 loDpolo
Mj,;_ = J®5 ® M[l,n 0<j.

Table 3: Le formalisme polynomial pour un exemple particulier de codes. A gauche le
groupe stabilisateur, & droite la représentation polynomiale. Pour la partie de droite, la
matrice se décompose en deux sous-matrices l'une représentant la partie X des généra-
teurs, l’autre la partie Z. L’opérateur D représente un décalage de 5 qubits. Ainsi on
peut se contenter de décrire le premier bloc de générateurs, le n-iéme bloc étant obtenu
par la multiplication de chaque entrée de la matrice par D"1,
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il sera important de déterminer avec précision les conditions dans lesquelles un code con-
volutif doit &tre utilisé et comment il doit éventuellement &tre concaténé avec d’autres
schémas de protection de I'information quantique pour pouvoir améliorer les distances
sur lesquelles il est possible de transmettre efficacement I'information quantique.

Par ailleurs, une autre motivation 4 ce travail a &té 'implication des codes convolutifs
classiques dans les schémas de type turbo-codes. En effet, ces stratégies de correction
d’erreurs utilisent généralement deux codes convolutifs pour atteindre des taux de trans-
mission proches de la limite théorique fixée par le théoréme de Shannon. Un équivalent
quantique de ces codes permettrait sans doute d’améliorer la robustesse de la transmis-
sion et du stockage de l'information quantique, facilitant donc son traitement 3 grande
échelle dans des structures dédiées.

Propositions expérimentales

Enfin, la derniére partie de cette thése est dévolue a des aspects expérimentaux du traite-
ment quantique de Pinformation. Ces travaux m’ont permis d’acquérir une meilleure
compréhension des difficultés liées & la réalisation pratique de la manipulation quan-
tique de Vinformation.

Le choix de I'électrodynamique quantique en cavité pour mener cette étude résulte
de la présence & Paris d’un groupe de renommée internationale (LKB - ENS) ayant
une forte activité dans le domaine de l'information quantique. Cependant, méme si
certains problémes rencontrés concernent spécifiquement cette implémentation physique,
la plupart des contraintes expérimentales imposées ainsi que la fagon de remédier aux
problémes rencontrés sont applicables & d’autres dispositifs expérimentaux.

Dispositif expérimental (Chapitre 8)

Dans le cas particulier des expériences de 'ENS, I'information quantique est stockée dans
le degré d’excitation électronique d’un atome de Rubidium dans un état de Rydberg
[RBHOla]. De fagon simple, il s’agit d'un atome trés excité et donc de trés grand
volume, dont un des électrons peut accéder a plusieurs niveaux d’énergie permettant
une représentation quantique de 'information.

Pour manipuler Pinformation contenue dans un seul de ces atomes, il est possible
d’appliquer des champs micro-ondes dont la fréquence est ajustée avec celle de la transi-
tion entre deux niveaux d’énergie de 'atome. Dang la pratique, cette manipulation peut
étre effectuée de fagon précise et en un temps trés court, ce qui permet de s’affranchir
des problémes de décohérence.

Cependant, pour pouvoir manipuler de I'information de facon non triviale, il faut
également pouvoir effectuer des portes logiques comportant plusieurs bits. D*un point de
vue pratique, il s’agit de controler une interaction entre deux systémes quantiques. Dans
Vexpérience de 'ENS, cette interaction ne se fait pas directement entre deux atomes,
mais entre un atome et une cavité. Cette cavité est constituée de deux miroirs supra-
conducteurs refroidis aux alentours de 1K, et ayant la capacité de conserver un photon

N
JR—
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unique pendant un temps avoisinant 1 ms.

L’interaction d’un atome de Rydberg avec le champ dans la cavité est due & une
modification de l'indice de réfraction induite par le passage de 'atome dans la cavité.
Cette modification est elle-m&me liée & I'état d’excitation de Patome. Ainsi cette inter-
action agit comme une porte logique conditionnant 1'état du champ a Pintérieur de la
cavité en fonction du niveau d’excitation de I’atome qui la traverse. Un second atome
envoyé 4 la suite du premier peut entrer dans la cavité et interagir de nouveau avec elle,
ce qui aboutit & une interaction effective entre les deux atomes concernés.

Une autre méthode, dite de collision assistée par cavité a été proposée plus récemment
pour faire interagir deux atomes directement dans la cavité. Cette nouvelle possibilité
s’est révélée cruciale pour I'une des propositions expérimentales décrites ici.

Les principaux obstacles que nous avons rencontrés pour le traitement de l'informa-
tion quantique sont :

¢ La présence d’une seule cavité, ce qui empéche tout parallélisme (allongement du
temps des expériences et donc plus grande sensibilité  la décohérence) ;

e L’impossibilité d’arréter les atomes dans la cavité (deux atomes ne peuvent inter-
agir qu'une seule fois par l'intermédiaire de la cavité) ;

¢ Impossibilité d’adressage individuel des atomes une fois qu'ils sont dans la cavité.

A la vue de ce bref descriptif, une question de taille demeure : quelles expériences
peut-on réaliser avec ces moyens limités 7

Propositions [MOR03a, MOY+03a, OMO03a] (Chapitres 9 & 10)

Nous nous sommes concentrés ici sur la réalisation de taches simples : clonage optimal
et porte quantique élémentaire. Elle peuvent &tre vues comme un banc d’essai per-
mettant de préciser nos besoins en terme de contrdle et d’architecture des ordinateurs
quantiques, tout en permettant le développement de solutions adaptées pour combattre
la décohérence ou contourner les limitations intrinséques des systémes physiques utilisés.

Le clonage quantique optimal {cf. Fig. 4) consiste 4 réaliser 4 partir d’un état inconnu
deux clones aussi proches que possible de I’état initial. Le résultat d’impossibilité évoqué
plus haut interdit & cette opération d’étre réalisée parfaitement. Cependant, il n’empéche
pas de simplement maximiser la qualité des clones. Ce probléme a été décrit en détail
de facon théorique et a fait 'objet d’expériences sur d’autres systémes physiques. Son
implémentation dans le cas de Pélectrodynamique quantique en cavité montre qu’avec
la technologie actuelle, on ne peut espérer qu'une qualité assez médiocre des clones.
En revanche, cette étude précise des objectifs qui devront 2tre atteints dans le futur
pour permettre la démonstration d’un traitement quantique complexe de 'information
en utilisant I'électrodynamique quantique en cavité.

Notre seconde proposition expérimentale concerne 1'implémentation d’une porte élé-
mentaire & trois bits quantiques : la porte de Toffoli (cf. Fig. 3). Nous avons utilisé
pour cela une interaction directe entre deux atomes avec une assistance par cavité ce
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Proposition .0.1. Un encodeur est non-catastrophique si et seulement
si Popération d’encodage C(q) pour q blocs peut étre décomposée de Ia
fagon suivante (pour g grand):

_ la/ts] le/i] _
O() = Term(q) x (H Dd*[vt]) X ... X ( Il o* [Uﬂ)..x L),

i=0 i=0
_ } (16)
ott Init(g) et Term(g) sont des étapes d'initialisation et de terminaison
pour le codeur qui peuvent éventuellement dépendre de q mais dont le
support est borné ; ot {U;}; est un ensemble fini d’opérateurs unitaires
indépendants de q et tels que D*[U;] and D¥ [U;] commutent ; et oit les
l; sont des entiers indépendants de q.

Table 4: Condition de non-catastrophicité pour un codeur quantique.

Position

Figure 4: Résumé graphique des interactions successives permettant de réaliser le clon-
age optimal universel. On y voit les manipulations par les champs micro-ondes classiques
effectuées dans les zones de Ramsey — i.e. R._;, Re_y — ainsi que les transferts ré-
sonnants entre les atomes et les deux cavités contenant un champ quantique — avec au
plus un photon.

P
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Algorithm .0.1.

Inputs: (#) Liste de syndromes {s;41:}; pouré=1,...,n—k; (i) une
liste {E}E)}ee{;,x,y, z}@m de candidats d’erreurs définis jusqu’au bloc j
et telle que 1’élément E§°) a une décomposition en produit tensoriel de

matrices de Pauli comprenant l'indice e sur ses m derniéres positions et
qui maximise la vraisemblance étant donnée cette contrainte de termi-
naison. La liste {Eﬁe) }e est construite récursivement par ’algorithme.
Step j+1: Pour une valeur de ¢’ € {I, X,Y, Z}®™, on considére toutes
les extensions de n qubits des éléments de E_ge) tels que:

e ils satisfont les syndromes s;41; pouréi=1,...,n—k;

e leur décomposition en produit tensoriel de matrices de Pauli se
termine par €.

Par construction ces extensions sont des candidats d’erreurs jusqu'au
bloc j + 1. Pour chaque élément €’ de {I,X,Y, Z}®™ on choisit une
des extensions avec vraisemblance maximale — en cas d’ex aquo on
en choisit une au hasard. Ces éléments constituent la nouvelle liste
{E_-Ei)l}e’-

Lorsque tous les syndromes ont &té épuisés, le candidat avec la plus
grande vraisemblance est une des erreurs les plus probables.

Table 5: Algorithme de Viterbi pour les codes convolutifs quantique.
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qui a permis de réduire trés sensiblement la complexité des manipulations requises et
les sources d’erreurs. Avec des paramétres actuels, une telle porte logique pourrait &tre
effectuée avec une précision de 70%, ce qui au regard des performances actuelles d’autres
prototypes d’ordinateurs quantiques est un résultat relativement satisfaisant. Plus fon-
damentalement, cette étude montre que la décomposition trouvée est optimale vis &
vis des contraintes auxquelles nous sommes soumis en employant le schéma, expérimen-
tal du LKB. Par ailleurs, elle indique qu'un simple allongement de la durée de vie des
photons dans la cavité permettrait d’atteindre une performance de 90% sans demander
plus d'efforts dans le contréle des différentes opérations effectuées au sein de la cav-
ité. De nouveau, on voit apparaitre I'importance de la décohérence (ici induite par la
perte d’un photon de la cavité) dans la performance globale du traitement quantique de
Vinformation.

Perspectives

Depuis que les premiéres versions de ce manuscrit ont été écrites, de nouveaux résultats
ont été obtenus.

En premier lieu, la simulation d’¢volutions de systémes quantiques complexes avec
des prototypes d’ordinateurs quantiques. Nous avons pu mettre en évidence une fagon ef-
ficace de différencier deux régimes dynamiques en estimant de fagon quantique la décrois-
sance de la fidélité [PBKLO04a).

D’autre part, les recherches sur les codes quantiques convolutifs, les codes quan-
tiques & matrice de parité creuse ont été poursuivies. Les grandes similitudes avec
leurs analogues classiques nous font plus que jamais espérer que de telles classes de
codes quantiques joueront un réle important dans les futures structures de protection
de I'information quantique.

Enfin, des résultats analytiques complémentaires sont venus étoffer notre compré-
hension du réle joué par la redondance dans la transition quantique-classique. Plus
précisément, il est possible de prouver dans de nombreux cas pratiques que la redondance
implique P’existence d'une observable préférée dont les vecteurs propres sont les états
classiques sélectionnés par l'interaction avec ’environnement.

L’avenir seul dira si un ordinateur quantique universel verra le jour, cependant, on
peut dire d’ores et déja dire que la physique et 'informatique seront a I’avenir encore
profondément bouleversées par les recherches effectuées dans le cadre de l'information
quantique.
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Position

Figure 5: Représentation graphique des interactions atome-champ et atome-atome au
sein de la cavité. Les cercles dénotent les interactions avec un champ micre-onde classique
ajusté sur la transition ¢ — g. Ce champ est généré par deux zones de Ramsey Ri;. Les
carrés correspondent aux interactions résonantes avec le champ quantique stocké dans
une cavité de grande finesse. La durée de chaque interaction est ajustée en contrélant
la longueur de chaque impulsion ou encore en appliquant une différence de potentiel sur
les miroirs qui composent la cavité, ce qui change la valeur du coupage atome-champ.
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