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9.5.3 L’algorithme QR ordonné . . . . . . . . . . . . . . . . . . . . 121
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Résumé

Le codage espace-temps est une technique qui permet d’exploiter de façon très
efficace la diversité spatiale et temporelle présente dans certains systèmes de com-
munication, dont le canal sans fil. Le principal avantage de cette technique est une
très grande efficacité spectrale. Dans nos jours, où le canal radio-mobile est de
plus en plus utilisé pour transmettre tout type d’information, les méthodes perme-
ttant une utilisation plus efficace du spectre électromagnétique ont une importance
fondamentale.

Les algorithmes de réception connus aujourd’hui sont très complexes, même en
ce qui concerne les codes espace-temps les plus simples. Cette complexité reste l’un
des obstacles principaux à l’exploitation commerciale de ces codes.

Cette thèse présente une étude très détaillée de la complexité, la performance, et
les aspects les plus intéressants du comportement des algorithmes de réception pour
des codes espace-temps, étude qui présente un moyen rapide pour une éventuelle
conception des architectures adaptées à ce problème.

Parmi les sujets présentés dans cette thèse, une étude approfondie de la per-
formance de ces algorithmes a été réalisée, ayant pour objectif d’avoir une connai-
sance suffisante pour pouvoir choisir, parmi le grand nombre d’algorithmes connus,
le mieux adapté à chaque système particulier. Des améliorations aux algorithmes
connus ont aussi été proposées et analysées.
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desde lejos, su apoyo constante y su interés ininterrumpido me fueron muy impor-
tantes para superar esta prueba.

A mi esposa amada no solamente le agradezco desde el fondo de mi corazón su
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Chapter 1

Introduction

We should forget about small efficiencies, say
about 97% of the time: premature optimization is
the root of all evil.

Charles Anthony Richard Hoare

E
xcept for the written word, human communication has always been transmit-
ted over the atmosphere. Voice, sounds, smoke signals, etc. use mechanical or

visual cues to transmit messages.
With the advent of telephony and telegraphy, long-distance communications be-

came possible, inexpensive and reliable. These techniques used electrical wire as the
communication medium with great success: thousands of homes and cities all over
the world deployed hundreds of thousands of kilometers of cable to allow people to
communicate.

However, it was soon determined that the exclusive use of wires severely lim-
ited the use and flexibility of the new communication systems. From an economic
perspective, providing each home with a wired telephone cable is very expensive.
Replacing the wire infrastructure when it fails is even more so. From a practical
point of view, the end point of the wire is, by necessity, fixed; this means that, in
order to profit from it, a person has to be present in a specific place. Also, wired com-
munications are essentially one-to-one; sharing the same connection between several
people is, at best, cumbersome. Another limiting factor is the reduced amount of
data that can be transmitted over long distances.

Over the last century, enormous advances have been made in telecommunica-
tions. Ever greater amounts of information have been made available to the public
from a variety of sources: radio, television, internet, multimedia mobile phones. The
old wire seems to be ill-suited to the new possibilities offered by technology. In fact,
more and more information is transmitted wirelessly, returning to the ancient use
of the atmosphere as communication medium.

The reasons are simple; in short, wireless communications overcome the basic
limitations described above. There is no need to lay out huge amounts of material
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to homes, businesses and offices. The transmitted signal can cover a large area (even
the whole planet), allowing the use of the medium from any location, and making
broadcasting trivially easy.

One of the most important properties of the atmosphere as a communication
medium is its huge capacity to transfer information. Hundreds of television and
radio channels and thousands of telephone conversations can be transmitted with
relative ease. As the amount of information that is generated increases, along with
the desire (and the ability) to obtain it and share it, even this medium can become
saturated. In developed countries, spectrum allocation (the licensing of specific
frequencies for specific uses) is considered just as important, or more, than any
other national infrastructure problem.

As the spectrum becomes scarce, the economy starts to play a role as well.
Frequency bands become coveted goods, much like any other scarce resource. There
is a risk that, as with the telephone cable, the wireless channel will become inflexible
and expensive, and ultimately unable to meet the growing requirements and needs
of society.

Fortunately, there is evidence that the perceived spectrum scarcity is artificial,
because it is being used inefficiently. As digital communications supplant the old
analog signals, new, powerful techniques can be used to increase the spectral ef-
ficiency, defined as the number of information bits that are transmitted per hertz
of bandwidth, per second. One of the most promising techniques is a new type of
channel codes called space-time codes.

One essential feature of the wireless channel is called fading, which occurs when
the signal follows multiple paths between the transmit and receive antennas. Under
certain, not uncommon conditions, the arriving signals will add up destructively,
reducing the received power to zero (or very near zero). No communication is
possible under such circumstances.

Fading is countered with diversity, in which the information is transmitted not
once but several times, in the hope that at least one of the replicas will not be faded
(or that what little information is conveyed by each replica can be used to estimate
the original signal).

Diversity makes use of another essential property of the wireless channel: it can
be modeled as a large number of independent, separate channels. These channels
can be separate in the frequency they use, in the particular time intervals in which
they are used, in the path they follow from the transmitter to the receiver, or in any
other of a variety of methods.

Space-time codes exploit diversity not only to combat fading but to increase
spectral efficiency while reducing error rates and remaining power efficient. To do so,
they combine space diversity (the use of multiple antennas to create multiple signal
paths) with time diversity (the “spreading” of each information bit to multiple time
instants). The result is unprecedented spectral efficiencies.

In the last few years the research community has made a tremendous effort to
understand space-time codes, their performance and their limits. It has realized
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that neither the design of such codes nor the design of efficient receiver algorithms
is an easy task.

Finding receiver algorithms that can be implemented efficiently and reliably,
and that make economic sense, is crucial if the promise of space-time codes is to
be brought to fruition. An algorithm or a code design that is theoretically very
powerful, but is so complex that it is unlikely ever to leave the paper it’s written
on, is not very useful in solving the spectrum availability problems described above
(or any other practical communications problem).

This thesis confronts the problem of receiver design. One particular type of space-
time code, called vertical layered codes, has been selected for study; its performance
has been evaluated and several possible receiver algorithms have been compared and
scrutinized.

This thesis consists of seven chapters and two appendices. Chapter 2 presents the
theoretical foundation on which space-time codes are built, and gives some details
of their implementation.

Chapter 3 concentrates on the space-time codes known as vertical layered space-
time codes (or vertical codes for short). This type of code is the main subject of
this thesis; its principles of operation are presented in this chapter.

Chapter 4 presents the practical problems of implementing and using vertical
codes. A receiver algorithm proposed by Bell Labs, called V-BLAST, is studied in
detail, and results regarding its error-rate performance and computational complex-
ity are obtained, along with some observations on its limitations and its behavior
under varying circumstances.

A modification of V-BLAST is presented in chapter 5. This modification, called
V-LS, borrows ideas from least-squares theory; it is shown to have the same error
rate as V-BLAST, but much lower complexity. V-LS is compared to another algo-
rithm, proposed recently in the literature on the subject, that also uses least-squares
concepts, but in a different way.

Chapter 6 studies a very different kind of receptor than V-BLAST. Lattice de-
coding, a method that solves the closest point problem in a lattice, is adapted for
use in the reception of vertical codes. The resulting algorithm, called V-LD, is close
to optimal.

Finally, chapter 7 presents results on the error-rate performance and computa-
tional complexity of V-LD, and a comparison is made with V-LS. V-LD is found
to exhibit peculiar behavior under some circumstances, which are explored and ex-
plained.

Appendix 1 presents an example of a space-time block code, as a supplement to
chapter 2. Appendix 2 introduces the simulator platform used to generate all the
simulation results presented in this thesis. In addition, a list of all acronyms used
is provided.





Chapter 2

State of the art in Space-Time
Codes

2.1 Problem statement

W
ireless data communication systems can be broadly divided in two types,
according to the signal frequencies and types of antennas they use. In the first

type, the antennas’ positions are fixed and the surrounding environment is more or
less stable. In this type of systems, the transmitted energy can be concentrated in
a single ray aimed at the receiving antenna.

In the second type of system, at least one antenna (of the transmitter-receiver
pair) is mobile and its position unknown. Furthermore, the environment surrounding
the mobile antenna is subject to continuous change. It is this type of system that
we are interested in.

The mobility of the antennas (or, equivalently, the continuous movement of ob-
jects around and between the antennas) and the consequent uncertainty about their
position means that the transmitted energy must be radiated to a large section of
space. The main consequence of this, along with a reduction in received power, is
the appearance of a phenomenon known as multipath: the transmitted signal trav-
els through multiple paths before arriving at the receiving antenna. Each of these
multiple reflections arrives at different times and is subject to different attenuations
than the others; when the reflections add destructively, a phenomenon known as
fading appears.

Fading can drastically reduce the received power. If reliable communication over
wireless channels is to be achieved, measures must be put in place to counteract its
effects. The most common technique against fading is to transmit many replicas
of the original signal, in the hope that at least one of them will not fade; this
technique is known as diversity. Diversity has the drawback of causing inefficiencies
in the system, since at least part of the available resources must be used to send the
signal replicas. This introduces redundancy.

In recent years, researchers have realized that multipath, as well as giving rise
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to fading, can help to combat it. Multiple reflections are a natural phenomenon in
wireless channels, and they can be harnessed to provide diversity; no other system
resource such as bandwidth needs to be employed. Furthermore, it has been deter-
mined that the capacity available in wireless channels, at least a fraction of which
can be attained with clever codes and receivers, is unprecedented.

These new techniques use the properties of the wireless channel not only to
provide diversity, but also promise to deliver high data rates at low signal power,
enabling new communication applications. The design, performance, and complexity
of some of these techniques are the subject of this thesis.

2.2 Definition of a MIMO system

The generic term used to denote communications systems that employ multiple
antennas at both the transmitter and receiver ends is multiple-input, multiple-output
(MIMO) systems (also known as multi-element arrays, or MEA).

In a MIMO system nT antennas are used to transmit and nR antennas are used
to receive. The data to be transmitted is divided into nT streams, and each stream is
fed to a different antenna. The nT transmit antennas are symbol-synchronized, use
the same frequency band, and the same signal constellation S = {s1, s2, · · · , s2b};
b is defined as the number of information bits carried by each signal in S. The
constellation is assumed to be bi-dimensional. The average symbol energy is denoted
by Es. All symbols are equally likely.

In general, a MIMO system can have any number of transmit and receive an-
tennas. Except for a few sections in this chapter where it is indicated otherwise,
in most of this thesis it is assumed that nR ≥ nT . This assumption is required by
the receivers studied in the following chapters; although it is conceivable that they
could be modified to work with nR < nT , such modifications are beyond the scope
of this thesis.

A MIMO system with nT transmit antennas and nR receive antennas will fre-
quently be referred to simply as a (nT , nR) MIMO system.

The channel is assumed to be frequency-flat with slow Rayleigh fading, and is
represented by a matrix H, which has nR rows and nT columns. Element hij is
the transfer function from transmitter j to receiver i (see figure 2.1). The elements
of H are assumed to be complex Gaussian independent and identically distributed
(i.i.d.) random variables of zero mean and variance 0.5 per dimension. The channel
is assumed to be constant during the transmission of a block (also sometimes referred
to as a frame) of size L × nT symbols (for L an integer greater than zero), and to
change from one block to another. Also, it is assumed that the channel is memoryless
between blocks; that is, matrices associated with different blocks are statistically
independent. Such a channel is known as a frequency-flat, slow fading channel,
or simply as a block-fading channel [1]. These characteristics are typical in fixed
wireless applications, where some slow channel variations are expected; an example
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Figure 2.1: MIMO channel model. Boxes represent the multiplicative channel gains
between antennas. Each antenna receives a linear combination of all
signals transmitted plus noise.

would be an office environment where people constantly move around at walking
speed.

Matrix H is assumed to be full-rank, that is, its rank is equal to nT . This is
justified because the probability of a randomly generated matrix presenting non-
independent rows and columns is very close to zero. In practice, this means that the
receiver antennas must be adequately spaced. This requirement is not considered
unreasonable in modern wireless applications where the carrier frequency is in the
range of a few gigahertz and thus the required separation would be a few centimeters.

Each receiver is assumed to have estimated H perfectly through the use of some
appropriate method, such as a training sequence transmitted with each block. This
situation is frequently described in the literature as the receiver having perfect
channel-state information (CSI).

Let a = (a1, a2, ..., anT
)T denote the vector of transmitted symbols; all elements

of a are elements of the same signal constellation S, and all have the same average
power Es = E [|ai|2], 1 ≤ i ≤ nT . The received vector r can be expressed as:
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Figure 2.2: Baseband block diagram of a MIMO system.

r = Ha + n, (2.1)

where n is a noise vector whose elements are Gaussian circularly-symmetric i.i.d.
complex random variables of zero mean and variance N0 per dimension.

Vector a is generated by a channel coder (see figure 2.2). Codes designed specif-
ically for MIMO systems are discussed below.

2.2.1 Probability distribution of n

A complex random vector n is said to be Gaussian if the real random vector

ñ =

[

<(n)
=(n)

]

is Gaussian, where <(n) and =(n) are the real and imaginary parts of n, respectively.
To determine the distribution of vector ñ, its expectation and covariance matrix

must be specified. Let A† denote the adjoint matrix of A, and E [·] denote the
expected value. If the covariance matrix of ñ has the form

E [(ñ − E [ñ])(ñ − E [ñ])†] =
1

2

[

<(Q) −=(Q)
=(Q) <(Q)

]

,

where Q ∈ CnR×nR is a Hermitian non-negative definite matrix, then n is said to be
circularly symmetric. In this case, the covariance matrix of n is given by Q.

Since each element of ñ is independent of the others, then its covariance matrix
has the form:

Qñ = I2nR
· N0,

where I2nR
∈ R

2nR×2nR is the identity matrix; in consequence, the noise in a MIMO
system defined above is circularly symmetric. Its mean value is the same as that of
ñ (zero), and its covariance matrix is given by

Qn = InR
· 2N0.
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2.2.2 Probability distribution of hij

The probability density function of a random complex variable can be specified as
the joint density function of its real and imaginary parts. In the case of the elements
of H, hij, 1 ≤ i ≤ nR, 1 ≤ j ≤ nT , both its real and imaginary parts are independent
Gaussian random variables of zero mean and variance 0.5 per dimension. Let hR =
<(hij) and hI = =(hij). The probability density function of hij is then given by

p(hij) = p(hR) · p(hI)

=
exp(−h2

R)√
2π
√

1/2
· exp(−h2

I)√
2π
√

1/2

=
exp(−|hij|2)

π
.

Each element ri, i = 1, 2, . . . , nR of r is a different linear combination of the
transmitted vector a plus noise. The coefficients of the linear combinations are
determined by the rows of H:

ri = hi,1a1 + hi,2a2 + · · ·+ hi,nT
anT

+ ni.

2.2.3 Equivalent Real Model

The system model described by equation (2.1) can be written using only real num-
bers as follows:

[

<(r)
=(r)

]

=

[

<(H) −=(H)
=(H) =(H)

] [

<(a)
=(a)

]

+

[

<(n)
=(n)

]

.

Let vector ñ be defined as above, and matrix H̃ be defined as

H̃ =

[

<(H) −=(H)
=(H) =(H)

]

.

Then the equivalent real system can be written in more compact form as:

r̃ = H̃ã + ñ. (2.2)

In this model, E [h̃2
ij] = 1/2, Ẽs = E [ãi

2]/2 and E [ñ2] = N0. Functionality-wise,
the real and complex models are identical.

2.3 Performance measurements in MIMO systems

The error-rate performance of MIMO systems can be measured in terms of bit-
error rate (BER), as in conventional single-antenna communications systems. Since
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the properties of the channel naturally divide the data stream in blocks, it is also
interesting to study the block error rate (BLER). A block error is defined as the
occurrence of at least one bit error within a block. Most results in the literature are
presented in terms of BLER.

From the point of view of the network applications in which MIMO systems will
eventually be used, availability of BLER measurements is potentially more interest-
ing than just the bit-error rates. The reason is that the network could be configured
to tailor its packet or datagram size to fit a block; in this case, the block error rate
provides an indication of how often packets would have to be retransmitted.

The probability of error is usually calculated as a function of average SNR (de-
noted by γ), defined as the ratio of the received power at each antenna and the
variance of the noise affecting each component of the received vector:

γ =
E [|Ha|2]
E [|n|2] , (2.3)

where | · | is the `2-norm. Let s = Ha; then,

E [|s|2] = E
[

nR
∑

k=1

|sk|2
]

= E
[

nR
∑

k=1

nT
∑

j=1

|hkjaj|2
]

=

nR
∑

k=1

nT
∑

j=1

E [|hkj|2] · E [|aj|2]

= Es · nT · nR. (2.4)

Recall that the expected value of each element of a is Es, and that of the elements
of H is 1. Given that E [|n|2] = 2 · nR ·N0, substituting (2.4) into (2.3), the average
SNR can be written as

γ =
Es · nT

2N0

, (2.5)

which, as defined above, is the average power in each receiver antenna divided by
the average noise power in that antenna. The factor 2 in the average power of the
noise appears because the real and imaginary parts of n each have variance N0;
consequently, the variance of each component of n is 2N0 (see the paragraph above
where the distribution of n was determined).

There are two values of Es that are frequently used in the literature. One value is
Es = 1/nT , which means that the transmitted power is independent of the number of
transmitter antennas. This corresponds to a situation where the system is provided
with an amplifier of fixed power, which is shared equally by all antennas. In this
case, the average SNR is given by γ = 1/(2N0).
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The other common alternative is to make Es = 1. This model is arguably less
realistic; however, in this case the signal constellation S is constant and independent
of nT , which makes the design of a simulator much easier. For this reason, it is the
model that has been chosen for this thesis. When a value of Es = 1 is used, the
average SNR is given by γ = nT /(2N0).

It should be noted that there is a common alternative view of the system where
Es = 1, E [|n|2] = 1, and the channel matrix is normalized as follows:

B =

√

β

nT
H.

In this model, the received vector r = Ba +n; the average SNR can be found as
follows:

γ = E [|Ba|2]

= E [
β

nT

|s|2]

=
β · nT · nR

nT

= β · nR.

Different refinements or variations of the definitions can be used to meet different
modeling requirements. It should be emphasized that for a given average SNR they
are all equivalent, since they are just different forms of equation (2.3). Regardless
of the particular model of transmit power, noise, and channel matrix chosen, the
average SNR has the same meaning for all of them.

It is common in single-antenna systems to use the ratio of energy per information
bit and the noise power spectral density, Eb/N0, to measure performance. The main
advantage of using the average SNR instead of Eb/N0 in MIMO systems is that
the average SNR is essentially independent of the number of antennas; it measures
only the signal strength and the noise strength at each receive antenna. Varying
the number of antennas while keeping the average SNR constant makes evident the
gain or loss of performance due to the number of antennas alone; this is harder to
measure when keeping Eb constant. Among other things, a model based on the
energy per bit would have to make explicit the way this energy is distributed by the
channel among the receive antennas.

Also, the use of average SNR is more common in the literature, making easier the
comparison between results presented in this thesis and those published elsewhere.
For these reasons, average SNR is used throughout this thesis.

Finally, regarding the real model proposed in equation (2.2), since E [ĥ2
ij] = 1/2,

Ês = E [âi
2] = Es/2 and E [|n̂|2] = 2 · nR · N0, then E [(Ĥâ)2] = Es · nR · nT and

γ = (Es · nT )/(2 · N0) as expected.
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2.4 Rayleigh Fading in MIMO systems

In the definition of the channel matrix H above, it has been assumed that each
element hij of H is complex, with its real and imaginary parts being Gaussian
random variables with zero mean and variance 0.5. This assumption is now justified.

Consider a communications system with a single transmitter and receiver, and
a fading channel where the signal received is the sum of a large number of delayed
and attenuated versions of the original signal. It is assumed that each signal path
has constant attenuation and delay during a time period T ; this kind of channel
is referred to as a slow, frequency-nonselective channel: it does not change the
frequency spectrum of the transmitted signal, and subjects all symbols transmitted
during time period T to the same attenuations.

The attenuation and delay introduced by each path can be expressed as a complex
number αn, where n is an index that runs from 1 to some large number. During the
time period 0 ≤ t ≤ T , if the transmitted signal is s(t), the received signal r(t) is
given by:

r(t) = s(t) ·
∑

n

αn

= s(t) ·
[

∑

n

<(αn) + j
∑

n

=(αn)

]

.

Now let β =
∑

n <(αn) + j
∑

n =(αn):

r(t) = s(t) · β. (2.6)

The real and imaginary components of each αn are random variables with un-
known distribution. However, the central limit theorem implies that both <(β) and
=(β) are closely approximated as Gaussian random variables.

In the absence of a direct line-of-sight link between the antennas (which is to
say, of a non-fading component in r(t)), the expected value of β is zero.

A complex number can be written in polar form as:

β = R · eiθ.

If the real and imaginary parts of β are Gaussian-distributed with zero mean,
then R has a Rayleigh distribution and θ is uniformly distributed in the real interval
[0, 2π). R is the envelope of the received signal r(t), which is why channels that are
described by equation (2.6) are called Rayleigh-fading channels.

The assumptions made on the elements of channel matrix H are justified by
repeating the reasoning above for each pair of transmit and receive antennas. Recent
results regarding the validity of these assumptions are presented in [2].
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2.5 Limits on performance and MIMO capacity

The problem of estimating the capacity of a MIMO system has been solved in by
several authors in [3, 4, 5, 1, 6]. Capacity depends on the signal-to-noise ratio as
given in equation (2.5). The average SNR will be denoted by γ1. Capacities are
given in bits/second/Hz (or bps/Hz).

For comparison purposes, the capacity of a system with a single transmit and a
single receive antenna, with additive white Gaussian noise and Rayleigh fading, is
studied first. The capacity of such a system is given by

C = log(1 + γ|h|2). (2.7)

Here h is a complex scalar known at the receiver. For high SNR, an increase of 3dB
in γ gives a gain in spectral efficiency of one bps/Hz.

Equation (2.7) represents a system where all available energy is transmitted
through a single channel that exists between transmitter and receiver. Let us con-
sider a system where, without increasing the transmitter power, n signals are trans-
mitted through n independent and uncoupled channels. This means H = In. In
such a case, the capacity is given by

Cn = n · log(1 + (γ/n)). (2.8)

The importance of equation (2.8) cannot be stressed enough, because it provides
the justification for all subsequent work on MIMO systems. Just by using many
channels instead of only one, capacity has increased with respect to that provided
by equation (2.7). In addition, as the number of channels grows, the capacity tends
to γ/ ln(2), which grows linearly with γ.

Naturally, in the general case H 6= In and the channel presents fading and
interference between the signals. These problems can be dealt with through the use
of coding or other schemes designed to counteract them. The promise of a very large
capacity is there if such schemes can be found, and that is in large part the subject
of this thesis.

The general capacity expression for a MIMO system is

C = E [log det(InR
+ (γ/nT ) · HH†)]. (2.9)

It should be noted that, defined in such a way, the capacity is a random variable.
In equation (2.9) it has been assumed that the channel is memoryless and H changes
every time the channel is used. The capacity can be evaluated to be [3]:

C =

∫ ∞

0

log(1 + γλ/nT )

nT−1
∑

k=0

k!

(k + nR − nT )!
[LnR−nT

k (λ)]2λnR−nT e−λdλ,

1All logarithms in the following equations are base 2.
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where

Ll
k(x) =

1

k!
exxl dk

dxk
(e−xxl+k)

are the associated Laguerre polynomials of order k.
For a fixed nR, as nT grows (1/nT ) ·HH† → InR

. Then, as nT grows the capacity
will tend to

lim
nT→∞

C = nR log(1 + γ)

= nR log

(

1 +
1

nR
· (γ · nR)

)

. (2.10)

Comparing equation (2.10) with (2.8), it is clear that increasing the number of
transmit antennas has a similar effect to decoupling the receive antennas. Note that
this is achieved with no increase in the average SNR. Equation (2.10) is that of nR

independent, non-fading paths, each with average SNR equal to γ · nR.
On the other hand, when nT is fixed and nR grows, the capacity is given by

lim
nR→∞

C = nT log(1 + γ
nR

nT

)

= nT log

(

1 +
1

nT

· (γ · nR)

)

. (2.11)

Again, comparing equations (2.11) and (2.8), it becomes apparent that letting nR

grow ultimately achieves the same capacity as that of a channel with nT independent,
non-fading paths, each with average SNR equal to γnR.

In the general case where the channel remains constant during the transmission
of L symbol periods and then changes, the capacity has been determined to be given
by [4]:

Cb = L · E [log det(InR
+ (γ/nT ) ·HH†)], (2.12)

where Cb is the capacity associated with a block.

2.5.1 Capacity of some particular MIMO systems

In the following chapters, several MIMO systems with specific antenna configura-
tions will be studied. These range from small (nT = nR = 2) to relatively large
(nT = 8, nR = 16). Specifically, four possible transmit antennas have been selected:
nT = 2, 4, 6 and 8. For each transmit antenna, three different numbers of receive
antennas are used: nR = nT , nR = 1.5·nT , and nR = 2·nT . The purpose in selecting
these specific sets of antennas is twofold: first, to study small to medium-sized sys-
tems, which are those that are more likely to find practical applications in the short



Chapter 2. State of the art in Space-Time Codes 15

-2

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

-2 0 2 4 6 8 10 12 14 16 18 20 22

E
xp

ec
te

d 
C

ap
ac

ity
 (

bp
s/

H
z)

SNRAVG (dB)

nT = 1, nR = 1 

nT = 2, nR = 2

nT = 2, nR = 3

nT = 2, nR = 4

nT = 2, nR = 1000

Figure 2.3: Expected capacity as a function of γ for nT = 2 and nR = 2, 3, 4.

to medium term; second, to explore how the receiver performance changes when nR

grows.

Following the analysis made by Foschini [5], the expected capacities of these
systems have been calculated numerically using equation (2.9), and are shown in
figures 2.3 through 2.6. The method employed to estimate the expected capacities
was Monte-Carlo simulation: 10,000 realizations of log det(InR

+(γ/nT ) ·HH†) were
calculated for each combination of nT , nR, and γ, and then the mean value was
found.

For purposes of comparison, each figure also includes the expected capacities of a
single-antenna system, calculated using equation (2.7), and that obtained by setting
nR = 1000, calculated using (2.11).

The expected capacity is not the only, nor the most useful, measurement when
assessing the potential of a fading channel. It provides an indication of how large
the capacity of MIMO systems is, but it gives no information about the dynamics of
the channel. Therefore, achieving the expected capacity may prove to be challenging
from a practical point of view, since the transmitter would somehow have to follow
these dynamics.

Of more practical interest is the probability of outage Pout(Cth). The probability
of outage of a fading channel is the probability that the capacity of the channel at
any time is less than Cth, for given nT , nR, and γ.

Pout(Cth) = P (C < Cth).
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Cth is a threshold value; the channel will be above this threshold with probability
Pout(Cth).

Again following the analysis made by Foschini, the probability of outage is deter-
mined by means of the complementary cumulative distribution function, or ccdf for
short. The ccdf is the probability that the capacity at any time will be higher than
the specified threshold. Figures 2.7 through 2.18 present the ccdf of the antenna
combinations described above.

2.5.2 Important remarks on the expected capacity and out-

age probabilities

One interesting aspect of the expected capacity curves is the slope variation as
nR increases. Single-antenna systems present the expected 1 bps/Hz for each 3dB
increase in power. In contrast, in MIMO systems, the expected capacity increases
approximately nT bps/Hz for each 3dB increase in power; this is equivalent to having
nT independent, separate channels.

For very large values of nR the expected capacity grows linearly with average
SNR. For small values of nR and small average SNR, however, the growth is not
quite linear; it only becomes so for large SNR.

Even for very low outage probabilities (around 1%), and for modest array sizes,
MIMO systems offer enormous increases in capacity over single-antenna systems2.

2Note that physical constraints (cost, space, or deficiencies in the channel model) may prevent
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Figure 2.8: Complementary Cumulative Distribution Function of the capacity for
nT = 2 and nR = 3. The SNR varies between 0 and 21 dB in increments
of 3 dB. Each line represents a different SNR.
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Figure 2.9: Complementary Cumulative Distribution Function of the capacity for
nT = 2 and nR = 4. The SNR varies between 0 and 21 dB in increments
of 3 dB. Each line represents a different SNR.
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Figure 2.10: Complementary Cumulative Distribution Function of the capacity for
nT = 1 and nR = 1 (thin lines) and nT = 4 and nR = 4 (bold lines).
The SNR varies between 0 and 21 dB in increments of 3 dB. Each line
represents a different SNR.
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Figure 2.11: Complementary Cumulative Distribution Function of the capacity for
nT = 4 and nR = 6. The SNR varies between 0 and 21 dB in increments
of 3 dB. Each line represents a different SNR.
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Figure 2.12: Complementary Cumulative Distribution Function of the capacity for
nT = 4 and nR = 8. The SNR varies between 0 and 21 dB in increments
of 3 dB. Each line represents a different SNR.
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Figure 2.13: Complementary Cumulative Distribution Function of the capacity for
nT = 1 and nR = 1 (thin lines) and nT = 6 and nR = 6 (bold lines).
The SNR varies between 0 and 21 dB in increments of 3 dB. Each line
represents a different SNR.
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Figure 2.14: Complementary Cumulative Distribution Function of the capacity for
nT = 6 and nR = 9. The SNR varies between 0 and 21 dB in increments
of 3 dB. Each line represents a different SNR.
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Figure 2.15: Complementary Cumulative Distribution Function of the capacity for
nT = 6 and nR = 12. The SNR varies between 0 and 21 dB in incre-
ments of 3 dB. Each line represents a different SNR.
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Figure 2.16: Complementary Cumulative Distribution Function of the capacity for
nT = 1 and nR = 1 (thin lines) and nT = 8 and nR = 8 (bold lines).
The SNR varies between 0 and 21 dB in increments of 3 dB. Each line
represents a different SNR.
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Figure 2.17: Complementary Cumulative Distribution Function of the capacity for
nT = 8 and nR = 12. The SNR varies between 0 and 21 dB in incre-
ments of 3 dB. Each line represents a different SNR.
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Figure 2.18: Complementary Cumulative Distribution Function of the capacity for
nT = 8 and nR = 16. The SNR varies between 0 and 21 dB in steps of
3 dB. Each line represents a different SNR.
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For example, at Pout = 1% and average SNR equal to 6dB, a single antenna system
has a capacity of .06 bps/Hz, whereas for a (2, 2) system the capacity increases to
1.49 bps/Hz. For larger arrays the capacity becomes bigger and bigger, reaching
almost 21 bps/Hz for a (8, 16) system operating at the same average SNR of 6dB
and at Pout = 1%.

It is also interesting to observe the slope of the ccdfs as nR increases; the capacity
tends to be the same for all values of Pout. For example, for average SNR equal
to 9dB, and if nT = nR = 2, the difference between Cth for Pout = 0.90 and
Pout = 0.99 is 3.5 − 2.3 = 2.2 bps/Hz; the same difference for nT = 8 and nR = 16
is 28.4 − 27.2 = 1.2 bps/Hz.

2.6 A Note on Diversity

Diversity is one of the most common and effective means available to exploit fading;
it means to use multiple, independently fading channels to make replicas of the
information signal available to the receiver. Each independently fading channel is
called a branch. Thus, the probability that all replicas are faded simultaneously
is reduced and can be made very small if many independent channels are used: if
the probability of a signal fade over any given channel is p, then if D channels are
available, the probability of all of them fading simultaneously is pD.

There are several ways to create diversity. Each is appropriate for different
circumstances and has distinct drawbacks. The most common methods are:

• In frequency diversity the information is repeated on D different carriers. The
frequency separation between the channels needs to be large enough to guar-
antee independent fading (that is, larger than the coherence bandwidth of the
channel). Its main disadvantage is that a large bandwidth is needed.

• In time diversity the information is repeated at D different times. The time
period between repetitions needs to be larger than the channel’s coherence
time to warrant independent fading. It has the disadvantage of lowering the
information rate.

• Another method is to use a wideband signal (defined as a signal with band-
width much greater than the channel’s coherence bandwidth). In this case,
it is possible for the receiver to resolve each multipath component and thus
benefit from path diversity. It has the disadvantage of requiring a very large
bandwidth.

• The method of space diversity consists of employing multiple antennas to pro-
vide independent branches. The antennas need to have sufficient separation
to warrant independence; this normally means at least some small multiple of

this theoretical capacity to be reached. In this thesis, these aspects are in general not considered.
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the wavelength of the signal. Contrary to the other methods described, space
diversity entails no loss of information rate and needs no extra bandwidth. Its
disadvantage is mainly the extra cost and extra space required.

The result of providing diversity is an increase in the effective SNR at the receiver.
When diversity is exploited optimally, using maximal ratio combining [7, 8], the
effective SNR is the sum of the SNR of the individual branches:

γD = D · γ. (2.13)

A diversity technique that increases the effective SNR at the receiver to D · γ
is said to provide a diversity order equal to D. Note that the number of physical
branches available and the actual diversity order D are not always equal. Especially
adverse circumstances can lower D to a fraction of the number of branches; on the
other hand, efficient coding techniques can increase D above the number of branches.

In this thesis, the focus is on systems that use space diversity, but where multiple
transmit antennas share the available receive antennas. An interesting question is
what order of diversity such a system can provide.

An answer, that depends on specific coding techniques, is given in a further sec-
tion; however, it is possible to obtain a general answer from the capacity equations.
Recall from equation (2.8) that, in a (n, n) system with n independent branches,
the capacity is given by Cn = n · log(1+(γ/n)). When nR is very large, the capacity
has been given in (2.11) as

lim
nR→∞

C = nT log

(

1 +
1

nT
· (γ · nR)

)

.

This suggests that nT branches have been obtained; in addition, the average SNR
has been multiplied by nR. The implication is that the order of diversity potentially
available in an (nT , nR) MIMO system is D = nT · nR.

2.7 Space-Time Codes

Space-time codes aim to take advantage of the enormous potential of MIMO systems
by combining space and time diversity. There are three types of space-time codes:
trellis, block, and layered. One specific type of the layered variation, vertical space-
time codes, is the focus of this thesis; for this reason, the other codes are not
described in great depth here.

Historically, layered codes were the first to be studied in the context of MIMO
systems. Today, they remain the most promising technique to increase the capacity
of wireless systems. They offer a very high spectral efficiency, ease of code design,
and comparatively simple receivers, while still having error rates that are perfectly
adequate for many applications.
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A space time code maps a group of b information bits to a code vector sequence
A = a1, a2, · · · , aL. A is a space-time codeword, and it is also represented as the
sequence of numbers

A = a1
1a

2
1 · · ·anT

1 a1
2a

2
2 · anT

2 · a1
La2

L · anT

L ,

where ai
j is the signal transmitted from antenna i at time j. Codeword A spans a

whole block, and thus it is subject to constant fading. Under these conditions, it
has been determined in [9] that the pairwise probability of a maximum-likelihood
receiver deciding erroneously for a valid code word E when in fact codeword C was
transmitted is bounded by

P (C → E) ≤
(

r
∏

i=1

λi

)−nR

(1/2N0)
−rnR, (2.14)

where r is the rank of a matrix A that depends on the codewords C and E , given
by aij = xi · xj for xk = (ck

1 − ek
1, c

k
2 − ek

2, · · · , ck
L − ek

L); and λi are the non-zero
eigenvalues of A.

The exponent of the SNR in equation (2.14) is called the diversity advantage
of the code; its maximum value is nT · nR. On the other hand, (λ1λ2 · · ·λr)

1/r is
called the coding advantage, which gives an approximation of the gain obtained by
a coded system compared with an uncoded system operating at the same diversity
advantage.

The code design problem then consists of choosing codewords that maximize the
diversity and coding advantages. The rank criterion establishes that in order to
achieve the maximum possible diversity, matrix A needs to be full rank for any two
codewords C and E .

In order to maximize the code advantage, the determinant criterion establishes
that, if r is the rank of A, then the coding advantage is given by the minimum of
the r-th roots of the sum of the determinants of all the r × r cofactors of matrix A
over all pairs of distinct codewords C and E .

It should be noted that, even in the worst-case scenario where r = 1, there is
a diversity advantage equal to nR and there is a potential coding advantage to be
gained.

Space-time codes present a tradeoff between constellation size, diversity, and
transmission rate. In the case of maximum diversity advantage (equal to nT · nR),
if the constellation S used consists of 2M signals, then the maximum transmission
rate attainable is M bits per second per Hertz [9].

The design of good space-time codes must take this tradeoff into consideration,
as well as the receiver complexity. Today, this area is in a prospective phase. Several
very efficient codes exist but in general they remain very difficult to decode.
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2.7.1 Space-Time Trellis Codes

In a space-time trellis code the codeword A is generated by a trellis coder, which is
similar to its traditional counterparts, except that it must be reset at the beginning
of each fading block. The labels of the transition branches are sequences of numbers
q1q2 · · · qnT , which means that antenna i transmits the symbol corresponding to qi,
and all antennas transmit simultaneously.

Decoding of these codes can be performed optimally by a Viterbi decoder.
A technique for the construction of optimal trellis codes is given in [9]. Finding

good trellis codes for moderate numbers of antennas has proven difficult; also, the
large complexity imposed on the receiver by these codes is their main disadvantage.

2.7.2 Space-Time Block Codes

A second category of space-time codes is space-time block codes (STBC), introduced
in [10], and which can be considered a generalization on ideas first proposed in [11].
Although less powerful than trellis codes [9], these codes have the advantage of being
very simple to decode.

Assuming a signal constellation of size 2b signals, an STBC maps nT b bits to code
vector a = (a1, a2, · · · , anT

). The encoder then creates a p × nT codeword matrix
A whose elements are linear combinations of the variables a1, a2, · · · , anT

and their
conjugates. The signal constellation set S in this case is defined as the set of signals
that can appear as elements of A. The rate of the code is defined as R = nT /p [12].

Matrix A is transmitted one row at a time; element aj
i is transmitted by antenna

j at time i. This matrix is constructed in such a way that it is orthogonal3, which
greatly simplifies the decoding process. A depiction of an STBC transmitter is
shown in figure A.1. An example of an STB code is presented in appendix A.

2.7.3 Layered Space-Time Codes

A third variant of space time codes, called layered space-time codes (LSTC), was first
introduced in [13] and [14]. The basic idea is to try to convert an (nT , nR) system
into nT (1, nR) systems where one transmit antenna is processed at a time while the
rest are simply regarded as interference. The objective is to apply the huge body
of knowledge that has been developed for (1, nR) systems, while still achieving a
significant fraction of the available capacity. This method is also commonly known
as Bell Labs layered space-time, or BLAST.

The encoding process is illustrated in figure 2.19 and works as follows: the
information source is demultiplexed into nT data streams. From each stream, b
bits at a time are taken and modulated, producing vector a = (a1, a2, · · · , anT

)T .
The layered space-time coder then layers a1 in space and time, by transmitting it

3Here a n ×m matrix A is defined as orthogonal if AA
T = cI when A is real and if AA

† = cI

when A is complex; c is a constant. See [10, Section IV.A].
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Figure 2.19: Block diagram of a layered space-time coder with five transmit anten-
nas. Seven time intervals are shown. The information stream is de-
multiplexed into five data streams; here, ai, 1 ≤ i ≤ nT , represent five
constellation points. A layered space-time encoder layers each point in
space and time; the encoding of point a1 is highlighted. Symbols zi rep-
resent data from the previous layer, while bi represent data belonging
to the next layer.

from antenna 1 at time t1, from antenna 2 at time t2, and so on, until it is finally
transmitted from antenna nT at time tnT

. As for a2, it is transmitted from antenna
1 at time t2, from antenna 2 at time t3, etc. This process is repeated for each
ai. Symbols from previous bit groupings are used to fill all available time slots.
In all, each symbol is transmitted nT times, once per antenna, and once per time
interval. It is assumed that all symbol transmissions are made within a single block;
as a consequence this scheme loses some efficiency at the beginning and end of each
block. This process has been illustrated for a system with nT equal to five in figure
2.19.

The decoding process for symbol a1 proceeds largely as follows. Assume the
receiver is dedicated to estimating a1, and will use the vectors received at times t1
through tnT

for this task; let these vectors be denoted by rk, 1 ≤ k ≤ nR. It is also
assumed that the symbols that are layered below a1 (denoted by zj in figure 2.19)
have already been detected without error, and that those symbols layered above a1

have not been detected yet.

Upon reception of each vector rk, the receiver cancels (or subtracts) the interfer-
ence caused by those symbols already known, and nulls that caused by the symbols
that are not yet known. To do this, it uses its knowledge of the channel matrix
H. For ease of exposition and without loss of generality, let us consider the system
depicted in figure 2.19 at time t3. Vector r3 can be written as follows:
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r3 =











r1

r2
...

rnR











= H













a3

a2

a1

z5

z4













+ n.

The subindices of vector elements r indicate the receiver antenna. The value a1

is in position 3 of a. Since all symbols zj are already known, their contribution to
r3 can be eliminated (they can be canceled). Recall that the principle of BLAST is
to regard everything except the particular symbol being estimated as interference.
Let us consider the signal received by the first antenna:

r1 = h11a3 + h12a2 + h13a1 + h14z5 + h15z4.

The quantity h14z5 + h15z4 is known and can be subtracted from r1. Let u1 =
h11a3 + h12a2 + h13a1 and H3 = [h1 h2 h3] where hi is column i of H. Then,
repeating this process for all rk, vector u can be defined as

u = H3





a3

a2

a1



 .

The quantities a3 and a2 are not known but they can be nulled. Let w be a
vector such that

wH3 =
[

0 0 1
]

,

and wu = â1 (w exists and is the third row of the Moore-Penrose pseudo-inverse
of H3 [15, p. 257-258]). â1 is an estimate of a1 produced according to the zero-
forcing criterion [7]; other criteria (that is, other definitions of w) exist, such as the
minimum mean-squared error [8]. Repeating this process for each rk produces nR

estimates of a1; a process such as maximal ratio combining can then be used to
produce a final estimate of a1 with, in the ideal case, D = nR branches of diversity.
In the same manner, this process can be applied to each layer to recover the whole
data stream.

Trellis and block space-time codes have better error rates than layered codes.
BLAST has the advantage of simplicity; it also allows for far greater spectral effi-
ciencies. BLAST receivers are less complex than their counterparts and are easier
to design. Their error-rate performance is adequate for many applications.

It is important to remark that receiver complexity remains one of the most
important obstacles to the adoption of space-time techniques. Given its advantages
in this area, together with its other qualities, further study of BLAST is justified.

It is a variant of BLAST that is the subject of this thesis. This variant, called
vertical BLAST (or V-BLAST for short), repeats the symbols ai only once. It will
be studied in greater detail in the next chapter.





Chapter 3

Operating Principles of Vertical
BLAST

3.1 Introduction

T
he Vertical Bell-Labs Layered Space-Time (V-BLAST) architecture is a space-
time coder and receiver algorithm for MIMO systems. It was first introduced

by [14, 16, 17]. In this chapter its operating principles are studied.
V-BLAST is interesting mainly because of its simplicity of operation, both in

the transmitter and the receiver. This simplicity translates as a very high spectral
efficiency. Its main disadvantage is a higher bit-error rate (BER) than the other
types of codes introduced in Chapter 2.

Even though the formulation of V-BLAST and the resulting architecture are
comparatively very simple, finding closed-form expressions for performance mea-
surements such as capacity, outage probability, and probability of a bit error has
proved to be extremely difficult. Regarding the latter, for instance, it is only very
recently that expressions for some narrow cases have been reported in [18]. A glance
at the references list in [18] suggests that there is scant prior work on the sub-
ject. Although some important results will be presented here, the emphasis of this
thesis is placed on other aspects of the problem, namely: studying the complexity
and performance of several different V-BLAST receivers, and finding new, improved
algorithms.

Better algorithms are needed because, although simple to formulate, the V-
BLAST receivers known to date have an enormous computational complexity, de-
fined as the number of operations (algebraic, logical, and storage-related) that the
receiver must perform per information bit received. In order to make V-BLAST
feasible from a practical and economical standpoint, more efficient algorithms must
be found.

Several implementations of V-BLAST have been presented in the literature since
the original idea was published; some examples are those given in [19, 20, 21]. These
usually trade BER for complexity, or vice-versa. Since V-BLAST’s BER is subop-
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Figure 3.1: A V-BLAST transmitter in the case nT = 5.

timal, and it is too complex to allow a feasible hardware implementation for a
relatively small number of antennas, it seems useful to concentrate on finding algo-
rithms that have nearly the same or better BER than V-BLAST, while decreasing
its complexity.

3.2 V-BLAST Coding

The coding scheme employed in V-BLAST is a particular case of layered space-time
coding, with the difference that each signal symbol is transmitted only once. Thus,
the temporal aspect of the code is lost and only spatial diversity remains. A diagram
of a V-BLAST transmitter with five transmit antennas is shown in figure 3.1.

The information signal is demultiplexed into nT streams. It is assumed that these
streams are uncoded. Each stream is modulated and transmitted; all assumptions
presented in chapter 2 regarding the channel model are unchanged.

3.3 V-BLAST detection: ordering, canceling, nulling

The general idea of V-BLAST detection is the same as that of all LSTCs: process the
received vector r to estimate the transmitted vector a by estimating each component
ai, one at a time, canceling the effect of those symbols already detected, and nulling
those yet unknown.

As defined in chapter 2, the received vector r is defined as

r = Ha + n,

where the elements of H ∈ CnR×nT are complex Gaussian independent random vari-
ables with zero mean and variance 0.5 per dimension; a ∈ CnT×1 is the transmitted
vector; and n ∈ CnR×1 is a noise vector of circularly-symmetric complex Gaussian
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independent random variables with zero mean and variance N0 per dimension. The
receiver’s task is to estimate a from its knowledge of r and H.

Probably the simplest way to find an estimate for a is through the equation:

â = H+r,

where H+ is the Moore-Penrose pseudo-inverse (MPPI) of matrix H. This method
does not work very well. For instance, â might not belong to the set of possible
transmitted vectors. Removing the effect of the noise on â is difficult, since it is
colored by the multiplication with H.

An improvement over this idea is to estimate each transmitted symbol in se-
quence. In each step of the sequence, the symbols already known are subtracted
from r (or canceled), and those symbols that are unknown are considered interfer-
ence and nulled. This idea is similar to decision-feedback equalization; this similarity
is the subject of [22].

The question of the order of detection of the symbols remains. One of V-BLAST’s
key aspects is that different orderings will produce different error rates. Let Ki be
a detection ordering, defined as an ordered set of the integers k, 1 ≤ k ≤ nT .
Clearly, there are nT ! possible orderings. One of them is optimal in the sense that
it produces the minimum probability of error. Let the optimal ordering be Ko =
{k1, k2, . . . , knT

}; Ko establishes the order in which the transmitted signals ai will
be detected. The method used to determine Ko will be explained below; for the
moment, assuming that an ordering has been found, the detection of aki

proceeds
as follows.

Symbol cancellation. If i = 1, no symbols are yet known so no cancellation is
possible; therefore, i > 1 is assumed. Let h1,h2, . . .hnT

be the columns of chan-
nel matrix H. It is assumed that the symbols ak1, ak2 , . . . , aki−1

have already been
estimated. Their contribution to r can then be canceled:

rki
= r − âk1hk1 − âk2hk2 − · · · − âki−1

hki−1
. (3.1)

Alternatively, let Hki
be equal to H except that all elements of columns

k1, k2, . . . , ki−1,

are made equal to zero. Then,

rki
= Hki

a + n. (3.2)

Interference nulling. The symbols

aki+1
, aki+2

, . . . , aknT
,

have not been detected yet. However, from knowledge of H, they can be nulled.
Nulling means linearly weighting the received vector in a way that satisfies some
criterion. The most common criteria are:
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• zero-forcing, when the interference is simply forced to zero and the noise vector
n is disregarded; and

• minimum mean-squared error (or MMSE), which aims at reducing the mean-
squared error ‖a − â‖2 taking into consideration the presence of noise.

The MMSE criterion has better bit-error performance than zero-forcing for low
SNR, but it has one major drawback: it requires the receiver to know N0. Also, for
large SNR, MMSE and zero-forcing are equivalent. In this thesis, the focus will be
on V-BLAST using the zero-forcing criterion.

Zero-forcing consists in finding wki
∈ C1×nR such that wki

H = [0, . . . , 0, 1, 0, . . . , 0],
where the element equal to one is in the position ki. Then, âki

is given by

âki
= wki

rki
+ wki

n

= wki
Ha + wki

n (3.3)

This process can be interpreted from a geometrical perspective as projecting rki

onto a vector that is orthogonal to the nT − i dimensional vector space spanned by
the columns of H that correspond to those symbols that have not yet been estimated:
hki+1

,hki+2
, . . . ,hki+nT

Optimal ordering. The optimal ordering has been found to be determined by
the SNR of each aki

: the symbol with the strongest SNR should be detected first,
followed by the strongest symbol among the remaining ones, and so on until all
symbols have been detected. In other words, for any i, aki

must have a larger SNR
than aki

, aki+1, ..., aknT
.

The post-detection SNR of aki
can be determined directly from equation (3.3):

γki
=

|aki
|2

2N0‖wki
‖2

, (3.4)

where wki
is the vector used to null the unknown symbols aki+1

, aki+2
, . . . , aknT

.
Choosing ki requires finding the SNR of all remaining symbols, and choosing the
largest one. In other words,

ki = argmin
j /∈{k1,k2,...,ki−1}

|aj|2
‖wj‖2

. (3.5)

In practice, the receiver does not know the value of aki
in the numerator of (3.5).

Assuming all signals have equal energy, the expression for ki can be rewritten as

ki = argmin
j /∈{k1,k2,...,ki−1}

1

‖wj‖2
. (3.6)

Clearly, if not all symbols in the constellation S have equal energy, equation
(3.6) provides a sub-optimal ordering. This introduces a source of performance loss
in V-BLAST that will be explored in more detail in the next chapter.
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Note that, on average, the norm of wki
will tend to be smaller as the number

of interferers decreases (that is, as i grows). This gives an intuitive basis for the
optimal ordering. The first symbol to be estimated, ak1, has nT − 1 interferers,
which is why it benefits from having a strong SNR. The symbol estimated last, on
the other hand, has a comparatively feeble SNR, but it does not suffer from any
interference. A rigorous proof is given in [14].

3.3.1 V-BLAST spectral efficiency

If each transmit antenna emits one symbol per second per available hertz of band-
width, then the spectral efficiency of V-BLAST is given by

Φ = b · nT ,

where b has been defined in chapter 2 as the number of information bits per symbol1.
Then, the raw data rate attainable is b ·nT ·B, where B is the available bandwidth.

For example, a MIMO system with nT = 8, employing 16-QAM with an available
bandwidth of 30kHz, has a spectral efficiency of 32 bps/Hz and a raw data rate of
960kbps. Equation (2.9) can be used to determine if such a rate is feasible, and how
many receiver antennas should be used. For instance, if nR = 12, then—as figure
2.17 shows—a good probability of outage should be attainable with this system
for an SNR value of at least 12dB. It is clear that a system like V-BLAST will not
reach capacity; however, it should be noted that such data rates are at least possible
according to information theory.

A portion of the bandwidth must be dedicated to the training sequence needed
by the receiver to estimate H, lowering the effective data rate.

3.4 The V-BLAST reception algorithm

The algorithm V-BLAST has been defined in [17] as follows:
where (G)j is row j of G, and fq(·) is a function that quantizes the soft estimate yi

to the closest point in S.
This formulation of the algorithm is adequate for the expository aims of [17],

but it does not facilitate its complexity analysis. In the first place, it processes each
vector r one at a time, giving the impression that nT pseudo-inverses are needed
per vector. Second, it substitutes the columns of H for zeroes instead of simply
removing them, which is more efficient.

To address these issues, and emphasize the organization of V-BLAST from the
standpoint of its complexity, the algorithm is re-written as follows.
where âj,Oi

is element Oi of âj. At each step one whole column of matrix A is
removed; thus, the pseudo-inverses are calculated on matrices of diminishing size.

1The units of Φ are bits
symbol

· symbol

sHz
, or bit

sHz
(represented by bps/Hz throughout this thesis).
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Algorithm 1 Original V-BLAST

Input: an nR × nT matrix H, an nR × 1 vector r, and a signal constellation S.
Output: an nT × 1 vector â whose elements are in S and Hâ = r + v, where v is

an error vector.
1: Let i = 1
2: G1 = H+

3: k1 = argminj‖(G1)j‖2

4: for i = 1 to nT do
5: wki

= (Gi)ki

6: yki
= wki

ri

7: âki
= fq(yki

)
8: ri+1 = ri − âki

hki

9: Gi+1 = H+
ki

10: ki+1 = argminj /∈{k1,k2,...,ki}
‖(Gi+1)j‖2

11: end for

Algorithm 2 V-BLAST

Input: an nR × nT matrix H, a set of L nR × 1 vectors ri, i = 1, . . . , L, and a
signal constellation S.

Output: a set of L nT × 1 vectors âi. Each vector âi is such that its elements are
in S and Hâi = ri + vi, where vi is an error vector.

1: A = H
2: for i = 1 to nT do
3: Let Gi = A+

4: Let ki = argminj ‖(Gi)j‖2

5: Let Oi equal to corresponding column in H
6: Remove column ki of A
7: end for
8: for j = 1 to L do
9: for i = 1 to nT do

10: Let w equal to row ki of Gi

11: Let y = wrj

12: Let âj,Oi
= fq(y)

13: Let z equal to column Oi of H
14: Let rj = rj − âj,oi

z
15: end for
16: end for
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γ (dB) -5 0 5 10 15 20
Max. Cv (bps/Hz/dim) 0.24 0.53 1.03 1.76 2.71 3.83

Table 3.1: Maximum value of V-BLAST capacity for several values of average SNR.

Step 5 is needed to preserve the symbol ordering relative to the original channel
matrix H and not to matrix A.

When V-BLAST is presented as above, it becomes apparent that its complexity
can be divided in two parts. One part, which is called the block setup phase, is
computationally expensive, but is performed only once per block. Its complexity
depends on nT and nR. The other part, called the symbol estimation phase, is
computationally simpler but is performed many times. Its complexity depends not
only on nT and nR but also on L. It also becomes evident that only nT pseudo-
inverses are needed per block.

3.5 Capacity, outage probability and diversity of

V-BLAST

General expressions for the capacity, probability of outage, and probability of error
of V-BLAST have proved remarkably hard to find. However, there are certain results
that provide justification for the use and adoption of this algorithm. Some of the
most relevant ones follow.

Assume that nT is very large and α = nT /nR. Then, the capacity of V-BLAST
measured in bps/Hz/dimension2 is approximately given by [14]

Cv ≈ α · log(1 + γ · (α−1 − 1). (3.7)

There is one value of α that maximizes the capacity for each γ; an (nT , nR)
system that maximizes capacity is said to be optimized. This capacity is lower than
the general MIMO capacity but is still attractive. Figure 3.2 illustrates the shape of
the capacity curve as a function of α, for average SNR γ = 10dB. Table 3.1 shows
the maximum capacity for several values of γ.

The problem of outage probability Po is considered in [23] (see also [24, 25]). Po

is given in terms of the rate R (in bps) and average SNR γ at which the system
is operating. Recall that V-BLAST aims to separate the MIMO channel into in-
dependent subchannels. Each subchannel is subject not only to the noise present
in the MIMO channel but to interference from the subchannels that haven’t been
estimated yet. Outage is defined here as the event that the data rate is greater than
the capacity of any subchannel, taking said interference into account, for a given
channel realization. Note that this is a very narrow definition since data transmis-

2Here, dimension refers to the dimension of the transmitted signal, which is equal to nT .
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Figure 3.2: Capacity of V-BLAST as a function of α = nT /nR, in units of
bps/Hz/dimension, for γ = 10dB.

γ 0 5 10 15 20 25
Rate 0.6 1.6 4 8 14 20

Table 3.2: Maximum rate of V-BLAST algorithm for Po = 0.1 and nT = nR = 4.

sion is still possible over the subchannels that do not surpass their capacity (Po can
be associated with BLER, the probability of a block error).

Let r = R/nT denote the rate of each subchannel. The probability of subchannel
i having a rate larger than its capacity is given by

G(i, γ, r) = e−(2r−1)/γ

nR−nT +i−1
∑

k=0

1

k!

(

2r − 1

γ

)k

,

and the probability of outage is then

Po = 1 −
nT
∏

i=1

G(i, γ, r). (3.8)

Note that (3.8) does not take into account the benefits obtained from ordering
the detection of the subchannels; in this sense, it can be considered a worst-case
outage probability.

Tables 3.2 and 3.3 present some values of R as a function of γ for (8,8) and (4,4)
systems, respectively, with Po = 0.1. Observe that the rate per subchannel r is the
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γ 0 5 10 15 20 25
Rate 1.2 3.2 8 16 28 40

Table 3.3: Maximum rate of V-BLAST algorithm for Po = 0.1 and nT = nR = 8.

γ 0 5 10 15 20 25
Rate 10 16 22.5 29 36 42.5

Table 3.4: Maximum rate of V-BLAST algorithm for Po = 0.1 and nT = 4, nR = 12.

same for both systems, and, in fact, it is the same for all (n, n) systems. Table 3.4
presents the maximum rates for a (4, 12) system. The increase in rate compared
with the symmetrical systems for low SNR is remarkable.

In [18], the V-BLAST algorithm is analyzed from a geometrical point of view.
Among other results, it is proved that the diversity order for the i-th subchannel is
(nR−nT + i). This result is true whether optimal ordering is used or not; the benefit
of optimal ordering is to increase the effective average SNR of each subchannel (in
other words, ordering has no effect on the asymptotic slope of the outage probability
curve).

These results, taken together, indicate the potential of the V-BLAST algorithm
and justify further analysis and study. Furthermore, Monte-Carlo simulations pre-
sented in the following chapter are encouraging. It should also be noted that a (16,
16) V-BLAST experimental prototype is reported to be operational at Bell Labs
[14], with performance close to that predicted by the theory.





Chapter 4

Practical Considerations in
V-BLAST Implementations

4.1 Introduction

I
mplementing V-BLAST in an efficient manner, whether in hardware or software,
is not an easy task. Some of the questions that must be answered are:

• What is the best method to find the pseudo-inverse of the channel matrix,
regarding numerical stability as well as speed;

• What are the computational requirements demanded by V-BLAST;

• What data rates are achievable with modern processors;

• Where V-BLAST’s bottlenecks are located;

• What are the memory requirements of V-BLAST;

• What is the BLER performance that can be expected from a V-BLAST receiver
for different antenna configurations;

• What role, if any, does the selection of L play on V-BLAST’s speed and error
rates;

• What is the effect of non-optimal detection ordering discussed in section 2.3.

The specific answers to some of these questions might vary according to factors
that are independent from the algorithm itself, such as the computer architecture
used, or the ability of designers and automated tools to optimize its execution. The
aim here is not to focus on such particular implementation details, but rather to
draw conclusions on V-BLAST’s inherent properties and requirements. It is believed
that such an approach is an essential first approximation to the non-trivial prob-
lem of constructing a V-BLAST receiver within the computational and economical
constraints of practical applications. General results may be used to facilitate the
construction of any particular V-BLAST receiver.

41
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Many of the questions above have a common theme: performance, data rate,
bottlenecks. This theme is distilled into the term algorithmic complexity. In this
thesis, complexity is defined simply as the number of operations an algorithm must
execute to finish its task.

In order to obtain the most general results possible, some techniques that are
common in the study of algorithms (for example, profiling) have been eschewed
in favor of a simple, direct count of the quantity and type of operations the algo-
rithm calls for. The reasons for this are explained in further detail in the following
subsections.

4.1.1 The problem with profiling

When optimizing the execution of a computer program, a tool called a profiler is
commonly used. A profiler watches over the program’s execution and determines
how much processor time was spent in each function, or even on each line of code.
Such a tool does not provide an adequate degree of accuracy and granularity. For
instance, it cannot distinguish between types of operations.

However, the main reason why profiling was not considered an option to study
V-BLAST is that it is highly architecture-dependent. In other words, its results are
tied to the processor where the program is running; thus, they are not useful for
understanding the general behavior of V-BLAST.

4.1.2 The problem with the O(·) notation

In the field of algorithmic complexity, it is customary to use the so-called O(·) no-
tation (also known as the Big-O notation) to express complexity. Explained briefly,
O(·) is a compact, succinct way of expressing the asymptotic complexity of an algo-
rithm when the size of the problem to be solved grows without limit.

For example, the time (or number of steps, or of instructions) needed by a certain
algorithm A1 to solve a problem of size n might be given by 4n3 + 2n + 10. As n
tends to infinity, the term n3 dominates; furthermore, all coefficients are disregarded
and it is said that A1 ∈ O(n3). This captures an essential property of the algorithm:
its complexity grows as the cube of its input.

When the problems to be solved are very large, the O(·) notation can be useful
in selecting a particular algorithm over another. For instance, if a matrix-inversion
algorithm A1 ∈ O(n3) and another algorithm A2 ∈ O(n2), and the problem consists
of inverting a matrix with 100,000 rows, it is a safe bet that A2 is a better option
(at least as far as complexity is concerned). However, for small problems, the O(·)
notation is not as useful. If A1 takes 4n3 + 2n + 10 steps to solve the problem and
A2 requires 20n2 + 25n, then for n = 5, A1 takes 145 steps against 625 for A2. It
is clear that A1 is a better option for this particular problem than A2, regardless of
its cubic behavior.
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The problems that a V-BLAST receiver has to solve are rather small. The largest
problem studied here is that of finding the pseudo-inverse of a 16× 8 matrix. Using
the O(·) notation to study the details of the V-BLAST algorithm would be useless
at best and deceiving at worst. For this reason, the O(·) notation is not used at
all. Instead, the complexity of each variant of V-BLAST is studied in detail and the
numbers obtained are based on accurate counts of every single operation performed,
as explained in the next section.

4.1.3 Note on simulation details

All simulation in this thesis were done in double precision on 32-bit x86 Intel pro-
cessors. The simulations were run until 2000 block errors were found. For low SNR
the number of bit errors simulated is roughly 2000; the confidence interval will then
be at least 95% when BER = 10−3.

4.2 Computation of the Moore-Penrose pseudo-

inverse

Simulation proves the common-sense observation that, by far, the most complex
operation of V-BLAST is the Moore-Penrose pseudo-inverse (MPPI) of the channel
matrix H. There are several methods that can be used to find the MPPI of a matrix;
four are studied here, and the least complex one is identified. Also, their numerical
stability is evaluated. The four methods under consideration are detailed below. In
all cases the channel matrix being inverted is H ∈ CnR×nT

i. Singular-value decomposition (SVD). The SVD of matrix H is defined as

H = UDV†,

where U ∈ C
nR×nT and V ∈ C

nT ×nT are unitary matrices, and D is a diagonal
matrix.

The MPPI of H is given by

H+ = VD−1U†.

The SVD is interesting because it is numerically very stable when H is ill-
conditioned1. Clearly, its main disadvantage is a large complexity.

ii. MPPI formula. When (H†H)−1 exists, its MPPI can be found with the
following formula:

H+ = (H†H)−1H†. (4.1)

1The condition number describes how close to singular a matrix is. Ill-conditioned matrices
(those whose condition number is too large) can cause numerically unstable algorithms to produce
erroneous results [15].
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iii. Thin QR decomposition. The thin QR decomposition of matrix H is given
by

H = QR,

where Q ∈ CnR×nT has orthonormal columns, and R ∈ CnT ×nT is a lower-triangular
matrix. One of the main benefits of this decomposition is that it can be done using
a very simple algorithm, based on Gram-Schmidt orthogonalization [15]. Finding
H+ is straightforward: column i of H+ is the vector x that solves

Rx = (Q†)i, (4.2)

where (Q†)i is row i of Q†.
iv. QR decomposition. Similar to thin QR, except that Q ∈ CnR×nR is orthonor-

mal; R ∈ CnR×nT is lower-triangular. The process to find H+ is similar to the one
described above.

The QR decomposition is more complex than its thin counterpart; it is still
interesting, however, because Q and R can be updated (instead of re-calculated
from scratch) when H has a rank-1 change, which means that one row or column is
added or deleted. Recall from the V-BLAST algorithm that at each step a column
is removed from H; the QR decomposition with updates is perfectly suited for this
situation.

4.2.1 Numerical stability results

No numerical stability problems were detected in simulation2. For identical data,
channel realizations, and noise values, all four methods exhibit exactly the same
BER, at least up to five decimal places; and all errors occur in the same bit positions.
In cases where the data is not the same, all methods are within a fraction of a
percentage point of each other.

The conclusion is that the choice of an MPPI calculation method can be based
solely on performance.

4.2.2 Complexity measurements

The complexity of each MPPI calculation method was determined by simulation. A
V-BLAST simulator that can be programmed to use each method was implemented;
this simulator uses complexity counters to count and classify every single operation
performed, whether algebraic (addition, multiplication, square root, etc.) or memory
related (read or write).

The most general complexity measurement is simply the total number of oper-
ations required per received information bit. This number, denoted by Ob, gives a
first approximation to the complexity of V-BLAST.

2All simulations were done in double precision on 32-bit x86 Intel Pentium processors.
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Figure 4.1: Total number of operations for a MIMO system with nT = 2 and nR =
2, 4, 6; L = 10.

Figures 4.1 through 4.4 show the values of Ob obtained for MIMO systems with
several antenna combinations (the same that were studied in chapter 2), block size
L = 10, and using 16-QAM3. In the figures, each bar type corresponds to a differ-
ent MPPI calculation method: SVD for singular value decomposition, Formula for
equation (4.1), and the two QR decomposition methods.

These results show that the singular value decomposition is not only much more
complex than the other methods, but also that it is very sensitive to the value of
nR. Since its numerical stability has been shown to lack any advantage over other
methods for this specific case, it is ruled out as a viable alternative.

The results of using equation (4.1) show that the simplicity of an expression has
no bearing on the final complexity of its implementation. The QR decompositions,
in particular, are more difficult to understand and implement; however, they require
fewer operations.

The QR decomposition with updates has similar complexity to the thin QR for
nT = nR; however, its complexity grows more rapidly with nR. This is due to the
different dimensions of the matrix R for each method; recall from equation (4.2) that
calculating the MPPI involves solving nT linear systems. When QR decomposition
is used, the dimension of R at step i of V-BLAST is nR × (nT − i + 1), whereas
in the case of the thin QR method, the size of R is (nT − i + 1) × (nT − i + 1).
This explains the sensitivity of the QR method to the number of receive antennas;

3All simulations in this thesis were run until 2000 block errors were found.
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Figure 4.2: Total number of operations for a MIMO system with nT = 4 and nR =
4, 6, 8; L = 10.
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Figure 4.4: Total number of operations for a MIMO system with nT = 8 and nR =
8, 12, 16; L = 10.

ultimately, the advantage of being able to update Q and R instead of calculating
them from scratch at each iteration proves insufficient to compensate for the size
of R. Thin QR decomposition’s property of reducing both dimensions of R at each
iteration will be further explored in the next chapter.

These results suggest that the thin QR decomposition method is the most attrac-
tive way to find the MPPI in a V-BLAST implementation. Henceforth, all following
results are based on it.

It is worth noting, however, that even using thin QR, the operation count remains
too large for high-speed applications. For example, in a medium-sized (4,6) system,
Ob ≈ 80. Therefore, a typical application like 10Base-T ETHERNET (which oper-
ates at 10Mbps) would require a receiver capable of executing 800 million operations
per second, assuming for the moment that all operations are equivalent.

4.3 Complexity of thin QR V-BLAST

As noted in the previous section, the total number of operations per bit Ob only gives
a general idea of the complexity; a more detailed view is necessary to understand
how to reduce it.

This section aims to classify the operations required by V-BLAST according to
their purpose, as a first step towards designing a receiver architecture that is suited
to the task at hand.
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nR Ob Amm Ao Pmm Po Do So Mmm Mcm Mzm Mo

2 21.6 18.5 15.1 18.5 4.8 1.4 0.2 23.1 5.3 0.5 12.1
3 30.7 19.5 12.7 19.5 5.1 1.5 0.1 24.4 5.6 0.4 10.9
4 39.8 20.0 11.4 20.1 5.2 1.5 0.1 25.1 5.8 0.3 10.3

Table 4.1: Operations performed by V-BLAST classified by type, expressed as a
percentage of Ob; nT = 2 and L = 10.

The following types of operations are proposed. Each operation type is identified
with a symbol.

• Additions
· Additions made during matrix multiplications (Amm)

· Other additions (Ao)

• Multiplications
· Multiplications made during matrix multiplications (Pmm)

· Other multiplications (Po)

• Divisions (Do)

• Square Roots (So)

• Memory operations (write or read)
· Memory operations made during matrix multiplications (Mmm)

· Memory operations made to copy matrices (Mcm)

· Memory operations made to reset (or zero) matrices (Mzm)

· Other memory operations (Mo)

Ob is then defined as

Ob = Amm + Ao + Pmm + Po + Do + So + Mmm + Mcm + Mzm + Mo.

Note that this is only one of many possible classifications of the types of opera-
tions performed. Since V-BLAST and thin QR operate mostly on matrices, however,
this classification seems attractive. For instance, the memory operations that relate
to matrix clearing and copying are good examples of the kind of operations that can
be done very quickly in a properly designed hardware implementation.

In tables 4.1 through 4.4 each operation type is expressed as a percentage of Ob,
for L = 10. These results are a first attempt at identifying which types of operation
should be optimized first.

Returning to the example of a (4,6) system, it can be seen in table 4.2 that around
50% of all operations (or approximately 40 operations per received bit) are performed
during matrix multiplications. This means there is a maximum performance gain of
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nR Ob Amm Ao Pmm Po Do So Mmm Mcm Mzm Mo

4 53.5 14.9 15.6 14.9 10.2 1.9 0.1 18.6 7.0 0.5 15.9
6 78.4 15.3 14.7 15.2 10.5 1.9 0.1 19.1 7.1 0.3 15.5
8 103.2 15.5 14.1 15.5 10.6 1.9 0.1 19.3 7.1 0.2 15.2

Table 4.2: Operations performed by V-BLAST classified by type, expressed as a
percentage of Ob; nT = 4 and L = 10.

nR Ob Amm Ao Pmm Po Do So Mmm Mcm Mzm Mo

6 106.4 11.2 18.4 11.2 14.8 2.0 0.1 14.1 7.2 0.4 20.2
9 157.5 11.4 18.0 11.4 14.9 2.0 0.1 14.2 7.3 0.2 20.0
12 208.6 11.4 17.8 11.4 15.1 2.0 0.1 14.4 7.3 0.2 19.9

Table 4.3: Operations performed by V-BLAST classified by type, expressed as a
percentage of Ob; nT = 6 and L = 10.

nR Ob Amm Ao Pmm Po Do So Mmm Mcm Mzm Mo

8 187.9 8.4 21.0 8.5 18.1 1.9 0.1 10.6 6.9 0.4 23.7
12 279.5 8.5 20.8 8.5 18.3 1.9 0.1 10.7 7.0 0.2 23.6
16 371.0 8.6 20.7 8.6 18.4 1.9 0.1 10.7 7.0 0.2 23.5

Table 4.4: Operations performed by V-BLAST classified by type, expressed as a
percentage of Ob; nT = 8 and L = 10.
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50% to be obtained from optimizing matrix products. Perfect (or infinite) optimiza-
tion would thus lower the ETHERNET receiver processing requirements considered
above from 800 million operations per second to 400 million.

Furthermore, matrix clearing and matrix copying operations account for another
7.4% of the total. Optimization of these operations, added to that of the matrix
products, would lower the required total to around 34 operations per received bit,
or 340 million operations per second for 10Mbps reception.

4.4 The role of L in V-BLAST complexity

In chapter 3, V-BLAST was divided in two parts, the block setup phase and the sym-
bol estimation phase. The block setup phase is done once per block, and the symbol
estimation phase is repeated L times. Clearly, increasing L will lower the receiver
complexity, at the expense of an increase in BLER. This section illustrates some gen-
eral aspects of the behavior of V-BLAST as a function of L, without undertaking a
more rigorous analysis.

Let Osetup be the number of operations required during the setup phase, and Oest

the number required during the symbol estimation phase. Then, Ob = Osetup +Oest.
If bit errors are independent and uniformly distributed, then BLER is approximated
by:

BLER ≈ 1 − (1 − BER)B, (4.3)

where B = b · nT ·L is the number of information bits per block; recall that b is the
number of bits per symbol. The minimum possible value of L is one, which means
the BLER is lower-bound by 1 − (1 − BER)b·nT . Such a system would also exhibit
the largest complexity.

For a given nT , Ob increases in a roughly linear way with nR; let Osetup = x · nR

and Oest = y · nR for constants x, y that depend on the details of the particular
V-BLAST implementation. Then,

Ob ≈
Osetup + L · Oest

B
(4.4a)

=
Osetup

nT bL
+

Oest

nT b

=
1

nT b

(

Osetup

L
+ Oest

)

∝ Osetup

L
+ Oest

∝ nR ·
(x

L
+ y
)

. (4.4b)
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Figure 4.5: Behavior of Ob in V-BLAST as a function of nR and L. The arrows
indicate the direction of growth of nR and L.

From equation (4.4b) it can be seen that an increase in L causes an inversely-
proportional decrease in Ob; likewise, an increase in nR causes a linear increase in
Ob. Figure 4.5 shows the behavior of Ob for several combinations of nR and L.

It is interesting to find how BLER improves as a function of Ob. Taking (4.3)
and (4.4a) together it is found that:

BLER(Ob) ≈ 1 − (1 − BER)
nR(x+Ly)

Ob . (4.5)

Figure 4.6 shows the behavior of BLER as a function of Ob; it can be seen that,
after a point, increasing the complexity of the system will not significantly improve
its BLER performance. In other words, reducing L in order to improve BLER brings
diminishing returns after a certain point.

Figure 4.6 suggests that, for a given (nT ,nR) system and a particular V-BLAST
implementation, there is a kind of “operation point” with respect to BLER and L;
this point can be chosen according to the desired cost (that is, Ob) and the desired
block error rate.

4.4.1 Simulation results

Figure 4.7 shows the effect of L on V-BLAST for a (4,4) system. The shape of the
curve is just as predicted by equation (4.4). As L increases, Ob tends to Osetup.
It appears that for this particular system, a value of L ≈ 10 would offer a good
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Figure 4.6: General shape of BLER as a function of Ob in a V-BLAST receiver.

compromise between block error rate and receiver complexity. Naturally, for a given
channel, increasing L increases the data rate, which introduces yet another consid-
eration.

4.5 V-BLAST error rate simulation results

In this section, simulation results of BLER as a function of average SNR are pre-
sented. Figures 4.8 through 4.11 show the performance curves for V-BLAST for
several antenna combinations, block length L = 10, and 16-QAM.

Two important conclusions can be drawn from these figures. The first is that
symmetrical (nT ,nT ) V-BLAST receivers have a poor BLER compared to asymmet-
rical antenna configurations. For example, the difference between systems with (8,8)
and (8,12) antennas is 14dB at BLER = 10−2. In contrast, increasing the number of
receive antennas from 1.5nT to 2nT does not have as strong an effect: the difference
between (8,12) and (8,16) is only 2dB at the same value of BLER.

Another interesting conclusion is that increasing nR has a pronounced effect
on the slope of the curves, which indicates an increase in the system’s diversity.
This confirms the result presented in Section 2.5, which establishes that V-BLAST
diversity increases with nR−nT . Again, the effect is less pronounced as nR increases.

These results have been compared with others available in the literature (for
example, in [26]) to verify their correctness.
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Figure 4.7: Ob as a function of L for a (4,4) V-BLAST receiver.
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Figure 4.8: BLER as a function of average SNR for a V-BLAST receiver with nT =
2, L = 10.
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Figure 4.11: BLER as a function of average SNR for a V-BLAST receiver with
nT = 8, L = 10.

In view of the large spectral efficiency that V-BLAST makes available, these
results are very interesting. They indicate that V-BLAST has the potential to be a
viable candidate in the search for solutions to improve wireless communications.

4.6 Experimental results

The V-BLAST algorithm was implemented in a Texas Instruments TMS320C6711
floating-point digital signal processor (DSP) running at 150MHz and rated at 900
MFLOPS [27]. The algorithm’s complexity was measured in instruction cycles using
a code execution profiler; since the instruction cycle time is known to be Ic = 6.7ns,
it is possible to estimate real-world performance, as well as to extrapolate the results
to more recent processors.

Table 4.5 presents the instruction cycles needed per received information bit,
and the corresponding data rate in kbps, for a 6711 DSP running the V-BLAST
algorithm for a (2,3) MIMO system. Likewise, an extrapolation of the data rate
achievable on a current-generation 6713 processor, which has a cycle time of 3.3ns
and is rated at 1800MFLOPS, is shown.

Figure 4.12 shows the instruction cycles required by the 6711 DSP for the (2,3)
V-BLAST receiver, as a function of block length L. The general behavior predicted
by 4.6 and equation (4.4) is confirmed by experiment. A very rapid decrease in
complexity is seen between L = 1 and L = 20, followed by a slow decrease between
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L Clock cycles Data Rate Data Rate
per bit (kbps, Ic = 6.7ns) (kbps, Ic = 3.3ns)

5 4583 32.7 65.4
10 2558 58.6 117.2
15 1911 78.5 157.0
20 1580 94.9 189.8
40 1099 136.5 273.0
60 925 162.2 324.4
80 838 179.0 358.0
100 796 188.4 376.9

Table 4.5: Clock cycles and data rates as a function of L. Results for instruction
cycle Ic = 6.7ns were obtained by running V-BLAST with nT = 2 and
nR = 3 on a Texas Instruments 6711 DSP. Results for Ic = 3.3ns are an
extrapolation to a current-generation DSP.
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Figure 4.12: Instruction cycle count per received bit of a Texas Instruments 6711
DSP running V-BLAST with nT = 2 and nR = 3, as a function of L.
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L = 20 and L = 100. This is, of course, reflected in the data rate: it practically
doubles when L increases from 5 to 10, but increases merely 14% between L = 60
and L = 100.

Even a top-of-the-line, current general-purpose DSP is far from reaching ETH-
ERNET data rates, even for the small (2,3) system under consideration here. These
results clearly show that, if V-BLAST is to be used in practical applications, a dras-
tic reduction in the number of operations needed per bit is essential. An alternative
is to design a special-purpose hardware architecture; the disadvantages of this are
high cost and implementation difficulty.

It should be emphasized, though, that these results are prospective in nature.
The objective when exploring the performance of V-BLAST on this particular DSP
is not to create a practical application, but rather to provide results on the feasibility
of such a project.

4.7 V-BLAST memory requirements

Table 4.6 describes the memory requirements of V-BLAST when using the thin QR
decomposition. The purpose of each matrix is stated, along with its dimensions and
whether it is real or complex. When appropriate, the algorithm step number where
the matrix is used is mentioned (see section 2.4).

Complex matrices require double the space of real ones. Taking this into account,
the total requirements are given by

nT (5 + 2nT ) + nR(10 + nT + n2
T ).

It is interesting that the memory requirements grow linearly with nR, but grow
with the square of nT . The memory sizes are given in words; the actual memory
needed by the algorithm in bits depends on the word size used. The channel matrix
and the pseudo-inverse for the current step A need to be copied because certain
operations destroy the matrix they operate on.

4.8 Loss of BER performance caused by sub-optimal

ordering

As first mentioned in section 2.3, the optimal symbol estimation order is given by
selecting, at each step, the symbol that has maximum SNR. The post-detection SNR
of symbol aki

is given by

γki
=

|aki
|2

2N0‖wki
‖2

.

An ordering constructed according to this equation is called optimal. (Strictly
speaking, the optimal ordering should use the instantaneous power of the noise
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Description Matrix Real
Size or Complex

Stores vector k (step 4) 1 × nT Real
Needed to establish optimal
ordering (step 5)

1 × nT Real

Estimated vector â (step
12)

1 × nT Complex

Received vector r 1 × nR Complex
Matrix Q (step 3) nT × nR Complex
Matrix R (step 3) nT × nT Complex
Channel matrix H nT × nR Complex
Copy of H nT × nR Complex
Copy of A nT × nR Complex
nT pseudo-inverses nT × nT , Complex

(nT − 1) × nT ,
. . . , 1 × nT

Table 4.6: Matrices required by V-BLAST. A description of their function, their
dimensions, and whether they are real or complex.

affecting aki
instead of 2N0. However, this is too unrealistic to be worth considering).

When the signal constellation contains symbols with unequal energies, the or-
dering of the symbols’ SNR cannot be accurately determined without knowledge of
the energy of each symbol |aki

|2. In this case, V-BLAST uses 1/‖wki
‖2 to estimate

the SNR; the ordering thus obtained is simply called V-BLAST ordering. It is,
in fact, the best ordering that can be achieved given the information available to
V-BLAST4.

In this respect, constellations whose symbols have equal energy are especially
attractive, because V-BLAST’s detection ordering in this case is optimal. Their
disadvantages, as is well known, are a smaller distance between symbols and more
difficult labeling, when compared to lattice constellations like M -QAM. A more
detailed analysis of the performance of different constellation types in a V-BLAST
receiver remains to be done. Whether a coding scheme that improves the detection
ordering exists, and how it would affect the complexity of the receiver, is still an open
question. Some interesting attempts to improve the detection order are reported in
[21, 28, 29, 30]

The loss caused by this sub-optimal ordering has been determined by simula-
tion5. In figures 4.13 through 4.15, the BER performance between three ordering
methods is compared: optimal ordering, V-BLAST ordering, and fixed ordering.

4This ordering is commonly called optimal in the literature.
5Note that simulating optimal ordering does not entail providing V-BLAST with the actual

transmitted symbols; all it needs is their energy. What is being determined is just the performance
loss due to sub-optimal ordering, not that due to other effects like error propagation.
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Figure 4.13: Comparison of BER for three different symbol detection orderings:
fixed, V-BLAST, and optimal. nT = 6, nR = 6, 16-QAM.

Fixed ordering does not take the symbols’ SNR into account; symbols are estimated
in a fixed, constant order. The signal constellation used is, as before, 16-QAM; sym-
bols belonging to this constellation have one of three possible energies. The results
presented are for nT = 6 and nR = 6, 9, and 12. The bit error rate is presented
instead of the block error rate to remove any dependency on L.

The impact of the ordering method is more pronounced for nR = nT : the gain
between fixed and V-BLAST ordering is 6dB, and between V-BLAST and optimal,
a further 4dB. For nT = 6 and nR = 12, the gain has been reduced to 1dB and
0.8dB, respectively. This means that a large number of receive antennas can in
large measure compensate for sub-optimal orderings.

In section 2.5 it was predicted that the ordering method would have no effect
on diversity (that is, on the slope of the performance curves). In the simulations, it
is seen that for nR > nT there is in fact a small improvement on the slope as the
ordering improves. This is not the case for nR = nT , where the slopes are practically
identical for all three orderings.
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Figure 4.14: Comparison of BER for three different symbol detection orderings:
fixed, V-BLAST, and optimal. nT = 6, nR = 9, 16-QAM.
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Chapter 5

V-BLAST as a least-squares
problem

5.1 Introduction

T
he previous chapter mentioned that the thin QR decomposition may be used
to reduce the size of a part of V-BLAST from (nR×nT ) to (nT ×nT ), potentially

improving its performance. Let H = QR, where Q ∈ CnR×nT is a matrix with
orthonormal columns, and R ∈ CnT ×nT is upper-triangular. Then, the least-squares
problem of finding the vector x that minimizes ‖Hx − b‖2 is equivalent to the
problem of finding x that minimizes ‖Rx − Q†b‖2. Since R is triangular, this
problem is readily solved.

The QR decomposition has been applied to V-BLAST reception for a long time
([31] is one of the first times the idea is referenced explicitly). In this thesis, the
technique is applied to V-BLAST in what is believed to be a novel way; namely,
it is used in both phases of V-BLAST to speed up the calculation of both the
pseudo-inverses and the symbol estimates without degrading the error rate. Some
of the consequences of modifying V-BLAST in this way are explored; the modified
algorithm is denoted V-LS. It is proved that V-BLAST’s bit-error rate is not altered
in any way; in fact, it is proved that the output of V-LS is exactly the same as the
original’s.

What is probably the fastest version of V-BLAST known to date is described
in [32] (see also [33]). This algorithm, denoted here by V-SQR, also uses the thin
QR decomposition, but it employs an heuristic to avoid having to calculate any
pseudo-inverses (hence its speed) at the cost of a slightly higher error rate.

In this chapter the three algorithms are compared, and it is found that under
certain circumstances, V-LS is even faster than V-SQR. Scenarios where the error
rate of V-SQR degrades significantly are also described.

61
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5.2 QR Decomposition in V-BLAST

V-BLAST can be seen as a least-squares solver of a system of linear equations
perturbed by noise, with the added constraint that the solution must be an element
of the constellation set S. If the noise vector n is zero, and the received vector is r
(see equation (2.1)), then V-BLAST gives the least-squares solution to the problem
of finding â such that ‖Hâ − r‖2 has minimum norm.

In the presence of noise, V-BLAST will not always find the best solution in the
least-squares sense; on the other hand, it has lower complexity than methods that
find better solutions, such as lattice decoding or maximum-likelihood decoding.

The basic idea is to use QR decomposition to modify the original system model,
r = Ha + n, into

r = QRa + n

Q†r = Ra + Q†n

r̃ = Ra + ñ, (5.1)

The statistics of the noise are unchanged, since Q has orthonormal columns. The
MIMO system described by equation (5.1) has a channel matrix R that is now
square, and has smaller dimensions than the original channel matrix H. This reduces
the complexity of the two parts of the algorithm, the block setup phase and the
symbol estimation phase, at the cost of performing the QR decomposition of H, and
calculating r̃.

Making use of these ideas, a new algorithm, called V-LS, is proposed below.
Now, it will be proved that V-LS and V-BLAST as originally proposed are equiv-

alent; that is, they produce exactly the same output.
Let r = Ha + n. It will be proved that the vector of estimated symbols âV

produced by V-BLAST is equal to âL, the vector produced by V-LS.
The key point is the calculation of y in step 4.b of V-BLAST and in step 5.b

of V-LS. If both algorithms compute the same y then they will produce the same
output.

First, it is necessary to establish that the row norms of R+ equal those of H+.
Let x = (R−1)j and y = (H+)j be row j of R−1 and H+, respectively. The squared
norm of y is given by

‖y‖2 = yy†

=
(

xQ†
) (

xQ†
)†

=
(

xQ†
)

Qx†

= xx†

= ‖x‖2,



Chapter 5. V-BLAST as a least-squares problem 63

Algorithm 3 V-LS

Input: an nR × nT matrix H, a set of L nR × 1 vectors ri, i = 1, . . . , L, and a
signal constellation S.

Output: a set of L nT × 1 vectors âi. Each vector âi is such that its elements are
in S and Hâi = ri + vi, where vi is an error vector.

1: Compute an nR × nT matrix Q with orthonormal columns and an nT × nT

upper-triangular matrix R, such that H = QR
2: A = R
3: for i = 1 to nT do
4: Find Gi = A+

5: Let ki = argminj ‖(Gi)j‖
6: Let Oi equal to corresponding column in R
7: Remove column ki of A
8: end for
9: for j = 1 to L do

10: Let x = Q† · rj

11: for i = 1 to nT do
12: Let w equal to row ki of Gi

13: Let y = wx
14: Let âj,Oi

= fq(y)
15: Let z equal to column Oi of R
16: Let x = x − âj,oi

z
17: end for
18: end for
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where the identity H+ = R−1Q† has been used. The order of symbol detection is,
then, the same for both algorithms.

Let ak be the first symbol to be detected, and let w be row k of H+. V-BLAST’s
estimate yV is given by

yV = wr

= w(Ha + n)

= ak + wn. (5.2)

Let v be the kth row of R−1. Then, V-LS’s estimate yL is given by

yL = vx

= v(Ra + Q†n)

= ak + vQ†n

= ak + vRH+n

= ak + wn. (5.3)

From equations (5.2) and (5.3), it is clear that both algorithms produce the
same estimate. The argument can be extended to the estimation of the remaining
symbols.

It has been verified in simulation that the BER and BLER performance of V-
BLAST and V-LS are in fact identical.

5.3 The Sorted QR algorithm

This variant of V-BLAST was first proposed in [32]. If the QR decomposition is
used as in (5.1), â can be found iteratively. For instance, ânT

would be given by

ânT
= fq

(

r̃nT

RnT ,nT

)

,

and, in general, for 1 ≤ i < nT ,

âi =
r̃k − d̂k

Rk,k

,

where the term d̂k can be considered as interference, and is given by

d̂k =

nT
∑

j=k+1

Rk,jâj.
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The basic insight behind V-SQR is that maximizing the SNR at each step, as
V-BLAST does, is equivalent to ordering the diagonal elements of R Rk,k from
minimum to maximum (that is, R1,1 ≥ R2,2 ≥ · · · ≥ RnT ,nT

). Then, it proceeds
to find an heuristic to construct such an R, based on finding a permutation of the
columns of H that cause the thin QR decomposition to produce a matrix with the
desired properties. The algorithm may be written as follows; its inputs and outputs
are identical to those of V-BLAST.

Algorithm 4 V-SQR

1: Find the sorted-QR decomposition of H, store it in Q and R.
2: for i = 1 to L do
3: Let x = Q† · ri

4: Find âi that solves Râ = x
5: Re-arrange âi to correspond to original ordering of columns of H
6: end for

Step 5 is necessary since the ordering of the rows of matrix R does not correspond
to the original ordering of the symbols in each vector. The sorted QR algorithm
provides, as output, a vector that describes the permutations made on H and allows
the rearrangement of âi.

5.4 Complexity analysis and simulation results

In comparison with V-BLAST, the block setup phase of V-LS needs an extra QR
decomposition; in exchange, the pseudo-inverses are performed on an nT×nT matrix.
In turn, the symbol estimation phase has an extra vector-matrix multiplication, but
the size of all other operations now depends exclusively on nT instead of both nT

and nR.

As for V-SQR, its modified thin QR decomposition is more complex than the
regular one, since it involves many exchanges of the columns of Q and R as they
are being calculated; it also has the extra overhead of rearranging the estimated
symbols.

As was done in chapter 4, the effect of the block length L on the algorithms is
studied. Since both V-LS and V-SQR have a similar structure to V-BLAST, it is
expected that equation (4.4) still holds.

Complexity-wise, one important aspect of V-LS and V-SQR is that only two of
their operations—the initial thin QR decomposition of H, and the calculation of
x = Q†r—depend in any way on nR. For this reason, it is desirable to examine how
their complexity depends on nR for constant nT . These questions are studied in the
next subsections. Also, the BLER performances of V-LS and V-SQR are compared.
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Figure 5.1: BLER as a function of average SNR (dB) for nT = 2; nR = 2, 3, 4; L =
10; 16-QAM.

5.4.1 BLER performance

Figures 5.1 to 5.4 present the BLER performance of V-LS and V-SQR under several
combinations of nT and nR. Results for V-BLAST are not shown, since they are
identical to those of V-LS. As in chapter 4, simulations were done with L = 10 and
16-QAM.

It is concluded that for values of nR larger than nT , the BLER performance of V-
SQR is similar to that of V-BLAST. As nT and nR get closer, however, the difference
begins to be significant; for nT = nR = 8, it is more than 2dB. It is unknown whether
this is because V-SQR’s ordering improves as nR grows, or because the large number
of receive antennas make the algorithm more resilient to errors in the detection order.
When lowering the error rate is a priority, V-SQR is a viable alternative as long as
nR > 1.5nT .

5.4.2 Complexity as a function of L

As in chapter 4, the number of operations required by each algorithm to receive
one bit of information is called Ob; this number includes all arithmetic as well as
memory operations.

Letting nT = 4, the way Ob changes as a function of L has been determined. The
contribution to the block setup phase complexity diminishes as L grows, while that
of the symbol estimation phase grows. Results are presented in figures 5.5 through
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Figure 5.2: BLER as a function of average SNR (dB) for nT = 4; nR = 4, 6, 8; L
= 10; 16-QAM.
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Figure 5.3: BLER as a function of average SNR (dB) for nT = 6; nR = 6, 9, 12; L
= 10; 16-QAM.
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Figure 5.4: BLER as a function of average SNR (dB) for nT = 8; nR = 8, 12, 16;
L = 10; 16-QAM.

5.7; in each figure, a different value of nR is used.

The conclusion is that V-SQR’s complexity advantage decreases as L increases,
with a more pronounced effect for large nR. The reasons for this are the slight
overhead in the symbol decoding phase of V-SQR, which does not exist in V-LS,
and the reduced importance of the setup phase as L increases. If error-rate is the
priority, and L is relatively large, then V-LS is a viable alternative, especially if nR

is close to nT .

5.4.3 Complexity as a function of nR

Again letting nT = 4, it is determined how Ob changes when nR is increased, for
L = 15. Results are presented in figure 5.8.

It is clear that both V-LS and V-SQR have significantly lower complexity than
V-BLAST. Furthermore, for sufficiently large nR, V-LS has lower complexity.

The difference in the slope of Ob between the traditional v-blast and the other
two algorithms in figure 5.8 is worth noting; it is caused by the lessened influence
of nR upon most operations performed by both V-LS and V-SQR.

Both V-LS and V-SQR have their strengths and weaknesses. Table 5.1 summa-
rizes the conditions under which one preferable to the other.
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nR/nT Priority Choice
(error rate or Ob)

≈ 1 Ob V-SQR
≈ 1 error rate V-LS

>> 1 Ob for sufficiently high nR/nT and L,
best option is V-LS

>> 1 error rate both are equal

Table 5.1: Summary of conditions under which each algorithm is a better option
than the other.

5.5 Experimental Results

As in chapter 4, V-LS was executed on a Texas Instruments 6711 digital signal
processor (DSP) for different sizes of L, with nT = 2 and nR equal to 3, 6 and 23.
The results confirm the predictions that the complexity per bit diminishes with L
and that V-LS is substantially faster than V-BLAST as nR increases. For nR = 3
there is little advantage in using V-SQR; for nR = 6, however, the complexity is
already reduced around 33%, and for nR = 23 the reduction is around 45%.

The results are presented in figures 5.9 to 5.11, where the total number of clock
cycles that the DSP requires per information bit received is shown as a function of
the L. See chapter 4 for more details. Note that the scales of the ordinates in each
figure are quite different.

5.6 Final words

Results on the behavior of each algorithm show that the choice of one algorithm
over another is not straightforward; it will depend on the number of antennas in the
system, the block length L, and on whether the application at hand requires low
error rates or low complexity. Under some circumstances, V-LS, the novel algorithm
proposed, is the most attractive.

Furthermore, as has been pointed out in chapter 4, these results are, so to speak,
architecture-agnostic; it is expected that they will provide a sound foundation for
the task of designing an architecture capable of making the promise of space-time
coding a reality.
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Chapter 6

Lattice decoding applied to
vertical space-time codes

6.1 Introduction

T
he algorithms based on V-BLAST presented in previous chapters are inter-
esting in their own right. The ordering-cancellation-nulling operations have

proved to be an effective, simple method to exploit diversity and MIMO capacity
under a variety of circumstances.

The real potential of vertical codes, however, has not yet been described. V-
BLAST, by design, trades optimality for complexity. How sub-optimal is it really?
Further, what is the real gain in complexity compared to optimal algorithms?

These questions are answered in this chapter and the next, for cases when the
signal constellation can be arranged in a structure known as a lattice. Very fast
algorithms exist that can be used to optimally receive vertical codes in such cases.

Geometrically, a lattice is a regular, periodic, infinite arrangement of points in an
n-dimensional space. Figure 6.1 shows a lattice in two dimensions, a point r ∈ R2

and the lattice point closest to r.

More formally, let G be a matrix of real elements, with n rows and m columns,
whose rows are linearly independent (which implies n ≤ m). The lattice generated
by G is defined as the set of vectors

Λ(G) = {uG : u ∈ Z
n}. (6.1)

Matrix G is called the generator matrix of Λ, and its rows are called the basis
vectors of the lattice. Note that the elements of Λ have dimensions 1 × m, but the
dimension of the lattice is n. Given a lattice Λ and a vector x ∈ Rm, the problem
of finding a vector ĉ ∈ Λ such that

‖ x − ĉ ‖ ≤ ‖ x − c ‖ for all c ∈ Λ,

75
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Figure 6.1: A lattice in two dimensions. The solid points represent the lattice points.
The straight lines emphasize the periodic arrangement of the points.
Also shown is a point r ∈ R

2, and the closest lattice point.

where ‖ · ‖ is the `2-norm, is called the closest point problem. This problem (and
other, closely related ones) has numerous applications in mathematics and engi-
neering. In the context of channel coding, the closest point problem is related to
maximum-likelihood decoding. When the codewords can be arranged in a lattice,
lattice decoders (algorithms optimized to exploit its regular structure), are faster
than general ML decoders.

Because of their wide application and importance, there is a large body of knowl-
edge about lattice decoding. Efficient algorithms have been found to implement it,
and research in this field continues to be active. Given its close relationship to
maximum-likelihood receivers, it promises considerably better error rates than V-
BLAST. It is for these reasons that lattice decoding is investigated as an alternative
for the reception of vertical layered space time codes.

In this chapter, a method is proposed to adapt lattice decoding to MIMO sys-
tems. A lattice decoding algorithm (based on ideas presented in [34]) is proposed
for use with QAM constellations. Finally, a limitation of lattice decoding, present
under certain conditions, is tackled in what is believed to be a novel way.

Chapter 7 presents results on the complexity and error rates of lattice decoding
compared to V-BLAST.

6.2 The maximum-likelihood criterion

A brief recount of the maximum-likelihood criterion as applied to additive, white
Gaussian noise (AWGN) channels is presented. Consider a communications system
in which the transmitter sends vectors am = (am,1, am,2, . . . , am,nT

)T . All elements
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am,i belong to a signal constellation S, which has 2b elements, where b is the number
of information bits transmitted per signal am,i. Let the signal constellation S ′ be
the set of all possible values of am; S ′ has 2bnT elements.

Let the AWGN communications channel corrupt the transmitted vectors by the
addition of noise, so that the received vector r is given by

r = am + n,

where n is a vector whose elements are taken from a Gaussian distribution with
mean zero and power N0/2.

After reception of each vector, the receiver has the task of estimating which of
all possible vectors am was transmitted using its knowledge of r. The maximum-
likelihood (ML) receiver chooses its estimate â as the vector element of S ′ that is
closest to r, that is,

â = argmin
am∈S′

‖ am − r ‖2 . (6.2)

Equation 6.2 is known as the ML criterion. Assuming all vectors am are trans-
mitted with equal probability, then the ML receiver is optimum in the sense that it
minimizes the probability of error. If S ′ is a lattice, then lattice decoding and the
ML criterion are equivalent.

6.2.1 The ML criterion in MIMO systems

The maximum-likelihood criterion is usually applied to AWGN channels, where its
optimality has been proved. The applicability of this criterion to MIMO fading
channels is not readily apparent. To verify that it still applies, note that the ML
criterion is independent of the shape of the signal constellation in use. Let SM be
the set of signals

SM = {Ham : am ∈ S ′},
and let the signals in SM be denoted by sm, m = 1, . . . , 2bnT . A communication
system that uses SM in an AWGN, non-fading environment is described by equation
(6.3). Such a system is theoretically indistinguishable from one that uses S ′ in a
MIMO, Rayleigh-fading environment with channel matrix H, so the ML criterion
remains optimal (see also [1, pp. 2663-2664]).

r = sm + v. (6.3)

6.3 Applying lattice decoding to V-BLAST

Finding the point in SM closest to r can be a complex task: even though finding the
distance between two points is simple, calculating and comparing many distances
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one by one can be an unfeasibly lengthy task. In many applications, suboptimum
but fast algorithms are often preferred to ML reception.

Lattice decoding exploits the structure of the lattice to accelerate the search for
the closest point, making it several times faster than a general ML receiver. In order
to use lattice decoding in a MIMO system, the following problems must be solved:

• since SM is not, in general, a lattice, a suitable lattice representation must be
found.

• a mapping between the lattice representation of SM and S must be found,
since ultimately the receiver has to produce estimates of am ∈ S ′.

6.3.1 Finding a lattice representation of SM

The aim of this section is to represent the system in equation (6.3) in a way amenable
to lattice decoding.

First, a real system model must be found. Recall from section 2.2.3 that MIMO
systems can be expressed in real form; in equation (2.2), the system model is given
by

r̃ = H̃ãm + ñ,

where all terms are real. In this model the transmitted vectors are formed by a
matrix-vector product; the lattice definition, however, requires its elements to be
formed by a vector-matrix product. This is easily solved by redefining the signal
constellation SM as

SM = {ã†
mH̃† : am ∈ S ′}.

Note that now the elements of SM are row vectors, and that H̃† meets the require-
ments for a generator matrix (described above).

It should be noted that redefining the system in this way produces a doubling of
the dimensions of H and r. This necessarily has an effect on the complexity of the
decoder.

The definition of a lattice requires that the vectors that multiply the gener-
ator matrix have integer elements. A QAM constellation is defined as a set of
2-dimensional vectors whose elements are members of the sequence

{±e1,±3e1, . . . ,±(2n − 1)e1},
for n an appropriate integer1. The factor e1 is chosen so that E [‖am‖2] = nT ; in

other words, each element am,i of am has energy one.
This means that e1 can be factored out of am, leaving an integer vector. Consider

the translated signal constellation ST :

1For instance, for 16-QAM, n = 2; for 64-QAM, n = 4
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Figure 6.2: (a) A 16-QAM constellation. (b) The same constellation translated by
(2n − 1)e1.

ST = {sm + tH̃† : sm ∈ SM},
where the translation vector t is such that all its elements are equal to (2n − 1)e1.
To illustrate the effect of translating a constellation, figure 6.2 shows a 16-QAM
constellation, and the same constellation translated by (2n − 1)e1.

Now, consider the lattice ΛS = Λ(2e1H̃
†). All signals in ST are also in ΛS, which

can then be used in lattice decoding. ST is a subset of ΛS, and is frequently called
a carving of ΛS. Note that the carving is contained in a contiguous region within
Λ; within this region, there are no points that belong to Λ but not to ST . If this
condition were not met, the lattice decoder could return points outside ST even in
cases when x is very close to a constellation point.

Finally, since the lattice decoder operates on a translated lattice, it is also nec-
essary to translate the received vector by the same amount.

In summary, a receiver that uses lattice decoding must build a generator matrix
G from H, and a vector x from r, such that:

G = 2e1

[

<(H) =(H)
−=(H) <(H)

]T

,

x = r̃ + (2n − 1)e1G.

Now the lattice decoder can operate on G and x, to find a vector û such that ûG
is the closest lattice point to x.

6.3.2 Mapping û to S

The vector produced by the lattice decoder, û, belongs to Z2nT ; it is an estimate of
the vector u used in (6.1) to generate the lattice points. The mapping from û to S
is straightforward; it suffices to multiply by 2e1 and subtract t.
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Alternatively, the receiver could demodulate û directly without mapping it back
to S.

One important consequence of using a lattice decoder instead of a general ML
algorithm is that the vector û is an element of the lattice ΛS, but not necessarily
of ST . Especially for low SNR, there is a high probability that the received point
will lie outside the constellation, so a lattice point that does not belong to it will be
returned as estimate.

Several possible remedies for this situation have been suggested [34]. The sim-
pler option is to declare an erasure, at a cost in the probability of error. Another
course of action is to identify the occurrences of this situation, and then expand the
algorithm’s search region until a constellation point is found. This has the obvious
disadvantage of greatly increasing the complexity of the receiver.

A third method is to project the input vector into the boundary of the constel-
lation before searching for the closest point. Besides being not quite optimal, this
procedure again incurs a potentially high increase in complexity.

In this thesis, what is believed to be a novel heuristic to solve this problem is
proposed. Although suboptimal, it has the advantage of having a negligible effect on
the algorithm’s complexity while having a lower error rate than simply declaring an
erasure (or alternatively, choosing as estimate a fixed, predetermined constellation
point).

The proposed method consists of quantizing every element of û that is outside
the allowed range to the closest allowed value. For example, if S is 16-QAM, then
only those û whose elements are 0, 1, 2 or 3 correspond to constellation points. All
those elements of û that are less than zero are quantized to zero, and those larger
than 3 are quantized to 3. All valid values are left untouched.

Simulation results that compare this method to maximum-likelihood decoding
are presented in chapter 7.

6.4 A lattice decoding algorithm for V-BLAST

The lattice decoding algorithm used here is based on the algorithm called Clos-
estPoint first proposed in [34]. This lattice decoder is believed to be the fastest
available for general lattices. The algorithm follows.

The ClosestPoint algorithm is a front-end to algorithm Decode, which finds the
closest point to x3 in Λ(H3

−1). Steps 1-3 perform several transformations to G and
x that have the effect of improving Decode’s speed.

Decode’s complexity depends on the length of the rows of G. Step 1 is a basis
reduction, which reduces these lengths. The most efficient reductions, like LLL or
Korkine-Zolotareff, may reduce the execution time of Decode dramatically but are
very complex themselves. Thus, they are more beneficial when many vectors are to
be decoded in the same lattice. Note that W may also be the identity matrix, in
which case G is not reduced at all. The next chapter provides more details on this
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Algorithm 5 ClosestPoint

Input: a 2nT ×2nR generator matrix G, and a 1×2nR vector x to decode in Λ(G)
Output: the lattice point x̂ ∈ Λ(G) that is closest to x.
1: Let G2 = WG, where W is an 2nT × 2nT matrix with integer entries and

determinant ±1.
2: Compute a 2nR×2nT matrix Q with orthonormal columns and a 2nT×2nT lower-

triangular matrix G3 with positive diagonal elements, such that G2 = G3Q.
3: Let x3 = xQT .
4: Let H3 = G3

−1.
5: Let u3 = Decode(H3,x3)
6: Return x̂ = u3G2.

subject and examines the performance benefit obtained by using the LLL reduction
compared with no reduction.

Steps 2 and 3 are similar to what was done in the V-LS algorithm in chapter 5;
the problem is reduced to size 2nT × 2nT . One way to obtain the matrices Q and
G3 is to compute the thin QR decomposition of G2

T , which gives QT and G3
T .

The ClosestPoint algorithm has been modified to receive vertical layered space-
time codes; the new algorithm is called V-CP and is written below.

As in previous chapters, the algorithm V-CP has been written to operate on a
block of L received vectors, all of which are transmitted through the same channel
H. As was the case for V-BLAST, these algorithms can be divided in two phases: a
setup phase that is carried out once per block, and a symbol estimation phase that
is repeated L times.

Step 1 computes a matrix G, and steps 2 and 3 find the translation vector t as
explained in section 6.3.1. Steps 4 to 9 deal with the basis reduction. If the boolean
variable R is set to true, V-CP will perform the LLL reduction on G; otherwise no
reduction is carried out. Matrix W is needed later in the decoding process.

In step 14, the received vector is translated using t, and in step 15 the closest
point x̂ is found. The heuristic to map points x̂ that do not belong to the signal
constellation, introduced in 6.3.2, is executed in steps 16 to 22.
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Algorithm 6 V-CP

Input: an nR × nT matrix H, a set of L nR × 1 vectors ri, i = 1, . . . , L, and a
signal constellation S. A boolean variable R determines whether to perform the
LLL reduction of the lattice basis or not.

Output: a set of L nT × 1 vectors ûi ∈ Z2nT from which the original information
bits can be estimated.

1: Let G = 2e1H̃
T .

2: Let ts be a 1 × 2nT vector with elements equal to (2n − 1)e1.
3: Let t = tsH̃.
4: if R is true then
5: Let G2 = LLL(G)
6: Let W = G2G

−1

7: else
8: Let G2 = G
9: Let W be the identity matrix

10: end if
11: Compute a 2nR×2nT matrix Q with orthonormal columns and a 2nT×2nT lower-

triangular matrix G3 with positive diagonal elements, such that G2 = G3Q.
12: Let H3 = G3

−1.
13: for i = 1 to L do
14: Let x = (r̃i + t)QT .
15: Let x̂ = Decode(H3,x) · W
16: for j = 1 to 2nT do
17: if x̂j > (2n − 1) then
18: x̂j = (2n − 1)
19: else if x̂j < 0 then
20: x̂j = 0
21: end if
22: end for
23: ûi = x̂
24: end for



Chapter 7

Lattice decoding in MIMO
systems: practical considerations

7.1 Introduction

I
n this chapter, results are presented that allow a comparison of the complexity
and performance of three receiver algorithms studied in previous chapters:

• V-LS

• V-CP without basis reduction

• V-CP with basis reduction

Algorithm V-LS was introduced in chapter 5; it is a modification of the original
V-BLAST that uses least-square techniques to lower its complexity without affecting
the probability of error. V-CP is an adaptation of lattice decoding, introduced in
chapter 6, to the reception of vertical space-time codes. Some important aspects of
V-CP’s behavior are examined here.

The bit and block error rates of V-LS and V-CP are compared in order to de-
termine how suboptimal V-LS really is. Systems with nR � nT are of particular
interest, since V-BLAST has proven to be adept at exploiting space diversity in this
situation. There is little doubt that, in cases where the highest priority is minimizing
the probability of error, V-CP will prove superior to V-LS. The complexity estimates
presented here point to the material cost of such a decision. The advantage of V-LS
over V-CP in this sense is not always clear-cut, especially since the complexity of
V-CP depends on the average SNR.

V-CP can optionally use basis reduction of the lattice generator matrix in an
attempt to lower its complexity. There are two common kinds of reduction: the
LLL reduction (named after Lenstra, Lenstra and Lovász) [35] and the Korkine-
Zolotareff (KZ) reduction [36]. The KZ reduction finds a basis whose vectors are
shorter than the corresponding LLL reduction; however, for the LLL reduction there

83
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exists an algorithm that operates in polynomial time [37, pp. 83-89]. For this reason,
LLL has been chosen to perform the reduction in V-CP.

It is important to remark that in [34], the complexity results presented do not
include the complexity of the basis reduction. This surprising fact means that, even
though it is proved that Decode1 is faster when the generator matrix is reduced, it
has not been proved that the total complexity (reduction plus search) is actually
reduced. Results are presented regarding this matter.

The LLL reduction is also supposed to increase the numerical stability of V-CP,
in cases where the channel matrix is ill-conditioned. This claim is not examined
directly, but some observations made during simulations are presented.

In addition, the method used in V-CP to deal with points outside the signal
constellation is compared to maximum-likelihood decoding. It is also compared to
a simpler method that maps any point that lies outside the constellation to a fixed
point inside it.

7.2 Error rate comparison

In this section the error rates of V-LS and V-CP are compared. The LLL basis
reduction has no effect on the probability of error of V-CP, so it will be ignored.
Figures 7.1 to 7.4 show a comparison of block error rates, and figures 7.5 to 7.8
compare bit error rates. In BLER results, the block length L = 10. As in other
chapters, 16-QAM has been used throughout.

The systems being compared are the same as in previous chapters: nT = 2, 4, 6,
and 8, with nR = nT , 1.5nT , and 2nT .

Some interesting observations can be drawn from these figures. One is that
for nR = 2nT and BLER = 10−2, the difference between V-LS and V-CP ranges
between a small fraction of one decibel and roughly half a decibel. This means that
V-LS is surprisingly good at exploiting antenna diversity.

For nT ≈ nR, however, the situation is different. Lattice decoding provides an
error rate that is clearly superior to V-LS. At BLER = 10−2 and nT = nR = 2,
the difference between them is 4dB; as the number of antennas grows, so does the
difference, reaching 10dB for an (8,8) system.

Recall from chapter 3 that, when using V-BLAST in a symmetric (n,n) system,
the first estimated symbol is not benefited by any diversity, in addition to being
affected by the interference from all the other symbols. This explains the large
difference between, for instance, a (2,2) and a (2,3) system: in the latter, every
symbol benefits from at least some diversity.

On the other hand, V-CP performs a joint estimation of all symbols; in a sense,
this means that the system’s diversity is the same for the entire received vector.
Compare the slope of the BLER curves for (n,n) systems: when using V-LS, the
curve has all the signs of a receiver unable to exploit diversity; it is roughly a straight

1The algorithm underlying V-CP; see chapter 6.
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Figure 7.1: BLER comparison between V-LS and V-CP; nT = 2, nR = 2, 3, and 4,
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Figure 7.2: BLER comparison between V-LS and V-CP; nT = 4, nR = 4, 6, and 8,
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Figure 7.3: BLER comparison between V-LS and V-CP; nT = 6, nR = 6, 9, and 12,
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Figure 7.5: BER comparison between V-LS and V-CP; nT = 2, nR = 2, 3, and 4,
L = 10, 16-QAM.

line. In contrast, that of the V-CP increases with average SNR, indicating a receiver
that is able to exploit diversity.

Results for BER are presented in figures 7.5 through 7.8. The same behavior
exhibited by BLER is seen here. For nR = 2nT , the gain of V-CP with respect to
V-LS is less than one dB.

It is worth noting that, as nT increases, the required average SNR to achieve a
given BER is reduced. This means there is a double benefit to increasing the number
of antennas: both a higher spectral efficiency and a reduced probability of error for
the same average SNR.

7.3 Complexity comparisons

As in chapters 4 and 5, the algorithms’ complexity is represented by Ob, the total
number of operations performed per received information bit. Figures 7.9 through
7.12 present a comparison between the complexity of V-LS and V-CP, with no basis
reduction performed, for L = 10 and 16-QAM.

Ob is presented as a function of the average SNR, since, as opposed to V-BLAST,
the complexity of V-CP is not constant but depends on the noise power. The reason
is that for large noise values, there is a higher probability that the received vector
will be far from any lattice point, and the algorithm has to consider more candidate
vectors.
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Figure 7.6: BER comparison between V-LS and V-CP; nT = 4, nR = 4, 6, and 8,
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There are many interesting conclusions that can be drawn from the results pre-
sented in these figures.

The first, and perhaps the most striking, observation is that the complexity of
V-CP for smaller systems can be significantly higher than for larger ones. The
complexity curves show that larger systems have higher complexity only after the
average SNR has surpassed a certain threshold value.

This effect can be clearly seen in figure 7.10, in which nT = 4. At 10dB or less, the
most complex system is (4,4), followed by (4,6) (for which Ob = 161), and by (4,8)
(Ob = 160). When the average SNR reaches 15dB, the (4,8) system becomes more
complex than the (4,6) one, but the (4,4) system is still more complex than both. It
is only after the average SNR reaches approximately 27dB that the intuitive order
is restored: the larger system becomes more complex. This phenomenon appears in
all systems examined but becomes stronger as the number of antennas grows.

Only a hypothesis is proposed here on the possible causes of such behavior.
The search size (that is, the number of points that V-CP must examine in order
to find the closest one) increases as the noise power increases, and decreases as
the dimension of the lattice grows. After the noise power reaches a certain point,
however, the search size is dominated by the lattice dimension.

The reason for the search size growing when the noise power increases is that
the received point will, with high probability, be found surrounded by many lattice
points, none of them particularly close to it. Thus, the algorithm needs to examine
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many points. This effect is countered by the dimension of the lattice; as the dimen-
sion grows, the volume occupied by any given number of lattice points increases,
effectively separating the points, and providing a measure of noise immunity.

When the noise power is low, however, the received point will with high probabil-
ity be found close to a lattice point, which will be quickly determined by any efficient
algorithm. The noise plays a much smaller role in this case and the dominant factor
in the search size is the lattice dimension.

The enormous complexity of V-CP for symmetrical systems is also worthy of
note. Figure 7.12 is especially illustrative; it can be seen that the complexity for
(8,8) completely dwarfs all other antenna combinations.

Figure 7.12 is an example of another phenomenon seen in simulation: the spike in
complexity for the (8,8) system at 21dB. These spikes are spurious; a new simulation
under the same conditions probably will not present it. The most likely explanation
(unverified at this time) is that certain channel matrices cause V-CP to take much
more time than usual.

The lack of bounds to the complexity of V-CP may prove to be a serious obstacle
to its adoption in MIMO systems, where most applications require a constant data
rate and, in consequence, fixed (or at least bound) complexity. There are two
possible solutions to this problem. One is to stop the V-CP algorithm after a fixed
amount of time, and have it return its best estimate at that time. This will have an
effect on the probability of error; how strong an effect will depend on the frequency
of the problematic channel matrices.

A second possibility is to employ the LLL reduction: such complexity spikes have
not been observed when the generator matrix has been reduced. On one hand, this
gives support to the hypothesis that the spikes are caused by problematic generator
matrices, since the LLL reduction lends numerical stability to Decode. On the other
hand, as will be seen later in this chapter, the use of LLL reduction does not have
a clearly positive effect on the receiver’s complexity.

This phenomenon illustrates another point: V-CP’s complexity can be modeled
as a random variable. The complexity needed to decode a vector depends on the
channel matrix and the instantaneous realization of the noise. The complexity re-
sults presented here are averages; a more thorough understanding of V-CP requires
obtaining second-order estimator statistics. Besides helping to understand the be-
havior of the complexity spikes, these statistics might be used to determine the
peak processing power needed to ensure the algorithm will finish its task with a
given probability, and under a given average SNR.

It is also interesting to see that V-CP’s complexity tends to an asymptote as the
average SNR grows. It was noted before that, as the noise power diminishes, the
received point gets closer to a lattice point and the algorithm is able to find this
point very quickly. It is conjectured that the variance of the complexity will also
diminish under such circumstances.

Figure 7.13 is a “close-up” of figure 7.12; nT = 8 and nR = 12 and 16. It
clearly shows that there is a value of average SNR (around 16.5dB) below which
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Figure 7.13: Ob as a function of average SNR for V-LS and V-CP (without basis
reduction); nT = 8, nR = 8, 12, L = 10, 16-QAM

the smaller (8,12) system is more complex than the larger (8,16) one. It also shows,
remarkably, that V-CP’s complexity compares favorably with that of V-LS for some
values of average SNR. The conclusion is that, in high SNR situations, V-CP might
be preferable to V-LS, since it offers a better error rate at lower complexity.

7.3.1 LLL reduction complexity

The complexity of V-CP with and without the LLL matrix reduction is examined.
The results presented account for the total receiver complexity: both the reduction
and the actual vector processing. Figures 7.14 through 7.17 show the results for
L = 10.

The results are clear; in most cases, the speed increase in Decode is insufficient
to compensate for the complexity increase caused by the LLL reduction. There are
only two exceptions: for a (6,6) system with average SNR less than 21dB, and for
an (8,8) system, performing the LLL reduction is actually beneficial. Note, in figure
7.17, that the complexity spike visible in the case of no reduction does not appear
when the reduction is performed. Note that both cases were simulated under the
exact same noise and channel matrices, and for the same duration.

The LLL reduction increases the complexity of the algorithm’s setup phase while
decreasing that of the vector estimation phase; for this reason, the more vectors are
estimated in a block, the more beneficial to the receiver’s complexity it will prove to
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be. Figures 7.18 to 7.21 are similar to those presented above except that the block
length L has been increased to 100.

As can be seen, the situation has improved, but not much: from figure 7.14, a
(2,3) system (L = 10) without reduction has a complexity of Ob ≈ 65 (at 20dB),
and with reduction it increases to Ob ≈ 85. When L = 100 the complexity figures
are approximately 48 and 58, respectively. In most cases, the LLL reduction proves
so costly that it ends up increasing the receiver’s total complexity despite decreasing
Decode’s, even for L = 100. Note that in a MIMO system, increasing L has the cost
of increasing BLER.

In summary, the only apparent benefit to performing the LLL reduction, in most
cases, is the suppression of the complexity spikes.

7.4 V-CP compared to maximum-likelihood

As explained in chapter 6, a shortcoming of lattice decoders when applied to MIMO
receivers is that, especially in low SNR, they can produce an estimate that does
not belong to the constellation in use. The algorithm V-CP uses a novel method
to obtain a valid constellation point even when this happens. In this section, this
method is compared to maximum-likelihood decoding, on one hand, and to the sim-
pler method, called V-Fixed, which consists in simply assigning a fixed constellation
point as estimate.

Figures 7.22 to 7.27 present the bit error rates obtained, for nT = 2 with nR =
2, 3, and 4, and for nT = 4 with nR = 4, 6, and 8. Of special interest are situations
of low average SNR since, if noise power is low, then most points returned by Decode
will be constellation points.

First, it is established that, in all cases, V-CP is superior to simply assigning a
fixed constellation point as estimate, at negligible cost in complexity. At BER =
10−3, the gain goes roughly from half a decibel for a (2,2) system to 1.5 decibels for
a (4,8) system.

Second, it is determined how far from optimum V-CP is. In general, V-CP gets
closer to ML as nR grows with respect to nT . For a (2,2) system, the difference
between the two is roughly 2 decibels; for a (2,4) system, only a fraction of a decibel
separates them. In a (4,8) system they are nearly indistinguishable for BER = 10−3

or less.

7.5 Conclusions

The rule of thumb that claims V-BLAST-based algorithms are faster, while lattice
decoding has better error rates, has been proved to be not quite true. For large
numbers of receive antennas, V-BLAST’s error rates are very close to lattice decod-
ing; for certain values of average SNR, nR, and nT , lattice decoding is faster than
V-BLAST.
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The choice of one over the other will depend on the specific details of the imple-
mentation. If maximizing error rate performance is a clear-cut priority, then V-CP
is the best choice. In more realistic situations, however, there are other factors to
consider. One is the range of average SNR values at which the receiver will be re-
quired to operate. Another is the variance in complexity from one vector to another
and from one block to the next that the system must tolerate.

The method employed in V-CP to map vectors outside the lattice back to a
constellation point has been justified. At practically no cost in complexity, this
method has been proved to be almost indistinguishable from maximum likelihood
decoding for systems where nR is greater than nT ; for symmetrical systems, the loss
of 2 decibels with respect to ML can still be acceptable in implementations where
the extra complexity of ML decoding is not desirable.



Chapter 8

Conclusions

A
t the outset, the objective for this thesis was to explore the performance
and complexity of MIMO communication systems based on layered space-time

codes. After analyzing, implementing, simulating and comparing a large number of
algorithms, all the while gathering enormous quantities of data, it is time to look at
the results and draw conclusions.

It is believed that the complexity analysis presented in this thesis are important,
or at least useful, because they provide information that is needed for future practical
implementations of layered space-time codes that meet economic constraints of cost,
power consumption, and reliability. Among other things, these analyses might help
identify bottlenecks in the algorithms, or operations that can be parallelized.

The results, though, go beyond raw numbers. Interesting, non-trivial behav-
iors have been observed in the algorithms, and explanations have been put forth
where possible. Equally important, some light has been shed on the question of
whether some algorithms are better than others and under which circumstances.
In particular, hard facts have shown that there is no clear-cut division between
the sub-optimal-but-fast and the optimal-but-slow algorithms. It has been amply
demonstrated that the amount of space an algorithm takes up on paper has no
bearing on its complexity.

In the process of studying the algorithms, there has been opportunity to offer
novel ideas, modifications and improvements. The limitation of V-BLAST due to
its inability to find better detection orderings has been exposed; least-squares tech-
niques have been used in the development of a new variant of V-BLAST, V-LS;
lattice decoding has been modified so that it can be used to receive vertical codes,
using a novel technique to cope with a limitation of this type of algorithms.

Beyond their theoretical properties, one factor that will prove to be of importance
to the wide-spread adoption and use of vertical space-time codes is the feasibility of
implementing receiver algorithms in off-the-shelf, inexpensive hardware. A digital
signal processor would appear to be especially well-suited for this task, because of
its ability to perform vector and matrix products with great speed. In order to
illuminate this aspect of the problem, both V-BLAST and V-LS have been imple-
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mented in a modern Texas Instruments DSP; results confirm that such a DSP is
indeed suitable for the task, providing a data rate of a few hundreds of kilobits per
second for small antenna arrays. Reaching higher rates requires more work to be
done in optimizing and improving the existing algorithms.

In summary, the contributions that have been made in this thesis are the follow-
ing.

• The effect that the lack of knowledge of each symbol’s energy has on the
estimation ordering of V-BLAST has been identified and quantified. This
opens the door to innovations in the design of signal constellations that help
V-BLAST achieve the optimum detection order.

• Some general conclusions on the characteristics of V-BLAST’s complexity have
been reached. The dependence of the complexity on the block length and the
number of receive antennas has been determined. The trade-offs between
complexity, array size, error rate, and block length have been identified.

• Least-squares techniques have been applied to the reception of vertical space-
time codes, resulting in a new algorithm, V-LS, that is considerably less com-
plex than V-BLAST while having exactly the same error rate.

• V-LS has been compared to the sorted-QR V-BLAST algorithm, V-SQR, and
situations where each is preferable have been identified.

• Four different methods of calculating the matrix pseudo-inverse operation in V-
BLAST have been studied, and their complexity and effect on the algorithm’s
stability have been determined. The thin QR decomposition has been found
to be the most attractive method to perform this calculation.

• Lattice decoding has been adapted to the reception of vertical space-time
codes, and an algorithm, called V-CP, has been proposed. Lattice decoders
have the drawback of sometimes estimating a vector that is not part of the
signal constellation. V-CP includes a novel solution to this problem, which
has a negligible effect on the algorithm’s complexity.

• V-LS has been compared to V-CP, with some remarkable results that indicate
that V-BLAST–based algorithms are not always faster, nor do they have much
worse error rates, than optimum decoders.

• The error-rate performance of V-CP has been compared to maximum-likelihood
decoding. Although sub-optimal, V-CP has been shown to be close to opti-
mum in many situations, and practically indistinguishable from optimum in
others.
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• Some peculiarities in the behavior of V-CP have been identified, such as com-
plexity spikes, dependence of complexity on SNR, and lattices of smaller di-
mensions being more difficult to decode than larger ones for low values of SNR.
These behaviors could significantly affect a practical application of V-CP and
related lattice decoding algorithms.

• The benefit obtained from reducing the channel matrix before executing V-CP
has been evaluated. It has been determined that, in most cases, the reduction
has a negative impact on the complexity of the receiver; its only apparent
benefit is in improving the stability of the algorithm.

• An extensive, architecture-agnostic, prospective study of the complexity of
V-BLAST, V-LS, V-SQR, and V-CP has been carried out. It is expected
that the results obtained will serve as the basis of future developments in the
implementation of these algorithms in practical applications.

• Prospective studies of the feasibility of using a commercial, general purpose
digital signal processor have been carried out for the V-BLAST and V-LS
algorithms. Results are encouraging, since performance was good even though
the DSP used is one generation behind and is not particularly optimized for
this task.

• A simulator platform for MIMO systems has been developed; it is detailed in
appendix B. Consisting of 5000 lines of code, it is a powerful tool to explore
new algorithms. All performance and complexity results presented in this
thesis were calculated with its help.

Much remains to be done in this area. Even though work in MIMO systems and
space-time codes can be traced back to at least 1998, it still has not left the research
labs. The perennial problem of receiver complexity is still present. Code design
and construction is still in large part an open field, as is constellation design. The
hypothesis that receivers have perfect channel state information needs to be tested,
as well as all the assumptions about the channel model.





Chapitre 9

Résumé en français de la thèse

9.1 Introduction

À
l’heure actuelle, la recherche mondiale dans le domaine des communica-
tions numériques sans-fil est de plus en plus élaborée. L’activité de développe-

ment cherche à s’adapter aux besoins en communication de chaque individu. La
quantité d’information disponible augmente de façon exponentielle.

Les systèmes sans-fil possèdent de forts avantages : on n’ a pas besoin de câbler
chaque bâtiment, et le signal transmis est capable de couvrir une grande surface, ce
qui facilite la diffusion de l’information.

Le canal radio a une capacité qui est rapidement dépassée par le volume d’ in-
formation que l’on souhaite transmettre. Aujourd’hui, l’ allocation de la ressource
(( spectre)) est considérée comme un problème prioritaire ; ressource qui devient de
plus en plus rare et en conséquence de plus en plus chère.

Heureusement, des techniques qui promettent une utilisation plus efficace du
spectre ont été proposées. Ces techniques, connues sous le nom de codage espace-
temps, exploitent une nouvelle forme de diversité, la diversité spatiale, en conjonction
avec la diversité temporelle pour obtenir une efficacité spectrale sans précédents.

La conception de ce type de codes, et d’algorithmes de réception, présente une
grande difficulté. Par ailleurs, trouver des récepteurs qui peuvent être implantés de
façon fiable et à des coûts raisonnables, est une condition nécessaire pour exploiter
ce type de codes.

Dans cette thèse la conception de ce type de récepteurs a été étudiée. Pour cette
étude, on a choisi les codes connus sous l’ appellation vertical layered codes ; leurs
performance a été déterminée et plusieurs algorithmes de réception ont été analysés
et comparés.
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9.2 Codes espace-temps : état de l’art

9.2.1 Description du problème

Une caractéristique des systèmes de communication sans fil est que le signal émis
suit de multiples chemins avant d’arriver à l’antenne de réception. Chacune de ces
réflexions du signal arrive à des temps différents et subit des atténuations différentes.
Quand ces réflexions s’ajoutent de façon destructive, le phénomène connu comme
évanouissement (fading) apparâıt. Pour avoir des communications fiables sur le canal
sans fil, il faut mettre en place de méthodes pour mitiger ces effets. La technique la
plus répandue est celle qui exploite la diversité.

Récemment, le même phénomène qui donne lieu au fading a été utilisé pour le
combattre. Les réflexions multiples peuvent être utilisées pour créer de la diversité ;
aucune autre ressource (comme bande passante ou puissance émise) n’est nécessaire.
Ces techniques sont utilisées ne pas seulement pour fournir de la diversité, mais aussi
pour augmenter le débit.

9.2.2 Définition d’un système MIMO

Les systèmes qui utilisent de multiples antennes en émission et en réception sont
connus comme des systèmes multiple-input, multiple-output (MIMO).

Dans un système MIMO, nT antennes sont utilisées comme émetteurs, et nR an-
tennes comme récepteurs. Les donnés sont séparés en nT groupes, et chaque groupe
est transmis par une antenne différente. Toutes les antennes émettrices sont synchro-
nisées par rapport aux symboles, utilisent la même bande de fréquences, et la même
constellation S = {s1, s2, · · · , s2b} ; b est le nombre de bits d’information véhiculés
par chaque signal en S. L’énergie moyenne par symbole est définie Es. Dans la suite,
on suppose que nR ≥ nT .

Le canal est supposé être non-sélectif en fréquence avec des évanouissements
lents. Il est représenté par une matrice H, avec nR files et nT colonnes. L’élément
hij est la fonction de transfert du canal entre l’émetteur j et le récepteur i. Les
éléments de H sont supposés être des variables aléatoires complexes gaussiennes,
indépendantes et avec distributions identiques, de moyenne nulle et puissance 0.5
par dimension. Le canal est supposé être constant pendant la transmission d’un bloc
de taille L× nT symboles ; il change d’un bloc à l’autre. On supposera dans la suite
qu’il n’a pas de mémoire entre blocs. Un canal avec ces caractéristiques est connu
comme un canal à évanouissements par bloc (block fading). Il est supposé que le
récepteur a estimé le canal sans erreur. Ce type de canal modélise raisonnablement
un canal à l’ intérieur d’ un bâtiment (modèle indoor).

Soit a = (a1, a2, ..., anT
)T le vecteur de symboles émis ; tous les éléments de a

appartiennent à la même constellation S, et ils partagent la même puissance moyenne
Es = E [|ai|2], 1 ≤ i ≤ nT . Le vecteur reçu r peut être écrit comme :
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r = Ha + n, (9.1)

où n est un vecteur de bruit ; ses éléments sont des variables aléatoires gaus-
siennes indépendantes symétriques circulaires de moyenne nulle et puissance N0 par
dimension.

9.2.3 Mesures de performance de systèmes MIMO

La performance (évaluée par le taux d’erreur) des systèmes MIMO peut être
mesuré comme un taux d’erreur par bit (Bit Error Rate, ou BER). Cependant,
comme le canal découpe le flux de donnés en blocs, il est aussi intéressant d’étudier
le taux d’erreur par bloc (BLock Error Rate, ou BLER. Une erreur de bloc est définie
comme l’apparition de au moins une erreur dans le bloc.

La probabilité d’erreur est normalement calculée en fonction du rapport signal
sur bruit moyen (SNR moyen, ou γ), qui est défini comme le rapport de la puissance
reçue sur chaque antenne et la puissance de bruit qui affecte chaque composante du
vecteur reçu :

γ =
E [|Ha|2]
E [|n|2] , (9.2)

ou | · | est la norme `2. Soit s = Ha ; alors,

E [|s|2] = E
[

nR
∑

k=1

|sk|2
]

= Es · nT · nR. (9.3)

Comme E [|n|2] = 2 · nR · N0, et en utilisant (9.3) et (9.2), le SNR moyen peut
s’écrire sous la forme :

γ =
Es · nT

2N0

. (9.4)

On suppose, dans la suite, que Es = 1. Cela implique que le SNR moyen vaut :

γ = nT /(2N0).

9.2.4 Limites sur la performance et capacité des systèmes
MIMO

Dans un premier temps, la capacité d’un système à une seule antenne est com-
parée avec celui d’un système MIMO. Pour un système à bruit gaussien additif et
évanouissements de type Rayleigh, la capacité est donné par :
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C = log(1 + γ|h|2). (9.5)

Ici, h est un scalaire connue par le récepteur. Si le SNR moyen est grand, une
augmentation de 3dB en γ donne un gain dans l’efficacité spectrale de un bit par
seconde par Hertz (bps/Hz).

L’équation (9.5) représente un système où toute l’énergie disponible est émise
dans un seul canal qui existe entre l’émetteur et le récepteur. On considère un
système où, sans augmenter la puissance émise, n signaux sont émis sur n canaux
indépendants. Ça veut dire que H = In. Dans un tel cas, la capacité est donné par :

Cn = n · log(1 + (γ/n)). (9.6)

L’équation (9.6) a une importance capitale, parce qu’elle fournit la justification
de l’étude et l’utilisation des systèmes MIMO. Grâce à l’utilisation de plusieurs ca-
naux, la capacité augmente d’un rapport donné par l’équation (9.5). Asymptotique-
ment, quand le nombre de canaux augmente, la capacité a comme limite γ/ ln(2),
ce qui implique une croissance linéaire en fonction de γ.

Bien évidemment, dans le cas général H 6= In et le canal présente des évanouisse-
ments et de l’interférence entre les signaux. Ces problèmes peuvent être résolus par
l’utilisation du codage ou d’autres techniques conçues pour cet effet.

L’expression générale de la capacité d’un système MIMO est :

C = E [log det(InR
+ (γ/nT ) · HH†)]. (9.7)

On doit remarquer que la capacité est une variable aléatoire. Quand nT est
constant et nR augmente, la capacité est donné par :

lim
nR→∞

C = nT log(1 + γ
nR

nT

)

= nT log

(

1 +
1

nT

· (γ · nR)

)

. (9.8)

Il est évident que, si nR augmente, on atteint la même capacité que celle d’un
système avec nT canaux indépendants et sans évanouissements, chacun avec un SNR
moyen égal à γnR.

Capacité de quelques combinaisons d’antennes

La probabilité de coupure (outage probability) d’un canal à évanouissements est
la probabilité que la capacité du canal dans un instant quelconque soit inférieure
qu’ une certaine capacité théorique Cth, pour des valeurs fixes de nT , nR, et γ.

Afin de déterminer la probabilité de coupure, la fonction de distribution complé-
mentaire cumulative (complementary cumulative distribution function, ou ccdf) est
utilisé. La ccdf est la probabilité que la capacité dans un instant quelconque soit
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plus grande qu’un seuil spécifié. Les figures 2.7 à 2.18 présentent la ccdf de plusieurs
combinaisons des antennes.

Remarques importantes sur la capacité moyenne et la probabilité de cou-
pure

Un aspect très intéressant des courbes de capacité moyenne est la variation de la
pente quand nR augmente. Les systèmes à une seule antenne présentent, comme on
l’attendait, une augmentation de 1 bps/Hz pour 3dB de puissance supplémentaire.
Par contre, pour les systèmes MIMO, la capacité moyenne augmente approximative-
ment de nT bps/Hz chaque fois qu’on double la puissance émise. Cela est équivalent
à avoir nT canaux indépendants.

Même pour des probabilités de coupure très faibles (environ 1%), et pour un
faible nombre d’antennes, les systèmes MIMO offrent une augmentation énorme de
la capacité par rapport aux systèmes à une seule antenne.

9.2.5 Une note sur la diversité

Une question intéressante que l’on peut se poser est : quelle est la diversité
générée par les systèmes MIMO? Rappelons-le, ce type de systèmes profitent de
la diversité spatiale et temporelle, mais au même temps, les antennes de réception
sont partagés par plusieurs antennes d’émission, ce qui introduit une interférence
supplémentaire et qui, nécessairement, aura un effet négatif sur la performance du
système.

Il est possible d’obtenir une expression générale pour la capacité. Quand nR est
très grand, la capacité est donné dans (9.8) :

lim
nR→∞

C = nT log

(

1 +
1

nT
· (γ · nR)

)

.

Cela suggère que nT voies de diversité ont été générées ; en outre, le SNR moyen
a été multiplié par un facteur nR. Ceci veut dire que l’ordre de diversité qui est
potentiellement disponible dans un système (nT , nR) est égal à D = nT · nR.

9.2.6 Codes espace-temps

Les codes espace-temps ont comme but d’exploiter l’énorme capacité offerte par
les systèmes MIMO en combinant les diversités spatiale et temporelle. Il existe trois
types de codes espace-temps : les codes ST en treillis, les codes ST en bloc, et les
codes ST en couches (layered). Cette thèse s’intéresse à un type particulier de layered
codes, connus sous le nom de ((codes espace-temps verticaux)).

Historiquement, les layered codes ont été les premiers codes proposés dans le
contexte des systèmes MIMO. Aujourd’hui, ils représentent la technique la plus pro-
metteuse pour augmenter la capacité des systèmes sans fils. Ils offrent une efficacité
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spectrale très grande, leur conception est relativement simple ainsi que l’architecture
des récepteurs capables de les décoder. En plus, ils ont des performances en termes
du taux d’erreur qui s’adaptent bien à la grande majorité des applications sans-fil.

Un code espace-temps associe une groupe de b bits d’information avec un vecteur
de code A = a1, a2, · · · , aL. A est un mot du code espace-temps. A représente un
bloc, et en conséquence il subit un évanouissement constant. Dans ces conditions,
on a déterminé que la probabilité d’erreur par paires d’un récepteur à maximum de
vraisemblance est bornée par :

P (C → E) ≤
(

r
∏

i=1

λi

)−nR

(1/2N0)
−rnR, (9.9)

ou r est le rang de la matrice A, qui dépend des mots de code C et E , et λi sont les
valeurs propres non nulles de A.

L’exposant du SNR dans l’équation (9.9) est appelé l’avantage de diversité du
code ; sa valeur maximale est nT ·nR. D’ autre part, (λ1λ2 · · ·λr)

1/r s’appelle l’avantage
de codage, est il donne une approximation du gain obtenu par l’utilisation d’un
système codé par rapport à un système non codé qui opère avec le même avantage
de diversité.

On doit remarquer que, même dans le pire scénario (c’est à dire quand r = 1), il
y a un avantage de diversité égal à nR, auquel il faut rajouter l’avantage de codage.

La conception des codes espace-temps présente un compromis entre la taille de
la constellation, la diversité, et le débit. Pour le cas d’une avantage de diversité
maximale (égale à nT ·nR), si la constellation utilisée est de cardinalité 2M signaux,
le débit maximal est M bits par seconde par Hertz.

La conception de bons codes espace-temps doit prendre en compte ce compromis,
ainsi que la complexité des récepteurs. Aujourd’hui, ce domaine, champ de recherches
intensives, est dans une phase prospective. Des codes très puissants et efficaces sont
connues, mais en général ils sont extrêmement difficiles (voire impossible) à décoder.

Les Layered Space-Time Codes

Les codes espace-temps en couches (layered space-time codes, ou LSTC) ont été
introduits par Foschini et Gans ([13], [14]). L’idée fondamentale est de séparer un
système (nT , nR) dans nT systèmes (1, nR). Les symboles émis sont estimés un à la
fois. Pendant la phase d’estimation de chaque symbole, les symboles qui n’ont pas été
encore estimés sont considérés comme de l’interférence. Le but est de pouvoir utiliser
toutes les connaissances développées pour les systèmes à diversité spatiale (1, nR).
Au même temps, une partie non négligeable de la capacité du canal est exploitée.
Cette méthode est connue comme Bell Labs layered space-time, ou BLAST.

Les avantages de BLAST sont sa simplicité et son efficacité spectrale. Les récep-
teurs BLAST sont aussi moins complexes que ceux pour d’autres types de codes. Ses
performances sont adéquates pour plusieurs applications. Son principal désavanta-
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ge, par rapport aux autres types de codes espace-temps, est leur performance reste
moins bonne.

On doit remarquer que la complexité des récepteurs est l’un des obstacles les
plus importants pour l’adoption des techniques espace-temps.

9.3 Les principes de BLAST Vertical(VBLAST)

9.3.1 Introduction

Même si la formulation de l’algorithme V-BLAST est très simple, il a été très
difficile de trouver des expressions pour mesurer ses performances tel que la probabi-
lité d’erreur ou la probabilité de coupure. Très récemment, quelques résultats, pour
des cas très particuliers, ont été reportés. De même, des résultats particulièrement
intéressants seront reportés dans ce rapport malgré que l’ objectif fondamental de
cette thèse soit orienté vers l’étude de la complexité algorithmique et la recherche
de nouveaux algorithmes de réception.

9.3.2 Codage V-BLAST

Les codes verticaux répètent les symboles émis une seule fois. Pour cette raison,
ils n’exploitent pas la diversité temporelle.

9.3.3 Détection V-BLAST : ordre, suppression et annula-

tion

La détection V-BLAST consiste à estimer chaque symbole émis en séquence.
À chaque pas de l’estimation, les symboles déjà estimés sont soustraits du signal
reçu r (c’est à dire, supprimés), et les symboles inconnus sont considérés comme de
l’interférence (c’est à dire annulés).

Il faut encore déterminer l’ordre d’estimation. L’un des aspects clef de V-BLAST
est que des ordres différents produisent des taux d’erreur différents. Soit Ki un ordre
d’estimation, définit comme un ensemble ordonné de nombres entiers k, 1 ≤ k ≤ nT .
Évidemment, il y a nT ! ordres possibles. L’un d’entre eux est optimal dans le sens
qu’il produit le taux d’erreur minimal. Soit l’ordre optimal Ko = {k1, k2, . . . , knT

}.
La méthode utilisée pour déterminer Ko est expliqué dans la suite. Pour l’instant,
on suppose que l’ordre optimal a été trouvé. La détection de aki

se fait en deux pas :
I. Suppression des symboles. On suppose i > 1. Soit h1,h2, . . .hnT

les colonnes
de la matrice du canal H. Si les symboles ak1 , ak2, . . . , aki−1

on été déjà estimés, alors
leur contribution à r peut être supprimée :

rki
= r − âk1hk1 − âk2hk2 − · · · − âki−1

hki−1
. (9.10)
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II. Annulation de l’interférence. Les symboles aki+1
, aki+2

, . . . , aknT
n’ont pas été

encore estimés. Cependant, grâce à la connaissance de H, ils peuvent être annulés.
L’annulation est synonyme à faire une pondération linéaire du vecteur reçu de telle
façon qu’un certain critère soit satisfait. Les critères les plus courants sont le critère
du forçage à zéro (zero-forcing) et le critère de l’erreur quadratique minimale (mi-
nimum mean-squared error ou MMSE).

Le critère MMSE offre une meilleure performance en taux d’erreur que le critère
zero-forcing dans le cas où le SNR moyen est faible. Cependant, il a un désavantage
important : le récepteur doit connâıtre la valeur de N0. Pour les SNR moyen grands,
MMSE et zero-forcing présentent des performances équivalentes. Donc, on se concen-
trera dans la suite sur le critère zero-forcing.

Le principe du zero-forcing est de trouver wki
∈ C1×nR tel que :

wki
H = [0, . . . , 0, 1, 0, . . . , 0]

où l’élément égal à 1 se trouve dans la position ki. Alors, âki
est donné par :

âki
= wki

rki
+ wki

n

= wki
Ha + wki

n. (9.11)

Cette procédure peut être interprétée d’un point de vue géométrique comme la
projection de rki

sur un vecteur orthogonal à l’espace vectoriel nT − i dimensionnel
qui est généré par les colonnes de H, ce qui correspond aux symboles qui n’ont pas
encore été estimés.

L’ordre optimal. L’ordre optimal est donné par le SNR moyen de chaque aki
: le

symbole avec le SNR le plus fort doit être détecté en premier lieu. Il sera suivi du
symbole le plus fort parmi ceux qui restent à détecter. Cette procédure se répète
jusqu’à ce que tous les symboles aient été détectés. C’est à dire, pour chaque i, aki

doit avoir un SNR plus grand que aki
, aki+1, ..., aknT

.
Le SNR post-détection de aki

peut être déterminé directement à partir de l’équation
(9.11) :

γki
=

|aki
|2

2N0‖wki
‖2

, (9.12)

où wki
est le vecteur utilisé pour annuler les symboles inconnus aki+1

, aki+2
, . . . , aknT

.
Pour déterminer ki il faut trouver le SNR moyen de tous les symboles et puis trouver
le plus fort.

L’efficacité spectrale de V-BLAST

Si chaque antenne émet un symbole par seconde par hertz de bande passante,
l’efficacité spectrale de V-BLAST est donné par :
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Φ = b · nT ,

ou b a été définit comme le nombre de bits d’information par symbole. Alors, le
débit maximal que l’on peut atteindre est b · nT · B, ou B est la bande passante.
À titre d’exemple, un système MIMO avec nT = 8, une constellation 16-QAM, et
une bande passante de 30kHz, a une efficacité spectrale de 32bps/Hz et un débit de
960kbps.

Capacité, probabilité de coupure et diversité de V-BLAST

Des expressions générales pour la capacité, la probabilité de coupure, et la proba-
bilité d’erreur de V-BLAST, ont démontré être très difficiles à trouver. Cependant,
quelques résultats fournissent une justification pour son étude, utilisation et adop-
tion.

Si on suppose que nT est très grand, en appelant α = nT /nR le rapport entre le
nombre d’antennes en émission et le nombre d’antennes en réception, la capacité de
V-BLAST mesuré en bps/Hz/dimension est donné de façon approximative par :

Cv ≈ α · log(1 + γ · (α−1 − 1). (9.13)

La probabilité de coupure Po est donnée en fonction du débit R et du SNR
moyen γ. V-BLAST a comme but de décomposer le canal MIMO en sous-canaux
indépendants. Chaque sous-canal subit l’effet du bruit et de l’interférence des autres
sous-canaux. La coupure est définie comme l’événement pour lequel le débit est plus
grand que la capacité d’un sous-canal quelconque, une fois que l’interférence a été
prise en compte.

Soit r = R/nT le débit de chaque sous-canal. La probabilité de coupure est donc :

Po = 1 −
nT
∏

i=1

G(i, γ, r). (9.14)

Il faut remarquer que (9.14) ne tient pas compte du bénéfice obtenu par le choix
de l’ordre d’estimation optimal. Dans ce sens, cette performance peut être considérée
comme la pire possible.

L’ordre de diversité pour le i-ème canal est (nR − nT + i). Ce résultat reste
valable indépendamment que l’ordre optimal soit utilisé ou non. Le bénéfice de
l’ordre optimal se traduit par une augmentation du SNR moyen de chaque sous-
canal. C’est à dire, l’ordre n’a aucun effet sur la pente asymptotique de la probabilité
de coupure.

Ces résultats, vus dans l’ensemble, montrent les bénéfices potentiels de V-BLAST
est fournissent une justification pour approfondir son étude.
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9.4 Considérations pratiques dans une implanta-

tion de V-BLAST

9.4.1 Introduction

Implanter V-BLAST pour des applications pratiques, soit sous forme matérielle,
soit sous forme logicielle, n’est pas une tâche facile. Parmi les questions à régler on
trouve :

• Quel est la meilleure méthode pour trouver la pseudo-inverse de la matrice du
canal ? On doit prendre en compte la stabilité numérique de l’algorithme ainsi
que sa rapidité ;

Quelle est la complexité algorithmique de V-BLAST?

•• Quels débits peut-on atteindre avec les processeurs modernes ?

• Quelles sont les opérations les plus complexes que faut-il réaliser ?

• Quelle quantité de mémoire est requise par V-BLAST?

• Quelle performance en termes de BLER peut-on atteindre avec les différentes
configurations du système ?

• Quelle est l’ influence du choix de L par rapport à la rapidité et la performance
de V-BLAST?

Les réponses à ces questions peuvent varier par rapport aux facteurs, en général
indépendants de l’algorithme lui-même, comme la architecture matérielle utilisé,
ou bien l’habilité des concepteurs et des outils informatiques utilisés pour optimi-
ser son exécution. Le but dans ce travail n’est pas de se concentrer sur de tels
détails d’implantation, mais plutôt d’obtenir des conclusions des propriétés et des
demandes inhérentes de l’algorithme. Une telle analyse est d’une importance fonda-
mentale puisqu’elle fournira les critères préalables à la conception d’une implantation
matérielle d’un récepteur, très souvent soumis à des contraintes économiques draco-
niennes. L’utilité de ce type de résultats plus généraux est de pouvoir être utilisés
pour faciliter l’implantation de V-BLAST dans n’importe quelles conditions et sous
n’importe quelles contraintes.

Plusieurs de ces questions partagent certains aspects : la performance, le débit,
la complexité. Ces aspects sont contenus dans la notion de complexité algorithmique.
Dans ce travail, la complexité est définit tout simplement comme le nombre total
d’opérations qu’un algorithme doit réaliser avant de conclure sa tâche.

9.4.2 Calcul de la pseudo-inverse de Moore-Penrose

On a trouvé, par simulation, que l’opération la plus complexe de V-BLAST est le
calcul de la pseudo-inverse de Moore-Penrose (MPPI) de la matrice du canal H. Il y
a plusieurs méthodes pour trouver la MPPI d’une matrice. Quatre d’entre elles sont
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étudiés ici, et la moins complexe est identifiée. D’autre part, leur stabilité numérique
est évaluée. Les quatre méthodes considérées sont :

i. Décomposition en valeurs singulières (SVD). La SVD est intéressante parce
qu’elle a une grande stabilité numérique quand la matrice H est mal conditionnée.
Évidemment, son désavantage est sa grande complexité.

ii. Formule pour MPPI. Quand (H†H)−1 existe, sa MPPI peut être trouvé avec
la formule suivante :

H+ = (H†H)−1H†. (9.15)

iii. Décomposition QR mince(Thin QR decomposition). La décomposition QR
mince d’une matrice H est donné par :

H = QR,

ou Q ∈ CnR×nT a des colonnes orthonormales, et R ∈ CnT×nT est une matrice trian-
gulaire inférieure. L’un des avantages le plus important de cette décomposition est
qu’elle peut être réalisée en utilisant un algorithme très simple, basé sur l’orthogo-
nalization de Gram-Schmidt.

iv. Décomposition QR. Similaire à la QR mince, sauf que Q ∈ CnR×nR est ortho-
normale ; R ∈ CnR×nT est triangulaire inférieure.

La décomposition QR est plus complexe que QR mince ; son intérêt est que Q
et R peuvent être mis à jour, sans avoir besoin d’être recalculées, quand H subit un
changement de rang 1.

Résultats sur la stabilité numérique

Aucun problème de stabilité numérique n’a été trouvé en simulation. Comme
conclusion, le choix d’une méthode de calcul du MPPI peut être fait basé seulement
sur la complexité.

9.4.3 Mesures de complexité

La complexité de chaque opération MPPI a été déterminée par simulation.

Les figures 4.1 à 4.4 montrent les valeurs obtenues pour Ob pour des systèmes
MIMO à plusieurs combinaisons d’antennes, utilisant une modulation 16-QAM.

Ces résultats suggèrent que la décomposition QR mince est la méthode la plus at-
tractive pour trouver la MPPI dans une implantation de V-BLAST. En conséquence,
tous les résultats qui suivent sont basés sur cette décomposition.

Cependant, il faut remarquer que la complexité est toujours trop grande pour
des applications à haut débit.
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9.4.4 Complexité de V-BLAST avec QR mince

Comme il a été signalé dans la section précédente, le nombre d’opérations par
bit, Ob, donne une idée générale sur la complexité. Dans la suite on verra comment
réduire cette complexité.

Cette section a pour but de classer les opérations requises par V-BLAST.
Les types suivants d’opérations sont proposés. Chaque type d’opération est iden-

tifié avec un symbole.

• Additions
· Additions faites pendant une multiplication de matrices (Amm)

· D’autres additions (Ao)

• Multiplications
· Multiplications faites pendant une multiplication de matrices (Pmm)

· D’autres multiplications (Po)

• Divisions (Do)

• Racines carrées (So)

• Opérations de mémoire (écriture ou lecture)
· Opérations de mémoire faites pendant une multiplication de matrices

(Mmm)

· Opérations de mémoire faites pendant une copie de matrices (Mcm)

· Opérations de mémoire faites pendant une opération de remise à zéro
d’une matrice (Mzm)

· D’autres opérations de mémoire (Mo)

Ob est définit comme :

Ob = Amm + Ao + Pmm + Po + Do + So + Mmm + Mcm + Mzm + Mo.

Il faut remarquer que ceci n’est qu’un classement possible des opérations réalisées
par V-BLAST.

Dans les tables 4.1 à 4.4 chaque type d’opération est donnée comme un pourcen-
tage d’Ob, pour L = 10. Ces résultats sont un premier pas vers l’identification des
types d’opérations qui devraient être optimisées en premier terme.

9.4.5 Le rôle de L dans la complexité de V-BLAST

V-BLAST est divisé en deux parties, la phase de préparation et la phase d’estima-
tion des symboles. La phase de préparation est réalisée une fois par bloc, et la phase
d’estimation des symboles est répétée L fois. Bien évidemment, une réduction de L
entrâıne une diminution de la complexité du récepteur, mais au même temps une
augmentation de BLER. Cette section présente quelques aspects du comportement
de V-BLAST en fonction de L.
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Soit Osetup le nombre d’opérations requises pendant la phase de préparation, et
Oest le nombre d’opérations requises pendant la phase d’estimation des symboles
(Ob = Osetup + Oest). Le BLER est donné par :

BLER ≈ 1 − (1 − BER)B, (9.16)

où B = b · nT · L est le nombre de bits d’information par bloc. La valeur minimal
possible de L est 1, ce qui veut dire que BLER a une borne inférieure donnée par
1 − (1 − BER)b·nT .

Pour un nT donné, Ob augmente de façon linéaire avec nR. Soient Osetup = x ·nR

et Oest = y · nR, pour x, y des constantes qui dépendent de l’implantation de V-
BLAST. Alors,

Ob ≈
Osetup + L · Oest

B
(9.17a)

∝ nR ·
(x

L
+ y
)

. (9.17b)

À partir de l’équation (4.4b) on peut voir qu’une augmentation de L entrâıne
une diminution (inversement proportionnelle) de Ob. La figure 4.5 montre le com-
portement de Ob pour plusieurs combinaisons du nR et L.

Il est intéressant de remarquer comment le BER provoque une amélioration du
BLER en fonction de Ob. En utilisant (4.3) et (4.4a) on peut trouver que :

BLER(Ob) ≈ 1 − (1 − BER)
nR(x+Ly)

Ob . (9.18)

La figure 4.6 montre le comportement du BLER comme fonction de Ob. On
s’aperçoit qu’après un certain seuil, une augmentation de la complexité du système
n’entrâıne pas une amélioration de son taux d’erreur.

La figure 4.6 suggère que, pour un système (nT ,nR) et une implantations par-
ticulière de V-BLAST, il y a ce que l’on pourrait appeler un (( point d’opération
optimal )) par rapport à la performance en BLER souhaitée et en fonction du choix
de L.

9.4.6 Résultats de simulation

La figure 4.7 montre l’effet de L sur V-BLAST pour un système (4,4). La forme
de la courbe de performance obtenue est en correspondance avec la performance
prédite par l’équation (9.17). Quand L augmente, Ob a une tendance asymptotique
vers Osetup.

Résultats de simulation sur le taux d’erreur de V-BLAST

Dans cette section, les résultats de simulation sont présentés concernant le BLER
en fonction du SNR moyen. Les figures 4.8 à 4.11 montrent ces résultats de per-
formance pour plusieurs combinaisons des antennes, largeur du bloc L = 10, et
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modulation 16-QAM. On peur arriver à deux conclusions importantes. La première
est que les récepteurs V-BLAST symétriques (nT ,nT ) ont un BLER très mauvais
par rapport aux configurations asymétriques. Une autre conclusion intéressante est
qu’une diminution de nR a un effet très prononcé sur la pente des courbes. Ça veut
dire qu’il y a augmentation de la diversité du système. Ceci confirme le résultat selon
lequel la diversité de V-BLAST augmente avec nR − nT . L’effet est moins prononcé
pour des valeurs importantes de nR.

Tenant compte de la très grande efficacité spectrale fournit par V-BLAST, ces
résultats sont extrêmement intéressants. Ils indiquent que V-BLAST a le potentiel
d’être un candidat dans la recherche de solutions pour améliorer les communications
sans fils.

9.4.7 Résultats expérimentaux

L’algorithme V-BLAST a été implanté sur un processeur de signaux numériques
(DSP) en virgule flottante TMS320C6711 qui opère à 150MHz et qui est capable de
fournir jusqu’à 900 MFLOPS. La complexité de l’algorithme a été mesuré en cycles
d’instruction en utilisant un profiler d’exécution de code. Comme le temps de cycle
d’instruction est connu et égal à Ic = 6.7ns, il est possible d’estimer le rendement
du DSP dans la pratique.

Le tableau 4.5 montre les cycles d’instruction qui sont requises par chaque bit
d’information reçu, et le débit correspondant en kbps, quand le DSP exécute l’algo-
rithme V-BLAST pour un système MIMO (2,3).

La figure 4.12 montre les cycles d’instruction requises par le même DSP en fonc-
tion de la longueur du bloc L. Le comportement général prédit par la figure 4.6 et
l’équation (9.17) sont confirmés par l’expérience.

Même un DSP, courant l’état de l’art, est loin d’être capable de fournir un débit
équivalant a ETHERNET (10Mbps) pour le petit système MIMO (2,3) considéré.
Ces résultats montrent clairement qu’il faut réduire le nombre d’opérations requises
par V-BLAST si on veut appliquer cette technique dans un système commercial.

9.5 V-BLAST comme un problème de moindres

carrés

9.5.1 Introduction

La décomposition QR mince peut être utilisé pour réduire la taille de V-BLAST
de (nR × nT ) à (nT × nT ), ce qui donne une réduction potentielle de la complexité.
Soit H = QR, où Q ∈ CnR×nT est une matrice avec des colonnes orthonormales,
et R ∈ CnT×nT est triangulaire supérieure. Alors, le problème des moindres carrés,
c’est à dire, trouver le vecteur x qui minimise ‖Hx−b‖2, est équivalent au problème
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de trouver x qui minimise ‖Rx − Q†b‖2. Comme R est triangulaire, ce problème
est résolu facilement.

Dans cette thèse, on propose une utilisation de cette technique d’une façon nou-
velle : elle est utilisée dans les deux phases de V-BLAST pour accélérer le calcul
des pseudo-inverses et aussi de l’estimation des symboles sans pourtant augmenter
le taux d’erreur. L’algorithme modifié est nommé dans la suite V-LS.

La version de V-BLAST, qui est probablement la plus rapide connue, est nommé
ici V-SQR. Elle utilise aussi la décomposition QR mince, mais d’une façon sous-
optimale pour éviter le calcul des pseudo-inverses.

Dans ce chapitre, ces trois algorithmes sont comparés. Il a été trouvé que, sous
certaines conditions, V-LS est plus rapide que V-SQR. Des scénarios où le taux
d’erreur de V-SQR est considérablement dégradé, sont aussi décrits.

9.5.2 Décomposition QR dans V-BLAST

V-BLAST peut être considéré comme un algorithme pour résoudre un système
d’équations linéaires qui ont été perturbés par le bruit. La solution du système doit
appartenir à la constellation S. Si le vecteur de bruit n est zéro, et le vecteur reçu
est r (voir équation (2.1)), alors V-BLAST donne la solution de moindres carrés au
problème de trouver â tel que ‖Hâ − r‖2 a une norme minimale.

En présence du bruit, V-BLAST ne trouve pas toujours la meilleur solution dans
le sens de moindres carrés ; par contre, il a une plus basse complexité que d’autres
méthodes qui trouvent de meilleur solutions.

L’idée consiste à utiliser la décomposition QR pour modifier le système r =
Ha + n, de la façon suivante :

r = QRa + n

r̃ = Ra + ñ. (9.19)

Les statistiques du bruit ne sont pas changées par cette opération, parce que les
colonnes de Q sont orthonormales. En utilisant ces idées, un nouvel algorithme,
nommé V-LS, est proposé. V-BLAST et V-LS produisent exactement les mêmes
résultats.

9.5.3 L’algorithme QR ordonné

Si la décomposition QR est utilisé comme décrit par (5.1), â peut être trouvé
d’une façon itérative. Par exemple, ânT

est donné par :

ânT
= fq

(

r̃nT

RnT ,nT

)

,

et, en général, pour 1 ≤ i < nT ,
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âi =
r̃k − d̂k

Rk,k
,

où le terme d̂k peut être considéré comme de l’interférence ; il est déterminé par :

d̂k =

nT
∑

j=k+1

Rk,jâj.

L’idée fondamentale du V-SQR est que la maximisation du SNR à chaque pas,
comme fait par V-BLAST, est équivalent à ordonner les éléments diagonaux de R
Rk,k du minimum au maximum. Alors, V-SQR fournit une procédure pour construire
une telle matrice R. Cette procédure entrâıne une permutation des colonnes de H.

9.5.4 Analyse de la complexité et résultats de simulation

Comparé à V-BLAST, la phase de préparation de V-LS réalise une décomposition
QR supplémentaire. Par contre, les pseudo-inverses sont réalisées sur une matrice
nT × nT . Quant à la phase d’estimation des symboles, on doit calculer une multipli-
cation vecteur-matrice supplémentaire, mais toutes les autres opérations dépendent
seulement de nT et pas de nT et nR.

Quant à V-SQR, il réalise une décomposition QR modifiée qui est plus complexe
que la décomposition typique, parce qu’on doit permuter les colonnes de Q et R
plusieurs fois. Aussi, les symboles estimés doivent être permutés pour les restituer
l’ordre correct.

L’effet de la longueur du bloc L sur les algorithmes est étudié. Comme V-LS et
V-SQR ont une structure identique à celle de V-BLAST, on espère que l’équation
(9.17) reste toujours valide.

Du point de vue de la complexité, un aspect important de V-LS et V-SQR est
que seulement deux parmi les opérations réalisées dépendent de nR. Ces opérations
sont la décomposition QR mince initiale de H et le calcul de x = Q†r. Pour cette
raison, il est intéressant d’étudier comment leur complexité dépend de nR pour de nT

constant. Aussi, les taux d’erreur par bloc de ces deux algorithmes sont comparés.

9.5.5 Taux d’erreurs par bloc

Les figures 5.1 à 5.4 montrent le taux d’erreur BLER de V-LS et V-SQR.
On peut conclure que, pour des valeurs de nR plus grandes que nT , le taux

d’erreur par bloc de V-SQR est similaire à celui de V-BLAST. Pour nT proche à nR,
pourtant, la différence devient significative.

Complexité comme fonction de L

Le comportement de Ob en fonction de L a été étudié. La contribution de la phase
de préparation du bloc à la complexité totale est réduite si L augmente, alors que
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celui de la phase d’estimation des symboles augmente. Les résultats sont montrés
dans les figures 5.5 à 5.7.

Comme conclusion, l’avantage de complexité présenté par V-SQR se voit réduit
si L augmente, avec un effet plus prononcé si nR est grand. Les raisons de cela
sont la complexité ajouté par la mise en ordre des symboles dans la phase d’esti-
mation (opération qui n’existe pas en V-LS), et l’importance réduite de la phase de
préparation si L est grand.

Complexité en fonction de nR

Pour nT constant, on a déterminé le comportement de Ob en fonction de nR. Les
résultats sont montrés dans la figure 5.8.

C’est évident que V-LS et V-SQR ont une complexité qui est significativement
plus petite que celle de V-BLAST. Cependant, quand nR est suffisamment grand,
V-LS est moins complexe que V-SQR.

La différence dans la pente de Ob entre V-BLAST et les deux autres techniques
qui sont présentées dans la figure 5.8 est remarquable ; la raison de cette différence
est l’influence moindre de nR sur la plupart des opérations réalisées par ces deux
algorithmes.

Chaque algorithme, V-LS et V-SQR, a des avantages et désavantages. Le tableau
5.1 présente un résumé des circonstances où chaque algorithme est une meilleur choix
que l’autre.

9.5.6 Résultats expérimentaux

Comme il a été décrit avant, V-LS a été implanté dans un DSP TMS320C6711
pour différents valeurs de L, avec nT = 2 et nR 3, 6 et 23. Les résultats confirment
les prédictions : la complexité diminue avec L et V-LS est substantiellement plus
rapide que V-BLAST pour des nR grands. Ces résultats son montrés dans les figures
5.9 à 5.11.

9.6 Décodage de réseau de points dans le contexte

des codes espace-temps verticaux

9.6.1 Introduction

Les algorithmes basées sur V-BLAST ont montré être très intéressants, perfor-
mants et leur complexité et taux d’erreur ont été étudiés. Cependant, V-BLAST fait
un compromis entre performance et complexité. Pour mieux comprendre ce que les
codes verticaux sont capables de fournir, il faut étudier de récepteurs capables de
mieux exploiter la diversité.
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On profite de cet étude pour répondre aux questions suivantes : combien on
gagne en taux d’erreur si on utilise des récepteurs plus performants ? Et, combien
on gagne en complexité par rapport à V-BLAST?

Ces questions seront répondues pour des constellations de signaux qui peuvent
être représentées comme une structure connue comme un réseau de points.

D’un point de vue géométrique, un réseau de points est un ensemble de points
à dimension n qui est régulier, périodique, et infini. La figure 6.1 montre un réseau
de points en deux dimensions, un point r ∈ R2 est le point du réseau le plus proche
à r.

D’une façon plus formelle, soit G une matrice réelle, avec n files et m colonnes,
ou les files sont linéairement indépendantes et n ≤ m. Le réseau de points généré
par G est défini comme l’ensemble de vecteurs :

Λ(G) = {uG : u ∈ Z
n}. (9.20)

La matrice G est appelée la matrice génératrice de Λ. Dans un réseau Λ, soit un
vecteur x ∈ Rm, le problème de trouver un vecteur ĉ ∈ Λ tel que :

‖ x − ĉ ‖ ≤ ‖ x − c ‖ ∀c ∈ Λ,

ou ‖ · ‖ est la norme `2, est appelé le problème du point le plus proche. Dans
le contexte du codage de canal, ce problème est semblable à celui du décodage
à maximum de vraisemblance. Quand les mots de code peuvent être représentés
comme des points d’un réseau de points, les décodeurs de réseau sont plus rapides
que les décodeurs ML généraux.

Comme ils ont une importance fondamentale dans plusieurs applications, les
décodeurs de réseau sont bien connus. Des algorithmes très efficaces et performants
ont été développés. On peut profiter de ces connaissances quand on utilise ce type
d’algorithmes pour les codes verticaux.

L’utilisation des décodeurs de réseau dans ce contexte n’est pas directe. On pro-
pose de modifications pour rendre ces décodeurs utilisables pour des constellations
QAM. Une limitation de ce type d’algorithmes quand ils sont utilisés pour décoder
de constellations finies est étudié et résolu d’une façon nouvelle.

9.6.2 L’utilisation des décodeurs de réseau dans le contexte
V-BLAST

Pour utiliser un décodeur de réseau de points avec un système MIMO, les problèmes
suivants doivent être résolus :

– comme SM n’est pas, en général, un réseau de points, une représentation en
réseau convenable doit être trouvé.

– un mapping entre la représentation en réseau de SM et S doit être trouvé,
parce que finalement le récepteur doit produire des estimations de am ∈ S ′.
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Comment représenter SM en réseau de points ?

Avant tout, une représentation réelle du système doit être trouvé. Un système
MIMO peut être représenté par un modèle purement réel ; dans l’équation (2.2), le
système est modélisé par :

r̃ = H̃ãm + ñ,

où tous les termes sont réels.

Une fois que le système a été réduit à un modèle purement réél, le récepteur doit
construire une matrice génératrice G à partir de H, et un vecteur x à partir de r,
tels que :

G = 2e1

[

<(H) =(H)
−=(H) <(H)

]T

,

x = r̃ + (2n − 1)e1G.

Maintenant le décodeur de réseau peut opérer sur G et x, pour trouver un vecteur
û tel que ûG soit le point du réseau le plus proche à x.

Le mapping de û vers S

Une conséquence importante d’utiliser un décodeur de réseau de points et non
pas un algorithme ML général est que le vecteur û est un élément du réseau ΛS, mais
pas nécessairement de la constellation ST . Spécialement pour des faibles rapports
SNR, il y a une grande probabilité que le point reçu se trouve en dehors du code, et
dans ce cas l’estimation faite par l’algorithme n’appartiendra pas au code.

Il y a quelques méthodes ((classiques)) pour résoudre cette situation. L’option la
plus simple consiste à déclarer un effacement, ce qui a le coût d’augmenter le taux
d’erreur. Une autre action possible est d’identifier quand cette situation apparâıt, et
alors obliger l’algorithme à chercher dans une région plus grande jusqu’à ce qu’un
point de la constellation soit trouvé. Cette méthode a, bien évidemment, le très gros
désavantage d’augmenter de façon très significative la complexité de l’algorithme.

Une troisième méthode consiste à projeter le vecteur reçu sur la frontière de
la constellation avant de chercher le point le plus proche. En outre de n’être pas
optimal, cette procédure a, elle aussi, le désavantage d’être beaucoup plus complexe.

On a proposé et étudié une nouvelle méthode pour résoudre ce problème. Même si
elle est sous-optimale, elle a l’avantage d’avoir un effet négligeable sur la complexité
du récepteur, et au même temps un taux d’erreur moins élevé que celui de la méthode
d’effacements.

La méthode proposé consiste à quantifier chaque élément de û qui se trouve
dehors du code au point de la constellation le plus proche.
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9.6.3 Un algorithme de décodage de réseau de points adapté
à V-BLAST

L’algorithme de décodage de réseau de points utilisé est basé sur l’algorithme
nommé Closest Point [34]. Ce décodeur est le plus rapide qui soit connu. Il a été
conçu pour des réseaux sans structure particulière. Au coeur de Closest Point se
trouve l’algorithme Decode, qui trouve le point le plus proche à x3 dans Λ(H3

−1).

La complexité de la procédure Decode dépend de la longueur des lignes de G.
Pour accélérer son opération, on peut réaliser une réduction de la base du réseau.
Les réductions les plus efficaces et les plus répandues son LLL et Korkine-Zolotareff ;
elles peuvent réduire le temps d’exécution de Decode d’une façon significative, même
si elles sont très complexes.

On a modifié l’algorithme pour décoder des codes espace-temps verticaux ; le
nouvel algorithme est appelé V-CP.

9.7 Considérations pratiques sur l’utilisation d’un

décodeur de réseau de points dans un système

MIMO

9.7.1 Introduction

On présente des résultats qui permettent de comparer la complexité et la per-
formance de trois algorithmes de réception : V-LS, V-CP sans réduction de base du
réseau, et V-CP avec réduction LLL.

Les taux d’erreur par bloc et par bit de V-LS et V-CP sont comparés pour
déterminer la sous-optimalité de V-LS. Les systèmes avec nR � nT sont parti-
culièrement intéressants, parce que V-BLAST a démontré être capable d’exploiter
d’une façon efficace la diversité spatiale dans cette situation.

Il est important de remarquer que, dans [34], les résultats sur la complexité ne
tiennent pas compte de la complexité ajoutée par la réduction de la base du réseau.
Ce fait surprenant, veut dire que, même s’il a été prouvé que Decode est plus rapide
quand la matrice génératrice est réduite, il n’a été prouvé que la complexité totale
(réduction plus recherche des points) soit en fait réduite. On présente les résultats
sur cette question.

En outre, la méthode utilisée dans V-CP pour résoudre le problème des points
qui se trouvent en dehors du code est comparée avec décodage basé sur le critère de
maximum de vraisemblance. Il est aussi comparé avec la méthode des effacements.
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9.7.2 Comparaison des taux d’erreur

On a comparé les taux d’erreur de V-LS et V-CP. Les figures 7.1 à 7.4 montrent
une comparaison entre les taux d’erreur par bloc, et les figures 7.5 à 7.8 comparent
les taux d’erreur par bit.

Quelques observations intéressantes peuvent être dérivées de ces figures. La
première est que pour nR = 2nT et BLER = 10−2, la différence entre V-LS et
V-CP est comprise entre un demi décibel et moins d’un décibel. Cela justifie le fait
que V-LS est vraiment très bon pour exploiter la diversité spatiale.

Cependant, quand nT ≈ nR la situation est différente. Le décodage du réseau de
points fournit un taux d’erreur évidemment supérieure à celui de V-LS.

V-CP réalise une estimation conjointe de tous les symboles. Dans un certain sens,
cela veut dire que la diversité du système est la même pour tous les éléments du
vecteur reçu. Il suffit de comparer la pente des courbes de BLER pour les systèmes
(n,n). Quand on utilise V-LS, la courbe indique que le récepteur ne peut pas exploiter
la diversité. Une courbe de ce type est presque une ligne droite. Par contre, la pente
des courbes de V-CP augmente avec le SNR moyen, ce qui indique que le récepteur
est capable d’exploiter la diversité.

Des résultats pour BER sont présentés dans les figures 7.5 à 7.8. Le même com-
portement est observé pour le BLER.

9.7.3 Comparaisons de complexité

Les figures 7.9 à 7.12 montrent une comparaison entre la complexité de V-LS est
celle de V-CP, sans avoir réalisé une réduction de la base du réseau.

Ob est présenté en fonction du SNR moyen, parce que, à différence de ce qui se
passe avec V-BLAST, la complexité de V-CP n’est pas constante mais change avec la
puissance du bruit. La raison est que pour des puissances de bruit importantes, il y a
une probabilité plus grande que le vecteur reçu se trouve loin d’un point quelconque
du code. Dans ce cas, l’algorithme doit chercher un ensemble plus important de
points.

Il y a plusieurs conclusions très intéressantes que l’on peut tirer à partir des
résultats présentés dans ces figures.

La première, et peut être la plus importante, est que la complexité de V-CP
pour des systèmes plus petits peut être significativement plus grande que pour des
systèmes plus grands. Les courbes de complexité montrent que les systèmes les plus
grands n’ont une complexité plus grande qu’à partir d’une certaine valeur du SNR
moyen.

Seulement une hypothèse est aventurée ici sur la cause possible d’un tel compor-
tement. La taille de l’ensemble de points à chercher augmente quand la puissance
du bruit augmente. Aussi, la taille diminue quand la dimension du réseau augmente.
Cependant, une fois que la puissance du bruit a atteint une certaine valeur, la taille
de l’ensemble est dominée par la dimension du réseau.
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La raison pour laquelle la taille de l’ensemble augmente avec la puissance du
bruit est que le point reçu est, avec une plus grande probabilité, localisé autour d’une
grande quantité de points du réseau, et aucun d’entre eux est particulièrement proche
de lui. Pour cette raison, l’algorithme doit examiner plusieurs points. Cet effet est
opposé par la dimension du réseau ; quand la dimension augmente, le volume occupé
par un nombre constant de points du réseau augmente aussi, ce qui en effet sépare
les points, et fournit de l’immunité par rapport au bruit.

Quand la puissance du bruit est réduite, le point reçu est, avec grande probabilité,
autour d’un point du réseau, qui sera trouvé rapidement si l’algorithme est efficace.
Le bruit a un rôle moins important dans ce cas, et l’effet qui détermine la taille de
l’ensemble de points est la dimension du réseau.

L’énorme complexité de V-CP pour des systèmes symétriques doit être remarquée
aussi. La figure 7.12 est très illustratrice.

La figure 7.12 est un exemple d’un autre phénomène qui a été remarqué. Il y
a un pic de complexité pour le système (8,8) à 21dB. Ces pics apparaissent de
façon aléatoire ; une nouvelle simulation avec les mêmes conditions n’aura pas pro-
bablement de pics. L’explication la plus probable (à confirmer) est que certaines
réalisations du canal forcent l’ algorithme V-CP à prendre beaucoup plus de temps
que le normal.

La complexité de V-CP n’a pas, apparemment, de bornes claires. Ceci pourrait
être un gros problème pour son implantation, parce que la plus part des applications
ont besoin d’un débit constant, et en conséquence, une complexité fixe ou, au moins,
bornée. Il y a deux possibles solutions à ce problème. La première est de forcer V-CP
à terminer après avoir cherché pendant un certain temps. Ceci aura un impact sur
le taux d’erreur.

Une deuxième possibilité est d’utiliser la réduction LLL. Les pics de complexité
n’ont pas été observés quand la matrice génératrice du réseau a été réduite. D’un
coté, ceci donne du support à l’hypothèse que les pics sont provoquées par des
matrices problématiques, parce que la réduction LLL donne de la stabilité à l’algo-
rithme Decode. D’ autre part, l’utilisation de la réduction n’a pas un effet positif sur
la complexité du récepteur.

Dans un certain sens, ce comportement de la complexité veut dire qu’elle peut
être modélisée comme une variable aléatoire. La complexité requise pour décoder un
vecteur dépend de la matrice du canal et des valeurs du bruit. Les résultats présentés
ici sont donc des valeurs moyennes. Pour mieux comprendre le comportement de V-
CP il faudrait obtenir des estimateurs de second ordre de la complexité.

Il est aussi intéressant de constater que la complexité de V-CP a un comporte-
ment asymptotique quand le SNR moyen augmente.

Complexité de la réduction LLL

La complexité de V-CP avec et sans la réduction LLL de la matrice génératrice a
été étudiée. Les résultats présentés sont ceux de la complexité totale du récepteur :
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la réduction plus le traitement des vecteurs reçus. Les figures 7.14 à 7.17 montrent
les résultats pour L = 10.

Les résultats sont clairs : pour la plupart de cas, l’augmentation de rapidité de
Decode est tout à fait insuffisante pour compenser l’augmentation de la complexité
provoqué par la réduction LLL.

La réduction LLL augmente la complexité de la phase de préparation de l’al-
gorithme et elle diminue celle de la phase d’estimation. Pour cette raison, le plus
grand bénéfice est obtenue quand une grande quantité de vecteurs sont traités par
bloc. Les figures 7.18 à 7.21 sont similaires à celles présentées plus haut sauf que le
largeur de bloc a été augmenté à 100.

Dans la plupart de cas, la réduction LLL est si coûteuse qu’elle termine par
augmenter la complexité totale du récepteur, même pour L = 100.

En bref, le seul bénéfice évident de la réduction LLL est la suppression des pics
de complexité.

9.7.4 V-CP et maximum de vraisemblance comparés

L’algorithme V-CP est comparé avec un récepteur basé sur le critère à maximum
de vraisemblance (ML) afin d’évaluer la perte en performance occasionnée par la
méthode proposée d’adaptation des algorithmes décodeurs des réseau de points au
problème des codes verticaux. V-CP est comparé aussi à un autre algorithme, nommé
V-Fixed, qui tout simplement réalise une assignation d’un point prédéterminé de la
constellation à chaque fois que le point estimé par Decode n’appartient pas à la
constellation.

Les figures 7.22 à 7.27 montrent les taux d’erreur obtenus.
Il a été déterminé que, dans tous les cas, V-CP est supérieur à l’algorithme V-

Fixed. Aussi, il a été déterminé que V-CP devient très proche de ML si nR augmente
par rapport à nT .

9.7.5 Commentaires

L’affirmation qui dit que les algorithmes basés sur V-BLAST sont toujours plus
rapides, pendant que les décodeurs de réseau ont de meilleures taux d’erreur, a été
montré n’être pas complètement vraie.

L’élection d’un algorithme ou d’un autre dépend sur les détails spécifiques d’im-
plantation. Si le taux d’erreur doit être minimisé à n’importe quel prix, alors V-CP
est évidemment le meilleur choix. Dans des situations plus réalistes il y a des autres
facteurs à considérer. Par exemple, on doit considérer les valeurs de SNR moyen
auxquels le récepteur devra fonctionner. Un autre facteur est la variance de la com-
plexité qui peut changer d’un vecteur reçu à un autre et d’un bloc à un autre.

Enfin, la méthode utilisée par V-CP pour réaliser le mapping des points en dehors
de la constellation a été justifié.
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9.8 Conclusions

Au début, l’objectif de cette thèse était d’explorer la performance et la com-
plexité des systèmes de communications MIMO basées sur les codes espace-temps
en couches. Après avoir analysé, implanté, simulé et comparé un grand nombre d’al-
gorithmes, c’est le moment de tirer quelques conclusions.

Les analyses de complexité présentées sont importantes, ou au moins utiles, parce
que elles fournissent l’information nécessaire pour réaliser d’implantations pratiques
dans le futur.

Des comportements intéressants et pas évidents ont été observés ; ils ont été
expliqués. Aussi, différentes situations on été identifiées et le meilleur algorithme a
été choisi.

Des modifications, nouvelles idées, et améliorations des algorithmes connus ont
été proposées. Des techniques de moindres carrés ont été utilisés pour développer
V-LS, une variante de V-BLAST. Le décodage des réseaux de points a été adapté
aux codes verticaux avec succès.



Appendix A

Example of a space-time block
code

T
he following example, taken from [38] (and originally proposed in [11]), clar-
ifies the decoding process of space-time block codes (STBC). Consider a (2,1)

system where the vector a = (a1, a2) is mapped to matrix A given by:

A =

[

a1 a2

−a∗
2 a∗

1

]

Note that A is an orthogonal matrix. The first row of A is transmitted at time t1
and the second at time t2. The received signals at times t1 and t2 are, respectively:

r1 = h1 · a1 + h2 · a2 + n1

and

r2 = −h1 · a∗
2 + h2 · a∗

1 + n2

where a∗ is the conjugate of a, the channel matrix H = (h1, h2)
T and n1, n2 are

noise samples as defined in section 1.1. In other words, the system model (2.1) is
applied to the rows of matrix A, and the block length L = 2. Let r = (r1, r

∗
2)

T ,
n = (n1, n2)

T , a = (a1, a2)
T , and H =

(

h1 h2
h∗

2 −h∗

1

)

; then this system can be described
by the following equation:

r = Ha + n

Let C be the set of all possible realizations of vector a; then, the maximum-
likelihood decoding rule is

â = argmin
c∈C

‖r− Hc‖2 (A.1)
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Figure A.1: Block diagram of a space-time block encoder. nT b information bits are
modulated in groups of b bits into vector a. This vector is used to
construct codeword matrix A, whose rows are then transmitted one at
a time.

Taking advantage of the fact that HH† = ρI, the received signal can be modified
to r̃ = H†r = H†Ha+H†n. Since H is orthogonal it does not change the properties
of the noise in any relevant way, and the decoding rule A.1 can be simplified to

â = argmin
c∈C

‖r̃ − ρc‖2 (A.2)

This simplification is the principal advantage of space-time block codes. Unfor-
tunately, constructing orthogonal matrices is not a trivial task and not many STBCs
are known.



Appendix B

A simulator platform for MIMO
systems

C
omputer simulation is an essential tool when studying the performance and
complexity of the different receivers that have been proposed for use in MIMO

telecommunication systems. Simulation also has an important role to play in ar-
chitecture exploration, indicating which portions of the algorithms need to be opti-
mized, and where the bottlenecks are found.

As part of the work of this thesis, a simulator platform, called MIMOSIM, has
been written to obtain all the complexity and performance results presented in this
thesis.

This simulator has been created from scratch in order to have the flexibility,
granularity and speed that are difficult to obtain with generic simulators or with
tools like MATLABTM.

MIMOSIM is divided into modules, which are called, in order, from a master
controller module. First, configuration is carried out from a text file that contains
the commands to be executed; then, the remaining modules are executed in a loop
until a certain condition (typically, a number of bit errors) is met.

The modules present at this time are: source, coder, modulator, channel, channel
estimator, receiver, demodulator, error counter, and a module that reports all the
results. Each module’s capabilities can be easily expanded.

At present, the modules are functional enough to create most typical simulation
scenarios. MIMOSIM can cycle through a range of parameters in a single simulation;
some of the main parameters that can be configured are:

• Selection of range of block sizes

• Selection of range of average SNR

• Type and average energy of constellation

• Number of errors to simulate
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• Selection of range of receiver modules to simulate

MIMOSIM also produces extensive reports of all performance and complexity
measurements. These reports are arranged in such a way that producing graphics
from them, using tools such as gnuplot or a spreadsheet, is very easy.

Among the results provided are: BER, BLER, true average SNR, and detailed
complexity measurements, which include counts of all arithmetic and memory op-
erations performed. Extensive debug information can be produced on demand,
including intermediate values of calculations.

Most of the debugging and complexity functions can be disabled, if simulation
speed is a priority.

The MIMOSIM simulator can be found, along with its documentation, at:

http://www.comelec.enst.fr/˜rodrigez/msim/index.html.



Appendix C

Papers published and submitted
for publication

D
uring the development of this thesis, four papers were written and submit-
ted for publication. They are reproduced in this appendix. The first paper

reproduced here is titled ”Towards Real-Time V-BLAST” and was submitted to
the IEEE Communications Letters. ”A Simulator Platform for MIMO Systems”
was submitted to the International Symposium on Personal, Indoor and Mobile
Radio Communications. The paper titled ”Least-Squares Techniques Applied to
V-BLAST” was submitted to the World Conference on Networks and Communica-
tions. Finally, ”Performance Study of Space-Time Communications Systems Based
on the V-BLAST Algorithm” was submitted to the International Conference on
Electronics, Communications, and Computers.
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Towards Real-Time V-BLAST

L. M. BazdreschandJ. Rodŕıguez-Guisantes.

-

Abstract: V-BLAST is a sub-optimalalgorithm designedfor MIMO communicationssystemswith

quasi-staticfading. It offers unprecedentedlyhigh spectralefficiency and conceptualsimplicity. It is

burdened,however, by the needto calculatethe Moore-Penrosepseudo-inverseof the channelmatrix. In

this letter it is confirmed,usingsimulation,that more than95% of the numberof operationsperformed

by V-BLAST arespentcalculatingthe pseudo-inverse.Then,two modificationsto V-BLAST that reduce

its complexity by a factor of approximately1.5 times the block length are proposed.The trade-off is

slightly larger memoryrequirements.Thereis no loss in bit-error performance.

December2, 2002 DRAFT
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I . INTRODUCTION

The Vertical Bell-Labs Layered Space-Time architecture(V-BLAST) [1], [2] is a communications

methodthatexploits themultiple pathspresentin a rich-scatteringchannelto provide enormouscapacity.

M antennasare usedto transmit and N to receive (M ≤ N ). The M antennastransmit at the same

time and on the samefrequency band,using the samesignal constellation.The channelis represented

by a matrix HN×M , where eachelementhij is the transfer function from transmitterj to receiver i.

The channelmatrix is assumedto be perfectly estimatedby the receiver, so that no distinction needs

to be madebetweenH and its estimate.The channelvariation is assumedto be negligible during the

transmissionof LM symbols;afterwards,a new channelestimationis necessary.

V-BLAST doesn’t useany kind of channelcoding or time diversity; rather, it attemptsto createM

independentchannelsbetweentransmitterandreceiver. To accomplishthis, V-BLAST needsthe Moore-

Penrosepseudo-inverse(MPPI) [3] of the channelmatrix H, andalsoof modified versionsof H where

somecolumnshave beenreplacedby zeroes.This operationis very complex, andcanprevent the useof

V-BLAST at high bit rates.

In this letter resultson the complexity of the pseudo-inverseoperation,for various sizesof M and

N , are presented.Theseresultswere obtainedby computersimulation.Then, two modifications to the

V-BLAST algorithmareproposedto reducethe numberof operationsrequiredby the pseudo-inverseby

a factor of approximately1.5L, without affecting the bit-error performanceof the system.The cost of

thesemodifications is a small increasein the memoryrequirements.

I I . QUANTIFYING V-BLAST COMPLEXITY

In order to evaluatehow well suitedV-BLAST is to operatein a high-speed,moderncommunications

system,a first stepis to counthow many operationsit requiresperreceivedinformationbit. This wasdone

by computersimulation,with instructioncountersin the appropriateplaces.The numberof operations

countedwasthendivided by the numberof bits processed,which wasbetween160,000and240,000in

all cases.

Two types of operationswere measured:those that involve an arithmetic or logic operationon a

floating-point number, and thosethat involve a memory access(read or write). It was found that the

MPPI accountsfor more than 95% of the operationsperformedby V-BLAST, as shown in Table I for

threeantennaconfigurations.

From thesenumbers,several observationscanbe made:

December2, 2002 DRAFT
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• The complexity of V-BLAST needs to be reduced if it is to be used in a high-data-rate application.

Even a configuration with a relatively small number of antennas requires thousands of operations

per bit, which become tens of billions of operations per second in a 10Mb/s wireless network

application, for example.

• Since the MPPI accounts for such a large percentage of the total complexity, the best approach for

reducing it involves reducing the number of pseudo-inverses that need to be calculated.

• The number of memory accesses needed is also very large, suggesting that in a practical imple-

mentation of V-BLAST the memory architecture will be at least as important as the arithmetic unit

architecture.

III. REDUCING THE NUMBER OF MPPIS: METHOD I

V-BLAST requires the calculation of the MPPI of a matrix with zero or more columns replaced by

zeroes. Let

B = pinv(A), i = 1, ..., N, j = 1, ...,M,

where A and B are two real matrices, with column k of A equal to zero; function pinv(·) denotes the

pseudo-inverse operation. It can be observed that row k of B is zero also. Let A
′ equal to A except for

column k, which is eliminated:

a′ij = aij , j = 1, ..., k − 1

a′ij = ai,j+1, j = k, ...,M − 1

where aij denotes the element of A in row i and column j. Then, if B
′ = pinv(A′),

b′ji = bji, j = 1, ..., k − 1

b′ji = bj + 1, i, j = k, ...,M − 1.

That is, the elements of B
′ outside of row k are the same as those of B. This suggests that the MPPI

of A can be more efficiently calculated if it is performed on A
′ instead, and then a row of zeroes is

inserted at row k in B
′ to find B.

A can be thought of as the coefficient matrix of a system of linear equations, with the coefficient of

variable ak set to zero in all equations. It is clear that ak doesn’t contribute to the solution of the system

and thus can be safely removed.

December 2, 2002 DRAFT
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V-BLAST calculates the MPPI of the channel matrix and then replaces one of its columns by zeroes.

This operation is performed a total of M times, zeroing a different column each time and keeping

those already zeroed. Without optimization, V-BLAST will perform M MPPIs on matrices of dimension

N ×M . If the above procedure is performed before each MPPI calculation, then V-BLAST will perform

one N ×M MPPI, one N × (M −1) MPPI, and so on until the last N ×1 MPPI. The average number of

columns operated on is M(M + 1)/2 instead of M2, which means the number of operations performed

is reduced by a factor of 1/2 + 1/(2M), or approximately 1/2.

IV. REDUCING THE NUMBER OF MPPIS: METHOD II

V-BLAST is usually presented as an algorithm that operates on the vector of symbols received by

the N antennas in the system. At first glance, this could seem to imply that M MPPIs will need to

be calculated for each received vector. However, during each coherence interval, L received vectors are

affected equally by the channel. This means that the processing order of the symbols will be the same

for all vectors in the interval. This, in turn, means that the same M MPPIs are needed for processing

each vector in the interval.

It is possible, then, to first calculate the M MPPIs that will be needed throughout the coherence

interval, and then instruct V-BLAST to use the stored MPPIs instead of calculating each one anew. If

the M MPPIs require P operations, then the application of V-BLAST to each vector will require PL

operations during each coherence interval. If the M MPPIs are calculated first and kept in storage, then

only P operations are needed for the whole interval. The number of operations required is reduced in

this manner by a factor of L.

V. MEMORY REQUIREMENTS

Method I requires an additional MN complex words to store the channel matrix without the zeroed

columns. Depending on the implementation of the MPPI, another MN words might be needed to store

the result, because some algorithms destroy the matrix being operated on.

For method II, M(MN) words are needed to store the M MPPIs. If this amount of memory is not

available, a compromise can be reached by storing those MPPIs for which there is space, and calculating

the rest once for each vector.

In the implementation used to generate the present results, the memory needed before optimization is

4N + 7M + 12MN . The optimizations increased the memory usage by 35% in the 4× 6 configuration,

52% in the 6 × 8 case and 67% in the 8 × 12 case.

December 2, 2002 DRAFT
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VI. SIMULATION RESULTS

Table II shows the number of operations, measured for the same antenna configurations as Table I,

after concurrently using the two methods described above. The factor column represents the division of

the number of operations required before the methods proposed were applied by the number of operations

required afterwards. The coherence interval L selected was 10. It can be seen that the factor of reduction

is close to 1.5L.

As expected, the bit-error rate of V-BLAST was not affected by the modifications made to it.

VII. CONCLUSIONS

Two methods have been proposed to significantly reduce the complexity of V-BLAST, making it more

attractive for high-speed applications, at the cost of some extra memory requirements. These methods

do not reduce the bit-error rate performance of V-BLAST. The actual number of operations reported in

this letter can vary among different implementations of V-BLAST; however, since the methods proposed

reduce the number of pseudo-inverses that need to be calculated, and their size, the optimization obtained

does not depend on implementation details.

December 2, 2002 DRAFT
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TABLE I

COMPARISON BETWEEN THE NUMBER OF OPERATIONS PER BIT REQUIRED BY THE MOORE-PENROSE PSEUDO-INVERSE

OPERATION AND THE REST OF THE V-BLAST ALGORITHM

memory arithmetic

M × N MPPI rest of V-BLAST MPPI rest of V-BLAST

4 × 6 2383.3 112.3 2285.2 46.5

6 × 8 7247.5 187.3 7100.2 74

8 × 12 18964.1 335.4 18315.9 129

.
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TABLE II

NUMBER OF ARITHMETIC AND MEMORY OPERATIONS REQUIRED BY THE MOORE-PENROSE PSEUDO-INVERSE

CALCULATIONS IN V-BLAST BEFORE AND AFTER THE OPTIMIZATION METHODS PROPOSED ARE APPLIED

memory arithmetic

M × N before after factor before after factor

4 × 6 2383.3 145 16.4 2285.2 151.3 15.1

6 × 8 7247.5 398.1 18.2 7100.2 429.3 16.5

8 × 12 18964.1 981.1 19.3 18315.9 1046.5 17.5

.

December 2, 2002 DRAFT
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Abstract - A computer simulator package for MIMO

systems is presented. This simulator is highly configurable,

easily extensible, and can generate exhaustive performance

and complexity measurements. Examples of use and capa-

bilities are shown. The simulator’s source code has been

released to the research community under the MIT open-

source license.

Keywords - V-BLAST, MIMO, algorithmic complexity,

performance measurements, simulation.

I. INTRODUCTION

Computer simulation is an essential tool when studying

the performance and complexity of the different receivers

that have been proposed for use in multiple-input, multiple-

output (MIMO) telecommunication systems. Simulation also

has an important role to play in architecture exploration,

indicating which portions of the algorithms need to be

optimized, and where the bottlenecks are found.

In this paper, we present MSIM, a powerful simulator

platform that has been successfully used to estimate the

performance and complexity of several MIMO algorithms,

and which is designed to be extensible, making it very easy

to add new algorithms or new functionalities.

This simulator is presented to the community un-

der MIT’s open source license (which can be found at

http://opensource.org/licenses/mit-license.php) with the aim

of attracting improvements and contributions from other

researchers.

We present our reasons for writing a MIMO simulator

from scratch, instead of using existing tools, in Section II.

In Section III we make a brief recount of the simulator’s

capabilities. Some examples of what can be done with MSIM

are presented in Section IV. Finally, we state our conclusions

in Section V.

II. JUSTIFICATION

There are many proven computational tools, commercial

and open-source, that can be used to simulate a MIMO

communications system. We have found, however, that it can

be very difficult, or even impossible, to use these tools for

detailed architecture exploration and complexity estimations,

because they are intended to solve more general problems.

For example, one might want to use the LAPACK pack-

age of mathematical functions to build a simulator. One

must then consider how LAPACK performs the calculations

needed by the simulator. For instance, there is the problem

of finding the Givens rotation of a matrix, needed for

calculating the QR decomposition.

A Givens rotation is defined by a pair of functions,

c(f, g) = f/
√

f2 + g2 and s(f, g) = g/
√

f2 + g2, where

f and g are complex numbers [2]. This apparently straight-

forward calculation needs to be done very carefully in some

limit cases, such as when f or g are very large, or when

one of them is zero [4]. The LAPACK code for the Givens

rotation takes all these limit cases into account, providing

extremely efficient and reliable code as a result.

In MIMO communication systems, however, it is known

that these limit cases will almost never appear. MSIM needs

to be able to find the QR decomposition of a random matrix

whose (complex) elements have a Gaussian distribution with

zero mean and variance 0.5 per dimension [1]. Since, in this

case, f and g will almost invariably be small and different

from zero, the general solution implemented in LAPACK

results in considerable inefficiencies.

Furthermore, modifying LAPACK to eliminate the un-

wanted functionality can prove to be harder than writing the

code from scratch. Writing all the mathematical functions we

need from scratch allows us to tailor the code precisely to our

needs, and facilitates the task of estimating its complexity.

For this reason, we decided to create MSIM from scratch;

we wish to contribute this simulator to the research commu-

nity in order to help others facing the same questions that

we did.

III. SIMULATOR CAPABILITIES

A. Organization

MSIM is divided into modules, which are called, in order,

from a master controller module. First, configuration is

carried out from a text file that contains the commands to

be executed; then, the remaining modules are executed in

a loop until a certain condition (typically, a number of bit

errors) is met.

The modules present at this time are: source, coder, modu-

lator, channel, channel estimator, receiver, demodulator, error

counter, and a module that reports all the results. Each

module’s capabilities can be easily expanded.

The receiver module presently includes a V-BLAST re-

ceiver with four different methods of calculating the pseu-
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doinverse of the channel matrix, and a receiver based on

maximum-likelihood decoding of a lattice.

At present, the modules are functional enough to create

most typical simulation scenarios. Some of the main

parameters that can be configured are:

• Selection of range of block sizes

• Selection of range of average SNRs

• Type of constellation for each Tx antenna

• Power of the constellation

• Number of errors to simulate

B. Reporting

When it is finished, the simulator produces extensive

reports of all performance and complexity measurements.

These reports are arranged in such a way that producing

graphics from them, using tools such as gnuplot or a

spreadsheet, is very easy.

Among the results provided are: BER, BLER, true av-

erage SNR, and detailed complexity measurements, which

include counts of all arithmetic and memory operations

performed. Extensive debug information can be produced

on demand, including intermediate values of calculations.

Most of the debugging and complexity functions can be

disabled, if simulation speed is a priority.

C. Performance

On an Intel Pentium 3 at 800MHz computer MSIM can

simulate a V-BLAST receiver at around 750,000 bits per

second for a system with 4 transmit and 4 receive antennas,

and 10 vectors per block.

IV. EXPERIMENTAL RESULTS

A. Performance estimation

As an example of performance simulation with MSIM,

consider a MIMO system with 4 transmit and 6 receive

antennas, where each transmitter uses a QAM-16 signal

constellation of average energy equal to 1, and with a

block size equal to 10 vectors (so that a block comprises

160 bits). Fig. 1 shows a comparison of two receivers, V-

BLAST [1] and a receiver based on lattice decoding [3].

The performance measure being used is the block error rate

(BLER), that is, the probability of at least one bit per block

being in error.

The V-BLAST estimates for BLER produced by MSIM

coincide with other results reported elsewhere, for example

in [7]

B. Complexity measurements

Figures 2 and 3 show how V-BLAST compares with the

lattice-decoder receiver, both in total number of arithmetic

operations (sums, multiplications, and square roots) and

memory accesses. MSIM can also produce detailed statistics

for each type of operation. The numbers shown are averages

per bit of information transmitted.
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Comparison between V-BLAST and a lattice-decoder

algorithm.
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Comparison of number of arithmetic operations required

for V-BLAST and a lattice-decoder algorithm.

C. Architecture exploration

To illustrate how architecture exploration can be done

with MSIM, consider the following problem. The lattice-

decoder receiver can potentially benefit if the channel matrix

is reduced according to the LLL criteria [5], [6]. The LLL
reduction is very expensive, but it only needs to be done once

per block, and the decoding of each block is faster when the

channel matrix is reduced. The architectural question arises:

in which cases is it worth the investment to carry out the

LLL reduction?

Fig. 4 can help answer this question. As can be seen, for

block sizes of around 10, there is a substantial increase in

complexity when the LLL reduction is carried out. For larger

block sizes, there is almost no advantage. The conclusion is

that for this particular MIMO system, the LLL reduction

has no tangible benefits.

As another example of the kind of architectural explo-

ration possible with MSIM, it was found that, for the V-
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Comparison of number of memory accesses required for

V-BLAST and a lattice-decoder algorithm.
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Effect of block size L on the complexity of the

lattice-decoder algorithm

BLAST receiver, 92 multiplications are needed per received

bit. However, 24% of these multiplications are done during

matrix multiplications. This allows an estimate of the maxi-

mum gain in performance that can be obtained by investing

architectural resources in a fast matrix multiplier.

V. CONCLUSIONS

In this paper, we have presented a simulator for MIMO

communications systems with the capacity to estimate algo-

rithmic complexity and error performance, and to carry out

architecture exploration. The source code of this simulator

has been released, with the intention of attracting improve-

ments from the research community. Some examples of what

can be done with current capabilities have been shown.

The MSIM simulator can be found at:

http://www.comelec.enst.fr/ rodrigez/msim.html.
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Least-Squares Techniques Applied to V-BLAST

Receivers
M. Bazdresch, Student Member, IEEE, J. Rodrı́guez-Guisantes

Abstract— In this paper, we propose and compare three

algorithms based on V-BLAST and examine their block

error rate and their algorithmic complexity for different

combinations of block length and number of antennas.

Of special interest are two algorithms that use techniques

from least-squares, specifically the QR decomposition, to

substantially lower the complexity of the original V-BLAST.

We present the algorithms in detail as well as some

simulation results. We show that the algorithm of choice

depends on the number of antennas in the system, the

block length L, and on whether the application at hand

requires low-error rates or low-complexity.

I. INTRODUCTION

V-BLAST is a receiver for multiple-input, multiple-

output communications systems [1]. Although subopti-

mal, it is attractive because it has substantially lower

complexity than optimal receivers. In addition, it can

effectively exploit space diversity, nearing optimal per-

formance when the number of receiver antennas in the

system increases in relation to the number of transmit-

ters.

Several implementations of V-BLAST have been pre-

sented in the literature since the original idea was pub-

lished; some examples are those implementations given

in [2]–[4]. These usually trade bit-error rate (BER)

for complexity, or vice-versa. Since V-BLAST’s BER

is suboptimal, and it is too complex to allow a feasible

hardware implementation for a relatively small number

of antennas, it seems useful to find algorithms that have

nearly the same or better BER than V-BLAST, while

decreasing its complexity.

In this paper, we focus on three different implemen-

tations of V-BLAST and compare them in terms of their

BER and their algorithmic complexity. We measured

their complexity empirically, by running each one in a

computer and counting each operation performed (both

arithmetic operations and memory accesses). This mea-

surement does not take into account potential gains to be

obtained by techniques such as parallelism; however, it

does offer a common ground for comparison and eases

the identification of each algorithm’s bottlenecks.

The first implementation we consider, which we sim-

ply denote V-BLAST, is taken directly from [1]. As

explained in Section III, we rearrange it to diminish

the required number of matrix pseudo-inverses. This

is our ”base-line” implementation. The second version

of the algorithm is based on an idea first proposed in

[5]: to consider V-BLAST as if it were a least-squares

algorithm to solve linear systems of equations. The QR

decomposition is used to reduce the size of the problem,

significantly lowering the complexity in some cases. We

call our version of this algorithm LS-BLAST. Finally,

we compare these algorithms to the one presented in

[6], which we denote V-SQR, that trades some BER

performance for a large reduction in complexity.

We compare these algorithms with different combina-

tions of block sizes and number of transmit and receive

antennas to find which one is better suited for each

particular case.

The simulation results we present were corroborated

by running these algorithms in a digital signal processor.

II. MODELS AND DEFINITIONS

Consider a communications system where a data

stream is demultiplexed into M streams, and each of

these sub-streams is fed to a transmit antenna. All M

antennas are symbol-synchronized, use the same fre-

quency band, and use the same signal constellation S.

The receiver consists of N antennas (N ≥ M ). The

channel is modelled as an N × M complex matrix H;

each component hij of H is taken from a Gaussian

distibution with zero mean and variance 0.5. Component

hij of H is the channel model between transmitter j and

receiver i. H is assumed to be full rank.

In this model, the received signal is given by

r = Ha + n (1)

where a = (a1, a2, . . . , aM ) denotes the vector of

transmitted symbols, and n = (n1, n2, . . . , nN ) is a

noise vector whose elements are complex Gaussian in-

dependent random variables of mean zero and variance

n0.

The channel is assumed to remain constant during

the transmission of L symbol vectors. Such a channel
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is frequently referred to as a block-fading channel [7].

Each set of L symbol vectors is known as a block.

Finally, the receiver is assumed to know H perfectly.

III. THE V-BLAST ALGORITHM

We re-write V-BLAST as follows:

Algorithm V-BLAST

Input: an N ×M matrix H, a set of L N × 1 vectors

ri, i = 1, . . . , L, and a signal constellation S.

Output: a set of L M × 1 vectors âi. Each vector âi

is such that its elements are in S and Hâi = ri + vi,

where vi is an error vector.

Step 1: Let i = 1, A = H

Step 2: Repeat M times:

2.i Find Gi = A+

2.ii Let ki = argminj ‖(Gi)j‖
2.iii Let oi equal to corresponding column in H

2.iv Remove column ki of A

2.v Let i = i + 1

Step 3: Repeat L times:

3.i Let i = 1
3.ii Repeat M times:

3.a Let w equal to row ki of Gi

3.b Let y = wHri

3.c Let âi,oi
= fq(y)

3.d Let z equal to column oi of H

3.e Let ri = ri − âi,oi
z

3.f Let i = i + 1

where (G)j is row j of G, H+ is the Moore-Penrose

pseudo-inverse of H [8], wH is the conjugate transpose

of vector w, and fq(·) is the appropriate quantizing

operation for the constellation in use.

V-BLAST iterates over each symbol vector, estimating

each symbol in turn. It starts by choosing the symbol

with best SNR, and then subtracts the estimated symbol

from the remaining ones. The rewritten algorithm makes

evident that only M pseudo-inverses are needed per

block.

Furthermore, at each step one whole column of matrix

A is removed; thus, the pseudo-inverses are calculated

on matrices of diminishing size. Step 2.iii is needed

to preserve the symbol ordering relative to the original

channel matrix H and not to matrix A.

When V-BLAST is presented as above, it becomes

apparent that its complexity can be divided in two

parts. One part, which we call the block setup phase,

is computationally expensive, but is performed only

once per block. Its complexity depends on M and N .

The other part, called the symbol estimation phase, is

computationally simpler but is performed many times.

Its complexity depends not only on M and N but also

on L.

IV. QR DECOMPOSITION IN V-BLAST

The estimation problem can be seen as one of solving

a system of linear equations perturbed by noise, with the

added constraint that the solution must be an element of

a constellation S. The QR decomposition can be used

to solve this problem; the basic idea is to convert Eq. 1

to:

r = QRa + n

QHr = Ra + QHn

x = Ra + v (2)

where Q is an N ×M matrix with orthonormal columns

and R is an M × M upper-triangular matrix.

The complexity of V-BLAST depends on the size of

H; at the cost of a matrix decomposition and a matrix

product, the complexity now depends on the size of R.

Exploiting this idea, V-BLAST may be written as

follows. It has the same inputs and outputs as V-BLAST.

Algorithm LS-BLAST

Step 1: Compute an N ×M orthonormal matrix Q

and an M×M upper-triangular matrix R, such that

H = QR

Step 2: let i = 1, A = R

Step 3: Repeat M times:

3.i Find Gi = A+

3.ii Let ki = argminj ‖(Gi)j‖
3.iii Let oi equal to corresponding column in H

3.iv Remove column ki of A

3.v Let i = i + 1

Step 4: Let i = 1
Step 5: Repeat L times:

5.i Let x = QH · ri

5.ii Repeat M times:

5.a Let w equal to row ki of Gi

5.b Let y = wHx

5.c Let âi,oi
= fq(y)

5.d Let z equal to column oi of H

5.e Let x = x− âi,oi
z

5.f Let i = i + 1

In comparison with V-BLAST, the block setup phase

needs an extra QR decomposition; in exchange, the

pseudo-inverses are performed on an M × M matrix.

Likewise, the symbol estimation phase has an extra

vector-matrix multiplication, but the size of all other

operations depends exclusively on M instead of both

M and N .
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We now prove that the algorithm LS-VBLAST and V-

BLAST as originally proposed are equivalent; that is, they

produce exactly the same output.

The key point is the calculation of y (in step 3.b of

V-BLAST and step 5.b of LS-BLAST). If both algorithms

compute the same y then they will produce the same

output.

Proof: Let yV be defined as in step 3.b of V-BLAST.

w = (G)ki

yV = wHri

= wH · (Ha + n)

= aki
+ wHn (3)

Let yL be defined as in step 5.b of the LS-BLAST

algorithm. To avoid confusion we denote the pseudo-

inverse of A by T.

z = (T)ki

yL = zHx

= zHQHri

= zH(Ra + QHn)

= aki
+ zHQHn

= aki
+ zHRH+n

= aki
+ eH+n

= aki
+ wHn (4)

where e is a vector whose ki-th element is equal to 1,

and all others are equal to 0.

Since yV and yL are equal, then the estimates calcu-

lated by V-BLAST and LS-BLAST are equal too.

We verified in simulation that these algorithms pro-

duce identical results in terms of bit-error rate.

V. THE SORTED QR ALGORITHM

This variant of V-BLAST was first proposed in [6]. In-

stead of calculating the channel matrix pseudo-inverses,

it relies on a heuristic that estimates the length of the

rows of H+ using the length of the columns of H

(orthogonal to the vector space of the columns corre-

sponding to as yet unestimated symbols).

This algorithm may be written as follows. Its inputs

and outputs are identical to those of V-BLAST.

Algorithm V-SQR

Step 1: Find the sorted-QR decomposition of H,

store it in Q and R.

Step 2: Let i = 1
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Fig. 1. BLER as a function of SNRavg for M = 2; N = 2, 3, 4;

L = 10. VB denotes V-BLAST; VS denotes V-SQR.

Step 3: Repeat L times:

3.i Let x = QH · ri

3.ii Find âi that solves Râ = x

3.iii Re-arrange âi to correspond to original order-

ing of columns of H

3.iv Let i = i + 1

The sorted-QR decomposition algorithm is given in

the original paper. Step 3.iii is necessary since the

ordering of the rows of matrix R does not correspond

to the original ordering of the symbols in each vector.

VI. SIMULATION RESULTS

We define the block-error rate (BLER) as the propor-

tion of blocks that have at least one error. The number

of operations required by each algorithm for estimat-

ing one bit of information is called Ob; this number

includes all arithmetic as well as memory operations.

For simplification, in this paper all operations are given

equal weight; more detailed results are available upon

request, or can be reproduced with our simulator, which

is publicly available [9].

All simulations were run until 2000 block errors

occurred. A 16 − QAM constellation was used in all

cases. The noise measure used was SNRavg , as defined

in [1].

A. BLER performance

Figs. 1 to 3 present the BLER performance under

several combinations of M and N . Results for LS-BLAST

are not shown, since they are identical to those of V-

BLAST.

We conclude that for values of N larger than M , the

BLER performance of V-SQR is similar to that of V-

BLAST. As M and N get closer, however, the difference

begins to be significant; for M = N = 8, it is more than

2dB.
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B. Complexity as a function of L

We set M = 4 and determine how Ob changes as a

function of L. The contribution to the block setup phase

complexity diminishes as L grows, while that of the

symbol estimation phase grows. Our results are presented

in Fig. 4 through 6.

The conclusion is that the complexity advantage of V-

SQR decreases as L increases, with a more pronounced

effect for large N . The reason for this is the slight

overhead in the symbol decoding phase of V-SQR as

compared to LS-BLAST.

C. Complexity as a function of N

Again we set M = 4 and determine how Ob changes

with increases in N , for L = 15. Our results are

presented in Fig. 7.

The benefits of both LS-BLAST and V-SQR are clear;

furthermore, for sufficiently large N , LS-BLAST has

lower complexity.

The difference in slope between the traditional V-

BLAST and the other two algorithms is worth noting;
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it is caused by the lessened influence of N upon the

symbol estimation phase of the algorithm.

VII. EXPERIMENTAL RESULTS

We ran these algorithms on a Texas Instruments 6711

digital signal processor (DSP) for different sizes of

L, with M = 2 and N equal to 3, 6 and 23. The

results confirm our predictions that the complexity per

bit diminishes with L and that LS-BLAST is substantially

faster than V-BLAST as N increases. For N = 3 there is

little advantage in using LS-BLAST; for N = 6, however,

the complexity is already reduced around 33%, and for

N = 23 the reduction is around 45%.

VIII. CONCLUSIONS

Three MIMO receiver algorithms based on V-BLAST

have been presented. Their performance in terms of

block-error rate and complexity has been analysed. Re-

sults on the behavior of each algorithm have been set

forth, showing that the choice of one algorithm over

another is not straightforward; it will depend on the

number of antennas in the system, the block length L,
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and on whether the application at hand requires low-error

rates or low-complexity. Experiments on a digital signal

processor validate these results.
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Abstract 
 

Capacity in wireless channels has become the 

prime aspect in mobile communications. Significant 

improvements are possible with MIMO channels -the 

use of multiple antennas at both the transmitter and 

receiver-. Reception in this type of channels is 

achieved with space-time coding by jointly designing 

channel coding, modulation and equalization, allowing 

an important increase in the throughput of band-

limited wireless channels. One of the most important 

space-time coding systems is the Bell-Labs Layered 

Space-Time (BLAST) coding technique. Different 

variants of this algorithm exist focusing on 

computational complexity reductions. One of these 

variants is the Vertical BLAST algorithm which has 

different realizations depending on the way the signal 

processing at the receiver is performed. In this paper, 

an analysis of these realizations is presented from a 

performance-complexity standpoint. These variants 

are the Singular-Value Decomposition, the Sorted-QR 

Decomposition and the Least-Square algorithm. It is 

shown that the latter presents the best performance-

complexity trade-off. 

 

1. Introduction 
 

Demand for capacity in wireless communications 

has been rapidly increasing worldwide. Nevertheless, 

the available spectrum is limited and capacity needs 

cannot be met without a significant increase in spectral 

efficiency. Advances in channel coding make it 

feasible to approach the Shannon capacity limit in 

systems with single antenna links (SISO - Single Input 

Single Output systems) [1]. However, even more 

significant improvements can be achieved with MIMO 

(Multiple Input - Multiple Output) systems by 

increasing the number of antennas at both the 

transmitter and the receiver [2]. It has been 

demonstrated that SISO systems can achieve spectral 

efficiencies between 1-2 bits/sec/Hz in cellular systems 

whereas MIMO systems with 8 antennas at each side 

can obtain 42 bits/sec/Hz, at an SNR of 20 dB [3]. 

Such spectral efficiencies highlight the potential 

advantages of MIMO systems. In general, capacity 

grows linearly with the number of transmit antennas, 

M, as long as the number of receive antennas, N, 

satisfies the condition N � M. As a result, MIMO 

systems are excellent candidates for high-data-rate 

future mobile systems, such as 3G and beyond [2]. 

MIMO systems were possible when space-time 

coding algorithms appeared. The principal idea of this 

approach is to jointly design modulation, coding and 

equalization. Foschini proposed a layered space-time 

architecture that approaches Shannon�s theoretical 

limits. This algorithm is called DBLAST (Diagonal 

Bell Labs Layered Space-Time) [3]. 

DBLAST architectures use multiantenna arrays in 

both transmitter and receiver, and a diagonal layered 

coding structure in which blocks of information are 

dispersed across diagonals in space�time. 

Nevertheless, this algorithm suffers from 

computational complexity, making it inappropriate for 

hardware implementations. Therefore, simplified 

versions of this algorithm were soon proposed 

presenting good performance-complexity trade-offs. 

An excellent simplified version of the DBLAST 

algorithm is the Vertical-BLAST (V-BLAST) 

technique [11]. This approach can reach tens of 

bits/s/Hz with multiple antennas and reduced 

complexity. 

In a V-BLAST system, the uncoded data stream is 

demultiplexed into M substreams, each being 
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transmitted simultaneously by one transmit antenna. At 

the receiver, received signals from N received antennas 

are detected by a decision feedback algorithm. At 

present time, multiple realizations of V-BLAST exist 

which aim to reduce its computational complexity. The 

aim of this paper is to analyze these realizations from a 

performance-complexity standpoint. The variants 

considered are the Singular Value Decomposition, 

Sorted QR Decomposition and the Least-Square 

algorithm [7]. In addition, these variants are compared 

to the near-optimum Maximum Likelihood (ML) 

algorithm proposed in [5]. The remainder of the paper 

is organized as follows. Section 2 gives a brief 

explanation of the overall system. Section 3, 4, 5 and 6 

describe the near-optimal ML detection algorithm and 

the three V-BLAST variants, respectively. 

Performance results and a comparison in terms of 

computational complexity and performance between 

these four algorithms are given in section 7. Finally, 

conclusions and future work are discussed in section 8. 

 

2. System Description 
 

The V-BLAST system is shown in Figure 1. It 

consists of M 16-QAM transmitters operating at the 

same frequency band at a symbol rate of 1/T symbols/s 

with synchronized symbol timing. For simplicity, we 

assume that the transmission is organized in bursts of L 

symbols. Power in each transmitter is proportional to 

1/M so that the total power is constant and independent 

of M. 

The receiver consists of N conventional QAM 

receivers. They receive the signals from all M transmit 

antennas. Flat fading is assumed, and the matrix 

channel transfer function is HMxN, where hi,j is the 

complex channel transfer function from transmit 

antenna i to receive antenna j (N�M). The channel is 

Gaussian-distributed with zero mean and variance 0.5.  

 
Figure 1: VBLAST architecture. 

 

In the model, it is assumed that the detection 

process is symbol-synchronous. Letting 

denote the vector of transmitted 

symbols, the corresponding received N-vector, r is 

T

Maaaa ),...,,( 21 

vHar �  (1) 

where v is a white-noise Gaussian vector. In addition, 

the channel is quasi-stationary implying negligible 

variations over the L symbol periods, and it is 

estimated accurately by means of a training sequence 

embedded in each burst. Hence, we will not make 

distinction between H and its estimate. This 

assumption is referred to as block-fading channel [4]. 

Each set of L symbol vectors is known as a block. 

Next, the analysis of the different decoding approaches 

is discussed. A near-optimal ML detection algorithm is 

described, followed by the V-BLAST variants. 

 

3. Agrell Algorithm 
 

This algorithm is an ML decoder approximation 

that computes the closest lattice point to the received 

vector, achieving excellent performance. However, the 

speed with which it decodes the transmitted blocks 

varies considerably depending on the channel matrix 

size. The algorithm is described in figure (2) and 

explained next [5]. 

  
Figure 2: Agrell Algorithm. 

 

Assume that a generator matrix G and an input 

vector x are given. By linear integer row operations, 

matrix G is transformed into another matrix, say G2, 

which generates an identical lattice [12]. The purpose 

of this transformation is to speed up the DECODE 

algorithm which finds the closest lattice point to the 

received vector x. G2 is rotated and reflected into a 

lower triangular form G3 so that all transformations 

give the same result. 
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It is essential to rotate and reflect the input vector x 

in the same way, so that the transformed input vector, 

x3, is in the same relation to the rotation of G3 as x is to 

the rotation of G. All this can be regarded as a change 

of the coordinate system. Now, the search problem has 

a form that is suitable for the DECODE procedure 

which finds the closest lattice point x�3 in this 

coordinate system. Reversing the operations of rotation 

and reflection produces x�, the lattice point to x in 

rotation of G.  Following these steps, the closest lattice 

point is found. 

The DECODE procedure is the heart of the lattice 

search algorithm. It divides matrix H3 (which is the 

inverse of G3) (see Fig. 2) into N sublayers of 

dimension N and searches in each sublayer for the 

closest lattice point to vector x�3. At each searching 

step, the dimension of the sublayer can be reduced, 

reducing in turn the complexity of the searching 

procedure. There can be other cases where 

dimensionality must be increased if no smaller distance 

is encountered. The procedure continues until the 

algorithm has successfully moved down to the zero-

dimensional layer, i.e. a lattice point. This point is 

stored as the potential output point, the lowest distance 

is updated and the algorithm moves up to continue 

searching for other potential lattice points without 

restarting the entire algorithm.  

The computational complexity of this algorithm 

can be estimated as 

LNMSMem ****7 2
  

22 ****5.2 LNMSAdd   
22 ****2.0 LNMSMult   
22 ****02.0 LNMSDiv   

224 ****1025.1 LNMSxSqrt �
  

where M and N are the number of transmit and receive 

antennas, respectively, L is the number of symbols per 

block and S is the number of bits per symbol (in our 

case each symbols carries four information bits, 16-

QAM). Mem refers to the storage requirements needed 

and Add, Mult, Div and Sqrt refers to computational 

complexity in terms of the arithmetic operations 

performed for each decoded bit. 

 

4. SVD Based V-BLAST Algorithm 
 

The Singular Value Decomposition approach 

constructs an upper bidiagonal matrix A where the V-

BLAST algorithm works on. The V-BLAST algorithm 

iterates over each symbol vector, estimating each 

symbol in turn. It starts by choosing the symbol with 

best SNR, and then subtracts the estimated symbol 

from the remaining ones. Furthermore, at each step a 

whole column of matrix A is removed; thus, the 

pseudo-inverses are calculated on matrices of reduced 

size. These pseudo-inverses are calculated only once 

requiring thus a much lower computational complexity 

than that of the ML algorithm. This algorithm is 

described in figure 3 [6]. 

The storage requirements and computational 

complexity of this algorithm are 

LNMSMem ****11 2
  (2) 

22 ****65.0 LNMSAdd     
22 ****68.0 LNMSMult     
22 ****023.0 LNMSDiv     

223 ****101.6 LNMSxSrt �
   

 
Figure 3: V-SVD algorithm. 

 

5. Least-Square Algorithm 
 

In comparison to SVD-V-BLAST, this algorithm 

needs an extra QR decomposition (Orthogonal Matrix 

Triangulation); nevertheless, pseudo-inverses are 

performed on an MxM matrix. The symbol estimation 

has an extra vector-matrix multiplication, but the size 

of all other operations depends exclusively on M 

instead of M and N. 

The estimation problem can be seen as solving a 

system of linear equations perturbed by noise, with the 

added constraint that the solution must be an element 

of the modulation constellation. To do this, the 

algorithm modifies the conventional QR 

decomposition to solve equation (1) as follows 

vQRar �   

vQRarQ HH
�   

vRax �  (4) 

where Q is an NxM matrix with orthonormal columns, 

R is an MxM upper-triangular matrix and v is a 

Gaussian-noise vector. It is important to note that some 

multiplications, divisions and square root operations 
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are transformed into additions, reducing the overall 

complexity in a considerable manner as compared to 

the other algorithms [7]. The Least Square algorithm is 

described in figure 4. 

 
Figure 4: V-Least-Square algorithm. 

 

The computational complexity of this algorithm is 

LNMSMem ****12.1 2
  (3) 

22 ****08.0 LNMSAdd     
22 ****075.0 LNMSMult     

223 ****103.4 LNMSxDiv �
   

224 ****1045.1 LNMSxSrt �
   

 

6. Sorted QR Algorithm 
 

In this V-BLAST variant, instead of calculating the 

channel matrix pseudo-inverses, it estimates the length 

of the rows of a matrix H+, using the length of columns 

of matrix H (H+ is orthogonal to the vector space H). 

This algorithm is an extension of the modified Gram-

Schmidt algorithm by ordering the columns of H in 

each orthogonalization step [10]. The algorithm 

applies the Gram-Schmidt algorithm to compute matrix 

R line by line from top to bottom and matrix Q column 

by column from left to right. This is done by 

computing the elements of matrix Q so as to compute 

the elements of matrix R in a recursive manner. For a 

thorough explanation of this algorithm, the reader is 

referred to [10]. 

 
Figure 5: Sorted QR Algorithm. 

 

The complexity of this algorithm can be estimated as 

LNMSTotmem ****5.0 2
  

22 ****035.0 LNMSAdd   
22 ****033.0 LNMSMult   

223 ****103.1 LNMSxDiv �
  

225 ****102.3 LNMSxSrt �
  

 

7. Results 
 

In this section, performance results of the four 

algorithms are presented. First, performance analysis is 

presented for Block Error Rate (BLER) as a function 

of the average signal to noise ratio (SNRavg). A block 

consists of 10 symbols and is defined as a single 

transmission [8]. Next, a complexity comparison in 

terms of arithmetic operations and storage 

requirements is presented. In this analysis, the number 

of operations required by each algorithm for estimating 

one bit of information is called Ob. Simulations were 

carried out with L = 10, and 16-QAM constellations 

and were run until 2000 block errors occurred.  

 

7.1 BLER Performance 
 

Table 1 and 2 present a comparison between 8x10 

and 8x12 antenna arrays for SNRavg=18 dB. As we can 

see from these tables, the V-SQR approach has the 

least computational complexity, but its BLER is 

considerably degraded. The best BLER is obtained by 

the ML algorithm, but its computational complexity 

higher. The algorithm that shows the best complexity-
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performance trade-off is the Least-Square algorithm 

(V-LS). 

 

 
Table 1: Performance analysis. 

 

 
Table 2: Performance analysis. 

 

Figure 6 presents the BLER performance of the V-

LS and the ML algorithms for 2x4 and 2x6 MIMO 

systems. The V-SVD and V-SQR approaches are not 

shown in the figure since they have the same 

performance as the V-LS algorithm. 

From the figure we can see that the performance of 

both algorithms is practically the same; nevertheless, 

the V-LS algorithm is less complex. On the other hand, 

by introducing another pair of receive antennas, the 

performance improves significantly since a gain of 4 

dB is achieved, which means that we can save 

transmission power. 

 

 
Figure 6: BLER vs SNRavg M = 2; N = 4, 6. 

 

Finally, figure 7 and 8 show simulation results for 

the ML, V-LS and V-SQR algorithms for 8x10 and 

8x12 arrays. It is important to note that the ML 

algorithm presents a 1dB improvement; however, the 

other algorithms (V-LS and V-SQR) present a 

complexity reduction of a factor three and six 

respectively.  

 

7.2 Computational Complexity 
 

As complexity regards, tables 3 and 4 show the 

computational requirements of each algorithm. First 

column indicates the total storage requirements, and 

the following columns indicate the number of 

additions, multiplications, divisions and square root 

operations. All of these for each decoded bit. First row 

corresponds to the ML algorithm, second row to the V-

SVD approach, third row to the V-LS algorithm and 

fourth row to the V-SQR decomposition. 

 

 
Figure 7: BLER vs SNRavg M = 8; N = 10. 

 

 
Figure 8: BLER vs SNRavg M = 8; N = 12. 

 

It is clear that the V-LS algorithm has the best 

trade-off. It is important to note that in this algorithm, 

multiplications, divisions and square root operations 

are reduced and replaced by addition operations.  

Finally, figures 9 and 10 show the overall 

computational complexity, Ob, as a function of SNRavg 

for 8x12 and 8x10 MIMO systems. As we can see, the 

V-SQR algorithm presents the lowest computational 

complexity. Nevertheless, its BLER behavior is not 

quite efficient. The second smallest computational 

complexity belongs to the V-LS algorithm which, 
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added to its BLER performance, becomes the best 

algorithm from a complexity-performance perspective.  

 

 
Table 3: Complete hardware complexity. 

 

 
Table 4: Complete hardware complexity. 

 

 
Figure 9: Ob vs. SNRavg M = 8; N = 12. 

 

 
Figure 10: Ob vs. SNRavg M = 8; N = 10. 

 

8. Conclusions and Future Work 
 

In this paper, three MIMO receiver procedures 

based on the V-BLAST algorithm and one based on 

the near-optimal ML algorithm have been presented. 

The performance and complexity of each algorithm 

have been analyzed and compared in order to 

determine the algorithm that is best suited for hardware 

implementation. It has been shown that MIMO systems 

can achieve much higher data rates than conventional 

SISO systems. This explains why space-time coding 

has been considered for standardization purposes in the 

third generation mobile communication systems (3G) 

where high rate multimedia services are required. It 

has also been shown that implementing an algorithm 

not only has to do with its overall performance but also 

with its computational burden.  

Future work is focused on two aspects, the 

hardware implementation of the V-LS algorithm in 

DSP or Programmable Logic Device platforms, and 

the improvement of the overall system performance by 

introducing channel coding techniques, either trellis or 

block, to the MIMO system. 
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[32] D. Wübben, R. Böhnke, J. Rinas, V. Kühn, and K. D. Kammeyer, “Efficient al-
gorithm for decoding layered space-time codes,” IEE Electronic Letters, vol. 37,
no. 22, pp. 1348–1350, Oct. 2001.
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