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contenu de cette thèse aussi bien sur la forme que sur le fond doit énormément,
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Résumé

De plus en plus souvent, en voiture ou en avion par exemple, la sécurité des personnes repose
sur le bon fonctionnement de systèmes informatiques. Pour concevoir des systèmes ayant le
niveau de fiabilité requis, il est nécessaire d’employer des méthodes et des outils spécifiques, en
commençant par des formalismes de description appropriés.

Les langages de programmation synchrones, dont Esterel [BdS91], Scade/Lustre [HCRP91]
ou encore Signal [GBGM91], concilient parallélisme et déterminisme. Ils sont donc bien adaptés à
la description de systèmes embarqués critiques, pour lesquels prédictibilité et reproductibilité du
comportement sont hautement souhaitables, voire impératifs. Fondés sur un modèle mathéma-
tique à la fois simple et puissant de discrétisation du temps, ces langages facilitent la vérification
et la certification des programmes et de leurs implémentations.

Dans ce document nous nous intéressons à la génération de code optimisé et certifié (par une
preuve mathématique) pour le langage Esterel. A cette double exigence de performance et de
rigueur, nous en ajoutons une troisième : la réutilisabilité. Il existe en effet tout une gamme de
compilateurs Esterel, industriels ou académiques, qui permettent à partir d’un même code source
Esterel de générer des automates de contrôle (machines de Mealy), des circuits digitaux, du code
C, VHDL, Verilog, etc. Nous nous concentrons sur les difficultés communes à l’élaboration de ces
différents compilateurs, c’est à dire celles dues au langage Esterel lui-même plutôt que spécifiques
à un type de traduction donné, avec l’ambition de spécifier et prouver des algorithmes à la fois
performants et génériques.

Notre contribution consiste d’une part à clarifier des difficultés connues, formalisant et prou-
vant des algorithmes dérivés de compilateurs existants, d’autre part à proposer de nouveaux
formalismes et algorithmes que nous avons implémenté dans notre propre compilateur Esterel.

Après une réflexion sur la sémantique du langage Esterel qui nous conduit à une révision
technique de celle-ci (dans sa forme), nous nous attachons à comprendre et traiter les problèmes
posés par la compilation des boucles en Esterel, c’est à dire l’exécution répétée d’un même
bloc de code. L’idée apparemment banale d’itération soulève en effet dans le langage Esterel et
ses variantes des problèmes spécifiques ardus nécessitant une attention particulière [Ber99], non
seulement pour détecter les usages incorrects des structures de boucles, mais aussi pour compiler
efficacement les boucles correctes.

Pour obtenir un schéma de compilation à la fois efficace, prouvé et portable nous pro-
posons d’étendre le langage par la définition d’une nouvelle primitive “gotopause” permettant
d’exprimer des branchements à la fois non locaux et non instantanés. Grâce à cette instruction
originale nous pouvons décrire la compilation des boucles comme une réécriture des programmes,
consistant à encoder progressivement les boucles à l’aide d’instructions “gotopause”. Nous par-
venons ainsi à traiter les difficultés posées par les boucles par un prétraitement des programmes
(preprocessing) indépendant du type de traduction ultérieure choisi.

Après une brève présentation du langage Esterel et une introduction à la compilation certifiée,
nous décrivons ici les grandes lignes de notre travail dans ses trois composantes: la sémantique
d’Esterel, l’extension du langage et la vérification et la compilation des boucles.
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Esterel: le modèle réactif synchrone

Esterel est un langage de programmation de haut niveau dédié à la spécification de systèmes
réactifs. A l’inverse des systèmes classiques (dit transformationnels) qui reçoivent des données
puis calculent un résultat et se terminent, un système réactif maintient une interaction continue
avec son environnement. Il est soumis en permanence à des sollicitations extérieures auxquelles
il doit répondre de façon appropriée dans des délais imposés. Les systèmes d’exploitation temps
réel, les circuits digitaux, les protocoles de communication, ou encore les interfaces homme-
machine sont des exemples de tels systèmes.

Dans l’approche synchrone [BB91, BCE+03] adoptée par Esterel pour la programmation des
systèmes réactifs, tout calcul est supposé instantané:

• Le temps s’écoule en une suite d’instants logiques appelée horloge.

• A chaque instant a lieu une réaction qui calcule les sorties du programme en fonction de
ses entrées et modifie s’il y a lieu son état interne.

• Chaque réaction est instantanée. Toutes les grandeurs mises en jeu par le programme
basculent de leur ancienne vers leur nouvelle valeur simultanément et instantanément. En
particulier les sorties sont disponibles sans retard sur les entrées.

Esterel est un langage concurrent. Dans un programme, de multiples composants peuvent
s’exécuter en parallèle. Les communications entre composants parallèles sont supposées être
instantanées:

• Les composants parallèles d’un programme partagent la même horloge

• Les composants parallèles d’un programme communiquent par l’intermédiaire de signaux
booléens: un signal est présent si émis dans l’instant, absent par défaut.

• La présence comme l’absence d’un signal est diffusée instantanément. En d’autre termes,
l’information de présence/absence est accessible de façon cohérente et instantanée par tous
les composants parallèles du programme.

Esterel est un langage impératif. Des comportements complexes peuvent être construits au
moyen de structures de contrôle classiques telles que compositions en séquence ou en parallèle,
boucles, instructions conditionnelles, exceptions, etc. Par exemple, le programme ci-dessous
émet le signal O dès que les signaux A et B (attendus en parallèle) sont reçus, à condition que R
ne soit pas reçu avant:

abort
[ await A || await B ];
emit O

when R

Exprimée au moyen de règles de sémantique à la Plotkin [Plo81], la sémantique comportemen-
tale logique [BG92, Ber93b] d’Esterel donne une description simple et non ambiguë du langage,
qui respecte les principes énoncés plus haut. Elle spécifie ainsi pour l’exemple précédent que si
A, B et R sont reçus simultanément alors O n’est pas émis, la construction “abort ... when R”
ayant priorité sur l’instruction “emit O”.

Le langage Esterel et la sémantique comportementale logique sont présentés et formellement
définis au Chapitre 2, où sont introduits par ailleurs les outils et les techniques formelles util-
isés dans la suite du document (notions d’occurrence, contexte, bisimulation, équivalence de
programmes, etc.).
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Compilation certifiée

Un compilateur traduit un programme depuis un langage source vers un langage cible
[ASU86]. On dit qu’il est correct s’il préserve le comportement des programmes. Prouver la
correction d’un compilateur exige donc de disposer de:

• une spécification de la structure et du comportement des programmes, c’est à dire une
définition de la syntaxe et de la sémantique des deux langages considérés,

• un critère pour la comparaison des comportements source et cible,

• une description de la traduction.

Une fois ces éléments réunis, il est possible de chercher une preuve mathématique de la
correction de la traduction.

L’idée de certifier ainsi un compilateur n’est pas nouvelle [MP67] et a fait l’objet de nom-
breuses publications (cf. [Dav03]), mais sa mise en oeuvre reste en général extrêmement complexe.
Le langage Esterel, et plus généralement les langages synchrones, nous semble constituer de ce
point de vue une cible idéale et atteignable. De part leur champ d’application – systèmes à forte
criticité – et parce qu’ils sont soigneusement formalisés autour d’un petit nombre de structures
primitives, nous pensons que le jeu en vaut la chandelle.

Aussi le travail présenté dans ce document peut-il être vu comme un prolongement d’efforts
antérieurs (cf. Chapitre 1), visant à fournir la spécification complète d’un compilateur Esterel
accompagnée de la preuve de sa correction, sans pour autant sacrifier la performance.

Une sémantique déterministe

Les programmes Esterel imposent des dépendances entre les signaux. L’instruction suivante
par exemple émet le signal B si et seulement si le signal A est absent:

present A else emit B end

Bien que dépendante de l’absence de A, l’émission de B a lieu au même instant que le test
sur A et non après (un instant plus tard au moins). Cette simultanéité peut conduire à des
incohérences si A dépend de B par ailleurs. Considérons par exemple le programme suivant, où
la construction “signal S in p end” déclare le signal local S pour le code p:

signal S in
present S else emit S end

end

Le signal S est-il présent ou absent lors de l’exécution de ce programme?

• Si S est supposé présent alors il n’est pas émis et donc ne peut pas être présent, par
définition de la présence/absence d’un signal. Contradiction.

• Si au contraire S est supposé absent alors il est émis donc présent. Contradiction1.

Bref, S ne peut être ni présent ni absent. En d’autres termes, ce programme n’admet aucun
comportement cohérent. Conformément à cette analyse informelle, la sémantique formelle du
langage ne définit pour lui aucun comportement. Il est incorrect.

1Le test sur S et l’émission éventuelle de S se produisent au cours d’un même instant, donc non seulement
l’émission dépend du résultat du test mais le résultat du test lui-même dépend de l’émission éventuelle de S.
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De façon duale, la sémantique comportementale logique définit deux comportements possibles
pour le programme:

signal S in
present S then emit S else emit O end

end

Si S est supposé présent alors il est émis et O ne l’est pas. Si S est supposé absent alors il n’est
pas émis, mais O l’est. Ces deux comportements sont conformes aux hypothèses de synchronie
énoncées plus haut et formalisées par les règles de la sémantique comportementale logique.

Cependant cette forme de non déterminisme caché – O peut être émis ou ne pas l’être – n’est
pas en pratique jugée satisfaisante. Un tel programme est donc déclaré incorrect. En général on
dit d’un programme qu’il est logiquement correct [Gon88] si, à tout moment de son exécution
et pour tout input, il admet un et un seul comportement possible.

Dans ce document, nous proposons de reformuler la sémantique comportementale logique
d’Esterel de façon à assurer qu’elle ne définit jamais plus d’un comportement possible pour
un programme et une séquence d’inputs donnés, de façon à ce que, par construction, tous les
comportements définis par la sémantique révisée soient logiquement corrects.

Concrètement, plutôt que de définir un nombre quelconque de comportements qu’il faut
ensuite dénombrer, il s’agit d’assurer localement, au fur et à mesure, c’est à dire à chaque
déclaration de signal local, qu’une et une seule alternative – présence ou absence du signal – est
non contradictoire.

Dans la sémantique que nous proposons, pour le code “signal S in p end”, le signal S est:

• présent si à la fois:

– il est émis par p s’il est supposé présent dans p,

– il est émis par p même s’il est supposé absent dans p (i.e. contradiction),

• absent si à la fois:

– il n’est pas émis par p s’il est supposé absent dans p,

– il n’est pas émis par p même s’il est supposé présent dans p (i.e. contradiction).

Remarquons qu’il ne s’agit pas ici de modifier la sémantique sur le fond, c’est à dire de revoir
la définition du comportement des programmes corrects, mais de la transformer dans sa forme
en simplifiant l’analyse de correction et la manipulation des programmes incorrects.

Cette sémantique déterministe est décrite au Chapitre 3.

Un langage étendu

Avec le développement de générateurs de code C rapide pour le langage Esterel [CPP+02,
Pot02, EKH04], nous constatons que les techniques de compilation employées diffèrent fortement
de celles préalablement utilisées pour la synthèse efficace de circuits. Par conséquent nous avons
souhaité, autant que possible, fonder notre réflexion sur le code source Esterel plutôt que sur
tout autre format de représentation dérivé, de façon à assurer la généralité de nos contributions.

Force est de constater néanmoins que pour compiler les boucles il faut les remplacer par des
structures de plus bas niveau. C’est pourquoi nous avons choisi d’étendre le langage Esterel à
l’aide d’une nouvelle construction “gotopause”. Elle permet de sauter d’un point à un autre du
programme sans contrainte de localité, mais en consommant un instant logique. L’exécution ne
reprend son cours au point de destination qu’à l’instant suivant le saut.
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Dans l’exemple suivant, le signal A est émis au premier instant d’exécution, puis C dans un
deuxième instant. Le signal B n’est jamais émis.

emit A;
gotopause 1;
emit B;
1: pause;
emit C

Parce qu’elle comporte un délai, “gotopause” est une instruction simple. En particulier, au
contraire des boucles “loop ... end” (voir ci-dessous) qui n’imposent aucun délai entre itérations,
sa compilation en C comme en circuits ne pose aucune difficulté.

Chapitre 6, nous détaillons la formalisation du langage étendu, donnant sa sémantique et
démontrant qu’elle étend la sémantique du langage original. Pour ce faire, nous avons recours
à la notion d’état [Mig94] pour décrire l’avancement de l’exécution d’un programme en lieu et
place de celle de résidu utilisée traditionnellement pour formaliser la sémantique comportemen-
tale logique d’Esterel. Concrètement, il s’agit de remplacer le calcul direct du programme à
exécuter au prochain instant par un calcul indirect reposant sur la définition des points de con-
trôle actifs du programme. Nous montrons la correction de cette substitution, puis spécifions
l’instruction“gotopause”comme une simple modification de l’état : ajout d’un point de contrôle
actif correspondant à la cible du saut.

Au delà des problèmes liés à la compilation des boucles, nous pensons que cette nouvelle
instruction permettra à l’avenir d’exprimer à l’aide de transformations de programmes d’autres
optimisations qui ne sont pas exprimables en Esterel non étendu. De plus elle permet d’encoder
naturellement des automates en Esterel, palliant ainsi à un manque évident du langage original.

La compilation des boucles

En Esterel, grâce à l’instruction “loop ... end”, il est possible de répéter l’exécution d’un
même bloc de code. Par exemple, le programme ci-dessous incrémente la valeur de la variable V
à chaque instant d’exécution:

loop
V := V+1;
pause

end

L’instruction “pause” indique que l’exécution doit être interrompue – la réaction en cours se
termine – pour reprendre à l’instant suivant.

Boucles instantanées

Malheureusement il est très facile d’écrire des boucles incorrectes. L’oubli de l’instruction
“pause” dans l’exemple précédent conduit au programme absurde suivant, avec un instant qui
ne se termine pas:

loop
V := V+1

end

De façon à éviter ce genre d’erreur – appelée boucle instantanée – il semble raisonnable
d’imposer de terminer chaque corps de boucle par une instruction “pause”. Mais cette solution
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n’est pas tenable en pratique, comme illustré Chapitre 1. Plutôt que d’imposer des restrictions
syntaxiques fortes sur la structure des corps de boucles, Esterel fait le choix d’une vérification
d’ordre sémantique en interdisant qu’une itération commencée dans l’instant ne se termine dans
le même instant.

Cette interdiction est, par nature, dynamique. Le programme suivant se comporte correcte-
ment jusqu’à la réception du signal I:

await I;
loop
V := V+1

end

Aussi faut-il vérifier à la compilation que de telles erreurs ne pourront pas se produire à
l’exécution. Chapitre 4, nous proposons une caractérisation des boucles instantanées et un algo-
rithme efficace pour les détecter à la compilation en utilisant des techniques d’analyse statique.
Nous apportons la preuve de la correction de cet algorithme et procédons à une analyse de ses
performances.

Schizophrénie

Une fois les boucles instantanées éliminées, il reste à compiler les boucles correctes. Cette
opération se révèle particulièrement délicate [Ber99] car, bien qu’une seule itération puisse être
complétée à chaque instant, une même réaction peut englober plusieurs itérations partielles
et en particulier faire référence à plusieurs instances distinctes d’un même signal local (même
déclaration).

loop
signal S in
present S then emit O end;
pause;
emit S

end
end

Dans cet exemple, la déclaration du signal S est locale à la boucle. A chaque itération corres-
pond une nouvelle instance du signal S. Au deuxième instant d’exécution, la première itération
se termine avec l’émission de S et la deuxième commence avec l’exécution du test “present S
then emit O end”. Pourtant O n’est pas émis : le test porte sur une nouvelle instance du signal
S qui n’a aucun lien avec l’instance de S émise précédemment. Par conséquent, ce programme
ne doit pas être confondu avec le programme suivant, où la déclaration du signal S est placée à
l’extérieur de la boucle, qui se comporte différemment:

signal S in
loop
present S then emit O end;
pause;
emit S

end
end

En résumé, lorsqu’un signal est local à une boucle, il peut être nécessaire de distinguer au
cours d’une même réaction plusieurs instances de ce signal. Un tel signal est dit schizophrène.
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Chapitre 5 nous expliquons pourquoi les signaux schizophrènes compliquent fortement la
compilation des programmes qui en comportent. Puis nous proposons une définition générale de
la schizophrénie fondée sur la pose de marqueurs dans le code.

En Esterel, la sémantique de la boucle se définit par dépliage dynamique. Une boucle est une
séquence infinie dont les composants sont obtenus par copie du corps de boucle initial, au fur
et à mesure des itérations. En utilisant des marqueurs préservés par l’opération de copie pour
identifier les déclarations de signaux locaux, il est possible de localiser les signaux schizophrènes:
il suffit pour cela de comptabiliser le nombre d’occurrences d’un même marqueur rencontrées en
un instant.

Enfin nous développons un algorithme efficace pour identifier les cas de schizophrénie à la
compilation (par analyse statique).

Réincarnation

La schizophrénie peut être éliminée par une simple réécriture des programmes [Mig94]: la
duplication des corps de boucles. Pour l’exemple précédent, le résultat de cette duplication est:

loop
signal S in
present S then emit O end;
pause;
emit S

end
end

=⇒

loop
signal S in
present S then emit O end;
pause;
emit S

end;
signal S in
present S then emit O end;
pause;
emit S

end
end

Aucun des deux signaux locaux du programme résultant n’est schizophrène. Alors que le
programme initial a besoin de deux instances simultanées d’un même signal S pour s’exécuter, le
second utilise deux signaux S, mais ne nécessite qu’une seule instance pour chacun. Evidemment,
les deux programmes se comportent de la même façon.

Cette technique, parfaitement correcte et tout à fait générale, n’est pourtant pas satisfaisante.
En effet, si plusieurs boucles sont imbriquées, il faut alors dupliquer récursivement les corps de
boucles, ce qui peut conduire à une croissance exponentielle de la taille du programme. Nous
détaillons ces différents points au Chapitre 7.

Traduction de “loop” en “gotopause”

Grâce à l’instruction “gotopause”, nous décrivons Chapitre 7 une réécriture des programmes
Esterel qui permet d’éliminer les instructions “loop ... end”, par exemple:

loop
signal S in
present S then emit O end;
pause;
emit S

end
end

=⇒

signal S in
present S then emit O end;
1: pause;
emit S

end;
signal S in
present S then emit O end;
gotopause 1;

end

11



Les raisons qui motivent cette transformation sont les suivantes:

• L’utilisation de l’instruction “gotopause” ne génère pas de boucle instantanée.

• L’utilisation de l’instruction “gotopause” ne génère pas de schizophrénie2.

• La croissance de la taille du code est quadratique au plus.

Bref, cette transformation guérit la schizophrénie sans croissance exponentielle de la taille
du code. Nous formalisons l’algorithme correspondant et prouvons sa correction: il préserve la
sémantique du programme initial.

Enfin, en appliquant cette transformation de façon sélective et non systématique, c’est à
dire en mettant à profit la détection de la schizophrénie décrite au Chapitre 5, nous obtenons
un algorithme final, qui, tout en conservant les bénéfices précédemment énoncés, se révèle en
pratique quasi-linéaire.

Nous démontrons le bien fondé de notre méthode par la preuve mathématique de sa correction
ainsi que par une implémentation dont nous mesurons les performances (Chapitre 8).

Plan

• Nous décrivons le contexte et les motivations de notre travail (Chapitre 1).

• Nous présentons le langage Esterel et la sémantique comportementale logique (Chapitre 2).

• Nous revisitons la sémantique comportementale logique pour éliminer le non déterminisme
à la source et mieux comprendre les erreurs dans les programmes (Chapitre 3).

• Nous définissons formellement les boucles instantanées (Chapitre 4) et la schizophrénie
(Chapitre 5).

• Nous étendons le langage avec une nouvelle construction “gotopause” entièrement formal-
isée (Chapitre 6).

• Nous spécifions un prétraitement efficace des programmes Esterel qui détecte les boucles
instantanées (Chapitre 4) et guérit la schizophrénie (Chapitre 7).

• Nous prouvons la correction de notre algorithme (Chapitres 4, 5, 6 et 7).

• Nous l’implémentons (Chapitre 8).

2Plus généralement, l’instruction “gotopause” ne génère pas problème de même nature que les boucles instan-
tanées ou la schizophrénie. Même si elle autorise des sauts en “arrière”, elle ne permet pas d’exécuter le même
code plus d’une fois par instant.
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Chapter 1

Introduction

Nowadays, more and more embedded computer systems are being used for safety-critical appli-
cations [Sto96], resulting in an ever-increasing demand for reliable software and hardware design
methods and tools. From nuclear power plants, to planes, cars, or medical appliances, the correct
operation of computer systems is vital to ensure the safety of the public and the environment.

In addition to functional and timing requirements, designers of safety-critical embedded
systems have to cope with non-functional constraints such as limited resources or predefined
architectures. Many formalisms, languages, and tools have been developed or updated to support
(part of) these complex modeling, specification, and programming tasks. For instance, numerous
profiles (i.e. extensions) of the UML [OMG03] modeling language have been proposed to deal
with real-time intensive applications [Dou97, LGT98, SR98]. As another example, the AAA
methodology (Algorithm-Architecture Adequation) and SynDEx tool [GLS99] developed in the
AOSTE research team in INRIA – our team – aim at providing ways to specify and automatically
synthesize mappings of algorithms onto custom heterogeneous distributed architectures.

The paradigm of synchrony [BB91, BCE+03] has emerged as a simple and mathematically-
sound foundation for the design of systems expressing a high level of concurrency, while main-
taining deterministic, thus predictable and reproducible system behaviors. Time is assumed as
divided into discrete instants. Concurrent threads run in lockstep (to one or several clocks). Com-
munications are instantaneous. Several programming languages have adopted the synchronous
approach, in particular the three French pioneers: Esterel [BdS91], Lustre [HCRP91], and Signal
[GBGM91].

In contrast with traditional thread-based or event-based concurrency models that embed no
precise or deterministic scheduling policy in the design formalism itself, synchronous language
semantics and compilers take care of all scheduling decisions, synthesis, and validation steps. As
a consequence, there can be no ambiguity about the behaviors and interactions of concurrent
threads. In particular, programs are guaranteed to behave the same whatever the execution
platform, which is more uncommon than thought, but obviously very convenient (and sometimes
mandatory) for the design of safety-critical applications.

It should be noted here that, because of the instantaneous communication hypothesis, purely
synchronous formalisms or languages are not well suited for dealing with distributed architec-
tures, including multiprocessor systems. In general, more powerful abstractions are required,
such as the globally asynchronous locally synchronous (GALS) paradigm [Cha85]. But synchro-
nous components still occur there as fundamental building blocks.

The solid mathematical framework common to all synchronous languages facilitates vali-
dation and certification, as it enables formal reasoning about programs and implementations.
A lot of works have indeed been concerned with the testing and model checking of synchro-
nous systems, for example for Esterel in [Bou98], for Lustre in [HLR92, BCPD99], or Signal in
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[KNT00, MRBS01], to only cite a few. However, whereas code generation has been extensively
considered from the point of view of language features, such as arrays [Mor02], or performance,
latch optimization for instance [STB96], not many efforts have explicitly aimed at establish-
ing the formal correctness of the corresponding code generators, apart from a few noticeable
exceptions which we shall discuss later in this introduction.

Nevertheless, a designer wants not only to convince himself that his design is correct, but
also that the software or hardware automatically generated from the design is correct. As a
result, a formalized or even certified code generator (by means of a mathematical proof) is a
must-have utility in a design chain for safety-critical applications.

Automatically deriving provably correct interpreters or compilers for formally specified pro-
gramming languages is one way to go. It typically consists in defining first a meta-language
for the description of some family of programming languages. This includes frameworks for the
description of the syntax (i.e. grammar) and semantics (i.e. interpretation) of these languages.
Then, a meta-translator of such descriptions into interpreters or compilers is defined. Finally,
a proof of the correctness of this translator must be completed. This approach led for instance
to the Centaur system [BCD+88], which can be used to automatically derive language specific
environments, including interpreters, from formal language specifications (for some subclass of
natural semantics [Kah87] specifications). It has been applied to Esterel in [Ber90]. Similarly,
provably correct compiler generators have been built, for example in [Pal92].

Of course, as the family of supported languages or language features gets wider, or when
the number of code generation and optimization techniques considered goes up, then the defin-
ition and proof of the translation become increasingly difficult. Therefore, focusing on a single
language, or even a unique compiler, makes sense as well. In fact, it is still unclear whether a
compiler both competitive and formally certified can be built for a mainstream language such
as C or Java.

In this document, we concentrate on the synchronous language Esterel. Its syntax is imper-
ative, fit for the design of safety-critical embedded systems where the control-handling aspects
prevail. In addition to traditional control-flow operators, it defines suspension and preemp-
tion mechanisms compatible with concurrency while preserving determinism [Ber93a]. It allows
threads to instantly react to absent signals as well as received signals, thanks to instant-based
causality principles. Esterel enjoys a full-fledged formal semantics, expressed with structural
operational semantics rules [Plo81], which, in our view, is both simple enough to make formal
reasoning about programs and code generation tractable, and rich and mature enough to be
worth the realistic effort.

Historically, Esterel was conceived as a high-level description language for control automata.
Then, a wide variety of compilers have been implemented for Esterel, both in academic and
industrial contexts. In addition to FSM (finite state machine [Kle56]) synthesis [BG92], some
of these compilers now natively support gate-level logic synthesis [Ber92], fast C code gener-
ation [CPP+02, Pot02, EKH04], as well as hardware synthesis via VHDL or Verilog backend
synthesizers [ET03]. Over the years, dozens of pieces of these code generation schemes have
been discussed, documented, and sometimes formalized and proved. Nevertheless, several com-
plex algorithms have not been dealt with yet in a satisfactory way, if at all. As a consequence,
even if the language itself is formally specified, as well as a few models used for intermediate
representation levels, actual compilers are not.

In this work, we address the problem of efficient and provably correct code generation for
Esterel, starting with precise compiler specification. Our contribution partly consists in clarify-
ing already identified issues, formalizing and proving algorithms derived from existing compiler
implementations, but we also propose new formalisms, new static analysis techniques, and new
program transformations to enable the development of improved code generation algorithms,
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which we have implemented in a new prototype compiler. Our goal is to achieve performances
at least as good as existing compilers, while proving the correctness of our methods. Moreover,
rather than focusing on any particular target language or compiler, we aim at providing algo-
rithms that are not only (i) efficient and (ii) provably correct, but also (iii) that can easily
benefit existing Esterel compilers, targeting both hardware and software code.

We concentrate on the loop construct of the language, which is the only primitive construct
that makes it possible to branch back to the beginning of a piece of code, thus enabling repeated
executions of this piece of code. As a result, many important issues only occur in programs
containing loops. Here, we precisely focus on these issues, that we have found to be critical to
the quality of the generated software or hardware code. Current loop-handling techniques differ
in nature and performance from one compiler to another, with severe drawbacks, as we shall see.

While specific in its aim, this work seems to us highly generic in its demonstration of how
transformational steps involved in the code generation process can be derived mathematically
from the language semantics.

We now briefly present an overview of synchronous languages and Esterel in Section 1.1,
discuss loops in Esterel in Section 1.2, and provably correct compilers in Section 1.3. We sketch
our contributions in Section 1.4, and provide the structure of the document in Section 1.5.

1.1 Esterel and the Synchronous Paradigm

Esterel is a high-level imperative synchronous programming language for the specification of
control-oriented reactive systems. Esterel was born in the nineteen eighties [BC84] and evolved
since then. In this work, we consider the Esterel v5 dialect of Esterel [Ber00a], endorsed by
current academic compilers from Columbia University [EKH04] and INRIA [Ber00b].

Reactive Systems

Reactive systems [Hal93, HP85] are required to continuously react to input events with matching
output events within appropriate time frames. Examples of reactive systems include real time
operating systems, digital circuits, communication protocols, man-machine interfaces, monitor-
ing systems, etc. Typical reactive systems are made of interconnected control and data parts.
For instance, a microprocessor pilots an arithmetic and logic unit with an instruction decoder.
In Esterel, the emphasis is put on events and communication rather than calculus, for the pro-
gramming of reactive systems in which the control-handling aspects prevail.

Synchronous Paradigm

In the synchronous approach [BB91, BCE+03], computation and communication delays are
neglected, so that it becomes possible, in a first phase of the development at least, to work with
a simple but powerful abstraction of time:

• Time flows in a discrete manner, being made of a succession of well-identified instants.

• At each instant, a computation occurs, called reaction, which computes the outputs and
the next state of the program from the inputs and the current state of the program.

• This reaction is computed in zero time. All quantities of the system, including inputs
and outputs, switch from their old to their new values instantly and simultaneously. In
particular, outputs are available as soon as inputs are.

• Threads sharing the same clock (i.e. time reference), can communicate via instantly broad-
cast signals. On the other hand, threads having unrelated clocks cannot communicate.
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The synchronous paradigm has been especially advocated for the design of digital circuits [Ber92],
embedded systems [Edw00], and real-time applications [Ber89]. A number of synchronous pro-
gramming languages have been developed, including imperative languages such as Esterel and
Quartz [Sch01b], data-flow languages like Scade/Lustre [HCRP91] and Signal [GBGM91], or
Statecharts [Har87] like graphical design languages, SyncCharts [And95, And96] and Argos
[Mar91] for example. Attempts at mixing various programming styles have been reported as
well [PMM+98].

Signals

Esterel deals with signals. Signals have a Boolean status, which obeys the signal coherence law:
a signal is absent by default, present if emitted in the current instant. Thanks to the synchronous
hypothesis, both absence and presence are instantly broadcast, and simultaneously available in
a consistent fashion to all threads of execution (there is single clock in Esterel).

Imperative Style

Esterel programming style is imperative. Sophisticated control-flow patterns can be built by
sequential and parallel compositions of behaviors, tests, loops, preemption and suspension mech-
anisms. For example, the following program emits the signal O as soon as both the signals A and
B have occurred – they are awaited in parallel – provided that R does not occur first:

abort
[ await A || await B ];
emit O

when R

Formal Semantics

Expressed with structural operational semantics rules [Plo81], the logical behavioral semantics
[BG92, Ber93b] of Esterel, formalizes the signal coherence law and precisely defines the behavior
of programs. In the previous example for instance, this semantics specifies that if A, B and R
occur in the same instant, then O is not emitted, as the outer abort construct has priority over
the inner emit construct.

Causality

Programs express relations between signals. For instance,

present A else emit B end

emits B if A is absent. Because of the synchronous hypothesis, the status of B is available no later
than the status of A is. In fact, they are evaluated simultaneously. In general, the consequences
of a choice are simultaneous to the choice itself, and may contribute to it. This distinctive feature
of synchronous formalisms, called instantaneous feedback, may lead to trouble. For example,

present S else emit S end

admits no possible interpretation conforming with the signal coherence law, provided that S is
a local signal not emitted elsewhere:

• If we suppose S present, then it is not emitted. Contradiction.

• If we suppose S absent, then it is emitted. Contradiction.
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Over the years, many solutions have been proposed to deal with this issue, referred to as causal-
ity in synchronous formalisms [Gon88]. They range from non-instantaneous reaction to signal
absence as in the SL language [BdS95], to quasi-synchronous hypotheses typical of hardware
design languages, which reintroduce “time” within instants by means of δ-delays [IEE94].

For Esterel, causality analysis has been refined many times, aiming at accepting the largest
possible set of programs of “reasonable” behavior. The two most significant attempts at such
a definition in our view, are the logical correctness criterion and the constructive semantics of
Esterel:

• A program is said to be logically correct1 [BG92] iff at any step of any execution (i.e. for
any sequence of inputs), there exists exactly one valuation of its signals compatible with the
signal coherence law. Basically, logical correctness guarantees a deterministic deadlock-free
execution. But the cost of the computation of this behavior can be prohibitive (NP-hard).

• The constructive semantics [Ber99], inspired from digital circuits and three-valued logic,
ensures by rejecting more “unreasonable” programs that program behaviors can be unam-
biguously computed without“speculation”. Such programs are said to be constructive. For
instance, if S is a local signal not emitted elsewhere,

present S then emit S else emit S end

is logically correct – S is present – but not constructive, as, intuitively, the status of S must
be guessed prior to its emission.

The logical correctness criterion and the constructive semantics are thus two possible ways of
defining “reasonable” behaviors, that is to say causal programs. In each case, causality analysis
consists in deciding whether or not a program is causal.

In practice, both criteria are too expensive to check exactly for large programs. Therefore,
nowadays compilers implement several alternative procedures for defining and checking causality,
of differing powers and costs. All these procedures enforce logical correctness, which is the agreed
minimal correctness criterion for Esterel programs. But beyond logical correctness, diverging
approaches coexist.

The question raised here is not to decide which behavior a program should have – this is
already achieved by the logical behavioral semantics for all logically correct programs – but
whether this behavior should be considered to be “reasonable” or not, and how it should be
computed in practice.

In this work, we are interested in loop-related issues. It turns out that these issues are
essentially independent from causality. Anyway, they are typically dealt with before causality
analysis in the code generation process. As a consequence, we shall not detail the constructive
semantics of Esterel, but rather stick with the logical behavioral semantics of Esterel, and take
into account all logically correct programs, in order to provide techniques and tools applicable
whatever the causality analysis.

1.2 Loops in Esterel

Thanks to loops, it is possible to repeat behaviors over time. Moreover, because in Esterel
there is neither recursion nor a jump instruction, this is the only way repeated behaviors can be
specified, that is to say the only way to go “back”.

1Technically, we shall say it is strongly correct (cf. Chapter 2).
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loop
present I then
pause;
emit O

else
pause

end
end

instant 0 1 2 3 4
input I × × ×
output O × × ×

Figure 1.1: Computing the Previous Status of a Signal

For example, in order to increment the variable V in each instant of execution, one may write:

loop
V := V+1;
pause

end

Remark the pause instruction. It specifies that the current reaction is finished, and requires the
execution to be restarted in the next instant.

Similarly, in each instant, the program of Figure 1.1 emits O if I was present in the previous
instant, thus providing the previous status of the signal I.

Loops are responsible for the introduction of two complex issues in Esterel: instantaneous
loops and schizophrenia, which we discuss below.

Instantaneous Loops

First, incorrect programs can be easily written because of loops. Let us suppose we forgot the
pause instruction in our first loop example, and wrote instead:

loop
V := V+1

end

Then, infinitely many iterations have to be completed within a single reaction, that is to say
during the same instant, which Esterel does not admit. Such “instantaneous” loops have to be
rejected as incorrect.

In order to avoid such errors, we could think of constraining each loop body to end with
a pause instruction for instance. But then, the behavior of our second example (Figure 1.1)
becomes very difficult to reproduce, requiring not less than three loops (in the kernel language
of Chapter 2), as illustrated in Figure 1.2.

Rather than imposing strong syntactic restrictions on the loop construct, Esterel semantics
verifies that each iteration of a loop retains the control for at least one instant, so that at most
one iteration can be completed per instant, thus effectively bounding the amount of computation
needed for one reaction. This restriction is of dynamic nature, as it is imposed in each reaction,
and may lead to runtime errors. For example, the following program fails upon the reception
of I:

await I;
loop
V := V+1

end
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loop
present I then
pause;
emit O

else
pause

end
end

becomes

trap T in
loop

present I then exit T end;
pause

end

end;
pause;
loop

emit O;
trap T in
loop

present I then exit T end;
pause

end

end;
pause

end

Figure 1.2: Programming with “loop ...; pause end”

In the context of embedded or safety-critical systems design however, runtime errors cannot be
tolerated. Esterel compilers have to predict and prevent them, and replace a runtime check by
a compile time filtering of programs. In this work, we want to specify and verify such a compile
time analysis of programs.

Schizophrenia

Second, even if non-instantaneous, loops remain complex structures, difficult to compile correctly,
because a reaction may spread across two iterations of the same loop, and in fact more as we
shall see. Let us consider an example:

loop
signal S in
present S then emit O end;
pause;
emit S

end
end

Since the signal S is local to the loop in this program, each iteration refers to a fresh signal S, so
that O is never emitted. In each reaction (starting from the second one), one iteration finishes
and another one starts. The declaration of S is left and instantly reentered, so that two statuses
of S are computed per instant. In general, because of the instantaneous feedback mentioned
before, these statuses have to be computed simultaneously, rather than sequentially. In other
words, two instances of S are simultaneously alive, which compilers have to carefully distinguish.
We say that the signal S here, hence the program itself, are schizophrenic.

The programming style advocated by Esterel – local declarations plus imperative loops –
naturally leads to schizophrenic specifications [CI89]. So, compilers cannot afford to reject such
program patterns. In this work, we would like to grasp the ins and outs of schizophrenia, and,
once and for all, get rid of it, by automatically rewriting schizophrenic programs into equivalent
non-schizophrenic programs, the latter more easily compiled, optimized, and debugged.
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In fact, this has been proposed before. A simple solution, first described by Mignard [Mig94],
consists in recursively unfolding loop bodies once, that is to say recursively duplicating loop
bodies, thus producing for the above example the equivalent program:

loop
signal S in
present S then emit O end;
pause;
emit S

end;
signal S in
present S then emit O end;
pause;
emit S

end
end

In the rewritten program, neither the first signal declaration block, nor the second one can be
left and instantly reentered. At most one instance of each declared signal is needed per instant.

This rewriting technique is called reincarnation as it explicitly distributes the several simul-
taneous instances of S, that is to say “incarnations”, into several distinct “bodies”. But it can be
exponential in case of nested loops. As a consequence, more efficient program transformations
are necessary, which we shall investigate in this work.

1.3 Provably Correct Compilers

A compiler translates programs in a source language into programs in a target language [ASU86].
It is said to be correct iff it translates any source program to a target program having the same
behavior. In order to prove the correctness of a compiler, one needs:

• a definition of program structures and behaviors, that is to say of the syntax and semantics
of both languages,

• a means of comparing these behaviors, that is to say some sort of equivalence criterion,

• a description of the code generation itself.

Provided that all required elements are precisely specified, it becomes possible to look for a
mathematical proof of the correctness of the code generation. Today, the ultimate goal of such
an agenda is to complete all the steps of this reasoning process using a theorem prover/proof
assistant, in order to mechanically guarantee (i.e. certify) the correctness of the proof.

It should be noted at this point that formal compiler verification has basically nothing to do
with the so-called “certification” processes favored for instance by aircraft manufacturers, such
as the Federal Aviation Administration ”RTCA DO-178B” standard. In this document, we think
of certified compilers as formally verified compilers.

Attempts at proving the correctness of a compiler can be traced back to the nineteen sixties
with the work of McCarthy and Painter [MP67]. In November 2003, M.A. Dave gathered a
hundred references under the title “Compiler verification: a bibliography” [Dav03]. Rather than
going through the whole compiler verification history for general purpose languages, we shall
focus here on synchronous languages and formalisms. We encourage the reader to refer to the
afore mentioned bibliography, to the pioneering 1981 book by W. Polak [Pol81], or for instance
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to the more recent book by S. Stepney [Ste93], for an in-depth discussion of the theory and
practice of compiler verification.

Concurrent languages are reputedly more complex than sequential languages. This can be
observed when it comes to proving compiler correctness [Gla94]. But, because they reconcile con-
currency and determinism, synchronous languages are especially convenient amongst concurrent
languages. Moreover, synchronous languages have been introduced for software and hardware
reliability. Thus, formalizing synchronous systems is an active research area.

Of course, Esterel is not the only synchronous language that has attracted attention. Various
axiomatizations of synchronous languages have been reported, for instance for Signal and Lustre
there are:

• In [NBT98, Now99], D. Nowak et al. formalize the trace semantics of Signal within the
proof assistant Coq [CDT01].

• In [BCPD99], S. Bensalem et al. describe the principles of a translation of Lustre programs
to the PVS specification and verification system [SORS99].

Most often, these reports are only concerned with the verification of program properties, rather
than compiler properties. Nevertheless, a few focus on compiler correctness:

• In [PSS98a], A. Pnueli et al. introduce the idea of translation validation. Rather than trying
to prove in advance the correctness of a compiler for all input programs, they advocate for
the validation of individual runs of the compiler. By appending a validation phase at the
end of the code generation process, they ensure for each run of the compiler that the code
generated correctly implements the submitted source program. In [PSS99], they apply this
idea to the translation of Signal programs into C code, by means of a code validation tool
(CVT) [PSS98b].

• In [BH01], S. Boulmé and G. Hamon describe the embedding in Coq of the Lucid-Synchrone
programming language [CP99]. Lucid-Synchrone programs must satisfy some non-trivial
static properties to be valid. Thanks to this embedding, part of the required analyses can
be performed by the Coq type checker, being automatically derived from the language
specification.

Let us now concentrate on Esterel:

• First, it should be noted that the numerous works that have contributed to formalizing
Esterel semantics can be viewed as part the collective effort toward the design and proof
of a certified compiler. There are many, which we have already referred to, or will in due
time, and we shall not discuss them again here.

Similarly, all (partial) descriptions of code generation schemes for Esterel contribute to the
effort. There are lots of them. As mentioned before, available techniques range from FSM
synthesis, to logic synthesis (also called Boolean equation synthesis or circuit synthesis),
and more recently fast C code generation, as well as VHDL and Verilog synthesis.

• In [Ber99], Berry completed the definition of a semantics of Esterel (the constructive seman-
tics), a semantics of digital circuits (constructive circuits), and the description of a formal
translation of Esterel programs into digital circuits. As a result, he can express a formal
equivalence theorem, meaning that the constructive circuit obtained from this translation
exactly implements the constructive semantics of the source Esterel programs2.

2Technically, Berry’s theorem holds for loop-safe programs only (cf. Chapter 4).
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However, the formal proof of the “theorem” still remains to be completed. Moreover,
the translation formalized here is far from the circuit synthesis implemented in [Ber00b].
Because of its better understanding of schizophrenia, the real compiler can produce circuits
quadratically smaller than the formalized translation in the best case, and significantly
smaller in practice.

• In [Ter00], D. Terrasse formalized part of the translation of the Esterel language into
constructive circuits, within the proof assistant Coq. Then, she formally established that
the outputs of the first instant of execution of the generated circuit are correct.

Unfortunately, her approach was limited to combinatorial Esterel programs, that is to say
programs without pause instructions. As a result, she could not consider loop constructs
either, as loops only make sense in non-instantaneous programs.

• More recently, in a series of papers [Sch01a, Sch01b, SW01, SBS04], Schneider et al. com-
pleted the formal verification of a logical3 circuit synthesis for a variant of the Esterel
language, using the HOL theorem prover [GM93].

This is a great achievement. But this translation remains to be optimized, being basically
just as efficient as Berry’s formal translation.

Our work is in line with this research. In essence, we are trying to design (i) the algorithms and
(ii) the proof techniques that are still lacking in Berry’s and Schneider’s works, and would make it
possible to formally verify an optimizing hardware compiler for Esterel, that is to say efficiently
taking care of schizophrenia, and including a realistic compile time filtering of instantaneous
loops.

Moreover, we observe with the development of C code generators for Esterel, that efficient
software synthesis and efficient hardware synthesis obey very different constraints and objectives
[CPP+02, Pot02, EKH04]. As a consequence, in this work, we shall try to stick to source code
analyses and source to source transformations of Esterel programs, applicable to the efficient
and provably correct synthesis of both software and hardware.

1.4 Contributions

While instantaneous loops and schizophrenia are not new issues in Esterel and have been ex-
tensively discussed and already dealt with within previous compiler implementations, we believe
that they are not yet fully understood. Loop-handling techniques differ from one compiler to
another, so that:

• More or fewer programs are rejected because of “potentially instantaneous loop” errors,
directly impacting users.

• More or less code or circuit replication is carried out to deal with schizophrenia. Current
fast C code generators, as well as Berry’s formal translation and Schneider’s certified
compiler, have an expansion ratio that can be quadratically worse than the optimized
digital circuit synthesis implemented in [Ber00b].

Our main contributions are the following:

• We significantly revise the logical behavioral semantics of Esterel, in order to formally
define and reason about loop errors and schizophrenia.

3In contrast with Berry and Terrasse, Schneider considers a logical semantics of Esterel rather than a construc-
tive semantics, thus “logical” rather than constructive circuits.
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• We extend Esterel with a non-instantaneous jump instruction, easily compiled, and making
new program transformations possible. We fully formalize the extended language: Esterel∗.

• We specify and implement a preprocessor that rewrites any Esterel program into a semanti-
cally equivalent, loop-error-free, non-schizophrenic Esterel∗ program, making the efficiency
of the hardware-centric algorithms implemented in [Ber00b] available to all compilers.

• We complete a hand-written proof of the correctness of our preprocessor for the pure
Esterel subset [Ber93a] of Esterel (see below).

These achievements will form the content of this PhD thesis.

1.5 Structure of the Document

This document is organized into the following chapters:

Chapter 2: Pure Esterel

Pure Esterel is the fragment of the Esterel language where data variables and data-handling
primitives are abstracted away. As our main concern is with control-flow primitives, we first
focus on the pure Esterel language. In this chapter, we describe the pure Esterel language,
formalize its logical behavioral semantics and logical correctness. We return to full Esterel in
Chapter 8.

Here, our only contribution is the definition of“input+output”signals (cf. Section 2.3) instead
of traditional inputoutput signals [Ber00a], thanks to which we can formally identify programs
and statements (i.e. pieces of programs), thus ending with a description of the semantics more
compact than usual.

In addition, we introduce various formal techniques and tools, which we extensively rely on
in the sequel. We show how to keep track of occurrences of statements in programs along the
execution using contexts and tags. We also define observationally equivalent programs as well
as observationally equivalent semantics, using bisimulations.

Chapter 3: Reactive Deterministic Semantics

In the course of this research, we came to the conclusion that the logical behavioral semantics
and the logical correctness criterion described in Chapter 2, are not the best starting point
for the definition of errors in Esterel programs, especially loop errors. The logical behavioral
semantics may define for a given piece of code too few (zero) or two many (two or more) behaviors
compatible with the signal coherence law. These errors may cancel each other, so that, in the
end, exactly one behavior remains, and the program is found to be logically correct.

This observation motivates the introduction of a revised logical behavioral semantics. In
this chapter, we describe a “deterministic semantics”, which defines either zero or one behavior
for any piece of code, thus avoiding the risk of hidden errors. We define “proper” programs
as deadlock-free programs w.r.t. the deterministic semantics. Since the deterministic semantics
reveals more errors than the logical behavioral semantics, logically correct programs are not
always proper. Reciprocally, we show that proper programs are logically correct.

We further extend this semantics with explicit error-handling rules, producing a “reactive
deterministic semantics”. It defines exactly one behavior for any piece of code, but marks some
behaviors as improper. This last semantics lets us precisely identify errors in improper programs.
In particular, we can classify the loops of a given program into proper and improper loops, which
comes in very handy in Chapter 4.
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Chapter 4: Instantaneous Loops

As explained before, Esterel semantics dynamically verifies that executed loops are not instanta-
neous. We say that a program is loop safe iff this dynamic check is not necessary. We establish
that whereas logically correct programs are not loop safe in general, proper programs always are.
More precisely, programs with proper loops are loop safe. As announced, the logical behavioral
semantics is not an adequate framework for the analysis of incorrect loops. On the other hand,
the deterministic semantics (or reactive deterministic semantics) is fine.

In order to guarantee loop safety, we define non-instantaneous statements as statements
whose execution cannot terminate instantly, whatever the context of execution. We verify that
programs with non-instantaneous loop bodies, have proper loops, hence are loop safe.

We then formalize the compile time decision procedure that identifies potentially instanta-
neous loop bodies in [Ber00b]. Using abstract interpretation techniques [CC77], we prove that it
is correct, that is to say catches all loop unsafe programs. We analyze its trade-offs, and study
its computational complexity.

Chapter 5: Schizophrenia

We thoroughly discuss the reasons for instantly reentered blocks of code to raise specific dif-
ficulties in Esterel-like languages. Using a “beep” instruction, we demonstrate than instantly
reentered signal declarations and instantly reentered parallel statements lead to complex behav-
iors, requiring ad hoc code generation techniques. We say they are schizophrenic constructs.

Esterel semantics defines loops by dynamic unfolding of the loop body: a loop is an infinite
sequence composed of an infinite number of copies of the loop body, made on demand (lazily).
Using tags preserved in this unfolding, we can keep track of occurrences originating from the
same statement. By checking whether a tag is encountered more than once in an instant or not,
we can decide whether a statement is instantly reentered or not, therefore whether a program
contains schizophrenic constructs or not, e.g. is schizophrenic or not.

We further extend the decision procedure of Chapter 4 to detect schizophrenic program
patterns, using similar conservative abstraction mechanisms to preserve efficiency.

Chapter 6: Esterel∗

We have seen that schizophrenia can be cured by source-level program rewriting techniques.
Such techniques, however, are inherently inefficient. In order to enable more efficient program
transformations, we propose to extend the Esterel language with a new “gotopause” primitive,
which behaves as a non-instantaneous jump instruction compatible with Esterel synchronous
concurrency. In other words, gotopause enables delayed branching to remote locations in the
program. In this chapter, we build the extended language, which we name Esterel∗.

As jumps disregard the program structure, we first have to reformulate the logical behavioral
semantics of Esterel into a logical state semantics, which makes it possible to formalize jumps
easily. We prove this state semantics to be observationally equivalent to the logical behavioral
semantics. We remark that syntactic restrictions have to be imposed on gotopause occurrences
for them to make sense. Formally, we define well-formed Esterel∗ programs and fully formalize
their semantics.

We discuss loop safety and schizophrenia in Esterel∗.

Chapter 7: Reincarnation

Using the new primitive of Esterel∗ and the analysis of schizophrenia specified in Chapter 5,
we build a very efficient algorithm for reincarnation, which we prove to be semantics-preserving
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and complete, that is to say it transforms any program into a non-schizophrenic observationally
equivalent program.

Technically, we start from the original exponential rewriting technique due to Mignard.
We then achieve a quadratic program transformation by expanding all loop constructs using
gotopause constructs. We finally make this transformation quasi-linear in practice, by replac-
ing the systematic unfolding of loops with a selective unfolding limited to schizophrenic signal
declarations and parallel statements.

Chapter 8: Implementation

In Chapter 7 and before, we concentrate on formalizing and proving program analyses and
transformations on a kernel pure Esterel language. Full Esterel adds to pure Esterel the ability
to manipulate data: private variables, shared values, counters, registers, etc. In this chapter, we
briefly sketch how our methods can be extended to cope with data. We describe our prototype
implementation of a full Esterel v5 [Ber00a] compiler based on this extended preprocessing, and
discuss early experiments.
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Chapter 2

Pure Esterel

Without loss of generality, we focus in this work on a kernel language inspired from Berry [Ber99],
which retains just enough of the pure Esterel language to attain its full expressive power. We
define our kernel language and describe its primitive constructs in Section 2.1, formalize its
logical behavioral semantics in Section 2.2 to Section 2.4, and discuss program correctness in
Section 2.5. We consider occurrences of terms in statements and their reductions in Section 2.6,
and finally define observational equivalence and dead code in Section 2.7.

2.1 Syntax and Intuitive Semantics

Figure 2.1 describes the grammar of our kernel language, as well as the intuitive behavior of its
primitive constructs. The non-terminals p and q denote statements, S signals, and T exceptions.
In this work, the words statement and program are synonymous.

The infix “;” operator binds tighter than “||”. Brackets “[” and “]” may be used to group
statements in arbitrary ways. In a present statement, the then or else branch may be omitted.
For example, “present S else p end” is a shortcut for “present S then nothing else p end”.

Signals and exceptions are lexically scoped and respectively declared within statements by
the constructs “signal S in ... end” and “trap T in ... end”.

In this first section, we suppose that all occurrences of exceptions are bound by a declaration,
that is to say that each “exit T” instruction is in the scope of a “trap T in ... end” construct.
We shall consider free exceptions in Section 2.2.

p, q ::= nothing does nothing and terminates instantly
pause stops the execution till next instant
p; q executes p followed by q if/when p terminates
p || q executes p in parallel with q
[p] executes p
loop p end repeats p forever
signal S in p end declares signal S in p
emit S emits signal S
present S then p else q end executes p if S is present, q otherwise
trap T in p end declares and catches exception T in p
exit T raises exception T

S, T ::= identifier

Figure 2.1: Primitive Pure Esterel Constructs
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In addition, we distinguish amongst free signals:

• input signals which only occur in present statements,

• output signals which only occur in emit statements,

• input+output1 signals which occur both in present and emit statements

Let us consider the following statement:

present I then emit S end;
present S then emit O end

Here, the signal I is an input signal, O is an output signal, S is an input+output signal. In
this first section, we suppose free signals to be either input or output signals. We shall discuss
input+output signals in Section 2.3.

Instants and Reactions

An Esterel statement runs in steps called reactions in response to the ticks of a global clock.
Each reaction takes one instant. Primitive constructs execute in zero time except for the pause
instruction.

When the clock ticks, a reaction occurs, which computes the output signals and the new
state of the program from the input signals and the current state of the program. It may either
finish the execution instantly or delay part of it till the next instant, because it reached at least
one pause instruction. In the latter case, the execution is resumed when the clock ticks again
from the locations of the pause instructions reached in the previous instant. And so on.

The execution of the statement“emit A; pause; emit B; emit C; pause; emit D”emits
the signal A in the first instant of its execution, then emits B and C in the second instant, finally
emits D and terminates in the third instant. It takes three instants to complete, that is to say
proceeds by three reactions. The signals B and C are emitted simultaneously, as their emissions
occur in the same instant of execution. In particular, “emit B; emit C” and “emit C; emit B”
cannot be distinguished in Esterel.

Synchronous Concurrency

Concurrency in Esterel is synchronous. One reaction of the parallel composition“p || q” is made
of exactly one reaction of each non-terminated branch (p and q, or p, or q), until the termination
of all branches:

[
pause; emit A; pause; emit B

||
emit C; pause; emit D

];
emit E

This statement emits C in the first instant of its execution, then emits A and D in the second
instant. At this point the second branch terminates. In the third instant, B and E are emitted,
and the execution terminates. Again, A and D are emitted simultaneously, B and E are emitted
simultaneously.

1Input+output signals are not the inputoutput signals of [Ber99, Ber00a], hence the “+” (cf. Section 2.3).
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Exceptions

Exceptions are lexically scoped, declared, and caught by the“trap T in ... end”construct, raised
by the “exit T” instruction. In sequential code (no parallel statement), the exit statement
behaves as a “goto” to the end of the matching trap block:

trap T in
emit A; pause; emit B; exit T; emit C

end;
emit D

This statement emits A in the first instant, then B and D and terminates in the second instant.
Signal C is never emitted.

An exception occurring in a parallel context causes all parallel branches to terminate in-
stantly, while finishing their current instantaneous computations:

trap T in
emit A; pause; emit B; exit T; emit C

||
emit E; pause; emit F; pause; emit G

end;
emit D

The signals A and E are emitted in the first instant, then B, F, and D in the second and final
one. Neither C nor G is emitted. Exceptions implement weak preemption: “exit T” in the first
branch does not prevent F to be simultaneously emitted in the second one.

Exception declarations may be nested:

trap T in
trap U in
exit T || exit U

end;
emit A

end

The signal A is never emitted. The outermost exception, T here, has always priority over inner
ones, U in this example.

Loops

The execution of “loop emit S; pause end” emits S at each instant, and never terminates.
Finitely iterated loops may be obtained by combining loop, trap and exit statements, as in
the kernel expansions of “await S” and “await_not S”:

await S
def
= trap T in loop pause; present S then exit T end end end

await_not S
def
= trap T in loop pause; present S else exit T end end end

Loop bodies should not be instantaneous. For example “loop emit S end” is not a correct
program. Such a pattern would prevent the reaction to reach completion, and the instant to
end. Therefore, loop bodies are required to raise an exception or retain the control for at least
one instant, that is to say execute at least a pause or an exit statement in each iteration.
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Signals

The instruction “signal S in p end” declares the local signal S in p. In each instant,

• A local or output signal S is emitted iff at least one “emit S” statement is executed in this
instant. Input signals are never emitted, since they never occur in emit statements.

• The status of a local or input signal S is either present or absent. If S is present then all
“present S then p else q end” statements executed in this instant, execute their “then p”
branch in this instant; if S is absent they all execute their “else q” branch.

– A local signal is present iff it is emitted in this instant.

– An input signal is present iff it is provided by the environment of execution in this
instant.

In this work, we consider output signals, which never occur in present statements, to have no
status at all (cf. Section 2.3). In each instant,

• The environment provides the status of the input signals.

• The reaction occurs, deciding which local and output signals are emitted.

• The environment observes the emitted output signals.

For example,

• signal A in
present A then emit B end

||
emit A

end

Both the local signal A and the output signal B are emitted. The local signal A is present.

• signal S in
present I then emit S end

end

The status of I depends on the environment, and the status of S follows from that of I.

• signal S in
emit S;
pause;
present S then emit O end

end

The signal S is emitted in the first instant of execution only, thus O is not emitted by this
statement, as S is absent at the time of the “present S then emit O end” test.

Suspension and Abortion

Our kernel instructions are those of Berry [Ber99] except for the “suspend p when S” statement.
It can nevertheless be encoded by substituting all pause instructions of p by “await_not S”
instructions:

suspend p when S
def
= p[await_not S/pause]
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Thanks to trap and suspend statements, we can also encode the constructs for weak and strong
abortion defined in Esterel v5 [Ber00a]:

weak abort p when S
def
= trap T in p; exit T || await S; exit T end

abort p when S
def
= weak abort suspend p when S when S

where T is a fresh exception name.

2.2 Exceptions

In the informal semantics of the previous section, the behavior of a statement depends on the
relative priorities of exceptions. For example,

• trap T in
trap U in
exit T || exit U

end
end

The inner parallel statement “exit T || exit U” raises the exception T, since T has pri-
ority over U.

• trap U in
trap T in
exit T || exit U

end
end

The inner parallel statement “exit T || exit U” raises the exception U, since U has pri-
ority over T.

In other words, the behavior of “exit T || exit U” depends on its context of occurrence. In
order to specify the semantics of exit statements independently from trap statements, and
more generally enable the definition of a structural semantics for pure Esterel, we may:

• either say that“exit T || exit U”raises both T and U, and deal with multiple exceptions,

• or encode priority levels into exit statements.

We shall retain the second approach, as it is closer to implementation. We decorate exit
statements with the respective depths of exceptions, which we note “exit Td”. The depth d ∈ N
of “exit T” is the number of exception declarations that T will traverse before being caught:

• If “exit Td” is enclosed in a declaration of T , then d is be the number of exception
declarations that have to be traversed before reaching the declaration of T .

• If “exit Td” is not enclosed in a declaration of T , then d must be greater or equal to the
number of exception declarations enclosing this exit statement, as T will traverse all these
declarations at least.
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For example,

trap T in
trap U in
exit T1 %has depth 1 because of the declaration of U.

||
exit U0 %has depth 0.

||
exit V3 %could have any depth greater or equal to 2.

end;
exit T0 %has depth 0.

end

Thanks to this encoding, the behavior of exit statements can be described apart from matching
trap constructs. In particular,

• An unmatched exception aborts the execution. For instance, in “exit T3; emit O”, the
signal O is not emitted, as the execution is aborted by the exception T.

• Concurrent exit statements raise the exception of greater depth. For example, the state-
ment “exit T1 || exit U0 || exit V3” raises the exception V of depth 3.

• An exception of depth greater than 0 traverses the first trap statement it reaches, but looses
one depth unit in the traversal. For instance, “trap U in exit T3 || exit U0 end” raises
the exception T of remaining depth 2.

• An exception of depth 0 is caught by the first trap statement it reaches.

In particular, exceptions bound by declarations behave as described in the previous section.
Such a “De Bruijn” encoding [dB72] of exceptions for Esterel was first advocated in [Gon88]. As
usual, we shall hide depths as often as possible.

2.3 Input+Output Signals

For simplicity, we supposed up to now that the free signals of a statement are either input or
output signals, that is to say either occur in emit statements or present statements, never both.
We would like to formalize the semantics of pure Esterel in a structural operational style, and
for instance, derive the semantics of:

signal S in
emit S;
present S then emit O end

end

from that of:

emit S;
present S then emit O end

in which S is neither an input nor an output signal, but an input+output signal. Therefore, we
have to consider free signals that occur both in emit and present statements.

We define the behavior of input+output signals by combining the behaviors of input and
output signals. In each instant,

• an output or input+output signal S is emitted iff at least one “emit S” statement is
executed in this instant, as we earlier specified for output signals.
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emit S; %output signal S
present S then nothing end; %input signal S
signal S in
emit S; %local signal S number 1
signal S in
emit S; %local signal S number 2
present S then nothing end %local signal S number 2

end;
present S then nothing end %local signal S number 1

end;
emit S; %output signal S
present S then nothing end %input signal S

Figure 2.2: Local, Input, and Output Signals

• an input or input+output signal S is present iff it is provided by the environment in this
instant, as we earlier specified for input signals.

In contrast with local (i.e. bound) signals, there is no relation between emission and status for
input+output signals. For example,

• “emit O” emits O, but the status of O depends on the environment.

• “present I then emit O end” emits O iff I is provided by the environment.

• “emit S; present S then emit O end” emits S. Moreover, O is emitted iff S is provided
by the environment, that is to say emitted if S is provided by the environment, not emitted
if S is not provided by the environment, independently from the local emission of S.

In particular, an input+output signal may be, in the same instant, emitted and absent (if not
provided by the environment). An input+output signal S is truly a combination of two distinct
signals, an input signal S and an output signal S, which do not interact even if they share a
common name:

• “emit S” statements refer to the output signal S.

• “present S then p else q end” statements refer to the input signal S.

From now on, we shall only speak of local, input, and output signals, implicitly referring to the
input parts and output parts of input+output signals, as illustrated by Figure 2.2.

Thanks to this definition of input+output signals, in the sequel, we shall be able to formally
derive the reactions of “signal S in p end” from that of p. Intuitively, enclosing a statement p
in a declaration of S consists in:

• a restriction isolating the signal S from the environment:

– The status of S in p inside “signal S in p end” does not depend on the environment.

– The statement “signal S in p end” does not output S, even if S is locally emitted.

• a signal coherence law making the status of S correspond to the emission of S:

– If S is emitted by p then S is present in p.

– If S is not emitted by p then S is absent in p.
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As a result, if p reacts to inputs I, with outputs O, and either S is both in I and O (S ∈ I ∩O)
or S is neither in I nor in O (S /∈ I ∪ O), then “signal S in p end” reacts to inputs J with
outputs O\{S}, if J\{S} = I\{S}, that is to say if J and I agree on all signals but possibly S.

InputOutput Signals

The input+output signal interpretation is at first glance unintuitive, as such a signal may be
absent even if locally emitted. Therefore, the Esterel v5 standard [Ber00a] defines “inputoutput”
signals as the following:

• an inputoutput signal S is emitted iff at least one “emit S” statement is executed in this
instant.

• an inputoutput signal is present iff provided by the environment in this instant or locally
emitted.

Inputoutput signals however are more complex than input+output signals, as they combine the
features of local and input+output signals. In our view, an inputoutput signal is both:

• a means of local communication: present if emitted (local signal),

• a means of communication with the environment:

– present if provided by the environment (input signal),
– observed by the environment if emitted (output signal).

Indeed, inputoutput signals can be encoded into combinations of input+output and local signals.
If we want S to behave as an inputoutput signal for p, we may write the following:

inputoutput S in p end
def
=

signal Sin in
signal Sout in
trap T in

subst(p); exit T
||
loop
present S then emit Sin end

||
present Sout then emit Sin; emit S end

||
pause

end
end

end
end

where subst(p) is obtained by replacing in p all occurrences of “emit S” with “emit Sout” state-
ments, and all occurrences of “present S ... end” with “present Sin ... end” statements.

In summary, input+output signals are more easily formalized and as powerful as inputoutput
signals. Therefore, in this work, in which we are especially interested with formal reasoning about
the language, we shall interpret free signals as input+output signals rather than inputoutput
signals.

Thanks to the above encoding, we shall avoid the cumbersome distinction between programs
and statements required by Berry’s logical behavioral semantics [Ber99], which considers free
signals of programs to be inputoutput signals whereas free signals of statements are (implicitly)
considered to be input+output signals.
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2.4 Logical Behavioral Semantics

The logical behavioral semantics of Esterel formalizes the intuitive semantics of the previous
sections. It expresses a reaction of the statement p as a labeled transition of the form:

p
O, k−−→

I
p′

where:

• the input set I, written below the arrow, lists the signals provided by the environment for
the reaction, that is to say the inputs of the reaction;

• the output set O, written above the arrow, lists the output signals of p emitted by the
reaction, that is to say the outputs of the reaction;

• the integer k ∈ N is the completion code [Gon88] of the reaction;

• the statement p′ is the residual of the reaction.

Completion Code and Residual

The completion code k and the residual p′ encode the state of the execution:

• If k = 1 then this reaction does not complete the execution of p.
It has to be resumed by the execution of p′ in the next instant.

• If k 6= 1 then this reaction ends the execution of p, and the residual p′ is nothing:

– k = 0 if the execution completes normally, that is to say without exception;
– k = d + 2 if an exception of depth d escapes from p.

In particular, for any set of inputs I,

nothing
∅, 0−−→
I

nothing (nothing)

pause
∅, 1−−→
I

nothing (pause)

exit Td
∅, d+2−−−−→

I
nothing (exit)

Execution

An execution of the statement p is a potentially infinite chain of reactions, such that all com-
pletion codes are equal to 1, except for the last one in the finite case:

• finite execution: p
O0, 1−−−→

I0
p1

O1, 1−−−→
I1

...
On, k−−−→

In

nothing, with k 6= 1, for some n ∈ N.

• infinite execution: p
O0, 1−−−→

I0
p1

O1, 1−−−→
I1

...
On, 1−−−→

In

...

We say that ~I = (I0, I1, ..., In) in the finite case and ~I = (In)n∈N in the infinite case is the
sequence of inputs of the execution. Similarly, ~O is the sequence of outputs.

For example, the first reaction of pause does not terminate its execution, for any inputs. It
has to be continued by the execution of nothing in the next instant, which terminates instantly:

pause
∅, 1−−→
I0

nothing
∅, 0−−→
I1

nothing
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Inputs and Outputs

The set O lists the emitted output signals of the reaction. In particular,

emit S
{S}, 0−−−→

I
nothing (emit)

The set I lists the signals provided by the environment for the reaction. Therefore, it defines
the status of the free signals of the statement. So,

• If S ∈ I and p
O, k−−→

I
p′ then present S then p else q end

O, k−−→
I

p′.

• If S /∈ I and q
O, k−−→

I
q′ then present S then p else q end

O, k−−→
I

q′.

Thus the deduction rules in Gentzen style notation:

S ∈ I p
O, k−−→

I
p′

present S then p else q end
O, k−−→

I
p′

(present+)

S /∈ I q
O, k−−→

I
q′

present S then p else q end
O, k−−→

I
q′

(present−)

Remark that I may contain arbitrary signals, including signals that are not input signals of p.
They are, therefore, not relevant to the reaction.

Exceptions

If p in “trap T in p end” reacts with completion code:

• 0, i.e. terminates instantly without exception, so does “trap T in p end”,

• 1, i.e. pauses, so does “trap T in p end”,

• 2, i.e. raises the exception of depth 0, that is to say T , then it is caught by this trap
statement, which instantly terminates.

• k, for k > 2, i.e. raises the exception of depth k − 2, then “trap T in p end” raises the
exception of depth k − 3, thus the completion code k − 3 + 2 = k − 1.

As a consequence, the completion code “↓k” of “trap T in p end” is computed from the com-
pletion code k of p as follows:

↓k =


0 if k = 0 or k = 2
1 if k = 1
k − 1 if k > 2

We define:

p
O, k−−→

I
p′

trap T in p end
O, ↓k−−−→

I
δk
1 (trap T in p′ end)

(trap)
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On the one hand, as p′ may still refer to T if the execution has to be continued in the next
instant (k = 1), the declaration of T must be preserved in the residual. On the other hand,
if the execution of p terminates instantly (k 6= 1), we expect the residual of the reaction to be
nothing. Therefore, we construct the residual using function:

δk
1 (p) =

{
nothing if k 6= 1
p if k = 1

For example,

trap T in trap U in exit T1 || exit V5 end end
∅, 3−−→
∅

nothing

Sequence

The behavior of “p; q” depends on the behavior of p:

• If the execution of p terminates instantly and normally, it has to be instantly continued
by the execution of q.

p
O, 0−−→
I

p′ q
O′, k−−−→

I
q′

p; q
O∪O′, k−−−−−→

I
q′

(sequence-0)

• If the execution of p does not terminate instantly, p′ remaining to be executed, then the
execution of the sequence has to be continued by the execution of “p′; q” in the next
instant.

p
O, 1−−→
I

p′

p; q
O, 1−−→
I

p′; q
(sequence-1)

• If the execution of p raises an exception, then it aborts the execution of the whole sequence.

p
O, k−−→

I
p′ k ≥ 2

p; q
O, k−−→

I
nothing

(sequence-2)

In the sequel, we shall merge the (sequence-1) and (sequence-2) rules into a single rule:

p
O, k−−→

I
p′ k 6= 0

p; q
O, k−−→

I
δk
1 (p′; q)

(sequence-k)

Loops

Iterative behaviors are defined by unfolding, with the following deduction rule:

p
O, k−−→

I
p′ k 6= 0

loop p end
O, k−−→

I
δk
1 (p′; loop p end)

(loop)

As announced, this rule requires the body p to execute either a pause instruction (k = 1) or
raise an exception (k ≥ 2). No reaction is defined for “loop nothing end” for instance (cf.
Section 2.5).
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Synchronous parallelism

Thanks to completion codes, the behavior of “p || q” can be specified with a simple “max”
operator:

p
O, k−−→

I
p′ q

O′, l−−→
I

q′ m = max(k, l)

p || q
O∪O′, m−−−−−→

I
δm
1 (p′ || q′)

(parallel)

• If k = 0 and l = 0, both the execution of p and q terminate instantly, and no exception is
raised. So does “p || q”.

• If [k = 0 and l = 1] or [k = 1 and l = 0] or [k = 1 and l = 1], then again no exception is
raised. In addition, one branch at least does not terminate instantly. Thus, the parallel
composition of p and q does not either. The completion code of the reaction is 1, and the
residual is “p′ || q′”. For simplicity, we retain the parallel construct even if one branch
terminates. It is of no consequence, since p′ and “p′ || nothing” for instance have the
same semantics.

• If k ≥ 2 or l ≥ 2 then one exception at least escapes from one parallel branch, thus from
“p || q”. Moreover, if both branches raise an exception, then the exception of higher
priority corresponds to the greater depth, thus the greater completion code.

For example, consider the following proof tree:

exit T1
∅, 3−−→
∅

nothing exit U0
∅, 2−−→
∅

nothing

exit T1 || exit U0
∅, 3−−→
∅

nothing

trap U in exit T1 || exit U0 end
∅, 2−−→
∅

nothing
since ↓3 = 2

trap T in trap U in exit T1 || exit U0 end end
∅, 0−−→
∅

nothing
since ↓2 = 0

Local Signals

As discussed in Section 2.3, in “signal S in p end”, S is present in p iff it is emitted by p, that
is to say either:

• if S is supposed present in p (inputs I ∪ {S}), then S is emitted by p (i.e. S ∈ O):

p
O, k−−−−→

I∪{S}
p′ S ∈ O

signal S in p end
O\{S}, k−−−−−→

I
δk
1 (signal S in p′ end)

(signal+)

The restriction “O\{S}” prevents S to escape its scope of definition2.

• if S is supposed absent in p (inputs I\{S}), then S is not emitted by p (i.e. S /∈ O):

p
O, k−−−−→

I\{S}
p′ S /∈ O

signal S in p end
O, k−−→

I
δk
1 (signal S in p′ end)

(signal−)

2There may be nested definitions for the name S. This is taken care of by the (signal+) and (signal−) rules,
which ensure separation of the local and global signals S. For instance, for (signal+), remark I ∪ {S} is the same
whatever the status of S in I, and similarly for O\{S}.
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For example, if I = {A, B},

•
emit S

{S}, 0−−−−→
{A,B,S}

nothing S ∈ {S}

signal S in emit S end
∅, 0−−−→
{A,B}

nothing
using (signal+)

•
pause

∅, 1−−−→
{A,B}

nothing S /∈ ∅

signal S in pause end
∅, 1−−−→
{A,B}

signal S in nothing end
using (signal−)

The resulting semantics is not deterministic, as it may define several behaviors for a given state-
ment. In “signal S in present S then emit S else pause end end”, both hypotheses on
S are valid, leading to two distinct behaviors, for instance for the set of inputs {A}:

S /∈ {A} pause
∅, 1−−→
{A}

nothing

present S then emit S else pause end
∅, 1−−→
{A}

nothing S /∈ ∅

signal S in present S then emit S else pause end end
∅, 1−−→
{A}

signal S in nothing end

S ∈ {A, S} emit S
{S}, 0−−−→
{A,S}

nothing

present S then emit S else pause end
{S}, 0−−−→
{A,S}

nothing S ∈ {S}

signal S in present S then emit S else pause end end
∅, 0−−→
{A}

nothing

Moreover, there are statements that have no possible behavior. No reaction is defined for“signal
S in present S else emit S end end”, whatever the inputs. Both hypotheses on S are con-
tradictory:

• if S is supposed to be absent then it is emitted. Contradiction.

• if S is supposed to be present then it is not emitted. Contradiction.

We shall further discuss these issues in Section 2.5.

Logical Behavioral Semantics

In summary, the logical behavioral semantics of Esterel specifies that the statement p reacts to
inputs I with outputs O, completion code k, and residual p′ iff, using the deduction rules of
Figure 2.3, it can be shown that:

p
O, k−−→

I
p′

Our logical behavioral semantics differs from Berry’s semantics [Ber99] in two design choices:

• As proposed by Mignard in [Mig94], we ensure that the residual of the reaction is nothing
if its completion code is not 1, that is to say if no further reaction is necessary. Of course,
this does not change executions at all, but lets us compare semantics more easily in the
sequel.

• We do not require or enforce O to be a subset of I, as we consider free signals to be
input+output signals rather than inputoutput signals, as discussed in Section 2.3.
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nothing
∅, 0−−→
I

nothing (nothing)

pause
∅, 1−−→
I

nothing (pause)

exit Td
∅, d+2−−−−→

I
nothing (exit)

emit S
{S}, 0−−−→

I
nothing (emit)

p
O, k−−→

I
p′ k 6= 0

loop p end
O, k−−→

I
δk
1 (p′; loop p end)

(loop)

p
O, k−−→

I
p′ q

O′, l−−→
I

q′ m = max(k, l)

p || q
O∪O′, m−−−−−→

I
δm
1 (p′ || q′)

(parallel)

S ∈ I p
O, k−−→

I
p′

present S then p else q end
O, k−−→

I
p′

(present+)

S /∈ I q
O, k−−→

I
q′

present S then p else q end
O, k−−→

I
q′

(present−)

p
O, k−−→

I
p′

trap T in p end
O, ↓k−−−→

I
δk
1 (trap T in p′ end)

(trap)

p
O, 0−−→
I

p′ q
O′, k−−−→

I
q′

p; q
O∪O′, k−−−−−→

I
q′

(sequence-0)

p
O, k−−→

I
p′ k 6= 0

p; q
O, k−−→

I
δk
1 (p′; q)

(sequence-k)

p
O, k−−−−→

I∪{S}
p′ S ∈ O

signal S in p end
O\{S}, k−−−−−→

I
δk
1 (signal S in p′ end)

(signal+)

p
O, k−−−−→

I\{S}
p′ S /∈ O

signal S in p end
O, k−−→

I
δk
1 (signal S in p′ end)

(signal−)

Figure 2.3: Logical Behavioral Semantics
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2.5 Logical Correctness

In the previous section, we have seen that there are programs for which the logical behavioral
semantics defines no behavior, and also programs with two or more behaviors. Indeed, a state-
ment p may admit zero, one or several reactions for a given set of inputs I. Moreover, a given
reaction of p may result from more than one proof tree. For example, for I = {A},

reactions proofs
nothing one one

loop nothing end zero zero
signal S in present S else emit S end end zero zero
signal S in present S then emit S end end one two

signal S in present S then emit S else pause end end two two

Let us focus on “signal S in present S then emit S end end”. The semantics defines ex-
actly one reaction for inputs I = {A}, but with two possible proofs:

•

S ∈ {A, S} emit S
{S}, 0−−−→
{A,S}

nothing

present S then emit S end
{S}, 0−−−→
{A,S}

nothing S ∈ {S}

signal S in present S then emit S end end
∅, 0−−→
{A}

nothing
using (signal+)

•

S /∈ {A} nothing
∅, 0−−→
{A}

nothing

present S then emit S end
∅, 0−−→
{A}

nothing S /∈ ∅

signal S in present S then emit S end end
∅, 0−−→
{A}

nothing
using (signal−)

We say that the internal behavior of “signal S in present S then emit S end end” is not
deterministic, as the local signal S can be both present or absent. Its observed behavior is
nevertheless deterministic.

We expect programs to have deterministic deadlock-free executions. So, programs with no
or too many possible behaviors should be discarded as “incorrect”. In this section, we formalize
such a correctness criterion.

Generic Definitions

In the sequel, we shall consider various semantics of Esterel expressing reactions as transition
relations of the form:

p pO, k, ~α−−−−→
I

p′

where:

• p and p′ are typically statements, and in general elements of the domain D 7→ of the tran-
sition relation; in other words, D 7→ is the set of objects the semantics applies to.

• I and O are respectively the sets of inputs and outputs of the reaction.

• k is the completion code of the reaction.

• ~α represents additional labels that may be defined, as for instance in Section 2.6.

If so, we write p pO, k−−→
I

p′ iff there exists ~α such that p pO, k, ~α−−−−→
I

p′.
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For any such transition relation 7→, including the current one, we define:

• p is 7→reactive w.r.t. I iff there exists at least one tuple (O, k, p′) such that p pO, k−−→
I

p′.

p is 7→reactive iff p is reactive w.r.t. I for all I.

• p is 7→deterministic w.r.t. I iff there is at most one tuple (O, k, p′) such that p pO, k−−→
I

p′.

p is 7→deterministic iff p is deterministic w.r.t. I for all I.

• p is 7→strongly-deterministic w.r.t. I iff p is deterministic w.r.t. I and for all O, k, and p′

the proof of p pO, k−−→
I

p′ is unique if it exists.

p is 7→strongly-deterministic iff p is strongly deterministic w.r.t. I for all I.

• p 7→ q iff there exist inputs I and outputs O such that p pO, 1−−→
I

q.

• q is 7→reachable from p iff p
∗7→ q, where ∗7→ is the reflexive transitive closure of 7→, that is

to say iff p 7→ ... 7→ ... 7→ q for some number n ∈ N of transitions, including zero.

• p is 7→correct iff for all q 7→reachable from p, q is 7→reactive and 7→deterministic.

• p is 7→strongly-correct iff for all q 7→reachable from p, q is 7→reactive and 7→strongly-
deterministic.

Determinism ensures that the observed behavior of a statement is deterministic. Strong deter-
minism guarantees that its internal behavior is deterministic, too. A statement is reactive iff it
is not stuck. Reactivity combined with (strong) determinism ensures that there exists a unique
reaction (with a unique proof) for this statement, whatever the inputs.

The statement q is reachable from p iff the execution of p may lead to the execution of q.
Correctness characterizes statements that have deterministic deadlock-free executions for any
sequence of inputs. In addition, strong correctness ensures strong determinism. Of course,
strong correctness implies correctness. Strong correctness becomes a concern as soon as side
effects or debugging have to be taken into account, as both may expose the internal behavior of
a program.

Logical Correctness

As usual, we say that p is logically correct iff it is →correct, where → is the transition relation
defined by the logical behavioral semantics, strongly correct iff it is →strongly-correct. As
expected, not all statements are logically or strongly correct. For example,

• “loop pause end” is strongly correct, thus logically correct.

• “loop nothing end” is not logically correct.

• “signal S in present S then pause end end” is strongly correct.

• “signal S in emit S; present S then pause end end” is strongly correct.

• “signal S in present S then emit S end end” is logically but not strongly correct.

• “signal S in present S then emit S else pause end end” is not logically correct.

• “signal S in present S else emit S end end” is not logically correct.

• “signal S in present S then emit S else emit S end end” is strongly correct.
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C[ ] ::= [ ]
C[ ]; q
p; C[ ]
p || C[ ]
C[ ] || q
loop C[ ] end
signal S in C[ ] end
present S then C[ ] else q end
present S then p else C[ ] end
trap T in C[ ] end

Figure 2.4: Contexts

2.6 Subterms and Occurrences

In this section, we provide tools to deal with subterms of programs, that is to say statements
within statements. We first formalize occurrences of subterms and positions using contexts. We
then introduce tags in order to keep track of occurrences through reactions.

Contexts

Following standard notation [Bar81], we say that a context is a statement with a single hole “[ ]”.
For instance, “loop pause; [ ] end” is a context. Contexts are recursively built in Figure 2.4:

• [ ] is the empty context,

• if C[ ] is a context and q is a statement then “C[ ]; q” is a context,

• etc. for all constructs of pure Esterel.

As usual, C[x] denotes the statement (respectively context) obtained by replacing the hole [ ] of
C[ ] by the statement (respectively context) x, without any renaming of signals or exceptions.
For example, if C[ ] = “loop pause; [ ] end” then C[emit S] =“loop pause; emit S end”.

If p = C[q] then C[ ] characterizes an occurrence of q in p: we say that q occurs at position
C[ ] in p. For example, pause has two occurrence in “loop pause; pause end” with positions
“loop pause; [ ] end” and “loop [ ]; pause end”.

Using contexts, we may for instance formally express that loop bodies are preserved by the
semantics, that is to say that no fresh loop bodies are introduced by the execution:

Lemma 2.1. If p
∗→ p′ and p′ = C ′[loop b end] then there exists C[ ] s.t. p = C[loop b end].

Proof. By recurrence on the length of p
∗→ p′, we may suppose that p → p′. The

only rule of the logical behavioral semantics (Figure 2.3) that builds loop subterms
in residuals is the rule:

p
O, k−−→

I
p′ k 6= 0

loop p end
O, k−−→

I
δk
1 (p′; loop p end)

(loop)

The body p of the residual loop is copied from the initial loop.
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Tags

In order to relate subterms of the residual p′ of a reaction to subterms of the initial statement p,
we extend the syntax of pure Esterel with tags. We tag all pure Esterel constructs with integers:

• signaltag ... in ... end

• ... ||tag ...

• etc. for all constructs of pure Esterel.

The tag of a statement p is the tag of its root construct. For example, “pause1;2 pause3” has
tag 2. If q of tag n has position C[ ] in p, we note p = C[qn]. We say that a statement p is well
tagged iff its constructs are tagged with pairwise distinct tags. Tags of well-tagged statements
unambiguously characterize occurrences:

Lemma 2.2. If p is well tagged and q is a subterm of p of tag n then there exists a unique C[ ]
such that p = C[qn].

Proof. Structural induction.

Then, we instrument the logical behavioral semantics as follows:

• We preserve tags in the residual of a reaction if its execution has to be continued later on
(k = 1).

• We add an extra component M to transitions:

p
O, k, M−−−−→

I
p′

We call M the multiset of tags of the reaction. It is obtained by collecting the tags of
the occurrences reduced in the course of the reaction. For example, if p reacts with the
multiset M and q with N then “p ||n q” produces the multiset M ]N ] {n}:

p
O, k, M−−−−→

I
p′ q

O′, l, N−−−−→
I

q′ m = max(k, l)

p ||n q
O∪O′, m, M]N]{n}−−−−−−−−−−−−−→

I
δm
1 (p′ ||n q′)

(parallel)

For example,

pause1;2 pause3 ∅, 1, {1,2}−−−−−−→
I0

nothing1;2 pause3 ∅, 1, {1,2,3}−−−−−−−→
I1

nothing3 ∅, 0, {3}−−−−−→
I2

nothing

Loop unfolding may replicate subterms, thus tags, and introduce new tags. For instance,

loop1 pause2 end
∅, 1, {1,2}−−−−−−→

I0
nothing2;3 loop1 pause2 end

∅, 1, {1,2,2,3}−−−−−−−−→
I1

...

where 3 is a fresh tag. Of course, this replication is the reason for using multisets rather than
sets. We shall further discuss this property of loops in Chapter 5.

Figure 2.5 shows the logical behavioral semantics with tags derived from the logical behavioral
semantics of Figure 2.3.
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nothingn ∅, 0, {n}−−−−−→
I

nothing (nothing)

pausen ∅, 1, {n}−−−−−→
I

nothingn (pause)

exitn Td
∅, d+2, {n}−−−−−−→

I
nothing (exit)

emitn S
{S}, 0, {n}−−−−−−→

I
nothing (emit)

p
O, k, M−−−−→

I
p′ k 6= 0

loopn p end
O, k, M]{n}−−−−−−−−→

I
δk
1 (p′;(new tag) loopn p end)

(loop)

p
O, k, M−−−−→

I
p′ q

O′, l, N−−−−→
I

q′ m = max(k, l)

p ||n q
O∪O′, m, M]N]{n}−−−−−−−−−−−−−→

I
δm
1 (p′ ||n q′)

(parallel)

S ∈ I p
O, k, M−−−−→

I
p′

presentn S then p else q end
O, k, M]{n}−−−−−−−−→

I
p′

(present+)

S /∈ I q
O, k, M−−−−→

I
q′

presentn S then p else q end
O, k, M]{n}−−−−−−−−→

I
q′

(present−)

p
O, k, M−−−−→

I
p′

trapn T in p end
O, ↓k, M]{n}−−−−−−−−→

I
δk
1 (trapn T in p′ end)

(trap)

p
O, 0, M−−−−→

I
p′ q

O′, k, N−−−−−→
I

q′

p;n q
O∪O′, k, M]N]{n}−−−−−−−−−−−−→

I
q′

(sequence-0)

p
O, k, M−−−−→

I
p′ k 6= 0

p;n q
O, k, M]{n}−−−−−−−−→

I
δk
1 (p′;n q)

(sequence-k)

p
O, k, M−−−−→
I∪{S}

p′ S ∈ O

signaln S in p end
O\{S}, k, M]{n}−−−−−−−−−−−→

I
δk
1 (signaln S in p′ end)

(signal+)

p
O, k, M−−−−→
I\{S}

p′ S /∈ O

signaln S in p end
O, k, M]{n}−−−−−−−−→

I
δk
1 (signaln S in p′ end)

(signal−)

Figure 2.5: Logical Behavioral Semantics with Tags
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In addition to tags, we may also collect the names of the rules used in the reaction, thus pairs
(rule, tag). For instance, the (signal+) rule now becomes:

p
O, k, M−−−−→
I∪{S}

p′ S ∈ O

signaln S in p end
O\{S}, k, M]{(signal+,n)}−−−−−−−−−−−−−−−−−→

I
δk
1 (signaln S in p′ end)

(signal+)

This last semantics precisely reports whether a given local signal S of tag n is:

• present in the reaction: (signal+, n) ∈ M ,

• absent in the reaction: (signal−, n) ∈ M ,

• out of the “scope” of the reaction: there exists no rule Θ such that (Θ, n) ∈ M .

All these variants of the logical behavioral semantics define the same reactions, thus executions,
but return additional information about the proofs of the reactions. Therefore, we refer to all of
them as the logical behavioral semantics of Esterel, without distinction.

Reducibility and Relevance

In the sequel, we shall instrument various semantics with tags. For any statement transition
relation 7→, for any well-tagged statement p, we say that:

• the occurrence of tag n is reduced by rule Θ in the reaction p pO, k, M−−−−→
I

p′ if (Θ, n) ∈ M .

• the rule Θ is used in the reaction p pO, k, M−−−−→
I

p′ if (Θ, n) ∈ M for some tag n.

• the occurrence of tag n is 7→reducible by rule Θ in the execution of p iff there exists q, I,
O, k, M , and q′ such that p

∗7→ q and q pO, k, M−−−−→
I

q′ and (Θ, n) ∈ M .

• the occurrence of tag n is 7→reducible in the execution of p iff there exists Θ such that n is
7→reducible by rule Θ in the execution of p.

• the rule Θ is 7→relevant to the execution of p iff there exists an occurrence of tag n in p
that is 7→reducible by Θ.

Intuitively, an occurrence is reducible in the execution of p, a rule is relevant to the execution
of p, iff they may “participate” in the execution of p. Remark that reducibility is not a property
of statements in general but a property of occurrences of subterms with respect to a given
statement.

2.7 Bisimulations and Observational Equivalence

In order to compare programs and semantics, we define observational equivalence by means of
bisimulations3. As a first application, we discuss dead code in the logical behavioral semantics.

3In this work, we only consider strong bisimulations [Mil89]. Moreover, as we want to compare semantics of
various domains, we require bisimulations to be total surjective relations rather than reflexive relations. Finally, as
we shall only consider normalizing semantics (k 6= 1 ⇒ p′ = nothing), we do not need the custom 1-bisimulations
of [Tar04b].
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Bisimulation – Observational Equivalence

Let 7→ and ↪−→ be two transition relations. We say that the binary relation ∼ of domain D 7→×D↪→
is a bisimulation between 7→ and ↪−→ iff:

• relation ∼ is total : for all p in D 7→ there exists q in D↪→ such that p ∼ q;

• relation ∼ is surjective: for all q in D↪→ there exists p in D 7→ such that p ∼ q;

• if p ∼ q then for all (I, O, k):

– if p pO, k−−→
I

p′ then there exists q′ such that q ↪
O, k−−→

I
q′ and p′ ∼ q′;

– if q ↪
O, k−−→

I
q′ then there exists p′ such that p pO, k−−→

I
p′ and p′ ∼ q′.

We say that 7→ and ↪−→ are observationally equivalent iff there exists such a bisimulation. We say
that p and q are bisimilar w.r.t. 7→ and ↪−→ iff there exists a bisimulation ∼ between 7→ and ↪−→
such that p ∼ q. In particular, we say that p and q are 7→bisimilar iff they are bisimilar w.r.t.
7→ and 7→.

Dead Code

For any statement transition relation 7→, we say that q at position C[ ] in p is 7→dead in p iff for
any statement r, p and C[r] are bisimilar. For example, the pause instruction is →dead in:

trap T in
exit T;
pause

end

Remark that pause is also non-→reducible. In fact,

Theorem 2.3. If q at position C[ ] in p is →dead in p then q is not →reducible in p.

Proof (Sketch). If q at position C[ ] in p is →reducible in p then p and C[emit O; q]
where O is a fresh signal are not →bisimilar. Hence, q is not →dead in p.

But a statement may be both non-→reducible and non-→dead. For example, pause is neither
→reducible nor →dead in:

signal S in
present S then pause end

end

as this statement and the following one are not bisimilar:

signal S in
present S then emit S; emit O end

end

Intuitively, reactions not only depend on the subterms occurring in their proofs, that is to say
→reducible subterms, but also on subterms that prevent proofs to be completed. In our example,
pause prevents S to be present.

On the contrary, the deterministic semantics we shall introduce in Chapter 3 eliminates this
unintuitive mismatch, by making such dependencies explicit.
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SUMMARY

We have described the syntax of the pure Esterel language and formalized its logical behavioral
semantics as a set of SOS rules. In a way largely independent from the precise rules of the
semantics, we have defined reactivity, (strong) determinism, and (strong) correctness. We have
further instrumented the syntax and semantics of the language with tags in order to keep track
of occurrences of subterms through reactions. Finally, we have introduced bisimulations, so we
can compare program behaviors, and define observationally equivalent semantics.
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Chapter 3

Reactive Deterministic Semantics

We derive from the logical behavioral semantics a deterministic semantics in Section 3.1. In
contrast with the logical behavioral semantics, the execution of a program is fully decided by the
sequence of inputs in the deterministic semantics. This semantics leads to an updated correctness
criterion for Esterel programs called properness defined in Section 3.2. In Section 3.3, we extend
the deterministic semantics with explicit error-handling rules, thus defining a reactive determin-
istic semantics. We generalize properness to subterms (i.e. pieces of programs) in Section 3.4.

3.1 Deterministic Semantics

The logical behavioral semantics provides a very compact, structural formalization of the behav-
ior of Esterel programs, which makes formal reasoning about the language tractable. It founds
reactivity and determinism, the agreed minimal correctness criteria for Esterel programs.

However, working with these criteria can be tedious. While, reactivity may be attested with
a simple proof tree, establishing (strong-)determinism is more complex and formally requires a
proof about proof trees (proof of uniqueness). Moreover, defining first many (proofs of) reactions
for non-(strongly)-deterministic statements, which we then discard because there are too many,
seems utterly inefficient.

Therefore, we propose to rewrite the rules (signal−) and (signal+) for signal declarations:

p
O, k−−−−→

I∪{S}
p′ S ∈ O

signal S in p end
O\{S}, k−−−−−→

I
δk
1 (signal S in p′ end)

(signal+)

p
O, k−−−−→

I\{S}
p′ S /∈ O

signal S in p end
O, k−−→

I
δk
1 (signal S in p′ end)

(signal−)

as the following (where k+, k−, etc. are just convenient names):

p ◦O−, k−−−−−→
I\{S}

p− S ∈ O− p ◦O+, k+

−−−−→
I∪{S}

p+ S ∈ O+

signal S in p end ◦O+\{S}, k+

−−−−−−−→
I

δk+

1 (signal S in p+ end)
(signal++)

p ◦O−, k−−−−−→
I\{S}

p− S /∈ O− p ◦O+, k+

−−−−→
I∪{S}

p+ S /∈ O+

signal S in p end ◦O−, k−−−−−→
I

δk−
1 (signal S in p− end)

(signal−−)
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We call the resulting semantics the deterministic semantics, and denote the corresponding reac-
tions with the transition symbol “◦−→”. Figure 3.1 shows the complete semantics. Intuitively, it
consists in enforcing in each signal rule that the other one does not apply, without introducing
negative premises [Gro90] such as the negation of the hypothesis of rule (signal+):

S, p, I, O, k, p′ are not such that p
O, k−−−−→

I∪{S}
p′ and S ∈ O

Rather than negating the whole precondition, we only swap the binary decision S ∈ O for S /∈ O,
and vice versa. In the logical behavioral semantics, we had:

• (signal+): if S is supposed present in p then it is emitted by p.

• (signal−): if S is supposed absent in p then it is not emitted by p.

In our deterministic semantics, the rule for the signal construct are:

• (signal++):

– if S is supposed present in p then it is emitted.

– if S is supposed absent in p then it is still emitted.

• (signal−−):

– if S is supposed absent in p then it is not emitted.

– if S is supposed present in p then it is not emitted either.

For example, the deterministic semantics produces the same reactions as the logical behavioral
semantics in the following two cases (cf. Chapter 2):

•
emit S ◦{S}, 0−−−→

{A}
nothing S ∈ {S} emit S ◦{S}, 0−−−→

{A,S}
nothing S ∈ {S}

signal S in emit S end ◦∅, 0−−→
{A}

nothing
by (signal++)

•
pause ◦∅, 1−−→

{A}
nothing S /∈ ∅ pause ◦ ∅, 1−−−→

{A,S}
nothing S /∈ ∅

signal S in pause end ◦∅, 1−−→
{A}

signal S in nothing end
by (signal−−)

Whatever I, the deterministic semantics defines no reaction for:

• the non-→reactive statement:

“signal S in present S else emit S end end”

• the non-→deterministic statement:

“signal S in present S then emit S else pause end end”

• the non-→strongly-deterministic statement:

“signal S in present S then emit S end end”

In other words, all these statements are non-◦−→reactive.
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nothing ◦∅, 0−−→
I

nothing (nothing)

pause ◦∅, 1−−→
I

nothing (pause)

exit Td ◦
∅, d+2−−−−→

I
nothing (exit)

emit S ◦{S}, 0−−−→
I

nothing (emit)

p ◦O, k−−→
I

p′ k 6= 0

loop p end ◦O, k−−→
I

δk
1 (p′; loop p end)

(loop)

p ◦O, k−−→
I

p′ q ◦O′, l−−→
I

q′ m = max(k, l)

p || q ◦O∪O′, m−−−−−→
I

δm
1 (p′ || q′)

(parallel)

S ∈ I p ◦O, k−−→
I

p′

present S then p else q end ◦O, k−−→
I

p′
(present+)

S /∈ I q ◦O, k−−→
I

q′

present S then p else q end ◦O, k−−→
I

q′
(present−)

p ◦O, k−−→
I

p′

trap T in p end ◦O, ↓k−−−→
I

δk
1 (trap T in p′ end)

(trap)

p ◦O, 0−−→
I

p′ q ◦O′, k−−−→
I

q′

p; q ◦O∪O′, k−−−−−→
I

q′
(sequence-0)

p ◦O, k−−→
I

p′ k 6= 0

p; q ◦O, k−−→
I

δk
1 (p′; q)

(sequence-k)

p ◦O−, k−−−−−→
I\{S}

p− S ∈ O− p ◦O+, k+

−−−−→
I∪{S}

p+ S ∈ O+

signal S in p end ◦O+\{S}, k+

−−−−−−−→
I

δk+

1 (signal S in p+ end)
(signal++)

p ◦O−, k−−−−−→
I\{S}

p− S /∈ O− p ◦O+, k+

−−−−→
I∪{S}

p+ S /∈ O+

signal S in p end ◦O−, k−−−−−→
I

δk−
1 (signal S in p− end)

(signal−−)

Figure 3.1: Deterministic Semantics
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Determinism

The new semantics is globally deterministic in the following sense:

Lemma 3.1. For every statement p, p is ◦−→deterministic:

∀p,∀I :
[
p ◦O0, k0−−−−→

I
p0 ∧ p ◦O1, k1−−−−→

I
p1

]
⇒ [O0 = O1 ∧ k0 = k1 ∧ p0 = p1]

Lemma 3.2. For every statement p, p is ◦−→strongly-deterministic. In particular,

∀p,∀I,∀O,∀k,∀p′ : the proof of p ◦O, k−−→
I

p′ is unique if it exists.

Proof. Structural induction.

Corollary 3.3. p is ◦−→strongly-correct iff p is ◦−→correct iff
[
∀q : p

∗◦−→ q ⇒ q is ◦−→reactive
]
.

There is no need to count reactions or proof trees in the deterministic semantics. Therefore,
◦−→correctness is much easier to manipulate than logical correctness as it reduces to ◦−→reactivity.
Moreover, ◦−→strong-correctness comes for free with ◦−→correctness.

3.2 Proper Statements

We say that p is proper iff p is ◦−→correct. We now precisely relate the logical behavioral and
the deterministic semantics, in particular strong correctness and properness.

Properness implies Strong Correctness

Lemma 3.4. If p ◦O, k−−→
I

p′ then p
O, k−−→

I
p′.

Proof. Any deduction valid in the deterministic semantics is translatable into a
valid deduction in the logical behavioral semantics (by erasing premises).

Lemma 3.5. If p ◦O0, k0−−−−→
I

p0 and p
O1, k1−−−−→

I
p1 then O0 = O1, k0 = k1, p0 = p1.

Lemma 3.6. If p ◦O0, k0−−−−→
I

p0 then the proof of p
O0, k0−−−−→

I
p0 is unique.

Proof. Structural induction on p. Let us consider the case p =“signal S in q end”.

By hypothesis, p ◦O0, k0−−−−→
I

p0. As (signal++) or (signal−−) must be used to define

this reaction, there exist O−
0 , k−0 , q−0 , O+

0 , k+
0 , q+

0 such that:

q ◦
O−

0 , k−0−−−−→
I\{S}

q−0 and q ◦
O+

0 , k+
0−−−−→

I∪{S}
q+
0

Then, using Lemma 3.1,

• either S /∈ O−
0 , S /∈ O+

0 , O0 = O−
0 , k0 = k−0 , p0 = δ

k−0
1 (signal S in q−0 end),

• or S ∈ O−
0 , S ∈ O+

0 , O0 = O+
0 \{S}, k0 = k+

0 , p0 = δ
k+
0

1 (signal S in q+
0 end).
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Let us focus on the first case; the second one is similar. By induction hypothesis:

• if q
O−

1 , k−1−−−−→
I\{S}

q1 then O−
0 = O−

1 , k−0 = k−1 , q−0 = q−1 and the proof of this reaction

is unique.

• if q
O+

1 , k+
1−−−−→

I∪{S}
q1 then O+

0 = O+
1 , k+

0 = k+
1 , q+

0 = q+
1 and the proof of this reaction

is unique.

Therefore,

• No reaction can be defined for p using rule (signal+) as S /∈ O+
0 .

• By rule (signal−), if p
O1, k1−−−−→
I\{S}

p1 then O0 = O1, k0 = k1, p0 = p1.

Moreover, the proof of this reaction is unique.

In summary, by writing p ◦O, k−−→
I

p′, we express that:

• p may react to inputs I, with outputs O, completion code k, and residual p′ in the deter-
ministic semantics, thus in the logical behavioral semantics as well (Lemma 3.4),

• p must react this way in both semantics (Lemma 3.1 and Lemma 3.5)

• the internal behavior of p is deterministic (Lemma 3.2 and Lemma 3.6).

In particular, the drawing of a single proof tree of the deterministic semantics for the statement
p with inputs I, establishes that p is →reactive and →strongly-deterministic w.r.t. I, so that:

Theorem 3.7. If p is proper then p is strongly correct (i.e. →strongly-correct).

Proof. Let p be a proper statement, and q be such that p
∗→ q. By Lemma 3.5, if

u is ◦−→reactive and u → v then u ◦−→ v. Thus, by recurrence on the number of
transitions in the chain p

∗→ q, we obtain that p
∗◦−→ q. By definition of properness, q

is ◦−→reactive. By Lemma 3.4, q is →reactive. By Lemma 3.5, q is →deterministic.
By Lemma 3.6, q is →strongly-deterministic.

Strong Correctness does not imply Properness

Reciprocally however, a strongly correct statement is not necessarily proper, as →reactivity
combined with →strong-determinism does not imply ◦−→reactivity. Let us consider two examples:

• signal S in
present S then loop nothing end end

end

For all inputs I, the logical behavioral semantics defines the following unique proof tree:

S /∈ I\{S} nothing
∅, 0−−−→

I\{S}
nothing

present S then loop nothing end end
∅, 0−−−→

I\{S}
nothing S /∈ ∅

signal S in present S then loop nothing end end end
∅, 0−−→
I

nothing

The deterministic semantics however defines no reaction for this statement, whatever I.
Neither (signal++) nor (signal−−) applies, as“present S then loop nothing end end”
is not ◦−→reactive w.r.t. I ∪ {S}, whatever I.
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• loop
signal S in
present S then emit S else pause end

end
end

The body “signal S in present S then emit S else pause end end” may reacts in
two possible ways in the logical behavioral semantics, whatever I, with respective comple-
tion codes 0 and 1:

signal S in present S then emit S else pause end end
∅, 0−−→
I

nothing

signal S in present S then emit S else pause end end
∅, 1−−→
I

signal S in nothing end

Since exactly one of these two reactions admits a non-zero completion code, the whole
loop statement is both →reactive and →strongly-deterministic. On the other hand, the
deterministic semantics defines no reaction for the body, thus no reaction for the loop.

Strongly-Correct Non-Proper Statements

In the logical behavioral semantics, non-determinism may compensate for non-reactivity, or the
other way around, so that a piece of incorrect (e.g. “loop nothing end”) code may be embedded
into a strongly correct program. More precisely,

Theorem 3.8. If p is →reactive and →strongly-deterministic but not ◦−→reactive then there
exists a subterm q of p such that q is not →reactive or not →strongly-deterministic.

Proof. By structural induction on p, if p and all its subterms are →reactive and
→strongly-deterministic then p is ◦−→reactive.

Let us consider the only non-trivial induction p = “signal S in q end”. By
hypothesis, p and all its all subterms are →reactive and →strongly-deterministic.
As a consequence, q and all its subterms are→reactive and→strongly-deterministic.
By induction hypothesis, q is ◦−→reactive.

Let us choose the set of inputs I. There exists (k−, O−, q−, k+, O+, q+) such
that:

q ◦O+, k+

−−−−→
I∪{S}

q+ and q ◦O−, k−−−−−→
I\{S}

q−

There are four cases:

• S ∈ O+, S ∈ O−, then p is ◦−→reactive w.r.t. I by rule (signal++).

• S /∈ O+, S /∈ O−, then p is ◦−→reactive w.r.t. I by rule (signal−−).

• S ∈ O+, S /∈ O−, then p is not →strongly-deterministic w.r.t. I, since both
(signal+) and (signal−) are applicable. Contradiction.

• S /∈ O+, S ∈ O−, then p is not →reactive w.r.t. I, since neither (signal+) nor
(signal−) is applicable. Contradiction.

In all valid cases, p is ◦−→reactive.

If p is →reactive and →strongly-deterministic but one subterm q of p is not →reactive or not
→strongly-deterministic, then q behaves “well” in p only because of its context of occurrence,
which constrains the execution of q from the outside, making sure the non-reactive or non-
strongly-deterministic behaviors of q are never triggered. Intuitively, q could be simplified while
preserving the behavior of p.
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Let us consider our two examples in this new light:

• signal S in
present S then loop nothing end end

end

The subterm “present S then loop nothing end end” is not →reactive because of its
then branch, but never used with S present. Therefore, it can be replaced by its implicit
else branch, that is to say nothing, leading to the program“signal S in nothing end”,
which is equivalent to the initial one (i.e. →bisimilar) and proper.

• loop
signal S in
present S then emit S else pause end

end
end

The body of the loop is not →deterministic, but the enclosing loop, by forbidding the
reaction of completion code k = 0, enforces the signal S to be absent. Again, the sub-
term“present S then emit S else pause end” can simplified, by discarding the case S
present. The final program“loop signal S in pause end end” is equivalent and proper.

Therefore, there is something“wrong”with these programs, even if strong and logical correctness
are not sensitive to it. In any case, they are intricate constructions with no practical purpose.

To conclude, the deterministic semantics does not change the semantics of “reasonable” pro-
grams, while defining at most one execution for all programs and all input sequences. Therefore,
it provides a much better starting point for formal reasoning about programs than the logical
behavioral semantics, and for instance:

Theorem 3.9. If p is proper, then q at position C[ ] in p is either ◦−→reducible or ◦−→dead in p.

Proof (Sketch). If q at position C[ ] in p is ◦−→reducible in p then p and C[emit O; q]
where O is a fresh signal are not ◦−→bisimilar. Hence, q is not ◦−→dead in p.

Let us now suppose that p is proper and q is not ◦−→reducible in p. Any
execution of p is also an execution of C[r], whatever r. Moreover, thanks to global
determinism, C[r] admits no additional execution, as p, thus C[r], already admit a
possible execution for each input sequence. Therefore, p and C[r] are ◦−→bisimilar,
whatever r. In other words, q is ◦−→dead in p.

In the sequel, we shall provide further arguments for preferring properness over strong or logical
correctness.

3.3 Reactive Deterministic Semantics

The existence of a single proof tree of the deterministic semantics establishes that a statement
is ◦−→reactive with respect to a given set of inputs. Establishing non-◦−→reactivity however still
requires universally quantified proofs about proof trees. In this section, we further transform
the semantics, so that non-◦−→reactivity may be shown with a single proof tree as well. We shall
use the symbol “•−→” for the transitions of the resulting semantics.

In order to reason about non-◦−→reactivity within the rules of the semantics themselves,
we have to encode non-◦−→reactivity somehow: we reuse the existing exception propagation
mechanism of the logical behavioral and deterministic semantics to handle non-◦−→reactivity.
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We introduce the completion code “+∞” to represent non-◦−→reactivity. It obeys the obvious
arithmetic relations:

∀k ∈ (N ∪ {+∞}) : max(k, +∞) = +∞ ↓+∞ = +∞

Our goal is to achieve the following properties:

• If p ◦O, k−−→
I

p′ then p •O, k−−→
I

p′.

The reactions of the deterministic semantics must be preserved.

• If p •O, k−−→
I

p′ and k 6= +∞ then p ◦O, k−−→
I

p′.

Added reactions must have the completion code +∞.

• If p •O, k−−→
I

p′ and k = +∞ then O = ∅ and p′ = nothing.

Added reactions must have residual nothing and no outputs.

• If p is not ◦−→reactive w.r.t. I then p •∅, +∞−−−−→
I

nothing.

If p is not ◦−→reactive w.r.t. I then a reaction of completion code +∞ must be defined.

• If p •∅, +∞−−−−→
I

nothing then p is not ◦−→reactive w.r.t. I.

If p is ◦−→reactive w.r.t. I then no reaction should be added.

In summary, a statement p must react to inputs I either as it does in the deterministic semantics
if p is ◦−→reactive w.r.t. I, or with completion code +∞, residual nothing, and no outputs, if it
is not.

A tentative proof by structural induction that all statements are ◦−→reactive fails for the
following reasons:

• Even if p ◦O, k−−→
I

p′, if k = 0 then “loop p end” is not ◦−→reactive.

• Even if p ◦O+, k+

−−−−→
I∪{S}

p+ and p ◦O−, k−−−−−→
I\{S}

p−:

– If S ∈ O+ and S /∈ O− then “signal S in p end” is not ◦−→reactive.
– If S /∈ O+ and S ∈ O− then “signal S in p end” is not ◦−→reactive.

In a first attempt at the definition of the “•−→” statement transition relation, we may add the
following three rules to those of the deterministic semantics, corresponding to the three problems
we have just identified:

p •O, k−−→
I

p′ k = 0

loop p end •∅, +∞−−−−→
I

nothing
(loop-error)

p •O−, k−−−−−→
I\{S}

p− S ∈ O− p •O+, k+

−−−−→
I∪{S}

p+ S /∈ O+

signal S in p end •∅, +∞−−−−→
I

nothing

(signal+−)

p •O−, k−−−−−→
I\{S}

p− S /∈ O− p •O+, k+

−−−−→
I∪{S}

p+ S ∈ O+

signal S in p end •∅, +∞−−−−→
I

nothing

(signal−+)
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Intuitively,

• (loop-error) would report instantaneous loop bodies,

• (signal+−) would report non-reactive signals (neither (signal+) nor (signal−)),

• (signal−+) would report non-strongly-deterministic signals (both (signal+) and (signal−)).

But the resulting semantics lacks the intended properties. For example, the following statement
is non-◦−→reactive, but admits a reaction with finite completion code in this extended semantics:

signal S in
present S then
loop nothing end

end
end

On the one hand, because of the implicit “else nothing” branch,

S /∈ I\{S} nothing • ∅, 0−−−→
I\{S}

nothing

present S then loop nothing end end • ∅, 0−−−→
I\{S}

nothing
using (present−)

On the other hand,

S ∈ I ∪ {S}

nothing • ∅, 0−−−−→
I∪{S}

nothing

loop nothing end •∅, +∞−−−−→
I∪{S}

nothing

present S then loop nothing end end •∅, +∞−−−−→
I∪{S}

nothing

using (loop-error)

using (present+)

Thus, by rule (signal−−),

signal S in present S then loop nothing end end end •∅, 0−−→
I

nothing

Indeed, the (signal−−) rule may define a reaction for “signal S in p end” with a completion
code k− ∈ N, even if k+ is +∞. In order to avoid such patterns, we shall further constrain the
(signal−−) rule as the following:

p •O−, k−−−−−→
I\{S}

p− S /∈ O− p •O+, k+

−−−−→
I∪{S}

p+ S /∈ O+ max(k−, k+) < +∞

signal S in p end •O−, k−−−−−→
I

δk−
1 (signal S in p− end)

(signal−−)

The “max(k−, k+) < +∞” hypothesis ensures that all deductions are obtained from premises
with finite completion codes. We update rules (signal++), (signal+−), and (signal−+) as well:

p •O−, k−−−−−→
I\{S}

p− S ∈ O− p •O+, k+

−−−−→
I∪{S}

p+ S ∈ O+ max(k−, k+) < +∞

signal S in p end •O+\{S}, k+

−−−−−−−→
I

δk+

1 (signal S in p+ end)
(signal++)
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p •O−, k−−−−−→
I\{S}

p− S ∈ O− p •O+, k+

−−−−→
I∪{S}

p+ S /∈ O+ max(k−, k+) < +∞

signal S in p end •∅, +∞−−−−→
I

nothing

(signal+−)

p •O−, k−−−−−→
I\{S}

p− S /∈ O− p •O+, k+

−−−−→
I∪{S}

p+ S ∈ O+ max(k−, k+) < +∞

signal S in p end •∅, +∞−−−−→
I

nothing

(signal−+)

We expect, however, reactions with infinite completion codes to have zero outputs:

S ∈ O± ⇒ k± ∈ N

Therefore, we can discard half of these extra constraints, and retain the equivalent set of rules:

p •O−, k−−−−−→
I\{S}

p− S /∈ O− p •O+, k+

−−−−→
I∪{S}

p+ S /∈ O+ max(k−, k+) < +∞

signal S in p end •O−, k−−−−−→
I

δk−
1 (signal S in p− end)

(signal−−)

p •O−, k−−−−−→
I\{S}

p− S ∈ O− p •O+, k+

−−−−→
I∪{S}

p+ S ∈ O+

signal S in p end •O+\{S}, k+

−−−−−−−→
I

δk+

1 (signal S in p′ end)
(signal++)

p •O−, k−−−−−→
I\{S}

p− S ∈ O− p •O+, k+

−−−−→
I∪{S}

p+ S /∈ O+ k+ 6= +∞

signal S in p end •∅, +∞−−−−→
I

nothing

(signal+−)

p •O−, k−−−−−→
I\{S}

p− S /∈ O− k− 6= +∞ p •O+, k+

−−−−→
I∪{S}

p+ S ∈ O+

signal S in p end •∅, +∞−−−−→
I

nothing

(signal−+)

One last rule must be introduced to propagate +∞ through local signal declarations:

p •O−, k−−−−−→
I\{S}

p− p •O+, k+

−−−−→
I∪{S}

p+ max(k−, k+) = +∞

signal S in p end •∅, +∞−−−−→
I

nothing

(signal-∞)

We call the resulting semantics the reactive deterministic semantics. Its rules are gathered in
Figure 3.2. It has all the intended properties, in particular:

Lemma 3.10. If p •O, k−−→
I

p′ then k = +∞ iff (loop-error), (signal+−) or (signal−+) is •−→used

by the reaction.

Proof. Structural induction. The rules (loop-error), (signal+−), and (signal−+)
generate +∞. The other rules may only propagate +∞. No rule can hide +∞, i.e.
if +∞ occurs in a proof tree, then it is propagated down to the conclusion.

Lemma 3.11. If p •O, k−−→
I

p′ and k < +∞ then rule (signal-∞) is not •−→used by the reaction.

Proof. Structural induction.
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nothing •∅, 0−−→
I

nothing (nothing)
p •O, k−−→

I
p′ q •O′, l−−−→

I
q′ m = max(k, l)

p || q •O∪O′, m−−−−−−→
I

δm
1 (p′ || q′)

(parallel)

pause •∅, 1−−→
I

nothing (pause)
S ∈ I p •O, k−−→

I
p′

present S then p else q end •O, k−−→
I

p′
(present+)

exit Td •
∅, d+2−−−−→

I
nothing (exit)

S /∈ I q •O, k−−→
I

q′

present S then p else q end •O, k−−→
I

q′
(present−)

emit S •{S}, 0−−−−→
I

nothing (emit)
p •O, k−−→

I
p′

trap T in p end •O, ↓k−−−→
I

δk
1 (trap T in p′ end)

(trap)

p •O, 0−−→
I

p′ q •O′, k−−−→
I

q′

p; q •O∪O′, k−−−−−→
I

q′
(sequence-0)

p •O, k−−→
I

p′ k 6= 0

p; q •O, k−−→
I

δk
1 (p′; q)

(sequence-k)

p •O, k−−→
I

p′ k 6= 0

loop p end •O, k−−→
I

δk
1 (p′; loop p end)

(loop)

p •O, k−−→
I

p′ k = 0

loop p end •∅, +∞−−−−→
I

nothing
(loop-error)

p •O−, k−−−−−−→
I\{S}

p− S ∈ O− p •O+, k+

−−−−→
I∪{S}

p+ S ∈ O+

signal S in p end •O+\{S}, k+

−−−−−−−−→
I

δk+

1 (signal S in p′ end)
(signal++)

p •O−, k−−−−−−→
I\{S}

p− S /∈ O− p •O+, k+

−−−−→
I∪{S}

p+ S /∈ O+ max(k−, k+) < +∞

signal S in p end •O−, k−−−−−−→
I

δk−

1 (signal S in p′ end)
(signal−−)

p •O−, k−−−−−−→
I\{S}

p− S ∈ O− p •O+, k+

−−−−→
I∪{S}

p+ S /∈ O+ k+ 6= +∞

signal S in p end •∅, +∞−−−−→
I

nothing
(signal+−)

p •O−, k−−−−−−→
I\{S}

p− S /∈ O− k− 6= +∞ p •O+, k+

−−−−→
I∪{S}

p+ S ∈ O+

signal S in p end •∅, +∞−−−−→
I

nothing
(signal−+)

p •O−, k−−−−−−→
I\{S}

p− p •O+, k+

−−−−→
I∪{S}

p+ max(k−, k+) = +∞

signal S in p end •∅, +∞−−−−→
I

nothing
(signal-∞)

Figure 3.2: Reactive Deterministic Semantics
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Lemma 3.12. For every statement p, p is •−→reactive and •−→strongly-deterministic.

Proof. Structural induction.

The reactive deterministic semantics defines exactly one execution per sequence of inputs:

Corollary 3.13. For every statement p, p is •−→strongly-correct.

with completion code +∞ iff there is an error:

Lemma 3.14. p is not ◦−→reactive w.r.t. I iff there exists O and p′ such that p •O, +∞−−−−→
I

p′.

Proof. All deductions of the deterministic semantics remain valid in the reactive
deterministic semantics. Reciprocally, by Lemma 3.10 and Lemma 3.11, a proof
of a reaction of the reactive deterministic semantics with a finite completion code
never uses rule (loop-error), (signal+−), (signal−+), or (signal-∞).

Theorem 3.15. p is proper iff the rules (loop-error), (signal+−), and (signal−+) are not
•−→relevant to the execution of p.

Proof. By recursion, using Lemma 3.14, p is proper iff no execution of p ends
with completion code +∞, that is to say iff these rules are not •−→relevant to the
execution of p, by Lemma 3.10.

3.4 Proper Subterms

Compilers not only reject programs because they are incorrect, but they give precise error mes-
sages about the reasons and locations of errors. Thanks to the explicit handling of errors provided
by the reactive deterministic semantics, we shall now easily formalize non-proper occurrences of
subterms within non-proper statements, thus formally identifying errors.

In Chapter 2, we have described tags, and shown how occurrences of subterms within state-
ments can be identified using tags. Applying the same construction to the reactive deterministic
semantics, we can define for any well-tagged (i.e. pairwise distinct tags) statement p:

• The loop “loopn b end” in p is not proper iff it is •−→reducible by rule (loop-error) in the
execution of p, proper otherwise.

• The signal declaration “signaln S in b end” in p is not proper iff it is •−→reducible by rule
(signal+−) or (signal−+) in the execution of p, proper otherwise.

Corollary 3.16. A statement p is proper iff its loops and signal declarations are proper.

For example, the subterm “loop nothing end” is not proper in context “pause; [ ]”, that is to
say in program:

pause;
loop nothing end

As a result, the program itself is not proper.
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However, “loop nothing end” is proper in context “trap T in exit T; [ ] end”, that is to
say in program:

trap T in
exit T;
loop nothing end

end

In general, the properness of a loop or local signal declaration depends on its position. With the
definition of non-instantaneous loops in Chapter 4, we shall ensure that loops are proper, in a
position-independent manner.

SUMMARY

We have defined a deterministic semantics for pure Esterel, leading to an updated correctness
criterion, which we call properness. This semantics, while preserving the behaviors of “reason-
able” programs (i.e. proper programs), eliminates the non-determinism of the logical behavioral
semantics. We have further extended this semantics into a reactive deterministic semantics, by
embedding the ability to deal with improper programs into the semantics itself. As a result, we
were able to express properness as the conjunction of two predicates respectively concerned with
loops and local signal declarations. In other words, we can now precisely identify errors within
programs and classify them into loop errors and local signal declarations errors.
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Chapter 4

Instantaneous Loops

The logical behavioral semantics provides a unique rule for loop statements:

p
O, k−−→

I
p′ k 6= 0

loop p end
O, k−−→

I
δk
1 (p′; loop p end)

(loop)

The side condition k 6= 0 requires loop bodies to:

• either execute a pause instruction (k = 1).

• or raise an exception, which aborts the loop (k ≥ 2).

As a result, at most one iteration can be completed in each instant1. Reciprocally, programs like
“loop nothing end” are non-reactive, thus logically incorrect.

This requirement is of dynamic nature, as it is enforced in each reaction, and may be respon-
sible for runtime errors at any instant. For example, “await I; loop nothing end” fails upon
the reception of signal I.

In critical systems however, runtime errors cannot be tolerated, as they cannot be corrected
on the fly. As a consequence, Esterel compilers have to prevent them. Intuitively, they may only
compile loop safe programs, that is to say programs for which the runtime check k 6= 0 can be
safely ignored. Reciprocally, loop unsafe programs must be rejected.

Compilers must replace a runtime check by a compile time analysis of programs. We believe
that this issue is a typical example of a well known complexity of Esterel, already solved by
existing implementations, but not yet fully understood. For example, depending your choice of
compiler, the following program may be (correctly) compiled or rejected:

loop
trap T in
trap U in
trap V in
exit U || exit V

end;
exit T

end;
pause

end
end

1Nevertheless, many iterations of the same loop may be started in a single instant (cf. Chapter 5).
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In order to establish the logical correctness of this program, one has to take into account the
relative priority of U over V, which shows that exception T is never raised, which in turn implies
that the pause instruction is executed in each instant. The SAXO-RT [CPP+02] compiler for
Esterel, for instance, cannot complete this chain of deductions, as its internal representation of
programs abstracts away exception priority levels.

Our goal in this chapter is to specify such a conservative filtering algorithm for the rejection
of unsafe programs:

• in a formal, provably correct fashion,

• precisely enough,

• with a reasonable computational complexity.

We shall formalize the algorithm implemented in the Esterel compiler of Berry et al. [Ber00b],
and partly described in [Ber99], which, in our view, provides a reasonable trade-off between
precision and efficiency, and matches user intuition well enough. In particular, it handles the
above example.

In order to prove the correctness of this algorithm, we first formalize loop safety in Section 4.1.
Then, in Section 4.2, we define (non-)instantaneous statements, and establish that programs with
non-instantaneous loop bodies are loop safe and have proper loops (cf. Chapter 3). Finally, in
Section 4.3, we specify the decision procedure for the acceptance/rejection of programs w.r.t.
loop safety. We prove it to be correct.

4.1 Loop Safety

We define loop safety w.r.t. the logical behavioral semantics and the deterministic semantics. We
relate loop safety to the various correctness criteria we previously defined: logical correctness,
strong correctness, properness, and proper loops.

Logical Behavioral Semantics

Ignoring the runtime check k 6= 0 for loop bodies means replacing the (loop) rule of the logical
behavioral semantics with the rule:

p
O, k−−→

I
p′

loop p end
O, k−−→

I
δk
1 (p′; loop p end)

(unsafe-loop)

or equivalently keeping the initial (loop) rule and adding to the semantics the rule:

p
O, k−−→

I
p′ k = 0

loop p end
O, 0−−→
I

nothing
(unsafe-loop-0)

We choose the second option. Remark that (unsafe-loop-0) differs from the (loop-error) rule
introduced in Chapter 3 in the definition of the completion code and outputs of the reaction:
(loop-error) reports an error, whereas (unsafe-loop-0) ignores the error.

We say that p is →loop-safe iff (unsafe-loop-0) is not relevant to the execution of p in the
logical behavioral semantics extended with rule (unsafe-loop-0), meaning that the removal of the
check k 6= 0 changes nothing to the internal and external behavior of p.

Strongly correct programs are not →loop-safe in general. As a consequence, the check k 6= 0
cannot be safely ignored for strongly correct programs, and even more so for logically correct
programs.
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For instance,

signal S in
present S then
loop emit S end

else
pause

end
end

is strongly correct but not →loop-safe, as the extended semantics defines reactions for it using
rule (unsafe-loop-0). Whatever I,

S ∈ I ∪ {S}

emit S
{S}, 0−−−−→
I∪{S}

nothing

loop emit S end
{S}, 0−−−−→
I∪{S}

nothing
using (unsafe-loop-0)

present S then loop emit S end end
{S}, 0−−−−→
I∪{S}

nothing S ∈ {S}

signal S in present S then loop emit S end else pause end end
∅, 0−−→
I

nothing

Therefore, →loop-safety requires its own analysis.

Deterministic Semantics

Similarly, we may extend the deterministic semantics with the same rule:

p ◦O, k−−→
I

p′ k = 0

loop p end ◦O, 0−−→
I

nothing
(unsafe-loop-0)

and say that p is ◦−→loop-safe iff (unsafe-loop-0) is not relevant to the execution of p in the
extended deterministic semantics.

Lemma 4.1. The extended deterministic semantics remains globally deterministic. Every state-
ment p is strongly deterministic w.r.t. the extended deterministic semantics.

Proof. Structural induction.

Lemma 4.2. All proper statements are ◦−→loop-safe and →loop-safe.

Proof. By Lemma 4.1, if p is ◦−→reactive w.r.t. the unextended deterministic seman-
tics, then the extended deterministic semantics cannot define additional reactions
for p. Therefore, if p is proper, the extended deterministic semantics does not de-
fine additional executions for p, that is to say (unsafe-loop-0) is not relevant to the
execution of p in the extended deterministic semantics.

By Lemma 3.5, which remains valid for the extended semantics, (unsafe-loop-0)
is not relevant to the execution of p in the extended logical behavioral semantics.

In other words, ◦−→loop-safety is one component of properness. This is again a reason for
preferring the deterministic semantics over the logical behavioral semantics, and properness
over logical or strong correctness.
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In Chapter 3, we defined proper loops and proper signal declarations, so that properness is the
conjunction of the two. As one might expect, there is no need to decide whether local signal
declarations are proper or not in order to guarantee ◦−→loop-safety.

Theorem 4.3. If all loops of p are proper then p is ◦−→loop-safe.

Proof (Sketch). If some reaction of p uses rule (unsafe-loop-0) in the extended deter-
ministic semantics, then a reaction of p may be defined in the reactive deterministic
semantics that uses rule (loop-error) instead of (unsafe-loop-0).

Comparison

There is no simple connection between →loop-safety and ◦−→loop-safety (or proper loops).

• →loop-safety does not imply ◦−→loop-safety (even for strongly correct programs).

signal S in
present S then loop nothing end end

end

is strongly correct (cf. Chapter 3) and →loop-safe, since S cannot be present in the (ex-
tended) logical behavioral semantics, but not ◦−→loop-safe, as (unsafe-loop-0) is relevant to
its execution in the extended deterministic semantics:

S ∈ I ∪ {S}

nothing ◦ ∅, 0−−−−→
I∪{S}

nothing

loop nothing end ◦ ∅, 0−−−−→
I∪{S}

nothing
using (unsafe-loop-0)

present S then loop nothing end end ◦ ∅, 0−−−−→
I∪{S}

nothing S /∈ ∅ ...

signal S in present S then loop nothing end end end ◦∅, 0−−→
I

nothing

• ◦−→loop-safety does not imply →loop-safety (even for strongly correct programs).

loop
signal S in
present S then emit S else pause end

end
end

is strongly correct (cf. Chapter 3) and ◦−→loop-safe, as the extended deterministic semantics
defines no reaction for it. But the program is not →loop-safe, because of reaction:

S ∈ I ∪ {S} emit S
{S}, 0−−−−→
I∪{S}

nothing

present S then emit S else pause end
{S}, 0−−−−→
I∪{S}

nothing S ∈ {S}

signal S in present S then emit S else pause end end
∅, 0−−→
I

nothing

loop signal S in present S then emit S else pause end end end
∅, 0−−→
I

nothing

As a result, in the rest of this chapter, we shall deal with →loop-safety as well as proper loops
(thus ◦−→loop-safety). For simplicity, we say that p is loop safe iff p is both →loop-safe and
◦−→loop-safe.
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4.2 (Non-)Instantaneous Statements

In Chapter 3, we observed that the properness of a loop depends its position in the program. In
a first step toward an efficient analysis of loop safety, we shall abstract away such dependencies
in a conservative manner. Using universal quantifiers, we first define:

• p is instantaneous iff ∀I,∀O,∀k,∀p′ : p
O, k−−→

I
p′ ⇒ k = 0.

• p is non-instantaneous iff ∀I,∀O,∀k,∀p′ : p
O, k−−→

I
p′ ⇒ k 6= 0.

Remark that there are statements that are neither instantaneous nor non-instantaneous, as they
behavior may be context-dependent. For instance,

• “nothing” is instantaneous.

• “pause” is non-instantaneous.

• “exit T” is non-instantaneous (k ≥ 2).

• “present S then pause end” is neither instantaneous nor non-instantaneous.

We choose to define (non-)instantaneous statements using the logical behavioral semantics. For-
tunately, there is no need for alternate definitions w.r.t. to the deterministic semantics, since all
behaviors defined by the deterministic semantics also exist in the logical behavioral semantics:

Lemma 4.4. If p is instantaneous then ∀I,∀O,∀k,∀p′ : p ◦O, k−−→
I

p′ ⇒ k = 0.

Lemma 4.5. If p is non-instantaneous then ∀I,∀O,∀k,∀p′ : p ◦O, k−−→
I

p′ ⇒ k 6= 0.

Proof. By Lemma 3.4, if p ◦O, k−−→
I

p′ then p
O, k−−→

I
p′.

We now establish that non-instantaneous loop bodies ensure loop safety and proper loops:

Theorem 4.6. If every loop body occurring in p is non-instantaneous then p is loop safe.

Proof. Let us suppose a proof uses rule (unsafe-loop-0) in either extended seman-
tics for a loop of body b. Then b reacts to some inputs with completion code 0.
Therefore, b is not non-instantaneous.

Theorem 4.7. If p is non-instantaneous then “loop p end” is proper in C[ ], whatever C[ ].

Proof. Similar the previous proof, replacing (unsafe-loop-0) with (loop-error).

Loop safe programs may nevertheless contain loop bodies that may be instantaneous, that is to
say are not non-instantaneous (6= instantaneous). For example,

trap T in
exit T;
loop nothing end

end

is loop safe, as “exit T” prevents the execution of “loop nothing end”.
However, relying on such externally enforced correctness properties is useless and error-prone.

Therefore, forbidding loop bodies that may be instantaneous is a conservative approach which
makes sense both from the compiler’s and from the user’s perspectives.
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From now on, we say that:

• a loop is potentially instantaneous iff its body may be instantaneous.

• a loop is non-instantaneous iff its body is non-instantaneous.

In the sequel, we want to detect and reject potentially instantaneous loops.

4.3 Static Analysis

Deciding whether a statement may be instantaneous or not requires one to take into account the
2n possible valuations of its n input signals, which is unreasonable for large programs. In fact,
SAT (Boolean satisfiability in propositional logic) can be expressed in terms of instantaneous
termination in Esterel, via a polynomial reduction. For instance,

(A ∨ ¬B ∨ C) ∧ (¬A ∨ C ∨ ¬D) ∧ (¬B ∨ ¬C ∨D) is satisfiable
m

present A else present B then present C else pause end end end;
present A then present C else present D then pause end end end;
present B then present C then present D else pause end end end

may be instantaneous

Therefore, compilers rely on conservative static analysis techniques for the detection of poten-
tially instantaneous loops, such as the one we formalize below.

Abstract Semantics

By making abstraction [CC77] of signals (inputs I and outputs O) and residuals (p′) in the
logical behavioral semantics of Esterel we obtain the abstract semantics of Figure 4.1, where:

p
O, k−−→

I
p′ is abstracted into: p

·, k−−→
·
· which we abbreviate as: p ↪→ k

Remark that the abstract rules corresponding to (signal+) and (signal−) are the same.

Lemma 4.8. If p
O, k−−→

I
p′ then p ↪−→ k.

Proof. All deductions of the logical behavioral semantics remain valid in the ab-
stract semantics.

We define the set Γp of the potential completion codes of p as Γp = {k ∈ N s.t. p ↪→ k}.

Corollary 4.9. For any statement p,
{

k ∈ N s.t. ∃I,∃O,∃p′ : p
O, k−−→

I
p′

}
⊂ Γp

Corollary 4.10. If 0 /∈ Γb then b is non-instantaneous.

Figure 4.2 derives a recursive algorithm for the computation of Γ from the abstract semantics of
Figure 4.1, by collecting the completion codes obtained using all deduction rules that may apply
to each Esterel construct. For example, k ∈ Γp; q iff:

• either 0 ∈ Γp and k ∈ Γq (sequence-0),

• or k ∈ Γp and k 6= 0 (sequence-k).

Similarly, k ∈ Γloop p end iff k ∈ Γp and k 6= 0. Hence, Γloop p end = Γp\{0}.
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nothing ↪→ 0 (nothing)
pause ↪→ 1 (pause)

exit Td ↪→ d + 2 (exit)
emit S ↪→ 0 (emit)

p ↪→ k k 6= 0
loop p end ↪→ k

(loop)

p ↪→ k q ↪→ l

p || q ↪→ max(k, l)
(parallel)

p ↪→ k

present S then p else q end ↪→ k
(present+)

q ↪→ k

present S then p else q end ↪→ k
(present−)

p ↪→ k

trap T in p end ↪→ ↓k
(trap)

p ↪→ 0 q ↪→ k

p; q ↪→ k
(sequence-0)

p ↪→ k k 6= 0
p; q ↪→ k

(sequence-k)

p ↪→ k

signal S in p end ↪→ k
(signal+)

p ↪→ k

signal S in p end ↪→ k
(signal−)

Figure 4.1: Abstract Semantics

p Γp

nothing {0}
pause {1}
exit Td {d + 2}
emit S {0}
loop p end Γp\{0}
p || q {m ∈ N s.t. ∃k ∈ Γp,∃l ∈ Γq,m = max(k, l)} i.e. max(Γp,Γq)
present S then p else q end Γp ∪ Γq

trap T in p end {l ∈ N s.t. ∃k ∈ Γp, l = ↓k} i.e. ↓Γp

p; q if 0 ∈ Γp then (Γp\{0}) ∪ Γq else Γp

signal S in p end Γp

Figure 4.2: Potential Completion Codes of Reactions
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Decision Procedure

In order to ensure that a program p is loop safe, we can compute Γb for every loop body b of p,
and check that none of these sets Γb contains zero. This check can be easily embedded within
the computation of Γ itself by replacing:

Γloop p end = Γp\{0}

with the following definition:

Γloop p end = if 0 ∈ Γp then ERROR else Γp

Theorem 4.11. If the computation of Γq completes without ERROR for every subterm q of the
statement p then p is loop safe and all its loops are proper.

Proof. This includes computing Γb for each loop body b of p.

This leads to the following decision procedure for any program p:

• compute Γ for all subterms of p in one exhaustive recursive traversal of p,

• if the computation completes normally (no ERROR): accept program (loop safe).

• if the computation fails (ERROR): reject program (potentially loop unsafe).

This procedure can be further tuned to report the location of the potential problem (if any).
Formally, we shall attach the tag of the incriminated loop to the exception:

Γloopn p end = if 0 ∈ Γp then ERROR(n) else Γp

Since this procedure ensures that all loops of p are proper, the only errors that may be left in p
are improper signal declarations, in the sense of Chapter 3.

We shall further extend this procedure in Chapter 5 for the detection of schizophrenia.

Complexity

Let us choose a statement p and define:

• N is the size of p, that is to say the number of primitive constructs in p.

• D is the maximum depth of exceptions in p (D = −1 in the absence of exceptions).

For example, N = 5 and D = 1 for the program:

trap T in
trap U in
exit T1 || exit U0

end
end

of abstract syntax tree:

trap T

trap U

||
�� HH

exit T1 exit U0

The number of steps, that is to say operations on sets of completion codes, in the computation
of Γp is at most equal to N . Under the assumption of atomic set operations, the analysis is
linear in the size of the statement.

More precisely, the sets of completion codes considered in the computation of Γp are subsets
of {0, ..., D+2} of size D+3. All required set operations (including “max”) have a complexity at
most linear in the size of the sets they apply to. Therefore, provided that exception declarations
are not nested beyond some fixed bound (D ≤ cte), this analysis is linear in the size of the
statement.
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Examples

Using this analysis we can establish that our initial example is loop safe.

loop
trap T in
trap U in
trap V in
exit U1 || exit V0

end;
exit T1

end;
pause

end
end

We obtain:
loop

trap T

;

��
��

HH
HH

trap U

;

�
��

H
HH

trap V

||
�� HH

exit U1 exit V0

exit T1

pause

Γ−→

{1}

{1}

{1}
�

��
H

HH

{0}

{2}
�

��
H

HH

{2}

{3}
�� HH

{3} {2}

{3}

{1}

The computation proceeds as follows:

Γexit U1 = {3}
Γexit V0 = {2}

Γexit U1 || exit V0 = {3}
Γtrap V in exit U1 || exit V0 end = {2}

Γexit T1 = {3}
Γtrap V in exit U1 || exit V0 end; exit T1 = {2}

Γtrap U in trap V in exit U1 || exit V0 end; exit T1 end = {0}
Γpause = {1}

Γtrap U in trap V in exit U1 || exit V0 end; exit T1 end; pause = {1}
Γtrap T in trap U in trap V in exit U1 || exit V0 end; exit T1 end; pause end = {1}

Γloop trap T in trap U in trap V in exit U1 || exit V0 end; exit T1 end; pause end end = {1}

Since the computation completes normally, this program is loop safe. In addition, we verify that
it cannot terminate instantaneous or raise an exception.
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Unfortunately, since our analysis abstracts signals away, it cannot verify that the following
program is loop safe for instance:

loopn

present I then pause end;
present I else pause end

end

The analysis proceeds as follows:

loopn

;

���
��

HHH
HH

present I

��� HHH

pause nothing

present I

��� HHH

nothing pause

Γ−→

ERROR(n)

{0,1}

���
HHH

{0,1}
�� HH

{1} {0}

{0,1}
�� HH

{1} {1}

Γpause; emit O = {1}
Γpresent I then pause end = {0, 1}
Γpresent I else pause end = {0, 1}

Γpresent I then pause end; present I else pause end = {0, 1}
Γloopn present I then pause end; present I else pause end end = ERROR(n)

A generic workaround for such issues consists in adding a pause statement in parallel to the
body of the incriminated loop (as reported by the analysis). In our example, we obtain:

loop
present I then pause end;
present I else pause end

||
pause

end

Provided that the original loop is non-instantaneous, this simple program transformation pre-
serves the semantics, while ensuring a successful analysis:

Γpresent I then pause; emit O end; present I else pause end || pause = max({0, 1}, {1}) = {1}
Γloop present I then pause; emit O end; present I else pause end || pause end = {1}

This transformation however leads to less efficient code generation2. Therefore, by precisely
taking into account exceptions in our analysis, we require less user thinking and intervention,
and enable a better code generation than analyses that ignore priority levels.

Nevertheless, because the exact analysis would be of exponential complexity, false positives
cannot be totally eliminated.

2In particular, this transformation introduces schizophrenic parallel statements (cf. Chapter 5).
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SUMMARY

We have defined loop safety and formalized a decision procedure for the rejection/acceptance of
Esterel programs w.r.t. loop safety. We have established its correctness: all loop unsafe programs
are rejected. From now on, we shall only consider programs for which this decision procedure
completes successfully. We say they are safe programs. Safe programs have obviously non-
instantaneous loops, that is to say loops that are non-instantaneous in a way that the decision
procedure recognizes.
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Chapter 5

Schizophrenia

In the previous chapter, we have encountered a first source of complexity due to loops in Esterel:
loops are not always correct. We have dealt with it by rejecting at compile time potentially
instantaneous loops. In this chapter, we shall see that non-instantaneous loops still require
our attention, as several traversals of the same piece of code may take place simultaneously in
Esterel. In order to motivate the definition of schizophrenia, we first discuss “beeps” in Esterel in
Section 5.1. Then, in Section 5.2, we establish that instantly reentered local signal declarations
and parallel subterms are the program patterns we have to focus on. We thoroughly discuss these
patterns and define schizophrenia in Section 5.3. Finally, we develop static analysis techniques to
detect schizophrenia in Section 5.4. In this chapter, we focus on the logical behavioral semantics.
But the results for the deterministic semantics would be the same (and the proofs slightly easier).

5.1 Beeps

In contrast with the full language, pure Esterel is side-effect free. In particular, even if it is
possible to emit a signal several times in a reaction, there is no way to count these emissions.

Lemma 5.1. If p is →deterministic and instantaneous, then, for all inputs, the statements “p”,
“p; p” and “p || p” are →bisimilar.

Proof. Let us choose p both →deterministic and instantaneous, and I.

• If p is not →reactive w.r.t. I, then neither is “p; p”, nor “p || p”.

• If p
O0, k0−−−−→

I
p′0 and p

O1, k1−−−−→
I

p′1, then O0 = O1, k0 = k1 = 0, p′0 = p′1 = nothing.

As a result, there exists a unique reaction defined for “p; p” w.r.t. I:

p
O0, 0−−−→

I
nothing p

O0, 0−−−→
I

nothing

p; p
O0∪O0, 0−−−−−−→

I
nothing

(sequence-0)

Similarly, there exists a unique reaction defined for “p || p” w.r.t. I:

p
O0, 0−−−→

I
nothing p

O0, 0−−−→
I

nothing 0 = max(0, 0)

p || p
O0∪O0, 0−−−−−−→

I
δ0
1(nothing || nothing) = nothing

(parallel)

In all cases, ∀O,∀k,∀p′ : p
O, k−−→

I
p′ iff p; p

O, k−−→
I

p′ iff p || p
O, k−−→

I
p′.
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In oder to make schizophrenia easier to grasp, we first extend the pure Esterel language with
a beep instruction of obvious behavior, so that “beep” and “beep; beep” for instance behave
differently. Formally, we add to the transition relation a new integer label “b” which reports the
number of beeps occurring in the reaction:

p
O, k, b−−−→

I
p′

Then, beep is defined as the following:

beep
∅, 0, 1−−−→

I
nothing (beep)

And for instance,

p
O, 0, b−−−→

I
p′ q

O′, k, b′−−−−→
I

q′

p; q
O∪O′, k, b+b′−−−−−−−−→

I
q′

(sequence-0)

The complete logical behavioral semantics of the extended language is given in Figure 5.1.
In the first instant of execution of a logically correct program, control propagates from left

to right, from top to bottom only. No instruction can be executed twice. Formally, let filter be
the function that recursively removes loop constructs from programs:

filter(beep)
def
= beep

filter(nothing)
def
= nothing

filter(pause)
def
= pause

filter(p; q)
def
= filter(p); filter(q)

filter(p || q)
def
= filter(p) || filter(q)

filter(loop p end)
def
= filter(p)

filter(signal S in p end)
def
= signal S in filter(p) end

filter(emit S)
def
= emit S

filter(present S then p else q end)
def
= present S then filter(p) else filter(q) end

filter(trap T in p end)
def
= trap T in filter(p) end

filter(exit T )
def
= exit T

Lemma 5.2. If p is safe then ∀I,∀O,∀k,∀b :
[
∃p′ : p

O, k, b−−−→
I

p′
]
⇔

[
∃p′0 : filter(p)

O, k, b−−−→
I

p′0

]
.

Proof. Structural induction.

The instantaneous behavior (i.e. outputs, completion code, and beeps) of a safe program does
not depend on its loops.

By instrumenting the semantics with tags in a way similar to Chapter 2, we also establish
that:

Lemma 5.3. If p is well tagged and p
O, k, b, M−−−−−−→

I
p′ then no tag is repeated in M .

Proof. Structural induction.

In particular, each beep instruction of a program can be executed (reduced) at most once in its
first reaction. In other words, there is at most one beep per beep instruction.
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beep
∅, 0, 1−−−→

I
nothing (beep)

nothing
∅, 0, 0−−−→

I
nothing (nothing)

pause
∅, 1, 0−−−→

I
nothing (pause)

exit Td
∅, d+2, 0−−−−−→

I
nothing (exit)

emit S
{S}, 0, 0−−−−−→

I
nothing (emit)

p
O, k, b−−−→

I
p′ k 6= 0

loop p end
O, k, b−−−→

I
δk
1 (p′; loop p end)

(loop)

p
O, k, b−−−→

I
p′ q

O′, l, b′−−−−→
I

q′ m = max(k, l)

p || q
O∪O′, m, b+b′−−−−−−−−−→

I
δm
1 (p′ || q′)

(parallel)

S ∈ I p
O, k, b−−−→

I
p′

present S then p else q end
O, k, b−−−→

I
p′

(present+)

S /∈ I q
O, k, b−−−→

I
q′

present S then p else q end
O, k, b−−−→

I
q′

(present−)

p
O, k, b−−−→

I
p′

trap T in p end
O, ↓k, b−−−−→

I
δk
1 (trap T in p′ end)

(trap)

p
O, 0, b−−−→

I
p′ q

O′, k, b′−−−−→
I

q′

p; q
O∪O′, k, b+b′−−−−−−−−→

I
q′

(sequence-0)

p
O, k, b−−−→

I
p′ k 6= 0

p; q
O, k, b−−−→

I
δk
1 (p′; q)

(sequence-k)

p
O, k, b−−−−→
I∪{S}

p′ S ∈ O

signal S in p end
O\{S}, k, b−−−−−−−→

I
δk
1 (signal S in p′ end)

(signal+)

p
O, k, b−−−−→
I\{S}

p′ S /∈ O

signal S in p end
O, k, b−−−→

I
δk
1 (signal S in p′ end)

(signal−)

Figure 5.1: Logical Behavioral Semantics of Pure Esterel + “beep”
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Because of non-instantaneous loops, one might expect that no beep instruction can be instantly
executed twice, at any stage of the execution. Consider, for instance, the program:

loop
present ALARM then beep end;
pause

end

There is at most one beep per instant. However, this intuition is wrong:

loop
present I then pause end;
beep

||
pause

end

In this program, if the input signal I is present in the first instant of execution, then absent, two
beeps are produced in the second instant of execution. Indeed, the first reaction is:

loop
present I then pause end;
beep

||
pause

end

∅, 1, 0−−−→
{I}

[ nothing; beep || nothing ];
loop
present I then pause end;
beep

||
pause

end

Then, the second reaction is:

[ nothing; beep || nothing ];
loop
present I then pause end;
beep

||
pause

end

∅, 1, 2−−−→
∅

[ nothing || nothing ];
loop
present I then pause end;
beep

||
pause

end

As the semantics of loops involves unfolding, instructions may be duplicated by the reduction of
a loop. Then, two copies of the same instruction, beep in this example, may be simultaneously
executed at some later stage of the execution.

Such a behavior can be observed for inputless, local-signal-free programs, too:

loop
trap T in
pause;
exit T

||
loop
beep;
pause

end
end

end

∅, 1, 1−−−→
I0

trap T in
nothing;
exit T

||
nothing;
loop
beep;
pause

end
end;
loop

...
end

∅, 1, 2−−−→
I1

trap T in
nothing;
exit T

||
nothing;
loop
beep;
pause

end
end;
loop

...
end
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It can be obtained with sequential programs1:

signal I in
emit I;
loop
signal S in
emit S;
present I then pause end;
beep;
present S then pause end

end
end

end

∅, 1, 0−−−→
I0

...
∅, 1, 2−−−→

I1
...

In summary, whereas in the first reaction of a program each beep instruction can be executed
at most once, this in no longer true for subsequent reactions in general.

There are many reasons to dislike such program patterns:

• Synchronous circuit generation is tricky. In each instant, gates and wires of a synchronous
circuit may only encode a Boolean piece of information such as “0 or 1 beep”. Therefore,
potentially instantly repeated beep instructions must be implemented using several wires.

• Debugging is difficult. As long as each instruction of the program is executed once at most
per instant, reactions can be easily represented by marking (coloring) the traversed piece
of code and the present signals. It becomes much more difficult, if repeated traversals may
occur in an instant.

Because of nested loops and weak preemption, this may even be worse: arbitrary many beeps
may be instantly generated by a single beep instruction. If C[ ] is the context:

loop
trap T in
beep;
pause;
exit T

||
[ ]

end
end

and (pn)n∈N the family of programs:

p0 = nothing, and for all n ∈ N, pn+1 = C[pn]

then the number cn of beeps produced in the second instant of execution of pn is such that:

c0 = 0, and for all n ∈ N, cn+1 = n + cn

By recursion,

cn =
n(n− 1)

2
This number of beeps is quadratic in the number of beep instructions, and also quadratic in the
size of the program. In the sequel, with the definition of schizophrenia, we shall capture this
complexity, as beep instructions (existing or inserted at arbitrary locations) cannot be instantly
repeated in non-schizophrenic programs.

1Here, the loop is not obviously non-instantaneous, in the sense of Chapter 4. As a result, the program is
rejected by Esterel compilers. Nevertheless, it is correct (proper) and illustrates our point.
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5.2 Instantly Reentered Subterms

In the examples of the previous section, not only are beep instructions enclosed in loops, but
these loops always contain either:

• a parallel subterm, which terminates and is instantly restarted,

• a local signal declaration, which is left and instantly reentered,

in those instants of executions with repeated beep instructions. In this section, we shall formally
define instantly reentered (i.e. restarted) occurrences of subterms and establish that this is always
the case.

Example

In the following program, O is never emitted, as the test always consider a fresh instance or
incarnation of S, which is not emitted at the time of the test:

loop
signal S in
present S then emit O end;
pause;
emit S

end
end

∅, 1−−→
I0

...
∅, 1−−→
I1

...

Because S is declared within the loop, starting from the second instant of execution, each reaction
involves two instances of S:

• an old instance, inherited from the previous instant, as pause is in the scope of S,

• a new instance, as the control leaves the scope of S and instantly reenters it.

We say that the scope of S is instantly reentered, which we formalize using tags.

Formal Characterization

As explained in Chapter 2, we can use tags to mark occurrences of subterms. For example, in
the logical behavioral semantics with tags of Figure 2.5,

loop1 pause2 end
∅, 1, {1,2}−−−−−−→

∅
nothing2;3 loop1 pause2 end

∅, 1, {1,2,2,3}−−−−−−−−→
∅

...

Intuitively, if a tag of a program initially tagged with pairwise distinct tags is encountered twice
in the same instant of execution, this means that corresponding subterm of the initial program is
left and instantly reentered in this instant, because of some loop, which replicated the statement
in a previous reaction. In the above example, the initial pause statement of tag 2 is left and
instantly reentered in the second instant of execution, as both the residual nothing2 and the
statement pause2 are reduced in this instant.

Therefore, if p is a well-tagged program, we say that a subterm q of label n of the program
p is instantly reentered in some execution of p iff its tag n is repeated in the multiset M of one
of the reaction of an execution of p:

∃r, ∃I,∃O,∃k,∃M,∃r′ : p
∗→ r ∧ r

O, k, M−−−−→
I

r′ ∧ {n, n} ⊂ M
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loop
signaln S in
present S then
emit O

end;
pause;
emit S

end
end

∅, 1, {n}−−−−−→
I

signaln S in
nothing;
emit S

end;
loop
signaln S in
present S then
emit 0

end;
pause;
emit S

end
end

∅, 1, {n,n}−−−−−−→
J

signaln S in
nothing;
emit S

end;
loop
signaln S in
present S then
emit 0

end;
pause;
emit S

end
end

Figure 5.2: Instantly Reentered Signal Scope

Figure 5.2 illustrates this mechanism on our initial example. Initially, the program contains a
unique signal declaration, which we label n. The proof tree of the first reaction involves this signal
declaration, thus the multiset {n}. Because loop unfolding occurs, the residual now contains two
declarations with tag n. In the second instant and thereafter, the tag n is encountered twice,
leading to the multiset {n, n}. Thus, this signal declaration is instantly reentered.

While made using the logical behavioral semantics, the definition of instantly reentered sub-
terms makes sense for the deterministic semantics as well. Thanks to Lemma 3.4, if a statement
is instantly reentered in some execution of the deterministic semantics, then it is also instantly
reentered in an execution of the logical behavioral semantics. Therefore, all the results we shall
establish for the logical behavioral semantics are valid for the deterministic semantics as well.

Going back to beeps, we obtain:

Theorem 5.4. If p is a well-tagged program and a beep instruction of p is instantly reentered
then there exists a local signal declaration “signaln in ... end” or parallel subterm “... ||n ...”
of p which is instantly reentered.

Proof (Sketch). For a beep instruction to be instantly repeated, it has to be the
case that the reaction starts before the beep instruction then executes the beep
instruction, then reaches the end of a loop, then reaches the beep instruction again
from the beginning of this loop, then stops. As a result, the reaction must visit
twice the piece of code delimited by the beep instruction and the end of the loop,
the first time traversing it, the second time stopping somewhere in between. It may
stop for two reasons:

• because it reached some pause instruction. If so, this pause instruction must
be conditioned in a way that changes between the first and the second iteration.
As a result, the condition must depend on a signal local to the loop. Moreover,
its scope is left and instantly reentered in this reaction.

• because of some non-terminating parallel branch. If so, the same parallel sub-
term has to terminated in the first iteration. Therefore, this parallel subterm
is left and instantly reentered in this reaction.

In the sequel, we shall focus on instantly reentered signal declarations and parallel subterms. In
fact, beeps are only one out of many ways to point at these patterns and reveal their complexity.
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5.3 Schizophrenic Programs

Let us now forget the beep construct. We say that the program p is schizophrenic iff at least
one signal declaration or parallel subterm of p is schizophrenic, where:

• schizophrenic signal declaration: a signal declaration of p is said to be schizophrenic iff it
is instantly reentered in some execution of p.

• schizophrenic parallel subterm: a parallel subterm of p is said to be schizophrenic iff it is
instantly reentered in some execution of p.

Signal Declarations

Local scoping is a typical feature of imperative languages. Nothing new here. What is specific
to Esterel however, is that several (partial) traversals of the same local scope may take place
simultaneously.

First, we remark that the number of such traversals can be large. In the following example,
in the second instant of execution, three instances of S are computed. Using tags,

loop
trap T in
pause;
exit T

||
loop
signal Sn in
pause

end
end

end
end

∅, 1, {n}−−−−−→
I0

...
∅, 1, {n,n,n}−−−−−−−→

I1
...

The number of instances of a signal is nevertheless statically bounded (syntactically bounded).

Theorem 5.5. If the declaration of S is enclosed in n nested loops then up to n + 1 instances
of S have to be computed per instant.

Proof. By structural induction on n, each loop adding at most one instance.

Lemma 5.6. The bound can be reached. The number of instances of signals computed per instant
for a program of size n may be in the order of n2.

Proof. Using a construction similar to that of (pn)n∈N in Section 5.1.

On the one hand, if the signal S is declared inside a loop, but is not schizophrenic, then its
declaration can be moved outside the loop, as in:

Lemma 5.7. Whatever p, the following statements are →bisimilar:

loop
pause;
signal S in

p
end

end

and

signal S in
loop
pause;
p

end
end
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Proof. Let ∼ be the least reflexive relation s.t. for all p and p′:

• loop pause; signal S in p end end
∼ signal S in loop pause; p end end

• nothing; signal S in p end; loop pause; signal S in p end end
∼ signal S in nothing; p; loop pause; p end end

• signal S in p′ end; loop pause; signal S in p end end
∼ signal S in p′; loop pause; p end end

This relation is a →bisimulation.

As a result, non-instantly reentered local signals can be interpreted as global signals with re-
stricted visibility, which are very easy to deal with.

On the other hand, instantly reentered local signals, that is to say schizophrenic signals, are
much more difficult to handle. To start with,

• As mentioned before, gates and wires in synchronous circuits may only assume a single
Boolean value in each clock cycle. Therefore, if the scope of S is left and instantly reen-
tered, then several wires must be used to implement the several statuses of S simultaneously
computed. As a result, detecting schizophrenic signal scopes is required for the transla-
tion of Esterel programs into synchronous circuits. Moreover, the better the counting of
simultaneous instances is, the smaller the circuit area will be.

• It is highly desirable for embedded code targets, either software or hardware, to rely on sta-
tically allocated memory spaces, and even further Single Static Assignment properties. As
soon as every element of the description assumes only one value at each instant, important
synthesis, optimization and mapping techniques become available. Again, to achieve this
goal, simultaneous instances of a same signal must be identified and carefully disentangled.

In fact, whatever the targeted code representation, the computations of the simultaneous in-
stances of a given signal may be interdependent. In general, they must be computed simulta-
neously rather than sequentially, as the sequence is a very special construct in Esterel. Let us
consider the program:

signal S in
present S else emit O end;
nothing

end

{O}, 0−−−→
I0

nothing

In the first instant of execution, S is absent, so that O is emitted. This statement is of the
form “signal S in p; q end”. In a C-like imperative language, the behavior of p would be
computed first, independently from that of q. But in Esterel, the computation of the behavior
of this statement cannot be sequentialized as suggested by the “;” operator, by considering first
its upper part only:

signal S in
present S else emit O end

in particular deciding whether O is emitted or not, then the remaining lower part:

nothing
end
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as the program could well be the following2, which does not emit O.

signal S in
present S else emit O end
emit S

end

∅, 0−−→
I0

nothing

Similarly, simultaneous iterations of the same loop cannot be sequentially computed3. For ex-
ample, the following program emits O in its second reaction, because of the emission of S in
iteration n + 1 and the simultaneous test in iteration n:

signal S in
loop
emit S;
pause;
present S then emit O end

end
end

∅, 1−−→
I0

...
{O}, 1−−−→

I1
...

In summary, if a reaction spans several (fragments of) iterations of a loop, then they have to
be computed simultaneously rather than sequentially. In particular, if several incarnations of
a given signal have to be considered in a single instant, then these incarnations have to be
computed simultaneously. In hardware, this means several wires for the same signal, and in
software, multiple memory cells. Therefore, such patterns have to be identified4 first, and then
require special care from the compiler.

Parallel Subterms

The parallel construct in Esterel is synchronous. In each reaction, a status must be computed
for each “active” parallel statement. Indeed, the semantics of pure Esterel specifies that the
completion code m = max(k, l) of a parallel subterm is obtained by combining the completion
codes of its branches k and l. If the parallel scope is left and instantly reentered, then this
computation potentially takes place several times in a single instant. For reasons similar to those
we exposed for local signal declarations, these computations have to take place simultaneously,
e.g. require again special care from the compiler.

2As explained in Chapter 1, the logical behavioral semantics of Esterel and the logical correctness criterion
can be refined with the definition of a constructive semantics and of constructive programs. While the initial
program is constructive, the revised one is not. Nevertheless, “forward dependencies” are possible for constructive
programs, too. For example,

signal S in

signal T in

present S then pause else emit A end;

p
||

present T then pause else emit B end;

q
end

end

emits A but not B if p = emit T and q = nothing, emits B but not A if p = nothing and q = emit S. Both
substitutions result in constructive programs.

In other words, there is no way to decide the behaviors of the two tests, without looking first at p and q,
although they appear in sequence after these tests. Using such program patterns, one can show that instantly
reentered signal and parallel scopes retain their complexity in the framework of the constructive semantics.

3Again, forward dependencies across iteration boundaries do occur in constructive programs.
4Of course, the alternative is to systematically assume the worse, as in FSM synthesis for instance. Here, we

want to do better.
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p Ωp

nothing {0}
pause {0, 1}
emit S {0}
exit Td {d + 2}
p || q {m ∈ Ns.t. ∃k ∈ Ωp,∃l ∈ Ωq,m = max(k, l)} i.e. max(Ωp,Ωq)
loop p end Ωp\{0}
present S then p else q end Ωp ∪ Ωq

trap T in p end {l ∈ N s.t. ∃k ∈ Ωp, l = ↓k} i.e. ↓Ωp

p; q if 0 ∈ Ωp then (Ωp\{0}) ∪ Ωq else Ωp

signal S in p end Ωp

Figure 5.3: Potential Completion Codes of Chains of Reactions

5.4 Static Analysis

In Chapter 7, we shall further discuss code generation for schizophrenic programs. In the rest
of this chapter, we focus on identifying schizophrenic programs, more precisely on locating
schizophrenic constructs within schizophrenic programs.

Deciding at compile time whether a program is schizophrenic or not a priori requires to
explore all possible execution paths, which is unreasonable for large programs, as mentioned
earlier. We need an effective decision procedure amenable to implementation. More precisely,
we would like to ensure statically that statements are not schizophrenic. In this section, we shall
build a conservative static analysis for this safety property.

The fact that p may terminate or exit and be instantly reentered in C[p] depends on both
C[ ] and p. For example, if p non-instantly terminates with code k:

p is instantly reentered? k = 0 k = 2
loop trap T in [p]; pause end end no yes
trap T in loop [p] end end yes no

Intuitively, we have to characterize both:

• the possible behaviors of p,

• the possible behaviors of C[ ],

so that, by combining these two pieces of information, we may decide whether p at position C[ ]
can be instantly reentered in C[p] or not.

Potential Completion Codes

In Chapter 4, in Figure 4.2, we defined function Γ : p 7→ Γp which provides an overapproximation
of the set of possible completion codes of the first reaction of p. Similarly, in Figure 5.3, we define
function Ω : p 7→ Ωp which overapproximates the set of possible completion codes of chains of
reactions starting from p. The computation of Ωp matches that of Γp except for pause statements
for which Γpause = {1} whereas Ωpause = {0, 1}.

Lemma 5.8. For any statement p, Γp ⊂ Ωp.

Proof. Structural induction.
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〈p〉 def
= ∅

C[present S then 〈p〉 else q end]
def
= C〈present S then p else q end〉

C[present S then p else 〈q〉 end] def
= C〈present S then p else q end〉

C[loop 〈p〉 end] def
= {0} ∪ C〈loop p end〉

C[〈p〉; q]
def
= if Γq ∩ C〈p;q〉 = ∅ then C〈p;q〉\{0} else C〈p;q〉∪{0}

C[p; 〈q〉] def
= if 0 ∈ Γp then C〈p; q〉 else ∅

C[trap T in 〈p〉 end] def
= {k ∈ N, ↓k ∈ C〈trap T in p end〉}

C[signal S in 〈p〉 end] def
= if C〈signal S in p end〉 ∩ Ωp = ∅ then ∅ else STOP

C[〈p〉 || q]
def
= if C〈p || q〉 ∩ Ωp || q = ∅ then ∅ else STOP

C[p || 〈q〉] def
= if C〈p || q〉 ∩ Ωp || q = ∅ then ∅ else STOP

Figure 5.4: Risk

Moreover, potential completion codes are preserved by the reduction:

Lemma 5.9. For any statements p and p′, if p → p′ then Ωp′ ⊂ Ωp.

Proof. By structural induction on p. Let us for instance suppose p = “loop q end”.
If p → p′ then by rule (loop), there exists q′ such that q → q′ and p′ =
“q′; loop q end”. Ωp = Ωloop q end.
Ωp = Ωq\{0}, by definition of Ω for loops.
Ωp′ = Ωq′; loop q end.
Ωp′ ⊂ (Ωq′\{0}) ∪ Ωloop q end, by definition of Ω for sequences.
Ωp′ ⊂ (Ωq′\{0}) ∪ (Ωq\{0}), by definition of Ω for loops.
By induction hypothesis, Ωq′ ⊂ Ωq, thus Ωp′ ⊂ Ωp.

As a result,

Theorem 5.10. If p
O0, 1−−−→

I0
...

On, k−−−→
In

pn for some n ∈ N then k ∈ Ωp.

Proof. By recurrence on n, using the above lemmas.

Risk

In Figure 5.4, we recursively define the partial function risk : C[ ], p 7→ risk(C[ ], p) which we
abbreviate into C〈p〉. Intuitively, it tries to decide whether p at position C[ ] in C[p] – thus the
shortcut C〈p〉 – may be instantly reentered or not, or stops early with the exception STOP if it
thinks that p is contained in a schizophrenic subterm of C[p].

• First, the risk function is designed so that if p at position C[ ] in C[p] may terminate with
completion code k and be instantly reentered, then k ∈ C〈p〉. We say that C〈p〉 is the set
of risky completion codes for p at position C[ ].

The definition or the risk function specifies for instance that 0 is a risky completion code
for any context having a loop as its innermost construct:

∀C[ ],∀p : 0 ∈ C[loop 〈p〉 end]
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• Second, the computation stops as soon as it encounters a potentially schizophrenic signal
declaration or parallel construct.

Let us now understand the way the computation of the risk function proceeds, by considering
the program p0:

loop
signal S in
emit O

end;
pause

end

of abstract syntax tree:

loop

;

��� HHH

signal S

emit O

pause

Each node of the abstract syntax tree represents a possible decomposition “p0 = C[q]” of the
program p0 into a subterm q and a context C[ ]. For instance, for the “signal S” node:

p0 = loop [signal S in emit O end]; pause end

By definition, in order to compute the risk corresponding to a given node of the tree, one has to
successively compute the risk of all nodes above it, starting from the root node. The top-down
computation of the risk function for p0 is thus the following:

〈loop signal S in emit O end; pause end〉 = ∅

loop 〈signal S in emit O end; pause〉 end = {0}

��
���

���
���

HH
HHH

HHH
HHH

loop 〈signal S in emit O end〉; pause end = ∅

loop signal S in 〈emit O〉 end; pause end = ∅

loop signal S in emit O end; 〈pause〉 end = {0}

Let us finally consider a few more examples:

• “loop signal S in 〈p〉 end; pause end” is empty, whatever p.

The subterm p in this context cannot be instantly reentered.

• “loop signal S in emit 0 end; 〈p〉 end” is {0}, whatever p.

The subterm p may be instantly reentered if terminates normally. It cannot be if it raises
an exception.

• “loop trap T in 〈p〉; pause end end” is {2}, whatever p.

As a result, p must raise exception T (completion code 2 means depth 0) to be potentially
left and instantly reentered in context “loop trap T in [ ]; pause end end” .

• “trap T in loop 〈p〉 end end” is {0}, whatever p.

In particular, p cannot be instantly reentered in context “trap T in loop [ ] end end”
if it raises exception T. It may if it terminates normally (k = 0).

• “loop signal S in 〈pause〉 end end” aborts with exception STOP.

The local signal declaration is potentially schizophrenic.
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〈loop
signal S in
emit S

end;
pause

||
pause

end〉

= ∅

loop
〈signal S in
emit S

end;
pause

||
pause〉

end

= {0}

��
���

���
��

HH
HHH

HHH
HH

loop
〈signal S in
emit S

end;
pause〉

||
pause

end

STOP

��
���

���

HH
HHH

HHH

loop
〈signal S in
emit S

end;〉
pause

||
pause

end

STOP

loop
signal S in
〈emit S〉

end;
pause

||
pause

end

STOP

loop
signal S in
emit S

end;
〈pause〉

||
pause

end

STOP

loop
signal S in
emit S

end;
pause

||
〈pause〉

end

STOP

Figure 5.5: A Potentially Schizophrenic Program
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• “loop 〈emit O〉 || pause end” aborts with exception STOP.

The parallel statement is potentially schizophrenic.

• loop
signal S in
〈emit S〉

end;
pause

||
pause

end

aborts with exception STOP.

The details of this computation are given in Figure 5.5. Remark the computation does not
stop because it concludes that the local signal declaration is potentially schizophrenic, but
because it decides that the outer parallel construct is, in an early stage of the computation.

Formally, the following results can be established:

Theorem 5.11. If the computation of C〈p〉 completes normally and C〈p〉 ∩ Ωp = ∅ then p at
position C[ ] cannot be left and instantly reentered in program C[p].

Corollary 5.12. For any program p, if the computation of C〈q〉 completes normally for every
context C[ ] and statement q such that p = C[q] then p is not schizophrenic.

Proof. In Chapter 7, we shall use this static analysis in order to efficiently rewrite
schizophrenic programs into non-schizophrenic programs. Rather than proving now
the correctness of the static analysis, we shall then prove the correctness of the
optimized preprocessing.

Decision Procedure

From these results, a decision procedure can be easily derived to ensure that a program p is
not schizophrenic. First, the abstract syntax tree of the program is decorated with the values
of functions Γ and Ω, simultaneously computed in one recursive traversal of the tree. Then, a
second traversal computes the risk C〈q〉 for every decomposition p = C[q]. This procedure either:

• returns ERROR (during phase 1): there is a potentially instantaneous loop;

• returns STOP (during phase 2): loop safe, but potentially schizophrenic;

• completes normally: loop safe, not schizophrenic.

It extends the decision procedure for the analysis of loop safety described in Chapter 4. It
remains linear, under the same assumption of atomic set operations.

In addition, precise locations of potentially schizophrenic subterms can be reported. Formally,
we update the definition of the risk function using tags as the following:

C[signaln S in 〈p〉 end] def
= if C〈signal S in p end〉 ∩ Ωp = ∅ then ∅ else STOP(n)

C[〈p〉 ||n q]
def
= if C〈p || q〉 ∩ Ωp || q = ∅ then ∅ else STOP(n)

C[p ||n 〈q〉] def
= if C〈p || q〉 ∩ Ωp || q = ∅ then ∅ else STOP(n)

In Chapter 7, we shall use this information to selectively rewrite schizophrenic subterms into
non-schizophrenic equivalent subterms.
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Examples

Let us consider again the example of Figure 5.2:

loop
signaln S in
present S then emit O end;
pause;
emit S

end
end

For this program, the decision procedure computes:

Ωsignal S in present S then emit O end; pause; emit S end = {0, 1}
loop 〈signal S in present S then emit O end; pause; emit S end〉 end = {0}

These sets have a non-empty intersection, so that the decision procedure returns STOP(n).
The decision procedure is conservative. It always detects schizophrenia, but may fail at

establishing non-schizophrenia, as for instance in:

loop
signaln S in
present S then emit O end;
pause;
emit S

end;
present I then pause end;
present I else pause end;
end;

end

As discussed in Chapter 4, our analysis cannot verify that the following statement cannot be
traversed instantly:

present I then pause end;
present I else pause end

Therefore, it reports the signal declaration as potentially schizophrenic, whereas it is not.
In the experiments of Chapter 8, we shall observe that reported potential schizophrenia

problems are rare in practice, thus false positives must be even less frequent.

SUMMARY

We have defined schizophrenic programs and schizophrenic constructs in schizophrenic programs.
We have formalized an efficient, provably correct decision procedure that identifies all such
programs, by pointing at potentially schizophrenic subterms within potentially schizophrenic
programs. In the sequel, we shall say that p is obviously not schizophrenic if this decision
procedure successfully establishes that p is not schizophrenic.
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Chapter 6

Esterel∗

We extend the pure Esterel language with a new gotopause primitive instruction, which acts as a
non-instantaneous jump instruction compatible with Esterel synchronous concurrency. We first
describe the syntax and intuitive semantics of the extended language, Esterel∗, in Section 6.1.
As jumps disregard the program structure, they cannot be easily specified within the logical
behavioral semantics of Esterel. In Section 6.2, we formalize a state semantics for Esterel which
we prove to be observationally equivalent to the logical behavioral semantics. In Section 6.3, we
specify gotopause and the state semantics of Esterel∗. In Section 6.4, we discuss loop safety
and schizophrenia in Esterel∗. In Chapter 7, we shall use gotopause to deal with schizophrenic
programs.

6.1 A New Primitive Instruction: gotopause

The syntax of Esterel∗ is described in Figure 6.1. It is obtained from that of Esterel (Figure 2.1),
by (i) labeling pause instructions, and (ii) introducing a new gotopause construct. Both in-
structions are labeled with integers. We want gotopause to behave as follows:

• When the control reaches a “gotopause label” instruction, it stops for the current instant,
as if it had reached a regular pause instruction.

• When the execution is resumed in the following instant however, instead of restarting from
the “gotopause label” location, it restart from the corresponding “label:pause” location.

For example, the execution of “gotopause 1; emit S; 1:pause” should not emit S.

p, q ::= nothing
label:pause pause instructions are now labeled.
gotopause label gotopause is a new construct.
p; q
p || q
[p]
loop p end
signal S in p end
emit S
present S then p else q end
trap T in p end
exit T

Figure 6.1: Primitive Pure Esterel∗ Constructs
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6.2 Esterel State Semantics

In this section, we consider Esterel programs with labeled pause instructions, that is to say
Esterel∗ programs without gotopause instructions. Function unlabel removes the labels of pause
instructions, recovering a standard Esterel program from an Esterel∗ program. We call L(p) the
set of labels of p. For example,

unlabel(1:pause; emit S; 2:pause; 1:pause) = pause; emit S; pause; pause

L(1:pause; emit S; 2:pause; 1:pause) = {1, 2}

We do not require labels to be unique yet.

Logical Behavioral Semantics with Labels

In Figure 6.2, we formalize a logical behavioral semantics with labels for this subset of Esterel∗

by replacing the residual p′ of the logical behavioral semantics with a set of labels L:

p pE
′, k−−−→
E

L

We denote reactions of this semantics with the transition symbol “7→”.
The set L collects the labels of the active pause instructions of the statement, that is to say

the pause instructions that retain the control at the end of the reaction. For example, if S is
present, the reaction of “present S then 1:pause else 2:pause end” produces the set {1}.
In particular, for the (parallel) rule, the computed set of labels is:

γm
1 (L ∪ L′) =

{
L ∪ L′ if m = 1
∅ if m 6= 1

where m = max(k, l), k and l being the
completion codes of the parallel branches

Lemma 6.1. If p pO, k−−→
I

L then k 6= 1 ⇔ L = ∅.

Proof. Structural induction.

Corollary 6.2. In rule (sequence-0), the set of labels L corresponding to the reaction of p of
completion code 0 is always empty.

Hence, no two halves of a sequence may be simultaneously active.

Lemma 6.3. ∀p,∀I,∀O,∀k :
[
∃p′ : unlabel(p)

O, k−−→
I

p′ ⇔ ∃L : p pO, k−−→
I

L

]
.

Proof. Structural induction.

Intuitively, provided that the labeling is not ambiguous, it should be possible to reconstruct p′

from L and p, and precisely relate these two semantics. We formalize this matching below, with
the definition of states and the expansion of valid states.

States

We say that a statement is well labeled iff the labels of its pause instructions are pairwise distinct.
From the combination of the well-labeled statement p and the set of labels L ⊂ L(p), we build
the state dp|Lc. We say that a pause statement of label l is active in dp|Lc iff l ∈ L.
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nothing p∅, 0−−→
I

∅ (nothing)

l:pause p∅, 1−−→
I

{l} (pause)

exit Td p∅, d+2−−−−→
I

∅ (exit)

emit S p{S}, 0−−−→
I

∅ (emit)

p pO, k−−→
I

L k 6= 0

loop p end pO, k−−→
I

L
(loop)

p pO, k−−→
I

L q pO
′, l−−→
I

L′ m = max(k, l)

p || q pO∪O′, m−−−−−→
I

γm
1 (L ∪ L′)

(parallel)

S ∈ I p pO, k−−→
I

L

present S then p else q end pO, k−−→
I

L
(present+)

S /∈ I q pO, k−−→
I

L

present S then p else q end pO, k−−→
I

L
(present−)

p pO, k−−→
I

L

trap T in p end pO, ↓k−−−→
I

L
(trap)

p pO, 0−−→
I

L q pO
′, k−−−→
I

L′

p; q pO∪O′, k−−−−−→
I

L ∪ L′
(sequence-0)

p pO, k−−→
I

L k 6= 0

p; q pO, k−−→
I

L
(sequence-k)

p p O, k−−−−→
I∪{S}

L S ∈ O

signal S in p end pO\{S}, k−−−−−→
I

L

(signal+)

p p O, k−−−−→
I\{S}

L S /∈ O

signal S in p end pO, k−−→
I

L
(signal−)

Figure 6.2: Logical Behavioral Semantics with Labels
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We shall use states to represents possible points1 in the execution of a program. For example,
the state:

dpresent S then 1:pause else 2:pause end|{1}c

specifies that the execution of:

present S then 1:pause else 2:pause end

has to be resumed from the pause instruction of label 1.
In particular, the state dp|∅c means that the execution of p is over. So, we call it the inactive

state of p. Reciprocally, a state with at least one active pause is an active state. We also define
an extra state, called initial state, and noted dp|∗c, which tells that the execution of p has not
started yet. States for Esterel where first introduced in [Mig94].

Intuitively, not all states are reachable. For example no execution of “1:pause; 2:pause”
may reach the state d1:pause; 2:pause|{1; 2}c, since no reaction can activate two pause state-
ments in a sequence. We formalize this idea with the definition of valid states.

Valid States

We say that the subterms q and r of respective tags m and n of the well-tagged statement p are
exclusive in p, and write “q#r”, iff there exists three contexts C[ ], Cq[ ], and Cr[ ] such that one
of the following holds:

• p = C[Cq[qn]; Cr[rm]]

• p = C[Cr[rn]; Cq[qm]]

}
q and r are composed in sequence in p

• p = C[present S then Cq[qm] else Cr[rn] end]

• p = C[present S then Cr[rn] else Cq[qm] end]

}
q and r are connected by
a present construct in p

For example, in “p; [q || r]”, p and q are exclusive, p and r are exclusive, q and r are not
exclusive. We say that q and r are compatible, which we note note “q//r”. As another example,
let us consider the well-labeled program:

trap T in
loop
present I then
1:pause;
emit O

else
2:pause

end
end

||
loop
present J then
exit T

end;
3:pause

end
end

trap

||

��
���

���

HH
HHH

HHH

loop

present I

��
��

HH
HH

;

��� HHH

1:pause emit O

2:pause

loop

;

����
HHHH

present J

��� HHH

exit T nothing

3:pause

1States represent starting and ending points of reactions, that is to say macro-steps. However, micro-steps
within a reaction cannot be represented with such states.
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initial state : εdp|∗c def
= p

inactive state : εdp|∅c def
= nothing

active states : εdl:pause|{l}c def
= nothing

(L 6= ∅) εdp; q|Lc def
= εdp|Lc; q if L ⊂ L(p)

εdp; q|Lc def
= εdq|Lc if L ⊂ L(q)

εdpresent S then p else q end|Lc def
= εdp|Lc if L ⊂ L(p)

εdpresent S then p else q end|Lc def
= εdq|Lc if L ⊂ L(q)

εdtrap T in p end|Lc def
= trap T in εdp|Lc end

εdp || q|Lc def
= εdp|L ∩ L(p)c || εdq|L ∩ L(q)c

εdloop p end|Lc def
= εdp|Lc; loop p end

εdsignal S in p end|Lc def
= signal S in εdp|Lc end

Figure 6.3: State Expansion

In this example, the following relations hold for pause instructions:

• 1:pause and 2:pause are exclusive: they are connected by a “present” node,

• 1:pause and 3:pause are compatible: they are connected by a “||” node,

• 2:pause and 3:pause are compatible: they are connected by a “||” node.

We say that a state of p is valid iff it is the initial state dp|∗c or some state dp|Lc such that
active pause statements are pairwise compatible. In other words, in a valid state, no two pause
statements are active in both parts of a sequence or both branches of a present statement. If
p0 is the last program example we considered, then the state dp0|{1, 3}c is valid, whereas the
state dp0|{1, 2}c is not.

Invalid states are states that cannot be reached in the execution of the program2.

Lemma 6.4. If p is well labeled and p pO, k−−→
I

L then dp|Lc is valid.

Proof. In any reaction of p, a sequence “q; r” contained in p may be:

• not reduced. Then, no pause instruction of “q; r” is active.

• reduced by rule (sequence-0). Then, thanks to Corollary 6.2, no pause in-
struction of q is active.

• reduced by rule (sequence-k). Then, no pause instruction of r is active.

Similarly, pause statements cannot be simultaneously active in both the then and
the else branch of a present statement.

State Expansion

In Figure 6.3, we recursively define a state expansion function “ε”. It derives a statement from
a valid state. Remark that the rule for the empty set L has priority over the other rules. For
example, εdtrap T in p end|∅c is nothing rather than “trap T in nothing end”.

2The set of valid states contains the set of reachable states. But there are still unreachable valid states, for
example: d1:pause || 2:pause|{1}c is both valid and unreachable in the execution of “1:pause || 2:pause”.
This is not an issue.
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Basically, this ε function expands a state into a statement of“equivalent”semantics. For example,
if pause instructions are active in the left component p of the sequence“p; q”, then the execution
of the sequence has to be continued by the end of this left component, which is exactly the
expansion of the state of p, followed by the right component q of the sequence. Therefore, if
L ⊂ L(p) then “εdp; q|Lc” is defined as “εdp|Lc; q”.

The expansion retains labels. We observe that even if dp|Lc is a valid state of the well-labeled
statement p, the labeled statement εdp|Lc is not necessarily well labeled, as loop unfolding may
occur. For example,

εdloop 1:pause; 2:pause end|{1}c = nothing; 2:pause; loop 1:pause; 2:pause end

This is not an issue, as we shall not build states out of such statements.

Lemma 6.5. If dp|Lc is valid, and k and l are the labels of two compatible pause statements of
εdp|Lc, then k and l are the labels of two compatible pause statements of p.

Proof. Structural induction.

In other words, the expansion maintains exclusive pause statements exclusive (even if replicated).
Validity is thus a stable property:

Theorem 6.6. If dp|Lc is valid and εdp|Lc pO, k−−→
I

L′ then dp|L′c is valid.

Proof. Remark this lemma is not a corollary of Lemma 6.4, since εdp|Le is not
necessarily well labeled. Nevertheless, if k ∈ L′ and l ∈ L′ then there must be
two compatible pause statements in εdp|Le of respective labels k and l, similarly
to the proof of Lemma 6.4. By Lemma 6.5, there must be two compatible pause
statements in p of respective labels k and l. As a result, dp|L′c is valid.

Thanks to this state expansion function, we can now express the fact that the logical behavioral
semantics and the logical behavioral semantics with labels define the same reactions:

Theorem 6.7. For every well-labeled statement p,

• If p pO, k−−→
I

L then unlabel(p)
O, k−−→

I
unlabel(εdp|Lc).

• If unlabel(p)
O, k−−→

I
p′ then there exists L such that p pO, k−−→

I
L and unlabel(εdp|Lc) = p′.

Proof. Structural induction.

This proves that p′ can be obtained from dp|Lc and vice versa. The result of a reaction is
equivalently characterized by either the residual p′ or the set of active labels L we have just
introduced. This is the key that enables the definition of a state semantics for Esterel.

Logical State Semantics

We define a logical state semantics (�−→) for well-labeled Esterel∗ programs without gotopause
instructions as follows:

dp|Lc �O, k−−→
I

dp|L′c iff εdp|Lc pO, k−−→
I

L′

One reaction of the well-labeled statement p in the valid state dp|Lc produces the valid state
dp|L′c iff L′ is the set of active labels computed by the logical behavioral semantics with labels
for the statement εdp|Lc.
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Theorem 6.8. The logical behavioral and logical state semantics are observationally equivalent.

Proof. Let “∼” be the relation such that the unlabeled statement a is in relation
with the valid state b, that is to say a ∼ b, iff:

• either there exists p well labeled s.t. a = unlabel(p) and b = dp|∗c,
• or there exists p and L s.t. dp|Lc is valid, a = unlabel(εdp|Lc), and b = dp|Lc.

This relation is total and surjective:

• if a is an unlabeled statement then it can be labeled with pairwise distinct
labels, producing the well-labeled statement p, so that a ∼ dp|∗c.

• if b is a valid state then unlabel(ε(b)) ∼ b.

Let a and b be such that a ∼ b. Let us first consider the case a = unlabel(p) and
b = dp|∗c, where p is a well-labeled statement:

• If a
O, k−−→

I
a′ then:

– unlabel(εdp|∗c) O, k−−→
I

a′

– there exists L such that

{
εdp|∗c pO, k−−→

I
L

a′ = unlabel(εdp|Lc)
using Theorem 6.7

– there exists L such that

{
dp|∗c �O, k−−→

I
dp|Lc

a′ = unlabel(εdp|Lc)
by definition of “�−→”

– there exists b′ such that b �O, k−−→
I

b′ and a′ ∼ b′.

• If b �O, k−−→
I

b′ then:

– there exists L such that

{
dp|∗c �O, k−−→

I
dp|Lc

b′ = dp|Lc

– there exists L such that

{
εdp|∗c pO, k−−→

I
L

b′ = dp|Lc
by definition of “�−→”

– unlabel(εdp|∗c) O, k−−→
I

unlabel(ε(b′)) by Theorem 6.7,

– there exists a′ such that a
O, k−−→

I
a′ and a′ ∼ b′.

Let us now consider the case a = unlabel(εdp|Lc) and b = dp|Lc, where dp|Lc is a
valid state of the well-labeled statement p. As observed before, εdp|Lc is not neces-
sarily well labeled. Theorem 6.7 however requires well labeling. For this reason, we
define εdp|Lc by replacing all occurrences of labels in εdp|Lc by pairwise distinct la-
bels. Reciprocally, we define underline as the inverse labeling transformation, that
is to say the function that associates to a new label its old value. While it makes
sense to apply overline only to a subterm of εdp|Lc, it is possible to apply underline
to any term built from εdp|Lc, as well as any subset of the labels of εdp|Lc.

Lemma 6.9. If
⌈(

εdp|Lc
)
|L′

⌋
is valid then ε

⌈(
εdp|Lc

)
|L′

⌋
= εdp|(L′)c.

Proof. Structural induction.
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Thanks to this lemma, we now establish that:

• If a
O, k−−→

I
a′ then:

– unlabel(εdp|Lc) O, k−−→
I

a′

– unlabel
(
εdp|Lc

)
O, k−−→

I
a′ by relabeling

– there exists L′ s.t.

εdp|Lc pO, k−−→
I

L′

a′ = unlabel
(
ε
⌈(

εdp|Lc
)
|L′

⌋) by Theorem 6.7

– there exists L′ s.t.

{
εdp|Lc pO, k−−→

I
L′

a′ = unlabel(εdp|(L′)c)
by Lemma 6.9

– there exists L′ s.t.

{
εdp|Lc pO, k−−→

I
L′

a′ = unlabel(εdp|L′c)
by reverting to the old labeling

– there exists b′ such that b �O, k−−→
I

b′ and a′ ∼ b′.

• If b �O, k−−→
I

b′ then:

– there exists L′ s.t.

{
εdp|Lc pO, k−−→

I
L′

b′ = dp|L′c

– there exists L′ s.t.

{
εdp|Lc pO, k−−→

I
L′

b′ = dp|(L′)c
by relabeling

– there exists L′ s.t.

{
unlabel(εdp|Lc) O, k−−→

I
unlabel

(
ε
⌈(

εdp|Lc
)
|L′

⌋)
b′ = dp|(L′)c

by

Theorem 6.7
– unlabel(εdp|Lc) O, k−−→

I
unlabel(ε(b′)) by Lemma 6.9

– unlabel(εdp|Lc) O, k−−→
I

unlabel(ε(b′)) by reverting to the old labeling

– there exists a′ such that a
O, k−−→

I
a′ and a′ ∼ b′.

As a result, the “∼” relation is a bisimulation between “→” and “�−→”.

In particular, this confirms that pure Esterel programs are finite state.

Deterministic State Semantics

Similarly, we could derive a deterministic state semantics from the deterministic semantics of
Chapter 3, using rules (signal++) and (signal−−) instead of (signal+) and (signal−), and es-
tablish observational equivalence as well.

6.3 Esterel∗ State Semantics

We now consider Esterel∗ programs with gotopause instructions.
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Logical Behavioral Semantics with Labels

Without making any assumption about labels yet, we can extend the logical behavioral semantics
with labels defined in previous section to cope with gotopause statements using rule:

gotopause l p∅, 1−−→
I

{l} (gotopause)

It specifies, that “gotopause l” activates the pause instruction of label l. For example,

gotopause 1; emit S; 1:pause p∅, 1−−→
I

{1}

Well-labeled Statements

Then, we say that an Esterel∗ program is well labeled iff:

• The pause instructions are labeled with pairwise distinct labels.

• The set of labels of the gotopause instructions is included in the set of labels of the pause
instructions, that is to say every gotopause instruction has a target pause instruction.

However, we do not suppose that gotopause statements have pairwise distinct labels. Just as
simultaneous emissions of the same signal are possible in Esterel, simultaneous jumps to the
same target make sense in Esterel∗.

Lemma 6.10. If p is well labeled and p pO, k−−→
I

L then L ⊂ L(p).

Proof. Structural induction.

Well-formed Statements

Unfortunately, arbitrary simultaneous jumps are not possible. The reaction of a well-labeled
Esterel∗ program may produce an invalid state, as in:

[gotopause 1 || 2:pause]; 1:pause p∅, 1−−→
∅

{1, 2}

The state expansion of d[gotopause 1 || 2:pause]; 1:pause|{1, 2}c is undefined since two
exclusive pause instructions are active here. Such a state does not make sense. Therefore,
the program “[gotopause 1 || 2:pause]; 1:pause” cannot be considered to be correct, and
should be rejected. This is dealt with through the definition (and compile time analysis) of
well-formedness, which ensures that gotopause is compatible with Esterel concurrency.

Intuitively, if “k:pause”and“l:pause”are exclusive, then we shall ensure that they are never
activated simultaneously, by requiring the corresponding “activators” to be exclusive. Formally,
we say that a well-labeled program p is well formed iff:

∀k,∀l : k : pause # l : pause ⇒


gotopause k # gotopause l
gotopause k # l : pause

k : pause # gotopause l

In the above example, “gotopause 1” and “2:pause” are compatible (composed in parallel),
while “1:pause” and “2:pause” are exclusive, so this program is not well formed.
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Similarly, the following programs are not well formed:

• [gotopause 1 || gotopause 2]; 1:pause; 2:pause

• [gotopause 1 || gotopause 2]; present S then 1:pause else 2:pause end

• gotopause 2 || 1:pause; 2:pause

• present S then 1:pause || gotopause 2 else 2:pause end

On the other hand, any Esterel program with well-labeled pause instructions is a well-formed
Esterel∗ program.

We can now recover the stability of validity as follows:

Theorem 6.11. If p is well formed and dp|Lc valid and εdp|Lc pO, k−−→
I

L′ then dp|L′c is valid.

Proof. Similar to Theorem 6.6, thanks to well-formedness.

Well-formedness is a syntactic condition. It can be checked easily while building the abstract
syntax tree of a program. In fact, the required “compatible” and “exclusive” relations are al-
ready computed for optimization purposes. Moreover, in the sequel, we shall generate Esterel∗

programs that are well formed by construction and need no analysis.
The gotopause construct is compatible with concurrency in the sense that, for instance,

well-formedness lets us compose any set of well-formed programs in parallel, provided that their
respective sets of labels are disjoint.

Logical State Semantics of Esterel∗

We define the logical state semantics (�−→) of well-formed Esterel∗ programs just as we did in
the absence of gotopause statements:

dp|Lc �O, k−−→
I

dp|L′c iff εdp|Lc pO, k−−→
I

L′

One reaction of the well-formed statement p in the valid state dp|Lc produces the valid state
dp|L′c iff L′ is the set of active labels computed for the statement εdp|Lc, by the logical behavioral
semantics with labels including the (gotopause) rule.

The logical state semantics of Esterel∗ restricted to Esterel programs is exactly the logical
state semantics of Section 6.2, which we have shown to be observationally equivalent to the
logical behavioral semantics. Therefore, this semantics truly defines Esterel∗ as an extension of
the original pure Esterel language.

Deterministic State Semantics of Esterel∗

By extending the deterministic state semantics of Esterel rather than the logical state semantics
of Esterel, we would define a deterministic state semantics for well-formed Esterel∗ programs.

6.4 Loop Safety and Schizophrenia

Because gotopause constructs enable non-instantaneous jumps only, they cannot by responsible
for instantly diverging behaviors or instantly reentered statements. In other words, loop safety
and schizophrenia remain in Esterel∗ exactly the issues they were in Esterel.
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Safe Programs

In order to extend the decision procedure of Chapter 4 and characterize safe Esterel∗ programs,
we define:

Γgotopause l = Γl:pause = {1}

We say that p is a safe Esterel∗ program iff the computation of Γq completes normally for every
C[ ] and q such that p = C[q].

Lemma 6.12. If dp|∗c �O, k−−→
I

dp|Lc then k ∈ Γp.

Proof. Similar to the proof of Chapter 4 for Esterel programs.

Defining loop safe Esterel∗ programs and proving that safe Esterel∗ programs are loop safe is
straightforward. We shall not go into details.

Schizophrenia

In order to define schizophrenic Esterel programs, we instrumented the logical behavioral se-
mantics of Esterel with tags, and kept track of tags in the execution. We may do the same for
Esterel∗ programs:

• We tag all constructs in Esterel∗ programs and states, as in: dloop1 1 : pause2 end|{1}c.

• We preserve tags in the state expansion function ε (introducing fresh tags in loop expan-
sions):

εdloop1 1 : pause2 end|{1}c = nothing2;3 loop1 1 : pause2 end

• We compute the multiset of tags of a reaction for the logical behavioral semantics with
labels of Esterel∗:

nothing2;3 loop1 1 : pause2 end p∅, 1, {1,2,2,3}−−−−−−−−→
I

{1}

so that:

dloop1 1 : pause2 end|{1}c �∅, 1, {1,2,2,3}−−−−−−−−→
I

dloop1 1 : pause2 end|{1}c

The precise values of fresh tags are irrelevant.

• We say that the Esterel∗ program p is well tagged iff all its constructs are tagged with
pairwise distinct tags.

• We say that a well-tagged Esterel∗ program p is schizophrenic iff there exists a valid state
dp|Lc of p and a reaction dp|Lc �O, k, M−−−−→

I
dp|L′c such that the tag of a parallel statement or

signal declaration is repeated in the multiset M of the reaction.

For lack of time, we shall not precisely relate this definition of schizophrenia for Esterel∗ programs
to the initial definition of schizophrenia for Esterel programs, but the connection is obvious.

Extending the decision procedure of Chapter 5 for the detection schizophrenic constructs in
Esterel∗ programs, however, is not so easy. Nevertheless, the existing decision procedure will be
enough to efficiently deal with schizophrenia in Esterel programs (but not in Esterel∗ programs),
which is our primary concern, and the focus of this document.
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SUMMARY

We have extended the Esterel language with a new gotopause primitive instruction, and formal-
ized the semantics of the extended language, which we name Esterel∗. More precisely, we have
defined the class of well-formed Esterel∗ programs as a superset of the set of Esterel programs,
and specified the semantics of well-formed programs so that it matches Esterel semantics for Es-
terel programs. Accordingly, we have have revised the definition of safe programs of Chapter 4,
and schizophrenic programs of Chapter 5 to cope with Esterel∗ programs.
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Chapter 7

Reincarnation

The programming style advocated by Esterel – local declarations and concurrency plus im-
perative loops – naturally leads to schizophrenic specifications. In [Mig94], Mignard proposed
to automatically rewrite schizophrenic programs into semantically equivalent non-schizophrenic
programs, thus making subsequent analysis, code generation, or optimization steps easier. In
this chapter, we want to further investigate this approach: curing schizophrenia by a preprocess-
ing. To start with, we analyze Mignard’s rewriting technique in Section 7.1. Then, we describe
how loops can be unfolded using the gotopause construct of Esterel∗ in Section 7.2. We make
this unfolding efficient in Section 7.3. Following the choice of Chapter 5, we shall focus on the
logical behavioral/state semantics. But the results for deterministic semantics would be exactly
the same.

7.1 Exponential Reincarnation

Mignard’s method consists in recursively duplicating loop bodies in a systematic fashion, that
is to say recursively rewriting “loop p end” into “loop p; p end”. Formally, this means defining
function dup as the following:

dup(nothing)
def
= nothing

dup(pause)
def
= pause

dup(p; q)
def
= dup(p); dup(q)

dup(p || q)
def
= dup(p) || dup(q)

dup(loop p end)
def
= loop dup(p); dup(p) end

dup(signal S in p end)
def
= signal S in dup(p) end

dup(emit S)
def
= emit S

dup(present S then p else q end)
def
= present S then dup(p) else dup(q) end

dup(trap T in p end)
def
= trap T in dup(p) end

dup(exit T )
def
= exit T

For example,

dup(loop pause; emit S end) = loop pause; emit S; pause; emit S end

This program transformation is called reincarnation as it explicitly distributes the several simul-
taneous instances, that is to say incarnations, of each signal and parallel construct into several
distinct “bodies”. In other words, a subterm having several incarnations is replaced by several
subterms, each of them having a unique incarnation.
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loop
signal S in
present S then emit O end;
pause;
emit S

end
end



dup
=⇒

loop
signal S in
present S then emit O end;
pause;
emit S

end;
signal S in
present S then emit O end;
pause;
emit S

end
end

dup2
=⇒

signal S in
present S then emit O end;
1:pause;
emit S

end;
signal S in
present S then emit O end;
gotopause 1

end

dup3
=⇒

loop
signal S in
present S then emit O end;
gotopause 1

end;
signal S in
present S then emit O end;
1:pause;
emit S

end
end

expand
=⇒

loop
signal S in
present S then emit O end;
gotopause 1

end;
signal S in
present S then emit O end;

1:pause;
emit S

end
end

Figure 7.1: Reincarnation Techniques Compared
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For instance, in the top rewriting of Figure 7.1, the initially schizophrenic signal S is duplicated,
so that each resulting signal S is not schizophrenic. We shall describe and comment the other
transformations listed in this figure in the rest of the chapter.

Let us prove the correctness of the transformation:

Lemma 7.1. If p is non-instantaneous then “loop p end” and “loop p; p end” are →bisimilar.

Proof. Let “∼” be the binary relation such that a ∼ b iff one of the following holds:

• a = b

• there exists q s.t. a =“q; loop p end” and b =“q; loop p; p end”

• there exists q s.t. a =“q; loop p end” and b =“q; p; loop p; p end”

This relation is total and surjective.

• If a
O, k−−→

I
a′ with a =“q; loop p end” and b =“q; loop p; p end” then either:

– q
O, k−−→

I
q′, k 6= 0, a′ =“q′; loop p end”, so that:

b
O, k−−→

I
“q′; loop p; p end”, with a′ ∼“q′; loop p; p end”.

– q
Oq , 0−−−→

I
q′, p

Op, k−−−→
I

p′, k 6= 0, a′ =“p′; loop p end”, O = Oq ∪Op, so that:

b
O, k−−→

I
“p′; p; loop p; p end”, with a′ ∼“p′; p; loop p; p end”.

• etc.

Therefore, this relation is a →bisimulation.

Theorem 7.2. If p is safe then p and dup(p) are →bisimilar.

Proof. Let “∼” be the least binary relation such that:

• nothing ∼ nothing, pause ∼ pause, exit T ∼ exit T , emit S ∼ emit S

• if p ∼ q then


loop p end ∼ loop q end
trap T in p end ∼ trap T in q end
signal S in p end ∼ signal S in q end

• if
{

p ∼ q
u ∼ v

then


p; u ∼ q; v
p || u ∼ q || v
present S then p else u end ∼ present S then q else v end

• if p ∼ q and p is non-instantaneous then
{
loop p end ∼ loop q; q end
loop p end ∼ q; loop q; q end

By induction, this relation is a →bisimulation. If p is safe then p ∼ dup(p).

Theorem 7.3. If p is safe then dup(p) is obviously not schizophrenic (in the sense of Chapter 5).

Proof. Let us proceed by structural induction on p:

• dup(nothing), dup(pause), dup(exit T ), dup(emit S) are obviously not
schizophrenic.

• if p = loop q end is safe and dup(q) is obviously not schizophrenic:
dup(p) = loop dup(q); dup(q) end
0 /∈ Γq, thus loop 〈dup(q)〉; dup(q) end = loop dup(q); 〈dup(q)〉 end = ∅

107



– if dup(p) = loop dup(q); C[r] end then loop dup(q); C〈r〉 end = C〈r〉
loop dup(q); C〈r〉 end ∩ Ωr = C〈r〉 ∩ Ωr

– if dup(p) = loop C[r]; dup(q) end then loop C〈r〉; dup(q) end = C〈r〉
loop C〈r〉; dup(q) end ∩ Ωr = C〈r〉 ∩ Ωr

in both cases C[r] is obviously not schizophrenic, thus p is obviously not
schizophrenic.

• if p = trap T in q end is safe and dup(q) is obviously not schizophrenic:
dup(p) = trap T in dup(q) end and trap T in 〈dup(q)〉 end = ∅
if dup(p) = trap T in C[r] end then trap T in C〈r〉 end = C〈r〉
trap T in C〈r〉 end ∩ Ωr = C〈r〉 ∩ Ωr, dup(q) = C[r] is obviously not
schizophrenic, thus dup(p) is obviously not schizophrenic.

• etc.

In all cases, p is obviously not schizophrenic.

Therefore, if p is safe then dup(p) is observationally equivalent and obviously not schizophrenic.

loop
trap T in
signal A in
pause;
beep;
exit T

||
loop
signal B in beep end;
signal C in pause end

end
end

end
end

dup
=⇒

loop
trap T in
signal A in
pause;
beep;
exit T

||
loop
signal B in beep end;
signal C in pause end;
signal B in beep end;
signal C in pause end

end
end

end;
trap T in
signal A in
pause;
beep;
exit T

||
loop
signal B in beep end;
signal C in pause end;
signal B in beep end;
signal C in pause end

end
end

end
end

Figure 7.2: Exponential Reincarnation with dup
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Not only does this rewriting technique remove schizophrenia, but it makes non-schizophrenia
obvious for the decision procedure we described in Chapter 5.

In fact, it would once and for all take care of schizophrenic programs if the transformation
was efficient enough. It is not the case: dup(p) can be exponentially larger than p because of
nested unfoldings. The inner loop body “signal B in beep end; signal C in pause end”
in the example of Figure 7.2, occurs four times in the rewritten program, that is to say 2n times
where n is the number of loops enclosing the statement.

Moreover, in this example, neither the duplication of the inner loop body alone, nor the
duplication of the outer loop body would be enough to make the program non-schizophrenic.

7.2 Quadratic Reincarnation

From now on, we shall consider well-formed Esterel∗ programs, unless otherwise stated. Thanks
to gotopause, we can completely eliminate loops in Esterel∗ programs, by unfolding every loop
“loop p end” into the sequence “p; p”, where p is obtained from p by replacing all pause
instructions with gotopause constructs, so that, when the control reaches p, it jumps back
to p, thus reproducing the behavior of “loop p end”. For example, “loop 1:pause end” and
“1:pause; gotopause 1” behave the same.

Moreover, p cannot be active, i.e. contain active pause instructions, as p contains no pause
instruction at all. Therefore, most of p is never used, and it is enough to unfold the surface of
p, that is to say the part of p that may be reduced in its first reaction. We define:

surf (nothing)
def
= nothing

surf (label:pause)
def
= gotopause label

surf (gotopause label)
def
= gotopause label

surf (p; q)
def
= if 0 ∈ Γp then surf (p); surf (q) else surf (p)

surf (p || q)
def
= surf (p) || surf (q)

surf (loop p end)
def
= surf (p)

surf (signal S in p end)
def
= signal S in surf (p) end

surf (emit S)
def
= emit S

surf (present S then p else q end)
def
= present S then surf (p) else surf (q) end

surf (trap T in p end)
def
= trap T in surf (p) end

surf (exit T )
def
= exit T

The three non-elementary rules are boxed:

• pause statements are changed into gotopause statements.

• If p is non-instantaneous then surf (q) cannot be reached in “surf (p); surf (q)”, and is
discarded.

• A loop cannot be taken instantly (cf. Lemma 5.2), so it may be removed from the surface.

Well-formedness is preserved:

Lemma 7.4. If p is well formed then “surf (p)”, “p; surf (p)”, and “surf (p); p” are well formed.

Proof. Structural induction.
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The possible reactions of p and surf (p) are the same:

Lemma 7.5. If p is safe then ∀I,∀O,∀k,∀L : p pO, k−−→
I

L ⇔ surf (p) pO, k−−→
I

L.

Corollary 7.6. If p is safe and non-instantaneous then loop p end pO, k−−→
I

L ⇔ surf (p) pO, k−−→
I

L.

Corollary 7.7. If p is safe then Γsurf (p) = Γsurf (p); p = Γp; surf (p) = Γp.

Proof. Structural induction.

We now establish that “p; surf (p)” and “loop p end” are equivalent if p is non-instantaneous:

Lemma 7.8. If p is well formed then dp; surf (p)|Lc is valid iff dloop p end|Lc is valid.

Proof. There is no pause instruction in surf (p).

Lemma 7.9. If p is safe and non-instantaneous then:

• dloop p end|∗c and dp; surf (p)|∗c are �−→bisimilar.

• for every L, dloop p end|Lc and dp; surf (p)|Lc are �−→bisimilar if valid.

Proof. Let “∼”be the binary relation between valid states such that a ∼ b iff either:

• a = b

• a = dloop p end|∗c and b = dp; surf (p)|∗c
• a = dloop p end|Lc and b = dp; surf (p)|Lc for some L.

This relation is total and surjective.

• If dloop p end|∗c �O, k−−→
I

dloop p end|Lc then loop p end pO, k−−→
I

L, thus p pO, k−−→
I

L

with k 6= 0, so that p; surf (p) pO, k−−→
I

L, i.e. dp; surf (p)|∗c �O, k−−→
I

dp; surf (p)|Lc.

• If dp; surf (p)|∗c �O, k−−→
I

dp; surf (p)|Lc then p; surf (p) pO, k−−→
I

L. Since p is

non-instantaneous, p pO, k−−→
I

L with k 6= 0, so that loop p end pO, k−−→
I

L, i.e.

dloop p end|∗c �O, k−−→
I

dloop p end|Lc.

• If dloop p end|Lc �O, k−−→
I

dloop p end|L′c then ε(dloop p end|Lc) pO, k−−→
I

L′ and

k 6= 0, therefore ε(dp|Lc); loop p end pO, k−−→
I

L′, thus ε(dp|Lc); surf (p) pO, k−−→
I

L′,

so that ε(dp; surf (p)|Lc) pO, k−−→
I

L′, i.e. dp; surf (p)|Lc �O, k−−→
I

dp; surf (p)|L′c.

• If dp; surf (p)|Lc �O, k−−→
I

dp; surf (p)|L′c then ε(dp; surf (p)|Lc) pO, k−−→
I

L′ and

k 6= 0, therefore ε(dp|Lc); surf (p) pO, k−−→
I

L′, thus ε(dp|Lc); loop p end pO, k−−→
I

L′,

so that ε(dloop p end|Lc) pO, k−−→
I

L′, i.e. dloop p end|Lc �O, k−−→
I

dloop p end|L′c.

As a result, the “∼” relation is a �−→bisimulation.
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We then define the recursive rewriting of “loop p end” into “p; surf (p)” as follows:

dup2 (nothing)
def
= nothing

dup2 (label:pause)
def
= label:pause

dup2 (gotopause label)
def
= gotopause label

dup2 (p; q)
def
= dup2 (p); dup2 (q)

dup2 (p || q)
def
= dup2 (p) || dup2 (q)

dup2 (loop p end)
def
= dup2 (p); surf (p)

dup2 (signal S in p end)
def
= signal S in dup2 (p) end

dup2 (emit S)
def
= emit S

dup2 (present S then p else q end)
def
= present S then dup2 (p) else dup2 (q) end

dup2 (trap T in p end)
def
= trap T in dup2 (p) end

dup2 (exit T )
def
= exit T

For example,

surf (1:pause; emit S) = gotopause 1

dup2 (loop 1:pause; emit S end) = 1:pause; emit S; gotopause 1

surf (emit S; 1:pause) = emit S; gotopause 1

dup2 (loop emit S; 1:pause end) = emit S; 1:pause; emit S; gotopause 1

Lemma 7.10. If p is well formed then ddup2 (p)|Lc is valid iff dp|Lc is valid.

Proof. Structural induction based on Lemma 7.4.

Theorem 7.11. If p is safe then dp|∗c and ddup2 (p)|∗c are �−→bisimilar.

Proof. Structural induction similar to Theorem 7.2 based on Lemma 7.9.

Of course, unfolded programs no longer contain potentially instantaneous loops or potentially
schizophrenic statements: there is no loop construct left, and gotopause only allows to non-
instantly reenter previously traversed pieces of code (cf. Chapter 6).

Theorem 7.12. If p is safe then dup2 (p) is not schizophrenic (in the sense of Chapter 6).

Proof. If dup2 (p) is well tagged then, whatever L, the tags of ddup2 (p)|Lc are
pairwise distinct, by structural induction on p.

Algorithm

In order to perform this unfolding on an Esterel program, we first have to label its pause
instructions. We rewrite a safe Esterel program p into a non-schizophrenic equivalent well-
formed Esterel∗ program dup2 (p̂) as the following:

• We first label the pause statements of the program p with pairwise distinct labels, pro-
ducing the well-formed Esterel∗ program p̂.

• We then compute the image of p̂ by function dup2 .
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loop
trap T in
signal A in
1:pause;
beep;
exit T

||
loop
signal B in beep end;
signal C in 2:pause end

end
end

end
end

dup2
=⇒

trap T in
signal A in
1:pause;
beep;
exit T

||
signal B in emit 0 end;
signal C in 2:pause end;
signal B in beep end;
signal C in gotopause 2 end

end
end;
trap T in
signal A in
gotopause 1;

||
signal B in beep end;
signal C in gotopause 2 end

end
end

Figure 7.3: Quadratic Reincarnation with dup2

In the example of Figure 7.1, the resulting program defines again two signals S. Remark that
“gotopause 1” involves a jump from one signal scope to the other one. Because signal statuses
are not preserved from one instant to the next, this is fine. In full Esterel however, variables,
counters, registers, etc. retain their values. Therefore, this transformation in not correct for full
Esterel. We shall discuss this issue in Chapter 8.

For the example of Figure 7.2, we obtain the program of Figure 7.3. The inner loop body only
occurs three times in the resulting program instead of four with Mignard’s rewriting technique.
In particular, there are only three declarations of B and C. In general, by counting the number
of primitive constructs within statements, we observe that:

Theorem 7.13. surf (p) is smaller than p, and dup2 (p) is at most quadratically larger than p.

Proof. Structural induction.

For example:

• loop [p || loop q end] end

dup
=⇒

loop
[dup(p) || loop dup(q); dup(q) end];
[dup(p) || loop dup(q); dup(q) end];

end
dup2
=⇒ [dup2 (p̂) || dup2 (q̂); surf (q̂)]; [surf (p̂) || surf (q̂)]

• loop [p || loop [p || loop p end] end] end

dup
=⇒ 2 + 4 + 8 = 14 times p (exponential growth)
dup2
=⇒ 2 + 3 + 4 = 9 times p (quadratic growth)
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Reciprocally, any such semantics-preserving transformation that removes loop constructs, must
be of quadratic worst-case complexity in pure Esterel∗ extended with side effects. We have seen
in Chapter 5 that a program of size n may instantly produce a quadratic number of side effects,
which requires a quadratic number of instructions if no loop construct is allowed.

7.3 Quasi-Linear Reincarnation

In this section, we combine the unfolding of loops of Section 7.2, with the static analysis of
schizophrenia of Chapter 5 in order to achieve a quasi-linear unfolding in practice.

Step 1

First, rather than having surf (p) in sequence after p in the unfolding of “loop p end” into
“p; surf (p)”, we put it in sequence before p, and rewrite“loop p end” into“loop surf (p); p end”.
Formally, we recursively define function dup3 just as dup2 except for loops:

dup3 (loop p end)
def
= loop surf (p); dup3 (p) end

For example,

dup3 (loop 1:pause; emit S end) = loop gotopause 1; 1:pause; emit S end

Figure 7.1 provides another example. This transformation no longer removes loop constructs,
but again preserves the semantics, still eliminates schizophrenia, and retains the quadratic worst-
case complexity:

Lemma 7.14. If p is well formed then dsurf (p); p|Lc is valid iff dp|Lc is valid.

Lemma 7.15. If p is safe and non-instantaneous then:

• dp|∗c and dsurf (p); p|∗c are �−→bisimilar.

• for every L, dp|Lc and dsurf (p); p|Lc are �−→bisimilar if valid.

Theorem 7.16. If p is safe then dp|∗c and ddup3 (p)|∗c are �−→bisimilar.

Proof. Similar to the proofs of the previous section.

Theorem 7.17. If p is safe then dup3 (p) is not schizophrenic (in the sense of Chapter 6).

Proof. If p is safe and non-instantaneous then whatever L:
εdloop surf (p); dup3 (p) end|Lc = εddup3 (p)|Lc; loop surf (p); dup3 (p) end.
surf (p) is non-instantaneous, so the second copy of dup3 (p) cannot be reduced
in any reaction of this term. Therefore, if dup3 (p) is not schizophrenic then
loop surf (p); dup3 (p) end is not schizophrenic, hence the result by induction.

For the program of Figure 7.2, we obtain the transformation of Figure 7.4. While this new
rewriting may seem pointless compared to the previous one, it provides a much better starting
point for optimization, precisely because it retains the loop construct, thus making it possible
to unfold pieces of loop bodies rather than whole loop bodies.

Step 2

Schizophrenia arises from the nesting of signal declarations or parallel statements within loops (cf.
Chapter 5). Instead of systematically unfolding whole loop bodies, we could unfold problematic
signal declarations and parallel statements only. This leads to the definition of function dup4 in
Figure 7.5, which combines unfolding and static analysis of schizophrenia.
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loop
trap T in
signal A in
1:pause;
beep;
exit T

||
loop
signal B in beep end;
signal C in 2:pause end

end
end

end
end

dup3
=⇒

loop
trap T in

signal A in
gotopause 1;

||
signal B in beep end;
signal C in gotopause 2 end

end
end;
trap T in
signal A in
1:pause;
beep;
exit T

||
loop
signal B in beep end;
signal C in gotopause 2 end;
signal B in beep end;
signal C in 2:pause end

end
end

end
end

Figure 7.4: Quadratic Reincarnation with dup3

dup4 (K, nothing)
def
= nothing

dup4 (K, label:pause)
def
= label:pause

dup4 (K, exit T )
def
= exit T

dup4 (K, emit S)
def
= emit S

dup4 (K, present ... end)
def
= present S then dup4 (K, p) else dup4 (K, q) end

dup4 (K, loop p end
def
= loop dup4 (K ∪ {0}, p) end

dup4 (K, trap T in p end
def
= trap T in dup4 ({k ∈ IN, ↓k ∈ K}, p) end

dup4 (K, p; q)
def
=

[
dup4 ((if K ∩ Γq = ∅ then K\{0} else K ∪ {0}), p);
dup4 ((if 0 ∈ Γp then K else ∅), q)

]

dup4 (K, signal S in p end)
def
=


if K ∩ Ωp = ∅
then signal S in dup4 (∅, p) end

else
[
signal S in surf (p) end;
skip(signal S in dup4 (∅, p) end)

]


dup4 (K, p || q)
def
=

if K ∩ Ωp || q = ∅
then dup4 (∅, p) || dup4 (∅, q)
else [surf (p) || surf (q)];skip([dup4 (∅, p) || dup4 (∅, q)])


Figure 7.5: Reincarnation with Static Analysis
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Since we have only defined “Ω” for safe Esterel programs, we only define function dup4 for
safe well-labeled Esterel programs, that is to say safe Esterel∗ programs without gotopause
instructions. As discussed in Chapter 6, we shall concentrate in this document on the provably
correct, efficient reincarnation of Esterel programs, leaving the handling of Esterel∗ for future
work.

Function dup4 now context-dependent. It takes two arguments: the statement p to rewrite
and the (initially empty) risk K of the current context, in the sense of Chapter 5. The recur-
sive computation of K exactly matches that of the risk function of Figure 5.4, except that no
exception is ever raise; unfolding takes place instead.

As intended, loop constructs no longer replicate code on their own:

dup3 (loop 1:pause; emit S end) = loop gotopause 1; 1:pause; emit S end

dup4 (K, loop 1:pause; emit S end) = loop 1:pause; emit S end

Let focus on the rules for parallel statements and signal declarations. These constructs are only
expanded if potentially schizophrenic:

• if K ∩ Ωp = 0 then dup4 (K, signal S in p end) is simply signal S in dup4 (∅, p) end,

• if K ∩ Ωp || q = 0 then dup4 (K, p || q) is simply dup4 (∅, p) || dup4 (∅, q).

In contrast with loop bodies in safe programs, potentially schizophrenic signal declarations
and parallel statements may be instantaneous. For instance, the signal S is both potentially
schizophrenic and potentially instantaneous in:

loop
trap T in
signal S in
present I then 1:pause; exit T end

end;
pause

end
end

As a result, the surface of such a statement may instantly terminate. A more complex trans-
formation than the recursive expansion of p into “surf (p); p” is now required for potentially
schizophrenic constructs. In dup4 , potentially schizophrenic constructs are expanded according
to the rule “p 7→ surf (p); skip(p)”. Function1 skip is defined as the following:

skip(p) =
{
trap T in exit T; p end if 0 ∈ Γp (where T is a fresh exception name)
p if 0 /∈ Γp (to avoid unnecessary code)

It makes it possible to skip over the second copy of p in “surf (p); skip(p)” if surf (p) terminates
instantly, hence its name. In contrast with Lemma 7.15, the following holds for potentially
instantaneous programs in addition to non-instantaneous programs:

Lemma 7.18. If p is safe then:

• dp|∗c and dsurf (p); skip(p)|∗c are �−→bisimilar.

• for every L, dp|Lc and dsurf (p); skip(p)|Lc are �−→bisimilar if valid.

Proof. As usual.

Corollary 7.19. If p is safe then for all K : dp|∗c and ddup4 (K, p)|∗c are �−→bisimilar.

1It makes sense to define a primitive construct as well: p skip q
def
= p; skip(q), to help further optimization.
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For the last example we obtain the non-schizophrenic equivalent program:

loop
trap T in
signal S in
present I then gotopause 1 end

end;
trap U in

exit U;

signal S in
present I then 1:pause; exit T end

end
end ;
pause

end
end

For all safe well-labeled Esterel program p, we define: expand(p) = dup4 (∅, p).

Corollary 7.20. Whatever p, dp|∗c and dexpand(p)|∗c are �−→bisimilar.

Theorem 7.21. Whatever p, expand(p) is not schizophrenic (in the sense of Chapter 6).

Proof. This key result is established in Appendix A.

Again, expand(p) may be quadratically larger than p in the worst case. But this last algorithm
is in practice quasi-linear, as we shall observe in Chapter 8.

Since, in the example of Figure 7.1, the signal S is schizophrenic, there is no difference between
the programs computed by dup3 and expand. For the more complex example of Figure 7.2,
however, the computed program is shorter. In particular, there are only two declarations of B
in Figure 7.6. Indeed, if we first unfold the declaration of A only, we obtain the program of
Figure 7.7 where we renamed duplicated signals to improve readability. We observe that:

• Neither A0, nor A1 is schizophrenic, thanks to the unfolding of the declaration of A.

• Neither B0, nor C0 is schizophrenic (they belong to the surface of A (i.e. the scope of A0)).

• B1 is (obviously) not schizophrenic.

• C1 is schizophrenic.

As a result, the declaration of C1 must still be unfolded, whereas the unfolding of declaration
of B1 should be avoided. This is exactly what our last reincarnation achieves: in the end, there
are three declarations for C, but only two for B (cf. Figure 7.6).

Moreover, there remains only three beep instructions in this rewritten program, whereas
there were four at least with the previous techniques, corresponding to the fact that at most tree
beeps are generated in each reaction.

Algorithm

In summary, the reincarnation algorithm we propose for an Esterel program p consists of tra-
versing p a first time to compute Γ and Ω and label the pause instructions of p with pairwise
distinct labels, aborting if p is not safe, otherwise producing p̂, then computing expand(p̂).
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loop
trap T in
signal A in
1:pause;
beep;
exit T

||
loop
signal B in beep end;
signal C in 2:pause end

end
end

end
end

expand
=⇒

loop
trap T in
signal A in
gotopause 1;

||
signal B in beep end;
signal C in gotopause 2 end

end;
signal A in
1:pause;
beep;
exit T

||
loop
signal B in beep end;
signal C in gotopause 2 end;
signal C in 2:pause end

end
end

end
end

Figure 7.6: Quasi-linear Reincarnation with expand

loop
trap T in
signal A in
1:pause;
beep;
exit T

||
loop
signal B in beep end;
signal C in 2:pause end

end
end

end
end

=⇒

loop
trap T in
signal A0 in
gotopause 1;

||
signal B0 in beep end;
signal C0 in gotopause 2 end

end;
signal A1 in
1:pause;
beep;
exit T

||
loop
signal B1 in beep end;
signal C1 in 2:pause end

end
end

end
end

Figure 7.7: Partial Expansion (Outer Loop)
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Theorem 7.22. If p is a safe Esterel program then:

• expand(p̂) is not schizophrenic.

• p and dexpand(p̂)|∗c are bisimilar w.r.t. to → and �−→.

Proof. Theorem 6.8, Corollary 7.20, and Theorem 7.21.

Dead Code

Going back to the example of Figure 7.1, we observe that dead code is generated. In the output
program, the second copy of “present S then emit O end” (in italic) is dead, and should
not be made. The reincarnation algorithm we have just formalized, can be further refined to
automatically avoid such dead code generation. We leave it for future work.

SUMMARY

We have specified a program transformation that rewrites any safe schizophrenic Esterel program
into a non-schizophrenic and observationally equivalent well-formed Esterel∗ program. We have
established it is correct, and observed that the output program is at most quadratically larger
than the input program. Moreover, this algorithm embeds the static analysis of schizophrenia
of Chapter 5, to achieve a low expansion ratio.
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Chapter 8

Implementation

Applied to the pure Esterel∗ program p, the preprocessing we specified in the previous chapters:

• checks than all loops of p are non-instantaneous,

• rewrites pieces of p to produce a non-schizophrenic equivalent pure Esterel∗ program.

We now discuss implementation. In Section 8.1, we first consider the extension of our techniques
to the full Esterel∗ language. Then, in Section 8.2, we describe a prototype compiler based on
this preprocessing, in particular discussing gotopause implementation, and the benefits of such
a separation of concerns. Finally, in Section 8.3, we report some early experiments.

8.1 Full Esterel∗ Support

Full Esterel adds to pure Esterel the ability to manipulate data of various kinds: private variables,
shared values, counters, registers, etc. The good news is that data do not impact on loop safety
and do not introduce more schizophrenia problems. Therefore, extending our static analyses
to full Esterel/Esterel∗ is straightforward: we just abstract data away. The bad news is that
data break our various reincarnation schemes using gotopause. Let us for instance consider a
program where a variable is declared within a schizophrenic signal scope:

var X in
loop
signal S in
var Y in
Y := 1;
1:pause;
X := Y

end
end

end
end

Variables are lexically scoped and declared with the “var V in ... end” construct. Their se-
mantics has been formalized in [Pot02]. In this simple example, variables behave just as one
would expect. In each reaction starting from the second one, X is loaded with the value 1, loaded
in Y in the previous instant, because variables retain their value from one instant to the next.

In this (safe) program, the local signal S is schizophrenic. Thus, if we apply to this example
the final reincarnation algorithm (expand) defined in Chapter 7, we obtain the following program,
where we rename duplicated variables and signals for readability:
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var X in
loop
signal S in
var Y in
Y := 1;
1:pause;
X := Y

end
end

end
end

expand
=⇒

var X in
loop
signal S0 in
var Y0 in
Y0 := 1;
gotopause 1

end
end;
signal S1 in
var Y1 in
Y1 := 1;
1:pause;
X := Y1

end
end

end
end

Being nested in the declaration of S, the declaration of Y is duplicated. As result, the gotopause
statement involves a jump from the scope of the first copy (Y0) of the variable Y to the second
one (Y1). This is not satisfactory:

• In the first reaction, Y0 is set to value 1.

• In the second reaction, X receives the value of Y1.

But there is no connection between Y0 and Y1. In particular, Y1 is never initialized. As a result,
the value affected to X must be wrong. We must update our program transformation. Intuitively,
we have to do memory allocation for data before reincarnation.

We choose to introduce static aliasing in source Esterel∗ programs, expressing that the two
distinct declarations of Y (Y0 and Y1) in the expansed program in fact correspond to a unique
“object” (i.e. wire, memory cell, whatever). By indexing variables on a global base before rein-
carnation, then preserving indexes during the reincarnation, we produce the program:

var X in
loop
signal S in
var Y in
Y := 1;
1:pause;
X := Y

end
end

end
end

index=⇒

var X index 1 in
loop
signal S in
var Y index 2 in
Y := 1;
1:pause;
X := Y

end
end

end
end

expand
=⇒

var X index 1 in
loop
signal S0 in
var Y0 index 2 in
Y0 := 1;
gotopause 1

end
end;
signal S1 in
var Y1 index 2 in
Y1 := 1;
1:pause;
X := Y1

end
end

end
end

To this end, we have introduced a new “index” keyword in Esterel∗ syntax.
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Thanks to these indexes, we can easily alias variables Y0 and Y1 in subsequent code generation
steps, leading to a correct implementation of the initial program. This technique can be applied
to all kinds of data defined in full Esterel.

8.2 A Prototype Compiler

Using the extended preprocessing described in the previous section, we have implemented a
prototype compiler for Esterel v5 [Ber00a] into Boolean equation systems, generating sc6 files1.
The compiler code consists of about 5000 lines of OCaml [Ler02], structured as follows:

1. parsing and macro expansion,

2. link (i.e. source-level inlining of submodules),

3. static analysis and reincarnation,

4. Boolean equation synthesis (of safe non-schizophrenic programs),

5. a bit of Boolean optimization (for sc6 compliance).

Relevant to our discussion are Steps 3 and 4 and their relationship. Step 3 rewrites linked macro-
expanded Esterel source code using the extended preprocessing. Step 4 essentially implements
the naive (linear) circuit synthesis of Berry [Ber99], to which we add gotopause and data.

Compiling gotopause is straightforward: we allocate as usual one bit-register per pause
statement. But in addition to the regular connection of one wire to the input pin of this register
required by the pause statement itself, we connect (through an or gate) one extra wire per
gotopause statement with corresponding label. In general, Esterel compilers are typically based
on internal representations of programs as graphs, in which the gotopause instruction can be
easily represented.

What makes our compiler architecture really attractive in our view is the combination of the
following properties:

• Step 4 is completely independent from Step 3. In other words, the synthesis phase does
not need to know anything about the static analysis/reincarnation phase. They can be
implemented independently. But, of course, a shared parser is a good idea.

• Step 4 can assume programs to be loop safe and non-schizophrenic, leading to simplified
code generation schemes [Mig94, Ber99], as, on the other hand, compiling gotopause
constructs is straightforward.

• Programs can be further optimized (rewritten) between Step 3 and Step 4. On the one
hand, there is virtually no loss of structural information in the preprocessing. On the other
hand, gotopause makes it possible to define more powerful program transformations in
Esterel∗ than in Esterel.

• The output of Step 3 is human readable: essentially no knowledge beyond that of the
Esterel language is required to interpret correctly Esterel∗ programs. In particular, we
believe that switching from the initial to the rewritten program, makes it easier to debug
schizophrenic specifications in practice.

1The sc6 file format defines a normalized circuit representation, which can in turn be converted into C programs
by existing tools [Ber00b].
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program number of kernel statements description
source algorithm (7.2) algorithm (7.3)

global 10286 566585 16867 avionics man-machine interface
cabine 7644 67680 8020 avionics cockpit interface
atds100 890 1372 990 video generator
ww 432 833 439 wristwatch
tcint 403 725 418 turbochannel bus

Table 8.1: Comparison

8.3 Experiments

We have conducted some early experiments, summarized in Table 8.1. We count the number of
statements (after macro expansion) in programs of various kinds and sizes [Pot02], before and
after reincarnation, using both the algorithms of Section 7.2 (quadratic rewriting scheme) and
Section 7.3 (quasi-linear rewriting scheme). In the absence of static analysis, the expansion ratio
is unacceptable. With static analysis however, it remains low in practice2.

As a result, we claim that curing schizophrenia by program rewriting is very effective. First,
quadratic worst-case complexity is unavoidable [Ber99, Ber00b, SBS04, Pot02]. Second, thanks
to static analysis, our last reincarnation algorithm is indeed quasi-linear in practice. In particular,
our compiler is just as effective3 as the reference compiler for Esterel [Ber00b] which internally
uses a static analysis of equal power, but much less formalized, and specific to circuits, being
deeply entangled with low-level circuit synthesis algorithms.

SUMMARY

We have briefly sketched the extension of our preprocessing techniques to full Esterel, described
our prototype compiler, and early experimental results.

2We expect to achieve an even tighter expansion with dead code elimination in “global” (not implemented yet,
cf. Chapter 7), since constant-propagation in Step 5 is especially effective on this program.

3Both the circuits produced and the duration of the synthesis are essentially the same.
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Chapter 9

Conclusion

In this work, we tried to clarify, formalize, and to a large extend solve the problems raised by
loops, that is to say iterated executions of the same piece of code, in Esterel. We view this as
an important step to achieve provably correct, efficient code generation, for both hardware and
software target codes.

9.1 Results

Our research resulted in the following contributions:

• a revised logical semantics for Esterel [Tar04a]: the deterministic semantics, and a refined
correctness criterion for Esterel programs: properness (cf. Chapter 3).

• an extended language [Tar04b]: Esterel∗, adding to Esterel a new primitive instruction:
gotopause (cf. Chapter 6), and static aliasing capabilities (cf. Chapter 8).

• a preprocessing (cf. Chapter 7) to take care of all complex aspects of loops, by means
of static analysis techniques [TdS03] and program rewriting techniques [TdS04], which we
have then been able to prove correct, thanks to the formal definitions of instantaneous
loops (cf. Chapter 4) and schizophrenia (cf. Chapter 5) provided here.

• an implementation of these preprocessing techniques and language extensions, with algo-
rithms directly derived from their specifications (cf. Chapter 8).

We sum up the main features of interest in each of these topics below.

A Revised Semantics

The deterministic semantics introduced in this work, and its sibling reactive deterministic se-
mantics, have a local and “pessimistic” approach to error detection in programs, whereas the
approach of the logical behavioral semantics is global and “optimistic”, in that our semantics
reports errors as soon as pieces of code may be “wrong”, while the reference semantics refrains
from reporting errors as long as long pieces of code may be “correct”. In our view, this stricter
approach is more in line with what is required from a language for safety-critical application
design.

Technically, our semantics eliminates the non-deterministic deduction rules of the logical
behavioral semantics. As a result, formal reasoning about program behaviors becomes much
easier, even for incorrect program behaviors, thanks to the reactive deterministic semantics. This
was not the case with the constructive semantics [Ber99], which takes care of non-determinism as
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1:pause;
action 1;
present A then gotopause 2 end;
present B then gotopause 3 end;
gotopause 1;

2:pause;
action 2;
gotopause 1;

3:pause;
action 3;
gotopause 2

2
3

1
A

B

 1  2

 3

action action

action

Figure 9.1: A Finite State Machine in Esterel∗

well, but at the expense of a much more complex formalism, corresponding to a more ambitious
goal: constructive causality analysis. It is in fact because we could separate concerns and achieve
determinism while ignoring constructive causality issues, that we could provide our semantics. As
a result, these semantics should not be seen as competitors but rather complementary formalisms,
serving different purposes.

An Extended Language

It is broadly agreed that goto statements in programming languages are “harmful” [Dij68]. They
are, however, at the heart of code generation processes (both software and hardware), whose
job is (amongst other things) to flatten the structure of the program. By incorporating a jump
instruction in the Esterel language itself, we aim at specifying a versatile intermediate format for
the description of Esterel programs. We shall not, however, advocate for the usage of gotopause
instructions in hand-written code.

Esterel∗ is currently the last of a long series of intermediate formats defined for the encoding
of Esterel programs, (oc [Tan85], ic [Gon88, Par92], sc [For95], GRC [Pot02], etc.). What makes
it very attractive in our view, is the following collection of properties:

• Esterel∗ extends Esterel. Thanks to gotopause, important structures can be now efficiently
described using source code. For instance, finite state machines can be directly encoded
in Esterel∗, as illustrated in Figure 9.1. This is especially useful, since graphical design
languages built on top of Esterel, such as SyncCharts [And95, And96], heavily rely on such
representations of behaviors, and therefore can be more easily compiled to Esterel∗ than
Esterel.

• Esterel∗ preserves high-level structural information about programs. In particular, it is
possible to easily and efficiently compile Esterel∗ programs into GRC specifications. Since, as
argued in [Pot02], GRC can be used for efficient software generation and hardware synthesis,
then it must be so for Esterel∗.

• In practice, the semantics of gotopause is very intuitive. Because jumps are required to be
non-instantaneous (i.e. target pause instructions only), they cannot contribute to instan-
taneous loops, schizophrenia, or even causality cycles. This makes compilers for Esterel∗

very easy to implement. On the one hand, implementing gotopause is straightforward; on
the other hand, compilers can assume that schizophrenia has been taken care of already.
In particular, the unfolded programs we produce in Chapter 7, can be linearly translated
into Boolean equation systems (i.e. sc code, cf. Chapter 8).
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• Esterel∗ makes it possible to seamlessly evolve from high-level program descriptions down
to lower-level representations, using efficient, provably correct program transformations,
as illustrated in this work with reincarnation.

A Provably Correct Preprocessing

In our view, the variety of techniques currently in use to deal with instantaneous loops and
schizophrenia reveals how difficult these issues are, from the formal point of view, as well as the
implementation point of view. In this work, we formalized these two problems, and provided
practical algorithms to deal with them. Using static analysis techniques we identified both
potentially instantaneous loops and potentially schizophrenic constructs in programs. Then,
using program rewriting techniques, we transformed schizophrenic Esterel programs into non-
schizophrenic observationally equivalent Esterel∗ programs.

Thanks to our complete formalization of the various pieces of this puzzle (formal semantics,
formal definitions of instantaneous loops and schizophrenia, formal specification of the static
analyses and program transformations), we are able to complete a hand-written proof of the
correctness of this preprocessor for the pure Esterel language. More precisely, we established:

• the correct rejection of loop unsafe programs,
• the correct preservation of the semantics of safe (i.e. accepted) programs,
• the correct transformation of safe programs into non-schizophrenic programs.

Implementation

We have implemented these algorithms as a standalone preprocessor. Because it outputs Esterel∗

programs, it can be used for software as well as hardware synthesis, even in existing compilers.
As argued before, this should hopefully require only a minimal effort, consisting in implementing
gotopause in existing compilers. In other words, these compilers could profit from an optimized
expansion of schizophrenia, virtually for free. On the other hand, new Esterel compilers should
no longer worry about schizophrenia.

To validate our approach, we have also implemented a prototype Esterel∗ compiler using
Berry’s circuit synthesis for non-schizophrenic programs [Ber99], which we adapted to Esterel∗.

9.2 Future Work

There are many extensions to this work we would like to consider, concerning proofs, schizophre-
nia and reincarnation, as well as various program analyses and transformations in Esterel∗.

Proofs

First, our proofs should be checked using a theorem prover/proof assistant, which obviously
means an important effort to encode the models in a way that can be presented to the proof
assistant. But this would bring us one (big) step closer to the formal verification of an optimizing
compiler for Esterel.

Second, the definitions, results, and proofs concerning the reactive deterministic semantics
and loop safety have to be extended from Esterel to Esterel∗. This should be straightforward.

Finally, while we believe that extending compiler implementations with gotopause is easy,
adapting the proof of a certified compiler for Esterel to Esterel∗ is not so simple. We would
like to extend the work of Schneider et al. [Sch01a, Sch01b, SW01, SBS04] on certified Boolean
equation synthesis for Esterel, to the Esterel∗ language. This again is a required step toward
the embedding of our techniques in a certified compiler.
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Schizophrenia

Our reincarnation algorithm could be further improved. In particular, as remarked in Chapter 7,
it generates dead code. While this has no impact in the end, as dead code is eliminated by
subsequent code generation phases, it would be nice to avoid generating dead code in the first
place. More importantly, there are many practical situations where schizophrenic constructs do
no harm. For example, the following code pattern is fairly common:

loop
signal S in
await I;
...

end
end

which expands into:

loop
signal S in
trap T in
loop
pause ;
present I then exit T end;

end
end;
...

end
end

Here, while S is schizophrenic in the sense of Chapter 5, two instances of S cannot be used
simultaneously, because of the pause instruction inside the scope of S, occurring before any
occurrence of S. Hence, unfolding could be avoided in this case. There are several such refine-
ments, which we have already embedded in our implementation, but not yet formally specified
and verified.

Our final rewriting scheme is limited to Esterel programs. We would like to extend it to
handle Esterel∗ programs as well, that is to say gotopause instructions. While we have already
experimented with such an extension (not presented here), we believe our current static analysis
for Esterel∗ is not very good, and we are far from completing a correctness proof for the extended
preprocessing. Further work is required.

Program Analyses and Transformations

In general, because in Esterel∗ we have taken care of schizophrenia by carefully setting apart
the simultaneous incarnations of schizophrenic signals and parallel constructs, more accurate
program analyses and transformation become possible. Computing distinct pieces of information
for distinct incarnations of the same object is now easier. Moreover, different transformations
can be applied to these incarnations.

There are good reasons to believe that this, for instance, makes it possible to specify, at the
source level, a much better dead code elimination than before. We would like to formalize this
analysis/transformation, in the provably correct kind of approach we adopted in this work, as
well as investigate other program analyses and transformations.

In particular, the last and most speculative direction that we would like to mention here is
constructive causality analysis. Constructive causality analysis is typically the most complex and
computationally expensive piece of code in hardware compilers for Esterel. As discussed before,
this led us to abstract away constructive causality in this work, by separating schizophrenia
and constructive causality issues in a safe manner (i.e. considering schizophrenia for all logically
correct programs). However, just as we transposed in this work the analysis and transformation
algorithms existing at the Boolean equation level for schizophrenia to the source level with
the definition of Esterel∗, we would like to similarly investigate constructive causality analysis
with source-level techniques, thus pursuing the work of Potop-Butucaru [Pot02] on constructive
causality in the GRC intermediate format.
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Appendix A

Proof of Theorem 7.21

In Chapter 7, we define a rewriting of safe Esterel programs – expand – prove it preserves the
semantics of programs – p and expand(p) are observationally equivalent (cf. Corollary 7.20) –
and claim it cures schizophrenia – expand(p) is not schizophrenic (cf. Theorem 7.21). We now
formally establish this second result.

In Figure A.1, we define the function of contexts: 〈 〉 : C[ ] 7→ 〈C[ ]〉, which mimics the
definition of the risk function of Figure 5.4, except for the fact it does not raise exception STOP.
As a result, it can be a function of C[ ] only whereas the initial risk function had two parameters:
C[ ] and p.

In Figure A.2, we rewrite the definition of dup4 of Figure 7.5 using the 〈 〉 function we just
introduced. This makes the connection of the computation of K in the initial definition of dup4
and the risk function explicit, leading to easier proofs.

Moreover, we take tags into account in this new definition of dup4 . For now on, we suppose
that function surf tags statements with fresh tags, thus for instance:

dup4 (〈[ ]〉, loop1 signal2 S in pause3 end end) =
loop1 signalx S in pausey end;z signal2 S in pause3 end end

where x, y, and z can be any integers such that {1, 2, 3, x, y, z} are pairwise distinct. The precise
values are irrelevant. In general, if p is well tagged (pairwise distinct tags) then dup4 (〈[ ]〉, p) is
well tagged as well. Thanks to these tags we shall easily identify subterms in dup4 (〈[ ]〉, p).

We shall prove that:

Theorem A.1. dup4 (〈[ ]〉, p) is not schizophrenic, whatever p.

Let us choose p safe and well tagged. For simplicity, we shall only consider signal declarations.
Parallel statements can be dealt with using a similar approach. We shall thus prove that no
signal declaration of dup4 (〈[ ]〉, p) can be reduced twice in a single reaction:

Theorem A.2. If

{
dup4 (〈[ ]〉, p) = C[signaln S in q end]

ddup4 (〈[ ]〉, p)|Lc �O, k, M−−−−→
I

ddup4 (〈[ ]〉, p)|L′c then {n, n} ⊂/ M .

If dup4 (〈[ ]〉, p) = C[signaln S in q end] then one of the following holds:

• n is the tag of a signal declaration of p:
there exists C0[ ] and q0 such that p = C0[signaln S in q0 end].

• n is not a tag of p (i.e. n is a fresh tag):

there exists C0[ ], q0, and m such that
{

p = C0[signalm S in q0 end]
signaln S in q end = surf (signalm S in q0 end)
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〈[ ]〉 def
= ∅

〈C[present S then [ ] else q end]〉 def
= 〈C[ ]〉

〈C[present S then p else [ ] end]〉 def
= 〈C[ ]〉

〈C[loop [ ] end]〉 def
= {0} ∪ 〈C[ ]〉

〈C[[ ]; q]〉 def
= if Γq ∩ 〈C[ ]〉 = ∅ then 〈C[ ]〉\{0} else 〈C[ ]〉∪{0}

〈C[p; [ ]]〉 def
= if 0 ∈ Γp then 〈C[ ]〉 else ∅

〈C[trap T in [ ] end]〉 def
= {k ∈ N, ↓k ∈ 〈C[ ]〉}

〈C[signal S in [ ] end]〉 def
= ∅

〈C[[ ] || q]〉 def
= ∅

〈C[p || [ ]]〉 def
= ∅

Figure A.1: Risk (Revised)

dup4 (〈C[ ]〉, nothingn)
def
= nothingn

dup4 (〈C[ ]〉, label:pausen)
def
= label:pausen

dup4 (〈C[ ]〉, exitn T )
def
= exitn T

dup4 (〈C[ ]〉, emitn S)
def
= emitn S

dup4 (〈C[ ]〉, presentn ... end)
def
=


presentn S then
dup4 (〈C[present S then [ ] else q end]〉, p)

else
dup4 (〈C[present S then p else [ ] end]〉, q)

end


dup4 (〈C[ ]〉, loopn p end

def
= loopn dup4 (〈C[loop [ ] end]〉, p) end

dup4 (〈C[ ]〉, trapn T in p end
def
= trapn T in dup4 (〈C[trap T in [ ] end]〉, p) end

dup4 (〈C[ ]〉, p;n q)
def
= dup4 (〈C[[ ]; q]〉, p);n dup4 (〈C[p; [ ]]〉, q)

dup4 (〈C[ ]〉, signaln S in p end)
def
=


if K ∩ Ωp = ∅
then signaln S in dup4 (〈C[signal S in [ ] end]〉, p) end

else
[
surf (signal S in p end);(new tag)

skip(signaln S in dup4 (〈C[signal S in [ ] end]〉, p) end)

]


dup4 (〈C[ ]〉, p ||n q)
def
=


if K ∩ Ωp || q = ∅
then dup4 (〈C[[ ] || q]〉, p) ||n dup4 (〈C[p || [ ]]〉, q)

else
[
surf (p || q);(new tag)

skip([dup4 (〈C[[ ] || q]〉, p) ||n dup4 (〈C[p || [ ]]〉, q)])

]


Figure A.2: dup4 (Revised)
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Let us focus on the first case; the second one is similar:

Lemma A.3. If C0[ ] = X[Y [ ]] then:

• “signaln S in q end” is not schizophrenic in “dup4 (〈X[ ]〉, Y [signaln S in q0 end)]”:

if ddup4 (〈X[ ]〉, Y [signaln S in q0 end)]|Lc �O, k, M−−−−→
I

s then {n, n} ⊂/ M .

• if “Y [signaln S in q0 end]” may terminate with a risky completion code w.r.t. the context
“X[ ]” then “signaln S in q0 end” is not reducible in any reaction of the initial state
ddup4 (〈X[ ]〉, Y [signaln S in q0 end)])|∗c, that is to say:

if

{
ΩY [signaln S in q0 end] ∩ 〈X[ ]〉 6= ∅
ddup4 (〈X[ ]〉, Y [signaln S in q0 end)])|∗c �O, k, M−−−−→

I
L

}
then n /∈ M .

Proof. By structural induction on Y[ ]. The second item makes the induction pos-
sible. While finding the precise expression of this item is non-trivial, the induction
is easy.

With X = [ ] and Y = C0[ ], we obtain: if ddup4 (〈[ ]〉, p|Lc �O, k, M−−−−→
I

s then {n, n} ⊂/ M .

In other words, “signaln S in q end” is not schizophrenic in expand(p).
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Abstract

Esterel is an imperative concurrent design language for the specification of control-oriented reactive sys-
tems. Based on the synchronous paradigm, its semantics relies on a clear distinction of instants of
computation. All primitive instructions of the language but one “pause” instruction execute in zero time.
Execution is thus a sequence of instantaneous computations separated by explicit pauses. Arbitrary loops
in this context are troublesome, potentially leading to a non-termination problem or a schizophrenia is-
sue: first, instantaneous loops may prevent the instant to end; second, program blocks may be traversed
several times within the same instant, thus having a “schizophrenic” behavior. Instantaneous loops are
forbidden by the semantics. Such errors have to be anticipated, and programs rejected by compilers on
this behalf. Moreover, efficient code generation for schizophrenic program patterns is complex. While
many existing compilers already generate correct code for loops, the efficient implementations available
today are neither generic (i.e. target-independent) nor formally specified or verified.

In this work, we thoroughly consider loops in Esterel, starting from the operational semantics of the
language, all the way down to a provably correct implementation. We formally characterize the related
issues and define efficient static analysis techniques to detect them in Esterel code. In order to get rid
of schizophrenic behaviors by source-to-source rewriting – cure schizophrenia – we introduce in Esterel a
new primitive instruction, which we call “gotopause”. It behaves as a non-instantaneous jump instruction
compatible with concurrency. We describe a first program transformation that systematically replaces
loops by the mean of gotopause statements, providing a loop-free equivalent program for any correct
Esterel program. By combining static analysis and rewriting techniques, we obtain a preprocessor for
Esterel that rejects incorrect loops and cure schizophrenia, which we have implemented. Due to our source-
to-source transformation methodology, our preprocessor is highly generic; because of static analysis, it is
very efficient; thanks to our fully formalized approach, we could formally establish its correctness.

Keywords: synchronous languages, structural operational semantics, concurrency, static analysis, pro-
gram transformation, correct-by-construction algorithms.

Résumé

Esterel est un langage impératif concurrent pour la programmation des systèmes réactifs. A l’exception de
l’instruction“pause”, les primitives du langage s’exécutent sans consommer de temps logique. L’exécution
se décompose donc en une suite d’instants. Dans ce contexte, les boucles peuvent poser deux types de
problèmes: d’une part une boucle instantanée peut bloquer l’écoulement du temps; d’autre part un bloc
de code peut être traversé plusieurs fois au cours du même instant, conduisant à un comportement du
programme dit “schizophrène”. Les boucles instantanées sont proscrites par la sémantique. Elles doivent
donc être détectées par les compilateurs et les programmes correspondants doivent être rejetés. Par
ailleurs, la compilation efficace des programmes schizophrènes est difficile. Ainsi, alors que plusieurs
compilateurs pour Esterel sont disponibles, les algorithmes employés pour compiler les boucles ne sont ni
portables, ni formellement spécifiés, et encore moins prouvés.

Dans ce document, nous étudions les boucles en Esterel, établissant une correspondance formelle
entre la sémantique opérationnelle du langage et l’implémentation concrète d’un compilateur. Après
avoir spécifié les problèmes posés par les boucles, nous développons des techniques d’analyse statique
efficaces pour les détecter dans un code Esterel quelconque. Puis, de façon à guérir la schizophrénie, c’est
à dire transformer efficacement les programmes schizophrènes en programmes non schizophrènes, nous
introduisons dans le langage une nouvelle primitive appelée “gotopause”. Elle permet de transférer le
contrôle d’un point du programme à un autre de façon non instantanée, mais sans contrainte de localité.
Elle préserve le modèle de concurrence synchrone d’Esterel. Nous décrivons un premier algorithme qui,
en dépliant les boucles à l’aide de cette nouvelle instruction, produit pour tout programme Esterel correct
un programme non schizophrène équivalent. Enfin, en combinant analyse statique et réécriture, nous
obtenons un préprocesseur qui rejette les boucles instantanées et guérit la schizophrénie, à la fois portable
et très efficace. Nous l’avons implémenté. De plus, grâce à une approche formelle de bout en bout, nous
avons pu prouver la correction de ce préprocesseur.

Mots-clés : langages synchrones, sémantique opérationnelle structurelle, concurrence, analyse sta-
tique, transformation de programmes, algorithmes corrects par construction.
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