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David Mary, Saad Kiani, Marios Kountouris, for their friendship, and to ex-
tend a special thank to Mari Kobayashi for her role as the office’s entropy
source. I also with to thank Mérouane Debbah and David Gesbert for their
advice regarding my work and for their friendship.

This paragraph would of course be incomplete if I didn’t mention
Magali, for her patience and support during the preparation of this thesis
and of the manuscript, and whose presence makes my life so much more en-
joyable.

Finally, I would like to thank my parents for their love, care and educa-
tion, which shaped my mind in many ways.



ii Acknowledgements



Abstract iii

Abstract

This thesis deals with different aspects of multiple-antenna (MIMO) wire-
less communications. In a first part, we introduce Space-Time-Frequency
Spreading (STFS), a space-time code for Orthogonal Frequency Division
Multiplexing (OFDM) systems that maximally exploits the channel space
and frequency diversity, as well as time diversity. For low spectral efficien-
cies (e.g. BPSK), Viterbi-based decoding of STFS associated with iterative
interference cancellation provides the same performance as BICM without
requiring soft decoding.

In a second part, the importance of having channel state knowledge at the
transmitter is discussed. A channel reciprocity model is introduced for the
case of Time-Division Duplex (TDD) systems, which models the impairments
of the radio-frequency components with linear filters. After a collaborative
training phase (relative calibration), this model enables the transmitter to in-
fer the downlink channel impulse response from the uplink channel estimates,
thus lifting the requirement for continuous feedback. The frequency-selective
reciprocity model was experimentally validated for SISO channels.

Finally, the problem of modeling the temporal evolution of MIMO fre-
quency-selective channels is addressed. A pathwise model is introduced, and
we propose to use a blind method to decompose the time-varying channel
realizations into, for each path, a set of constants representing the physical
characteristics of the environment, and a time-varying, structured process
(such as a Doppler series) that can be easily tracked or predicted. The
performance of this method is evaluated by simulations, using both synthetic
and experimental data.
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Résumé v

Résumé

Dans cette thèse, différents aspects des communication sans fils multi-
antennes (MIMO) sont abordés. Dans un premier temps, nous introduisons
l’Etalement Temps-Espace-Fréquence (STFS), un code destiné aux systèmes
à multiplexage fréquentiel orthogonal (OFDM), qui maximise l’exploitation
de la diversité spatiale, fréquentielle et temporelle. Pour des efficacités
spectrales faibles (par exemple utilisant des BPSK), le décodage du code
STFS par l’algorithme de Viterbi, associé à une annulation d’interférence
itérative atteint les mêmes performances qu’un code BICM.

Dans un second temps, nous considérons l’importance pour l’émetteur
de connâıtre l’état du canal. Un modèle de réciprocité est proposé pour les
systèmes à duplexage temporel (TDD), dans lequel les imperfections des com-
posants radio-fréquence sont représentées par des filtres linéaires. A l’issue
d’une phase d’apprentissage coopératif (calibration relative), ce modèle per-
met à l’émetteur de déduire l’état du canal descendant à partir de l’estimation
de l’état du canal montant, sans nécéssiter de retour continu d’information.
Ce modèle a été validé expérimentalement dans le cas d’un canal SISO.

Enfin, la modélisation de l’évolution temporelle des canaux MIMO sélectifs
en fréquence est envisagée. Un modèle par trajets est utilisé, et une méthode
d’identification aveugle est proposée, qui permet de décomposer les varia-
tions du canal, pour chaque trajet identifié, en un ensemble de constantes
représentant les caractéristiques physiques de l’environnement, et un proces-
sus variable dans le temps, structuré (tel que l’effet Doppler), et pouvant être
facilement suivi ou prédit. Les performances de cette méthode sont analysées
sur des signaux de synthèse et mesurés.
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Chapter 1

Introduction and thesis outline

The issues associated with reliable communication over wireless channels have
dramatically evolved in the recent years, due to a shift in the field of appli-
cation of wireless communication systems. Although the history of wireless
communications is over a century old, the introduction of consumer-grade
portable communication equipment, such as mobile phones, or computer Lo-
cal Area Networks (LANs) is fairly recent. The huge market demand for
these applications has oriented research towards improved spectral efficiency
(Spectral efficiency, measured in bits per second per Hertz, or bits per chan-
nel access, is a measure of the amount of information that can be transmitted
using a given amount of energy). Current examples of this trend can be found
in the context of Wireless Local Area Network (WLAN) applications, such
as IEEE 802.11a/802.11g, or ETSI HiperLAN/2. The continuous growth of
computer network traffic has pushed the design of modern WLAN protocols
towards higher throughputs.

Besides increasing spectral efficiency, the use of multiple antennas has
been heralded as an almost-free solution to throughput problems, since the
channel capacity scales linearly with the number of antennas for a given
total transmit power, whereas increasing the transmit power only yields
a logarithmic capacity improvement. Multiple antenna, a.k.a. Multiple-
Input Multiple-Output (MIMO) systems, have been widely studied in the
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last decade, after the initial interest was initiated at Bell Labs by the theo-
retical results of Winters and Telatar on mutual information [1, 2], quickly
followed by the first practical MIMO coding scheme, proposed by Foschini [3].

The counterpart to the increased spectral efficiency is that it uncovers
new challenges that were previously hidden by the suboptimal use of the
channel resource:

exploiting diversity: exploiting channel diversity provided by the increased
bandwidth and the introduction of multiple antennas

equalization of fast-fading channels: tracking and equalizing the time-
varying channels encountered in mobile applications has become more
difficult as the amount of data needed to accurately represent the chan-
nel state has increased

This thesis is comprised of two parts, following a brief introduction to the
issues of communications over a noisy wireless channel in Chapter 2.

In the first part of this thesis, we will address the specific issues of Ortho-
gonal Frequency Division Multiplexing (OFDM), a transmission technique
consisting in decomposing a wideband channel into a set of discrete, nar-
rowband channels. Besides opening the way to multiplexing, OFDM has
interesting properties: the well-known fact that it turns a frequency-selective
channel into a set of flat-fading channel was already noticed by Shannon in
his 1949 paper [4].

However, the need to deal with fast channel fading and to exploit fre-
quency diversity both reintroduce the need to consider all OFDM subbands
jointly, which runs counter to the principle of dealing separately with the
data streams on each subcarrier, thus making the advantage of OFDM over
direct-spread (DS) techniques less obvious. However, the evolution of current
OFDM-based standards mandates to find solutions to these issues.

Chapter 3 addresses the problem of equalization of OFDM transmission
in the high-Doppler spread case. We outline a duality between time-domain
and frequency-domain equalization, and show that the Doppler spread in the
frequency domain plays the same role as delay-spread in the time-domain.
This work was published in [5].

In Chapter 4, we explore the linear precoding technique as an alternative
to binary codes as a way to exploit channel diversity. We introduce the new
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STFS code for OFDM-based MIMO systems, and the matching iterative
decoding technique, and show that STFS achieves good space, time and fre-
quency diversity exploitation within a reasonable decoding complexity. This
work was published in [6, 7, 8], and used in the RNRT Antipode deliverables
[9, 10, 11, 12, 13].

In the second part of this thesis, we deal with the issues of channel repre-
sentation, tracking and estimation, for MIMO systems in the general case of
frequency-selective channels. First, in Chapter 5, we propose an information-
theoretic analysis of the importance for the transmitter of knowing the chan-
nel. We outline the situations in which knowledge of the channel by the
transmitter can really improve the performance of a communications system,
and study the effects of imperfect (noisy) channel knowledge and imperfect
calibration.

In Chapter 6, we introduce a new model for channel reciprocity in TDD
systems, that lets the transmitter gain knowledge of the downlink channel
properties from uplink channel estimates. We term this method relative
calibration, and present experimental evidence that the proposed reciprocity
model holds for real systems. This work was published in [14], and is the
subject of a patent [15].

Finally, in Chapter 7, we propose to use a pathwise model to represent the
time-variations of MIMO frequency-selective channels, and develop a a blind
method to decompose the channel variations into a low number of spatial
and temporal parameters associated to each path. This work was published
in [16, 17, 18].
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Chapter 2

Digital communications over
noisy MIMO fading channels

In this chapter we introduce the general framework of wireless communica-
tions, i.e. coding to communicate over a noisy channel, and lay the notations
for the multipath, discrete time channels that will be considered throughout
this thesis. The model is extended to MIMO AWGN and fading channels, for
both frequency-flat and frequency selective cases, and basic capacity formulas
corresponding to those models are recalled.
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2.1 Introduction

Reliable communication of digital information over noisy channels, such as
those encountered in wireless applications, involves the use of a channel en-
coder and its corresponding decoder. Those are usually designed with a
particular channel model in mind. The relevant parameters were defined by
Shannon as early as 1948 [19], for the case of infinitely long signals. Those
parameters are:

The code rate R, measured in bits per second, is the amount of informa-
tion that can be transmitted for a given energy expense.

The channel capacity C, in bits per second, is the maximum rate of any
code that can reliably (with probability 1) transmit information over
this channel.

The normalized versions of the rate and the capacity (in bits per channel
access) are often used to compare codes. The infinite coding length and the
complexity of Maximum-Likelihood (ML) decoding implied by information
theory are not practical for real-life implementations, and we can only try
to minimize the probability of erroneous decoding. However, as we shall see,
the notion of mutual information for block-fading channels will provide an
good insight on the properties of certain coding methods.

2.2 SISO channel model

2.2.1 Continuous time model

Let us consider the general case of the transmission of a complex signal
over a fast-varying Single-Input Single-Output (SISO) channel, i.e. from one
transmit to one receive antenna. The signal is defined in discrete-time by the
complex time series {xk}k∈ � , and is transmitted at the symbol rate Ts. The
transmitted signal can be represented (using the distribution notation) as

x(t) ,

+∞∑

l=−∞
xl.δlTs

(t), (2.1)
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where δt0(t) is Dirac’s delta function. In order for the transmitted signal
to remain band-limited, a pulse-shaping filter is used at the transmitter.
Denoting pt(τ) its impulse response, the baseband signal that actually gets
transmitted is s , pt ∗ x, or

s(t) =
+∞∑

l=−∞
xlpt(t − lTs). (2.2)

The electromagnetic signal path between the transmit (Tx) antenna and
the receive (Rx) antenna is modeled by a linear filter. In general, there
is no reason to assume that this filter has constant characteristics, since it
depends on the physical structure of the propagation channel (length of the
propagation paths, reflections, etc...). However, in practice, it is desirable to
model the channel as a linear filter, possibly with time-varying characteristics.
Therefore, we denote h(t, τ) the channel impulse response at time t, where
τ is the lag. Hence, h(t, ·) is the channel impulse response as experienced by
the signal received at time t.

The received signal r results from the superimposition of the transmitted
signal convolved with the channel impulse response h, and a noise v. It is
subsequently low-pass filtered, in order to reduce the out-of-band noise. Let
pr denote this filter. This yields

y , pr ∗ r = pr ∗ h ∗ pt ∗ x + pr ∗ v. (2.3)

Throughout this thesis, we will assume that the pulse-shaping filter pt

and the corresponding receive filter pr are chosen such that

• their cascade p , pr ∗pt does not create inter-symbol interference when
y(t) is sampled at rate Ts: p(nTs) = 0, ∀n ∈ �

, n 6= 0. This property is
known as the Nyquist criterion [20],

• the spectral properties of the in-band noise are not modified by pr, i.e.
|pr(f)| = 1,∀f ∈ [− 1

2Ts
, 1

2Ts
].

This can be achieved by using square-root raised-cosine filters for both pt

and pr.

The continuous-time channel h(t, τ) is commonly modeled as a tapped
delay line, i.e. a finite number P of attenuated replicas of the transmitted
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signal, resulting from multiple propagation paths between the Tx and Rx
antennas:

h(t, τ) ,

P∑

p=1

ap(t)δtp(t)(τ), (2.4)

where ap(t) and tp(t) are respectively the (time-varying) amplitude and the
lag corresponding to each signal path. This model yields

y(t) =
∑

l∈ �

P∑

p=1

xl ap(t) p(t − lTs − tp(t)) + (pr ∗ v)(t). (2.5)

2.2.2 Discrete-time model

Sampling the received signal at the symbol rate Ts (yk , y(t0 + kTs), using
the epoch t0) yields

yk =
∑

l∈ �

P∑

p=1

xl ap(t0 + kTs) p(t0 + (k − l)Ts − tp(t0 + kTs)) + nk, (2.6)

where nk , (pr ∗ v)(t0 + kTs). Since we want to relate the discrete-time
sequences yk and sl, it is convenient to express the equivalent discrete-time
channel impulse response

h′
n,m ,

P∑

p=1

ap(t0 + nTs)p(t0 + mTs − tp(t0 + nTs)), (2.7)

which lets us rewrite yk in a convolutive way as

yk =
∑

l∈ �

xlh
′
k,k−l + nk. (2.8)

This channel is sometimes called an Inter-Symbol Interference (ISI) channel,
since the signal received at any time contains contributions from several in-
terfering symbols.

The apparent simplicity of eq. (2.8) hides a fairly intricate channel model:
the properties of the time-varying channel as defined in (2.7) can not be easily
determined. Hence, some simplifying assumptions can be made, in order to
make the model easier to deal with.
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Finite delay-spread In general, p has an infinite-length impulse response.
However, since most of its energy is gathered in a fairly short time span, it
is commonly assumed that p(t) has finite support. As a consequence, h′ also
has finite support in the lag domain. In the sequel, we will assume that the
channel impulse response is causal, and that there exists an upper bound L
on the channel delay spread, such that

∀n ∈ �
, h′

n,m 6= 0 ⇒ 0 ≤ m ≤ L. (2.9)

In this case, eq. (2.8) can be rewritten as a finite sum

yk =
L∑

l=0

h′
k,lxk−l + nk. (2.10)

Time-invariant channel If the channel variations are slow, or are not rel-
evant to the considered problem, h′

n,m can be considered independent from n.
In this case only, the channel can be modeled using the classical linear time-
invariant (LTI) model. This yields the classical Additive White Gaussian
Noise (AWGN) model.

Independent channel coefficients It seems reasonable to assume that
the fading coefficients ap(t) have independent fading properties. However, as
can be seen from eq. (2.7), if the relative tap delays t0 − tp(t0 + nTs) are
not integer multiples of Ts, the Nyquist filter p introduces some correlation
between the elements of h′. A simplifying assumption, motivated by the fact
that most of the energy in the pulse lies in a short time span, is that the
support of p(t) is shorter than Ts. In this case, each coefficient ap affects at
most one element of h′.

2.3 MIMO channel model

We consider a point-to-point digital transmission between two stations equip-
ped with multiple Tx and/or Rx antennas, as represented in Fig. 2.1. Let
Nt (resp. Nr) denote the number of antennas at the transmitter (resp. the
receiver).
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scattering

environment

y1
x1

xNt yNr

^

>

~

1

Tx Rx

Figure 2.1: MIMO physical channel

The SISO channel model described previously applies to each Tx-Rx an-
tenna pair, hence each Rx antenna senses the superposition of the signals sent
from all the Tx antennas, convoluted with the corresponding SISO channels,
together with some additive noise. Denoting xn(l) the baseband symbols
transmitted from antenna n (n = 1 . . . Nt), and h′

m,n(k, l), l = 0 . . . L the
discrete-time channel impulse response from Tx antenna n to Rx antenna m
at time kTs, the signal received by the mth Rx antenna is

ym(k) =
Nt∑

n=1

L∑

l=0

h′
m,n(k, l)xn(k − l) + nm(k), (2.11)

where nm(k) is the noise at the mth Rx antenna. Using the vector represen-
tation,

y
k

,




y1(k)
...

yNr
(k)


 , xk ,




x1(k)
...

xNt
(k)


 , and nk ,




n1(k)
...

nNr
(k)


 , (2.12)

and denoting [H(k, l)](m,n) , h′
m,n(k, l), the whole MIMO system is described

by

y
k

=
L∑

l=0

H(k, l)xk−l + nk. (2.13)
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The case where the delay spread of the channel is negligible w.r.t. the symbol
rate (L = 0) is called flat-fading, as opposed to the dispersive (also called
frequency-selective) case where L > 0. The particular situation of a constant
flat-fading MIMO channel has been extensively studied. In this case, (2.13)
becomes

y
k

= Hxk + nk. (2.14)

2.3.1 MIMO capacity and channel knowledge

Telatar [2] has shown that for such a frequency-flat MIMO channel, with nk

i.i.d. with independent components of variance N0, the mutual information
between xk and y

k
is maximized by a Gaussian circularly-symmetric input

distribution: x ∼ CN (0,D), and that the expression in this case is

I
(
x;y,H

)
= log det

(
I +

1

N0

HDHH

)
. (2.15)

The Shannon capacity is the supremum of the mutual information over all
input distributions:

C , sup
D

I
(
x;y,H

)
. (2.16)

The optimal input covariance can be obtained by the “waterfilling” method
[21]. However, this requires that H (or some information about it) be known
by the transmitter. In many cases, this knowledge is not available to the
transmitter. In this case, one can still optimize the covariance for a given
channel distribution. A classical solution is to transmit uncorrelated signals
of equal variance from all antennas (D = I), since this setting maximizes
the expectation of the mutual information in the case of a channel with i.i.d.
random coefficients with equal variance. The mutual information achieved
by this input distribution is

CI , I
(
x;y,H

)
= log det

(
I +

1

N0

HHH

)
≤ C. (2.17)

This highlights an important distinction in the mode of operation of a com-
munications system: the case where the transmitter adapts the input dis-
tribution to the instantaneous channel is known as Channel State Infor-
mation at the Transmitter (CSIT). If this information is only available
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at the receiver, we will use the term Channel State Information at the
Receiver (CSIR).

Note that in practice, H is never perfectly known, neither at the Tx nor
at the Rx side, and must be estimated. This is the subject of Chapter 5.

2.4 Channel fading and reciprocity models

So far, we have assumed that the channel can be different for each transmit-
ted symbol, except for the capacity formulas where the channel is considered
constant. Practical communication systems operate in between these two
extremes: the channel varies, but the symbol period is short enough for the
channel not to change substantially over the duration of a symbol. This can
be exploited through various methods. For instance, differential modulation
[20] is adapted to fast-evolving channels where the coherence time is limited
to a few symbol periods. If the channel variation is slower, it can be estimated
either through blind or training methods (CSIR situation). The block-fading
model (also called quasi-static) fits this situation. It asserts that the channel
remains completely constant for a given time (coherence time), and therefore
a block of successive received symbols can be decoded under the assumption
that they experienced the same channel conditions. The Rayleigh fading
model is an important example of fading model with independent realiza-
tions. For a given delay intensity profile p, the individual coefficients are

modeled as independent Gaussian random variables: h′
n ∼ CN

(
0, diag(p)

)
,

where h′
n , [h′

n,0 . . . h′
n,L−1]

T .

If the symbol rate is very high, or if the physical setting of the channel
evolves rapidly, such as the situation of a mobile in a car or a train, a more
accurate tracking of the channel evolution might be desirable: exploiting the
correlation between successive channel estimates becomes necessary in this
case. For instance, the linear phase rotation created by the Doppler effect
for common vehicular speeds translates into a fast channel evolution. For-
tunately, this evolution is very predictable, and can be easily tracked if the
channel model includes temporal evolution. The mutual information (2.15)
associated to a fading channel is a random variable, and its Shannon capacity
is zero. In this case, we define the outage probability associated to rate R as
the probability that the mutual information achieved over the instantaneous
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channel realization is lower than R.

The case of CSIT introduces the extra constraint that, in addition to
the tracking problem, one has to let the transmitter know about the channel,
since the channel estimation is made by the receiver. This can be done either
by regularly sending channel estimates from the receiver to the transmitter
through a feedback link, or by exploiting the fact that, for duplex systems
operating on the same frequency on the uplink and the downlink, the wireless
channel behaves similarly in both directions (reciprocity).

A large part of this thesis is dedicated to modeling and exploiting various
channel properties in order to better exploit its structure. Chapter 3 deals
with the Doppler effect and the corresponding equalization methods in the
case of an OFDM transmission. The specific case of CSIT is studied in
Chapters 5 and 6: Chapter 5 deals with the impact of imperfect CSIT on the
reliability of the transmission, whereas in Chapter 6 we propose a method to
model and exploit the reciprocity property of a Time-Division Duplex (TDD)
channel. Chapter 7 addresses channel modeling and prediction by exploiting
the temporal and spatial correlations in the MIMO case.
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Part I

Diversity exploitation in
MIMO OFDM
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Chapter 3

Equalization of OFDM
transmission in high Doppler
spread environment

In this chapter, we address the problem of OFDM transmission over a SISO
time-varying, frequency-selective channel with high Doppler spread. We show
that, when using CP-OFDM, fast (inside one OFDM symbol) channel vari-
ations can be decomposed over a base of sinusoid functions sampling the
Doppler spectrum at subcarrier frequencies. This leads to a parsimonious
parameterization of the time-varying channel impulse response. We show
that equalization of the delay spread of a time-varying channel in time do-
main, and the equalization of the Doppler spread of a frequency selective
channel in frequency domain are equivalent. Using this duality, equalization
in the frequency domain can benefit from all known time domain equalization
methods.
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3.1 Introduction

The problem of inter-carrier interference (ICI) in OFDM transmission has
been largely ignored in the early days of OFDM. ICI in OFDM appears
when the channel impulse response varies significantly over the duration of
one OFDM symbol. Recently, the need to consider fast-varying channels for
OFDM transmission arose. The influence of uncompensated ICI was inves-
tigated by Li in [22], where bounds on the ICI power are derived from the
Doppler spread of the channel. Attempts to combat the effects of ICI have
been presented, such as Gorokhov and Linnartz’s proposal to use the Taylor
expansion of the Doppler effect for equalization [23].

Since the channel varies continuously, and since it can not be estimated
at every instant in order to limit the amount of training information, the
receiver has to make assumptions on the maximum variation speed of the
channel coefficients (i.e. Doppler spread) and to rely on interpolation. This
is used for instance by Stamoulis, Diggavi and Al-Dhahir in [24], where the
channel state is linearly interpolated in time between samples over an OFDM
symbol. They also proposed an associated time-varying filtering of high com-
plexity to make the channel (almost) time-invariant over an OFDM symbol.
Recently, Sayeed et al. proposed in [25] to represent channel variations using
a set of fixed basis functions, built a CDMA system relying on this “canoni-
cal” coordinate system based on Doppler and multipath.

In this chapter, we show that these canonical coordinates for temporal
channel variations are particularly suitable for equalization of Cyclic Pre-
fix Orthogonal Frequency Division Multiplexing (CP-OFDM) transmissions,
since it leads to a description of Doppler spreading as FIR filtering in fre-
quency domain. The number of taps of this filter is proportional to the
Doppler spread.

Results presented in this chapter were published in [5].

3.2 Channel model

Let us consider the CP-OFDM transmission of a complex signal over a fast-
varying channel. We consider the transmission of the the discrete-time SISO
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channel (2.10). Let c = [c0 · · · cN−1]
T represent the complex constellation

symbols to be transmitted. The time-domain equivalent is obtained via the
N -point inverse Discrete Fourier Transform (DFT)

x , F−1c (3.1)

In order to avoid interference between consecutive OFDM symbols, we as-
sume that a cyclic prefix [26] of length P (P ≥ L− 1) is used, i.e. the last P
samples of s are prepended in the time-domain to the OFDM symbol itself
before transmission. The cyclic prefix insertion is represented by

C ,

[
0P×N−P IP

IN

]
(3.2)

It yields the transmitted signal

s′ , C s. (3.3)

For the sake of simplicity, let us assume that the first value in s is transmitted
at time zero. Therefore, the first value of the cyclic prefix is transmitted at
time −P . Let us represent the convolutive ISI channel experienced by s′ as

H′ ,




h−P,0 0 . . . 0
... h1−P,0

. . .
...

hL−1−P,L−1
...

. . . 0
0 hL−P,L−1

. . . hN−1,0
...

. . .
...

0 . . . 0 hN+L−2,L−1




. (3.4)

This yields the received signal

r′ , H′s′ + v′, (3.5)

where v′ is some additive noise. Then, the cyclic prefix removal operation
consists in discarding the first P values of the received signal, which in general
contain interference from the previous OFDM symbol. The last L−1 samples
in r′ are themselves interfering with the following OFDM symbol, and should
be ignored as well. Therefore, in the sequel we will only consider

r = Dr′ (3.6)
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where
D ,

[
0N×P IN 0N×L−1

]
. (3.7)

Finally, the frequency-domain equivalent of r is obtained by DFT

u , Fr = FDH′CF−1c + w, (3.8)

w = FDv′. Note that the cyclic prefix addition and removal does not modify
the noise properties, since FD(FD)H = IN .

3.3 Canonical channel representation

Let us focus on the properties of the equivalent channel between c and u. In
particular, the effect of the pre- and post-multiplication by D and C respec-
tively, is to create an equivalent N × N channel matrix H = DH′C with the
following structure:

H =




h0,0 h0,L−1 . . . h0,1
... h1,0

. . .
...

... hL−2,L−1

hL−1,L−1
...

hL,L−1
. . .

. . .

hN−1,0




. (3.9)

Let us consider the variation speed of the channel. This can be related to the
spectrum of h(t, τ) with respect to the time variable t (i.e. the Doppler spec-
trum). Let us assume that h(f, τ) has a finite spectrum support [−BD, BD]
for every τ .

In a quasi-static environment (NBDTs � 1), H is a circulant matrix,
i.e. ∀(p, l), hp,l = h0,l. It is well known that the consequence of this is that
the frequency-domain expression of the channel is a diagonal matrix: FHF−1

has non-zero values on its diagonal only, and their amplitude represents the
channel gain on each frequency subband. In this case, equalization becomes
a trivial operation, and this characteristic was one of the keys of the success
of OFDM.
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Contrarily, we focus on the case where the channel coefficients noticeably
vary in time during one OFDM symbol. In this case, H is not circulant any-
more. Let us decompose the variations of each hp,l over one OFDM symbol
over a base of Fs/N -spaced sinusoid functions. (This corresponds to the fre-
quency spacing of the OFDM subcarriers). Since we need to represent the
varying channel coefficients over a time period of NTs, a sampling frequency
in frequency domain of Fs/N allows to satisfy Nyquist. In order to cover all
the Doppler spectrum, we define M = dNBD Tse and decompose

hp,l =
M∑

m=−M

al,mej 2πmp

N ,
p = 0 . . . N − 1
l = 0 . . . L − 1

(3.10)

This base can be represented in the matrix space of H by {Qm, m =
−M . . . M}, where

Q , diag
(
1, ej 2π

N , . . . , ej
2π(N−1)

N

)
. (3.11)

Using the N × N circulant shift matrix

J ,




0 1

1
. . .
. . . . . .

1 0


 , (3.12)

we can rewrite the H as

H =
L−1∑

l=0

M∑

m=−M

al,m Jl Qm . (3.13)

3.3.1 Time-Frequency Duality, applications to equal-
ization

Let us point out that the DFT has interesting properties on Q and J:

FQF−1 = J, and FJF−1 = Q∗ (3.14)

(complex conjugate). Which yields

A , FHF−1 =
L−1∑

l=0

M∑

m=−M

al,m Ql∗ Jm (3.15)
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Comparing equations (3.13) and (3.15), we see a duality between the time-
domain and the frequency-domain representations of the channel. Both A
and H are band matrices, with respectively L and 2M + 1 non-zero diag-
onals. This duality points to a possible optimization of the equalization
process: among the two varieties of interference (ISI and ICI), either one can
be suppressed through the use of the Fourier transform and a scalar multi-
plication, whereas the other one requires the use of a conventional equalizer.
In eqs. (3.13) and (3.15), the exponent of J represents the actual equalization
effort. The exponent of Q has no influence on the equalization complexity,
since it represents N independent, scalar weighting operations. Therefore,
the decision between these two alternatives depend on the spread of the in-
terference:

• if (2M +1) < L, the channel is preferably considered as a (2M +1)-tap
frequency-varying cyclic FIR filter in the frequency domain

• if (2M +1) > L, it is preferable to equalize the L-tap time-varying FIR
filter in the time-domain.

Any conventional (time-domain) equalization algorithm can be used with this
method. Furthermore, the correlation between successive OFDM symbols
can be exploited by considering the set of parameters describing the evolution
inside one OFDM symbol as a random variable:

A ,




a0,−M . . . a0,M
...

. . .
...

aL−1,−M . . . aL−1,M


 . (3.16)

The correlation of the successive values of A (An, n ∈ �
) can be exploited

(e.g. through Wiener filtering), in order to improve their estimation .

3.4 Conclusion

We proposed a new modeling scheme for time-varying, frequency-selective
SISO channels with high Doppler spread, that proves particularly convenient
when used in conjunction with CP-OFDM modulation. We showed that this
model enables the receiver to exploit the duality between Doppler spread in
OFDM systems and delay spread in classical systems, by trading ISI for ICI
and vice versa, and that virtually any equalization algorithm existing in the
time domain can be transposed into the frequency domain.
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Chapter 4

Exploiting Diversity Through
Space-Time-Frequency
Spreading

In this chapter, we introduce a coding scheme for MIMO-OFDM that exploits
space, frequency and time diversity through the concatenation of a binary
convolutive code and a full-rate linear precoder. We optimize the design of the
linear precoder w.r.t. various properties, including diversity, coding gain, and
a mutual information criterion. We evaluate the performance of an iterative
PIC decoder adapted to the structure of our code through simulation, and
show how the linear precoder improves the performance of the overall system.
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4.1 Introduction

The use of wideband OFDM modulations for MIMO systems, in addition
to the obvious increase of throughput that it enables, also promises some
diversity advantage over narrowband flat-fading channels, through the use of
multiple frequency subbands. The initial trend in digital communications en-
gineering was to divide the channel into multiple disjoints subchannels, and
to multiplex the data over those subchannels. The OFDM modulation tech-
nique is a natural way of turning a dispersive channel into multiple parallel
flat-fading channels by transmitting different symbols on different frequency
bands. This was a sensible choice as long as the processing power available
for equalization remained expensive: without the necessary processing power,
diversity (other than receive diversity) is merely a source of self-interference.
However, technological advances in equalization, combined with a renewed
interest for the sources and mechanisms of diversity stemming from Fos-
chini’s BLAST proposal [3], prompted the research community to reconsider
this choice. Diversity at the transmission side is nowadays considered posi-
tively, especially for wireless communications, where its “channel hardening”
effect [27] is desirable.

In the light of this analysis, the use of multiple antennas for Wireless Lo-
cal Area Networks (WLANs) is an obvious choice to adapt current WLAN
standards to the ever-growing bandwidth demand. This chapter presents a
transmission scheme that was developed in the framework of a project by the
French National Telecommunications Research Forum (Réseau National de
Recherche en Télécommunications – RNRT) set to extend the HiperLAN/2
standard [28] (the European counterpart of IEEE 802.11a/g) to using mul-
tiple antennas. The proposed coding scheme relies on Linear Constellation
Precoding (LCP) on top of an OFDM modulation to exploit the channel
diversity, including frequency diversity (the signal bandwidth used in Hiper-
LAN/2 is 20MHz), space diversity (through the use of multiple Tx and Rx
antennas), and possibly time diversity (if some delay is acceptable). There-
fore, constraints such as tractable decoding complexity were taken into ac-
count. For instance, the rate-diversity trade-off (presented in Section 4.2) is
clearly biased in favour of diversity: the proposed scheme achieves a through-
put that grows linearly with the number of Tx antennas Nt (this property
is closely tied to the notion of full-rate precoding, described in Section 4.3).
The remaining degrees of freedom of the channel are dedicated to improving
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diversity, thereby reducing the energy required to transmit a given amount
of data.

This chapter is organized as follows: the notions of diversity and rate
are introduced in Section 4.2. The proposed coding scheme is exposed in
Section 4.3, and the precoder is shown to be mutual information-lossless,
to exploit all the available diversity, and to maximize the coding gain. Sec-
tion 4.4 analyzes the proposed iterative interference cancellation (IC) scheme.
Simulation results are presented in Section 4.5.

Results presented in this chapter were published in [6, 7, 8].

4.2 Coding for MIMO OFDM: diversity and

rate

The concept of diversity originates in SIMO systems: for a non-dispersive
channel, the received signal is written

y = hx + n (4.1)

where x is the transmitted scalar symbol, and the channel is represented by

h ,




h1
...

hNr


 . (4.2)

Under the assumption that h is perfectly known to the receiver, maximum-
ratio combining (MRC) of the Nr received signals yields

z =
1

|hTh|
hTy = x +

1

Nt

� T
Nr

n (4.3)

Let us consider the AWGN case, where h = 1√
Nr

1Nr
, and the noise on all

channels is Gaussian i.i.d., i.e. n ∼ CN (0, σ2
nI). Assuming |x| = 1, the

Signal-to-Noise Ratio (SNR) of a SISO system operating in the same condi-
tions is ρ , 1

σ2
n
. The SNR at the output of the MRC is

ρ′ ,

∣∣hTh
∣∣2

En

[∣∣hTn
∣∣2
] =

Nr

σ2
n

. (4.4)
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The effective SNR gain in the case of receive diversity is therefore ρ′/ρ = Nr.
In the more involved case of coded transmission over a fading channel, the
channel is a random variable {H}, and therefore so is the instantaneous ca-
pacity C(H). It can be shown [29, 30, 31] that for a given code of rate
R, and for a given SNR, diversity decreases the channel outage probability
P (C(H) < R). This is the “channel hardening” effect described by Hochwald
et al. in [27]. From a slightly different point of view, in the limit of infinite
diversity, any fading channel can be transformed into an AWGN channel [32].

Among the different forms of diversity, let us differentiate space, time,
and delay diversity.

Space diversity is obtained by utilizing several antennas. A rough as-
sumption is that if the multipath environment is sufficiently rich, an antenna
separation of the order of the wavelength is sufficient to create wireless chan-
nels with statistically uncorrelated impulse response realizations.

Time diversity is based on the observation that, for moving settings, the
channel changes over time. However, exploiting time diversity can require
very long code lengths.

Delay diversity consists in exploiting the taps in the channel impulse
response, since their gains, determined by different signal paths over the
air, fade independently. It has been shown in [33] that frequency diversity in
OFDM-coded systems is the counterpart of multipath diversity for wideband
systems. Time-diversity corresponds to the variable t in eq. (2.4), whereas
multipath (or frequency) diversity corresponds to τ .

Channel codes that exploit the space and time diversity of the MIMO
wireless channel are known as Space-Time Codes (STCs). A large number of
early works on MIMO communications have focused on the Space-Time Cod-
ing problem, and many extensions to the OFDM case were proposed later
(they are known as Space-Time-Frequency Codes, STFCs). The V-BLAST
[3] STC, which consists in the transmission of independent symbols on all
antennas in parallel, was instrumental in the realization that the degrees of
liberty in the channel could be used not only to decrease the probability of
error in the transmitted symbols, but also to transmit more data in parallel.
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These two notions are respectively formalized as diversity gain and multi-
plexing gain. The various forms (space, time, multipath) of diversity are
essentially different sources of a common resource: if one considers the chan-
nel representation as a random variable, the amount of independent sources
of randomness involved in the description of the channel equals the dimen-
sionality of the vector space spanned by the channel realizations. Zheng and
Tse later showed [34] that any modulation scheme essentially taps this “pool”
of channel diversity and use it either towards channel hardening, or towards
multiplexing, the trade-off between these two uses being precisely quantified.
They define the multiplexing gain r as

r , lim
SNR→+∞

R

log SNR
, (4.5)

and the diversity gain is the asymptotic slope of the (log-log) error probability
curve, formally

d , − lim
SNR→+∞

log Pe(SNR)

log SNR
. (4.6)

The optimal trade-off curve for a flat-fading channel is given by

d∗(k) = (Nt − k)(Nr − k), k = 0 . . . min{Nt, Nr}. (4.7)

Medles [35, 36] has shown that a similar expression, taking into account the
delay diversity, exists for frequency-selective channels. In this case, assuming
that all L taps in the impulse response have non-zero variance, the optimal
trade-off becomes

d∗(k) = (Lq − k)(p − k), k = 0 . . . p. (4.8)

where p , min{Nt, Nr} and q , max{Nt, Nr}.

In this chapter, we introduce a family of codes designed for MIMO OFDM
channels, based on the concatenation of a binary channel code and LCP, that
we denote by Space-Time-Frequency Spreading (STFS). STFS was developed
to provide the maximum diversity available from the channel, while remain-
ing within reasonable complexity bounds. For this reason, we only explore
maximum-diversity solutions with non SNR-adaptive codes. (they have a
constant rate R, therefore the multiplexing gain is r = 0, and we can seek to
exploit the maximum diversity gain d∗(0) = NtNrL).
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4.2.1 Space-Time-Frequency Coding

Linear Space-Time Block Codes (LSTBCs) designates a class of channel codes
where the consecutive signals transmitted by the antennas are defined block-
by-block by a linear transformation of a set of constellation symbols. Among
them, orthogonal codes are remarkable in that they only require a simple
Maximum Ratio Combining (MRC) operation at the receiver to achieve ML
decoding. Alamouti’s elegant solution [37] to the 2 Tx antennas case is an
example of orthogonal code. Tarokh et al. have shown in [38] that single-rate
(1 constellation symbol per channel access) orthogonal codes only exist for
Nt = 2. For a greater number of transmit antennas, simpler coding-decoding
will always be done at the expense of the code rate.

In the case of OFDM modulations, the channel is split into multiple flat-
fading subbands. Trellis codes adapted to this case were proposed [39], as
well as multicarrier extensions of the Alamouti technique [40]. However, sim-
ple transposition of the Alamouti scheme into the frequency space fails to
exploit the full diversity [41]. In order to leverage the frequency diversity
of the channel, it is necessary to code jointly over the frequency domain.
However, the number N of subbands in OFDM systems is typically higher
than the actual channel delay diversity [42], which means that the number of
coefficients needed to represent the OFDM channel state (NtNrN) is higher
than the actual diversity available (NtNrL). This is because the channel
coefficients in the OFDM representation are not independent.

Our method uses groups of frequencies that form a partition of the spec-
trum. Inside each group, the diversity is exploited by linear precoding. We
present a stream-based coding scheme, along the lines of the threaded scheme
proposed by El Gamal in [43]. In this approach, each stream is separately
encoded by a binary code, mapped onto a complex constellation, and then
spread over the OFDM tones so that it is not self-interfering. Iterative decod-
ing with streams-based interference cancellation is proposed. The subcarrier
allocation that we propose is similar to the one in [44], although our method
goes further into exploiting the space diversity using LCP.
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4.3 Encoding Scheme Description

Let us now describe the proposed coding scheme, based on the concatenation
of a linear precoder and a binary code, that exploits all the available spa-
tial and frequency diversity with reasonable decoding complexity constraints.

We designed the encoding scheme using the following assumptions:

• Space and frequency diversities are exploited through LCP: constella-
tion symbols are grouped into vectors that are linearly coded with a
square matrix Q (more details on the definition of Q will follow), and
interspersed over the available antennas and frequencies.

• An outer binary code (such as a convolutive code) provides for extra
coding gain

• The potentially huge decoding complexity of the linear code is allevi-
ated by splitting the data into several groups, or streams. This eases the
requirements on the decoder, since this independence enables iterative
streams-based interference cancellation.

• In order to avoid error propagation in the iterative interference cancel-
lation, streams shall not be self-interfering.

• Each stream must take advantage of all the available diversity, i.e. the
size of the precoder Q is at least the diversity characteristic of the
channel.

This is achieved by a frequency (or tone) allocation scheme that maps dif-
ferent streams to all Tx antennas over each frequency subband, thus ensuring
that the transmitted signal is spatially white. For this reason, the number of
streams must be greater or equal to Nt. Since using more streams increases
the complexity without added benefit, we will work under the assumption
that there are Nt streams.

Channel model In this chapter, we assume a block-fading channel, one
block being equivalent to an OFDM symbol. Therefore, the ICI described
in Chapter 3 is not considered here, and the OFDM modulation turns the
channel into a set of parallel MIMO AWGN flat-fading channels. Let us
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denote the channel experienced by OFDM symbol j by a Nr × Nt matrix of
complex coefficients for each frequency subband p ∈ J1, P K,

Hj,p =




hj,1,1,p . . . hj,1,Nt,p
...

. . .
...

hj,Nr,1,p . . . hj,Nr,Nt,p


 . (4.9)

Let Sj,m = [sj,1,m, . . . , sj,P,m]T denote the the frequency-domain representa-
tion of the OFDM symbol transmitted over antenna m during OFDM symbol
j. The input/output relationship of the channel in each subband p ∈ J1, NK
of OFDM symbol j is

y
j,p

= Hj,p




sj,p,1
...

sj,p,Nt


+ kj,p (4.10)

where kj,p ∼ CN (0, σ2
nI). Furthermore, due to the orthonormality of the

DFT, the noise can be assumed independent among subbands.
Let us consider J channel realizations, which we will assume independent,

and define the block-diagonal channel matrices Hj and H, corresponding re-
spectively to the jth OFDM symbol, and to all J considered OFDM symbols:

Hj ,




Hj,0 0
. . .

0 Hj,p


 , H ,




H0 0
. . .

0 HJ−1


 . (4.11)

We assume that the channel coefficients are spatially and temporally uncor-
related (temporal decorrelation can always be achieved by interleaving with
a sufficient delay, whereas spatial decorrelation is a function of antenna spac-
ing). Channel coefficients can be correlated between frequencies for a single
Tx-Rx antenna pair. Therefore, all non-zero coefficients in the block-diagonal
matrix H are independent. These assumptions can be summarized as

∀(p1, p2), (t1,m1, n1) 6= (t2,m2, n2) ⇒ E [ht1,n1,m1,p1ht2,n2,m2,p2

∗] = 0
(4.12)

We also assume that the channel frequency diversity is at least L. In other
words, frequencies taken N/L tones apart or more are assumed totally un-
correlated. (This measure is the frequency-domain equivalent of the channel
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Figure 4.1: Initial stream separation

delay spread - see [33]).

∀(t,m, n), |p1 − p2| ≥ L ⇒ E [ht,n,m,p1ht,n,m,p2

∗] = 0. (4.13)

The noise samples are assumed to be white complex Gaussian, independent
and identically distributed over all frequencies.

4.3.1 Streams principle and tone assignment

The incoming data is split into Nt streams that are treated separately, as
represented in Fig. 4.1. Each stream is encoded using a binary (convolutional
or block) channel code, bit interleaved, mapped onto complex symbols, and

serial-to-parallel (S/P) converted to form NtL× 1 vectors a
(k)
t , k ∈ J1, NtK.

Inside each stream k, those are linearly precoded through multiplication by
a square matrix Q:

x
(k)
t = Qa

(k)
t (4.14)

Since Q is square, no redundancy is added at the linear precoding stage: we
denote this a full-rate precoder.

Every constellation symbol is spread by matrix Q over a set of NtL values,
that must be mapped onto particular tones and Tx antennas to form OFDM
symbols. They are interspersed in time, space and frequency to ensure that
the fading coefficients are as little correlated as possible. To this end, we
used the following criterions:

• all antennas must be used evenly by each symbol

• all frequencies must be used evenly by each symbol
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Due to the correlation between adjacent frequencies over the same antenna
pair, the spectrum need only be sampled L times on each Tx antenna for
every symbol. Conversely, since there is no spatial correlation, it makes sense
for every symbol to use all Nt Tx antennas.
Furthermore, the absence of self-interference constraint dictates that symbols
from the same stream can not be transmitted over the same frequency from
different Tx antennas.

This leads us to the design of a JNtN × JNtN permutation of all the
constellation symbols transmitted over J OFDM symbols: We assume that
N is an integer multiple of NtL: N = GNtL. Over this period of time, the
output of the linear precoders defined in (4.14) for all Nt streams is

x
(k)
jG+g ,

k ∈ J1, . . . , NtK,
g ∈ J0, . . . , G − 1K,
j ∈ J0, . . . , J − 1K.

(4.15)

Since each of those contains NtL values, a total of Nt
2JGL = JNtN complex

values are output. In our simulations, we used the permutation defined as
follows:

∀(l, i, f) ∈ J0, L − 1K × J1, NtK × J1, NK,

i + k − 1 + lGNt + gNt = eN + f ⇒ sj+e,f,i = x
(k)
jG+g,lNt+i, (4.16)

with e = 1 iff i+k−1+lGNt+gNt ≥ N and j 6= J−1 (when x
(k)
jG+g is split over

two consecutive OFDM symbols), and e = −(J−1) iff i+k−1+lGNt+gNt ≥
N and j = J − 1 (wrapping). An example of this tone allocation (not show-
ing the border effects) is pictured on Figure 4.2, for the case Nt = 4, L = 3,
J = 2.

The overall operation is a JNtN × JNtN permutation, and can be writ-
ten as a matrix W (with WHW = IJNtN). Let Wk denote the matrix
representing the spreading of the values from stream k, i.e. columns (k −
1)JN +1 . . . kJN of W. Let us gather all the a

(k)
t transmitted over J OFDM

symbols, and the corresponding received signals, in

A(k) ,




a
(k)
1
...

a
(k)
JG


 , a ,




A(1)

...
A(Nt)


 (4.17)
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and

Yj ,




y
j,1
...

y
j,N


 , Y ,




Y0

...
YJ−1


 . (4.18)

Using these notations, and with

Q = INtGJ ⊗ Q (4.19)

and the noise K , [k1,1 . . .kJ,N ]T , the signal received over J consecutive
OFDM symbols is

Y = HWQA + K. (4.20)

Figure 4.2: Streams-based tone assignment
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4.3.2 Choice of the linear precoding matrix

In the coding scheme exposed so far, the precoding matrix Q has still not
been precisely defined. We now derive some necessary conditions on Q, and
try to optimize it w.r.t. the noise and channel fading statistics, using consec-
utively an information-theoretic criterion, and a Pairwise Error Probability
(PEP) criterion that maximizes the diversity and the coding gain.

Mutual information criterion

We use an information-theoretic criterion to restrict our search to information-
lossless precoding matrices. For this analysis, let us assume that the trans-
mitted symbols a

(k)
t are circularly symmetric, Gaussian random variables, of

variance σ2
a. Although this is only an approximation of the (usually discrete)

constellations used in digital communications, outage capacity appears to
give a reasonable estimate of the achievable Packet Error Rate (PER) of a
Bit-Interleaved Coded Modulation (BICM) code [12, 13].

Assuming perfect channel knowledge, the mutual information between A
and Y is

I (A;Y) = H (Y) − H (Y|A) = H (Y) − H (K) (4.21)

Using equation (4.20), and assuming that the noise samples in K and the
symbols in A are independent circularly symmetric, Gaussian random vari-
ables, the mutual information becomes [2]:

I (A;Y) =log det
(
πe EY

[
YYH

])
− log det

(
πe EK

[
KKH

])
(4.22)

= −log det (πe IJNrN) + log det (πe (IJNrN (4.23)

+ρHW (INtGJ ⊗ Q) (INtGJ ⊗ Q)H WHHH)
)

= log det (( IJNrN + ρHW
(
INtGJ ⊗ QQH

)
WHHH)

)
(4.24)

where ρ ,
σ2

a

σ2
n

is the receive SNR. Since the channel capacity is known to be

C = log det
(
IJNrP + ρHHH

)
, (4.25)

and since WWH = IJNtP by definition of a permutation, comparing (4.24)
and (4.25) shows that choosing Q among unitary matrices (such that QQH =
ILNt

) ensures that there is no capacity loss at the linear precoding stage
(I (A;Y) = C).
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Diversity criterion

Let us consider a single error event at the linear processing stage, focusing
on one particular symbol (a

(k)
jG+g, with j, k and g fixed): the decoded vector

a′(k)
jG+g differs from the transmitted one a

(k)
jG+g only in the u-th coefficient,

u ∈ J1, NtLK

e , a
(k)
jG+g − a′(k)

jG+g = (0, . . . 0, eu, 0, . . . 0)
T (4.26)

where eu 6= 0 is any difference between two complex symbols of the constel-
lation.

With j, k and g fixed, equation (4.16) shows that the values in x
(k)
jG+g

are affected to NtL different tones, on one and only one Tx antenna for
every tone involved. Let {p1 . . . pNtL}, {i1 . . . iNtL} and {j1 . . . jNtL} denote
respectively the tone number, antenna number and OFDM symbol number
corresponding to the NtL elements in x

(k)
jG+g, and let us form a vector that

gathers the LNtNr channel coefficients actually involved in its transmission:

cj,k,g ,
(
hj1,1,i1,p1 . . . hj1,Nr,i1,p1 , . . . , hjLNt

,1,iLNt
,pLNt

. . . hjLNt
,Nr,iLNt

,pLNt

)T
.

(4.27)
Similarly, at the receiver,

u
(k)
jG+g ,

(
yj,p1,1 . . . yj,p1,Nr

, . . . , yj,pLNt
,1 . . . yj,pLNt

,Nr

)T
. (4.28)

The received signals corresponding to the transmission of a
(k)
jG+g can be writ-

ten as
u

(k)
jG+g =

(
diag(Qa

(k)
jG+g) ⊗ INr

)
cj,k,g, (4.29)

and therefore

u
(k)
jG+g − u′(k)

jG+g =
(
diag

(
Q(a

(k)
jG+g − a′(k)

jG+g)
)
⊗ INr

)
cj,k,g (4.30)

which lets us write the the squared Euclidean distance between the received
samples as

d2
(
u

(k)
jG+g,u

′(k)
jG+g

)
,

(
u

(k)
jG+g − u′(k)

jG+g

)H (
u

(k)
jG+g − u′(k)

jG+g

)
(4.31)

= cH
j,k,g

(
diag(Qe)H ⊗ IH

Nr

) (
diag(Qe) ⊗ INr

)
cj,k,g (4.32)

= cH
j,k,g

( (
diag(Qe)Hdiag(Qe)

)
⊗ INr

)
cj,k,g (4.33)
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The Euclidean distance between symbols is instrumental in bounding the
symbol error probability, since

P (ak → a′
k) ≤ exp

(
−d2

(
u

(k)
jG+g,u

′(k)
jG+g

)
ρ
)

. (4.34)

Tarokh has shown [45, 46] that if the channel coefficients cj,k,g are com-
plex, zero-mean, independent Gaussian random variables (i.e. the channel is
Rayleigh-fading), the symbol error probability is bounded by

P (ak → a′
k) ≤

(
r∏

i=1

λi

)−Nr

(Es/4N0)
−rNr (4.35)

where λ1 . . . λr are the non-zero eigenvalues of
(
diag(Qe)Hdiag(Qe)

)
. Note

that each λi, i = 1 . . . r is an eigenvalue of
(
diag(Qe)Hdiag(Qe)

)
⊗ INr

with
multiplicity Nr (see equation (4.33)), since receive diversity is always present,
irrelevant of the coding scheme. This explains the constant multiplier Nr in
the exponent of (4.35).

Therefore, the rank of (diag(Qe)Hdiag(Qe)) determines the diversity ad-
vantage of this coding scheme. Since this is a diagonal matrix, it is full-
rank (r = NtL) iff none of its diagonal elements (the squared amplitudes
of the elements of Qe) is zero. For a given symbol error at position u
(e = (0, . . . 0, eu, 0, . . . 0)

T ), this is equivalent to

∀i ∈ J1, NtLK, qi,u , [Q]i,u 6= 0. (4.36)

Since this must be true for all possible symbol errors, and therefore all pos-
sible e, this yields

∀(i, u) ∈ J1, NtLK2, qi,u 6= 0. (4.37)

This is the first condition: In order to achieve full diversity, Q must con-
tain no zero. In the sequel, we will assume that this condition is fulfilled.

Coding gain criterion

Once the maximum transmit diversity NtL is achieved, the coding gain (as
defined by Tarokh, this denotes the product in the right-hand side of equa-
tion (4.35)) must be maximized. Therefore, we seek to maximize

min
u,eu

det
(
diag(Qe)Hdiag(Qe)

)
, (4.38)
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or, equivalently if we assume that the errors eu have constant modulus, max-
imize

min
u∈J1,NtLK

NtL∏

i=1

qi,uq
∗
i,u (4.39)

under the energy constraint

∀n,

NtL∑

i=1

qi,nq∗i,n = 1. (4.40)

The Lagrange multipliers method yields

∀(n, i), |qi,n| =
1√
NtL

. (4.41)

A satisfactory solution with respect to all three criterions (maximizing mu-
tual information, diversity, and coding gain) is the Vandermonde matrix

Q =
1√
NtL




1 θ1 . . . θNtL−1
1

1 θ2 . . . θNtL−1
2

...
...

...
1 θNtL . . . θNtL−1

N


 (4.42)

where θk = e
j π

NtL
(1+2k)

, k ∈ J1, NtLK. This matrix was used in the simulations
presented hereinafter.

4.4 Decoding

The streams-based structure of the code mandates the use of iterative decod-
ing to cancel inter-streams interference. This can take several forms: either
subtract the interference corresponding to the signals estimated at the pre-
vious stage, or use soft information throughout the process. In the first case,
the interference is linearly subtracted to the received signal. The constella-
tion symbols are subsequently separated by an LMMSE filter, and demapped
independently, as exposed in Section 4.4.1. The alternative method, using
soft-information at all stages of the iterative process, consists in computing
the posterior probabilities of the constellation bits, given a priori informa-
tion on some of the bits, and the received symbol. Due to its complexity, this
solution has not been fully implemented, but is briefly analyzed in Section
4.4.2.
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4.4.1 Iterative interference cancellation decoding

Since several streams are superimposed in our transmission scheme, success-
ful decoding involves interference cancellation. In this section, we describe
a Parallel Interference Cancellation (PIC) iterative scheme. The decoding
process is done in two steps, similarly to the encoding operations: the linear
precoding and spreading operations are undone using linear minimum mean-
square error (LMMSE) estimation, whereas the binary convolutive code is
decoded by a Viterbi decoder.

Recall the joint linear transformation of the signal by the linear precoder
and the channel (equation (4.20)). At the first iteration of the decoder, the
LMMSE estimate of the transmitted signal A is

Â1 = RAYR
−1
YYY (4.43)

where
RAY , EK

[
AYH

]
= QHWHHH (4.44)

and

RYY , EK

[
YYH

]
= HWQQHWHHH + σ2

KI = HHH + σ2
KI. (4.45)

Since H is block-diagonal, the biased version of the LMMSE estimator
can be decomposed into one Nt × Nr LMMSE per tone.

The streams are separated (Â1 =
[
Â

(1)
1

T
. . . Â

(Nt)
1

T
]
), de-mapped, de-

interleaved, and fed into Nt Viterbi decoders, which estimate the original
uncoded data d̂(k,0) separately for each stream k (see Figure 4.3). The inter-
stream interference is canceled through an iterative process: at iteration
i > 1, and for stream k, the estimated interference caused by other streams
is subtracted from the received signal:

Y
(k)
ICi = Y −

∑

k′ 6=k

HWk′ (IGJ ⊗ Q)
̂̂
A

(k′)

i−1, (4.46)

where
̂̂
A

(k′)

i−1 is obtained by re-mapping the binary data decoded at the pre-
vious iteration (i − 1) for stream k′.

After the first iteration, the LMMSE filter is modified to take into account
the cancellation of the interference: for stream k,

Â
(k)
i = (IGJ ⊗ Q)H WH

k HH
(
HWkW

H
k HH + σ2

KI
)−1

Y
(k)
ICi. (4.47)
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Figure 4.3: Iterative interference cancellation decoding

4.4.2 sIsO decoding advantages and limitations

The structure of the proposed code leaves many decoding possibilities: since
the constellation mapping and the LCP stage can be regarded as a form of
channel coding, the code itself is a concatenation of two codes. Therefore,
iterative decoding is possible, and can take several forms, due to the partic-
ular code structure.

The iterative interference cancellation scheme described in Section 4.4.1
uses hard-decision: the output of the Viterbi decoder are bits, no additional
information about the decision reliability is provided. However, as shown
by Müller et al. in [47], making hard decisions before the end of the de-
coding process is in general suboptimal. Information about the reliability
of the decision on each bit, or soft information, can be obtained by using
a soft-output decoder, based on a Sum-Product algorithm [48]. Obviously,
applying the turbo decoding principle [49] requires that both codes in the
concatenated scheme can be sIsO decoded [50]. This is not an issue for
the (outer) convolutive code, which can be sIsO-decoded by a Bahl-Cocke-
Jelinek-Raviv (BCJR) decoder [51], which is a particular instance of the
Sum-Product algorithm applicable to trellis codes. The inner code, however,
takes the form of a noisy linear combination of constellation symbols. Soft
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information about the original constellation symbols can be gathered if the
noise level is known. For instance, improvements to the Viterbi algorithm
have been proposed, such as the soft-output Viterbi algorithm (SOVA) [52].
However, SOVA does not exploit prior information, and therefore is not suit-
able for an iterative scheme. sIsO decoding of a noisy linear combination of
symbols, such as the one considered here, can be achieved by performing a
joint sIsO demapping over all the interfering symbols. Although this does
not constitute interference cancellation per se, it achieves a similar effect in
that prior information about the interfering signals is taken into account.
Such a sIsO demapper is described in Annex 4.A.

Therefore, although sIsO decoding can improve the performance of the
proposed Space-Time-Frequency Spreading scheme, preserving the soft in-
formation throughout the interference cancellation stage (even through soft-
demapping) requires a rather accurate knowledge of the noise level to be
expected for each symbol, which in our case must be varied according to
the linear (LMMSE) decoding stage. Various experiments with soft decoders
have shown that an average (over a complete frame) noise figure is not good
enough for sIsO decoding.

4.5 Simulation results

All the simulations were carried out using the unpunctured rate 1
2
, 64-states

convolutional code from the HiperLAN/2 standard [53]. The LCP stage
operates on a BPSK constellation.

# of antennas (Nt × Nr) 2 × 2 2 × 2 4 × 4 4 × 4
Constellation BPSK QPSK BPSK QPSK

# of OFDM symbols 8 4 4 2
Spectral efficiency 1 b/s/Hz 2 b/s/Hz 2 b/s/Hz 4 b/s/Hz

Table 4.1: Summary of the simulation parameters used in Section 4.5.

The number of uncoded data bits per stream per frame is kept constant
(at 384 bits) across all the simulations, by adapting the number of OFDM
symbols used in each frame. Since each frame is spread over several OFDM
symbols, we considered both a quasi-static channel (it does not change during
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Figure 4.4: Influence of the number of decoding iterations on the BER with
BPSK constellations.

a whole frame), and a fast-fading channel (in this case, the various OFDM
symbols in each frame are transmitted over independent channel realiza-
tions). Table 4.1 summarizes the various simulation parameters.

4.5.1 Influence of the number of decoder iterations

The number of necessary iterations to reach a steady state has been inves-
tigated, and the results are presented in Figures 4.4 and 4.5, respectively
for modulations using BPSK and QPSK constellations, for the case of quasi-
static 2 × 2 and 4 × 4 channels. The total channel diversity is 4NtNr (each
impulse response is comprised of four i.i.d. Gaussian random coefficients, and
are independent across antennas). The size of the linear precoder is 4Nt. The
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BER at the output of the Viterbi decoder is plotted after various numbers
of iterations of the decoding process (note that no interference cancellation
is performed at iteration 1).

Using a BPSK modulation (Figure 4.4), for both the 2 × 2 and 4 × 4
channels, the first interference cancellation step yields a significant drop in
BER. The decoder reaches its steady state at the third iteration, and further
executions yield no performance gain, the curves corresponding to the third
and fifth iterations being almost indistinguishable. Conversely, with QPSK
symbols, more iterations are necessary to reach an acceptable error rate:
Figure 4.5 shows that around 5 iterations are necessary to reach the steady-
state, again both for the 2 × 2 and 4 × 4 channels.

4.5.2 Comparison to other coding schemes

Figure 4.6 compares the performance of the proposed streams approach to
El Gamal’s Threaded Space-Time Code (TSTC) approach [43] over the pre-
viously described channel. The TSTC approach is similar to STFS in that
various, separately encoded streams of data are transmitted from different
Tx antennas, the streams being rotated across the antennas. It is equiva-
lent to the STFS method except that Q is replaced by an identity matrix.
The curves show that SFTS consistently outperforms the TSTC approach
by about 1dB for frame error rates of 10−3, for both the quasi-static and
fast-fading channels.

Figures 4.7 and 4.8 compare the STFS approach to a Natural Space-
Time Code (NSTC) [54] Bit-Interleaved Coded Modulation (BICM) using
a 64-state code of rate 1

2
over a quasistatic BRAN A [55] channel. Con-

trarily to STFS and TSTC, the NSTC approach uses only a single binary
encoder. The coded bits are interleaved and separated into Nt groups, which
are independently mapped and transmitted from the Nt Tx antennas. For
BPSK constellations (Figure 4.7), STFS and NSTC-BICM have very similar
performance, as evidenced by the almost identical curves. With QPSK con-
stellations (Figure 4.8), the BICM approach remains more efficient, with a
1dB advantage in terms of Eb/N0 w.r.t. STFS.
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Figure 4.6: Comparison of STFS with TSTC, for BPSK modulations.
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channel, for BPSK modulations.
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Figure 4.8: Comparison of STFS with BICM over a BRAN A quasistatic
channel, for QPSK modulations.
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4.6 Conclusion

In this chapter, we proposed a Space-Time-Frequency Spreading coding scheme
for MIMO OFDM systems, optimized to exploit the maximum space, fre-
quency and possibly time diversity present in the channel. This code is
easily adapted to an arbitrary number of Tx antennas. It was shown to be
particularly suitable for iterative PIC decoding, and, in the case of BPSK
modulation, to achieve the same performance as the BICM approach, using
only Viterbi decoders instead of BCJR.
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4.A Appendix: Soft-Demapper

In order to expose the principle of the soft demapper, let us consider the
transmission over an AWGN channel of a complex vector constellation symbol
a from the set of constellation symbols C. Assume that the cardinality of C

is 2C for some integer C, and let b1 . . . bC denote the binary representation
of the transmitted symbol. The received signal is

y = Ha + n, (4.48)

where n is i.i.d complex random Gaussian noise of variance σ2
n, and H is

a matrix representing the channel fading characteristics. Since the noise is
unknown, the received symbol y is related to the transmitted value through
its probability distribution

P(y|a) =
1

σn

√
2π

exp
− |y−Ha|2

2σ2
n (4.49)

(the channel H is assumed to be perfectly known, therefore we do not include
it in the probability notations). The probability that the transmitted bit bi

is zero, given the received signal y , is obtained by marginalizing over the
other bits:

P(bi = 0|y) =
∑

a/Bi[a]=0

P(a|y), (4.50)

where Bk[a] denotes the kth bit of the binary representation of a. Using
Bayes’ Law,

P(bi = 0|y) =
∑

a/Bi[a]=0

P(y|a)P(a)

P(y)
. (4.51)

For binary signals, the probability is commonly replaced by the equivalent
log-likelihood ratio (LLR)

LLR(bi|y) , log

(
P(bi = 1|y)

P(bi = 0|y)

)
(4.52)

= log

(∑
a/Bi[a]=1 P(y|a)P(a)

∑
a/Bi[a]=0 P(y|a)P(a)

)
(4.53)

Note that the a priori probability to observe the symbol a appears in eq. (4.53).
When dealing only with binary codes, no prior information on the transmit-
ted symbol is available at the demapping stage, and therefore all symbols
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are assumed equally likely (P(a) = 1/2C). However, in the case of linear
precoding with several interfering streams, inter-stream interference cancel-
lation is necessary. In this case, if other streams have already been decoded,
some prior information about the interfering signals (i.e bits bj, j 6= i) is
available, and can be used at the demapping stage: assuming that the bis
can be considered independent, let us rewrite the a priori probability of a as

Pa(a) =
∏

k=1...C

Pa(bk = Bk[a]), (4.54)

The independence lets us marginalize over the bj, j 6= i, which yields

LLR(bi|y) = log

(
Pa(bi = 1)

Pa(bi = 0)

)

+ log




∑
a/bi[a]=1 P(y|a)

∏
k=1...C,

k 6=i
Pa(bk = Bk[a])

∑
a/bi[a]=0 P(y|a)

∏
k=1...C,

k 6=i
Pa(bk = Bk[a])


 (4.55)

Letting LLRa(bi) , log
(

Pa(bi=1)
Pa(bi=0)

)
denote the a priori LLR of bi, and since

Pa(bk = 1) = exp(LLRa(bk))
1+exp(LLRa(bk))

and Pa(bk = 0) = 1
1+exp(LLRa(bk))

, equation (4.55)
becomes

LLR(bi|y) =

LLRa(bi) + log




∑
a/bi[a]=1 P(y|a)

∏
k=1...C,

k 6=i,
Bk[a]=1

exp(LLRa(bk))

∏
k=1...C,

k 6=i

1+exp(LLRa(bk))

∑
a/bi[a]=0 P(y|a)

∏
k=1...C,

k 6=i,
Bk[a]=1

exp(LLRa(bk))

∏
k=1...C,

k 6=i

1+exp(LLRa(bk))




(4.56)

= LLRa(bi) + log




∑
a/bi[a]=1 P(y|a)

∏
k=1...C,

k 6=i,
Bk[a]=1

exp(LLRa(bk))

∑
a/bi[a]=0 P(y|a)

∏
k=1...C,

k 6=i,
Bk[a]=1

exp(LLRa(bk))


 (4.57)

This describes a sIsO demapper, whereby prior information about the in-
terference can be exploited. Note that the logarithm does not contain any
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reference to LLRa(bi): this part is denoted the extrinsic a posteriori informa-
tion. A similar soft-demapper was proposed by ten Brink in [56]. However,
we use it in place of interference canceler, whereas in [56] it is used to improve
the decoding of a single convolutive code.

The complexity of soft-demapping makes it a prohibitively complex IC
scheme (note that the sums in (4.57) enumerate all possible constellation
symbols, and therefore have the same complexity as an ML decoder – al-
though the approximation proposed by Vikalo and Hassibi in [57], along the
lines of the Sphere Decoder [58], can somewhat reduce this complexity). How-
ever, note that the ML decoder is only optimal in the case of no available
prior information, whereas a soft-demapping scheme can exploit the prior
knowledge provided by iterative decoding.
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Part II

MIMO Channel modeling and
CSIT
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Chapter 5

CSIT and calibration issues in
MIMO systems

In this chapter, we consider the use of perfect and degraded channel state
information by the transmitter, when the (mutual information-maximizing)
eigenwaterfilling method is used. We investigate the possible discrepancies
between the actual propagation channel and the available CSIT, in particular
the phase and amplitude perturbations due to the RF components, as well as
the issues associated with their absolute calibration.
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5.1 Introduction

Knowledge of the channel state by the transmitter of a communications sys-
tem has been demonstrated to be beneficial to wireless communications.
Various methods have been proposed to shape the transmitted signal ac-
cording to the channel state information (CSI) available at the transmitter
[21], for both single-antenna and multiple-antenna settings. A wide vari-
ety of methods are available for this, ranging from simple power control to
frequency-domain or eigendomain signal shaping [59] to time-reversal meth-
ods [60] aiming at reducing the channel delay spread. All these methods
utilize CSI, and getting reliable CSI at the transmitter where it is needed
has proved to be an issue.

The methods available to gather CSI at the transmitter (CSIT) can be
classified into two categories, relying either on feedback or on reciprocity.
In the feedback scheme, the channel is estimated on one side of the link,
and is fed back to the other side, sharing the bandwidth resource with the
data. For simple channels, this method has been successfully applied, power
control being one particular instance of a feedback scheme. However, for
more complex channels such as MIMO frequency-selective channels, full CSI
is constituted of multiple impulse responses corresponding to each transmit
(Tx)-receive (Rx) antenna pair, and thus the amount of bandwidth consumed
by the feedback link can become prohibitive, in particular for channels with
relatively small coherence time such as those encountered in wireless commu-
nications, where the CSI has to be updated often. A wide class of proposed
solutions to the problem of large feedback throughput is to use a suboptimal
shaping at the transmitter, that only makes use of part of the CSI. Covari-
ance feedback [61], SNR-based Tx antenna selection [62], and Partial Phase
Combining [63] for instance, are different instances of partial CSIT schemes.
Of course, none of the partial CSIT schemes achieve the performance of
full CSIT. Furthermore, quantization and latency issues in feedback schemes
must be well understood (see e.g. [64]).

The other avenue for the transmitter to gain knowledge of the channel
state is to make use of reciprocity. The reciprocity principle is based on
the property that electromagnetic waves traveling in both directions will un-
dergo the same physical perturbations (i.e. reflection, refraction, diffraction,
etc. . . ). Therefore, in Time-Division Duplex (TDD) systems where the link
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operates on the same frequency band in both directions, the impulse response
of the channel observed between any two antennas should be the same re-
gardless of the direction. Application of the reciprocity principle lifts the
requirement for a continuous feedback of the channel estimates while still
allowing to make use of CSIT in order to optimize the transmission. Specific
issues related to channel estimation through reciprocity will be covered in
detail in Chapter 6.

In this chapter, we study the issues of inaccurate channel knowledge at
the transmitter and improper calibration in the exploitation of channel in-
formation by the transmitter. The mutual information criterion was studied,
since it is particularly suitable to separate the effects of transmitter and re-
ceiver calibration. Although the mutual information metric does not take
channel coding into account, and therefore might seem far away from the
actual system performance evaluation, it should be noted that, in the case of
quasi-static fading channels, the channel outage probability provides an up-
per bound to the frame error rate achievable by any code. In some simulated
cases [13], the spectral efficiency of a coded system operating at a FER of
10−2 has been seen to reach 80% of the 10−2 outage capacity of the channel.

5.2 Eigenwaterfilling with perfect CSIT

Let us consider the classical flat-fading AWGN MIMO channel introduced in
Section 2.3. It is represented by

y
k

= Hxk + nk. (5.1)

With Gaussian input, the mutual information can be written as a function
of the channel input covariance D , Ex

[
xxH

]
(the Gaussian circularly sym-

metric input distribution itself maximizes the mutual information for a given
D):

I
(
x;y

)
= log det

(
I +

1

N0

HDHH

)
. (5.2)

If H is perfectly known by the transmitter, the following so-called eigen-
waterfilling method yields the optimal D(H): let H = USVH denote the
singular value decomposition (SVD) of the channel matrix. U (resp. V) is
a unitary Nr × Nr (resp. Nt × Nt) matrix, containing the left (resp. right)
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singular vectors of H. S is an Nr × Nt diagonal matrix containing the sin-
gular values, which we will denote by si, in non-increasing order (si ≥ si+1).
Let K denote the number of non-zero singular values of H.

The optimal input covariance matrix is given by D(H) = VΓVH where
Γ = diag(γ1, . . . , γNt

) has diagonal elements given by

γi =

{ [
ξ − N0

s2
i

]
+

if i = 1 . . . K

0 if i > K
(5.3)

where ξ is a Lagrange multiplier set to satisfy the power constraint, i.e., it is
the solution of the equation

tr (D) =
K∑

i=1

γi = γ. (5.4)

This is called an eigenwaterfilling method since the squared singular values
s2

i constitute the eigenvalues of HHH . The mutual information achieved by
this scheme is therefore

CWTF , log det

(
I +

1

N0

HD(H)HH

)
(5.5)

= log det

(
I +

1

N0

SΓSH

)
(5.6)

=

i0∑

i=1

log

(
s2

i ξ

N0

)
(5.7)

where we first used the identity det (AB) = det (BA) with A = U and
B = UH + 1

N0
SVHVΓVHVSHUH , and the fact that U is unitary, and the di-

agonal structure of the resulting matrix inside the determinant. The number
of used eigenmodes i0 is determined by

i0 = arg min
j=1...K

1

j

(
γ + N0

j∑

i=1

1

s2
i

)
. (5.8)

(see proof in Appendix 5.A).
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The eigenwaterfilling method can be generalized to the frequency-selective
case, using the principle of OFDM transmission: assuming that the frequency-
selective channel is comprised of a finite number of resolvable paths, it
can be split into N subbands that become individually frequency-flat when
N → +∞. For large but finite values of N , the waterfilling algorithm can be
applied jointly over the singular values corresponding to all the subbands, in
order to determine an input signal distribution matching the channel char-
acteristics both in space and frequency (indeed, a waterfilling approach was
suggested by Shannon as soon as 1949 [4] to distribute the power over the
frequencies of a SISO frequency-flat channel having a non-flat noise spec-
trum).

In general, the joint distribution of the singular values over all frequency
bands is not equal to the product of the (per-subband) marginal distribu-
tions. However, for the sake of simplicity, we will consider only frequency-flat
channels in the sequel, where a qualitative analysis of various (perfect and im-
perfect) CSIT situations is proposed. First, we show in the next section that
the advantage of CSIT over the CSIR-only situation vanishes as high SNR.
Then, in Section 5.3, we evaluate the impact of imperfect channel knowledge
and imperfect calibration on eigenbeamforming.

5.2.1 Asymptotic (high SNR) behaviour

First, let us rewrite the mutual information in the CSIR case – see equa-
tion (2.17) – in terms of the channel singular values:

CI = log det

(
I +

1

N0

USVHVSHUH

)
(5.9)

= log det

(
UHU +

1

N0

SSH

)
(5.10)

=
K∑

i=1

log

(
1 +

s2
i

N0

)
. (5.11)

It is obvious from equation (5.8) that for asymptotically small N0, i0 =
K. Note also that γ = tr (I) = Nt, in order to impose the same power
constraint in both cases. The difference between the waterfilling capacity
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and the capacity without channel knowledge is

CWTF − CI =
K∑

i=1

log

(
s2

i ξK

N0

)
− log

(
1 +

s2
i

N0

)
(5.12)

=
K∑

i=1

log

(
s2

i ξK

N0 + s2
i

)
. (5.13)

Since limN0→0 ξK = γ
K

, we obtain

lim
N0→0

CWTF − CI =
K∑

i=1

log
( γ

K

)
(5.14)

= K log

(
Nt

K

)
. (5.15)

Note that for the commonly used model where the components of H are ran-
dom Gaussian i.i.d. variables, K = min(Nt, Nr) with probability 1. There-
fore, we need to distinguish two cases:

• if Nr ≥ Nt, K = Nt, and limN0→0 CWTF − CI = 0.

• if Nr < Nt, K = Nr, and limN0→0 CWTF−CI = Nr log
(

Nt

Nr

)
. Intuitively,

this gain corresponds to the amount of energy saved by the transmitter
not transmitting in the subspace that the receiver does not “see”.

Furthermore, since the increase in mutual information due to CSIT (5.15)
tends to a constant at high SNR, while limN0→0 CI = +∞, the use of CSIT
represents a vanishing mutual information gain at high SNR.

This phenomenon is evidenced by the simulation results of Figure 5.1.
The Cumulative Distribution Function (CDF) of the mutual information of
a (Nt = 4, Nr = 5) channel has been evaluated through Monte-Carlo sim-
ulations for various SNRs, for both the cases of perfect CSIT (using the
optimal eigenwaterfilling), and no CSIT. At -10dB SNR, CSIT provides an
almost twofold increase in mutual information over spatially white transmis-
sion, with the 10−2 outage capacity going from .26 (no CSIT) to .46 (perfect
CSIT).
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Figure 5.1: Mutual information CDF for perfect CSIT and no CSIT situa-
tions at various SNRs.
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5.3 Imperfect CSIT

In this section, we tackle the issue of imperfect (noisy) CSIT, and the possible
perturbation of CSIT by calibration problems. Although the imperfect CSIR
has been treated by Médard, in terms of the reduction of mutual information
in [65], and by Hassibi and Hochwald in [66] for the case of a separate training
and data transmission phase, a symmetric analysis of the case of imperfect
CSIT is missing. Although no analytical results are known to date, we try
in this section to draw some conclusions based on simulations results.

The impairments to CSIT can be broadly classified into two categories,
namely estimation noise and calibration issues, which need to be addressed
separately.

5.3.1 Additive channel estimation noise

In most practical cases, the channel matrix is not known perfectly, but rather
must be estimated. Dedicated pilot signals consume part of the total energy
allowed to the transmission, and thus must be kept to a minimum. Also,
in the specific case of CSIT through channel feedback, where the channel
estimate is transmitted back from the receiver (where it can be reliably es-
timated) to the transmitter (where it can be put to some use), and the dis-
cretization that this feedback link implies, also adds to the uncertainty on H.

Therefore, let us study the influence of using a noisy channel estimate Ĥ
instead of the true H in the waterfilling algorithm of Section 5.2. Specifically,
we model the coefficients of the error E , Ĥ−H as Gaussian i.i.d. random
variables of the same variance σ2

e . The mutual information of the system
adapting the transmit covariance to Ĥ whereas the actual channel is H is

Cn , log det

(
I +

1

N0

HD(Ĥ)HH

)
, (5.16)

The waterfilling algorithm now operates on the singular values of Ĥ. Let us
write its SVD as Ĥ = U′S′V′H . Assuming that the transmitter applies the
eigenwaterfilling method to the noisy channel estimate, D(Ĥ) = V′Γ′V′H

where Γ′ has diagonal elements obtained by waterfilling over the diagonal
elements of S′. Unfortunately, this perturbation is hard to analyze, since the
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Figure 5.2: Mutual information CDF for perfect, noisy and no CSIT situa-
tions, SNR = -5dB, channel estimate SNR = 5dB.

mutual information

Cn = log det

(
I +

1

N0

USVHV′Γ′V′HVSHUH

)
(5.17)

= log det

(
I +

1

N0

SVHV′Γ′V′HVSH

)
(5.18)

is perturbed in two places: first, the singular subspaces are not exactly known
(VHV′ 6= I), and the perturbation on the singular values of S (since S′ 6= S)
passes through the nonlinear effects of the waterfilling method.

Therefore, we resorted to simulation to evaluate the impact of additive
noise on CSIT. The mutual information CDF curves of Figure 5.2 have been
obtained for 5 × 3 and 3 × 5 antennas systems, for channel estimate SNRs
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(defined as SNRH ,
EH[||H||2F ]

σ2
eNtNr

, || · ||F denoting the Frobenius norm) of +5dB

and -5dB. The signal SNR ( 1
N0

) is set to 5dB for all curves. For the 3 × 5
system, increasing the channel estimation noise level clearly decreases the
mutual information, down to the point where there is no difference between
CSIT and the absence thereof. In the 5 × 3 case, the influence of additive
channel estimation noise is even worse, the achieved mutual information in
the case of very noisy channel estimate (SNRH = −5dB) is lower than what
is achieved with a spatially white transmission.

5.3.2 Convolutive channel impairments

Convolutive impairments can result from discrepancies in the behaviour of
the electronic circuitry associated with different antennas. For instance, sig-
nals that are transmitted in-phase in the signal domain can yield out-of-phase
electromagnetic signals, because the RF components forming the radio ways
introduce slightly different delays. This behaviour is extremely difficult to
avoid in practice, since the error lies basically in the tolerance of the compo-
nents. Nevertheless, assuming that it can be accurately measured, it can be
compensated. This constitutes an absolute calibration. Note that in Chapter
6, we delve in more detail into the calibration issue.

Let us now study the effects on mutual information of these convolutive
perturbations, in the case where they are not (or not properly) compensated.
Let H(τ) denote the Nr×Nr MIMO impulse response of the channel (each one
of the NtNr elements is the impulse response of the channel between a pair of
Tx-Rx antennas), and Ĥ(τ) its estimate at the transmitter. The convolutive

model states that Ĥ(τ) is obtained from H(τ) by pre- and post-convolving it
with the impulse response of the RF Rx and Tx chains, respectively DR(τ)
and DT (τ), i.e.

Ĥ(τ) , DR(τ) ∗ H(τ) ∗ DT (τ) (5.19)

(the convolution takes place in the lag domain, for simplicity we consider
only a LTI channel and LTI filters here). DT (τ) and DR(τ) are respectively
Nt × Nt and Nr × Nr MIMO LTI filters. The diagonal coefficients represent
the gain of the RF chain for each way, and the off-diagonal coefficients model
the crosstalk between the radio ways. Ideally, DT (τ) = DT (τ) = δ0(τ)I, i.e.
there is no crosstalk and the gains are constant over all the frequency band
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and across antennas. In this case, Ĥ(τ) = H(τ).

Again, w.l.o.g., let us study the frequency-flat case, and replace the con-
volutions by matrix products: on each frequency band, Let us assume that
the channel can be described by

Ĥ = DRHDT , (5.20)

where H, Ĥ, DT and DR are matrices of scalar values. Let us now study
two models for the r.v.’s {DT} and {DR}.

Phase uncertainty

In this model, we assume that the crosstalk is negligible, and that the gain
is the same across all ways. Only the phase is random:

DT , diag(ejφT
1 , . . . , ejφT

Nt ), and DR , diag(ejφR
1 , . . . , ejφR

Nr ). (5.21)

We choose to model the angles φT
i and φR

j as i.i.d., either uniformly dis-

tributed over [0, 2π[, or as a deviation from zero ({φi} ∼ N
(
0, σ2

φ

)
). The

first case is more likely to occur naturally, whereas the zero-centered one
can be thought of as modeling an imperfect calibration device. Despite the
apparent symmetry of these perturbations, their effects are dissimilar: we
shall see this again by analyzing the mutual information achievable when
the transmitter has the knowledge of Ĥ. Again, let H = USVH denote the
SVD of the true channel matrix. Since per equation (5.21), DT and DR are
obviously unitary, so are DRU and DH

T V. Therefore, the SVD of the esti-

mated channel, as computed by the transmitter, is Ĥ = (DRU)S(VHDT ).
Therefore, eigenbeamforming yields the Tx covariance

D(Ĥ) = DH
T VΓVHDT , (5.22)

with Γ as defined in Section 5.2. The mutual information achieved by using
this precoding is therefore

Cn = log det

(
I +

1

N0

HDH
T VΓVHDTHH

)
(5.23)

= log det

(
I +

1

N0

SVHDH
T VΓVHDTVSH

)
(5.24)
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Compare this value to eq. (5.6): in general, due to the introduction of
DT , VHDTV and VHDH

T V are not identity matrices anymore. Note that
DR has no influence on Cn. Intuitively, this can be explained by consider-
ing that the whole eigenbeamforming process relies upon the fact that the
radio waves coming from different Tx antennas will interfere to yield the re-
ceived signal, and steers the beam so as to generate constructive interference.
Therefore, DT modifies the interference pattern, and affects the performance
of the eigenbeamforming method. Conversely, DR modifies the phase of the
received signal after the radio waves superposition, and therefore the inter-
ference pattern remains unaffected.

Phase and amplitude uncertainty

A more realistic model than the phase-only perturbation introduced in the
previous section is a model where the ways have slightly different gains: let
αT

1 . . . αT
Nt

and αR
1 . . . αR

Nr
denote respectively the real, positive gains associ-

ated to each antenna and its RF path. Our model becomes

DT , diag(αT
1 ejφT

1 , . . . , αT
Nt

ejφT
Nt ), andDR , diag(αR

1 ejφR
1 , . . . , αR

Nr
ejφR

Nr ).
(5.25)

where {αT
i } ∼ N (1, σ2

α). A similar model including a per-antenna gain and
phase uncertainty per Rx antenna was used in [67], where an algorithm to
estimate DR is proposed.

Again, it is expected that gain discrepancies on the Tx and Rx sides will
not produce similar effects: scaling the power of the transmitted signals by
arbitrary (per-antenna) coefficients will likely harm the constructive interfer-
ence process. An arbitrary scaling of the received signal will be compensated
by equalization at the receiver. Assuming that all the received noise comes
from interfering radio signals and not from thermal noise, the SNR would
remain the same.

Simulations corresponding to the two previous models are presented in
Figure 5.3, for a Nt = 5 and Nr = 3 system operating at a SNR of -5dB.
Alongside the already considered cases of no and perfect CSIT, four different
perturbations were applied to the knowledge of H:

1. Uniform angle perturbation: φT
i and φR

j are i.i.d. uniformly distributed
over [0, 2π[. This corresponds to the curve labeled Cn1 on Figure 5.3.
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Figure 5.3: Mutual information CDF of a 5 × 3 channel for various multi-
plicative CSIT perturbations, SNR = -5dB.



66 Chapter 5 CSIT and calibration issues in MIMO systems

2. Gaussian angle perturbation: φT
i and φR

j are i.i.d. distributed as
N (0, σφ = π/10). This corresponds to the curve labeled Cn2.

3. Gaussian gain perturbation: αT
1 . . . αT

Nt
and αR

1 . . . αR
Nr

are i.i.d. dis-
tributed as N (1, σα = 0.2). This is denoted by Cn3.

4. Gaussian angle and gain perturbation: angle N (0, σφ = π/10) and gain
N (1, σα = 0.2) perturbation. This is denoted by Cn4.

It is obvious from Figure 5.3 that the worst situation is the one with uniform
angle perturbation (Cn1). In particular, the outage capacity for low outage
probabilities is dramatically degraded, even w.r.t. the no-CSIT case: the 1%
outage Cn1 capacity lies at 0.21 nats, whereas the 1% outage CI is 0.42 nats.
For comparison, they are 0.90 for CWTF and 0.82 nats for Cn4.

The reasonable angle and amplitude perturbations of cases 2, 3 and 4 do
not seem to detrimental to the use of CSIT through eigenwaterfilling. We can
conclude that although the use of this method in an uncalibrated system is
bound to fail, this method is usable if some amount of calibration can bring
the discrepancies between Tx antennas back within a reasonable range.

5.4 Conclusion

We showed that transmitter calibration is a real issue if full channel knowl-
edge at the transmitter must be exploited (thereby mandating the use of
eigenwaterfilling methods), since discrepancies between the Tx RF chains
can modify the right singular subspaces of the channel. We studied the
possible perturbations (in angle and in amplitude), and their effect on the
maximum mutual information achievable over a given channel.

Finding bounds on the mutual information variations due to such pertur-
bations remains an interesting open problem, and combining the rich theories
of singular subspace perturbations [68] and random matrices [69] can prob-
ably yield interesting solutions to this question.

Another open issue lies with degraded CSIT. It arises in particular when
a feedback link is used to transmit CSIR back to the transmitter (to be
used to shape the downlink signal): this can be regarded as a source coding
problem, where the channel estimate at the receiver constitutes the source,
and the uplink channel constitutes a channel. Although some attempts have
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been made to address this issue (see e.g. [70] where the instantaneous Tx
covariance is fed back through its eigenvalues, or [71] where only the strongest
eigendirection is used), the situation is made difficult by the fact that various
partial CSIT schemes exist (ranging from simple power control to covariance
feedback [61] to the full CSI feedback considered in this chapter), and that
there is no uniform distortion metric on CSIT to unify them.
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5.A Appendix: Proof for equation (5.8)

Let us assume that i0 and ξ are the solutions that we seek to determine,
hence they verify equations (5.3) and (5.4). Let

ξj =
1

j

(
γ + N0

j∑

i=1

1

s2
i

)
, for j = 1 . . . K. (5.26)

It is obvious from equation (5.4) and the definition of i0 that ξ = ξi0 . We
prove equation (5.8) by showing that j 6= i0 ⇒ ξj ≥ ξi0 .

Combining (5.3) and (5.4) yields

i0∑

i=1

ξ − N0

s2
i

= γ (5.27)

and
j∑

i=1

ξj −
N0

s2
i

= γ. (5.28)

• if j > i0, subtracting (5.27) from (5.28) yields

i0(ξ − ξj) =

j∑

i0+1

(
ξj −

N0

s2
i

)
(5.29)

Since all the terms in the sum are negative by definition of i0, this
yields ξj ≥ ξ.

• similarly, if j < i0,

i0(ξj − ξ) =

i0∑

j+1

(
ξj −

N0

s2
i

)
(5.30)

all the terms in the sum being positive, we conclude that ξj ≥ ξ.
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Chapter 6

Practical exploitation of
channel reciprocity

A relative calibration method for a wireless TDD link is presented, which, af-
ter a calibration phase involving feedback, lets the transmitter acquire knowl-
edge of the downlink channel state from the uplink channel estimates, through
proper modeling and estimation of the RF circuitry impulse responses. Con-
trarily to previous methods, relative calibration does not require specific cal-
ibration hardware. Experimental results based on bidirectional channel mea-
surements are presented, and confirm the validity of the proposed linear reci-
procity model, and of the calibration approach.
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6.1 Introduction

One of the ways for the transmitter to gain knowledge of the channel state,
besides using feedback as explained in Chapter 5, is to make use of reciprocity.
The reciprocity principle is based on the property that electromagnetic waves
traveling in both directions will undergo the same physical perturbations (i.e.
reflection, refraction, diffraction, etc. . . ). Therefore, in Time-Division Du-
plex (TDD) systems where the link operates on the same frequency band in
both directions, the impulse response of the channel observed between any
two antennas should be the same regardless of the direction. Application of
the reciprocity principle lifts the requirement for a continuous feedback of
the channel estimates while still allowing to make use of CSIT in order to
optimize the transmission.

Despite these appealing characteristics, and the fact that the electromag-
netic foundations of the reciprocity principle, due to H. A. Lorentz, have
been known since 1896 and extensively explored (see for instance [72] and
references therein), applications in the field of wireless communications have
been scarce. This is due to the general understanding that the non-symmetric
characteristics of the radio-frequency (RF) electronic circuitry would break
the reciprocity property. Various solutions to this issue have been recently
proposed. One is to calibrate each transmitter and receiver, i.e. to let them
learn and compensate for the characteristics of their own circuitry [73]. We
refer to this method as absolute calibration. This method has been is use
in the radar community for a long time, since absolute calibration is nec-
essary to determine the direction of arrival of an electromagnetic wave. It
requires an external reference source with tight requirements, and is there-
fore expensive to implement in the context of a communications system.
Another method [74] aims at ensuring the reciprocity of the electronic cir-
cuitry through a specially crafted transceiver where the same op-amp is used
for both transmitting and receiving, thus lifting the requirement of calibra-
tion at the expense of design complexity.

Contrarily to these methods relying on hardware solutions, we propose a
signal-space calibration (or relative calibration) method. It relies on a cali-
bration phase to establish the relationship between the channel as measured
in both directions. We deem this a relative calibration since it takes place
entirely in signal space, and no external reference source, nor any other hard-
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Figure 6.1: Reciprocity model for a MIMO FDD frequency-selective channel

ware, are necessary. The calibration phase requires feedback. Once it has
been performed, we show that it is possible to infer the state of the downlink
channel (A to B) from the (estimated) state of the uplink channel (B to A).

In this chapter, we first introduce a linear reciprocity model, and the
concept of relative calibration. In Section 6.4.1, we show how to apply rela-
tive calibration to the particular case of a narrowband flat-fading channel. In
Section 6.4, the particular case of time-dispersive Single-Input Single-Output
(SISO) channel calibration is studied. These results are applied in Section 6.5
to measurements gathered using a prototype Universal Mobile Telecommuni-
cations Services (UMTS) TDD link. The validity of the proposed reciprocity
model is confirmed by the measurements.

Results presented in this chapter were published in [14]. The relative
calibration process is the subject of patent [15].

6.2 System model

We consider a bidirectional point-to-point TDD MIMO link, between two
stations denoted by A and B, using respectively M and N antennas. We
model the channel as seen during the baseband processing as the cascade
of three linear filters, and some additive white Gaussian noise (AWGN), as
represented in Fig. 6.1.

The upper part of the diagram represents a transmission from A to B,
whereas the lower part represents a transmission from B to A. TA denotes the
M -input M -output equivalent filtering operation of the transmit circuitry of
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A, C(t) is a N × M matrix containing the impulse responses (one per Tx-
Rx antenna pair) of the electromagnetic channel at time t, and RB is the
N -input N -output equivalent filter modeling the receive circuitry of B. Sym-
metrically, TB and RA denote the equivalent filters corresponding respectively
to the transmit circuitry of B and the receive circuitry of A. Note that the
characteristics of the circuitry do not depend on t, since their variation is
usually much slower than the channel variation.

In a TDD setting, assuming that the transmissions in both directions
take place within a time frame shorter than the channel coherence time,
the reciprocity of the electromagnetic channel guarantees that the impulse
responses between each antenna pair is the same in both directions, therefore
the filter C(t, τ) is common to both directions (it needs to be transposed to
respect the order of the antennas). Let us denote by

G(t, τ) = RB(τ) ∗ C(t, τ) ∗ TA(τ) (6.1)

the compound impulse response (τ is the index in the lag domain) of the
(noiseless) channel from A to B, and by

H(t, τ) = RA(τ) ∗ C(t, τ)T ∗ TB(τ) (6.2)

its counterpart when the transmission takes place from B to A. For the sake
of simplicity, the noise nA, nB is supposed to be injected after the cascade
of the three filters, although it really appears between the electromagnetic
channel and the receive circuitry (i.e. between the second and third linear
filter in Fig. 6.1). Knowledge of G(t, τ) is easily available to station B, using
any classical channel estimation method, and similarly station A can esti-
mate H(t, τ).

Note that TA(f), TB(f), RA(f) and RB(f) are all square matrices, and
we will work under the assumption that they have no singularities for any f
in the considered frequency band. This should be a reasonable requirement,
since the design target for the circuitry is usually to have unit diagonal gains
over the desired band, and as little crosstalk as possible. A strictly diagonal
structure can be assumed if little or no crosstalk is present between antenna
channels in the circuitry, thus further simplifying the model.
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6.3 Relative calibration

As stated before, although it is common practice for station B to estimate G
in order to perform coherent detection of the received signal, the knowledge of
G is desirable to A, since it would enable the use of CSIT-exploiting methods.
Instead of relying on continuous feedback of CSI from B to A, we link the
channel estimates in both directions by eliminating C in eqs. (6.1) and (6.2).
In the frequency domain, this yields

G(t, f) = RB(f)TB(f)−T H(t, f)T RA(f)−T TA(f). (6.3)

Note that TA, TB, RA and RB are generally not known individually, since this
would constitute absolute calibration on both sides of the link. Nevertheless,
it can be seen from eq. (6.3) that only PA(f) = RA(f)−T TA(f) and PB(f) =
RB(f)TB(f)−T are necessary in order to infer G(t) from H(t):

G(t, f) = PB(f)H(t, f)T PA(f). (6.4)

Estimating PA(f) and PB(f) constitutes a relative calibration between A and
B, and can be realized entirely through the use of classical channel estimation
and feedback techniques, as will be shown in the sequel.

6.4 Reciprocity parameters estimation

In this section, we present a method to estimate the reciprocity parameters
PA(τ) and PB(τ) from one or several pairs of (simultaneous, uplink and
downlink) channel measurements.

6.4.1 Narrowband MIMO Flat-Fading Case

Let us first address the relative calibration problem in the case of a nar-
rowband transmission over a flat-fading channel. The flat-fading assumption
guarantees that C(t, f) is constant (independent of f) over the considered
frequency band, whereas by narrowband we imply that the behaviour of the
electronic circuitry can also be assumed constant over the same band. There-
fore, let us represent the channel from A to B at time tk by the N×M matrix
Gk = G(tk, 0), and similarly in the reverse direction Hk = H(tk, 0). PA(f)



74 Chapter 6 Practical exploitation of channel reciprocity

and PB(f) respectively become PA and PB. Using these notations, eq. (6.4)
becomes a simple matrix product

Gk = PBHT
k PA. (6.5)

We will show how to estimate PA and PB (thereby performing the desired
relative calibration), or equivalently for P′

A = P−1
A and PB given one or sev-

eral estimates Ĝk = Gk +G̃k and Ĥk = Hk +H̃k, k = 1 . . . K, of the channel
in both directions (G̃k and H̃k represent the estimation noise). These esti-
mates can be obtained through a classical channel feedback operation, during
the calibration phase. The only requirement is that Ĝk and Ĥk be estimated
approximately at the same instant, in order for the reciprocity relationship
to hold.

Let us first consider one single channel realization (in both directions)

(Gk,Hk) corresponding to instant k. Let h
(1)
k . . .h

(M)
k denote the rows of

Hk, and define
p′

A
, vect (P′

A) , p
B

, vect(PT
B), (6.6)

as well as

h (Hk) ,




IN ⊗ h
(1)
k

...

IN ⊗ h
(M)
k


 and g (Gk) , IM ⊗ Gk, (6.7)

where h (Hk) is a MN×N 2 matrix, and g (Gk) is a MN×M 2 block-diagonal
matrix. With these notations, eq. (6.5) is equivalent to

g (Gk)p
′
A
− h (Hk)pB

= 0, (6.8)

Let us now define Ek , [g (Gk) −h (Hk)] and p
0

,

[
p′

A

Tp
B

T
]T

. According

to eq. (6.8), p
0

is a non-zero solution of

Ekp = 0MN×1. (6.9)

The solutions to (6.9) lie in the right null subspace of Ek. Since we are try-
ing to determine M 2 + N2 unknowns, the MN linear constraints implied by
eq. (6.9) are not sufficient to solve the problem. Fortunately, this uncertainty
can be lifted if multiple channel measurements are available: since eq. (6.9)
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is true for any k, p
0

is also in the right null subspace of E ,
[
ET

1 . . .ET
K

]T
.

If the successive channel realizations are linearly independent (this can be
achieved by waiting for the channel to evolve between successive estimations),
p

0
is fully determined (up to a scalar coefficient) when the right null subspace

of E is of dimension 1. The scaling coefficient disappears in eq. (6.5) since it
scales PA = P′

A
−1 and PB in reciprocal ways.

Since the channel realizations are not known perfectly, but rather through
the estimates (Ĝk, Ĥk), k = 1 . . . K, this is a particular case of the Total
Least-Squares problem [75]. Letting

Ê ,




g(Ĝ1) −h(Ĥ1)
...

...

g(ĜK) −h(ĤK)


 , (6.10)

and assuming that the noise coefficients in G̃k and H̃k are i.i.d. and all have
the same variance, the total least squares solution p̂

0
is given (again, up to

an arbitrary scalar) by the right singular vector associated to the smallest

singular value of Ê.

Sparse reciprocity matrices

It is likely that the reciprocity matrices encountered in most real systems
will be close to diagonal, or that non-zero off-diagonal coefficients resulting
e.g. from antenna coupling will affect only neighboring antennas (this would
yield band matrices). If PA and PB are experimentally verified to be sparse
matrices, only the relevant (non-zero) coefficients need be estimated. Thus
the estimation process needs to be adapted by removing coefficients known
to be zero from p′

A
and p

B
, as well as the corresponding columns of g (Gk)

and h (Hk).

As an illustration, let us assume that PA and PB are diagonal matrices,
and denote d′

A and dB the diagonal coefficients of P′
A = P−1

A and PB respec-

tively. Furthermore, let g(1)
k

. . .g(N)
k

denote the rows of Gk, and |h(1)
k . . . |h(N)

k
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the columns of Hk. Then, letting

g′ (Gk) ,




diag(g(1)
k

)
...

diag(g(N)
k

)


 and h′ (Hk) ,




|h(1)
k 0

. . .

0 |h(N)
k


 , (6.11)

and p′ ,

[
d′

A
T
dB

T
]T

, equation (6.9) becomes

E′
kp

′ = [g′ (Gk) −h′ (Hk)]p
′ = 0MN×1. (6.12)

The solution can be found using the method outlined in the previous sec-
tion, with the added benefit that since the number of unknowns is reduced
(p′ has only M+N coefficients, as opposed to M 2 + N2 unknowns in the
general case), the amount of independent channel realizations necessary to
narrow down the solution subspace to dimension 1 is reduced, possibly down
to K = 1, which would enable the estimation of the reciprocity coefficients
based on a single instantaneous channel measurement.

The simulated performance of this method for the case of diagonal PA

and PB is presented in Figure 6.2. The complex diagonal coefficients of the
reciprocity matrices are i.i.d, with phases uniformly distributed over [0, 2π],
and N(1, 1/25) radii. The average estimation error per component is plotted
versus the noise variance of the channel estimates. For the simulations us-
ing multiple channel measurements, K = 5 independent channel and noise
realizations were used.

6.4.2 SISO frequency-selective case

In this particular case, the product in eq. (6.4) commutes because all factors
are 1 × 1 matrices. Therefore, letting

P (τ) , PB(τ) ∗ PA(τ), (6.13)

we can rewrite (6.4) as (in the time domain, using convolutions)

G(t, τ) = H(t, τ) ∗ P (τ). (6.14)

Let us consider K pairs of measurements of the discretized complex channel

impulse responses in both directions, g
k

,

(
g

(k)
1 , . . . , g

(k)
L

)T

∈ �
L,
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hk ,

(
h

(k)
1 , . . . , h

(k)
L′

)T

∈ �
L′

. Assuming that both the channel impulse

responses and the filters PA and PB have finite length, the convolution in the
reciprocity condition (6.14) can be written as

Hkp = g
k
, (6.15)

with p , (p1, . . . , pL′−L+1)
T and

Hk ,




h
(k)
L′−L+1 h

(k)
L′−L . . . h

(k)
1

h
(k)
L′−L+2 h

(k)
L′−L+1 . . . h

(k)
2

...
. . .

...

h
(k)
L′ . . . h

(k)
L′−L+1


 . (6.16)

Note that the length of the impulse response of the filter, L′ − L + 1, must
be a sensible value. It is possible to solve for p in eq. (6.15), through e.g.
least-squares if the system is overdetermined, however this method assumes
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that only g
k

is noisy, and that hk is known perfectly. Since in practice, only

the noisy versions ĝ
k

and ĥk are known, we look for p as the solution of the
optimization problem

min
Ek,x

αH
k αk + βH

k
β

k
, s.t.

(
Ĥk + Ek

)
x = ĝ

k
+ β

k
(6.17)

where Ek is Toeplitz and contains the coefficients of αk:

Ek ,




α
(k)
L′−L+1 α

(k)
L′−L . . . α

(k)
1

α
(k)
L′−L+2 α

(k)
L′−L+1 . . . α

(k)
2

...
. . .

...

α
(k)
L′ . . . α

(k)
L′−L+1


 . (6.18)

The vectors αk ∈ �
L′

and β
k
∈ �

L represent the corrections of the noise
present on hk and g

k
respectively. Under the assumption that the noise is

Gaussian i.i.d., the ML solution of (6.17) can again be obtained numerically:
although the simple SVD solution used in Section 6.4.1 does not apply since
the coefficients in the (Toeplitz) noise matrix Ek are not i.i.d., it can be
solved numerically, as recognized by Mastronardi in [76], since this formula-
tion defines a Structured Total Least-Squares (STLS) problem.

In order to guarantee the identifiability of p, and since the measurements
are noisy, it is preferable to over-determine the problem. To this aim, the
linear system (6.15) can be extended by concatenating the successive channel
measurements, since p is assumed to remain constant over all measurements.
Therefore, 


H1
...

HK


p =




g
1
...

g
K


 . (6.19)

The STLS algorithm can be straightforwardly extended to estimate p us-

ing all the measurements, by solving the optimization problem (with α ,

[αT
1 . . . αT

K ]T )

min
E1,...,EK ,x

αHα + βHβ, (6.20)

s.t.




Ĥ1 + E1
...

ĤK + EK


x =




ĝ
1
...

ĝ
K


+ β. (6.21)
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6.4.3 SIMO and MISO frequency-selective cases

Let us now consider the situation where only one side of the link is equipped
with multiple antennas. This applies to both SIMO (Single-Input Multiple-
Output, i.e M = 1, N > 1) and MISO (Multiple-Input Single-Output, i.e.
M > 1, N = 1) channels.

In both cases, either PA(τ) or PB(τ) is a 1 × 1 filter, and therefore the
commutation property can still be used to transform eq. (6.4) into

G(t, τ) = PSIMO(τ) ∗ H(t, τ)T (6.22)

for the SIMO case, where PSIMO(τ) , PB(τ) ∗ (IN ⊗ PA(τ)), or

G(t, τ) = H(t, τ)T ∗ PMISO(τ) (6.23)

with PMISO(τ) , (IM ⊗ PB(τ)) ∗ PA(τ) in the MISO case. In each case,
the reciprocity parameters are grouped into one single linear filter (PSIMO

or PMISO), which again can be efficiently (ML-)estimated using the STLS
method.

Furthermore, if no crosstalk is present on the side equipped with the
multiple antennas, the problem merely degenerates into several parallel SISO
channels whose reciprocity parameters can be estimated independently. This
is evidenced by the fact that, for the respective SIMO and MISO cases, if PB

(resp. PA) is diagonal, PSIMO (resp. PMISO) are also diagonal filters.

6.4.4 MIMO frequency-selective case

Estimation of the reciprocity parameters in the MIMO case (M > 1 and
N > 1) is less straightforward, since in this case eq. (6.4) is not jointly linear
in the unknowns (PA,PB), and can not be made linear by commutation of
the filters.

First proposed method: overparameterization. This method is ap-
plicable only in the case where PA and PB are both diagonal. It represents
the reciprocity parameters using more filters that necessary (i.e. one filter
per antenna pair instead of one filter per antenna).
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In order to do this, first note that eq. (6.4) is equivalent to the MN
equations obtained from

[G(t, τ)]i,j = [PB(τ)]i,i ∗ [H(t, τ)]j,i ∗ [PA(τ)]j,j (6.24)

for i = 1 . . . N, j = 1 . . . M (recall that [·]i,j denotes the (i, j)th element of
a matrix, in this case a linear filter). Since [PA(τ)]j,j and [PB(τ)]i,i represent
SISO filtering operations, letting

P(i,j) , [PB(τ)]i,i ∗ [PA(τ)]j,j (6.25)

yields
[G(t, τ)]i,j = [H(t, τ)]j,i ∗ P(i,j), (6.26)

where P(i,j) can again be estimated using the technique developed for the
SISO case (compare (6.26) to (6.14)). However, this method fails to take
into account the fact that the MN linear filters P(i,j) are generated from only
M+N impulse responses [PA(τ)]j,j, j = 1 . . . M , and [PB(τ)]i,i, i = 1 . . . N .

Second proposed approach: alternating estimation. This is an it-
erative method whereby PA(τ) and PB(τ) are alternatively assumed to be
known perfectly, while the other is estimated under this assumption (the
STLS algorithm can be used again, since assuming that PA(τ) is perfectly
known makes the problem linear in PB(τ), and vice-versa). The algorithm
is initialized by assuming e.g. that PA(τ) = IM at the first iteration. The
proposed algorithm is therefore the following:

1. initialization: P̂A(τ) = IM .

2. assuming P̂A(τ) perfectly known, compute P̂B(τ) as the STLS solution
of a linear system identification problem expressed by equation (6.4).

3. assuming P̂B(τ) perfectly known, compute P̂A(τ), by applying STLS to
eq. (6.4) again (note that the same equation describes different prob-
lems since the role of the unknowns and the constants have changed).

4. iterate (go to step 2) until convergence.

This approach is applicable even for non-diagonal reciprocity parameters,
and does not over-parameterize the system. Unfortunately, although this
method has been observed to work satisfactorily, its convergence has not
been proved, and no optimality claim can be made about the results.
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6.5 Experimental investigation of the recipro-

city principle

In order to validate the linear system model of Section 6.2, and to assess the
validity of the calibration process of Section 6.3, channel measurements were
performed in the case of a SISO system. The measurements were performed
in the framework of an actual UMTS connection, using Eurecom’s in-house
prototype UMTS platform [77]. The UMTS TDD link operates on a 3.84MHz
wide channel in the 1900-1920MHz band. A rooftop antenna fitted with a
power amplifier and a low-noise amplifier is connected via low-loss cables to
the RF modules of the base station. Another RF module of similar design,
directly connected to a portable antenna, was used inside the building as the
mobile terminal (MT) side of the link.

Channel estimates were obtained on both sides using conventional chan-
nel estimation techniques, by exploiting the training sequences embedded
in the UMTS traffic. During the calibration phase, the feedback link was
assumed to be of infinite bandwidth, i.e. the estimates performed on both
sides were made available to one single place for computation with no fur-
ther degradation. In a practical calibration process, since this information
has to be conveyed over a finite-capacity channel, some approximation er-
rors would appear, and should be accounted for. Perfect feedback eases this
requirement.

6.5.1 SISO reciprocity characteristics estimation

The measurements consist in a series of estimates Ĝ(t, τ) = G(t, τ) + G̃(t, τ)

and Ĥ(t, τ) = H(t, τ) + H̃(t, τ) of the channel impulse responses. Assum-

ing that G̃(t, τ) and H̃(t, τ) are both Gaussian i.i.d. random processes of
equal variances, we used the STLS deconvolution algorithm presented in Sec-
tion 6.4. One channel estimate for each direction was obtained every 10ms.
The oscillators on both sides of the wireless link were synchronized through
a wired link. Successive estimates of P̂ were performed, each estimate being
based on 50 successive channel measurements (i.e. each estimate is made
over a 500ms time span). Two series of measurements were performed:

Fixed setting the MT antenna lies on a table, and human operators in the
vicinity of the experiment make as little movement as possible.
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Moving setting the MT antenna was hand-held and moved rapidly by a
human operator.

Fig. 6.3(a) and 6.3(b) show respectively the frequency-domain represen-
tation and the corresponding time-domain representation of the estimated
reciprocity function P̂ over the considered 3.84MHz-wide frequency band.
Every figure shows 9 curves, corresponding to successive estimates of P̂ . The
relative stability of the estimates of P (f) in the series of 9 consecutive mea-
surements indicates that the assumption that this is a slow-varying parameter
is valid, and is therefore an encouraging sign that the proposed relative cali-
bration process is possible. The first noticeable characteristic of these figures
is their general non-flatness of the spectrum 6.3(a). A perfectly reciprocal
setting would yield a Kronecker delta function, and the corresponding flat
spectrum. The spectrum 6.3(a) indicates a high level of non-reciprocity in
the absence of calibration, and thus the need to compensate for this effect.
The impulse response 6.3(b) clearly shows two distinct peaks, instead of the
ideal delta function. The deep fade in the spectrum around frequency -0.3
corresponds to a frequency band where both G(t, f) and H(t, f) have fades.

Therefore, the determination of P (f) ,
G(t,f)
H(t,f)

is dominated by the noise.

Fig. 6.4(a) and 6.4(b) were obtained from the measurements in the mobile
setting. The spectrum is definitely not flat, with a noticeable attenuation in
the lower frequencies. The ripples, e.g. in the [.3 .4] frequency range, can
not be attributed to noise or measurement artifacts, and clearly represent a
deviation from ideal reciprocity.

Comparing Figs. 6.3(a) and 6.4(a), i.e. the estimates of P̂ for the fixed
and mobile case, and bearing in mind that both experiments used the same
hardware and were separated by only a few minutes, the discrepancy in the
reciprocity functions is obvious. It can presumably be attributed to changes
in the MT antenna coupling, due to the presence of the operator’s hand
near the antenna in the second case (moving setting). This is an impor-
tant observation, since it means that more frequent calibration cycles might
be required when human activity takes place very close to the antennas,
for instance when the link involves a mobile telephone handset. Note that,
contrarily to absolute calibration, both sides have to recalibrate if the char-
acteristics are changing on either side of the link.
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Figure 6.3: Nine successive estimates of the reciprocity function, fixed setting
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6.5.2 Performance of reciprocity-based channel esti-
mation

Although it is interesting per se from an engineering point of view, the main
interest of P̂ is its use for channel estimation, as described in Section 6.3.
Therefore, in order to evaluate the level of performance attainable through
relative calibration and reciprocal channel estimation, we reprocessed the
same series of measurements was reprocessed in order to evaluate the accu-
racy of channel estimates.

In this scenario, after estimating P̂ only once over 50 2-tuples (Ĝ(t), Ĥ(t)),

Ĝest(t) was computed as

Gest(t, τ) = Ĥ(t, τ) ∗ P̂ (τ) (6.27)

for the subsequent 422 measurements of Ĥ(t, τ) (i.e. over a 4.22s time span).
Since the noiseless value G(t, τ) was not available, Gest(t) was compared to

Ĝ(t), using the noise amplification metric

α ,

Et

[∣∣∣
∣∣∣Gest(t) − Ĝ(t)

∣∣∣
∣∣∣
2
]

σ2
G̃

. (6.28)

where the norm chosen here is the total energy in the impulse response, i.e.

||f || ,

∫ +∞

−∞
|f(τ)|2 dτ. (6.29)

Obviously, even if the estimator is perfect, i.e. yields Gest = G, some noise
is still present in Ĝ, and therefore α is lower-bounded by 1. For comparison,
in the ideal reciprocity case, and with Gaussian i.i.d. noise, the metric (6.28)
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becomes

Et

[∣∣∣
∣∣∣Gest(t) − Ĝ(t)

∣∣∣
∣∣∣
2
]

(6.30)

= Et

[∣∣∣
∣∣∣H(t) ∗ P̂ + H̃(t) ∗ P̂ −

(
H(t) ∗ P + G̃(t)

)∣∣∣
∣∣∣
2
]

(6.31)

= Et

[∣∣∣
∣∣∣H(t) ∗

(
P̂ − P

)∣∣∣
∣∣∣
2
]

+ Et

[∣∣∣
∣∣∣H̃(t) ∗ P̂

∣∣∣
∣∣∣
2
]

+Et

[∣∣∣
∣∣∣G̃(t)

∣∣∣
∣∣∣
2
]

(6.32)

≥ Et

[∣∣∣
∣∣∣H̃(t) ∗ P̂

∣∣∣
∣∣∣
2
]

+ Et

[∣∣∣
∣∣∣G̃(t)

∣∣∣
∣∣∣
2
]

(6.33)

where we used the independence of H, G̃ and H̃ in (6.32), and the bound
in (6.33) is tight if the estimation of the reciprocity parameter is perfect

(P̂ = P ). Furthermore, since both G and H are normalized to unit average
energy (Et

[
||G(t)||2

]
= Et

[
||H(t)||2

]
= 1), ||P ||2 = 1 also, and therefore

||H̃(t) ∗ P̂ ||2 ≈ ||H̃(t)||2 = σ2
H̃

. Plugging this expression back into (6.28)
yields

α ≥
σ2

H̃
+ σ2

G̃

σ2
G̃

= 1 +
σ2

H̃

σ2
G̃

= 1 +
SNRG

SNRH

. (6.34)

This bound is tight if the estimators are perfect.

Table 6.1 shows the noise amplification metric α measured (the expecta-
tion is replaced by time-averaging over the measurement window) for both
series of measurements (fixed and mobile setting), as well as the lower bound
1 + SNRG

SNRH
, computed using the average measured SNRs.

For comparison, a third column presents simulation results obtained for
a perfect reciprocity setting. The stochastic parameters in the simulation
were set as close as possible to the experimental results: the downlink power
density profile and the uplink and downlink SNRs were those from the mea-
surements. The uplink channel was generated from the downlink channel by
assuming perfect reciprocity. Since no statistical information is available on
the reciprocity function P , it was set to be an FIR filter generated from its
five random zeros, uniformly distributed in the zero-centered disc of radius .2.
The rest of the simulation followed the method used for the measurements,
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α (measured) 1 + SNRG

SNRH
α (simulated)

Fixed setting 2.081 1.962 1.931
Mobile setting 3.692 1.728 1.727

Table 6.1: Noise figure α for the reciprocity channel estimation method

up to the computation of the noise metric α. The results presented in the
third column of Table 6.1 is a Monte-Carlo average over the realizations of P .

It can be seen that the simulated results for α are slightly below the
1 + SNRG

SNRH
bound. This can be explained by the fact that, conversely to what

was assumed in the computation of the bound, the estimate of P is not
perfect, and therefore ||P̂ || ≤ 1.

6.6 Conclusion

We presented a signal space (relative) calibration method that, after a cali-
bration phase involving no hardware reference, enables the estimation of the
downlink channel from the knowledge of the uplink channel estimate. This
method has been shown effective by measurements on a UMTS link operating
in a realistic setting. The linear reciprocity model has been experimentally
shown to hold in the SISO case.

Further investigation of the reciprocity property in the MIMO case is
needed (in particular, evaluation of the amount of crosstalk). On the theoret-
ical side, a method to separate the effects of the transmitter and the receiver,
in order to reduce the amount of redundant calibration information, as well
as an extension to the multi-user case, are still being investigated.
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Chapter 7

Pathwise channel tracking and
prediction

In this chapter, we introduce a paths-based model for MIMO frequency-selective
channels, based on the separation of its time-varying – e.g. Doppler – and
time-invariant characteristics. This model yields a parsimonious channel rep-
resentation, which is shown to simplify linear estimation and prediction of
the channel. Identifiability of specular channels is studied, and an algorithm
achieving identification is proposed. The performance of the proposed method
is evaluated through computer simulations, and on experimental channel mea-
surements.
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7.1 Introduction

In multiple-antenna systems, the independence of the channel coefficients,
often assumed e.g. by Telatar to compute the ergodic channel capacity, does
not hold. Some correlation remains, as measured in [78], and can indeed
be exploited to improve the channel tracking. Assuming that the channel
realizations on different antennas correspond to different combinations (the
antennas effectively sample this signal in several points in space) of the same
set of waves, knowledge of this structure can be used to improve channel
tracking. Methods relying on channel decomposition have been proposed,
e.g. by Chizhik [79] where a spatial sectorization is used. However, as no-
ticed by Svantesson et al. in [80], tracking is more efficient (in that the
description of the channel is more parsimonious) if it can be decomposed
according to a base where each vector corresponds to an impinging ray –
we denote this a pathwise decomposition, although the term “beamspace
representation” is sometimes used. Different decompositions and estimation
methods were suggested, addressing channel estimation [81], efficient repre-
sentation and transmission [70], or prediction [82, 83, 84, 85].

Pathwise methods constitute viable candidates for channel tracking and
prediction, since the insight they provide into the actual channel structure –
namely, separation of the channel variation into its space and time compo-
nents – can improve the performance and decrease the complexity of channel
tracking and prediction. Various methods have been proposed to estimate
the underlying parameters, including MUSIC in [82], ESPRIT in [83] and
SAGE in [81].

We use a blind identification method to analyze the time-variations of the
channel: we try to separate the paths, under the assumption that the time-
variation associated with the paths are independent, and fairly predictable
random variables. Blind channel identification methods have been proposed
before, including methods exploiting the specular structure of the channel,
e.g. [86, 87]. However, our goal is different: we do not aim at channel equal-
ization, but at channel tracking. Equalization consists in the identification
(and, as much as possible, inversion) of a channel impulse response assumed
constant (or having slow-enough fading). However, we propose to apply a
similar method to channel tracking. In this context, the channel is not con-
sidered stationary but rather time-varying, and the identification method is
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used to find a structure in the temporal variations of the channel. The chan-
nel realizations constitute the observed random variable, whereas the sources
are the Doppler-generated complex exponentials.

In this chapter, we propose to use a specular (pathwise) approach in or-
der to gain access to a reduced parameter set representing the channel state,
in order to improve channel estimation (smoothing) and prediction. After
recalling the specular channel model in Section 7.2, and outlining in Sec-
tion 7.3 how it makes channel estimation and prediction easier, we provide
sufficient conditions for identifiability of a specular channel in Section 7.4,
and an algorithm, based on simultaneous diagonalization of the covariance
matrices, that achieves identification is proposed in Section 7.5. Section 7.7
presents simulation results, and the algorithm is then checked using experi-
mental channel measurements in Section 7.8.

Results presented in this chapter were published in [16, 17, 18].

7.2 Specular channel model

Let us consider a Multiple-Input Multiple-Output (MIMO) frequency-selective
channel, with Nt transmit (Tx) and Nr receive (Rx) antennas. The impulse
response of the channel between the ith Tx antenna and the jth Rx antenna
is denoted by hi,j(t, τ), where t is the time and τ is the lag.

We will henceforth work under the assumption that the channel state
evolves according to a specular model. In such a model, each impulse re-
sponse hi,j(t, ·) is the superposition of a finite number P of discrete paths at

lag τ
(i,j)
p = l

(i,j)
p Ts, p = 1 . . . P , resulting from either line-of-sight propaga-

tion, or one or several reflections. This model relies upon the fact that the
paths between all the Tx-Rx antenna pairs have most of their characteristics
in common, except for what happens near the antenna arrays. Hence, they
share some properties, namely their speed w.r.t. the reflectors, and the re-
flection characteristics (hence their Doppler and gain are the same whatever
antenna pair is considered). Each path coefficient can be decomposed into a
product of two components:

• a space component α
(i,j)
p , which depends on the physical properties of
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path p between Tx antenna i and Rx antenna j, including antennas
and reflectors position, path loss, etc.

• a time component βp (t) which includes the Doppler due to reflectors
motion and the relative speed of the transmitter w.r.t. the receiver.

The time components βp (t) are assumed to be independent between paths,
hence

∀t′ ∈ �
, p 6= p′ ⇒ Et [βp (t) βp′ (t + t′)] = 0. (7.1)

Note that we consider a time scale where they evolve significantly over time,
e.g. due to the Doppler effect, and hence can be considered random processes,
whereas the physical properties of the problem, comprised of the α

(i,j)
p , do

not vary.

In discrete time, the specular channel model yields

h
(i,j)
n,l , hi,j(nTs, lTs) =

P (i,j)∑

p=1

α(i,j)
p βn,pδl

(i,j)
p

(l) , (7.2)

where we used the discretized version of the time component βn,p , βp (nTs)
where Ts is the sampling interval at the receiver. Let us assume that the
impulse response has finite support, and consider its discretized version

h(i,j)
n ,

[
h

(i,j)
n,0 , . . . h

(i,j)
n,L−1

]T
, (7.3)

with L chosen such that all the channel coefficients outside the lag interval
[0 . . . (L − 1)Ts] are zero. Let us further stack these into a row vector with
NtNrL coefficients

hn ,

[
h(1,1)

n

T
. . .h(1,Nr)

n

T
,h(2,1)

n

T
. . .h(Nt,Nr)

n

T
]T

. (7.4)

We emphasize the fact that hn constitutes a snapshot of all the channel
impulse response coefficients at time nTs. With this notation, (7.2) can be
rewritten in more compact form as

hn = Gbn (7.5)
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where

a(i,j)
p , α(i,j)

p

(
δ
l
(i,j)
p

(0) . . . δ
l
(i,j)
p

(L − 1)
)

, (7.6)

ap ,
(
a(1,1)

p . . . a(1,Nr)
p , a(2,1)

p . . . a(Nt,Nr)
p

)T
, (7.7)

G , [a1, . . . , aP ] , (7.8)

bn , (βn,1, . . . , βn,P )T . (7.9)

7.3 Spectral factorization and linear estima-

tion

In this section, we outline the possible improvements in channel tracking that
can be achieved by deconstructing a specular channel, i.e. by separating the
time and space properties as enounced in the previous section before doing
any kind of smoothing or prediction. We seek to model the discrete-time
random process {hn} from its noisy measurements h̃n = hn + vn where
the noise {vn} is white Gaussian, i.i.d., independent from {hn}. Assuming
that both {hn} and {vn} are wide-sense stationary (WSS), let us define the
(matrix) covariances

Rh̃h̃(u) , En

[
h̃n+uh̃

H

n

]
and Rhh̃(u) , En

[
hn+uh̃

H

n

]
(7.10)

where En [·] is the expectation operator taken over n, and the z-transforms

Sh̃h̃(z) ,

+∞∑

u=−∞
Rh̃h̃(u) z−u and (7.11)

Shh̃(z) ,

+∞∑

u=−∞
Rhh̃(u) z−u. (7.12)

The best linear estimator (in terms of mean square error) of hn+λ, λ ≥ 0

given {h̃k}n
k=−∞ is

ĥn+λ ,

+∞∑

i=−∞
Kn−ihi (7.13)
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where the matrix filter coefficients Ku are determined in the z-transform
domain

K(z) ,

+∞∑

u=−∞
Ku z−u (7.14)

by [88]

K(z) =
{

zλShh̃(z)L−∗(z−∗)
}

+
Re

−1L−1(z), (7.15)

where L(z) and Re come from the spectral factorization

Sh̃h̃(z) = L(z)ReL
∗(z−∗). (7.16)

In general, spectral factorization is hard to compute in the case of vector-
valued processes, and (7.15) is not feasible. Note that due to the indepen-
dence between {vn} and {hn},

Shh̃(z) = Shh(z) and Sh̃h̃(z) = Shh(z) + Svv(z). (7.17)

7.3.1 Specular model and spectral factorization

Under the assumption that the channel variations follow the specular model
(7.5), the covariances become

Rh̃h̃(u) = GEn

[
bn+ub

H
n

]
GH + En

[
vn+uv

H
n

]
(7.18)

= GRbb(u)GH + Rvv(u), (7.19)

Rhh̃(u) = GEn

[
bn+ub

H
n

]
GH = GRbb(u)GH . (7.20)

Note that in eqs. (7.18) and (7.20) the factor G is independent of the lag u.
Therefore, the z-transforms can be factored as

Sh̃h̃(z) = GSbb(z)GH + Svv(z) and (7.21)

Shh̃(z) = GSbb(z)GH . (7.22)

Let us define

s
(p)
bb (z) ,

+∞∑

u=−∞
En

[
βn+u,pβ

∗
n,p

]
z−u for p = 1 . . . P. (7.23)

Note that Sbb(z) is diagonal, since we assume that the βp (t) are independent:

Sbb(z) = diag
(
s
(1)
bb (z), . . . , s

(P )
bb (z)

)
. (7.24)
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Note that this structure allows to obtain the spectral factorization of Sh̃h̃(z)

by performing P independent, scalar spectral factorizations of the s
(p)
bb (z)

(equivalently, this means that the random process {hn} can be accurately
tracked by tracking P scalar processes).

In the following sections, we will address the following identifiability prob-
lem: assuming the knowledge of the spectrum Sh̃h̃(z), we show that if the

s
(p)
bb (z) are linearly independent polynomials, it is possible to identify them

up to a permutation and a complex scalar coefficient. Fortunately, this is
sufficient for our needs, since all possible solutions yield the same predictor
K(z). Then, we discuss an algorithm that achieves this identification.

7.4 Identifiability

In this section, we show that if the spectrums s
(p)
bb (z) are linearly independent

polynomials, the spectral factorization (7.22) is unique up to a permutation
and a scalar coefficient applied to the columns of G.

Let us assume that G has full column rank, and let (c1, . . . , cP ) be an
orthonormal base of the column subspace of G. Let C , [c1, . . . , cP ]. Let
R denote the representation of G in this base, such that G = CR. Let us
assume that Shh̃(z) has an alternative factorization

Shh̃(z) = HSb′b′(z)HH , (7.25)

and show that G and H are identical up to a permutation and a linear scaling
of their columns. Using the fact that CHC = IP , the decomposition in (7.22)
yields

Sbb(z) = R−1CHShh̃(z)CR−H . (7.26)

Hence, using (7.25) and defining the P × P matrix S , R−1CHH,

Sbb(z) = SSb′b′(z)SH . (7.27)

Therefore we need to prove that S is the product of a permutation matrix
and a diagonal matrix. Let si, i = 1 . . . P denote the columns of S. The
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diagonal structure of Sb′b′(z) lets us rewrite

Sbb(z) =
P∑

i=1

sis
H
i s

(i)

b′b′(z). (7.28)

This implies that each sis
H
i is diagonal, otherwise the off-diagonal terms

would yield an identically zero linear combination of s
(i)

b′b′(z)’s, which contra-
dicts the linear independence assumption. This implies that each si has at
most one non-zero coefficient, which is equivalent to saying that S represents
the product of a permutation matrix and a diagonal matrix.

7.5 Practical identification method

The previous discussion has shown that any factorization of the form of
(7.25) is an equally good way of decomposing {hn} into scalar, independent
processes. In this section, we present an algorithm to find one of these de-
compositions.

Let us assume that the noise level is known, or has been estimated, hence
Sh(z) is known, or equivalently, Rhh(u) is known for u ∈ �

. The algorithm
that we present here provides a matrix B that decomposes Sh(z) into inde-
pendent processes, i.e. BSh(z)BH is diagonal. We restrict the problem to the
signal subspace, and consider CHRhh(0)C. Since it is positive semi-definite,
it can be decomposed according to its eigenstructure:

CHRhh(0)C = WDWH , (7.29)

where W is a P×P unitary matrix, and D is diagonal, and contains the (non-
negative) eigenvalues. Notice that (W

√
D)(W

√
D)H constitutes a Cholesky

decomposition of CHRhh(0)C. Since
(
R
√

Rbb(0)
) (

R
√

Rbb(0)
)H

is also a
Cholesky decomposition of the same matrix, they are unitarily similar [89],
i.e. there exist an unitary matrix Q s.t.

(
R
√

Rbb(0)

)H

= Q
(
W

√
D
)H

. (7.30)
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Obviously, finding Q would let us identify R up to the scalar uncertainties
contained in

√
Rbb(0). In order to find it, we use the fact that

(
W

√
D
)−1

CHRhh(u)C
(
W

√
D
)−H

= QHRbb(u)Rbb(0)−1Q ∀u ∈ �
. (7.31)

Under our assumptions, there is a unique way (up to a permutation P) of
diagonalizing the spectrum matrix, as demonstrated in Section 7.4, hence if
V is a unitary matrix that diagonalizes V

√
D−1WHCHRhh(u)CW

√
D−1VH

for all u ∈ �
, then Q = PTV. Finding V is the well-known simultaneous

diagonalization problem [90], and can be solved efficiently using an algorithm
based on Jacobi angles [91]. It follows that {hn} is transformed into an
arbitrary vector process {y

n
}, with

y
n

, V
√

D−1WHCHhn = P
√

Rbb(0)−1bn, (7.32)

and Sy(z) is diagonal: V
√

D−1WHCH is a possible B. The uncertainties
outlined in Section 7.4 appear clearly in (7.32): each component of {y

n
} is

normalized to unitary variance, and the permutation P is unknown.

Obviously, the theoretical identifiability outlined in Section 7.4, is not re-
alistic in practice, since implementation constraints would restrict the knowl-
edge of Rhh(u) to a limited range of u. Also, the requirement of linear in-
dependence of the columns of G, as well as the linear independence of the
z-spectrums of the time coefficients, are not guaranteed to be fulfilled in real
life. However, our simulations show that these limitations do not seem to
incur significant problems in practice.

7.6 Applications

One of the interest of a specular channel model is its long-term validity.
Since it closely follows the physical channel structure, and hence separates
the spatial and temporal properties of the channel, estimation or prediction
of the time coefficients only (the βp (t)) together with the knowledge of G
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provides knowledge of the channel state, following from

hn = CRbn (7.33)

= CW
√

DQH
√

Rbb(0)−1bn (7.34)

= CW
√

DQHP−1y
n

(7.35)

= CW
√

DVHy
n

(7.36)

where we used successively (7.5), (7.30), (7.32), and the definition of Q. Note
that these matrices need to be estimated first, and in particular the choice of
the number of independent components to consider. In practice, this param-
eter can be chosen as the number of non-noise eigenvalues of Rh̃h̃(0). Then,
C can be obtained by orthogonalizing the corresponding set of eigenvectors.
Subsequently, the channel estimate can be obtained as

ĥn = CW
√

DVH ỹ
n
, (7.37)

where ỹ
n

is obtained by any estimation method (for instance smoothing, lin-
ear prediction...) from the ŷ

n
. Since the coefficients in y

n
are independent

processes, the burden of the estimation method is greatly decreased. Several
kinds of processing can be applied at this point, for instance smoothing if
the goal is to increase channel estimation accuracy. Prediction can be useful
in systems relying on Channel State Information (CSI) at the Transmitter
(CSIT) to enhance the link quality: since duplex systems mainly rely on a
feedback scheme to transmit the channel state information from the receiver,
and since the channel state information can not be fed back in a negligi-
ble amount of time, the ability for the transmitter to extrapolate CSI from
past values can therefore be an important asset in the actual use of a CSIT-
exploiting transmission scheme [16]. The nature of the underlying processes
must also be considered. For instance, pure Doppler effect would yield an
autoregressive process of order 1.

7.7 Simulation results

The algorithm proposed in Section 7.5 has been proven in Section 7.4 to
identify perfectly the system in the noiseless case. We present here some
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results obtained in a more practical simulation setting. We simulated a set-
ting with 2 × 2 antennas, and a delay spread limited to L = 5 samples. The
channel is an actual specular channel with P = 4 paths, where each path is
determined by randomly generated integer lags, uniform Directions of Depar-
ture (DoD) and Arrival (DoA), a Gaussian gain and a random AR3 process.
The algorithm works with approximate covariance matrices estimated from
a finite-length measurement interval of N successive realizations of {hn}.
The number P ′ of estimated independent random processes to estimate is
set artificially, and several cases (P ′ > P , P ′ < P , P ′ = P ) are presented
here.

The figure of merit used in these simulations is derived from the fact that
in the absence of noise, with the notations of Section 7.5,

PTV
√

D−1WHCHG =
√

Rbb(0)−1, (7.38)

i.e. it is a diagonal matrix. When noise is present, this matrix is com-
puted from the true G and the specular model as estimated by the proposed
algorithm, hence it is not perfectly diagonal. Hence, denoting [xi,j ]i,j ,

PTV
√

D−1WHCHG, xp,p is the amount of energy from {βn,p}n that is cor-
rectly attributed to the pth estimated process, and the xi,p, i 6= p represent the
crosstalk with other processes. Thus, we define a global signal-to-interference
ratio (SIR) as

SIR ,

∑P
p=1 x2

p,p∑P
p=1

∑
i6=p x2

p,i

. (7.39)

This value is plotted on Figure 7.1 for various configurations, with respect
to the SNR of the raw channel estimates h̃n.

These results clearly show the influence of the the quality of estimation of
the covariances: increasing the number of realizations used for estimating the
channel statistics from N = 20 to N = 100, then 1000, has a relatively bigger
influence than the SNR variations over the range pictured here. The influence
of overestimating the number of paths can be estimated by comparing the
P ′ = P = 4 to the P ′ = 6 case. Overestimation of the number of paths yields
an almost negligible decrease in the SIR of the P correctly identified paths.
The case where P ′ < P is interesting in that it represents the resilience of
the identification algorithm to model mismatch, i.e. when the signal does
not conform to the assumptions that support our method. In this case,
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the SIR criterion is only computed on the P ′ separated processes, which are
statistically the strongest. This explains the fact that we observe a slight
SIR increase in this case, for low input SNR values, and goes to prove that
the P ′ strongest paths are correctly identified. However, this metric is hiding
the fact that the channel is not fully analyzed, and hence not as predictable.
Evidencing this would require a more involved simulation setup, where the
modeling error variance would be considered.
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Figure 7.1: SIR of the process separation

7.8 Experimental results

The proposed identification method was applied to experimental data ob-
tained from a prototype UMTS TDD link [77] operating on a 3.84MHz wide
channel in the 1900-1920MHz band. The setting is comprised of two roof-
top antennas connected to the base station, and a terminal connected to a
portable antenna that was operated inside the building. The channel mea-
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surements were performed on the uplink channel, in the framework of an
actual UMTS connection. The considered channel has 1 Tx and 2 Rx an-
tennas, and the length of the observed impulse responses is L = 36 samples.
The complete SIMO channel impulse response is estimated every 10ms using
conventional channel estimation techniques, by exploiting the training se-
quences embedded in the UMTS traffic. The oscillators of both Rx antennas
are synchronized.

B is first computed by applying the proposed algorithm to a series of con-
secutive channel measurements, and the corresponding series y

n
is computed

according to (7.32). The algorithm operates with approximate covariance
matrices estimated from a finite-length measurement interval of 50 succes-
sive realizations (spanning 500ms) of {hn}. The number P ′ of independent
random processes to track is set arbitrarily. Two series of measurements were
conducted. In the first setting (fixed setting), the MT antenna lies on a table
and no noticeable movement is made around the antennas. In the second
setting (moving setting), the MT antenna is hand-held and moved rapidly
by a human operator.

Figure 7.2 presents an example of the output of the algorithm for the
fixed setting. The top plot represents the angles of the coefficients of y

n
associated with the P ′ = 3 strongest modes. The bottom plot shows the pro-
file of the modes as identified by the algorithm (each mode corresponds to a
column of CW

√
DVH , the generalized inverse of B). Since hn contains the

impulse responses from both Rx antennas, B has a similar structure, and
therefore the left part of the plot represents the channel impulse response
seen by the first Rx antenna, while the right part represents the channel
impulse response seen by the second Rx antenna. Note that the arbitrary
scaling has been partially resolved by normalizing each component of y

n
to

unit average energy, so that the three modes can be plotted on the same scale.

Figure 7.3 was obtained for the second series of measurements (moving
setting) through the same process. In both cases, the time-varying com-
ponents exhibit a high predictability. In particular, the linear phase evolu-
tion exhibited by the fixed setting can be accurately predicted by an auto-
regressive (AR) model of order 1. As expected, the temporal evolution of
the channel in the moving setting does not exhibit such a linear behaviour,
although it could be predictable by an higher-order AR model.
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Figure 7.2: Example of modal decomposition, fixed setting.

It is noticeable from both Figures 7.2 and 7.3 that the modes spans both
Rx antennas. This indicates that the channel structure is correlated between
the antennas, and that the algorithm has correctly identified a common struc-
ture in their temporal evolution. This is not contradictory with the fact that
this setting provides antenna diversity, since the actual impulse responses are
linear combinations (with time-varying weights) of the modes plotted here.
Although the result can vary rapidly, the knowledge of the underlying struc-
ture allows for a more accurate long-term tracking.

In order to evaluate the feasibility of channel prediction, one-step linear
prediction was applied to the time-varying coefficients. For each time instant
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Figure 7.3: Example of modal decomposition, moving setting.

n, after computing B, the time-series corresponding to the last 50 channel
realizations y

n−49
. . .y

n
is extrapolated using an AR model. The resulting

value ŷ
n+1

is used to compute the predicted channel ĥn+1 = CW
√

DVH ŷ
n+1

.
Since the true channel value is not known, a noise metric defined as

α ,
En

[
|h̃n+1|2

]

En

[
|ĥn+1 − h̃n+1|2

] (7.40)

that can be computed from the noisy channel measurements, was used. There
is a saturation effect associated with this metric, since even if the prediction
is perfect (ĥn+1 = hn+1), α goes to the input SNR. For comparison, the in-
put SNR is 11.5dB for the fixed measurements, and 11.9dB for the moving
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Figure 7.4: Predictor noise figure α.

measurements.

Figure 7.4 shows the evolution of α (in dB) for various orders of the
AR predictor, and for various numbers of paths P ′, for both sets of mea-
surements. As expected, the channel in the fixed setting exhibits a very high
predictability, and the predictor reaches the optimality (α = SNR) for P ′ = 4
tracked paths. Increasing P ′ over this values slightly increases the amount of
noise on the output, although for P ′ ranging from 3 to 8 paths, α is only a
fraction of a dB from the optimality. Varying the order of the AR predictor
has little influence on the performance in the fixed setting, as evidenced by
the three almost superimposed curves.

This optimality is not reached for the moving setting, with α getting no
closer than 2.5dB from the bound set by the SNR. The maximum accuracy
is reached by tracking 6 subspaces. Note that this does not necessarily mean
that 6 paths are identified, since this can be caused by the fact that the
channel model can not be assumed stationary over the .5s analyzed here. The
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order of the AR predictor seems more critical in this case, as exemplified by
the fact that the AR2 performs significantly better than the AR1, especially
when P ′ is underestimated. This could be explained by the fact that an AR2
model can better track a mixture of AR processes than an AR1, although no
definitive conclusion can be drawn at this point.

7.9 Conclusion

We presented a channel modeling method based on the assumption that the
channel follows a specular structure. We showed how this structured model,
by separating space and time-components, lends itself to simplified track-
ing, including smoothing and prediction, once the underlying space and time
characteristics are separated. We showed that under mild assumptions on
the channel characteristics, these components are identifiable, and proposed
a method based on simultaneous diagonalization of the covariance matrices
that achieves the identification. We evaluated the performance of the pro-
posed method through simulations.
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General conclusion

In this thesis, we presented various problems and their solutions for coding
and signal processing associated with MIMO wireless communications. They
can be broadly classified into two categories, coding and equalization meth-
ods, and channel modeling methods.

In the first part, coding and equalization methods for OFDM systems
were proposed:

• a new STFC named Space-Time-Frequency Spreading was proposed.
STFS applies to OFDM systems using multiple Tx antennas, and maxi-
mally exploits the channel space and frequency diversity, as well as time
diversity if some coding delay is acceptable.

• the streams-based structure, and the independence of the interfering
streams of STFS enable the use of an iterative PIC decoder at the Rx
side.

• STFS has been shown to perform comparatively better than Threaded
STC codes, and, for small constellation sizes, as well as BICM, while
using only low-complexity (Viterbi-based) decoding.

• a representation for the Doppler spectrum in CP-OFDM systems was
proposed, which let the receiver trade ISI for ICI. Depending on which
of the delay spread and the Doppler spread is lower, equalization can
therefore take place in both domains interchangeably, allowing for lower-
complexity equalization.
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In the second part, the issues of CSIT and MIMO channel time-evolution
modeling were addressed.

• we showed that CSIT is only valuable for relatively low SNR s. At
asymptotically high SNR, CSIT only provides a constant mutual infor-
mation increase w.r.t. the CSIR-only case, this constant representing
a vanishing fraction of the achieved mutual information. For Nt > Nr,
this constant has been shown to be zero.

• the resilience of eigenwaterfilling methods w.r.t. inaccurate CSIT was
studied. We showed that a relatively low level (-5dB) of AWGN on the
channel estimate is acceptable.

• the resilience of eigenwaterfilling methods w.r.t. improper Tx and Rx
absolute calibration (phase and amplitude mismatch between anten-
nas) was studied. It was shown that improper Tx calibration greatly
decreases the mutual information, whereas Rx calibration has virtually
no influence on the achievable performance.

• a channel reciprocity model was introduced, for the case of TDD sys-
tems. It applies to any number of Tx and Rx antennas, and frequency-
flat as well as frequency selective channels. The frequency-selective
model was verified to apply to a good precision using SISO channel
measurements.

• a relative calibration method, suitable for the proposed reciprocity
model, was introduced. It enables the exploitation of reciprocity while
lifting the requirement for absolute (hardware-based) calibration at
both the Tx and Rx. After a collaborative training phase (relative
calibration), the downlink channel can be estimated directly from the
uplink channel estimate, without the need for continuous channel feed-
back.

• a pathwise model was introduced to represent the time-variations of
MIMO frequency-selective channels. It does not rely on DoD/DoA es-
timation, but rather uses blind methods to decompose the time-varying
process into, for each path,

– a constant matrix representing the combined physical character-
istics of the environment (angles and delays, space correlation,
antenna gains, etc.)
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– a time-varying, structured process (such as a Doppler series) that
can be easily tracked or predicted

The low number of time-varying parameters ensures that they are es-
timated with more accuracy than the channel coefficients.

• an identification algorithm for the proposed specular model was in-
troduced, and shown to properly identify the channel characteristics,
provided that the paths have linearly independent space-time signa-
tures, and that the time-varying processes have linearly independent
spectra.

• the performance of the identification algorithm was evaluated using
synthetic data, and examples of space-time signatures and time series
obtained for measured data were presented in Section 7.8.

This thesis has combined contributions from both signal processing and
information theory, in order to optimize the use of the wireless MIMO prop-
agation channel. In particular, the use of the mutual information criterion
facilitated evaluation of various linear and additive impairments to the chan-
nel, and we feel that a number of similar problems can be transposed and
better understood by using this method. In the scope of channel modeling,
we felt the need to add our specular channel decomposition method to the al-
ready large corpus of wireless channel models, since every other method lacks
either the realistic structure provided by a specular model, or the simplicity
in the estimation of the slow-fading parameters. We feel that our method
constitutes a competitive candidate for small time-range channel prediction.
Finally, we can see a great number of application of the relative calibra-
tion method it general-purpose applications, mostly due to the fact that it
achieves the same goals as absolute calibration, while requiring only minor
protocol modifications and no extra hardware.
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