
HAL Id: pastel-00001376
https://pastel.hal.science/pastel-00001376v1

Submitted on 8 Sep 2005

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Definition of a formal framework for specifying security
policies. The Or-BAC model and extensions.

Alexandre Miège

To cite this version:
Alexandre Miège. Definition of a formal framework for specifying security policies. The Or-BAC model
and extensions.. domain_other. Télécom ParisTech, 2005. English. �NNT : �. �pastel-00001376�

https://pastel.hal.science/pastel-00001376v1
https://hal.archives-ouvertes.fr

Ecole Nationale Supérieure des Télécommunications

Paris

Mémoire de Thèse

en vue de l’obtention du grade de

Docteur de l’ENST

Discipline : Informatique et réseaux

Présenté et soutenu publiquement

par

Alexandre MIÈGE

le 27 juin 2005

Titre

Définition d’un environnement formel d’expression de politiques de sécurité.

Modèle Or-BAC et extensions.

Jury

Ana Cavalli Présidente Professeur à l’INT-EVRY

Dominique Chandesris Examinateur Conseiller en sécurité des systèmes d’information à la DCSSI

Frédéric Cuppens Directeur de thèse Professeur à l’ENST-Bretagne

Thomas Jensen Rapporteur Directeur de recherche CNRS/IRISA

Michel Riguidel Examinateur Directeur du département INFRES à l’ENST Paris

Pierre Rolin Rapporteur Responsable du développement des compétences et des

partenariats de recherche à FTR&D

Definition of a formal framework for specifying
security policies.

The Or-BAC model and extensions.

by

Alexandre Miège

A dissertation submitted to the Graduate Faculty of

Ecole Nationale Supérieure des Télécommunications

for the degree of

Doctor of Philosophy in Computer Science

Defense date: June 27th 2005

Committee:

Ana Cavalli Chairwoman Professor at INT-EVRY

Dominique Chandesris Examiner Computer security counsellor for the DCSSI

Frédéric Cuppens Supervisor Professor at ENST-Bretagne

Thomas Jensen Reporter CNRS research director at IRISA

Michel Riguidel Examiner Head of department INFRES at ENST Paris

Pierre Rolin Reporter In charge of competence development

and research parternship at FTR&D

Résumé

Nous présentons dans cette thèse un nouveau modèle de contrôle d’accès dénommé Or-BAC,
Organization Based Access Control. Il vise à pallier les limites des modèles de sécurité ex-
istants tout en simplifiant la spécification d’une politique de sécurité. Nous proposons un
modèle plus riche et plus modulaire qui permet de distinguer la rédaction de la politique de
sécurité de son implantation. Ceci est rendu possible par l’abstraction des entités tradition-
nelles du contrôle d’accès : les sujets sont employés dans des rôles, les objets sont utilisés
dans des vues et les actions implémentent des activités. De plus l’organisation dans laque-
lle un règlement de sécurité est défini prend une place centrale dans ce nouveau modèle.
On peut ainsi analyser l’interopérabilité d’organisations ayant chacune leur politique de
sécurité et par ailleurs modéliser la structure des organisations. Trois autres aspects sont
détaillés dans ce mémoire. Premièrement, afin d’obtenir un règlement de sécurité dynamique,
nous intégrons une large variété de contextes. De tels contextes permettent d’activer ou
de désactiver des autorisations. Deuxièmement, nous offrons la possibilité d’exprimer des
autorisations négatives et définissons une méthode de gestion des conflits entre autorisa-
tions positives et négatives qui a la particularité d’être paramétrable et de permettre de
détecter et surtout de prévenir les conflits. Enfin, nous associons à notre modèle un modèle
d’administration, AdOr-BAC, qui permet de gérer l’ensemble d’une politique de sécurité
Or-BAC de façon flexible et décentralisée. Nous présentons également deux travaux de mise
en œuvre : l’adaptation de notre modèle dans un environnement réseau et le développement
d’OToKit, une maquette de saisie et de validation d’une politique de sécurité Or-BAC.

Mots-clés : Or-BAC, politique de sécurité, contrôle d’accès, contexte, détection des con-
flits, administration, AdOr-BAC, OToKit.

L’annexe B propose un plus long résumé de la thèse en français.

La thèse a été financée par France Télécom Recherche & Développement, et les travaux ont
été réalisés à l’ONERA - Centre de Toulouse de mars 2002 à décembre 2004 et à l’ENST-
Bretagne (campus de Rennes) de janvier 2004 à juin 2005.

Abstract

This thesis presents a new access control model called Or-BAC (Organization-Based Access
Control). We aim at overcoming the limitations of the existing models while simplifying
the security policy specification. We suggest a more expressive and modular model that
enables us to make a distinction between the policy and its concrete implementation. This
is obtained by making an abstraction of the traditional access control entities subject, action

and object. Actually, subjects are empowered in roles, objects are used in views and actions

implement activities. Furthermore, the concept of organization is central to our model. This
makes it possible to better analyze interporability between organizations and to model an
organization structure by designing hierarchies of organization. Three other features are
tackled in this dissertation. First, in order to obtain dynamic security rules, we introduce
the entity context. It enables us to define in which circumstances authorizations must
be activated and deactivated. Second, we consider negative authorizations since it allows
to more easily specify complex policies. As conflicts might occur between positive and
negative authorizations, we provide a parametric conflict management strategy that allows
us to detect and resolve potential conflicts. Finally, we define an administration model
called AdOr-BAC. This administration model is fully compliant with Or-BAC and offers
convenient and flexible means to manage Or-BAC policies. The last part of the dissertation
is dedicated to two implementation works: The application to a network environment and
the development of a prototype application, OToKit, used to design Or-BAC policies and
to detect and solve conflicts.

Keywords: Or-BAC, security policy, access control, context, conflict management, ad-
ministration, AdOr-BAC, OToKit.

This thesis was funded by France Télécom Recherche & Développement. The research took
place at ONERA-Toulouse Research Center from March 2002 to December 2004, and at
ENST-Bretagne (Rennes) from January 2004 to june 2005.

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my supervisor Prof.
Frédéric Cuppens. I thank him for the opportunity he offered me to start this thesis and
then for his patience and guidance during the past three years. His constant good mood as
well as his friendship have made it a real pleasure to do my thesis under his supervision.

I am thankful to the committee members of my thesis defense, Michel Riguidel, Dominique
Chandesris and the chairman Ana Cavalli. I would like to thank Pierre Rollin and Thomas
Jensen for the time taken to review my dissertation, and for their valuable comments.

I would like to thank Jacques Cazin for having welcomed me at ONERA in the DTIM
department for the first part of the thesis, and Gilbert Martineau and Xavier Lagrange for
having enabled me to carry out the last year and a half at ENST-Bretagne at the RSM
department.

I am especially grateful to Christine Potier from ENST Paris and Josette Brial and Monique
Perron from ONERA for their determination in making it possible to start this thesis.

My thanks go to my undergraduate partners Thierry Sans, Fabien Autrel, Joaquin Garcia
and Remy Delmas for the work accomplished together, and who by now have become good
friends. I would like to thank them for the goods moments spent together over the past years.
Many thanks to Céline Coma who was a great help in preparing my thesis presentation, and
I wish her good luck for the thesis she is now starting.

I would like to thank Nora Cuppens-Boulahia. Her ideas and suggestions had a large influ-
ence on the direction the research took. Furthermore her comments on drafts of the thesis
were invaluable.

I benefited from a collaboration with members of France Télécom R&D. My thanks especially
go to Béatrice Renard, Sarah Nataf, Jean-Marc Hospital and Pierre Combes.

My dearest thanks go to my family and specially my Parents, Annick and Stéphane, for all
their support and love during my never-ending education. Thanks to my brother, Pierre,
who is a model for me and is one of the reasons why I did a Ph.D.

Finally, I could not express all my gratitude to my dearest Arline Brisemur. You constantly
encouraged me during these three years and pushed me when my motivation was diminishing,
even though the decision of doing a Ph.D. had meant that we were separated most of the
time, and made our lives quite complicated. Thank you for having spent hours and days
to carefully read the draft of this thesis and help me with your professional translation
skills. Your exigent coaching during the Ph.D defence preparation highly improved my talk.
Thanks you for your patience ... and for everything.

Contents

Résumé v

Abstract vii

Acknowledgments ix

Contents xi

Acronyms and Abbreviations xvii

List of Figures xix

1 Introduction 1

1.1 Context . 1
1.2 Thesis objectives . 3
1.3 Outline of the dissertation . 4

2 Related work 7

2.1 Introduction . 7
2.2 Entity structuring . 9

2.2.1 IBAC models . 9
2.2.2 Subjects structuring . 11
2.2.3 Objects structuring . 14
2.2.4 Actions structuring . 15
2.2.5 The Concept of organization . 15
2.2.6 Multiple structuring . 17
2.2.7 Hierarchy and inheritance . 19
2.2.8 Conclusion . 22

2.3 Dynamic access control . 23
2.3.1 Principle . 23
2.3.2 Different kind of contexts . 23
2.3.3 Rule-based models . 26
2.3.4 Context enforcement . 27
2.3.5 Conclusion . 27

2.4 Negative authorizations and conflict management 28

xii CONTENTS
2.4.1 Motivation . 28
2.4.2 Expression of negative authorizations 29
2.4.3 Conflict management . 30
2.4.4 Conclusion . 34

2.5 Administration models . 34
2.5.1 Introduction . 34
2.5.2 Mandatory Access Control . 35
2.5.3 Administration of role-based models 36
2.5.4 Delegation . 38
2.5.5 Conclusion . 40

2.6 Chapter conclusion . 40

3 The Or-BAC model 43

3.1 Introduction . 43
3.2 The concept of organization . 44
3.3 The model entities . 45

3.3.1 Subjects and roles . 45
3.3.2 Objects and views . 47
3.3.3 Actions and activities . 48
3.3.4 Attributes . 50
3.3.5 Organizational authorization . 51

3.4 Modelling contexts . 52
3.5 Concrete permission . 54
3.6 Security policy . 55
3.7 Conclusion . 57

4 Or-BAC extensions 59

4.1 Hierarchy within Or-BAC . 59
4.1.1 Introduction . 59
4.1.2 Role hierarchy . 60
4.1.3 View and activity hierarchies . 63
4.1.4 Organization hierarchy . 64
4.1.5 Conclusion . 66

4.2 Modelling Constraints . 67
4.2.1 Relevance constraints . 67
4.2.2 Cardinality constraints . 68
4.2.3 Separation constraints . 68

4.3 Conclusion . 69

5 Complexity and decidability 71

5.1 Introduction . 71
5.2 Datalog¬ . 72
5.3 Logic theory . 74

CONTENTS xiii

5.4 Conclusion . 75

6 Modelling contexts 77

6.1 Introduction . 77
6.2 From conditions to context . 78
6.3 Context definition in Or-BAC . 79

6.3.1 Context example . 80
6.3.2 Context composition . 81
6.3.3 Compliance with Datalog . 81

6.4 Taxonomy and required data . 82
6.5 Temporal context . 83

6.5.1 Principle . 83
6.5.2 Basic temporal contexts . 84
6.5.3 Composed temporal context . 84
6.5.4 Example of rules using temporal context 85
6.5.5 Decidability . 85

6.6 Spatial context . 85
6.6.1 Principle . 85
6.6.2 Example of spatial contexts . 86

6.7 User-declared context . 87
6.7.1 Principle . 87
6.7.2 Example of user-declared context . 88

6.8 Prerequisite context . 89
6.8.1 Principle . 89
6.8.2 Example of prerequisite context . 89

6.9 Provisional context . 90
6.9.1 Principle . 90
6.9.2 Example of provisional context . 90

6.10 Separated context . 91
6.11 Context hierarchy . 92
6.12 Conclusion . 92

7 Prohibitions and conflict management 95

7.1 Introduction . 95
7.2 Principles of the approach . 96

7.2.1 Conflicts in theory Tpol . 96
7.2.2 Priority levels . 97

7.3 The new derivation process . 99
7.3.1 Step 1: Conflict management strategy 99
7.3.2 Step 2: From organizational to concrete authorizations 101
7.3.3 Step 3: Deriving explicit permissions 101

7.4 The prioritized theory TPpol . 102
7.4.1 Inheritance management . 102

xiv CONTENTS

7.4.2 Specification of theory TPpol . 102
7.4.3 Conflict in the prioritized theory . 103

7.5 Conflict prevention . 104
7.5.1 Conflict prevention: first proposal . 105
7.5.2 Conflict prevention: second proposal 105
7.5.3 Conflict prevention: last proposal . 106
7.5.4 Example . 107

7.6 Redundant authorization detection . 108
7.7 Conclusion . 110

8 AdOr-BAC: The administration model for Or-BAC 113

8.1 Introduction . 113
8.2 URA in AdOr-BAC . 115

8.2.1 The view URA . 115
8.2.2 Managing the view URA . 116
8.2.3 Example . 117
8.2.4 The prerequisite conditions . 118

8.3 PRA in AdOr-BAC . 119
8.3.1 The view PRA . 119
8.3.2 Managing the view PRA . 120
8.3.3 Example . 120
8.3.4 Prerequisite conditions . 120

8.4 UPA in AdOr-BAC . 121
8.4.1 UPA: granting permissions on specific actions and objects 122
8.4.2 Managing the view UPA . 123
8.4.3 Example . 123
8.4.4 UPA’: granting permissions on activities and views 124
8.4.5 Managing the view UPA′ . 125
8.4.6 Application to delegation . 125

8.5 Other administration functions . 126
8.6 Conclusion . 127

9 Enforcement of the Or-BAC model 129

9.1 Application of Or-BAC in a network environment 129
9.1.1 Motivation . 129
9.1.2 Related work . 130
9.1.3 Main features of our approach . 131
9.1.4 Organizations . 132
9.1.5 Subjects and roles . 133
9.1.6 Activities . 134
9.1.7 Views . 134
9.1.8 Security policy . 135
9.1.9 Derivation of concrete firewall rules . 136

CONTENTS xv

9.1.10 Conclusion . 138
9.2 OToKit: Or-BAC ToolKit . 139

9.2.1 Motivation . 139
9.2.2 Objectives . 139
9.2.3 Implementation choices . 140
9.2.4 Programming aspects . 140
9.2.5 OToKit graphical interface . 142
9.2.6 Achieved work . 143
9.2.7 Performance results . 152
9.2.8 Future works . 153
9.2.9 Conclusion . 153

10 Conclusion 155

Bibliography 159

A Table 1

A.1 Basic predicates of Or-BAC . 1
A.2 Positive and negative authorizations specification in Or-BAC 3
A.3 Derivation rules in Or-BAC . 3
A.4 Basic constraints in Or-BAC . 5
A.5 Prioritized authorizations in TPpol

. 6
A.6 Derivation rules in TPpol

. 6
A.7 Constraints in TPpol . 7

B French summary 9

B.1 Introduction . 9
B.2 Le modèle Or-BAC . 10

B.2.1 Les organisations . 11
B.2.2 Les sujets et les rôles . 13
B.2.3 Les objets et les vues . 13
B.2.4 Les actions et les activités . 14
B.2.5 Une politique de sécurité à deux niveaux 14
B.2.6 Conclusion . 16

B.3 La modélisation des contextes . 16
B.3.1 Motivation . 16
B.3.2 L’entité Context . 16
B.3.3 Taxonomie des contextes . 17
B.3.4 Conclusion . 18

B.4 La gestion des conflits . 19
B.4.1 Expression des interdictions . 19
B.4.2 Approche générale . 20
B.4.3 Politique de gestion des conflits . 21

xvi CONTENTS

B.4.4 Prévention de conflits . 22
B.4.5 Conclusion . 23

B.5 Le modèle administratif . 23
B.5.1 Introduction . 23
B.5.2 PRA . 24
B.5.3 Délégation . 25
B.5.4 Conclusion . 26

B.6 Mise en œuvre . 26
B.6.1 Application à un environnement réseau 26
B.6.2 OToKit . 27

B.7 Perspectives . 27

Acronyms and Abbreviations

ABAC Activity Based Access Control
AC Access Control
ACL Access Control List
AdOr-BAC Administration of the Or-BAC model
A-ERBAC Administration of the ERBAC model
ARBAC Administrative Role-Based Access Control
CBAC Coalition-based Access Control
C-TMAC Context-based Team Access Control
DAC Discretionary Access Control
DRM Digital Right Management
ERBAC Enterpriser Role-Based Access Control
FAF Flexible Authorization Framework
GRBAC Generalized Role-Based Access Control
IBAC Identity-Based Access Control
IS Information system
IT Information Technology
ISP Internet Service Provider
LAMP LogicAl Multi-Policy
MAC Mandatory Access Control
MPEG Moving Picture Experts Group
NIST National Institute of Standards and Technology
OCL Object Constraint Language
Or-BAC Organization-Based Access Control
OS Operating System
PDA Portable Digital Assistant
PRA Permission-Role Assignement
RBAC Role-Based Access Control
RB-RBAC Rule-Based RBAC
RCL Role-Based Constraints Language
RRA Role-Role Assignment
Rule-BAC Rule-Based Access Control
SARBAC Scoped Administration of Role-Based Access Control
SDL Standard Deontic Logic
SOD Separation of Duty
SQL Structured Query Language
SSO System Security Officer

xviii Acronyms and Abbreviations

TBAC Task-Based Authorization Control
TRBAC Temporal Role-Based Access Control
T–RBAC Task–Role-Based Access Control
UCON Usage Control
UPA User-Permission Assignment
URA User-Role Assignment
VBAC View-Based Access Control
VRBAC View–Role-Based Access Control

List of Figures

2.1 RBAC main components . 12

2.2 RB-RBAC main components . 12

2.3 The RBAC0 model . 13

2.4 The RBAC NIST model . 13

2.5 The T-RBAC approach . 18

2.6 Access Control in the T–RBAC model . 18

2.7 An example of role hierarchy . 20

3.1 The Empower relationship . 46

3.2 The Use relationship . 48

3.3 The Consider relationship . 49

3.4 Abstraction of the traditional access control entities 51

3.5 The Hold relationship . 53

3.6 The Permission relationship . 54

3.7 The Is permitted relationship . 55

3.8 The Or-BAC model . 56

4.1 An example of a multiple role hierarchy . 60

6.1 Context taxonomy and required data . 83

7.1 Permission → Is permitted . 98

9.1 Application to a network example . 133

9.2 Role description . 134

9.3 Permissions in organization B . 136

9.4 Permissions in organization B fw1 . 136

9.5 Permissions in organization B fw2 . 137

9.6 Derivation of concrete firewall rules . 137

xx LIST OF FIGURES

9.7 The main components of the OToKit program 141

9.8 Example of Prolog rule . 141

9.9 Java method with JPL objects . 142

9.10 Class hierarchies in OToKit . 143

9.11 OToKit graphical interface . 144

9.12 Role-user assignment . 145

9.13 Authorization expression . 146

9.14 Example of authorization inheritance . 147

9.15 Context expression . 148

9.16 Separation constraint . 148

9.17 Conflict prevention . 149

9.18 Authorization request simulation . 150

9.19 Actual conflict simulation . 151

9.20 Performance results array . 153

10.1 New Or-BAC architecture . 157

B.1 Le modèle Or-BAC . 12

B.2 Taxonomie des contextes et données requises 18

B.3 La gestion des conflits dans le modèle Or-BAC 21

B.4 Exemple du billet d’avion . 24

Chapter 1

Introduction

1.1 Context

Information system security is a major field of research that is in constant evolution. Com-
panies, institutions and even families increasingly use information technologies. These tech-
nologies have indeed an important place in our everyday life, in our professional life as well
as in our spare time. Computers enable us to store a large amount of data and to perform a
large variety of tasks quickly. New IT devices, like PDAs, appear on the market and broaden
the use of digital information. Furthermore, network technologies gain speed and efficiency.
This increases the desire to exchange data between enterprises and between individuals.
This progress both greatly facilitates activities we carried out by other means, and provides
new ways to communicate and work. In return, several risks related to security are on the
increase. New practices come with new threats. As a consequence, the awareness of the
importance of data protection is also growing.

We should first clarify some vocabulary. We use the term “system” in a general sense
of a set of users, data, devices and procedures brought together in order to achieve some
predetermined objectives. We call IT system the systems that rely on digital technologies.
However, we do not limit the scope of our study to them. We rather turn our attention
on information systems in general. An information system (IS) encompasses all solutions
provided to store, treat, exchange and protect information in an organization.

IS security is usually defined as the ability to ensure data confidentiality, integrity and
availability. Confidentiality corresponds to the protection against data disclosure. In other
words, confidentiality is maintained if sensitive data cannot be consulted by unauthorized
people. In the same way, integrity refers to the ability to protect data from unauthorized
modification. Finally availability consists in the protection against withholding information
or resources [TCSEC 1985]. Availability is ensured if data is available under the conditions
of time, delay and performance defined beforehand. These are the main security properties.
One could also add for example auditability (provide sufficient information related to the IT
system’s current activities), non-repudiability (a user cannot deny an action he performed)
or privacy (keep private information secret). Securing an IS consists in maintaining these
properties.

The definition of a process aiming at ensuring these properties in an IS might be divided

2 Introduction

into three steps. The first step is the risk analysis and management. This consists in
examining the threats which hang over the IT system, highlighting its vulnerabilities and
determining which of the data is sensitive and at what degree. Thanks to this analysis, it is
then possible to establish the security policy. Such a policy contains a set of rules that state
the requirements (inferred from the risk analysis) regarding the protection of information
and resources. It might specify which users are allowed to access which data for instance.
The third step corresponds to the enforcement of the security policy. This deals with the
choice and implementation of technical solutions that carry out the policy requirements. In
this thesis we take an interest in the second step, that is, the security policy part.

It is not so easy to give a definition of security policy. It might address different issues, in
different fields and using different formalisms. Security policies can be used to specify the
physical accesses to buildings, rooms or devices; as well as the logical accesses to digital
data stored in file systems or databases. Network accesses, that is, authorized information
flows described as services between networks or hosts are also expressed in the security
policy. Furthermore, these policies might be written in natural language, in mathematical
formalisms or in particular security devices languages. Part of the policy corresponding to
usual practices might even not be expressed at all. As a consequence, in most organizations,
the security policy is not a single, complete and coherent document but rather a set of rules,
charters and recommendations scattered in different departments, managed by several people
and expressed in different languages.

In order to clarify the security policy issue, let us first consider the definition given in
the european security evaluation criteria ITSEC [ITSEC 1991]. A policy is a three level
concept. At the highest level is the Corporate Security Policy also called Organizational
Security Policy: it is the “set of laws, rules and practices that regulate how assets, including
sensitive information, are managed, protected and distributed within the organization”. In
accordance with the corporate security policy, an organization can then specify for each
system1 a specific System Security Policy. The definition of such policy is exactly the same
as above but applied to systems. Finally, the technical measures to be applied to a system
may be separated from the remainder of the system security policy in a separated document
called Technical Security Policy and defined as follows: “set of laws, rules and practices
regulating the processing of sensitive information and the use of resources by the hardware
and software of an IT system”.

This definition is general and might encompass a great number of fields. However, it brings
in a significant notion. A security policy should be specified at several levels. Each level
being more specialized than the one above while remaining compliant with it. This aims
at obtaining a top-bottom hierarchical security policy. Afterwards we make the most of
this idea: we introduce the notion of organization. Systems can then be considered as
sub-organizations and are associated to specific security policies.

The first interesting works on security policies appeared at the end of the 60s and actually
focused on the access control part which establishes the access granted to users over the
resources of a system. Discretionary access control [DAC 1987, Harrison et al. 1976] only
deals with IT systems and formulates policies at the implementation level. Mandatory access
control [Bell and LaPadula 1976, Lampson 1971] provides solutions to ensure confidentiality

1In the ITSEC, a system is defined as “a specific IT installation with a particular purpose and known

operational environment”.

1.2 Thesis objectives 3

and is based on data labelling. Research on such models were first dedicated to military
environment. In the early nineties new models were defined, among which is the so called
RBAC model [Ferraiolo et al. 1993]. These models have the particularity of being adapted
to civil and commercial organization needs. Moreover, they take into account requirements
of modern information systems. Some of them suggest abstraction and structuring means in
order to move away from implementation and to offer higher level policies. However these
security policy models typically come from specific perspectives and tend to emphasize a
particular system or application.

1.2 Thesis objectives

We should first motivate the definition of a model dedicated to security policies. Modelling
a security policy consists in using techniques to elaborate a mathematical representation of
the existing system components related to security, for the purposes of converting it into a
computer model. Such a model is used to understand better the policy and its environment,
to analyze and improve its functioning, and to simulate the effects of changes on the system.
Modelling is used to specify and analyze a policy and prepare it to be converted into closer
implementation languages. The expressivity of a security policy depends on the model it
relies on.

The research in security policy modelling has been really active in the past fifteen years.
Many new models have been proposed: access control models, flow control models, usage
control models, administration models, network policy models, etc. Nevertheless, we claim
that none of them is fully satisfactory with respect to the requirements we are attempting
to address.

Security is essential and even vital to ensure the smooth running of information systems
and the durability of organization relying on such systems. Our ambition is thus to provide
a convenient, flexible and expressive security model that makes it possible to deal with a
wide range of security issues, in two axes: horizontally by addressing many security fields
like physical and logical accesses, and vertically by reasoning from the highest organization
level to implementation.

Within the framework of this dissertation we design a new security model called
Organizational-based Access Control, or Or-BAC. It relies on a fragment of first-order logic,
and more precisely on Datalog. The first research works on this model was carried out in
the context of the MP6 project2. In this thesis, we extend the Or-BAC model and build
new features.

For the time being, the scope of the Or-BAC model is limited to the access control (AC)
part of a security policy. Afterwards I might use the term “security policy” instead of
“access control policy”. We introduce in Or-BAC several features we claim that have to be
integrated in a modern AC model. Let us enumerate these features.

We first suggest a federative solution which allows us to abstract the traditional access
control entities. This abstraction provides means to specify high level organizational policies,
regardless of the implementation choices. We apply hierarchies and inheritance in order to

2http://www.telecom.gouv.fr/rnrt/rnrt/projets/res 01 59.htm

4 Introduction

bring in facilities to manage wide and complex policies.

Since an information system evolves along several circumstances, the security rules specified
in a policy must be adapted to a dynamic environment. This is carried out by defining
dynamic rules that depend on given contexts. Or-BAC allows us to express a large number
of contexts, and thereby is suitable in many application fields.

Traditional access control models are composed of rules that grant users some permissions
to access data and resources of the system. These positive rules are convenient for simple
systems. However, we claim that negative rules that explicitly state the forbidden accesses
must also be integrated in an AC model. We made Or-BAC compatible with such a require-
ment. As a counterpart, expressing positive and negative rules raises an awkward problem
since the rules might be conflicting. Therefore, we suggest a powerful solution to detect, and
above all, to prevent any appearance of conflicts. Furthermore, the prevention mechanism is
defined at the organizational security level. This ensures the absence of conflicting situations
whatever are or will be the implementation choices.

Finally, the security level of an IS relies on the ability to provide a relevant policy. This must
be ensured at the time of the definition of the policy; but in order to maintain its relevance,
the model must provide special procedures allowing to update the policy and keeping it
in adequation with the system. These administrative procedures are taken into account in
our model since we define an associated administration model called AdOr-BAC. This last
model has, among others, the particularity to use a formalism fully compliant with Or-BAC.

This dissertation’s objectives is to present these four features. Elsewhere, I also present
two works carried out on the application of the Or-BAC model on concrete policies. I first
present an application of Or-BAC in a network environment. Then I describe OToKit (Or-
BAC Toolkit), a software prototype designed to specify Or-BAC policies, detect potential
conflicts, and simulate concrete policies.

1.3 Outline of the dissertation

In this thesis, I first develop in chapter 2 a state of the art related to security policies and
more precisely regarding access control polices. My purpose is not to detail each model
individually, but rather to focus on the main requirements a new security model should
address and to describe existing models as I mention these requirements. In chapter 3,
we shall define the basis of the Or-BAC model. We describe its components and the way
they are related. We describe others features of Or-BAC in chapter 4 in order to give a
complete overview. We broach the hierarchy and constraint issues, and present a formal
definition of the model. The chapter 6 is dedicated to the specification of flexible and
dynamic security rules to capture, through the definition of contexts, complex and dynamic
security requirements. In chapter 7, we deal with the conflicting situations that might occur
between permissions and prohibitions and with the solution we provide to prevent, detect
and solve conflicts. The AdOr-BAC model is presented in chapter 8. The definition of
this model completes the one of Or-BAC and aims at specifying administrative procedures
for creating and updating a security policy. We present concrete works in the context of
Or-BAC policies in chapter 9. We show that Or-BAC is flexible and strong enough to be
applied to network policies. Finally, the conclusions and perspectives related to the thesis

1.3 Outline of the dissertation 5

are the subject of chapter 10. In appendix A, the reader can find all predicates and rules
defined throughout this dissertation.

Chapter 2

Related work

The objective of the thesis is to design a new access control model. This chapter is dedicated
to the main requirements our model has to fulfil. As a consequence, this chapter is not
organized as a catalogue of existing models. Rather, we suggest developing the requirements
we want to achieve, and study at the same time the solution proposed in the literature.

2.1 Introduction

A security policy, whatever definition it has, is composed of a set rules that define how
users may interact with objects. Such rules may specify that some users can, cannot, or
must have an access to some objects. Thus, we should first clarify the vocabulary used
afterwards. If a rule states that a user can have an access to an object, it is called a
“positive authorization”. We might also call it a “permission”. Other terms are used
in the literature such as “privilege” or “right”, but we consider only the first two ones.
If a rule states that a user cannot have an access to an object, it is called a “negative
authorization” or a “prohibition”. “Negative permissions” and “denials” can also be found
in the literature. The term “authorization” is used to describe equally a positive or a
negative authorization. Finally if a rule states that a user must have an access to an object,
it is called an “obligation”.

There is a great number of existing security policy models in the literature. Some address the
same issues, some address different ones. For instance some models are dedicated to activity
sequence control, others to the users structuring. As mentioned earlier, we mainly focus in
this thesis on models that aim at controlling the use made by the users of the information
system resources. In order to browse the models we consider relevant in this work, we make
a distinction between four families of security policy models: the access control models, the
flow control models, the usage control models and the administration models.

Access control models enable us to specify which actions the users are allowed to carry
out on which objects. Their aim is to protect resources and services from unautho-
rized access. If we make a distinction between an object – container – and the informa-
tion – content – that this object carries, we should say that access control policies at-
tempt to govern access to containers. Most of access control models only consider pos-
itive authorizations [Harrison et al. 1976, Sandhu et al. 1996, Thomas and Sandhu 1997,

8 Related work

Thomas 1997], but more recently some models attempt to integrate negative authorizations
also [Jajodia et al. 2001b, Bertino et al. 2003, Halpern and Weissman 2003].

Flow control models aim at providing an efficient response to one of the main problems
of access control models: in access control, if programs – more precisely processes – are
considered as subjects, then a malicious process might illegally transmit some unautho-
rized data. Therefore in flow control models, the objective is to control the access to data
– i.e. the contents – by controlling the information flow. First works on flow control
[Bell and LaPadula 1976, Biba 1975, Kang et al. 2001] were mainly dedicated to securing
information system in the defense area.

Usage control (UCON) models are the result of recent research works in the field of
digital right management (DRM). The usage control approach is quite different from
the access control approach. In access control, some permissions are granted to users
to access “static” objects, in other words, objects that are usually stored within the
user’s organization. Usage control is based on a different paradigm in which objects no
longer stand in a computer system but are also shared or sent through Internet to pri-
vate computers or PDAs, MP3 players, etc., owned by numerous and unknown clients.
In [Park and Sandhu 2002, Sandhu and Park 2004], the authors design a model called
UCONABC , which provides authorizations, obligations and conditions management.

Administration models are usually ignored in most security policies. We claim that admin-
istration is a major part in the security policy area, mainly for two reasons. First, managing
a large scale information system implies that a complex and sizeable security policy has to
be administrated. This can usually not be done by a single system security officer (SSO).
Next, an information system evolves over the time and according to the evolution of the
organization it corresponds to. Therefore, the security policy must also evolve in order to
always match the information system security requirements. For these reasons, appropriate
administrative procedures must be designed in order to state which users are allowed, among
other tasks, to add, modify or delete authorizations. A set of such procedures can be viewed
as a meta-policy. Thus a complete administration model must be designed.

Within the framework of the thesis, we focus on access control and administration models.
We do not tackle the flow control field. We assume that programs are trustful. Moreover,
we cite some characteristics of usage control models, but without examining them in detail.
So far, the model we propose does not address the digital right management (DRM) issue.

Information systems become every day more complex, and the awareness of the importance
of data and resources protection is increasing. As a consequence, there is a larger number of
more accurate security policies needs that ought to be addressed. It calls for more flexible
and expressive policies. This has led to an extensive research activity these past years and the
definition of a large number of models. These models deal with very different requirements.
Unfortunately, they usually only address one issue. Therefore, we might regret the lack of
models which aim at fulfilling several requirements at the same time.

The objective of this chapter is to browse and discuss the models we consider relevant.
Nevertheless, this chapter is not organized along these models, but instead along the needs
and requirements a new model should fulfil. These requirements are: entities structuring,
dynamic authorization expression, negative authorization expression and conflict manage-
ment, and administration. Existing models are considered further as we present these needs.

2.2 Entity structuring 9

We begin with the easiest model and see how to extend it in order to obtain a more complex
and more flexible model.

The remainder of this chapter is organized as following. In section 2.2 we focus on the
necessity to offer means to organize and structure the traditional access control entities. This
section starts with simple authorizations over the entity triplet < subject, action, object >.
Then we examine how to structure these entities in order to make policies more general
and their management easier. To obtain more expressive policies, it should be possible to
bring authorizations to evolve along certain circumstances. This is addressed in section 2.3
which is dedicated to dynamic models. Dynamic authorizations correspond to a major
requirement since modern information systems can definitely not be regulated with static
rules. So far, we consider positive authorizations only. We show in section 2.4 that negative
authorization expression might be useful in several ways. In particular, this enables the
system security officer (SSO) to specify positive policies in which negative authorizations
correspond to some exceptions. Models that enable us to express negative authorizations
are discussed in this section as well as the mechanisms they proposed to detect and solve
conflicts that may appear between permissions and prohibitions. Finally, a full security
policy model must be associated with an administration model. Without such a model, the
relevance of a policy cannot be maintained. Therefore, the ability to administrate a policy
is a strong requirement. Section 2.5 is dedicated to this issue.

2.2 Entity structuring

In this section, we deal with the necessity to structure the traditional entities subject, action

and object. The relevance of an access control policy relies on the modelling choices. We
first consider the most simple access control model, namely IBAC or Identity-based access
control. Then we shall examine several manners to design a more flexible and powerful
model.

2.2.1 IBAC models

IBAC models are the first models suggested in the literature and are implemented in most
operating systems (OS), such as Windows, Unix, Linux, etc. In identity-based models,
authorizations are granted to users according to their identity. Let us first define the relevant
vocabulary we use afterwards.

Subject, Object and Action

The notions of “subject” and “object” were first introduced by Lampson [Lampson 1969]. A
subject is an active entity. In a computer system context, it includes users, that is, subjects
in the form of a person, and processes which run on behalf of these users. A subject may
cause some information to flow among objects and the system state to change. An object
is a passive entity that contains or receives information. Accessing an object potentially
implies access to the information it contains. Objects can be files, directories, programs,
printers, etc. In [Harrison et al. 1976] no restriction is made regarding entities that might
be both subject and object. Since an entity is active – resp. passive – it can be considered

10 Related work

as a subject – resp. an object. Nevertheless it is usually admitted that the set of subjects
is a subset of the set of objects.

Subjects interact with objects through different modes. These modes are called “Action”,
“Access type” or “Access mode”. In operating systems, the actions are for instance “read”,
“write”, “execute”, etc. In databases, actions are “INSERT”, “CREATE”, “UPDATE”, etc.

Principle

In general, access control models are used to govern direct accesses made by subjects over
objects using actions. As a consequence, a policy can be modelled as a set of triplets
< subject, action, object >. All IBAC models have the distinctive feature of being based
on the subject entity. For example, in UNIX systems, users are identified by their uid and
processes by their pid. This identifier is the key to decide whether or not an access to an
object is granted to a subject.

This is a really simple access control model. Managing a large number of subject may
become difficult. To simplify the management of IBAC policies, groups of subjects can be
formed. A group is merely a collection of subjects which can occur as a single entity in a
triplet < subject, action, object >. Therefore, assigning an authorization to a group confers
this authorization to all its members. Groups are used in most implementations.

IBAC is often confused with discretionary access control (DAC) models [DAC 1987]. DAC
can be seen as an extension of IBAC. The control in a DAC model is discretionary in the sense
that a subject with a certain access permission is capable of passing that permission (perhaps
indirectly) on to any other subject [TCSEC 1985]. Usually in DAC models, subjects own
objects, and in general they own the objects they created. Thereby subjects are allowed to
specify explicitly the actions that other subjects may have over objects under their control.
We claim that DAC models should rather be considered as administration models and
thereby this matter is further discussed in section 2.5.

Access matrix representation

An access matrix [Lampson 1969, Harrison et al. 1976] is a two-dimensional matrix repre-
senting subjects on the rows and objects on the columns. Each entry in the matrix represents
the access types held by a subject on an object. Access types can be “read”, “write” or
“execute”. Access matrices are a convenient way to represent access control rules.

Implementation

Several mechanisms can implement an IBAC policy. We consider here only three of them:
access control list (ACL), protection bits, capabilities.

In relation to the access matrix, ACLs roughly correspond to the transcription of the matrix
columns. An ACL can thus be viewed as an object attribute. It specifies which subjects
can access this object. Usually an ACL refers to one or several subjects, or to a group, like
in Multics [Honeywell 1984] and Trusted Minix [Donaldson et al. 1990].

Protection bits also correspond to access matrix columns. UNIX system is a well-know
implementation of protection bits. For each object, there are three groups of three bits.
Each bit controls the read, write and execute accesses to the object. The three groups

2.2 Entity structuring 11

represent the object’s owner, the object’s group, and all others. This mechanism is a partial
representation of the access matrix since the access modes of a given user cannot be defined.

Instead of ACLs and protection bits, capabilities roughly correspond to the matrix rows.
Capabilities can thus be viewed as subject attributes. A subject’s capabilities describes the
operations that this subject can perform on given objects. A capability is a ticket described
as a pair (x, r) where x is an object and r a set of access rights. This ticket offers to its
owner the permission to perform accesses r on object x.

IBAC models propose a simple solution to control the interaction between subjects and ob-
jects. Nevertheless, managing a large scale information system using an IBAC model is quite
heavy. Groups of subjects or sets of access rights might be useful, but inadequate in infor-
mation systems where many subjects, actions and objects are defined. A modern security
policy should then propose means to structure these entities and make their management
easier.

2.2.2 Subjects structuring

The role-based access control (RBAC) models [Ferraiolo and Kuhn 1992,
Sandhu et al. 1996, Sandhu 1998, Guiri 1995] suggest a convenient solution to man-
age a set of subjects. Role-based models usually consider subjects as persons, therefore the
term “user” replaces the term “subject”. In order to propose a way to structure a set of
users, these models introduce the concept of “role”.

The concept of role

The concept of role is not specific to the security policy area. This concept is of course
widely used in organizations. Roughly speaking, a role is a function played by a user. In an
organization, a given user is always assigned to one or several particular tasks and gets a title
for that. It can be for example “head of department”, “export manager”, “junior engineer”,
etc. Thereby a role is an organizational position. In role-based models, the users structuring
is based on the set of roles defined at the level of the organization and relies on the following
paradigm: in order to fully accomplish his role, a user needs specific authorizations.

As simple as it seems, [Sandhu et al. 1996] points out that the concept of role is not devoid
of ambiguity. A role may both represent a competence, such as a diploma, or an effective
function that carries specific authority and responsibility. In access control models, roles
are usually used as effective functions.

Access control principle

The security policy does not directly grant authorizations to users but rather to roles,
thereby roles can be viewed as pools of authorizations. Therefore, the RBAC model
[Sandhu et al. 1996] is closer to the notion of capability than to the notion of ACL1. Action
and object concepts are taken into account in the RBAC model. Furthermore, the RBAC
model only considers positive authorizations, that is “permissions”.

1We compare RBAC permissions to capabilities. Nevertheless, [Barkley 1997] shows how ACLs may be

expressed using a very simple role-based model called RBACM .

12 Related work

Users are assigned to roles. A user obtains all the permissions associated with the role
he plays. A user can play several roles and thereby gets all the permissions of its roles.
Figure 2.1 shows that the entity role is used as an intermediary entity between users and
permissions.

RolesUsers Permis-
sions

Figure 2.1: RBAC main components

The difference between groups and roles has been widely discussed in the literature. Even
if groups might be used to model roles, groups and roles correspond to two really different
concepts: a group is a collection of users whereas a role is a collection of permissions.
It is worth mentioning that roles and groups may complete each other. For example in
[Jajodia et al. 2001b], a group can play a role, with the meaning that each user of that
group plays that role.

The concept of role is a really convenient manner to structure users. First because it is a
quite intuitive notion, and it enables to establish a relevant matching between organization
structure and access control policy. Secondly, it provides a handy solution to manage the
policy. For example the SSO can define relevant roles and examine which permissions these
roles need. Then, all he has to do is to assign the users to the roles. Updating the policy
is easy since the modification of the roles’ set of permissions automatically updates the
permissions of all the users that are member of this role.

Attribute-based assignment

In [Al-Kahtani and Sandhu 2002], the authors propose an extension of RBAC called Rule-
Based RBAC (RB-RBAC). Based on attributes, this model makes it possible to automati-
cally and dynamically assign users to roles, and thereby alleviates the SSO’tasks. RB-RBAC
adds the entity “attribute” to the main RBAC model as presented in figure 2.2.

RolesUsers Permis-
sions

Attributes

Figure 2.2: RB-RBAC main components

The assignment of users to roles is carried out through rules of the following form: aei ⇒
rg. In other words, once a user complies with the conjunction of attribute conditions aei,
called attribute expression, this user is assigned to role rg.

Sessions

In the RBAC0 model [Sandhu et al. 1996] the concept of session is introduced in order to
better manage the relationship between users and roles. Indeed a user needs to open a
session and activate a role to get the corresponding permissions. A user is allowed to open

2.2 Entity structuring 13

several sessions. Within a session, a user is not obliged to activate all his roles but only
the subset of his roles that is necessary to perform a given task. Figure 2.3 presents the
complete RBAC0 model.

RolesUsers Permis-
sions

.

.

.

Sessions

Figure 2.3: The RBAC0 model

It is also possible to specify hierarchies and constraints. Hierarchies are discussed in sec-
tion 2.2.7. Constraints are introduced in RBAC2 and are useful to govern sessions. For
instance, constraints can be used to implement the principle of separation of duty. In other
words it makes it possible to specify that not any user can play two conflicting roles at the
same time.

Role-based models just represent a step forward in the access control area. Many models such
as [Bertino et al. 1996, Jajodia et al. 2001b] offer the possibility to express role-based poli-
cies. Nevertheless we might regret that the concept of permission is primitive. When speci-
fying the security policy of a given application, the RBAC model must be refined so that the
structure of permissions be explicit. It is argued that this is because this structure might de-
pend on the application. For example, the NIST solution [Ferraiolo et al. 2001, Weber 1997]
refined the entity Permissions into two new entities “Operations” and “Objects” (see fig-
ure 2.4). We believe that it would be better to include a generic structure of permissions in
the model.

RolesUsers Operations Objects

Permissions

Figure 2.4: The RBAC NIST model

Generally speaking, the original RBAC model suffers from the lack of formal definition.
Some work was carried out in this direction, in [Gavrila and Barkley 1998] for instance. In
[Khayat and Abdallah 2003], the authors suggest a formal model of a RBAC0-like model
based on the specification notation Z.

A 1993 NIST study [Ferraiolo et al. 1993] concludes that role-based models offer means to
meet the majority of the needs of commercial and civil organizations. We claim that some
major improvement are possible.

14 Related work

2.2.3 Objects structuring

The presentation of the RBAC model was an opportunity to study a solution that makes it
possible to organize and structure a set of users. We shall now examine the main proposals
to organize and structure a set of objects.

We should first consider how most operating systems provide a simple way to organize
objects: files are structured into a folder hierarchy. If an action is performed on a folder,
then this action may automatically be applied to all the files inside this folder. This is the
case, for example, when one change a folder’s protection properties.

With some OSs, it is also possible to apply these actions on some files in accordance to their
extension. It is exactly what is suggested in [Jajodia et al. 2001b, Bertino et al. 2003].
Their objective is to model authorizations like “All MPEG files are accessible to the
vice-presidents”. Actually this is close to the notion of view in relational database sys-
tems. In a relational database based on the Structured Query Language (SQL) norm
[Grahne and Ghelli 2002], views can be used to put together some tuples. A view is a de-
rived relation, that is, a relational expression which gets a name. For example, the following
view contains all customer’s accounts which have a credit balance.

CREATE VIEW Credit_account AS

SELECT Number, Balance

FROM Customer_account

WHERE Customer_account.Balance > 0;

On the other hand, SQL makes it possible to design an access control policy by using
GRANT and REVOKE instructions. The GRANT instructions allows the assignment of
permissions to users. Therefore, if appropriate views are created, it is possible to design a
security policy over views and not only over objects. For example, the following instruction
specifies that John and Mary can select and delete any tuples from the view Credit account.

GRANT SELECT, DELETE

ON Customer_account

TO John, Mary;

SQL is a good example of language that enables to apply permissions to groups of objects,
where groups are constituted in accordance with some object attributes. Models based on
this idea might be called “View-based Access Control” (VBAC) models. Let us consider
another solution to regroup some objects. In the TMAC model [Georgiadis et al. 2001], an
object-oriented way is suggested. Objects are called “object instances” and are abstracted
into “object-types”. An object-type is “customer account” for example. All customer’s
accounts are seen as object instances of this object-type. Unfortunately, the model does
not provide any relation or rule to describe object-types and object instances and bonds
between them.

From these two different ways of structuring objects, we observe two really different types
of collection of objects. Objects can be brought together through a part of relation as in in
the view-based model, or through an isa2 relation as in the TMAC model.

2The term isa means “is a”. It refers to a relation is an instance of or is a kind of, and corresponds to a

2.2 Entity structuring 15

2.2.4 Actions structuring

The two previous sections are dedicated to proposals to structure respectively subjects and
objects. Following this line of reasoning we focus on the need to structure actions. Indeed,
in the IBAC models, actions usually correspond to elementary commands. The Task-Based
Authorization Control (TBAC) model [Thomas and Sandhu 1994] suggests an interesting
proposal regarding that issue.

The authors propose to address the integrity issue in information systems. This work mainly
focuses on commercial transactions control. A transaction is composed of several tasks.
Each task has to be validated by an “authorization function” in order to go on to the
following one. Many issues are raised such as temporal dependencies between tasks and
authorizations expiration. We rather focus on the abstraction of tasks and authorization
functions. A transaction cycle is divided into “approval-steps” which can be seen as atomic
steps. Approval-steps are for example “prepare-check” or “billing-approval”. Then the
TBAC model introduces the “authorization-task-unit” which is composed of approval-steps.
An authorization-task-unit gets a data structure that consists among other things, of a
name, attributes and approval-steps.

The TBAC model shows that the use of these kind of concepts allows us to make an ab-
straction of actions and to structure a set of atomic actions by considering composed action
and dependency relations.

The TBAC model is refined in [Thomas and Sandhu 1997]. By analogy with the RBAC
model, a TBAC model family – from TBAC0 to TBAC3 – is defined. With regards to our
purpose, in other words, action structuring, TBAC1 is the most interesting in that it deals
with composite authorizations. It relies on the same principles as the first TBAC model.
TBAC2 integrates constraints, and TBAC3 unifies TBAC1 and TBAC2.

The TBAC model has opened up the way to multiple contributions on that subject. It
is often claimed that a lot of security models are only focused on object-subject oriented
policies, and thereby more research activities should lead towards the definition of mod-
els based on actions, tasks or activities. Such models are sometimes called Activity-Based
Access Control (ABAC) model [Oh and Park 2001b]. Activity-based models are highly re-
lated to research work on “workflow” modelling, like in [Thomas 1997, Cohen et al. 2002,
Cholewka et al. 2000, Crampton 2004, Botha 2001]. In business and transaction activities,
access control decisions may depend on specific sequences of events. The actions or tasks
that users can perform are joined up into a global process, usually called workflow. Autho-
rizations are granted to users according to the actual activated task in that process. We
come back to that issue in section 2.3.

2.2.5 The Concept of organization

In the previous sections we presented some proposals which point was to improve the simple
IBAC model. In this section we introduce the notion of “organization”. Actually, this
notion was explicitly or implicitly suggested in the previous models. In the RBAC model
for instance, a user plays a role, that is, this user is empowered by a given organization to

specialization relation.

16 Related work

play that role. This organization considers that this user has the ability to accomplish the
corresponding tasks, and chooses to grant him the associated authority and responsibilities.
In fact, we might say that “the notion of role is an enterprise or organizational concept”
[Thomas 1997]. In the RBAC model, the organization is not modelled since this model
allows us to only express the access control policy of a single organization. The concept of
organization is explicitly introduced in the administration model of RBAC [Oh et al. 2003].
We will come back to that in section 2.5.

We claim that two requirements lead to the introduction of the concept of organization in a
security policy model. First, the organization modelling provides means to better structure
the subjects, actions and objects involved in a policy. Second, in the framework of collab-
orative activities it should be possible to model organized groups. From this standpoint,
an organization can be defined as a set of users that decide to work together in order to
accomplish a given activity.

Let us consider the TeaM-based Access Control (TMAC) model which was first sug-
gested in [Thomas 1997] as a preliminary TMAC model and was then completed in
[Georgiadis et al. 2001] with the C-TMAC model. This model was mentioned above re-
garding the abstraction made of objects into object-types. Here we focus on the abstraction
made of users and roles into “teams”. This model is particularly adapted to collaborative
environments.

TMAC is based on RBAC and adds an entity Team. If a specific activity is best accom-
plished through an organized group of users, then a team is created and some users are
assigned to this team. Some roles are also assigned to this team in order to restrict the roles
of the team members. On the other hand, some permissions are granted to the teams. In the
end, users obtain permissions in accordance to the role played in the team. Furthermore, the
TMAC model makes it possible to express the set of objects needed by a team to accomplish
its task.

The TMAC model joins the two requirements mentioned earlier: through the notion of
team, this model allows to specify an organization as a collection of users and a collection of
objects. It also allows to distinguish the set of permissions granted to a user in accordance
to his role, or to his role within a team.

Two kinds of organization can be distinguished: the “static” and the “dynamic” organiza-
tions. In a static organization the life time of the link which joins the user, the role and
the organization are undetermined. For instance, a given user is employed by a bank as a
counter clerk. In a dynamic organization, that link should last the time needed to carry
out a specific action. In the TMAC model, teams are dynamic organizations: by analogy to
the RBAC model in which a user activates a role in a session, in the TMAC model, a user
activates a team in a session. In other words, the notion of team is highly binding to the
notion of activity.

The following drawbacks of the TMAC model can be pointed out. The users’ permissions
are the result of the addition of the activated role permissions and the activated team
permissions. Therefore, a user gains more permissions playing a role in a team than playing
a role only. Rather, the combination of role and team should lead to a more restrictive or
more specific set of permissions. For instance, a financial adviser involved in a team that
aims at auditing an entreprise’s accounts should receive specific authorizations when he is

2.2 Entity structuring 17

working in this team, and not hold all the authorizations corresponding to the role financial
adviser and this team.

The second drawback is in fact tied up to the first one. The bond between users, roles and
team, is modelled using two binary relations: a user-role and a user-team relation. Since
permissions are derived from the combination of a role and a team, we believe that a ternary
relation between users, roles and teams would be more suitable. If we consider the example
of the previous paragraph, a single relationship like permission for instance, should link a
user, the role financial adviser and the team. This could be written as follows, where audit

is the privilege:

• permission(John, financial adviser, team, audit)

An interesting issue is not addressed in the TMAC model. Considering that a team is
constituted to carry out an activity that could not be performed by a single role, the model
should propose means to verify that all roles defined in a team are actually provided in
order to grant the permissions to the users. In other words, it should be possible to test
the completeness of a team. This issue is not addressed in TMAC. The recent team-based
model presented in [Alotaiby and Chen 2004] is very similar to the previous ones, and does
not resolve these drawbacks.

The Coalition-Based Access Control (CBAC) model [Cohen et al. 2002] is an interesting
work as regards the notion of organization. In this model an entity organization is created
and corresponds to the concept of “static organization”. An organization is composed of
roles, teams, tasks, resources, functions and users. Unfortunately, the bond between the
concepts of user, role, team and organization remains unclear. Nevertheless, an interesting
point should be emphasized. The CBAC model makes it possible to test the completeness
of a team. This is specified by the constraint ImplementedV ia. The following constraints
mean that, in a bank for example, the task “close customer account” requires the roles
“counter clerk” and “head agency”:

• ImplementedVia (close customer account) = {counter clerk, head agency}
The notion of organization is implicitly present in several security models, and explicitly
in other ones, like in CBAC, and in TMAC through the notion of team. These contri-
butions show that the concept of organization is really useful, specially in the framework
of collaborative environments and large scale organizations. This work has to be further
investigated.

2.2.6 Multiple structuring

Throughout the previous sections we presented models that suggest means to organize and
structure the basic entities subject, action and object of the first IBAC models. We examined
solutions entity by entity. Actually some models enable several structuring at the same time.

We mentioned earlier that SQL provides means to define some views on tuples. In SQL/3,
it is also possible to create roles. Therefore, SQL/3 enables us to grant permissions to roles
on views. This might be called a View–Role-based access control (VR-BAC) model. The
following instructions show how to create the role counter clerk and how to assign users to
this role:

18 Related work

CREATE ROLE counter_clerk

GRANT counter_clerk TO John, Mary;

Using the view defined in the example presented in section 2.2.3, it is now possible to grant
the role counter clerk the authorization to consult the view credit account:

GRANT SELECT ON credit_account TO Counter_clerk;

SET ROLE counter_clerk;

The instruction “SET ROLE” is used to activate a role.

We shall now look at models that integrate role-based and activity-based features. A large
number of research activities is lead in the field of workflow modelling. Some of them try
to associate role-based features. The interesting part is how to link up roles and tasks. We
have already mentioned the TMAC model. In this model the relationship between role (or
team) and task is unclear, but it gives the possibility to grant authorizations applied to
tasks and object-types and thereby offers a double abstraction facility.

We rather focus on the Task–Role-Based Access Control (T–RBAC) model. In
[Oj and Sandhu 2000] permissions are defined as pairs of objects and access modes. Tasks
correspond to abstract activities like “create an account”. Permissions are assigned to tasks.
One should keep in mind that tasks and access modes are two different and separate entities.
Like in role-based models, users are assigned to roles, and finally tasks are assigned to roles.
Figure 2.5 sums up this approach.

RolesUsers Task Permis-
sions

Figure 2.5: The T-RBAC approach

Elsewhere, workflows can be specified. Not all the tasks belong to the workflows. This model
makes it possible to assign to roles both “single tasks” and tasks belonging to a workflow.
In the first case, roles can always perform the tasks, in the second case roles can perform
the task depending on the workflow state (see figure 2.6).

Role

User

Task

Workflow

Task TaskTask

Figure 2.6: Access Control in the T–RBAC model

2.2 Entity structuring 19

[Cholewka et al. 2000, Botha 2001] presents the Context-sensitive Access Control in Work-
flow Environments (CoSAWoEA) model. It addresses the same issue as T–RBAC in that
it integrates role-based and task-based aspects. In CoSAWoEA, workflow processes are de-
signed through the definition of several tasks which are part of a global process. Some roles
are associated to each task. On the other hand, users get some roles, more precisely some
deactivated roles. Users do not obtain any permissions from deactivated roles. In fact, a
role is activated when a task using this role is effectively running, thereby users obtain the
permissions assigned to that role. This can be compared to the role assignment in SQL, in
the sense that the instruction “SET ROLE” has to be performed to activate a role.

The CBAC model incorporates elements of role-based, team-based and task-based models,
and thereby become quite heavy and complicated. In fact, the authors suggest a family of
CBAC models – basic, with teams, with tasks, with both of them. We rather focus on the
last model CBACteam+task. The relation between users, teams and tasks is expressed as
follows:

• ∀ta ∈ Tasks,∀u ∈ Users,ContributesTo(u, ta)⇒
∃tm ∈ Teams,CarriedOutBy(ta, tm) ∧AssignedTo(u, tm)

which means that a user who contributes to a task must be part of the team that performs
this task. Unfortunately, there is no possibility offered to join a user, a team, a task and a
role in the CBAC model.

The main point we wish to stress on is that more and more models include several kinds of
entity abstractions. But it brings complexity, and specialization in the sense of application
dependency. Most of these models are quite laborious and are often dedicated to a single
and specific application area.

2.2.7 Hierarchy and inheritance

The previous sections where dedicated to entities structuring through the abstraction of the
basic entities by introducing new high level entities such as roles, views, tasks, teams, etc.
This part is dedicated to the study of hierarchies and associated inheritance mechanisms.
Hierarchies provide a complementary solution to entity structuring since hierarchies are ap-
plied to high level entities. The use of hierarchy aims at mapping the access control entities
structure on the organization structure. It makes it possible to design inheritance of autho-
rizations based on the hierarchies, and therefore to mimic the authorization propagation in
an organization.

Role hierarchy

The inheritance mechanism was suggested in object oriented programming as an efficient
way to design an application in a modular way. From an organizational point of view, role hi-
erarchies are a natural way of organizing roles in a way that reflects authority, responsibility,
and competency in an organization. By analogy, a similar mechanism is commonly used in
the access control policies based on roles. Indeed, role hierarchies are useful to structure the
security policy specification. The RBAC1 model [Sandhu et al. 1996] adds the concept of
role hierarchies to the RBAC model. It is thus possible to organize a collection of roles using

20 Related work

specific links. A higher role in the hierarchy called “senior role”, and a lower role is called “ju-
nior role”. Let us consider the following example. In the bank Trusted bank, the following
roles are defined: employee, counter clerk, adviser, financial adviser, insurance adviser,
chief adviser and head agency. Moreover, these roles are hierarchically organized as pre-
sented in figure 2.7. Role employee is the “junior-most role” and head agency the “senior-
most role”.

head_agency

counter_clerk

financial_adviser

adviser

employee

insurance_adviser

chief_adviser

Figure 2.7: An example of role hierarchy

In RBAC1, inheritance of permissions operates from a junior role to its senior roles. All
permissions assigned to role employee are inherited by roles counter clerk and adviser.
Moreover inheritance of permissions is transitive so in fact all roles in that hierarchy inherit
from role employee. Role financial adviser only inherits the permissions of role adviser

and passes on his own permissions to role head agency. Hierarchies are defined as partial
orders. They corresponds to reflexive, transitive and anti-symmetric relations.

Role hierarchies offers the facility to structure a set of role through the natural mapping
of the organization structure and provides a convenient solution to simplify the permission
management with the inheritance mechanism. We focused on role hierarchies, but object
hierarchies can also be considered, as suggested in [Jajodia et al. 2001b, Bertino et al. 2003].

Scope of Inheritance

One could point out that senior roles get all permissions, and that there may be some cases
where a role should not inherit from one of its junior role. To limit the scope of inheritance
a simple solution consists in modifying the hierarchy. For example, if role head agency must
not inherit from role financial adviser, it is enough to break the link between these two
roles. This becomes more complex if only a subset of permissions must not be inherited by
role head agency. The RBAC1 model suggests creating a “private role” financial adviser′

as a senior role of financial adviser. Then the SSO just has to assign to that new role the
specific permissions that head agency must not obtain. Although effective, this method can
make the hierarchy become much more complex. Moreover, it does not solve the problem
for the permissions of financial adviser which had been inherited from the role adviser:

2.2 Entity structuring 21

it not possible to avoid these permissions to be inherited by the financial adviser’s senior
role.

This issue is also addressed in [Jajodia et al. 2001b]. The authors suggest labelling each
node in the role hierarchy with a “plus” or a “minus”. A “plus” – resp. “minus” – on a
role indicates that this role can – resp. cannot – inherit permissions from its junior roles.
Moreover this can be specified for each permission individually. The SSO can thus define
fine-grained “propagation strategies”.

Interpretation of hierarchies

The concept of role hierarchy is definitely helpful. However, it is not free of ambiguity.
Some of these ambiguities are directly related to the concept of role itself as brought up
above. In the example of figure 2.7, we can intuitively notice that the hierarchical relations
between the roles are not equivalent to each other. For example, the bank hierarchy seems
to indicate that a head agency is the counter clerk’s boss, whereas a financial adviser is
just an adviser specialized in finance. In [Moffet 1998, Moffet and Lupu 1999] the authors
attempt to clarify the role hierarchy semantics. Three kinds of role hierarchies are identified:
the isa role hierarchy, the part of hierarchy and the supervision hierarchy. Two issues arises
from this point. First, one can wonder the relevance of a single hierarchy that mixes three
kinds of hierarchical links. Second, this classification questions the legitimacy of inheritance
of permissions: Does inheritance really make sense in any of these hierarchies?

The isa role hierarchy corresponds to specialization/generalization links between roles. For
instance, the role adviser is specialized in two roles: financial and insurance adviser. This
means that a user who plays the role financial adviser is an adviser. It thus seems reasonable
that in the case of an isa link, permissions are inherited from the more generalized role to
the more specialized role. In an access control model that includes prohibitions, it is also
reasonable that prohibitions be inherited.

The supervision hierarchy corresponds to an authority relationship between roles. Roughly
speaking, in such a hierarchy, a given role is its junior role’s boss. In the above mentioned
example, the user who plays the role head agency is the counter clerk’s boss. In such a
hierarchy, a senior role is more powerful and thereby should inherit all supervision permis-
sions of its junior roles. By contrast, supervision prohibitions might not be inherited. It
would even make more sense that prohibitions be inherited from the senior roles to the
junior roles. For example if a supervision prohibition is assigned to the role counter clerk,
it is intuitively more relevant to pass on this prohibition to the role employee rather than
to the role head agency. However, inheritance in such a hierarchy is a matter of choice, and
mainly differs with respect to the considered application domain.

Finally, the part of hierarchy corresponds to activity aggregations. To be able to accomplish
its purpose, that is, some given activities, an enterprise may have to define several sub-
activities. In order to carry these sub-activities, some specific roles are created. In our bank
example, the enterprise service department must include a role financial adviser and a role
insurance adviser. Aggregation links are mostly “horizontal”, as in our example, therefore
the inheritance issue is not relevant.

This classification of role hierarchies shows that this issue is less simple than it seems. There
is no relevant solution to this problem. By designing three parallel hierarchies, as suggested

22 Related work

in [Shen and Dewan 1992], we would lose the simplicity offered by a unique role hierarchy. In
practice, this problem is left to one side. But copying the access control hierarchy from the
organization hierarchy without a careful examination may lead to unexpected side-effects.
Therefore, the role hierarchy has to be defined with the intention of obtaining the right
permission heritage. In other words, the pursued inheritance determines the hierarchy, even
though the resulting hierarchy mixes several types of links between roles.

The T–RBAC model provides an interesting solution in order to model several kinds of
hierarchies at the same time. Two kinds of roles can be defined in it: the “job positions”
and the “business roles”. The job position corresponds to a supervision role and has to
do with authority and management activities, whereas the business role corresponds to
business work activities. There is only one hierarchy composed of these two types of role,
but this hierarchy corresponds to a supervision hierarchy. Some restrictions are specified to
design the hierarchy. For instance, a job position cannot exist between two business roles
in the hierarchy and vice versa. The distinction between those roles comes along with the
classification of the tasks into two categories. One corresponds to approval and supervision
tasks which are declared as inheritable, the other one to private and workflow tasks which
are declared as non-inheritable. The authors did not go into depth in this way. Indeed, there
is no distinction between inheritance of these two categories of task. It would have been
interesting for the business roles to inherit workflow tasks and the job positions to inherit
supervision tasks. Without such distinction, the interest of the definition of two types of
role is uncertain. It is indicated that it enables to limit the permission propagation in the
hierarchy. Nevertheless a subtlety is introduced: all privileges that correspond to a “read”
task are inherited whatever the category they belong to. This explains why the hierarchy is
called supervision hierarchy: higher roles always gain the audit permissions of their junior
roles.

With regards to our objective, which is to study different proposals to structure and organize
the traditional access control entities, the hierarchies offer interesting perspectives. The role
hierarchy presents a double level structuring: subjects are abstracted into roles, and roles
are hierarchically organized.

2.2.8 Conclusion

We presented several models which suggest different means to structure the access control
entities. This reduces the cost and management overheads associated with fine-grained se-
curity policy at the level of individual subjects, objects, and actions. The more information
systems become complex and bigger, the more security models have to provide relevant
solutions to structure their elements. This can be carried out through different kinds of
abstraction like groups, or the function played in an organization (role), or how entities are
arranged (file/folders), or the class/instance bonds (TMAC), etc. The notions of organiza-
tion and hierarchies are really convenient since they make it possible to better model the
running of organizations. Several models suggest multiple structuring, but none of them
provides a complete and cohesive solution. Our objective in the next chapter is precisely to
design such a solution.

2.3 Dynamic access control 23

2.3 Dynamic access control

2.3.1 Principle

So far, we have focused on different solutions aimed at structuring model entities. This
section is dedicated to another major requirement. Indeed, in modern information systems,
security policies cannot only be expressed by a set of simple authorizations without taking
into account the context of the policy enforcement. Indeed, these policies are more and more
complex. Thus, defining authorizations which are activated while the information system
evolves, has become an important need. In most application areas, a security rule is not
defined just with the subject, the action and the object, but also depends on the context in
which the access is requested.

We mainly focused on static security models, this is, models in which permissions are defini-
tive statements that can only be modified by a SSO. In a static model, it is assumed that
authorizations are always activated independently of any other considerations, and thereby
can be written as facts in a logic language or with n-uplets in a database. It is typically
the case with the IBAC models. Actually, some models we presented in the previous sec-
tions may not be classified as static models, but we chose not to highlight their dynamic
aspects as we intended to focus on abstraction and structuring. Therefore, we come back to
some of these models in this section to examine how they manage dynamic authorizations.
Please note that instead of “static” and “dynamic”, the terms “passive” and “active” can
be found in the literature. We prefer the term “dynamic” since the conditions that activate
an authorization might be dynamic.

In dynamic security models, authorizations might be activated or deactivated in accordance
with some events or with the information system state. The main idea is that authorization
activation is conditioned by some circumstances that might evolve. Using such definition
many models can be considered as dynamic models. Several terms are employed in this field
to describe the authorization activation parameters, like condition, environment or context.
We choose the general term of “context”. We argue that authorization activation depends
on the context.

The distinction between dynamic and static models may also be explained as follows. In
static models, the decision to accept a security request, that is, to allow a user to access
an object, is taken in accordance with the subject, the action and the object “attributes”.
Those models are sometimes called attribute-based models. For instance, a user’s role or
a file extension can be seen as attributes, and are used for the access control decision. By
contrast, dynamic access control is not only based on the involved entities attributes but
also on external parameters.

As the concept of context makes it possible to express different kinds of information, first
we propose to classify them into four categories. Subsequently, we present the rule-based
models that can be used to express some contexts.

2.3.2 Different kind of contexts

First of all, we should point out that a model is considered dynamic if the context may evolve
in time. It carries an implicit notion of automatic and dynamic modification. Role-based

24 Related work

models could be viewed as dynamic models in that a user gains a given permission if he
plays a role. In a certain sense, the assignment of a user to a role is a condition. However,
the assignment is decided by a superior authority and does not change according to external
events. In other words, the term “dynamic” refers to the fact that a policy dynamically
evolves in accordance with the information system it is applied to.

Constraint

Constraints are a usual concept in access control policies. They are mainly used for ad-
ministration tasks. For example, constraints in role-based models are used to specify the
cardinality of a role (e.g., a given role can be played by more than two users). Constraints
may also be useful to enforce the separation of duty principle (SOD).

Some models provide powerful language in order to specify expressive constraints which
can be seen as dynamic conditions. This is the case of RCL (Role-Based Constraints
Language) [Ahn and Sandhu 2000, Ahn and Shin 2001a] and OCL (Object Constraint Lan-
guage) [Ahn and Shin 2001b].

Let us consider SOD in role-based models and first distinguish static SOD (SSOD) from
dynamic SOD (DSOD). SSOD corresponds to the fact that conflicting users cannot be
assigned the same role. Specifying such a constraint is the SSO’s task. DSOD corresponds
to the fact that conflicting roles cannot be activated by a single user in the same session.
This last constraint might be seen as a dynamic factor that makes an access control policy
becomes dynamic. Consider the case of a user who plays the role of financial adviser in a
given bank and who is also a customer of this bank. This user should not be allowed to
activate these two roles in a single session. Such a constraint may be viewed as a context in
that it makes it possible to dynamically restrict the activation of roles.

Environment

Another kind of context corresponds to the security policy environment. Under this last
term comes the system status, the time, the place where a user stands or a security request is
made. In several models, like the UCONABC model [Sandhu and Park 2004] such decisions
factor are called “conditions”.

The most obvious environment context corresponds to spatiotemporal information.
[Covington et al. 2000, Covington et al. 2001] offers to broaden the role-based models by
considering the security requests environment. In the Generalized Role-Based Access Con-
trol (GRBAC) model, the environment context is specified through a new type of role called
“environment role”, written “erole”. Such a role makes it possible to express temporal con-
ditions. The use of environment roles is quite simple. First, an erole must be declared.
Then a temporal condition is associated to this erole. Let us consider the two following
instructions:

• erole(working hours)

• role rel(working hours, 08 : 00 < time of day < 18 : 00)

The first item corresponds to the definition of the environment role working hours. The
second item specifies that this role is activated between 8 am and 6 pm. On the other hand,
permissions are not only assigned to roles, but also to a set of environment roles. Therefore,
considering a given permission, a user obtains this permission if he plays the corresponding

2.3 Dynamic access control 25

role and if the corresponding eroles are activated. In other words, the activation of a
permission depends on the activation of some environment roles.

The GRBAC model can also be used to model spatial contexts. Such contexts are defined and
specified the same way as temporal contexts. Moreover the environment role hierarchy makes
the contextual information management easier. In particular for temporal environment roles
the fact that erole2 is a senior role of erole1 means that the time period condition of erole2
is included in the one of erole1.

Elsewhere, the Ponder policy language [Damianou et al. 2001] can also be used to express
environment contexts. This declarative and object-oriented language is specifically designed
for network policies in distributed object systems. The definition of context is done through
the creation of filters. The previous temporal context is expressed as follows:

• inst auth filter1 {
subject john; target account n◦21; action read;
if (time.between(”08:00”,”18:00”)}

In [Bertino et al. 2000], the authors propose another extension of the RBAC model, the
Temporal Role-Based Access Control (TRBAC) model. On the contrary to GRBAC where
the time factor is applied to the permissions, in TRBAC it is only defined on roles, or
role activation events. This model suggests a formal semantics to support periodic activa-
tions/deactivations of roles (e.g., roles which can access object o are only activated between
9 am and 6 pm) or thanks to a trigger (e.g., the role counter clerk is active whenever the
role head agency is active). This model cannot express timing constraints applied to objects
or actions.

Provisional context

In some cases, a user is authorized to carry out an action provided he accomplished some
given actions beforehand. For example, a counter clerk is allowed to open a new cus-
tomer account if he checked this customer’s financial situation at the central bank. This
last action is called a “provision”. So provisions are those conditions or preconditions

that have to be satisfied for an access control decision to be rendered. In other words, a
permission is activated by the realization of required actions. This issue is addressed in
[Kudo and Hada 2000, Jajodia et al. 2001a, Bettini et al. 2002].

[Bettini et al. 2002] provides a first-order language to write some provisional contexts. Let
us consider the following example:

• access(account, s, read)← in(s, Counter clerk), Register(s)

This rule says that any counter clerk can read the customers’ account provided that he has
registered at the bank information system.

Using provisional contexts implies specific mechanisms. First, actions performed by users
must be stored into an history log. Second, a module must be designed to have an
access to the history and check whether an action has been realized yet or not. In
[Jajodia et al. 2001a], this is realized in a the Provision-based Authorization program.
When an access request is launched, it is passed on to a provision evaluation module that
finds the weakest conditions under which the request is accepted. Then an order specifica-

26 Related work

tion module yields a set of conditions. Finally, a provision verification module verifies that
the requested conditions were previously fulfilled by the user.

Workflow management

In most works regarding context, the context corresponds to the ongoing activities. Express-
ing such contexts is useful in the case of business and transaction activities. In these areas,
the access control decision depends on specific sequences of events. In these ABAC mod-
els [Thomas 1997, Cholewka et al. 2000, Botha 2001, Cohen et al. 2002, Crampton 2004,
Oh and Park 2003] a workflow is defined as sets of tasks and dependencies between these
tasks. Thus, the workflow makes it possible to “filter” or to activate the privileges granted
to the users. From this standpoint, ABAC models fall within the dynamic model category.
The set of activated authorizations evolves while the workflow status passes from one step
to the other.

ABAC models make it possible to take into account the need-to-know requirement, and
the notion of just-in-time permission activation. The expression of a workflow environment
through the context can also be considered as a means to respond to the principle of least
privilege.

2.3.3 Rule-based models

The previous models had not defined language or defined too specific languages. We
focus here on security policy expression frameworks based on rules. We commonly
distinguish these models with the term “rule-based” access control (Rule-BAC) model.
[Halpern and Weissman 2003, Bertino et al. 2003, Jajodia et al. 2001b] for example can be
considered as rule-based models. Using a first order logic notation, authorizations are writ-
ten as rules. In a simple access control model, these rules would appear under the following
form:

• ∀s ∈ Subject,∀a ∈ Action,∀o ∈ Object, condition→ permission(s, a, o)

Modelling the access control rules in this manner is a natural and intuitive way to translate
natural language rules into computable rules. condition allows us to express any type of
conditions as long as the associated language provides the appropriate predicates. Therefore,
in a rule-based model, there is no limitation in the expression of new conditions. As a
consequence, there is also no structuring of these conditions.

Rule-based models, despite their name, are not access control models in the same way
as RBAC, TBAC, etc. They are high-level models, in that they are policy expression
frameworks that support multiple security models. They provide a language and a semantics
rather than new concepts like roles or tasks.

[Halpern and Weissman 2003] provides a good example of such a formalization. The authors
suggest an access control expression framework where a policy is a set of first-order formulas
of the following form:

• ∀x1...∀x2(f ⇒ Permitted(t, t′)),

where f is a first-order formula, t and t′ are terms of the Subject and Action type respec-
tively. Actually, an action brings together an access mode and an object. For example, the

2.3 Dynamic access control 27

following formula means that a counter clerk is allowed to consult companies accounts if all
financial advisers are away:

• ∀x,∀y, ∀z(Counter clerk(x) ∧ financial adviser(z) ∧ absent(z)∧
Company account(y)⇒ Permitted(x, consult(y)))

Using this kind of formalization makes it possible to express any kind of authorization
rule, and thereby it can be used to express any kind of context. In the previous example,
the specific part that corresponds to a context is the term absent(z) since it activates
or deactivates the permission whether z is absent or not. Elsewhere, the authors show
the limitation of such open formalization. Indeed the tractability may not be guaranteed.
Therefore, a certain amount of restrictions must be respected for a policy to be solved in a
low-order polynomial time.

2.3.4 Context enforcement

An expressive and convenient access control model must allow the expression of contexts. It
is also important to be able to evaluate the contexts specified in a policy. For example, in
the case of temporal context, the information system must provide the policy enforcement
modules with the ability to consult the current time. As the implantation of policies is out
of our research scope, we do not go into detail and just mention two examples of works
related to this issue.

[Covington et al. 2001] describes a Context Toolkit able to collect the environment state
using sensors and aggregators. It gathers information and forwards relevant ones to the
applications. Through the Antigone Condition Framework (ACF), [McDaniel 2003] provides
means to specify, implement and evaluate the context which is seen as a set of external
conditions.

2.3.5 Conclusion

The notion of dynamic access control encompasses several types of contexts, namely con-
straints, environment, provisions and workflows. Some models allow the expression of high-
level policies by allowing the specification of such contexts which act as conditions in order
to activate and deactivate the security policy authorizations.

On the one hand, some models design well defined contexts, however they are limited to
specific problems – like GRBAC or TRBAC. On the other hand, some languages provides
powerful means to express any kind of context but without specifying any restrictive frame-
work. It is thus appropriate to notice that the UCON models offer interesting solutions
with regard to the context issue. We do not go into more details on usage control, yet we
just call the reader’s attention on the UCONABC model [Sandhu and Park 2004, Park 2003]
since it makes it possible to specify constraints, environment contexts and provisions in an
expressive framework.

28 Related work

2.4 Negative authorizations and conflict management

So far, we considered models that enable us to express positive authorizations only. Some
of the models we examined offer means to specify negative authorizations – also called
prohibitions – but we chose to leave this matter aside until now.

Negative authorizations expression is another major requirement for the development of a
flexible and powerful security policy model. We will first examine the reasons for that. Then
we shall present different ways to model prohibitions. Finally, since specifying a security
policy that includes both permissions and prohibitions may lead to conflicting situations,
we discuss several solutions to detect and solve such conflicts.

2.4.1 Motivation

Negative authorizations are often ignored in access control. It is claimed that the absence
of a positive authorization corresponds to a negative authorization. To clarify this point,
let us first recall the definition of open and closed policies.

In a closed policy, a user is granted the right to access an object if there exists a cor-
responding positive authorization, otherwise this access is forbidden. By contrast, in an
open policy, a user is denied the access to an object if there is a corresponding negative
authorization, and is authorized otherwise.

One should notice that the concept of open/closed policy is different from the concept of
positive/negative authorization policy. A positive authorization policy defines the actions
that subjects are permitted to perform on objects. Therefore a positive policy is composed
of positive authorizations only. A positive authorization policy is usually associated to the
closed policy assumption. For instance, the RBAC model considers permissions only. By
contrast, a negative authorization policy specifies the actions that subjects are forbidden
to perform, and thereby is composed of negative authorizations only. Access control is
traditionally based on positive authorization policies.

We claim that expressing negative authorizations is essential in order to specify high-level
access control policies. The main question is thus: if a policy is only composed of permis-
sions and if unspecified requests are forbidden, then why should we consider some negative
authorizations, this is, some explicit denials of authorization?

Consider the following arguments:

• Using both permissions and prohibitions retains the natural way people express policies.
If a SSO thinks about an important action that a specific user must not be allowed to
carry out, he will prefer to explicitly specify a prohibition.

• In a large scale system, the audit of the policy is much faster if the permissions and the
prohibitions can be monitored immediately.

• Negative authorizations can also be used to remove access rights from subjects if the
need arises. In other words, prohibitions can be used as exceptions.

• In the case of inheritance due to the definition of hierarchies, the propagation of per-
missions can be limited by addition of prohibitions.

2.4 Negative authorizations and conflict management 29

• If the security policy management is decentralized, that is, if more than one SSO ad-
ministrate the policy without consulting each other, negative authorizations are really
useful. Each SSO might not have a global vision of the whole policy and thus will
not able to infer negative authorizations resulting from unspecified requests. Therefore,
each SSO must be allowed to express negative authorizations.

• Many systems – like firewalls – support negative authorizations.

For these reasons, we integrate negative authorizations in the Or-BAC model. Let us first
consider several solutions provided in the literature to express such authorizations.

2.4.2 Expression of negative authorizations

We shall look at different manners to express negative authorizations. Naturally, this de-
pends on the chosen languages. We mainly focused on logic-based languages. However, let
us first consider the Ponder language cited in section 2.3.2, as it represents a good example
of object-oriented language. In such a language, expression of negative authorization is easy.
One just has to create an authorization with auth+:

• inst (auth+ | auth-) policyName {
subject subject; target target; action action;}

The same kind of notation is used in [Lupu and Sloman 1999]. We examine now different
ways to write negative authorizations in security policies based on logic languages. Many
works on policy languages are based on the Authorization Specification Language (ASL)
[Jajodia et al. 1997], like [Jajodia et al. 2001a] and the Flexible Authorization Framework
(FAF) [Jajodia et al. 2001b]. ASL provides a complete first-order logic language. In ASL,
given a set of action Action, a set of signed authorization types SA is defined as {+a, -a |
a ∈ Action}. Then, an authorization is a triplet of the form:

• (o, s, < sign > a)

where s ∈ Subject, o ∈ Object and a ∈ Action. This idea is also used in [Rabitti et al. 1991,
Shen and Dewan 1992]. The prohibition “John is forbidden to read the file account12.pdf”
is written: (account12.pdf, John,−read).

More recently, [Bertino et al. 2003, Bertino et al. 2004] suggests an expressive framework,
LAMP (LogicAl Multi-Policy), for reasoning about policies which give the possibility to
express negative authorizations as well. As in ASL, positive and negative authorizations are
distinguished by a sign. Authorizations are defined as follows:

• Auth(O : object, S : subject, P : privilege, G : grantor, ε : string)

where ε is in {+,−}. The previous prohibition is written as follows:

• Auth(O : account12.pdf, S : John, P : read, G : SSO, ε : −).

FAF is based on Datalog [Ullman 1989] and LAMP on an object-oriented variant of Datalog,
namely C-Datalog [Greco et al. 1992]. This provides tractable programs but forbids the
use of functions and negations. By contrast, the first-order logic language suggested in
[Halpern and Weissman 2003] and briefly presented above is not based on Datalog in order
to avoid the previous restrictions. However, other limitations have to be laid down to get

30 Related work

tractable solutions. Since this language is based on rules, the restrictions are related to
the conditions that conclude on authorizations. We just describe one of them here. These
conditions are formulas. They must be ground literals. While this is enough to capture
the information in databases for instance, it is not possible to express conditions like “All
subjects playing role adviser...” since these formulas must be quantifier-free. The authors
also define the specific situations where such a restriction can be relaxed and thereby specify
more expressive conditions. In [Halpern and Weissman 2003], the expression of a negative
authorization is seen as the negation of a positive authorization. A prohibition is expressed
as follows:

• ∀x1...∀x2(f ⇒ ¬Permitted(t, t′)),

where f is a first-order formula, t and t′ are terms of the Subject and Action kinds respec-
tively. The previous prohibition might be written as follows:

• .⇒ ¬Permitted(John, read(account12.pdf))

In [Cholvy and Cuppens 1997], the authors suggest a methodology based on SDL (Standard
Deontic Logic) for analyzing consistency of security policies. Negative authorizations are
expressed through a dedicated predicate F . Finally [Al-Kahtani and Sandhu 2004] intro-
duces an extension of the RB-RBAC model called RB-RBAC-ve (RB-RBAC with negative
authorizations). This model presents a noticeable difference. The negation is not applied to
an action or an authorization, but rather to a role. Instead of receiving a negative autho-
rization through the role he plays, a user is forbidden to play the role. In practice, this is
expressed as a “negative authorization” of the form:

• aei ⇒ ¬ rg,

meaning that once a user satisfies the attribute expression aei, this user is not allowed to
play role rg. The point of presenting the negative authorizations this way is to be compatible
with the RBAC model. But it provides a rough solution since it is not possible to give just
one prohibition to a role, otherwise the definition of the roles must be revised.

2.4.3 Conflict management

We examine now different ways to detect and resolve conflicting situations between per-
missions and prohibitions. A conflict occurs when a positive and a negative authorization
involve the same entities (e.g., the same subjects, actions and objects). These authoriza-
tions may be explicitly defined by the SSO, but in many cases, one or both result from the
authorization propagation in a hierarchy, in a grouping or in a class/instance framework.

Conflict management is not an easy task, and there has not been much research made in
this field. The way conflicts are managed is often called a conflict management strategy, or
just strategy. Some strategies are simple but do not allow fine-grained decisions, some are
complex but raise the tractability issue. The next subsection provides some strategies from
the easiest to the most complex.

Simple precedence strategy

The easiest strategies are the well-known “Denials Takes Precedence” (DTP) and “Per-
mission Takes Precedence (PTP)”. In the first strategy negative authorizations are always

2.4 Negative authorizations and conflict management 31

chosen when a conflict occurs. In PTP, positive authorizations always override negative
authorizations when there is a conflict. One should notice that DTP – resp. PTP – makes
more sense in a closed – resp. open – policy. In the case of DTP for instance, prohibi-
tions can be considered as exceptions: the general policy is written using permissions, and
exceptions using prohibitions. But it is not possible to specify exceptions to prohibitions.

Such strategies are deterministic: they guarantee that whatever the security policy is (or
will be), no conflict can never happen. In the following, we say that a strategy that fulfils
this property is “strong”. By contrast, a strategy that might not resolve all conflicts is
“weak”.

DTP and PTP are not flexible as they do not allow specification of special cases, and thereby
are only appropriate in specific situations. In particular, if negative authorizations are used
as exceptions, or if they can only be specified by a most powerful SSO, then the DTP
strategy is advisable. Let us consider the example presented in [Lupu and Sloman 1999].

• R1 A- @/users { reboot() } @/workstations
Users are forbidden to reboot the workstations

• R2 A+ @/users/sys admin { reboot() } @/workstations
System administrators are authorized to reboot the workstations

These policies only make sense if permissions take precedence. In this case, this means that
administrators are only allowed to reboot the workstations.

Expressive access control models should not be restricted to these strategies. Indeed, the
relevance of negative authorizations is bounded by the conflict resolution strategy. In Argos
[Jonscher and Dittrich 1996] for instance, which provides a configurable access control sys-
tem in the area of identity-based access control, only the DTP strategy can be applied. The
solution in terms of conflict resolution in [Jajodia et al. 2001b] is also disappointing. The
authors suggest a powerful and flexible support to multiple policies. However, the strategy
to manage conflicts is “hard-coded” in the sense that there is no clear separation between
the strategy for conflict management and the remainder of the policy specification. More-
over, the authors only consider four possible conflict management strategies: No conflict –
in this case, a conflict is viewed as a constraint violation – DTP, PTP and nothing takes
precedence – means that there is actually no conflict resolution. A final derivation rule
guarantees that no conflict will persist, since this rule specifies that the lack of a positive
authorization over a triplet corresponds to a negative authorization. But, this weakens the
use of conflict management strategy.

Several models enables us to choose the strategy. DTP and PTP are usually proposed, like in
[Al-Kahtani and Sandhu 2004, Lupu and Sloman 1999, Jajodia et al. 2001b] for example.

First/Last matching strategy

When a conflict occurs between a permission and a prohibition, a simple way to take a
decision is to give precedence to the first, or the last matching authorization. Of course, this
implies that authorizations are ordered. Most firewalls use this strategy. Firewall policies
are good examples of policies mixing positive and negative authorizations. For instance,
NetFilter adopts a first matching strategy, whereas IPFilter adopts a last matching strategy.
In the framework of databases, [Shen and Dewan 1992] suggests several conflict management
strategies, but in the last resort, implements a first matching strategy.

32 Related work

Strategies based on specificity

Many models consider hierarchies of entities associated with inheritance mechanisms. The
result of this is the propagation of authorizations through the hierarchy, and above all, a
heightened risk of conflict situations.

[Lupu and Sloman 1999] explains the notion of “distance” between an authorization and
the entities it refers to. This notion can be interpreted in different ways, but the main
idea is that the more an authorization is specific, the more it takes precedence. Let us
consider the role hierarchy in figure 2.7. Assume that the role employee is not allowed to
open the safe, and, on the other hand, the role financial adviser obtains the permission
to open the safe. A conflict appears at the level of the role financial adviser since this
role inherits from the negative authorization given to the role employee. However, the
distance between the positive authorization and financial adviser is less than between the
negative authorization and financial adviser since the permission is explicitly granted. As
a consequence, the permission takes precedence. [Shen and Dewan 1992] use exactly this
interpretation of the distance with role hierarchies.

Strategies based on weak and strong authorizations

[Rabitti et al. 1991] introduces the notions of “strong” and “weak” authorizations. One
should observe that these two terms are used in different meanings as above. A strong au-
thorization overrides a weak authorization whereas a strong authorization cannot be over-
ridden. Strong and weak authorizations are inherited through the hierarchy. It is possible
to combine strong/weak authorizations with positive/negative authorizations. For example,
strong negative authorizations can be used as exceptions in a hierarchy of weak positive
authorizations. In fact, this is not completely true since strong authorizations are inherited,
and thereby cannot be assigned to only one entity of the hierarchy. [Bertino et al. 1996] is
based on the same idea but defines more clearly the conflict management. Conflicts may
occur between two strong authorizations or two weak authorizations. If there are conflicts
between strong authorizations, the policy is inconsistent. In fact, the authors assume there
are no such conflicts as long as the semantics of strong authorizations is always respected.
They only provides a mechanism to insert in a consistent policy new strong authorizations
without creating “strong conflicts”. In the case of weak conflicts, the default strategy is
DTP. However, the SSO can add a new authorization. A conflict between two weak autho-
rizations has a resolution if it is possible to specify an authorization overriding one of these
authorizations. So, these two models offer a quite limited conflict management strategy.

Strategies based on priorities

The distinction between strong and weak authorizations may be viewed as a two priority lev-
els strategy, where “strong” is higher than “weak”. Therefore, one can imagine the definition
of strategies based on explicit priorities assigned to authorizations. In [Bradshaw et al. 2003]
for example, each authorization is associated with a value. The authorization of higher pri-
ority takes precedence on the authorization of lower priority. In the case of equality, the
SSO is required to specify which authorization takes precedence.

Such priorities are difficult to manage since it is not easy to assign priorities that relate to
the importance of the authorizations. Moreover, as stated above, conflicts remain in the

2.4 Negative authorizations and conflict management 33

case of equal priorities. However, strategies with explicit priorities may be useful in specific
policy frameworks to avoid most conflicting situations.

Parametric strategy

Many conflict management strategies can actually be defined. The selection of a strategy
depends on the model, language, semantics and application area. Furthermore, it is con-
venient in some cases to mix different strategies. Therefore, the best solution would be to
enable the SSO to define his own strategy. [Bertino et al. 2003] suggests a logical framework
that makes it possible to express several kinds of policies. It is associated with a “parametric
conflict resolution policy”. The SSO can exploit any information to specify the strategy.
Unfortunately, no strategy language expression is provided. So, let us consider an example
of strategy written in natural language.

• The authorization with the most-senior role takes precedence;
• otherwise, the authorization with the most-senior grantor takes precedence;
• otherwise, denial takes precedence.

In this framework, the SSO can create or mix strategies, and may test the resulting policy
for each one. However, the semantics is not free of ambiguity. In conflicting situation, an
authorization rule is kept, and the other one is “discarded”. It appears that the discarded
rule is merely deleted from the policy, which might lead to the so called “drowning” problem:
in relation to other conflicting situations, the discarded rule could have taken precedence over
another one. Therefore, it modifies the policy without any control. This issue is explained
with the following example. Authorizations are specified using a simplified language.

• Auth(o, Dev1, write,+)
“Members of group Dev1 are granted permission to perform action write on object o”
• Auth(o, Dev2, write,−)

“Members of group Dev2 are forbidden to perform action write on object o”
• Auth(o, John, read,+)← Auth(o, Dev1, write,+)

“John is granted permission to perform action read on object o provided members of
group Dev1 are granted permission to perform action write on object o”

Assume that Ann is a member of groups Dev1 and Dev2. Therefore, Ann obtains the two
first authorizations. As a consequence, a conflict occurs between these authorizations. If
the first one is discarded for instance, thereby all members of group Dev1 are loosing the
authorization to perform action write on object o. John also loose the authorization to read
object o. This might not be what was expected.

Other strategies

[Halpern and Weissman 2003] designs a first-order logic language for security policies. As
indicated before, the authors choose not to rely on Datalog to avoid some of its restrictions.
A theorem guarantees that as long as those restrictions are respected, the policy is consistent,
and as a consequence, no conflict can occur. So there is actually no conflict management
strategy.

In [Cholvy and Cuppens 1997], a security policy is modelled using modal logic, where per-
missions, prohibitions and obligations are represented using deontic modalities. This pro-
vides a richer model in which it is possible to specify, for instance, disjunctive obligations

34 Related work

or conjunctive prohibitions. However, this paper only suggests managing conflicts using
priority between roles. In [Cuppens et al. 2001], the approach is refined and the concept of
strategy to manage conflicts is introduced. However, this strategy is used to define priority
between roles and its specification is separated from the remainder of the policy specification.

Finally, [Benferhat et al. 2003] suggests an approach based on possibilistic logic to handle
conflicts in prioritized security policies. The priority is implicitly derived from the format
of rules. This is used to construct a stratified policy efficiently.

2.4.4 Conclusion

Negative authorizations expression is an important requirement in the design of powerful
and flexible policies. Indeed, most modern access control models and languages provide such
authorizations. However, the expression of prohibitions must be associated to a conflict
resolution strategy. As we presented, these strategies can be very simple or more complex,
they can guarantee the resolution of all conflicts or just decide for some of them. We claim
that strategies should be parametric in order to let the SSO choose or design his own strategy.

Some issues have not be addressed yet, since they are not treated in most models. First, in
accordance with the strategy, and in the case of hierarchies, some authorizations may be-
come useless. We call them “redundant authorizations”. Let us consider the strategy with
weak/strong authorizations and the role hierarchy of figure 2.7. If a weak positive authoriza-
tion to open the safe is granted to the role financial adviser, and if the equivalent strong
negative authorization is assigned to the role employee, then the first positive authorization
is always overridden. The positive authorization never applies and is thus redundant. This
problem is cited in [Rabitti et al. 1991] but no solution is suggested. Second, in the context
of dynamic access control, some conflicts might be detected in the policy without occurring
during the policy enforcement. We call it the “potential conflict” issue. If we have two au-
thorizations, a negative and a positive one, involving the same entities, but which depend on
different contexts, then a conflict only occurs provided the contexts of these authorizations
are valid at the same time. It would be useful to be able to determine whether a conflict will
happen or not, and what is more, to know in which situations it might occur. In chapter 7,
we suggest solutions for these two issues.

2.5 Administration models

So far, we described some major requirements: entities structuring, contexts and negative
authorizations expression. However an access control model would not be complete without
addressing the administration issue. In this section we first explain what administration is
made of, and the reasons for which it has to be taken into account.

2.5.1 Introduction

The administration consists of creating and maintaining the policy entities such as users,
actions, objects, groups, roles, etc., and authorizations. Specifying the security policy is
the first administration task. Some specific users must have the authority to deal with it.

2.5 Administration models 35

However, it is not sufficient to define the policies at once. Some mechanisms for updating
all the elements of the policy must be defined, in order to maintain the policy in accordance
with the information system. For instance, if a new user is employed by an organization, it
should be possible to add this user, grant him some authorizations, and above all, preserve
the policy consistency. Without strong administration procedures, the quality of a policy is
degraded as the information system evolves.

Administration consists in distributing authorizations in order to update the security policy.
It must be distinguished from the entities structuring such as the definition of roles. The
role-based permission assignment enables us to reduce the number of operations, when a new
user is employed. Compared to an IBAC model in which authorizations are given at the user
level, role-based models decrease the administrative overhead. Therefore, entities structuring
increases the security management scalability, but does not solve the administration issue.

A distinction can be made between two types of administration. Administration tasks can
be performed by one or several administrators, also called system security officers (SSO).
SSO corresponds to a specific function with specific authority and responsibility. In many
organizations, SSO is a full-time job. Administration tasks can also be taken on by basic
users. Indeed, an organization can choose to delegate fully or partially the administration
activity to its users. It is known as “delegation”. Delegation also encompasses the situation
where a user grants some of his authorizations (or all of them) to another user.

The importance of administration was ignored for a long time in the field of access control
research activities. It has become a major concern over the past few years. In many
contributions, the administration issue is addressed as an inevitable aspect of access control,
like in [Botha 2001, Bertino et al. 1996]. However only a few models are associated with
a complete administration model. The most famous administration model is ARBAC (see
section 2.5.3).

Subsequently, the first subsection is dedicated to the mandatory access control. In the second
subsection we discuss the administration of role-based models, and the last one deals with
delegation. Discretionary access control models are well-known. We broach these models
only from the delegation point of view, in the last section.

2.5.2 Mandatory Access Control

In a Mandatory Access Control (MAC) policy, a clearance is assigned to each subject, and
a classification is assigned to each object. The administration of a MAC policy consists of
managing the ressource classification and the subject clearance. A unique authority first
defines the criteria used for the classification and the clearance, and then determines the
security level for each subject and object. It is a fully centralized administration model in
which the subjects have no rights to administer. The MAC administration is very rigid.
What is more, the transposition to IT systems is complex especially regarding networks.
Finally, this administration mode does not seem to be convenient for commercial needs
[Ferraiolo et al. 1993]. Regarding the administration of a MAC policy, the main problem
is the object classification management. Since the classification rules are often difficult to
apply, automatic support tools are suitable to assist the users when choosing the initial
classification of an object. The classification of an object is not static but evolves during its
lifetime, and leads to the downgrading of the initial classification when the object content

36 Related work

becomes less sensitive. In this case, tools that manage the object classification and apply
rules to automatically downgrade object classifications become useful. The general principles
for such tool were presented in [Cuppens and Gabillon 1996].

See also [Carrère et al. 1999] that presents the design and implementation of SACAD-
DOS, a support tool to automatically manage object classification. Finally, in
[Solworth and Sloan 2004], the authors suggest a MAC administration model called SP-
BAC (Security Property Based Administrative Controls). Objects are associated to labels.
The information flow is controlled with the relation mayF low: mayF low(l, l′) means that
it is possible to write an object with label l′ after having read an object with label l. This
aims at ensuring confidentiality. For integrity, another relation, didflow, is added. Unfor-
tunately, the description of this model is quite vague. Furthermore, the suggested method
involves a great amount of information related to each user’s accesses and thereby generates
a significant processing overhead.

The administration of MAC shows an interesting aspect of a security policy administration
as it is fully centralized and thereby rigid.

An organization may not want to delegate its administration prerogatives to any users. This
does not mean that all administration tasks have to be held by a unique SSO, or a single
authority. Implementation of a security model and high security needs encourage us to
look for a compromise. In this case, the RBAC administration model turns out to be an
interesting option.

2.5.3 Administration of role-based models

The Role-Based Access Control (RBAC) model consider the role as a central concept. The
ARBAC model is dedicated to the management of RBAC policies. This model is a recognized
solution for decentralized administration. It authorizes administrative roles by means of
“role ranges” and “prerequisite conditions”.

ARBAC

ARBAC97 [Sandhu et al. 1997] (Administrative Role-Based Access Control) is the first
RBAC administration model. ARBAC has three main features. First, it provides the possi-
bility of administrating an RBAC policy in a decentralized way, but without loosing control
over rights’ propagation. Second, ARBAC is an RBAC auto-administration model. Third,
though the administrative roles and permissions are based on RBAC, they are completely
separated from the regular roles and permissions. ARBAC97 provides three sub-models:

• URA97 [Sandhu and Bhamidipati 1997]: This model describes how to assign users to
the predefined roles. The assignment by an administrative role of a user to a regular
role is based on a ternary relation “can assign” between the administrative role, the
prerequisite roles and the regular role. A member of an administration role can assign
a user to a regular role. It can be specified that this user must be a member of one or
several given roles (prerequisite roles) in order to be assigned to this regular role.

• PRA97 [Sandhu et al. 1999]: This model is the dual of URA97 and it describes the
assignment of permissions to roles. It is also based on a ternary relation “can assignp”
with prerequisite conditions.

2.5 Administration models 37

• RRA97 [Sandhu and Munawer 1998]: This last model proposes rules for the role-role
assignment, that is, the construction of the role hierarchy.

ARBAC97 offers a proper administration model which is not exactly the case for the other
security models. In order to obtain a decentralized administration of an RBAC policy,
ARBAC could be used this way: the management of the role hierarchy and the assignment
of the permissions are carried out by a centralized authority on the one hand. On the other
hand, the assignment and the revocation of users can be left under the responsibility of
the chiefs of the different departments or units, through the assignment of these chiefs to
administrative roles. However, it is noteworthy to point out the following shortcomings.
ARBAC is not a real auto-administrated model since it does not use the RBAC permissions
but rather creates new assignment and revocation rules (such as can assign and can revoke)
used by the administrative roles.

As we mentioned before, the assignment relation is ternary. Thus the prerequisite conditions
depend on the administrative role and the regular role. However, it seems that the prere-
quisite conditions generally only depend on the regular role and should rather be considered
as a constraint on the regular role. Moreover, ARBAC does not give any information on the
creation of the roles, and does not offer any delegation mechanism.

ARBAC does not offer means to express contextual conditions. Thus, it is not possible to
specify that a given administrative role is allowed to assign a permission to a regular role
only at working hours or only from his own terminal. This kind of restriction can be useful
to detect misuses of power for instance.

ARBAC extensions

Two ARBAC extensions have been proposed. With ARBAC99
[Sandhu and Munawer 1999], the authors present a way to manage the mobile and
immobile users and permissions. Unlike a mobile user, an immobile user can be seen as
a non-permanent user such as a user under training, a visitor, a consultant, etc. In this
case, the user can be a member of a role and get the corresponding permissions. But an
administrative role cannot use this membership to put the immobile user into other roles.
That is, an immobile user cannot move up through the hierarchy. The same idea is used
for immobile permissions.

The objective of ARBAC02 [Oh et al. 2003] is different. Several drawbacks of ARBAC97
have been pointed out. With ARBAC02, some improvements have been proposed to resolve,
among others, the multi-step user assignment which generates a lot of work for the SSO and
which causes redundant tuples in the User-Role Assignment (URA) management. The
main modification made in ARBAC02 affects the prerequisite conditions for the user and
the permission assignment. An organization structure of user pools and an organization
structure of permission pools are created. The first one is managed by the human resources
group, the second one by the IT group. We obtain two hierarchies which are independent
from the role hierarchy. User and permission assignment are made by the security officers by
picking users and permissions in these pools, thereby simplifying the assignment processes.

These two extensions are interesting but do not resolve the shortcomings we have just men-
tioned. Moreover, ARBAC02 simplifies the assignment process, but transfers the problem
of the prerequisite conditions onto the human resources group and the IT group.

38 Related work

SARBAC

SARBAC (Scoped Administration of Role-Based Access Control)
[Crampton and Loizon 2002] is an extension of RHA4 [Crampton and Loizou 2003]
and an alternative to ARBAC97. SARBAC relies on administrative scope which changes
dynamically as the role hierarchy changes. Thus, update operations over RBAC96 and
SARBAC relations become easier and can not lead to inconsistent rules. In particular,
SARBAC makes it possible to delete a role without any restriction. Unlike in ARBAC97,
it is possible to assign administrative roles to users since SARBAC does not make any
distinction between regular and administrative roles.

A-ERBAC

[Kern and Moffet 2003] presents an administration model dedicated to the Enterpriser Role-
Based Access Control (ERBAC) model. It is focused on large scale policies and thereby on
a widely decentralized administration. Like in ARBAC, it distinguishes regular and admin-
istrative permissions and roles. All permissions are seen as pairs < operations, objects >

like in the NIST Solution [Ferraiolo et al. 2001]. This model suggests a more traditional
approach than ARBAC, since it is based on ACLs. Each administrative role is associated
to a scope, that is a part of the organization. It obtains administrative permissions, which
are valid within its scope, and which are defined as a conjunction of an operation (view,
insert, change, or delete) and an object (User, User-Role Assignment, Role, Role-Role As-
signment, or Role-Permission Assignment). For instance the permission < insert, User-
Role Assignment > means that the administrative role is allowed to assign a user to a role.
There is no possibility offered to express more specific authorizations. This administration
seems to be robust, and has been tested on large systems. However, its expressiveness is
rather limited.

Graph-based

We mention some graph-based approaches. Such approaches provide user-friendly notations
and may be used to design effective tools. However we prefer language-based approaches
which offer means for consistency verifications and logic programming.

[Koch et al. 2002] presents a formalization of RBAC using graph transformations. This
graphical technique provides means to specify the ARBAC operations, as the can assign

relation and the prerequisite conditions. [Koch et al. 2004] extends graph-based adminis-
tration to the SARBAC model. It enables us to graphically model the notions of scope and
constraint.

In [Oh and Park 2001a], the authors suggest an administration method for T–RBAC.
Through a semi-automatic process, this method makes it possible to design the T–RBAC
model from the enterprise model using graph transformation. It offers interesting solutions
to design a new policy, but does not address the administration issue once the transformation
process is performed.

2.5.4 Delegation

Delegation is a difficult issue in the field of access control, and only few works are dedicated
to this point. It is difficult to even define the concept of delegation. As a broad definition,

2.5 Administration models 39

delegation is the process whereby a user without any administrative prerogatives obtains
the ability to grant some authorizations. The user who delegates an authorization is the
“grantor”, the user who receives this authorization is the “grantee”. It is generally admitted
that a user can only delegate authorizations he has himself, or authorizations on objects he
owns. Delegation is usually related to the notion of ownership. Some models, like Ponder,
make it possible for a user to grant an authorization that he does not possess. In this case,
the distinction we have made between administration and delegation is thin. Afterwards,
we assume that one can only delegate something one owns.

Delegation is also defined as granting an authorization on one’s behalf. In other words, the
grantee is delegated a specific authority and responsibility [Goh and Baldwin 1998]. As a
consequence, the grantor loses the authorization he delegates, that is, the corresponding ac-
tivity cannot be carried out by the grantor and the grantee at the same time. If this property
is respected, [Bertino and Ferrari 1997] talks about “transfer” rather than delegation.

Actually, many properties related to the notion of delegation can be studied. We just stated
two of them in the previous paragraph. [Goh and Baldwin 1998, Barka 2002] suggest other
characteristics. As delegation is not our main focus, and could be the subject of an entire
thesis, we shall not go into further detail. One can just mention three other points: can a
grantee delegate the authorization he receives? Who is allowed to revoke an authorization
that has been delegated, the grantor or the SSO? Does it make sense to delegate a negative
authorization? etc. In the following section, we discuss the discretionary access control
model, then the role-based delegation model.

Discretionary Access Control

Discretionary access control (DAC) models are fully decentralized. In the context of IBAC
models, the administration tasks are a set of operations that are used to update the access
matrix. In most implementations, right management is based on the notion of object owner-
ship: if a user owns an object, he is allowed to give another user rights to access it. Thus,
the main authority fully delegates the management of the user’s rights. The administration
activity is reduced to its minimum. The main consequence is the risk of losing control
over the rights’ propagation [Jones et al. 1976]. Moreover, since access is distributed at the
discretion of the object owners, there is the risk that end-users sets of rights become uniform.

Some models have been proposed in order to obtain tractable solutions to control the con-
sequences of the cascaded grants, like the Take-Grant protection model and the Schematic
Protection Model [Sandhu 1988]. The TAM (Typed Access Matrix) model [Sandhu 1992] is
close to DAC but introduces strong typing of subjects and objects. It guarantees a decidable
and monotonic solution.

Administration based on delegation has been widely used. For instance, [Bertino et al. 1996]
applies a DAC approach in database systems.

Role-based delegation model

The role-based models suffer from the impossibility to express delegation as the ability
to grant an authorization to a user. Let us use our previous bank example, and assume
that John plays the role adviser and that the head agency wants to delegate him one of
his permissions. The head agency cannot delegate directly to John since the role-based

40 Related work

model imposes the role as an interface between permissions and users. If the head agency
delegates a permission to the role adviser, John receives it and so do all the users member
of role adviser, which is not what the head agency wants. The Role-Based Delegation
(RDBM) model [Barka and Sandhu 2000] was conceived in order to solve this problem. In
RDBM, instead of delegating his permissions, a user delegates the role he plays, and with
it all the permissions it carries. RDBM has a major characteristic: during the time a
user has delegated his role, he cannot play this role. RDBM also addresses the problem
of revocation, that can be activated with a time-out, or by any member of the delegated
role. In [Barka and Sandhu 2004], the authors extend the RDBM by considering the role
hierarchy. [Moffet and Lupu 1999] also discuss the delegation inheritance in accordance
with the semantics associated to hierarchy. The authors also point out what delegation
inheritance has in common with rights’ propagation in DAC models.

The RDBM model does not seem to be an adequate manner to deal with delegation. Dele-
gating roles may be convenient when a user is absent. In all other cases, the solution
suggested is too rough. For instance, if the head agency needs to delegate the permission to
open the safe to an adviser, he has to delegate his role. During that time, the head agency
cannot assume his functions neither his authority.

2.5.5 Conclusion

To be complete, an access control model has to include a full set of administration pro-
cedures. It is easier to administrate a well-built administration model. Indeed entities
structuring reduces the security administration overhead.

We claim that administration tasks should be addressed in a separated but fully compliant
model. A flexible administration model must provide means to design either centralized or
decentralized administrative procedures. Small policies are better administrated by a single
trusty SSO, whereas large scale policies must be taken in charge by a set of SSOs to whom
the administration activities are distributed.

Elsewhere, delegation is a convenient manner to make administration more flexible. It is
a natural means of decentralizing control, and the way in which most organizations work
in practice. Delegation also enables fine-grained security administration. But it must be
controlled tightly to guard against hazardous rights propagation.

Finally, the more administration tasks can be automated, the less errors and malicious
actions will happen. From this stand point, [Al-Kahtani and Sandhu 2002] suggests an
interesting solution. The automatic user-role assignment based on attributes reduces the
manual interventions on the system.

2.6 Chapter conclusion

Throughout this chapter, we have presented many access control models with more or less
details. Above all, we studied some essential requirements in order to design a new, effi-
cient and convenient access control model. In this chapter, we looked into the four following
requirements: entities structuring, dynamic authorizations, negative authorizations and con-
flict management, and administration.

2.6 Chapter conclusion 41

From the simple IBAC model based on the entities triplet < subject, action, object > we
studied several suggestions to bring more abstraction. We introduced the role-based, the
activity-based and the view-based models; each one offering the possibility to model at a
higher level one of the three entities. In our new model we attempt to federate them within
a single model. We showed that hierarchies provide powerful means to manage a security
policy, and to mimic the organization structure. Entities structuring implies, explicitly or
implicitly, the notion of organization. Therefore we argue in favor of the creation, in a new
model, of an entity “organization”.

The second requirement corresponds to the necessity to express dynamic security rules in
order to obtain a dynamic access control model. Such models are more expressive, and allow
to specify a security policy that sticks better to information system evolutions. A dynamic
authorization may be viewed as a set of conditions, this is the context, that concludes on an
authorization. The context can be used to express the system state, the current workflow
state, some provisions, etc. Unfortunately, each dynamic model is focused on one type of
context.

The use of negative authorizations in addition to positive authorizations is a useful and
natural way to write policies. However, negative authorization modelling must go with
conflict management mechanisms. We presented several ones, but none of them satisfy all
the requirements. A model should provide parametric conflict management strategies in
order to specify simple or complex strategies, and deal with redundant rules and potential
conflicts as well.

Administration becomes an important field of investigation in the area of security policy
research. It is essential, indeed, to provide administrative procedures to update the policy
along with the organization and the information system evolution. We claim that adminis-
trative activities should be specified through an auto-administered model independent from
the policy model (that is optional) but fully compliant with it. Such an administration
model should also take into account the delegation issue.

Afterwards, we propose a new access control model, called Or-BAC, which meets these four
requirements. Chapters 3 and 4 are dedicated to the definition of the Or-BAC model based
on the conclusion we have just drawn about entity structuring. The next three chapters
are the subject of the other three requirements. In chapter 6 we show how the Or-BAC
model offers a convenient solution to express several types of context. We focus on the
conflict management issue in Or-BAC in chapter 7. Finally, we go on to the definition of an
administration model in chapter 8.

Of course, some other issues should be studied. Let us consider two of them now. First,
some recent models make it possible to express obligations. Obligations state actions that
must be fulfilled by users, after a given event, or before another one. Obligation expression
raises many problems, such as the verification that obligations are not violated. This issue
is tackled in [Cuppens et al. 2005].

Second, we left aside the flow control models. Afterwards we assume that processes that
work on the behalf of users correspond to trustworthy applications. We are aware that it
is a strong assumption, and thereby future works should be done in the direction of flow
access control.

Chapter 3

The Or-BAC model

3.1 Introduction

The previous chapter was an occasion to browse a large scale of existing security policy
models and to define the requirements for the definition of a new, expressive and convenient
security model.

In this chapter we introduce the main features of the Organization-Based Access Control
model [Or-BAC 2003, Cuppens and Miège 2004c]. This model stems from the work carried
out in the MP6 project framework1 (Modèles et Politiques de Sécurité pour les Systèmes
d’Informations et de Communications en Santé et Social). MP6 is a RNRT project (Réseau
National de Recherche en Télécommunications) funded by the French Ministry of Research.
It ended in November 2003.

Through the Or-BAC model we attempt to make good use of the existing model advances,
but we also try to overcome their limitations. We aim at proposing a model that offers
means to structure the security policy in such way that it is possible to define complex
and flexible policies that match IT systems’ reality. In the previous chapter we brought up
four major requirements. The first one is the necessity to provide solutions to structure the
security policies components. We concluded that a new model should attempt to federate
the role-based, activity-based and view-based models, and should introduce the concept of
organization as well. The working-out of our model is based on these objectives. Actually,
we integrate three high-level components role, activity and view as abstraction of subject,
action and object, in order to design implementation-independent policies.

Furthermore, the concept of organization is brought in as the central component of our
model. In this manner, the policy specification is completely parameterized by the orga-
nization so that it is possible to handle simultaneously several security policies associated
with different organizations. In other words, the security policy does not directly apply to
subjects, actions and objects. Instead, it defines authorizations that apply within an orga-
nization to control the activities performed by roles on views. This is our main focus in this
chapter.

In the previous chapter, we also mentioned that the modelling of hierarchies provides con-
venient solutions to structure the set of entities and the set of authorizations defined in

1http://www.telecom.gouv.fr/rnrt/rnrt/projets/res 01 59.htm

44 The Or-BAC model

a security policy. We examine hierarchies and define inheritance mechanisms in the next
chapter at section 4.1.

The second and the third requirements raised in the previous chapter respectively correspond
to the context and the negative authorization expression. The Or-BAC model fulfils these
requirements. In order to give a complete overview of the model, we briefly touch on these
issues, but they are fully examined later on. Chapter 6 is dedicated to context expression,
and chapter 7 to negative authorization expression and conflict management.

In this chapter, we give a semi-formal presentation of Or-BAC. Chapter 5 is dedicated to
the formal presentation and tackles the decidability issue. We introduce our model using a
diagrammatic language based on the entity-relationship model as it is more convenient to
introduce the concepts used in Or-BAC. We then express the security rules with the first-
order logic syntax [Shoenfield 2001]. Indeed, a relationship can ben viewed as a fact, and
an entity as a term. We call “Or-BAC policy” any security policy based on the Or-BAC
model.

The reader should be aware our objective is to design a security policy model. We do not
attempt to examine how a policy based on this model should be implemented.

Section 3.2 to section 3.4 are dedicated to the definition of the model entities. Section 3.6
gives the main derivation rule and an overview of the model. All the relations and rules
defined in this chapter and the following ones are summed up in the tables in appendix A.

3.2 The concept of organization

In the Or-BAC model, we introduce the concept of organization. Hence, the first entity we
insert in Or-BAC is the entity Organization. This is the most important one. It gives its
name to our model. The main objective is to offer a convenient way to structure the whole
security policy.

We first defined an organization as an organized group of active entities, that is, subjects
playing some role or other [Or-BAC 2003]. That group of subjects does not necessarily
correspond to an organization. More precisely, the fact that each subject plays a role
within the organization corresponds to some agreement between the subjects to form an
organization. Following this definition, an organization can be a company, an institution, or
any group of users like a project or a team. Nevertheless, the notion of organization in the
Or-BAC model is quite different from the notion of group of users as it is usually interpreted
in access control models.

We later refined this definition in order to obtain a more accurate and general one
[Cuppens et al. 2004a]. An organization is now defined as any entity in charge of the secu-
rity policy. In other words, any association of subjects that encompasses a security policy
and is in charge of enforcing this policy can be considered as an organization. This notion
can be extended to security components for instance. In chapter 9, we see that in the context
of a local network, a firewall is viewed as an organization.

[Grossi and Dignum 2004] suggests the following definition of organization: “set of agents
with specific roles, private and common objectives, the activities of which are procedurally

3.3 The model entities 45

determined”. Although interesting, we prefer to restrict this definition to the scope of the
security policies.

Definition 3.2.1. Organization
“An organization is an association of subjects that is in charge of defining and enforcing
the security policy applied to the subjects. The set of organizations defined in an Or-BAC
policy is written Org”.

The organization is a parameter of all the security rules of the policy. In this manner, we can
manage simultaneously several policies associated with several organizations. It also offers
means to make organizations cooperate better as long as they specify compatible security
policies.

As we shall see in section 4.1.4, Or-BAC makes it possible to break down an organization into
several sub-organizations. Thus, we can define an organization hierarchy. If we consider a
bank called Trusted bank, it is most likely that this organization is divided into departments,
and the departments into units for example. The different agencies of this bank may also
be viewed as sub-organizations. Or-BAC allows to model such structures.

Using inheritance mechanism, if a security policy is defined for an organization, we can
express that the sub-organizations may inherit of that policy. In each sub-organization, it is
possible to add specific authorizations such as the lower we are in the organization hierarchy,
the more specific the security policy is. This is explained in section 4.1.4.

Before describing how authorizations are modelled within the Or-BAC model, we give the
definition of some other entities. All the entities presented in the following sections are
always defined in a given organization. Hence the entity organization is central in a security
policy based on the Or-BAC model.

3.3 The model entities

The Or-BAC model does not give up the traditional entities Subject, Action and Object

used in most access control models. It builds an expressive model instead, using these
entities. The set of subjects – resp. actions and objects – are written S – resp. A and O.

The static authorization triplet < subject, action, object > is suited for traditional environ-
ments and applications but is less appropriate to meet requirements of the rising systems
and their applications and so we introduce three new entities described in the three fol-
lowing subsections. Our objective is to bring in more abstractness in order to hold a large
number of policies and to obtain stable policies for a long period of time, as suggested in
[Grossi and Dignum 2004]. We also aim at specifying general policies, that is, policies inde-
pendent from the implementation issue, that might be implemented in several organizations.

3.3.1 Subjects and roles

Subject

The entity Subject is used differently from one security model to another. In the Or-BAC
model, the entity Subject is considered as the traditional active entity. Therefore, a subject

46 The Or-BAC model

can be either a user, i.e. a human, or an organization. In fact, we shall assume that
the set of organizations is a subset of the set of subjects, so that Org ⊆ S. Examples of
subjects therefore include users such as John, Mary, Peter, etc., or organizations such as
Trusted bank or its financial department called Trusted finance.

In other respects, we do not address the flow control issue. Programs are considered as
reliable, and thereby are treated the same way as users. In order to avoid confusion, we
restrict the set of subjects to users and organizations, and do not consider programs in this
dissertation.

As in role based access models, we chose to consider a new entity Role as an abstraction of
entity Subject.

Role

The concept of role was explained in section 2.2.2. In Or-BAC, the entity Role is used to
structure the link between subjects and organizations.

R is the set of roles defined in a policy. We should remind the reader that the notion of role
is different from the notion of “group”. A group consists of a set of users whereas a role
consists of a set of authorizations. Assigning a subject to a role amounts to grant a set of
privileges to this subject.

The role is an organizational concept. In other words, a role is defined within an organization.
To model such a relation we introduce the relationship Relevant role:

Definition 3.3.1. Relation Relevant role
“Relevant role is a relation over domains Org ×R. If org is an organization and r a role,
then Relevant role(org, r) means that r is a relevant role in organization org”.

Therefore, a role can be considered as relevant in several organizations. The relation is
useful in particular with respect to the hierarchies and the associated inheritance rules that
we study in section 4.1.2. Since subjects play roles in organizations, we need a relationship
that joins up these entities together: the relationship Empower (see figure 3.1).

Definition 3.3.2. Relation Empower
“Empower is a relation over domains Org × S ×R. If org is an organization, s a subject
and r a role, then Empower(org, s, r) means that org empowers subject s in role r”.

Subject Role

Organization

Empower
0, n 0, n

0, n

Figure 3.1: The Empower relationship

Unlike the TMAC and the RBAC models which consider binary relations between organiza-
tions and subjects or between subjects and roles, notice that our model considers a ternary

3.3 The model entities 47

relation between organizations, subjects and roles. Thanks to this ternary relation, we are
able to specify that a given role carries different sets of authorizations according to the
organization in which this role is defined. In the context of our bank example, a subject
can play the role counter clerk in two banks and get two different sets of authorizations for
instance.

Example

To illustrate this, let us look at the following examples. We assume that roles counter clerk

and financial department are relevant roles in organization Trusted bank. This is ex-
pressed this way:

• Relevant role(Trusted bank, counter clerk)
• Relevant role(Trusted bank, financial department)

The two following relations correspond to the fact that organization Trusted bank empowers
some subjects in these roles:

• Empower(Trusted bank, John, counter clerk)
“Trusted bank empowers John as a counter clerk”.
• Empower(Trusted bank, trusted finance, financial department)

“Trusted bank empowers organization trusted finance as its financial department”.

3.3.2 Objects and views

Object

In our model, the entity Object will mainly cover inactive entities such as data files, e-mails,
printed forms, etc. In the banking domain, we can consider for example objects like customer
accounts or company accounts. We assume that the set of subjects is a subset of the set of
objects, so that S ⊆ O. By means of the entity Role, we are able to structure the subjects
and to update easily the security policies when new subjects are added to the system. Since
we will also have to structure the objects and to add new objects to the system, we believe
that a similar entity regarding objects is necessary: the entity V iew.

View

Roughly speaking, as in relational databases, a view corresponds to a set of objects that
satisfy a common property. This explains the reason why we chose the term “view”. In
practice, there is no more possible comparison between views in the relation databases area
and in the Or-BAC model. A view in a relation database results from an operation made on
tables, and above all, is just a temporary set of elements used to build more complex SQL
requests. In the Or-BAC model, once a view is defined in a policy, it is considered as an
element of this policy, as it is for a role. A view can also be defined as the “role played” by
an object, or a set of objects, within a given organization. This idea was already introduced
in the GRBAC model [Covington et al. 2000]. However, we prefer to define a view from the
access control standpoint only:

Definition 3.3.3. View
“A view is an access control entity defined within an organization, and used to put together
objects to which apply the same authorizations”.

48 The Or-BAC model

V is the set of views defined in a policy. The view, like the role, is an organizational concept.
Therefore we introduce a new relation, Relevant view(org, v), that brings together a view
with an organization.

Definition 3.3.4. Relation Relevant view
“Relevant view is a relation over domains Org×V. If org is an organization and v a view,
then Relevant view(org, v) means that v is a relevant view in organization org”.

In a file management system of a bank, for instance, the view customer account corresponds
to the customer accounts whereas the view company account corresponds to the company
accounts. Seeing that views characterize the ways objects are used in organizations, we need
a relationship that links together these entities: the relationship Use (see figure 3.2).

Definition 3.3.5. Relation Use
“Use is a relation over domains Org ×O × V. If org is an organization, o is an object and
v is a view, then Use(org, o, v) means that org uses object o in view v”.

Object View

Organization

Use
0, n 0, n

0, n

Figure 3.2: The Use relationship

We wish to draw the attention on the fact that our model considers a ternary relation
between organizations, objects and views. Our aim is to make ourselves able to characterize
organizations that give different definitions to the same view.

Example

Take the case of the view customer account relevant in organization Trusted bank and
Gold bank, and defined as a set of Excel documents in Trusted bank and as a set of XML
documents in Gold bank:

• Use(Trusted bank, customer 12.xls, customer account)
“Trusted bank uses object customer 12.xls as a customer account”.

• Use(Gold bank, customer 15.xml, customer account)
“Gold bank uses object customer 15.xml as a customer account”.

3.3.3 Actions and activities

Action

Security policies specify the authorized accesses granted to active entities on inactive entities
and regulate the actions carried out in the system. In our model, the entity Action will

3.3 The model entities 49

mainly contain computer actions such as read, write, send, etc. In the Or-BAC model, the
set of actions A is a subset of the set of objects O, such that A ⊆ O.

Activity

Following the line of reasoning suggested in section 3.3.1 where subjects are abstracted by
means of roles, a new entity will also be used to abstract actions: the entity Activity. An
activity is a task, whereas an action is the way this task is implemented in the organization.
As for the notion of view, an activity can be seen as the “role played” by an action, or a
set of actions, within an organization. Intuitively, an activity is an operation that can be
fulfilled by some actions defined in this organization. However, we define the entity Activity

from the security policy point of view only.

Definition 3.3.6. Activity
“An activity is an access control entity defined within an organization, and used to put
together some actions on which apply the same authorizations”.

A is the set of activities defined in the policy. The activity, like the role and the view, is
an organizational concept. Therefore we introduce a new relation, Relevant activity, that
joins up an activity with an organization:

Definition 3.3.7. Relation Relevant activity
“Relevant activity is a relation over domains Org ×A. If org is an organization and a an
activity, then Relevant activity(org, a) means that a is a relevant activity in organization
org”.

In our model, activities like reading, writing, consulting, etc., will be of the utmost interest.
Since different organizations may decide that a single action comes under distinct activities,
we introduce a new relation that will be used to join up the entities Organization, Action

and Activity: the relationship Consider (see figure 3.3).

Definition 3.3.8. Relation Consider
“Consider is a relation over domains Org×A×A. More precisely, if org is an organization,
α is an action and a is an activity, then Consider(org, α, a) means that org considers that
action α falls within the activity a”.

Action Activity

Organization

Consider
0, n 0, n

0, n

Figure 3.3: The Consider relationship

Since Consider is a ternary relation, different organizations may decide that a single action
comes under distinct activities or that different actions come under the same activity. What
we have in mind is to be able to characterize organizations that structure similar activities
in different ways.

50 The Or-BAC model

Example

We could consider, for instance, the activity consulting which is relevant in organizations
Trusted bank and Gold bank. In the first bank, this activity might correspond to an action
read run on data files whereas it might correspond, in the other bank, to action select

performed on relational databases:

• Consider(Trusted bank, read, consulting)
“Trusted bank considers read as an activity consulting” and

• Consider(Gold bank, select, consulting)
“Gold bank considers select as an activity consulting”.

3.3.4 Attributes

We introduce attributes in the Or-BAC model. Attributes enable us to express further
information about the entities involved in a security policy. This is indeed convenient to
specify entity attributes in order to design expressive rules. More precisely, as shown in the
following example, attributes can be used to design automatic assignment. Furthermore,
attributes will be used to design contexts (see chapter 6).

In Or-BAC every object may have some attributes. Since S ⊆ O and A ⊆ O, attributes
can actually be assigned to the concrete entities subject and action. Let us consider the
following relation and assume that account 12 is an object:

• client type(account 12, company)

This relation corresponds to an attribute “client type” and means that object account 12
is of the type company. Thanks to this attribute, we are able to express the following rule:
“every object used in the view account having attributes client type equal to company is
automatically used in the view company account. This is modelled with the following rule:

• ∀s ∈ S,

Use(Trusted bank, s, company account)
← Use(Trusted bank, s, account)∧

client type(s, company)

It might be useful for example to create an attribute account balance in order to automati-
cally assign credit accounts in a given view and debit accounts in another view. With respect
to subjects, one might want to indicate the age or the gender of the customers. Afterwards,
we use, among others, the following attribute examples:

• account number(number, account) where account is an account and number is a num-
ber account.

• account owner(subject, number) where subject is a customer and number is an account
number.

The definition of attributes depends of the application domain of the security policy. This
is the reason why we do not specify predefined attributes.

3.3 The model entities 51

3.3.5 Organizational authorization

Using the entities and the relationships introduced in the previous sections, we are now
in a position to define security policies applying to organizations. Figure 3.4 shows the
abstraction made of the entities Subject, Action and Object into the entities Role, Activity

and V iew. We call “concrete entities” the first three entities and “organizational entities”
the last three entities.

Role

Subject Action Object

Activity View

Organization

Figure 3.4: Abstraction of the traditional access control entities

We have introduced almost all the Or-BAC model entities so far. It is time now to con-
sider the way we model authorizations. What we have in mind is to extend our model
with two new relations Permission and Prohibition for the purpose of being able to join
together organizations, roles, views and activities and thereby expressing authorizations.
The first relation corresponds to a positive authorization, the second relation to a negative
authorization.

As indicated in section 2.4, the use of explicit negative authorizations in security policies is
often discussed, mainly for two reasons. Firstly, if we go on the closed policy assumption,
explicit negative authorizations might seem to be useless. Secondly, some conflicting pair
of positive and negative authorizations may appear in a policy which enables to express
positive and negative authorizations at the same time. The negative authorization expres-
sion, together with our proposal to manage, detect and solve conflicts, are explained later
on. Actually, chapter 7 is exclusively dedicated to these issues. From now and until that
chapter, we might omit prohibitions when definitions and properties apply to prohibitions
in the same way as they do to permissions. We explicitly distinguish prohibitions from
permissions if needed.

Here is the definition of relation Permission. Relation Prohibition is defined in the same
manner.

Definition 3.3.9. Relation Permission (first definition)
“Permission is a relation over domains Org × R × A × V. More precisely, if org is an
organization, r is a role, v is a view and a is an activity, then Permission(org, r, a, v) means
that organization org grants role r the positive authorization to perform activity a on view
v”.

Inasmuch as such permissions – resp. prohibitions – handle organizational entities (roles,
activities and views), they are called “organizational permissions” – resp. “organizational
prohibitions”.

52 The Or-BAC model

Example

Let us take the case of bank Trusted bank that grants role financial adviser permission
to perform activity creation on view customer account. This is expressed by the following
fact:

• Permission(Trusted bank, financial adviser, creating, customer account)

Otherwise, the following fact:

• Permission(Trusted bank, counter clerk, consulting, company account)

says that bank Trusted bank grants role counter clerk permission to perform activity
consulting on view company account.

So far, the introduction of the entity organization and the three organizational entities allow
to express high level security rules. Let us consider again the previous permission which
shows the benefit of such modelling. With only one security rule, Trusted bank can express
that in all agencies and whatever IT system is used, all counter clerks are allowed to realize
any action that falls within activity consulting on any company account.

3.4 Modelling contexts

As presented in chapter 2, an expressive policy model should provide means to define dy-
namic security policies, that is, policies which may depend on some specific circumstances.
More precisely, it should be possible to make each security rule constrained by the policy
context. In order to address this issue, we propose to extend our model with a new entity:
Context. Roughly speaking, this entity will be used to specify the concrete circumstances
in which organizations grant roles some permissions to perform activities on views.

Let us first consider the following permission:

• Permission(Trusted bank, customer, consulting, customer account)
“Trusted bank allows its customers to consult the costumer accounts”.

Thanks to this privilege, the bank can express that its customers are granted the right to
consult the bank accounts. On the other hand, it is clear that this security requirement is not
exactly what Trusted bank wants to specify: a customer should be allowed to consult only
his own bank account. The truth of the matter is that the Or-BAC model described above
simply cannot cope with such security requirement: given an organization, users inherit
permissions from the roles they play in that organization. The use of the context entity will
allow the bank to express the privilege it wants.

Definition 3.4.1. Context
“A context, within an organization, is a set of constraints that must be satisfied in order to
activate an authorization”.

In this section, we introduce briefly the entity Context in order to get a global vision of the
Or-BAC model. In chapter 6, we go into further detail about the context definition and the
different contexts Or-BAC enables to model.

3.4 Modelling contexts 53

C is the set of contexts defined in the policy. The context is an organizational notion. A
context is actually defined within an organization. In order to model this link, we introduce
a new relation Relevant context:

Definition 3.4.2. Relation Relevant context
“Relevant context is a relation over domains Org × C. If org is an organization and c a
context, then Relevant context(org, c) means that c is a relevant context in organization
org”.

As explained in chapter 6, which is dedicated to contexts in the Or-BAC model, each context
is seen as a ternary relation between subjects, objects and actions defined within such or
such organization. Therefore, entities Organization, Subject, Object, Action and Context

are linked together by the relationship Hold (see figure 3.5).

Definition 3.4.3. Relation Hold
“Hold is a relation over domains Org × S × A × O × C. If org is an organization, s is a

subject, o is an object, α is an action and c a context, then Hold(org, s, α, o, c) means that
within organization org, context c is true between subject s, action α and object o”.

The conditions required for a given context to be linked, within a given organization, to
subjects, objects and actions is formally specified by logic rules (see section 6.3).

Subject Context

Organization

Hold
0, n 0, n

0, n

Action Object

0, n 0, n

Figure 3.5: The Hold relationship

In order to model contextual authorizations, we have to modify the relation Permission as
presented at figure 3.6.

Definition 3.4.4. Relation Permission (final definition)
“Permission is a relation over domains Org × R × A × V × C. More precisely, if org

is an organization, r is a role, v is a view, a is an activity and c is a context then
Permission(org, r, a, v, c) means that organization org grants role r the positive autho-
rization to perform activity a on view v in context c”.

Example

Let us get back to our previous example. Trusted bank can define a new context, called
personal account:

54 The Or-BAC model

Organization

Permission
0, n

0, n

View

Role

Activity

Context
0, n

0, n0, n

Figure 3.6: The Permission relationship

• ∀s ∈ S,∀α ∈ A,∀o ∈ O

Hold(Trusted bank, s, α, o, personal account)
← account number(number, o) ∧ account owner(s, number)

The definition of context personal account is explained at section 6.3. Using this context
definition the bank is able to fully express the privilege corresponding to the permission
granted to a customer to consult his personal bank account:

• Permission(Trusted bank, customer,

consulting, customer account, personal account).

3.5 Concrete permission

The relationship Permission enables a given organization to specify permissions granted
in a given context. Such permissions correspond to a relation between roles, views and
activities. However, down-to-earth access control must provide a framework to describe
the concrete actions that may be performed by subjects on objects. For the purpose of
modelling concrete permissions, we introduce in our model the new relation Is permitted

as a relationship between subjects, objects and actions (see figure 3.7).

Definition 3.5.1. Is permitted
“Is permitted is a relation over domains S ×A×O. If s is a subject, o is an object and α

is an action then Is permitted(s, α, o) means that subject s is permitted to perform action
α on object o”.

We define in the same way the relationship Is prohibited which corresponds to a negative
authorization.

Our relationship Is permitted is similar to the notion of permission suggested in the IBAC
models (see section 2.2.1). There is, however, a difference of major importance. In IBAC
models, each authorized triplet < s, α, o > must be explicitly stated. In our model, triplets
that are instances of the relationship Is permitted are logically derived from organizational
permissions granted to roles, views and activities by the relationship Permission. This is
modelled by a general rule RG1 presented in the following section.

3.6 Security policy 55

Subject Object

Action

Is_permitted
0, n 0, n

0, n

Figure 3.7: The Is permitted relationship

Example

Let us consider the following concrete permission example:

• Is permitted(John, ATM.consult, account n◦428)
“John is allowed to consult the bank account n◦428 in an ATM machine.”

Explicit instances of the relationship Is permitted may also be viewed as exceptions to the
general security policy specified by the relationship Permission. Let us consider the following
example. Usually subjects who are empowered as counter clerk are not allowed to consult
the company accounts. Therefore, no organizational authorization is stated. However, and
whatever could be the reason, if the bank wants to grant the permission to a specific user,
for example Paul, to consult a specific object company account, for example society12.act,
it can add the corresponding concrete authorization:

• Is permitted(Paul, read, society12.act)

Thereby, this concrete authorization can be viewed as an exception to the organizational
policy. This is called an “explicit concrete authorization”. Actually, this notion is close to
the one of delegation. In chapter 8 we discuss the way explicit concrete authorizations can
be used as delegation authorizations. Furthermore, the use of such concrete authorizations
relies on how the Or-BAC policy is enforced: explicit concrete authorizations should have
priority over derived concrete authorizations.

3.6 Security policy

In this section we give an overview of an Or-BAC security policy. As we introduced earlier, an
Or-BAC policy can be seen as a two level security policy: on the one hand an organizational
level compound of organizational entities – Organization, Role, Activity, V iew, Context

– and of organizational authorizations – Permission, Prohibition – and on the other hand
a concrete level compound of concrete entities – Subject, Action, Object – and of concrete
authorizations – Is permitted, Is prohibited.

These two levels are related as follows. In a given organization org, a subject s is permitted
to perform an action α on an object o if:

i. s is empowered to play a given role r in org and

ii. α implements a given activity a in org and

56 The Or-BAC model

iii. o is used in a given view v by org and
iv. a context c holds in org between s, α and o, and
v. the organization org grants to role r the permission to perform the activity a on the
view v in the context c.

If these conditions are fulfilled, the request made by the subject s to perform the action
α on the object o is accepted. This is modelled by the following derivation rule which
makes it possible to derive concrete positive authorizations from organizational positive
authorizations:

• RG1: ∀org ∈ Org,∀s ∈ S,∀α ∈ A,∀o ∈ O,∀r ∈ R,∀a ∈ A,∀v ∈ V,∀c ∈ C,
Permission(org, r, v, a, c)∧
Emplower(org, s, r)∧
Consider(org, α, a)∧
Use(org, o, v)∧
Hold(org, s, α, o, c)
→ Is permitted(s, α, o)

PermissionRole View

Activity

Is_permittedSubject Object

Action

OrganizationEmpower Use

Consider

organizational level

concrete level

Context

Hold

Figure 3.8: The Or-BAC model

The rule RG2 that enables to get the concrete negative authorizations from the organiza-
tional negative authorizations is stated in the same manner as rule RG1. Figure 3.8 resumes
the Or-BAC security model. To give a comprehensive description of Or-BAC, relations
Prohibition and Is prohibited, as well as the relevance relations, are absent of figure 3.8.

3.7 Conclusion 57

As indicated in the introduction of this chapter, we do not aim at considering the imple-
mentation of an Or-BAC policy. Nevertheless, we suggest that concrete permissions are
security rules dynamically derived. On the one hand, organizational permissions compose
the written security policy, on the other hand, concrete permissions are viewed as security
requests made by subjects. In this perspective, the derivation rules previously stated are
only used when security requests are launched. The specific decision process in case of the
use of negative authorizations is discussed in chapter 7.

Example

Let us consider the following example where John, a Trusted bank customer, wants to
consult his cash account balance on an ATM machine. The corresponding security request
made after John has logged on the machine could be expressed as follows:

• Is permitted(John, ATM.consult, account n◦428)

John is a bank customer:

• Empower(Trusted bank, John, customer)

We assume that John’s account number is 428:

• Use(Trusted bank, account n◦428, customer account)

• Hold(Trusted bank, John, ATM.consult, account n◦428, personal account)

We also assume that in the IT system, ATM.consult is the name given to the action of
consulting using an ATM machine:

• Consider(Trusted bank, ATM.consult, consulting)

Finally, we assume that the following organizational permission is part of the Trusted bank

security policy:

• Permission(Trusted bank, customer, consulting, customer account, personal account)

Using these facts and the derivation rule RG1, we are able to conclude that John is allowed
to consult his account balance on an ATM machine.

3.7 Conclusion

We browsed the main features of a new access control model called Or-BAC. This model
stems from the analysis of existing access control models. In order to make this chapter
lighter, we only described the basis of the Or-BAC model. Others important features are
presented in the next chapter, namely the hierarchies and the constraints.

We use the traditional access control entities Subject, Action and Object. Furthermore
Or-BAC makes it possible to assign some attributes to such entities. A major contribution
of Or-BAC consists in the abstraction made of these entities into entities Role, Activity and
V iew, called “organizational entities”. We integrated within a single model the notions of
the role based, activity based and the view based, with the view to propose a kind of unified
model which offers the advantages of these models. Using these six entities, the Or-BAC
model allows us to define a two-level security policy. On the one hand, the organizational

58 The Or-BAC model

policy corresponds to authorizations that would be written by a security officer. On the other
hand, the concrete policy is the one implemented in the IT system. We have presented the
derivation rule to get the concrete policy from the organizational policy.

An organizational policy, as defined in the Or-BAC model, enables to design a security
policy independently of the implementation choices made in the definition of the IT system.
For example, whatever action is chosen to implement the activity consulting – it could
be acroread, SELECT , etc. – the security rules in which this activity is involved remain
relevant. Therefore, a single organizational policy can be applied to different IT systems.

Another entity, Organization, is also introduced. In the Or-BAC model, all authorizations
are defined within a given organization. In practice, the organization is a parameter for all
security rules of an organizational policy. The introduction of this entity meets the three
following objectives. Firstly, we are able to model the structure of an organization through
the definition of an organization hierarchy. Secondly, it offers the possibility to obtain more
specific policies as we go down into an organization hierarchy. Thirdly, it increases the
compatibility between security policies of several organizations that collaborate.

The tractability and decidability issues are discussed in chapter 5. As represented in this
chapter, the formal definition of the Or-BAC model relies on Datalog. Therefore, Or-BAC
policies are actually specified using logic facts and rules.

In section 2.2.5, we introduced the notions of static and dynamic organizations. So far, or-
ganizations in Or-BAC are static. We plan to integrate the concept of dynamic organization
in future works. Such organizations correspond to a set of roles and views joined together
during the execution of given activities. The notion of dynamic organization is more gen-
eral than the notion of “session”. A session, as defined in RBAC for instance, is indeed a
dynamic organization that involves only one subject. Dynamic organizations would enable
to model teams, projects and dynamic separation of duty, etc.

In other respects, we did not go into much detail with regards to the meaning of the abstrac-
tion of actions into activities. As in the ABAC models, we would like to propose several
kinds of decomposition in order to offer means to model workflows and activity aggregation.
These issues will be the subject of future works.

An Or-BAC policy, as it can be specified for the time being, does not yet meet all the
requirements listed in chapter 2. At this point, we are able to express positive and negative
authorizations but not to detect and solve conflicts. Moreover, we still have to explain
which kind of contextual authorizations can be modelled. These issues are addressed in the
following chapters, as well as the administration of our model.

Chapter 4

Or-BAC extensions

We described the main features of the Or-BAC model in the previous chapter. Here, we
introduce some other issues in order to complete our model.

As we pointed out before, the Or-BAC model offers means to specify hierarchies of entities.
The particularity of this model is that it is possible to define not only role hierarchies,
but also activity, view, context and organization hierarchies. Associated with inheritance
mechanisms, hierarchies make it possible to design structured policies, and simplify the
management of the set of authorizations. Hierarchies are addressed in section 4.1.

Moreover, as in most access control models, Or-BAC provides means to specify some con-
straints over the definition of a policy. In section 4.2, we show how to express constraints
in Or-BAC, and more noticeably, we specify the basic constraints that an Or-BAC policy
must satisfy.

4.1 Hierarchy within Or-BAC

4.1.1 Introduction

The definition of a new security policy model like Or-BAC aims at modelling complex and
relevant policies. The more a policy is complex, the more difficult it is to manage. It can
thus be useful to structure the entities of a policy into hierarchies. We introduced hierarchies
in section 2.2.7 and we mainly focused on role hierarchies. We saw that hierarchies ease the
policy management. Indeed, hierarchies offer a clear way to structure the set of roles. Fur-
thermore, the authorization inheritance makes the update of the set of authorizations easier.
We suggest to introduce in the Or-BAC model the role hierarchies in the same way, but we
also consider hierarchies of activity, view, context and organization [Cuppens et al. 2004a].
Actually, context hierarchies are examined at section 6 since a complete definition of context
has first to be presented in order to tackle this issue. Notwithstanding hierarchy and inher-
itance might be useful, the use of hierarchies is prone to semantics ambiguities, particularly
when negative authorizations are introduced.

The first subsection is dedicated to role hierarchies. In particular, we separately analyze
positive and negative authorizations inheritance. Next, we present the view and activity
hierarchies. Finally, we provide some useful inheritance mechanisms between organizations

60 Or-BAC extensions

and sub-organizations.

4.1.2 Role hierarchy

Principle

Let us first address the case of the role hierarchy. In every organization, it is possible to
associate a set of roles with a hierarchy. For this purpose, we introduce the following relation:

Definition 4.1.1. Relation sub role
“sub role is a relation over domains Org×R×R. If org is an organization, if r1 and r2 are
roles, then sub role(org, r2, r1) means that r2 is a sub-role of r1 in organization org”.

The term “sub-role” in Or-BAC has the same meaning as the term “senior role” in RBAC
[Sandhu 1998]. The relation corresponding to sub role is transitive, reflexive and anti-
symmetric. Notice that the role hierarchy depends on the organization. This means that
the hierarchy may vary from one organization to another. Let us consider the hierarchy
of figure 4.1 and assume that the roles are defined in organization Trusted bank. This
hierarchy is modelled in Or-BAC with a set of facts. We just give here two of them:

• sub role(Trusted bank, head agency, chief adviser)

• sub role(Trusted bank, chief adviser, financial adviser)

Let us now model inheritance principles associated with this hierarchy. A first, but incorrect,
way to model inheritance through the role hierarchy would be to consider that if r1 is a sub-
role of r2 in organization org, then every subject empowered in role r1 is also empowered in
role r2. This is modelled by the following rule:

• ∀org ∈ Org,∀r1 ∈ R,∀r2 ∈ R,∀s ∈ S,

sub role(org, r2, r1) ∧ Empower(org, s, r1)→ Empower(org, s, r2)

head_agency

counter_clerk

financial_adviser

adviser

employee

insurance_adviser

chief_adviser

Figure 4.1: An example of a multiple role hierarchy

4.1 Hierarchy within Or-BAC 61

According to this rule, every subject empowered as a counter clerk is also empowered as an
employee. By doing so, every subject empowered as a counter clerk “inherits” all authoriza-
tions assigned to role employee. However, this approach is not satisfactory for at least three
reasons:

1. Our objective is to specify an authorization inheritance mechanism, while the suggested
rule corresponds to inheritance of role. This underpins really different concepts.

2. It may happen that some roles in the hierarchy are only “virtual roles”, that is, roles
introduced in the hierarchy as a convenient way to specify permissions or prohibitions
that are common to every sub-role of this virtual role. A virtual role is a pool of
authorizations to which no subject is assigned. In our example, we might create the
role loan grantor as a junior role of role adviser. We could thereby choose to assign
all authorizations related to loans to this role without assigning any subject to it.

3. As mentioned in [Sandhu et al. 1996], the role hierarchy may correspond to an “orga-
nizational” hierarchy, that is, r1 is a sub-role of r2 if each subject empowered in role
r1 is hierarchically higher in the organization than the subjects empowered in role r2.
For instance, role head agency may be defined as a sub-role of role chief adviser. In
this case, it would be clearly incorrect to conclude that a subject empowered in role
head agency is also empowered in role chief adviser.

A better way to model permission inheritance through the role hierarchy is specified by the
following rule:

• RH1: ∀org ∈ Org,∀r1 ∈ R,∀r2 ∈ R,∀a ∈ A,∀v ∈ V,∀c ∈ C,
sub role(org, r2, r1) ∧ Permission(org, r1, a, v, c)→ Permission(org, r2, a, v, c)

This rule means that if role r2 is a sub-role of role r1 in organization org, then every
permission assigned to role r1 in organization org is also assigned to role r2. It perfectly
translates the idea that role hierarchy is associated with inheritance of permissions. Rule
RH2 corresponding to the prohibition inheritance is written in the same way.

Actually, the relation sub role is a general solution to create a role hierarchy but is not
associated to a specific semantics. As discussed in section 2.2.7, three kinds of role hierar-
chies can be distinguished: specialization hierarchy, supervision hierarchy and aggregation
hierarchy. We concluded that according to the hierarchy type, the inheritance direction for
permission and prohibition might differ. In fact, whatever is the hierarchy, permissions are
always inherited from a role to his sub-roles and thereby rule RH1 always applies. Con-
trariwise, some authors consider that prohibition inheritance may not always have the same
direction.

We claim that managing several kinds of hierarchies with different inheritance directions
leads to non-resolvable problems. We justify this in the next subsection. Therefore, we
choose to consider only inheritance from juniors to seniors role, for positive and negative
authorizations. The specific cases of contrary inheritance are treated as exceptions.

Discussion of prohibition inheritance

Let us discuss how a specific inheritance direction for negative authorization could be taken
into account, and see why we do no chose this option. A solution consists in differen-

62 Or-BAC extensions

tiating the prohibition inheritance direction according to the hierarchy links between roles,
as suggested in the T–RBAC model [Oj and Sandhu 2000].

Among the three kinds of hierarchy, we consider only the two first ones – i.e. specialization
hierarchy and supervision hierarchy – since the third one is rather related to the activity
aggregation issue than to the inheritance issue. Assume that prohibitions should be inherited
from a role to his sub-roles in case of a specialization hierarchy, and on the opposite direction
in case of a supervision hierarchy. To do so, we still consider predicate sub role and rule
RH1 and RH2, but we introduce two more relations in order to make a distinction between
the specialization and the supervision hierarchies:

• specialized role(org, r2, r1): in organization org, role r2 is a more specialized role than
role r1.
e.g.: specialized role(Trusted bank, financial adviser, adviser)

• senior role(org, r2, r1): in organization org, role r2 is a supervision role of role r1.
e.g.: senior role(Trusted bank, head agency, counter clerk)

We consider that relationship specialized role is included in sub role:

• RH3: ∀org ∈ Org,∀r1 ∈ R,∀r2 ∈ R,

specialized role(org, r2, r1)→ sub role(org, r2, r1)

The consequence is that rules RH1 and RH2 apply to the specialization role hierarchy and
thus permissions and prohibitions are inherited through this hierarchy. By contrast, the
relationship senior role is not included in sub role. We need to introduce two more rules:

• RH4: ∀org ∈ Org,∀r1 ∈ R,∀r2 ∈ R,∀a ∈ A,∀v ∈ V,∀c ∈ C,
senior role(org, r2, r1) ∧ Permission(org, r1, a, v, c)
→ Permission(org, r2, a, v, c)

• RH5: ∀org ∈ Org,∀r1 ∈ R,∀r2 ∈ R,∀a ∈ A,∀v ∈ V,∀c ∈ C,
senior role(org, r2, r1) ∧ Prohibition(org, r2, a, v, c)
→ Prohibition(org, r1, a, v, c)

We obtain the inheritance mechanism we wanted. Permissions are always inherited from a
role to its sub-roles, as for prohibitions in the case of a specialization hierarchy. Prohibitions
are inherited from a role to his junior roles in the case of a supervision hierarchy.

However, designing a supervision hierarchy with two different inheritance directions raises
a major issue in the event that the security policy is specified with positive authorizations
and if negative authorizations are only used as exceptions, in a DTP conflict management
strategy for instance (see section 2.4.3). Let us consider the following example. Let r1 and
r2 be two relevant roles in organization org such that senior role(org, r2, r1). r2 inherits all
the positive authorizations granted to r1. Assume that a specific authorization should not be
inherited from r1 to r2, and so, a corresponding prohibition is given to r2 (as an exception).
Using the inheritance specified above, r1 will inherit this prohibition and therefore “loose”
also its permission. In other words, such inheritance in a supervision hierarchy limits the
use of prohibitions as exceptions. It would actually be possible with a conflict management
strategy based on priority levels, but it would be really difficult to manage.

Mixing hierarchy types. If the role hierarchy is only a specialization hierarchy or only a
supervision hierarchy, therefore inheritance does not present any problem. On the contrary,

4.1 Hierarchy within Or-BAC 63

if the role hierarchy mixes specialization and supervision relations between roles, some side-
effects may appear in the inheritance process. Let us consider our example of hierarchy. It is
presented at figure 4.1. Now, specialization links are represented with plain arrows whereas
supervision links with dotted arrows.

If a given prohibition p is assigned to role adviser, then roles financial adviser,
insurance adviser and employee will receive this prohibition. This is reasonable. As op-
posed to that, role counter clerk will also obtain p, which might not be what the SSO
wants. Furthermore, in more complex hierarchies, some loops might appear, which can be
disturbing from a computational point of view. In fact, mixing hierarchies would complicate
the authorizations management in huge organizations.

We do not go into more details concerning this issue, but it clearly raises some major
problems that will have to be studied in the future. For instance, it may be suitable to
distinguish “specialization authorizations” from “supervision authorizations”.

4.1.3 View and activity hierarchies

Principle

The Or-BAC model makes it possible to consider inheritance between roles, but also between
views and activities. To do so, we introduce two new relationships. The hierarchy relation
between two views is defined using relationship sub view whereas the hierarchy relation
between two activities is defined using relationship sub activity:

Definition 4.1.2. Relation sub view
“sub view is a relation over domains Org × V × V. If org is an organization, if v1 and v2

are views, then sub view(org, v2, v1) means that v2 is a sub-view of v1 in organization org”.

Definition 4.1.3. Relation sub activity
“sub activity is a relation over domains Org × A × A. If org is an organization, if a1

and a2 are activities, then sub activity(org, a2, a1) means that a2 is a sub-activity of a1 in
organization org”.

These relations are transitive, reflexive and asymmetric. The positive authorization inheri-
tance associated with view and activity hierarchies are defined with rules AH1 and VH1 as
follows:

• AH1: ∀org ∈ Org,∀r ∈ R,∀a1 ∈ A,∀a2 ∈ A,∀v ∈ V,∀c ∈ C,
Permission(org, r, a1, v, c) ∧ sub activity(org, a2, a1)
→ Permission(org, r, a2, v, c)

• VH1: ∀org ∈ Org,∀r ∈ R,∀a ∈ A,∀v1 ∈ V,∀v2 ∈ V,∀c ∈ C,
Permission(org, r, a, v1, c) ∧ sub view(org, v2, v1)
→ Permission(org, r, a, v2, c)

In other words, an activity – resp. view – inherits all the positive authorizations of its junior
activities – resp. views. Rules AH2 and VH2 for negative authorization inheritance are
defined in a similar way, and have the same inheritance direction.

64 Or-BAC extensions

Discussion about semantics

Let us discuss the meaning of such hierarchies. Actually, concerning views and activities,
we only specify specialization hierarchies since supervision in this case does not make sense.

Saying that activity a2 is a sub-activity of a1, that is, one of its senior activity, means that
a2 is a more specialized, or a more specific activity than a1. It corresponds to a relation
“isa”. In other words, if a role is granted the right to carry out activity a1, then, thanks to
the inheritance mechanism, it is also granted the right to perform activity a2. The activity
hierarchy should essentially be designed in order to get appropriate inherited authorizations.
For example, if in a given organization org, it is considered that allowing a role to delete
a view supposes that this role has the right to modify this particular view, then activity
modifying should be defined as a sub-activity of activity deleting:

• sub activity(org, modifying, deleting)

The view hierarchy is apprehended in the same way. A sub-view is a more specialized view.
In our bank example, we consider views account, customer account and company account.
An account is indiscriminately a costumer account or a company account. Therefore,
the views customer account and company account can be seen as sub-views of the view
account. This way, granting the role financial adviser the authorization to consult any
account, enables to derive the same authorization applied to the views customer account

and company account:

• sub view(Trusted bank, customer account, account)

• sub view(Trusted bank, company account, account)

4.1.4 Organization hierarchy

Principle

Previous sections showed how to define hierarchies between roles, activities and views within
a given organization. In this section, we study how to define organization hierarchies. Our
objective is to model an organization structure through an organization hierarchy. Most
companies and institutions are composed of departments, units, services, etc. All those
entities are considered as sub-organizations in the Or-BAC model. Organization hierarchies
might also be used to model an IT system. For this purpose, we introduce the following
relation:

Definition 4.1.4. Relation sub organization
“sub organization is a relation over domains Org×Org. If org1 and org2 are organizations,
then sub organization(org2, org1) means that org2 is a sub-organization of org1”.

We may actually require that every sub-organization org2 of a given organization org1 is
assigned to a role. This requirement is modelled by the following constraint (constraints are
introduced in section 4.2).

• C10: ∀org1 ∈ Org,∀org2 ∈ Org,∀r ∈ R,

sub organization(org2, org1) ∧ ¬Empower(org1, org2, r)
→ error()

4.1 Hierarchy within Or-BAC 65

Let us consider the following example, where Trusted bank is a bank and trusted finance is
the financial department of this bank, that is, trusted finance is empowered as the financial
department. We have:

• sub organization(trusted finance, Trusted bank)

• Empower(Trusted bank, trusted finance, financial department)

Thereby, C10 is satisfied. Using organization hierarchies, Or-BAC makes it possible to model
the structure of organizations. In the following, we examine the inheritance mechanisms
that can be associated with an organization hierarchy. In fact, we consider three inher-
itance types: organizational entities inheritance, hierarchy inheritance, and authorization
inheritance.

Organizational entities inheritance

The organizational entities inheritance corresponds to inheritance of role, activity, view and
context from an organization to another. Actually, here again, we consider that it is a
matter of choice, and it depends on the organization hierarchy semantics. Let us consider
the roles only. We suggest three possibilities:

1. One may consider that the roles defined in an organization are inherited in all sub-
organizations. For example, assume that organization Trusted bank is a compound of sub-
organizations which are local agencies. All roles specified at figure 4.1 can be defined within
Trusted bank and then inherited in all local agencies. This would be modelled by the
following rule:

• ∀org1 ∈ Org,∀org2 ∈ Org,∀r ∈ R,

sub organization(org2, org1) ∧Relevant role(org1, r)
→ Relevant role(org2, r)

2. By contrast, roles might be inherited from an organization to its junior organizations.
For example, if a given local agency defines a new role, it might be useful for this role to be
automatically defined as relevant in organization Trusted bank. This would be modelled by
the following rule:

• ∀org1 ∈ Org,∀org2 ∈ Org,∀r ∈ R,

sub organization(org2, org1) ∧Relevant role(org2, r)
→ Relevant role(org1, r)

3. The third solution consists in considering that roles are not inherited.

The same discussion holds for activities, views and contexts, but different solutions can be
chosen in accordance with the entity type. We claim that the SSO has to define an “entities
inheritance strategy” in which he/she defines all inheritance rules.

Hierarchy inheritance

If entities are inherited from an organization to another, we have to take into account the
inheritance of hierarchical links between inherited entities. Broadly speaking, the hierarchy
inheritance issue happens when relevant entities hierarchically linked in an organization are
also relevant in the sub-organizations. It can be the result of an inheritance mechanism or
it can be specified by the SSO. We claim that if some roles are relevant in an organization

66 Or-BAC extensions

and are also relevant in the sub-organizations, then the hierarchy links between these roles
must be inherited from the organization to its sub-organizations.

Let us consider roles only. Assume that orgb is a sub-organization of orga. For those roles
of orga that are relevant in orgb, we consider that the role hierarchy defined in orga also
applies in orgb. This is modelled by the following rule:

• HH1: ∀orga ∈ Org,∀orgb ∈ Org,∀r1 ∈ R,∀r2 ∈ R,

sub organization(orgb, orga)∧
sub role(orga, r1, r2)∧
Relevant role(orgb, r1) ∧Relevant role(orgb, r2)
→ sub role(orgb, r1, r2)

Similar principles apply to inheritance of activity and view hierarchies through the organiza-
tion hierarchy. Thus, we obtain two other rules (respectively called HH2, HH3) by replacing
the sub role predicate in rule HH1 by the specialized role predicate (resp. the sub activity

and sub view predicates).

Authorizations inheritance

The last inheritance mechanism corresponds to the authorizations inheritance. We accept
similar principles for inheritance of permissions and prohibitions through the organization
hierarchy provided that the role, activity, view and context in the scope of the permission
or prohibition are relevant in the sub-organization. This is modelled by the following rule:

• OH1: ∀org1 ∈ Org,∀org2 ∈ Org,∀r ∈ R,∀a ∈ A,∀v ∈ V,∀c ∈ C,
sub organization(org2, org1)
Permission(org1, r, a, v, c)∧
Relevant role(org2, r)∧
Relevant activity(org2, a)∧
Relevant view(org2, v)∧
Relevant context(org2, c)
→ Permission(org2, r, a, v, c)

A similar rule applies to inheritance of prohibition (rule called OH2).

4.1.5 Conclusion

As seen in this chapter, the definition of hierarchies and associated inheritance mechanisms
offer convenient means to structure the policy entities and to manage authorizations. It
is easy to specify some inheritance rules, but as we showed, numerous side-effects might
appear, especially in the case of multiple inheritance. We proposed several inheritance
mechanisms, for roles, activities, views and organizations. Inheritance of context is consid-
ered in chapter 6. Inheritance is mainly the concern of hierarchy semantics and enforcement
choices. We suggested some inheritance mechanisms that appear to be pertinent. As in
[Bertino et al. 2003], we let the SSO free to choose the relevant inheritance rules for its
security policy. Therefore, future works have to be led in the direction of the definition of
a parametric inheritance strategy, in which all derivation rules would be specified. Further-
more major studies ought to be realized to analyze an verify the coherence of a security
policy on which such a strategy would be applied.

4.2 Modelling Constraints 67

4.2 Modelling Constraints

So far, the Or-BAC model makes it possible to assign some authorizations to roles to carry
out activities on views. Thanks to the entity Context, we are able to specify some conditions
over these authorizations. Nevertheless, certain types of conditions can hardly be expressed
that way. Actually, this is the case for instance for conditions that involve the relation
Empower. As we will consider just later, the principle of separation of duty, for instance,
is implemented through some constraints over the way subjects are empowered into roles.
This cannot be done using entity Context and relation Hold. Therefore, conditions over
relation Empower, but also over relations Consider and Use are modelled in a different
way, and are called “constraints”.

Constraints that apply to an access control policy were first suggested in the RBAC mo-
dels, more precisely, in the RBAC2 sub-model [Sandhu et al. 1996] and further analyzed in
[Ahn and Sandhu 2000, Ahn and Shin 2001a, Ahn and Shin 2001b]. Constraints are special
rules that have to be respected when a security policy is designed. Thus, constraints de-
finition can be viewed as an administrative activity. However, constraints are usually kept
in the policy definition part. To specify constraints in the Or-BAC model, we introduce a
predicate error() as done in [Bertino et al. 2003, Jajodia et al. 2001b].

Definition 4.2.1. Constraint
“A constraint is a rule whose conclusion is error()”.

In the following, we give some examples of traditional constraints usually expressed in access
control policies and we show how to model them using Or-BAC. Let us first start with the
relevance constraints.

4.2.1 Relevance constraints

We first consider roles. In section 3.3.1, we introduced the relations Empower and
Relevant role without specifying the way they are associated. Actually, we require that
a subject can be empowered in a role within an organization provided this role is relevant
in this organization. This is modelled by the constraint C1:

• C1: ∀org ∈ Org,∀s ∈ S,∀r ∈ R,

Empower(org, s, r) ∧ ¬Relevant role(org, r)
→ error()

We similarly define the equivalent constraints C2, C3 and C4 respectively for the views, ac-
tivities and contexts. Furthermore, since authorizations are defined within an organization,
entities involved in authorizations must be relevant in the corresponding organization. For
positive authorizations, this is modelled with constraint C5:

• C5: ∀org ∈ Org,∀r ∈ R,∀a ∈ A,∀v ∈ V,∀c ∈ C,
Permission(org, r, a, v, c)∧
¬(Relevant role(org, r)∧

Relevant activity(org, a)∧
Relevant view(org, v)∧
Relevant context(org, c))

→ error()

68 Or-BAC extensions

The similar constraint C6 is defined for relevant entities in negative authorizations.

4.2.2 Cardinality constraints

A cardinality constraint enables to specify that only a given number of users – resp. action,
object – can be assigned to a given role – resp. activity, view. We consider the specific case
where only one user can be assigned to role. More precisely, in Trusted bank, only one user
can be appointed general manager. That constraint would be expressed as follows:

• Empower(Trusted bank, subject1, general manager)∧
Empower(Trusted bank, subject2, general manager)∧
subject1 	= subject2
→ error()

4.2.3 Separation constraints

Separation constraints correspond to the notion of separation of duty. Let us consider first
the role separation. These constraints correspond to the idea that some roles cannot be
played by the same user. In a bank, there would be a conflict of interests if the role “loan
officer” and the role “customer” (that may ask for a loan) were played by the same user. The
role separation constraint is used to address this issue. Saying that two roles are separated
means that a given subject cannot simultaneously play these two roles. For this purpose,
we first introduce the following definition:

Definition 4.2.2. Role separation constraint
“separated role is a relation over domains Org × R × Org × R. If org1 and org2

are organizations and r1 and r2 are relevant roles in org1 and org2 respectively, then
separated role(org1, r1, org2, r2) means that no subject s is permitted to be at the same
time empowered into role r1 in org1 and into r2 in org2”.

Using this relation, we can define the following constraint C7:

• C7: ∀org1 ∈ Org,∀org2 ∈ Org,∀r1 ∈ R,∀r2 ∈ R,∀s ∈ S,

separated role(org1, r1, org2, r2)∧
Empower(org1, s, r1) ∧ Empower(org2, s, r2)
→ error()

This constraint says that, if role r1 in organization org1 is separated from role r2 in orga-
nization org2, then a subject cannot play both role r1 in organization org1 and role r2 in
organization org2. Such a constraint is strong. For example, if the role loan officer and the
role customer are conflicting roles, then the subjects empowered by the bank as loan officers
cannot be customers of that bank.

By using relations separated view(org1, v1, org2, v2) and
separated activity(org1, a1, org2, a2), we can similarly define view and activity sepa-
ration constraints saying that an object - resp. an action - cannot be simultaneously used
in views v1 in org1 and v2 in org2 – resp. cannot implement activities a1 in org1 and a2

in org2. Constraints C8 and C9 respectively corresponding to activity and view separation
are defined by analogy with C7. We also suggest to define a notion of context separation.

4.3 Conclusion 69

The definition of such constraints, as well as some examples of separated contexts are
given in section 6.10. We assume that seperated role, separated activity, separated view

are respectively irreflexive and symmetrical relations between roles, activities, views and
contexts. These relations will be more specifically used in the conflict management part in
chapter 7.

4.3 Conclusion

The Or-BAC model incorporates hierarchies. We actually showed how to express role, activ-
ity, view and organization hierarchies and described the associated inheritance mechanisms.
These hierarchies enable to model the structure of an organization and to simplify the man-
agement of the set of authorizations.

Furthermore, as in most access control models, it is possible to express constraints over the
definition of a policy. In Or-BAC, constraints are specific rules that conclude on predicate
error(). In this chapter, we specified the constraints that an Or-BAC policy must respect
and take into account.

Chapter 5

Complexity and decidability

5.1 Introduction

So far, we presented the Or-BAC model using an entity/relationship language since it was
more convenient to introduce the concepts of this model. Afterwards, we specify Or-BAC
policies using a fragment of first-order logic, and more precisely using Datalog. Entities and
relations described in the previous chapter can easily be translated into predicates and facts.

Using Datalog ensures decidability over Or-BAC policies. On the other hand, some Datalog
specific restrictions have to be satisfied. We examine these points in this chapter.

With respect to syntax, we consider constants, variables and predicates, but not functions
since Datalog do not admit them. As regards grammar, we consider terms, literals, atoms
and Horn formulas in order to remain compliant with Datalog.

In this chapter, we first introduce Datalog and Datalog¬ and examine the expressivity
and decidability issues in section 5.2. Then, in section 5.3 we define the logic theory that
underpins the Or-BAC model.

72 Complexity and decidability

5.2 Datalog¬

In this section, we present the main feature of Datalog. Or-BAC could be modelled with
first-order logic [Shoenfield 2001]. However, this would not ensure decidability for policies
expressed using Or-BAC. For this reason, we choose Datalog. Datalog actually defines
a sub-set of first-order logic which is expressive enough and which enables us to obtain
decidable policies. Moreover, it provides programs with reasonable complexity and tractable
in polynomial time.

Deductive databases. We consider the Or-BAC model in the context of deductive
databases (DDB). A deductive database is composed of a finite set of clauses divided in
two parts: the extensional database (EDB) which consists of ground facts only, and the in-
tentional database (IDB) which is derived using logic rules. Therefore, part of the predicates
belong to the EDB (and are called extensional predicates), and the other predicates belong
to the IDB (and are called intentional predicates). We consider Datalog [Ullman 1989] in
particular since it is the standard language for DDBs. The main advantage of Datalog is
that its semantics guarantees tractable logic programs.

Pure Datalog. Pure Datalog consists in facts and Horn clauses where the premise is
a conjunction of non-negated and relational literals. It does not admit recursive rules.
Furthermore, a Datalog program must be “safe”. This is ensured if a specific condition,
known as the safety condition, is always satisfied for all rules of the program. A rule fulfills
the safety condition if each variable that appears anywhere in this rule, also appears at least
in one non-negated extensional literal of the premise. This guarantees that the rule does
not have an infinite set of solutions. Let us illustrate this with the following example. We
consider the Richter scale used to measure the magnitude of an earthquake. This is an open
ended scale since it is based on measurements not descriptions. Therefore, there is no limit
to the magnitude value. Each value corresponds to a damage description:

• R1: destruction(x)← x = 7

• R2: great destruction(x)← x = 8

• R3: major damage(x)← x > 8

According to the safety condition, rules R1 and R2 are safe. On the other hand rule R3 is
not safe since major damage(x) is true for an infinite set of magnitude values.

Note that the safety condition also prevents appearance of rules of the form:

• P (x, y)← Q(x)

Such rules, where a variable is in the conclusion without appearing in the premise, also have
an infinite set of solutions.

Elsewhere, non-recursive rules are equivalent to the core relational algebra, thereby it en-
sures a unique solution to a Datalog program. However, pure Datalog clearly provides a
too restrictive language. For example, the derivation rules expressing inheritance due to
hierarchies cannot be written.

5.2 Datalog¬ 73

Datalog with recursion. Pure Datalog can be extended to Datalog with recursion. In
this case, it does not correspond anymore to a relational algebra and the fixpoint semantics
is usually applied: using a forward-chaining mechanism and starting with the EDB facts,
one can iteratively derive the IDB facts. Since, there is a limited number of facts in the
EDB and that the process is monotone, it converges towards a unique solution called the
fixpoint (provided the safety condition is satisfied).

Datalog with negation. Datalog can also be extended with negation. It is then denoted
Datalog¬. Negation is evaluated using the closed world assumption: if one cannot prove P,
then ¬P is derived.

As we will see in chapters 6 and 7, Datalog¬ will be useful for us. But in this case, the
fixpoint semantics do not ensure anymore a Datalog program to converge towards a unique
solution. In order to guarantee a unique solution, a Datalog¬ program must be stratified.

The stratification constraint can be tested by enforcing the dependency graph. In such a
graph, the nodes are the intentional predicates. Two predicates Pi and Pj are linked with
an arc going from Pi to Pj if there exits a rule in which Pj is the conclusion and Pi is in the
premise. If there is no cycle in this graph, then the corresponding program is stratified.

In fact, stratifying a Datalog program consists in separating the program into several sub-
programs called strata. A stratum is thus a set of intentional predicates such that for all
rules in this stratum:

• if P ← ...,¬Q, ... then stratum(P) < stratum(Q)

• if P ← ..., Q, ... then stratum(P) ≤ stratum(Q)

The breaking up of a Datalog¬ program into strata enables to determine the resolution order
of the rules. As long as a program can be stratified, this program has a unique tractable
solution.

So far, we have not introduced any logic rules with negative literals. Therefore, for the time
being, Or-BAC policies are always stratified for the time being. Afterwards, stratification,
as well as the safety condition, will be the main restrictions while specifying new rules in
the Or-BAC model.

74 Complexity and decidability

5.3 Logic theory

The following definition describes the logic theory that underpins an Or-BAC policy.

Definition 5.3.1. Theory Tpol

“In the Or-BAC model, a security policy pol is modelled as a logic theory Tpol defined as
follows:

• (1) Basic model: Sets of facts using predicates Empower, Consider, Use, Permission

and Prohibition (see chapter 3).

• (2) Attributes: Sets of facts using attributes predicates (see section 3.3.4).

• (3) Contexts: A set of context definition rules. These rules conclude on the predicate
Hold (see chapter 6).

• (4) Hierarchies: Sets of facts using predicates sub role, sub view and sub activity,
sub context and sub organization (see section 4.1)

• (5) Inheritance: Rules RH1, RH2, VH1, VH2, AH1 and AH2 for inheritance of permis-
sions and prohibitions (see section 4.1).

• (6) Separated entities: Sets of facts using predicates separated role, separated view,
separated activity and separated context (see section 4.2).

• (7) Derivation: Rules RG1 and RG2 for deriving concrete permissions and prohibitions
(see section 3.6). These rules respectively conclude on the predicate Is permitted and
Is prohibited.

• Constraints: A set of constraints. These rules conclude on the predicate error(). In
particular, the set of constraints includes the rules C1 to C10 (see sections 4.2)”

According to the definition of intentional and extensional databases, points (3) and (5)
belong to the EDB, whereas points (1), (2), (4), (6) and (7) belong the IDB.

Let us remind the definition of closed and open policies. In a closed policy a user is granted
the right to access an object if there exists a corresponding positive authorization, and
is forbidden otherwise. By contrast, in an open policy a user is forbidden to access an
object if there exists a corresponding negative authorization and is allowed otherwise. In
the framework of the Or-BAC model, the policy designer can chose between these two
assumptions.

Furthermore, rules RG1 and RG2, defined in section 3.6, are Datalog compliant rules: they
are safe rules, and since there is no recursion, or negation, there is no need to verify strati-
fication or to check the dependency graph.

As mentioned in chapter 6, any context can be specified in the Or-BAC model as long as it
satisfies Datalog restrictions. We discuss the cases from which problems can arise.

Finally, the logic theory presented above will be refined in the context of the conflict man-
agement, in order to introduce prioritized authorizations. This extended theory is defined
in section 7.4.2.

5.4 Conclusion 75

Constraint violation. In section 4.2 we introduced several constraints. Thanks to the
definition of the logic theory we just gave, we are able to define constraint violations:

Definition 5.3.2. Constraint violation
The security pol violates a constraint if it is possible to derive error() from Tpol:

Tpol � error()

Note that the violation resolution is decidable in polynomial time. Afterwards, we assume
that all constraints are satisfied.

5.4 Conclusion

We gave a formal definition of the Or-BAC model. Because we use Datalog which is a
fragment of first-order logic, policies have a clear syntax; and reasoning about policies is
made easier. Moreover, we assume that Or-BAC policies are stratified Datalog¬ programs.
This provides flexible means (recursion, negation) to specify expressive policies, while this
is a guarantee to obtain unique and decidable programs which are tractable in polynomial
time. A polynomial complexity is satisfactory. However, the compute time to resolve an
Or-BAC policy might grow quickly as the number of authorizations increases. With respect
to this issue, we present, in section 9.2.7 some results of performance tests.

In the following of the dissertation, rules are written in first-order logic for reasons of read-
ability. Nevertheless, all these rules can be fully rewritten using Datalog’s Horn formulas.
Two points might not be Datalog compliant. They are discussed in sections 6.5 and 8.4.6.

Chapter 6

Modelling contexts

6.1 Introduction

As computer infrastructures become more and more complex, security models ought to
handle more flexible and dynamic security policies. Furthermore, the need for security
becomes bigger and bigger as the business world realizes the risk information technologies
represent. Hence security policies must provide means to express accurate and dynamic
security rules. It should be possible, for instance, to express that a given user is allowed to
access a specific resource only on some given days, if that user holds a given position and if
he accesses the resource via a specific network from a specific computer. Increased mobility,
wireless connections, decentralization, etc., are just of few arguments among others that
claim for highly expressive and dynamic security rules.

In this chapter, we shall show how the Or-BAC model is useful to deal with some of these
new requirements. The Or-BAC model allows administrators to specify more complex set
of authorizations since each authorization might only be valid in given contexts.

In section 2.3 we discussed the difference between static and dynamic models. Static models
are just able to express static authorizations. On the contrary, dynamic models allow us to
specify contextual authorizations, that is, authorizations that are activated according to the
context status. In particular, the rule-based models make it possible to model contextual
authorizations as logic rules. The premise corresponds to the context expressed as a con-
junction of conditions. Its conclusion corresponds to a “static authorization” like a triplet
< subject, action, object > for instance. This is a convenient way to insert the kind of extra
conditions similar to the ones we have just described above. Nevertheless, we suggest that
these conditions can be better structured in the Or-BAC model thanks to the abstraction
made of the concrete entities into some organizational entities, namely the entities Role,
Activity and V iew. Our objective is to show that part of the contextual conditions can
merely be expressed thanks to this abstraction. The other conditions are expressed using
the entity Context. Indeed in Or-BAC, each authorization only applies in a given context
that must be satisfied to activate the authorization.

The definition of context in the Or-BAC model was already introduced in the previous chap-
ter. Our objective is now to further investigate it. Actually, as studied in section 2.3, we con-
sider several kinds of contexts. Based on this analysis, we shall present five different contexts,

78 Modelling contexts

namely temporal, spatial, prerequisite, user-declared and provisional contexts. We present
a taxonomy of different types of contexts and investigate the data the information system
must handle in order to deal with these different contexts [Cuppens and Miège 2003c].

The remainder of this chapter is organized as follows. Section 6.2 explains how to go from
the notion of condition in the Rule-BAC models to the notion of context in the Or-BAC
model. Section 6.3 presents a taxonomy of different types of contexts and how to model
them in the Or-BAC model. Each section from 6.5 to 6.9 is dedicated to one type of context.
Sections 6.10 and 6.11 are respectively dedicated to the specific separation constraint applied
to context, and to the context hierarchies.

6.2 From conditions to context

As presented in section 2.3, several access control models consist of authorizations that
involve a subject, an action and an object. A static access control model only considers this
type of triplet to design policies. For instance, let us consider the following triplet where
Is permitted is a positive authorization:

• Is permitted(John, acroread, file234.pdf)

In this example, user John is allowed to read object file2.pdf using Acrobat Reader. A
static policy would only comprise this kind of authorization. However, a more expressive
access control policy should provides means to express authorizations that depend on certain
circumstances.

Otherwise, in rule-based models [Halpern and Weissman 2003, Bertino et al. 2003,
Jajodia et al. 2001b], a policy is viewed as a set of access control rules in which some con-
ditions drive some authorizations:

• ∀s ∈ S,∀α ∈ A,∀o ∈ O, condition→ Is permitted(s, α, o)

In the Or-BAC model, the expression of an access control policy is further structured than
in a rule-based model. After analyzing the structure of condition of a rule-based policy rule,
we suggest structuring this condition as follows:

• condition← cond subject(s) ∧ cond action(α)∧
cond object(o)∧ constraint(s, α, o)

where cond subject(s), cond action(α) and cond object(o) are respectively the conditions
the subject s, the action α and the object o must separately satisfy so that the corresponding
rule applies. constraint(s, α, o) is an additional condition that joins subject s, action α and
object o. Satisfying the constraint is necessary to activate the rule.

For instance, let us consider the rule “a bank customer is granted permission to consult
his or her personal bank account”. In this case, cond subject(s), cond action(α) and
cond object(o) respectively correspond to the conditions that s is a customer, α is an action
of consulting and o is a bank account. constraint(s, α, o) is an extra condition that joins
subject s and object o, namely o must be an account of subject s. In this example, action α

is absent from the constraint. The main idea is to define a language that makes it possible
to structure the set of conditions in which an authorization is granted. This is actually one
of the main purposes of the Or-BAC model, and this work has been done in part.

6.3 Context definition in Or-BAC 79

In Or-BAC, instead of defining security rules that directly apply to subject, action and
object, the access control policy is defined at the organizational level. Using the concepts,
entities and relationships defined at chapter 3, it is easy to see that:

• cond subject(s) corresponds to the condition that a subject is empowered in a role, that
is, corresponds to the relation Empower,

• cond object(o) corresponds to the condition that an object is used in a view, that is,
corresponds to the relation Use,

• cond action(α) corresponds to the condition that an action implements a given activity,
that is, corresponds to the relation Consider.

Of course, the way we suggest to structure the rule based language condition is not a matter
of chance. It is a manner to show that the abstraction made of the concrete entities into
organizational entities is used to express some conditions and requirements.

In the remainder of this chapter we focus on the conditions that can not be taken into
account with the previous relations, in other words, the conditions expressed through the
fact constraint(s, α, o). It specifies that a subject performs an action on an object in a given
Context, and is modelled in Or-BAC through predicate Hold. As we explain in the next
section, the conditions required for a given context to be true are formally specified by logic
rules.

condition can now be written this way:

• condition← Empower(Org, s, r) ∧ Consider(Org, α, a)∧
Use(Org, o, v)∧ Hold(Org, s, α, o, c)

However, this is not exactly the way an access control policy is specified in the Or-BAC
model. The exact derivation rule DR1 in which all these relations are involved has been de-
fined earlier in section 3.6. One should notice the introduction of the predicate Permission

in the Or-BAC model enables us to have single general rule, whereas in rule-based ap-
proaches, several rules have to be specified.

6.3 Context definition in Or-BAC

In the previous section, we introduced the predicate constraint(s, α, o) to model extra con-
ditions that a subject, an action and an object must satisfy in order to activate an autho-
rization. In Or-BAC, these extra conditions are modelled through the notion of Context.
Each context has a name and its definition depends on the organization. Notice that we
use the term “context” in a broad sense since it actually corresponds to any constraint that
relates a subject, an action and an object. For instance, in the banking domain, the en-
tity Context will cover circumstances such as “agency customer”, “transaction”, “personal
account”, etc. C is the set of contexts defined in the policy. From a modelling point of
view, entities Organization, Subject, Object, Action and Context are linked together by
the relationship Hold (see figure 3.5).

The conditions required for a given context to be linked, within a given organization, to sub-
jects, objects and actions are formally specified by logic rules. For instance, we introduced
the context personal account in section 3.4. This context may be defined as follows:

80 Modelling contexts

• ∀s ∈ S,∀α ∈ A,∀o ∈ O,

Hold(Trusted bank, s, α, o, personal account)
← account number(number, o) ∧ account owner(s, number)

that is, in Trusted bank, the context “personal account” holds between subject s, action α

and object o if and only if the account number o corresponds to one account of customer s.
Attributes account number and account are introduced in section 3.3.4.

Notice that in our approach, a context actually corresponds to a constraint that joins a
subject, an object and an action. However, one or several of these parameters may be
optional. This means that we can consider constraints that only apply to a subject, an
object or an action. In this case, the constraint may be modelled by respectively defining
a sub-role, a sub-view or a sub-activity. For instance, if we have an authorization that
applies to role customer in the context “debit balance account”, we can create a sub-role
“debit balance customer” and express the previous authorization with this new role and
without any context. However, in the general case, this approach leads to quite artificial
roles. Moreover, it does not apply when the constraint joins several parameters, for instance
a subject and an object. Hence, we suggest to use the context even if a sub-entity could be
created.

As discussed in chapter 5, an Or-BAC policy is considered as a Datalog program. Therefore
every policy has to be stratified, and must comply with the safety rule. In other words,
these restrictions have to be fulfilled while defining new contexts.

Afterwards, we consider in particular the special context default. This context always holds
with any subject, action, object and organization. In other words, this context is used for
static authorizations, that is, authorizations that do not depend on any context:

• ∀org ∈ Org,∀s ∈ S,∀α ∈ A,∀o ∈ O,

Hold(org, s, α, o, default)← .

6.3.1 Context example

Let us consider the following rule: “Within Trusted bank, customers are allowed to consult
their personal bank accounts”. This authorization is modelled as follows:

• Permission(Trusted bank, customer,

consulting, customer account, personal account)

where the context personal account is defined as previously. Then, a subject can access a
given file if he is a customer, if this file corresponds to one of his accounts, and if the action
he uses is considered by Trusted bank as falling within the activity consulting. This is
expressed by the following rule (in fact the rule RG1 partially instanciated):

6.3 Context definition in Or-BAC 81

• ∀s ∈ S, ∀α ∈ A,∀o ∈ O,

Empower(Trusted bank, s, customer)∧
Use(Trusted bank, o, bank account)∧
Consider(Trusted bank, α, consulting)∧
Hold(Trusted bank, s, α, o, personal account)
→ Is permitted(s, α, o)

So far, we explained how the Or-BAC model makes it possible to express some contexts, this
is, some conditions that must be fulfilled to activate some authorizations. In the following
section we go into further detail about the different kinds of contexts we are able to express.

6.3.2 Context composition

We also consider conjunctive, disjunctive and negative contexts. For this purpose, we in-
troduce function &, + and .̄ If c1 and c2 are two contexts, then &(c1, c2) is a conjunctive
context, ⊕(c1, c2) is a disjunctive context and c̄1 is a negative context. We shall use the
infix notations c1&c2 and c1 ⊕ c2 in place of the prefix notations &(c1, c2) and ⊕(c1, c2).
Conjunctive, disjunctive and negative contexts are defined by the following rules:

• ∀org ∈ Org,∀s ∈ S,∀α ∈ A,∀o ∈ O,∀c1 ∈ C,∀c2 ∈ C,
Hold(org, s, α, o, c1&c2)← Hold(org, s, α, o, c1) ∧Hold(org, s, α, o, c2)

• ∀org ∈ Org,∀s ∈ S,∀α ∈ A,∀o ∈ O,∀c1 ∈ C,∀c2 ∈ C,
Hold(org, s, α, o, c1 ⊕ c2)← Hold(org, s, α, o, c1)⊕Hold(org, s, α, o, c2)

• ∀org ∈ Org,∀s ∈ S,∀α ∈ A,∀o ∈ O,∀c ∈ C,
Hold(org, s, α, o, c̄)← ¬Hold(org, s, α, o, c)

6.3.3 Compliance with Datalog

The way we have just presented context composition is not compliant with the Datalog
restrictions explained in section 5.2. In order to integrate context composition in a Datalog
program, the following alterations must be made.

Let us consider the conjunctive contexts. In order to ensure that, with the backward-
chaining method used in Datalog, we have a finite set of solutions, we introduce the predicate
Use context:

• Use context(c1&c2)→ Use context(c1)

• Use context(c1&c2)→ Use context(c2)

Then, we redefined the first definition of a conjunctive context:

• Use context(c1&c2)∧
Hold(org, s, α, o, c1) ∧Hold(org, s, α, o, c2)
→ Hold(org, s, α, o, c1&c2)

Therefore, only the contexts actually used in the policy will be evaluated. Secondly, functions
are not allowed in Datalog, and thereby the infix notations must be replaced. In order to
remove functions, you just need to add a new predicate. For conjunctive contexts, we
introduce predicate conjunctive context:

82 Modelling contexts

• Use context(c) ∧ conjunctive context(c1, c2, c)→ Use context(c1)

Modified in this way, all rules become compliant with Datalog. The same line of reasoning
holds for disjunctive and negative contexts.

6.4 Taxonomy and required data

In section 2.3 we concluded that the context might be used to express different types of
conditions that control activation of access control rules. We highlighted four types: the
dynamic constraints, the environment, the provisions, the workflow related constraints.

Several models make it possible to capture information related to time, or to the user
location, or to the team to which the user belongs, or to the current workflow, etc. Even
though these models are interesting, they do not allow to express different types of contexts
within a single framework. It is precisely our objective.

We defined a context as any constraint that relates a subject, an action and an object. Thus,
we consider the following contexts:

• The Temporal context that depends on the time at which the subject is requesting an
access to the system;

• the Spatial context that depends on the subject location;

• the User-declared context that depends on the subject objective (or purpose);

• the Prerequisite context that depends on characteristics that join the subject, the action
and the object;

• the Provisional context that depends on previous actions the subject has performed in
the system.

As a comparison between our taxonomy and the one suggested in section 2.3, we might say
that the temporal and spatial contexts as well as the prerequisite context roughly correspond
to the environment; the provisional context is related to the provisions and the workflow
management. The dynamic constraints are not addressed in Or-BAC. As mentioned earlier,
future works will be led to integrate the notion of dynamic organization, which encompasses
the notion of session. With such organizations, we will be in position to express constraints
such as dynamic separation of duty. The user-declared context is, as far as we know, a type
of context which was never modelled until now.

We assume that each organization manages an information system that stores and manages
different types of information. To control context activation, each information system must
provide the information required to check that conditions associated with the context defi-
nition are satisfied or not. The following list gives the kind of information – or information
container – related to the contexts we have just mentioned:

• A global clock to check the temporal context;

• the subject environment and the software and hardware architecture to check the spatial
context;

• the subject purpose to check the user-declared context;

• the system database to check the prerequisite context;

6.5 Temporal context 83

• an history of the action carried out, to check the provisional context.

Figure 6.1 presents the correspondence between the contexts and the required data. The
context modelling in access control policy implies that mechanisms are implemented to allow
the context assessment, in order to determine if the corresponding conditions are true or
not. If the information system does not provide some information in the list above, then the
corresponding context cannot be managed by the access control policy. We shall not focus
furthermore on this question. We assume that the IT system provides means to evaluate
context validity.

Context

Global_clock

User-declared
context

Temporal
context

Spatial
context

Prerequisite
context

Provisional
context

Environment Purpose

USER

System database

History

Hardware and software
architecture

INFORMATION SYSTEM

Figure 6.1: Context taxonomy and required data

These five types of context are detailed in the following subsections.

6.5 Temporal context

6.5.1 Principle

It is easy to understand that accessing some resources may only be granted when the request
is made at a certain time. With temporal contexts, it should be possible to express that a
given action made by a given user on a given object is authorized only at a given time or
during a given time interval. The temporal conditions can correspond to a day of the week,
or to a time of the day, etc.

For instance, a user within a company may be allowed to access the file server of its network
only during the working hours, between 8:00 am and 19:00 pm. It is really useful to be able
to express such time conditions in the access control policy. We show in this section the use
of the context concept of the Or-BAC model for this purpose.

84 Modelling contexts

The temporal context corresponds to the time the security request is made. To validate a
given query for an access, it is necessary to be able to evaluate the current time. Thus, we
assume that the information system has a clock, and that this clock can be queried at any
time to assess the temporal context of the query. We consider the entity clock as an object
called GLOBAL CLOCK.

We associate the following attributes to GLOBAL CLOCK: time, day, week, month, year.
The corresponding predicates give the current time, the current day, the current week, etc.
For example:

• time(GLOBAL CLOCK,′ 11 : 00′)

• date(GLOBAL CLOCK,′ 05/31/2005′)

6.5.2 Basic temporal contexts

We define two predicates before time and after time that apply to the set of Time and
return a temporal context defined as follows:

• ∀org ∈ Org,∀s ∈ S,∀α ∈ A,∀o ∈ O,∀t ∈ Time,

Hold(org, s, α, o, after time(t))
← time(GLOBAL CLOCK, current time) ∧ current time ≥ t

• ∀org ∈ Org,∀s ∈ S,∀α ∈ A,∀o ∈ O,∀t ∈ Time,

Hold(org, s, α, o, before time(t))
← time(GLOBAL CLOCK, current time) ∧ current time ≤ t

We can similarly define two predicates before date and after date that apply to the set
Date and return a temporal context. We also consider a predicate on day that applies to
the set Day and return a temporal context defined as follows:

• ∀org ∈ Org,∀s ∈ S,∀α ∈ A,∀o ∈ O,∀d ∈ Day,

Hold(org, s, α, o, on day(d))
← day(GLOBAL CLOCK, current day) ∧ current day = d

6.5.3 Composed temporal context

Using the basic temporal contexts, we can define more complex temporal contexts, for
instance:

• night = after time(23 : 00)⊕ before time(8 : 00)

• weekend = on day(saturday)⊕ on day(sunday)

• working hours = after time(08 : 00) & before time(19 : 00) & weekend

Notice that a context definition actually depends on the organization. For instance, in an or-
ganization in which employees work on Saturday but not on Monday, context working hours

would be defined as follows:

• working hours = after time(08 : 00) & before time(19 : 00) &
on day(sunday) & on day(monday)

6.6 Spatial context 85

6.5.4 Example of rules using temporal context

Let us consider the following rule: “Within Trusted bank, a financial adviser is allowed
to consult the company account database CADB during working hours only”. This is
expressed by the following fact:

• Permission(Trusted bank, financial adviser, consulting, CADB, working hours)

Let us now assume that the role head agency is permitted to consult CADB also on Sunday.
This is expressed by the following fact:

• Permission(Trusted bank, head agency, consulting, CADB,

working hours⊕ on day(sunday))

If we assume that head agency is a senior role of role financial adviser, it would be ac-
tually sufficient to specify that head agency is permitted to consult CADB on Sunday,
since the authorization in temporal context working hours will be inherited from the role
financial adviser.

6.5.5 Decidability

The definition of temporal contexts raises a problem with respect to the decidability issue.
The validity of a temporal context depends on the current time, and thereby cannot be
pre-computed. This is due to the Datalog bottom-up evaluation. By contrast, temporal
contexts can be evaluated in Prolog which has a top-down approach. We did not study
this issue in detail on that issue. [Becker and Sewell 2004] presents Cassandra, a language
for policies based on Datalog with constraints. The authors suggest a solution to guarantee
tractable solutions in the situation of temporal contexts. We have to carry out further works
on this issue.

6.6 Spatial context

6.6.1 Principle

Knowing the location from where the user makes the request can be useful to specify the
access control policy. For example the head of a Trusted bank agency is granted the right
to read all employees’ payrolls, however he must read those payrolls in his own office, and
not anywhere else in the company. It thus reduces the possibility of curious employees being
able to read their colleagues’ payrolls over the manager’s shoulder. Spatial context is used
to express this kind of condition.

We can distinguish two different types of spatial context. The physical spatial context and
the logical spatial context. The first one corresponds to the physical location of the user,
namely his office, a security area, a specific building, the country, etc. Validation of such
a context may rely on GPS modules, employee’s badge tracking, etc. The logical spatial
context corresponds to the “logical location” he stands in. For example, it can be the
computer, the network or the sub-network, the cell in the case of radio communication such
as in UMTS, etc.

86 Modelling contexts

In some cases, physical and logical spatial contexts are highly correlated. The network IP
address from which a user is connected probably corresponds to a specific physical place
such as a department area. Note that due to the expanding use of Global Position System
(GPS) tools, it could be possible to locate a user or a terminal independently of the network.

If an organization allows its employees the use of Mobile IP, it is necessary to take into
account from which network a request is emitted. A user will probably get reduced per-
missions if he is connected from a customer’s office. Moreover the development of wireless
technologies such as Wi-Fi motivates this work. The security policy must make it possible
to take into account the fact that a user is connected through a regular network or a wireless
network, and in this last case, on which Wi-Fi access point he is attached to.

In this section we show that the entity concept in the Or-BAC model can be used to express
such contexts.

6.6.2 Example of spatial contexts

Consider that Trusted bank has a secured area SA in which specific security requirements
are enforced. For example, there is no possibility of optical eavesdropping [Kuhn 2002].
Users are allowed to consult certain documents on their laptop only in this area. If a given
subnetwork address is allocated to this area, then the IP address of the terminal that is
making a request is enough to locate it. Thus SA corresponds to the name of a specific
subnetwork. We consider that the subject entity has the attribute host IP which provides
the IP address of the terminal on which a user is connected. The attribute IP range is
allocated to networks and subnetworks. In this example the context in secure area can be
defined as follows:

• ∀s ∈ S,∀α ∈ A,∀o ∈ O,

Hold(Trusted bank, s, α, o, in secure area)
← host IP (s, ip) ∧ IP range(ip, SA)

A similar idea can be used in the case of Mobile IP. When using this protocol, the so-called
local agent must manage the network where the mobile hosts are.

Let us consider another example. In a wireless network, some user is allowed to access a
specific resource from everywhere but only with his own laptop. We assume that attribute
laptop owner indicates the laptop number of a subject, that attribute laptop MAC indicates
the MAC address corresponding to a laptop number and finally that host MAC states the
MAC address of the received packets. The context on own laptop is then defined as follows:

• ∀s ∈ S,∀α ∈ A,∀o ∈ O,

Hold(Trusted bank, s, a, o, on own laptop)
← laptop owner(s, laptop) ∧ laptop MAC(laptop, mac) ∧ host MAC(s, mac)

Notice that specific security mechanisms must be implemented to prevent a malicious user to
bypass access control requirements by forging his own packets, and choosing the appropriate
IP address or MAC address. However, we shall not further discuss these specific security
issues here.

6.7 User-declared context 87

6.7 User-declared context

6.7.1 Principle

In some circumstances, a subject according to the role he plays in the organization may be
allowed to declare that he performs some activities in a given context. When declaring a
context, a subject will obtain some specific permissions and possibly also some prohibitions.
For instance, a subject playing the role financial adviser may be permitted to declare that
he is performing a statistical analysis about the loan given in his agency. By doing so, this
subject will be permitted to have access to all accounts.

In our approach, user declared contexts are modelled as follows. We shall consider a view
called Purpose. Objects belonging to the view Purpose have an attribute recipient. If
p is an object belonging to the view Purpose, then predicate recipient(p, rcpt) represents
the subject rcpt who takes advantage of the declared purpose. Notice that it is possible to
consider sub-views of view Purpose that may be associated with other specific attributes (see
below for an example). The access control policy can specify that some roles are permitted
to insert some objects in the view Purpose. Of course, the policy can also specify that the
inserted objects must satisfy constraints, for instance conditions related to the attributes
of the objects. This is useful to specify that a financial adviser is permitted to declare the
statistical analysis purpose but not another purpose.

By inserting an object in the view Purpose, a subject will declare that another subject will
perform some activity in a given context. Notice that in our model, there are two subjects
involved in the process of context declaration: the subject who is declaring the context and
the subject who takes advantage of this declaration. The policy can specify that these two
subjects must be identical. For instance, in the example above, the financial adviser may be
only permitted to declare a context that applies to himself. However, it is also possible that
the policy specifies that these two subjects may be different, provided that these subjects
satisfy some constraints. For instance, a financial adviser may be permitted to declare that
a subordinate counter clerk will perform some activity in some given context. In this case,
the subjects are different but the declarant must be a financial adviser and the recipient
must be a subordinate counter clerk.

The definition of a user-declared context has three parts:

1. Definition of the context associated with objects belonging to the view Purpose

2. Specification of roles who are permitted to declare some given purpose.
3. Specification of roles that are permitted to perform some activities in the associated
user-declared context.

The user-declared context enables a subject who plays a role to declare a given context.
This notion is really useful in the case where the context assessment can only be done by
this subject. For example, if the IT administrator – who is usually not allowed to access the
account database – thinks there may be a virus in the IT system, he must get the permission
to open any files and any database. But only the IT administrator is able to evaluate that
the context “virus detection” is true.

Of course, the notion of user-declared context is to put together with the notion of trust
and accountability.

88 Modelling contexts

6.7.2 Example of user-declared context

Let us illustrate the three steps of definition of a user-declared context through the following
example: In Trusted bank, the role “financial adviser” is granted the right to declare the
context “statistical analysis”. In this context, users who play this role are allowed to have
access to all account files.

We consider a sub-view statistical analysis of view Purpose. View statistical analysis

has two attributes: recipient (inherited from view Purpose) and topic. If p is an object
belonging to view statistical analysis then we assume that the fact topic(p, tpc) in which
tpc represents the topic associated with this analysis (for instance, loan repayment, debit
balance account, withdraw amount, etc.) is defined in the policy.

First step: We define a context loan repayment analysis. This context is associated with
objects belonging to sub-view statistical analysis having topic equal to loan repayment.
This is represented by the following rule:

• ∀s ∈ S,∀α ∈ A,∀o ∈ O,∀p ∈ O,

Hold(Trusted bank, s, α, o, loan repayment analysis)
← use(Trusted bank, p, statistical analysis)∧

recipient(p, s) ∧ topic(p, loan repayment)

that is, in Trusted bank, subject s performs action α on object o in context
loan repayment analysis if there is an object p belonging to view statistical analysis hav-
ing s as recipient and loan repayment as topic.

Second step: We specify that subjects playing role financial adviser are permitted to
declare the purpose statistical analysis that applies to themselves:

• Permission(Trusted bank, financial adviser, declare,

statistical analysis, My purpose)

In this Permission, declare is an activity and My purpose is a context defined as follows:

• ∀s ∈ S,∀α ∈ A,∀o ∈ O,∀p ∈ O,

Hold(Trusted bank, s, α, o, My purpose)
← use(Trusted bank, p, Purpose) ∧ recipient(p, s)

that is, a subject s is in context My purpose if there is a purpose p having s as a recipient.

The reader should notice that if such an authorization is granted to role financial adviser,
then if only one subject playing that role declares this context then all subjects playing that
role get the associated permission - written at next step. There is no problem, if in a bank
agency the role financial adviser is only played by one user. Otherwise, it can be relevant to
limit the possibilities of declaring this context. This can be done in the definition of context
loan repayment analysis for instance.

Third step: We specify that subjects playing role financial adviser are permitted to
consult all objects belonging to view account in context loan repayment analysis:

• Permission(Trusted bank, financial adviser, consult, account,

loan repayment analysis)

In the end, role financial adviser obtains the authorization to consult all accounts if he
declared the context loan repayment analysis.

6.8 Prerequisite context 89

6.8 Prerequisite context

6.8.1 Principle

In many cases, an authorization is granted to a subject, but only if some specific constraints
are satisfied. For instance, let us turn back to the example presented in section 6.3.1. This
example says that a customer is permitted to consult a bank account. However, a specific
constraint must be satisfied: this account must be one of the customer’s accounts.

We assume that the information required to check this constraint, namely the set of accounts
of each customer, is stored into the system database. Thus, the evaluation of such a constraint
is done by querying the database. This kind of constraint is called prerequisite context.

6.8.2 Example of prerequisite context

Let us consider the following example. Each company that has an account at Trusted bank

has an attending financial adviser. Only this financial adviser is allowed to consult the
company account. This authorization is modelled as follows:

• Permission(Trusted bank, financial adviser, consulting,

company account, attending adviser)

where context attending advise is defined this way:

• ∀s ∈ S, ∀α ∈ A,∀o ∈ O,

Hold(Trusted bank, s, α, o, attending adviser)
← company account(company, o) ∧ adviser of(s, company))

We assume that attribute company account(company, account) states the company name
corresponding to the account account, and that predicate adviser of(subject, company)
indicates the subject subject who is in charge of the accounts of the company company.

Now, consider the following rule: “A counter clerk is granted the permission to consult a
company account in the context where the financial adviser of the corresponding company
is absent”. We consider the following attribute, status, that indicates the user’s status – for
instance absent.

The prerequisite context absent financial adviser is expressed as follows1:

• ∀s ∈ S, ∀α ∈ A,∀o ∈ O,

Hold(Trusted bank, s, α, o, absent financial adviser)
← (Use(Trusted bank, o, company account)∧
¬∃s′ ∈ S, (Empower(Trusted bank, s′, financial adviser)∧

company account(company, o)∧
adviser of(s′, company) ∧ ¬status(s′, absent)))

that is, subject s performs action α on object o if o is a company account and if there is no
subject s′ such that s′ is the attending adviser of this company and s′ is not absent.

1This rule should be written in two parts in order to be compliant with Datalog. We keep it this way

since it is easier to understand.

90 Modelling contexts

Notice that we decide to define the context absent financial adviser as a prerequisite con-
text. It is evaluated by querying the database in order to check if the financial adviser
of a given company is absent. This is possible if the database actually stores such infor-
mation. If this is not the case, then another possibility would be to define the context
absent financial adviser as a user-declared context. For instance, the counter clerk may
be permitted to declare this context for a given company account. Of course, the two poli-
cies will not be identical since, in this second case, the counter clerk will be responsible for
declaring the context absent financial adviser.

This means that the fact that a given context will be defined as a prerequisite context or as
a user-declared context strongly depends on the data stored in the system database.

6.9 Provisional context

6.9.1 Principle

The notion of provision, or provisional authorization, is addressed in [Jajodia et al. 2001a,
Kudo and Hada 2000, Bettini et al. 2002]. A provision is described as a kind of obligation,
that is, a specific action, that has to be fulfilled before the decision is taken. As suggested
in [Jajodia et al. 2001a], provisions and obligations can actually be distinguished in the
following way: provisions are specific actions that have to be performed before the decision
is taken, whereas obligations are actions that have to be performed after the decision, and
more generally in the future.

We suggest modelling this notion of provision using another type of context called provisional
context. For this purpose, we shall first assume that the information system manages a log,
that stores data about previous activities of users in the system. This is modelled by a
view called Log. Objects belonging to view Log have six attributes: actor, action, target,
activity, context and date that respectively correspond the subject (actor) who is performing
an action (action) on an object (target) within an activity (activity) in a context (context)
at a given date (date).

6.9.2 Example of provisional context

To illustrate the approach, let us show how to model the following authorization: “In
Trusted bank, an adviser can create a new customer account if he checked before the cus-
tomer’s financial situation with the central bank”. To model this rule, we first define a
provisional context called new account as follows:

• ∀s ∈ S,∀α ∈ A,∀o ∈ O,∀l ∈ O,

Define(Trusted bank, s, α, o, new account)
← Use(Trusted bank, l, Log)∧

actor(l, s)∧
activity(l, consult central bank)∧
customer account(customer, o) ∧ customer situation(customer, situation)∧
target(l, situation)

6.10 Separated context 91

In this context, we assume that the attribute customer account states the account of a
customer and that the attribute customer situation points the financial situation of a future
customer. The authorization is modelled as follows:

• Permission(Trusted bank, adviser, creating, customer account, new account)

In the future, we plan to extend the notion of provisional context in two directions. First,
if a sequence of provisional contexts is defined in this manner, we can model some simple
workflows. Indeed, if an action, once it is realized, triggers one or several authorizations,
it is thus possible to specify the set of steps of a workflow. However, managing a workflow
through an history log can be used to activate some authorizations, but does not permit to
deactivate them. Therefore, some major work must be realized with respect to this issue.
Second, we also want to incorporate provisional obligations, that is, obligations activated
thanks to the carrying out of some activities, and thus incorporate provision and obligation
as done in [Bettini et al. 2002].

6.10 Separated context

In section 4.2.3, we introduced some constraints in the Or-BAC model and in particular the
separation constraints. Here, we tackle the specific case of the context separation constraint.
To do this, we add a new relation separated context as follows:

Definition 6.10.1. Context separation constraint
“If c1 and c2 are two relevant contexts in organizations org1 and org2 respectively, then
separated context(org1, c1, org2, c2) means that contexts c1 and c2 are separated”.

As for roles, activities and views, the separation constraint for contexts is associated to a
rule that concludes on predicate error():

• ∀s ∈ S, ∀α ∈ A,∀o ∈ O,

separated context(org1, c1, org2, c2)∧
hold(org1, s, a, o, c1)∧
hold(org2, s, a, o, c2)
→ error()

Actually, the specific case of separation constraint applied to contexts is less simple as for
roles, activities and views. For example for roles, a separation constraint is explicitly stated
by the SSO in order to prevent subjects to be empowered into two conflicting roles. By
contrast, a context separation constraint may be explicitly stated by the SSO, but it also
stems from the two context definitions.

Assume that the temporal context working hours holds for all the days of the week, and
that context week-end holds on Saturday and Sunday. These contexts are in fact separated.
It is also easy to find examples of de facto separated spatial contexts. Prerequisite contexts
and provisional contexts are also separated in accordance to their definition, to the database
and to the history log content. Therefore the meaning of a context separation constraint is
quite different from the ones of the other separation constraints, since the context separation
constraint should be in adequation with the contexts definition.

92 Modelling contexts

Nevertheless, expressing an explicit context separation constraint in these case has an ad-
vantage. Let us get back to our bank example, and assume that part of the security policy is
specified at the senior-most organization level. For instance, the SSO of the parent company
might specify that contexts working hour and week-end are separated, in the sense that
they must be separated. Then the SSOs of each agency are in charge of defining the working
hours and the week-end days that apply in their agency keeping in mind that these contexts
must be separated.

This raises another issue. From the implementation standpoint, the separation constraint
poses some problems. Verifying that two contexts are actually separated supposes that the
IT system is able to understand the contexts definitions. Let us take first the case of physical
spatial context separation constraint. In order to verify such a constraint, the security policy
enforcement module must know the plan of the organization building. This becomes even
more complicated in case of conjunctive contexts. Actually, as we will see in chapter 7, these
issues are highly significant with respect to conflict management.

6.11 Context hierarchy

We introduced hierarchies in section 4.1, but we let the context hierarchy aside since we
needed to define the context taxonomy beforehand.

The context hierarchy raises the same discussion as for the context separation constraints. In
fact, the role, activity, view and organization hierarchies are stated by the SSO. The context
hierarchy can also be stated by the SSO, but it is most likely that a context hierarchy
stems from the definitions of the contexts defined in the policy. In order to model a context
hierarchy, we introduce a new relationship sub context:

Definition 6.11.1. Relation sub context
“sub context is a relation over domains Org×C×C. If org is an organization, if c1 and c2 are
contexts, then sub context(org, c2, c1) means that c2 is a sub-context of c1 in organization
org”.

Roughly speaking, context c2 is a sub-context of context c1 if c1 always holds between a
subject, an action and an object in an organization when c2 holds for the same subject,
action object and organization. For example, if context week-end is true on Saturday and
Sunday, and if context saturday is true on Saturday, then saturday can be viewed as a
sub-context of week-end.

For the time being, the context hierarchy had not been investigate in detail. So, for the
moment, we consider that the context hierarchy is explicitly stated by the SSO, and assume
that the SSO takes care of the coherence between the hierarchy and the definition of the
contexts.

6.12 Conclusion

We presented how a wide variety of contexts can be modelled using Or-BAC. First of all,
the policy structuring, with the help of the organizational entities, is used to express some

6.12 Conclusion 93

conditions over the set of authorizations. For instance, assume that an authorization is
activated provided the object it is applied to is of a given type, there is no need to specify
a context, one just has to rely on relation Use. For the other conditions that cannot be
expressed that way, we introduce the entity Context. A context is defined by a logic rule,
therefore the only limitation comes from the compliance to Datalog. Nevertheless, we suggest
a taxonomy of different types of context. Starting from elementary contexts, we also define
conjunctive, disjunctive and negative contexts.

The activation conditions which are the concern of the policy environment – as defined in
[Covington et al. 2000, Sandhu and Park 2004] – are expressed in Or-BAC using the tem-
poral, spatial and prerequisite contexts. More precisely, the temporal context corresponds
to the time at which a security request is launched, the spatial context to the physical or
the logical location of a user when he makes a security request, and finally, the prerequisite
context is used to express conditions regarding all information stored in the organization
databases.

We brought in a new kind of context called user-declared context. This makes it possible
to model the contexts that can only be activated by users themselves, this is, activated by
the users who make the security requests. To activate a user-declared context, a user must
be authorized to declare some objective (or purpose) of his or her activity. This is modelled
by views; a given user-declared context is thus activated by inserting a given object in this
view. The user-declared context is related to the notions of trust and responsibility.

Finally, we define the provisional context. This is used to model authorizations that depend
on previous actions performed by the user. To control activation of provisional context, the
information system must store the actions carried out by the users. Information systems
generally provide such historical data through audit trail. Provisional context may also be
useful to model situations where users obtain permissions as their work proceeds. Similarly,
provisional prohibition is another useful context to model situations where the user’s previous
activity leads to prohibition.

There were several other proposals to model contexts within an access control model but
this is the first time that all the different contexts are expressed within a unique homo-
geneous framework. Some works are currently carried out in order to investigate in more
detail the notion of provisional context, in particular to model management of rights in
workflow systems. We are also applying this model in the framework of relational database
administration.

As for the other organizational entities of the Or-BAC model, we introduce the context
hierarchy, and the context separation constraints. Nevertheless, these notions, when applied
to the context lead to complex problems that have to be further analyzed.

Chapter 7

Prohibitions and conflict

management

7.1 Introduction

As described in section 3.3.5, the Or-BAC model enables to express negative authoriza-
tions, also called prohibitions. The motivations for integrating negative authorizations
in a security policy are expressed in section 2.4.1. In this chapter, we focus on the
conflict management between positive and negative authorizations, and in particular on
the solutions proposed within the Or-BAC model framework [Cuppens and Miège 2003b,
Cuppens and Miège 2004b].

Specifying a security policy that includes both permissions and prohibitions may lead to
conflicting situations. This corresponds to situations in which a subject is both permitted
and prohibited to perform a given action on a given object. Hence, the system might not be
able to decide either to allow or deny the access. In section 2.4.3, I exposed several solutions
that can be found in the literature, like PTP (permission takes precedence), DTP (denial
takes precedence) or “the more specific takes precedence”, among others. I concluded that
a security policy model which enables us to express prohibitions should permit to specify
a parametric “conflict management strategy”. A conflict management strategy consists of
a set of rules that enable the system to decide, in the event of a conflict, to discard either
the positive or the negative authorization. As a consequence, the resulting access control
policy will depend on the chosen strategy. So the security officer should have the possibility
to define his or her own conflict management strategy in order to obtain a relevant access
control policy.

I also concluded that such a strategy should take into account potential conflicts. We
actually make a distinction between “actual” and “potential” conflicts. During the time the
policy is enforced in the information system, some conflicts might actually happen between
positive and negative authorizations when a security request is made. For instance, user
John tries to read a given file, and the access control module concludes on both a permission
and a prohibition for this specific request. This is an actual conflict. On the other hand,
we might want to detect conflicts before they occur, and more precisely during the policy
specification process. This consists in detecting the coexistence of rules that may lead to

96 Prohibitions and conflict management

some conflicts if their associated conditions are simultaneously satisfied. Such conflicts are
called potential conflicts. As we show in the following, the Or-BAC model is particulary
adapted for such a distinction between actual and potential conflicts since actual conflicts
correspond to conflicts between concrete authorizations and potential conflicts to conflicts
between organizational authorizations.

Let us illustrate this with an example. Assume that in a given bank, the role counter clerk

is forbidden to modify the customer’s accounts, whereas the role adviser has the permission
to do it. These two authorizations lead to a potential conflict since if a user plays these
two roles, a conflict might occur. Note that if an explicit constraint states that these roles
are separated, then there is no potential conflict anymore. Therefore, the potential conflict
detection intervenes before the actual conflict detection is carried out. With regard to actual
conflicts, assume that user John is empowered in both roles counter clerk and adviser. As
a consequence an actual conflict will occur when John attempts to modify an account.

A conflict management strategy should also offer means to detect redundant authorizations.
When applying a conflict management strategy, some authorizations might become useless
because they are always in conflict with other higher prioritized authorizations, and thus
never take precedence. Such authorizations are called redundant authorizations. Since
detecting the redundant authorizations in complex security policies without an adapted
mechanisms might be really difficult, we suggest an effective solution to this issue.

In the Or-BAC framework, the aim of considering negative authorizations is to provide
expressive and powerful means to specify conflict management strategies. Furthermore, an
Or-BAC policy is in fact defined at two levels: the organizational level and the concrete level.
As mentioned above, from the information system standpoint, conflicts occur at the concrete
level, that is, between concrete authorizations. However, we aim at defining a conflict
management strategy at the organizational level, mainly for two reasons. First, it should
allow to detect potential conflicts. Second, if we are able to ensure that the organization
policy does not include any conflicting pairs of positive and negative authorizations, thereby
we are able to give the undertaking that no conflict will appear in the concrete policy
implemented in the information system. Moreover, we propose a solution for the redundant
authorizations problem.

In section 7.2 we describe the principles of our approach. In section 7.3 we introduce some
new predicates and rules in order to define a new derivation process to derive the concrete
authorizations from the organizational authorizations. In section 7.4 we define the new
logic theory for managing conflicts in Or-BAC. Section 7.5 is dedicated to the prevention of
conflicts. Finally, we tackle the redundant authorizations issue in section 7.6.

7.2 Principles of the approach

7.2.1 Conflicts in theory Tpol

Let us consider again the logic theory Tpol described before in section 5.3. In the Or-BAC
model, when a user makes a security request, that is, when a user asks for the permission to
access an object, the information system has to take a decision in accordance with the pos-
sibility to derive concrete authorizations (positive and/or negative) related to this subject,

7.2 Principles of the approach 97

this action and this object. Therefore, a conflict occurs when a concrete permission and a
prohibition are derived for the same subject, action and object. In order to characterize
such a situation we introduce the predicate conflict(). The following rule RC specifies a
conflicting situation:

• RC: ∀s ∈ S, ∀α ∈ A,∀o ∈ O,

Is permitted(s, α, o) ∧ Is prohibited(s, α, o)
→ conflict()

Let us add this rule in the logic theory Tpol. We are now able to give the definition of
conflicting policy:

Definition 7.2.1. Conflicting policy in Tpol

There is a conflict in the security pol if it is possible to derive conflict() from Tpol:

Tpol � conflict()

One might argue that conflicts can be defined at the organizational policy level, that is,
between organizational Or-BAC predicates Permission and Prohibition. Let us assume
that the two following authorizations are defined in the policy:

• Permission(org, r, a, v, c) and Prohibition(org, r, a, v, c)

The fact we have such authorizations is not sufficient to derive conflicting pairs of concrete
authorizations. For instance, if the context c is equal to “night”, then there is no conflict
between concrete authorizations during the day. More formally, a conflict occurs only if a
subject is empowered in role r, an action is considered as an activity a, an object is used in
view v and context c holds between these concrete entities in organization org. Furthermore,
this condition is sufficient but not necessary. There is actually no need to have a permission
and a prohibition applied exactly to the same role, activity, view and context for a conflict
to happen. Consider the following authorizations:

• Permission(org, r1, a, v, c) and Prohibition(org, r2, a, v, c)

If a subject s plays both roles r1 and r2, and if an action is considered as an activity a, an
object is used in view v and context c holds between these concrete entities in organization
org, then it is possible to derive a conflicting pair of concrete authorizations. As a conse-
quence, actual conflicts can only be detected at the concrete level. On the other hand, the
organization level enables us to determine the potential conflicts. This issue is examined in
section 7.5. Let us present how to define conflict management strategies in Or-BAC.

7.2.2 Priority levels

When a conflict occurs between two facts Is permitted and Is prohibited, our proposal to
solve such a conflict is to associate these facts with priority levels. Then the fact with the
highest priority takes precedence over the other fact. For this purpose, we introduce a set
of priority levels denoted L. We assume that L is associated with a partial order relation
denoted ≺ such as:

• if l1 and l2 are two priorities, then l1 ≺ l2 means that l2 is higher than l1

98 Prohibitions and conflict management

Permission Permission'

Is_permitted'Is_permitted

cms

ED1

RG'1RG1

Figure 7.1: Permission → Is permitted

• l1 ≺� l2 means than the priorities l1 and l2 are not comparable, that is:
l1 ≺� l2 ↔ ¬(l1 ≺ l2) ∧ ¬(l2 ≺ l1)

The definition of L is application-dependent in the sense that it depends on the strategy
used to manage conflicts. The set of priority levels is used to prioritize permissions and
prohibitions both at the concrete and the organizational levels. Thus, we consider the
following four new predicates:

Definition 7.2.2. Predicate Permission’
“Permission′ is a relation over domains Org × R × A × V × C × L. If org is an or-

ganization, r a role, v a view, a an activity, c a context and l a priority level, then
Permission′(org, r, v, a, c, l) means that Permission(org, r, a, v, c) is assigned to priority
level l”.

Definition 7.2.3. Predicate Prohibition’
“Prohibition′ is a relation over domains Org × R × A × V × C × L. If org is an or-

ganization, r a role, v a view, a an activity, c a context and l a priority level, then
Prohibition′(org, r, v, a, c, l) means that Prohibition(org, r, a, v, c) is assigned to priority
level l”.

Definition 7.2.4. Predicate Is permitted’
“Is permitted′ is a relation over domains S×A×O×L. If s is a subject, α an action, o an
object and l a priority level, then Is permitted′(s, α, o, l) specifies that Is permitted(s, α, o)
is assigned to priority level l”.

Definition 7.2.5. Predicate Is prohibited’
“Is prohibited′ is a relation over domains S×A×O×L. If s is a subject, α an action, o an
object and l a priority level, then Is prohibited′(s, α, o, l) specifies that Is prohibited(s, α, o)
is assigned to priority level l”.

In a theory Tpol that represents a given security policy pol, rule RG1 was used to derive
concrete authorizations Is permitted from organizational authorizations Permission. In
the remainder of this section, we shall model a prioritized security policy Ppol. In Ppol,
rule RG1 is no longer available. The new derivation process is structured into three steps:

1. Derivation of Permission′ from Permission. This corresponds to the definition of a
Conflict Management Strategy (cms).

7.3 The new derivation process 99

2. Derivation of Is permitted′ from Permission′. This is modelled with a new derivation
rule RG’1.

3. Derivation of Is permitted from Is permitted′. This is modelled with an explicit
permission derivation rule ED1.

The new derivation process is presented in figure 7.1. The derivation process used so far
is represented with a dotted arrow. The new process is composed of three steps and is
presented with plain arrows. The process used to derive concrete prohibitions Is prohibited

from organizational prohibitions Prohibition is similar. We now present a formalization of
this process.

7.3 The new derivation process

In this section, we first explain each step of the new derivation process.

7.3.1 Step 1: Conflict management strategy

First, let us focus on the specification of priority levels. When a new permission or pro-
hibition is inserted in the security policy, a first possibility consists in assuming that the
administrator will manually associate this permission or prohibition with a priority level.
Such an administrative approach is quite complex to manage and security administrator
dependent. Instead, we suggest defining a set of rules that is automatically used to derive a
priority level for each authorization. This is what we call a conflict management strategy.
Notice that we do not assume that a conflict management strategy is complete, in the sense
that it provides means to assign a priority level to every permission or prohibition. If some
permissions or prohibitions cannot be automatically prioritized, then the administrator will
be asked to manually assign a priority.

Definition 7.3.1. Conflict Management Strategy
“A conflict management strategy is a set of rules that concludes on the predicates

Permission′ or Prohibition′”.

Notice that the priority levels do not necessarily correspond to priority numbers. On the
contrary, priority levels enable to model a large number of strategies. Consider the following
examples:

Example 1: Denial takes precedence (cms1)

In DTP, when a situation of conflict occurs, prohibition takes precedence. Let us call this
strategy cms1. This is a very simple example of strategy. It is modelled as follows:

• L = {0, 1}
• ∀org ∈ Org,∀r ∈ R,∀a ∈ A,∀v ∈ V,∀c ∈ C,

Permission(org, r, a, v, c)→ Permission′(org, r, a, v, c, 0)
• ∀org ∈ Org,∀r ∈ R,∀a ∈ A,∀v ∈ V,∀c ∈ C,

P rohibition(org, r, a, v, c)→ Prohibition′(org, r, a, v, c, 1)

The strategy PTP is defined by analogy with DTP by reversing the positive and the negative
authorizations.

100 Prohibitions and conflict management

Example 2: First matching (cms2)

We mentioned the conflict management strategy implemented in firewalls. We considered in
particular the first matching strategy. In such a strategy, the first authorization wins. This
includes the assumption that the set of authorizations is ordered. In order to model this
strategy, we suppose that L = N and that two authorizations cannot have the same priority
level. In this strategy, the priority level assignment must be carried out by the SSO. If a
conflict appears, the authorization having the higher level takes precedence. This strategy
is denoted cms2.

Example 3: Priority based on role (cms3)

In this strategy, a priority relation between roles is defined to solve conflicts
[Cholvy and Cuppens 1997]. It is close to the notion of distance described in sections 2.4.3.
This relation of priority is generally compatible with the hierarchy defined for permission
and prohibition inheritance between roles. Let us call this strategy cms3. It is modelled
using a set of priority levels L = R where R represents the set of roles; and the set R is
associated with a partial order relation. Then if a permission or a prohibition is assigned to
role r, then r also represents the priority level of this permission or prohibition.

• L = R and the set R is associated with a partial order relation.

• ∀org ∈ Org,∀r ∈ R,∀a ∈ A,∀v ∈ V,∀c ∈ C,
Permission(org, r, a, v, c)→ Permission′(org, r, a, v, c, r)

• ∀org ∈ Org,∀r ∈ R,∀a ∈ A,∀v ∈ V,∀c ∈ C,
P rohibition(org, r, a, v, c)→ Prohibition′(org, r, a, v, c, r)

Example 4: Combination of cms1 and cms3 (cms4)

This strategy uses in the first place priority between roles to solve conflicts. If there is still
a conflict that cannot be solved using role priority, then the prohibition takes precedence
(DTP). Let us call this strategy cms4. This strategy is modelled as follows:

• L = R× {0, 1}
• The partial order relation over L is defined as follows:

• ∀r1 ∈ R,∀l1 ∈ L,∀r2 ∈ R,∀l2 ∈ L,

(r1 ≺ r2 ∧ l1 ∈ {0, 1} ∧ l2 ∈ {0, 1})→< r1, l1 >≺< r2, l2 >

• ∀r1 ∈ R,∀l1 ∈ L,∀r2 ∈ R,∀l2 ∈ L,

(r1 = r2 ∧ l1 ≺ l2)→< r1, l1 >≺< r2, l2 >

• ∀r1 ∈ R,∀l1 ∈ L,∀r2 ∈ R,∀l2 ∈ L,

(r1 ≺� r2 ∧ l1 ≺ l2)→< r1, l1 >≺< r2, l2 >

• ∀org ∈ Org,∀r ∈ R,∀a ∈ A,∀v ∈ V,∀c ∈ C,
Permission(org, r, a, v, c)→ Permission′(org, r, a, v, c, < r, 0 >)

• ∀org ∈ Org,∀r ∈ R,∀a ∈ A,∀v ∈ V,∀c ∈ C,
P rohibition(org, r, a, v, c)→ Prohibition′(org, r, a, v, c, < r, 1 >)

7.3 The new derivation process 101

7.3.2 Step 2: From organizational to concrete authorizations

Here, we focus on the derivation rule that enables us to derive the authorization
Is permitted′ – resp. Is prohibited′ – from the organizational prioritized authorization
Permission′ – resp. Prohibition′. Rules RG1 and RG2 (see section 3.6) used to derive con-
crete authorizations from organizational authorizations in theory Tpol do not hold anymore.
RG1 is replaced by the following rule RG’1:

• RG’1: ∀org ∈ Org,∀r ∈ R,∀a ∈ A,∀v ∈ V,∀c ∈ C,∀l ∈ L,∀s ∈ S,∀α ∈ A,∀o ∈ O,

Permission′(org, r, a, v, c, l)∧
Empower(org, s, r)∧
Consider(org, α, a)∧
Use(org, o, v)∧
Hold(org, s, α, o, c)
→ Is permitted′(s, α, o, l)

This rule specifies that Is permitted′ may be derived with the same priority level as
Permission′, provided that other conditions in the premises are satisfied. A similar rule
called RG’2 applies to derive Is prohibited′ from Prohibition′.

7.3.3 Step 3: Deriving explicit permissions

Let us now consider the last step of the derivation process which corresponds to the deriva-
tion of the concrete authorizations Is permitted – resp. Is prohibited – from the prioritized
concrete authorizations Is permitted′ – resp. Is prohibited′. The general idea of this deriva-
tion is the following one: we derive a concrete authorization Is permitted provided that it is
not possible to derive a concrete authorization Is prohibited having a higher priority level.
This is modelled with the rule ED1:

• ED1: ∀s ∈ S,∀α ∈ A,∀o ∈ O,∀l1 ∈ L,

Is permitted′(s, α, o, l1)∧
¬∃l2 ∈ L, (l1 ≺ l2 ∧ Is prohibited′(s, α, o, l2))
→ Is permitted(s, α, o)

This rule says that a concrete permission can be derived in order to allow subject s to
perform action α on object o if this permission is labelled at a priority level l1 and if there
is no prohibition for s to perform α on o with a priority level l2 strictly higher than l1. The
derivation rule ED2 for concrete negative authorizations is defined in a similar way:

• ED2: ∀s ∈ S,∀α ∈ A,∀o ∈ O,∀l1 ∈ L,

Is prohibited′(s, α, o, l1)∧
¬∃l2 ∈ L, (l1 ≺ l2 ∧ Is permitted′(s, α, o, l2))
→ Is prohibited(s, α, o)

So far, we explained the new derivation process used to derive concrete authorizations from
organizational authorizations. The derivation process provides means to specify conflict
management strategies. In the next section, we give a formal definition of the new logic
theory.

102 Prohibitions and conflict management

7.4 The prioritized theory TPpol

New authorizations as well as new predicates were introduced with the objective to manage
conflicts in an Or-BAC policy. As a consequence the logic theory specified in section 5.3 is
no longer valid. In this section we define a new theory, denoted TPpol, and we give the new
definition of a conflicting policy.

7.4.1 Inheritance management

In the first place, since new predicates are introduced, some other rules than the one specified
in the previous section have to be modified. Such modifications are applied to the inheritance
rules.

The Rule RH1 (section 4.1.2) that was used to model authorization inheritance between
roles is no longer available in the prioritized theory TPpol. It is replaced by the following
rule:

• RH’1: ∀org ∈ Org,∀r1 ∈ R,∀r2 ∈ R,∀a ∈ A,∀v ∈ V,∀c ∈ C,∀l ∈ L,

Permission′(org, r1, a, v, c, l)∧
sub role(org, r2, r1)
→ Permission′(org, r2, a, v, c, l)

Rule RH’1 says that if role r2 is a sub-role of r1 and if there is a permission associated with
r1 at a priority level l, then r2 inherits this permission with the same priority level l. If
we were using rule RH1, r2 would inherit permission from r1 but possibly with a different
priority level (for instance apply the strategy priority based on role) which is generally not
satisfactory.

Rules RH2, VH1, VH2, AH1 and AH2 are similarly replaced by rules RH’2, VH’1, VH’2, AH’1
and AH’2 in the prioritized theory. The rule OH1 (section 4.1.4) must also be modified. It
is replaced by the following rule OH’1. Similarly, the rule OH’2 stands in for the rule OH2.

• OH’1: ∀org1 ∈ Org,∀org2 ∈ Org,∀r ∈ R,∀a ∈ A,∀v ∈ V,∀c ∈ C,∀l ∈ L,

sub organization(org2, org1)
Permission(org1, r, a, v, c, l)∧
Relevant role(org2, r)∧
Relevant activity(org2, a)∧
Relevant view(org2, v)∧
Relevant context(org2, c)
→ Permission(org2, r, a, v, c, l)

Furthermore, constraints C5 and C6 must also be modified. We define C’5 and C’6 by
replacing the organizational authorizations by the corresponding prioritized organizational
authorizations (see section A.7).

7.4.2 Specification of theory TPpol

Thanks to the rules defined in section 7.3 and in section 7.4.1, we are now in position to
give the new logic theory for managing the Or-BAC model.

7.4 The prioritized theory TPpol 103

Definition 7.4.1. Prioritized theory TPpol

“A prioritized security policy Ppol associated with a conflict management strategy cms is
modelled as a logic theory TPpol – called prioritized theory – that is similar to theory Tpol

except for the following points:

• Rules RG1 and RG2 are replaced by rules RG’1 and RG’2;

• rules ED1 and ED2 belong to theory TPpol;

• rules RH1, RH2, VH1, VH2, AH1, AH2, OH1 and OH2 are replaced by rules RH’1, RH’2,
VH’1, VH’2, AH’1, AH’2, OH’1 and OH’2;

• constraints C5 and C6 are replaced by constraints C’5 and C’6;

• there is a set of rules that defines cms: (1) rules or facts that define the partial order
relation on priority levels, and (2) a set of rules that concludes on predicates Permission′

and Prohibition′”.

The conflict definition remains the same as in Tpol:

Definition 7.4.2. Conflicting policy in TPpol

There is a conflict in security policy Ppol if it is possible to derive conflict() from TPpol:

TPpol � conflict()

7.4.3 Conflict in the prioritized theory

Notice that all conflict management strategies do not prevent conflicts from occurring in
the prioritized theory TPpol. Using rules ED1, ED2 and RC, we can actually prove that a
conflict in theory TPpol occurs when the following condition is satisfied:

• CConflict: ∃s ∈ S,∃α ∈ A,∃o ∈ O,∃l1 ∈ L,∃l2 ∈ L,

Is permitted′(s, α, o, l1)∧
Is prohibited′(s, α, o, l2)∧
¬∃l3 ∈ L, (l2 ≺ l3 ∧ Is permitted′(s, α, o, l3))∧
¬∃l4 ∈ L, (l1 ≺ l4 ∧ Is prohibited′(s, α, o, l4))

• Proof: The proof is trivial. We merely have to observe that if condition CConflict

holds, then we can apply rules ED1 and ED2 to derive Is permitted(s, α, o) and
Is prohibited(s, α, o). Next, we can derive conflit() by rule RC.

Let us comment the negative conditions in CConflict. Let us assume that there is a level l3
such that l2 ≺ l3 and that subject s is permitted to perform action α on object o at level l3.
In this case, the conflict is solved since this permission at level l3 overwrites prohibition at
level l2. This explains the negative condition ¬∃l3 ∈ L, (l2 ≺ l3 ∧ Is permitted′(s, α, o, l3).
Explanation of the other negative condition is similar but for prohibition.

It is easy to prove that this condition can never be satisfied in strategies cms1 (denial takes
precedence), cms2 (first matching) and cms4 (combination of cms1 and cms3). However,
this is not the case of strategy cms3 in which condition CConflict can be satisfied. In order
to characterize these two different situations we define the notion of “effective” and “weak”
strategies:

104 Prohibitions and conflict management

Definition 7.4.3. Effective Strategy
“A conflict management strategy is effective provided condition CConflict cannot be satisfied
when this strategy is used”.

Definition 7.4.4. Weak Strategy
“A conflict management strategy is weak if it is not effective”.

Hence, strategies cms1, cms2 and cms4 are effective whereas strategy cms3 is weak. From
now on, there are two possible behaviors. The first one is to only accept effective strategies.
However, we guess that, in many situations, this would be too restrictive to oblige the policy
administrator to use only effective strategies. Another attitude consists in accepting a weak
strategy and controlling that a conflict does not occur in the security policy to be enforced.
We further investigate this approach in the following section.

7.5 Conflict prevention

Let us recapitulate what we have defined so far. We presented a parametric conflict ma-
nagement strategy which makes it possible to specify effective or weak strategies. We defined
a new logic theory TPpol. Furthermore, we established that if the condition CConflict is
satisfied then a conflict occurs between a concrete permission and a concrete prohibition. In
the case of an efficient strategy the management we proposed is reliable. On the contrary,
if the chosen strategy is weak, we have to further investigate the conflict issue.

When a weak strategy is used, condition CConflict can be satisfied. This condition involves
some subjects, actions and objects. This is not satisfactory for two reasons. First, the
security policy is not stable in the sense that it can be free of conflict at a given time, when
in fact, a conflict might occur when the concrete level is updated (that is, when a subject
is newly-empowered in a new role; or an object is newly-used in a new view; or an action
is newly-considered as an activity). Second, this is not compliant with the basic principle
of the Or-BAC model. Indeed, Or-BAC is designed to provide means to specify a security
policy at an organizational level, that is, independently of the actual subjects, objects and
actions used in the system. Using condition CConflict, conflicts are managed at the concrete
level. A better approach would be to manage conflicts at the organizational level, with the
following objective: if there is no conflict in the security policy at the organizational level,
then this will guarantee that there is no conflict at the concrete level even if a weak strategy
is used.

We suggest to specify a new condition that will stand in for condition CConflict, and which
will apply at the organizational policy level. In other words, we want to detect conflicts
between organizational authorizations. The objective of such a condition is to prevent
conflicting situations and thus to detect the potential conflicts. This new condition is not
easy to specify. Indeed, if this condition is too strong, we might create some “false negatives”,
this is, we might detect some conflicts that would never occur. Afterwards, we suggest a
first condition. This condition will then be refined in the forthcoming sections.

7.5 Conflict prevention 105

7.5.1 Conflict prevention: first proposal

We suggest a first condition to prevent conflicts at the organizational level of Or-BAC. It
is obtained by simply replacing concrete authorizations by organizational authorizations in
condition CConflict presented in section 7.4.3. It is thus defined as follows:

• C ′
Conflict1: ∃org1 ∈ Org,∃r1 ∈ R,∃a1 ∈ A,∃v1 ∈ V,∃c1 ∈ C,∃l1 ∈ L,

∃org2 ∈ Org,∃r2 ∈ R,∃a2 ∈ A,∃v2 ∈ V,∃c2 ∈ C,∃l2 ∈ L,

Permission′(org1, r1, a1, v1, c1, l1)∧
Prohibition′(org2, r2, a2, v2, c2, l2)∧
¬∃l3 ∈ L, (l1 ≺ l3 ∧ Prohibition′(org1, r1, a1, v1, c1, l3))∧
¬∃l4 ∈ L, (l2 ≺ l4 ∧ Permission′(org2, r2, a2, v2, c2, l4))

We can then prove the following theorem:

Theorem 7.5.1. Let Ppol be a prioritized security policy. We have:

TPpol � conflict()⇒ TPpol � C ′
Conflict1

Proof. The only way to derive conflict() in TPpol is by applying rule RC. This means
that there is a subject s, an action α and an object o such that Is permitted(s, α, o) ∧
Is prohibited(s, α, o). In TPpol, the only way to derive these facts is by applying rules ED1

and ED2. So, we conclude that there is a priority level l1 such that Is permitted′(s, α, o, l1)
and there is no l2 such that (l1 ≺ l2 ∧ Is prohibited′(s, α, o, l2)). But the only way to derive
Is permitted′(s, α, o, l1) is by applying rule RG’1. So the premises of rule RG’1 are true
and we can conclude that there is an organization org1, a role r1, an activity a1, a view
v1 and a context c1 such that Permission′(org1, r1, a1, v1, c1, l1). We can similarly derive
Prohibition′(org2, r2, a2, v2, c2, l2). Now let us assume that there is a priority level l3 such
that (l1 ≺ l3 ∧Prohibition′(org1, r1, a1, v1, c1, l3)). Since the premises of rule RG’1 are true,
we can derive that Is prohibited′(s, α, o, l3). But this is in contradiction with the conclusion
that there is no l2 such that (l1 ≺ l2 ∧ Is prohibited′(s, α, o, l2)). Assuming that there is
a priority level l4 such that (l1 ≺ l4 ∧ Permission′(org1, r1, a1, v1, c1, l4)) leads to a similar
contradiction. Thus, we can conclude that Conflict′1 is true.

Lemme 7.5.1. From theorem 7.5.1, by contraposition, we also have:

TPpol 	� C ′
Conflict1 ⇒ TPpol 	� conflict()

This means that if we cannot derive Conflict′1 from TPpol then there is no conflict in the
security policy defined by Ppol. Therefore, it is sufficient to check condition C ′

Conflict1 to
prevent a conflict in the policy. This is interesting because condition C ′

Conflict1 can be
checked at the organizational level.

However, C ′
Conflict1 is a very strong condition because it requires that there is no conflict

between every pair of organizations, roles, activities, views and contexts. We can actually
suggest a weaker condition by considering separation constraints.

7.5.2 Conflict prevention: second proposal

This section suggests a weaker condition than C ′
Conflict1 to prevent conflicts. It is defined

as follows:

106 Prohibitions and conflict management

• C ′
Conflict2: ∃org1 ∈ Org,∃r1 ∈ R,∃a1 ∈ A,∃v1 ∈ V,∃c1 ∈ C,∃l1 ∈ L,

∃org2 ∈ Org,∃r2 ∈ R,∃a2 ∈ A,∃v2 ∈ V,∃c2 ∈ C,∃l2 ∈ L,

Permission′(org1, r1, a1, v1, c1, l1)∧
Prohibition′(org2, r2, a2, v2, c2, l2)∧
¬∃l3 ∈ L, (l1 ≺ l3 ∧ Prohibition′(org1, r1, a1, v1, c1, l3))∧
¬∃l4 ∈ L, (l2 ≺ l4 ∧ Permission′(org2, r2, a2, v2, c2, l4))∧
¬separated role(org1, r1, org2, r2)∧
¬separated activity(org1, a1, org2, a2)∧
¬separated view(org1, v1, org2, v2)∧
¬separated context(org1, c1, org2, c2)

Predicates separated role, separated activity and separated view were already presented
in section 4.2.3 and separation context in section 6.10.

Theorem 7.5.2. Let Ppol be a prioritized security policy. We have:

TPpol � conflict() ∧ TPpol 	� error()⇒ TPpol � C ′
Conflict2

Proof. Proof is similar to theorem 7.5.1. We have simply to observe that if a conflict
occurs in theory Ppol for a given subject s, then this means that this subject is empowered
in a given role r1 by a given organization org1 (to derive that this subject is permitted to
perform a given action on a given object) and this subject is empowered in another role r2

by another organization org2 (to derive that this subject is prohibited to perform the same
action on the same object). However, if we have separation role(r1, org1, r2, org2), then we
could derive that a separation constraint is violated. But this is in contradiction with the
assumption that Ppol does not violate any separation constraint. We can similarly derive
the negation of other separation constraints that appear in C ′

Conflict2.

Theorem 7.5.3. Let Ppol be a prioritized security policy. We have:

TPpol � Conflict′2 ⇒ TPpol � Conflict′1

Proof. Trivial.

C ′
Conflict2 provides a weaker condition than C ′

Conflict1 since it is sufficient to check pairs of
roles, activities, views and contexts for which no separation occurs. In the following, we can
further weaken this condition.

7.5.3 Conflict prevention: last proposal

Our last proposal for conflict prevention is defined as follows:

7.5 Conflict prevention 107

• C ′
Conflict3: ∃org1 ∈ Org,∃r1 ∈ R,∃a1 ∈ A,∃v1 ∈ V,∃c1 ∈ C,∃l1 ∈ L,

∃org2 ∈ Org,∃r2 ∈ R,∃a2 ∈ A,∃v2 ∈ V,∃c2 ∈ C,∃l2 ∈ L,

Permission′(org1, r1, a1, v1, c1, l1)∧
Prohibition′(org2, r2, a2, v2, c2, l2)∧
¬separated role(org1, r1, org2, r2)∧
¬separated activity(org1, a1, org2, a2)∧
¬separated view(org1, v1, org2, v2)∧
¬separated context(org1, c1, org2, c2)
¬∃l3 ∈ L, (i, j, k, l, m) ∈ {1, 2},

((l1 ≺ l3 ∧ Prohibition′(orgi, rj , ak, vl, cm, l3))∨
(l2 ≺ l3 ∧ Permission′(orgi, rj , ak, vl, cm, l3)))

Theorem 7.5.4. Let Ppol be a prioritized security policy. We have:

TPpol � conflict() ∧ TPpol 	� error()⇒ TPpol � C ′
Conflict2

Proof. Proof starts like theorem 7.5.1 to conclude that both premises of rules RG’1
and RG’2 are true. Now let us assume that there is a level l3 such that l1 ≺ l3 ∧
Prohibition′(orgi, rj , ak, vl, cm, l3) with values of subscripts i, j, k, l, m belonging to {1, 2}.
Then we can still apply rule RG’1 (using premises of rules RG’1 or RG’2 when subscript
is respectively equal to 1 or 2) to derive Is prohibited(s, α, o, l3) which is a contradic-
tion. We obtain a similar contradiction if we assume that there is a level l3 such that
l2 ≺ l3 ∧ Permission′(orgi, rj , ak, vl, cm, l3).

7.5.4 Example

In order to compare the various conditions suggested in the previous sections, let us consider
the policy defined by the following facts. This policy is prioritized; this means that the first
step of the derivation process is already realized.

Organizational policy:

• A1: Permission′(Bank, adviser, consulting, customer account, Default, l1)
“In Bank, advisers are allowed to consult the customer accounts with a priority level l1”

• A2: Prohibition′(Bank, counter clerk, consulting, company account, Default, l2)
“In Bank, clerks are prohibited to consult the company accounts with a priority level l2”

• A3: Permission′(Bank, adviser, consulting, company account, Default, l3)
“In Bank, counter advisers are allowed to consult the company accounts with a priority level
l3”

• l2 ≺ l3 ∧ l2 ≺� l1
“Priority l3 is higher than l2. l2 and l1 are not comparable. The conflict management strategy
is weak”

• ¬separated role(Bank, counter clerk, Bank, adviser)
“In Bank, roles counter clerk and adviser are not separated (meaning that a given subject can
be empowered in both roles)”

108 Prohibitions and conflict management

• ¬separated view(Bank, customer account, Bank, company account)
“In Bank, views customer account and company account are not separated (meaning that a
given object can be used in both views)”

Concrete policy:

• Empower(Bank, John, adviser) ∧ Empower(Bank, John, counter clerk)
“In Bank, John is assigned to both roles adviser and clerk”

• Consider(Bank, SELECT, consulting)
“In Bank, action SELECT partake to activity consult”

• Use(Bank, doc1, customer account) ∧ Use(Bank, doc1, company account)
“In Bank, doc1 is used in both views customer account and company account”

Consider now step 2 of the derivation process. From this policy, and using rules RG’1 and
RG’2 (section 7.3.2), we derive the following concrete authorizations:

• Is permitted′(John, SELECT, doc1, l1)

• Is permitted′(John, SELECT, doc1, l3)

• Is prohibited′(John, SELECT, doc1, l2)

We go now on step 3. Using ED1 (section 7.3.3), we can derive
Is permitted(John, SELECT, doc1) whereas we cannot apply rule ED2, because l2 ≺ l3.
Even though the chosen strategy is weak, there is actually no conflict in this example.

Let us examine our potential conflict conditions C ′
Conflict1, C ′

Conflict2 and C ′
Conflict3. Since

l2 ≺ l1, condition C ′
Conflict1 is satisfied, due to the conflict between the two first authorization

A1 and A2. Therefore, when applying this condition, we would detect a potential conflict.
This condition is actually too strong.

Although more restrictive, C ′
Conflict2 is also satisfied. Indeed, the roles adviser and counter

clerk are not separated. C ′
Conflict2 is still a too strong requirement.

Finally, C ′
Conflict3 cannot be derived. This is due to the third authorization A3. This is

satisfactory since no conflict occurs in this policy.

This example shows that our approach is useful to check that a prioritized security policy
is free from conflicts before implementing it in a concrete system.

7.6 Redundant authorization detection

A consequence of introducing some priority levels is that some redundant authorizations
may appear. In order to explain when redundant rules occur, let us consider the following
policy:

• A1: Permission′(Bank, adviser, consulting, account, Default, l1)
“In Bank, advisers are allowed to consult the accounts with a priority level l1”

• A2: Prohibition′(Bank, adviser, consulting, account, Default, l2)
“In Bank, advisers are prohibited to consult the accounts with a priority level l2”

7.6 Redundant authorization detection 109

• A3: Permission′(Bank, employee, consulting, account, Default, l3)
“In Bank, employees are allowed to consult the accounts with a priority level l3”

• l1 ≺ l2 ≺ l3
“Priority l3 is higher than l2, which is higher than l1”

• sub role(Bank, adviser, employee)
“In Bank, role adviser is a sub-role of role employee”

Clearly A1 is redundant beside A2 since these authorizations apply to the same entities and
A2 is associated to a higher priority level than A1. As a consequence, A1 is useless in the
policy. There is actually no need to have authorizations involving the same entities to obtain
a redundant authorization. Consider for example A2 and A3. The role adviser is a sub-role
of role employee, so the role adviser inherits authorization A3. Since A3 is associated to a
higher priority level than A2, A2 is redundant beside A3. The same line of reasoning holds
between A1 and A3. As a consequence, just one authorization out of three is useful in this
security policy example. Even though we consider only a role hierarchy in this example, the
same phenomenon would appear with activity, view and context hierarchy.

This is useful for the SSO to detect the redundant rules. Indeed, due to the inheritance
mechanisms, some important authorizations might be discarded. This can be considered as
a side-effect of the use of hierarchies and priority levels. Therefore, in order to detect the
redundant authorizations we define a new constraint C11.

Redundant authorizations cannot be detected by comparing two derived authorizations, this
is, authorizations resulting from one of the derivation rules specified in Or-BAC, otherwise
all authorizations involved in a potential conflict and which do not take precedence would be
declared as redundant. As a consequence, we introduce two new predicates for the derived
authorizations D Permission′ and D Prohibition′. In the context of the redundant autho-
rizations detection, we assume that all derivation rules defined in the Or-BAC that conclude
on predicates Permission′ and Prohibition′, conclude now on predicates D Permission′

and D Prohibition′. This holds for inheritance derivation rules for instance. We also add
the following rules:

• ∀org ∈ Org,∀r ∈ R,∀a ∈ A,∀v ∈ V,∀c ∈ C,∀l ∈ L
Permission′(org, r, a, v, c, l)→ D Permission′(org, r, a, v, c, l)
• ∀org ∈ Org,∀r ∈ R,∀a ∈ A,∀v ∈ V,∀c ∈ C,∀l ∈ L

Prohibition′(org, r, a, v, c, l)→ D Prohibition′(org, r, a, v, c, l)

The redundant authorizations detection only considers explicit authorizations, that is, pre-
dicates Permission′ and Prohibition′.

Notice that the redundant authorization issue does not take care of the authorizations’
type: an authorization is redundant beside another one, wether these authorizations are
positive or negative. In order to model this feature and to better specify the constraint C11,
we introduce a new predicate Authorization′. It enables us not to make any distinction
between positive and negative authorizations. It is defined as follows:

• ∀org ∈ Org,∀r ∈ R,∀a ∈ A,∀v ∈ V,∀c ∈ C,∀l ∈ L
Permission′(org, r, a, v, c, l)→ Authorization′(org, r, a, v, c, l)
• ∀org ∈ Org,∀r ∈ R,∀a ∈ A,∀v ∈ V,∀c ∈ C,∀l ∈ L

Prohibition′(org, r, a, v, c, l)→ Authorization′(org, r, a, v, c, l)

110 Prohibitions and conflict management

We are now in position to specify the constraint C11:

• C11: ∃org ∈ Org,∃r1 ∈ R,∃a1 ∈ A,∃v1 ∈ V,∃c1 ∈ C,∃l1 ∈ L,

∃r2 ∈ R,∃a2 ∈ A,∃v2 ∈ V,∃c2 ∈ C,∃l2 ∈ L,

Authorization′(org, r1, a1, v1, c1, l1)∧
Authorization′(org, r2, a2, v2, c2, l2)∧
sub role(org, r2, r1)∧
sub activity(org, a2, a1)∧
sub view(org, v2, v1)∧
sub context(org, c2, c1)∧
l2 ≺ l1
→ error()

Note that relation sub role, sub activity, sub view and sub context are reflexive and transi-
tive. This constraint handles the redundant authorizations due to hierarchies within a single
organization. Now, redundant authorizations might also appear as a result of inheritance
between organizations which is modelled with OH’1 and OH’2 (see section 4.1.4). Thereby,
we must add another constraint:

• C12: ∃org1 ∈ Org,∃org2 ∈ Org,∃r ∈ R,∃a ∈ A,∃v ∈ V,∃c ∈ C,∃l1 ∈ L,∃l2 ∈ L,

Authorization′(org1, r, a, v, c, l1)∧
Authorization′(org2, r, a, v, c, l2)∧
sub org(org2, org1)∧
l2 ≺ l1
→ error()

7.7 Conclusion

In this paper, we presented a logical approach to manage conflicts in an access control
policy modelled in Or-BAC. Since a policy in Or-BAC is defined at an organizational level
(i.e. independently from actual implementation of subjects, objects and actions in the
system), we also suggest managing conflicts at the organizational level. Our approach is
based on defining a parametric conflict management strategy that is used to assign priority
levels to the organizational permissions or prohibitions. In order to do so, we redefine
the derivation process between organizational and concrete authorizations. Two different
situations may arise when using a strategy. (1) The strategy is effective; this guarantees
that the strategy will solve every conflict that may possibly occur in the policy. (2) The
strategy is weak; in this case, we defined a condition and proved that this condition, when
it is satisfied, prevents conflicts from occurring at the concrete level. This means that
the security administrator can actually use any strategy. As far as we know, we guess it
is the first time such an approach is defined and formally modelled to manage conflict.
Furthermore, since redundant authorizations might appear using a conflict management
strategy, we establish two constraints to detect such authorizations.

One might argue that context validation raises a difficulty with respect to the conflict detec-
tion issue. Since contexts enable us to activate or deactivate authorizations, some conflicts
might occur between pairs of authorizations provided their contexts are valid at the same
time. However, the predicate separated context is precisely used to specify the pairs of

7.7 Conclusion 111

contexts that can never be “conflicting”. We actually assume that the fact that a separation
constraint between two contexts matches the definitions of these contexts (that is, the rules
concluding on predicate Hold) is carried out beforehand. As a consequence, the context
validation does not interfere with the conflict prevention.

Chapter 8

AdOr-BAC: The administration

model for Or-BAC

8.1 Introduction

In section 2.5 we focused on administration and discussed existing models. In the access
control area, administration consists in distributing some authorizations in order to update
the security policy. This is indeed essential to specify some administrative procedures.
Otherwise, the security policy will not remain in adequation with the information system.
In an organization, if a new subject is empowered, it must be possible for instance to assign
some authorizations or some roles to this subject. We concluded that an access control
model should be associated with a complete administration model, and that this model
should be fully compliant with the access control model. Furthermore, administration tasks
can be centralized and managed by a single SSO, or distributed to several SSOs, each one
being in charge of a part of the policy. Therefore, an administration model should make it
possible to specify several administration strategies. We also mentioned that delegation is
a really important issue, but difficult to handle in role-based models.

This chapter presents AdOr-BAC [Cuppens and Miège 2003a, Cuppens and Miège 2004a],
an administration model for Or-BAC. This model is fully homogeneous with the remainder of
Or-BAC and is used to define decentralized administration procedures as well as delegation
procedures.

For the time being, AdOr-BAC is defined in the context of non-prioritized policies. Therefore
we assume we stand in the logic theory Tpol afterwards.

Objectives

Administration encompasses all tasks related to the security policy update process. As a
consequence, a complete Or-BAC administration model should provide means to control the
following purposes:

1. Management of organizations
2. Management of roles, activities, views and contexts
3. Assignment (and revocation) of users to roles
4. Assignment (and revocation) of authorizations to roles

114 AdOr-BAC: The administration model for Or-BAC

5. Assignment (and revocation) of users to permissions

In the above list, “management” includes creation, modification, deletion and hierarchy
definition. Actually, I could not go into all these points during the thesis. Therefore, we
rather focus on the last three issues. In fact, the five tasks above can be classified in another
way. On the one hand, some administrative tasks (1 and 2) provide means to create the
set of organizations, roles, activities, etc., and hierarchies, in other words, the organization
structure. On the other hand, some tasks (3, 4 and 5) are used to “fill” this structure by
assigning authorizations to roles and subjects, and roles to users. We focus first on the latter
tasks. Part of the tasks 1 and 2 are briefly examined in the last section.

We discussed the ARBAC model in section 2.5. Actually, the RBAC model is associated
with ARBAC [Sandhu et al. 1999, Sandhu and Munawer 1999, Oh et al. 2003]. ARBAC
provides interesting solutions with respect to the centralization / decentralization issue and
is one of the most complete administration models. ARBAC includes, among others, two
main components:

• The URA (User-Role Assignment) component which controls who is permitted to assign
a user with a new role and who is permitted to revoke a user from an existing role.

• The PRA (Permission-Role Assignment) component which controls who is permitted
to assign a role with a new permission and who is permitted to revoke a role from an
existing permission.

By analogy with ARBAC we also introduce a user-role assignment (URA) and a permission-
role assignment (PRA1) component. Elsewhere, we also introduce a new component, called
UPA:

• The UPA (User-Permission Assignment) component which controls who is permitted
to assign a user with a new permission and who is permitted to revoke a user from an
existing permission.

As it is discussed in section 8.4, UPA component is highly related to the delegation issue.
Actually, this facility is useful to control fine grained permission assignment, and is more
precisely used when a user wants to grant a specific authorization to another user.

Principle

The approach we suggest in AdOr-BAC is to define these administration functions by con-
sidering different Or-BAC views respectively called URA, PRA and UPA. Every organiza-
tion manages such views. Objects belonging to these views have specific semantics; namely
they will be respectively interpreted as an assignment of user to a role, an authorization to a
role and a permission to a user. Intuitively, inserting an object in these views will enable an
authorized user to respectively assign a user to a role, assign an authorization to a role and
assign a permission to a user. Conversely, deleting an object from these views will enable a
user to perform a revocation.

Defining the administration functions in AdOr-BAC thereby consists in specifying which
roles are permitted to get an access to views URA, PRA and UPA, or to more specific
views when the role does not have a complete access to one of these views.

1Contrary to the RBAC model, in the Or-BAC model, the PRA component is used to assign not only

permissions but also prohibitions. However, we keep the component name “permission”-role assignement.

8.2 URA in AdOr-BAC 115

The approach we suggest is homogeneous with the remainder of the Or-BAC model: the
language we use in AdOr-BAC to define permission to administer the policy is completely
similar to the one in Or-BAC. Actually, strictly speaking, it is even incorrect to consider that
AdOr-BAC is a distinct model from Or-BAC. Since we merely have to consider three new
views, namely URA, PRA and UPA in the Or-BAC model, it would be more appropriate
to say that Or-BAC is an auto-administered model. In the following we shall present the
structure of these three views and further analyze the administration functions associated
with the management of these views.

Notice that, in the ARBAC model, there are two types of fully separated roles called regular
roles and administration roles. Administration roles are only allowed to perform adminis-
tration functions and regular roles are only permitted to perform other functions excluding
administration functions. In some circumstances this separation is superfluous. For in-
stance the role chief adviser (see figure 2.7) may hold a plurality of administrative and
non administrative permissions. In such case, it is not necessary to create two roles. The
AdOr-BAC model does not impose to create these two roles. But, a security policy designer
could legitimately want to separate them anyway, because of separation of duty and least
privilege questions. The AdOr-BAC model makes it possible to do so. Thus, we leave such
separation optional in the AdOr-BAC model. Keeping this separation makes AdOr-BAC
compliant with ARBAC.

The remainder of this chapter is organized as following. Each following section corresponds
to one of the three components of AdOr-BAC: section 8.2 is dedicated to URA, section 8.3
to PRA, and finally section 8.4 to UPA. In section 8.5 we suggest other components which
describe the organization structure.

8.2 URA in AdOr-BAC

8.2.1 The view URA

The aim of the user-role administration activity is to determine who is allowed to assign a
user to a role and under which conditions. Assigning a user to a role equals to inserting a
new objet in a given view called URA. Three attributes are associated with this view. More
precisely, an object ura belonging to view URA has three attributes:

• subject(ura, s): designates the subject s that is related to the assignment

• role(ura, r): designates the role r to which the subject will be assigned

• org(ura, org): designates the organization org in which the subject is assigned

If a given role is allowed to insert any object in view URA under any condition, then this
means that this role is actually allowed to assign any user to any role in any organization
under any condition. However, this would generally be not restrictive enough. To enforce
further restrictions, we have to define sub-views of view URA. For example, in organization
orga, in order to assign subject s to role r2 within organization orgb, we have to create the
following view called myURA:

116 AdOr-BAC: The administration model for Or-BAC

• ∀ura ∈ O,

Use(orga, ura, myURA)
← Use(orga, ura, URA)∧

subject(ura, s)∧
role(ura, r2)∧
org(ura, orgb)

In the Or-BAC model, an organization empowers a user in a role. It is characterized by the
relationship Empower. Therefore, there is a link between the object belonging to the view
URA and the relationship Empower. This link is modelled through the following rule:

• ∀orga ∈ Org,∀ura ∈ O,

Use(orga, ura, URA)∧
org(ura, org) ∧ subject(ura, s) ∧ role(ura, r)
→ Empower(org, s, r)

This rule means that from each object ura belonging to the view URA (or to any sub-views of
URA), we can derive that a given subject (corresponding to subject(ura, s)) is empowered
in a given role (corresponding to role(ura, r)) in a given organization (corresponding to
org(ura, org)). Notice that in this rule, there are actually two different organizations, namely
orga and org. This means that a user empowered in a given organization corresponding to
orga can actually manage the user-role administration activity of another organization org.
For instance, orga might be the human resources department of a given company and org

might be the different departments of this company.

8.2.2 Managing the view URA

So far, we described how to create a view URA. We have to determine how to use such
a view in order to grant permission to a role to assign users to roles. There are three
different activities that apply to view URA: manage, assign and revoke. The activity assign
corresponds to assigning a user to a role through the view URA. For instance, the permission
granted to the role r1 to assign a user to the role r2 in the sub-organization orgb of orga is
expressed as follows:

• Permission(orga, r1, assign, myURA, context)

This means that a subject playing the role r1 is allowed to insert an object in the view
myURA if this object corresponds to the definition of this view. This is similar to the
“WITH CHECK OPTION” used in relational databases to control that an object can be
inserted in a view only if this object matches the definition of the view.

Up to now, we have only dealt with assignment but not with revocation. For this purpose,
we use the activity revoke. For instance, we may specify:

• Permission(orga, r1, revoke, myURA, context)

When a role is authorized to both assign and revoke users to a specific role, we create
the activity manage, and consider the activities assign and revoke as two sub-activities of
manage. This means that, if a given role is permitted to manage a given view in a given
context, then this role inherits the right to perform the activities assign and revoke on this
view in the same context.

8.2 URA in AdOr-BAC 117

Note that these administrative authorizations can become dynamic authorizations by defi-
ning a context. Furthermore, remember that in Or-BAC we make a distinction between the
activity and the action that actually implements this activity. This means that implemen-
tation of activities assign and revoke may change from one organization to another. For
instance, in a relational database, activity assign may be implemented by the action “IN-
SERT” (of objects in view URA) and activity revoke by the action “DELETE” (of objects
in view URA). If this is the case in organization B, it is specified by the following facts:

• Consider(B, INSERT, assign)

• Consider(B, DELETE, revoke)

Furthermore, one can notice that it is possible to specify that a given role r1 is granted
permission to assign a user to role r, and that another role r2 is granted permission to
revoke the user from role r. This might be useful to specify that revocation is a matter of
a higher role than r1 in the role hierarchy.

8.2.3 Example

Let us use again our banking example and assume that the bank Trusted bank is com-
posed, among others, of a financial department called trusted finance. If the role
Chief financial adviser is only allowed to assign a user to the role financial adviser in
the financial department, we have to create a specific view, called URA financial adviser

for example. This view is a sub-view of URA and is defined as follows:

• ∀ura ∈ O

Use(Trusted bank, ura, URA financial adviser)
← Use(Trusted bank, ura, URA)∧

role(ura, financial adviser)∧
org(ura, trusted finance)

Therefore, the permission granted to the role Chief financial adviser to assign a user to
the role adviser in the financial department trusted finance of Trusted bank is expressed
as follows:

• Permission(Trusted bank,

Chief financial adviser, assign, URA financial adviser, Default)

Let us consider another example: in Trusted bank, the head staff of the human resources
department is granted the permission to assign user John in the role financial adviser in
the department trusted finance:

• Permission(Trusted bank, head staff, assign, URA John financial adviser, Default)

where the view URA John financial adviser is defined as follows:

• ∀ura ∈ O,

Use(Trusted bank, ura, URA John financial adviser)
← Use(Trusted bank, ura, URA financial adviser)∧

subject(ura, John)

118 AdOr-BAC: The administration model for Or-BAC

8.2.4 The prerequisite conditions

In the ARBAC model, there is the following ternary relation can assign:

• can assign(admin role, regular role, prerequisite role)

This relation is used to specify that an administrative role admin role is permitted to assign
users to regular role regular role provided these users are empowered in some prerequisite

roles. In AdOr-BAC, no such ternary relation exists. However, it is possible to specify a
similar requirement as follows. First, a permission can be expressed as follows:

• Permission(org, admin role, assign, URA regular role, context)

It is then possible to include the prerequisite condition when specifying the view
URA regular role as follows:

• ∀org ∈ Org,∀ura ∈ O,

Use(org, ura, URA regular role)
← Use(org, ura, URA)∧

role(ura, regular role)∧
subject(ura, s)∧
Empower(org, s, prerequisite role)

To illustrate this approach, let us consider the following example. In Trusted bank, the
general manager is permitted to assign a user as the chief of the financial department, but
only if this user is empowered in the role financial adviser (prerequisite condition):

• Permission(Trusted bank,

general manager, assign, URA chief financial dpt, Default)

where the view URA chief financial dpt is defined as follows:

• ∀ura ∈ O,

Use(Trusted bank, ura, URA chief financial dpt)
← Use(Trusted bank, ura, URA)∧

role(ura, Chief financial adviser)∧
org(ura, trusted finance)∧
subject(ura, s)∧
Empower(Trusted bank, s, financial adviser)

Remember that a subject can only insert an object in a given view if this object matches the
definition of this view. This means that a subject empowered in the role general manager

can only assign another subject in view URA chief financial dpt if this subject is empo-
wered in role financial adviser. We can thus specify that for the financial department, the
chief must be a financial adviser.

The user-role assignment in AdOr-BAC is very flexible. A large number of conditions can be
expressed such as the prerequisite conditions of ARBAC, thanks to the use of views which
make it possible to model the assignments. Moreover, contrary to AdOr-BAC, the relation
can assign in ARBAC does not enable us to specify the organization and the context. It
is also important to mention that in the AdOr-BAC model there is no distinction between
the regular roles and the administrative roles as suggested in ARBAC. Since, there are

8.3 PRA in AdOr-BAC 119

no specific permissions for the administrative tasks, such as can assign and can revoke

in ARBAC, permissions corresponding to the activities manage, assign and revoke can
be given to any role, and not only to specific roles such as senior security officer or
project security officer.

8.3 PRA in AdOr-BAC

In the previous section we dealt with the user-role administration. We discuss here the
permission-role administration. The PRA component is used to assign positive and negative
authorizations to roles. As we have just seen, we modelled user assignment to role with the
view URA. Here, the authorization assignment to role is modelled with another view called
PRA. Giving a new authorization to a role corresponds to inserting a new object that
complies with the view PRA.

8.3.1 The view PRA

Five attributes are associated with the view PRA:

• issuer: the organization where the authorization applies

• grantee, privilege, target: designates the role, the activity and the view concerned by
the authorization

• context: designates the context in which the authorization can be applied

• type: indicates if the granted authorization is a permission or a prohibition. type is in
{positive, negative}

For example, in organization orga, in order to grant role r permission to perform activity a

on view v in context c within organization orgb, we define the following view myPRA:

• ∀orga ∈ org,∀pra ∈ O,

Use(orga, pra, myPRA)
← Use(orga, pra, PRA)∧

issuer(pra, orgb)∧
grantee(pra, r)∧
privilege(pra, a)∧
target(pra, v)∧
context(pra, c)∧
type(pra, positive)

The link between a permission and an object belonging to view PRA and which has type

equals to positive is modelled as follows:

• ∀orga ∈ Org,∀pra ∈ O,

Use(orga, pra, PRA)∧
issuer(pra, orgb) ∧ grantee(pra, r) ∧ privilege(pra, a)∧
target(pra, v) ∧ context(pra, c) ∧ type(pra, positive)
→ Permission(orgb, r, a, v, c)

120 AdOr-BAC: The administration model for Or-BAC

This rule means that from each object pra belonging to the view PRA (or to any sub-views of
PRA) in any organization org, we can derive that, in a given organization (corresponding to
issuer(pra, orgb)), a given role (corresponding to grantee(pra, r)) obtains the permission to
perform a given activity (corresponding to privilege(pra, a)) on a given view (corresponding
to target(pra, v)) in a given context (corresponding to context(pra, c)). The following rule
enables us to model the link between objects that belong to the view PRA and which has
the attribute type negative, and prohibitions:

• ∀orga ∈ Org,∀pra ∈ O,

Use(orga, pra, PRA)∧
issuer(pra, orgb) ∧ grantee(pra, r) ∧ privilege(pra, a)∧
target(pra, v) ∧ context(pra, c) ∧ type(pra, negative)
→ Prohibition(orgb, r, a, v, c)

8.3.2 Managing the view PRA

The same activities assign, revoke and manage defined in the previous section are used to
express the authorization given to a role to assign, revoke and manage positive or negative
authorizations to other roles.

8.3.3 Example

In this section, we go on with the example of section 3.6, where a customer of bank
Trusted bank has the permission to consult his own accounts:

• Permission(Trusted bank, customer, consulting, customer account, own account)

Assume that the permission is managed by role counter clerk. First, we have to define the
correct sub-view of view PRA. Let us call it PRA customer consult. This view is defined
as follows:

• ∀pra ∈ O,

Use(Trusted bank, pra, PRA customer consult)
← Use(Trusted bank, pra, PRA)∧

issuer(pra, Trusted bank)∧
grantee(pra, customer)∧
privilege(pra, consulting)∧
target(pra, customer account)∧
context(pra, own account)∧
type(pra, positive)

Second, the following authorization will enable a subject who plays the role counter clerk

to manage the authorization for customer to consult their account:

• Permission(Trusted bank, counter clerk, manage, PRA customer consult, Default)

8.3.4 Prerequisite conditions

We can consider many examples of constraints that apply to permission-role assignment.
As a special case, let us consider the prerequisite condition suggested in the ARBAC model.

8.4 UPA in AdOr-BAC 121

There is a ternary relation can assignp defined as follows:

• can assignp(admin role, regular role, prerequisite)

The relation can assignp is used to specify that an administrative role is permitted to
assign permissions to a regular role provided these permissions are already assigned to
some prerequisite role. Notice that the meaning of the prerequisite condition differs from
can assign to can assignp. In the can assign relation, the subject must be empowered in
the prerequisite role before being empowered in the regular role. In the can assignp relation,
the permission must be assigned to the prerequisite role before being assigned to the regular
role.

In AdOr-BAC, it is possible to specify a similar prerequisite requirement as follows. To do
so, we first need to specify a permission having the following form:

• Permission(org, admin role, assign, PRA regular role, context)

We then include the prerequisite condition when specifying the view PRA regular role as
follows:

• ∀orga ∈ Org,∀pra ∈ O,∀a ∈ A,∀v ∈ V,∀c ∈ C,
Use(orga, pra, PRA regular role)
← Use(orga, pra, PRA)∧

grantee(pra, regular role)∧
issuer(pra, orgb) ∧ privilege(pra, a)∧
target(pra, v) ∧ context(pra, c) ∧ type(pra, positive)∧
Permission(orgb, prerequesite role, a, v, c)

Notice that our approach makes explicit the different meanings of the prerequisite condition
between can assign and can assignp. The same line of reasoning stands for prohibitions.

In AdOr-BAC, this prerequisite condition is just a special case of constraint we can consider
in the PRA assignment. We can actually find many other examples of such constraint. For
instance, we can specify that a given role is only permitted to assign particular activities to
some regular role.

8.4 UPA in AdOr-BAC

The URA and PRA components respectively allow an authorized user to assign users to
roles and organizational authorizations to roles. Thus, these components indirectly enable
this authorized user to assign concrete authorizations to users. We argue that sometimes a
more direct process should enable a user to grant a concrete permission to another user.

Actually this is related to the delegation issue presented in section 2.5. Delegation in access
control is of utmost importance. It enables to delegate to certain users the ability to grant
authorizations to other users. As described before, many delegation (and transfer) mech-
anisms can be specified in accordance with the ownership issue or the loss of a delegated
permission issue for instance.

In role-based models, as in Or-BAC, authorizations are assigned to users through some
roles. As a consequence, a user cannot give an authorization to another user as described in

122 AdOr-BAC: The administration model for Or-BAC

section 2.5.4. The solution suggested in the RDBM model [Barka and Sandhu 2000] is not
satisfactory. Actually, to solve this problem, it is suggested in the RDBM model to delegate
roles, and thereby the permissions associated to these roles. This raises two problems. First,
it does not allow us to specify some fine-grained delegation mechanisms, that is, delegation
of permission one by one. Furthermore, a user loses his ability to play a role during the
time his role is delegated. Therefore, if a user delegates his role in order to grant only one
permission to another user, he looses all his permissions.

In the Or-BAC model, we introduce the new component UPA to grant permissions directly
to users. Actually, Or-BAC provides two components:

• UPA is used to grant permissions to users on specific actions and objects

• UPA’ is used to grant permissions to users on activities and views

We shall present first these two components and then see they can intervene in the context
of delegation. Indeed, UPA and UPA’ are proposals for delegation in role-based models but
not only. Indeed, we do not have to assume that a user possesses a permission to delegate
it, and a user does not loose a permission he delegates. One should notice that delegation is
a matter of authority and responsibility. Therefore delegation of prohibition does not make
sense. As a consequence we only consider permissions in UPA and UPA’.

8.4.1 UPA: granting permissions on specific actions and objects

We consider a view UPA with five attributes which have the same names as PRA but with
slightly different meanings:

• issuer: represents the organization which is issuing the permission

• grantee: designates the subject who is receiving the permission

• privilege: represents the action the grantee is authorized to perform

• target: represents the object the grantee is authorized to have an access to

• context: designates the context in which the permission applies.

Therefore, in order to allow a role within orga to grant permission in orgb to subject s to
perform action α on object o within context c, we have to create a new view UPA called
myUPA and defined as follows:

• ∀orga ∈ Org,∀upa ∈ O,

Use(orga, upa, myUPA)
← Use(orga, upa, UPA)∧

issuer(upa, orgb)∧
grantee(upa, s)∧
privilege(upa, α)∧
target(upa, o)∧
context(upa, c)

The following rule specifies that we can derive, from objects belonging to the view UPA,
the fact that a subject is permitted to perform an action on an object. It is modelled as
follows:

8.4 UPA in AdOr-BAC 123

• ∀orga ∈ Org,∀upa ∈ O,∀s ∈ S,∀α ∈ A,∀o ∈ O,∀c ∈ C
Use(orga, upa, UPA)∧
issuer(upa, orgb) ∧ grantee(upa, s) ∧ privilege(upa, α)∧
target(upa, o) ∧ context(upa, c)∧ Hold(orgb, s, α, o, c)
→ Is permitted(s, α, o)

that is, if an object upa is used by a given organization org in the view UPA and the
issuer of upa defines that the context holds between the grantee, the privilege and the target
specified by upa, then the grantee is permitted to invoke his privilege on the target.

The concrete permissions derived from this rule may be viewed as exceptions to the general
permissions defined by the predicate Permission. This is exactly the purpose of the UPA
component: provide means to specify such exceptions.

8.4.2 Managing the view UPA

The same activities assign, revoke and manage defined in the previous sections are used to
express the authorization given to a role to assign, revoke and manage permissions to users.

8.4.3 Example

Let us now show how to use this material. Assume that in Trusted bank, advisers are
allowed to consult the company accounts and the counter clerks are allowed to consult the
customers’ accounts. Also assume that an adviser is allowed to delegate to a given user
empowered as a counter clerk the permission to consult the company account of one of
his clients. We have first to consider a sub-view UPA Consult Company Account of view
UPA defined as follows:

• ∀upa ∈ O,

Use(Trusted bank, upa, UPA Consult Company Account)
← Use(Trusted bank, upa, UPA)∧

grantee(upa, s) ∧ Empower(Trusted bank, r, counter clerk)∧
privilege(upa, α) ∧ Consider(Trusted bank, α, consulting)∧
target(upa, o) ∧ Use(Trusted bank, o, company account)

that is, object upa is used in view UPA Consult Company Account if it is used in view
UPA and the values of attributes grantee, privilege and target respectively correspond to
a user empowered as a counter clerk, an action considered as a consulting activity and an
object used as a company account. The permission is then specified as follows:

• Permission(Trusted bank,

adviser, assign, UPA Consult Company Account, Default)

We might want to constrain the use of such a permission. For example, an adviser can grant
this permission only if this counter clerk had been designated to work in collaboration with
this adviser. To do so, we define a new context Adviser Counter clerk:

124 AdOr-BAC: The administration model for Or-BAC

• ∀s ∈ S,∀α ∈ A,∀upa ∈ O,

Hold(Trusted bank, s, α, upa, Adviser Counter clerk)
← Use(Trusted bank, upa, UPA Consult Company Account)∧

grantee(upa, s′) ∧ Empower(Trusted bank, s′, counter clerk)∧
adviser clerk(s, s′)

where attribute adviser clerk(s1, s2) states the collaborating pairs of an adviser s1 and a
counter clerk s2.

This example shows how to give permissions to a set of users. It is also possible to give a
permission to a single user. For instance, if an adviser is allowed to give the above permission
only to John, one just has to create a sub-view UPA John Consult Company Account of
view UPA Consult Company Account:

• ∀upa ∈ O,

Use(Trusted bank, upa, UPA John Consult Company Account)
← Use(Trusted bank, upa, UPA Consult Company Account)∧

grantee(upa, John)

The same line of reasoning holds for the action and the object.

8.4.4 UPA’: granting permissions on activities and views

The UPA component enables to grant permissions on specific actions and objects. In some
cases, it is indeed more convenient to grant permissions on organizational entities, namely
activities and views. Thereby UPA’ is more general. UPA’ has the same attributes than
UPA but with different meanings:

• issuer: represents the organization which is issuing the permission

• grantee: designates the subject who is receiving the permission

• privilege: represents the activity the grantee is authorized to perform

• target: represents the view the grantee is authorized to have an access to

• context: designates the context in which the permission applies.

Therefore, in order to allow a role within orga to grant permission in orgb to subject s to
perform activity a on view v within context c, we have to create a new view UPA called
myUPA′ and defined as follows:

• ∀orga ∈ Org,∀upa′ ∈ O,∀s ∈ S,∀a ∈ A,∀v ∈ V,∀c ∈ C,
Use(orga, upa′, myUPA′)
← Use(orga, upa′, UPA′)∧

issuer(upa′, orgb)∧
grantee(upa′, s)∧
privilege(upa′, a)∧
target(upa′, v)∧
context(upa′, c)

The following rule describes the relation between an object in a view UPA’ and a permission:

8.4 UPA in AdOr-BAC 125

• ∀orga ∈ Org,∀upa′ ∈ O,∀s ∈ S, ∀α ∈ A,∀o ∈ O,∀a ∈ A,∀v ∈ V,∀c ∈ C,
Use(orga, upa′, UPA′)∧
issuer(upa′, orgb) ∧ grantee(upa′, s)∧
privilege(upa′, a) ∧ Consider(org, α, a)∧
target(upa′) ∧ Use(org, o, v)∧
context(upa′, c) ∧Hold(orgb, s, α, o, c)
→ Is permitted(s, α, o)

that is, if an object upa′ is used by a given organization org in the view UPA′, and the
issuer of upa defines that the context holds between the grantee, an action that falls within
the activity privilege(upa′, a) and an object uses in the view target specified by upa′, then
the grantee is permitted to perform this action on this object.

8.4.5 Managing the view UPA′

The same activities assign, revoke and manage defined in the previous sections are used to
express the authorization given to a role to assign, revoke and manage permissions to users.

8.4.6 Application to delegation

As mentioned before, modelling delegation is a complex problem. The aim of this section
is not to fully investigate this problem. We shall simply show that the expressiveness of
AdOr-BAC is sufficient to model several of these subtleties. In AdOr-BAC, permission to
delegate may be represented by facts having the following forms:

• Permission(org, role, delegate, view, context)

meaning that, in organization org, role is permitted to delegate a permission on view in
a given context. view is a sub-view of UPA or UPA′ (depending on if the delegation is
applied to specific actions and objects, or activities and views).

Ownership

It is generally assumed that to delegate a permission to a user, the grantor must first hold
the permission he wants to delegate. In AdOr-BAC, this constraint is modelled by a context
AG (for Authorized Grantor) in the context of UPA and by a context AG′ in the context
of UPA’:

• UPA: ∀org ∈ Org,∀s ∈ S,∀d ∈ A,∀upa ∈ O,

Hold(org, s, d, upa, AG)
← Use(org, upa, UPA)∧

Consider(org, d, delegate)∧
privilege(upa, α)∧
target(upa, o)∧
Is permitted(s, α, o)

that is, the delegator must be granted the permission to perform the action addressed in
upa on the object addressed in upa. Notice that action d implements activity Delegate

and is different from action α addressed in upa.

126 AdOr-BAC: The administration model for Or-BAC

• UPA’: ∀org ∈ Org,∀s ∈ S,∀α ∈ A,∀upa′ ∈ O,

Hold(org, s, α, upa′, AG′)
← Use(org, upa′, UPA′)∧

grantee(upa′, s) ∧ Empower(org, s, r)∧
privilege(upa′, a) ∧ target(upa′, v) ∧ context(upa′, c)∧
Permission(org, r, a, v, c)

that is, the subject s who delegate must be empowered in a role that has the permission
over the activity, the view and the context addressed in the object upa′.

Notice that the definition of context AG might raise a problem with respect to the deci-
dability issue. Assume that AdOr-BAC is applied to a prioritized security policy as defined
in chapter 7. The concrete conflict condition CConflict defined in section 7.4.3 introduces
negative predicates Is permitted. As a consequence, if the context AG is applied to an
authorization, the policy cannot be stratified since it introduces a cycle. We have to carry
out further works on this issue.

Authorization transfer

Another possible restriction is that the grantor will loose the permission he has delegated.
In AdOr-BAC, this means that delegation is not an elementary activity but the combination
of assigning a permission (as modelled in UPA or UPA′) and self-revoking this permission
on the grantor (this may be also modelled in UPA or UPA′). We do not further develop this
analysis of the delegation concept in this paper. We plan to keep on investigating this issue
in the future.

Temporary delegation

In some circumstances, we may also specify that the delegation only applies temporarily and
will be automatically revoked after a given deadline. In AdOr-BAC, this may be modelled
by a temporal context (see section 6.5)

8.5 Other administration functions

In the previous sections, we showed how to model user-role assignment (by the URA view),
permission-role assignment (by the PRA view) and user-permission assignment (by the UPA

view). We model other administrations in Or-BAC by using the following views:

• Organization and Subject.

Inserting or deleting objects in these views enables a subject empowered in an authorized
role to respectively create or delete organizations and subjects. In our model, views
Organization and Subject have at least the attribute name to respectively represent
the organization or subject name and possibly other application specific attributes to
model other organization or subject attributes.

• ROA (for Role-Organization assignment), AOA (for Activity-Organization assignment)
and V OA (for View-Organization assignment).

Inserting objects in these views respectively enables a subject empowered in an autho-
rized role to assign roles (resp. activities) (resp. views) to a given organization. These

8.6 Conclusion 127

views have two attributes: role (resp. activity) (resp. view) and org. From objects be-
longing to these views, we can respectively derive instances of relations Relevant role,
Relevant activity and Relevant view. This is modelled by the following rule:

∀orga ∈ Org,∀roa ∈ O,

Use(orga, roa, ROA)
← org(roa, orgb) ∧ role(roa, r)∧

Relevant role(orgb, r)

and the same applies to for relations Relevant activity and Relevant view.

The Or-BAC model also includes the possibility to specify hierarchies of roles, activities,
views and contexts. We can manage these hierarchies using the following views:

• RHA (for Role-Hierarchy Administration), AHA (for Activity-Hierarchy Administra-
tion), V HA (for View-Hierarchy Administration) and CHA (for Context-Hierarchy Ad-
ministration).

View RHA is used to specify that in a given organization, a given role is a sub-role of
another role. This view has three attributes: org, sub role and super role. The relation
between an object in view RHA and the sub role relation is modelled as follows:

∀orga ∈ Org,∀rha ∈ O,∀r1 ∈ R,∀r2 ∈ R,

Use(orga, rha, RHA)∧
org(rha, orgb) ∧ sub role(rha, r2) ∧ super role(rha, r1)
→ sub role(orgb, r2, r1)

Views AHA, V HA and CHA are similarly defined by respectively replacing role by
activity, view and context.

8.6 Conclusion

In this chapter, we presented AdOr-BAC, an administration model for the Or-BAC model.
Using AdOr-BAC, the definition of an administration policy is defined in a similar way as
the remainder of the security policy specified in Or-BAC. Thus, Or-BAC is a fully auto-
administered model. We suggest a logic-based model to express AdOr-BAC.

AdOr-BAC provides a good compromise between fully centralized (and too rigid) adminis-
tration as in the MAC model, or fully decentralized (but uncontrolled) administration as in
the DAC model. When creating a new Or-BAC policy, we suggest starting with a unique
user (the creator of the policy) and a unique predefined role policy-designer assigned to the
creator. The role policy-designer has permissions to define roles to administer the organiza-
tions and to specify permissions associated with these roles. Thus, using AdOr-BAC, one
can specify a decentralized administration. However, it is always possible to control and
limit the administration possibilities associated with the different roles created.

We develop three main components for AdOr-BAC called URA for User-Role Assignment,
PRA for Permission-Role Assignment and UPA for User-Permission Assignment. The UPA
component is useful to control Permission delegation when a user wants to grant another
user a specific permission. Administration in Or-BAC consists in first creating some relevant
views URA, PRA and UPA, next in adding compliant objects in these views. For example,

128 AdOr-BAC: The administration model for Or-BAC

adding an object in view URA will have the effect of assigning a user in a role. From
then on, one just has to grant permissions to add objects in these views in order to give
administrative permissions.

Elsewhere, we suggest two variations of the UPA component: UPA that enables a user to
delegate a permission to perform a specific action on a specific object and UPA′ to delegate
a permission to perform an activity on a view. Applying the UPA component to model
delegation still requires further work. There are several different characteristics related
to delegation such as permanence, monotonicity, totality, levels of delegation or cascading
revocation. We have started modelling some of these criteria in the context of the AdOr-BAC
model through context definitions. We plan to continue this work, in particular to model how
to refine non-elementary activities (such as non monotonic delegation) into elementary ones
(such as permission assignment and self-revocation). We have not here taken into account
the role hierarchy and the inheritance cascading revocation issues which might appear then.
Multi-step delegations also require further investigation.

Chapter 9

Enforcement of the Or-BAC model

In this last chapter, we present some pieces of work carried out in the Or-BAC model
framework. So far, we browsed several aspects of Or-BAC: abstraction, hierarchies, con-
texts, conflict management and administration. However these issues were examined from
a rather theoretical standpoint. We now focus on two different applications of the Or-BAC
model. In section 9.1 I show how to apply our model in a network environment with the
aim of specifying a network security policy using Or-BAC, more exactly we aim at config-
uring firewalls. Elsewhere, during the thesis, a prototype application, called OToKit, was
developed. This program provides a user-friendly interface. It enables us to specify Or-BAC
policies and to detect and prevent conflicts. Section 9.2 is dedicated to OToKit.

9.1 Application of Or-BAC in a network environment

9.1.1 Motivation

In the previous chapters we showed that the Or-BAC model provides efficient means to
derive the access control specification of an organization. We now illustrate this approach
in the context of a network security policy, and present a way to use Or-BAC in order to
configure firewalls [Cuppens et al. 2004a]. Two reasons motivate this work.

First, in the general introduction of this dissertation (section 1) we explained that a security
policy, in the broadest sense, encompasses all laws, rules, practices, and charters of an
organization, and is applied to many application domains such as physical security, operating
system access control, database access control, network security, etc. So far, we rather
turned the Or-BAC model towards access control. However, our aim with Or-BAC is much
wider and ambitious. Indeed, the definition of such a model based on organizations and
organizational components, which provides means to express contextual authorizations, to
manage conflicts and which offers administration procedures, has for final purpose to express
the whole security policy using a single model. More precisely, we aim at defining the top
organizational policy using Or-BAC, then refining this policy in order to produce the policies
of each application domain until obtaining the final technical policies which will be enforced
by the security components. Here, we focus on the network security policy.

Second, one of the problems encountered with firewalls is the difficulty administrators have
to configure properly these firewalls. There is a real lack of methodology and corresponding

130 Enforcement of the Or-BAC model

supporting tools to help them set the network security policy part, and generate and deploy
the rules derived from this policy. There are actually no intermediary levels between the
policy requirement formulated in the form of an English sentence and its equivalent set of
firewall rules, in the form of computable scritps. Moreover, current firewall configuration
languages have no well founded semantics. Each firewall implements its own algorithm
that parses specific proprietary languages. Even if the firewall administrator is proficient in
many configuration languages and tools, this expertise does not avoid from making mistakes.
Without a clear methodology and some corresponding supporting tools, this may lead to
the generation of configuration rules that are not consistent with the intended network
security policy. We claim that the use of a high level language to specify a network security
policy will avoid such mistakes and will help to consistently modify the firewall rules when
necessary. We also notice that there is not a global security policy specification. The
following hypothesis is always assumed: a single security component is used, in other words,
a single firewall. Now, it is sometimes more convenient to deploy security rules on several
security components. In particular, access security rules can be separated into relevant
packages and enforced by more than one firewall on the same LAN.

The remainder of this section is organized as follows. Section 9.1.2 briefly broaches the
main contributions related to our topic. Section 9.1.3 introduces the main features of our
approach. Sections 9.1.4 to 9.1.7 studies the use of the Or-BAC entities Organization,
Subject, Role, Activity and V iew in the context of a network policy. Based on interpre-
tations, we are able in section 9.1.8, to specify a set of network security rules. Finally, in
section 9.1.9, we lay the foundations of the automatic derivation of firewall rules from an
Or-BAC network policy.

9.1.2 Related work

There are some tools that help administrators to build their security policy and to translate
it to the actual configuration language (for instance Cisco PIX [Degu and Bastien 2003],
FireHOL [Checkpoint 2004], Ipfilter [Russell 2002], ...) but these tools, for example Firewall
builder [Kurland 2003], are bottom-up approaches. In other words, they deal with the
particular problem of producing the code in the configuration language of the target firewall.
It is quite easy to set filtering rules using the configuration tool included in the offering.
However, they do not give a way to think and specify an access control policy before deriving
firewall configuration rules that enforce this policy. As a consequence, the security rules can
be inconsistent with each other or/and with the global security policy leading to security
holes.

There are some works coming under the same topic as ours. Hence, firewall management
toolkit Firmato [Bartal et al. 1999] uses an entity-relationship model to specify both the
access security policy and the network topology, and uses of the concept of roles to define
network capabilities. In this approach there is some mixing between the net topology – a
particular concrete level – and the access security policy to be enforced so that the role
concept becomes ambiguous. Indeed, the authors are bounded to introduce the “group”
concept with an unclear semantics; sometimes group is used to design a set of hosts and
sometimes it stands for a role. This can lead to some difficulties to assign network entities to
the model entities. In this connection, Firmato’s authors use privileges inheritance through

9.1 Application of Or-BAC in a network environment 131

hierarchy of groups to derive automatically permissions. They also make use of tricks to
avoid permission leakage. Hence, they introduce notions of “open group” to authorize
inheritance of permissions and “closed group” to prohibit it. The reason is the fact that the
concept of group is not well defined and we claim that this concept is not needed at the access
control policy specification level. Another work of which the motivations are close to ours is
the RBNS model [Hassan and Hudec 2003]. Although authors claim that their work is based
on the RBAC model [Sandhu et al. 1996], it seems that they keep from this model only the
concept of role. Indeed, the specification of network entities and the assignement of roles
and permissions are not rigorous and does not fit any reality. In particular, (1) all RBNS
relations are binary even though an access control security goal and its equivalent filtering
rule are always a triplet < source, service, target >. This leads to a loss of information:
permissions are missing in RBNS model even though authors consider the assignment of a
service to an IP address as a permission, which is semantically weak. (2) Hosts are of two
kinds, client or server and roles are assigned to hosts thanks to the pre-declared type of
hosts. This is a wrong assignment since, at the abstract level, the role of a given host is
service-dependent. (3) The approach makes an excessive use of the concept of role, hence this
leads authors to introduce a role-to-role assignment which is a “limping” use of a role based
access control model since it means assigning a permission package to another permission
package.

9.1.3 Main features of our approach

In this section, we model a local area network as well as its security architecture and its
connectivity to the Internet. We choose to re-use the example (figure 9.1) presented in
Firmato [Bartal et al. 1999] so as to bring out how Or-BAC provides a natural statement
of various entities and concepts used in the security architecture.

Our approach avoids the administrator pondering on access security using filtering rules.
The specification of the access control policy is done at a more abstract level and problems
like inconsistency are solved before generating the concrete filtering rules.

Organization

In section 3.2, we introduced the definition of entity Organization (definition 3.3.8). In
accordance with this definition, any component in charge of managing and enforcing a
set of security rules can be considered as an organization. Therefore, a concrete security
component, such as a firewall, can be viewed as an organization. Afterwards, firewalls are
indeed considered as sub-organizations of the institution that manages these firewalls.

Zone

To handle a network security policy, the network topology of the organization local area
network has to be captured. Hence, the LAN is parcelled out into zones. The network
security policy consists in securely managing communications between these zones. We
show in the following that view and role definitions, in the Or-BAC model, allow a fine
grained specification of zones.

132 Enforcement of the Or-BAC model

Hierarchy

The hierarchies defined in the Or-BAC model (see section 4.1) can be applied in the context
of a network and reveal themselves to be useful in such context. Most noticeably, hierarchies
avoid the use of artifices like open and closed groups as suggested in [Bartal et al. 1999].
Actually, we enforce organization, role, activity and view hierarchies.

Permission

In most firewalls, administrators use dual security policy: they specify both positive and
negative rules. In this case, the selection of the appropriate rule is based on a first matching
or a last matching procedure. In both cases, the decision depends on how the security rules
are sorted. Hence, administrators have to find out the correct and efficient rule order, which
depends on the filtering procedure. This is a complex task to manage especially when the
security policy has to be updated. Moreover, in some cases, it is even not always possible to
sort the rules. As a consequence, a closed access control policy that only includes permissions
may be an alternative.

We choose indeed to use permissions only and we make the assumption of a closed policy.
In practice, we assume a default “deny rule” is stated. This way, we get out of ordering the
firewall rules derived to enforce the policy.

Context

This section presents preliminary works on the application of Or-BAC in a network envi-
ronment. We do not take into account the context for the time being. Thereby, we omit
the parameter context in the predicate Permission afterwards. To remain compliant with
the Or-BAC model, one should only have to add context Default (see section 6.3) in each
permission.

9.1.4 Organizations

We want to model the access control policy of a corporate network used in the organization
Trusted bank which is denoted B in the following. B has a two-firewalls network configura-
tion, as shown in figure 9.1. As presented in [Bartal et al. 1999], the external firewall guards
the corporation’s Internet connection. Behind is the DMZ, which contains the corporation’s
externally visible servers. In our case these servers provide HTTP/HTTPS (Web), FTP,
SMTP (e-mail) and DNS services. The corporation actually only uses two hosts to provide
these services, one for DNS and the other (called Multi server) for all other services. Be-
hind the DMZ is the internal firewall which guards the corporation’s intranet. This firewall
actually has three interfaces: one for the DMZ, one for the private network zone, and a sep-
arate interface connecting to the firewall administration host. Within the private network
zone, there is one distinguished host, Admin serv, which provides the administration for the
servers in the DMZ.

In Or-BAC, we can introduce several organizations to model such a configuration. First,
there is an organization B and to simplify, we shall actually identify B with its corporate
network. B has two sub-organizations denoted B fw1 corresponding to the external fire-
wall and B fw2 corresponding to the internal firewall. Notice that we could also use an

9.1 Application of Or-BAC in a network environment 133

DNS_Server

Public_Net

Multi_Server

Admin_Server

Admin_Gtw

111.222.100.1

111.222.1.1

111.222.1.* 111.222.3.*

111.222.2.*

111.222.1.254 111.222.2.1

111.222.3.1

B_fw1

B_fw2

Figure 9.1: Application to a network example

organization called Internet if we had to specify an explicit policy to be enforced by the
Internet.

9.1.5 Subjects and roles

In this example, subjects correspond to hosts identified by their IP address. We introduce
the predicate address such as address(h, ip) joins up host h with its IP address ip. Roles
are assigned to hosts. For this purpose, predicate Empower enables us to assign a role to
a given host. However, it would be quite fastidious to assign a given role to every host
belonging to a given network. To avoid this, we let the possibility to write the relations
concluding on predicate Empower in the form of rules:

• ∀h ∈ S,

address(h, ip) ∧ partOf(ip, 111.222.3.∗)
→ Empower(B, h, Admin gtw)

• ∀h ∈ S,

address(h, ip) ∧ partOf(ip, 111.222.3.∗) ∧ ¬Empower(B, h, F irewall interface)
→ Empower(B, h, Private net)

This provides a flexible manner to define some roles. Figure 9.2 specifies those roles that
are respectively relevant in organizations B fw1 and B fw2. Notice that role Firewall is
relevant in B fw2 (for administration purpose) but not in B fw1. For each role, figure 9.2
also presents the sub-roles of this role. In this example, the sub-role hierarchy actually
corresponds to a specialization role hierarchy.

134 Enforcement of the Or-BAC model

Role name Hosts assigned to role sub role B fw1 B fw2

Public host Hosts in view Public Net - ×
Private host Hosts in view Private Net - ×
Firewall Firewall interfaces External firewall ×

Internal firewall

External firewall External firewall interfaces - × ×
Internal firewall Internal firewall interfaces - ×
DNS server DNS server - × ×
Ftp server Ftp server Multi server × ×
Mail server Mail server Multi server × ×
Web server Web server Multi server × ×
Multi server Multi-server - × ×
Adm fw host Hosts in view Admin gtw - × ×
Adm serv host Hosts in view Admin serv - ×

Figure 9.2: Role description

9.1.6 Activities

Activities correspond to various services available in the corporate network B. Activities
enable us to join together services to which are applied some common authorizations. We
define a first activity all tcp with different tcp activities (such as smtp, ssh and https) as
sub-activities. Similarly, we define an activity all icmp with different icmp activities (such
as ping) as sub-activities. We also define two other activities. admin to gtwy has to sub-
activities: ssh and ping. gtwy to admin has also two sub-activities: ssh and https. All these
activities are relevant in organizations B, B fw1 and B fw2.

9.1.7 Views

Views are used to structure objects on which network services apply. We define a view
called target having two attributes: content(o, ctt) designates the content cct of an object o

belonging to the view target, and dest(o, d) that corresponds to the destination host d. The
destination host is identified by its role. Actually, the content attribute is not used in the
example because we shall only consider filtering rules on the destination host. However, it
would be useful to filter messages depending on their content.

We can then define sub-views of view target according to the role assigned to the destination
host. For instance, we can define sub-view to dns as follows:

• ∀o ∈ O,

Use(B, o, to dns)
← Use(B, o, target) ∧ dest(o, DNS server)

This would lead to define as many views as there are roles. This would be quite fastidi-
ous. Instead, we suggest defining this kind of views as compound atoms having the form
to target(r). Views created with to target are defined as follows:

9.1 Application of Or-BAC in a network environment 135

• ∀o ∈ O,∀r ∈ R,

Use(B, o, to target(r))
← Use(B, o, target) ∧ dest(o, r)

We consider that every view defined as to target(r) is relevant in one of the organization of
our example if r is a role relevant in this organization. We also consider that if role r1 is a
sub-role of role r2, then the view to target(r1) is a sub-view of view to target(r2).

9.1.8 Security policy

We can now specify several permissions that apply to organization B. These permissions
correspond to the security policy presented in [Bartal et al. 1999]. It is a rather simple
policy, which nonetheless covers many of the aspects which occur in more complex, real-life
policies. Its premise is that internal corporate users are basically trusted and thereby are
relatively unrestricted, whereas external users are only allowed to access information that is
explicitly specified as public. In more detail, the policy has the following goals:

1. Internal corporate hosts can access all the resources on the Internet.

2. External hosts can only access the servers in the DMZ.

3. The DMZ servers can be updated only by the web administrator host admin server.
Other corporate hosts have the same privileges as Internet hosts with respect to the
DMZ servers.

4. The firewall gateway interfaces are only accessible from the fw admin host and are
otherwise inaccessible to any host (this practice is usually called “stealthing” the gate-
ways).

Figure 9.3 lists how these permissions are modelled in Or-BAC. One significant advantage
of our approach is that it enables to automatically derive permissions that respectively
apply to B fw1 and B fw2. This is done by using rule OH1 (see section 4.1.4) for deriving
permissions in sub-organizations of B. The results we obtain for B fw1 are presented in
figure 9.4. To illustrate this derivation process let us consider the following permission:

• Permission(B, adm fw host, admin to gtwy, to target(firewall))

Since role adm fw host, activity admin to gtwy and view to target(firewall) are relevant
in B fw2, we can apply rule OH1 to derive:

• Permission(B fw2, adm fw host, admin to gtwy, to target(firewall))

However, since view to target(firewall) is not relevant in B fw1, we cannot derive a
similar permission for B fw1. But, view to target(external firewall) is a sub-view of
to target(firewall). Since to target(external firewall) is a relevant view in B fw1, we
can apply rules VH1 and OH1 to derive:

• Permission(B fw1, adm fw host, admin to gtwy, to target(external firewall))

Notice that one permission, namely:

136 Enforcement of the Or-BAC model

Permission(B, adm fw host, admin to gtwy, to target(firewall))
Permission(B, firewall, gtwy to admin, to target(adm fw host))
Permission(B, private host, all tcp, to target(public host))
Permission(B, adm server host, all tcp, to target(dns server))
Permission(B, adm server host, all tcp, to target(multi server))
Permission(B, public host, smtp, to target(mail server))
Permission(B, public host, dns, to target(dns server))
Permission(B, public host, ftp, to target(ftp server))
Permission(B, public host, https, to target(web server))
Permission(B, private host, smtp, to target(mail server))
Permission(B, private host, dns, to target(dns server))
Permission(B, private host, ftp, to target(ftp server))
Permission(B, private host, https, to target(web server))
Permission(B, dns server, dns, to target(public host))
Permission(B, ftp server, ftp, to target(public host))
Permission(B, dns server, dns, to target(private host))
Permission(B, ftp server, ftp, to target(private host))

Figure 9.3: Permissions in organization B

Permission(B fw1, adm fw host, admin to gtwy, to target(external firewall))
Permission(B fw1, external firewall, gtwy to admin, to target(adm fw host))
Permission(B fw1, public host, smtp, to target(mail server))
Permission(B fw1, public host, dns, to target(dns server))
Permission(B fw1, public host, ftp, to target(ftp server))
Permission(B fw1, public host, https, to target(web server))
Permission(B fw1, dns server, dns, to target(public host))
Permission(B fw1, ftp server, ftp, to target(public host))

Figure 9.4: Permissions in organization B fw1

• Permission(B, private host, all tcp, to target(public host))

is not inherited by B fw1 nor B fw2. This is because role private host is only relevant to
B fw2 whereas view target(public host) is only relevant to B fw1. So, no firewall alone
can manage this permission. In this case, our proposal is to use this permission to configure
both firewalls.

9.1.9 Derivation of concrete firewall rules

The application of the Or-BAC model to the configuration of firewalls has been further
investigated in [Cuppens et al. 2004b]. In this section, we just give the main features of this
work. We suggest an XML syntax to specify an organizational level network security policy
based on Or-BAC and independent of the implementation of this policy in a given firewall.
All entities, concrete and organizational, are expressed using XML. These entities are used
all top-down specification long to properly generate firewall configuration rules.

This derivation process consists of two steps, as shown in figure 9.6. In the first step,
we generate, from the Or-BAC policy and using an XSL transformation, rules expressed

9.1 Application of Or-BAC in a network environment 137

Permission(B fw2, adm fw host, admin to gtwy, to target(firewall))
Permission(B fw2, firewall, gtwy to admin, to target(adm fw host))
Permission(B fw2, private host, all tcp, to target(public host))
Permission(B fw2, adm server host, all tcp, to target(dns server))
Permission(B fw2, adm server host, all tcp, to target(multi server))
Permission(B fw2, private host, smtp, to target(mail server))
Permission(B fw2, private host, dns, to target(dns server))
Permission(B fw2, private host, ftp, to target(ftp server))
Permission(B fw2, private host, https, to target(web server))
Permission(B fw2, dns server, dns, to target(private host))
Permission(B fw2, ftp server, ftp, to target(private host))

Figure 9.5: Permissions in organization B fw2

Or-BAC
Network policy

Netfilter ...

XML

Multi-target
firewall policy

XML

XSLT

XSLT

Cisco Pix Firewall-1 IPFilter...

Figure 9.6: Derivation of concrete firewall rules

in an intermediary multi-target firewall language which also uses an XML syntax. In the
second step, we derive, from this intermediary language and using an XSL transformation,
concrete configuration rules expressed in the native target firewall language. In the next
two sub-sections, we give details about these two-steps derivation process.

From organizational policy to generic firewall rules

The aim of this first XSL transformation is to derive generic firewall rules from the organi-
zational network security policies expressed with the Or-BAC formalism. This process uses
hierarchy mechanisms to derive concrete rules relevant for each firewall involved in the secu-
rity architecture. For this purpose, once the network security policy of a given organization
is specified (organization B in our example), we merely have to specify which entities (roles,
activities and views) are relevant in the sub-organizations (firewalls B fw1 and B fw2 in
our example). The derivation process is then able to automatically distribute every permis-
sion that each firewall has to manage. To generate the security rules in the multi-target
firewall language, the derivation process parses organizational security rules specified in the
Or-BAC model. Notice that the organizational policy is not order-sensitive: rules can be
written in any order.

138 Enforcement of the Or-BAC model

From generic rules to specific firewall rules

In order to validate our approach, we have chosen to derive concrete rules for NetFilter
[Russell 2002]. So we have designed an XSL transformation which enables to derive NetFilter
rules from the multi-target firewall language. It is noticeable that, as for the organizational
security rules, the order of the generated rules does not matter (with the exception of the
“deny rule” corresponding to a closed policy). Thanks to the chain mechanism of NetFilter,
we can derive rules without ordering exclusion conditions. But for firewall languages that do
not provide such mechanism, exclusion conditions will correspond to deny rules. These deny
rules have to be interleaved with “accept rules” to obtain the same result as with NetFilter
chains. Ordering the rules has to be done by the XSL transformation process.

We plan to create some new XSL transformations associated to other firewall configuration
languages for the purpose of dealing with heterogeneous networks that integrate at the same
time different firewalls, like Cisco PIX, Check-Point Firewall-1, etc.

For further details about the Or-BAC expression using XML and the derivation process
from an organizational policy to specific firewall rules, see [Cuppens et al. 2004b].

9.1.10 Conclusion

We presented the application of the Or-BAC model in a network environment. We showed
that Or-BAC provides a convenient layer of abstraction which is revealed to be suitable
for network policies. In order to fit our model to a network environment we suggested to
extend the interpretation of the Or-BAC entities: firewalls are considered as organizations,
hosts as subjects and services as activities. Furthermore, hosts can play some roles (like
DNS server), and targets are captured using views. Therefore, using Or-BAC to model
network policies allows the SSO to make a clear separation between network entities and
organizational model entities like roles, services, groups of hosts having the same role, hosts
concerned by the source host query, and so on.

Or-BAC can be used to (1) specify a network security policy which is not topology-
dependent, (2) specify a network security policy which is independent of a particular firewall
product.

Moreover we showned how to use inheritance to distribute the network policy specification
over several security components. We illustrated this approach by an example of security
architecture based on two firewalls. We also investigated the automatic generation of the
target firewall rules from the formal specification of a network security policy.

The application of Or-BAC in a network environment enabled us to extend the interpretation
of the Or-BAC concepts. These new interpretations are integrated in Or-BAC and therefore
extend the scope of our model. We actually proved that Or-BAC is perfectly suitable to
design network policies.

9.2 OToKit: Or-BAC ToolKit 139

9.2 OToKit: Or-BAC ToolKit

9.2.1 Motivation

This section is dedicated to OToKit (Or-BAC ToolKit), an application prototype designed to
manage Or-BAC policies. The working out of such a prototype aims, by enforcing concrete
examples, at showing the Or-BAC model. We present the results and the advantages of the
various derivation rules related to the hierarchies, the contexts, the conflict management.
Furthermore, OToKit enables people who do not possess knowledge in logic programming
to exploit all Or-BAC facilities. Finally, OToKit permits us to validate our approach.

The next section describes the features I wanted to implement in OToKit. Then, section 9.2.3
presents the technology used, and section 9.2.4 some programming aspects. Section 9.2.5
shows and details the graphical interface. In section 9.2.6 we come back on the points of the
following list to see what I have achieved so far and what does actually work. In section 9.2.7,
we discuss the performance of OToKit. Finally, we shall see in section 9.2.8 the future works
we plan to realize with OToKit.

9.2.2 Objectives

1. Design a user-friendly interface. The Or-BAC model is based on a logic language.
Therefore a simple request interface is enough to design Or-BAC policies. However, a gra-
phical user interface (GUI) is much more convenient to consult a complex policy composed
of numerous entities.

2. Capture the organization structure. OToKit must enable to manage organizations,
roles, activities, views and contexts (sections 3.2, 3.3 and 3.4), and to specify hierarchies of
such entities (section 4.1).

3. Specify authorizations. OToKit must provide means to specify the policy authoriza-
tions, that is, positive and negative organizational authorizations as defined in section 3.6.

4. Implement inheritance mechanisms. Since OToKit has to allow to define hierarchies,
It must be possible to associate appropriate inheritance mechanisms to these hierarchies, as
it is described in section 4.1.

5. Specify contexts. OToKit shall provide means to define contexts, that is, to specify
the logic rules that conclude on contexts (chapter 6).

6. Specify constraints. All along this report we introduced some basic constraints that
must be implemented in order to ensure that written policies are consistent. These basic
constraints (section 4.2) can be hard-coded since they are essential. In contrast, other
constraints, such as separation constraints, are specified by the SSO. As a consequence,
OToKit should enable us to capture user-defined constraints.

7. Capture conflict management strategies. In chapter 7, we designed a solution to
define parametric strategies, which are based on sets of priority levels and sets of rules to
take decisions when conflicts occur. OToKit should capture such strategies, and specify for
each authorization the corresponding priority level.

8. Detect potential conflicts. OToKit must detect potential conflicts between organiza-
tional authorizations as described in section 7.5.

140 Enforcement of the Or-BAC model

9. Concrete policy simulation. The Or-BAC model is designed with a view to separate
the organizational policy from the implementation issues. However, in order to simulate
concrete policies, it would be convenient to define users, actions and objects. Simulating
a concrete policy consists in deriving the concrete authorizations and detecting conflicts
between these authorizations, as described in section 7.4.3.

10. Administration. Since an administrative model is associated with Or-BAC (chap-
ter 8), OToKit should enable to capture administrative authorizations and implementing
these authorizations in order to enforce the administrative procedures.

9.2.3 Implementation choices

The implementation of OToKit relies on three different technologies: SWI-Prolog for Or-
BAC policies, Java to design the graphical interface and the API JPL to make the Prolog
program and the interface communicate.

SWI-Prolog1. The Or-BAC model is based on logical facts and rules, therefore, Prolog
enables us to directly implement our model. Moreover, Prolog is more flexible than Datalog.
For example, as discussed in section 6.5, were are not able to evaluate temporal contexts with
Datalog for the time being, whereas Prolog makes this possible. However, since Or-BAC
is compliant with Datalog, we have a guarantee that Or-BAC policies remain decidable. I
chose SWI-Prolog in particular, rather than GNUProlog for instance, because SWI-Prolog
provides some interesting features such as module management (for clearer and more flexible
programming), threads (for the power of parallel processes), interface ODBC (for future
developments), availability for both Windows and Linux systems. All facts corresponding
to a policy and all derivation rules are coded using SWI-Prolog. I worked with SWI-Prolog
v5.0.0.

Java2. Java programming is a good choice to design nice and convenient GUIs. The
Swing API provides solutions to quickly develop strong programs. It is claimed that the
computation of a java program is slow. However, it appears sufficient for a prototype.
Moreover, Java programs are portable. This offers an indisputable advantage. The interface
was programmed with Java2 SDK build 1.4.2 05-b04.

API JPL3. The Java API JPL (Java-Prolog) provides a set of classes to launch easily Prolog
requests from a Java program, and collect results in a suitable and convenient format.

OToKit is designed using the Eclipse4 Project development software version 2.1.3 for the
Java programming part, and SWI-Prolog-Editor5 version 2.12g for the Prolog programming
part.

9.2.4 Programming aspects

Figure 9.7 shows the main components of the OToKit program. One might notice that the
communication module consists of two elements: the JPL part and a “Rules” part. It is

1http://www.swi.prolog.org
2http://www.java.sun.com
3http://sourceforge.net/projects/jpl/
4http://www.eclipse.org/
5http://www.bildung.hessen.de/abereich/inform/skii/material/swing/index.htm

9.2 OToKit: Or-BAC ToolKit 141

Or-BAC
Derivation Rules

Or-BAC
Policy Facts

SWI-Prolog

R
U
L
E
S

J
P
L

Graphical
User Interface

Java

Communication
module

Figure 9.7: The main components of the OToKit program

Figure 9.8: Example of Prolog rule

indeed necessary to provides some Prolog rules only dedicated to the communication with the
GUI. Afterwards we present some programming aspects for each of OToKit’s components.

SWI-Prolog

All facts and rules described in this report are easily translated in Prolog. Contrary to
Datalog, Prolog queries are evaluated in backward-chaining (or backtracking), that is, from
rule conclusions to rule premises. Thereby, several points must be carefully considered. In
particular the transitive closure must always be ensured. Figure 9.8 shows how the derivation
rule RG’1 (section A.6) is coded.

JPL

Figure 9.9 presents a method example which enables to construct a Prolog request. A
Prolog request is launched with the method unify and returns a hashtable array. The
request predicate is captured with a String. The parameters are stored in an array of JPL
class Term. Free variables are captured with the JPL class PrologV ariable6. Instantiated

6The original class is V ariable. I extended it in order to indicate the variable type, namely Org, Role,

etc.

142 Enforcement of the Or-BAC model

Figure 9.9: Java method with JPL objects

variables are captured with the JPL class Atom. The method example of figure 9.9 is used
to get all authorizations (positive or negative) in a given organization.

Java

With regard to the Java programming part, we just present part of the class struc-
ture. Figure 9.10 shows the hierarchies of the Or-BAC entities and authorizations. The
class Entity is the parent class of all the other class entities. It is actually an abstract
class. Two classes inherit from Entity: OrganizationalEntity and ConcreteEntity. No-
tice that class RAV Entity encompasses all variables and methods that the entities Role,
Activity and V iew have in common. These methods are for example add, delete, modify,
addSubEntity, etc. The other hierarchy is related to the organizational authorizations. The
class AuthorizationL corresponds to prioritized organizational authorizations. Elsewhere,
since concrete authorizations are dynamically derived, there is no need to create a dedicated
class.

9.2.5 OToKit graphical interface

Figure 9.11 presents an overview of the graphical interface. The numbers that appear in this
figure correspond to the different GUI components. There are described in the list below:

1. Pull-down menu which enables to select an organization.

2. Entity tabbed pane. Each tab corresponds to an entity type, except the first one which
displays all the organizational entities in the form of a tree. The tabs corresponding to

9.2 OToKit: Or-BAC ToolKit 143

OrganizationalEntity.java

Entity.java

RoleEntity.java ActivityEntity.java ViewEntity.java

ContextEntity.javaRAVEntity.java

ConcreteEntity.java

Authorization.java

AuthorizationL.java

Figure 9.10: Class hierarchies in OToKit

organizational entities also contain trees in order to show the hierarchies. By contrast,
the tabs corresponding to concrete entities contain lists.

3. Non-editable text panel which displays several kinds of information corresponding to
the entity selected in 2.

4. This table shows all organizational authorizations (positive and negative) associated
to the entity selected in 2.

5. This pane also contains a table. It displays the conflicting authorization couples.
It can actually display conflicts between organizational authorizations (figure 9.17) or
concrete authorizations (figure 9.19) in accordance with the mode of conflict detection
selected in 8.

6. By pressing this button, the user launches the conflict detection.

7. This button displays a dialog box which enables the user to test if a given user is
granted permission to perform a given action on a given object (figure 9.18).

8. Conflict detection mode. The user can choose between organizational or concrete
detection.

9.2.6 Achieved work

We browsed the main goals to achieve with the development of OToKit in section 9.2.2. We
shall go over these objectives point by point and describe what I have implemented so far
and point out the main difficulties.

144 Enforcement of the Or-BAC model

1

2

3

4

5

6 7

8

Figure 9.11: OToKit graphical interface

9.2 OToKit: Or-BAC ToolKit 145

Figure 9.12: Role-user assignment

1. Designing a user-friendly interface

The OToKit graphical user interface is shown in figure 9.11 and all along the figures 9.12
to 9.17. It is convenient to audit and create Or-BAC security policies. Even if, with use, it
appears that some minor improvements have to be made (like the way some functionalities
are accessed), it is suitable for its purpose.

2. Specifying the structure of organizations

OToKit provides means to create and manage all the organizational entities of the Or-BAC
model, namely the organizations, roles, activities, views and contexts. Furthermore, we
can create hierarchies of each of these entities, with the exception of the context hierarchy
since this is work in progress. I choose to use the Java class JTree to model these hierar-
chies. Although convenient for simple hierarchies, and for a first version of the prototype, it
rather limits the expression of hierarchies since it does not permit to model multiple inhe-
ritance hierarchies. For example, in figure 2.7, the role chief adviser inherits from the roles
financial adviser and insurance adviser. One can note in figure 9.11 that it can not be
expressed using simple trees. Another graphical representation has to be found.

OToKit provides a simple way to assign users to roles as presented in figure 9.12. The same
method is available to assign actions into activities and objects into views.

3. Specifying authorizations

Once enough elements are specified, it is rather simple to grant authorizations. One just
has to choose the corresponding functionality in the contextual menu of any element. Once
this is done, the dialog box of figure 9.13 appears. Each authorization parameter is selected
in a pull-down menu which is dynamically filled with the elements stored in the policy.
Authorizations are then displayed in the component 4 of the GUI. Note that authorizations
explicitly stated by the policy designer appear in black font, whereas derived authorizations
resulting from inheritance appear in gray font (figure 9.14).

Only prioritized authorizations can be keyed in at present. I aim at providing the possibility
to let the policy designer choose whether to create a prioritized policy or not.

146 Enforcement of the Or-BAC model

Figure 9.13: Authorization expression

4. Inheritance mechanisms

All inheritance mechanisms specified in section 4.1 are implemented in OToKit, with again
the exception of the context hierarchies. Let us consider the role, activity and view hie-
rarchies which can be observed in figure 9.11. This example implements role and view hie-
rarchies. The first panel of figure 9.14 shows the authorizations granted to role employee.
Actually, only one authorization is explicitly stated. The two others result from the view hie-
rarchy since the view account has two sub-views customer account and company account.
The second and the third panels display respectively the authorizations granted to the role
counter clerk and the role adviser. These roles inherit authorizations of the role employee.
An explicit negative authorization is added to each of these roles.

5. Specifying contexts

At the moment, since OToKit aims at validating our approach, we only provide means to
specify temporal contexts. Future works must be led to identify the recurrent contexts and
to provide appropriate graphical tools. Furthermore, the solutions suggested in section 6.3.2
to specify expressive contexts using compositions, as well as the context taxonomy described
in section 6.4, will be useful to develop such tools. For example, complex contexts can be
specified as a conjunction of more elementary contexts. Figure 9.15 shows the definition of
context working hours.

6. Specifying constraints

The basic constraints of the Or-BAC model are coded in built-in predicates in the Prolog
derivation rule part. The other constraints have to be specified by the policy designer.
For the moment, the OToKit graphical interface makes it possible to add some separation
constraints. In figure 9.16, one can notice that the activities consulting and modifying

are separated. The same figure shows how to add a new separation constraint, a view
separation constraint to be specific. In practice, since a separation constraint exists between
the activities consulting and modifying, if the policy designer tries to assign a given action
to both activities consulting and modifying, OToKit will stop him and show an alert.

9.2 OToKit: Or-BAC ToolKit 147

Figure 9.14: Example of authorization inheritance

148 Enforcement of the Or-BAC model

Figure 9.15: Context expression

Figure 9.16: Separation constraint

9.2 OToKit: Or-BAC ToolKit 149

Figure 9.17: Conflict prevention

Furthermore, OToKit will not accept to add a separation constraint between two activities,
for example, if an action is yet assigned in these activities.

7. Specifying conflict management strategies

The development of graphical tools dedicated to the specification of conflict management
strategies had not been studied in depth due to time limitation. For the time being, a
strategy is fixed. The set of priority levels is defined as a fixed set of intergers. The
authorization with the higher priority level takes precedence.

8. Detecting potential conflicts

OToKit implements the conflict prevention condition C ′
Conflict3 exposed in section 7.5.3.

The first panel of figure 9.17 shows part of the potential conflicts detected in the policy
described above in figure 9.14. The first pair of conflicting authorizations corresponds to a
positive authorization granted to role counter clerk and an equivalent negative authorization
assigned to role adviser. A potential conflict is raised since if a user is empowered in both
roles, and if at least one object is used in the view customer account and one action in
the activity consulting; then a concrete conflict will occur when this user wants to use this
action on this object. Note that, at the organizational level, contexts are considered as
simple labels. Therefore, without an explicit separation constraint between two contexts,
conflicts are detected between permissions and prohibitions that use these contexts. The
SSO has several possibilities to resolve this potential conflict:

• delete one of these conflicting authorizations;

• increase one of the authorizations priority level;

• add a separation constraint between the roles customer account and adviser.

The third conflicting pair of our example corresponds to a situation where an object would
be used in both views customer account and company account, and an action would be
considered both as activities consulting and modifying.

150 Enforcement of the Or-BAC model

Figure 9.18: Authorization request simulation

9.2 OToKit: Or-BAC ToolKit 151

Figure 9.19: Actual conflict simulation

9. Simulation of concrete policies

The main purpose of OToKit is to design organizational policies, in order to verify that con-
flicts will not happen, and to administrate these policies. Then, these policies are enforced
in the information system, like in OSs, databases, security components, etc. However, I in-
tegrated several possibilities to simulate an Or-BAC policy. First, subjects – resp. actions,
objects – can be added and assigned to roles – resp. activities, views.

Second, OToKit enables us to simulate an access request. This is done using the button
Query. Figure 9.18 shows the dialog box which is displayed. Thanks to this box, the policy
designer can select a subject, an action and an object and checks if the corresponding access
is accepted. This is done by applying the rules ED1 and ED2 defined in section 7.3.3.

Third, OToKit makes it possible to detect conflicts between concrete authorizations, by
verifying conditions CConflict exposed in section 7.4.3. Actual conflicts example is presented
in figure 9.19. Concrete authorizations depend on contexts. Only temporal contexts are
implemented in OToKit for the time being. Therefore, concrete conflicts depend on the
time at which a request is made. OToKit enables to set a simulation time, as shown in
figure 9.15.

Consider the following example. Assume we have the following positive organizational au-
thorization:

• Permission′(trusted bank,

counter clerk, consulting, customer account, working hours, 1)

This authorization is displayed in the second panel of figure 9.14. Assume that the context
working hours is defined as in figure 9.15, that this context is valid between 8 am and 6 pm.
As shown in figure 9.19, we might derive the following concrete authorization:

• Is permitted(john, acroread, account 2.txt)

Actually, the fact that this authorization is derived depends on the context. If the policy
designer set the simulation time at 7:21 pm as shown in figure 9.15, then we get this concrete
authorization, and thereby we obtain the first concrete conflict shown in figure 9.19. By
contrast, if the simulation time is set to 9 pm, then the concrete permission is not derived
and this conflict does not occur.

152 Enforcement of the Or-BAC model

10. Administration

The enforcement of the AdOr-BAC model (chapter 8) is a work in progress. The objective
is to use AdOr-BAC to control accesses to OToKit so that only authorized users are allowed
to create new organizations and subjects, assign roles, activities and views to organizations,
and in each organization, assign permissions to roles, subjects to roles and permissions to
subjects.

If the administration mode is not selected, then any user connected to OToKit is considered
as a super-user, like in UNIX. Otherwise, when an authorized user is connected, he will be
able to perform only the administrative tasks that he received authorizations for.

9.2.7 Performance results

Several derivation rules are implemented in OToKit. We indicated in section 5.2 that the
complexity of an Or-BAC policy is polynomial. However, it is relevant to perform several
performance tests. The array of figure 9.20 shows the results. All tests were conducted on
the following computer:

• Processor: Pentium-M 1,4 Ghz

• RAM: 256 Mhz

• Operating System: Windows XP SP2

Actually, displaying the entity trees as well as the authorizations is instantaneous. Only the
conflict detection shows a visible processing time. Therefore, the tests are realized by timing
the detection of potential conflicts. Let us comment on the results array. The first column
indicates the number of roles (R), activities (A), views (V), subjects (S), actions (Ac) and
objects (Ob) defined in the policy. The second columns shows hierarchy types enforced in
the tested policy. For example, at line 3, all entities are “flat” except roles. The third column
indicates the number of couples of authorizations that have to be tested in order to find
the conflicts. The fourth column contains the number of potential conflicts that have to be
detected. Finally, the last column shows the time needed to end the detection of potential
conflicts. All lines correspond to detection of potential conflicts with exception of the last
one which corresponds to the detection of actual conflicts between concrete authorizations.

This array shows that the conflict detection might last a long time in large policies. However,
many optimizations can be introduced in the Prolog program. Furthermore, Prolog is not
the most suitable logic tool for our purpose since we based our model on Datalog. Finally,
the prevention conflict process is carried out during the security policy conception only. It
does not have to be performed afterwards. So it does not lead to any processing overhead
of the information system when the policy is actually implemented.

With regard to the actual conflict detection of the last line, the long time shown in the
results array might be frightened. Remember that we search here for all conflicting couples.
In contrast, when a single security request is made by a user, the derivation process is
instantaneous in all of our tests.

9.2 OToKit: Or-BAC ToolKit 153

Nb of entities Hierarchies Nb of tests Nb of conflicts Delay

10R 10A 10V 100 100 150ms
20A 20A 20V 400 400 600ms
20R 10A 10V R 400 400 700ms
20R 20A 10V R A V 1600 1600 1.6sec
20R 20A 10V R A V 6400 6400 17.3sec
20R 20A 10V R A V 3200 3200 11.7sec
20R 20A 10V R A V 3200 0 6.3sec
20R 20A 10V O R A V 3200 0 6.3sec
20R 20A 20V O R A V 4800 0 15.6sec

20S 20Ac 20Ob

Figure 9.20: Performance results array

9.2.8 Future works

I have developed OToKit during my Ph.D. studies in order to implement the concepts,
notions and ideas I have put forward. However, OToKit is becoming a collective work since
other students are currently working on it. Many improvements and new functionalities can
be introduced in OToKit. I just indicates here the most important one:

• Design a convenient and flexible solution to specify logic rules, with the specific pur-
pose of defining new contexts, new constraints and above all new conflict management
strategies.

• Manage other types of context than the temporal context. Our priority is to integrate
provisional and user-declared contexts.

• Modify the graphical management of hierarchies, in order to integrate multiple inheri-
tance hierarchies.

• Detect the redundant authorizations resulting from the chosen conflict management
strategy.

• Save an Or-BAC security policy written with OToKit in a clear format based on XML.

• Integrate a “network policy” mode in which specific attributes, such as IP address, will
enable the policy designer to write network policies, and then to derive automatically
firewall rules scripts.

• Continue to implement administration. In particular, we want to enforce more complex
views URA, PRA, etc.

The work on the three last items are currently in progress.

9.2.9 Conclusion

The development of OToKit is not finished and several objectives

that it is easy to integrate extensions. The graphical interface offers a convenient way to
specify security policies based on the Or-BAC model. We tested OToKit on several policies

154 Enforcement of the Or-BAC model

and noticed that the concepts of role, activity and view greatly reduce the number of autho-
rizations. This ensures clearer policies. Furthermore, OToKit enables to prove that conflict
prevention mechanism is really useful; it indeed helps to find unexpected conflicts. Finally,
the ongoing implementation of the AdOr-BAC model in order to administrate OToKit proves
that Or-BAC is an auto-administered model. We hope OToKit has a bright future ahead.

Chapter 10

Conclusion

This thesis first gave us the opportunity to examine a large number of existing security
models. I described these models according the following four requirements: the structuring
of a policy entities, the ability to design dynamic security rules, the expression of negative
authorizations and thereby conflict management, and the necessity to provide administrative
procedures.

Based on these issues I presented a new security policy model that aims at solving several
limits of these previous models. This model, called Or-BAC, is centered on the concept
of Organization. It makes it possible to manage a security policy in conformity with
the organization structure. Furthermore, it enables to provide specific security policies for
each part of an organization and to design common policies between organizations which
collaborate.

From the traditional triplet < subject, action, object >, we introduced three new entities,
namely Role, Activity and V iew in order to provide organizational policies totally inde-
pendent of the implementation choices and the target application. More precisely, within
a given organization, roles are used to model how subjects are empowered; activities allow
us to model what actions are used for; and views allow us to model how objects are used.
In other words, the Or-BAC model federates the role-based, activity-based and view-based
models. Moreover, we introduced hierarchies. All organizational entities can be structured
into hierarchies in such a way that this provides clear and expressive policies. Associated
to inheritance mechanisms, hierarchies offer convenient means to manage the policy, and
reduce the administration overheads as well as the number of authorizations. Therefore,
Or-BAC makes it possible to express security rules, but also to model the structure of an
organization and the structure of the entities this organization considers, even in the case
of huge and complex organizations.

Elsewhere, modern information systems might not be governed by security rules expressed
as simple and definitive facts. In order to match the complexity and evolution of a system,
the security policy authorizations have to be dynamic. This is done in the Or-BAC model
by introducing a new entity Context. Authorizations are associated to contexts and are
activated/deactivated according to their contexts validity. We provide solutions to express
several types of contexts. Using Or-BAC, it is indeed possible to design temporal and spatial
contexts, contexts based on information stored in the information system base, provisional
contexts (i.e. actions that must be performed before activating authorizations) and user-

156 Conclusion

declared contexts that are helpful when only the user is able to evaluate the context validity.
Therefore, Or-BAC offers an expressive and flexible framework to design dynamic security
policies.

We also offer the possibility, in the Or-BAC model, to express prohibitions, also called
negative authorizations. Specifying a policy that includes both permissions and prohibitions
may lead to conflict. We suggest to manage conflicting situation by defining a conflict
management strategy. This is a major contribution in that this issue is seldom addressed, and
that we propose three important features: the conflict management strategy is parametric
and can thus be designed by the SSO. Second, such a strategy can detect but also prevent
conflicts. We defined a specific condition for this purpose. It guarantees that no conflict will
ever happen provided this condition is fulfilled. Third, specifying a conflict management
strategy may lead to redundant authorizations, that is, authorizations that will never take
precedence and are thereby useless. Or-BAC enables us to detect such authorizations.

We developed an administration model, called AdOr-BAC, associated to Or-BAC. Admi-
nistrating a security policy is actually essential in order to make sure that the policy remains
in adequation with the information system. With AdOr-BAC, we provide a complete ad-
ministration model which exhibits two characteristics. First, AdOr-BAC is fully compliant
with Or-BAC in the sense that administrative authorizations are Or-BAC authorizations.
This makes it possible to manage the security and the administration policies using the
same tools, and to apply the context expression and the conflict management on the admi-
nistration policy. Second, updating an Or-BAC policy using AdOr-BAC amounts to adding
objects in views and removing object from views. This is a powerful and flexible way to
administrate a security policy.

Finally, we exposed two pieces of work carried out with the purpose of putting into practice
the Or-BAC model. The first one corresponds to the application of Or-BAC to a network
environment. We show that Or-BAC can be used to specify network policies and to auto-
matically derive appropriate firewall configuration scripts. This had been applied on a test
network that includes NetFilter firewalls. I also developed a prototype application dedi-
cated to the Or-BAC model. This software, called OToKit, is based on Prolog and offers a
user-friendly graphical interface designed in Java. Most of Or-BAC features are integrated
in OToKit. OToKit enables to specify Or-BAC policies. One can define organizations,
roles, activities, views, contexts and hierarchies, as well as prioritized positive and negative
authorizations. Furthermore, conflict detection and conflict prevention are implemented.

Recently, we suggested to define Or-BAC as a more modular model. For this purpose,
we suggest first to consider the minimal model, called Or-BAC core, which only integrates
organization, roles, activities and views. Then, the other features presented in this disser-
tation, as well as recent works, are considered as extensions and can be used according to
the security needs related to a given policy. This is presented in figure 10.1.

Several research activities can be led on the Or-BAC model. We are currently going deeper
into the activity decomposition. We aim at relying on the entity Activity and on the
hierarchies of activities in order to model workflows. Some activities can be defined as sets
of sub-activities that must be performed in series or in parallel. This enables to model
commercial transaction for instance. To do so, we need to enlarge the semantics and the
expression of the entity Activity.

157

Figure 10.1: New Or-BAC architecture

We are also working on obligations. In order to define obligations, let us consider the
distinction made in [Jajodia et al. 2001a] between provisions and obligations. Provisions
are actions that must be fulfilled to obtain authorizations. Therefore provisions are actions
performed before the access decision is taken. In Or-BAC, provisions are modelled as
provisional contexts to be specified to get an authorization. On the other hand obligations
are actions that must be performed after the access, and more generally, in the future. We are
currently working at integrating such obligations in Or-BAC. [Cuppens et al. 2005] describes
the NOMAD (Non Atomic Actions and Deadlines) model that pursues this objective.

Current works are also in progress to adapt the Or-BAC model to the Web-services area, and
in particular, to define digital right management (DRM) policies. We already suggested an
XML version of the Or-BAC model in [Cuppens et al. 2004b]. Notice that more generally,
we focus on DRM and obligations with the ultimate objective of extending the Or-BAC
model to usage control and not only access control.

Finally, further developments are being carried out on OToKit. We are integrating AdOr-
BAC so that administrative authorizations related to the use of OToKit can be specified.
Moreover, a specific module for network policies is being designed. We also plan to reconsider
OToKit’s architecture to provide a more modular use as suggested in figure 10.1. The SSO
might then chose to activate only the extensions he needs.

Bibliography

[Ahn and Sandhu 2000] G.-J. Ahn and R. Sandhu. Role-Based Authorization Constraints Spec-
ification. ACM Transactions on Information and System Security, 3(4), November 2000.

[Ahn and Shin 2001a] G.-J. Ahn and M. E. Shin. Role-based Authorization Constraints Specifi-
cation Using Object Constraint Language. In Proceedings of the 10th IEEE International Work-
shops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE 2001),
Massachusetts, USA, 2001.

[Ahn and Shin 2001b] G.-J. Ahn and M. E. Shin. Role-based Authorization Constraints Speci-
fication Using Object Constraint Language. In Proceedings of 6th IEEE International Workshop
on Enterprise Security (WETICE 2001), pages 157–162, June 2001.

[Al-Kahtani and Sandhu 2002] M. A. Al-Kahtani and R. Sandhu. A Model for Attribute-Based
User-Role Assignment. In Proceedings of the 18th Annual Computer Security Applications Con-
ference (ACSAC’02), page 353, San Diego, California, USA, December 2002.

[Al-Kahtani and Sandhu 2004] M. A. Al-Kahtani and R. Sandhu. Rule-Based RBAC with Neg-
ative Authorization. In Proceedings of the 20th Annual Computer Security Applications Conference
(ACSAC 2004), pages 405–415, Tucson, Arizona, USA, December 2004.

[Alotaiby and Chen 2004] F. T. Alotaiby and J. X. Chen. A Model for Team-based Access
Control (TMAC04). In Proceedings of the International Conference on Information Technology:
Coding and Computing (ITCC’04), Las Vegas, Nevada, USA, April 2004.

[Barka and Sandhu 2000] E. Barka and R. Sandhu. A Role-Based Delegation Model and Some
Extensions. In Proceedings of the 23rd National Information Systems Security Conference, Balti-
more, Maryland, USA, October 2000.

[Barka and Sandhu 2004] E. Barka and R. Sandhu. Role-Based Delegation Model/ Hierarchical
Roles (RBDM1). In Proceedings of the 3rd 20th Annual Computer Security Applications Conference
(ACSAC 2004), Tucson, Arizona, USA, December 2004.

[Barka 2002] E. S. Barka. Framework for Role-Based Delegation Models. Master’s thesis, Graduate
Faculty of George Mason University, Fairfax, Virginia, USA, 2002.

[Barkley 1997] J. Barkley. Comparing Simple Role Based Access Control Models and Access
Control Lists. In Proceedings of the 2nd ACM workshop on Role-based Access Control (RBAC
1997), Fairfax, Virginia, USA, November 1997.

[Bartal et al. 1999] Y. Bartal, A. Mayer, K. Nissim, and A. Wool. Firmato: A novel firewall
management toolkit. In 20th IEEE Symposium on Security and Privacy, pages 17–31, Oakland,
California, May 1999.

[Becker and Sewell 2004] M. Y. Becker and P. Sewell. Cassandra: Flexible Trust Manage-
ment, Applied to Electronic Health Records. In Proceedings of the 17th IEEE Computer Security
Foundations Workshop (CSFW 2004), Pacific Grove, California, USA, June 2004.

160 BIBLIOGRAPHY

[Bell and LaPadula 1976] D. E. Bell and L. J. LaPadula. Secure Computer Systems: Unified
Exposition and Multics Interpretation. Technical Report ESD-TR-75-306, MTR-2997, Rev. 1,
MITRE Corporation, Bedfort, MA, March 1976.

[Benferhat et al. 2003] S. Benferhat, R. E. Baida, and F. Cuppens. A Stratification-Based
Approach for Handling Conflicts in Access Control. In Proceedfins of the 8th ACM Symposium on
Access Control Models and Technologies (SACMAT 2003), Lake Come, Italy, June 2003.

[Bertino et al. 2000] E. Bertino, P. A. Bonatti, and E. Ferrari. TRBAC: a temporal role-
based access control model. In Proceedings of the 5th ACM workshop on Role-based access control,
pages 21–30, July 2000.

[Bertino et al. 2003] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. A Logical Frame-
work for Reasoning about Access Control Models. ACM Transactions on Information and System
Security, 6(1), February 2003.

[Bertino et al. 2004] E. Bertino, B. Catania, E. Ferrari, and P. Perlasca. On comparing
the Expressing Power Of Access Control Model. In Proceedings of 3rd Workshop on Foundations
of Computer Security (FCS’04), Turku, Finland, July 2004.

[Bertino and Ferrari 1997] E. Bertino and E. Ferrari. Administration Policies in a Multipolicy
Authorization System. In Proceedings of the 11th Annual IFIP WG 11.3 Working Conference on
Database Security, pages 341–355, Lake Tahoe, California, USA, August 1997.

[Bertino et al. 1996] E. Bertino, S. Jajodia, and P. Samarati. Supporting Multiple Access
Control Policies in Database Systems. In IEEE Symposium on Security and Privacy, Oakland,
USA, 1996.

[Bettini et al. 2002] C. Bettini, S. Jajodia, X. S. Wang, and D. Wijesekera. Provisions and
Obligations in Policy Management. In Proceedings of the 28th Very Large Data Bases (VLDB)
Conference, pages 502–513, Hong Kong, China, August 2002.

[Biba 1975] K. J. Biba. Integrity consideration for secure computer systems. Number MTR-3153,
June 1975.

[Botha 2001] R. A. Botha. CoSAWoE - A Model for Context-sensitive Access Control in Workflow
Environments. Master’s thesis, Faculty of Natural Sciences of the Rand Afrikaans University,
Johannesburg, South African, November 2001.

[Bradshaw et al. 2003] J. Bradshaw, A. Uszok, R. Jeffers, N. Suri, P. Hayes, M. Burstein,

A. Acquisti, B. Benyo, M. Breedy, M. Carvalho, D. Diller, M. Johnson, S. Kulkarni,

J. Lott, M. Sierhuis, and R. V. Hoof. Representation and Reasoning for DAML-Based Policy
and Domain Services in KAoS and Nomads. In Proceedings of the Autonomous Agents and Multi-
Agent Systems Conference (AAMAS 2003), pages 835–842, Melbourne, Australia, July 2003.

[Carrère et al. 1999] J. Carrère, F. Cuppens, and C. Saurel. SACADDOS: a support tool
to manage multilevel documents. In Database Security, 12: Status and Prospects. Results of the
IFIP WG 11.3 Workshop on Database Security, pages 173–188, Fairfax, Virginia, USA, July 1999.
Kluwer Academic Press.

[Checkpoint 2004] Checkpoint. Firewall-1. 2004. In http://www.checkpoint.com/.

[Cholewka et al. 2000] D. G. Cholewka, R. A. Botha, and J. H. P. Eloff. A Context-
sensitive Access Control Model and Prototype Implementation. In IFIP TC 11 16th Annual
Working Conference on Information Security, Beijing, China, August 2000.

[Cholvy and Cuppens 1997] L. Cholvy and F. Cuppens. Analyzing Consistency of Security Poli-
cies. In IEEE Symposium on Security and Privacy, Oakland, California, USA, May 1997.

BIBLIOGRAPHY 161

[Cohen et al. 2002] E. Cohen, R. K. Thomas, W. Winsborough, and D. Shands. Models for
Coalition-based Access Control (CBAC). In Proceedings of the 7th ACM Symposium on Access
Control Models and Technologies (SACMAT 2002), Monterey, California, USA, June 2002.

[Covington et al. 2001] M. J. Covington, W. Long, S. Srinivasan, A. Dey, M. Ahamad, and

G. Abowd. Securing context-aware applications using environment roles. In Proceedings of the
6th ACM Symposium on Access Control Models and Technologies (SACMAT 2001), Chantilly,
Virginia, USA, May 2001.

[Covington et al. 2000] M. J. Covington, M. J. Moyer, and M. Ahamad. Generalized role-
based access control for securing future applications. In Proceedings of the 23rd National Infor-
mation Systems Security Conference, (NISSC), Baltimore, MD, USA, October 2000.

[Crampton 2004] J. Crampton. An algebraic approach to the analysis of constrained workflow
systems. In Proceedings of the 3rd Workshop on Foundations of Computer Security (FCS’04),
pages 61–64, Turku, Finland, July 2004.

[Crampton and Loizon 2002] J. Crampton and G. Loizon. SARBAC: A New Model for Role-
Based Administration. Technical Report BBKCS-02-09, Birkbeck College, University of London,
July 2002.

[Crampton and Loizou 2003] J. Crampton and G. Loizou. Administrative scope: A foundation
for role-based administrative models. ACM Transactions on Information and System Security
(TISSEC), 6(2):201–231, May 2003.

[Cuppens et al. 2001] F. Cuppens, L. Cholvy, C. Saurel, and J. Carrère. Merging Reg-
ulations: analysis of a practical example. International Journal of Intelligent Systems, 16(11),
November 2001.

[Cuppens et al. 2004a] F. Cuppens, N. Cuppens-Boulahia, and A. Miège. Inheritance hierar-
chies in the Or-BAC Model and application in a network environment. In Proceedings of the 3rd

Workshop on Foundations of Computer Security (FCS’04), Turku, Finland, July 2004.

[Cuppens et al. 2005] F. Cuppens, N. Cuppens-Boulahia, and T. Sans. NOMAD: A Security
Model With Non Atomic Actions and Deadlines. In Proceedings of the 18th IEEE Computer
Security Foundations Workshop (CSFW 2005), Aix-en-Provence, France, June 2005.

[Cuppens et al. 2004b] F. Cuppens, N. Cuppens-Boulahia, T. Sans, and A. Miège. A formal
approach to specify and deploy a network security policy. In Second Workshop on Formal Aspects
in Security and Trust (FAST), Toulouse, France, August 2004.

[Cuppens and Gabillon 1996] F. Cuppens and A. Gabillon. Modelling a Multilevel Database
with Temporal Downgrading Functionalities. In Database Security IX: Status and Prospects, Pro-
ceedings of the Ninth Annual IFIP WG11 Working Conference on Database Security (DBSec),
pages 145–164, Rensselaerville, New York, USA, 1996.

[Cuppens and Miège 2003a] F. Cuppens and A. Miège. Administration Model for Or-BAC. In
International Federated Conferences (OTM’03), Workshop on Metadata for Security, pages 754–
768, Catania, Sicily, Italy, November 2003.

[Cuppens and Miège 2003b] F. Cuppens and A. Miège. Conflict management in the Or-BAC
model. Technical report, ENST Bretagne, December 2003.

[Cuppens and Miège 2003c] F. Cuppens and A. Miège. Modelling contexts in the Or-BAC model.
In Proceedings of the 19th Annual Computer Security Applications Conference (ACSAC 2003),
pages 416–427, Las Vegas, Nevada, USA, December 2003.

[Cuppens and Miège 2004a] F. Cuppens and A. Miège. AdOrBAC: An Adminsitration Model for
Or-BAC. Special issue of the International Journal of Computer Systems Science and Engineering,
19(3), May 2004.

162 BIBLIOGRAPHY

[Cuppens and Miège 2004b] F. Cuppens and A. Miège. High level conflict management strategies
in advanced access control models. Technical report, ENST Bretagne, November 2004.

[Cuppens and Miège 2004c] F. Cuppens and A. Miège. Or-BAC: Organization Based Access
Control. In Distribution des Données à Grande Echelle (DRUIDE 2004), Le Croisic, France, May
2004.

[DAC 1987] DAC. A Guide to Understanding Discretionary Access Control in Trusted Systems.
1987.

[Damianou et al. 2001] N. Damianou, N. Dulay, E. Lupu, and M. Sloman. The Ponder Policy
Specification Language. In International Workshop, Policies for Distributed Systems and Neworks
(Policy 2001), Bristol, UK, January 2001.

[Degu and Bastien 2003] C. Degu and G. Bastien. CCP Cisco Secure PIX firewall Advanced
Exam Certification Guide. April 2003.

[Donaldson et al. 1990] A. Donaldson, J. W. Taylor, and D. M. Chizmadia. Trusted MINIX:
A Worked Example. In Proceedings of the 13th National Computer Security Conference, Wash-
ington DC, USA, October 1990.

[Ferraiolo et al. 1993] D. F. Ferraiolo, D. M. Guilber, and N. Lynch. An examination of
federal and commercial access control policy needs. In Proceedings of the 16th NIST-NSA National
Computer Security Conference, pages 107–116, Baltimore, Maryland, USA, September 1993.

[Ferraiolo and Kuhn 1992] D. F. Ferraiolo and R. Kuhn. Role-Based Access Controls. In Z.
Ruthberg and W. Polk, editors, Proceedings of the 15th NIST-NSA National Computer Security
Conference, pages 554–563, Baltimore, MD, 13-16 October 1992.

[Ferraiolo et al. 2001] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D. Kuhn, and R. Chan-

dramouli. Proposed NIST Standard for Role-Based Access Control. ACM Transactions on
Information and System Security (TISSEC), 4(3):222–274, August 2001.

[Gavrila and Barkley 1998] S. I. Gavrila and J. F. Barkley. Formal specification for role based
access control user/role and role/role relationship management. In Proceedings of 3rd ACM work-
shop on Role-based access control, pages 81–90, Fairfax, Virginia, USA, November 1998.

[Georgiadis et al. 2001] C. K. Georgiadis, I. Mavridis, G. Pangalos, and R. K. Thomas.
Flexible team-based access control using contexts. In Proceedings of the 6th ACM Symposium on
Access Control Models and Technologies (SACMAT 2001), Chantilly, Virginia, USA, May 2001.

[Goh and Baldwin 1998] C. Goh and A. Baldwin. Towards a More Complete Model of Role.
In Proceedings of the 3rd ACM workshop on Role-based access control (RBAC 1998), Fairfax,
Virginia, USA, October 1998.

[Grahne and Ghelli 2002] G. Grahne and G. Ghelli. Database Programming Language. Springer,
ISBN 3-54044-080-1, October 2002. 1st edition.

[Greco et al. 1992] S. Greco, N. Leone, and P. Rullo. COMPLEX: An Object-Oriented Logic
Programming System. IEEE Transaction on Knowledge and Data Engineering, 4(4):344–359,
august 1992.

[Grossi and Dignum 2004] D. Grossi and F. Dignum. Abstract and Concrete Norms in Insti-
tutions. Technical report, Institute of Information and Computing Science, Utrecht Univesity,
2004.

[Guiri 1995] L. Guiri. A new model for role-based access control. In Proceedings of the 11th Annual
Computer Security Applications Conference, pages 249–255, New Orleans, LA, December 1995.

[Halpern and Weissman 2003] J. Halpern and V. Weissman. Using First-order Logic to Reason
about Policies. In Proceedings of the 16th IEEE Computer Security Foundations Workshop (CSFW
2003), Pacific Grove, California, USA, June 2003.

BIBLIOGRAPHY 163

[Harrison et al. 1976] M. Harrison, W. Ruzzo, and J. Ullman. Protection in operating systems.
Communication of ACM, 19(8):461–471, August 1976.

[Hassan and Hudec 2003] A. Hassan and L. Hudec. Role Based Network Security Model: A For-
ward Step towards Firewall Management. In Workshop On Security of Information Technologies,
Algiers, December 2003.

[Honeywell 1984] Honeywell. Multics Programmer’s Manual-Reference Guide. volume AG91,
1984. Honeywell Informations Systems, Inc.

[ITSEC 1991] ITSEC. Information Technology Security Evaluation Criteria (ITSEC) v1.2. Techni-
cal report, 1991.

[Jajodia et al. 2001a] S. Jajodia, M. Kudo, and V. Subrahmanian. Provisional Authorizations.
In A. Ghosh, editor, E-commerce Security and Privacy, pages 133–159, 2001. Kluwer Academic
Publishers.

[Jajodia et al. 2001b] S. Jajodia, P. Samarati, M. Sapino, and V. Subrahmanian. Flexible
Support for Multiple Access Control Policies. ACM Transactions on Database Systems, 26(2),
June 2001.

[Jajodia et al. 1997] S. Jajodia, S. Samarati, and V. S. Subrahmanian. A logical Language
for Expressing Authorizations. In IEEE Symposium on Security and Privacy, Oakland, California,
USA, May 1997.

[Jones et al. 1976] A. K. Jones, R. Lipton, and L. Snyder. A linear time algorithm for deciding
security. In Proceedings of the 17th Annual Symposium on Foundations of Computer Science,
pages 33–41, Houston, Texas, USA, October 1976.

[Jonscher and Dittrich 1996] D. Jonscher and K. Dittrich. Argos - A Configurable Access
Control System for Interoperable Environments. pages 43–60, January 1996.

[Kang et al. 2001] J.-M. Kang, W. Shin, C.-G. Park, and D.-I. Lee. Extended BLP Security
Model Based on Process Reliability for Secure Linux Kernel. In Proceedings of the 8th Pacific
Rim International Symposium on Dependable Computing (PRDC 2001), page 299, Seoul, Korea,
December 2001.

[Kern and Moffet 2003] A. Kern and A. S. J. Moffet. An Administration Concept for the
Enterprise Role-Based Access Control Model. In Proceedings of the 9th Symposium on Access
Control Models and Technologies (SACMAT 2003), pages 3–11, June 2003.

[Khayat and Abdallah 2003] E. Khayat and A. Abdallah. A Formal Model for Flat Role-Based
Access Control. In Proceedings of the ACS/IEEE International Conference on Computer Systems
and Applications (AICCSA 2003), Tunis, Tunisia, July 2003.

[Koch et al. 2002] M. Koch, L. V. Mancini, and F. Parisi-Presicce. A graph-based formalism
for RBAC. ACM Transactions on Information and System Security (TISSEC), 5(3):332–365,
August 2002.

[Koch et al. 2004] M. Koch, L. V. Mancini, and F. Parisi-Presicce. Role-based Authorization
Constraints Specification Using Object Constraint Language. In Proceedings of the 9th Symposium
on Access Control Models and Technologies (SACMAT 2004), pages 97–104, June 2004.

[Kudo and Hada 2000] M. Kudo and S. Hada. XML Document Security based on Provisional
Authorization. In Proceedings of the 7th ACM Conference on Computer and Communication
Security (CCS 2000), Athens, Greece, 2000.

[Kuhn 2002] M. G. Kuhn. Optical Time-Domain Eavesdropping Risks of CRT Displays. In Pro-
ceedings of the 2002 IEEE Symposium on Security and Privacy, Oakland, California, USA, 2002.

[Kurland 2003] V. Kurland. Firewall Builder. White paper, 2003.

164 BIBLIOGRAPHY

[Lampson 1969] B. Lampson. Dynamic protection structures. In AFIPS Conf. Proc., pages 27–38,
March 1969.

[Lampson 1971] B. Lampson. Protection. In 5th Princeton Symposium on Information Sciences
and Systems, pages 437–443, March 1971.

[Lupu and Sloman 1999] E. C. Lupu and M. Sloman. Conflicts in Policy-Based Distributed Sys-
tems Management. IEEE Transactions on Software Engineering, 5(6):852–869, November 1999.

[McDaniel 2003] P. McDaniel. On Context in Authorization Policy. In Proceedings of the 8th ACM
Symposium On Access Control Models and Technologies (SACMAT 2003), Como, Italy, June 2003.

[Moffet 1998] J. D. Moffet. Control Principles and Role Hierarchies. In Proceedings of the 3rd

ACM Workshop on Role-Based Access Control, Nicosia, Cyprus, October 1998.

[Moffet and Lupu 1999] J. D. Moffet and E. C. Lupu. The use of role hierarchies in access
control. In Proceedings of the 4th ACM Workshop on Role-Based Access Control, pages 107–116,
Fairfax, Virginia, USA, October 1999.

[Oh and Park 2001a] S. Oh and S. Park. An Improved Administration Method on Role-Based
Access Control in the Enterprise Environment. Journal of Inforamtion Science and Engineering,
17(6):921–944, November 2001. Elsevier Science Ltd., Oxford, UK.

[Oh and Park 2001b] S. Oh and S. Park. Enterprise Model as a Basis of Administration on Role-
Based Access Control. In Proceedings of the 3rd International Symposium on Cooperative Database
Systems for Advanced Applications (CODAS 2001), pages 165–174, Beijing, China, 2001.

[Oh and Park 2003] S. Oh and S. Park. Task–role-based access control model. Information Sys-
tems, 28(6):533–562, 2003. Elsevier Science Ltd., Oxford, UK.

[Oh et al. 2003] S. Oh, R. Sandhu, and X. Zhang. An Effective Role Administration Model Using
Organization Structure. ACM Transactions on Information and System Security (TISSEC), 2003.

[Oj and Sandhu 2000] S. Oj and R. Sandhu. An Integration Model of Role-Based Access Control
and Activity-Based Access Control Using Task. In Proceedings of the 14th Annual IFIP WG 11.3
Working Conference on Database Security, August 2000.

[Or-BAC 2003] Or-BAC. A. Abou El Kalam and R. El Baida and P. Balbiani and S. Benferhat and
F. Cuppens and Y. Deswarte and A. Miège and C. Saurel and G. Trouessin. Organization Based
Access Control. In Proceedings of IEEE 4th International Workshop on Policies for Distributed
Systems and Networks (POLICY 2003), pages 120–134, Lake Come, Italy, June 2003.

[Park 2003] J. Park. Usage Control: A Unified Framework for Next Generation Access Control.
Master’s thesis, Graduate Faculty of George Mason University, Fairfax, Virginia, USA, 2003.

[Park and Sandhu 2002] J. Park and R. Sandhu. Originator Control in Usage Control. In Pro-
ceedings of the 3rd International Workshop on Policies for Distributed Systems and Networks
(POLICY 2002), pages 60–66, Monterey, California, USA, June 2002. IEEE Computer Society.

[Rabitti et al. 1991] F. Rabitti, E. Bertino, W. Kim, and D. Woelk. A Model of Auhtorization
for Next-Generation Database Systems. ACM Transactions on Database Systems, 16(1):88–131,
March 1991.

[Russell 2002] R. Russell. Linux 2.4 Packet Filtering. 2002. In
http://www.netfilter.org/documentation/HOWTO//packet-filtering-HOWTO.html.

[Sandhu et al. 1999] R. Sandhu, Bhamidipati, and Q. Munawer. The ARBAC97 Model for
Role-Based Administration of Roles, volume 2. ACM Press, February 1999.

[Sandhu and Bhamidipati 1997] R. Sandhu and V. Bhamidipati. The URA97 Model for Role-
Based User-Role Assignment. In Proceedings of IFIP WG 11.3 Workshop on Database Security.
North-Holland, Lake Tahoe, California, 1997.

BIBLIOGRAPHY 165

[Sandhu et al. 1997] R. Sandhu, V. Bhamidipati, E. Coyne, S. Ganta, and C. Youman. The
arbac97 model for role-based administration of roles: Preliminary description and outline. In
Proceedins of the 2nd ACM Workshop one Role-Based Access Control, Fairfax, Virginia, USA,
November 1997.

[Sandhu and Munawer 1998] R. Sandhu and Q. Munawer. The RRA97 Model for Role-Based
Administration of Role Hierarchies. In Proceedings of the 14th Annual Computer Security Appli-
cations Conference (ACSAC’98). Phoenix, Arizona, USA, December 7-11 1998.

[Sandhu and Munawer 1999] R. Sandhu and Q. Munawer. The ARBAC99 Model For Adminis-
tration of Roles. In Proceedings of the 15th Annual Computer Security Applications Conference
(ACSAC’99), Phoenix, Arizona, December 1999. IEEE Computer Society Press.

[Sandhu and Park 2004] R. Sandhu and J. Park. The UCONABC Usage Control Model. ACM
Transactions an Information and System Security (TISSEC), 7(1), February 2004.

[Sandhu 1988] R. S. Sandhu. The schematic protection model: its definition and analysis for acyclic
attenuating schemes. Journal of the ACM, 35(2):404–432, April 1988.

[Sandhu 1992] R. S. Sandhu. The Typed Access Matrix Model. In Proceedings of the 1992 IEEE
Symposium on Security and Privacy, Oakland, California, USA, May 1992.

[Sandhu 1998] R. S. Sandhu. Role-Based Access Control. Advances in Computers, 46, 1998.

[Sandhu et al. 1996] R. S. Sandhu, E. J. Coyne, H. L. Feinstein, and C. E. Youman. Role-
Based Access Control Models. IEEE Computer, 29(2):38–47, February 1996.

[Shen and Dewan 1992] H. Shen and P. Dewan. Access Control for Collaborative Environments.
In Proceedings of the 1992 ACM conference on Computer-supported cooperative work, pages 51–58,
Toronto, Ontario, Canada, November 1992.

[Shoenfield 2001] J. R. Shoenfield. Mathematical logic. AK Peters, ISBN 1-56881-135-7, 2001.

[Solworth and Sloan 2004] J. A. Solworth and R. H. Sloan. Security Property Based Adminis-
trative Controls. In Proceedings of the 9th European Symposium on Research in Computer Security
(ESORICS 2004), September 2004.

[TCSEC 1985] TCSEC. Trusted Computer System Evaluation Criteria. Technical report, DoD
5200.28-STD, 1985.

[Thomas and Sandhu 1997] R. Thomas and R. Sandhu. Task-based Authorization Controls
(TBAC): A Family of Models for Active and Enterprise-oriented Authorization Management. In
Proceedings of the 11th IFIP Working Conference on Database Security, Lake Tahoe, California,
USA, August 1997.

[Thomas 1997] R. K. Thomas. Team-Based Access Control (TMAC): A Primitive for Applying
Role-Based Access Controls in Collaborative Environments. In Proceedings of the 2nd ACM Work-
shop on Role-Based Access Control (RBAC 1997), pages 13–19, Fairfax, Virginia, USA, November
1997.

[Thomas and Sandhu 1994] R. K. Thomas and R. S. Sandhu. Conceptual Foundations for a
Model of Task-based Authorizations. In Proceedings of the 7th IEEE Computer Security Founda-
tions Workshop (CSFW 1994), pages 66–67, Franconia, New Hampshire, USA, June 1994.

[Ullman 1989] J. D. Ullman. Principles of Database and Knowledge Base Systems, volume 1,2.
Computer Science Press, edit. W. H. Freeman, 1989.

[Weber 1997] H. A. Weber. Role-Based Access Control: The NIST Solution. Technical report,
Fairfax, Virginia, USA, November 1997.

Appendix A

Table

A.1 Basic predicates of Or-BAC

Predicate name Domain Description

Relevant role Org ×R If org is an organization and r a role, then
Relevant role(org, r) means that playing role r is de-
fined in organization org.

Relevant activity Org ×A If org is an organization and a is an activity, then
Relevant activity(org, a) means that performing activity a

is defined in organization org.

Relevant view Org × V If org is an organization and v is a view, then
Relevant view(org, v) means that using view v is defined in
organization org.

Relevant context Org × C If org is an organization and v is a view, then
Relevant view(org, v) means that using view v is defined in
organization org.

Empower Org×S×R If org is an organization, s a subject and r a role, then
Empower(org, s, r) means that org empowers subject s in
role r.

Consider Org×A×A If org is an organization, α is an action and a is an activity,
then Consider(org, α, a) means that org considers that action
α falls within the activity a.

Use Org×O×V If org is an organization, o is an object and v is a view, then
Use(org, o, v) means that org uses object o in view v.

Hold Org × S ×
A×O × C

If org is an organization, s a subject, α an action, o an ob-
ject and c a context, then Define(org, s, α, o, c) means that
within organization org, context c holds between subject s,
action α and object o.

sub role Org×R×R If org is an organization, if r1 and r2 are roles, then
sub role(org, r2, r1) means that r2 is a sub-role of r1 in orga-
nization org.

sub activity Org×A×A If org is an organization, if a1 and a2 are activities, then
sub activity(org, a2, a1) means that a2 is a sub-activity of a1

in organization org.

2 Table

sub view Org×V ×V If org is an organization, if v1 and v2 are views, then
sub view(org, v2, v1) means that v2 is a sub-view of v1 in
organization org.

sub context Org × C × C If org is an organization, if c1 and c2 are contexts, then
sub context(org, c2, c1) means that c2 is a sub-context of c1

in organization org.

sub organization Org ×Org If org1 and org2 are organizations, then
sub organization(org2, org1) means that org2 is a sub-
organization of org1.

separeted role Org ×R×
Org ×R

If org1 and org2 are organizations, if r1 and r2 are roles, then
separeted role(org1, r1, org2, r2) means that that no subject
s in S is permitted to be at the same time empowered into
role r1 in org1 and into r2 in org2.

separeted activity Org ×A×
Org ×A

If org1 and org2 are organizations, if a1 and a2 are activities,
then separeted activity(org1, a1, org2, a2) means that no ac-
tion α in A is can be at the same time considered as activity
a1 in org1 and as a2 in org2.

separeted view Org × V ×
Org × V

If org1 and org2 are organizations, if v1 and v2 are views,
then separeted view(org1, v1, org2, v2) means that no object
o in O can be at the same time used into view v1 in org1 and
into v2 in org2.

separeted context Org × C ×
Org × C

If c1 is a context defined in organization org1 by condition
Cond1 and if c2 is a context defined in organization org2 by
condition Cond2. separeted context(org1, c1, org2, c2) means
that condition Cond1 ∧ Cond2 is inconsistent.

A.2 Positive and negative authorizations specification in Or-BAC 3

A.2 Positive and negative authorizations specification in Or-

BAC

Predicate
name

Domain Description

Permission Org×R×A×V×C If org is an organization, r a role, a an activity , v a view
and c a context, then Permission(org, r, a, v, c) means that
organization org grants to role r the permission to perform
activity a on view v in context c.

Prohibition Org×R×A×V×C If org is an organization, r a role, a an activity , v a view
and c a context, then Prohibition(org, r, a, v, c) means that
organization org prohibits role r from performing activity a

on view v in context c.

Is permitted S ×A×O If s is a subject, α an action, o an object, then
Is permitted(s, α, o) means that s is concretely permitted
to perform action α on object o.

Is prohibited S ×A×O If s is a subject, α an action, o an object, then
Is prohibited(s, α, o) means that s is concretely prohibited
to perform action α on object o.

A.3 Derivation rules in Or-BAC

Rule
name

Derivation rule definition Description

RG1 ∀org ∈ Org,∀s ∈ S,∀α ∈ A,∀o ∈ O,∀r ∈
R,∀a ∈ A,∀v ∈ V,∀c ∈ C,
P ermission(org, r, v, a, c)∧
Emplower(org, s, r)∧
Consider(org, α, a)∧
Use(org, o, v)∧
Hold(org, s, α, o, c)
→ Is permitted(s, α, o)

if organization org, within context c,
grants role r permission to perform activ-
ity a on view v, if org empowers subject s

in role r, if org considers that action α falls
within the activity a, if org uses object o

in view v and if, within org, the context
c is true between s, α and s, then s has
permission to perform α on o.

RG2 ∀org ∈ Org,∀s ∈ S,∀α ∈ A,∀o ∈ O,∀r ∈
R,∀a ∈ A,∀v ∈ V,∀c ∈ C,
P rohibition(org, r, v, a, c)∧
Emplower(org, s, r)∧
Consider(org, α, a)∧
Use(org, o, v)∧
Hold(org, s, α, o, c)
→ Is prohibited(s, α, o)

if organization org, within context c, pro-
hibits role r to perform activity a on view
v, if org empowers subject s in role r, if
org considers that action α falls within the
activity a, if org uses object o in view v

and if, within org, the context c is true
between s, α and s, then s is forbidden to
perform α on o.

RH1 ∀org ∈ Org,∀r1 ∈ R,∀r2 ∈ R,∀a ∈ A,∀v ∈
V,∀c ∈ C,
sub role(org, r2, r1)∧
Permission(org, r1, a, v, c)
→ Permission(org, r2, a, v, c)

If role r2 is a sub-role of role r1 in organi-
zation org, then every permission assigned
to role r1 in organization org is also as-
signed to role r2.

4 Table

RH2 ∀org ∈ Org,∀r1 ∈ R,∀r2 ∈ R,∀a ∈ A,∀v ∈
V,∀c ∈ C,
sub role(org, r2, r1)∧
Prohibition(org, r1, a, v, c)
→ Prohibition(org, r2, a, v, c)

If role r2 is a sub-role of role r1 in organiza-
tion org, then every prohibition assigned
to role r1 in organization org is also as-
signed to role r2.

AH1 ∀org ∈ Org,∀r ∈ R,∀a1 ∈ A,∀a2 ∈ A,∀v ∈
V,∀c ∈ C,
sub activity(org, a2, a1)∧
Permission(org, r, a1, v, c)
→ Permission(org, r, a2, v, c)

If activity a2 is a sub-activity of activity a1

in organization org, then every permission
assigned to activity a1 in organization org

is also assigned to activity a2.

AH2 ∀org ∈ Org,∀r ∈ R,∀a1 ∈ A,∀a2 ∈ A,∀v ∈
V,∀c ∈ C,
sub activity(org, a2, a1)∧
Prohibition(org, r, a1, v, c)
→ Prohibition(org, r, a2, v, c)

If activity a2 is a sub-activity of activity a1

in organization org, then every prohibition
assigned to activity a1 in organization org

is also assigned to activity a2.

VH1 ∀org ∈ Org,∀r ∈ R,∀a ∈ A,∀v1 ∈ V,∀v2 ∈
V,∀c ∈ C,
sub view(org, v2, v1)∧
Permission(org, r, a, v1, c)
→ Permission(org, r, a, v2, c)

If view v2 is a sub-view of view v1 in or-
ganization org, then every permission as-
signed to view v1 in organization org is
also assigned to view v2.

VH2 ∀org ∈ Org,∀r ∈ R,∀a ∈ A,∀v1 ∈ V,∀v2 ∈
V,∀c ∈ C,
sub view(org, r2, r1)∧
Prohibition(org, r, a, v1, c)
→ Prohibition(org, r, a, v2, c

If view v2 is a sub-view of view v1 in or-
ganization org, then every prohibition as-
signed to view v1 in organization org is
also assigned to view v2.

HH1 ∀orga ∈ Org,∀orgb ∈ Org,∀r1 ∈ R,∀r2 ∈
R,∀a ∈ A,∀v ∈ V,∀c ∈ C,
sub organization(orgb, orga)∧
sub role(orga, r2, r1)∧
Relevant role(orgb, r1) ∧
Relevant role(orgb, r2)
→ sub role(orgb, r2, r1)

If organizations orgb is a sub-organization
of organization orgb, if r1 and r2 are roles,
if r2 is a sub-role of r1 in orga and if r1

and r2 are relevant in orgb, then r2 is a
sub-role of r1 in orgb in orga also applies
in orgb.

OH1 ∀org1 ∈ Org,∀org2 ∈ Org,∀r ∈ R,∀a ∈
A,∀v ∈ V,∀c ∈ C,
sub organization(org2, org1)
Permission(org1, r, a, v, c)∧
Relevant role(org2, r)∧
Relevant activity(org2, a)∧
Relevant view(org2, v)∧
Relevant context(org2, c)
→ Permission(org2, r, a, v, c)

If organization org2 is a sub-organization
of organization org1, if org1 grants role r1

permission to perform activity a on view
v in context c within in context c, and if
r, a, v and c are relevant in org2, then this
permission applies in org2.

OH2 ∀org1 ∈ Org,∀org2 ∈ Org,∀r ∈ R,∀a ∈
A,∀v ∈ V,∀c ∈ C,
sub organization(org2, org1)
Prohibition(org1, r, a, v, c)∧
Relevant role(org2, r)∧
Relevant activity(org2, a)∧
Relevant view(org2, v)∧
Relevant context(org2, c)
→ Prohibition(org2, r, a, v, c)

If organization org2 is a sub-organization
of organization org1, if org1 prohibits role
r1 to perform activity a on view v in con-
text c within in context c, and if r, a, v

and c are relevant in org2, then this pro-
hibition applies in org2.

A.4 Basic constraints in Or-BAC 5

A.4 Basic constraints in Or-BAC

Rule
name

Constraint definition Description

C1 ∀org ∈ Org,∀s ∈ S,∀r ∈ R,

Empower(org, s, r) ∧ ¬Relevant role(org, r)
→ error()

An organization org should not em-
power a subject s in role r if r is not
relevant in org.

C2 ∀org ∈ Org,∀o ∈ O,∀v ∈ V,

Use(org, o, v) ∧ ¬Relevant view(org, v)
→ error()

An organization org should not use
an object o in view v if v is not rele-
vant in org.

C3 ∀org ∈ Org,∀α ∈ A,∀a ∈ A,

Use(org, α, a) ∧ ¬Relevant activity(org, v)
→ error()

An organization org should not con-
sider an action α as an activity a if
a is not relevant in org.

C4 ∀org ∈ Org,∀s ∈ S,∀α ∈ A,∀o ∈ O,∀c ∈ C,
Hold(org, s, α, o, c) ∧ ¬Relevant context(org, c)
→ error()

An organization org should not spec-
ify a context c if c is not relevant in
org.

C5 ∀org ∈ Org,∀r ∈ R,∀a ∈ A,∀v ∈ V,∀c ∈ C,
P ermission(org, r, a, v, c)∧
¬(Relevant role(org, r)∧

Relevant activity(org, a)∧
Relevant view(org, v)∧
Relevant context(org, c))
→ error()

All entities involved in a positive au-
thorization specified in organization
org must be relevant in org.

C6 ∀org ∈ Org,∀r ∈ R,∀a ∈ A,∀v ∈ V,∀c ∈ C,
P rohibition(org, r, a, v, c)∧
¬(Relevant role(org, r)∧

Relevant activity(org, a)∧
Relevant view(org, v)∧
Relevant context(org, c))
→ error()

All entities involved in a negative au-
thorization specified in organization
org must be relevant in org.

C7 ∀org1 ∈ Org,∀org2 ∈ Org,∀r1 ∈ R,∀r2 ∈
R,∀s ∈ S,

separated role(org1, r1, org2, r2)∧
Empower(org1, s, r1) ∧ Empower(org2, s, r2)
→ error()

if role r1 in organization org1 is sep-
arated from role r2 in organization
org2, then a subject s cannot play
both role r1 in org1 and role r2 in
org2.

C8 ∀org1 ∈ Org,∀org2 ∈ Org,∀a1 ∈ A,∀a2 ∈
A,∀α ∈ A,

separated activity(org1, a1, org2, a2)∧
Consider(org1, α, a1) ∧ Consider(org2, α, a2)
→ error()

if activity a1 in organization org1 is
separated from activity r2 in organi-
zation org2, then an action α can-
not be considered as an activity a1

in org1 and an activity a2 in org2.

6 Table

C9 ∀org1 ∈ Org,∀org2 ∈ Org,∀v1 ∈ V,∀v2 ∈ V,∀o ∈
O,

separated view(org1, v1, org2, v2)∧
Use(org1, o, v1) ∧ Use(org2, o, v2)
→ error()

if view v1 in organization org1 is sep-
arated from view v2 in organization
org2, then an object o cannot be in
the view v1 in org1 and in the view
v2 in org2.

C10 ∀org1 ∈ Org,∀org2 ∈ Org,∀r ∈ R,

sub organization(org1, org2) ∧
¬Empower(org2, org1, r)
→ error()

An organization should empower all
its sub-organizations in roles.

A.5 Prioritized authorizations in TPpol

Predicate
name

Domain Description

Permission′ Org×R×A×V ×
C × L

If org is an organization, r is a role, v is a
view, a is an activity, c is context and l a prior-
ity level, then Permission′(org, r, v, a, c, l) means that
Permission(org, r, a, v, c) is assigned to priority level l.

Prohibition′ Org×R×A×V ×
C × L

If org is an organization, r is a role, v is a
view, a is an activity, c is context and l a prior-
ity level, then Prohibition′(org, r, v, a, c, l) means that
Prohibition(org, r, a, v, c) is assigned to priority level l.

Is permitted′ S ×A×O × L If s is a subject, α an action, o an object and l a
priority level, then Is permitted′(s, α, o, l) specifies that
Is permitted(s, α, o) is assigned to priority level l.

Is prohibited′ S ×A×O × L If s is a subject, α an action, o an object and l a
priority level, then Is prohibited′(s, α, o, l) specifies that
Is prohibited(s, α, o) is assigned to priority level l.

A.6 Derivation rules in TPpol

Rule
name

Derivation rule definition Description

RG’1 ∀org ∈ Org,∀s ∈ S,∀α ∈ A,∀o ∈ O,∀r ∈
R,∀a ∈ A,∀v ∈ V,∀c ∈ C,∀l ∈ L,

P ermission′(org, r, v, a, c, l)∧
Emplower(org, s, r)∧
Consider(org, α, a)∧
Use(org, o, v)∧
Hold(org, s, α, o, c)
→ Is permitted′(s, α, o, l)

Is permitted′ may be derived with the
same priority level as Permission′, pro-
vided other conditions in the premises are
satisfied.

A.7 Constraints in TPpol 7

RG’2 ∀org ∈ Org,∀s ∈ S,∀α ∈ A,∀o ∈ O,∀r ∈
R,∀a ∈ A,∀v ∈ V,∀c ∈ C,∀l ∈ L,

P rohibition′(org, r, v, a, c, l)∧
Emplower(org, s, r)∧
Consider(org, α, a)∧
Use(org, o, v)∧
Hold(org, s, α, o, c)
→ Is prohibited′(s, α, o, l)

Is prohibited′ may be derived with the
same priority level as Prohibition′, pro-
vided other conditions in the premises are
satisfied.

ED1 ∀s ∈ S,∀α ∈ A,∀o ∈ O,∀l1 ∈ L,

Is permitted′(s, α, o, l1)∧
¬∃l2 ∈ L,

(l1 ≺ l2 ∧ Is prohibited′(s, α, o, l2))
→ Is permitted(s, α, o)

A concrete permission can be derived for
allowing subject s to perform action α on
object o if this permission is labelled at a
priority level l1 and there is no prohibition
for s to perform α on o with a priority level
l2 strictly higher than l1.

ED2 ∀s ∈ S,∀α ∈ A,∀o ∈ O,∀l1 ∈ L,

Is prohibited′(s, α, o, l1)∧
¬∃l2 ∈ L,

(l1 ≺ l2 ∧ Is permitted′(s, α, o, l2))
→ Is prohibited(s, α, o)

A concrete prohibition applied to subject
s, action α and object o ca be derived if
this prohibition is labelled at a priority
level l1 and there is no permission for s

to perform α on o with a priority level l2
strictly higher than l1.

RH’1 ∀org ∈ Org,∀r1 ∈ R,∀r2 ∈ R,∀a ∈ A,∀v ∈
V,∀c ∈ C,∀l ∈ L,

sub role(org, r2, r1)∧
Permission′(org, r1, a, v, c, l)
→ Permission′(org, r2, a, v, c, l)

If role r2 is a sub-role of r1 and if there is
a permission associated with r1 at a prior-
ity level l, then r2 inherits this permission
with the same priority level l.

RH’2,
AH’1,
AH’2,
VH’1,
VH’2,
OH’1,
OH’2

Similarly to RH’1 which is obtained from
RH1, these rules are respectively obtained
from RH2, AH1, AH2, VH1, VH2, OH1, OH2

A.7 Constraints in TPpol

Rule
name

Constraint definition Description

C’5 ∀org ∈ Org,∀r ∈ R,∀a ∈ A,∀v ∈ V,∀c ∈ C,∀l ∈
L,

P ermission(org, r, a, v, c, l)∧
¬(Relevant role(org, r)∧

Relevant activity(org, a)∧
Relevant view(org, v)∧
Relevant context(org, c))
→ error()

All entities involved in a prioritized
positive authorization specified in or-
ganization org must be relevant in
org.

8 Table

C’6 ∀org ∈ Org,∀r ∈ R,∀a ∈ A,∀v ∈ V,∀c ∈ C,∀l ∈
L,

P rohibition(org, r, a, v, c, l)∧
¬(Relevant role(org, r)∧

Relevant activity(org, a)∧
Relevant view(org, v)∧
Relevant context(org, c))

→ error()

All entities involved in a prioritized
negative authorization specified in
organization org must be relevant in
org.

Appendix B

French summary

B.1 Introduction

L’emploi des technologies de l’information est de plus en plus fréquent, aussi bien dans le
monde professionnel que dans la sphère privée. En effet, l’émergence de nouveaux outils,
l’amélioration des performances et l’augmentation des débits des réseaux nous poussent à
nous appuyer de plus en plus sur des données numériques pour le traitement, le stockage et
l’échange d’information. Si les bénéfices sont reconnus par tous, les risques liés à la sécurité
des données (confidentialité, intégrité, disponibilité) augmentent parallèlement. La mise en
place d’outils et de méthodes de protection suppose au préalable la définition d’un règlement
de sécurité indiquant les actions permises et interdites. Un tel règlement fait partie de la
politique de sécurité. En particulier, la politique de contrôle d’accès consiste, dans le cadre
d’un système d’information et à travers la définition d’autorisations, à accorder des privilèges
à des sujets afin qu’ils puissent réaliser des actions sur des ressources. Les sujets peuvent
être des utilisateurs, c’est-à-dire des personnes physiques, mais aussi les processus que ces
personnes utilisent. Les ressources, aussi appelées objets, sont par exemple les fichiers du
système, mais peuvent être également des relations dans une base de données relationnelles,
des imprimantes, etc. Enfin, les actions possibles dans un système d’information sont par
exemple “lire”, “écrire”, “exécuter”, ou dans une base de données “select”, “update”, etc.
Cette thèse est centrée sur le domaine du contrôle d’accès.

De nombreux modèles de contrôle d’accès ont été proposés depuis plus de trente ans, et la
recherche s’est accélérée en particulier depuis le début des années quatre-vingt-dix. Tous
ces modèles présentent des avantages et procurent à leur manière des avancées significatives.
Néanmoins, tous ces modèles sont trop souvent spécifiques à un domaine d’application et ne
tentent de résoudre qu’une seule des problématiques liées au contrôle d’accès. De ce constat,
nous concluons qu’il nécessaire de définir un nouveau modèle qui à la fois fédère ces différentes
avancées et qui soit, en même temps, adapté à de nombreux domaines d’application. Ce
modèle que nous définissons tout au long de la thèse est appelé Or-BAC (Organization-Based
Access Control).

Dans le chapitre 2 de la thèse, nous présentons les modèles existants en même temps que nous
définissons les besoins auxquels notre modèle doit pouvoir répondre. La première exigence
correspond à la nécessité de structurer les entités traditionnelles du contrôle d’accès, à savoir
les entités sujet, action et objet, afin de permettre la définition de politiques de sécurité

10 French summary

d’un haut niveau d’abstraction et d’offrir la possibilité de gérer des systèmes d’information
comportant un grand nombre d’utilisateurs et de ressources. En effet, une politique de
sécurité ne doit pas se restreindre à la définition d’un ensemble d’autorisations, mais doit
aussi permettre de spécifier la structure de l’organisation. Notre solution consiste à intégrer,
au sein d’un même modèle, les notions présentes dans les modèles basés sur les rôles, dans
les modèles basés sur les activités et dans les modèles basés sur les vues. Nous présentons
notre solution dans la section B.2 à travers la définition de notre modèle de contrôle d’accès.

Dans la mesure où les systèmes d’information sont de plus en plus complexes et les actions
qu’ils doivent permettre de réaliser de plus en plus diversifiées, il est essentiel de proposer un
formalisme pour la rédaction des règles de sécurité qui soit suffisamment souple et expressif
pour spécifier des politiques de contrôle d’accès adaptées. En particulier, il doit être possible
d’indiquer dans quelles circonstances une autorisation est activée, afin de ne pas se limiter à
l’expression d’autorisations statiques. Nous verrons dans la section B.2 comment à travers
la définition de contextes notre modèle permet de satisfaire cette exigence.

Le troisième besoin énoncé se rapporte à la nécessité d’offrir au concepteur de la politique
de contrôle d’accès la possibilité d’exprimer des permissions (ou autorisations positives)
mais aussi des interdictions (ou autorisations négatives). Nous évoquons dans la section B.4
les raisons d’une telle exigence. Nous présentons également comment résoudre les conflits
qui peuvent apparâıtre entre des permissions et des interdictions. Cette solution présente
l’originalité de pouvoir détecter et surtout prévenir ces conflits.

Enfin, un modèle de contrôle d’accès ne serait être complet s’il n’était pas associé à des
procédures administratives permettant dans un premier temps la création d’une nouvelle
politique, puis sa mise à jour au fur et à mesure des modifications apportées au système
d’information visé. Plus qu’une liste de procédures, nous définissons un véritable modèle
d’administration qui a la particularité d’être totalement compatible en terme de formalisme
avec le modèle Or-BAC. Ce nouveau modèle est présenté dans la section B.5.

La dernière section est consacrée à une rapide présentation de travaux réalisés en vue de
l’application du modèle Or-BAC à des cas concrets.

B.2 Le modèle Or-BAC

Les premiers travaux sur le modèle Or-BAC ont été réalisés dans le cadre du projet MP6
(Modèles et Politiques de Sécurité pour les Systèmes d’Informations et de Communications
en Santé et Social) et ont abouti à une première formulation du modèle [Or-BAC 2003].
MP61 était un projet RNRT (Réseau National de Recherche en Télécommunications) financé
par le Ministère de la Recherche. Les travaux ultérieurs ont été réalisés dans le cadre de
cette thèse.

Un des objectifs majeurs du modèle Or-BAC est de définir une politique de sécurité à deux
niveaux, un niveau concret et un niveau organisationnel. Cette notion est d’ailleurs déjà
présente dans les ITSEC [ITSEC 1991] où sont définis trois niveaux de politique de sécurité :
La politique de sécurité interne (ou organisationnelle), la politique de sécurité système et la
politique de sécurité technique. Dans le modèle Or-BAC, le niveau concret correspond aux

1http://www.telecom.gouv.fr/rnrt/rnrt/projets/res 01 59.htm

B.2 Le modèle Or-BAC 11

entités concrètes du système comme les utilisateurs, les différentes ressources, les opérations,
etc. Afin de définir une politique de sécurité générique, ou organisationnelle, nous réalisons
une abstraction de toutes ces entités. L’objectif est double : obtenir une politique de
sécurité de haut niveau, indépendante des choix d’implémentation, et rédiger une politique
de sécurité organisationnelle sur laquelle un certain nombre de vérifications peuvent être
effectuées. La politique de sécurité concrète est ensuite automatiquement déduite de la
politique de sécurité organisationnelle.

Les sections suivantes sont consacrées à la définition des entités et des prédicats du modèle
Or-BAC. Ces différents éléments sont représentés à la figure B.1. On remarquera la position
centrale de l’entité organisation et la présence du contexte.

Le modèle Or-BAC est formalisé à l’aide d’un sous-ensemble de la logique du premier ordre.
En effet, une politique de sécurité Or-BAC est envisagée comme un programme Datalog
[Shoenfield 2001]. Ainsi, les fonctions ne sont pas admises et les formules doivent être des
clauses de Horn. Dans la mesure où nous désirons obtenir des politiques suffisamment ex-
pressives, nous considérons en particulier Datalog avec négations, ou Datalog¬. L’emploi
de clauses récursives avec des littéraux négatifs ne garantit pas l’obtention de solutions
uniques. Nous adoptons alors la sémantique de la stratification2. Par conséquent nous im-
posons dans la rédaction de politiques Or-BAC les deux restrictions suivantes : la contrainte
des clauses sûres3 doit toujours être satisfaite et, de plus, toute politique doit être stratifiable
[Ullman 1989].

B.2.1 Les organisations

Le concept d’organisation est central dans ce nouveau modèle. D’abord défini comme un
groupe organisé d’entités actives [Or-BAC 2003], c’est-à-dire de sujets jouant certains rôles,
nous avons élargi le concept d’organisation à toute entité en charge d’une politique de sécurité
[Cuppens et al. 2004a]. Ainsi, une entreprise, mais également un firewall ou un système sont
considérés comme des organisations. L’organisation est l’un des paramètres des règles de
sécurité, de sorte qu’il est possible de gérer simultanément plusieurs politiques de sécurité
associées à différentes organisations. Or-BAC définit des règles spécifiques à l’organisation.
En particulier, l’organisation peut être structurée en plusieurs sous-organisations qui ont
chacune leur propre politique de sécurité. Il est également possible de spécifier une politique
de sécurité générique au niveau d’une organisation mère. Ces sous-organisations peuvent
alors hériter en partie de sa politique de sécurité mais aussi ajouter ou supprimer des règles
et ainsi définir leur propre politique de sécurité. La définition d’une organisation et de la
hiérarchie des sous-organisations qui la composent permet ainsi de faciliter l’administration
de la politique de sécurité. D’un point de vue pratique, cette hiérarchie permet de modéliser
la structure des organisations réelles qui peuvent être constituées de départements, d’entités,
d’unités, etc. Un projet ou un groupe de travail peut également être modélisé par une
organisation.

2La stratification d’un programme Datalog¬ consiste à définir l’ordre de résolution des règles logiques. Si

un programme est stratifiable, il existe alors une solution unique au programme, et celle-ci peut être calculée

en un temps polynômial.
3Cette contrainte garantie qu’une règle a un nombre fini de solutions. Cette contrainte est respectée pour

une règle si toute variable utilisée dans cette règle apparâıt dans au moins un prédicat extensionnel positif

de la prémisse, ou dans un prédicat qui est lui-même conclusion d’une règle sûre.

12 French summary

PermissionRole View

Activity

Is_permittedSubject Object

Action

OrganizationEmpower Use

Consider

organizational level

concrete level

Context

Hold

Figure B.1: Le modèle Or-BAC

B.2 Le modèle Or-BAC 13

La hiérarchie d’organisation est exprimée à l’aide du prédicat sub organisation : si org1

et org2 sont deux organisations, alors sub organisation(org2, org1) signifie que org2 est une
sous-organisation de org1.

B.2.2 Les sujets et les rôles

L’entité Subject est utilisée différemment selon les modèles de sécurité. Dans le modèle
Or-BAC, un sujet peut être soit une entité active, c’est-à-dire un utilisateur, soit une or-
ganisation. La notion de rôle a déjà été introduite entre autres dans le modèle RBAC
[Sandhu et al. 1996], mais elle diffère quelque peu dans le modèle Or-BAC. Ici, nous con-
sidérons qu’un sujet joue un rôle dans une organisation. Ainsi, l’entité Role est utilisée
pour structurer le lien entre les sujets et les organisations. Nous dirons par exemple que
l’utilisateur “Pierre” joue le rôle “administrateur” dans l’organisation “département informa-
tique”. Les permissions obtenues par Pierre dépendent ainsi de son rôle et de l’organisation
dans laquelle il l’exerce. La relation qui lie le sujet, le rôle et l’organisation est appelée
Empower. L’exemple précédent peut alors s’écrire de la manière suivante :

• Empower(departement informatique, P ierre, administrateur)

Comme nous l’avons précédemment signalé, un sujet peut également être une organisa-
tion. Par exemple l’organisation “Wanadoo” joue le rôle de “fournisseur d’accès” dans
l’organisation “France Télécom”.

Par ailleurs, des permissions sont accordées aux rôles. Les sujets obtiennent alors les per-
missions accordées aux rôles qu’ils jouent, sachant qu’un sujet peut jouer plusieurs rôles.
Ainsi, comme dans tous les modèles basés sur les rôles, les rôles sont une interface entre
l’ensemble des utilisateurs et l’ensemble des permissions.

Enfin, il est possible de hiérarchiser l’ensemble des rôles définis dans une organisation. Un
mécanisme d’héritage permet alors d’accorder toutes les permissions d’un rôle à ses sous-
rôles. Nous définissons le prédicat sub role (c.f. section A.1) pour modéliser la hiérarchie
de rôles. La règle de dérivation RH1 liée à l’héritage est donnée dans la section A.3.

La définition de rôles, l’affectation de rôles aux sujets et l’héritage des permissions à travers
la hiérarchie de rôles ont pour objectif de structurer l’ensemble des sujets d’une organisation
et de simplifier ainsi la gestion de la politique de sécurité.

B.2.3 Les objets et les vues

Dans notre modèle, l’entité Object représente principalement les entités non actives, en
d’autres termes, toutes les ressources de l’organisation, comme les fichiers, les courriers
électroniques, les formulaires imprimés, etc. Comme nous venons de le voir, les rôles nous
permettent de structurer les sujets et de faciliter la mise à jour de la politique de sécurité.
Dans la mesure où il est également nécessaire de structurer les objets et d’ajouter de nou-
veaux objets au système, une entité comparable au rôle pour les sujets est nécessaire pour les
objets. Nous l’appelons entité V iew. De manière intuitive, une vue correspond, comme dans
les bases de données relationnelles, à un ensemble d’objets qui satisfont une propriété com-
mune. Prenons l’exemple des fichiers clients d’un fournisseur d’accès. Chaque organisation
peut choisir la manière dont ces fichiers sont implantés. Ces informations peuvent être gérées

14 French summary

par des fichiers papier ou stockées dans une base de données. L’organisation peut ainsi avoir
à manipuler des objets de nature diverse. Dans ce cas, nous créons une vue “fichier clients”.
Cette vue regroupe l’ensemble des objets correspondants aux fichiers clients quelle que soit
leur nature. Une vue est donc une abstraction d’un ensemble d’objets. Dans la mesure où
les vues caractérisent la manière dont les objets sont utilisés dans l’organisation, nous avons
besoin d’une relation qui lie ces trois entités : la relation Use. Nous pourrons alors écrire
qu’une certaine organisation “FAI” (Fournisseur d’Accès Internet) utilise un certain fichier
“fichier245.xls” dans la vue “fichier clients” :

• Use(FAI, fichier245.xls, fichier client)

Enfin, comme pour les rôles, il est possible de définir des hiérarchies de vues, et ceci à l’aide
du prédicat sub view (c.f. sections A.1 et A.3).

B.2.4 Les actions et les activités

Les politiques de sécurité spécifient les actions que les entités actives (sujets) ont la permis-
sion ou l’interdiction de réaliser sur les entités passives (objets). Dans notre modèle, l’entité
Action englobe principalement les actions informatiques comme “lire”, “écrire”, “envoyer”,
etc. De la même manière que les rôles et les vues sont des abstractions des sujets et des
objets, nous définissons une nouvelle entité utilisée comme abstraction des actions : l’entité
Activity. Ainsi, les rôles associent des sujets qui remplissent les mêmes fonctions, les vues
regroupent des objets qui satisfont une propriété commune, et les activités correspondent à
des actions qui ont un même objectif pour la politique de sécurité. Nous pouvons par exem-
ple définir l’activité “consulter”. L’action “acroread” (utilisation d’Acrobat Reader) pourra
être considérée par une certaine organisation comme implantant l’activité “consulter”. Dans
la mesure où différentes organisations peuvent considérer qu’une même action est employée
pour réaliser différentes activités, la relation Consider sera utilisée pour associer les entités
Organization, Action et Activity. Nous pourrons alors écrire une relation du type :

• Consider(departement informatique, acroread, consulter)

Comme pour les rôles et les vues, le modèle Or-BAC offre la possibilité de définir une
hiérarchie d’activités, en utilisant le prédicat sub activity (c.f. sections A.1 et A.3).

B.2.5 Une politique de sécurité à deux niveaux

Nous venons de voir que les sujets, les actions et les objets sont respectivement abstraits en
rôles, en activités et en vues, comme le représente la figure B.1. Nous obtenons alors une
politique de sécurité à deux niveaux. Le modèle Or-BAC permet ainsi d’établir une politique
de sécurité organisationnelle (rôle, activité, vue) indépendante des choix d’implémentation
(sujet, action, objet).

Nous devons à présent définir les prédicats correspondant aux permissions. Soit respec-
tivement Org, S, A, O, R, A et V l’ensemble des organisations, des sujets, des actions,
des objets, des rôles, des activités et des vues. Afin de représenter les règles de contrôle
d’accès au niveau concret, nous introduisons le prédicat Is permitted. Ce prédicat permet
d’exprimer une permission accordée à un sujet de réaliser une action sur un objet :

B.2 Le modèle Or-BAC 15

• Is permitted(Subject, Action, Object)

Ainsi, par exemple, la permission accordée à l’utilisateur Jean de lire le fichier
“fiche client 21.pdf” est exprimée de la manière suivante :

• Is permitted(Jean, lire, fiche client 21.pdf)

De telles règles de sécurité sont dites concrètes, et sont semblables aux règles de contrôle
d’accès obtenues dans les modèles [Harrison et al. 1976, Lampson 1971, DAC 1987]. Une
politique de sécurité concrète dans le modèle Or-BAC est un ensemble d’autorisations de
cette forme.

Nous appelons Permission la relation entre un rôle, une activité et une vue. L’organisation
dans laquelle une permission est valide est aussi indiquée dans cette relation :

• Permission(Organisation, Role, Activity, V iew)

Cette relation signifie que l’organisation donne la permission à un rôle de réaliser une activité
sur une vue. Une telle permission est dite organisationnelle. L’objectif dans le modèle Or-
BAC est de rédiger la politique de sécurité à l’aide de permissions organisationnelles. Les
permissions concrètes sont alors dérivées des permissions abstraites. La règle de dérivation
RG1 est la suivante :

• ∀org ∈ Org,∀s ∈ S,∀α ∈ A,∀o ∈ O,∀r ∈ R,∀a ∈ A,∀v ∈ V,

Permission(org, r, v, a, c)∧
Empower(org, s, r)∧
Consider(org, α, a)∧
Use(org, o, v)∧
→ Is permitted(s, α, o)

Pour illustrer cette règle, considérons l’exemple suivant. L’utilisateur “Jean”
désire ouvrir le fichier “fiche client 21.pdf” à l’aide d’Acrobat Reader. Le
contrôle d’accès associé à cette requête correspond à la permission suivante :
Is permitted(Jean, acroread, fiche client 21.pdf).

Nous dirons alors que si nous avons la permission organisationnelle
Permission(departement informatique, administrateur, consulter, fiche client), et
que l’organisation “département informatique” habilite Jean dans le rôle “administrateur”,
que cette organisation considère l’action “acroread” comme une activité “consulter”, et que
cette organisation utilise l’objet “fiche client 21.pdf” dans la vue “fiche client”, alors Jean
obtient l’accès demandé. Si l’on considère à nouveau la figure de la page 12 de ce chapitre,
il nous reste, pour être complet, à introduire une entité très importante, l’entité Context,
que nous détaillons dans la section B.3.

Comme dans de nombreux modèles, il est possible de spécifier des contraintes sur les
différentes entités et prédicats définis. Les contraintes dans le modèle Or-BAC sont des
règles qui concluent sur le prédicat error(). Dans la section A.4 figure l’ensemble des con-
traintes prédéfinies et nécessaires à la rédaction d’une politique de sécurité Or-BAC. D’autres
contraintes peuvent être définies par le concepteur de la politique.

16 French summary

B.2.6 Conclusion

Le modèle Or-BAC présente l’originalité de proposer une abstraction des sujets en rôles, mais
également des objets en vues et des actions en activités. Nous obtenons alors une politique
de sécurité à deux niveaux. Le niveau organisationnel permet de définir un règlement de
sécurité et de modéliser la structure d’une organisation, grâce notamment aux hiérarchies.
La politique de sécurité concrète qui est effectivement mise en œuvre au niveau du système
d’information est déduite de la politique organisationnelle. Ceci nous assure une totale
indépendance de la politique de sécurité vis à vis de son implémentation. Ainsi, la politique
organisationnelle reste inchangée, et garde alors toutes ses propriétés lorsque des sujets, des
actions ou des objets sont ajoutés ou supprimés du système.

B.3 La modélisation des contextes

B.3.1 Motivation

Il est courant de distinguer les modèles de contrôle d’accès dynamiques des modèles de
contrôle d’accès statiques. Dans les modèles passifs, le règlement est spécifié à travers la
définition de faits, comme ceux exprimés dans la section précédente. Ces faits sont des autori-
sations permanentes qui sont ajoutées, supprimées et surtout modifiées par l’administrateur
de sécurité uniquement. Or, il est souvent très utile de définir qu’une autorisation n’est val-
able que dans telle ou telle circonstance, correspondant par exemple à l’heure de la journée,
au lieu où se trouve l’utilisateur, à l’état du système d’information, etc. Nous appelons
contexte l’ensemble des circonstances appliquées à une autorisation. C’est la validation
du contexte qui permet alors d’activer et de désactiver les autorisations. Les modèles dits
dynamiques offrent la possibilité de spécifier de tels contextes.

Il existe une grande diversité de contextes qu’un administrateur de sécurité pourrait vouloir
exprimer. De nombreux modèles actifs sont définis dans la littérature, mais chacun d’entre
eux est centrés sur un seul type de contexte. Au contraire, à travers le modèle Or-BAC
[Cuppens and Miège 2003c], nous nous attachons à modéliser une large variété de contextes.

L’intégration du contexte dans le modèle Or-BAC oblige à redéfinir quelque peu ce dernier.
Nous nous attachons à cette tâche à dans la sous-section suivante. Nous présentons ensuite
à la sous-section B.3.3 les différents types de contextes pris en compte dans notre modèle.

B.3.2 L’entité Context

Nous introduisons l’entité Context, et l’ensemble des contextes C définis dans une organi-
sation. Les contextes sont utilisés pour spécifier les circonstances concrètes dans lesquelles
les organisations accordent aux sujets des permissions de réaliser des actions sur les objets.
Par conséquent, les entités Organization, Subject, Object, Action et Context sont liées par
une nouvelle relation appelée Hold.

Les contextes sont définis par des règles concluant sur la relation Hold. Par exemple, le
contexte heures travail dans l’organisation “département informatique” peut être défini de
la façon suivante :

B.3 La modélisation des contextes 17

• ∀s ∈ S, ∀α ∈ A,∀o ∈ O,

Hold(departement informatique, s, α, o, heures travail)
← 09 : 00 ≤ GLOBAL CLOCK ≤ 19 : 00

Afin de prendre en compte le contexte dans les autorisations, nous modifions la forme du
prédicat Permission qui prend maintenant la forme :

• Permission(Organisation, Role, Activity, V iew, Context)

On peut alors spécifier la règles suivante :

• Permission(departement informatique, administrateur,

consulter, fiche client, heures travail)

Cette règle signifie que les sujets jouant le rôle “administrateur” pourront consulter les objets
appartenant à la vue “fiches clients” uniquement pendant les heures de travail.

Enfin, la règle de dérivation des permissions concrètes à partir des permissions organisation-
nelles doit également être modifiée. Elle permet de montrer comment le contexte est vérifié
avant d’accorder une autorisation :

• ∀org ∈ Org,∀s ∈ S,∀α ∈ A,∀o ∈ O,∀r ∈ R,∀a ∈ A,∀v ∈ V,∀c ∈ C,
Permission(org, r, v, a, c)∧
Empower(org, s, r)∧
Consider(org, α, a)∧
Use(org, o, v)∧
Hold(org, s, α, o, c)
→ Is permitted(s, α, o)

B.3.3 Taxonomie des contextes

La liste suivante présente les contextes que le modèle Or-BAC permet de modéliser :

• Le contexte temporel

• Le contexte spatial

• Le contexte déclaré par l’utilisateur

• Le contexte prérequis

• Le contexte provisionnel

Le contexte temporel permet de contraindre la date et la durée de validité d’une permission.
Le contexte spatial correspond au lieu d’où un utilisateur peut effectuer une activité. La
localisation d’un utilisateur peut être physique (dans un bâtiment par exemple) ou logique
(sur un réseau local par exemple). Le contexte déclaré par l’utilisateur n’est, à notre connais-
sance, jamais exprimé dans les modèles de contrôle d’accès. Il correspond à un contexte dans
lequel l’utilisateur décide de se placer pour effectuer une activité. En effet, dans certains
cas seul l’utilisateur est en mesure d’évaluer si un contexte est vrai ou non. C’est le cas par
exemple si un administrateur à besoin d’accéder à l’ensemble des informations du système
pour réaliser une recherche de virus. L’activation d’un contexte déclaré donnera au sujet des
permissions supplémentaires mais, en contrepartie, la politique de sécurité peut spécifier que
ce sujet aura des obligations à remplir. Le contexte prérequis correspond aux contraintes

18 French summary

spécifiques au domaine d’application, et enfin, le contexte provisionnel permet d’activer des
permissions ou des interdictions en fonction des actions précédemment réalisées.

La décision d’accepter une requête nécessite l’évaluation du contexte. Ceci requiert d’avoir
à notre disposition un certain nombre d’informations pour tester l’activation du contexte.
La liste suivante décrit l’ensemble des informations que le système doit pouvoir fournir :

• Une horloge interne, appelée GLOBAL CLOCK, pour évaluer le contexte temporel;

• l’environnement des utilisateurs et des informations relatives à l’architecture logicielle
et matérielle, pour évaluer le contexte spatial;

• l’objectif de l’utilisateur pour évaluer le contexte déclaré par l’utilisateur;

• une base d’informations, pour évaluer le contexte prérequis;

• l’historique des actions, pour évaluer le contexte provisionnel.

La figure B.2 récapitule la taxonomie des contextes et les informations nécessaires à leur
évaluation.

Context

Global_clock

User-declared
context

Temporal
context

Spatial
context

Prerequisite
context

Provisional
context

Environment Purpose

USER

System database

History

Hardware and software
architecture

INFORMATION SYSTEM

Figure B.2: Taxonomie des contextes et données requises

B.3.4 Conclusion

Nous pouvons, avec le modèle Or-BAC, répondre à une exigence très importante : définir
des autorisations dynamiques, en d’autres termes, des autorisations qui sont activées et
désactivées en fonction de certaines circonstances. Ces dernières sont modélisées par l’entité
Context. Contrairement à la plupart des modèles existants, Or-BAC offre la possibilité
d’exprimer de nombreux types de contextes : le contexte temporel et spatial, les conditions
liées au domaine d’application (prérequis), le contexte provisionnel qui dépend des actions
déjà réalisées, et le contexte déclaré par l’utilisateur.

B.4 La gestion des conflits 19

B.4 La gestion des conflits

Jusqu’à présent, nous avons considéré uniquement des permissions, c’est-à-dire des au-
torisations positives. C’est en fait le cas de la plupart des modèles de contrôle d’accès.
On appelle politique permissive, les politiques qui n’intègrent que des autorisations posi-
tives. Le modèle Or-BAC permet d’exprimer également des autorisations négatives, appelées
également interdictions [Cuppens and Miège 2003b, Cuppens and Miège 2004b]. Une poli-
tique de sécurité qui mêle permissions et interdictions est potentiellement conflictuelle. Un
conflit apparâıt lorsqu’une permission et une interdiction sont appliquées au même triplet
< sujet, action, objet >. Il est alors nécessaire de définir des méthodes de gestion des con-
flits. Comme nous le verrons par la suite, il est possible avec Or-BAC de détecter et de
gérer les conflits au niveau des autorisations concrètes, mais aussi au niveau des autorisa-
tions organisationnelles. Le deuxième cas nous intéresse tout particulièrement et constitue
le principal objectif de notre travail sur ce thème. En effet, notre but est de résoudre les
conflits au niveau organisationnel, en d’autres termes, d’obtenir la garantie qu’une politique
de sécurité organisationnelle n’est pas conflictuelle, et de montrer ensuite que si tel est le
cas, alors peu importe les choix d’implémentation, aucun conflit ne pourra apparâıtre dans
la politique de sécurité concrète. Ainsi, une même politique de sécurité organisationnelle
pourrait être appliquée à des organisations différentes dans des domaines différents tout en
ayant l’assurance qu’aucun conflit n’est possible. De plus, le modèle Or-BAC permet de
spécifier une politique de gestion des conflits paramétrable par l’administrateur de sécurité.

Nous voyons dans un premier temps à quels objectifs répondent les interdictions et comment
elles s’expriment dans notre modèle. Puis, nous expliquons dans la section B.4.2 l’approche
générale pour la gestion des conflits. La définition d’une politique de gestion des conflits est
abordée dans la section B.4.3. Enfin, nous donnons les grandes lignes de la prévention des
conflits dans la dernière section.

B.4.1 Expression des interdictions

Dans le cas de politiques de sécurité simples, l’emploi des autorisations négatives n’est pas
nécessaire. En effet, on suppose alors que la politique de sécurité est fermée (closed policy),
autrement dit, que tout ce que n’est pas permis est interdit. Néanmoins, nous considérons
que les interdictions sont essentielles pour rédiger des politiques de sécurité à la fois claires
et expressives. Tout d’abord, l’emploi de permissions et d’interdictions est assez naturel
pour exprimer un règlement de sécurité. Deuxièmement, dans une politique comportant
un très grand nombre de règles, il est intéressant de pouvoir visualiser immédiatement les
interdictions plutôt que de les déduire des permissions. De plus, les interdictions peuvent
être utilisées comme des exceptions dans une politique de sécurité globalement permissive.
En particulier, dans le cas de l’héritage des permissions, il est possible de se servir des
interdictions pour arrêter la propagation de certaines permissions. Enfin, de nombreux
systèmes supportent les interdictions.

Nous ajoutons au modèle Or-BAC deux nouveaux prédicats : l’interdiction organisationnelle
Prohibition et l’interdiction concrète Is prohibited telles que :

• Prohibition(Organisation, Role, Activity, V iew, Context)

• Is prohibited(Subject, Action, Object)

20 French summary

Comme pour les permissions, les interdictions concrètes sont déduites des interdictions or-
ganisationnelles grâce à une règle de dérivation RG2. Cette règle est obtenue en remplaçant
dans RG1 les permissions par des interdictions (c.f. section A.3). Enfin, il est également
possible de définir un héritage des interdictions.

B.4.2 Approche générale

La détection des conflits effectifs ne peut se faire qu’au niveau concret, c’est-à-dire entre
les autorisations Is permitted et Is prohibited. Un conflit existe s’il existe un sujet s, une
action α et objet o tels que :

• Is permitted(s, α, o) ∧ Is prohibited(s, α, o)

Néanmoins, nous considérons cette approche insuffisante pour deux raisons. D’abord car il
n’est pas possible de donner la priorité à l’une ou l’autre des autorisations sur des critères
choisis. On peut tout juste spécifier que les interdictions l’emportent sur les permissions ou
inversement. Pour cette raison nous associons aux autorisations des niveaux de priorité. De
plus, dans la mesure où les autorisations concrètes varient en fonction des éléments concrets
du système, les conflits ne sont détectés qu’au moment de leur occurrence. Ainsi, nous
associons les niveaux de priorité aux autorisations organisationnelles afin de prévenir les
conflits avant la dérivation des autorisations concrètes.

Nous ajoutons de nouveaux types d’autorisation afin d’introduire les niveaux de priorité.
Nous appelons Permission′ et Prohibition′ les nouvelles autorisations organisationnelles et
Is permitted′ et Is prohibited′ les nouvelles autorisations concrètes. Elles sont de la forme
:

• Permission′(Organisation, Role, Activity, V iew, Context, Level)

• Is permitted′(Subject, Action, Object, Level)

La détermination des niveaux de priorité permet de définir une stratégie de gestion des
conflits. Nous expliquons ce point dans la section B.4.3. La relation entre les anciennes et
les nouvelles autorisations, ainsi que la démarche générale de la gestion des conflits dans le
modèle Or-BAC sont présentées dans la figure B.3. Le schéma est équivalent pour les inter-
dictions. La dérivation des autorisations concrètes sans la gestion des conflits est représentée
par la flèche en pointillés. Les flèches pleines indiquent le nouveau chemin.

Notre approche est constituée des trois étapes suivantes :

• Définition d’une politique de gestion des conflits (cms) afin de déterminer les autorisa-
tions primées.

• Dérivation des autorisations concrètes primées (règle RG1).

• Dérivation explicite des autorisations concrètes effectives (règle ED1).

Le principe est le suivant : la politique de gestion des conflits doit permettre d’éviter tout
ou partie des conflits. Il est ensuite possible de prévenir les conflits résiduels entre les
autorisations organisationnelles primées. Ceci est expliqué dans la section B.4.4.

Etudions tout d’abord les deux dernières étapes. La règles RG’1 permet de dériver les
permissions concrètes primées. Cette règle est présentée dans la section A.3. Les permissions
concrètes primées sont obtenues en appliquant la règle RG’1 de la même manière qu’avec

B.4 La gestion des conflits 21

Permission Permission'

Is_permitted'Is_permitted

cms

ED1

RG'1RG1

Détection et correction des conflits résiduels

Figure B.3: La gestion des conflits dans le modèle Or-BAC

la règle RG1 mais en conservant le niveau de priorité. La règle RG’2 est équivalente à RG1

pour les interdictions.

Finalement la règle ED1 permet de dériver les permissions concrètes effectives :

• ED1: ∀s ∈ S,∀α ∈ A,∀o ∈ O,∀l1 ∈ L,

Is permitted′(s, α, o, l1)∧
¬∃l2 ∈ L, (l1 ≺ l2 ∧ Is prohibited′(s, α, o, l2))
→ Is permitted(s, α, o)

Cette règle signifie qu’il est possible de dériver une permission concrète à partir d’une per-
mission concrète primée s’il n’existe pas d’interdiction concrète primée ayant un niveau de
priorité supérieur, et qui soit appliquée au même triplet sujet, action, objet. La règle ED2

est équivalente à ED1 pour les interdictions concrètes.

B.4.3 Politique de gestion des conflits

Le modèle Or-BAC offre la possibilité à l’administrateur de sécurité de définir sa propre
politique de gestion des conflits. Celle-ci permet de déterminer comment doivent être résolu
les conflits. Afin d’offrir une grande flexibilité nous avons introduit des niveaux de priorité
dans les autorisations. C’est en s’appuyant sur ces niveaux que la cms est définie. En
pratique, créer une politique de gestion des conflits consiste à définir un ensemble L de
niveaux de priorités associé à un ordre partiel et à déterminer comment sont obtenus les
autorisations primées.

Considérons les deux exemples suivants :

cms1 :

• L = {0, 1}
• ∀org ∈ Org,∀r ∈ R,∀a ∈ A,∀v ∈ V,∀c ∈ C,

Permission(org, r, a, v, c)→ Permission′(org, r, a, v, c, 0)

• ∀org ∈ Org,∀r ∈ R,∀a ∈ A,∀v ∈ V,∀c ∈ C,
P rohibition(org, r, a, v, c)→ Prohibition′(org, r, a, v, c, 1)

cms2 :

22 French summary

• L = R et l’ensemble de rôles R est associé à un ordre partiel.

• ∀org ∈ Org,∀r ∈ R,∀a ∈ A,∀v ∈ V,∀c ∈ C,
Permission(org, r, a, v, c)→ Permission′(org, r, a, v, c, r)

• ∀org ∈ Org,∀r ∈ R,∀a ∈ A,∀v ∈ V,∀c ∈ C,
P rohibition(org, r, a, v, c)→ Prohibition′(org, r, a, v, c, r)

La première politique signifie que l’interdiction l’emporte toujours sur la permission. Dans
la seconde politique, le niveau de priorité d’une autorisation est le rôle impliqué dans cette
autorisation. Ainsi, dans le cas d’une hiérarchie de rôle, c’est l’autorisation associée au rôle
de plus haut niveau dans la hiérarchie qui sera privilégié. Ces deux exemples sont assez
simples, mais cette méthode permet de définir des politiques plus complexes. Une politique
de gestion des conflits doit permettre de dériver les autorisations organisationnelles primes
automatiquement, afin d’alléger le travail de l’administrateur de sécurité. Ce dernier peut
néanmoins affecter manuellement un niveau de priorité autorisation par autorisation.

Il faut distinguer deux types de politiques de gestion des conflits. Si la politique assure qu’il
n’y aura pas de conflit, elle est dite efficace (effective) sinon elle est dite faible (weak).
Ainsi, cms1 est une politique efficace, alors que cms2 est faible. En effet, dans ce dernier
cas, un conflit entre une permission et une interdiction portant sur le même rôle n’est pas
résolu.

B.4.4 Prévention de conflits

Si la politique est efficace, alors la gestion des conflits est terminée. En revanche, si elle est
faible, des conflits peuvent encore apparâıtre. Ces conflits pourront être détectés au niveau
des autorisations concrètes. Ceci n’est pas satisfaisant pour deux raisons. En premier
lieu, une telle politique de sécurité n’est pas stable dans la mesure où une mise à jour
au niveau concret, comme par exemple l’affectation d’un nouvel utilisateur dans un rôle,
peut entrâıner l’apparition de nouveaux conflits. En second lieu, la gestion des conflits au
niveau des autorisations concrètes est en contradiction avec l’esprit du modèle Or-BAC.
En effet, Or-BAC est réalisé pour permettre la gestion de la politique de sécurité à un
haut niveau d’abstraction, et ceci afin de s’affranchir des choix d’implémentation. Ainsi, il
serait plus dans l’esprit du modèle Or-BAC de gérer les conflits entre les permissions et les
interdictions au niveau abstrait, autrement dit, entre les faits Permission′ et Prohibition′.
L’objectif étant dans ce cas de pouvoir certifier que s’il n’existe pas de conflits au niveau
des autorisations organisationnelles, alors il n’y aura pas de conflits entre les autorisations
concrètes, et ce, quels que soient les sujets, les actions et les objets.

Ceci est réalisé par la détermination d’une condition particulière. Si cette conditions est
satisfaite pour une permission et une interdiction organisationnelles, alors aucun conflit ne
pourra apparâıtre au niveau concret. L’apparition effective d’un conflit dépend des sujets,
des actions et des objets affectés dans les entités organisationnelles de la permission et de
l’interdiction. Une telle méthode présente des contreparties. En effet, cette condition permet
de prévenir la potentialité d’un conflit. Ainsi, si elle est trop forte, son respect restreint de
manière trop importante la rédaction de la politique de sécurité. Par conséquent, nous nous
sommes attachés dans cette thèse à déterminer et à affiner une condition qui soit la plus
faible possible.

B.5 Le modèle administratif 23

B.4.5 Conclusion

Ces travaux ont permis d’enrichir le modèle Or-BAC de l’expression des interdictions.
De plus, nous avons défini une méthode de gestion des conflits. Cette méthode présente
deux avantages considérables : elle permet de spécifier une politique de gestion des con-
flits, paramétrable par l’administrateur de sécurité, ce qui offre une grande souplesse.
Nous définissons également une méthode de prévention des conflits qui permet de garantir
l’absence de tout conflit dans une politique de sécurité, et ceci quels que soient les choix
d’implémentation.

B.5 Le modèle administratif

B.5.1 Introduction

Au sens large, l’administration d’une politique de contrôle d’accès consiste à créer et mettre
à jour l’ensemble de cette politique. Prévoir des procédures administratives permettant de
mettre à jour la politique de sécurité est tout à fait essentiel. En effet, une fois créée, la
politique perd de sa pertinence au fur et à mesure des modifications apportées au système
d’information. Ainsi, la politique doit évoluer en même temps que celui-ci, afin de toujours
rester en adéquation avec les exigences initiales. Dans le cas d’une politique Or-BAC, il
s’agit par exemple d’ajouter (ou de modifier) des entités organisationnelles (organisations,
rôles, activités, etc), de les structurer en hiérarchies, d’affecter des entités concrètes et de
spécifier des autorisations, etc.

L’administration d’une politique peut être plus ou moins décentralisée. En effet, la gestion
de la politique peut être laissée à la charge d’un unique administrateur de sécurité. Elle
peut aussi être distribuée aux différents responsables de département d’une organisation par
exemple. La délégation est un autre aspect important de l’administration, et n’est que très
peu prise en compte dans les modèles fondés sur les rôles.

Nous présentons ici l’administration dans le modèle Or-BAC, et montrons en quoi elle est
suffisamment flexible pour permettre de résoudre ces difficultés. Nous avons défini un modèle
dédié à l’administration, appelé AdOr-BAC [Cuppens and Miège 2004a], pour Administra-
tion model for Or-BAC. Il comporte entre autres les composants suivants :

• PRA (Permission-Role Assignment) : création et suppression de permissions.

• URA (User-Role Assignment) : habilitation des sujets dans des rôles.

• UPA (User-Permission Assignment) : affectation de permissions à des utilisateurs
(Délégation).

• RHA (Role-Hierarchy Assignment) : création de liens hiérarchiques entre les rôles.

Un des objectifs du modèle AdOr-BAC est de permettre d’administrer une politique de
sécurité Or-BAC en utilisant les entités et les prédicats déjà décrits. En effet, il nous parâıt
important qu’un modèle de sécurité soit auto-administré, autrement dit qu’il ne soit pas
nécessaire d’introduire de nouveaux concepts. Ainsi, les permissions qui autorisent un rôle à
mettre à jour la politique de sécurité doivent avoir la même forme que les permissions stan-
dards. Nous ne rentrerons pas ici dans le détail de tous les composants cités précédemment.
En effet, le principe reste le même d’un composant à un autre. Ainsi, nous nous concentrons

24 French summary

uniquement sur PRA. En revanche nous reviendrons sur la délégation rendue possible avec
le composant UPA.

B.5.2 PRA

Le composant PRA a pour objectif de créer et de supprimer des autorisations organisa-
tionnelles “administratives”. Ces autorisations permettent de spécifier les rôles qui ont la
permission de créer et de supprimer des autorisations (positives ou négatives). Dans PRA,
comme dans les autres composants, l’administration du modèle Or-BAC consiste à distribuer
des capacités4. Commençons notre explication par une comparaison, celle du billet d’avion.

Compagnie aérienne Numéro de vol

Nom du passager Date et heure

Figure B.4: Exemple du billet d’avion

La permission de monter dans un avion se traduit par la possession d’un billet d’avion
correspondant à un certain vol (figure B.4). Une agence de voyage a la permission de
délivrer des billets d’avion ; elle a le droit de délivrer des permissions de prendre des avions.
La permission créée par l’agence de voyage se traduit par la création d’un objet (le billet).

De la même manière, nous considérons dans Or-BAC que la création d’une autorisation
correspond à la création d’un objet au sens d’entité passive du contrôle d’accès. Dans la
mesure où nous désirons qu’AdOr-BAC soit totalement compatible avec Or-BAC, cet objet
est inséré dans une vue créée à cet effet, la vue PRA. Ainsi, nous considérons que la création
d’une autorisation est équivalente à l’ajout d’un objet dans cette vue.

Le billet d’avion comporte plusieurs attributs : le nom de la compagnie aérienne qui re-
connâıtra le droit de voler, le nom du passager qui bénéficie de la permission de prendre
l’avion, le numéro du vol, la date et l’heure qui permettent d’identifier sur quel vol s’applique
la permission, etc.

De la même manière, les objets de la vue PRA doivent comporter plusieurs attributs :

• issuer: désigne l’organisation qui reconnâıt l’autorisation.

• grantee, privilege, target: désignent le rôle, l’activité et la vue concernés par
l’autorisation.

• context: correspond au contexte dans lequel l’autorisation sera activée.

• type: indique le type de l’autorisation. type est dans {positive, negative}.
L’équivalence entre la création d’une permission par exemple et l’ajout d’un objet dans la
vue PRA est exprimée selon la règle suivante :

4Le terme capacité renvoie au mode d’implémentation d’une matrice de contrôle d’accès qui, contrairement

aux listes de contrôle d’accès (ACL), consiste à attacher les accès autorisés aux sujets plutôt qu’aux objets.

B.5 Le modèle administratif 25

• ∀orga ∈ Org,∀pra ∈ O,

Use(orga, pra, PRA)∧
issuer(pra, orgb) ∧ grantee(pra, r) ∧ privilege(pra, a)∧
target(pra, v) ∧ context(pra, c) ∧ type(pra, positive)
→ Permission(orgb, r, a, v, c)

En d’autres termes, accorder la permission à un rôle de créer une autorisation consiste à
donner la permission à ce rôle d’ajouter un objet à la vue PRA. Lorsqu’un rôle r n’a
pas la permission de créer n’importe quelle permission, il faudra créer des sous-vues de
PRA adaptées et n’autoriser r qu’à insérer des objets dans ces vues particulières. On peut
remarquer que l’organisation dans laquelle est émise l’autorisation n’est pas nécessairement
celle dans laquelle l’autorisation sera valable.

Considérons l’exemple suivant où nous désirons permettre à un administrateur admin le
droit d’accorder la permission suivante :

• Permission(departement informatique, operateur,

consulter, fiche client, heures travail)

On définit alors la sous-vue PRA operateur de la manière suivante :

• ∀pra ∈ O,

Use(departement informatique, pra, PRA operateur)
← Use(departement informatique, pra, PRA)∧

grantee(pra, operateur)∧
issuer(pra, departement informatique) ∧ privilege(pra, consulter)∧
target(pra, fiche client) ∧ context(pra, heures travail) ∧ type(pra, positive)

Il suffit ensuite de donner la permission d’ajouter des objets dans cette vue. Ceci est réalisé
avec la permission suivante:

• Permission(departement informatique, admin, assign, PRA operateur, default)

Nous pouvons ainsi administrer les autorisations en utilisant les entités et les prédicats déjà
définis dans le modèle Or-BAC.

De même, l’affectation d’un sujet à un rôle se fait par l’insertion d’un objet dans une vue,
appelée URA. Ce principe est utilisé pour toute l’administration du modèle Or-BAC. En
distribuant les permissions administratives adéquates, il est alors possible de définir finement
le mode d’administration (plus ou moins décentralisé).

B.5.3 Délégation

Le composant UPA est particulièrement intéressant car il permet de mettre en œuvre des
mécanismes de délégation. Cette tâche n’est pas aisée. En effet, tous les modèles fondés sur
les rôles souffrent de l’impossibilité d’affecter des permissions directement aux utilisateurs.
Dans de tels modèles, Or-BAC en fait partie, les utilisateurs obtiennent des permissions en
fonction du ou des rôles qu’ils jouent. Il est donc impossible d’exprimer par exemple que
le rôle “administrateur” peut déléguer, quand il est absent, une partie de ses prérogatives
à un utilisateur particulier, et non à un rôle. S’il délègue une permission au rôle chef de
département par exemple, tous les utilisateurs jouant ce rôle recevront la permission, ce qui

26 French summary

n’est pas souhaitable. Pour ce faire, nous créons une vue UPA qui permet ainsi à un rôle
d’accorder des autorisations à un sujet particulier. Cette vue comporte les mêmes attributs
que la vue PRA mais l’attribut grantee désigne cette fois-ci un utilisateur et non plus un
rôle.

B.5.4 Conclusion

Nous avons associé au modèle Or-BAC un modèle d’administration qui permet pour l’heure
de gérer les principaux aspects d’une politique de sécurité. Chaque tâche administrative est
réalisée en ajoutant ou supprimant des objets dans des vues. Ceci offre un double avan-
tage : le mode de répartition des tâches administratives devient très flexible, et le modèle
administratif est alors totalement compatible avec le modèle Or-BAC. Les permissions ad-
ministratives peuvent alors être gérées par le même système informatique.

B.6 Mise en œuvre

La thèse a également été l’occasion de mettre en œuvre le modèle Or-BAC. Nous évoquons
ici deux réalisations. La première consiste en l’application du modèle Or-BAC dans un
environnement réseau, la seconde au développement d’une maquette permettant de saisir
une politique Or-BAC et d’appliquer la méthode de gestion des conflits.

B.6.1 Application à un environnement réseau

Ce travail [Cuppens et al. 2004a, Cuppens et al. 2004b] consiste à appliquer le modèle Or-
BAC à un environnement réseau avec comme objectif de proposer une méthodologie de haut
niveau pour rédiger des politiques de sécurité réseau. En effet, nous sommes parti du constat
que pour la configuration des firewalls il n’existe que des outils et des langages spécifiques à
chaque matériel.

Nous avons donc interprété les différents concepts de notre modèle dans un environnement
réseau. Ainsi, dans la mesure où une organisation est définie comme une entité qui gère un
règlement de sécurité nous pouvons considérer les firewalls d’un réseau comme des organisa-
tions. Les ordinateurs sont vus comme des sujets qui jouent des rôles (serveur Web, serveur
DNS, machine utilisateur, etc), les services sont comparables à des activités et les hôtes
cibles des flux d’information sont considérés comme des vues. Ceci nous a permis d’écrire
une politique de sécurité réseau à l’aide du modèle Or-BAC.

Cette réutilisation du modèle offre plusieurs avantages. Entre autres, le nombre de règles
est diminué grâce à la définition de rôles. De plus, il est possible de définir des hiérarchies
de rôles et d’activités et ainsi de mettre en place des mécanismes d’héritage permettant de
simplifier la gestion de la politique.

Nous avons ensuite défini, par transformation XSL (XSLT), une méthodologie permettant de
traduire automatiquement la politique de sécurité d’un réseau en script de configuration pour
les différents firewalls qui le composent. Nous nous sommes concentrés pour le moment sur le
firewall Netfilter. Nous avons choisi ce firewall en particulier car le système de branchement
(jump) qu’il offre permet de rédiger une politique en n’utilisant que des permissions et

B.7 Perspectives 27

ainsi de s’affranchir de l’ordre des règles de sécurité. L’étape consistant à ordonner les
règles positives (permit) et négatives (deny) d’un firewall n’est alors plus nécessaire. Nous
projetons de créér d’autres XSLT pour dériver les scripts de configuration d’autres firewalls.

B.6.2 OToKit

Nous avons développé une maquette appelée OToKit (Or-BAC ToolKit) adaptée au modèle
Or-BAC. L’objectif consistait à proposer une interface conviviale permettant de saisir et de
consulter une politique de sécurité Or-BAC et également de détecter et résoudre les conflits.

Le programme est constitué de deux parties. La politique de sécurité est stockée sous
forme de faits et de règles Prolog. Prolog permet également d’implémenter toutes les règles
de dérivation liées à l’héritage, aux contraintes et à la gestion des conflits. L’interface
graphique, dont une impression écran se trouve à la page 144, est réalisée en Java.

OToKit permet ainsi de saisir et de visualiser l’ensemble des éléments qui constituent une
organisation (rôles, activités, vues, contextes) et également de saisir des autorisations posi-
tives et négatives associées aux différents éléments de la politique de sécurité. Grâce à notre
maquette, nous pouvons mettre en évidence tous les bénéfices de l’héritage mais aussi les
effets de bord qui peuvent apparâıtre. OToKit permet également de gérer les conflits en as-
sociant des niveaux de priorités aux autorisations et en détectant, soit les conflits potentiels,
soit les conflits effectifs.

D’autres développements sont en cours comme l’intégration des procédures administratives.
Ceci doit permettre d’administrer une politique de sécurité Or-BAC, en d’autres termes,
d’administrer l’accès même à OToKit.

B.7 Perspectives

De nombreux travaux et études sont encore à réaliser sur le modèle Or-BAC. Nous en-
visageons dans un premier temps d’approfondir la notion d’activité et la sémantique de la
hiérarchie d’activités. L’objectif est de raffiner les activités de haut niveau afin d’offrir la pos-
sibilité de modéliser les flux d’activités (workflow). L’idée est que la réalisation d’une cer-
taine activité nécessite la réalisation en série ou en parallèle de plusieurs sous-activités consti-
tuant autant d’étapes d’un processus global. Une autre piste d’étude consiste à modéliser les
workflows non pas par décomposition des activités mais par le développement de contextes
provisionnels.

Nous travaillons actuellement à l’incorporation des obligations dans le modèle Or-BAC. Nous
pouvons distinguer provisions et obligations. Les provisions sont les actions qui doivent être
réalisées pour activer certaines autorisations. Ceci est modélisé par le contexte provisionnel.
Les obligations, quant à elles, sont des activités qui doivent être réalisées dans le futur. Ceci
implique l’emploi de la logique temporelle, et vise à transformer le modèle Or-BAC non
plus en un modèle de contrôle d’accès uniquement mais également en un modèle de contrôle
d’usage.

D’autres travaux sont également menés pour adapter Or-BAC au monde des Web-services
et en particulier pour définir des politiques de gestion de droits (DRM). Une adaptation à
XML a déjà été mise au point.

28 French summary

Concernant la gestion des conflits, nous devons approfondir l’étude des “conflits contextuels”,
autrement dit, des conflits entre des autorisations présentant des contextes différents. Il
s’agit de déterminer le dénominateur commun entre deux contextes afin d’établir dans quelles
circonstances un conflit a effectivement lieu.

Enfin, du point de vue de l’implémentation, de nombreuses extensions peuvent être développées
autour de l’outil OToKit. En particulier l’intégration du modèle AdOr-BAC, et l’adaptation
d’OToKit pour la rédaction de politiques de sécurité réseau sont en cours de réalisation.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages true
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth 8
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

