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Abstract

The thesis addresses some open problems in the area of efficient transmission of loss-
sensitive and delay-sensitive data over wireless channels. The thesis mainly deals with
coding techniques for multicast systems. Multicast differs from the information theoretic
broadcast channel in that only common information is sent. In point-to-point transmission,
reliability is achieved by means of Automatic Retransmission reQuest (ARQ). Forward Error
Correcting (FEC) codes and ARQ are combined together in order to optimize the trade-off
between reliability and efficiency. This approach is calledHybrid ARQ, (HARQ).

We consider HARQ schemes for point-to-point transmission with modern coding techniques
(Low Density Parity Check codes, LDPC). The theoretical analysis shows that these codes
ideally achieve optimal performance in terms of throughput. However, for practical finite-
length codes, the scheme exhibits a loss in performance. Twodifferent solutions are shown
to recover most of this performance gap. Analysis of the complexity of HARQ schemes with
LDPC decoding shows that a method based on asymptotic analysis (Density Evolution)
yields considerable savings with respect to the other criteria that stop the iterations of the
LDPC decoding.

In a multicast setting, however, HARQ protocols are inefficient. Strictly speaking, they are
not fully scalable, i.e. the throughput goes to zero when thenumber of users increases.
This motivates us to study the throughput per user of these protocols. In particular, HARQ
based on Selective Repeat (SR) or Incremental Redundancy (IR) can be defined to be fully
scalable if we allow for a fractionx > 0 of users that do not decode successfully. We
show that under certain conditions the throughput achievedby the IR protocol equals the
ergodic capacity at the expense of a delay that grows to infinity. Moreover, when the number
of users increases, the performance of IR is identical to performance achieved by a FEC
based system, in terms of delay, throughput and error probability. This makes questionable
the interest of retransmission protocols in a multicast setting.

While in the first part of the thesis we have considered data communications, for which the
relevant performance measure is error probability, in the second part we consider the trans-
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mission of an analog source (for example an image). Existingpractical solutions, mainly
based on Shannon’s separation theorem, are highly inefficient and in particular they are not
robust to channel errors. Only few bits in error at the outputof the channel decoder lead
to catastrophic effects on the reconstruction quality. This requires very stringent conditions
on the performance of the channel code and leads to suboptimal performance in terms of
spectral efficiency.

In a multicast setting, moreover, it is important to design ascheme that guarantees good
performance over a wide range of signal to noise ratio. Different users with different chan-
nel conditions can decode the source with acceptable reconstruction quality. Joint source-
channel coding is a viable solution for robustness and efficiency in this context.

In this multicast environment we analyze and optimize threewell-known strategies in a
comprehensive manner: the first is based on an ideal successive refinement source code,
coupled with a a progressive transmission scheme (time sharing); the second concatenates
the same source encoder with a superposition broadcast coding scheme. These two fully
digital schemes are compared with an optimized Hybrid Digital Analog (HDA) approach
based on bandwidth splitting of the source and the combination of a digital and an “analog”
encoder. By “analog” encoder we mean that the source signal is sent directly on the channel
(with a suitable scaling, in order to meet the transmit powerconstraint) as in conventional
analog amplitude modulation. These schemes are optimized such that the average overall
distortion is minimized subject to both power and spectral efficiency constraints.

Finally, the problem of code construction for the HDA systemis addressed in the last part
of the thesis. Two schemes are proposed.

In the first case all the complexity relies on the quantizer scheme. The quantizer is defined
in such a way that its performance is based on bit error rate (and not frame error rate) at
the output of the channel decoder. We consider an embedded Multistage Trellis Quantizer
(MTQ), based on standard binary convolutional codes. It is shown to achieve performance
close to the theoretical limit and comparable to the best results found in literature. More-
over, thanks to the fact that convolutional codes have non-catastrophic encoder, it is very
robust with respect to channel errors.

The second is consider a very simple quantizer scheme. Data compression and channel
coding are combined and accomplished with a linear code. Here a multilevel compres-
sion scheme based on linear codes (Turbo Codes) is considered. Linear codes provide
compression by exploiting the redundancy at the output of the quantizer. Traditionally the
source/channel coding system is based on the concatenationof the quantizer, a lossless data
compression stage and a standard channel code. Here, these last two stages are replaced by
a single stage based on linear codes. This approach is shown to give remarkable improve-
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ments compared to the traditional solution. This method canbe used in the HDA scheme
when concatenated to entropy constrained scalar or vector quantizers. Moreover, it can
be easily adapted to work with more sophisticated and practical quantizers as Differential
Pulse Code Modulation (DPCM) for transmission of images andit can be generalized to
achieve progressive transmission through embedded quantization.
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CHAPTER 1

Introduction

1.1 CHALLENGES AHEAD FOR W IRELESS COMMUNICATIONS

The demand for new high-speed, reliable, wireless servicesis growing fast. Future wire-
less networks will provide added value by allowing a large variety of services. Real-life
networks require the performance to be compliant with certain quality of service targets in
forms of delay, error probability or fidelity in the reconstruction of the data. Depending on
the applications, different measures of performance may bemore critical than others. For
example data-transmission (web browsing, data transfer, email) is not strictly delay sensi-
tive but require a virtually error free link. Multimedia content (video streaming) can be
more delay sensitive but tolerate some losses, or it can relax the conditions on the delay
and accept some losses as in the case of image transmission. Advanced source and channel
coding is the key technology that allows for the design of a bandwidth efficient transmission
layer [1, 2, 3].

While in the single user case, families of codes exist that achieve capacity for increasing
block-length [1, 2], the multiuser scenario, and in particular broadcast scenario, is still not
so simple. Broadcast channels have been widely studied overseveral years, especially from
the information theoretic stand-point, [4, 5]. Nevertheless, the capacity region for a general
broadcast channel has not been fully characterized yet. Information-theoretic broadcast
channels correspond to systems where one transmitter sendsindependent information to
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different users and possibly some common information. Herehowever we limit ourselves
to a system where the transmitter sends only the common information toall the users. To
differentiate this setting from that of the conventional broadcast channel, we refer to this
situation as amulticastsetting.

As an example consider a multicast application where several users ask a server the same
service. Practically speaking, the server will open a new connection for each user demand-
ing the service. This is clearly inefficient when considering the bandwidth consumption.
In fact, it can happen that when a new user asks the same service, the system refuses to
provide the service because of lack of bandwidth. Schemes that exploits the multicast set-
ting by sharing the bandwidth, are surely more bandwidth efficient but at the expense of a
penalty in the throughput seen by each user.

Hence, one of the challenges of wireless communications is to design bandwidth efficient
systems that satisfy quality of service requirements.

This thesis tackles some open problems in the area of efficient transmission of loss-sensitive
and delay sensitive data over wireless channels in single user and multicast setting.

1.2 CODING FOR DATA TRANSMISSION

1.2.1 Hybrid Retransmissions Schemes in Single User Setting

Data transmission is very sensitive to noise/fading related errors. Therefore, it is essential
that the MAC layer is able to correct deficiencies of the physical layer code. To do so,
Forward Error Correction (FEC) is complemented with a retransmission protocol (Auto-
matic Repeat reQuest (ARQ)) [6]. FEC consists in adding a fixed amount of redundancy
to the data packet allowing the decoder at the receiver side to correct a certain number of
transmission errors. ARQ consists in requesting a retransmission, when the receiver de-
tects a corrupted packet.The gain of using ARQ, beyond the benefit of eventually obtaining
error free packets is to decrease the required operating error rate for physical layer FEC
algorithms, thus effectively lowering the Signal to Noise Ratio (SNR) requirement at the
terminal and access points. However, this gain comes at the price of an added delay due to
retransmissions [6, 7]. A recent trend is the joint optimization between the physical layer
and the MAC layer. An example of such cross-layer optimization can be seen in the joint
design of the FEC and the ARQ. This gives rise to hybrid ARQ (HARQ) schemes where
the decoding function of the physical layer is handled jointly with the combining of re-
transmitted packets (see [6, 7] and references therein). Intype I HARQ, the basic idea is
that multiple disjoint coded versions of the same original packets are transmitted upon each
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retransmission. The code design is such that the message is decodable upon reception of
just a single coded packet. The different copies can be combined at the decoder in order
to better exploit the diversity of the channel and to increase the probability of successful
decoding. Packet combining can be based on hard decision [8,9, 10] or on soft channel
output [11, 12]. Throughout the thesis we refer to the type-IHARQ as the Selective Repeat
(SR) protocol.
Type-II HARQ (also called Incremental Redundancy, (IR)), [13, 14] can be interpreted as a
variable coding scheme where flexibility is realized by increasing or decreasing the coding
rate depending on the channel conditions. The code rate of the first transmission is very high
and whenever the system is asked for a retransmission it sends additional redundancy low-
ering the received rate. Furthermore the received packets are combined in order to exploit
the time diversity of the channel since several coded blocksmay experience independent
fading coefficients. This principle can be implemented by using Rate Compatible Punc-
tured Codes (RCPC) [13] where the transmitter progressively punctures the same “mother”
low-rate code. Moreover, since the first transmission is always made using a very high rate
code, in bad channel conditions, a retransmission always occurs and the delay is penalized
[15, 16, 17].

An information-theoretic approach to study simple HARQ protocols over a slotted multiple-
access Gaussian channel with fading is given in [18]. There,the authors analyze the
throughput and average delay as well as the asymptotic behavior with respect to various
system parameters. In [13, 14, 19, 20] rate compatible punctured convolutional codes are
used in the IR scheme. The transmission starts with the highest code rate and additional
redundancy is sent whenever requested. In [21] the authors suggested the use of Turbo
codes [1] for type-II HARQ protocols where the incremental redundancy can be obtained
by puncturing the parity bits.

1.2.2 Hybrid ARQ with LDPC

Recently, we have seen increasing interest in the class of Low Density Parity Check (LDPC)
codes [2, 22, 23, 24, 25]. Together with the particular tradeoff offered by Hybrid ARQ
techniques, this motivates us to analyze the throughput of incremental redundancy schemes
with this class of codes.

LDPC codes were first studied by Gallager in his thesis [2], where he introduced an iterative
message passing decoding technique that approximates Maximum Likelihood (ML) decod-
ing. In fact, ML decoding becomes too complex for LDPC codes as the block length grows,
while the message passing algorithm, also calledSum-Product Algorithm(SPA) [25, 26],
has a complexity per iteration that is linear in the block length.
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The term “low density” refers to the fact that the number of1’s in each row of the parity
matrix is small, in particular linear in the block length1. These codes exhibit a threshold
phenomenon: as the block length tends to infinity, an arbitrarily small Bit Error Rate (BER)
can be achieved if the SNR is larger than a certain threshold [22]. Otherwise, the BER is
bounded away from zero for any number of decoder iterations.

The idea in SPA is to calculate approximate marginala posterioriprobabilities by applying
Bayes’ rule locally and iteratively. In the case when the graph representing the code has no
cycle, the SPA computes exact marginal a posteriori probabilities.
The asymptotic performance of the message-passing decoderand in particular of the SPA,
are evaluated by using a method calledDensity Evolution(DE) [27, 25, 22, 24], that allows
to compute the value of the threshold2. The concentration theorem [22] guarantees that the
threshold computed via density evolution coincides with the exact asymptotic threshold in
the limit of large block-length.

DE gives information about the performances in terms of BER.However, the computation
of the throughput is based on the frame error rate (FER) more than the BER. It is also known
that these codes exhibit very good waterfall performance interms of BER, but bad results in
terms of FER [28, 29] unless countermeasures are adopted such as concatenation or special
graph constructions. Therefore the following issues ariseregarding a practical design of
LDPC-based HARQ protocols:

• Analysis of the behavior of ideal LDPC codes (infinite block length) and generaliza-
tion of DE under HARQ protocols and block fading channels.

• Analysis of the behavior of practical (finite length) LDPC compared with infinite
length counterparts.

• Definition of good countermeasures in order to have such codes nicely adapted to the
HARQ framework, thus obtaining close to ideal performance.

• Finally, should more sophisticated constructions based onspecial graph design [30,
31, 32, 33] be considered for practical implementation ?

Some of these problems are addressed in chapter 2.

1For random linear codes the expected number of1’s is proportional ton2, [22].
2The threshold is defined as the worst channel parameter such that the message distribution evolves in a way

that the associated probability of error converges to zerosas the number of iterations goes to infinity.
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1.2.3 Coding and Retransmission for the Multicast Channel

In the downlink of wireless networks, the transmitter mostly deals with multiuser situations,
where multiple terminals need to be served at once in an efficient and reliable way. This
situation is in general referred to as “broadcast” channel,[34, 35, 36, 37]. Here, however,
we limit the analysis for the multicast scenario where only common information is sent
to all the users. In this case, existing retransmission protocols are in general not efficient,
[38, 39, 40, 41]. Because the HARQ has to adapt to the conditions of all the users in the
cell including the worst one, the retransmission protocol can possibly be solicited many
times and the effective coding rate of the system will be verylow. This means that strictly
speaking these kinds of protocols are not scalable with the number of users.

Very recently and independently from us, Gopala et al. [42] have studied retransmission
protocols in the same multicast setting as here. The authorsanalyze the scaling low of
the throughput and delay with respect to the number of users,when SR and IR HARQ
schemes are considered. However, when they analyze the SR protocol, they assume perfect
channel state information both at the transmitter and at thereceiver, while the IR scheme
does not require channel state information. They compare these two schemes with a method
based on cooperation among users. They show that the three policies have progressively
increasing complexity but also better throughput/delay scaling lows. They show that the SR
scheme achieves optimal throughput scaling low when the transmitter targets the user with
the “average” conditions in the cell.

In our case, for both IR and SR, the transmitter is not informed about the channel coef-
ficient of each user, since the feedback is very easy and givesonly information about the
correctness of the received packets.

In this scenario, multiple open issues arise again, which weaddress in chapter 3:

• How can these protocols be made “fully scalable? By “fully scalable we means that
the delay does not increase with the number of users.

• How do these protocols scale with the number of users? What isthe limiting behavior
of these protocols with respect to system or design parameters?

• An open issue is whether these retransmission protocols areviable solutions for the
multicast setting.

These problems are tackled in chapter 3.
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1.3 CODING FOR M ULTIMEDIA SOURCES

Modern telecommunications very often involve the transmission of analog sources over
digital channels. Paramount examples are digital TV, audiobroadcasting (DTV, DAB) and
transmission of still and moving pictures over wireless radio channels in 3G (and beyond)
mobile devices.

In contrast to the error-sensitive data applications mentioned before, such applications can,
by nature, be much more delay-sensitive (especially streaming applications), but at the
same time more loss-tolerant (within the requirements in terms of quality of reconstruc-
tion). Other multimedia applications can have more relaxedconstraints on delay, such as
for instance the transmission of images over mobile devices.

In such setting, bit-error probability at the output of the channel decoder is no longer a good
measure of performance. On the contrary, the end-to-end distortion is more representative
of the quality of transmission.

In some lucky sporadic cases, such as a Gaussian source over aGaussian channel, both
with the same bandwidth, it is well-known that “analog transmission” is optimal [3, 45]. By
analog transmission we mean that the source is scaled in order to meet the transmit power
constraint and then it is sent over the channel. This can be seen as regular analog AM. Such
conditions require mainly a particular match between channel and source. For example it
requires equal source and channel bandwidth. The source bandwidth is in general given by
nature while the channel bandwidth has to respect certain requirements. Therefore, it can be
interesting to try to maximize the spectral efficiency, given as the ratio between source and
channel bandwidth, or equivalently try to optimize to system to meet a particular spectral
efficiency. In order to achieve high spectral efficiency (> 1), in general the source must be
compressed, and at the same time protected against errors introduced by the channel [3, 46].

1.3.1 Lossy Transmission over Compound Channel

Consider a Block-Fading Additive White Gaussian Noise channel (BF-AWGN) where the
channel gain is random but constant over the duration of a codeword. Under the assumption
that the transmitter is not informed about the channel fading of the user but only of its
statistic, the BF-AWGN channel can model a broadcast channel with infinite users each of
one experiencing a different fading coefficient. Hence, given a certain statistic of the SNRs
(or of the users), it is desirable to design a single transmitter that performs “well” for a wide
range of SNR.

While analog schemes show a gradual change (graceful degradation) in the received signal
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quality with changes in SNR, digital schemes suffer from the“threshold effect”. The system
can be designed to achieve asymptotically optimal performance at a given target SNR, but
they perform poorly for SNR below this target and they do not take advantage of better
channel conditions when the actual SNR is above the target SNR.

In general digital schemes are designed based on Shannon’s separation principle that states
that no loss in performance is incurred when designing source and error coding schemes
separately [47, 46]. However, this does not take into consideration complexity and delay
and it does not hold for non-ergodic scenario or multiuser setting as considered here. Con-
sequently, much research has been done based on theJoint Source and Channel Coding
(JSCC) principle that links and jointly optimizes the source and the channel strategy. In
[48, 49] and references therein, the authors have shown thatjoint source-channel codes can
solve the problem above for fixed complexity and delay and they are more robust to change
in channel noise.

Consider the case when the transmitter sends the same analogsource to all the users each of
one having a different channel condition. Possibly, the user, by exploiting the “goodness” of
its channel, can reconstruct the source at different quality levels. The key issue is to define
one transmission scheme that works as close as possible to the theoretically achievable limit
for a wide range of SNR, i.e for a large number of users.

In this setting, different well known transmission strategies can be analyzed. The easiest
scheme is based on time sharing, also called “progressive transmission” of information. The
source is splitted into independent layers of information each mapped onto a different chan-
nel codeword possibly with different channel coding rate. The codewords are sent trough
the channel by using a time sharing strategy. The splitting of the source into independent
layers can be implemented by using anideal successive refinement[50, 51, 46, 52] source
encoder. The concept of successive refinement consists of first approximating the data by
using a few bits of information and then iteratively improving the approximation as more
and more information is supplied. Under particular condition on the source [51], the suc-
cessive refinement source code achieves optimal performance (the rate-distortion function)
at each level. Here we consider such an ideal successive refinement source code.

In [34] it is shown that a superposition-based transmissionstrategy lies on an achievable
rate region of the broadcast channel, greater than the region achieved by time-sharing. Such
a scheme consists in superimposing a low-rate information for the ‘bad’ user into a higher-
rate information that can be decoded only by the users with better channel conditions. The
same ideal successive refinement source encoder can be coupled with the superposition
strategy where each layer of information is mapped into a different channel codeword. The
codewords are then superimposed and transmitter over the channel.
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The third strategy considers an hybrid system that couples the benefits of a digital sys-
tem, with graceful degradation in reconstruction quality offered by an “analog” (uncoded)
scheme. These kind of schemes, called Hybrid Digital-Analog (HDA), have been analyzed
from a theoretical point of view in [53, 54, 55, 56]. In [56], for example, the authors design
HDA schemes that achieve for one target SNR asymptotically optimal performance. How-
ever in a multiuser environment, it seems more interesting to optimize the system in view
of having a performance level (average distortion) as smooth as possible over the range of
possible SNR values.

Given this background, some issues exist that should be addressed:

• The definition of an optimization problem for the theoretical analysis of the three
transmission strategies described before (time sharing, superposition, HDA) is a key
issue. The optimization problem is based on the minimization of the average distor-
tion, where the average is done over the distribution of the SNRs. This becomes a
power and rate allocation problem that allows for comparisons in terms of distortion
versus instantaneous signal to noise ratio.

• The definition of algorithms that find the optimal allocationpower and rate policies
subject to total power and spectral efficiency constraints give guidelines for the prac-
tical construction of these systems.

• A big issue is, of course, the construction of codes (source code/channel code) that
can approach the theoretical limit.

These problems are addressed in chapter 4.

1.3.2 Separated vs Joint Source-Channel Coding: Code Construction

Among the strategies briefly described in the previous section, the HDA scheme gives the
best results, in the sense that it achieves smooth reconstruction quality for a wide range of
SNRs. These schemes are made of a digital part (source-channel encoder) superimposed
with the analog (uncoded) signal. We refer to the digital part as to “tandem encoder”. The
result of the optimization problem is the SNR threshold at which the digital code should
be design to work. The analytical development considers an ideal source and channel code
when the rate-distortion and the capacity-cost function are achieved. However, a key open
problem is the construction of codes that work as close as possible to the theoretical limit.
The tandem encoder can be designed separately or jointly.
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Let us consider, first, the standard separated approach. In order to allow source compres-
sion, practical source encoders involve some linear transformation (e.g., Fourier or Wavelet
subband decomposition), followed by some segmentation anddecimation [3, 57]. Then
the analog data may be quantized and the sequence of quantization indexes is lossless-
compressed by an “entropy coding” stage, usually implemented by some form of adaptive
arithmetic coding [58]. The best results known so far, in terms of quantization of mem-
oryless sources are found in the family of Entropy Constrained Trellis Coded Quantizers
(ECTCQ) [59]. These schemes uses the expanded signal set [60] and set partitioning ideas
from coded modulation. The probability with which the points in the code alphabet are
selected is not uniform. Hence, rate improvements can be achieved by concatenating this
scheme with an arithmetic encoder and eventually a channel code to protect against the ef-
fects of the channel. Because of the variable-length codingstage, the source decoder is not
robust to residual channel errors and a few wrong bits at its input may cause intolerable
degradation of the reproduced source. This is the main weakness of Shannon’s source-
channel separation theorem. Moreover, the separation theorem does not generally hold in a
non-ergodic environment such as the slowly fading AWGN channel. This leads to the analy-
sis of the joint approach (JSCC), that links and jointly optimizes the source and the channel
strategy. In [48, 49] and references therein, the authors have shown that JSCC can solve the
problem above for fixed complexity and delay and they are morerobust to change in chan-
nel noise. Different approaches for JSCC has been proposed so far, but we can summarize
them mainly into two groups. The first tries to optimize the quantization step by deleting all
the redundancy of the source. These schemes can be coupled with standard channel codes.
The main issue here is to construct quantizer schemes such that the reconstruction quality
relies on BER more than FER, i.e few bits in error at the outputof the channel decoder
do not have a catastrophic effect on the reconstruction quality. Examples of this group are
Channel Optimized Scalar/Vector Quantizer [61, 62, 63].

The other group of JSCC schemes considers very easy quantizer scheme and the data com-
pression and channel coding stage is performed jointly. This last stage achieves compression
ratio by exploiting the residual redundancy at the output ofthe quantizer. However, the de-
coder needs the a priori information about the statistic of the indexes at the output of the
quantizer. The joint data compression-channel coding stage can be efficiently implemented
via linear codes, as shown in [64, 65].

The following open problems are addressed in chapter5.

• Existing practical tandem encoder are not very close to the theoretical performance.
However, source codes (ECTCQ) and channel codes (Turbo codes, LDPC) that per-
form very close to the ideal rate-distortion or capacity-cost functions exists. Their
potential is still to be explored when jointly optimized.
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• The design of non-catastrophic quantizer, i.e robust to channel errors is a key issue.
A challenging features is the independence of performance from the source statistic.
In practice, in fact the statistic of the source is not precisely known.

• Data compression/channel coding schemes based on linear codes have, as well, a big
potential. An open problem is the design and optimization ofcodes for this compres-
sion/protection method.

• An open issue is whether soft reconstruction can be helpful when the compression
method based on linear codes is considered.

• Parallel Concatenated Turbo codes are particularly suitedfor JSCC because by na-
ture they are systematic and different coding rates can be achieved by puncturing
the same mother code. However, analytical optimization is not straightforward. It
could be interesting to optimize families of codes like LDPCs or Irregular Repeat
and Accumulate (IRA) codes [66], where DE reveals all its advantages. In this case,
modification of DE to take into account the compression scheme should be carried
out.

• The analysis and study of the performance achieved by the best ECTCQ coupled with
compression scheme based on optimized IRA codes is of great interest.

• An interesting point is to adapt this compression scheme in such a way that it can pro-
vide a graceful degradation of performance and thus can be adapted to the multiuser
setting, also without the use of the analog signal.

1.4 CONTRIBUTIONS

We summarize our results around the two following axes of research: HARQ-based trans-
mission over wireless channels and efficient transmission of multimedia content. The con-
tributions in terms of publications are specified.

Throughout the chapters less intuitive acronyms are repeated, for the sake of clarity.

1.4.1 HARQ-based Transmission over Wireless Channels

(i) Chapter 2 .
The work is mainly inspired by [18]. By usingRenewal Reward[67] theory, the throughput
of LDPC codes ensembles with incremental redundancy protocol over slow fading channel
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is studied, and the density evolution method is extended to the case of block fading chan-
nel and general retransmission protocols. The analysis shows that assuming infinite block
length, LDPC codes yield almost the same performance as random binary codes.

As expected, the throughput performance of practical finite-length LDPC codes show a con-
siderable loss with respect to the ideal behavior of the ensemble. Two original methods are
presented and are shown to recover most of the gap between ideal performance and practical
results. The first method is based on a simple special graph arrangement and the second is
based on an outer selective-repeat protocol acting on smaller packets of information bits.

Finally we analyze the complexity of the IR protocol with LDPC codes. When a packet hits
a deep fade, the iterative decoder may perform many iterations without converging to small
error probability. This is a waste of computation time and battery energy. Ideally, it would
be useful to trigger the iterative decoder only if the probability of successful decoding is
high. A method based on the asymptotic analysis (density evolution) is shown to provide an
asymptotic region of convergence of the IR scheme and provide some saving in complexity
compared to standard stopping criteria.
This work led to the publications [68, 69, 70, 71] and two patents .

(ii) Chapter 3 .
In this chapter the scalability of the HARQ protocol is addressed. A multicast scenario is
considered, where each user spans a fixed number of fading blocks. The results are given
in terms of throughput per user vs number of users, when the IRand SR protocols are
considered. These protocols, strictly speaking, are not scalable, i.e the average delay grows
to infinity as the number of users augment. HARQ (SR or IR) can be madefully scalable if
we allow for a fractionx > 0 of users that do not decode successfully. One of our results is
that the IR scheme achieves asymptotically, for large number of users, performance greater
or equal than the ergodic capacity of the system for fixed positive x. For the SR protocol,
the optimal performance is always achieved with finite average delay, but at the expense of a
penalty in throughput compared to the IR scheme. Moreover weshow that the performance
of IR and of FEC coding are identical in terms of delay, throughput and error probability, in
the limit of a large number of users. Finally we target a streaming application and we give
a simple practical example on the requirement in terms of buffer size at the receiver, based
on the Birth-Death queue process. A part of this work gave rise to [72].
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1.4.2 Efficient Transmission of Multimedia Content

(iii) Chapter 4 .
In this chapter, we define the optimization problem for threesystems. The first is obtained
by coupling an ideal successive refinement source coder withstrategy based on time shar-
ing and the second by coupling the same source encoder with a transmission scheme based
on superposition. These two fully digital schemes are compared with the optimized HDA
scheme based on superposition of the digital and the analog part. The function to be min-
imized is the average distortion under the transmit power constraint and total spectral ef-
ficiency. The algorithms gives the optimal power and rate allocation based on these con-
straints, as well as the optimal number of layers. We suppose, ideally, that the successive
refinement scheme is able to provide independent levels of information and that it achieves
the rate-distortion function at each level. For the sake of theoretical tractability ideal chan-
nel codes are considered. However, the algorithms can be generalized to practical schemes
where the source and channel encoder are not ideal.
This work is presented in [73, 74].

(iv) Chapter 5 .
This chapter deals with the construction of practical coding schemes that approach the lim-
its found in the previous chapter. We analyzed and compare two different schemes. The first
belongs to the class of robust quantizer schemes that performs also data compression. Be-
longing to this class, we analyze a Multistage Trellis Quantizer (MTQ) based on a spherical
dithering and on the scaled version of a “mother” convolutional (de)coder. The idea is to
approximate the behavior of spherical codes with the convolutional code. In fact Lapidoth
in [75] has shown that scaled spherical codes with minimum distance encoding arerobustin
the sense that they achieve the Gaussian rate distortion bound under very mild conditions on
the source. This scheme, in the noiseless case, achieve performance close to the Gaussian
rate distortion bound, independently from the statistic ofthe source. It is robust to channel
errors because it inherits the property of the convolutional encoder to be non catastrophic.
Moreover, its output is almost non redundant and thus, it is suited for concatenation with
powerful standard Turbo codes or LDPC.

The second scheme that we analyze is based on the joint implementation of data com-
pression and channel coding. In particular this can be achieved via linear codes as Turbo
codes. In the following we refer to it as Multilevel Turbo COMpression (M-TCOM). The
M-TCOM exploits the residual redundancy of the index at the output of the quantizer. Here,
we consider a simple Entropy Constrained Scalar Quantizer (ECSQ) whose output indexes
are redundant. The redundancy of these indexes is used as a-priori information to achieve
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compression rate and drive the turbo decoder, this is called“source aided channel decoding”
[64]. The indexes belonging to aQ−ary are mapped through a multilevel decomposition
(bit planes) onto turbo codes that act on a per-level basis. The systematic bits of each turbo
codes are punctured, together with a certain amount of parity bits in order to achieve the
desired rate. A time-sharing approach is used for transmission over the channel.

This scheme outperforms standard concatenations that consider quantizer, entropy encoder
and standard channel code. Results are given in terms of codeoptimization (polynomial
generator of component convolutional codes and puncturingpattern). However, the analysis
of ECTCQ concatenated with turbo compression and IRA codes,as well as the analytical
optimization of such codes, is an on-going work.

This approach, by nature, can handle progressive transmission of information. Thus, by
choosing theQ-ary to binary mapping such that it is embedded, the source can be recon-
structed with different levels of distortion.

This scheme and the design of the coding rate are extended to the case of practical trans-
mission of images over the wireless link. This is shown to give remarkable results when
coupled with a modified Differential Pulse Code Modulation quantizer defined by Kim et al
[57].
This work has partly led to [76, 77]. A comprehensive analysis and summary of the results
as well as the on-going work contributes to [78]. The extensions to embedded quantization
and the application to DPCM-based quantizer scheme contributes to [79].
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CHAPTER 2

Throughput of Hybrid ARQ protocols with LDPC
Codes

2.1 INTRODUCTION

This chapter is focused on the concept of reliability in the context of packet data trans-
mission. Typically, data transmission is not strictly delay-sensitive but requires a virtually
error-free link. In order to provide such level of reliability over wireless channels, affected
by propagation impairments such as fading, ARQ schemes can be combined with channel
coding (HARQ). In brief, when fading varies slowly over the duration of a codeword, coding
takes care of the channel noise while retransmissions take care of bad channel conditions
(deep fades).

This work is mainly inspired by [18] where the authors analyze, from an information the-
oretic point of view, throughput and average delay performance of some HARQ protocols
over a slotted multiple access Gaussian channel with fading. The analysis is carried out by
considering Gaussian codes for the shake of mathematical tractability.
Here we consider a point-to-point downlink scenario and we analyze the performance of
HARQ schemes with the powerful class of LDPC codes, over block fading channel. Al-
though very idealized, the simple block-fading model captures several aspects of wireless
communications over fading channels (see the thorough discussion in [80], [81]). For ex-
ample, this model applies to narrow-band transmission overa multipath fading channel with
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slow frequency hopping (e.g., a GSM/GPRS system [82]). As illustrated in [80, 81], when
fading is slowly-varying with respect to the duration of a codeword, each codeword expe-
riences a fixed number of fading states (sayM values). Under the realistic assumption of
large number of dimension per blockL, and smallM ,1 the channel is notinformation stable
and outage capacity2, rather than standard ergodic capacity, describes the limits of reliable
communications.

The analysis of the Incremental Rredundancy (IR) scheme with LDPC code ensembles
with iterative belief-propagation decoding shows that, assuming infinite block length, LDPC
codes yield almost optimal performance.

Unfortunately, practical finite-length LDPC codes incur a considerable performance loss
with respect to their infinite-length counterpart. In orderto reduce this performance loss,
two effective methods are proposed : 1) using special LDPC ensembles designed to provide
goodframe-error rate(rather than just gooditerative decoding threshold); 2) using an outer
selective-repeat protocol acting on smaller packets of information bits. Surprisingly, these
two apparently very different methods yield almost the sameperformance gain and recover
a considerable fraction of the optimal throughput, thus making practical finite-length LDPC
codes very attractive for data wireless communications based on incremental redundancy
HARQ schemes.

In the last part of the chapter, the analysis of the complexity of HARQ scheme coupled with
Belief Propagation decoding is carried out. When a packet hits a deep fade, the iterative
decoder may perform many iterations without converging to small error probability. Even-
tually, a decoding failure is declared and a retransmissionis requested. Therefore, when
such event occurs, the iterations represent wasted computation time. Ideally, it would be
useful to detect quickly whether the packet is likely to be correctly decoded or not, and
trigger the iterative decoder only if the probability of successful decoding is high. While
this is very easily obtained in simple ARQ protocols, where each packet is independently
encoded and decoded and each retransmission is treated as a newly received packet, it is not
so obvious in more sophisticated HARQ schemes that make use of packet combining [11]
or incremental redundancy. In fact, when a data packet is LDPC-encoded and the resulting
codeword is sent across the channel on a single fading block,it is sufficient to check if the
instantaneous signal-to-noise ratio (SNR) at the receiveris larger than the LDPC iterative
decoding threshold [22, 23], to know if the packet can be decoded successfully with high
probability. On the contrary, if a codeword is transmitted over, say,m fading realizations,

1For example, in GSMM = 8 andL ≈ 100, and in64kbps downlink reference data channel for UMTS
data-transmission modes, codewords are interleaved overM = 2 frames, and each frame may contains up to
≈ 1000 dimensions [83].

2Outage capacity is defined as the maximum information rate that can be achieved in any fading condition
during non-outage
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we would need anm-dimensional region of convergence such that if the SNR vector is in
this region, then the iterative decoder is successful with high probability. Characterizing
such multidimensional region of convergence for a given LDPC code and iterative decoder
is not an easy task in general. A simple method to compute implicitly an approximatedre-
gion of convergence of the belief-propagation decoder for agiven LDPC code is presented.
This method is based on the use of Density Evolution (DE). It is possible then, to check very
efficiently if the vector of received SNRs is such that successful decoding is expected with
high probability. Then, the iterative decoder is triggeredonly if the vector of received SNRs
is in the region. This reduces the expected complexity of thedecoder, with very important
savings in both computation time and battery energy.

2.1.1 Summary of the Contributions

• Analysis of the throughput of IR schemes with infinite lengthLDPC codes and exten-
sion of density evolution method to the case of block fading channel and IR scheme.

• Countermeasures to recover the gap between the performanceof infinite length LDPC
ensemble and that achieved by finite length practical codes.

• Analysis of the complexity of IR scheme with Belief Propagation decoding.

• Definition of a approximate convergence region to lower the complexity of the de-
coder

2.1.2 Organization of the work

The rest of the chapter is organized as follows: in section 2.2 the system model and the
retransmission protocol is introduced. Section 2.3 recalls the throughput analysis based on
Renewal-Reward theory, while in section 2.4.2 and 2.5 the computation is particularized for
random binary and LDPC codes. Section 5-22 give results in terms of throughput achievable
by LDPC when ideal conditions are considered (infinite blocklength) and in section 2.7 two
methods to fill in the gap between finite length and infinite length LDPC codes are given.
The results are shown in section 2.8. Finally the complexityof LDPC decoding under IR
retransmission protocol is analyzed in section 2.9 and section 2.10 concludes the chapter.
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2.2 PROTOCOL AND M ODEL USED

The system is composed by one transmitter and one receiver. Time is divided intoslots
each of durationT . In each slot the transmitter sendsL ≃WT dimensions, whereW is the
two-sided signal bandwidth and we assumeWT ≫ 1. The fading is considered slowly time
varying, in particular constant block fading on each slot. Moreover the channel gains over
different slots are assumed statistically independent (figure 2-1). Denotexs the transmitted

m = 4

Current Time: 
Codeword 2
Generation Time

Generation  Time 

Codeword 1
Decoding of 

Codeword  1

Fig. 2-1. Model representing the division of the codewords in bursts.

signal,ys the received signal andνs the background noise, during slots,

xs = (xs,1, xs,2, . . . , xs,L)

ys = (ys,1, ys,2, . . . , ys,L)

νs = (νs,1, νs,2, . . . , νs,L) (2-1)

The noise is assumed circularly symmetric Gaussian with i.i.d components with variance
1. The energy per symbol is constant and given by

[
‖xs,l‖2

]
= 1. The fading coefficient is

normalized so thatE[|cs|2] = 1. The average received SNR is given byΓ
∆
= Es/N0. For

later use, we define also the fading power gainαs
∆
= |cs|2 and the instantaneous received

SNR over slots, βs
∆
= αsΓ. The received signal over one slot is given by:

ys =
√

Γ cs xs + νs (2-2)

In the following we suppose that the decoder has a perfect knowledge of the channel gain
cs and of the SNRβs.

The HARQ scheme under analysis is shown in figure 2-2. Roughlyspeaking, the transmitter
keeps sending additional coded symbols (redundancy) untilsuccessful decoding is achieved.
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For this reason, it is referred to as incremental redundancyprotocol. The transmitter encodes
information messages ofb bits by using a channel code with codebookC ∈ C

n of length
n = LM and coding rateR = b/n bit/symbol. The codewords are divided inM blocks
of lengthL symbols. Each block is sent over one slot. LetCm denote the punctured code
of lengthLm obtained fromC by “deleting” the lastM − m blocks. Without loss of
generality, we enumerate the slots ass = 1, 2, . . . ,M . In order to transmit the current
codeword, the transmitter sends the first block ofL symbols on slots = 1. The receiver
decodes the codeC1, by processing the corresponding received signaly1. If decoding is
successful, a positive ACKnowledgment (ACK) is sent on a delay-free error-free feedback
channel, the transmission of the current codeword is stopped and the transmission of the
next codeword will start in the next slot (say,s = 2). On the contrary, if a decoding
error is detected, a Negative ACK (NACK) is sent back and the next block of the current
codeword is transmitted on slots = 2. In this case, the receiver decodesC2 by processing
the received signal{y1, y2} and the same ACK/NACK procedure is repeated, until either
successful decoding occurs, or allM blocks of the current codeword are transmitted without
successful decoding (see figure 2-2).

If successful decoding occurs afterm ≤M blocks, the effective coding rate for the current

codeword is r
m bit/symbol, where we define the rate of the first block asr

∆
= b/L. There-

fore, the IR protocol implements easily an adaptive rate scheme that takes advantage of
good instantaneous channel conditions. The throughput of the IR protocol is defined as the
average number of bit/s/Hz successfully received. As far asthe throughput is concerned, it
is irrelevant whether codewords not successfully decoded afterM blocks are retransmitted
in some successive slots or if they are just discarded [18]. On the contrary, the packet loss
rate and the average delay of the system are affected by the policy for handling decoding-
failures. In general, for some information packet arrival model and some delay constraint
we might seek a policy minimizing the delay subject to a packet loss probability constraint.
This topic is out of the scope of this work and, for simplicity, we shall assume that the trans-
mitter has an infinite number of information packets available (no packet arrival process)
and applies the IR procedure to the current packet until decoding is successful or until a rate
constraint violation happens.

2.3 THROUGHPUT ANALYSIS

In order to study the throughput the following optimistic assumptions are taken into account:

• The transmitter has an infinite number of messages to be sent.

• The ACK/NACK channel is delay and error free.
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Fig. 2-2. Protocol HARQ
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• The channel power gainsαs are i.i.d random variables for all the slots.

The throughput, expressed in bits per second per hertz is given by:

η = lim
t→∞

r(t)

t
= (2-3)

wherer(t) = b(t)
L , t counts the number of slots andb(t) the number of information bits

successfully decoded up to slott. As in [18] the throughput can be expressed using the
Renewal-Reward Theorem, [67]. The eventE = {The user stops transmitting the current
codeword} is recognized to be arecurrent event.

A randomrewardR is associated to the occurrence of the recurrent event:R = r b/s/Hz
if transmission stops because successful decoding andR = 0 b/s/Hz if it stops because at
step M it is not possible to successfully decode (violation of the rate constraint). Applying
the Renewal Theorem we obtainη = E[R]

E[τ ] whereτ is the random time, expressed in number
of bursts, between two consecutive occurrences of the recurrent event. It is referred to as
inter-renewal time. Define the eventAm = {successful decoding withm transmitted
bursts}, andq(m) as the probability of having the first successful decoding atstepm. The
probabilityq(m) can be expressed as:

q(m) = Pr
(
A1, A2, . . . , Am−1, Am

)

= Pr
(
A1, A2, . . . , Am−1

)
− Pr

(
A1, A2, . . . , Am

)

= p(m− 1) − p(m) (2-4)

with p(m) = Pr
(
A1, A2, . . . , Am

)
= 1 −∑m

i=1 q(m). A rewardR = b is obtained
when successful decoding occurs. This happens at stepm-th with a probabilityq(m). It
follows that

E[R] =

M∑

m=1

r q(m) = r

M∑

m=1

q(m) = r [1 − p(M)] (2-5)

The inter-renewal time is a random variable that takes the valuesm with probability q(m)
for m = 0, . . . , M . In the casem = M the transmission can stop not only because of
successful decoding (it occurs with probabilityq(M)) but also because of the rate constraint
(the decoding is not successful but the process stops because the complete codeword has al-
ready been sent). This occurs with probabilityp(M). Finally the probability mass function
is given by

fτ (m) = Pr(τ = m) =

{
q(m) if m < M,

q(M) + p(M) if m = M.
(2-6)
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It follows that

E[τ ] =
M∑

m=1

mq(m) + M p(M)

=

(
M∑

m=1

mp(m− 1) −
M∑

m=1

mp(m) + M p(M)

)

=

M−1∑

m=0

p(m) = 1 +

M−1∑

m=1

p(m) (2-7)

where the last step follows after some algebra and by settingp(0) = 1. Finally the through-
put has the following expression

η =
r (1 − p(M))
∑M−1

m=0 p(m)
= RM

1 − p(M)

1 +
∑M−1

m=1 p(m)
(2-8)

The average delay (in slots) can be obtained either by simpledirect calculation, or by notic-
ing that the IR scheme where, in the presence of a decoding failure afterM slot, the proto-
col is reset and the current codeword is transmitted again, corresponds to a newly defined
renewal-reward process with deterministic rewardRM . Therefore, from (2-8) it follows
that the average inter-renewal time (i.e., the average delay) of this new process is clearly
given by

µ =
1 +

∑M−1
m=1 p(m)

1 − p(M)
(2-9)

The variance of delay can be obtained by direct calculation and it yields:

σ2
H =

1 +
∑M−1

m=1 p(m) + 2
∑M−1

m=1 mp(m) −
[
1 +

∑M−1
m=1 p(m)

]2

1 − p(M)
+

+

(
1 +

M−1∑

m=1

p(m)

)2
p(M)

(1 − p(M))2
(2-10)

2.4 THROUGHPUT BOUNDS: I NFINITE L ENGTH CODES

2.4.1 Conventional Coded ARQ

We take a short detour to compute the throughput of conventional ARQ schemes; this will be
used in section 5-22 to motivate the effectiveness of IR withrespect to these conventional
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protocols. We shall consider two variants of conventional coded ARQ. In the first case,
codewords of lengthL and rateR = b/L, spanning a single fading block, are used for
transmission. In the presence of a decoding error (detectedwith arbitrarily large probability
in the limit of largeL, [18]), the codeword is retransmitted in some successive slot. Using
the same arguments as before we can compute the throughput, the average delay (in slots)
and the variance of the delay of this scheme; they are clearlygiven by

ηSR−1 = R(1 − p(1))

τSR−1 =
1

1 − p(1)

σ2
SR−1 =

p(1)

(1 − p(1))2
(2-11)

where the subscript “SR-1” indicatesselective repeatwith coding over one block.

In the second case, codewords of lengthn = LM and rateR are transmitted overM fading
blocks and decoding is performed only after allM blocks are received. In the presence of
a decoding error, the codeword is retransmitted in some successive group ofM slots. The
resulting throughput, average delay and variance of the delay are given by

ηSR−M = R(1 − p(M))

τSR−M =
M

1 − p(M)

σ2
SR−M = M2 p(M)

(1 − p(M))2
(2-12)

The subscript “SR-M” indicatesselective repeatwith coding overM blocks. It is immediate
to see thatηSR−M ≤ η andµSR−M ≥ µwhereη andµ are the throughput and average delay
of the IR scheme given in (2-45) and (2-9).

In Section 5-22, we show by some examples that the IR scheme performs much better than
the above SR schemes in terms of maximum throughput. The average delay and the variance
of the delay are comparable for small values of throughput.

2.4.2 Random Binary (RB) Codes

Recall that we assume perfect channel knowledge at the receiver, i.e., the receiver knows
perfectly the fading coefficients{cs : s = 1, . . . ,M}. Let theinstantaneousmutual infor-
mation per input symbol on slots be given by

J(βs)
∆
= I(xs;ys|cs) =

1

L
E

[
log2

p(ys|xs, cs)

p(ys|cs)

]
(2-13)
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wherexs is distributed according to some input distributionQ(x) and where

p(y|x, c) =
1

(πN0)L
e
− 1

N0
|y−cx|2

is the channel transition pdf for given fading gainc. Given the sequence of fading gains

Fm
∆
= {cs : s = 1, . . . ,m}, we define the conditional probability of decoding error afterm

received slotsPr(error|Fm, Cm) given the codeC and the fading sequenceFm. In [18] it
is shown that there exist families of codesC with increasing block lengthL such that

lim
L→∞

Pr(error|Fm, Cm) = 0 (2-14)

if Im
∆
=
∑m

s=1 J(βs) > r. Moreover, for anyL the error probability of any code is bounded
away from zero ifIm < r. Finally, assuming typical-set decoding [46] the conditional
probability of an undetected decoding error vanishes asL → ∞ for any codeC and any
fading sequenceF .

Eventually, we can say that for large number of dimensions per slot L (i.e., large product
WT ) the error probability of the best possible code at each IR stepm, for given fading
sequenceFm, is given byPr(error|Fm, Cm) = 1{Im ≤ r} where1{.} is the indicator
function. Hence, the average error probability (where average is with respect to the fading
statistics), is given by

Pr(error|Cm) = Pr(Im ≤ r) (2-15)

We define the probabilityq(m) of successful decoding withm transmitted slots as

q(m)
∆
= Pr(I1 ≤ r, I2 ≤ r, . . . , Im−1 ≤ r, Im > r)

= p(m− 1) − p(m) (2-16)

wherep(m) is defined as

p(m)
△

= Pr(I1 ≤ r, I2 ≤ r, . . . , Im ≤ r) = 1 −
m∑

i=1

q(m) (2-17)

In the random binary codes case the input distributionQ(x) puts uniform probability on
the binary antipodal alphabet{−

√
E,

√
E}. Because of non-negativity of mutual infor-

mation, the sequence(I1, I2, . . . , Im) is a non-decreasing sequence for all fading sequence
realization. This yields

p(m) = Pr(I1 ≤ r, . . . , Im ≤ r) = Pr(Im ≤ r) = Pr

(
m∑

s=1

J(βs) ≤ r

)

(2-18)
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For binary inputs the instantaneous mutual informationJ(βs) is given by

J(βs) = 1 −
∫ ∞

−∞
log2

(
1 + e4

√
βs(z−

√
βs)
) e−z2

√
π

dz (2-19)

Since theβs’s are i.i.d. random variables, the cumulative distribution function (cdf) (2-18)
is obtained from them-fold convolution of the probability density function (pdf) of J(βs),
given by

f(x) =
1

γ
fα

(
J−1(x)/γ

)(dJ−1(x)

dx

)
(2-20)

wherefα(x) is the pdf of the fading power gainα. The probabilityp(m) is then:

p(m) =

∫ r

0
fm(x)dx (2-21)

wherefm(x) = F−1{(F{f(x)})m} andF{.} indicates the Fourier Transform.
In order to reduce the computation complexity of 2-21, for largem we can resort the Gaus-
sian approximation or the Chernoff bound.

(v) Gaussian Approximation Using the Central Limit Theorem [84], for largem we
have that

1√
mσ2

G

m∑

i=1

I(βi) − √
m
µG

σG
→

distrib
N (0, 1) (2-22)

where

E[I(βi)] = µG, E
[
(I(βi) − µG)2

]
= σ2

G

are the mean and the variance of the single letter mutual informationI(βi). The value of
p(m) is then found using the integration of the cdf of the GaussianRV with meanmµG and
variancemσ2

G:

p(m) ≈ 1 − Q

(
r −mµG√
mσG

)
(2-23)

for largem.
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(vi) Chernoff Bound The Chernoff bound gives an upper bound on the probability
p(m):

p(m) = Pr

(
m∑

i=1

I(βi) ≤ r

)

= Pr

(
m∑

i=1

I(βi) − r ≤ 0

)

= E

[
I{

m∑

i=1

I(βi) − r ≤ 0}
]

(2-24)

whereI{X} is the indicator function that is equal to1 when the eventX is verified and0
otherwise.

This is upper-bounded by a negative exponential:

p(m) ≤E
[
e−λ(

Pm
i=1 I(βi)− r)

]

= eλr E
[
e−λ

Pm
i=1 I(βi)

]

= eλr
m∏

i=1

ΦIi(λ) (2-25)

where we have definedΦIi(λ) = E
[
e−λI(βi)

]
. The last step is due to the fact that theI(βi)

are i.i.d RVs. Finally the upper bound is given by

p(m) ≤ eλr[ΦIi(λ)]m (2-26)

The minimization ofλ gives tighter upper bound,

p(m) ≤ min
λ
eλr[ΦIi(λ)]m (2-27)

In this case the functionΦIi(λ) does not have a closed form solution, so we got the results
through numerical simulations.

2.5 LOW DENSITY PARITY CHECK CODES

In chapter1 (LDPC) codes have been introduced together with the key properties and the
concepts of iterative decoding algorithm based on message passing used to approximate
maximum likelihood decoding, as well as the DE method used toevaluate bit error rate
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performance in the limit of large blocklength. The message-passing decoder is called Sum
Product Algorithm (SPA) or Belief Propagation algorithm (BP). In the following we refer
to it as BP.

The parity-check matrix of a randomly selected instanceC in a given LDPC ensemble is
conveniently represented by a bipartite graph with the nodes on the left (bitnodes) corre-
sponding to the coded symbols and the nodes on the right (checknodes) corresponding to
parity-check equations. A bitnodev is connected to a checknodec if the correspondingv-th
symbol participates in thec-th parity equation. The LDPC ensemble is defined by its left

and right degree distributionsλ(x)
∆
=
∑dv

i=2 λix
i−1 andρ(x)

∆
=
∑dc

i=2 ρix
i−1, whereλi

(resp.,ρi) is the fraction of edges in the graph connected to bitnodes (resp., checknodes) of

degreei. The rate of the ensemble is given byR = 1 −
R 1
0 ρ(x)dx

R 1
0

λ(x)dx
.

Under the sum-product algorithm the variable and check nodes exchange messages itera-
tively. A check node gets messages from itsdc neighbors, processes the messages and sends
it back to its neighbors. The same thing applies for the variable nodes. The essential con-
straint, necessary to have the correct marginal a posteriori probabilities, is that the output
message of the variable (check nodes) is a function of all incoming messages to the node
with the exception of the message coming from the node which the message will be sent
to. After l iterations the variable node decodes the associated bit based on all the informa-
tions that it could get from thel-depth subgraph of its neighbors. In the limit of very long
codes, it can be shown that the decoding neighborhood of a given variable node istree-like,
it does not contain any cycle; in this case all the random variable (the incoming messages to
every node) are independent. TheConcentration Theoremin [22], assures that, almost all
randomly constructed codes behave alike. It follows that itis only necessary to determine
the averages behavior of the ensemble. The average behavioris shown to be the cycle-free
case. In the limit of infinite blocklength DE computes the correct marginal a posteriori
probability.

The messages are indicated using a Log-Likelihood Ratio (LLR): v = log p(y|x=1)
p(y|x=−1) is the

output message of the variable node andu = log p(y′|x′=1)
p(y′|x′=−1) is the output message of the

check node, wherex is the bit associated to the node,y is all the information available to
the variable node,x′ is the bit value of the node that gets the message andy′ is all the in-
formation available to the check node. The idea, [22], is then to track the evolution of the
messages distribution, (DE), instead than the messages itself.
Calculating thresholds using density evolution is computationally expensive because the it-
erative process involves an−dimensional system. Some approximations methods are possi-
ble, for example theErasure-Channelapproximation [25] and theGaussianapproximation,
[25], [24]. For the first case the threshold for the erasure channel is computed3 and the

3The density evolution for the erasure channel becomes a one-dimensional evolution [85]
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value is mapped into the threshold of the correct channel using the equal capacity curve. In
the second case the threshold is estimated approximating message densities as Gaussian. In
this case, by using thesymmetry condition[25], it is shown that the mean of the Gaussian is
the only information necessary to characterize the messagedensity4. This allows to follow
the evolution through the graph of one parameter instead than the complete characteriza-
tion of the message density. Under the Gaussian approximations, others one-dimensional
quantities, instead of the mean, have been considered to approximates the message density,
as SNR [25] andMutual Information[27]. In the following, because of numerical stability,
the development is done in terms of mutual information.

In our analysis, we make the optimistic assumption that decoding is successful (the frame
is error-free) with high probability if, afterm received slots, the BER under BP decoding
vanishes with the number of decoder iterations. Notice thatvanishing BER does not neces-
sarily imply vanishing FER in the limit of infinite block-length. However, arguments based
on concatenation of LDPCs with outerexpandercodes [30] with very large rate show that,
in principle, vanishing BER implies vanishing FER at least for such concatenated construc-
tions. Furthermore, we assume that the convergence of the decoder to vanishing BER can be
detected by the decoder, so that decoding failure is always revealed. Under these optimistic
assumptions, we can use the same throughput formula (2-45) by redefiningp(m) as

p(m) = Pr

(
lim
l→∞

BER(l)(1) > 0, . . . , lim
l→∞

BER(l)(m) > 0

)
(2-28)

whereBER(l)(m) is the BER at BP decoder iterationl with m received slots.

We assume that the coded symbols are randomly assigned to theM blocks so that the
fraction of bitnodes of degreei on eachm-th block is the same as for the total code. In
other words, the fraction of edges connected to bitnodes of degreei on blockm is equal
to λi/M , for all m = 1, . . . ,M . Numerical examples supported our choice of distributing
“uniformly” the left degrees on the blocks.

In order to computeliml→∞ BER(l)(m) for given fading coefficients(α1, . . . , αm), we
resort to a Gaussian Approximation (GA) of DE. LetMk denote the channel observation
message, in the form of the log-likelihood ratio for the symbol associated to the given
bitnode,k, given the channel output. Assuming, without loss of generality, that the all-zero
codeword is transmitted, if the symbol corresponding to thebitnode is transmitted on the
s-th slot, it is easy to see that the initial message is equal to

Mk = log
Pr(yk|xk = 1, cs)

Pr(yk|xk = −1, cs)
= 4

√
ΓRe{yc∗s}

4Considering the symmetry condition, the variance of the Gaussian variableσ2 is a function of to the mean.
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whereyk is the corresponding channel output andcs is the fading coefficient. It follows that
the distribution of the initial message isMk ∼ N (4βs, 8βs)

5.

We define a random variableP that governs the distribution of the variable node belonging
to the s-th block, so thatP is uniformly distributed overs = 1, . . . ,M . Let X denote
the bitnode variable andY denote all the information available at the bitnode at a given
iteration. Then, the mutual information between the outputof the bitnode and the symbol
X is given by

I(X,Y |P ) = E
p(X,Y,P )

[
log

p(X,Y |P )

p(X |P ) p(Y |P )

]
=

M∑

s=1

1

M
I(X,Y |P = s) (2-29)

From the Gaussian Approximation, it follows that

I(X;Y |P = s) = J((d − 1)θ + βs)

for a bitnode of degreed transmitted on slots, whereθ = 1
4E[mc→v] is the the mean

divided by4 of the messagesm that goes from the checknodes to the variable node. Call
Iℓ−1
out,c the mutual information of a message passed along a random edge from a check node

to a variable node at iterationℓ− 1, than the average messageE[mc→v] can be obtained as

E[mc→v] = J−1
(
Iℓ−1
out,c

)
. Hence we can write

I l
out,v =

1

M

M∑

s=1

J
(
(i− 1)J−1(Iℓ−1

out,c) + βs

)
(2-30)

In order to find the mutual information transfer function forthe checknodes, we use the so-
called “approximate duality” (reciprocal channel mapping) relation [25]. With this approxi-
mation, a checknode can be replaced by a bitnode provided that its input mutual information
Iin is transformed into1 − Iin and its output mutual informationIout is transformed into
1 − Iout (see [66, 86] for a more rigorous motivation of this approximation). The function
ψx(.) : X → X is defined as:

ψx(x) = C−1
x (1 −Cx(x))

whereCx(.) is the capacity function andx ∈ X is the channel parameter [25]. Hence, the
mutual information transfer of a checknode of degreed is approximated by

Iℓ−1
out,c = 1 − J

(
(d− 1) J−1

(
1 − Iℓ−1

out,v

))
(2-31)

5Recall thatβs
∆
= αsΓ
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By combining equations (2-30) and (2-31), we obtain the one-dimensional recursion

I l
out,v =

1

M

M∑

s=1

J
(
(d− 1)J−1

(
1 − J

(
(d− 1) J−1

(
1 − Iℓ−1

out,v

)))
+ βs

)
(2-32)

with initial condition I0
out,v = 0. Figure 2-3 and 2-4 visualize the message passing. The

generalization to the irregular case is straightforward and follows by defining the frac-
tion of edges emanating from a variable node with degreei that belongs tom-th slot as
Pr(Z = i, P = m) = λi

M , whereZ is the random variable that governs the degree distribu-
tion of the variable nodes. The one-dimensional recursion that approximate the DE in the
irregular case for IR scheme is given by

Fλ

(
1 − Fρ

(
1 − I l−1

out,v, 0
)
, βs

)
(2-33)

where, for a general distributiong(x) =
∑

i≥2 gix
i−1, g(x) ∈ {λ(x), ρ(x)} andb ≥ 0 we

define the function
Fg(z, b)

△

=
∑

i≥2

giJ
(
(i− 1)J−1(z) + b

)
(2-34)

By defining the mapping functionΨ(.) as

Check node

E[mv→c]

Initial

dv − 1

message
c1

c2

cdv−1

m0 = 4βs

Fig. 2-3. Message flow through a variable node.

Ψ(z, β1, . . . , βM )
∆
=

1

M

M∑

s=1

Fλ(1 − Fρ(1 − z, 0) , βs) (2-35)

we have that the condition of vanishing BER limit for given instantaneous SNRs(β1, . . . , βM )
can be approximated by the condition that the one-dimensional dynamical system

zl = Ψ
(
zl−1, β1, . . . , βM

)
, l = 1, 2, . . . (2-36)
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Check node Variable node

dc − 1
E[mc→v]

v1

vdc−1

v2

Fig. 2-4. Message flow through a check node.

with initial conditionz0 = 0 has a unique fixed-pointz∞ = 1.

The convergence behavior of the iterative decoding scheme can be seen using a mutual
information transfer characteristic chart: the EXIT Chartintroduced by S.ten Brink, [27]
where we plot the curveIout,v = f(Iin,v) andIin,ch = g(Iout,ch): if the two curves have at
least one intersection different from1, the algorithm cannot converge.

At stepm of the IR protocol, the decoder treats the not-yet received subblockss = m +
1, . . . ,M as erasures, i.e., as if the received signal was zero. In the DE-GA (Gaussian Ap-
proximation applied to Density Evolution) recursion for a given number of received blocks
m with fading gainsα1, . . . , αm is obtained by letting

βs =

{
Γαs for s = 1, . . . ,m,

0 for s = m+ 1, . . . ,M.
(2-37)

in (2-35). It is possible to show that the function1M
∑M

s=1 Fλ(1 − Fρ(1 − z, 0) , βs) is
non-decreasing withz ∈ [0, 1] and positive forz = 0. This implies that condition that
(2-36) has unique fixed-point equal to 1 is equivalent to

Ψ(z, β1, . . . , βM ) > z, ∀ z ∈ [0, 1) (2-38)

2.6 ACHIEVABLE THROUGHPUT

In this section the results in terms of throughput average delay and variance of the delay of
RB codes and infinite length LDPC are shown.

In all our numerical examples we assume Rayleigh fading, i.e., fα(x) = e−x, andM = 10
fading blocks.
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Figure 2-5 represents the behavior of the probabilityp(m) for different values ofm as a
function of the coding rateR in the case whenΓ = 10dB for RB codes. Thep(m) here has
been computed by using equation (2-21), ( by integrating of the pdffm obtained through
them-fold convolution of the pdf defined in equation (2-20)). Note thatp(m) is always
equal to1 for value of the rateR greater thenm/M . In this case in fact the number of
information bits is greater than the number of bits that has been sent. On the contrary, for
R≪ m

M , (b≪ Lm) we have a very small probability of unsuccessful decoding.The outage
probability shows a “step” behavior as long as the SNR increases.
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Fig. 2-5.p(m) for M = 10, Γ = 10dB. The probabilities are generated using the convolu-
tion of the probability density function in (2-20)

Figures 2-6 and 2-7 show the throughput results in the case when thep(m) is computed
using equation (2-21) (“Convolutions”), using the Gaussian approximation defined in (2-
22) (“Gaussian Approximation”), and finally when we use the Chernoff bound defined in
(2-27) (“Chernoff Bound”), forΓ = 3, 10dB. The Chernoff bound gives a looser lower
bound of the throughput while the Gaussian approximation becomes more precise in the
region of high rate and for lower values of the SNR. Note that the throughput obtained
using the “Convolutions” shows some picks: this is due to theparticular “step” behavior
of the probabilitiesp(m). Consider for example a rateR between0.1 and0.2b/s/Hz. The
throughput is given byη = RM

1+
PM−1

m=1 p(m)
⋍

RM
1+p(1)+p(2) , since from figure 2-5p(m) is

negligible whenm > 2. In particular at the extremes of this interval, sincep(1) = 1 and
p(2) = 0 for R = 0.1 andp(1) = p(2) = 1 for R = 0.2, the throughput is1/2 and2/3
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respectively. In between we can see thatp(2) will not increase as much as the rateR, so
that we can approximate the throughput asη̂ ⋍ RM/(2 + ǫR) with ǫR ⋍ 0 negligible. If
higher values of rate are considered, for exampleR = (0.7− 0.8), this approximation does
not hold anymore since the throughput can be approximated byη̂ = RM/(7 + ǫR), with
ǫR > 0 (figure 2-5).

Figure 2-6 and 2-7 show also the throughput obtained when conventional coded ARQ sys-
tems are used. The comparison between IR and SR protocols is more evident by plotting
the average delay vs. the throughput (see figure 2-9 in the caseΓ = 10dB). From equations
(2-8) and (2-9), we have expressions ofη and orµ parameterized in the code rateR ∈ [0, 1]
(for given number of fading blocksM , fading gain statistics and SNRΓ). Hence, the curve
µ = µ(η) can be obtained in parametric form, by lettingR varying in the interval[0, 1].
Sinceη is a non-monotone function ofR, each value ofη corresponds to possibly multiple
values ofµ. Clearly, in the presence of multiple values only the minimum is relevant. Fig-
ure 2-9 clearly shows that SR-M is not convenient. On the contrary, for a certain range of
throughput SR-1 (which is also the simplest ARQ scheme) achieves almost the same aver-
age delay of IR. We have to notice that here SR-1 is coded over only one slot, meaning that
the rate in that caseRSR−1 = b

L . Consider figure 2-6 and 2-9: the highest throughput of SR-
1 is ηSR−1 = 0.7 is achieved whenRSR−1 ≃ 0.9 with an average delayµSR−1 ≃ 1slots;
the same throughput can be obtained with the IR scheme with the same delay and with
mother code rateR ≃ 0.09. The IR in the average will send only the first coded burst with
an effective coding rateb

Lm → b
L . However, there is a range of high throughput that is not

achievable by SR-1 while it can be achieved by the IR protocolat the cost of a very small av-
erage delay (from 2 to 6 or 7 slots). Figure 2-10 shows the average delay vs rate in the case
of RB codes forΓ = 3, 10dB. Consider for example the curve forΓ = 10dB. The region of
high throughputR ≃ 0.7 bit/symbol is achieved with an high average delay (8 or 9 slots).
For some practical delay constraints we can be interested inconsidering regions where the
average delay is small and the throughput is still good (region of R ≃ 0.35bit/symbol).
As we expect, as the value ofΓ augments the average delay is decreasing: in the limit of
Γ → ∞ the delay will be equal the minimum number of bursts necessary to contain all
the information bits (RM ). The variance of the delay, figure 2-11 increases when the value
of Γ is decreasing. This is due to the fact that for high values ofΓ the number of bursts
between two transmissions of a codeword does not vary too much. In the limit of high
signal to noise ratio, the number of iterations becomes a constant so that the variance goes
toward zero. Figures 2-6, 2-7 show also the comparison between the throughput obtained
using the Random Binary codes and the LDPC codes. In the case of LDPC, DE algorithm
is used to obtain a evaluation of the performance. Each mark (∗) in figures 2-6 and 2-7
is obtained by using an irregular LDPC ensemble with degree distributionsλ, ρ optimized
for the corresponding rateR and for the standard unfaded AWGN channel [87, 22]. No
attempt was made to optimize the degree distributions to take into account the block-fading
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Fig. 2-6. Comparison between the throughput when we consider the convolution of the pdf,
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Fig. 2-8. Comparison between the throughput obtained usingLDPC codes and RB codes,
considering the convolution of the pdf,Γ = 10dB, zoom in the intervalR = (0.1, 0.3)
b/s/Hz.

channel. Nevertheless, these results show that AWGN-optimized ensembles perform close
to optimal and not much can be gained by further ensemble optimization.

2.7 FINITE L ENGTH LDPC FOR HARQ

At this point, it is natural to ask how practical finite-length LDPC code perform on the
block-fading channel under the IR protocol, by removing theoptimistic assumptions (limit
for largeL, vanishing BER⇒ vanishing FER) that led to the outstanding results of the
previous section. The first subsection shows the performance results of finite length LDPC
without any countermeasure and finally two methods to overcome the performance loss due
to finite length LDPC will be explained.

2.7.1 Finite Length LDPC from Complete Random Ensemble

Figures 2-12 and 2-13 show the throughput obtained by simulation of the IR protocol by
using actual finite-length LDPC codes of lengthn = 5000 andn = 10000. For the sake
of comparison we plot also the average throughput obtained using RB codes and infinite
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length LDPC discussed before. The finite-length results areobtained by averaging over
the channel fading, the noise and the ensemble of codes, i.e., a new parity-check matrix is
randomly generated according to the given left and right degree distributionsλ, ρ defining
the ensemble for each transmitted information packet. The throughput formula for finite-
length codes is still given by (2-45) wherep(m), for a given LDPC ensemble with degree
distributionsλ, ρ, is expressed by

p(m) = E
C(n,λ,ρ),α

[Pr
(
A1, A2, . . . , Am |α, (λ, ρ)

)
] (2-39)

where,α is the sequence of fading gains,As is the event of successful decoding at steps and
where the code parity-check matrix is randomly generated with uniform probability over all
bipartite graphs with degree distributionsλ, ρ (a method for generating such random graphs
is given in [22]). Successful decoding is defined by the eventthat, after a given maximum
number of BP decoder iterations, all information bits are correct.

The throughput performance loss of finite-length ensembleswith respect to their infinite-
length counterpart can be explained by observing that, typically, irregular finite-length
LDPC codes with bitnodes of degree 2 have very poor FER performance, despite the fact
that they perform well in terms of BER. This is because typical decoding errors involve a
very small number of bit-errors per frame error [29].
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In principles, throughput higher than the ensemble averageperformance can be achieved by
careful selection of a particularly good realization of thecode parity-check matrix. How-
ever, selecting such matrix is not a simple task in general. Astandard technique is to gen-
erate the matrix into some restricted (or “expurgated”) ensemble where codes with good
FER performance can be found with high probability. An example of this approach will be
detailed later, in Section 2.7.2.

Another remarkable fact evidenced by figures 2-12 and 2-13 isthat codes with block length
n = 5000 slightly outperform codes withn = 10000. This is surprising since in standard
AWGN settings (without ARQ) BER is known to improve with the code block length [22].
Indeed, irregular LDPC codes are commonly believed to provide good performance only for
extremely large block length. The above results show that inthe presence of time-varying
channels and retransmission schemes this is not the case, asFER and not BER determines
the throughput performance. Next, we propose two approaches to improve the performance
of IR with finite-length practical LDPC codes. The first approach acts directly on the code
design and leaves the IR protocol unchanged. As anticipatedabove, it consists of selecting
the code parity-check matrix in some appropriate ensemble with good FER properties. The
second approach acts on the IR protocol and leaves the code design unchanged. It consists
of dividing the information packet into subpackets, performing error detection on each of
the subpackets and using an outer selective-repeat protocol only for the subpackets in error.
Interestingly, although these approaches are quite different, they yield almost the same per-
formance improvement and recover a considerable fraction (up to 80% at SNR= 10 dB) of
the loss due to finite with respect to infinite length.

2.7.2 Special graph construction

Solutions to improve the FER performance of LDPCs consist offinding special construc-
tions based on expander graphs [88, 30, 31, 89, 32, 33, 90], ora deterministic arrangement
of the edges adjacent to degree-2 bitnodes [87].

Due to its simplicity, we follow this second method. Good FERcodes can be obtained
constructing the graph such that the edges emanating from a bitnode of degree2 are placed
semi-deterministically. LetR denote the rate of the code andλ̃2 = λi/i

P

j λj/j be the fraction

of bitnodes of degree2. Forλ̃2 <
(1−R)

2 we connect each edge emanating from one of these
bitnodes to a different checknode so that there are no checknodes adjacent to more than one
bitnode of degree2. For (1−R)

2 < λ̃2 < 1 − R we arrange thẽλ2n deg-2 bitnodes and̃λ2n

checknodes into a cycle of girth2λ̃2n, as shown in the example of figure 2-14.

As an example of this construction, consider a standard unfaded AWGN channel and the en-
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2.7 Finite Length LDPC for HARQ 41

semble of codes with variable and check node degree sequences defined defined in [87], for
a rateR = 0.3 bit/symbol, maximum left degreedv = 100, average right degreear = 6.9
and block lengthn = 10000. Figure 2-15 shows the BER and the FER obtained by averag-
ing over all graphs with given degree distributions (Total ensemble) and by averaging over
all graphs with special cyclic arrangement of the edges connected with degree-2 bitnodes
(Modified ensemble). It is clear that the modified ensemble yield much better FER and BER
performance.

Bit Nodes
Check Nodes

Fig. 2-14. Cyclic arrangement of the edges adjacent to bitnodes of degree 2.

2.7.3 Outer Selective Repeat System (OSR)

Our second approach to close the gap between infinite and finite length LDPCs stems from
the following observation: for standard irregular LDPC codes, most frame errors involve
a very small number of bit errors. Therefore, by dividing theinformation packet into
smaller subpackets, only a few of them will contain errors after decoding. Hence, an Outer
Selective-Repeat (OSR) protocol acting on these smaller subpacket units can recover sub-
packet errors without having to retransmit the whole codeword, only the erroneous packets
are retransmitted together with new information packets. The optimistic assumption under-
lying this approach is that subpackets in error can be perfectly detected. The concept of the
concatenated selective-repeat scheme is represented in figure 2-16. Let us focus on stepm
of the IR protocol. If the iterative BP decoder, processing the received signal{y1, . . . ,ym}
with instantaneous SNRsΓα1, . . . ,Γαm, works below the iterative decoding threshold, the
decoded codeword after a given (large) number of iterationsmight be either error-free or
contain a small number of residual errors. These few residual errors are the main cause of
performance loss of finite-length LDPC codes, since even a single bit-error would generate
a NACK and the IR protocol would proceed to blockm+1 of the current codeword instead
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Fig. 2-15. BER and FER of the LDPC ensemble with degree distributions given in [87] for
a rateR = 0.3 bit/symbol, maximum left degreedv = 100, average right degreear = 6.9
and lengthn = 10000, over the AWGN channel. The curves labeled as “total ensemble” are
obtained by averaging over all code graphs with the given degree distributions. The curves
labeled by “modified ensemble” are obtained by averaging over the graphs with degree-2
edges arranged in a cycle, as shown in figure 2-14.

of starting with block 1 of the next codeword. However, the typical case of a few bit-errors
implies that only a small number of data subpackets are in error, which can be handled by
the OSR.

Let P denote the subpacket length in bits, andnp = b/P be the number of subpackets per
LDPC codeword. At stepm of the IR protocol, after a given number of decoder iterations,
let em denote the number of subpackets in error. We shall consider “successful” decoding
(i.e., the IR protocol stops the transmission of the currentcodeword at stepm) if em ≤ δ.
Otherwise, ifem > δ, a NACK is sent and the blockm + 1 of the current codeword is
sent on the next slot. The system throughput can be optimizedwith respect to the threshold
δ ∈ [0, np]. Notice that settingδ = 0 is equivalent to the IR alone, without the OSR.
Therefore, this system is expected to provide a throughput gain with respect to the basic IR
protocol with finite-length LDPCs.

We shall compute the throughput of the concatenated OSR-IR protocol by using again the
Renewal-Reward theorem, by appropriately defining the random rewardR and the inter-
renewal timeτ . Let E = {The user stops transmitting the current codeword} be again the
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recurrent event, and̂q(m) be the probability that the BP algorithm ends with a number of
erroneous subpacketsem ≤ δ. DefiningBs = {es < δ} for s = 1, . . . ,M , we have

q̂(m) = Pr
(
B1, . . . , Bm−1, Bm

)
(2-40)

The recurrent event probability is given by

{
Pr(Em) = q̂(m) if m ≤M − 1,

Pr(EM ) = 1 −∑M−1
m=1 q̂(m) if m = M.

(2-41)

Defining p̂(m) = Pr
(
B1, . . . , Bm−1, Bm

)
, we haveq̂(m) = p̂(m − 1) − p̂(m) and

substituting this in (3-7) we getPr(EM ) = p̂(M − 1).

The average inter-renewal time (in slots) is given by:

E[τ ] =

M∑

m=1

m · Pr(Em) =

M−1∑

m=1

mq̂(m) +Mp̂(M − 1) = 1 +

M−1∑

m=1

p̂(m) (2-42)

The rewardR is a random variable that takes values in the range{0, S/L, . . . , npS/L}.
Recalling the definition ofem as the number of erroneous packets after decoding at IR step
m, we can write

E[R] =
P

L

M∑

m=1

np∑

e=0

(np − e) Pr(em = e | Em) Pr(Em)

=
Pnp

L

(

1 −
M−1∑

m=1

rmq̂(m) − rM p̂(M − 1)

)

(2-43)

where we define

rm =
1

np

np∑

e=0

ePr(em = e|Em)

to be the average fraction of subpackets in error after decoding at stepm, given the recurrent
event. Recalling thatPnp/L = RM , we obtain the desired throughput expression as

η = RM
1 −∑M−1

m=1 rmq̂(m) − rM p̂(M − 1)

1 +
∑M−1

m=1 p̂(m)
(2-44)

The above formula can be evaluated after computing by Monte Carlo simulation the proba-
bilities p̂(m) and the fractionsrm.
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2.8 FINITE L ENGTH LDPC: A CHIEVED PERFORMANCE AND COUNTER-
MEASURES

In this section we show the throughput resulting from the modified LDPC ensemble, from
the use of an OSR protocol, or from a combination of both techniques. In all the following
examples, we fixed the subpacket length of the OSR protocol equal toP = 48 bits (6 bytes).

Clearly, the throughput achieved by OSR depends on the threshold δ. Analytical optimiza-
tion of δ is difficult if not impossible. Hence, we exhaustively searched for the best threshold
value. Figure 2-18 shows the throughput as a function ofδ ∈ [0, 1] for the same setting as in
figure 2-15 andΓ = 10dB. We notice that the performance of the OSR is quite insensitive
to the value ofδ (unlessδ is either very close to 0 or very close to 1). We plotted also the
throughput achieved by the same ensemble with infinite length, with finite length without
any countermeasure and with finite length by averaging over the modified ensemble. These
results are shown as horizontal lines as they do not depend onδ.

Both the OSR and the modified ensemble are able to recover a large fraction of the loss
incurred by finite length LDPCs (until80%). It is natural to wonder about the benefit of
using jointly the OSR protocol and a modified LDPC ensemble. Unfortunately, the answer
to this question is negative. In figure 2-18, the curve labeled by “OSR-Modified Ensemble”
refers to this case and we notice that the obtained throughput is slightly inferior to that
obtained by using OSR with the total ensemble. This fact can be explained by noticing that
for a typical code in the modified ensemble a frame-error corresponds to a large number
of bit errors (i.e., a large number of subpackets to retransmit). Hence, using an outer SR
protocol does not improve the throughput.

The almost constant behavior of throughput of OSR over a widerange of values of the
thresholdδ is explained by observing the statistics of the number of subpackets in error
em after decoding. For example, figure 2-19 shows the probability mass function ofem
conditioned on the event that the decoder works above its iterative threshold decoding (i.e.,
subject to the event that DE withm received blocks converges to vanishing BER), with
m = 4 received blocks. We notice that the number of packets in error is mostly concentrated
below 10% and above 90%. This behavior can be observed for allm. Therefore, the
throughput is almost constant forδ ∈ (0.1, 0.9).
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2.9 REDUCING THE AVERAGE COMPLEXITY OF LDPC DECODING

This section is focused on the analysis of the complexity of the decoder when IR scheme is
coupled with LDPC codes. We show that a method based on DE lowers the complexity of
the decoder and can ideally achieve all the trade-offs between complexity and performance.

For standard time-invariant channels (e.g., the binary-input AWGN channel) and for a given
ensemble(λ, ρ) it can be shown that there exists a value SNR⋆, the iterative decoding
threshold, such that if the signal to noise ratio is below SNR⋆ then the DE error probability
limit is bounded away from zero (even after an infinite numberof iterations) while if it
is above SNR⋆ the DE error probability limit is zero. For LDPC codes of practical length
(say, betweenn = 5000 ton = 10000), in order to predict if iterative decoding is successful
with high probability, we can just compare the instantaneous channel SNR with the iterative
decoding threshold SNR⋆.

This idea does not carry over straightforwardly for a time-varying channel such as in the
case of the IR-HARQ protocol considered here. The BP decoderat slotm “sees” a time-
varying channel defined by the instantaneous SNRs{β1, . . . , βm} and by the fact that the
symbols in slotsm+1, . . . ,M are erased (i.e., the corresponding channel outputs are zero).
Clearly, no simple threshold criterion for convergence of BP can be applied here. Indeed, we
might define a region of convergence for the decoder in slotm as anm-dimensional region
Rm ⊂ R

m
+ , such that if(β1, . . . , βm) ∈ Rm, then DE converges to vanishing BER and the

BP decoder applied to the actual finite-length code with channel observations{y1, . . . ,ym}
yields successful decoding with high probability. For a given ensemble(λ, ρ) and a given
average SNRΓ, in principles one could determine the region of convergence Rm by run-
ning the DE algorithm for all values of(β1, . . . , βm) ∈ R

m
+ . This is clearly not an easy

task, since the SNR vector takes on values in a continuous andunboundedm dimensional
real set. In order to overcome this problem, it is possible touse a on-line low-complexity
approximation of DE and run it in real-time at each newly received slot before activating
the BP decoder. Hopefully, the approximate DE is able to approximate accurately the con-
vergence regionRm for all m = 1, . . . ,M . Therefore, if the approximate DE converges to
zero error probability, the BP decoder is triggered and actual decoding is performed, other-
wise a NACK is sent without actually performing decoding. This results into a tremendous
saving in decoder average complexity without affecting theaverage throughput.

2.9.1 Average Throughput and Complexity

It is important to note that this method may, in general, decrease the average throughput
since it declares a decoding failure whenever DE does not converge, while there is a chance
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that the actual BP decoder is successful even if DE does not converge. Recall that the
throughput ca be written as

η = RM
1 − p(M)

1 +
∑M−1

m=1 p(m)
(2-45)

We definepBP (m) and pT (m) as the outage probability obtained when running always
the BP algorithm and when using the DE-test, andqBP (m), qT (m) as the probability of
successful decoding at stepm for the two methods; thus, redefiningAm as the event{The
BP algorithm converges at stepm}, andBm the event{The DE test converges at stepm} it
follows thatqBP (m) = Pr

(
A1, ..,Am−1,Am

)
= pBP (m− 1) − pBP (m) and

qT (m) =
m∑

i=1

Pr
(
B1, . . .Bi−1,Bi,Ai, . . .Am−1,Am

)

=

m∑

i=1

qT
c (m|i) · q∞(i) = pT (m− 1) − pT (m) (2-46)

where we have defined
q∞(i)

∆
= Pr

(
B1, . . .Bi−1,Bi,

)

and
qT
c (m|i) ∆

= Pr
(
Ai, ..,Am−1,Am | B1, ..,Bi−1,Bi,

)

We callηBP the average throughput obtained when using always BP algorithm andηT when
using the DE-test based decoder; they can be obtained substituting pBP (m) andpT (m) in
(2-45) respectively. Let us consider the simple case when welet the BP decoder run for
a maximum number of iterations without stopping criterion,and for DE, we evaluate the
mapping curveΨ over a fine grid of points over the interval[0, 1] and we detect if these
points are all above the diagonal or if there is intersection[27]. Under these simplifying
hypothesis, figure 2.10 shows the comparison betweenqBP (m) and qT (m) vs rate as a
function of the number of transmitted slotsm for Γ = 3dB. As we expect, the DE-test
method does not decrease the performance of the iterative decoder since the probability of
successful decoding for the two method are very close (see figure 2-22).

2.9.2 Average Complexity: Independent Case

In the following we demonstrate that using this method the average complexity is greatly
reduced with respect to the case when we perform always the BPdecoder. First we consider
the simple case described before when the complexity of bothBP and DE are independent
on the fading realization and on the indexm. We compute the average complexity under
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the following hypothesis:1) Look-up table cost zero (i.e., evaluatingJ(x) costs zero),2)
Additions, multiplications and comparisons cost the same (one binary operation),3) We
considerId points equally spaced on[0, 1] to evaluate the mapping function equals,4) We
call Ib the maximum number of iterations of the BP algorithm.

In this simple case, letCDE andCBP the complexity of the DE test and the complexity
of BP algorithm. Callingc and d the different degrees in the check node and variable
node degree distribution,L the number of binary operations to compute a logarithm and
exponential,ne the number of edges in the graph, andn the length of the code, it follows
that

CDE = CDEiId =[4 · c + d ·(2 + 3M) + 3 ] Id (2-47)

CBP = CBPiIb =[(2L + 6) 2ne + 2n ] Ib (2-48)

given in number of binary operations. Letτ be the RV denoting the number of slots needed
for stopping the transmission of the current codeword,h = 1, . . . M the number of slots
needed to have DE convergent,φ = 0, . . .M − h + 1 the number of slots after DE have
converged (including the slot for which DE converges) untilBP converges, thusτ = h +
φ − 1. We call C̄std and C̄test the average complexity when using BP always and when
using the proposed method. We can always write the expected complexity conditioning on
the value ofτ , thusE[C] = E[ E[C|τ ] ], yielding6

C̄std = E[Cstd] = E[ E[Cstd|τ ] ] = E[CBP τ ]

= CBP E[τ ]
(a)
=CBP

[

1 +

M−1∑

m=1

pBP (m)

]

(2-49)

where(a) follows from equation (2-45) noticing thatη ∝ 1/E[τ ], with pBP (m) defined
above.

The average complexity of the DE-test method can be obtainedaveraging over the value of
h andφ, yielding

C̄test = E[Ctest] = E[ E[ E[Ctest|h, φ ] ] ]

= CDEE[h] + CBP E[φ] (2-50)

whereE[h] is the average number of slots after which DE convergesE[h] = 1+
∑M−1

m=1 p
∞(m)

6In the following whenever there is no confusion, we skip the index that denotes the RV with respect to
whom we are averaging.
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By definitionE[φ] =
∑i=M

i=0 φPr(φ = i) and

Pr(φ = i) =
M∑

k=1

Pr(φ = i|h = k) Pr(h = k)

=

M∑

k=1

qT
c (k + i− 1|k) · q∞(k) (2-51)

All this quantityqBP (m), qT
c (m|i) andq∞(m) are computed by Monte Carlo simulations.

Figure 2-22 gives the average complexityC̄test andC̄std as a function of the rate when we
considerId = 100 andIb = 200. The curve referred to as̄Cmod represents an amelioration
of the proposed method. The rationale is the following: we can precompute a threshold for
β1 by running DE offline, so that for the stepm = 1 there is no need for performing the DE
test. In this case, the complexitȳCtest can be further reduced to

C̄mod = E[Ctest] = E[ E[ E[Ctest|h, φ ]] ]

= CDE

M∑

i=2

hPr(h) + CBP E[φ]

= CDEE[h] − CDEq
∞(1) + CBP E[φ] (2-52)

As we can see the average complexity is drastically decreased when using DE-test based
method while this further amelioration̄Cmod does not introduce important gain with respect
to C̄test.

2.9.3 Average Complexity: BP Stopping Criteria

Consider now the case whenCBP andCDE are not constant but depend on the fading
realization and indexm: this includes cases when we consider stopping criteria forBP
algorithm and when we run DE as a dynamical system. Consider at first BP algorithm:
in [91, 92, 93, 94] the authors analyzed criteria to stop the iteration process in turbo de-
coding, in particular in [91] this is studied in the context of type I HARQ; these criteria
are based essentially on Cross Entropy (CE) computation of the estimates at the outputs
of the decoder after each iteration. The decoder declares a packet acceptable if the cross
entropy at theith iteration falls below a particular threshold. It is important to notice that
in [91, 92, 93, 94] the authors find a criterion to stop the iterations of BP algorithm while
here we propose a method to trigger the iterative decoding only if the instantaneous SNR
is inside the convergence region; obviously the stopping criteria studied in [91, 92, 93, 94]
can be jointly applied with the DE-test method, yielding further savings. They have also
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introduced a method based on the Cyclic Redundancy Check, (CRC). After each iteration of
the turbo decoder the CRC bits are used to detect any error that remains. The packet is ac-
cepted when the CRC decoder declares the packet to be error free. These criteria reduce the
number of iterations of the iterative decoding technique but they accept performance degra-
dations that can be important in the case of CRC based method.We have also to notice that
the CE based stopping criteria requires evaluating averageKullbach-Leibler distance over
the whole block: this costs roughly as an additional iteration, per iteration (additional cost
per iteration proportional ton). Here we do consider an other stopping criterion based on
syndrome computation at each iteration: it costs very little since it is an operation in the
binary field. When we consider the DE-test based method, we can run DE as a dynamical
system stopping the iterations when a fixed point is reached.This includes also the pos-
sibility to modify the initialization at each new iterationfor the DE test: in the standard
algorithm the initialization isI0

out,v = 0; let us consider the case when at stepm there is

a fixed point different from1, IId
out,v(m), whenId is as before the maximum number of

iterations. The decoder needs more redundancy to be able to decode. At stepm + 1 we
change the initialization settingI0

out,v(m + 1) = IId
out,v(m). This speed up the algorithm

without loosing in performance since it can be shown that themutual information sequence
is monotonically increasing inΓαm. We call C̄stdm and C̄testm the average complexity
using the classical method and the DE-test method with CE or syndrome computation as
stopping criteria (in the figure ‘m’ will be substituted with CE or SY respectively). In the
case when we consider the BP algorithm, callIBP

τ the sum of all the iterations done after
receiving1, ..τ slots, given the fact that BP converges at stepτ ,

C̄stdm = E[Cstdm] = E[ E[Cstdm|τ ] ] (a)
=CBPiE

[
E
[
IBP
τ

]]

(b)
= CBPiE

[
E

[
τ∑

k=1

iBP
k

]]
= CBPiE

[
τ∑

k=1

īBP
k

]
(2-53)

where(a) is due to the fact that the average complexity givenτ is equal to the complexity
of one iteration times the total number of iterations done over all theτ slotsIBP

τ ; (b) is due
to the fact thatE

[
IBP
τ

]
= E

[∑τ
k=1 i

BP
k

]
=
∑τ

k=1 E
[
iBP
k

]
=
∑τ

k=1 ī
BP
k . With analogy

we say that the average complexity when using the DE test is given by:

C̄testm = E[Ctestm] = E

[
E

[
E

[
C

′

test|h, φ
]]]

= CDEi E

[
h∑

k=1

īDE
k

]
+ CBPi Eh,φ

[
φ∑

l=1

īBP
h+l−1

]
(2-54)

whereīDE
k (̄iBP

h+l−1) is the average number of iteration necessary to know if DE (BP) con-
verges when transmittingk (h+l−1) slots. Figure 2.10 shows results in terms of throughput
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for all the methods considered here, BP without any countermeasureηstd, BP with stopping
criteria based on Cross Entropy and Syndrome computation (ηstdCE , ηstdSY ), the DE-test
based method for the three cases above (ηtest, ηtestCE , ηtestSY ); for the sake of comparison
we plot also the throughput obtained when using DE,ηDE . As we can see all this methods
does not significantly modify the throughput, as shown also in figure 2.10 that shows the
probability of successful decoding for the cases above mentioned. However the average
complexity shown in figure 2-22 for all the cases considered shows that DE-test based sys-
tem decreases considerably the average complexity. It is interesting to notice that even if
CE based stopping criterion introduces more complexity periteration, on the other hand it
reduces a lot the average number of iterations when choosingthe correct threshold value.
We can see that DE-test method with stopping criterion basedon syndrome computation
achieves the best average complexity, thus it is a good candidate for practical implementa-
tion.

2.9.4 Modified DE-Test

As we have seen above the DE-test method proposed does not penalize the throughput while
reducing a lot the complexity.

In this section we modify the DE-test in order to find a trade off between throughput and
complexity. Clearly if we use a test with a very high rejection rate the average complex-
ity can be made as small as we want but the throughput will alsogo to zero. Therefore by
penalizing the DE-test we can reduce the complexity at the price of accepting some through-
put degradation. In order to control the trade offη vsC we introduce the penalized SNR
Γ∆|dB = Γ|dB − ∆|dB where the parameter∆ can be interpreted as an SNR margin of the
actual BP decoder over the ideal BP decoder applied to an infinite length LDPC code. In
order to find the fixed points of DE, we now iterate the recursion (2-33) substitutingΓ∆ to
Γ, thus for each received slot we run the following modified one-dimensional recursion

I l
out,v =

1

M

M∑

m=1

Fλ

(
1 − Fρ

(
1 − I l−1

out,v, 0
)
, αsΓ∆

)
(2-55)

The introduction of the parameter∆ ≥ 0, reduces the probability of having DE convergent
for a certain vector(α1, . . . , αm) at stepm, thus reducing the average number of bursts
processed with BP algorithm. Figure 2-23 and 2.10 show the average throughput and com-
plexity as a function of∆ whenR = 0.3bit/symbol andΓ = 3dB. It is interesting to notice
that using this simple method there are values of∆ ≃ 2dB for which the throughput loss
is negligible (∼ 0.55bit/sec/Hz vs∼ 0.53bit/sec/Hz) while reducing the complexity of a
factor of about50%.
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2.10 CONCLUSIONS

This work extends the previous analysis in [18], where the authors study the performance
of HARQ-IR protocol based on infinite length Gaussian code. Here the analysis is extended
to ideal infinite length binary codes (random binary and LDPC) and to practical finite block
length LDPC codes. We have shown that irregular LDPC ensembles with degree distribu-
tion optimized for the standard AWGN channel [22] provide performance very close to the
information-theoretic limit given by random binary codes.

Although infinite-length LDPC codes provide near-optimal throughput, practical finite-
length LDPC codes incur a considerable performance loss if used in the IR scheme without
any countermeasure. We proposed two methods to overcome this problem and to make
practical LDPC codes effective for the IR protocol: the firstmethod consists of construct-
ing the LDPC code with a special arrangement of the edges of left-degree2, in order to
improve the FER performance. The second method is based on the concatenation of an
outer selective-repeat loop acting on smaller informationpacket units. We have shown that
both methods are able to recover a significant fraction of theloss and provide approximately
equivalent performance. Hence, they can be regarded as two valuable alternatives for the
system designer.

Finally we have shown an easy to implement method that lower the complexity of the de-
coder in the context of HARQ protocols. The method consists on introducing a test based
on DE prior to decode that prevent using the iterative decoder if it is likely to be non conver-
gent. The proposed algorithm reduces considerably the average complexity without degrad-
ing the performance, and modification of the same algorithm allows to achieve all range of
trade-offs between throughput and complexity.
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Fig. 2-17. Throughput vs.δ of OSR forΓ = 3dB andR = 0.3bit/symbol for the LDPC
codes withn = 10000. The throughput without OSR (labeled “no-OSR”) for finite and
infinite length are shown for comparison as horizontal lines.
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CHAPTER 3

Feedback Systems for Multicasting Common
Information

3.1 INTRODUCTION

Consider a multicast wireless downlink scenario withN users, where the transmission is
slotted and the channel is slowly block-fading. Recall that“multicast”means that the base
station sends the same information to all the users.

Traditionally the transmitter opens a new connection for each users with an extremely high
waste in terms of bandwidth. In this case the transmitter optimizes the transmission param-
eters for the particular users but it does not exploit the multicast setting.

This chapter deals with the computation of throughput, delay and limiting behavior for large
N , when simple HARQ (IR and SR) protocols are considered in a multicast environment.

Several HARQ schemes have been proposed for a point-to-point environment [6]. Recently
these point-to-point HARQ techniques have been extended tothe case of multicast links,
[38, 40, 41, 39, 95], where the authors find ameliorations of standard HARQ schemes to
achieves good performance for a particular point to multi-point link. But the study of the
achievable performance in terms of throughput for simple HARQ protocols has not been
carried out. HARQ protocols better exploit the characteristics of the wireless link such as
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independence of the channel seen by different users and the peculiarity of the multicast
setting that is to send only common information. In chapter 2, IR and SR protocols have
been introduced. For the sake of completeness we recall herethat under SR the transmitter
sends disjoint copies of the same packets possibly combinedat the receiver , while under
IR the transmitter sends additional redundancy at each new retransmission.

Since the users are completely symmetric and information isthe same for all, the optimal
delay-unconstrained coding transmission strategy is trivially given by coding at rate as close
as desired to the ergodic capacity of the channel (the same for all users). However if we
assume that, because of delay constraints, codewords span afinite number of fading blocks,
than reliable communication based on pure FEC coding is impossible. With a FEC based
system, in order to achieve vanishing error probability, every codeword must span an arbi-
trarily large number of fading blocks. This is true even if weback-off in rate and we accept
a non vanishing gap from the ergodic capacity. Hybrid ARQ schemes, on the contrary, en-
sure reliable communications but require explicit ACK/NACK feedback. In the single user
case [18] shows that zero error probability can be achieved for finite average delay1 for any
spectral efficiency with fixed gap to capacity by using a HARQ protocol based on IR [18].

However, in the multicast setting, the delay of an HARQ scheme that keeps on sending the
same information message until all users have successfullydecoded, goes to infinity as the
number of users increases. Gopala et al. [42] very recently have analyzed the scaling low,
with respect to the number of users, of throughput and delay for three protocols. The first
is a “static” SR where they assume that both the transmitter and the receiver have perfect
channel state information. At each retransmission, the coding rate is designed in order to
target a fixed fraction of users. The protocol reset when all the users are satisfied. They
compare this scheme with the IR protocol, assuming, as here,that the transmitter is not
aware of the fading coefficients of the users. They show that the average delay of the IR
scheme grows to infinity slower than the average delay of the SR protocol. Here, for both SR
and IR protocol, we consider that the transmitter has no channel state information. Strictly
speaking, these HARQ protocols are not scalable with the number of users, in the sense that
the average delay grows to infinity as long as the number of users increases. We show that
if we optimize the system in order to achieve a target throughput equal to a given fraction
of the ergodic capacity, the delay increases very slowly with the number of users if the gap
from capacity is not too small. Hence, if we are not too ambitious in spectral efficiency, the
system becomespractically scalable up to typical values of the number of users in a cell of
a wireless cellular system. In order to make the IR and SR scheme scalable in a strict sense
(meaning that the delay tends to a finite limit asN → ∞, for target throughputη < C(Γ)),
we have to accept that a fixed fraction of usersx ∈ (0, 1) will not be able to correctly
decode the information. We refer to these users asunfulfilled. A receiver moves from the

1Delay is measured in slots, i.e., in multiples ofT .
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unfulfilled to the fulfilled state when its channel coefficients are such that it can decode
the information, (see Figure 3.3). The transmitter stops sending the current codeword and
move to the next codeword if the number of unfulfilled users isnot larger thanxN . Note
thatx = 0 means to wait until all the users are satisfied.

The main difference between the SR protocol analyzed here and the one in [42] relies on
the fact that they consider perfect channel state information while here we do not. This
means that the coding rate is adjusted at each retransmission depending on the scheduling
algorithm, while here the coding rate is a fixed parameter that does not change from one
retransmission to the other.

The IR scheme they consider is the same as here, but they focuson the analysis of the
scaling low forx = 0.

In this chapter the general expression of the throughput as afunction ofx, the number of
users and the parameterR = b/L is given. Recall thatb is the number of information bits
per codeword andL is the number of dimensions per slot. We study the behavior ofthe
average delay versusN for given target throughput, when we letR be a design parameter
to be optimized. Then, we study the limitlim

N→∞
η for givenx > 0 and we show that this

limit coincides with the spectral efficiency of FEC coding over a number of slots equal to
the delay of the IR system (that becomes a deterministic quantity for large number of users)
and with error probability precisely equal tox. Hence, forx > 0 andN → ∞ the IR
scheme has the same performance (in terms of throughput, delay and error probability) of a
FEC coding system. We notice also that in this limit, due to the large-system hardening, no
explicit feedback channel is needed unless the transmitterneeds to know, for some reason
such as billing, the identity of the unfulfilled users. Hence, under IR protocol considered
here, the optimal policy is to accept a fraction of unfulfilled usersx that equals the outage
probability that minimize the average throughput when the FEC scheme is used.

3.1.1 Summary of the Contributions

• General expression of the throughput as a function of the fraction of unfulfilled users,
N andR.

• Analysis of the limiting behavior of the throughput of IR andSR under various system
parameters,x,N andR.

• It is shown that for certain values ofxwhenN → ∞, the achievable throughput of IR
equals the ergodic capacity at the expense of an average delay that grows to infinity.
However if we accept a gap from the ergodic capacity the average delay becomes a



62 Chapter 3. Feedback Systems for Multicasting Common Information

constant. For the other values ofx the maximum throughput is always achieved for
finite average delay.

• The SR protocol is shown to achieve the maximum throughput always for finite aver-
age delay. This maximum is obviously less than the maximum achieved by IR.

• The comparison of IR protocol with FEC based scheme is carried out in the limit of
large number of users. It is found that, in this limit, the twoschemes are identical, for
equal error probability.

• A simple example, based on Birth-Death process [96], gives an idea of buffer size
requirement at the receiver side for a streaming application.

3.1.2 Organization of the Work

This chapter is organized as follows: section 3.2 describesthe multicast model, section 3.3
compute the throughput of SR scheme with a Markovian model. Then the general expres-
sion of the throughput for SR and IR is given by using the Renewal-Reward theory and the
limiting behavior for large number of users is analyzed. In section 3.6.1 the comparison
between IR and FEC is carried out, and finally we conclude the chapter with an example of
buffer requirements calculation at the receiver, when a streaming application is considered.

3.2 SYSTEM M ODEL

We consider a wireless multicast system where a sender (basestation) wishes to transmit
reliably the sameinformation toN users. The channel is block-fading Gaussian. Trans-
mission is slotted, every slot spansL ≈ WT ≫ 1 complex dimensions (whereW is the
two-sided bandwidth andT is the duration of a slot) and the channel fading coefficientsfor
all users are i.i.d., constant on each slot. The signal received by useru on slots is given by

ys,u = cs,u
√

Γxs + νs,u (3-1)

wherecs,u is the fading coefficient,xs ∈ C
L is the transmitted signal belonging to Gaussian

codebook, andνs,k ∼ NC(0, I) is a complex circularly-symmetric white Gaussian noise.
With the normalizationE[|cs,k|2] = 1

LE[|xs|2] = 1, Γ takes on the meaning of average
received SNR. The transmitter is not aware of the fading channel coefficients, while the
receivers have perfect channel state information.

For later use we define here the ergodic capacity,

C(Γ) = E [log(1 + Γα)] (3-2)
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whereα ∼ fα(z) is a random variable distributed as the channel power gain|cs,u|2. To
simplify the presentation we assume thatfα(z) = e−z1{z ≥ 0}, i.e., Rayleigh fading,
where1{·} is the indicator function. The results of this work hold under mild conditions on
the fading distribution and apply to other fading distributions.

In theN users case, due to the fact that information is the same for all users and that the
users are completely symmetric, we will measure spectral efficiency (or “throughput”) from
the base station viewpoint. Lettingb(s) be the number of transmitted information bits up to
slot s, the throughput is given by

η = lim
s→∞

b(s)

sL
bit/dim. (3-3)

We expect that the average delay necessary to achieve any desired throughputη tends to
infinity asN increases. Intuitively, the probability that at least one user out ofN is not able
to decode successfully afterm slots tends to 1 for any finitem andN → ∞. Hence, the
transmitter will eventually send “for ever” additional redundancy of the same codeword. In
the next section we provide an exact throughput analysis of the SR and IR scheme withN
users and show that indeed this intuition is correct. However, it is interesting to notice that
the delay necessary to achieve throughputη = (1 − δ)C(Γ), increases quite slowly ifδ is
not too small. Hence, we argue that for typical values ofN in a cellular system, and for
target throughputs not too close to the ergodic capacity, the IR scheme is a viable solution
for reliable multicast.

3.3 MARKOV M ODEL

u f

NACK

ACK

Idle

Reset (next packet)

Fig. 3-1. Receiver model.

In the following we consider the SR scheme and we compute the throughput at the base
station using a Markovian model. Note that under the SR scheme the transmitter encodes
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b information bits by using a channel code with codebookC ∈ C
L, lengthL and rate

R = b/L bit/symbol. The codeword is sent over one slot. We associate to each user an
error probability,a given by the probability that the mutual information per input symbol
on slots∆Is is less or equal than the coding rate [18], i.e.

a = Pr(∆Is < R) = Pr(log2(1 + γαs) < R) = Fα

(
2R − 1

γ

)
(3-4)

whereαs = |cs|2 is the fading power gain andFα(.) is the cdf ofα; equation (3-4) is
justified by assumingC a Gaussian random code andL sufficiently high.

DefineU a random variable that counts the number of unfulfilled users. The system keeps
sending packets until the number of unfulfilled users is lessor equal to a fraction of the total
number of users, i.e. it is less or equal thann. The system can be modeled as a Markov
chain withN − n+ 1 states where each statevi for i = 0, . . . N − n− 1 representsU , i.e
si = N − i; the last statesN−n+1 represents the successful event, the number of unfulfilled
users isU ≤ n. We call sN−n+1 = S. Whenever the “successful” state is reached the
system is reset and the transmitter begins sending a new codeword. Figure 3.3 shows the
Markov chain forN = 2 andn = 0 users.

Φ =




a2 2a(1 − a) (1 − a)2

0 a 1 − a
1 0 0



 (3-5)

and solvingπ = πΦ using the normalization property of the stationary probability vector,
we obtainπS = 1−a2

(2+2a−a2)
and consequently the throughput is given byη2,0 = R 1+2a

1−a2 .

The generalization for an arbitrary value ofN andn is cumbersome. Moreover for the IR
the Markovian description is much more complicated becausethe state is aN -dimensional
vector∈ R

N
+ where each element is the mutual information accumulated upto a certain step.

This becomes aN -dimensional discrete time Markov process. Fortunately the throughput
of SR and IR can be computed by resorting the Renewal theory [97, 18].

3.4 THROUGHPUT ANALYSIS BASED ON RENEWAL THEORY

The SR scheme can be seen as a particular case of IR scheme, so in the following we apply
the Renewal theory to the IR scheme and we particularize it for the SR case.

We define the eventEm = {The transmitter stops transmitting the current codeword after
m slots}. This is seen to be a recurrent event, since the system resets. Let Um denote the
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a2
2a(1 − a)

(1 − a)2

1 − aa

1

Fig. 3-2. Markov ChainN = 2, n = 0.

number of unfulfilled users afterm transmitted blocks of the current codeword, and define
the eventDm = {Um ≤ xN}. Then,

Em = D̄1 ∩ · · · ,∩D̄m−1 ∩ Dm (3-6)

(the bar indicates complement event). The probability of the recurrent event is given by

Pr(Em) = p̃(m− 1) − p̃(m) (3-7)

where we definẽp(m)
∆
= Pr

(
D1, . . . , Dm−1, Dm

)
.

From the renewal theorem [97], the throughput seen at the transmitter is given by the ratio
between the number of information bits/dimensionR (it is the reward associated to the
occurrence ofEm) and the average inter-renewal timeτ̄ = E[τ ], defined as the number of
slots between two occurrence of the recurrent event. We have

η(N,x,R,Γ) =
R

τ̄
=

R∑∞
m=1mPr(Em)

=
R

1 +
∑∞

m=1 p̃(m)
. (3-8)

Notice thatτ̄ is also the average delay measured in slots.

By observing thatD1 ⊇ . . . ⊇ Dm−1 ⊇ Dm, we obtain

p̃(m) = Pr
(
Dm

)
= Pr(Um > xN) . (3-9)
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Let ∆Is,u denote the average mutual information (in bits per dimension) in slots for user
u. Assuming a Gaussian codebook, we have

∆Is,u =
1

L
I(xs,u;ys,u|cs,u) = log2(1 + Γαs,u)

The mutual information accumulated up to slots by useru is given by

1

m

m∑

s=1

∆Is,u. (3-10)

Following [18], for sufficiently largeL, useru decodes successfully at stepm if the mutual
information (3-10) is larger than the effective coding rate, given byR/m, while it cannot
decode successfully if the mutual information is belowR/m. Define the eventAu,m =
{The useru decodes at stepm}, it follows that

Pr(Au,m) = Pr

(
1

m

m∑

i=1

∆Ii,u ≥ b

Lm

)

= Pr

(
m∑

i=1

∆Ii,u ≥ b

L

)

= 1 − p(m) (3-11)

wherep(m) is defined, as in chapter 2, as

p(m)
∆
= Pr

(
Au,1,Au,2, . . .Au,m

) (a.)
= Pr

(
Au,m

)
= Pr

(
m∑

i=1

∆Iu,i ≤ R

)

(3-12)

and where(a.) is becauseAu,1 ⊇ Au,2 ⊇ · · · ⊇ Au,m.

The probabilityp̃(m) has the following expression

p̃(m) = Pr(Um > xN)

= Pr

(
N∑

u=1

1

{
m∑

s=1

∆Is,u ≤ R

}

> xN

)

(a.)
=

N−⌈xN⌉∑

k=0

(
N

k

)
(1 − p(m))k p(m)N−k (3-13)

where(a.) follows by noticing that the random variables1{∑m
s=1 ∆Is,u ≤ R} for u =

1, . . . , N are independent Bernoulli random variables with parameterp(m) defined in (3-
12). By using (3-7) and (3-13) in (3-8), the throughput is given by

η(N,x,R,Γ) =
R

1 +
∑∞

m=1

∑N−⌈xN⌉
k=0

(N
k

)
(1 − p(m))k p(m)N−k

. (3-14)
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Notice that the probabilitiesp(m) depends on bothR andΓ.

When the total codeword of lengthL is retransmitted instead of additional redundancy,
we obtain the SR scheme. The SR scheme can be seen as a special case of the general
IR scheme where the codewords are obtained by the concatenation of a code of lengthL
with an arbitrarily long repetition code. Hence, the throughput of SR lower-bounds the
throughput of IR. For SR, useru is unfulfilled afterm slots if the event∩m

s=1{∆Is,u ≤ R}
occurs. Since the∆Is,u are i.i.d. random variables, we obtain an explicit expression for the
probabilityp(m) as

p(m) =

(
1 − e

− 2R
−1

γ

)m

(3-15)

where we have used the fact thatαs,u is exponentially distributed.

It is easy to verify that forN = 2, n = 0 we obtain againη(2, 0, R, γ) = R 1+2a
1−a2 in

accordance with the previous Markov chain analysis.

3.5 THROUGHPUT FOR FINITE NUMBER OF USERS N

Whenx = 0, the throughput in (3-14) is given by

η(N, 0, R,Γ) =
R

∑∞
m=0

[
1 −(1 − p(m))N

] . (3-16)

It is easy to see that, for anyR <∞,

lim
N→∞

η(N, 0, R,Γ) = 0. (3-17)

In [42] the authors show that for IR schemeη = Θ
(

log log N
log N

)
.

The limit (3-17) is valid for allR < ∞. Hence, by letting firstN → ∞ and thenR → ∞
it still holds. On the contrary, by following in the footsteps of the analysis in [18], it is not
difficult to see that for any fixedN <∞ we obtain

lim
R→∞

η(N, 0, R,Γ) = C(Γ). (3-18)

where also the average delay tends to infinityτ̄ = Θ(R). Hence, by reversing the order
of the limits and letting firstR → ∞ and thenN → ∞ we find that the throughput is not
vanishing, although the average delay still tends to infinity.
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At this point it is natural to ask about the behavior of average delay with respect toN when
we let the throughput equal to a given fraction of the ergodiccapacity, i.e., when we setR
as the solution of the equation

η(N, 0, R,Γ) = (1 − δ)C(Γ)

Figure 3-3 showsR and the resultinḡτ needed to achieve the above equality forδ ∼
3%, 7%, 15%. As expected, the average delay grows very fast if the targetthroughput is
close to the ergodic capacity. On the contrary, it increasesvery slowly (except for an initial
transient where it increases roughly linearly) when we allow for a certain non-negligible
gap from capacity. This gap from capacity is the price to pay to achieve reliable commu-
nications (vanishing error probability) in the block-fading channel under a delay constraint,
with this simple protocol.
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Fig. 3-3.R andτ s.tη(N, 0, R, 3dB) = (1− δ)C(Γ) vsN for Γ = 3dB for different value
of δ.

3.6 LIMITING THROUGHPUT FOR L ARGE NUMBER OF USERS

This section analyzes the behavior of (3-14) in the limit of large number of users (N → ∞)
with n/N = x wherex ≥ 0 when we schedule the transmission to a fraction of users
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that experiences favorable channel conditions. The reset of the renewal reword process is
adjusted such that each transmission by the base station canbe decoded only by a fraction
x of users.

The results of this section are manifold. First the best achievable throughput is analyzed and
it is shown that for particular values ofx the ergodic capacity is achievable but at the expense
of large delays. On the other end if the delay is fixed then all possible throughputη ∈ (0,∞)
can be achieved depending onx. However, we can define the average throughput, computed
from the user point of view, as̄η = (1 − x)η. It is easy to show that there is a particularx
that yields the best̄η.

Define

V(p,N, x) =

N−⌈Nx⌉∑

k=0

(
N
k

)
(1 − p)k(p)N−k

We have

η∞(x,R, γ) = lim
N→∞

η(N,x,R, γ)

= lim
N→∞

R

1 +
∑∞

m=1 V(p(m),N, x)

=
R

1 + lim
N→∞

∑∞
m=1 V(p(m),N, x)

. (3-19)

It is straightforward to see that it is possible to exchange the limit in (3-19) with the infinite
summation w.r.tm. Note thatV(p(m),N, x) can be seen as the cdf of a Binomial random
variableXm computed inN − ⌈xN⌉, i.eXm ∼ Bin(N, 1 − p(m)). Hence

lim
N→∞

V(p(m),N, x) = lim
N→∞

Pr(Xm ≤ N − ⌈xN⌉)

The mean and the variance ofXm are given byµX = E[X] = N(1 − p(m)) andσ2
X =

N(1 − p(m)) p(m). Appendix 7.1 shows the following Lemma

Lemma 1: : The limit for large number of users of the functionV(p(m),N, x) is given by

lim
N→∞

V(p(m),N, x) = 1{x ≤ p(m)} − 1

2
δ(x− p(m)) (3-20)

�

Eventually, the limiting throughput is given by

η∞(x,R,Γ) =
R

1 +
∑∞

m=1 1{x ≤ p(m)} − 1
2δ(x − p(m))

(3-21)
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For the SR scheme, using (3-15), we obtain the explicit formula

η∞(x,R,Γ) =
R

1 + ⌊ log x
log a⌋ − 1

2δ
(
⌊ log x

log a⌋ −
log x
log a

) (3-22)

where⌊.⌋ means the integer part anda
∆
=

(
1 − e−

2R
−1
Γ

)
.

For eachm, p(m) is an increasing function ofR. Fork = 0, 1, 2, . . ., we define

R(k)
∆
= sup

{
R :

∞∑

m=1

1{x ≤ p(m)} − 1

2
δ(x− p(m)) ≤ k

}
(3-23)

The following result holds:

Theorem 2:The supremum overR ≥ 0 of η∞(x,R,Γ) is given byR(k)/(1 + k) for some
k = 0, 1, . . ., that in general depends onx andΓ. �

The proof is given in Appendix 7.2.

ForN = 1, [18] shows that the IR throughput is an increasing functionof R and that

sup
R≥0

η(1, 0, R,Γ) = lim
R→∞

η(1, 0, R,Γ) = C(Γ) (3-24)

Appendix 7.3 shows that the limiting throughput for large number of users of IR protocol,
for a positive fraction of unfulfilled users is a constant that for same particular values ofx
equals the ergodic capacity.

Theorem 3:For independent Rayleigh fading SNRΓ and IR protocol, defineGm(z) the

cdf of the random variable1m
∑m

i=1 ∆Ii,u. Definexd
∆
= min(Gm(C(Γ))). Then for all

x ∈ (0, xd), η∞(x,R,Γ) is increasing withR. Therefore,sup
R≥0

η∞(x,R,Γ) is achieved for

R → ∞ andτ̄ → ∞, and it is equal toC(Γ). Also, for allx ∈ (xd, 1) sup
R≥0

η∞(x,R,Γ) is

achieved for finite delay. �

The derivation of a closed form expression forxd as a function ofΓ is not straightforward.
Nevertheless, it can be observed that for a wide range of SNRΓ xd is very close to0.5.
Note that Theorem 2 guarantees the existence ofηsup,x while Theorem 3 gives the value of
ηsup,x and the rate and average delay necessary to achieve it.

For the SR protocol, Appendix 7.4 shows the following theorem.
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Theorem 4:For the SR protocol,sup
R≥0

η∞(x,R,Γ) is always achieved for finiteR and delay.

In particular the optimalR is given byR(k) = F (k + 1) − ǫ wherek is found as the index
that maximizes the following sequence

b[i] =
1

i+ 1
[F (i+ 1) − ǫ] (3-25)

and
F (i) =

[
log2

(
1 − Γ log

(
1 − x

1
i

))]

for arbitrarily smallǫ. �

Figure 3-4 shows the behavior of the sequenceb[i] vs i for Γ = 0dB parametrized inx,
whenǫ = 10−3. We can clearly see that for allx the maximum is a small value ofi. It
becomes0 whenx→ 1.
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Fig. 3-4. Sequenceb[i] vs i+ 1 for Γ = 0dB parametrized inx, ǫ = 10−3.

3.6.1 Comparison with the “FEC only” System

In this section the comparison between IR scheme and a systemthat broadcasts the same in-
formation to all the users using only channel code without ARQ is carried out. This scheme
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is referred to as “FEC only” system. The information bits arecoded using a code of length
BL symbols transmitted overB different slots. The throughput seen by the transmitter is
simply given by the code rateη = RFEC,x for which the average error probability isx.
Note that the “FEC only” system has a fixed delay equal to the number of slots used to send
the codeword,B, while SR and IR have a variable delayτ .

In order to make a fair comparison we consider the average delay of the IR (or SR) equal
to the fixed delay of the “FEC only” scheme, we setB = ⌊τ̄⌋ where τ̄ is the average
delay (in slots) of the IR system, and such that users have error probabilityx. This is a fair
comparisons for largeN , since both the delay and the fraction of unfulfilled users become
deterministic and equal for the two systems (ifτ̄ is an integer). The following theorem
holds.

Theorem 5:Let τ̄ be the integer delay of IR protocol such that the error probability is x.
Consider a “FEC only” system withB = k + 1 and let the error probability be equal tox.
Then the spectral efficiency of “FEC only” system equals the throughput of the IR scheme
in the limit for large number of users, i.e.

ηFEC = η∞(x,R(k),Γ) (3-26)

�

The proof follows from the fact that the spectral efficiency of FEC coding satisfies the
equation

Pr

(
B∑

s=1

∆Is,u ≤ BηFEC

)
= x (3-27)

We notice thatR(k) defined in (3-23) must satisfy the equation

Pr

(
k+1∑

s=1

∆Is,u ≤ R(k)

)
= x (3-28)

By comparing (3-27) and (3-28) we conclude that for all integer delaysτ = 1 + k,R(k) =
(1 + k)ηFEC and, from Theorem 1,η∞(x,R(k),Γ) = ηFEC. In particular, since the
throughput is maximized for somek, we find that the maximum throughput (with respect to
delay, forx andΓ given) of the IR and of the FEC coding systems is identical in the limit
of a large number of users.

3.7 RESULTS

It is interesting to note that, with a very simple binary feedback scheme from each user,
whenever a positive fractionx of users to be unfulfilled is accepted, the throughput seen by
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the transmitter is positive even for an infinite number of users.

Consider, without loss of generality, the SR case: the throughput approachesR (the coding
rate) whenever the parametera goes to zero (lossless channel), orx goes to1 (we accept
100% of unfulfilled users), and it goes to0 whenever we want all the users to be fulfilled
(x→ 0). Note also thatη∞,x = R when log(x)

log(a) < 1, that means whena < x.

Figure 3-5 and 3-6 show the comparison of the throughput maximized overR versusx, in
the limit forN → ∞, for Γ = 3, 10dB for the two protocols SR and IR.

In the case ofΓ = 3dB xd = 0.5. Moreover forx ∈ (0.552, 1) supR η∞(x,R,Γ) =
log2(1 − Γ log(1 − x)) achieved with average delaȳτ = 1. For x ∈ (xd, xu) it is only
possible to conclude that̄τ is a decreasing function ofx.

WhenΓ = 10dB, insteadxd = G1(C(Γ)) = 0.48, and moreoverG−1
1 (x) > G−1

m (x) for all
x > xd. This tells that forx > xd supR η∞(x,R,Γ) = log2(1 − Γ log(1 − x)) achieved
with average delaȳτ = 1.

Since for highx the optimal throughput is obtained forτ̄ = 1, and the throughput of the SR
protocol lower-bounds the performance of IR, then SR and IR achieve the same results.

Figure 3-7 showsη∞(x,R,Γ) as a function ofR for fixedx andΓ = 3dB. The throughput
is a non decreasing function of the rate for smallx. On the contrary, for largex there exist
a finite value ofR which maximizes the throughput, and this maximum is larger than the
ergodic capacity, as stated in theorem 4.

Figure 3-8 represents the optimal throughputsupk η∞(x,R(k),Γ) for SR and the optimal
constrained throughput for the IR, when we setτ̄IR = τ̄SR. Also in that suboptimal case
the IR still gains with respect to SR in region0 < x < 0.24. The figure also shows the rate
R(k) for IR and SR and the average delay for SRτ̄SR.

Figure 3-9 shows the convergence ofsupk η(N,x,R(k),Γ) vsN for SR whenx = 0.2.
The rate of convergence slows down as long as we selectR equal to the optimal value,
R(k). Further analysis on the number of users necessary to achieve a certain error between
supk η∞(x,R(k),Γ) andsupk η(N,x,R(k),Γ) shows that it depends on 1

(p(k+1)−x)2
that

is in general very small (p(k + 1) also depends onR(k)). Therefore, as long as we accept
a small rate lossR∗ = R(k) − ǫ the rate of convergence increases.

Figures 3-10 and 3-11 show the throughputη(N,x,R,Γ) for x = 10−2, Γ = 3dB and
τ̄ = 10, 50 respectively.R is set equal toR(τ̄ − 1) defined in (3-23). We can notice that
FEC and IR coincides only in the limit of large number of userseven though they are always
quite close for smallN . Surprisingly the throughput of IR is not a decreasing function of
N . This is due to the fact that we allowx > 0 and that the delay becomes a deterministic
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variable only for large number of users while for smallN this is a random variable that
depends on N.

Finally consider a fixed delayB and the IR protocol.η(∞, x,R(B),Γ) is an increasing
function ofx. However we can compute the total average throughput as

ηtot = (1 − x)η(∞, x,R(B),Γ)

It is possible to show that thelimx→1 ηtot = 0 implying the existence ofx∗ that yields
optimal total throughput. This turns out to be a known problem, i.e find the optimal outage
probability that minimize the total throughput when a FEC system is considered.

3.8 DIMENSIONING THE PRE-FETCHING BUFFER FOR STREAMING APPLI -
CATION

Consider an application like video streaming where different users request the same in-
formation. Traditionally the system opens a connection foreach user and it adapts the
transmission parameters to the channel condition of that user. This is very expensive in
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terms of bandwidth and can cause problems when a new user tries to access to the same
service. Eventually the system refuses to open the connection for the new user. In this case
the system is not exploiting the multicast setting and in particular the fact that all the users
needs the same information. A better solution, in terms of bandwidth efficiency would be
to share the bandwidth among the users at the expense of a penalty in throughput of each
user. Hence, we can consider the use of IR or “FEC only” protocol with a fixed fraction of
users targeted at each transmission or equivalently fixed error probabilityx.

Suppose that each user is equipped with a buffer withE elements whereE packets can
be stored. Moreover, suppose that the application use one packet per time instant. The
queue is filled in with probability(1 − x), i.e the probability that the user can decode the
information or equivalently that the user is the “fulfilled”set. Suppose also that at time
instant0 the queue is completely filled up. We want to find the probability that the buffer is
empty before a certain time instantθ. This gives rise to a Birth-Death process [96] shown
in figure 3.8. The last stateE is an absorbing state. When this state is reached an outage
occurs and a resynchronization is necessary. DefineT the time necessary to reach the state
‘E’, and consider that at time instant0 the system is in the state0, i.e the buffer is full. It is
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easy to see that the probability mass function ofT is given by

Pr(T = t) =






0 if t < E(
t− 1
E − 1

)
xE(1 − x)t−E else

(3-29)

and finally the cumulative density functionPr(T < θ) is

Pr(T ≤ θ) =






0 if θ < E
∑θ

t=E

(
t− 1
E − 1

)
xE(1 − x)t−E else

(3-30)

MoreoverPr(T ≤ θ) = 1 for E = 0 and∀ θ > 0.

DefineSk,p a binomial random variable with parameterp, i.e Sk,p ∼ Bin(k, p). It is
straightforward to see that (3-30) can be written as

Pr(T ≤ θ) =

{
0 if θ < E

x
∑θ

t=E Pr(St−1,x = E − 1) else
(3-31)

Suppose to fix the time thresholdθ and define the outage probability as the probability of
an empty buffer before time instantθ, i.ePr(T ≤ θ) . It is possible to find the the minimum
buffer size, as a function ofx, such that the outage probability is less that a certain threshold
valuep0, Pr(T ≤ θ) ≤ p0. The optimal buffer size is then found as

Eopt = inf
E

{

E : x

θ∑

t=E

Pr(St−1,x = E − 1) 1 {E ≤ θ} ≤ p0

}

Figure 3-13 shows an example of buffer size requirement as a function of the constraint time
θ whenp0 = 10−8. The time here is measured in packets. It is interesting to notice that the
buffer size increases slowly with the constraintθ if the value ofx is sufficiently small. Note
that whenθ = E thanPr(T ≤ θ) = Pr(T = θ) = x. If x < p0 than the optimal buffer size
isEopt = theta+ 1.

3.9 CONCLUSIONS

The results of this analysis are mixed. On one hand, since reliable packet transmission
in delay-limited wireless communications is currently obtained by using HARQ protocols,
one would like to keep the same protocol for reliable multicast. On the other hand, it is
clear from this analysis and from [42], that the scalabilityof such protocol in a multicast
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Fig. 3-13. Buffer requirement versusθ for p0 = 10−8 parametrized inx.

environment is questionable. If the underlying application can afford a non-vanishing prob-
ability of error (expressed by the fractionx of unfulfilled users), then IR and SR schemes are
fully scalable and guidelines for the choice of optimal parameters are given. However, the
conclusion is that FEC coding targeted to achieve error probability x, without any explicit
ACK/NACK feedback channel, is to be preferred since it achieves the same performance
when the number of users gets large, with less complexity.

If full reliable transmission is required, the HARQ scheme ispractically scalable for typical
number of users per cell in a cellular environment, if one accepts a certain non-vanishing
gap from ergodic capacity.

These conclusions might be radically different in a rate-distortion setting, where the same
source can be multicasted to several users at different distortions.



CHAPTER 4

Lossy Broadcasting Common Information:
Optimization of Some Transmission Strategies

4.1 INTRODUCTION

This chapter is focused on the analysis and the optimizationof some strategies for the trans-
mission of an analog source over the Gaussian multicast channel. In this case, bit-error
probability at the output of the channel decoder is no longera good measure of perfor-
mance. On the contrary, the end-to-end distortion is more representative of the quality of
transmission.

If we restrict to the case of band-limited Gaussian sources to be transmitted on an additive
band-limited Gaussian channel, it is well known that when the source and the channel are
particularly matched to each other (the channel bandwidthWc equals the source bandwidth
Ws and when a Gaussian source has to be sent over a Gaussian channel), the uncoded trans-
mission achieves optimal performances. In [45] it is shown that, allowing for a single letter
mapping, sufficient and necessary condition for the optimality of uncoded transmission can
be found. The main result is a criterion to check whether the single letter code performs
optimally for a given source-channel pair. It is also shown that when a single Gaussian
source is sent to two different users through Gaussian channels, uncoded transmission gives
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a distortion that is Pareto optimal1 and that lies strictly outside the distortion region for the
separation based approach when superposition coding is assumed. Superposition coding
consists on embedding high-rate information on low-rate information [46, 36]. However, it
is easy to find some practical and not negligible examples when Gastpar’s conditions do not
hold, for example when the source bandwidthWs is different from channel bandwidthWc.
As an example, compare the bandwidth of an analog TV signal with the bandwidth of the
FM TV signal, clearlyWc > Ws (where we have calledWc the band of the channel andWs

that of the source). WhenWc > Ws coding of the source becomes necessary to exploit the
additional channel bandwidth.

One of the advantages of using analog schemes is that they achieve gradual changes in the
reconstruction quality when changing the SNR while digitalschemes show the “threshold
effect” described in section 1.3.1.

Shannon’s separation theorem states that separating the coding into two steps, source coding
and channel coding is optimal. This does not take into account delay and complexity issues
and in general it does not hold for multiuser communication or non-ergodic scenario [98].
In [48, 49] and reference therein, the authors have shown that Joint Source-Channel Codes
(JSCC) outperform codes designed based on the separation theorem, for fixed complexity
and delay, and they are more robust to change in channel noise.

In this chapter we consider the simplest possible scenario of this kind, which is, never-
theless, not yet fully solved. We consider a Gaussian i.i.d.source with bandwidthWs

that has to be transmitted over a band-limited channel with bandwidthWc under the end-
to-end quadratic distortion criterion. As motivated before, we assume spectral efficiency

η
∆
= Ws/Wc > 1.

Again, the BF-AWGN channel is considered, for which the channel gain is random but
constant over the duration of a codeword. The coding block length is assumed large enough
such that any rate below the instantaneous channel capacityfor the given fading realization
can be decoded with negligible probability of error, while any rate above the instantaneous
channel capacity yields probability of error close to1. The BF-AWGN channel is a useful
mathematical abstraction that models very slowly-varyingfading channels, as for example,
stationary terminals such as TV receivers, or the path loss determined by the distance to
the base station in a mobile cellular communications. In these cases, the fading changes
much more slowly than the coding delay and the channel behaves non-ergodically (see [80]
for a thorough discussion). The BF-AWGN channel, under the assumption, made here,

1Optimality criterion for optimization problem with multi-criteria objectives. A state A is said to be Pareto
optimal if there is no other state B dominating the state A w.r.t. the state of objectives functions. A state A
dominates the state B if A is better than B in at least one objective function and not worse w.r.t all other objective
functions.
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that the transmitter is not informed of the channel fading (but it knows its statistics), may
also model a Gaussian broadcast/multicast channel [46] with K → ∞ users, such that
the empirical distribution of the users SNRs converges almost everywhere to the fading
cumulative density function. For this scenario, we optimize and compare three strategies:
time-sharing-based transmission, superposition coding and a Hybrid Digital/Analog scheme
(HDA). We optimize these schemes by minimizing the average end-to-end distortion for
given transmit powerΓ and fading statistics (assuming acontinuouspdf fA(z) and cdf
FA(z)).

A transmission strategy widely used in the broadcast setting consists of the so-called “pro-
gressive transmission”. The source is splitted intoL parallel streams mapped onto channel
codewords with different coding rate and possibly different energy per channel symbol.
This achieves unequal error protection for each level of information. The codewords are
sent through the channel by a time-sharing strategy. In [99]the optimization analysis is car-
ried out for Binary Symmetric Channel (BSC) and Binary Erasure Channel (BEC). Using
this principle, [100] characterizes an achievable averagedistortion region for the broadcast-
ing of a common source. The splitting of the source is represented by an ideal successive
refinement source encoder that provides independent levelsof information each of one con-
veying the same amount of information bits per source symbols.

A broadcast approachto the BF-AWGN channel was proposed and analyzed in [101] (and
references therein) in order to maximize the average transmission rate. It consists again of
splitting the information message intoL → ∞ parallel streams and mapping each stream
onto a layer of a superposition coding scheme. Each layer is modulated with a power
level γ(a), and optimized under the overall power constraintE[γ(A)] ≤ Γ such that the
average successfully received rate is maximized. Following the approach of [101] yields
unmanageable expressions due to the fact that the distortion is a non-linear function of the
rate and the elegant solution of [101] based on Euler integral does not apply.

The last strategy that we analyze is a Hybrid Digital-Analog(HDA) JSCC. These hybrid
systems have been proposed in [53, 54, 55, 56]. These schemescouple the graceful degra-
dation in reconstruction quality with changes in SNR offered by the analog part with the
error correcting capability of the digital part.

Shamai et al., in [53], show thatsystematic joint source channel coding(a type of bandwidth
splitting HDA) is optimal for a wide class of source and channels. They analyze the capacity
of the channel consisting of the digital channel in parallelwith the analog channel. They call
systematic those source/channel codes which transmit the raw uncoded source in addition
to the encoded version (see figure 4.1). When a Gaussian source and channel are considered
and whenWc > Ws, they show that the conditions for optimality of systematiccoding
techniques are respected. In [55] the authors show that whenGaussian mixture source are
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Fig. 4-1. Systematic Source-Channel coding.

transmitted over a Gaussian broadcast channel, the HDA scheme is asymptotically optimal.

Other types of HDA systems has been studied by Mittal et al. in[56], where the authors an-
alyze in terms of average distortion, several coding systembased on dimension (bandwidth)
splitting and/or power splitting of the source. Also in this case Gaussian source and AWGN
channel is considered. They provide examples of “nearly” robust systems2. They show that
the HDA scheme proposed outperforms in terms of distortion region a time-sharing sys-
tem and the purely digital system and in certain cases they outperform the systematic code
introduced above.

In the following we compute analytically the average distortion of the systems in the ideal
case when the source code achieves rate-distortion and the channel code achieve the capacity-
cost functions3. The system is optimized for block fading AWGN channel. We give an
algorithm that can be generalized to take into account more practical scenario where the
source and the channel codes are not ideal. Moreover we compare the progressive and su-
perposition scheme with an distortion-based optimized version of the nearly robust HDA
scheme proposed in [56].

4.1.1 Summary of the Contribution

• Definition of the optimization problem based on the minimization of the average dis-
tortion for progressive, superposition and HDA based scheme, for BF-AWGN chan-
nel.

2“Nearly robust” means that the system asymptotically operates at the rate-distortion limit for a particular
SNR value

3This notion is meaningless since a single code cannotachieve capacity. However, what we mean here is
thatC is a member of a sequence of codes that work arbitrarily closeto the capacity limit for increasing block
length.
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• Algorithms for superposition and progressive approach that give the optimal trans-
mission power and/or coding rate.

4.1.2 Organization of the work

The chapter is organized as follows: In section 4.2 the general definition of the optimization
problem is given and the computation of the optimal power allocation and coding rate pol-
icy that achieves minimum average distortion is carried outfor time-sharing based scheme.
Section 4.3 finds the optimal power allocation policy in the case of the superposition ap-
proach. In section 4.3.1 the optimization of the HDA scheme is carried out. Section 4.5
gives the results and compare the different strategies in terms of average distortion versus
average and instantaneous SNR when Rayleigh fading is considered.

4.2 PROGRESSIVE-BASED TRANSMISSION STRATEGY

We consider a discretized system withL layers, where the number of source code layers
coincides with the number of channel codewords. Each level has a source coding raters
bits/source sample and it is mapped onto a codeword belonging to a channel codeC′

i, mod-
ulated at different power levels. In generalC′

i is identified by the rate SNR-threshold pair
(ri, τi) such that for SNR larger thanτi the code yieldsacceptableperformance (roughly
speaking, low-enough bit-error rate).

The successively refinability property of the source allowsto achieve the distortion-rate
function at each levelDℓ = 22rsℓ andD0 = 1, whereℓ is the number of layer successfully
decoded .

Codewordi has coding rateri = k
ni

, wherek is the number of bits output by thei-th layer
of the multiresolution source coder andni is the blocklength. Figure 4-2 illustrates this
scheme. The spectral efficiency is given by

η =
1

rs
∑L

i=1
1
ri

⇒
L∑

i=1

1

ri
=

1

ηrs

Defineγℓ as the energy per channel symbol used to transmit theℓ−th codeword. The total
powerΓ can be computed as

Γ =
L∑

ℓ=1

nℓ∑L
i=1 ni

γℓ = ηrs

L∑

ℓ=1

γℓ

rℓ
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Define a set of fading thresholds0 < a1 < · · · < aL (whereaL+1 = ∞) such that layers
up toℓ can be decoded ifA ∈ [aℓ, aℓ+1]. Assuming ideal Gaussian channel codes, theℓ-th
code rate is given byrℓ = log2 (1 + aℓγℓ). Call nowzℓ = 1

rℓ
andyℓ = γℓ

rℓ
. It follows that

aℓ =

(
21/zℓ − 1

)
zℓ

yℓ
(4-1)

We wish to minimize the resulting average distortionDav(rs, z,y) with respect toz andy

subject to the constraints
L∑

i=1

zℓ =
1

ηrs
;

L∑

i=1

yℓ =
Γ

ηrs
(4-2)

whereDav(rs, z,y) has the following expression

Dav(rs, z,y) = FA(a1) +

L∑

ℓ=1

Dℓ (FA(aℓ+1) − FA(aℓ)) (4-3)

with aℓ defined in (4-1).

The associated Lagrangian functionalΦ is given by

Φ = Dav(rs, z,y) + λ
L∑

i=1

zi + ρ
L∑

i=1

yi

For the Kuhn Tucker’s conditions it follows that the partialderivative with respect tozℓ and
yℓ has to be greater or equal to 0,

∂Φ

∂zℓ
= ∆DℓfA(aℓ)

((
21/zℓ − 1

)
zℓ − 21/zℓ ln2

zℓyℓ

)

+ λ ≥ 0

∂Φ

∂yℓ
= ∆DℓfA(aℓ)

(

−zℓ
(
21/zℓ − 1

)

y2
ℓ

)

+ ρ ≥ 0 (4-4)

(4-5)

yℓ can be found as a function ofρ, λ andzℓ

yℓ =
1

µ

(
21/zℓ − 1

)
z2
ℓ

21/zℓ ln2 −
(
21/zℓ − 1

)
zℓ

(4-6)

whereµ is defined asµ
∆
= ρ

λ . zℓ is then obtained as

−∆Dℓg (zℓ, µ) + λ = 0 (4-7)
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whereg (zℓ, µ) is defined as

g (zℓ, µ)
∆
= fA

(

µ
21/zℓ ln2 −

(
21/zℓ − 1

)
zℓ

zℓ

)

·
(

µ

(
21/zℓ ln2 −

(
21/zℓ − 1

)
zℓ
)2

z3
ℓ

(
21/zℓ − 1

)
)

(4-8)

4.3 SUPERPOSITION-BASED TRANSMISSION STRATEGIES

Consider now a superposition-based approach where each level is mapped onto an inde-
pendently selected codeword of “a basic channel code”C′ modulated at different power
levels. Each layer has source coding raters bits/source sample and channel coding raterc
bit/channel uses, so thatη = rc/rs. Figure 4-3 shows the block diagram of the superposition
scheme. The mother codeC′ is identified by the rate SNR-threshold pair(rc, τ).
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∑
b
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n

rs = k
b

Deecodable Layers

γk

γL

C
H
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N
N
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L

DistortionD(rsℓ)
Source
Reconstructed

Fig. 4-3. Superposition scheme.

The transmitted superposition codeword is given byx =
∑L

ℓ=1

√
γℓc

′
ℓ whereγℓ andc′ℓ are

the power level and the codeword ofC′ associated to levelℓ, respectively.
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Define again the set of fading thresholds0 < a1 < · · · < aL (whereaL+1 = ∞) such that
layers up toℓ can be decoded ifA ∈ [aℓ, aℓ+1]. The resulting average distortion is given by

Dav(rs,γ) = FA(a1) +

L∑

ℓ=1

Dℓ (FA(aℓ+1) − FA(aℓ)) (4-9)

whereγ = (γ1, . . . , γL). We want now to solve the following minimization problem

min
rs

min
γ

Dav(rs,γ) s.t
L∑

i=1

γi = Γ (4-10)

The condition for successive decodability of the superposition code up to layerℓ is given by

aℓγℓ

1 + aℓ
∑L

j=ℓ+1 γj

≥ τ (4-11)

The levelsaℓ are uniquely defined by the power levelsγℓ by imposing the constraint (4-11)
with equality,

aℓ =
τ

γℓ − τ
∑L

j=ℓ+1 γj

(4-12)

Conversely, theγℓ’s can be expressed in terms of theaℓ’s by solving the triangular linear
systemaℓγℓ − τaℓ

∑L
j=ℓ+1 γj = τ for all ℓ = 1, . . . , L which yields

γℓ = τxℓ + τ2xℓ+1 +
L∑

j=ℓ+2

τ2xj (1 + τ)j−ℓ−1 (4-13)

wherexℓ
∆
= 1

aℓ
. We wish to minimize the average distortion (4-9) with respect to{γ1, . . . , γL}

subject to the constraint
∑

ℓ γℓ = Γ.

The associated Lagrangian functional is

Φ = Dav(rs, γ1, . . . , γL) + λ

L∑

ℓ=1

γℓ (4-14)

Theℓ-th partial derivative is given by

∂Φ

∂γℓ
=

ℓ−1∑

j=1

∆Dj
1

x2
j

fA

(
1

xj

)
− ∆Dℓ

1

τ

1

x2
ℓ

fA

(
1

xℓ

)
+ λ (4-15)

where∆Dℓ = Dℓ−1 −Dℓ. From the Kuhn-Tucker conditions, we look for the values ofxℓ

such that the derivative is non-negative.
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With the substitutionwℓ = 1
x2

ℓ
fA

(
1
xℓ

)
, the system given by∂Φ

∂γℓ
= 0 is linear and lower

triangular, and the solution is given by

wℓ =
λτ (1 + τ)ℓ−1

Dℓ−1 −Dℓ
= λGℓ (4-16)

where we have definedGℓ
∆
= τ(1+τ)ℓ−1

Dℓ−1−Dℓ
.

Finally, the derivative is greater or equal to zero if

−
1
x2

ℓ
fA

(
1
xℓ

)

Gℓ
+ λ ≥ 0 (4-17)

4.3.1 Hybrid Analog/Digital Scheme

The scheme of the encoder is shown in figure 4-4 while the decoder is shown in figure 4-5.
The source bandwidth is splitted so thatWs,A dimensions are sent through an analog (un-

coded) branch whileWs,D = Ws −Ws,A is sent through the digital encoder, called tandem
encoder. The two outputs are modulated by power levelsγA andγ1 respectively, superim-
posed and sent to the channel.γA, γ1 are such thatγA + γ1 = Γ. The total transmitted
signal is given by

y =
√
γ1s1 +

√
γAsA + ν

wheres = [s1, sA] is the total analog source with bandwidthWs, ν is the complex circu-
larly symmetric AWGN with componentsνi ∼ N (0, 1). At the received side the digital
decoder decodes the information by considering the analog signal as noise. The estimated
information is re-encoded and removed from the received signal. This constitutes the signal
from which the analog decoder estimates the analog information.

yA =
√
γAsA +

√
γ1(s1 − ŝ1) + ν (4-18)

When the digital decoder can not decode the information withvanishing error probability,
than the analog decoder will estimatesA by considering the second term in 4-18 as additive
noise.

In [56] the system is designed such that to satisfy the “nearly robust” constraint, i.e to give
asymptotically optimal performances for a particular value of SNR = SNR⋆. This yields
a particular power splitting between the digital and the analog part. In this work, instead
of constraining the system to be nearly robust, we find the power allocation policy that
minimize the average distortion subject to a total power constraint. The “analog code” is
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a linear coder/decoder with coefficients that minimize the mean squared error. In [56] the
authors consider a matched tandem encoder as digital system. The encoder is said to be
matched if the channel input is a scaled version of the firstn components of the quantizer
output, wheren is the blocklength. When the SNR is such that the tandem decoder can not
decode the information (the SNR is lower than the threshold of the code), then the decoder
becomes a linear decoder that estimates the firstn symbols.

Here we limit the analysis and the results for the non matchedcase. However note that the
construction of such codes is not straightforward and that they lead to small improvement
in the performances only for SNR< SNR⋆, i.e very small values of fading coefficients.

This scheme has only one digital layer so we will define only one fading thresholda1

s.t. 0 < a1 < +∞. The thresholda1 is such that if the actual fading value is above
that threshold, then the digital decoder can recover the information with vanishing error
probability, while on the contrary the digital decoder actsas noise for the analog decoder.
The channel code is defined by the pair(rc, τ), where in the ideal caseτ = 2rc − 1 =
2(η−1)rs − 1 and the condition for successful decodability is given by

a1γ1

1 + a1γA
≥ τ = SNR∗ (4-19)

where the analog layer is treated as additional noise by the digital decoder. By imposing
the equality in (4-19) and substituting the total power constraint, we obtainγA = Γ

(1+τ) −
τ

a1(1+τ) . Note that for a given fading valuea, if a < a1 the digital signal cannot be decoded
correctly, i.e the output of the channel encoder acts as noise for the linear estimator of the
analog layer. The distortion due to the analog layer is givenby

DA(rs, a1) =
1

1 + aγA
if a ≥ a1

=1 − aγA

1 + aΓ
else (4-20)

The average distortion can be written as

Dave(rs, a1) =
η − 1

η
(FA(a1) +D1(1 − FA(a1))) +

1

η[
FA(a1) −

∫ a1

0

aγAfA(a)da

1 + aΓ
+

∫ ∞

a1

fA(a)da

1 + aγA

]
(4-21)

The result of the unconstrained minimization of (4-21) is obtained by findinga1 solution of
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the following equation

fA(a1) −D1fA(a1)
η − 1

η
− γAa1fA(a1)

η(1 + a1Γ)
− fA(a1)

η(1 + a1γA)
− FA(a1)τ

η(1 + τ)a2
1Γ

+

+
τ

η(1 + τ)a2
1

[∫ a1

0

fA(a)da

1 + aΓ
−
∫ ∞

a1

fA(a)da

(1 + aγA)2

]
= 0 (4-22)

4.4 SHANNON ’ S SEPARATION THEOREM

For comparison, a system based on the separation theorem that transmits a single layer is
considered. This can be regarded as the baseline system representative of today’s technol-
ogy, such as terrestrial and satellite DTV, or DAB. We consider the minimization of average
distortion with respect to the source coding raters. The average distortion of the one-layer
digital system is given by

Dsep = FA

(
2ηrs − 1

Γ

)
+ 2−2rs

[
1 − FA

(
2ηrs − 1

Γ

)]
(4-23)

In the general case, the optimal valuer⋆
s is given by the solution of

fA

(
xη − 1

Γ

)
xηη

Γ
log 2−2 log(2)

1

x2

(
1 − FA

(
xη − 1

Γ

))
− 1

x2
fA

(
xη − 1

Γ

)
xηη

Γ
log 2 = 0

with x = 2r⋆
s .

4.5 ON ACHIEVABLE RSNR: RAYLEIGH FADING

In this section we show the results of the optimization problems defined above. We consider
Rayleigh fading so that the pdf of the fading power gain in given byfA(a) = e−a. The
spectral efficiencyη is fixed to3 complex source symbol per channel use. Note that in
all the above systemsrs is left as a design parameter and numerical optimization w.r.t rs
is further carried out. For the superposition strategy by letting L arbitrarily large withrs
arbitrarily small our numerical computable solution will approach arbitrarily closely the
optimal solution of [101] when the average distortion is minimized instead of maximizing
the average rate. For the progressive transmission approach, the optimal performance is,
as well, obtained forrs → 0. For the HDA scheme however the optimalrs is a fixed non
vanishing valuer⋆

s .

Figure 4-6 shows a graphical representation of (4-17) for the superposition scheme, for
Rayleigh fading. The set of solutionsxℓ is to be found in the region defined as ‘valid
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solutions’ in the figure 4-6, i.e the region where the property x1 ≥ x2 . . . ≥ xL holds. We
would like to stress the fact thatλGℓ is an increasing sequence with respect toℓ, for fixedλ.
Hence, the number of levels that yield optimal performance,is given byL = sup{ℓ : wℓ ≤
λGℓ}, for the choice ofλ that satisfy the power constraintΓ.

For the progressive transmission approachg(zℓ, µ) in (4-8) has the same behavior as (4-17).
Moreover, analogous analysis on set of solutions and the optimal number of levels, fixed
µ, holds. Figure 4-7 shows the results in terms of RSNR defined as 10 log10

1
D whereD

is the average distortion vs the average channel signal to noise ratioΓ. In the figure the
average performances of superposition, progressive and the HDA (‘HDAD ’ in the figure)
scheme are compared. Also plotted are the scheme based on theseparation theorem and
the nearly robust HDA (‘HDANR’ in the figure). For the superposition and progressive
schemes, when vanishingrs is optimal we plot the average performances for ars “small
enough”,rs = 1/20. For practically small rate the gap from the optimal performances
becomes negligible.

Reducingrs increases the optimal number layer and since a small enough value ofrs allows
to achieve optimal performance, practically there is no need to make too many layers. For
the separated approach and for the HDA the value ofrs is fixed tor⋆

s . Finally, notice that the
HDAD outperforms all the other schemes and that there is practically no difference between
the separation theorem based approach and the progressive transmission in terms of average
distortion.

Figure 4-8 shows the performances in terms of RSNR vs instantaneous SNR, for average
SNRΓ = 20dB. For comparison the performance of the nearly robust non matched HDA
scheme is plotted. The theoretical limit, in terms of distortion, is given by Shannon as
DSh = 1

(1+aΓ)2/η . As announced before, the enhancement of the performances due to

the matched encoder is small and concentrated in a range SNR< SNR⋆ because in that
range the tandem decoder becomes a linear decoder that estimates the symbols. The HDAD
schemes and the superposition scheme gives smooth performances for a wide range of SNR
providing more graceful degradation under mismatched channel condition compared to the
separation theorem based scheme and the progressive approach . Finally most of the gain
in RSNR of the HDAD is due to the presence of the linear encoder.
Note that even if the separated approach yields the same performance as the progressive
scheme in terms of average distortion vs average SNR, the situation is different when the
average distortion is plotted as a function of the instantaneous SNR. The progressive based
scheme shows advantages in terms of graceful degradation ofperformances over a wide
range of SNRs and therefore it is more suited to multiuser applications.

Further computation with different fading statistic have shown that, when considering a
uniform distribution of users over a circular cell and attenuation due to path loss, the super-
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position scheme yields closed form solution for the optimalpower allocation policy.

4.6 CONCLUSIONS

In this chapter a general optimization method for three transmission schemes for com-
pound channel is given: the first scheme is based on ideal multilevel quantizer and time-
sharing transmission scheme, the second couples the multilevel quantizer with a superpo-
sition scheme. Finally, the third is an hybrid digital-analog scheme. These schemes are
optimized in order to minimize the average overall distortion under total transmitted power
constraint and spectral efficiency. The algorithms give theoptimal power/rate allocation
policy that minimize the average distortion, as well as the optimal number of layers. The
algorithms are derived for ideal source/channel code behavior but can be generalized to take
into account more practical setting where the source and thechannel codes are not ideal.
Under the assumption, considered here, that the transmitter is not informed about the instan-
taneous fading condition, the compound channel can model a broadcast (multicast) scenario
where each users has a particular fading coefficient. The algorithms found in this chapter
can be used for the design of good joint source channel codes that approach theoretical
limits in a multicast setting.
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CHAPTER 5

Practical Code Constructions

5.1 INTRODUCTION

Chapter 4 shows that HDA schemes outperform fully digital strategies based on time-
sharing and superposition. Hence, here, we focus on the practical construction of HDA
schemes. Figure 5-1 recall the encoding structure of the HDAscheme. Recall that the HDA
is based on the splitting of the source bandwidth such that one part is uncoded and the sec-
ond part is encoded by a tandem encoder. The two signals are modulated by different power
levels, superimposed and passed through the channel. A tandem encoder is a general term
to indicate both the source and the channel encoder. The optimization of the HDA scheme
in chapter 4 yields the value of a threshold SNR∗ for which the tandem encoder should be
designed. Therefore, a key issue is the design of a tandem encoder robust to channel errors,
such that it works as close as possible to the theoretical limit.

We consider here two different strategies. The first is basedon sophisticated quantizer
schemes as vector quantization-based constructions, thatoutput almost non-redundant bits.
These can be protected against channel errors by using standard channel codes, like Turbo
codes or LDPC. The issue, here, is to design quantizer schemes that are non-catastrophic,
in the sense that few bits in error at the output of the channeldecoder should not lead to
catastrophic effects on the reconstruction quality. Examples of such schemes can be found
in [102, 103, 104]. Note that best quantizer schemes known inliterature, are found among
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the family of Entropy Constrained Trellis Coded Quantizer (ECTCQ) [113]. However, since
the indexes at the output of the quantizer have residual redundancy, traditionally they are
coupled with a variable rate source code. This makes the scheme very sensible to channel
errors, since it is well known that arithmetic encoders havecatastrophic inverse.

Here we propose a scheme, based on convolutional codes and unitary transformations, effi-
ciently implemented by FFT/IFFT and interleaving. This scheme offers performance com-
parable to the best known Trellis Coded Quantizer (TCQ) [59]and very fine granularity of
rates. This scheme inherits from convolutional codes the property of being non-catastrophic,
thus it is robust to residual errors of the channel decoder. It can be coupled with standard
Turbo codes or LDPC. Note also that this quantizer is embedded by construction, i.e it
implements a successive refinable source code. Consequently it can work also with time-
sharing/superposition transmission strategy.

The second class of tandem encoder that we consider exploitsthe residual redundancy of
the indexes at the output of the quantizer. For this, scalar or vector quantizers whose out-
put is redundant, can be considered. Data compression and channel protection are jointly
performed. A key issue is the design and the optimization of such codes so that they are
robust to channel errors. The idea of exploiting the redundancy of the source coder output
to increase performance is well known. Sayood et al. [105] suggested to use this redun-
dancy for error protection. Hagenauer et al. in [106] proposed to use it to modify the soft
information processed by the decoder. Another increasingly popular scheme involves dual-
functional channel codes. It was shown in [107] that fixed-to-fixed length data compression
of a discrete source using linear codes is strongly related to transmission via linear codes
on a discrete additive noise channel where the noise has the same statistic of the source.
This analogy can be exploited by using linear error correction channel codes such as LDPC
codes [107] or Turbo codes, for data compression. In [108, 65] Garcia-Frias et al. proposed
a scheme for data compression for both single memoryless source and correlated sources
where the desired compression ratio can be achieved by properly puncturing turbo codes, in
particular by puncturing the information bits and the parity bits. A priori probability of the
source is used to modify the extrinsic information in the iterative decoding process.

Here we consider a data-compression/ channel protection scheme based on Turbo codes,
and we refer to it as Multilevel Turbo COMpression (M-TCOM).This is realized by cou-
pling a scalar/vector quantizer, whose indexes still contain redundancy, with a compres-
sion/protection multilevel scheme based on Turbo Codes. For simplicity we consider here
Entropy Constrained Scalar Quantizer (ECSQ), but the same scheme can be generalized to
work with Entropy Constrained Vector Quantizer (ECVQ) likeECTCQ.

A Q−ary to binary mapping transforms the output of the ECSQ intoL bit-streams. Each
bit level is, then, mapped on different Turbo codes where thesystematic bits are punctured,
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together with a certain amount of parity bits in order to achieve the desired rate. The code-
words are multiplexed and transmitted over the channel. We assume that the decoder is
aware of the “conditional statistic” of each bit-plane. By “conditional statistic” we mean
the conditional probability of the bits at levelℓ given the previous levels.

Optimization of turbo codes is necessary in terms of polynomial generator of the component
convolutional code and puncturing pattern. This can be carried out by using EXIT Chart-
based method [27].

The M-TCOM approach, by nature, can be generalized to yield progressive transmission
of information. By choosing theQ-ary to binary mapping and the quantizer scheme such
that it is embedded, the source can be reconstructed with different levels of distortion. The
scheme and the design of the code are extended to the case of practical transmission of
images over the wireless link. This is shown to give remarkable results when coupled with
a modified Differential Pulse Code Modulation-based (DPCM)quantizer defined by Kim et
al [57].

Finally, MTQ concatenated with Turbo codes and M-TCOM scheme are compared. MTQ
based scheme yields performance closer to the theoretical limit (Shannon limit). The poorer
performance of M-TCOM compared to MTQ are mainly due to two factors. First, in the
noiseless case the M-TCOM scheme can achieve only the performance of ECSQ (poor
performance in low rate region). Second, the optimization of Turbo codes is not straight-
forward. An open issue is the analytical optimization of codes belonging to the Irregular
Repeat and Accumulate family, through Density Evolution, and the use of ECTCQ, instead
of ECSQ. This, potentially, will approach, in a better way, the Shannon’s limit.

5.1.1 Summary of the Contribution

• Definition of the Multistage Trellis Quantizer (MTQ) based on unitary transformation
and convolutional code.

• Analysis of the behavior of the MTQ in the noiseless and noisycase.

• Construction and analysis of a compression scheme based on Turbo codes.

• Guidelines for optimization of Turbo codes.

5.1.2 Organization of the Work

This chapter is organized as follows Section 5.2 describes the construction of the MTQ.
In section 5.2.1 the necessary background is given while section 5.2.2 explains the code
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design. Section 5.3 deals with lossy transmission over noisy channel when considering the
MTQ scheme.

Section 5.4 introduces the compression scheme based on linear codes and give the results
of the optimization of the component codes. An example is given in section 5.5 when this
scheme is coupled with more practical quantizer (Differential Pulse Coded Modulation,
DPCM) for lossy transmission of image over noisy channel. Finally 5.6 concludes the
chapter and discuss some open points and extensions.

5.2 MULTISTAGE TRELLIS QUANTIZER

5.2.1 Background

Consider a sourceS ∈ R with rate-distortion functionR(D) with respect to a certain dis-
tortion measured : R × R → R+, inducing the distortion measure onR

k × R
k according

to

d(s, ŝ) =
1

k

k∑

i=1

d(si, ŝi) (5-1)

An L-level successive refinement source code of block lengthk is defined by the encoding
functionsgℓ : R

k → {1, . . . ,Mℓ} and by the reconstruction functions

φℓ : {1, . . . ,M1} × · · · × {1, . . . ,Mℓ} → R
k

The rateL-tuple of the successive refinement code is given by

Rℓ =
ℓ∑

j=1

log2Mj : ℓ = 1, . . . , L

and the achieved distortionL-tuple is given by

{Dℓ = E [d(s, φℓ(g1(s), . . . , gℓ(s)))] : ℓ = 1, . . . , L}

The successive refinement structure of the code manifests itself in the fact that distortion
level Dℓ is obtained byrefining the coarser description at levelℓ − 1 by incorporating
additional information at rate incrementRℓ −Rℓ−1 bits/source symbol.

The sourceS is saidsuccessively refinable[51, 50] if, for any desired integerL, distortion
L-tupleD1 < D2 < · · · < DL, ǫ > 0 and sufficiently largek, there exists anL-level
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successive refinement source code of block lengthk with rateL-tuple (R1, . . . , RL) such
that

Rℓ ≤ R(Dℓ) + ǫ ∀ ℓ = 1, . . . , L (5-2)

and
E[d(s, φℓ(g1(s), . . . , gℓ(s)))] ≤ Dℓ + ǫ ∀ ℓ = 1, . . . , L (5-3)

In other words, theL-tuple ofoptimal rate-distortion pairs{(R(Dℓ),Dℓ) : ℓ = 1, . . . , L}
is achievable by successive refinement.

In the rest of this work we restrict to the quadratic distortion measured(s, ŝ) = |s− ŝ|2 and
to sources with mean zero and variance 1 (different variances can be handled by normaliza-
tion).

It is well-known that a Gaussian i.i.d. sourceS ∼ N (0, 1) is successively refinable [51, 50].
It is also well-known that, in the Gaussian case, optimal successive refinement codes have
an additive structure [109], i.e., theℓ-th level representation vectorŝℓ for the source vector
s is given by

ŝℓ =

ℓ∑

j=1

ψj(gj(s)) (5-4)

whereψℓ : {1, . . . , 2k(Rℓ−Rℓ−1)} → R
k denotes the reconstructionincrementfunction at

level ℓ.1

Now, consider a spherical codebook

C =
{
cq ∈ R

k : q = 1, . . . , 2krs

}
(5-5)

wherers is a design parameter. The codewords ofC lie on ak dimensional sphere of squared
radiusk. Consider∆ ∈ (0, 1] and letQα : R

k → {1, . . . , 2krs} denote the minimum
Euclidean distance decoder for the scaled codeαC, i.e.,

Qα(s) = arg min
q
d(s, αcq) (5-6)

Lapidoth [75] showed that forrs > 1
2 log2

1
∆ , α =

√
1 − ∆, ǫ > 0 and for sufficiently large

k there exist spherical codesC such that

E[d(s, αcQα(s))] ≤ ∆ + ǫ (5-7)

This result holds for any sourceS, not necessarily Gaussian, i.i.d., or even ergodic, under
the condition that1k |s|2 → 1 in probability [75]. In some sense, scaled spherical codes

1We defineR0 = 0 andD0 = 1.
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with minimum distance encoding arerobustin the sense that they achieve the Gaussian rate
distortion bound under very mild conditions on the source. On the other hand, for these
codes all sources appear as hard to compress as the Gaussian i.i.d. source.

We shall constructL-levels successive refinement codes from a single sphericalcodeC,
denoted as the “basic code”. Fig. 5-2 provides a pictorial representation of the geometry
of the proposed construction. The encoding function at level ℓ is based on the minimum
distance decoder of the basic code. It computes theℓ-level index

gℓ(s) = Q
α
√

∆ℓ−1 (s− ŝℓ−1) (5-8)

where

ŝℓ =
ℓ∑

j=1

α
√

∆j−1cgj(s) (5-9)

is the representation vector at levelℓ. Such multistage structure can achieve the rateL-tuple
{Rℓ = ℓrs : ℓ = 1, . . . , L} with distortionL-tuple{Dℓ = ∆ℓ : ℓ = 1, . . . , L}.

Lastras and Berger [52] showed that any well-behaved sourcecan be encoded by successive
refinement incurring a bounded rate penalty at each level. Inparticular, letS be an arbitrary
i.i.d. source with mean zero, variance 1, finite differential entropyh(S) and rate-distortion
functionR(D). The distortionL-tuple(D1, . . . ,DL) can be achieved by successive refine-
ment at rates(R1, . . . , RL) such that

Rℓ ≤ R(Dℓ) +
1

2
log2

1

PS
(5-10)

wherePS = 22h(S)

2πe is theentropy powerof S, i.e., it is the variance of a Gaussian source
with the same differential entropy ofS.

The multistage spherical code can achieveDℓ = ∆ℓ at rateRℓ = ℓ
2 log2

1
∆ . By using the

Shannon lower bound on the rate distortion function [46], wefind that the rate penalty is
bounded by

Rℓ −R(Dℓ) =
ℓ

2
log2

1

∆
−R(∆ℓ) ≤ ℓ

2
log2

1

∆
− 1

2
log

PS

∆ℓ
=

1

2
log2

1

PS
(5-11)

which coincides with the bound in (5-10). In other words, thebehavior of the proposed
scheme is good in the sense that it meets Lastras and Berger bound for any source for
which Lapidoth result [75] holds. In practice, a successiverefinement code thatapproaches
the Gaussian rate-distortion bound for any target distortion L-tuple and any well-behaved
source is highly desirable. This is pretty much all what we can hope for in practical appli-
cations, when the statistics of the source is not known a priori and might not be ergodic.
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A typical example is provided by image coding, where the statistics of the output of the
“analog” part of the encoder, essentially given by a linear transformation followed by seg-
mentation and decimation, gives origin to blocks of signals to be quantized, that are nearly
uncorrelated and whose statistics may change from image to image and it is usually esti-
mated adaptively [110].

5.2.2 Code Design

Suppose that we are given a “capacity achieving” spherical codeC, for the real AWGN
channel with SNRτ . Then, we choosers = 1

2 log2(1 + τ), ∆ = 1/(1 + τ) andα =√
τ/(1 + τ). We can write the source vector as

s =

L∑

ℓ=1

α
√

∆ℓ−1cgℓ(s) + eL (5-12)

whereeL is the representation error vector at levelL. By interpreting (5-12) as the output
of a multiple-access channel with background noiseeL, we notice that the levels are suc-
cessively decodable by stripping in the order1, . . . , L. In fact, the interference plus noise
ratio (SINR) seen by stageℓ of the stripping decoder is given by

α2∆ℓ−1

∆L + α2
∑L

j=ℓ+1 ∆j−1
= τ (5-13)

Unfortunately, spherical codes that work very close to the AWGN capacity and admit min-
imum distance decoders with practical complexity (say, polynomial in the block length)
have not been found so far. If they were available, both the problems of channel coding and
of source coding would have been already solved. Hence, driven by complexity consider-
ations, we propose to use as basic code a trellis-terminatedbinary convolutional code with
binary antipodal modulation (i.e., mapping the alphabet{0, 1} onto{+1,−1}). In this case,
the minimum distance decoderQα(·) is efficiently implemented by the Viterbi algorithm.

Since trellis-terminated convolutional codes with fixed (not increasing with the block length)
trellis complexity do not approach the AWGN capacity, the choice ofα and∆ according to
a threshold SNRτ outlined at the beginning of this section is not optimal any longer. On
the contrary, for a given basic code we find the optimal scaling factorα and the resulting
optimal distortion∆ numerically. Lets be Gaussian i.i.d.∼ N (0, 1). By Monte Carlo
simulation, we find

α = arg min
β≥0

E

[
d(s, βcQβ(s))

]
(5-14)
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and the resulting distortion is given by∆ = E
[
d(s, αcQα(s))

]
. Fig.5-3 showsE

[
d(s, βcQβ(s))

]

versusβ, where the optimal pair(α,∆) is clearly evidenced.

It is interesting to observe that for the optimal value ofα and∆, the convolutional code
works “above capacity”. More precisely, suppose that we canwrite the sources as

s = αcQα(s) + e1 (5-15)

wheree1 is the representation error signal, such thatE[ 1
k |e1|2] = ∆ (by definition). If

we interpret (5-15) as a binary-input AWGN channel, its SNR is given byα2/∆. The
corresponding capacity,Cbiawgn(α2/∆), is found to be less than the raters of the basic
codeC. For example, for the code of raters = 1/4 and 128 states of Fig.5-3 we find
α = 0.52 and∆ = 0.729, yielding capacityCbiawgn(α

2/∆) = 0.2268, which is less than
1/4.

In some sense, this explains why using LDPC [26] or Turbo Codes [1] as quantizers is hope-
less. These codes have a very sharp behavior around their SNRthreshold. For SNRs larger
than the threshold they achieve very small bit-error probability, while for SNRs smaller than
the threshold their error probability is very large. The iterative Belief-Propagation decoder
is clearly unable to find a codeword if the channel SNR is belowthe code threshold. Since
the code threshold is strictly larger than the capacity SNR threshold, and since for quan-
tization we have to work with a “test channel” whose SNR islessthan the SNR capacity
threshold, it is clear that codes under Belief-Propagationiterative decoding cannot work as
quantizers.

Another countermeasure we take to partially compensate forthe gap of binary convolutional
codes from the AWGN capacity consists of introducing unitary transformations at each level
such that the signals input to the Viterbi decoders look likeGaussian. In particular, letUℓ

denote a unitary transformation ofR
k. Each Viterbi decoder at levelℓ computes

gℓ(s) = Q
α
√

∆ℓ−1(Uℓ(s − ŝℓ−1)) (5-16)

Then, the representation vector at levelℓ is given by

ŝℓ = ŝℓ−1 + α
√

∆ℓ−1U−1
ℓ cgℓ(s) (5-17)

Ideally, we should select the unitary transformations independently at each level, according
to the Haar measure, i.e., uniformly distributed on the manifold of unitaryk × k matrices.
This approach requires common randomness between encoder and decoder, and might be
seen as a spherical version of thedithering approach commonly used in lattice quantizers
[111]. In fact, since lattices are additive groups, randomization with lattice quantizers is
obtained bytranslatingthe source vector by a dither vectoru uniformly distributed over the
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lattice Voronoi cell. In our case, since spherical codes obtained from binary convolutional
codes aremultiplicativegroups, we obtain randomization byrotating the source vector by a
unitary matrixU uniformly distributed over the unit sphere (Haar measure),and hence also
over the code Voronoi cell because of the geometric uniformity property.

Notice that both translations and rotations areisometriesof R
k, therefore, they preserve

Euclidean distance (distortion). This means that the only effect of randomization via the
unitary transformation is to present to each level Viterbi decoder a signal whose statistics is
moreadaptedto the basic code.

We notice also that this approach might be extended to other families of spherical geomet-
rically uniform codes, such as linear trellis codes overZM mapped to theM -PSK constel-
lation [112].

In practice, sampling elements from the Haar measure is quite computationally intensive
for large dimensionk. Moreover, matrix-vector multiplications have complexity O(k2) and
matrix inverseO(k3). Also, precomputing and storingk × k real matrices with no special
structure is highly impractical for largek. Hence, for the sake of complexity and practical
implementation, we propose the use of structured unitary transformations given by

Uℓ = Πℓ

[
C −S

S C

]
(5-18)

whereΠℓ is a random permutation of sizek (interleaving),C + jS =
√

2
kF and where

F is the Fourier matrix of dimensionk/2, with (n,m) elementse−j 4π
k

mn, for m,n ∈
{0, . . . , k/2 − 1}. In this way, the productUℓx can be efficiently computed by FFT and
interleaving. Fig. 5-4 shows the block diagram of the proposed Multistage Trellis Quantizer
(MTQ). In standard TCQ [59], a trellis code defined over a multilevel alphabet is used. The
resulting code is similar to Ungerboeck TCM [60]. It turns out that the probability with
which the points in the code alphabet are selected is not uniform. Hence, rate improve-
ment can be obtained by binary labeling the points with variable-length labels. A modified
Max-Lloyd algorithm that exploits Viterbi decoding and training vectors is used in order
to optimize the code alphabet and the binary representationof the points. This approach is
generally known as ECTCQ, entropy-constrained TCQ. The best known trellis quantizers
for standard i.i.d. sources such as Gaussian, uniform and Laplacian, are found in the fam-
ily of ECTCQ [113]. It is natural to ask if some rate improvement can be achieved in our
scheme by applying entropy coding on the quantization indexesgℓ(s). Notice thatgℓ(s) is
the sequence of information bits (input to the convolutional encoder) that corresponds to
the codeword found by the Viterbi algorithm in (5-16). We runsome experiments by ap-
plying the Burros Wheeler Transform-Minimum Description Length (BWT-MDL) source
modeler of [114]. This modeler identifies the tree source model that best explains the bi-
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nary sequencegℓ(s) by using the Burrows-Wheeler transform and the Minimum Descrip-
tion Length principle, i.e., the tree source model for whichthe overall description length
(including coding and model redundancy) ofgℓ(s) is minimized. We simulated2000 in-
dependent source sequence of lengthk = 1000 and we computed the empirical entropy of
gℓ(s) according to the BWT-MDL model. For all simulated frames this was always equal to
1 bit per symbol. This shows that the output of our multistagequantizer is close to an i.i.d.
sequence of fair bits and that, in practice, post-processing entropy coding cannot improve
performance.

Figures 5-5, 5-6 and 5-7 show the performance of the multistage trellis quantizer for Gaus-
sian, Laplacian and uniform sources, in terms of RSNR definedas−10 log10 ∆ℓ vsRs =
ℓrs, with rs = 1/4 and128 states. The performance is compared with the optimal RSNR
achieved by the distortion rate function. In the case of Laplacian and uniform sources we
plot also the Shannon’s lower bound (SLB) [46] and the RSNR obtained with the Gaussian
distortion rate function. We can see that uniform and Laplacian sources achieve exactly
the Gaussian performance, respecting Lapidoth’s result [75]. Note that the deviation of
the MTQ with respect to the limit in high rate region is not dueto simulations but to the
method itself. In fact, recall that the MTQ can theoretically achieve distortionDℓ = ∆ℓ

at rateRℓ = ℓrs, while the distortion-rate function is given byDG = 2−2ℓrs . If we con-
sider the RSNR it follows that− logDℓ = ℓ log 1/∆ and− log(DG) = 2ℓrs log(2), where
∆ > 2−2rs . The different slope of the two curves is due to the fact the scaled convolutional
code is only an appoximation of the ideal sperical code.

5.2.3 Soft Reconstruction? Systematic Recursive Convolutional Codes or not?

As far as the reconstruction is concerned, several recent works focused on soft reconstruc-
tion, where the channel decoder provides soft-output symbol-by-symbol information and
this is used by the source decoder to mitigate the effect of residual post-decoding channel
errors. In the same spirit of ubiquitous “EXIT charts” [27],we may model the channel
decoder soft output as provided by a BI-AWGNextrinsic channel. Let qj,ℓ ∈ {0, 1} denote
thej-th binary symbol of the source encoder indexgℓ(s), for j = 1, . . . , rsk. We model the
posterior log-likelihood ratio provided by the channel decoder for the(ℓ, j)-th symbol as

Lj,ℓ = µ(1 − 2qj,ℓ) +
√

2µN (0, 1) (5-19)

whereµ > 0 is a parameter. LetJ(µ) = I(qj,ℓ;Lj,ℓ) denote the mutual information (as
a function ofµ) of qj,ℓ andLj,ℓ. Optimal soft reconstruction of theℓ-th level codeword in
the Minimum Means Squared Error (MMSE) sense, given the sequence of (independent)
LLRs defined above, is obtained by computing the non-linear MMSE estimator of eachi-th
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codeword symbol as

ĉi =
∑

c∈C
ciP (ci|{Lj,ℓ : j = 1, . . . , rsk}) (5-20)

We notice that (5-20) involves only the symbol-by-symbol posterior probabilitiesP (ci|{Lj,ℓ :
j = 1, . . . , rsk}), that can be readily and efficiently computed by the BCJR algorithm [115]
acting on the trellis of the basic codeC with input {Lj,ℓ : j = 1, . . . , rsk} for the infor-
mation bits (convolutional encoder input) and input zero for the coded bits (convolutional
encoder output).

In Fig.5-8 we show the reconstruction SNR versus the extrinsic channel mutual information
J(µ), for hard reconstruction (corresponding to making hard decisions q̂j,ℓ = 1{Ll,ℓ < 0}
and feeding these into the convolutional encoder) and for soft reconstruction based on the
BCJR algorithm, when the basic code of the multistage schemehas non-recursive non-
systematic (NN) and recursive systematic (RS) encoders. Wenotice that there is almost no
difference between hard and soft reconstruction in both cases. Hence, the more complex
BCJR reconstruction is not needed. However, there is a noticeable difference between NN
and RS realizations of the encoders (notice that the code is the same for both realizations, so
its distortion in the absence of the noisy channel is identical in both cases). Not surprisingly,
Fig. 5-8 shows that the NN encoder has better conditioned inverse than the RS encoder.

5.3 LOSSY ADAPTIVE TRANSMISSION OVER NOISY CHANNELS

We consider the transmission of a sourceS over a channelPY |X . The decoder must provide
a reproduction of the source such that end-to-end distortion is minimized.

Practical source encoder and decoder are too sensitive to channel errors, this implies very
strong requirements in terms of residual BER at the output ofthe channel decoder. This
is mainly due to the catastrophic behavior of the source encoding inverse function. The
non-catastrophic behavior of convolutionalencodershas been widely studied. We know
that convolutional codes admits non-catastrophic encoders such that small Hamming dis-
tance between encoder input sequences cause small distancein encoded sequences, and
vice versa. In particular, this is the case of feedback-freenon-catastrophic convolutional en-
coders [116]. Our multistage source encoder inherits the property of having well-conditioned
inverse function from its basic code component.

Driven by this consideration, we shall consider the concatenation of the multistage source
code with a channel code.

In general, the best possible performance is achieved by separation. Namely, letη denote
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spectral efficiency measured by the number of source symbolsper channel use (equivalently,
by the ratio of the (discrete-time) source bandwidth over the (discrete-time) channel band-
width). LetR(D) denote the source rate-distortion function andC(Γ) denote the channel
capacity-cost function. Hence, spectral efficiencyη can be achieved with distortionD and
input costΓ if and only if

η ≤ C(Γ)

R(D)
(5-21)

For fixed spectral efficiency, the best achievable distortion as a function of the channel input
cost is given byDopt = R−1(C(Γ)/η). In our example, for simplicity, we fix the channel
to be a binary-input AWGN (BI-AWGN) channel, defined by

y =
√

Γx+ ν (5-22)

wherex ∈ {−1,+1} with energy per symbolEs, ν ∼ N (0, 1/2), Γ is the signal to
noise ratioΓ = Es/N0. and the source to be Gaussian i.i.d. with quadratic distortion.
Notice that in this case the conditions of [45] do not hold, hence wehave to code the
source and the channel in smart ways. The multistage source encoder produces the indexes
(g1(s), . . . , gL(s)) in the form of binary sequences. Namely,gℓ(s) is the sequence of in-
formation bits corresponding to the codewordcgℓ(s) selected by the Viterbi decoder at level
ℓ. As channel codes we may consider any family of good binary codes for the BI-AWGN
channel. In particular, in our example we considered convolutional codes with 64 states and
rates1/4, 1/3, 1/2, 2/3, 3/4, 5/6, and the turbo code with component generators (37,21)
(octal notation) taken from [1] with interleaving size 65536 and puncturing in order to have
rates1/3, 1/2, 2/3, 3/4, 5/6, 11/12. We run experiments by using LDPC codes with op-
timized right and left degree distributions [87]. In this case we can scan the rates with higher
granularity and we consider all the possible channel rates such thatη = Rc

Lrs
, in particular

Rc = L/12 andL = 1, . . . , 12.

The source code is based on the convolutional code of rate 1/4and 128 states already used
in Fig. 5-3.

Figures 5-9 and 5-10 show the resulting distortion forη = 1/3 versus the channel SNR,
defined asΓ = Es/N0. The separation limit is shown for comparison. Remarkably,the
performance of the turbo-coded and LDPC system is quite close to the theoretical optimum.
Note also the LDPC codes achieve slightly better performances than Turbo codes. This
difference is due to the fact that LDPC codes do not need puncturing to obtain different rate
but they are optimized for the given coding rate. Degradation comes from two effects: a
horizontal displacement due to the SNR gap of the punctured turbo codes with respect to
their capacity limit, and a vertical displacement due to thegap of the multilevel source code
with respect to its rate-distortion limit.
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In practice, coupling our multilevel source code with channel coding of different rates can
easily implement a variable-quality scheme that operates at fixed target spectral efficiency
and adapts itself to the user SNR condition.
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5.4 JOINT SOURCE CHANNEL CODE BASED ON TURBO CODES: M-TCOM

This section deals with the practical construction of JSCC based on Turbo codes. The
scheme is realized by coupling the best scalar quantizer known so far, the Entropy Con-
strained Scalar Quantizer and a compression/protection multilevel scheme based on Turbo
Codes. The performance is given for AWGN channel.

With properly chosen rate and puncturing, the system is ableto outperform the conventional
Separated Source Channel Coding (SSCC) setup that consistson the concatenation of the
same source encoder, an arithmetic encoder and the best Turbo code. EXIT Chart [27]
analysis gives us insight on the choices of particular puncturing pattern and component
codes for Turbo codes. The concatenation of this scheme withpractical source encoder,
like modified DPCM, validates its advantages over conventional schemes.

Shannon’s source coding theorem states that a binary memoryless sourceU = u1, u2, ...un

can be lossy compressed up to its entropyH(U) [46]. When the compression rate is lower
than the entropy of the source, then the compression introduces a distortion. Obviously
when the source is not discrete the quantization introducesalways a distortion. It was
shown in [107] that there is strong correlation between almost noiseless fixed-length data
compression and almost noiseless coding of a discrete signal-additive noise whose noise
has the same statistics as the source. This analogy can be exploited by using linear error
correction channel codes such as LDPC codes for data compression [107]. Turbo codes
which is able to give near Shannon limit performance with thelow complexity iterative
decoding is another well suited candidate. Garcia-Frias showed that desired compression
ratio can be achieved by properly punctured Turbo codes [108], in particular by puncturing
the information bits and the parity bits. A priori probability of the source is used to modified
the extrinsic information in the iterative decoding process. When channel error is present,
the rate of the Turbo codes has to be selected such that it complies with Shannon’s channel
coding theorem, in which case less puncturing is needed for better error protection.

5.4.1 M-TCOM System Structure

The proposed system is illustrated in Figure 5-11. In the following the development and the
rationale is carried out for ECSQ, but it can be easily extended to ECTCQ. Conventional
separated approaches (figure 5-12) achieve rate reduction by using arithmetic coding at the
output of the quantizer. When the block length is sufficiently high, the rate of the arithmetic
codes approaches the entropy of the sources [117]. However,they are very sensible to
channel error. A single bit in error at the output of channel decoder can eventually propagate
forever. That is the reason why these schemes need very strong BER conditions at the
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output of channel decoder. Instead of arithmetically encoding the quantization indexes, the
JSCC scheme provides compression and error protection via turbo codes as explained in the
following.

Call q ∈ N
N ′

the quantization indexes vector,q ∈(0, . . . Q− 1). Suppose further thatQ =
2L. The sequenceq is an independently identically distributed sequence witha probability
mass function (pmf)PQ(q). The indexes are mapped into binary bitstream by using a
one-to-one mappingµ : ZQ → F

L
2 such thatµ(q) = (µ1(q), . . . , µL(q)). Call Bℓ the

ℓ-th bitplane obtained by applying the mappingµℓ to the sequenceq componentwise, i.e
Bℓ = µℓ(q), for ℓ = 1, . . . , L. After interleaving, each bitplane is mapped onto a distinct
channel codewordxℓ, such that the composition of all the codewordsx = (x1, . . . , xL)
represents the transmitted codeword. The total codeword isthen passed through the AWGN
channel and the observation is given byy = (y1, . . . , yL),

y =
√

Γx + ν

whereν is the circularly symmetric AWGN with per component variance 1/2, Γ is the
signal to noise ratio.

Defineb1:ℓ
∆
= (µ1(q), . . . , µℓ(q)) = µℓ

1(q). For each bit plane we define the conditional
marginal probability at levelℓ = 1, . . . , L as

Pℓ(0|b1:ℓ−1)
∆
=P (µℓ(q) = 0|µℓ−1(q) = bℓ−1, . . . , µ1(q) = b1)

=

∑
q∈ZQ:µℓ(q)=0,µℓ−1

1 (q)=b1:ℓ−1
PQ(q)

∑
q∈ZQ:µℓ−1

1 (q)=b1:ℓ−1
PQ(q)

(5-23)

By applying the chain rule, we can express the entropy of the samples as:

H(q) =

L∑

ℓ=1

H(µℓ(q)|µℓ−1(q), . . . , µ1(q))

=
L∑

ℓ=1

∑

µℓ−1
1

P (b1:ℓ−1)H(µℓ(q)|µℓ−1
1 (q) = b1:ℓ−1)

=
L∑

ℓ=1

∑

b1:ℓ−1

∑

q∈ZQ:µℓ−1
1 (q)=b1:ℓ−1

PQ(q)h(Pℓ(1|b1:ℓ−1))

=

L∑

ℓ=1

Hℓ (5-24)
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where the second summation is done over all the possible vector realizations of the vector
b1:ℓ−1, P (b1:ℓ−1) is the probability thatµℓ−1

1 = b1:ℓ−1 and h(p) = −p log(p) − (1 −
p) log(1 − p) is the binary entropy function and whereHℓ is defined as

Hℓ
∆
=
∑

b1:ℓ−1

∑

q∈ZQ:µℓ−1
1 (q)=b1:ℓ−1

PQ(q)h(Pℓ(0|b1:ℓ−1))

Consider a binary linear systematic code of rateR = k/n defined by a generator matrixG,
and letc ∈ F

k
2 denote the information vector. The corresponding codewordis obtained as

x = cG that splits into thesystematic partand theparity vector, called hereu. Examples
of powerful systematic binary linear codes are turbo parallel concatenated codes [1], and
irregular repeat-accumulate codes [66, 118]. In [65, 107, 64], linear codes and iterative
Belief Propagationdecoding are shown to be able to provide data compression. The idea is
as follows. Consider for a moment a BSC channel. With slight modification, the rationale
can be extended to AWGN channel. Letc denote a sequence of i.i.d. symbols such that
Pr(ci = 1) = p. Then, we can produce the codewordx and retain only the parity part
u. This is our compressed sequence, of lengthn − k. The compression rate is given by
Rc = 1 − k/n = 1 − R. Now, if the code is very powerful and is able to approach the
capacityC = 1 − h(p) of a BSC with parameterp, then the compression rate is as close
as desired to1 − R = 1 − 1 + h(p) = h(p), i.e., to the source entropy. Of course, we
have to ensure that the source sequencec can be reconstructed from the parity sequence
u. Let us suppose that the parity part of the code is transmitted via another BSC with
crossover probabilityρ, then it can be shown (see [64]) that the decoder is fully equivalent
to a channel decoder that observesu via the BSC channel with parameterρ andc via a
BSC with crossover probabilityp. In other words, the statistics of the source yields an
“equivalent” noise statistics. The achievable transmission rate, in terms of source symbols
per channel use, is given by(1 − h(ρ))/h(p).

We can get back now to our case. Suppose that we have a collection of linear binary channel
codes with systematic encoders, with information lengthN ′ and rateR1, . . . , RL. Let uℓ

denote the parity part of code at levelℓ of lengthmℓ = N ′( 1
Rℓ

− 1). Suppose that level-
ℓ code can recover with high probability the bitplaneBℓ from the outputyℓ and using
the a priori probabilityPℓ,m(0|b1:ℓ−1) defined in (5-23) and the knowledge of the previous
bitplanesb1, . . . , bℓ−1, that have already been recovered at the previous decoding stages.
This yields anecessarycondition on the coding rateRℓ for successful decoding with high
probability, i.e

N ′/mℓ ≤ (C(Γ))/Hℓ ⇒ Rℓ ≤
C(Γ)

Hℓ + 1 − h(ρ)
(5-25)

whereC(Γ) is the capacity of the BI-AWGN channel. The overall coding rate of the scheme
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is upper-bounded by

η =
N ′

∑L
ℓ=1mℓ

≤ N ′(C(Γ))

N ′∑L
ℓ=1 H̄ℓ

=
C(Γ)

H(q)
(5-26)

Note that for a perfect channel and an ideal entropy compressor applied to the sequence of
quantization indexesq, we obtain a rate of1/(H(q)) source symbols per coded bit, which is
exactly the best achievable by the lossy source encoder (ECSQ) alone, without the channel.

Each turbo decoder will output the soft information, a posteriori probability, on the in-
formation bits for a particular bit-plane. Decoding theL-th bitplanes will provide the a
posteriori probabilities of the quantization indexes,APPi(q). These soft values are used
for the MMSE estimate of the quantizer reconstruction values. The ‘soft’ reconstruction
sequence is given by

ŝi =
∑

q∈ZQ

φ(q)APPi(q) (5-27)

is determined fori = 1, . . . , N ′, whereφ(q) is the dequantizer operation.

5.4.2 Simulation’s Results

In this section we discuss some results in terms of optimization of the Turbo codes and
Reconstructed SNR (RSNR) of the M-TCOM approach. We comparethe results with the
separate scheme SSCC and the MTQ coupled with turbo codes. Inthe following, the source
is Gaussian memoryless. As stated in the previous section inthe noiseless case the M-
TCOM scheme can achieve the same performance of ECSQ. CallR(D) the Shannon rate-
distortion function and̃H(D) the rate-distortion curve achieved by ECSQ, then, in the limit
of large rate, it is possible to show that̃H(D) − R(D) ∼ 0.25 bits [117]. Figure 5-13
shows the comparison between the reconstructed signal to noise ratio achieved by ECSQ
and MTQ vs rate, Shannon rate-distortion function and the TCQ scheme with128 state and
R + 1 Lloyd-Max output points [59]. Note that MTQ outperforms ECSQ for small rate
while as long as the rate increases the MTQ diverges from the rate distortion function while
the ECSQ has a fixed asymptotic gap fromR(D). This shows that in low rate region the M-
TCOM scheme coupled with ECSQ will be penalized with respectto MTQ based system.
Moreover, note that the performance of MTQ and TCQ is comparable.

We compare, now the M-TCOM scheme and the MTQ, coupled with Turbo codes, when the
channel is AWGN. For this matter, we fix a target spectral efficiencyη = 1/3 and a target
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Thresholds −2.66 −1.61 −0.66 0.28 1.22 2.21 3.26

Probability 3.9 10−3 4.9 10−2 2 10−1 3.57 10−1 2.78 10−1 9.7 10−2 1.28 10−2 5.5 10−4

TABLE 5-1. THRESHOLD VALUES AND PROBABILITY MASS FUNCTION OF THE IN-
DEXES AT THE OUTPUT OF THEECSQ.

P0(0) : 0.611

P1(0|0) : 0.087 P1(0|1) : 0.965

P2(0|00) : 0.074 P2(0|01) : 0.74 P2(0|10) : 0.36 P2(0|11) : 0.96

TABLE 5-2. CONDITIONAL PROBABILITY PER BIT-LEVEL.

RSNR, for exampleRSNR∗ = 11.5dB. ECSQ achieves this RSNR forH(Q) ∼ 2.16bits.
However, since from (5-26)η ≤ C(Γ)

H(Q) , the target signal to noise ratio is given byΓ∗ ∼ 0dB.

The ECSQ algorithm optimizes the codebook and the value of the quantization thresholds
with the constraint that the rate equals the desired entropy[117, 3]. Table 5-1 shows the
thresholds and the probability mass function of the indexesat the output of the ECSQ with
target entropyH(Q) = 2.16bits.

TheQ−ary to binary mapping is defined simply as the natural binary mapping that trans-
form an index into a binary stream. The definition of the mapping allows to compute the
a-priori conditional probability per bit-plane. These areshown in table 5-2. Finally table
5-3 gives the value of the average entropy per bit-plane (first column) and the bound on the
rate of the Turbo code per level given by (5-25) (second column).

Note that the matrix of a-priori probability is a side information that needs to be sent error-
free to the decoder. However, a slight modification of the blind decoder defined in [65] can
estimate, at each iteration, the value of the a-priori probabilities.

However it is not easy to find the exact rate, shown in the second column of table 5-3, by
puncturing rate1/3 Turbo codes. The results are given by conservatively choosing the rate
of the codes. These are shown in the third column of table 5-3.Finally the last column show
the polynomial generator used for the simulations.

In [119, 120], the authors show that a priori probability-based polynomial generator selec-
tion gives better thresholds behavior. The optimization ofTurbo codes is not straightforward
and, due to the lack of analytical tools, exhaustive search is needed in order to find good
polynomial generator and/or puncturing pattern. The EXIT Chart [27] provides with an ap-
proximate and asymptotic threshold and reduces the complexity of this exhaustive search.
Figures 5-14 and 5-15 show results in terms of threshold obtained through EXIT Chart when
different polynomial generator are considered for level0 and level1. It is clear that for the
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ℓ Hℓ Rℓ R̄ℓ Polynomial

1 0.964 0.428 0.42 (5, 7)
2 0.345 0.67 0.66 (31, 23)
3 0.859 0.456 0.44 (5, 7)

TABLE 5-3. AVERAGE ENTROPY PER BIT-LEVEL, NOMINAL CHANNEL CODE RATE

( N ′

N ′+mℓ
), QUANTIZED VALUES AND POLYNOMIAL GENERATOR FORH(Q) = 2.16BITS.

first level polynomial generator(5, 7) yields better performance than the others while for
the second level, polynomial generator(31, 23) outperforms all the others. The threshold
found by EXIT Chart isΓth,s ∼ 1.2dB for the three layers. Further ameliorations of per-
formance can be obtained by asymmetrically puncturing the turbo codes. The number of
parity bits punctured at the output of the first convolutional encoder is different with respect
to the number of parity bits punctured at the output of the second encoder. The puncturing
pattern are randomly generated at each simulated frame. Hence, the results are obtained
by averaging over different puncturing pattern. However, it can happen that a particularly
“bad” realization of the puncturing pattern occurs, which dominates the performance. Fig-
ures 5-16 and 5-17 show the performance in terms of thresholdof asymmetric punctured
Turbo codes for layer0 and layer1 when the best polynomial generator is considered. The
performance achieved by symmetric puncturing are also shown for comparison. The EXIT
Chart are computed forΓ = Γth,s. From figure 5-16 we can see that for low rate and poly-
nomial generator(5, 7) asymmetric puncturing allows for a better threshold,Γth,a ∼ 0.9
dB (first level), while figure 5-17 shows clearly that no improvement in the performance
is achieved by asymmetrically puncturing the component codes in the second level. The
system, however, is limited by the threshold of the worst layer. If the Turbo code at layer
ℓ works above its threshold, the propagation of errors decreases the probability of correct
decoding at levelsℓ + 1, . . . , L. However the use of asymmetric puncturing on layer0
prevents from propagation of errors from layer0 to 1.

Figure 5-18 show the comparison between MTQ coupled with Turbo codes and M-TCOM.
Also shown are the Shannon’s bound, the performance achieved by ECSQ in the noiseless
case and the threshold obtained via EXIT Chart. The performance suffers from an horizon-
tal and vertical loss mainly due to two factors. First because of the sub-optimality of ECSQ
and second because analytical optimization of Turbo codes is not possible and too many pa-
rameters influence the behavior of these codes. An open issueis the analytical optimization
of different families of codes, as IRA or LDPC, where DE can bewritten in closed form.

Finally, 5-19 shows the comparison between M-TCOM and SSCC scheme in terms of
RSNR versus channel SNR. The Turbo code, in the SSCC, is designed such that the two
schemes achieve the same spectral efficiency. In particularthe rate of the Turbo code is0.7
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information bits per channel use, and the polynomial generator is (37, 21). We can clearly
see the difference between the separated scheme and the joint approach. The separated
scheme needs a much higher input mutual information in orderto achieve high RSNR per-
formances. This is due to the fact that the performances of the arithmetic code are strongly
dependent on the FER performances of Turbo codes and not on BER. The entropy decoder
can recover the indexes when the output of the turbo codes is error free, so it needs very low
FER performances in order to achieve close to optimal RSNR.

5.5 DPCM AND TURBO COMPRESSION

In this section we briefly generalize the analysis before in order to take into account the
particularities of a more practical Differential Pulse Code Modulation scheme for robust
transmission of images over the wireless link.

In [57] Kim et al. introduced a low bit-rate predictive imagecoder, which consists of a
modified DPCM coder using multi-rate processing and the Wiener filter. Further rate reduc-
tion is achieved through allocating different entropy coders to different areas of the image.
The joint decoder exploits the residual redundancy of the channel encoder input bits and
produces soft-bits for the reconstruction to be used in the predictive source decoder. This
scheme is again to be compared with SSCC setup where the source coder output (the output
of the entropy coder) is protected from channel noise by conventional turbo codes. Figure
5.6 illustrates the proposed system. In the predictive encoder, the source images ∈ R

N

is first low-pass filtered and down-sampled two dimensionally. It is then fed through the
DPCM encoder, which outputs the difference between the down-sampled image and its pre-
diction. The prediction error imageU is quantized using a uniform quantizer and fed back
through the prediction loop. The prediction error image still contains residual redundancy
and this can be exploited through a classification process based on its varying local statistics.
The prediction error image is first divided into blocks of fixed size, typically 4x4 pixels. The
block varianceσ2 is used as classification criterion. The image can then be classified into
M sub-sources based on the probability distribution of the block variances. A Lloyd-Max
like algorithm is used to find the optimal variance representation values of each class such
that the over-all average description length is minimized at a given distortion. More details
can be found in [58].

For the SSCC approach it is possible to exploit the non-stationarity of the source and to
achieve rate reduction by using the Adaptive Entropy Coding(AEC) method [58], i.e by
designingM different entropy codes, one for each class. The average code word length
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usingM sub-sources,CM , can be expressed as:

CM =

M∑

m=1

CECm =

M∑

m=1

∫ σ2
d,m

σ2
d,m−1

Cm(σ2)pΣ2(σ2)dσ2 (5-28)

whereCECm is the average code word length from entropy coderm, Cm(σ2) is the code
word length function for coding classm andpΣ2(σ2) is the probability density function
(pdf) of the block variances. The output of theM entropy encoders are concatenated and
fed into punctured Turbo codes to obtain rateRT such that the spectral efficiency isη.
Instead of applying arithmetic code as entropy code to the quantization indexes of each
class followed by channel coding, the JSCC scheme describedabove is concatenated to
obtain joint compression and protection against channel errors. The analytical formulation
defined in section 5.4.1 still holds with slight modificationthat take into account that now the
sequence of indexes is piecewise independently identically distributed where each segment
has a probability mass function (pmf)PQm(q). Figure 5-21 show an example whenM = 3.

Without loss of generality, the indexes that belongs to the same class are grouped together,
i.e. q = (q1, . . . , qM ) andq ∈ {0, ...Qm − 1} for m = 1, . . . , M , whereQm = 2Lm .
The total number of levels isL = maxm(Lm). The total entropy of the source is computed
averaging over all the classes

H(q) =
L∑

ℓ=1

M∑

m=1

Hm(µℓ(q)|µℓ−1(q), . . . , µ1(q))Πm

=

L∑

ℓ=1

H̄ℓ (5-29)

where we have defined the average entropy per class as

Hm(µℓ(q)|µℓ−1(q), . . . , µ1(q))

=
Lm∑

ℓ=1

∑

b1:ℓ−1

∑

q∈ZQm :µℓ−1
1 (q)=b1:ℓ−1

PQm(q)h(Pℓ,m(0|b1:ℓ−1)) (5-30)

and the average entropy per level as

H̄ℓ
∆
=

M∑

m=1

Hm(µℓ(q)|µℓ−1(q), . . . , µ1(q))Πm (5-31)

and whereΠm is the probability of them-th class andPℓ,m(0|b1:ℓ−1) is the conditional
probability at levelℓ and for the classm, defined in 5-23.
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5.5.1 DPCM’s Results

In this section we discuss some results in terms of entropy and bound on the rate and in
terms of the Peak Signal to Noise Ratio (PSNR) for 8 bit gray scale source image, defined
as10 log10

2552

D whereD is the mean squared distortion per pixel, vs channel capacity. The
simulations are run for BSC channel.

The test image is the monochrome512 × 512, “Lena” image and the JSCC system has
been design to work at a nominal channel parameterρ = 0.05. For the SSCC setup we use
arithmetic codes as entropy coders and the coder outputs arecoded by same Turbo codes.
Figure 5-22 shows the comparison between the JSCC with the rates shown in table 5-4 and
the SSCC scheme with rateRT = 0.72 and generator polynomial(37, 21) and(5, 7). The
true spectral efficiency (by considering the second column of table 5-4) isη = 1.25 source
sample per channel use, while the actual spectral efficiency(due to quantization of the rate)
is equal toη ∼ 1.1 source sample per channel use.

The predictive coding scheme generally has the problem of error propagation. Our bitplane
setup ease the problem by relying on low BER performance of turbo codes at the same time
avoid spending much synchronization bits as arithmetic codes need. Hence, we can achieve
a PSNR equal to the noiseless case for lower input mutual information. Here the results are
given for hard reconstruction of the source, further improvements can be obtained through
using so-called ‘soft-bits’ for reconstruction. The investigation of “soft-reconstruction” is
an interesting open issue.

5.6 CONCLUSIONS AND FUTURE WORK

This chapter has dealt with the construction of joint sourceand channel code that achieve
close to optimal performance when AWGN channel is considered. These schemes are prac-
tical implementations of the tandem encoder used in the HDA scheme introduced in the
previous chapter.

The first part has been focused on the construction of multistage source code that guaran-
tee successive refinement of information and almost non-redundant layers. This scheme is
shown to be very resistant to channel errors, due to the fact that convolutional codes have
non-catastrophic encoders. This makes the scheme suited for concatenation with good chan-
nel code as Turbo codes or LDPC to implement adaptive transmission over noisy channel.

The second part has dealt with the construction of joint source and channel codes where a
simple quantizer is concatenated with a data compression/channel protection scheme. It is
based on Turbo codes. This scheme exploits the redundancy atthe source encoder output
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and it is less sensitive to channel errors than variable length-based source encoder schemes.
Hence, it yields much better results compared to SSCC.

However, the comparison between the multistage trellis quantizer and the Turbo compres-
sion based scheme, when the channel is AWGN, reveals that MTQachieves better perfor-
mance. We think that analytical optimization of other families of codes different from Turbo
codes and the use of ECTCQ could achieve better performance.Hence, the potential of this
scheme is not fully explored. Further results on the application of these schemes in the HDA
system are working progress.

An interesting generalization is to extend this scheme to achieve progressive image trans-
mission through embedded quantization. The proposed scheme encodes bit-plane by bit-
plane and decodes them in sequence, such that bit-planeℓ can be recovered after having
received the corresponding channel outputyℓ and after having decoded the previous bit-
planes at levels1, . . . , ℓ − 1. Hence, the scheme is suitable forprogressive transmission.
By choosing theQ-ary to binary mappingµ such that it is embedded, the source can be
reconstructed at different levels of distortion from1, 2, . . . , ℓ bit-planes. If the reconstruc-
tion operation (from̂q to ŝ) is linear, then the reconstruction of the bitplanes can be simply
added after interpolation for finer resolution. Several open issues are still to be explored in
this area, of which some are subject to the author’s on-goingresearch, and are discussed in
the next chapter.
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ℓ H̄ℓ Rℓ R̄ℓ Polynomial

1 0.071 0.9 0.88 (37, 21)
2 0.374 0.65 0.64 (37, 21)
3 0.734 0.49 0.46 (5, 7)
4 0.805 0.46 0.44 (5, 7)
5 0.174 0.8 0.78 (37, 21)
6 0.079 0.9 0.88 (37, 21)

TABLE 5-4. AVERAGE ENTROPY PER BIT-LEVEL, NOMINAL CHANNEL CODING RATE

( N ′

N ′+mℓ
) AND QUANTIZED VALUES FOR DPCM AND POLYNOMIAL GENERATOR.
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Fig. 5-20. JSCC Using Turbo Compression and Error Protection

m = 1 m = 2 m = 3

µ

bj+1,1..bN ′,1

ℓ-th bit plane

b1,L1
..bl,L1

bl+1,L2
..bj,L2

bj+1,L3
..bN ′,L3

0
0

m = 3m = 2m = 1

b1,1..bl,1 bl+1,1..bj,l

q1 q2 . . . , qi . . . qN ′

π1

πℓ

πL

B1

Bℓ

BL

TCL

TC ℓ

TC 1
M

U

X

Fig. 5-21. JSCC Using Turbo Compression and Error Protection applied to DPCM output.



140 Chapter 5. Practical Code Constructions

0.7 0.75 0.8 0.85 0.9 0.95 1
5

10

15

20

25

30

35

1−h(p)

P
S

N
R

 i
n

 (
d

B
)

1−h(0.05)

JSCC

SSCC

G(37,21)
G(5,7)

Fig. 5-22. Comparison between JSCC and SSCC. Here the JSCC iswith natural binary
code as binary mapping. The SSCC are arithmetic codes with turbo codes using the corre-
sponding generator polynomials



CHAPTER 6

Conclusions

In this thesis we have tackled some of the open problems first discussed in chapter 1, re-
lated to the concept of efficient transmission of loss- and delay-sensitive data over wireless
channels. We address in particular a multicast setting, where the transmitter sends the same
common information to all the users in the cell. Depending onthe application, certain mea-
sures of signal delivery performance (distortion, BER, delay, ..) will be more critical than
others. For example in packet oriented transmission the data are not always delay-sensitive
but they typically require a quasi error-free link, while analog sources can be delay sensitive
but error-tolerant or they can have more relaxed constraints on the delay.

In point to point scenarios, a good trade-off between reliability and efficiency is obtained by
coupling ARQ protocols and FEC. This gives rise to hybrid schemes (HARQ) than can eas-
ily adapt to channel conditions. FEC handles most frequently occurring errors while ARQ
solves remaining FEC decoder failures with a retransmission request. Motivated by the in-
creasing interest in iterative decodable codes we have analyzed the performance of HARQ
schemes coupled with LDPC in a single user setting and slowlyvariant fading. We have
shown that ideally these codes approach optimal performances. In this case the analysis
is done by means of powerful tools like DE, generalized to take into account block fad-
ing conditions and HARQ protocols. However we have shown that practical finite length
codes exhibits a considerable loss in performance due to thebad FER behavior. Two ef-
fective methods to recover this gap are given and interestingly they achieve almost equal
performance, making LDPC codes attractive for implementation with HARQ schemes. The
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analysis of the complexity shows however that some saving can be obtained by triggering
the decoder only when the probability to decode is high. A method based on asymptotic
analysis is considered prior to decode. It prevents using the iterative decoder if it is likely
to be non convergent, and it can be coupled with standard methods to stop the iterations to
further reduce the complexity. Additionally, some simple modification of the same algo-
rithm allows to achieve all range of trade offs between throughput and complexity. Open
issues and extensions could be to explore more sophisticated graph construction in order to
improve the FER performance.

However a critical issue is to achieve good trade-offs between reliability, delay, performance
in a multicast setting. Hence we have analyzed the throughput performance of HARQ pro-
tocols in such a framework. Strictly speaking these protocols are not scalable with the
number of users. However, if we are not too ambitious and put areasonable limit on the
performance requirements, these protocols can be made practically scalable. In order to
make HARQ protocols fully scalable an expurgated ensemble of users needs to be con-
sidered, by selecting only a fraction of users to which the transmission is intended. We
show that under particular conditions the throughput of incremental redundancy schemes
equals the ergodic capacity of the system but with delay thatgrows to infinity. For selective
repeat based protocols, one achieves optimal performance with finite average delay but at
the expense of a penalty in throughput compared to incremental redundancy based scheme.
We show that the performance of IR and of FEC coding are identical in terms of delay,
throughput and error probability, in the limit of a large number of users.

In many cases, the sources that are transmitted over the network are analog, for example
transmission of images, video, voice over the wireless link. The schemes that are practi-
cally implemented nowadays are based on the separation principle that states that no loss in
performances is incurred by separating source and channel code design. However it does
not take into consideration complexity and delay and it doesnot hold in a non ergodic sce-
nario or in a multiuser scenario. Consequently joint sourcechannel coding technique are
attracting a lot of interest in our field of research. These schemes achieve better performance
by linking together the source and channel code design. Herewe model the multicast sce-
nario with a compound channel. In fact, the compound channel, under the assumption that
the encoder is aware of the channel coefficient of the user butit knows the statistic of the
fading, can model a Gaussian broadcast/multicast channel with an infinity of users each of
one experiencing a different channel coefficient. Further we assumed that the decoder has
perfect channel state information.

In this setting we study three different strategies; the first is based on a successive refine-
ment source encoder coupled with a time-sharing transmission scheme, the second couples
the same source encoder with a superposition transmission technique. Finally, the third is an
Hybrid Digital Analog (HDA) scheme based on bandwidth and power splitting that super-
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imposes the output of a digital tandem encoder with an analogencoder. These three schemes
are optimized in order to yield minimal end-to-end average distortion and are compared in
terms of average distortion vs. average and instantaneous signal to noise ratio. The key
conclusions are that superposition schemes and progressive schemes give graceful degrada-
tion of performance. Furthermore, superposition schemes achieve better average distortion
results. However the hybrid scheme is very close to the OPTA (optimal performance the-
oretical attainable) curve for a wide range of instantaneous signal to noise ratios, showing
very clearly that most of the gain is due to the analog branch.The algorithms that give the
optimal transmission parameters in the three cases are alsoprovided and analyzed.

However, for the analytical analysis ideal source/channelcodes are considered. Hence, a big
issue is the construction of practical codes that can achieve performance close to the limits
mentioned above. In particular, we have analyzed the construction of tandem encoder that
can be used in the HDA scheme.

A Multistage Trellis Quantizer (MTQ) based on the scaled version of a unique convolutional
encoder is shown to give results very close to the distortionrate function. Moreover the re-
sults are independent from the statistic of the source, yielding always the same performance
as in the Gaussian distributed source case, which is a very useful robustness property in
practice. Notably this can be interesting in implementations where the probability density
function (pdf) of the source is a mixture of different pdf modeled, in general, as Gaussian.
The results obtained with this scheme in an ideal noiseless channel are comparable to the
best results found in literature, that have to be found in thefamily of Trellis Coded Quan-
tizer (TCQ). The latter schemes are known to be very sensitive to channel-related errors,
while on the contrary, the multistage scheme proposed here is very robust to errors. This
advantage is due to the fact that the convolutional encoder can be non-catastrophic.

Another joint source channel coding scheme based on Multilevel Turbo COMpression (M-
TCOM) is analyzed. In this scheme a linear code (Turbo code) is used to compress a
redundant digital source. This scheme exploits the fact that the input bits are not fair coins.
This a-priori probability is considered to be known at the decoder. This technique can be
coupled with entropy constrained scalar/vector quantizers, or the best Entropy Constrained
TCQ by mapping the output into binary streams. Practical results on the transmission of
images over a BSC channel are also given by coupling our algorithm with a Differential
Pulse Code Modulation based quantizer. It then shows remarkable results, especially when
compared to the standard approach that consists on concatenating the quantizer with an
arithmetic code and a powerful channel code. This scheme is also well suited to progressive
transmission of information when we consider an embedded quantizer instead than ECSQ.

However, several issues are the subject of on-going work. First of all more extensive results
on the use of the MTQ and M-TCOM scheme in a HDA system, will give more insights
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into the behavior of such methods, and it will lead to more accurate conclusions on the
construction of these codes.

So far we have shown that the MTQ and the M-TCOM have big potential, but the com-
parison between the two has been carried out in a special case, i.e. when the output of the
ECSQ is compressed with a scheme based on Turbo codes. The results are in favor of the
MTQ scheme. However, we think that better results, that could lead to opposite conclu-
sions, can be achieved by considering other families of codes as LDPC or Irregular Repeat
and Accumulate (IRA). The degree distribution of these codes, in fact, can be analytically
optimized via DE, taking into account the particular structure of the compression method.
This is shown to provide advantages compared to the use of Turbo codes.

Moreover, the outstanding results of ECTCQ motivate us to analyze the concatenation of the
compression scheme based on optimized IRA with these kind ofquantizers, for the trans-
mission of images over the wireless link. This concatenation will surely give remarkable
gains, compared to the results given here, and have the potential to approach closely the
Shannon’s bound.

Overall, our conclusions tend to indicate that Multilevel Turbo/IRA compression and Mul-
tistage Trellis Quantizer can be considered as a viable solution for the problem of transmis-
sion of images over a wireless link in a multicast setting, where the property of graceful
degradation of performance with respect to different signal to noise ratios, is fundamental.



CHAPTER 7

Feedback Systems for Multicasting Common
Information

7.1 COMPUTATION OF THE LIMIT FOR N → ∞ OF V(p(m), N, x)

In this section we want to show that

lim
N→∞

V(p(m),N, x) = lim
N→∞

Pr(Xm ≤ N − ⌈Nx⌉) = ℓm (7-1)

whereℓm = 1 if x < p(m), ℓm = 1/2 if x = p(m) and0 otherwise. The case when
x = p(m) is straightforward since we are computing the probability that a Binomial random
variable is less than its mean. Let us restrict to the case when x < p(m) meaning that
N − ⌈Nx⌉ > E[Xm]. In order to compute the limit in (7-1) standard bounds on thetails
of binomial distribution can be used: here we applied the exponential Hoeffding’s bound
[121] to the Binomial RVXm ∼ Bin(N, 1 − p(m))

Pr(Xm > E[Xm] + ρ) ≤ e
− ρ2

4Var(Xm) (7-2)

In order to show the limits we need to show that∀ǫ > 0 arbitrarily small∃ N0 such that
if N > N0 than |ℓm − Pr(Xm ≤ N − ⌈Nx⌉) | < ǫ. The limit holds by using (7-2) and
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settingρ = N(p(m) − x) − 1. In fact,

|ℓm − Pr(Xm ≤ N − ⌈Nx⌉) | = Pr(Xm ≥ N − ⌈Nx⌉))

≤ Pr(Xm ≥ N −Nx− 1)) ≤ e
−(N(p(m)−x)−1)2

4N(1−p(m))p(m) = ǫ
(7-3)

The result is shown by settingN0 solution ofe
−(N0(p(m)−x)−1)2

4N0(1−p(m))p(m) = ǫ. Analogously for the
conditionx > p(m) by noticing thatPr(Xm ≤ N − ⌈Nx⌉) < Pr(Xm ≤ N −Nx).

7.2 PROOF OF THEOREM 2

Theorem
The supremum overR ≥ 0 of η∞(x,R,Γ) is given byR(k)/(1 + k) for some k =
0, 1, . . ., that in general depends onx and Γ. �

Proof: Suppose that the maximum throughput is achieved by selecting R = R(k) − δ
whereδ is such that the average delay is still given byτ = k + 1, then

R(k) − δ

k + 1
<
R(k) − δ/2

k + 1

contradicts the fact thatR = R(k) − δ is the rate for which the throughput is maximum.
Suppose now that the maximum throughput is achieved withR = R(k) + δ. By definition
τ = k + 2 and then

R(k) + δ

k + 2
<
R(k)

k + 1

for δ sufficiently small. This shows thatR(k) is a stationary point ofη∞,x and the rate that
maximize the throughput is one of theR(k).

7.3 PROOF OF THEOREM 3

Theorem
For independent Rayleigh fading SNRΓ and IR protocol, defineGm(z) the cdf of the

random variable 1
m

∑m
i=1 ∆Ii,u. Definexd

∆
= min(Gm(C(Γ))). Then for all x ∈ (0, xd),

η∞(x,R,Γ) is increasing withR. Therefore, sup
R≥0

η∞(x,R,Γ) is achieved forR → ∞
and τ̄ → ∞, and it is equal toC(Γ). Also, for all x ∈ (xd, 1) sup

R≥0
η∞(x,R,Γ) is achieved
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for finite delay. �

Proof: Recall thatη∞(x,R,Γ) is given by

η∞(x,R,Γ) =
R

1 +
∑∞

m=1 1{x ≤ p(m)} − 1
2δ(x − p(m))

In the following we skip the dependency of the parameters andwe call it simplyη∞ . By
definitionp(m) = Gm( R

m), it follows that

η∞ =
R

1 + ⌊ R
G−1

m (x)
⌋ − 1

2δ
(
m− R

G−1
m (x)

)

≥ R

⌊ R
G−1

m (x)
⌋
≥ G−1

m (x) (7-4)

We need to show that∀x ∈ (0, 1)

lim
m→∞

G−1
m (x) = C(Γ) (7-5)

Call Zm the RV defined asZm
∆
= 1

m

∑m
i=1 ∆Ii,u, with meanE[Zm] = C(Γ) = µ. For

the definition of limit we need to show that∀ǫ ∃m0, such that ifm > m0 than|G−1
m (x) −

C(Γ)| < ǫ. It follows that

|G−1
m (x) − C(Γ)| < ǫ ⇒ µ− ǫ < G−1

m (x) < µ+ ǫ (7-6)

The functionGm(.) is continuous and monotonically increasing and thus it follows that
Gm(µ− ǫ) < x < Gm(µ+ ǫ). For the central limit theoremZm converge in probability to
a Gaussian random variable with the same mean and variance. This means that∀ ǫ1 > 0 it
is possible to findm > m1 such thatGm(µ + ǫ) ≥ 1 − ǫ1; ∀ ǫ2 > 0 it is possible to find
m > m2 such thatGm(µ− ǫ) ≤ ǫ2. This impliesǫ2 ≤ x ≤ 1 − ǫ1. Thus it is sufficient to
takem > max(m1,m2) s.tx ∈ (ǫ2,≤ 1 − ǫ1) for the limit to hold.

For definition ofxd, it follows that∀ x ∈ (0, xd)G
−1
m (x) ≤ C(Γ). In particularsupmG−1

m (x) =
C(Γ) andargsupmG−1

m (x) = ∞ for (7-5).

Also note thatG−1
m (x) = R(m)

m . If the limit for m → ∞ is a constant different from zero
and infinity, than alsoR = Θ(m). This means that

sup
R

η∞ = sup
m

η∞ = C(Γ) ∀ x ∈ (0, xd)

For x ∈ (xd, 1), for definition it exists a valuem < ∞ such thatG−1
m (x) > C(Γ), this

already show thatsupR η∞ > C(Γ) andargsupR η∞ < m.
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7.4 PROOF OF THEOREM 4

Theorem:
For the SR protocol, sup

R≥0
η∞(x,R,Γ) is always achieved for finiteR and delay. In

particular the optimal R can be found asR(k) = F (k + 1) − ǫ where k is the index
that maximize the following sequence

b[i] =
1

i+ 1
[F (i+ 1) − ǫ] (7-7)

and
F (i) =

[
log2

(
1 − Γ log

(
1 − x

1
i

))]

for arbitrarily small epsilon. �

The throughput is defined as

η∞ = η∞(x,R,Γ) =
R

1 + ⌊ log x
log a⌋ − 1

2δ
(
⌊ log x

log a⌋ −
log x
log a

)

and recall thata =

(
1 − e−

2R
−1
Γ

)
. Consider the values ofR such that

k <
log x

log a
< k + 1

After some algebra we find thatR must satisfy the following inequality

F (k) < R < F (k + 1)

where
F (k) =

[
log2

(
1 − Γ log

(
1 − x

1
k

))]

WhenF (k) < R < F (k + 1) the average delay is a constant equal tok andη∞ = R
1+k .

Moreover,

R(k)
∆
= sup

R∈(F (k),F (k+1))
η∞ = F (k + 1) − ǫ

with ǫ arbitrarily small. Define nowb[i]
∆
= R(i)

1+i , it follows directly form computation that

lim
k→∞

b[k] = 0 and lim
k→0

b[k] = log2[1 − Γ log(1 − x)] − ǫ

This implies that theargsupkb[k] <∞.
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