
HAL Id: pastel-00001536
https://pastel.hal.science/pastel-00001536

Submitted on 29 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Evènements rares dans les réseaux.
Marc Lelarge

To cite this version:
Marc Lelarge. Evènements rares dans les réseaux.. Mathématiques [math]. Ecole Polytechnique X,
2005. Français. �NNT : �. �pastel-00001536�

https://pastel.hal.science/pastel-00001536
https://hal.archives-ouvertes.fr


Evénements rares dans les réseaux
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Chapitre 1

Introduction

Nous nous intéressons dans cette thèse à l’étude d’év´enements rares dans des réseaux de com-
munication. Dans un premier temps, nous introduisons la classe des réseaux monotones séparables
qui nous permettra une analyse systématique de réseaux degrande dimension. Parmi ceux-ci, nous
appliquerons notre théorie en détail aux réseaux (max,plus)-linéaires et aux réseaux de Jackson
généralisés.

La première étape de notre étude consiste à comprendre la dynamique de ces réseaux. Nous
décrivons leur comportement fluide, ce qui permet d’écrire les conditions de stabilité du réseau
et de construire les variables d’état (telles que temps d’attente aux différentes stations, tailles des
files d’attente...) dans leur régime stationnaire.

L’étude trajectorielle du réseau nous permet ensuite de comprendre le comportement aléatoire
du réseau. Nous calculons les asymptotiques des probabilités d’événements rares (dont la proba-
bilité tend vers0) et décrivons ”comment” ces événements se produisent. Nous montrons que le
”comportement” du réseau est radicalement différent selon les hypothèses probabilistes faites sur
les temps de service.

Dans le cas de distributions sous-exponentielles, l’événement rare est dû à un unique grand
service qui bloque une station du réseau tandis que dans le cas de distributions à queue exponen-
tielle, l’événement rare est dû à une conjonction de nombreux temps de services anormalement
longs. Ces heuristiques sont rendues précises par les calculs des probabilités considérées. Dans un
dernier temps, nous étudions l’impact d’une structure de dépendance entre les différents temps de
service grâce au mouvement Brownien fractionnaire.

Cadre général

Dans ce chapitre, nous introduisons le cadre monotone séparable qui a été développé par
François Baccelli et Serguei Foss [13]. Les principales propriétés de ces réseaux sont rappelées, en
particulier la condition de stabilité d’un réseau monotone séparable est connue sous des hypothèses
probabilistes générales (stationarité et ergodicitédes processus d’entrée).

Nous donnons des conditions naturelles sous lesquelles un réseau (max,plus)-linéaire appar-
tient à cette classe. Nous montrons que les graphes d’événements utilisés pour modéliser des
réseaux de communication ainsi que les mécanismes de synchronisation de certains protocoles
font partie de cette classe.

Concernant les réseaux de Jackson généralisés, nous écrivons les équations d’évolution sous
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8 Chapitre 1. Introduction

la forme d’une équation de point fixe dans un espace fonctionnel. Cette écriture permet d’avoir
un cadre unifié permettant de décrire un système ayant unedynamique discrète ou une dynamique
fluide. Dans le premier cas, les fonctions considérées sont des fonctions de comptage tandis que
dans le second cas, les fonctions sont simplement supposées croissantes.

Modèles fluides

Dans ce chapitre, nous nous intéressons au comportement limite du réseau lorsque le temps
est accéléré par un facteurn tandis que la variable d’espace (i.e. la taille des files d’attente ou la
charge des stations) est divisée par ce même facteurn.

Dans le cas des réseaux de Jackson généralisés, nous utilisons des propriétés de monotonie et
de convexité des operateurs définissant l’équation de point fixe pour caractériser la limite fluide.
Dans un cadre aléatoire stationnaire ergodique, ces limites fluides correspondent à des lois fortes
des grands nombres. Nous faisons le lien entre ce calcul de limite fluide et la condition de stabilité
du réseau.

Nous étudions ensuite le cas de files de type GPS (Generalized Processor Sharing). Différentes
files d’attente se partagent un serveur de manière égalitaire. Si toutes les files sont pleines, chacune
reçoit une proportion de la capacité du serveur. Si l’une des files est vide, la capacité normalement
allouée à cette file est redistribuée parmi les files occupées. Nous calculons la limite fluide du
système dans le cas où le système global est instable. Nous montrons que certaines files peuvent
cependant rester stables et nous caractérisons l’ensemble de ces files.

Asymptotiques sous-exponentielles

Dans ce chapitre, nous étudions le comportement du réseaudans le cas où la distribution des
temps de service dans chaque station est sous-exponentielle. Sous cette hypothèse, une méthodologie
générale a éte développée par François Baccelli et Serguei Foss [14] pour étudier les asympto-
tiques de réseaux monotones séparables. La forme générale de ces asymptotiques est donnée mais
les constantes doivent être calculées au cas par cas.

L’idée générale est que l’événement rare se produit selon un événement typique : si la charge
du réseau est grande au temps0, ceci est dû à un grand service qui a bloqué une station à un
moment dans le passé. Hormis ce temps de service exceptionnellement long, le réseau se comporte
”normalement”, en particulier il est bien approximé par salimite fluide.

Dans le cas de réseaux (max,plus)-linéaires, cette limite fluide est bien connue et donnée par
les exposants de Lyapunov. Ceci nous permet d’exprimer les constantes des asymptotiques sous-
exponentielles en fonction de ces exposants. Dans le cas desréseaux de Jackson généralisés et des
systèmes de type GPS, les calculs du chapitre précédent permettent de conclure.

Grandes d́eviations

Dans ce chapitre, nous traitons le cas où les distributionsdes temps de service ont des queues
exponentielles. Ce cas est complémentaire du chapitre pr´ecédent et les techniques probabilistes
sont différentes.

La première étape consiste à développer une méthodologie générale pour ces hypothèses pro-
babilistes. Un processus sous-additif est naturellement associé à un réseau monotone séparable (de
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la même manière qu’une marche aléatoire est naturellement associée à une file d’attente avec un
serveur). Nous avons d’abord montré que le principe de grande déviation correspondant au cas du
maximum d’une marche aléatoire s’étend au cas du maximum d’un processus sous-additif. Ceci
nous permet d’obtenir un résultat général pour tout réseau monotone séparable en fonction d’une
transformée de Laplace asymptotique.

Dans le cas des réseaux (max,plus)-linéaires, les propriétés d’idempotence de l’algèbre (max,plus)
nous permettent d’exprimer cette transformée de Laplace en fonction des différentes composantes
du réseau. Dans le cas des réseaux de Jackson, nous donnonsle principe de grandes déviations
trajectorielles du processus de la longueur des files d’attente à chaque station. Ce résultat est origi-
nal et étend le seul cas connu correspondant à des temps de service exponentiels. En particulier, la
preuve utilise une extension du principe de contraction quipeut avoir des applications à d’autres
systèmes ou réseaux.

Asymptotiques pour des ŕeseaux (max,plus)-lińeaires browniens frac-
tionnaires

Ce dernier chapitre traite le cas où les temps de service ontdes queues exponentielles mais
contrairement aux deux chapitres précédents la suite destemps de service à chaque station a une
structure de dépendance. En particulier, nous calculons l’effet d’une dépendance à long terme (ob-
servée empiriquement dans le trafic internet) sur les performances générales d’un réseau (max,plus)-
linéaire.

Overview

The goal of this thesis is the study of rare events in stochastic networks. What we call rare
events are events with very small probability. The one dimensional example of such an event is the
tail of the stationary workloadW of a stable single server queue,

P(W > x) asx→ ∞.

This is exactly the kind of asymptotics we want to study in a network setting. Dealing with net-
works instead of single server queue means that we have now a multidimensional object to un-
derstand. This naturally raises intricate mathematical problems and a problem of methodology
too. The range of interesting networks one can build from very simple bricks is now exploding.
One has to find proofs that are sufficiently systematic to cover a whole set of networks. If one finds
a very suitable technique for a very specific brick, there is little hope that his technique will extend
to a non-negligible subset of the possible networks !

To avoid this kind of annoyance, we chose another approach. We first study the general pro-
perties of a set of networks, namely the set of monotone separable networks. This class has enough
structure to enable us to derive general properties for various networks. Knowing if this class of
networks is negligible is then more a matter of philosophy... anyway it covers several classical
networks !

In Chapter 2, we present the general framework of monotone separable networks and three
subclasses : (max,plus)-linear systems, generalized Jackson networks and generalized processor
sharing (GPS) queues. The class of monotone separable networks was first introduced by François
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Baccelli and Serguei Foss to study stability of such networks [13]. In particular they constructed
the stationary version of generalized Jackson networks in [12]. With the first section of Chapter
3, the dynamic of such networks is quite well understood. In the second section of this chapter,
we construct the stationary regime of a GPS system. The new part consisting in the study of the
overloaded system, we show that even if the whole system is unstable, there exist subsystems that
are stable. In Chapter 4, we address the core of the problem, and thanks to results of previous
chapters, we are able to derive subexponential asymptoticsfor these three classes of networks.
The technique used has been proposed by Baccelli and Foss in [14]. Thanks to the three cases
we explore, we show both the power of the method and its limits. We end the chapter with some
thoughts to generalize it.

Chapters 5 and 6 are quite independent. We study the same objects, namely monotone sepa-
rable networks, but under different stochastic assumptions. The techniques used in these chapters
are completely different from previous chapter. Chapter 5 deals with standard large deviations
theory and show that the monotone separable framework may bewell suited for such large devia-
tions studies. In Chapter 6, we study the impact of correlation between successive service times
at a same station. The study of fractional Brownian motion enable us to get some results in this
direction.



Chapitre 2

General Framework

2.1 Monotone Separable Networks

2.1.1 Framework

The framework described in this section has been developed by François Baccelli and Serguei
Foss and results of this section can be found in [13], [10] and[14].

Consider a stochastic network described by the following framework :
– The network has a single input point processN , with points{Tn}−∞<n<∞ ; for all m ≤
n ∈ Z, let N[m,n] be the[m,n] restriction ofN , namely the point process with points
{Tℓ}m≤ℓ≤n.

– The network has a.s. finite activity for all finite restrictions ofN : for all m ≤ n ∈ Z, let
X[m,n](N) be the time of last activity in the network, when this one starts empty and is fed
byN[m,n]. We assume that for all finitem andn as above,X[m,n] is finite.

We assume that there exists a set of functions{fℓ}, fℓ : Rℓ ×Kℓ → R, such that :

X[m,n](N) = fn−m+1{(Tℓ, ζℓ), m ≤ ℓ ≤ n}, (2.1)

for all n,m andN , where the sequence{ζn} is that describing service times and routing decisions.
We say that a network described as above is monotone-separable if the functionsfn are such

that the following properties hold for allN :

1. Causality : for all m ≤ n,

X[m,n](N) ≥ Tn;

2. External monotonicity : for all m ≤ n,

X[m,n](N
′) ≥ X[m,n](N),

wheneverN ′ := {T ′n} is such thatT ′n ≥ Tn for all n, a property which we will write
N ′ ≥ N for short ;

3. Homogeneity :for all c ∈ R and for allm ≤ n

X[m,n](N + c) = X[m,n](N) + c;

4. Separability : for all m ≤ ℓ < n, if X[m,ℓ](N) ≤ Tℓ+1, then

X[m,n](N) = X[ℓ+1,n](N).

11



12 Chapitre 2. General Framework

2.1.2 Maximal Dater

By definition, form ≤ n, the[m,n] maximal dater is

Z[m,n](N) := X[m,n](N) − Tn = X[m,n](N − Tn).

Note thatZ[m,n](N) is a function of{ζℓ}m≤ℓ≤n and{τℓ}m≤ℓ≤n only, whereτn = Tn+1 − Tn. In
particular,Zn := Z[n,n](N) is a function ofζn only and does not depend on{τℓ}−∞<ℓ<∞.

Lemma 1. Internal monotonicity of X andZ
Under the above conditions, the variablesX[m,n] and Z[m,n] satisfy the internal monotonicity
property : for allN ,m ≤ n,

X[m−1,n](N) ≥ X[m,n](N),

Z[m−1,n](N) ≥ Z[m,n](N).

In particular, the sequence{Z[−n,0](N)} is non-decreasing inn. Put

Z := Z(−∞,0](N) = lim
n→∞

Z[−n,0](N) ≤ ∞.

Lemma 2. Sub-additive property ofZ
Under the above conditions,{Z[m,n]} satisfies the following sub-additive property : for allm ≤
ℓ < n, for all N ,

Z[m,n](N) ≤ Z[m,ℓ](N) + Z[ℓ+1,n](N).

2.1.3 Stationary Ergodic Setting and Main Stability Results

Assume the variables{τn, ζn} are random variables defined on a common probability space
(Ω,F,P, θ), whereθ is an ergodic, measure-preserving shift transformation, such that(τn, ζn) ◦
θ = (τn+1, ζn+1). The following integrability assumptions are also assumedto hold :

E[τn] := λ−1 := a <∞, E[Zn] <∞.

Lemma 3. Under the foregoing ergodic assumptions, eitherZ = ∞ a.s. orZ <∞ a.s.

The network is stable ifZ <∞ a.s. and unstable otherwise.
Denote byQ the degenerate input process with all its points equal to0 : Tn(Q) = 0 for all n.

In view of Lemma 33, the Kingman’s sub-additive ergodic theorem gives :

Lemma 4. Under the foregoing ergodic assumption, there exists a non-negative constantγ(0)
such that

lim
n→∞

Z[−n,−1](Q)

n
= lim

n→∞

E
[
Z[−n,−1](Q)

]

n
= γ(0) a.s.

The main result on the stability region will be proved in the next section :

Theorem 1. (a) If λγ(0) < 1, thenZ <∞ a.s.

(b) If Z <∞ a.s., thenλγ(0) ≤ 1.
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2.1.4 UpperG/G/1/∞ Queue and Lower Bound for the maximal Dater

We first derive a lower bound that will give us part (b) of Theorem 12 and will be useful in the
large deviation analysis of monotone separable networks.

Proposition 1. We have the following lower bound

Z ≥ sup
n≥0

(
Z[−n,0](Q) + T−n − T0

)
.

Proof.
Forn fixed, letNn be the point process with pointT n

j = T−n − T0, for all j. Then

Z[−n,0] = X[−n,0](N) − T0 ≥ X[−n,0](N
n)

= X[−n,0](Q) + T−n − T0 = Z[−n,0](Q) + T−n − T0,

where we used external monotonicity in the first inequality and homogeneity between the first and
second line. 2

Proof of Theorem 12 part (b).
Suppose thatλγ(0) > 1, then we have

lim inf
n→∞

Z[−n,0](N)

n
≥ γ(0) − a > 0,

which concludes the proof of part (b). 2

We assume now thatγ(0) < a. We pick an integerL ≥ 1 such that

E
[
Z[−L,−1](Q)

]
< La, (2.2)

which is possible in view of Lemma 34. Without loss of generality, we assume thatT0 = 0. Part
(a) of Theorem 12 will follow from the following proposition:

Proposition 2. The stationary maximal daterZ is bounded from above by the stationary response
timeR̂ in theG/G/1/∞ queue with service times

ŝn := Z[L(n−1)+1,Ln](Q)

and inter-arrival timesτ̂n := TLn − TL(n−1), whereL is the integer defined in (5.17). Since

E[ŝ1] < E[τ̂1] = La, this queue is stable. With the convention
∑−1

0 = 0, we have,

Z ≤ ŝ0 + sup
k≥0

−1∑

i=−k

(ŝi − τ̂i+1) =: R̂.

Proof.
To an input processN , we associate the following upper bound process,N+ = {T+

n } ≥ N ,
whereT+

n = TkL if n = (k−1)L+1, . . . , kL. Then for alln, since we assumedT0 = 0, we have
thanks to the external monotonicity,

X[−n,0](N) = Z[−n,0](N) ≤ X[−n,0](N
+) = Z[−n,0](N

+). (2.3)

We show that for allk ≥ 1,

Z[−kL+1,0](N
+) ≤ ŝ0 + sup

−k+1≤i≤0

−1∑

j=−i

(ŝj − τ̂j+1). (2.4)

This inequality will follow from the two next lemmas
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Lemma 5. AssumeT0 = 0. For anym < n ≤ 0,

Z[m,0](N) ≤ Z[n,0](N) + (Z[m,n−1](N) − τn−1)
+.

Proof of Lemma 35.
Assume first thatZ[m,n−1](N)− τn−1 ≤ 0, which is exactlyX[m,n−1](N) ≤ Tn. Then by the

separability property, we have

Z[m,0](N) = X[m,0](N) = X[n,0](N) = Z[n,0](N).

Assume now thatZ[m,n−1](N)−τn−1 > 0. LetN ′ = {T ′j} be the input process defined as follows

∀j ≤ n− 1, T ′j = Tj ,

∀j ≥ n, T ′j = Tj + Z[m,n−1](N) − τn−1.

Then we haveN ′ ≥ N andX[m,n−1](N
′) ≤ T ′n, hence by the external monotonicity, the separa-

bility and the homogeneity properties, we have

Z[m,0](N) = X[m,0](N) ≤ X[m,0](N
′)

= X[n,0](N
′) = X[n,0](N) + Z[m,n−1](N) − τn−1 = Z[n,0](N) + Z[m,n−1](N) − τn−1.

2

From this lemma we derive directly

Lemma 6. AssumeT0 = 0. For anyn < 0,

Z[n,0](N) ≤ sup
n≤k≤0

(
−1∑

i=k

(Zi − τi+1)

)

+ Z0,

with the convention
∑−1

0 = 0

Applying Lemma 36 toZ[−kL+1,0](N
+) gives (5.19). We now return to the proof of Proposi-

tion 22. We have

Z = lim
k→∞

Z[−kL+1,0]

= sup
k≥0

Z[−kL+1,0](N)

≤ sup
k≥0

Z[−kL+1,0](N
+) thanks to (5.18)

≤ sup
k≥0



ŝ0 + sup
−k+1≤i≤0

−1∑

j=−i

(ŝj − τ̂j+1)



 = R̂, thanks to (5.19).

from Lemma 36. 2
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2.2 (max,plus)-Linear Systems and Event Graphs

2.2.1 (max,plus)-Linear Systems

Most of the material of this section is taken from the bookSynchronization and Linearity[11].
Some notations are taken from [16].

Definition 1. The (max,plus) semi-ringRmax is the setR ∪ {−∞}, equipped withmax, written
additively (i.e.a⊕ b = max(a, b)) and the usual sum, written multiplicatively (i.e.a⊗ b = a+ b).
The zero element is denotedǫ = −∞.

For matrices of appropriate sizes, we define(A⊕B)(i,j) = A(i,j)⊕B(i,j) = max(A(i,j), B(i,j)),
(A⊗B)(i,j) =

⊕

k A
(i,k) ⊗B(k,j) = maxk(A

(i,k) +B(k,j)).

Let s be an arbitrary fixed natural number. Assume the following tobe given :
– {Tn, n ∈ N}, whereTn ∈ R, the arrival time sequence ;
– {An, n ∈ N}, whereAn is as× s matrix ;
– {Bn, n ∈ N}, whereBn, is as−dimensional vector.

The associated (max,plus)-linear recurrence is that with state variable sequence{Xn, n ∈ N},
whereXn is as−dimensional vector, which satisfies the evolution equation:

Xn+1 = An+1 ⊗Xn ⊕Bn+1 ⊗ Tn+1. (2.5)

We assume w.l.o.g. thatAn has no null column (=(ǫ . . . ǫ)′) and that if thei-th line ofAn is null,

thenB(i)
n ≥ 0.

To each (max,plus)-linear recurrence, one associates a network in the sense of the last section,
with ζn = (An, Bn) and

X[m,n](N) =
⊕

1≤i≤s

⊕

m≤k≤n

(D[k+1,n] ⊗Bk ⊗ Tk)
(i),

where fork < n,D[k+1,n] =
⊗k+1

j=nAj = An⊗· · ·⊗Ak+1 andD[n+1,n] = E, the identity matrix
(the matrix with all its diagonal entries equal to 0 and all its non-diagonal ones equal toǫ). If one
defines

Y[m,n] =
⊕

m≤k≤n

D[k+1,n] ⊗Bk ⊗ Tk,

it is easy to check thatY[m,m] = Bm ⊗ Tm, that for alln ≥ m,

Y[m,n+1] = An+1 ⊗ Y[m,n] ⊕Bn+1 ⊗ Tn+1

and thatX[m,n](N) = maxi(Y[m,n])
(i).

We denote by0 the vector with all its entries equal to0.

Lemma 7. The network associated with a (max,plus)-linear recurrence is monotone-separable
providedAn ⊗ 0 ≤ Bn ⊕ 0 for all n.

Proof.
The first three properties are immediate. Let us prove that separability holds under the last

assumption. IfX[m,l](N) ≤ Tl+1, thenY[m,l] ≤ 0⊗ Tl+1.
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So by monotonicity,

Al+1 ⊗ Y[m,l] ≤ Al+1 ⊗ 0 ⊗ Tl+1

≤ Bl+1 ⊗ Tl+1 ⊕ 0 ⊗ Tl+1.

Hence we have

Al+1 ⊗ Y[m,l] ⊕Bl+1 ⊗ Tl+1 ≤ Bl+1 ⊗ Tl+1 ⊕ 0 ⊗ Tl+1

Y[m,l+1] ≤ Y[l+1,l+1] ⊕ 0⊗ Tl+1. (2.6)

But maxiB
(i)
l+1 ≥ 0, hence we havemaxi Y

(i)
[l+1,l+1] ≥ Tl+1. And then

X[m,l+1](N) = max
i
Y

(i)
[m,l+1] ≤ max

i
Y

(i)
[l+1,l+1] = X[l+1,l+1](N).

We show by induction that for alln ≥ l + 1,

Y[m,n] ≤ Y[l+1,n] ⊗ 0⊗ Tl+1. (2.7)

In view of (5.24), it is true forn = l + 1. Suppose it is true forn, then we have by monotonicity,

An+1 ⊗ Y[m,n] ≤ An+1 ⊗ Y[l+1,n] ⊕Bn+1 ⊗ Tl+1 ⊕ 0 ⊗ Tl+1

Y[m,n+1] ≤ Y[l+1,n+1] ⊕ 0 ⊗ Tl+1, sinceTn+1 ≥ Tl+1.

Now taking the maximum over the indices in (5.25) givesX[m,n](N) ≤ X[l+1,n](N), but the
converse inequality is clearly true in view of the definitionof the mappingX(.). Hence we have
finally

X[m,n](N) = X[l+1,n](N).

2

In this case we can define the maximal dater

Z =
⊕

1≤i≤s

⊕

k≤0

(
D[k+1,0] ⊗Bk ⊗ Tk

)(i) − T0

2.2.2 Event Graphs

In this section, we first describe what we define as an event graph and then show that these
objects belong to the class of (max,plus)-linear systems and under some additional assumptions to
the class of monotone separable networks.

Consider a bipartite oriented graphG with two types of nodes : transitions (denoted by bars)
and places (denoted by circles), and with an integer markingof each place. We will only consider
the class ofevent graphs, which is the class of such bipartite graphs where each placehas exactly
one upstream and one downstream transition. An example of such a graph is provided below where
the integer marking of a place (here 0 or 1) is depicted by tokens. We will also assume that the
event graph is live, namely that there is no circuit with onlyplaces of zero marking.

A transition without predecessor is called a source ; similarly a transition with no successor is
called a sink ; we will consider networks that have exactly one source and one sink and we will
adopt the following notation :
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– For the source :

pintin t1t1

– For the sink :

pout
tout

Consider an event graph, together with (T denote the set of transitions) :
– a sequence of non-negative, real variablesσt

n, t ∈ T, n ≥ 0 ;
– an increasing sequence of real variablesTn, n ≥ 0.

We show below that to such a triple, one can associate a (max,plus)-linear recurrence of type (2.5).
For this, takeK = |T|, and we identifyT with {1, . . . ,K}. We adopt a numbering of coordi-

nates such that coordinate1 is the source andK the sink. For allm = 0, . . . , L, whereL is the
maximal value of the initial marking, defineam(n) to be theK ×K matrix with entries

(am(n))(i,j) =

{

σi
n if there is two hop path fromj to i with a place with markingm

ε otherwise.
(2.8)

Let b theK-dimensional vector with all its entries equal toε, but the first, which is equal to0. Let
thenxn be the sequence ofK-dimensional vectors defined by the recurrence relation

xn = a0(n) ⊗ xn ⊕ · · · ⊕ aL(n) ⊗ xn−L ⊕ b⊗ Tn. (2.9)

The reduction to a (max,plus)-recurrence is then obtained as follows : the matrixa0 can be assumed
to be strictly triangular w.l.o.g. thanks to the liveness assumption (see [11]). Therefore the matrix

a0(n)∗ = E ⊕ a0(n) ⊕ a0(n)2 ⊕ . . .

is well defined and when definingai(n) = a0(n)∗ ⊗ ai(n) andb(n) = a0(n)∗ ⊗ b, we obtain

xn = a1(n) ⊗ xn−1 ⊕ · · · ⊕ aL(n) ⊗ xn−L ⊕ b(n) ⊗ Tn. (2.10)

Then, with the following notation

Xn =






xn−L+1
...
xn




 ,

we get the desired equation, namelyXn = AnXn−1 ⊕BnTn, when taking

An =











ǫ E
...

. . .
...

. . .
ǫ E

aL(n) aL−1(n) . . . . . . a1(n)











, Bn =











ǫ
...
...
ǫ

b(n)











. (2.11)
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So to each event graph, one can associate a (max,plus)-linear recurrence and therefore a net-
work.

Remark1. One can drop coordinatei if column i has onlyǫ entries (indeed, in this case coordinate
i is never used in the recursion). We can drop coordinates successively. We will not do this for the
last column, which is associated to the last activity.

Here is an example. Consider the following graph :

σ2

σ3

pout
tout = t4

t2

t3

t1

and take all sigma’s equal to 0 but for transitions 2 and 3 for which we take some sequencesσ2
n

andσ3
n respectively. Here,K = 4, L = 1 and the matrices are

a0(n) =







ǫ ǫ ǫ ǫ
σ2

n ǫ ǫ ǫ
σ3

n ǫ ǫ ǫ
ǫ 0 0 ǫ






, a1(n) =







ǫ ǫ ǫ ǫ
ǫ σ2

n ǫ ǫ
ǫ ǫ σ3

n ǫ
ǫ ǫ ǫ ǫ






.

The evolution equations are :

x(1)
n = Tn,

x(2)
n = [x(1)

n ⊕ x
(2)
n−1] ⊗ σ2

n,

x(3)
n = [x(1)

n ⊕ x
(3)
n−1] ⊗ σ3

n,

x(4)
n = x(2)

n ⊕ x(3)
n .

Denotingσi∨j
n = max(σi

n;σj
n), we get :

x(1)
n = Tn,

x(2)
n = x

(2)
n−1 ⊗ σ2

n ⊕ Tn ⊗ σ2
n,

x(3)
n = x

(3)
n−1 ⊗ σ3

n ⊕ Tn ⊗ σ3
n,

x(4)
n = x

(2)
n−1 ⊗ σ2

n ⊕ x
(3)
n−1 ⊗ σ3

n ⊕ Tn ⊗ [σ2∨3
n ].
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So we have a (max,plus)-linear recurrence with

An =







ǫ ǫ ǫ ǫ
ǫ σ2

n ǫ ǫ
ǫ ǫ σ3

n ǫ
ǫ σ2

n σ3
n ǫ







Bn =







0
σ2

n

σ3
n

σ2∨3
n






.

We drop coordinate 1 but we keep coordinate4 in our recursion for the reasons explained above.
It is easy to check that what was just done is in fact equivalent to the generic way of transforming
(2.9) into (2.5) which was presented above.

Here it is easy to check thatx(2)
n ≥ x

(2)
n−1 andx(3)

n ≥ x
(3)
n−1 for all n ≥ 1, and that this

in turn implies thatxn(4) ≥ xn−1(4). Hence we can take (note that the size of the matrix is
s = 3 < KL = 4) :

An =





σ2
n ǫ ǫ
ǫ σ3

n ǫ
σ2

n σ3
n 0



 Bn =





σ2
n

σ3
n

σ2∨3
n



 .

Similar modifications can be made in FIFO networks where for all i, x(i)
n ≥ x

(i)
n−1.

Remark2. Although we will not need this in what follows, we find it useful to stress that one
can also associate to all event graphs some token dynamics (see [11] p. 69 and following). If
one sees Equation (2.9) as an extension of Lindley’s equation (initially for the G/G/1 queue) to
event graphs, the token dynamics of event graphs can then be seen as a generalization of that of
customers in such a queue, see the Section 2.2.4 with examples.

We just showed how one can associate to such an event graph a (max,plus)-linear system. In
particular note that the matricesAn and the vectorBn produced have a fixed structure : for each
n and eachi, j, A(i,j)

n andB(i)
n are either almost surely finite, or else almost surely equal to −∞.

Indeed, we even showed more. Letm be the number of timed transitions in the event graph. The
set of timed transitions is denotedTtimed = {t(1), . . . , t(m)} ⊂ T = {1, . . . ,K} and we take

ζn = (σ
t(1)
n , . . . , σ

t(m)
n ). We showed that the matrices and vectors{An, Bn} that are used in the

recursion are obtained via two applicationsA andB such that :

A : Rm
+ → M(s,s) (Rmax)

σ = (σ1, . . . , σm) 7→ A(σ),

B : Rm
+ → M(s,1) (Rmax)

σ = (σ1, . . . , σm) 7→ B(σ),

via the formula

A(ζn) = An,

B(ζn) = Bn.

Note that our notation are consistent and to an event graph, one associates a network in the sense
of section 2.1.1 with

X[m,n](N) =
⊕

1≤i≤s

⊕

m≤k≤n











k+1⊗

j=n

A(ζj)






⊗ B(ζk) ⊗ Tk





(i)

,
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with the convention
⊗n+1

j=n = E, the identity matrix.
We show now that under some additional conditions the class of the event graphs is a subclass

of the monotone separable class. In what follows, we will always assume that these conditions are
satisfied.

Proposition 3. Consider an event graph such that
A1 For all i ∈ T, there exists a tokenless path in the oriented graphG, going fromt1 to tout

throughi ;
A2 Each transitioni is either untimed (withσi

n ≡ 0) or recycled, namely such that there exists
a placep with marking 1 such thatp is both a predecessor and a successor ofi (a natural
way of making the event graph FIFO).

Then the network associated with this event graph is monotone-separable.

The fact that one can associate a (max,plus)-linear recurrence as described in Section 2.2.1
with An ⊗ 0 = Bn ⊕ 0 follows from the next proposition. Hence thanks to Lemma 39,we know
that this system belongs to the monotone separable framework.

Proposition 4. To an event graph verifying conditions of previous proposition, one can always
associate two applicationsA andB such that

1. there existsI, J such thatI ∩ J = ∅, I ∪ J = [1, s] and (we omit theζ since the following
properties are true for allζ ∈ Rm

+ )

∀i ∈ J, B(i) = ǫ, max
j

A(i,j) = 0;

∀i ∈ I, max
j

A(i,j) = max
j∈I

A(i,j) = B(i).

2. for all i, A(i,i) ≥ 0 and for allk ∈ [1,m], there existsj such thatA(j,j)(ζ) = σ(k).

Proof.
We will show that the matrices given by (2.11) satisfy the desired conditions. In order for

matrixAn in (2.11) to satisfy point 2, we must add zeros on the diagonal. Note that due to the
FIFO assumption, this is always possible. Now the second part of point 2 follows from the fact
that under Assumption A2 of Proposition 3, eachσ(k) is on the diagonal ofa1 which is the diagonal
of a1 too sincea0 is strictly triangular thanks to Assumption A1.

The first point follows (withJ = [1, (L−1)K] andI = [(L−1)K+1, LK]) from the Lemma
9 proved in section 2.2.5.

2

Remark3. It is clear that previous conditions are symetric. More precisely if π is a permutation
of [1, s] andA

(i,j)
π = A(π(i),π(j)), B

(i)
π = B(π(i)) then it is equivalent to chec the conditions on the

couple(A,B) or (Aπ,Bπ). This fact will be used in the next section to get a generic form for the
applications.

2.2.3 Reducible and Irreducible Event Graphs

Two transitions of an event graph will be said to belong to thesame communication class
if there is a directed path inG from the first to the second and another one from the second to
the first. We denote byC1, . . . ,Cd these communication classes, which form a partition of the



2.2. (max,plus)-Linear Systems and Event Graphs 21

set of transitions. By construction, these communication classes can be arranged according to a
partial order denoted≺. The numbering is assumed to be compatible with this partialorder :
Ci ≺ Cj ⇒ i ≤ j. By definition there is always a place between 2 transitions,hence we can
consider the graph (still denotedG) where we delete the places. The set of vertices isT and there
is an edge(i, j) if there is a two hop path fromi to j.

There is a natural way (see Section 2.3 of [11]) to associate to the applicationsA andB some
graphsGA = (V,EA) andGB = ({0} ∪ V,EB). Let V = {1, . . . , s}. If A(j,i)(σ) > ǫ, then the
edge(i, j) belongs toEA and has weightA(σ)(j,i). If B(i)(σ) > ǫ, then the edge(0, i) belongs to
EB and has weightB(i)(σ). We denoteGA∪B = GA ∪ GB.

We will denote byΞ (resp.Ξn) the set of paths inGA∪B from node0 to nodes (resp. with
lengthn, where the length is the number of edges of the path).

Remark4. The simplification on the matricesAn andBn correspond to the following operations
on the graphGA∪B : if there exists no edge starting from verticesi, then we delete this nodei and
all the edges that link to this vertices. We operate recursively. The final graph corresponds exactly
to the simplified matricesAn andBn. Indeed the simplifications will not affect any result on the
underlying event graph and we can deal with the matrices of (2.11) for the proofs.

We refer to [11] (page 42) for the interpretation of product of matrices in term of paths in
graph. LetC′1, . . . ,C

′
d′ be the communication classes ofGA and⋖ the associated partial order. We

assume thatC′i ⋖ C′j ⇒ i ≤ j.

Lemma 8. The sets{C1, . . . ,Cd, ≺} and{C′1, . . . ,C′d′ , ⋖} are isomorphic. In particulard = d′.

Proof.
We consider the matrix before simplification and we omit the subscriptn :

A =











ǫ E
...

. ..
...

. ..
ǫ E
aL aL−1 . . . . . . a1











,

where āi = a∗0 ⊗ ai. We take the following notationik = (L − k)K + i for 1 ≤ i ≤ K

and1 ≤ k ≤ L. Then the upper part of the matrix









ǫ E
...

.. .
...

. . .
ǫ E









correspond inGA

to edges between verticesik and ik+1 with null weight. For the lower part of the matrix, the
coefficients of the submatrix̄ak give the weight of edges betweenik andj1 (if ā(j,i)

k > ǫ). Now

if i → j is an edge ofG, then by construction there exists an indicek such thata(j,i)
k > ǫ. Hence

there exists a path inGA from i1 to j1, namely :i1 → i2 → · · · → ik → j1. Now if i1 → j1 is an
edge ofGA, theni→ j is an edge ofG. And the lemma follows. 2

The set{C1, . . . ,Cd, ≺} is by definition an acyclic graph. Hence by permuting the indices,
we obtain for the matrix in the evolution equation of the event graph the following block structure
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(after simplification) :

An =














An(1, 1) | ǫ | ǫ | ǫ
− − − − − − −

An(2, 1) | An(2, 2) | ǫ | ǫ
− − − − − − −

...
...

...
− − − − − − −

An(d, 1) | An(d, 2) | | An(d, d)














, Bn =














Bn(1)
−

Bn(2)
−
...
−

Bn(d)














,

where eachAn(i, i) is an irreducible matrix of sizesi (corresponding to communication classCi).
As the output transition is necessarily in the last communication class (“last” refers here to the

partial order≺), this choice of numbering can be made compatible with our earlier assumption
that the last coordinate is that of the output transition.

2.2.4 Event Graphs : Examples

Queues in tandem

We consider two queues in tandem, as illustrated in Figure 2.1. Letσi
n be the n-th service time

{Tn} {σ1
n} {σ2

n}

FIG. 2.1 – Queues in Tandem

at thei-th server. We denote byx1
n (resp.x2

n) the end of the n-th service in queue 1 (resp. 2). We
have then

x1
n = (Tn ⊕ x1

n−1) ⊗ σ1
n, (2.12)

x2
n = (x1

n ⊕ x2
n−1) ⊗ σ2

n. (2.13)

Putting (2.12) in (2.13) gives

x2
n = (x1

n−1 ⊕ Tn) ⊗ (σ1
n ⊗ σ2

n) ⊕ x2
n−1 ⊗ σ2

n,

with

Xn =

(
x1

n

x2
n

)

,

An =

(
σ1

n ǫ
σ1

n + σ2
n σ2

n

)

,

Bn =

(
σ1

n

σ1
n + σ2

n

)

,

so that

Xn = An ⊗Xn−1 ⊕Bn ⊗ Tn.
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Tree Queueing Network

Consider a tree with nodes numbered by1, 2, . . . ,m such thatj is a successor ofi (we write
j ∈ Suc(i)) implies i ≤ j. In particular node 1 is the root. We associate to this tree the network
withm queues and in which departure process of queuei is the input process of queuesj ∈ Suc(i).
Queues in tandem is a special case of tree network. Note that in the literature, such tree networks
are also referred to as disassembly networks.

We take the example of a tree with three queues, as illustrated in Figure 2.2. The end-to-end
delay here is defined as the delay for a customer to traverse all the queues, which is taken care of
by the dummy node (a max operator) in the end.

1

2

3

4
max

FIG. 2.2 – Tree Network

Let σi
n be the n-th service time at thei-th server. We denote byxi

n the end of the n-th service in
serveri. We have then

x1
n = (Tn ⊕ x1

n−1) ⊗ σ1
n, (2.14)

x2
n = (x1

n ⊕ x2
n−1) ⊗ σ2

n, (2.15)

x3
n = (x1

n ⊕ x3
n−1) ⊗ σ3

n, (2.16)

x4
n = x2

n ⊕ x3
n. (2.17)

Putting equation (2.14) in (2.15), (2.16), (2.17) we obtainthe desired recursion equation with

Xn =







x1
n

x2
n

x3
n

x4
n






, Bn =







σ1
n

σ1
n + σ2

n

σ1
n + σ3

n

σ1
n + max(σ2

n, σ
3
n)






,

An =







σ1
n ǫ ǫ ǫ

σ1
n + σ2

n σ2
n ǫ ǫ

σ1
n + σ3

n ǫ σ3
n ǫ

σ1
n + max(σ2

n, σ
3
n) σ2

n σ3
n 0






.

Notice that both precedent examples are feed-forward networks.

Queueing network with fixed window control

We consider nowm queues in tandem with a window-based control which does not allow
more thanL customers in the system. In other words, then th customer can enter the first queue
only after then−L th customer leaves the last queue in the tandem queueing network. We denote
by xi

n the end of the n-th service in queuei.
For the network of two queues in Figure 2.3, we have then

x1
n = (Tn ⊕ x1

n−1 ⊕ x2
n−L) ⊗ σ1

n, (2.18)

x2
n = (x1

n ⊕ x2
n−1) ⊗ σ2

n. (2.19)
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Sender Reveiver

Window L

. . .

FIG. 2.3 – Tandem Queueing Network with Fixed Window Control

From these equations, if we put (2.18) in (2.19), we obtain the desired recursion equation with

Xn =















x2
n−L+1

x2
n−L+2

...

...
x2

n−1

x1
n

x2
n















, Bn =















ǫ
ǫ
...
...
ǫ
σ1

n

σ1
n + σ2

n















,

An =















ǫ 0 ǫ . . . . . . ǫ
ǫ ǫ 0 ǫ . . . ǫ
...

. ..
...

. . .
ǫ 0
σ1

n ǫ . . . ǫ σ1
n ǫ

σ1
n + σ2

n ǫ . . . ǫ σ1
n + σ2

n σ2
n















.

In the tree network case, the window control with sizeL is implemented in such a way that the
n th customer can enter the first queue (root of the tree) only after the all then − L th customers
quit the leave queues in the tree queueing network.

2.2.5 Event Graphs : proofs

Lemma 9. For all k ∈ [1, L] and all i ∈ [1,K], we havemaxj a
(i,j)
k ≤ maxj a

(i,j)
1 = b

(i)

Proof. Thanks to Assumption A1, we have by construction for allk ≥ 1,

ak0 ⊕ 0 ≤ a00.

Hence by monotonicity, we have

a∗0(ak0⊕ 0) ≤ a∗0a00 = a∗00, (2.20)

since clearly0 ≤ ao0. From (2.20), we derive thata∗0ak0 ≤ a∗00. Since(a∗00)(i) = maxj(a
∗
0)

(i,j) =

(a∗0)
(i,1) = b

(i)
, we showed that

max
j
a

(i,j)
k ≤ b

(i)
.
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Now for a1, we have thanks to Assumption A2 that ensures that the event graph is FIFO :

a10 ≥ 0.

Hence we havea∗0a10 ≥ a∗00 and finallya10 = b which concludes the proof. 2

2.3 Generalized Jackson Networks

In this section, we introduce the (single class) generalized Jackson network. Such networks
have been considered among others by Jackson [61] or Gordon and Newell [52]. The framework
that we use here is that of Baccelli and Foss in [12].

We will take the following notation

1. A1 (resp.A∗1) is the set of non-negative sequences :u = {ui}1≤i≤n, such thatn ≤ +∞,
andui ≥ 0, (resp.ui > 0) for all i ≤ n ;

2. A2 (resp.A∗2) is the set of non-decreasing sequences :U = {Ui}1≤i≤n, such thatn ≤ +∞,
and0 ≤ Ui ≤ Ui+1 (resp.0 < Ui < Ui+1) for all i ≤ n− 1 ;

We will denote byA (resp.A∗) the set of discrete measure onR+ such that there existsU ∈ A2

(resp.U ∈ A∗2) with dU =
∑

1≤i≤n δUi . To such a measure we can associate a sequenceu ∈ A1

(resp.u ∈ A∗1) in the following mannerui = Ui − Ui−1, for i ≥ 1 and with the convention
U0 = 0. A3 (resp.A∗3) will denote the set of counting functions :U : R+ → N such thatU(t) =
∑

1≤i≤n 11{Ui≤t} =
∫ t
0 dU with dU ∈ A (resp.dU ∈ A∗). Clearly the spacesA,A1,A2 andA3

are isomorphic and the same holds withA∗,A∗1,A
∗
2 andA∗3.

2.3.1 Single Server Queue

A single server queue will be defined byQ =
(
τA, σ

)
, whereτA = {τA

i }1≤i≤n andσ =
{σi}1≤i≤n belong toA2 andA1 respectively. The interpretations are the following : customer i
arrives in the queue at timeτA

i and its service time isσi.
Associated to a queueQ, we define the departure process{τD

i }1≤i≤n ∈ A2 by

{
τD
1 = τA

1 + σ1,
τD
i = max[τA

i , τ
D
i−1] + σi, 2 ≤ i ≤ n.

(2.21)

τD
i is the departure time of customeri. Expanding this recursion yields

τD
i = max

j=1...i
(τA

j + σ(j, i)), for 1 ≤ i ≤ n, (2.22)

with the notationσ(j, i) = σj + · · ·+σi. Hence we defined a mappingΦ : A×A 7→ A such that :

τD = {τD
i }1≤i≤n = Φ(Q). (2.23)

We will use the following notation for the different counting functions :
– A(t) =

∑∞
i=1 11{τA

i ≤t} ;
– Σ(t) =

∑∞
n=1 11{σ(1,n)≤t} ;

– D(t) =
∑∞

i=1 11{τD
i ≤t}.
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For any non-decreasing functionF , we denote byF←(x) = inf{t, F (t) ≥ x} the pseudo-inverse
of F (which is left-continuous). We haveF←(x) ≤ u ⇔ x ≤ F (u). Moreover, we use the
notation∧ for min and∨ for max. The following lemma gives a new description of the departure
process in term of counting functions.

Lemma 10. Given a queueQ ∈ A∗ × A, let D = Φ(Q) whereΦ is the mapping defined by
Equations (2.22) and (2.23). In term of counting functions,we have :

D(t) = A(t) ∧ inf
0≤s≤t

Σ[t− s+ Σ←(A(s))]. (2.24)

Proof.
For1 ≤ j, we define the point processΓj as follows :

τ
Γj
n = 0 for 1 ≤ n ≤ j − 1,

τ
Γj
n = τA

j + σ(j, n) for n ≥ j.

The construction ofΓj is depicted in Figure 2.4 and we have forj ≥ 1 and with the convention
σ(1, 0) = 0,

Γj(t) = j − 1 for t < τA
j ,

Γj(t) = Σ(t− τA
j + σ(1, j − 1)) for t ≥ τA

j .

A(t) Σ(t) Γj(t)

τA
jτA

j

j − 1 j − 1j − 1

σ(1, j − 1)

FIG. 2.4 – Construction ofΓj

Thanks to (2.22), we havet ≥ τD
n ⇔ ∀j ≤ n, t ≥ τ

Γj
n , hence we have

D(t) ≥ n ⇔ inf
j≤n

Γj(t) ≥ n,

but we have for allj ≥ n+ 1, Γj(t) ≥ n, for all t, henceD(t) = infj≥1 Γj(t). We have

inf
j≥1

Γj(t) = inf
{j≥1, τA

j ≤t}
Σ[t− τA

j + σ(1, j − 1)] ∧A(t).
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We now show thatinfj≥1 Γj(t) = A(t) ∧ inf0≤s≤t Σ[t − s + Σ←(A(s))]. SinceτA
j ∈ A∗2, on

each interval[τA
j−1, τ

A
j ) (we use the conventionτA

0 = 0), we haveA(s) = j − 1 and the function
s 7→ Σ[t− s+ Σ←(j − 1)] is non-increasing, hence we have

inf
s∈[τA

j−1,τA
j )

Σ[t− s+ Σ←(A(s))] = Σ[t− τA
j + σ(1, j − 1)].

Moreover, we have forτA
k ≤ t < τA

k+1,

inf
s∈[τA

k ,t)
Σ[t− s+ Σ←(A(s))] = Σ(Σ←(k)) ≥ k = A(t).

Finally we have

A(t) ∧ inf
0≤s≤t

Σ[t− s+ Σ←(A(s))] = A(t) ∧ inf
{j≥1, τA

j ≤t}
Σ[t− τA

j + σ(1, j − 1)]

= inf
j≥1

Γj(t).

2

Remark5. Equations (2.22) and (2.24) give two equivalent definitionsof the mappingΦ : A∗ ×
A → A. But for τA ∈ A, only Equation (2.22) gives the right definition ofΦ. In particular notice
that we always haveτD

i ≥ σ(1, i) ∨ τA
i , from which we deriveD(t) ≤ Σ(t) ∧A(t).

2.3.2 Generalized Jackson Networks

We recall here the notation introduced in [12], to describe ageneralized Jackson network with
K nodes.
The networks we consider are characterized by the fact that service times and routing decisions are
associated with stations and not with customers. This meansthat thej-th service on stationk takes
σ

(k)
j units of time, where{σ(k)

j }j≥1 is a predefined sequence. In the same way, when this service

is completed, the leaving customer is sent to stationν
(k)
j (or leaves the network ifν(k)

j = K + 1)

and is put at the end of the queue on this station, where{ν(k)
j }j≥1 is also a predefined sequence,

called the routing sequence. The sequences{σ(k)
j }j≥1 and{ν(k)

j }j≥1, wherek ranges over the
set of stations, are called the driving sequences of the net.A generalized Jackson network will be
defined by

JN =
{

{σ(k)
j }j≥1, {ν(k)

j }j≥1, n
(k), 0 ≤ k ≤ K

}

.

where(n(0), n(1), . . . , n(K)) describes the initial condition. The interpretation is as follows : for

k 6= 0, at timet = 0, in nodek, there aren(k) customers with service timesσ(k)
1 , . . . , σ

(k)

n(k) (if

appropriate,σ(k)
1 may be interpreted as a residual service time).

Node0 models the external arrival of customers in the network. Hence,
– if n(0) = 0, there is no external arrival.
– if ∞ > n(0) ≥ 1, then for all1 ≤ j ≤ n(0), the arrival time of thej-th customer in the

network takes place atσ(0)
1 + · · · + σ

(0)
j and it joins the end of the queue of stationν(0)

j .

Henceσ(0)
j is thej-th inter-arrival time. Note that in this case, there may be afinite number

of customers passing through a given station so that the network is actually well defined
once a finite sequence of routing decisions and service timesare given on this station.
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– if n(0) = ∞, then when taking for instance the sequence{σ(0)
j }j≥1 i.i.d., the arrival process

is a renewal process etc.
To each node of a generalized Jackson network, we can associate the following counting functions
in A :

1. K + 1 functions associated to the service timesσ(k) (as in the single server queue) ;

2. K(K + 1) functions that counts the number of customers routed from a node{0, . . . ,K}
to a node{1, . . . ,K} ;

3. K + 1 functions associated ton(k).

Hence a generalized Jackson network with K nodes is an objectin A(K+1)(K+2) = AJN.
We will use the following notation for each of these countingfunctions :

– N = (n(0), . . . , n(K)), with n(i) ≥ 0 ;

– σ(k) = {σ(k)
j }j≥1 andσ(k)(1, n) =

∑n
j=1 σ

(k)
j , for 0 ≤ k ≤ K ;

– Σ(i)(t) =
∑

n 11{σ(i)(1,n)≤t}, for 0 ≤ i ≤ K ;
– Pi,j(n) =

∑

l≤n 11
{ν

(i)
l =j}

, for 0 ≤ i ≤ K, 1 ≤ j ≤ K + 1.

We denote the arrival and departure processes of each queuek of the networks byA(k) andD(k)

respectively, with the following notationA = (A(1), . . . , A(K)) andD = (D(1), . . . ,D(K)). We
give a procedure that constructs the processesA andD :

Procedure 1(JN) :

−1− t := 0;

for i ≥ 0 do

R(i)(t) := σ
(i)
1 ; A(i)(t) := n(i); D(i)(t) := 0;

od

−2− V := min
{i, A(i)(t)−D(i)(t)≥1}

R(i)(t); γ := arg min
{i, A(i)(t)−D(i)(t)≥1}

R(i)(t);

−3− if V = ∞ then END;

fi

−4− D(γ)(t+ V ) := D(γ)(t) + 1; A(γ)(t+ V ) := A(γ)(t);

if A(γ)(t+ V ) −D(γ)(t+ V ) ≥ 1 then R(γ)(t+ V ) := σ
(γ)

D(γ)(t+V )+1
; fi

j := ν
(γ)

D(γ)(t+V )
;

if j 6= K + 1 then A(j)(t+ V ) := A(j)(t) + 1; D(j)(t+ V ) := D(j)(t);

if A(j)(t) −D(j)(t) = 0 then R(j)(t+ V ) := σ
(j)

A(j)(t+V )
; fi

fi

for i /∈ {γ, j} do

R(i)(t+ V ) := R(i)(t) − V ; A(i)(t+ V ) := A(i)(t); D(i)(t+ V ) := D(i)(t);

od

t := t+ V ;

−5− goto 2;
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Remark6. Since each sequence{σ(k)
j }j≥1 or {ν(k)

j }j≥1 is infinite, the variablesν(γ)

D(γ)(t+V )
,

σ
(γ)

D(γ)(t+V )
andσ(j)

A(j)(t+V )
in step 4 are always available :

– if
∑K

i=0 n
(i) < +∞ then the procedure ends in step 3 ;

– if
∑K

i=0 n
(i) = +∞, the procedure never ends, this corresponds to a network with in-

finite number of customers. In this case there existsT ≤ ∞ such thatlimt→T A(t) =
limt→T D(t) = ∞.

We take the following notation : given a departure process for queue0 : Σ(0), and departure
processes for the queuesi ∈ [1,K] : X = {X(i)}1≤i≤K , and an initial number of customers
in each queuen(i), we construct the following arrival processesY = {Y (i)}1≤i≤K :

Y (i)(t) = n(i) + P0,i(Σ
(0)(t) ∧ n(0)) +

K∑

j=1

Pj,i(X
(j)(t)). (2.25)

We denote this byY = Γ(X,JN).
Given an arrival process for each queue :Y, we define the corresponding departure processX and
denote it byX = Φ(Y,JN). Hence, we haveX(i) = Φ(Y (i),Σ(i)), whereΦ was defined for the
single server queue in (2.22).

Proposition 5. A andD, the arrival and departure processes of the generalized Jackson network
are the unique solution of the fixed point equation

{
A = Γ(D,JN),
D = Φ(A,JN).

(2.26)

We will denote byΨ the mapping fromAJN to A2 that to any Jackson networkJN associates the
corresponding couple(A,D).

Proof.
If we defineJ (k) = sup{j,∑j

i=1 σ
(k)
i = 0}, the generalized Jackson network is equivalent to

the following
{

{σ(k)
j }j≥J(k)+1, {ν

(k)
j }j≥J(k)+1, n

(k) +

K∑

i=0

Pi,k(J
(i))

}

.

Hence, we can assume thatJ (k) = 0, for all k and we have for timet = 0, A(i)(0) = ni,
D(i)(0) = 0. For t ≥ 0 let

D̃(i)(t) = A(i)(0) ∧ inf
0≤s≤t

Σ(i)[t− s+ Σ(i)←(A(i)(0))]

Ã(i)(t) = n(i) + P0,i(Σ
(0)(t) ∧ n(0)) +

K∑

j=1

Pj,i(D̃
(j)(t)).

Now considert1 = inf{t ≥ 0, ∃i, D̃(i)(t−) 6= D̃(i)(t),or Σ(0)(t−) 6= Σ(0)(t)} the first time of
jump for processes̃D andÃ. Thus

A(i)(t) = Ã(i)(t) for 0 ≤ t ≤ t1,

D(i)(t) = D̃(i)(t) for 0 ≤ t ≤ t1,
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provide a solution pair to (5.33) overt ∈ [0, t1], moreover this solution is exactly the one construc-
ted by the previous procedure. Now suppose a solution pair(A,D) has been constructed on[0, tn],
where tn is a jump point for one of theA(i), D(i). As above letX(s) = A(s) for s ≤ tn,
X(s) = A(tn) for s > tn, and fort ≥ tn define,

D̃(i)(t) = X(i)(t) ∧ inf
0≤s≤t

Σ(i)[t− s+ Σ(i)←(X(i)(s))],

Ã(i)(t) = n(i) + P0,i(Σ
(0)(t) ∧ n(0)) +

K∑

j=1

Pj,i(D̃
(j)(t)).

Letting tn+1 = inf{t ≥ tn, ∃i, D̃(i)(t−) 6= D̃(i)(t),or Σ(0)(t−) 6= Σ(0)(t)}, one concludes as
above. The uniqueness of(A,D) and the fact that(A,D) are constructed byProcedure 1are a
consequence of this construction procedure. 2

Remark7. 1. This construction is very similar to the construction of the reflection mapping
made in the proof of Theorem 2.1 of [26] ;

2. This property gives the connection between two possible descriptions of a generalized Jack-
son network. One of these descriptions has been given in words at the beginning of this
section and is depicted with more rigor in theProcedure 1. The other description is in
term of fixed point Equation (5.33) which has already been introduced by Majewski in [71].
These two descriptions are equivalent in the special case ofdiscrete inputs and an empty
network at timet = 0−.

2.4 Generalized Processor Sharing Queues

Consider a processor which offers service to inputs arriving from a variety of sources. If one
wishes to offer different levels of service to different types of sources, then separate customer
classes are needed and a service policy must be established.Generalized Processor Sharing is a
policy that has been proposed for use in high-speed data networks.

Consider the following model ofN coupledG/G/FIFO queues. Each queue is served in
accordance with the Generalized Processor Sharing (GPS) discipline, which operates as follows.
Queuej is assigned a weightφj , with

∑N
j=1 φ

j = 1. If all queues are backlogged, then queuej

is served at speedφj . If some of the queues are empty, then the excess capacity is redistributed
among the backlogged queues in proportion to their respective weights. All customers within each
queue are served in a FIFO order.

More formally we can construct the workload of each queues asfollows. Let{TA
n , σn, cn} be a

simple marked process, withσn > 0 andcn ∈ {1, . . . , N}. The interpretations are the following :
customern arrives in the queuecn at timeTA

n and its service time isσn. We will say that this
customer is of classcn ∈ {1, . . . , N} and we denote byτn = TA

n+1 − TA
n the inter-arrival times.

We denote byW i
Y [n] := W i

Y (TA
n −) the workload of queuei at timeTA

n − with initial condition
W i

Y [0] = Y i. The sequence{WY [n] = (W 1
Y [n], . . . ,WN

Y [n])} is generated by the recurrence

WY [n+ 1] = h(WY [n], σn, cn, τn), n = 0, 1 . . .
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where the functionh is defined by the following equations :

W j(TA
k ) = W j(TA

k −) + σk11{ck=j}, (2.27)

dW j

dt
(t) = −rj(t) for TA

k ≤ t < TA
k+1, (2.28)

rj(t) =

{
φjP

ℓ/∈I(t) φℓ j /∈ I(t),

0 j ∈ I(t);
(2.29)

I(t) = {i, W i(t) = 0}. (2.30)

Equations (2.27), (2.28), (2.29) and (2.30) show how to construct the workload process of each
queue fort ≥ TA

0 .
Note that we have

∑

i

W i
Y [n+ 1] =

(
∑

i

W i
Y [n] + σn − τn

)+

,

the recurrence for the sum of the component ofWY [n] reduces to the Lindley’s equation.
The stability of the GPS queues follows directly from the stability of the single server queue

with input process{TA
n , σn}n∈Z, since the sum of the workload of each queue is exactly the

workload of this single server queue.
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Chapitre 3

Fluid Models

3.1 Fluid Limit of Generalized Jackson Networks

In this section, we consider a (single class) generalized Jackson network and its fluid limit as
introduced in Section 2.3.

In [26], Chen and Mandelbaum derive the fluid approximation for generalized Jackson net-
works. The queue-length, busy-time and workload processesare obtained from the input processes
through the oblique reflexion mapping due to Skorokhod [81] in a one-dimensional setting and to
Harrison and Reiman [56] in the context of open networks. Using this fluid approach and assu-
ming that service times and inter-arrival times are independent and identically distributed (i.i.d.),
Dai shows in [29] that generalized Jackson networks are stable (i.e. positive Harris recurrent) when
the nominal load is less than one at each station. The first stability result for generalized Jackson
networks under ergodic assumptions can be found in the paperof Foss [43]. In [71], Majewski de-
rives an unified formalism which allows discrete and fluid customers. The input for the model are
the cumulative service times, the cumulative external arrivals and the cumulative routing decisions
of the queues. A path space fixed point equation characterizes the corresponding behavior of the
network.

The framework that we use here is that of Baccelli and Foss in [12], where only stationarity
and ergodicity on the data are assumed. Denote byXn

0 the time to empty the system whenn
customers arrive at the same time from the outside world in the network. Thanks to a subadditive
argument, the following limit is shown to hold in [12]

lim
n→∞

Xn
0

n
= γ(0) a.s. (3.1)

The constantγ(0) corresponds to the maximal throughput capacity of the network. In fact the
saturation rule [13] makes this intuition rigorous and ensures that ifρ = λγ(0) < 1 then the
network is stable. In this chapter, we provide a new proof of (3.1) using fluid approximations
which gives an explicit formula for the constantγ(0). One contribution of this paper is to provide
a connection between the fluid approximation of a generalized Jackson network and the stability
condition for this network under stationary and ergodic assumptions on the data. In particular, no
i.i.d. assumptions are needed (on inter-arrival times or service times) and we can consider more
general routing mechanism than Bernouilli routing.

The other application of this section will be linked to the calculation of tails in generalized
Jackson networks with subexponential service distributions in next chapter. We are able to give

33
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here the behavior (in the fluid scale) of the network on a “rare” event. We refer to the next chapter
for an exact notion of what we mean by rare event.

Results of [26] or [71] will be of minor help for us since a lot of work would be required to
obtain our explicit result form theirs. For these reasons, we took a different approach. For each
time t, we are able to give an explicit formulation of the fluid limit. The simplicity of the result is
due to the concavity of the processes in the fluid scale ; a property which had not been proved yet to
the best of our knowledge. In other words, given some drifts for the input processes, when a queue
becomes empty, it remains empty forever. It seems that this basic fact has not been exploited yet. It
allows us to reduce the computation of the fluid limits (whichare solution of a fixed-point network
equation in a functional space as described in [71]) to the computation of some traffic intensity
for a simplified network that evolves in time. Hence for a fixedtime, we only have to compute
a fixed point solution of some traffic equations (see Section 3.1.2). Proposition 8 gives the fluid
approximation of generalized Jackson network. To obtain the time to empty the system, we just
notice that if the network is processing fluid, then one of thequeues has work since the initial time.
This gives us a very compact way of obtaining the constantγ(0) (Theorem 2 of Section 3.1.3).
Proposition 9 is a slight extension of the main Theorem 2 and will be needed in the computation
of the fluid picture of a generalized Jackson network in the specific case of one big jump see next
chapter.

This section is based on the paper [67].

3.1.1 The case of Single Server Queue

For any sequence of functions{fn}, we define the corresponding scaled sequence{f̂n} as
follows : f̂n(t) = fn(nt)

n . We say thatfn → f uniformly on compact sets, or simplyfn → f
u.o.c. if for eacht > 0,

sup
0≤u≤t

|fn(u) − f(u)| → 0 asn→ ∞.

We first recall the following lemma known as Dini’s Theorem :

Lemma 11. Let{fn} be a sequence of nondecreasing functions onR+ and letf be a continuous
function onR. Assume thatfn(t) → f(t) for all t (weak convergence is denoted byfn → f ).
Thenfn → f u.o.c.

The following Lemma can be found in Billingsley [19] page 287:

Lemma 12. If fn are nondecreasing functions andfn → f , thenf←n → f←.

Proposition 6. Consider a sequence of single server queues{Qn} = {τA,n, σn} ∈ (A × A)N

with associated arrival processτA,n such thatÂn(t) → Â(t) for all t > 0, with Â concave on
R+, and associated service time processσn such thatΣ̂n(t) → µt for all t ≥ 0, withµ ≥ 0, then
D̂n → D̂ u.o.c, withD̂(t) = µt ∧ Â(t).

Proof :
First observe that thanks to Remark 5, we haveDn(t) ≤ Σn(t) ∧ An(t), hence making the fluid
scaling and taking the limit inn, we haveD̂(t) ≤ µt ∧ Â(t). Proposition 6 follows in the case
µ = 0 by Lemma 11. We consider now the caseµ > 0 and first assume that :Qn ∈ A∗ × A for
all n andÂ(0) = 0.
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SinceÂ(0) = 0, Â is continuous onR+ and Lemma 11 giveŝAn → Â u.o.c. Moreover thanks
to Lemma 12, the sequencesΣ̂n andΣ̂n← converge u.o.c. to the respective functionst 7→ µt and
t 7→ t

µ .
For fixedt ≥ 0, we have thanks to uniformity on compact sets,

lim
n→∞

Dn(nt)

n
= lim

n→∞
inf

0≤u≤t

1

n
Σn[n(t− u) + (Σn)←(An(nu))] ∧ An(nt)

n

= inf
0≤u≤t

lim
n→∞

1

n
Σn[n(t− u) + (Σn)←(An(nu))] ∧ lim

n→∞

An(nt)

n

= inf
0≤u≤t

[µ(t− u) + Â(u)] ∧ Â(t)

= µt ∧ Â(t),

where the last equality follows from concavity of̂A. Now using Lemma 11, the result follows in
this case.
To extend the result to the case :Qn ∈ A × A, we consider the sequenceτB,n

i = τA,n
i + 1/i

which belongs toA∗. For anyǫ > 0, we have forn ≥ 1/ǫ, An(n(t − ǫ)) ≤ Bn(nt) ≤ An(nt).
HenceÂ(t − ǫ) ≤ B̂(t) ≤ Â(t) and sinceÂ is continuous, we havêB = Â. Moreover, since
τB,n
i ≥ τA,n

i , we haveDn
B = Φ(Bn,Σn) ≤ Φ(An,Σn), and we can apply the first part of the

proof toB̂, henceDn
B(t) → Â(t) ∧ µt and the result follows in this case.

The caseÂ(0) 6= 0 can be dealt with the same monotonicity argument. For anyǫ > 0, consider
the sequenceτC,n

i = τB,n
i ∨ iǫ. We haveĈ(t) = t

ǫ ∧ Â(t) andτC,n
i ≥ τA,n

i . We can apply the first
part of the proof toĈ, henceDn

C(t) → Ĉ(t) ∧ µt. Forǫ ≤ µ−1, we getD̂(t) ≥ µt ∧ Â(t). 2

3.1.2 Fluid Limit and Bottleneck Analysis

Bottleneck Analysis

We first define theNonCapture condition as follows :
Condition (NC) : we say that theK × K matrix P = (pi,j)1≤i,j≤K satisfies(NC), if P is a
substochastic matrix such that the following stochastic matrix

R =








p1,1 . . . p1,K 1 −∑i p1,i

pi,j
...

pK,1 . . . pK,K 1 −∑i pK,i

0 . . . 0 1








has onlyK + 1 as absorbing state, i.e if(Xn) is a Markov chain with transition matrixR, almost
surely(Xn) is equal toK + 1 eventually.

Lemma 13. LetP be aK ×K substochastic matrix. The following properties are equivalent :

1. P satisfies(NC) ;

2. the Perron Frobenius eigenvalue ofP is r < 1 ;

3. (I − P ′) is invertible.
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Proof :
1 ⇒ 2 ⇒ 3 by Corollary 1 page 8 and Corollary 2 page 31 of Seneta [79]. To see that 3⇒ 1, just
write the equations for the expected number of visits for theMarkov chain(Xn) with transition
matrixR, to statei 6= K + 1, Vi = E

[∑

n 11{Xn=i}

]
:

Vi = P [X0 = i] +

K∑

j=1

pj,iVj for all i ∈ [1,K]. (3.2)

Since(I − P ′) is invertible, (3.2) has a finite solution. Hence the only absorbing state of(Xn) is
K + 1. 2

Forx andy two vectors ofRK , we will write x ≥ y if xi ≥ yi, for all i.
For any matrixP , any vectorα ∈ RK

+ and anyy ∈ RK
+ , we defineFα : RK

+ → RK
+ and

Gy : RK
+ → RK

+ with

(Fα)i(x1, . . . , xK) = αi +

K∑

j=1

pj,ixj,

(Gy)i(x1, . . . , xK) = xi ∧ yi.

Proposition 7. If the matrixP satisfies(NC), the fixed point equationFα ◦ Gy(x) = x has an
unique solutionx(α,y). Moreover,(α,y) 7→ x(α,y) is a continuous, non-decreasing function.

Remark8. These relations already appeared in Massey [72] and Chen andMandelbaum [26] see
section 3.1. In fact as pointed out in [26], we can use Tarski’s fixed point theorem (Tarski [82]) to
get the existence of this fixed point (called inflow in [26]). But we give here a self-contained proof
that shows continuity and monotonicity properties of the solution.

Proof :
Existence of a solution to the fixed point equation is an easy consequence of monotonicity. Since
Fα andGy are non-decreasing functions andFα ◦Gy(0) ≥ 0, we see that(Fα ◦Gy)n(0) ր b.
We haveb ≤ Fα(y) andFα ◦ Gy(b) = b.
For a given subset∆ of [1,K] andy ∈ RK

+ we defineF∆
α,y : RK

+ → RK
+ by

(F∆
α,y)i(x1, . . . , xK) = αi +

∑

j∈∆

pj,iyj +
∑

j∈∆c

pj,ixj.

F∆
• (•) depend only on{xi, i ∈ ∆c} andFα = F∅α,y.

We fix y ∈ RK
+ and first study the caseF∆

α,y(x) = x.
This equation is







x1 = α1 +
∑

j∈∆ pj,1yj +
∑

j∈∆c pj,1xj,
...

xK = αK +
∑

j∈∆ pj,Kyj +
∑

j∈∆c pj,Kxj.

In fact, we only have to calculate{xi, i ∈ ∆c} and then, we obtain{xi, i ∈ ∆}. Renumbering
the indexes ofx, and taking into account only those in∆c, we have







x1 = λ1(α,y) +
∑n

j=1 p
∆
j,1xj ,

...
xn = λn(α,y) +

∑n
j=1 p

∆
j,nxj .

(3.3)
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P∆ = (p∆
i,j ; i, j = 1, . . . , n) is a substochastic matrix andI−P∆ is invertible (even for∆ = ∅ see

Lemma 13). Hence, ifλ(α,y) = (λ1(α,y), . . . , λn(α,y)), Equation (3.3) has only one solution
given by :

x̃∆ = λ(α,y) + x̃∆P∆ ⇔ x̃∆ = λ(α,y)(I − P∆)−1.

We now return to our fix point problemx = Fα ◦ Gy(x). To show uniqueness of the solution,
take any solutionz = Fα ◦ Gy(z). We havez ≥ 0 henceFα ◦ Gy(z) ≥ Fα ◦ Gy(0) and then
z ≥ b. LetA = {i, zi > yi} andB = {i, bi > yi}. Of course, we haveB ⊂ A andb = x̃B since
FB

α,y(b) = Fα ◦Gy(b) = b. Moreover, we have

zi = αi +
∑

j∈B

pj,iyj +
∑

j∈A\B

pj,iyj +
∑

j /∈A

pj,izj ,

(FB
α,y)i(z) = αi +

∑

j∈B

rj,iyj +
∑

j∈A\B

pj,izj +
∑

j /∈A

pj,izj ,

hence, we haveFB
α,y(z) ≥ z. But since(FB

α,y)n(z) ր x̃B = b, we haveb ≥ z. Finally z = b.
For any∆, (α,y) 7→ x̃∆(α,y) = λ(α,y)(I − P∆)−1 is a continuous non-decreasing function.
Fix any (α,y), and defineA = {i, xi(α,y) ≥ yi}, B = {i, xi(α,y) > yi}. We have of
coursex(α,y) = x̃A(α,y) = x̃B(α,y) and for (β, z) in a neighborhood of(α,y), we have
x(β, z) ∈ {x̃A(β, z), x̃B(β, z)}, and the continuity of(α,y) 7→ x(α,y) follows from that of
(α,y) 7→ x̃∆(α,y).
Now to see that this function is non decreasing, take(β, z) ≥ (α,y), we have

Fβ ◦Gz(x(α,y)) ≥ Fα ◦Gy(x(α,y)) = x(α,y)

and the sequence{(Fβ ◦ Gz)
n(x(α,y))}n≥0 increases tox(β, z). 2

Fluid Limit for Generalized Jackson Networks

We consider the following sequence of Jackson networks :

JNn = {σn, νn, Nn}, with,

lim
n→∞

Nn

n
= (n(0), n(1), . . . , n(K)), n(0) ≤ +∞, n(i) <∞, i 6= 0.

Thanks toProcedure 1 given in appendix, we can construct the corresponding inputand output
processesAn andDn. We assume that the driving sequences satisfy

Σ̂(0),n(t) → Σ(0)(t), wheret 7→ Σ(0)(t) ∧ n(0) is a concave function,

∀k ≥ 1, Σ̂(k),n(t) → µ(k)t, ∀t ≥ 0 (µ(k) ≥ 0),

P̂n
i,j(t) → pi,jt ∀t ≥ 0.

We suppose that the routing matrixP = (pi,j)1≤i,j≤K satisfies(NC).

Proposition 8. The processesAn and Dn converge uniformly on compact sets to a fluid limit
defined by

Â(i)(t) = n(i) + p0,i(Σ
(0)(t) ∧ n(0)) +

K∑

j=1

pj,iD̂
(j)(t), (3.4)

D̂(i)(t) = Â(i)(t) ∧ µ(i)t. (3.5)
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Remark9. 1. Existence and uniqueness of solutions to Equations (3.4)and (3.5) follow di-
rectly from Proposition 7 as shown in the proof. Moreover, iteasily follows from the proof
that each component ofA andD is concave and ifΣ(0) is piece-wise linear then so are the
processesA andD.

2. Theorem 7.1 of [26] gives the fluid approximation of a generalized Jackson network, if we
take a linear function forΣ(0), then from(Â, D̂), we can calculate explicitly the solution of
the equations of this Theorem.

Proof :
For any fixedn ≥ 1, we define the sequences of processes{An

t (k),Dn
t (k)}k≥0 and{An

b (k),Dn
b (k)}k≥0

with the same recurrence equation :
{

An(k + 1) = Γ(Dn(k),JNn),
Dn(k + 1) = Φ(An(k + 1),JNn),

but with different initial conditionsDn
t (0) = (Σ(1),n, . . . ,Σ(K),n) andDn

b (0) = (0, . . . , 0).
We recall the notation :

Γi(X,JNn)(t) = n(i),n + Pn
0,i(Σ

(0),n(t) ∧ n(0),n) +

K∑

j=1

Pn
j,i(Xj(t)),

Φi(X,JNn)(t) = Φ(Xi, σ
(i),n)(t),

and we will use the scaled sequencesÂn(k)(t) = An(k)(nt)
n and D̂n(k)(t) = Dn(k)(nt)

n . We
introduce the mappingsΓs : CK → CK andΦs : CK → CK that appear in Equations (3.4) and
(3.5) (whereC is the set of continuous functions onR+) :

Γs
i (x1, . . . , xK)(t) = n(i) + p0,i(Σ

(0)(t) ∧ n(0)) +

K∑

j=1

pj,ixj(t),

Φs
i (x1, . . . , xK)(t) = xi(t) ∧ µ(i)t.

The following lemma holds for both top and bottom sequences,hence we omit the.t or .b.

Lemma 14. Assume that for a fixedk, D̂n(k) → D̂(k) u.o.c. and that each component ofD̂(k)
is a concave function. Then we have

Ân(k + 1)
n→∞−−−→ Γs(D̂(k)) = Â(k + 1) u.o.c. and D̂n(k + 1)

n→∞−−−→ Φs(Â(k + 1)) = D̂(k + 1) u.o.c.

and components of̂A(k + 1) andD̂(k + 1) are concave functions.

Proof of the lemma :
For any fixedt, we have

A(i),n(k + 1)(nt)

n
=
n(i),n

n
+
Pn

0,i(Σ
(0),n(nt) ∧ n(0),n)

n
+

K∑

j=1

Pn
i,j(D

(j),n(k)(nt))

n
.

Hence thanks to Lemma 11, we haveÂn(k + 1)
n→∞−−−→ Γs(D̂(k)) u.o.c. and each component

of Â(k + 1) = Γs(D̂(k)) is clearly a concave function. Now thanks to Proposition 6 the result
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follows. 2
We now return to the proof of Proposition 8.
We haveÂ(k+1) = Γs◦Φs(Â(k)). This equation gives the relation between 2 functions of a real
parametert. But we can fix this parameter and then we obtain for any fixedt an equation between
real numbers that we writêA(k + 1)(t) = Γs ◦ Φs(Â(k)(t)) (even ifΓs ◦ Φs is supposed to act
on functions). Moreover as a consequence of Proposition 7, we know that the fixed point equation
Γs ◦ Φs(ζ(t)) = ζ(t) has an unique solution, namelyζ(t) = x(α, µ(1)t, . . . , µ(K)t), with α =
(n(1)+p0,1(Σ

(0)(t)∧n(0)), . . . , n(i)+p0,i(Σ
(0)(t)∧n(0)), . . . , n(K)+p0,K(Σ(0)(t)∧n(0))). For any

t, the sequence{Âb(k)(t)}k≥1 (resp.{Ât(k)(t)}k≥1) is non decreasing (resp. non increasing).

We haveÂb(k)(t)
k→∞−−−→ ζ(t) and Ât(k)(t)

k→∞−−−→ ζ(t) and D̂b(k)(t)
k→∞−−−→ Φs(ζ(t)) and

D̂t(k)(t)
k→∞−−−→ Φs(ζ(t)).

Moreover, fix anyn ≥ 1, the mappings. 7→ Γ(.,JNn) and . 7→ Φ(.,JNn) are non decreasing
and :

{
An = Γ(Dn,JNn),
Dn = Φ(An,JNn).

Hence, for allk ≥ 0, we have :

An
b (k) ≤ An ≤ An

t (k),

Dn
b (k) ≤ Dn ≤ Dn

t (k).

We have :

An
b (k)(nt)

n ≤ An(nt)
n ≤ An

t (k)(nt)
n ,

Âb(k)(t) ≤ lim infn
An(nt)

n ≤ lim supn
An(nt)

n ≤ Ât(k)(t),

hence, we have

∀t, lim
n

An(nt)

n
= ζ(t).

The result follows from Lemma 11.2

3.1.3 Maximal Dater Asymptotic

Motivation

We first recall the definition of simple Euler network from Section 4.1 of [12]. Consider a
routep = (p1, . . . , pL) with 1 ≤ pi ≤ K for i = 2, . . . , L−1. Such a route is successful ifp1 = 0
andpL = K + 1. We can associate to such a route a routing sequenceν and a vectorφ as follows
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(⊕ means concatenation) :

Procedure 2(p) :

−1− for k = 0 . . . K do

ν(k) := ∅;
φ(k) := 0;

od

−2− for i = 1 . . . L− 1 do

ν(pi) := ν(pi) ⊕ pi+1;

φ(pi) := φ(pi) + 1;

od

Note thatφ(j) is the number of visits to nodej in such a route.
A simple Euler network is a generalized Jackson networkE = {σ, ν,N}, withN = (1, 0, . . . , 0).

The routing sequenceν = {ν(k)
i }φ(k)

i=1 is generated by a successful route andσ = {σ(k)
i }φ(k)

i=1 is a
sequence of real-valued non-negative numbers, representing service times.
Consider now a sequence of simple Euler networks, say{E(l)}+∞

l=1 whereE(l) = {σ(l), ν(l), 1}.
We defineσ andν to be the infinite concatenation of the{σ(l)}+∞

l=1 and{ν(l)}+∞
l=1 . Denote byσc

the sequence obtained fromσ in the following manner

σc = (cσ(0), σ(1), . . . , σ(K)).

We consider the corresponding sequence of Jackson networksJNn
c = {σc, ν,N

n}, with Nn =
(n, 0, . . . , 0). The Jackson networkJNn

c corresponds to an empty network withn customers in
node0 at timet = 0. We will denote byXn

c the time to empty the systemJNn
c , called maximal

dater of the network. Thanks to the Euler property of{E(i)}i≥1, we know that for alln, Xn
c <

+∞ (see [12]). We suppose that

lim
n→∞

σ
(0)
c (1, n)

n
=

c

λ
, (3.6)

lim
n→∞

σ(k)(1, n)

n
=

1

µ(k)
, 1 ≤ k ≤ K, (µ(k) > 0) (3.7)

lim
n→∞

Pi,j(n)

n
= pi,j, 0 ≤ i ≤ K, 1 ≤ j ≤ K + 1. (3.8)

We assume thatP = (pi,j)1≤i,j≤K satisfies(NC). We denote byπi the solution of the following
system

∀i ∈ [1,K], πi = p0,i +

K∑

j=1

pj,iπj. (3.9)

The constantπi is the expected number of visits to sitei for the Markov chain with transition
matrixP and with initial distributionp0,i (see proof of Lemma 13). We will prove the following
theorem :

Theorem 2. Under the previous conditions, we have for allc ≥ 0

lim
n→∞

Xn
c

n
= max

1≤i≤K

πi

µ(i)
∨ c

λ
.
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Proof of Theorem 2

Given a routing matrixP = (pi,j; i, j = 0, . . . ,K) that satisfies(NC) and a vectorα =
(α1, . . . , αK) ∈ RK

+ , we denote byπα
i the solution of the following system (see Lemma 13)

∀i ∈ [1,K], πα
i = αi +

K∑

j=1

pj,iπ
α
j .

Proposition 9. Consider a sequence of Jackson networks as in Proposition 8 such thatµ(k) > 0
for all k, Σ(0)(t) = λt/c withλ > 0 andc ≥ 0 (with the convention :∗/0 = +∞) andXn < +∞
for all n, we denoteα = (n(1) + n(0)p0,1, . . . , n

(K) + n(0)p0,K), we have

lim
n→∞

Xn
c

n
= max

1≤i≤K

πα
i

µ(i)
∨ cn(0)

λ
.

Proof :
Lower bound :
Consider the auxiliary Jackson network̃JN

n
= {0, νn, Nn}, and the associated vectorY(n),

whereY (i)(n) is the total number of customers that go through nodei in this network. We have

Y (i)(n) = n(i),n + Pn
0,i(n

(0),n) +

K∑

j=1

Pn
j,i(Y

(j)(n)).

Hencelimn
Y (i)(n)

n = πα
i thanks to assumption(NC) onP .

Now consider the original networkJNn
c . The number of customers that go through nodei is still

Y (i)(n). Hence we have the following inequality for the maximal dater of nodei ≥ 1, X(i),n ≥
σ(i),n(1, Y (i)(n)). And for node0,X(0),n

c ≥ σ
(0),n
c (1, n(0),n). Hence, we have

lim inf
n→∞

X(i),n

n
≥ lim

n→∞

σ(i),n(1, Y (i)(n))

n
=

πα
i

µ(i)
,

lim inf
n→∞

X
(0),n
c

n
≥ lim

n→∞

σ
(0),n
c (1, n(0),n)

n
=
cn(0)

λ
.

SinceXn
c = max1≤i≤K X(i),n ∨X(0),n

c , the lower bound follows.
Upper bound :
We consider the original Jackson network. Thanks to Proposition 8, we know that the correspon-
ding input and output processesAn andDn converge to a fluid limitÂ andD̂ respectively. Let
T (i) = inf{t > 0, Â(i)(t) = D̂(i)(t)}, T = maxi∈[1,K] T

(i) andM = T ∨ cn(0)/λ. We have

∀t ≥M, Â(i)(t) = n(i) + p0,in
(0) +

K∑

j=1

pj,iÂ
(j)(t),

hence, we have

∀t ≥M, Â(i)(t) = D̂(i)(t) = πα
i . (3.10)
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We denotei0 = arg max{T (i)} and we haveÂ(i0)(T ) = D̂(i0)(T ) = µ(i0)T by concavity of

Â(i0), henceT =
πα

i0

µ(i0) . Moreover, Equation (3.10) implies :

∀t ≥M,
Y (i)(n) −D(i),n(nt)

n

n→∞−−−→ 0, whereY (i)(n) is the total number of customers that go through nodei.

SinceXn
c < +∞, we know that for anyt,

Xn
c ≤ nt+

K∑

i=1

σ(i),n(D(i),n(nt), Y (i)(n)) + σ(0),n
c (Σ(0),n(nt), n(0),n),

takingt = M , we havelim supn→∞
Xn

c
n ≤M = T ∨ cn(0)

λ =
πα

i0

µ(i0) ∨ cn(0)

λ , and the result follows.
2

proof of Theorem 2 :
It is easy to see that assumptions of Proposition 8 hold for the Jackson networksJNn

c = {σc, ν,N
n},

with n(i) = 0, except then(0) = 1.2

Stability of Generalized Jackson Networks

We now give the connection between this fluid limit and the stability region of generalized
Jackson networks under stationary ergodic assumptions following [12].
Assume that we have a probability space(Ω,F,P), endowed with an ergodic measure-preserving
shift θ. Consider a sequence of simple Euler networks, say{E(n)}∞n=−∞ whereE(n) = {σ(n), ν(n), 1}.
Let ξ(n) = {{σ(n)}, {ν(n)}}. The stochastic assumptions of Section 4.1 of [12] are as follows :

– the variables{σ(n)}, {ν(n)} are random variables defined on(Ω,F,P) ;
– the random variableξ(n) satisfy the relationξ(n) = ξ(0) ◦ θn for all n, which implies that

{ξ(n)}n is stationary and ergodic ;

– all the expectationsE
[
φ(k)(0)

]
andE

[
∑φ(k)(0)

i=1 σ
(k)
i (0)

]

are finite (φ(j)(n) is obtained by

Procedure 2onE(n)).
In such a setting, we can findΩ0, such that onΩ0 conditions (3.7), (3.8) and(NC) hold and
P(Ω0) = 1. Thanks to the strong law of large numbers, we have almost surely :

φ(j)(1) + · · · + φ(j)(n)

n
→ E

[

φ(j)(0)
]

< +∞,

∑φ(j)(1)
i=1 σ

(j)
i (1) + · · · +∑φ(j)(n)

i=1 σ
(j)
i (n)

n
→ E





φ(j)(0)
∑

i=1

σ
(j)
i (0)



 < +∞.

From these equations, we derive condition (3.7) :

lim
n→∞

σ(j)(1, n)

n
=

E

[
∑φ(j)(0)

i=1 σ
(j)
i (0)

]

E
[
φ(j)(0)

] :=
1

µ(j)
a.s.

With the same kind of arguments, we show that limit (3.8) holds almost surely. To show thatP
satisfies(NC), we denoteV (j) = Eφ(j)(0) andV (j)(n) = φ(j)(1) + · · · + φ(j)(n) and thanks
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to the Euler’s property of the graphs, we haveV (i)(n) = P0,i(n) +
∑K

j=1 Pj,i(V
(j)(n)), hence

V (i) = p0,i +
∑K

j=1 pj,iV
(j). Equation (3.9) has a finite solution, henceP satisfies(NC) and

V (i) = πi (see Lemma 13). Now we can defineΩ0 as follows :

Ω0 =

{

σ(k)(1, n)

n
→ 1

µ(k)
,
Pi,j(n)

n
→ pi,j,

V (j)(n)

n
→ πj

}

.

We will take the conventional notation :µ(0) = λ for the intensity of the external arrival.
The limit calculated in Theorem 2 is exactly the constantδ(c) defined in Equation (85) of [12].
On the eventΩ0, Theorem 2 applies and gives a new proof of Theorem 15 of [12] which says
that δ(0) = γ(0) = maxi πi/µ

(i). Moreover, the lower bound of Lemma 6 (in [12]) is shown to
be in fact the exact value ofδ(c). Theorems 13 and 14 of [12] give the stability condition of a
Jackson-type queueing networks in an ergodic setting. To bemore precise : form ≤ n ≤ 0, we
defineσ[m,n] andν[m,n] to be the concatenation of the{σ(k)}m≤k≤n and{ν(k)}m≤k≤n and then
define the corresponding generalized Jackson networks :

JN[m,n] = {σ[m,n], ν[m,n], N[m,n]}, with N[m,n] = (n−m+ 1, 0, . . . , 0).

We defineX[m,n] to be the time to empty the generalized Jackson networkJN[m,n] andZ[m,n] =

X[m,n] −
∑n−m+1

i=1 σ
(0)
[m,n],i the associated maximal dater. Note that notation is consistent with

[12]. The sequenceZ[−n,0] is an increasing sequence. So there exists a limitZ = limn→∞ Z[−n,0]

(which may be either finite or infinite). We call this limitZ the maximal dater of the generalized
Jackson networkJN = {σ, ν,N} whereσ andν are the infinite concatenation of the{σ(k)}k≤0

and{ν(k)}k≤0 andN = (+∞, 0, . . . , 0). LetA be the event

A = {Z = lim
n→∞

Z[−n,0] = ∞}. (3.11)

This event is of crucial interest since a finite stationary construction of the state of the network can
only be made on the complementary part ofA. In other words,Z < ∞ iff the network is stable.
The following Theorem follows from Theorem 13 and 14 of [12]

Theorem 3. Letρ = λmax1≤i≤K
πi

µ(i) .

If ρ < 1, thenP(A) = 0.
If ρ > 1, thenP(A) = 1.

Remark10. There exists a parallel stream of work which uses sample pathmethods (quite different
from the one described in this paper) to prove a weaker form ofstability called pathwise stability
or rate stability. Rate stability means that the long-run average departures must equal the long-run
average arrivals at each station with probability 1. In Chen[25], it is proved that for a multiclass
queueing network under work-conserving service disciplines, the weak stability of the fluid model
implies the rate stability of the stochastic network. We refer to the paper of Chen [25] for a detailed
definition of fluid model and weak stability ; the main result of [25] is that under the usual traffic
conditions, a generalized Jackson network is rate stable. Further in Dai [30], under weak strong
law of large numbers assumptions, it is proved that ifρ > 1 (with our notation) then the number
of customers in the network diverges to infinity with probability 1 as timet → ∞ (see Proposition
5.1 of [30]). This result corresponds to the second part of our Theorem. Anyway to prove that
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ρ < 1 ensures stability of the generalized Jackson network, Dai in [29] needs i.i.d. assumptions
and additional conditions on the inter-arrival times that are unbounded and spread out. In this
section, we use fluid limits to derive the same result under stationary and ergodic conditions only.

3.1.4 Rare Events in Generalized Jackson Networks

The aim of this section is to give a picture of one kind of rare event when the maximal dater
of a generalized Jackson network becomes very big. Under some stochastic assumptions, one can
prove that large maximal daters occur when a single large service time has taken place in one of
the stations, and all other service times are close to their mean see next chapter. We now give the
corresponding fluid picture.

The One Big Jump Framework

We consider a sequence of simple Euler networks, say{E(n)}+∞
n=−∞ whereE(n) = {σ(n), ν(n), 1}.

Considering the correspondingJN[−n,+∞] network, we assume that

Σ̂(0),n(t) → t/a, ∀t, (3.12)

∀k ≥ 1, Σ̂(k),n(t) → µ(k)t, ∀t, (3.13)

∀i, j, P̂n
i,j(t) → pi,jt, ∀t. (3.14)

We assume thatP = (pi,j)1≤i,j≤K satisfies(NC) and we take the following notation :

∀i ∈ [1,K], πi = p0,i +

K∑

k=1

pk,iπk, (3.15)

∀i ∈ [1,K], xi = p0,i +
∑

k 6=j

pk,ixk ⇒ xj = pj, (3.16)

∀i ∈ [1,K], πj,i = δj,i +
K∑

k=1

pk,iπj,k. (3.17)

Equation (3.15) is the traditional traffic equation of the network in term of number of customers.
In Equation (3.16),pj corresponds to the amount of traffic coming in queuej if this one is blocked
(its departure process is null). Note that in this casexi ≤ πi. Equation (3.17) corresponds to the
traffic equation in the network when there is no input from theoutside world and only queuej is
active. We introduce the corresponding loads :

bj =
πj

µ(j)
, b = max

j
bj and, bj,i =

πj,i

µ(i)
, Bj = max

i
bj,i.

We assume that the stability conditionb < a holds. We suppose that the big jump occurs in the
simple Euler network−n, hence we replaceE(−n) by an extraE which is not “typical” in the
following sense : a big service timeσ takes place on stationj and within the set of service times
of the simple Euler networkE. Let us look at the corresponding maximal daterZ[−n,0](E) in the
fluid scale suggested by the limit of Proposition 9 :

– if σ > na, then the number of customers blocked in stationj at timeσ is of the order
of npj, whereas the number of customers in the other stations is small. So, according to
Proposition9, the time to empty the network from timeσ on should be of the ordernpjBj ;
hence, in this case, the maximal dater in question should be of the order ofσ−na+npjBj ;
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– if σ < na, then at timeσ, the number of customers blocked in stationj is of the order
of pj

σ
a , and the other stations have few customers ; from timeσ to the time of the last

arrival (which is of the order ofna), stationk has to serve approximately the loadpj
σ
a bj,k

generated by these blocked customers plus the load(na − σ) bk
a generated by the external

arrivals on the time interval fromσ to the last arrival. On this time interval, the service
capacity is of the order of(na − σ). Hence the maximal dater should be of the order of

maxk

{

pjbj,k
σ
a + (na− σ) bk

a − (na− σ)
}+

.

It is now natural to introduce the following function :

f j(σ, n) = 11{σ>na} {σ − na+ npjBj} + 11{σ≤na}max
k

{

pjbj,k
σ

a
+

(
bk
a

− 1

)

(na− σ)

}+

.(3.18)

We now return to rigor and consider the networkJNn(E) with input{Ẽ(k)}∞k=−n, whereẼ(k) =

E(k) for all k > −n andẼ(−n) = E. That is, if we denote byσ(k),n andν(k),n the concatenations
({σ(k)(E)}, {σ(k)(−n+1)}, . . . , {σ(k)(0)}, . . . ) and({ν(k)(E)}, {ν(k)(−n+1)}, . . . , {ν(k)(0)}, . . . )
respectively, then

JNn(E) = {σn(E), νn(E), Nn}, with Nn = (n, 0, . . . , 0).

The maximal dater of order[−n, 0] in this network will be denoted bỹZn(E). Of courseZ̃n(E(n)) =

Z[−n,0]. For all simple Euler networksE = (σ, ν, 1), letY (j)(E) =
∑φ(j)

u=1 σ
(j)
u .

Let zn be some sequence of positive real numbers, we define :

Uj(n) = {E is a simple Euler network such thatY (k)(E) ≤ zn ∀k 6= j},
Vj(n) = {E ∈ Uj(n), Y (j)(E) ≥ n(a− b), φ(j) ≤ L},

Proposition 10. Under the previous assumptions, there exists a sequencezn → ∞ with zn
n → 0,

such that we have

sup
E∈Vj(n)

∣
∣
∣
∣
∣

Z̃n(E) − f j(Y (j)(E), n)

n

∣
∣
∣
∣
∣

n→∞−−−→ 0. (3.19)

3.1.5 Computation of the Fluid Limit

We take a sequence of simple Euler networksFn ∈ Vj(n) and denote byJNn = JNn(Fn).
Sincezn/n tends to0, we have

Σ̂(0),n(t) → t/a, ∀t, a.s.

∀k 6= j ≥ 1, Σ̂(k),n(t) → µ(k)t, ∀t, a.s.

∀i, j, P̂n
i,j(t) → pi,jt, ∀t, a.s.

We denote byζn = Y (j)(Fn) ∈ [n(a − b),+∞) and byTn the time for stationj to complete
its φ(j)(Fn) first services in the networkJNn. From monotonicity, we getζn ≤ Tn ≤ ζn +
∑

k 6=j Y
(k)(Fn). Hence, we havelimn→∞

Tn
ζn

= 1, sincezn/ζn ≤ zn/n(a − b) → 0. We first

suppose thatζn/n → ζ < +∞. ThenJNn is such thatΣ(j),n(t) ≤ L for t ≤ Tn. Hence
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Σ(j),n(nt)
n ≤ L

n for nt ≤ Tn, so thatΣ̂(j),n(t) → 0, for all t ≤ ζ. We see that this last fluid
limit does not hold on the whole positive real line. Nevertheless consider the Jackson networks
with the same driving sequences asJNn except for stationj where we take the concatenation of
({σ(j)(Fn)},∞, . . . ). For this new network, the fluid limit for stationj holds onR+ and we can
directly apply Proposition 8. But it is easy to see that fort ≤ Tn, this network and the original
Jackson networkJNn have exactly the same dynamic. Hence, Proposition 8 appliesfor t ≤ ζ, so
that for eachk, the sequence{Â(k),n} converges u.o.c. to a limit̂A(k) whenn tends to∞, with a
similar result and notation for the departure process. We have withλ = a−1,

Â(i)(t) = p0,iλ(t ∧ a) +

K∑

k=1

pk,iD̂
(k)(t),

D̂(i)(t) = Â(i)(t) ∧ µ̃(i)t with µ̃(i) = µ(i) for i 6= j andµ̃(j) = 0.

We can rewrite the first expression :

Â(i)(t) = λp0,i(t ∧ a) +
∑

k 6=j

pk,iD̂
(k)(t).

Hence with the notation introduced in previous section, we have

Â(i)(t) = D̂(i)(t) = λxi(t ∧ a) ≤ λπi(t ∧ a) for t ≤ ζ and i 6= j,

Â(j)(t) = λpj(t ∧ a) for t ≤ ζ.

In what follows, we will consider the new Jackson network obtained by taking as initial condi-
tion the state of the initial network at timeTn and as routing and service sequences the rou-
ting decisions and (residual) service still unused at this time. This network will be denoted by
J̄N

n
= {σ̄n, ν̄n, N̄n}, with

σ̄(0),n =
{

Σ(0),n←(Σ(0),n(Tn) + 1) − Tn, σ
(0),n

Σ(0),n(Tn)+2
, . . .

}

,

ν̄(0),n =
{

ν
(0),n

Σ(0),n(Tn)+1
, ν

(0),n

Σ(0),n(Tn)+2
, . . .

}

,

N̄ (0),n = n− Σ(0),n(Tn),

and fori 6= 0,

σ̄(i),n =
{

r(i),n, σ
(i),n

D(i),n(Tn)+2
, . . .

}

,

ν̄(i),n =
{

ν
(i),n

D(i),n(Tn)+1
, ν

(i),n

D(i),n(Tn)+2
, . . .

}

,

N̄ (i),n = A(i),n(Tn) −D(i),n(Tn),

r(i),n =

{

σ
(i),n

D(i),n(Tn)+1
if A(i),n(Tn) = D(i),n(Tn),

D(i),n←
(
D(i),n(Tn) + 1

)
) − Tn else.

We have :

lim
n→∞

1

n
A(i),n(Tn) = lim

n→∞

1

n
D(i),n(Tn) = Â(i)(ζ) = D̂(i)(ζ) for i 6= j,

lim
n→∞

1

n
A(j),n(Tn) = λpj(ζ ∧ a) and lim

n→∞

1

n
D(j),n(Tn) = 0.
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Hence, we have

N̄n

n
→ (λ(a− ζ)+, 0, . . . , λpj(ζ ∧ a), . . . , 0)

ˆ̄Σ(0),n(t) → λt, ∀t,
∀i ≥ 1, ˆ̄Σ(i),n(t) → µ(i)t, ∀t,

∀i, j, ˆ̄Pn
i,j(t) → pi,jt, ∀t.

We can apply Proposition 9 with a parameterα that depends on the quantitya− ζ :
– if ζ ≥ a, then we haveα = pjej, with ej = (0, . . . , 1, . . . , 0) with the one is inj-th position

and

πα
i = pjπj,i.

Proposition 9 gives

Z̃n(Fn) + na− Tn

n
→ pj max

i

πj,i

µ(i)
. (3.20)

Hence, we have

Z̃n(Fn) = (Tn − na+ npjBj)(1 + o(n)) = f j(Tn, n)(1 + o(n)). (3.21)

– if ζ < a, we haveα = λ(a− ζ)P0 + λpjζej, whereP0 = (p0,1, . . . , p0,K) and

πα
i = λ [(a− ζ)πi + pjπj,iζ] .

Proposition 9 gives

Z̃n(Fn) + na− Tn

n
→ (a− ζ) ∨ λmax

i

[
(a− ζ)πi + pjπj,iζ

µ(i)

]

.

Hence, we have

Z̃n(Fn) = (1 + o(n))max
i

[

pjbj,i
Tn

a
+ (na− Tn)(

bi
a
− 1)

]+

= f j(Tn, n)(1 + o(n)).

The caseζn/n→ ∞ corresponds toζ = ∞. Results until Equation (3.20) hold true in this context,
hence Equation (3.21) holds true.
Finally we proved that for any sequenceFn ∈ Vj(n) with Y (j)(Fn) = ζn ∈ [n(a− b),+∞) such
thatζn/n→ ζ ≤ +∞,

∣
∣
∣
∣
∣

Z̃n(Fn) − f j(ζn, n)

n

∣
∣
∣
∣
∣

n→∞−−−→ 0. (3.22)

But the result holds for any sequenceFn ∈ Vj(n). Consider any sequenceFn ∈ Vj(n) and
suppose that

lim sup
n→∞

∣
∣
∣
∣
∣

Z̃n(Fn) − f j(Y (j)(Fn), n)

n

∣
∣
∣
∣
∣
= l > 0.
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By extracting a subsequence of{Fn}, we can replace lim sup by lim. Moreover by doing once
more an extraction, we may suppose thatY (j)(Fn)/n → ζ ≤ +∞ and for this subsequence, limit
(3.22) is violated. Hence for any sequenceFn, we have

∣
∣
∣
∣
∣

Z̃n(Fn) − f j(Y (j)(Fn), n)

n

∣
∣
∣
∣
∣

n→∞−−−→ 0. (3.23)

We consider now a sequenceFn ∈ Vj(n) such that

∣
∣
∣
∣
∣

Z̃n(Fn) − f j(Y (j)(Fn), n)

n

∣
∣
∣
∣
∣
≥ sup
{E∈Vj(n)}

∣
∣
∣
∣
∣

Z̃n(E) − f j(Y (j)(E), n)

n

∣
∣
∣
∣
∣
− ǫn,

with ǫn → 0. Thanks to (3.23), we see that (15) holds.2

Remark11. In the stochastic framework of section 6.2, we see that assumptions on the limits
(3.12), (3.13) and (3.14) are fulfilled. In particular, if the sequence of simple Euler networks
{E(n)}+∞

n=−∞ is i.i.d, then we deduce from previous proposition that :

sup
{E∈Vj(n)}

∣
∣
∣
∣
∣

Z̃n(E) − f j(Y (j)(E), n)

n

∣
∣
∣
∣
∣

n→∞−−−→ 0 a.s.

3.2 Fluid Limit for GPS Queues

The purpose of this section is to construct the stationary workload at each queues of a GPS sys-
tem under fairly general stochastic assumptions, namely stationarity and ergodicity. This construc-
tion is quite simple in the caseρ < 1 whereρ is the total load of the system. In the caseρ ≥ 1,
we show that there are still some queues that can be stable in the following sense : for any initial
condition the workload process of these queues couples in finite time with an unique stationary
workload process. For the unstable queues, we show the existence of a mean service rate and
give its expression in a closed form formula. To the best of our knowledge there is no such result
available in the literature. With this work, the stability of GPS systems is fully understood.

The other application of this section will be linked to the calculation of tails in GPS systems
with subexponential service distributions in next chapter. We are able to give here the behavior (in
the fluid scale) of the system on a “rare” event. We refer to thenext chapter for an exact notion
of what we mean by rare event. Note that the work of Dupuis and Ramanan [38] [39] allows to
construct the transient fluid limit of a GPS system.

3.2.1 Construction of the Stationary Regime

Since we will make an extensive use of notation introduced inSection 2.4, we repeat it here.
Consider the following model ofN coupledG/G/FIFO queues. Each queue is served in

accordance with the Generalized Processor Sharing (GPS) discipline, which operates as follows.
Queuej is assigned a weightφj , with

∑N
j=1 φ

j = 1. If all queues are backlogged, then queuej

is served at speedφj . If some of the queues are empty, then the excess capacity is redistributed
among the backlogged queues in proportion to their respective weights. All customers within each
queue are served in a FIFO order.
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More formally we can construct the workload of each queues asfollows. Let{TA
n , σn, cn} be a

simple marked process, withσn > 0 andcn ∈ {1, . . . , N}. The interpretations are the following :
customern arrives in the queuecn at timeTA

n and its service time isσn. We will say that this
customer is of classcn ∈ {1, . . . , N} and denote byτn = TA

n+1 − TA
n the inter-arrival times.

We denote byW i
Y [n] := W i

Y (TA
n −) the workload of queuei at timeTA

n − with initial condition
W i

Y [0] = Y i. The sequence{WY [n] = (W 1
Y [n], . . . ,WN

Y [n])} is generated by the recurrence

WY [n+ 1] = h(WY [n], σn, cn, τn), n = 0, 1 . . .

where the functionh is defined by the following equations :

W j(TA
k ) = W j(TA

k −) + σk11{ck=j}, (3.24)

dW j

dt
(t) = −rj(t) for TA

k ≤ t < TA
k+1, (3.25)

rj(t) =

{
φjP

ℓ/∈I(t) φℓ j /∈ I(t),

0 j ∈ I(t);
(3.26)

I(t) = {i, W i(t) = 0}. (3.27)

Equations (3.24), (3.25), (3.26) and (3.27) show how to construct the workload process of each
queue fort ≥ TA

0 .
Note that we have

∑

i

W i
Y [n+ 1] =

(
∑

i

W i
Y [n] + σn − τn

)+

,

the recurrence for the sum of the component ofWY [n] reduces to the Lindley’s equation.
The stability of the GPS queues follows directly from the stability of the single server queue

with input process{TA
n , σn}n∈Z, since the sum of the workload of each queue is exactly the

workload of this single server queue.
But if the single server queue is unstable, there are still some stable queues in the GPS system.

In this section we show this result by constructing the corresponding stationary workload of these
queues.

We first recall some basic results on the single server queue and refer to Chapter 2 of [10]
for more details on the next result. Let(Ω,F,P) be a probability space with measurable flowθt,
t ∈ R, such that(P, θt) is ergodic. LetTA be a point process defined on(Ω,F). AssumeTA is
simple and compatible with{θt}. We assume that this arrival process has finite intensityλ and
let the sequence(σ, c) be a sequence of marks of the arrival process that describes the amount
of required service and the class of customern. Let ρ = λE0

T A [σ0] be the traffic intensity. The
process(TA, σ, c) can be obtained by the superposition of independent point processes of finite
intensity (see Section 1.4.2 of [10]).

For theG/G/1/∞ queue, the evolution of the workload processW (t) between two successive
arrivals is described by Lyndley’s equation :

W (t) = (W (TA
n −) + σn − (t− TA

n ))+, t ∈ [TA
n , T

A
n+1), (3.28)

wherea+ = max(a, 0).
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Theorem 4. Under the stability condition

ρ < 1,

there exists a unique finite workload process{W (t)}, t ∈ R, compatible with the flow{θt}, and
satisfying equation (3.28) for allt ∈ R. This process is such that

W (0) = sup
n≤0

(

Tn +
n∑

i=0

σi

)+

.

Moreover, there are an infinite number of negative indicesn and an infinite number of positive
indicesn such that

W (TA
n −) = 0.

If the traffic intensityρ is strictly larger than 1, there exists no finiteP−stationary workload pro-
cess{W (t)}, t ∈ R.

Returning to our GPS model, ifρ < 1, it is easy to construct the workload process of each
queue (compatible withθt). Let {W (t)}, t ∈ R, be the uniqueP− stationary workload associated
with {TA

n , σn}n∈Z. The point processE defined by

E(B) =
∑

n∈Z

11{T A
n ∈B}11{W (T A

n −)=0},

counts the pointsTA
n at which an arriving customer finds an empty system. ClearlyE is compatible

with {θt}. Let {Un}, n ∈ Z, be the sequence of points ofE, with the usual conventionU0 ≤ 0 <
U1. Then we can construct the uniqueP-stationary workload process{(W 1(t), . . . ,WN (t))} of
the GPS queues using the mappingh we defined above on each cycle[Un, Un+1) with initial
condition0.

In the caseρ > 1, we can still construct a workload process for the “stable” queues of the GPS
system.

We are looking for a random variableZ ≥ 0 which verifies the functional equation :

Z ◦ θ = h(Z, σ, c, τ), P
0
T A-a.s., (3.29)

whereθ = θT1, σ = σ0, c = c0 andτ = τ0. Recall that the mappingh was defined above section
and thatZ is a vector of sizeN . If there exists such a random variable with at least one finite
component, we define the workload sequence{W [n]} by

W [n] = Z ◦ θn, n ∈ Z,

and the associated workload process{W (t)} by equations (3.24), (3.25), (3.26), (3.27), and with

W (TA
n −) = W [n].

The fact thatW (TA
n −) is indeed the limit ast → TA

n , t < TA
n of W (t) follows from (3.29). We

refer to Section 2.2.1 of [10] for more details.
Indeed with the stochastic assumptions we made, the sequence {WY [n]}, n ≥ 0 is generated

by a stochastic recurrence as defined in Section 2.5 of [10] :

WY [n+ 1] = h(WY [n], σn, cn, τn), n = 0, 1 . . . (3.30)

Moreover we are in the framework of Section 2.5.2 of [10]. Thestate space isRN
+ and≤ is the

coordinate-wise partial ordering and0 = (0, . . . , 0). The mappingh is such that
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– 0 ≤ h(W,σ, c, τ), for allW ∈ RN
+ and(σ, c, τ) ;

– W ≤W ′ impliesh(W,σ, c, τ) ≤ h(W ′, σ, c, τ), for all (σ, c, τ) ;
– for all (σ, c, τ), W 7→ h(W,σ, c, τ) is a continuous mapping fromRN

+ to itself.
Hence we can use a Loynes ’ sequence (as in the single server case) to find a minimal stationary
solution to (3.30). However the Loynes variable associatedwith the stochastic recurrence will
not belong toRN

+ whenρ > 1. Some of its components will be infinite but we will show in the
next theorem that some components are finite almost surely. To make it precise, we need some
additional notation.

Let λℓ be the intensity of the point processTA,ℓ that counts the points of{TA
n } with mark

cn = ℓ. Let ρℓ = λℓE0
T A,ℓ[σ0]. We haveρ =

∑N
ℓ=1 ρ

ℓ, see section 1.4.3 of [10]. We assume
without loss of generality that

ρ1

φ1
≤ · · · ≤ ρN

φN
. (3.31)

Define

Rk =
1 −∑k−1

j=1 ρ
j

∑N
j=k φ

j
,

K = max
k=1,...,N

{
ρk

φk
< Rk

}

,

S = {1, . . . ,K},

R =
1

∑

j /∈S φ
j



1 −
∑

j∈S

ρj



 .

We will show thatS is indeed the set of “stable” queues. This set is empty iffρ1/φ1 ≥ 1, in this
case we takeK = 0 andR = 1.

For anyk, we will consider the GPS system where queuesi > k are always backlogged, i.e.
for all j ≤ k,

dW̄ j,[k]

dt
(t) = −rj,[k](t) for TA

n ≤ t < TA
n+1 (3.32)

W̄ j,[k](TA
n ) = W̄ j,[k](TA

n −) + σn11{cn=j} (3.33)

rj,[k](t) =

{
φjP

ℓ/∈I[k](t)
φℓ j /∈ I [k](t),

0 j ∈ I [k](t)
(3.34)

I [k](t) =
{

i ≤ k, W̄ i,[k](t) = 0
}

. (3.35)

Note that for allℓ > k, we haveℓ /∈ I [k](t) for all t. The interpretation for it is that queues with
indice larger thank + 1 are always backlogged.

Theorem 5. Under previous condition on the input process(TA, σ, c), we have the following
properties :

– there exists a unique finite workload process{(W̄ 1,[K](t), . . . , W̄K,[K](t))}, t ∈ R, com-
patible with the flow{θt}, and satisfying equations (3.32), (3.33), (3.34) and (3.35) for all
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t ∈ R with k = K. Moreover, there are an infinite number of negative indicesn and an
infinite number of positive indicesn such that

K∑

i=1

W̄ i,[K](TA
n −) = 0.

– ifK+1 ≤ N , under the additional conditionρ
K+1

φK+1 > R, there exists no finiteP−stationary

workload process{W i(t)}, t ∈ R for any i ≥ K + 1. For any finite initial condition
Y ∈ RN

+ , we can define the workload of each queue fort ≥ 0, following equations (3.24),
(3.25), (3.26) and (3.27), and we have fori ≥ K + 1

W i
Y (t) ∼ (ρi − φiR)t ast→ ∞.

Proof.
If ρ < 1, thenK = N and the result follows from previous construction on the cycles.
We assume now that1 ≤ K ≤ N −1. The proof will proceed as follows : for eachk ≤ K, we

will show that there exists an unique finite workload process(W̄ 1,[k](t), . . . , W̄ k,[k](t)) compatible
with the flow{θt} and that corresponds to a GPS system where queuesk + 1, . . . , N are always
backlogged. Moreover there are an infinite number of negative indicesn and an infinite number of
positive indicesn such that

∑

i≤k W̄
i,[k](TA

n −) = 0.

For simplicity we will noteW̄ i,[k](t) = W̄ i,[k](0) ◦ θt := W̄ i,[k] ◦ θt.

For t ≥ 0, we will denote byW̄ [k]
Y (t) = (W̄

1,[k]
Y (t), . . . W̄

k,[k]
Y (t)) the process that satisfies

equations (3.32), (3.33), (3.34) and (3.35) fort ≥ 0 and with initial conditionW̄ i,[k]
Y (0) = Y i.

The first step is easy. We have1 ∈ S, henceρ1 < φ1. Thanks to Theorem 4, there exists a
unique workload process̃W 1 ◦ θt that satisfies

W̃ 1(t) =
(

W̃ 1(TA,1
n −) + σ1

n − φ1(t− TA,1
n )

)+
, t ∈ [TA,1

n , TA,1
n+1).

We have clearlyW̄ 1,[1] = W̃ 1 and we haveW̄ 1,[1](TA,1
n −) = 0 for infinitely many positive or

negativen.
For the second step, let define the following random variable:

r̃2 := 11{W̄ 1,[1]>0} +
1

∑

j 6=1 φ
j
11{W̄ 1,[1]=0}.

We have

E[r̃2] = P(W̄ 1,[1] > 0) +
P(W̄ 1,[1] = 0)
∑

j 6=1 φ
j

=
ρ1

φ1
+

φ1 − ρ1

φ1(
∑

j 6=1 φ
j)

=
1 − ρ1

∑

j 6=1 φ
j

= R2.

Now consider the following recursion

W̃ 2(t) =

(

W̃ 2(TA,2
n −) + σ2

n − φ2

∫

[T A,2
n ,t)

r̃2 ◦ θudu

)+

, t ∈ [TA,2
n , TA,2

n+1).
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We have

E
0
T A,2

[
∫

[0,T A,2
1 )

r̃2 ◦ θudu

]

=
R2

λ2
,

hence we have2 ∈ S implies thatW̃ 2 is stable in the sense of Theorem 4. We denoteW̃ 2 ◦ θt the
unique workload process compatible with the shift.

We return now to our GPS system where queues3, 4, . . . , N are always backlogged. Observe
that the following functions

W̄
1,[2]
0 (t) ◦ θ−t and W̄

2,[2]
0 (t) ◦ θ−t are increasing int.

Moreover we have (just by looking at the service rates)

W̄
1,[2]
0 (t) ◦ θ−t ≤ W̄

1,[1]
0 (t) ◦ θ−t

t→∞−−−→ W̄ 1,[1].

And sinceW̄ 1,[2]
0 (u) ≤ W̄

1,[1]
0 (u) ≤ W̄ 1,[1](u), we have by looking at the service rate again,

W̄
2,[2]
0 (t) ◦ θ−t ≤ W̃ 2

0 (t) ◦ θ−t
t→∞−−−→ W̃ 2.

Hence we proved that

W̄
1,[2]
0 (t) ◦ θ−t

t→∞−−−→ W̄ 1,[2] ≤ W̄ 1,[1],

W̄
2,[2]
0 (t) ◦ θ−t

t→∞−−−→ W̄ 2,[2] ≤ W̃ 2,

where(W̄ 1,[2], W̄ 2,[2]) ◦ θt corresponds to a GPS system where queues3, . . . , N are always back-
logged.

We have that ifP(W̄ 1,[1] + W̃ 2 = 0) = 0 thenρ2 ≥ φ2R2. This follows from the fact that if
W̄ 1,[1] + W̃ 2 > 0 P-a.s., then we have

ρ1 + ρ2 ≥ lim
t→∞

1

t

∫ t

0

(

φ111{W̄ 1,[1](u)>0} + φ2r̃2(u)
)

du

= ρ1 + φ2R2.

In our case, we haveρ2 < φ2R2, hence we have(W̄ 1,[1] + W̃ 2)(TA
n −) = 0 infinitely often, and

the same result holds for(W̄ 1,[2] + W̄ 2,[2])(TA
n −).

We now show uniqueness of this solution : consider any finite solution (Z1, Z2) ◦ θt, then we
have

(

W̄
1,[2]
0 + W̄

2,[2]
0

)

(t) ≤
(

W̄
1,[2]
Z1

+ W̄
2,[2]
Z1

)

(t) ≤
(

W̄
1,[1]
Z1

+ W̃ 2
Z2

)

(t).

Let

ν = inf
{

t ≥ 0,
(

W̄
1,[1]
Z1

+ W̃ 2
Z2

)

(t) = 0
}

.

With the same kind of arguments as above, we have
(

W̄
1,[1]
Z1

+ W̃ 2
Z2

)

(t) > 0 for all t ≥ 0,

implies thatρ1 + ρ2 ≥ ρ1 + φ2R2. Hence we haveν < ∞ P-a.s. Thus for any finite initial
condition(Z1, Z2), there exists a finite timeν such that

∀t ≥ ν, W̄
1,[2]
0 (t) = W̄

1,[2]
Z1

and, W̄
2,[2]
0 (t) = W̄

2,[2]
Z1

(t).
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In particular takingZ1 = W̄ 1,[2] andZ2 = W̄ 2,[2], we have that
(

W̄
1,[2]
0 (t), W̄

2,[2]
0 (t)

)

and
(
W̄ 1,[2](t), W̄ 2,[2](t)

)
couple. This in turn implies that

(

W̄
1,[2]
Z1

(t), W̄
2,[2]
Z1

(t)
)

and
(
W̄ 1,[2](t), W̄ 2,[2](t)

)

couple. And we have for sufficiently larget,

Z1 = W̄
1,[2]
Z1

(t) ◦ θ−t = W̄ 1,[2](t) ◦ θ−t = W̄ 1,[2],

Z2 = W̄
2,[2]
Z2

(t) ◦ θ−t = W̄ 2,[2](t) ◦ θ−t = W̄ 2,[2].

This finishes step 2.
For k ≤ N , we assume that̄W 1,[k−1], . . . , W̄ k,[k−1] are given. We construct the random va-

riable

r̃k =
1

∑N
j=1 φ

j11{j /∈I [k−1]}

.

We have by construction

k−1∑

j=1

φj r̃k11{W̄ j,[k−1]>0} + r̃k
N∑

j=k

φj = 1,

and sinceφj r̃k ◦ θt = rj,[k−1](t) is exactly the service rate of queuēW j,[k−1],

E

[

φj r̃k11{W̄ j,[k−1]>0}

]

= ρj.

This implies that

E

[

r̃k
]

= Rk. (3.36)

We consider the following recursion

W̃ k(t) =

(

W̃ k(TA,k
n −) + σk

n − φk

∫

[T A,k
n ,t)

r̃k ◦ θudu

)+

, t ∈ [TA,k
n , TA,k

n+1).

We have

E
0
T A,k

[
∫

[0,T A,k
1 )

r̃k ◦ θudu

]

=
Rk

λk
,

hence we havek ∈ S implies thatW̃ k is stable in the sense of Theorem 4. We denoteW̃ k ◦ θt the
unique workload process compatible with the shift. Now the proof is similar to step 2. We have
thatW̄ i,[k]

0 ◦ θ−t are increasing int and that

W̄
i,[k]
0 (t) ◦ θ−t ≤ W̄

i,[k−1]
0 (t) ◦ θ−t, ∀i ≤ k − 1,

W̄
k,[k]
0 (t) ◦ θ−t ≤ W̃ k

0 (t) ◦ θ−t.

Hence we can show existence and then uniqueness by a couplingargument.
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It remains to show that queues that are not inS are unstable under the additional condition
ρK+1

φK+1 > R.

First assume thatK = N − 1. In this caseρN

φN > R implies thatρ > 1. Hence thanks to

Theorem 4, we know that there exists no finiteP−stationary workload process{∑N
i=1W

i(t)},
t ∈ R. Now for any finite workload process(W1(t), . . . ,WN (t)) of queues1, . . . , N for t ≥ 0,
we have for alli ≤ N − 1,

Wi(t) ≤ W̄
i,[N−1]
Wi(0)

(t), ∀t ≥ 0.

This shows thatWN (t) → ∞ ast → ∞. Indeed we haveWN (t) ∼ (ρ − 1)t =
(
ρN − φNR

)
t.

In this case, the proposition follows.

We assume now thatρ
K+1

φK+1 > R (with the possible value 0 forK, in which caseR = 1). This
ensures thatρ > 1. Thanks to the ordering of the indices, we have

∑N
i=K+1 ρ

i

∑N
i=K+1 φ

i
> R.

If we replace the classesK + 1, . . . N by an unique class with weight
∑N

i=K+1 φ
i, the work-

load obtain for this virtual class is clearly a lower bound for the sum of the workloads of classes
K + 1, . . . N . The argument above applies to this virtual class which receives mean service rate
∑N

i=K+1 φ
iR and we have for any finite workload process(W1(t), . . . ,WN (t)) defined onR+

(we denoteI(t) = {i, Wi(t) = 0}),

lim sup
t→∞

1

t

∫ t

0

φK+1 + · · · + φN

∑

j∈I(u) φ
j

du ≤
N∑

i=K+1

φiR <
N∑

i=K+1

ρi.

Hence fori ≥ K + 1, we have

lim sup
t→∞

1

t

∫ t

0

φi

∑

j∈I(u) φ
j
du ≤ φiR < ρi.

Hence we haveWi(t) → ∞ ast→ ∞ for i ≥ K + 1. From which we derive that

lim
t→∞

1

t

∫ t

0

φi

∑

j∈I(u) φ
j
du = φiR < ρi,

and then

Wi(t) ∼ (ρi − φiR)t ast→ ∞.

2

Remark12. 1. We imposedρK+1

φK+1 > R in order to avoid the critical case (corresponding to
ρ = 1 in the single server queue).

2. The constantsK andR already appeared in the work of Borst, Boxma and Jelenković[21].
But the approach of these authors is completely different. They assume the existence of the
mean service rates for each flow (see their Appendix C) and then derive the equations they
must solve. They use these equations to get the so-called GPSinequalities.
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The study of the caseρ > 1 is indeed interesting in itself ! Consider a GPS system with weight
φ1, . . . , φN but with greedy classes, i.e. the classesK + 1, . . . , N are continuously claiming their
full share of the link rate. The other classes behave “normally”, i.e. the input processes(TA,ℓ, σ)
satisfy the stationary ergodic conditions. The previous theorem gives us the following result

Proposition 11. The subsystem consisting of queues1, . . . ,K is stable in the sense that there
exists an unique stationary workload process if

K
max
j=1

ρj

φj
<

1 −∑K
i=1 ρ

i

1 −∑K
i=1 φ

i
:= R. (3.37)

Moreover there exists a mean service rate for the greedy queues, in the following sense : for any
finite initial conditionY , let IY (t) = {i ≤ K, W i

Y (t) = 0}, then we have

lim
t→∞

1

t

∫ t

0

1
∑K

i=1 φ
i11i/∈IY (u) +

∑N
i=K+1 φ

i
= R.

Hence the mean service rate of greedy queuej is φjR.
In the case

max
j

ρj

φj
> R,

there is at least one of the queues1, . . . ,K which is unstable.

Indeed, it is not very hard to see that the system described inProposition 11 belongs to the
monotone separable framework. Hence we computed the constant γ(0) that corresponds to this
system. We can rewrite the stability condition (3.37) as follows

λγ(0) = λmax
j

{

E
0
T A [σ0] +

(

1 −
K∑

i=1

φi

)

E0
T A

[
σ011{c0=j}

]

φj

}

< 1,

which gives the explicit formulation ofγ(0).
Let F (S1, . . . , SK) be the time to empty the system described in Proposition 11 ifat time0,

the load of queuei is Si. The mappingF is clearly continuous and satisfy the following scaling
property :

∀κ > 0, F (κS1, . . . , κSK) = κF (S1, . . . , SK).

Let Si(n) =
∑n

j=0 σj11{cj=i}, we have

Z[0,n](Q)

n = F (Si(n))
n = F

(
Si(n)

n

)

↓ ↓
γ(0) = F

(
E0

T A

[
σ011{c0=i}

])

Hence we have by identification

F (S1, . . . , SK) = max
j=1,...,K

{

S1 + S2 + · · · + SK +
1 −∑K

i=1 φ
i

φj
Sj

}

. (3.38)

This is certainly not the most direct way to compute the mappingF . Indeed a simple computation
would have given the expression (3.38), from which we would have been able to computeγ(0).
Then the stability conditionλγ(0) < 1 would have ensured us that there exists a finite minimal
stationary solution. Anyway with this approach we would nothave been able to prove the second
order ergodic results and the coupling-convergence results (in particular uniqueness).
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3.2.2 Rare Events in GPS Queues

In this section we consider a stable GPS system withρ < 1. W.l.o.g we assume that the or-
dering (3.31) holds. We are interested in the effect of a verybig service time of sizeσ arriving
in queuej at timeTA,j

0 . Hence we consider workload process given by equations (3.24), (3.25),
(3.26) and (3.27) fort ≥ TA,j

0 , with initial condition(W 1(TA,j
0 −), . . . ,WN (TA,j

0 −)), i.e. in the
stationary regime but we replaceσ0 by a deterministic valueσ. We assume w.l.o.g thatTA,j

0 = 0
and we denoteW {j}(σ, t) = (W 1,{j}(σ, t), . . . ,WN,{j}(σ, t)) the corresponding workload pro-
cess.

LetT (σ) > 0 be the time for queuej to empty. On the interval[0, T (σ)], the queuej is always
backlogged. Hence we are exactly in the situation of Proposition 11 with queuej as greedy queue
and if

max
i6=j

ρi

φi
>

1 −∑i6=j ρ
i

1 −∑i6=j φ
i
,

then at least one queuei 6= j begins to grow on this period of time. Hence the situation at time
T (σ) is that some queues are very big and will remain backlogged for a long period of time. Indeed
we are still in the situation of Proposition 11 but this time with a set of greedy queues.

It is now quite natural to introduce the following notation corresponding to a GPS system
in which queues{1, . . . , N}\D are greedy. Given a setD = {d1, . . . , dn} ⊂ {1, . . . , N}, with
d1 ≤ · · · ≤ dn, we still have

ρd1

φd1
≤ · · · ≤ ρdn

φdn
.

Hence results of previous section apply and we denote

K(D) = max
i=1,...,n

{

i,
ρdi

φdi
<

1 −∑i−1
ℓ=1 ρ

dℓ

∑n
ℓ=i φ

dℓ +
∑

j /∈D φ
j

}

S(D) = {d1, . . . , dK(D)},

R(D) =
1

∑

j /∈S(D) φ
j



1 −
∑

j∈S(D)

ρj



 ,

with the convention
∑0
−1 =

∑

∅ = 0.
In the caseD = {j}, we will use the notation(j) instead of({j}). From the proof of Theorem

5, it is clear that all queuesi < j remain stable whenj is greedy. Indeed we have

N∑

i=1

ρi < 1 ⇒ R(j)φj > ρj. (3.39)

In view of results of previous section, the interpretation is the following. Denote byW di(D) the
stationary workload of queuedi when queues that are not inD continuously claim their full share
of the link rate. Then we have

di ∈ S(D) ⇒W di(D) <∞. (3.40)
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Note thatW di(D) is an upper bound for the stationary workload of queuedi,W di (which is well-
defined asρ < 1). Hence (3.40) provides an upper bound that is independent of what happens
in queues that are not inD. In other words, the queuedi is insensitive from the point of view of
stability to the queues that are not inD. In particular if

ρi

φi
< R(j), (3.41)

then queuei is insensitive to queuej. Note that it is always the case ifρi

φi < 1.

We proceed now to the analyze of the effect of a very big service of typej when condition
(3.41) is not satisfied. We will give a superscript.{j} to the constants that are calculated in this
case. We denote

N{j} = N − |S(j)|

f
{j}
1 =

1

φjR(j) − ρj
,

γk,{j}(t) = φkR(j)11
{t≤f

{j}
1 }

,

z
k,{j}
1 =

∫ f
{j}
1

0

(

ρk − γk,{j}(u)
)+

du,

I1 = {1, . . . , N}\(S(j) ∪ {j}),
i
{j}
1 = j.

We have the following interpretation for these constants interm of fluid queues (which will be
more detailed in next proposition). Queuej empties at timef{j}1 σ and at this time, the workload of

queuesk ∈ I1 reaches levelzk,{j}
1 σ, whereas other queues are empty (in the fluid approximation).

Hence at timef{j}1 σ, queuesk ∈ I1 are backlogged and will have a service rateφkR(I1), whereas
other queues includingj are stable. Then define

{

i
{j}
2

}

= arg min
i∈I1

{

z
i,{j}
1

φiR(I1) − ρi

}

,

f
{j}
2 = inf

i∈I1

{

z
i,{j}
1

φiR(I1) − ρi

}

+ f
{j}
1 ,

γk,{j}(t) = φkR(I1)11{f{j}
1 <t≤f

{j}
2 }

,

z
k,{j}
2 =

∫ f
{j}
2

0

(

ρk − γk,{j}(u)
)+

du

I2 = I1\
{

i
{j}
2

}

.

The interpretation is the following : at timef{j}2 σ, queues
{

i
{j}
2

}

empty whereas queues inI2
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reach levelszk,{j}
2 σ. More generally we define

f
{j}
ℓ+1 = inf

i∈Iℓ

{

z
i,{j}
ℓ

φiR(Iℓ) − ρi

}

+ f
{j}
ℓ ,

{

i
{j}
ℓ+1

}

= arg min
i∈Iℓ

{

z
i,{j}
ℓ

φiR(Iℓ) − ρi

}

,

Iℓ+1 = Iℓ\
{

i
{j}
ℓ

}

,

γk,{j}(t) = φkR(Iℓ)11{f{j}
ℓ <t≤f

{j}
ℓ+1}

,

z
k,{j}
ℓ+1 =

∫ f
{j}
ℓ+1

0

(

ρk − γk,{j}(u)
)+

du.

For all k ∈ {1, . . . , N}, we defined a functionγk,{j}(t) for t ≤ σ/(1 − ρ) that we extend for
t > σ/(1 − ρ) by γk,{j}(t) = ρk. We can now define the function

wk,{j}(σ, t) =

∫ t

0

(

ρk − γk,{j}(u/σ)
)+

du ∀j 6= k,

wj,{j}(σ, t) =

(

σ +

∫ t

0
(ρj − φjR(j))du

)+

.

Letw{j}(σ, t) = (w1,{j}(σ, t), . . . , wN,{j}(σ, t)) be the multidimensional function.
Since the sequence of sets{Iℓ} is decreasing, it is easy to see thatR(Iℓ+1) > R(Iℓ). Indeed

Figure 3.1 shows what the functionw{j}(σ, .) looks like for fixedσ.

σ
1−ρ

σ

f
{j}
1 σ f

{j}
2 σ . . .

ρ−
1

ρ j−
φ j
R
(j)

ρ
i − φ

iR(j)
z

i,{j}
1 σ

FIG. 3.1 – functionw{j}(σ, .) for fixedσ

Proposition 12. Under previous condition, we have for any constantα, β > 0, asn→ ∞,

sup
σ>nα,t≤β

∣
∣
∣
∣
∣

W {j}(σ, nt) − w{j}(σ, nt)

n

∣
∣
∣
∣
∣
→ 0, a.s.
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Proof.
We consider a sequenceσn such thatσn > nα. We suppose that

σn

n
→ σ ≤ +∞.

We will show that

sup
0≤t≤β

∣
∣
∣
∣
∣

W {j}(σn, nt) − w{j}(σn, nt)

n

∣
∣
∣
∣
∣
→ 0,

which is sufficient to prove the proposition. For simplicity, we denoteW {j}n (t) = W {j}(σn, t)

andw{j}n (t) = w{j}(σn, t).
We first assume thatσ <∞. LetT n

1 be the first positive time at which queuej becomes empty,
ie queuej is backlogged on[0, T n

1 ]. Hence we have thanks to the result on the mean service rate
of Proposition 11,

lim
n→∞

W
j,{j}
n (T n

1 )

n
= σ + (ρj − φjR(j))

(

lim
n→∞

T n
1

n

)

= 0,

from which we derivelimn→∞
T n
1
n = σ/(φjR(j) − ρj). Now for 0 ≤ t ≤ σf

{j}
1 , we can apply

Proposition 11 and we have

W
ℓ,{j}
n (nt)

n
→ (ρℓ − φℓR(j))+t, ∀ℓ 6= j,

W
j,{j}
n (nt)

n
→ σ + (ρj − φjR(j))t.

We have shown in the caseσ <∞ that for allj,

sup
0≤t≤f

{j}
1 σ

∣
∣
∣
∣
∣

W
{j}
n (nt) − w

{j}
n (nt)

n

∣
∣
∣
∣
∣
→ 0.

Moreover, we see that at timeT n
1 , the queuesk ∈ I1 are backlogged. DefineT 2

n the first time at
which one of these queues become empty. Using Proposition 11in the same manner, we obtain
thatT n

2 /n→ σf
{j}
2 and that,

sup
0≤t≤f

{j}
2 σ

∣
∣
∣
∣
∣

W
{j}
n (t) −w

{j}
n (nt)

n

∣
∣
∣
∣
∣
→ 0.

Hence in the caseσ <∞, the proposition follows by iterating the same kind of arguments.
In the caseσ = +∞, sinceT n

1 ≥ σn, we have for sufficiently largen, we haveT n
1 ≥ nβ.

Hence for allk 6= j, we have with the same argument as above that

sup
0≤t≤β

∣
∣
∣
∣
∣

W
k,{j}
n (nt) − w

k,{j}
n (nt)

n

∣
∣
∣
∣
∣
→ 0,

and fork = j, we have for allt ≤ β,

W
j,{j}
n (nt) − σn

n
→ (ρj − φjR(j))t.

This concludes the proof. 2



Chapitre 4

Subexponential Asymptotics

4.1 Introduction

Subexponential distributions are a special case of heavy-tailed distributions. The name arises
from one of their properties, that their tails decrease moreslowly than any exponential tail. This
implies that large values can occur in a sample with non-negligible probability and makes the
subexponential distributions candidates for modeling situations where some extremely large values
occur in a sample compared to the mean size of the data.

4.1.1 Some Definitions and Notations

Notation
Here and later in the paper, for positive functionsf andg, the equivalencef(x) ∼ dg(x) with
d > 0 meansf(x)/g(x) → d asx → ∞. By convention, the equivalencef(x) ∼ dg(x) with
d = 0 meansf(x)/g(x) → 0 asx → ∞, this will be writtenf(x) = o(g(x)). We will also use
the notationf(x) = O(g(x)) to meanlim sup f(x)/g(x) <∞ andlim inf f(x)/g(x) > 0.
In what follows,ǫ(x) denotes a function such thatǫ(x)

x→∞−−−→ 0. The functionǫ may vary from
place to place ; for example,ǫ(x) + ǫ(x) = ǫ(x), ǫ(x)(1 + ǫ(x)) = ǫ(x), etc. Similarly, we will
write ǫ(x, y) for ǫ(x) + ǫ(y), or ǫ(x)ǫ(y), etc.
The tail of the distribution functionF is denotedF (x) = 1−F (x). We recall here some definitions

Definition 1. A distribution functionF onR+ is long tailed if for anyy > 0,

F (x+ y) ∼ F (x) as x→ ∞.

We introduce a proper subset of the class of long tailed distributions, the class of subexponen-
tial distributions denoted byS :

Definition 2. A distribution functionF onR+ is called subexponential ifF ∗2(x) ∼ 2F (x).

For basic properties of subexponential distribution see [51] and [40].

Definition 3. A positive measurable functionf on [0,+∞) is called regularly varying with index
α ∈ R (f ∈ R(α)) if

lim
x→∞

f(tx)

f(x)
= tα for all t > 0.

61
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Definition 4. A positive measurable functionh on[0,+∞) is called rapidly varying (h ∈ R(−∞))
if

lim
x→∞

h(tx)

h(x)
= 0 for all t > 1.

For example, Weibull or lognormal random variables have tail distributions that are rapidly va-
rying.

For a distribution functionF on the positive real line with finite first momentM =
∫∞
0 F (u)du,

the integrated tail distributionF s of F is defined by

F
s
(x) := 1 − F s(x) = min{1,

∫ ∞

x
F (u)du}.

We will need the following lemma later on

Lemma 15. If F s is long tailed, then there exists a non-decreasing integer valued functionNx →
∞ such that for all finite non-negative real numberb, we have

Nx∑

n=0

F (x+ nb) = o
(
F

s
(x)
)
, asx→ ∞.

Proof.
For any integern, we have (for sufficiently largex)

F
s
(x) =

∫ ∞

x
F (u)du ≥ bF (x+ b) + bF (x+ 2b) + · · · + bF (x+ nb) +

∫ ∞

x+nb
F (u)du

= b
n∑

k=1

F (x+ kb) + F
s
(x+ nb).

SinceF s is long tailed, we have for fixedn, asx→ ∞,

∑n
k=1 F (x+ kb)

F
s
(x)

→ 0,

from which the lemma follows. 2

We present now what we call Veraverbeke’s theorem. LetSn be a random walk with negative
drift, namely{Xi}i∈N is a sequence of i.i.d. random variables such thatE[X0] = −µ < 0. Let
define

S0 = 0, Sn =

n∑

i=1

Xi, and, M = sup
n≥0

Sn.

The conditionE[X0] = −µ < 0 ensures thatM is a.s. finite. Assume that there exists a distribution
functionF on [0,∞) such that

P(X1 > x) ∼ dF (x) with d > 0 asx→ ∞.
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Theorem 6. If F s is subexponential then the random variableM is subexponential and we have

P(M > x) ∼ d

µ
F

s
(x) asx→ ∞. (4.1)

This result was first proved in different contexts by Borovkov [20], Cohen [27], Veraverbeke
in [84], Pakes in [77] and Embrechts and Veraverbeke in [41].There are now probabilistic proofs
of this result see for example the work of Asmussen [6] or Zachary [85]. Finally, we remark that a
proof of the converse of Veraverbeke’s Theorem - that (forE[X0] finite and negative) the relation
(4.1) implies the subexponentiality ofF s- is given by Korshunov in [66].

The fact that equivalence (4.1) is a product of the integrated tail and of the inverse of the
drift, has a very nice queueing interpretation. Consider two independent sequences{X,Xi}i∈N

and{Y, Yi}i∈N of i.i.d. random variables. Define

MX+Y = sup
n≥0

n∑

i−1

(Xi + Yi) and MX+E[Y ] = sup
n≥0

n∑

i−1

(Xi + E[Yi]).

Assume thatP(X+Y > x) ∼ P(X > x) and that the tail distribution ofX satisfies the condition
of Veraverbeke’s Theorem. Then we have by rewriting (4.1),

P(MX+Y > x) ∼ P(MX+E[Y ] > x) asx→ ∞.

This is an example of reduced load equivalence : the tail asymptotics of the workload is domi-
nated by the heaviest input and is asymptotically the same asthe one of a system fed by this
heaviest input and in which we replace the rest by its mean. This kind of equivalence has first
been understood by Agrawal, Makowski and Nain in [2] for a single server with fluid inputs and
generalized to more general input by Jelenković, Momčilović and Zwart in [63]. For other results
concerning various models of single server queue, we refer to the works of Zwart [87] and Likha-
nov and Mazumdar [69], [70]. In a network setting, we will show that the same kind of results
hold, the heaviest tail distribution dominates the asymptotics. If different stations in the network
have service times with the same kind of tail distribution, then each of them will contribute to the
asymptotics. New arguments have to be found to derive the asymptotics.

4.1.2 The Single Big Event Theorem

In this section we summarize results from the work of Baccelli and Foss [14].
A corollary of Veraverbeke’s theorem already proved by Anantharam [3] (in the regularly case)

and by Asmussen and Klüppelberg [7] states that, in theGI/GI/1 queue, large workload occur
on a typical event where a single large service time has takenplace in the distant past, and all
other service time are close to their mean. The main result ofthis section is to extend the notion of
typical event to subexponential monotone separable networks : large maximal daters occur when a
single large service time has taken place in one of the stations and all other service time are close
to their mean.

We recall assumptions of [14], the notations were introduced in Section 2.1.
(IA) : the sequences{ζn} and{τn} are mutually independent and each of them consists of

i.i.d. random variables.
(AA) : For all i,

Zi = Z[i,i] = Y
(1)
i + · · · + Y

(r)
i ,
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where the random variablesY (j)
i are non negative, independent of inter-arrival times and such

that the sequence of random vectors(Y
(1)
i , . . . Y

(r)
i ) is i.i.d. ; general dependences between the

components of the vector(Y (1)
i , . . . Y

(r)
i ) are allowed. In addition

Z[0,n](Q) ≥ max
j=1,...,r

0∑

i=n

Y
(j)
i a.s.

Consider a distributionF on R+ such that the following holds :

1. F is subexponential, with finite first momentM =
∫∞
0 F (u)du.

2. The integrated tail distributionF s is subexponential.

3. For allj = 1, . . . , r

P

(

Y
(j)
1 > x

)

∼ d(j)F (x),

with
∑

j d
(j) > 0.

We make the following assumption on theY (j)
i ’s,

(H) : P

(
r∑

1

Y
(j)
1 > x

)

∼ P

(
r

max
1
Y

(j)
1 > x

)

∼
r∑

1

P

(

Y
(j)
1 > x

)

.

Theorem 7 and 8 of [14] state

Theorem 7. LetZ be the stationary maximal dater of some monotone separable network. For any
x and forj = 1, . . . , r, let {Kj

n,x} be a sequence of events such that

1. for anyn and j, the eventKj
n,x and the random variableY (j)

−n =
∑φ(j)(−n)

k=1 σ
(j)
k (−n) are

independent ;

2. for anyj, P(Kj
n,x) → 1 uniformly inn ≥ Nx asx→ ∞.

For all sequencesǫn → 0, we denotexn = x+ n(a− b+ ǫn). Then, asx→ ∞,

P[Z > x] ∼
K∑

j=1

∑

n≥Nx

P[Z > x, Y
(j)
−n > xn,K

j
n,x], (4.2)

and

P[Z > x] = O(F
s
(x)).

The equivalence (4.2) will be the key relationship for the exact asymptotics in the next sections.
It shows that for the monotone separable network also, whenever the maximal dater is large, at
most one of the service times is large whereas all other ones are moderate.



4.2. Asymptotics of Subexponential Max Plus Networks : the Stochastic Event Graph Case65

4.2 Asymptotics of Subexponential Max Plus Networks : the Sto-
chastic Event Graph Case

This section is focused on the derivation of the tail asymptotics of the steady state end-to-end
response times in open, single input, stochastic event graphs [11], a class of networks which are
known to admit a (max,plus)-linear representation.

To the best of our knowledge, within this class of networks, under subexponential statistical
assumptions, exact asymptotics are only known for the following special cases :

– the case of dimension 1 ; this type of asymptotics is known asPake’s [77] or Veraverbeke’s
theorem [84], and most often expressed as a property of the waiting or response times in the
G/G/1 queue (this can also be seen as a property of extrema of random walks) ;

– the case of irreducible event graphs [17], a first class of networks with general dimension
that contains the G/G/1 queue as a special case ;

– the case of tandem queues [14], a class of reducible event graphs with a specific linear
topology, which also contains the G/G/1 queue as a special case.

This section is based on the paper [16].

4.2.1 Stochastic Assumptions

Model Description and Stochastic Assumptions

For now on, we consider an event graph as described in Section2.2.2, withm ≤ K timed
transitions, namelyTtimed = {t(1), . . . , t(m)}, satisfying the assumptions in Property 3, and with
associated recursion :

Xn = An ⊗Xn−1 ⊕Bn ⊗ Tn

of dimensions ≤ KL. This means that the matrices{An, Bn} and vectors that are used in the
recursion are obtained via two applicationsf andg such that :

A : Rm
+ → M(s,s) (Rmax)

σ = (σ1, . . . , σm) 7→ A(σ),

B : Rm
+ → M(s,1) (Rmax)

σ = (σ1, . . . , σm) 7→ B(σ),

via the formula

A(ζn) = An,

B(ζn) = Bn.

with ζn = (σ
t(1)
n , . . . , σ

t(m)
n ).

We now assume that the following independence assumption holds :

Assumption1. (IA) The sequences{ζn} and{τn ≡ Tn+1 − Tn} are mutually independent and
each of them consists of i.i.d. random variables.
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The following assumptions are also assumed to hold

E(τ0) ≡ λ−1 ≡ a <∞, E(σ
t(i)
0 ) ≡ bt(i) <∞ ∀i = 1, . . . ,m.

This implies in particularE(Z[0,0]) <∞.
Under these assumptions, considering the matricesAn(k, k), we have for alli andj :

(A−1(k, k) ⊗A−2(k, k) ⊗ · · · ⊗A−n(k, k))(i,j)

n
→ γk both a.s. and inL1

whereγk is a constant referred to as the top Lyapunov exponent of the sequence{An(k, k)}, see
theorem 7.27 (p. 325) in [11].
In addition, we assume stability of the system, namelymaxk γk = γ < a (see [13]).

We will also adopt the following notations :
– if j ∈ Ci, we denoteγ(j) = γi ;
– for all transitionsi, the subset of transitionsj such that there is a directed path inG from i

to j is denoted[≥ i] ;
– finally, we define

Γ(≥i) = max
k∈[≥i]

γ(k).

The subexponential assumptions are now the following :

Assumption2. (SE)The service timesσt(k) are independent r.v., with respective meanbt(k). There
exists a distribution functionF on R+ such that :

– (SE.1)F is subexponential, with finite first momentM .
– (SE.2)The integrated tail distributionF s is subexponential.
– (SE.3)The following equivalence holds whenx tends to∞ :

P(σ
t(i)
1 > x) ∼ ct(i)F (x),

for all i = 1, . . . ,m with
∑m

i=1 c
t(i) = c > 0.

For i /∈ Ttimed, we will denote∀k, σi
k = 0 andci = 0. Under(SE.1)and(SE.3), we have (see

[17] or [51]) :

Lemma 16.

P(

K∑

k=1

σk
1 > x) ∼ P( max

1≤k≤K
σk

1 > x) ∼
K∑

k=1

ckF (x).

Preliminary Results

Lemma 17. For any event graph as described in Section 2.2.2, there exists some setsKj such that
⋃

j Kj = [1; s] and

B(s)
n =

⊕

j

⊗

k∈Kj

σk
n = max

j

∑

k∈Kj

σk
n.
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Moreover,∀j there exists only one integerk(j) such that :

(An)(k(j),k(j)) ≥ σj
n,

(An)(s,k(j)) ≥ σj
n,

(Bn)(k(j)) ≥ σj
n.

The following two properties hold (referred to as (AA’) in what follows) :

Zi = Z[i,i] =
⊕

j

⊗

k∈Kj

σk
i = max

j

∑

k∈Kj

σk
i , (AA’-1)

and, when denoting byQ the point process with all its points in 0

Z[n,0](Q) ≥ max
k

0∑

i=n

σk
i . (AA’-2)

Proof.
The first part is proved in Section 4.2.3. Thanks to Lemma??, we have

Zi = max
j
B

(j)
i = B

(s)
i ,

and for the second part :

Z[n,0](Q) = max
n≤k≤0

[

(A0 ⊗ · · · ⊗Ak+1 ⊗Bk)
(s)
]

≥ (A0 ⊗ · · · ⊗An+1 ⊗Bn)(s)

≥ (A0)
(s,k(j)) + · · · + (An+1)

(k(j),k(j)) + (Bn)(k(j))

≥ σj
0 + · · · + σj

n+1 + σj
n,

for all j. 2

Lemma 18. For all positive integersL, let

ŝn = Z[L(n−1)+1,Ln](Q).

We have

max
k

Ln∑

i=L(n−1)+1

σk
i ≤ ŝn ≤

m∑

k=1

Ln∑

i=L(n−1)+1

σk
i . (4.3)

Proof.
The first inequality follows from (AA’-2). The second one follows fromZi = maxj

∑

k∈Kj
σk

i ≤
∑

k∈[1;s] σ
k
i , and the sub-additivity ofZ. 2

We will assume that assumptions(IA) and (SE) hold throughout this paper without restating it.
MoreoverNx will denote a non-deceasing integer-valued function tending to infinity such that for
all finite real numbersb,

Nx∑

n=0

F (x+ nb) = o(F
s
(x)).

The existence of this function follows from the fact thatF s is long-tailed (see [14]).
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Proposition 13. LetZ be the stationary maximal dater of the event graph :Z ≡ limn→∞Z[−n,0].

For anyx and forj = 1, . . . , r, let {Kj
n,x} be a sequence of events such that

1. for anyn andj, the eventKj
n,x and the random variableσj

−n are independent ;

2. for anyj, P(Kj
n,x) → 1 uniformly inn ≥ Nx asx→ ∞.

For all sequencesηj
n, j = 1, . . . , s, tending to 0, put

Aj
n,x = Kj

n,x ∩ {σj
−n > x+ n(a− γ + ηj

n)}, Aj
x =

∞⋃

n=Nx

Aj
n,x and Ax =

s⋃

j=1

Aj
x.

Then, asx→ ∞,

P[Z > x] ∼ P[Z > x,Ax] ∼
s∑

j=1

∑

n≥Nx

P[Z > x,Aj
n,x].

Proof.
The proof is omitted but uses the same arguments as the proof of Theorem 8 in [14]. The

only difference lies in the fact that Condition (AA) in [14] has to be replaced by (AA’), defined
in Lemma 17. But under (AA’), (7) of [14] still holds as shown in Lemma 18, which is enough to
prove the desired result. 2

4.2.2 Exact Tail Asymptotic

Theorem 8.

P(Z > x) ∼
(

s∑

i=1

ci

a− Γ(≥i)

)

F
s
(x), (4.4)

with :

Γ(≥i) = max
k∈[≥i]

γ(k).

Proof.
For the sake of simplicity, we give a proof in the case of constant inter-arrival times only.

In fact, it was shown in [14] Section 7.3., that the result extends to the stochastic framework we
introduced.
Lower bound :
Thanks to Proposition 13, we have

P(Z > x) ∼
∞∑

n=Nx

s∑

j=1

P(Z > x,Aj
x,n).

We have to find appropriate sequences{Kj
n,x} and{ηj

n}.
For all j, we have(B−n)(k(j)) ≥ σj

−n. Hence we have

Z ≥ σj
−n + (A−1 ⊗A−2 ⊗ . . .⊗A−n+1)

(s,k(j)) − na. (4.5)
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Consider the events

Kj
n,x =

{

(A−1 ⊗A−2 ⊗ . . .⊗A−n+1)
(s,k(j)) ≥ n(Γ(≥j) − ηj

n)
}

,

and choose a sequenceηj
n → 0 such thatP[Kj

n,x] → 1 uniformly in n ≥ Nx asx → ∞. Then
from (4.5), we have

P(Z > x,Aj
x,n) ≥ P(σj

−n > x+ n(a− γ + ηj
n), σj

−n > x+ na− n(Γ(≥j) − ηj
n))

≥ (1 + o(1))P(σj
−n > x+ n

[
a+ ηj

n − min(γ,Γ(≥j))
]
).

But we have for allj, Γ(≥j) ≤ Γ(≥1) andγ = Γ(≥1).

Hence we get an equivalent in cj

a−Γ(≥j)
F

s
(x).

Upper bound :
We have

P(Z > x,Ax) =

s∑

j=1

∑

n≥Nx

P(Z > x, σj
−n > x+ n(a− γ + ηj

n),Kj
x,n).

As

P(Z > x, σj
−n > x+ n(a− γ + ηn),Kj

x,n) ≤ P(σj
−n > x+ n(a− γ + ηn)),

we have an upper bound in(1 + o(1)) cj

a−Γ(≥1)

∫∞
x F̄ (y)dy.

We consider now the caseΓ(≥j) < Γ(≥1).
We then have the following decomposition :

Z = max

{

Z[−n+1;0];max
k≥0

[(A−1 ⊗ · · · ⊗A−n−k+1 ⊗B−n−k)
(s) − (n+ k)a]

}

≡ max {Un;Vn} ,
Vn = max

{

(A−1 ⊗ · · · ⊗A−n+1 ⊗B−n)(s) − na;

max
k≥1

[(A−1 ⊗ · · · ⊗A−n−k+1 ⊗B−n−k)
(s) − (n+ k)a]

}

≡ max
{
Z1

n;Z2
n

}
.

Thanks to Lemma 19, we haveZ2
n ≤ Z1

n + Rn, whereRn = Z[−∞,−n−1] is a random variable

independent ofσj
−n. Hence we have

Vn > x ⇒ Z1
n > x or Z2

n > x

⇒ Z1
n > x or Z1

n +Rn > x

⇒ Z1
n +Rn > x.

Hence

P(Z > x,Aj
n,x) ≤ P(max{Z1

n +Rn, Un} > x,Aj
n,x).
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We will denotePAn = A−1 ⊗ · · · ⊗A−n+1. We have then

Z1
n = max[Z(≥j)

n , Z(≥j)c

n ] with

Z(≥j)
n = max

i∈[≥j]
[PA(s,i)

n + (B−n)(i)] − na,

Z(≥j)c

n = max
i∈[≥j]c

[PA(s,i)
n + (B−n)(i)] − na.

SinceUn ≤ Z a.s.,P(Un ≤ x) → 1 uniformly in n asx → ∞. Since the distribution ofRn =

Z[−∞,−n−1] does not depend onn,Rn/n→ 0 in probability. Due to the SLLN,maxi∈[≥j]c[PA
(s,i)
n +

(B−n)(i)]/n → cj ≤ γ andmaxi∈[≥j][PA
(s,i)
n ]/n → Γ(≥j). For i ∈ [≥ j], we have(B−n)(i) ≤

σj
−n +

∑

k 6=j σ
k
−n. We denoteζj

n =
∑

k 6=j σ
k
−n, we haveζj

n/n→ 0 in probability. Therefore, there
exists a sequenceǫn ↓ 0, nǫn → ∞ such that

P

{

Un ≤ x,Rn ≤ nǫn, max
i∈[≥j]c

[PA(s,i)
n + (B−n)(i)] ≤ n(γ + ǫn),

max
i∈[≥j]

[PA(s,i)
n ] ≤ n(Γ(≥j) + ǫn), ζj

n ≤ nǫn

}

→ 1

uniformly inn ≥ Nx asx→ ∞. Denote the latter eventKj
n,x. Fori ∈ [≥ j]c, the random variables

(B−n)(i) andσj
−n are independent, henceKj

n,x is independent ofσj
−n. Moreover, observe that on

Kj
n,x, we have

{max{Z1
n +Rn, Un} > x} = {Z1

n +Rn > x}
⊂ {n(γ + ǫn) − na+Rn > x} ∪ {n(Γ(≥j) + ǫn) + nǫn + σj

−n + nǫn − na > x}.

Putηj
n = −3ǫn. Then

P(Z > x,Aj
n,x) ≤ P(Rn > x+ n(a− γ − ǫn,K

j
n,x)P(σj

−n > x+ n(a− γ + ηj
n))

+P(σj
−n > x+ n(a− Γ(≥j) − 3ǫn),Kj

n,x)

= o(1)P(σj
−n > x+ n(a− γ + ηj

n)) + (1 + o(1))P(σj
−n > x+ n(a− Γ(≥j) + ηj

n)),

and the desired asymptotics follows. 2

4.2.3 Two Technical Lemmas

Proof of Lemma 17.
The first property is a mere rewriting of the definition ofbn = a0(n)∗ ⊗ b. Remark??, which

gives the relation between the matricesa1 and a∗0, allows one to establish the last properties.
Indeed, the maximum in(v1)(i) = maxj(a1)

(i,j) is on the diagonal. Moreover, we have(a1)
(k,k) =

maxi[(a
∗
0)

(k,i) +(a1)
(i,k)] ≥ (a1)

(k,k), which ensures the existence ofk(j) such that(Bn)(k(j)) ≥
σj

n and(An)(k(j),k(j)) ≥ σj
n because the diagonal terms ofa1 are diagonal terms ofA too.

Moreover, we have

(a1)
(s,k) = max

i
[(a∗0)

(s,i) + (a1)
(i,k)]

≥ (a∗0)
(s,k) + (a1)

(k,k)

≥ (a1)
(k,k)
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and then, we have(An)(s,k(j)) ≥ σj
n.

2

We will denote fora > 0 andu ≤ v :

Z[u,v] = max
u≤i≤v

[

(D[i+1,v] ⊗Bi)
(s) − (v − i)a

]

.

Lemma 19. We denote forn ≥ 1 :

Z1
n = (A0 ⊗ · · · ⊗A−n+1 ⊗B−n)(s) − na,

Z2
n = max

k≥0
[(A0 ⊗ · · · ⊗A−n−k+1 ⊗B−n−k)

(s) − (n+ k)a].

We have then

Z2
n ≤ Z1

n + Z[−∞,−n−1].

Proof. We have only to prove that

Z̃2
n ≤ Z1

n + Z[−∞,−n−1],

with Z̃2
n = maxk≥1[(A−1 ⊗· · ·⊗A−n−k+1 ⊗B−n−k)

(s) − (n+ k)a]. We will assume thatk ≥ 1
in what follows and we denote :

D1 = A0 ⊗ · · · ⊗A−n+1,

DBk = D[−n−k+1,−n−1] ⊗B−n−k,

Zk,2 = (D1 ⊗A−n ⊗DBk)
(s) − (n+ k)a.

With this notation, we haveZ1
n = (D1 ⊗B−n)(s) − na andZ̃2

n = maxk≥1[Z
k,2]. We have then

Zk,2 = max
i,j

[D
(s,i)
1 + (A−n)(i,j) +DB

(j)
k ] − (n+ k)a

≤ max
i,j

[D
(s,i)
1 + (A−n)(i,j)] + max

j
[DB

(j)
k ] − (n+ k)a.

First show that
max

i
[D

(s,i)
1 + (A−n)(i,j)] ≤ max

i
[D

(s,i)
1 + (B−n)(i)].

Indeed, thanks to condition 2, we havemaxi∈I [D
(s,i)
1 +(A−n)(i,j)] ≤ maxi∈I [D

(s,i)
1 +(B−n)(i)].

We have then only to prove thatmaxi∈J [D
(s,i)
1 + (A−n)(i,j)] ≤ maxi∈I [D

(s,i)
1 + (B−n)(i)].

But we havemaxi∈J [D
(s,i)
1 + (A−n)(i,j)] = maxi∈J [D

(s,i)
1 ] because(A−n)(i,j) = 0 for i ∈

J . Moreover we havemaxi∈J [D
(s,i)
1 ] ≤ maxi∈I [D

(s,i)
1 ] ≤ maxi∈I [D

(s,i)
1 + (B−n)(i)] and the

equality follows.
Finally, we have

Zk,2 ≤ Z1
n + max

j
[DB

(j)
k ] − ka.

But [DB
(j)
k ] = (D[−n−k+1,−n−1] ⊗ B−n−k)

(j) ≤ (D[−n−k+1,−n−1] ⊗ B−n−k)
(s), and we have

thenZk,2 ≤ Z1
n + (D[−n−k+1,−n−1] ⊗B−n−k)

(s) − ka, and

Z2
n ≤ Z1

n + max
k≥1

[(D[−n−k+1,−n−1] ⊗B−n−k)
(s) − ka]

≤ Z1
n + Z[−∞,−n−1].

2
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4.3 Tails in Generalized Jackson Networks with Subexponential Ser-
vice Time Distributions

To the best of our knowledge, the literature on generalized Jackson networks with heavy tailed
service times is limited to tandem queues. Bounds on the tailasymptotics of waiting and response
times were considered in [17] and [57]. Exact asymptotics for these quantities were obtained
in [14]. The present section addresses the case of generalized Jackson networks with arbitrary
topology. It focuses on a key state variable, already used inthe past for determining the stability
region of such networks [13], [12], which is the time to emptythe network when stopping the
arrival process (this variable boils down to the virtual workload in an isolated queue or to the
sojourn time for queues in tandem). The aim of this section isto derive an exact asymptotic for the
tail of this state variable in the stationary regime. The main ingredients for the derivation of this
result are

– a generalization of the so called ”single big event theorem”, well known for isolated queues,
to such generalized Jackson networks which was establishedin [14] ; In the GI/GI/1
queue, this theorem states that in the case of subexponential service times, large workloads
occur on a typical event where a single large service time hastaken place in a distant past,
and all other service time are close to their mean. Similarly, in generalized Jackson networks
with subexponential service times, large maximal daters occur when a single large service
time has taken place in one of the stations, and all other service times are close to their
mean.

– the identification of the role played by fluid limits within the context of the single big event
theorem for this class of networks ;

– the combination of these fluid limits and heavy tailed calculus which allows one to derive
the closed forms formulas for the asymptotics.

Although this result sheds light on the way such a network experiences a deviation from its normal
behavior, it is in no way final as the tail behavior of other state variables such as stationary queue
size are still unknown. The derivation of the (more complex)asymptotic behavior of these other
state variables was already obtained using a similar methodology in the particular case of tandem
queues [14]. The extension of these queue size asymptotics to generalized Jackson networks with
arbitrary topology seems to require much more effort and will not be pursued in the present section.
The proposed method should however extend to other characteristics of stationary workload like
for instance the sum of the residual service times of all customers present in the network at some
given time.

This section is based on the paper [15].

4.3.1 Stochastic Assumptions

Service time and routing sequences
We recall here the notation used to describe a generalized Jackson network withK nodes.
The networks we consider are characterized by the fact that service times and routing decisions are
associated with stations and not with customers. This meansthat thej-th service on stationk takes
σ

(k)
j units of time, where{σ(k)

j }j≥1 is a predefined sequence. In the same way, when this service

is completed, the leaving customer is sent to stationν
(k)
j (or leaves the network ifν(k)

j = K + 1)

and is put at the end of the queue on this station, where{ν(k)
j }j≥1 is also a predefined sequence,



4.3. Tails in Generalized Jackson Networks with Subexponential Service Time Distributions 73

called the routing sequence. The sequences{σ(k)
j }j≥1 and{ν(k)

j }j≥1, wherek ranges over the
set of stations, are called the driving sequences of the net.Node0 models the external arrival of
customers in the network, then the arrival time of thej-th customer in the network takes place at
σ

(0)
1 + · · ·+σ(0)

j and it joins the end of the queue of stationν(0)
j . Henceσ(0)

j is thej-th inter-arrival
time.

The sample path construction we introduce here is that of [12]. The main interest of such a
construction is that some monotonicity properties are preserved. These monotonicity properties as
shown in [14] are crucial for our asymptotic calculation.
A generalized Jackson network will be defined by

JN =
{

{σ(k)
j }j≥1, {ν(k)

j }j≥0, n
(k), 0 ≤ k ≤ K

}

,

whereN = (n(0), n(1), . . . , n(K)) describes the initial condition. The interpretation is as follows :

for i 6= 0, at timet = 0, in nodei, there aren(i) customers with service timesσ(i)
1 , . . . , σ

(i)

n(i) (if

appropriate,σ(i)
1 may be interpreted as a residual service time).

The interpretation ofn(0) is as follows :
– if n(0) = 0, there is no external arrival.
– if ∞ > n(0) ≥ 1, then for all1 ≤ j ≤ n(0), the arrival time of thej-th customer in the

network takes place atσ(0)
1 + · · ·+σ

(0)
j . Note that in this case, there may be a finite number

of customers passing through a given station so that the network is actually well defined
once a finite sequence of routing decisions and service timesis given on this station.

– if n(0) = ∞, then when taking for instance the sequence{σ(0)
j }j≥1 independent and identi-

cally distributed (i.i.d.), the arrival process is a renewal process etc.
Euler route, Euler network
Consider a router = (r1, . . . , rφ) with 1 ≤ ri ≤ K for i = 2 . . . φ− 1. Such a route issuccessful
if r1 = 0 andrφ = K + 1. To such a route, we associate a routing sequenceν = (ν(0), . . . , ν(K))
as follows (⊕ means here concatenation and∅ the empty sequence) :

Procedure(r) :

1 for k = 0 . . . K do

ν(k) := ∅;
φ(k) := 0;

od

2 for i = 1 . . . φ− 1 do

ν(ri) := ν(ri) ⊕ ri+1;

φ(ri) := φ(ri) + 1;

od

Note thatφ(j) is the number of visits to nodej in such a route.
A simple Euler network is a generalized Jackson network

E = {σ, ν,N},
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with N = (1, 0, . . . , 0) = 1, such that the routing sequenceν = {ν(k)
i }φ(k)

i=1 is generated by a

successful route and such thatσ = {σ(k)
i }φ(k)

i=1 is a sequence of real-valued non-negative numbers,
representing service times.

Consider a sequence of simple Euler networks, say{E(n)}0
n=−∞, whereE(n) = {σ(n), ν(n), 1}.

For m ≤ n ≤ 0, we defineσ[m,n] and ν[m,n] to be the concatenation of{σ(k)}m≤k≤n and
{ν(k)}m≤k≤n and then define thecomposedgeneralized Jackson network :

JN[m,n] = {σ[m,n], ν[m,n], N[m,n]}, with N[m,n] = (n−m+ 1, 0, . . . , 0).

Maximal dater
As proved in [12], for all possible values ofν(p) andσ(p) in the simple Euler networks, for all
integersm ≤ n, the composed networkJN[m,n] stays empty forever after some finite time. We de-

note byX[m,n] the time to emptyJN[m,n] forever and byZ[m,n] = X[m,n] −
∑n−m+1

i=1 σ
(0)
[m,n],i the

associated maximal dater. The sequenceZ[−n,0] is an increasing sequence. We define the maxi-
mal dater of the generalized Jackson networkJN = {σ, ν,N} whereσ andν are the infinite
concatenation of the{σ(n)}n and{ν(n)}n andN = (+∞, 0, . . . , 0), by

Z = lim
n→∞

Z[−n,0]. (4.6)

To all generalized Jackson networkJN[m,n], we also associate the generalized Jackson network
JN[m,n](Q) in which driving sequences are the same as in the original network except for the

sequence{σ(0)
j } that is nowσ(0)

j = 0 for all j. Similarly we defineZ[m,n](Q) the time to empty
the generalized Jackson networkJN[m,n](Q).
Let

Y
(k)
i =

φ(k)(i)
∑

j=1

σ
(k)
j (i) (4.7)

be the total load brought by (external) customeri to stationk. Note that

Zi = Z[i,i] = Y
(1)
i + · · · + Y

(K)
i , ∀i

Z[n,0](Q) ≥ max
j=1,...,K

0∑

i=n

Y
(j)
i , ∀n ≤ 0.

Lemma 4 of [13] also implies that

lim
n→∞

Z[−n,0](Q)

n
= b = max

1≤k≤K
E

[

Y
(k)
1

]

a.s.. (4.8)

Assumption 1, on the independence of routing and service times
All the sequences{ν(k)} and{σ(k′)} are mutually independent fork, k′ ranging over the set of
stations.
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Assumption 2, on the independence of service times
We will assume the service times are independent for different stations and i.i.d. in each station
with finite mean :E(σ(j)) = 1

µ(j) > 0 for all 1 ≤ j ≤ K.

Assumption 3, on routing
We assume that each of the successful routes used to buildν is obtained by a Markov chain on the
state space{0, 1, . . . ,K,K + 1} with transition matrix

R =












0 r0,1 . . . . . . r0,K 0
... r1,1 r1,2 . . . r1,K r1,K+1
... r2,1 r2,2 . . . r2,K r2,K+1
...

...
0 . . . . . . . . . 0 1












This is equivalent to assuming that the routing decisions{ν(k)
j } in stationk are i.i.d. inj, inde-

pendent of everything else, and such that the routing decision selects stationi with probability
P[ν(k) = i] = rk,i.
The fact that the routes built with this Markovian procedureare successful implies that stateK+1
is the only absorbing state of this chain and all other statesare transient ; we then have the very
same Markovian routing assumptions as in (exponential) Jackson networks. More generally, when
denoting byEk the law of the chain with initial conditionk, andVj the number of visits of this
absorbing chain in statej, we define :

E0[Vk] = πk, P0[Vk ≥ 1] = pk, Ek[Vj ] = πk,j. (4.9)

We will use the following notation :

bj =
πj

µ(j)
, bj,i =

πj,i

µ(i)
, Bj = max

i
bj,i.

With this notation, we haveb = maxi πi/µ
(i) = maxi bi. Let λ−1 = E[σ0] = a. Throughout this

paper we will assume that the stability condition holds :

λb < 1. (4.10)

Theorem 13 of [12] applies so that ifλb < 1 thenZ <∞ a.s. ; conversely, ifλb > 1, Z = ∞ a.s.

Example 1. As an example,we will consider a network with the following routing matrix

R =







0 1 0 0
0 0 p 1 − p
0 q 0 1 − q
0 0 0 1







.

In this case, we have

{
π1 = 1 + qπ2,
π2 = pπ1.

⇒
{

π1 = 1
1−pq ,

π2 = p
1−pq .
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Similarly, we have :

{
π1,1 = π1,
π1,2 = π2.

{

π2,1 = q
1−pq ,

π2,2 = 1
1−pq .

and

{
p1 = 1,
p2 = p.

Hence we have

b = B1 =
1

1 − pq
max

(
1

µ(1)
,
p

µ(2)

)

and B2 =
1

1 − pq
max

(
q

µ(1)
,

1

µ(2)

)

.

In particular for p = 1 andq = 0, we are dealing with the case of queues in tandem and we have
b = B1 = max(1/µ(1), 1/µ(2)) andB2 = 1/µ(2).

Assumption 4, on the subexponentiality of service times
The assumptions concerning service times are the following: there exists a distribution function
F on R+ such that :

1. F is subexponential, with finite first momentM .

2. The integrated distributionF s is subexponential.

3. The following equivalence holds whenx tends to∞ :

P(σ
(k)
1 > x) ∼ c(k)F (x),

for all k = 1, . . . ,K with
∑K

k=1 c
(k) = c > 0.

4.3.2 Main Result

We first introduce some notations ; the intuitive meaning of these quantities will be given later
on.
Let f j(σ, n) be the following piece-wise linear function of(σ, n), whereσ andn are non-negative
real numbers :

f j(σ, n) = 11{σ>na} {σ − na+ npjBj} + 11{σ≤na}max
k

{

pjbj,k
σ

a
+

(
bk
a

− 1

)

(na− σ)

}+

(4.11)

and for all positive real numbersx, and allj = 1, . . . ,K, let ∆j(x) be the following domain :

∆j(x) = {(σ, t) ∈ R
2
+, f

j(σ, t) > x}. (4.12)

Remark13. We may rewrite functionf as follows

f j(σ, n) =

{

σ − na+ max
k

(

nbk −
σ

a
(bk − pjbj,k);npjbj,k

)}+

.

This is due to the fact thatpjbj,k ≤ bk. In particular, we see that

f j(σ, n) ≥ σ − na− npjBj. (4.13)
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Example 2. We continue with previous example and we have :

f1(σ, n) =

{

σ − na+
n

1 − pq
max

(
1

µ(1)
;
p

µ(2)

)}+

,

f2(σ, n) =

{

σ − na+ max

(
npq

(1 − pq)µ(1)
,

np

(1 − pq)µ(2)
;

n

(1 − pq)µ(1)
− σ

aµ(1)

)}+

.

In the specific case of queues in tandem (p = 1 andq = 0), these equations reduce to

f1(σ, n) =

{

σ − na+ nmax

(
1

µ(1)
;

1

µ(2)

)}+

,

f2(σ, n) =

{

σ − na+
n

µ(2)

}+

.

And in this specific case, the corresponding domains are

∆1(x) =

{

σ > x+ t

(

a− max

(
1

µ(1)
;

1

µ(2)

))}

, (4.14)

∆2(x) =

{

σ > x+ t

(

a− 1

µ(2)

)}

. (4.15)

Theorem 9. Consider a stable generalized Jackson network with subexponential service time
distributions satisfying assumptions 1-4. LetZ denote its stationary maximal dater at customer
arrivals. Whenx→ ∞,

P[Z > x] ∼
K∑

j=1

πj

∫ ∫

{(σ,t)∈∆j (x)}
P

[

σ(j) ∈ dσ
]

dt. (4.16)

This equation may be rewritten with the constants{αj
i , β

j
i , γ

j
i }0≤i≤l that will be calculated in

Lemma 21 below as follows :

P[Z > x] ∼
K∑

j=1

πj







l∑

i=0

∑

{αj
i x≤n<αj

i+1x}

P

[

σ(j) >
x

βj
i

+ nγj
i

]






, (4.17)

or with δj
i = 1/βj

i + αj
iγ

j
i andd(j) = πjc

(j),

P[Z > x] ∼
K∑

j=1

d(j)

{
l∑

i=0

1

γj
i

[

F
s
(δj

i x) − F
s
(δj

i+1x)
]
}

. (4.18)

1. If F
s ∈ R(−α), withα > 0, we can rewrite Equation (4.18) as :

P[Z > x]

F
s
(x)

→
K∑

j=1

d(j)

{
l∑

i=0

1

γj
i

[

(δj
i )
−α − (δj

i+1)
−α
]
}

. (4.19)
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2. If F
s ∈ R(−∞), then, we have

P[Z > x]

F
s
(x)

→
K∑

j=1

d(j)

a− pjBj
. (4.20)

Remark14. In view of Inequality (4.13), we see that{σ > x+ t(a− pjBj)} ⊂ ∆(j)(x), hence,

P[Z > x] ≥
K∑

j=1

πj

∑

n≥0

P

[

σ(j) > x+ n(a− pjBj)
]

∼
K∑

j=1

d(j)

a− pjBj
F

s
(x).

Hence in general the asymptotic as described in Equation (4.20) is a lower bound. In the rapidly
varying case, this lower bound is tight. In the regularly varying case, the complete shape of the
domain has to be taken in consideration and indeed the part∆j(x)\{σ > x+ t(a− pjBj)} is not
anymore negligible due to the scale property of regularly varying functions. More insights into the
shape of the domain will be given in Section 4.3.6.

Example 3. In the specific case of queues in tandem, thanks to (4.14) and (4.15), we see that
Equation (4.16) reduces to

P[Z > x] ∼
∑

n≥0

P

[

σ(1) > x+ n

(

a− max

(
1

µ(1)
,

1

µ(2)

))]

+
∑

n≥0

P

[

σ(2) > x+ n

(

a− 1

µ(2)

)]

,

which corresponds to the exact asymptotic of Theorem 9 of [14].

4.3.3 Technical Conditions

Under Assumption 1-3, the properties(IA) and(AA) of [14], which read
– (IA) the sequence of simple Euler networks{E(n)}−∞n=0 consists of i.i.d. random variables.

– (AA) the random variables{Y (k)
i } are independent of the inter-arrival times, and such that

the sequence of random vectors(Y
(1)
i , . . . , Y

(K)
i ) is i.i.d. (general dependences between the

components of the vector(Y (1)
i , . . . , Y

(K)
i ) are allowed),

are both satisfied.
Under Assumption 1, the variableZ associated toJN = {σ, ν,N} represents the stationary

maximal dater of the generalized Jackson network, namely the time that it would take in steady
state to clear the workload of all customers present in the system when stopping future arrivals.
Under Assumption 4, the assumptions(SE) and(H) of [14] are satisfied :

– (SE) For allk = 1, . . . ,K

P(Y
(k)
1 > x) ∼ πk

P(σ(k) > x) ∼ d(k)F (x),

with d(k) = c(k)πk and thend :=
∑

k d
(k) > 0.

– (H)

P(

K∑

k=1

Y
(k)
1 > x) ∼ P( max

1≤k≤K
Y

(k)
1 > x) ∼

K∑

k=1

P(Y
(k)
1 > x) ∼ dF (x).
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See Sections 4.4.2 and 7.2 of [14].
Under Assumption 4, there exists a non-decreasing integer-valued functionNx → ∞ and such
that, for all finite real numbersb,

Nx∑

n=0

F (x+ nb) = o
(
F

s
(x)
)
, x→ ∞ (4.21)

(see Section 4.1.2 of [14]).

4.3.4 Single Big Event Theorem

As already mentioned, one of the tools we will use within thissetting is the ”single big event
theorem” for generalized Jackson networks. More precisely, Theorems 7 and 8 of [14] give the
following result :

Proposition 14. LetZ be the stationary maximal dater of the generalized Jackson network defined
in (4.6). For anyx and forj = 1, . . . , r, let {Kj

n,x} be a sequence of events such that

1. for anyn and j, the eventKj
n,x and the random variableY (j)

−n =
∑φ(j)(−n)

k=1 σ
(j)
k (−n) are

independent ;

2. for anyj, P(Kj
n,x) → 1 uniformly inn ≥ Nx asx→ ∞.

For all sequencesǫn → 0, we denotexn = x+ n(a− b+ ǫn). Then, asx→ ∞,

P[Z > x] ∼
K∑

j=1

∑

n≥Nx

P[Z > x, Y
(j)
−n > xn,K

j
n,x],

and

P[Z > x] = O(F
s
(x)).

This property leads to the following and more handy result :

Corollary 1. Take any sequence of events{Kj
n} such that for anyj,Kj

n and the random variable

Y
(j)
−n are independent andP(Kj

n) → 1 asn → ∞. Takezx → ∞, zx = o(x), such thatF
s
(x ±

zx) ∼ F
s
(x), and denote :

G(x) =
K∑

j=1

∑

n≥Nx

P

[

Z[−n,0] > x,Kj
n, Y

(j)
−n > xn, φ

(j)(−n) ≤ L
]

.

Then, we have :

(1 + ǫ(x))G(x) ≤ P [Z > x] ≤ (1 + ǫ(x))G(x − zx) + ǫ(L, x)F
s
(x). (4.22)

If G is long tailed, we have asx→ ∞

P [Z > x] ∼ G(x).

The proof is forwarded at the end of the section.
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4.3.5 Fluid Limit

We recall some results from Section 3.1.4. We have to find sequences of events{Kj
n} allowing

one to calculate the sum
∑

n≥Nx

P

[

Z[−n,0] > x,Kj
n, Y

(j)
−n > xn, φ

(j)(−n) ≤ L
]

(4.23)

where as above,xn = x+ n(a− b+ ǫn).
The events in question will be based on the piece-wise linearfunctionsf j(σ, n) defined in (4.11).
Let us describe the intuitive reason for introducing this function. Assume the big service time is
equal toσ and takes place on stationj and within the set of service times of the simple Euler
networkE(−n). Let us look at the maximal daterZ[−n,0] in the fluid scale suggested by the a.s.
limit of (4.8) :

– if σ > na, then the number of customers blocked in stationj at timeσ is of the order of
npj, whereas the number of customers in the other stations is small. So, according to (4.8),
the time to empty the network from timeσ on should be of the ordernpjBj ; hence, in this
case, the maximal dater in question should be of the order off j(σ, n) indeed ;

– if σ < na, then at timeσ, the number of customers blocked in stationj is of the order of
pj

σ
a , and the other stations have few customers ; from timeσ to the time of the last arrival

(which is of the order ofna), stationk has to serve approximately the loadpj
σ
abj,k generated

by these blocked customers plus the load(na − σ) bk
a generated by the external arrivals on

the time interval fromσ to the last arrival. On this time interval, the service capacity is of
the order of(na− σ). Hence the maximal dater should again be of the order off j(σ, n).

We now return to rigor.
Consider a generalized Jackson network built from the i.i.d. sequence of simple Euler networks
{E(k)}. To all simple Euler networksE and all positive integersn, we associate the network
JNn(E) with input{Ẽ(k)}∞k=−n, whereẼ(k) = E(k) for all k > −n andẼ(−n) = E. That is,
if we denote byσ(k),n andν(k),n the concatenations({σ(k)(E)}, {σ(k)(−n+1)}, . . . , {σ(k)(0)}, . . . )
and({ν(k)(E)}, {ν(k)(−n+ 1)}, . . . , {ν(k)(0)}, . . . ) respectively, then

JNn(E) = {σn(E), νn(E), 0, Nn}, with Nn = (n, 0, . . . , 0).

The maximal dater of order[−n, 0] in this network will be denoted bỹZn(E). Of courseZ̃n(E(n)) =
Z[−n,0]. More generally, we will add the superscriptn to any other function associated to a network
to mean that of networkJNn(E).

For all simple Euler networksE = (σ, ν, 1), let Y (j)(E) =
∑φ(j)

u=1 σ
(j)
u .

We are now in a position to state the main result pertaining tothe fluid limit. Let ǫn, zn be some
sequences of positive real numbers ; we define :

Uj(n) = {E is a simple Euler network such thatY (k)(E) ≤ zn ∀k 6= j},
Vj(n) = {E ∈ Uj(n), Y (j)(E) ≥ n(a− b), φ(j) ≤ L},

Kj
n =

{

sup
{E∈Vj(n)}

∣
∣
∣
∣
∣

Z̃n(E) − f j(Y (j)(E), n)

n

∣
∣
∣
∣
∣
≤ ǫn

}

∩
{
E(−n) ∈ Uj(n)

}
.(4.24)

We first recall a result that derives directly from Proposition 10 and the remark following this
proposition.
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Proposition 15. Under the previous assumptions, there exists a sequencezn → ∞ with zn
n → 0,

such that we have

sup
{E∈Vj(n)}

∣
∣
∣
∣
∣

Z̃n(E) − f j(Y (j)(E), n)

n

∣
∣
∣
∣
∣

n→∞−−−→ 0 a.s.

Lemma 20. Let{Kj
n} be the sequence of events defined above.Kj

n and the random variableY (j)
−n

are independent and there exist sequencesǫn → 0 andzn → ∞ with zn
n → 0, such that we have

P[Kj
n] → 1 asn→ ∞.

Proof.
The left-hand part of the definition ofKj

n depends on{E(k)}0
k=−n+1 and the right-hand part

depends only onE(−n), hence we have

P[Kj
n] = P

[

sup
{E∈Vj(n)}

∣
∣
∣
∣
∣

Z̃n(E) − f j(Y (j)(E), n)

n

∣
∣
∣
∣
∣
≤ ǫn

]

P
[
E(−n) ∈ Uj(n)

]
.

The distribution ofE(−n) does not depend onn, henceY (i)(E(−n))/n → 0 a.s. since its mean
is finite. Therefore, there exists a sequencezn → ∞, zn/n→ 0 such that

P(Y (i)(E(−n)) ≤ nzn, ∀i 6= j) = P
[
E(−n) ∈ Uj(n)

]
→ 1

uniformly in n ≥ Nx asx→ ∞.
The first term derives directly from Proposition 15. Therefore, there exist sequencesǫn → 0 and
zn → ∞ and zn

n → 0, such that we haveP[Kj
n] → 1 uniformly in n ≥ Nx asx→ ∞. 2

4.3.6 Computation of the Exact Asymptotics

Thanks to Lemma 20, it is easy to see that the sequence of events {Kj
n} defined in (4.24)

satisfies assumptions of Corollary 1. Moreover, we will see that we are now able to calculate the
sum in Equation (4.23) which will give the exact asymptotic for P[Z > x] in Theorem 9. Before
stating this result, we need to introduce some notation.

On the eventKj
n ∩

{

Y
(j)
−n > xn, φ

(j)(−n) ≤ L
}

, we have

Z[−n,0] = f j(Y
(j)
−n , n) + nηn, with ηn r.v. such that|ηn| ≤ ǫn.

Then{Z[−n,0] > x} = {f j(Y
(j)
−n , n) > x − nηn}. In order to prove equivalence (4.16), we will

first give an explicit form for the domains∆j defined in (4.12).

Lemma 21. There exist constants{αj
i , β

j
i , γ

j
i }0≤i≤l (given in closed form in the proof of the

lemma as function of the quantitiespj andbj,k defined in Section 4.3.1) with0 = αj
0 ≤ αj

1 . . . ≤
αj

l , such that :

∆j(z) =

l⋃

i=0

{

αj
i z ≤ t < αj

i+1z, σ >
z

βj
i

+ tγj
i

}

, (4.25)
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with the conventionαj
l+1 = +∞. Moreover, we have

αj
0 = 0, αj

1 = 1/pjBj, βj
0 = 1, γj

0 = a− pjBj,

for all j. In addition,βj
i ≤ 1 for all i, j and the following inclusion holds :

{σ ≥ z + t(a− pjBj)} ⊂ ∆j(z). (4.26)

Proof.
The domain∆j may be divided in two parts :

∆j(z) = {(σ, t), f j(σ, t) > z}.

= {σ > ta, σ > z + t(a− pjBj)} ∪
{

σ ≤ ta, σ > amin
k

z + t(a− bk)

a− bk + pjbj,k

}

.

For the first part, we have (see Figure 4.1) :

{σ > ta, σ > z + t(a− pjBj)} =

{

0 ≤ t <
z

pjBj
, σ > z + t(a− pjBj)

}

∪
{

z

pjBj
≤ t, σ > ta

}

.
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FIG. 4.1 – First part of∆j(z)

For the second part, we have (see Figure 4.2) :
{

σ ≤ ta, σ > amin
k

z + t(a− bk)

a− bk + pjbj,k

}

=
⋃

k

{
z

pjbj,k
≤ t, a

z + t(a− bk)

a− (bk − pjbj,k)
< σ ≤ ta

}

.

Now, it is easy to see that the lemma holds (see Figure 4.3).
The inequality on theβ’s follows directly from the fact thatpjbj,k ≤ bk from which, we have

a

a+ pjbj,k − bk
≥ 1.

2
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FIG. 4.2 – Construction of the second part of∆j(z)
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FIG. 4.3 – Domain∆j(z)

Lemma 22. LetX be a random variable such thatF
s ∈ S, ǫn → 0 asn→ ∞ and

a(x)

x
→ a,

b(x)

x
→ b, with 0 < a < b asx→ ∞.

If F (x) = P[X > x], for α ≥ 1, β > 0, we have asx→ ∞

∑

a(x)≤n<b(x)

P[X > αx+ n(β + ǫn)] −
∑

ax≤n<bx

P[X > αx+ nβ] = o(F
s
(x)).

Proof.
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For the simplicity of notation, we assume thata(x) ≤ ax for all x. We have

∑

a(x)≤n≤ax

P[X > αx+ n(β + ǫn)] =
1 + ǫ(x)

β

∫ αx+axβ

αx+a(x)β
F (u)du

≤ 1 + ǫ(x)

β

ax− a(x)

ax
F

s
(αx)

sinceF (x) is non-increasing. Hence, we have only to prove the lemma fora(x) = ax andb(x) =
bx. We have the following bound withδx = supn≥ax ǫn.
∑

ax≤n<bx

P[X > αx+ n(β + ǫn)] − P[X > αx+ nβ] ≤
∑

n

P[X ∈ (αx+ nβ, αx+ n(β + δx)]

= (1 + ǫ(x))F
s
(αx)

(
1

β
− 1

β + δx

)

= o(F
s
(αx)) = o(F

s
(x)).

2

Proof of Theorem 9.
Thanks to Corollary 1, we know that the tail asymptotic of themaximal dater is linked to the

quantityS(j) defined by

S(j) =
∑

n≥Nx

P

[

Z[−n,0] > x,Kj
n, Y

(j)
−n > xn, φ

(j)(−n) ≤ L
]

.

On the eventAj
n,x = Kj

n ∩
{

Y
(j)
−n > xn, φ

(j)(−n) ≤ L
}

, we have

{Z[−n,0] > x} = {f j(Y
(j)
−n , n) > x− nηn}

= {(Y (j)
−n , n) ∈ ∆j(x− nηn)}.

Clearly∆j(z) is a non-increasing function ofz and we define

Dj
− = ∆j(x− nǫn) ⊃ ∆j(x− nηn) ⊃ ∆j(x+ nǫn) = Dj

+.

For simplicity of notation, we writeY (j) = Y
(j)
−n andφ(j) = φ(j)(−n). We assume w.l.o.g. thatǫn

is a decreasing sequence, hence forn ≥ Nx, ǫn ≤ ǫNx = ǫx and we have forn ≥ Nx

A+(n) = P

[

(Y (j), n) ∈ Dj
+

]

=

l∑

i=0

11
{αj

i (x+nǫn)≤n<αj
i+1(x+nǫn)}

P

[

Y (j) >
x

βj
i

+ nγj
i +

nǫn

βj
i

]

≤
l∑

i=0

11
{αj

i x≤n<αj
i+1(x+nǫx)}

P

[

Y (j) >
x

βj
i

+ nγj
i +

nǫn

βj
i

]

.

Then we have
∑

n≥Nx

A+(n) ≤
∑

{Nx≤n<αj
1x(1+ǫ(x))}

P

[

Y (j) > x+ n(a− pjBj) + nǫn

]

+
l∑

i=1

∑

{αj
i x≤n<αj

i+1x(1+ǫ(x))}

P

[

Y (j) >
x

βj
i

+ nγj
i +

nǫn

βj
i

]

.
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Thanks to Assumption 2, we know thatY (j) satisfies assumption of Lemma 47 and we have

∑

n≥Nx

A+(n) =
∑

{0≤n<αj
1x}

P

[

Y (j) > x+ n(a− pjBj)
]

+
l∑

i=1

∑

{αj
i x≤n<αj

i+1x}

P

[

Y (j) >
x

βj
i

+ nγj
i

]

+ ǫ(x)F
s
(x)

= (1 + ǫ(x))
l∑

i=0

∑

{αj
i x≤n<αj

i+1x}

E[φ(j)]P

[

σ(j) >
x

βj
i

+ nγj
i

]

+ ǫ(x)F
s
(x),

where the last equality follows from assumption(SE). But we have

S(j) ≤
∑

n≥Nx

A+(n).

We now look at the lower bound. With the same arguments as above, we easily get with

A−(n) = P

[

(Y (j), n) ∈ Dj
−

]

,

that,
∑

n≥Nx

A−(n) =
∑

n≥Nx

A+(n) + ǫ(x)F
s
(x).

We now show that
∑

n≥Nx

A−(n) =
∑

n≥Nx

P

[

(Y (j), n) ∈ Dj
−, A

j
n,x

]

+ ǫ(x,L)F
s
(x).

Consider the difference

A−(n) − P

[

(Y (j), n) ∈ Dj
−, A

j
n,x

]

≤ P

[

(Y (j), n) ∈ Dj
−, φ

(j)(−n) > L
]

≤ P

[

Y (j) ≥ x+ n(a− pjBj − ǫn), φ(j)(−n) > L
]

where the last inequality follows from inclusion (4.26) of Lemma 21. With the same kind of
argument as in Corollary 1, we have

∑

n≥Nx

A−(n) − P

[

(Y (j), n) ∈ Dj
−, A

j
n,x

]

≤ ǫ(x,L)F
s
(x).

Hence, we proved that whenx→ ∞, we have

S(j) ∼
l∑

i=0

∑

{αj
i x≤n<αj

i+1x}

E[φ(j)]P

[

σ(j) >
x

βj
i

+ nγj
i

]

.

Now since this quantity is long tailed, we use Corollary 1 to derive the asymptotic forP[Z > x].
2
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4.3.7 Proof of Corollary 1

The proof is based on Proposition 14, which shows that we have

P[Z > x] = (1 + ǫ(x))





K∑

j=1

∑

n≥Nx

P[Z > x, Y
(j)
−n > xn,K

j
n]



 .

SinceZ ≥ Z[−n,0], we have

P[Z > x, Y
(j)
−n > xn,K

j
n] ≥ P[Z[−n,0] > x, Y

(j)
−n > xn,K

j
n]

≥ P[Z[−n,0] > x, Y
(j)
−n > xn,K

j
n, φ

(j)(−n) ≤ L].

Hence we have

P[Z > x] ≥ (1 + ǫ(x))





K∑

j=1

∑

n≥Nx

P[Z[−n,0] > x, Y
(j)
−n > xn,K

j
n, φ

(j)(−n) ≤ L]



 .

We now derive the upper bound. Takezx → ∞ such thatF
s
(x+zx) ∼ F

s
(x), then whenx→ ∞,

we have

P[Z[−∞,−n−1] < zx] = P[Z < zx] → 1.

We definex̃ = x + zx, andK̃j
n,x = Kj

n ∩ {Z[−∞,−n−1] ≤ zx}. Observe that̃Kj
n,x satisfies also

assumptions of Proposition 14. By sub-additivity, we haveZ ≤ Z[−∞,−n−1] + Z[−n,0] (see [12]),
hence

P(Z > x̃, K̃j
n,x, Y

(j)
−n > x̃n) ≤ P(Z[−∞,−n−1] + Z[−n,0] > x̃, K̃j

n,x, Y
(j)
−n > x̃n)

≤ P(Z[−n,0] > x, K̃j
n,x, Y

(j)
−n > xn)

≤ P(Z[−n,0] > x,Kj
n, Y

(j)
−n > xn).

We now make the truncation ofφ.

A(n) = P

[

Z[−n,0] > x,Kj
n, Y

(j)
−n > xn

]

≤ P

[

Z[−n,0] > x,Kj
n, Y

(j)
−n > xn, φ

(j)(−n) ≤ L
]

+ P

[

Y
(j)
−n > xn, φ

(j)(−n) > L
]

= P

[

Z[−n,0] > x,Kj
n, Y

(j)(E(−n)) > xn, φ
(j)(−n) ≤ L

]

+B(n).

We will use the following result due to Kesten (for a proof seeAthreya and Ney [9]) :

Lemma 23. LetX ∈ S and letSn be the sum ofn independent copies ofX. Then for everyǫ > 0,
there existsK(ǫ) > 0 such that

sup
x≥0

P[Sn > x]

P[X > x]
≤ K(ǫ)(1 + ǫ)n, n = 1, 2, . . .
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Recall thatP(φ(j)(0) = l) = δl(1−δ) for some0 < δ < 1, hence takeǫ such that(1+ǫ)δ < 1,
and we have

B(n) =
∑

l≥L+1

P[φ(j)(−n) = l]P

[
l∑

k=1

σ
(j)
k (−n) > xn

]

≤
∑

l≥L+1

δl(1 − δ)K(ǫ)(1 + ǫ)lP[σ(j) > xn]

≤ (1 − δ)K(ǫ)P[σ(j) > xn]
((1 + ǫ)δ)L+1

1 − (1 + ǫ)δ
.

Then, we have
∑

n≥Nx

A(n) ≤
∑

n≥Nx

P

[

Z > x,Kj
n, Y

(j)
−n > xn, φ

(j)(−n) ≤ L
]

+ ǫ(x,L)F
s
(x).

SinceK̃j
n,x satisfies assumptions of Proposition 14, we have

P(Z > x̃) = (1 + ǫ(x̃))

K∑

j=1

∑

n≥Nx̃

P(Z > x̃, K̃j
n,x, Y

(j)
−n > x̃n)

≤ (1 + ǫ(x))

K∑

j=1

∑

n≥Nx

P(Z[−n,0] > x,Kj
n, Y

(j)
−n > xn)

≤ (1 + ǫ(x))
K∑

j=1

∑

n≥Nx

P(Z[−n,0] > x,Kj
n, Y

(j)
−n > xn, φ

(j)(−n) ≤ L)

+ǫ(x,L)F
s
(x).

Hence, we have showed with the notation of the lemma

(1 + ǫ(x))G(x) ≤ P(Z > x)

P(Z > x+ zx) ≤ (1 + ǫ(x))G(x) + ǫ(x,L)F
s
(x).

From these inequalities, we directly derive inequality (4.22). If G is long tailed, we can choose
zx → ∞ such thatG(x + zx) ∼ G(x) andF

s
(x + zx) ∼ F

s
(x), and the last statement of the

corollary follows.2

4.4 Tails in GPS Queues with Subexponential Service Time Distribu-
tions

In this section we look at the impact of priority and scheduling mechanisms on long-tailed
traffic phenomena. The importance of scheduling in the presence of heavy tails was first recognized
by Anantharam in [4]. The present section specifically examines the effectiveness of Generalized
Processor Sharing. The framework is quit similar to the workof Borst, Boxma and Jelenković
[21]. We will see how our results complete theirs.
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The GPS system does not fit exactly in the framework of [14]. Ifwe consider the global work-
load (which is aG/G/1 server queue), we have a monotone separable network, but theservice
times are not i.i.d. and we are unable to apply directly the results of [14]. On the other hand, if
we consider only one queue in isolation, this is not anymore amonotone separable network (the
condition of homogeneity fails and the upper bound of section 5.3.2 is not anymore available).
Hence we chose to adapt the argument to our framework. For this specific case, it will allow us to
remove the assumption on the subexponentiality ofF and to extend Veraverbeke’s theorem to a
more general setting.

4.4.1 Stochastic Assumptions

The framework is the same as in Sections 2.4 and 3.2 but we assume in addition that each
arrival process is a renewal process. We recall briefly the notations. We consider a GPS system
constituted ofN GI/GI inputs denoted{TA,j

n , σj
n}n∈Z for j ∈ {1, . . . , N}. The weight of inputj

isφj and the process{TA
n , σn, cn} is the superposition of the processes{TA,j

n , σj
n, j}. LetE[TA

1 −
TA

0 ] = λ−1 andρ = λE0
T A [σ0] be the traffic intensity. For each renewal process, we denote

E[τ j
0 ] = E[TA,j

1 − TA,j
0 ] =

1

λj
<∞,

andρj = λjE0
T A,j [σ0]. We haveρ =

∑N
j=1 ρ

j. We assume moreover that for anyi 6= j, we have

ρi 6= R(j)φi,

we recall that this is always true in the casei = j sinceρ < 1 see (3.39).
The assumptions concerning service times are the following: there exists a distribution func-

tion F on R+ such that :

1. F has finite first momentM .

2. The integrated distributionF s is subexponential.

3. The following equivalence holds whenx tends to∞ :

P(σj
0 > x) ∼ djF (x),

for all j = 1, . . . , N with
∑N

j=1 d
j > 0.

The notation must be understood as follows in the Palm setting,

P(σj
0 > x) = P

0
T A,j(σ0 > x) = P

0
T A(σ0 > x|c0 = j).

Remark15. We did NOT assume thatF is subexponential.

We take the notation of Section 3.2.2 to define the following domains :

∆i,{j}(x) =
{

(σ, t) ∈ R
2
+, w

i,{j}(σ, t) > x
}

.

We are now able to state the main result



4.4. Tails in GPS Queues with Subexponential Service Time Distributions 89

Theorem 10. Consider a stable GPS system ofN queues satisfying previous conditions. LetW i

be the stationary workload of queuei. Whenx→ ∞,

P(W i > x) =
N∑

j=1

λj

∫ ∫

{(σ,t)∈∆i,{j}(x)}
P
(
σj ∈ dσ

)
dt + o

(
F

s
(x)
)
. (4.27)

In what follows we give an explicit computation of the integral on the right-hand side of (4.27).
We give here some explicit cases

1. if di > 0, then we can replace the equality by an equivalence and delete theo
(
F

s
(x)
)

term
in the right-hand term of (4.27) ; moreover, ifF

s ∈ R(−∞), then we have

P(W i > x)

F
s
(x)

→ λidi

λ(φiR(i) − ρi)
.

2. if di = 0 andF
s ∈ R(−∞) or ρi

φi < minj 6=iR(j), then we haveP(W i > x) = o
(
F

s
(x)
)
.

Remark16. Note that in case 3, we do not have the exact asymptotics. We will come back to this
and discuss relations with existing results in the literature in Section 4.4.4.

4.4.2 Big Event Theorem

We first construct an upper bound forW . We considerN virtual GI/GI/1 queues with res-
pective input process{TA,j

n , σj
n}n∈Z and with server capacitỹrj = ρj + 1−ρ

N . We denote byW̃ j

the workload at time 0 of these single server queues andW̃ = W̃ 1 + · · · + W̃N . More formally,
we define

ξj
n = σj

n − r̃jτ j
n, Sj

−n =
0∑

i=−n

ξj
i , M j = sup

n≥0
Sj
−n.

With these definitions, we have

W̃ j =
(

M j + r̃jTA,j
0

)+
.

Thanks to Veraverbeke’s theorem, we have

P(W̃ j > x) ∼ Nλjdj

1 − ρ
F

s
(x).

Moreover the random variables̃W j are independent of each other, hence we have

P(W̃ > x) ∼
N∑

j=1

P(W̃ j > x) ∼
N∑

j=1

Nλjdj

1 − ρ
F

s
(x). (4.28)

The following corollary follows the line of Corollary 5 of [14].

Corollary 2. For anyx andj = 1, . . . , N , let {Kj
n,x} be a sequence of events such that

1. for anyn, the eventKj
n,x and the random variables(σ−n, c−n) are independent ;
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2. infn≥Nx P

(

Kj
n,x

)

→ 1 asx→ ∞.

For any sequenceηn → 0, let

Aj
n,x = Kj

n,x ∩
{

σ−n > x+ n

(
1 − ρ

Nλ
+ ηn

)

, c−n = j

}

Ax =

N⋃

j=1

⋃

n≥Nx

Aj
n,x.

Then asx→ ∞,

P(W̃ > x) ∼ P(W̃ > x,Ax) ∼ P(Ax) ∼
N∑

j=1

∑

n≥Nx

P
(
Aj

n,x

)
. (4.29)

Proof.
The proof follows the one of Corollary 5 of [14]. First note that

N∑

j=1

∑

n≥Nx

P
(
Aj

n,x

)
=

N∑

j=1

∑

n≥Nx

P
(
Kj

n,x

)
P

(

σ−n > x+ n

(
1 − ρ

Nλ
+ ηn

)

, c−n = j

)

∼
N∑

j=1

∑

n≥Nx

λj

λ
P

(

σj
−n > x+ n

(
1 − ρ

Nλ
+ ηn

))

∼
N∑

j=1

λj

λ

Nλ

1 − ρ
djF

s
(x) =

N∑

j=1

Nλjdj

1 − ρ
F

s
(x).

Thus, if the sequences{Kn,x} and{ηn} are such that, for all sufficiently largex,

1. the eventsAj
n,x are disjoint for alln ≥ Nx ;

2. Aj
n,x ⊂ {W̃ > x} for all n ≥ Nx ;

then

P(W̃ > x) ≥ P(W̃ > x,Ax) = P(Ax)

=
N∑

j=1

∑

n≥Nx

P
(
Aj

n,x

)
∼

N∑

j=1

Nλjdj

1 − ρ
F

s
(x).

Combining with (4.28), we get the equivalence (4.29).
We now construct two specific sequences{Kj

n,x} and{ηn} satisfying points 1 and 2 above
and the conditions of the corollary.

We define the following function

Cj(n) =

0∑

k=−n

11{ck=j} − 1.

On the event{c−n = j}, we haveTA
−n = TA,j

−Cj(n)
, σ−n = σj

−Cj(n)
. We can find a non-increasing

sequenceǫn → 0 such thatnǫn → ∞ and such that the probabilities of the following events tend
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to 1 asn→ ∞,

Ln,x =

{∣
∣
∣
∣
∣

Sj
−k

k
− ρ− 1

Nλj

∣
∣
∣
∣
∣
≤ ǫk, Nx ≤ k ≤ Cj(n− 1), 1 ≤ j ≤ N

}

,

M j
n =

{∣
∣
∣
∣

Cj(n− 1)

n
− λj

λ

∣
∣
∣
∣
≤ ǫn

}

,

N j
n =

{∣
∣
∣T

A,j
0

∣
∣
∣ ≤ nǫn

r̃j

}

.

Hence the eventKj
n,x = Ln,x ∩M j

n ∩N j
n satisfy the conditions of the corollary. Moreover on the

event{c−n = j}, we haveCj(n) = Cj(n− 1) + 1 and,

Sj
−Cj(n)

= σ−n + Sj
−Cj(n−1)

.

Now if we takeηn =
√
ǫn, we have

W̃ ≥ Sj
−Cj(n)

− nǫn

> x+ n

(
1 − ρ

Nλ
+ ηn

)

+ n

(
λj

λ
− ǫn

)(
ρ− 1

Nλj
− ǫ(λj/λ)n−1

)

− nǫn,

and we see that for sufficiently largen, we haveW̃ > x. The fact that the eventAj
n,x are disjoint

follows from the fact that for sufficiently largex, we haveǫNx ≤ (1 − ρ)/(Nλj). Indeed on the
eventAj

n,x, we haveSj
−Cj(n)

> x andSj
−Cj(n)+1

≤ (Cj(n)−1)((ρ−1)/(Nλj)+ ǫNx) ≤ 0. The

event{Sj
n > x} ∪ {Sj

n−1 ≤ 0} are clearly disjoint inn. With the same kind of argument, we see

that the eventsAj
n,x are disjoint inj. The end of the proof, i.e. showing that the corollary is true

for any sequenceKj
n,x is exactly the same as in the proof of Corollary 5 of [14] and isskipped.2

From this corollary we derive the following proposition

Proposition 16. For anyx andj = 1, . . . , N , let {Kj
n,x} be a sequence of events such that

1. for anyn, the eventKj
n,x and and the random variables(σ−n, c−n) are independent ;

2. infn≥Nx P

(

Kj
n,x

)

→ 1 asx→ ∞.

For any sequenceηn → 0, let

Aj
n,x = Kj

n,x ∩
{

σ−n > x+ n

(
1 − ρ

Nλ
+ ηn

)

, c−n = j

}

Ax =

N⋃

j=1

⋃

n≥Nx

Aj
n,x.

Then for any random variableW ≤ W̃ , we have asx→ ∞,

P(W > x) = P(W > x,Ax) + o
(
F

s
(x)
)

(4.30)

=
N∑

j=1

∑

n≥Nx

P
(
W > x,Aj

n,x

)
+ o

(
F

s
(x)
)
. (4.31)
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Proof.
We have

P(W > x) = P(W > x,Ax) + P(W > x,Ac
x)

≤ P(W > x,Ax) + P(W̃ > x,Ac
x),

but thanks to previous corollary we have thatP(W̃ > x,Ac
x) = o

(
F

s
(x)
)
. Hence we have

P(W > x,Ax) ≤ P(W > x) ≤ P(W > x,Ax) + o
(
F

s
(x)
)
,

which gives (4.30). The end of the proof is a repetition of theproof of last corollary and is skipped.
2

At this stage we are able to prove the following proposition which extends Veraverbeke’s
theorem to a more general setting.

Proposition 17. LetW be the stationary workload of a single server queue fed by thesuperposi-
tion ofN independentGI/GI processes. Assume moreover that

P
0
T A(σ0 > x) = F (x),

and thatF s is subexponential. Then we have

P(W > x) ∼ λ

1 − ρ
F

s
(x).

Proof.
First note thatW̃ ≥W . Hence we can apply previous proposition, with

Kj
n,x =

{∣
∣
∣
∣

S−k

k
− ρ− 1

λ

∣
∣
∣
∣
≤ ǫk, Nx ≤ k ≤ n− 1,

∣
∣TA

0

∣
∣ ≤ nǫn

}

,

whereS−k =
∑0

i=−k σi − τi. On the eventAj
n,x, we haveW = σ−n + S−n+1 + TA

0 , hence we
have

N∑

j=1

∑

n≥Nx

P(W > x,Aj
n,x) ∼

N∑

j=1

∑

n≥Nx

P

(

σ−n > x+ n

(
1 − ρ

λ
+ 2ǫn

)

, c−n = j

)

∼ λ

1 − ρ
F

s
(x).

2

Remark17. This result extends Theorem 4.1 of Asmussen, Schmidli and Schmidt [8], in which
the arrival process is the superposition of renewal processes but the service times are supposed to
be i.i.d.

4.4.3 Computation of the Exact Asymptotics

We have to find a sequence of events{Kj
n,x} in order to compute the following sum

Si,{j} =
∑

n≥Nx

P

(

W i > x,Kj
n,x, σ−n > x+ n

(
1 − ρ

Nλ
+ ηn

)

, c−n = j

)

A first case is easy : when queuei remains stable even if queuej is continuously backlogged.
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Lemma 24. Assume that

ρi

φi
< R(j). (4.32)

Then we have

Si,{j} = o
(
F

s
(x)
)
.

Proof.
Under condition (4.32), we know thanks to Proposition 11, weknow that the stationary work-

load of queuei exists when queuej is continuously backlogged. We denoteW i(j) this workload.
We have

W i ≤W i(j) <∞,

andW i(j) is clearly independent of(TA,j
n , σj

n). Hence we have

Si,{j} =
∑

n≥Nx

P

(

W i > x,Kj
n,x, σ−n > x+ n

(
1 − ρ

Nλ
+ ηn

)

, c−n = j

)

≤ P(W i(j) > x)
∑

n≥Nx

P

(

σ−n > x+ n

(
1 − ρ

Nλ
+ ηn

)

, c−n = j

)

= o
(
F

s
(x)
)
.

2

We consider now the case

ρi

φi
> R(j).

In this case when queuej experiences a long backlog (due to a very big service time), queuei is
no longer stable and the fluid limit corresponding to this queue is no longer 0. The remaining steps
of the proof of Theorem 10 are similar to those of section 4.3.6.

Let ǫn be some sequence of positive real numbers, we define

Kj
n =







sup
σ>n 1−ρ

Nλ

t≤2a

∣
∣
∣
∣
∣

W {j}(σ, nt) − w{j}(σ, nt)

n

∣
∣
∣
∣
∣
≤ ǫn,

∣
∣
∣
∣

TA
n

n
− a

∣
∣
∣
∣
≤ ǫn







◦ θT A
−n
.

Thanks to the results of Section 3.2.2, we have the followinglemma

Lemma 25. Let {Kj
n} be the sequence of events defined above.Kj

n and the random variables
σ−n andc−n are independent. There exists a sequenceǫn → 0 such that we haveP(Kj

n) → 1 as
n→ ∞.

On the eventKj
n ∩

{

σ−n > x+ n
(

1−ρ
Nλ

)

, c−n = j
}

, we have (thanks to the continuity of

wi,{j}),

W i = wi,{j}(σ−n, na) + nηn, with ηn a r.v. such that|ηn| ≤ ǫn.

We will need the following lemma on the shape of the domain∆i,{j}(x).
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Lemma 26. There exist constants{αi,{j}
k , β

i,{j}
k , γ

i,{j}
k }0≤k≤ℓ with α

i,{j}
0 < α

i,{j}
1 < · · · <

α
i,{j}
ℓ , βi,{j}

k ≤ 1, such that

∆i,{j}(x) =

ℓ⋃

k=0

{

α
i,{j}
k x ≤ t < α

i,{j}
k+1 , σ >

x

β
i,{j}
k

+ tγ
i,{j}
k

}

,

with αi,{j}
ℓ+1 = +∞. Moreover, we have

∆i,{i}(x) =
{
σ > x+

(
φiR(i) − ρi

)
λt
}
.

This lemma follows directly from the definition of the function wi,{j}. We will give some
example, to show how to compute the constants of the lemma, which in turn will lead to the
computation of the integral in Theorem 10.

Example 4. 1. CaseN = 2

We suppose that

ρ1

φ1
< 1 <

ρ2

φ2
.

The first inequality is imposed by the stability conditionρ < 1 and we suppose the second
one in order to be in the following interesting case : a big service in queue1 induces an
instability of queue2. The corresponding fluid limitw{1} is depicted on Figure 4.4.

ρ−
1

ρ 1−
φ 1

ρ
2 − φ

2

σ
φ1−ρ1

FIG. 4.4 – GPS with two classes : big service in class1

The corresponding domains are easy to compute and given in Figure 4.5,

∆1,{1}(x) =
{
(σ, t), σ > x+ (φ1 − ρ1)t

}
,

∆2,{1}(x) =

{

(σ, t), t >
x

ρ2 − φ2
, σ > x+ (1 − ρ)t

}

.
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FIG. 4.5 – GPS with two classes : the domain∆2,{1}(x)
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FIG. 4.6 – The caseN = 3

2. caseN = 3

In previous case, once we fixed the traffic intensitiesρ1 andρ2, the behavior of the system
depends only on one parameter, the ratioφ1/φ2. In the caseN = 3, there are many different
possible cases. We draw with matlab the fluid limits (in the case of a big service in queue 1)
and the corresponding domains for parameters such that

ρ1

φ1
< 1 <

ρ2

φ2
<
ρ3

φ3
,

namely, the parameters are the following :

ρ1 = 0.2, φ1 = 0.55, ρ2 = 0.5, φ2 = 0.4, ρ3 = 0.1, φ3 = 0.05.

We return now to the proof of Theorem 10. Following exactly the steps of the demonstration
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of Theorem 9, we can show that

Si,{j}(x) ∼
ℓ∑

k=0

∑

α
i,{j}
k x≤na<α

i,{j}
k+1 x

P

(

σ−n >
x

β
i{j}
k

+ naγ
i,{j}
k , c−n = j

)

=
λj

λa

ℓ∑

k=0

∑

α
i,{j}
k x≤n<α

i,{j}
k+1 x

P

(

σj >
x

β
i{j}
k

+ nγ
i,{j}
k

)

= λj
ℓ∑

k=0

∑

α
i,{j}
k x≤n<α

i,{j}
k+1 x

P

(

σj >
x

β
i,{j}
k

+ nγ
i,{j}
k

)

.

This term is of orderdjF
s
(x/β

i,{j}
0 ) and henceo(F

s
(x)) as soon asF s is rapidly varying. Sum-

ming overj, we obtain the equality (4.27) of the Theorem, which concludes the proof.

4.4.4 Some Extensions

In the casedi = 0, there are some cases in which Theorem 10 does not give the exact asymp-
totic. The following case is not covered by previous Theoremand follows easily from the same
kind of argument,

Proposition 18. Suppose thatρi < φi and thatP(σi
1 > x) = Fi(x) is such thatF s

i is subexpo-
nential, then we have asx→ ∞,

P(W i > x) ∼
N∑

j=1

λj

∫ ∫

{(σ,t)∈∆i,{j}(x)}
P
(
σj ∈ dσ

)
dt

∼ λi

λ(φiR(i) − ρi)
F

s
i (x).

Proof.
The stationary workload of theGI/GI/1 queue with input process{TA,i

n , σi
n}n∈Z and service

rateφi is clearly a stable upper-bound forW i. The proposition follows from exactly the same
arguments as above. 2

In general we are unable to give the exact asymptotics of queue i if the heaviest class sayk does
not contribute to it, i.e. if queuei remains stable even if the heaviest class is backlogged. In this
case, our upper bound is quite rough and the workload of queuei whenk is backlogged (namely
W i(k) with our notation) is clearly a better upper bound. Moreoverthis upper bound belongs to
the monotone separable framework but (except if the arrivalprocesses are Poisson point processes)
theG/G/1 upper bound used in the proof of Theorem 7 is not aGI/GI/1 single server queue.

One can consider a stable feed-forward network of flows whereeach node has a GPS disci-
pline. The same kind of techniques as we did for the single server queue apply. Indeed the only
non-trivial thing to find is an upper-bound. To each flow we associate a system of queues in tan-
dem (and we chose the rate such that each system is stable as for W̃ ). Hence we associate to the
original network, a network of queues in tandem with a fork atthe beginning and a join at the
end. The maximal dater of this virtual network will be an upper-bound for the maximal dater of
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the original one (because the virtual network is not work-conserving). Moreover this network be-
longs to the (max,plus)-class studied in the second sectionof this chapter, hence we have the exact
asymptotics of its maximal dater and the rest will follow like in the single server case. This is a
work in progress.

We compare now our results with the results of Borst, Boxma and Jelenković in [21].

Our theorem deals with instantaneous input but using the same kind of arguments as Jelenković
and Lazar in [62], these results should extend to fluid input with on-period that are regularly
varying but with some conditions on the rate during on-periods.

In [21], the authors deal with a possibly unstable GPS systemand derive the tail asymptotic of
the stable queues. Our approach does not cover this case.

Theorem 3.1 of [21] deals with the caseρi < φi which correspond exactly to previous pro-
position. If we havedi > 0, Theorem 4.1 and 5.1 are somehow extended by our results. Indeed
in [21], the authors impose some restrictions on the parameters of the system so that the sum in
(4.27) contains each time only one term, and they give the asymptotic of this term.

Note that in [22], Borst, Mandjes and Van Uitert study a GPS system with 2 classes. One is
light-tailed and the other is heavy-tailed. Moreover the light-tailed class is still stable when the
other queue is backlogged. They show that in these conditions, a large workload in the light-tailed
class is due to a large service in the other queue and a change of drift in the light-tailed class.

4.5 Towards an Extension of the Single Big Event Theorem

The single big event theorem is always efficient to obtain asymptotics of first order state va-
riables, like the maximal dater. In some cases, it also givesthe asymptotics of second order state
variables like the workload at each node. For example, in thecase of the tandem queues, it allows
to get the exact asymptotics of the delay at the second queue,this is done in [14]. This result
extends to more general (max,plus)-linear networks (this is a work in progress with Ton Dieker).
With the results we obtained for the generalized Jackson networks, it seems that the computation
of the asymptotics of the stationary workload of an individual queue in the network is doable. One
has to compute carefully the corresponding fluid limit.

But in some cases, either one big jump is not sufficient to get alocal instability or the one
big jump scenario has to be compared with other scenario, to see if it is still the most probable
scenario (like in the GPS case). Typically, this situation arises when the fluid limit is zero.

Consider the following framework : we have independent sequences of i.i.d. random variables
{X1,X1

i }, {X2,X2
i } and{X3,X3

i }. We take the following notation

S1
n =

n∑

i=1

F (X1
i ,X

3
i ),

S2
n =

n∑

i=1

G(X2
i ,X

3
i ),

W 1 = sup
n≥0

S1
n,

W 2 = sup
n≥0

S2
n,
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where the functionF andG are deterministic an such that

E
[
F (X1,X3)

]
= −a1 < 0,

E
[
G(X2,X3)

]
= −a2 < 0.

We are interested in the tail of a random variableZ such that

Z ≤ min(W 1,W 2).

Since−a1,−a2 < 0, the right hand side is finite and the interpretation is thatZ can not be big
through only one bigX1 or one bigX2.

If one can define a typical event for the random variablemin(W 1,W 2), then the same kind of
techniques could apply. Hence the first result to obtain is the tail asymptotics ofmin(W 1,W 2).
It seems that the method given by Zachary [85] to prove Veraverbeke’s Theorem could extend to
this kind of framework. If so this would give the whole picture of the asymptotics of GPS queues.
Namely in the GPS framework presented above, we should be able to prove the following property.

We assume that each input process isM/GI with the following assumption on the service
times

P(σj
1 > x) = F j(x),

such thatF
s
j ∈ R(−αj), with 0 < αj ≤ ∞. We denote

E(i) =
{
D ⊂ {1, . . . , N}, ρi > R(D)φi

}
.

For any setD ∈ E(i), the queuei is unstable if all queues inD are backlogged. We denote

α(i) = min
{j}∈E(i)

αj ,

β(i) = min
D∈E(i)

|D|≥2

∑

ℓ∈D

αℓ.

The following property might be correct !

Proposition 19. If α(i) < β(i) <∞, then we have asx→ ∞,

P(W i > x) ∼
N∑

j=1

λj

∫ ∫

{(σ,t)∈∆i,{j}(x)}
P
(
σj ∈ dσ

)
dt



Chapitre 5

Large Deviations for Monotone
Separable Networks

5.1 Introduction

In this chapter, we consider a monotone separable network asdescribed in Section 2.1. We are
interested in large deviation results for such queueing system in equilibrium. Equilibrium systems
have generally been treated on a case-by-case basis. For a general overview of applications of large
deviations theory to queueing problems we refer to the book of Ganesh O’Connell and Wischik
[46].

The case of the single server queue has received extensive attention in the literature. See for
example the work of Glynn and Whitt in [50] or Duffield and O’Connell in [34] which gives results
in a very general framework.

The extension of these ideas to networks appears to be ratherchallenging problem. Ganesh
and Anantharam in [45] derive large deviations results for two queues in tandem, with renewal
arrivals and exponential service times. In [31] De Veciana,Courcoubetis and Walrand characterize
the departure process from a singleG/D/1 queue in the large deviation regime. They show that
there is a region over which the large deviation rate functions for the cumulative departures and
arrivals agree and bounds are given outside that region. Chang and Zajic [24] consider the case
of a single arrival stream and stochastic service rate. In [76], O’Connell gives a full description
of the rate function for the cumulative departures under thehypothesis that the arrival processes
jointly satisfy a sample path large deviations principle with linear geodesics. Roughly speaking,
this means that the most likely path to an extreme value is a straight line. A natural question is
then : do the departures also satisfy this hypothesis ? If so,then one could treat quite complicated
networks by successive iteration of the single-buffer results in [76]. Indeed if the service process is
deterministic, then the departure process has linear geodesics. So a recursive analysis of networks
of such queues is possible as in [23]. Even if the service process is stochastic, it is shown in [47]
that conditional on the departure rate from a queue exceeding its mean, the departure process has
linear geodesics. We are typically interested in the probability of queue lengths exceeding some
large threshold and in well-designed networks this requires departure rates exceeding their mean.
Therefore, we have linear geodesics in the region of interest and so the study of networks of
queues using a recursive approach is again feasible. With such an approach Bertsimas, Paschalidis
and Tsitsiklis compute in [18] the decay rate of the stationary waiting time and queue length

99
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distributions at each node in an acyclic network in the context of quite general arrival and service
processes.

To the best of our knowledge, the large deviations analysis of queueing systems with any kind
of feedback is restricted to some specific cases. In [5] Anantharam, Heidelberger and Tsoucas use
quasi-reversibility arguments (see Kelly [64]) to study rare event in the case of Jackson networks.
Using a different approach Ignatiouk-Robert derives the rate function for sample path large devia-
tion of such networks in [59]. In this section we choose a different approach inspired from works
of Ganesh [44] and Toomey [83].

In this chapter, we study large deviations asymptotics of the form

lim
x→∞

1

x
log P(Z > x) = −θ∗, (5.1)

where the random variableZ corresponds to a ”global” state variable of a random process. We
only deal with exponentially decaying distributions.

This chapter is made of four parts, each of them building up onthe results of the previous one.
Here is a brief overview :

– In Section 5.2, we derive tail asymptotics of the form (5.1)whereZ is the global maxima of
an independent subadditive process. In particular, we showthat the associatedθ∗ is positive
and give an explicit way of computing its value.

– In Section 5.3, we derive the tail asymptotics (5.1) whereZ corresponds to the ”time to
empty” a queueing network in its stationary regime. This definition will be made precise in
the framework of monotone-separable networks.

– In Section 5.4 , we concentrate on a sub-class of the monotone-separable networks, namely
the (max,plus)-linear networks. We derive for the stationary solution of a (max,plus)-linear
recursion the associatedθ∗ in an explicit way.

– In Section 5.5, we concentrate on the case of generalized Jackson networks. Our results
are partial in the sense that we obtain sample path large deviations result for the transient
process and the connection with the stationary version has still to be made. However, we
choose to include here these results because they are original and the general methodology
could be used for other queueing networks.

Tail asymptotics for the supremum of an independent subadditive process

LetSn = X1 + · · ·+Xn be a random walk where the sequence{X,Xi, 1 ≤ i} is a sequence
of independent identically distributed (i.i.d) random variables, whitE[X] < 0. DefineM :=
supn≥1 Sn <∞ a.s. Then we have

lim
x→∞

1

x
log P(M > x) = −θ∗, whereθ∗ = sup

{
θ > 0, log E

[
eθX

]
< 0
}

, (5.2)

with the convention that the supremum of the empty set is−∞. Note that this case has been
extensively studied in the literature and much finer estimates are available, see the complementary
works of Iglehart [58] and Pakes [77].

In the first part, we extend this result by considering instead of the additive processSn, a sub-
additive processY[1,n]. Our main result is that the tail asymptotics (5.2) remains valid when one
replace the logarithmic moment generating function of theXi’s by the properly scaled logarith-
mic moment generating function of the processY[1,n]. In particular, all the information needed
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to establish (5.2) is contained in the scaled logarithmic moment generating function. We do not

require any large deviation principle for the process{Y[1,n]

n }. This is a surprising fact in the field
of large deviations for subadditive processes. Indeed studying the random variableM is much
simpler than trying to get a large deviations principle for the process{Y[1,n]/n} (which remains
an open question in the independent subadditive case) and wegive an example of two subaddi-
tive processes with the same scaled logarithmic moment generating function but satisfying large
deviation principle with different rate functions.

Large deviations for monotone separable networks

Literature on large deviations of queueing networks with feedback is rare and confined to
the setting of networks described by finite-dimensional Markov processes, see Dupuis and Ellis
[36], Dupuis, Ellis and Weiss [37] and the recent work of Igniatiouk-Robert [59], [60]. Moreover,
these works concentrate on local large deviations and cannot handle the large deviations of the
network in its stationary regime. The large deviation asymptotics of queueing systems are difficult
to analyze because they are dynamical systems with discontinuities. To the best of our knowledge,
there is no rigorous result on the large deviations of non-exponential networks with feedback in
their stationary regime.

We will show in the second part that the monotone-separable framework allows us to derive the
tail asymptotics for ”global” variable of the stationary version of such networks. This framework
was first introduced by Baccelli and Foss [13] to study the stability condition of these networks.
In particular, this framework includes generalized Jackson networks, stochastic Petri Nets and
polling systems. The main theorem of this second part is Theorem 13 that gives the exponential
decay of the stationary maximal dater (which will be defined latter) for such networks in term of
the asymptotic logarithmic moment generating function.

Case of study I : (max, plus)-linear systems

To apply our Theorem 13 we consider the sub-class of the monotone separable networks
consisting of the (max,plus)-linear networks. From a queueing point of view, these networks in-
clude for example the single server queue, tandem queues, fork-join systems and the maximal
dater corresponds to the end-to-end delay. Our work extendsthe analysis of tandem queues done
by Ganesh [44].

More generally we study in the third part the stationary solution of a (max,plus)-linear re-
cursion. Results concerning large deviations of products of random topical operators have been
obtained by Toomey in [83]. In rough words, these results would correspond to large deviations
of the processY[1,n] (i.e. before taking the supremum). However very restrictive conditions are re-
quired on the coefficients of the matrix. Here we do not assumethese requirements to be fulfilled
but we show that under mild assumptions on the matrix structure, the tail behavior ofsupn Y[1,n]

is explicitly given and can be computed (or approximated) inpractical cases.

Case of study II : generalized Jackson networks

This section is independent of the preceding ones. We derivea sample path large deviation
principle for the arrival and departure processes associated to the nodes of a generalized Jackson
network. In particular, we obtain an explicit rate functionunder rather weak stochastic assumptions



102 Chapitre 5. Large Deviations for Monotone Separable Networks

(i.i.d.). Even in the exponential case, the formulation of the rate function is original and seems
more explicit than the rate function derived in [59].

5.2 Tail asymptotics for the supremum of an independent subaddi-
tive process

5.2.1 Framework and main result

Assume the variables{ξn} are random variables defined on a common probability space
(Ω,F,P, θ), whereθ is an ergodic, measure-preserving shift transformation, such thatξn ◦ θ =
ξn+1. We assume that there exists a set of functions{gℓ}, gℓ : Kℓ → R, such that :

Y[m,n] = gn−m+1{ξℓ, m ≤ ℓ ≤ n}, (5.3)

for all m ≤ n. The functionsgn are deterministic and we assume that they are such that the family
of random variablesY = {Y[m,n], m ≤ n,m, n ∈ Z} is a subadditive process, i.e. satisfies the
following three conditions :

1. subadditivity :Y[m,n] ≤ Y[m,ℓ] + Y[ℓ+1,n], for allm ≤ ℓ < n ;

2. stationarity : the joint distributions of{Y[m,n], m ≤ n} are the same as the joint distributions
of {Y[m+1,n+1], m ≤ n} ;

3. moment condition :E[|Y[0,n]|] < ∞ for eachn ≥ 0 andE[Y[0,n]] > −αn for someα ∈ R

and alln ≥ 0.

Under the foregoing ergodic assumption, there exists a constant µ such that (see Kingman
[65])

lim
n→∞

Y[1,n]

n
= lim

n→∞

E[Y[1,n]]

n
= µ a.s. (5.4)

In what follows, we will make the following assumptions :

(A1) the constantµ defined in (5.4) is negative ;

(A2) the sequence{ξn} is a sequence of i.i.d. random variables ;

(A3) There existsη > 0 such that,E
[
eηY[1,1]

]
< ∞, and forθ > 0, if E

[
eθY[1,1]

]
= ∞,

thenE
[
eθY[1,n]

]
= ∞ for all n.

In view of assumption(A1), one can define the following random variable :

M := sup
n≥1

Y[1,n] <∞ a.s.

Note that the random variablesY[a,b], Y[c,d], . . . , Y[e,f ] are independent whenevera ≤ b < c ≤
d < · · · < e ≤ f , we say that the subadditive processY is independent.

We know that a subadditive independent process is superconvolutive and the existence of the
following moment generating function follows [55] (see Lemma 27 for a proof),

Λ(θ) = lim
n→∞

1

n
log E

[

eθY[1,n]

]

,

Let

θ∗ = sup {θ > 0, Λ(θ) < 0} , (5.5)

where the supremum of the empty set is−∞.
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Theorem 11. Under previous assumptions, we haveθ∗ > 0 and

lim
x→∞

1

x
log P(M > x) = −θ∗.

Theorem 11 extends a well-known result in the case of random walks to the case of inde-
pendent subadditive processes. One important point is thatwe do not require any large deviations
principle for the process{Y[1,n]/n}. The existence of the constantθ∗ is ensured by the moment
condition(A3) and its value is explicitly given by (5.5).

Example 5. – A first difference with the additive case is that it is possible thatP(M > x) > 0
for anyx > 0 while θ∗ = ∞ : consider the following subadditive process,

Y[m,n] = Z
n∏

i=m

Xi − (n −m+ 1),

where{Xi} is a sequence of i.i.d. Bernoulli random variables withP(X = 1) = p =
1 − P(X = 0) < 1 andZ ∼ Normal(0, 1) is independent of everything else. We have
clearly limn→∞ Y[1,n]/n = −1 and

log
(

eθY[1,n]

)

= log
(

pn(eθ
2/2 − 1) + 1

)

− nθ.

Hence we haveΛ(θ) = −θ < 0, for all θ > 0 and P(M > x) ≥ P(X1 = 1)P(Z >
x+ 1) > 0 for all x.

– Note that in the additive case, the fact thatE
[
eθY[1,1]

]
= ∞ implies thatE

[
eθY[1,n]

]
= ∞

for all n. In the subadditive case, this not anymore true and Assumption (A3) is needed for
Theorem 11 to hold. Consider a sequence of i.i.d. exponentially distributed (with mean 1)
random variables{Xn}n and consider the subadditive process (n ≤ m) :

Y[n,m] := Xn11{n=m} + (n−m)11{n<m}.

In this case, we clearly haveM = X1, henceP(M > x) = e−x and

∀n > 1, E

[

eθY[1,n]

]

= eθ(1−n) ⇒ θ∗ = ∞.

– Consider the caseY[m,n] = Z[m,n] − S[m,n], where the processesZ andS are independent,
S is a non-negative additive process (i.e. a random walk) andZ is a subadditive process
with

0 ≤ Z[1,n] ≤ Z[1,n+1].

Then we have forθ > 0,

E

[

eθY[1,n]

]

= E

[

eθZ[1,n]

]

E

[

e−θS[1,n]

]

≥ E

[

eθY[1,1]

] (

E

[

e−θS[1,1]

])n−1
,

and Assumption(A3) is satisfied as soon asE
[
eηY[1,1]

]
<∞ for someη > 0.
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To make the connection with the existing literature, we state the following result (which proof
is given in Section 5.2.3.0) :

Corollary 3. Under previous assumptions and if

1. the sequence{Y[1,n]/n} satisfies a large deviation principle (LDP) with a good rate function
I ;

2. there existsǫ > 0 such thatΛ(θ∗ + ǫ) <∞,

whereθ∗ is defined as in (5.5). Then we have

lim
x→∞

1

x
log P(M > x) = −θ∗ = − inf

α>0

I(α)

α
. (5.6)

Without the assumption that the processY[1,n] is subadditive, this kind of result has been ex-
tensively studied in the queueing literature (we refer to the work of Duffy, Lewis and Sullivan
[35]). However, we see that considering the moment generating function instead of the rate func-
tion allows us to get a more general result than (5.6) since wedo not require the assumption on
the tail (see the example of section 5.4.2). Indeed this assumption ensures that the tail asymptotics
of P(Y[1,n] > nc) for a singlen value cannot dominate those ofP(M > x). In this case, equation
(5.6) has a nice interpretation : the natural drift of the processY[1,n] is µn, whereµ < 0. The
quantityI(α) can be seen as the cost for changing the drift of this process toα > 0. Now in order
to reach levelx, this drift has to last for a timex/α. Hence the total cost for reaching levelx with
drift α is xI(α)/α and the process naturally choose the drift with the minimal associated cost. We
will see how this non-rigorous heuristic can be made more precise in what follows.

5.2.2 Beyond the G̈artner-Ellis theorem

In this section, we discuss the relations between Theorem 11and Gärtner-Ellis Theorem.
If the origin belongs to the interior of the domainDΛ = {θ, Λ(θ) < ∞} (which is not

required here), we see that Assumption 2.3.2 of [32] is satisfied. In which case, the upper bound
of the Gärtner-Ellis Theorem holds (see Theorem 2.3.6 in [32]), hence forα > 0 we have,

lim sup
n→∞

1

n
log P

(
Y[1,n]

n
≥ α

)

≤ − inf
x≥α

Λ∗(x) = −Λ∗(α), (5.7)

whereΛ∗(x) = supθ≥0 {θx− Λ(θ)} is the Fenchel-Legendre transform ofΛ(θ). Note that we
restrict the supremum over the setθ ≥ 0 and the functionx 7→ Λ∗(x) is non-decreasing inx > 0
(see the following Section 5.2.3.0 for a justification).

We give now an example of a subadditive independent process for which the upper bound (5.7)
given by Gärtner-Ellis Theorem is not tight.

Consider the following independent sequences{σ1
i } and{σ2

i } of i.i.d. random variables :

P(σ1
i = 1) = 1 − p, P(σ1

i = 2) = p,

P(σ2
i = 0) = 1 − p, P(σ1

i = 3) = p.

For ℓ = 1, 2 andu ≤ v, we denoteSℓ
[u,v] =

∑v
i=u σ

ℓ
i and we define the random variableZ[1,n] =

max1≤k≤n{S1
[1,k] + S2

[k,n]}. With max(1 + p, 3p) < a < 3, we can defineM = supn(Z[1,n] −
na) < ∞ which is the supremum of an independent subadditive processwith negative drift. We
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denote the moment generating functions as followsΛℓ(θ) = log E

[

eθσℓ
1

]

. It is easy to compute

(this will be done in a much more general context in Part 3),

Λ(θ) = lim
n→∞

1

n
log E

[

eθZ[1,n]

]

− aθ

= max(Λ1(θ),Λ2(θ)) − aθ.

Thanks to Theorem 11, we see that we have

θ∗ = min
{
θ1, θ2

}
, whereθℓ = sup{θ > 0,Λℓ(θ) < aθ}.

Note that our example corresponds to a system of 2 queues in tandem and that this result follows
directly from the work of Ganesh [44].

The rate functions forS1
[1,n] andS2

[1,n] are

J1(x) =

{
(x− 1) log[(x− 1)/p] + (2 − x) log[(2 − x)/(1 − p)], x ∈ [1, 2],
+∞, x /∈ [1, 2].

J2(x) =

{
x/3 log[x/3p] + (1 − x/3) log[(3 − x)/(3 − 3p)], x ∈ [0, 3],
+∞, x /∈ [0, 3].

On the exponential scale a deviation happens in the most likely way. Hence, we have for allx ≥
max(1 + p, 3p) :

lim
n→∞

1

n
log P

(
Z[1,n] > nx

)
= lim

n→∞

1

n
log P

(
Y[1,n] > n(x− a)

)
= −I(x), (5.8)

whereI(x) = min(J1(x), J2(x)). This function is clearly not convex as shown on Figure 5.1 for
p = 1/3.
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FIG. 5.1 – Nonconvex rate function

We haveI(x + a) ≥ Λ∗(x) and these functions are distinct. Hence, in this case, the upper
bound given by Gärtner-Ellis Theorem is not tight.
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There is no hope to find a general large deviation theory of subadditive processes where the rate
function would be given by the convex conjugate of the logarithmic moment generating function.
Another example (leading to the same conclusion) can be found in [80]. In their work, Seppäläinen
and Yukich consider subadditive Euclidean functionals that are regular nearly additive processes.
This property allows them to derive a LDP for such functionals. In our framework, such an ap-
proach is not valid since it cannot handle previous example.

Our example provides a simple illustration of a limitation inherent in the convex methodology :
the upper rate function is the best possible convex upper bound and does not necessary coincide
with the actual rate function. A similar phenomena in the context of mixture of probability mea-
sures was observed by Dinwoodie and Zabell in [33].

We end this section by showing that the information given by the scaled moment generating
function is not enough to prove a LDP. We modify our example inorder to get two independent
subadditive processes with the same scaled moment generating function but with different rate
functions.

Consider the following sequence{σ3
i } of i.i.d. random variables independent of previously

defined random variables,

σ3
i = kXq

i + y,

with {Xq
i } a sequence of i.i.d. Bernoulli random variablesP(Xq

i = 1) = q = 1 − P(Xq
i = 0).

With the same notation as above, we takeZ̄[1,n] = max1≤ℓ≤j≤n

{

S1
[1,ℓ] + S2

[ℓ,j] + S3
[j,n]

}

.

With the following choice of parameters :p = 1/3, q = 1/2, k = 2 andy = 1/5 we have
Λ3(θ) ≤ max(Λ1(θ), Λ2(θ)). Hence the processesZ[1,n] andZ̄[1,n] have the same scaled moment
generating function but they clearly have different rate functions as shown on Figure 5.2.
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FIG. 5.2 – Same moment generating function with different rate functions

This very simple example shows the asymmetry in the large deviation behavior of the upper
and lower tails of a subadditive process. In particular, thefollowing result follows directly from
Hammersley’s work [55] :
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Proposition 20. Under assumption(A2) and if

E
[
exp(θY[1,n])

]
<∞,

for some0 ≥ θ ≥ τ , τ < 0 and all r. Then the limits,

ψ(x) = lim
n→∞

1

n
log P(Y[1,n] ≤ nx) and, Λ(θ) = lim

n→∞

1

n
log E exp(θY[1,n]),

exist for allx and all θ ≤ 0 and satisfy

ψ(x) = inf
θ
{Λ(θ) − θx} and, Λ(θ) = sup

x
{ψ(x) + θx}.

This results allows Grossmann and Yakir [54] to prove a similar result to ours but for the large
deviations of the global maxima of independent super-additive processes. We should stress that
Proposition 20 leaves open the question : for what values ofx is it the case thatψ(x) < 0 ? In
particular, Grimmett gives in [53], an example of a subadditive process for which it is not the case

thatψ(µ− ǫ) < 0 (whereµ = limn
Y[1,n]

n ).

5.2.3 Proofs

Moment generating function

Lemma 27. Under the foregoing assumption, the following limit

Λ(θ) = lim
n→∞

1

n
log E

[

eθY[1,n]

]

,

exists inR ∪ {+∞} for all θ ≥ 0. Λ(.) is a proper convex function. Further the domain ofΛ is
given by{θ ≥ 0, Λ(θ) <∞} = {θ ≥ 0, E[eθY[1,1] ] <∞} ⊃ [0, η) whereη is defined in(A3).

Proof. Let

Λn(θ) = log E

[

eθ
Y[1,n]

n

]

. (5.9)

Thanks to the subadditive property ofY , we have,

Y[1,n+m] ≤ Y[1,n] + Y[n+1,n+m],

andY[1,n] andY[n+1,n+m] are independent. Hence forθ ≥ 0, we have,

Λn+m((n+m)θ) ≤ Λn(nθ) + Λm(mθ).

Hence we can define for anyθ ≥ 0,

Λ(θ) = lim
n→∞

1

n
log E

[

eθY[1,n]

]

= lim
n→∞

Λn(nθ)

n
= inf

n≥1

Λn(nθ)

n
,

as an extended real number. The fact thatΛ is a proper convex function follows from Lemma 2.3.9
of [32]. The last fact follows from Assumption(A3) and,

1

n
log E

[

eθY[1,n]

]

≤ log E

[

eθY[1,1]

]

for θ ≥ 0.

2
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Lemma 28. Under the foregoing assumptions, we haveθ∗ > 0 and

Λ(θ) < 0 if θ ∈ (0, θ∗),

Λ(θ) > 0 if θ > θ∗.

Proof. Let

θn = sup{θ > 0, Λn(nθ) < 0}. (5.10)

We fix n such that

E[Y[1,n]] < 0.

We first show thatθn > 0 and

Λn(nθ) < 0 if θ ∈ (0, θn), (5.11)

Λn(nθ) > 0 if θ > θn (5.12)

The functionθ 7→ Λn(nθ) is convex, continuous and differentiable on[0, η). Hence we have

Λn(nδ) = δE[Y[1,n]] + o(δ),

which is less than zero for sufficiently smallδ > 0. Hence, the set over which the supremum in the
definition ofθn is taken is not empty andθn > 0. Now (5.11) and (5.12) follow from the definition
of θn, the convexity ofθ 7→ Λn(nθ) and the fact thatΛn(0) = 0.

We now show thatθn → θ∗ asn→ ∞. We have forθ ≥ 0

lim
n→∞

Λn(nθ)

n
= inf

n≥1

Λn(nθ)

n
= Λ(θ).

Hence forθ ≥ 0, we haveΛn(nθ)
n ≥ Λ(θ) and

∀θ ∈ (0, θn), Λ(θ) ≤ Λn(nθ)

n
< 0.

This implies thatθ∗ ≥ θn > 0. If θ∗ <∞, we can chooseǫ > 0 such thatθ∗ − ǫ > 0 and then we
haveΛn(n(θ∗− ǫ))/n → Λ(θ∗− ǫ) < 0. Hence for sufficiently largen, we haveΛn(n(θ∗−ǫ))

n < 0,
henceθ∗ − ǫ ≤ θn, and we proved thatθn → θ∗. Λ(.) is a convex function and sinceΛ(0) = 0,
the lemma follows.

If θ∗ = ∞, we still haveθn → ∞ (that will be needed in proof of Lemma 29) by the same
argument as above withθ∗ − ǫ replaced by any real number.

2

Upper bound

Lemma 29. Under the foregoing assumptions, we have

lim sup
x→∞

1

x
log P(M > x) ≤ −θ∗.
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Proof. For anyL ≥ 1, we denote forn ≥ 0,

Vn(L) := max{Y[nL+1,nL+1], Y[nL+1,nL+2], . . . Y[nL+1,(n+1)L]},

and we have, forL such thatE[Y[1,L]] < 0,

M ≤ max

{

V0(L), sup
n≥0

(
n∑

i=0

Y[iL+1,(i+1)L] + Vn+1(L)

)}

=: U(L).

and the right-hand term is almost surely finite.
We will show that under previous assumptions, we have

lim sup
x→∞

1

x
log P(U(L) > x) ≤ −θL, (5.13)

whereθL is defined as in (5.10).
Thanks to Lemma 28 we know thatθL → θ∗ asL tends to infinity, hence the lemma will

follow.
We now prove (5.13). We define

S[0,n](L) =

n∑

i=0

Y[iL+1,(i+1)L].

For all θ andǫ > 0, there is a finite positive constantA such that,

E

[

eθS[0,n](L)
]

≤ Ae(n+1)(ΛL(Lθ)+ǫ).

The constantA depends onθ andǫ, but this is suppressed in the notation.
Let θ ∈ (0, θL), we haveΛL(Lθ) < 0 see proof of Lemma 28.
We have (with the convention that the constantA differs from line to line but is always finite),

E

[

eθU(L)
]

= E

[

max

{

eθV0(L), sup
n≥0

eθS[0,n](L)+Vn+1(L)

}]

≤ E

[

eθV0(L)
]

+ E

[

sup
n≥0

eθS[0,n](L)+Vn+1(L)

]

≤ E

[

eθV0(L)
]



1 +
∑

n≥0

E

[

eθS[0,n](L)
]





≤ E

[

eθV0(L)
]



1 +
∑

n≥1

Aen(ΛL(Lθ)+ǫ)



 .

Sinceθ ∈ (0, θL), we can chooseǫ > 0 such that

ΛL(Lθ) + ǫ < 0,

and thanks to Lemma 27, we have

E

[

eθV0(L)
]

≤ E

[

eθY[1,1]

]

+
(

E

[

eθY[1,1]

])2
+ · · · +

(

E

[

eθY[1,1]

])L
<∞.
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Therefore,E
[
eθU(L)

]
≤ A for some finite constantA. Hence by Chernoff’s inequality,

P (U(L) > x) ≤ e−θx
E

[

eθU(L)
]

≤ Ae−θx.

Since the above holds for all0 < θ < θL, we get

lim sup
x→∞

1

x
log P (U(L) > x) ≤ −θL.

2

Lower Bound

We take the following notation :Pn(A) = P(Y[1,n] ∈ A), and the same convention forP̂θ,n

defined forθ such thatΛn(nθ) <∞, as the transformed measure :

P̂θ,n := eθY[1,n]e−Λn(nθ)
Pn.

The functionθ 7→ Λ(θ) is convex, hence the left-hand derivativesΛ′(θ−) and the right-hand
derivativesΛ′(θ+) exist for all θ > 0. Moreover, we haveΛ′(θ−) ≤ Λ′(θ+) and the function
θ 7→ 1

2(Λ′(θ−)+Λ′(θ+)) is non-decreasing, henceΛ′(θ) = Λ′(θ−) = Λ′(θ+) except forθ ∈ ∆,
where∆ is at most countable.

The following lemma is similar to Lemma 10 of Zerner [86],

Lemma 30. Letθ > 0, andu < v such that

u < Λ′(θ−) ≤ Λ′(θ+) < v <∞.

Then

lim
n→∞

P̂θ

(
Y[1,n]

n
∈ (u, v)

)

= 1. (5.14)

Proof. First note thatΛ′(θ+) is well defined hence there existsy > 0 such thatΛ(θ+y) <∞,
henceΛn(n(θ + y)) <∞, for all n sufficiently large. We have for all0 < x < y,

1

n
log P̂θ

(
Y[1,n] ≥ nv

)
= −Λn(nθ)

n
+

1

n
log E

[

e(θ+x)Y[1,n]e−xY[1,n] , Y[1,n] ≥ nv
]

≤ −Λn(nθ)

n
+

Λn(n(θ + x))

n
− xv,

Hence, we have

lim sup
n→∞

1

n
log P̂θ

(
Y[1,n] ≥ nv

)
≤ −

(

v − Λ(θ + x) − Λ(θ)

x

)

x,

which is negative for smallx. A corresponding statement holds for the event{Y[1,n] ≤ nu}, this
implies (5.14). 2

Lemma 31. Under the foregoing assumptions, we have

lim inf
x→∞

1

x
log P(M > x) ≥ −θ∗.
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Proof.
We consider first the case where there existsθ > θ∗ such thatΛ(θ) <∞. In this case we have

Λ(θ∗) = 0 andΛ′(θ∗+) > 0. To prove this, assume thatΛ′(θ∗+) = 0. Takeθ < θ∗, thanks to
Lemma 28, we haveΛ(θ) < 0. Chooseǫ > 0 such that0 < Λ(θ∗ + ǫ) < ǫ|Λ(θ)|. We have

Λ(θ∗ + ǫ)

ǫ
<

−Λ(θ)

θ∗ − θ
,

which contradicts the convexity ofΛ(θ).
Hence, we can findt ≤ θ∗ + ǫ such that

0 < Λ(t), t /∈ ∆.

Note that these conditions implyt > θ∗ andΛ′(t) ≥ Λ′(θ∗+) > 0.
Moreover for anyα > 0, ǫ > 0, we have

P
(
Y[1,n] > nα

)
≥ eΛn(nt)e−nt(α+ǫ)

P̂t

(
Y[1,n]

n
∈ (α,α + ǫ)

)

.

Fix α := Λ′(t) − ǫ/2 > 0. Givenx > 0, definen := ⌊x/α⌋. We have

P(M > x) ≥ P(Y[1,n] ≥ nα),

hence we have

1

x
log P(M > x) ≥ 1

nα

(

Λn(nt) − nt(α+ ǫ) + log P̂t

(
Y[1,n]

n
∈ (α,α + ǫ)

))

Taking the limit inx andn (while α is fixed) gives thanks to Lemma 5.14

lim inf
x→∞

1

x
log P(M > x) ≥ 1

α
(Λ(t) − t(α+ ǫ))

≥ −(θ∗ + ǫ)
(α+ ǫ)

α
.

We consider now the case where for allθ > θ∗, we haveΛ(θ) = ∞.
Fix K > 0 and letP̃K

n be the law ofY[1,n] conditioned on{Yi ≤ K, i = 1, . . . , n}, where we
denoteYi = Y[i,i]. Then for alln, we have

Pn(A) ≥ P̃
K
n (A)P(Y1 ≤ K)n.

Thanks to subadditivity, we havẽPK(Y[1,n] ≤ nK) = 1 and the following moment generating
function is bounded, forθ ≥ 0,

Λ̃K
n (θ) := log Ẽ

K
[

eθY[1,n]

]

≤ nθK.

Moreover, we have

Λ̃K
n (θ) = log E

[

eθY[1,n] , Yi ≤ K, i = 1, . . . , n
]

− n log P(Y1 ≤ K)

=: ΛK
n (θ) − n log P(Y1 ≤ K).
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Thanks to subadditivity, we have

eθY[1,n+m]11{Yi≤K, i=1,...,n+m} ≤ eθY[1,n]11{Yi≤K, i=1,...,n}e
θY[n+1,n+m]11{Yi≤K, i=n+1,...,n+m},

hence thanks to the independence, we can define,

Λ̃K(θ) := lim
n→∞

Λ̃K
n (nθ)

n

= lim
n→∞

ΛK
n (nθ)

n
− log P(Y1 ≤ K)

=: ΛK(θ) − log P(Y1 ≤ K).

Let θ̃K = sup{θ > 0, Λ̃K(θ) < 0}.
Thanks to the preceding proof, there existsα > 0 such that

lim inf
n→∞

1

n
log P̃

K
n ([α,∞)) ≥ −(θ̃K + ǫ)(α+ ǫ).

Hence we have

lim inf
n→∞

1

n
log Pn([α,∞)) ≥ −(θ̃K + ǫ)(α + ǫ) + log P(Y1 ≤ K). (5.15)

Note that for any fixedθ, the functionΛK(θ) is nondecresing in K andlimK→∞ΛK(θ) =
Λ(θ). Hence we havẽΛK(θ∗ + ǫ) → ∞ asK tends to infinity. Hence for sufficiently largeK, we
haveΛ̃K(θ∗ + ǫ) > 0 and this implies that̃θK ≤ θ∗ + ǫ.

Hence dividing byα and taking the limitK → ∞ in (5.15) gives :

lim inf
x→∞

1

x
log P(M > x) ≥ 1

α
lim inf
n→∞

1

n
log Pn([α,∞)) ≥ −(θ∗ + 2ǫ)

α+ ǫ

α
,

and the lemma follows. 2

Proof of Corollary 3

Proof.
We have only to show thatθ∗ = infα>0

I(α)
α . Thanks to Varadhan’s Integral Lemma (see

Theorem 4.3.1 in [32]), we have

lim
n→∞

1

n
log E

[

eθY[1,n]

]

= Λ(θ) = sup
x
{θx− I(x)} =: I∗(θ),

for θ < θ∗ + ǫ.
Thanks to Lemma 28, we have forǫ positive,0 > Λ(θ∗ − ǫ) ≥ (θ∗ − ǫ)x− I(x), from which

we get

inf
α>0

I(α)

α
≥ θ∗.

Forθ∗+ ǫ > θ > θ∗, we haveΛ(θ) > 0 thanks to Lemma 28. Hence there existsα∗ ∈ R such
thatθα∗ − I(α∗) > 0. SinceI is non-negative andθ > 0, we haveα∗ > 0 and,

inf
α>0

I(α)

α
≤ I(α∗)

α∗
< θ.
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Since we took anyθ∗ + ǫ > θ > θ∗, we proved

inf
α>0

I(α)

α
≤ θ∗.

2

Estimating tails

In this paper, we are interested in estimating tail probabilities. As in [18], we introduce (Λ∗

denotes the convex conjugate ofΛ),

Λ+(θ) =

{
Λ(θ), if θ ≥ 0,
+∞, if θ < 0.

Λ∗+(x) =

{
Λ∗(x), if x ≥ γ(0) − a,

0, if x < γ(0) − a.

Lemma 32. We have

Λ∗+(x) = sup
θ∈R

{
θx− Λ+(θ)

}
,

and the functionΛ∗+(x) is non-decreasing inx.

Proof. We show thatΛ∗(γ(0) − a) = 0 and for all x ≥ γ(0) − a, we haveΛ∗(x) =
supθ≥0 {θx− Λ(θ)}, from which the lemma follows. SinceΛn (defined in (5.9)) is convex and
differentiable in 0, we haveΛn(θ) ≥ Λ′n(0)θ and taking the limit on both sides, we get

Λ(θ) ≥ θ(γ(0) − a).

Hence for allx ≥ γ(0) − a, we have forθ < 0

θx− Λ(θ) ≤ θ(γ(0) − a) − Λ(θ) ≤ Λ∗(γ(0) − a) = 0.

The monotonicity ofΛ∗+ follows from the monotonicity ofθx− Λ(θ) in x asθ is fixed. 2

5.3 Large deviations for monotone-separable networks

In this part, we consider a stochastic network described by the following framework
– The network has a single input point processN , with points{Tn} ; for all m ≤ n ∈ N , let
N[m,n] be the restriction ofN , namely the point process with points{Tℓ}m≤ℓ≤n.

– The network has a.s. finite activity for all finite restrictions ofN : for all m ≤ n ∈ N , let
X[m,n](N) be the time of last activity in the network, when this one starts empty and is fed
byN[m,n]. We assume that for all finitem andn as above,X[m,n] is finite.

We assume that there exists a set of functions{fℓ}, fℓ : Rℓ ×Kℓ → R, such that :

X[m,n](N) = fn−m+1{(Tℓ, ζℓ), m ≤ ℓ ≤ n}, (5.16)

for all n,m andN , where the sequence{ζn} is that describing service times and routing decisions.
We say that a network described as above is monotone-separable if the functionsfn are such

that the following properties hold for allN :
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1. Causality : for all m ≤ n,

X[m,n](N) ≥ Tn;

2. External monotonicity : for all m ≤ n,

X[m,n](N
′) ≥ X[m,n](N),

wheneverN ′ := {T ′n} is such thatT ′n ≥ Tn for all n, a property which we will write
N ′ ≥ N for short ;

3. Homogeneity :for all c ∈ R and for allm ≤ n

X[m,n](N + c) = X[m,n](N) + c;

4. Separability : if for all m ≤ ℓ < n,X[m,ℓ](N) ≤ Tℓ+1, then

X[m,n](N) = X[ℓ+1,n](N).

5.3.1 Tail asymptotics of the maximal dater

Stability and stationary maximal daters

In this section, we summarize the main results of Baccelli and Foss [13].
By definition, form ≤ n, the[m,n] maximal dater is

Z[m,n](N) := X[m,n](N) − Tn = X[m,n](N − Tn).

Note thatZ[m,n](N) is a function of{ζl}m≤ℓ≤n and{τl}m≤ℓ≤n only, whereτn = Tn+1 − Tn. In
particular,Zn := Z[n,n](N) is not a function ofN (which makes the notation consistent).

Under the above conditions, the variablesX[m,n] andZ[m,n] satisfy the internal monotonicity
property : for allN ,m ≤ n,

X[m−1,n](N) ≥ X[m,n](N),

Z[m−1,n](N) ≥ Z[m,n](N).

In particular, the sequence{Z[−n,0](N)} is non-decreasing inn. Put

Z := Z(−∞,0] = lim
n→∞

Z[−n,0](N) ≤ ∞.

Lemma 33. [13] Subadditive property of Z
Under the above conditions,{Z[m,n]} satisfies the following subadditive property : for allm ≤
ℓ < n, for all N ,

Z[m,n](N) ≤ Z[m,ℓ](N) + Z[ℓ+1,n](N).

Assume the variables{τn, ζn} are random variables defined on a common probability space
(Ω,F,P, θ), whereθ is an ergodic, measure-preserving shift transformation, such that(τn, ζn) ◦
θ = (τn+1, ζn+1). The following integrability assumptions are also assumedto hold :

E[τn] := λ−1 = a <∞, E[Zn] <∞.

Denote byQ = {T ′n} the degenerate input process withT ′n = 0 a.s. for alln.
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Lemma 34. [13] Under the foregoing ergodic assumption, there exists anon-negative constant
γ(0) such that

lim
n→∞

Z[−n,−1](Q)

n
= lim

n→∞

E
[
Z[−n,−1](Q)

]

n
= γ(0) a.s.

The main result on the stability region is the following :

Theorem 12. [13] Under the foregoing ergodic assumptions, eitherZ = ∞ a.s. orZ <∞ a.s.

(a) If λγ(0) < 1, thenZ <∞ a.s.

(b) If Z <∞ a.s., thenλγ(0) ≤ 1.

A proof of this result can be found in [10] see Theorem 2.11.3.We give in Section 5.3.2 an
upper bound and a lower bound that allow to prove Theorem 12. These bounds will be used for
the study of large deviations.

Moment generating function and tail asymptotics

In the rest of the paper, we will make the following assumptions (that are of course compatible
with previous stationary ergodic assumptions) :

– Assumption(AA) on the arrival process into the network{Tn} :
{Tn} is a renewal process independent of the service time and routing sequences{ζn}.
Moreover for all realθ, the function

ΛT (θ) = log E

[

eθ(T1−T0)
]

is finite in a neighborhood of0.
– Assumption(AZ) : the sequence{ζn} is a sequence of i.i.d. random variables, such that the

random variableZ0 := Z[0,0] is light-tailed, i.e. forθ in a neighborhood of0,

E[eθZ0 ] < +∞.

– Stability :γ(0) < a := E[T1 − T0] see Theorem 12.
The subadditive property ofZ directly implies the following property (its proof followsthe

lines of the proof of Lemma 27) : for any monotone separable network that satisfies assumption
(AZ) , the following limit

ΛZ(θ) = lim
n→∞

1

n
log E

[

eθZ[1,n](Q)
]

,

exists inR ∪ {+∞} for all θ. Further, the origin belongs to the interior of its domainDΛZ
=

{θ, ΛZ(θ) <∞}. ΛZ(.) is a proper convex function.
Note that the subadditive property ofZ is valid regardless of the point processN (see Lemma

33). Like in the study of the stability of the network, it turns out that the right quantity to look at
isZ[m,n](Q) whereQ is the degenerate input point process with all its point equal to 0.

Theorem 13. Under previous assumptions, we have

lim
x→∞

1

x
log P(Z > x) = −θ∗ < 0,

whereθ∗ = sup {θ > 0, ΛT (−θ) + ΛZ(θ) < 0}.
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It is relatively easy to see that under our light-tailed assumption the stationary maximal dater
Z will be light-tailed (see Corollary 3 in [14]). Theorem 13 shows that the tail distribution ofZ is
indeed exponentially decaying for any monotone-separablenetwork. But the main contribution of
this theorem is to give an explicit way of computing this rateof decay. It is the goal of the third part
of this paper to show that it is actually possible to calculate the logarithmic moment generating
functionΛZ for various categories of networks.

In the context of heavy-tailed asymptotics (and more precisely for subexponential distribu-
tions), the moment generating function is infinite for allθ > 0. There is no general result for the
tail asymptotics of the maximal dater of a monotone separable network. However the methodology
derived by Baccelli and Foss [14] allows to get exact asymptotics for (max,plus)-linear networks
[16] and generalized Jackson networks [15].

5.3.2 UpperG/G/1/∞ queue and lower bound for the maximal dater

The material of this section is not new and may be found in various references (that are given
in what follows). For the sake of completeness, we include all the proofs. We derive now upper
and lower bounds for the stationary maximal daterZ. These bounds allow to prove Theorem 12
and will be the main tools for the study of large deviations.

We first derive a lower bound that will give us part (b) of Theorem 12.

Proposition 21. We have the following lower bound

Z ≥ sup
n≥0

(
Z[−n,0](Q) + T−n − T0

)
.

Proof.
Forn fixed, letNn be the point process with pointT n

j = T−n − T0, for all j. Then

Z[−n,0] = X[−n,0](N) − T0 ≥ X[−n,0](N
n)

= X[−n,0](Q) + T−n − T0 = Z[−n,0](Q) + T−n − T0,

where we used external monotonicity in the first inequality and homogeneity between the first and
second line. 2

Proof.of Theorem 12 part (b)
Suppose thatλγ(0) > 1, then we have

lim inf
n→∞

Z[−n,0](N)

n
≥ γ(0) − a > 0,

which concludes the proof of part (b). 2

We assume now thatγ(0) < a. We pick an integerL ≥ 1 such that

E
[
Z[−L,−1](Q)

]
< La, (5.17)

which is possible in view of Lemma 34. Without loss of generality, we assume thatT0 = 0. Part
(a) of Theorem 12 will follow from the following proposition(that can be found in [14]) :

Proposition 22. The stationary maximal daterZ is bounded from above by the stationary response
timeR̂ in theG/G/1/∞ queue with service times

ŝn := Z[L(n−1)+1,Ln](Q)
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and inter-arrival timesτ̂n := TLn − TL(n−1), whereL is the integer defined in (5.17). Since

E[ŝ1] < E[τ̂1] = La, this queue is stable. With the convention
∑−1

0 = 0, we have,

Z ≤ ŝ0 + sup
k≥0

−1∑

i=−k

(ŝi − τ̂i+1) .

Proof.
To an input processN , we associate the following upper bound process,N+ = {T+

n } ≥ N ,
whereT+

n = TkL if n = (k−1)L+1, . . . , kL. Then for alln, since we assumedT0 = 0, we have
thanks to the external monotonicity,

X[−n,0](N) = Z[−n,0](N) ≤ X[−n,0](N
+) = Z[−n,0](N

+). (5.18)

We show that for allk ≥ 1,

Z[−kL+1,0](N
+) ≤ ŝ0 + sup

−k+1≤i≤0

−1∑

j=−i

(ŝj − τ̂j+1). (5.19)

This inequality will follow from the two next lemmas

Lemma 35. AssumeT0 = 0. For anym < n ≤ 0,

Z[m,0](N) ≤ Z[n,0](N) + (Z[m,n−1](N) − τn−1)
+.

Proof.
Assume first thatZ[m,n−1](N)− τn−1 ≤ 0, which is exactlyX[m,n−1](N) ≤ Tn. Then by the

separability property, we have

Z[m,0](N) = X[m,0](N) = X[n,0](N) = Z[n,0](N).

Assume now thatZ[m,n−1](N)−τn−1 > 0. LetN ′ = {T ′j} be the input process defined as follows

∀j ≤ n− 1, T ′j = Tj ,

∀j ≥ n, T ′j = Tj + Z[m,n−1](N) − τn−1.

Then we haveN ′ ≥ N andX[m,n−1](N
′) ≤ T ′n, hence by the external monotonicity, the separa-

bility and the homogeneity properties, we have

Z[m,0](N) = X[m,0](N) ≤ X[m,0](N
′)

= X[n,0](N
′) = X[n,0](N) + Z[m,n−1](N) − τn−1

= Z[n,0](N) + Z[m,n−1](N) − τn−1.

2

From this lemma we derive directly

Lemma 36. AssumeT0 = 0. For anyn < 0,

Z[n,0](N) ≤ sup
n≤k≤0

(
−1∑

i=k

(Zi − τi+1)

)

+ Z0,

with the convention
∑−1

0 = 0
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Applying Lemma 36 toZ[−kL+1,0](N
+) gives (5.19). We now return to the proof of Proposi-

tion 22. We have

Z = lim
k→∞

Z[−kL+1,0]

= sup
k≥0

Z[−kL+1,0](N)

≤ sup
k≥0

Z[−kL+1,0](N
+) thanks to (5.18)

≤ sup
k≥0



ŝ0 + sup
−k+1≤i≤0

−1∑

j=−i

(ŝj − τ̂j+1)



 = R̂, thanks to (5.19).

from Lemma 36. 2

5.3.3 Proofs of the tail asymptotics

Recall that we defined

Λ(θ) = ΛT (−θ) + ΛZ(θ).

Note thatΛZ(.) andΛT (.) are proper convex functions, henceΛ(.) is a well defined convex func-
tion. It is the scaled moment generating function of the process{Y[0,n] := Z[−n,0](Q)+T−n−T0}
which satisfies the assumptions of the Part 5.2. Note in particular that by the monotonicity pro-
perty, we have forn ≥ 0,

Z[−n,0](Q) ≥ Z[0,0](Q),

which directly implies Assumption(A3). The fact thatθ∗ > 0 follows directly from Lemma 28.

Lower Bound

Lemma 37. Under previous assumptions, we have

lim inf
x→∞

1

x
log P(Z > x) ≥ −θ∗.

Proof. We have (see Proposition 21)

Z ≥ sup
n

{
Z[−n,0](Q) + T−n − T0

}
= sup

n
Y[0,n]. (5.20)

Hence the lemma follows directly from Theorem 11. 2

Upper bound

Lemma 38. Under previous assumptions, we have

lim sup
x→∞

1

x
log P(Z > x) ≤ −θ∗.
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Proof. ForL sufficiently large, we have with the convention
∑−1

0 = 0 (see Proposition 22),

Z ≤ sup
n≥0

(
−1∑

i=−n

ŝi(L) − τ̂i+1(L)

)

+ ŝ0(L) =: V (L) + ŝ0(L).

We will show that under previous assumptions, we have

lim sup
x→∞

1

x
log P(V (L) + ŝ0(L) > x) ≤ −θL, (5.21)

whereθL is defined as in (5.10) and the lemma will follow sinceθL → θ∗ asL tends to infinity
(see Lemma 27).

As in the proof of Lemma 29, for allθ ∈ (0, θL), we have

max
{

E

[

eθŝ0(L)
]

,E
[

eθV (L)
]}

<∞.

Hence forθ ∈ (0, θL), we haveE
[
eθ(W (L)+ŝ0(L))

]
= E

[
eθW (L)

]
E
[
eθŝ0(L)

]
≤ A for some finite

constantA. Hence by Chernoff’s inequality,

P (W (L) + ŝ0(L) ≥ x) ≤ e−θx
E

[

eθ(W (L)+ŝ0(L))
]

≤ Ae−θx.

Since the above holds for all0 < θ < θL, we get

lim sup
x→∞

1

x
log P (W (L) + ŝ0(L) ≥ x) ≤ −θL.

2

5.4 Case of study I : (max, plus)-linear systems

5.4.1 (Max, plus)-linear systems and monotone-separable networks

We now study in more details a specific class of monotone-separable networks.

Framework

The (max, plus) semi-ringRmax is the setR ∪ {−∞}, equipped withmax, written additively
(i.e.,a⊕ b = max(a, b)) and the usual sum, written multiplicatively (i.e.,a⊗ b = a+ b). The zero
element is−∞.

For matrices of appropriate sizes, we define(A⊕B)(i,j) = A(i,j)⊕B(i,j) := max(A(i,j), B(i,j)),
(A⊗B)(i,j) =

⊕

k A
(i,k) ⊗B(k,j) := maxk(A

(i,k) +B(k,j)).
Let s andm be arbitrary fixed natural numbers such thatm ≤ s. We assume that two matrix-

valued mapsA andB are given :

A : Rm
+ → M(s,s) (Rmax)

ζ = (ζ(1), . . . , ζ(m)) 7→ A(ζ),

B : Rm
+ → M(s,1) (Rmax)

ζ = (ζ(1), . . . , ζ(m)) 7→ B(ζ),
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where the matrixA = A(ζ) has the following block structure :

A =














A(1, 1) | −∞ | −∞ | −∞
− − − − − − −

A(2, 1) | A(2, 2) | −∞ | −∞
− − − − − − −

...
...

...
− − − − − − −

A(d, 1) | A(d, 2) | | A(d, d)














,

where eachA(ℓ, ℓ) is an irreducible matrix.
The (max, plus)-linear system associated toA and B

Given a marked point processN = {(Tn, ζn)}−∞<n<∞, with ζn = (ζ
(1)
n , . . . , ζ

(m)
n ) ∈ Rm

+ ,
we can define the sequence of matrices{An} and{Bn} by

An := A(ζn), Bn := B(ζn).

To the sequences{An}, {Bn}, and{Tn}, we associate the following (max, plus)-linear recur-
rence :

Xn+1 = An+1 ⊗ Xn ⊕Bn+1 ⊗ Tn+1, (5.22)

where{Xn, n ∈ Z} is a sequence of state variables of dimensions. The stationary solution to this
equation is constructed as follows. We write

Y[m,n] :=
⊕

m≤k≤n

D[k+1,n] ⊗Bk ⊗ Tk = max
m≤k≤n

(
D[k+1,n] ⊗Bk + Tk

)
, (5.23)

where fork < n, D[k+1,n] =
⊗k+1

j=nAj = An ⊗ · · · ⊗ Ak+1 andD[n+1,n] = E, the identity
matrix (the matrix with all its diagonal elements equal to 0 and all its non-diagonal elements equal
to −∞). It is easy to check thatY[m,m] = Bm ⊗ Tm, and for alln ≥ m,

Y[m,n+1] = An+1 ⊗ Y[m,n] ⊕Bn+1 ⊗ Tn+1.

In view of (5.23), the sequence{Y[−n,0]} is non-decreasing inn, so that we can define the
stationary solution of (5.22),

Y(−∞,0] := lim
n→∞

Y[−n,0] ≤ ∞.

The mappingN = {(Tn, ζn)} 7→ X[m,n](N) =
⊕

1≤i≤s Y
(i)
[m,n] defines a stochastic network. By

definition the[m,n] maximal dater is

Z[m,n](N) =
⊕

1≤i≤s

Y
(i)
[m,n] − Tn.

We give in the next section the assumptions onA andB under which this network is monotone-
separable.
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Conditions for a monotone-separable network

We now give the assumptions onA andB :

(MS1) For all i, there existsk such thatζi = A(k,k)(ζ). And each submatrixA(ℓ, ℓ) has at
least one diagonal coefficient which is not−∞.

(MS2) Any coefficientA(i,j)(ζ) or B(i)(ζ) that is not−∞ is of the form :

⊕

u

⊗

k∈Ku

ζ(k),

for some setsKu ⊂ [1,m].

(MS3) We have for allζ ∈ Rm
+ ,

A(ζ) ⊗ 0 = B(ζ) ⊕ 0,

where0 is the vector with all its entries equal to0.

We stress that any FIFO event graph with a single input fits into our framework ; see [11] for
details on this class.

Note that the random sequence of matrices{An, Bn} has fixed structure, i.e. for eachi, j,

A
(i,j)
n (resp.B(i)

n ) is equal to−∞ for all n or is non-negative for alln. Moreover, each irreducible
matrix A(ℓ, ℓ) is aperiodic, i.e. there existsN < ∞ such thatA(ℓ, ℓ)N has all entries finite,
because of Assumption(MS1).

The following lemma shows that the conditions above define a monotone-separable network.

Lemma 39. The network associated with a (max,plus)-linear recurrence is monotone-separable
provided{An, Bn} has fixed structure andAn ⊗ 0 ≤ Bn ⊕ 0 for all n.

Proof.
The first three properties are immediate. Let us prove that separability holds. IfX[m,l](N) ≤

Tl+1, thenY[m,l] ≤ 0 ⊗ Tl+1.
So by monotonicity,

Al+1 ⊗ Y[m,l] ≤ Al+1 ⊗ 0 ⊗ Tl+1

≤ Bl+1 ⊗ Tl+1 ⊕ 0 ⊗ Tl+1.

Hence we have

Al+1 ⊗ Y[m,l] ⊕Bl+1 ⊗ Tl+1 ≤ Bl+1 ⊗ Tl+1 ⊕ 0 ⊗ Tl+1

Y[m,l+1] ≤ Y[l+1,l+1] ⊕ 0⊗ Tl+1. (5.24)

But maxiB
(i)
l+1 ≥ 0, hence we havemaxi Y

(i)
[l+1,l+1] ≥ Tl+1. And then

X[m,l+1](N) = max
i
Y

(i)
[m,l+1] ≤ max

i
Y

(i)
[l+1,l+1] = X[l+1,l+1](N).

We show by induction that for alln ≥ l + 1,

Y[m,n] ≤ Y[l+1,n] ⊕ 0⊗ Tl+1. (5.25)
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In view of (5.24), it is true forn = l + 1. Suppose it is true forn, then we have by monotonicity,

An+1 ⊗ Y[m,n] ≤ An+1 ⊗ Y[l+1,n] ⊕Bn+1 ⊗ Tl+1 ⊕ 0 ⊗ Tl+1

Y[m,n+1] ≤ Y[l+1,n+1] ⊕ 0 ⊗ Tl+1, sinceTn+1 ≥ Tl+1.

Now taking the maximum over the indices in (5.25) givesX[m,n](N) ≤ X[l+1,n](N), but the
converse inequality is clearly true in view of the definitionof the mappingX(.). Hence we have
finally

X[m,n](N) = X[l+1,n](N).

2

5.4.2 Tail asymptotics for (max,plus)-linear networks

We consider now a (max,plus)-linear network as described inthe above section (which is a
monotone-separable network). We assume moreover that the stochastic assumptions of Section
5.3.1.0 are valid. Namely stability holds and we can define the stationary maximal daterby

0 ≤ Z := Z(−∞,0] =
⊕

1≤i≤s

Y
(i)
(−∞,0] − T0 <∞. (5.26)

Moreover the sequence{ζn} is a sequence of i.i.d. random variables and we make the additional
assumption that each component of the vectorζn is independent of each other and that for alli,
for θ in a neighborhood of the origin,

E

[

eθζ
(i)
0

]

<∞.

Note that we haveZ0 =
⊕s

i=1B
(i)
0 ≤ ζ

(1)
0 + · · · + ζ

(d)
0 , hence this ensures that assumption(AZ)

holds.

Theorem 14. LetZ be the stationary maximal dater of a (max,plus)-linear network. Associated
to the irreducible matrices{An(ℓ, ℓ)}, we define the following function :

Λℓ(θ) = lim
n→∞

1

n
log E

[

eθ(An(ℓ,ℓ)⊗···⊗A1(ℓ,ℓ))(u,v)
]

,

where the limit exists inR ∪ {∞} and is independent ofu, v. Then we have

lim
x→∞

1

x
log P(Z > x) = −θ∗ < 0, (5.27)

whereθ∗ = min{θℓ} and theθℓ’s are defined as follows

θℓ = sup{θ > 0, Λℓ(θ) + ΛT (−θ) < 0}.

In a queueing context, the sequence of matrices{An(ℓ, ℓ)} corresponds to a specific ”com-
ponent” of the network. It is well-known that the stability of such a network is constraint by the
”slowest” component. Here we see that in a large deviations regime, the ”bad” behavior of the
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network is due to a ”bottleneck” component (which is not necessarily the same as the ”slowest”
component in average).

The computation of the functionΛℓ(θ) is not easy in general and will not be discussed here.
One practical question of interest would be to find good ways to estimate this function from the
statistics made on the traffic. We should stress that we made the assumptions that each component
of the vectorζn are independent of each other. This is of course not requiredto get the asymptotics
(5.27), however removing this assumptions will change the moment generating functionΛZ (given
here in Lemma 42) and hence the value ofθ∗ (see the example below). Note that if one removes
the assumptions of independence (inn) of the sequence of matrices(An, Bn), it is still possible to
get some results. In [68], specific techniques on gaussian processes allow to get some asymptotics
when the sequenceζn is driven by a fractional Brownian motion.

Example 6. Consider the (max,plus)-linear recursion associated withthe following sequence of
matrices :

An =










ζ(1)
n −∞ −∞ −∞

ζ
(1+2)
n ζ(2)

n −∞ −∞
ζ
(1+3)
n −∞ ζ(3)

n −∞
ζ
(1+2⊕3)
n ζ

(2)
n ζ

(3)
n 0










, Bn =








ζ
(1)
n

ζ
(1+2)
n

ζ
(1+3)
n

ζ
(1+2⊕3)
n







, (5.28)

where we used the shorthand notations,ζ
(i+j)
n = ζ

(i)
n +ζ

(j)
n andζ(i+j⊕k)

n = ζ
(i)
n +max{ζ(j)

n , ζ
(k)
n }.

It is clear that these matrices satisfy the required assumptions to belong to the monotone-
separable framework. We refer to Section 2.2.4 to see that this system corresponds to a tree
queueing network.

The associated irreducible matrices are of size one and boxed in (5.28), hence we have for
ℓ = 1, 2, 3,

Λℓ(θ) = log E

[

eθζ
(ℓ)
1

]

,

and Λ4(θ) = 0. Hence forℓ = 1, 2, 3, θℓ corresponds to the exponential rate of decay for the

supremum of the random walk :supn

∑n
i=0

(

ζ
(ℓ)
n − τn

)

, i.e. the stationary workload of a single

server queue with arrival processN and service times given by the sequence{ζ(ℓ)
n }n. As a special

case if eachζ(ℓ) has the same exponential distribution with mean1/µ and if the arrival process is
Poisson with rateλ < µ, we haveθℓ = µ− λ = θ∗.

Now assume that we haveζ(1)
n = ζ

(2)
n = ζ

(3)
n for eachn and the sequence{ζ(1)

n } is a sequence
of i.i.d random variables exponentially distributed with mean1/µ. We have the same marginal
probabilities as above but we are clearly not anymore in the framework of Theorem 14. However
the system is still monotone separable and we can apply results from Part 2 but we have to compute
the moment generating functionΛZ corresponding to these stochastic assumptions. In this simple
case, it is easy to see that

ΛZ(θ) = log
µ

µ− θ
,

for θ < µ/2 andΛZ(θ) = ∞ otherwise. Hence if we assume that the arrival process is Poisson
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with rateλ < µ, then we have

λ ≤ µ/2 ⇒ θ∗ = µ/2,

λ > µ/2 ⇒ θ∗ = µ− λ.

In particular note that in the caseλ ≤ µ/2, the condition on the tail (2) of Corollary 3 fails
whereas Theorem 11 still holds. For small values ofλ, the tail of the sojourn time is determined
by the total service requirement of a single customer.

5.4.3 Computation of the moment generating function

Auxiliary result

Lemma 40. We have

Z[0,n](Q) =
⊕

1≤i≤s

(
D[1,n] ⊗B0

)(i)
.

Proof.
From the definition, we have

Z[0,n](Q) =
⊕

1≤i≤s

⊕

0≤k≤n

(
D[k+1,n] ⊗Bk

)(i)
.

We will prove that for all0 ≤ k ≤ n,
⊕

1≤i≤s

(
D[1,n] ⊗B0

)(i) ≥
⊕

1≤i≤s

(
D[k+1,n] ⊗Bk

)(i)
, (5.29)

from which the lemma follows.
We have

B0 ≥ 0

A1 ⊗B0 ≥ A1 ⊗ 0 = B1 ⊕ 0,

iterating we get

D[1,n] ⊗B0 ≥ 0 ⊕Bn ⊕An ⊗Bn−1 ⊕D[n−1,n] ⊗Bn−2 ⊕ · · · ⊕D[2,n] ⊗B1.

Taking the supremum of all the components of the vector gives(5.29). 2

(Max,plus) algebra and computation of the moment generating function

We begin with a general result showing the existence of the functionΛℓ. Let {Mn} be an i.i.d.
sequence of irreducible aperiodic (max,plus)-matrices with fixed structure. We denote

M
(i,j)
[1,n] = (Mn ⊗ · · · ⊗M1)

(i,j) .

Lemma 41. The following limit exists inR ∪ {+∞} and is independent ofi andj,

ΛM (θ) = lim
n→∞

1

n
log E

[

e
θM

(i,j)
[1,n]

]

.
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Proof.
We denote

Λ(i,j)(θ, n) = log E

[

e
θM

(i,j)
[1,n]

]

.

We first takeθ ≥ 0. We have

Λ(i,j)(θ, n+m) = log E

[

e
θM

(i,j)
[1,n+m]

]

= log E

[

max
k

e
θM

(i,k)
[n+1,n+m]e

θM
(k,j)
[1,n]

]

≥ max
k

{

log E

[

e
θM

(i,k)
[n+1,n+m]

]

+ log E

[

e
θM

(k,j)
[1,n]

]}

= max
k

{

Λ(i,k)(θ,m) + Λ(k,j)(θ, n)
}

.

In particular forj = i, we have

Λ(i,i)(θ, n+m) ≥ Λ(i,i)(θ,m) + Λ(i,i)(θ, n).

Moreover thanks to the fixed structure assumption, there existsN such that forn ≥ N , we have
M

(i,j)
[1,n] > −∞ for all i andj, henceΛ(i,j)(θ, n) > −∞ and we have

lim
n→∞

1

n
Λ(i,i)(θ, n) = sup

n≥N

1

n
Λ(i,i)(θ, n) > −∞.

For arbitraryi andj, choosen,m ≥ N and note that

Λ(i,j)(θ, n+m) ≥ Λ(i,i)(θ, n) + Λ(i,j)(θ,m),

Λ(i,i)(θ, n+m) ≥ Λ(i,j)(θ, n) + Λ(j,i)(θ,m),

where all terms are inR ∪ {+∞}. Lettingn→ ∞ while keepingm fixed, it follows that

lim
n→∞

1

n
Λ(i,j)(θ, n) = lim

n→∞

1

n
Λ(i,i)(θ, n).

The arguments for the caseθ < 0 exactly parallels the one just given, but exploits (min,plus)-
inequalities rather than (max,plus)-inequalities. 2

We now computeΛZ(θ) for a (max,plus)-linear system. We introduce first some notations,

D[1,n](ℓ) =

1⊗

j=n

Aj(ℓ, ℓ) = An(ℓ, ℓ) ⊗ · · · ⊗A1(ℓ, ℓ)

Λℓ(θ) = lim
n→∞

1

n
log E

[

e
θD

(i,j)
[1,n]

(ℓ)
]

,

which does not depend oni andj as shown above.

Lemma 42. We have forθ ≥ 0

ΛZ(θ) = sup
ℓ

Λℓ(θ).
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Proof.
The lower bound follows directly from the following inequality : for all ℓ, we have

E

[

eθZ[0,n](Q)
]

≥ E

[

e
θ(Dℓ

[1,n]
)(i,j)

]

.

We now derive the upper bound.
We first introduce some notations :

1. LetΥ = {(n1, . . . , nd) ∈ Nd, n1+n2+· · ·+nd = n+1} and denoten(i, j) = ni+· · ·+nj

for i ≤ j.

2. Let∆ℓ denotes the size of the irreducible matrixA(ℓ, ℓ) and∆(i, j) = ∆i + · · · + ∆j for
i ≤ j.

We take the convention that ifi > j + 1 thenn(i, j) = 0, ∆(i, j) = 0 andD(α,β)
[i,j] = 0.

We decompose the productD[1,n] ⊗B0 as follows :

⊕

1≤i≤s

(
D[1,n] ⊗B0

)(i)
= max

{

B
(α0)
0 +D

(β1,α0)
[1,n1−1] +A(α1,β1)

n1
+

. . . +D
(βi+1,αi)
[n(1,i)+1,n(1,i+1)−1] +A

(αi+1,βi+1)
n(1,i+1) + . . .

+D
(βd+1,αd)
[n(1,d−1)+1,n(1,d)]

}

,

where the maximum is taken over all(n1, . . . , nd) ∈ Υ and with the following constraints for the
αi’s andβi’s : let j be the smallest integer such thatnj 6= 0, then

α0 ∈ [∆(1, j − 1) + 1,∆(1, j)]

αℓ ∈ [∆(1, ℓ− 1) + 1,∆(1, ℓ)], ∀ℓ,
βℓ ∈ [∆(1, ℓ) + 1,∆(1, ℓ + 1)], ∀ℓ.

Hence we have

⊕

1≤i≤s

(
D[1,n] ⊗B0

)(i) ≤ max
(n1,...,nd)∈Υ

max

{

max
i
B

(i)
0 +D

(β1,α0)
[1,n1−1] + max

i,j
A(i,j)

n1
+

. . . +D
(βi+1,αi)
[n(1,i)+1,n(1,i+1)−1] + max

i,j
A

(i,j)
n(1,i+1) + . . .

+D
(βd+1,αd)
[n(1,d−1)+1,n(1,d)]

}

,

where the maximum is taken with the same constraints as abovefor theαi’s andβi’s. We can
rewrite it as follows :

Z[1,n](Q) =
⊕

1≤i≤s

(
D[1,n] ⊗B0

)(i) ≤

max
(n1,...,nd)∈Υ

max
i
B

(i)
0 +

d∑

ℓ=1

max
i,j

A
(i,j)
n(1,ℓ) + max

d∑

i=1

D
(βi+1,αi)
[n(1,i)+1,n(1,i+1)−1].
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Hence we have

E

[

eθZ[0,n](Q)
]

= E

[

exp

{

θ max
1≤i≤s

(D[1,n] ⊗B0)
(i)

}]

≤ E

[

max
(n1,...,nd)∈Υ

exp θ

{

max
i
B

(i)
0 +

d∑

ℓ=1

max
i,j

A
(i,j)
n(1,ℓ) + max

d∑

i=1

D
(βi+1,αi)
[n(1,i)+1,n(1,i+1)−1]

}]

≤
∑

(n1,...,nd)∈Υ

E

[

exp θ

{

max
i
B

(i)
0 +

d∑

ℓ=1

max
i,j

A
(i,j)
n(1,ℓ) + max

d∑

i=1

D
(βi+1,αi)
[n(1,i)+1,n(1,i+1)−1]

}]

=




∑

(n1,...,nd)∈Υ

E

[

exp

{

θmax

d∑

i=1

D
(βi+1,αi)
[n(1,i)+1,n(1,i+1)−1]

}]



E

[

exp θ

{

max
i
B

(i)
0 +

d∑

ℓ=1

max
i,j

A
(i,j)
ℓ

}]

︸ ︷︷ ︸

δ(θ)

,

where we used independence in the last equality. Now observethat |Υ| =
(
n+1

d

)
≤ (n + 1)d and

that

max

d∑

i=1

D
(βi+1,αi)
[n(1,i)+1,n(1,i+1)−1] =

d∑

ℓ=1

max
i,j

D
(i,j)
[n(1,i)+1,n(1,i+1)−1](ℓ).

Hence we have

E

[

eθZ[0,n](Q)
]

≤ δ(θ)(n + 1)d sup
{(n1,...,nd)∈Υ}

d∏

ℓ=1

E

[

exp θmax
i,j

D
(i,j)
[1,nℓ]

(ℓ)

]

and taking thelog, we obtain

log E

[

eθZ[0,n](Q)
]

≤ log
(

δ(θ)(n+ 1)d
)

+ sup
{(n1,...,nd)∈Υ}

d∑

ℓ=1

log E

[

exp θmax
i,j

D
(i,j)
[1,nℓ]

(ℓ)

]

.

Assume thatΛℓ(θ) < ∞ for all ℓ implies log(δ(θ)) < ∞. Then for suchθ, there are positive
constants such that

log E

[

exp θmax
i,j

D
(i,j)
[1,nℓ]

(ℓ)

]

≤ nℓ(Λℓ(θ) + ǫ) +Kℓ.

Hence in this case, we have

lim
n→∞

1

n
log E

[

eθZ[0,n](Q)
]

≤ sup
ℓ

Λℓ(θ) <∞.

We now show thatΛℓ(θ) < ∞ for all ℓ implies log(δ(θ)) < ∞. In this case we have for all

i ∈ [1,m], E

[

eθζ
(i)
1

]

<∞ thanks to(A1), and then thanks to(A2), we have

max

(

max
i
B

(i)
1 ,max

α,β
A

(α,β)
1

)

≤
m∑

i=1

ζ
(i)
1 ,

hence the upper bound follows. 2
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5.5 Case of study II : Large Deviations for generalized Jackson net-
works

We first introduce some notations.
For (E, d,≤) a complete, separable metric space with partial order≤, we denote byD(E)

the space of cadlag non-decreasingE-valued functions defined onR+ with Skorohod (J1) topo-
logy and byC(E) the space of continuous non-decreasingE-valued functions defined onR+.
Restricted toC(E) the Skorohod topology is just the compact uniform topology.

For x, y ∈ RK , we writex ≤ y if x(i) ≤ y(i) for all i. We denote by∧ the minimum and
by ∨ the maximum inRK . ForX,Y ∈ D(RK

+ ), we writeX ≤ Y if X(t) ≤ Y(t) for all t ≥ 0
and for mapsF,G ∈ D(RK

+ )2, we denoteF ≤ G if F (X) ≤ G(X) for all X ∈ D(RK
+ ). For

x ∈ RK , we denote‖x‖ = ∨K
i=1x

(i) and forX ∈ D(RK
+ ), we denote‖X‖ = supt ‖X(t)‖. We

denoteD0(E) = {f ∈ D(E), f(0) = 0} andC0(E) = {f ∈ C(E), f(0) = 0}.
A piecewise linear function is a continuous function such that there exists a partitionτ =

(t0 = 0 < t1 < . . . ) with tk → ∞ and such that the function is linear on each interval(tk, tk+1).
For any functionf ∈ D(RK

+ ), we define the polygonal approximation off with step1/n as the
(piecewise linear) function

fn(t) = f

(⌊nt⌋
n

)

+ (nt− ⌊nt⌋)
(

f

(⌊nt⌋ + 1

n

)

− f

(⌊nt⌋
n

))

MK is the set of substochastic matrices of sizeK × K. ForM ∈ MK , we denote byρ(M)
its spectral radius, byM t its transpose andM (i) denotes the lineM (i) = (M (i,1), . . .M (i,K)).
In particular, we will identify a functionP ∈ D(MK) with its K componentsP(i) ∈ D(RK

+ ),
whereP(i)(t) = (P(i,1)(t), . . .P(i,K)(t)). Note that forM,N ∈ MK , we haveM ≤ N if
M (i,j) ≤ N (i,j) for all i andj.

We will use the Kullback-Leibler information divergence, which is a nonsymmetric measure
of distance between distributions in the sense that for any two distributionsP andR onXk where
X is a finite set,

D(P‖R) =
∑

x∈Xk

P (x) log

(
P (x)

R(x)

)

,

is nonnegative and equals0 if and only if P = R. We use the standard notational conventions
log 0 = −∞, log 1

0 = ∞ and0 log 0 = 0 log 0
0 = 0. For any fixedR, the divergenceD(P‖R) is a

continuous function ofP restricted to{P, S(P ) ⊂ S(Q)} whereS(P ) denotes the support ofP .
ForP ∈ MK , we denote bỹP theK × (K + 1) stochastic matrix obtained as follows : for all

i, j ≤ K, P̃ (i,j) = P (i,j) andP̃ (i,K+1) = 1 −∑K
k=1 P

(i,k). ForP,R ∈ MK , we will denote

D̃(P‖R) := D(P̃‖R̃)

=
∑

i,j≤K

P (i,j) log

(

P (i,j)

Ri,j)

)

+
∑

i≤K

(

1 −
∑

k

P (i,k)

)

log

(

1 −∑k P
(i,k)

1 −∑kR
(i,k)

)

=
K∑

i=1

D̃(P (i)‖R(i)).
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5.5.1 Generalized Jackson networks

General setting and notation

We recall here the notation introduced in [12] to describe a generalized Jackson network with
K nodes.

The networks we consider are characterized by the fact that service times and routing deci-
sions are associated with stations and not with customers. This means that thej-th service on
stationk takesσ(k)

j units of time, where{σ(k)
j }j≥1 is a predefined sequence. In the same way,

when this service is completed, the leaving customer is sentto stationν(k)
j (or leaves the net-

work if ν(k)
j = K + 1) and is put at the end of the queue on this station, where{ν(k)

j }j≥1 is

also a predefined sequence, called the routing sequence. Thesequences{σ(k)
j }j≥1 and{ν(k)

j }j≥1,
wherek ranges over the set of stations, are called the driving sequences of the network. A ge-

neralized Jackson network will be defined by
{

{σ(k)
j }j≥1, {ν(k)

j }j≥1, n
(k), 0 ≤ k ≤ K

}

, where

(n(0), n(1), . . . , n(K)) describes the initial condition. The interpretation is as follows : for k 6= 0,

at time t = 0, in nodek, there aren(k) customers with service timesσ(k)
1 , . . . , σ

(k)

n(k) (if appro-

priate,σ(k)
1 may be interpreted as a residual service time). In particular at time0, the total number

of customers in the network isn(1,K) = n(1) + . . . n(K). Node0 models the external arrival of
customers in the network. Hence,

– if n(0) = 0 andn(1,K) is positive, there is a bulk arrival at time0 of n(j) customers to node
j, for all j, and no external arrival after time0 ;

– if ∞ ≥ n(0) ≥ 1, then for all1 ≤ j ≤ n(0), the arrival time of then(1,K) + j-th customer
in the network takes place atσ(0)

1 + · · · + σ
(0)
j and it joins the end of the queue of station

ν
(0)

j+n(1,K) . Henceσ(0)
j is then(1,K) + j-th inter-arrival time in the network.

In what follows, we will describe the driving sequences thanks to their associated counting
functions. Consider the casen(0) = ∞, we will use the following notation for each of these
counting functions :

– σ(k)(1, n) =
∑n

j=1 σ
(k)
j , for 0 ≤ k ≤ K ;

– for n ≤ n(1,K), we defineTn = 0 and forn > n(1,K), we defineTn = n(1,K) + σ(0)(1, n).
ThenTn is then-th exogenous arrival time in the network ;

– forn ≤ n(i), we defineT (i)
n = 0 and forn > n(i), we defineT (i)

n = n(i)+
∑k

(i)
n

j=1 σ
(0)
j 11

{ν
(0)
j =i}

,

with k(i)
n = inf{k, ∑k

j=1 11
{ν

(0)
j =i}

≥ n − n(i)}. T (i)
n is then-th exogenous arrival time at

nodei.

We define the sequence of Jackson networksJNn = {Sn(t),Pn(t),Nn(t)} with

N(i)
n (t) =

1

n

∑

k

11
{T

(i)
k ≤nt}

,

S(i)
n (t) =

1

n

∑

k

11{σ(i)(1,k)≤nt},

P(i,j)
n (t) =

1

n

∑

k≤nt

11
{ν

(i)
k =j}

.
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Note thatN(i)
n (0) = n(i) and that we have for all0 ≤ u ≤ v,

K∑

j=1

P(i,j)
n (u) − P(i,j)

n (v) ≤ (u− v),

in particular, we havePn ∈ D0(M
K).

We denote the input and output processes of each queuek of the networks byA(k) andD(k)

respectively. We will use the following notationA = (A(1), . . . ,A(K)) andD = (D(1), . . . ,D(K)).
We now describe how the processesA andD are obtained formJN.

We define the mapΓ : D0(R
K
+ ) × D0(M

K) × D(RK
+ ) → D(RK

+ ) as follows :

Γ(X,P,N)(i)(t) := N(i)(t) +

K∑

j=1

P(j,i)(X(j)(t)).

The following lemma is straightforward.

Lemma 43. The mapΓ is continuous for the compact uniform topology and non-decreasing in its
first argument.

We define the mapΦ : D(RK
+ ) × D0(R

K
+ ) → D0(R

K
+ ) as follows :

Φ(X,Y)(i)(t) := inf
0≤s≤t

{

Y(i)(t) −Y(i)(s) + X(i)(s)
}

∧ Y(i)(t).

Lemma 44. The mapΦ is continuous for the compact uniform topology and non-decreasing in its
first argument.

Proof. We can clearly consider the mappingΦ with K = 1 only. LetR : D(R) → D(R+) be
the one-dimensional reflection map defined byR(X)(t) := sup0≤s≤t {X(t) −X(s)} ∨X(t). We
haveΦ(X,Y) = X− R(X −Y). It is easy to see that for anyT > 0,

sup
0≤t≤T

|R(X)(t) − R(X′)(t)| ≤ 2 sup
0≤t≤T

|X(t) − X′(t)|,

from which the continuity ofΦ follows. Its monotonicity is obvious. 2

Remark18. Consider the mappingΦ with K = 1 and Y(t) = µt, with µ ≥ 0. If µ = 0,
sinceΦ(X,Y) ≤ Y, we haveΦ(X,Y)(t) = 0 for all t. If µ 6= 0, we haveΦ(X,Y)(t) =
inf0≤s≤t{X(s) + µ(t − s)}. Moreover ifX is a concave function, then this equation reduces to
Φ(X,Y)(t) = X(t) ∧ µt. Hence we can write

Y(t) = µt, with µ ≥ 0 ⇒ Φ(X,Y)(t) = µt ∧ inf
0≤s≤t

{X(s) + µ(t− s)},

if moreoverX is a concave function ⇒ Φ(X,Y)(t) = µt ∧ X(t).

Proposition 2.1 of [67] shows that the following fixed-pointequation :
{

An = Γ(Dn,Pn,Nn) = Γ(Dn,JNn),
Dn = Φ(An,Sn) = Φ(An,JNn),

(5.30)

has an unique solution when each component ofnSn, nPn andnNn are counting functions (i.e.
non-decreasing functions ofD(RK

+ ) or D(MK) that are piece-wise constant with jumps of size
one). In this case the corresponding functionsnAn andnDn are also counting functions and we
denote the solution of (5.30) byΨ(Sn,Pn,Nn) = Ψ(JNn).
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Stochastic assumptions

In what follows, it will be important to distinguish the nodes of the network that do not receive
any exogenous customer, i.e. the nodesi /∈ S with S = {i, ∃k ≥ 1, ν

(0)
k = i}. A generalized

Jackson networkJN = {S,P,N} is an object inE ⊂ D0(R
K
+ ) × D0(M

K) × D(RK
+ ), with the

additional constraintN(i)(t) = 0 for all t, for i /∈ S. Note thatE is closed inD0(R
K
+ )×D0(M

K)×
D(RK

+ ).
We define for(s(1), . . . , s(K)) ∈ RK

+ and(n(1), . . . , n(K)) ∈ RK
+ , the functions

IS(s(1), . . . , s(K)) =

K∑

i=1

IS
(i)

(s(i)),

IN(n(1), . . . , n(K)) =
∑

i∈S

IN
(i)

(n(i)) + ∞11{n(i)>0, i/∈S},

where eachIS
(i)

: R+ 7→ R+ ∪ {+∞} (resp.IN
(i)

for i ∈ S) is a[0,∞]-valued convex good rate
function, attaining zero onR+ admitting a unique minimum at the pointµ(i) (resp.λ(i) for i ∈ S)
and with a domain open on the right.

We assume that the sequenceJNn = {Sn(t),Pn(t),Nn(t)} satisfies a LDP in the space
D0(R

K
+ ) × D0(M

K) × D(RK
+ ) with a good rate functionIJN given by

IJN(S,P,N) := I0(N(0)) +

∫ ∞

0
IS(Ṡ(t)) +D(Ṗ(t)‖R) + IN(Ṅ(t))dt, (5.31)

if the argument functions are absolutely continuous and equal to infinity otherwise.
Assumptions on the matrixR :

1. We assume thatρ(R) < 1.

2. We assume that for all1 ≤ i ≤ K, we have

(N + NR+ · · · + NRK)(i) > 0, (5.32)

whereN(i) = 11{i∈S}.

We recall here some results of [78] concerning large deviations of renewal processes and show
that our assumptions on the rate function (5.31) are satisfied in the i.i.d case. Denote by{ζi, i ≥ 1}
a sequence of non-negative i.i.d. random variables with positive mean. Let

α(θ) = log E

[

eθζ1
]

,

θ∗ = sup{θ > 0, α(θ) <∞},
α∗(x) = sup

θ
{θx− α(θ)} = sup

θ<θ∗
{θx− α(θ)},

g(x) = xα∗(1/x) = sup
θ<θ∗

{θ − xα(θ)}.

The functionα is a convex function and differentiable on(−∞, θ∗) with α′(θ) = E[ζ1] > 0. In
particular, we havelimθ↑θ∗ α(θ) = ∞. Thanks to [49], we know thatα∗ andg are convex rate
functions. Moreover ifθ∗ > 0 thenα∗ is a good rate function. Introduce the sequence of processes
{Cn}n :

Cn(t) =
1

n

∑

i

11{
Pi

j=1 ζj≤nt}.
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Then Theorem 3.1 of [78] gives : IfP(ζ1 > 0) = 1, then the sequence{Cn}n satisfies a LDP in
D(R+) with the good rate function

IC(x) =

{ ∫∞
0 g(ẋ(t))dt, if x ∈ C(R+) tends to infinity and is absolutely continuous,
∞, otherwise.

General methodology

As in [67], we see a generalized Jackson network as a solutionof the fixed point equation

{
A = Γ(D,JN),
D = Φ(A,JN),

⇔ (A,D) =: Ψ(JN). (5.33)

It is known thatΨ is well defined for counting processes, see [26] or [67]. It isnatural to ask
whetherΨ is well defined for processes inD or at least for absolutely continuous processes. If
this was true, and ifΨ was shown to be continuous, then we would get thanks to the contraction
principle that the process(A,D) satisfies a LDP with good rate function

”IA,D(A,D) = inf
{
IJN(JN), Ψ(JN) = (A,D)

}
.” (5.34)

However, the mapΨ turns out not to be well defined for all possible limits of a sequence of
Jackson networks{JNn}n as defined previously. In particular, the fixed point equation (5.33) can
very well be stated for processes inD but then may have several different solutions. We refer to
the appendix for a simple example.

To circumvent this difficulty, we adopt the following strategy. We find a domainDJN ⊂
D0(R

K
+ ) × D0(M

K) × D(RK
+ ) satisfying the following constraints :

– the mapΨ is well defined onDJN ;
– any solution(A,D) of the fixed point equation (5.33) associated with a ”continuous” Jack-

son networkJN can be approximated by a sequence{JNn} ∈ DN

JN such that

JNn → JN,

Ψ(JNn) → (A,D),

IJN(JNn) → IJN(JN).

Hence in order to remove the quote from (5.34), we follow a quite standard method of proofs
for large deviations of stochastic processes analogue withthe theory of weak convergence : it
consists of first verifying a compactness condition and thenshowing that there is only one possible
limit. In our context, we proceed as follows :

1. we show that our sequence of processes is exponentially tight ;

2. we useDJN to determine the rate function.

In Section 5.5.2, we give the theoretical framework that shows howDJN determines the rate
function. This result is stated in great generality (without any reference to our specific problem)
and could be of independent interest since this method of proof could be applied to other dynamical
systems, with discontinuous statistics.
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5.5.2 An extension of the contraction principle

Let E,F be complete separable metric spaces. LetG : E × F → R be a continuous function.
We assume that there existsD ⊂ E, such that for allx ∈ D, there exists an uniquey ∈ F such
thatG(x, y) = 0. We denote it by,y = H(x) whereH : D → F,

∀x ∈ D, G(x, y) = 0 ⇔ y = H(x).

Proposition 23. Let{Xn}n be a sequence ofE-valued random variables and{Yn}n be a sequence
of F-valued random variables, whereE andF are metric spaces. We assume that each sequence
is exponentially tight.

Assume that the sequence{Xn}n satisfies a LDP with good rate functionIX and thatG(Xn, Yn) =
0 a.s. for alln.

We assume that for all(x, y) such thatG(x, y) = 0 andIX(x) < ∞, there exists a sequence
xn → x, such thatxn ∈ D for all n,H(xn) → y andIX(xn) → IX(x). We denote byS(x, y) =
{xn}n this sequence. IfG(x, y) 6= 0 or IX(x) = ∞, we takeS(x, y) = ∅ and we denoteS(y) =
∪x{S(x, y)}.

Then the sequence{Xn, Yn}n satisfies a LDP with good rate function :

IX,Y (x, y) :=

{
IX(x), G(x, y) = 0,
∞, otherwise.

(5.35)

In particular, if Xn ∈ D for all n and if the sequence{H(Xn)}n is exponentially tight, then
it satisfies a LDP inF with good rate function :

IH(X)(y) := inf{ lim
n→∞

IX(xn), {xn}n ∈ S(y)}. (5.36)

Remark19. – There are alternative ways of expressing the rate function,

IH(X)(y) = inf{IX(x), y ∈ Hx},

whereHx := {y ∈ F, ∃xn → x, H(xn) → y}. IH(X) is the lower semicontinuous
regularization of the following function defined fory ∈ H(D) ⊂ F,

ĨH(X)(y) := inf{IX(x), y = H(x)}.

– The main interest of the definition (5.36) is that the rate function is computed only thanks
to the sequencesS(x, y) ∈ DN.

– Note that if we assume thatH(D) is closed (in particular ifD = E) then this proposition
follows from the contraction principle (for an extensive discussion of this principle, see the
work of Garcia [48]).

Proof. Thanks to Lemma 3.6 of [42], the sequence{Xn, Yn} is exponentially tight. Then
by Theorem 3.7 of [42], there exists a subsequence{nk} along which the sequence{Xnk

, Ynk
}

satisfies a LDP with a good rate function. If we can prove that there is a unique possible rate
function (that does not depend on the subsequence{nk}) then the proposition will follow.

Hence, for simplicity of notations, we still denote the extracted subsequence by{Xn, Yn}
and we assume that{Xn, Yn} satisfies a LDP with good rate functioñIX,Y . We will show that
ĨX,Y = IX,Y given by (5.35).
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Consider the continuous mappingsH1 andH2 from E × F to E × F × R,

H1(x, y) := (x, y,G(x, y)), H2(x, y) := (x, y, 0).

We have clearlyH1(Xn, Yn) = H2(Xn, Yn) a.s. Moreover thanks to the contraction principle,
{H1(Xn, Yn)}n and{H2(Xn, Yn)}n satisfy LDPs with the good rate functions

IH1(x, y, z) = inf{ĨX,Y (x, y), z = G(x, y)} IH2(x, y, z) = inf{ĨX,Y (x, y), z = 0},

whereinf ∅ = ∞. SinceH1(Xn, Yn) = H2(Xn, Yn), we haveIH1 = IH2 . Now we have,

ĨX,Y (x, y) = inf
z
{IH1(x, y, z)} = inf{ĨX,Y (x, y), G(x, y) = 0},

henceĨX,Y (x, y) = ∞ as soon asG(x, y) 6= 0. It remains to show thatG(x, y) = 0 implies
ĨX,Y (x, y) = IX(x). We have clearlyIX(x) ≤ ĨX,Y (x, y) for all (x, y) since{Xn} satisfies a
LDP with good rate function

IX(x) = inf{ĨX,Y (x, y), y ∈ F, G(x, y) = 0}.

In particular, the definition ofD impliesIX(x) = ĨX,Y (x,H(x)) for x ∈ D.
Take (x, y) such thatG(x, y) = 0 and IX(x) < ∞. There existsx∗n → x with x∗n ∈ D,

H(x∗n) → y andIX(x∗n) → IX(x). Thanks to the lower semicontinuity property ofĨX,Y , we can
find for anyδ > 0, anǫ > 0 such that

1

δ
∧
(

ĨX,Y (x, y) − δ
)

≤ inf
z∈B(y,ǫ)

ĨX,Y (x, z),

whereB(y, ǫ) is the closed ball inF of centery and radiusǫ.
Thanks to the lower semicontinuity of the functionx 7→ infz∈B(y,ǫ) Ĩ

X,Y (x, z), we have

inf
z∈B(y,ǫ)

ĨX,Y (x, z) ≤ lim inf
xn→x

inf
z∈B(y,ǫ)

ĨX,Y (xn, z)

≤ lim inf
n→∞

inf
z∈B(y,ǫ)

ĨX,Y (x∗n, z)

≤ lim
n→∞

IX(x∗n) = IX(x),

becauseH(x∗n) ∈ B(y, ǫ) for sufficiently largen. Hence we proved that for anyδ > 0, 1
δ ∧

(

ĨX,Y (x, y) − δ
)

≤ IX(x) for (x, y) such thatG(x, y) = 0 andIX(x) < ∞, this concludes the

proof of (5.35).
The various expressions ofIH(X) are now quite easy to obtain from

IH(X)(y) = inf{IX(x), G(x, y) = 0}. (5.37)

For (5.36), note that since the set{x, G(x, y) = 0} is closed the minimum in (5.37) (if it is finite)
is attained for a certainx∗ with G(x∗, y) = 0 andIX(x∗) <∞.

We prove now that

inf{IX(x), y ∈ Hx} = inf{IX(x), G(x, y) = 0}.
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If y ∈ Hx, then there existsxn → x such thatH(xn) → y. Hence by continuity ofG, we have
G(x, y) = 0. Now if G(x, y) = 0 andIX(x) <∞, it follows from the assumptions thaty ∈ Hx.

To see that the last assertion is true, we show that for any open setO ⊂ F, we have,

inf
y∈O

IH(X)(y) = inf
y∈O

{IX(x), y = H(x)}. (5.38)

For y ∈ O and anyx such thatG(x, y) = 0, there existsxn → x, such thatH(xn) → y and
IX(xn) → IX(x). Hence forn sufficiently large, we haveH(xn) ∈ O and then

inf
y∈O

{IX(x), y = H(x)} ≤ inf
n
IX(xn) ≤ IX(x).

Taking the minimum over allx such thatG(x, y) = 0 gives the≥ inequality in (5.38), the converse
inequality is obvious. 2

5.5.3 Extension ofΨ to piece-wise linear Jackson networks

In this section we consider processes that are continuous, i.e. in C(E), hence topological
concepts refer to the compact uniform topology.

We first recall Proposition 3.2 of [67],

Proposition 24. Given aK×K substochastic matrixP withρ(P ) < 1 and vectors(α, y) ∈ R2K
+ ,

the fixed point equation

x(i) = α(i) +

K∑

j=1

P (j,i)
(

x(j) ∧ y(j)
)

,

has a unique solutionx(y, P, α). Moreover,(y, α) 7→ x(y, P, α) is a continuous non-decreasing
function.

We first consider a linear Jackson networkJN and show that the mappingΨ is well defined
for such a network. By linear, we mean the followingN(i)(t) = N (i) + λ(i)t, with λ(i) ≥ 0 and
N (i) ∈ R+, S(i)(t) = µ(i)t, with µ(i) ≥ 0, andP(i,j)(t) = P (i,j)t. We assume thatρ(P ) < 1.

Lemma 45. Under previous assumptions, the fixed point equation (5.33)has an unique solution
Xf [µ,P,N, λ](t) = x(µt, P,N + λt), whereµ = (µ(i))i,N = (N (i))i andλ = (λ(i))i.

Proof. Sinceµ,P,N, λ are fixed here, we omit to explicitly write the dependence in these
variables. In this case, the fixed point equation (5.33) reduces to (see Remark 18)

{

A(i)(t) = N (i) + λ(i)t+
∑K

j=1 P
(j,i)D(j)(t),

D(i)(t) = µ(i)t ∧ inf0≤s≤t{A(i)(s) + µ(i)(t− s)}. (5.39)

Thanks to Proposition 24,Xf (t) = x(µt, P,N + λt) is the unique solution of the fixed point
equation

{

A(i)(t) = N (i) + λ(i)t+
∑K

j=1 P
(j,i)D(j)(t),

D(i)(t) = A(i)(t) ∧ µ(i)t.
(5.40)



136 Chapitre 5. Large Deviations for Monotone Separable Networks

We prove now thatXf is the unique solution of the fixed point equation (5.39).
For simplicity, we denote the fixed point equation (5.39), resp. (5.40), byA = F (A), resp. by

A = F̃ (A). Note that these functions are non-decreasing, continuousand such thatF ≤ F̃ .
From 0 ≤ Xf , we get0 ≤ F (0) ≤ F̃ (0) ≤ F̃ (Xf ). HenceFn(0) ր L ≤ Xf and

F (L) = L. Moreover for any solutionY of the fixed point equation (5.39), we haveL ≤ Y ≤ Xf

becauseY = F (Y) ≤ F̃ (Y) andF̃n(Y) ր Xf .
Since0 is a concave function, we haveF (0) = F̃ (0) and hence it is still a concave function.

Hence we havẽFn(0) = Fn(0) since the image bỹF of a concave function is a concave function
andF = F̃ on the subspace of concave functions. Hence we haveL = Xf which concludes the
proof. 2

In order, to extendΨ to piece-wise linear Jackson networks, we proceed step by step on each
interval where the driving functionsS,P,N are linear. The following lemma allows to glue the
constructed solution on each adjacent interval. In a queueing context, this lemma says that the
output of a single server queue fed by the arrival processA and service time processS viewed
from timeu is just the same as the output process of a single server queuethat we start at timeu
with arrival process̃A(t) = A(t+u)−A(u)+A(u)−D(u) (i.e. with the same increment as the
original process on this period of time plus an additional bulk corresponding to the queue length
at timeu) and with service time process̃S(t).

Lemma 46. LetA,S ∈ D(R+) × D0(R+) andD = Φ(A,S). DefineÃ, S̃ ∈ D(R+) × D0(R+)
as follows

Ã(t) := A(t+ u) − D(u),

S̃(t) := S(t+ u) − S(u).

Let D̃ = Φ(Ã, S̃), then we have

D̃(t) = D(t+ u) − D(u).

Proof. We show that forD = Φ(A,S), we have

D(t+ u) − D(u) = inf
u≤s≤t+u

{S(t+ u) − S(s) + A(s) − D(u)} ∧ {S(t+ u) − S(u)} ,

from which the lemma follows.
We write

D(t+ u) − D(u) = inf
0≤s≤u

{S(t+ u) − S(s) + A(s) − D(u)}

∧ inf
u≤s≤t+u

{S(t+ u) − S(s) + A(s) − D(u)} ∧ {S(t+ u) − D(u)} ,

SinceD(u) ≤ S(u), we have to prove that

S(t+ u) − S(u) ≥ inf
0≤s≤u

{S(t+ u) − S(s) + A(s) − D(u)} ∧ {S(t+ u) − D(u)} .

This will follow from,

inf
0≤s≤u

{S(t+ u) − S(s) + A(s) − D(u)} = S(t+ u) − S(u) + inf
0≤s≤u

{S(u) − S(s) + A(s)} − D(u)

≤ S(t+ u) − S(u).
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2

We consider now piece-wise linear Jackson networks : the functions u 7→ N(i)(u), u 7→
S(i)(u) andu 7→ P(i,j)(u) are continuous piece-wise linear functions such thatN(i)(0) ∈ R+

andS(i)(0) = P(i,j)(0) = 0 andρ(Ṗ(t)) < 1 for all t ≥ 0.

Proposition 25. For a piece-wise linear Jackson network, there exists an unique solution of the
fixed point equation (5.33). We still denote byΨ the mapping that to any piece-wise linear Jackson
networkJN associates the corresponding couple(A,D).

Proof. The existence is a direct consequence of monotonicity properties and continuity of
the mapsΓ and Φ. We define the sequence of processes{A[k],D[k]}k≥0 with the recurrence
equation :

{
A[k + 1] = Γ(D[k],JN),
D[k + 1] = Φ(A[k + 1],JN),

and with initial conditionD[0] = 0. By the monotonicity properties ofΦ andΓ, we have

0 ≤ A[1] ⇒ Φ(0,JN) = 0 = D[0] ≤ Φ(A[1],JN) = D[1]

⇒ Γ(D[0],JN) = A[1] ≤ Γ(D[1],JN) = A[2],

and the sequence{A[k],D[k]}k≥0 is increasing. Note thatD[k] ≤ S and hence the following
limits are well defined

lim
k→∞

A[k] = A and, lim
k→∞

D[k] = D.

SinceΓ andΦ are continuous,(A,D) is a solution of the fixed point equation (5.33).
We now prove uniqueness. First recall that we callα, a partition ofR+, any sequence of points

α = {an}n with a0 = 0 andan → ∞. For two partitionsα = {an}n andβ = {bn}n, we say that
γ = {gn}n is the union ofα andβ if γ is a partition such that for alln there existsm such that
eithergn = am or gn = bm.

Let τ = {tn}n be the union of the partitions associated with each functionS,P,N. We define
for x ∈ R+, d(x, τ) = minn{tn − x, tn > x} > 0.

Assume that we are given two solutions of the fixed point equation (5.33) : (A1,D1) and
(A2,D2). First note that thanks to Lemmas 49 and 50, any solution of (5.33) is absolutely conti-
nuous. Letz = inf{t,A1(t) 6= A2(t)}, in particular, we haveA1(t) = A2(t) andD1(t) = D2(t)
for all t ≤ z.

Defineu = mini d(D
(i)
• (z), τ) ∧ d(z, τ) > 0, where the notation• can be replaced either by

1 or by 2. We have that fort ∈ [0, u],

S̃(i)(t) := S(i)(z + t) − S(i)(z) = tµ(i),

P̃(i,j)(t) := P(i,j)(D
(i)
• (z) + t) − P(i,j)(D

(i)
• (z)) = tP (i,j),

Ñ(i) := N(i)(z + t) − N(i)(z) + A
(i)
• (z) − D

(i)
• (z) = tλ(i) + A

(i)
• (z) − D

(i)
• (z),

Let Ã(t) = Xf [µ,P,A•(z)−D•(z), λ](t) be the unique solution associated to the infinite horizon
linear Jackson network defined above. The associated departure process is̃D(t) = Ã(t)∧ µt. Let
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v = inf{t, infi D̃
(i)(t) = u}, in particular sinceD̃(i)(t) ≤ µ(i)t, we havev > 0. In view of

Lemma 46, we have fort ∈ (0, v),

A•(t+ z) = Ã(t) + D(z), D•(t+ z) = D̃(t) + D(z)

this contradicts the fact thatz <∞ and concludes the proof. 2

Let E = D0(R
K
+ ) × D0(M

K) × D(RK
+ ) andF = D(RK

+ ) × D0(R
K
+ ).

ForJN ∈ E and(A,D) ∈ F, we define the function

G(JN,A,D) = ‖(A − Γ(D,JN),D − Φ(A,JN))‖.

The functionG is continuous and such that

G(JN,A,D) = 0 ⇔
{

A = Γ(D,JN),
D = Φ(A,JN).

LetDJN be the subspace ofE of piecewise linear Jackson networks : namelyJN = (S,P,N) ∈
DJN if the functionsu 7→ N(i)(u), u 7→ S(i)(u) andu 7→ P(i,j)(u) are piecewise linear functions
such thatρ(Ṗ(t)) < 1 for all t ≥ 0 andN(i) = 0 for i /∈ S. We denote ˙JN = (Ṡ, Ṗ, Ṅ).

We proved that

∀JN ∈ DJN, G(JN,A,D) = 0 ⇔ (A,D) = Ψ(JN),

whereΨ has been explicitly defined above. In the next section we willdefine the mappingS :
E × F → DN

JN.

5.5.4 Sample path large deviations

In order to simplify the notations, we assume thatNn(0) = 0 for all n. This condition can be
weakened to the standard condition :

lim
n→∞

1

n
log P(Nn(0) > ǫ) = 0,

for all ǫ > 0. In this case, we haveI0(x) = ∞ for all x 6= 0 andI0(0) = 0.

Construction of the approximating sequence

Proposition 26. We considerJN = (S,P,N) ∈ E such thatIJN(JN) <∞ and such that there
exists(A,D) ∈ F that satisfies the fixed point equation (5.33),

{
A = Γ(D,JN),
D = Φ(A,JN).

There exists a sequence{JNn}n = S(JN,A,D) such that

JNn ∈ DJN for all n ; (5.41)

JNn → JN; (5.42)

Ψ(JNn) → (A,D); (5.43)

IJN(JNn) → IJN(JN). (5.44)
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First note that sinceIJN(JN) < ∞, each processS,P,N is absolutely continuous anḋJN
is well-defined. Moreover thanks to Lemma 51, the processesA andD are absolutely continuous
too.

The idea to construct the sequence{JNn}n is to consider the piecewise approximation of the
fixed point equation (5.33). First consider the routing equation A = Γ(D,JN) for timest such
thatnt ∈ N,

A(i)(t+ 1/n) − A(i)(t)
︸ ︷︷ ︸

∆
(i)
n (A)(t)

= N(i)(t+ 1/n) − N(i)(t)
︸ ︷︷ ︸

∆
(i)
n (N)(t)

+
K∑

j=1

˙̃P(j,i)
n (D(j)(t+)) (D(j)(t+ 1/n) −D(j)(t))

︸ ︷︷ ︸

∆
(j)
n (D)(t)

,

where we define the piece-wise linear processP̃
(j,i)
n (t) as follows, fors ∈ (D(j)(t),D(j)(t +

1/n)),

˙̃P(j,i)
n (s) :=

P(j,i)(D(j)(t+ 1/n)) − P(j,i)(D(j)(t))

D(j)(t+ 1/n)) − D(j)(t)
,

if D(j)(t+ 1/n) 6= D(j)(t), and we take˙̃P(j,i)
n (D(j)(t)) = 0 otherwise. In other words, we have

P̃(j,i)
n (D(j)(t+ 1/n)) − P̃(j,i)

n (D(j)(t)) = ˙̃P(j,i)
n (D(j)(t+))(D(j)(t+ 1/n) − D(j)(t))

= P(j,i)(D(j)(t+ 1/n)) − P(j,i)(D(j)(t))

Note that{ ˙̃P
(j,i)
n (t)}i,j ∈ MK since

∑

i

P(j,i)(D(j)(t+ 1/n)) − P(j,i)(D(j)(t)) ≤ D(j)(t+ 1/n) − D(j)(t).

but the matrix( ˙̃P
(j,i)
n (D(j)(t+)))i,j may not be of spectral radius less than1. To circumvent this

difficulty, we will modify slightly the processes as follows, (the variablesη, ǫn, δ will be made
precise latter)

∆(i)
n (A) +

η(i)

n
= ∆(i)

n (N) +
δ(i)

n
(5.45)

+
K∑

j=1

(

(1 − ǫ(j)n ) ˙̃P(j,i)
n + ǫ(j)n R(j,i)

)
(

∆(j)
n (D) +

η(j)

n

)

,

where we omit to write the timet and use the simplified notatioñ̇P(j,i)
n = ˙̃P

(j,i)
n (D(j)(t+)).

We have to findη, ǫn, δ such that (5.45) holds withη(i), ǫ
(i)
n , δ(i) non-negative andδ(i) = 0 for

i 6∈ S. These constraints are satisfied by the following choice : first takeδ such thatδ(i) > 0 for all
i ∈ S andδ(i) = 0 for i 6∈ S. Let η(δ) = η be the unique solution inRK

+ of the following equation
(recall thatρ(R) < 1),

η(i) = δ(i) +

K∑

j=1

η(j)R(j,i).
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Note thatη(i) > 0 for all i thanks to (5.32). Finally let defineǫn(δ) = ǫn as followsǫ(i)n =
η(i)

n∆
(i)
n (D)+η(i)

∈ (0, 1] (note thatǫ(i)n = 1 iff ∆
(i)
n (D) = 0).

It is easy to see that (5.45) holds since we have

(1 − ǫ(j)n )

(

∆(j)
n (D) +

η(j)

n

)

= ∆(j)
n (D), or, ǫ(j)n

(

∆(j)
n (D) +

η(j)

n

)

=
η(j)

n
,

which imply that

∆(i)
n (A) = ∆(i)

n (N) +
K∑

j=1

(1 − ǫ(j)n ) ˙̃P(j,i)
n

(

∆(j)
n (D) +

η(j)

n

)

and,

η(i)

n
=

δ(i)

n
+

K∑

j=1

ǫ(j)n R(j,i)

(

∆(j)
n (D) +

η(j)

n

)

,

and summing these two equalities gives (5.45).
For δ fixed, we define fors ∈ (D(j)(t) + tη(δ),D(j)(t+ 1/n) + (t+ 1/n)η(δ)),

Ṗ
(j,i)
n,δ (s) = (1 − ǫ(j)n ) ˙̃P(j,i)

n (s) + ǫ(j)n R(j,i),

whereǫn(δ) is defined as above. In view of Lemma 52, the matrixṖ
(j,i)
n,δ (s) is of spectral radius

less than one sinceǫ(j)n > 0 for all j. Then as a direct consequence of (5.45), we have fornt ∈ N,

A(i)(t) + tη(δ) = N(i)(t) + tδ +
K∑

j=1

P
(j,i)
n,δ (D(j)(t) + tη(δ)). (5.46)

If Nn,δ is the polygonal approximation oft → N(t) + tδ with step1/n, we have clearly
Ṅn,δ → Ṅ + δ asn tends to infinity. Similarly, we have asn tends to infinity,

Ṗ
(j,i)
n,δ (D(j)(t)) →







(1 − ǫ(j)(t))Ṗ(j,i)(D(j)(t)) (Ḋ(j)(t)+η(δ))

Ḋ(j)(t)

+ǫ(j)(t)R(j,i)(Ḋ(j)(t) + η(δ)) if Ḋ(j)(t) > 0,

R(j,i)η(δ) otherwise,

whereǫ(j)(t) = η(j)(δ)/(η(j)(δ) + Ḋ(j)(t)) < 1. Hence whenn tends to infinity andδ tends to 0,

we have ˙Nn,δ → Ṅ andṖ
(j,i)
n,δ → Ṗ(j,i).

We consider now the queueing equationD = Φ(A,S) and construct the approximating se-
quence forS.

We begin with a first general lemma : given two processesA andD, we construct a piecewise
linear functionSn (with step1/n) as follows (withnt ∈ N) :

– if A(t) = D(t) andA(t+1/n) = D(t+1/n), thenSn(t+1/n)−Sn(t) = S(t+1/n)−
S(t) ;

– otherwise,Sn(t+ 1/n) − Sn(t) = D(t+ 1/n) − D(t).
We will write in shortSn = Υn(A,D,S).

Lemma 47. Let(A,D,S) be absolutely continuous functions ofD(RK
+ )×D0(R

K
+ )×D0(R

K
+ )such

thatΦ(A,S) = D. We denoteSn = Υn(A,D,S). We haveDn = Φ(An,Sn) where(An,Dn) is
the polygonal approximation of(A,D) with step1/n and we havėSn → Ṡ asn tends to infinity.
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Proof. We denoteD̃n = Φ(An,Sn). From the proof of Lemma 46, we have

D̃n(t+ 1/n) − D̃n(t) = inf
t≤s≤t+1/n

{

Sn(t+ 1/n) − Sn(s) + An(s) − D̃n(t)
}

∧ {Sn(t+ 1/n) − Sn(t)} ,

since all the functions are linear on the interval(t, t+ 1/n), we have

D̃n(t+ 1/n) − D̃n(t) =
{

An(t+ 1/n) − D̃n(t)
}

∧ {Sn(t+ 1/n) − Sn(t)} .

If D̃n(t) = Dn(t), then we have clearlỹDn(t+ 1/n) = Dn(t+ 1/n) since
– if An(t) = Dn(t) andAn(t + 1/n) = Dn(t + 1/n), then we haveS(t + 1/n) − S(t) ≥

Dn(t+ 1/n) − Dn(t) = An(t+ 1/n) − D̃n(t) see (5.52) for the inequality ;
– otherwise,Sn(t+1/n)−Sn(t) = Dn(t+1/n)−Dn(t) by definition andAn(t+1/n) ≥

Dn(t+ 1/n).
This proves the first part of the lemma.

To see that the second part holds, letC = {t, A(t) = D(t)}. C is a closed set and according
to Lemma 51, we have for allt ∈ Cc, Ṡ(t) = Ḋ(t). For sucht ∈ Cc, we have forǫ > 0
sufficiently small and for sufficiently largen, An(u) 6= Dn(u) for all |u− t| ≤ ǫ. Hence we have
Ṡn(t) = Ḋn(t) → Ḋ(t).

Now for t ∈ Co in the interior ofC, we have clearlẏSn(t) → Ṡ(t). Hence we havėSn(t) →
Ṡ(t) for t ∈ Co ∪ Cc which concludes the proof. 2

We define the sequenceJNn,δ = (Sn,δ,Pn,δ,Nn,δ) whereSn,δ(t) = Υn(A(t) + ηt,D(t) +
ηt,S(t)+ ηt). Note that we haveD(t)+ ηt = Φ(A(t)+ ηt,S(t)+ ηt), hence Lemma 47 applies,
in particular, we havėSn,δ(t) → Ṡ(t) + η(δ) asn tends to infinity.

We haveJNn,δ ∈ DJN by construction and the sequence{JNn,δn}n satisfies (5.42) for some
δn → 0. Moreover, we have thanks to (5.46) and Lemma 47,

{
An,δ = Γ(Dn,δ,JNn,δ),
Dn,δ = Φ(An,δ,JNn,δ),

⇔ (An,δ,Dn,δ) = Ψ(JNn,δ),

whereAn,δ andDn,δ are the polygonal approximation ofA(t) + ηt andD(t) + ηt with step1/n.
For n → ∞ and δ → 0, we have(An,δ,Dn,δ) → (A,D), hence we haveΨ(JNn,δ) →

(A,D), i.e. the sequence{JNn,δn}n satisfies (5.43).
The following lemma shows that (5.44) is satisfied too.

Lemma 48. For any JN such thatIJN(JN) < ∞, if ˙JNn → ˙JN as n tends to infinity and
{JNn}n ∈ DN

JN, then we haveIJN(JNn) → IJN(JN).

Proof. Let {JNn = (Sn,Pn,Nn)}n be a sequence inDN

JN such that ˙JNn converges to ˙JN.
We consider the case of the sequence of processes{Sn}n in details (we can restrict ourselves

to the one dimensional case).
We first takeT > 0. We defineς = ess sup{Ṡ(t), t ≤ T} = inf{α, leb[t ≤ T, Ṡ(t) > α] =

0}, whereleb is for the Lebesgue measure. Since
∫ T
0 IS(Ṡ(t))dt <∞, ς belongs to the domain of

IS which is open on the right. Hence we can findǫ > 0 such thatς+ ǫ still belongs to this domain.
Moreover, sinceIS is convex, it is uniformly continuous on[0, ς + ǫ]. Hence, forδ > 0, we can
assume that

∀x, y ∈ [0, ς + ǫ], |x− y| < ǫ⇒ |IS(x) − IS(y)| ≤ δ.
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There existsN(ǫ, T ) such that forn ≥ N , we have

sup
t≤T

|Ṡn(t) − Ṡ(t)| < ǫ,

whereǫ has been chosen above.
Let {xn

k}k be the partition associated toSn (in which for simplicity we addT ∈ ∪k{xn
k}).

Then we have
∫ T

0
IS(Ṡn(t))dt =

∑

{k, xn
k<T}

(xn
k+1 − xn

k)IS

(

1

xn
k+1 − xn

k

∫ xn
k+1

xn
k

Ṡn(t)dt

)

Now we have for each term in the sum of the right-hand term,

IS

(

1

xn
k+1 − xn

k

∫ xn
k+1

xn
k

Ṡn(t)dt

)

= IS

(

1

xn
k+1 − xn

k

∫ xn
k+1

xn
k

Ṡ(t)dt +
1

xn
k+1 − xn

k

∫ xn
k+1

xn
k

(Ṡn(t) − Ṡ(t))dt

)

,

hence we have

IS

(

1

xn
k+1 − xn

k

∫ xn
k+1

xn
k

Ṡn(t)dt

)

≤ IS

(

1

xn
k+1 − xn

k

∫ xn
k+1

xn
k

Ṡ(t)dt

)

+ δ

≤ 1

xn
k+1 − xn

k

∫ xn
k+1

xn
k

IS(Ṡ(t))dt + δ,

where the last inequality follows from Jensen’s inequality. Hence for anyδ > 0, we showed that
for sufficiently largen, we have,

∫ T

0
IS(Ṡn(t))dt ≤

∫ T

0
IS(Ṡ(t))dt + δT,

hence we have for anyT > 0

lim sup
n→∞

∫ T

0
IS(Ṡn(t))dt ≤

∫ T

0
IS(Ṡ(t))dt, (5.47)

and then the result is true forT = ∞ by monotonicity. The converse inequality follows from

lim inf
n→∞

∫ ∞

0
IS(Ṡn(t))dt ≥

∫ ∞

0
lim inf
n→∞

IS(Ṡn(t))dt

≥
∫ ∞

0
IS(Ṡ(t))dt,

where the first inequality is due to Fatou’s Lemma and the second one to the lower semicontinuity
of IS. Hence we proved that

lim
n→∞

∫ ∞

0
IS(Ṡn(t))dt =

∫ ∞

0
IS(Ṡ(t))dt.

The same argument can be repeated forNn. Note that{JNn}n ∈ DN

JN implies thatN(i)
n (t) = 0

for all i /∈ S. Fori ∈ S, we can use the fact tha the domain ofIN
(i)

is open as previously. In the case
of Pn, we can not use the argument on the openness of the domain, butwe haveD̃(R(i)‖R(i)) = 0

and then the convexity ofD directly implies thatD̃(Ṗ
(i)
n ‖R(i)) ≤ D̃(Ṗ(i)‖R(i)), from which we

derive an equivalent of (5.47). 2
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Exponential tightness

We first recall some definitions (see [42]). A sequence of random variables{Xn}n ∈ (RK)N

is exponentially tight if

lim
M→∞

lim sup
n→∞

1

n
log P(‖Xn‖ > M) = −∞.

For δ > 0 andT > 0, define the modulus of continuity inD(E) by

w′(X, δ, T ) := inf
{ti}

max
i

sup
s,t∈[ti−1,ti)

d(X(s),X(t)),

where the infimum is over{ti} satisfying

0 = t0 < t1 < · · · < tm−1 < T ≤ tm

andmin1≤i≤n(ti − ti−1) > δ.
Theorem 4.1 of [42] tells us : letT0 be a dense subset ofR+. Suppose that for eacht ∈ T0,

{Xn(t)}n is exponentially tight. Then{Xn}n is exponentially tight inD(E) if and only if for
eachǫ > 0 andT > 0,

lim
δ→0

lim sup
n→∞

1

n
log P(w′(Xn, δ, T ) > ǫ) = −∞. (5.48)

A sequence of stochastic processes{Xn}n that is exponentially tight inD(E) isC-exponentially
tight if for eachη > 0 andT > 0,

lim sup
n→∞

1

n
log P(sup

s≤T
d(Xn(s),Xn(s−)) ≥ η) = −∞. (5.49)

Then Theorem 4.13 of [42] gives : an exponentially tight sequence{Xn}n in D(E) is C-
exponentially tight if and only if each rate functionI that gives the LDP for a subsequence
{Xn(k)}n(k), satisfiesI(x) = ∞ for eachx ∈ D(E) such thatx /∈ C(E).

The stochastic assumptions of Section 6.2 ensure that the sequence of processes{JNn}n

satisfies a LDP with good rate function (this implies that thesequence is exponentially tight)
giving an infinite mass to discontinuous path. Hence the sequence of processes{JNn}n is C-
exponentially tight.

We have to show that the sequence of processes{(An,Dn)}n is exponentially tight. The fact
of dealing with non-decreasing processes simplifies the definitions. ForX ∈ D(RK

+ ) (or D(MK))
non-decreasing,δ > 0 andT > 0, we definewδ(X, T ) = supt∈[0,T ] ‖X(t+ δ)−X(t)‖. We have
clearlyw′(X, δ, T ) = wδ(X, T ) and if {Xn(0)}n is exponentially tight then (5.48) implies that
{Xn(t)}n is exponentially tight for eacht > 0. Lemmas 49 and 50 show that conditions (5.48)
and (5.49) are satisfied for the sequence of processes{(An,Dn)}n. The exponential tightness of
{(An(0),Dn(0))}n is clear sinceAn(0) = Dn(0) = 0.

Large deviations results

Proposition 27. The sequence of processes{(An,Dn)}n satisfies a LDP inD(RK
+ ) × D(RK

+ )
with good rate functionIA,D. For A,D absolutely continuous and such thatA(0) = D(0) = 0,
IA,D is given by

IA,D(A,D) =

∫ ∞

0
H(A(s),D(s), Ȧ(s), Ḋ(s))ds, (5.50)
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whereH(A,D, Ȧ, Ḋ) := infP,N h(A,D, Ȧ, Ḋ, P,N), withh given by,

h(A,D, Ȧ, Ḋ, P,N) :=
∑

i∈E(A,D)

IS
(i)

(Ḋ(i))11{Ḋ(i)>µ(i)} +
∑

i/∈E(A,D)

IS
(i)

(Ḋ(i)) +
∑

i

Ḋ(i)D(P (i)‖R(i)) + IN(N)

whereE(A,D) = {i, A(i) = D(i)} and with the infimum taken over the set of(P,N) ∈ MK×RK
+

such that

Ȧ = N + P tḊ.

For all otherA,D, we haveIA,D(A,D) = ∞.

Proof. We define

ĨA,D(A,D) = inf
{

lim
n→∞

IJN(JNn), {JNn}n ∈ S(A,D)
}

, (5.51)

where we recall thatS(A,D) = ∪JNS(JN,A,D), whereS(JN,A,D) is defined in Proposition
26. We have to show that̃IA,D = IA,D given by (5.50).

ConsiderJN ∈ DJN and let(A,D) = Ψ(JN). Let τ = {0 = t0 < t1 < . . .} be such
that the processesA,D,S,N andD ◦P have a constant derivative on each(tk, tk+1). Then from
A = Γ(D,JN), we derive

Ȧ(i)(t) = Ṅ(i)(t) +
∑

j

Ḋ(j)(t)Ṗ(j,i)(D(j)(t)).

FromD = Φ(A,S), we get the following constraints :
– if A(i)(tk) > D(i)(tk) or A(i)(tk+1) > D(i)(tk+1), then we haveḊ(i)(t) = Ṡ(i)(t) for
t ∈ (tk, tk+1) ;

– otherwiseA(i)(t) = D(i)(t) for t ∈ (tk, tk+1) and we havėS(i)(t) ≥ Ȧ(i)(t) = Ḋ(i)(t) for
t ∈ (tk, tk+1).

Now we can computeIJN(JN) as follows

IJN(JN) =

∫ ∞

0

∑

i∈E(A,D)

IS
(i)

(Ṡ(i)(s)) +
∑

i/∈E(A,D)

IS
(i)

(Ḋ(i)(s))ds

+

∫ ∞

0

∑

j

Ḋ(j)(s)D(Ṗ(j)(s)‖R(j)) + IN(Ṅ(s))ds

≥
∫ ∞

0
h(A(s),D(s), Ȧ(s), Ḋ(s), Ṗ(s), Ṅ(s))ds ≥ IA,D(Ψ(JN)),

since fori ∈ E(A(s),D(s)), we haveIS
(i)

(Ṡ(i)(s)) ≥ IS
(i)

(Ḋ(i)(s))11{Ḋ(i)(s)>µ(i)} because

Ṡ(i)(s) ≥ Ḋ(i)(s) and IS
(i)

is non-negative, convex withµ(i) as unique zero. Hence, we have
ĨA,D ≥ IA,D.

Consider now(A,D) such thatIA,D(A,D) < ∞, then we denote by(p(s),n(s)) the ar-
gument that achieves the minimum inH(A(s),D(s), Ȧ(s), Ḋ(s)) for any fixeds (note thath
is a good rate function). LetP(D(t)) =

∫ t
0 p(s)ds and N(t) =

∫ t
0 n(s)ds. We haveA =

Γ(D,P,N). Now defines(s) as follows :
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– if A(i)(s) = D(i)(s) thens(i)(s) = Ḋ(i)(s) ∨ µ(i) ;
– if A(i)(s) > D(i)(s) thens(i)(s) = Ḋ(i)(s).

We haveD = Φ(A,S) with S(t) =
∫ t
0 s(s)ds. Hence we have(A,D) = (Γ(D,JN),Φ(A,JN))

for JN = (S,P,N) andIJN(JN) = IA,D(A,D) < ∞ by construction. Hence the sequence
S(JN,A,D) = {JNn}n is well-defined and we havẽIA,D(A,D) ≤ limn→∞ I

JN(JNn) =
IJN(JN) = IA,D(A,D). 2

From this proposition, it is quite easy to derive a LDP for theprocessQn(t) := An(t)−Dn(t)
counting the number of customer in each queue.

Corollary 4. The sequence of processes{Qn}n satisfies a LDP inD(RK
+ ) with good rate function

that is finite forQ absolutely continuous and such thatQ(0) = 0 and given by :

IQ(Q) :=

∫ ∞

0
HQ(Q(s), Q̇(s))ds,

whereHQ is given by,

HQ(Q, Q̇) := inf







∑

i∈E(Q)

IS
(i)

(D(i))11{D(i)>µ(i)} +
∑

i/∈E(Q)

IS
(i)

(D(i)) +
∑

i

D(i)D(P (i)‖R(i)) + IN(N)







whereE(Q) = {i, Q(i) = 0} and the infimum is taken over the set of(D,P,N) ∈ RK
+×MK×RK

+

such that

Q̇ = N + (P t − Id)D.

Proof. Thanks to the contraction principle, we have

IQ(Q) = inf{IA,D(A,D),Q = A− D},
which gives directly the corollary. 2

5.5.5 Appendix

Properties of the mapΓ and Φ

ForX ∈ D(E), δ > 0 andT > 0, we definewδ(X, T ) = supt∈[0,T ] d(X(t+ δ),X(t)).

Lemma 49. We have

wδ(Φ(X,Y), T ) ≤ wδ(Y, T ).

Proof. It is clearly sufficient to consider the caseK = 1. We will prove that

Φ(X,Y)(t+ δ) − Φ(X,Y)(t) ≤ Y(t+ δ) − Y(t), (5.52)

from which the lemma follows.
If Φ(X,Y)(t) = Y(t), then we haveΦ(X,Y)(t+ δ) ≤ Y(t+ δ) and (5.52) is clear.
Assume now thatΦ(X,Y)(t) = inf0≤s<t {Y(t) − Y(s) + X(s)} < Y(t). We have

Y(t+ δ) − Y(s) + X(s) = Y(t) − Y(s) + X(s) + Y(t+ δ) − Y(t),

and (5.52) follows by taking the minimum ins ∈ [0, t] and observing thatΦ(X,Y)(t + δ) ≤
inf0≤s<t {Y(t+ δ) − Y(s) + X(s)}. 2

The following lemma is clear :
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Lemma 50. We have

wδ(Γ(X,P,N), T ) ≤ wδ(N, T ) +wδ(P, ‖X(T )‖).

Lemma 51. AssumeS ∈ D0(R+) is absolutely continuous, then for anyA ∈ D(R+), we have
D := Φ(A,S) is absolutely continuous and,

– for all t such thatA(t) > D(t), we haveḊ(t) = Ṡ(t) ;
– if A(t) = D(t) for t ∈ (u, v) with u < v, then we havėS(t) ≥ Ȧ(t) = Ḋ(t) for t ∈ (u, v).

Proof. It follows directly form (5.52) that ifS is absolutely continuous, thenΦ(X,S) is abso-
lutely continuous for anyX. The rest of the lemma is obvious. 2

Auxiliary results

Lemma 52. Given a substochastic matrixR such thatρ(R) < 1 and a substochastic matrixP
such that the support ofP is included in the support ofR, i.e.R(i,j) = 0 ⇒ P (i,j) = 0. Then
for anyǫ such that0 < ǫ(i) ≤ 1 for all i, the matrix with coefficientsM (i,j) = (1 − ǫ(i))P (i,j) +
ǫ(i)R(i,j) is of spectral radius less than1.

Proof. By a suitable permutation of rows and columns, we can assume thatR is given in its
canonical form

R =








S1(R) ∗ ∗ ∗
0 S2(R) ∗ ∗
0 0

.. . ∗
0 0 0 Sn(R)







, (5.53)

where eachSi(R) is an irreducible matrix. We haveρ(R) < 1 if and only if eachSi(R) is not a
stochastic matrix.

In view of the assumption on the support ofP , the matrixP has the same structure as (5.53)
and we have with the same notation as above,Si(M) which is an irreducible and not stochastic
matrix. 2

An example

In this section, we construct 2 different sequences of Jackson networksJN1
n andJN2

n such
that their fluid limits are the same

JN1
n → JN and JN2

n → JN,

but such that

(A1
n,D

1
n) = Ψ(JN1

n) → (A1,D1),

(A2
n,D

2
n) = Ψ(JN2

n) → (A2,D2),

with (A1,D1) 6= (A2,D2).
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We consider a toy example with only one node. Once a customer is served, he can either go
out of the network or go back to this same node. We define the following driving sequences :

σ(0),n = (1, . . . , 1
︸ ︷︷ ︸

n

, n, 1, . . . , 1
︸ ︷︷ ︸

n

, n, . . . ),

σ(1),n = α(1, 1, . . . ),

with α < 1. We define now two different routing sequences

ν(1),n = (2, . . . , 2
︸ ︷︷ ︸

n+1

, 1, . . . , 1
︸ ︷︷ ︸

n+1

, . . . ),

ν(1),n(x) = (2, . . . , 2
︸ ︷︷ ︸

⌊xn⌋

, 1, 2, . . . , 2
︸ ︷︷ ︸

n−⌊xn⌋

, 1, . . . , 1
︸ ︷︷ ︸

⌊xn⌋

, 2, 1, . . . , 1
︸ ︷︷ ︸

n−⌊xn⌋

, . . . ),

wherex < 1. We denote byJN1
n = {σn, νn, 0} andJN2

n = {σn, νn(x), 0}. νn(x) is obtained
from νn by only interchanging a 1 and a 2. Hence we have

JN1
n → JN and JN2

n → JN.

Indeed the fluid Jackson networkJN is given on Figure 5.3.

S(0)S(0)

S(1)S(1)

P(1,1)

P(1,2)

FIG. 5.3 – Fluid Jackson networks :JN

The fluid limit of the departure processes are given on Figure5.4 (for 2 different values ofα).

D1

D2

αFIG. 5.4 – Departure processes
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To explainD2, we write for each arrival (number on the left) the couple corresponding to :
the inter-arrival time| the routing decision (2 means that the customer exits the network) :

1 → 1 | 2
2 → 1 | 2
3 → 1 | 2

...
⌊xn⌋ → 1 | 2

⌊xn⌋ + 1 → 1 | 1, 2
⌊xn⌋ + 2 → 1 | 2

...
n → 1 | 2

n+ 1 → n | 1, . . . , 1
︸ ︷︷ ︸

⌊xn⌋

, 2

n+ 2 → 1 | 1, . . . , 1
︸ ︷︷ ︸

n−⌊xn⌋

, 2

n+ 3 → 1 | 2
...

n+ ⌊xn⌋ + 1 → 1 | 2
n+ ⌊xn⌋ + 2 → 1 | 1, 2
n+ ⌊xn⌋ + 3 → 1 | 2

...
2n+ 1 → 1 | 2

2(n + 1) → n | 1, . . . , 1
︸ ︷︷ ︸

⌊xn⌋

, 2

...



Chapitre 6

Asymptotics of Fractional Brownian
Max Plus Networks

6.1 Introduction

Recall that a standard fractional Brownian motion (FBM) process with Hurst parameterH ∈
[1/2, 1) is a Gaussian centered process with stationary increments,continuous paths and such that

E[F (s)F (t)] =
1

2

(
s2H + t2H − |s− t|2H

)
,

for all s, t ∈ R.
Queues with FBM input process has received much attention inthe literature. Studies [74,

34, 73, 75] have focused primarily on the workloadW of a single server queue, whereW :=
supt>0(ρt+σZt− t), with mean input rateρ, standard deviationσ, and server capacity1. A lower
boundP(W > x) was first obtained by Norros in [74], this lower bound has beenlater shown
by Duffield and O’Connell in [34] to be asymptotically exact in logarithm using large deviation
principle, further extensions on deriving exact expression and stronger asymptotic estimates are
developed in [75] and [73]. All these studies assert that theworkloadW of a single server queue
is asymptotically Weibullian, namely,

log P(W > x) ∼ − 1

2σ2
x2(1−H) (1 − ρ)2H(1 −H)2(H−1)

H2H
. (6.1)

In this paper, we focus on the end-to-end delay in a network setting.
To the best of our knowledge, there exist few results on the tail asymptotic of the end-to-

end delay in a network setting. Under the assumptions of independent and identically distributed
(i.i.d.) service times and of the existence of moment generating functions, large deviation results
were derived in [83] and [44] for stochastic event graphs. Incase when the service times are i.i.d.
and subexponential, exact asymptotics were obtained in Chapter 3 for stochastic event graphs,
where the end-to-end delay has subexponential tail distribution. In the current section, we focus
on another cause of heavytailness for the end-to-end delay,namely LRD, what has not been done
in a network context.

We consider the steady state distribution of the end-to-enddelay of a tagged flow in queueing
networks where some of the queues have self-similar cross traffic. We assume that such cross

149
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traffic, say at queuei, is modeled by Fractional Brownian Motion (FBM) with Hurst parameter
Hi ∈ [1/2, 1), and is independent of other queues. Note that whenHi = 0.5, we have an ordinary
Brownian motion model. We assume that at least one of the queues have the Hurst parameter that
is strictly greater than 0.5. The arrival process of the tagged flow is renewal. Two types of queueing
networks are considered.

We show that the end-to-end delay of the tagged flow in a tandemqueueing network is com-
pletely dominated by one of the queues. The dominant queue isthe one with the maximal Hurst
parameter. If several queues have the same maximal Hurst parameter, then we have to compare the

ratio (1−ρ)H

σ to determine the dominant queue, whereρ is the load of the queue. We have then

log P(D > x) ∼ log P(W > x),

whereW is the steady-state workload of a single server queue with the same FBM inputs as the
dominant queue, which is known to be asymptotically Weibullian.

We also consider general structure of networks that belongsto the event graph framework. We
show that the end-to-end delay is still asymptotically Weibullian with the same shape parameter.
We also provide upper and lower bounds on the constant that determines the scale parameter of
the corresponding Weibull distribution.

This section is based on [68].

6.2 Stochastic Assumptions

6.2.1 Taking Cross Traffic into Account

Consider a network of queues with cross traffic, the case of queues in tandem is illustrated
in Figure 6.1. We assume that the service times of customers of the tagged flow are negligible
compared to the queueing delays. We see that the time spent ina server is mainly due to the cross
traffic. Thus, in our model, in order to analyze the delay of the tagged customers, we define the
virtual service times for each tagged customer to be the amount of cross traffic arrived between
two successive arrivals of the tagged customers. This (virtual) service time is denoted asσi

n (for
serveri). The resulting queueing system (with such virtual servicetimes) is a single class FIFO
queueing networks. In the sequel, we shall thus consider only such FIFO queues, with the (virtual)
service times to be possibly self-similar.
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FIG. 6.1 – Queues with cross traffic

6.2.2 Model

For now on, we consider an event graph as described in Section2.2.2, withm ≤ K timed
transitions, namelyTtimed = {t(1), . . . , t(m)}, satisfying the assumptions in Property 3, and with
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associated recursion :

Xn = An ⊗Xn−1 ⊕Bn ⊗ Tn

of dimensions ≤ KL. This means that the matrices{An, Bn} and vectors that are used in the
recursion are obtained via two applicationsf andg such that :

A : Rm
+ → M(s,s) (Rmax)

σ = (σ1, . . . , σm) 7→ A(σ),

B : Rm
+ → M(s,1) (Rmax)

σ = (σ1, . . . , σm) 7→ B(σ),

via the formula

A(ζn) = An,

B(ζn) = Bn.

with ζn = (σ
t(1)
n , . . . , σ

t(m)
n ).

In what follows by feed-forward network, we will understandan event graph such that each com-
munication class is made of only one timed transition.

6.2.3 Model Description and Stochastic Assumptions

We always implicitly assumed that theσi
n were non-negative to get a dynamical interpretation

of the (max,plus) equations. Nevertheless, the construction of recurrence (2.5) does not require
any assumption on the sign of theσi

n. We will use the notation{βi
n} instead of{σi

n} to make a
clear difference if theβi

n do not have to be non-negative.
In what follows, we will consider :

– a sequence of arrival timesN = {Tn}n∈N that is a renewal process : inter-arrival times
{τn = Tn+1 − Tn} are i.i.d. We assume moreover thatE[τ0] = 1 andT0 = 0 (under Palm
probability).

– sequences{βi
n}n∈N, i ∈ T that are constructed as follows

βi
n = Si(Tn+1) − Si(Tn), with Si(t) = ρit+ σiF

i(t), (6.2)

whereF i is a FBM with Hurst parameter1/2 ≤ Hi < 1. The FBMF i are independent of
each other andH = max{Hi} > 1/2. If i is an untimed transition, we takeρ1 = σi = 0.

Remark20. The condition on the mean ofτ0 is not restrictive, we can take any renewal process
with positive intensity. Moreover, we see that our virtual service timesβi

n are not non-negative but
each sequence is self-similar and long range dependent ifHi > 1/2.

Stability of the system :
Each sequence{βi

n}n∈N is stationary and ergodic (see [28] Theorem 14.2.1), hence we have :

lim
k→∞

(D[−k+1,0])
(s,i)

k
= lim

k→∞

(D[−k+1,0] ⊗B−k)
(s)

k
= γ, (6.3)
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whereγ is the top Lyapunov exponent of the sequence{An} (see [11]). We will always assume
that

γ < 1. (6.4)

Under this condition we know that the maximal dater of the event graph is finite a.s. since(D[−k+1,0]⊗
B−k)

(s) + T−k → −∞ a.s. We refer to [11] for the following lemma :

Lemma 53. Consider the matrixP = A(ρ), with ρ = (ρt(1), . . . , ρt(m)). We denote byρ the
maximal (max, plus)-eigenvalue ofP . We have :

max(ρt(i)) ≤ ρ ≤ γ.

6.3 Logarithmic Tail Asymptotic : the General Case

6.3.1 Main result

Theorem 15(Main Result). LetZ be the stationary maximal dater of the event graph.
Consider the set of transitions with maximal Hurst parameter denotedH,

S := arg max{Hi},

now define the subset of dominant transitions as follows

D := arg min
i∈S

{
(1 − ρi)

H

σi

}

.

We denote byW the workload of a single server queue with the same parameteras one of the
transitions inD, then we have

C(1 − γ)2 ≤ lim
log P(Z > x)

log P(W > x)
≤ lim

log P(Z > x)

log P(W > x)
≤ 1, (6.5)

whereγ is the top Lyapunov exponent associated to the network, see (6.3), and the constantC
satisfies :

(1 − γ)2H

∑

j∈S
(σj)2

max
i

(σi)
2

(1 − ρi)2H
≤ C.

6.3.2 First result with deterministic arrival times

In this section we construct a graphG which is slightly different from the graphGA∪B of
Section 2.2.3. Moreover we introduce weights that are not standard.

ApplicationsA andB of section 6.2.3 can be viewed as purely algebraic objects. Following
Section 2.3 of [11], we can associate to each applicationA andB a directed graph, respectively
GA andGB . For f , the set of nodes is{1, . . . , s} and an arc fromi to j is introduced inGA if
A(0)(j,i) 6= ǫ. For g, the set of nodes is{0, 1, . . . , s} and an arc form0 to i is introduced inGB

if B(0)(i) 6= ǫ. We denoteG = GA ∪ GB . Each coefficient ofA andB is a (max,plus)-expression
expr :=

⊕d
j=1

⊗

k∈Kj
βk, and we put inG, d copies of the original arc and give to each of them

a weight that is the associated setKj . We obtain a weighted graphGw. For each arce ∈ Gw, W(e)
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0

1 2 L-1 L. . .

FIG. 6.2 – GraphGw for Tandem Queueing Network with Fixed Window Control

denotes the weight ofe (i.e. a set of indices). We give here the graph correspondingto queues in
tandem with window control (section 2.2.4.0), line style corresponds to the mark : dashed={1},
dotted={2}, solid={1, 2} and dash-dot=∅ (observe that in this cases = L).

We denote byΞ the set of paths inGw going from node0 to nodes. Forξ = (e0, e1, . . . , el) ∈ Ξ,
we denote :

|ξ|l = l + 1, ρ(ξ) =
l∑

i=0

∑

j∈W(ei)

ρj ,

F(ξ) =

l∑

i=0

∑

j∈W(ei)

σj(F
j(i+ 1) − F j(i)),

|ξ|w = E
[
F(ξ)2

]
.

In the special caseTn = n, the maximal dater can be expressed as :

Z = max
k≥0

[

(D[−k,0] ⊗B−k)
(s) − k

]

dist
= sup

ξ∈Ξ
[ρ(ξ) + F(ξ) − (|ξ|l − 1)] .

First we rewrite the event{Z > x} :

{Z > x} = {∃ξ ∈ Ξ, ρ(ξ) + F(ξ) − |ξ|l + 1 > x}

= {sup
ξ∈Ξ

F(ξ)

x− 1 + |ξ|l − ρ(ξ)
> 1}. (6.6)

To consider the event{Z > x} or {Z > x+1} does not change the asymptotic. For the simplicity
of notations, we consider the latter in what follows.
Based on (6.6), to study the tail asymptotic forZ, it suffices to focus on the supremum of the
following centered Gaussian process :

{

Xx
ξ =

F(ξ)

x+ |ξ|l − ρ(ξ)

}

ξ∈Ξ

.

Define :

mx = E

[

sup
ξ∈Ξ

Xx
ξ

]

, and σ2
x = sup

ξ∈Ξ
E
(
Xx

ξ

)2
. (6.7)
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Notice that

σ2
x = sup

ξ∈Ξ

|ξ|w
(x+ |ξ|l − ρ(ξ))2

.

We claim the following logarithmic tail asymptotic forZ.

Proposition 28. ConsiderZ the stationary maximal dater of the event graph. We assume deter-
ministic arrival times,Tn = n. Then we have

(1 − γ)2 ≤ lim(−2σ2
x) log P(Z > x) ≤ lim(−2σ2

x) log P(Z > x) ≤ 1, (6.8)

whereγ is the top Lyapunov exponent associated to the network.

Remark21. We will show that for feed-forward networks, the upper boundis indeed tight.

To prove the above main result, we shall need the so-called ”Borell’s inequality”[1, p.43,p.47] for
the supremum of a Gaussian process which we recall below.

6.3.3 Borell’s Inequality

In what follows, we shall always assume thatT has a countable dense subset and the processes
we consider are always separable. We recall that a real stochastic process{Xt}t∈T is separable
if there is a sequence{tj} of parameter values and a setΛ of probability 0 such that, if A is any
closed interval andI is any open interval, the sets

{Xt(ω) ∈ A, t ∈ I ∩ T}, {Xtj (ω) ∈ A, tj ∈ I ∩ T},

differ by at most a subset ofΛ.
The following property can be found in [1], Theorem 2.1 :

Proposition 29. Let{Xt}t∈T be a centered Gaussian process with sample paths bounded a.s. Let
‖X‖ = supt∈T Xt. ThenE‖X‖ <∞, and for allλ > 0

P{|‖X‖ − E‖X‖| > λ} ≤ 2 exp

(

−1

2
λ2/σ2

T

)

, (6.9)

whereσ2
T := supt∈T EX2

t . In particular, for all λ > E‖X‖, equation (6.9) may be rewritten as
follows :

P{‖X‖ > λ} ≤ 2 exp

(

−(λ− E‖X‖)2
2σ2

T

)

. (6.10)

The only assumption made on the parameter spaceT is thatT is totally bounded in the canonical
metric. We recall that the canonical metric is defined as follows

d(s, t) :=
√

E(Xs −Xt)2. (6.11)

We denote byN(ǫ) the smallest number of closedd-balls of radiusǫ that coverT . T is totally
bounded if the functionN(ǫ) is finite for all ǫ > 0.
In fact, following proof of theorem 2.1 in [1], we see that this assumption may be relaxed.
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Consider a centered Gaussian process with sample paths bounded a.s.{Xt}t∈T . Let {Tn}n≥1 be
an increasing sequence of subsets ofT that tends to a dense subset ofT containing the sequence
{tj} of points satisfying the conditions of the separability definition. We suppose that eachTn

is totally bounded in the canonical metric, and we denote‖X‖n = supt∈Tn
Xt. Then for anyn,

thanks to property 29, we haveE‖X‖n <∞, and for allλ > 0

P{|‖X‖n − E‖X‖n| > λ} ≤ 2 exp

(

−1

2
λ2/σ2

n

)

, (6.12)

whereσ2
n := supt∈Tn

EX2
t . Moreover, we haveσ2

n ↑ σ2
T . We consider the caseσ2

T < ∞ and first
show thatE‖X‖ <∞ like in [1].
SupposeE‖X‖ = ∞ and chooseλ0 > 0 such that

e−λ2
0/2σ2

T ≤ 1/4, P

[

sup
t∈T

Xt < λ0

]

≥ 3/4.

Such a constant exists sinceσT is finite and the random variablesupt∈T Xt is finite a.s.
Now sinceE‖X‖n ↑ E‖X‖ = ∞, we can findn such thatE‖X‖n > 2λ0. Borell’s inequality on
the spaceTn then gives

1

2
≥ 2e−λ2

0/2σ2
T ≥ 2e−λ2

0/2σ2
n

≥ P[|‖X‖n − E‖X‖n| > λ0]

≥ P[E‖X‖n − ‖X‖ > λ0]

≥ P[λ0 > ‖X‖] ≥ 3/4.

This proved the required contradiction, and soE‖X‖ < ∞. Since‖X‖n ↑ ‖X‖ a.s.(separability
condition), we have for allλ > 0

P{|‖X‖ − E‖X‖| > λ} ≤ 2 exp

(

−1

2
λ2/σ2

T

)

. (6.13)

Application 1. Consider the process{Gt = Z(t)
1+t }t∈[0,∞). Sincelimt→∞ Z(t)/t = 0, this process

is a.s. bounded. Here we takeTn = [0, n], andT = [0,∞). EachTn is totally bounded (see [73])
andσ2

T = supt≥0 EG2
t = H2H(1 −H)2(1−H). Hence Borell’s inequality applies for this process

on the whole interval[0,∞).

Application 2. If T is countable, then Borell’s inequality applies. Just takeTn finite and hence
totally bounded.

6.3.4 Auxiliary Results

In this section, we derive some necessary auxiliary resultsbefore we prove the main results as
claimed in Property 28. Recall that

{

Xx
ξ =

F(ξ)

x+ |ξ|l − ρ(ξ)

}

ξ∈Ξ

,

and

mx := E

[

sup
ξ∈Ξ

Xx
ξ

]

, and σ2
x = sup

ξ∈Ξ
E
(
Xx

ξ

)2
. (6.14)
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The process{Xx
ξ } is a centered Gaussian process. The stability condition (6.4) γ < 1 ensures that

Z <∞ almost surely, from which the boundedness of the sample pathof process{Xx
ξ } follows.

In our context, the parameter setΞ is countable as the countable union of the finite sets :Ξn =
{ξ ∈ Ξ, |ξ|l = n}. Hence Borell’s inequality applies (see Application 2 in previous section) and
if mx ≤ 1 (which is shown in the next lemma), we will have

P

(

sup
ξ∈Ξ

Xx
ξ > 1

)

≤ 2 exp

(

−(1 −mx)2

2σ2
x

)

. (6.15)

Lemma 54. We havelim supx→∞mx ≤ γ < 1.

Proof.
The functionx 7→ supξ

F(ξ)+

x+|ξ|l−ρ(ξ) is non-increasing since

x ≤ y ⇒ F(ξ)+

x+ |ξ|l − ρ(ξ)
≥ F(ξ)+

y + |ξ|l − ρ(ξ)

⇒ sup
ξ

F(ξ)+

x+ |ξ|l − ρ(ξ)
≥ sup

ξ

F(ξ)+

y + |ξ|l − ρ(ξ)
.

Thanks to Borell’s inequality, we haveE
[

supξ∈ΞX
1
ξ

]

< +∞ and by symmetry,P(supξ |X1
ξ | >

λ) ≤ 2P(supξ X
1
ξ > λ), hence we haveE

[

supξ∈Ξ(X1
ξ )+
]

≤ E

[

supξ∈Ξ |X1
ξ |
]

< +∞. Then we

can use monotone convergence to derive

lim
x→∞

E

[

sup
ξ∈Ξ

(Xx
ξ )+

]

= E

[

lim
x→∞

sup
ξ∈Ξ

(Xx
ξ )+

]

.

Thanks to (6.3), we know that for any0 < ǫ < 1− γ, there exists a finite random variableL, such
that

|ξ|l ≥ L ⇒ F(ξ) + ρ(ξ) ≤ (γ + ǫ)|ξ|l.

Hence for such a path, we have

F(ξ)+

x+ |ξ|l − ρ(ξ)
≤ (γ + ǫ)|ξ|l − ρ(ξ)

x+ |ξ|l − ρ(ξ)

≤ γ + ǫ.

We define the random variableM = sup|ξ|l≤L F(ξ)+. We haveM < +∞ a.s. and

sup
ξ∈Ξ

(Xx
ξ )+ ≤ M

x
+ γ + ǫ.

Hence we havelimx→∞ supξ∈Ξ(Xx
ξ )+ ≤ γ, and the result follows sincemx ≤ E

[

supξ∈Ξ(Xx
ξ )+

]

.
2
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Remark22. The bound of Lemma 54 is tight in the sense that there are casesfor which we have

lim
x→∞

mx = γ.

We take the example of two queues in tandem with window control of sizeL = 1. We recall the
recursion equations with the notation of section 2 (v1,2

n = v1
n + v2

n) :

(
x1

n

x2
n

)

=

(
v1
n v1

n

v1,2
n v1,2

n

)

⊗
(
x1

n−1

x2
n−1

)

⊕
(

v1
n

v1,2
n

)

⊗ Tn.

Takeρ1 = σ1 = 0 (service in station1 is instantaneous) andρ2 = 0. We have

(D[−k+1,0] ⊗B−k)
(2) dist

=
k∑

i=0

σ2

(
(F 2(i+ 1) − F 2(i))

)+
.

Hence we have

γ = σ2E

[(
F 2(1)

)+
]

> 0.

We haveE

[(
F 2(1)

)+
]

≤ E
[
1 + (F 2(1))2

]
= 2, hence we can chooseσ2 = 1/3 and we have

γ < 1. Now we see that forξ ∈ Ξn, we have

Xx
ξ ≥ 1/3

∑n
i=0

(
F 2(i+ 1) − F 2(i)

)+

x+ n
,

hence

sup
ξ
Xx

ξ ≥ sup
n

1/3

∑n
i=0

(
F 2(i+ 1) − F 2(i)

)+

x+ n

≥ lim
n→∞

1/3

∑n
i=0

(
F 2(i+ 1) − F 2(i)

)+

x+ n
= γ > 0.

In this specific case, thanks to Lemma 54, we havelimx→∞mx = γ.

If X andY are centered Gaussian random variables with respective variancesσ2
X andσ2

Y , we will
writeX ≤var Y ⇔ σX ≤ σY .

Lemma 55. We have

Xx
ξ ≤var

∑m
i=1 σiF

i(|ξ|l)
x+ |ξ|l(1 − γ)

.

Proof.
We first prove that

F(ξ) ≤var

m∑

i=1

σiF
i(|ξ|l). (6.16)
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Take t1 < t2 < t3 < t4, we use the notation :∆1 = t2 − t1, ∆2 = t3 − t2, ∆3 = t4 − t3,
∆ = t4 − t1 andF (∆1) = F (t2) − F (t1), . . . We haveF (∆3) + F (∆1) ≤var F (∆). This
follows from the following inequalities with1/2 ≤ H < 1 (recall thata2H + b2H ≤ (a+ b)2H ) :

E(F (∆3) + F (∆1))
2 = EF (∆3)

2 + EF (∆1)
2 + 2EF (∆3)F (∆1)

= ∆2H
3 + ∆2H

1 + ∆2H − (∆1 + ∆2)
2H + ∆2H

2 − (∆2 + ∆3)
2H

≤ ∆2H + ∆2H
1 + ∆2H

2 + ∆2H
3 − ∆2H

1 − ∆2H
2 − ∆2H

2 − ∆2H
3

≤ ∆2H = EF (∆)2.

We have then
∑|ξ|l−1

i=0 11j∈W(ei)(F
j(i+1)−F j(i)) ≤var F j(|ξ|l), henceF(ξ) ≤var

∑m
i=1 σiF

i(|ξ|l).
By definition, we haveρ(ξ) ≤ |ξ|lρ ≤ |ξ|lγ for any ξ ∈ Ξ, and we getx + |ξ|l − ρ(ξ) ≥
x+ |ξ|l(1 − γ). Now thanks to (6.16), we have

F(ξ)

x+ |ξ|l − ρ(ξ)
≤var

∑m
i=1 σiF

i(|ξ|l)
x+ |ξ|l(1 − γ)

2

From lemma 55, we derive

Lemma 56. We haveσ2
x := supξ∈Ξ E(Xx

ξ )2 → 0 asx → ∞. If we denoteH := max{Hj}, we

haveσ2
x = O(x2(H−1)).

Proof.
Consider the processCx

t =
Pm

i=1 σiF i(t)
x+t(1−γ) , by a change of variable, we have

Cx
xt/(1−γ) =

∑m
i=1 σiF

i(xt/(1 − γ))

x+ xt
,

and the self-similarity of the FBMF i(t) ensures that the process{Cx
xt/(1−γ)} has the same distri-

bution as the process

∑m
i=1 σi(x/(1 − γ))HiF i(t)

x+ xt
=

m∑

i=1

σix
Hi−1

(1 − γ)Hi
Gi

t,

with Gi
t = F i(t)

1+t . Thanks to previous lemma, we haveE(Xx
ξ )2 ≤ E(Cx

|ξ|l
)2, hence

sup
ξ∈Ξ

E(Xx
ξ )2 ≤ sup

t>0
E(Cx

t )2,

but we have

sup
t>0

E(Cx
t )2 =

m∑

i=1

(σi)
2x2(Hi−1)

(1 − γ)2Hi
sup
t>0

E(Gi
t)

2.

A simple calculation gives :supt>0 E(Gi
t)

2 = (Hi)
2Hi(1 −Hi)

2(1−Hi), then

σ2
x ≤

m∑

i=1

(σi)
2x2(Hi−1)

(1 − γ)2Hi
(Hi)

2Hi(1 −Hi)
2(1−Hi).
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Thanks to Lemma 3 of [16], we know that eachβj
n is on the diagonal of the matrixAn. Hence for

any l ≥ 1, there exists a path inΞ such that|ξ0|l = l, ρ(ξ0) ≥ ρjl, |ξ0|w ≥ (σj)
2l2Hj .

Hence we have

E(Xx
ξ0)

2 ≥ (σj)
2l2Hj

(x+ l(1 − ρj))2
.

Taking an indexj, such thatHj = H, we have

σ2
x ≥ sup

l≥1

(σj)
2l2H

(x+ l(1 − ρj))2

= (σj)
2x2(H−1) sup

l≥1

(l/x)2H

(1 + l/x(1 − ρj))2

∼ (σj)
2x2(H−1) sup

t>0

t2H

(1 + t(1 − ρj))2

= (σj)
2x2(H−1) H2H

(1 − ρj)2H(1 −H)2(H−1)
.

This gives the last result. 2

6.3.5 Proof of Property 28

Upper bound :
Taking the logarithm of equation (6.15), we obtain

2σ2
x log P(Z > x) ≤ 2σ2

x log(2) − (1 −mx)2 .

Thanks to lemmas 54 and 56, we have

lim sup
x→∞

2σ2
x log P(Z > x) ≤ −(1 − γ)2. (6.17)

Lower bound :
We denote :

Φ(y) =
1√
2π

∫ ∞

y
e−x2/2dx.

We have :

P(Z > x) = P

(

sup
ξ∈Ξ

ρ(ξ) + F(ξ) − |ξ|l > x

)

≥ sup
ξ∈Ξ

P (F(ξ) > x+ |ξ|l − ρ(ξ))

= sup
ξ∈Ξ

Φ

(

x+ |ξ|l − ρ(ξ)
√

E[F(ξ)2]

)

= Φ

(

inf
ξ∈Ξ

x+ |ξ|l − ρ(ξ)
√

|ξ|w

)

.
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Using the approximationlog Φ(y) ∼ −y2/2, we obtain

log P(Z > x) ≥ − inf
ξ∈Ξ

(x+ |ξ|l − ρ(ξ))2

2|ξ|w
,

hence

lim inf
x→∞

2σ2
x log P(Z > x) ≥ −1. (6.18)

Equations (6.17) and (6.18) give the desired asymptotic fordeterministic arrival times.
2

Remark23. The fact that the bound of Lemma 54is tight, shows the limits of our approach. Even
if we can compute the varianceσ2

x, the technique used here can not give an exact asymptotic for
the quantitylog P(Z > x) in these particular cases.

From Property 28, we need, in order to prove Theorem 15, to compute the asymptotic ofσ2
x and

to show that the result still holds with random arrival times. This is done in the two next sections.

6.3.6 Bounds onσ2
x

To prove Theorem 15 (first with deterministic arrival times), we derive from Property 28,

lim inf
log P(Z > x)

log P(W > x)
=

lim inf −2σ2
x log P(Z > x)

lim sup−2σ2
x log P(W > x)

≥ (1 − γ2)

lim sup−2σ2
x log P(W > x)

,

and similarly,

lim sup
log P(Z > x)

log P(W > x)
≤ 1

lim inf −2σ2
x log P(W > x)

.

We have now to compare the quantityσ2
x andlog P(W > x) whenx tends to infinity. We recall

that

log P(W > x) ∼ − 1

2σ2
x2(1−H) (1 − ρ)2H(1 −H)2(H−1)

H2H
,

where(1−ρ)H

σ =
(1−ρj)H

σj
for anyj ∈ S.

Thanks to Lemma 56, we know that for an indexj ∈ S, for sufficiently largex,

σ2
x = (σj)

2x2(H−1) H2H

(1 − ρj)2H(1 −H)2(H−1)
.

Hence we have

lim inf −2σ2
x log P(W > x) ≥ 1. (6.19)

In proof of Lemma 56, we showed that

σ2
x ≤

m∑

i=1

(σi)
2x2(Hi−1)

(1 − γ)2Hi
(Hi)

2Hi(1 −Hi)
2(1−Hi).
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Hence, we have

lim sup−2σ2
x log P(W > x) ≤

(1 − ρ)2H
∑

j∈S
(σj)

2

(1 − γ)2Hσ2
. (6.20)

Thanks to inequalities (6.20) and (6.19), we have proved Theorem 15 in the specific case of deter-
ministic arrival times.

6.3.7 From deterministic times to random arrival times

We prove now that the result extends to random arrival times.
We denoteΨ(ǫ) = supn(T−n + n(1 − ǫ)). There existK andλ such that for sufficiently largex,
we have

P[Ψ(ǫ) ≥ x] ≤ Ke−λx.

We have the following decomposition :

Z = sup
ξ

{
ρ(ξ) + F(ξ) + T−|ξ|l

}

≤ sup
ξ

{ρ(ξ) + F(ξ) − |ξ|l(1 − ǫ)} + sup
n

{T−n + n(1 − ǫ)}

= Z(1−ǫ) + Ψ(ǫ).

Notice that provided thatǫ < 1 − γ, we haveZ(1−ǫ) < +∞ a.s. Therefore,

P[Z > x] ≤ P[Z(1−ǫ) + Ψ(ǫ) > x]

= P[Z(1−ǫ) + Ψ(ǫ) > x,Ψ(ǫ) < αx] + P[Z(1−ǫ) + Ψ(ǫ) > x,Ψ(ǫ) ≥ αx]

≤ P[Ψ(ǫ) < αx]P[Z(1−ǫ) > (1 − α)x] +Ke−λαx.

Hence forǫ < 1 − γ, we have

log P[Z > x] ≤ log
{

P[Ψ(ǫ) < αx]P[Z(1−ǫ) > (1 − α)x] +Ke−λαx
}

. (6.21)

We can writeZ(1−ǫ) = (1−ǫ) supξ {ρ(ξ)/(1 − ǫ) + F(ξ)/(1 − ǫ) − |ξ|l}. We can apply Property

28 toZ(1−ǫ) provided that we take for the definition of theβ’s the processS(1−ǫ)
i (t) = ρi

1−ǫ t −
σi

(1−ǫ)F
i(t) in equation (6.2). Hence we have :

lim sup
P(Z(1−ǫ) > (1 − α)x)

U(x)
≤ 1,

with U(x) = [1−α
1−ǫ x]

2(1−H) ((1−ρ/(1−ǫ))2H (1−H)2(H−1)

2(σ/(1−ǫ))2H2H . SinceH > 1/2, we have thanks to (6.21)

lim sup
P(Z > x)

P(W > x)
≤ (1 − α)2(1−H)

(
1 − ǫ− ρ

1 − ρ

)2H

.

Lettingα andǫ go to0, we get the desired asymptotic.
Now due to the strong law of large number, we can chooseG ≡ G(ǫ), such that

P(T−n ≥ −n(1 + ǫ) −G, ∀n ≥ 0) ≥ 1 − ǫ.
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We denote this event byKǫ. Then, on the eventKǫ, we have

Z = sup
ξ

{ρ(ξ) + F(ξ) − |ξ|l(1 + ǫ)

+T−|ξ|l − |ξ|l(1 + ǫ)
}

≥ sup
ξ

{ρ(ξ) + F(ξ) − |ξ|l(1 + ǫ)} −G

= Z(1+ǫ) −G.

Then we have

P(Z > x) ≥ P(Z > x,Kǫ)

≥ P(Z(1+ǫ) > x+G)(1 − ǫ).

and using the same kind of technique as before, we obtain the lower bound. This concludes the
proof of Theorem 15.
2

6.4 Logarithmic Tail Asymptotic : the Feed-Forward Case

6.4.1 Main result

Theorem 16(Main Result). LetZ be the stationary end-to-end delay associated to a tree network.
Consider the set of transitions with maximal Hurst parameter denotedH,

S := arg max{Hi},
now define the subset of dominant transitions as follows

D := arg min
i∈S

{
(1 − ρi)

H

σi

}

.

We denote byW the workload of a single server queue with the same parameteras one of the
transitions inD, then we have

log P(Z > x) ∼ log P(W > x). (6.22)

Note that the tandem queueing network is a special case of tree networks. The result of Theorem 16
thus holds for tandem queueing network as well.

Lemma 57. In the case of tree networks, we havelimx→∞mx = 0.

Proof.
For any pathξ = (e0, . . . , el), we writet0 = 0 andtk = tk−1 +

∑l
i=0 11{k∈W(ei)}, then we

have

|F(ξ)|
x+ |ξ|l − ρ(ξ)

=

∣
∣
∑m

k=1 σk(F
k(tk) − F k(tk−1))

∣
∣

x+ |ξ|l − ρ(ξ)

≤
∑

k σk|F k(tk) − F k(tk−1)|
x+ (1 − ρ)|ξ|l

≤
∑

k

σk|F k(tk) − F k(tk−1))|
x+ (1 − ρ)(tk − tk−1)

,
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where first inequality follows from∀ξ, ρ(ξ) ≤ ρ|ξ|l. Hence, we have
∣
∣
∣
∣
∣
E

[

sup
ξ∈Ξ

Xx
ξ

]∣
∣
∣
∣
∣

≤ E

[

sup
ξ∈Ξ

|Xx
ξ |
]

≤ E

[

sup
tk

∑

k

σk|F k(tk) − F k(tk−1))|
x+ (1 − ρ)(tk − tk−1)

]

≤
∑

k

E

[

sup
u

σk|F k(u)|
x+ (1 − ρ)u

]

.

But we know thatlimu→∞ F
k(u)/u = 0, hence

sup
u

σk|F k(u)|
x+ (1 − ρ)u

→ 0 asx→ ∞,

and each term of the sum goes to zero asx→ ∞ by monotone convergence. 2

6.4.2 Computation ofσ2
x

The case of Single Server Queue

Equation (6.8) takes the simple from :

inf
ξ∈Ξ

(x+ |ξ|l − ρ(ξ))2

2|ξ|w

= inf
n≥1

(x+ n(1 − ρ))2

2σ2n2H

=
1

2σ2
x2(1−H) inf

n≥1

(1 + n/x(1 − ρ))2

(n/x)2H

∼ 1

2σ2
x2(1−H) inf

t>0

(1 + t(1 − ρ))2

t2H
.

The infimum is attained int∗single = H
(1−ρ)(1−H) and we have

log P(W > x) ∼ − 1

2σ2
x2(1−H) (1 − ρ)2H(1 −H)2(H−1)

H2H
.

The case of 2 Queues in Tandem

For ξ = (e0, . . . , el) ∈ Ξ, we define :

m =

l∑

i=0

11{1∈W(ei)}, n =

l∑

i=0

11{2∈W(ei)}.

Then we have

E(Xx
ξ )2 =

(σ1)
2m2H1 + (σ2)

2n2H2

(x+m+ n− ρ1m− ρ2n)2
. (6.23)
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We first suppose thatH1 > H2, then we have

σ2
x = x2(H1−1) ·

sup
m,n

(σ1)
2(m

x )2H1 + (σ2)
2(n

x )2H2x2(H2−H1)

(1 + m+n
x − ρ1 · m

x − ρ2 · n
x )2

∼ x2(H1−1) sup
t>0,u∈[0,1]

(σ1)
2(ut)2H1

(1 + (1 − ρ(u))t)2

with ρ(u) = ρ1u+ ρ2(1 − u). The supremum is attained inu = 1 andt∗ = H
(1−ρ)(1−H) , and we

obtain

σ2
x ∼ x2(H−1) σ2H2H

(1 − ρ)2H(1 −H)2(H−1)
,

with H := H1, ρ := ρ1 andσ := σ1.
The caseH2 > H1 is exactly the same. HenceH := H2, ρ := ρ2 andσ := σ2.
We suppose now thatH1 = H2 = H, then we have

sup
m,n

(σ1)
2m2H + (σ2)

2n2H

(x+m+ n− ρ1m− ρ2n)2

= x2(H−1) sup
m,n

(σ1)
2(m

x )2H + (σ2)
2(n

x )2H

(1 + m+n
x − ρ1 · m

x − ρ2 · n
x)2

∼ x2(H−1) sup
t>0,u∈[0,1]

(σ1)
2(ut)2H + (σ2)

2((1 − u)t)2H

(1 + (1 − ρ(u))t)2

= x2(H−1) sup
u∈[0,1]

{[
(σ1)

2u2H + (σ2)
2(1 − u)2H

]
·

· sup
t>0

t2H

(1 + (1 − ρ(u))t)2

}

= x2(H−1) sup
u∈[0,1]

{[
(σ1)

2u2H + (σ2)
2(1 − u)2H

]
·

· H2H

(1 − ρ(u))2H(1 −H)2(H−1)

}

But the functionu 7→ (σ1)2u2H+(σ2)2(1−u)2H

(1−ρ(u))2H is either monotone on[0, 1], or non-increasing on

[0, u∗] and non-decreasing on[u∗, 1] for a certainu∗. Thus the supremum is attained either at 0 or
at 1, and we have

σ2
x ∼ x2(H−1) σ2H2H

(1 − ρ)2H(1 −H)2(H−1)

with

(1 − ρ)2H

σ2
= min

{
(1 − ρ1)

2H

(σ1)2
,
(1 − ρ2)

2H

(σ2)2

}

.

This gives the desired result for 2 queues in tandem.
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Remark24. We recall that we always assume thatH > 1/2. Nevertheless, for now on, we never
use this assumption and in fact for deterministic arrival times, Theorem 1 is still true withH =
1/2. This corresponds to Brownian queues and in the case of tandem queues the large deviation
technic used in [44] apply and it is straightforward that Theorem 1 of [44] gives exactly the same
result as our Theorem 1 for deterministic arrival times.

General Tree Networks

First observe that previous result holds true fork queues in tandem and then we have

σ2
x(k) = x2(H−1) max

j∈Dk

(σj)
2H2H

(1 − ρj)2H(1 −H)2(H−1)
,

whereH is the maximal Hurst parameter andDk is defined as in Theorem 15 for thek queues.
But for a general tree network, the varianceσ2

x is the maximum of the variance corresponding to a
path going from the root of the tree to any leaf, i.e. a networkof queues in tandem, hence we have
directly

σ2
x = x2(H−1) max

k∈D

(σk)
2H2H

(1 − ρk)2H(1 −H)2(H−1)
.
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[7] S. Asmussen and C. Klüppelberg. Large deviations results in the presence of heavy tails.
Stoc. Proc. Appl., 64 :265–286, 1996.

[8] S. Asmussen, H. Schmidli, and V. Schmidt. Tail probabilities for non-standard risk and
queueing processes with subexponential jumps.Advances in Applied Probability, 31 :422–
447, 1999.

[9] K. Athreya and P. Ney.Branching Processes. Springer, Berlin, 1972.
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