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Abstract

This thesisaddresseshe problem of separatingimagecomponerts that have di®erert
structure, when di®erert obsenations of blurred mixtures of these componerts are
available. When only a single componert is present and hasto be extracted from
a single obsenation, this reducesto the deblurring and denoisingof one image, a
problem well descriked in the image processingliterature. On the other hand, the
separationproblem hasbeenmainly studiedin the simple caseof linear mixtures (i.e.
without blurring). In this thesis,the full problemis addressedjlobally, the separation
being done simultaneously with the denoisingand deblurring of the data at hand.

One natural way to tackle the multi-componerts/m ulti-observations problem in
the blurred corntext is to generalizemethods that exist for the enhancemeh of a
singleimage. The rst result preserted in this thesisis a mathematical analysisof a
heuristic iterativ e algorithm for the enhancemen of a singleimage. This algorithm
is proved to be corvergert but not regularizing; a modi cation is introduced that
restoresthis property. The main object of this thesisis to dewlop and compare
two methods for the multi-componerts/m ulti-observations problem: the rst method
usesfunctional spacesto descrile the signals;the secondmethod models the local
statistical properties of the signals. Both methods usewavelet framesto simplify the
description of the data. In addition, the functional method usesdi®erent framesto
characterizedi®erert componerts.

The performancesof both algorithms are evaluated with regardsto a particular
astrophysical problem: the reconstruction of clustersof galaxiesby the extraction of
their Surnyaev-Zel'doich e®ectin multifrequency measuremets of the Cosmic Mi-
crowave Background anisotropies. Realistic simulations are studied, that correspnd
to di®erert experimerts, future or underway. It is shovn that both methods yield
clusters maps of sutcient quality for subsequenh cosmologicalstudies when the re-
solution of the obsenations is high and the level of noise moderate, that the noise
level is a limiting factor for obsenations at lower resolution, and that the statistical
algorithm is robust to the presenceof point sourcesat higher frequencies.



R&sum@

Cette thpseest consacte au problgme de sfparation de composartes lorsque celles-
ci sort desimagesde structure di®grerte et que lI'on en obsene un ou plusieurs
m@lange(s)°ou(s) et bruit®(s). Les problgmesde d§corvolution et de sgparation,
traditionnellement §tudifs sBpa®men, sort ici trait §ssimultan§men.

Une fason naturelle d'aborder le problgmemulticomposarts/m ultiobservations est
de g@rraliserlestechniquesde d§corvolution d'une imageunique. Le premierr§sultat
présen® est une §tude math§matiqued'un tel algorithme. Preuve estfaite que celui-
ci estcorvergert mais pasr@gularisart et une modi cation restaurart cette propri§t§
est propodte. Le sujet principal est le d§weloppemen et la comparaisonde deux
m@thodes pour traiter la d§corvolution et sgparation simultan§esde composartes.
La premigre m&thode est badiesur les propri§tsstatistiqueslocalesdescomposaries
tandis que dansla secondecessignauxsort d§crits par desespacegonctionnels. Les
deux m&thodes utilisent destransform@esen ondelettesredondartes pour simpli er
lesdonnges.

Les performancesdesdeux algorithmes sort §valu§eset compaesdansle cadre
d'un problgme astrophysique : celui de I'extraction desamasde galaxiespar I'e®et
Sunyaev-Zel'dwich danslesimagesmultisp ectralesdesanisotropiesdu fond cosmique.
Dessimulations r§alistessort §tudifes.On montre qu'p haute r§solutionet niveaude
bruit mod®r, lesdeux m&thodespermettent d'extraire descartesd'amasde galaxies
de qualit® sutsante pour des§tudescosmologiquesLe niveaude bruit estun facteur
limitant p basser@solution et la m$thode statistique est robuste p la présencede
points sources.
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Pr §sentation g®n®rale

Cette thpsea §t® pr&pafeencotutelle ertre leslaboratoiresdu Programin Applied
and Computational Mathematics (PACM) p Princeton University (USA) et du Certre
de Math®matiquesAPpliques(CMAP) gl ficolePolytechnique.Cetravail a §t§ dirig§
par le professeuringrid Daubedies et co-dirigh par le professeurSt§phaneMallat.
Dansle cadredela cotutelle, un unique manuscrit a §t® r@digl en anglaiset ceprsen
chapitre constitue un résun® §tenduenlanguefraneaise.ll estp noter que cechapitre
estreprislargemer dansle chapitre 1 enanglaiset quele lecteur g l'aise avecla langue
anglaisepeut donc commencersa lecture au dit chapitre.

Le traitemen t des images

Les progras technologique en matigre de technique d'acquisition d'images ainsi
gu'en terme de capacif® de stockage de l'information sort g l'origine du fait qu'une
massecolossalede donnesde plus en plus prcisessort acquisesdans|'espoir d'ob-
sener et comprendredes ph§nongnesde plus en plus ns. Il va donc de soi que les
techniquesde traitement d'images,c'est-@-dire lestechniquesqui senert g am@liorer
et analyserlesimagesacquisesdoivent progresseren congqguence.

Le travail prsen® danscette thpses'inscrit dansune optique d'analyse,de d§ve-
loppemert et d'$valuation detechniquesmath®matiquespour le traitement desimages.
L'analyse de techniques existartes permet de comprendreleur avantageset d§fauts
pour dgwelopper des m§thodes plus e+caces.Les m§thodes d§weloppiesici le sort
dans un cadre g&réral mais leur $valuation se fait dans le cadre particulier d'une
application en astrophysique. En e®et, il est peu probable qu'une technique parti-
culigre soit bien adapte g tout type d'images, une $valuation g§nrale donne donc
une id§eimparfaite de la qualit® desr§sultats obtenus enterme de la questionscierti-
“que g laquelleon souhaiter§pondre aprpstraitement desimagesacquisesLe but de
notre §valuation est donc dtablir les performancesdes m§thodes d§veloppBespour
une application particuligre, qui s'inscrit dansle cadre d'une collaboration avec des
astrophysicienset est g l'origine du d§weloppemen de cesm@thodes.

Cadre math $matique des probl pmes abord §s

Danscette thpse nousnousint§resson@ desproblpmesde traitement desdonnes
qui peuvert etre d§crits dansle cadremath§matiquesuivant. Nouscherdhonsp estimer
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sort conrus et peuvert etre d§crits par desop@rateurslin§aires,p un terme d'erreur
prgs.En d'autres termes, nous supposonsconrus lesop@rateurslin®airesT,, tels que
les obsenations g v&ri ent :

P
82 [LL]; g9-=

ou chaqueterme n, estun terme de bruit.

Ce cadre g8rfiral permet de d$crire desproblgmesvarisen traitement d'images.
Parmi eux, on trouve lesproblgmesrelatifs g I'am@lioration d'une imageunique (M =
L = 1) tels quele d€bruitage(T,.; estl'identit ) ou la d&corvolution d'une image(Ty.1
reprsere une convolution). On trouve aussiles problgmesdit de fusion de donnes
(M =1,L > 1), ou le meme ph&nonpne physiquef, est obsen® grace p di®§rertes
techniques: par exemple,une IRM du cereau est enregistfe simultan§men avec
une §lectro-en@phalographie(EEG) de ce m&éme cerweau, on obtient deux images
0 et g du méme ph&nongnef; acquisessousdi®grertes modalit§s, et la fusion de
cesdonn@esconsistep utiliser les informations cortenuesdans cesdeux acquisitions
simultan§espour estimer le ph§nongnef;. En n, on trouve aussidesproblgmesou
plusieurs ph&nongnesphysiquesse superposen dans les obsenations, il s'agit alors
de sBparercescomposares.

Tm;| fm + N (11)

M
m=1

Contributions

Les cortributions de cette thpsese situent p plusieurs niveaux dans le cadre de
I'@tude et desproblpmesdcrits par I'§quation (1.1).

Un permiervolet de cette thpseestl'analysemath§matiqued'un algorithme heuris-
tique propod® pour la d&corvolution d'une image.Cette analysemontre la corvergence
etidenti e lesconditionssouslesquelleset algorithme estr§gularisan. Elle met aussi
en §videnceune propri§t® non-dgsirablede cet algorithme : il perd irr §gm@diablemen
de lI'information danscertains cas.Nous proposonsune |§gare modi cation qui garde
les avantagesde I'agorithme heuristiqueinitial et ne prseie plus ce d&faut.

Dans un secondvolet, cette thpseprseme deux m$thodes de r§solution de |'§-
quation (1.1) adaptesaux casop I'on souhaite r§ellemen estimer plusieurs objets
g partir de plusieursobsenations (M > 1etL > 1). L'une desm@thodesest bafe
sur une description statistique locale des composaries g estimer et est adaptfe au
casparticulier de la d§corvolution de m§langesde composartes. La secondan$thode
passepar la minimisation d'une fonctionnelle variationnelle et permet de r§soudre
I'@quation (1.1) dansle cadre g&riral.

Enn, cesdeux m§thodes sort mise en oeuvre et leurs performancessort com-
par§esdansle cadred'un problgmeastrophysique particulier : I'extraction desamas
de galaxiesp partir desdonngesmultifr @quencesd'obsenations du fond di®us cos-
mique. Cette §tude prend en compte le fait que les caractristiques(par exemplela
résolution, le niveau de bruit...) varient grandemen selonla mission d'obsenation
astrophysique et nous §valuons les performancesdes algorithmes propogis en terme

2



de leur abilit § pour les §tudesastrophysique qui s'en suivert.

Plan du manuscrit

Aprgs le chapitre 1 introductif, cette thpseest constitu§e de quatre chapitres.
Les trois premiers sort th§oriqueset exposen les m§thodes d§welopfesainsi que
I'@tude d'un algorithme heuristique. Le dernier chapitre est d§die p I'application
astrophysique.

Plus pr@cigmen, le chapitre 2 est consack g des m§thodes de traitement de
I'@quation (1.1) par minimisation d'une fonctionnelle variationnelle. Le formalisme
sur lequel nous nous basonsest rappel® g la section 2.2. S'en suivert deux parties.
La premigre consacBe p I'@tude math§matique de I'algorithme heuristique de J-L
Starck et dela modi cation propodeet fait I'objet dessections2.3 et 2.4. La seconde
partie d§crit I'adaptation de la m#&thode variationnelle aux cas multi-ob jets/multi-
obsenations et en particulier pour le problgmede I'extraction desamasde galaxies
et fait I'objet de la section2.5.

Le chapitre 3 estgalemenun chapitre th§orique.ll d§crit une m§thode statistique
pour traiter le problpmepodt par I'&quation (1.1) dansle casparticulier de m&langes
°oues de composartes. Le modgle choisi pour d§crire les composartes est expliqu§
dansla premigre section, la d@rivation de l'estimateur dansla secondesectionet les
choix des di®8rerts paramgtres dans la troisipme section. La dernigre section de ce
chapitre explicite ce modgle dansle cadrede I'application g I'extraction desamasde
galaxies.

Avant de passerp I'application astrophysique elle-meéme, nous rappelonsau cha-
pitre 4 les propri§t§sdessysiemesd'ondelettesutilis §s.

Le chapitre 5 d#taille I'application desm$thodespropodtesp I'extraction desamas
de galaxiesp partir desdonn§esmultifr §quencesd'obsenations du fond di®us cos-
mique. Les ph&§nongmesastrophysiquessort d®crits dans la premigre section. Les
m@thodesd'estimation de la qualit® desreconstructionsfont I'objet de la secondesec-
tion. En n lesperformancesdesalgorithmesproposissort compaesqualitativemen
et quartitativ emen dans le cadre de trois expiriencesaux spci cations di®grertes
et lesconclusionssort tir §esdansla section nale.






Chapitre 1

Intro duction

Imaging refersto the scienceof obtaining pictures or more complicated spatial
represemations, sud asanimations or 3-D computer graphicsmodels, from physical
objects. In a scierti ¢ cortext, the acquiredimagesre®ect measuremets of physical
guartities that are analyzedto understand the spatial properties of the obsened
phenomenalmaging techniqgueshave beendeweloped to measuredi®eren quartities,
with di®eren resolution and reliability. Thesetechniques keepimproving, allowing
us to collect and store more data, with greater precision, which in turns makes it
possibleto seekto understand ner scale phenomena.Howeer, the quality of an
imageis naturally limited by the physical characteristics of the instrument usedto
collect the data, sud as the size of the optical systemand its maximum sampling
rate, and by the physical limits linked to the phenomenonitself. E.g. the amplitude
of the signal of interest may be very low comparedto the amplitude of other signals
that are necessarilyimagedat the sametime. Thereforeimage processingtools have
to be deweloped simultaneously to imaging techniques, so that the improvemerts in
image acquisition can be exploited optimally.

The cortributions of this thesisare the analysisof existing methods and the deve-
lopmert of newmethodsfor the processingpfimagesunderthe following assumptions
one seeksto recover the set of image componerts, f1;:::;fy, with M | 1, givena

m2 [, M], | 2 [1;L] sudh that the obsened imagesg, can be modeledby

b
8l 2 |[1, L]I, g = Tm;| fm + N (11)
m=1
where ead n; denotesa noiseterm and [ki; k] denotesthe set: fk 2 Z : k; -
k - kzg. In this framework, the componerts f;:::;fy re°ect measuremets related

to di®eren phenomena.One may be interested in all, some,or even only one of
them. A large set of image processingproblemscan be described by equation (1.1) :
the denoisingof oneimage(M = L = 1 and Ty is the identity) ; the deblurring
of oneimage(M = L = 1 and Ty is a corvolution) ; the fusion of imagesof the
samephenomenonacquired by di®erem modalities, (M = 1, L > 1) if the processof
acquisition for eath modality can be consideredinear; the extraction of componerts
from seweral obsenations of linear mixtures of these(M > 1,L > 1, T, arescalars)...
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There are marny di®erent ways to dewelop image processingalgorithms. At one
end of the spectra are algorithms giving the analytic solution to a mathematical pro-
blem where eath unknown has been modeled precisely enoughso that the solution
is de ned without ambiguity and can be computed. For example, if the image f
and the noisen are independent Gaussianprocessesthen the conditional expecta-
tion of the random variable f given the random variable g = f + n, noted Eff jgg,
is the best least-squareestimate of f in the set g-measurableand squareintegrable
randomvariables.That is, Eff jgg the random variable k(g) that minimizesthe quan-
tity Efif | k(g)j%g, with k measurableand k(g) squareintegrable. If the covariance
matrices Cs and C,, of f and n are known then Eff jgg can be computed by the
Wiener TTter Effjgg= C¢(Cs+ C,) 1g. At the other end of the spectra are heuris-
tic algorithms. Thesemay give appraximate solution to a well-de ned mathematical
problem that can not be solved analytically. More generally heuristic algorithms are
proceduresdesignedto take advantage of someknown properties of the signals,or to
combine seeral aproadies, even when theseare ditcult to expressmathematically.
Unlessan algorithm computesthe analytic solution to a mathematical problem, its
properties can only be studied experimertally.

The rst cortribution of this thesisis to provide a mathematical study of an adap-
tiv e iterativ e algorithm proposedby J-L. Starck in [58] to decorvolve oneimage.The
algorithm proposedcomnbinesa known deblurring iterative scheme,with an adaptive
projection on selectedwavelet coexcients. This procedurewas successfullyusedon
astrophysical images,however, no mathematical study of this algorithm was provi-
ded. We review the mathematical framework proposedby |. Daubedies, M. Defrise
and C. De Mol in [16 to solwe inverse problems by another iterative algorithm in
section 2.2, and show in section 2.3 how to useit to study J-L Stardk's algorithm.
We prove mathematically and by examplethat the proposedalgorithm may give un-
desiredresults, namely that in the limit wherethe noisevanishes,the original image
may not be recovered. In other words, this algorithm is not consistenn. We proposea
modi cation and show in section2.4 that it restoresconsistency

The decorvolution problemhasbeenlargely addressedn the literature in the case
of a singleimage,i.e. whenthe problemis to restorethe imagef , from a blurred and
noisy obsenation g = T f + n = baf + n (o denotesthe corvolution). The task
is not easybecausethe corvolution operator is ill-conditioned, making it dixcult to
cortrol the sizeof the noiseterm after inversion.A number of di®eren algorithms have
proposed,from simple linear Ttering [63], to iterativ e algorithms [37, 49, 42], using
deterministic [26] or statistical description of the data [33], and varioustools sud as
PDE [51, 9] or multiscale decompsitions[21, 3(]... (see[34] for a more exhaustiwe list
and descriptionof decorvolution methods.) It hasbeenestablishedthat decorvolution
methods yield best results when the conditioning of the decorvolution operator and
the structural properties of the imagef and the noisen are taken into accoun at
the sametime ([30, 39)). The separationof di®ererlbcomponerts, i.e. the estimation
of M imagesf 4;:::;fy from linear mixtures (g = mzl tm1fm + N, wherethe ty,
are scalars) has also been extensiwely studied [6, 61, 7]. Whether the scalarstp,
are assumedo be known or not, separatingtechniquesseldomtake into accourt the
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asonedoeswhenprocessing singleimage.This is harderto doin this corntext because
the di®eren properties of eath componert have to be handledat the sametime. Both
problems,the decorvolution and the separation,are usually studied independerily of
eadt other, and ad-hoc combinations are carried out if needed.

In this thesis, two new algorithms are proposedthat simultaneously (denoise,)
deblur and separateimage componerts. More precisely both algorithms compute

Thi(X) = ams b =X, wherethe a,,, are scalarsand the b, are 2-dimensionalpoint
spreadfunctions. The obsenations at hand are then modeledby :

X
82 [LL]; g-= am bhefy,+n: (1.2)

m=1

P
Sincethe last equationscan be rewritten : 81 2 [1;L]; g = b e[ ,"T’:zl am: fml+ Ny,

the following two-stepsalgorithgn seemdike an appropriate solution : “rst deblur ead
g to obtain an estimatey, of mzl am: fm and secondly separatethe f, from the
y;. Howewer, in somecasest is desirableto avoid this intermediary step. This is the
casefor the extraction of clustersof galaxiesfrom obsenations of Cosmic Microwave
Badkground anisotropies,an application we study in detail in this thesis.

The obsenations g for this application are imagesof portions of the sky, obtai-
ned simultaneously at di®eren light wavelengths(3 or 4 in the caseswve considered).
Eadh obsenedimageis the corvolution of the \true" imagewith ablurring beamfunc-
tion, which dependson the wavelength; the obsenations are polluted by (Gaussian)
noisethat is independert from oneimageto another. The most intensecomponerts
cortained in the portion of sky obsened besidesthe clustersof galaxiesare the Cos-
mic Microwave Badkground (CMB) radiation, the Galaxy dust and infrared point
sources.The cortribution from ead componert to ead obsenation dependson the
wavelength. Hencethe obsenations g canbe modeledby equation (1.2) with M = 4
and L = 3 or 4. Our goal is to provide a \clean" image of the clusters of galaxies
preser in the obsenations, that will be usableby astrophysiciststo derive properties
of theseclusters.

Clusters of galaxiesare localizedand compact objects sparselydistributed in the
sky. The blurring by a beam function is especially badly conditioned at high fre-
guencieswhich correspnd to small objects. Therefore,as menioned earlier, the de-
convolution of clustersof galaxies(supposingthey were the only componert presert
in the image), would be best when their localization is taken into accourt together
with the properties of the corvolution. Wavelet transforms are adaptedto this situa-
tion becausethey are well localized both in frequency (and therefore constrain the
conditioning of the convolution operator), and in space(so that clustersare well re-
preserted in wavelet space).Howewer, in this case,the presenceof other componerts
complicatesthe task. The other componerts are much more intensethan the clusters'
signal, moreover they have very di®eren spatial properties and the mixing scalaran,
vary greatly with the frequenciesof ob$r\ation. Therefore the spatial properties of
ead intermediate deblurredimagey, = mzl am fm aredi®erert and do not re°ect
the propertiesof the clusters'signal. Sincethe latter is largely dominatedin ead y, it
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would be very hard to recover a preciseclusters'image using the two-stepstechnique
proposedearlier. Instead, a method that solvesthe decorvolution and separationat
the sametime can exploit the fact that the sameclusters' signal cortributes to eah
obsenation and therefore should give better results.

We designedwo di®eren approadiesto simultaneouslydeblur and separateimage
data. Both methods are °exible enoughto take in accourt spatial propertiesthat vary
from one componert to another. One method is basedon a variational framework ;
the other is more statistical in nature. The variational method usesa generalization
of an algorithm proposedby I. Daubediies, M. Defriseand C. De Mol [16], that we
explain and discussin Chapter 2, sections2.2 and 2.5. The method proposedis the
minimization of the variational functional, by meansof an iterative algorithm. In
subsection2.5.1, we descrilke how to this method solvesthe generalproblem posed
by equation (1.1) (that is when the T, are generallinear operators) and in the
next subsection(2.5.2), we explain how to to usethe method for our astrophysical
application, deriving the parametersfor separationof blurred mixtures and explaining
how to model the properties of our astrophysical componerts. For the statistical
approad, we were inspired by the work of J. Portilla, V. Strela, M. Wainwright
and E. Simoncelli [48], which attacked the simultaneous denoising and deblurring
of a single image. We explain in Chapter 3 how we extendedthis method to allow
componert separation(i.e. to solve Eq. (1.2)) and sketch the preciseapplication to
our astrophysical problem in Section3.4.

As we noted earlier, the clusters' signal is well descrilked in wavelet space.To
avoid somedrawbadks of the traditional decimated separablewavelet transform in
two dimensions,we usedi®eren redundart wavelet transforms: the dual tree com-
plex wavelet transforms for the variational approad [31, 32, 52, 53] and a steerable
pyramid for the statistical approad (inspired by but not completelyidertical to the
pyramid in [47]). The two transformsaredescrikedin Chapter 4, wherewe alsodiscuss
the algorithm we usedto implemert them.

Finally, in Chapter 5, we shav and discussthe results of the two approadeson
the astrophysical problem at hand, for seweral typesof data sources.The resolution of
data acquiredpreviouslyis not suzcient to study the Suryaev-Zel'dwich signature of
clustersof galaxies,which is the particular e®ectwe seekto estimate. Howeer, se\eral
experimerts are now being planned or underway, that will make it possibleto do so.
The di®eren studiespresened in Chapter 5 are made on realistic simulations of the
data that will be acquiredin the near future. (These simulations have beenprovided
by astrophysicists.) This allows to assesghe performancesof both algorithms with
respect to not only image processingstandardsbut alsowith respect to the science
that canbederivedfrom theseresults.In particular, we asseghe reliability in locating
clusters of galaxiesand the precision of the intensity estimated after extracting a
cluster mapsusingboth our algorithms. It turns out that ead approad hasstrengths
and weaknessewhencomparedto ead other. A summary of theseresultsis presened
in Section5.6.



Chapitre 2

Functional metho d

2.1 Framew ork

In this chapter, we considerthe problem of decorvolution of mixtures of compo-
nerts as a variational problem, i.e. we wishto nd estimatesof the di®erenn compo-
nerts by minimizing a variational functional. We will considerfunctionals composed
of a sum of discrepancyterms (one per obsenation) and regularization terms (one
per componert) :

X oM o2 W
J(Aufzntm) = 0 Tmfmi @)° + wifmix, ; (2.1)
' m=1

the componerts to be estimated. The mixing and blurring of componert m at the
frequencyof obsenation number | is denotedby the linear operator Ty, .
The minimizers of sudh a functional will strike a balancebetweenthe deviation of

The j:jix,,-norm hererepresen some\a priori knowledge" we have on the di®eren
componerts we are seeking: we expect the true componert f,, to have a rather small

setof CMB images,is not a vector space.Sowe do not try to designthe vector space
Xm sothat ead of its elemen correspndsto an image of componert m. Rather, we
designX, sothat the setof imagesof componert m hasa small jj:jjx , -norm. We hope
that corversely the estimatef,, that we will obtain by minimizing (2.1) will be (close
use,for example,normsthat penalizediscortinuities or sharp transitions and norms
that promote sparsity in a special represemation like a wavelet represetation. To do
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of the form : " #.
ifiix, = wrhjhE M P (2.2)

where' ™ =f' Mg ,, is ageneratingfamily of H',.

A generalabproam to solve problemsof this nature can be found in [16, 14, 4].
The next sectionreviewsthe presenation in [16], which provides an iterativ e algo-
rithm solvingthe problemwhenL=M=1. Wethen study two di®eremn generalizations.
Section2.3 and Section2.4 are dedicatedto the study of a slightly di®erern problem
where the discrepancyterms depend on the obsenation; In Section2.5, we genera-
lize the iterative presened in [16) to solwe the generalcasewith M objects and L
obsenations and descrile its application to our astrophysical problem.

2.2 lterativ e algorithm prop osed by Daub echies,
Defrise and De Mol

In this section,we summarizethe ndings presened in [16]. Daubedies, Defrise
and De Mol presen in this article an iterativ e algorithm to nd a minimizer of Eq.
(2.1) whenL = M = 1. The goalis then to estimate a single object f; from a single
obsenation g;. To simplify the notations, we shall drop the indexesand denoteH
the Hilbert spaceof the object H} and H, the Hilbert spaceof the obsenation HY§.
The problem reducesto :

Problem 2.2.1. Given' =f' g . anorthonormal basisof H,, a sequene of strictly
positive weightsw=fw g ,., as@lar ° > 0O anda salar pwith 1- p- 2, nd :

f7=argmin Jo(f) = argmin kTf | kg, + °if iy,
f2H 1

f2H 1
...... £p : R & 1
wheee jif jw,p = oW R TP P = W F PP
Note that we usedthe notation f = hf ;' i. We shall do sothroughout this chapter

unlessspeci ed otherwise.

The functional J- ., ., is corvex, boundedbelow and veri es limys 1 Je.w:p(f) =
+1 . Thereforeit hasa unique global minimum and has at least one minimizer. One
can seeksud a minimizer by cancelingits partial derivativein f :

%(f) = 2(T°Tf) i 2(T°g) +°w sign(f ) jf j”

If the operator T is the idertit y operator, then the equationsdecoupleand the solution

is given by solvingf? =g | % sign( ) jf j?i L. If p= 1, this reducesthe the soft-
thresholding operator (see[8]). However, when T is not the identit y, theseequations
do not decouplewhich makesthe problemharderto solve. Using surrogatefunctionals,
one can de ne a sequenceof similar problemsthat are easyto solwe, and for which
the sequenceof minimizers obtained is strongly convergert in H; to a solution of

Problem 2.2.1. Moreover this sthemeis regularizing. We explain it in detail below.
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2.2.1 Surrogate functionals

Let us considersurrogate functionals J¢,,.; where a is an elemen of H;. The
J¢,, ., aresimilar to J- ., but are slightly modi ed sothat :
{ Forany a, J2,,, is strig:tly convex. Hencethere exists a unique minimizer of
J%..p that we denotef. S, ...

The partial derivatives & decouple.Therefore,onecan nd ead coordinate
@

fff;’;‘N;pg’ independertly bys solving % = O for ead , .

De nition 2.2.2. Givena 2 H; and C sothat jjT°Tjj < C, the surrogate functional
J%yp H1! R" isdenedby:

32, ,(F) = KTf i gikf, i KTf i Takd, + Ckf i aki + °jfjP

One veri es that the surrogatefunctional takesnonnegatiwe valuesby noting that
Jewp(f) = Jewp(f) + Ckf j akZ i KTf j Taki, with

] ®
Ckf i akj, i _T(fi a); T(fi ay,,
= Ckfjaki, i fiaTT(fia,
Ckf i akZ, i JT°Tjkf | ak?,

(Ci iT°TiKF i ak?,

0

5

Ckf i aky, i KTf i Takd,

5

5

Since T°Tjj < C, the term aboveis zeroif and only if f = a, which ensuregshe strict

cornvexity of the surrogatefunctional J2., .. Its partial derivativesin f decouple:
@]?;W;p — . o, o] o R £ ipi 1.
T(f) = 2Cf j 2(Ca+T%gi T°Ta) + °w_ sign( ) jf j° =

and the minimizer of the surrogatefunctional J2., . is :
3 .

fia = ls.,.. Ca+T%i T°Ta
R et 3 IR | (2.3)
= & ’Sowk;p f Ca+T"j TTag i
Here, 3 .
il
Swp(x) £ x+ W7p sign@) jxj" * ' :forl- p- 2 (2.4)
where(:)! * denotesthe inversesothat S, ,(x + % sign(x) jxjPi 1) = x.
In particular, for p= 1, S,;.1 is the soft-thresholdingoperator :
< Xj w=2 if x w=2
Swa(x)= . 0 it jxj < w=2 (2.5)
ox+w=2 if x - jw=2
Whereasfor p = 2, onesimply gets:
X
Swi2(x) = 1+ w (2.6)

The following proposition summarizeshe properties of the surrogatefunctionals:
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Prop osition 2.2.3. Suppmse the operator T maps a Hilbert space H; to another
Hilbert space H,, with jTTjj < C, and supmseg is an elementof H,. Letf' g ,.be
an orthonormal basis for H;, and let w= fw g ,. be a sequene of strictly positive
numters. Pick arbitrary ® > 0, p, 1anda2 Hy. De ne the functional J2.,.,(f) on
H1 by

X

I p(f) = KT j oki,+°  wijf [P+ Ckfj aky, i KT(f i a)kj,:
.20

Then J¢.,.,(f) hasa unique minimizer in H;.
This minimizer is givenbyf = éSoW;p (Ca+ T°gj T°Ta), whee the operators Sy, .,
are de ned by

X
Swip(h) = Swp(h) (2.7)

with the functions S, from R to itself given by (2.4), (2.5) and (2.6).

Note that one can always assumethat C = 1 since minimizing the surrogate
functional J2.,.; with the operator T and the obsenation g is the sameproblem as
minimizing J¢,, _¢. p With the operator TO= p%T, the obsenation g°= p%g and the
weights &. This is alsotrue for the initial functional J-,,,,. Therefore,in the rest of
this chapter, we will assumethat jjTTjj < 1.

Next, we usea sequencef surrogatefunctionals and their minimizersto construct
a solution of the original problem.

2.2.2 lterativ e algorithm : convergence and stabilit y

The iterativ e algorithm consistsin minimizing a sequencef surrogatefunctionals
J??W;p(f ), choosinga" to be the minimizer obtained at the previousstep:

Algorithm  2.2.4. The iterative algorithm that solvesProblem2.2.1 proceeds as fol-
lows:
8
< fO arbitrary
fr = argmin I, (f) = Seyp(fMit+ Togj T°TfM Y, n, 1
f2H 1

The two following theoremssummarizethe ndings preserted in [16]. The rst
theoremstatesthat the iterativ e algorithm 2.2.4corvergesstrongly in the norm asso-
ciated in the Hilbert spaceH ; for any initial guessf °. The secondtheoremis concer-
ned with the stability of the method. It givessuzcient conditionsto ensurethat the
estimate recovered from a perturbed obsenation, g = Tfy + e, will approximate the
object f, asthe amplitude of the perturbation kek,, goesto 0.

Theorem 2.2.5. Let T be a boundal linear operator from H; to H,, with norm
strictly boundel by 1. Takep 2 [1;2], and let Sy, be the shrinkageoperator de ned
by (2.7), whee the sequene@ w= fw g ». is uniformly boundel belowawayfrom zero,
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i.e. there existsa constantc > 0 suchthat 8, 2 @ : w | c. Then the sgquene of
iterates : ¢
| . .
fh"=Soyyp NI+ Tgj T°TEMY ; n=12::0;
with f © arbitrarily chosenin H 1, convegesstrongly to a minimizer of the functional
J";W;p(f) = kTf i gkﬁz + °Jllf m\?vp :
............ £P : L T

wheee jjf jjw., denotesthe norm jjf fjup = oW R PP T pe 2t

If the minimizer f? of J-.,,, is unique, (which is guamanteed e.g. by p > 1 or
ker(T) = f0g), then everyseguene of iteratesf " convelgesstronglyto f ?, regardless
of the choice of f °.

that° > 0, 1- p- 2 andthat the entries in the seguene w=fw g ,. are boundel
belowuniformly by a strictly positive number c. Assumethat either p> 1 or ker(T) =
fOg. For anyg2 H, andany® > 0, de ne f? to be the minimizer of Je . .o.4(f).

. Wipig
If ° = °(?) satis es
22

o2y = L

l'.”}, ®»=0 and !IIrT(l) e 0; (2.8)
then we have,for any f, 2 H,,

" #
lim sup  Kfeywpgi fYkn, =0

20 kgi Tfokp,- 2

whete f Y is the unique elementof minimum jj jjw.p{norm in the setS;, = ff;Tf =
TfoQ.

2.2.3 lterativ e algorithm with complex or redundan t frames

The algorithms and theoremspresetted so far in this section apply only to the
casewhere' =f' g ,. is anorthonormal basisof H, and the scalarproducts h;" i
arereal. It will be usefulin our application to useredundart and/or complexfamilies
instead. To do that, one needsto make two changes,aswas pointed out in [16].

Firstly, the de nition of the operators S,,;, hasto be extendedto complex num-
bers.This is doneby applying Sy, only to the modulus of a complexnumber, keeping
the phase xed :

Swp(r:e") € s, p(r):e"; r 2 R; u2 [0;2%: (2.9)

This changeis suzcient to prove Proposition 2.2.3and Theorems2.2.5and 2.2.6with
the samealgorithm 2.2.4.

Secondly a clari cation is requiredif the family ' =f' g ,. isredundart. In that

case,the set of sequence®f scalarproducts of elemens of H; :
a

© .
C= fhf;" ig 20, f 2Hy ;
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is a strict subsetof the set of square summable sequenced?(R) ( or I2(C)). As a
consequencd ff\‘N;p de ned in Eq.(2.3) need not be the minimizer of the surrogate
functional J¢,,., because

X 3

f = Swyp fCa+Tgj T°Tag ' (2.10)

Ol

doesnot imply that :
3

8.; Swyp fCa+Tgj T'Tag (2.11)

5

h; =2
In the derivation of algorithm 2.2.4, we usedthe fact that Eq. (2.10) and Eqg. (2.11)
are equivalert when' = f' g ,. is an orthonormal basis.When' = f' g 5. is re-
dundart, this problemis recti ed by projecting the sequencef coe+cients obtained
at eadt step of the iteration algorithm onto the set of scalarproducts C:
' ¢

"= PeSewp N4 Ty TOTENY n 1L (2.12)
where P¢ is the projection onto the set C. (This can done more generally for any
closedcorvex set C, seeSubsection2.2.4.)

To illustrate the di®erencebetweena basisand a redundart frame, let us examine
the casewherethe operator T is diagonalwith respectto the tight frame' =f' g 5.
That is, there exist scalarsft g . sud that :

X X
8f 2H,; T(f)=T ;" i = toht it (2.13)
s 20 N 20

We supposethat the algorithm is stopped after N steps.
If ' =f' g .. is an orthonormal basis, the iterations can be donein 12(R) (or

12(C))

Algorithm  2.2.7. First N stepsof the iterative algorithm whenT is diagonalon the
orthonormal basis' =f' g 7. :

{ Pick f°in H, arbitrarily.

{ Compute: c®=H°" i; 8, 20, 3

{ Forn=1;:;;N IDcomputefor all, :¢"=Syp (1 t?)c?i 14 tg

{ Output: fN =", "

coetcients, the ¢, are computed. (For ead n, fc"g ». is a seriesin 12.) We have :
¢ = H"' i, 8n,8,. Therefore,if ' = f' g ,a is an orthonormal basis, one only
needsto synthesizethe "nal estimatef ™ in Hy, whereasif ' =f' g ,. is redundart,
onehasto synthesizef " at ead step:

Algorithm  2.2.8. First N stepsof the iterative algorithm whenT is diagonalon a
redundanttight frame' =f' g ,a :
{ Pick f°2 H, arbitrary.
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{ Compute: c®=H?°" i; 8, 208,
{ Forn=1;:;N, compute

{ Forap, :d"=s, o (1 tz)c”'1+tg
{fr=" , d
{ For all c” h‘n C
{ Output : N
P
Note that becaus€ =f' g ,. isredundart, although . d”' = c“'

we do not have d" = ¢". Therefore one needsto synthesizef " at eah stepto nd
the c" (this correspandsto the projection Pc).

In the redundart casef " is not the minimizer of the surrogatefunctional at eah
step. The iterativ e algorithm still convergesstrongly. Howewer, onecan prove that the
limit is the minimizer of the initial functional only in somecases Generally though,
it hasbeenobsened that using algorithm 2.2.4yields good results with frames.

2.2.4 lterativ e algorithm restricted to a closed convex set

The solution of problem 2.2.1adcieved by the iterativ e algorithm we presetted is
the minimizer of the functional J-.,,., in the whole Hilbert spaceH ;. As explainedin
[16], it is possibleto restrict the problemto a closedsubsetD of H,, for examplethe
set of positive functions. The procedureconsistsin projecting the solution obtained
at eadt step of the iterativ e algorithm onto the setD

f"=PpSowp pnity T°gj TOTfM 1¢; n, 1 (2.14)
where Py, is the projection on the corvex set D. Someastrophysical componerts in
our problem are positive and we will usethis procedureto handle them.

Note that this is the sameprocedurethat was usedin the previous subsectionto
take in accoun the redundancy of the frame sincethe set of scalar products Cis a
closedsubsetof the set of squaresummablesequences.

2.3 Adaptiv e pro jections

In this section, we shall considera generalizationof the setting of [16], in which
weights are introducedin the discrepancyterm aswell asin the prior. Theseweighs
were suggestedoriginally by Jean-LucStard, in se\eral papersand slightly di®eren
versions(seee.g.[58 57, 43]). One of the algorithms suggestedwvas :

Algorithm  2.3.1.

( fO arbitrary
f" = argminS.;(f" 1+ T°Mgj T°MTf"Y; n, 1
f2H 1

P
withMh=" , mh"' ,andm = 0or 1is chosenin function of g .
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At ‘rst, it seemsthat the algorithm was purely heuristic, and was only later
connectedto a variational principle [59. The weights m  in Starck's algorithm depend
on the obsenation itself, and will make the analysis trickier; we handle them by
introducing an \adaptiv e projection operator".

2.3.1 De nition and corresp onding iterativ e algorithm

De nition  2.3.2. Given an orthonormal basisf g ,.0f H,, an elementg in H,
and a sequene of nonnegative thresholdsg, = f ¢, g 2., the adaptive projection Mg, is
the map from H, into itself de ned by :
X
8h2 Hy Mg, (h) = h

. sitjg i,
(where, asusual, f  denotesthe salar product if ;i)

Note that My, is an orthogonal projection for any g and ¢. It is therefore a
cortinuous linear operator of unit norm, unlessfor all ; jgj - ¢, in which case
Mg, = 0. One can usethe adaptive projection Mg, to modify the similarity measure
(discrepancyterm) sothat it discardsthe coordinates of the obsenation g that are
deemednot reliable. More precisely we considerin the t to data term only the
coordinate of index , for which jg j is greaterthan someprede nedvalue¢, . Problem
2.2.1is thus modi ed into :

Problem 2.3.3. Givena sejuene of strictly positive weightsw=fw g ,., a sguene
of nonngyative thresholdss,= f ¢, g ;oand salars ° and p with ° > 0and1- p- 2,
nd :
f7=argmin Jop. (f) = argmin kMg, (Tf i 9)k7, + i,
f2H 4 f2H 4 ’

The value of the functional J- ..., (f ) acting on operator T and obsenation g is
exactly the value of the functional J- ., ., (f ) acting on operator My, T and obsenation
M., 9. Henceonceg and ¢, are xed, Problem 2.3.3is solved the sameway asProblem
2.2.1with the iterativ e algorithm modi ed accordingly:

Algorithm  2.3.4. The iterative algorithm that solvesProblem2.3.3 proceeds as fol-
lows: A
fO arbitrary

f7 = S (fM 1+ T Mg, gi T*Mg, TfM Y n, 1

Note that for p = 1, this is exactly the iterativ e algorithm 2.3.1proposedby Jean-
Luc Starck! As is the casefor Problem 2.2.1,the iterativ e algorithm 2.3.4is strongly
convergert in H4, regardlessof the choice of f © and the limit is always a solution of
Problem 2.3.3:
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Theorem 2.3.5. Let T be a boundel linear operator from H; to H,, with norm
strictly boundel by 1. Takep 2 [1,2], f¢, g 2. a sequene of nonnegative numters and
let Sw., be the shrinkage operator de ned by (2.7), whee the sequene fw g 7. is
uniformly boundel below away from zemo, i.e. there9c > 0s.t. 8, 2 @ : w | cC
Then the sequene of iterates
P ¢
f7"=Seyyp M1+ T°Mg,gi T°Mg, TEM 1 5 n=12:::;

with f © arbitrarily chosenin H;, conveigesstrongly to a minimizer of the functional

Jowipie(f) = kMg, (Tf j g)kﬁz + §f il
............ _fp e
whee J||fJ||\17JIO denotesthe norm jjf jjw., = e W R PP 1. pe 2 and
, st jg j>¢ L
If the minimizer f? of J- .., is unique, (which is guarantesd e.g. by p > 1 or
ker(Mg., T) = f0g), then every sequene of iteratesf " convelgesstrongly to f ?, re-
gardlessof the choice of f °.

D&monstation. As we noted before:

J°;w;p;¢;T;g(f) = kMg;a(Tfi g)kﬁz + ojﬁfjii‘[’)";p...
kMg, T)f i (Mg, 9)kg, + °iif il
Jowpo; 1o go(f)  with  T°= Mg, T; ¢°= Mg, g

Noting that J-.,.p.0. 1o go(f ) is exactly the functional de ned in Problem 2.2.1,it is
then suzcient to prove jTYj is strictly smaller than 1 to prove the strong corver-
genceof the iterative algorithm 2.3.4 via Theorem 2.2.5. But jjTY = jMg, Tii -

I Mg, I:liTh. SinceMg, is an orthogonal projection, jj Mg, Tjj = 1 or O, and there-
forejTY - iTi < 1. ]

2.3.2 Adaptiv e pro jections and diagonal operators

In this section,we illustrate the e®ectsf the addition of the adaptive projection
Myg.; in the iterative algorithm, by examinip;gthe simple casewhen T is a diagonal

operator on the basis’ =f' g2, : Tf =, tf ' .In that casethe adaptive
functional J- ..., reducesto :
x H 1
Jewipe(f) = Hg > ot i g)?+°w jf jP (2.15)
.28

Hence,the solution f ? is found by solving, independertly for ead | :
M 1

f?=argmin 445, o(t Xi g)*+ °w jxjP (2.16)
: x2R ’ ’

Ifjgj- ¢ (ort =0),thenf”=0,otherwisef’ = S-y (1 g ). Let usdene the
adaptive thresholding operator that mapsR to itself by :
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)
Sp(x) ifjxj>¢

Agrp(X) = 0  otherwise (2.17)
Then, the solution of Eq. (2.15) is
X _
f?= Agep(tg ) (2.18)
, st.t 60

This meansthat the introduction of the adaptive projection M., resultsin combining
a hard thresholdingwith parametery, to the operator S-, ;, whenT is diagonal. The
hard thresholding operator, or dead-zonefunction, maps R to itself and is de ned

by : A
H.(x) =

Supposethat T is the idertity operator, that the weights fw g ». are idertically 1
andthat p= 1.If ¢ > °, the adaptive thresholdingoperator A ;.- ; (Fig.2.1, middle) is
a compromisebetweenthe hard thresholding operator H, (Fig.2.1, left) and the soft-
thresholding operator S-.; (Fig.2.1 right) that would be usedto solve Problem 2.2.1.
(Note that if ¢ - °, the adaptive thresholding A, -.; reducesto the soft-thresholding
Se.1).

X ifjxj> ¢

0 otherwise (2.19)

t-g : t-g t-g

»‘00 “1
. y
1 J"
o A N R o -
: .
-t+g : : -t+g -t+g
-t -t -t
e ’,/'.

-t -go 9 t -t -go 9 t -t -go 9 t

Fig. 2.1 { Left : hard thresholding operator H, ; middle : adaptive thresholding
operator A .-, right : soft-thresholdingoperator S- ;.

The hard thresholding operator H, can also be seenas an operator used for
minimization :
He(0) = argmin (xi ¢):% G>c0)’ (2.20)
X

Hence,H, correspndsto the limit of the adaptive thresholding operator A, ..., as
° goesto 0. On the other hand, the adaptive thresholding A,.-.; is in fact the soft-
thresholding S-.; assoon as® > ¢. It is therefore natural to examinethe results of
hard-thresholding, adaptive thresholding and soft-thresholdingwith a xed value of
¢, so study the in°uence of °. Fig. 2.2 displays sud a study on a piecewisesmaoth
signal. The top row of the gure shaws the signal (left) and a noisy version of it
(right) that is taken as the obsenation g. The signal is then reconstructedfrom g
using adaptive, soft- or hard-thresholdingwith di®eren valuesof the parameter® for
¢, = 3. The reconstructionsobtained are displayed with ° increasingclockwise, i.e.
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middle row left : © = 0, middle row right : © = 1, bottom row right : ° = 2, and
bottom row left : ° = 3. The soft-thresholdedreconstruction (bottom left) yields a
smoother reconstruction than the hard-threshold (middle left) : the Gibbs e®ectis
much wealer at the discortinuities of the signalfor the soft-thresholding.But on the
other hand it dampsthe signal, in particular the peaks. The adaptive thresholded
reconstructions (middle right and bottom right) allow to nd a di®eren balance
betweenthe smoothnessof the reconstructionand its precisionfor fast variations.

2.3.3  Stabilit y

In this section,we investigatethe regularization properties of the algorithm. Co-
arsely speaking,we would like the reconstructedcomponerts to very closeto the true
onesif the noisein the obsenation is negligible. More precisely we will investigate
Whetherfg corvergesto f, whenkTf, i gky, corvergesto zero.To do this, it will
be corveniert to rst de ne somesubsetsof H;. The rst subset,M ¢, is the set
of elemens of H; that have the sameimage under T as f, except maybe on the
coordinates, sud that (Tf 0), =0:

De nition 2.3.6. Given two Hilbert sppcesH; and H,, an operator T : H; ! H,
an orthonormal basisf g ,.0f H, and an elementf, of H,;. The set M, is the
subsetof elementsof H; that verify :
h i
f2My, () MroTf)=TF, () fTfog 6 0) fTfg = fTfog

For the coordinates, sud that fTfo,g = O, onemay havefTfg 6 Owhenf is
in M¢,. If foisin ker(T) then M ¢, = H;. On the cortrary, if 8,; fTf,g 6 O, then
M ¢, is exactly the subsetof H; having the sameimage as f, under T. Note that
M :, is closedand corvex. We alsode ne H;™P asthe set of elemerts f for which
the correspnding setM ¢ hasa unique minimizer for the jj:jy.,-norm.

Denition 2.3.7. Given a Hilbert space H,, H; ™" is the subsetof elementsof H
that verify : f, is in H; ™" if and only if the setM ;, = ff : My;_oTf = Tf,g hasa

When p > 1, then H{"" = H;, regardlessof T. This is not true if p= 1, even if
kerT = fOg. It turns out that algorithm 2.3.4is regularizing for elemerts f in H{ "™,

and that the minimizer obtained in the limit kTf,j gky, goesto zerois exactly the

Theorem 2.3.8. Assumethat T is a boundel operator from H 1 to H, with jjTjj < 1,
that ° > 0, p 2 [1; 2] and that the entries in the sequene w= fw g ,. are boundel
kelow uniformly by a strictly positive numter c.

For any g 2 H, and any ° > 0 and any nonngyative sequene ¢,=f¢, g 2., de ne
f&’;w;p;é;g to be a minimizer of Jo.y.p.;.o(f). If © = °(3) and ¢ = ¢(?) satisfy :

o2y =
1!|'n?) ®=0
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Original Noisy

0 200 400 600 800 1000 0 200 400 600 800 1000

Hard threshold t=3 t=3, g=1

0 200 400 600 800 1000 0 200 400 600 800 1000
Soft threshold g=3 t=3, g=2

0 200 400 600 800 1000 0 200 400 600 800 1000
Fig. 2.2{ Top row, left : original signal; right : noisy signal (white noise,%= 1).

Other rows : reconstructionswith ¢ = 3, increasingparameter ° clockwise (° = 0
(hard-threshold), 1, 2, 3 (soft-threshold)).
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G
3.8 20 [m¢(?)=0

4.9%+>0;, st: [2<%) 8, 21;¢(2)>2]

then we have, for any f, 2 H; ™" :
! #

2. lim 0
210

lim sup  kfZwyoso oi Tlka, =0;
2l 0 Kgi Thoki - 2 (®)w;pse(®); g ofNH1

We will provethis stability theoremin a similar mannerasTheorem?2.2.6is proved
in [16). The proof proceedsasfollows: rst we provethat the normskf 32);W;p;d(2); gkw;p
are uniformly bounded. Secondly we prove that whenf, isin H;"®, any sequence
fff(zn);w;p;c.(zn); o On convergesweakly to f§ when 2, corvergesto 0. (Here g, is any
elemen in H, verifying kg, i Tfoky, - 2n). Finally we prove strong corvergenceof
the fff(zn);w;p;c.(zn); o On Which provesTheorem2.3.8.

Let us make someremarks before proving this theorem. One should point out
the estimatef ) obtained through this algorithm is not necessarilywhat one expects.
Indeed, even in the ideal casewhere T has a bounded linear inverse, we do not
necessarilyhave f} = f,. This can happen only whenfTf,g = 0 for some, . If
fTfo,g, 6 Ofor all ,, then the projection My is the identity and thereforeM ¢, =
ff @ My, off = Tfog= ff : Tf = Tf,g and sinceT is oneto one, this reducesto
M ¢, = ffo0. This ensureghat f) = f,. Howewerif f Tf ,g = Ofor some, , then M .o
is a projection with a non-trivial kernel: ker(M¢,.0) = Sparf ; , s.t. fTf,g = Og.
When the intersection: ker(M,.0)\ Im(T) is not trivial i.e there existssomenonzero
element hin H; sothat Th = Tf, whenTf, € 0,but Th doesnot vanishfor eath

, WhereTf, = 0,then:
ffog( My, = fo+ ker(Mqs,0) \ Im(T)

and therefore f} need not be equal to f,. This can happen even though T has a
boundedlinear inversel Hereis a simple example:

Example 1. ConsiderT : R?! R?2, the boundel and linear operator de ned by :

H ¢ 1 H 2. 4§ 1 H a‘ﬂ
. 1 |1 17 T2 — .
T: £ o3 FLi fo and f, a for somea 6 O:
uf 1 uf .5 1
jiTi= 1< 1andalthoughT hasa boundel inverse: Ti ! : fl 74 f1, 2?
|J' 2 ﬂ 2 11 2
we haveTf, = g sothat M ¢, = ff : (Tf)y = (Tf,)g= ff :2f, + f, = 3ag;
H o5 1
The elementin M ¢, with minimal I1* norm is : fy= (2) , and not f , itself.
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Henceunder the conditions of Theorem 2.3.8, solving Problem 2.3.3 will newver
enableus to recover f ,, even when we obsene the unperturbed image Tf 5! Indeed,
in order to be stable, this algorithm hasto discard the coordinatesin H, sud that
Tfa = 0 ewen under an arbitrary small error of obsenation. The data-dependert
truncation, introducedto nd a more regular estimate when the noiseis signi cant,
loosesthe ability to recover f , whenits imageis obsened under ideal conditions.

We shall give more examplesillustrating this peculiar behavior of the solutionsto
Problem 2.3.3in the next subsection.But rst, let us prove Theorem2.3.8.To do so,
we rst examinethe behavior of the projections M ).,y as? goesto zeroin the next
two lemmas.The rst lemma(Lemma 2.3.9) givesnecessarand sutcient conditions
on the sequence,= f¢, g 2. to that theseprojections corvergein a weak senseas 2
goesto zero.We will beinterestedin the casewherethe weaklimit operator is M, ..
The secondlemma (Lemma 2.3.9) re nes these conditions, so that in addition, the
sequenceM g,y convergesstrongly to M .o on the set: T(M ¢,).

Lemma 2.3.9. Forf 2 H, letfg(? f)g:- o be an arbitrary family of elementsin H,
that satisfy kg(3 )i Tfky, < 2, 82> 0.

1. 8h 2 Hy,  Myer)»h convegesweakly as 2 gaesto O if and only if
8, : 9 K(,) suchthat either (a) or (b) holds, with

5

() 82 (0:%,)), Jgf)—> ¢,
(b) 822 (0;%(,)), [95f) - ¢-
2. Mgty conveigesweakly, independently of the choice of f and of the family
g(%3f), as2 gesto 0if and only if 8, : both (a) and (b) hold, with
(@) 9 #(,) suchthat 822 (0;%(,)); ¢ (%) >?
(b) lim ¢, (3)= 0
In that case,the weak-limit operator is necessarily M+ 0.

3. When conditions 2.(a) and 2.(b) alovehold, if h(?) convegesweakly to h, then
Mgt ). (?) convelgesweakly to M+¢,oh as?2 geesto O.

Proof of Lemma2.3.9. Let ys examinethe behavior of My ).,y coordinate by co-

erdinate.Since My:r),;h  equalseither h or 0, depending on whether or not

[9(% )] > ¢ (?), it follows that Mgzt y:.2)(h) will corvergeweakly as? goesto O if

and only if for all coordinates, , one of the following halds:

Either thege existssomex(,) > Osud that [g(%f)] > ¢ (?) for 2 < #(,). In this
case, Mgty h = h for2 < #( ).

Or thereexistssgmes(, ) > Osudthat [g(%f)] - ¢ (?) for2 < &(,). In this case,
Mgt ymh = 0for2 < 2(,).
This provesthe rst assertion.

Let us now consider how-uniform this behavior is in the choice of the family
g(%f). Since [g(%f) i Tf] - Ka(®%f)i Tfky - 2, the setof valuesthat can be
assumedby jg(3,f) jisexactly Tf i % Tf +2 (takeg=Tf +r ;r2]j3?]to
reach all the valuesin this set). Therefore,for a xed f , the weak corvergenceof the
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operators My ). 2y, regardlessof which sequenceg(?; f) is chosen,is equivalert to
putting constrairts on the sequence ¢(2) g . that depend of the coordinates(Tf) .
Theseconstrairts depeggison whetheré‘l”f ) 60or(Tf) =9

{ If Tt 6 0then jog(3f)j = JTf ji %JTf j+ 2 . Therefore, one ngeds
either: 2< #(,)) ¢ (> Tfj+2 or 2<#(,)) ¢(3) - jT ji 2.1
the rst case, will always bein the kernelof My ).,y once? < &, ). In the
secondcase _ will always in the rangeof Mg y.,(z) once? < ).

{ If Tt =0thenfjg(%f) jg= [0;2]. Thereforeoneneeds[2 < H,)) ¢ (3) > 2].
In this case,  will always be in the kernelof Mgy .2y once? < (, ).

Note that we do not know beforehandthe value of Tf . To be useful, we must derive
requiremerts on the parametersg, (2) that do not depend on f. The minimum re-
quiremerts on ¢(2) ensuringthe operators Mgy .. 2y corvergeweakly as?2 goesto 0
are:

{ 8,; limz ¢ (3) = 0:this ensureghat if Tf 6 0, wewill have¢, (2) < jTf jj 2
for suxciently small 2.

{ 8,; 9#(,)sudnthat 2< H,)) ¢ (?) < 2:this ensuregthat if Tf = 0, we will
have ¢, () < jTf j+ 2= 2 for suxciently small?2.

If theseconditions are satis ed, the M gt ).,y corvergeweakly as2 goesto 0 and one
can determinethe weak limit :

{ for, st. Tf 6 0:limz ¢ (2) = 0 hencethere exists +(,; f) sud that 2 <
#,; f) implies ¢ (2) < jTf ji 2. It follows that : jg(3f) j > ¢ (?) sothat
Mgeiye@( )=  forany g(3f) andany 2 < (,; f)

{ for, st. Tt =0:2< H,) implies¢, (2) > 2. It follows that if 2 < X, ), then
193 1), 1> ¢ (]) sothat Mger () = Oforany g(%f) andany 2 < &, ) .

This provesthat the weaklimit of Mg ).,z for any xed f is Mo and nishes the
proof of the secondpart of Lemma2.3.9.

Finally, assumingh(?) corvergesweakly to h, we have 8, :

=+ o —
_Mgeryh(®) i Mroh — B (2.21)
£ ’ o=

= _Mgene@(h®)i h)+ Mgetye@ i Mroh = (2.22)
_£ o — _£ o —

= " Mgety(h(®)i h) ,_+ “ Mgetyehi Mrioh >_ (2.23)

The secondterm vanishesas? goesto 0 becauseM g1 y.;(zy corvergesweakly to Mo
whenthe conditions 2.(a) and 2.(b) hold. Moreover, we have seenin the proof of the
secondpart of the lemmathat for any , :

{ eithen%there existsa (, ) suc{?jhat Mgty ) = Oforany 2 < H,) . In that

case, Myef).(h(®)i h) —=0,for2< ).

{ or thefEe existsa #(, ) such tfj}a{_— M%f);é(z)(_a )o::_’ forany 2 < #(,) . In that
case, Mgyer).»(h(®)i h) —="h(®)i h “_for2 < K, ); and the weak
cornvergenceof h(2) to h allows to concludethat = Mgt ).,z (h(?) i h) : o

This provesthat Mg ..z)h(?) corvergesweakly to M+.oh and nishes the p}oof of
Lemma?2.3.9. [ |
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We shall now seehow to ensurestrong corvergenceof the Mg ).z (h) whenh is
in M f-

Lemma 2.3.10. If there existsa value of + independentof , suchthat 82 < + and
8,; ¢ (?) > 2, then the two following properties hold :

1. For any choice of f and of the family g(3;f) :

X
82 < £ Mygef)pz) = M1r:oMget )iez) = Mget )Mo = hso i
, st Tf 60
and jg J, ¢

2. In particular, for any choice of f 2 H;™"* and of the family g(%f), (i.e. whe-
neverM ; hasa unique minimizer f Y of the j:jjw.p,-norm) :

82 < & Mgy (TFY) = Moo (TF):

Proof of Lemma?2.3.10: The rst part of Lemma 2.3.10results from properties of
orthogonal projections. If P, and P, are two orthogonal projections, then :

Pl Pz = P2 Pl
ker(Pz) 1) ker(Pl) , P1P2 = Pl:

Hence,we already proved M yz1 )., 2y M1t.0 = Mti.0 Mgert .. 2) and
£ ) . g
Mot ye@Mtro = Moeiyee »  (TF), = 0) gen J- ¢ (%)

Yhen f and 2 are Xxeg, the right hand side holds for any g(%f) if and only if
(Tf) =0) 2< ¢ (3 which provesthe rst part of Lemma2.3.10.

For f in H{™®, £V is well de ned and veries M ,Tf Y = T . Applying Mg, 2y
to this equality and usingthe previousresult nishes the proof of Lemma2.3.10. g

With the help of thesetwo lemma, we can now proceedto the

Proof of Theorem 2.3.8 : Let us considerf, in H;""®, i.e. f, veries that M ¢, has

sequences f2,g, sud that 2, j! 0, fg,0, sud that 8n; kg, i Tfoky, - 25, and
n!

1
forgn = f2(20)gn and féngn & fé(24)gn that verify conditions 1 to 4 in Theorem
2.3.8.For every n, we choosea minimizer f ? € £2 wipen: g OF the functional J, (f) 4

Jowipienian (F) = KMg, e, (TF Qn)ka2 + °nif jij\‘/)v;p'
Wewarnt to provethat for any sud choiceofthe 2, g,, °n, én andf ?, the sequence

normin the setM ¢, = ff : (Tf) = (Tf,) ; 8, s:t: (Tf,) 6 0g. We will alsonote
M, € M
.-

Onién -
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The sequences fjjf 7fjwpdn and fkf ’ky, g, are uniformly bounded :
By de nition of J,, 8n:

ifeib, - = 3(fn)
sothat jif i, - +-Jn(fy) sincef minimizesJ:
But :
In(F3) = KMa(TES i gn)Kh, + niif Jii%
- kKMp(TFY Tfo)kﬁ2 + kKM, (Tf o gn)kﬁ|2 + °njjifg’jii\?v;p
KM (TFY | Tfo)kﬁ2 + M njiZ:k(Tf o | gn)kﬁ|2 + °njiifg’jii\?v;p
KMn (TS i Tfo)kd, + 22 + *nlif Ji%
wherewe usedjjM,ji> - 1andkTf,j g.k - 2, in the last equation. Hence

KM (TFY i Tf,)k2 22
8n; jit 2i%.p (Mo i Tho) R 1] [ (2.24)
n

n

Sincecondition 3 and 4 of Theorem2.3.8are satis ed, we canuseLemma2.3.10.(2).
It followsthat if nislargeenough,M,TfY = M, Tf,. Moreover, i nI':II. 0 by condition
2 of Theorem2.3.8.This provesthat fjjf Zjiw:pgn is uniformly bounded.

Sincew is boundedbelov by c> Oand p - 2, the kiky,-norm is boundedabove
by ¢ i °

¢

¢. X ¢

e . i .G i e n¥l e ¥l ol
LB I L LI | S L it Pe o= eif (2.25)
L
sothat :
2 X . -2 X w p .2 p X w p£1 R in p
kfky, = it e LI A LW I I P et fwyp (2.26)
,2m £ ,2n ,2n
SR TR (] PSR ] 227)

Hence,the sequencd f g is also uniformly boundedin H ;.

f¥ is the unique accumulation point of the sequence ff’g, :

Sinceit is uniformly boundedin H, the sequencé f ’g, hasat least one weakly
corvergert subsequencédf ’gc. Let us denoteits weak limit f€. We shall now prove
that €= f).

Sincef, is a minimizer of J obtained through the iterative algorithm, 2.3.4, it
veri es the xed point equation: f? = S y.p (f7+ T°MyG i T°MTf[?). We note
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he = f7+ T°Myoc i T°MTf/?, sothat f? = S, p(h). By de nition of the weak
limit, it follows that :

8, © = mS,, (h,°
= Jim [(hq) T+ lim [Sew ((hi),) i (). ] but lim °w, = 0
So,8,; ® = lim [(hy) ] since8x; Sy(x) ij! X
=l [(17+ T*Migc i T"M,TH)) ]
= £+ k|!ilm [(T°My i T°MTE)) ] since(f}). ! fe:

As aresult: 8,; kIlilm [(T°Myo i T°MTf?) 1= 0.

But sincekgk i Tfokn, - 2k, then KT°My(ak i Tfo)ku, © BT DMk’ < 2«. This
provesthat for all | :

Jim [(T°MyTfo i T°MTE)) 1= 0: (2.28)

Moreover, from Lemma 2.3.9.(2), we know that f M (Tf,)gx corvergesweakly to
Mt,.0(Tf o) = Tf,. Togetherwith the cortinuity of T°, this leadsto :

TMTf/ iki.I‘V! TTf o (2.29)

On the other hand, f;? corvergesweakly to f€ Using the cortinuity of T, we get
TF? ‘k‘IZ‘V! TE. From Lemma 2.3.9.(3), this also implies f M, Tf g ‘kifvl Mrs,.0 TE.
and it follows from the cortinuity of T that : '

TMTF/ ik‘.I‘V! T"Mrp, 0T (2.30)
Plugging this last result in Eq. (2.29), we obtain the equality :
T*Mq,0T€ = T°Tf, (2.31)

SinceM,.o(Tf o) = Tf,, the previousequality reducesto : T*°M .o T (€j fo) = 0.
Taking the scalarproduct with € f,, we obtain :

€ fo; T°Mys, 0T (€] f0)® =0 ®
) MTfO;OT(iei fo); MTfO;OT(iei fo) =0
, kMTfo;oT(iei fO)kaz =
. My 0T( fo)=0
. My, 0T = Tf,

We used for the rst equality that M+,.0 = M o = M&_,. This provesthat
belongsto the setM ¢, .
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wip - If Jllw;p. Becauseof the weak corvergenceof the
f ? to € for all ,, the nonnegatie sequencd w)jfn?’ jon corvergesto w jf€j. Onecan
then useFatou's lemmato obtain :
X X
- - — . - ’) . . . ’) . — . - ?...
i€, = lmfwify g, - lim  fwjf; jgn = lim jf G,

But we proved earlier that lim sug1jiifn?jii3,;p - 3% p: Therefore,we get :

e PSRN L (232

that €= f).
The conclusionof this paragraphis that f is the only possibleaccunulation point
of the sequenced ;.

The sequence ff g, converges weakly to f} :

We proved that the sequencd f g, is uniformly boundedin the k:ky,-norm and
that it has a unique accumulation point : f). This allows us to concludethat f;?
corvergesweakly to fJ.

The sequence ff ’g, converges strongly to f) :

Replacingf by its valuef ¥ in (2.32),we get: it ity - limng Jiifﬁjii\?v;p - B3,
which provesthat the sequence‘jjifr?jiib’v;pgn convergesto jif 3jf,.,. We shall seenow
that the two results we obtained sofar :

f7 iﬂ;;ﬁ fy (2.33)
if fiiwp inilli! iif diiwip (2.34)

imply the strong corvergenceof the sequencef f ’g, to fY. (This argumert closely
follows [16].)
Let us prove that fk f ’ky,g, corvergesto kf Yky,. We have :

W, 0 KNG, =T R - I iR (2.35)

Writing x? = (xp)g and using the derivability of x ! xé, one can bound the last
term :

— . ¢7. . ¢§- — —

TR 2 madt 2P Ry PO g T P Y P (2.36)
2 maxfj £ j% %Y 2 Pg i 7 i JfY P (2.37)
2 manfj £ J %Y 2 Pg w7 P i wifY T (2.38)
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We saw in Eq. (2.45)that forany f 2 H;and,,2 @ jf j- CPJ||fj||W - Plugging this
into EqQ. (2.38) and summingover , , we get :

X — —
K’ oKe, i KfIkE, T 3c e maxdjf fiia S ifdin.eg Tw if P ow ifd jPT(2.39)

.28

N

Sincefjjf 7jif .,an corvergesto jif Jjif, .., for n large enough,maxfijf Jjig.p; iif Jii5 .09 is
boundedby 2jf Jji5.». Dening ge;ps, = oc b iifJiig. 0. we get:

KETKE, 0 KISKE,T  Gepro g WL IR0 WfY T
Gopfog Wiy JP+ W jfy Pi 2w minfif 7 j;jf3 jg°
Oopito BFnlilp + 0F8IN 0 2w minfif [ j;jfg joP
(2.40)
We already know that jiifr?jji\?\,.p iili! iif 3% p, We shall seenow that the sameholds
o L ,

for the last term in the previous inequality. Let us de ne the sequence u, g, for
eadr, by u, = w minfif7 j;jfy jg°. The weak corvergenceof the f; to f§ im-

plies that for ead , , u, ii i' W jfy j°. Moreover, for alln, 0 - u, - w jfy jP
and p W ity jP 1||f 3iif,, < 1 sothat by the dominated corvergencetheorem,
|I1m u, = |I1m U, . Replacingthe u, and their limits by their value, we
n! s > > nl! > >
obtain : X

lim  w minfj foi;ify jg® = if il

o , . ;
Hence:
3 X

B 7B+ WG p1 20 W mini €7 G5 0P 1300 BFYEG o+ BHG o1 20F2H0, = O

sothat by taking the limit asn goesto 1 in Eq.(2.40), we can concludethat

Kf 7Ky, ! Kf ke,

®
Usingthe identity kf 7 fYky, = kf °kH1+ kf Ykn, i 2 f2; £2 , this last result conbined
with the weak convergenceof the f? to f ¥ provesthat the sequencéfﬁgn corverges
strongly in H; to . [}

Note that we did not needto assumethat ead g, isin H, """ to obtain stability.
It could very well be that the functional J- .y p.;..q, hasseweral minimizers, in that
case,dependingon the choiceof the starting elemen for the iterativ e algorithm 2.3.4,
the elemen f 7 might have di®eren values.As aresult, the sequencéf g, isnot xed
by the parameters?,, °,, ¢» and g,. However no matter which of thesesequence$
we consider,it will corvergestrongly to /.
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2.3.4 Example

We give here an examplewherethe operator T is a multiplication and the itera-
tive algorithms 2.2.4and 2.3.4are applied on the samenoisy imageg:, with the same
parameter®.' =f' g .. isthe orthonormal basisformed by the Haar wavelet. We
chose¢, = 2% where %is the standard deviation of the noise.The top row of Figure
2.3 shavs the original imagef (left) ; the function t correspnding to the operator T
(secondcolumn); the imageof f underT : g= T(f) = f:t (third column) and the
noisy obsenation g (right). Below, the results of iterativ e algorithms 2.2.4 (on the
left) and 2.3.4(on the right) are displayed. Although the standard iterativ e algorithm
(2.2.4) yields almost perfect reconstructionin this case,the adaptive projection algo-
rithm doesnot recover the object f . Becauseof the projections, onewavelet coexcient
in @& is not takenin accoun. This preverts the iterativ e algorithm to properly inverse
the operator T.

Fig. 2.3{ From left to right, top row : original f , multiplication operator t, image
g = tif , noisy obsenation of the imageg.. Bottom row, left : reconstructionwith the
standard iterativ e algorithm ; right : reconstruction with adaptive projection.

2.4 Adaptiv e pro jections relaxed

Our discussionand example above shonved that minimizing the adaptive projec-
tion functional may lead to an undesirablesolution in somecasesdepending on the
operator T and the data. In this section, we introduce a slight relaxation of the
adaptive projections that we will prove no longer su®ersrom this inconvenience.
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2.4.1 De nition of the relaxed adaptiv e pro jections and of
the corresp onding iterativ e algorithm

De nition  2.4.1. Given an orthonormal basisif H,, =f g .., an elementg in
H», a sequene of nonneyative thresholds¢= f¢ g 2. and a salar *, Mg,. is the
map from H, into itself de ned by :
X _ X _
8h 2 Hy Mg, (h) = h  +1 h

. sitjg j>e. .ostjg e ¢

Note that My, is a bounded diagonal operator for any g, ¢ and *. It is the-
refore a cortinuous linear operator. Depending on the parametersg and ¢, either
KMg,;1 k= 1or kMg,;: k = j1j. In the following, we will restrict * to the interval
(0; 1] and therefore,we will always havekMg... k - 1. Note that Mg, ¢ is the adaptive
projection de ned before: My...o = My, and that, for any choiceof g, ¢ and* 6 0,
Mg..» hasa boundedlinear inverse.The minimization problem now becomes

Problem 2.4.2. Givena sejuene of strictly positive weightsw=fw g ,., a sguene
of nonngyative thresholds¢,=f¢, g 2., and salars °, * andp with® > 0,0<* - 1
and1l- p- 2, nd:

f %= argmin Jowipea (F) = argmin kMg (TF g)kﬁz + °jif iy,
f2H 4 f2H 4

P oy
whee jif jw;p = e W M iTjP P and
X B X B
Mg:;2 (h) = h— +t h

. sitjg j>e. .ositjg ¢

For a xed obsenation g and operator T, Problem 2.4.2 reducesto a particu-
lar instance of Problem 2.2.1, with the obsenation g°= Mg (g) and the operator
T%= Mg, T. Therefore,the iterativ e algorithm that follows corvergesstrongly to a
minimizer of J-.,.,..» for any choice of the initial guess.

Algorithm  2.4.3.

Y2 .
fO arbitrary,

¢
fro= S°W:p|fni1+TuM§;¢;1gi TDMS:c;;l TEMln, 1

5

Theorem 2.4.4. LetT beaboundeal linear operator from H to H,, with norm strictly
boundel by 1. Fix p 2 [1;2], * 2 (0;1], f¢ g 2.a sequene of nonnegative numters
and let S,., be the shrinkageoperator de ned by (2.7), wheee the sgquene fw g 7.
is uniformly boundel below away from zemo, i.e. there9c> 0s.t. 8, 2@ : w | cC
Then the sequene of iterates
n — in'1 ann2 . ann2 n'1¢. I T, YR
f7= Sy FM" + T Mg, gi T"Mg,. TE" = [ n=12:0

with f © arbitrarily chosenin H, convegesstrongly to a minimizer of the functional
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£P -
whele iif ilwp denotesthe norm jif ., = 2 W jHES" ’ijpnl 1. p- 2 and

Mg ()= gpjgpe D+ 1 cstjg e b
If the minimizer f? of Jo.. et 1S UNique, (WhICh Is guaanteed e.g. by p > 1
or ker(Mg,+ T) = f0g), then every sequene of iteratesf " convelgesstrongly to f ?,
regardlessof the choice of f °.

D&monstation. As we noticed before:
J°;w;p;¢;1 ;T;g(f) kMg;«;;1 (Tf i g)kﬁz + ojiifjij\?v;p

kMger T)f i Mgr 9KG, + Clif %,

Jowpox; 1o go(f)  with  T%= Mg,a T, ¢°= Mg,a g

is then sucient to prove j||T(i|| is strictly smallerthan 1 to prove the strong con/er-
genceof the iterative algorithm 2.4.3via Theorem 2.2.5.But jT% = jMg: Tji -

IMger B:BTH - maxf1;jjg:Tj. SinceO< ! - 1then jMg, Tj = 1 and therefore
iTH - iTi< 1 |

2.4.2 Stabilit y

The di®erencdetweenthe relaxedadaptive projection functional J- ..., » andthe
original adaptive projection functional J-., ... is that we can now prove the desired
stability result. We have, in analogyto Theorem 2.2.6the following

Theorem 2.4.5. Assumethat T is a boundel operator from H; to H, with jjTjj < 1
and that the entries in the sequene w= fw g ». are boundel below uniformly by a
strictly positive numker c.

Foranyg2 Hy andany®° > 0, 0< * - 1 and nonneative seguene ¢,=f¢ g 2a,
dene f7, . ..., to be a minimizer of Jo.yp.a.g(f). If © = °(2), ¢ = ¢(?) and
1 = 1(?) satisfy:

L lm ") = 0
! 22

2. I|m — =0
°(®

3.8,20,!|Irrg)¢(2):0
4.8 20;94,)>0; st: [2<H,)) ¢(()>2]
5. !im 1(?3)=1, withO<1,- 1

Sfo= ff 1T = Thyg -
" #

lim sup kfo?z....z.lz. ifka =0;
20 g Thoket - 2 (®w;pe(®):t (3 g oMH1
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Notethat, if kerT = f0g, thenthe setS;, reducedo f, itself, sothat the algorithm
is regularizingfor all elemen in H;. This ensureshat whenthe noiselevel corverges
to 0, the sequenceof estimateswe obtain corvergesto the original object.

The proof of Theorem 2.4.5is mostly analogousto (in fact a little easierthan)
the proof of Theorem 2.3.8. For the sake of completenessye give the full details of
the rst two parts of the proof, indicating by
A)

( A
when the argumert di®ersfrom before. Once we prove that f} is the unique accu-
mulation point of the sequencd f ’g,, the proof of weak and strong corvergenceare
strictly identical and we shall not repeat them.

We start by a lemmathat, similarly to Lemma 2.3.9, examinesthe corvergence
of the operators Mg, :

Lemma 2.4.6. Supmsethat ¢ = ¢(?) and® = 1(?) verify conditions 3, 4 and 5 of
Theorem 2.4.5. Then the two following properties hold :

1. For any h in Hy, Mg(z;f )2y N convergesweakly to M2, 01, as2 gaesto 0.

2. If h(?) convegesweakly to h as? geesto O, then Mg(z;f);c.(z);l (z)h(z) convemges
weakly to M%; . h as2 geesto 0.

Proof of Lemma2.4.6 : In the proof of LemmaZ2.3.9,we have seenthat under condi-
tions imposedon ¢,(2) (conditions 3 and 4 of Theorem 2.4.5), the following happens:
{ for, st. Tf 6 0:limz o¢ () = O hencethere exists #(,; f) sud that 2 <
#(,; ) implies¢ (2) < JTf ji 2.1t followsthat : jg(%4f) j> ¢ (3).
{ for, st. Tf = 0:2< H,) implies¢, (2) > 2. It follows that if 2 < X, ), then
j951).1> ¢ (®).
Sothat in the Tst case: M u¢y. o1 5( ) = forany g(3f) andany 2 < #(; f);
and in the secondcase: M [ .. o1 5 (7,) = 1(3)?, forany g(%f) andany 2 < (, ).
Since? (2) corvergesto some?!, by assumption (condition 5 of Theorem 2.4.5), it
follows that Mgz(z;f )ie(2):t (Z)h corvergesto MTZfO;O;loh as (2) goesto 0. This provesthe
‘rst part of Lemma2.4.6.
To prove the secondpart of Lemma?2.4.6,we useagainthe splitting trick we used
in 2.3.9.(3):

£,z 2 =

Mgty @) i Mype 0 _ (2.41)
— :£ 2 . 2 . 2 a2z
= _Mgene@r @M@ i N+ Mg e @i Mie )b (2.42)

£ o- £ ) o -
Mgt yema (@i h) -+ (Mgaty @@ i Mo ) (2.43)
And the sameargumer aswe usedin Lemma2.3.9.(3) allows to conclude. [

Note, that we did not needto prove this lemmathat 0< 1, - 1. Now that the
weak convergenceof M gz(z;f )2 (2 1S established,we proceedto the
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Proof of Theorem 2.4.5: Let usconsiderf, in Hy, that veri esthat S;, hasa unique

minimizer jj jjw.p{norm. We note this minimizer f . We x the following sequences
f2,g, sud that 2, ill! 0, fghgn sudh that 8n; kg, | Tfoky, - 25, and f°,0, &
n!

F°n)Gn, F1nGn = £1(2,)gn and fénln = fé(2n)gn that verify conditions 1 to 5
nsW;psén st n; On

in Theorem 2.4.5. For ewvery n, we choosea minimizer f? Lt of the

functional Jn(f) € I, wipennmian (F) = KMgygna o (TF i Ga)K, + °niif ii5 - We want

to prove that for any suc choice of the 2, g, °n, 1, én and f?, the sequence?

, , def
corvergesstrongly in H; to f). We will alsonote M, = Mg, it n

The sequences fjjf Zjiw.pdn and fkf ’ky,gn are uniformly bounded :

By de nition of J,, 8n:

sothat jif ji%, - +Jn(fy) sincef minimizesJ,:
But : A)
In(fd) = KMn(TEYi gn)ki, + nlif il
= kMo (Tfoi Gn)Ki, + °niif Jiib sinceTfY = Tf,
KMokZK(TE o i Gn)KZ, + *niif 2%
maxf 1; % nj?g:23 + °niif 3% sincekTfo i ook - 2,
Hence
22
8n; it qlib, - maxt Ljtnj?gi™ + il o (2.44)
n
Since% r!u' Oand?, r!ul 1, 2 (0;1], this provesthat fjjif Zfjw:pdn is uniformly
bounded. ' ( A

Moreover, w is boundedbelov by c> Oandp - 2, sothe k:ky,-norm is bounded
above by ¢ %jii:jiiw;p :

T O T D O T
it j="jf P =gt Poe e L O ol ) T (2.45)
. 2a
sothat :
X X X £ -
KIE, = JF e MR R gt PO Ff g 2 (2.46)
, 28 £ , 28 o, ,2m
KEKZ, - LS, C Fiifliwp o © = C P2, (2.47)

Hence,the sequencd f ’g is also uniformly boundedin H ;.
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fY is the unique accumulation point of the sequence ff g, :

Sinceit is uniformly boundedin H, the sequencéf ’g, hasat least one weakly
corvergert subsequencédf ’gc. Let us denoteits weak limit f€ We shall now prove
that €= fg.

Sincef, is a minimizer of J obtained through the iterativ e algorithm, 2.4.3, it
veri es the “xed point equation: f? = S kWp(f + T°M 20 i T°MZTf?). We note
he = 72+ T°M2a i T°MZTf/, sothat f7 = S., (). By denition of the weak
limit, |t follows that :

. i ¢
8, f = Jim Sy (M),

= lim [(h), 1+ Jim [S (ho))i (h).]  but lim°w =0

So,8,; € = I(I!ilrn [(h). ] since8x; S,(x) ivi.!o X
= Jlim [(f+ T°Migci TPMETEY) ]

= f+ I(I!ilm [(T°MZo i T°MZTf)) ] since(f)). iki!li! fe:

Asaresult:8,; lim [(T°Mfgci T*MZTf{) 1= 0
A) '
Sincekgy | Tfok - 2, then kKT°MZ(gk i Tfo)kn, - KT kkM k2?2, < maxf 1;j? «jg2:2.
Since! ¢ corvergesto t, 2 (0;1], and 2y to O, this provesthat for all ,
£ o
k|'i1m (T°MZTf, i T°MZTE]) =0 (2.48)

From Lemma2.4.6.(1), we know that the sequencd M 2(Tf ,)gx corvergesweakly
to M% 4. (Tfo) = Tfo. ( A
Togetherwith the cortinuity of T, this leadsto :

TEMETEZ it T°TH: (2.49)

On the other hand, f;? corvergesweakly to f€ Using the cortinuity of T, we get
Tf? i i' TE.
A)
Lemma 2.4.6.(2) allows then to concludethat M 2Tf i . MZ 0. TE ( A
and it follows from the cortinuity of T* that :

T°M2TF)? iki.I‘v! T°M% 0. TR (2.50)
Plugging this last result in Eq. (2.49), we obtain the equality :
T°M% 0. TR= T°Tf, (2.51)

Note that M .01, IS a selfadjoint and that MTf 01, (TFo) = Mrty.00,(TFo) = Tfo.
Therefore the previous equality reducesto : T* MTf 01, T(j fo) = 0. Taking the
scalarproduct with € f,, we obtain :
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A)
- ®

i fo; T°MZ 0. T(€j fo) =0 ®
) Mrto0:, T(i fo); Mrro01, T(j fo) =0
. KMyo00 T(R] fo)k3, = O
) MTfO;O;loTUei fo)=0
, T(fj fo) =0 sinceMy,0:, is invertible.
. Te=Tf,

This provesthat € belongsto the setS;,. ( A

Let us now prove that jjfSjw., - jif Zijw:p. Becauseof the weak convergenceof the
f? to € for all ,, the nonnegatiwe sequencd w,jfr?’ jon convergesto w jf€j. One can
then useFatou's lemmato obtain :

X X
90, = M owit? g, lim fwf? jgo = lim § 70,

A)
But we proved earlier that jijfr'i’jii\?\,;p - maxf 1;j? njg:% + jf 3ii% p- Therefore,sincethe
limag 20 =102(0;1]andlimyy 2 = 0, we get:

Jllﬁll\r/)vp ’ nI,{n lllf:Jll\?vp ' Jllfglll\?vp (252)
( A
By de nition, f} is the unique minimizer of the jj:jiwp-norm in S, so this implies

that €= fJ.
The conclusionof this paragraphis that ! is the only possibleaccunulation point
of the sequenced .

The sequence ff g, converges weakly to f} :

[This is idertical to the proof given for Theorem 2.3.8]

The sequence ff ’g, converges strongly to f) :

[This is idertical to the proof given for Theorem 2.3.8] [

2.4.3 Example

To illustrate how the relaxation of the adaptive projection works in practice,
let us revisit the example given in subsection2.3.4. We chose! = :5 and ran the
relaxed iterativ e algorithm on the data we presened in Figure 2.3. Figure 2.4 showvs
the original object we are trying to estimate (top), together with the result of eah
method (bottom). As we noticed before,the introduction of adaptive projections in
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the discrepancyterm preverts the iterativ e algorithm 2.3.4to reconstructthe object.
The bottom left panelof Figure 2.4 shows the \p erfect” reconstructionobtained with
the standard iterativ e algorithm of section2.2. One can seein the middle panelat the
bottom of the gure that the reconstructionof section2.3 using adaptive projections
missesone variation. The ability to recover the signal perfectly is regainedby using
the relaxed algorithm of section 2.4, as shown in the bottom right panel of Figure
2.4,

Fig. 2.4{ Example of Fig. 2.3 revisited. Top : original. Bottom, from left to right :
reconstruction with the standard iterativ e algorithm, reconstruction with adaptive
projections, reconstructionwith relaxed adaptive projections.

2.5 Extension to multiple input/outputs

In this section,we discussthe generalizationof the iterativ e algorithm to the case

icix,, for each componert f.,. As before,the norms jj:jix,, are l,-norms of decom-
position coexcients. In all generality, the componerts f,, (resp.the obsenations g)
could belongto di®eren spacesHilbert H! (resp. HP). This would be the case,for
instance, if one were to usethis algorithm to register multi-modal data where eath
componert could have a di®erert format. One then needsto considerM tight frames
' M =f""g 2. form= 1;:;M. Evenif the componerts belongto the sameHilbert
sametight frame for all m = 1;::; M. Therefore,we will allow not only the exponert
p and the weights w to depend on m but alsothe decompsition frame ' :

™ 1
jiilix, = whjho;t M P ; (2.53)
.28
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Note that we could introducesomemaodi cations in the discrepancyterms aswell, to
tune theseto the characteristicsof eat obsenation g, for | = 1;::;L. For example,
onecould usethe (relaxed) adaptive projectionsMy... . Asisthe casefor M = L = 1,
this amourts to modifying the operatorsand the obsenations g, accordingly Sincewe
descrilked in detail how thesechangesa®ectthe iterative algorithm for M = L = 1,
we shall focus here on the changesdue to the presenceof multiple obsenations and
multiple componerts with speci ¢ jj:jjx,, -norms. Subsection2.5.1 descrikesthe theo-
retical generalizationof the iterativ e algorithm to the multiple componerts/m ultiple
obsenations caseand Subsection2.5.2the application to our astrophysical problem.

2.5.1 Generalization of the iterativ e algorithm

Let us rst state the most generalproblem. Assumingwe are given obsenations
g that belongto di®eren Hilbert spacesH P, we wish to estimate the objects f, in
Hilbert spacesH! that producedthem, knowing that the cortribution of object f,
to obsenation g is T f,m Wherethe Tpyy : HL ! HP? are boundedlinear operators.
We estimate the objects f , by solving the problem:

Problem 2.5.1. Given sa@lars f°n0Om=1::m, f%Q1=1... and expnents f pnOm=1::m
with °n, > 0, %> 0and1- p, - 2, givenin addition a tight frame’' ™ =f' Mg ,,
and a seguene of positive weightsw™ = fw™g ,., for each Hilbert space H',, for
m=21:M, nd: ’
X oW o2 b
argmin J(f1;f2;::05fy) = %o Tmfmi g° + *mifmi%
fm 2H =1 m=1 AT =

P o
whee jif x,, = g W jHET M jPm b

Let us rst explain the generalizationof the iterative algorithm 2.2.4 neededto
solve Problem 2.5.1,in the casewherethe p,, are equal.

Constant exponent : p, = p; 8m

When the exponerts p,, areall the same,onecanseeProblem2.5.1asan instance
of Problem 2.2.1 by recasting the Problem in higher dimension. This is done by
building a unique obsenation space: H® = HSE HIE ¢CC¢E HY, and a unique object
space: H' = Hi £ HL £ ¢¢¢£ H! . The standard euclideannorm :

A S

= f for f= (fy;fy:i;fw)2 H

(2.54)

m=1

deTesH asa Hilbert space.We de ne a particular norm on the Hilbert spaceﬁ0 :

v
N

o o X0 e, —o
§ o= % G 4o for §=(0ugiiiiion) 2 H (2.55)

=1
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De ne the enmbedding operators Py, : HI ! H' by Pm(f) = (0;:::; O;f; 0;:::;0).
Sincethe family © = P, (' f")gmzl M 20 IS atight frame of H', onecanalsode ne

o X -, ® 3 X = R
[ifiiwp = “m W' PR (™) S = °m W hfnt Ty
m=1;:M m=1;:M
2u 20
| (2.56)
wherew = f° 5 W"Qn=1 v, 20 Finally the operator T : H' ! H' isdened by :
_ .\ pd W
T(fq;fo; i fm) = Tm:1fm; Tmoofm; 103 T T (2.57)
m=1 m=1 m=1

With thesede nitions, Problem 2.5.1reducesto Problem 2.2.1since:

X P
J(fufoiinifm) = Y T fm i gIOH°+ omjiifmjii?(m (2.58)
=1 m=1, ! m=1
° fr— 02 ......
J(Fufainfu) = TP g° +ifib, (2.59)
=, ® 3»
with jifiiw, = Wy 50, o " (2.60)

=}

Herethe indexes, and m are conbined into a singleindex n and w,, = w™ = °,,w™
and©, = © = P,(' ™). ’ ’

As a result, the iterativ e algorithm 2.2.4can be usedon the vectorizedquartities
(f, 8, T, ...) to solve Problem 2.5.1whenthe p,, are equal.

Full case : arbitrary pn

In the casewherethe p,, depend on m, the vectorization trick doesnot allow to
to go bad to the construction of the iterativ e algorithm 2.2.4to seehow to modify
it. We note ©" the elemen P (" ™) of the frame ©. As before, the functional :

o . o2 X = Pm
°Tfj §°_ + wh o (2.61)

o [k

J(f) =

m; |

is appraximated by the surrogatefunctional :

o o o o ) o
o

o__ o2 o__ 02 o2 X :—
Jaf)y=°Tf; g°__j °TF| Ta°__+C°fj &°_+ w" f;0"
H H H : :

m; .

® 4,
- (2.62)

for C > jiiTDTjii. The surrogate functional is again strictly convex and the equations
decouplefor eadh pair (m; , ). The minimizer f** is againde ned applying the operator
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Sw;p for each componert :

D~ E uwp  ET
fohe™ = Sgm.,, CaA+T gi T THO" _ (2.63)
- , -
D o E T
fot om = Spump, CarTg TTadl (2.64)
De ning the operator : Sy : 1 A by : )
_ X - ®
Swp(f) = Sumipy O L O" (2.65)
m=1;:;M )
.20
onegets: 3 .
f=5,, Ca+ T §; T Ta (2.66)

The only di®erencewith what we sav in Section 2.2 is that now, the operator
applied to ead coordinate doesnot have the samevalue of p anymore. Howewer the
vectorized operator Sy, (With multiple valuesfor p) inherits the properties of the
vectorized operator S, (with a single value p) that ensurethe strong corvergence
of the iterativ e algorithm obtained by minimizing a sequencef surrogatefunctionals
as before. (The mathematical de nition 2.5.3follows). That is to sa that Sy is a
non-expansie and asymptotically regular operator, it hasat leastone xed point and
veri es two technical lemmas(lemma 3.17and lemma 3.18in [16]). Theseproperties
are consered becauseheseis only a nite number of valuespy,.

Hence when jiiTUTjii < C, an iterative algorithm that corvergesstrongly to a
solution of Problem 2.5.1is :

Algorithm  2.5.2.
0 2 HT arbitrary .
fn = LSy CPNi+ Ty TN i, 1
Going bad to the original obsenations g; and operators Tr;, the algorithm 2.5.2
in the original spacedH,, is:
@Igorithm 2.5.3.
% f0 2 HI; arbitrary; 8m2 [LM]

8n, 1, 8m2[LM]; 8, 2a:
U 1

E Hr%;l ml = és"mwm;Pm < Cfrw L+ 1/PTr$1;|g| i %Tr;jTr;Ifrm l; I m > m
. ? -_— L

1=1;:;

with jT Tj< C

One can expressa possiblevalue for C in terms of upper bounds on the norms
of the combinations of T, T, ; we won't do this explicitly for this generalcase,but
shaw in the next subsectionhow to do it for our particular application.
Remark . This approad is a generalizationof the method dewelopedin [20] for M =
2,with pp = landp, = 2.
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2.5.2 Application to astroph ysical data

We presen in this sectionthe useof the multiple input/m ultiple output iterative
algorithm 2.5.3for our astrophysical problem. The objects g, at hand are imagesof
a portion of the sky, acquired at di®eren wavelengths. The dominant componerts
fm in the obsenations are : the Cosmic Microwave badkground (f ,), the clusters of
galaxies(f ), infrared point sources(f3) and the galactic dust (f4). We are mostly
interestedin reconstructingaccuratelythe clustersof galaxies.To do soit is hecessary
to considerthe other signals,f 1, f3 and f4, becauseat the wavelength we consider
they dominate the clusters' signal.

The obsened imagesg all have the sameresolution and size and we want to
reconstruct images of the componerts with the same resolution and size as well.
Hence,in this case,the Hilbert spacesH!, and H? are the same.We have chosento
enmbed our input and output imagesin the Hilbert spaceH = L2([0; 1] £ [0; 1]) with
the canonicalnorm.

Eadh imageacquiredon the telescop is a superposition of the di®erert imageswe
are trying to estimate that is blurred and contaminated by noise. The blurring oc-
curs becausehe ideal impulseresponseof the instrument is not perfect. It is instead
well modeledby the convolution with a function that dependson the obsened wave-
length. This function is called a \b eam" in astronony. Moreover, the cortribution of
eat componert dependson the wavelength of obsenation becauseof their di®eren
physical characteristics. As a result, the obsened imagesg, can be modeledas:

h v [
g=h = ami fm + 1 (2.67)
m=1
where & denotesthe two-dimensionalcornvolution ; ay, is a scalar; by is the beam at
wavelength | ; and n; models the noise. Sourcesof noise here are instrumental noise
and other componerts we overlooked becausehey are not dominart.

With this method, our estimatesof the physical componerts f,, f,, .... are mi-
nimizers of the functional 2.5.1, computed via Algorithm 2.5.3. The operators T,
conbine the corvolution by the beam and the frequencydependenceof componert
m:

H ! H

f 7 amhof
The beamsh are typically square integrable functions and therefore the T, are
boundedlinear operators. The adjoint of Ty, is:

Tu_H! H
mf 7 By, Boef

Tong (2.68)

where B(x;y) = B(i x;i y) (2.69)

Choice of the parameter C

The norm jiT Tjj can be boundedby noticing that :

L i X
TT(:0fm) I(X) = 8m) & Yo (b e B af )(x) (2.70)

=1 r=1
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Computing the Fourier transform of the previous equation, we obtain :

h I n X -z
TT(ff) () = a2 % B7O) RO @70)

I=1 r=1

or, writing it in a matrix form :

0 h I A 1 - -
TT(fy:ifu) 1(>>) 0 v, B 2(») 0 PO () ’
%)h P §:A oo KAl K
TDT(fl;:::;fM) L(») 0 " @7(») fu )

(2.72)
where A is the M £ L-matrix with ertries an,,. Noting %2B») the L £ L diagonal

matrix with ertries % B *(»), and xing », onegets:
o i = w3
8 »; T T fm) () - jiA LB») A% T (>~ (2.73)
m=1 m m=1
Assumingthe beamsh are integrable so that sup;[i7(») < 1, onecan bound the
matrix norm :
3

. ¢ - ’
8 » jiA B(») A% - A 'sup¥B(») A%i- sup % B °(») jAA%T  (2.74)
» I;»

Eqg. (2.73) can be rewritten :

wh o R
8» —T T(fy::fm) (M= - sup % B °() iAA%T  En(»~  (2.75)
m I;» m=1
Integrating this last equationin » givesa bound on the norm jiT Tj :

3 —_

§T°Ti - sup % B °(» §AA%] (2.76)
I;»

For our astrophysical problerﬂntﬂe beamsare Gaussianso the integrability condi-
tion is veri ed. We usedC = 2jjiT Tj.

Choice of the norms

We are most interested is the clusters of galaxiesmap f,. Clusters of galaxies
are rare objects in the sky. They are very compact, typically a few arcminutes wide,
with a peak of intensity in the certer and Taments on the outskirts. Becauseof
their compactnessand rarity, the clusters of galaxiesare well descriked by a few
large wavelet coexcients. The I* norm on the wavelet coexcients (which is in fact
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equivalert to the Besw B}-norm), hasprovedto be a good a regularization norm for
sud signals[8, 10, 44]. Hence,that is what we useto constrain the object f, :

Iix, = jhest (2.77)

.20

where' = f' g ,qis a tight frame of complex wavelets. We descrite in detail in
Chapter 4 Section4.2 the dual tree complexwavelet transform that is usedhere.

The CosmicMicrowave Badkground componert, f 1, is a smooth and slowly varying
signal. It spreadsacrossthe whole sky. Moreover its power spectrum jf(»)j? is well
studied and can therefore be usedto constrain the estimate of f ;. This can be done
by adding weights w to the I?-norm in wavelet space:

i (2.78)

As is the casefor Sololev spacesfor which one choosesw = w;y = 2'IP for appro-
priate 3, we useweights w = w;  that dependonly on the scalej of the wavelet' ..
(not on the location k). They are de ned asfollows :
R— -
d.0(») “c»
W =Wk =R = =
P1(») Ujo(») “d»

(2.79)

where P1(») is a template of the power spectrum of the CMB studied by astrophysi-
cists.

The Galaxy Dust is alsoa smaoth and slowly varying signal that spreadsacross
all sky. Its power spectrum is not aswell studied asthe CMB, sowe investigatedthe
relevanceof di®erert Sololevtype normsto constrain its smaothness.We obtain the
best results by choosingw = wj = 23 i.e.:

X .
iiiix, = 2jh:;t 0P (2.80)
,=(j:k)2a

The last signalf 3 comesfrom really small objects that emit in the infrared spec-
trum, called infrared point sources.Thesepoint sourcesare rather rare. Sincethey
are so small, they appear under the resolution of any image, sothat the extent of a
point sourceis smallerthan onesinglepixel. For this signalit is then natural to stay
in the pixel domain, requiring that the estimateis a sparseas possible:

X Z _
B, = fa(pixel) (2.81)

pixel

Note that onewould ideally want to usethe °-norm : i vixel Hfs(pixel)jgo - HOwever, the
functional would then not be corvex. So, we choosethe exponert p to stay as sparse
as possiblewhile keepingthe convexity, which is p = 1. (In fact, Donoho has shavn,
and usedin seweral papers, that in many casesan |'-constrairt is a good proxy for
an L%bound; seee.qg.[22, 23, 24].)
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Choice of the regularizing parameters

The principal sourceof noisein the astrophysical data we consideris cortrolled by
the time of exposureto the portion of sky imaged.Astrophysiciststhereforecustoma-
rily provide, aspart of their data, not only the g, but alsoan estimation of the noise
level %f:n the imageacquired.When the f,, are closeto the truth, the I'"" discrepancy
term jj . Tmifm i @ji? should be of the order of 3. To give equalimportance to
eadt discrepancyterm, we set % = 5?

Similarly, we chosethe parameters®,, sothat the regularization terms jjf njix .,
have the sameorder magnitude as eat other but alsoasthe discrepancyterms. The
estimation of the order of magnitude of jjf ,,Jix, is donenumerically using simulations
of eadh componert.

Positivit y constrain ts

The clusters'signal and the point sources'signal are positive. We introducethese
constrairts using the projection step described in 2.2.4for thesetwo componerts.
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Chapitre 3

Statistical metho d

In this section, we presern a method of separationof blurred mixtures of com-
ponerts basedon a statistical description of eacy componert to be estimated. This
method is largely inspired by the work of J. Portilla et al. [47]. In that paper, the
authors presen a method for deblurring natural imagesthat is basedon a statistical
description of the unknown elemerns constituting the obsenation, namely, the \true"
imageand the noise(the point spreadfunction causingthe blurring is supposedto be
known). In that framework, the \true" imageis viewed as a realization of a random
processF, and the noiseasa realization of anotherrandom processN . Consequetly,
the obsenation is a realization of a random processG that is a known function of
the previousones: G = T(F;N). The description of the characteristics of the two
random processe$ and N inducesa statistical model for the random processG. In
return, given a particular obsenation i.e. a particular instanceof G, this model gives
information about the plausibleinstancesof F and N that producedit. Usingthis in-
formation, onecande ne a notion of best estimatefor the instancesof F and N that
producedthe obsenation in hand, which is to say an estimate of the \true" image
and of the noisegiven the obsenation we have. Seeral standard techniquesexist to
carry out theseestimations; one can usee.g.a\maximum a posteriori" approad, or
a \maximum likelihood estimator”, etc.... Here,asin [47], we shall usea Bayesleast
squareestimate, i.e. we estimate the \true" image by computing the maximizer of
the conditional expectation of the processF given the obsenation.

Given this framework for estimation, one is left with choosing a model for the
processe$ and N, sothat the obsenation givesa plausible estimatefor F (which is
the estimate of the \true" image). The choicesmadein [47] are basedon knowledge
that hasbeenacquiredby studying natural imagesand their properties.In particular,
they usewavelet expansions. goingto wavelet spacehelps separatingthe noisefrom
the \true" image, becausethe noiseenergyis spreadout acrosswavelet coexcients
whereasthe wavelet transform of a natural imageis typically concerrated in a few
large coexcients. The wavelet transformation has another advantage : it has been
obsened that the distribution of wavelet coexcients of natural imagesis not Gaus-
sian; whereasthe noiseis typically well modeled by a Gaussianprocess.Moreover,
the structure presert in natural imagescausesheir wavelet coexcients to behave in
a more coheren manner than the noise'scoezcients. For instance, the presenceof
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an edgeis re°ected by relatively large wavelet coexcients, through di®eren scales,
at the location of the edge.

In [47], the authors propose a method that takes advantage of the knowledge
we just descriled. They chosea particular wavelet transform, the steerable pyramid,
and modeled \neighborhoods" of wavelet coexcients by Gaussian Scale Mixtures
(GSM). Theseneighborhoods are setsof wavelet coexcients assaiated with the same
location and that behave in a coheren manner.Modeling the behavior of the wavelet
coexcients in theseneighborhoods jointly (instead of ead singly) buys power for the
estimation by taking advantage of the coherencepresen in the \true" image and
absen in the noise.Moreover, the GaussianScaleMixture is a family of probability
distributions that can capture the non-Gaussianiy of a signal; it has proved to be
usefulfor modeling the distribution of waveletcoexcients in natural imageg60. Once
this model is completely characterized,the authors of [47] compute the Bayes least
squareestimate of the \true" image; the useof the GSM model makesthis estimate
easyto compute.

We have extendedthis method to the caseof blurred mixtures of componerts in
order to extract the clusters of galaxiesfrom obsened astrophysical data. Although
our componerts are not natural images,part of the reasoningherestill holds. In par-
ticular, the useof neighborhoods of wavelets coe+cients becomescrucial. Not all our
componerts deviate a lot from Gaussianiy (indeed the CMB signal is Gaussian),
therefore, distinguishing the noise from sud componerts solely on the basis of the
marginal distributions can not be done. Consequetly, the coherenceof wavelets co-
excients in the sameneighborhood is essetial to make this distinction. Moreover,
somesignals(e.g. the clustersof galaxies)are much lessintensethan others, causing
the amplitude of their wavelet coexcients to be too small to be detectedone by one.
Taking advantage of their coherencebecomesnecessaryto lower the intensity thre-
shold for detection of thesesignals.Note that the (non{)Gaussianity of the di®erert
componerts hasa physical meaning: for example,the deviation from Gaussianiy of
the CMB givesastrophysicists an indication on how to understandthe Universe.As
the cluster signalis itself highly non{Gaussian,a bad estimation of the cluster signal
\p ollutes" the estimated CMB signal, and thus the astrophysical conclusions.There-
fore, careful treatment of the (non{)Gaussianity of thesesignalsis necessaryUsing
the GaussianMixture Model allowsusto do soin a simpleand excient mannersince
both Gaussianand non{Gaussiansignalscan be modeledwith the sameformalism.

In this chapter, we will presen the theoretical aspectsof this model illustrated by
someexamples.In the rst section,we descrite in detail the di®eren constituerts of
the statistical model of the di®eren signalspresett in the obsenations. In particular,
we shov how to de ne neighborhoods of wavelet coetcients, what are GaussianScale
Mixture models and what is the resulting model for each componert. The second
section discusseghe formal derivation of the Bayes least square estimate and its
computation, leaving the problem of the estimation of the di®eren parametersfor
sectionthree. Finally, we descrile in the last sectionof this chapter the application
of this method to our astrophysical problem. As we go along, we shall give some
examplesto illustrate the theoretical aspectsof this method ; however most examples
are kept until in Chapter 5, wherewe juxtap osethe results producedby this method
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and by the functional method of Chapter 2, so that the reader can easily compare
them.

3.1 Mo delization of the signals

Let us now give more explicits details about the di®eren constituerts of the
statistical model of the data.

3.1.1 Neigh borho ods of wavelet coexcien ts

In natural images,although the wavelet transform has the property of decorre-
lating coezcients, there exists signi cant spatial dependenciesin the transformed
coezxcients : wavelet coexcients certered at the same(or a close)location and scale
behave coherertly. This is a consequencef the geometricalproperties of sud images
and of the spatial localization of wavelets. For example,a vertical edgeseparatingtwo
smaoth regionsyields a recognizablepattern in the wavelet transform : all wavelet
coexcients are very small, except those correspnding to a wavelet oriented hori-
zontally and whosesupport includesthe edge.Not only will the horizortal wavelets
certered at the edgeyield quite large coexcients, but alsothe horizontal coexcients
will decg or oscillatein a special mannerwith the distanceto the edgeand with the
scale.(In fact, if sud a simple vertical discortinuity was located at n = g(kol; kgk

(k1; k) 2 Z2, one could derive the exact valuestaken by the coetcients f;' ngrﬁ‘o

for scalesj ® ner than j, certered at locationsn®= 2°(k%k2);k°2 [kl K;k!+ K].
Here we denoted' V®'' the wavelet that is vertically oriented).

Similarly, for our astrophysical problem, the geometricalproperties of the di®erert
componerts can be exploited. For example,clustersof galaxiesare spatially localized
structures with a high intensity peak at their certer. Their sizeis of the order of a
couplearcminutes. Hence,at scale§ wherethe width of the wavelet' ; is a coupleof
arcminutes or less,the amplitude of wavelet coexcients should exhibit rather sharp
transitions from very low to very high amplitude at the locations of the clusters.
Moreover, thesetransitions should be sparselydistributed sincethe clustersare rare.
This would not happen for the CMB signal (resp. the galaxy dust) for which the
variations are much smaother and the typical scaleof variations is more than 10
(resp.50) times bigger. The point sourceson the other hand are much lessextended
than the clustersand the noiseis spreadover scaleand space Hencethe local behavior
of the wavelet coexcients is particular to eacy componert.

Di®eren approatheshave beenproposedto take in accour the spatial coherence
of wavelet coexcients in order to improve image processing.The zerotreemethod for
compressior{59 and later the hidden Markov model basedon wavelet treesfor image
denoising[15, 50 both incorporate the spatial dependenciesasprior knowledgeon the
wavelet tree structure. Other methods are basedon local models of the coexcients
that are usedeither to compute parametersfor the denoising[54] or asstatistical prior
for estimation of the signal[41, 47]. Most of thesemethods[55, 15, 50, 54] consideronly
the depenciesbetweena wavelet coetcient andits parert (i.e. the coexcient certered

47



at the samelocation but at the next coarserscale).In our problem, the presenceof the
blurring will induce depencieson the wavelet coexcients within a scaleaswell. Sowe
will use,asin [47, 41], more exjendedneighborhoods. We considerthe neighborhood
of a coexcient fj.n = f;' [ to be the setthat cortains the coecient itself and
its parert, f;; 1., aswell coetcients at the samescalej and orientation g, certered
at positionsn®, wheren®belongsto a K j ring of . Using the notation fj.qn.« for the

neighborhood of the coexcient f;..n, this amourts to :
fiqgnk = Tf) 1qng[ ffjqno 0= 1+ (i3§); () 2 [ K;:K]g (3.1)
We note V;.qnk the setof indexesof wavelet coexcients in the neighborhood fj.qmk :
Vigme =f (i Lagmgl f (:gnd); n°=n+(j) ()20 K;KPPg (3.2

sothat fj.qmk = ffiGiav, ,.ni - NOte that for K = 0, this reducesto the wavelet coef-
“cient and its parert. For our application, K = 1 is typically sutcient to model the
statistical dependence®f the wavelet coexcients of the di®erert componerts. Taking
the blurring into accoun, we will extend the size of the neighborhood up to K = 3
to obtain a good estimation from the obsenations. For the sake of conciseness the
notation, we shall drop the index K indicating the size of the ring (and sometimes
eventhe waveletindexj; g;m) wherenot necessarydenoting the neighborhood f;.qn.x
by fj.qn (or evenf). Furthermore, the neighborhoods are orderedsothat we describe
them asvectors.

In [55, 15, 50, 41], the behavior of a singlewavelet coexcient is described by a two-
state model : awavelet coetcient is either signi cant or not. The marginal distribution
of a coexcient is a mixture of two certered GaussiansOne of them hassmall variance,
this accourts for the high number of very small (i.e. non-signi cart) coexcients. The
secondGaussianhas a large variance, this accourts for the existenceof large (i.e.
signi cant) coezxcients, giving more weight to the tail of the distribution than a
single Gaussianwould normally have. Becausewve want to model se\eral componerts,
we would like our model to o®erthe possibility of making a ner description of the
behavior of wavelet coexcients. To do so, we usethe GaussianScaleMixture model
(GSM), alsousedin [47]. This model is more °exible than the two-state mixture of
Gaussianmodel, allowing to t a wide variety of marginal distributions.

3.1.2 Gaussian scale mixtures
Mo del

We model ead neighborhood vector f as a Gaussianscalemixture. That is to
s& : the probability dig.tribution of the vector f is the distribution of a product of
two random variables,” z and u :

distt P —
ZUu

f (3.3)

u is a certered Gaussianvector and z is a scalar random variable that takes only
non-negatiwe values. The random variable z, whosedistribution we descrike later, is
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calledthe multiplier and is independen of u. We shall always normalizez sothat its
expectation is one: Efzg = 1. It follows that the covariancematrix of the Gaussian
vector u is exactly the covariancematrix of the neighborhood vectorf :

COV(fi;fJ‘) = Efffjg| Eff,gEffJg
= Ef( zu)( zuj)gi Ef EuigEprujg
= EfzgEfu; ujgi Ef zg’EfuigEfu;g (uand z are independert)

= Efujujg (Efzg= 1; Efujg= Efu;jg= 0)
= Efu;u;gi EfuigEfu;g (again Efujg= Efu;g= 0)
Cov(fi;fj) = Cov(ui;u;)

The GSM model is then speci ed by two parameters: the probability distribution
of the multiplier z, noted p,, and the covariance matrix of f, noted C;. Let us now
descrike how thesetwo parametersa®ectthe properties of the distribution of the
vector f.

Prop erties of the marginal distributions

From Eq. (3.3), one can seethat the marginal distributions of the elemens of f
(i.e. the pr,) may have di®erent variancesbut all have the sameshape. The variances
of the marginal distributions are given by the diagonalof the matrix C; whereastheir
commonshape dependson the probability density of the multiplier, p,.

If z is idertically 1, then f; = u;, and therefore, the marginal distributions are
Gaussian.By choosinganother probability distribution for z, onecan shape the mar-
ginal distributions of f to t a wide range of distributions. In [1], Andrews and Mal-
lows showed that for any scalar processx whoseprobability density function f is
symmetric and veri es :

M dﬂk

& fe(y?), O; fory>0;

onecan nd a multiplier z sud that the correspnding Gaussianscalemixture has
the samedistribution asx. (This is actually alsoa necessarycondition.) In Fig. 3.1,
we plot the Gaussianprobability density together with two examplesof probability
distributions that can be described by Gaussianscalemixtures : the Laplace distri-
bution (fx = el ¥) and the logistic distribution (fx = (1&7)2) The probability
densities(fy) are plotted on the left panelof the gure and their logarithm in basel0
(log,o(fx)) on the right panel. These probability densitieshave beenscaledto have
the samevariance.

The graphsin Fig. 3.1 highlight two particular featuresof the marginal distribu-
tions that canbe tuned using Gaussianscalemixtures. On the onehand, the behavior
of the GSM at the origin can range from very smooth (like the Gaussianor the lo-
gistic distribution) to very \p eaked" (like the exponertial) This can be seenin the
left panel of Fig. 3.1. On the other hand, a GSM distribution can have a fatter tail
than the Gaussiandistribution (seeright panel of Fig. 3.1). Similarly, if a signal has
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a very sparsewavelet expansion,most of its wavelet coexcients are small, therefore
their probability density at the origin is rather peaky; somecoezcients, on the other
hand, will be quite large, and therefore the tail of the probability distribution will
be signi cantly fatter than the Gaussian[60]. These features typically model the
non-Gaussianbehavior of wavelet coexcients and we will exploit them later.

0.8

0.6

0.4¢

6 L
0.2r
~ Gaussian
81 ---- Exponential
0 — Logistic
-4 -2 0 2 4 10 5 0 5

Fig. 3.1{ Probability density of se\eral scalarGaussianscalemixtures with the same
variance : the Gaussiandistribution, the exponertial distribution and the logistic
distribution. Left : the probability densitiesf , right : their logarithm log,,(f x).

The exampleof the logistic distribution alsoshows that thosetwo featurescan be
tuned independerly from ead other : the logistic density is assmaoth asthe Gaussian
density at the origin but still has heavy tails. At this point, we should mertion that
the two properties (behavior at the origin and at the in nities) are exactly the ones
modeledby the two-state GaussiansHowever, the probability density of the mixture
of two Gaussiangleca/s asthe wider Gaussian,not enablingslover asymptotic decy ;
it is smooth at the origin, and it is not di®ereniable. We hope that the °exibilit y
of the GaussianScaleMixture will enableusto t the experimenrtal distribution of
the wavelet coexcients of the clustersof galaxiesmore preciselythan what we would
obtain with a mixture of two Gaussians.

Prop erties of the conditional distributions

As we have just seen,the introduction of the multiplier z in the Gaussianscale
mixture givesthe possibility to t a wide variety of marginal distributions. We shall
now seehow the multiplier alsoa®ectsthe conditional distributions in the GSM mo-
del. Whenthe GSM is usedfor neighborhoods of wavelet coexcients, theseconditional
distributions, together with the covariance matrices C; model the spatial dependen-
ciesbetweenthe coezxcients. We have shavn earlier that the covariance matrices of
the vectorsf and u are the same.Hencethe \averaged" dependenciesbetweentwo
elemerts in f is capturedin the model by the Gaussianvector u. Thesedepenciesare
howewer further tuned by the multiplier.
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To illustrate this, let us considerseweral two-dimensionalGSM that all have the
identity matrix as their covariance matrix. The GSM model in two-dimensionsis
) ) dst P= P=
then : (X1;%X2) = ( z uy; Z up). Here, X1, X5, Uy, U and z are scalar random
variables; x4, X, u; and u, are certered. The choice of the identity as a covariance
matrix imposesthat X;, X, u; and u, have unit variance; that x; and x, (resp. u;

and u,) are decorrelated and that the joint density of x; and X2, Px,x,), IS radial.

Gaussian p(x 2|x1) Exponential p(x 2|x1)

Cauchy p(x 2|X1) Log uniform p(x 2|X1)

Fig. 3.2{ Conditional probability density p(x,jx1) of seweral two-dimensionalGaus-
sian scale mixtures with the samecovariance matrix : the Identity matrix. Left to
right, then up and down : the Gaussiandistribution, the exponertial distribution, the
Caudy distribution and the log-uniform distribution.

Note that, sinceu; and u, form a Gaussianvector and are decorrelated,they are
independent whereasx; and X, are not independen, unlessz is idertically 1. Hence,
although they have the samecovariance matrix, u and f do not needto have the
sameconditional distributions. The presenceof the multiplier z in the GSM allows
to shape the conditional distribution of x, given xy, p(x2jX1), di®erenly. In Fig. 3.2,
the conditional distributions p(Xxjx1) are plotted for di®eren GSM with the Identity
asa covariance matrix. Each column of a plot represeis the conditional probability
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density of X, givenx,, for a xed value of x;. The top left panelshows the conditional
probability in the casewherethe GSM reducesto a Gaussianvector (z = 1). Sincex;
and x, are independert in that case,the conditional probability p(x;jX;) is the same
for all valuesof x;. In the other casesthe multiplier's distribution is not trivial and
consequetly, the conditional probability p(x;jx1) dependson the value of x;.

The non-Gaussiandistributions displayed in Fig. 3.2 (top right and bottom left
and right) exhibit a bow-tie shape that has beenobsened for neighboring wavelet
coexcients in natural images[60]. The characteristics of a bow-tie shape distribu-
tion are : the conditional distribution p(x,jx;) is concerrated around zerowhen the
absolute value of x; is small, but much more spreadout for larger valuesof x;. For
neighborhood of wavelet coexcients, this translatesinto : if the certral coexcient is
very small, its neighbors are typically very small aswell; if the certral coexcient is
very large, its neighbors can take a much larger set of values.

3.1.3 Resulting model for each comp onent

As we stated in section 2.5.2, our astrophysical problem is to reconstruct se\e-
ral objects f*; f2;::;f™ from noisy and blurred obsenations of mixtures of them,
g*; ¢?,.., g-, determined by equation (2.67). (We usein this chapter superscripts for
the indexesof the componerts and obsenations, sinceit makesthe notation easierfor
the correspnding neighborhoods of wavelet coexcients). Our a priori model for eah
object f ™ is that the statistical behavior of the neighborhoods of wavelet coexcients
fymk canbe descrited by a Gaussianscalemixture.

The physical properties of one componert are idertical in every direction and in
ewery spatial location. Therefore, it seemsthat the modelization of a neighborhood
fm shoulddepend only on m, K and the scalej, and not on i nor g, leading to
f i st P Z uy . However, we will needto keepthe dependencein oriertation
q in the Gaussianvector u". Indeed, a neighborhood f%,,x cortains the parert
coetcient, f{7 ,..nx » @and a\square” neighborhood of coetcients at the samescale:
f qmow forno=m+ (i;); (7)) 2 [i K ; K]?. Thereforethe neighborhood f K
is not the rotated version of the neigtborhood {7, . Moreover, we will needto
order the neighborhoods f%, .« into vectors with the sameorder regardlessof the

orientation. For exampleif K = 1, we will usethe order:

figor = (Figa 1o Fiaa o Fiaa o Figon 03 figoo0r figo;
fiawi 00 fiawor fiawn fii a00):

The rst two terms, fj.q.; 1; 1y and fj.q(; 1.0), always correspnd to waveletsthat are
ead other's shifts in the vertical direction and thereforetheir correlation dependson
the orientation q of the wavelet. (Note that this problemwould still arisewith \circu-
lar* neighborhoods.) We are left with a model of the form : f%, .. dist: P ZT Ul -

The sizeK of the neighborhood we have to considerdependson the scalej and on
the componert f ™ consideredWe nd in practice that K = 1 is suzcient to encale
the di®erencedetweenour componerts. Fixing K = 1, the nal a priori model for
ead componert f ™ is: for a xed scalej anda xed orientation g, the neighborhoods
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of wavelet coexcients 7., for n 2 Z* are indepengen identically distributed with
the samedistribution asthe Gaussianscalemixture = z™ uf,, wherethe distribution
of the multiplier z™ is independert of the orientation q.

Note that sincethe neighborhood of wavelet coexcients overlap for closelocations,
the independencecan not hold in reality. Howeer, our strategy is to retain from eah
estimated neighborhood {7, only the certral coextcient f,%,,. Therefore,we do not
needto make eat estimated neighborhood consistenh. Rather, we rely on the fact
that neighborhoods themseles take into accoun statistical dependenciesbetween
coetcients, to ensurethat the estimatedcoetcients f %, ; are consisten. The a priori
model is then determinedby the parametersof the Gaussianscalemixtures for eat
componert f™, eat scalej and orientation g. We will descrilke how to choosethese
parametersin detail in section 3.3, but we rst explain how the estimation will be
carried out from this model.

3.2 Bayes least square estimate

In this section we explain how to compute the Bayes least square estimates of
the neighborhood of coexcients for eadn componen, giventhe a priori model we just
descrited and the forward model for the obsenations g*; @?,.., g- :

h y [
g=10n=o a™ fm o+ w (3.4)

m=1

Here the beam functions b are known deterministic functions, the frequencydepen-
denciesa™' are known scalars.The noisew' is Gaussianand stationary, with known
covariance,and is independert from one obsenation to the other.

To explain our estimation method, we break it down in seweral steps. We rst
explain the estimation of a singlecomponert by denoisinga single obsenation. This
follows closely[47]. Then we explain how to take the blurring into accour for a single
componert. We derivedthis adaptation independerily from the authors of the original
paper who preserted it succinctly in [48]. Here we give more details on the derivation
of Bayes estimate for the problem of deblurring one obsenation; in particular we
explain the modeling assumptionsmade in this case.Then in subsection3.2.3, we
extend this method to the obsenations of seweral mixture of componerts, and show
how to separatethem.

3.2.1 Denoising one signal

Let us rst considerthe simple casewhere we obsene one processpolluted by
noise: g = f + w. The equations for ead single wavelet coexcient and for the
neighborhood of wavelet coexcients read:

Gqn = fignt Wign
Oigqn = fjgn+ Wjgn (3.5)
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The Bayesleastsquareestimateof the neighborhood f giventhe obsenedneighoo-
rhood g is the conditional expectation Ef fjgg. The convenienceof the represetation
of the neighborhood f by a Gaussianscalemixture is that giventhe multiplier z, Eq.
(3.5) reducesto a sum of Gaussianvectors:

g= IOEu+w (3.6)

When x and r are Gaussianvectors, the conditional expectation Ef xjrg of x given
r,is:

Efxjrg= Cy;r(C/)' X(r); (3.7)
whereC,., is the covariancematrix betweenthe vectorsx andr. If in addition x and
y areindependert andr = x + y, then C,; = Cyx+y = Cyx + Cyy = Cyx € c..

and similarly C, = C, + Cy. The following result holds whenewer x and y are two
independert Gaussianvectors:

Efxjx + yg= C,(Cx+ Cy)' Y(x +y) (3.8)

Going bad to Eq. (3.6), and using the independenceof the Gaussianvectorsu and
w, we obtain that conditioned on the random variable z :

Efujg;zg= " ZCu(z2Cy + Cu)i X0); (3.9)
using C, = C;s, this leadsto :
Effjg;zg= zC;(zCs + Cy)i X(0): (3.10)

In other words the Bayesleast squareestimate of f given the obsened vector g and
given the multiplier z, is a Wiener Tter applied to g, the neighborhood of wavelet
coezxcients of the obsenation. Integrating the last equation with respect to the pos-
terior distribution of the multiplier p(zjg), we get the Bayesleast squareestimate of
f given the obsenation g :
Z 1
Effjgg = . Effjg;z = 209 p(z = 20j9) dzo (3.11)

This estimateis a weighted averageof the Wiener Tters describedin Eq. (3.10). The
weights are determined by the posterior distribution, p(zjg), which is computed via
Bayesrule :
_ pP(9iz = 20)p2(20) .

p(giz = 29p,(z9dz”
Herep(gjz = z9Y is a certered multidimensional Gaussiandistribution with covariance
matrix z°Cs + C,,, and p, is the probability distribution of z (which we will descrite
in 3.3).

Following this procedure, one gets an estimate Ef fj.qnjg;.qng for ead neighbo-
rhood of coexcients f;.q7. One keepsonly the certral coexcient f;., of ead of these
estimatedvector and reconstructsan estimate of the signalf by inverting the wavelet
transform with thesecoezcients.

P(z = 20j9) (3.12)
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3.2.2 Deblurring one signal

We considernow the casewhere the obsened signal is a blurred version of the
oneobject : g = f ab+ w. The corvolution with the beam b correlatesthe signal
spatially. As a result, the equationsin wavelet spacedo not decoupleany more :

- ®
Gqn = fob+w ®Jqﬁ (3.13)
Qgn = ;( ab; J o D+ Wi g E (3.14)
Gign = fjogene qu;ﬁoab; i Wign (3.15)
joqom©
B D . E
De ning by .qmeeen BY Bjgmigogeny = ' jope@b; 'y, we obtain
X
Gisaqnm = By gm0 Fiogemo + Wigm (3.16)
j %:q0m0

Therefore, a particular neighborhood fjoqenox cortributes to every obsened wavelet
coexcient g.qn. IN theory, one would obtain the best estimate of fjogeqox by using
the information in every wavelet coetcients gj.qn. This would be a very ditcult
estimation problem, moreover, our nal goal is not the estimation of the neighbo-
rhoods themsehes but rather their certral coexcients. So we do not intend to use
the full setof coetcients g.qn to estimate eat neighborhood. Rather, by considering
the properties of the beam and the wavelets, we claim that using only the obsened
neighborhood g;.qmk Yields a suxciently good estimation of the object neighoorhood
fj.qmk , whenK is chosenappropriately.

To seethat, let us x anindexj; g, m and considerthe coexcients byjo.qeno.(j.qm for
all j % ¢®>n° Using the fact that the beamis radially symmetric, we can rewrite these
coexcients :

D E
bjgmiieemy = ' jono®bi iy (3.17)
D’ E
Bjimyiogeny = ' jq°;rr°; ba’ jq;ﬁ N (3.18)
é A
by gy oemy = [Jqoﬁo’ Ba P (3.19)
By gmyioeny = a») d n(») [qoh'o(») d> (3.20)

Most of thesecoezxcients are really small :
1. 1If jj i j§ islarge,then, sincethe wavelet is well localizedin frequency' i and

oo @reconcerrated in di®erer frequencybands. Hence j L il { qono(»)jd»
is small and by Eq. (3.20), bj.qm:oqeno is small.

2. If jgi df is large, then, sinceorierted wavelet are localized in di®eren parts
of the frequencyplane, againthe support of dq - and" [q oo are di®eren. Hence

9.7 i1 € o(»)j d» is small and by Eq. (3.20), by gy eqemo is small
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3. If jni nj is large, we usethe localization in spaceof both the beamb and the
wavelet to arguethat by qmy;;oqen9 is small. We de pe the width of gfunction h
by the minimal length of the interval | sud that : | jh(x)%dx > " jh(x)?%dx,
xing ~ = :9 for example.If j2ni 209 > jh+ (21 1+ 2% | wherel is the
width of the wavelet and jlj the width of the beam,the support of the functions
' jqz;ﬁ) andba' ! essefially do not intersect,sothat by Eq. (3.18), byj.qm); eqem)
is small.

Note that sincethe wavelets we use here are compactly supported in frequency(cf.
section 4.3 in Chapter 4 for the details), we actually have : byj.qm:jeqen9 = O for
ijiigy>1orjqi of > 1.Hencewe arguethat B .qm):( eqeno iS NOt signi cant unless
jiii9 1jgi of- 1andj2ni 2°n9 > jo+ (2i1+ 2% It turns out that
practically, the crossterms by;j.qnm):(j oqeno for di®eren orientations °= grlorg’= ¢ 1
are negligible as well. As far asthe scalej®= j+1orj°= ji 1is concerned,the
coexcients byj.qm;;oqen9 arein practice smallerthan the coexcients at the samescale
b :qm)::qn9) Unlessn = n®,

Putting this together, we obtain that the cortribution of a particular wavelet
coexcient fj.qn is mostimportant in the neighborhood of obsened coexcients of the
form gj.qmk, Where K, = 21 Jjhj + |. Keepingin mind that we will retain only the
certral coexcient fj.qn from the estimated neighborhood f;.qnk , , (Where K; is the
size of the neighborhood neededto capture the spatial dependencesof the wavelet
coexcients of f), it is then reasonableto useonly the obsened neighborhood gj.qmk
to estimatefj.qmx, choosingK = maxfK;; Kyg.

Using Eq. (3.16) for ead coexcient in the neighborhood g;.qm.x , We get :

Oigmk = Bjgmk fjgmk + Rjgmk + Wjgnx (3.21)
with :
© a
B] 1q’ﬁ|K = QJ l)?l;ﬁl);(j Z;qZ;ﬁZ) (J 1;Q1;ﬁ1);(j 2;q2;ﬁ2)zvj (qiTK (3'22)
Rjiq?ﬁiK = t)(Jl:Q1;T71):(12:Q2:TT2)sz;Qz;ﬁz (3-23)

(13015m1) 62V)q;mx
or (j2;02;M2) 62Vj.q:mk

Here, we have separatedthe di®eren cortributions to the obsened neighborhood
Oj.qmk INto three terms : the cortribution of the sameneighborhood in the object
Bj.qmk fjeqenox , the cortribution of the sameneigthborhood in the noisew;.qm« and
the cortribution from remaining wavelet coetcients in the object R;.qmx -

As we saw earlier, the coexcients byj,.q,.m):(j.:0:m,) that appearin Rj.qmk arerather
small and thereforethe cortribution of this term canbe considerednegligible.We will
considerthis term as additional noiseand work with the model :

Oignk = Bjigmk fgmk + Wigmk (3.24)

whereBj.qnk is the matrix descrited in Eqg. (3.22), w°is modeled by Gaussiannoise
and f;.qmx by a Gaussianscalemixture.
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Dropping the indexesand using Eq. (3.7), we nd that the expectedvalue of the
neighborhood f giventhe obsened neighborhood g and the multiplier z is the Wiener
ter :

Effjg;zg= zC;B°(zB C; B"+ C,,%i ig (3.25)

The full Bayesleast squareis again a weighted sum of these lters, with the weighs
given by the posterior distribution p(zjg) computedvia Eqg. (3.12). The prior p(gjz)
alsotakesthe blurring into accourt : it is a multidimensional Gaussiancertered and
with covariancematrix zB C; B®+ C,,° As before,only the certral coexcient of eath
estimated neighborhood f is usedto reconstructthe object f via the inversewavelet
transform.

With this procedurein mind, we can now explain how to extend this method to
the problem of separationof blurred mixtures of signals.

3.2.3 Separating Dblurred mixtures of signals

Giventhe model for the mixture of componerts in Eqg. (3.4), the analogto equation
(3.16)is:

X
82 [LLE gj| = a™ ld(j S HOHY °;q°;ﬁ°)fjn3;q°;ﬁ° + le qn (3.26)

m=1 joq%m°
As we arguedbefore, most of the coexcients blJ qm:oqem arevery small. Therefore,
the in°uence of a particular wavelet coetcient of object m,, f”‘q"n, will be mostly
seenin the neighborhood g' — of eat obsenation ¢'. Howewer, this time, the
cortribution of object m, is not the only signi cant cortribution in g — eah
componert f™ potentially glves sud a signi cant cortribution. It is then natural
considerthe L nelgl"borhoodsg QK for | = 1;::L in conjunction to estimateat the
sametime the M nelgrborhoods fJ - for m = 1;::M. Note that the sizeK' of
the obsened neighborhoods g qmk 1 We have to considerdependson the beam size
for obsenation I, whereasthe size of the neigtborhood f[%. o0 m that is neededto
descrike the spatial coherenceof the wavelet coexcients of object m, dependson the
object itself. As before,we will chooseK to be the maximum of these parameters:
K = maxXzpLy mepmy FK 'K ™g. This way, all the neighborhoods we considerfor a
xed scalej have the samesize.

Separatingagain signi cant from non-signi cart cortributions, we get :
3

B I - p! I ;|
8l 2 [LL] 9i:qmk = Bj;q;ﬁ;K a™ fmqu * Wigmk (3.27)
m=1
with :
© a
| —
BI;Q;ﬁ;K - H(ii;Q1;ﬁ1);(12;Q2;ﬁ2) (i 23005m1)3(1 2:023M2) 2V 2 e (3.28)
| | X 3XA mI m
Wigmk = Wigme * kj(J'1;ql;ﬁ1);(jz;qz;ﬁz) fogm  (3:29)
(11,01:M1) 62V .q:mk m=1

or (j2;02;M2) 62Vj 1q;mK
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Let us x the neigtborhood V,.qnk that we consider. The matrices Bj';q;ﬁ;K forl 2
[1;L] and the frequencydependencesa™ for | 2 [1;L] and m 2 [1;M] are deter-
ministic and known. Each vectorwj:;'q;ﬁ;K , for I 2 [1;L] is supposedto be Gaussian,
certered, with known cwari%nce matrix. Eac vector 7.« follows the distribution
of a Gaussianscalemixture = z™ u™ for ead m in [1; M ]. The noiseterms are inde-
penderi from one obsenation to another. Moreover, the objects are also assumedo
be independen from ead other and from the noise.

To derive the Bayesleast squareestimate under this model, it is usefulto consider

the obsened neighborhoods as constituents of a larger vector G

G = (Qigmk  Ofgm 150 Orgm ) (3.30)

G = (gh:gh;in0% 03 0h:0h;00); with i 2 Vg (3.31)
Similarly, we stadk the noiseneighborhoods into a larger vector W :

W= (Whwh i wiwh i wiw i) with i 2 Vigmk (3.32)

And the objects neighborhoods into a larger vector F :

F o= (fh5fh a2t eMn); with i 2 Vignk  (3.33)
This way, the L equationsin Eq. (3.27) can be written as a singlematrix equation:
G'=DFT+ W' (3.34)
whereD is the matrix : 1
att le;q;ﬁ;K at? le;q;ﬁ;K 0e¢ at le:q;ﬁ:K
D=§ & sz:q;ﬁ;K a’? sz;q;ﬁ;K ¢ee  a*M sz;q;ﬁ;K ; (3.35)
at BjL:q:ﬁ:K a-? BJ'L:q:ﬁ:K 6o a- BjL;q;ﬁ;K

whereeath a™ B/, isablock of sizeL £ L, with L = jVj,qmk j the cardinal of the
neighborhood V;.qmk . Writing the equation in matrix form makesthe computation
of the estimator very similar to what we saw in section3.2.2, with the exceptionthe
the \ob ject" vector F is not a simple scalemixture of Gaussiansput takesin accourt
M multipliers :

agst P— , P— P— , P,

F®™ "Z+u (3.36)

where U is a Gaussianvector, Z cortains eath multiplier z™ repeated jfV j.qm.k 9]
times and = denotesthe multiplication coordinate by coordinate.
Using Eq. (3.7), we obtain formally the conditional expectation of F given the
obsenation G and the M multipliers fz™g, :
3

-
EfFjG;z%;2%::::z2Mg=Cr,,, D" DCr,,,D"+Cy G (3.37)
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The Bayesleast squareestimate of the F given the obsenations is then :
Z

EfFjGg= EfFsz 2% Mg p(zh 2% Z2MG) dZidZ? i idZM (3.38)

Qu

(GJZl 22 .... ZM) m=1 pzm (Zm)
RM p(Gjzl = ®';z2 = ®2 """ 5 ZM = ®V') m=1 Pzm (®M)
(3.39)

with p,m is the distribution of the multiplier correspnding to the object f ™ and the
prior distribution for the obsened vector G, p(Gjzt;z?;:::;zM), is again a multidi-

mensionalGaussian certered and with covariancematrix CZ = DCry,,D°+Cy

We shall now relate theseequationsinvolving the abstract vectorsG, F and W to
our original neighborhoods of wavelet coe+cients. Sincethe noiseterms w' for eath
obsenation are independert from ead other, the covariancematrix Cyy is block dia-
gonal,with L blocks. Each block is the covariancematrix of the I'"" noiseneighborhood
Wigmk - Cw L . The covariancematrix CP-,,, is alsoblock diagonal becausethe
objects f ™, m = 1;:;;M are independent from ead other. It is constituted by M
blocks, ead of which is the covariancematrix of an object neighborhood f K times
the multiplier z™, i.e. z™ Cim - (The value z™ appearsherein the covariance ma-
trix becauseCP 5, , wascomputed conditionally on the multipliers.) The covariance
matrix G is de ned by blocks G, = fC, (|1, |2)gf|1;|22|[1;|_]|29 with :

&
. — | | |
CZ(|11|2) - zMaM gz Bllqu ijTq;ﬁ;K BJ'JZQ;Dﬁ;K + Hi=ipg CWJ!.lq.n_.K (3'40)

m=1
As a result, the prior p(Gjzt;z?;:::;zM) reads:

n i1~TO
, GGG
p(Gjz'; 2% 12V = m | (3.41)
whereV is the cardinal of the neighborhood considered.The conditional expectation

of the neighborhood %« giventhe multipliers and the obsened neighborhoodsiis :

S 3 N
EfflynkiGizhiz%:2Mg= 2" a™ Cin  Blgme G''GT (3.42)

jiaimK
=1

This is integrated with respect to the posterior distribution of the M -uple of mul-
tipliers (z*;z%::;z") to "nd the Bayes least square estimate of f™. . given the
obsened nelgrborhoods gJ qmk groupedin the vector G :

Z

. ' £ o
EffTnkiGO= &g N EfflymiGizh 252 gel 2 pm (z™) dz™

+ m=1

(3.43)
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with 7
egiteT W a
C(G) = e 2 pm (zM) dz™ (3.44)

Rﬂ" m=1

Note that Eq.(3.43) and (3.44) are M-fold integrations.

In the next section,we descrilke how we obtain the parametersnecessaryto com-
pute theseestimations. Theseare the covariance matrices of the objects and noises
neighborhoods, as well asthe probability densitiesfor the multipliers.

3.3 Choice of the parameters

As explainedin 3.1.3,for a xed valueof K , we assumethat for eat scalej, orien-
tation g, and componert f™, the rbeigkborhoods of wavelets coextcients ff % Gm2z2
follow a scalemixture of Gaussian™ z™ ufT,, wherethe distribution of the multiplier
is independernt of the orientation. Moreover, we assumedthat ead noisemapsw' is
modeled by a stationary process.Therefore neither the covariance matrices nor the
multipliers actually depend on the location n. To computethe Bayesestimation des-

cribed above, we need: the noise colariancesCWJ;.q.0_K , the componert covariances
C¢m , and the probability distributions Pz for | 2 [L,L], m 2 [1;M] , for all

j:9;0:K

scales] and all orientations g. (As we saw in the previous section, the size of the
neighborhood K is the samefor all obsenations and componerts.)

3.3.1 Covariance matrices of the noise neighborho ods

We assumein this work that the noiseterm w' for eat obsenation ¢, | 2 [1;L],
is Gaussianand stationary. It canbe white, and in this case,we assumethat we have
an estimate of the standard deviation % for ead |. The noisecould also be colored,
and in that case,we assumethat we kngw its spatial covariance matrix noted Cg,
(where CS,(Xi X9 = Cov wW!'(X);w'(x9 , for any X in R? and X°in R?). When the
noiseis white, C?,(X) = (34)?4=0 . The covariance matrices of the neighborhoods of

the noiseterms w' are by de nition :

a
gl
o s Wi . I _
1,01, ? Jz,CI2.n2) f(]1;q1;n1);(Jz;qz;nz)zvjz;q;o;K g

Cul, Cov(w, (3.45)

;0K

Supposewe usetwo-dimensionalwavelet transform with Q orientations. We note T
the wavelet transform operator :

LA(RY) 1 B(Z°E [1R)
! .

T: . (3.46)

h 7 h; M j2z:m272,02[1;Q]

- ®
Thenw v = W'l = fT(W)gj,qn. SinceT is linear, then :
| : [ | ¢0
Efw,.m9 = T Efwg (3.47)
© a L.an
| ! — s o

COVIWqum  Wizmma) = T Caun T qimyiaeim (3.48)
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w' is certered soEfw!g = 0 and thereforeEfw; .. .- g = 0. The covarianceterms can
be written in term of scalarproducts of one wavelet with another, modulated by the
covarianceC?, :

- ®
| . | — 1 . s . q
COV(le;ql;ﬁl’sz;qz;ﬁz) - 7 ji;ﬁl’ w! j;;ﬁz L2(R2?) (3.49)
| . | —_ 1 o — « O\ S <~ <-0
COV(le;Ql;ﬁl’sz;qz;ﬁz) - RoE R J'qi;ﬁl (X) C\?V' (X I X% J'qsiﬁz (X(b dxdx

When the noiseis white, this reducesto :

- ®
Wl!z:Q2:TT2) = (%)2 "t (3'50)

|
Cov(w; jum j2m2 L2(R2)

1;Q1;ﬁ1;
Hence,the covariance matrices of the noiseneighborhoods can be computed prior to
computing the estimates,if the wavelet transform, the sizeof the neighborhoods and
the spatial covariancesof the noisesare known beforehand.

3.3.2 Covariance matrices of the objects neighborho ods

In the caseof the deblurring of a single object, Portilla et al. proposein [47] a
method to estimate the covariance of the single object from the obsenation itself.
This method is basedon the fact that the covariance of a signal h is the inverse
Fourier transform of its spectral power P, = jfj2, and that the spectral power of
two independen signalsis the sum of their spectral powers. Computing the spectral
powersin the caseof oneblurred componert : g = f ab+ w, onegetsPy = Py + Py,.
The spectral power of the convolution baf is Py = jBj2P;. One can then estimate
P: knowing P4 from the obsenation and P,, for the noise,being careful to regularize
the division by jf§2, asis explainedin [47.

We extend this procedureto the caseof blurred mixtures of componerts de ned
by Eq. (3.4). The power spectral densitiesnow are:

R, S
8l 2 [LL], Py =jBj2  ja™j2Pim + Py (3.51)

m=1

Hsing the method proposedin [47], we can estimatethe L linear combinations S'=

M ja™j?Pim. If the matrix A = fj @™ j2gmopmyizpLy i well conditioned, then
we can recover the Psm using the pseudo-itverseA®A and keepingonly the positive
part :

hn - ¢Tomi

M- _ aayi a8l el @27y --r ol
8m2 [LM]; Pim(» = (A"A) A" S*(»);S7(»);:; S (») (3.52)
+

It turns out that this method is not well suited to our astrophysical problem for
seweral reasonsThe frequencydependenceof the Galaxy dust (componert f 4) andthe
point sourcescomponert f 3) arevery closein the rangeof frequencyof our obsened
data. (Typically ja(3;1) i a(4;1)j < 10 ?ja(4;1)j.) Hencewe are not able to separate
their power spectrum with this method. Moreover, we made up test caseswhere we
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consideredonly the CMB componert and the clustersof galaxiescomponert. In these
casesthe method should technically work. (A is then well conditioned). Howewer in
practice, we nd that the power spectrum of the clusters of galaxiesis negligible
comparedto that of the noise and of the CMB. Therefore, we were not able to
estimateit preciselyenoughwith this method. (In fact, it would most of the time be
estimatedto 0 by taking the positive part in Eq. (3.52).)

Onecouldimaginethat another method of estimation, usingonly the obsenations
but in a di®erem way, may be able to solwe the problem for the clusters of galaxies.
Howe\er, this is not the casefor the rst problemwe pointed out. When the frequency
dependencesof two objects are equal, they are formally mergedinto a single com-
ponert from the point of view of Eq. (3.4). Therefore,one can not distinguish these
componerts, or any of their features,basedsolelyon the obsenations g' and Eq. (3.4).
A priori knowledgeon the componerts hasto be usedin addition to the Eq. (3.4),
ewven for the estimation of the covariance matrices. To our knowledge, there is no
physical quantity well understood by astrophysicists for ead of the componerts we
considerand that we can useto constrain the estimation of the covariance matrices.
Sincewe have at hand numerical simulations of ead of the componerts we consider,
we usethem to compute templatesfor the covariance matrices of the neighborhoods
of wavelet coexcients Cf;’?q;o .

Note that in practice, the neighborhood covariance matrices (for the componerts
and alsothe noiseterms), depend on the wavelet usedand on the resolution of the
obsened data. The dependenceon the wavelet is clear sinceead term in the cova-
riance matrix of a neighborhood involvesthe wavelet itself (as we saw in Eq. (3.49)).
The resolution of the obsened data, i.e. the physical size of a pixel in the obsened
image, determinesthe physical size of the nest scaleof the wavelet transform ap-
plied to this image. Therefore, when consideringdi®eren experimertal conditions,
there is no reasonwhy the abstract wavelet scalesj of the computed wavelet trans-
form always correspnd to the sameor similar physical scales As a consequencefor
eat experimert, we will have to recomputethe template covariance matrices of the
neighborhoods for eatch componert and for ead noiseterm.

3.3.3 Prior distribution of the multipliers

We shall now describe how to determinethe prior distributions of the multipliers
z". The Gaussianscalemixture model imposesonly two restrictions on the choice of
the probability distribution Pz which are: Pz should be supported in R* (that is
z" ,_O), and its rst momert shouldbe 1 (i.e. Efz"g = 1). Any choice of Pz that
satis estheseconditionsis technically valid, sowe have to considerthe properties of
the componert f ™ to make a choice.

When the componert f ™ is well modeled by a Gaussianprocess.the distribution
of its wavelet coetcients at eat scaleis also Gaussian.Hencethe neighborhoods
f iy arewell modeledby Gaussianvectors,in which casethe multipliers z™ should
not be used. As a result, if the componert f™ is known to be well modeled by a
Gaussianprocess the distribution of the multipliers should be setto Pzm (X) = Hrx=1¢
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for eath scalej .

In the other cases,.e. whenf™ is not well modeled by a Gaussianprocess,or
when this information is not available a priori, the choice has to be made on the
basisof the empirical distributions of the wavelet neighborhoods f;",.. . In order to
obtain the most accuratemodel, one would ideally want to solwe for the distribution
Pz using the empirical joint distribution of the neighborhoods vectors f%, ;... A
maximum likelihood approad to estimate Pz for the problem of denoisinga natural
imagehasbeenproposedin [60]. Howewer the authors arguethat this estimation does
not yield better estimatesthan Je®rey'snon-informative prior which in this caseis a
uniform probability on the logarithm of z :

plOQZ(u) ﬁVmin © U Vmax 0 (353)

Vmax l len

p.(u) =

whereVpyin and Vinax arechosensothat i1 < Vimin < Vinax < 1.

Computing theseestimationsfrom the full neighborhoods for eadch componert f ™
would be computationally very costly in our case.Moreover, we nd that using Jef-
frey's prior whenthe neighborhood cannot be consideredGaussianleadsto good rst
estimatesof our componerts. When we want to re ne the model to obtain a better
estimatefor the componert f ™, we chooseto t a prior Pz consideringonly the mar-
ginal distribution of the certral coexcient in the nelgfborhood fmk - This amourts
to deriving numerically the distribution Pz, consideringthe emplrlcal distribution of
the setof all the wavelet coetcients ff [, 1 Gn2z2,42 1,07 Of the template componert f ™
at scalej, and the one-dimensionalGaussianscalemixture model :

B Vinin - 109U+ Vinax g U (3.54)

Vmax i len

" u; (3.55)

djst:

8n2 z%8q2 [LQl;

whereu is a scalar Gaussianrandom variable, certered and of variance(-“/ji“)z. (Note
that this variance was computed in the previous section as part of the covariance
matrix Cy, ). Let us explain our

§;9;0;K

ad-ho c pro cedure for the deriv ation of the prior

with a formal one-dimensionalGaussianscalemixture : x = P z u, whereall the
random variables are scalar, and u is Gaussian(certered, variance ¥£). Taking the
logarithm of the absolutevaluesyields

logjxj = lIogz+ logjuj; (3.56)
from which we derive the relation betweenthe probability densitiespiogixj, Piogz and
plogjuj :

' ¢
|

Pogixi(V) = Piogz(9 @ Pogjui(9 (\é) (3.57)
i

Pogixi(V) = 2Pogz(2 @ B Piogjui(9 (V) (3.58)
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where o denotescornvolution and

. e2v
Piogjuj (V) = 25/@/42 ¢ w2 (3.59)

At this point the author of [60], proposeto decorvolve Eg. (3.58)and t a Gaussianto
the result, thus assuringthat the estimated prior is a proper probability distribution.
As aresult, they restrict themsehesto a log-normal distribution for the multiplier z.
Wetakeadi®eren approad, not tting a Gaussianto our decorvolvedresult. Instead,
we usean ad-hoc procedure.We decorvolve Eq. (3.58) regularizing the procedurein
Fourier space:

Piogijxj (2) Progjuj(2»)
°+ jplogjxj (2»)j2
where ° > 0. The Fourier inversetransform of the last result givesus a rst esti-
mate of pg,. We keepits positive part and truncate both tails to get rid of possible
pscillation artifacts leftover from the decorvolution and ensurethat Efzg = 1 (i.e.
€' Pogz(u)du = 1). We nd that in the particular caseof the galaxy cluster com-
ponert, the prior pog, iS not symmetrical. It is not well tted by a Gaussianand

therefore, the prior p, we obtain is not log-normal (seenext section3.4).

by 2(») =

(3.60)

Summary

Given a template of object f ™, the procedurewe follow to determine the priors
p,m IS :
J { If f™ is known to be well modeled by a Gaussian,we set Pz (X) = Hx=14 for
eadt scalej.
{ Otherwise,for eat scalej

1. Compute the empirical distribution py of the setff %, ;On2z2:4211:01
2. If py is closeto Gaussian,set Pz (X) = Hy=1g-

3. If ps is not closeto Gaussianand componert m doesnot needto be pre-
cisely estimated, set p.m to Je®rey'sprior.

4. If pc is not closeto Gaussianand componert m needsto be precisely
estimated, estimate Pz via the ad-hoc proceduredescrilked above.

3.4 Application to astroph ysical data

For our astrophysical problem, we considerfour componerts : the Cosmic Micro-
wave Badkground f 1, the clusters of galaxiesf 2, the infrared point sourcesf * and
the Galaxy dust f 4. The beamst are assumedGaussiansand the noiseis white.
The size of the beamst and level of the noise % at eah frequencyof obsenation
are given to us. We usethe steerable pyramid descriked in detail in Section 4.3
with 4 orientations. The number of scalesconsidereddependson the resolution of the
obsenation. The covariance matrices of the noise neighborhoods are computed via
Eq. (3.50). The covariance matrices of the componert neighborhoods are estimated
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from a template simulation of eady componert (cf. 3.3.2). The Bayesleast squarees-
timate of eadh componert is estimatedfollowing the proceduredetailed in Subsection
3.2.3.To completethe description, we needto make explicit the prior we usefor eat
componert.

Astrophysicists model the Cosmic Microwave Badkground f * by a Gaussianpro-
cess,therefore we naturally set the priors Pzt to Dirac probabilities concenrated in
z = 1, for every scalej : pzjl(u) = Hy-1g-

The infrared point sourced 3 arebright points. Their sizeis typically much smaller
than the resolutionof the obsenations, sothat ead pixel of the map of this componert
is either zeroor very bright. Sincepoint sourcesare isolated aswell, the distribution
of the wavelet coex+cients of the map f ? is mostly concerrated around zero(in large
portions of the maps, there are no point sources)and has large tails (correspnding
to large coexcients wherethe point sourcesare located). Thesedistributions can not
be approximated by a Gaussianfor any scalej. Sincethe point sourcemap is not
our rst focus, we use Je®rey'sprior at every scalej for the infrared point sources
componert : p,a(U) = y——y— H vy, - logu: Vi g 2 forallj.

The galactic f 2 dust is a smooth and very slow varying signal, we nd that it is
reasonableto approximate the distribution of its wavelet coetcients at ewvery scale
by a Gaussian.Therefore,we set pzj4(u) = Hy-1g-

Finally the galaxy cluster componert f 2 is the componert that we want to re-
construct most accurately The clusters of galaxiesare compact objects scatteredin
the sky, and consequetly (samereasoningas for the point sources)the distribution
of their wavelet coexcients for ead scaleis not well approximated by a Gaussian.In
order to obtain preliminary results for the reconstruction of the clusters of galaxies
we will use Je®rey'sprior. In an attempt to make a better estimation, we use the
ad-hoc procedureof subsection3.3.3to derive an improved prior for the clusters of
galaxies.We display the obtained prior pig, , that we will referto asthe prole, in
the top panel of Figure 3.3 with the dashedline. The Gaussianprior is plotted in
plain and the log-uniform (i.e. Je®rey's)prior is the dashdotted line. The bottom left
(resp.right) panelof the gure shawsthe (resp.logarithm of the ) marginal distribu-
tion ps, wherex is the correspnding one-dimensionalGaussianscalemixture. The
plusesindicate the experimertal data usedto estimatethe pro le. As onecan seeon
the bottom left panel, both Je®rey'sprior and our pro le tend to overestimate the
probability distribution aroundjxj = 0. As a consequencéhe number of low intensity
clustersand their intensity will tend to be underestimatedin the mapsreconstructed
using thesepriors. To remedythis e®ect,we further truncate the pro le we obtained
to diminish the weight of small valuesof logz. The result is called truncated pro le
and is displayed in the Figure 3.3 by a dashedand stars curve.
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Fig. 3.3{ Top: the prior distriution of the logarithm of the multiplier pjoy,. Bottom
left : py, the distribution ofx © * zu. Bottom right, the logarithm of this distribution :
In(py). Plain : Gaussianprior, x is Gaussian.Dash-dot : p, correspnding to the
Je®rey'snon-informative prior. Dashed: p, correspnding to the pro le computed
from the data. Dashedand stars: p, corresmpndingto the truncated pro le computed

from the data. Plus : experimertal distribution py.
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Chapitre 4

Redundan t wavelet transforms

In this chapter, we reviewthe transformationsthat we have utilized to decompse
the signals.As we argued se\eral times in Chapter 2 and Chapter 3, wavelet trans-
formations have properties that we can exploit in both algorithms in order to make
better estimatesof the signals. The following properties are of particular interest to
us : the wavelet transforms of the signalswe would like to estimate are rather sparse
whereasthe wavelet transform of the noiseis spreadout; the joint statistics of the
wavelet coexcients of the componerts we would like to extract are well modeled by
GaussianScale Mixtures ; some particularly useful functional vector spacescan be
characterizedby norms computedin wavelet space.

Theseproperties are true for any reasonablewvavelet transform. Hence,one could
use any of them interchangeably without altering the argumerts we presertied in
Chapter 2 and Chapter 3. In this chapter, we wish to give more details about two
transforms that we choseto use: the steerable pyramid was usedfor the statistical
algorithm preserted in Chapter 3; the dual tree complexwavelettransform was used
for the variational functional algorithm preserted in Chapter 2.

Both of theseare redundart wavelet transforms. (In a redundart transform, the
generatingelemerts can be linearly depender). Using redundart systems,also cal-
led frames,is usually computationally moreintensive and sometimesechnically more
dizcult (e.g.subsection2.2.3)than usingbasesHowewer there are se\eral advantages
to do so. Orthonormal wavelet transforms are not translation-invariant (becauseof
the decimation at eat scale,the wavelet transform of a translated signalis generally
not the translated versionof the wavelet transform of the original signal). This lack of
invariance by translation is known to causeartifacts in signal processing[39, 25]. To
overcomethis problem, it has beenproposedto usethe undecimatedwavelet trans-
form, which amourts to using all possibletranslated wavelet basesin conjunction.
The undecimatedwavelet transform is redundart and computationally more inten-
sive than the orthonormal wavelet transform. But it is translation-invariant and its
useimprovesthe quality of the processedignals[12, 35, 25]. Another drawbad of the
critically sampledwavelet basesis the lack of invarianceby rotation ; this too can be
overcomeby using redundart transform. Separablewavelet baseshave preferred di-
rections along the natural axis and diagonals(in two-dimensionshorizortal, vertical
and diagonal). Allowing the generatingfamily to be redundart makesit possibleto
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designa frame that is tuned to more directions. For example,the steerablepyramid
can be designedto be selective to any number of directions [56]. Widening the direc-
tion selectivity is of courseonly an approximation to rotation invariance, however it
hasprovedto be bene cial in generalimageprocessingproblems.Rotation invariance
will be usefulto study in detail the shape of the clustersof galaxiesand the structure
surrounding them, sincethese are highly asymmetrical objects. Finally, for the ap-
plication to astrophysical data, it is quite usefulto be ableto characterizethe power
spectrum of the signalsin hand in wavelet space.Indeed, the power spectrum is a
quartity well-studied by astrophysicists and therefore, it can be usedto incorporate
a priori knowledgeon the signals. The rectangular frequencytiling of orthonormal
wavelet transforms does not lend itself easily to the incorporation of knowledgeon
the power spectrum of a signal. Once again, more °exibilit y is given by relaxing the
linear independencecondition : redundart systemscan be designedto have a sphe-
rical frequencytiling (as is the caseof the steerablepyramid), or to appraximate it
better than standard wavelet basegas is the caseof the complexwavelet transform).

In orderthe facilitate the presenation of the complexwavelettransformin Section
4.2 and of the steerablepyramid in section4.3, we rst review rapidly the standard
orthonormal wavelet transform in section4.1.

4.1 Orthonormal wavelet bases

Although there are other ways to de ne wavelet bases,we will start here from
multiresolution spacesasin [40]. Subsequetly, we de ne the scalingfunction A and
wavelet A, as well as the spatial Tters h and g and their Fourier transform the
conjugate mirror Iters my, and m;. (One could actually start from the TIters and
scalingfunction to de ne the wavelet.)

4.1.1 Multiresolution analysis

De nition 4.1.1. A multiresolutionanalysisof L?(R) is a sequene@ of approximation
vector spaces: fV; g,z that havethe following properties :

P1. ¢CeV, , Y2V, 1 Y2 Vp Y2 V1 Y2V, €CC

- 2

P2. jLZVJ L4(R)

P3. j\zz\/j = f0Og

P4.f2V,, f(2 92V

P5.f2Vy) f(¢ n)2Vy 8n2Z

P6. There existsA in V, suchthat fA(¢; n);n 2 Zg in an orthonormal basis of V.

The function A is calledthe saling function. Properties P4 and P6 imply that for
any j, the family fA (9 = 2: A(2) ¢ B); n 2 Zgis anorthonormal basisof V;. Noting
hy = A 10; Agni, andmy(») = 202 h,e ™ properties P1 and P6 imply :
X

(i, ¢ P <
Az = 2 h, A(xj n) (4.1)

n2z
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B = mo 2 H2* (4.2)

The waveletcan be then de ned asthe function A sud that :

< 6 P X )

Ay'="2" g Axin (4.3)
n2z
i ))¢ i ))¢
R())) = ml > p 5 (44)
with
G = (i DY nhli n (4.5)
i¢ X . o ¢
ml » = 2| 5 gnel in» — e| I»rn0 ]/4[ » (46)
n2z

In that case,the vector spacespannedby the family of translated versionsof A,
W, = sparfAg, (9§ = A(¢j n); n 2 Zg, is the orthogonal supplemen of V, in V; :

? ~ .
V1 = Vo©W,. Moreoverthe f Ag.n; N 2 Zg areorthogonalto ead other. Each approxi-
mation spaceV; of the multiresolution analysisis then similarly decommsedinto an

?
orthogonalsum:V; = V;; 1OW;; 1, whereV;; ; is the next coarserapproximation space
after V; and W;, ; = sparfA(2'i * ¢ n); n 2 Zgis a detail space.t followsthat the
W; spanL?(R) and are orthogonalto ead other. One canthereforeconsiderdi®erer

?
decommsitions of L?(R), either using only the detail spacesW, : L}R) = © W,
i2z

?
(4.7), or stopping the re nemert at a particular scaleJ, : L*(R) = V;, © W, (4.8).
j. Jo
The correspnding orthonormal basesare :

f An(9=2%AQ7 ¢in)ggmor 4.7)
and
f AJo;n(Q =2 JTOA(Zi Jo Cin)ognoz [ f Aj;n(q) =2 J.E'&(Zij ¢in) 0i. Join2z (4.8)

Note that the scalingfunction, the wavelet, the Tters h and g and the conjugate
‘Tters m, and m; inherit special properties from the multiresolution setting. For
example,the conjugate Tter m, veri es :

jmo(»)j2 + jmo(»+ 1/4)j2 = 1lae (4.9)

and the scalingfunction integratesto 1 whereasthe wavelet integratesto O.

The properties of the wavelet can be studied and adjusted by looking at the Tters.
The wavelets Aj;n and scaling functions A ,, can have mary properties that can be
tailored to the application at hand, by adjusting the Tter choice.For instance,onecan
chooseto emphasizetheir smoothness,their localization in spaceand/or in frequency
and the number of vanishing momerts of A. Typically, one cannot optimize all of
thesesimultaneously and sometrade-o®shave to be made. Seee.qg.[39, 17].
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4.1.2 Computing the wavelet transform in one dimension

For afunction f in L?(R), the wavelet decommsition correspndingto (4.7) reads:
X X 5 5

j2Z n2z

and alternatively, stopping the re nemert at scaleJ, asin (4.8) leadsto :
X ) ) X X . .
f = hf ; Asn i Aggn + hf ; An i Ajn (4.12)
n2z j2zZ n2z
The relations (4.1), (4.2), (4.3) and (4.4) propagate to the scaling coexcients
an = hf; Aj;n I and to the wavelet coexcients d;., = hf ; Aj;n i. Indeed these
coezxcients can be rewritten :

gjn = hf; Ay (4.12)
i ¢
an = hf;25A2¢n i (4.13)
i . ¢
an, = hf;2 5 Al (¢ 210n) i (4.14)
an = hf; Aj;8(¢i 210n)i (4.15)
an = fuaf, (2in) (4.16)
and similarly : i ¢
dn= foBo (2'n) (4.17)

Here, o denotesthe corvolution on the real line and &(x) = A(j x).

Fast wavelet transform in space

Using Eg. (4.1), (4.3), (4.16) and (4.17) gives formulas to compute the scaling
coexcients a;., and the wavelet coexcients d;., from solelythe scalingcoezcients at
the ner scalej + 1 andthe Tters handg:

n = (ai+1;¢??1(2n) (4.18)
din = (8+1;¢?8(2n) (4.19)

Here, ? denotesthe discrete corvolution and ﬁn = hi n» 8 = 8 » This meansthat to
‘nd the wavelet (resp. scaling) coexcients at scalej, one computesthe corvolution
of the scalingcoexcients at scalej + 1 with the TTter & (resp. Fu) and keeponly the
even ertries.

The inverseoperation : synthesizingthe scalingcoezcients at scalej + 1 from the
wavelet and scalingcoezxcients at scalej is just assimple:

8410 = (8:¢?h)(n) + (G);¢?g)(n) (4.20)

Here, &, = &, and &.,p+1 = 0 (and similarly for d). The wavelet (resp. scaling)
coexcients at scalej + 1 are interleaved with zerosand the result is corvolved with
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the Tter h (resp. g). The sequenceof scaling coetcients at scalej + 1 is then the
sum of thesetwo convolutions.

Starting from scalingcoezxcients at a ne scaleJ,, fa;,.n0n2z, ONecanrecursively
computethe wavelet and scalingcoezxcients for all scaled, - j < J; usingEq. (4.18)
and (4.19), for any arbitrary J, < J;. Keepingonly the wavelet coetcients d., for
all scales], - ] < J; and the scalingcoe+cients a;,., at the coarsestscale, onecan
reconstructthe sequencesf scalingcoexcients at eat scalefrom J, to J; using Eq.
(4.20).

The forward and inversetransform are both fast to compute sincethey involve
only discreteconvolutions and downsampling (dropping the even entries in Eq.(4.18)
and (4.19)) or upsampling(adding zerosin Eg. (4.20)) two sequencest a ead scale.

Wavelet transform in the frequency plane

One can rewrite Eq.(4.18) and (4.19) using the conjugate lters my and my :

& ») = bi+1;¢()§)) mo(%) (4.21)
& d» = §i1;e(3) M) (4.22)
P .
Here, for a sequencé v,0n2z , 10 denotesthe trigonometric series(») &  ,,7 Va€ ™.
From the trigonometric series,one can recover v : v, = f, = 2%/4 il/‘l‘/Ab(>>)ei“’>. To

compute the wavelet (resp. scaling) coe+cients at scalej with this method, one rst
calculatesthe trigonometric seriesasseiated with the scaling coexcients at scale
j + 1, then multiplies it by the conjugate Tter m; (resp. m,) and nally dilates the
result by a factor 2. The coexcients at scalej arethe Fourier coexcients of the series
obtained. Note that the downsamplingis done automatically here by inverting the
dilated trigonometric series.

Similarly the inversetransform that computesthe scalingcoexcients at scalej + 1
from scalingand wavelet coetcients at scalej canbe donein Fourier spaceby noticing
that :

f1:d7) = & (29) Mo(») + &, d29) Mu(») (4.23)

This method is not asfast asthe spatial method to compute wavelet transform in
the casewherethe spatial Tters h and g have nite length, i.e. whenthe wavelet have
compactsupport in space.Howeer, in the event wherethe designof the waveletshas
beendone in the frequency plane, e.g. when the wavelet have compact support in
frequency then the spatial Tters h and g are in nite and the corvolution are easier
to handle by this method.

The complex wavelet transform that we review in the next sectionis computed
using spatial Tters asin the fast wavelet transform, whereasthe steerablepyramid
transform is computedin the frequencyplane.

Practical implemen tation with discrete signals

In practice, one has accessonly to a nite number of regular samplesof the
function f at a nite and possiblyvery ne scale.Oneconsidershesesamples f g,
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to be the scaling coetcients at the ner scaled; : f, = hf ; AJl;n i:n21l.The
wavelet transform is computed neither at ner scalesthan Ji, nor at very coarse
scales(j ! 1 ), wherethe extent of the scalingfunction would be greaterthan the
support of the samplein hand. Hence,in practice, a coarsescaleJ, and a ne scale
J1 > J, are naturally de ned by the signalin hand.

The wavelet transform consistsin the wavelet coetcients at ead scalej from
J; down to J,, i.e. the fd;;nQs,. j<1,; n21;, @nd the scalingcoexcients at the coarsest
scaleJ,, i.e. the fa;,;ngn21,,. Becauseof the downsamplingin Eq.(4.18) and (4.19),
the cardinality of I; isjl;j = jlj 21 1. Note that the number of wavelet and scaling
coezcients in the transform is exactly the sameasthe initial number of samples.This
wasbound to happensincethe wavelet transform presened hereis nothing morethan
a changea orthonormal basisin a nite dimensionalspace.

4.1.3 Separable wavelet transform in higher dimensions

In two or more dimensions,orthonormal wavelet basesare de ned by taking the
tensorproduct of seweral one-dimensionamultiresolution analysis.Let us explain the
two-dimensionalcasesincein higher dimensions,the procedure generalizeswithout
problems.

De nition  4.1.2. From a multiresolution analysis of L?(R) fV,gj,z as dened in
4.1.1, the following tensor product f V g;»z de ned by :

1. Vo= Vo- Vo= fF(X1;x2) = f(X1)a(x2); (f;0) 2 VZg
2.F2V,, F@¢2 92V,

de nes multiresolution analysisin L2(R?), i.e. Vi % V., [;Vi = L%R? and
\jVj = ng

The approximation spaceV ;. is then naturally re ned into one coarserapproxi-
mation spaceV; =V, - V; and three detail spaces W =V, - W;, WZ= W, - V,
and W? = W; - W;. The correspnding orthonormal basesare :

{ for Vj., o f Aj,;nl(Xl)'éi;nz(XZ)g(nl;nz)ZZ2

{ for le+1 :f '61';nl(xl)A,\j;nz(XZ)g(nl;ng)ZZZ

{ for Wj2+1  f e\j;nl(Xl)e‘j;ng(XZ)g(nl;nz)ZZZ

{ for Wiy of A (X)) Ay, (X2)Gnying)2z2
Thereforethe orthonormal basisconsideredfor L?(R?) is :

FA 0 (XA, (X2); Aing (X0)Ajin, (X2); Ajing (X2) Ajinz (X2)5 Ajiny (X2) A ;nz(Xz)g(j;nl;Ez)zzi)
Note that this is di®eren from taking the tensor product of the one-dimensional
wavelet basis(which would include terms mixing scales: Ajl;nl(xl)ﬁ\jz;nz(xz)).

De ne d} n,n, asthe wavelet coetcients correspnding to Wji and g.n,:n, the
scalingcoezcients. The two-dimensionalorthonormal wavelet transform then inherits
a fast algorithm usingthe spatial Tters h and g successigly in eat direction x; and
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Xo .

ngn, = | (@41:0¢ 2 h) 3 B ’ (2ny;2n3) (4.25)
A, = ! (&+1:6 ¢? F1) X ’ (2n1;2n3) (4.26)
Prone = @10e? )% h * (enis2ny) (4.27)
djg;nl;nz = (3 +1;0;¢>$-j ) K 4 ’ (2n4; 2ny) (4.28)

Here, % denotesthe one-dimensionalcorvolution in the direction X1 computed for
eadt value of n, (and vice-versafor )‘.5).

As previously in one dimension,one can also considerdoing these computations
in the frequencyplane using the conjugate Tters m, and m; successigly for x; and
X2. The inversetransform is also computed successigly in ead direction, using the
spatial Tters h and g and the complex conjugate lters m, and m; asin Eq.(4.20)
and (4.23).

The two-dimensionalseparableorthonormal basis presened here is sensitive to
three principal directions correspnding to the detail spacesw , W2 and W 3 : the
horizortal, the vertical and the diagonal respectively. To remedy this, the complex
wavelet transform combines seeral separableorthonormal basesthat have special
relations together whereasthe steerablepyramid is basedon the de nition of radial
(hencenon separable) Tters.

4.1.4 Other wavelet bases

Beforewe turn to theseredundart systems,let us mertion that there exist other
wavelet families that are not necessarilyorthonormal but still form basesof L ?(R).

The biorthogonal waveletscan be designedo be symmetric with compactsupport
[11]. Sudh a family fAjl;ngj;n cannot form an orthonormal basis.lnsteadfAjl;ngj;n isa
Rieszbasisof L?(R) and is ass@iated with a dual family f A2, g;.n. The rst waveletis
usedfor analysiswhereaghe secondoneis usedfor the reconstruction.The orthogonal
relation hﬁ\jl;n; Ajzo;noi = 4 ot,n0 €nsureserfect reconstructionof any signalin L%(R).

Wavelet padkets are anotherkind of orthonormal basesonecan form starting with
the sameprocedureasin 4.1.1. The di®erencas that oneis allowed to further re ne
the vector spacesW; by usingthe Tter g, and h, on the detail coexcients d,. (See

[13, 39]for details.)

Both wavelet padkets and biorthogonal wavelets can be extendedto higher di-
mensionsin a separablemanner. Although they have advantagesand disadwantages
comparedwith the orthonormal wavelet transform, they shareits lack of invarianceby
translation and poor directional selectivity. As mertioned in the introduction of this
chapter, these inconveniencescan be bypassedby relaxing the linear independence
conditions and using framesinstead of bases.
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4.2 Dual tree complex wavelet transform

The complexwavelet transform hasbeendesignedoriginally by Kingsbury [31, 32]
to remedytwo principal drawbadks of traditional separablewavelet transformsin two
dimensions: the lack of shift-invariance and the poor directional selectivity. The
complexwavelet transform is a conmbination of seweral standard wavelet transforms,
(exactly 2" of these,wheren is the dimension),that have special relations with eat
other. The redundancyis 2" and the complexity is exactly 2" times the complexity
of a standard wavelet transform. This makesit just asfast to computeasa standard
wavelet transform for low dimensions,in particular for images(n = 2).

As a consequencef the special relations betweenthe standard transformsusedin
the complextransform, the latter is shift invariant in the sensehat the reconstruction
obtained from ead scaleseparatelyis free of aliasing.

Standard wavelet coexcients oscillaterapidly closeto sharptransitions. Threshol-
ding techniqueswith critically sampledwavelet transforms su®erfrom these oscilla-
tions which causeartifacts in the reconstructions.Another advantage of the complex
wavelet transform is that the modulus of the complex coexcients does not oscillate
asmuch. Hence,the thresholding operation with complexwaveletsasde ned in sub-
section2.2.3causesnuch lessartifacts.

In two dimensionsthe complexwavelet transform producesl2real wavelets. These
can be paired and eat pair viewed asthe complexand imaginary part of a complex
wavelet. In total, there are 6 complex wavelets, ead one selective to a particular
direction. As a consequencethe complex transform also has improved directional
selectivity over standard wavelet transforms. Fig. 4.1 shows the direction selectivity
adhieved with the complextransform in two dimensions.The rst (resp.second)row
of the gure shows the 6 wavelets that can be viewed as the real (resp. imaginary)
part of the 6 complexwavelet whosemagnitude is shown in the last row.

2D Dual-Tree Complex Wavelets

Fig. 4.1{ The complexwavelets are selectie to 6 directions. First row : real part;
secondrow : imaginary part; third row : amplitude of the complex wavelet. (This
“gure was producedby the Matlab code cplxdual2Dplots.m available at [66].)
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4.2.1 Dual tree complex wavelet transform in one dimension

The complexwavelet transform in onedimensionis implemerted astwo critically
sampledorthonormal wavelet transforms(asdescrikedin 4.1.2) computedin parallel.
Let us denote A, A1, h, g' (resp. A2, A%, h?, g?) the scalingfunction, wavelet and
‘Tters relative to the rst (resp.second)basis.Kingsbury in [32] shaved that oneway
to obtain good shift invariance (as de ned above) is to view the two real wavelets A®
and A? asthe real and imaginary part of a complexwavelet,2 = Al + i A2, that has
the property of suppressingnegative frequencies

*{ » =0 if »<O: (4.29)

This happenswhen the two wavelets A* and A? have the special property of being
Hilb ert transforms of ead other [52, 53], i.e. when their Fourier transform veri es :

B2(») = j i sign®) A(»); »2 R (4.30)

This is alsoequivalert to designinga Tter g; that is a half-sampledelayed version of
the Tter g, :
% =0 . (4.31)

2

Sinceit is not possibleto designsud a pair a nite impulseresponse Iters, the Hilbert
transform property hasto be appraximated. Selesnik [52, 53] hasshonvn how to best
do this within a preassignedlter length. It turns out that his examplescorrespnd
to those of Kingsbury [32] even though they were designedwith a di®eren criterion
in mind. We shall use one of these examplesimplemerted in the software available
from Selesnik's website [66)].

Supposewe have two Tter banks (h'; g') and (h?; ¢?), that produce wavelets Al
AZ? that are approximate Hilbert transforms of other. The dual tree complexwavelet
transform of a signalf in onedimensionis computed as follows :

1. Compute the wavelet transform of f with the st Tter bank (h?;g') using
Eq.(4.18), (4.19) to obtain the real wavelets coexcients fdjl;ngJo. j<d; n21; and
real scaling coexcients fal_ ., gno1,. -

2. Compute similarly a wavelet transform of f with (h?;g?) to obtain a second
set of real wavelets coexcients fd?, g;,. j<s,; n21; and real scaling coexcients
f aﬁo;ngnzho .

3. The coezcients of the dual tree complexwavelet transform are the complexwa-
veletcoexcients f ¢, = di, +id?,0s,. j<1,; n21;, and the real scalingcoezcients
f a\%o;ngnZIJO [ f ago;n gn2|Jo .

The complexwaveletcoextcients f ¢, gn21,, canthen be modi ed the sameway one

would do with real wavelet coexcients, but keepingthe phaseconstart, asdescrited
in subsection2.2.3.For example,soft-thresholdedcoeicientsfcjo;ngao. j<J1; n21; Would

be de ned the following way :
Veli o ¢ei“ i
if Cj;n = JCj;nJ:el H then C]'o;n = S{,;l(Cj;n) = JC],nJ IO ¢ if jg‘:i ’< Z (432)

And onewould reconstruct a signal from theseby :
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1. De ning the real wavelet coexcients : d¥, = <(¢’,,) and d*, = =(c,,).

2. Reconstructing f, from the real scaling coexcients fa}o;ngnzho and the real
wavelet coexcients d, with the Tter bank (h'; g) using Eq.(4.20).

3. Reconstructing f, from the real scaling coexcients faj_,,g.21,, and the real
wavelet coexcients d”, with the Tter bank (h? g?) using Eq.(4.20).

4. Taking the average: 132,
Remark . A slight modi cation hasto be donein practice for discretesignals.For a
single real wavelet transform, we consideredthe samplesf , to be the scaling coe+-
cierts f, = Hf ; Ay i at the nest scale.This meansthat the underlying function f is
f =, faAsn. In the caseof the dual tree complexwavelet transform, we have two
di®eren scaling functions. Consideringthe samplesf,, asthe scaling coetcients at
Eme “nest scalewguld meanthat we are analyzingtwo di®eren underlying functions::
SfaAl . and | f,AZ .. This is clearly not the goal. Special Tters have to be

designedfor the rst stageof the transform to correct for that.

4.2.2 Dual tree complex wavelet transform in two dimensions

As we saw in the preceden section, a standard separablewavelet transform pro-
ducesthree wavelets: A(x)A(y), A(x)A(y) and A(x)A(y). Again, onecancomputethe
standard separablewavelet transform with ead Tter bank (h'; g!) and (h?;g?). One
cande ne six real wavelets A% | i = 1;2,j = 1;2:3, by combining the three wavelets
obtained in ead transform the following way :

AR (xy) = AOAYy) + A(x)A%(y) (4.33)
AR (xy) = AT)AUY) + A3 (x)A(y) (4.34)
A(xy) = AN)ANy) + A(x)A%(y) (4.35)
AP (xy) = AOAYY) i A(X)A%(Y) (4.36)
A2 (xiy) = AYOAY() i A*(x)AX(y) (4.37)
AZ(xy) = AM)ANy) i A*(x)A%(y) : (4.38)

Similarly to the six wavelets displayed in the rst row of Fig.4.1, ead of these six
waveletsis sensitive to onedirection. Henceby summingand di®erencinghe wavelets
coexcients from two standard separablewavelet transforms, one gets a system of
redundancytwo that hasgood directional selectivity.

Howewer, thesesix waveletscannotbe paired and consideredasreal and imaginary
part of complexwavelets.To do so,oneneedsto considertwo additional real separable
wavelet transforms. Unlike what we descriked sofar, thesetransformsdo not operate
the sameway on rows and columnsof the signal: oneneedsto use(h?; g*) to Tter the
rows and (h?; g?) to Tter the columns(and corversely).By summingand di®erencing
the outputs of the four real separablewavelet transforms, one gets the six complex
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waveletsdisplayed in Fig.4.1. They are de ned by :

11 £'l Al A2 A2 2 £'1 Al A2 Al .
A xy) = ()AY(y) + A()A(Y) + T AANY) i A(X)ANY), (4.39)
2Rcy) = AAY) + ACCOA(Y) H i ATOAY) | AY()AN(Y) (4.40)
aBB0y) = ANANy) + A20)A%y) + i AN )A%(Y) i@ A%()A(y), (4.41)
a2l xy) = AOAYy) + A)ANy) _+ i AAYY) i A(x)A(y)  (4.42)
aExy) = AOA(Y) + A()ANY) i ACOANY) | AR (x)A(y) (4.43)
22(xy) = ANOA%(y) + A()AYy) +i AN)ANy) i A*(x)A%(y) (4.44)

Remark . As in the one-dimensionalcase,special Iters for the rst stage of the
transform have to be used and thresholding operations are done on the complex
coezxcients.

4.3 Steerable pyramid

Much like the complexwavelet transform, the steerablepyramid is a linear trans-
formation that decommsestwo-dimensionalsignalsinto subbandslocalizedin scale
and in orientation. But unlike the complexwavelet transform, this tight frame is not
made of a concatenationof bases,but rather is designedfrom scratch by computing
‘Tters in the Fourier plane that have desiredproperties. One low-pass Iter (like m,),
one high pass Iter (like m;) and M orierted Iters that are rotated versionsof a
unigue Tter de ne the steerablepyramid. This correspnds to having one scaling
function and M \w avelets".

The steerablepyramid transform is translation-invariant and essetially aliasing-
free (the Tters are designedto be band-limited so that the sampling rate is above
Nyquist frequency).It can produce an arbitrary number M of orientations and the-
refore can approximate rotation-invariance much better than the standard separable
wavelet transform. Note that, theoretically, the steerability of this transform makes
it totally rotation-invariant : the Tters are designedsothat the responseto any par-
ticular orientation can be computedby linear conbinations of the responseto the M
original orientations. The steerability of the transform is the reasonit was designed
in the rst place.Howeer, the transform has proved to be quite excient and useful
using only the M principal orientations and that is how we shall alsouseit here.

4.3.1 Description of the Tters, scaling functions and wavelets

In this section,we denotef0 the Fourier transform of the function f and (r;p the
polar coordinates. Moreover, we write 1 for the vector (ny;n,). As in the separable
casethe scalingfunction is indexedby scalej and the location & : A ;. The wavelets
bear an additional index m correspnding to the orientation : Aj”?ﬁ . Here, the wavelet
and scalingfunction at the scalej are not sampledat the samerate :

Ain(X)
Ajn;]ﬁ(x)

2 A@xi n) (4.45)
2 A™ (2% 2m) (4.46)
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The wavelets and scaling function verify scalingrelations analogousto Eq. (4.2)
and (4.4) in the separablecase,with the addition of orientation for the wavelets:

Rer; v
Am(2r; )

h(z% }&ér)L(r) (4.47)
R H'r Gy (ui ™ (4.48)

The low-pass Iter L, the high-passlter H and the oriented Tter Gy arede ned as
follows :

i ¢
L(r) — /4|ng( ) +i1/4 o < 15/4 + ir< %4 (449)
H(r) = sin V“Iogz( ) R N (4.50)
— (M 1)! Ml
GM (l.l) = pm ZCOSlJ. (451)

They are displayed for M = 4 in Fig.4.2.

L(r) H()

0 pl4 pl2 p 0 pl4 p2 p 5p/4 3pl2 2p

Fig. 4.2{ Left : low pass lter L(r) and high-pass Iter H(r). Right : oriented Tters
Gu(Mi mvl/“) for M = 4. Dotted curve : m = 0, orientation of the wavelet : 0*
plain curve : m = 1, orientation of the wavelet : 45" ; dash-dotted curve : m = 2,
orientation of the wavelet: 90*. Omitted for clarity of the gure : m = 3, orientation
of the wavelet : 135

The scaling function is real, non-negative and radially symmetric and so is its
Fourier transform. The wavelets are real and oriented, their Fourier transform is
real non-negative and symmetric about the origin. Examplesof wavelets and scaling
function are displayed in the rst row of Fig. 4.3. The secondrow of the gure shows
their Fourier transform. The wavelets shovn have di®eren scale, orientation and
location.

Remark . We use a non ne%atl\e version of the oriented Tter proposedin [47] :

G (Y) = % 2cosp 't The oriented Tter we proposeensuresthat the

wavelets are always real. It is lesssmooth than the original for M = 2, i.e. whenone
considersonly two orientations. In that case,our G, is only cortinuous,while the one
usedby Portilla et al. is C! . However, this lack of smoothnesswas already preser in
the low-passand high-pass lters which are cortinuous but not di®eretiable. The-
refore, our choice doesnot changethe overall regularity of the Fourier transforms of
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Fig. 4.3{ Toprow : waveletsin space Bottom row : waveletsin Fourier plane. First
column : wavelet at a ne scalej + 1, certered at location ng, oriented along the
“rst diagonal. Secondcolumn : wavelet at a coarserscalej, certered at location ny,
oriented alongthe rst diagonal.Third column: wavelet at the samecoarserscalej,
certered at location n,, oriented along the horizontal axis. Fourth column : scaling
function, certered at location .

the scalingfunction and waveletsevenfor M = 2. Moreover, we veri ed that the non-
di®eretiabilit y of the Tters doesnot impact the performancesof our reconstruction
algorithm of astrophysical data by designingC? (contin uously di®ereriable) Tters :

i, ¢
L(r) = co:? Zo(rj 1)¢ (4.52)
H(r) = sin Z°(rj 1) (4.53)
L0y, By ¢ ¢. . Vi Y
Gu(W = sin FcosZH" ; M2 [i w7 ] (4.54)
Gu(H) = sin YcosM(ui ¥)° 5 U2 [Ya A vt 2] (4.55)
With ©(x) = SiN £X dpoe 1+ B 1 (4.56)

Sincethe useof the C! TTters (4.52)-(4.55)doesnot improve the results, we will only
presen our work usingthe Tters (4.49)-(4.51).

4.3.2 Algorithm to compute the steerable pyramid transform

We usethe notation : & = H ; A i for the scalingcoe+cients and d™, = H ; AT
for the wavelet coexcients of afunction f oriented in the direction mwl/“ Supposewe are
given the scalingcoexcients at scalej + 1: faj.1 .n0On222. The algorithm to compute
the coexcients at the coarserscalein the Fourier planeis :

1. Compute the trigonometric seriess; .1 .n(»).
2. Multiply by the high-pass Tter H (j»j), call the result T (»).
3. Form=0tom= M 1, multiply T by the rotated oriented Tter to obtain :

Bin(» = T()GU (M) | ™), where» = j»jeH0).

Inversethe trigonometric seriesto obtain the wavelet coetcients f d;.nQn2z2.

4. Multiply lai-ﬂ w(») by the low-pass Tter and keepa dilated version: dj.;(») =
hj+1 ﬁ(%)l-(%l)
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5. Inversethe last trigonometric seriesto nd the scalingcoexcients f & .nOn2z2.

Giventhe scalingcoezcients at the nest scale,it sutcesto repeat this procedure
recursiwely to nd the decompsition of f on the steerablepyramid. Sincethe scaling
coezxcients are kept at only the coarsestscale,step 1 (resp. step 5) can be skipped at
ead iteration exceptthe rst (resp.last) one.

The reconstructionof the scalingcoexcients at scalgj from the waveletand scaling
coexcients at scalej j 1 is carried out using the exact same Tters L, H and Gy, .
Indeed, the steerablepyramid is a tight frame which ensuresthat the decomposition
and reconstruction are donewith the samefamily :

X ) ) XX X o
f=  hf;AyniAgn+ hf ; A i Al (4.57)

n22z2 m=1 j2Z m22z2
And the Tters arereal sothat :

i ¢ X i ¢ ¢
fad) = )L+ GO)IL Gu )i (4.58)

m=1

Figure 4.4 shows the system diagram correspnding to the decompsition and
reconstruction. The stepsdescribed above correspnd to the shadedblock. In practice,
the sampleof the function f in hand are again consideredas the scaling coexcients
at the nest scale: fa;, .nOm2z2. TO avoid aliasing in the practical caseof a nite
sample,one needsto usea slightly modi ed versionof the algorithm to compute the
coexcients at scaleJ; j 1. As pictured in the white block of Fig. 4.4, one does not
do the downsamplingfor the scalingcoezcients at scaleJ; j 1, which meansthat :

i ¢
A5, 1n(” = @ n(L ' - (4.59)
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Fig. 4.4{ Systemdiagram for the decompsition and syrthesis using the steerable
pyramid. The area inside the dotted line is repeated recursiwely to obtain the full
transform. Here! = (r;), and B, (! ) = H(r)Gn (W)
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Chapitre 5

Application to the extraction of
clusters of galaxies

This chapter is dedicatedto the study of the performancesof the functional va-
riational method described in Chapter 2 and the statistical method describted in
Chapter 3 for the reconstruction of maps of clusters of galaxiesvia the detection
of their Sunyaev-Zeldwich signature in the °uctuations of the Cosmic Microwave
Badkground radiation. The mathematical model that describesthe obsenations and
the componerts have beendescriked in the preceden chapters. In the rst section
of this chapter, we explain in greater detail the cosmologyof ead componert and
shaov examplesof simulated obsenations. The secondsection descrikesthe tools we
useto assesshe quality of the reconstructedmaps. In section5.3, 5.4, and 5.5, we
analyzethe performanceof both methods under di®eren conditions of obsenation.
The results we obtained are summarizedin section5.6.

5.1 Description of the signals

5.1.1 Clusters of galaxies

Stars are usually found in densecollections rather than isolated. A collection
of stars (ten millions to one trillion), together with interstellar gas, dust, and dark
matter, all being held together by gravitational attraction, is called a galaxy. Most
galaxiesare seral thousand to se\eral hundred thousand light yearsin diameter.
Galaxiesthemselhes are organizedinto larger structures. The smaller aggregatesof
galaxiesare called groupsof galaxies.Typically, a group of galaxiescorntains lessthan
“ft y of them. Clusters of galaxiesare larger structures cortaining ft y to thousands
of galaxies,padked into areasof around one megaparse@cross(one parsecis around
3.12light years).Superclustersare even larger structures yet, containing tens of thou-
sandsof galaxiesfound in groups,in clustersor evenisolated. They form the largest
structuresidenti ed sofar in the universe,and resenble a foam.

Our work focuseson the reconstruction of clusters of galaxiesbecausethey may
be usedto infer cosmologicalinformation sud as the Hubble constart via number
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courts and power spectrum analysisof Sunyaev-Zeldwich maps (cf. [38, 36, 27, 3)).
This is oneof the mostimportant scierti ¢ goalsof seweral experimerts, now planned
or underway, sud asthe Suryaev-Zeldwich Array experimert, the AtacamaCosmo-
logy Telescoe SZ survey and the Planck mission. Galaxiesin the clusterstravel at
velocities in the range of eight hundred to a thousand km:si ! and are surrounded
by hot X-ray emitting gasand large amourts of dark matter. The total massof a
cluster is typically between10' and 10 times the solar mass,with only v e percen
(resp. ten) of the massof a cluster due to the galaxies(resp. the gas), the rest being
dark matter. Reconstructingthe clustersof galaxiesnot an easytask, becauseother
physical phenomena,suc as the Cosmic Microwave Badkground, obscureour view
of it. Howewer, imaging techniqueshave now readed a suzcient resolution that the
Surnyaev-Zeldwich signature of the clusterscan be extracted for further study.

The Surnyaev-Zeldwich e®ect(SZ e®ectin short) is dueto high energyelectronsin
the galaxy clustersthat interact with CosmicMicrowave Background (CMB) photons
traveling from the last scattering surfaceto Earth. Somehigh energyof the electrons
is transferredto the low energyphotonsthrough the inverseCompton e®ect.This mo-
di es the Cosmic Microwave Badkground temperature and intensity in the direction
of a cluster. The thermal SZ e®ectinducesdistortions of Cosmic Microwave Back-
ground spectrum, its frequencydependences di®eren from that of the CMB and its
amplitude is comparableto the CMB °uctuations. Hencethe detection of the thermal
SZsignalwill allow to study clustersof galaxies.The right panelof Figure 5.1 and the
bottom left panel of Figure 5.2 shav examplesof thermal Sunyaev-Zeldwich clusters'
signatures.Note that there is also a kinetic SZ e®ectdue to the bulk motion of the
clusters. This signalis much wealer than the thermal SZ signal and has a frequency
dependencesimilar to that of the Cosmic Microwave Badkground, therefore we will
not attempt to detectit.

5.1.2 The Cosmic Micro wave Background

The CosmicMicrowave Badkground radiation or CMB is a form of electromagnetic
radiation that Ils the whole of the Universe(seeFigure 5.1, left paneland Figure 5.2,
top left panel,for two examples).lts existenceand propertiesare consideredoneof the
major con rmations of the Big Bang theory. According to standard cosmology the
CMB givesa snapshotof the Universeat the \time of last scattering”, about 400,000
yearsafter the Big Bang, whenthe Universebecametransparert to radiation for the
‘rst time. Sincethis time, the Universeis expanding, causingthe CMB photons to
be redshifted and the radiation to cool with a factor inversely proportional to the
Universe'sscalelength.

The CMB spectrum matchescloselythat of a black body at 2.726Kelvins and this
radiation hasa high degreeof isotropy. There are, howewer, anisotropiesand theseare
the featuresthat help usunderstandthe Universe.The most pronouncedanisotropy is
the dipole anisotropy, which is consistet with the Earth moving relative to the CMB.
A number of experimerts, starting with the Cosmic Badkground Explorer (COBE)
satellite in 1989-1996 have sincedetectedlarge scaleanisotropiesother than the di-
pole, allowing cosmologiststo understand better the structure of the Universe.For
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example,the measuremets were able to rule out sometheories of cosmicstructure
formation like the cosmicstrings theory. In 2000,the Boomerangexperimert reported
that the highest power °uctuations occur at the scaleof one degree.Together with

other cosmologicaldata, theseresults implied that the geometry of the Universeis
°at. In 2003,the WMAP experimert provided a detailed measuremenof the angular
power spectrum down to this scale,tightly constrainingvariouscosmologicabarame-
ters. Theseresults are broadly consisten with those expected from cosmicin®ation

aswell asvarious other competing theories.

To make further progressijt is known that smallerscale®uctuations than what was
provided by WMAP will haveto be analyzed.Thesevery small scale°uctuations have
beenpreviously obsened by ground-basednterferometersin small regionsof the sky
and will be measuredsystematically over the whole sky by the spacemissionPlanck,
which isto belaunchedin the next two to three years.Thesesmall scalescorrespnd to
the scaleof massie galaxy clusters(seeFigure 5.1). The Sunyaev-Zeldwich signature
of the clustersis a major factor of the °uctuations of the CMB at these scales.
Therefore,not only will theseCMB survey experimerts suc as Planck give data to
resole massie clusters, but alsothe extraction and accuratereconstruction of these
clustersof galaxieswill be neededto proceedwith the CMB analysis.

x10* x10*
2

3
15

2.
1 5
0.5 2
0 15

Fig. 5.1{ Simulated 1 degreeby 1 degreemaps.Left panel: CMB, Right panel: SZ
clusters.

We consider experimerts that will provide a map of the sky in the frequency
range 100-600GHz, that is, wherethe thermal SZ signal hasthe biggestamplitude.
In this range, two other physical componerts will have a signi cant cortribution to
the obsened maps: the radio and infrared point sourcesand the Galaxy dust. We
descrike brie°y thesetwo componerts in the next subsection.

5.1.3 Point sources and the Galaxy dust

The Galaxy dust refersto accunulations of gasand dust betweenstarsin our own
galaxy. Theseform an interstellar cloud that liesin the foregroundof our obsenations
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Fig. 5.2{ Simulated 10 degreedy 10 degreesmaps. Top left panel: CMB, top right
panel: the Galaxy dust, bottom left panel: SZ clusters,bottom right panel: infrared
point sourcesshavn much biggerthan their true sizefor clarity (seetext). Note the
di®erencean scalebetweenFigure 5.1 and 5.2.

of the sky. The frequencydependenceof the galacticdust is signi cantly di®erer from
that of the CMB and the SZ e®ect.Similarly to the CMB signal, the galactic dust
spreadsacrossour obsenations of the whole sky and its °uctuations are smaoth
(seeFigure 5.2,top right panelfor an illustration). Becausehe Galaxy dust hasvery
di®eren spatial propertiesfrom the SZ signal, we do not expect that its cortributions
will limit our reconstruction of the SZ clusterseven though they are more faint.

On the other hand, point sourcesmay reveal themsehesto be more seriouspollu-
tants of our SZ reconstructions.Tednically, the term point sourcecould referto any
sourcethat can be treated as coming from a single point. Here, point sourcesare of
two types: radio galaxies,brightest in the lowest frequencychannel, and dusty ga-
laxies, brightest in the highestfrequencychannel. The radio point sourcesignalis very
weak in the range of frequencieswe analyzeand will not be consideredhere. Dusty
star-forming galaxiesat high-redshift shine brightly at submillimeter frequency and
therefore,will be a potertial concern.We show at the bottom right of Figure 5.2 an
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exampleof a simulated map of infrared point sourcesead point sourcebeing exten-
ded to seeral pixels to allow visualization. The modeling of theseinfrared sources,
(number courts, frequencydependencesand spatial correlations) remainsuncertain.

Therefore we will rst concettrate our e®ortson lower frequencieswhere the point

sourcescanbeignoredto assesshe ability of our algorithms to separatethe SZ e®ect
from the CMB variations. Two analyzes,oneat higher resolution and the secondone
at lower resolution, are made ignoring the point sourcesand the Galaxy dust. We
incorporate thesetwo componerts in a third study to completeour analysis.

5.1.4 Frequency dependences

In this section, we descrike in more detail how the cortribution of eat astro-
physical componert varieswith the frequencyof obsenation. The thermal Suryaev-
Zeldovich e®ectcausesa changein the CMB temperature in the direction f :

*Tevme ' xexp(x)+ 1°
= 2 2 ————— 5.1
Tems i 2y(n) 2i 2exp(x)i 1 ®-1)
with
hO
X = — 5.2
kBTCMB ( )

where?® is the frequencyof obsenation in GHz, h ' 6:626£ 10 3**m? kg s' ! is the

Planck constart, kg ' 1:38£ 10 ?®m?kg s' 2K i ! is the Boltzmann constart and

Tcme ' 272K is the CMB temperature. The comptonization parameter y(f) is

the quartity intrinsic to the cluster while the rest of Eq. (5.1) modelsthe frequency
dependence when the obsenation is measuredin CMB temperature units; that is,

whenthe obsenations are normalizedsothat the frequencydependenceof the CMB is

°at. The left panelof Figure 5.3 displays the frequencydependenceof the SZ signalin

CMB temperature units (black or dotted line). For referencethe blue or dashdotted

line is the °at frequencydependenceof the CMB and it is equalto onein theseunits.

The thermal SZ e®ectcausesa decremen of the temperature below the characteristic

frequencyof 217 GHz, and an incremen of the temperature above it. The e®ectis

illustrated in the rst three panelsof Figure 5.4, where the location of a particular

cluster is pointed by an arrow labeled with the letter \c" in three obsenations at

di®eren frequenciesin the top left panel, the presenceof the clustersdecreaseshe

intensity measuredat 145 GHz. This e®ectdisappearsin the top right panelbecause
at 217GHz, the frequencydependenceof the SZ signalis closeto zero.Finally at 265
GHz (middle left panel), the e®ectis inverted, the presenceof the cluster causingan

increaseof intensity.

In CMB units, it seemsthat the larger the frequency of obsenation, the more
important the SZ cortribution is. Howewer this is relative to the CMB frequency
dependencatself. In fact, the SZ signalis maximal (resp. minimal) around 350(resp.
145) GHz (seeright panel of Figure 5.3), when the obsenations are measuredin
intensity units. The CMB signal itself reacesits maximum around 217 GHz, where
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Fig. 5.3{ Frequencydependenceleft panelin CMB temperature unit, right panel
in °ux units. Note that the frequencydependenceof point sources(IR) and Galaxy
dust (GD) in the right panel coincide.

the clusters'dependencechangessigns(Figure 5.3, right panel,blue dashdotted line).
The plain and dotted curvesdisplaying the frequencydependenceof the infrared point
sourcesand the Galaxy dust lay on top of eat other in this gure.

To obtain a complete picture of the cortribution of ead componert to the ob-
senation at ead frequency one should bear in mind that the natural units of eat
componerts are di®eren. The frequency dependenceddisplayed in Figure 5.3 take
theseunits into accoun. For example,the CMB signal is measuredin Kelvin, which
is the unit usedin the left panel(top left panel) of Figure 5.1(5.2). Its °uctuations are
of the order of 10 4 Kelvin. The SZ cluster signalis measuredby its comptonization
parametery, also called y-parameter. The order of magnitude of the y-parameter of
the most massi\e and brightest clustersis around 10 4 as well (right and top right
panelsof Figure 5.1 and 5.2). Combining this with the frequencydependencespne
can seethat massiwe clustersyield a signal of amplitude that is comparableto that
of the CMB in the range of frequenciesobsened. This is not the casefor the point
sourcessignal and the Galaxy dust signal. The natural unit for thesesignalsis the
°ux at a particular frequencyand although their frequencydependencestays below
the SZ frequencydependence(seeFigure 5.3, right panel), those two signalsare the
dominant signalsat higher frequencies.

Figure 5.4 givesa visual summary of theseremarks.Eac panelshaovsa 3.2by 3.2
degreesnapscontaining the sumof the cortributions of the four signalsat a particular
frequency This result is convolved with a two arcminutes wide beam so that the
cortribution of the points sourcesis wide enoughto be visible, without the arti cial
blowing up usedin Figure 5.2. The middle right paneland bottom panelsshow that
above 300GHz, the point sourcesand the Galaxy dust are dominating the CMB and
SZsignals.In the 100-300GHz rangeon the other hand, the CMB signalis dominart
and traces of SZ clusterscan be seen,as pointed out by the arrow labeled with the
letter \c". This suggestdhat the relevant frequenciesof obsenation for the extraction
and detection of the SZ clusters' signal are betweenone hundred and three hundred
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Fig. 5.4{ Simulated 3.2 by 3.2 degreesmaps of the sum of the cortribution of the
CMB, the thermal SZ, the infrared point sourcesand the Galaxy dust at di®erert
frequenciesof obsenation. Top left : 143GHz, top right : 217 GHz, middle left : 265
GHz, middle right : 385GHz, bottom : 600 GHz. One particular cluster of galaxiesis

located by the arrow labeledwith \c". One particular infrared point sourceis located
by the arrow labeled with \i".
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Fig. 5.5{ Simulated 3.2 by 3.2 degreesobsened maps at di®eren frequenciesof

obsenation. Top left : 143 GHz, top right : 217 GHz, middle left : 265 GHz, middle
right : 385GHz, bottom : 600 GHz.
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GHz. In 2006,the Atacama CosmologyTelescog (ACT) will beginan SZ survey of

galaxy clustersexactly in this range,with three frequencief obsenations: 145GHz,

217 GHz and 265 GHz. The arrow labeledwith the letter \i" points at the location

of a point sourcein Figure 5.4, shaving that even at thesewell selectedfrequencies,
very bright point sourcesdo appear. In [2§], the authors quarti ed potertial biasin

the reconstruction of the SZ signal due to the point sourcesunder the conditions of

this experimert. For other experimert sud asthe Planck mission, larger frequencies
(300-600GHZz) will be obsened too, giving the possibility to extract point sources
better.

The picture would not be completewithout taking into accourn the beamsizeat
di®eren frequenciesand the noise.Figure 5.5 displays maps correspnding to those
of Figure 5.4, when noiseis addedand beamsof the correct frequency-degnden size
are used. (The beam and noise parameterscorrespnd to those of the experiment
described in Section5.5).

5.2 How to quantify the results ?

A standard measureof the residuzﬂ error betweentwo imagesis the Root Mean
Square(RMS) error : RMS(l1;15) = Ni i X;yLI 16GY) i 1a(x y)u2 where N is the
total number of pixelsin the images.The RMS error corresmpndsto the L? norm of the
di®erencebetweenthe imagesand is thereforea global measure.The RMS error can
be computedat ead scaleof a wavelet decompsition (or of another decomposition),
thus exhibiting at which spatial length the two imagesare more similar or di®eren.
We nd that for the CosmicMicrowave Badkground and the Galaxy dust maps, the
RMS error in pixel spaceand the RMS error computed by scale, conbined with
visual inspection of the mapsand residualsgive a sutcient idea of the quality of our
reconstructedmaps. Indeed, these signalsare spreadacrossthe whole sky sothat a
global measureof error treating ead pixel the sameway givesa good senseof the
quality of the reconstructions. The point sourcesand the clusters' signals, on the
other hand, have to be quarti ed by other meansbecausethey are made of intense
and compact objects surroundedby void. The RMS error, whether in pixel spaceor
by scale,sumsup the cortributions from all locationsin space,giving a poor idea of
how localizedthe signalsare.

Point sources

The principal featuresof point sourcesare their brightness,their sparsenessand
the fact that their extert is smaller than the pixel size. The reconstructed maps of
point sourceswe obtain are rather conserative, and neer yield the reconstruction
of a point sourcewhereit did not exist. Howewer the maps may be polluted by low
intensity signalwhich is either white noiseand residual of the galaxy dust map. These
low intensity pollutants are rather easyto separatefrom the estimated point sources
by thresholding the reconstructedmap. Thus, to asseghe quality of a reconstructed
point sourcemap, we rst examinethe level of low intensity residual. The quality of
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the estimated point sourcess then de ned by the number of point sourcesderti ed,

the extent of eath compact object in the reconstructed map that correspnds to
a point sourceand the averagefraction of the true intensity of the point sources
recovered.

Clusters of galaxies

As for the clustersof galaxies the taskis alittle more complicatedbecauseclusters
vary dramatically in size,shape and magnitude. Moreover, the clustersare the main
focus of our study, so we needto de ne carefully how to assesthe quality of these
maps. Clusters are compact objects with a peak of intensity at the certer, and are
distributed sparselyacrossthe sky. Our strategy to detectthem in a map is to isolate
local maxima that are global maxima over a small xed angle ;. This correspnds
roughly to decidingthat the sizeof the smallestcluster we want to detectis p;. The
order of magnitude of | is then the typical sizeof a cluster, i.e. a few arcminutes.
The exact value of i, hasto be adjusted to the resolution of the data at hand. We
refer to the local maximum asthe \center" of a detectedcluster.

The studies we presen here use simulated data, therefore we can comparethe
reconstructedmapsto the groundtruth. To do so, we apply the detection procedure
descrilked above to both the \true" and the reconstructedmap. A reconstructedclus-
ter is then consideredasa true detectionif its certer is closerthan a prede nedangle
Ik to the certer of a clusterin the original map. In somerare casesthe reconstructed
map shows seeral local maxima (of di®eren intensity) even though there is only
one\true" cluster. In this case,we take only the most saliert maxima to make our
guarti ed quality assessmednThe purity of a sampleof reconstructedclustersis then
de ned asthe fraction of clustersin this samplethat are true detections.

Our next task is to determine which obsenable is the most reliable to derive cos-
mological parameters.Becauseof the convolution by the beamand the di®eren sizes
of the clusters, it is likely that the maximal or certral value of the y-parameteris not
reliably restoredin the reconstructedmaps. Instead, we expect that averagedvalues
are morereliable. Again, the angle s over which the y-parametershould be averaged
to nd a relevant obsenable for the clusters has to be tailored to the experimert
at hand. We assesshow well the collection of reconstructed average y-parameters
matchesthe \true" valuesby linear regression: we t a line through the cloud of
point formed by the pairs (Virue; Yreconstructed) IN two dimensions.The slope of this
line tells us what the biasis in the averagedy-parameter of the reconstructedmaps
comparedto the true value. That is to say, if we detect a cluster in the reconstructed
map, with averagedy-parameter value Y, econstructed, We predict that the true corres-
ponding averagedy-parameter value is Ypredicted = et wheress is the slope.
We de ne the spread¢ of this cloud of points by the averagedeparture from the best
“tting line, rescaledto the true value, i.e. :

Y. _ Ya Y.  Vreconst ueed | T4
¢ = E JYrue i Ypredicted) - E IYtrue i S J

ytr ue ytr ue

(5.3)
The slope and spreadthen give us a way to take into accournt the bias in the re-
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constructed map when we predict the number of \true" clustersabove a prede ned
averagey-parameter. The ratio betweenthe number of sud clusters predicted from
the reconstructedmap to the actual number of sud clustersin the original map is
called the completeness.

With thesetools to asseghe quality of our reconstructions,we can now explain
the analysisof the performancesof the methods we proposedin Chapter 2 and 3 in the
corntext of three di®eren experimerts. Ead of the next three sectionsof this chapter is
dewoted to the descriptionof oneexperimert and the correspnding results. Beforewe
goon, let us make two remarks. Firstly, the tools we just have preserted usethe fact
that we know the original clustersmap. This is a way to bendimark the performances
of our algorithms, howeer thesetools would have to be further deweloped in the case
of real data. Secondly we quantify generalaspects of the clusters' reconstruction,
sud asthe number of clustersand their intensity, leaving for later the quartitativ e
study of ner properties, such astheir shape and the structures surroundingthe peak
of intensity in a cluster. We newerthelessexaminethese ner properties qualitativ ely.

5.3 ACT : a high resolution experiment

The ACT experimert is a ground-basedsurvey that will collect data on a 100
degreesquarearea of the sky. ACT stands for the Atacama CosmologyTelescop.
This telescope is designedspeci cally for high-sensitivity large-areasurveys of the
sky requiring dedicatedobsenations for months at a time. It is locatedin Chile and
the experimert is plannedto start in November 2006.The ACT survey will map the
Cosmic Microwave Badckground anisotropiesfrom angular scalesof a degreedown to
an arcminute. One of the goalsof this surveyisto nd and study all galaxy clustersin
the portion of sky imagedthat have a massgreaterthan 3:10* solar masseghrough
their Suryaev-Zel'dwich e®ect.Data will be acquiredat 145,217 and 265 GHz, the
expected beamsizeand noiselevel are given in Table 5.1.

ACT experiment

Frequencyof obsenation Beamsize Noiselevel
° (GHz) fwhm (arcmin) Y K)
145 1.7 2
217 1.1 3.3
265 0.93 4.7

Tab. 5.1{ The characteristicsof the ACT experimert. The RMS detector noiseper
full-width-half-maximum pixel, labeled % is given in thermodynamic temperature
units.

As we pointed out in Subsection5.1.4,the CMB and SZ signalsare largely do-
minant at these frequencies.The cortribution of the Galaxy dust is negligible and
this componert can be safely disregarded.Point sourcesmay causesomeproblems,
as was pointed out in [28], howewer, we chooseto leave them out becausethey are
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not so troublesomeat the frequenciesfor ACT. As a consequenceywe do not assess
here the quality of the reconstruction of very compact clusters, i.e. clusters smaller
than the beamsizewhich is onearcminute, becausehey may in practice be confused
with the point sources.Since most massie clusters are larger than the beam, it is
expected that a great number of thesesclusterswill be resohed. Moreover, at this
resolution, clusters appear aspherical (see Figure 5.10), and a challengewill be to
alsodetect and resolwe the outskirts of massiwe clusters.With thesegoalsin mind, we
assesshe quality of the reconstruction methods proposedin Chapter 2 and Chapter
3 by using simulations cortaining the cortribution of the CMB and the SZ signals
only at the frequenciesand with the beam sizeand noisespeci ed in table 5.1. The
CMB is simulated as a Gaussianrandom eld using a power spectrum derived from
the best- tting WMAP parameters[5]. The SZ simulated maps are obtained from
hydrodynamical simulations by Zhang et al. [64]. We analyze 24 setsof simulations,
eat of which covers a 1.44 square degreearea of the sky. Our study then covers
roughly a onethird of the areathat will be coveredby the true ACT experimen.

To get a rough idea of the level of the noisecomparedto the cortribution of the
CMB and SZ signalsin the obsenations, we display in Figure 5.6 the power spectrum
of ead signal at 145 (left panel) and 265 GHz (right panel). The power spectrum of
the CMB and SZ signalsare modulated by their frequencydependenceThe SZsignal
dominatesthe CMB at scalescoarserthan 3 arcminutes. The spectra of the CMB
and SZ signalshave to be multiplied by the beam spectrum to obtain the spectral
cortribution in the obsenation. Sincethe noiselevel is moderate and the beam size
quite small, the SZ signal is dominant over the noise for scalescoarserthan two
arcminutes (resp. one arcminute) at 145 (resp. 265) GHz. Therefore, we do expect
that the reconstructionof the SZwill be accurateat leastdown to the beamsize(one
arcminute).

We usedboth our statistical and functional methods to analyzethesedata. We
comparefour sets of results : the Gaussian,pro le and truncated pro le prior dis-
tributions for the SZ clustersand our best variational results, using an weighed L 2
norm in wavelet spacefor the CMB and a Besw norm for the clusters. (The CMB
prior is xed to Gaussianfor the statistical method). Thesedi®eremn methods were
explained,respectively, in Section3.4 and 2.5.2.

5.3.1 Reconstructions of the Cosmic Micro wave Background

Figure 5.8 shaws a typical 1.2 by 1.2 degreeCMB map (top panel) together with
the reconstruction obtained from ead algorithm. The correspnding residual maps
are in the following gure (Fig. 5.9). Visual inspection of these gures suggeststhat
the four methods consideredyield reconstructions of the CMB maps of the same
quality. We computedthe averageover the 24 simulations consideredof the RMS in
pixel spaceand scaleby scale.The RMS in pixel spaceis 1:12£ 10 © for all methods.
The RMS per scaleare plotted in Figure 5.7.

Both the residualsmaps of Figure 5.9 and the RMS per scalein Figure 5.7 show
that the mosterrorsoccur at the 4.4 arcminutes scale,which corresppndsto extended
clusters.We notice on Figure 5.7 that the distribution of the error per scaleis slightly
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Power spectra, ACT 145 GHZ Power spectra, ACT 265 GHZ
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Fig. 5.6{ Power spectra of the signalscortributing to the obsenation for the ACT
experimernt. Left : at 145 GHz, right : at 265 GHz. The horizorntal axis indicates
the inverseof the spatial frequency(on a logarithmic scale),so that small numbers
correspnd to ne spatial scalesand large numbersto coarsespatial scales.

di®eren for the functional algorithm than for the statistical ones.The functional me-
thod seemdo reconstruct more accurately larger scalethan 8.9 arcminutes while the

statistical method performsbetter at smallerscalesThe better accuracyat ne scales
for the statistical method may be explained by the use of the neighborhoods which

make the estimatesmore local for the statistical approad than for the functional

approad.
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Fig. 5.7{ RMS error in the CMB reconstruction, scaleby scale.The results of the
Gaussian,pro le andtruncated pro le (notedt. pro Ie) prior lay ontop of ead other.
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Fig. 5.8{ ACT experimert : CMB. Top : original simulation, other panels: recons-
tructions. Middle left : Gaussianmiddle right : truncated pro Ie, bottom left : pro Ie,
bottom right : functional. The mapsare 1.2 £ 1:2 degrees.
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Fig. 5.9{ ACT experimert : CMB residuals.Top left : Gaussiantop right : truncated
pro le, bottom left : pro le, bottom right : functional. The mapsare 1.2£ 1:2 degrees.
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Fig. 5.10{ ACT experimert : SZ clusters. Top original simulation, other panels:
reconstructions.Middle left : Gaussian,middle right : truncated pro Te, bottom left :
pro le, bottom right : functional. The mapsare 1:2£ 1:2 degrees.
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5.3.2 Reconstruction of the SZ clusters

A global quarti cation of the accuracyof the reconstructedSZ mapsis the com-
putation of the averageRMS errorsin pixel spaceand per scalefor the 24 simulations
we used.The RMS error for the di®eren reconstructionsare similar. The RMS error
in pixel is 8£ 10 © for the functional method and the Gaussianprior, and 7:7£ 10 ©
for the pro Te and truncated pro le priors. The RMS errors per scaleare provided in
Figure 5.11and shav the samedichotomy, with the functional method and Gaussian
prior having a slightly larger RMS error at all scalesthan the pro le priors. Most
errors occur at the onearcminute scale,which is the scaleof the beam.

x10° ACT, SZ, rms per scale

functional
° o Gaussian
5 * + t. profile
*  profile

> 89 4.4 2.2 11 0.5 0.2
arcmin

Fig. 5.11{ RMS error in the SZ reconstruction, scaleby scale.

The RMS error, per scaleor in pixel space,is howewer not a good indicator of
the quality of the reconstructed maps when quality denotesrelevance for deriving
astrophysical constrains. We illustrate this fact by shaving a simulated 1.2 by 1.2
degreemap together with the reconstructed maps of our four methods in Figure
5.10. The qualitative commerns we can make from visual inspection of such mapsare
consisten with the quartitativ e study that follows.

Qualitativ e insp ection of the reconstructed maps.

Visual inspection of the reconstructedmapstells us that the Gaussianprior un-
derestimatesthe certral value of the most intenseclusters,whereasthe non-Gaussian
priors and the functional method perform this task much better. The functional me-
thod resolves more compact clusters better than the three statistical methods but
on the other hand doesa poor job at reconstructing the structures in the outskirts
of extendedclusters. The Besw norm we choseto constrain the smoothnessof the
clustersfor the functional algorithm promoteslocal fast transitions and is therefore
ableto pick up 89 % of the certral intensity of bright clusters(we explain in the next
subsectionhow this number is computed). Howeer, the badkground in the functio-
nal reconstruction (seebottom right panel of gure 5.10), shaws that structures of
lower intensity reconstructedwith this method are rather elongated.As a result the
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outskirts of the clustersare not well resohed and it is ditcult to assesghe extert
of a cluster using this method. The statistical method, on the other hand, is able
to link together smaoothly the outskirts of the clustersbecauseit takesinto accourt
the correlationsbetweenneighboring wavelet coetcients. The useof the pro le prior
for the statistical method inducesa substartial improvemert in the reconstruction of
the certral y-parameterof a cluster comparedto the Gaussianprior. Howewer, lower
intensity clusters are better resoled under the Gaussianprior becauseit imposes
lessregularity in the low-intensity range than the pro le prior. Suspecting that our
decorvolution method for the prior tendsto overweight low valuesof the multiplier,
we truncated the pro le prior. The results obtained with this secondpro le (middle
right panel of Figure 5.10) shov a compromisebetween the initial pro le and the
Gaussianprior : the certral parameterof bright clustersis as good as for the pro le
prior and lower intensity structures are better reconstructed.

Quantitativ e insp ection of the reconstructed maps.

When it comesto infer cosmologicalparametersfrom number courts in other
wavebands(i.e. X-ray or optical), the commonpracticeis to retain only the brightest
clusters which are lessa®ectedby selectione®ectsand have a better characterized
scaling function. We adopt here the samestrategy with SZ clusters, also motivated
by the fact that they are lessa®ectedby reconstruction errors.

Our rst task is to determine which obsenable is the most reliable to derive
cosmologicalparameters.As we explainedin the previous section we have to select
the angle .. over which the y-parameter should be averagedin the context of this
experimert. We smoothed the original and reconstructed maps over anglesranging
from O to 1.8 arcminutes, which is the sizeof the largestbeam.For eat suc anglewe
computethe slope and spreadassaiated to the best tting line to the cloudsof points
de ned by the original versusreconstructedaveragedy-parameter for eat detected
cluster in the original map. Increasingthe value of the averagingangle,we nd a big
improvemen whenthe anglereades0.9 arcminute, which correspndsto the smallest
beamof the experimenrt. The left panelof gure 5.12shows the ewlution of the slope
and spreadwith the averaginganglefor the fty brightest clustersin this study. The
slope and spreadimprove further after the 0.9 arcminute angle; howewer, because
the most compactclustersare about 1 arcminute wide, smoothing over larger angles
will blend the badkground with the clusters'y-parametervaluesunewenly for compact
versusmore extendedclusters. Therefore,we de ne our best obsenable for the ACT
experimert to be the y-parametervalue averagedover an angleof 0.9 arcminute. The
(Yirue ; Yreconstructed) Pairs obtained at this anglefor the ft y brightest clustersin this
experiment are displayed in the right panel of Figure 5.12for the four reconstruction
methods we consider. The top line is the line of perfect reconstruction, while the
other lines are the best tting lines for ead reconstruction. The bottom plain line
correspndsto the Gaussianprior, the dotted line to the truncated pro le, the dash-
dotted line to the prole and nally the dashedline is the best tting line for the
functional method. The slope and spreadare summarizedin table 5.2. We nd that
the the functional method yields the bestslope and spread,reconstructingon average
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89% of the intensity of bright clusterswith a spreadunder 10%. The performancesof
both non-Gaussiarstatistical methods are comparablealthough slightly lower, with a
slope around 0.84and spreadof 11%.The Gaussianprior performslesswell, consister
with what we obsened on the reconstructedmaps. It is able to recover 69% of the
intensity with a spreadof 16%.

ACT, y parameter slope/spread ACT, y parameter (average 0.9 arcmin)

T
[| — original
functional
© Gaussian
+ t. profile
* profile

functional

Gaussian
t. profile
profile

Reconstructed (x10 4 )

0 03 06 09 12 18 15 2 3 B ‘ 5
Diameter of the average in arcmin Original (x10 ™)
Fig. 5.12{ Left : Slope and spreadin function of the averagingangle (labeleddiame-

ter). Right : reconstructedversusoriginal certral y-parameteraveragedat 0.9 arcmin
for the Tty brightest clusters.

Method Statistical Functional
Gaussian Truncatedprole Prole

Slope 0.69 0.83 0.84 0.89

Spread 0.16 0.11 0.11 0.09

Tab. 5.2{ ACT experimert : slope and spreadfor the averagey-parameterof the 50
brightest clusters.

We nish the quartitativ e study of the reconstructed maps for the ACT expe-
riment by assessinghe quality of predictions that would be made from the recons-
tructed maps. Two questionscometo mind : do the structures found in the recons-
tructed map really correspnd to clustersin the input map? Can we assaiate a given
thresholdin the reconstructedmapto aninput clusterintensity with high con dence?
To answver these questions,we compute the purity and completenesof the samples
for given output intensities. The reconstructedand original mapsare smoothed to 0.9
arcmin and clustersare detectedin eat map. The purity of a sampleof reconstructed
clustersis the fraction of theseclustersthat have a courterpart in the original within
a radius of 0.6 arcminutes. For a xed threshold t in the original map, we use the
slope s and spread¢ de ned earlierto nd the sampleof detectedclustersin eah
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reconstructedmap that would predict true clustersabove t. More precisely we consi-
der that the detectedclustersin the reconstructedmap above threshold t:(1j ¢) :s
predict the number of true clusters above threshold t. The di®eren samplesin the
reconstructedmap then give predictions for the number of true clustersof intensity
greaterthan or equalto a prede ned value. Their purity can be compared.We nd
that reconstructedcluster samplesthat predict the existenceof true clusters of ave-
raged y-parameter above 1:5 £ 10 4 are pure, that is, all sucd detected clustersin
the reconstructedmap correspnd to true clusters.The purity of the statistical maps
seemsa bit lower than the purity of the functional map as the threshold decreases
(seeFigure 5.13, left panel). This is consistert with the fact that the correspnding
intensity in the reconstructedmapsis lower (becausehe slope is smaller). The com-
pletenessis de ned asthe ratio betweenthe number of clustersin the reconstructed
sampleto the number of true clustersabove the correspnding threshold. The com-
pletenessplot in Figure 5.13 shows that the using the threshold t:(1j ¢) :s in the
reconstructed maps is too optimistic for the Gaussianand the functional method
but yields accurate number courts for the two non-Gaussianstatistical priors. We
concludethat the non-Gaussianstatistical methods predict with great accuracythe
number of clusters of averagedy-parameterabove 1:5£ 10 4, with no false positive.
In this study, we found 50 sud clusters, thus the real ACT experimert will detect
around 150sud clusters. This is an appropriate number court to derive cosmological
constrairts.

ACT, y parameter purity ACT, y parameter completeness
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Fig. 5.13{ Purity (left) and completenesgright) of the reconstructedsamples.

5.4 Planck : a lower resolution experiment

The Planck missionis designedto image the anisotropiesof the Cosmic Micro-
wave Badkground Radiation over the whole sky. Although it will give unprecedeted
sensitivity and angular resolution for sud a task, the beam sizesand level of noise
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are noticeably bigger than for the ACT experimert (seeTable 5.3). The size of the
smallestbeam, around 5 arcminutes, is quite large comparedto the typical cluster

size(1 to 10 arcminutes).

Planck experimert

Frequencyof obsenation Beamsize Noiselevel
° (GHz) fwhm (arcmin) Y(* K)
143 7.1 6
217 5.0 13
353 5.0 40

Tab. 5.3{ The characteristics of the Plandk experimert at the frequenciesusedin
this work. The RMS detector noise per full-width-half-maximum pixel, labeled % is
given in thermodynamic temperature units.

In this work, we assesghe quality of our reconstruction methods on simulated
obsened maps containing only the CMB and SZ clusters' cortribution. We consider
the three frequenciesof obsenations wherethe cortributions of thesetwo signalsare
the strongest: 143,217 and 353GHz. The actual Planck experimert will make mea-
suremerts at higher frequencieswhere point sourcesand galaxy dust are dominan.
We rely on the fact that the use of these obsenations will allow to locate and esti-
mate point sources,and focus on the CMB and SZ signals. We useten simulations,
eadt of which is a 10 by 10 degreesmap. The CMB mapsare simulated by Gaussian
random elds using a power spectrum derived from the best- tting WMAP parame-
ters [5] (sameasfor the ACT experiment descriked in the previoussection). The SZ
simulated maps are taken from White [62, 65].

In Figure 5.14,we display the power spectrum of the di®eren signalscortributing
to the obsenations at the frequenciesvherethe clusters' signalis the strongest. The
power spectrum of the CMB and of the clustersis scaledby their frequencydepen-
dence,however the corvolution by the beamis not taken into accoun. As expected,
the CMB signal dominates the SZ clusters' signal except at ne scales(around 2
arcminutes). Taking into accourt the corvolution by the beam, i.e. multiplying the
power spectrum of the CMB and SZ clusters' signal by this of the beam, one can
seefrom these plots that the noise dominatesthe SZ signal at most scales.Under
theseconditions, we expect Planck to detect the most massie (or extended)clusters
only. The large areacoveredby the experimenrt, howewer, will allow to detecta sizable
number of them.

We usedboth our statistical and functional methods to analyzethesedata. Simi-
larly to our study of the previous experimert, we comparefour setsof results : the
Gaussian,pro le and truncated pro e prior distributions for the SZ clustersand our
best variational results, using an weighted L2 norm in wavelet spacefor the CMB
and a Besos norm for the clusters.We referto Section3.4 and 2.5.2for the details of
eat method.
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Fig. 5.14{ Power spectra of the signalscortributing to the obsenation for the Planck
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experimert. Left : at 143 GHz, right : at 353 GHz.

5.4.1 Reconstructions of the Cosmic Micro wave Background

As is the casefor the ACT experiment, the quality of the reconstructionsof the
Cosmic Microwave Badkground is similar for the four methods. Figure 5.16 shows a
5 by 5 degreegortion of one of the simulated mapstogether with the reconstruction
obtained from ead method. The total RMS error for the statistical reconstructions
is slightly lower (1:12£ 10 ° ) than for the functional method (1:16 £ 10 °). This
di®erenceof precisionis spreadacrossall scalegseethe RMS per scaleplots in Figure

5.15).

Both the RMS per scaleplots and the residualmapsof Figure 5.17tell usthat the
reconstructionsareaccuratefor scaledargerthat the typical beamsize(5 arcminutes).
The sizeof the beamin this experimert is the limiting factor of the reconstructions
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Fig. 5.15{ RMS error in the CMB reconstruction, scaleby scale.
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Fig. 5.16 { CMB, Plandk experimert. Top : original simulation, other panels: re-
constructions. Middle left : Gaussian,middle right : truncated pro le, bottom left :
pro le, bottom right : functional. The mapsare 5£ 5 degrees.
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Fig. 5.17{ CMB, Plandk experimert : residuals. Top left : Gaussian,top right :

truncated pro le, bottom left : pro e, bottom right : functional. The mapsare5£ 5
degrees.
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of the Cosmic Microwave Background °uctuations, regardlessof which method is
employed.

5.4.2 Reconstruction of the SZ clusters

As expectedfrom the sizeof the beamand the level of noisein this experimert,
we nd that we canreliably reconstruct only bright and extendedclusters.In gure
5.18,we show an input y map togetherwith the reconstructedmapsfor ead method.
In these gures we seethat the statistical and functional methods have very di®eren
behavior at low signal-to-noiseratio. The statistical method is rather consenative,
yielding a low amplitude reconstruction,evenfor massiwe and bright clusters,whereas
the functional method allows to recover the amplitude of the signal better at the
expenseof having a strong residual signal spreadacrossthe map. The mapsobtained
by the statistical method on the cortrary are well localized.We notice the e®ectof the
prior distribution is the sameasfor the ACT experimert. The Gaussianassumption
for the clustersallows to recover more low intensity signal. The pro le prior causes
the amplitude of the bright clustersto be better reconstructed, but at the same
time underestimateslower clusters. The truncated pro le prior reachesa consensus
betweenthe two. Only a few clusterscanbe detectedfrom the reconstructedstatistical
maps (low completeness)however, the purity is maximal : every cluster detected
(above a threshold y-parameterof 2£ 10 °) is a true cluster. This is not the casefor
the functional method. Becauseof the rather intenseresidual structure, a signi cant
number of clusterswould be detectedin the functional map that do not exist. One
would needto increasethe threshold up to 5£ 10 ° to obtain maximal purity in this
case.

We selectedthe eight brightest and most extendedclustersout of our ten simu-
lations to quartitativ ely comparethe reconstruction of the certral y-parameterwith
the di®eren methods. Typically, these massiwe clusters are about 10 arcmin wide
and their maximal y-parameterexceeds$£ 10 °. As is the casefor ACT experimert,
we nd that the obsenable that readesthe best trade-o®betweenthe adequation
to the original data and the spreadis the averagevalue of the certral y-parameter
over an angle of roughly the samesize as the beam. Figure 5.19 shaws the output
averagedcertral y-parameterfound in the reconstructedmapsversusinput averaged
certral y-parameterin the original mapsfor the eight clustersselected.The top line
is the line of perfectreconstruction, the other lines show the best tting line for eat
method. In the table 5.4, the slope and spreadcorrespnding to theseeigh clusters
is quoted for ead reconstruction.

As canbeobsenedonthe reconstructedmapsin Figure 5.18,taking in accourt the
non-Gaussianiy improvesthe reconstruction of the certral y-parameter by a factor
4 (truncated pro Ie) to 6 (pro le) over the Gaussianprior in the statistical method.
The functional method is evenmoreaccurate,improving the reconstructedvaluesby a
factor 9 over the Gaussianstatistical method and 1.5 comparedto the best statistical
method. Although the slope is signi cantly improved over the Gaussianprior, the
spreadin the non-Gaussiarstatistical reconstructionsis somewhathigh : around 30%
of the nominal value. This could be a potential problem when it comesto deriving
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Fig. 5.18{ SZ clusters, Planck experimert. Top original simulation, other panels:
reconstructions.Middle left : Gaussian,middle right : truncated pro Te, bottom left :
pro le, bottom right : functional. The mapsare 5£ 5 degrees.
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Fig. 5.19{ Reconstructedversusoriginal certral y-parameter (4.8 arcmin average).

Method Statistical Functional
Gaussian Truncatedprole Prole

Slope 0.07 0.26 0.44 0.63

Spread 0.13 0.27 0.32 0.09

Tab. 5.4{ Planck experimert : slope and spreadfor the averagey-parameter of the
eight most massiwe and bright clusters.
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cosmologicalparametersfrom these reconstructions. In this regard, the functional
method yields a signi cant improvemen over the statistical method altogether, it
recovers on average63 % of the input y-parameter value with a spreadthat is less
than 10 % of this input value.

We concludethat under the conditions of the Planck experimert presened here,
only bright extendedclustersmay be recovered. The two methods we proposecom-
plemert ead other : the shape and localization of the clustersis much better resolhed
by the statistical method, whereasthe functional method is more accurate and re-
liable for the estimation of the certral y-parameter. Neither method seemsto be
self-sutciert in this caseto derive cosmologicalparametersaccurately Howewer, if
one is willing to do the reconstructionswith both methods, one could use a map
reconstructedfrom the statistical method to locate massie clusters, (which can not
be donereliably with the functional reconstruction,) and then usethe result of the
functional method to infer the y-parameter of the detectedclusters.

The actual performancesof the Planck instrument may be better than the ones
usedin these simulations. In particular the noisein the sky will not be uniformly
distributed becausesomeareaswill be better sampledthan others. We assessethe
relevance of the noiselevel on the performancesof the statistical method by perfor-
ming a similar analysison the Planck mapswith a reducedlevel of noise(a factor 7
lower). We nd that in theseconditions the non-Gaussianstatistical methods reco-
ver around 60% of the y-parameter with a spreadof the order of 10% (see[45 for
more details). This shows that the limiting factor for the statistical method in this
experimert is the noiselevel.

5.5 The in°uence of point sources

In the studies we presened in the last two sections,we have made the simpli-
fying assumptionthat the cortribution of the point sourcesand the Galaxy dust were
negligible or had been extracted from the obsened maps before we processthem.
The third study we presen here aims at assessingvhether the methods we propose
are robust to the presenceof the point sourcesand Galaxy dust. The data we use
were simulated by astrophysicist Dominique Yvon and collaborators at CEA, France.
The frequenciesof obsenation, beam sizeand noiselevel correspnd to those of the
OLIMPO survey and are given in table 5.5. OLIMPO is an ongoing project which
aims at measuringthe Suryaev-Zeldwich e®ectin many clustersof galaxiesduring a
long-duration balloon °ight. The sizeof the beamin this experimert is intermediate
betweentheseof the ACT and Planck experimerts we descriled earlier. The expe-
riment will collect data in four di®eren frequency channels. Examples of obsened
maps can be found in Figure 5.5 (the 265 GHz obsenation has been produced for
displaying purposesonly and is not usedin the study). At the two largestfrequencies,
385and 600GHz, the point sourcesand Galaxy dust dominate the obsenations. The
CMB signal on the other hand dominatesthe obsenation at the lower frequencies,
143 and 217 GHz. The clusters' cortribution is maximal at 385 GHz but is largely
dominated by point sourcesand dust, thereforethe most reliable channelto obsene
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the SZ e®ects the lowest frequencychannel: 143GHz. The simulated data we study
here cover a four hundred degreesquareportion of the sky.

OLIMPO experimert

Frequencyof obsenation Beamsize Noiselevel
° (GHz) fwhm (arcmin) ¥t K)= Hz

143 3 150

217 2 200

385 2 500

600 2 5000

Tab. 5.5{ The characteristicsof the OLIMPO experimert.

5.5.1 Results obtained with the statistical metho d

For the statistical method, we comparethe reconstructionsyielded by di®eren
sets of distributions. The histograms of the wavelet coezcients of the Galaxy dust
are well- tted by a Gaussian.Moreover, we do not expect that the presenceof dust
will causea major deterioration of the clusters' signal, becausethe Galaxy dust is
smaoth and slowly varying and 1lls up the space.Therefore, the prior for the CMB
and the Galaxy dust are xed to Gaussian,and we focuson the in°uence of di®eren
priors for the point sourcesand clusters.

To getanideaof the problemsencouriered with the introduction of point sources,
we rst tried the simplestprior for the clusters,i.e. the Gaussianprior, and compa-
red the results obtained when the point sourcesare assumedGaussianto the results
obtained using Je®rey'sprior. The Gaussianprior is obviously not the best tting
prior for the point sourcesbecausetheir extert is under a pixel size and they are
sparselydistributed. We sav that modeling the non-Gaussianiy of the clustersleads
to better reconstruction of the SZ e®ectin the cortext of the ACT and Plandk expe-
riments aswell. Howewer, we also found in the two previous studiesthat the quality
of the reconstructionsof the CMB signal doesnot changebetweenthe casewherethe
clusters' prior is Gaussianand whenit is not. This shavs that in the simpli ed case
whereonly the CMB and SZ e®ectare presen in the obsenations, the reconstruction
of oneparticular componert (the CMB) is largely independent of the prior chosenfor
the other componert (the SZ signal). Sothe rationale for examining the casewhere
all four priors are assumedGaussian,even if we know this model is too simple, is to
understandwhether the reconstructionsof the di®eren signalsare independert from
eat other aswasthe casefor the CMB/SZ experimerts.

We nd that the statistical method is very robust to the introduction of point
sourcesand Galaxy dust as far as the estimation of the CMB and clusters signals
are concerned.Indeed, even when all signals are assumedGaussian,the precision
of the reconstructedmaps of the CMB and clusters signal is similar to the quality
that would be expected from our study of the ACT and Planck experimerts. The
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CMB signal is very well estimated down to scalesaround 5 arcminutes, which is
slightly larger than the beamssizeand no tracesof point sourcesor Galaxy dust can
be found. The algorithm is able to separatepoint sourcesfrom SZ clusters, and the
reconstructed clusters maps have similar quality to those seenfor ACT, given the
sizeof the beam.Herethe obsenable we useto assesshe quality of the clustersmap
is the averagey-parameter over an angle of two arcminutes. Clusters are detected
as local maxima that dominate over a three arcminutes angle and are consideredto
correspnd to a cluster in the original map if the two certers are lessthan two and
a half arcminutes apart. Even when clustersare assumedGaussian,the purity of the
clusterssamplefrom the reconstructedmapsis high (about 97 %) for intenseclusters
(i.e. with certral averagey-parameterbiggerthan 10 °). This provesthat no intense
point sourcesare confusedwith the clusters,evenwhenthe point sourcesare modeled
with the Gaussianprior.

Surprisingly, the reconstructed map of the point sourcesallows to locate them
accurately even when they are assumedGaussian.The estimated point sourcesare
not as compact as a pixel but are extendedto roughly the size of the beam. The
beamis small enoughcomparedto the meandistancebetweentwo point sourceghat
this is not a problem in this experimert. Howewer, the intensity of the point sources
is underestimated (around 25 % of their value). Moreover we nd the algorithm
confusedbadground noisewith the point sourcesmap. A white noiseis spreadout
in the reconstructed point sourcemap, but fortunately, its level is lower than the
intensity of most point sources.The estimation of the Galaxy dust map is accurate
a coarsescale(around 20 arcminutes) but smaller °uctuations are not reconstructed
at all.

We now comparethe results we obtained by xing the prior to Gaussianfor all
signalsto the reconstructionsobtained when Je®rey'sprior (i.e. the log-uniform dis-
tribution onthe multiplier) is usedfor the point sourcegstill usingthe Gaussianprior
for all the other signals). As expectedthe point sourcesmap is much better recons-
tructed, the badkground noise obsened earlier has disappeared. The point sources
themselhesare still extendedto the sizeof the beam. Their intensity is slightly better
estimatedthan beforebut is still low (around 35%). Although the prior on the Galaxy
dust map has not changed, smaller scalesare reconstructedwith this set of priors,
indicating that the quality of the reconstruction of the Galaxy dust dependson the
accuracyof the point sourcesmap. This seemaatural sincepoint sourcesand Galaxy
dust have very similar frequencydependenceat the frequenciesof obsenation used
here.On the other hand, the quality of the CMB and intenseclusters'reconstructions
remainsthe same,indicating that the statistical method usedhereis ableto separate
signalsprimarily on the basisof their frequencydependence.

Finally, we studied in further detail the quality of the SZ clustersreconstructions
in this experimert by allowing the prior of this signalto be non-GaussianThe results
we obtain are consistert we our remarks above : the reconstruction of other signals
is not a®ectedby changingthe prior of the clusters. The qualitative and quartitativ e
di®erencedbetweenthe Gaussian,the pro le, and truncated pro le prior are similar
to thosewe found in the ACT experimert. That is to say, the pro le prior allows to
recover the intenseclustersmore accurately than the Gaussianprior, at the expense
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of underestimating lower intensity clustersand the truncated pro le prior reachesa
compromisebetweenthe other two.

We concludethat under the conditions of the OLIMPO experimert, the presence
of the point sourcesand Galaxy dust will not a®ectthe quality of the SZ maps
estimated by using the statistical method we propose.

5.5.2 Results obtained with the functional metho d

The functional variational method we proposeto reconstruct the signalsis much
more a®ectedby the introduction of point sourcesWe did not nd a balancebetween
the eight termsin the functional (four error terms and four regularization terms) that
allows to accurately recover all signalsat the sametime. With the nominal values
descriked in Section2.5.2,the CMB is reconstructedcorrectly although it is a little
smaother than expected, but only a coarsescaleappraximation of the clusters'signal
is recovered. The point sourcesmapsis very well localized (the extent of estimated
point sourcesis typically smaller than the beam size). Howewer, only 35% of their
intensity is recoveredin the estimated point sourcesmap, and the remainder of this
signal is attributed to the Galaxy dust, in the form of extendedpoint sourcesof the
sizeof the beamon top of the Galaxy dust itself.

This lead us to conduct a smaller casestudy in order to determine whether the
Galaxy dust and point sourcescan be separatedat all using this method. We ge-
nerated obsenations with the parametersof the OLIMPO survey, only omitting the
cortribution of the CMB and SZ cluster's signal. From these obsenations we tried
to separatethe Galaxy dust signalfrom the point sourcesWe nd that the regulari-
zing terms of thesetwo signalshave to be balancedtaking into accoun the relative
amplitude of the Galaxy dust variations and the intensitpg of the point sources.This
Ieadstg, choosing the parameters®y and °s sothat °s  _(|y)2a 29jhfy;" P2 »
100°;5 e If3(pixel)j, rather than of the sameorder. With these parameters,the
functional algorithm is able to reconstruct both the point sourcesand the Galaxy
dust with great accuracy In particular, the estimated point sourcemap is free of
noiseand the intensity of the point sourcess recoveredat 90%. Moreover, the extert
of the estimated point sourcesis extremely closeto one pixel, with the intensity de-
caying sharply at the four closestpixelsif it is not zero. Sud accuracyin the point
sourcesmap can not be achieved by the statistical method becauset is constrained
to estimate the point sourcesmap in wavelet space,causingthe extert of the point
sourcesto be limited by the ner wavelet scale.

Howewer, we nd that the balancebetweenpoint sourcesand Galaxy dust terms
is greatly a®ectedy the reintroduction of the CMB and clusterssignal. In particular,
a complicatedinterplay occursbetweenthe reconstructionsof the clusterssignal, the
Galaxy dust signal and the point sourcesAs a result, the estimation of the clusters'
map is either too coarseor cortains point sourcesthat will make the detection of
clustersunreliable. Finding a better way to balancethe di®eren terms is extremely
dizcult becausecortrarily to what we obsened for the statistical method, the es-
timation of one particular signal is greatly a®ectedby the estimation of the other
signals,making it impossibleto study the in°uence of one parameterat a time.
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We concludefrom this study that the presenceof point sourcess a major concern
with the functional variational algorithm we proposed, preverting the method to
reconstruct accurately all signalsat the sametime. Howewer, we nd that in the
restricted casewhere only the point sourcesand the Galaxy dust maps are to be
extracted, this method is able to locate and estimate the point sourceswith great
accuracyboth in intensity and in spatial extert. Therefore,the functional algorithm
we proposecould be usedin other type of experimerts where the focusis the point
sources;to locate and estimate them accurately From a more generalpoint of view,
the successf the restricted experimert cortaining only point sourcesand Galaxy
dust shows that our innovative use of norms de ned by di®eren tight frames for
di®eren signalsis promising.

5.6 Summary of the results

In this chapter, we have applied both the variational approat and the statisti-
cal approat we described in Chapters 2 and 3 to estimate the major astrophysical
componerts presen in surveys of the sky at the frequenciesbetween 100 and 600
GHz. There are four of thesecomponerts : the Cosmic Microwave Badkground, the
Suryaev-Zeldwich e®ectthe infrared point sourcesand the Galaxy dust. Our goalis
to obtain reliable information on the clusters of galaxiesby reconstructing accurate
maps of the Sunyaev-Zeldwich e®ect.

Sincethe SZ e®ects a °uctuation of the CMB radiation, the reconstructionof the
CMB radiation is inherert to the estimation of the clustersof galaxiesthrough their
Suryaev-Zeldwich signature.The point sourcesand Galaxy dust, howewver canbe seen
aspollutants of asecondorder. They dominatelarger frequencief obsenations while
the CMB and clusters signal are more intenseat smaller frequencies.Therefore, we
‘rst assessethe quality of our methods on simulated data ignoring point sourcesand
Galaxy dust. Sincedi®eren sky survey may have very di®eren resolution, noiselevel
and be able to cover di®eren extent of the sky, we studied two test casesof di®erert
nature. The rst one, ACT will cover a small portion of the sky with a resolution
of the order of one arcminute and moderate noiselevel. The secondexperimert we
consider, Plandk, will cover the whole sky with a resolution of "v e arcminutes and
higher level of noise.In a third study, with intermediate resolution and moderate
noise,we assessethe in°uence of point sourcesand Galaxy dust.

For eat experimert, we comparedthe results obtained for the functional method
to seweral setsof results obtained with the statistical method, where di®eren priors
were used. The \Gaussian statistical approad” refersto the casewherethe clusters'
signal is modeled by a Gaussianprior and the \non-Gaussian statistical approad”
to other cases.

Our ndings are the following :

{ The mostreliable obsenable of the SZ clustersis the y-parameteraveragedover
an angle of the sameorder asthe beamsize.(The y-parameteris the quartity
intrinsic to a cluster of galaxiesthat determinesthe amplitude of the resulting
Suryaev-Zeldwich e®ect).
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{ In the absenceof points sourcesand Galaxy dust, both methods perform si-
milarly. The CMB signal is reconstructedaccurately down to the scaleof the
smallestbeam. However somedi®erencesre noticed :

The functional approad and non-Gaussianstatistical approad outperform the

Gaussianapproad in the estimation of intenseclusters.Moreover, the statistical

method does a better job at estimating the structure of the clusters whereas
the functional approad recovers more intensity.

For the high resolution experimert, ACT, we nd that the clusters' signal is

very accurately estimated by both methods, esgecially for the intenseclusters.
We concludethat both the non-Gaussianstatistical reconstructionsand the

functional reconstructionyield estimatesof the averagey-parameter of intense
clustersthat could be usedto constrain cosmologicalquartities.

For the low resolution experimert, Plandk, we nd that the reconstructionsof

the SZ e®ectare limited to bright and very extendedclusters.The reliability of

the detection of theseclustersin the functional reconstructionsis low because
large residual structures appear. Howewer, the estimation of the averagedy-

parameter is remarkably stable at the location of the true clusters. This, in

a sensecompletesthe performancesof the non-Gaussianstatistical approad.

In that case,extendedclusterscan be detectedreliably becausethe structure

surroundingthe peak of intensity are well estimated. Howewer the spreadof the

averagey-parameter reconstructedis too high to be trusted. We concludethat

under theseconditions neither methods are self-sutcier to derive cosmological
parametersfrom the reconstructedSZ maps. Howewer, we determinedthat the

limiting factor in this caseis the noiselevel, which may be improvedin the true

experimert in someareasof the sky that are obsened for a longertime.

{ The statistical method is robust to the introduction of point sourcesand Ga-

laxy dust, leading to accurate estimatesof the CMB and clusters signal. We
determinedthat for this approad, the estimation of a single componert does
not a®ectother componerts which have a di®eren frequencydependenceThus,
it is not necessarywith this method to recover the point sourcesaccurately to
obtain a satisfying clusters' signal.
This is not the casefor the functional approad, wherea complicatedinterplay
betweenthe di®eren terms makesit ditcult to study the precisionof the re-
construction of ead componert separately As a result, we were not able to
recover all four signalssimultaneously with this approad in orderto nd asa-
tisfying cluster map. We note howewer that the functional approad we propose
can be usedto recover the point sourceswith almost perfect accuracyboth in
terms of their intensity and their spatial extert, whenthe number of signalsis
reduced.
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Titre : Approchesen ondelettespour la sgparation et la d§corvolution simultan®es.Appli-
cation g desdonn§esastrophysiques.

R@sum® : Cette thpseest consacfe au problpme de s§paration de composartes lorsque
celles-cisont des images de structure di®§rerte et que I'on en obsene un ou plusieurs
m@lange(s)°ou(s) et bruit §(s). Les problgmesde d§convolution et de sBparation, tradition-
nellemert §tudifs s§pa®mert, sort ici trait §ssimultan§mert.

Une fason naturelle d'aborder le problgme multicomp osarts/m ultiobservations est de
gBnraliser les techniquesde d§corvolution d'une image unique. Le premier r§sultat est une
fitude math§matique d'un tel algorithme. Preuve est faite que celui-ci est corvergert mais
pasr@gularisart et une modi cation restaurant cette propri§t® est proposge.Le sujet princi-
pal estle d§weloppemert et la comparaisonde deux m$§thodespour traiter la d§corvolution
et sBparation simultan®$esde composartes. La premigre est badie sur les propri §t§s statis-
tiques locales des composartes tandis que dans la seconde,ces signaux sort d§crits par
desespacedonctionnels. Les deux m$§thodesutilisent destransform§esen ondelettesredon-
dantes pour simpli er les donn§es.

Les performancesdes deux algorithmes sort $valu§eset compaesdans le cadre d'un
problgme astrophysique : I'extraction des amas de galaxies par I'e®et Sunyaev-Zel'dovich
danslesimagesmultisp ectralesdesanisotropiesdu fond cosmique.Dessimulations r§alistes
sorn §tudi$es.On montre qu'a haute r§solution et niveaude bruit mod$§r§, lesdeux m§thodes
permettent d'extraire des cartes d'amas de galaxies de qualit§ sutsante pour des §tudes
cosmologiquesLe niveau de bruit est un facteur limitant p basser§solution et la m§thode
statistique estrobuste g la prsencede points sources.

Mots-cl $§s:estimation/d §tection de signaux, ondelettes,approche statistique/variationnelle

Title : Di®erent Wavelet-basedApproachesfor the Separation of Noisy and Blurred Mix-
tures of Componerts. Application to Astrophysical Data.

Abstract : This thesis addresseghe problem of separating image componerts that have
di®erer structure, when seweral obsenations of blurred mixtures of these componerts are
available. In the image processindliterature, the deblurring problem hasbeenwell described
for a singlecomponert in a singleimage and the separation problem mainly studied without
blurring. In this thesis, the full problem is addressedglobally, the separation being done
simultaneously with the denoisingand deblurring of the data, by generalizingmethods that
exist for the enhancemen of a single image.

The “rst result is a mathematical analysis of a heuristic iterativ e algorithm for the en-
hancemen of a singleimage. This algorithm is provedto be convergert but not regularizing;
a modi cation is introducedthat restoresthis property. The main object of this thesisis to
dewvelop and comparetwo methods for the multi-comp onerts/m ulti-observations problem :
the rst method usesfunctional spacesto describe the signals; the secondmethod models
the local statistical properties of the signals. Both methods use wavelet framesto simplify
the description of the data.

Both algorithms are evaluated with regardsto a particular astrophysical problem : the
reconstruction of clusters of galaxiesby the extraction of their Sunyaev-Zel'dovich e®ectin
multifrequency measuremets of the Cosmic Microwave Background anisotropies. Realistic
simulations are studied. It is shovn that both methods yield clusters maps of suzcient
quality for subsequeh cosmologicalstudies when the resolution of the obsenations is high
and the level of noise moderate. Then somelimiting factor are pointed out.

Keyw ords : signal estimation/detection, wavelets, statistical/v ariational approad.



