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Abstract

This thesis addresses the problem of separating image components that have different
structure, when different observations of blurred mixtures of these components are
available. When only a single component is present and has to be extracted from
a single observation, this reduces to the deblurring and denoising of one image, a
problem well described in the image processing literature. On the other hand, the
separation problem has been mainly studied in the simple case of linear mixtures (i.e.
without blurring). In this thesis, the full problem is addressed globally, the separation
being done simultaneously with the denoising and deblurring of the data at hand.

One natural way to tackle the multi-components/multi-observations problem in
the blurred context is to generalize methods that exist for the enhancement of a
single image. The first result presented in this thesis is a mathematical analysis of a
heuristic iterative algorithm for the enhancement of a single image. This algorithm
is proved to be convergent but not regularizing; a modification is introduced that
restores this property. The main object of this thesis is to develop and compare
two methods for the multi-components/multi-observations problem: the first method
uses functional spaces to describe the signals; the second method models the local
statistical properties of the signals. Both methods use wavelet frames to simplify the
description of the data. In addition, the functional method uses different frames to
characterize different components.

The performances of both algorithms are evaluated with regards to a particular
astrophysical problem: the reconstruction of clusters of galaxies by the extraction of
their Sunyaev-Zel’dovich effect in multifrequency measurements of the Cosmic Mi-
crowave Background anisotropies. Realistic simulations are studied, that correspond
to different experiments, future or underway. It is shown that both methods yield
clusters maps of sufficient quality for subsequent cosmological studies when the re-
solution of the observations is high and the level of noise moderate, that the noise
level is a limiting factor for observations at lower resolution, and that the statistical
algorithm is robust to the presence of point sources at higher frequencies.
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Résumé

Cette thèse est consacrée au problème de séparation de composantes lorsque celles-
ci sont des images de structure différente et que l’on en observe un ou plusieurs
mélange(s) flou(s) et bruité(s). Les problèmes de déconvolution et de séparation,
traditionnellement étudiés séparément, sont ici traités simultanément.

Une façon naturelle d’aborder le problème multicomposants/multiobservations est
de généraliser les techniques de déconvolution d’une image unique. Le premier résultat
présenté est une étude mathématique d’un tel algorithme. Preuve est faite que celui-
ci est convergent mais pas régularisant et une modification restaurant cette propriété
est proposée. Le sujet principal est le développement et la comparaison de deux
méthodes pour traiter la déconvolution et séparation simultanées de composantes.
La première méthode est basée sur les propriétés statistiques locales des composantes
tandis que dans la seconde, ces signaux sont décrits par des espaces fonctionnels. Les
deux méthodes utilisent des transformées en ondelettes redondantes pour simplifier
les données.

Les performances des deux algorithmes sont évaluées et comparées dans le cadre
d’un problème astrophysique : celui de l’extraction des amas de galaxies par l’effet
Sunyaev-Zel’dovich dans les images multispectrales des anisotropies du fond cosmique.
Des simulations réalistes sont étudiées. On montre qu’à haute résolution et niveau de
bruit modéré, les deux méthodes permettent d’extraire des cartes d’amas de galaxies
de qualité suffisante pour des études cosmologiques. Le niveau de bruit est un facteur
limitant à basse résolution et la méthode statistique est robuste à la présence de
points sources.
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Présentation générale

Cette thèse a été préparée en cotutelle entre les laboratoires du Program in Applied
and Computational Mathematics (PACM) à Princeton University (USA) et du Centre
de Mathématiques APpliquées (CMAP) à l’École Polytechnique. Ce travail a été dirigé
par le professeur Ingrid Daubechies et co-dirigé par le professeur Stéphane Mallat.
Dans le cadre de la cotutelle, un unique manuscrit a été rédigé en anglais et ce présent
chapitre constitue un résumé étendu en langue française. Il est à noter que ce chapitre
est repris largement dans le chapitre 1 en anglais et que le lecteur à l’aise avec la langue
anglaise peut donc commencer sa lecture au dit chapitre.

Le traitement des images

Les progrès technologique en matière de technique d’acquisition d’images ainsi
qu’en terme de capacité de stockage de l’information sont à l’origine du fait qu’une
masse colossale de données de plus en plus précises sont acquises dans l’espoir d’ob-
server et comprendre des phénomènes de plus en plus fins. Il va donc de soi que les
techniques de traitement d’images, c’est-à-dire les techniques qui servent à améliorer
et analyser les images acquises doivent progresser en conséquence.

Le travail présenté dans cette thèse s’inscrit dans une optique d’analyse, de déve-
loppement et d’évaluation de techniques mathématiques pour le traitement des images.
L’analyse de techniques existantes permet de comprendre leur avantages et défauts
pour développer des méthodes plus efficaces. Les méthodes développées ici le sont
dans un cadre général mais leur évaluation se fait dans le cadre particulier d’une
application en astrophysique. En effet, il est peu probable qu’une technique parti-
culière soit bien adaptée à tout type d’images, une évaluation générale donne donc
une idée imparfaite de la qualité des résultats obtenus en terme de la question scienti-
fique à laquelle on souhaite répondre après traitement des images acquises. Le but de
notre évaluation est donc détablir les performances des méthodes développées pour
une application particulière, qui s’inscrit dans le cadre d’une collaboration avec des
astrophysiciens et est à l’origine du développement de ces méthodes.

Cadre mathématique des problèmes abordés

Dans cette thèse, nous nous intéressons à des problèmes de traitement des données
qui peuvent être décrits dans le cadre mathématique suivant. Nous cherchons à estimer
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un ou plusieurs objets, notés f1, . . . , fM , à partir d’une ou plusieurs observations,
notées g1, . . . , gL. Nous supposons que les processus d’acquisition des observations
sont connus et peuvent être décrits par des opérateurs linéaires, à un terme d’erreur
près. En d’autres termes, nous supposons connus les opérateurs linéaires Tm,l tels que
les observations gl vérifient :

∀l ∈ [[1, L]], gl =
∑M

m=1 Tm,l fm + nl (1.1)

où chaque terme nl est un terme de bruit.

Ce cadre général permet de décrire des problèmes variés en traitement d’images.
Parmi eux, on trouve les problèmes relatifs à l’amélioration d’une image unique (M=
L= 1) tels que le débruitage (T1,1 est l’identité) ou la déconvolution d’une image (T1,1

représente une convolution). On trouve aussi les problèmes dit de fusion de données
(M = 1, L > 1), où le même phénomène physique f1 est observé grâce à différentes
techniques : par exemple, une IRM du cerveau est enregistrée simultanément avec
une électro-encéphalographie (EEG) de ce même cerveau, on obtient deux images
g1 et g2 du même phénomène f1 acquises sous différentes modalités, et la fusion de
ces données consiste à utiliser les informations contenues dans ces deux acquisitions
simultanées pour estimer le phénomène f1. Enfin, on trouve aussi des problèmes où
plusieurs phénomènes physiques se superposent dans les observations, il s’agit alors
de séparer ces composantes.

Contributions

Les contributions de cette thèse se situent à plusieurs niveaux dans le cadre de
l’étude et des problèmes décrits par l’équation (1.1).

Un permier volet de cette thèse est l’analyse mathématique d’un algorithme heuris-
tique proposé pour la déconvolution d’une image. Cette analyse montre la convergence
et identifie les conditions sous lesquelles cet algorithme est régularisant. Elle met aussi
en évidence une propriété non-désirable de cet algorithme : il perd irrémédiablement
de l’information dans certains cas. Nous proposons une légère modification qui garde
les avantages de l’agorithme heuristique initial et ne présente plus ce défaut.

Dans un second volet, cette thèse présente deux méthodes de résolution de l’é-
quation (1.1) adaptées aux cas où l’on souhaite réellement estimer plusieurs objets
à partir de plusieurs observations (M > 1 et L > 1). L’une des méthodes est basée
sur une description statistique locale des composantes à estimer et est adaptée au
cas particulier de la déconvolution de mélanges de composantes. La seconde méthode
passe par la minimisation d’une fonctionnelle variationnelle et permet de résoudre
l’équation (1.1) dans le cadre général.

Enfin, ces deux méthodes sont mise en oeuvre et leurs performances sont com-
parées dans le cadre d’un problème astrophysique particulier : l’extraction des amas
de galaxies à partir des données multifréquences d’observations du fond diffus cos-
mique. Cette étude prend en compte le fait que les caractéristiques (par exemple la
résolution, le niveau de bruit...) varient grandement selon la mission d’observation
astrophysique et nous évaluons les performances des algorithmes proposés en terme
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de leur fiabilité pour les études astrophysique qui s’en suivent.

Plan du manuscrit

Après le chapitre 1 introductif, cette thèse est constituée de quatre chapitres.
Les trois premiers sont théoriques et exposent les méthodes développées ainsi que
l’étude d’un algorithme heuristique. Le dernier chapitre est dédiée à l’application
astrophysique.

Plus précisément, le chapitre 2 est consacré à des méthodes de traitement de
l’équation (1.1) par minimisation d’une fonctionnelle variationnelle. Le formalisme
sur lequel nous nous basons est rappelé à la section 2.2. S’en suivent deux parties.
La première consacrée à l’étude mathématique de l’algorithme heuristique de J-L
Starck et de la modification proposée et fait l’objet des sections 2.3 et 2.4. La seconde
partie décrit l’adaptation de la méthode variationnelle aux cas multi-objets/multi-
observations et en particulier pour le problème de l’extraction des amas de galaxies
et fait l’objet de la section 2.5.

Le chapitre 3 est également un chapitre théorique. Il décrit une méthode statistique
pour traiter le problème posé par l’équation (1.1) dans le cas particulier de mélanges
floues de composantes. Le modèle choisi pour décrire les composantes est expliqué
dans la première section, la dérivation de l’estimateur dans la seconde section et les
choix des différents paramètres dans la troisième section. La dernière section de ce
chapitre explicite ce modèle dans le cadre de l’application à l’extraction des amas de
galaxies.

Avant de passer à l’application astrophysique elle-même, nous rappelons au cha-
pitre 4 les propriétés des systèmes d’ondelettes utilisés.

Le chapitre 5 détaille l’application des méthodes proposées à l’extraction des amas
de galaxies à partir des données multifréquences d’observations du fond diffus cos-
mique. Les phénomèmes astrophysiques sont décrits dans la première section. Les
méthodes d’estimation de la qualité des reconstructions font l’objet de la seconde sec-
tion. Enfin les performances des algorithmes proposés sont comparées qualitativement
et quantitativement dans le cadre de trois expériences aux spécifications différentes
et les conclusions sont tirées dans la section finale.
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Chapitre 1

Introduction

Imaging refers to the science of obtaining pictures or more complicated spatial
representations, such as animations or 3-D computer graphics models, from physical
objects. In a scientific context, the acquired images reflect measurements of physical
quantities that are analyzed to understand the spatial properties of the observed
phenomena. Imaging techniques have been developed to measure different quantities,
with different resolution and reliability. These techniques keep improving, allowing
us to collect and store more data, with greater precision, which in turns makes it
possible to seek to understand finer scale phenomena. However, the quality of an
image is naturally limited by the physical characteristics of the instrument used to
collect the data, such as the size of the optical system and its maximum sampling
rate, and by the physical limits linked to the phenomenon itself. E.g. the amplitude
of the signal of interest may be very low compared to the amplitude of other signals
that are necessarily imaged at the same time. Therefore image processing tools have
to be developed simultaneously to imaging techniques, so that the improvements in
image acquisition can be exploited optimally.

The contributions of this thesis are the analysis of existing methods and the deve-
lopment of new methods for the processing of images under the following assumptions :
one seeks to recover the set of image components, f1, . . . , fM , with M ≥ 1, given a
set of L observed images g1, . . . , gL, with L ≥ 1, knowing the linear operators Tm,l,
m ∈ [[1,M ]], l ∈ [[1, L]] such that the observed images gl can be modeled by

∀l ∈ [[1, L]], gl =
M∑

m=1

Tm,l fm + nl (1.1)

where each nl denotes a noise term and [[k1, k2]] denotes the set : {k ∈ Z : k1 ≤
k ≤ k2}. In this framework, the components f1, . . . , fM reflect measurements related
to different phenomena. One may be interested in all, some, or even only one of
them. A large set of image processing problems can be described by equation (1.1) :
the denoising of one image (M = L = 1 and T1,1 is the identity) ; the deblurring
of one image (M = L = 1 and T1,1 is a convolution) ; the fusion of images of the
same phenomenon acquired by different modalities, (M = 1, L > 1) if the process of
acquisition for each modality can be considered linear ; the extraction of components
from several observations of linear mixtures of these (M > 1, L > 1, Tm,l are scalars)...
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There are many different ways to develop image processing algorithms. At one
end of the spectra are algorithms giving the analytic solution to a mathematical pro-
blem where each unknown has been modeled precisely enough so that the solution
is defined without ambiguity and can be computed. For example, if the image f
and the noise n are independent Gaussian processes, then the conditional expecta-
tion of the random variable f given the random variable g = f + n, noted E{f |g},
is the best least-square estimate of f in the set g-measurable and square integrable
random variables. That is, E{f |g} the random variable k(g) that minimizes the quan-
tity E{|f − k(g)|2}, with k measurable and k(g) square integrable. If the covariance
matrices Cf and Cn of f and n are known then E{f |g} can be computed by the
Wiener filter E{f |g} = Cf (Cf +Cn)−1g. At the other end of the spectra are heuris-
tic algorithms. These may give approximate solution to a well-defined mathematical
problem that can not be solved analytically. More generally, heuristic algorithms are
procedures designed to take advantage of some known properties of the signals, or to
combine several aproaches, even when these are difficult to express mathematically.
Unless an algorithm computes the analytic solution to a mathematical problem, its
properties can only be studied experimentally.

The first contribution of this thesis is to provide a mathematical study of an adap-
tive iterative algorithm proposed by J-L. Starck in [58] to deconvolve one image. The
algorithm proposed combines a known deblurring iterative scheme, with an adaptive
projection on selected wavelet coefficients. This procedure was successfully used on
astrophysical images, however, no mathematical study of this algorithm was provi-
ded. We review the mathematical framework proposed by I. Daubechies, M. Defrise
and C. De Mol in [16] to solve inverse problems by another iterative algorithm in
section 2.2, and show in section 2.3 how to use it to study J-L Starck’s algorithm.
We prove mathematically and by example that the proposed algorithm may give un-
desired results, namely that in the limit where the noise vanishes, the original image
may not be recovered. In other words, this algorithm is not consistent. We propose a
modification and show in section 2.4 that it restores consistency.

The deconvolution problem has been largely addressed in the literature in the case
of a single image, i.e. when the problem is to restore the image f , from a blurred and
noisy observation g = T f + n = b ∗ f + n (∗ denotes the convolution). The task
is not easy because the convolution operator is ill-conditioned, making it difficult to
control the size of the noise term after inversion. A number of different algorithms have
proposed, from simple linear filtering [63], to iterative algorithms [37, 49, 42], using
deterministic [26] or statistical description of the data [33], and various tools such as
PDE [51, 9] or multiscale decompositions [21, 30]... (see [34] for a more exhaustive list
and description of deconvolution methods.) It has been established that deconvolution
methods yield best results when the conditioning of the deconvolution operator and
the structural properties of the image f and the noise n are taken into account at
the same time ([30, 39]). The separation of different components, i.e. the estimation
of M images f1, . . . , fM from linear mixtures (gl =

∑M
m=1 tm,lfm + nl, where the tm,l

are scalars) has also been extensively studied [6, 61, 7]. Whether the scalars tm,l

are assumed to be known or not, separating techniques seldom take into account the
spatial properties of the different signals f1, . . . , fM , or at least not to the same extent
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as one does when processing a single image. This is harder to do in this context because
the different properties of each component have to be handled at the same time. Both
problems, the deconvolution and the separation, are usually studied independently of
each other, and ad-hoc combinations are carried out if needed.

In this thesis, two new algorithms are proposed that simultaneously (denoise,)
deblur and separate image components. More precisely, both algorithms compute
estimates of the components f1, . . . , fM in Eq. (1.1) when each Tm,l can be written
Tm,l(x) = am,l bl ∗ x, where the am,l are scalars and the bm,l are 2-dimensional point
spread functions. The observations at hand are then modeled by :

∀l ∈ [[1, L]], gl =
M∑

m=1

am,l bl ∗ fm + nl. (1.2)

Since the last equations can be rewritten : ∀l ∈ [[1, L]], gl = bl ∗ [
∑M

m=1 am,l fm] + nl,
the following two-steps algorithm seems like an appropriate solution : first deblur each
gl to obtain an estimate yl of

∑M
m=1 am,l fm and secondly, separate the fm from the

yl. However, in some cases it is desirable to avoid this intermediary step. This is the
case for the extraction of clusters of galaxies from observations of Cosmic Microwave
Background anisotropies, an application we study in detail in this thesis.

The observations gl for this application are images of portions of the sky, obtai-
ned simultaneously at different light wavelengths (3 or 4 in the cases we considered).
Each observed image is the convolution of the “true” image with a blurring beam func-
tion, which depends on the wavelength ; the observations are polluted by (Gaussian)
noise that is independent from one image to another. The most intense components
contained in the portion of sky observed besides the clusters of galaxies are the Cos-
mic Microwave Background (CMB) radiation, the Galaxy dust and infrared point
sources. The contribution from each component to each observation depends on the
wavelength. Hence the observations gl can be modeled by equation (1.2) with M = 4
and L = 3 or 4. Our goal is to provide a “clean” image of the clusters of galaxies
present in the observations, that will be usable by astrophysicists to derive properties
of these clusters.

Clusters of galaxies are localized and compact objects sparsely distributed in the
sky. The blurring by a beam function is especially badly conditioned at high fre-
quencies, which correspond to small objects. Therefore, as mentioned earlier, the de-
convolution of clusters of galaxies (supposing they were the only component present
in the image), would be best when their localization is taken into account together
with the properties of the convolution. Wavelet transforms are adapted to this situa-
tion because they are well localized both in frequency (and therefore constrain the
conditioning of the convolution operator), and in space (so that clusters are well re-
presented in wavelet space). However, in this case, the presence of other components
complicates the task. The other components are much more intense than the clusters’
signal, moreover they have very different spatial properties and the mixing scalar am,l

vary greatly with the frequencies of observation. Therefore the spatial properties of
each intermediate deblurred image yl =

∑M
m=1 am,l fm are different and do not reflect

the properties of the clusters’ signal. Since the latter is largely dominated in each yl, it
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would be very hard to recover a precise clusters’ image using the two-steps technique
proposed earlier. Instead, a method that solves the deconvolution and separation at
the same time can exploit the fact that the same clusters’ signal contributes to each
observation and therefore should give better results.

We designed two different approaches to simultaneously deblur and separate image
data. Both methods are flexible enough to take in account spatial properties that vary
from one component to another. One method is based on a variational framework ;
the other is more statistical in nature. The variational method uses a generalization
of an algorithm proposed by I. Daubechies, M. Defrise and C. De Mol [16], that we
explain and discuss in Chapter 2, sections 2.2 and 2.5. The method proposed is the
minimization of the variational functional, by means of an iterative algorithm. In
subsection 2.5.1, we describe how to this method solves the general problem posed
by equation (1.1) (that is when the Tm,l are general linear operators) and in the
next subsection (2.5.2), we explain how to to use the method for our astrophysical
application, deriving the parameters for separation of blurred mixtures and explaining
how to model the properties of our astrophysical components. For the statistical
approach, we were inspired by the work of J. Portilla, V. Strela, M. Wainwright
and E. Simoncelli [48], which attacked the simultaneous denoising and deblurring
of a single image. We explain in Chapter 3 how we extended this method to allow
component separation (i.e. to solve Eq. (1.2)) and sketch the precise application to
our astrophysical problem in Section 3.4.

As we noted earlier, the clusters’ signal is well described in wavelet space. To
avoid some drawbacks of the traditional decimated separable wavelet transform in
two dimensions, we use different redundant wavelet transforms : the dual tree com-
plex wavelet transforms for the variational approach [31, 32, 52, 53] and a steerable
pyramid for the statistical approach (inspired by but not completely identical to the
pyramid in [47]). The two transforms are described in Chapter 4, where we also discuss
the algorithm we used to implement them.

Finally, in Chapter 5, we show and discuss the results of the two approaches on
the astrophysical problem at hand, for several types of data sources. The resolution of
data acquired previously is not sufficient to study the Sunyaev-Zel’dovich signature of
clusters of galaxies, which is the particular effect we seek to estimate. However, several
experiments are now being planned or underway, that will make it possible to do so.
The different studies presented in Chapter 5 are made on realistic simulations of the
data that will be acquired in the near future. (These simulations have been provided
by astrophysicists.) This allows to assess the performances of both algorithms with
respect to not only image processing standards but also with respect to the science
that can be derived from these results. In particular, we asses the reliability in locating
clusters of galaxies and the precision of the intensity estimated after extracting a
cluster maps using both our algorithms. It turns out that each approach has strengths
and weaknesses when compared to each other. A summary of these results is presented
in Section 5.6.
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Chapitre 2

Functional method

2.1 Framework

In this chapter, we consider the problem of deconvolution of mixtures of compo-
nents as a variational problem, i.e. we wish to find estimates of the different compo-
nents by minimizing a variational functional. We will consider functionals composed
of a sum of discrepancy terms (one per observation) and regularization terms (one
per component) :

J(f1, f2, . . . , fM) =
L∑

l=1

ρl

∥∥∥(
M∑

m=1

Tm,lfm − gl)
∥∥∥

2

Ho
l

+
M∑

m=1

γm|||fm|||Xm ; (2.1)

here the Ho
l are Hilbert spaces, the γm and ρl are strictly positive scalars and the

|||.|||Xm are norms. The observations at hand are the {gl}l∈[[1,L]]. The {fm}m∈[[1,M ]] are
the components to be estimated. The mixing and blurring of component m at the
frequency of observation number l is denoted by the linear operator Tm,l.

The minimizers of such a functional will strike a balance between the deviation of
their image by the Tm,l from the observed data on the one hand, and the |||.|||Xm-norm

on the other hand. This will give us a set of estimates f̂1, f̂2, . . . , f̂M that have both
properties of well approximating the observed data and having small |||.|||Xm-norm.
The |||.|||Xm-norm here represent some “a priori knowledge” we have on the different
components we are seeking : we expect the true component fm to have a rather small
|||.|||Xm-norm. Note that the set of plausible images of one component, for example the
set of CMB images, is not a vector space. So we do not try to design the vector space
Xm so that each of its element corresponds to an image of component m. Rather, we
design Xm so that the set of images of component m has a small |||.|||Xm-norm. We hope

that conversely, the estimate f̂m that we will obtain by minimizing (2.1) will be (close
to) a plausible image of component m because it has a small |||.|||Xm-norm. We shall
use, for example, norms that penalize discontinuities or sharp transitions and norms
that promote sparsity in a special representation like a wavelet representation. To do
so, we embed the components fm into Hilbert spaces Hi

m and consider |||.|||Xm-norm
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of the form :

|||f |||Xm =

[∑

λ∈Λ

wm
λ | 〈f, ϕm

λ 〉 |pm

] 1
pm

(2.2)

where ϕm ={ϕm
λ }λ∈Λ is a generating family of Hi

m.
A general approach to solve problems of this nature can be found in [16, 14, 4].

The next section reviews the presentation in [16], which provides an iterative algo-
rithm solving the problem when L=M=1. We then study two different generalizations.
Section 2.3 and Section 2.4 are dedicated to the study of a slightly different problem
where the discrepancy terms depend on the observation ; In Section 2.5, we genera-
lize the iterative presented in [16] to solve the general case with M objects and L
observations and describe its application to our astrophysical problem.

2.2 Iterative algorithm proposed by Daubechies,

Defrise and De Mol

In this section, we summarize the findings presented in [16]. Daubechies, Defrise
and De Mol present in this article an iterative algorithm to find a minimizer of Eq.
(2.1) when L = M = 1. The goal is then to estimate a single object f1 from a single
observation g1. To simplify the notations, we shall drop the indexes and denote H1

the Hilbert space of the object Hi
1 and H2 the Hilbert space of the observation Ho

1.
The problem reduces to :

Problem 2.2.1. Given ϕ={ϕλ}λ∈Λ an orthonormal basis of H1, a sequence of strictly
positive weights w={wλ}λ∈Λ, a scalar γ > 0 and a scalar p with 1 ≤ p ≤ 2, find :

f ? = argmin
f∈H1

Jγ,w,p(f) = argmin
f∈H1

‖Tf − g‖2
H2

+ γ|||f |||pw,p

where |||f |||w,p =
[∑

λ∈Λwλ| 〈f, ϕλ〉 |p
] 1

p =
[∑

λ∈Λwλ|fλ|p
] 1

p .

Note that we used the notation fλ = 〈f, ϕλ〉. We shall do so throughout this chapter
unless specified otherwise.

The functional Jγ,w,p is convex, bounded below and verifies lim‖f‖→ ∞ Jγ,w,p(f) =
+∞. Therefore it has a unique global minimum and has at least one minimizer. One
can seek such a minimizer by canceling its partial derivative in fλ :

∂ Jγ,w,p

∂fλ

(f) = 2(T ∗Tf)λ − 2(T ∗g)λ + γwλ sign(fλ) |fλ|p−1.

If the operator T is the identity operator, then the equations decouple and the solution
is given by solving f ?

λ = gλ − γwλ

2
sign(fλ) |fλ|p−1. If p = 1, this reduces the the soft-

thresholding operator (see [8]). However, when T is not the identity, these equations
do not decouple which makes the problem harder to solve. Using surrogate functionals,
one can define a sequence of similar problems that are easy to solve, and for which
the sequence of minimizers obtained is strongly convergent in H1 to a solution of
Problem 2.2.1. Moreover this scheme is regularizing. We explain it in detail below.
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2.2.1 Surrogate functionals

Let us consider surrogate functionals Ja
γ,w,p where a is an element of H1. The

Ja
γ,w,p are similar to Jγ,w,p but are slightly modified so that :

– For any a, Ja
γ,w,p is strictly convex. Hence there exists a unique minimizer of

Ja
γ,w,p, that we denote f

?a
γ,w,p.

– The partial derivatives
∂ Ja

γ,w,p

∂fλ
decouple. Therefore, one can find each coordinate

{f ?a
γ,w,p}λ independently by solving

∂ Ja
γ,w,p

∂fλ
= 0 for each λ.

Definition 2.2.2. Given a ∈ H1 and C so that |||T ∗T ||| < C, the surrogate functional
Ja

γ,w,p : H1 → R+ is defined by :

Ja
γ,w,p(f) = ‖Tf − g‖2

H2
− ‖Tf − Ta‖2

H2
+ C‖f − a‖2

H1
+ γ|||f |||p

w,p

One verifies that the surrogate functional takes nonnegative values by noting that
Ja

γ,w,p(f) = Jγ,w,p(f) + C‖f − a‖2
H1

− ‖Tf − Ta‖2
H2

with

C‖f − a‖2
H1

− ‖Tf − Ta‖2
H2

= C‖f − a‖2
H1

−
〈
T (f − a), T (f − a)

〉
H2

= C‖f − a‖2
H1

−
〈
f − a, T ∗T (f − a)

〉
H1

≥ C‖f − a‖2
H1

− |||T ∗T |||‖f − a‖2
H1

≥ (C − |||T ∗T |||)‖f − a‖2
H1

≥ 0

Since |||T ∗T ||| < C, the term above is zero if and only if f = a, which ensures the strict
convexity of the surrogate functional Ja

γ,w,p. Its partial derivatives in fλ decouple :

∂ Ja
γ,w,p

∂fλ

(f) = 2C fλ − 2(C a+ T ∗g − T ∗Ta)λ + γwλ sign(fλ) |fλ|p−1.

and the minimizer of the surrogate functional Ja
γ,w,p is :

f
?a
γ,w,p = 1

C
Sγw,p

(
C a+ T ∗g − T ∗Ta

)

= 1
C

∑
λ Sγwλ,p

(
{ C a+ T ∗g − T ∗Ta }λ

)
ϕλ

(2.3)

Here,

Sw,p(x)
def
=
(
x+

wp

2
sign(x) |x|p−1

)−1

, for 1 ≤ p ≤ 2, (2.4)

where (.)−1 denotes the inverse so that Sw,p(x+ wp
2

sign(x) |x|p−1) = x.
In particular, for p = 1, Sw,1 is the soft-thresholding operator :

Sw,1(x) =





x− w/2 if x ≥ w/2
0 if |x| < w/2
x+ w/2 if x ≤ −w/2

(2.5)

Whereas for p = 2, one simply gets :

Sw,2(x) =
x

1 + w
(2.6)

The following proposition summarizes the properties of the surrogate functionals :
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Proposition 2.2.3. Suppose the operator T maps a Hilbert space H1 to another
Hilbert space H2, with |||T ∗T ||| < C, and suppose g is an element of H2. Let {ϕλ}λ∈Λbe
an orthonormal basis for H1, and let w= {wλ}λ∈Λ be a sequence of strictly positive
numbers. Pick arbitrary γ > 0, p ≥ 1 and a ∈ H1. Define the functional Ja

γ,w,p(f) on
H1 by

Ja
γ,w,p(f) = ‖Tf − g‖2

H2
+ γ

∑

λ∈Λ

wλ|fλ|p + C‖f − a‖2
H1

− ‖T (f − a)‖2
H2

.

Then Ja
γ,w,p(f) has a unique minimizer in H1.

This minimizer is given by f = 1
C

Sγw,p (Ca+ T ∗g − T ∗Ta), where the operators Sw,p

are defined by

Sw,p(h) =
∑

λ

Swλ,p(hλ)ϕλ , (2.7)

with the functions Sw,p from R to itself given by (2.4), (2.5) and (2.6).

Note that one can always assume that C = 1 since minimizing the surrogate
functional Ja

γ,w,p with the operator T and the observation g is the same problem as
minimizing Ja

γ,w/C, p with the operator T ′ = 1√
C
T , the observation g′ = 1√

C
g and the

weights w
C

. This is also true for the initial functional Jγ,w,p. Therefore, in the rest of
this chapter, we will assume that |||T ∗T ||| < 1.

Next, we use a sequence of surrogate functionals and their minimizers to construct
a solution of the original problem.

2.2.2 Iterative algorithm : convergence and stability

The iterative algorithm consists in minimizing a sequence of surrogate functionals
Jan

γ,w,p(f), choosing an to be the minimizer obtained at the previous step :

Algorithm 2.2.4. The iterative algorithm that solves Problem 2.2.1 proceeds as fol-
lows :





f 0 arbitrary

fn = argmin
f∈H1

(
Jfn-1

γ,w,p(f)
)

= Sγw,p (fn−1 + T ∗g − T ∗Tfn−1) , n ≥ 1

The two following theorems summarize the findings presented in [16]. The first
theorem states that the iterative algorithm 2.2.4 converges strongly in the norm asso-
ciated in the Hilbert space H1 for any initial guess f 0. The second theorem is concer-
ned with the stability of the method. It gives sufficient conditions to ensure that the
estimate recovered from a perturbed observation, g = Tf0 + e, will approximate the
object f0 as the amplitude of the perturbation ‖e‖H2

goes to 0.

Theorem 2.2.5. Let T be a bounded linear operator from H1 to H2, with norm
strictly bounded by 1. Take p ∈ [1, 2], and let Sw,p be the shrinkage operator defined
by (2.7), where the sequence w={wλ}λ∈Λ is uniformly bounded below away from zero,

12



i.e. there exists a constant c > 0 such that ∀λ ∈ Λ : wλ ≥ c. Then the sequence of
iterates

fn = Sγw,p

(
fn−1 + T ∗g − T ∗Tfn−1

)
, n = 1, 2, . . . ,

with f 0 arbitrarily chosen in H1, converges strongly to a minimizer of the functional

Jγ,w,p(f) = ‖Tf − g‖2
H2

+ γ|||f |||pw,p ,

where |||f |||w,p denotes the norm |||f |||w,p =
[∑

λ∈Λwλ| 〈f, ϕλ〉 |p
]1/p

, 1 ≤ p ≤ 2 .
If the minimizer f ? of Jγ,w,p is unique, (which is guaranteed e.g. by p > 1 or

ker(T ) = {0}), then every sequence of iterates fn converges strongly to f ?, regardless
of the choice of f 0.

Theorem 2.2.6. Assume that T is a bounded operator from H1 to H2 with |||T ||| < 1,
that γ > 0, 1 ≤ p ≤ 2 and that the entries in the sequence w={wλ}λ∈Λ are bounded
below uniformly by a strictly positive number c. Assume that either p > 1 or ker(T ) =
{0}. For any g ∈ H2 and any γ > 0, define f ?

γ,w,p;g to be the minimizer of Jγ,w,p;g(f).
If γ = γ(ε) satisfies

lim
ε→0

γ(ε) = 0 and lim
ε→0

ε2

γ(ε)
= 0 , (2.8)

then we have, for any fo ∈ H1,

lim
ε→0

[
sup

‖g−Tfo‖H2
≤ε

‖f ?
γ(ε),w,p;g − f †‖H1

]
= 0 ,

where f † is the unique element of minimum ||| |||w,p–norm in the set Sfo = {f ;Tf =
Tfo}.

2.2.3 Iterative algorithm with complex or redundant frames

The algorithms and theorems presented so far in this section apply only to the
case where ϕ={ϕλ}λ∈Λ is an orthonormal basis of H1 and the scalar products 〈., ϕλ〉
are real. It will be useful in our application to use redundant and/or complex families
instead. To do that, one needs to make two changes, as was pointed out in [16].

Firstly, the definition of the operators Sw,p has to be extended to complex num-
bers. This is done by applying Sw,p only to the modulus of a complex number, keeping
the phase fixed :

Sw,p(r.e
iθ)

def
= Sw,p(r).e

iθ, r ∈ R, θ ∈ [0, 2π]. (2.9)

This change is sufficient to prove Proposition 2.2.3 and Theorems 2.2.5 and 2.2.6 with
the same algorithm 2.2.4.

Secondly, a clarification is required if the family ϕ={ϕλ}λ∈Λ is redundant. In that
case, the set of sequences of scalar products of elements of H1 :

C =
{
{〈f, ϕλ〉}λ∈Λ, f ∈ H1

}
,
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is a strict subset of the set of square summable sequences l2(R) ( or l2(C)). As a
consequence f

?a
γ,w,p defined in Eq.(2.3) need not be the minimizer of the surrogate

functional Ja
γ,w,p because

f = 1
C

∑

λ

Sγwλ,p

(
{ C a+ T ∗g − T ∗Ta }λ

)
ϕλ (2.10)

does not imply that :

∀λ, 〈f, ϕλ〉 = 1
C
Sγwλ,p

(
{ C a+ T ∗g − T ∗Ta }λ

)
(2.11)

In the derivation of algorithm 2.2.4, we used the fact that Eq. (2.10) and Eq. (2.11)
are equivalent when ϕ= {ϕλ}λ∈Λ is an orthonormal basis. When ϕ= {ϕλ}λ∈Λ is re-
dundant, this problem is rectified by projecting the sequence of coefficients obtained
at each step of the iteration algorithm onto the set of scalar products C :

fn = PC Sγw,p

(
fn−1 + T ∗g − T ∗Tfn−1

)
, n ≥ 1 (2.12)

where PC is the projection onto the set C. (This can done more generally for any
closed convex set C, see Subsection 2.2.4.)

To illustrate the difference between a basis and a redundant frame, let us examine
the case where the operator T is diagonal with respect to the tight frame ϕ={ϕλ}λ∈Λ.
That is, there exist scalars {tλ}λ∈Λ such that :

∀f ∈ H1, T (f) = T
(∑

λ∈Λ

〈f, ϕλ〉ϕλ

)
=
∑

λ∈Λ

tλ 〈f, ϕλ〉ϕλ. (2.13)

We suppose that the algorithm is stopped after N steps.
If ϕ= {ϕλ}λ∈Λ is an orthonormal basis, the iterations can be done in l2(R) (or

l2(C)) :

Algorithm 2.2.7. First N steps of the iterative algorithm when T is diagonal on the
orthonormal basis ϕ={ϕλ}λ∈Λ :

– Pick f o in H1 arbitrarily.
– Compute : coλ = 〈f o, ϕλ〉 , ∀λ ∈ Λ.

– For n = 1, .., N , compute for all λ : cn
λ = Sw,p

(
(1 − t2λ)c

n−1
λ + tλgλ

)

– Output : fN =
∑

λ∈Λ c
N
λ ϕλ.

The intermediate estimates f 1, . . . , fN−1 need not be synthesized, only their frame
coefficients, the cnλ, are computed. (For each n, {cnλ}λ∈Λ is a series in l2.) We have :
cnλ = 〈fn, ϕλ〉, ∀n, ∀λ. Therefore, if ϕ= {ϕλ}λ∈Λ is an orthonormal basis, one only
needs to synthesize the final estimate fN in H1, whereas if ϕ={ϕλ}λ∈Λ is redundant,
one has to synthesize fn at each step :

Algorithm 2.2.8. First N steps of the iterative algorithm when T is diagonal on a
redundant tight frame ϕ={ϕλ}λ∈Λ :

– Pick f o ∈ H1 arbitrary.
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– Compute : coλ = 〈f o, ϕλ〉 , ∀λ ∈ Λ.
– For n = 1, .., N , compute :

– For all λ : dn
λ = Sw,p

(
(1 − t2λ)c

n−1
λ + tλgλ

)

– fn =
∑

λ∈Λ d
n
λϕλ

– For all λ : cnλ = 〈fn, ϕλ〉
– Output : fN .

Note that because ϕ={ϕλ}λ∈Λ is redundant, although
∑

λ∈Λ d
n
λϕλ =

∑
λ∈Λ c

n
λϕλ,

we do not have dn
λ = cnλ. Therefore, one needs to synthesize fn at each step to find

the cnλ (this corresponds to the projection PC).
In the redundant case, fn is not the minimizer of the surrogate functional at each

step. The iterative algorithm still converges strongly. However, one can prove that the
limit is the minimizer of the initial functional only in some cases. Generally though,
it has been observed that using algorithm 2.2.4 yields good results with frames.

2.2.4 Iterative algorithm restricted to a closed convex set

The solution of problem 2.2.1 achieved by the iterative algorithm we presented is
the minimizer of the functional Jγ,w,p in the whole Hilbert space H1. As explained in
[16], it is possible to restrict the problem to a closed subset D of H1, for example the
set of positive functions. The procedure consists in projecting the solution obtained
at each step of the iterative algorithm onto the set D :

fn = PD Sγw,p

(
fn−1 + T ∗g − T ∗Tfn−1

)
, n ≥ 1 (2.14)

where PD is the projection on the convex set D. Some astrophysical components in
our problem are positive and we will use this procedure to handle them.

Note that this is the same procedure that was used in the previous subsection to
take in account the redundancy of the frame since the set of scalar products C is a
closed subset of the set of square summable sequences.

2.3 Adaptive projections

In this section, we shall consider a generalization of the setting of [16], in which
weights are introduced in the discrepancy term as well as in the prior. These weights
were suggested originally by Jean-Luc Starck, in several papers and slightly different
versions (see e.g. [58, 57, 43]). One of the algorithms suggested was :

Algorithm 2.3.1.

{
f 0 arbitrary
fn = argmin

f∈H1

Sγ,1 (fn−1 + T ∗Mg − T ∗MTfn−1) , n ≥ 1

with Mh =
∑

λ∈Λmλhλϕλ, and mλ = 0 or 1 is chosen in function of gλ.
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At first, it seems that the algorithm was purely heuristic, and was only later
connected to a variational principle [59]. The weights mλ in Starck’s algorithm depend
on the observation itself, and will make the analysis trickier ; we handle them by
introducing an “adaptive projection operator”.

2.3.1 Definition and corresponding iterative algorithm

Definition 2.3.2. Given an orthonormal basis {βλ}λ∈Λof H2, an element g in H2

and a sequence of nonnegative thresholds τ={τλ}λ∈Λ, the adaptive projection Mg,τ is
the map from H2 into itself defined by :

∀h ∈ H2, Mg,τ (h) =
∑

λ s.t. |gλ|>τλ

hλβλ

(where, as usual, fλ denotes the scalar product 〈f, βλ〉)

Note that Mg,τ is an orthogonal projection for any g and τ . It is therefore a
continuous linear operator of unit norm, unless for all λ, |gλ| ≤ τλ, in which case
Mg,τ = 0. One can use the adaptive projection Mg,τ to modify the similarity measure
(discrepancy term) so that it discards the coordinates of the observation g that are
deemed not reliable. More precisely, we consider in the fit to data term only the
coordinate of index λ for which |gλ| is greater than some predefined value τλ. Problem
2.2.1 is thus modified into :

Problem 2.3.3. Given a sequence of strictly positive weights w={wλ}λ∈Λ, a sequence
of nonnegative thresholds τ={τλ}λ∈Λand scalars γ and p with γ > 0 and 1 ≤ p ≤ 2,
find :

f ? = argmin
f∈H1

Jγ,w,p,τ (f) = argmin
f∈H1

‖Mg,τ (Tf − g)‖2
H2

+ γ|||f |||pw,p

where |||f |||w,p is defined in Problem 2.2.1 and Mg,τ is defined above (2.3.2).

The value of the functional Jγ,w,p,τ (f) acting on operator T and observation g is
exactly the value of the functional Jγ,w,p(f) acting on operator Mg,τ T and observation
Mg,τ g. Hence once g and τ are fixed, Problem 2.3.3 is solved the same way as Problem
2.2.1 with the iterative algorithm modified accordingly :

Algorithm 2.3.4. The iterative algorithm that solves Problem 2.3.3 proceeds as fol-
lows : {

f 0 arbitrary
fn = Sγw,p (fn−1 + T ∗ Mg,τ g − T ∗ Mg,τ Tf

n−1) , n ≥ 1

Note that for p = 1, this is exactly the iterative algorithm 2.3.1 proposed by Jean-
Luc Starck ! As is the case for Problem 2.2.1, the iterative algorithm 2.3.4 is strongly
convergent in H1, regardless of the choice of f 0 and the limit is always a solution of
Problem 2.3.3 :
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Theorem 2.3.5. Let T be a bounded linear operator from H1 to H2, with norm
strictly bounded by 1. Take p ∈ [1, 2], {τλ}λ∈Λa sequence of nonnegative numbers and
let Sw,p be the shrinkage operator defined by (2.7), where the sequence {wλ}λ∈Λ is
uniformly bounded below away from zero, i.e. there ∃c > 0 s.t. ∀λ ∈ Λ : wλ ≥ c.
Then the sequence of iterates

fn = Sγw,p

(
fn−1 + T ∗ Mg,τ g − T ∗ Mg,τ Tf

n−1
)
, n = 1, 2, . . . ,

with f 0 arbitrarily chosen in H1, converges strongly to a minimizer of the functional

Jγ,w,p,τ (f) = ‖Mg,τ (Tf − g)‖2
H2

+ γ|||f |||pw,p ,

where |||f |||w,p denotes the norm |||f |||w,p =
[∑

λ∈Λwλ| 〈f, ϕλ〉 |p
]1/p

, 1 ≤ p ≤ 2 and
Mg,τ (h) =

∑
λ s.t. |gλ|>τλ

hλβλ.

If the minimizer f ? of Jγ,w,p,τ is unique, (which is guaranteed e.g. by p > 1 or
ker(Mg,τ T ) = {0}), then every sequence of iterates fn converges strongly to f ?, re-
gardless of the choice of f 0.

Démonstration. As we noted before :

Jγ,w,p,τ ;T,g(f) = ‖Mg,τ (Tf − g)‖2
H2

+ γ|||f |||pw,p

= ‖(Mg,τ T )f − (Mg,τ g)‖2
H2

+ γ|||f |||pw,p

= Jγ,w,p,0; T ′, g′(f) with T ′ = Mg,τ T, g′ = Mg,τ g

Noting that Jγ,w,p,0; T ′, g′(f) is exactly the functional defined in Problem 2.2.1, it is
then sufficient to prove |||T ′||| is strictly smaller than 1 to prove the strong conver-
gence of the iterative algorithm 2.3.4 via Theorem 2.2.5. But |||T ′||| = |||Mg,τ T ||| ≤
|||Mg,τ |||.|||T |||. Since Mg,τ is an orthogonal projection, |||Mg,τ T ||| = 1 or 0, and there-
fore |||T ′||| ≤ |||T ||| < 1.

2.3.2 Adaptive projections and diagonal operators

In this section, we illustrate the effects of the addition of the adaptive projection
Mg,τ in the iterative algorithm, by examining the simple case when T is a diagonal
operator on the basis ϕ= {ϕλ}λ∈Λ : Tf =

∑
λ∈Λ tλfλϕλ. In that case, the adaptive

functional Jγ,w,p,τ reduces to :

Jγ,w,p,τ (f) =
∑

λ∈Λ

(
δ{|gλ|>τλ}(tλ.fλ − gλ)

2 + γ wλ |fλ|p
)

(2.15)

Hence, the solution f ? is found by solving, independently for each λ :

f ?
λ = argmin

x∈R

(
δ{|gλ|>τλ}(tλ.x− gλ)

2 + γ wλ |x|p
)

(2.16)

If |gλ| ≤ τλ (or tλ = 0), then f ?
λ = 0, otherwise f ?

λ = Sγwλ,p( tλ.gλ ). Let us define the
adaptive thresholding operator that maps R to itself by :
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Aτ,γ,p(x) =

{
Sγ,p(x) if |x| > τ

0 otherwise
(2.17)

Then, the solution of Eq. (2.15) is

f ? =
∑

λ s.t. tλ 6=0

At τ,γ,p( tλ.gλ ) ϕλ. (2.18)

This means that the introduction of the adaptive projection Mg,τ results in combining
a hard thresholding with parameter τ to the operator Sγwλ,p when T is diagonal. The
hard thresholding operator, or dead-zone function, maps R to itself and is defined
by :

Hτ (x) =

{
x if |x| > τ
0 otherwise

(2.19)

Suppose that T is the identity operator, that the weights {wλ}λ∈Λ are identically 1
and that p = 1. If τ > γ, the adaptive thresholding operator Aτ,γ,1 (Fig.2.1, middle) is
a compromise between the hard thresholding operator Hτ (Fig.2.1, left) and the soft-
thresholding operator Sγ,1 (Fig.2.1 right) that would be used to solve Problem 2.2.1.
(Note that if τ ≤ γ, the adaptive thresholding Aτ,γ,1 reduces to the soft-thresholding
Sγ,1).

−τ τ 

−τ 

τ 

−γ γ 

τ−γ

−τ+γ

o 

o −τ τ 

−τ 

τ 

−γ γ 

τ−γ

−τ+γ

o 

o −τ τ 

−τ 

τ 

−γ γ 

τ−γ

−τ+γ

o 

o 

Fig. 2.1 – Left : hard thresholding operator Hτ ; middle : adaptive thresholding
operator Aτ,γ,1 right : soft-thresholding operator Sγ,1.

The hard thresholding operator Hτ can also be seen as an operator used for
minimization :

Hτ (g) = argmin
x∈R

((x− g).δ{|g|>τ})
2 (2.20)

Hence, Hτ corresponds to the limit of the adaptive thresholding operator Aτ,γ,1 as
γ goes to 0. On the other hand, the adaptive thresholding Aτ,γ,1 is in fact the soft-
thresholding Sγ,1 as soon as γ > τ . It is therefore natural to examine the results of
hard-thresholding, adaptive thresholding and soft-thresholding with a fixed value of
τ so study the influence of γ. Fig. 2.2 displays such a study on a piecewise smooth
signal. The top row of the figure shows the signal (left) and a noisy version of it
(right) that is taken as the observation g. The signal is then reconstructed from g
using adaptive, soft- or hard-thresholding with different values of the parameter γ for
τ = 3. The reconstructions obtained are displayed with γ increasing clockwise, i.e.
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middle row left : γ = 0, middle row right : γ = 1, bottom row right : γ = 2, and
bottom row left : γ = 3. The soft-thresholded reconstruction (bottom left) yields a
smoother reconstruction than the hard-threshold (middle left) : the Gibbs effect is
much weaker at the discontinuities of the signal for the soft-thresholding. But on the
other hand it damps the signal, in particular the peaks. The adaptive thresholded
reconstructions (middle right and bottom right) allow to find a different balance
between the smoothness of the reconstruction and its precision for fast variations.

2.3.3 Stability

In this section, we investigate the regularization properties of the algorithm. Co-
arsely speaking, we would like the reconstructed components to very close to the true
ones if the noise in the observation is negligible. More precisely, we will investigate
whether f ?

g converges to fo when ‖Tfo − g‖H2
converges to zero. To do this, it will

be convenient to first define some subsets of H1. The first subset, Mfo , is the set
of elements of H1 that have the same image under T as fo except maybe on the
coordinates λ such that (Tfo)λ = 0 :

Definition 2.3.6. Given two Hilbert spaces H1 and H2, an operator T : H1 → H2,
an orthonormal basis {βλ}λ∈Λof H2 and an element fo of H1. The set Mfo is the
subset of elements of H1 that verify :

f ∈ Mfo ⇐⇒ MTfo,0(Tf) = Tfo ⇐⇒
[
{Tfo}λ 6= 0 ⇒ {Tf}λ = {Tfo}λ

]

For the coordinates λ such that {Tfo}λ = 0, one may have {Tf}λ 6= 0 when f is
in Mfo . If fo is in ker(T ) then Mfo = H1. On the contrary, if ∀λ, {Tfo}λ 6= 0, then
Mfo is exactly the subset of H1 having the same image as fo under T . Note that

Mfo is closed and convex. We also define HT,w,p
1 as the set of elements f for which

the corresponding set Mf has a unique minimizer for the |||.|||w,p-norm.

Definition 2.3.7. Given a Hilbert space H1, HT,w,p
1 is the subset of elements of H1

that verify : fo is in HT,w,p
1 if and only if the set Mfo = {f : MTfo,0Tf = Tfo} has a

unique element of minimum |||.|||w,p-norm.

When p > 1, then HT,w,p
1 = H1, regardless of T . This is not true if p = 1, even if

kerT = {0}. It turns out that algorithm 2.3.4 is regularizing for elements f in HT,w,p
1 ,

and that the minimizer obtained in the limit ‖Tfo − g‖H2
goes to zero is exactly the

minimizer of the |||.|||w,p-norm in Mfo . This is the object of the following theorem :

Theorem 2.3.8. Assume that T is a bounded operator from H1 to H2 with |||T ||| < 1,
that γ > 0, p ∈ [1, 2] and that the entries in the sequence w= {wλ}λ∈Λ are bounded
below uniformly by a strictly positive number c.

For any g ∈ H2 and any γ > 0 and any nonnegative sequence τ={τλ}λ∈Λ, define
f ?

γ,w,p,τ ;g to be a minimizer of Jγ,w,p,τ ;g(f). If γ = γ(ε) and τ = τ(ε) satisfy :

1. lim
ε→0

γ(ε) = 0
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Fig. 2.2 – Top row, left : original signal ; right : noisy signal (white noise, σ = 1).
Other rows : reconstructions with τ = 3, increasing parameter γ clockwise (γ = 0
(hard-threshold), 1 , 2, 3 (soft-threshold)).
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2. lim
ε→0

ε2

γ(ε)
= 0

3. ∀λ ∈ Λ, lim
ε→0

τλ(ε) = 0

4. ∃ δ > 0, s.t : [ ε < δ ⇒ ∀λ ∈ Λ, τλ(ε) > ε ]

then we have, for any fo ∈ HT,w,p
1 :

lim
ε→0

[
sup

‖g−Tfo‖H2
≤ε

‖f ?
γ(ε),w,p,τ(ε); g − f †

o‖H1

]
= 0 ,

where f †
o is the unique element of minimum ||| |||w,p–norm in the set Mfo.

We will prove this stability theorem in a similar manner as Theorem 2.2.6 is proved
in [16]. The proof proceeds as follows : first we prove that the norms ‖f ?

γ(ε),w,p,τ(ε); g‖w,p

are uniformly bounded. Secondly, we prove that when fo is in HT,w,p
1 , any sequence

{f ?
γ(εn),w,p,τ(εn); gn

}n converges weakly to f †
o when εn converges to 0. (Here gn is any

element in H2 verifying ‖gn − Tfo‖H2
≤ εn). Finally we prove strong convergence of

the {f ?
γ(εn),w,p,τ(εn); gn

}n which proves Theorem 2.3.8.
Let us make some remarks before proving this theorem. One should point out

the estimate f †
o obtained through this algorithm is not necessarily what one expects.

Indeed, even in the ideal case where T has a bounded linear inverse, we do not
necessarily have f †

o = fo. This can happen only when {Tfo}λ = 0 for some λ. If
{Tfo}λ 6= 0 for all λ, then the projection MTfo,0 is the identity and therefore Mfo =
{f : MTfo,0Tf = Tfo} = {f : Tf = Tfo} and since T is one to one, this reduces to
Mfo = {fo}. This ensures that f †

o = fo. However if {Tfo}λ = 0 for some λ, then MTfo,0

is a projection with a non-trivial kernel : ker(MTfo,0) = Span{βλ, λ s.t. {Tfo}λ = 0}.
When the intersection : ker(MTfo,0)∩ Im(T ) is not trivial i.e there exists some nonzero
element h in H1 so that Thλ = Tfoλ when Tfoλ 6= 0, but Thλ does not vanish for each
λ where Tfoλ = 0, then :

{fo} ( Mfo = fo + ker(MTfo,0) ∩ Im(T )

and therefore f †
o need not be equal to fo. This can happen even though T has a

bounded linear inverse ! Here is a simple example :

Example 1. Consider T : R2 → R2, the bounded and linear operator defined by :

T :

(
f1

f2

)
7→ 1

4

(
2 f1 + f2

f1 − f2

)
and fa =

(
a
a

)
for some a 6= 0.

|||T |||= 1
2
<1 and although T has a bounded inverse : T−1 :

(
f1

f2

)
7→ 4

3

(
f1 + f2

f1 − 2f2

)
,

we have Tfa =

(
3a
4

0

)
so that Mfa = {f : (Tf)1 = (Tfa)1} = {f : 2f1 + f2 = 3a} ;

The element in Mfa with minimal l1 norm is : f †
a =

(
3a
2

0

)
, and not fa itself.
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Hence under the conditions of Theorem 2.3.8, solving Problem 2.3.3 will never
enable us to recover fa, even when we observe the unperturbed image Tfa ! Indeed,
in order to be stable, this algorithm has to discard the coordinates in H2 such that
Tfaλ = 0 even under an arbitrary small error of observation. The data-dependent
truncation, introduced to find a more regular estimate when the noise is significant,
looses the ability to recover fa when its image is observed under ideal conditions.

We shall give more examples illustrating this peculiar behavior of the solutions to
Problem 2.3.3 in the next subsection. But first, let us prove Theorem 2.3.8. To do so,
we first examine the behavior of the projections Mg(ε),τ(ε) as ε goes to zero in the next
two lemmas. The first lemma (Lemma 2.3.9) gives necessary and sufficient conditions
on the sequence τ= {τλ}λ∈Λ to that these projections converge in a weak sense as ε
goes to zero. We will be interested in the case where the weak limit operator is MTfo,0.
The second lemma (Lemma 2.3.9) refines these conditions, so that in addition, the
sequence Mg(ε),τ(ε) converges strongly to MTfo,0 on the set : T (Mf0

).

Lemma 2.3.9. For f ∈ H1, let {g(ε, f)}ε>0 be an arbitrary family of elements in H2

that satisfy ‖g(ε, f) − Tf‖H2
< ε, ∀ε > 0.

1. ∀h ∈ H2, Mg(ε,f),τ(ε)h converges weakly as ε goes to 0 if and only if

∀λ : ∃ δ(λ) such that either (a) or (b) holds, with

(a) ∀ε ∈ (0, δ(λ)),
∣∣[g(ε, f)]λ

∣∣ > τλ,

(b) ∀ε ∈ (0, δ(λ)),
∣∣[g(ε, f)]λ

∣∣ ≤ τλ.

2. Mg(ε,f),τ(ε) converges weakly, independently of the choice of f and of the family
g(ε, f), as ε goes to 0 if and only if ∀λ : both (a) and (b) hold, with

(a) ∃ δ(λ) such that ∀ε ∈ (0, δ(λ)), τλ(ε) > ε

(b) lim
ε→0

τλ(ε) = 0

In that case, the weak-limit operator is necessarily MTf,0.

3. When conditions 2.(a) and 2.(b) above hold, if h(ε) converges weakly to h, then
Mg(ε,f),τ(ε)h(ε) converges weakly to MTf,0 h as ε goes to 0.

Proof of Lemma 2.3.9. Let us examine the behavior of Mg(ε,f),τ(ε) coordinate by co-
ordinate. Since

[
Mg(ε,f),τ(ε)h

]
λ

equals either hλ or 0, depending on whether or not∣∣[g(ε, f)]λ
∣∣ > τλ(ε), it follows that Mg(ε,f),τ(ε)(h) will converge weakly as ε goes to 0 if

and only if for all coordinates λ, one of the following holds :

Either there exists some δ(λ) > 0 such that
∣∣[g(ε, f)]λ

∣∣ > τλ(ε) for ε < δ(λ). In this
case,

[
Mg(ε,f),τ(ε)h

]
λ

= hλ for ε < δ(λ).

Or there exists some δ(λ) > 0 such that
∣∣[g(ε, f)]λ

∣∣ ≤ τλ(ε) for ε < δ(λ). In this case,[
Mg(ε,f),τ(ε)h

]
λ

= 0 for ε < δ(λ).

This proves the first assertion.
Let us now consider how uniform this behavior is in the choice of the family

g(ε, f). Since
∣∣[g(ε, f) − Tf ]λ

∣∣ ≤ ‖g(ε, f) − Tf‖H2
≤ ε, the set of values that can be

assumed by |g(ε, f)λ| is exactly
[
Tf − ε, Tf + ε

]
(take g = Tf + rβλ, r ∈ [−ε, ε] to

reach all the values in this set). Therefore, for a fixed f , the weak convergence of the
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operators Mg(ε,f),τ(ε), regardless of which sequence g(ε, f) is chosen, is equivalent to
putting constraints on the sequence {τ(ε)λ}λ∈Λ that depend of the coordinates (Tf)λ.
These constraints depends on whether (Tf)λ 6= 0 or (Tf)λ = 0 :

– If Tfλ 6= 0 then
{
|g(ε, f)λ|

}
=
[
|Tfλ| − ε, |Tfλ| + ε

]
. Therefore, one needs

either :
[
ε < δ(λ) ⇒ τλ(ε) > |Tfλ| + ε

]
or
[
ε < δ(λ) ⇒ τλ(ε) ≤ |Tfλ| − ε

]
. In

the first case, βλ will always be in the kernel of Mg(ε,f),τ(ε) once ε < δ(λ). In the
second case βλ will always in the range of Mg(ε,f),τ(ε) once ε < δ(λ).

– If Tfλ = 0 then {|g(ε, f)λ|} = [0, ε]. Therefore one needs [ε < δ(λ) ⇒ τλ(ε) > ε].
In this case, βλ will always be in the kernel of Mg(ε,f),τ(ε) once ε < δ(λ).

Note that we do not know beforehand the value of Tf . To be useful, we must derive
requirements on the parameters τλ(ε) that do not depend on f . The minimum re-
quirements on τ(ε) ensuring the operators Mg(ε,f),τ(ε) converge weakly as ε goes to 0
are :

– ∀λ, limε→0 τλ(ε) = 0 : this ensures that if Tfλ 6= 0, we will have τλ(ε) < |Tfλ|− ε
for sufficiently small ε.

– ∀λ, ∃δ(λ) such that ε < δ(λ) ⇒ τλ(ε) < ε : this ensures that if Tfλ = 0, we will
have τλ(ε) < |Tfλ| + ε = ε for sufficiently small ε.

If these conditions are satisfied, the Mg(ε,f),τ(ε) converge weakly as ε goes to 0 and one
can determine the weak limit :

– for λ s.t. Tfλ 6= 0 : limε→0 τλ(ε) = 0 hence there exists δ(λ, f) such that ε <
δ(λ, f) implies τλ(ε) < |Tfλ| − ε. It follows that : |g(ε, f)λ| > τλ(ε) so that
Mg(ε,f),τ(ε)(βλ) = βλ for any g(ε, f) and any ε < δ(λ, f)

– for λ s.t. Tfλ = 0 : ε < δ(λ) implies τλ(ε) > ε. It follows that if ε < δ(λ), then
|g(ε, f)λ| > τλ(ε) so that Mg(ε,f),τ(ε)(βλ) = 0 for any g(ε, f) and any ε < δ(λ) .

This proves that the weak limit of Mg(ε,f),τ(ε) for any fixed f is MTf,0 and finishes the
proof of the second part of Lemma 2.3.9.

Finally, assuming h(ε) converges weakly to h, we have ∀λ :
∣∣∣
[
Mg(ε,f),τ(ε)h(ε) − MTf,0 h

]
λ

∣∣∣ (2.21)

=
∣∣∣
[
Mg(ε,f),τ(ε)(h(ε) − h) + (Mg(ε,f),τ(ε) − MTf,0)h

]
λ

∣∣∣ (2.22)

=
∣∣∣
[
Mg(ε,f),τ(ε)(h(ε) − h)

]
λ

∣∣∣+
∣∣∣
[
Mg(ε,f),τ(ε)h− MTf,0 h

]
λ

∣∣∣ (2.23)

The second term vanishes as ε goes to 0 because Mg(ε,f),τ(ε) converges weakly to MTf,0

when the conditions 2.(a) and 2.(b) hold. Moreover, we have seen in the proof of the
second part of the lemma that for any λ :

– either there exists a δ(λ) such that Mg(ε,f),τ(ε)(βλ) = 0 for any ε < δ(λ) . In that

case,
∣∣∣
[
Mg(ε,f),τ(ε)(h(ε) − h)

]
λ

∣∣∣ = 0, for ε < δ(λ).

– or there exists a δ(λ) such that Mg(ε,f),τ(ε)(βλ) = βλ for any ε < δ(λ) . In that

case,
∣∣∣
[
Mg(ε,f),τ(ε)(h(ε) − h)

]
λ

∣∣∣ =
∣∣∣
[
h(ε) − h

]
λ

∣∣∣, for ε < δ(λ) ; and the weak

convergence of h(ε) to h allows to conclude that
∣∣∣
[
Mg(ε,f),τ(ε)(h(ε) − h)

]
λ

∣∣∣→ 0

This proves that Mg(ε,f),τ(ε)h(ε) converges weakly to MTf,0 h and finishes the proof of
Lemma 2.3.9.
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We shall now see how to ensure strong convergence of the Mg(ε,f),τ(ε)(h) when h is
in Mf .

Lemma 2.3.10. If there exists a value of δ independent of λ such that ∀ε < δ and
∀λ, τλ(ε) > ε, then the two following properties hold :

1. For any choice of f and of the family g(ε, f) :

∀ε < δ, Mg(ε,f),τ(ε) = MTf,0Mg(ε,f),τ(ε) = Mg(ε,f),τ(ε)MTf,0 =
∑

λ s.t. Tfλ 6=0
and |gλ|≥τλ

〈 ., βλ〉 βλ.

2. In particular, for any choice of f ∈ HT,w,p
1 and of the family g(ε, f), (i.e. whe-

never Mf has a unique minimizer f † of the |||.|||w,p-norm) :

∀ε < δ, Mg(ε,f),τ(ε)(Tf
†) = Mg(ε,f),τ(ε)(Tf).

Proof of Lemma 2.3.10 : The first part of Lemma 2.3.10 results from properties of
orthogonal projections. If P1 and P2 are two orthogonal projections, then :

P1 P2 = P2 P1

ker(P2) ⊂ ker(P1) ⇔ P1P2 = P1.

Hence, we already proved Mg(ε,f),τ(ε) MTf,0 = MTf,0 Mg(ε,f),τ(ε) and

Mg(ε,f),τ(ε)MTf,0 = Mg(ε,f),τ(ε) ⇔
[
(Tf)λ = 0 ⇒ |g(ε,f)λ

| ≤ τλ(ε)
]
.

When f and ε are fixed, the right hand side holds for any g(ε, f) if and only if[
(Tf)λ = 0 ⇒ ε < τλ(ε)

]
which proves the first part of Lemma 2.3.10.

For f in HT,w,p
1 , f † is well defined and verifies MTf,0Tf

† = Tf . Applying Mg(ε,τ(ε))

to this equality and using the previous result finishes the proof of Lemma 2.3.10.

With the help of these two lemma, we can now proceed to the

Proof of Theorem 2.3.8 : Let us consider fo in HT,w,p
1 , i.e. fo verifies that Mfo has

a unique minimizer ||| |||w,p–norm. We note this minimizer f †
o . We fix the following

sequences : {εn}n such that εn −→
n→∞

0 , {gn}n such that ∀n, ‖gn − Tfo‖H2
≤ εn, and

{γn}n
def
= {γ(εn)}n and {τn}n

def
= {τ(εn)}n that verify conditions 1 to 4 in Theorem

2.3.8. For every n, we choose a minimizer f ?
n

def
= f ?

γn,w,p,τn; gn
of the functional Jn(f)

def
=

Jγn,w,p,τn; gn(f) = ‖Mgn,τn(Tf − gn)‖2
H2

+ γn|||f |||pw,p.

We want to prove that for any such choice of the εn, gn, γn, τn and f ?
n, the sequence

f ?
n converges strongly in H1 to f †

o , where f †
o is the unique minimizer of the |||.|||w,p-

norm in the set Mfo = {f : (Tf)λ = (Tfo)λ, ∀λ s.t. (Tfo)λ 6= 0}. We will also note

Mn
def
= Mgn,τn .
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The sequences {|||f ?
n|||w,p}n and {‖f ?

n‖H1
}n are uniformly bounded :

By definition of Jn, ∀n :

|||f ?
n|||pw,p ≤ 1

γn
Jn(f ?

n)

so that |||f ?
n|||pw,p ≤ 1

γn
Jn(f †

o ) since f ?
n minimizes Jn.

But :

Jn(f †
o ) = ‖Mn(Tf †

o − gn)‖2
H2

+ γn|||f †
o |||pw,p

≤ ‖Mn(Tf †
o − Tfo)‖2

H2
+ ‖Mn(Tfo − gn)‖2

H2
+ γn|||f †

o |||pw,p

≤ ‖Mn(Tf †
o − Tfo)‖2

H2
+ |||Mn|||2.‖(Tfo − gn)‖2

H2
+ γn|||f †

o |||pw,p

≤ ‖Mn(Tf †
o − Tfo)‖2

H2
+ ε2n + γn|||f †

o |||pw,p

where we used |||Mn|||2 ≤ 1 and ‖Tfo − gn‖ ≤ εn in the last equation. Hence

∀n, |||f ?
n|||pw,p ≤

‖Mn(Tf †
o − Tfo)‖2

H2

γn

+
ε2n
γn

+ |||f †
o |||pw,p. (2.24)

Since condition 3 and 4 of Theorem 2.3.8 are satisfied, we can use Lemma 2.3.10.(2).

It follows that if n is large enough, MnTf
†
o = MnTfo. Moreover, ε2n

γn
−→
n→∞

0 by condition

2 of Theorem 2.3.8. This proves that {|||f ?
n|||w,p}n is uniformly bounded.

Since w is bounded below by c > 0 and p ≤ 2, the ‖.‖H1
-norm is bounded above

by c−
1
p |||.|||w,p :

|fλ| =
(
|fλ|p

) 1
p ≤

(
wλ

c
|fλ|p

) 1
p ≤

(∑

λ∈Λ

wλ

c
|fλ|p

) 1
p = c−

1
p |||f |||w,p (2.25)

so that :

‖f‖2
H1

=
∑

λ∈Λ

|fλ|2 ≤
∑

λ∈Λ

wλ

c
|fλ|p|fλ|2−p ≤

∑

λ∈Λ

wλ

c
|fλ|p

[
c−

1
p |||f |||w,p

]2−p
(2.26)

‖f‖2
H1

≤ 1
c
|||f |||pw,p

[
c−

1
p |||f |||w,p

]2−p
= c−

2
p |||f |||2w,p (2.27)

Hence, the sequence {f ?
n} is also uniformly bounded in H1.

f †
o is the unique accumulation point of the sequence {f ?

n}n :

Since it is uniformly bounded in H1, the sequence {f ?
n}n has at least one weakly

convergent subsequence {f ?
k}k. Let us denote its weak limit f̃ . We shall now prove

that f̃ = f †
o .

Since f ?
k is a minimizer of Jk obtained through the iterative algorithm, 2.3.4, it

verifies the fixed point equation : f ?
k = Sγkw,p (f ?

k + T ∗Mkgk − T ∗MkTf
?
k ). We note
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hk = f ?
k + T ∗Mkgk − T ∗MkTf

?
k , so that f ?

k = Sγkw,p(hk). By definition of the weak
limit, it follows that :

∀λ, f̃λ = lim
k→∞

Sγkwλ

(
(hk)λ

)

= lim
k→∞

[(hk)λ] + lim
k→∞

[Sγkwλ
((hk)λ) − (hk)λ] but lim

k→∞
γkwλ = 0

So, ∀λ, f̃λ = lim
k→∞

[(hk)λ] since ∀x, Sv(x) −−→
v→0

x

= lim
k→∞

[(f ?
k + T ∗Mkgk − T ∗MkTf

?
k )λ]

= f̃λ + lim
k→∞

[(T ∗Mkgk − T ∗MkTf
?
k )λ] since (f ?

k )λ −−−→
k→∞

f̃λ.

As a result : ∀λ, lim
k→∞

[(T ∗Mkgk − T ∗MkTf
?
k )λ] = 0.

But since ‖gk − Tfo‖H2
≤ εk, then ‖T ∗Mk(gk − Tfo)‖H1

≤ |||T ∗||||||Mk|||εk < εk. This
proves that for all λ :

lim
k→∞

[(T ∗MkTfo − T ∗MkTf
?
k )λ] = 0. (2.28)

Moreover, from Lemma 2.3.9.(2), we know that {Mk(Tfo)}k converges weakly to
MTfo,0(Tfo) = Tfo. Together with the continuity of T ∗, this leads to :

T ∗MkTf
?
k

w−−−→
k→∞

T ∗Tfo. (2.29)

On the other hand, f ?
k converges weakly to f̃ . Using the continuity of T , we get

Tf ?
k

w−−−→
k→∞

Tf̃ . From Lemma 2.3.9.(3), this also implies {MkTf
?
k}k

w−−−→
k→∞

MTfo,0 Tf̃ .

and it follows from the continuity of T ∗ that :

T ∗MkTf
?
k

w−−−→
k→∞

T ∗MTfo,0Tf̃ . (2.30)

Plugging this last result in Eq. (2.29), we obtain the equality :

T ∗MTfo,0Tf̃ = T ∗Tfo (2.31)

Since MTfo,0(Tfo) = Tfo, the previous equality reduces to : T ∗MTfo,0T (f̃ −fo) = 0.

Taking the scalar product with f̃ − fo, we obtain :

〈
f̃ − fo, T

∗MTfo,0T (f̃ − fo)
〉

= 0

⇔
〈
MTfo,0T (f̃ − fo), MTfo,0T (f̃ − fo)

〉
= 0

⇔ ‖MTfo,0T (f̃ − fo)‖2
H2

= 0

⇔ MTfo,0T (f̃ − fo) = 0

⇔ MTfo,0Tf̃ = Tfo

We used for the first equality that MTfo,0 = M∗
Tfo,0 = M2

Tfo,0. This proves that f̃
belongs to the set Mfo .
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Let us now prove that |||f̃ |||w,p ≤ |||f †
o |||w,p. Because of the weak convergence of the

f ?
n to f̃ , for all λ, the nonnegative sequence {wλ|f ?

nλ|}n converges to wλ|f̃λ|. One can
then use Fatou’s lemma to obtain :

|||f̃ |||pw,p =
∑

λ

lim
n→∞

{wλ|f ?
nλ|}n ≤ lim

n→∞

∑

λ

{wλ|f ?
nλ|}n = lim

n→∞
|||f ?

n|||pw,p

But we proved earlier that lim supn|||f ?
n|||pw,p ≤ |||f †

o |||pw,p. Therefore, we get :

|||f̃ |||pw,p ≤ lim
n→∞

|||f ?
n|||pw,p ≤ |||f †

o |||pw,p (2.32)

By definition, f †
o is the unique minimizer of the |||.|||w,p-norm in Mfo , so this implies

that f̃ = f †
o .

The conclusion of this paragraph is that f †
o is the only possible accumulation point

of the sequence f ?
n.

The sequence {f ?
n}n converges weakly to f †

o :

We proved that the sequence {f ?
n}n is uniformly bounded in the ‖.‖H1

-norm and
that it has a unique accumulation point : f †

o . This allows us to conclude that f ?
n

converges weakly to f †
o .

The sequence {f ?
n}n converges strongly to f †

o :

Replacing f̃ by its value f †
o in (2.32), we get : |||f †

o |||pw,p ≤ limn→∞ |||f ?
n|||pw,p ≤ |||f †

o |||pw,p

which proves that the sequence {|||f ?
n|||pw,p}n converges to |||f †

o |||pw,p. We shall see now
that the two results we obtained so far :

f ?
n

w−−−→
n→∞

f †
o (2.33)

|||f ?
n|||w,p −−−→

n→∞
|||f †

o |||w,p , (2.34)

imply the strong convergence of the sequence {f ?
n}n to f †

o . (This argument closely
follows [16].)

Let us prove that {‖f ?
n‖H1

}n converges to ‖f †
o‖H1

. We have :

∣∣∣‖f ?
n‖2

H1
− ‖f †

o‖2
H1

∣∣∣=
∣∣∣
∑

λ

(
|f ?

nλ|2 − |f †
o λ|2

) ∣∣∣≤
∑

λ

∣∣∣ |f ?
nλ|2 − |f †

o λ|2
∣∣∣ (2.35)

Writing x2 = (xp)
2
p and using the derivability of x → x

2
p , one can bound the last

term :
∣∣∣|f ?

nλ|2 − |f †
o λ|2

∣∣∣ ≤ 2
p

max{
(
|f ?

nλ|p
) 2

p
−1
,
(
|f †

o λ|p
) 2

p
−1}

∣∣∣ |f ?
nλ|p − |f †

o λ|p
∣∣∣ (2.36)

≤ 2
p

max{|f ?
nλ|2−p, |f †

o λ|2−p}
∣∣∣ |f ?

nλ|p − |f †
o λ|p

∣∣∣ (2.37)

≤ 2
pc

max{|f ?
nλ|2−p, |f †

o λ|2−p}
∣∣∣ wλ|f ?

nλ|p − wλ|f †
o λ|p

∣∣∣ (2.38)
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We saw in Eq. (2.45) that for any f ∈ H1 and λo ∈ Λ |fλo | ≤ c
1
p |||f |||w,p. Plugging this

into Eq. (2.38) and summing over λ, we get :

∣∣∣‖f ?
n‖2

H1
− ‖f †

o‖2
H1

∣∣∣≤ 2
p
c−

2
p max{|||f ?

n|||2−p
w,p , |||f †

o |||2−p
w,p}

∑

λ∈Λ

∣∣∣ wλ|f ?
nλ|p − wλ|f †

o λ|p
∣∣∣ (2.39)

Since {|||f ?
n|||pw,p}n converges to |||f †

o |||pw,p, for n large enough, max{|||f ?
n|||2−p

w,p , |||f †
o |||2−p

w,p} is

bounded by 2|||f †
o |||2−p

w,p . Defining gc,p,fo = 4
p
c−

2
p |||f †

o |||2−p
w,p , we get :

∣∣∣‖f ?
n‖2

H1
− ‖f †

o‖2
H1

∣∣∣ ≤ gc,p,fo

∑
λ∈Λ

∣∣∣ wλ|f ?
nλ|p − wλ|f †

o λ|p
∣∣∣

≤ gc,p,fo

∑
λ

(
wλ|f ?

nλ|p + wλ|f †
o λ|p − 2wλ min{|f ?

nλ|, |f †
o λ|}p

)

≤ gc,p,fo

(
|||f ?

n|||pw,p + |||f †
o |||pw,p − 2

∑
λwλ min{|f ?

nλ|, |f †
o λ|}p

)

(2.40)
We already know that |||f ?

n|||pw,p −−−→
n→∞

|||f †
o |||pw,p, we shall see now that the same holds

for the last term in the previous inequality. Let us define the sequence {unλ}n for
each λ by unλ = wλ min{|f ?

nλ|, |f †
o λ|}p. The weak convergence of the f ?

n to f †
o im-

plies that for each λ, unλ −−−→
n→∞

wλ|f †
o λ|p. Moreover, for all n, 0 ≤ unλ ≤ wλ|f †

o λ|p

and
∑

λwλ|f †
o λ|p = |||f †

o |||pw,p < ∞ so that by the dominated convergence theorem,
lim

n→∞

∑
λ unλ =

∑
λ lim

n→∞
unλ. Replacing the unλ and their limits by their value, we

obtain :

lim
n→∞

∑

λ

wλ min{|f ?
nλ|, |f †

o λ|}p = |||f †
o |||pw,p.

Hence :

(
|||f ?

n|||pw,p+|||f †
o |||pw,p−2

∑

λ

wλ min{|f ?
nλ|, |f †

o λ|}p
)
−−−→
n→∞

|||f †
o |||pw,p+|||f †

o |||pw,p−2|||f †
o |||pw,p = 0

so that by taking the limit as n goes to ∞ in Eq.(2.40), we can conclude that

‖f ?
n‖H1

−−−→
n→∞

‖f †
o‖H1

.

Using the identity ‖f ?
n−f †

o‖H1
= ‖f ?

n‖H1
+‖f †

o‖H1
−2
〈
f ?

n, f
†
o

〉
, this last result combined

with the weak convergence of the f ?
n to f †

o proves that the sequence {f ?
n}n converges

strongly in H1 to f †
o .

Note that we did not need to assume that each gn is in HT,w,p
1 to obtain stability.

It could very well be that the functional Jγn,w,p,τn;gn has several minimizers, in that
case, depending on the choice of the starting element for the iterative algorithm 2.3.4,
the element f ∗

n might have different values. As a result, the sequence {f ∗
n}n is not fixed

by the parameters εn, γn, τn and gn. However no matter which of these sequences f ∗
n

we consider, it will converge strongly to f †
o .
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2.3.4 Example

We give here an example where the operator T is a multiplication and the itera-
tive algorithms 2.2.4 and 2.3.4 are applied on the same noisy image gε, with the same
parameter γ. ϕ={ϕλ}λ∈Λ is the orthonormal basis formed by the Haar wavelet. We
chose τ = 2σ, where σ is the standard deviation of the noise. The top row of Figure
2.3 shows the original image f (left) ; the function t corresponding to the operator T
(second column) ; the image of f under T : g = T (f) = f.t (third column) and the
noisy observation gε (right). Below, the results of iterative algorithms 2.2.4 (on the
left) and 2.3.4 (on the right) are displayed. Although the standard iterative algorithm
(2.2.4) yields almost perfect reconstruction in this case, the adaptive projection algo-
rithm does not recover the object f . Because of the projections, one wavelet coefficient
in gε is not taken in account. This prevents the iterative algorithm to properly inverse
the operator T .

Fig. 2.3 – From left to right, top row : original f , multiplication operator t, image
g = t.f , noisy observation of the image gε. Bottom row, left : reconstruction with the
standard iterative algorithm ; right : reconstruction with adaptive projection.

2.4 Adaptive projections relaxed

Our discussion and example above showed that minimizing the adaptive projec-
tion functional may lead to an undesirable solution in some cases, depending on the
operator T and the data. In this section, we introduce a slight relaxation of the
adaptive projections that we will prove no longer suffers from this inconvenience.
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2.4.1 Definition of the relaxed adaptive projections and of

the corresponding iterative algorithm

Definition 2.4.1. Given an orthonormal basis if H2, β= {βλ}λ∈Λ, an element g in
H2, a sequence of nonnegative thresholds τ= {τλ}λ∈Λ and a scalar µ, Mg,τ,µ is the
map from H2 into itself defined by :

∀h ∈ H2, Mg,τ,µ(h) =
∑

λ s.t. |gλ|>τλ

hλβλ + µ
∑

λ s.t. |gλ|≤τλ

hλβλ

Note that Mg,τ,µ is a bounded diagonal operator for any g, τ and µ. It is the-
refore a continuous linear operator. Depending on the parameters g and τ , either
‖Mg,τ,µ ‖ = 1 or ‖Mg,τ,µ ‖ = |µ|. In the following, we will restrict µ to the interval
(0, 1] and therefore, we will always have ‖Mg,τ,µ ‖ ≤ 1. Note that Mg,τ,0 is the adaptive
projection defined before : Mg,τ,0 = Mg,τ and that, for any choice of g, τ and µ 6= 0,
Mg,τ,µ has a bounded linear inverse. The minimization problem now becomes :

Problem 2.4.2. Given a sequence of strictly positive weights w={wλ}λ∈Λ, a sequence
of nonnegative thresholds τ={τλ}λ∈Λ, and scalars γ, µ and p with γ > 0, 0 < µ ≤ 1
and 1 ≤ p ≤ 2, find :

f ? = argmin
f∈H1

Jγ,w,p,τ,µ(f) = argmin
f∈H1

‖Mg,τ,µ(Tf − g)‖2
H2

+ γ|||f |||pw,p

where |||f |||w,p =
[∑

λ∈Λwλ| 〈f, ϕλ〉 |p
] 1

p and

Mg,τ,µ(h) =
∑

λ s.t. |gλ|>τλ

hλβλ + µ
∑

λ s.t. |gλ|≤τλ

hλβλ

For a fixed observation g and operator T , Problem 2.4.2 reduces to a particu-
lar instance of Problem 2.2.1, with the observation g ′ = Mg,τ,µ(g) and the operator
T ′ = Mg,τ,µ T . Therefore, the iterative algorithm that follows converges strongly to a
minimizer of Jγ,w,p,τ,µ for any choice of the initial guess.

Algorithm 2.4.3.
{
f 0 arbitrary
fn = Sγw,p

(
fn−1 + T ∗ M2

g,τ,µ g − T ∗ M2
g,τ,µ Tf

n−1
)
, n ≥ 1

Theorem 2.4.4. Let T be a bounded linear operator from H1 to H2, with norm strictly
bounded by 1. Fix p ∈ [1, 2], µ ∈ (0, 1], {τλ}λ∈Λa sequence of nonnegative numbers
and let Sw,p be the shrinkage operator defined by (2.7), where the sequence {wλ}λ∈Λ

is uniformly bounded below away from zero, i.e. there ∃c > 0 s.t. ∀λ ∈ Λ : wλ ≥ c.
Then the sequence of iterates

fn = Sγw,p

(
fn−1 + T ∗ M2

g,τ,µ g − T ∗ M2
g,τ,µ Tf

n−1
)
, n = 1, 2, . . . ,

with f 0 arbitrarily chosen in H1, converges strongly to a minimizer of the functional

Jγ,w,p,τ,µ(f) = ‖Mg,τ,µ(Tf − g)‖2
H2

+ γ|||f |||pw,p ,
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where |||f |||w,p denotes the norm |||f |||w,p =
[∑

λ∈Λwλ| 〈f, ϕλ〉 |p
]1/p

, 1 ≤ p ≤ 2 and
Mg,τ,µ(h) =

∑
λ s.t. |gλ|>τλ

hλβλ + µ
∑

λ s.t. |gλ|≤τλ
hλβλ.

If the minimizer f ? of Jγ,w,p,τ,µ is unique, (which is guaranteed e.g. by p > 1
or ker(Mg,τ,µ T ) = {0}), then every sequence of iterates fn converges strongly to f ?,
regardless of the choice of f 0.

Démonstration. As we noticed before :

Jγ,w,p,τ,µ;T,g(f) = ‖Mg,τ,µ(Tf − g)‖2
H2

+ γ|||f |||pw,p

= ‖(Mg,τ,µ T )f − (Mg,τ,µ g)‖2
H2

+ γ|||f |||pw,p

= Jγ,w,p,0,1; T ′, g′(f) with T ′ = Mg,τ,µ T, g′ = Mg,τ,µ g

Noting that Jγ,w,p,0,1; T ′, g′(f) is exactly the functional defined in Problem 2.2.1, it
is then sufficient to prove |||T ′||| is strictly smaller than 1 to prove the strong conver-
gence of the iterative algorithm 2.4.3 via Theorem 2.2.5. But |||T ′||| = |||Mg,τ,µ T ||| ≤
|||Mg,τ,µ |||.|||T ||| ≤ max{1, |µ|}.|||T |||. Since 0 < µ ≤ 1 then |||Mg,τ T ||| = 1 and therefore
|||T ′||| ≤ |||T ||| < 1.

2.4.2 Stability

The difference between the relaxed adaptive projection functional Jγ,w,p,τ,µ and the
original adaptive projection functional Jγ,w,p,τ is that we can now prove the desired
stability result. We have, in analogy to Theorem 2.2.6 the following

Theorem 2.4.5. Assume that T is a bounded operator from H1 to H2 with |||T ||| < 1
and that the entries in the sequence w= {wλ}λ∈Λ are bounded below uniformly by a
strictly positive number c.

For any g ∈ H2 and any γ > 0, 0 < µ ≤ 1 and nonnegative sequence τ={τλ}λ∈Λ,
define f ?

γ,w,p,τ,µ; g to be a minimizer of Jγ,w,p,τ,µ; g(f). If γ = γ(ε), τ = τ(ε) and
µ = µ(ε) satisfy :

1. lim
ε→0

γ(ε) = 0

2. lim
ε→0

ε2

γ(ε)
= 0

3. ∀λ ∈ Λ, lim
ε→0

τλ(ε) = 0

4. ∀λ ∈ Λ, ∃ δ(λ) > 0, s.t : [ ε < δ(λ) ⇒ τλ(ε) > ε ]

5. lim
ε→0

µ(ε) = µo, with 0 < µo ≤ 1

then for any fo such that there is a unique minimizer of the ||| |||w,p–norm in the set
Sfo = {f : Tf = Tfo} :

lim
ε→0

[
sup

‖g−Tfo‖H2
≤ε

‖f ?
γ(ε),w,p,τ(ε),µ(ε); g − f †

o‖H1

]
= 0 ,

where f †
o is the unique element of minimum ||| |||w,p–norm in the set Sfo.
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Note that, if kerT = {0}, then the set Sfo reduces to fo itself, so that the algorithm
is regularizing for all element in H1. This ensures that when the noise level converges
to 0, the sequence of estimates we obtain converges to the original object.

The proof of Theorem 2.4.5 is mostly analogous to (in fact a little easier than)
the proof of Theorem 2.3.8. For the sake of completeness, we give the full details of
the first two parts of the proof, indicating by
♠ ⇒

⇐ ♠
when the argument differs from before. Once we prove that f †

o is the unique accu-

mulation point of the sequence {f ?
n}n, the proof of weak and strong convergence are

strictly identical and we shall not repeat them.
We start by a lemma that, similarly to Lemma 2.3.9, examines the convergence

of the operators Mg,τ,µ :

Lemma 2.4.6. Suppose that τ = τ(ε) and µ = µ(ε) verify conditions 3, 4 and 5 of
Theorem 2.4.5. Then the two following properties hold :

1. For any h in H2, M
2
g(ε,f),τ(ε),µ(ε)h converges weakly to M2

Tf,0,µo
h as ε goes to 0.

2. If h(ε) converges weakly to h as ε goes to 0, then M 2
g(ε,f),τ(ε),µ(ε)h(ε) converges

weakly to M2
Tf,0,µo

h as ε goes to 0.

Proof of Lemma 2.4.6 : In the proof of Lemma 2.3.9, we have seen that under condi-
tions imposed on τ(ε) (conditions 3 and 4 of Theorem 2.4.5), the following happens :

– for λ s.t. Tfλ 6= 0 : limε→0 τλ(ε) = 0 hence there exists δ(λ, f) such that ε <
δ(λ, f) implies τλ(ε) < |Tfλ| − ε. It follows that : |g(ε, f)λ| > τλ(ε).

– for λ s.t. Tfλ = 0 : ε < δ(λ) implies τλ(ε) > ε. It follows that if ε < δ(λ), then
|g(ε, f)λ| > τλ(ε).

So that in the first case : M 2
g(ε,f),τ(ε),µ(ε)(βλ) = βλ for any g(ε, f) and any ε < δ(λ, f) ;

and in the second case : M 2
g(ε,f),τ(ε),µ(ε)(βλ) = µ(ε)2βλ for any g(ε, f) and any ε < δ(λ).

Since µ(ε) converges to some µo by assumption (condition 5 of Theorem 2.4.5), it
follows that M 2

g(ε,f),τ(ε),µ(ε)h converges to M 2
Tfo,0,µo

h as (ε) goes to 0. This proves the
first part of Lemma 2.4.6.

To prove the second part of Lemma 2.4.6, we use again the splitting trick we used
in 2.3.9.(3) :

∣∣∣
[
M2

g(ε,f),τ(ε),µ(ε)h(ε) − M2
Tf,0,µo

h
]
λ

∣∣∣ (2.41)

=
∣∣∣
[
M2

g(ε,f),τ(ε),µ(ε)(h(ε) − h) + (M 2
g(ε,f),τ(ε),µ(ε) − M2

Tf,0,µo
)h
]
λ

∣∣∣ (2.42)

=
∣∣∣
[
M2

g(ε,f),τ(ε),µ(ε)(h(ε) − h)
]
λ

∣∣∣+
∣∣∣
[
(M2

g(ε,f),τ(ε),µ(ε) − M2
Tf,0,µo

)h
]
λ

∣∣∣ (2.43)

And the same argument as we used in Lemma 2.3.9.(3) allows to conclude.

Note, that we did not need to prove this lemma that 0 < µo ≤ 1. Now that the
weak convergence of M 2

g(ε,f),τ(ε),µ(ε) is established, we proceed to the
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Proof of Theorem 2.4.5 : Let us consider fo in H1, that verifies that Sfo has a unique
minimizer ||| |||w,p–norm. We note this minimizer f †

o . We fix the following sequences :

{εn}n such that εn −→
n→∞

0 , {gn}n such that ∀n, ‖gn − Tfo‖H2
≤ εn, and {γn}n

def
=

{γ(εn)}n, {µn}n
def
= {µ(εn)}n and {τn}n

def
= {τ(εn)}n that verify conditions 1 to 5

in Theorem 2.4.5. For every n, we choose a minimizer f ?
n

def
= f ?

γn,w,p,τn,µn; gn
of the

functional Jn(f)
def
= Jγn,w,p,τn,µn; gn(f) = ‖Mgn,τn,µn(Tf − gn)‖2

H2
+ γn|||f |||pw,p. We want

to prove that for any such choice of the εn, gn, γn, µn, τn and f ?
n, the sequence f ?

n

converges strongly in H1 to f †
o . We will also note Mn

def
= Mgn,τn,µn .

The sequences {|||f ?
n|||w,p}n and {‖f ?

n‖H1
}n are uniformly bounded :

By definition of Jn, ∀n :

|||f ?
n|||pw,p ≤ 1

γn
Jn(f ?

n)

so that |||f ?
n|||pw,p ≤ 1

γn
Jn(f †

o ) since f ?
n minimizes Jn.

But : ♠ ⇒

Jn(f †
o ) = ‖Mn(Tf †

o − gn)‖2
H2

+ γn|||f †
o |||pw,p

= ‖Mn(Tfo − gn)‖2
H2

+ γn|||f †
o |||pw,p since Tf †

o = Tfo

≤ ‖Mn‖2.‖(Tfo − gn)‖2
H2

+ γn|||f †
o |||pw,p

≤ max{1, |µn|2}.ε2n + γn|||f †
o |||pw,p since ‖Tfo − gn‖ ≤ εn

Hence

∀n, |||f ?
n|||pw,p ≤ max{1, |µn|2}.

ε2n
γn

+ |||f †
o |||pw,p. (2.44)

Since ε2n
γn

−→
n→∞

0 and µn −→
n→∞

µo ∈ (0, 1], this proves that {|||f ?
n|||w,p}n is uniformly

bounded. ⇐ ♠

Moreover, w is bounded below by c > 0 and p ≤ 2, so the ‖.‖H1
-norm is bounded

above by c−
1
p |||.|||w,p :

|fλ| =
(
|fλ|p

) 1
p ≤

(
wλ

c
|fλ|p

) 1
p ≤

(∑

λ∈Λ

wλ

c
|fλ|p

) 1
p = c−

1
p |||f |||w,p (2.45)

so that :

‖f‖2
H1

=
∑

λ∈Λ

|fλ|2 ≤
∑

λ∈Λ

wλ

c
|fλ|p|fλ|2−p ≤

∑

λ∈Λ

wλ

c
|fλ|p

[
c−

1
p |||f |||w,p

]2−p
(2.46)

‖f‖2
H1

≤ 1
c
|||f |||pw,p

[
c−

1
p |||f |||w,p

]2−p
= c−

2
p |||f |||2w,p (2.47)

Hence, the sequence {f ?
n} is also uniformly bounded in H1.

33



f †
o is the unique accumulation point of the sequence {f ?

n}n :

Since it is uniformly bounded in H1, the sequence {f ?
n}n has at least one weakly

convergent subsequence {f ?
k}k. Let us denote its weak limit f̃ . We shall now prove

that f̃ = f †
o .

Since f ?
k is a minimizer of Jk obtained through the iterative algorithm, 2.4.3, it

verifies the fixed point equation : f ?
k = Sγkw,p (f ?

k + T ∗M2
kgk − T ∗M2

kTf
?
k ). We note

hk = f ?
k + T ∗M2

kgk − T ∗M2
kTf

?
k , so that f ?

k = Sγkw,p(hk). By definition of the weak
limit, it follows that :

∀λ, f̃λ = lim
k→∞

Sγkwλ

(
(hk)λ

)

= lim
k→∞

[(hk)λ] + lim
k→∞

[Sγkwλ
((hk)λ) − (hk)λ] but lim

k→∞
γkwλ = 0

So, ∀λ, f̃λ = lim
k→∞

[(hk)λ] since ∀x, Sv(x) −−→
v→0

x

= lim
k→∞

[(f ?
k + T ∗M2

kgk − T ∗M2
kTf

?
k )λ]

= f̃λ + lim
k→∞

[(T ∗M2
kgk − T ∗M2

kTf
?
k )λ] since (f ?

k )λ −−−→
k→∞

f̃λ.

As a result : ∀λ, lim
k→∞

[(T ∗M2
kgk − T ∗M2

kTf
?
k )λ] = 0.

♠ ⇒
Since ‖gk − Tfo‖ ≤ εk, then ‖T ∗M2

k (gk − Tfo)‖H2
≤ ‖T ∗‖‖Mk‖2εk < max{1, |µk|}2.εk.

Since µk converges to µo ∈ (0, 1], and εk to 0, this proves that for all λ :

lim
k→∞

[
(T ∗M2

kTfo − T ∗M2
kTf

?
k )λ

]
= 0. (2.48)

From Lemma 2.4.6.(1), we know that the sequence {M 2
k (Tfo)}k converges weakly

to M2
Tfo,0,µo

(Tfo) = Tfo. ⇐ ♠
Together with the continuity of T ∗, this leads to :

T ∗M2
kTf

?
k

w−−−→
k→∞

T ∗Tfo. (2.49)

On the other hand, f ?
k converges weakly to f̃ . Using the continuity of T , we get

Tf ?
k

w−−−→
k→∞

Tf̃ .

♠ ⇒
Lemma 2.4.6.(2) allows then to conclude that M 2

kTf
?
k

w−−−→
k→∞

M2
Tfo,0,µo

Tf̃ ⇐ ♠
and it follows from the continuity of T ∗ that :

T ∗M2
kTf

?
k

w−−−→
k→∞

T ∗M2
Tfo,0,µo

Tf̃ . (2.50)

Plugging this last result in Eq. (2.49), we obtain the equality :

T ∗M2
Tfo,0,µo

Tf̃ = T ∗Tfo (2.51)

Note that MTfo,0,µo is a self adjoint and that M 2
Tfo,0,µo

(Tfo) = MTfo,0,µo(Tfo) = Tfo.

Therefore the previous equality reduces to : T ∗M2
Tfo,0,µo

T (f̃ − fo) = 0. Taking the

scalar product with f̃ − fo, we obtain :
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♠ ⇒
〈
f̃ − fo, T

∗M2
Tfo,0,µo

T (f̃ − fo)
〉

= 0

⇔
〈
MTfo,0,µoT (f̃ − fo), MTfo,0,µoT (f̃ − fo)

〉
= 0

⇔ ‖MTfo,0,µT (f̃ − fo)‖2
H2

= 0

⇔ MTfo,0,µoT (f̃ − fo) = 0

⇔ T (f̃ − fo) = 0 since MTfo,0,µo is invertible.

⇔ Tf̃ = Tfo

This proves that f̃ belongs to the set Sfo . ⇐ ♠

Let us now prove that |||f̃ |||w,p ≤ |||f †
o |||w,p. Because of the weak convergence of the

f ?
n to f̃ , for all λ, the nonnegative sequence {wλ|f ?

nλ|}n converges to wλ|f̃λ|. One can
then use Fatou’s lemma to obtain :

|||f̃ |||pw,p =
∑

λ

lim
n→∞

{wλ|f ?
nλ|}n ≤ lim

n→∞

∑

λ

{wλ|f ?
nλ|}n = lim

n→∞
|||f ?

n|||pw,p

♠ ⇒
But we proved earlier that |||f ?

n|||pw,p ≤ max{1, |µn|}. ε
2
n

γn
+ |||f †

o |||pw,p. Therefore, since the

limn→∞ µn = µo ∈ (0, 1] and limn→∞
ε2n
γn

= 0, we get :

|||f̃ |||pw,p ≤ lim
n→∞

|||f ?
n|||pw,p ≤ |||f †

o |||pw,p (2.52)

⇐ ♠
By definition, f †

o is the unique minimizer of the |||.|||w,p-norm in Sfo , so this implies

that f̃ = f †
o .

The conclusion of this paragraph is that f †
o is the only possible accumulation point

of the sequence f ?
n.

The sequence {f ?
n}n converges weakly to f †

o :

[This is identical to the proof given for Theorem 2.3.8]

The sequence {f ?
n}n converges strongly to f †

o :

[This is identical to the proof given for Theorem 2.3.8]

2.4.3 Example

To illustrate how the relaxation of the adaptive projection works in practice,
let us revisit the example given in subsection 2.3.4. We chose µ = .5 and ran the
relaxed iterative algorithm on the data we presented in Figure 2.3. Figure 2.4 shows
the original object we are trying to estimate (top), together with the result of each
method (bottom). As we noticed before, the introduction of adaptive projections in
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the discrepancy term prevents the iterative algorithm 2.3.4 to reconstruct the object.
The bottom left panel of Figure 2.4 shows the “perfect” reconstruction obtained with
the standard iterative algorithm of section 2.2. One can see in the middle panel at the
bottom of the figure that the reconstruction of section 2.3 using adaptive projections
misses one variation. The ability to recover the signal perfectly is regained by using
the relaxed algorithm of section 2.4, as shown in the bottom right panel of Figure
2.4.

Fig. 2.4 – Example of Fig. 2.3 revisited. Top : original. Bottom, from left to right :
reconstruction with the standard iterative algorithm, reconstruction with adaptive
projections, reconstruction with relaxed adaptive projections.

2.5 Extension to multiple input/outputs

In this section, we discuss the generalization of the iterative algorithm to the case
when one seeks M components (f1, f2, . . . , fM) from L observations (g1, g2, . . . , gL).
We wish to minimize the functional defined in Eq.(2.1), choosing appropriate norms
|||.|||Xm for each component fm. As before, the norms |||.|||Xm are lp-norms of decom-
position coefficients. In all generality, the components fm (resp. the observations gl)
could belong to different spaces Hilbert Hi

m (resp. Ho
l ). This would be the case, for

instance, if one were to use this algorithm to register multi-modal data where each
component could have a different format. One then needs to consider M tight frames
ϕm ={ϕm

λ }λ∈Λ for m = 1, ..,M . Even if the components belong to the same Hilbert
space, there is no reason a priori why the most appropriate norms |||.|||Xm would use the
same tight frame for all m = 1, ..,M . Therefore, we will allow not only the exponent
p and the weights wλ to depend on m but also the decomposition frame ϕλ :

|||.|||Xm =

[∑

λ∈Λ

wm
λ | 〈 . , ϕm

λ 〉 |pm

] 1
pm

. (2.53)
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Note that we could introduce some modifications in the discrepancy terms as well, to
tune these to the characteristics of each observation gl, for l = 1, .., L. For example,
one could use the (relaxed) adaptive projections Mg,τ,µ. As is the case for M = L = 1,
this amounts to modifying the operators and the observations gl accordingly. Since we
described in detail how these changes affect the iterative algorithm for M = L = 1,
we shall focus here on the changes due to the presence of multiple observations and
multiple components with specific |||.|||Xm-norms. Subsection 2.5.1 describes the theo-
retical generalization of the iterative algorithm to the multiple components/multiple
observations case and Subsection 2.5.2 the application to our astrophysical problem.

2.5.1 Generalization of the iterative algorithm

Let us first state the most general problem. Assuming we are given observations
gl that belong to different Hilbert spaces Ho

l , we wish to estimate the objects fm in
Hilbert spaces Hi

m that produced them, knowing that the contribution of object fm

to observation gl is Tm,lfm where the Tm,l : Hi
m → Ho

l are bounded linear operators.
We estimate the objects fm by solving the problem :

Problem 2.5.1. Given scalars {γm}m=1,..,M , {ρl}l=1,..,L and exponents {pm}m=1,..,M

with γm > 0, ρl > 0 and 1 ≤ pm ≤ 2, given in addition a tight frame ϕm ={ϕm
λ }λ∈Λ

and a sequence of positive weights wm = {wm
λ }λ∈Λ for each Hilbert space Hi

m, for
m = 1, ..,M , find :

argmin
fm∈Hi

m

J(f1, f2, . . . , fM) =
L∑

l=1

ρl

∥∥∥
M∑

m=1

Tm,lfm − gl

∥∥∥
2

Ho
l

+
M∑

m=1

γm|||fm|||pm

Xm
;

where |||f |||Xm =
[∑

λ∈Λwλ| 〈f, ϕm
λ 〉 |pm

] 1
pm .

Let us first explain the generalization of the iterative algorithm 2.2.4 needed to
solve Problem 2.5.1, in the case where the pm are equal.

Constant exponent : pm = p, ∀m
When the exponents pm are all the same, one can see Problem 2.5.1 as an instance

of Problem 2.2.1 by recasting the Problem in higher dimension. This is done by
building a unique observation space : Ho

= Ho
1 ×Ho

2 × · · · ×Ho
M and a unique object

space : Hi
= Hi

1 ×Hi
2 × · · · × Hi

L. The standard euclidean norm :

∥∥f̄
∥∥
Hi=

[ M∑

m=1

∥∥fm

∥∥2

Hi
m

] 1
2

for f̄ = (f1, f2, . . . , fM ) ∈ Hi
(2.54)

defines Hi
as a Hilbert space. We define a particular norm on the Hilbert space Ho

:

∥∥ḡ
∥∥
Ho=

[ L∑

l=1

ρl

∥∥gl

∥∥2

Ho
l

] 1
2

for ḡ = (g1, g2, . . . , gM) ∈ Ho
(2.55)
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Define the embedding operators Pm : Hi
m → Hi

by Pm(f) = (0, . . . , 0,

m
↓
f , 0, . . . , 0).

Since the family Φ = {Pm(ϕm
λ )}m=1,..,M, λ∈Λ is a tight frame of Hi

, one can also define

a |||.|||X-norm on the object space Hi
by :

|||f̄ |||w,p =

[ ∑

m=1,..,M
λ∈Λ

γm wm
λ

∣∣〈f̄ , Pm(ϕm
λ )
〉
Hi

∣∣p
] 1

p

=

[ ∑

m=1,..,M
λ∈Λ

γm wm
λ

∣∣〈 fm, ϕ
m
λ 〉Hi

m

∣∣p
] 1

p

(2.56)

where w = {γm wm
λ }m=1,..,M, λ∈Λ. Finally the operator T : Hi → Ho

is defined by :

T(f1, f2, . . . , fM) =
( M∑

m=1

Tm,1fm,
M∑

m=1

Tm,2fm, . . . ,
M∑

m=1

Tm,LfM

)
(2.57)

With these definitions, Problem 2.5.1 reduces to Problem 2.2.1 since :

J(f1, f2, . . . , fM) =
L∑

l=1

ρl

∥∥∥
M∑

m=1

Tm,lfm − gl

∥∥∥
2

Ho
l

+
M∑

m=1

γm|||fm|||pXm
(2.58)

J(f1, f2, . . . , fM) =
∥∥∥ T f̄ − ḡ

∥∥∥
2

Ho
+ |||f̄ |||pw,p (2.59)

with |||f̄ |||w,p =

[∑

n

wn

∣∣〈f̄ ,Φn

〉
Hi

∣∣p
] 1

p

. (2.60)

Here the indexes λ and m are combined into a single index n and wn = wm
λ = γmw

m
λ

and Φn = Φm
λ = Pm(ϕm

λ ).
As a result, the iterative algorithm 2.2.4 can be used on the vectorized quantities

(f̄ , ḡ, T , . . .) to solve Problem 2.5.1 when the pm are equal.

Full case : arbitrary pm

In the case where the pm depend on m, the vectorization trick does not allow to
conclude right away because |||f̄ |||X can not be written as a single lp norm. One needs
to go back to the construction of the iterative algorithm 2.2.4 to see how to modify
it. We note Φm

λ the element Pm(ϕm
λ ) of the frame Φ. As before, the functional :

J(f̄) =
∥∥∥ T f̄ − ḡ

∥∥∥
2

Ho
+
∑

m, λ

wm
λ

∣∣∣
〈
f̄ ,Φm

λ

〉
Hi

∣∣∣
pm

(2.61)

is approximated by the surrogate functional :

J ā(f̄) =
∥∥∥T f̄ − ḡ

∥∥∥
2

Ho
−
∥∥∥T f̄ − T ā

∥∥∥
2

Ho
+C

∥∥∥f̄ − ā
∥∥∥

2

Hi
+
∑

m, λ

wm
λ

∣∣〈f̄ ,Φm
λ

〉
Hi

∣∣pm
(2.62)

for C > |||T ∗
T |||. The surrogate functional is again strictly convex and the equations

decouple for each pair (m,λ). The minimizer f̄ ?ā
is again defined applying the operator
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Sw,p for each component :
〈
f̄ ?ā

,Φm
λ

〉
Hi

= Swm
λ , pm

(〈
Cā+ T

∗
ḡ − T

∗
T ā,Φm

λ

〉
Hi

)
(2.63)

〈
f̄ ?ā

,Φm
λ

〉
Hi

= Sγm.wm
λ , pm

(〈
Cā+ T

∗
ḡ − T

∗
T ā,Φm

λ

〉
Hi

)
(2.64)

Defining the operator : Sw,p̄ : Hi → Hi
by :

Sw,p̄(f̄) =
∑

m=1,..,M
λ∈Λ

Swm
λ , pm

(〈
f̄ ,Φm

λ

〉
Hi

)
Φm

λ , (2.65)

one gets :

f̄ ?ā
= Sw,p̄

(
Cā+ T

∗
ḡ − T

∗
T ā
)

(2.66)

The only difference with what we saw in Section 2.2 is that now, the operator
applied to each coordinate does not have the same value of p anymore. However the
vectorized operator Sw,p̄ (with multiple values for p) inherits the properties of the
vectorized operator Sw,p (with a single value p) that ensure the strong convergence
of the iterative algorithm obtained by minimizing a sequence of surrogate functionals
as before. (The mathematical definition 2.5.3 follows). That is to say that Sw,p̄ is a
non-expansive and asymptotically regular operator, it has at least one fixed point and
verifies two technical lemmas (lemma 3.17 and lemma 3.18 in [16]). These properties
are conserved because these is only a finite number of values pm.

Hence when |||T ∗
T ||| < C, an iterative algorithm that converges strongly to a

solution of Problem 2.5.1 is :

Algorithm 2.5.2.
{
f̄ 0 ∈ Hi arbitrary

f̄n = 1
C

Sw,p̄

(
Cf̄n−1 + T

∗
ḡ − T

∗
T f̄n−1

)
, n ≥ 1

Going back to the original observations gl and operators Tm,l, the algorithm 2.5.2
in the original spaces Hi

m is :

Algorithm 2.5.3.



f0
m ∈ Hi

m, arbitrary, ∀ m ∈ [[1,M ]]

∀ n ≥ 1, ∀ m ∈ [[1,M ]], ∀ λ ∈ Λ :

〈fn
m, ϕ

m
λ 〉 = 1

C
Sγmwm

λ , pm

(
< Cfn−1

m +
∑

l=1,..,L

ρlT
∗
m,lgl −

∑
l=1,..,L
r=1,..,M

ρlT
∗
m,lTr,lf

n−1
r , ϕm

λ >

)
ϕm

λ

with |||T ∗
T ||| < C

One can express a possible value for C in terms of upper bounds on the norms
of the combinations of T ∗

m,lTr,l ; we won’t do this explicitly for this general case, but
show in the next subsection how to do it for our particular application.

Remark. This approach is a generalization of the method developed in [20] for M =
2, with p1 = 1 and p2 = 2.
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2.5.2 Application to astrophysical data

We present in this section the use of the multiple input/multiple output iterative
algorithm 2.5.3 for our astrophysical problem. The objects gl at hand are images of
a portion of the sky, acquired at different wavelengths. The dominant components
fm in the observations are : the Cosmic Microwave background (f1), the clusters of
galaxies (f2), infrared point sources (f3) and the galactic dust (f4). We are mostly
interested in reconstructing accurately the clusters of galaxies. To do so it is necessary
to consider the other signals, f1, f3 and f4, because at the wavelength we consider
they dominate the clusters’ signal.

The observed images gl all have the same resolution and size and we want to
reconstruct images of the components with the same resolution and size as well.
Hence, in this case, the Hilbert spaces Hi

m and Ho
l are the same. We have chosen to

embed our input and output images in the Hilbert space H = L2([0, 1] × [0, 1]) with
the canonical norm.

Each image acquired on the telescope is a superposition of the different images we
are trying to estimate that is blurred and contaminated by noise. The blurring oc-
curs because the ideal impulse response of the instrument is not perfect. It is instead
well modeled by the convolution with a function that depends on the observed wave-
length. This function is called a “beam” in astronomy. Moreover, the contribution of
each component depends on the wavelength of observation because of their different
physical characteristics. As a result, the observed images gl can be modeled as :

gl = bl ∗
[ M∑

m=1

am,l fm

]
+ nl (2.67)

where ∗ denotes the two-dimensional convolution ; am,l is a scalar ; bl is the beam at
wavelength l ; and nl models the noise. Sources of noise here are instrumental noise
and other components we overlooked because they are not dominant.

With this method, our estimates of the physical components f1, f2, .... are mi-
nimizers of the functional 2.5.1, computed via Algorithm 2.5.3. The operators Tm,l

combine the convolution by the beam and the frequency dependence of component
m :

Tm,l :
H → H
f 7→ am,l bl ∗ f

(2.68)

The beams bl are typically square integrable functions and therefore the Tm,l are
bounded linear operators. The adjoint of Tm,l is :

T ∗
m,l :

H → H
f 7→ ām,l b̃l ∗ f

where b̃l(x, y) = b̄l(−x,−y) (2.69)

Choice of the parameter C

The norm |||T ∗
T ||| can be bounded by noticing that :

[
T

∗
T (f1, . . . , fM )

]
l
(x) =

L∑

l=1

M∑

r=1

ām,l ar,l ρl (bl ∗ b̃l ∗ fr)(x) (2.70)
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Computing the Fourier transform of the previous equation, we obtain :

[
T

∗
T (f1, . . . , fM)

]∧
l
(ξ) =

L∑

l=1

M∑

r=1

ām,l ar,l ρl

∣∣b̂l
∣∣2(ξ) f̂r(ξ) , (2.71)

or, writing it in a matrix form :




[
T

∗
T (f1, . . . , fM)

]∧
1
(ξ)

...[
T

∗
T (f1, . . . , fM)

]∧
L
(ξ)


 = A




ρ1

∣∣b̂1
∣∣2(ξ) 0

. . .

0 ρL

∣∣b̂L
∣∣2(ξ)


A∗




f̂1(ξ)
...

f̂M(ξ)


 ,

(2.72)
where A is the M × L matrix with entries am,l. Noting ρB(ξ) the L × L diagonal

matrix with entries ρ1

∣∣b̂l
∣∣2(ξ), and fixing ξ, one gets :

∀ ξ,
M∑

m=1

∣∣∣∣
[
T

∗
T (f1, . . . , fM)

]∧
m

(ξ)

∣∣∣∣
2

≤ |||A ρB(ξ) A∗|||
M∑

m=1

∣∣∣f̂m(ξ)
∣∣∣
2

(2.73)

Assuming the beams bl are integrable so that supξ

∣∣b̂l
∣∣2(ξ) < ∞, one can bound the

matrix norm :

∀ ξ, |||A ρB(ξ) A∗||| ≤ |||A
(
sup

ξ
ρB(ξ)

)
A∗||| ≤ sup

l,ξ

(
ρl

∣∣b̂l
∣∣2(ξ)

)
|||AA∗||| (2.74)

Eq. (2.73) can be rewritten :

∀ ξ,
M∑

m=1

∣∣∣∣
[
T

∗
T (f1, . . . , fM)

]∧
m

(ξ)

∣∣∣∣
2

≤ sup
l,ξ

(
ρl

∣∣b̂l
∣∣2(ξ)

)
|||AA∗|||

M∑

m=1

∣∣∣f̂m(ξ)
∣∣∣
2

(2.75)

Integrating this last equation in ξ gives a bound on the norm |||T ∗
T ||| :

|||T ∗
T ||| ≤ sup

l,ξ

(
ρl

∣∣b̂l
∣∣2(ξ)

)
|||AA∗||| (2.76)

For our astrophysical problem the beams are Gaussian so the integrability condi-
tion is verified. We used C = 2|||T ∗

T |||.

Choice of the norms

We are most interested is the clusters of galaxies map f2. Clusters of galaxies
are rare objects in the sky. They are very compact, typically a few arcminutes wide,
with a peak of intensity in the center and filaments on the outskirts. Because of
their compactness and rarity, the clusters of galaxies are well described by a few
large wavelet coefficients. The l1 norm on the wavelet coefficients (which is in fact
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equivalent to the Besov B1
1-norm), has proved to be a good a regularization norm for

such signals [8, 10, 44]. Hence, that is what we use to constrain the object f2 :

|||.|||X2
=
∑

λ∈Λ

| 〈 . , ϕλ〉 | (2.77)

where ϕ= {ϕλ}λ∈Λis a tight frame of complex wavelets. We describe in detail in
Chapter 4 Section 4.2 the dual tree complex wavelet transform that is used here.

The Cosmic Microwave Background component, f1, is a smooth and slowly varying
signal. It spreads across the whole sky. Moreover its power spectrum |f̂1(ξ)|2 is well
studied and can therefore be used to constrain the estimate of f1. This can be done
by adding weights wλ to the l2-norm in wavelet space :

|||.|||X1
=
∑

λ∈Λ

wλ| 〈 . , ϕλ〉 |2 (2.78)

As is the case for Sobolev spaces, for which one chooses wλ = wj,k = 2ζjp for appro-
priate ζ, we use weights wλ = wj,k that depend only on the scale j of the wavelet ϕj,k

(not on the location k). They are defined as follows :

wλ = wj,k =

∫ ∣∣ϕ̂j,0(ξ)
∣∣2dξ

∫
P1(ξ)

∣∣ϕ̂j,0(ξ)
∣∣2dξ

(2.79)

where P1(ξ) is a template of the power spectrum of the CMB studied by astrophysi-
cists.

The Galaxy Dust is also a smooth and slowly varying signal that spreads across
all sky. Its power spectrum is not as well studied as the CMB, so we investigated the
relevance of different Sobolev type norms to constrain its smoothness. We obtain the
best results by choosing wλ = wj,k = 23j, i.e. :

|||.|||X4
=

∑

λ=(j,k)∈Λ

23j| 〈 . , ϕλ〉 |2 (2.80)

The last signal f3 comes from really small objects that emit in the infrared spec-
trum, called infrared point sources. These point sources are rather rare. Since they
are so small, they appear under the resolution of any image, so that the extent of a
point source is smaller than one single pixel. For this signal it is then natural to stay
in the pixel domain, requiring that the estimate is a sparse as possible :

|||.|||X3
=
∑

pixel

∣∣f3(pixel)
∣∣ (2.81)

Note that one would ideally want to use the l0-norm :
∑

pixel δ|f3(pixel)|6=0. However, the
functional would then not be convex. So, we choose the exponent p to stay as sparse
as possible while keeping the convexity, which is p = 1. (In fact, Donoho has shown,
and used in several papers, that in many cases an l1-constraint is a good proxy for
an L0-bound ; see e.g. [22, 23, 24].)
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Choice of the regularizing parameters

The principal source of noise in the astrophysical data we consider is controlled by
the time of exposure to the portion of sky imaged. Astrophysicists therefore customa-
rily provide, as part of their data, not only the gl but also an estimation of the noise
level σl in the image acquired. When the fm are close to the truth, the lth discrepancy
term ||∑m Tm,lfm − gl||2 should be of the order of σ2

l . To give equal importance to
each discrepancy term, we set ρl = 1

σ2
l
.

Similarly, we chose the parameters γm so that the regularization terms |||fm|||Xm

have the same order magnitude as each other but also as the discrepancy terms. The
estimation of the order of magnitude of |||fm|||Xm is done numerically using simulations
of each component.

Positivity constraints

The clusters’ signal and the point sources’ signal are positive. We introduce these
constraints using the projection step described in 2.2.4 for these two components.
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Chapitre 3

Statistical method

In this section, we present a method of separation of blurred mixtures of com-
ponents based on a statistical description of each component to be estimated. This
method is largely inspired by the work of J. Portilla et al. [47]. In that paper, the
authors present a method for deblurring natural images that is based on a statistical
description of the unknown elements constituting the observation, namely, the “true”
image and the noise (the point spread function causing the blurring is supposed to be
known). In that framework, the “true” image is viewed as a realization of a random
process F , and the noise as a realization of another random process N . Consequently,
the observation is a realization of a random process G that is a known function of
the previous ones : G = T (F,N). The description of the characteristics of the two
random processes F and N induces a statistical model for the random process G. In
return, given a particular observation i.e. a particular instance of G, this model gives
information about the plausible instances of F and N that produced it. Using this in-
formation, one can define a notion of best estimate for the instances of F and N that
produced the observation in hand, which is to say an estimate of the “true” image
and of the noise given the observation we have. Several standard techniques exist to
carry out these estimations ; one can use e.g. a “maximum a posteriori” approach, or
a “maximum likelihood estimator”, etc.... Here, as in [47], we shall use a Bayes least
square estimate, i.e. we estimate the “true” image by computing the maximizer of
the conditional expectation of the process F given the observation.

Given this framework for estimation, one is left with choosing a model for the
processes F and N , so that the observation gives a plausible estimate for F (which is
the estimate of the “true” image). The choices made in [47] are based on knowledge
that has been acquired by studying natural images and their properties. In particular,
they use wavelet expansions : going to wavelet space helps separating the noise from
the “true” image, because the noise energy is spread out across wavelet coefficients
whereas the wavelet transform of a natural image is typically concentrated in a few
large coefficients. The wavelet transformation has another advantage : it has been
observed that the distribution of wavelet coefficients of natural images is not Gaus-
sian ; whereas the noise is typically well modeled by a Gaussian process. Moreover,
the structure present in natural images causes their wavelet coefficients to behave in
a more coherent manner than the noise’s coefficients. For instance, the presence of
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an edge is reflected by relatively large wavelet coefficients, through different scales,
at the location of the edge.

In [47], the authors propose a method that takes advantage of the knowledge
we just described. They chose a particular wavelet transform, the steerable pyramid,
and modeled “neighborhoods” of wavelet coefficients by Gaussian Scale Mixtures
(GSM). These neighborhoods are sets of wavelet coefficients associated with the same
location and that behave in a coherent manner. Modeling the behavior of the wavelet
coefficients in these neighborhoods jointly (instead of each singly) buys power for the
estimation by taking advantage of the coherence present in the “true” image and
absent in the noise. Moreover, the Gaussian Scale Mixture is a family of probability
distributions that can capture the non-Gaussianity of a signal ; it has proved to be
useful for modeling the distribution of wavelet coefficients in natural images [60]. Once
this model is completely characterized, the authors of [47] compute the Bayes least
square estimate of the “true” image ; the use of the GSM model makes this estimate
easy to compute.

We have extended this method to the case of blurred mixtures of components in
order to extract the clusters of galaxies from observed astrophysical data. Although
our components are not natural images, part of the reasoning here still holds. In par-
ticular, the use of neighborhoods of wavelets coefficients becomes crucial. Not all our
components deviate a lot from Gaussianity (indeed the CMB signal is Gaussian !),
therefore, distinguishing the noise from such components solely on the basis of the
marginal distributions can not be done. Consequently, the coherence of wavelets co-
efficients in the same neighborhood is essential to make this distinction. Moreover,
some signals (e.g. the clusters of galaxies) are much less intense than others, causing
the amplitude of their wavelet coefficients to be too small to be detected one by one.
Taking advantage of their coherence becomes necessary to lower the intensity thre-
shold for detection of these signals. Note that the (non–)Gaussianity of the different
components has a physical meaning : for example, the deviation from Gaussianity of
the CMB gives astrophysicists an indication on how to understand the Universe. As
the cluster signal is itself highly non–Gaussian, a bad estimation of the cluster signal
“pollutes” the estimated CMB signal, and thus the astrophysical conclusions. There-
fore, careful treatment of the (non–)Gaussianity of these signals is necessary. Using
the Gaussian Mixture Model allows us to do so in a simple and efficient manner since
both Gaussian and non–Gaussian signals can be modeled with the same formalism.

In this chapter, we will present the theoretical aspects of this model illustrated by
some examples. In the first section, we describe in detail the different constituents of
the statistical model of the different signals present in the observations. In particular,
we show how to define neighborhoods of wavelet coefficients, what are Gaussian Scale
Mixture models and what is the resulting model for each component. The second
section discusses the formal derivation of the Bayes least square estimate and its
computation, leaving the problem of the estimation of the different parameters for
section three. Finally, we describe in the last section of this chapter the application
of this method to our astrophysical problem. As we go along, we shall give some
examples to illustrate the theoretical aspects of this method ; however most examples
are kept until in Chapter 5, where we juxtapose the results produced by this method
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and by the functional method of Chapter 2, so that the reader can easily compare
them.

3.1 Modelization of the signals

Let us now give more explicits details about the different constituents of the
statistical model of the data.

3.1.1 Neighborhoods of wavelet coefficients

In natural images, although the wavelet transform has the property of decorre-
lating coefficients, there exists significant spatial dependencies in the transformed
coefficients : wavelet coefficients centered at the same (or a close) location and scale
behave coherently. This is a consequence of the geometrical properties of such images
and of the spatial localization of wavelets. For example, a vertical edge separating two
smooth regions yields a recognizable pattern in the wavelet transform : all wavelet
coefficients are very small, except those corresponding to a wavelet oriented hori-
zontally and whose support includes the edge. Not only will the horizontal wavelets
centered at the edge yield quite large coefficients, but also the horizontal coefficients
will decay or oscillate in a special manner with the distance to the edge and with the
scale. (In fact, if such a simple vertical discontinuity was located at n = 2j(k1

o , k
2
o),

(k1, k2) ∈ Z2, one could derive the exact values taken by the coefficients
〈
f, ϕvert

j′,n′

〉

for scales j ′ finer than j, centered at locations n′ = 2j′(k′, k2
o), k

′ ∈ [[k1
o −K, k1

o +K]].
Here we denoted ϕvert the wavelet that is vertically oriented).

Similarly, for our astrophysical problem, the geometrical properties of the different
components can be exploited. For example, clusters of galaxies are spatially localized
structures with a high intensity peak at their center. Their size is of the order of a
couple arcminutes. Hence, at scales j where the width of the wavelet ϕj is a couple of
arcminutes or less, the amplitude of wavelet coefficients should exhibit rather sharp
transitions from very low to very high amplitude at the locations of the clusters.
Moreover, these transitions should be sparsely distributed since the clusters are rare.
This would not happen for the CMB signal (resp. the galaxy dust) for which the
variations are much smoother and the typical scale of variations is more than 10
(resp. 50 ) times bigger. The point sources on the other hand are much less extended
than the clusters and the noise is spread over scale and space. Hence the local behavior
of the wavelet coefficients is particular to each component.

Different approaches have been proposed to take in account the spatial coherence
of wavelet coefficients in order to improve image processing. The zerotree method for
compression [55] and later the hidden Markov model based on wavelet trees for image
denoising [15, 50] both incorporate the spatial dependencies as prior knowledge on the
wavelet tree structure. Other methods are based on local models of the coefficients
that are used either to compute parameters for the denoising [54] or as statistical prior
for estimation of the signal [41, 47]. Most of these methods [55, 15, 50, 54] consider only
the depencies between a wavelet coefficient and its parent (i.e. the coefficient centered
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at the same location but at the next coarser scale). In our problem, the presence of the
blurring will induce depencies on the wavelet coefficients within a scale as well. So we
will use, as in [47, 41], more extended neighborhoods. We consider the neighborhood
of a coefficient fj,q,n =

〈
f, ϕq

j,n

〉
to be the set that contains the coefficient itself and

its parent, fj−1,q,n, as well coefficients at the same scale j and orientation q, centered
at positions n′, where n′ belongs to a K−ring of n. Using the notation fj,q,n,K for the
neighborhood of the coefficient fj,q,n, this amounts to :

fj,q,n,K = {fj−1,q,n} ∪ {fj,q,n′ , n′ = n+ (i, j), (i, j) ∈ [[−K,K]]2} (3.1)

We note Vj,q,n,K the set of indexes of wavelet coefficients in the neighborhood fj,q,n,K :

Vj,q,n,K = { (j − 1, q, n) } ∪ { (j, q, n′), n′ = n+ (i, j), (i, j) ∈ [[−K,K]]2} (3.2)

so that fj,q,n,K = {fi}i∈Vj,q,n,K
. Note that for K = 0, this reduces to the wavelet coef-

ficient and its parent. For our application, K = 1 is typically sufficient to model the
statistical dependences of the wavelet coefficients of the different components. Taking
the blurring into account, we will extend the size of the neighborhood up to K = 3
to obtain a good estimation from the observations. For the sake of conciseness in the
notation, we shall drop the index K indicating the size of the ring (and sometimes
even the wavelet index j, q, n) where not necessary, denoting the neighborhood fj,q,n,K

by fj,q,n (or even f). Furthermore, the neighborhoods are ordered so that we describe
them as vectors.

In [55, 15, 50, 41], the behavior of a single wavelet coefficient is described by a two-
state model : a wavelet coefficient is either significant or not. The marginal distribution
of a coefficient is a mixture of two centered Gaussians. One of them has small variance,
this accounts for the high number of very small (i.e. non-significant) coefficients. The
second Gaussian has a large variance, this accounts for the existence of large (i.e.
significant) coefficients, giving more weight to the tail of the distribution than a
single Gaussian would normally have. Because we want to model several components,
we would like our model to offer the possibility of making a finer description of the
behavior of wavelet coefficients. To do so, we use the Gaussian Scale Mixture model
(GSM), also used in [47]. This model is more flexible than the two-state mixture of
Gaussian model, allowing to fit a wide variety of marginal distributions.

3.1.2 Gaussian scale mixtures

Model

We model each neighborhood vector f as a Gaussian scale mixture. That is to
say : the probability distribution of the vector f is the distribution of a product of
two random variables,

√
z and u :

f
dist.≡

√
z u (3.3)

u is a centered Gaussian vector and z is a scalar random variable that takes only
non-negative values. The random variable z, whose distribution we describe later, is
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called the multiplier and is independent of u. We shall always normalize z so that its
expectation is one : E{z} = 1. It follows that the covariance matrix of the Gaussian
vector u is exactly the covariance matrix of the neighborhood vector f :

Cov(fi, fj) = E{fifj} − E{fi}E{fj}
= E{(

√
z ui)(

√
z uj)} − E{

√
z ui}E{

√
z uj}

= E{z}E{ui uj} − E{
√
z}2E{ui}E{uj} (uand z are independent)

= E{ui uj} (E{z} = 1, E{ui} = E{uj} = 0)

= E{ui uj} − E{ui}E{uj} (again E{ui} = E{uj} = 0)

Cov(fi, fj) = Cov(ui,uj)

The GSM model is then specified by two parameters : the probability distribution
of the multiplier z, noted pz, and the covariance matrix of f , noted Cf . Let us now
describe how these two parameters affect the properties of the distribution of the
vector f .

Properties of the marginal distributions

From Eq. (3.3), one can see that the marginal distributions of the elements of f
(i.e. the pfi) may have different variances but all have the same shape. The variances
of the marginal distributions are given by the diagonal of the matrix Cf whereas their
common shape depends on the probability density of the multiplier, pz.

If z is identically 1, then fi = ui, and therefore, the marginal distributions are
Gaussian. By choosing another probability distribution for z, one can shape the mar-
ginal distributions of f to fit a wide range of distributions. In [1], Andrews and Mal-
lows showed that for any scalar process x whose probability density function fx is
symmetric and verifies :

(
− d

dy

)k

fx(y
1
2 ) ≥ 0, for y > 0,

one can find a multiplier z such that the corresponding Gaussian scale mixture has
the same distribution as x. (This is actually also a necessary condition.) In Fig. 3.1,
we plot the Gaussian probability density together with two examples of probability
distributions that can be described by Gaussian scale mixtures : the Laplace distri-
bution (fx = 1

2
e−|x|) and the logistic distribution (fx = e−x

(1+e−x)2
). The probability

densities (fx) are plotted on the left panel of the figure and their logarithm in base 10
(log10(fx)) on the right panel. These probability densities have been scaled to have
the same variance.

The graphs in Fig. 3.1 highlight two particular features of the marginal distribu-
tions that can be tuned using Gaussian scale mixtures. On the one hand, the behavior
of the GSM at the origin can range from very smooth (like the Gaussian or the lo-
gistic distribution) to very “peaked” (like the exponential) This can be seen in the
left panel of Fig. 3.1. On the other hand, a GSM distribution can have a fatter tail
than the Gaussian distribution (see right panel of Fig. 3.1). Similarly, if a signal has
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a very sparse wavelet expansion, most of its wavelet coefficients are small, therefore
their probability density at the origin is rather peaky ; some coefficients, on the other
hand, will be quite large, and therefore the tail of the probability distribution will
be significantly fatter than the Gaussian [60]. These features typically model the
non-Gaussian behavior of wavelet coefficients and we will exploit them later.
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Fig. 3.1 – Probability density of several scalar Gaussian scale mixtures with the same
variance : the Gaussian distribution, the exponential distribution and the logistic
distribution. Left : the probability densities fx, right : their logarithm log10(fx).

The example of the logistic distribution also shows that those two features can be
tuned independently from each other : the logistic density is as smooth as the Gaussian
density at the origin but still has heavy tails. At this point, we should mention that
the two properties (behavior at the origin and at the infinities) are exactly the ones
modeled by the two-state Gaussians. However, the probability density of the mixture
of two Gaussians decays as the wider Gaussian, not enabling slower asymptotic decay ;
it is smooth at the origin, and it is not differentiable. We hope that the flexibility
of the Gaussian Scale Mixture will enable us to fit the experimental distribution of
the wavelet coefficients of the clusters of galaxies more precisely than what we would
obtain with a mixture of two Gaussians.

Properties of the conditional distributions

As we have just seen, the introduction of the multiplier z in the Gaussian scale
mixture gives the possibility to fit a wide variety of marginal distributions. We shall
now see how the multiplier also affects the conditional distributions in the GSM mo-
del. When the GSM is used for neighborhoods of wavelet coefficients, these conditional
distributions, together with the covariance matrices Cf model the spatial dependen-
cies between the coefficients. We have shown earlier that the covariance matrices of
the vectors f and u are the same. Hence the “averaged” dependencies between two
elements in f is captured in the model by the Gaussian vector u. These depencies are
however further tuned by the multiplier.

50



To illustrate this, let us consider several two-dimensional GSM that all have the
identity matrix as their covariance matrix. The GSM model in two-dimensions is

then : (x1, x2)
dist.
= (

√
z u1,

√
z u2). Here, x1, x2, u1, u2 and z are scalar random

variables ; x1, x2, u1 and u2 are centered. The choice of the identity as a covariance
matrix imposes that x1, x2, u1 and u2 have unit variance ; that x1 and x2 (resp. u1

and u2) are decorrelated ; and that the joint density of x1 and x2, p(x1,x2), is radial.
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Fig. 3.2 – Conditional probability density p(x2|x1) of several two-dimensional Gaus-
sian scale mixtures with the same covariance matrix : the Identity matrix. Left to
right, then up and down : the Gaussian distribution, the exponential distribution, the
Cauchy distribution and the log-uniform distribution.

Note that, since u1 and u2 form a Gaussian vector and are decorrelated, they are
independent whereas x1 and x2 are not independent, unless z is identically 1. Hence,
although they have the same covariance matrix, u and f do not need to have the
same conditional distributions. The presence of the multiplier z in the GSM allows
to shape the conditional distribution of x2 given x1, p(x2|x1), differently. In Fig. 3.2,
the conditional distributions p(x2|x1) are plotted for different GSM with the Identity
as a covariance matrix. Each column of a plot represents the conditional probability
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density of x2 given x1, for a fixed value of x1. The top left panel shows the conditional
probability in the case where the GSM reduces to a Gaussian vector (z = 1). Since x1

and x2 are independent in that case, the conditional probability p(x2|x1) is the same
for all values of x1. In the other cases, the multiplier’s distribution is not trivial and
consequently, the conditional probability p(x2|x1) depends on the value of x1.

The non-Gaussian distributions displayed in Fig. 3.2 (top right and bottom left
and right) exhibit a bow-tie shape that has been observed for neighboring wavelet
coefficients in natural images [60]. The characteristics of a bow-tie shape distribu-
tion are : the conditional distribution p(x2|x1) is concentrated around zero when the
absolute value of x1 is small, but much more spread out for larger values of x1. For
neighborhood of wavelet coefficients, this translates into : if the central coefficient is
very small, its neighbors are typically very small as well ; if the central coefficient is
very large, its neighbors can take a much larger set of values.

3.1.3 Resulting model for each component

As we stated in section 2.5.2, our astrophysical problem is to reconstruct seve-
ral objects f 1, f 2, .., fM from noisy and blurred observations of mixtures of them,
g1, g2,.., gL, determined by equation (2.67). (We use in this chapter superscripts for
the indexes of the components and observations, since it makes the notation easier for
the corresponding neighborhoods of wavelet coefficients). Our a priori model for each
object fm is that the statistical behavior of the neighborhoods of wavelet coefficients
fm
j,q,n,K can be described by a Gaussian scale mixture.

The physical properties of one component are identical in every direction and in
every spatial location. Therefore, it seems that the modelization of a neighborhood
fm
j,q,n,K should depend only on m, K and the scale j, and not on n nor q, leading to

fm
j,q,n,K

dist.
=
√
zm

j,Kum
j,K . However, we will need to keep the dependence in orientation

q in the Gaussian vector um
j . Indeed, a neighborhood fm

j,q,n,K contains the parent
coefficient, fm

j−1,q,n,K , and a “square” neighborhood of coefficients at the same scale :
fm

j−1,q,n′,K , for n′ = n + (i, j), (i, j) ∈ [[−K,K]]2. Therefore the neighborhood fm
j,q,n,K

is not the rotated version of the neighborhood fm
j,0,n,K . Moreover, we will need to

order the neighborhoods fm
j,q,n,K into vectors with the same order regardless of the

orientation. For example if K = 1, we will use the order :

fj,q,0,1 = (fj,q,(−1,−1), fj,q,(−1,0), fj,q,(−1,1), fj,q,(0,−1), fj,q,(0,0), fj,q,(0,1),

fj,q,(1,−1), fj,q,(1,0), fj,q,(1,1), fj−1,q,(0,0)).

The first two terms, fj,q,(−1,−1) and fj,q,(−1,0), always correspond to wavelets that are
each other’s shifts in the vertical direction and therefore their correlation depends on
the orientation q of the wavelet. (Note that this problem would still arise with “circu-

lar” neighborhoods.) We are left with a model of the form : fm
j,q,n,K

dist.
=
√
zm

j,K um
j,q,K .

The size K of the neighborhood we have to consider depends on the scale j and on
the component fm considered. We find in practice that K = 1 is sufficient to encode
the differences between our components. Fixing K = 1, the final a priori model for
each component fm is : for a fixed scale j and a fixed orientation q, the neighborhoods
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of wavelet coefficients fm
j,q,n, for n ∈ Z2 are independent identically distributed with

the same distribution as the Gaussian scale mixture
√
zm

j um
j,q, where the distribution

of the multiplier zm
j is independent of the orientation q.

Note that since the neighborhood of wavelet coefficients overlap for close locations,
the independence can not hold in reality. However, our strategy is to retain from each
estimated neighborhood fm

j,q,n only the central coefficient fm
j,q,n. Therefore, we do not

need to make each estimated neighborhood consistent. Rather, we rely on the fact
that neighborhoods themselves take into account statistical dependencies between
coefficients, to ensure that the estimated coefficients fm

j,q,n are consistent. The a priori
model is then determined by the parameters of the Gaussian scale mixtures for each
component fm, each scale j and orientation q. We will describe how to choose these
parameters in detail in section 3.3, but we first explain how the estimation will be
carried out from this model.

3.2 Bayes least square estimate

In this section we explain how to compute the Bayes least square estimates of
the neighborhood of coefficients for each component, given the a priori model we just
described and the forward model for the observations g1, g2,.., gL :

gl = bl ∗
[ M∑

m=1

am,l fm
]

+ wl (3.4)

Here the beam functions bl are known deterministic functions, the frequency depen-
dencies am,l are known scalars. The noise wl is Gaussian and stationary, with known
covariance, and is independent from one observation to the other.

To explain our estimation method, we break it down in several steps. We first
explain the estimation of a single component by denoising a single observation. This
follows closely [47]. Then we explain how to take the blurring into account for a single
component. We derived this adaptation independently from the authors of the original
paper who presented it succinctly in [48]. Here we give more details on the derivation
of Bayes estimate for the problem of deblurring one observation ; in particular we
explain the modeling assumptions made in this case. Then in subsection 3.2.3, we
extend this method to the observations of several mixture of components, and show
how to separate them.

3.2.1 Denoising one signal

Let us first consider the simple case where we observe one process polluted by
noise : g = f + w. The equations for each single wavelet coefficient and for the
neighborhood of wavelet coefficients read :

gj,q,n = fj,q,n + wj,q,n

gj,q,n = fj,q,n + wj,q,n (3.5)
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The Bayes least square estimate of the neighborhood f given the observed neighbo-
rhood g is the conditional expectation E{f |g}. The convenience of the representation
of the neighborhood f by a Gaussian scale mixture is that given the multiplier z, Eq.
(3.5) reduces to a sum of Gaussian vectors :

g =
√
zu + w (3.6)

When x and r are Gaussian vectors, the conditional expectation E{x|r} of x given
r, is :

E{x|r} = Cx,r(Cr)
−1(r), (3.7)

where Cx,r is the covariance matrix between the vectors x and r. If in addition x and

y are independent and r = x + y, then Cx,r = Cx,x+y = Cx,x +Cx,y = Cx,x
def
= Cx,

and similarly Cr = Cx +Cy. The following result holds whenever x and y are two
independent Gaussian vectors :

E{x|x+ y} = Cx(Cx +Cy)−1(x+ y) (3.8)

Going back to Eq. (3.6), and using the independence of the Gaussian vectors u and
w, we obtain that conditioned on the random variable z :

E{u|g, z} =
√
zCu(zCu +Cw)−1(g), (3.9)

using Cu = Cf , this leads to :

E{f |g, z} = zCf (zCf +Cw)−1(g). (3.10)

In other words the Bayes least square estimate of f given the observed vector g and
given the multiplier z, is a Wiener filter applied to g, the neighborhood of wavelet
coefficients of the observation. Integrating the last equation with respect to the pos-
terior distribution of the multiplier p(z|g), we get the Bayes least square estimate of
f given the observation g :

E{f |g} =

∫ ∞

0

E{f |g, z = z0} p(z = z0|g) dz0 (3.11)

This estimate is a weighted average of the Wiener filters described in Eq. (3.10). The
weights are determined by the posterior distribution, p(z|g), which is computed via
Bayes rule :

p(z = z0|g) =
p(g|z = z0)pz(z0)∫
p(g|z = z′)pz(z′)dz′

. (3.12)

Here p(g|z = z′) is a centered multidimensional Gaussian distribution with covariance
matrix z′ Cf +Cw, and pz is the probability distribution of z (which we will describe
in 3.3).

Following this procedure, one gets an estimate E{fj,q,n|gj,q,n} for each neighbo-
rhood of coefficients fj,q,n. One keeps only the central coefficient fj,q,n of each of these
estimated vector and reconstructs an estimate of the signal f by inverting the wavelet
transform with these coefficients.
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3.2.2 Deblurring one signal

We consider now the case where the observed signal is a blurred version of the
one object : g = f ∗ b + w. The convolution with the beam b correlates the signal
spatially. As a result, the equations in wavelet space do not decouple any more :

gj,q,n =
〈
f ∗ b+ w , ϕq

j,n

〉
(3.13)

gj,q,n =
〈
f ∗ b , ϕq

j,n

〉
+ wj,q,n (3.14)

gj,q,n =
∑

j′,q′,n′

fj′,q′,n′

〈
ϕq′

j′,n′ ∗ b , ϕq
j,n

〉
+ wj,q,n (3.15)

Defining b(j,q,n),(j′,q′,n′) by b(j,q,n),(j′,q′,n′) =
〈
ϕq′

j′,n′ ∗ b , ϕq
j,n

〉
, we obtain :

gj,q,n =
∑

j′,q′,n′

b(j,q,n),(j′,q′,n′)fj′,q′,n′ + wj,q,n (3.16)

Therefore, a particular neighborhood fj′,q′,n′,K contributes to every observed wavelet
coefficient gj,q,n. In theory, one would obtain the best estimate of fj′,q′,n′,K by using
the information in every wavelet coefficients gj,q,n. This would be a very difficult
estimation problem, moreover, our final goal is not the estimation of the neighbo-
rhoods themselves but rather their central coefficients. So we do not intend to use
the full set of coefficients gj,q,n to estimate each neighborhood. Rather, by considering
the properties of the beam and the wavelets, we claim that using only the observed
neighborhood gj,q,n,K yields a sufficiently good estimation of the object neighborhood
fj,q,n,K , when K is chosen appropriately.

To see that, let us fix an index j, q, n and consider the coefficients b(j′,q′,n′),(j,q,n) for
all j ′, q′, n′. Using the fact that the beam is radially symmetric, we can rewrite these
coefficients :

b(j,q,n),(j′,q′,n′) =
〈
ϕq′

j′,n′ ∗ b , ϕq
j,n

〉
(3.17)

b(j,q,n),(j′,q′,n′) =
〈
ϕq′

j′,n′ , b ∗ ϕq
j,n

〉
(3.18)

b(j,q,n),(j′,q′,n′) =

〈
ϕ̂q′

j′,n′ , b̂ ∗ ϕq
j,n

〉
(3.19)

b(j,q,n),(j′,q′,n′) =

∫
b̂(ξ) ϕ̂q

j,n(ξ) ϕ̂q′

j′,n′(ξ) dξ (3.20)

Most of these coefficients are really small :

1. If |j− j ′| is large, then, since the wavelet is well localized in frequency, ϕq
j,n and

ϕq′

j′,n′ are concentrated in different frequency bands. Hence
∫
|ϕ̂q

j,n(ξ)||ϕ̂q′

j′,n′(ξ)|dξ
is small and by Eq. (3.20), b(j,q,n),(j′,q′,n′) is small.

2. If |q − q′| is large, then, since oriented wavelet are localized in different parts

of the frequency plane, again the support of ϕ̂q
j,n and ϕ̂q′

j′,n′ are different. Hence
∫
|ϕ̂q

j,n(ξ)| |ϕ̂q′

j′,n′(ξ)| dξ is small and by Eq. (3.20), b(j,q,n),(j′,q′,n′) is small.
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3. If |n− n′| is large, we use the localization in space of both the beam b and the
wavelet to argue that b(j,q,n),(j′,q′,n′) is small. We define the width of a function h
by the minimal length of the interval I such that :

∫
I
|h(x)2|dx > η

∫
|h(x)2|dx,

fixing η = .9 for example. If |2jn − 2j′n′| > |b| + (2j−1 + 2j′−1)l where l is the
width of the wavelet and |b| the width of the beam, the support of the functions

ϕq′

j′,n′ and b∗ϕq
j,n essentially do not intersect, so that by Eq. (3.18), b(j,q,n),(j′,q′,n′)

is small.

Note that since the wavelets we use here are compactly supported in frequency (cf.
section 4.3 in Chapter 4 for the details), we actually have : b(j,q,n),(j′,q′,n′) = 0 for
|j − j ′| > 1 or |q− q′| > 1. Hence we argue that b(j,q,n),(j′,q′,n′) is not significant unless
|j − j ′| ≤ 1, |q − q′| ≤ 1 and |2jn − 2j′n′| > |b| + (2j−1 + 2j′−1)l. It turns out that
practically, the cross terms b(j,q,n),(j′,q′,n′) for different orientations q′ = q+1 or q′ = q−1
are negligible as well. As far as the scale j ′ = j+1 or j ′ = j−1 is concerned, the
coefficients b(j,q,n),(j′,q′,n′) are in practice smaller than the coefficients at the same scale
b(j,q,n),(j,q,n′) unless n = n′.

Putting this together, we obtain that the contribution of a particular wavelet
coefficient fj,q,n is most important in the neighborhood of observed coefficients of the
form gj,q,n,Kb

where Kb = 2−j|b| + l. Keeping in mind that we will retain only the
central coefficient fj,q,n from the estimated neighborhood fj,q,n,Kf

, (where Kf is the
size of the neighborhood needed to capture the spatial dependences of the wavelet
coefficients of f), it is then reasonable to use only the observed neighborhood gj,q,n,K

to estimate fj,q,n,Kf
choosing K = max{Kf , Kb}.

Using Eq. (3.16) for each coefficient in the neighborhood gj,q,n,K , we get :

gj,q,n,K = Bj,q,n,Kfj,q,n,K +Rj,q,n,K + wj,q,n,K (3.21)

with :

Bj,q,n,K =
{
b(j1,q1,n1),(j2,q2,n2)

}
(j1,q1,n1),(j2,q2,n2)∈Vj,q,n,K

(3.22)

Rj,q,n,K =
∑

(j1,q1,n1) 6∈ Vj,q,n,K

or (j2,q2,n2) 6∈ Vj,q,n,K

b(j1,q1,n1),(j2,q2,n2) fj2,q2,n2
(3.23)

Here, we have separated the different contributions to the observed neighborhood
gj,q,n,K into three terms : the contribution of the same neighborhood in the object
Bj,q,n,Kfj′,q′,n′,K , the contribution of the same neighborhood in the noise wj,q,n,K and
the contribution from remaining wavelet coefficients in the object Rj,q,n,K .

As we saw earlier, the coefficients b(j1,q1,n1),(j2,q2,n2) that appear in Rj,q,n,K are rather
small and therefore the contribution of this term can be considered negligible. We will
consider this term as additional noise and work with the model :

gj,q,n,K = Bj,q,n,K fj,q,n,K + w′
j,q,n,K (3.24)

where Bj,q,n,K is the matrix described in Eq. (3.22), w′ is modeled by Gaussian noise
and fj,q,n,K by a Gaussian scale mixture.
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Dropping the indexes and using Eq. (3.7), we find that the expected value of the
neighborhood f given the observed neighborhood g and the multiplier z is the Wiener
filter :

E{f |g, z} = zCf B
∗(zBCf B

∗ + Cw
′)−1g (3.25)

The full Bayes least square is again a weighted sum of these filters, with the weights
given by the posterior distribution p(z|g) computed via Eq. (3.12). The prior p(g|z)
also takes the blurring into account : it is a multidimensional Gaussian centered and
with covariance matrix zBCf B

∗+Cw
′. As before, only the central coefficient of each

estimated neighborhood f is used to reconstruct the object f via the inverse wavelet
transform.

With this procedure in mind, we can now explain how to extend this method to
the problem of separation of blurred mixtures of signals.

3.2.3 Separating blurred mixtures of signals

Given the model for the mixture of components in Eq. (3.4), the analog to equation
(3.16) is :

∀l ∈ [[1, L]], gl
j,q,n =

M∑

m=1

∑

j′,q′,n′

am,l bl(j,q,n),(j′,q′,n′)f
m
j′,q′,n′ + wl

j,q,n (3.26)

As we argued before, most of the coefficients bl(j,q,n),(j′,q′,n′) are very small. Therefore,
the influence of a particular wavelet coefficient of object mo, f

mo
j,q,n, will be mostly

seen in the neighborhood gl
j,q,n,Kl of each observation gl. However, this time, the

contribution of object mo is not the only significant contribution in gl
j,q,n,Kl : each

component fm potentially gives such a significant contribution. It is then natural
consider the L neighborhoods gl

j,q,n,Kl , for l = 1, ..L in conjunction to estimate at the

same time the M neighborhoods fm
j′,q′,n′,Kl , for m = 1, ..M . Note that the size K l of

the observed neighborhoods gl
j,q,n,Kl we have to consider depends on the beam size

for observation l, whereas the size of the neighborhood fm
j′,q′,n′,Km that is needed to

describe the spatial coherence of the wavelet coefficients of object m, depends on the
object itself. As before, we will choose K to be the maximum of these parameters :
K = maxl∈[[1,L]], m∈[[1,m]] {K l, Km}. This way, all the neighborhoods we consider for a
fixed scale j have the same size.

Separating again significant from non-significant contributions, we get :

∀l ∈ [[1, L]], gl
j,q,n,K = Bl

j,q,n,K

( M∑

m=1

am,l fm
j,q,n,K

)
+ w, l

j,q,n,K (3.27)

with :

Bl
j,q,n,K =

{
bl(j1,q1,n1),(j2,q2,n2)

}
(j1,q1,n1),(j2,q2,n2)∈V2

j,q,n,K
(3.28)

w, l
j,q,n,K = wl

j,q,n,K +
∑

(j1,q1,n1) 6∈ Vj,q,n,K

or (j2,q2,n2) 6∈ Vj,q,n,K

bl(j1,q1,n1),(j2,q2,n2)

( M∑

m=1

am,l fm
j2,q2,n2

)
(3.29)
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Let us fix the neighborhood Vj,q,n,K that we consider. The matrices Bl
j,q,n,K for l ∈

[[1, L]] and the frequency dependences am,l for l ∈ [[1, L]] and m ∈ [[1,M ]] are deter-
ministic and known. Each vector w, l

j,q,n,K , for l ∈ [[1, L]] is supposed to be Gaussian,
centered, with known covariance matrix. Each vector fm

j,q,n,K follows the distribution

of a Gaussian scale mixture
√
zm um for each m in [[1,M ]]. The noise terms are inde-

pendent from one observation to another. Moreover, the objects are also assumed to
be independent from each other and from the noise.

To derive the Bayes least square estimate under this model, it is useful to consider
the observed neighborhoods as constituents of a larger vector G :

G = (g1
j,q,n,K ,g

2
j,q,n,K , . . . ,g

L
j,q,n,K) (3.30)

G = (g1
i1
, g1

i2
, . . . , g2

i1
, g2

i2
, . . . . . . , gL

i1
, gL

i2
, . . . ), with ij ∈ Vj,q,n,K (3.31)

Similarly, we stack the noise neighborhoods into a larger vector W :

W = (w1
i1
, w1

i2
, . . . , w2

i1
, w2

i2
, . . . . . . , wL

i1
, wL

i2
, . . . ), with ij ∈ Vj,q,n,K (3.32)

And the objects neighborhoods into a larger vector F :

F = (f 1
i1
, f 1

i2
, . . . , f 2

i1
, f 2

i2
, . . . . . . , fM

i1
, fM

i2
, . . . ), with ij ∈ Vj,q,n,K (3.33)

This way, the L equations in Eq. (3.27) can be written as a single matrix equation :

GT = DF T +W T (3.34)

where D is the matrix :

D =




a1,1 B1
j,q,n,K a1,2 B1

j,q,n,K · · · a1,M B1
j,q,n,K

a2,1 B2
j,q,n,K a2,2 B2

j,q,n,K · · · a2,M B2
j,q,n,K

...
...

. . .
...

aL,1 BL
j,q,n,K aL,2 BL

j,q,n,K · · · aL,M BL
j,q,n,K



, (3.35)

where each am,l Bl
j,q,n,K is a block of size L×L, with L = |Vj,q,n,K | the cardinal of the

neighborhood Vj,q,n,K . Writing the equation in matrix form makes the computation
of the estimator very similar to what we saw in section 3.2.2, with the exception the
the “object” vector F is not a simple scale mixture of Gaussians, but takes in account
M multipliers :

F
dist.≡ (

√
z1 u1

i1
,
√
z1 u1

i2
, . . . ,

√
z2 u2

i1
,
√
z2 u2

i2
, . . . . . .

√
zM uM

i1
,
√
zM uM

i2
, . . . )

F
dist.≡

√
Z ◦ U (3.36)

where U is a Gaussian vector, Z contains each multiplier zm repeated |{Vj,q,n,K}|
times and ◦ denotes the multiplication coordinate by coordinate.

Using Eq. (3.7), we obtain formally the conditional expectation of F given the
observation G and the M multipliers {zm}m :

E{F |G, z1, z2, . . . , zM} = C√
Z ◦ U D

∗
(
DC√

Z ◦ U D
∗ + CW

)−1

G (3.37)

58



The Bayes least square estimate of the F given the observations is then :

E{F |G} =

∫

R
M
+

E{F |G, z1, z2, . . . , zM} p(z1, z2, . . . , zM |G) dz1dz2 . . . dzM (3.38)

The posterior is as usual obtained via Bayes rule :

p(z1, z2, . . . , zM |G) =
p(G|z1, z2, . . . , zM)

∏M
m=1 pzm(zm)∫

R
M
+

p(G|z1 = α1, z2 = α2, . . . , zM = αM)
∏M

m=1 pzm(αm)

(3.39)
with pzm is the distribution of the multiplier corresponding to the object fm and the
prior distribution for the observed vector G, p(G|z1, z2, . . . , zM ), is again a multidi-

mensional Gaussian, centered and with covariance matrix CZ =
(
DC√

Z ◦ U D
∗+CW

)
.

We shall now relate these equations involving the abstract vectors G, F and W to
our original neighborhoods of wavelet coefficients. Since the noise terms wl for each
observation are independent from each other, the covariance matrix CW is block dia-
gonal, with L blocks. Each block is the covariance matrix of the lth noise neighborhood
wl

j,q,n,K : Cwl
j,q,n,K

. The covariance matrix C√
Z◦U is also block diagonal because the

objects fm, m = 1, ..,M are independent from each other. It is constituted by M
blocks, each of which is the covariance matrix of an object neighborhood fm

j,q,n,K times
the multiplier zm, i.e. zm Cfm

j,q,n,K
. (The value zm appears here in the covariance ma-

trix because C√
Z◦U was computed conditionally on the multipliers.) The covariance

matrix CZ is defined by blocks CZ = {CZ(l1, l2)}{l1,l2∈[[1,L]]2} with :

CZ(l1, l2) =
M∑

m=1

zmam,l1am,l2 Bl1
j,q,n,K Cfm

j,q,n,K
Bl2 ∗

j,q,n,K + δ{l1=l2} C
w

l1
j,q,n,K

(3.40)

As a result, the prior p(G|z1, z2, . . . , zM) reads :

p(G|z1, z2, . . . , zM) = 1
(2π)LV/2 det(CZ)

exp
{
−GCZ

−1GT

2

}
, (3.41)

where V is the cardinal of the neighborhood considered. The conditional expectation
of the neighborhood fm

j,q,n,K given the multipliers and the observed neighborhoods is :

E{fm
j,q,n,K |G, z1, z2, . . . , zM} =

L∑

l=1

zm am,l Cfm
j,q,n,K

Bl ∗
j,q,n,K

(
CZ

−1GT
)l

(3.42)

This is integrated with respect to the posterior distribution of the M -uple of mul-
tipliers (z1, z2, .., zM ) to find the Bayes least square estimate of fm

j,q,n,K given the
observed neighborhoods gl

j,q,n,K grouped in the vector G :

E{fm
j,q,n,K |G} = 1

C(G)

∫

R
M
+

E{fm
j,q,n,K |G, z1, z2, . . . , zM}e−

GCZ
−1GT

2

M∏

m=1

[
pzm(zm) dzm

]

(3.43)
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with

C(G) =

∫

R
M
+

e−
GCZ

−1GT

2

M∏

m=1

[
pzm(zm) dzm

]
(3.44)

Note that Eq.(3.43) and (3.44) are M-fold integrations.
In the next section, we describe how we obtain the parameters necessary to com-

pute these estimations. These are the covariance matrices of the objects and noises
neighborhoods, as well as the probability densities for the multipliers.

3.3 Choice of the parameters

As explained in 3.1.3, for a fixed value of K, we assume that for each scale j, orien-
tation q, and component fm, the neighborhoods of wavelets coefficients {fm

j,q,n}n∈Z2

follow a scale mixture of Gaussian
√
zm

j um
j,q, where the distribution of the multiplier

is independent of the orientation. Moreover, we assumed that each noise maps wl is
modeled by a stationary process. Therefore neither the covariance matrices nor the
multipliers actually depend on the location n. To compute the Bayes estimation des-
cribed above, we need : the noise covariances Cwl

j,q,0,K
, the component covariances

Cfm
j,q,0,K

, and the probability distributions pzm
j

for l ∈ [[1, L]], m ∈ [[1,M ]] , for all

scales j and all orientations q. (As we saw in the previous section, the size of the
neighborhood K is the same for all observations and components.)

3.3.1 Covariance matrices of the noise neighborhoods

We assume in this work that the noise term wl for each observation gl, l ∈ [[1, L]],
is Gaussian and stationary. It can be white, and in this case, we assume that we have
an estimate of the standard deviation σl for each l. The noise could also be colored,
and in that case, we assume that we know its spatial covariance matrix noted Cs

wl

(where Cs
wl(x − x′) = Cov

(
wl(x), wl(x′)

)
, for any x in R2 and x′ in R2). When the

noise is white, Cs
wl(x) = (σl)2δx=0. The covariance matrices of the neighborhoods of

the noise terms wl are by definition :

Cwl
j,q,0,K

=
{
Cov(wl

j1,q1,n1
, wl

j2,q2,n2
)
}
{(j1,q1,n1),(j2,q2,n2)∈V2

j,q,0,K} (3.45)

Suppose we use two-dimensional wavelet transform with Q orientations. We note T
the wavelet transform operator :

T :
L2(R2) → l2(Z3 × [[1, Q]])
h 7→

{〈
h , ϕq

j,n

〉 }
j∈Z,n∈Z2,q∈[[1,Q]]

(3.46)

Then wl
j,q,n =

〈
wl , ϕq

j,n

〉
= {T (wl)}j,q,n. Since T is linear, then :

E{wl
j1,q1,n1

} =
{
T
(
E{wl}

)}
j,q,n

(3.47)

Cov(wl
j1,q1,n1

, wl
j2,q2,n2

) =
{
T Cs

wl T
∗}

(j1,q1,n1),(j2,q2,n2)
(3.48)
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wl is centered so E{wl} = 0 and therefore E{wl
j1,q1,n1

} = 0. The covariance terms can
be written in term of scalar products of one wavelet with another, modulated by the
covariance Cs

wl :

Cov(wl
j1,q1,n1

, wl
j2,q2,n2

) =
〈
ϕq1

j1,n1
,Cs

wl ϕ
q2

j2,n2

〉
L2(R2)

(3.49)

Cov(wl
j1,q1,n1

, wl
j2,q2,n2

) =

∫

R2×R2

ϕq1

j1,n1
(x)Cs

wl(x− x′)ϕq2

j2,n2
(x′) dxdx′

When the noise is white, this reduces to :

Cov(wl
j1,q1,n1

, wl
j2,q2,n2

) = (σl)2
〈
ϕq1

j1,n1
, ϕq2

j2,n2

〉
L2(R2)

(3.50)

Hence, the covariance matrices of the noise neighborhoods can be computed prior to
computing the estimates, if the wavelet transform, the size of the neighborhoods and
the spatial covariances of the noises are known beforehand.

3.3.2 Covariance matrices of the objects neighborhoods

In the case of the deblurring of a single object, Portilla et al. propose in [47] a
method to estimate the covariance of the single object from the observation itself.
This method is based on the fact that the covariance of a signal h is the inverse
Fourier transform of its spectral power Ph = |ĥ|2, and that the spectral power of
two independent signals is the sum of their spectral powers. Computing the spectral
powers in the case of one blurred component : g = f ∗ b+w, one gets Pg = Pb∗f +Pw.

The spectral power of the convolution b ∗ f is Pb∗f = |b̂|2Pf . One can then estimate
Pf knowing Pg from the observation and Pw for the noise, being careful to regularize

the division by |b̂|2, as is explained in [47].
We extend this procedure to the case of blurred mixtures of components defined

by Eq. (3.4). The power spectral densities now are :

∀l ∈ [[1, L]], Pgl = |b̂l|2
( M∑

m=1

|am,l|2Pfm

)
+ Pwl . (3.51)

Using the method proposed in [47], we can estimate the L linear combinations S l =∑M
m=1 |am,l|2Pfm . If the matrix A = {|am,l|2}m∈[[1,M ]],l∈[[1,L]] is well conditioned, then

we can recover the Pfm using the pseudo-inverse A∗A and keeping only the positive
part :

∀m ∈ [[1,M ]], Pfm(ξ) =
[{

(A∗A)−1A∗(S1(ξ), S2(ξ), .., SL(ξ)
)T}m]

+
(3.52)

It turns out that this method is not well suited to our astrophysical problem for
several reasons. The frequency dependence of the Galaxy dust (component f 4) and the
point sources (component f 3) are very close in the range of frequency of our observed
data. (Typically |a(3, l) − a(4, l)| < 10−2|a(4, l)|.) Hence we are not able to separate
their power spectrum with this method. Moreover, we made up test cases where we
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considered only the CMB component and the clusters of galaxies component. In these
cases, the method should technically work. (A is then well conditioned). However in
practice, we find that the power spectrum of the clusters of galaxies is negligible
compared to that of the noise and of the CMB. Therefore, we were not able to
estimate it precisely enough with this method. (In fact, it would most of the time be
estimated to 0 by taking the positive part in Eq. (3.52).)

One could imagine that another method of estimation, using only the observations
but in a different way, may be able to solve the problem for the clusters of galaxies.
However, this is not the case for the first problem we pointed out. When the frequency
dependences of two objects are equal, they are formally merged into a single com-
ponent from the point of view of Eq. (3.4). Therefore, one can not distinguish these
components, or any of their features, based solely on the observations gl and Eq. (3.4).
A priori knowledge on the components has to be used in addition to the Eq. (3.4),
even for the estimation of the covariance matrices. To our knowledge, there is no
physical quantity well understood by astrophysicists for each of the components we
consider and that we can use to constrain the estimation of the covariance matrices.
Since we have at hand numerical simulations of each of the components we consider,
we use them to compute templates for the covariance matrices of the neighborhoods
of wavelet coefficients Cfm

j,q,0
.

Note that in practice, the neighborhood covariance matrices (for the components
and also the noise terms), depend on the wavelet used and on the resolution of the
observed data. The dependence on the wavelet is clear since each term in the cova-
riance matrix of a neighborhood involves the wavelet itself (as we saw in Eq. (3.49)).
The resolution of the observed data, i.e. the physical size of a pixel in the observed
image, determines the physical size of the finest scale of the wavelet transform ap-
plied to this image. Therefore, when considering different experimental conditions,
there is no reason why the abstract wavelet scales j of the computed wavelet trans-
form always correspond to the same or similar physical scales. As a consequence, for
each experiment, we will have to recompute the template covariance matrices of the
neighborhoods for each component and for each noise term.

3.3.3 Prior distribution of the multipliers

We shall now describe how to determine the prior distributions of the multipliers
zm

j . The Gaussian scale mixture model imposes only two restrictions on the choice of
the probability distribution pzm

j
which are : pzm

j
should be supported in R+ (that is

zm
j ≥ 0), and its first moment should be 1 (i.e. E{zm

j } = 1). Any choice of pzm
j

that
satisfies these conditions is technically valid, so we have to consider the properties of
the component fm to make a choice.

When the component fm is well modeled by a Gaussian process, the distribution
of its wavelet coefficients at each scale is also Gaussian. Hence the neighborhoods
fm
j,q,n,K are well modeled by Gaussian vectors, in which case the multipliers zm

j should
not be used. As a result, if the component fm is known to be well modeled by a
Gaussian process, the distribution of the multipliers should be set to pzm

j
(x) = δ{x=1}
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for each scale j.
In the other cases, i.e. when fm is not well modeled by a Gaussian process, or

when this information is not available a priori, the choice has to be made on the
basis of the empirical distributions of the wavelet neighborhoods fm

j,q,n,K . In order to
obtain the most accurate model, one would ideally want to solve for the distribution
pzm

j
using the empirical joint distribution of the neighborhoods vectors fm

j,q,n,K . A
maximum likelihood approach to estimate pzm

j
for the problem of denoising a natural

image has been proposed in [60]. However the authors argue that this estimation does
not yield better estimates than Jeffrey’s non-informative prior which in this case is a
uniform probability on the logarithm of z :

plog z(u) = 1
Vmax−Vmin

δ{Vmin≤u≤Vmax} (3.53)

i.e :

pz(u) = 1
Vmax−Vmin

δ{Vmin≤log u≤Vmax}
1

u
(3.54)

where Vmin and Vmax are chosen so that −∞ < Vmin < Vmax <∞.
Computing these estimations from the full neighborhoods for each component fm

would be computationally very costly in our case. Moreover, we find that using Jef-
frey’s prior when the neighborhood can not be considered Gaussian leads to good first
estimates of our components. When we want to refine the model to obtain a better
estimate for the component fm, we choose to fit a prior pzm

j
considering only the mar-

ginal distribution of the central coefficient in the neighborhood fm
j,q,n,K . This amounts

to deriving numerically the distribution pzm
j

, considering the empirical distribution of

the set of all the wavelet coefficients {fm
j,q,n}n∈Z2,q∈[[1,Q]] of the template component fm

at scale j, and the one-dimensional Gaussian scale mixture model :

∀n ∈ Z2,∀ q ∈ [[1, Q]], fm
j,q,n

dist.≡
√
zm

j u, (3.55)

where u is a scalar Gaussian random variable, centered and of variance (σm
j )2. (Note

that this variance was computed in the previous section as part of the covariance
matrix Cfj,q,0,K

). Let us explain our

ad-hoc procedure for the derivation of the prior

with a formal one-dimensional Gaussian scale mixture : x =
√
z u, where all the

random variables are scalar, and u is Gaussian (centered, variance σ2). Taking the
logarithm of the absolute values yields

log |x| =
1

2
log z + log |u|, (3.56)

from which we derive the relation between the probability densities plog |x|, plog z and
plog |u| :

plog |x|(v) =
(
p 1

2
log z(·) ∗ plog |u|(·)

)
(v) (3.57)

plog |x|(v) =
(

2 plog z(2 ·) ∗ plog |u|(·)
)
(v) (3.58)
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where ∗ denotes convolution and

plog |u|(v) = 2√
2πσ2

e−
e2v

2σ2 +v (3.59)

At this point the author of [60], propose to deconvolve Eq. (3.58) and fit a Gaussian to
the result, thus assuring that the estimated prior is a proper probability distribution.
As a result, they restrict themselves to a log-normal distribution for the multiplier z.
We take a different approach, not fitting a Gaussian to our deconvolved result. Instead,
we use an ad-hoc procedure. We deconvolve Eq. (3.58) regularizing the procedure in
Fourier space :

p̂log z(ξ) =
p̂log |x|(2ξ) p̂log |u|(2ξ)

γ + |p̂log |x|(2ξ)|2
(3.60)

where γ > 0. The Fourier inverse transform of the last result gives us a first esti-
mate of plog z. We keep its positive part and truncate both tails to get rid of possible
oscillation artifacts leftover from the deconvolution and ensure that E{z} = 1 (i.e.∫
eu plog z(u)du = 1). We find that in the particular case of the galaxy cluster com-

ponent, the prior plog z is not symmetrical. It is not well fitted by a Gaussian and
therefore, the prior pz we obtain is not log-normal (see next section 3.4).

Summary

Given a template of object fm, the procedure we follow to determine the priors
pzm

j
is :

– If fm is known to be well modeled by a Gaussian, we set pzm
j

(x) = δ{x=1} for
each scale j.

– Otherwise, for each scale j

1. Compute the empirical distribution px of the set {fm
j,q,n}n∈Z2,q∈[[1,Q]]

2. If px is close to Gaussian, set pzm
j

(x) = δ{x=1}.

3. If px is not close to Gaussian and component m does not need to be pre-
cisely estimated, set pzm

j
to Jeffrey’s prior.

4. If px is not close to Gaussian and component m needs to be precisely
estimated, estimate pzm

j
via the ad-hoc procedure described above.

3.4 Application to astrophysical data

For our astrophysical problem, we consider four components : the Cosmic Micro-
wave Background f 1, the clusters of galaxies f 2, the infrared point sources f 3 and
the Galaxy dust f 4. The beams bl are assumed Gaussians and the noise is white.
The size of the beams bl and level of the noise σl at each frequency of observation
are given to us. We use the steerable pyramid described in detail in Section 4.3
with 4 orientations. The number of scales considered depends on the resolution of the
observation. The covariance matrices of the noise neighborhoods are computed via
Eq. (3.50). The covariance matrices of the component neighborhoods are estimated
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from a template simulation of each component (cf. 3.3.2). The Bayes least square es-
timate of each component is estimated following the procedure detailed in Subsection
3.2.3. To complete the description, we need to make explicit the prior we use for each
component.

Astrophysicists model the Cosmic Microwave Background f 1 by a Gaussian pro-
cess, therefore we naturally set the priors pz1

j
to Dirac probabilities concentrated in

z = 1, for every scale j : pz1
j
(u) = δ{u=1}.

The infrared point sources f 3 are bright points. Their size is typically much smaller
than the resolution of the observations, so that each pixel of the map of this component
is either zero or very bright. Since point sources are isolated as well, the distribution
of the wavelet coefficients of the map f 2 is mostly concentrated around zero (in large
portions of the maps, there are no point sources) and has large tails (corresponding
to large coefficients where the point sources are located). These distributions can not
be approximated by a Gaussian for any scale j. Since the point source map is not
our first focus, we use Jeffrey’s prior at every scale j for the infrared point sources
component : pz3

j
(u) = 1

Vmax−Vmin
δ{Vmin≤log u≤Vmax}

1
u
, for all j.

The galactic f 3 dust is a smooth and very slow varying signal, we find that it is
reasonable to approximate the distribution of its wavelet coefficients at every scale
by a Gaussian. Therefore, we set pz4

j
(u) = δ{u=1}.

Finally the galaxy cluster component f 2 is the component that we want to re-
construct most accurately. The clusters of galaxies are compact objects scattered in
the sky, and consequently (same reasoning as for the point sources) the distribution
of their wavelet coefficients for each scale is not well approximated by a Gaussian. In
order to obtain preliminary results for the reconstruction of the clusters of galaxies
we will use Jeffrey’s prior. In an attempt to make a better estimation, we use the
ad-hoc procedure of subsection 3.3.3 to derive an improved prior for the clusters of
galaxies. We display the obtained prior plog z , that we will refer to as the profile, in
the top panel of Figure 3.3 with the dashed line. The Gaussian prior is plotted in
plain and the log-uniform (i.e. Jeffrey’s) prior is the dash dotted line. The bottom left
(resp. right) panel of the figure shows the (resp. logarithm of the ) marginal distribu-
tion px, where x is the corresponding one-dimensional Gaussian scale mixture. The
pluses indicate the experimental data used to estimate the profile. As one can see on
the bottom left panel, both Jeffrey’s prior and our profile tend to overestimate the
probability distribution around |x| = 0. As a consequence the number of low intensity
clusters and their intensity will tend to be underestimated in the maps reconstructed
using these priors. To remedy this effect, we further truncate the profile we obtained
to diminish the weight of small values of log z. The result is called truncated profile
and is displayed in the Figure 3.3 by a dashed and stars curve.
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Fig. 3.3 – Top : the prior distribution of the logarithm of the multiplier plog z. Bottom
left : px, the distribution of x ≡ √

zu. Bottom right, the logarithm of this distribution :
ln(px). Plain : Gaussian prior, x is Gaussian. Dash-dot : px corresponding to the
Jeffrey’s non-informative prior. Dashed : px corresponding to the profile computed
from the data. Dashed and stars : px corresponding to the truncated profile computed
from the data. Plus : experimental distribution px.
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Chapitre 4

Redundant wavelet transforms

In this chapter, we review the transformations that we have utilized to decompose
the signals. As we argued several times in Chapter 2 and Chapter 3, wavelet trans-
formations have properties that we can exploit in both algorithms in order to make
better estimates of the signals. The following properties are of particular interest to
us : the wavelet transforms of the signals we would like to estimate are rather sparse
whereas the wavelet transform of the noise is spread out ; the joint statistics of the
wavelet coefficients of the components we would like to extract are well modeled by
Gaussian Scale Mixtures ; some particularly useful functional vector spaces can be
characterized by norms computed in wavelet space.

These properties are true for any reasonable wavelet transform. Hence, one could
use any of them interchangeably without altering the arguments we presented in
Chapter 2 and Chapter 3. In this chapter, we wish to give more details about two
transforms that we chose to use : the steerable pyramid was used for the statistical
algorithm presented in Chapter 3 ; the dual tree complex wavelet transform was used
for the variational functional algorithm presented in Chapter 2.

Both of these are redundant wavelet transforms. (In a redundant transform, the
generating elements can be linearly dependent). Using redundant systems, also cal-
led frames, is usually computationally more intensive and sometimes technically more
difficult (e.g. subsection 2.2.3) than using bases. However there are several advantages
to do so. Orthonormal wavelet transforms are not translation-invariant (because of
the decimation at each scale, the wavelet transform of a translated signal is generally
not the translated version of the wavelet transform of the original signal). This lack of
invariance by translation is known to cause artifacts in signal processing [39, 25]. To
overcome this problem, it has been proposed to use the undecimated wavelet trans-
form, which amounts to using all possible translated wavelet bases in conjunction.
The undecimated wavelet transform is redundant and computationally more inten-
sive than the orthonormal wavelet transform. But it is translation-invariant and its
use improves the quality of the processed signals [12, 35, 25]. Another drawback of the
critically sampled wavelet bases is the lack of invariance by rotation ; this too can be
overcome by using redundant transform. Separable wavelet bases have preferred di-
rections along the natural axis and diagonals (in two-dimensions, horizontal, vertical
and diagonal). Allowing the generating family to be redundant makes it possible to
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design a frame that is tuned to more directions. For example, the steerable pyramid
can be designed to be selective to any number of directions [56]. Widening the direc-
tion selectivity is of course only an approximation to rotation invariance, however it
has proved to be beneficial in general image processing problems. Rotation invariance
will be useful to study in detail the shape of the clusters of galaxies and the structure
surrounding them, since these are highly asymmetrical objects. Finally, for the ap-
plication to astrophysical data, it is quite useful to be able to characterize the power
spectrum of the signals in hand in wavelet space. Indeed, the power spectrum is a
quantity well-studied by astrophysicists and therefore, it can be used to incorporate
a priori knowledge on the signals. The rectangular frequency tiling of orthonormal
wavelet transforms does not lend itself easily to the incorporation of knowledge on
the power spectrum of a signal. Once again, more flexibility is given by relaxing the
linear independence condition : redundant systems can be designed to have a sphe-
rical frequency tiling (as is the case of the steerable pyramid), or to approximate it
better than standard wavelet bases (as is the case of the complex wavelet transform).

In order the facilitate the presentation of the complex wavelet transform in Section
4.2 and of the steerable pyramid in section 4.3, we first review rapidly the standard
orthonormal wavelet transform in section 4.1.

4.1 Orthonormal wavelet bases

Although there are other ways to define wavelet bases, we will start here from
multiresolution spaces as in [40]. Subsequently, we define the scaling function φ and
wavelet ψ, as well as the spatial filters h and g and their Fourier transform the
conjugate mirror filters mo and m1. (One could actually start from the filters and
scaling function to define the wavelet.)

4.1.1 Multiresolution analysis

Definition 4.1.1. A multiresolution analysis of L2(R) is a sequence of approximation
vector spaces : {Vj}j∈Z that have the following properties :

P1. · · ·V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 · · ·
P2. ∪

j∈Z

Vj = L2(R)

P3. ∩
j∈Z

Vj = {0}

P4. f ∈ Vj ⇔ f(2j ·) ∈ V0

P5. f ∈ V0 ⇒ f( · − n) ∈ V0, ∀n ∈ Z

P6. There exists φ in V0 such that {φ(· − n), n ∈ Z} in an orthonormal basis of V0.

The function φ is called the scaling function. Properties P4 and P6 imply that for
any j, the family {φj,n(·) = 2

j
2φ(2j ·−n), n ∈ Z} is an orthonormal basis of Vj. Noting

hn = 〈φ−1,0 , φ0,n〉, and mo(ξ) = 2−
1
2

∑
n∈Z hne

−inξ, properties P1 and P6 imply :

φ
(

x
2

)
=

√
2
∑

n∈Z

hn φ(x− n) (4.1)

68



φ̂(ξ) = mo

(
ξ
2

)
φ̂
(

ξ
2

)
(4.2)

The wavelet can be then defined as the function ψ such that :

ψ
(

x
2

)
=

√
2
∑

n∈Z

gn φ(x− n) (4.3)

ψ̂(ξ) = m1

(
ξ
2

)
φ̂
(

ξ
2

)
(4.4)

with

gn = (−1)1−nh̄1−n (4.5)

m1

(
ξ
)
= 2−

1
2

∑

n∈Z

gne
−inξ = e−iξmo

(
π − ξ

)
(4.6)

In that case, the vector space spanned by the family of translated versions of ψ,
W0 = span{ψ0,n(·) = ψ(· − n), n ∈ Z}, is the orthogonal supplement of V0 in V1 :

V1 = V0

⊥
⊕W0. Moreover the {ψ0,n, n ∈ Z} are orthogonal to each other. Each approxi-

mation space Vj of the multiresolution analysis is then similarly decomposed into an

orthogonal sum : Vj = Vj−1

⊥
⊕Wj−1, where Vj−1 is the next coarser approximation space

after Vj and Wj−1 = span{ψ(2j−1 · −n), n ∈ Z} is a detail space. It follows that the
Wj span L2(R) and are orthogonal to each other. One can therefore consider different

decompositions of L2(R), either using only the detail spaces Wj : L2(R) =
⊥
⊕

j∈Z

Wj

(4.7), or stopping the refinement at a particular scale Jo : L2(R) = VJo

⊥
⊕

j≥Jo

Wj (4.8).

The corresponding orthonormal bases are :

{ ψj,n(·) = 2−
j
2 ψ(2−j · −n) }(j,n)∈Z2 (4.7)

and

{ φJo,n(·) = 2−
Jo
2 φ(2−Jo · −n) }n∈Z ∪ { ψj,n(·) = 2−

j
2ψ(2−j · −n) }j≥Jo,n∈Z (4.8)

Note that the scaling function, the wavelet, the filters h and g and the conjugate
filters mo and m1 inherit special properties from the multiresolution setting. For
example, the conjugate filter mo verifies :

|mo(ξ)|2 + |mo(ξ + π)|2 = 1 a.e; (4.9)

and the scaling function integrates to 1 whereas the wavelet integrates to 0.
The properties of the wavelet can be studied and adjusted by looking at the filters.

The wavelets ψj,n and scaling functions φj,n can have many properties that can be
tailored to the application at hand, by adjusting the filter choice. For instance, one can
choose to emphasize their smoothness, their localization in space and/or in frequency
and the number of vanishing moments of ψ. Typically, one cannot optimize all of
these simultaneously and some trade-offs have to be made. See e.g. [39, 17].
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4.1.2 Computing the wavelet transform in one dimension

For a function f in L2(R), the wavelet decomposition corresponding to (4.7) reads :

f =
∑

j∈Z

∑

n∈Z

〈 f , ψj,n 〉 ψj,n (4.10)

and alternatively, stopping the refinement at scale Jo as in (4.8) leads to :

f =
∑

n∈Z

〈 f , φJo,n 〉 φJo,n +
∑

j∈Z

∑

n∈Z

〈 f , ψj,n 〉 ψj,n (4.11)

The relations (4.1), (4.2), (4.3) and (4.4) propagate to the scaling coefficients
aj,n = 〈 f , φj,n 〉 and to the wavelet coefficients dj,n = 〈 f , ψj,n 〉. Indeed these
coefficients can be rewritten :

aj,n = 〈 f , φj,n 〉 (4.12)

aj,n = 〈 f , 2−
j
2 φ
(
2j · −n

)
〉 (4.13)

aj,n = 〈 f , 2−
j
2 φ
(
2j (· − 2−jn)

)
〉 (4.14)

aj,n = 〈 f , φj,0(· − 2−jn ) 〉 (4.15)

aj,n =
(
f ∗ φ̃j,0

)
(2−jn) (4.16)

and similarly :
dj,n =

(
f ∗ ψ̃j,0

)
(2−jn) (4.17)

Here, ∗ denotes the convolution on the real line and ψ̃(x) = ψ(−x).

Fast wavelet transform in space

Using Eq. (4.1), (4.3), (4.16) and (4.17) gives formulas to compute the scaling
coefficients aj,n and the wavelet coefficients dj,n from solely the scaling coefficients at
the finer scale j + 1 and the filters h and g :

aj,n = (aj+1, · ?
¯̄h(2n) (4.18)

dj,n = (aj+1, · ? ¯̄g(2n) (4.19)

Here, ? denotes the discrete convolution and ¯̄hn = h̄−n, ¯̄gn = ḡ−n This means that to
find the wavelet (resp. scaling) coefficients at scale j, one computes the convolution

of the scaling coefficients at scale j + 1 with the filter ¯̄g (resp. ¯̄h) and keep only the
even entries.

The inverse operation : synthesizing the scaling coefficients at scale j+1 from the
wavelet and scaling coefficients at scale j is just as simple :

aj+1,n = (ãj, · ? h)(n) + (d̃j, · ? g)(n) (4.20)

Here, ãj,2p = aj,p and ãj,2p+1 = 0 (and similarly for d̃). The wavelet (resp. scaling)
coefficients at scale j + 1 are interleaved with zeros and the result is convolved with
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the filter h (resp. g). The sequence of scaling coefficients at scale j + 1 is then the
sum of these two convolutions.

Starting from scaling coefficients at a fine scale J1, {aJ1,n}n∈Z, one can recursively
compute the wavelet and scaling coefficients for all scale Jo ≤ j < J1 using Eq. (4.18)
and (4.19), for any arbitrary Jo < J1. Keeping only the wavelet coefficients dj,n for
all scales Jo ≤ j < J1 and the scaling coefficients aJo,n at the coarsest scale , one can
reconstruct the sequences of scaling coefficients at each scale from Jo to J1 using Eq.
(4.20).

The forward and inverse transform are both fast to compute since they involve
only discrete convolutions and downsampling (dropping the even entries in Eq.(4.18)
and (4.19) ) or upsampling (adding zeros in Eq. (4.20)) two sequences at a each scale.

Wavelet transform in the frequency plane

One can rewrite Eq.(4.18) and (4.19) using the conjugate filters mo and m1 :

âj, ·(ξ) = âj+1, · ( ξ
2
) mo(

ξ
2
) (4.21)

d̂j, ·(ξ) = âj+1, · ( ξ
2
) m1(

ξ
2
) (4.22)

Here, for a sequence {vn}n∈Z , v̂ denotes the trigonometric series v̂(ξ) =
∑

n∈Z
vne

−inξ.

From the trigonometric series, one can recover v : vn = ˇ̂vn = 1
2π

∫ π

−π
v̂(ξ)einξ. To

compute the wavelet (resp. scaling) coefficients at scale j with this method, one first
calculates the trigonometric series associated with the scaling coefficients at scale
j + 1, then multiplies it by the conjugate filter m1 (resp. mo) and finally dilates the
result by a factor 2. The coefficients at scale j are the Fourier coefficients of the series
obtained. Note that the downsampling is done automatically here by inverting the
dilated trigonometric series.

Similarly the inverse transform that computes the scaling coefficients at scale j+1
from scaling and wavelet coefficients at scale j can be done in Fourier space by noticing
that :

âj+1,·(ξ) = âj, ·(2ξ) mo(ξ) + d̂j, ·(2ξ) m1(ξ) (4.23)

This method is not as fast as the spatial method to compute wavelet transform in
the case where the spatial filters h and g have finite length, i.e. when the wavelet have
compact support in space. However, in the event where the design of the wavelets has
been done in the frequency plane, e.g. when the wavelet have compact support in
frequency, then the spatial filters h and g are infinite and the convolution are easier
to handle by this method.

The complex wavelet transform that we review in the next section is computed
using spatial filters as in the fast wavelet transform, whereas the steerable pyramid
transform is computed in the frequency plane.

Practical implementation with discrete signals

In practice, one has access only to a finite number of regular samples of the
function f at a finite and possibly very fine scale. One considers these samples {fn}n∈I
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to be the scaling coefficients at the finer scale J1 : fn = 〈 f , φJ1,n 〉, n ∈ I. The
wavelet transform is computed neither at finer scales than J1, nor at very coarse
scales (j → −∞), where the extent of the scaling function would be greater than the
support of the sample in hand. Hence, in practice, a coarse scale Jo and a fine scale
J1 > Jo are naturally defined by the signal in hand.

The wavelet transform consists in the wavelet coefficients at each scale j from
J1 down to Jo, i.e. the {dj,n}Jo≤j<J1, n∈Ij

, and the scaling coefficients at the coarsest
scale Jo, i.e. the {aJo,n}n∈IJo

. Because of the downsampling in Eq.(4.18) and (4.19),
the cardinality of Ij is |Ij| = |I| 2j−J1 . Note that the number of wavelet and scaling
coefficients in the transform is exactly the same as the initial number of samples. This
was bound to happen since the wavelet transform presented here is nothing more than
a change a orthonormal basis in a finite dimensional space.

4.1.3 Separable wavelet transform in higher dimensions

In two or more dimensions, orthonormal wavelet bases are defined by taking the
tensor product of several one-dimensional multiresolution analysis. Let us explain the
two-dimensional case since in higher dimensions, the procedure generalizes without
problems.

Definition 4.1.2. From a multiresolution analysis of L2(R) {Vj}j∈Z as defined in
4.1.1, the following tensor product {Vj}j∈Z defined by :

1. Vo = Vo ⊗ Vo = {F (x1, x2) = f(x1)g(x2), (f, g) ∈ V 2
o }

2. F ∈ Vj ⇔ F (2j ·, 2j ·) ∈ Vo

defines multiresolution analysis in L2(R2), i.e. Vj ⊂ Vj+1, ∪jVj = L2(R2) and
∩jVj = {0}.

The approximation space Vj+1 is then naturally refined into one coarser approxi-
mation space Vj = Vj ⊗ Vj and three detail spaces : W1

j = Vj ⊗Wj, W2
j = Wj ⊗ Vj

and W3
j = Wj ⊗Wj. The corresponding orthonormal bases are :

– for Vj+1 : { φj,n1
(x1)φj,n2

(x2)}(n1,n2)∈Z2

– for W1
j+1 : { φj,n1

(x1)ψj,n2
(x2)}(n1,n2)∈Z2

– for W2
j+1 : { ψj,n1

(x1)φj,n2
(x2)}(n1,n2)∈Z2

– for W3
j+1 : { ψj,n1

(x1)ψj,n2
(x2)}(n1,n2)∈Z2

Therefore the orthonormal basis considered for L2(R2) is :

{φj,n1
(x1)φj,n2

(x2), φj,n1
(x1)ψj,n2

(x2), ψj,n1
(x1)φj,n2

(x2), ψj,n1
(x1)ψj,n2

(x2)}(j,n1,n2)∈Z3

(4.24)
Note that this is different from taking the tensor product of the one-dimensional
wavelet basis (which would include terms mixing scales : ψj1,n1

(x1)ψj2,n2
(x2)).

Define di
j,n1,n2

as the wavelet coefficients corresponding to Wi
j and aj,n1,n2

the
scaling coefficients. The two-dimensional orthonormal wavelet transform then inherits
a fast algorithm using the spatial filters h and g successively in each direction x1 and
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x2 :

aj,n1,n2
=

(
(aj+1, ·, ·

x1

? ¯̄h)
x2

? ¯̄h
)

(2n1, 2n2) (4.25)

d1
j,n1,n2

=
(

(aj+1, ·, ·
x1

? ¯̄h)
x2

? ¯̄g
)

(2n1, 2n2) (4.26)

d2
j,n1,n2

=
(

(aj+1, ·, ·
x1

? ¯̄g)
x2

? ¯̄h
)

(2n1, 2n2) (4.27)

d3
j,n1,n2

=
(

(aj+1, ·, ·
x1

? ¯̄g)
x2

? ¯̄g
)

(2n1, 2n2) (4.28)

Here,
x1

? denotes the one-dimensional convolution in the direction x1 computed for

each value of n2 (and vice-versa for
x2

? ).

As previously in one dimension, one can also consider doing these computations
in the frequency plane using the conjugate filters mo and m1 successively for x1 and
x2. The inverse transform is also computed successively in each direction, using the
spatial filters h and g and the complex conjugate filters mo and m1 as in Eq.(4.20)
and (4.23).

The two-dimensional separable orthonormal basis presented here is sensitive to
three principal directions corresponding to the detail spaces W1, W2 and W3 : the
horizontal, the vertical and the diagonal respectively. To remedy this, the complex
wavelet transform combines several separable orthonormal bases that have special
relations together whereas the steerable pyramid is based on the definition of radial
(hence non separable) filters.

4.1.4 Other wavelet bases

Before we turn to these redundant systems, let us mention that there exist other
wavelet families that are not necessarily orthonormal but still form bases of L2(R).

The biorthogonal wavelets can be designed to be symmetric with compact support
[11]. Such a family {ψ1

j,n}j,n can not form an orthonormal basis. Instead {ψ1
j,n}j,n is a

Riesz basis of L2(R) and is associated with a dual family {ψ2
j,n}j,n. The first wavelet is

used for analysis whereas the second one is used for the reconstruction. The orthogonal
relation 〈ψ1

j,n, ψ
2
j′,n′〉 = δj,j′δn,n′ ensures perfect reconstruction of any signal in L2(R).

Wavelet packets are another kind of orthonormal bases one can form starting with
the same procedure as in 4.1.1. The difference is that one is allowed to further refine
the vector spaces Wj by using the filter gn and hn on the detail coefficients dn. (See
[13, 39] for details.)

Both wavelet packets and biorthogonal wavelets can be extended to higher di-
mensions in a separable manner. Although they have advantages and disadvantages
compared with the orthonormal wavelet transform, they share its lack of invariance by
translation and poor directional selectivity. As mentioned in the introduction of this
chapter, these inconveniences can be bypassed by relaxing the linear independence
conditions and using frames instead of bases.
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4.2 Dual tree complex wavelet transform

The complex wavelet transform has been designed originally by Kingsbury [31, 32]
to remedy two principal drawbacks of traditional separable wavelet transforms in two
dimensions : the lack of shift-invariance and the poor directional selectivity. The
complex wavelet transform is a combination of several standard wavelet transforms,
(exactly 2n of these, where n is the dimension), that have special relations with each
other. The redundancy is 2n and the complexity is exactly 2n times the complexity
of a standard wavelet transform. This makes it just as fast to compute as a standard
wavelet transform for low dimensions, in particular for images (n = 2).

As a consequence of the special relations between the standard transforms used in
the complex transform, the latter is shift invariant in the sense that the reconstruction
obtained from each scale separately is free of aliasing.

Standard wavelet coefficients oscillate rapidly close to sharp transitions. Threshol-
ding techniques with critically sampled wavelet transforms suffer from these oscilla-
tions which cause artifacts in the reconstructions. Another advantage of the complex
wavelet transform is that the modulus of the complex coefficients does not oscillate
as much. Hence, the thresholding operation with complex wavelets as defined in sub-
section 2.2.3 causes much less artifacts.

In two dimensions, the complex wavelet transform produces 12 real wavelets. These
can be paired and each pair viewed as the complex and imaginary part of a complex
wavelet. In total, there are 6 complex wavelets, each one selective to a particular
direction. As a consequence, the complex transform also has improved directional
selectivity over standard wavelet transforms. Fig. 4.1 shows the direction selectivity
achieved with the complex transform in two dimensions. The first (resp. second) row
of the figure shows the 6 wavelets that can be viewed as the real (resp. imaginary)
part of the 6 complex wavelet whose magnitude is shown in the last row.

2D Dual−Tree Complex Wavelets

Fig. 4.1 – The complex wavelets are selective to 6 directions. First row : real part ;
second row : imaginary part ; third row : amplitude of the complex wavelet. (This
figure was produced by the Matlab code cplxdual2D plots.m available at [66].)
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4.2.1 Dual tree complex wavelet transform in one dimension

The complex wavelet transform in one dimension is implemented as two critically
sampled orthonormal wavelet transforms (as described in 4.1.2 ) computed in parallel.
Let us denote φ1, ψ1, h1, g1 (resp. φ2, ψ2, h2, g2) the scaling function, wavelet and
filters relative to the first (resp. second) basis. Kingsbury in [32] showed that one way
to obtain good shift invariance (as defined above) is to view the two real wavelets ψ1

and ψ2 as the real and imaginary part of a complex wavelet, Ψ = ψ1 + i ψ2, that has
the property of suppressing negative frequencies :

Ψ̂(ξ) = 0, if ξ < 0. (4.29)

This happens when the two wavelets ψ1 and ψ2 have the special property of being
Hilbert transforms of each other [52, 53], i.e. when their Fourier transform verifies :

ψ̂2(ξ) = −i sign(ξ) ψ̂1(ξ), ξ ∈ R (4.30)

This is also equivalent to designing a filter g1 that is a half-sample delayed version of
the filter g2 :

g2
n = g1

n− 1
2

(4.31)

Since it is not possible to design such a pair a finite impulse response filters, the Hilbert
transform property has to be approximated. Selesnick [52, 53] has shown how to best
do this within a preassigned filter length. It turns out that his examples correspond
to those of Kingsbury [32] even though they were designed with a different criterion
in mind. We shall use one of these examples implemented in the software available
from Selesnick’s website [66].

Suppose we have two filter banks (h1, g1) and (h2, g2), that produce wavelets ψ1,
ψ2 that are approximate Hilbert transforms of other. The dual tree complex wavelet
transform of a signal f in one dimension is computed as follows :

1. Compute the wavelet transform of f with the first filter bank (h1, g1) using
Eq.(4.18), (4.19) to obtain the real wavelets coefficients {d1

j,n}Jo≤j<J1, n∈Ij
and

real scaling coefficients {a1
Jo,n}n∈IJo

.

2. Compute similarly a wavelet transform of f with (h2, g2) to obtain a second
set of real wavelets coefficients {d2

j,n}Jo≤j<J1, n∈Ij
and real scaling coefficients

{a2
Jo,n}n∈IJo

.

3. The coefficients of the dual tree complex wavelet transform are the complex wa-
velet coefficients {cj,n = d1

j,n+id2
j,n}Jo≤j<J1, n∈Ij

, and the real scaling coefficients
{a1

Jo,n}n∈IJo
∪ {a2

Jo,n}n∈IJo
.

The complex wavelet coefficients {cj,n}n∈IJo
can then be modified the same way one

would do with real wavelet coefficients, but keeping the phase constant, as described
in subsection 2.2.3. For example, soft-thresholded coefficients {c′j,n}Jo≤j<J1, n∈Ij

would
be defined the following way :

if cj,n = |cj,n|.ei θ then c′j,n = Sτ,1(cj,n) =

{ (
|cj,n| − τ

)
.ei θ if |cj,n| ≥ τ

0 if |cj,n| < τ
(4.32)

And one would reconstruct a signal from these by :
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1. Defining the real wavelet coefficients : d′1j,n = <(c′j,n) and d′2j,n = =(c′j,n).

2. Reconstructing f1 from the real scaling coefficients {a1
Jo,n}n∈IJo

and the real
wavelet coefficients d′1j,n with the filter bank (h1, g1) using Eq.(4.20).

3. Reconstructing f2 from the real scaling coefficients {a2
Jo,n}n∈IJo

and the real
wavelet coefficients d′2j,n with the filter bank (h2, g2) using Eq.(4.20).

4. Taking the average : f1+f2

2
.

Remark. A slight modification has to be done in practice for discrete signals. For a
single real wavelet transform, we considered the samples fn to be the scaling coeffi-
cients fn = 〈f, φJ1,n〉 at the finest scale. This means that the underlying function f is
f =

∑
n fnφJ1,n. In the case of the dual tree complex wavelet transform, we have two

different scaling functions. Considering the samples fn as the scaling coefficients at
the finest scale would mean that we are analyzing two different underlying functions :∑

n fnφ
1
J1,n and

∑
n fnφ

2
J1,n. This is clearly not the goal. Special filters have to be

designed for the first stage of the transform to correct for that.

4.2.2 Dual tree complex wavelet transform in two dimensions

As we saw in the precedent section, a standard separable wavelet transform pro-
duces three wavelets : φ(x)ψ(y), ψ(x)φ(y) and ψ(x)ψ(y). Again, one can compute the
standard separable wavelet transform with each filter bank (h1, g1) and (h2, g2). One
can define six real wavelets ψi,j, i = 1, 2, j = 1, 2, 3, by combining the three wavelets
obtained in each transform the following way :

ψ1,1(x, y) = φ1(x)ψ1(y) + φ2(x)ψ2(y) (4.33)

ψ1,2(x, y) = ψ1(x)φ1(y) + ψ2(x)φ2(y) (4.34)

ψ1,3(x, y) = ψ1(x)ψ1(y) + ψ2(x)ψ2(y) (4.35)

ψ2,1(x, y) = φ1(x)ψ1(y) − φ2(x)ψ2(y) (4.36)

ψ2,2(x, y) = ψ1(x)φ1(y) − ψ2(x)φ2(y) (4.37)

ψ2,3(x, y) = ψ1(x)ψ1(y) − ψ2(x)ψ2(y) . (4.38)

Similarly to the six wavelets displayed in the first row of Fig.4.1, each of these six
wavelets is sensitive to one direction. Hence by summing and differencing the wavelets
coefficients from two standard separable wavelet transforms, one gets a system of
redundancy two that has good directional selectivity.

However, these six wavelets cannot be paired and considered as real and imaginary
part of complex wavelets. To do so, one needs to consider two additional real separable
wavelet transforms. Unlike what we described so far, these transforms do not operate
the same way on rows and columns of the signal : one needs to use (h1, g1) to filter the
rows and (h2, g2) to filter the columns (and conversely). By summing and differencing
the outputs of the four real separable wavelet transforms, one gets the six complex
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wavelets displayed in Fig.4.1. They are defined by :

Ψ1,1(x, y) =
[
φ1(x)ψ1(y) + φ2(x)ψ2(y)

]
+ i

[
φ1(x)ψ1(y) − φ2(x)ψ1(y)

]
(4.39)

Ψ1,2(x, y) =
[
ψ1(x)φ1(y) + ψ2(x)φ2(y)

]
+ i

[
ψ1(x)φ2(y) − ψ2(x)φ1(y)

]
(4.40)

Ψ1,3(x, y) =
[
ψ1(x)ψ1(y) + ψ2(x)ψ2(y)

]
+ i

[
ψ1(x)ψ2(y) − ψ2(x)ψ1(y)

]
(4.41)

Ψ2,1(x, y) =
[
φ1(x)ψ2(y) + φ2(x)ψ1(y)

]
+ i

[
φ1(x)ψ1(y) − φ2(x)ψ2(y)

]
(4.42)

Ψ2,2(x, y) =
[
ψ1(x)φ2(y) + ψ2(x)φ1(y)

]
+ i

[
ψ1(x)φ1(y) − ψ2(x)φ2(y)

]
(4.43)

Ψ2,3(x, y) =
[
ψ1(x)ψ2(y) + ψ2(x)ψ1(y)

]
+ i

[
ψ1(x)ψ1(y) − ψ2(x)ψ2(y)

]
(4.44)

Remark. As in the one-dimensional case, special filters for the first stage of the
transform have to be used and thresholding operations are done on the complex
coefficients.

4.3 Steerable pyramid

Much like the complex wavelet transform, the steerable pyramid is a linear trans-
formation that decomposes two-dimensional signals into subbands localized in scale
and in orientation. But unlike the complex wavelet transform, this tight frame is not
made of a concatenation of bases, but rather is designed from scratch by computing
filters in the Fourier plane that have desired properties. One low-pass filter (like mo),
one high pass filter (like m1) and M oriented filters that are rotated versions of a
unique filter define the steerable pyramid. This corresponds to having one scaling
function and M “wavelets”.

The steerable pyramid transform is translation-invariant and essentially aliasing-
free (the filters are designed to be band-limited so that the sampling rate is above
Nyquist frequency). It can produce an arbitrary number M of orientations and the-
refore can approximate rotation-invariance much better than the standard separable
wavelet transform. Note that, theoretically, the steerability of this transform makes
it totally rotation-invariant : the filters are designed so that the response to any par-
ticular orientation can be computed by linear combinations of the response to the M
original orientations. The steerability of the transform is the reason it was designed
in the first place. However, the transform has proved to be quite efficient and useful
using only the M principal orientations and that is how we shall also use it here.

4.3.1 Description of the filters, scaling functions and wavelets

In this section, we denote f̂ the Fourier transform of the function f and (r, θ) the
polar coordinates. Moreover, we write n for the vector (n1, n2). As in the separable
case, the scaling function is indexed by scale j and the location n̄ : φj,n. The wavelets
bear an additional index m corresponding to the orientation : ψm

j,n . Here, the wavelet
and scaling function at the scale j are not sampled at the same rate :

φj,n(x) = 2j φ (2jx− n) (4.45)

ψm
j,n(x) = 2j ψm (2jx− 2n) (4.46)
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The wavelets and scaling function verify scaling relations analogous to Eq. (4.2)
and (4.4) in the separable case, with the addition of orientation for the wavelets :

φ̂(2r, θ) = φ̂(2r) = φ̂(r) L(r) (4.47)

ψ̂m(2r, θ) = φ̂
(
r
)
H
(
r
)
GM(θ − mπ

M
) (4.48)

The low-pass filter L, the high-pass filter H and the oriented filter GM are defined as
follows :

L(r) = cos
(

π
2

log2(
4r
π

)
)
δπ

4
<r<

π
2

+ δ
r<

π
4

(4.49)

H(r) = sin
(

π
2

log2(
4r
π

)
)
δπ

4
<r<

π
2

+ δ
r>

π
2

(4.50)

GM(θ) = (M−1)!√
M [2(M−1)]!

∣∣2 cos θ
∣∣M−1

(4.51)

They are displayed for M = 4 in Fig.4.2.

0

0

1

π/4 π/2 π 

H(r) L(r) 

0

1

π 2π π/4 π/2 5π/4 3π/2 0 

Fig. 4.2 – Left : low pass filter L(r) and high-pass filter H(r). Right : oriented filters
GM(θ − mπ

M
) for M = 4. Dotted curve : m = 0, orientation of the wavelet : 0◦ ;

plain curve : m = 1, orientation of the wavelet : 45◦ ; dash-dotted curve : m = 2,
orientation of the wavelet : 90◦. Omitted for clarity of the figure : m = 3, orientation
of the wavelet : 135◦.

The scaling function is real, non-negative and radially symmetric and so is its
Fourier transform. The wavelets are real and oriented, their Fourier transform is
real non-negative and symmetric about the origin. Examples of wavelets and scaling
function are displayed in the first row of Fig. 4.3. The second row of the figure shows
their Fourier transform. The wavelets shown have different scale, orientation and
location.

Remark. We use a non-negative version of the oriented filter proposed in [47] :

GM(θ) = (M−1)!√
M [2(M−1)]!

(
2 cos θ

)M−1
. The oriented filter we propose ensures that the

wavelets are always real. It is less smooth than the original for M = 2, i.e. when one
considers only two orientations. In that case, our G2 is only continuous, while the one
used by Portilla et al. is C∞. However, this lack of smoothness was already present in
the low-pass and high-pass filters which are continuous but not differentiable. The-
refore, our choice does not change the overall regularity of the Fourier transforms of
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Fig. 4.3 – Top row : wavelets in space ; Bottom row : wavelets in Fourier plane. First
column : wavelet at a fine scale j + 1, centered at location n0, oriented along the
first diagonal. Second column : wavelet at a coarser scale j, centered at location n1,
oriented along the first diagonal. Third column : wavelet at the same coarser scale j,
centered at location n2, oriented along the horizontal axis. Fourth column : scaling
function, centered at location n2.

the scaling function and wavelets even for M = 2. Moreover, we verified that the non-
differentiability of the filters does not impact the performances of our reconstruction
algorithm of astrophysical data by designing C1 (continuously differentiable) filters :

L(r) = cos
(

π
2
ν(r − 1)

)
(4.52)

H(r) = sin
(

π
2
ν(r − 1)

)
(4.53)

GM(θ) = sin
(

π
2

cos
(

M
2
θ
)2 )

, θ ∈ [− π
M
, π

M
] (4.54)

GM(θ) = sin
(

π
2

cos
(

M
2

(θ − π)
)2 )

, θ ∈ [π − π
M
, π + π

M
] (4.55)

with ν(x) = sin
(

π
2
x
)2
δ0<x<1 + δx≥1 (4.56)

Since the use of the C1 filters (4.52)-(4.55) does not improve the results, we will only
present our work using the filters (4.49)-(4.51).

4.3.2 Algorithm to compute the steerable pyramid transform

We use the notation : aj,n = 〈f , φj,n〉 for the scaling coefficients and dm
j,n = 〈f , ψm

j,n〉
for the wavelet coefficients of a function f oriented in the direction mπ

M
. Suppose we are

given the scaling coefficients at scale j + 1 : {aj+1,n}n∈Z2 . The algorithm to compute
the coefficients at the coarser scale in the Fourier plane is :

1. Compute the trigonometric series âj+1,n(ξ).

2. Multiply by the high-pass filter H(|ξ|), call the result T (ξ).

3. For m = 0 to m = M − 1, multiply T by the rotated oriented filter to obtain :
d̂j,n(ξ) = T (ξ)GM(θ(ξ) − mπ

M
), where ξ = |ξ|eiθ(ξ).

Inverse the trigonometric series to obtain the wavelet coefficients {dj,n}n∈Z2 .

4. Multiply âj+1,n(ξ) by the low-pass filter and keep a dilated version : âj,n(ξ) =

âj+1,n( ξ
2
)L( |ξ|

2
)

79



5. Inverse the last trigonometric series to find the scaling coefficients {aj,n}n∈Z2 .

Given the scaling coefficients at the finest scale, it suffices to repeat this procedure
recursively to find the decomposition of f on the steerable pyramid. Since the scaling
coefficients are kept at only the coarsest scale, step 1 (resp. step 5) can be skipped at
each iteration except the first (resp. last) one.

The reconstruction of the scaling coefficients at scale j from the wavelet and scaling
coefficients at scale j − 1 is carried out using the exact same filters L, H and GM .
Indeed, the steerable pyramid is a tight frame which ensures that the decomposition
and reconstruction are done with the same family :

f =
∑

n∈Z2

〈 f , φJo,n 〉 φJo,n +
M∑

m=1

∑

j∈Z

∑

n∈Z2

〈 f , ψm
j,n 〉 ψm

j,n. (4.57)

And the filters are real so that :

âj+1,·(ξ) = âj, ·(2ξ) L
(
|ξ|
)

+
M∑

m=1

d̂m
j, ·(ξ) L

(
|ξ|
)
GM

(
θ(ξ) − mπ

M

)
(4.58)

Figure 4.4 shows the system diagram corresponding to the decomposition and
reconstruction. The steps described above correspond to the shaded block. In practice,
the sample of the function f in hand are again considered as the scaling coefficients
at the finest scale : {aJ1,n}n∈Z2 . To avoid aliasing in the practical case of a finite
sample, one needs to use a slightly modified version of the algorithm to compute the
coefficients at scale J1 − 1. As pictured in the white block of Fig. 4.4, one does not
do the downsampling for the scaling coefficients at scale J1 − 1, which means that :

âJ1−1,n(ξ) = âJ1,n(ξ)L
(
|ξ|
)
. (4.59)
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Fig. 4.4 – System diagram for the decomposition and synthesis using the steerable
pyramid. The area inside the dotted line is repeated recursively to obtain the full
transform. Here ω = (r, θ), and Bm(ω) = H(r)Gm(θ)

81



82



Chapitre 5

Application to the extraction of
clusters of galaxies

This chapter is dedicated to the study of the performances of the functional va-
riational method described in Chapter 2 and the statistical method described in
Chapter 3 for the reconstruction of maps of clusters of galaxies via the detection
of their Sunyaev-Zeldovich signature in the fluctuations of the Cosmic Microwave
Background radiation. The mathematical model that describes the observations and
the components have been described in the precedent chapters. In the first section
of this chapter, we explain in greater detail the cosmology of each component and
show examples of simulated observations. The second section describes the tools we
use to assess the quality of the reconstructed maps. In section 5.3, 5.4, and 5.5, we
analyze the performance of both methods under different conditions of observation.
The results we obtained are summarized in section 5.6.

5.1 Description of the signals

5.1.1 Clusters of galaxies

Stars are usually found in dense collections rather than isolated. A collection
of stars (ten millions to one trillion), together with interstellar gas, dust, and dark
matter, all being held together by gravitational attraction, is called a galaxy. Most
galaxies are several thousand to several hundred thousand light years in diameter.
Galaxies themselves are organized into larger structures. The smaller aggregates of
galaxies are called groups of galaxies. Typically, a group of galaxies contains less than
fifty of them. Clusters of galaxies are larger structures containing fifty to thousands
of galaxies, packed into areas of around one megaparsec across (one parsec is around
3.12 light years). Superclusters are even larger structures yet, containing tens of thou-
sands of galaxies found in groups, in clusters or even isolated. They form the largest
structures identified so far in the universe, and resemble a foam.

Our work focuses on the reconstruction of clusters of galaxies because they may
be used to infer cosmological information such as the Hubble constant via number
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counts and power spectrum analysis of Sunyaev-Zeldovich maps (cf. [38, 36, 27, 3]).
This is one of the most important scientific goals of several experiments, now planned
or underway, such as the Sunyaev-Zeldovich Array experiment, the Atacama Cosmo-
logy Telescope SZ survey and the Planck mission. Galaxies in the clusters travel at
velocities in the range of eight hundred to a thousand km.s−1 and are surrounded
by hot X-ray emitting gas and large amounts of dark matter. The total mass of a
cluster is typically between 1014 and 1015 times the solar mass, with only five percent
(resp. ten) of the mass of a cluster due to the galaxies (resp. the gas), the rest being
dark matter. Reconstructing the clusters of galaxies not an easy task, because other
physical phenomena, such as the Cosmic Microwave Background, obscure our view
of it. However, imaging techniques have now reached a sufficient resolution that the
Sunyaev-Zeldovich signature of the clusters can be extracted for further study.

The Sunyaev-Zeldovich effect (SZ effect in short) is due to high energy electrons in
the galaxy clusters that interact with Cosmic Microwave Background (CMB) photons
traveling from the last scattering surface to Earth. Some high energy of the electrons
is transferred to the low energy photons through the inverse Compton effect. This mo-
difies the Cosmic Microwave Background temperature and intensity in the direction
of a cluster. The thermal SZ effect induces distortions of Cosmic Microwave Back-
ground spectrum, its frequency dependence is different from that of the CMB and its
amplitude is comparable to the CMB fluctuations. Hence the detection of the thermal
SZ signal will allow to study clusters of galaxies. The right panel of Figure 5.1 and the
bottom left panel of Figure 5.2 show examples of thermal Sunyaev-Zeldovich clusters’
signatures. Note that there is also a kinetic SZ effect due to the bulk motion of the
clusters. This signal is much weaker than the thermal SZ signal and has a frequency
dependence similar to that of the Cosmic Microwave Background, therefore we will
not attempt to detect it.

5.1.2 The Cosmic Microwave Background

The Cosmic Microwave Background radiation or CMB is a form of electromagnetic
radiation that fills the whole of the Universe (see Figure 5.1, left panel and Figure 5.2,
top left panel, for two examples). Its existence and properties are considered one of the
major confirmations of the Big Bang theory. According to standard cosmology, the
CMB gives a snapshot of the Universe at the “time of last scattering”, about 400,000
years after the Big Bang, when the Universe became transparent to radiation for the
first time. Since this time, the Universe is expanding, causing the CMB photons to
be redshifted and the radiation to cool with a factor inversely proportional to the
Universe’s scale length.

The CMB spectrum matches closely that of a black body at 2.726 Kelvins and this
radiation has a high degree of isotropy. There are, however, anisotropies and these are
the features that help us understand the Universe. The most pronounced anisotropy is
the dipole anisotropy, which is consistent with the Earth moving relative to the CMB.
A number of experiments, starting with the Cosmic Background Explorer (COBE)
satellite in 1989-1996, have since detected large scale anisotropies other than the di-
pole, allowing cosmologists to understand better the structure of the Universe. For
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example, the measurements were able to rule out some theories of cosmic structure
formation like the cosmic strings theory. In 2000, the Boomerang experiment reported
that the highest power fluctuations occur at the scale of one degree. Together with
other cosmological data, these results implied that the geometry of the Universe is
flat. In 2003, the WMAP experiment provided a detailed measurement of the angular
power spectrum down to this scale, tightly constraining various cosmological parame-
ters. These results are broadly consistent with those expected from cosmic inflation
as well as various other competing theories.

To make further progress, it is known that smaller scale fluctuations than what was
provided by WMAP will have to be analyzed. These very small scale fluctuations have
been previously observed by ground-based interferometers in small regions of the sky
and will be measured systematically over the whole sky by the space mission Planck,
which is to be launched in the next two to three years. These small scales correspond to
the scale of massive galaxy clusters (see Figure 5.1). The Sunyaev-Zeldovich signature
of the clusters is a major factor of the fluctuations of the CMB at these scales.
Therefore, not only will these CMB survey experiments such as Planck give data to
resolve massive clusters, but also the extraction and accurate reconstruction of these
clusters of galaxies will be needed to proceed with the CMB analysis.
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Fig. 5.1 – Simulated 1 degree by 1 degree maps. Left panel : CMB, Right panel : SZ
clusters.

We consider experiments that will provide a map of the sky in the frequency
range 100-600 GHz, that is, where the thermal SZ signal has the biggest amplitude.
In this range, two other physical components will have a significant contribution to
the observed maps : the radio and infrared point sources and the Galaxy dust. We
describe briefly these two components in the next subsection.

5.1.3 Point sources and the Galaxy dust

The Galaxy dust refers to accumulations of gas and dust between stars in our own
galaxy. These form an interstellar cloud that lies in the foreground of our observations
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Fig. 5.2 – Simulated 10 degrees by 10 degrees maps. Top left panel : CMB, top right
panel : the Galaxy dust, bottom left panel : SZ clusters, bottom right panel : infrared
point sources, shown much bigger than their true size for clarity (see text). Note the
difference in scale between Figure 5.1 and 5.2.

of the sky. The frequency dependence of the galactic dust is significantly different from
that of the CMB and the SZ effect. Similarly to the CMB signal, the galactic dust
spreads across our observations of the whole sky and its fluctuations are smooth
(see Figure 5.2, top right panel for an illustration). Because the Galaxy dust has very
different spatial properties from the SZ signal, we do not expect that its contributions
will limit our reconstruction of the SZ clusters even though they are more faint.

On the other hand, point sources may reveal themselves to be more serious pollu-
tants of our SZ reconstructions. Technically, the term point source could refer to any
source that can be treated as coming from a single point. Here, point sources are of
two types : radio galaxies, brightest in the lowest frequency channel, and dusty ga-
laxies, brightest in the highest frequency channel. The radio point source signal is very
weak in the range of frequencies we analyze and will not be considered here. Dusty
star-forming galaxies at high-redshift shine brightly at submillimeter frequency, and
therefore, will be a potential concern. We show at the bottom right of Figure 5.2 an
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example of a simulated map of infrared point sources, each point source being exten-
ded to several pixels to allow visualization. The modeling of these infrared sources,
(number counts, frequency dependences, and spatial correlations) remains uncertain.
Therefore we will first concentrate our efforts on lower frequencies where the point
sources can be ignored to assess the ability of our algorithms to separate the SZ effect
from the CMB variations. Two analyzes, one at higher resolution and the second one
at lower resolution, are made ignoring the point sources and the Galaxy dust. We
incorporate these two components in a third study to complete our analysis.

5.1.4 Frequency dependences

In this section, we describe in more detail how the contribution of each astro-
physical component varies with the frequency of observation. The thermal Sunyaev-
Zeldovich effect causes a change in the CMB temperature in the direction ~n :

δTCMB

TCMB

= −2 y(~n)

[
2 − x

2

exp(x) + 1

exp(x) − 1

]
(5.1)

with

x =
hν

kBTCMB

(5.2)

where ν is the frequency of observation in GHz, h ' 6.626 × 10−34m2 kg s−1 is the
Planck constant, kB ' 1.38 × 10−23m2kg s−2K−1 is the Boltzmann constant and
TCMB ' 2.726K is the CMB temperature. The comptonization parameter y(~n) is
the quantity intrinsic to the cluster while the rest of Eq. (5.1) models the frequency
dependence, when the observation is measured in CMB temperature units ; that is,
when the observations are normalized so that the frequency dependence of the CMB is
flat. The left panel of Figure 5.3 displays the frequency dependence of the SZ signal in
CMB temperature units (black or dotted line). For reference, the blue or dash dotted
line is the flat frequency dependence of the CMB and it is equal to one in these units.
The thermal SZ effect causes a decrement of the temperature below the characteristic
frequency of 217 GHz, and an increment of the temperature above it. The effect is
illustrated in the first three panels of Figure 5.4, where the location of a particular
cluster is pointed by an arrow labeled with the letter “c” in three observations at
different frequencies. In the top left panel, the presence of the clusters decreases the
intensity measured at 145 GHz. This effect disappears in the top right panel because
at 217 GHz, the frequency dependence of the SZ signal is close to zero. Finally at 265
GHz (middle left panel), the effect is inverted, the presence of the cluster causing an
increase of intensity.

In CMB units, it seems that the larger the frequency of observation, the more
important the SZ contribution is. However this is relative to the CMB frequency
dependence itself. In fact, the SZ signal is maximal (resp. minimal) around 350 (resp.
145) GHz (see right panel of Figure 5.3), when the observations are measured in
intensity units. The CMB signal itself reaches its maximum around 217 GHz, where
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Fig. 5.3 – Frequency dependence, left panel in CMB temperature unit, right panel
in flux units. Note that the frequency dependence of point sources (IR) and Galaxy
dust (GD) in the right panel coincide.

the clusters’ dependence changes signs (Figure 5.3, right panel, blue dash dotted line).
The plain and dotted curves displaying the frequency dependence of the infrared point
sources and the Galaxy dust lay on top of each other in this figure.

To obtain a complete picture of the contribution of each component to the ob-
servation at each frequency, one should bear in mind that the natural units of each
components are different. The frequency dependences displayed in Figure 5.3 take
these units into account. For example, the CMB signal is measured in Kelvin, which
is the unit used in the left panel (top left panel) of Figure 5.1 (5.2). Its fluctuations are
of the order of 10−4 Kelvin. The SZ cluster signal is measured by its comptonization
parameter y, also called y-parameter. The order of magnitude of the y-parameter of
the most massive and brightest clusters is around 10−4 as well (right and top right
panels of Figure 5.1 and 5.2). Combining this with the frequency dependences, one
can see that massive clusters yield a signal of amplitude that is comparable to that
of the CMB in the range of frequencies observed. This is not the case for the point
sources signal and the Galaxy dust signal. The natural unit for these signals is the
flux at a particular frequency and although their frequency dependence stays below
the SZ frequency dependence (see Figure 5.3, right panel), those two signals are the
dominant signals at higher frequencies.

Figure 5.4 gives a visual summary of these remarks. Each panel shows a 3.2 by 3.2
degrees maps containing the sum of the contributions of the four signals at a particular
frequency. This result is convolved with a two arcminutes wide beam so that the
contribution of the points sources is wide enough to be visible, without the artificial
blowing up used in Figure 5.2. The middle right panel and bottom panels show that
above 300 GHz, the point sources and the Galaxy dust are dominating the CMB and
SZ signals. In the 100-300 GHz range on the other hand, the CMB signal is dominant
and traces of SZ clusters can be seen, as pointed out by the arrow labeled with the
letter “c”. This suggests that the relevant frequencies of observation for the extraction
and detection of the SZ clusters’ signal are between one hundred and three hundred
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Fig. 5.4 – Simulated 3.2 by 3.2 degrees maps of the sum of the contribution of the
CMB, the thermal SZ, the infrared point sources and the Galaxy dust at different
frequencies of observation. Top left : 143 GHz, top right : 217 GHz, middle left : 265
GHz, middle right : 385 GHz, bottom : 600 GHz. One particular cluster of galaxies is
located by the arrow labeled with “c”. One particular infrared point source is located
by the arrow labeled with “i”.
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GHz. In 2006, the Atacama Cosmology Telescope (ACT) will begin an SZ survey of
galaxy clusters exactly in this range, with three frequencies of observations : 145 GHz,
217 GHz and 265 GHz. The arrow labeled with the letter “i” points at the location
of a point source in Figure 5.4, showing that even at these well selected frequencies,
very bright point sources do appear. In [28], the authors quantified potential bias in
the reconstruction of the SZ signal due to the point sources under the conditions of
this experiment. For other experiment such as the Planck mission, larger frequencies
(300-600 GHz) will be observed too, giving the possibility to extract point sources
better.

The picture would not be complete without taking into account the beam size at
different frequencies and the noise. Figure 5.5 displays maps corresponding to those
of Figure 5.4, when noise is added and beams of the correct frequency-dependent size
are used. (The beam and noise parameters correspond to those of the experiment
described in Section 5.5).

5.2 How to quantify the results ?

A standard measure of the residual error between two images is the Root Mean

Square (RMS) error : RMS(I1, I2) =
√

1
N

∑
x,y

[
I1(x, y) − I2(x, y)

]2
where N is the

total number of pixels in the images. The RMS error corresponds to the L2 norm of the
difference between the images and is therefore a global measure. The RMS error can
be computed at each scale of a wavelet decomposition (or of another decomposition),
thus exhibiting at which spatial length the two images are more similar or different.
We find that for the Cosmic Microwave Background and the Galaxy dust maps, the
RMS error in pixel space and the RMS error computed by scale, combined with
visual inspection of the maps and residuals give a sufficient idea of the quality of our
reconstructed maps. Indeed, these signals are spread across the whole sky so that a
global measure of error treating each pixel the same way gives a good sense of the
quality of the reconstructions. The point sources and the clusters’ signals, on the
other hand, have to be quantified by other means because they are made of intense
and compact objects surrounded by void. The RMS error, whether in pixel space or
by scale, sums up the contributions from all locations in space, giving a poor idea of
how localized the signals are.

Point sources

The principal features of point sources are their brightness, their sparseness and
the fact that their extent is smaller than the pixel size. The reconstructed maps of
point sources we obtain are rather conservative, and never yield the reconstruction
of a point source where it did not exist. However the maps may be polluted by low
intensity signal which is either white noise and residual of the galaxy dust map. These
low intensity pollutants are rather easy to separate from the estimated point sources
by thresholding the reconstructed map. Thus, to asses the quality of a reconstructed
point source map, we first examine the level of low intensity residual. The quality of
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the estimated point sources is then defined by the number of point sources identified,
the extent of each compact object in the reconstructed map that corresponds to
a point source and the average fraction of the true intensity of the point sources
recovered.

Clusters of galaxies

As for the clusters of galaxies, the task is a little more complicated because clusters
vary dramatically in size, shape and magnitude. Moreover, the clusters are the main
focus of our study, so we need to define carefully how to asses the quality of these
maps. Clusters are compact objects with a peak of intensity at the center, and are
distributed sparsely across the sky. Our strategy to detect them in a map is to isolate
local maxima that are global maxima over a small fixed angle θ1. This corresponds
roughly to deciding that the size of the smallest cluster we want to detect is θ1. The
order of magnitude of θ1 is then the typical size of a cluster, i.e. a few arcminutes.
The exact value of θ1 has to be adjusted to the resolution of the data at hand. We
refer to the local maximum as the “center” of a detected cluster.

The studies we present here use simulated data, therefore we can compare the
reconstructed maps to the ground truth. To do so, we apply the detection procedure
described above to both the “true” and the reconstructed map. A reconstructed clus-
ter is then considered as a true detection if its center is closer than a predefined angle
θ2 to the center of a cluster in the original map. In some rare cases, the reconstructed
map shows several local maxima (of different intensity) even though there is only
one “true” cluster. In this case, we take only the most salient maxima to make our
quantified quality assessment. The purity of a sample of reconstructed clusters is then
defined as the fraction of clusters in this sample that are true detections.

Our next task is to determine which observable is the most reliable to derive cos-
mological parameters. Because of the convolution by the beam and the different sizes
of the clusters, it is likely that the maximal or central value of the y-parameter is not
reliably restored in the reconstructed maps. Instead, we expect that averaged values
are more reliable. Again, the angle θ3 over which the y-parameter should be averaged
to find a relevant observable for the clusters has to be tailored to the experiment
at hand. We assess how well the collection of reconstructed average y-parameters
matches the “true” values by linear regression : we fit a line through the cloud of
point formed by the pairs (ytrue, yreconstructed) in two dimensions. The slope of this
line tells us what the bias is in the averaged y-parameter of the reconstructed maps
compared to the true value. That is to say, if we detect a cluster in the reconstructed
map, with averaged y-parameter value yreconstructed, we predict that the true corres-
ponding averaged y-parameter value is ypredicted = yreconstructed

s
, where s is the slope.

We define the spread ∆ of this cloud of points by the average departure from the best
fitting line, rescaled to the true value, i.e. :

∆ = E

{ |ytrue − ypredicted|
ytrue

}
= E

{ |ytrue − yreconstructed

s
|

ytrue

}
(5.3)

The slope and spread then give us a way to take into account the bias in the re-
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constructed map when we predict the number of “true” clusters above a predefined
average y-parameter. The ratio between the number of such clusters predicted from
the reconstructed map to the actual number of such clusters in the original map is
called the completeness.

With these tools to asses the quality of our reconstructions, we can now explain
the analysis of the performances of the methods we proposed in Chapter 2 and 3 in the
context of three different experiments. Each of the next three sections of this chapter is
devoted to the description of one experiment and the corresponding results. Before we
go on, let us make two remarks. Firstly, the tools we just have presented use the fact
that we know the original clusters map. This is a way to benchmark the performances
of our algorithms, however these tools would have to be further developed in the case
of real data. Secondly, we quantify general aspects of the clusters’ reconstruction,
such as the number of clusters and their intensity, leaving for later the quantitative
study of finer properties, such as their shape and the structures surrounding the peak
of intensity in a cluster. We nevertheless examine these finer properties qualitatively.

5.3 ACT : a high resolution experiment

The ACT experiment is a ground-based survey that will collect data on a 100
degree square area of the sky. ACT stands for the Atacama Cosmology Telescope.
This telescope is designed specifically for high-sensitivity large-area surveys of the
sky requiring dedicated observations for months at a time. It is located in Chile and
the experiment is planned to start in November 2006. The ACT survey will map the
Cosmic Microwave Background anisotropies from angular scales of a degree down to
an arcminute. One of the goals of this survey is to find and study all galaxy clusters in
the portion of sky imaged that have a mass greater than 3.1014 solar masses through
their Sunyaev-Zel’dovich effect. Data will be acquired at 145, 217 and 265 GHz, the
expected beam size and noise level are given in Table 5.1.

ACT experiment

Frequency of observation Beam size Noise level
ν (GHz) fwhm (arcmin) σ(µK)

145 1.7 2
217 1.1 3.3
265 0.93 4.7

Tab. 5.1 – The characteristics of the ACT experiment. The RMS detector noise per
full-width-half-maximum pixel, labeled σ, is given in thermodynamic temperature
units.

As we pointed out in Subsection 5.1.4, the CMB and SZ signals are largely do-
minant at these frequencies. The contribution of the Galaxy dust is negligible and
this component can be safely disregarded. Point sources may cause some problems,
as was pointed out in [28], however, we choose to leave them out because they are
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not so troublesome at the frequencies for ACT. As a consequence, we do not assess
here the quality of the reconstruction of very compact clusters, i.e. clusters smaller
than the beam size which is one arcminute, because they may in practice be confused
with the point sources. Since most massive clusters are larger than the beam, it is
expected that a great number of theses clusters will be resolved. Moreover, at this
resolution, clusters appear aspherical (see Figure 5.10), and a challenge will be to
also detect and resolve the outskirts of massive clusters. With these goals in mind, we
assess the quality of the reconstruction methods proposed in Chapter 2 and Chapter
3 by using simulations containing the contribution of the CMB and the SZ signals
only at the frequencies and with the beam size and noise specified in table 5.1. The
CMB is simulated as a Gaussian random field using a power spectrum derived from
the best-fitting WMAP parameters [5]. The SZ simulated maps are obtained from
hydrodynamical simulations by Zhang et al. [64]. We analyze 24 sets of simulations,
each of which covers a 1.44 square degree area of the sky. Our study then covers
roughly a one third of the area that will be covered by the true ACT experiment.

To get a rough idea of the level of the noise compared to the contribution of the
CMB and SZ signals in the observations, we display in Figure 5.6 the power spectrum
of each signal at 145 (left panel) and 265 GHz (right panel). The power spectrum of
the CMB and SZ signals are modulated by their frequency dependence. The SZ signal
dominates the CMB at scales coarser than 3 arcminutes. The spectra of the CMB
and SZ signals have to be multiplied by the beam spectrum to obtain the spectral
contribution in the observation. Since the noise level is moderate and the beam size
quite small, the SZ signal is dominant over the noise for scales coarser than two
arcminutes (resp. one arcminute) at 145 (resp. 265) GHz. Therefore, we do expect
that the reconstruction of the SZ will be accurate at least down to the beam size (one
arcminute).

We used both our statistical and functional methods to analyze these data. We
compare four sets of results : the Gaussian, profile and truncated profile prior dis-
tributions for the SZ clusters and our best variational results, using an weighted L2

norm in wavelet space for the CMB and a Besov norm for the clusters. (The CMB
prior is fixed to Gaussian for the statistical method). These different methods were
explained, respectively, in Section 3.4 and 2.5.2.

5.3.1 Reconstructions of the Cosmic Microwave Background

Figure 5.8 shows a typical 1.2 by 1.2 degree CMB map (top panel) together with
the reconstruction obtained from each algorithm. The corresponding residual maps
are in the following figure (Fig. 5.9). Visual inspection of these figures suggests that
the four methods considered yield reconstructions of the CMB maps of the same
quality. We computed the average over the 24 simulations considered of the RMS in
pixel space and scale by scale. The RMS in pixel space is 1.12× 10−6 for all methods.
The RMS per scale are plotted in Figure 5.7.

Both the residuals maps of Figure 5.9 and the RMS per scale in Figure 5.7 show
that the most errors occur at the 4.4 arcminutes scale, which corresponds to extended
clusters. We notice on Figure 5.7 that the distribution of the error per scale is slightly
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Fig. 5.6 – Power spectra of the signals contributing to the observation for the ACT
experiment. Left : at 145 GHz, right : at 265 GHz. The horizontal axis indicates
the inverse of the spatial frequency (on a logarithmic scale), so that small numbers
correspond to fine spatial scales and large numbers to coarse spatial scales.

different for the functional algorithm than for the statistical ones. The functional me-
thod seems to reconstruct more accurately larger scale than 8.9 arcminutes while the
statistical method performs better at smaller scales. The better accuracy at fine scales
for the statistical method may be explained by the use of the neighborhoods which
make the estimates more local for the statistical approach than for the functional
approach.
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Fig. 5.7 – RMS error in the CMB reconstruction, scale by scale. The results of the
Gaussian, profile and truncated profile (noted t. profile) prior lay on top of each other.
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Fig. 5.8 – ACT experiment : CMB. Top : original simulation, other panels : recons-
tructions. Middle left : Gaussian, middle right : truncated profile, bottom left : profile,
bottom right : functional. The maps are 1.2 × 1.2 degrees.
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Fig. 5.9 – ACT experiment : CMB residuals. Top left : Gaussian, top right : truncated
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Fig. 5.10 – ACT experiment : SZ clusters. Top original simulation, other panels :
reconstructions. Middle left : Gaussian, middle right : truncated profile, bottom left :
profile, bottom right : functional. The maps are 1.2 × 1.2 degrees.
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5.3.2 Reconstruction of the SZ clusters

A global quantification of the accuracy of the reconstructed SZ maps is the com-
putation of the average RMS errors in pixel space and per scale for the 24 simulations
we used. The RMS error for the different reconstructions are similar. The RMS error
in pixel is 8× 10−6 for the functional method and the Gaussian prior, and 7.7× 10−6

for the profile and truncated profile priors. The RMS errors per scale are provided in
Figure 5.11 and show the same dichotomy, with the functional method and Gaussian
prior having a slightly larger RMS error at all scales than the profile priors. Most
errors occur at the one arcminute scale, which is the scale of the beam.
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Fig. 5.11 – RMS error in the SZ reconstruction, scale by scale.

The RMS error, per scale or in pixel space, is however not a good indicator of
the quality of the reconstructed maps when quality denotes relevance for deriving
astrophysical constraints. We illustrate this fact by showing a simulated 1.2 by 1.2
degree map together with the reconstructed maps of our four methods in Figure
5.10. The qualitative comments we can make from visual inspection of such maps are
consistent with the quantitative study that follows.

Qualitative inspection of the reconstructed maps.

Visual inspection of the reconstructed maps tells us that the Gaussian prior un-
derestimates the central value of the most intense clusters, whereas the non-Gaussian
priors and the functional method perform this task much better. The functional me-
thod resolves more compact clusters better than the three statistical methods but
on the other hand does a poor job at reconstructing the structures in the outskirts
of extended clusters. The Besov norm we chose to constrain the smoothness of the
clusters for the functional algorithm promotes local fast transitions and is therefore
able to pick up 89 % of the central intensity of bright clusters (we explain in the next
subsection how this number is computed). However, the background in the functio-
nal reconstruction (see bottom right panel of figure 5.10), shows that structures of
lower intensity reconstructed with this method are rather elongated. As a result the
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outskirts of the clusters are not well resolved and it is difficult to assess the extent
of a cluster using this method. The statistical method, on the other hand, is able
to link together smoothly the outskirts of the clusters because it takes into account
the correlations between neighboring wavelet coefficients. The use of the profile prior
for the statistical method induces a substantial improvement in the reconstruction of
the central y-parameter of a cluster compared to the Gaussian prior. However, lower
intensity clusters are better resolved under the Gaussian prior because it imposes
less regularity in the low-intensity range than the profile prior. Suspecting that our
deconvolution method for the prior tends to overweight low values of the multiplier,
we truncated the profile prior. The results obtained with this second profile (middle
right panel of Figure 5.10) show a compromise between the initial profile and the
Gaussian prior : the central parameter of bright clusters is as good as for the profile
prior and lower intensity structures are better reconstructed.

Quantitative inspection of the reconstructed maps.

When it comes to infer cosmological parameters from number counts in other
wavebands (i.e. X-ray or optical), the common practice is to retain only the brightest
clusters which are less affected by selection effects and have a better characterized
scaling function. We adopt here the same strategy with SZ clusters, also motivated
by the fact that they are less affected by reconstruction errors.

Our first task is to determine which observable is the most reliable to derive
cosmological parameters. As we explained in the previous section we have to select
the angle θc over which the y-parameter should be averaged in the context of this
experiment. We smoothed the original and reconstructed maps over angles ranging
from 0 to 1.8 arcminutes, which is the size of the largest beam. For each such angle we
compute the slope and spread associated to the best fitting line to the clouds of points
defined by the original versus reconstructed averaged y-parameter for each detected
cluster in the original map. Increasing the value of the averaging angle, we find a big
improvement when the angle reaches 0.9 arcminute, which corresponds to the smallest
beam of the experiment. The left panel of figure 5.12 shows the evolution of the slope
and spread with the averaging angle for the fifty brightest clusters in this study. The
slope and spread improve further after the 0.9 arcminute angle ; however, because
the most compact clusters are about 1 arcminute wide, smoothing over larger angles
will blend the background with the clusters’ y-parameter values unevenly for compact
versus more extended clusters. Therefore, we define our best observable for the ACT
experiment to be the y-parameter value averaged over an angle of 0.9 arcminute. The
(ytrue , yreconstructed) pairs obtained at this angle for the fifty brightest clusters in this
experiment are displayed in the right panel of Figure 5.12 for the four reconstruction
methods we consider. The top line is the line of perfect reconstruction, while the
other lines are the best fitting lines for each reconstruction. The bottom plain line
corresponds to the Gaussian prior, the dotted line to the truncated profile, the dash-
dotted line to the profile and finally the dashed line is the best fitting line for the
functional method. The slope and spread are summarized in table 5.2. We find that
the the functional method yields the best slope and spread, reconstructing on average
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89% of the intensity of bright clusters with a spread under 10%. The performances of
both non-Gaussian statistical methods are comparable although slightly lower, with a
slope around 0.84 and spread of 11%. The Gaussian prior performs less well, consistent
with what we observed on the reconstructed maps. It is able to recover 69% of the
intensity with a spread of 16%.
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Fig. 5.12 – Left : Slope and spread in function of the averaging angle (labeled diame-
ter). Right : reconstructed versus original central y-parameter averaged at 0.9 arcmin
for the fifty brightest clusters.

Method Statistical Functional
Gaussian Truncated profile Profile

Slope 0.69 0.83 0.84 0.89
Spread 0.16 0.11 0.11 0.09

Tab. 5.2 – ACT experiment : slope and spread for the average y-parameter of the 50
brightest clusters.

We finish the quantitative study of the reconstructed maps for the ACT expe-
riment by assessing the quality of predictions that would be made from the recons-
tructed maps. Two questions come to mind : do the structures found in the recons-
tructed map really correspond to clusters in the input map ? Can we associate a given
threshold in the reconstructed map to an input cluster intensity with high confidence ?
To answer these questions, we compute the purity and completeness of the samples
for given output intensities. The reconstructed and original maps are smoothed to 0.9
arcmin and clusters are detected in each map. The purity of a sample of reconstructed
clusters is the fraction of these clusters that have a counterpart in the original within
a radius of 0.6 arcminutes. For a fixed threshold t in the original map, we use the
slope s and spread ∆ defined earlier to find the sample of detected clusters in each
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reconstructed map that would predict true clusters above t. More precisely, we consi-
der that the detected clusters in the reconstructed map above threshold t.(1 − ∆).s
predict the number of true clusters above threshold t. The different samples in the
reconstructed map then give predictions for the number of true clusters of intensity
greater than or equal to a predefined value. Their purity can be compared. We find
that reconstructed cluster samples that predict the existence of true clusters of ave-
raged y-parameter above 1.5 × 10−4 are pure, that is, all such detected clusters in
the reconstructed map correspond to true clusters. The purity of the statistical maps
seems a bit lower than the purity of the functional map as the threshold decreases
(see Figure 5.13, left panel). This is consistent with the fact that the corresponding
intensity in the reconstructed maps is lower (because the slope is smaller). The com-
pleteness is defined as the ratio between the number of clusters in the reconstructed
sample to the number of true clusters above the corresponding threshold. The com-
pleteness plot in Figure 5.13 shows that the using the threshold t.(1 − ∆).s in the
reconstructed maps is too optimistic for the Gaussian and the functional method
but yields accurate number counts for the two non-Gaussian statistical priors. We
conclude that the non-Gaussian statistical methods predict with great accuracy the
number of clusters of averaged y-parameter above 1.5 × 10−4, with no false positive.
In this study, we found 50 such clusters, thus the real ACT experiment will detect
around 150 such clusters. This is an appropriate number count to derive cosmological
constraints.
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Fig. 5.13 – Purity (left) and completeness (right) of the reconstructed samples.

5.4 Planck : a lower resolution experiment

The Planck mission is designed to image the anisotropies of the Cosmic Micro-
wave Background Radiation over the whole sky. Although it will give unprecedented
sensitivity and angular resolution for such a task, the beam sizes and level of noise
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are noticeably bigger than for the ACT experiment (see Table 5.3). The size of the
smallest beam, around 5 arcminutes, is quite large compared to the typical cluster
size (1 to 10 arcminutes).

Planck experiment

Frequency of observation Beam size Noise level
ν (GHz) fwhm (arcmin) σ(µK)

143 7.1 6
217 5.0 13
353 5.0 40

Tab. 5.3 – The characteristics of the Planck experiment at the frequencies used in
this work. The RMS detector noise per full-width-half-maximum pixel, labeled σ, is
given in thermodynamic temperature units.

In this work, we assess the quality of our reconstruction methods on simulated
observed maps containing only the CMB and SZ clusters’ contribution. We consider
the three frequencies of observations where the contributions of these two signals are
the strongest : 143, 217 and 353 GHz. The actual Planck experiment will make mea-
surements at higher frequencies, where point sources and galaxy dust are dominant.
We rely on the fact that the use of these observations will allow to locate and esti-
mate point sources, and focus on the CMB and SZ signals. We use ten simulations,
each of which is a 10 by 10 degrees map. The CMB maps are simulated by Gaussian
random fields using a power spectrum derived from the best-fitting WMAP parame-
ters [5] (same as for the ACT experiment described in the previous section). The SZ
simulated maps are taken from White [62, 65].

In Figure 5.14, we display the power spectrum of the different signals contributing
to the observations at the frequencies where the clusters’ signal is the strongest. The
power spectrum of the CMB and of the clusters is scaled by their frequency depen-
dence, however the convolution by the beam is not taken into account. As expected,
the CMB signal dominates the SZ clusters’ signal except at fine scales (around 2
arcminutes). Taking into account the convolution by the beam, i.e. multiplying the
power spectrum of the CMB and SZ clusters’ signal by this of the beam, one can
see from these plots that the noise dominates the SZ signal at most scales. Under
these conditions, we expect Planck to detect the most massive (or extended) clusters
only. The large area covered by the experiment, however, will allow to detect a sizable
number of them.

We used both our statistical and functional methods to analyze these data. Simi-
larly to our study of the previous experiment, we compare four sets of results : the
Gaussian, profile and truncated profile prior distributions for the SZ clusters and our
best variational results, using an weighted L2 norm in wavelet space for the CMB
and a Besov norm for the clusters. We refer to Section 3.4 and 2.5.2 for the details of
each method.
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Fig. 5.14 – Power spectra of the signals contributing to the observation for the Planck
experiment. Left : at 143 GHz, right : at 353 GHz.

5.4.1 Reconstructions of the Cosmic Microwave Background

As is the case for the ACT experiment, the quality of the reconstructions of the
Cosmic Microwave Background is similar for the four methods. Figure 5.16 shows a
5 by 5 degrees portion of one of the simulated maps together with the reconstruction
obtained from each method. The total RMS error for the statistical reconstructions
is slightly lower (1.12 × 10−5 ) than for the functional method (1.16 × 10−5). This
difference of precision is spread across all scales (see the RMS per scale plots in Figure
5.15).
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Fig. 5.15 – RMS error in the CMB reconstruction, scale by scale.

Both the RMS per scale plots and the residual maps of Figure 5.17 tell us that the
reconstructions are accurate for scales larger that the typical beam size (5 arcminutes).
The size of the beam in this experiment is the limiting factor of the reconstructions
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Fig. 5.16 – CMB, Planck experiment. Top : original simulation, other panels : re-
constructions. Middle left : Gaussian, middle right : truncated profile, bottom left :
profile, bottom right : functional. The maps are 5 × 5 degrees.
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of the Cosmic Microwave Background fluctuations, regardless of which method is
employed.

5.4.2 Reconstruction of the SZ clusters

As expected from the size of the beam and the level of noise in this experiment,
we find that we can reliably reconstruct only bright and extended clusters. In figure
5.18, we show an input y map together with the reconstructed maps for each method.
In these figures we see that the statistical and functional methods have very different
behavior at low signal-to-noise ratio. The statistical method is rather conservative,
yielding a low amplitude reconstruction, even for massive and bright clusters, whereas
the functional method allows to recover the amplitude of the signal better at the
expense of having a strong residual signal spread across the map. The maps obtained
by the statistical method on the contrary are well localized. We notice the effect of the
prior distribution is the same as for the ACT experiment. The Gaussian assumption
for the clusters allows to recover more low intensity signal. The profile prior causes
the amplitude of the bright clusters to be better reconstructed, but at the same
time underestimates lower clusters. The truncated profile prior reaches a consensus
between the two. Only a few clusters can be detected from the reconstructed statistical
maps (low completeness), however, the purity is maximal : every cluster detected
(above a threshold y-parameter of 2× 10−5) is a true cluster. This is not the case for
the functional method. Because of the rather intense residual structure, a significant
number of clusters would be detected in the functional map that do not exist. One
would need to increase the threshold up to 5× 10−5 to obtain maximal purity in this
case.

We selected the eight brightest and most extended clusters out of our ten simu-
lations to quantitatively compare the reconstruction of the central y-parameter with
the different methods. Typically, these massive clusters are about 10 arcmin wide
and their maximal y-parameter exceeds 5× 10−5. As is the case for ACT experiment,
we find that the observable that reaches the best trade-off between the adequation
to the original data and the spread is the average value of the central y-parameter
over an angle of roughly the same size as the beam. Figure 5.19 shows the output
averaged central y-parameter found in the reconstructed maps versus input averaged
central y-parameter in the original maps for the eight clusters selected. The top line
is the line of perfect reconstruction, the other lines show the best fitting line for each
method. In the table 5.4, the slope and spread corresponding to these eight clusters
is quoted for each reconstruction.

As can be observed on the reconstructed maps in Figure 5.18, taking in account the
non-Gaussianity improves the reconstruction of the central y-parameter by a factor
4 (truncated profile) to 6 (profile) over the Gaussian prior in the statistical method.
The functional method is even more accurate, improving the reconstructed values by a
factor 9 over the Gaussian statistical method and 1.5 compared to the best statistical
method. Although the slope is significantly improved over the Gaussian prior, the
spread in the non-Gaussian statistical reconstructions is somewhat high : around 30%
of the nominal value. This could be a potential problem when it comes to deriving
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Fig. 5.18 – SZ clusters, Planck experiment. Top original simulation, other panels :
reconstructions. Middle left : Gaussian, middle right : truncated profile, bottom left :
profile, bottom right : functional. The maps are 5 × 5 degrees.

108



10
−4

10
−6

10
−5

10
−4

 Planck, y parameter, cluster averages (diameter 4.8 arcmin)

Original

R
ec

o
n

st
ru

ct
ed

original
Gaussian
profile
t. profile
functional

Fig. 5.19 – Reconstructed versus original central y-parameter (4.8 arcmin average).

Method Statistical Functional
Gaussian Truncated profile Profile

Slope 0.07 0.26 0.44 0.63
Spread 0.13 0.27 0.32 0.09

Tab. 5.4 – Planck experiment : slope and spread for the average y-parameter of the
eight most massive and bright clusters.
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cosmological parameters from these reconstructions. In this regard, the functional
method yields a significant improvement over the statistical method altogether, it
recovers on average 63 % of the input y-parameter value with a spread that is less
than 10 % of this input value.

We conclude that under the conditions of the Planck experiment presented here,
only bright extended clusters may be recovered. The two methods we propose com-
plement each other : the shape and localization of the clusters is much better resolved
by the statistical method, whereas the functional method is more accurate and re-
liable for the estimation of the central y-parameter. Neither method seems to be
self-sufficient in this case to derive cosmological parameters accurately. However, if
one is willing to do the reconstructions with both methods, one could use a map
reconstructed from the statistical method to locate massive clusters, (which can not
be done reliably with the functional reconstruction,) and then use the result of the
functional method to infer the y-parameter of the detected clusters.

The actual performances of the Planck instrument may be better than the ones
used in these simulations. In particular the noise in the sky will not be uniformly
distributed because some areas will be better sampled than others. We assessed the
relevance of the noise level on the performances of the statistical method by perfor-
ming a similar analysis on the Planck maps with a reduced level of noise (a factor 7
lower). We find that in these conditions the non-Gaussian statistical methods reco-
ver around 60% of the y-parameter with a spread of the order of 10% (see [45] for
more details). This shows that the limiting factor for the statistical method in this
experiment is the noise level.

5.5 The influence of point sources

In the studies we presented in the last two sections, we have made the simpli-
fying assumption that the contribution of the point sources and the Galaxy dust were
negligible or had been extracted from the observed maps before we process them.
The third study we present here aims at assessing whether the methods we propose
are robust to the presence of the point sources and Galaxy dust. The data we use
were simulated by astrophysicist Dominique Yvon and collaborators at CEA, France.
The frequencies of observation, beam size and noise level correspond to those of the
OLIMPO survey and are given in table 5.5. OLIMPO is an ongoing project which
aims at measuring the Sunyaev-Zeldovich effect in many clusters of galaxies during a
long-duration balloon flight. The size of the beam in this experiment is intermediate
between these of the ACT and Planck experiments we described earlier. The expe-
riment will collect data in four different frequency channels. Examples of observed
maps can be found in Figure 5.5 (the 265 GHz observation has been produced for
displaying purposes only and is not used in the study). At the two largest frequencies,
385 and 600 GHz, the point sources and Galaxy dust dominate the observations. The
CMB signal on the other hand dominates the observation at the lower frequencies,
143 and 217 GHz. The clusters’ contribution is maximal at 385 GHz but is largely
dominated by point sources and dust, therefore the most reliable channel to observe
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the SZ effect is the lowest frequency channel : 143 GHz. The simulated data we study
here cover a four hundred degree square portion of the sky.

OLIMPO experiment

Frequency of observation Beam size Noise level

ν (GHz) fwhm (arcmin) σ(µK)/
√
Hz

143 3 150
217 2 200
385 2 500
600 2 5000

Tab. 5.5 – The characteristics of the OLIMPO experiment.

5.5.1 Results obtained with the statistical method

For the statistical method, we compare the reconstructions yielded by different
sets of distributions. The histograms of the wavelet coefficients of the Galaxy dust
are well-fitted by a Gaussian. Moreover, we do not expect that the presence of dust
will cause a major deterioration of the clusters’ signal, because the Galaxy dust is
smooth and slowly varying and fills up the space. Therefore, the prior for the CMB
and the Galaxy dust are fixed to Gaussian, and we focus on the influence of different
priors for the point sources and clusters.

To get an idea of the problems encountered with the introduction of point sources,
we first tried the simplest prior for the clusters, i.e. the Gaussian prior, and compa-
red the results obtained when the point sources are assumed Gaussian to the results
obtained using Jeffrey’s prior. The Gaussian prior is obviously not the best fitting
prior for the point sources because their extent is under a pixel size and they are
sparsely distributed. We saw that modeling the non-Gaussianity of the clusters leads
to better reconstruction of the SZ effect in the context of the ACT and Planck expe-
riments as well. However, we also found in the two previous studies that the quality
of the reconstructions of the CMB signal does not change between the case where the
clusters’ prior is Gaussian and when it is not. This shows that in the simplified case
where only the CMB and SZ effect are present in the observations, the reconstruction
of one particular component (the CMB) is largely independent of the prior chosen for
the other component (the SZ signal). So the rationale for examining the case where
all four priors are assumed Gaussian, even if we know this model is too simple, is to
understand whether the reconstructions of the different signals are independent from
each other as was the case for the CMB/SZ experiments.

We find that the statistical method is very robust to the introduction of point
sources and Galaxy dust as far as the estimation of the CMB and clusters signals
are concerned. Indeed, even when all signals are assumed Gaussian, the precision
of the reconstructed maps of the CMB and clusters signal is similar to the quality
that would be expected from our study of the ACT and Planck experiments. The

111



CMB signal is very well estimated down to scales around 5 arcminutes, which is
slightly larger than the beam size and no traces of point sources or Galaxy dust can
be found. The algorithm is able to separate point sources from SZ clusters, and the
reconstructed clusters maps have similar quality to those seen for ACT, given the
size of the beam. Here the observable we use to assess the quality of the clusters map
is the average y-parameter over an angle of two arcminutes. Clusters are detected
as local maxima that dominate over a three arcminutes angle and are considered to
correspond to a cluster in the original map if the two centers are less than two and
a half arcminutes apart. Even when clusters are assumed Gaussian, the purity of the
clusters sample from the reconstructed maps is high (about 97 %) for intense clusters
(i.e. with central average y-parameter bigger than 10−5). This proves that no intense
point sources are confused with the clusters, even when the point sources are modeled
with the Gaussian prior.

Surprisingly, the reconstructed map of the point sources allows to locate them
accurately, even when they are assumed Gaussian. The estimated point sources are
not as compact as a pixel but are extended to roughly the size of the beam. The
beam is small enough compared to the mean distance between two point sources that
this is not a problem in this experiment. However, the intensity of the point sources
is underestimated (around 25 % of their value). Moreover we find the algorithm
confused background noise with the point sources map. A white noise is spread out
in the reconstructed point source map, but fortunately, its level is lower than the
intensity of most point sources. The estimation of the Galaxy dust map is accurate
a coarse scale (around 20 arcminutes) but smaller fluctuations are not reconstructed
at all.

We now compare the results we obtained by fixing the prior to Gaussian for all
signals to the reconstructions obtained when Jeffrey’s prior (i.e. the log-uniform dis-
tribution on the multiplier) is used for the point sources (still using the Gaussian prior
for all the other signals). As expected the point sources map is much better recons-
tructed, the background noise observed earlier has disappeared. The point sources
themselves are still extended to the size of the beam. Their intensity is slightly better
estimated than before but is still low (around 35%). Although the prior on the Galaxy
dust map has not changed, smaller scales are reconstructed with this set of priors,
indicating that the quality of the reconstruction of the Galaxy dust depends on the
accuracy of the point sources map. This seems natural since point sources and Galaxy
dust have very similar frequency dependence at the frequencies of observation used
here. On the other hand, the quality of the CMB and intense clusters’ reconstructions
remains the same, indicating that the statistical method used here is able to separate
signals primarily on the basis of their frequency dependence.

Finally, we studied in further detail the quality of the SZ clusters reconstructions
in this experiment by allowing the prior of this signal to be non-Gaussian. The results
we obtain are consistent we our remarks above : the reconstruction of other signals
is not affected by changing the prior of the clusters. The qualitative and quantitative
differences between the Gaussian, the profile, and truncated profile prior are similar
to those we found in the ACT experiment. That is to say, the profile prior allows to
recover the intense clusters more accurately than the Gaussian prior, at the expense
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of underestimating lower intensity clusters and the truncated profile prior reaches a
compromise between the other two.

We conclude that under the conditions of the OLIMPO experiment, the presence
of the point sources and Galaxy dust will not affect the quality of the SZ maps
estimated by using the statistical method we propose.

5.5.2 Results obtained with the functional method

The functional variational method we propose to reconstruct the signals is much
more affected by the introduction of point sources. We did not find a balance between
the eight terms in the functional (four error terms and four regularization terms) that
allows to accurately recover all signals at the same time. With the nominal values
described in Section 2.5.2, the CMB is reconstructed correctly although it is a little
smoother than expected, but only a coarse scale approximation of the clusters’ signal
is recovered. The point sources maps is very well localized (the extent of estimated
point sources is typically smaller than the beam size). However, only 35% of their
intensity is recovered in the estimated point sources map, and the remainder of this
signal is attributed to the Galaxy dust, in the form of extended point sources of the
size of the beam on top of the Galaxy dust itself.

This lead us to conduct a smaller case study in order to determine whether the
Galaxy dust and point sources can be separated at all using this method. We ge-
nerated observations with the parameters of the OLIMPO survey, only omitting the
contribution of the CMB and SZ cluster’s signal. From these observations we tried
to separate the Galaxy dust signal from the point sources. We find that the regulari-
zing terms of these two signals have to be balanced taking into account the relative
amplitude of the Galaxy dust variations and the intensity of the point sources. This
leads to choosing the parameters γ4 and γ3 so that γ4

∑
λ=(j,k)∈Λ 23j| 〈 f4 , ϕλ〉 |2 ∼

100 γ3

∑
pixel |f3(pixel)|, rather than of the same order. With these parameters, the

functional algorithm is able to reconstruct both the point sources and the Galaxy
dust with great accuracy. In particular, the estimated point source map is free of
noise and the intensity of the point sources is recovered at 90%. Moreover, the extent
of the estimated point sources is extremely close to one pixel, with the intensity de-
caying sharply at the four closest pixels if it is not zero. Such accuracy in the point
sources map can not be achieved by the statistical method because it is constrained
to estimate the point sources map in wavelet space, causing the extent of the point
sources to be limited by the finer wavelet scale.

However, we find that the balance between point sources and Galaxy dust terms
is greatly affected by the reintroduction of the CMB and clusters signal. In particular,
a complicated interplay occurs between the reconstructions of the clusters signal, the
Galaxy dust signal and the point sources. As a result, the estimation of the clusters’
map is either too coarse or contains point sources that will make the detection of
clusters unreliable. Finding a better way to balance the different terms is extremely
difficult because contrarily to what we observed for the statistical method, the es-
timation of one particular signal is greatly affected by the estimation of the other
signals, making it impossible to study the influence of one parameter at a time.
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We conclude from this study that the presence of point sources is a major concern
with the functional variational algorithm we proposed, preventing the method to
reconstruct accurately all signals at the same time. However, we find that in the
restricted case where only the point sources and the Galaxy dust maps are to be
extracted, this method is able to locate and estimate the point sources with great
accuracy both in intensity and in spatial extent. Therefore, the functional algorithm
we propose could be used in other type of experiments where the focus is the point
sources, to locate and estimate them accurately. From a more general point of view,
the success of the restricted experiment containing only point sources and Galaxy
dust shows that our innovative use of norms defined by different tight frames for
different signals is promising.

5.6 Summary of the results

In this chapter, we have applied both the variational approach and the statisti-
cal approach we described in Chapters 2 and 3 to estimate the major astrophysical
components present in surveys of the sky at the frequencies between 100 and 600
GHz. There are four of these components : the Cosmic Microwave Background, the
Sunyaev-Zeldovich effect, the infrared point sources and the Galaxy dust. Our goal is
to obtain reliable information on the clusters of galaxies by reconstructing accurate
maps of the Sunyaev-Zeldovich effect.

Since the SZ effect is a fluctuation of the CMB radiation, the reconstruction of the
CMB radiation is inherent to the estimation of the clusters of galaxies through their
Sunyaev-Zeldovich signature. The point sources and Galaxy dust, however can be seen
as pollutants of a second order. They dominate larger frequencies of observations while
the CMB and clusters signal are more intense at smaller frequencies. Therefore, we
first assessed the quality of our methods on simulated data ignoring point sources and
Galaxy dust. Since different sky survey may have very different resolution, noise level
and be able to cover different extent of the sky, we studied two test cases of different
nature. The first one, ACT will cover a small portion of the sky with a resolution
of the order of one arcminute and moderate noise level. The second experiment we
consider, Planck, will cover the whole sky with a resolution of five arcminutes and
higher level of noise. In a third study, with intermediate resolution and moderate
noise, we assessed the influence of point sources and Galaxy dust.

For each experiment, we compared the results obtained for the functional method
to several sets of results obtained with the statistical method, where different priors
were used. The “Gaussian statistical approach” refers to the case where the clusters’
signal is modeled by a Gaussian prior and the “non-Gaussian statistical approach”
to other cases.

Our findings are the following :

– The most reliable observable of the SZ clusters is the y-parameter averaged over
an angle of the same order as the beam size. (The y-parameter is the quantity
intrinsic to a cluster of galaxies that determines the amplitude of the resulting
Sunyaev-Zeldovich effect).
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– In the absence of points sources and Galaxy dust, both methods perform si-
milarly. The CMB signal is reconstructed accurately down to the scale of the
smallest beam. However some differences are noticed :
The functional approach and non-Gaussian statistical approach outperform the
Gaussian approach in the estimation of intense clusters. Moreover, the statistical
method does a better job at estimating the structure of the clusters whereas
the functional approach recovers more intensity.
For the high resolution experiment, ACT, we find that the clusters’ signal is
very accurately estimated by both methods, especially for the intense clusters.
We conclude that both the non-Gaussian statistical reconstructions and the
functional reconstruction yield estimates of the average y-parameter of intense
clusters that could be used to constrain cosmological quantities.
For the low resolution experiment, Planck, we find that the reconstructions of
the SZ effect are limited to bright and very extended clusters. The reliability of
the detection of these clusters in the functional reconstructions is low because
large residual structures appear. However, the estimation of the averaged y-
parameter is remarkably stable at the location of the true clusters. This, in
a sense, completes the performances of the non-Gaussian statistical approach.
In that case, extended clusters can be detected reliably because the structure
surrounding the peak of intensity are well estimated. However the spread of the
average y-parameter reconstructed is too high to be trusted. We conclude that
under these conditions neither methods are self-sufficient to derive cosmological
parameters from the reconstructed SZ maps. However, we determined that the
limiting factor in this case is the noise level, which may be improved in the true
experiment in some areas of the sky that are observed for a longer time.

– The statistical method is robust to the introduction of point sources and Ga-
laxy dust, leading to accurate estimates of the CMB and clusters signal. We
determined that for this approach, the estimation of a single component does
not affect other components which have a different frequency dependence. Thus,
it is not necessary with this method to recover the point sources accurately to
obtain a satisfying clusters’ signal.
This is not the case for the functional approach, where a complicated interplay
between the different terms makes it difficult to study the precision of the re-
construction of each component separately. As a result, we were not able to
recover all four signals simultaneously with this approach in order to find a sa-
tisfying cluster map. We note however that the functional approach we propose
can be used to recover the point sources with almost perfect accuracy both in
terms of their intensity and their spatial extent, when the number of signals is
reduced.
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Titre : Approches en ondelettes pour la séparation et la déconvolution simultanées. Appli-
cation à des données astrophysiques.

Résumé : Cette thèse est consacrée au problème de séparation de composantes lorsque
celles-ci sont des images de structure différente et que l’on en observe un ou plusieurs
mélange(s) flou(s) et bruité(s). Les problèmes de déconvolution et de séparation, tradition-
nellement étudiés séparément, sont ici traités simultanément.

Une façon naturelle d’aborder le problème multicomposants/multiobservations est de
généraliser les techniques de déconvolution d’une image unique. Le premier résultat est une
étude mathématique d’un tel algorithme. Preuve est faite que celui-ci est convergent mais
pas régularisant et une modification restaurant cette propriété est proposée. Le sujet princi-
pal est le développement et la comparaison de deux méthodes pour traiter la déconvolution
et séparation simultanées de composantes. La première est basée sur les propriétés statis-
tiques locales des composantes tandis que dans la seconde, ces signaux sont décrits par
des espaces fonctionnels. Les deux méthodes utilisent des transformées en ondelettes redon-
dantes pour simplifier les données.

Les performances des deux algorithmes sont évaluées et comparées dans le cadre d’un
problème astrophysique : l’extraction des amas de galaxies par l’effet Sunyaev-Zel’dovich
dans les images multispectrales des anisotropies du fond cosmique. Des simulations réalistes
sont étudiées. On montre qu’à haute résolution et niveau de bruit modéré, les deux méthodes
permettent d’extraire des cartes d’amas de galaxies de qualité suffisante pour des études
cosmologiques. Le niveau de bruit est un facteur limitant à basse résolution et la méthode
statistique est robuste à la présence de points sources.

Mots-clés :estimation/détection de signaux, ondelettes, approche statistique/variationnelle

Title : Different Wavelet-based Approaches for the Separation of Noisy and Blurred Mix-
tures of Components. Application to Astrophysical Data.

Abstract : This thesis addresses the problem of separating image components that have
different structure, when several observations of blurred mixtures of these components are
available. In the image processing literature, the deblurring problem has been well described
for a single component in a single image and the separation problem mainly studied without
blurring. In this thesis, the full problem is addressed globally, the separation being done
simultaneously with the denoising and deblurring of the data, by generalizing methods that
exist for the enhancement of a single image.

The first result is a mathematical analysis of a heuristic iterative algorithm for the en-
hancement of a single image. This algorithm is proved to be convergent but not regularizing ;
a modification is introduced that restores this property. The main object of this thesis is to
develop and compare two methods for the multi-components/multi-observations problem :
the first method uses functional spaces to describe the signals ; the second method models
the local statistical properties of the signals. Both methods use wavelet frames to simplify
the description of the data.

Both algorithms are evaluated with regards to a particular astrophysical problem : the
reconstruction of clusters of galaxies by the extraction of their Sunyaev-Zel’dovich effect in
multifrequency measurements of the Cosmic Microwave Background anisotropies. Realistic
simulations are studied. It is shown that both methods yield clusters maps of sufficient
quality for subsequent cosmological studies when the resolution of the observations is high
and the level of noise moderate. Then some limiting factor are pointed out.

Keywords : signal estimation/detection, wavelets, statistical/variational approach.


