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Abstract

This thesisaddressesthe problemof separatingimagecomponents that have di®erent
structure, when di®erent observations of blurred mixtures of thesecomponents are
available. When only a single component is present and has to be extracted from
a single observation, this reducesto the deblurring and denoisingof one image, a
problem well described in the image processingliterature. On the other hand, the
separationproblem hasbeenmainly studied in the simplecaseof linear mixtures (i.e.
without blurring). In this thesis,the full problemis addressedglobally, the separation
being donesimultaneouslywith the denoisingand deblurring of the data at hand.

One natural way to tackle the multi-components/m ulti-observations problem in
the blurred context is to generalizemethods that exist for the enhancement of a
single image. The ¯rst result presented in this thesis is a mathematical analysisof a
heuristic iterativ e algorithm for the enhancement of a single image. This algorithm
is proved to be convergent but not regularizing; a modi¯cation is introduced that
restoresthis property. The main object of this thesis is to develop and compare
two methods for the multi-components/m ulti-observations problem: the ¯rst method
usesfunctional spacesto describe the signals; the secondmethod models the local
statistical properties of the signals. Both methods usewavelet framesto simplify the
description of the data. In addition, the functional method usesdi®erent framesto
characterizedi®erent components.

The performancesof both algorithms are evaluated with regardsto a particular
astrophysical problem: the reconstructionof clustersof galaxiesby the extraction of
their Sunyaev-Zel'dovich e®ectin multifrequency measurements of the Cosmic Mi-
crowave Background anisotropies.Realistic simulations are studied, that correspond
to di®erent experiments, future or underway. It is shown that both methods yield
clusters maps of su±cient quality for subsequent cosmologicalstudies when the re-
solution of the observations is high and the level of noisemoderate, that the noise
level is a limiting factor for observations at lower resolution, and that the statistical
algorithm is robust to the presenceof point sourcesat higher frequencies.

iii



R¶esum¶e

Cette thµeseest consacr¶eeau problµemede s¶eparation de composantes lorsquecelles-
ci sont des images de structure di®¶erente et que l'on en observe un ou plusieurs
m¶elange(s)°ou(s) et bruit ¶e(s). Les problµemesde d¶econvolution et de s¶eparation,
traditionnellement ¶etudi¶ess¶epar¶ement, sont ici trait ¶essimultan¶ement.

Une fa»connaturelle d'aborder le problµememulticomposants/m ultiobservations est
deg¶en¶eraliserlestechniquesded¶econvolution d'une imageunique. Le premierr¶esultat
pr¶esent¶e est une¶etude math¶ematiqued'un tel algorithme. Preuve est faite quecelui-
ci est convergent mais pasr¶egularisant et une modi¯cation restaurant cette propri¶et¶e
est propos¶ee. Le sujet principal est le d¶eveloppement et la comparaisonde deux
m¶ethodes pour traiter la d¶econvolution et s¶eparation simultan¶eesde composantes.
La premiµerem¶ethode est bas¶eesur lespropri¶et¶esstatistiqueslocalesdescomposantes
tandis quedansla seconde,cessignauxsont d¶ecrits par desespacesfonctionnels. Les
deux m¶ethodesutilisent des transform¶eesen ondelettesredondantes pour simpli¯er
les donn¶ees.

Les performancesdesdeux algorithmessont ¶evalu¶eeset compar¶eesdans le cadre
d'un problµemeastrophysique : celui de l'extraction desamasde galaxiespar l'e®et
Sunyaev-Zel'dovich danslesimagesmultispectralesdesanisotropiesdu fond cosmique.
Dessimulations r¶ealistessont ¶etudi¶ees.On montre qu'µa haute r¶esolutionet niveaude
bruit mod¶er¶e, lesdeux m¶ethodespermettent d'extraire descartesd'amasde galaxies
de qualit¶e su±sante pour des¶etudescosmologiques.Le niveaude bruit est un facteur
limitan t µa basser¶esolution et la m¶ethode statistique est robuste µa la pr¶esencede
points sources.

iv



Con ten ts

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
R¶esum¶e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

Pr ¶esentation g¶en¶erale 1

1 In tro duction 5

2 Functional metho d 9
2.1 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Iterativ e algorithm proposedby Daubechies,Defriseand De Mol . . . 10

2.2.1 Surrogatefunctionals . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Iterativ e algorithm: convergenceand stabilit y . . . . . . . . . 12
2.2.3 Iterativ e algorithm with complexor redundant frames. . . . . 13
2.2.4 Iterativ e algorithm restricted to a closedconvex set . . . . . . 15

2.3 Adaptive projections . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.1 De¯nition and corresponding iterativ e algorithm . . . . . . . . 16
2.3.2 Adaptive projections and diagonaloperators . . . . . . . . . . 17
2.3.3 Stabilit y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4 Adaptive projections relaxed . . . . . . . . . . . . . . . . . . . . . . . 29
2.4.1 De¯nition of the relaxed adaptive projections and of the cor-

responding iterativ e algorithm . . . . . . . . . . . . . . . . . . 30
2.4.2 Stabilit y . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.4.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5 Extension to multiple input/outputs . . . . . . . . . . . . . . . . . . 36
2.5.1 Generalizationof the iterativ e algorithm . . . . . . . . . . . . 37
2.5.2 Application to astrophysical data . . . . . . . . . . . . . . . . 40

3 Statistical metho d 45
3.1 Modelization of the signals . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.1 Neighborhoods of wavelet coe±cients . . . . . . . . . . . . . . 47
3.1.2 Gaussianscalemixtures . . . . . . . . . . . . . . . . . . . . . 48
3.1.3 Resulting model for each component . . . . . . . . . . . . . . 52

3.2 Bayesleast squareestimate . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.1 Denoisingonesignal . . . . . . . . . . . . . . . . . . . . . . . 53
3.2.2 Deblurring onesignal . . . . . . . . . . . . . . . . . . . . . . . 55

v



3.2.3 Separatingblurred mixtures of signals . . . . . . . . . . . . . 57
3.3 Choiceof the parameters . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.3.1 Covariancematrices of the noiseneighborhoods . . . . . . . . 60
3.3.2 Covariancematrices of the objects neighborhoods . . . . . . . 61
3.3.3 Prior distribution of the multipliers . . . . . . . . . . . . . . . 62

3.4 Application to astrophysical data . . . . . . . . . . . . . . . . . . . . 64

4 Redundan t wavelet transforms 67
4.1 Orthonormal wavelet bases. . . . . . . . . . . . . . . . . . . . . . . . 68

4.1.1 Multiresolution analysis . . . . . . . . . . . . . . . . . . . . . 68
4.1.2 Computing the wavelet transform in onedimension . . . . . . 70
4.1.3 Separablewavelet transform in higher dimensions . . . . . . . 72
4.1.4 Other wavelet bases. . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Dual tree complexwavelet transform . . . . . . . . . . . . . . . . . . 74
4.2.1 Dual tree complexwavelet transform in onedimension . . . . 75
4.2.2 Dual tree complexwavelet transform in two dimensions. . . . 76

4.3 Steerablepyramid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.3.1 Description of the ¯lters, scalingfunctions and wavelets . . . . 77
4.3.2 Algorithm to compute the steerablepyramid transform . . . . 79

5 Application to the extraction of clusters of galaxies 83
5.1 Description of the signals. . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.1 Clusters of galaxies . . . . . . . . . . . . . . . . . . . . . . . . 83
5.1.2 The CosmicMicrowave Background . . . . . . . . . . . . . . . 84
5.1.3 Point sourcesand the Galaxy dust . . . . . . . . . . . . . . . 85
5.1.4 Frequencydependences. . . . . . . . . . . . . . . . . . . . . . 87

5.2 How to quantify the results ? . . . . . . . . . . . . . . . . . . . . . . 91
5.3 ACT: a high resolution experiment . . . . . . . . . . . . . . . . . . . 93

5.3.1 Reconstructionsof the CosmicMicrowave Background . . . . 94
5.3.2 Reconstructionof the SZ clusters . . . . . . . . . . . . . . . . 99

5.4 Planck: a lower resolution experiment . . . . . . . . . . . . . . . . . . 102
5.4.1 Reconstructionsof the CosmicMicrowave Background . . . . 104
5.4.2 Reconstructionof the SZ clusters . . . . . . . . . . . . . . . . 107

5.5 The in°uence of point sources . . . . . . . . . . . . . . . . . . . . . . 110
5.5.1 Resultsobtained with the statistical method . . . . . . . . . . 111
5.5.2 Resultsobtained with the functional method . . . . . . . . . . 113

5.6 Summary of the results . . . . . . . . . . . . . . . . . . . . . . . . . . 114

vi



Pr ¶esentation g¶en¶erale

Cette thµesea¶et¶epr¶epar¶eeencotutelle entre leslaboratoiresdu Programin Applied
and Computational Mathematics(PACM) µa Princeton University (USA) et du Centre
deMath¶ematiquesAPpliqu¶ees(CMAP) µa l' ¶EcolePolytechnique.Cetravail a¶et¶edirig¶e
par le professeurIngrid Daubechies et co-dirig¶e par le professeurSt¶ephaneMallat.
Dansle cadrede la cotutelle, un uniquemanuscrit a ¶et¶e r¶edig¶e enanglaiset cepr¶esent
chapitre constitueun r¶esum¶e¶etenduen languefran»caise.Il estµa noter quecechapitre
estrepris largement dansle chapitre 1 enanglaiset quele lecteurµa l'aiseavecla langue
anglaisepeut donc commencersa lecture au dit chapitre.

Le traitemen t des images

Les progrµes technologique en matiµere de technique d'acquisition d'images ainsi
qu'en terme de capacit¶e de stockagede l'information sont µa l'origine du fait qu'une
massecolossalede donn¶eesde plus en plus pr¶ecisessont acquisesdans l'espoir d'ob-
server et comprendredesph¶enomµenesde plus en plus ¯ns. Il va donc de soi que les
techniquesde traitement d'images,c'est-µa-dire les techniquesqui servent µa am¶eliorer
et analyserles imagesacquisesdoivent progresseren cons¶equence.

Le travail pr¶esent¶e danscette thµeses'inscrit dansune optique d'analyse,de d¶eve-
loppement et d'¶evaluation detechniquesmath¶ematiquespour le traitement desimages.
L'analyse de techniquesexistantes permet de comprendreleur avantageset d¶efauts
pour d¶evelopper des m¶ethodes plus e±caces.Les m¶ethodes d¶evelopp¶eesici le sont
dans un cadre g¶en¶eral mais leur ¶evaluation se fait dans le cadre particulier d'une
application en astrophysique. En e®et, il est peu probable qu'une technique parti-
culiµere soit bien adapt¶ee µa tout type d'images,une ¶evaluation g¶en¶erale donne donc
une id¶eeimparfaite de la qualit¶e desr¶esultatsobtenus en terme de la questionscienti-
¯que µa laquelleon souhaiter¶epondreaprµestraitement desimagesacquises.Le but de
notre ¶evaluation est donc d¶etablir les performancesdesm¶ethodesd¶evelopp¶eespour
une application particuliµere, qui s'inscrit dans le cadre d'une collaboration avec des
astrophysicienset est µa l'origine du d¶eveloppement de cesm¶ethodes.

Cadre math ¶ematique des probl µemes abord ¶es

Danscette thµese,nousnousint¶eressonsµa desproblµemesdetraitement desdonn¶ees
qui peuvent êtred¶ecritsdansle cadremath¶ematiquesuivant. Nouscherchonsµa estimer
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un ou plusieurs objets, not¶es f 1; : : : ; f M , µa partir d'une ou plusieurs observations,
not¶eesg1; : : : ; gL . Nous supposonsque les processusd'acquisition des observations
sont connus et peuvent être d¶ecrits par desop¶erateurslin¶eaires,µa un terme d'erreur
prµes.En d'autres termes,noussupposonsconnus lesop¶erateurslin¶eairesTm;l tels que
les observations gl v¶eri¯ent :

8l 2 [[1; L ]]; gl =
P M

m=1 Tm;l f m + nl (1.1)

oµu chaqueterme nl est un terme de bruit.
Ce cadreg¶en¶eral permet de d¶ecrire desproblµemesvari¶esen traitement d'images.

Parmi eux, on trouve lesproblµemesrelatifs µa l'am¶elioration d'une imageunique(M =
L = 1) tels quele d¶ebruitage(T1;1 est l'identit ¶e) ou la d¶econvolution d'une image(T1;1

repr¶esente une convolution). On trouve aussiles problµemesdit de fusion de donn¶ees
(M = 1, L > 1), oµu le mêmeph¶enomµenephysique f 1 est observ¶e grâceµa di®¶erentes
techniques : par exemple,une IRM du cerveau est enregistr¶ee simultan¶ement avec
une ¶electro-enc¶ephalographie(EEG) de ce même cerveau, on obtient deux images
g1 et g2 du mêmeph¶enomµenef 1 acquisessousdi®¶erentes modalit¶es,et la fusion de
cesdonn¶eesconsisteµa utiliser les informations contenuesdans cesdeux acquisitions
simultan¶eespour estimer le ph¶enomµenef 1. En¯n, on trouve aussidesproblµemesoµu
plusieursph¶enomµenesphysiquessesuperposent dans les observations, il s'agit alors
de s¶eparercescomposantes.

Con tributions

Les contributions de cette thµesese situent µa plusieurs niveaux dans le cadre de
l'¶etude et desproblµemesd¶ecrits par l'¶equation (1.1).

Un permiervolet decette thµeseestl'analysemath¶ematiqued'un algorithmeheuris-
tique propos¶epour la d¶econvolution d'une image.Cette analysemontre la convergence
et identi¯e lesconditionssouslesquellescet algorithme est r¶egularisant. Elle met aussi
en ¶evidenceune propri¶et¶e non-d¶esirablede cet algorithme : il perd irr¶em¶ediablement
de l'information danscertainscas.Nousproposonsune l¶egµeremodi¯cation qui garde
les avantagesde l'agorithme heuristique initial et ne pr¶esente plus ce d¶efaut.

Dans un secondvolet, cette thµesepr¶esente deux m¶ethodes de r¶esolution de l'¶e-
quation (1.1) adapt¶eesaux cas oµu l'on souhaite r¶eellement estimer plusieurs objets
µa partir de plusieursobservations (M > 1 et L > 1). L'une desm¶ethodesest bas¶ee
sur une description statistique locale des composantes µa estimer et est adapt¶ee au
casparticulier de la d¶econvolution de m¶elangesde composantes. La secondem¶ethode
passepar la minimisation d'une fonctionnelle variationnelle et permet de r¶esoudre
l'¶equation (1.1) dans le cadreg¶en¶eral.

En¯n, cesdeux m¶ethodes sont mise en oeuvre et leurs performancessont com-
par¶eesdans le cadred'un problµemeastrophysiqueparticulier : l'extraction desamas
de galaxiesµa partir des donn¶eesmultifr ¶equencesd'observations du fond di®us cos-
mique. Cette ¶etude prend en compte le fait que les caract¶eristiques(par exemplela
r¶esolution, le niveau de bruit...) varient grandement selon la mission d'observation
astrophysique et nous¶evaluons les performancesdesalgorithmes propos¶esen terme
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de leur ¯abilit ¶e pour les¶etudesastrophysiquequi s'en suivent.

Plan du manuscrit

Aprµes le chapitre 1 introductif, cette thµeseest constitu¶ee de quatre chapitres.
Les trois premiers sont th¶eoriqueset exposent les m¶ethodes d¶evelopp¶eesainsi que
l'¶etude d'un algorithme heuristique. Le dernier chapitre est d¶edi¶ee µa l'application
astrophysique.

Plus pr¶ecis¶ement, le chapitre 2 est consacr¶e µa des m¶ethodes de traitement de
l'¶equation (1.1) par minimisation d'une fonctionnelle variationnelle. Le formalisme
sur lequel nous nous basonsest rappel¶e µa la section 2.2. S'en suivent deux parties.
La premiµere consacr¶ee µa l'¶etude math¶ematique de l'algorithme heuristique de J-L
Starck et de la modi¯cation propos¶eeet fait l'objet dessections2.3et 2.4.La seconde
partie d¶ecrit l'adaptation de la m¶ethode variationnelle aux cas multi-ob jets/multi-
observations et en particulier pour le problµemede l'extraction desamasde galaxies
et fait l'objet de la section2.5.

Le chapitre 3 est¶egalement un chapitre th¶eorique.Il d¶ecrit unem¶ethodestatistique
pour traiter le problµemepos¶e par l'¶equation (1.1) dansle casparticulier de m¶elanges
°oues de composantes. Le modµele choisi pour d¶ecrire les composantes est expliqu¶e
dans la premiµere section, la d¶erivation de l'estimateur dans la secondesectionet les
choix des di®¶erents paramµetres dans la troisiµemesection. La derniµere section de ce
chapitre explicite cemodµeledans le cadrede l'application µa l'extraction desamasde
galaxies.

Avant de passerµa l'application astrophysiqueelle-m̂eme,nous rappelonsau cha-
pitre 4 les propri¶et¶esdessystµemesd'ondelettesutilis¶es.

Le chapitre 5 d¶etaille l'application desm¶ethodespropos¶eesµa l'extraction desamas
de galaxiesµa partir des donn¶eesmultifr ¶equencesd'observations du fond di®us cos-
mique. Les ph¶enomµemesastrophysiquessont d¶ecrits dans la premiµere section. Les
m¶ethodesd'estimation de la qualit¶e desreconstructionsfont l'objet de la secondesec-
tion. En¯n lesperformancesdesalgorithmespropos¶essont compar¶eesqualitativ ement
et quantitativ ement dans le cadre de trois exp¶eriencesaux sp¶eci¯cations di®¶erentes
et les conclusionssont tir ¶eesdans la section¯nale.
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Chapitre 1

In tro duction

Imaging refers to the scienceof obtaining pictures or more complicated spatial
representations, such as animations or 3-D computer graphicsmodels, from physical
objects. In a scienti¯c context, the acquiredimagesre°ect measurements of physical
quantities that are analyzed to understand the spatial properties of the observed
phenomena.Imaging techniqueshave beendeveloped to measuredi®erent quantities,
with di®erent resolution and reliabilit y. These techniques keep improving, allowing
us to collect and store more data, with greater precision, which in turns makes it
possible to seekto understand ¯ner scalephenomena.However, the quality of an
image is naturally limited by the physical characteristics of the instrument used to
collect the data, such as the size of the optical system and its maximum sampling
rate, and by the physical limits linked to the phenomenonitself. E.g. the amplitude
of the signal of interest may be very low comparedto the amplitude of other signals
that are necessarilyimagedat the sametime. Thereforeimageprocessingtools have
to be developed simultaneously to imaging techniques,so that the improvements in
imageacquisition can be exploited optimally.

The contributions of this thesisare the analysisof existing methods and the deve-
lopment of newmethodsfor the processingof imagesunder the following assumptions:
one seeksto recover the set of image components, f 1; : : : ; f M , with M ¸ 1, given a
set of L observed imagesg1; : : : ; gL , with L ¸ 1, knowing the linear operators Tm;l ,
m 2 [[1; M ]], l 2 [[1; L ]] such that the observed imagesgl can be modeledby

8l 2 [[1; L ]]; gl =
MX

m=1

Tm;l f m + nl (1.1)

where each nl denotesa noise term and [[k1; k2]] denotesthe set : f k 2 Z : k1 ·
k · k2g. In this framework, the components f 1; : : : ; f M re°ect measurements related
to di®erent phenomena.One may be interested in all, some, or even only one of
them. A large set of imageprocessingproblemscan be described by equation (1.1) :
the denoisingof one image (M = L = 1 and T1;1 is the identit y) ; the deblurring
of one image (M = L = 1 and T1;1 is a convolution) ; the fusion of imagesof the
samephenomenonacquiredby di®erent modalities, (M = 1, L > 1) if the processof
acquisition for each modality can be consideredlinear ; the extraction of components
from several observationsof linear mixtures of these(M > 1, L > 1, Tm;l arescalars)...

5



There are many di®erent ways to develop image processingalgorithms. At one
end of the spectra are algorithms giving the analytic solution to a mathematical pro-
blem where each unknown has beenmodeled preciselyenoughso that the solution
is de¯ned without ambiguity and can be computed. For example, if the image f
and the noisen are independent Gaussianprocesses,then the conditional expecta-
tion of the random variable f given the random variable g = f + n, noted Ef f jgg,
is the best least-squareestimate of f in the set g-measurableand squareintegrable
randomvariables.That is, Ef f jgg the randomvariablek(g) that minimizesthe quan-
tit y Efj f ¡ k(g)j2g, with k measurableand k(g) squareintegrable. If the covariance
matrices C f and Cn of f and n are known then Ef f jgg can be computed by the
Wiener ¯lter Ef f jgg = C f (C f + Cn )¡ 1g. At the other end of the spectra are heuris-
tic algorithms. Thesemay give approximate solution to a well-de¯ned mathematical
problem that can not be solved analytically. More generally, heuristic algorithms are
proceduresdesignedto take advantage of someknown properties of the signals,or to
combine several aproaches,even when theseare di±cult to expressmathematically.
Unlessan algorithm computesthe analytic solution to a mathematical problem, its
properties can only be studied experimentally.

The ¯rst contribution of this thesisis to provide a mathematical study of an adap-
tiv e iterativ e algorithm proposedby J-L. Starck in [58] to deconvolve oneimage.The
algorithm proposedcombinesa known deblurring iterativ e scheme,with an adaptive
projection on selectedwavelet coe±cients. This procedurewas successfullyusedon
astrophysical images,however, no mathematical study of this algorithm was provi-
ded. We review the mathematical framework proposedby I. Daubechies, M. Defrise
and C. De Mol in [16] to solve inverseproblems by another iterativ e algorithm in
section 2.2, and show in section 2.3 how to use it to study J-L Starck's algorithm.
We prove mathematically and by examplethat the proposedalgorithm may give un-
desiredresults, namely that in the limit wherethe noisevanishes,the original image
may not be recovered.In other words, this algorithm is not consistent. We proposea
modi¯cation and show in section2.4 that it restoresconsistency.

The deconvolution problemhasbeenlargely addressedin the literature in the case
of a singleimage,i.e. when the problem is to restorethe imagef , from a blurred and
noisy observation g = T f + n = b ¤ f + n (¤ denotesthe convolution). The task
is not easybecausethe convolution operator is ill-conditioned, making it di±cult to
control the sizeof the noiseterm after inversion.A number of di®erent algorithmshave
proposed,from simple linear ¯ltering [63], to iterativ e algorithms [37, 49, 42], using
deterministic [26] or statistical description of the data [33], and various tools such as
PDE [51,9] or multiscale decompositions[21, 30]... (see[34] for a moreexhaustive list
and descriptionof deconvolution methods.) It hasbeenestablishedthat deconvolution
methods yield best results when the conditioning of the deconvolution operator and
the structural properties of the image f and the noisen are taken into account at
the sametime ([30, 39]). The separationof di®erent components, i.e. the estimation
of M imagesf 1; : : : ; f M from linear mixtures (gl =

P M
m=1 tm;l f m + nl , where the tm;l

are scalars) has also been extensively studied [6, 61, 7]. Whether the scalars tm;l

are assumedto be known or not, separatingtechniquesseldomtake into account the
spatial propertiesof the di®erent signalsf 1; : : : ; f M , or at leastnot to the sameextent
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asonedoeswhenprocessinga singleimage.This is harderto do in this context because
the di®erent propertiesof each component have to be handledat the sametime. Both
problems,the deconvolution and the separation,are usually studied independently of
each other, and ad-hoc combinations are carried out if needed.

In this thesis, two new algorithms are proposedthat simultaneously (denoise,)
deblur and separate image components. More precisely, both algorithms compute
estimatesof the components f 1; : : : ; f M in Eq. (1.1) when each Tm;l can be written
Tm;l (x) = am;l bl ¤ x, where the am;l are scalarsand the bm;l are 2-dimensionalpoint
spreadfunctions. The observations at hand are then modeledby :

8l 2 [[1; L ]]; gl =
MX

m=1

am;l bl ¤ f m + nl : (1.2)

Sincethe last equationscan be rewritten : 8l 2 [[1; L ]]; gl = bl ¤ [
P M

m=1 am;l f m ] + nl ,
the following two-stepsalgorithm seemslikean appropriatesolution : ¯rst deblur each
gl to obtain an estimate yl of

P M
m=1 am;l f m and secondly, separatethe f m from the

yl . However, in somecasesit is desirableto avoid this intermediary step. This is the
casefor the extraction of clustersof galaxiesfrom observations of CosmicMicrowave
Background anisotropies,an application we study in detail in this thesis.

The observations gl for this application are imagesof portions of the sky, obtai-
ned simultaneouslyat di®erent light wavelengths(3 or 4 in the caseswe considered).
Each observedimageis the convolution of the \true" imagewith a blurring beamfunc-
tion, which dependson the wavelength; the observations are polluted by (Gaussian)
noisethat is independent from one image to another. The most intensecomponents
contained in the portion of sky observed besidesthe clustersof galaxiesare the Cos-
mic Microwave Background (CMB) radiation, the Galaxy dust and infrared point
sources.The contribution from each component to each observation dependson the
wavelength.Hencethe observations gl can be modeledby equation (1.2) with M = 4
and L = 3 or 4. Our goal is to provide a \clean" image of the clusters of galaxies
present in the observations, that will be usableby astrophysiciststo derive properties
of theseclusters.

Clusters of galaxiesare localizedand compactobjects sparselydistributed in the
sky. The blurring by a beam function is especially badly conditioned at high fre-
quencies,which correspond to small objects. Therefore,asmentioned earlier, the de-
convolution of clustersof galaxies(supposing they were the only component present
in the image), would be best when their localization is taken into account together
with the properties of the convolution. Wavelet transformsare adaptedto this situa-
tion becausethey are well localized both in frequency(and therefore constrain the
conditioning of the convolution operator), and in space(so that clustersare well re-
presented in wavelet space).However, in this case,the presenceof other components
complicatesthe task. The other components aremuch more intensethan the clusters'
signal,moreover they have very di®erent spatial propertiesand the mixing scalaram;l

vary greatly with the frequenciesof observation. Therefore the spatial properties of
each intermediatedeblurred imageyl =

P M
m=1 am;l f m are di®erent and do not re°ect

the propertiesof the clusters'signal.Sincethe latter is largely dominatedin each yl , it

7



would be very hard to recover a preciseclusters' imageusing the two-stepstechnique
proposedearlier. Instead, a method that solvesthe deconvolution and separationat
the sametime can exploit the fact that the sameclusters' signal contributes to each
observation and thereforeshould give better results.

Wedesignedtwo di®erent approachesto simultaneouslydeblur and separateimage
data. Both methodsare°exible enoughto take in account spatial propertiesthat vary
from one component to another. One method is basedon a variational framework ;
the other is more statistical in nature. The variational method usesa generalization
of an algorithm proposedby I. Daubechies, M. Defrise and C. De Mol [16], that we
explain and discussin Chapter 2, sections2.2 and 2.5. The method proposedis the
minimization of the variational functional, by meansof an iterativ e algorithm. In
subsection2.5.1, we describe how to this method solves the generalproblem posed
by equation (1.1) (that is when the Tm;l are general linear operators) and in the
next subsection(2.5.2), we explain how to to use the method for our astrophysical
application, deriving the parametersfor separationof blurred mixtures and explaining
how to model the properties of our astrophysical components. For the statistical
approach, we were inspired by the work of J. Portilla, V. Strela, M. Wainwright
and E. Simoncelli [48], which attacked the simultaneous denoising and deblurring
of a single image. We explain in Chapter 3 how we extendedthis method to allow
component separation(i.e. to solve Eq. (1.2)) and sketch the preciseapplication to
our astrophysical problem in Section3.4.

As we noted earlier, the clusters' signal is well described in wavelet space.To
avoid somedrawbacks of the traditional decimated separablewavelet transform in
two dimensions,we usedi®erent redundant wavelet transforms : the dual tree com-
plex wavelet transforms for the variational approach [31, 32, 52, 53] and a steerable
pyramid for the statistical approach (inspired by but not completely identical to the
pyramid in [47]). The two transformsaredescribedin Chapter 4, wherewealsodiscuss
the algorithm we usedto implement them.

Finally, in Chapter 5, we show and discussthe results of the two approacheson
the astrophysicalproblemat hand, for several typesof data sources.The resolutionof
data acquiredpreviously is not su±cient to study the Sunyaev-Zel'dovich signatureof
clustersof galaxies,which is the particular e®ectweseekto estimate.However, several
experiments are now being plannedor underway, that will make it possibleto do so.
The di®erent studiespresented in Chapter 5 are madeon realistic simulations of the
data that will be acquiredin the near future. (Thesesimulations have beenprovided
by astrophysicists.) This allows to assessthe performancesof both algorithms with
respect to not only image processingstandardsbut also with respect to the science
that canbederivedfrom theseresults.In particular, weassesthe reliabilit y in locating
clusters of galaxiesand the precision of the intensity estimated after extracting a
cluster mapsusingboth our algorithms. It turns out that each approach hasstrengths
and weaknesseswhencomparedto each other. A summaryof theseresultsis presented
in Section5.6.
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Chapitre 2

Functional metho d

2.1 Framew ork

In this chapter, we considerthe problem of deconvolution of mixtures of compo-
nents as a variational problem, i.e. we wish to ¯nd estimatesof the di®erent compo-
nents by minimizing a variational functional. We will considerfunctionals composed
of a sum of discrepancyterms (one per observation) and regularization terms (one
per component) :

J (f 1; f 2; : : : ; f M ) =
LX

l=1

½l

°
°
° (

MX

m=1

Tm;l f m ¡ gl )
°
°
°

2

H o
l

+
MX

m=1

°m jjjf m jjjX m ; (2.1)

here the H o
l are Hilbert spaces,the ° m and ½l are strictly positive scalarsand the

jjj:jjjX m are norms. The observations at hand are the f glgl2 [[1;L ]]. The f f mgm2 [[1;M ]] are
the components to be estimated. The mixing and blurring of component m at the
frequencyof observation number l is denotedby the linear operator Tm;l .

The minimizers of such a functional will strike a balancebetweenthe deviation of
their imageby the Tm;l from the observed data on the onehand, and the jjj:jjjX m -norm
on the other hand. This will give us a set of estimates bf 1; bf 2; : : : ; cf M that have both
properties of well approximating the observed data and having small jjj:jjjX m -norm.
The jjj:jjjX m -norm here represent some\a priori knowledge" we have on the di®erent
components we are seeking: we expect the true component f m to have a rather small
jjj:jjjX m -norm. Note that the set of plausibleimagesof onecomponent, for examplethe
set of CMB images,is not a vector space.Sowe do not try to designthe vector space
X m so that each of its element correspondsto an imageof component m. Rather, we
designX m sothat the setof imagesof component m hasa small jjj:jjjX m -norm. Wehope
that conversely, the estimate cf m that we will obtain by minimizing (2.1) will be (close
to) a plausible image of component m becauseit has a small jjj:jjjX m -norm. We shall
use,for example,norms that penalizediscontinuities or sharp transitions and norms
that promote sparsity in a special representation like a wavelet representation. To do
so, we embed the components f m into Hilbert spacesH i

m and considerjjj:jjjX m -norm
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of the form :

jjjf jjjX m =

"
X

¸ 2 ¤

wm
¸ j hf ; ' m

¸ i jpm

# 1
pm

(2.2)

where' m = f ' m
¸ g¸ 2 ¤ is a generatingfamily of H i

m .
A generalapproach to solve problemsof this nature can be found in [16, 14, 4].

The next section reviews the presentation in [16], which provides an iterativ e algo-
rithm solvingthe problemwhenL=M=1. Wethen study two di®erent generalizations.
Section2.3 and Section2.4 are dedicatedto the study of a slightly di®erent problem
where the discrepancyterms depend on the observation ; In Section2.5, we genera-
lize the iterativ e presented in [16] to solve the generalcasewith M objects and L
observations and describe its application to our astrophysical problem.

2.2 Iterativ e algorithm prop osed by Daub echies,
Defrise and De Mol

In this section,we summarizethe ¯ndings presented in [16]. Daubechies, Defrise
and De Mol present in this article an iterativ e algorithm to ¯nd a minimizer of Eq.
(2.1) when L = M = 1. The goal is then to estimate a singleobject f 1 from a single
observation g1. To simplify the notations, we shall drop the indexesand denote H 1

the Hilbert spaceof the object H i
1 and H 2 the Hilbert spaceof the observation H o

1.
The problem reducesto :

Problem 2.2.1. Given ' = f ' ¸ g¸ 2 ¤ an orthonormal basisof H 1, a sequence of strictly
positive weightsw= f w¸ g¸ 2 ¤ , a scalar ° > 0 and a scalar p with 1 · p · 2, ¯nd :

f ? = argmin
f 2H 1

J ° ;w ;p(f ) = argmin
f 2H 1

kTf ¡ gk2
H 2

+ ° jjjf jjjpw ;p

where jjjf jjjw ;p =
£P

¸ 2 ¤ w¸ j hf ; ' ¸ i jp
¤1

p =
£P

¸ 2 ¤ w¸ jf ¸ jp
¤1

p :

Note that we usedthe notation f ¸ = hf ; ' ¸ i . We shall do so throughout this chapter
unlessspeci¯ed otherwise.

The functional J ° ;w ;p is convex, boundedbelow and veri¯es limkf k! 1 J ° ;w ;p(f ) =
+ 1 . Thereforeit hasa unique global minimum and hasat least oneminimizer. One
can seeksuch a minimizer by cancelingits partial derivative in f ¸ :

@J ° ;w ;p

@f ¸
(f ) = 2(T¤Tf )¸ ¡ 2(T¤g)¸ + ° w¸ sign(f ¸ ) jf ¸ jp¡ 1:

If the operator T is the identit y operator, then the equationsdecoupleand the solution
is given by solving f ?

¸ = ģ ¡ ° w¸
2 sign(f ¸ ) jf ¸ jp¡ 1. If p = 1, this reducesthe the soft-

thresholding operator (see[8]). However, when T is not the identit y, theseequations
do not decouplewhich makesthe problemharder to solve.Usingsurrogatefunctionals,
one can de¯ne a sequenceof similar problemsthat are easyto solve, and for which
the sequenceof minimizers obtained is strongly convergent in H 1 to a solution of
Problem 2.2.1.Moreover this schemeis regularizing. We explain it in detail below.
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2.2.1 Surrogate functionals

Let us consider surrogate functionals Ja
° ;w ;p where a is an element of H 1. The

Ja
° ;w ;p are similar to J ° ;w ;p but are slightly modi¯ed so that :

{ For any a, Ja
° ;w ;p is strictly convex. Hencethere exists a unique minimizer of

Ja
° ;w ;p, that we denotef

? a
° ;w ;p.

{ The partial derivatives @J a
° ;w ;p

@f ¸
decouple.Therefore,onecan¯nd each coordinate

f f
? a
° ;w ;pg¸ independently by solving @J a

° ;w ;p

@f ¸
= 0 for each ¸ .

De¯nition 2.2.2. Given a 2 H 1 and C so that jjjT¤Tjjj < C, the surrogatefunctional
Ja

° ;w ;p : H 1 ! R+ is de¯ned by :

Ja
° ;w ;p(f ) = kTf ¡ gk2

H 2
¡ kTf ¡ Tak2

H 2
+ Ckf ¡ ak2

H 1
+ ° jjjf jjjp

w ;p

Oneveri¯es that the surrogatefunctional takesnonnegative valuesby noting that
Ja

° ;w ;p(f ) = J ° ;w ;p(f ) + Ckf ¡ ak2
H 1

¡ kTf ¡ Tak2
H 2

with

Ckf ¡ ak2
H 1

¡ kTf ¡ Tak2
H 2

= Ckf ¡ ak2
H 1

¡

T(f ¡ a); T(f ¡ a)

®
H 2

= Ckf ¡ ak2
H 1

¡

f ¡ a; T¤T(f ¡ a)

®
H 1

¸ Ckf ¡ ak2
H 1

¡ jjjT¤Tjjjkf ¡ ak2
H 1

¸ (C ¡ jjjT¤Tjjj)kf ¡ ak2
H 1

¸ 0

SincejjjT¤Tjjj < C, the term above is zeroif and only if f = a, which ensuresthe strict
convexity of the surrogatefunctional Ja

° ;w ;p. Its partial derivativesin f ¸ decouple:

@Ja
° ;w ;p

@f ¸
(f ) = 2C f ¸ ¡ 2(C a + T¤g ¡ T¤Ta)¸ + ° w¸ sign(f ¸ ) jf ¸ jp¡ 1:

and the minimizer of the surrogatefunctional Ja
° ;w ;p is :

f
? a
° ;w ;p = 1

C S° w ;p

³
C a + T¤g ¡ T¤Ta

´

= 1
C

P
¸ S° w¸ ;p

³
f C a + T¤g ¡ T¤Ta g¸

´
' ¸

(2.3)

Here,

Sw;p(x)
def
=

³
x +

wp
2

sign(x) jxjp¡ 1
´ ¡ 1

; for 1 · p · 2; (2.4)

where(:)¡ 1 denotesthe inverseso that Sw;p(x + wp
2 sign(x) jxjp¡ 1) = x.

In particular, for p = 1, Sw;1 is the soft-thresholdingoperator :

Sw;1(x) =

8
<

:

x ¡ w=2 if x ¸ w=2
0 if jxj < w=2
x + w=2 if x · ¡ w=2

(2.5)

Whereasfor p = 2, onesimply gets :

Sw;2(x) =
x

1 + w
(2.6)

The following proposition summarizesthe propertiesof the surrogatefunctionals :
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Prop osition 2.2.3. Suppose the operator T maps a Hilbert space H 1 to another
Hilbert space H 2, with jjjT¤Tjjj < C, and supposeg is an elementof H 2. Let f ' ¸ g¸ 2 ¤ be
an orthonormal basis for H 1, and let w= f w¸ g¸ 2 ¤ be a sequence of strictly positive
numbers. Pick arbitrary ° > 0, p ¸ 1 and a 2 H 1. De¯ne the functional Ja

° ;w ;p(f ) on
H 1 by

Ja
° ;w ;p(f ) = kTf ¡ gk2

H 2
+ °

X

¸ 2 ¤

w¸ jf ¸ jp + Ckf ¡ ak2
H 1

¡ kT(f ¡ a)k2
H 2

:

Then Ja
° ;w ;p(f ) hasa unique minimizer in H 1.

This minimizer is givenby f = 1
C S° w ;p (Ca + T¤g ¡ T¤Ta), where the operators Sw ;p

are de¯ned by
Sw ;p(h) =

X

¸

Sw¸ ;p(h¸ )' ¸ ; (2.7)

with the functions Sw;p from R to itself given by (2.4), (2.5) and (2.6).

Note that one can always assumethat C = 1 since minimizing the surrogate
functional Ja

° ;w ;p with the operator T and the observation g is the sameproblem as
minimizing Ja

° ;w =C; p with the operator T0 = 1p
C

T, the observation g0 = 1p
C

g and the
weights w

C . This is also true for the initial functional J ° ;w ;p. Therefore, in the rest of
this chapter, we will assumethat jjjT ¤Tjjj < 1.

Next, we usea sequenceof surrogatefunctionalsand their minimizersto construct
a solution of the original problem.

2.2.2 Iterativ e algorithm : convergence and stabilit y

The iterativ e algorithm consistsin minimizing a sequenceof surrogatefunctionals
Jan

° ;w ;p(f ), choosingan to be the minimizer obtained at the previousstep :

Algorithm 2.2.4. The iterative algorithm that solvesProblem2.2.1 proceeds as fol-
lows :

8
<

:

f 0 arbitrary

f n = argmin
f 2H 1

³
J f n-1

° ;w ;p(f )
´

= S° w ;p (f n¡ 1 + T¤g ¡ T¤Tf n¡ 1) ; n ¸ 1

The two following theoremssummarizethe ¯ndings presented in [16]. The ¯rst
theoremstatesthat the iterativ e algorithm 2.2.4convergesstrongly in the norm asso-
ciated in the Hilbert spaceH 1 for any initial guessf 0. The secondtheoremis concer-
ned with the stabilit y of the method. It givessu±cient conditions to ensurethat the
estimate recovered from a perturbed observation, g = Tf 0 + e, will approximate the
object f 0 as the amplitude of the perturbation kekH 2 goesto 0.

Theorem 2.2.5. Let T be a bounded linear operator from H 1 to H 2, with norm
strictly bounded by 1. Take p 2 [1; 2], and let Sw ;p be the shrinkageoperator de¯ned
by (2.7), where the sequence w= f w¸ g¸ 2 ¤ is uniformly bounded belowawayfrom zero,
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i.e. there exists a constant c > 0 such that 8¸ 2 ¤ : w¸ ¸ c. Then the sequence of
iterates

f n = S° w ;p
¡
f n¡ 1 + T¤g ¡ T¤Tf n¡ 1

¢
; n = 1; 2; : : : ;

with f 0 arbitrarily chosenin H 1, convergesstrongly to a minimizer of the functional

J ° ;w ;p(f ) = kTf ¡ gk2
H 2

+ ° jjjf jjjpw ;p ;

where jjjf jjjw ;p denotesthe norm jjjf jjjw ;p =
£P

¸ 2 ¤ w¸ j hf ; ' ¸ i jp
¤1=p

; 1 · p · 2 :
If the minimizer f ? of J ° ;w ;p is unique, (which is guaranteed e.g. by p > 1 or

ker(T) = f 0g), then everysequence of iteratesf n convergesstrongly to f ?, regardless
of the choice of f 0.

Theorem 2.2.6. Assumethat T is a bounded operator from H 1 to H 2 with jjjT jjj < 1,
that ° > 0, 1 · p · 2 and that the entries in the sequence w= f w¸ g¸ 2 ¤ are bounded
belowuniformly by a strictly positive number c. Assumethat either p > 1 or ker(T) =
f 0g. For any g 2 H 2 and any ° > 0, de¯ne f ?

° ;w ;p;g to be the minimizer of J ° ;w ;p;g(f ).
If ° = ° (²) satis¯es

lim
² ! 0

° (²) = 0 and lim
² ! 0

²2

° (²)
= 0 ; (2.8)

then we have,for any f o 2 H 1,

lim
² ! 0

"

sup
kg¡ T f okH 2 · ²

kf ?
° (²);w ;p;g ¡ f ykH 1

#

= 0 ;

where f y is the unique elementof minimum jjj jjjw ;p{norm in the set Sf o = f f ; Tf =
Tf og.

2.2.3 Iterativ e algorithm with complex or redundan t frames

The algorithms and theoremspresented so far in this section apply only to the
casewhere' = f ' ¸ g¸ 2 ¤ is an orthonormal basisof H 1 and the scalarproducts h:; ' ¸ i
are real. It will be useful in our application to useredundant and/or complexfamilies
instead. To do that, oneneedsto make two changes,as was pointed out in [16].

Firstly, the de¯nition of the operators Sw ;p has to be extendedto complexnum-
bers.This is doneby applying Sw ;p only to the modulus of a complexnumber, keeping
the phase¯xed :

Sw ;p(r:eiµ )
def
= Sw ;p(r ):eiµ ; r 2 R; µ 2 [0; 2¼]: (2.9)

This changeis su±cient to prove Proposition 2.2.3and Theorems2.2.5and 2.2.6with
the samealgorithm 2.2.4.

Secondly, a clari¯cation is required if the family ' = f ' ¸ g¸ 2 ¤ is redundant. In that
case,the set of sequencesof scalarproducts of elements of H 1 :

C =
©

fhf ; ' ¸ ig ¸ 2 ¤ ; f 2 H 1
ª

;
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is a strict subset of the set of squaresummablesequencesl2(R) ( or l2(C)). As a
consequencef

? a
° ;w ;p de¯ned in Eq.(2.3) need not be the minimizer of the surrogate

functional Ja
° ;w ;p because

f = 1
C

X

¸

S° w¸ ;p

³
f C a + T¤g ¡ T¤Ta g¸

´
' ¸ (2.10)

doesnot imply that :

8¸; hf ; ' ¸ i = 1
C S° w¸ ;p

³
f C a + T¤g ¡ T¤Ta g¸

´
(2.11)

In the derivation of algorithm 2.2.4,we usedthe fact that Eq. (2.10) and Eq. (2.11)
are equivalent when ' = f ' ¸ g¸ 2 ¤ is an orthonormal basis.When ' = f ' ¸ g¸ 2 ¤ is re-
dundant, this problem is recti¯ed by projecting the sequenceof coe±cients obtained
at each step of the iteration algorithm onto the set of scalarproducts C :

f n = PC S° w ;p
¡
f n¡ 1 + T¤g ¡ T¤Tf n¡ 1

¢
; n ¸ 1 (2.12)

where PC is the projection onto the set C. (This can done more generally for any
closedconvex set C, seeSubsection2.2.4.)

To illustrate the di®erencebetweena basisand a redundant frame, let us examine
the casewherethe operator T is diagonalwith respect to the tight frame' = f ' ¸ g¸ 2 ¤ .
That is, there exist scalarsf t ¸ g¸ 2 ¤ such that :

8f 2 H 1; T(f ) = T
³ X

¸ 2 ¤

hf ; ' ¸ i ' ¸

´
=

X

¸ 2 ¤

t ¸ hf ; ' ¸ i ' ¸ : (2.13)

We supposethat the algorithm is stopped after N steps.
If ' = f ' ¸ g¸ 2 ¤ is an orthonormal basis, the iterations can be done in l2(R) (or

l2(C)) :

Algorithm 2.2.7. First N stepsof the iterative algorithm whenT is diagonalon the
orthonormal basis ' = f ' ¸ g¸ 2 ¤ :

{ Pick f o in H 1 arbitrarily.
{ Compute: co

¸ = hf o; ' ¸ i ; 8¸ 2 ¤ .

{ For n = 1; ::; N , computefor all ¸ : cn
¸ = Sw;p

³
(1 ¡ t2

¸ )cn¡ 1
¸ + t ¸ ģ

´

{ Output : f N =
P

¸ 2 ¤ cN
¸ ' ¸ .

The intermediate estimatesf 1; : : : ; f N ¡ 1 neednot be synthesized,only their frame
coe±cients, the cn

¸ , are computed. (For each n, f cn
¸ g¸ 2 ¤ is a seriesin l2.) We have :

cn
¸ = hf n ; ' ¸ i , 8n, 8¸ . Therefore, if ' = f ' ¸ g¸ 2 ¤ is an orthonormal basis,one only

needsto synthesizethe ¯nal estimatef N in H 1, whereasif ' = f ' ¸ g¸ 2 ¤ is redundant,
onehas to synthesizef n at each step :

Algorithm 2.2.8. First N stepsof the iterative algorithm whenT is diagonal on a
redundant tight frame ' = f ' ¸ g¸ 2 ¤ :

{ Pick f o 2 H 1 arbitrary.
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{ Compute: co
¸ = hf o; ' ¸ i ; 8¸ 2 ¤ .

{ For n = 1; ::; N , compute:
{ For all ¸ : dn

¸ = Sw;p
¡
(1 ¡ t2

¸ )cn¡ 1
¸ + t ¸ ģ

¢

{ f n =
P

¸ 2 ¤ dn
¸ ' ¸

{ For all ¸ : cn
¸ = hf n ; ' ¸ i

{ Output : f N .

Note that because' = f ' ¸ g¸ 2 ¤ is redundant, although
P

¸ 2 ¤ dn
¸ ' ¸ =

P
¸ 2 ¤ cn

¸ ' ¸ ,
we do not have dn

¸ = cn
¸ . Therefore,one needsto synthesizef n at each step to ¯nd

the cn
¸ (this corresponds to the projection PC).

In the redundant case,f n is not the minimizer of the surrogatefunctional at each
step.The iterativ e algorithm still convergesstrongly. However, onecanprove that the
limit is the minimizer of the initial functional only in somecases.Generally though,
it hasbeenobserved that using algorithm 2.2.4yields good results with frames.

2.2.4 Iterativ e algorithm restricted to a closed convex set

The solution of problem 2.2.1achieved by the iterativ e algorithm we presented is
the minimizer of the functional J ° ;w ;p in the wholeHilbert spaceH 1. As explainedin
[16], it is possibleto restrict the problem to a closedsubsetD of H 1, for examplethe
set of positive functions. The procedureconsistsin projecting the solution obtained
at each step of the iterativ e algorithm onto the set D :

f n = PD S° w ;p
¡
f n¡ 1 + T¤g ¡ T¤Tf n¡ 1

¢
; n ¸ 1 (2.14)

where PD is the projection on the convex set D. Someastrophysical components in
our problem are positive and we will usethis procedureto handle them.

Note that this is the sameprocedurethat was usedin the previoussubsectionto
take in account the redundancyof the frame sincethe set of scalar products C is a
closedsubsetof the set of squaresummablesequences.

2.3 Adaptiv e pro jections

In this section,we shall considera generalizationof the setting of [16], in which
weights are introducedin the discrepancyterm aswell as in the prior. Theseweights
weresuggestedoriginally by Jean-LucStarck, in several papersand slightly di®erent
versions(seee.g. [58, 57, 43]). One of the algorithms suggestedwas :

Algorithm 2.3.1.

(
f 0 arbitrary
f n = argmin

f 2H 1

S° ;1 (f n¡ 1 + T¤M g ¡ T¤M Tf n¡ 1) ; n ¸ 1

with M h =
P

¸ 2 ¤ m¸ h¸ ' ¸ , and m¸ = 0 or 1 is chosenin function of g¸ .
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At ¯rst, it seemsthat the algorithm was purely heuristic, and was only later
connectedto a variational principle [59]. The weights m¸ in Starck's algorithm depend
on the observation itself, and will make the analysis trickier ; we handle them by
introducing an \adaptiv e projection operator".

2.3.1 De¯nition and corresp onding iterativ e algorithm

De¯nition 2.3.2. Given an orthonormal basis f ¯ ¸ g¸ 2 ¤ of H 2, an elementg in H 2

and a sequence of nonnegative thresholds¿= f ¿̧ g¸ 2 ¤ , the adaptiveprojection Mg;¿ is
the map from H 2 into itself de¯ned by :

8h 2 H 2; Mg;¿(h) =
X

¸ s:t: jg¸ j>¿ ¸

h¸ ¯ ¸

(where, as usual, f ¸ denotesthe scalar product hf ; ¯ ¸ i )

Note that Mg;¿ is an orthogonal projection for any g and ¿. It is therefore a
continuous linear operator of unit norm, unlessfor all ¸; jg¸ j · ¿̧ , in which case
Mg;¿ = 0. One can usethe adaptive projection Mg;¿ to modify the similarit y measure
(discrepancyterm) so that it discardsthe coordinates of the observation g that are
deemednot reliable. More precisely, we consider in the ¯t to data term only the
coordinate of index ¸ for which jg¸ j is greaterthan someprede¯nedvalue¿̧ . Problem
2.2.1 is thus modi¯ed into :

Problem 2.3.3. Given a sequence of strictly positive weightsw= f w¸ g¸ 2 ¤ , a sequence
of nonnegative thresholds¿= f ¿̧ g¸ 2 ¤ and scalars ° and p with ° > 0 and 1 · p · 2,
¯nd :

f ? = argmin
f 2H 1

J ° ;w ;p;¿(f ) = argmin
f 2H 1

k Mg;¿(Tf ¡ g)k2
H 2

+ ° jjjf jjjpw ;p

where jjjf jjjw ;p is de¯ned in Problem2.2.1 and Mg;¿ is de¯ned above (2.3.2).

The value of the functional J ° ;w ;p;¿(f ) acting on operator T and observation g is
exactly the valueof the functional J ° ;w ;p(f ) acting on operator Mg;¿ T and observation
Mg;¿ g. Henceonceg and ¿ are¯xed, Problem2.3.3is solved the sameway asProblem
2.2.1with the iterativ e algorithm modi¯ed accordingly :

Algorithm 2.3.4. The iterative algorithm that solvesProblem2.3.3 proceeds as fol-
lows : ½

f 0 arbitrary
f n = S° w ;p (f n¡ 1 + T¤ Mg;¿ g ¡ T¤ Mg;¿ Tf n¡ 1) ; n ¸ 1

Note that for p = 1, this is exactly the iterativ e algorithm 2.3.1proposedby Jean-
Luc Starck ! As is the casefor Problem 2.2.1,the iterativ e algorithm 2.3.4is strongly
convergent in H 1, regardlessof the choiceof f 0 and the limit is always a solution of
Problem 2.3.3 :
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Theorem 2.3.5. Let T be a bounded linear operator from H 1 to H 2, with norm
strictly bounded by 1. Takep 2 [1; 2], f ¿̧ g¸ 2 ¤ a sequence of nonnegative numbers and
let Sw ;p be the shrinkageoperator de¯ned by (2.7), where the sequence f w¸ g¸ 2 ¤ is
uniformly bounded below away from zero, i.e. there 9c > 0 s.t. 8¸ 2 ¤ : w¸ ¸ c.
Then the sequence of iterates

f n = S° w ;p
¡
f n¡ 1 + T¤ Mg;¿ g ¡ T¤ Mg;¿ Tf n¡ 1

¢
; n = 1; 2; : : : ;

with f 0 arbitrarily chosenin H 1, convergesstrongly to a minimizer of the functional

J ° ;w ;p;¿(f ) = k Mg;¿(Tf ¡ g)k2
H 2

+ ° jjjf jjjpw ;p ;

where jjjf jjjw ;p denotesthe norm jjjf jjjw ;p =
£P

¸ 2 ¤ w¸ j hf ; ' ¸ i jp
¤1=p

; 1 · p · 2 and
Mg;¿(h) =

P
¸ s:t: jg¸ j>¿ ¸

h¸ ¯ ¸ .
If the minimizer f ? of J ° ;w ;p;¿ is unique, (which is guaranteed e.g. by p > 1 or

ker(Mg;¿ T) = f 0g), then every sequence of iterates f n convergesstrongly to f ?, re-
gardlessof the choice of f 0.

D¶emonstration. As we noted before:

J ° ;w ;p;¿;T;g(f ) = k Mg;¿(Tf ¡ g)k2
H 2

+ ° jjjf jjjpw ;p

= k(M g;¿ T)f ¡ (M g;¿ g)k2
H 2

+ ° jjjf jjjpw ;p

= J ° ;w ;p;0; T 0; g0(f ) with T0 = Mg;¿ T; g0 = Mg;¿ g

Noting that J ° ;w ;p;0; T 0; g0(f ) is exactly the functional de¯ned in Problem 2.2.1, it is
then su±cient to prove jjjT0jjj is strictly smaller than 1 to prove the strong conver-
genceof the iterativ e algorithm 2.3.4 via Theorem 2.2.5. But jjjT 0jjj = jjj Mg;¿ Tjjj ·
jjj Mg;¿ jjj:jjjT jjj. SinceMg;¿ is an orthogonal projection, jjj Mg;¿ Tjjj = 1 or 0, and there-
fore jjjT0jjj · jjjT jjj < 1.

2.3.2 Adaptiv e pro jections and diagonal operators

In this section,we illustrate the e®ectsof the addition of the adaptive projection
Mg;¿ in the iterativ e algorithm, by examining the simple casewhen T is a diagonal
operator on the basis ' = f ' ¸ g¸ 2 ¤ : Tf =

P
¸ 2 ¤ t ¸ f ¸ ' ¸ . In that case,the adaptive

functional J ° ;w ;p;¿ reducesto :

J ° ;w ;p;¿(f ) =
X

¸ 2 ¤

µ
±fj g¸ j>¿ ¸ g(t ¸ :f ¸ ¡ ģ )2 + ° w¸ jf ¸ jp

¶
(2.15)

Hence,the solution f ? is found by solving, independently for each ¸ :

f ?
¸ = argmin

x2 R

µ
±fj g¸ j>¿ ¸ g(t ¸ :x ¡ ģ )2 + ° w¸ jxjp

¶
(2.16)

If jģ j · ¿̧ (or t ¸ = 0), then f ?
¸ = 0, otherwisef ?

¸ = S° w¸ ;p( t ¸ :ģ ). Let us de¯ne the
adaptive thresholding operator that mapsR to itself by :

17



A¿;° ;p(x) =
½

S° ;p(x) if jxj > ¿
0 otherwise

(2.17)

Then, the solution of Eq. (2.15) is

f ? =
X

¸ s.t. t ¸ 6=0

A t ¿;° ;p( t ¸ :ģ ) ' ¸ : (2.18)

This meansthat the introduction of the adaptive projection Mg;¿ results in combining
a hard thresholdingwith parameter¿ to the operator S° w¸ ;p whenT is diagonal.The
hard thresholding operator, or dead-zonefunction, maps R to itself and is de¯ned
by :

H¿(x) =
½

x if jxj > ¿
0 otherwise

(2.19)

Supposethat T is the identit y operator, that the weights f w¸ g¸ 2 ¤ are identically 1
and that p = 1. If ¿ > ° , the adaptive thresholdingoperator A¿;° ;1 (Fig.2.1, middle) is
a compromisebetweenthe hard thresholdingoperator H¿ (Fig.2.1, left) and the soft-
thresholding operator S° ;1 (Fig.2.1 right) that would be usedto solve Problem 2.2.1.
(Note that if ¿ · ° , the adaptive thresholding A¿;° ;1 reducesto the soft-thresholding
S° ;1).
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Fig. 2.1 { Left : hard thresholding operator H¿ ; middle : adaptive thresholding
operator A¿;° ;1 right : soft-thresholdingoperator S° ;1.

The hard thresholding operator H¿ can also be seenas an operator used for
minimization :

H¿(g) = argmin
x2 R

((x ¡ g):±fj gj>¿ g)2 (2.20)

Hence,H¿ corresponds to the limit of the adaptive thresholding operator A¿;° ;1 as
° goes to 0. On the other hand, the adaptive thresholding A¿;° ;1 is in fact the soft-
thresholding S° ;1 as soon as ° > ¿. It is therefore natural to examinethe results of
hard-thresholding,adaptive thresholding and soft-thresholdingwith a ¯xed value of
¿ so study the in°uence of ° . Fig. 2.2 displays such a study on a piecewisesmooth
signal. The top row of the ¯gure shows the signal (left) and a noisy version of it
(right) that is taken as the observation g. The signal is then reconstructedfrom g
usingadaptive, soft- or hard-thresholdingwith di®erent valuesof the parameter° for
¿ = 3. The reconstructionsobtained are displayed with ° increasingclockwise, i.e.
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middle row left : ° = 0, middle row right : ° = 1, bottom row right : ° = 2, and
bottom row left : ° = 3. The soft-thresholdedreconstruction (bottom left) yields a
smoother reconstruction than the hard-threshold (middle left) : the Gibbs e®ectis
much weaker at the discontinuities of the signal for the soft-thresholding.But on the
other hand it damps the signal, in particular the peaks.The adaptive thresholded
reconstructions (middle right and bottom right) allow to ¯nd a di®erent balance
betweenthe smoothnessof the reconstructionand its precisionfor fast variations.

2.3.3 Stabilit y

In this section,we investigatethe regularization properties of the algorithm. Co-
arselyspeaking,we would like the reconstructedcomponents to very closeto the true
onesif the noise in the observation is negligible. More precisely, we will investigate
whether f ?

g convergesto f o when kTf o ¡ gkH 2 convergesto zero. To do this, it will
be convenient to ¯rst de¯ne somesubsetsof H 1. The ¯rst subset, M f o , is the set
of elements of H 1 that have the sameimage under T as f o except maybe on the
coordinates ¸ such that (Tf o)¸ = 0 :

De¯nition 2.3.6. Given two Hilbert spaces H 1 and H 2, an operator T : H 1 ! H 2,
an orthonormal basis f ¯ ¸ g¸ 2 ¤ of H 2 and an element f o of H 1. The set M f o is the
subsetof elementsof H 1 that verify :

f 2 M f o ( ) MTf o ;0(Tf ) = Tf o ( )
h
f Tf og¸ 6= 0 ) f Tf g¸ = f Tf og¸

i

For the coordinates ¸ such that f Tf og¸ = 0, one may have f Tf g¸ 6= 0 when f is
in M f o . If f o is in ker(T) then M f o = H 1. On the contrary, if 8¸; f Tf og¸ 6= 0, then
M f o is exactly the subset of H 1 having the sameimage as f o under T. Note that
M f o is closedand convex. We also de¯ne H T;w ;p

1 as the set of elements f for which
the corresponding set M f hasa unique minimizer for the jjj:jjjw ;p-norm.

De¯nition 2.3.7. Given a Hilbert space H 1, H T;w ;p
1 is the subsetof elementsof H 1

that verify : f o is in H T;w ;p
1 if and only if the set M f o = f f : M Tf o ;0Tf = Tf og has a

unique elementof minimum jjj:jjjw ;p-norm.

When p > 1, then H T;w ;p
1 = H 1, regardlessof T. This is not true if p = 1, even if

kerT = f 0g. It turns out that algorithm 2.3.4is regularizingfor elements f in H T;w ;p
1 ,

and that the minimizer obtained in the limit kTf o ¡ gkH 2 goesto zero is exactly the
minimizer of the jjj:jjjw ;p-norm in M f o . This is the object of the following theorem:

Theorem 2.3.8. Assumethat T is a bounded operator from H 1 to H 2 with jjjT jjj < 1,
that ° > 0, p 2 [1; 2] and that the entries in the sequence w= f w¸ g¸ 2 ¤ are bounded
below uniformly by a strictly positive number c.

For any g 2 H 2 and any ° > 0 and any nonnegative sequence ¿= f ¿̧ g¸ 2 ¤ , de¯ne
f ?

° ;w ;p;¿;g to be a minimizer of J ° ;w ;p;¿;g(f ). If ° = ° (²) and ¿ = ¿(²) satisfy :

1. lim
² ! 0

° (²) = 0
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Fig. 2.2 { Top row, left : original signal; right : noisy signal (white noise,¾ = 1).
Other rows : reconstructionswith ¿ = 3, increasingparameter ° clockwise (° = 0
(hard-threshold), 1 , 2, 3 (soft-threshold)).
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2. lim
² ! 0

²2

° (²)
= 0

3. 8¸ 2 ¤ ; lim
² ! 0

¿̧ (²) = 0

4. 9 ± > 0; s.t : [ ² < ± ) 8¸ 2 ¤ ; ¿̧ (²) > ² ]

then we have,for any f o 2 H T;w ;p
1 :

lim
² ! 0

"

sup
kg¡ Tf okH 2 · ²

kf ?
° (²);w ;p;¿(²); g ¡ f y

okH 1

#

= 0 ;

where f y
o is the unique elementof minimum jjj jjjw ;p{norm in the set M f o .

Wewill provethis stabilit y theoremin a similar mannerasTheorem2.2.6is proved
in [16]. The proof proceedsasfollows: ¯rst weprovethat the normskf ?

° (²);w ;p;¿(²); gkw ;p

are uniformly bounded.Secondly, we prove that when f o is in H T;w ;p
1 , any sequence

f f ?
° (²n );w ;p;¿(²n ); gn

gn convergesweakly to f y
o when ²n convergesto 0. (Here gn is any

element in H 2 verifying kgn ¡ Tf okH 2 · ²n ). Finally we prove strong convergenceof
the f f ?

° (²n );w ;p;¿(²n ); gn
gn which provesTheorem2.3.8.

Let us make someremarks before proving this theorem. One should point out
the estimate f y

o obtained through this algorithm is not necessarilywhat oneexpects.
Indeed, even in the ideal casewhere T has a bounded linear inverse, we do not
necessarilyhave f y

o = f o. This can happen only when f Tf og¸ = 0 for some¸ . If
f Tf og¸ 6= 0 for all ¸ , then the projection M Tf o ;0 is the identit y and thereforeM f o =
f f : M Tf o ;0Tf = Tf og = f f : Tf = Tf og and sinceT is one to one, this reducesto
M f o = f f og. This ensuresthat f y

o = f o. However if f Tf og¸ = 0 for some¸ , then M Tf o ;0

is a projection with a non-trivial kernel : ker(M Tf o ;0) = Spanf ¯ ¸ ; ¸ s.t. f Tf og¸ = 0g.
When the intersection: ker(M Tf o ;0) \ Im(T) is not trivial i.e there existssomenonzero
element h in H 1 sothat Th¸ = Tf o¸ whenTf o¸ 6= 0, but Th¸ doesnot vanish for each
¸ whereTf o¸ = 0, then :

f f og ( M f o = f o + ker(M Tf o ;0) \ Im(T)

and therefore f y
o need not be equal to f o. This can happen even though T has a

boundedlinear inverse! Here is a simple example:

Example 1. Consider T : R2 ! R2, the bounded and linear operator de¯ned by :

T :
µ

f 1

f 2

¶
7! 1

4

µ
2 f 1 + f 2

f 1 ¡ f 2

¶
and f a =

µ
a
a

¶
for somea 6= 0:

jjjT jjj = 1
2 < 1 and althoughT hasa bounded inverse : T ¡ 1 :

µ
f 1

f 2

¶
7! 4

3

µ
f 1 + f 2

f 1 ¡ 2f 2

¶
,

we haveTf a =
µ

3a
4
0

¶
so that M f a = f f : (Tf )1 = (Tf a)1g = f f : 2f 1 + f 2 = 3ag;

The elementin M f a with minimal l1 norm is : f y
a =

µ
3a
2
0

¶
, and not f a itself.
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Henceunder the conditions of Theorem 2.3.8, solving Problem 2.3.3 will never
enableus to recover f a, even when we observe the unperturbed imageTf a ! Indeed,
in order to be stable, this algorithm has to discard the coordinates in H 2 such that
Tf a¸ = 0 even under an arbitrary small error of observation. The data-dependent
truncation, introducedto ¯nd a more regular estimate when the noiseis signi¯cant,
loosesthe abilit y to recover f a when its imageis observed under ideal conditions.

We shall give moreexamplesillustrating this peculiar behavior of the solutionsto
Problem 2.3.3in the next subsection.But ¯rst, let us prove Theorem2.3.8.To do so,
we ¯rst examinethe behavior of the projectionsM g(²);¿(²) as² goesto zeroin the next
two lemmas.The ¯rst lemma(Lemma 2.3.9)givesnecessaryand su±cient conditions
on the sequence¿= f ¿̧ g¸ 2 ¤ to that theseprojections convergein a weak senseas ²
goesto zero.We will be interestedin the casewherethe weaklimit operator is M Tf o ;0.
The secondlemma (Lemma 2.3.9) re¯nes theseconditions, so that in addition, the
sequenceM g(²);¿(²) convergesstrongly to M Tf o ;0 on the set : T(M f 0 ).

Lemma 2.3.9. For f 2 H 1, let f g(²; f )g²> 0 be an arbitrary family of elementsin H 2

that satisfy kg(²; f ) ¡ Tf kH 2 < ², 8² > 0.

1. 8h 2 H 2, M g(²;f );¿(²)h convergesweakly as ² goes to 0 if and only if
8¸ : 9 ±(¸ ) suchthat either (a) or (b) holds,with

(a) 8² 2 (0; ±(¸ )) ,
¯
¯[g(²; f )]¸

¯
¯ > ¿̧ ,

(b) 8² 2 (0; ±(¸ )) ,
¯
¯[g(²; f )]¸

¯
¯ · ¿̧ .

2. M g(²;f );¿(²) convergesweakly, independentlyof the choice of f and of the family
g(²; f ), as ² goes to 0 if and only if 8¸ : both (a) and (b) hold, with

(a) 9 ±(¸ ) suchthat 8² 2 (0; ±(¸ )) ; ¿̧ (²) > ²

(b) lim
² ! 0

¿̧ (²) = 0

In that case, the weak-limit operator is necessarily MTf ;0.

3. When conditions 2.(a) and 2.(b) abovehold, if h(²) convergesweakly to h, then
M g(²;f );¿(²)h(²) convergesweakly to MTf ;0 h as ² goes to 0.

Proof of Lemma2.3.9. Let us examinethe behavior of M g(²;f );¿(²) coordinate by co-
ordinate. Since

£
M g(²;f );¿(²)h

¤
¸

equalseither h¸ or 0, depending on whether or not¯
¯[g(²; f )]¸

¯
¯ > ¿̧ (²), it follows that M g(²;f );¿(²)(h) will convergeweakly as ² goesto 0 if

and only if for all coordinates ¸ , oneof the following holds :

Either there exists some±(¸ ) > 0 such that
¯
¯[g(²; f )]¸

¯
¯ > ¿̧ (²) for ² < ±(¸ ). In this

case,
£
M g(²;f );¿(²)h

¤
¸

= h¸ for ² < ±(¸ ).

Or there existssome±(¸ ) > 0 such that
¯
¯[g(²; f )]¸

¯
¯ · ¿̧ (²) for ² < ±(¸ ). In this case,£

M g(²;f );¿(²)h
¤

¸
= 0 for ² < ±(¸ ).

This provesthe ¯rst assertion.
Let us now consider how uniform this behavior is in the choice of the family

g(²; f ). Since
¯
¯[g(²; f ) ¡ Tf ]¸

¯
¯ · kg(²; f ) ¡ Tf kH 2 · ², the set of valuesthat can be

assumedby jg(²; f )¸ j is exactly
£

Tf ¡ ²; Tf + ²
¤

(take g = Tf + r ¯ ¸ ; r 2 [¡ ²; ²] to
reach all the valuesin this set). Therefore,for a ¯xed f , the weak convergenceof the
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operators M g(²;f );¿(²) , regardlessof which sequenceg(²; f ) is chosen,is equivalent to
putting constraints on the sequencef ¿(²)¸ g¸ 2 ¤ that dependof the coordinates(Tf )¸ .
Theseconstraints dependson whether (Tf )¸ 6= 0 or (Tf )¸ = 0 :

{ If Tf ¸ 6= 0 then
©

jg(²; f )¸ j
ª

=
£

jTf ¸ j ¡ ²; jTf ¸ j + ²
¤
. Therefore, one needs

either :
£
² < ±(¸ ) ) ¿̧ (²) > jTf ¸ j + ²

¤
or

£
² < ±(¸ ) ) ¿̧ (²) · jTf ¸ j ¡ ²

¤
. In

the ¯rst case,̄ ¸ will always be in the kernel of M g(²;f );¿(²) once² < ±(¸ ). In the
secondcase¯ ¸ will always in the rangeof M g(²;f );¿(²) once² < ±(¸ ).

{ If Tf ¸ = 0 then fj g(²; f )¸ jg = [0; ²]. Thereforeoneneeds[² < ±(¸ ) ) ¿̧ (²) > ²].
In this case,̄ ¸ will always be in the kernel of M g(²;f );¿(²) once² < ±(¸ ).

Note that we do not know beforehandthe value of Tf . To be useful,we must derive
requirements on the parameters¿̧ (²) that do not depend on f . The minimum re-
quirements on ¿(²) ensuringthe operators M g(²;f );¿(²) convergeweakly as ² goesto 0
are :

{ 8¸; lim ² ! 0 ¿̧ (²) = 0 : this ensuresthat if Tf ¸ 6= 0, we will have ¿̧ (²) < jTf ¸ j ¡ ²
for su±ciently small ².

{ 8¸; 9±(¸ ) such that ² < ±(¸ ) ) ¿̧ (²) < ² : this ensuresthat if Tf ¸ = 0, we will
have ¿̧ (²) < jTf ¸ j + ² = ² for su±ciently small ².

If theseconditionsare satis¯ed, the M g(²;f );¿(²) convergeweakly as² goesto 0 and one
can determinethe weak limit :

{ for ¸ s.t. Tf ¸ 6= 0 : lim ² ! 0 ¿̧ (²) = 0 hencethere exists ±(¸; f ) such that ² <
±(¸; f ) implies ¿̧ (²) < jTf ¸ j ¡ ². It follows that : jg(²; f )¸ j > ¿̧ (²) so that
M g(²;f );¿(²)(¯ ¸ ) = ¯ ¸ for any g(²; f ) and any ² < ±(¸; f )

{ for ¸ s.t. Tf ¸ = 0 : ² < ±(¸ ) implies ¿̧ (²) > ². It follows that if ² < ±(¸ ), then
jg(²; f )¸ j > ¿̧ (²) so that M g(²;f );¿(²)(¯ ¸ ) = 0 for any g(²; f ) and any ² < ±(¸ ) .

This provesthat the weak limit of M g(²;f );¿(²) for any ¯xed f is MTf ;0 and ¯nishes the
proof of the secondpart of Lemma 2.3.9.

Finally, assumingh(²) convergesweakly to h, we have 8¸ :
¯
¯
¯
£
M g(²;f );¿(²)h(²) ¡ MTf ;0 h

¤
¸

¯
¯
¯ (2.21)

=
¯
¯
¯
£
M g(²;f );¿(²)(h(²) ¡ h) + (M g(²;f );¿(²) ¡ MTf ;0)h

¤
¸

¯
¯
¯ (2.22)

=
¯
¯
¯
£
M g(²;f );¿(²)(h(²) ¡ h)

¤
¸

¯
¯
¯ +

¯
¯
¯
£
M g(²;f );¿(²)h ¡ MTf ;0 h

¤
¸

¯
¯
¯ (2.23)

The secondterm vanishesas² goesto 0 becauseM g(²;f );¿(²) convergesweakly to MTf ;0

when the conditions 2.(a) and 2.(b) hold. Moreover, we have seenin the proof of the
secondpart of the lemma that for any ¸ :

{ either there existsa ±(¸ ) such that M g(²;f );¿(²)(¯ ¸ ) = 0 for any ² < ±(¸ ) . In that

case,
¯
¯
¯
£
M g(²;f );¿(²)(h(²) ¡ h)

¤
¸

¯
¯
¯ = 0, for ² < ±(¸ ).

{ or there exists a ±(¸ ) such that M g(²;f );¿(²)(¯ ¸ ) = ¯ ¸ for any ² < ±(¸ ) . In that

case,
¯
¯
¯
£
M g(²;f );¿(²)(h(²) ¡ h)

¤
¸

¯
¯
¯ =

¯
¯
¯
£
h(²) ¡ h

¤
¸

¯
¯
¯, for ² < ±(¸ ) ; and the weak

convergenceof h(²) to h allows to concludethat
¯
¯
¯
£
M g(²;f );¿(²)(h(²) ¡ h)

¤
¸

¯
¯
¯ ! 0

This provesthat M g(²;f );¿(²)h(²) convergesweakly to MTf ;0 h and ¯nishes the proof of
Lemma 2.3.9.
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We shall now seehow to ensurestrong convergenceof the M g(²;f );¿(²)(h) whenh is
in M f .

Lemma 2.3.10. If there exists a value of ± independent of ¸ such that 8² < ± and
8¸; ¿̧ (²) > ², then the two following properties hold :

1. For any choice of f and of the family g(²; f ) :

8² < ±; M g(²;f );¿(²) = MTf ;0M g(²;f );¿(²) = M g(²;f );¿(²)MTf ;0 =
X

¸ s.t. Tf ¸ 6=0
and jg¸ j¸ ¿̧

h :; ¯ ¸ i ¯ ¸ :

2. In particular, for any choice of f 2 H T;w ;p
1 and of the family g(²; f ), (i.e. whe-

never M f hasa unique minimizer f y of the jjj:jjjw ;p-norm) :

8² < ±; M g(²;f );¿(²)(Tf y) = M g(²;f );¿(²)(Tf ):

Proof of Lemma2.3.10 : The ¯rst part of Lemma 2.3.10 results from properties of
orthogonal projections. If P1 and P2 are two orthogonal projections, then :

P1 P2 = P2 P1

ker(P2) ½ ker(P1) , P1P2 = P1:

Hence,we already proved M g(²;f );¿(²) MTf ;0 = MTf ;0 M g(²;f );¿(²) and

M g(²;f );¿(²)MTf ;0 = M g(²;f );¿(²) ,
£
(Tf )¸ = 0 ) jg(²;f ) ¸ j · ¿̧ (²)

¤
:

When f and ² are ¯xed, the right hand side holds for any g(²; f ) if and only if£
(Tf )¸ = 0 ) ² < ¿̧ (²)

¤
which provesthe ¯rst part of Lemma 2.3.10.

For f in H T;w ;p
1 , f y is well de¯ned and veri¯es M Tf ;0Tf y = Tf . Applying M g(²;¿(²))

to this equality and using the previousresult ¯nishes the proof of Lemma2.3.10.

With the help of thesetwo lemma, we can now proceedto the

Proof of Theorem 2.3.8 : Let us considerf o in H T;w ;p
1 , i.e. f o veri¯es that M f o has

a unique minimizer jjj jjjw ;p{norm. We note this minimizer f y
o . We ¯x the following

sequences: f ²ngn such that ²n ¡ !
n!1

0 , f gngn such that 8n; kgn ¡ Tf okH 2 · ²n , and

f °ngn
def
= f ° (²n )gn and f ¿ngn

def
= f ¿(²n )gn that verify conditions 1 to 4 in Theorem

2.3.8.For every n, we choosea minimizer f ?
n

def
= f ?

° n ;w ;p;¿n ; gn
of the functional Jn (f )

def
=

J° n ;w ;p;¿n ; gn (f ) = k Mgn ;¿n (Tf ¡ gn )k2
H 2

+ °n jjjf jjjpw ;p.
Wewant to prove that for any such choiceof the ²n , gn , °n , ¿n and f ?

n , the sequence
f ?

n convergesstrongly in H 1 to f y
o , where f y

o is the unique minimizer of the jjj:jjjw ;p-
norm in the set M f o = f f : (Tf )¸ = (Tf o)¸ ; 8¸ s:t: (Tf o)¸ 6= 0g. We will also note

M n
def
= Mgn ;¿n .
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The sequences fj jjf ?
n jjjw ;pgn and fk f ?

n kH 1 gn are uniformly bounded :

By de¯nition of Jn , 8n :

jjjf ?
n jjjpw ;p · 1

° n
Jn (f ?

n )

so that jjjf ?
n jjjpw ;p · 1

° n
Jn (f y

o) sincef ?
n minimizesJn :

But :

Jn (f y
o) = kM n (Tf y

o ¡ gn )k2
H 2

+ °n jjjf y
o jjjpw ;p

· kM n (Tf y
o ¡ Tf o)k2

H 2
+ kM n (Tf o ¡ gn )k2

H 2
+ °n jjjf y

o jjjpw ;p

· kM n (Tf y
o ¡ Tf o)k2

H 2
+ jjjM n jjj2:k(Tf o ¡ gn )k2

H 2
+ °n jjjf y

o jjjpw ;p

· kM n (Tf y
o ¡ Tf o)k2

H 2
+ ²2

n + °n jjjf y
o jjjpw ;p

wherewe usedjjjM n jjj2 · 1 and kTf o ¡ gnk · ²n in the last equation. Hence

8n; jjjf ?
n jjjpw ;p ·

kM n (Tf y
o ¡ Tf o)k2

H 2

°n
+

²2
n

°n
+ jjjf y

o jjjpw ;p: (2.24)

Sincecondition 3 and 4 of Theorem2.3.8are satis¯ed, we can useLemma 2.3.10.(2).
It follows that if n is largeenough,M nTf y

o = M nTf o. Moreover, ²2
n

° n
¡ !
n!1

0 by condition

2 of Theorem2.3.8.This provesthat fj jjf ?
n jjjw ;pgn is uniformly bounded.

Sincew is boundedbelow by c > 0 and p · 2, the k:kH 1 -norm is boundedabove
by c¡ 1

p jjj:jjjw ;p :

jf ¸ j =
¡
jf ¸ jp

¢1
p ·

¡ w¸
c jf ¸ jp

¢1
p ·

¡X

¸ 2 ¤

w¸
c jf ¸ jp

¢1
p = c¡ 1

p jjjf jjjw ;p (2.25)

so that :

kf k2
H 1

=
X

¸ 2 ¤

jf ¸ j2 ·
X

¸ 2 ¤

w¸
c jf ¸ jpjf ¸ j2¡ p ·

X

¸ 2 ¤

w¸
c jf ¸ jp

£
c¡ 1

p jjjf jjjw ;p
¤2¡ p

(2.26)

kf k2
H 1

· 1
c jjjf jjjpw ;p

£
c¡ 1

p jjjf jjjw ;p
¤2¡ p

= c¡ 2
p jjjf jjj2w ;p (2.27)

Hence,the sequencef f ?
n g is alsouniformly boundedin H 1.

f y
o is the unique accumulation poin t of the sequence f f ?

n gn :

Sinceit is uniformly boundedin H 1, the sequencef f ?
n gn has at least one weakly

convergent subsequencef f ?
k gk . Let us denote its weak limit ef . We shall now prove

that ef = f y
o .

Sincef ?
k is a minimizer of Jk obtained through the iterativ e algorithm, 2.3.4, it

veri¯es the ¯xed point equation : f ?
k = S° k w ;p (f ?

k + T¤M kgk ¡ T¤M kTf ?
k ). We note
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hk = f ?
k + T¤M kgk ¡ T¤M kTf ?

k , so that f ?
k = S° k w ;p(hk). By de¯nition of the weak

limit, it follows that :

8¸; ef ¸ = lim
k!1

S° k w¸

¡
(hk)¸

¢

= lim
k!1

[(hk)¸ ] + lim
k!1

[S° k w¸ ((hk)¸ ) ¡ (hk)¸ ] but lim
k!1

° kw¸ = 0

So,8¸; ef ¸ = lim
k!1

[(hk)¸ ] since8x; Sv(x) ¡ ¡ !
v! 0

x

= lim
k!1

[(f ?
k + T¤M kgk ¡ T¤M kTf ?

k )¸ ]

= ef ¸ + lim
k!1

[(T¤M kgk ¡ T¤M kTf ?
k )¸ ] since(f ?

k )¸ ¡¡ ¡!
k!1

ef ¸ :

As a result : 8¸; lim
k!1

[(T¤M kgk ¡ T¤M kTf ?
k )¸ ] = 0.

But sincekgk ¡ Tf okH 2 · ²k , then kT¤M k(gk ¡ Tf o)kH 1 · jjjT¤jjjjjjM k jjj²k < ²k . This
provesthat for all ¸ :

lim
k!1

[(T¤M kTf o ¡ T¤M kTf ?
k )¸ ] = 0: (2.28)

Moreover, from Lemma 2.3.9.(2), we know that f M k(Tf o)gk convergesweakly to
MTf o ;0(Tf o) = Tf o. Togetherwith the continuity of T ¤, this leadsto :

T¤M kTf ?
k

w¡¡ ¡!
k!1

T¤Tf o: (2.29)

On the other hand, f ?
k convergesweakly to ef . Using the continuity of T, we get

Tf ?
k

w¡¡ ¡!
k!1

Tef . From Lemma 2.3.9.(3), this also implies f M kTf ?
k gk

w¡¡ ¡!
k!1

MTf o ;0 Tef .

and it follows from the continuity of T ¤ that :

T¤M kTf ?
k

w¡¡ ¡!
k!1

T¤MTf o ;0Tef : (2.30)

Plugging this last result in Eq. (2.29), we obtain the equality :

T¤MTf o ;0Tef = T¤Tf o (2.31)

SinceMTf o ;0(Tf o) = Tf o, the previousequality reducesto : T ¤MTf o ;0T( ef ¡ f o) = 0.
Taking the scalarproduct with ef ¡ f o, we obtain :

 ef ¡ f o; T¤MTf o ;0T( ef ¡ f o)
®

= 0
,


MTf o ;0T( ef ¡ f o); MTf o ;0T( ef ¡ f o)

®
= 0

, kMTf o ;0T( ef ¡ f o)k2
H 2

= 0
, MTf o ;0T( ef ¡ f o) = 0
, MTf o ;0Tef = Tf o

We used for the ¯rst equality that M Tf o ;0 = M ¤
Tf o ;0 = M 2

Tf o ;0. This proves that ef
belongsto the set M f o .
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Let us now prove that jjj ef jjjw ;p · jjjf y
o jjjw ;p. Becauseof the weak convergenceof the

f ?
n to ef , for all ¸ , the nonnegative sequencef w¸ jf ?

n ¸ jgn convergesto w¸ j ef ¸ j. One can
then useFatou's lemma to obtain :

jjj ef jjjpw ;p =
X

¸

lim
n!1

f w¸ jf ?
n ¸ jgn · lim

n!1

X

¸

f w¸ jf ?
n ¸ jgn = lim

n!1
jjjf ?

n jjjpw ;p

But we proved earlier that lim supn jjjf ?
n jjjpw ;p · jjjf y

o jjjpw ;p: Therefore,we get :

jjj ef jjjpw ;p · lim
n!1

jjjf ?
n jjjpw ;p · jjjf y

o jjjpw ;p (2.32)

By de¯nition, f y
o is the uniqueminimizer of the jjj:jjjw ;p-norm in M f o , sothis implies

that ef = f y
o .

The conclusionof this paragraphis that f y
o is the only possibleaccumulation point

of the sequencef ?
n .

The sequence f f ?
n gn converges weakly to f y

o :

We proved that the sequencef f ?
n gn is uniformly boundedin the k:kH 1 -norm and

that it has a unique accumulation point : f y
o . This allows us to conclude that f ?

n
convergesweakly to f y

o .

The sequence f f ?
n gn converges strongly to f y

o :

Replacing ef by its valuef y
o in (2.32),weget : jjjf y

o jjjpw ;p · limn!1 jjjf ?
n jjjpw ;p · jjjf y

o jjjpw ;p
which proves that the sequencefj jjf ?

n jjjpw ;pgn convergesto jjjf y
o jjjpw ;p. We shall seenow

that the two results we obtained so far :

f ?
n

w¡¡ ¡!
n!1

f y
o (2.33)

jjjf ?
n jjjw ;p ¡¡ ¡!

n!1
jjjf y

o jjjw ;p ; (2.34)

imply the strong convergenceof the sequencef f ?
n gn to f y

o . (This argument closely
follows [16].)

Let us prove that fk f ?
n kH 1 gn convergesto kf y

okH 1 . We have :
¯
¯
¯kf ?

n k2
H 1

¡ kf y
ok2

H 1

¯
¯
¯=

¯
¯
¯
X

¸

¡
jf ?

n ¸ j2 ¡ jf y
o ¸ j2

¢¯
¯
¯ ·

X

¸

¯
¯
¯ jf ?

n ¸ j2 ¡ jf y
o ¸ j2

¯
¯
¯ (2.35)

Writing x2 = (xp)
2
p and using the derivabilit y of x ! x

2
p , one can bound the last

term :
¯
¯
¯jf ?

n ¸ j2 ¡ jf y
o ¸ j2

¯
¯
¯ · 2

p maxf
¡
jf ?

n ¸ jp
¢2

p ¡ 1
;
¡
jf y

o ¸ jp
¢2

p ¡ 1
g

¯
¯
¯ jf ?

n ¸ jp ¡ jf y
o ¸ jp

¯
¯
¯ (2.36)

· 2
p maxfj f ?

n ¸ j2¡ p; jf y
o ¸ j2¡ pg

¯
¯
¯ jf ?

n ¸ jp ¡ jf y
o ¸ jp

¯
¯
¯ (2.37)

· 2
pc maxfj f ?

n ¸ j2¡ p; jf y
o ¸ j2¡ pg

¯
¯
¯ w¸ jf ?

n ¸ jp ¡ w¸ jf y
o ¸ jp

¯
¯
¯ (2.38)
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We saw in Eq. (2.45) that for any f 2 H 1 and ¸ o 2 ¤ jf ¸ o j · c
1
p jjjf jjjw ;p. Plugging this

into Eq. (2.38) and summingover ¸ , we get :

¯
¯
¯kf ?

n k2
H 1

¡ kf y
ok2

H 1

¯
¯
¯ · 2

pc¡ 2
p maxfj jjf ?

n jjj2¡ p
w ;p ; jjjf y

o jjj2¡ p
w ;p g

X

¸ 2 ¤

¯
¯
¯ w¸ jf ?

n ¸ jp ¡ w¸ jf y
o ¸ jp

¯
¯
¯ (2.39)

Sincefj jjf ?
n jjjpw ;pgn convergesto jjjf y

o jjjpw ;p, for n large enough,maxfj jjf ?
n jjj2¡ p

w ;p ; jjjf y
o jjj2¡ p

w ;p g is

boundedby 2jjjf y
o jjj2¡ p

w ;p . De¯ning gc;p;f o = 4
pc¡ 2

p jjjf y
o jjj2¡ p

w ;p , we get :

¯
¯
¯kf ?

n k2
H 1

¡ kf y
ok2

H 1

¯
¯
¯ · gc;p;f o

P
¸ 2 ¤

¯
¯
¯ w¸ jf ?

n ¸ jp ¡ w¸ jf y
o ¸ jp

¯
¯
¯

· gc;p;f o

P
¸

³
w¸ jf ?

n ¸ jp + w¸ jf y
o ¸ jp ¡ 2w¸ minfj f ?

n ¸ j; jf y
o ¸ jgp

´

· gc;p;f o

³
jjjf ?

n jjjpw ;p + jjjf y
o jjjpw ;p ¡ 2

P
¸ w¸ minfj f ?

n ¸ j; jf y
o ¸ jgp

´

(2.40)
We already know that jjjf ?

n jjjpw ;p ¡¡ ¡!
n!1

jjjf y
o jjjpw ;p, we shall seenow that the sameholds

for the last term in the previous inequality. Let us de¯ne the sequencef un ¸ gn for
each ¸ by un ¸ = w¸ minfj f ?

n ¸ j; jf y
o ¸ jgp. The weak convergenceof the f ?

n to f y
o im-

plies that for each ¸ , un ¸ ¡¡ ¡!
n!1

w¸ jf y
o ¸ jp. Moreover, for all n, 0 · un ¸ · w¸ jf y

o ¸ jp

and
P

¸ w¸ jf y
o ¸ jp = jjjf y

o jjjpw ;p < 1 so that by the dominated convergencetheorem,
lim

n!1

P
¸ un ¸ =

P
¸ lim

n!1
un ¸ . Replacing the un ¸ and their limits by their value, we

obtain :

lim
n!1

X

¸

w¸ minfj f ?
n ¸ j; jf y

o ¸ jgp = jjjf y
o jjjpw ;p:

Hence:
³

jjjf ?
n jjjpw ;p+ jjjf y

o jjjpw ;p¡ 2
X

¸

w¸ minfj f ?
n ¸ j; jf y

o ¸ jgp
´
¡¡ ¡!
n!1

jjjf y
o jjjpw ;p+ jjjf y

o jjjpw ;p¡ 2jjjf y
o jjjpw ;p = 0

so that by taking the limit as n goesto 1 in Eq.(2.40), we can concludethat

kf ?
n kH 1 ¡¡ ¡!

n!1
kf y

okH 1 :

Usingthe identit y kf ?
n ¡ f y

okH 1 = kf ?
n kH 1 + kf y

okH 1 ¡ 2

f ?

n ; f y
o

®
, this last result combined

with the weak convergenceof the f ?
n to f y

o provesthat the sequencef f ?
n gn converges

strongly in H 1 to f y
o .

Note that we did not needto assumethat each gn is in H T;w ;p
1 to obtain stabilit y.

It could very well be that the functional J° n ;w ;p;¿n ;gn has several minimizers, in that
case,dependingon the choiceof the starting element for the iterativ e algorithm 2.3.4,
the element f ¤

n might havedi®erent values.As a result, the sequencef f ¤
n gn is not ¯xed

by the parameters²n , °n , ¿n and gn . However no matter which of thesesequencesf ¤
n

we consider,it will convergestrongly to f y
o .
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2.3.4 Example

We give herean examplewhere the operator T is a multiplication and the itera-
tiv e algorithms 2.2.4and 2.3.4are applied on the samenoisy imageg² , with the same
parameter ° . ' = f ' ¸ g¸ 2 ¤ is the orthonormal basisformed by the Haar wavelet. We
chose¿ = 2¾, where¾is the standard deviation of the noise.The top row of Figure
2.3 shows the original imagef (left) ; the function t corresponding to the operator T
(secondcolumn); the image of f under T : g = T(f ) = f :t (third column) and the
noisy observation g² (right). Below, the results of iterativ e algorithms 2.2.4 (on the
left) and 2.3.4(on the right) aredisplayed.Although the standard iterativ e algorithm
(2.2.4) yields almost perfect reconstruction in this case,the adaptive projection algo-
rithm doesnot recover the object f . Becauseof the projections,onewavelet coe±cient
in g² is not taken in account. This prevents the iterativ e algorithm to properly inverse
the operator T.

Fig. 2.3 { From left to right, top row : original f , multiplication operator t, image
g = t:f , noisy observation of the imageg² . Bottom row, left : reconstructionwith the
standard iterativ e algorithm ; right : reconstructionwith adaptive projection.

2.4 Adaptiv e pro jections relaxed

Our discussionand exampleabove showed that minimizing the adaptive projec-
tion functional may lead to an undesirablesolution in somecases,depending on the
operator T and the data. In this section, we introduce a slight relaxation of the
adaptive projections that we will prove no longer su®ersfrom this inconvenience.
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2.4.1 De¯nition of the relaxed adaptiv e pro jections and of
the corresp onding iterativ e algorithm

De¯nition 2.4.1. Given an orthonormal basis if H 2, ¯ = f ¯ ¸ g¸ 2 ¤ , an elementg in
H 2, a sequence of nonnegative thresholds¿= f ¿̧ g¸ 2 ¤ and a scalar ¹ , Mg;¿;¹ is the
map from H 2 into itself de¯ned by :

8h 2 H 2; Mg;¿;¹ (h) =
X

¸ s:t: jg¸ j>¿ ¸

h¸ ¯ ¸ + ¹
X

¸ s:t: jg¸ j· ¿̧

h¸ ¯ ¸

Note that Mg;¿;¹ is a bounded diagonal operator for any g, ¿ and ¹ . It is the-
refore a continuous linear operator. Depending on the parametersg and ¿, either
k Mg;¿;¹ k = 1 or k Mg;¿;¹ k = j¹ j. In the following, we will restrict ¹ to the interval
(0; 1] and therefore,wewill always havek Mg;¿;¹ k · 1. Note that Mg;¿;0 is the adaptive
projection de¯ned before: Mg;¿;0 = Mg;¿ and that, for any choiceof g, ¿ and ¹ 6= 0,
Mg;¿;¹ hasa boundedlinear inverse.The minimization problem now becomes:

Problem 2.4.2. Given a sequence of strictly positive weightsw= f w¸ g¸ 2 ¤ , a sequence
of nonnegative thresholds¿= f ¿̧ g¸ 2 ¤ , and scalars ° , ¹ and p with ° > 0, 0 < ¹ · 1
and 1 · p · 2, ¯nd :

f ? = argmin
f 2H 1

J ° ;w ;p;¿;¹ (f ) = argmin
f 2H 1

k Mg;¿;¹ (Tf ¡ g)k2
H 2

+ ° jjjf jjjpw ;p

where jjjf jjjw ;p =
£P

¸ 2 ¤ w¸ j hf ; ' ¸ i jp
¤1

p and

Mg;¿;¹ (h) =
X

¸ s:t: jg¸ j>¿ ¸

h¸ ¯ ¸ + ¹
X

¸ s:t: jg¸ j· ¿̧

h¸ ¯ ¸

For a ¯xed observation g and operator T, Problem 2.4.2 reducesto a particu-
lar instanceof Problem 2.2.1, with the observation g0 = Mg;¿;¹ (g) and the operator
T0 = Mg;¿;¹ T. Therefore,the iterativ e algorithm that follows convergesstrongly to a
minimizer of J ° ;w ;p;¿;¹ for any choiceof the initial guess.

Algorithm 2.4.3.
½

f 0 arbitrary
f n = S° w ;p

¡
f n¡ 1 + T¤ M2

g;¿;¹ g ¡ T¤ M2
g;¿;¹ Tf n¡ 1

¢
; n ¸ 1

Theorem 2.4.4. Let T be a bounded linear operator from H 1 to H 2, with norm strictly
bounded by 1. Fix p 2 [1; 2], ¹ 2 (0; 1], f ¿̧ g¸ 2 ¤ a sequence of nonnegative numbers
and let Sw ;p be the shrinkageoperator de¯ned by (2.7), where the sequence f w¸ g¸ 2 ¤

is uniformly bounded below away from zero, i.e. there 9c > 0 s.t. 8¸ 2 ¤ : w¸ ¸ c.
Then the sequence of iterates

f n = S° w ;p
¡
f n¡ 1 + T¤ M2

g;¿;¹ g ¡ T¤ M2
g;¿;¹ Tf n¡ 1

¢
; n = 1; 2; : : : ;

with f 0 arbitrarily chosenin H 1, convergesstrongly to a minimizer of the functional

J ° ;w ;p;¿;¹ (f ) = k Mg;¿;¹ (Tf ¡ g)k2
H 2

+ ° jjjf jjjpw ;p ;
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where jjjf jjjw ;p denotesthe norm jjjf jjjw ;p =
£P

¸ 2 ¤ w¸ j hf ; ' ¸ i jp
¤1=p

; 1 · p · 2 and
Mg;¿;¹ (h) =

P
¸ s:t: jg¸ j>¿ ¸

h¸ ¯ ¸ + ¹
P

¸ s:t: jg¸ j· ¿̧ h¸ ¯ ¸ .
If the minimizer f ? of J ° ;w ;p;¿;¹ is unique, (which is guaranteed e.g. by p > 1

or ker(Mg;¿;¹ T) = f 0g), then every sequence of iterates f n convergesstrongly to f ?,
regardlessof the choice of f 0.

D¶emonstration. As we noticed before:

J ° ;w ;p;¿;¹ ;T;g(f ) = k Mg;¿;¹ (Tf ¡ g)k2
H 2

+ ° jjjf jjjpw ;p

= k(M g;¿;¹ T)f ¡ (M g;¿;¹ g)k2
H 2

+ ° jjjf jjjpw ;p

= J ° ;w ;p;0;1; T 0; g0(f ) with T0 = Mg;¿;¹ T; g0 = Mg;¿;¹ g

Noting that J ° ;w ;p;0;1; T 0; g0(f ) is exactly the functional de¯ned in Problem 2.2.1, it
is then su±cient to prove jjjT0jjj is strictly smaller than 1 to prove the strong conver-
genceof the iterativ e algorithm 2.4.3 via Theorem 2.2.5. But jjjT 0jjj = jjj Mg;¿;¹ Tjjj ·
jjj Mg;¿;¹ jjj:jjjT jjj · maxf 1; j¹ jg:jjjT jjj. Since0 < ¹ · 1 then jjj Mg;¿ Tjjj = 1 and therefore
jjjT0jjj · jjjT jjj < 1.

2.4.2 Stabilit y

The di®erencebetweenthe relaxedadaptiveprojection functional J ° ;w ;p;¿;¹ and the
original adaptive projection functional J ° ;w ;p;¿ is that we can now prove the desired
stabilit y result. We have, in analogyto Theorem2.2.6the following

Theorem 2.4.5. Assumethat T is a bounded operator from H 1 to H 2 with jjjT jjj < 1
and that the entries in the sequence w= f w¸ g¸ 2 ¤ are bounded below uniformly by a
strictly positive number c.

For any g 2 H 2 and any ° > 0, 0 < ¹ · 1 and nonnegative sequence ¿= f ¿̧ g¸ 2 ¤ ,
de¯ne f ?

° ;w ;p;¿;¹ ; g to be a minimizer of J ° ;w ;p;¿;¹ ; g(f ). If ° = ° (²), ¿ = ¿(²) and
¹ = ¹ (²) satisfy :

1. lim
² ! 0

° (²) = 0

2. lim
² ! 0

²2

° (²)
= 0

3. 8¸ 2 ¤ ; lim
² ! 0

¿̧ (²) = 0

4. 8¸ 2 ¤ ; 9 ±(¸ ) > 0; s.t : [ ² < ±(¸ ) ) ¿̧ (²) > ² ]

5. lim
² ! 0

¹ (²) = ¹ o, with 0 < ¹ o · 1

then for any f o such that there is a unique minimizer of the jjj jjjw ;p{norm in the set
Sf o = f f : Tf = Tf og :

lim
² ! 0

"

sup
kg¡ Tf okH 2 · ²

kf ?
° (²);w ;p;¿(²);¹ (²); g ¡ f y

okH 1

#

= 0 ;

where f y
o is the unique elementof minimum jjj jjjw ;p{norm in the set Sf o .
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Note that, if kerT = f 0g, then the setSf o reducesto f o itself, sothat the algorithm
is regularizing for all element in H 1. This ensuresthat when the noiselevel converges
to 0, the sequenceof estimateswe obtain convergesto the original object.

The proof of Theorem 2.4.5 is mostly analogousto (in fact a little easierthan)
the proof of Theorem 2.3.8.For the sake of completeness,we give the full details of
the ¯rst two parts of the proof, indicating by
Ä )

( Ä
when the argument di®ersfrom before. Once we prove that f y

o is the unique accu-

mulation point of the sequencef f ?
n gn , the proof of weak and strong convergenceare

strictly identical and we shall not repeat them.
We start by a lemma that, similarly to Lemma 2.3.9, examinesthe convergence

of the operators Mg;¿;¹ :

Lemma 2.4.6. Supposethat ¿ = ¿(²) and ¹ = ¹ (²) verify conditions 3, 4 and 5 of
Theorem 2.4.5. Then the two following properties hold :

1. For any h in H 2, M 2
g(²;f );¿(²);¹ (²)h convergesweakly to M2

Tf ;0;¹ o
h as ² goes to 0.

2. If h(²) convergesweakly to h as ² goes to 0, then M 2
g(²;f );¿(²);¹ (²)h(²) converges

weakly to M2
Tf ;0;¹ o

h as ² goes to 0.

Proof of Lemma2.4.6 : In the proof of Lemma2.3.9,we have seenthat under condi-
tions imposedon ¿(²) (conditions 3 and 4 of Theorem2.4.5), the following happens:

{ for ¸ s.t. Tf ¸ 6= 0 : lim ² ! 0 ¿̧ (²) = 0 hencethere exists ±(¸; f ) such that ² <
±(¸; f ) implies ¿̧ (²) < jTf ¸ j ¡ ². It follows that : jg(²; f )¸ j > ¿̧ (²).

{ for ¸ s.t. Tf ¸ = 0 : ² < ±(¸ ) implies ¿̧ (²) > ². It follows that if ² < ±(¸ ), then
jg(²; f )¸ j > ¿̧ (²).

So that in the ¯rst case: M 2
g(²;f );¿(²);¹ (²) (¯ ¸ ) = ¯ ¸ for any g(²; f ) and any ² < ±(¸; f ) ;

and in the secondcase: M 2
g(²;f );¿(²);¹ (²)(¯ ¸ ) = ¹ (²)2¯ ¸ for any g(²; f ) and any ² < ±(¸ ).

Since ¹ (²) convergesto some¹ o by assumption (condition 5 of Theorem 2.4.5), it
follows that M 2

g(²;f );¿(²);¹ (²)h convergesto M 2
Tf o ;0;¹ o

h as (²) goes to 0. This proves the
¯rst part of Lemma 2.4.6.

To prove the secondpart of Lemma2.4.6,we useagain the splitting trick we used
in 2.3.9.(3) :

¯
¯
¯
£
M 2

g(²;f );¿(²);¹ (²)h(²) ¡ M2
Tf ;0;¹ o

h
¤

¸

¯
¯
¯ (2.41)

=
¯
¯
¯
£
M 2

g(²;f );¿(²);¹ (²) (h(²) ¡ h) + (M 2
g(²;f );¿(²);¹ (²) ¡ M2

Tf ;0;¹ o
)h

¤
¸

¯
¯
¯ (2.42)

=
¯
¯
¯
£
M 2

g(²;f );¿(²);¹ (²) (h(²) ¡ h)
¤

¸

¯
¯
¯ +

¯
¯
¯
£
(M 2

g(²;f );¿(²);¹ (²) ¡ M2
Tf ;0;¹ o

)h
¤

¸

¯
¯
¯ (2.43)

And the sameargument as we usedin Lemma 2.3.9.(3)allows to conclude.

Note, that we did not needto prove this lemma that 0 < ¹ o · 1. Now that the
weak convergenceof M 2

g(²;f );¿(²);¹ (²) is established,we proceedto the
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Proof of Theorem 2.4.5 : Let usconsiderf o in H 1, that veri¯es that Sf o hasa unique
minimizer jjj jjjw ;p{norm. We note this minimizer f y

o . We ¯x the following sequences:

f ²ngn such that ²n ¡ !
n!1

0 , f gngn such that 8n; kgn ¡ Tf okH 2 · ²n , and f °ngn
def
=

f ° (²n )gn , f ¹ ngn
def
= f ¹ (²n )gn and f ¿ngn

def
= f ¿(²n )gn that verify conditions 1 to 5

in Theorem 2.4.5. For every n, we choosea minimizer f ?
n

def
= f ?

° n ;w ;p;¿n ;¹ n ; gn
of the

functional Jn (f )
def
= J° n ;w ;p;¿n ;¹ n ; gn (f ) = k Mgn ;¿n ;¹ n (Tf ¡ gn )k2

H 2
+ °n jjjf jjjpw ;p. We want

to prove that for any such choice of the ²n , gn , °n , ¹ n , ¿n and f ?
n , the sequencef ?

n

convergesstrongly in H 1 to f y
o . We will alsonote M n

def
= Mgn ;¿n ;¹ n .

The sequences fj jjf ?
n jjjw ;pgn and fk f ?

n kH 1 gn are uniformly bounded :

By de¯nition of Jn , 8n :

jjjf ?
n jjjpw ;p · 1

° n
Jn (f ?

n )

so that jjjf ?
n jjjpw ;p · 1

° n
Jn (f y

o) sincef ?
n minimizesJn :

But : Ä )

Jn (f y
o) = kM n (Tf y

o ¡ gn )k2
H 2

+ °n jjjf y
o jjjpw ;p

= kM n (Tf o ¡ gn )k2
H 2

+ °n jjjf y
o jjjpw ;p sinceTf y

o = Tf o

· kM nk2:k(Tf o ¡ gn )k2
H 2

+ °n jjjf y
o jjjpw ;p

· maxf 1; j¹ n j2g:²2
n + °n jjjf y

o jjjpw ;p sincekTf o ¡ gnk · ²n

Hence

8n; jjjf ?
n jjjpw ;p · maxf 1; j¹ n j2g:

²2
n

°n
+ jjjf y

o jjjpw ;p: (2.44)

Since ²2
n

° n
¡ !
n!1

0 and ¹ n ¡ !
n!1

¹ o 2 (0; 1], this provesthat fj jjf ?
n jjjw ;pgn is uniformly

bounded. ( Ä

Moreover, w is boundedbelow by c > 0 and p · 2, so the k:kH 1 -norm is bounded
above by c¡ 1

p jjj:jjjw ;p :

jf ¸ j =
¡
jf ¸ jp

¢1
p ·

¡ w¸
c jf ¸ jp

¢1
p ·

¡X

¸ 2 ¤

w¸
c jf ¸ jp

¢1
p = c¡ 1

p jjjf jjjw ;p (2.45)

so that :

kf k2
H 1

=
X

¸ 2 ¤

jf ¸ j2 ·
X

¸ 2 ¤

w¸
c jf ¸ jpjf ¸ j2¡ p ·

X

¸ 2 ¤

w¸
c jf ¸ jp

£
c¡ 1

p jjjf jjjw ;p
¤2¡ p

(2.46)

kf k2
H 1

· 1
c jjjf jjjpw ;p

£
c¡ 1

p jjjf jjjw ;p
¤2¡ p

= c¡ 2
p jjjf jjj2w ;p (2.47)

Hence,the sequencef f ?
n g is alsouniformly boundedin H 1.
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f y
o is the unique accumulation poin t of the sequence f f ?

n gn :

Sinceit is uniformly boundedin H 1, the sequencef f ?
n gn has at least one weakly

convergent subsequencef f ?
k gk . Let us denote its weak limit ef . We shall now prove

that ef = f y
o .

Sincef ?
k is a minimizer of Jk obtained through the iterativ e algorithm, 2.4.3, it

veri¯es the ¯xed point equation : f ?
k = S° k w ;p (f ?

k + T¤M 2
k gk ¡ T¤M 2

k Tf ?
k ). We note

hk = f ?
k + T¤M 2

k gk ¡ T¤M 2
k Tf ?

k , so that f ?
k = S° k w ;p(hk). By de¯nition of the weak

limit, it follows that :

8¸; ef ¸ = lim
k!1

S° k w¸

¡
(hk)¸

¢

= lim
k!1

[(hk)¸ ] + lim
k!1

[S° k w¸ ((hk)¸ ) ¡ (hk)¸ ] but lim
k!1

° kw¸ = 0

So,8¸; ef ¸ = lim
k!1

[(hk)¸ ] since8x; Sv(x) ¡ ¡ !
v! 0

x

= lim
k!1

[(f ?
k + T¤M 2

k gk ¡ T¤M 2
k Tf ?

k )¸ ]

= ef ¸ + lim
k!1

[(T¤M 2
k gk ¡ T¤M 2

k Tf ?
k )¸ ] since(f ?

k )¸ ¡¡ ¡!
k!1

ef ¸ :

As a result : 8¸; lim
k!1

[(T¤M 2
k gk ¡ T¤M 2

k Tf ?
k )¸ ] = 0.

Ä )
Sincekgk ¡ Tf ok · ²k , then kT¤M 2

k (gk ¡ Tf o)kH 2 · kT¤kkM kk2²k < maxf 1; j¹ k jg2:²k .
Since¹ k convergesto ¹ o 2 (0; 1], and ²k to 0, this provesthat for all ¸ :

lim
k!1

£
(T¤M 2

k Tf o ¡ T¤M 2
k Tf ?

k )¸
¤

= 0: (2.48)

From Lemma 2.4.6.(1),we know that the sequencef M 2
k (Tf o)gk convergesweakly

to M 2
Tf o ;0;¹ o

(Tf o) = Tf o. ( Ä
Togetherwith the continuity of T ¤, this leadsto :

T¤M 2
k Tf ?

k
w¡¡ ¡!

k!1
T¤Tf o: (2.49)

On the other hand, f ?
k convergesweakly to ef . Using the continuity of T, we get

Tf ?
k

w¡¡ ¡!
k!1

Tef .

Ä )
Lemma 2.4.6.(2)allows then to concludethat M 2

k Tf ?
k

w¡¡ ¡!
k!1

M 2
Tf o ;0;¹ o

Tef ( Ä

and it follows from the continuity of T ¤ that :

T¤M 2
k Tf ?

k
w¡¡ ¡!

k!1
T¤M 2

Tf o ;0;¹ o
Tef : (2.50)

Plugging this last result in Eq. (2.49), we obtain the equality :

T¤M 2
Tf o ;0;¹ o

Tef = T¤Tf o (2.51)

Note that M Tf o ;0;¹ o is a selfadjoint and that M 2
Tf o ;0;¹ o

(Tf o) = MTf o ;0;¹ o (Tf o) = Tf o.

Therefore the previous equality reducesto : T ¤M 2
Tf o ;0;¹ o

T( ef ¡ f o) = 0. Taking the

scalarproduct with ef ¡ f o, we obtain :
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Ä )
 ef ¡ f o; T¤M 2

Tf o ;0;¹ o
T( ef ¡ f o)

®
= 0

,

MTf o ;0;¹ o T( ef ¡ f o); MTf o ;0;¹ o T( ef ¡ f o)

®
= 0

, kMTf o ;0;¹ T( ef ¡ f o)k2
H 2

= 0
, MTf o ;0;¹ o T( ef ¡ f o) = 0
, T( ef ¡ f o) = 0 sinceM Tf o ;0;¹ o is invertible.
, Tef = Tf o

This provesthat ef belongsto the set Sf o . ( Ä

Let us now prove that jjj ef jjjw ;p · jjjf y
o jjjw ;p. Becauseof the weak convergenceof the

f ?
n to ef , for all ¸ , the nonnegative sequencef w¸ jf ?

n ¸ jgn convergesto w¸ j ef ¸ j. One can
then useFatou's lemma to obtain :

jjj ef jjjpw ;p =
X

¸

lim
n!1

f w¸ jf ?
n ¸ jgn · lim

n!1

X

¸

f w¸ jf ?
n ¸ jgn = lim

n!1
jjjf ?

n jjjpw ;p

Ä )
But we proved earlier that jjjf ?

n jjjpw ;p · maxf 1; j¹ n jg: ²2
n

° n
+ jjjf y

o jjjpw ;p. Therefore,sincethe

limn!1 ¹ n = ¹ o 2 (0; 1] and limn!1
²2

n
° n

= 0, we get :

jjj ef jjjpw ;p · lim
n!1

jjjf ?
n jjjpw ;p · jjjf y

o jjjpw ;p (2.52)

( Ä
By de¯nition, f y

o is the unique minimizer of the jjj:jjjw ;p-norm in Sf o , so this implies

that ef = f y
o .

The conclusionof this paragraphis that f y
o is the only possibleaccumulation point

of the sequencef ?
n .

The sequence f f ?
n gn converges weakly to f y

o :

[This is identical to the proof given for Theorem2.3.8]

The sequence f f ?
n gn converges strongly to f y

o :

[This is identical to the proof given for Theorem2.3.8]

2.4.3 Example

To illustrate how the relaxation of the adaptive projection works in practice,
let us revisit the example given in subsection2.3.4. We chose¹ = :5 and ran the
relaxed iterativ e algorithm on the data we presented in Figure 2.3. Figure 2.4 shows
the original object we are trying to estimate (top), together with the result of each
method (bottom). As we noticed before, the introduction of adaptive projections in
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the discrepancyterm prevents the iterativ e algorithm 2.3.4to reconstruct the object.
The bottom left panelof Figure 2.4 shows the \p erfect" reconstructionobtained with
the standard iterativ e algorithm of section2.2.Onecanseein the middle panelat the
bottom of the ¯gure that the reconstructionof section2.3 using adaptive projections
missesone variation. The abilit y to recover the signal perfectly is regainedby using
the relaxed algorithm of section 2.4, as shown in the bottom right panel of Figure
2.4.

Fig. 2.4 { Example of Fig. 2.3 revisited. Top : original. Bottom, from left to right :
reconstruction with the standard iterativ e algorithm, reconstruction with adaptive
projections, reconstructionwith relaxedadaptive projections.

2.5 Extension to multiple input/outputs

In this section,we discussthe generalizationof the iterativ e algorithm to the case
when one seeksM components (f 1; f 2; : : : ; f M ) from L observations (g1; g2; : : : ; gL ).
We wish to minimize the functional de¯ned in Eq.(2.1), choosingappropriate norms
jjj:jjjX m for each component f m . As before, the norms jjj:jjjX m are lp-norms of decom-
position coe±cients. In all generality, the components f m (resp. the observations gl )
could belong to di®erent spacesHilbert H i

m (resp. H o
l ). This would be the case,for

instance, if one were to use this algorithm to register multi-modal data where each
component could have a di®erent format. One then needsto considerM tight frames
' m = f ' m

¸ g¸ 2 ¤ for m = 1; ::; M . Even if the components belongto the sameHilbert
space,there is no reasona priori why the most appropriatenormsjjj:jjjX m would usethe
sametight frame for all m = 1; ::; M . Therefore,we will allow not only the exponent
p and the weights w¸ to depend on m but also the decomposition frame ' ¸ :

jjj:jjjX m =
· X

¸ 2 ¤

wm
¸ j h: ; ' m

¸ i jpm

¸ 1
pm

: (2.53)
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Note that we could introducesomemodi¯cations in the discrepancyterms aswell, to
tune theseto the characteristicsof each observation gl , for l = 1; ::; L . For example,
onecould usethe (relaxed) adaptive projectionsMg;¿;¹ . As is the casefor M = L = 1,
this amounts to modifying the operatorsand the observations gl accordingly. Sincewe
described in detail how thesechangesa®ectthe iterativ e algorithm for M = L = 1,
we shall focus here on the changesdue to the presenceof multiple observations and
multiple components with speci¯c jjj:jjjX m -norms. Subsection2.5.1describesthe theo-
retical generalizationof the iterativ e algorithm to the multiple components/m ultiple
observations caseand Subsection2.5.2 the application to our astrophysical problem.

2.5.1 Generalization of the iterativ e algorithm

Let us ¯rst state the most generalproblem. Assumingwe are given observations
gl that belong to di®erent Hilbert spacesH o

l , we wish to estimate the objects f m in
Hilbert spacesH i

m that produced them, knowing that the contribution of object f m

to observation gl is Tm;l f m where the Tm;l : H i
m ! H o

l are boundedlinear operators.
We estimate the objects f m by solving the problem :

Problem 2.5.1. Given scalars f ° mgm=1 ;::;M , f ½lgl=1 ;::;L and exponents f pmgm=1 ;::;M

with °m > 0, ½l > 0 and 1 · pm · 2, given in addition a tight frame ' m = f ' m
¸ g¸ 2 ¤

and a sequence of positive weightsw m = f wm
¸ g¸ 2 ¤ for each Hilbert space H i

m , for
m = 1; ::; M , ¯nd :

argmin
f m 2H i

m

J (f 1; f 2; : : : ; f M ) =
LX

l=1

½l

°
°
°

MX

m=1

Tm;l f m ¡ gl

°
°
°

2

H o
l

+
MX

m=1

°m jjjf m jjjpm
X m

;

where jjjf jjjX m =
£P

¸ 2 ¤ w¸ j hf ; ' m
¸ i jpm

¤ 1
pm :

Let us ¯rst explain the generalizationof the iterativ e algorithm 2.2.4 neededto
solve Problem 2.5.1, in the casewherethe pm are equal.

Constan t exp onent : pm = p; 8m

When the exponents pm areall the same,onecanseeProblem 2.5.1asan instance
of Problem 2.2.1 by recasting the Problem in higher dimension. This is done by
building a unique observation space: H

o
= H o

1 £ H o
2 £ ¢¢¢£ H o

M and a unique object
space: H

i
= H i

1 £ H i
2 £ ¢¢¢£ H i

L . The standard euclideannorm :

°
° ¹f

°
°

H
i =

· MX

m=1

°
° f m

°
° 2

H i
m

¸ 1
2

for ¹f = (f 1; f 2; : : : ; f M ) 2 H
i

(2.54)

de¯nes H
i

as a Hilbert space.We de¯ne a particular norm on the Hilbert spaceH
o

:

°
° ¹g

°
°

H
o =

· LX

l=1

½l

°
° gl

°
° 2

H o
l

¸ 1
2

for ¹g = (g1; g2; : : : ; gM ) 2 H
o

(2.55)
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De¯ne the embedding operators Pm : H i
m ! H

i
by Pm (f ) = (0; : : : ; 0;

m
#
f ; 0; : : : ; 0).

Sincethe family © = f Pm (' m
¸ )gm=1 ;::;M ; ¸ 2 ¤ is a tight frame of H

i
, onecan alsode¯ne

a jjj:jjjX -norm on the object spaceH
i

by :

jjj ¹f jjjw ;p =
· X

m=1 ;::;M
¸ 2 ¤

°m wm
¸

¯
¯ ¹f ; Pm (' m

¸ )
®

H
i

¯
¯p

¸ 1
p

=
· X

m=1 ;::;M
¸ 2 ¤

°m wm
¸

¯
¯hf m ; ' m

¸ i H i
m

¯
¯p

¸ 1
p

(2.56)
wherew = f °m wm

¸ gm=1 ;::;M ; ¸ 2 ¤ . Finally the operator T : H
i

! H
o

is de¯ned by :

T(f 1; f 2; : : : ; f M ) =
³ MX

m=1

Tm;1f m ;
MX

m=1

Tm;2f m ; : : : ;
MX

m=1

Tm;L f M

´
(2.57)

With thesede¯nitions, Problem 2.5.1reducesto Problem 2.2.1since:

J (f 1; f 2; : : : ; f M ) =
LX

l=1

½l

°
°
°

MX

m=1

Tm;l f m ¡ gl

°
°
°

2

H o
l

+
MX

m=1

°m jjjf m jjjpX m
(2.58)

J (f 1; f 2; : : : ; f M ) =
°
°
° T ¹f ¡ ¹g

°
°
°

2

H
o

+ jjj ¹f jjjpw ;p (2.59)

with jjj ¹f jjjw ;p =
· X

n

wn

¯
¯ ¹f ; ©n

®
H

i

¯
¯p

¸ 1
p

: (2.60)

Here the indexes¸ and m are combined into a single index n and wn = wm
¸ = °mwm

¸
and ©n = ©m

¸ = Pm (' m
¸ ).

As a result, the iterativ e algorithm 2.2.4can be usedon the vectorizedquantities
( ¹f , ¹g, T, . . .) to solve Problem 2.5.1when the pm are equal.

Full case : arbitrary pm

In the casewhere the pm depend on m, the vectorization trick doesnot allow to
concluderight away becausejjj ¹f jjjX can not be written asa singlelp norm. One needs
to go back to the construction of the iterativ e algorithm 2.2.4 to seehow to modify
it. We note ©m

¸ the element Pm (' m
¸ ) of the frame ©. As before,the functional :

J ( ¹f ) =
°
°
° T ¹f ¡ ¹g

°
°
°

2

H
o

+
X

m; ¸

wm
¸

¯
¯
¯
 ¹f ; ©m

¸

®
H

i

¯
¯
¯
pm

(2.61)

is approximated by the surrogatefunctional :

J ¹a( ¹f ) =
°
°
° T ¹f ¡ ¹g

°
°
°

2

H
o
¡

°
°
° T ¹f ¡ T¹a

°
°
°

2

H
o
+ C

°
°
° ¹f ¡ ¹a

°
°
°

2

H
i
+

X

m; ¸

wm
¸

¯
¯ ¹f ; ©m

¸

®
H

i

¯
¯pm (2.62)

for C > jjjT
¤
Tjjj. The surrogatefunctional is again strictly convex and the equations

decouplefor each pair (m; ¸ ). The minimizer ¹f ?¹a is againde¯ned applying the operator
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Sw;p for each component :
D

¹f ?¹a; ©m
¸

E

H
i

= Swm
¸ ; pm

µ D
C¹a + T

¤
¹g ¡ T

¤
T¹a;©m

¸

E

H
i

¶
(2.63)

D
¹f ?¹a; ©m

¸

E
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= S° m :wm
¸ ; pm

µ D
C¹a + T

¤
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¤
T¹a;©m

¸

E

H
i

¶
(2.64)

De¯ning the operator : Sw;¹p : H
i

! H
i

by :

Sw;¹p( ¹f ) =
X

m=1 ;::;M
¸ 2 ¤

Swm
¸ ; pm

³  ¹f ; ©m
¸

®
H

i

´
©m

¸ ; (2.65)

onegets :
¹f ?¹a = Sw;¹p

³
C¹a + T

¤
¹g ¡ T

¤
T¹a

´
(2.66)

The only di®erencewith what we saw in Section 2.2 is that now, the operator
applied to each coordinate doesnot have the samevalue of p anymore. However the
vectorized operator Sw;¹p (with multiple values for p) inherits the properties of the
vectorizedoperator Sw ;p (with a single value p) that ensurethe strong convergence
of the iterativ e algorithm obtained by minimizing a sequenceof surrogatefunctionals
as before. (The mathematical de¯nition 2.5.3 follows). That is to say that Sw;¹p is a
non-expansive and asymptotically regular operator, it hasat leastone¯xed point and
veri¯es two technical lemmas(lemma 3.17and lemma 3.18in [16]). Theseproperties
are conserved becausetheseis only a ¯nite number of valuespm .

Hence when jjjT
¤
Tjjj < C, an iterativ e algorithm that convergesstrongly to a

solution of Problem 2.5.1 is :

Algorithm 2.5.2.
(

¹f 0 2 H i arbitrary
¹f n = 1

C Sw;¹p

³
C ¹f n¡ 1 + T

¤
¹g ¡ T

¤
T ¹f n¡ 1

´
; n ¸ 1

Going back to the original observations gl and operatorsTm;l , the algorithm 2.5.2
in the original spacesH i

m is :

Algorithm 2.5.3.
8
>>>>><

>>>>>:

f 0
m 2 H i

m ; arbitrary ; 8 m 2 [[1; M ]]

8 n ¸ 1; 8 m 2 [[1; M ]]; 8 ¸ 2 ¤ :

hf n
m ; ' m

¸ i = 1
C S° m wm

¸ ; pm

µ
< Cf n¡ 1

m +
P

l=1 ;::;L
½lT¤

m;l gl ¡
P

l=1 ;::;L
r =1 ;::;M

½lT¤
m;l Tr ;l f n¡ 1

r ; ' m
¸ >

¶
' m

¸

with jjjT
¤
Tjjj < C

One can expressa possiblevalue for C in terms of upper bounds on the norms
of the combinations of T¤

m;l Tr ;l ; we won't do this explicitly for this generalcase,but
show in the next subsectionhow to do it for our particular application.
Remark . This approach is a generalizationof the method developed in [20] for M =
2, with p1 = 1 and p2 = 2.
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2.5.2 Application to astroph ysical data

We present in this sectionthe useof the multiple input/m ultiple output iterativ e
algorithm 2.5.3 for our astrophysical problem. The objects gl at hand are imagesof
a portion of the sky, acquired at di®erent wavelengths.The dominant components
f m in the observations are : the CosmicMicrowave background (f 1), the clustersof
galaxies(f 2), infrared point sources(f 3) and the galactic dust (f 4). We are mostly
interestedin reconstructingaccuratelythe clustersof galaxies.To do soit is necessary
to considerthe other signals, f 1, f 3 and f 4, becauseat the wavelength we consider
they dominate the clusters' signal.

The observed imagesgl all have the sameresolution and size and we want to
reconstruct images of the components with the same resolution and size as well.
Hence,in this case,the Hilbert spacesH i

m and H o
l are the same.We have chosento

embed our input and output imagesin the Hilbert spaceH = L 2([0; 1] £ [0; 1]) with
the canonicalnorm.

Each imageacquiredon the telescope is a superposition of the di®erent imageswe
are trying to estimate that is blurred and contaminated by noise.The blurring oc-
curs becausethe ideal impulse responseof the instrument is not perfect. It is instead
well modeledby the convolution with a function that dependson the observed wave-
length. This function is called a \b eam" in astronomy. Moreover, the contribution of
each component dependson the wavelength of observation becauseof their di®erent
physical characteristics.As a result, the observed imagesgl can be modeledas :

gl = bl ¤
h MX

m=1

am;l f m

i
+ nl (2.67)

where¤ denotesthe two-dimensionalconvolution ; am;l is a scalar; bl is the beamat
wavelength l ; and nl models the noise.Sourcesof noisehere are instrumental noise
and other components we overlooked becausethey are not dominant.

With this method, our estimatesof the physical components f 1, f 2, .... are mi-
nimizers of the functional 2.5.1, computed via Algorithm 2.5.3. The operators Tm;l

combine the convolution by the beam and the frequencydependenceof component
m :

Tm;l :
H ! H
f 7! am;l bl ¤ f

(2.68)

The beams bl are typically square integrable functions and therefore the Tm;l are
boundedlinear operators. The adjoint of Tm;l is :

T¤
m;l :

H ! H
f 7! ¹am;l

ebl ¤ f
where ebl (x; y) = ¹bl (¡ x; ¡ y) (2.69)

Choice of the parameter C

The norm jjjT
¤
Tjjj can be boundedby noticing that :

h
T

¤
T(f 1; : : : ; f M )

i

l
(x) =

LX

l=1

MX

r =1

¹am;l ar ;l ½l (bl ¤ ebl ¤ f r )(x) (2.70)
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Computing the Fourier transform of the previousequation, we obtain :

h
T

¤
T(f 1; : : : ; f M )

i ^

l
(») =

LX

l=1

MX

r =1

¹am;l ar ;l ½l

¯
¯bbl

¯
¯2

(») bf r (») ; (2.71)

or, writing it in a matrix form :
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(2.72)
where A is the M £ L matrix with entries am;l . Noting ½B(») the L £ L diagonal
matrix with entries ½1

¯
¯bbl

¯
¯2

(»), and ¯xing », onegets :
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¯
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¯
¯
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(2.73)

Assuming the beamsbl are integrable so that sup»

¯
¯bbl

¯
¯2

(») < 1 , one can bound the
matrix norm :

8 »; jjjA ½B(») A¤jjj · jjjA
¡
sup

»
½B(»)

¢
A¤jjj · sup

l ;»

³
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¯
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¯
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(»)
´

jjjAA ¤jjj (2.74)

Eq. (2.73) can be rewritten :
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(2.75)

Integrating this last equation in » givesa bound on the norm jjjT
¤
Tjjj :

jjjT
¤
Tjjj · sup

l ;»

³
½l

¯
¯bbl

¯
¯2

(»)
´

jjjAA ¤jjj (2.76)

For our astrophysical problem the beamsare Gaussianso the integrability condi-
tion is veri¯ed. We usedC = 2jjjT

¤
Tjjj.

Choice of the norms

We are most interested is the clusters of galaxiesmap f 2. Clusters of galaxies
are rare objects in the sky. They are very compact, typically a few arcminutes wide,
with a peak of intensity in the center and ¯laments on the outskirts. Becauseof
their compactnessand rarit y, the clusters of galaxiesare well described by a few
large wavelet coe±cients. The l1 norm on the wavelet coe±cients (which is in fact
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equivalent to the Besov B 1
1-norm), hasproved to be a good a regularization norm for

such signals[8, 10, 44]. Hence,that is what we useto constrain the object f 2 :

jjj:jjjX 2 =
X

¸ 2 ¤

j h: ; ' ¸ i j (2.77)

where ' = f ' ¸ g¸ 2 ¤ is a tight frame of complex wavelets. We describe in detail in
Chapter 4 Section4.2 the dual tree complexwavelet transform that is usedhere.

The CosmicMicrowaveBackgroundcomponent, f 1, is a smooth andslowly varying
signal. It spreadsacrossthe whole sky. Moreover its power spectrum j bf 1(»)j2 is well
studied and can thereforebe usedto constrain the estimate of f 1. This can be done
by adding weights w¸ to the l2-norm in wavelet space:

jjj:jjjX 1 =
X

¸ 2 ¤

w¸ j h: ; ' ¸ i j2 (2.78)

As is the casefor Sobolev spaces,for which one choosesw¸ = wj ;k = 2³ j p for appro-
priate ³ , we useweights w¸ = wj ;k that depend only on the scalej of the wavelet ' j ;k

(not on the location k). They are de¯ned as follows :

w¸ = wj ;k =

R¯
¯d' j ;0(»)

¯
¯2

d»
R

P1(»)
¯
¯d' j ;0(»)

¯
¯2

d»
(2.79)

whereP1(») is a template of the power spectrum of the CMB studied by astrophysi-
cists.

The Galaxy Dust is also a smooth and slowly varying signal that spreadsacross
all sky. Its power spectrum is not aswell studied as the CMB, sowe investigatedthe
relevanceof di®erent Sobolev type norms to constrain its smoothness.We obtain the
best results by choosingw¸ = wj ;k = 23j , i.e. :

jjj:jjjX 4 =
X

¸ =( j ;k)2 ¤

23j j h: ; ' ¸ i j2 (2.80)

The last signal f 3 comesfrom really small objects that emit in the infrared spec-
trum, called infrared point sources.Thesepoint sourcesare rather rare. Sincethey
are so small, they appear under the resolution of any image,so that the extent of a
point sourceis smaller than onesinglepixel. For this signal it is then natural to stay
in the pixel domain, requiring that the estimate is a sparseas possible:

jjj:jjjX 3 =
X

pixel

¯
¯f 3(pixel)

¯
¯ (2.81)

Note that onewould ideally want to usethe l0-norm :
P

pixel ±jf 3 (pixel )j6=0 . However, the
functional would then not be convex. So,we choosethe exponent p to stay assparse
as possiblewhile keepingthe convexity, which is p = 1. (In fact, Donohohas shown,
and used in several papers, that in many casesan l1-constraint is a good proxy for
an L0-bound; seee.g. [22, 23, 24].)
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Choice of the regularizing parameters

The principal sourceof noisein the astrophysical data we consideris controlled by
the time of exposureto the portion of sky imaged.Astrophysiciststhereforecustoma-
rily provide, aspart of their data, not only the gl but alsoan estimation of the noise
level ¾l in the imageacquired.When the f m arecloseto the truth, the l th discrepancy
term jj

P
m Tm;l f m ¡ gl jj 2 should be of the order of ¾2

l . To give equal importance to
each discrepancyterm, we set ½l = 1

¾2
l
.

Similarly, we chosethe parameters° m so that the regularization terms jjjf m jjjX m

have the sameorder magnitude aseach other but alsoas the discrepancyterms. The
estimation of the order of magnitudeof jjjf m jjjX m is donenumerically usingsimulations
of each component.

Positivit y constrain ts

The clusters' signal and the point sources'signal are positive. We introducethese
constraints using the projection step described in 2.2.4 for thesetwo components.
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Chapitre 3

Statistical metho d

In this section, we present a method of separation of blurred mixtures of com-
ponents basedon a statistical description of each component to be estimated. This
method is largely inspired by the work of J. Portilla et al. [47]. In that paper, the
authors present a method for deblurring natural imagesthat is basedon a statistical
descriptionof the unknown elements constituting the observation, namely, the \true"
imageand the noise(the point spreadfunction causingthe blurring is supposedto be
known). In that framework, the \true" image is viewed as a realization of a random
processF , and the noiseasa realization of another random processN . Consequently,
the observation is a realization of a random processG that is a known function of
the previous ones: G = T(F; N ). The description of the characteristics of the two
random processesF and N inducesa statistical model for the random processG. In
return, given a particular observation i.e. a particular instanceof G, this model gives
information about the plausibleinstancesof F and N that producedit. Using this in-
formation, onecan de¯ne a notion of best estimatefor the instancesof F and N that
produced the observation in hand, which is to say an estimate of the \true" image
and of the noisegiven the observation we have. Several standard techniquesexist to
carry out theseestimations; onecan usee.g.a \maxim um a posteriori" approach, or
a \maxim um likelihood estimator", etc.... Here,as in [47], we shall usea Bayesleast
squareestimate, i.e. we estimate the \true" image by computing the maximizer of
the conditional expectation of the processF given the observation.

Given this framework for estimation, one is left with choosing a model for the
processesF and N , sothat the observation givesa plausibleestimatefor F (which is
the estimate of the \true" image). The choicesmade in [47] are basedon knowledge
that hasbeenacquiredby studying natural imagesand their properties.In particular,
they usewavelet expansions: going to wavelet spacehelpsseparatingthe noisefrom
the \true" image, becausethe noiseenergy is spreadout acrosswavelet coe±cients
whereasthe wavelet transform of a natural image is typically concentrated in a few
large coe±cients. The wavelet transformation has another advantage : it has been
observed that the distribution of wavelet coe±cients of natural imagesis not Gaus-
sian; whereasthe noise is typically well modeled by a Gaussianprocess.Moreover,
the structure present in natural imagescausestheir wavelet coe±cients to behave in
a more coherent manner than the noise'scoe±cients. For instance, the presenceof
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an edgeis re°ected by relatively large wavelet coe±cients, through di®erent scales,
at the location of the edge.

In [47], the authors propose a method that takes advantage of the knowledge
we just described. They chosea particular wavelet transform, the steerablepyramid,
and modeled \neighborhoods" of wavelet coe±cients by GaussianScale Mixtures
(GSM). Theseneighborhoods aresetsof wavelet coe±cients associated with the same
location and that behave in a coherent manner.Modeling the behavior of the wavelet
coe±cients in theseneighborhoods jointly (instead of each singly) buys power for the
estimation by taking advantage of the coherencepresent in the \true" image and
absent in the noise.Moreover, the GaussianScaleMixture is a family of probability
distributions that can capture the non-Gaussianity of a signal; it has proved to be
usefulfor modeling the distribution of wavelet coe±cients in natural images[60]. Once
this model is completely characterized,the authors of [47] compute the Bayes least
squareestimateof the \true" image; the useof the GSM model makesthis estimate
easyto compute.

We have extendedthis method to the caseof blurred mixtures of components in
order to extract the clustersof galaxiesfrom observed astrophysical data. Although
our components are not natural images,part of the reasoningherestill holds. In par-
ticular, the useof neighborhoods of waveletscoe±cients becomescrucial. Not all our
components deviate a lot from Gaussianity (indeed the CMB signal is Gaussian!),
therefore, distinguishing the noise from such components solely on the basisof the
marginal distributions can not be done.Consequently, the coherenceof wavelets co-
e±cients in the sameneighborhood is essential to make this distinction. Moreover,
somesignals(e.g. the clustersof galaxies)are much lessintensethan others, causing
the amplitude of their wavelet coe±cients to be too small to be detectedoneby one.
Taking advantage of their coherencebecomesnecessaryto lower the intensity thre-
shold for detection of thesesignals.Note that the (non{)Gaussianity of the di®erent
components hasa physical meaning: for example,the deviation from Gaussianity of
the CMB givesastrophysicists an indication on how to understand the Universe.As
the cluster signal is itself highly non{Gaussian,a bad estimation of the cluster signal
\p ollutes" the estimatedCMB signal, and thus the astrophysical conclusions.There-
fore, careful treatment of the (non{)Gaussianity of thesesignalsis necessary. Using
the GaussianMixture Model allows us to do soin a simpleand e±cient mannersince
both Gaussianand non{Gaussiansignalscan be modeledwith the sameformalism.

In this chapter, we will present the theoretical aspectsof this model illustrated by
someexamples.In the ¯rst section,we describe in detail the di®erent constituents of
the statistical model of the di®erent signalspresent in the observations. In particular,
we show how to de¯ne neighborhoods of wavelet coe±cients, what areGaussianScale
Mixture models and what is the resulting model for each component. The second
section discussesthe formal derivation of the Bayes least square estimate and its
computation, leaving the problem of the estimation of the di®erent parametersfor
section three. Finally, we describe in the last sectionof this chapter the application
of this method to our astrophysical problem. As we go along, we shall give some
examplesto illustrate the theoretical aspectsof this method ; however most examples
are kept until in Chapter 5, wherewe juxtaposethe results producedby this method
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and by the functional method of Chapter 2, so that the reader can easily compare
them.

3.1 Mo delization of the signals

Let us now give more explicits details about the di®erent constituents of the
statistical model of the data.

3.1.1 Neigh borho ods of wavelet coe±cien ts

In natural images,although the wavelet transform has the property of decorre-
lating coe±cients, there exists signi¯cant spatial dependenciesin the transformed
coe±cients : wavelet coe±cients centered at the same(or a close)location and scale
behave coherently. This is a consequenceof the geometricalpropertiesof such images
and of the spatial localization of wavelets.For example,a vertical edgeseparatingtwo
smooth regionsyields a recognizablepattern in the wavelet transform : all wavelet
coe±cients are very small, except those corresponding to a wavelet oriented hori-
zontally and whosesupport includesthe edge.Not only will the horizontal wavelets
centered at the edgeyield quite large coe±cients, but also the horizontal coe±cients
will decay or oscillate in a special mannerwith the distanceto the edgeand with the
scale.(In fact, if such a simple vertical discontinuity was located at n = 2j (k1

o; k2
o),

(k1; k2) 2 Z2, one could derive the exact values taken by the coe±cients
D

f ; ' ver t
j 0;n0

E

for scalesj 0 ¯ner than j , centered at locations n0 = 2j 0
(k0; k2

o); k0 2 [[k1
o ¡ K ; k1

o + K ]].
Here we denoted' ver t the wavelet that is vertically oriented).

Similarly, for our astrophysicalproblem, the geometricalpropertiesof the di®erent
components can be exploited. For example,clustersof galaxiesare spatially localized
structures with a high intensity peak at their center. Their size is of the order of a
couplearcminutes.Hence,at scalesj wherethe width of the wavelet ' j is a coupleof
arcminutes or less,the amplitude of wavelet coe±cients should exhibit rather sharp
transitions from very low to very high amplitude at the locations of the clusters.
Moreover, thesetransitions should be sparselydistributed sincethe clustersare rare.
This would not happen for the CMB signal (resp. the galaxy dust) for which the
variations are much smoother and the typical scaleof variations is more than 10
(resp. 50 ) times bigger.The point sourceson the other hand are much lessextended
than the clustersand the noiseis spreadover scaleand space.Hencethe local behavior
of the wavelet coe±cients is particular to each component.

Di®erent approacheshave beenproposedto take in account the spatial coherence
of wavelet coe±cients in order to improve imageprocessing.The zerotreemethod for
compression[55] and later the hidden Markov model basedon wavelet treesfor image
denoising[15, 50] both incorporate the spatial dependenciesasprior knowledgeon the
wavelet tree structure. Other methods are basedon local models of the coe±cients
that areusedeither to computeparametersfor the denoising[54] or asstatistical prior
for estimationof the signal[41, 47].Most of thesemethods[55, 15, 50, 54] consideronly
the depenciesbetweena wavelet coe±cient and its parent (i.e. the coe±cient centered
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at the samelocation but at the next coarserscale).In our problem,the presenceof the
blurring will inducedepencieson the wavelet coe±cients within a scaleaswell. Sowe
will use,as in [47, 41], more extendedneighborhoods. We considerthe neighborhood
of a coe±cient f j ;q;n =


f ; ' q

j ;n

®
to be the set that contains the coe±cient itself and

its parent, f j ¡ 1;q;n , aswell coe±cients at the samescalej and orientation q, centered
at positionsn0, wheren0 belongsto a K ¡ ring of n. Using the notation f j ;q;n;K for the
neighborhood of the coe±cient f j ;q;n , this amounts to :

f j ;q;n;K = f f j ¡ 1;q;ng [ f f j ;q;n0; n0 = n + (i; j ); (i; j ) 2 [[¡ K ; K ]]2g (3.1)

We note Vj ;q;n;K the set of indexesof wavelet coe±cients in the neighborhood f j ;q;n;K :

Vj ;q;n;K = f (j ¡ 1; q; n) g [ f (j ; q; n0); n0 = n + (i; j ); (i; j ) 2 [[¡ K ; K ]]2g (3.2)

so that f j ;q;n;K = f f i gi 2V j ;q ;n ;K . Note that for K = 0, this reducesto the wavelet coef-
¯cient and its parent. For our application, K = 1 is typically su±cient to model the
statistical dependencesof the wavelet coe±cients of the di®erent components. Taking
the blurring into account, we will extend the sizeof the neighborhood up to K = 3
to obtain a good estimation from the observations. For the sake of concisenessin the
notation, we shall drop the index K indicating the sizeof the ring (and sometimes
even the wavelet index j ; q; n) wherenot necessary, denoting the neighborhood f j ;q;n;K

by f j ;q;n (or even f ). Furthermore, the neighborhoods are orderedso that we describe
them as vectors.

In [55, 15, 50, 41], the behavior of a singlewavelet coe±cient is describedby a two-
statemodel : a waveletcoe±cient is either signi¯cant or not. The marginaldistribution
of a coe±cient is a mixture of two centeredGaussians.Oneof them hassmall variance,
this accounts for the high number of very small (i.e. non-signi¯cant) coe±cients. The
secondGaussianhas a large variance, this accounts for the existenceof large (i.e.
signi¯cant) coe±cients, giving more weight to the tail of the distribution than a
singleGaussianwould normally have. Becausewe want to model several components,
we would like our model to o®erthe possibility of making a ¯ner description of the
behavior of wavelet coe±cients. To do so, we usethe GaussianScaleMixture model
(GSM), also usedin [47]. This model is more °exible than the two-state mixture of
Gaussianmodel, allowing to ¯t a wide variety of marginal distributions.

3.1.2 Gaussian scale mixtures

Mo del

We model each neighborhood vector f as a Gaussianscalemixture. That is to
say : the probability distribution of the vector f is the distribution of a product of
two random variables,

p
z and u :

f
dist:
´

p
z u (3.3)

u is a centered Gaussianvector and z is a scalar random variable that takes only
non-negative values.The random variable z, whosedistribution we describe later, is
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called the multiplier and is independent of u. We shall always normalizez sothat its
expectation is one : Ef zg = 1. It follows that the covariancematrix of the Gaussian
vector u is exactly the covariancematrix of the neighborhood vector f :

Cov(f i ; f j ) = Ef f i f j g ¡ Ef f i gEf f j g

= Ef (
p

z u i )(
p

z u j )g ¡ Ef
p

z u i gEf
p

z u j g

= Ef zgEf u i u j g ¡ Ef
p

zg2Ef u i gEf u j g (uand z are independent)

= Ef u i u j g (Ef zg = 1; Ef u i g = Ef u j g = 0)

= Ef u i u j g ¡ Ef u i gEf u j g (again Ef u i g = Ef u j g = 0)

Cov(f i ; f j ) = Cov(u i ; u j )

The GSM model is then speci¯ed by two parameters: the probability distribution
of the multiplier z, noted pz, and the covariancematrix of f , noted C f . Let us now
describe how these two parametersa®ect the properties of the distribution of the
vector f .

Prop erties of the marginal distributions

From Eq. (3.3), one can seethat the marginal distributions of the elements of f
(i.e. the pf i ) may have di®erent variancesbut all have the sameshape. The variances
of the marginal distributions aregivenby the diagonalof the matrix C f whereastheir
commonshape dependson the probability density of the multiplier, pz.

If z is identically 1, then f i = u i , and therefore, the marginal distributions are
Gaussian.By choosinganother probability distribution for z, onecan shape the mar-
ginal distributions of f to ¯t a wide rangeof distributions. In [1], Andrews and Mal-
lows showed that for any scalar processx whoseprobability density function f x is
symmetric and veri¯es :

µ
¡

d
dy

¶ k

f x (y
1
2 ) ¸ 0; for y > 0;

one can ¯nd a multiplier z such that the corresponding Gaussianscalemixture has
the samedistribution as x. (This is actually also a necessarycondition.) In Fig. 3.1,
we plot the Gaussianprobability density together with two examplesof probability
distributions that can be described by Gaussianscalemixtures : the Laplacedistri-
bution (f x = 1

2e¡j x j) and the logistic distribution (f x = e¡ x

(1+ e¡ x )2 ). The probability
densities(f x ) areplotted on the left panelof the ¯gure and their logarithm in base10
(log10(f x )) on the right panel. Theseprobability densitieshave beenscaledto have
the samevariance.

The graphsin Fig. 3.1 highlight two particular featuresof the marginal distribu-
tions that canbe tuned usingGaussianscalemixtures. On the onehand, the behavior
of the GSM at the origin can range from very smooth (like the Gaussianor the lo-
gistic distribution) to very \p eaked" (like the exponential) This can be seenin the
left panel of Fig. 3.1. On the other hand, a GSM distribution can have a fatter tail
than the Gaussiandistribution (seeright panel of Fig. 3.1). Similarly, if a signal has
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a very sparsewavelet expansion,most of its wavelet coe±cients are small, therefore
their probability density at the origin is rather peaky; somecoe±cients, on the other
hand, will be quite large, and therefore the tail of the probability distribution will
be signi¯cantly fatter than the Gaussian [60]. These features typically model the
non-Gaussianbehavior of wavelet coe±cients and we will exploit them later.
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Fig. 3.1 { Probability density of several scalarGaussianscalemixtures with the same
variance : the Gaussiandistribution, the exponential distribution and the logistic
distribution. Left : the probability densitiesf x , right : their logarithm log10(f x ).

The exampleof the logistic distribution alsoshows that thosetwo featurescan be
tuned independently from each other : the logistic density is assmooth asthe Gaussian
density at the origin but still has heavy tails. At this point, we should mention that
the two properties (behavior at the origin and at the in¯nities) are exactly the ones
modeledby the two-stateGaussians.However, the probability density of the mixture
of two Gaussiansdecays asthe wider Gaussian,not enablingslower asymptotic decay ;
it is smooth at the origin, and it is not di®erentiable. We hope that the °exibilit y
of the GaussianScaleMixture will enableus to ¯t the experimental distribution of
the wavelet coe±cients of the clustersof galaxiesmore preciselythan what we would
obtain with a mixture of two Gaussians.

Prop erties of the conditional distributions

As we have just seen,the introduction of the multiplier z in the Gaussianscale
mixture givesthe possibility to ¯t a wide variety of marginal distributions. We shall
now seehow the multiplier alsoa®ectsthe conditional distributions in the GSM mo-
del. When the GSM is usedfor neighborhoodsof wavelet coe±cients, theseconditional
distributions, together with the covariancematrices C f model the spatial dependen-
ciesbetweenthe coe±cients. We have shown earlier that the covariancematrices of
the vectors f and u are the same.Hencethe \averaged" dependenciesbetweentwo
elements in f is captured in the model by the Gaussianvector u. Thesedepenciesare
however further tuned by the multiplier.
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To illustrate this, let us considerseveral two-dimensionalGSM that all have the
identit y matrix as their covariance matrix. The GSM model in two-dimensionsis
then : (x1; x2) dist:= (

p
z u1;

p
z u2). Here, x1, x2, u1, u2 and z are scalar random

variables; x1, x2, u1 and u2 are centered. The choice of the identit y as a covariance
matrix imposesthat x1, x2, u1 and u2 have unit variance; that x1 and x2 (resp. u1

and u2) are decorrelated; and that the joint density of x1 and x2, p(x1 ;x2 ) , is radial.
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Fig. 3.2 { Conditional probability density p(x2jx1) of several two-dimensionalGaus-
sian scalemixtures with the samecovariance matrix : the Identit y matrix. Left to
right, then up and down : the Gaussiandistribution, the exponential distribution, the
Cauchy distribution and the log-uniform distribution.

Note that, sinceu1 and u2 form a Gaussianvector and are decorrelated,they are
independent whereasx1 and x2 are not independent, unlessz is identically 1. Hence,
although they have the samecovariance matrix, u and f do not need to have the
sameconditional distributions. The presenceof the multiplier z in the GSM allows
to shape the conditional distribution of x2 given x1, p(x2jx1), di®erently. In Fig. 3.2,
the conditional distributions p(x2jx1) are plotted for di®erent GSM with the Identit y
as a covariancematrix. Each column of a plot represents the conditional probability
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density of x2 givenx1, for a ¯xed valueof x1. The top left panelshows the conditional
probability in the casewherethe GSM reducesto a Gaussianvector (z = 1). Sincex1

and x2 are independent in that case,the conditional probability p(x2jx1) is the same
for all valuesof x1. In the other cases,the multiplier's distribution is not trivial and
consequently, the conditional probability p(x2jx1) dependson the value of x1.

The non-Gaussiandistributions displayed in Fig. 3.2 (top right and bottom left
and right) exhibit a bow-tie shape that has been observed for neighboring wavelet
coe±cients in natural images[60]. The characteristics of a bow-tie shape distribu-
tion are : the conditional distribution p(x2jx1) is concentrated around zerowhen the
absolutevalue of x1 is small, but much more spreadout for larger valuesof x1. For
neighborhood of wavelet coe±cients, this translates into : if the central coe±cient is
very small, its neighbors are typically very small as well ; if the central coe±cient is
very large, its neighbors can take a much larger set of values.

3.1.3 Resulting mo del for each comp onent

As we stated in section 2.5.2, our astrophysical problem is to reconstruct seve-
ral objects f 1; f 2; ::; f M from noisy and blurred observations of mixtures of them,
g1; g2,.., gL , determinedby equation (2.67). (We usein this chapter superscripts for
the indexesof the components and observations, sinceit makesthe notation easierfor
the corresponding neighborhoods of wavelet coe±cients). Our a priori model for each
object f m is that the statistical behavior of the neighborhoods of wavelet coe±cients
f m
j ;q;n;K can be described by a Gaussianscalemixture.

The physical properties of one component are identical in every direction and in
every spatial location. Therefore, it seemsthat the modelization of a neighborhood
f m
j ;q;n;K should depend only on m, K and the scalej , and not on n nor q, leading to

f m
j ;q;n;K

dist:=
p

zm
j ;K um

j ;K . However, we will needto keepthe dependencein orientation
q in the Gaussianvector um

j . Indeed, a neighborhood f m
j ;q;n;K contains the parent

coe±cient, f m
j ¡ 1;q;n;K , and a \square" neighborhood of coe±cients at the samescale:

f m
j ¡ 1;q;n0;K , for n0 = n + (i; j ); (i; j ) 2 [[¡ K ; K ]]2. Therefore the neighborhood f m

j ;q;n;K
is not the rotated version of the neighborhood f m

j ;0;n;K . Moreover, we will need to
order the neighborhoods f m

j ;q;n;K into vectors with the sameorder regardlessof the
orientation. For exampleif K = 1, we will usethe order :

f j ;q;0;1 = (f j ;q;(¡ 1;¡ 1); f j ;q;(¡ 1;0); f j ;q;(¡ 1;1); f j ;q;(0;¡ 1); f j ;q;(0;0); f j ;q;(0;1);

f j ;q;(1;¡ 1); f j ;q;(1;0); f j ;q;(1;1); f j ¡ 1;q;(0;0)):

The ¯rst two terms, f j ;q;(¡ 1;¡ 1) and f j ;q;(¡ 1;0), always correspond to wavelets that are
each other's shifts in the vertical direction and thereforetheir correlation dependson
the orientation q of the wavelet. (Note that this problem would still arisewith \circu-

lar" neighborhoods.) We are left with a model of the form : f m
j ;q;n;K

dist:=
p

zm
j ;K um

j ;q;K .
The sizeK of the neighborhood we have to considerdependson the scalej and on

the component f m considered.We ¯nd in practice that K = 1 is su±cient to encode
the di®erencesbetweenour components. Fixing K = 1, the ¯nal a priori model for
each component f m is : for a ¯xed scalej and a ¯xed orientation q, the neighborhoods
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of wavelet coe±cients f m
j ;q;n , for n 2 Z2 are independent identically distributed with

the samedistribution asthe Gaussianscalemixture
p

zm
j um

j ;q, wherethe distribution
of the multiplier zm

j is independent of the orientation q.
Note that sincethe neighborhood of wavelet coe±cients overlap for closelocations,

the independencecannot hold in reality. However, our strategy is to retain from each
estimated neighborhood f m

j ;q;n only the central coe±cient f m
j ;q;n . Therefore,we do not

need to make each estimated neighborhood consistent. Rather, we rely on the fact
that neighborhoods themselves take into account statistical dependenciesbetween
coe±cients, to ensurethat the estimatedcoe±cients f m

j ;q;n are consistent. The a priori
model is then determinedby the parametersof the Gaussianscalemixtures for each
component f m , each scalej and orientation q. We will describe how to choosethese
parametersin detail in section 3.3, but we ¯rst explain how the estimation will be
carried out from this model.

3.2 Bayes least square estimate

In this section we explain how to compute the Bayes least squareestimatesof
the neighborhood of coe±cients for each component, given the a priori model we just
described and the forward model for the observations g1; g2,.., gL :

gl = bl ¤
h MX

m=1

am;l f m
i

+ wl (3.4)

Here the beam functions bl are known deterministic functions, the frequencydepen-
denciesam;l are known scalars.The noisewl is Gaussianand stationary, with known
covariance,and is independent from oneobservation to the other.

To explain our estimation method, we break it down in several steps. We ¯rst
explain the estimation of a singlecomponent by denoisinga singleobservation. This
follows closely[47]. Then we explain how to take the blurring into account for a single
component. Wederivedthis adaptation independently from the authorsof the original
paper who presented it succinctly in [48]. Herewe give moredetails on the derivation
of Bayes estimate for the problem of deblurring one observation ; in particular we
explain the modeling assumptionsmade in this case.Then in subsection3.2.3, we
extend this method to the observations of several mixture of components, and show
how to separatethem.

3.2.1 Denoising one signal

Let us ¯rst consider the simple casewhere we observe one processpolluted by
noise : g = f + w. The equations for each single wavelet coe±cient and for the
neighborhood of wavelet coe±cients read :

gj ;q;n = f j ;q;n + wj ;q;n

gj ;q;n = f j ;q;n + w j ;q;n (3.5)
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The Bayesleastsquareestimateof the neighborhood f giventhe observedneighbo-
rhood g is the conditional expectation Ef f jgg. The convenienceof the representation
of the neighborhood f by a Gaussianscalemixture is that given the multiplier z, Eq.
(3.5) reducesto a sum of Gaussianvectors:

g =
p

zu + w (3.6)

When x and r are Gaussianvectors, the conditional expectation Ef xjr g of x given
r , is :

Ef xjr g = Cx ;r (C r )¡ 1(r ); (3.7)

whereCx ;r is the covariancematrix betweenthe vectorsx and r . If in addition x and

y are independent and r = x + y, then C x ;r = Cx ;x + y = Cx ;x + Cx ;y = Cx ;x
def
= Cx ,

and similarly C r = Cx + Cy . The following result holds whenever x and y are two
independent Gaussianvectors:

Ef xjx + yg = Cx (Cx + Cy )¡ 1(x + y) (3.8)

Going back to Eq. (3.6), and using the independenceof the Gaussianvectorsu and
w, we obtain that conditioned on the random variable z :

Ef ujg; zg =
p

z Cu (z Cu + Cw )¡ 1(g); (3.9)

using Cu = C f , this leadsto :

Ef f jg; zg = z C f (z C f + Cw )¡ 1(g): (3.10)

In other words the Bayesleast squareestimate of f given the observed vector g and
given the multiplier z, is a Wiener ¯lter applied to g, the neighborhood of wavelet
coe±cients of the observation. Integrating the last equation with respect to the pos-
terior distribution of the multiplier p(zjg), we get the Bayesleast squareestimate of
f given the observation g :

Ef f jgg =
Z 1

0
Ef f jg; z = z0g p(z = z0jg) dz0 (3.11)

This estimate is a weighted averageof the Wiener ¯lters described in Eq. (3.10). The
weights are determined by the posterior distribution, p(zjg), which is computed via
Bayesrule :

p(z = z0jg) =
p(gjz = z0)pz(z0)R
p(gjz = z0)pz(z0)dz0

: (3.12)

Herep(gjz = z0) is a centered multidimensional Gaussiandistribution with covariance
matrix z0C f + Cw , and pz is the probability distribution of z (which we will describe
in 3.3).

Following this procedure,one gets an estimate Ef f j ;q;n jgj ;q;ng for each neighbo-
rhood of coe±cients f j ;q;n . One keepsonly the central coe±cient f j ;q;n of each of these
estimatedvector and reconstructsan estimateof the signal f by inverting the wavelet
transform with thesecoe±cients.
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3.2.2 Deblurring one signal

We considernow the casewhere the observed signal is a blurred version of the
one object : g = f ¤ b+ w. The convolution with the beam b correlatesthe signal
spatially. As a result, the equationsin wavelet spacedo not decoupleany more :

gj ;q;n =

f ¤ b+ w ; ' q

j ;n

®
(3.13)

gj ;q;n =

f ¤ b ; ' q

j ;n

®
+ wj ;q;n (3.14)

gj ;q;n =
X

j 0;q0;n0

f j 0;q0;n0

D
' q0

j 0;n0 ¤ b ; ' q
j ;n

E
+ wj ;q;n (3.15)

De¯ning b(j ;q;n);(j 0;q0;n0) by b(j ;q;n);(j 0;q0;n0) =
D

' q0

j 0;n0 ¤ b ; ' q
j ;n

E
, we obtain :

gj ;q;n =
X

j 0;q0;n0

b(j ;q;n);(j 0;q0;n0) f j 0;q0;n0 + wj ;q;n (3.16)

Therefore,a particular neighborhood f j 0;q0;n0;K contributes to every observed wavelet
coe±cient gj ;q;n . In theory, one would obtain the best estimate of f j 0;q0;n0;K by using
the information in every wavelet coe±cients gj ;q;n . This would be a very di±cult
estimation problem, moreover, our ¯nal goal is not the estimation of the neighbo-
rhoods themselves but rather their central coe±cients. So we do not intend to use
the full set of coe±cients gj ;q;n to estimateeach neighborhood. Rather, by considering
the properties of the beam and the wavelets, we claim that using only the observed
neighborhood gj ;q;n;K yields a su±ciently good estimation of the object neighborhood
f j ;q;n;K , when K is chosenappropriately.

To seethat, let us ¯x an index j ; q; n and considerthe coe±cients b(j 0;q0;n0);(j ;q;n) for
all j 0; q0; n0. Using the fact that the beamis radially symmetric, we can rewrite these
coe±cients :

b(j ;q;n);(j 0;q0;n0) =
D

' q0

j 0;n0 ¤ b ; ' q
j ;n

E
(3.17)

b(j ;q;n);(j 0;q0;n0) =
D

' q0

j 0;n0 ; b¤ ' q
j ;n

E
(3.18)

b(j ;q;n);(j 0;q0;n0) =
¿

[' q0

j 0;n0 ; \b¤ ' q
j ;n

À
(3.19)

b(j ;q;n);(j 0;q0;n0) =
Z

bb(») d' q
j ;n (») [' q0

j 0;n0(») d» (3.20)

Most of thesecoe±cients are really small :

1. If jj ¡ j 0j is large, then, sincethe wavelet is well localizedin frequency, ' q
j ;n and

' q0

j 0;n0 areconcentrated in di®erent frequencybands.Hence
R

jd' q
j ;n (»)jj [' q0

j 0;n0(»)jd»
is small and by Eq. (3.20), b(j ;q;n);(j 0;q0;n0) is small.

2. If jq ¡ q0j is large, then, sinceoriented wavelet are localized in di®erent parts

of the frequencyplane, again the support of d' q
j ;n and [' q0

j 0;n0 are di®erent. Hence
R

jd' q
j ;n (»)j j [' q0

j 0;n0(»)j d» is small and by Eq. (3.20), b(j ;q;n);(j 0;q0;n0) is small.
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3. If jn ¡ n0j is large, we usethe localization in spaceof both the beamb and the
wavelet to arguethat b(j ;q;n);(j 0;q0;n0) is small. We de¯ne the width of a function h
by the minimal length of the interval I such that :

R
I jh(x)2jdx > ´

R
jh(x)2jdx,

¯xing ´ = :9 for example.If j2j n ¡ 2j 0
n0j > jbj + (2j ¡ 1 + 2j 0¡ 1)l where l is the

width of the wavelet and jbj the width of the beam,the support of the functions
' q0

j 0;n0 and b¤' q
j ;n essentially do not intersect,sothat by Eq. (3.18), b(j ;q;n);(j 0;q0;n0)

is small.

Note that sincethe wavelets we usehere are compactly supported in frequency(cf.
section 4.3 in Chapter 4 for the details), we actually have : b(j ;q;n);(j 0;q0;n0) = 0 for
jj ¡ j 0j > 1 or jq¡ q0j > 1. Hencewe arguethat b(j ;q;n);(j 0;q0;n0) is not signi¯cant unless
jj ¡ j 0j · 1, jq ¡ q0j · 1 and j2j n ¡ 2j 0

n0j > jbj + (2j ¡ 1 + 2j 0¡ 1)l . It turns out that
practically, the crossterms b(j ;q;n);(j 0;q0;n0) for di®erent orientations q0 = q+1 or q0 = q¡ 1
are negligible as well. As far as the scalej 0 = j + 1 or j 0 = j ¡ 1 is concerned,the
coe±cients b(j ;q;n);(j 0;q0;n0) are in practice smallerthan the coe±cients at the samescale
b(j ;q;n);(j ;q;n0) unlessn = n0.

Putting this together, we obtain that the contribution of a particular wavelet
coe±cient f j ;q;n is most important in the neighborhood of observed coe±cients of the
form gj ;q;n;K b where K b = 2¡ j jbj + l. Keeping in mind that we will retain only the
central coe±cient f j ;q;n from the estimated neighborhood f j ;q;n;K f , (where K f is the
size of the neighborhood neededto capture the spatial dependencesof the wavelet
coe±cients of f ), it is then reasonableto useonly the observed neighborhood gj ;q;n;K

to estimate f j ;q;n;K f choosingK = maxf K f ; K bg.
Using Eq. (3.16) for each coe±cient in the neighborhood gj ;q;n;K , we get :

gj ;q;n;K = B j ;q;n;K f j ;q;n;K + Rj ;q;n;K + w j ;q;n;K (3.21)

with :

B j ;q;n;K =
©

b(j 1 ;q1 ;n1 );(j 2 ;q2 ;n2 )

ª
(j 1 ;q1 ;n1 );(j 2 ;q2 ;n2 )2V j ;q ;n ;K

(3.22)

Rj ;q;n;K =
X

(j 1 ;q1 ;n1 ) 62Vj ;q ;n;K
or (j 2 ;q2 ;n2 ) 62Vj ;q ;n ;K

b(j 1 ;q1 ;n1 );(j 2 ;q2 ;n2 ) f j 2 ;q2 ;n2 (3.23)

Here, we have separatedthe di®erent contributions to the observed neighborhood
gj ;q;n;K into three terms : the contribution of the sameneighborhood in the object
B j ;q;n;K f j 0;q0;n0;K , the contribution of the sameneighborhood in the noisew j ;q;n;K and
the contribution from remaining wavelet coe±cients in the object R j ;q;n;K .

As wesaw earlier, the coe±cients b(j 1 ;q1 ;n1 );(j 2 ;q2 ;n2 ) that appearin Rj ;q;n;K arerather
small and thereforethe contribution of this term canbe considerednegligible.We will
considerthis term as additional noiseand work with the model :

gj ;q;n;K = B j ;q;n;K f j ;q;n;K + w0
j ;q;n;K (3.24)

whereB j ;q;n;K is the matrix described in Eq. (3.22), w0 is modeledby Gaussiannoise
and f j ;q;n;K by a Gaussianscalemixture.
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Dropping the indexesand using Eq. (3.7), we ¯nd that the expectedvalue of the
neighborhood f given the observedneighborhood g and the multiplier z is the Wiener
¯lter :

Ef f jg; zg = z C f B ¤(zB C f B ¤ + Cw
0)¡ 1g (3.25)

The full Bayesleast squareis again a weighted sum of these¯lters, with the weights
given by the posterior distribution p(zjg) computedvia Eq. (3.12). The prior p(gjz)
also takesthe blurring into account : it is a multidimensional Gaussiancentered and
with covariancematrix zB C f B ¤ + Cw

0. As before,only the central coe±cient of each
estimatedneighborhood f is usedto reconstruct the object f via the inversewavelet
transform.

With this procedurein mind, we can now explain how to extend this method to
the problem of separationof blurred mixtures of signals.

3.2.3 Separating blurred mixtures of signals

Giventhe model for the mixture of components in Eq. (3.4), the analogto equation
(3.16) is :

8l 2 [[1; L ]]; gl
j ;q;n =

MX

m=1

X

j 0;q0;n0

am;l bl
( j ;q;n);(j 0;q0;n0) f

m
j 0;q0;n0 + wl

j ;q;n (3.26)

As we arguedbefore,most of the coe±cients bl
( j ;q;n);(j 0;q0;n0) are very small. Therefore,

the in°uence of a particular wavelet coe±cient of object mo, f mo
j ;q;n , will be mostly

seenin the neighborhood gl
j ;q;n;K l of each observation gl . However, this time, the

contribution of object mo is not the only signi¯cant contribution in gl
j ;q;n;K l : each

component f m potentially gives such a signi¯cant contribution. It is then natural
considerthe L neighborhoods gl

j ;q;n;K l , for l = 1; ::L in conjunction to estimateat the
sametime the M neighborhoods f m

j 0;q0;n0;K l , for m = 1; ::M . Note that the sizeK l of
the observed neighborhoods gl

j ;q;n;K l we have to considerdependson the beam size
for observation l, whereasthe sizeof the neighborhood f m

j 0;q0;n0;K m that is neededto
describe the spatial coherenceof the wavelet coe±cients of object m, dependson the
object itself. As before,we will chooseK to be the maximum of theseparameters:
K = maxl2 [[1;L ]]; m2 [[1;m]] f K l ; K mg. This way, all the neighborhoods we considerfor a
¯xed scalej have the samesize.

Separatingagain signi¯cant from non-signi¯cant contributions, we get :

8l 2 [[1; L ]]; gl
j ;q;n;K = B l

j ;q;n;K

³ MX

m=1

am;l f m
j ;q;n;K

´
+ w ; l

j ;q;n;K (3.27)

with :

B l
j ;q;n;K =

©
bl

( j 1 ;q1 ;n1 );(j 2 ;q2 ;n2 )

ª
(j 1 ;q1 ;n1 );(j 2 ;q2 ;n2 )2V 2

j ;q ;n ;K
(3.28)

w ; l
j ;q;n;K = w l

j ;q;n;K +
X

(j 1 ;q1 ;n1 ) 62Vj ;q ;n;K
or (j 2 ;q2 ;n2 ) 62Vj ;q ;n ;K

bl
( j 1 ;q1 ;n1 );(j 2 ;q2 ;n2 )

³ MX

m=1

am;l f m
j 2 ;q2 ;n2

´
(3.29)
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Let us ¯x the neighborhood Vj ;q;n;K that we consider.The matrices B l
j ;q;n;K for l 2

[[1; L ]] and the frequencydependencesam;l for l 2 [[1; L ]] and m 2 [[1; M ]] are deter-
ministic and known. Each vector w ; l

j ;q;n;K , for l 2 [[1; L ]] is supposedto be Gaussian,
centered, with known covariancematrix. Each vector f m

j ;q;n;K follows the distribution
of a Gaussianscalemixture

p
zm um for each m in [[1; M ]]. The noiseterms are inde-

pendent from oneobservation to another. Moreover, the objects are alsoassumedto
be independent from each other and from the noise.

To derive the Bayesleastsquareestimateunder this model, it is usefulto consider
the observed neighborhoods as constituents of a larger vector G :

G = (g1
j ;q;n;K ; g2

j ;q;n;K ; : : : ; gL
j ;q;n;K ) (3.30)

G = (g1
i 1

; g1
i 2

; : : : ; g2
i 1

; g2
i 2

; : : : : : : ; gL
i 1

; gL
i 2

; : : : ); with i j 2 Vj ;q;n;K (3.31)

Similarly, we stack the noiseneighborhoods into a larger vector W :

W = (w1
i 1

; w1
i 2

; : : : ; w2
i 1

; w2
i 2

; : : : : : : ; wL
i 1

; wL
i 2

; : : : ); with i j 2 Vj ;q;n;K (3.32)

And the objects neighborhoods into a larger vector F :

F = (f 1
i 1

; f 1
i 2

; : : : ; f 2
i 1

; f 2
i 2

; : : : : : : ; f M
i 1

; f M
i 2

; : : : ); with i j 2 Vj ;q;n;K (3.33)

This way, the L equationsin Eq. (3.27) can be written as a singlematrix equation :

GT = DF T + W T (3.34)

whereD is the matrix :

D =

0

B
B
B
B
B
@

a1;1 B 1
j ;q;n;K a1;2 B 1

j ;q;n;K ¢¢¢ a1;M B 1
j ;q;n;K

a2;1 B 2
j ;q;n;K a2;2 B 2

j ;q;n;K ¢¢¢ a2;M B 2
j ;q;n;K

...
...

. . .
...

aL; 1 B L
j ;q;n;K aL; 2 B L

j ;q;n;K ¢¢¢ aL;M B L
j ;q;n;K

1

C
C
C
C
C
A

; (3.35)

whereeach am;l B l
j ;q;n;K is a block of sizeL £ L, with L = jVj ;q;n;K j the cardinal of the

neighborhood Vj ;q;n;K . Writing the equation in matrix form makes the computation
of the estimator very similar to what we saw in section3.2.2,with the exceptionthe
the \ob ject" vector F is not a simplescalemixture of Gaussians,but takesin account
M multipliers :

F
dist:
´ (

p
z1 u1

i 1
;
p

z1 u1
i 2

; : : : ;
p

z2 u2
i 1

;
p

z2 u2
i 2

; : : : : : :
p

zM uM
i 1

;
p

zM uM
i 2

; : : : )

F
dist:
´

p
Z ± U (3.36)

where U is a Gaussianvector, Z contains each multiplier zm repeated jfV j ;q;n;K gj
times and ± denotesthe multiplication coordinate by coordinate.

Using Eq. (3.7), we obtain formally the conditional expectation of F given the
observation G and the M multipliers f zmgm :

E f F jG; z1; z2; : : : ; zM g = C p
Z ± U D ¤

³
D C p

Z ± U D ¤ + CW

´ ¡ 1
G (3.37)
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The Bayesleast squareestimate of the F given the observations is then :

Ef F jGg =
Z

RM
+

Ef F jG; z1; z2; : : : ; zM g p(z1; z2; : : : ; zM jG) dz1dz2 : : : dzM (3.38)

The posterior is as usual obtained via Bayesrule :

p(z1; z2; : : : ; zM jG) =
p(Gjz1; z2; : : : ; zM )

Q M
m=1 pzm (zm )

R
RM

+
p(Gjz1 = ®1; z2 = ®2; : : : ; zM = ®M )

Q M
m=1 pzm (®m )

(3.39)
with pzm is the distribution of the multiplier corresponding to the object f m and the
prior distribution for the observed vector G, p(Gjz1; z2; : : : ; zM ), is again a multidi-

mensionalGaussian,centeredand with covariancematrix CZ =
³

D C p
Z ± U D ¤+ CW

´
.

We shall now relate theseequationsinvolving the abstract vectorsG, F and W to
our original neighborhoods of wavelet coe±cients. Sincethe noiseterms wl for each
observation are independent from each other, the covariancematrix CW is block dia-
gonal,with L blocks.Each block is the covariancematrix of the l th noiseneighborhood
w l

j ;q;n;K : Cw l
j ;q ;n ;K

. The covariancematrix Cp
Z±U is also block diagonal becausethe

objects f m , m = 1; ::; M are independent from each other. It is constituted by M
blocks, each of which is the covariancematrix of an object neighborhood f m

j ;q;n;K times
the multiplier zm , i.e. zm C f m

j ;q ;n ;K
. (The value zm appearshere in the covariancema-

trix becauseCp
Z±U was computedconditionally on the multipliers.) The covariance

matrix CZ is de¯ned by blocks CZ = fCZ (l1; l2)gf l1 ;l22 [[1;L ]]2g with :

CZ (l1; l2) =
MX

m=1

zmam;l 1 am;l 2 B l1
j ;q;n;K C f m

j ;q ;n ;K
B l2 ¤

j ;q;n;K + ±f l1= l2g Cw l 1
j ;q ;n ;K

(3.40)

As a result, the prior p(Gjz1; z2; : : : ; zM ) reads:

p(Gjz1; z2; : : : ; zM ) = 1
(2¼)LV =2 det( CZ ) exp

n
¡

GCZ
¡ 1GT

2

o
; (3.41)

whereV is the cardinal of the neighborhood considered.The conditional expectation
of the neighborhood f m

j ;q;n;K given the multipliers and the observed neighborhoods is :

Ef f m
j ;q;n;K jG; z1; z2; : : : ; zM g =

LX

l=1

zm am;l C f m
j ;q ;n ;K

B l ¤
j ;q;n;K

³
CZ

¡ 1GT
´ l

(3.42)

This is integrated with respect to the posterior distribution of the M -uple of mul-
tipliers (z1; z2; ::; zM ) to ¯nd the Bayes least square estimate of f m

j ;q;n;K given the
observed neighborhoods gl

j ;q;n;K grouped in the vector G :

Ef f m
j ;q;n;K jGg = 1

C(G)

Z

RM
+

Ef f m
j ;q;n;K jG; z1; z2; : : : ; zM ge¡

GCZ
¡ 1GT

2

MY

m=1

£
pzm (zm ) dzm

¤

(3.43)
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with

C(G) =
Z

RM
+

e¡
GCZ

¡ 1GT

2

MY

m=1

£
pzm (zm ) dzm

¤
(3.44)

Note that Eq.(3.43) and (3.44) are M-fold integrations.
In the next section,we describe how we obtain the parametersnecessaryto com-

pute theseestimations. Theseare the covariancematrices of the objects and noises
neighborhoods, as well as the probability densitiesfor the multipliers.

3.3 Choice of the parameters

As explainedin 3.1.3,for a ¯xed valueof K , weassumethat for each scalej , orien-
tation q, and component f m , the neighborhoods of wavelets coe±cients f f m

j ;q;ngn2 Z 2

follow a scalemixture of Gaussian
p

zm
j um

j ;q, wherethe distribution of the multiplier
is independent of the orientation. Moreover, we assumedthat each noisemaps wl is
modeled by a stationary process.Therefore neither the covariance matrices nor the
multipliers actually depend on the location n. To compute the Bayesestimation des-
cribed above, we need : the noise covariancesCw l

j ;q ;0 ;K
, the component covariances

C f m
j ;q ;0 ;K

, and the probability distributions pzm
j

for l 2 [[1; L ]], m 2 [[1; M ]] , for all
scalesj and all orientations q. (As we saw in the previous section, the size of the
neighborhood K is the samefor all observations and components.)

3.3.1 Covariance matrices of the noise neigh borho ods

We assumein this work that the noiseterm wl for each observation gl , l 2 [[1; L ]],
is Gaussianand stationary. It can be white, and in this case,we assumethat we have
an estimate of the standard deviation ¾l for each l. The noisecould also be colored,
and in that case,we assumethat we know its spatial covariance matrix noted C s

w l

(where Cs
w l (x ¡ x0) = Cov

¡
wl (x); wl (x0)

¢
, for any x in R2 and x0 in R2). When the

noiseis white, Cs
w l (x) = (¾l )2±x=0 . The covariancematrices of the neighborhoods of

the noiseterms wl are by de¯nition :

Cw l
j ;q ;0 ;K

=
©

Cov(wl
j 1 ;q1 ;n1

; wl
j 2 ;q2 ;n2

)
ª

f ( j 1 ;q1 ;n1 );(j 2 ;q2 ;n2 )2V 2
j ;q ;0;K g

(3.45)

Supposewe usetwo-dimensionalwavelet transform with Q orientations. We note T
the wavelet transform operator :

T :
L2(R2) ! l2(Z3 £ [[1; Q]])

h 7!
©

h ; ' q
j ;n

®ª
j 2 Z;n2 Z2 ;q2 [[1;Q]]

(3.46)

Then wl
j ;q;n =


wl ; ' q

j ;n

®
= f T(wl )gj ;q;n . SinceT is linear, then :

Ef wl
j 1 ;q1 ;n1

g =
n

T
¡
Ef wlg

¢o

j ;q;n
(3.47)

Cov(wl
j 1 ;q1 ;n1

; wl
j 2 ;q2 ;n2

) =
©

T Cs
w l T¤

ª
(j 1 ;q1 ;n1 );(j 2 ;q2 ;n2 )

(3.48)
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wl is centered soEf wlg = 0 and thereforeEf wl
j 1 ;q1 ;n1

g = 0. The covarianceterms can
be written in term of scalarproducts of onewavelet with another, modulated by the
covarianceCs

w l :

Cov(wl
j 1 ;q1 ;n1

; wl
j 2 ;q2 ;n2

) =

' q1

j 1 ;n1
; Cs

w l ' q2
j 2 ;n2

®
L 2 (R2 )

(3.49)

Cov(wl
j 1 ;q1 ;n1

; wl
j 2 ;q2 ;n2

) =
Z

R2£ R2
' q1

j 1 ;n1
(x) Cs

w l (x ¡ x0)' q2
j 2 ;n2

(x0) dxdx0

When the noiseis white, this reducesto :

Cov(wl
j 1 ;q1 ;n1

; wl
j 2 ;q2 ;n2

) = (¾l )2

' q1

j 1 ;n1
; ' q2

j 2 ;n2

®
L 2 (R2 )

(3.50)

Hence,the covariancematricesof the noiseneighborhoods can be computedprior to
computing the estimates,if the wavelet transform, the sizeof the neighborhoods and
the spatial covariancesof the noisesare known beforehand.

3.3.2 Covariance matrices of the ob jects neigh borho ods

In the caseof the deblurring of a single object, Portilla et al. proposein [47] a
method to estimate the covariance of the single object from the observation itself.
This method is basedon the fact that the covariance of a signal h is the inverse
Fourier transform of its spectral power Ph = jĥj2, and that the spectral power of
two independent signalsis the sum of their spectral powers.Computing the spectral
powersin the caseof oneblurred component : g = f ¤b+ w, onegetsPg = Pb¤f + Pw .
The spectral power of the convolution b¤ f is Pb¤f = jb̂j2Pf . One can then estimate
Pf knowing Pg from the observation and Pw for the noise,being careful to regularize
the division by jb̂j2, as is explainedin [47].

We extend this procedureto the caseof blurred mixtures of components de¯ned
by Eq. (3.4). The power spectral densitiesnow are :

8l 2 [[1; L ]]; Pgl = jb̂l j2
¡ MX

m=1

jam;l j2Pf m

¢
+ Pw l : (3.51)

Using the method proposedin [47], we can estimate the L linear combinations Sl =P M
m=1 jam;l j2Pf m . If the matrix A = fj am;l j2gm2 [[1;M ]];l2 [[1;L ]] is well conditioned, then

we can recover the Pf m using the pseudo-inverseA¤A and keepingonly the positive
part :

8m 2 [[1; M ]]; Pf m (») =
hn

(A¤A)¡ 1A¤
¡
S1(»); S2(»); ::; SL (»)

¢T
om i

+
(3.52)

It turns out that this method is not well suited to our astrophysical problem for
several reasons.The frequencydependenceof the Galaxy dust (component f 4) and the
point sources(component f 3) are very closein the rangeof frequencyof our observed
data. (Typically ja(3; l) ¡ a(4; l)j < 10¡ 2ja(4; l)j.) Hencewe are not able to separate
their power spectrum with this method. Moreover, we madeup test caseswherewe
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consideredonly the CMB component and the clustersof galaxiescomponent. In these
cases,the method should technically work. (A is then well conditioned). However in
practice, we ¯nd that the power spectrum of the clusters of galaxies is negligible
compared to that of the noise and of the CMB. Therefore, we were not able to
estimate it preciselyenoughwith this method. (In fact, it would most of the time be
estimated to 0 by taking the positive part in Eq. (3.52).)

Onecould imaginethat anothermethod of estimation, usingonly the observations
but in a di®erent way, may be able to solve the problem for the clustersof galaxies.
However, this is not the casefor the ¯rst problemwepointed out. When the frequency
dependencesof two objects are equal, they are formally mergedinto a single com-
ponent from the point of view of Eq. (3.4). Therefore,one can not distinguish these
components, or any of their features,basedsolelyon the observations gl and Eq. (3.4).
A priori knowledgeon the components has to be used in addition to the Eq. (3.4),
even for the estimation of the covariance matrices. To our knowledge, there is no
physical quantit y well understood by astrophysicists for each of the components we
considerand that we can useto constrain the estimation of the covariancematrices.
Sincewe have at hand numerical simulations of each of the components we consider,
we usethem to compute templates for the covariancematrices of the neighborhoods
of wavelet coe±cients C f m

j ;q ;0
.

Note that in practice, the neighborhood covariancematrices (for the components
and also the noiseterms), depend on the wavelet usedand on the resolution of the
observed data. The dependenceon the wavelet is clear sinceeach term in the cova-
riance matrix of a neighborhood involvesthe wavelet itself (as we saw in Eq. (3.49)).
The resolution of the observed data, i.e. the physical sizeof a pixel in the observed
image, determinesthe physical size of the ¯nest scaleof the wavelet transform ap-
plied to this image. Therefore, when consideringdi®erent experimental conditions,
there is no reasonwhy the abstract wavelet scalesj of the computed wavelet trans-
form always correspond to the sameor similar physical scales.As a consequence,for
each experiment, we will have to recomputethe template covariancematrices of the
neighborhoods for each component and for each noiseterm.

3.3.3 Prior distribution of the multipliers

We shall now describe how to determinethe prior distributions of the multipliers
zm

j . The Gaussianscalemixture model imposesonly two restrictions on the choiceof
the probability distribution pzm

j
which are : pzm

j
should be supported in R+ (that is

zm
j ¸ 0), and its ¯rst moment should be 1 (i.e. Ef zm

j g = 1). Any choiceof pzm
j

that
satis¯es theseconditions is technically valid, sowe have to considerthe properties of
the component f m to make a choice.

When the component f m is well modeledby a Gaussianprocess,the distribution
of its wavelet coe±cients at each scale is also Gaussian.Hencethe neighborhoods
f m
j ;q;n;K are well modeledby Gaussianvectors,in which casethe multipliers zm

j should
not be used. As a result, if the component f m is known to be well modeled by a
Gaussianprocess,the distribution of the multipliers shouldbe set to pzm

j
(x) = ±f x=1 g
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for each scalej .
In the other cases,i.e. when f m is not well modeled by a Gaussianprocess,or

when this information is not available a priori, the choice has to be made on the
basisof the empirical distributions of the wavelet neighborhoods f m

j ;q;n;K . In order to
obtain the most accuratemodel, onewould ideally want to solve for the distribution
pzm

j
using the empirical joint distribution of the neighborhoods vectors f m

j ;q;n;K . A
maximum likelihood approach to estimatepzm

j
for the problem of denoisinga natural

imagehasbeenproposedin [60]. However the authors arguethat this estimation does
not yield better estimatesthan Je®rey'snon-informative prior which in this caseis a
uniform probability on the logarithm of z :

plog z(u) = 1
Vmax ¡ Vmin

±f Vmin · u· Vmax g (3.53)

i.e :
pz(u) = 1

Vmax ¡ Vmin
±f Vmin · log u· Vmax g

1
u

(3.54)

whereVmin and Vmax are chosenso that ¡1 < Vmin < Vmax < 1 .
Computing theseestimationsfrom the full neighborhoods for each component f m

would be computationally very costly in our case.Moreover, we ¯nd that using Jef-
frey's prior whenthe neighborhood cannot beconsideredGaussianleadsto good ¯rst
estimatesof our components. When we want to re¯ne the model to obtain a better
estimatefor the component f m , we chooseto ¯t a prior pzm

j
consideringonly the mar-

ginal distribution of the central coe±cient in the neighborhood f m
j ;q;n;K . This amounts

to deriving numerically the distribution pzm
j

, consideringthe empirical distribution of
the set of all the wavelet coe±cients f f m

j ;q;ngn2 Z2 ;q2 [[1;Q]] of the template component f m

at scalej , and the one-dimensionalGaussianscalemixture model :

8n 2 Z2; 8 q 2 [[1; Q]]; f m
j ;q;n

dist:
´

q
zm

j u; (3.55)

whereu is a scalarGaussianrandom variable, centered and of variance(¾m
j )2. (Note

that this variance was computed in the previous section as part of the covariance
matrix C f j ;q ;0 ;K ). Let us explain our

ad-ho c pro cedure for the deriv ation of the prior

with a formal one-dimensionalGaussianscalemixture : x =
p

z u, whereall the
random variables are scalar, and u is Gaussian(centered, variance ¾2). Taking the
logarithm of the absolutevaluesyields

logjxj =
1
2

logz + logjuj; (3.56)

from which we derive the relation betweenthe probability densitiesplog jx j , plog z and
plog juj :

plog jx j(v) =
¡

p1
2 log z(¢) ¤ plog juj(¢)

¢
(v) (3.57)

plog jx j(v) =
¡

2 plog z(2 ¢) ¤ plog juj(¢)
¢
(v) (3.58)
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where¤ denotesconvolution and

plog juj(v) = 2p
2¼¾2 e¡ e2v

2¾2 + v (3.59)

At this point the author of [60], proposeto deconvolveEq. (3.58)and ¯t a Gaussianto
the result, thus assuringthat the estimatedprior is a proper probability distribution.
As a result, they restrict themselvesto a log-normal distribution for the multiplier z.
Wetakea di®erent approach, not ¯tting a Gaussianto our deconvolvedresult. Instead,
we usean ad-hoc procedure.We deconvolve Eq. (3.58) regularizing the procedurein
Fourier space:

dplog z(») =
\plog jx j(2») \plog juj(2»)

° + j\plog jx j(2»)j2
(3.60)

where ° > 0. The Fourier inversetransform of the last result gives us a ¯rst esti-
mate of plog z. We keepits positive part and truncate both tails to get rid of possible
oscillation artifacts leftover from the deconvolution and ensurethat Ef zg = 1 (i.e.R

eu plog z(u)du = 1). We ¯nd that in the particular caseof the galaxy cluster com-
ponent, the prior plog z is not symmetrical. It is not well ¯tted by a Gaussianand
therefore,the prior pz we obtain is not log-normal (seenext section3.4).

Summary

Given a template of object f m , the procedurewe follow to determine the priors
pzm

j
is :

{ If f m is known to be well modeled by a Gaussian,we set pzm
j

(x) = ±f x=1 g for
each scalej .

{ Otherwise, for each scalej

1. Compute the empirical distribution px of the set f f m
j ;q;ngn2 Z2 ;q2 [[1;Q]]

2. If px is closeto Gaussian,set pzm
j

(x) = ±f x=1 g.

3. If px is not closeto Gaussianand component m doesnot needto be pre-
cisely estimated,set pzm

j
to Je®rey'sprior.

4. If px is not close to Gaussianand component m needsto be precisely
estimated,estimate pzm

j
via the ad-hoc proceduredescribed above.

3.4 Application to astroph ysical data

For our astrophysical problem, we considerfour components : the CosmicMicro-
wave Background f 1, the clusters of galaxiesf 2, the infrared point sourcesf 3 and
the Galaxy dust f 4. The beamsbl are assumedGaussiansand the noise is white.
The size of the beamsbl and level of the noise¾l at each frequencyof observation
are given to us. We use the steerable pyramid described in detail in Section 4.3
with 4 orientations. The number of scalesconsidereddependson the resolutionof the
observation. The covariance matrices of the noise neighborhoods are computed via
Eq. (3.50). The covariancematrices of the component neighborhoods are estimated
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from a template simulation of each component (cf. 3.3.2). The Bayesleast squarees-
timate of each component is estimatedfollowing the proceduredetailed in Subsection
3.2.3.To completethe description,we needto make explicit the prior we usefor each
component.

Astrophysicists model the CosmicMicrowave Background f 1 by a Gaussianpro-
cess,therefore we naturally set the priors pz1

j
to Dirac probabilities concentrated in

z = 1, for every scalej : pz1
j
(u) = ±f u=1 g.

The infrared point sourcesf 3 arebright points. Their sizeis typically much smaller
than the resolutionof the observations,sothat each pixel of the mapof this component
is either zeroor very bright. Sincepoint sourcesare isolatedaswell, the distribution
of the wavelet coe±cients of the map f 2 is mostly concentrated around zero(in large
portions of the maps, there are no point sources)and has large tails (corresponding
to large coe±cients wherethe point sourcesare located). Thesedistributions can not
be approximated by a Gaussianfor any scalej . Since the point sourcemap is not
our ¯rst focus, we useJe®rey'sprior at every scalej for the infrared point sources
component : pz3

j
(u) = 1

Vmax ¡ Vmin
±f Vmin · log u· Vmax g

1
u , for all j .

The galactic f 3 dust is a smooth and very slow varying signal, we ¯nd that it is
reasonableto approximate the distribution of its wavelet coe±cients at every scale
by a Gaussian.Therefore,we set pz4

j
(u) = ±f u=1 g.

Finally the galaxy cluster component f 2 is the component that we want to re-
construct most accurately. The clustersof galaxiesare compact objects scatteredin
the sky, and consequently (samereasoningas for the point sources)the distribution
of their wavelet coe±cients for each scaleis not well approximated by a Gaussian.In
order to obtain preliminary results for the reconstruction of the clusters of galaxies
we will use Je®rey'sprior. In an attempt to make a better estimation, we use the
ad-hoc procedureof subsection3.3.3 to derive an improved prior for the clusters of
galaxies.We display the obtained prior plog z , that we will refer to as the pro¯le, in
the top panel of Figure 3.3 with the dashedline. The Gaussianprior is plotted in
plain and the log-uniform (i.e. Je®rey's)prior is the dashdotted line. The bottom left
(resp. right) panelof the ¯gure shows the (resp. logarithm of the ) marginal distribu-
tion px , where x is the corresponding one-dimensionalGaussianscalemixture. The
plusesindicate the experimental data usedto estimate the pro¯le. As onecan seeon
the bottom left panel, both Je®rey'sprior and our pro¯le tend to overestimate the
probability distribution around jxj = 0. As a consequencethe number of low intensity
clustersand their intensity will tend to be underestimatedin the mapsreconstructed
using thesepriors. To remedythis e®ect,we further truncate the pro¯le we obtained
to diminish the weight of small valuesof logz. The result is called truncated pro¯le
and is displayed in the Figure 3.3 by a dashedand stars curve.
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Fig. 3.3 { Top : the prior distribution of the logarithm of the multiplier plog z. Bottom
left : px , the distribution of x ´

p
zu. Bottom right, the logarithm of this distribution :

ln(px ). Plain : Gaussianprior, x is Gaussian.Dash-dot : px corresponding to the
Je®rey'snon-informative prior. Dashed: px corresponding to the pro¯le computed
from the data. Dashedand stars : px corresponding to the truncated pro¯le computed
from the data. Plus : experimental distribution px .
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Chapitre 4

Redundan t wavelet transforms

In this chapter, we review the transformationsthat we have utilized to decompose
the signals.As we arguedseveral times in Chapter 2 and Chapter 3, wavelet trans-
formations have properties that we can exploit in both algorithms in order to make
better estimatesof the signals.The following properties are of particular interest to
us : the wavelet transforms of the signalswe would like to estimateare rather sparse
whereasthe wavelet transform of the noise is spreadout ; the joint statistics of the
wavelet coe±cients of the components we would like to extract are well modeledby
GaussianScaleMixtures ; someparticularly useful functional vector spacescan be
characterizedby norms computed in wavelet space.

Theseproperties are true for any reasonablewavelet transform. Hence,onecould
use any of them interchangeably without altering the arguments we presented in
Chapter 2 and Chapter 3. In this chapter, we wish to give more details about two
transforms that we choseto use : the steerable pyramid was usedfor the statistical
algorithm presented in Chapter 3; the dual tree complexwavelettransform was used
for the variational functional algorithm presented in Chapter 2.

Both of theseare redundant wavelet transforms. (In a redundant transform, the
generatingelements can be linearly dependent). Using redundant systems,also cal-
led frames,is usually computationally moreintensive and sometimestechnically more
di±cult (e.g.subsection2.2.3)than usingbases.However there areseveral advantages
to do so. Orthonormal wavelet transforms are not translation-invariant (becauseof
the decimationat each scale,the wavelet transform of a translated signal is generally
not the translated versionof the wavelet transform of the original signal). This lack of
invarianceby translation is known to causeartifacts in signal processing[39, 25]. To
overcomethis problem, it has beenproposedto usethe undecimatedwavelet trans-
form, which amounts to using all possibletranslated wavelet basesin conjunction.
The undecimatedwavelet transform is redundant and computationally more inten-
sive than the orthonormal wavelet transform. But it is translation-invariant and its
useimprovesthe quality of the processedsignals[12, 35,25]. Another drawback of the
critically sampledwavelet basesis the lack of invarianceby rotation ; this too can be
overcomeby using redundant transform. Separablewavelet baseshave preferred di-
rectionsalong the natural axis and diagonals(in two-dimensions,horizontal, vertical
and diagonal). Allowing the generatingfamily to be redundant makes it possibleto
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designa frame that is tuned to more directions. For example,the steerablepyramid
can be designedto be selective to any number of directions [56]. Widening the direc-
tion selectivity is of courseonly an approximation to rotation invariance,however it
hasproved to be bene¯cial in generalimageprocessingproblems.Rotation invariance
will be useful to study in detail the shape of the clustersof galaxiesand the structure
surrounding them, since theseare highly asymmetrical objects. Finally, for the ap-
plication to astrophysical data, it is quite useful to be able to characterizethe power
spectrum of the signals in hand in wavelet space.Indeed, the power spectrum is a
quantit y well-studied by astrophysicists and therefore, it can be usedto incorporate
a priori knowledgeon the signals.The rectangular frequencytiling of orthonormal
wavelet transforms does not lend itself easily to the incorporation of knowledgeon
the power spectrum of a signal. Onceagain, more °exibilit y is given by relaxing the
linear independencecondition : redundant systemscan be designedto have a sphe-
rical frequencytiling (as is the caseof the steerablepyramid), or to approximate it
better than standard wavelet bases(as is the caseof the complexwavelet transform).

In order the facilitate the presentation of the complexwavelet transform in Section
4.2 and of the steerablepyramid in section4.3, we ¯rst review rapidly the standard
orthonormal wavelet transform in section4.1.

4.1 Orthonormal wavelet bases

Although there are other ways to de¯ne wavelet bases,we will start here from
multiresolution spacesas in [40]. Subsequently, we de¯ne the scaling function Á and
wavelet Ã, as well as the spatial ¯lters h and g and their Fourier transform the
conjugate mirror ¯lters mo and m1. (One could actually start from the ¯lters and
scalingfunction to de¯ne the wavelet.)

4.1.1 Multiresolution analysis

De¯nition 4.1.1. A multiresolutionanalysisof L 2(R) is a sequence of approximation
vector spaces : f Vj gj 2 Z that havethe following properties :
P1. ¢¢¢V¡ 2 ½ V¡ 1 ½ V0 ½ V1 ½ V2 ¢¢¢
P2. [

j 2 Z
Vj = L2(R)

P3. \
j 2 Z

Vj = f 0g

P4. f 2 Vj , f (2j ¢) 2 V0

P5. f 2 V0 ) f ( ¢¡ n) 2 V0; 8n 2 Z
P6. There existsÁ in V0 suchthat f Á(¢¡ n); n 2 Zg in an orthonormal basis of V0.

The function Á is called the scaling function. PropertiesP4 and P6 imply that for
any j , the family f Áj ;n (¢) = 2

j
2 Á(2j ¢¡ n); n 2 Zg is an orthonormal basisof Vj . Noting

hn = hÁ¡ 1;0 ; Á0;n i , and mo(») = 2¡ 1
2

P
n2 Z hne¡ in» , properties P1 and P6 imply :

Á
¡

x
2

¢
=

p
2

X

n2 Z

hn Á(x ¡ n) (4.1)
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bÁ(») = mo
¡ »

2

¢bÁ
¡ »

2

¢
(4.2)

The waveletcan be then de¯ned as the function Ã such that :

Ã
¡

x
2

¢
=

p
2

X

n2 Z

gn Á(x ¡ n) (4.3)

bÃ(») = m1
¡ »

2

¢bÁ
¡ »

2

¢
(4.4)

with
gn = (¡ 1)1¡ n ¹h1¡ n (4.5)

m1
¡
»
¢
= 2¡ 1

2

X

n2 Z

gne¡ in» = e¡ i»mo
¡
¼¡ »

¢
(4.6)

In that case,the vector spacespannedby the family of translated versionsof Ã,
W0 = spanf Ã0;n (¢) = Ã(¢¡ n); n 2 Zg, is the orthogonal supplement of V0 in V1 :

V1 = V0
?
©W0. Moreover the f Ã0;n ; n 2 Zg areorthogonalto each other. Each approxi-

mation spaceVj of the multiresolution analysisis then similarly decomposedinto an

orthogonalsum: Vj = Vj ¡ 1
?
©Wj ¡ 1, whereVj ¡ 1 is the next coarserapproximation space

after Vj and Wj ¡ 1 = spanf Ã(2j ¡ 1 ¢ ¡ n); n 2 Zg is a detail space.It follows that the
Wj spanL 2(R) and areorthogonal to each other. Onecan thereforeconsiderdi®erent

decompositions of L 2(R), either using only the detail spacesWj : L2(R) =
?
©

j 2 Z
Wj

(4.7), or stopping the re¯nement at a particular scaleJo : L2(R) = VJo

?
©

j ¸ Jo

Wj (4.8).

The corresponding orthonormal basesare :

f Ãj ;n (¢) = 2¡ j
2 Ã(2¡ j ¢ ¡ n) g(j ;n)2 Z2 (4.7)

and

f ÁJo ;n (¢) = 2¡ J o
2 Á(2¡ Jo ¢ ¡ n) gn2 Z [ f Ãj ;n (¢) = 2¡ j

2 Ã(2¡ j ¢ ¡ n) gj ¸ Jo ;n2 Z (4.8)

Note that the scalingfunction, the wavelet, the ¯lters h and g and the conjugate
¯lters mo and m1 inherit special properties from the multiresolution setting. For
example,the conjugate¯lter mo veri¯es :

jmo(»)j2 + jmo(» + ¼)j2 = 1 a:e; (4.9)

and the scalingfunction integratesto 1 whereasthe wavelet integratesto 0.
The propertiesof the wavelet canbestudiedand adjustedby looking at the ¯lters.

The wavelets Ãj ;n and scaling functions Áj ;n can have many properties that can be
tailored to the application at hand,by adjusting the ¯lter choice.For instance,onecan
chooseto emphasizetheir smoothness,their localization in spaceand/or in frequency
and the number of vanishing moments of Ã. Typically, one cannot optimize all of
thesesimultaneouslyand sometrade-o®shave to be made.Seee.g. [39, 17].
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4.1.2 Computing the wavelet transform in one dimension

For a function f in L 2(R), the wavelet decomposition correspondingto (4.7) reads:

f =
X

j 2 Z

X

n2 Z

hf ; Ãj ;n i Ãj ;n (4.10)

and alternatively, stopping the re¯nement at scaleJo as in (4.8) leadsto :

f =
X

n2 Z

hf ; ÁJo ;n i ÁJo ;n +
X

j 2 Z

X

n2 Z

hf ; Ãj ;n i Ãj ;n (4.11)

The relations (4.1), (4.2), (4.3) and (4.4) propagate to the scaling coe±cients
aj ;n = h f ; Áj ;n i and to the wavelet coe±cients dj ;n = h f ; Ãj ;n i . Indeed these
coe±cients can be rewritten :

aj ;n = hf ; Áj ;n i (4.12)

aj ;n = hf ; 2¡
j
2 Á

¡
2j ¢¡ n

¢
i (4.13)

aj ;n = hf ; 2¡
j
2 Á

¡
2j (¢¡ 2¡ j n)

¢
i (4.14)

aj ;n = hf ; Áj ;0(¢¡ 2¡ j n ) i (4.15)

aj ;n =
¡
f ¤ gÁj ;0

¢
(2¡ j n) (4.16)

and similarly :
dj ;n =

¡
f ¤ gÃj ;0

¢
(2¡ j n) (4.17)

Here,¤ denotesthe convolution on the real line and eÃ(x) = Ã(¡ x).

Fast wavelet transform in space

Using Eq. (4.1), (4.3), (4.16) and (4.17) gives formulas to compute the scaling
coe±cients aj ;n and the wavelet coe±cients dj ;n from solely the scalingcoe±cients at
the ¯ner scalej + 1 and the ¯lters h and g :

aj ;n = (aj +1 ; ¢? ¹¹h(2n) (4.18)

dj ;n = (aj +1 ; ¢? ¹¹g(2n) (4.19)

Here,? denotesthe discreteconvolution and ¹¹hn = ¹h¡ n , ¹¹gn = ¹g¡ n This meansthat to
¯nd the wavelet (resp. scaling) coe±cients at scalej , one computesthe convolution
of the scalingcoe±cients at scalej + 1 with the ¯lter ¹¹g (resp. ¹¹h) and keeponly the
even entries.

The inverseoperation : synthesizingthe scalingcoe±cients at scalej + 1 from the
wavelet and scalingcoe±cients at scalej is just as simple :

aj +1 ;n = (~aj ; ¢? h)(n) + ( ~dj ; ¢? g)(n) (4.20)

Here, ~aj ;2p = aj ;p and ~aj ;2p+1 = 0 (and similarly for ~d). The wavelet (resp. scaling)
coe±cients at scalej + 1 are interleaved with zerosand the result is convolved with
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the ¯lter h (resp. g). The sequenceof scaling coe±cients at scalej + 1 is then the
sum of thesetwo convolutions.

Starting from scalingcoe±cients at a ¯ne scaleJ1, f aJ1 ;ngn2 Z, onecan recursively
computethe wavelet and scalingcoe±cients for all scaleJo · j < J1 usingEq. (4.18)
and (4.19), for any arbitrary Jo < J1. Keeping only the wavelet coe±cients dj ;n for
all scalesJo · j < J1 and the scalingcoe±cients aJo ;n at the coarsestscale, onecan
reconstruct the sequencesof scalingcoe±cients at each scalefrom Jo to J1 using Eq.
(4.20).

The forward and inversetransform are both fast to compute since they involve
only discreteconvolutions and downsampling(dropping the even entries in Eq.(4.18)
and (4.19) ) or upsampling(adding zerosin Eq. (4.20)) two sequencesat a each scale.

Wavelet transform in the frequency plane

One can rewrite Eq.(4.18) and (4.19) using the conjugate¯lters mo and m1 :

caj ; ¢(») = \aj +1 ; ¢ ( »
2) mo(

»
2) (4.21)

cdj ; ¢(») = \aj +1 ; ¢ ( »
2) m1( »

2) (4.22)

Here,for a sequencef vngn2 Z , bv denotesthe trigonometric seriesbv(») =
P

n2 Z vne¡ in» .
From the trigonometric series,one can recover v : vn = ·bvn = 1

2¼

R¼
¡ ¼bv(»)ein» . To

compute the wavelet (resp. scaling) coe±cients at scalej with this method, one¯rst
calculates the trigonometric seriesassociated with the scaling coe±cients at scale
j + 1, then multiplies it by the conjugate¯lter m1 (resp. mo) and ¯nally dilates the
result by a factor 2. The coe±cients at scalej are the Fourier coe±cients of the series
obtained. Note that the downsampling is done automatically here by inverting the
dilated trigonometric series.

Similarly the inversetransform that computesthe scalingcoe±cients at scalej + 1
from scalingandwavelet coe±cients at scalej canbedonein Fourier spaceby noticing
that :

[aj +1 ;¢(») = caj ; ¢(2») mo(») + cdj ; ¢(2») m1(») (4.23)

This method is not asfast asthe spatial method to computewavelet transform in
the casewherethe spatial ¯lters h and g have ¯nite length, i.e. whenthe wavelet have
compactsupport in space.However, in the event wherethe designof the waveletshas
been done in the frequencyplane, e.g. when the wavelet have compact support in
frequency, then the spatial ¯lters h and g are in¯nite and the convolution are easier
to handle by this method.

The complex wavelet transform that we review in the next section is computed
using spatial ¯lters as in the fast wavelet transform, whereasthe steerablepyramid
transform is computed in the frequencyplane.

Practical implemen tation with discrete signals

In practice, one has accessonly to a ¯nite number of regular samplesof the
function f at a ¯nite and possiblyvery ¯ne scale.Oneconsidersthesesamplesf f ngn2 I
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to be the scaling coe±cients at the ¯ner scaleJ1 : f n = h f ; ÁJ1 ;n i ; n 2 I . The
wavelet transform is computed neither at ¯ner scalesthan J1, nor at very coarse
scales(j ! ¡1 ), wherethe extent of the scalingfunction would be greater than the
support of the samplein hand. Hence,in practice, a coarsescaleJo and a ¯ne scale
J1 > Jo are naturally de¯ned by the signal in hand.

The wavelet transform consists in the wavelet coe±cients at each scale j from
J1 down to Jo, i.e. the f dj ;ngJo · j <J 1 ; n2 I j , and the scalingcoe±cients at the coarsest
scaleJo, i.e. the f aJo ;ngn2 I J o

. Becauseof the downsampling in Eq.(4.18) and (4.19),
the cardinality of I j is jI j j = jI j 2j ¡ J1 . Note that the number of wavelet and scaling
coe±cients in the transform is exactly the sameasthe initial number of samples.This
wasbound to happensincethe wavelet transform presented hereis nothing morethan
a changea orthonormal basisin a ¯nite dimensionalspace.

4.1.3 Separable wavelet transform in higher dimensions

In two or more dimensions,orthonormal wavelet basesare de¯ned by taking the
tensorproduct of several one-dimensionalmultiresolution analysis.Let us explain the
two-dimensionalcasesince in higher dimensions,the proceduregeneralizeswithout
problems.

De¯nition 4.1.2. From a multiresolution analysis of L 2(R) f Vj gj 2 Z as de¯ned in
4.1.1, the following tensor product f V j gj 2 Z de¯ned by :

1. V o = Vo  Vo = f F (x1; x2) = f (x1)g(x2); (f ; g) 2 V 2
o g

2. F 2 V j , F (2j ¢; 2j ¢) 2 V o

de¯nes multiresolution analysis in L 2(R2), i.e. Vj ½ Vj +1 , [ j Vj = L2(R2) and
\ j Vj = f 0g.

The approximation spaceV j +1 is then naturally re¯ned into onecoarserapproxi-
mation spaceV j = Vj  Vj and three detail spaces: W 1

j = Vj  Wj , W 2
j = Wj  Vj

and W 3
j = Wj  Wj . The corresponding orthonormal basesare :

{ for V j +1 : f Áj ;n1 (x1)Áj ;n2 (x2)g(n1 ;n2 )2 Z2

{ for W 1
j +1 : f Áj ;n1 (x1)Ãj ;n2 (x2)g(n1 ;n2 )2 Z2

{ for W 2
j +1 : f Ãj ;n1 (x1)Áj ;n2 (x2)g(n1 ;n2 )2 Z2

{ for W 3
j +1 : f Ãj ;n1 (x1)Ãj ;n2 (x2)g(n1 ;n2 )2 Z2

Thereforethe orthonormal basisconsideredfor L 2(R2) is :

f Áj ;n1 (x1)Áj ;n2 (x2); Áj ;n1 (x1)Ãj ;n2 (x2); Ãj ;n1 (x1)Áj ;n2 (x2); Ãj ;n1 (x1)Ãj ;n2 (x2)g(j ;n1 ;n2 )2 Z3

(4.24)
Note that this is di®erent from taking the tensor product of the one-dimensional
wavelet basis(which would include terms mixing scales: Ãj 1 ;n1 (x1)Ãj 2 ;n2 (x2)).

De¯ne di
j ;n1 ;n2

as the wavelet coe±cients corresponding to W i
j and aj ;n1 ;n2 the

scalingcoe±cients. The two-dimensionalorthonormal wavelet transform then inherits
a fast algorithm using the spatial ¯lters h and g successively in each direction x1 and
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x2 :

aj ;n1 ;n2 =
¡

(aj +1 ; ¢; ¢
x1? ¹¹h)

x2? ¹¹h
¢

(2n1; 2n2) (4.25)

d1
j ;n1 ;n2

=
¡

(aj +1 ; ¢; ¢
x1? ¹¹h)

x2? ¹¹g
¢

(2n1; 2n2) (4.26)

d2
j ;n1 ;n2

=
¡

(aj +1 ; ¢; ¢
x1? ¹¹g)

x2? ¹¹h
¢

(2n1; 2n2) (4.27)

d3
j ;n1 ;n2

=
¡

(aj +1 ; ¢; ¢
x1? ¹¹g)

x2? ¹¹g
¢

(2n1; 2n2) (4.28)

Here,
x1? denotesthe one-dimensionalconvolution in the direction x1 computed for

each value of n2 (and vice-versafor
x2?).

As previously in one dimension,one can also considerdoing thesecomputations
in the frequencyplane using the conjugate¯lters mo and m1 successively for x1 and
x2. The inversetransform is also computed successively in each direction, using the
spatial ¯lters h and g and the complex conjugate ¯lters mo and m1 as in Eq.(4.20)
and (4.23).

The two-dimensionalseparableorthonormal basis presented here is sensitive to
three principal directions corresponding to the detail spacesW 1, W 2 and W 3 : the
horizontal, the vertical and the diagonal respectively. To remedy this, the complex
wavelet transform combines several separableorthonormal basesthat have special
relations together whereasthe steerablepyramid is basedon the de¯nition of radial
(hencenon separable)¯lters.

4.1.4 Other wavelet bases

Beforewe turn to theseredundant systems,let us mention that there exist other
wavelet families that are not necessarilyorthonormal but still form basesof L 2(R).

The biorthogonalwaveletscanbedesignedto besymmetricwith compactsupport
[11]. Such a family f Ã1

j ;ngj ;n can not form an orthonormal basis.Instead f Ã1
j ;ngj ;n is a

Rieszbasisof L 2(R) and is associated with a dual family f Ã2
j ;ngj ;n . The ¯rst wavelet is

usedfor analysiswhereasthe secondoneis usedfor the reconstruction.The orthogonal
relation hÃ1

j ;n ; Ã2
j 0;n0i = ±j ;j 0±n;n 0 ensuresperfect reconstructionof any signal in L 2(R).

Wavelet packetsareanotherkind of orthonormal basesonecan form starting with
the sameprocedureas in 4.1.1.The di®erenceis that one is allowed to further re¯ne
the vector spacesWj by using the ¯lter gn and hn on the detail coe±cients dn . (See
[13, 39] for details.)

Both wavelet packets and biorthogonal wavelets can be extended to higher di-
mensionsin a separablemanner. Although they have advantagesand disadvantages
comparedwith the orthonormal wavelet transform, they shareits lack of invarianceby
translation and poor directional selectivity. As mentioned in the introduction of this
chapter, these inconveniencescan be bypassedby relaxing the linear independence
conditions and using framesinstead of bases.
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4.2 Dual tree complex wavelet transform

The complexwavelet transform hasbeendesignedoriginally by Kingsbury [31, 32]
to remedytwo principal drawbacks of traditional separablewavelet transformsin two
dimensions: the lack of shift-invariance and the poor directional selectivity. The
complexwavelet transform is a combination of several standard wavelet transforms,
(exactly 2n of these,wheren is the dimension), that have special relations with each
other. The redundancy is 2n and the complexity is exactly 2n times the complexity
of a standard wavelet transform. This makesit just as fast to computeasa standard
wavelet transform for low dimensions,in particular for images(n = 2).

As a consequenceof the special relations betweenthe standard transformsusedin
the complextransform, the latter is shift invariant in the sensethat the reconstruction
obtained from each scaleseparatelyis free of aliasing.

Standardwavelet coe±cients oscillaterapidly closeto sharptransitions. Threshol-
ding techniqueswith critically sampledwavelet transforms su®erfrom theseoscilla-
tions which causeartifacts in the reconstructions.Another advantage of the complex
wavelet transform is that the modulus of the complex coe±cients doesnot oscillate
asmuch. Hence,the thresholdingoperation with complexwaveletsasde¯ned in sub-
section2.2.3causesmuch lessartifacts.

In two dimensions,the complexwavelet transform produces12realwavelets.These
can be paired and each pair viewed as the complexand imaginary part of a complex
wavelet. In total, there are 6 complex wavelets, each one selective to a particular
direction. As a consequence,the complex transform also has improved directional
selectivity over standard wavelet transforms. Fig. 4.1 shows the direction selectivity
achieved with the complextransform in two dimensions.The ¯rst (resp. second)row
of the ¯gure shows the 6 wavelets that can be viewed as the real (resp. imaginary)
part of the 6 complexwavelet whosemagnitude is shown in the last row.

2D Dual-Tree Complex Wavelets

Fig. 4.1 { The complex wavelets are selective to 6 directions. First row : real part ;
secondrow : imaginary part ; third row : amplitude of the complex wavelet. (This
¯gure was producedby the Matlab code cplxdual2Dplots.m available at [66].)
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4.2.1 Dual tree complex wavelet transform in one dimension

The complexwavelet transform in onedimensionis implemented as two critically
sampledorthonormal wavelet transforms(asdescribed in 4.1.2) computedin parallel.
Let us denote Á1, Ã1, h1, g1 (resp. Á2, Ã2, h2, g2) the scaling function, wavelet and
¯lters relative to the ¯rst (resp.second)basis.Kingsbury in [32] showed that oneway
to obtain good shift invariance(as de¯ned above) is to view the two real waveletsÃ1

and Ã2 as the real and imaginary part of a complexwavelet, ª = Ã1 + i Ã2, that has
the property of suppressingnegative frequencies:

bª( ») = 0; if » < 0: (4.29)

This happens when the two wavelets Ã1 and Ã2 have the special property of being
Hilbert transforms of each other [52, 53], i.e. when their Fourier transform veri¯es :

cÃ2(») = ¡ i sign(») cÃ1(»); » 2 R (4.30)

This is alsoequivalent to designinga ¯lter g1 that is a half-sampledelayed versionof
the ¯lter g2 :

g2
n = g1

n¡ 1
2

(4.31)

Sinceit is not possibleto designsuch a pair a ¯nite impulseresponsē lters, the Hilbert
transform property hasto be approximated. Selesnick [52, 53] hasshown how to best
do this within a preassigned̄ lter length. It turns out that his examplescorrespond
to thoseof Kingsbury [32] even though they were designedwith a di®erent criterion
in mind. We shall useone of theseexamplesimplemented in the software available
from Selesnick's website [66].

Supposewe have two ¯lter banks (h1; g1) and (h2; g2), that producewaveletsÃ1,
Ã2 that are approximate Hilbert transforms of other. The dual tree complexwavelet
transform of a signal f in onedimensionis computedas follows :

1. Compute the wavelet transform of f with the ¯rst ¯lter bank (h1; g1) using
Eq.(4.18), (4.19) to obtain the real wavelets coe±cients f d1

j ;ngJo · j <J 1 ; n2 I j and
real scalingcoe±cients f a1

Jo ;ngn2 I J o
.

2. Compute similarly a wavelet transform of f with (h2; g2) to obtain a second
set of real wavelets coe±cients f d2

j ;ngJo · j <J 1 ; n2 I j and real scaling coe±cients
f a2

Jo ;ngn2 I J o
.

3. The coe±cients of the dual tree complexwavelet transform are the complexwa-
velet coe±cients f cj ;n = d1

j ;n + i d2
j ;ngJo · j <J 1 ; n2 I j , and the real scalingcoe±cients

f a1
Jo ;ngn2 I J o

[ f a2
Jo ;ngn2 I J o

.

The complexwavelet coe±cients f cj ;ngn2 I J o
canthen bemodi¯ed the sameway one

would do with real wavelet coe±cients, but keepingthe phaseconstant, asdescribed
in subsection2.2.3.For example,soft-thresholdedcoe±cients f c0

j ;ngJo · j <J 1 ; n2 I j would
be de¯ned the following way :

if cj ;n = jcj ;n j:ei µ then c0
j ;n = S¿;1(cj ;n ) =

½ ¡
jcj ;n j ¡ ¿

¢
:ei µ if jcj ;n j ¸ ¿

0 if jcj ;n j < ¿
(4.32)

And onewould reconstruct a signal from theseby :

75



1. De¯ning the real wavelet coe±cients : d01
j ;n = <(c0

j ;n ) and d02
j ;n = =(c0

j ;n ).

2. Reconstructing f 1 from the real scaling coe±cients f a1
Jo ;ngn2 I J o

and the real
wavelet coe±cients d01

j ;n with the ¯lter bank (h1; g1) using Eq.(4.20).

3. Reconstructing f 2 from the real scaling coe±cients f a2
Jo ;ngn2 I J o

and the real
wavelet coe±cients d02

j ;n with the ¯lter bank (h2; g2) using Eq.(4.20).

4. Taking the average: f 1+ f 2
2 .

Remark . A slight modi¯cation has to be donein practice for discretesignals.For a
single real wavelet transform, we consideredthe samplesf n to be the scalingcoe±-
cients f n = hf ; ÁJ1 ;n i at the ¯nest scale.This meansthat the underlying function f is
f =

P
n f nÁJ1 ;n . In the caseof the dual tree complexwavelet transform, we have two

di®erent scaling functions. Consideringthe samplesf n as the scaling coe±cients at
the ¯nest scalewould meanthat we areanalyzingtwo di®erent underlying functions :P

n f nÁ1
J1 ;n and

P
n f nÁ2

J1 ;n . This is clearly not the goal. Special ¯lters have to be
designedfor the ¯rst stageof the transform to correct for that.

4.2.2 Dual tree complex wavelet transform in two dimensions

As we saw in the precedent section,a standard separablewavelet transform pro-
ducesthree wavelets: Á(x)Ã(y), Ã(x)Á(y) and Ã(x)Ã(y). Again, onecancomputethe
standard separablewavelet transform with each ¯lter bank (h1; g1) and (h2; g2). One
can de¯ne six real waveletsÃi;j , i = 1; 2, j = 1; 2; 3, by combining the three wavelets
obtained in each transform the following way :

Ã1;1(x; y) = Á1(x)Ã1(y) + Á2(x)Ã2(y) (4.33)

Ã1;2(x; y) = Ã1(x)Á1(y) + Ã2(x)Á2(y) (4.34)

Ã1;3(x; y) = Ã1(x)Ã1(y) + Ã2(x)Ã2(y) (4.35)

Ã2;1(x; y) = Á1(x)Ã1(y) ¡ Á2(x)Ã2(y) (4.36)

Ã2;2(x; y) = Ã1(x)Á1(y) ¡ Ã2(x)Á2(y) (4.37)

Ã2;3(x; y) = Ã1(x)Ã1(y) ¡ Ã2(x)Ã2(y) : (4.38)

Similarly to the six wavelets displayed in the ¯rst row of Fig.4.1, each of thesesix
waveletsis sensitive to onedirection. Henceby summingand di®erencingthe wavelets
coe±cients from two standard separablewavelet transforms, one gets a system of
redundancytwo that hasgood directional selectivity.

However, thesesix waveletscannotbepairedand consideredasreal and imaginary
part of complexwavelets.To do so,oneneedsto considertwo additional real separable
wavelet transforms.Unlike what we described sofar, thesetransformsdo not operate
the sameway on rowsand columnsof the signal : oneneedsto use(h1; g1) to ¯lter the
rows and (h2; g2) to ¯lter the columns(and conversely).By summingand di®erencing
the outputs of the four real separablewavelet transforms, one gets the six complex
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waveletsdisplayed in Fig.4.1. They are de¯ned by :

ª 1;1(x; y) =
£
Á1(x)Ã1(y) + Á2(x)Ã2(y)

¤
+ i

£
Á1(x)Ã1(y) ¡ Á2(x)Ã1(y)

¤
(4.39)

ª 1;2(x; y) =
£
Ã1(x)Á1(y) + Ã2(x)Á2(y)

¤
+ i

£
Ã1(x)Á2(y) ¡ Ã2(x)Á1(y)

¤
(4.40)

ª 1;3(x; y) =
£
Ã1(x)Ã1(y) + Ã2(x)Ã2(y)

¤
+ i

£
Ã1(x)Ã2(y) ¡ Ã2(x)Ã1(y)

¤
(4.41)

ª 2;1(x; y) =
£
Á1(x)Ã2(y) + Á2(x)Ã1(y)

¤
+ i

£
Á1(x)Ã1(y) ¡ Á2(x)Ã2(y)

¤
(4.42)

ª 2;2(x; y) =
£
Ã1(x)Á2(y) + Ã2(x)Á1(y)

¤
+ i

£
Ã1(x)Á1(y) ¡ Ã2(x)Á2(y)

¤
(4.43)

ª 2;3(x; y) =
£
Ã1(x)Ã2(y) + Ã2(x)Ã1(y)

¤
+ i

£
Ã1(x)Ã1(y) ¡ Ã2(x)Ã2(y)

¤
(4.44)

Remark . As in the one-dimensionalcase,special ¯lters for the ¯rst stage of the
transform have to be used and thresholding operations are done on the complex
coe±cients.

4.3 Steerable pyramid

Much like the complexwavelet transform, the steerablepyramid is a linear trans-
formation that decomposestwo-dimensionalsignalsinto subbandslocalized in scale
and in orientation. But unlike the complexwavelet transform, this tight frame is not
madeof a concatenationof bases,but rather is designedfrom scratch by computing
¯lters in the Fourier plane that have desiredproperties.One low-pass¯lter (like mo),
one high pass¯lter (like m1) and M oriented ¯lters that are rotated versionsof a
unique ¯lter de¯ne the steerablepyramid. This corresponds to having one scaling
function and M \w avelets".

The steerablepyramid transform is translation-invariant and essentially aliasing-
free (the ¯lters are designedto be band-limited so that the sampling rate is above
Nyquist frequency). It can producean arbitrary number M of orientations and the-
reforecan approximate rotation-invariancemuch better than the standard separable
wavelet transform. Note that, theoretically, the steerability of this transform makes
it totally rotation-invariant : the ¯lters are designedso that the responseto any par-
ticular orientation can be computedby linear combinations of the responseto the M
original orientations. The steerability of the transform is the reasonit was designed
in the ¯rst place.However, the transform has proved to be quite e±cient and useful
using only the M principal orientations and that is how we shall alsouseit here.

4.3.1 Description of the ¯lters, scaling functions and wavelets

In this section,we denote bf the Fourier transform of the function f and (r; µ) the
polar coordinates. Moreover, we write n for the vector (n1; n2). As in the separable
case,the scalingfunction is indexedby scalej and the location ¹n : Áj ;n . The wavelets
bear an additional index m corresponding to the orientation : Ãm

j ;n . Here,the wavelet
and scalingfunction at the scalej are not sampledat the samerate :

Áj ;n (x) = 2j Á(2j x ¡ n) (4.45)

Ãm
j ;n (x) = 2j Ãm (2j x ¡ 2n) (4.46)
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The wavelets and scaling function verify scaling relations analogousto Eq. (4.2)
and (4.4) in the separablecase,with the addition of orientation for the wavelets :

bÁ(2r; µ) = bÁ(2r ) = bÁ(r ) L(r ) (4.47)
cÃm (2r; µ) = bÁ

¡
r
¢

H
¡
r
¢

GM (µ ¡ m¼
M ) (4.48)

The low-pass¯lter L, the high-pass¯lter H and the oriented ¯lter GM are de¯ned as
follows :

L(r ) = cos
¡

¼
2 log2( 4r

¼ )
¢

±¼
4 <r <

¼
2

+ ±r <
¼
4

(4.49)

H (r ) = sin
¡

¼
2 log2( 4r

¼ )
¢

±¼
4 <r <

¼
2

+ ±r >
¼
2

(4.50)

GM (µ) = (M ¡ 1)!p
M [2(M ¡ 1)]!

¯
¯2cosµ

¯
¯M ¡ 1

(4.51)

They are displayed for M = 4 in Fig.4.2.
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H(r) L(r) 
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p 2p p/4 p/2 5p/4 3p/2 0 

Fig. 4.2 { Left : low pass¯lter L(r ) and high-pass¯lter H (r ). Right : oriented ¯lters
GM (µ ¡ m¼

M ) for M = 4. Dotted curve : m = 0, orientation of the wavelet : 0± ;
plain curve : m = 1, orientation of the wavelet : 45± ; dash-dotted curve : m = 2,
orientation of the wavelet : 90±. Omitted for clarity of the ¯gure : m = 3, orientation
of the wavelet : 135±.

The scaling function is real, non-negative and radially symmetric and so is its
Fourier transform. The wavelets are real and oriented, their Fourier transform is
real non-negative and symmetric about the origin. Examplesof waveletsand scaling
function are displayed in the ¯rst row of Fig. 4.3. The secondrow of the ¯gure shows
their Fourier transform. The wavelets shown have di®erent scale, orientation and
location.

Remark . We use a non-negative version of the oriented ¯lter proposed in [47] :
GM (µ) = (M ¡ 1)!p

M [2(M ¡ 1)]!

¡
2cosµ

¢M ¡ 1
. The oriented ¯lter we proposeensuresthat the

waveletsare always real. It is lesssmooth than the original for M = 2, i.e. when one
considersonly two orientations. In that case,our G2 is only continuous,while the one
usedby Portilla et al. is C1 . However, this lack of smoothnesswasalreadypresent in
the low-passand high-pass¯lters which are continuous but not di®erentiable. The-
refore,our choicedoesnot changethe overall regularity of the Fourier transforms of
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Fig. 4.3 { Top row : waveletsin space; Bottom row : waveletsin Fourier plane.First
column : wavelet at a ¯ne scale j + 1, centered at location n0, oriented along the
¯rst diagonal. Secondcolumn : wavelet at a coarserscalej , centered at location n1,
oriented along the ¯rst diagonal.Third column : wavelet at the samecoarserscalej ,
centered at location n2, oriented along the horizontal axis. Fourth column : scaling
function, centered at location n2.

the scalingfunction and waveletseven for M = 2. Moreover, we veri¯ed that the non-
di®erentiabilit y of the ¯lters doesnot impact the performancesof our reconstruction
algorithm of astrophysical data by designingC1 (continuously di®erentiable) ¯lters :

L(r ) = cos
¡

¼
2 º (r ¡ 1)

¢
(4.52)

H (r ) = sin
¡

¼
2 º (r ¡ 1)

¢
(4.53)

GM (µ) = sin
¡

¼
2 cos

¡
M
2 µ

¢2 ¢
; µ 2 [¡ ¼

M ; ¼
M ] (4.54)

GM (µ) = sin
¡

¼
2 cos

¡
M
2 (µ ¡ ¼)

¢2 ¢
; µ 2 [¼¡ ¼

M ; ¼+ ¼
M ] (4.55)

with º (x) = sin
¡

¼
2 x

¢2
±0<x< 1 + ±x¸ 1 (4.56)

Sincethe useof the C1 ¯lters (4.52)-(4.55)doesnot improve the results,we will only
present our work using the ¯lters (4.49)-(4.51).

4.3.2 Algorithm to compute the steerable pyramid transform

Weusethe notation : aj ;n = hf ; Áj ;n i for the scalingcoe±cients and dm
j ;n = hf ; Ãm

j ;n i
for the wavelet coe±cients of a function f oriented in the direction m¼

M . Supposeweare
given the scalingcoe±cients at scalej + 1 : f aj +1 ;ngn2 Z2 . The algorithm to compute
the coe±cients at the coarserscalein the Fourier plane is :

1. Compute the trigonometric series\aj +1 ;n (»).

2. Multiply by the high-pass¯lter H (j»j), call the result T(»).

3. For m = 0 to m = M ¡ 1, multiply T by the rotated oriented ¯lter to obtain :
ddj ;n (») = T(»)GM (µ(») ¡ m¼

M ), where» = j»jeiµ(») .
Inversethe trigonometric seriesto obtain the wavelet coe±cients f dj ;ngn2 Z2 .

4. Multiply \aj +1 ;n (») by the low-pass¯lter and keepa dilated version : daj ;n (») =
\aj +1 ;n ( »

2)L( j»j
2 )
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5. Inversethe last trigonometric seriesto ¯nd the scalingcoe±cients f aj ;ngn2 Z2 .

Given the scalingcoe±cients at the ¯nest scale,it su±cesto repeat this procedure
recursively to ¯nd the decomposition of f on the steerablepyramid. Sincethe scaling
coe±cients are kept at only the coarsestscale,step 1 (resp. step 5) can be skipped at
each iteration except the ¯rst (resp. last) one.

The reconstructionof the scalingcoe±cients at scalej from the waveletandscaling
coe±cients at scalej ¡ 1 is carried out using the exact same¯lters L, H and GM .
Indeed, the steerablepyramid is a tight frame which ensuresthat the decomposition
and reconstructionare donewith the samefamily :

f =
X

n2 Z2

hf ; ÁJo ;n i ÁJo ;n +
MX

m=1

X

j 2 Z

X

n2 Z2

hf ; Ãm
j ;n i Ãm

j ;n : (4.57)

And the ¯lters are real so that :

[aj +1 ;¢(») = caj ; ¢(2») L
¡
j»j

¢
+

MX

m=1

cdm
j ; ¢(») L

¡
j»j

¢
GM

¡
µ(») ¡ m¼

M

¢
(4.58)

Figure 4.4 shows the system diagram corresponding to the decomposition and
reconstruction.The stepsdescribedabovecorrespond to the shadedblock. In practice,
the sampleof the function f in hand are again consideredas the scalingcoe±cients
at the ¯nest scale : f aJ1 ;ngn2 Z2 . To avoid aliasing in the practical caseof a ¯nite
sample,oneneedsto usea slightly modi¯ed versionof the algorithm to compute the
coe±cients at scaleJ1 ¡ 1. As pictured in the white block of Fig. 4.4, one doesnot
do the downsamplingfor the scalingcoe±cients at scaleJ1 ¡ 1, which meansthat :

\aJ1 ¡ 1;n (») = daJ1 ;n (»)L
¡
j»j

¢
: (4.59)
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Chapitre 5

Application to the extraction of
clusters of galaxies

This chapter is dedicatedto the study of the performancesof the functional va-
riational method described in Chapter 2 and the statistical method described in
Chapter 3 for the reconstruction of maps of clusters of galaxiesvia the detection
of their Sunyaev-Zeldovich signature in the °uctuations of the Cosmic Microwave
Background radiation. The mathematical model that describesthe observations and
the components have been described in the precedent chapters. In the ¯rst section
of this chapter, we explain in greater detail the cosmologyof each component and
show examplesof simulated observations. The secondsectiondescribes the tools we
use to assessthe quality of the reconstructedmaps. In section 5.3, 5.4, and 5.5, we
analyzethe performanceof both methods under di®erent conditions of observation.
The results we obtained are summarizedin section5.6.

5.1 Description of the signals

5.1.1 Clusters of galaxies

Stars are usually found in densecollections rather than isolated. A collection
of stars (ten millions to one trillion), together with interstellar gas,dust, and dark
matter, all being held together by gravitational attraction, is called a galaxy. Most
galaxiesare several thousand to several hundred thousand light years in diameter.
Galaxies themselves are organizedinto larger structures. The smaller aggregatesof
galaxiesarecalledgroupsof galaxies.Typically, a group of galaxiescontains lessthan
¯ft y of them. Clusters of galaxiesare larger structures containing ¯ft y to thousands
of galaxies,packed into areasof around onemegaparsecacross(one parsecis around
3.12light years).Superclustersareeven larger structuresyet, containing tensof thou-
sandsof galaxiesfound in groups, in clustersor even isolated. They form the largest
structures identi¯ed so far in the universe,and resemble a foam.

Our work focuseson the reconstruction of clustersof galaxiesbecausethey may
be used to infer cosmologicalinformation such as the Hubble constant via number
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counts and power spectrum analysisof Sunyaev-Zeldovich maps (cf. [38, 36, 27, 3]).
This is oneof the most important scienti¯c goalsof several experiments, now planned
or underway, such as the Sunyaev-Zeldovich Array experiment, the AtacamaCosmo-
logy Telescope SZ survey and the Planck mission.Galaxiesin the clusters travel at
velocities in the range of eight hundred to a thousand km:s¡ 1 and are surrounded
by hot X-ray emitting gas and large amounts of dark matter. The total massof a
cluster is typically between1014 and 1015 times the solar mass,with only ¯v e percent
(resp. ten) of the massof a cluster due to the galaxies(resp. the gas), the rest being
dark matter. Reconstructingthe clustersof galaxiesnot an easytask, becauseother
physical phenomena,such as the Cosmic Microwave Background, obscureour view
of it. However, imaging techniqueshave now reached a su±cient resolution that the
Sunyaev-Zeldovich signatureof the clusterscan be extracted for further study.

The Sunyaev-Zeldovich e®ect(SZ e®ectin short) is dueto high energyelectronsin
the galaxy clustersthat interact with CosmicMicrowave Background (CMB) photons
traveling from the last scattering surfaceto Earth. Somehigh energyof the electrons
is transferredto the low energyphotonsthrough the inverseCompton e®ect.This mo-
di¯es the CosmicMicrowave Background temperature and intensity in the direction
of a cluster. The thermal SZ e®ectinducesdistortions of Cosmic Microwave Back-
ground spectrum, its frequencydependenceis di®erent from that of the CMB and its
amplitude is comparableto the CMB °uctuations. Hencethe detectionof the thermal
SZsignalwill allow to study clustersof galaxies.The right panelof Figure 5.1and the
bottom left panelof Figure 5.2show examplesof thermal Sunyaev-Zeldovich clusters'
signatures.Note that there is also a kinetic SZ e®ectdue to the bulk motion of the
clusters.This signal is much weaker than the thermal SZ signal and hasa frequency
dependencesimilar to that of the Cosmic Microwave Background, therefore we will
not attempt to detect it.

5.1.2 The Cosmic Micro wave Background

The CosmicMicrowaveBackgroundradiation or CMB is a form of electromagnetic
radiation that ¯lls the wholeof the Universe(seeFigure 5.1, left paneland Figure 5.2,
top left panel,for two examples).Its existenceand propertiesareconsideredoneof the
major con¯rmations of the Big Bang theory. According to standard cosmology, the
CMB givesa snapshotof the Universeat the \time of last scattering", about 400,000
yearsafter the Big Bang, when the Universebecametransparent to radiation for the
¯rst time. Sincethis time, the Universeis expanding,causingthe CMB photons to
be redshifted and the radiation to cool with a factor inversely proportional to the
Universe'sscalelength.

The CMB spectrum matchescloselythat of a black body at 2.726Kelvins and this
radiation hasa high degreeof isotropy. There are,however, anisotropiesand theseare
the featuresthat help usunderstandthe Universe.The most pronouncedanisotropy is
the dipoleanisotropy, which is consistent with the Earth moving relative to the CMB.
A number of experiments, starting with the Cosmic Background Explorer (COBE)
satellite in 1989-1996,have sincedetectedlarge scaleanisotropiesother than the di-
pole, allowing cosmologiststo understand better the structure of the Universe.For
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example,the measurements were able to rule out sometheoriesof cosmicstructure
formation like the cosmicstrings theory. In 2000,the Boomerangexperiment reported
that the highest power °uctuations occur at the scaleof one degree.Togetherwith
other cosmologicaldata, theseresults implied that the geometry of the Universeis
°at. In 2003,the WMAP experiment provided a detailed measurement of the angular
power spectrum down to this scale,tightly constrainingvariouscosmologicalparame-
ters. Theseresults are broadly consistent with those expected from cosmicin°ation
as well as various other competing theories.

To makefurther progress,it is known that smallerscale°uctuations than what was
provided by WMAP will have to beanalyzed.Thesevery small scale°uctuations have
beenpreviously observed by ground-basedinterferometersin small regionsof the sky
and will be measuredsystematicallyover the wholesky by the spacemissionPlanck,
which is to belaunchedin the next two to threeyears.Thesesmall scalescorrespond to
the scaleof massive galaxy clusters(seeFigure 5.1). The Sunyaev-Zeldovich signature
of the clusters is a major factor of the °uctuations of the CMB at these scales.
Therefore,not only will theseCMB survey experiments such as Planck give data to
resolve massive clusters,but also the extraction and accuratereconstructionof these
clustersof galaxieswill be neededto proceedwith the CMB analysis.
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Fig. 5.1 { Simulated 1 degreeby 1 degreemaps.Left panel : CMB, Right panel : SZ
clusters.

We consider experiments that will provide a map of the sky in the frequency
range100-600GHz, that is, where the thermal SZ signal has the biggestamplitude.
In this range, two other physical components will have a signi¯cant contribution to
the observed maps : the radio and infrared point sourcesand the Galaxy dust. We
describe brie°y thesetwo components in the next subsection.

5.1.3 Poin t sources and the Galaxy dust

The Galaxy dust refersto accumulations of gasand dust betweenstars in our own
galaxy. Theseform an interstellar cloud that lies in the foregroundof our observations
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Fig. 5.2 { Simulated 10 degreesby 10 degreesmaps.Top left panel : CMB, top right
panel : the Galaxy dust, bottom left panel : SZ clusters,bottom right panel : infrared
point sources,shown much bigger than their true sizefor clarity (seetext). Note the
di®erencein scalebetweenFigure 5.1 and 5.2.

of the sky. The frequencydependenceof the galacticdust is signi¯cantly di®erent from
that of the CMB and the SZ e®ect.Similarly to the CMB signal, the galactic dust
spreadsacrossour observations of the whole sky and its °uctuations are smooth
(seeFigure 5.2, top right panel for an illustration). Becausethe Galaxy dust hasvery
di®erent spatial propertiesfrom the SZsignal,we do not expect that its contributions
will limit our reconstructionof the SZ clusterseven though they are more faint.

On the other hand, point sourcesmay reveal themselvesto be moreseriouspollu-
tants of our SZ reconstructions.Technically, the term point sourcecould refer to any
sourcethat can be treated as coming from a singlepoint. Here, point sourcesare of
two types : radio galaxies,brightest in the lowest frequencychannel, and dusty ga-
laxies,brightest in the highestfrequencychannel.The radio point sourcesignalis very
weak in the range of frequencieswe analyzeand will not be consideredhere. Dusty
star-forming galaxiesat high-redshift shinebrightly at submillimeter frequency, and
therefore,will be a potential concern.We show at the bottom right of Figure 5.2 an
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exampleof a simulated map of infrared point sources,each point sourcebeing exten-
ded to several pixels to allow visualization. The modeling of theseinfrared sources,
(number counts, frequencydependences,and spatial correlations) remainsuncertain.
Therefore we will ¯rst concentrate our e®ortson lower frequencieswhere the point
sourcescanbe ignoredto assessthe abilit y of our algorithms to separatethe SZe®ect
from the CMB variations. Two analyzes,oneat higher resolution and the secondone
at lower resolution, are made ignoring the point sourcesand the Galaxy dust. We
incorporate thesetwo components in a third study to completeour analysis.

5.1.4 Frequency dependences

In this section, we describe in more detail how the contribution of each astro-
physical component varieswith the frequencyof observation. The thermal Sunyaev-
Zeldovich e®ectcausesa changein the CMB temperature in the direction ~n :

±TCM B

TCM B
= ¡ 2 y(~n)

·
2 ¡

x
2

exp(x) + 1
exp(x) ¡ 1

¸
(5.1)

with

x =
hº

kB TCM B
(5.2)

where º is the frequencyof observation in GHz, h ' 6:626£ 10¡ 34m2 kg s¡ 1 is the
Planck constant, kB ' 1:38 £ 10¡ 23m2kg s¡ 2K ¡ 1 is the Boltzmann constant and
TCM B ' 2:726K is the CMB temperature. The comptonization parameter y(~n) is
the quantit y intrinsic to the cluster while the rest of Eq. (5.1) models the frequency
dependence,when the observation is measuredin CMB temperature units ; that is,
whenthe observationsarenormalizedsothat the frequencydependenceof the CMB is
°at. The left panelof Figure 5.3displays the frequencydependenceof the SZsignal in
CMB temperature units (black or dotted line). For reference,the blue or dashdotted
line is the °at frequencydependenceof the CMB and it is equalto onein theseunits.
The thermal SZe®ectcausesa decrement of the temperature below the characteristic
frequencyof 217 GHz, and an increment of the temperature above it. The e®ectis
illustrated in the ¯rst three panelsof Figure 5.4, where the location of a particular
cluster is pointed by an arrow labeled with the letter \c" in three observations at
di®erent frequencies.In the top left panel, the presenceof the clustersdecreasesthe
intensity measuredat 145GHz. This e®ectdisappearsin the top right panel because
at 217GHz, the frequencydependenceof the SZ signal is closeto zero.Finally at 265
GHz (middle left panel), the e®ectis inverted, the presenceof the cluster causingan
increaseof intensity.

In CMB units, it seemsthat the larger the frequencyof observation, the more
important the SZ contribution is. However this is relative to the CMB frequency
dependenceitself. In fact, the SZ signal is maximal (resp.minimal) around 350(resp.
145) GHz (see right panel of Figure 5.3), when the observations are measuredin
intensity units. The CMB signal itself reachesits maximum around 217GHz, where
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Fig. 5.3 { Frequencydependence,left panel in CMB temperature unit, right panel
in °ux units. Note that the frequencydependenceof point sources(IR) and Galaxy
dust (GD) in the right panel coincide.

the clusters'dependencechangessigns(Figure 5.3,right panel,blue dashdotted line).
The plain and dotted curvesdisplaying the frequencydependenceof the infrared point
sourcesand the Galaxy dust lay on top of each other in this ¯gure.

To obtain a complete picture of the contribution of each component to the ob-
servation at each frequency, one should bear in mind that the natural units of each
components are di®erent. The frequency dependencesdisplayed in Figure 5.3 take
theseunits into account. For example,the CMB signal is measuredin Kelvin, which
is the unit usedin the left panel(top left panel)of Figure 5.1(5.2). Its °uctuations are
of the order of 10¡ 4 Kelvin. The SZ cluster signal is measuredby its comptonization
parameter y, also called y-parameter. The order of magnitude of the y-parameter of
the most massive and brightest clusters is around 10¡ 4 as well (right and top right
panelsof Figure 5.1 and 5.2). Combining this with the frequencydependences,one
can seethat massive clustersyield a signal of amplitude that is comparableto that
of the CMB in the range of frequenciesobserved. This is not the casefor the point
sourcessignal and the Galaxy dust signal. The natural unit for thesesignals is the
°ux at a particular frequencyand although their frequencydependencestays below
the SZ frequencydependence(seeFigure 5.3, right panel), those two signalsare the
dominant signalsat higher frequencies.

Figure 5.4givesa visual summaryof theseremarks.Each panelshows a 3.2by 3.2
degreesmapscontaining the sumof the contributions of the four signalsat a particular
frequency. This result is convolved with a two arcminutes wide beam so that the
contribution of the points sourcesis wide enoughto be visible, without the arti¯cial
blowing up usedin Figure 5.2. The middle right panel and bottom panelsshow that
above 300GHz, the point sourcesand the Galaxy dust are dominating the CMB and
SZ signals.In the 100-300GHz rangeon the other hand, the CMB signal is dominant
and traces of SZ clusterscan be seen,as pointed out by the arrow labeled with the
letter \c". This suggeststhat the relevant frequenciesof observation for the extraction
and detection of the SZ clusters' signal are betweenonehundred and three hundred
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Fig. 5.4 { Simulated 3.2 by 3.2 degreesmaps of the sum of the contribution of the
CMB, the thermal SZ, the infrared point sourcesand the Galaxy dust at di®erent
frequenciesof observation. Top left : 143GHz, top right : 217GHz, middle left : 265
GHz, middle right : 385GHz, bottom : 600GHz. One particular cluster of galaxiesis
locatedby the arrow labeledwith \c". Oneparticular infrared point sourceis located
by the arrow labeledwith \i".
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Fig. 5.5 { Simulated 3.2 by 3.2 degreesobserved maps at di®erent frequenciesof
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GHz. In 2006,the Atacama CosmologyTelescope (ACT) will begin an SZ survey of
galaxyclustersexactly in this range,with three frequenciesof observations : 145GHz,
217 GHz and 265 GHz. The arrow labeled with the letter \i" points at the location
of a point sourcein Figure 5.4, showing that even at thesewell selectedfrequencies,
very bright point sourcesdo appear. In [28], the authors quanti¯ed potential bias in
the reconstruction of the SZ signal due to the point sourcesunder the conditions of
this experiment. For other experiment such as the Planck mission,larger frequencies
(300-600GHz) will be observed too, giving the possibility to extract point sources
better.

The picture would not be completewithout taking into account the beamsizeat
di®erent frequenciesand the noise.Figure 5.5 displays maps corresponding to those
of Figure 5.4, whennoiseis addedand beamsof the correct frequency-dependent size
are used. (The beam and noise parameterscorrespond to those of the experiment
described in Section5.5).

5.2 How to quan tify the results ?

A standard measureof the residual error betweentwo imagesis the Root Mean

Square(RMS) error : RMS(I 1; I 2) =
q

1
N

P
x;y

£
I 1(x; y) ¡ I 2(x; y)

¤2
where N is the

total number of pixels in the images.The RMS error correspondsto the L 2 norm of the
di®erencebetweenthe imagesand is thereforea global measure.The RMS error can
be computedat each scaleof a wavelet decomposition (or of another decomposition),
thus exhibiting at which spatial length the two imagesare more similar or di®erent.
We ¯nd that for the CosmicMicrowave Background and the Galaxy dust maps, the
RMS error in pixel spaceand the RMS error computed by scale, combined with
visual inspection of the mapsand residualsgive a su±cient idea of the quality of our
reconstructedmaps. Indeed, thesesignalsare spreadacrossthe whole sky so that a
global measureof error treating each pixel the sameway gives a good senseof the
quality of the reconstructions.The point sourcesand the clusters' signals, on the
other hand, have to be quanti¯ed by other meansbecausethey are made of intense
and compact objects surroundedby void. The RMS error, whether in pixel spaceor
by scale,sumsup the contributions from all locations in space,giving a poor idea of
how localizedthe signalsare.

Poin t sources

The principal featuresof point sourcesare their brightness,their sparsenessand
the fact that their extent is smaller than the pixel size.The reconstructedmaps of
point sourceswe obtain are rather conservative, and never yield the reconstruction
of a point sourcewhere it did not exist. However the maps may be polluted by low
intensity signalwhich is either white noiseand residualof the galaxy dust map. These
low intensity pollutants are rather easyto separatefrom the estimatedpoint sources
by thresholding the reconstructedmap. Thus, to assesthe quality of a reconstructed
point sourcemap, we ¯rst examinethe level of low intensity residual. The quality of
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the estimatedpoint sourcesis then de¯ned by the number of point sourcesidenti¯ed,
the extent of each compact object in the reconstructed map that corresponds to
a point sourceand the average fraction of the true intensity of the point sources
recovered.

Clusters of galaxies

As for the clustersof galaxies,the task is a little morecomplicatedbecauseclusters
vary dramatically in size,shape and magnitude. Moreover, the clustersare the main
focus of our study, so we needto de¯ne carefully how to assesthe quality of these
maps. Clusters are compact objects with a peak of intensity at the center, and are
distributed sparselyacrossthe sky. Our strategy to detect them in a map is to isolate
local maxima that are global maxima over a small ¯xed angle µ1. This corresponds
roughly to deciding that the sizeof the smallestcluster we want to detect is µ1. The
order of magnitude of µ1 is then the typical sizeof a cluster, i.e. a few arcminutes.
The exact value of µ1 has to be adjusted to the resolution of the data at hand. We
refer to the local maximum as the \center" of a detectedcluster.

The studies we present here use simulated data, therefore we can compare the
reconstructedmapsto the ground truth. To do so,we apply the detection procedure
described above to both the \true" and the reconstructedmap. A reconstructedclus-
ter is then consideredasa true detection if its center is closerthan a prede¯nedangle
µ2 to the center of a cluster in the original map. In somerare cases,the reconstructed
map shows several local maxima (of di®erent intensity) even though there is only
one \true" cluster. In this case,we take only the most salient maxima to make our
quanti¯ed quality assessment. The purit y of a sampleof reconstructedclustersis then
de¯ned as the fraction of clustersin this samplethat are true detections.

Our next task is to determinewhich observable is the most reliable to derive cos-
mologicalparameters.Becauseof the convolution by the beamand the di®erent sizes
of the clusters,it is likely that the maximal or central value of the y-parameteris not
reliably restoredin the reconstructedmaps. Instead, we expect that averagedvalues
are more reliable. Again, the angleµ3 over which the y-parametershouldbe averaged
to ¯nd a relevant observable for the clusters has to be tailored to the experiment
at hand. We assesshow well the collection of reconstructed averagey-parameters
matches the \true" values by linear regression: we ¯t a line through the cloud of
point formed by the pairs (ytr ue; yr econstr ucted) in two dimensions.The slope of this
line tells us what the bias is in the averagedy-parameter of the reconstructedmaps
comparedto the true value. That is to say, if we detect a cluster in the reconstructed
map, with averagedy-parameter value yr econstr ucted, we predict that the true corres-
ponding averagedy-parameter value is ypr edicted = yr econstr ucted

s , where s is the slope.
We de¯ne the spread¢ of this cloud of points by the averagedeparture from the best
¯tting line, rescaledto the true value, i.e. :

¢ = E
½

jytr ue ¡ ypr edicted j
ytr ue

¾
= E

½
jytr ue ¡ yr econstr ucted

s j
ytr ue

¾
(5.3)

The slope and spread then give us a way to take into account the bias in the re-
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constructed map when we predict the number of \true" clustersabove a prede¯ned
averagey-parameter. The ratio betweenthe number of such clusterspredicted from
the reconstructedmap to the actual number of such clusters in the original map is
called the completeness.

With thesetools to assesthe quality of our reconstructions,we can now explain
the analysisof the performancesof the methodsweproposedin Chapter 2 and 3 in the
context of threedi®erent experiments. Each of the next threesectionsof this chapter is
devoted to the descriptionof oneexperiment and the corresponding results.Beforewe
go on, let us make two remarks.Firstly, the tools we just have presented usethe fact
that we know the original clustersmap. This is a way to benchmark the performances
of our algorithms, however thesetools would have to be further developed in the case
of real data. Secondly, we quantify general aspects of the clusters' reconstruction,
such as the number of clustersand their intensity, leaving for later the quantitativ e
study of ¯ner properties,such astheir shape and the structures surroundingthe peak
of intensity in a cluster. We neverthelessexaminethese¯ner properties qualitativ ely.

5.3 A CT : a high resolution exp erimen t

The ACT experiment is a ground-basedsurvey that will collect data on a 100
degreesquarearea of the sky. ACT stands for the Atacama CosmologyTelescope.
This telescope is designedspeci¯cally for high-sensitivity large-areasurveys of the
sky requiring dedicatedobservations for months at a time. It is located in Chile and
the experiment is planned to start in November 2006.The ACT survey will map the
CosmicMicrowave Background anisotropiesfrom angular scalesof a degreedown to
an arcminute. Oneof the goalsof this survey is to ¯nd and study all galaxy clustersin
the portion of sky imagedthat have a massgreater than 3:1014 solar massesthrough
their Sunyaev-Zel'dovich e®ect.Data will be acquiredat 145,217 and 265 GHz, the
expectedbeamsizeand noiselevel are given in Table 5.1.

ACT experiment

Frequencyof observation Beam size Noiselevel
º (GHz) fwhm (arcmin) ¾(¹ K)

145 1.7 2
217 1.1 3.3
265 0.93 4.7

Tab. 5.1 { The characteristicsof the ACT experiment. The RMS detector noiseper
full-width-half-maximum pixel, labeled ¾, is given in thermodynamic temperature
units.

As we pointed out in Subsection5.1.4, the CMB and SZ signalsare largely do-
minant at these frequencies.The contribution of the Galaxy dust is negligible and
this component can be safely disregarded.Point sourcesmay causesomeproblems,
as was pointed out in [28], however, we chooseto leave them out becausethey are
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not so troublesomeat the frequenciesfor ACT. As a consequence,we do not assess
here the quality of the reconstruction of very compact clusters, i.e. clusters smaller
than the beamsizewhich is onearcminute, becausethey may in practice be confused
with the point sources.Sincemost massive clusters are larger than the beam, it is
expected that a great number of thesesclusters will be resolved. Moreover, at this
resolution, clusters appear aspherical (seeFigure 5.10), and a challengewill be to
alsodetect and resolve the outskirts of massive clusters.With thesegoalsin mind, we
assessthe quality of the reconstructionmethods proposedin Chapter 2 and Chapter
3 by using simulations containing the contribution of the CMB and the SZ signals
only at the frequenciesand with the beam sizeand noisespeci¯ed in table 5.1. The
CMB is simulated as a Gaussianrandom ¯eld using a power spectrum derived from
the best-¯tting WMAP parameters[5]. The SZ simulated maps are obtained from
hydrodynamical simulations by Zhang et al. [64]. We analyze24 setsof simulations,
each of which covers a 1.44 squaredegreearea of the sky. Our study then covers
roughly a one third of the areathat will be coveredby the true ACT experiment.

To get a rough idea of the level of the noisecomparedto the contribution of the
CMB and SZsignalsin the observations, we display in Figure 5.6 the power spectrum
of each signal at 145 (left panel) and 265GHz (right panel). The power spectrum of
the CMB and SZsignalsaremodulated by their frequencydependence.The SZsignal
dominates the CMB at scalescoarserthan 3 arcminutes. The spectra of the CMB
and SZ signalshave to be multiplied by the beam spectrum to obtain the spectral
contribution in the observation. Sincethe noiselevel is moderate and the beam size
quite small, the SZ signal is dominant over the noise for scalescoarser than two
arcminutes (resp. one arcminute) at 145 (resp. 265) GHz. Therefore, we do expect
that the reconstructionof the SZ will be accurateat leastdown to the beamsize(one
arcminute).

We usedboth our statistical and functional methods to analyzethesedata. We
comparefour sets of results : the Gaussian,pro¯le and truncated pro¯le prior dis-
tributions for the SZ clustersand our best variational results, using an weighted L 2

norm in wavelet spacefor the CMB and a Besov norm for the clusters. (The CMB
prior is ¯xed to Gaussianfor the statistical method). Thesedi®erent methods were
explained,respectively, in Section3.4 and 2.5.2.

5.3.1 Reconstructions of the Cosmic Micro wave Background

Figure 5.8 shows a typical 1.2 by 1.2 degreeCMB map (top panel) together with
the reconstruction obtained from each algorithm. The corresponding residual maps
are in the following ¯gure (Fig. 5.9). Visual inspection of these¯gures suggeststhat
the four methods consideredyield reconstructions of the CMB maps of the same
quality. We computed the averageover the 24 simulations consideredof the RMS in
pixel spaceand scaleby scale.The RMS in pixel spaceis 1:12£ 10¡ 6 for all methods.
The RMS per scaleare plotted in Figure 5.7.

Both the residualsmapsof Figure 5.9 and the RMS per scalein Figure 5.7 show
that the most errorsoccur at the 4.4arcminutesscale,which correspondsto extended
clusters.We notice on Figure 5.7 that the distribution of the error per scaleis slightly
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Fig. 5.6 { Power spectra of the signalscontributing to the observation for the ACT
experiment. Left : at 145 GHz, right : at 265 GHz. The horizontal axis indicates
the inverseof the spatial frequency(on a logarithmic scale),so that small numbers
correspond to ¯ne spatial scalesand large numbers to coarsespatial scales.

di®erent for the functional algorithm than for the statistical ones.The functional me-
thod seemsto reconstruct more accurately larger scalethan 8.9 arcminutes while the
statistical method performsbetter at smallerscales.The better accuracyat ¯ne scales
for the statistical method may be explainedby the useof the neighborhoods which
make the estimatesmore local for the statistical approach than for the functional
approach.
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Fig. 5.7 { RMS error in the CMB reconstruction, scaleby scale.The results of the
Gaussian,pro¯le and truncated pro¯le (noted t. pro¯le) prior lay on top of each other.
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Fig. 5.10 { ACT experiment : SZ clusters. Top original simulation, other panels :
reconstructions.Middle left : Gaussian,middle right : truncated pro¯le, bottom left :
pro¯le, bottom right : functional. The mapsare 1:2 £ 1:2 degrees.
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5.3.2 Reconstruction of the SZ clusters

A global quanti¯cation of the accuracyof the reconstructedSZ maps is the com-
putation of the averageRMS errors in pixel spaceand per scalefor the 24 simulations
we used.The RMS error for the di®erent reconstructionsare similar. The RMS error
in pixel is 8£ 10¡ 6 for the functional method and the Gaussianprior, and 7:7£ 10¡ 6

for the pro¯le and truncated pro¯le priors. The RMS errors per scaleare provided in
Figure 5.11and show the samedichotomy, with the functional method and Gaussian
prior having a slightly larger RMS error at all scalesthan the pro¯le priors. Most
errors occur at the onearcminute scale,which is the scaleof the beam.
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Fig. 5.11{ RMS error in the SZ reconstruction,scaleby scale.

The RMS error, per scaleor in pixel space,is however not a good indicator of
the quality of the reconstructedmaps when quality denotesrelevance for deriving
astrophysical constraints. We illustrate this fact by showing a simulated 1.2 by 1.2
degreemap together with the reconstructed maps of our four methods in Figure
5.10.The qualitativ e comments we can make from visual inspection of such mapsare
consistent with the quantitativ e study that follows.

Qualitativ e insp ection of the reconstructed maps.

Visual inspection of the reconstructedmaps tells us that the Gaussianprior un-
derestimatesthe central valueof the most intenseclusters,whereasthe non-Gaussian
priors and the functional method perform this task much better. The functional me-
thod resolves more compact clusters better than the three statistical methods but
on the other hand doesa poor job at reconstructing the structures in the outskirts
of extendedclusters. The Besov norm we choseto constrain the smoothnessof the
clusters for the functional algorithm promotes local fast transitions and is therefore
able to pick up 89 % of the central intensity of bright clusters(we explain in the next
subsectionhow this number is computed). However, the background in the functio-
nal reconstruction (seebottom right panel of ¯gure 5.10), shows that structures of
lower intensity reconstructedwith this method are rather elongated.As a result the
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outskirts of the clusters are not well resolved and it is di±cult to assessthe extent
of a cluster using this method. The statistical method, on the other hand, is able
to link together smoothly the outskirts of the clustersbecauseit takes into account
the correlationsbetweenneighboring wavelet coe±cients. The useof the pro¯le prior
for the statistical method inducesa substantial improvement in the reconstructionof
the central y-parameterof a cluster comparedto the Gaussianprior. However, lower
intensity clusters are better resolved under the Gaussianprior becauseit imposes
lessregularity in the low-intensity range than the pro¯le prior. Suspecting that our
deconvolution method for the prior tends to overweight low valuesof the multiplier,
we truncated the pro¯le prior. The results obtained with this secondpro¯le (middle
right panel of Figure 5.10) show a compromisebetween the initial pro¯le and the
Gaussianprior : the central parameterof bright clusters is as good as for the pro¯le
prior and lower intensity structures are better reconstructed.

Quan titativ e insp ection of the reconstructed maps.

When it comesto infer cosmologicalparameters from number counts in other
wavebands(i.e. X-ray or optical), the commonpractice is to retain only the brightest
clusters which are lessa®ectedby selectione®ectsand have a better characterized
scaling function. We adopt here the samestrategy with SZ clusters,also motivated
by the fact that they are lessa®ectedby reconstructionerrors.

Our ¯rst task is to determine which observable is the most reliable to derive
cosmologicalparameters.As we explained in the previous section we have to select
the angle µc over which the y-parameter should be averagedin the context of this
experiment. We smoothed the original and reconstructedmaps over anglesranging
from 0 to 1.8arcminutes,which is the sizeof the largestbeam.For each such anglewe
computethe slopeand spreadassociated to the best ¯tting line to the cloudsof points
de¯ned by the original versusreconstructedaveragedy-parameter for each detected
cluster in the original map. Increasingthe value of the averagingangle,we ¯nd a big
improvement whenthe anglereaches0.9arcminute, which correspondsto the smallest
beamof the experiment. The left panelof ¯gure 5.12shows the evolution of the slope
and spreadwith the averaginganglefor the ¯ft y brightest clustersin this study. The
slope and spread improve further after the 0.9 arcminute angle; however, because
the most compactclustersare about 1 arcminute wide, smoothing over larger angles
will blend the background with the clusters'y-parametervaluesunevenly for compact
versusmore extendedclusters.Therefore,we de¯ne our best observable for the ACT
experiment to be the y-parametervalueaveragedover an angleof 0.9 arcminute. The
(ytr ue ; yr econstr ucted) pairs obtained at this anglefor the ¯ft y brightest clustersin this
experiment are displayed in the right panel of Figure 5.12for the four reconstruction
methods we consider. The top line is the line of perfect reconstruction, while the
other lines are the best ¯tting lines for each reconstruction. The bottom plain line
correspondsto the Gaussianprior, the dotted line to the truncated pro¯le, the dash-
dotted line to the pro¯le and ¯nally the dashedline is the best ¯tting line for the
functional method. The slope and spreadare summarizedin table 5.2. We ¯nd that
the the functional method yields the best slope and spread,reconstructingon average
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89%of the intensity of bright clusterswith a spreadunder 10%.The performancesof
both non-Gaussianstatistical methodsarecomparablealthough slightly lower, with a
slopearound0.84and spreadof 11%.The Gaussianprior performslesswell, consistent
with what we observed on the reconstructedmaps. It is able to recover 69% of the
intensity with a spreadof 16%.
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Fig. 5.12{ Left : Slope and spreadin function of the averagingangle(labeleddiame-
ter). Right : reconstructedversusoriginal central y-parameteraveragedat 0.9 arcmin
for the ¯ft y brightest clusters.

Method Statistical Functional
Gaussian Truncated pro¯le Pro¯le

Slope 0.69 0.83 0.84 0.89
Spread 0.16 0.11 0.11 0.09

Tab. 5.2 { ACT experiment : slope and spreadfor the averagey-parameterof the 50
brightest clusters.

We ¯nish the quantitativ e study of the reconstructedmaps for the ACT expe-
riment by assessingthe quality of predictions that would be made from the recons-
tructed maps.Two questionscometo mind : do the structures found in the recons-
tructed map really correspond to clustersin the input map? Can we associate a given
thresholdin the reconstructedmap to an input cluster intensity with high con¯dence?
To answer thesequestions,we compute the purit y and completenessof the samples
for given output intensities.The reconstructedand original mapsaresmoothed to 0.9
arcmin and clustersaredetectedin each map. The purit y of a sampleof reconstructed
clustersis the fraction of theseclustersthat have a counterpart in the original within
a radius of 0.6 arcminutes. For a ¯xed threshold t in the original map, we use the
slope s and spread¢ de¯ned earlier to ¯nd the sampleof detectedclusters in each
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reconstructedmap that would predict true clustersabove t. More precisely, we consi-
der that the detectedclusters in the reconstructedmap above threshold t:(1 ¡ ¢) :s
predict the number of true clusters above threshold t. The di®erent samplesin the
reconstructedmap then give predictions for the number of true clustersof intensity
greater than or equal to a prede¯ned value. Their purit y can be compared.We ¯nd
that reconstructedcluster samplesthat predict the existenceof true clustersof ave-
raged y-parameter above 1:5 £ 10¡ 4 are pure, that is, all such detected clusters in
the reconstructedmap correspond to true clusters.The purit y of the statistical maps
seemsa bit lower than the purit y of the functional map as the threshold decreases
(seeFigure 5.13, left panel). This is consistent with the fact that the corresponding
intensity in the reconstructedmapsis lower (becausethe slope is smaller). The com-
pletenessis de¯ned as the ratio betweenthe number of clusters in the reconstructed
sampleto the number of true clustersabove the corresponding threshold. The com-
pletenessplot in Figure 5.13 shows that the using the threshold t:(1 ¡ ¢) :s in the
reconstructed maps is too optimistic for the Gaussianand the functional method
but yields accurate number counts for the two non-Gaussianstatistical priors. We
concludethat the non-Gaussianstatistical methods predict with great accuracythe
number of clustersof averagedy-parameterabove 1:5 £ 10¡ 4, with no falsepositive.
In this study, we found 50 such clusters, thus the real ACT experiment will detect
around 150such clusters.This is an appropriate number count to derive cosmological
constraints.
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Fig. 5.13{ Purit y (left) and completeness(right) of the reconstructedsamples.

5.4 Planc k : a lower resolution exp erimen t

The Planck mission is designedto image the anisotropiesof the Cosmic Micro-
wave Background Radiation over the whole sky. Although it will give unprecedented
sensitivity and angular resolution for such a task, the beam sizesand level of noise
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are noticeably bigger than for the ACT experiment (seeTable 5.3). The sizeof the
smallest beam, around 5 arcminutes, is quite large comparedto the typical cluster
size(1 to 10 arcminutes).

Planck experiment

Frequencyof observation Beam size Noiselevel
º (GHz) fwhm (arcmin) ¾(¹ K)

143 7.1 6
217 5.0 13
353 5.0 40

Tab. 5.3 { The characteristics of the Planck experiment at the frequenciesused in
this work. The RMS detector noiseper full-width-half-maximum pixel, labeled ¾, is
given in thermodynamic temperature units.

In this work, we assessthe quality of our reconstruction methods on simulated
observed mapscontaining only the CMB and SZ clusters' contribution. We consider
the three frequenciesof observations wherethe contributions of thesetwo signalsare
the strongest: 143,217and 353GHz. The actual Planck experiment will make mea-
surements at higher frequencies,wherepoint sourcesand galaxy dust are dominant.
We rely on the fact that the useof theseobservations will allow to locate and esti-
mate point sources,and focus on the CMB and SZ signals.We useten simulations,
each of which is a 10 by 10 degreesmap. The CMB mapsare simulated by Gaussian
random ¯elds using a power spectrum derived from the best-¯tting WMAP parame-
ters [5] (sameas for the ACT experiment described in the previoussection).The SZ
simulated mapsare taken from White [62, 65].

In Figure 5.14,we display the power spectrum of the di®erent signalscontributing
to the observations at the frequencieswherethe clusters' signal is the strongest.The
power spectrum of the CMB and of the clusters is scaledby their frequencydepen-
dence,however the convolution by the beamis not taken into account. As expected,
the CMB signal dominates the SZ clusters' signal except at ¯ne scales(around 2
arcminutes). Taking into account the convolution by the beam, i.e. multiplying the
power spectrum of the CMB and SZ clusters' signal by this of the beam, one can
seefrom these plots that the noise dominates the SZ signal at most scales.Under
theseconditions, we expect Planck to detect the most massive (or extended)clusters
only. The largeareacoveredby the experiment, however, will allow to detect a sizable
number of them.

We usedboth our statistical and functional methods to analyzethesedata. Simi-
larly to our study of the previous experiment, we comparefour setsof results : the
Gaussian,pro¯le and truncated pro¯le prior distributions for the SZ clustersand our
best variational results, using an weighted L 2 norm in wavelet spacefor the CMB
and a Besov norm for the clusters.We refer to Section3.4 and 2.5.2for the details of
each method.
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Fig. 5.14{ Power spectra of the signalscontributing to the observation for the Planck
experiment. Left : at 143GHz, right : at 353GHz.

5.4.1 Reconstructions of the Cosmic Micro wave Background

As is the casefor the ACT experiment, the quality of the reconstructionsof the
CosmicMicrowave Background is similar for the four methods. Figure 5.16 shows a
5 by 5 degreesportion of oneof the simulated mapstogether with the reconstruction
obtained from each method. The total RMS error for the statistical reconstructions
is slightly lower (1:12 £ 10¡ 5 ) than for the functional method (1:16 £ 10¡ 5). This
di®erenceof precisionis spreadacrossall scales(seethe RMS per scaleplots in Figure
5.15).
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Fig. 5.15{ RMS error in the CMB reconstruction,scaleby scale.

Both the RMS per scaleplots and the residualmapsof Figure 5.17tell us that the
reconstructionsareaccuratefor scaleslarger that the typical beamsize(5 arcminutes).
The sizeof the beam in this experiment is the limiting factor of the reconstructions
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Fig. 5.16 { CMB, Planck experiment. Top : original simulation, other panels : re-
constructions.Middle left : Gaussian,middle right : truncated pro¯le, bottom left :
pro¯le, bottom right : functional. The mapsare 5 £ 5 degrees.
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of the Cosmic Microwave Background °uctuations, regardlessof which method is
employed.

5.4.2 Reconstruction of the SZ clusters

As expected from the sizeof the beam and the level of noisein this experiment,
we ¯nd that we can reliably reconstruct only bright and extendedclusters. In ¯gure
5.18,we show an input y map togetherwith the reconstructedmapsfor each method.
In these¯gures we seethat the statistical and functional methods have very di®erent
behavior at low signal-to-noiseratio. The statistical method is rather conservative,
yielding a low amplitude reconstruction,even for massiveand bright clusters,whereas
the functional method allows to recover the amplitude of the signal better at the
expenseof having a strong residualsignal spreadacrossthe map. The mapsobtained
by the statistical method on the contrary arewell localized.Wenotice the e®ectof the
prior distribution is the sameas for the ACT experiment. The Gaussianassumption
for the clusters allows to recover more low intensity signal. The pro¯le prior causes
the amplitude of the bright clusters to be better reconstructed, but at the same
time underestimateslower clusters. The truncated pro¯le prior reachesa consensus
betweenthe two. Only a fewclusterscanbedetectedfrom the reconstructedstatistical
maps (low completeness),however, the purit y is maximal : every cluster detected
(above a threshold y-parameterof 2£ 10¡ 5) is a true cluster. This is not the casefor
the functional method. Becauseof the rather intenseresidual structure, a signi¯cant
number of clusters would be detected in the functional map that do not exist. One
would needto increasethe threshold up to 5£ 10¡ 5 to obtain maximal purit y in this
case.

We selectedthe eight brightest and most extendedclustersout of our ten simu-
lations to quantitativ ely comparethe reconstructionof the central y-parameterwith
the di®erent methods. Typically, these massive clusters are about 10 arcmin wide
and their maximal y-parameterexceeds5£ 10¡ 5. As is the casefor ACT experiment,
we ¯nd that the observable that reaches the best trade-o®between the adequation
to the original data and the spreadis the averagevalue of the central y-parameter
over an angle of roughly the samesize as the beam. Figure 5.19 shows the output
averagedcentral y-parameter found in the reconstructedmapsversusinput averaged
central y-parameter in the original maps for the eight clustersselected.The top line
is the line of perfect reconstruction, the other lines show the best ¯tting line for each
method. In the table 5.4, the slope and spreadcorresponding to theseeight clusters
is quoted for each reconstruction.

As canbeobservedon the reconstructedmapsin Figure 5.18,taking in account the
non-Gaussianity improves the reconstruction of the central y-parameter by a factor
4 (truncated pro¯le) to 6 (pro¯le) over the Gaussianprior in the statistical method.
The functional method is evenmoreaccurate,improving the reconstructedvaluesby a
factor 9 over the Gaussianstatistical method and 1:5 comparedto the best statistical
method. Although the slope is signi¯cantly improved over the Gaussianprior, the
spreadin the non-Gaussianstatistical reconstructionsis somewhathigh : around 30%
of the nominal value. This could be a potential problem when it comesto deriving

107



Original

0

1

2

3

4

5

6

x 10
�5

Gaussian

0

1

2

3

4

5

6

x 10
�5 T. profile

0

1

2

3

4

5

6

x 10
�5

Profile

0

1

2

3

4

5

6

x 10
�5 Functional

0

1

2

3

4

5

6

x 10
�5

Fig. 5.18 { SZ clusters, Planck experiment. Top original simulation, other panels:
reconstructions.Middle left : Gaussian,middle right : truncated pro¯le, bottom left :
pro¯le, bottom right : functional. The mapsare 5 £ 5 degrees.
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Fig. 5.19{ Reconstructedversusoriginal central y-parameter (4.8 arcmin average).

Method Statistical Functional
Gaussian Truncated pro¯le Pro¯le

Slope 0.07 0.26 0.44 0.63
Spread 0.13 0.27 0.32 0.09

Tab. 5.4 { Planck experiment : slope and spreadfor the averagey-parameterof the
eight most massive and bright clusters.
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cosmologicalparameters from these reconstructions. In this regard, the functional
method yields a signi¯cant improvement over the statistical method altogether, it
recovers on average63 % of the input y-parameter value with a spreadthat is less
than 10 % of this input value.

We concludethat under the conditions of the Planck experiment presented here,
only bright extendedclustersmay be recovered. The two methods we proposecom-
plement each other : the shape and localization of the clustersis much better resolved
by the statistical method, whereasthe functional method is more accurate and re-
liable for the estimation of the central y-parameter. Neither method seemsto be
self-su±cient in this caseto derive cosmologicalparametersaccurately. However, if
one is willing to do the reconstructions with both methods, one could use a map
reconstructedfrom the statistical method to locate massive clusters,(which can not
be done reliably with the functional reconstruction,) and then use the result of the
functional method to infer the y-parameterof the detectedclusters.

The actual performancesof the Planck instrument may be better than the ones
used in these simulations. In particular the noise in the sky will not be uniformly
distributed becausesomeareaswill be better sampledthan others. We assessedthe
relevanceof the noiselevel on the performancesof the statistical method by perfor-
ming a similar analysison the Planck mapswith a reducedlevel of noise(a factor 7
lower). We ¯nd that in theseconditions the non-Gaussianstatistical methods reco-
ver around 60% of the y-parameter with a spreadof the order of 10% (see[45] for
more details). This shows that the limiting factor for the statistical method in this
experiment is the noiselevel.

5.5 The in°uence of poin t sources

In the studies we presented in the last two sections,we have made the simpli-
fying assumptionthat the contribution of the point sourcesand the Galaxy dust were
negligible or had been extracted from the observed maps before we processthem.
The third study we present here aims at assessingwhether the methods we propose
are robust to the presenceof the point sourcesand Galaxy dust. The data we use
weresimulated by astrophysicist Dominique Yvon and collaborators at CEA, France.
The frequenciesof observation, beam sizeand noiselevel correspond to thoseof the
OLIMPO survey and are given in table 5.5. OLIMPO is an ongoing project which
aims at measuringthe Sunyaev-Zeldovich e®ectin many clustersof galaxiesduring a
long-duration balloon °ight. The sizeof the beamin this experiment is intermediate
between theseof the ACT and Planck experiments we described earlier. The expe-
riment will collect data in four di®erent frequencychannels.Examples of observed
maps can be found in Figure 5.5 (the 265 GHz observation has been produced for
displaying purposesonly and is not usedin the study). At the two largestfrequencies,
385and 600GHz, the point sourcesand Galaxy dust dominate the observations. The
CMB signal on the other hand dominates the observation at the lower frequencies,
143 and 217 GHz. The clusters' contribution is maximal at 385 GHz but is largely
dominated by point sourcesand dust, thereforethe most reliable channel to observe
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the SZ e®ectis the lowest frequencychannel : 143GHz. The simulated data we study
herecover a four hundred degreesquareportion of the sky.

OLIMPO experiment

Frequencyof observation Beam size Noiselevel
º (GHz) fwhm (arcmin) ¾(¹ K) =

p
H z

143 3 150
217 2 200
385 2 500
600 2 5000

Tab. 5.5 { The characteristicsof the OLIMPO experiment.

5.5.1 Results obtained with the statistical metho d

For the statistical method, we comparethe reconstructionsyielded by di®erent
sets of distributions. The histogramsof the wavelet coe±cients of the Galaxy dust
are well-¯tted by a Gaussian.Moreover, we do not expect that the presenceof dust
will causea major deterioration of the clusters' signal, becausethe Galaxy dust is
smooth and slowly varying and ¯lls up the space.Therefore, the prior for the CMB
and the Galaxy dust are ¯xed to Gaussian,and we focuson the in°uence of di®erent
priors for the point sourcesand clusters.

To get an ideaof the problemsencountered with the introduction of point sources,
we ¯rst tried the simplest prior for the clusters, i.e. the Gaussianprior, and compa-
red the results obtained when the point sourcesare assumedGaussianto the results
obtained using Je®rey'sprior. The Gaussianprior is obviously not the best ¯tting
prior for the point sourcesbecausetheir extent is under a pixel size and they are
sparselydistributed. We saw that modeling the non-Gaussianity of the clustersleads
to better reconstructionof the SZ e®ectin the context of the ACT and Planck expe-
riments as well. However, we also found in the two previousstudies that the quality
of the reconstructionsof the CMB signaldoesnot changebetweenthe casewherethe
clusters' prior is Gaussianand when it is not. This shows that in the simpli¯ed case
whereonly the CMB and SZ e®ectarepresent in the observations, the reconstruction
of oneparticular component (the CMB) is largely independent of the prior chosenfor
the other component (the SZ signal). So the rationale for examining the casewhere
all four priors are assumedGaussian,even if we know this model is too simple, is to
understandwhether the reconstructionsof the di®erent signalsare independent from
each other as was the casefor the CMB/SZ experiments.

We ¯nd that the statistical method is very robust to the introduction of point
sourcesand Galaxy dust as far as the estimation of the CMB and clusters signals
are concerned.Indeed, even when all signals are assumedGaussian,the precision
of the reconstructedmaps of the CMB and clusters signal is similar to the quality
that would be expected from our study of the ACT and Planck experiments. The
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CMB signal is very well estimated down to scalesaround 5 arcminutes, which is
slightly larger than the beamsizeand no tracesof point sourcesor Galaxy dust can
be found. The algorithm is able to separatepoint sourcesfrom SZ clusters,and the
reconstructedclusters maps have similar quality to those seenfor ACT, given the
sizeof the beam.Herethe observable we useto assessthe quality of the clustersmap
is the averagey-parameter over an angle of two arcminutes. Clusters are detected
as local maxima that dominate over a three arcminutes angleand are consideredto
correspond to a cluster in the original map if the two centers are lessthan two and
a half arcminutes apart. Even when clustersare assumedGaussian,the purit y of the
clusterssamplefrom the reconstructedmapsis high (about 97 %) for intenseclusters
(i.e. with central averagey-parameterbigger than 10¡ 5). This provesthat no intense
point sourcesareconfusedwith the clusters,evenwhenthe point sourcesaremodeled
with the Gaussianprior.

Surprisingly, the reconstructed map of the point sourcesallows to locate them
accurately, even when they are assumedGaussian.The estimated point sourcesare
not as compact as a pixel but are extended to roughly the size of the beam. The
beamis small enoughcomparedto the meandistancebetweentwo point sourcesthat
this is not a problem in this experiment. However, the intensity of the point sources
is underestimated (around 25 % of their value). Moreover we ¯nd the algorithm
confusedbackground noisewith the point sourcesmap. A white noiseis spreadout
in the reconstructed point sourcemap, but fortunately, its level is lower than the
intensity of most point sources.The estimation of the Galaxy dust map is accurate
a coarsescale(around 20 arcminutes) but smaller °uctuations are not reconstructed
at all.

We now comparethe results we obtained by ¯xing the prior to Gaussianfor all
signalsto the reconstructionsobtained when Je®rey'sprior (i.e. the log-uniform dis-
tribution on the multiplier) is usedfor the point sources(still usingthe Gaussianprior
for all the other signals).As expected the point sourcesmap is much better recons-
tructed, the background noise observed earlier has disappeared. The point sources
themselvesare still extendedto the sizeof the beam.Their intensity is slightly better
estimatedthan beforebut is still low (around 35%).Although the prior on the Galaxy
dust map has not changed,smaller scalesare reconstructedwith this set of priors,
indicating that the quality of the reconstruction of the Galaxy dust dependson the
accuracyof the point sourcesmap. This seemsnatural sincepoint sourcesand Galaxy
dust have very similar frequencydependenceat the frequenciesof observation used
here.On the other hand, the quality of the CMB and intenseclusters' reconstructions
remainsthe same,indicating that the statistical method usedhereis able to separate
signalsprimarily on the basisof their frequencydependence.

Finally, we studied in further detail the quality of the SZ clustersreconstructions
in this experiment by allowing the prior of this signal to be non-Gaussian.The results
we obtain are consistent we our remarks above : the reconstruction of other signals
is not a®ectedby changingthe prior of the clusters.The qualitativ e and quantitativ e
di®erencesbetweenthe Gaussian,the pro¯le, and truncated pro¯le prior are similar
to thosewe found in the ACT experiment. That is to say, the pro¯le prior allows to
recover the intenseclustersmore accurately than the Gaussianprior, at the expense
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of underestimating lower intensity clustersand the truncated pro¯le prior reachesa
compromisebetweenthe other two.

We concludethat under the conditions of the OLIMPO experiment, the presence
of the point sourcesand Galaxy dust will not a®ect the quality of the SZ maps
estimatedby using the statistical method we propose.

5.5.2 Results obtained with the functional metho d

The functional variational method we proposeto reconstruct the signalsis much
morea®ectedby the introduction of point sources.We did not ¯nd a balancebetween
the eight terms in the functional (four error terms and four regularization terms) that
allows to accurately recover all signalsat the sametime. With the nominal values
described in Section2.5.2, the CMB is reconstructedcorrectly although it is a little
smoother than expected,but only a coarsescaleapproximation of the clusters' signal
is recovered. The point sourcesmaps is very well localized (the extent of estimated
point sourcesis typically smaller than the beam size). However, only 35% of their
intensity is recovered in the estimated point sourcesmap, and the remainderof this
signal is attributed to the Galaxy dust, in the form of extendedpoint sourcesof the
sizeof the beamon top of the Galaxy dust itself.

This lead us to conduct a smaller casestudy in order to determine whether the
Galaxy dust and point sourcescan be separatedat all using this method. We ge-
nerated observations with the parametersof the OLIMPO survey, only omitting the
contribution of the CMB and SZ cluster's signal. From theseobservations we tried
to separatethe Galaxy dust signal from the point sources.We ¯nd that the regulari-
zing terms of thesetwo signalshave to be balancedtaking into account the relative
amplitude of the Galaxy dust variations and the intensity of the point sources.This
leads to choosing the parameters° 4 and °3 so that °4

P
¸ =( j ;k)2 ¤ 23j j hf 4 ; ' ¸ i j2 »

100 °3
P

pixel jf 3(pixel)j, rather than of the sameorder. With theseparameters,the
functional algorithm is able to reconstruct both the point sourcesand the Galaxy
dust with great accuracy. In particular, the estimated point sourcemap is free of
noiseand the intensity of the point sourcesis recoveredat 90%.Moreover, the extent
of the estimated point sourcesis extremely closeto one pixel, with the intensity de-
caying sharply at the four closestpixels if it is not zero. Such accuracyin the point
sourcesmap can not be achieved by the statistical method becauseit is constrained
to estimate the point sourcesmap in wavelet space,causingthe extent of the point
sourcesto be limited by the ¯ner wavelet scale.

However, we ¯nd that the balancebetweenpoint sourcesand Galaxy dust terms
is greatly a®ectedby the reintroduction of the CMB and clusterssignal. In particular,
a complicatedinterplay occursbetweenthe reconstructionsof the clusterssignal, the
Galaxy dust signal and the point sources.As a result, the estimation of the clusters'
map is either too coarseor contains point sourcesthat will make the detection of
clustersunreliable. Finding a better way to balancethe di®erent terms is extremely
di±cult becausecontrarily to what we observed for the statistical method, the es-
timation of one particular signal is greatly a®ectedby the estimation of the other
signals,making it impossibleto study the in°uence of oneparameterat a time.
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We concludefrom this study that the presenceof point sourcesis a major concern
with the functional variational algorithm we proposed, preventing the method to
reconstruct accurately all signals at the same time. However, we ¯nd that in the
restricted casewhere only the point sourcesand the Galaxy dust maps are to be
extracted, this method is able to locate and estimate the point sourceswith great
accuracyboth in intensity and in spatial extent. Therefore,the functional algorithm
we proposecould be usedin other type of experiments where the focus is the point
sources,to locate and estimate them accurately. From a more generalpoint of view,
the successof the restricted experiment containing only point sourcesand Galaxy
dust shows that our innovative use of norms de¯ned by di®erent tight frames for
di®erent signalsis promising.

5.6 Summary of the results

In this chapter, we have applied both the variational approach and the statisti-
cal approach we described in Chapters 2 and 3 to estimate the major astrophysical
components present in surveys of the sky at the frequenciesbetween 100 and 600
GHz. There are four of thesecomponents : the CosmicMicrowave Background, the
Sunyaev-Zeldovich e®ect,the infrared point sourcesand the Galaxy dust. Our goal is
to obtain reliable information on the clustersof galaxiesby reconstructing accurate
mapsof the Sunyaev-Zeldovich e®ect.

Sincethe SZe®ectis a °uctuation of the CMB radiation, the reconstructionof the
CMB radiation is inherent to the estimation of the clustersof galaxiesthrough their
Sunyaev-Zeldovich signature.The point sourcesand Galaxy dust, however canbeseen
aspollutants of a secondorder.They dominatelarger frequenciesof observationswhile
the CMB and clusters signal are more intenseat smaller frequencies.Therefore,we
¯rst assessedthe quality of our methodson simulated data ignoring point sourcesand
Galaxy dust. Sincedi®erent sky survey may have very di®erent resolution,noiselevel
and be able to cover di®erent extent of the sky, we studied two test casesof di®erent
nature. The ¯rst one, ACT will cover a small portion of the sky with a resolution
of the order of one arcminute and moderate noise level. The secondexperiment we
consider,Planck, will cover the whole sky with a resolution of ¯v e arcminutes and
higher level of noise. In a third study, with intermediate resolution and moderate
noise,we assessedthe in°uence of point sourcesand Galaxy dust.

For each experiment, we comparedthe resultsobtained for the functional method
to several setsof results obtained with the statistical method, wheredi®erent priors
wereused.The \Gaussian statistical approach" refersto the casewherethe clusters'
signal is modeled by a Gaussianprior and the \non-Gaussian statistical approach"
to other cases.

Our ¯ndings are the following :
{ The most reliableobservableof the SZclustersis the y-parameteraveragedover

an angleof the sameorder as the beamsize.(The y-parameter is the quantit y
intrinsic to a cluster of galaxiesthat determinesthe amplitude of the resulting
Sunyaev-Zeldovich e®ect).
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{ In the absenceof points sourcesand Galaxy dust, both methods perform si-
milarly. The CMB signal is reconstructedaccurately down to the scaleof the
smallestbeam.However somedi®erencesare noticed :
The functional approach and non-Gaussianstatistical approach outperform the
Gaussianapproach in the estimationof intenseclusters.Moreover, the statistical
method does a better job at estimating the structure of the clusters whereas
the functional approach recoversmore intensity.
For the high resolution experiment, ACT, we ¯nd that the clusters' signal is
very accurately estimatedby both methods, especially for the intenseclusters.
We conclude that both the non-Gaussianstatistical reconstructions and the
functional reconstruction yield estimatesof the averagey-parameterof intense
clustersthat could be usedto constrain cosmologicalquantities.
For the low resolution experiment, Planck, we ¯nd that the reconstructionsof
the SZ e®ectare limited to bright and very extendedclusters.The reliabilit y of
the detection of theseclusters in the functional reconstructionsis low because
large residual structures appear. However, the estimation of the averagedy-
parameter is remarkably stable at the location of the true clusters. This, in
a sense,completesthe performancesof the non-Gaussianstatistical approach.
In that case,extendedclusters can be detected reliably becausethe structure
surrounding the peakof intensity are well estimated.However the spreadof the
averagey-parameter reconstructedis too high to be trusted. We concludethat
under theseconditionsneither methods areself-su±cient to derive cosmological
parametersfrom the reconstructedSZ maps.However, we determinedthat the
limiting factor in this caseis the noiselevel, which may be improved in the true
experiment in someareasof the sky that are observed for a longer time.

{ The statistical method is robust to the introduction of point sourcesand Ga-
laxy dust, leading to accurate estimatesof the CMB and clusters signal. We
determined that for this approach, the estimation of a single component does
not a®ectother components which havea di®erent frequencydependence.Thus,
it is not necessarywith this method to recover the point sourcesaccurately to
obtain a satisfying clusters' signal.
This is not the casefor the functional approach, wherea complicatedinterplay
betweenthe di®erent terms makes it di±cult to study the precisionof the re-
construction of each component separately. As a result, we were not able to
recover all four signalssimultaneouslywith this approach in order to ¯nd a sa-
tisfying cluster map. We note however that the functional approach we propose
can be usedto recover the point sourceswith almost perfect accuracyboth in
terms of their intensity and their spatial extent, when the number of signalsis
reduced.
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Titre : Approchesen ondelettespour la s¶eparation et la d¶econvolution simultan¶ees.Appli-
cation µa desdonn¶eesastrophysiques.

R¶esum¶e : Cette thµeseest consacr¶ee au problµeme de s¶eparation de composantes lorsque
celles-ci sont des images de structure di®¶erente et que l'on en observe un ou plusieurs
m¶elange(s)°ou(s) et bruit ¶e(s). Les problµemesde d¶econvolution et de s¶eparation, tradition-
nellement ¶etudi¶ess¶epar¶ement, sont ici trait ¶essimultan¶ement.

Une fa»con naturelle d'aborder le problµeme multicomposants/m ultiobservations est de
g¶en¶eraliser les techniquesde d¶econvolution d'une imageunique. Le premier r¶esultat est une
¶etude math¶ematique d'un tel algorithme. Preuve est faite que celui-ci est convergent mais
pasr¶egularisant et une modi¯cation restaurant cette propri¶et¶e est propos¶ee.Le sujet princi-
pal est le d¶eveloppement et la comparaisonde deux m¶ethodespour traiter la d¶econvolution
et s¶eparation simultan¶eesde composantes. La premiµere est bas¶ee sur les propri¶et¶es statis-
tiques locales des composantes tandis que dans la seconde,ces signaux sont d¶ecrits par
desespacesfonctionnels. Les deux m¶ethodesutilisent destransform¶eesen ondelettesredon-
dantes pour simpli¯er les donn¶ees.

Les performancesdes deux algorithmes sont ¶evalu¶eeset compar¶eesdans le cadre d'un
problµeme astrophysique : l'extraction des amas de galaxies par l'e®et Sunyaev-Zel'dovich
dans les imagesmultisp ectralesdesanisotropiesdu fond cosmique.Dessimulations r¶ealistes
sont ¶etudi¶ees.On montre qu'µa haute r¶esolutionet niveaudebruit mod¶er¶e, lesdeux m¶ethodes
permettent d'extraire des cartes d'amas de galaxies de qualit¶e su±sante pour des ¶etudes
cosmologiques.Le niveau de bruit est un facteur limitan t µa basser¶esolution et la m¶ethode
statistique est robuste µa la pr¶esencede points sources.

Mots-cl ¶es:estimation/d ¶etection de signaux,ondelettes,approche statistique/variationnelle

Title : Di®erent Wavelet-basedApproaches for the Separation of Noisy and Blurred Mix-
tures of Components. Application to Astrophysical Data.

Abstract : This thesis addressesthe problem of separating image components that have
di®erent structure, when several observations of blurred mixtures of thesecomponents are
available. In the imageprocessingliterature, the deblurring problem hasbeenwell described
for a singlecomponent in a single imageand the separationproblem mainly studied without
blurring. In this thesis, the full problem is addressedglobally, the separation being done
simultaneously with the denoisingand deblurring of the data, by generalizingmethods that
exist for the enhancement of a single image.

The ¯rst result is a mathematical analysis of a heuristic iterativ e algorithm for the en-
hancement of a singleimage.This algorithm is proved to beconvergent but not regularizing;
a modi¯cation is intro duced that restoresthis property. The main object of this thesis is to
develop and comparetwo methods for the multi-components/m ulti-observations problem :
the ¯rst method usesfunctional spacesto describe the signals; the secondmethod models
the local statistical properties of the signals.Both methods usewavelet frames to simplify
the description of the data.

Both algorithms are evaluated with regards to a particular astrophysical problem : the
reconstruction of clusters of galaxiesby the extraction of their Sunyaev-Zel'dovich e®ectin
multifrequency measurements of the Cosmic Microwave Background anisotropies.Realistic
simulations are studied. It is shown that both methods yield clusters maps of su±cient
quality for subsequent cosmologicalstudies when the resolution of the observations is high
and the level of noisemoderate. Then somelimiting factor are pointed out.

Keyw ords : signal estimation/detection, wavelets, statistical/v ariational approach.


