

Nouveaux ligands phosphore soufre : coordination, catalyse et étude théorique.

Marjolaine Doux

► To cite this version:

Marjolaine Doux. Nouveaux ligands phosphore soufre: coordination, catalyse et étude théorique.. Chimie de coordination. Ecole Polytechnique X, 2005. Français. NNT: . pastel-00001602

HAL Id: pastel-00001602 https://pastel.hal.science/pastel-00001602

Submitted on 28 Jul 2010

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Palaiseau

THESE

Présentée pour obtenir le titre de

DOCTEUR DE L'ÉCOLE POLYTECHNIQUE

Spécialité CHIMIE

Par

Marjolaine Doux

Nouveaux ligands mixtes phosphore soufre : coordination, catalyse et étude théorique

Soutenue le mercredi 14 septembre 2005 à 14h, à l'École polytechnique, devant :

Sylviane Sabo-Etienne Christophe Darcel Jean-Yves Saillard Claude Lion Pascal Le Floch Directeur de recherche au CNRS (Toulouse) Maître de conférences (Dijon) Professeur à l'université de Rennes Directeur de recherche au CNRS (Paris VII) Professeur à l'École polytechnique

Présidente Rapporteur Rapporteur Examinateur Directeur de thèse

J'ai eu le plaisir d'effectuer ce travail au laboratoire Hétéro-Éléments et Coordination de l'École Polytechnique (DCPH, UMR CNRS 7653). J'exprime toute ma gratitude à Pascal Le Floch de m'avoir accueillie au laboratoire, d'avoir encadré mes travaux pendant ces trois années et de m'avoir accordé une grande confiance et une réelle autonomie.

Je remercie la Délégation Générale de l'Armement pour m'avoir attribué une bourse de recherche. Ce soutien financier m'a permis de mener sereinement ce travail de thèse. Je voudrais exprimer ma gratitude à Claude Lion pour l'intérêt qu'il a porté à mon travail, à mon avenir professionnel et pour avoir participé à mon jury de thèse.

J'adresse mes plus sincères remerciements à Jean-Yves Saillard et Christophe Darcel qui m'ont fait l'honneur de juger ce travail. Je tiens à remercier tout particulièrement Sylviane Sabo-Etienne pour avoir accepté de présider le jury de cette thèse, et également pour son extrême gentillesse et ses remarques instructives au cours de nos quelques rencontres et courriels.

Je tiens également à exprimer ma reconnaissance à tous ceux qui ont collaboré à ce travail. J'aurais probablement suivi un itinéraire complètement différent si Nicolas Mézailles ne m'avait pas initiée à la chimie organométallique lors des séances de MODEX à l'École polytechnique. Sa patience, sa disponibilité et sa technique sans faille pour cristalliser des complexes m'ont permis de me sentir à l'aise dans cette discipline. Son enthousiasme (« C'est trop bien », la « manip du vendredi »...) et ses encouragements (« Allez, petit scarabée ! ») ont toujours soutenu tous mes efforts. Les enseignements dispensés par François Mathey et digressions passionnantes ont fini par me convaincre d'étudier la chimie ses organométallique. Louis Ricard a élucidé les structures aux rayons X de cette thèse. J'ai apprécié sa disponibilité et son entêtement face aux mâcles les plus retordes. Yves Jean m'a fait partager ses compétences et son enthousiasme pour la chimie théorique. Cette (énergique !) synergie est allée bien au-delà : des techniques pour enchérir convenablement sur E-bay à l'opéra par exemple. Je regrette seulement de ne pas avoir suivi avec lui un tour de France sans Lance Amstrong. Je remercie également l'équipe de Michel Geoffroy à l'Université de Genève (Prashant Adkine, Théo Berclaz) pour l'étude RPE du complexe de rhodium^{II} et celle de Frantisek Hartl du van't Hoff Institute d'Amsterdam (Taasje Mahabiersing) pour l'exploration photochimique des complexes de manganèse et de rhénium. Je n'oublie pas Thérèse Arliguie du CEA Saclay qui a développé toute la chimie de coordination de l'anion SPS avec des métaux du groupe f. Nos fréquentes discussions, son investissement et son enthousiasme pour la recherche ont été très motivants et ont rendu ce travail fort agréable.

Je remercie tous les membres du DCPH pour leurs compétences et leur aide précieuse qui ont contribué à l'avancement de ce travail : Nicole Maigrot, experte en colonnes chromatographiques et souvent mon alliée dans le choix de la musique du laboratoire, Éliane Deschamps, Bernard Deschamps pour sa relecture du manuscrit, Duncan Carmichaël, Hoa Tran Huy pour m'avoir poussée à découvrir le Vietnam, François Nief, François Mercier, Yves et Jean-Michel (verriers et rameur), Johan François, Françoise Girard (recherche bibliographique), Michel Levard (spectres de masse) sans oublier Martine Rouyer, Christine Couesnon (DGA) et Fabrice Baronnet (EDX) qui ont géré de nombreux casse-tête administratifs. Grand merci à Nicolas Seeboth avec qui j'ai partagé de nombreux trajets de RER (Vive le LADY !), la montée des marches le matin et nos quotidiennes discussions tant chimiques qu'amicales.

Je remercie chaleureusement tous les doctorants et stagiaires qui se sont succédés au laboratoire et qui ont su y faire régner une ambiance sympathique : FX (la première thèse à laquelle j'ai assisté), Kareen, Bogdan, Éric, PYT, Vanessa, Mohand (chef thésard et seul supporter du PSG que je connaisse), les trois mousquetaires : Audrey, Frédéric et Magali, Claire et Leïla (mes adorables voisines), Émilie, Olivier et Quiong Hua (accueillis un instant sur ma paillasse), Thibault, Florian, Mark (grand dompteur de feu), Marek, Yves, Guillaume, Karine et Magali (les Américaines), Pauline, Ingrid, Porphyrina, Dimitri et Daniela. Bon courage aux petits nouveaux : Vincent, Eric et Guilhem. Merci pour les pauses thé, fous rires et les agréables moments passés au laboratoire et ailleurs.

Merci également à tout mon entourage pour leur soutien, affectif et moral. Enfin, un grand merci à celui qui m'a accompagnée ces dernières années.

Avant-propos

Ce manuscrit contient des résultats issus de travaux expérimentaux et calculs théoriques. L'une des caractéristiques de ce travail est d'utiliser ces deux approches en parallèle pour conduire à un dialogue. Afin d'éviter toute confusion, la numérotation des composés utilise la notation suivante :

- Les composés décrits dans la littérature seront notés A, B...

- Les composés issus des travaux expérimentaux sont mentionnés dans le texte par leur nom ou un numéro (par exemple **421**, molécule **21** du chapitre 4)

- Pour les molécules modélisées, la notation en chiffre romain (I, II, ...) a systématiquement été utilisée.

Enfin, nous emploierons tout au long de ce manuscrit la numérotation classique des phosphinines. Cette dernière diffère de celle qui sera utilisée pour la description de structures aux rayons X (Schéma 1). Par exemple, les atomes de carbone situés en position α de l'atome de phosphore sont appelés C₂ et C₆ dans les parties théoriques et expérimentale tandis qu'ils seront nommés C1 et C5 dans les descriptions structurales.

L'ensemble de ces travaux a fait l'objet des publications suivantes :

- i) M. Doux, C. Bouet, N. Mézailles, L. Ricard, P. Le Floch, Organometallics **2002**, 21, 2785-2788. Synthesis and molecular structure of a palladium complex containing a λ^5 -phosphinine-based SPS pincer ligand.
- ii) M. Doux, N. Mézailles, M. Melaimi, L. Ricard, P. Le Floch, *Chem. Commun.* **2002**, 1566-1567. A σ^4 , λ^5 -phosphinine palladium complex: a new type of phosphorus ligand and catalyst. Application to the Pd-catalyzed formation of arylboronic esters.
- iii) M. Doux, N. Mézailles, L. Ricard, P. Le Floch, *Organometallics* **2003**, *22*, 4624-4626. *Planar discrimination in an SPS-based rhodium(I) complex.*
- iv) M. Doux, N. Mézailles, L. Ricard, P. Le Floch, *Eur. J. Inorg. Chem.* **2003**, 3878-3894. *Group 10 metal complexes of SPS-based pincer ligands: Syntheses, X-ray structures, and DFT calculations.*

- v) M. Doux, L. Ricard, P. Le Floch, N. Mézailles, *Dalton Trans.* **2004**, 2593-2600. *Group* 11 metal complexes of SPS-based pincer ligands: Syntheses, X-ray structures and reactivity.
- vi) M. Dochnahl, M. Doux, E. Faillard, L. Ricard, P. Le Floch, Eur. J. Inorg. Chem. 2005, 125-134. A new mixed P,S-bidentate ligand featuring a λ⁴-phosphinine anion and a phosphanyl sulfide group : synthesis, X-ray crystal structures and catalytic properties of its chloro(cymene)ruthenium and allylpalladium complexes.
- vii) M. Doux, N. Mézailles, L. Ricard, P. le Floch, P. Adkine, T. Berclaz, M. Geoffroy, Inorg. Chem. 2005, 44, 1147-1152. Synthesis and X-ray Crystal structure of a cationic homoleptic (SPS)₂Rh(III) complex and EPR Study of its Reduction Process.
- viii) M. Doux, A. Moores, N. Mézailles, L. Ricard, Y. Jean, P. Le Floch, J. Organomet. Chem. 2005, 690, 2407-2415. The CO/PC analogy: chemistry and catalysis.
- ix) O. Piechaczyk, M. Doux, L. Ricard, P. le Floch, Organometallics 2005, 24, 1204-1213. Synthesis of 1-phosphabarrelenes phosphinosulfide substituted palladium(II) complexes: application in the catalyzed Suzuki cross-coupling process and in the allylation of secondary amines.
- x) M. Doux, P. Le Floch, Y. Jean, J. Mol. Struc.-Theochem. 2005, 724, 73-79. DFT study of the fixation of CO by SPS-based pincer Rh(I) and Ir(I) complexes: regioselectivity and reactivity.
- xi) M. Doux, L. Ricard, P. Le Floch, Y. Jean, *Organometallics* **2005**, *28*, 1608-1613. *On the regioselectivity of the addition of* O_2 *on SPS-based Rh(I) and Ir(I) complexes.*
- xii) M. Doux, N. Mézailles, L. Ricard, P. Le Floch, P.M. Vaz, M.-J. Calhorda, T. Mahabiersing, F. Hartl, Inorg. Chem. 2005, sous presse. Syntheses, X-ray structures, photochemistry, redox properties and DFT calculations of inter-convertible fac- and mer-[Mn(SPS)(CO)₃] isomers containing flexible SPS-based pincer ligand.
- xiii) M. Doux, L. Ricard, P. Le Floch, Y. Jean, Soumis. Addition of H₂ on SPS-based rhodium(I), iridium(I), palladium(II) and platinium(II) complexes: reactivity and regioselectivity.

Table des matières

Chapitre 1 : Introduction	1
I. Généralités	1
II. Propriétés des basses coordinances du phosphore	5
III. Les phosphinines	7
III.1. Synthèse	7
III.1.1. Extension de cycle à partir du phosphole	8
III.1.2. Emploi de phosphaalcynes stabilisés	9
III.1.3. Fonctionnalisation de la 2-bromophosphinine	10
III.1.4. Emploi de la diazaphosphinine	11
III.2. Chimie de coordination	12
III.2.1. Ligands monodentes	12
III.2.2. Ligands polydentes	14
III.2.3. Nanoparticules	16
III.3. Catalyse et limitations	16
IV. Présentation du sujet	18
V. Bibliographie	21

I. Rappel bibliographique sur les anions λ^4 -phosphinine	
I.1. Synthèse et propriétés	
I.2. Coordination de l'anion λ^4 -phosphinine à des centres métalliques	
II. Comment favoriser la coordination η^1 ?	
II.1. Diagramme orbitalaire de l'anion λ^4 -phosphinine	
II.2. Choix de la phosphinine : synthèse de SPS	
II.3. Conclusion : retour sur le diagramme orbitalaire	
III. Réactivité du ligand SPS	
III.1. Réaction avec l'eau, les alcools, les amines, les thiols et le brome	
III.2. Réaction avec les nucléophiles	
III.2.1. Réaction avec le méthyllithium	
III.2.2. Réaction avec d'autres groupes alkyles	
III.2.3. Réaction avec des alcoolates, thiolates et amidures	44
III.3. Piégeage de l'anion λ^4 -phosphinine	
III.4. Introduction de la chiralité	50
IV. Conclusion	
V. Perspectives	
VI. Bibliographie	

Chapitre 3 : Complexes du groupe 10......57

I. Vers la synthèse de ligands de type pinceur	57
II. Coordination aux métaux du groupe 10	58
II.1. Première méthode : réaction des anions λ^4 -phosphinines	58
II.2. Deuxième méthode : réaction des λ^5 -phosphinines, 1,2-dihydro-phosphinines	61
II.3. Troisième méthode : réaction directe	64
II.3.1. Synthèse du complexe 313	64
II.3.2. Réaction avec les nucléophiles	67
II.4. Généralisation aux complexes de nickel et de platine	68
III. Chimie de coordination	69
IV. Nature de la liaison métal ligand : étude théorique	73
IV.1. Modélisation	74
IV.2. La méthode CDA	75
IV.3. Résultats	75
V. Applications en catalyse	76
V.1. Réaction de Heck	77
V.2. Réaction de Heck asymétrique	79
V.3. Réaction de Miyaura	82
V.4. Autres réactions	83
VI. Conclusion	84
VII. Perspectives	84
VIII. Références	86
IX. Annexes du chapitre 3	88

I.1. Complexes de rhodium ¹ 89 I.2. Complexes de cobalt ¹ et d'iridium ¹ 95 II. Activation et fixation de petites molécules. 98 II.1. Premiers pas avec le complexe de rhodium 405. 98 II.1.1. Synthèse. 98 II.1.2. Régiosélectivité de l'activation de molécules : pourquoi ? 102 II.1.3. Réactivité 102 II.2. Influence du substituant de l'atome de phosphore central 104 II.3. Et l'iridium ? 107 II.4. Variations 109 II.5. Conclusion 114 II.6. Perspectives 114 II.1. Synthèse 119 III.1. Synthèse 119 III.1. Synthèse 119 II.2. Etude électrochimique 120 II.3. Résultats RPE 121 III.4. Calculs DFT ⁷ 123 IV. Complexes homoleptiques de cobalt ^{III} 124 V. Références 127 VI. Annexes du chapitre 130	I. Synthèse de complexes de rhodium ^I , d'iridium ^I et de cobalt ^I	
I.2. Complexes de cobalt ¹ et d'iridium ¹ 95 II. Activation et fixation de petites molécules. 98 II.1. Premiers pas avec le complexe de rhodium 405. 98 II.1.1. Synthèse. 98 II.1.2. Régiosélectivité de l'activation de molécules : pourquoi ? 102 II.1.3. Réactivité 102 II.2. Influence du substituant de l'atome de phosphore central 104 II.3. Et l'iridium ? 107 II.4. Variations 109 II.5. Conclusion 114 II.6. Perspectives 114 III.1. Synthèse 119 III.2. Etude électrochimique 120 III.3. Résultats RPE 120 III.4. Calculs DFT ⁷ 123 IV. Complexes homoleptiques de cobalt ^{III} 123 IV. Complexes homoleptiques de cobalt ^{III} 124 V. Références 127 VI. Annexes du chapitre 130	I.1. Complexes de rhodium ¹	
II. Activation et fixation de petites molécules. 98 II.1. Premiers pas avec le complexe de rhodium 405. 98 II.1.1. Synthèse. 98 II.1.2. Régiosélectivité de l'activation de molécules : pourquoi ? 102 II.3. Réactivité. 102 II.2. Influence du substituant de l'atome de phosphore central 104 II.3. Et l'iridium ? 107 II.4. Variations. 109 II.5. Conclusion 114 II. Etude d'un complexe homoleptique de rhodium ^{III} 119 III.1. Synthèse 119 III.2. Etude électrochimique. 120 II.4. Calculs DFT ⁷ 123 IV. Complexes homoleptiques de cobalt ^{III} 124 V. Références 127 VI. Annexes du chapitre 130	I.2. Complexes de cobalt ^I et d'iridium ^I	
II.1. Premiers pas avec le complexe de rhodium 405	II. Activation et fixation de petites molécules	
II.1.1. Synthèse 98 II.1.2. Régiosélectivité de l'activation de molécules : pourquoi ? 102 II.1.3. Réactivité 102 II.1.3. Réactivité 102 II.2. Influence du substituant de l'atome de phosphore central 104 II.3. Et l'iridium ? 107 II.4. Variations 109 II.5. Conclusion 114 II.6. Perspectives 114 III. Etude d'un complexe homoleptique de rhodium ^{III} 119 III.1. Synthèse 119 III.2. Etude électrochimique 120 III.3. Résultats RPE 121 III.4. Calculs DFT ⁷ 123 IV. Complexes homoleptiques de cobalt ^{III} 124 V. Références 127 VI. Annexes du chapitre 130	II.1. Premiers pas avec le complexe de rhodium 405	
II.1.2. Régiosélectivité de l'activation de molécules : pourquoi ?102II.1.3. Réactivité102II.2. Influence du substituant de l'atome de phosphore central104II.3. Et l'iridium ?107II.4. Variations109II.5. Conclusion114II.6. Perspectives114III. Etude d'un complexe homoleptique de rhodium ^{III} 119III.2. Etude électrochimique120III.3. Résultats RPE121III.4. Calculs DFT ⁷ 123IV. Complexes homoleptiques de cobalt ^{III} 124V. Références127VI. Annexes du chapitre130	II.1.1. Synthèse	
II.1.3. Réactivité102II.2. Influence du substituant de l'atome de phosphore central104II.3. Et l'iridium ?107II.4. Variations109II.5. Conclusion114II.6. Perspectives114III. Etude d'un complexe homoleptique de rhodium ^{III} 119III.1. Synthèse119III.2. Etude électrochimique120III.3. Résultats RPE121III.4. Calculs DFT ⁷ 123IV. Complexes homoleptiques de cobalt ^{III} 124V. Références127VI. Annexes du chapitre130	II.1.2. Régiosélectivité de l'activation de molécules : pourquoi ?	
II.2. Influence du substituant de l'atome de phosphore central104II.3. Et l'iridium ?107II.4. Variations109II.5. Conclusion114II.6. Perspectives114III. Etude d'un complexe homoleptique de rhodium ^{III} 119III.1. Synthèse119III.2. Etude électrochimique120III.3. Résultats RPE121III.4. Calculs DFT ⁷ 123IV. Complexes homoleptiques de cobalt ^{III} 124V. Références127VI. Annexes du chapitre130	II.1.3. Réactivité	
II.3. Et l'iridium ?107II.4. Variations.109II.5. Conclusion114II.6. Perspectives114III. Etude d'un complexe homoleptique de rhodium ^{III} 119III.1. Synthèse119III.2. Etude électrochimique120III.3. Résultats RPE121III.4. Calculs DFT ⁷ 123IV. Complexes homoleptiques de cobalt ^{III} 124V. Références127VI. Annexes du chapitre130	II.2. Influence du substituant de l'atome de phosphore central	
II.4. Variations.109II.5. Conclusion114II.6. Perspectives114III. Etude d'un complexe homoleptique de rhodium ^{III} 119III.1. Synthèse119III.2. Etude électrochimique120III.3. Résultats RPE121III.4. Calculs DFT ⁷ 123IV. Complexes homoleptiques de cobalt ^{III} 124V. Références127VI. Annexes du chapitre130	II.3. Et l'iridium ?	
II.5. Conclusion114II.6. Perspectives114III. Etude d'un complexe homoleptique de rhodium ^{III} 119III.1. Synthèse119III.2. Etude électrochimique120III.3. Résultats RPE121III.4. Calculs DFT ⁷ 123IV. Complexes homoleptiques de cobalt ^{III} 124V. Références127VI. Annexes du chapitre130	II.4. Variations	
II.6. Perspectives114III. Etude d'un complexe homoleptique de rhodium ^{III} 119III.1. Synthèse119III.2. Etude électrochimique120III.3. Résultats RPE121III.4. Calculs DFT ⁷ 123IV. Complexes homoleptiques de cobalt ^{III} 124V. Références127VI. Annexes du chapitre130	II.5. Conclusion	
III. Etude d'un complexe homoleptique de rhodium ^{III} 119 III.1. Synthèse 119 III.2. Etude électrochimique 120 III.3. Résultats RPE 121 III.4. Calculs DFT ⁷ 123 IV. Complexes homoleptiques de cobalt ^{III} 124 V. Références 127 VI. Annexes du chapitre 130	II.6. Perspectives	
III.1. Synthèse119III.2. Etude électrochimique120III.3. Résultats RPE121III.4. Calculs DFT ⁷ 123IV. Complexes homoleptiques de cobalt ^{III} 124V. Références127VI. Annexes du chapitre130	III. Etude d'un complexe homoleptique de rhodium ^{III}	
III.2. Étude électrochimique120III.3. Résultats RPE121III.4. Calculs DFT7123IV. Complexes homoleptiques de cobalt ^{III} 124V. Références127VI. Annexes du chapitre130	III.1. Synthèse	
III.3. Résultats RPE 121 III.4. Calculs DFT ⁷ 123 IV. Complexes homoleptiques de cobalt ^{III} 124 V. Références 127 VI. Annexes du chapitre 130	III.2. Etude électrochimique	
III.4. Calculs DFT ⁷ 123 IV. Complexes homoleptiques de cobalt ^{III} 124 V. Références 127 VI. Annexes du chapitre 130	III.3. Résultats RPE	
IV. Complexes homoleptiques de cobalt ^{III} 124 V. Références 127 VI. Annexes du chapitre 130	III.4. Calculs DFT ⁷	
V. Références	IV. Complexes homoleptiques de cobalt ^{III}	
VI. Annexes du chapitre	V. Références	
	VI. Annexes du chapitre	

L Choix de la base et de la fonctionnelle	133
II Complexes du groupe 9	136
II 1 Addition de H ₂	137
II 1 1 Ontimisation des complexes de rhodium	138
II 1 2 Régiosélectivité expliquée par un cycle thermodynamique	139
II.1.3. Et l'iridium ?	
II.1.4. Comparaison des isomères les plus stables de rhodium et d'iridium	
II.1.5. Influence des groupes phényles	
II.1.6. Calcul des états de transition	
II.1.7. Conclusion	
II.2. Addition de O_2 ^[19]	150
II.2.1. Complexe de rhodium	150
II.2.2. Régiosélectivité expliquée par un cycle thermodynamique	151
II.2.3. Et l'iridium ?	
II.2.4. Comparaison des isomères les plus stables de rhodium et d'iridium	155
II.2.5. Influence des groupes phényles	155
II.2.6. Conclusion	157
II.3. Fixation de CO ^[25]	157
II.3.1. Cas du complexe de rhodium	157
II.3.2. Influence des groupes phényles	159
II.3.2. Et l'iridium ?	
II.3.3. Comparaison des isomères les plus stables de rhodium et d'iridium	161
II.3.4. Conclusion	
II.4. Conclusion générale	
III. Complexes du groupe 10	
III.1. Régiosélectivité	
III.2. Réactivité comparée des complexes de palladium et de platine	165
III.3. Réactivité comparée des complexes des groupes 9 et 10	165
III.4. Autres isomères	166
III.5. Réactivité expérimentale et calculs théoriques	
III.6. Conclusion	
IV. Annexe : énergie de liaison	169
V. Bibliographie	

Chapitre 6 : Complexes des groupes 11, 8 et 7173

I. Coordination à des métaux du groupe 11	
I.1. Complexes de cuivre	
I.1.1. Ŝynthèse	
I.1.2. Réactivité	
I.2. Complexes d'or	
I.3. Conclusion	
I.4. Perspectives	
II. Coordination à des métaux du groupe 8	
II.1. Complexes de ruthénium	
II.2. Complexes de fer	

II.4. Perspectives185III. Coordination à des métaux du groupe 7186III.1. Complexes de manganèse186III.1.1. Synthèse186III.1.2. Photoisomérisation et propriétés luminescentes188III.1.3. Calculs DFT189III.1.4. Voltamétrie cyclique191III.1.5. Spectroélectrochimie192III.1.6. Conclusion194III.2. Complexe de rhénium194III.3. Perspectives196IV. Références199V. Annexes du chapitre 6201	II.3. Conclusion	
III. Coordination à des métaux du groupe 7.186III.1. Complexes de manganèse186III.1.1. Synthèse186III.1.2. Photoisomérisation et propriétés luminescentes188III.1.3. Calculs DFT189III.1.4. Voltamétrie cyclique191III.1.5. Spectroélectrochimie192III.1.6. Conclusion194III.2. Complexe de rhénium194III.3. Perspectives196IV. Références199V. Annexes du chapitre 6201	II.4. Perspectives	
III.1. Complexes de manganèse186III.1.1. Synthèse186III.1.2. Photoisomérisation et propriétés luminescentes188III.1.3. Calculs DFT189III.1.4. Voltamétrie cyclique191III.1.5. Spectroélectrochimie192III.1.6. Conclusion194III.2. Complexe de rhénium194III.3. Perspectives196IV. Références199V. Annexes du chapitre 6201	III. Coordination à des métaux du groupe 7	
III.1.1. Synthèse186III.1.2. Photoisomérisation et propriétés luminescentes188III.1.3. Calculs DFT189III.1.4. Voltamétrie cyclique191III.1.5. Spectroélectrochimie192III.1.6. Conclusion194III.2. Complexe de rhénium194III.3. Perspectives196IV. Références199V. Annexes du chapitre 6201	III.1. Complexes de manganèse	
III.1.2. Photoisomérisation et propriétés luminescentes188III.1.3. Calculs DFT189III.1.4. Voltamétrie cyclique191III.1.5. Spectroélectrochimie192III.1.6. Conclusion194III.2. Complexe de rhénium194III.3. Perspectives196IV. Références199V. Annexes du chapitre 6201	III.1.1. Synthèse	
III.1.3. Calculs DFT189III.1.4. Voltamétrie cyclique191III.1.5. Spectroélectrochimie192III.1.6. Conclusion194III.2. Complexe de rhénium194III.3. Perspectives196IV. Références199V. Annexes du chapitre 6201	III.1.2. Photoisomérisation et propriétés luminescentes	
III.1.4. Voltamétrie cyclique191III.1.5. Spectroélectrochimie192III.1.6. Conclusion194III.2. Complexe de rhénium194III.3. Perspectives196IV. Références199V. Annexes du chapitre 6201	III.1.3. Calculs DFT	
III.1.5. Spectroélectrochimie192III.1.6. Conclusion194III.2. Complexe de rhénium194III.3. Perspectives196IV. Références199V. Annexes du chapitre 6201	III.1.4. Voltamétrie cyclique	191
III.1.6. Conclusion	III.1.5. Spectroélectrochimie	
III.2. Complexe de rhénium 194 III.3. Perspectives 196 IV. Références 199 V. Annexes du chapitre 6 201	III.1.6. Conclusion	
III.3. Perspectives 196 IV. Références 199 V. Annexes du chapitre 6 201	III.2. Complexe de rhénium	
IV. Références	III.3. Perspectives	
V. Annexes du chapitre 6	IV. Références	
	V. Annexes du chapitre 6	

I. Un ligand bidente, pourquoi ?	
II. Synthèse du ligand SP	
III. Coordination	
III.1. Complexes de ruthénium ^{II}	
III.1.1. Synthèse	
II.1.2. Application en catalyse	
III.2. Complexes de rhodium ¹	
III.2.1. Synthèse	
III.2.2. Application en catalyse	
III.2.2.1. Réaction d'hydroformylation	
III.2.2.2. Autres réactions	
III.3. Complexes de palladium ^{II}	
III.3.1. Coordination	
III.3.2. Applications en catalyse	
III.3.2.1. Couplage de Suzuki-Miyaura	
III.3.2.2. Couplage de Sonogashira	
III.3.2.3. Substitution allylique	
IV. Conclusion	
V. Perspectives	
VI. Références	

Chapitre 8 : Emploi de 1-phosphabarrélène227

I. Rappels bibliographiques	
II. Synthèse	
III. Étude théorique de la réaction de Diels-Alder	
III.1. Réactivité comparée des phosphinines vis-à-vis de l'acétylène	
III.1.1. Modélisation	
III.1.2. Profil réactionnel	
III.1.3. Etats de transition avec l'acétylène	
III.1.4. Conclusion	

III.2. Désation avec la hutern 1.4 disate de diméthyle	225
111.2. Reaction avec le butyn-1,4-dioate de dimetriyle	
III.2.1. Modélisation	
III.2.2. Profil réactionnel	
III.3. Réaction avec le oct-4-yne	
III.3.1. Modélisation	
III.3.2. Profil réactionnel	
III.4. Conclusion	
IV. Coordination des barrélènes à des centres métalliques	
IV.1. Complexes de palladium ^{II}	
IV.2. Complexes d'or ^I , platine ^{II} et rhodium ^I	
V. Applications en catalyse	
V.1. Réaction d'hydroformylation	
V.2. Réaction de Suzuki-Miyaura	
V.3. Allylation d'amine	
V.4. Comparaison avec des complexes de la dppmS	
VI. Conclusion	
VII. Perspectives	
VIII.Références	

Chapitre 9 : Partie expérimentale255

I. Précurseurs métalliques	
II. Chapitre 2	
III. Chapitre 3	
IV. Chapitre 4	
V. Chapitre 6	
VI. Chapitre 7	
VII. Chapitre 8	

Chapitre 1 : Introduction

I. Généralités

Le phosphore est un élément vital présent dans tous les organismes vivants. Il n'existe pas d'espèces qui n'utilisent sa chimie (biopolymère, enzyme, transport d'énergie, processus biologiques). Le corps humain contient environ 1% massique de cet élément,¹ présent à plus de 85% dans les os et les dents sous forme de phosphate de calcium (Tableau 1).^[1]

Tableau 1 : Distribution du phosphore dans le corps humain (% massique).

Squelette	85.0
Dents	0.4
Tissus mous	14.0
Sang	0.3
Fluides extra vasculaires	0.3

Mise à part l'azote (3%) et le phosphore (1%), il n'existe à l'heure actuelle aucune preuve d'une participation significative au métabolisme humain des autres éléments pnictogènes (As, Sb, Bi) dont la concentration est normalement inférieure à 0.00003%. L'azote et le phosphore sont également présents dans la plupart des aliments (Tableau 2). La concentration des pnictogènes plus lourds ne doit pas excéder (et excède rarement) le ppm.

	Ν	Р
Pomme de terre	0.34	0.06
Carotte	0.11	0.02
Riz	1.09	0.10
Spaghetti	2.39	0.12
Boeuf	3.25	0.20
Chocolat	0.75	0.23
Fromage	5.50	0.80
Bière	0.04	0.01

Tableau 2 : Azote et phosphore présents dans les aliments (% massique).

Le phosphore de masse atomique 30.87 existe sous la forme d'un isotope stable ³¹P au spin nucléaire ¹/₂. La structure électronique du phosphore [Ne]3s²3p³ avec trois électrons non appariés lui permet d'être formellement trivalent (λ^3) ou pentavalent (λ^5) en utilisant seulement 3 électrons ou tous les électrons de sa couche de valence. La grande majorité des composés organophosphorés forme trois (σ^3), quatre (σ^4) ou cinq liaisons (σ^5) avec d'autres atomes. Les trois principales utilisations du phosphore sont les pesticides (phosphore de type P^V), la réaction de Wittig (phosphore de type ylure de phosphonium) ou la catalyse avec les phosphines (Schéma 1).

¹ Pour mémoire, le corps humain contient 65% d'oxygène et 0.2% de soufre (% massique).

Schéma 1 : Degrés d'oxydation courants du phosphore et applications.

Cinq cents millions de kilogrammes de pesticides de tout type sont utilisés tous les ans aux Etats-Unis.^[2] Les pesticides organophosphorés figurent parmi les plus employés (40%).^[3] La plupart des pesticides organophosphorés présente une structure générale similaire : ce sont des esters de l'acide phosphorique avec différents substituants (Schéma 2). Leur mode de dégradation fait intervenir l'hydrolyse de la fonction triester.^[4] Ils sont tous des inhibiteurs irréversibles de l'acétylcholinestérase et provoquent un disfonctionnement du comportement neurologique. Par exemple, le chloropyrifos est l'organophosphate le plus utilisé mondialement pour son action pesticide autant en agriculture (coton, céréales, fruits et betteraves à sucre) qu'en applications urbaines (maintien du paysage notamment).^[5, 6]

Schéma 2 : Structures de quelques pesticides organophosphorés.

Les ylures de phosphonium sont connus depuis 1894, mais l'intérêt suscité pour ces composés ne date que d'une cinquantaine d'années. La réaction la plus connue est certainement celle de Wittig (prix Nobel 1979) : les ylures de phosphonium peuvent subir un réarrangement important avec des aldéhydes et des cétones pour fournir des composés oléfiniques et des oxydes de phosphine (Équation 1).^[7] Bien que la réaction fournisse fréquemment un mélange d'isomères, il est possible de la rendre stéréosélective par un choix judicieux de réactifs et de conditions expérimentales.

Des réactions variées sont catalysées par des complexes de métaux de transition incorporant des ligands phosphorés. L'efficacité catalytique de certains systèmes a rendu

possible leur utilisation commerciale en catalyse homogène. On peut mentionner par exemple le premier emploi de phosphines hydrosolubles par Ruhrchemie/Rhône-Poulenc dans le procédé d'hydroformylation du propène en version biphasique. Les trois ligands ci-dessous (Tppts, Tppds, Tppms) ont été utilisés et brevetés à partir de 1982 (Schéma 3). Les premiers brevets décrivent la synthèse des aldéhydes, la récupération du rhodium et la production de phosphines suffisamment pures.^[8-9] Actuellement, 300000 tonnes de butyraldéhyde sont produites chaque année avec [Rh(CO)(Tppts)₃H] par ce procédé.^[10]

Schéma 3 : Phosphines hydrosolubles utilisées en hydroformylation des alcènes

Les complexes de phosphines ne sont pas seulement remarquables pour la grande variété des réactions qu'ils peuvent catalyser (hydrogénation, hydroformylation, carbonylation, hydrosylilation, isomérisation, couplage, ...), mais également pour leur haute sélectivité. L'emploi de phosphine en catalyse s'étend également à la version asymétrique. L'hydrogénation asymétrique de déhydroaminoacides conduit à des aminoacides ayant de très forts excès énantiomériques. La première synthèse asymétrique industrielle a été la préparation de la (L)-dopa chez Monsanto en 1975 par Knowles (prix Nobel 2001) en utilisant un complexe de rhodium coordonné par une diphosphine chirale (dipamp) (Équation 2).

Équation 2 : Procédé Monsanto (1975).

Les parfums ou les composés agrochimiques sont aussi des cibles intéressantes pour la synthèse asymétrique, comme illustré par les synthèses industrielles du (-)-menthol (procédé Takasago, 1500 tonnes par an depuis 1985), de la Paradisone[®] (synthèse industrielle depuis 2000 mise au point par la société Firmenich en collaboration avec J.-P. Genêt) ou d'un herbicide, le (*S*)-metolachlor (10000 tonnes par an depuis 1986, Dual Magnum[®], Novartis). La préparation de ce dernier représente actuellement la synthèse asymétrique industrielle la plus importante en tonnage (Équation 3).

Équation 3 : Synthèse d'un herbicide.

Après la deuxième guerre mondiale, la chimie semblait être gouvernée par deux règles simples : la règle de l'octet et la règle de la double liaison. De nombreuses molécules comme SF₆, PF₅ ou l'anion sulfate allaient à l'encontre de la règle de l'octet ; cette entorse était tacitement admise et est désormais expliquée par l'hyperconjugaison négative. La situation de la règle de la double liaison est différente : selon cette règle, seuls les éléments de la deuxième ligne du tableau périodique (Li à Ne) sont capables de former des liaisons multiples. Son origine remonte aux articles de Pitzer^[11] et Mulliken^[12] qui expliquent l'instabilité de liaisons multiples entre les éléments les plus lourds du groupe principal par les forces répulsives des électrons des couches de cœur. Cette règle a volé en éclat en 1961 avec les synthèses du phosphaalcyne HCP A et du diphosphaalcène B, instable à température ambiante, publiées par Gier^[13] et Burg et Mahler (Schéma 4).^[14] La synthèse de molécules stables incorporant des motifs P=C, P=C ou P=P n'est rendue possible qu'en cas de stabilisation cinétique ou thermodynamique. En effet, la présence de groupes stériquement encombrés comme les groupes 2,4,6-tri-tbutylphényl (Mes*) et 2,4,6-(CH(SiMe₃)₂)-phényle (Tbt) empêchent l'hydrolyse et l'oligomérisation de ces espèces ; en témoigne notamment le premier diphosphène C synthétisé par Yoshifuji en 1981.^[15] Un autre moyen de stabiliser ces types de liaisons consiste à les incorporer dans des systèmes délocalisés : Dimroth et Hoffman ont ainsi synthétisé les premières liaisons stables P=C sous la forme du phosphaméthime cyanique cationique (\mathbf{D}) ,^[16] Märkl la première phosphinine (\mathbf{E}) en 1966^[17] et Braye le premier anion phospholyle (\mathbf{F}) en 1971.^[18] Ces dernières découvertes sont cruciales car elle permettent d'étendre le concept d'aromaticité, communément admis pour le carbone, l'azote, l'oxygène et le soufre, aux hétérocycles des éléments les plus lourds du groupe 15 (P, As, Sb, Bi). L'aromaticité de la phosphinine a été estimée à 88% de celle du benzène et celle de l'anion phospholyle est semblable à celle de l'anion cyclopentadiényle.^[19]

Schéma 4 : Exemples de basses coordinances des groupes 14 et 15.

Le groupe 14 (Si, Ge, Sn, Pb) n'est pas en reste avec la caractérisation de doubles et triples liaisons homonucléaires (distannène en 1976,^[20] disilène en 1981,^[21] triple liaison du Si, Ge, Sn, Pb entre 2000 et 2004^[22]) et de doubles liaisons hétéronucléaires^[23] (première double liaison Si=C **G** en 1981).

Depuis les balbutiements de la chimie des basses coordinances du phosphore dans les années 1960, de nombreuses molécules phosphorées cycliques, acycliques, aromatiques avec un phosphore hybridé sp, sp² ont été synthétisées. La plupart des analogues phosphorés des molécules carbonées et azotées que l'on trouve dans la nature ont également été obtenus. Nous connaissons désormais la réactivité et les propriétés de ces composés. Ils sont actuellement valorisés dans des domaines appliqués que sont les matériaux, la synthèse de molécules phosphorées et les ligands des métaux de transition par exemple. On utilise aussi bien les composés très réactifs en tirant parti de la réactivité du système π pour synthétiser des phosphines non inversibles comme la BIPNOR par exemple (Équation 4a),^[24] que des composés stables (cinétiquement par protection stérique ou thermodynamiquement par aromaticité) pour leurs propriétés catalytiques (Équation 4b-c).^[25-26] La figure suivante illustre ces deux modes de réactivité.

Équation 4 : Applications des basses coordinances du phosphore

II. Propriétés des basses coordinances du phosphore

Il est d'usage de comparer la structure électronique des ligands P=C à leurs homologues azotés N=C et carbonés C=C en raison de l'analogie électronique du phosphore, de l'azote et du fragment CH. Il existe de grandes différences tant sur le plan structural que sur le plan électronique. En ce qui concerne la possibilité d'hybrider le phosphore sp² ou sp³, deux paramètres sont à prendre en compte : d'une part la taille des orbitales ns et np qui vont se mélanger, et d'autre part le niveau relatif des orbitales ns et np beaucoup plus proches dans le cas de l'azote que du phosphore. Le deuxième critère défavorise l'hybridation pour les atomes lourds du groupe 15 tout comme le premier en raison de la différence notable entre les rayons ioniques des OA 3s et 3p alors que ceux des OA 2s et 2p sont semblables.^[27] Ce phénomène de nonhybridation est illustré structuralement par une fermeture de l'angle hydrogène-hétéroatome-carbone de 120° pour le carbone sp² et l'azote à environ 100° pour le phosphaalcène (Schéma 5).

Une conséquence de cette faible hybridation concerne la composition de la paire libre de l'hétéroatome. Si l'on compare phosphaalcène HP=CH₂ et imine HN=CH₂, on constate que le caractère s sur le phosphaalcène (66% de 3s, 34% de 3p) est bien supérieur à celui de l'imine (39% de 3s, 61% de 3p). On retrouve cette différence dans la participation respective des orbitales ns et np à la composition de la paire libre de la pyridine (29% de 2s, 71% de 2p) et de la phosphinine (61% de 3s, 39% de 3p) (Schéma 6).²

Par ailleurs, des calculs théoriques ont montré que l'orbitale décrivant la paire libre du phosphaalcène,² de l'anion phospholyle^[28] et de la phosphinine^[29-30] est plus basse en énergie que l'orbitale décrivant le système π . La très faible basicité de la paire libre des basses coordinances du phosphore est une autre conséquence de la faible hybridation des OA 3s et 3p : des mesures d'affinités pour le proton en phase gazeuse ont permis d'évaluer cette valeur à 219.4 kcal.mol⁻¹ pour la pyridine C₅H₅N et 195.8 kcal.mol⁻¹ pour la phosphinine C₅H₅P.^[31-32]

Au vu de ces données, on peut prévoir que la chimie de coordination des dérivés sp² du phosphore est très différente de celle des ligands carbonés, azotés et phosphorés (sp³) classiques. Si l'on considère la coordination par la paire libre (η^1), ces dérivés seront de plus faibles σ -donneurs (OA décrivant la paire libre plus basse en énergie, caractère s plus marqué de la paire libre), mais de meilleurs ligands π -accepteurs : la plus faible hybridation du phosphore provoque une orbitale π^* abaissée en énergie. Ce caractère π -accepteur est

² Pascal Le Floch, résultats non publiés, B3PW91/6-31+G*.

renforcé par la forme de l'orbitale π^* , principalement développée sur le phosphore (Schéma 7).

Schéma 7 : Comparaison des LUMO de CO, HPCH₂ et HNCH₂

La différence d'électronégativité est le deuxième effet majeur qui permet de différencier la réactivité des liaisons C=C, N=C et P=C. En effet, le phosphore est plus électropositif (2.1) que le carbone (2.5) et l'azote (3.0) d'après l'échelle de Pauli ; les liaisons P=C sont fortement polarisées.^[33] Ainsi, des calculs de charges NBO ont montré que le phosphore porte une charge positive dans le système C_5H_5P (+0.66), alors que l'azote porte au contraire une charge négative (-0.45) dans C_5H_5N (Schéma 8).² Par conséquent, un nucléophile attaque la pyridine sur le carbone en α de l'azote, tandis que l'attaque se produit sur le phosphore dans le cas de la phosphinine.

III. Les phosphinines

Dans ce travail de thèse, nous nous sommes particulièrement intéressés à des molécules dérivées des phosphinines (C_5H_5P). Pour comprendre leur intérêt, il est important de resituer la synthèse, les propriétés, l'emploi et les limites de ces molécules.

III.1. Synthèse

La première synthèse de phosphinine a été réalisée par Märkl en 1966 par échange oxygène-phosphore entre le sel de pyrilium et $P(CH_2OH)_3$ (Équation 5a). La synthèse du composé parent est obtenu par métathèse étain phosphore entre le stannacyclohexadiène et PBr₃ suivi d'une ré-aromatisation en milieu basique (Équation 5b).^[34]

L'utilisation de ce type de ligand en chimie de coordination et en catalyse a longtemps été pénalisée par l'absence de synthèse efficace de composés fonctionnalisés. La 2,4,6triphénylphosphinine est restée son seul représentant fonctionnalisé avec la phosphinine parente C_5H_5P jusqu'en 1979. Depuis, d'énormes avancées synthétiques ont permis d'obtenir des phosphinines fonctionnalisées : on peut penser à l'extension du cycle du phosphole, à l'utilisation de phosphaalcynes stabilisés, à la fonctionnalisation de la 2-bromophosphinine et à l'emploi de la diazaphosphinine.

III.1.1. Extension de cycle à partir du phosphole

Les extensions de cycles à partir de phospholes ont fait l'objet de nombreuses études. Elles se divisent en trois catégories. La première approche tire partie de la signatropie [1,5] entre le phosphole 1H et son isomère phosphole 2H qui réagit ensuite avec un alcyne par cycloaddition [4+2]. L'élimination du diphénylcarbène conduit à la phosphinine (Équation 6).^[35-37]

La deuxième approche constitue une véritable extension de cycle avec l'insertion formelle de « CR_2 », issu d'un chlorure d'aroyle, dans l'une des liaisons carbone phosphore du phosphole (Équation 7). La sulfuration du composé obtenu et sa thermolyse en milieu réducteur (nickel ou phosphine) conduit à une phosphinine fonctionnalisée en position 2. Cette méthode a notamment permis de synthétiser la 2-2'-pyridyl-phosphinine.^[38-41] Cette méthode s'applique également au benzo et au dibenzophosphole et permet la synthèse de 2-phosphanaphtalène et de phosphaphénanthrène.^[42]

La troisième approche repose sur la réactivité de l'éthyldiazoacétate sur la double liaison C_2 - C_3 du sulfure de phosphole (Équation 8).^[43] La réduction en présence de P(OPh)₃ conduit au dérivé fonctionnalisé en position 2 par un ester. Ceci a permis la première synthèse de la 2,2'-biphosphinine.

III.1.2. Emploi de phosphaalcynes stabilisés

Le *t*-butylphosphaalcyne est un synthon de choix pour synthétiser des phosphinines par cycloaddition [4+2]. Sa réaction avec les pyrones,^[44] les 1,3-cyclohexadiènes,^[45] les cyclopentadiènes activés,^[46] les stannoles^[47] et les cyclopentadiènones^[48] conduit à des phosphinines avec de bons rendements (Équation 9). Dans chacun de ces cas, cette réaction provoque la libération concomitante de molécules organiques (CO₂, éthylène, CO...).

III.1.3. Fonctionnalisation de la 2-bromophosphinine

Les réactions de métallation de 2-halogénophosphinines ne sont pas aisées car la réaction de métalux alcalins dans le THF ne conduit à aucun produit isolable. ^[49-51] Le premier exemple de métalla-phosphinine a été obtenu à partir du dérivé iodé sous la forme d'un zincique (Équation 10a).^[52] Une autre approche pour la métallation consiste à protéger le phosphore et les liaisons P=C par sulfuration (Équation 10b) ou par coordination à un métal du groupe 6 (Équation 10c). Il se produit ensuite un échange métal-halogène et les métalla-phosphinines masquées peuvent alors réagir avec un électrophile ou par couplage croisé.^[53]

Les complexes de nickel⁰ peuvent également catalyser le couplage entre la 2bromophosphinine et des dérivés du phosphole et fournir plusieurs de ligands bidentes (Équation 11).^[54]

Équation 11

III.1.4. Emploi de la diazaphosphinine

L'utilisation de diaza- et de monoazaphosphinines est la méthode qui s'est le plus développée ces dernières années et qui offre les possibilités les plus nombreuses. Le remplacement de deux unités CH par un atome d'azote, plus électronégatif, en position 2, 3, 5 ou 6 de la phosphinine confère à ces systèmes un comportement de type dipôle [1,4]-[P-CR]. Les diazaphosphines réagissent à haute température avec un alcyne par cycloaddition suivie de l'élimination d'un nitrile pour donner une monoazaphosphinine. Cette séquence cycloaddition cycloréversion peut se répéter avec un autre alcyne et conduire à une phosphinine fonctionnalisée en position 2, 3, 5 et 6 (Équation 12).^[55-57]

La synthèse de la 1,3,2-diazaphosphinine a été mise au point au laboratoire en 1996 : elle fait intervenir un couplage entre le réactif de Tebbe $[Cp_2Ti=CH_2]$ et deux équivalents de nitriles, une métathèse titane phosphore entre un titanacyclohexadiène et PCl₃ suivie de la réaromatisation du système en milieu basique (Équation 13).^[58-59]

III.2. Chimie de coordination

Les phosphinines peuvent coordonner les métaux de manière variée aussi bien par la paire libre du phosphore que par le système π . On y retrouve tous les modes de coordination des ligands carbonés anioniques ou neutres (Schéma 9).

III.2.1. Ligands monodentes

La coordination par la paire libre de la phosphinine est de loin le mode de coordination le plus répandu (Schéma 10). De nombreux complexes homoleptiques de la phosphinine parente ont été synthétisés. Le premier complexe a été obtenu par substitution de ligand sur [Ni(COD)₂] par Elschenbroich. La spectroscopie Raman du complexe J (v(Ni-P) = 160 cm⁻¹) suggère un indice de liaison important causé par la rétrodonation du métal dans l'orbitale π^* de la phosphinine. On peut citer également des complexes homoleptiques du groupe 6 (Cr, Mo, W),^[60-61] de fer⁰,^[62] de rhodium^{I,[63]} et d'or^{I,[64]} ainsi que des complexes hétéroleptiques de manganèse^{I,[65]} et d'or^{I,[66]}

Le mode de coordination de la phosphinine dépend de plusieurs facteurs notamment de la nature du centre métallique et du schéma de substitution de la phosphinine. Par exemple, contrairement aux métaux du groupe 6 à 11, la complexation de la phosphinine parente au vanadium⁰ conduit au complexe sandwich [V(η^6 -C₆H₅P)₂], **K**, où la coordination intervient par le système π de la phosphinine (Équation 14).^[67] Contrairement à son analogue carboné, le complexe **K** est stable à l'air pendant plusieurs heures. Des mesures électrochimiques ont montré que **K** s'oxyde à un potentiel inférieur (E_{1/2} = -0.35V vs SCE) à celui de [V(η^6 -C₆H₆)₂] (E_{1/2} = +0.18V vs SCE). Au contraire, la réduction de **K** en **M** se produit plus facilement (E_{1/2} = -1.99V vs SCE) que son analogue carboné (E_{1/2} = -2.71V vs SCE). Ces données établissent que les phosphinines sont d'aussi bons π -donneurs que le benzène, mais de bien meilleurs π accepteurs.

La complexation par le système π est également favorisée par la présence de groupements stériquement encombrés en position 2 et 6 de la phosphinine (Schéma 11). Des complexes de titane⁰ et de chrome⁰ ont été synthétisés par co-condensation à 77K de la phophinine encombrée 2,4,6-*t*-butyl-phosphinine et de vapeur métallique.^[68] Avec le fer, la présence d'un groupement triméthylsilyle en position α est nécessaire pour obtenir la complexation η^6 . Ce complexe est obtenu soit par condensation de la phosphinine et du COD sur le métal à basse température, soit par déplacement de ligand sur le précurseur métallique [Fe(COD)₂].^[69] On obtient un complexe η^6 de ruthénium^{II} coordonné à la 2,6-triméthylphosphinine par réaction de cette dernière avec [Ru(Cp*)(η^4 -C₄H₁₀)₃Cl] en présence d'un abstracteur de chlore.^[70] Enfin, nous avons montré récemment que la présence de deux groupements triméthylsilyles étaient nécessaires à la formation de complexes η^6 de rhodium^I et d'iridium^I. En présence d'une phosphinine monosubstituée en position α , on obtient uniquement la coordination par la paire libre.^[71]

Schéma 11

Il existe un seul exemple de phosphinine monodente coordonné selon un mode inusuel : il s'agit d'un cluster Pd₃ obtenu par réaction de $[Pd(OAc)_2]$ et de la triphénylphosphinine en présence de PMe₃.^[72] Des calculs DFT au niveau B3LYP/6-31+G* ont montré que l'indice de liaison Pd-Pd était très faible (indice de Wyberg de 0.11).

III.2.2. Ligands polydentes

En ce qui concerne les ligands polydentes incorporant au moins une unité phosphinine, on observe seulement le mode de coordination de type η^1 . Ce paragraphe se limitera simplement à la chimie de coordination de deux types de ligands, les biphosphinines et les silacalix-[n]-phosphinines, qui présentent les propriétés les plus intéressantes.^[73-75]

Les biphosphinines peuvent être utilisées pour stabiliser efficacement les centres métalliques réduits ou excédentaires en électrons. Deux stratégies de synthèse ont été développées : soit la réduction du complexe une fois formé, soit la réduction électronique du ligand suivie de la complexation. La première approche reste néanmoins limitée car les complexes de métaux déficients en électrons de la 2,2'-biphosphinine sont instables. Pour la deuxième approche, le mono- et le dianion de la 2,2'-biphosphinine réagissent facilement avec un métal de transition de degré d'oxydation élevé pour former le complexe correspondant anionique ou neutre (Équation 15).^[76] La série de complexes homoleptiques du groupe 4 et du groupe 6 a ainsi pu être synthétisée par réaction du dianion avec [MCl₄] (M = Ti, Zr, Hf) ou [MCl_{5 ou 6}] (M = Cr, Mo, W). On obtient des complexes formellement d⁶ de géométrie trigonale prismatique autour du métal. Des calculs théoriques ont montré qu'une grande partie de la densité électronique est localisée sur les trois ligands.^[77] Un complexe de ruthénium²⁻ plan carré avec deux interactions faibles avec le [Li(THF)₃] a également été isolé ainsi que des complexes homoleptiques de cobalt⁻¹ et rhodium⁻¹.^[78] Il existe plusieurs exemples de complexes du groupe 10.^[79] Par exemple, la réduction de [Ni(tmbp)₂] conduit à un complexe anionique à 19 électrons, caractérisé par RPE.^[80]

La chimie de coordination des silacalix-[n]-phosphinines, macrocycles incorporant des phosphinines, est l'exemple le plus patent des propriétés π -acceptrices de la phosphinine.^[81-83] Ces ligands macrocycliques ont été utilisés pour synthétiser un complexe de rhodium^I à partir de [Rh(COD)₂][BF₄] et de ligand (Composé **N**, Équation 16). L'étude électrochimique de **N** montre que deux réductions mononoélectroniques se produisent successivement pour former les complexes **O** et **P** à 17 et 18 électrons respectivement.^[84]

Le complexe d'or^I **Q** peut être réduit par du sodium naphtalène pour former le complexe d'or⁰ **R** (Équation 17).^[85] Ce complexe, caractérisé en RPE, est le seul exemple de complexe monomérique d'or⁰ stable jusqu'à 243 K. Cette température est à comparer avec des complexes du type [Au(CO)_n] qui ne sont stables que jusqu'à 77 K. Ainsi, on peut considérer la phosphinine incorporée dans des silacalix-[4]-phosphinines comme un équivalent phosphoré de CO.

Équation 17

III.2.3. Nanoparticules

La capacité π -acceptrice des phosphinines a également été exploitée dans le domaine des nanosciences. La synthèse du premier exemple de nanoparticules d'or stabilisé par du phosphore sp² repose sur la réduction de [AuCl(SMe₂)] par du sodium naphtalène en présence d'une quantitité sub-stoechiométrique (0.5 équivalent) de phosphinine (Équation 18).^[86] On obtient des nanoparticules de taille contrôlée de l'ordre de 8.3±2 nm de diamètre ; la Figure 1 suivante présente une image prise au microscope électronique à transmission. Ce système, immobilisé dans un film de silice mésoporeuse, a servi de détecteur de thiols et de phosphines par UV-visible.^[87]

Figure 1

III.3. Catalyse et limitations

Il existe à ce jour seulement trois exemples d'utilisation des phosphinines en catalyse. Le résultat le plus significatif a été obtenu par Breit *et al.* en hydroformylation des oléfines par un catalyseur de rhodium^I coordonné à la phosphinine trisubstituée **S** (Équation 19).^[88-89] On obtient dans des conditions douces (25°C, 20 bars) avec [Rh(acac)(CO)]/phosphine (Rh:phosphinine:substrat 1:5:280) un système quatre fois plus performant que [Rh(acac)(CO)]/PPh₃ en termes de rendement et de TOF (nombre de rotation par heure). De plus, la régiosélectivité de la réaction est excellente avec un rapport linéaire / branché de 1 pour 20. Ce système peut s'étendre à l'emploi d'oléfine interne, ce qui présente un intérêt industriel considérable.^[63, 90-91]

Équation 19 : Hydroformylation des oléfines par un complexe [Rh^I-phosphinine].

Un complexe de nickel⁰ a été employé pour la réaction de cycloaddition [4+2] intramoléculaire dont le mécanisme est décrit ci-dessous (Schéma 12).^[92] On tire partie de la propriété π -acceptrice des phosphinines pour favoriser l'élimination réductrice, étape limitante de la réaction. Malheureusement, le taux important de catalyseur (10%) et de ligand (20%) limite considérablement l'intérêt de cette réaction.

Schéma 12 : Cycloaddition [4+2] catalysée par [Ni⁰-phosphinine].

Le seul emploi en catalyse de complexes η^6 de phosphinines a été décrit par Zenneck *et al.* qui a montré qu'un complexe de fer⁰ coordonné à la 2-triméthylsilyl-4,5diméthylphosphinine, **X**, pouvait réaliser la cyclotrimérisation du diméthylacétylène dicarboxylate et d'un mélange d'alcyne et de nitrile en benzène et en pyridine (TON_{benzène} = 326, TON_{pyridine} = 160) (Équation 20).^[69, 93] L'activité de ces complexes est bien supérieure à celle de leurs analogues non phosphorés [Fe(η^6 -toluène)(COD)].^[94]

Équation 20 : Cyclotrimérisation par un complexe [Fe⁰-n⁶-phosphinine].

IV. Présentation du sujet

On pourrait penser que l'aromaticité de la phosphinine est une condition suffisante pour assurer la stabilité des complexes. Pourtant, ces trois (uniques) exemples d'emploi de complexes de phosphinines en catalyse reflètent la difficulté des phosphinines à stabiliser des complexes à des degrés d'oxydation variés. Il a été montré que la réactivité des liaisons P=C des phosphinines était exacerbée en cas de coordination. En effet, quelque soit le mode de coordination des phosphinines, les complexes se révèlent sensibles à l'attaque nucléophile (Schéma 13). On peut notamment penser au complexe [Ru(biphosphinine)₃]²⁺ Y qui n'a pas pu être isolé car trop sensible à des traces d'eau ou au complexe de [Pt(biphosphinine)Cl(Me)] Z : la phosphinine *trans* au ligand le moins donneur s'hydrolyse en présence de traces d'eau pour former une 1,2-dihydrophosphinine **AA**. Les complexes η^6 se révèlent également sensibles : en présence de seulement cinq équivalents d'eau, on assiste à la conversion totale en quelques minutes d'un complexe η^6 de rhodium¹ ou d'iridium¹ **AB** en un complexe η^5 -phosphacyclohexadienyl **AC**.^[71]

Pour pallier la trop grande réactivité des phosphinines dès qu'elles sont coordonnées à un métal de transition, nous nous proposons de générer, utiliser et valoriser des ligands à squelette phosphinine qui puissent se manipuler plus facilement. Pour cela, nous tirons partie de deux propriétés électroniques des phosphinines : la grande électrophilie du phosphore et le caractère diénique du cycle de la phosphinine (Équation 21). Ainsi, la réaction d'une phosphinine **AD** avec un nucléophile forme un anion phosphacyclohexadiènyle **AE** tandis que celle d'une phosphine avec un diène ou un diénophile conduit à des structures polycycliques **AF**.^[95-97] Nous nous sommes limités dans ce cas à l'action d'une phosphinine avec un alcyne qui forme un 1-phosphabarrélène par une réaction de cycloaddition [4+2].

Nous justifierons tout d'abord dans le deuxième chapitre le choix de la phosphinine tridente **SPS** que nous avons employée pour favoriser la complexation η^1 à des métaux de transition (Schéma 14). Ce chapitre décrit la formation d'anions λ^4 -phosphinine et leur piégeage par des électrophiles. Les chapitres suivants décrivent leur coordination à des métaux du groupe 10 (chapitre 3), du groupe 9 (chapitre 4), et des groupes 11 (Cu, Au), 8 (Fe, Ru) et 7 (Mn, Re) (chapitre 6).

Le chapitre 5, purement théorique, explique pourquoi la fixation et l'activation de petites molécules comme H_2 , O_2 et CO sur des complexes de rhodium et d'iridium ne conduit expérimentalement qu'à un seul isomère (Schéma 15). Ceci est complété par l'étude de l'addition de H_2 sur des complexes isoélectroniques de palladium et de platine.

Schéma 15

La coordination η^1 d'anions λ^4 -phosphinine n'est pas limitée à des ligands tridentes et peut également avoir lieu avec des ligands bidentes (Schéma 16). Les complexes synthétisés ont été valorisés en catalyse. Ces résultats seront décrits dans le chapitre 7.

Enfin, le chapitre 8 décrira la synthèse, la chimie de coordination et les applications en catalyse de ligands phosphabarrélène (Schéma 17).

Les développements théoriques ont permis de faire de la chimie quantique un outil indispensable associé à la chimie expérimentale. Nous essaierons dans la mesure du possible d'associer calculs et expériences. Tous les calculs décrits dans ce travail sont des calculs fondés sur la théorie de la fonctionnelle de la densité (DFT)^[98-99] et ont été effectués avec le logiciel Gaussian 03.^[100]

V. Bibliographie

- [1] D. E. C. Corbridge, *Phosphorus, an outline of its chemistry, biochemistry and technology*, Elsevier Science publishers, Amsterdam, **1990**.
- [2] K. E. Banks, D. H. Hunter, D. J. Wachal, Environment International 2005, 31, 351.
- [3] S. Gralewicz, P. Lutz, B. Kur, NeuroToxicology 2005, 26, 159.
- [4] B. K. Singh, A. Walker, D. J. Wright, Soil Biology & Biochemistry 2005, 37, 1675.
- [5] K. Schiff, S. Bay, C. Stransky, dans Urban Water, Vol. 4, 2002, p. 215.
- [6] S. J. Larson, P. D. Capel, M. S. Majeski, *Surface waters: distributions, trends and governing factors*, Ann Arbor Press, Chelsea (MI), Etats-Unis, **1997**.
- [7] G. Wittig, G. Geissler, Leibigs Ann. Chem. 1953, 580, 44.
- [8] B. Cornils, J. Hibbel, W. Konkol, J. Lieder, J. Much, V. Schmid, E. Wiebus, Ruhrchemie AG (DE-B 3234701), **1982**.
- [9] B. Gärtner, B. Cornils, L. Bexten, D. Kupies, Ruhrchemie AG (DE-B 3235029), 1982.
- [10] B. Driëssen-Hölscher, Adv. Catal. 1998, 42, 473.
- [11] K. S. Pitzer, J. Am. Chem. Soc. 1948, 70, 2140.
- [12] R. S. Mulliken, J. Am. Chem. Soc. 1950, 72, 4493.
- [13] T. E. Gier, J. Am. Chem. Soc. 1961, 83, 1769.
- [14] A. B. Burg, W. Mahler, J. Am. Chem. Soc. 1961, 83, 2388.
- [15] M. Yoshifuji, I. Shima, N. Inamoto, K. Irotsu, T. Igushi, J. Am. Chem. Soc. 1981, 103, 4587.
- [16] K. Dimroth, P. Hoffman, Angew. Chem. Int. Ed. 1964, 3, 384.
- [17] G. Märkl, Angew. Chem. Int. Ed. 1966, 5, 846.
- [18] E. H. Braye, I. Caplier, R. Saussez, Tetrahedron 1971, 27, 5523.
- [19] K. K. Baldridge, M. S. Gordon, J. Am. Chem. Soc. 1988, 110, 4204.
- [20] D. E. Goldberg, D. H. Harris, M. F. Lappert, K. M. Thomas, J. Chem. Soc., Chem. Commun. 1976, 261.
- [21] R. West, M. J. Fink, J. Michl, Science 1981, 214, 1341.
- [22] Pour une revue sur les triples liaisons homonucléaires du groupe 14, M. Weidenbruch, *Angew. Chem. Int. Ed.* **2005**, *44*, 514.
- [23] Pour une revue sur les doubles liaisons hétéronucléaires du groupe 14, V. Y. Lee, A. Sekigushi, *Organometallics* **2004**, *23*, 2822.
- [24] F. Robin, F. Mercier, L. Ricard, F. Mathey, M. Spagnol, Chem.-Eur. J. 1997, 3, 1365.
- [25] S. Qiao, G. C. Fu, J. Org. Chem. 1998, 63, 4168.
- [26] T. Minami, H. Okamoto, S. Ikeda, R. Tanaka, F. Ozawa, M. Yoshifuji, Angew. Chem. Int. Ed. 2001, 40, 4501.
- [27] W. W. Schoeller, dans *Multiple bonds and low coordination in phopshorus chemistry* (Eds.: M. Regitz, O. J. Scherer), Thieme, Stuttgart, **1990**, p. 5.
- [28] N. M. Kostic, R. F. Fenske, Organometallics 1983, 2, 1008.
- [29] C. Batich, E. Heilbronner, V. Hornung, A. J. Ashe III, D. T. Clark, U. T. Cobley, D. Kilcast, I. Scanlan, J. Am. Chem. Soc. 1973, 95, 928.
- [30] T. Veszpremi, L. Nyulaszi, P. Varnai, J. Réffy, Acta Chim. Hung.-Models Chem. 1993, 130, 691.
- [31] R. V. Hodges, J. L. Beauchamp, A. J. Ashe III, W.-T. Chan, Organometallics 1985, 4, 457.
- [32] H. Oehling, A. Schweig, Phosphorus 1971, 203.
- [33] W. W. Schoeller, J. Chem. Soc. Chem. Commun. 1985, 334.
- [34] A. J. Ashe III, P. Shu, J. Am. Chem. Soc. 1971, 93, 1804.
- [35] D. G. Holah, A. N. Hugues, K. L. Knudsen, R. J. Perrier, *Heterocycl. Chem.* 1988, 25, 155.
- [36] F. Mathey, F. Mercier, C. Charrier, J. Am. Chem. Soc. 1981, 103, 4595.
- [37] C. Charrier, H. Bonnard, F. Mathey, J. Org. Chem. 1982, 47, 2376.
- [38] F. Mathey, Tetrahedron Lett. 1979, 1753.
- [39] J.-M. Alcaraz, A. Brèque, F. Mathey, Inorg. Chem. 1984, 23, 3453.
- [40] J.-M. Alcaraz, E. Deschamps, F. Mathey, Phosphorus Sulfur 1984, 19, 45.
- [41] A. Brèque, C. Santini, F. Mathey, J. Fisher, A. Mitschler, *Tetrahedron Lett.* 1982, 23, 1565.
- [42] F. Nief, C. Charrier, F. Mathey, M. Simalty, Tetrahedron Lett. 1980, 21, 1441.
- [43] S. Holland, L. Ricard, F. Mathey, J. Org. Chem. 1991, 56, 4031.
- [44] M. Regitz, P. Binger, Angew. Chem. Int. Ed. 1988, 21, 370.
- [45] M. Regitz, U. Bergsträsser, Pol. J. Chem. 1999, 73, 135.
- [46] U. Annen, M. Regitz, H. Kluge, Chem. Ber. 1990, 123, 935.
- [47] B. Wrackmeyer, U. Klaus, J. Organomet. Chem. 1996, 520, 210.
- [48] G. Keglevich, K. Ujszaszi, A. Kovacs, L. Töke, J. Org. Chem. 1993, 58, 977.
- [49] Pour X = Br et Cl : P. Le Floch, F. Mathey, *Tertrahedron Lett.* 1989, 817.
- [50] Pour X = I : H. T. Teunissen, F. Bickelhaupt, *Tertrahedron Lett.* 1992, 33, 3537.
- [51] P. Le Floch, L. Ricard, F. Mathey, *Polyhedron* 1990, 9, 991.
- [52] F. Bickelhaupt, Pure Appl. Chem. 1993, 65, 621.
- [53] P. Le Floch, D. Carmichael, F. Mathey, Organometallics 1991, 10, 2432.
- [54] K. Waschbüch, P. Le Floch, F. Mathey, Bull. Soc. Chim. Fr. 1995, 132, 384.
- [55] N. Avarvari, P. Rosa, F. Mathey, P. Le Floch, J. Organomet. Chem. 1998, 15, 567.
- [56] G. Frison, A. Sevin, N. Avarvari, F. Mathey, P. Le Floch, J. Org. Chem. 1999, 64, 5524.
- [57] N. Mézailles, P. Le Floch, F. Mathey, dans Progress in Inorganic Chemistry, Vol. 49
- (Ed.: K. D. Karlin), John Wiley & Sons, Inc., Toronto, 2001, pp. 455.
- [58] N. Avarvari, P. Le Floch, L. Ricard, F. Mathey, Organometallics 1997, 16, 4089.
- [59] N. Avarvari, P. Le Floch, F. Mathey, J. Am. Chem. Soc. 1996, 118, 11978.
- [60] C. Elschenbroich, M. Nowotny, J. Kroker, A. Behrendt, W. Massa, S. Wocaldo, J. Organomet. Chem. 1993, 459, 127.
- [61] C. Elschenbroich, S. Voss, O. Schiemann, A. Lippek, K. Harms, *Organometallics* 1998, *17*, 4417.
- [62] C. Elschenbroich, M. Nowotny, A. Behrendt, K. Harms, S. Wocaldo, J. Pebler, J. Am. Chem. Soc. 1994, 116, 6217.
- [63] B. Breit, Chem. Commun. 1996, 2071.
- [64] N. Mézailles, L. Ricard, F. Mathey, P. Le Floch, Eur. J. Inorg. Chem. 1999, 2233.
- [65] F. Nief, C. Charrier, F. Mathey, M. Simalty, J. Organomet. Chem. 1980, 187, 277.
- [66] K. C. Dash, J. Eberlein, H. Schmidbaur, Synth. React. Inorg. Metal-Org. Chem. 1973, 3, 375.
- [67] C. Elschenbroich, F. Bär, E. Bilger, D. Mahrwald, M. Nowotny, B. Metz, *Organometallics* 1993, 12, 3373.
- [68] P. L. Arnold, F. G. N. Cloke, K. Khan, P. Scott, J. Organomet. Chem. 1997, 77, 528.
- [69] F. Knoch, F. Kremer, U. Schmidt, U. Zenneck, P. Le Floch, F. Mathey, *Organometallics* **1996**, *15*, 2713.
- [70] N. Mézailles, L. Ricard, F. Mathey, P. Le Floch, Organometallics 2001, 20, 3304.
- [71] M. Doux, L. Ricard, F. Mathey, P. Le Floch, N. Mezailles, Eur. J. Inorg. Chem. 2003, 687.
- [72] M. T. Reetz, E. Bohres, R. Goddard, M. C. Holthausen, W. Thiel, *Chem. Eur. J.* 1999, 5, 2101.

- [73] Pour les autres ligands : K. Waschbüch, P. Le Floch, L. Ricard, F. Mathey, *Chem. Ber.* **1997**, *130*, 843.
- [74] N. Mézailles, P. Le Floch, K. Waschbüch, L. Ricard, F. Mathey, C. P. Kubiak, J. Organomet. Chem. 1997, 541, 277.
- [75] G. Märkl, G. Dorfmeister, Tetrahedron Lett. 1997, 28, 1093.
- [76] P. Rosa, L. Ricard, F. Mathey, P. Le Floch, Organometallics 1999, 18, 3348.
- [77] P. Rosa, L. Ricard, P. Le Floch, F. Mathey, G. Sini, O. Eisenstein, *Inorg. Chem.* 1998, 37, 3154.
- [78] N. Mézailles, P. Rosa, L. Ricard, F. Mathey, P. Le Floch, Organometallics 2000, 19, 2942.
- [79] P. Rosa, Thèse de doctorat, Ecole Polytechnique (Palaiseau), 2000.
- [80] S. Choua, H. Sidorenkova, T. Berclaz, M. Geoffroy, P. Rosa, N. Mézailles, L. Ricard, F. Mathey, P. Le Floch, *J. Am. Chem. Soc.* **2000**, *122*, 12227.
- [81] N. Mézailles, N. Maigrot, S. Hamon, L. Ricard, F. Mathey, P. Le Floch, J. Org. Chem. 2001, 66, 1054.
- [82] L. Cataldo, S. Choua, T. Berclaz, M. Geoffroy, N. Mézailles, L. Ricard, F. Mathey, P. Le Floch, J. Am. Chem. Soc. 2001, 123, 6654.
- [83] S. Choua, C. Dutan, L. Cataldo, T. Berclaz, M. Geoffroy, N. Mézailles, P. Le Floch, *Chem. Eur. J.* 2004, 10, 4080.
- [84] L. Cataldo, S. Choua, T. Berclaz, M. Geoffroy, N. Mézailles, N. Avarvari, F. Mathey, P. Le Floch, *J. Phys. Chem. A.* **2002**, *106*, 3017.
- [85] N. Mézailles, N. Avarvari, N. Maigrot, L. Ricard, F. Mathey, P. Le Floch, L. Cataldo, T. Berclaz, M. Geoffroy, *Angew. Chem. Int. Ed.* **1999**, *38*, 3194.
- [86] A. Moores, F. Goettmann, C. Sanchez, P. Le Floch, Chem. Comm. 2004, 2842.
- [87] F. Goettmann, A. Moores, C. Boissière, P. Le Floch, C. Sanchez, Small 2005, 1, 636.
- [88] Brevet relatif à l'emploi de phosphinine en hydroformylation : R. Paciello, E. Zeller, B. Breit, M. Röper, BASF A.-G (Ger. Pat. 19743197), **1999**.
- [89] Brevet relatif à l'emploi de phosphinine en hydroformylation : B. Breit, R. Paciello, B. Geisler, M. Röper, BASF A.-G. (Ger. Pat. 19621967), **1999**.
- [90] B. Breit, R. Winde, T. Mackewitz, R. Paciello, K. Harms, Chem. Eur. J. 2001, 7, 3106.
- [91] B. Breit, R. Winde, K. Harms, J. Chem. Soc. Perkin Trans. 1 1997, 2681.
- [92] E. F. DiMauro, M. C. Kozlowski, J. Chem. Soc., Perkin Trans. 1 2002, 439.
- [93] D. Böhm, H. Geiger, F. Knoch, S. Kummer, P. Le Floch, F. Mathey, U. Schmidt, U. Zenneck, *Phosphorus, Sulfur and Silicon* **1996**, *109*, 173.
- [94] P. Le Floch, F. Knoch, F. Kremer, F. Mathey, J. Scholz, K.-H. Thiele, U. Zenneck, *Eur. J. Inorg. Chem.* **1998**, 119.
- [95] J.-M. Alcaraz, F. Mathey, Tetrahedron Lett. 1984, 25, 207.
- [96] G. Märkl, H.-J. Beckh, Tetrahedron lett. 1987, 28, 3475.
- [97] G. Märkl, H.-J. Beckh, M. L. Ziegler, B. Nuber, Angew. Chem. Int. Ed. 1987, 26, 1134.
- [98] T. Ziegler, Chem. Rev. 1991, 91, 651.
- [99] R. G. Parr, W. Yang, *Density Functional Theory of Atoms and Molecules*, Oxford University Press, Oxford, Royaume Uni, **1989**.
- [100] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. J. A. Montgomery, T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K.

Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, *Gaussian 03*, Revision B.04, Gaussian Inc., Pittsburgh PA, **2003**.

Chapitre 2 : Synthèse d'anions λ^4 -phosphinine

Dans ce chapitre, nous allons nous intéresser à la synthèse, au piégeage et à la réactivité des anions λ^4 -phosphinine vis-à-vis des électrophiles. Nous nous limiterons à la coordination η^1 de l'anion à des métaux de transition (Équation 1). Auparavant, un bref rappel bibliographique sur la synthèse, les propriétés et les modes de coordination des anions λ^4 -phosphinines s'impose.

I. Rappel bibliographique sur les anions λ^4 -phosphinine

I.1. Synthèse et propriétés

De nombreuses études se sont intéressées à la réactivité des nucléophiles sur les phosphinines. Märkl^[1-5] et Ashe^[6, 7] ont montré que des nucléophiles de nature très variée peuvent attaquer le phosphore électrophile de la phosphinine et conduire à l'anion phosphacyclohexadiènyle correspondant. Ce dernier peut ensuite être utilisé pour la synthèse de λ^5 -phosphinines et de dihydrophosphinines ou encore dans l'élaboration de complexes de métaux de transition (Équation 2).

Les premières structures et caractérisations complètes d'un anion λ^4 -phosphinine ont été obtenues au laboratoire en 2003.^[8] En l'absence de cryptand, la coordination à l'atome de lithium a lieu *via* le système π du squelette carboné du cycle de la phosphinine (Schéma 1).

L'analyse de la distribution de charges (charges NBO^[9] calculées grâce à la théorie de la fonctionnelle de la densité (DFT)^[10, 11]) révèle que la structure électronique de l'anion λ^4 -phosphinine est beaucoup plus proche de l'anion pentadiènyle que de son analogue l'anion cyclohexadiènyle puisque la charge négative est essentiellement localisée sur les atomes de carbone en α de l'atome de phosphore (Schéma 1). De plus, l'analyse des indices de liaison

(indice de Wyberg) indique qu'aucune délocalisation de la charge n'a lieu entre l'atome de phosphore et les atomes de carbone du cycle de la phosphinine (Schéma 1). Ainsi, on peut considérer électroniquement un anion λ^4 -phosphinine comme un anion pentadiènyle connecté à une phosphine.

I.2. Coordination de l'anion λ^4 -phosphinine à des centres métalliques

La coordination des anions λ^4 -phosphinine à un centre métallique peut *a priori* se produire de manière η^5 (mode A), η^2 (mode B) ou η^1 (mode C) en fonction du schéma de substitution du cycle de la phosphinine et de la nature du métal (Schéma 2).

Historiquement, le premier complexe incorporant un anion λ^4 -phosphinine a été obtenu par ajout d'un demi équivalent de [FeCl₂] sur un anion substitué en position 2, 4 et 6. Une structure de type sandwich a ainsi été synthétisée (

Équation 3).^[12-14]

De manière analogue, on forme le complexe de rhodium^I E à partir de l'anion **D** et d'un demi équivalent de $[Rh(COD)Cl]_2$ (Équation 4). Ce complexe s'est d'ailleurs révélé un bon catalyseur de la réaction d'hydroformylation des alcènes en conditions douces.^[15]

La nature du fragment métallique joue un rôle important puisque lorsque ce dernier possède deux sites de coordination vacants, la coordination a lieu suivant le mode $\eta^2 via$ coordination à la liaison P-C. Ainsi, la réaction de l'anion **D** avec [M(PPh_3)₂Cl₂] (M = Pd, Pt) conduit au complexe **F** qui a été caractérisé par diffraction aux rayons X (Équation 4). Les expériences de RMN signalent que deux énantiomères sont en équilibre en solution et que le fragment métallique [M(PPh_3)Cl] s'échange rapidement d'une liaison P-C à l'autre.^[8]

Il n'existe à ce jour que deux exemples de coordination de type η^1 des anions λ^4 -phosphinines à des centres métalliques. Il s'agit du complexe de fer $\mathbf{G}^{[14]}$ et du cluster d'or $\mathbf{H}^{[16]}$ (Équation 5). Malheureusement, le complexe \mathbf{G} est instable puisque la liaison phosphore fer se rompt en présence d'alcool. De plus, la structure de ces deux complexes n'a été validée ni par analyse aux rayons X ni par caractérisation RMN complète.

Équation 5

Il est important de noter que dans les complexes **G** et **H**, la coordinance de l'atome de phosphore est de quatre (σ^4), mais que son nombre d'oxydation est de cinq (λ^5), ce qui suggère un caractère hypervalent de l'atome de phosphore. On utilise une écriture commune à celle des ylures de Wittig : il n'existe pas de double liaison entre l'atome de phosphore et les deux atomes de carbone du cycle voisins. Ce formalisme a été choisi par souci de clarté afin d'éviter l'utilisation de charges sur les schémas. Une écriture avec une délocalisation de la charge sur le squelette cyclopentadiènyle aurait tout aussi bien pu être employée (Schéma 3).

Ainsi, on constate que la coordination de l'anion λ^4 -phosphinine à des centres métalliques se produit très majoritairement de manière η^5 .

II. Comment favoriser la coordination η^1 ?

Dans ce travail de thèse, nous nous sommes intéressés à la coordination de type η^1 des anions λ^4 -phosphinine à des centres métalliques. A la vue de ce qui précède, la coordination de type η^1 est défavorisée par rapport au mode de coordination η^5 . Cela se traduit à la fois par le nombre de complexes synthétisés et par leur instabilité intrinsèque (l'un des deux complexes synthétisé est instable). Nous avons donc cherché les facteurs qui pouvaient favoriser la coordination η^1 . Pour cela, considérons le diagramme orbitalaire de l'anion λ^4 -phosphinine.

II.1. Diagramme orbitalaire de l'anion λ^4 -phosphinine

Si l'on considère le diagramme orbitalaire de l'anion 1-méthyl- λ^4 -phosphinine et plus particulièrement les plus hautes orbitales occupées, on constate que la HOMO est de symétrie π avec des coefficients importants sur les carbones C_{α} et C_{γ} et que la HOMO-1 décrit principalement la paire libre de l'atome de phosphore (Schéma 4).

Par ailleurs, la coordination η^5 à des métaux de transition fait principalement intervenir une interaction avec la HOMO (symétrie π) de l'anion tandis que la coordination η^1 à un centre métallique met en jeu une interaction avec la paire libre du phosphore, soit la HOMO-1. Echanger la hauteur en énergie de ces deux orbitales permettrait de favoriser une complexation de type η^1 : ceci peut être réalisé par perturbation.

L'introduction de deux groupes ancillaires à paire libre en position α de l'atome de phosphore induit seulement une perturbation de l'orbitale HOMO-1. Il y a alors une interaction à deux orbitales et à quatre électrons qui déstabilise fortement l'orbitale HOMO-1. L'interaction déstabilisante qui en résulte conduit à une orbitale qui présente une importante contribution de la paire libre du phosphore et une forte participation des paires libres des ligands ancillaires qui favorise désormais la coordination η^1 (.

Finalement, la présence de deux groupes ancillaires à paires libres en position α de l'atome de phosphore devrait favoriser la coordination de l'anion λ^4 -phosphinine à un centre métallique suivant un mode η^1 .

II.2. Choix de la phosphinine : synthèse de SPS

Nous nous sommes intéressés à la phosphinine tridente **PPP-** α_2 , synthétisée au laboratoire en 1997.^[17] Sa synthèse repose sur la réactivité de la 1,3,2-diazaphosphinine **201** vis-à-vis d'alcynes fonctionnalisés.^[18] Ainsi, chauffer **201** avec deux équivalents de 2-phényl-1-diphénylphosphino-acétylène **202** conduit par deux séries successives de cycloaddition / cycloréversion à la formation d'un mélange de deux phosphinines **PPP-** α_2 et **PPP-** α_β

(Équation 6, Figure 1a). Nous avons pu améliorer le rendement de cette réaction en tirant partie de la différence de solubilité de ces phosphinines dans le THF, évitant ainsi une séparation par chromatographie flash. Dans **PPP-** α_2 , la présence de deux groupes PPh₂ en α de l'atome de phosphore est mise en évidence par un système AX₂ et une constante de couplage ${}^{2}J_{P-P}$ de 10.0 Hz en RMN ³¹P.

Restait alors à introduire sur le groupe PPh₂ de la phosphinine **PPP-\alpha_2** deux sites d'attache qui comprenaient des paires libres. Nous nous sommes d'abord penchés sur l'oxydation des phosphines ancillaires et la création de doubles liaisons P=N; malheureusement, ces deux voies ne conduisent pas aux produits souhaités (Équation 7) : le produit d'oxydation **OPO** est extrêmement réactif et s'hydrolyse en l'espace de quelques minutes tandis que le composé **NPN** ne se forme pas. La sulfuration de **PPP-\alpha_2** s'avère à la fois plus facile à mettre en œuvre et plus satisfaisante : on forme la phosphinine **SPS** avec un très bon rendement. Cette dernière a été complètement caractérisée par RMN, spectrométrie de masse et analyse élémentaire. La sulfuration a lieu préférentiellement sur les deux groupes PPh₂ et non sur l'atome de phosphore de la phosphinine en raison de la plus forte basicité des phosphines par rapport au phosphore sp².^[19] La sulfuration d'une phosphinine nécessite dans la plupart des cas une température de chauffage ainsi qu'un temps de réaction plus élevé.^[20-22]

La formule de **SPS** est confirmée par diffraction aux rayons X (Figure 1). Ses paramètres structuraux concordent avec ceux des λ^3 -phosphinines (Tableau 1).

Figure 1 : Structures des ligands PPP- α_2 (a) et de SPS (b). Les paramètres structuraux sont regroupés dans le Tableau 1.

Une série de calculs DFT^[10, 11] (B3LYP^[23-25]/6-31+G**^[26, 27]) menée sur les ligands modèles C₅H₅P I, C₅H₄P(PH₂) II, C₅H₄P(PH₂S) III, C₅H₃(PH₂)₂ IV et C₅H₃(PH₂S)₂ V montre que la substitution de la λ^3 -phosphinine par des groupements PH₂ augmente de manière très nette l'électrophilie du phosphore central : la charge du phosphore passe de +0.665 pour la phosphinine parente I à +0.724 pour la bis(diphosphino)- λ^3 -phosphinine IV (Schéma 6). L'électrophilie du phosphore est encore renforcée si les phosphines latérales sont remplacées par des groupements sulfure de phosphine (on passe alors de +0.724 à +0.747). La modification de la charge au phosphore n'influe pas de manière significative sur le caractère aromatique du cycle : la valeur du NICS (1Å) (Nucleus Independant Chemical Shift^[28, 29]) ne varie pratiquement pas.

Schéma 6: Charges NBO et NICS (1Å) entre parenthèses de I-V

Tableau 1 : Paramètres structuraux de I-V optimisés au niveaux B3LYP/6-31+G**. Les distances sont exprimées en Å et les angles en °.

	Ι	II	III	IV	V	PPP-a2	SPS
P1-C1	1.747	1.758	1.758	1.757	1.751	1.745(2)	1.742(2)
C1-C2	1.395	1.401	1.395	1.400	1.396	1.408(2)	1.409(3)
C2-C3	1.399	1.399	1.400	1.398	1.398	1.399(2)	1.399(3)
C3-C4	1.399	1.399	1.397	1.398	1.398	1.398(2)	1.399(3)
C4-C5	1.395	1.394	1.396	1.400	1.396	1.399(2)	1.417(3)
C5-P1	1.747	1.747	1.741	1.757	1.751	1.748(2)	1.745(2)
C1-P2		1.859	1.843	1.859	1.848	1.848(2)	1.826(2)
P2-S1			1.966		1.963	-	1.956(1)
C5-P3				1.859	1.848	1.849(2)	1.835(2)
P3-S2					1.963	-	1.9532(8)
C2-P1-C3			100.3	102.2	100.8	103.44(7)	103.9(1)

La pertinence de ces calculs est validée par la bonne concordance des paramètres structuraux des phosphinines modèles IV et V avec les structures aux rayons X de PPP- α_2 et SPS (Tableau 1). La déviation maximale est de 0.016 Å.

II.3. Conclusion : retour sur le diagramme orbitalaire

Revenons maintenant sur la perturbation du diagramme orbitalaire de l'anion λ^4 -phosphinine parent (.

Schéma 5). On vérifie bien par calcul DFT (B3LYP^[23-25]/6-31+G*^[30]) que la forme de la HOMO et de la HOMO-1 s'échange lorsque l'on passe de l'anion 1-méthyl- λ^4 -phosphinine parent à l'anion 1-méthyl de la phosphinine **SPS**. La HOMO est désormais décrite par la paire libre de l'atome de phosphore et la coordination à des métaux de transition devrait avoir lieu de manière η^1 (Figure 2).

Figure 2 : HOMO et HOMO-1 de l'anion 1-méthyl- λ^4 -phosphinine et de l'anion 1-méthyl de la phosphinine SPS.

III. Réactivité du ligand SPS

Une fois la synthèse du ligand **SPS** réalisée, nous nous sommes intéressés à sa stabilité et à sa réactivité vis-à-vis des nucléophiles.

III.1. Réaction avec l'eau, les alcools, les amines, les thiols et le brome

En explorant la réactivité de **SPS** vis-à-vis des nucléophiles, on constate que la réaction avec l'eau conduit à la formation de l'oxyde de 1,2-dihydrophosphinine **206** (Équation 8). Cette transformation, relativement habituelle pour les phosphaalcènes non stabilisés cinétiquement, est généralement exclue pour les λ^3 -phosphinines dans lesquelles la double liaison P=C est stabilisée thermodynamiquement.^[19, 31] Il arrive cependant, dans certains cas, que la présence de groupes très accepteurs en position α de l'atome de phosphore provoque une désaromatisation partielle du cycle.^[32] On constate par ailleurs que l'on ne

forme qu'un seul isomère. **206** a été complètement caractérisé par RMN, spectrométrie de masse et analyse élémentaire. Sa structure a également été confirmée par rayons X.

Équation 8 : Structure de 206, les groupes phényles sont omis par souci de clarté.

La phosphinine SPS réagit également avec les alcools primaires et les amines secondaires et forme les λ^5 -phosphinines correspondantes qui résultent de l'addition formelle de la paire libre de l'atome de phosphore dans la liaison A-H (A = RO ou R_2N). Alors que la réaction avec le méthanol et l'éthanol est lente et nécessite un excès d'alcool, la réaction avec la diéthylamine est quasi instantanée. Ces composés (207-209) constituent les premiers exemples de λ^5 -phosphinines avec une liaison P-H (Équation 9).^[31, 33] Ils ont été complètement caractérisés par RMN, spectrométrie de masse et analyse élémentaire. En RMN 31 P, la formation de **207-209** est mise en évidence par la présence de deux groupes Ph₂P(S) magnétiquement équivalents ($\delta \sim 38$ ppm) et un déplacement du phosphore central compatible avec celui d'une λ^5 -phosphinine (δ = 27.6 ppm pour **207**, 25.9 ppm pour **208** et -0.3 ppm pour 209). La présence de la liaison P-H est établie en RMN ¹H par une grande constante de couplage ${}^{1}J_{P-H}$ (619.0 Hz pour **207**, 613.0 Hz pour **208** et 545.0 Hz pour **209**), caractéristique d'un atome de phosphore P^V. En RMN 13 C, on observe bien un blindage très important des atomes de carbone en position α de l'atome de phosphore, caractéristique des λ^5 -phosphinines (80.7 ppm pour **207**, 81.7 ppm pour **208** et 87.6 ppm pour **209** au lieu de 159.7 ppm pour SPS).^[31] Il est important de noter que seuls les alcools primaires réagissent avec SPS ; les réactions menées avec le menthol ou le phénol même sous conditions dures (chauffage, concentration importante des réactifs) ne conduisent à aucune transformation de SPS.

La formation de λ^5 -phosphinines par condensation directe d'alcool ou d'amine sur les λ^3 -phosphinines est sans précédent et illustre la réactivité singulière de **SPS**. Il existe plusieurs voies de synthèse de λ^5 -phosphinines ; dans la plupart des cas, elles sont obtenues par piégeage de l'anion 1-R¹- λ^4 -phosphinine avec les électrophiles. L'attaque des électrophiles sur l'anion peut avoir lieu soit sur la paire libre de l'atome de phosphore, soit sur le squelette carboné du cycle en position α ou γ . Les électrophiles « mous » (MeI par exemple) réagissent préférentiellement sur l'atome de phosphore tandis que les électrophiles « durs » (comme H⁺) réagissent sur la partie carbonée du cycle et conduisent à des 1,2- ou des 1,4-dihydrophosphinines (Équation 10).^[2, 6-7] C'est probablement pour cette raison que les λ^5 -phosphinines incorporant une liaison P-H n'avaient pas été synthétisées auparavant.

Comme nous n'avons pu isoler aucun intermédiaire lors de la formation des λ^5 -phosphinines **207-209**, nous avons d'abord imaginé que l'addition de méthanol et de diéthylamine sur **SPS** forme un intermédiaire du type 1,2-dihydrophosphinine qui s'isomérise ensuite en λ^5 -phosphinine (Équation 11). Cette transformation, qui met en jeu une migration [1,2] d'un atome d'hydrogène sur l'atome de carbone C_{α} vers l'atome de phosphore suivi par l'élimination de AH, est une réaction connue qui a lieu à haute température.^[2, 34]

Nous avons entrepris des calculs DFT au niveau B3LYP^[23-25]/6-311+G**^[35] pour valider le mécanisme proposé. Nous avons limité cette étude au réarrangement des 1,2dihydrophosphinines (**VIa-d**) en λ^5 -phosphinines (**VIIa-d**) sur des composés modèles (Schéma 7). D'un point de vue énergétique (Tableau 2), les 1,2-dihydrophosphinines (**VIa-d**) sont plus stables que les λ^5 -phosphinines associées (**VIIa-d**). La substitution d'un groupe alkyle (**b**) par un groupe OMe (**c**) ou NH₂ (**d**) a tendance à réduire la différence énergétique entre les formes 1,2-dihydrophosphinine et λ^5 -phosphinine. Cette observation s'accorde avec d'autres calculs théoriques qui montrent que l'introduction d'un atome électronégatif sur l'atome de phosphore de la λ^3 -phosphinine augmente l'aromaticité du cycle par hyperconjugaison négative.^[36] Par ailleurs, quel que soit le schéma de substitution du cycle, la conversion de 1,2-dihydrophosphinine (**VIa-d**) en λ^5 -phosphinine (**VIa-d**) nécessite une très forte énergie d'activation (E_A) allant de +50.4 pour R = OMe à +66.4 kcal.mol⁻¹ pour R = H. Le mécanisme proposé n'est pas retenu car l'énergie d'activation calculée est incompatible avec une réaction réalisée expérimentalement à température ambiante.

Schéma 7

Nous avons également testé l'influence du schéma de substitution du cycle en réalisant le même calcul sur la phosphinine qui comporte deux groupes PH_2S en α et un groupe méthoxy sur l'atome de phosphore (Équation 12). Tout comme sur les composés non substitués en position α , la réaction de conversion de la 1,2-dihydrophosphinine **VIe** en λ^5 -phosphinine **VIIe** possède une barrière d'activation élevée (+44.8 kcal.mol⁻¹) (Tableau 2), à nouveau inconciliable avec une réaction exécutée à température ambiante.

Tableau 2 : Energie relative (corrigée ZPE, exprimée en kcal.mol⁻¹) des composés modèles VI, VII et des états de transition (TS) correspondants.

VI		Γ	S	VII		
VIa	0	TSa	+66.4	VIIa	+18.2	
VIb	0	TSb	+62.5	VIIb	+11.8	
VIc	0	TSc	+50.4	VIIc	+1.9	
VId	0	TSd	+57.8	VIId	+6.9	
VIe	0	TSe	+44.8	VIIe	+0.3	

Cette analyse théorique montre que l'introduction de groupe $Ph_2P(S)$ en position α de l'atome de phosphore ne modifie pas le chemin réactionnel. Le mécanisme proposé n'est pas validé.

Nous pensons néanmoins que la transformation est initiée par l'attaque d'un atome d'oxygène ou d'azote sur le phosphore. Les groupes ancillaires $Ph_2P(S)$ assistent dans un deuxième temps le transfert de H⁺ vers le phosphore. Nous envisageons le même mécanisme pour la formation de **206**, suivi par la tautomérie de hydroxyphosphine en oxyde de phosphine.^[37] Ce mécanisme n'a pas encore pu être confirmé par calculs théoriques (Équation 13).

Équation 13

Par ailleurs, l'addition de dibrome sur **SPS** conduit à la 1,2-dibromophosphinine **210** (Équation 14). Sa structure est mise en évidence par un signal AXX' en RMN ³¹P.

III.2. Réaction avec les nucléophiles

III.2.1. Réaction avec le méthyllithium

Nous avons étudié dans un premier temps l'addition du méthyllithium sur la phosphinine **SPS**. On ajoute une quantité stoechiométrique de MeLi à la micro seringue sur la phosphinine dissoute dans du THF à -78°C et l'on forme l'anion **211** (Équation 15). Le produit blanc et peu soluble réagit instantanément et la solution devient rouge limpide. Comme on pouvait s'y attendre, **211** est un composé extrêmement sensible à l'eau et la préparation de tube RMN doit s'effectuer en boîte à gants.

En RMN ³¹P, les signaux apparaissent sous la forme de système AX₂ avec deux groupes Ph₂P(S) magnétiquement équivalents ; alors que le déplacement chimique des groupes Ph₂P(S) reste quasiment inchangé (45.9 dans **211** au lieu de 43.4 ppm dans **SPS**), la formation de l'anion induit un blindage extrêmement important de l'atome de phosphore de la phosphinine (-65.7 dans **211** au lieu de 253.1 ppm dans **SPS**, soit $\Delta \delta = -318.8$ ppm). La variation du déplacement chimique de l'atome de phosphore central de l'anion λ^4 -phosphinine indique que l'aromaticité du cycle est rompue. Sa valeur se compare désormais à PMe₃ (δ = -60.0 ppm), ce qui suggère un atome de phosphore central extrêmement basique de type phosphine. L'équipe de Ashe a observé un fort blindage (environ 3 ppm) des protons H₂, H₄ et H₆ lors de la réaction de MeLi sur la phosphinine parente C_6H_5P .^[7] On observe dans le cas de 211, un blindage de 1.81 ppm du proton H₄. En RMN ¹³C, les atomes de carbone C₂ et C₆ sont extrêmement blindés ($\Delta \delta$ = -86.1 ppm) et l'on observe une forte diminution de la constante de couplage ${}^{1}J_{C2-P}$ (6.0 dans **211** au lieu de 66.2 Hz dans **SPS**). On constate que l'atome de carbone C₄ est également blindé ($\Delta \delta$ = -20.3 ppm) tandis que le déplacement chimique des atomes C₃ et C₅ ne varie presque pas ($\Delta \delta = +5.5$ ppm). La variation des déplacements chimiques des atomes de carbone montre que la charge négative est principalement localisée en position 2, 4 et 6.

Schéma 8: Déplacements chimiques de SPS et 211. Les constantes de couplage J_{C-P} sont notées entre parenthèses.

Nous avons entrepris une étude aux rayons X pour confirmer la délocalisation de la charge négative sur le squelette carboné. Deux types de cristaux ont pu être obtenus : l'un dans un mélange hexane/THF (1:1) en tube scellé à -40°C (211a, Figure 3a) et l'autre par diffusion en boîte à gants d'hexane dans une solution de 211 dans le THF (211b, Figure 3b). On observe deux structures de géométries différentes : dans 211a, le fragment anionique [SPS^{Me}] se comporte comme un ligand pinceur tridente et coordonne l'atome de lithium de manière symétrique (S1-Li et S2-Li valant respectivement 2.800(8) et 2.808(8) Å) tandis que dans 211b, seul l'un des atomes de soufre est lié au lithium (S1-Li et S2-Li valant respectivement 2.469(3) et 4.559(3) Å). Dans les deux structures, l'atome de lithium est lié de manière η^1 avec l'atome de phosphore du cycle. Les valeurs de la distance P1-Li (2.484(8) et 2.600(4) Å pour 211a et 211b) confirment qu'il existe bien une interaction entre le phosphore et le lithium. On forme ainsi un complexe σ lorsque un (ou deux) ligands ancillaires sont présents en position α de l'atome de phosphore comme nous l'avions imaginé précédemment par un simple diagramme de perturbation. Les deux modes de coordination du squelette SPS $(\kappa^2 \text{ ou } \kappa^3)$ à l'atome de lithium montre que la coordination η^1 de l'atome de phosphore central à un centre métallique est possible à la fois pour un ligand tridente SPS, mais également pour un ligand bidente SP. Ceci aura des répercussions dans le chapitre 7 qui décrit la chimie de coordination du ligand bidente SP.

Figure 3: Structure de 211. Les groupes phényles sont omis par souci de clarté. a) 211a, cristaux obtenus en tube scellé à -40°C. b) 211b, cristaux obtenus par diffusion en boîte à gants. Paramètres structuraux regroupés dans le Tableau 3.

Dans les deux cas, l'atome de phosphore P1 est situé au dessus du plan moyen défini par les quatre atomes de carbone centraux (angle dièdre = 20.4 et 21.1° pour **211a** et **211b** resp.) et est hautement pyramidal comme on peut l'attendre pour une hybridation sp³ (Σ angles = 304.0 et 303.7° pour **211a** et **211b** resp.). Par ailleurs, l'allongement des liaisons P1C1 et P1-C5 (P1-C1 = 1.821(2) pour **211a** au lieu de 1.745(2) Å pour **SPS**) indique un caractère ylure du phosphore P1 ; cette distance est désormais caractéristique d'une liaison Psp³-Csp². L'atome de carbone C₄ (C3, Figure 3) se trouve également au dessus du plan (angle dièdre = 20.4 et 21.1° pour **211a** et **211b** resp.) et la conformation du cycle phosphoré adopte une géométrie de type bateau.

Les distances C-C du squelette carboné du cycle sont équivalentes dans la limite des 3σ (1.389(5) - 1.409(5) Å pour **211a**), ce qui montre une délocalisation de la charge négative sur les cinq atomes de carbone du cycle. De plus, le raccourcissement des liaisons P-C externes (C1-P2 = 1.773(4) Å pour **211a** vs 1.826(2) Å pour **SPS**) et l'allongement des longueurs P-S (P2-S1 = 1.974(4) Å pour **211a** vs 1.956(1) Å pour **SPS**) suggèrent que la charge négative est délocalisée sur l'ensemble de la molécule (Schéma 9).

Au contraire, pour **211b**, la similitude des distances C-C des atomes de carbone C1-C2-C3 (1.397(2) à 1.404(2) Å) et la faible longueur C4-C5 (1.390(2) Å) indique la délocalisation de la charge négative seulement sur les atomes de carbone C1-C2-C3 (Schéma 9). Cette tendance est confirmée par la différence des longueurs C-P externes et P-S. La délocalisation de la charge négative se prolonge sur la partie C-P-S liée à l'atome de lithium : élongation de P2-S1 (1.9887(6) Å vs 1.9678(2) Å pour P3-S2) et diminution de C2-P2 (1.766(2) Å vs 1.779(2) Å pour C5-P3).

Compte tenu de la différence structurale observée, nous avons réalisé des expériences RMN 31 P à basse température pour vérifier s'il y a inter-conversion entre une structure symétrique et une structure dissymétrique avec un atome de soufre décoordonné du lithium. Malheureusement, même à -80°C, on n'observe aucune dissymétrie de la structure de **211** : les deux groupes PPh₂ demeurent magnétiquement équivalents.

Nous nous sommes alors tournés vers les calculs DFT afin de calculer la différence d'énergie entre la structure avec le lithium pentacoordiné et celle avec le lithium tétracoordiné. Les calculs ont été réalisés avec la fonctionnelle B3PW91^[38] et la base 6- $31+G^*$.^[30] Nous avons optimisé les deux anions **VIIIa** et **VIIIb**, modèles de **211a** et **211b**, dans lesquels les groupes phényles sont remplacés par des atomes d'hydrogène (Figure 4). **VIIIb** a été caractérisé comme un minimum d'énergie par un calcul de fréquences. L'optimisation de la structure pentacoordinée **VIIIa** nécessite d'imposer une contrainte *Cs*, *i.e.* avec deux distances Li-S égales ce qui oblige la coordination des deux atomes de soufre au lithium.

On observe une très bonne approximation des distances (différence inférieure à 0.019 Å) et des angles sauf pour les liaisons P1-Li, S-Li et O-Li (0.082 Å < déviation < 0.188 Å pour **VIIIa** et 0.044 Å < déviation < 0.189 Å pour **VIIIb**). La plus grande différence concerne la liaison Li-S1 (resp. Li-S2) qui est surestimée de 0.188 Å pour **VIIIa** (resp. 0.189 Å pour **VIIIb**).

D'un point de vue énergétique, **VIIIa** est situé 3.2 kcal.mol⁻¹ au dessus de **VIIIb** et est caractérisé comme l'état de transition (faible fréquence imaginaire de -57.9 icm⁻¹) qui connecte deux minima équivalents avec S1 ou S2 décoordonné. La surface de potentiel qui relie **VIIIa** et **VIIIb** est donc extrêmement plate, ce qui permet de comprendre la possibilité d'avoir deux structures différentes.

Figure 4: Structures de VIIIa et VIIIb optimisées au niveau B3PW91/6-31+G*. La numérotation est identique pour les deux structures. Paramètres structuraux regroupés dans le Tableau 3. E : énergie relative en kcal.mol⁻¹.

Nous avons également testé l'influence des neuf groupes phényles et calculé les complexes réels IXa et IXb par une méthode de calcul mixte mécanique quantique / mécanique moléculaire (MQ/MM) au niveau ONIOM(B3PW91:UFF) avec les phényles dans la partie MM (Figure 5).^[39] La partie mécanique MQ est traitée comme précédemment au niveau B3PW91/6-31+G* et la partie MM avec le champ de force UFF.^[40] On constate que les différences P1-Li et P2-S1 est réduite dans le cas de l'isomère IXa à 0.119 Å. Pour IXb, le passage du complexe modèle au complexe réel tend à symétriser les deux liaisons Li-S (2.582 et 3.140 Å vs 2.469(3) et 4.599(3) Å dans la structure expérimentale 11b). IXb conserve néanmoins un atome de soufre sans interaction avec le lithium. Pour déterminer les différences d'énergie entre les deux isomères, un calcul purement quantique est effectué sur la géométrie optimisée niveau ONIOM(B3PW91:UFF). au Dans ce calcul. B3PW91//(B3PW91:UFF), les atomes de carbone (d'hydrogène resp.) sont décrits avec la base 6-31G* (6-31G resp.) et l'on conserve la base 6-31+G* pour les autres atomes. On constate que IXa est désormais situé 1.6 kcal.mol⁻¹ au dessous de IXb, ce qui rend la formation des deux isomères extrêmement compétitifs.

Figure 5: Structures de IXa et IXb optimisées au niveau ONIOM(B3PW91:UFF). La partie MQ (resp. MM) est représentée en boules et bâtons (resp. tubes). La numérotation est identique pour IXa et IXb. Paramètres structuraux regroupés dans le Tableau 3. E : énergie relative en kcal.mol⁻¹.

Tableau 3 : Paramètres structuraux des complexes [SPS^{Me}][Li(THF)₂] optimisés au niveaux B3PW91/6-31+G*, ONIOM (B3PW91:UFF). Les distances sont exprimées en Å et les angles en °.

Distances[Å] Angles[°]	VIIIa DFT MQ	IXa ONIOM	211a RX	VIIIb DFT MQ	IXb ONIOM	211b RX
P1-C2	1.813	1.799	1.815(3)	1.807	1.796	1.811(2)
C2-C3	1.391	1.414	1.389(5)	1.399	1.421	1.404(2)
C3-C4	1.410	1.340	1.406(5)	1.396	1.396	1.397(2)
C4-C5	1.401	1.418	1.409(5)	1.411	1.424	1.397(2)
C5-C6	1.391	1.394	1.399(5)	1.386	1.390	1.390(2)
C6-P1	1.813	1.821	1.802(4)	1.813	1.825	1.821(2)
P1-Me	1.866	1.856	1.835(4)	1.858	1.855	1.831(2)
C2-P2	1.766	1.786	1.773(4)	1.758	1.780	1.766(2)
C6-P3	1.766	1.802	1.782(1)	1.774	1.807	1.779(2)
P2-S1	1.990	2.010	1.974(4)	2.000	2.016	1.9887(6)
P3-S2	1.990	2.000	1.981(1)	1.979	1.998	1.9678(6)
P1-Li	2.616	2.509	2.484(8)	2.546	2.476	2.600(3)
S1-Li	3.012	2.657	2.800(8)	2.518	2.582	2.469(3)
S2-Li	3.012	2.868	2.820(8)	4.401	3.140	4.599(3)
Osyn-Li	2.019	2.025	1.916(7)	1.971	2.013	1.933(3)
Oanti-Li	2.081	2.029	1.923(8)	1.974	2.008	1.921(3)
P1-C2-C3	122.8	117.2	118.7(3)	120.3	116.7	118.2(1)
C2-C3-C4	125.3	122.1	123.1(3)	124.1	121.7	122.9(1)
C3-C4-C5	121.2	124.3	124.8(3)	121.3	124.4	125.9(1)
C4-C5-C6	125.5	122.7	122.3(3)	124.9	122.7	121.8(1)
C5-C6-P1	122.8	118.1	118.9(3)	119.8	117.8	118.7(1)
C6-P1-C2	98.2	99.9	100.3(2)	97.7	100.1	100.27(7)
S1-Li-S2	156.9	160.0	152.7(3)		158.4	137.2
S1-Li-Osyn	99.3	94.8			100.7	110.2
S1-Li-Oanti	93.4	99.0			100.5	105.5
CCC-P1			20.4			21.1
CCC-C4			6.5			5.6
Pyram. P1		304.2	304.0			303.7

Finalement, le passage des anions modèles **VIIIa-b** aux anions réels **IXa-b** fournit une meilleure (et non parfaite) approximation structurale des complexes expérimentaux **211a-b**. La faible différence d'énergie des anions réels **IXa-b** ne permet pas d'expliquer pourquoi deux structures différentes sont obtenues expérimentalement dans des conditions de températures différentes. Les calculs montrent néanmoins que ces deux structures sont accessibles.

Il nous a paru également intéressant de synthétiser l'analogue potassique $[SPS^{Me}][K]$ de l'anion lithié **211**. Cet échange lithium/potassium est particulièrement important car lors de la complexation à des centres métalliques il se forme un équivalent de sel qui peut réagir sur le complexe formé. La formation de « complexes ates » est courante avec les éléments f, et peut être rencontrée avec tous les cations Li, Na, K. KCl étant insoluble dans le THF, on réduit les risques d'obtention de composés « ates ».^[41, 42] Dans certains cas par exemple lorsque le complexe désiré s'avère insoluble, l'utilisation du sel de lithium peut être nécessaire. La formation de **212** s'appuie sur un échange lithium/potassium en présence de *t*-BuOK dans l'éther à basse température (Équation 16).^[43-47]

L'anion **212** a été complètement caractérisé par RMN. La passage de l'anion lithié **211** à l'anion potassique **212** induit de très faibles modifications des spectres RMN (la déviation maximale est de 3.7 ppm). La structure de **212** est dimérique avec un atome de potassium liée par le phosphore central et l'atome de soufre d'une unité SPS et celui de l'autre unité SPS (Figure 6). On obtient à nouveau une coordination de l'anion λ^4 -phosphinine au cation potassique de type η^1 . Les paramètres structuraux de **212** révèlent la même tendance que ceux de **211** : l'allongement des longueurs P-S (P2-S1 = 1.9768(4) Å *vs* 1.956(1) Å pour **SPS** et 1.974(4) Å pour **211a**), le raccourcissement des distances P-C externes (P2-C1 = 1.778(1) Å *vs* 1.826(2) Å pour **SPS**), la similitude des longueurs C-C (1.394(2) à 1.410(2) Å) du cycle indique la délocalisation de la charge négative sur l'ensemble du squelette SPS. L'atome de phosphore central, P1, possède les caractéristiques d'un phosphore sp³ : pyramidalité du phosphore (Σ angles = 302.3°) et longueurs P-C internes (P1-C1 = 1.824(1) Å au lieu de 1.745(2) Å pour **SPS**) presque comparables à celle d'une liaison P-C simple (P1-C6 = 1.844(1) Å).

Figure 6: Structure de 212. Les groupes phényles sont omis par souci de clarté. Paramètres structuraux (distances en Å et angles en °) : P1-C1 1.824(1), C1-C2 1.394(2), C2-C3 1.410(2), C3-C4 1.402(1), C4-C5 1.398(2), C5-P1 1.811(1), C6-P1 1.844(1), C1-P2 1.778(1), C5-P3 1.761(1), P2-S1 1.9768(4), P3-S2 1.9775(5), P1-K1 3.2712(5), S1-K1 3.3793(4), S2'-K1 3.2962(5), O1-K1 2.711(1), O2-K1 2.800(2), C1-P1-C5 99.49(5),

P1-C1-C2 118.33(8), C1-C2-C3 122.9(1), C2-C3-C4 125.6(1), C3-C4-C5 121.6(1), C4-C5-P1 118.28(7), (plan moyen C1-C2-C4-C5)-P1 22.2, (plan moyen C1-C2-C4-C5)-C3 5.5. Σ angles P1 302.3.

III.2.2. Réaction avec d'autres groupes alkyles

Nous avons également voulu varier la nature de la chaîne alkyle sur le phosphore central afin de moduler la solubilité et l'encombrement stérique de l'anion λ^4 -phosphinine. Pour cela nous avons testé la réaction de **SPS** avec le *n*-BuLi et le *t*-BuLi (Équation 17). L'utilisation du *n*-BuLi conduit comme précédemment à la formation de l'anion **213** sur lequel l'atome de phosphore de la phosphinine est substitué par la chaîne butyle. L'emploi de *t*-BuLi s'est révélé plus surprenant car on forme dans un premier temps l'anion **214** qui évolue en moins de 10 minutes vers l'anion **215** par élimination de 2-méthylpropène. Une telle élimination n'a pas lieu lorsque deux groupes TMS et non plus Ph₂P(S) sont placés en α de l'atome de phosphore de la phosphinine.^[8] La formation de l'anion **214** s'accompagne d'un important blindage de l'atome de phosphore de la λ^4 -phosphinine par rapport à **211** et **213** (δ (**214**) = -43.1 ppm, $\Delta\delta$ = + 22.6 ppm). Cette variation de déplacement chimique suggère une modification électronique importante de l'atome de phosphore (δ (**215**) = -73.7 ppm, $\Delta\delta$ = - 30.6 ppm). La présence de la liaison P-H est mise en évidence en RMN ¹H et ³¹P par une grande valeur de la constante de couplage ¹*J*_{P-H} (195.8 Hz) qui traduit également le caractère sp³ de l'atome de phosphore.

Équation 17

Nous avons cherché à établir la valeur de l'énergie d'activation de l'élimination du 2méthylpropène qui conduit de **214** à **215**. Pour cela, nous avons optimisé et caractérisé comme un minimum de la surface d'énergie **X** et **XI**, modèles des anions **214** et **215**, dans lesquels les groupes phényles sont remplacés par des atomes d'hydrogène (Figure 7).¹ Nous avons imaginé deux états de transition possibles : avec ou sans participation des bras ancillaires soufrés. En l'absence de participation des ligands ancillaires, l'état de transition est situé 81.3 kcal.mol⁻¹ au dessus du réactif, une valeur bien trop élevée pour être compatible avec une réaction spontanée à température ambiante ou à froid. Elle explique néanmoins pourquoi l'élimination du 2-méthylpropène n'a pas lieu sur une phosphinine incorporant des groupes phényles ou triméthylsilyle en position α de l'atome de phosphore.^[8] Malheureusement, aucun état de transition mettant en jeu les ligands ancillaires soufrés n'a pu être caractérisé à ce jour.

¹ B3PW91^[38]/6-31+G*^[30]

Figure 7 : Profil réactionnel de la réaction d'élimination du 2-méthyl propène qui conduit de X à XI.

Nous avons également synthétisé un anion de type scorpionate **217** à partir de l'anion de la 2-méthylpyridine **216**. Cette dernière est généralement déprotonée par des bases fortes comme les lithiens de la diisopropylamine ou de la 2,2,6,6-tétraméthylpipéridine,^[49, 50] nous avons néanmoins préféré l'emploi du méthyllithium. **217** a été complètement caractérisé par RMN.

Équation 18

La coordination de l'atome d'azote de la pyridine au lithium est mise en évidence par la structure aux rayons X de **217** (Figure 8). La dissymétrie de la structure n'est observée qu'à l'état solide puisque l'on observe en solution l'équivalence des deux groupes Ph₂P(S) en RMN ³¹P. Pour des raisons stériques, la géométrie autour de l'atome de lithium est un tétraèdre distordu avec P1-L1-O1 et S2-L1-N1 qui valent respectivement 130.3(2)° et 109.6(1)°. Comme pour **211b**, la coordination d'un seul des deux atomes de soufre entraîne, pour le ligand ancillaire lié à l'atome de lithium, une élongation de la longueur P=S (P3-S2 = 1.9945(5) Å *vs* P2-S1 = 1.9735(5) Å) et une diminution de la longueur P-C externe (P3-C5 = 1.759(1) Å *vs* P2-C1 = 1.788(1) Å), indiquant la délocalisation partielle de la charge négative sur les atomes C5-P3-S2. La géométrie de l'atome P1 est à nouveau de type phosphine : phosphore pyramidal (Σ angles = 303.6°) et longueur P-C interne longue (P1-C1 = 1.825(1) Å).

Figure 8 : Structure de 217. Les groupes phényles sont omis par souci de clarté. Paramètres structuraux (distances en Å et angles en °) : P1-C1 1.825(1), C1-C2 1.382(2), C2-C3 1.434(2), C3-C4 1.385(2), C4-C5 1.423(2), C5-P1 1.781(1), C6-P1 1.865(2), C1-P2 1.788(1), C5-P3 1.759(1), P2-S1 1.9735(5), P3-S2 1.9945(5), P1-Li1 2.482(3), S2-Li1 2.459(3), N1-Li1 2.071(4), O1-Li1 1.893(3), C1-P1-C5 100.22(7), P1-C1-C2 118.2(1), C1-C2-C3 122.3(1), C2-C3-C4 124.5(1), C3-C4-C5 122.1(1), C4-C5-P1 116.7(1), O1-Li1-N1 122.7(2), P1-Li1-N1 81.6(1), P1-Li1-S2 89.3(1), (plan moyen C1-C2-C4-C5)-P1 22.8, (plan moyen C1-C2-C4-C5)-C3 7.7, Σ angles P1 303.6.

III.2.3. Réaction avec des alcoolates, thiolates et amidures

La réaction de **SPS** avec des nucléophiles n'est pas limitée aux groupes alkyles. Elle peut également se produire avec les alcoolates ou les thiolates (Équation 19). L'emploi d'amidures a également été testé, mais aucun anion présentant une liaison P-N n'a pu être isolé : on observe à température ambiante la décomposition de l'anion **220** et la formation exclusive de la λ^5 -phosphinine **209**.

La cristallisation de l'anion **218** a été possible en présence de cryptand [2-2-2] (Figure 9). Les tendances révélées précédemment pour les paramètres structuraux des anions **211**, **212** et **217** ne sont pas modifiées par le piégeage de l'atome de lithium par un cryptand : les longueurs P=S et P-C externes sont similaires et l'atome de phosphore est pyramidal. On observe néanmoins une légère alternance des longueurs de liaisons C-C du cycle (C1-C2 1.390(7), C2-C3 1.408(7), C3-C4 1.393(6), C4-C5 1.406(7)).

Figure 9: Structure de 218. Paramètres structuraux (distances en Å et angles en °) : P1-C1 1.802(4), C1-C2 1.390(7), C2-C3 1.408(7), C3-C4 1.393(6), C4-C5 1.406(7), C5-P1 1.791(5), C5-P1 1.791(5), C1-P2 1.794(5), C5-P3 1.770(4), P3-S2 1.974(2), P2-S1 1.968(2), P1-O1 1.661(4), C5-P1-C1 105.0(2), P1-C1-C2 121.5(3), C1-C2-C3 122.6(4), C2-C3-C4 125.4(4), C3-C4-C5 121.4(4), C4-C5-P1 122.2(3), P1-C5-P3 116.4(3), P1-C1-P2 115.9(3), (plan moyen C1-C2-C4-C5)-P1 21.0, (plan moyen C1-C2-C4-C5)-C3 6.0, Σ angles P1 306.2.

III.3. Piégeage de l'anion λ^4 -phosphinine

Avant d'étudier la coordination des anions λ^4 -phosphinines à des centres métalliques, nous nous sommes intéressés à leur piégeage par différents électrophiles.

Comme il l'a déjà été mentionné (Équation 10), la nature de l'électrophile est déterminante lors du piégeage d'un anion de λ^4 -phosphinine. Un électrophile « mou » attaque l'atome de phosphore tandis qu'un électrophile « dur » s'additionne soit sur le carbone en α soit sur le carbone en γ de l'atome de phosphore.

On forme ainsi le composé 222 par addition de iodure de méthyle sur l'anion [SPS^{Me}][Li] **211** et l'alkylation a lieu au phosphore avec un bon rendement (Équation 20). La formule de 222 a été établie grâce aux données RMN (système AB₂ en RMN ³¹P), spectrométrie de masse et analyse élémentaire. L'ajout de C₂Cl₆ à l'anion 211 conduit également à la formation d'une λ^5 -phosphinine. Le composé obtenu **223** s'avère sensible à l'eau. Il a cependant été caractérisé par RMN et spectrométrie de masse. Les structures de 222 et 223 ont de plus été confirmées par diffraction aux rayons X (Figure 10). On constate que les atomes de phosphore centraux sont tétraédriques (Σ angles = 448.4° pour 222 et 448.1° pour 223). Comme dans les structures anioniques, le caractère ylure de la λ^5 -phosphinine 22 est mis en évidence par une égalisation des longueurs internes du cycle (C-C = 1.402(2) à 1.411(2) Å pour 222). On observe également un allongement des longueurs P=S (P2-S1 = 1.9675(8) Å pour 222 au lieu de 1.956(1) Å pour SPS) et un raccourcissement des distances P-C internes (P2-C1 = 1.789(2) Å pour 222 au lieu de 1.826(2) Å pour SPS), indiquant une délocalisation partielle sur les bras ancillaires. Pour 223, la présence d'un atome électronégatif comme le chlore sur l'atome de phosphore central diminue le caractère ylure de la molécule : distances C-C interne légèrement différentes (1.398(2) à 1.415(2) Å pour 223) ainsi que des distances P=S et C-P externes proches de celles de la λ^3 -phosphinine SPS (P2-S1 = 1.9573(7) Å pour 223 vs de 1.956(1) Å pour SPS et P2-C1 = 1.807(2) Å pour 23 au lieu de 1.826(2) Å pour SPS). On retrouve ainsi le résultat de Schlever : le caractère aromatique d'une λ^5 -phosphinine est d'autant plus marquée qu'elle est substituée par des groupes électronégatifs sur l'atome de phosphore.^[51]

Figure 10 : a) Structure de 222. Sélection de paramètres structuraux (distances en Å et angles en °) : P1-C1 1.767(2), P1-C5 1.768(2), C1-C2 1.410(2), C2-C3 1.402(2), C3-C4 1.411(2), C4-C5 1.404(2), P1-C6 1.799(2), P1-C7 1.806(2), P2-C1 1.789(2), S1-P2 1.9675(8), C1-P1-C5 106.25(8), P1-C1-C2 112.3(1), C1-C2-C3 123.1(2), C2-C3-C4 126.6(2), C3-C4-C5 122.7(2), C4-C5-P1 113.0(1), P1-C1-P2 120.9(1), P1-C5-P3 119.2(1), C1-P2-S1 114.24(7), C4-P3-S2 113.36(7), (plan moyen C1-C2-C4-C5)-P1 37.0, (plan moyen C1-C2-C4-C5)-C3 17.0. b) structure de 223. Sélection de paramètres structuraux (distances en Å et angles en °) : P1-C1 1.733(2), P1-C5 1.743(2), C1-C2 1.415(2), C2-C3 1.398(2), C3-C4 1.405(3), C4-C5 1.403(3), P1-C6 1.783(2), P1-C1 2.0821(7), P2-C1 1.807(2), S1-P2 1.9573(7), C1-P1-C5 108.2(1), P1-C1-C2 113.2(1), C1-C2-C3 122.7(2), C2-C3-C4 126.9(2), C3-C4-C5 122.8(2), C4-C5-P1 113.7(2), P1-C1-P2 119.9(2), C1-P2-S1 114.85(7), (plan moyen C1-C2-C4-C5)-C3 2.3.

Nous avons également coordonné de manière classique un borane à la paire libre de l'anion [SPS^{Me}][K(Et₂O)₂] **212**.² L'anion résultant **224** a été caractérisé par RMN ¹H, ¹¹B et ³¹P. On constate que les déplacements chimiques de l'atome de bore en RMN ¹¹B (singulet large à -37.3 ppm, w_{1/2} = 290.0 Hz) et de l'atome de phosphore central en RMN ³¹P (singulet large à 2.9 ppm, w_{1/2} = 165.0 Hz) sont comparables à ceux d'adduits phosphine borane.

Nous avons pu cristalliser **224** en présence de Kriptofix [18-C-6] (Figure 11).³ On obtient une structure extrêmement rare. Il n'existe qu'un seul autre exemple $[(R^1)_3P\{(BH_3)^{...}Li\}]$ en version lithiée dans la littérature.^[52] L'atome de potassium est crypté et sa sphère de coordination est complétée par une molécule de THF et une interaction avec deux atomes d'hydrogène du borane (K-H = 2.822 Å *vs* K^{...}H = 4.15 Å). L'atome de phosphore est pyramidal (Σ angles P1 = 309.7°) et est lié à l'atome de bore (P1-B1 = 1.945(5)

² Réaction réalisée par Thérèse Arligie (CEA Saclay).

³ Structure résolue par Pierre Thuéry (CEA Saclay).

Å). Les longueurs du squelette SPS sont comparables à celles des autres composés anioniques décrits précédemment.

Figure 11 : Structures de 224. Sélection de paramètres structuraux (distances en Å et angles en °) : P1-C1 1.801(3), C1-C2 1.404(4), C2-C3 1.406(3), C3-C2' 1.406(3), C2'-C1', P1-C1' 1.801(3), P1-C4 1.822(4), P2-C1 1.782(3, S1-P2 1.973(1), P1-B1 1.945(5), P1-K 3.343(5), B1-H...K 1.140, B1-H 1.089, H-K 2.822, C1-P1-C1' 102.0(2), Σ angles P1 430.9.

L'addition de H⁺ par le biais d'éthanol sur l'anion [SPS^{Me}][Li] **211** a lieu quant à elle en position α de l'atome de phosphore et on forme le composé **225** (Équation 22). En RMN ³¹P, la formation de **225** est mise en évidence par la présence de deux groupes Ph₂P(S) magnétiquement inéquivalents.

Il est néanmoins étonnant de ne former qu'un seul isomère. Nous avons cherché à déterminer sa structure. La donnée des constantes de couplage ${}^{2}J_{\text{H-P}}$ du proton en α de l'atome de phosphore permet de lever l'incertitude de la stéréochimie de ce carbone.^[53, 54] En effet, la valeur de la constante de couplage est directement liée à l'orientation des deux atomes couplés (Schéma 10).^[55]

Dans le cas de **225**, une constante de couplage ${}^{2}J_{\text{H-P}}$ de 1.9 Hz avec l'atome de phosphore central correspond à un angle d'environ 60 à 80° donc la paire libre de l'atome de phosphore central et l'atome d'hydrogène en position 2 sont en position *anti*. La structure proposée grâce à l'analyse des constantes de couplage en RMN ¹H est vérifiée par diffraction aux rayons X (Figure 12, Tableau 4).⁴

⁴ Cristaux obtenus par Thérèse Arliguie (CEA Saclay). Structure résolue par Pierre Thuéry (CEA Saclay).

Schéma 10

Nous avons entrepris une série de calculs DFT^[10, 11] au niveau B3LYP^[23-25]/6-311+G**^[26, 27] afin de comprendre pourquoi, d'un point de vue énergétique, seul un isomère se forme. Pour cela, nous avons optimisé et caractérisé comme minimum de la surface d'énergie deux 1,2-dihydrophosphinines modèles **XIIa** et **XIIb** dans lesquelles les groupes phényles sont remplacés par des atomes d'hydrogène (Figure 12). La pertinence de ce calcul est validée par le très bon accord entre la structure calculée **XIIa** et la structure expérimentale **225** (la déviation maximale de distances est de 0.033 Å) (Tableau 4). D'un point de vue énergétique, on constate que l'isomère **XIIa** est plus stable que l'isomère **XIIb** de +2.0 kcal.mol⁻¹, en accord avec les résultats expérimentaux.⁵

Figure 12 : Structure de 225 et géométries optimisées de XIIa et XIIb au niveau B3LYP/6-311+G**. E : énergie relative exprimée en kcal.mol⁻¹

⁵ Une différence de 2 kcal.mol⁻¹ correspond à un *ratio* de 92:8 entre les deux isomères, mais il faut toutefois remarquer que c'est également l'ordre de grandeur de l'incertitude de ces calculs.

Distances et Angles	225 RX	XIIa	XIIb
P1-C2	1.872	1.885	1.891
C2-C3	1.525	1.500	1.503
C3-C4	1.351	1.344	1.343
C4-C5	1.455	1.456	1.456
C5-C6	1.381	1.348	1.349
C6-P1	1.830	1.844	1.848
P1-Me	1.848	1.865	1.866
C2-P2	1.850	1.871	1.857
C6-P3	1.813	1.824	1.824
P2-S1	1.953	1.960	1.960
P3-S2	1.970	1.961	1.921
C2-H2	0.980	1.096	1.100
P1-C2-C3	113.9	115.9	115.0
C2-C3-C4	119.4	123.6	122.1
C3-C4-C5	128.0	124.1	123.5
C4-C5-C6	121.9	124.5	124.3
C5-C6-P1	121.4	123.2	123.0
C6-P1-C2	100.8	98.5	96.0
Me-P1-C2-H2	50.6	53.5	-176.8
Paire libre-P1-C2-H2		-75.5	53.3
S-P2-C2-H2		-59.0	70.2

Tableau 4: Paramètres structuraux des 1,2-dihydrophosphinines 225 et des modèles XIIa et XIIb optimisés au niveau B3LYP/6-311+G**. Les distances sont exprimées en Å et les angles en °. La numérotation employée est celle des calculs (Figure 12).

L'influence du substituant porté par l'atome de phosphore de l'anion λ^4 -phosphinine est déterminante. En effet, l'addition de H⁺ sur l'anion **221** substitué par un groupe thiolate ne conduit pas seulement à une structure de type 1,2 dihydrophosphinine **226** comme précédemment, mais également à une λ^5 -phosphinine **227** (Équation 23) dans un rapport 3:1. La formation de **227** a été mise en évidence en RMN ³¹P par deux groupes Ph₂P(S) magnétiquement équivalents et par une forte valeur de la constante de couplage ¹J_{H-P} (533.0 Hz), cohérente avec un atome de phosphore P^V.

Finalement, on vérifie bien que le piégeage de l'anion λ^4 -phosphinine [SPS^{Me}]⁻ **211** par des électrophiles conduit dans le cas d'électrophiles mous à une addition sur l'atome de phosphore central et le cas d'électrophiles durs à une addition sur le carbone C₂. Une variation du schéma de substitution de l'atome de phosphore central, [SPS^{SBu}]⁻ **221** par exemple, induit une modification de cette règle.

III.4. Introduction de la chiralité

Il nous semblait également très important de pouvoir introduire la chiralité de manière simple. L'addition de nucléophiles sur la phosphinine **SPS** peut ainsi s'étendre à des composés chiraux. Comme premier test, nous avons choisi d'employer des dérivés du menthol car ils sont peu onéreux et existent sous forme énantiomériquement pure.

L'addition de (-)-mentholate de lithium sur **SPS** conduit quantitativement à la formation de **228** (Équation 24). La présence d'un groupe chiral sur l'atome de phosphore induit une inéquivalence des groupes Ph₂P(S) (δ (THF) = 45.1 et 45.4 ppm) et le signal de **228** apparaît sous la forme d'un système AXX' en RMN ³¹P (δ (P-Men) = 61.8 ppm).

La synthèse d'anion substitué par un groupe alkyl chiral se révèle plus compliquée à mettre en œuvre car le lithien dérivé du (-)-menthyle s'épimérise en solution (Équation 25).^[56] Nous nous sommes alors tournés vers le chlorure de menthylmagnésium **229** qui s'obtient aisément à partir du (-)-menthol avec un bon rendement.^[57] L'addition d'un excès de **229** sur la phosphinine **SPS** conduit à l'anion **230**, caractérisé en RMN ³¹P. On observe par ailleurs une viscosité importante de **230** en solution dans le THF (on peut même renverser un tube RMN sans crainte de perdre le produit).

Compte tenu de la viscosité de **230** et de l'excès de chlorure de menthylmagnésium, nous avons préféré tirer parti de la réactivité de l'anion λ^4 -phosphinine vis-à-vis des électrophiles et piéger **230** avec une source de proton. Contrairement à ce que l'on peut

attendre par piégeage à l'éthanol (protonation en position C₂ ou C₄) pour **211**, on forme exclusivement la λ^5 -phosphinine **231**, caractérisée en RMN ³¹P et ¹H (Équation 26). La présence de la liaison P-H est mise en évidence en RMN ³¹P et RMN ¹H par une valeur élevée de la constante de couplage ¹J_{H-P} (493.9 Hz), caractéristique d'une atome de phosphore P^V, et un déplacement en RMN ¹H à 8.63 ppm. La stabilité de **231** est relativement réduite puisque **231** s'isomérise en solution dans le CH₂Cl₂, le C₆D₆, le toluène ou le THF pour former la 1,2-dihydrophosphinine **232** et la 1,4 dihydrophosphinine **233**. On obtient alors un mélange de **231**, **232** et **233** en l'espace de 30 minutes.

Nous avons ainsi synthétisé simplement deux anions λ^4 -phosphinines chiraux substitué sur l'atome de phosphore central par les groupes (-)-mentholate et (+)-menthyle.

IV. Conclusion

Nous avons synthétisé le ligand tridente **SPS** incorporant une phosphinine et deux groupes ancillaires $Ph_2P(S)$ en position α de l'atome de phosphore de la phosphinine. D'après les calculs théoriques, la présence de deux groupes ancillaires, favorise et devrait permettre la synthèse de complexes η^1 de l'anion λ^4 -phosphinine.

La réactivité de **SPS** est particulière et a permis d'obtenir les premières synthèses de λ^5 -phosphinines qui présentent des liaisons phosphore hydrogène. Les calculs théoriques ont permis d'écarter certains mécanismes de formation. Ce dernier fait probablement intervenir les atomes de soufre en position ancillaire.

Nous avons également synthétisé plusieurs anions λ^4 -phosphinine avec des liaisons phosphore alkyle, phosphore oxygène, phosphore soufre ainsi que deux composés chiraux. Cinq d'entre eux ont pu être caractérisés par diffraction aux rayons X et l'on obtient une coordination η^1 de l'atome de lithium. Ces structures mettent également en évidence un

raccourcissement de la liaison P-C externe et un allongement de la liaison P-S par rapport à la phosphinine **SPS** et illustrent une délocalisation de la charge négative sur l'ensemble du squelette du ligand (Schéma 11).

De plus, parmi ces structures, l'atome de lithium est lié de manière κ^2 par le squelette SPS. Ce mode de coordination indique qu'un seul bras ancillaire PS est nécessaire pour obtenir la coordination η^1 de l'anion λ^4 -phosphinine. Cette remarque sera illustrée dans le chapitre 7 avec l'emploi de molécules bidente **SP**.

Le schéma de substitution de l'anion λ^4 -phosphinine [SPS^R]⁻ induit des changements électroniques puissants puisque l'on observe une réactivité différente lors du piégeage de l'anion par des électrophiles. Ce résultat peut s'avérer déterminant pour la réactivité de complexes métalliques.

V. Perspectives

Il reste à présent à déterminer les mécanismes de formation des λ^5 -phosphinines **7-9** et de l'anion **15**. Ils font a priori intervenir l'un des deux bras ancillaires Ph₂P(S) puisque ces deux réactions sont inconnues lorsqu'ils sont absents.

En prolongement de ces travaux, il pourrait être intéressant de varier la nature des bras ancillaires ce qui modifierait les propriétés électroniques du ligand tridente. Plusieurs types d'architecture sont envisageables afin de pouvoir diversifier les propriétés électroniques de ces systèmes. On doit pouvoir modifier les ligands ancillaires $R_2P=S$ en utilisant des groupes $R_2P=O$ et $(RO)_2P=O$. Ces derniers devraient permettre de synthétiser des complexes hydrosolubles et de coordiner des centres métalliques durs. L'introduction d'hétérocycles, d'hétéoroatomes ou de ligands de type imines ou phosphines est également envisageable (Schéma 12).

On a vu précédemment que la synthèse du composé **OPO** par oxydation des phosphines latérales de **PPP-a**₂ au *m*-CPBA ou H₂O₂ conduit au produit d'hydrolyse puisque ces deux oxydants ne sont pas anhydres (Équation 7). Une manière alternative d'obtenir **OPO** serait d'utiliser un oxydant anhydre comme le dioxirane (Équation 29).^[58-60] Une autre solution consiste à partir de l'alcyne incorporant un oxyde de phosphine et de la 1,3,2-diazaphosphinine **201** et de réaliser deux réactions successives de Diels-Alder / cycloréversion.

L'emploi de deux nucléophiles reliés par un espaceur permettrait de stabiliser des métaux du groupe f par chélation dans le cas d'un espaceur de courte longueur (Équation 30).

Équation 30

VI. Bibliographie

- [1] G. Märkl, C. Martin, W. Weber, Tetrahedron Lett. 1981, 13, 1207.
- [2] G. Märkl, A. Merz, Tetrahedron Lett. 1971, 17, 1215.
- [3] G. Märkl, A. Merz, Tetrahedron Lett. 1969, 10, 1231.
- [4] G. Märkl, A. Merz, Tetrahedron Lett. 1968, 32, 3611.
- [5] G. Märkl, E. Lieb, A. Merz, Angew. Chem. Int. Ed. 1967, 6, 86.
- [6] A. J. Ashe III, T. W. Smith, J. Am. Chem. Soc. 1976, 98, 7861.
- [7] A. J. Ashe III, T. W. Smith, Tetrahedron Lett. 1977, 5, 407.
- [8] A. Moores, L. Ricard, P. Le Floch, N. Mézailles, Organometallics 2003, 22, 1960.
- [9] A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899.
- [10] T. Ziegler, Chem. Rev. 1991, 91, 651.
- [11] R. G. Parr, W. Yang, *Density Functional Theory of Atoms and Molecules*, Oxford University Press, Oxford, Royaume Uni, **1989**.
- [12] G. Märkl, C. Martin, Angew. Chem. Int. Ed. 1974, 13, 408.
- [13] G. Baum, W. Massa, Organometallics 1985, 4, 1572.
- [14] T. Dave, S. Berger, E. Bilger, H. Kaletsch, J. Pebler, J. Knecht, K. Dimroth, *Organometallics* 1985, 4, 1565.
- [15] A. Moores, N. Mézailles, L. Ricard, P. Le Floch, Organometallics 2005, 24, 508.
- [16] H. Ganter, K. Dimroth, Tetrahedron Lett. 1975, 8, 545.
- [17] N. Avarvari, P. Le Floch, L. Ricard, F. Mathey, Organometallics 1997, 16, 4089.
- [18] N. Avarvari, P. Le Floch, F. Mathey, J. Am. Chem. Soc. 1996, 118, 11978.
- [19] N. Mézailles, P. Le Floch, F. Mathey, dans Progress in Inorganic Chemistry, Vol. 49
- (Ed.: K. D. Karlin), John Wiley & Sons, Inc., 2001, pp. 455.
- [20] P. Le Floch, D. Carmichael, L. Ricard, M. F., J. Am. Chem. Soc. . 1991, 113, 667.
- [21] D. G. Holah, A. N. Hugues, J. Chem. Soc., Chem. Commun. 1988, 493.
- [22] J.-M. Alcaraz, F. Mathey, J. Chem. Soc., Chem. Commun. 1984, 508.
- [23] A. D. Becke, Phys. Rev. A 1988, 38, 3098.
- [24] C. Lee, W. Yang, R. G. Parr, Phys. Rev. A 1988, B 37, 785.
- [25] J. P. Perdew, *Phys. Rev. B* . **1986**, *33*, 8822.
- [26] M. M. Francl, W. J. Petro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, *J. Chem. Phys.* **1982**, *77*, 3654.
- [27] W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257.
- [28] R. von Ragué Schleyer, C. Maerker, A. Dransfeld, J. Haijun, N. J. von E. Hommes, J. Am. Chem. Soc. 1996, 118, 6317.
- [29] G. Subramanian, R. von Ragué Schleyer, H. Jiao, Angew. Chem. Int. Ed. 1996, 35, 2638.

[30] T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. von Ragué Schleyer, J. Comput. Chem. 1983, 4, 294.

[31] P. Le Floch, dans *Phosphorus-Carbon Heterocyclic Chemistry: The Rise of a New Domain* (Ed.: F. Mathey), Pergamon, Palaiseau, **2001**, pp. 485.

- [32] P. Le Floch, D. Carmichael, F. Mathey, Organometallics 1991, 10, 2432.
- [33] K. Dimroth, Acc. Chem. Res. 1982, 15, 58.
- [34] G. Märkl, K.-H. Heier, Angew. Chem. Int. Ed. 1972, 11, 1016.
- [35] R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650.
- [36] Z. X. Wang, P. von Ragué Schleyer, Helv. Chim. Acta 2001, 84, 1578.
- [37] K. Dimroth, A. Hettche, H. Kanter, W. Städe, Tetrahedron Lett. 1972, 9, 835.
- [38] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- [39] M. Svensson, S. Humbel, R. D. J. Froese, T. Matsubara, S. Sieber, K. J. Morokuma, J. *Phys. Chem.* **1996**, *100*, 19357.

- [40] A. K. Rappé, C. J. Casewitt, K. S. Colwell, W. A. Goddard, W. M. Skiff, J. Am. Chem. Soc. 1992, 114, 10024.
- [41] H. Schumann, J. A. Meese-Marktscheffel, L. Esser, Chem. Rev. 1995, 95, 865.
- [42] W. J. Evans, T. T. Peterson, M. D. Rausch, W. E. Hunter, H. Zhang, J. L. Atwoodld, *Organometallics* 1985, 4, 554.
- [43] M. Schlösser, Pure Appl. Chem. 1988, 60, 1627.
- [44] M. Schlösser, S. Strunck, Tetrahedron Lett. 1984, 25, 741.
- [45] R. Fernández-Galán, P. B. Hitchcock, M. F. Lappert, A. Antiñolo, A. M. Rodríguez, J. Chem. Soc., Dalton Trans. 2000, 1743.
- [46] T. J. Woodman, M. Schormann, M. Bochmann, Organometallics 2003, 22, 2938.
- [47] T. J. Woodman, M. Schormann, D. L. Hughes, M. Bochmann, *Organometallics* 2003, 22, 3028.
- [48] B. E. Mann, J. Chem. Soc., Perkin Trans. 2 1972, 30.
- [49] R. R. Fraser, M. Bresse, T. S. Mansour, J. Am. Chem. Soc. 1983, 105, 7790.
- [50] R. R. Fraser, M. Bresse, T. S. Mansour, J. Chem. Soc., Chem. Commun. 1983, 620.
- [51] P. von Ragué Schleyer, Z.-X. Wang, Helv. Chim. Acta 2001, 84, 1578.
- [52] K. Izod, W. McFarlane, B. V. Tyson, W. Clegg, R. W. Harrington, *Chem.Commun.* 2004, 570.
- [53] D. Crépaux, J. M. Lehn, Mol. Phys. 1968, 14, 547.
- [54] J. P. Kintzinger, J. M. Lehn, J. Chem. Soc., Chem. Commun. 1967, 660.
- [55] J. P. Albrand, D. Gagnaire, J. B. Robert, J. Chem. Soc., Chem. Commun. 1968, 1469.
- [56] A. Maercker, R. Schuhmacher, W. Buchmeier, H. D. Lutz, Chem. Ber. 1991, 124, 2489.
- [57] J. G. Smith, G. F. Wright, J. Org. Chem. 1952, 17, 1116.
- [58] R. W. Murray, R. Jeyaraman, J. Org. Chem. 1985, 50, 2847.
- [59] A. Waldemer, J. Bialas, L. Hadjiarapoglou, Chem. Ber. 1991, 124, 2377.
- [60] Soumis par : R. W. Murray, M. Singh, Vérifié par : T. G. Marron, L. A. Pfeifer, W. R.
- Roush, dans Organic Syntheses, Vol. 74 (Ed.: I. Shinkai), John Wiley & Sons, inc., New York, 1997, p. 91.

Chapitre 3 : Complexes du groupe 10

I. Vers la synthèse de ligands de type pinceur

Dans le chapitre précédent, nous avons synthétisé une série d'anions λ^4 -phosphinine. Comment vont ils se coordonner à des précurseurs métalliques de nickel, de palladium, et de platine (Équation 1) ? De manière η^1 grâce aux ligands ancillaires PPh₂S ? Quelles sont leurs propriétés catalytiques ? C'est à ces questions que nous nous proposons de répondre maintenant.

La synthèse de complexes du type $[ML_mX_{n-1}(SPS^R)]$ s'inscrit dans le cadre des complexes incorporant un ligand « pinceur ». Ce domaine, initié par Shaw en 1976,^[1] fait l'objet de revues récentes par van Koten,^[2] Singleton^[3] et van der Boom.^[4] Les pinceurs sont des ligands tridentes de formule générale $[2,6-(ECH_2)_2(C_6H_3)]$, $[2,6-(ECH_2)_2(C_6H_9)]$, $[2,6-(ECH_2)_2(C_5H_3N)]$, $[2,5-(ECH_2)_2C_4H_2A)]$ (A = N, O, S) où E représente un ligand neutre à deux électrons comme NR₂, PR₂, AsR₂, OR₂, SR₂ ou CR₂ (Schéma 1). La complexation de ces ligands aux métaux conduit en général à deux métallacycles. Ces complexes connaissent actuellement un développement fulgurant et trouvent des applications aussi bien dans les domaines de la catalyse homogène et hétérogène, de la détection de gaz ou des nanotechnologies (modèles de nanotubes, dendrimères...).

Les premières études se sont focalisées sur le ligand PCP ; désormais, les pinceurs incorporant différents hétéroatomes (N, O, P, S) permettent de multiples combinaisons pour bâtir des systèmes mixtes.^[5-7] L'utilisation de ligands ancillaires oxygénés ou soufrés n'est comparativement à leur homologues azotés (amine, amidure, imine), phosphorés (phosphine,
phosphite, phosphaalcène) ou carbonés (carbènes) que très peu développée. Les systèmes soufrés sont particulièrement intéressants car ils peuvent être utilisés dans l'élaboration de modèles d'enzymes.^[8] Il sont principalement utilisés sous quatre formes : les thioéthers,^[9-12] les thiolates,^[13, 14] les sulfoxydes pour lesquels la coordination intervient *via* la paire libre restante de l'atome de soufre,^[15] ou encore les sulfures de phosphine.^[16, 17] Il n'existe à l'heure actuelle que deux ligands pinceurs incorporant des groupes P=S, mais aucun n'a trouvé d'application (Schéma 2).^[18, 19]

Schéma 2

L'emploi du ligand tridente **SPS** est intéressant à plus d'un titre : il constitue le premier exemple de ligand pinceur incorporant un motif central de type $1-R-\lambda^4$ -phosphinine. De plus, les ligands ancillaires P=S, peu usités, ont trouvé des applications intéressantes dans la réaction de carbonylation du méthanol.^[20, 21]

II. Coordination aux métaux du groupe 10

Nous avons mis au point trois méthodes de synthèse de complexes de nickel^{II}, de palladium^{II} et de platine^{II}. Elles mettent en jeu i) les anions λ^4 -phosphinines, ii) les λ^5 -phosphinines ou les 1,2-dihydrophosphinines ou encore iii) le ligand **SPS**. Nous nous sommes d'abord intéressés aux précurseurs de palladium car comparé au nickel et au platine, le palladium présente un bon compromis entre solubilité, activité catalytique et coût.

II.1. Première méthode : réaction des anions λ^4 -phosphinines

Nous avons d'abord testé la réaction des anions 1-alkyl- λ^4 -phosphinines **211**, **213** et **217** vis-à-vis d'un précurseur de palladium^{II} (Équation 2). Ainsi, la réaction de **211** avec un équivalent de [Pd(COD)Cl₂] (COD = 1,5-cycloctadiène) conduit à la formation du complexe **301** qui présente un spectre du deuxième ordre en RMN ³¹P. Sa modélisation entreprise avec le logiciel gNMR révèle un système de type AB₂ qui suggère une coordination κ^3 . Le déplacement chimique de l'atome de phosphore central subit un déblindage important (δ (P-Me) = 49.4 ppm soit $\Delta\delta$ = +115.1 ppm). Sa valeur ne correspond ni au déplacement chimique de complexes de λ^3 -phosphinines (160 à 250 ppm) ni à celui de complexe η^2 de palladium incorporant un anion λ^4 -phosphinine (12.4 ppm).^[22-24] Les spectres RMN ¹H et ¹³C de **301** donnent des informations supplémentaires sur sa structure : le blindage important de l'atome H₄ (δ (CD₂Cl₂) = 5.42 ppm), C₂ (δ (CD₂Cl₂) = 74.2 ppm) et C₄ (δ (CD₂Cl₂) = 117.7 ppm) est caractéristique des λ^5 -phosphinines. On retrouve les mêmes tendances pour les complexes **302** et **303**.

Les trois complexes **301-303** présentent un spectre RMN ³¹P du deuxième ordre qui a été modélisé avec succès avec le logiciel gNMR. On constate ainsi un très bon accord entre les spectres RMN ³¹P expérimental et simulé (Figure 1 et Figure 2).

Figure 1 : Spectre RMN ³¹P de 301 entre 48.0 à 51.3 ppm. (Haut) expérimental, (bas) modèle système AB₂ : $\delta(P_A-Me) = 49.4$ ppm, $\delta(P_BPh_2) = 50.4$ ppm, $^2J_{P-P} = 35.0$ Hz.

Figure 2 : Spectre RMN ³¹P de 302 entre 48.0 à 57.3 ppm. (Haut) expérimental, (bas) modèle système AB₂ : $\delta(P_A-Bu) = 55.4$ ppm, $\delta(P_BPh_2) = 49.2$ ppm, ${}^2J_{P-P} = 87.0$ Hz.

La structure proposée des composés **301-303** est confirmée par diffraction aux rayons X pour les complexes **302** et **303** (Figure 3). Les paramètres structuraux de tous les composés du chapitre sont regroupés en fin de chapitre dans le Tableau 8. Comme on peut s'y attendre pour un centre métallique d⁸, la géométrie autour de l'atome de palladium est plan carré. Les atomes de phosphore P1 et de carbone C3 sortent du plan moyen [C1-C2-C4-C5] d'un angle de 21.1° et 4.7° pour **302** (21.5° et 5.2° pour **303**) ; la géométrie du cycle phosphoré est donc dans une conformation de type bateau. Pour les deux structures, on constate que les distances P-C externes sont relativement courtes pour des liaisons simples (par exemple, C1-P2 = 1.760(7) Å pour **302** *vs* 1.826(2) Å pour **SPS**) tandis que les liaisons P=S s'allongent (par exemple, P2-S1 = 2.043(1) Å pour **303** *vs* 1.9532(8) Å pour **SPS**). Cette modification structurale par rapport à SPS suggère une délocalisation substantielle de la charge négative sur chaque bras ancillaire C-P-S.

Figure 3 : structures de 302 et de 303. Pour 303, les groupes phényles sont omis par souci de clarté.

Cette réaction s'étend également aux anions λ^4 -phosphinines substitués par un alcoolate. On forme, à partir des composés **218** et **219**, les complexes correspondants **304** et **305** avec un excellent rendement (Équation 3). Ces derniers ont été caractérisés par RMN et analyse élémentaire. La passage d'un groupe méthyle (**301**) au groupe méthoxy (**304**) sur l'atome de phosphore induit un déblindage important de l'atome de phosphore central en RMN ³¹P (δ (P-OMe) = 97.3 ppm soit $\Delta\delta$ = +47.9 ppm) ; Le spectre RMN n'est plus du deuxième ordre et apparaît sous la forme d'un doublet et d'un triplet avec une constante de couplage ²J_{P-P} de 102.3 Hz.

Ces deux réactions s'étendent à des substituants alcoolate et alkyle chiraux avec de bons rendements (Équation 4). Les complexes **306** et **307** sont caractérisés par RMN, analyse élémentaire et diffraction aux rayons X. La présence d'un groupe chiral sur l'atome de phosphore du cycle provoque l'inéquivalence des groupes PPh_2S et on obtient un système AXX' ou ABC en RMN ³¹P.

La réaction de l'anion **221** substitué par un groupe thiolate avec $[Pd(COD)Cl_2]$ conduit à un mélange de trois produits dans un rapport 1:1:1 (Équation 5). On reforme de la λ^3 -phosphinine **SPS**. Les composés **308** et **309** apparaissent en RMN ³¹P sous la forme de systèmes AX₂ relativement semblables que nous avons attribués à deux complexes palladium- λ^4 -phosphinine. Ils n'ont malheureusement pas pu être séparés. Le mécanisme de formation de **309** n'a pas été étudié.

En conclusion, la réaction d'anion λ^4 -phosphinine dérivés de **SPS** et de [Pd(COD)Cl₂] conduit à la formation de complexes de palladium η^1 . Ce sont les premiers exemples de complexes η^1 incorporant un anion λ^4 -phosphinine complètement caractérisés par RMN et analyse aux rayons X. Cette méthode se limite néanmoins aux anions λ^4 -phosphinine substitués par des groupes alkyles ou alcoolates chiraux ou non.

II.2. Deuxième méthode : réaction des λ^5 -phosphinines, 1,2-dihydrophosphinines

Nous avons également mis au point une deuxième méthode de synthèse de complexes de palladium^{II} incorporant le ligand λ^4 -phosphinine. Elle tire parti de la réactivité des λ^5 -phosphinines et des 1,2-dihydrophosphinines vis-à-vis de [Pd(COD)Cl₂].

L'ajout de [Pd(COD)Cl₂] à une solution de **206** génère immédiatement et forme le complexe [Pd(SPS^{OH})Cl] **310** (Équation 6). Cette réaction est particulièrement étonnante car il est connu que les oxydes de phosphines ne sont pas réactifs. 310 a été caractérisé par RMN ¹H, ³¹P ainsi que par analyse élémentaire. Ce complexe est malheureusement trop insoluble pour conduire à une RMN¹³C exploitable. La structure de **310** est présentée ci-dessous et ses paramètres structuraux sont regroupés Tableau 8 en fin de chapitre. Le complexe 310 adopte une géométrie plan carré distordue autour du palladium avec les deux atomes de soufre en ligands ancillaires. Les paramètres structuraux les plus significatifs sont fournis par les distances internes du squelette SPS. Comme pour le complexe 302 substitué par un groupe butyle, l'atome de phosphore P1 et le carbone C3 s'échappent du plan moyen du cycle [C1-C2-C4-C5] de 19° et 4.8° respectivement, donnant au cycle phosphoré une configuration de type bateau. Malgré une pyramidalité importante de P1 (316.5°), comparable à celle de phosphines tertiaires, les distances P-C1 (1.757(4) Å) et P-C5 (1.767(4) Å) sont courtes. Ces données suggèrent que le caractère ylure du cycle phosphinine a été conservé lors de la coordination. Par ailleurs, on constate que les longueurs des liaisons P-C externes (par exemple P3-C5 = 1.776(4) Å) sont courtes par rapport à des simples liaisons P-C tandis que les deux liaisons P=S sont allongés (par exemple P2-S1 = 2.039(2) Å) par rapport à des sulfures de phosphines libres ou coordonnés. L'allongement concomitant de P=S avec le raccourcissement de P-C suggère à nouveau que la charge négative est délocalisée sur l'ensemble du squelette de SPS. Des calculs théoriques rationalisant ce résultat seront présentés un peu plus loin dans ce chapitre.

Il est difficile de proposer un mécanisme qui décrive la formation de **310** puisque aucun intermédiaire n'a été détecté en RMN ³¹P. Deux mécanismes sont envisageables : les deux chemins réactionnels font d'abord intervenir le déplacement du COD par les deux ligands ancillaires soufrés et forme un complexe intermédiaire [PdCl₂] (Schéma 3). Dans le premier mécanisme, le voisinage des liaisons P-H et Pd-Cl entraîne l'élimination de HCl et conduit à un oxyde de 1,2-dihydrophosphinine métallée. La dernière étape de la réaction est la migration signatropique [1,3] de l'hydrogène porté par le carbone C_2 vers la liaison P=O. Le deuxième mécanisme tire parti de la tautomérie d'un oxyde de phosphine en hydroxyphosphine. Le déplacement d'un atome de chlore par la paire libre du phosphore conduit à un complexe cationique qui subit une déhydrochloration. La tautomérie P=O donne P-OH ou P=S donne P-SH promue par des centres métalliques a déjà été reportée pour des complexes de palladium incorporant des acides phosphineux ou thiophosphineux et pour les couplages C-P.^[25-27]

Les λ^5 -phosphinines **207** et **208** peuvent servir de précurseurs de complexes de palladium avec un atome de phosphore substitué par un groupe alcoolate (Équation 7). On forme **304** et **305** avec de bons rendements. Ces complexes ont également été synthétisés directement à partir d'anions λ^5 -phosphinine. La synthèse de complexe amino est plus difficile à mettre en œuvre à cause de la libération concomitante de HCl. Par exemple, la réaction de **209** avec [Pd(COD)Cl₂] conduit à la formation d'un sel peu soluble **311** dont la formule a été établie grâce à la RMN ¹H qui révèle la présence d'un proton acide à δ (acétone-d6) = 9.25 ppm. L'étape de protonation ne peut être évitée même avec un excès de diéthylamine pour piéger HCl.

Le mécanisme de la réaction de synthèse de **304**, **305** et **311** devrait être semblable à celui de **310**. Il met en jeu : i) le déplacement du COD par les deux ligands ancillaires soufrés puis ii) l'élimination de HCl pour former la liaison P-Pd (Schéma 4).

Nous avons également mis au point deux voies supplémentaires pour former les complexes $[Pd(SPS^R)Cl]$ avec une liaison P-alkyl : à partir de **223** et de $[Pd(dba)_2]$ (dba = dibenzylidène acétone) ou de **225** et de $[Pd(COD)Cl_2]$ (Équation 8). Dans le cas de **223**, la formation de **301** passe par l'addition oxydante du palladium dans la liaison P-Cl. Dans le cas de **225**, elle suit le même mécanisme que **310** (mécanisme 2 sur le Schéma 3). D'un point de vue pratique, ces deux stratégies demeurent moins rapides et moins efficaces que la voie de synthèse directe par réaction de l'anion $[SPS^{Me}][Li(THF)_2]$ **211** et de $[Pd(COD)Cl_2]$. L'emploi de **223** s'avère néanmoins utile dans le cas où des précurseurs métalliques divalents ne sont pas accessibles.

Enfin, la 1,2-dibromophosphinine **210** peut réagir avec $[Pd(dba)_2]$ et conduire au complexe **312** (Équation 9). Sa réactivité va être développée dans le paragraphe suivant.

II.3. Troisième méthode : réaction directe

II.3.1. Synthèse du complexe 313

Nous avons voulu tester la capacité de la λ^3 -phosphinine **SPS** à agir en tant que ligand pinceur. Lorsque **SPS** réagit avec [Pd(COD)Cl₂], il se forme immédiatement le complexe **313**, sensible à l'eau (Équation 10). Son spectre RMN ³¹P apparaît sous la forme d'un système AX₂, ce qui suggère que les trois sites de coordination sont liés au métal. Le déplacement chimique du phosphore central (triplet à 94.9 ppm) ne peut être attribué à une

 λ^3 -phosphinine. De plus, les déplacements RMN ¹H et ¹³C sont caractéristiques de λ^5 -phosphinines (blindage du proton H₄ (δ (CD₂Cl₂) = 5.84 ppm) et des carbones C₂ (δ (CD₂Cl₂) = 94.3 ppm) et C₄ (δ (CD₂Cl₂) = 119.9 ppm).

La formule chimique de **313** a été définitivement établie par une étude cristallographique. Comme il a été établi en RMN, l'aromaticité de la λ^3 -phosphinine est détruite et un atome de chlore est placé sur l'atome de phosphore central. Il est cependant curieux que les distances des atomes du cycle soient très peu modifiées par la désaromatisation du cycle et ce type de coordination. Il se produit tout de même comme précédemment un raccourcissement des liaisons C1-P2 et C5-P3 (1.779(2) Å pour **313** *vs* 1.826(2) Å pour **SPS**) et un allongement des liaisons P=S (2.036(1) Å pour **313** *vs* 1.956(1) Å pour **SPS**). La géométrie autour du phosphore est tétraédrique avec l'atome de chlore pointant perpendiculairement au cycle. La planéité du cycle est légèrement modifiée : l'angle dièdre défini entre P1 et le plan moyen [C1-C2-C4-C5] passe d'une valeur de 3.9° pour **SPS** à 6.7° pour le complexe **313**. L'environnement du palladium d⁸ est plan carré (les angles S-Pd-S et P1-Pd-Cl valent respectivement 173.36(2)° et 177.342(2)°).

Équation 10

Des calculs DFT ont été menés afin de comprendre la formation de **313** qui fait formellement intervenir le transfert d'un atome de chlore du palladium au phosphore.¹ Nous avons optimisé et caractérisé comme minimum de la surface d'énergie la phosphinine modèle SPS I ainsi que les complexes II et III dans lesquels les groupes phényles sont remplacés par des atomes d'hydrogène (Schéma 5). La pertinence de ces calculs est validée par la bonne concordance des paramètres structuraux du complexe modèle III et la structure aux rayons X de **313** (Tableau 1). La déviation maximale étant de 0.056 Å.

La coordination du palladium aux atomes de soufre et de phosphore augmente la polarisation du cycle et renforce encore la charge portée par le phosphore : elle passe de 0.747 dans la λ^3 -phosphinine libre I à 0.945 lors de la chélation (II) puis à 1.037 dans le complexe tridente III. Par ailleurs, le calcul du NICS (1Å) permet de mesurer le degré de désaromatisation du cycle : sa valeur de -10.834 dans I diminue lors de la chélation (-8.714 pour II) et encore plus fortement de la formation de III (-2.725). Le composé III doit donc plutôt être considéré comme un ylure tel que l'indique la polarisation de charges.

¹ B3LYP^[28-30]/6-31G* (C, H, P, S),^[31-33] base double ζ (441/211/41) et pseudo potentiel de Hay Wadt (Pd),^[34] base (31/31/1) et pseudo potentiel de Stuttgart (Cl).^[35] Ces bases ont été utilisées par Frenking *et al.* dans plusieurs études.^[36]

Schéma 5 : Charges NBO et NICS (1Å) entre parenthèses de I-III

Tableau 1 : Paramètres structuraux de II, III et 313. Les distances sont exprimées en Å et les angles en °.

Distances Angle	II	III	313 RX
P1-C1	1.717	1.763	1.743(3)
C1-C2	1.401	1.396	1.409(3)
C2-C3	1.405	1.402	1.402(3)
C3-C4	1.405	1.402	1.405(3)
C4-C5	1.401	1.396	1.398(3)
C5-P1	1.717	1.763	1.754(2)
C1-P2	1.827	1.778	1.779(2)
C5-P3	1.827	1.778	1.777(3)
P2-S1	2.056	2.050	2.036(1)
P3-S2	2.056	2.050	2.036(1)
Pd-P1	2.172	2.245	2.1746(8)
Pd-S1	2.456	2.431	2.317(1)
Pd-S2	2.456	2.431	2.3277(8)
Pd-Cl2	2.314	2.365	2.3720(8)
P1-C11	-	2.171	2.139(1)
C5-P1-C2	107.880	102.647	105.7(1)
P1-C2-P7	109.132	111.701	110.3(1)
C2-P1-Cl1	-	106.662	105.07(8)
C6-P1-Cl1	-	106.663	104.96(8)
P1-Pd-Cl2	179.997	178.213	177.34(2)
S1-Pd-S2	173.938	172.291	173.96(2)

Ces données électroniques permettent de postuler un mécanisme de formation du composé **313** (Équation 11). Dans une première étape, la coordination au palladium entraîne la formation du complexe cationique **314** puis le contre ion Cl⁻ attaque l'atome de phosphore en raison de sa forte électrophilie et forme **313**.

Équation 11

II.3.2. Réaction avec les nucléophiles

Par ailleurs, la grande électrophilie de l'atome de phosphore de **III** (charge NBO de +1.037 sur l'atome de phosphore central d'après le Schéma 5) suggère que **313** peut subir des attaques nucléophiles sur l'atome de phosphore central et servir ainsi de précurseur de complexes [Pd(SPS^R)Cl] par substitution de l'atome de chlore.

L'ajout de méthanol à une solution (fraîchement préparée) de **313** conduit instantanément à la formation du complexe **304** et à la libération concomitante de HCl (Équation 12). La substitution de l'atome de chlore est mise en évidence en RMN ³¹P par un blindage de l'atome de phosphore central ($\Delta \delta = 2.4$ ppm pour **304**) et l'apparition en RMN ¹H d'un groupe méthoxy à 3.84 ppm avec une constante de couplage ³*J*_{H-P} de 14.4 Hz. Cette réactivité se généralise à l'éthanol (**305**), au (-)-menthol (**306**), mais également au phénol (**315**). Ce dernier a été complètement caractérisé par RMN et analyse élémentaire. Cette réaction se généralise avec l'eau et donne accès à une nouvelle voie de synthèse du complexe **310**.

Enfin, la réaction de l'amidure Et_2NLi conduit au complexe **316** avec un excellent rendement (Équation 12). Sa structure est confirmée par diffraction aux rayons X (Figure 4). Les paramètres structuraux de **316** sont très semblables à ceux des structures précédentes : les distances P-C internes (P1-C1 1.756(2) Å) et externes (P2-C1 1.766(2) Å) sont relativement courtes tandis que les longueurs P=S sont longues (P2-S1 2.029(1) Å et P3-S2 2.033(1) Å).

Figure 4 : Structure de 316. Paramètres structuraux (Tableau 8).

Finalement, cette voie de synthèse donne accès à des complexes de palladium incorporant le ligand **SPS** avec des liaisons phosphore hydroxy, alcoxy et même amidure.

II.4. Généralisation aux complexes de nickel et de platine

Nous avons ensuite souhaité étendre les synthèses précédentes aux complexes de nickel^{II} et de platine^{II}. Nous n'avons néanmoins pas exploré toutes les synthèses développées dans les paragraphes précédents et nous sommes limités à la première et à la troisième voie d'accès.

On prépare les complexes de nickel et de platine avec les dérivés alkyles à partir des anions $[SPS^{n-Bu}][Li(THF)_2]$ **213** et $[SPS^{CH2Py}][Li(THF)]$ **217** et des précurseurs métalliques $[NiBr_2(DME)]$ (DME = diméthoxyéthane) et $[Pt(COD)Cl_2]$ (Équation 13). On forme les complexes **317-320** complètement caractérisés par RMN et analyse élémentaire. Les déplacements chimiques sont proches des complexes analogues de palladium **302** et **303**.

La structure du complexe de nickel **317** a été analysée par diffraction aux rayons X (Équation 13). L'analyse des paramètres structuraux révèle que le remplacement de l'atome de palladium par un atome de nickel ne modifie pas de manière significative le squelette λ^5 -phosphinine : les distances P-C internes et externes sont courtes tandis que les longueurs P=S sont allongées. Les atomes P1 et C3 pointe en dehors du plan moyen [C1-C2-C4-C5] (21.1° et 4.7° resp.) et l'atome de phosphore est pyramidal (Σ angles de P1 = 315.3°).

Équation 13. Paramètres structuraux de 317 (distances en Å et angles en °) : P1-C1 1.776(3), C1-C2 1.384(5), C2-C3 1.412(4), C3-C4 1.412(4), C4-C5 1.390(5), C5-P1 1.778(3), P1-Ni2 2.111(1), C1-P2 1.768(3), P1-C6 1.829(4), P2-S1 2.039(2), C5-P3 1.761(3), P3-S2 2.045(2), P1-C6 1.829(4), S1-Ni2 2.185(1), S2-Ni2 2.194(1), Ni2-Br1 2.363(1), P1-C1-C2 129.4(2), C1-C2-C3 121.8(3), C2-C3-C4 124.9(3), C3-C4-C5 122.8(3), C4-C5-P1 118.0(2), P1-Ni2-Br1 163.89(3), S1-Ni2-S2 172.57(4). (plan moyen C1-C2-C4-C5)-P1 21.1, (plan moyen C1-C2-C4-C5)-C3 4.7. Σ angles de P1 315.3.

La méthode qui met en jeu la substitution de l'atome de chlore a également été reproduite pour les complexes de nickel et de platine (Équation 14). La réaction de **SPS** avec [Ni(DME)Br₂] ou [Pt(COD)Cl₂] conduit aux composés **321** et **322**, caractérisés par RMN ³¹P et diffraction aux rayons X. Leurs structures sont très semblables à celle du complexe analogue de palladium (Figure 5). Comme pour le complexe de palladium **313**, les liaisons P-Br et P-Cl sont suffisamment réactives pour subir des substitutions nucléophiles. La réaction de l'éthanol sur **321** et **322** fournit les complexes **323** et **324**, complètement caractérisés par RMN et analyse élémentaire.

Ainsi, les méthodes décrites pour la synthèse des complexes de palladium s'étendent au nickel et au platine. Le remplacement de l'atome de palladium par les atomes de nickel ou de platine ne modifie ni les déplacements chimiques, ni les paramètres structuraux.

III. Chimie de coordination

Nous avons enfin étudié la réactivité du ligand halogène des complexes synthétisés. Nous avons suivi la procédure généralement adoptée dans le cas des complexes de type pinceurs.

L'ajout d'un abstracteur de chlore ou de brome comme $AgBF_4$ et d'acétonitrile à une solution de complexe fournit quatre complexes cationiques **325-328** qui ont été complètement caractérisés par RMN et analyse élémentaire (Équation 15).

Par ailleurs, nous avons également essayé de substituer l'atome de chlore par des ligands *aqua* et triflate (OTf = CF₃SO₂O⁻) car quelques complexes pinceurs ainsi substitués présentent un intérêt catalytique (condensation d'aldols, couplage de Suzuki, ...).^[37-41] Les tentatives de substitution de l'atome de chlore du complexe **302** et de la substitution de l'acétonitrile de **325** par une molécule d'eau n'ont pas été concluantes. La réaction de **302** avec AgOTf conduit au complexe neutre **329**, caractérisé par RMN et analyse élémentaire (Équation 15).

Équation 15

Dans le cas des complexes substitués par l' α -picoline **303** et **319-320**, l'abstraction de l'atome halogène en l'absence de ligand à deux électrons conduit aux complexes cationiques **330-332** qui ont été complètement caractérisés en RMN et analyse élémentaire pour les complexes de palladium **331** et de platine **332** (Équation 16). La structure de ces complexes repose uniquement sur les données RMN puisque aucune structure aux rayons X n'a pu être obtenue.

Équation 16 : pour 330-332, les groupes phényles en position 3 et 5 sont omis par souci de clarté.

L'abstraction de l'atome de brome ou de chlore est mise en évidence par une modification du spectre RMN ³¹P (Figure 6) et du déplacement du proton H₄ en RMN ¹H. Pour le complexe de palladium **331**, en RMN ³¹P, on passe d'un système AB₂ (du deuxième ordre modélisé avec le logiciel gNMR) à un système ABC avec les deux groupes PPh₂S magnétiquement inéquivalents. La dissymétrie de la structure est confirmée en RMN ¹³C par l'inéquivalence des carbones C₂ et C₆ d'une part (δ = 65.6 et 72.1 ppm) et C₃ et C₅ d'autre part (δ = 136.7 et 137.3 ppm).

L'atome d'azote complète la sphère de coordination du centre métallique puisque la réaction est menée dans un solvant non coordinant. La coordination de l'atome d'azote empêche la rotation de la pyridine autour de la liaison P-CH₂ et différencie désormais les deux atomes d'hydrogène du groupe CH₂ (Figure 7). Une structure dimérique est également envisageable.

Complexe 331

Figure 6 : Spectre RMN ³¹P des complexes 303, 331 entre 44.0 et 54.0 ppm.

Figure 7 : RMN ¹H des complexes 303 et 331 entre 3.60 et 4.60 ppm (CH₂ de l'α-picoline).

Nous avons entrepris une série de calculs théoriques pour valider la structure peu commune pour des centres d⁸ du complexe de palladium **331**. Les calculs ont été réalisés avec la fonctionnelle B3PW91^[42] et la base 6-31+G* pour les atomes de phosphore, soufre, oxygène,^[43] 6-31G* pour les atomes de carbone et 6-31G pour les atomes d'hydrogène.^[31-33] Un pseudo potentiel de type Hay Wadt a été utilisé pour représenter les 28 électrons de cœur du palladium.^[34] Une base double- ζ lanl2dz, complétée par des fonctions de polarisation f lui a été associée.^[44] Nous avons optimisé et caractérisé comme minimum d'énergie le complexe cationique **IV**, modèle de **331**, dans lequel les groupes phényles ont été remplacés par des atomes d'hydrogène (Figure 8).

On obtient une structure en T avec l'un des deux atomes de soufre décoordiné (Pd-S1 = 4.050 Å *vs* Pd-S2 = 2.396 Å) qui est cohérente avec la dissymétrie observée en RMN. Cette

structure en T est favorisée pour un complexe [ML₃] de configuration d^{8,2} L'obtention d'une structure symétrique, **IV-***Cs*, nécessite d'imposer l'égalité des deux distances palladiumsoufre, *i.e.* une contrainte *Cs.* **IV-***Cs* a ainsi été caractérisé comme un état de transition qui connecte deux minima équivalents avec S1 ou S2 décoordiné avec une faible fréquence imaginaire (19.8 icm⁻¹). D'un point de vue énergétique, **IV-***Cs* est situé 4.2 kcal.mol⁻¹ au dessus de **IV**.

Figure 8 : Structures de IV et IV-*Cs* optimisées au niveau B3PW91. Sélection de paramètres structuraux (distances exprimées en Å et angles en °) : IV : P1-Pd 2.273, S1-Pd 4.050, S2-Pd 2.396, N-Pd 2.080, S1-Pd-S2 130.3, N-Pd-S2 167.6, P1-Pd-S2 96.1, P1-N-S2-S1 65.5. IV-*Cs* : P1-Pd 2.192, S1-Pd 2.414, N-Pd 2.635, S1-Pd-S2 176.5, N-Pd-S2 90.5, P1-Pd-S2 88.4. E : énergie relative exprimée en kcal.mol⁻¹.

La structure du complexe cationique scorpionate **331** est mise en évidence par piégeage avec des ligands à deux électrons (pyridine et acétonitrile) (Équation 17). L'ajout d'acétonitrile (dix équivalents) entraîne un changement du spectre RMN ³¹P et génère vraisemblablement le complexe **333** par coordination du nitrile (Figure 9). Le complexe formé n'a pu être isolé puisque l'évaporation du solvant reforme le réactif **331**.

Nous avons obtenu des résultats plus satisfaisants avec la pyridine : l'addition d'un équivalent de pyridine entraîne la décoordination de l'atome d'azote de l' α -picoline et l'on forme le complexe **334** qui a été complètement caractérisé par RMN. La coordination de l'azote de la pyridine est mise en évidence par une modification du spectre RMN ³¹P (système AB₂ modélisé avec le logiciel gNMR) (Figure 9). La structure symétrique de **334** est confirmée par l'équivalence des deux protons CH₂ de l' α -picoline (doublet à 3.94 ppm avec ²J_{H-P} = 11.5 Hz au lieu de deux doublets de doublets à 4.08 et 4.39 ppm pour **331**) et des atomes de carbones C_{2,6} (δ = 71.1 ppm) et C_{3,5} (δ = 139.0 ppm). Comme pour **333**, le

² Le complexe d⁸ $[Rh(PPh_3)_3]^+$ adopte une géométrie de ce type bien qu'il n'existe aucune contrainte géométrique défavorisant une structure trigonale plan.

complexe **334** reforme partiellement **331** lors de l'évaporation des solvants. Nous avons néanmoins pu obtenir des cristaux de **334** par diffusion d'hexane dans une solution de **334** dans le CDCl₃ en présence d'un excès de pyridine. La géométrie de **334** confirme bien la structure proposée. On observe une géométrie plan carré, classique pour les complexes de palladium [ML₄] d⁸.

Complexe **334**

Figure 9 : Spectre RMN ³¹P des complexes 331-334 entre 44.0 et 54.0 ppm.

IV. Nature de la liaison métal ligand : étude théorique

L'ensemble des paramètres structuraux des complexes de nickel, de palladium et de platine décrits dans ce chapitre ne permet pas de conclure sur la nature du ligand $[SPS^R]^-$ dans ces complexes. Est-ce un anion λ^4 -phosphinine (forme A, Schéma 6) ou une phosphine tertiaire classique (forme B, Schéma 6) ? D'un côté, les longueurs P-C internes courtes établissent le caractère ylure de la phosphinine lors de la complexation (forme A) tandis que des distances P=S longues et P-C externes courtes mettent en lumière la délocalisation de la charge négative sur l'ensemble du squelette insaturé de la molécule (Forme B).

On peut raisonnablement penser que les deux formes A et B participent à la liaison et que leur contribution respective dépend à la fois de la nature du centre métallique, de son degré d'oxydation et de la nature du groupe R substituant l'atome de phosphore central.

IV.1. Modélisation

Nous avons entrepris une série de calculs DFT afin de modéliser la nature de la liaison métal ligand pour les complexes du groupe 10. Nous avons optimisé et caractérisé comme minimum de la surface d'énergie les complexes modèles **VIa** et **VIb** substitué par un groupe méthyle et méthoxy respectivement. Le schéma de substitution du ligand a été simplifié pour diminuer le temps de calcul : les groupes phényles sont remplacés par des atomes d'hydrogène (Schéma 7).

Nous avons testé plusieurs fonctionnelles et bases ; le meilleur compromis, en terme de temps de calcul et de pertinence, correspond à la fonctionnelle B3LYP^[28-30] avec les atomes de carbone, hydrogène, oxygène, phosphore, soufre et chlore décrits par la base 6- $31G^*$.^[31-33] Un pseudo potentiel de type Hay Wadt a été utilisé pour représenter les 28 électrons de cœur du palladium et une base double- ζ lanl2dz lui a été associée.^[34] Les principaux paramètres structuraux sont regroupés dans le Tableau 2. Par exemple, pour VIa, les longueurs P-C internes sont proches de celles de **302** (1.796 *vs* 1.762(7) Å) ; pour VIb, les distances P-C externes (1.774 Å *vs* 1.778(3) Å dans **302**) sont raccourcies tandis que les longueurs P=S sont allongées (2.049 Å *vs* 2.033(2) Å dans **302**). La pertinence du calcul est contrôlée par l'accord des paramètres structuraux de VIa avec le complexe expérimental [Pd(SPS^{*n*-Bu})Cl] **302**. On obtient une excellente approximation des distances et des angles (différence inférieure à 0.013 Å) sauf pour les liaisons Pd-P et Pd-S qui sont surestimées de 0.077 Å. Cependant, modifier la base de l'atome de palladium (base tout électron, autre pseudo potentiel, fonctions diffuses) ou de l'atome de phosphore et de soufre (fonctions diffuses) n'améliore pas significativement cette déviation.

Distances Angle	302 RX	V	VIa	VIb	VIIa	VIIb	VIII
P1-C2	1.762(7)	1.815	1.796	1.780	1.881	1.882	1.843
C2-C3	1.40(1)	1.365	1.395	1.397	-	-	1.339
C3-C4	1.43(1)	1.429	1.404	1.403	-	-	-
C2-P2	1.760(7)	1.829	1.768	1.774	1.856	1.859	1.829
P2-S1	2.037(3)	1.961	2.050	2.049	2.022	2.020	2.022
P1-R	1.820(8)	1.679	1.846	1.650	1.834	1.612	1.836
P1-Pd	2.180(2)	-	2.258	2.243	2.300	2.275	2.302
Pd-S1	2.321(2)	-	2.423	2.424	2.412	2.412	2.426
Pd-Cl	2.3720(8)	-	2.377	2.377	2.322	2.323	2.324
C6-P1-C2	103.4(4)	98.3	101.7	101.5	107.4	106.6	108.0

Tableau 2 : Paramètres structuraux de V-VIII et 302. Les distances sont exprimées en Å et les angles en °.

IV.2. La méthode CDA

La méthode CDA (Charge décomposition Analysis) permet de quantifier l'interaction d'un ligand avec le métal en terme de donation/rétrodonation.^[45] On exprime les orbitales moléculaires (OM) du complexe comme combinaison des OM de deux fragments. Dans notre cas, nous avons choisi de décomposer les orbitales moléculaires de **VIa-b** comme combinaison linéaires des OM du ligand anionique $[SPS^R]^-$ et des OM du fragment métallique restant $[PdCl]^+$. Nous avons appliqué la même méthode pour les complexes **VIIa-b** et **VIII** : les deux fragments étant le ligand neutre $[RP(CH_2PH_2S)_2]$ et le complexe cationique $[PdCl]^+$.

Dans les deux cas, on calcule le ligand et le fragment métallique dans la géométrie figée du complexe optimisé. Les contributions orbitalaires sont divisées en quatre termes :

- i) le mélange des OM pleines du ligand avec les OM vacantes du fragment métallique. Ce terme, noté d, représente la donation du ligand \rightarrow le [fragment métallique].
- ii) le mélange des OM vacantes du ligand avec les OM occupées du fragment métallique. Ce terme, noté b, représente la rétrodonation du [fragment métallique] \rightarrow le ligand.
- iii) Le mélange des OM occupées du ligand avec les OM occupées du fragment métallique. Ce terme, noté r, représente la répulsion entre le [fragment métallique]
 ↔ le ligand. Ce terme est négatif car on y retire la charge négative du recouvrement des orbitales occupées.
- iv) Le terme résiduel Δ résulte du mélange des orbitales vacantes du ligand et du fragment métallique. Sa valeur indique si le sytème étudié peut être modélisé ou non comme une interaction donneur-accepteur de type Dewar Chatt Duncansson. Une déviation $\Delta = 0$ signifie que la liaison étudiée est mieux décrite par une liaison covalente entre deux fragments en couche ouverte.

La référence suivante donne de plus amples détails sur la méthode CDA.^[45] Les calculs CDA ont été réalisés avec le programme CDA version 2.1^[46] implémenté dans Gaussian 98.

IV.3. Résultats

L'analyse de la charge NBO^[47] révèle que dans **VIa-b** les atomes en position α (C₂ et C₆) et γ (C₄) de l'atome de phosphore portent une charge négative (Tableau 3). Les atomes de carbone en position β (C₃ et C₅) sont au contraire chargés positivement. Cette distribution de charges est relativement semblable à celle de la λ^5 -phospinine **V**. On constate également que la distribution de charges de **V** est comparable à celles de **VIIa-b** et **VIII**, ce qui suggère que la liaison P-Pd est polarisée. Malheureusement, la donnée de la distribution de charges ne permet pas de conclure sur la nature de la liaison métal ligand.

Le Tableau 4 présente les résultats du calcul CDA. La faible valeur du terme résiduel Δ indique que l'interaction en terme de donneur accepteur entre le ligand et le fragment [PdCl] suit le modèle de DCD. Le terme b/(d+b) reflète le pourcentage de rétrodonation vers le ligand. Par ailleurs, la présence d'une double liaison exocyclique (C₂=CH₂ pour VIII au lieu de CH₂ pour VIIa-b) ne modifie pas significativement les propriétés électroniques du

ligand. La similarité de ces valeurs indique que l'atome de phosphore central de **VIa-b** (15.19 et 19.23%) présente des propriétés électroniques comparables à celles des complexes incorporant des phosphines tertiaires **VIIa-b** et **VIII** (valeurs comprises entre 14.55 et 16.66%). Par conséquent, dans le cas de complexes de palladium d⁸, la forme délocalisée B est prépondérante dans la liaison au métal.

Atome	V	VIa	VIb	VIIa	VIIb	VIII
P1	1.662	1.170	1.420	1.038	1.375	1.060
C2	-0.950	-0.922	-0.942	-1.123	-1.156	-0.744
C3	-0.136	-0.139	-0.151	-	-	-
C4	-0.326	-0.350	-0.334	-	-	-
P2	0.880	0.921	0.917	0.850	0.846	0.856
S	-0.563	-0.457	-0.398	-0.302	-0.293	-0.308
Pd	-	0.351	0.367	0.313	0.310	0.323
Cl	-	-0.576	-0.560	-0.433	-0.437	-0.440

Tableau 3 : Charge NBO de V, VIa-b, VIIa-b et VIII.

Tableau 4 : Résultat du calcul CDA de VIa-b, VIIa-b et VIII.

	VIa	VIb	VIIa	VIIb	VIII
d	1.089	0.844	0.855	0.935	0.863
b	0.195	0.201	0.171	0.160	0.147
d/b	5.58	4.20	5.00	5.843	5.87
b/(d+b)	15.19	19.23	16.66	14.62	14.55
r	-0.397	-0.076	0.069	-0.092	-0.093
Δ	-0.008	-0.005	-0.001	0.025	0.004

Finalement, les calculs théoriques ont montré que dans les complexes de palladium $[Pd(SPS^R)Cl]$ le ligand SPS anionique se comporte comme une phosphine tertiaire avec une charge négative délocalisée sur l'ensemble du squelette insaturé (Forme B, Schéma 8).

V. Applications en catalyse

Nous avons choisi de tester les complexes **302**, **307**, **325** et **331** en catalyse en premier lieu. Nous avons choisi la réaction de Heck car c'est une réaction classique, très exploitée pour laquelle un grand nombre de données est disponible (conditions expérimentales, TON, mécanismes...). Cette réaction permettra de fournir un bon élément de comparaison. Nos efforts ont également porté sur la réaction de Miyaura qui possède un potentiel synthétique très important, mais dont l'efficacité reste encore à améliorer. Nous avons également testé le complexe chiral **307** dans la réaction de Heck asymétrique.

V.1. Réaction de Heck

La vinylation d'halogénures d'aryles catalysée par le palladium est l'une des méthodes les plus importantes pour générer de nouvelles liaisons carbone-carbone (Équation 18).^[48] Bien que de nombreux complexes de palladium⁰ et de palladium^{II} soient utilisés pour cette réaction, les palladacycles comptent parmi les espèces les plus actives.^[49, 50] Leur réactivité provient en grande partie de leur durée de vie due à leur structure chélate. Dans ce contexte, la catalyse mettant en jeu des complexes de pinceurs a permis d'obtenir des nombres de rotation impressionnants lors de la réaction de couplage de iodo- et bromoaryles à des oléfines. Un grand nombre de catalyseurs extrêmement actifs est présent dans la littérature avec des charges en catalyseur allant jusqu'à 10⁻⁷% molaire et des rendements souvent supérieurs à 90%.^[5, 39, 51-59]

Équation 18

A titre d'exemple pour les composés iodés, le complexe [Pd(PCP)(Tfa)] (Tfa : acide trifluoroacétique) **A** possède un turnover number (TON) de 520000,^[39] tout comme son analogue saturé **B** (Schéma 10).^[60] L'utilisation de phosphinites et l'introduction de groupements aryloxy dans **C** augmente nettement le TON à 8.9 millions et constitue à ce jour le meilleur TON de la réaction de Heck pour les dérivés iodés avec un ligand pinceur.^[59] On observe également l'utilisation de catalyseur au palladium^{II} lié à un pinceur SCS **D** (TON de l'ordre de 48500), mais leur efficacité est bien inférieure à celle des ligands PCP.^[55] Enfin, les meilleurs TON obtenus pour les composés bromés^[56] et chlorés^[5] sont à ce jour respectivement 141 860 et 450 pour les complexes **E** et **F**.

Plusieurs mécanismes peuvent être envisagés. Milstein propose un cycle catalytique faisant intervenir les espèces palladium⁰/palladium^{II,[39]} Beletskaya et Cheprakov la décomplexation d'une des phosphines chélates.^[49] Enfin, Jensen fait intervenir un mécanisme de type palladium^{II}/palladium^{IV} qui commence par une addition oxydante de l'alcène suivie de l'élimination d'HCl (Schéma 11).^[57] Les deux sites vacants sur le métal sont ensuite occupés lors de l'addition oxydante de l'halogénure aromatique. L'élimination réductrice du produit de couplage carbone-carbone régénère le catalyseur.

Schéma 11

Les résultats obtenus sont présentés dans le tableau suivant (Tableau 5). Le couplage entre l'acrylate de méthyle et le iodobenzène fournit exclusivement le cinamate de méthyle *trans* ($R = CO_2Me$, ${}^3J_{H-H} = 15.0$ Hz) avec un TON de 310 000. Ce chiffre est certes faible s'il est comparé au record de 8.9 millions obtenu avec un complexe PCP, mais est tout de même 10 fois supérieur à celui du ligand SCS précédemment mentionné. Aucun produit de couplage n'a été observé avec le styrène, même à des températures légèrement plus élevées que pour l'acrylate de méthyle.

Le bromobenzène et le chlorobenzène ne réagissent pas avec l'acrylate de méthyle. Il aurait probablement fallu employer des méthodes plus dures (chauffer à 150°C), d'autres

solvants (DME par exemple) ou encore ajouter des additifs comme le n-Bu₄NBr. Le passage du complexe neutre **302** au complexe cationique **325** n'augmente pas significativement ces résultats.

Entrée	Х	R	Complexe	Cat.[%]	Additif	T[°C]	Solvant	GC[%]	TON	Temps[j]
1	Ι	CO ₂ Me	302	1		40	NMP	33	33	6
2	Ι	CO ₂ Me	302	0.1		100	NMP	100	1000	6
3	Ι	CO ₂ Me	302	0.01		100	NMP	100	10000	7
4	Ι	CO ₂ Me	302	0.001		100	NMP	79	79000	4
5	Ι	CO ₂ Me	302	0.0001		100	NMP	31	310000	4
6	Br	CO ₂ Me	302	1		100	NMP	0	0	3
7	Br	CO ₂ Me	302	1	HCO ₂ H	100	NMP	33	33	2
8	Br	CO ₂ Me	325	1		100	NMP	0	0	3
9	Br	CO ₂ Me	325	1	HCO ₂ H	100	NMP	48	48	2
10	Cl	CO ₂ Me	302	1		100	NMP	0	0	7
11	Ι	Ph	302	0.1		120	NMP	0	0	6
12	Ι	Ph	302	0.1		120	Dioxane	0	0	13

Tableau 5 : Réaction de Heck catalysée par les complexes 302 et 325.

Cette réaction montre néanmoins que le complexe **302** qui n'est pas le meilleur pour la catalyse (en raison de liaisons palladium soufre) donne de très bons résultats. Ceci est très encourageant et suggère que des complexes métalliques de λ^4 -phosphinines devraient se comporter comme d'excellents catalyseurs.

V.2. Réaction de Heck asymétrique

A première vue, la réaction de Heck ne se prête pas à la catalyse énantiosélective étant donné que le centre sp³ formé pendant l'insertion migratoire est à nouveau converti en centre sp². Cependant, si l'atome d'hydrogène sur le centre sp³ ne peut pas être en *syn*, avec le palladium, alors il n'y a pas reconversion en centre sp² (Schéma 12). C'est le cas pour les alcènes cycliques.^[61]

On peut donc parler de version asymétrique de la réaction de Heck. Les premiers exemples de réactions asymétriques intermoléculaires ont été reportés par Ozawa et Hayashi^[62] (1, Équation 19a) et par Shibasaki^[63] et Overman^[64] pour la version intramoléculaire (2, Équation 19b) au début des années 1990.

Le premier catalyseur efficace décrit pour la réaction intra et intermoléculaire est à base de palladium et de BINAP.^[62, 65] Les ligands chelates mixtes comme les diphényl-phosphinoaryloxazolines de Pfaltz G,^[66-68] et les ligands monodentes $H^{[69]}$ donnent les meilleurs résultats (e.e. supérieurs à 96%). Outre le choix du ligand, les conditions opératoires ont aussi une grande influence sur les résultats (choix de la base, du solvant, additifs éventuels, température, densité électronique de la phosphine...).^[70]

Nous avons testé la réaction du dihydrofurane sur le triflate ou l'iodure de benzène catalysé par le complexe **302** et le complexe chiral **307** (Équation 21). Les résultats sont présentés Tableau 6.

On n'observe aucune conversion dans le cas du triflate de benzène. Le passage à l'iodure de benzène permet certes la synthèse du produit de couplage, mais l'excès énantiomérique du produit est nul. Finalement, le complexe chiral **307** n'induit aucune induction asymétrique.

Entrée	Х	Solvant	Complexe	Cat.[%]	Additif	T[°C]	Temps[jours]	GC[%]
1	OTf	Toluène	302	1		40	7	0
2	OTf	THF	302	1		80	7	0
3	OTf	NMP	302	1		100	7	0
4	Ι	THF	302	1		40	7	46
5	Ι	THF	302	1		80	7	43
6	Ι	NMP	302	1		100	0.5	98
7	Ι	NMP	302	1		80	0.5	72
8	Ι	NMP	302	0.5		40	1	30
9	Ι	NMP	302	0.5	HCO ₂ H	40	2	71
10	Ι	NMP	307	1		100	2	100 (e.e. = 0)
11	Ι	NMP	307	0.5		80	7	89 (e.e. = 0)
12	Ι	benzène	307	0.5		40	7	0
13	Ι	NMP	307	0.5	HCO ₂ H	40	3	62 (e.e. =0)

Tableau 6 : Réaction de Heck asymétrique catalysée par les complexes 302 et 307.

V.3. Réaction de Miyaura

La synthèse d'esters et d'acides boroniques est à la base de plusieurs réactions utilisées en chimie organique^[71] et trouve également des applications dans le domaine de la biologie.^[72] La réaction de couplage d'halogénures d'aryles et de tétraalkoxydiboranes ou de dialkoxyboranes catalysée par des complexes de palladium offre une voie de synthèse possible (Équation 22). Longtemps limitée à une charge en catalyseur de l'ordre de 1 à 5% pour les composés iodés, l'utilisation d'un complexe de phosphaferrocène (**H**, Schéma 13) a permis récemment d'obtenir des TON compris entre 2500 et 3000.^[73] La première utilisation de composés chlorés n'a été décrite qu'en 2001 ; elle procède par activation micro-ondes et permet d'obtenir un TON de 33.

Équation 22

L'emploi du complexe **302** a été le premier exemple d'utilisation d'un pinceur dans la réaction de Miyaura. Les résultats obtenus sont présentés dans le tableau suivant (Tableau 7). Nous avons testé l'activité catalytique de **302** avec plusieurs réactifs et nous observons le meilleur résultat dans le cas du iodobenzène : nous obtenons un TON de 76500, multipliant ainsi par plus de 25 le précédent record. Nous avons par ailleurs remarqué que le démarrage de cette réaction est extrêmement lent (de l'ordre de plusieurs jours) dès que la charge en catalyseur est inférieure à 0.001% molaire et que la vitesse de réaction augmente si l'on recharge la réaction en réactifs. On observe également que l'ajout de [NHEt₃][Cl] accélère le début de la réaction, mais ne permet pas d'atteindre le même avancement de la réaction.

Postérieurement à notre étude, un complexe pinceur PNP I synthétisé au laboratoire a permis d'obtenir des TON de 100000 avec les dérivés iodés et de 8900 avec les dérivés bromés augmentant d'un facteur 10 nos résultats avec le bromobenzène (Schéma 13).^[74] De plus, ce complexe réagit rapidement en l'espace de deux jours (contre cinq jours pour le complexe **302**).

Schéma 13

Tableau 7 : Couplage de Miyaura catalysé par 302. ^[a] Ajout de 5% de NHEt₃Cl. ^[b] rendement GC. ^[c] rendement du produit caractérisé par RMN et spectroscopie de masse.

Entrée	Substrat	Cat.[%]	Temps	GC[%] ^[b]	R[%] ^[c]	TON
1	iodobenzène	0.01	15h	100	98	10000
2	4-iodotoluène	0.01	48h	100	96	10000
3	2-iodotoluène	0.01	5j	50	45	5000
4	2-iodothiophène	0.01	5j	73	68	7300
5	4-bromoiodobenzène	0.01	5j	66	62	6600
6	4-iodoanisole	0.01	5j	51	45	5100
7	iodobenzène	0.001	15 j	76.5	-	76500
8 ^[a]	iodobenzène	0.001	6 j	17.1	-	17100
9	bromobenzène	0.01	8 j	8.8	-	880
10	chlorobenzène	0.01	5 j	0	0	0

Finalement, le complexe **302** s'est révélé être à l'heure actuelle l'un des meilleurs complexes catalysant la réaction de Miyaura.

V.4. Autres réactions

L'hydroamination intermoléculaire des alcènes est une réaction très difficile à réaliser.^[75-78] Les catalyseurs mentionnés dans la littérature étant très souvent des complexes de palladium, nous avons voulu tester les complexes **302** et **331** dans cette réaction (Équation 23). Aucune activité notable n'a été observée.

Nous avons également testé la réaction de substitution allylique et d'hydrosilylation (Équation 24) : aucune induction asymétrique n'est observée avec le complexe chiral **307**.

VI. Conclusion

Dans ce chapitre, nous avons présenté trois voies d'accès aux complexes de nickel^{II}, palladium^{II} et platine^{II} incorporant l'anion 1-R- λ^4 -phosphinine dérivé de la 2,6-bis(diphényl-phosphino)phosphinine. Ce sont les premiers complexes complètement caractérisés de λ^4 -phosphinine coordinée à un centre métallique.

Des calculs théoriques ont été entrepris pour déterminer la nature du ligand dans ces complexes et montrent que celui-ci se comporte comme une phosphine tertiaire avec la charge négative délocalisée sur l'ensemble du squelette insaturé.

L'activité catalytique de ces complexes est prometteuse : le complexe de palladium $[Pd(SPS^{n-Bu})Cl]$ **302** est actif dans le couplage de Heck et est l'un des meilleurs catalyseurs à l'heure actuelle pour la réaction de Miyaura. Malheureusement, aucune induction asymétrique n'a été observée avec le complexe chiral **307**.

VII. Perspectives

Compte tenu de l'absence d'induction asymétrique avec le complexe **307** substitué par un groupe menthyle, il serait intéressant de synthétiser une molécule tridente portant la chiralité sur les bras ancillaires. Cette stratégie repose par exemple sur l'emploi d'un diol chiral comme la R,R-dihydroxybenzoine J dérivée du *trans* stilbène (Équation 25). Cette dernière est obtenue par dihydroxylation catalysée par l'osmium en présence de ligand énantiopur selon la méthode décrite par Sharpless *et al.*^[79] Le diol obtenu conduit à un dérivé chlorophosphite ou chloro(thio)phosphonate **K** par réaction de Cl₃P(X) (X = paire libre, O, S) en présence de base.^[80] La réaction de **K** avec un alkyllithien fournit l'alcyne L^[81, 82] qui peut réagir selon deux séries de cycloaddition / cycloréversion pour former la phosphinine chirale **M**. Il se pose à ce stade de la séquence réactionnelle le problème de la régiosélectivité de la réaction de Diels-Alder. Si la réaction forme effectivement la phosphinine **M** avec deux bras ancillaires chiraux en position α de l'atome de phosphore, la réaction du méthyllithium puis de [M(COD)Cl₂] (M = Pd, Pt) fournit un complexe de choix, de symétrie *C*₂, pour la catalyse énantiosélective.

Les réactions à tester sont à choisir dans celles pour lesquelles les complexes chiraux de type pinceur se sont illustrés : par exemple la condensation aldolique asymétrique ou addition de type 1-4 (Équation 26).^[2] On peut encore citer la réaction d'hydrosilylation du styrène (totale lorsque catalysée par **307**, mais avec un excès énantiomériquement nul). On peut imaginer des résultats meilleurs dans le cas du complexe **N**.

Équation 26

VIII. Références

- [1] C. J. Moulton, B. L. Shaw, J. Chem. Soc., Dalton Trans. 1976, 1020.
- [2] M. Albrecht, G. Van Koten, Angew. Chem. Int. Ed. 2001, 40, 3750.
- [3] J. T. Singleton, *Tetrahedron Lett.* 2003, 59, 1837.
- [4] M. E. van der Boom, D. Milstein, Chem. Rev. 2003, 103, 1759.
- [5] S. Grundemann, M. Albrecht, J. A. Loch, J. W. Faller, R. H. Crabtree, *Organometallics* **2001**, *20*, 5485.
- [6] P. Kapoor, A. Pathak, R. Kapoor, P. Venugopalan, M. Corbella, M. Rodriguez, J. Robles, A. Llobet, *Inorg. Chem.* **2002**, *41*, 6153.
- [7] A. S. Ionkin, W. J. Marshall, Heteroatom Chem. 2002, 13, 662.
- [8] J. D. Niemoth-Anderson, K. A. Clark, T. A. George, C. R. Ross, J. Am. Chem. Soc. 2000, 122, 3977.
- [9] M. Tschoerner, G. Trabesinger, A. Albinati, P. S. Pregosin, *Organometallics* 1997, 16, 3447.
- [10] D. A. Evans, K. R. Campos, J. S. Tedrow, F. E. Michael, M. R. Gagne, J. Am. Chem. Soc. 2000, 122, 7905.
- [11] D. R. Evans, M. Huang, W. M. Seganish, E. W. Chege, Y. F. Lam, J. C. Fettinger, T. L. Williams, *Inorg. Chem.* **2002**, *41*, 2633.
- [12] X. Verdaguer, M. A. Pericàs, A. Riera, M. A. Maestro, M. J., *Organometallics* 2003, 22, 1868.
- [13] N. Brugat, A. Polo, A. Alvarez-Larena, J. F. Piniella, J. Real, *Inorg. Chem.* 1999, 38, 4829.
- [14] K. Ortner, L. Hilditch, Y. F. Zheng, J. R. Dilworth, U. Abram, *Inorg. Chem.* 2000, 39, 2801.
- [15] D. R. Evans, M. S. Huang, W. M. Seganish, J. C. Fettinger, T. L. Williams, *Organometallics* 2002, 21, 893.
- [16] H. Brunner, H. J. Lautenschlager, W. A. König, R. Krebber, Chem. Ber. 1990, 123, 847.
- [17] S. M. Aucott, A. M. Z. Slawin, J. D. Woolins, Eur. J. Inorg. Chem. 2002, 2408.
- [18] T. Kanbara, T. Yamamoto, J. Organomet. Chem. 2003, 688, 15.
- [19] P. J. Heard, A. E. Aliev, Polyhedron 1998, 17, 3981.
- [20] M. J. Baker, M. F. Giles, A. G. Orpen, M. J. Taylor, R. J. Watt, Chem. Commun. 1995, 197.
- [21] L. Gonsalvi, H. Adams, G. J. Sunley, E. Ditzel, A. Haynes, J. Am. Chem. Soc. 2002, 124, 13597.
- [22] A. Moores, N. Mezailles, L. Ricard, Y. Jean, P. le Floch, *Organometallics* 2004, 23, 2870.
- [23] N. Mézailles, P. Le Floch, F. Mathey, dans *Progress in Inorganic Chemistry, Vol. 49* (Ed.: K. D. Karlin), John Wiley & Sons, Inc., Toronto, **2001**, pp. 455.
- [24] P. Le Floch, dans *Phosphorus-Carbon Heterocyclic Chemistry: The Rise of a New Domain* (Ed.: F. Mathey), Pergamon, Palaiseau, **2001**, pp. 485.
- [25] G. Y. Li, Angew. Chem. Int. Ed. 2001, 40, 1513.
- [26] G. Y. Li, W. J. Marshall, Organometallics 2002, 21, 590.
- [27] N. K. Gusarova, A. M. Reutskaya, N. I. Ivanova, A. S. Medvedeva, M. M. Demina, P. S. Novopashin, A. V. Afonin, A. I. Albanov, B. A. Trofimov, *J. Organomet. Chem* **2002**, *659*, 172.
- [28] J. P. Perdew, *Phys. Rev. B* . **1986**, *33*, 8822.
- [29] A. D. Becke, Phys. Rev. A 1988, 38, 3098.
- [30] C. Lee, W. Yang, R. G. Parr, Phys. Rev. A 1988, B 37, 785.

- [31] M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, *J. Chem. Phys.* **1982**, *77*, 3654.
- [32] W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257.
- [33] P. C. Hariharan, J. A. Pople, *Theor. Chim. Acta* 1973, 28, 213.
- [34] P. J. Hay, W. R. Wadt, J. Chem. Phys. 1995, 82, 299.
- [35] A. Bergner, M. Dolg, W. Küchle, H. Stoll, H. Preuss, Mol. Phys. 1993, 80, 1431.
- [36] G. Frenking, I. Antes, M. Böhme, S. Dapprich, A. W. Ehlers, V. Jonas, A. Neuhaus, M.
- Otto, R. Stegmann, A. Veldkamp, Vyboishchikov, dans Reviews in Computational
- Chemistry, Vol. 8 (Eds.: K. B. Lipkowitz, D. B. Boyd), VCH, New York, 1996, pp. 63.
- [37] J. M. Longmire, X. Zhang, M. Shang, Organometallics 1998, 17, 4374.
- [38] H. Nakai, S. Ogo, Y. Watanabe, Organometallics 2002.
- [39] M. Ohff, A. Ohff, H. van der Boom, D. Milstein, J. Am. Chem. Soc. 1997, 119, 11687.
- [40] R. B. Bedford, S. M. Draper, P. N. Scully, S. L. Welch, New J. Chem. 2000, 24, 745.
- [41] F. Gorla, A. Togni, L. M. Venanzi, A. L. Albinati, F., Organometallics 1994, 13, 1607.
- [42] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- [43] T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. von Ragué Schleyer, *J. Comput. Chem.* **1983**, *4*, 294.
- [44] A. Ehlers, M. Bohme, S. Dapprich, A. Gobbi, A. Hollwarth, V. Jonas, K. Kohler, R. Stegmenn, A. Veldkamp, G. Frenking, *Chem. Phys. Lett.* **1993**, *208*, 111.
- [45] G. Frenking, J. Phys. Chem. 1995, 99, 9352.
- [46] S. Dapprich, G. Frenking, *CDA*, 2.1, Ce programme est téléchargeable en ligne : ftp://chemie.uni-marburg.de (/pub/cda), Marburg, **1995**.
- [47] A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899.
- [48] R. F. Heck, J. Am. Chem. Soc 1960, 90, 5518.
- [49] I. P. Beletskaya, A. V. Cheprakov, Chem. Rev. 2000, 100, 3009.
- [50] J. Dupont, M. Pfeffer, J. Spencer, Eur. J. Inorg. Chem. 2001, 1917.
- [51] E. Peris, J. A. Loch, J. Mata, R. H. Crabtree, Chem. Commun. 2001, 201.
- [52] M. Ohff, A. Ohff, D. Milstein, J. Chem. Soc., Chem. Commun. 1999, 357.
- [53] D. A. Albisson, R. B. Bedford, P. N. Scully, Tetrahedron Lett. 1998, 39, 9793.
- [54] W. A. Herrmann, C. Brossmer, T. H. Riemeier, K. Öfele, M. Beller, *Chem. Eur. J.* **1997**, *3*, 1357.
- [55] A. S. Gruber, D. Zim, G. Ebeling, A. L. Monteiri, J. Dupont, Org. Lett. 2000, 2, 1287.
- [56] D. Morales-Morales, C. Grause, K. Kasaoka, R. Redon, R. E. Cramer, C. M. Jensen, *Inorg. Chim. Acta* **2000**, *300*, 958.
- [57] D. Morales-Morales, R. Redon, C. Yung, C. M. Jensen, Chem. Commun. 2000, 1619.
- [58] I. P. Beletskaya, A. V. Chuchurjukin, H. P. Dijkstra, G. P. M. van Klink, G. van Koten, *Tetrahedron Lett.* **2000**, *41*, 1075.
- [59] F. Miyazaki, K. Yamagushi, M. Shibasashi, Tetrahedron Lett. 1999, 40, 7379.
- [60] S. Sjövall, O. F. Wendt, C. Anderson, J. Chem. Soc., Dalton Trans. 2002, 1396.
- [61] P. J. Guiry, A. J. Hennessy, J. P. Cahill, Top. Catal. 1997, 4, 311.
- [62] F. Ozawa, A. Kubo, T. Hayashi, J. Am. Chem. Soc. 1991, 113, 1417.
- [63] Y. Sato, T. Honda, M. Shibasaki, Tetrahedron Lett. 1992, 33, 2593.
- [64] N. E. Carpenter, D. J. Kucera, L. E. Overman, J. Org. Chem. 1989, 54, 5846.
- [65] R. Noyori, H. Takaya, Acc. Chem. Res. 1990, 23, 345.
- [66] O. Loiseleur, M. Hayashi, M. Keenan, N. Schmees, A. Pfaltz, J. Organomet. Chem 1999, 576, 16.
- [67] A. J. Hennessy, D. J. Connolly, Y. M. Malone, P. J. Guiry, *Tetrahedron Lett.* **2000**, *41*, 7757.
- [68] S. R. Gilbertson, Z. Fu, Org. Lett. 2001, 3, 161.
- [69] R. Imbos, A. J. Minnaard, B. L. Feringa, J. Am. Chem. Soc. 2002, 124, 184.

- [70] C. A. Busacca, D. Grossbach, R. C. So, E. M. O'Brien, E. M. Spinelli, Org. Lett. 2003, 5, 595.
- [71] A. Suzuki, Pure Appl. Chem. 1991, 63, 419.
- [72] A. H. Soloway, W. Tjarks, B. A. Barnum, F.-G. Rong, R. F. Barth, I. M. Wyzlic, J. G. Wilson, *Chem. Rev.* **1998**, *98*, 281.
- [73] M. Melaimi, F. Mathey, P. Le Floch, J. Organomet. Chem 2001, 640, 197.
- [74] M. Melaimi, C. Thoumazet, L. Ricard, P. Le Floch, J. Organomet. Chem. 2004, 689, 2488.
- [75] K. Li, P. N. Horton, M. B. Hursthouse, K. K. Hii, J. Organomet. Chem. 2003, 665, 250.
- [76] M. Kawatsura, J. F. Hartwig, J. Am. Chem. Soc. 2000, 122, 9546.
- [77] O. Löber, M. Kawatsura, J. F. Hartwig, J. Am. Chem. Soc. 2001, 123, 4366.
- [78] T. Minami, H. Okamoto, S. Ikeda, R. Tanaka, F. Ozawa, M. Yoshifuji, Angew. Chem. Int. Ed. 2001, 40, 4501.
- [79] Z.-M. Wang, K. B. Sharpless, J. Org. Chem. 1994, 59, 8302.
- [80] D. J. Wink, T. J. Kwok, A. Yee, Inorg. Chem. 1990, 29, 5006.
- [81] M. S. Chattha, A. M. Aguiar, J. Org. Chem. 1971, 36, 2720.
- [82] Y. Huang, A. E. Sopchik, A. M. Arif, W. G. Bentrude, J. Am. Chem. Soc. 1993, 115, 4031.

IX. Annexes du chapitre 3

	SPS	R = C1	R = OH	R = Omen	$R = NEt_2$	R = Men	$R = CH_2Py$	R = n-Bu
		313	310	306	316	307	303	302
P1-C2	1.742(2)	1.743(3)	1.757(4)	1.761(3)	1.756(2)	1.770(6)	1.761(3)	1.762(7)
C2-C3	1.409(3)	1.409(3)	1.420(5)	1.408(4)	1.409(3)	1.393(8)	1.388(4)	1.40(1)
C3-C4	1.399(3)	1.402(3)	1.391(5)	1.389(4)	1.408(3)	1.437(8)	1.413(4)	1.43(1)
C4-C5	1.399(3)	1.405(3)	1.407(5)	1.409(4)	1.400(3)	1.370(7)	1.396(4)	1.41(1)
C5-C6	1.417(3)	1.398(3)	1.767(4)	1.407(4)	1.411(3)	1.394(7)	1.411(4)	1.40(1)
C6-P1	1.745(2)	1.754(2)	1.767(4)	1.751(3)	1.763(2)	1.780(6)	1.760(3)	1.761(7)
P1-R		2.139(1)	1.597(3)	1.600(2)	1.681(2)	1.851(6)	1.839(3)	1.820(8)
C2-P2	1.826(2)	1.779(2)	1.759(4)	1.778(3)	1.766(2)	1.789(6)	1.767(3)	1.760(7)
P2-S1	1.956(1)	2.036(1)	2.039(2)	2.033(2)	2.029(1)	2.032(2)	2.033(1)	2.037(3)
C6-P3	1.835(2)	1.777(3)	1.776(4)	1.774(3)	1.762(2)	1.770(6)	1.756(3)	1.791(8)
P3-S2	1.9532(8)	2.036(1)	2.018(2)	2.033(2)	2.033(1)	2.036(2)	2.043(1)	2.031(4)
P1-Pd		2.1746(8)	2.186(1)	2.188(1)	2.186(1)	2.201(2)	2.1783(8)	2.180(2)
S1-Pd		2.317(1)	2.310(1)	2.328(1)	2.3250(8)	2.317(1)	2.3207(8)	2.321(2)
S2-Pd		2.3277(8)	2.353(1)	2.313(1)	2.3275(8)	2.326(1)	2.332(1)	2.317(2)
Cl-Pd		2.3720(8)	2.405(1)	2.396(1)	2.404(1)	2.399(1)	2.3894(8)	2.377(3)
C2-P1-C6	103.9(1)	105.7(1)	102.7(2)	102.3(1)	103.3(1)	101.3(2)	103.0(2)	103.4(4)
P1-Pd-Cl		177.34(2)	174.66(4)	170.11(3)	167.07(2)	170.06(6)	170.25(3)	168.5(1)
S1-Pd-S2		173.36(2)	174.67(4)	172.98(3)	171.42(2)	170.43(6)	172.76(3)	172.9(1)
CCC-P1		11.5	19.0	20.6	20.9	22.5	21.5	21.05
CCC-C4		3.2	4.8	5.75	5.5	7.7	5.2	4.7
Pyram. P		315.73	316.5	313.3	314.1	316.0	313.1	318.1

Tableau 8 : paramètres structuraux des complexes de palladium [Pd(SPS^R)Cl]. Les distances sont exprimées en Å et les angles en °.

Chapitre 4 : Complexes du groupe 9

Ce chapitre décrit les principaux résultats que nous avons obtenus en chimie de coordination avec les métaux du groupe 9 (Co, Rh, Ir). Il s'intéressera plus particulièrement à l'activation de molécules par des complexes de rhodium^I et d'iridium^I et à l'étude d'un complexe homoleptique de rhodium^{II}.

I. Synthèse de complexes de rhodium¹, d'iridium¹ et de cobalt¹

I.1. Complexes de rhodium¹

Le complexe de rhodium¹ **401** (resp. **402**) est synthétisé à partir de l'anion **211** (resp. **218**) et d'un demi équivalent de [Rh(COD)Cl]₂ (COD = 1,5-cyclooctadiène) (Équation 1). **401** (resp. **402**) est isolé sous la forme d'une poudre orange (resp. jaune) et a été complètement caractérisé par RMN et analyse élémentaire. L'emploi d'un autre précurseur de rhodium¹, tel [Rh(COD)₂][BF₄], conduit certes à la formation de **401**, observé en RMN ³¹P, mais le complexe ne peut être isolé à l'état solide (il se dégrade lorsque la solution est évaporée). La coordination η^1 de l'atome de phosphore central au métal est mise en évidence par la valeur élevée de la constante de couplage ¹J_{P-Rh} (103.4 Hz pour **401** et 145.5 Hz pour **402**) nettement supérieure à celle des complexes η^5 de λ^4 -phosphinine synthétisés au laboratoire (7.3 à 9.0 Hz).^[1] Comme pour les complexes du groupe 10, la présence de deux groupes ancillaires favorise la coordination de type η^1 du squelette SPS à des centres métalliques. La RMN ³¹P révèle l'équivalence des deux groupes ancillaires PPh₂S : deux géométries sont alors envisageables pour **401** et **402** : dans l'une d'elles le squelette SPS est plan tandis que dans l'autre il occupe une face d'une bipyramide trigonale (Équation 1).

La géométrie de **401** a été déterminée par diffraction aux rayons X (Figure 1a, Tableau 2 en annexe de ce chapitre pour les paramètres structuraux). Contrairement aux autres ligands de type pinceur, le ligand SPS est suffisamment flexible pour occuper une face d'une bipyramide trigonale (S1-Rh-S2 88.21(3)°, P1-Rh-centroïde(C43-C44) 177.39° et S1-Rh-centroïde(C47-C48) 140.49°) avec les ligands Ph₂PS en position *anti* par rapport au

substituant P-Me. Le COD occupe un site de coordination axial et un autre équatorial reflétant ainsi l'inéquivalence des atomes de carbone (C43, C44) d'une part et (C47, C48) d'autre part. Les longueurs des liaisons C43-C44 et C47-C48 sont également très différentes : 1.346(6) et 1.435(6) Å respectivement. Celle qui est trans au phosphore (C43-C44) est de l'ordre de grandeur d'une liaison C=C libre tandis que l'autre (C47-C48) dans le plan de la bipyramide trigonale se compare à une double liaison coordonnée η^1 à un centre métallique (1.41 Å en moyenne). Cette différence de longueur se relie directement à la rétrodonation du métal vers les ligands : dans une géométrie de type bipyramide trigonale, l'orbitale d dans le plan équatorial est polarisée et offre une meilleure rétrodonation du rhodium vers l'alcène que l'orbitale d du plan axial vers l'alcène (Schéma 1). Cet effet favorable est encore amplifié par la hauteur relative des OM du fragment métallique et de l'orbitale π^* de l'alcène (Schéma 2) : dans une bipyramide trigonale, les OM d sont scindées en trois groupes : Les OM d_{xz} et d_{yz} d'une part, les OM d_{x2-y2} et d_{xz} d'autre part et enfin OM d_{z2} . L'orbitale π^* de l'alcène axial se recouvre avec l'OM d_{xz} tandis que l'orbitale π^* de l'alcène équatorial se recouvre avec l'OM d_{xy}. Compte tenu de la différence énergétique des OM d_{xz} et d_{xz}, l'énergie de stabilisation $\Delta E_{\text{équatorial}}$ est supérieure à ΔE_{axial} et la rétrodonation meilleure dans le cas de l'alcène équatoriale, ce qui va bien dans le sens de la différence de longueur des deux liaisons alcènes. Cette étude a été confirmée par calculs DFT¹ (Figure 1c) : on observe bien une distance C47-C48 longue par rapport à C43-C44 (1.436 Å vs 1.384 Å) et une distance métal-alcène courte dans le cas de l'alcène équatorial (Rh-C47/C48 = 2.112 Å vs Rh-C43/C44 = 2.292 Å). De plus, la forme des OM caractérisant la rétrodonation du métal vers la π^* de l'alcène est bien polarisée dans le cas de l'alcène équatorial par rapport celle de l'acène axial (Schéma 1).

Figure 1 : a) Structure de 401. Les groupes phényles sont omis par souci de clarté. Les paramètres structuraux de 401 sont regroupés dans le Tableau 2 en annexe de ce chapitre. b) dessin schématique de 401. c) Complexe [Rh(SPS^{Me})(COD)] optimisé en DFT. Distances exprimées en Å.

Schéma 1 : dessin schématique de la rétrodonation du rhodium vers le ligand COD : interaction orbitalaire entre l'OM π^* de l'alcène et OM d du métal.

¹ Complexe modèle de **401** : les groupes phényles sont remplacés par des atomes d'hydrogène. Fonctionnelle : B3PWP1.^[2] Base : Pseudopotentiel de type Hay Wadt pour décrire les 28 électrons de cœur du rhodium associé à la base lanl2dz.^[3] 6-31G* : P, S, C.^[4-6] 6-31G : H.^[4-6]

Schéma 2 : Niveau énergétique des OM d du métal et de l'orbitale π^* de l'alcène.

Revenons maintenant à structure de **401**. Comme pour les complexes du groupe 10, les longueurs de liaisons du squelette SPS sont modifiées lors de la coordination au centre métallique et l'on observe les mêmes tendances : on constate ainsi une délocalisation de la charge négative sur les bras ancillaires PPh₂S et sur les atomes de carbone du cycle de la phosphinine. Cela se caractérise par l'allongement des liaisons P=S (par exemple, P2-S1 vaut 1.995(1) Å dans **401** *vs* 1.956(1) Å dans **SPS**) et le raccourcissement des longueurs P-C externes (P2-C1 = 1.766(3) Å pour **401** *vs* 1.826(2) Å pour **SPS**). L'atome de phosphore central P1 se comporte comme une phosphine (Σ angles de P1 = 305.1°) et les distances P-C internes s'accroissent (P1-C1 = 1.787(2) Å au lieu de 1.742(2) Å dans **SPS**). Comme on peut le constater sur la Figure 1a, le cycle phosphoré n'est plus plan et l'atome de phosphore P1 et le carbone C3 sortent du plan défini par les carbones [C1-C2-C4-C5] de 23.1° et 6.7° respectivement, donnant ainsi au cycle une conformation bateau.

L'anion **211** réagit également avec $[Rh(CO)_2Cl]_2$ et conduit vraisemblablement au complexe dicarbonyle **403**, caractérisé simplement en RMN ³¹P. Ce dernier est néanmoins trop sensible pour être isolé : il se dégrade si l'on évapore le solvant ou en présence d'oxygène. **403** est piégé par la triphénylphosphine et l'on forme le complexe **404** avec la libération concomitante d'un ligand carbonyle. **404** est un complexe à 18 électrons, stable, complètement caractérisé par RMN, IR, analyse élémentaire et diffraction aux rayons X.

Équation 2

La présence du groupe carbonyle lié à l'atome de rhodium est mise en évidence en IR par une fréquence d'élongation v(CO) à 1913 cm⁻¹ et, en RMN ¹³C, par un signal à 194.7 ppm notamment couplé à l'atome de rhodium (${}^{1}J_{C-Rh} = 86.8$ Hz). En RMN ³¹P, on observe une structure symétrique de la molécule avec deux groupes PPh₂S magnétiquement équivalents : c'est un système du type AB₂X; le détail des constantes de couplage est présenté au Schéma 3. La valeur élevée de la constante de couplage ${}^{2}J(P_{A}-P_{C})$ (309.8 Hz) indique que les atomes de phosphore P_A et P_C sont en *trans* l'un par rapport à l'autre. La coordination η^{1} de l'atome de phosphore central au métal est validée par la valeur élevée de la constante de couplage ${}^{1}J$ (P_A-Rh) (107.3 Hz).

Schéma 3 : déplacements chimiques et couplages de 404 en RMN ³¹P.

Enfin, l'analyse aux rayons X de **404** permet de lever l'incertitude sur la position du ligand carbonyle (Figure 2). La géométrie de **404** est une bipyramide trigonale distordue avec le groupe PPh₃ en *trans* de P1 (P1-Rh-P4 = 177.39(2) Å), comme nous l'avions déduit du spectre RMN ³¹P, et le groupe carbonyle est situé en *syn* par rapport au substituant P-Me. On constate une dissymétrie dans cette structure avec deux angles S-Rh-C7 très différents : S1-Rh-C7 et S2-Rh-C7 valent respectivement $143.52(7)^{\circ}$ et $128.97(7)^{\circ}$. Des expériences RMN ³¹P à basse température ne montrent aucune inéquivalence des deux groupes PPh₂S, la dissymétrie ne semble observée qu'en phase solide. Les distances Rh-C et C-O sont respectivement de 1.820(2) et 1.157(2) Å et se comparent avec d'autres structures de rhodium¹ de géométrie bipyramide trigonale.^[7, 8] Les paramètres structuraux du squelette SPS de **404** sont comparables à ceux de **401**.

Figure 2 : Structure de 404 (vue de profil). Les groupes phényles sont omis par souci de clarté. Les paramètres structuraux de 404 sont regroupés dans le Tableau 2 en annexe de ce chapitre.

Nous avons ensuite mené une série de réactions pour dériver le complexe **401**. La triphénylphosphine déplace facilement le COD et conduit au complexe hautement réactif **405** complètement caractérisé par RMN et diffraction aux rayons X (Équation 3). Le spectre RMN

³¹P de ce complexe est un système AB₂CX du deuxième ordre modélisée grâce au logiciel gNMR. On obtient de manière analogue le complexe **406** substitué par un groupe méthoxy sur l'atome de phosphore central. La présence du groupe méthoxy sur l'atome de phosphore central déblinde considérablement son déplacement chimique (δ (P-OMe) = 109.6 ppm pour **406** au lieu de δ (P-Me) = 29.8 ppm pour **405**) et évite les spectres du deuxième ordre.

La structure de **405** est présentée à la Figure 3. Les groupes phényles du ligand SPS sont omis par souci de clarté. La géométrie autour du centre métallique est plan carré comme on pouvait s'y attendre pour un complexe [ML₄] de configuration d⁸. Bien que le squelette SPS occupe trois sites de coordination, le ligand n'est pas plan : les atomes de phosphore P1 et de carbone C3 sont situés au dessus du plan défini par les carbones du cycle phosphoré : par exemple, P1 dévie du plan défini par les carbones [C1-C2-C4-C5] d'un angle de 16.7° et est désormais pyramidal (Σ angles de P1 = 311.2°). Ce dessin ORTEP montre clairement que les deux faces de l'atome de rhodium sont différenciées et que les réactifs peuvent approcher de manière *syn* ou *anti* par rapport au substituant méthyle C6. La géométrie du ligand dans ce complexe est cruciale et permet de rationaliser la réactivité de ce dernier (*vide supra*). Par ailleurs, les distances et angles du squelette SPS sont comparables à ceux du complexe de rhodium **401** (allongement des liaisons P=S et P-C internes et raccourcissement des P-C externes).

Figure 3 : Structure de 405. Les substituants phényles du squelette SPS sont omis par souci de clarté. Les paramètres structuraux de 405 sont regroupés dans le Tableau 2 en annexe de ce chapitre.

Nous avons également substitué le COD par deux ligands isonitrile (Équation 4). On forme quantitativement le complexe **407**. Ce dernier est sensible à l'oxygène, aux solvants chlorés et se dégrade au bout de quelques heures dans le THF ou le C_6D_6 ; il a seulement été caractérisé en RMN ³¹P. L'ajout de PPh₃ conduit vraisemblablement au complexe **408**, dont la géométrie a été supposée analogue à celle du complexe **404** en raison de la similitude des spectres RMN ³¹P de **408** et **404**.

Enfin, nous avons essayé de synthétiser des complexes chiraux à partir de l'anion $[SPS^{Men}][Li(THF)_2]$ **234** substitué par le groupe menthyle (Équation 5). L'ajout d'un demi équivalent de $[Rh(COD)Cl]_2$ ne conduit à aucune réaction, même après agitation prolongée ou chauffage à 80°C. L'addition de $[Rh(CO)_2Cl]_2$ sur **234** conduit à la formation d'un complexe de rhodium (mono)carbonyle **410** complètement caractérisé par RMN, IR et diffraction aux rayons X. La présence d'un groupe chiral sur l'atome de phosphore central différencie les deux groupes PPh₂S en RMN ³¹P (δ (THF) à 43.3 et 47.5 ppm). Contrairement au complexe de rhodium carbonyle [Rh(SPS^{Me})(CO)₂] **403**, **410** est relativement stable : il peut être tiré à sec, conservé en solution dans le THF ou sous forme de poudre sous réserve d'être manipulé sous atmosphère inerte.

La présence d'un groupe carbonyle est mise en évidence par une unique bande de vibration v(CO) à 1978 cm⁻¹ en IR et par un doublet à 186.4 ppm couplé à l'atome de rhodium (${}^{1}J_{Rh-C} = 73.2 \text{ Hz}$) en RMN 13 C. De plus, le substituant menthyle, chiral, différencie les deux côtés de la molécule et l'on observe notamment des déplacements chimiques différents pour les atomes de carbone du cycle phosphoré C_{2,6} (δ (CD₂Cl₂) = 71.3 et 73.5 ppm) et C_{3,5} (δ (CD₂Cl₂) = 142.6 et 143 ppm). La structure de **410** a été confirmée par diffraction aux rayons X (Figure 4, Tableau 2). Comme on pouvait s'y attendre pour un complexe [ML4] d⁸, la géométrie de ce complexe est plan carré avec le groupe carbonyle en *trans* du phosphore de la phosphinine (P1-Rh-C16 = 173.0(1)° et S1-Rh-S2 = 169.87(2)°). La longueur de la liaison C16-O1 (1.138(4) Å) est comparable à celle d'autres complexes de rhodium¹ carbonyle d'environnement similaire, tandis que Rh-C16 est légèrement plus longue (1.859(3) Å au lieu

de 1.819 Å en moyenne).^{2, [9-14]} Par ailleurs, les particularités structurales du squelette SPS sont identiques à celles des complexes **401**, **404** et **405** décrits précédemment.

Figure 4 : Structure de 410. Les paramètres structuraux de 410 sont regroupés dans le Tableau 2 en annexe de ce chapitre.

Nous avons synthétisé une série de complexes de rhodium incorporant le ligand **SPS** substitué par des groupes méthyle, méthoxy ou menthyle sur le phosphore central. Comme pour les complexes du groupe 10, on observe une coordination de type η^1 mise en évidence par une constante de couplage ${}^{1}J_{P-Rh}$ de l'ordre de 110 Hz (à comparer à 10 Hz pour des complexes de η^5 de λ^5 -phosphinines). Ces complexes sont souvent réactifs : certains se manipulent sous atmosphère inerte (405, 406, 408, 410), d'autres ne peuvent être isolés (403, 407). La réactivité des complexes 405 et 406 va être étudiée plus en détail dans la partie II de ce chapitre.

I.2. Complexes de cobalt¹ et d'iridium¹

Compte tenu de la réactivité des complexes de rhodium^I 405 et 406 (voir partie II sur l'activation et la fixation de molécules), nous avons entrepris la synthèse des complexes analogues de cobalt^I et d'iridium^I [M(SPS^{Me})(PPh₃)] (M = Co, Ir).

La stratégie synthétique du complexe d'iridium **411** est analogue à celle du complexe de rhodium **405** (Équation 6). La réaction de l'anion **211** avec un demi équivalent de $[Ir(COD)CI]_2$ conduit au complexe **412**. Ce dernier a été isolé sous la forme d'une poudre orange stable et caractérisé par RMN et analyse élémentaire. En l'absence de données cristallographiques, nous avons supposé que sa géométrie était identique à celle du complexe de rhodium **401** (bipyramide trigonale). En RMN ³¹P, les signaux du squelette SPS apparaissent sous la forme d'un système AX₂ : triplet à 7.9 ppm (P-Me) et doublet à 47.8 ppm (PPh₂S) avec une constante de couplage ²J_{P-P} de 112.4 Hz. Comparé au complexe analogue de rhodium **401**, le déplacement chimique du groupe P-Me de **412** est déplacé vers les champs forts ($\Delta \delta = -25.2$ ppm). L'autre différence importante provient des CH vinyliques du ligand COD en RMN ¹³C : dans **412**, ils apparaissent sous la forme d'un doublet à 62.0 ppm (²J_{C-P} = 6.3 Hz) tandis que, dans **401**, c'est un singulet large à 78.6 ppm. Cela illustre la meilleure rétrodonation du métal vers l'alcène dans le cas du complexe d'iridium **412**. Sinon, les complexes de rhodium **401** et d'iridium **412** ne diffèrent pas significativement.

² La recherche de structures du type $[Rh^{I}(CO)(ligand phosphoré)(ligand soufré)_{2}]$ dans la base cristallographique de Cambridge conduit systématiquement à des géométries dans lesquelles le carbonyle est *trans* à un atome de soufre et non à un atome de phosphore.

Le déplacement du ligand COD par la triphénylphosphine n'a pas lieu même dans des conditions dures (température jusqu'à 80°C, présence de H₂ jusqu'à 20 bars, réactions réalisées dans le THF ou le méthanol) et l'emploi d'une phosphine plus basique comme PMe₃ ne change rien (Équation 6). Nous nous sommes alors tournés vers l'utilisation du précurseur métallique [Ir(COE)₂Cl]₂ (COE = cyclooctène) dans lequel le ligand COE est plus labile que le COD.

De même, **211** réagit avec un demi équivalent de $[Ir(COE)_2Cl]_2$ et conduit à **413** (Équation 7). Malheureusement, le complexe **413** est instable et ne peut être isolé ; il se décompose en solution au bout de trente minutes. Il n'est par conséquent caractérisé que par son spectre RMM ³¹P : c'est un système AX₂ avec deux groupes PPh₂S magnétiquement équivalents composé d'un triplet à 13.9 ppm (P-Me) et d'un doublet à 33.6 ppm (PPh₂S) avec une constante de couplage ²J_{P-P} de 114.2 Hz. On obtient néanmoins le complexe **411** si l'on ajoute successivement en boîte à gants un demi équivalent de $[Ir(COE)_2Cl]_2$ et la triphénylphosphine à une solution de **211**. Aucune purification de ce complexe ne peut être entreprise car **411** se dégrade s'il est tiré à sec ou précipité. **411** se conserve donc en boîte à gants dans une solution de THF. Comme **413**, **411** est simplement caractérisé par RMN ³¹P : c'est un système AX₂Y qui correspond à la structure proposée ci-dessous.

La même stratégie de synthèse ne peut être appliquée au complexe de cobalt^I en raison du manque de précurseur métallique. Nous nous sommes donc tournés vers [Co(PPh₃)₃Cl] qui devrait conduire en une étape au produit escompté (Équation 8). L'addition de **211** sur [Co(PPh₃)₃Cl] conduit à un changement de couleur immédiat (du rouge au marron) et, en RMN ³¹P, à la disparition du signal de l'anion **211** et à l'apparition de celui de PPh₃. Nous avons alors supposé que le complexe formé **414** est de configuration d⁸ paramagnétique, donc de géométrie tétraédrique. Un échantillon de **414** a été envoyé à l'équipe de Michel Geoffroy (Université de Genève) afin de réaliser une étude RPE qui est en cours.

Enfin, nous avons réalisé une étude DFT afin de vérifier si la structure la plus stable du complexe [Co(SPS^{Me})(PPh₃)] était bien un complexe paramagnétique. Un pseudo potentiel de type Hay Wadt a été utilisé pour représenter les 10 électrons de cœur du cobalt ;^[3] il est associé à la base lanl2dz^[3] complétée par des fonctions de polarisation f.^[15] Nous avons utilisé les bases 6-31+G* pour les atomes de phosphore, de soufre,^[16] 6-31G* pour les atomes de carbone^[4-6] et 6-31G pour les atomes d'hydrogène^[4-6] ainsi que la fonctionnelle B3PW91.^[2]

Nous avons optimisé et caractérisé comme minimum de la surface d'énergie le complexe I (Figure 5a), modèle de 414, dans lequel tous les groupes phényles sont remplacés par des atomes d'hydrogène. Les structures optimisées de I à l'état triplet (I-triplet) et à l'état singulet (I-singulet) sont présentées à la Figure 5. Trois minima sont obtenus pour le complexe dans l'état triplet : une structure tétraédrique (P-Co-P = 113.1° et S-Co-S = 128.3°), et deux structures papillon (P-Co-P = 164.2° et S-Co-S = 124.2° pour l'une et P-Co-P = 111.5° et S-Co-S = 169.2° pour l'autre). D'un point de vue énergétique, on constate que les complexes à l'état triplet sont nettement plus stables que le complexe à l'état singulet, ce qui confirme bien l'absence de signal RMN observé expérimentalement.³ De plus, le complexe à l'état triplet le plus stable est dans une géométrie tétraédrique.

Figure 5 : a) complexe I à optimiser. b) optimisation à l'état triplet. c) optimisation à l'état singulet. E : énergie relative exprimée en kcal.mol⁻¹.

Nous avons ainsi synthétisé les complexes d'iridium^I et de cobalt^I du type $[M(SPS^{Me})(PPh_3)]$. Le complexe de cobalt, paramagnétique, n'a pu être caractérisé, mais une structure tétraédrique a été proposée par calculs théoriques.

³ Un calcul simple point a également été réalisé avec la base $6-31++G^{**}$ pour les atomes de phosphore, soufre, carbone et hydrogène.^[4-6] La différence d'énergie n'est pratiquement pas modifiée : les énergies relatives sont 0, 2.5, 13.6 et 26.3 kcal.mol⁻¹.

II. Activation et fixation de petites molécules

II.1. Premiers pas avec le complexe de rhodium 405

II.1.1. Synthèse

Nous nous somme aperçus qu'une solution de complexe **405** dans le THF conservée sur la paillasse change de couleur en l'espace de quelques jours et qu'il se forme un précipité orange important. Le complexe formé, **415**, a été complètement caractérisé par RMN, IR et analyse élémentaire. Le spectre RMN ³¹P montre effectivement un changement significatif, mais le spectre du deuxième ordre ne donne pas d'information supplémentaire sur la structure de **415**. Les spectres ¹H et ¹³C indiquent que sa structure est symétrique avec deux groupes PPh₂S magnétiquement équivalents et que **415** est un complexe η^1 de rhodium incorporant un anion λ^4 -phosphinine : blindage des atomes de carbone C_{2,6} (δ (CD₂Cl₂) = 70.2 ppm), C₄ (δ (CD₂Cl₂) = 117.5 ppm) et du proton H₄ (δ (CD₂Cl₂) = 5.76 ppm). Enfin, une information cruciale est donnée par le spectre IR : il présente une bande d'élongation v(OO) à 802 cm⁻¹, caractéristique de complexes péroxo [Rh(η^2 -O₂)].^[17-21]

Nous avons rationalisé la formation de **415** en faisant buller de l'oxygène (1 atm) dans une solution fraîchement préparée de **405** (Équation 9). Le complexe **415** est extrêmement stable et sa structure a été déterminée par diffraction aux rayons X (Tableau 2 en annexe de ce chapitre pour les paramètres structuraux). La géométrie de **415** est une bipyramide trigonale avec l'oxygène lié de manière η^2 au centre métallique (Rh-O = 2.050(2) et 2.004(2) Å). La valeur de la distance O-O (1.431(2) Å) confirme les données IR et révèle que **415** est bien un complexe péroxo de rhodium^{III}.^[20-25] C'est également le premier complexe péroxo qui comporte des ligands soufrés.

Nous avons ensuite entrepris une étude systématique de la réactivité de **405** vis-à-vis de petites molécules (Équation 10). L'addition de monoxyde de carbone et de 2,6diméthylphénylisonitrile conduit à la formation des complexes de rhodium^I **404** et **408**, décrits précédemment, et représente une deuxième voie de synthèse de ces complexes. Comme on peut le voir sur les structures aux rayons X de **404** (Figure 2) et de **415** (Équation 9), l'attaque de O₂ et de CO a lieu exclusivement du côté *syn* au substituant P-Me et déplace le ligand PPh₃ en dehors du plan équatorial. PPh₃ est désormais situé sur l'axe principal de la bipyramide trigonale, *trans* au ligand λ^4 -phosphinine.

Équation 10 : réactions réalisées dans le THF, -78°C à ta. a) O_2 (1 atm), 12h. b) CO (1 atm), 10 min. b) 2,6diméthylbenzoisonitrile, 10 min. d) CS₂, 10 min. e) SO₂ (1 atm), 30 min. f) MeI ou PhI, 10 min. g) C₂Cl₆ (ou CH₂Cl₂), 10 min.

Nous avons également testé l'addition de CO₂ sur **405** ; malheureusement, la réaction n'est pas reproductible, le complexe formé est instable et le spectre RMN ³¹P obtenu ne permet pas de conclure sur sa structure. Nous avons obtenu un résultat bien plus satisfaisant avec CS₂. On forme le complexe **416** avec une quantité stoechiométrique de CS₂ (Équation 10). Contrairement à son analogue incorporant CO₂, **416** est stable en solution, à l'état solide, mais doit être manipulé sous atmosphère inerte. La coordination de CS₂ est mise en évidence en RMN ¹³C par un doublet à 251.1 ppm couplé à l'atome de rhodium (¹*J*_{C-Rh} = 38.8 Hz) et en IR par une fréquence d'élongation v(CS) à 1143 cm⁻¹. Ces valeurs se comparent avec d'autres complexes incorporant de rhodium incorporant CS₂.^[19, 26-30] La coordination de CS₂ est dissymétrique comme l'atteste l'inéquivalence des groupes PPh₂S en RMN ³¹P ($\delta(C_6D_6) = 47.5$ et 50.6 ppm), et des atomes de carbone C_{2.6} ($\delta(C_6D_6) = 67.0$ et 77.5 ppm) et C_{3.5} ($\delta(C_6D_6) = 142.6$ et 144.1 ppm) en RMN ¹³C. Le complexe **416** a été caractérisé par diffraction aux rayons X (Figure 6, Tableau 2 en fin de chapitre pour les distances). La géométrie du complexe est bipyramide trigonale et la coordination de CS₂ a lieu de manière η^2 par l'une des liaisons C=S (C7-S3 1.670(3) Å et C7-S4 1.631(3) Å). A l'heure actuelle, seules deux autres structures de complexes du type [Rh(η^2 -SC=S)] sont décrites dans la littérature et aucune avec des ligands sulfure de phosphine.^[26, 27] On constate de plus que l'attaque de CS₂ a lieu de manière *syn* par rapport au substituant P-Me.

Figure 6 : Structure de 416. Les groupes phényles sont omis par souci de clarté. Les paramètres structuraux de 416 sont regroupés dans le Tableau 2 en annexe de ce chapitre.

Nous avons aussi tenté de coordonner de SO₂ (Équation 10). La coordination a lieu très rapidement lorsque l'on bulle SO₂ dans une solution de **405** dans le THF à -78°C. La géométrie du complexe formé, **417**, ne peut pas être simplement établie par RMN : l'équivalence des groupes PPh₂S ne permet de conclure entre trois modes de coordination possible de SO₂ (pyramidal ou plan η^1 -S, η^1 -O ou η^2 -O,S). Cependant, la présence de deux fréquences v(SO) à 1028 et 1148 cm⁻¹ dans le spectre IR fait pencher en faveur de la géométrie pyramidale qui a été définitivement été établie par analyse aux rayons X (Figure 7).^[31, 32] Les angles P1-Rh-P4 et S1-Rh-S2 valent respectivement 162.12(3)° et 172.86(3)° et SO₂, lié de manière η^1 -S, occupe le site apical de la pyramide à base carré. A nouveau, le ligand est situé en position *syn* par rapport au substituant P-Me. Les données IR et les paramètres structuraux de **417** sont comparables au complexe [RhCl(tpp)(SO₂)] (tpp = bis(3-diphénylphosphino)-propyl)-phénylphosphine).^[33-35] Le complexe **417** est sensible à l'oxygène et nécessite d'être manipulé sous atmosphère inerte.

Figure 7 : Structure de 417. Les groupes phényles du squelette SPS sont omis par souci de clarté. Les paramètres structuraux de 417 sont regroupés dans le Tableau 2 en annexe de ce chapitre.

Nous nous sommes ensuite penchés sur l'addition oxydante de molécules telles MeI ou PhI sur **405** (Équation 10). Leur addition sur **405** a lieu à -78°C pour MeI et nécessite un chauffage d'une heure à 60°C pour PhI. On obtient respectivement les complexes de rhodium^{III} **418** et **419** avec de bons rendements (87% et 82% resp.). **418** est stable et a été complètement caractérisé par RMN et analyse élémentaire tandis que **419** se dégrade dans les solvants chlorés et a seulement été caractérisé par RMN ¹H et ³¹P. Le passage d'un complexe de rhodium^{II} à un complexe de rhodium^{III} entraîne un déblindage important du signal RMN ³¹P du substituant P-Me (de δ (P-Me, THF) = 29.8 dans **405** à δ (P-Me, THF) = 55.0 ppm dans **419** par exemple). On observe également une structure dissymétrique des deux complexes : pour **418**, l'inéquivalence des atomes de carbones C_{2,6} (δ (CDCl₃) = 70.2 et 75.4 ppm) et pour **419**, celle des groupes PPh₂S (δ (CD₂Cl₂) = 60.9 et 63.8 ppm), suggèrent ainsi une addition en *cis* de R¹I (R¹ = Me, Ph). Dans **418**, la coordination du groupe méthyle au centre métallique est mise en évidence par des doublets à 0.47 ppm en RMN ¹H (²J_{Rh-H} = 7.1 Hz) et à 11.9 ppm

en RMN ¹³C (${}^{1}J_{Rh-C} = 59.6$ Hz). La structure de **418** a été déterminée par diffraction aux rayons X (Figure 8). La géométrie autour de l'atome de rhodium est octaédrique avec le squelette SPS dans un arrangement facial et le ligand triphénylphosphine *trans* à l'atome de phosphore central. On constate également que MeI a attaqué l'atome de rhodium en *cis* et en *syn* par rapport au substituant P-Me, comme précédemment.

Figure 8 : Structure de 418. Les groupes phényles du squelette SPS sont omis par souci de clarté. Les paramètres structuraux de 418 sont regroupés dans le Tableau 2 en annexe de ce chapitre.

Enfin, nous avons réalisé l'oxydation de **405** avec l'héxachloroéthane.⁴ Comme on peut s'y attendre, l'oxydation se produit facilement à basse température et l'on obtient le complexe à 18 électrons **420** complètement caractérisé par RMN, analyse élémentaire et diffraction aux rayons X (Équation 10, Figure 9). La géométrie de **420** est octaédrique et résulte de l'attaque *syn* de l'oxydant.

Figure 9 : Structure de 420. Les groupes phényles du squelette SPS sont omis par souci de clarté. Les paramètres structuraux de 420 sont regroupés dans le Tableau 2 en annexe de ce chapitre.

Nous avons également entrepris d'activer des liaisons Si-H de silane et B-H de borane, mais aucune réaction n'est observée.

Finalement le complexe plan carré $[Rh(SPS^{Me})(PPh_3)]$ **405** peut activer ou fixer avec de petites molécules comme O₂, CO, R¹-NC, CS₂, SO₂, MeI, PhI, C₂Cl₆ et conduire aux complexes de rhodium¹ ou de rhodium^{III} correspondants. De plus, les données cristallographiques de six d'entre eux montrent que l'attaque a lieu exclusivement *syn* au substituant P-Me porté par l'atome de phosphore central.

⁴ La même réaction a également lieu avec du CH₂Cl₂.

II.1.2. Régiosélectivité de l'activation de molécules : pourquoi ?

Deux facteurs peuvent être mis en avant pour expliquer la discrimination faciale qui s'opère lors de l'attaque de petites molécules sur le complexe **405** : l'encombrement stérique et la tension géométrique du squelette SPS.

Lors de la synthèse de **417** (fixation de SO₂), qui adopte une géométrie de type pyramide à base carrée, l'arrangement spatial de **405** n'est pas perturbé et le ligand SPS conserve la même géométrie. Dans ce cas, l'attaque de SO₂ est gouvernée par l'encombrement stérique : l'attaque par la face *anti* est gênée par deux groupes phényles en position axiales et est défavorisée par rapport à l'attaque *syn* dont la face est dégagée (Schéma 4).

Schéma 4 : modèle compact du complexe plan carré 405.

Pour les cinq autres complexes, **404**, **415**, **416**, **418** et **420** (CO, O₂, CS₂, MeI, Cl₂ resp.), la géométrie finale est une bipyramide trigonale ou un octaèdre avec le ligand SPS qui occupe une face de la structure. En dépit de l'encombrement stérique qui favorise plutôt l'attaque *syn*, la rigidité du squelette SPS et la pyramidalité du phosphore central ne permettent pas aux deux groupes PPh₂S de se plier vers la face *syn* par un effet purement mécanique (Schéma 5). L'attaque *anti* est donc défavorisée et seuls les produits d'addition *syn* sont obtenus.

L'encombrement stérique de la face *anti* ainsi que la rigidité du squelette SPS expliquent que l'attaque de petites molécules a lieu par la face *syn*. Une étude DFT complète sera présentée dans le chapitre 5.

II.1.3. Réactivité

Nous avons testé sans grand succès la réactivité des complexes formés et avons réalisé trois réactions classiques.

La synthèse de complexes hydropéroxo est intéressante à plus d'un titre : ils sont notamment utilisés dans la réaction d'oxygénation des oléfines catalysée par des métaux du groupe 8.^[36-43] Ce sont des complexes relativement rares^[23, 44-46] si l'on exclut tous les exemples biologiques contenant des porphyrines et du cytochrome P450.^[47] Pour ce dernier, le mécanisme d'oxydation fait intervenir la protonation de l'intermédiaire η^2 -péroxo en espèce η^1 -hydropéroxo qui se réarrange en intermédiaire oxo après élimination d'une molécule d'eau (Équation 11a).^[48-50] Dans notre cas, aucune réaction n'est observée lors du traitement acide de **415** (Équation 11b).

Une autre réaction fait intervenir la désulfuration de complexe [Rh{ η^2 -(S-C=S)}] afin de synthétiser des précurseurs de rhodium thiocarbonyle [Rh(CS)].^[30, 51-55] L'emploi de P(*n*-Bu)₃ ou de P(*i*-Pr)₃ ne permet pas de désulfurer **416** (Équation 12).

La troisième réaction que nous avons envisagée est la synthèse de complexe sulfato [Rh(κ^2 -SO₄)]. Deux stratégies sont envisageables et sont généralement employées : i) l'addition de SO₂ sur un complexe péroxo ou au contraire ii) celle d'oxygène sur un complexe [Rh(η^1 -SO₂)] (Équation 14). Cette dernière réaction sert notamment de test pour diagnostiquer la coordination η^1 -pyramidale de SO₂^[31] à quelques exceptions près.^[34, 56-58] Des études ont montré que le mécanisme fait intervenir le remplacement de SO₂ par O₂,^[56] suivi par l'attaque électrophile de SO₂ libre sur O₂ coordonné.^[59, 60] L'addition de SO₂ sur un complexe péroxo passe par l'insertion dans la liaison M-O (Équation 13).^[61] L'intermédiaire persulfite a été isolé par Collman *et al.* par marquage à l'¹⁸O₂.^[62]

Équation 13

Revenons maintenant sur les complexes **415** et **417** (Équation 14). L'addition de SO₂ dans une solution de **415** ou celle d'oxygène dans une solution de **417** provoque au bout d'une nuit la précipitation de petits cristaux rouges qui ne peuvent être redissouts dans les solvants classiques ainsi que la disparition du réactif. L'analyse du spectre IR de **421** présente deux bandes à 1262 et 1149 cm⁻¹, caractéristiques d'un complexe [Rh(κ^2 -SO₄)].^[28, 63-64].

II.2. Influence du substituant de l'atome de phosphore central

Nous avons voulu tester l'influence du substituant porté par l'atome de phosphore central et avons étudié la réactivité du complexe plan carré $[Rh(SPS^{OMe})(PPh_3)]$ **406** vis-à-vis de petites molécules (O₂, CS₂, SO₂, CH₂Cl₂) (Équation 15). Le but de cette partie n'est pas de décrire de manière exhaustive les complexes formés, mais de mettre en lumière les différences et les difficultés que nous avons rencontrées lorsque l'on emploie le complexe plan carré **406** dont l'atome de phosphore central est substitué par un groupe méthoxy et non plus méthyle.

Avant toute chose, il est important de mentionner que le dépouillement des spectres RMN ³¹P des complexes formés est beaucoup plus simple que précédemment : la présence du groupe méthoxy sur l'atome de phosphore central déblinde considérablement son déplacement chimique ($\delta \sim 80$ à 110 ppm) et évite les spectres du deuxième ordre.

Tout comme le complexe **405**, **406** est sensible à l'oxygène et forme *a priori* le complexe péroxo **422** en l'espace d'une heure (Équation 15). **422** est cependant instable en solution et ne peut être conservé : on obtient après une nuit la présence exclusive de Ph₃P=O, détecté en RMN ³¹P (δ = 26.7 ppm). De plus, l'ajout de CH₂Cl₂ conduit au déplacement de l'oxygène et à la formation du complexe **425** (*vide supra*). Le complexe oxygéné formé n'est pas du tout aussi stable que le complexe [Rh(SPS^{Me})(PPh₃)(η^2 -O₂)] **415**. Le remplacement du groupe méthyle par le groupe méthoxy change donc considérablement la réactivité du complexe.

L'addition de CS₂ sur **406** est également délicate : le complexe formé, **423**, est instable et la solution de **423** ne peut être évaporée. De plus, son spectre RMN ³¹P est de la forme AX₂YM et ne peut rendre compte de la structure dissymétrique proposée précédemment pour le complexe [Rh(SPS^{Me})(PPh₃){ η^2 -S-C(S)}] **416**. On peut plutôt imaginer la coordination linéaire de CS₂ par une paire libre de l'atome de soufre (Équation 15).

Équation 15 : réaction réalisée dans le THF, -78°C à ta. a) O₂ (1 atm). b) CS₂. c) SO₂ (1 atm). d) CH₂Cl₂.

La fixation de SO₂ sur le complexe 406 intervient, comme précédemment pour 417, par bullage de SO₂ (1 atm) dans une solution fraîchement préparée de 406 (Équation 15). Le complexe formé a été complètement caractérisé par RMN et nous avons supposé que sa structure était identique à celle de 417. On observe cependant en RMN ¹H et RMN ¹³C l'absence de signal pour le groupe méthoxy et un singulet supplémentaire à 10.59 ppm intégrant pour un proton qui a été attribué à un groupe hydroxy sur l'atome de phosphore central. On constate ainsi que le groupe méthoxy a été remplacé par un groupe hydroxy et donc que la liaison P-OMe est fragile.

L'ajout d'oxygène sur 424 entraîne le dépôt de petits cristaux et la formation du complexe 426, insoluble dans tous les solvants organiques que nous avons testés (Équation 16). La structure du complexe 426 est présentée à la Figure 10. Par ailleurs, la structure de 426 est pseudo octaédrique et la coordination de SO₄ au centre métallique a lieu par deux liaisons métal-oxygène. De plus, les distances métal-oxygène et soufre-oxygène sont comparables à l'unique autre structure du type [Rh(κ^2 -SO₄)].^[65]

Équation 16

Figure 10 : structure de 426. Les groupes phényles sont omis par souci de clarté. Sélection de paramètres structuraux (distances exprimées en Å et angles en °) : Rh-P1 2.291(1), Rh-P4 2.451(1), Rh-S1 2.328(1), Rh-S2 2.331(1), Rh-O1 2.118(2), Rh-O2 2.110(2), O1-S3 1.525(2), O2-S3 1.524(3), S3-O3 1.466(3), S3-O4 1.432(3), P1-Rh-P4 176.83(4), S1-Rh-S2 87.57(3), S1-Rh-O1 103.00(7), O1-Rh-O2 67.6(1),O2-Rh-S2 101.93(7), O1-S3-O2 100.9(1), O3-S3-O4 112.7(2), O1-S3-O2-O3 114.9.

La réaction de CH₂Cl₂ sur **406** conduit à la formation *quasi* instantanée du complexe **425**, dont le spectre RMN ³¹P indique une structure symétrique (système AX₂YM) (Équation 15). Ce dernier a été complètement caractérisé par RMN, analyse élémentaire et diffraction aux rayons X. Contrairement au complexe [Rh(SPS^{Me})(PPh₃)(Cl)₂] **420**, substitué par deux atomes de chlore et un groupe méthyle sur le phosphore central, le complexe **425** correspond au produit d'addition oxydante de **406** dans une liaison C-Cl de CH₂Cl₂. La présence du groupe CH₂Cl lié à l'atome de rhodium est mis en évidence en RMN ¹H par un pseudo pentuplet à 4.37 ppm (²J_{Rh-H} = 5.2 Hz et ³J_{P-H} = 2.6 Hz) et en RMN ¹³C par un doublet à 54.7 ppm couplé à l'atome de rhodium (¹J_{Rh-C} = 14.6 Hz). Ces déplacements chimiques sont semblables à ceux que l'on trouve dans la littérature.^[66] La géométrie de ce complexe est octaédrique et les distances autour du centre métallique se comparent à celles d'autres ligands pinceurs (Figure 11).^[66] On constate également que le groupe CH₂Cl et l'atome de chlore sont en *trans* l'un par rapport à l'autre (C7-Rh-Cl2 = 179.50(7)°) : aucune discrimination faciale n'est observée lors de cette addition, contrairement à l'attaque *syn* observée avec les complexes substitués par un groupe P-Me sur le phosphore central.

Figure 11 : Structure de 425. Les groupes phényles sont omis par souci de clarté. Sélection de paramètres structuraux (distances exprimées en Å et angles en °) : P1-Rh 2.2599(6), P4-Rh 2.3963(6), S1-Rh 2.3708(5), S2-Rh 2.3604(5), Rh-C7 2.077(2), Rh-Cl2 2.4556(5), S1-Rh-S2 167.97(2), P1-Rh-P4 173.07(2), C7-Rh-Cl2 179.50(7), S1-Rh-C7 89.18(6), S1-Rh-P1 82.90(2).

Compte tenu des différence de réactivité et de régiosélectivité entre les complexes plan carré [Rh(SPS^{Me})(PPh₃)] **405** et [Rh(SPS^{OMe})(PPh₃)] **406** vis-à-vis de O₂, CS₂, SO₂ et CH₂Cl₂,

nous nous concentrerons dans la suite de cette thèse exclusivement sur la réactivité des anions substitués par un groupe alkyle sur l'atome de phosphore central.

II.3. Et l'iridium ?

Nous avons également testé la réactivité du complexe d'iridium plan carré **411** vis-àvis de petites molécules. L'étude n'a pas été aussi complète que pour le complexe de rhodium **405** et nous nous sommes volontairement limités dans cette partie à l'activation de O_2 , H_2 , de silane et de borane.

Nous avons d'abord expérimenté la réaction de **411** avec l'oxygène. Tout comme le complexe analogue de rhodium, buller O₂ (1 atm) dans une solution fraîchement préparée de **411** entraîne un changement immédiat de la couleur de la solution (du marron vers l'orange) et la formation d'un précipité (Figure 12). Le complexe formé, **427**, a été complètement caractérisé par RMN, analyse élémentaire et diffraction aux rayons X. La géométrie de **427** ne peut être établie seulement avec les données RMN. Cependant, elles montrent que la structure du complexe reste symétrique et en RMN ³¹P les déplacements chimiques de PPh₂ et PPh₃ sont modifiés de manière significative ($\Delta \delta = +12.5$ ppm et -26.0 ppm respectivement). Comme on pouvait s'y attendre, les signaux RMN ³¹P apparaissent sous la forme de doublet de triplet de doublet à 17.7 ppm (P_A-Me), doublet de doublet à 50.2 ppm (P_BPh₂S) et de doublet de triplet à 4.9 ppm (P_CPh₃) avec les constantes de couplages ²*J*(P_A-P_B) = 100.1, ²*J*(P_A-P_C) = 428.5 et ³*J*(P_B-P_C) = 24.2 Hz. Le remplacement de l'atome de rhodium par l'atome d'iridium favorise la lisibilité du spectre RMN ³¹P puisque le spectre n'est plus du deuxième ordre. Les spectres ¹H et ¹³C de **427** sont comparables à ceux de son analogue de rhodium **415**.

Des petits cristaux maclés de **427** ont été obtenus et résolus par diffraction aux rayons X (Figure 12, Tableau 3 en annexe de ce chapitre pour les paramètres structuraux). La géométrie de **427** est très semblable à celle du complexe analogue de rhodium **415** : il s'agit d'une bipyramide trigonale (P1-Ir-P4 = $172.4(2)^\circ$, S1-Ir-S2 = $85.4(2)^\circ$, O1-Ir-O2 = $42.5(5)^\circ$) avec la molécule d'oxygène liée de manière η^2 (Ir-O = 2.01(1) et 2.03(1) Å). La distance O1-O2 (1.46(2) Å) indique qu'il s'agit un complexe péroxo d'iridium^{III} [22 , 23 , 25] Comme pour les autres complexes de palladium et de rhodium incorporant l'anion [SPS^{Me}][Li(THF)₂] **211**, les atomes de phosphore P1 et de carbone C3 sortent du plan moyen du cycle [C1-C2-C4-C5] d'un angle de 24.1° et 6.5°. On constate que les distances P-C externes sont relativement courtes pour des liaisons simples (par exemple, C1-P2 = 1.74(2) Å pour **427** *vs* 1.826(2) Å pour **SPS**) tandis que les liaisons P=S s'allongent (par exemple, P2-S1 = 2.030(6) Å pour **427** *vs* 1.9532(8) Å pour **SPS**). Cette modification structurale par rapport à SPS suggère une

délocalisation substantielle de la charge négative sur chaque bras ancillaire C-P-S. De plus, l'allongement des longueurs P-C internes (C5-P1 = P1-Me = 1.79(2) Å pour **427** *vs* 1.826(8) Å pour **SPS**) et la pyramidalité de P1 (Σ angles = 315.3°) montrent que le phosphore central a les propriétés d'une phosphine.

Figure 12 : Structure de 427. Les groupes phényles sont omis par souci de clarté. Les paramètres structuraux de 427 sont regroupés dans le Tableau 3 en annexe de ce chapitre.

Nous avons testé la réactivité des complexes plan carré **405** et **411** vis-à-vis de H₂. Ces expériences ont été réalisées après une série de calculs DFT (voir chapitre suivant) qui prédisait que i) l'addition de H₂ sur ces complexes aurait lieu de manière *syn* par rapport au substituant P-Me, et ii) l'addition de H₂ sur le complexe de rhodium serait réversible ($\Delta G \sim 0$) tandis que celle sur le complexe d'iridium serait irréversible ($\Delta G << 0$).

Nous avons bullé du dihydrogène (1 atm) dans deux solutions fraîchement préparées de **405** et **411** (Équation 18). On observe dans les deux cas une décoloration immédiate de la solution du marron vers l'orange et une modification du spectre RMN ³¹P : un système du deuxième ordre pour **428** et un système AX₂Y pour **429**. Nous avons donc déduit que la structure de ces complexes est symétrique et supposé que l'attaque du réactif a lieu comme précédemment de manière *syn*. La présence d'hydrogène de type hydrure est mise en évidence en RMN ¹H par des déplacements intégrant pour deux protons à -14.64 ppm pour **428** et à - 18.39 ppm pour **429**. Les signaux apparaissent sous la forme de pseudo triplet pour **429** (${}^{2}J$ (H-P_A) = ${}^{2}J$ (H-P_Y) = 15.5 Hz) et de pseudo triplet dédoublé pour **428** (${}^{1}J$ (H-Rh) = 24.5 Hz, ${}^{2}J$ (H-P_A) = ${}^{2}J$ (H-P_C) = 12.3 Hz). Le complexe de rhodium **428** n'est pas stable et l'on observe la reformation partielle de **405** au bout de trente minutes. Le complexe d'iridium **429** est stable et a été complètement caractérisé par RMN, analyse élémentaire et diffraction aux rayons X.

La structure de **429** confirme que l'attaque du réactif a bien lieu *syn* au substituant P-Me (Figure 13). On obtient un complexe octaédrique (S1-Ir-S2 = 90.14(2)°, S1-Ir-H1 = 92.6(8)°, H1-Ir-H2 = 86(1)°) et le caractère hydrure des protons H1 et H2 est confirmé par les longueurs des liaisons Ir-H (1.57(2) et 1.52(2) Å respectivement) et H-H (~ 2.116 Å). Les paramètres structuraux du squelette SPS de **429** sont comparables à ceux du complexe d'iridium **427**.

Figure 13 : Structure de 429. Les groupes phényles sont omis par souci de clarté. Les paramètres structuraux de 429 sont regroupés dans le Tableau 3 en annexe de ce chapitre.

Nous avons également entrepris d'activer des liaisons Si-H de silane et B-H de borane, mais aucune réaction n'est observée.

Finalement, tout comme le complexe de rhodium **405**, le complexe d'iridium **411** est capable d'activer de petites molécules comme l'oxygène et l'hydrogène moléculaire et de former les complexes d'iridium^{III} correspondants. A nouveau, l'addition de ces réactifs a lieu *syn* au substituant P-Me. La réactivité des complexes de rhodium **405** et d'iridium **411** vis-à-vis de H₂ est conforme à la prédiction des calculs : c'est un équilibre dans le cas du rhodium et une réaction irréversible dans le cas du complexe d'iridium.

II.4. Variations

Dans cette partie, nous avons synthétisé des variantes des complexes plan carré $[M(SPS^{Me})(PPh_3)]$ (**405** : M = Rh, **411** : M = Ir) en faisant varier la nature de la phosphine liée au centre métallique. La substitution de PPh₃ par une phosphine plus basique (PMe₃ ou PCy₃, Cy = cyclohexyle) devrait favoriser l'addition oxydante d'hydrogène, de borane ou de silane sur le métal.

Les complexes de rhodium **430** et **431** se synthétisent aisément par substitution du ligand COD par PMe₃ et PCy₃ (Équation 19). Le complexe **430** ne peut être tiré à sec et se dégrade en solution au bout de quelques heures, même en boîte à gants. **430** a donc été simplement caractérisé par RMN ³¹P (système AX₂YM). La substitution de PPh₃ par PMe₃ blinde le déplacement chimique de la phosphine (δ (PMe₃) = -14.8 ppm pour **430** au lieu de δ (PPh₃) = +29.8 ppm pour **405**) et permet l'obtention d'un spectre du premier ordre, plus facilement exploitable. On obtient des résultats bien plus satisfaisants avec la tricyclohexylphosphine : le complexe **431** est stable et a été complètement caractérisé par RMN.

Nous avons ensuite testé la réactivité de ces complexes vis-à-vis du dihydrogène et d'un borane. Alors qu'aucune réaction se produisait avec le complexe $[Rh(SPS^{Me})(PPh_3)]$ **405**, la réaction avec le pinacolborane conduit à un changement de couleur immédiat (du marron au rouge brique) : on observe en RMN ³¹P un système du type AXX'YM avec les groupes PPh₂S magnétiquement inéquivalents ($\delta(PPh_2) = 46.6$ et 54.4 ppm) (Équation 20). La coordination de l'atome de bore est mise en évidence en RMN ¹¹B par un singulet large à 4.2 ppm (au lieu de 28.1 ppm pour le pinacolborane libre). Par ailleurs, **432** est stable en solution, mais ne peut être isolé car il se dégrade s'il est tiré à sec.

L'addition de H₂ sur **430** conduit au complexe **433**, caractérisé par RMN ³¹P (Équation 21). Nous avons supposé que la structure du produit formé était identique à celle du complexe d'iridium **429**. Le remplacement de PPh₃ par PMe₃ augmente significativement la stabilité du complexe dihydrure en solution de trente minutes pour **428** à quelques jours pour **433**, mais ne permet pas de l'isoler en évaporant la solution par exemple.

Équation 21

L'emploi du complexe **431** substitué par la tricyclohexylphosphine ne conduit pas à de meilleurs résultats : l'ajout de pinacolborane en vue de former **434** induit certes un changement du spectre RMN ³¹P et du ¹¹B (singulet à 4.2 ppm comme pour **432**), mais le produit formé se décompose en l'espace de quelques heures. L'utilisation d'un autre borane tel le catécolborane conduit à la formation de plusieurs produits qui n'ont pu être identifiés. L'addition d'hydrogène produit un complexe dihydrure de rhodium **436** qui a été caractérisé en RMN ³¹P et partiellement en RMN ¹H (la présence des hydrures est mise en évidence par un signal à -15.93 ppm notamment couplé avec l'atome de rhodium (¹*J*_{Rh-H} = 26.8 Hz)), mais qui se décompose aussi bien en solution qu'à l'état solide.

Équation 22

Nous avons cherché à dupliquer ces réactions pour le complexe analogue d'iridium car si l'on se réfère à la réactivité comparée des complexes $[M(SPS^{Me})(PPh_3)(H)_2]$ (**428** : M= Rh, **429** : M = Ir), le complexe d'iridium est stable. On peut donc s'attendre à une stabilité accrue des complexes formés dans le cas de l'iridium.

Malheureusement, la courte durée de vie de **413** (moins de trente minutes) ne permet d'accéder au complexe **437** à partir de PMe₃ (on obtient à la place un mélange de produits non identifiés) (Équation 23).

L'emploi de la tricyclohexylphosphine conduit au complexe plan carré **438** qui se révèle stable en solution (Équation 24). Il n'est cependant pas purifiable (présence de COE et de LiCl) car ce complexe ne peut être isolé par précipitation dans l'hexane. **438** a donc été simplement caractérisé en RMN ³¹P.

Nous avons testé la réactivité de **438** avec le triéthylsilane, le dihydrogène et le pinacolborane (Équation 25). Aucune réaction n'est observée avec Et_3SiH , même en chauffant. L'addition de dihydrogène sur **438** est lente et conduit au bout d'une nuit à la formation de trois produits stables caractérisés en RMN ³¹P et ¹H et dans les proportions 1:0.4:0.3. Les trois complexes formés **440a-c** apparaissent sous la forme de systèmes symétriques du type AX_2Y en RMN ³¹P et présentent des atomes d'hydrogène de type hydrure en RMN ¹H (Figure 14). L'intégration ne permet néanmoins pas de conclure sur la nature des composés **440a-c**.

Figure 14 : Spectre RMN ¹H du mélange 440a-c entre -19.0 et -25.5 ppm couplé ³¹P (a), découplé ³¹P (b).

La réaction de **438** avec le pinacolborane est beaucoup plus satisfaisante : on forme avec un excellent rendement **441**, complètement caractérisé par RMN et analyse élémentaire (Équation 25). L'activation de la liaison B-H est mise en évidence en RMN ¹H par un pseudo triplet à -17.74 ppm (${}^{2}J_{\text{H-P}} = 15.0 \text{ Hz}$), caractéristique d'un hydrogène hydrure et en RMN ¹¹B par un singulet à 24.8 ppm (Figure 15). L'addition du borane a lieu en *cis* puisque le spectre RMN ³¹P présente deux groupes PPh₂ magnétiquement inéquivalents (système ABB'C) (Figure 16).

Figure 15 : a) et b) Détails du spectre RMN ¹H de 441. c) Spectre RMN ¹¹B. Le détail des déplacements chimiques et des constantes de couplage est donné dans la partie expérimentale.

Figure 16 : Spectre RMN ³¹P de 441. Le détail des déplacements chimiques et des constantes de couplage est donné dans la partie expérimentale.

Finalement, la présence d'une phosphine plus basique que PPh₃ comme PMe₃ ou PCy₃ sur les complexes du type $[M(SPS^{Me})(PR^{1})_{3}]$ (M = Rh, Ir ; R¹ = Me, Cy) permet d'obtenir dans le cas du rhodium un complexe dihydrure stable et dans le cas de l'iridium l'activation de la liaison B-H du pinacolborane.

II.5. Conclusion

Nous venons de montrer que des complexes plan carré de rhodium et d'iridium du type $[M(SPS^{Me})(PR^1)_3]$ (M = Rh, Ir ; R¹ = Ph, Me, Cy) sont capables d'activer ou de fixer de petites molécules comme O₂, CO, R²-NC, CS₂, SO₂, MeI, PhI, H₂. La basicité de la phosphine P(R¹)₃ est déterminante et permet dans le cas de l'iridium et de la tricyclohexylphosphine d'activer la liaison B-H du pinacolborane. Le complexe d'iridium [Ir(SPS^{Me})(PPh₃)] **411** semble plus réactif que son analogue au rhodium, **405**, puisqu'il forme un complexe dihydrure stable.

La nature du substituant présent sur l'atome de phosphore central est cruciale : en présence d'un groupe méthyle, toutes les additions ont lieu de manière *syn* au substituant P-Me tandis qu'en présence d'un groupe méthoxy, la réactivité du complexe est à la fois différente et non régiosélective.

Le chapitre suivant, purement théorique, s'attachera à expliquer la discrimination faciale que l'on observe lors de l'attaque de H_2 , O_2 et CO et à la différence de réactivité liée à la nature du centre métallique.

II.6. Perspectives

Une extension immédiate de ce travail consiste à tester la réactivité des complexes formés. Nous avons vu que le complexe péroxo **422** se dégrade en solution et conduit exclusivement à la formation de $Ph_3P=O$ et fait de ce composé un réactif de choix pour les réaction d'oxydation (Schéma 6).

Schéma 6

Le ligand SPS est un ligand à six électrons anionique capable d'occuper une face d'un octaèdre. On peut donc le considérer comme un équivalent d'anion cyclopentadiènyle (Cp). Comme nous le verrons dans le chapitre 6, $[SPS^{n-Bu}]^-$ est beaucoup plus riche que l'anion Cp*

 $(Cp^* = pentaméthylcyclopentadiènyle)$. On peut donc raisonnablement imaginer d'employer les complexes de rhodium et d'iridium incorporant le ligand SPS dans des réactions qui nécessitent des centres très riches en électrons en général ainsi que dans celles qui utilisent les fragments [Rh(Cp*)] ou [Ir(Cp*)]. On peut penser notamment à la réaction de borylation des alcanes en position terminale décrite par Hartwig *et al.* (Schéma 7).^[67, 68] Si les complexes **405** et **411** ne réagissent pas, on peut synthétiser des complexes analogues, **B**, à partir de l'anion **211** et du précurseur [M(C₂H₄)₂Cl]₂ (M = Rh, Ir).

Des complexes cationiques de rhodium^{III} de la forme $[Rh(Cp^*)(PMe_3)(R^1)]^+$ $(R^1 = H, Me, Ph, SiPh_3)$, **D**, ont été utilisés par les équipes de Bergman et Brookhart pour activer les liaisons C-H, C-C, Si-H de substrats organiques (Schéma 8a).^[69-71] Ces réactions pourraient être entreprises à partir d'un complexe analogue incorporant le squelette SPS. La stratégie de synthèse de ce dernier, **E**, repose sur l'addition oxydante de MeI sur **430** (cette réaction a déjà été observée sur **405** et fournit **418**) suivie de l'abstraction de l'atome d'iode par un sel d'argent. L'échange de contre ion conduirait au composé escompté **E** (Schéma 8b).

Une réactivité semblable est observée avec le complexe d'iridium analogue de **D**.^[72] Malheureusement, comme le complexe d'iridium [Ir(SPS^{Me})(PMe₃)] **437** ne se forme pas, l'activation de molécules par cette voie est compromise. On peut néanmoins réaliser l'activation photochimique du benzène décrite par Bergman *et al.* avec le complexe **429** (Schéma 9).^[73]

Enfin, les ligands pinceurs de type PNP et PCP ont été utilisés avec succès pour activer des liaisons C-H. Il pourrait ainsi être intéressant d'employer le complexe **413** de manière analogue au complexe d'iridium PNP **G** de Milstein *et al.* (Schéma 10).^[74]

La déshydrogénation des alcanes a connu un regain d'intérêt au début des années 1980 lorsque Crabtree *et al.* a développé des catalyseurs pour la déshydrogénation par transfert de dihydrogène (Équation 26).^[75]

L'endothermicité de la réaction de déshydrogénation d'alcanes nécessite des températures élevées (> 150°C) qui n'étaient pas compatibles avec la stabilité des complexes. Les premiers catalyseurs efficaces sont des complexes pinceurs d'iridium incorporant le ligand PCP (G).^[76, 77] Ils sont capables de réaliser, en présence d'un alcène sacrificiel, la déshydrogénation d'alcanes,^[76-79] d'amines tertiaires,^[80] de C-H aliphatiques,^[81] d'éthers saturés,^[81] et d'alcools^[82] (Schéma 11a). La présence d'un alcène sacrificiel est néanmoins à éviter du point de vue économique et environnemental : il est beaucoup plus intéressant de développer des systèmes dans lesquels les alcanes sont directement transformés en alcènes avec la libération de H₂ (Schéma 11b). Le dihydrogène est généralement purgé avec un gaz inerte. Le premier exemple de déshydrogénation catalytique (homogène) d'alcane a été reporté par Saito et Fujii en 1990 (TOF de 2 h⁻¹).^[83, 84] Les pinceurs PCP d'iridium sont bien plus actifs et Goldman, Jensen *et al.* obtiennent des TON de l'ordre de 3000 avec le complexe G et le cyclodécane ^[87]

D'un point de vue théorique, Krogh-Jespersen, Goldman et *al.* ont montré que l'enthalpie libre d'addition de H₂ sur les pinceurs actifs dans la réaction de déshydrogénation d'alcanes était comprise entre -25 et -30 kcal.mol⁻¹.^[88] Dans le cas du complexe **411**, cette valeur est de -22.2 kcal.mol⁻¹ (voir chapitre 5), ce qui fait de **429** un complexe de choix à tester dans la réaction de déshydrogénation du cyclooctane en présence ou non d'alcène sacrificiel (Schéma 12). Nous avons par ailleurs vérifié la robustesse des complexes de palladium incorporant le squelette SPS vis-à-vis du chauffage dans la NMP, ce qui est encourageant pour ceux du groupe 9.

Il pourrait également être intéressant de tester l'activité du complexe dihydrure L dans lequel un site de coordination supplémentaire est disponible (Schéma 12). Ce dernier peut

s'obtenir *in situ* de deux manières (Équation 27) : a) L'addition oxydante de HCl sur **411** devrait conduire au complexe **J**. Le passage de **J** à **L** se fait en deux étapes en suivant la séquence réactionnelle proposée par Kaska *et al.* pour préparer le complexe $[Ir(PCP)(H)_2]$ à partir de [Ir(PCP)(H)(Cl)].^[89] Le complexe [Ir(H)(Cl)] **J** est converti en tétrahydrure d'iridium **K** par réaction de LiBEt₃H sous atmosphère de dihydrogène.⁵ Ce dernier a été recristallisé dans le cas de complexes incorporant le ligand PCP. Cette étape de purification est essentielle pour éliminer des composés borylés formés à partir de LiBEt₃H qui inhibent la réaction de déshydrogénation des alcanes.^[76, 77] L'évaporation de **K** sous vide à haute température conduit au complexe dihydrure escompté **L**. b) La deuxième voie de synthèse se fait directement à partir de l'anion **211** avec un demi équivalent de $[Ir(COE)_2Cl]_2$ sous atmosphère de dihydrogène.

III. Etude d'un complexe homoleptique de rhodium^{III}

Dans cette partie nous allons décrire la synthèse et les propriétés d'un complexe homoleptique de rhodium^{III}.

III.1. Synthèse

Nous avons essayé de synthétiser le complexe homoleptique **442** (Équation 28). Pour cela, nous avons tout d'abord cherché à tirer parti du complexe **420**, précédemment synthétisé. Malheureusement, la réaction de **420** avec l'anion $[SPS^{Me}][Li(THF)_2]$ **211** conduit à un mélange de produits que nous n'avons pu identifier. Une synthèse alternative repose sur la réaction de deux équivalents d'anion **211** avec un précurseur de rhodium^{III} tel [Rh(tht)₃Cl₃] (tht = tétrahydrothiophène). On obtient ainsi le complexe **442** avec un très bon rendement (Équation 28). Ce dernier a été complètement caractérisé par RMN et analyse élémentaire. Le spectre RMN ³¹P, qui présente un système A₂B₂C₂ avec deux groupes PPh₂S magnétiquement inéquivalents, permet d'établir la stéréochimie de **442**.⁶

⁵ Une synthèse alternative, décrite par Brookhart et al., fait intervenir NaO(t-Bu) sous H₂ (1 atm).^[90]

⁶ Ce complexe se synthétise également à partir de l'anion $[SPS^{Me}][Li(THF)_2]$ **211** et d'un demi équivalent de $[Rh(COE)_2Cl]_2$ avec un rendement de l'ordre de 40%.

La structure de **442** a été vérifiée par diffraction aux rayons X (Figure 17). Les paramètres structuraux sont rassemblés dans le Tableau 4 en annexe à la fin de chapitre. **442** est octaédrique et l'on constate que les deux atomes de phosphore P1 et P4 sont en position *cis* laissant les deux groupes PPh₂S inéquivalents comme le montraient les données RMN. Les distances et angles du squelette phosphinine sont semblables à celles des autres complexes de rhodium décrits dans ce chapitre. On observe une dissymétrie des longueurs S-Rh (par exemple, S4-Rh1 2.3693(8) Å et Rh1-S3 2.4458(8) Å) en raison de la différence de stéréochimie. Aucune étude théorique n'a été entreprise pour expliquer la formation exclusive d'un seul diastéréoisomère.

Figure 17 : Structure de la partie cationique de 442. Les groupes phényles sont omis par souci de clarté.

III.2. Etude électrochimique

Comme on peut le voir sur la Figure 18, **442** se réduit réversiblement à $E_{1/2} = -1.12$ V (*vs* SCE) et l'on forme le complexe neutre de rhodium^{II} à 19 électrons **443**.

Figure 18 : voltamétrie cyclique de 442 (2 mM) dans le CH₂Cl₂ à 20°C. Vitesse de balayage : 50 mV.s⁻¹. Électrolyte : [NBu₄][BF₄] (0.3 M).

La réduction peut également avoir lieu chimiquement en présence de zinc comme réducteur. Ainsi, la réaction de **442** et de poudre de zinc en excès dans le THF conduit à la dissolution complète du réactif et à un changement de couleur de l'orange vers le marron. Cette réduction s'accompagne également de la disparition du signal RMN ³¹P. Le complexe **443** est stable en solution, mais il est extrêmement sensible à l'oxygène : l'exposition de **443** à l'air provoque instantanément la reformation du complexe **442** (Équation 29). Malheureusement, nous n'avons obtenu aucun cristal analysable aux rayons X du complexe **443**.

Comparés aux complexes de rhodium^I et de rhodium^{III}, il existe à ce jour très peu d'exemples de complexes mononucléaires de rhodium^{II.[91-101]} Seuls deux d'entre eux ont été cristallisés et les méthodes de caractérisation des complexes de rhodium^{II} relèvent généralement de la RPE et dans très peu de cas de calculs DFT. Il est désormais accepté que des études couplées RPE et DFT sont les plus appropriées pour caractériser ces complexes paramagnétiques. Nous nous sommes donc tournés vers la RPE et les calculs DFT afin d'obtenir des informations structurales sur **443**.

III.3. Résultats RPE⁷

La réduction électrochimique du complexe 442, *in situ* dans la cavité RPE à température ambiante, conduit au spectre RPE suivant (Figure 19A). Ce spectre, centré à g = 2.0843, est composé de trois signaux larges qui se recouvrent partiellement et montre une interaction hyperfine (22.5 G) avec deux spins ½ équivalents (deux noyaux ³¹P). La largeur du

⁷ L'étude RPE a été menée en collaboration avec l'équipe du Pr. Michel Geoffroy (Prashant Adkine, Dr Théo Berclaz) de l'université de Genève.

trait est probablement due à la réorientation lente du complexe et au couplage avec d'autres noyaux (¹⁰³Rh et les quatre autres ³¹P). La réduction de **442** peut également avoir lieu chimiquement : l'emploi de naphthalénide de sodium, de miroir d'argent ou de poudre de zinc comme agent réducteur vis-à-vis du complexe **442** conduit à des spectres similaires à celui de la Figure 19A. Ce spectre a été simulé avec succès (Figure 19B).

Figure 19 : Spectre RPE expérimental (A), simulé (B) après réduction électrochimique de 442 dans le CH₂Cl₂ à 300K.

De plus, nous avons obtenu le spectre de **443** à 100 K après réduction chimique (Figure 20A). Il présente un triplet intense à g = 2.1197 et un motif plus compliqué à g = 1.999. La forme de ce signal indique un tenseur g axial. De plus, le couplage avec deux spins $\frac{1}{2}$ mesuré sur la composante perpendiculaire est proche du couplage mesuré sur le spectre isotrope ; cela signale que la composante hyperfine parallèle est de l'ordre de 22 G pour le noyau correspondant. En tenant compte des valeurs de g et des propriétés hyperfines, la simulation du set parallèle nécessite la contribution d'un noyau supplémentaire de spin $\frac{1}{2}$ (Figure 20B).⁸ Le dédoublement, proche de 9 G, est attribué à l'atome de rhodium (103 Rh, I = $\frac{1}{2}$, abondance naturelle : 100%) tandis que les deux constantes hyperfines (22.5 G) aux deux atomes de phosphore directement liés au métal.

Figure 20 : Spectre RPE expérimental en solution gelée (A) simulé (B) après réduction électrochimique de 442 dans le THF à 100K.

La valeur moyenne de g est significativement différente de celle d'un électron libre et indique une participation du métal dans la structure paramagnétique. On sait que les complexes mononucléaires de platine d⁷ adoptent une configuration bas spin.^[92] Sous l'effet Jahn-Teller, le complexe octaédrique de configuration initiale $(t_{2g})^6$ $(e_g)^1$ subit une distorsion axiale avec l'électron non apparié dans l'orbitale d_{z2} $(g_{\perp} > g_{//})$ ou d_{x2-y2} $(g_{\perp} < g_{//})$. Le spectre

⁸ Le spectre en solution gelée a été calculé avec le programme donné en référence ^[102] et le détail est présenté en annexe de ce chapitre (Tableau 5).

de la Figure 20A, avec $g_{\perp} \ge g_{//}$, s'accorde donc avec la structure d'un complexe de rhodium^{II} octaédrique avec une élongation tétragonale. Ces résultats, couplés à la réduction réversible observée en voltamétrie cyclique, montre que les spectres des Figure 19 et Figure 20 peuvent être attribués au complexe **443**.

III.4. Calculs DFT⁷

Nous avons entrepris une série de calculs DFT afin de confirmer la géométrie du complexe de rhodium^{II} **443**. Nous avons employé la fonctionnelle B3LYP.^[103-105] Un pseudo potentiel de type Hay Wadt a été utilisé pour décrire les 28 électrons de cœur de l'atome de rhodium.^[3] II a été associé à la base double ζ lanl2dz.^[3] Tous les autres atomes sont décrits en 6-31G*.^[4-6] Nous avons optimisé et caractérisé comme minima de la surface d'énergie les complexes modèles II et III dans lesquels les groupes phényles sont remplacés par des atomes d'hydrogène (Figure 21).⁹ Comme on peut le voir Tableau 1, le passage de II à III entraîne une élongation drastique des deux longueurs Rh-S axiales (de 2.458 à 2.937 Å). D'après la théorie du champ cristallin,^[106] la structure d'un complexe du type [ML₄X₂] dépend de la force de liaison σ des ligands avec le métal. Lorsque X est plus σ -donneur que L, la géométrie résultante présente des distances courtes M-X et des distances M-L moyennes et longues, en accord avec la structure de III. Dans les systèmes avec deux liaisons Rh-L allongées, on attend un tenseur g axial avec $g_{\perp} > g_{//}$; pour **443**, on a $g_{\perp} = 2.1197$ et $g_{//} = 1.999$).

Figure 21 : Structures de II et III optimisées au niveau B3LYP.

Tableau 1 : sélection de distances et angles des complexes 442 (expérimental), II et III optimisés au niveau B3LYP. Longueurs exprimées en Å et angles en °.

	442	II	III
Rh-S4	2.3693(8)	2.458	2.937
Rh-S1	2.3641(8)	2.458	2.937
Rh-S2	2.4462(8)	2.536	2.534
Rh-S3	2.4458(8)	2.536	2.534
Rh-P1	2.2661(8)	2.350	2.343
Rh-P4	2.2617(7)	2.350	2.343
P1-Rh-P4	98.96(3)	100.5	99.09
S1-Rh-S4	178.85(3)	176.0	175.3
Rh-S1-P2	108.26(4)	103.0	96.0

⁹ Les complexes II et III ont été optimisés avec une contrainte C_2 .

L'électron célibataire de III est essentiellement localisé sur l'orbitale d_{z2} du métal et les orbitales p des atomes de soufre en position axiale (Figure 22). D'après les coefficients de la SOMO, la densité de spin des atomes de soufre est de 0.21 pour les atomes de soufre en position axiale contre 0.02 en position équatoriale. La délocalisation de l'électron sur chaque hétérocycle est faible ($\rho \approx 0.07$ avec une contribution $\rho = 0.045$ des atomes de phosphore). Le couplage du rhodium n'est pas résolu dans le spectre RPE en phase liquide, mais, comme le montre la Figure 20B, il participe au composant parallèle de la structure dans le spectre en solution gelée.

Figure 22 : SOMO de III.

Le spectre RPE s'accorde à celui de Dunbar pour $[Rh(TMPP)_2][BF_4]_2$ (TMPP = tris-(2,4,6-tri-méthoxyphényl)phosphine),^[107, 108] l'un des rares monomère de rhodium^{II} hexacoordonné cristalisé : les tenseurs g sont tous deux axiaux avec $g_{\perp} > g_{//}$ et l'on observe un dédoublement hyperfin causé par l'atome de rhodium. Cependant, le couplage des atomes de phosphore observé pour **443** et sa plus faible g-anisotropie révèle que la délocalisation du spin sur les ligands est plus importante pour **443** que pour $[Rh(TMPP)_2][BF_4]_2$.

IV. Complexes homoleptiques de cobalt^Ⅲ

Nous avons également essayé de synthétiser le complexe homoleptique de cobalt^{III} analogue du complexe de rhodium^{III} **442**. La synthèse du complexe homoleptique de cobalt^{III} fait intervenir l'ajout de deux équivalents d'anion **213** sur un precurseur de cobalt^{III} tel [CoX₂] (X = Cl, I). La formation de **444** est mise en évidence par la disparition du signal RMN ³¹P et l'apparition d'un précipité insoluble dans la plupart des solvants organiques. L'oxydation de **444** par C₂Cl₆ provoque la réapparition du signal RMN ³¹P et conduit aux complexes homoleptique **446** s'explique par la formation d'un produit secondaire non identifié, insoluble dans la plupart des solvants et qui s'élimine donc facilement. Les complexes **445** et **446** ont été complètement caractérisés par RMN et analyse élémentaire. On observe des spectres très semblables à ceux du complexes analogue de rhodium **442**.

Équation 30

L'emploi de l'anion **213** avec un atome de phosphore substitué par une chaîne *n*-butyle est primordiale : l'utilisation de l'anion **211** substitué par un groupe méthyle conduit au mélange de deux produits **447a-b** (*ratio* : 1 pour 0.18) que nous supposons être les complexes homoleptiques avec les deux atomes de phosphore en *trans* et en *cis* (Équation 19). La structure de l'un des deux isomères **447a-b** a cristalisé (Figure 23). Sa géométrie présente les deux atomes de phosphore P1et P4 en *cis* Le remplacement de l'atome de rhodium par un atome de cobalt ne change pas significativement les paramètres stucturaux du complexe (Tableau 4).

Figure 23 : Structure de 447a-b. Les groupes phényles sont omis par souci de clarté.

445 se réduit réversiblement à $E_{1/2} = -0.44$ V (*vs* SCE) et l'on forme le complexe neutre de cobalt^{II} à 19 électrons **448** (Figure 24). Ce dernier est beaucoup plus accessible que le complexe analogue de rhodium ($E_{1/2} = -1.12$ V *vs* SCE).

Figure 24 : Voltamétrie cyclique de 445 (3.3 mM) dans le THF à 20°C. Vitesse de balayage : 250 mV.s⁻¹. Électrolyte : [NBu₄][BF₄] (0.3 M).

Nous avons synthétisé le complexe homoleptique de cobalt^{III}, analogue du complexe de rhodium^{III} étudié précedemment. Il se réduit également réversiblement à un potentiel de -

0.44 V pour conduire au complexe de cobalt^{II} à 19 électrons. Ce dernier est actuellement à l'étude en collaboration avec l'équipe du professeur Michel Geoffroy (Université de Genêve).

Il pourrait également être intéressant de synthétiser le complexe homoleptique d'iridium^{III} et le comparer à ses analogues au rhodium (**442**) et au cobalt (**445**).

V. Références

- [1] A. Moores, N. Mézailles, L. Ricard, P. Le Floch, Organometallics 2005, 24, 508.
- [2] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- [3] P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299.
- [4] W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257.
- [5] M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, *J. Chem. Phys.* **1982**, 77, 3654.
- [6] P. C. Hariharan, J. A. Pople, Theor. Chim. Acta 1973, 28, 213.
- [7] A. Roodt, S. Otto, G. Steyl, Coord. Chem. Rev. 2003, 245, 121.
- [8] E. G. Thaler, K. Folting, K. G. Caulton, J. Am. Chem. Soc. 1990, 112, 2664.
- [9] D. Sellman, A. Fetz, M. Moll, F. Knoch, J. Organomet. Chem. 1988, 355, 495.
- [10] H.-S. Lee, J.-Y. Bae, D.-H. Kim, H. S. Kim, S.-J. Kim, S. Cho, J. Ko, S. O. Kang, *Organometallics* **2002**, *21*, 210.
- [11] J. Fornies-Camer, A. M. Masdeu-Bulto, C. Claver, C. Tejel, M. A. Ciriano, C. J. Cardin, *Organometallics* **2002**, *21*, 2609.
- [12] J. R. Dilworth, D. Morales, Y. Zheng, J. Chem. Soc., Dalton Trans. 2000, 3007.
- [13] R. Choukroun, D. Gervais, J. Jaud, P. Kalck, F. Senocq, Organometallics 1986, 5, 67.
- [14] C.-H. Cheng, R. Eisenberg, Inorg. Chem. 1979, 18, 2438.
- [15] A. Ehlers, M. Böhme, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp, G. Frenking, *Chem. Phys. Lett.* **1993**, *208*, 111.
- [16] T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. von Ragué Schleyer, J. Comput. Chem. 1983, 4, 294.
- [17] M. Schäfer, J. Wolf, H. Werner, J. Organomet. Chem. 1994, 476, 85.
- [18] E. Mieczynska, A. M. Trzeciak, J. J. Ziolkovski, T. Lis, J. Chem. Soc., Dalton Trans. 1995, 105.
- [19] A. F. Hill, A. J. P. White, D. J. Williams, J. D. E. T. Wilton-Ely, *Organometallics* **1998**, *17*, 3152.
- [20] C. Busetto, A. Dalfonso, F. Maspero, G. Perego, A. Zazzetta, J. Chem. Soc., Dalton Trans. 1977, 1828.
- [21] M. J. Bennet, P. B. Donaldson, Inorg. Chem. 1977, 16, 1581.
- [22] R. Dorta, L. J. W. Shimon, H. Rozenberg, D. Milstein, Eur. J. Inorg. Chem. 2002, 7, 1827.
- [23] H. F. Haarman, F. R. Bregman, P. van Leeuwen, K. Vrieze, *Organometallics* 1997, 16, 979.
- [24] E. Lindner, Q. Y. Wang, H. A. Mayer, R. Fawzi, M. Steimann, J. Organomet. Chem. 1993, 453, 289.
- [25] M. C. Nicasio, M. Paneque, P. J. Perez, A. Pizzano, M. L. Poveda, L. Rey, S. Sirol, S. Taboada, M. Trujillo, A. Monge, C. Ruiz, E. Carmona, *Inorg. Chem.* **2000**, *39*, 180.
- [26] C. Bianchini, D. Masi, C. Mealli, A. Meli, M. Sabat, Organometallics 1985, 4, 1014.
- [27] E. Lindner, B. Keppeler, H. A. Mayer, K. H. Gierling, R. Fawzi, M. Steimann, J. Organomet. Chem. 1996, 526, 175.
- [28] E. Lindner, B. Keppeler, H. Mayer, K. H. Gierling, J. Organomet. Chem. 1996, 515, 139.
- [29] H. L. M. Van Gaal, J. P. J. Verlaan, J. Organomet. Chem. 1977, 133, 93.
- [30] R. Wiedemann, J. Wolf, H. Werner, Chem. Ber. 1996, 129, 29.
- [31] W. A. Schenk, Angew. Chem. Int. Ed. 1987, 26, 98.
- [32] G. J. Kubas, Inorg. Chem. 1979, 18, 182.
- [33] P. G. Eller, R. R. Ryan, Inorg. Chem. 1980, 19, 142.

- [34] T. E. Nappier, D. W. Meek, R. M. Kirchner, J. A. Ibers, J. Am. Chem. Soc. 1973, 95, 4194.
- [35] T. E. Nappier, D. W. Meek, J. Am. Chem. Soc. 1972, 94, 306.
- [36] B. R. James, E. Ochiai, Can. J. Chem. 1971, 49, 975.
- [37] H. Mimoun, M. M. P. Machirant, I. Sereederoch, J. Am. Chem. Soc. 1978, 100, 5437.
- [38] G. Read, P. J. C. Walker, J. Chem. Soc., Dalton Trans. 1977, 883.
- [39] D. Holland, D. J. Milner, J. Chem. Soc., Dalton Trans. 1975, 2440.
- [40] J. Farrar, D. Holland, D. J. Milner, J. Chem. Soc., Dalton Trans. 1975, 815.
- [41] C. W. Dudley, G. Read, P. J. C. Walker, J. Chem. Soc., Dalton Trans. 1974, 1926.
- [42] H. Mimoun, dans Comprehensive Coordination Chemistry, Vol. 6 (Eds.: G. Wilkinson,
- R. D. Gilliard, J. McCleverty), Pergamon Press, Oxford, 1987, p. 317.
- [43] A. Zanardo, R. A. Michelin, F. Pinna, G. Strukul, Inorg. Chem. 1989, 28.
- [44] H. Suzuki, S. Matsuura, Y. Morooka, T. Ikawa, Chem. Lett. 1982, 1011.
- [45] Y. Takahashi, M. Hashimoto, S. Hikichi, M. Akita, Y. Moro-Oka, *Angew. Chem. Int. Ed.* **1999**, *38*, 3074.
- [46] D. Carmona, M. P. Lamata, J. Ferrer, J. Modrego, M. Perales, F. J. Lahoz, R. Atencio, L. A. Oro, *J. Chem. Soc., Chem. Commun.* **1994**, 575.
- [47] E. C. Niederhoffer, Chem. Rev. 1984, 137.
- [48] M. Sono, M. P. Roach, E. D. Coulter, J. H. Dawson, Chem. Rev. 1996, 96, 2625.
- [49] Y. Watanabe, J. T. Groves, dans *The Enzymes* (Ed.: B. Sigman), Academic, Orlando, 1992.

[50] P. R. O. de Montellano, *Cytochrome P-450 : Structure, Mechanism and Biochemistry*, Plenum, New York, **1986**.

- [51] I. S. Butler, A. E. Fenster, J. Organomet. Chem. 1974, 66, 161.
- [52] P. V. Broadhurst, Polyhedron 1985, 4, 1801.
- [53] H. Werner, Coord. Chem. Rev. 1982, 43, 165.
- [54] J. A. Ibers, Chem. Soc. Rev. 1982, 11, 57.
- [55] I. S. Butler, Acc. Chem. Res. 1977, 10, 359.
- [56] J. M. Ritchey, D. C. Moody, R. R. Ryan, Inorg. Chem. 1983, 22, 2276.
- [57] P. R. Blum, D. W. Meek, Inorg. Chim. Acta 1977, 24, L75.
- [58] J. Terheijden, G. van Koten, W. P. Mul, D. J. Stufkens, F. Muller, C. H. Stam, *Organometallics* 1986, 5, 519.
- [59] J. Valentine, D. Valentine, J. P. Collman, Inorg. Chem. 1971, 10, 219.
- [60] S. P. Mehandru, A. B. Anderson, Inorg. Chem. 1985, 24, 2570.
- [61] G. J. Kubas, Acc. Chem. Res. 1994, 27, 183.
- [62] R. W. Horn, E. Weissberger, J. P. Collman, Inorg. Chem. 1970, 9, 2367.
- [63] W. O. Siegl, S. J. Lapporte, J. P. Collman, Inorg. Chem. 1971, 10, 2158.
- [64] C. A. Ghilardi, S. Midollini, S. Moneti, A. Orlandini, G. Scapacci, J. Chem. Soc., Dalton Trans. 1992, 3371.
- [65] B. C. Lucas, D. C. Moody, R. R. Ryan, Cryst. Struct. Commun. 1977, 6, 57.
- [66] H. F. Haarman, J. M. Ernsting, M. Kranenburg, H. Kooijman, N. Veldman, A. L. Spek,
- P. W. N. M. van Leeuwen, K. Vrieze, Organometallics 1997, 16, 887.
- [67] H. Chen, S. Schlecht, T. C. Semple, J. F. Hartwig, Science 2000, 287, 1995.
- [68] K. Kawamura, J. F. Hartwig, J. Am. Chem. Soc. 2001, 123, 8422.
- [69] F. L. Taw, H. Mellows, P. S. White, F. J. Hollander, R. G. Bergman, M. Brookhart, D. M. Heinekey, J. Am. Chem. Soc. 2002, 124, 5100.
- [70] F. L. Taw, A. H. Mueller, R. G. Bergman, M. Brookhart, J. Am. Chem. Soc. 2003, 125, 9808.
- [71] F. L. Taw, P. S. White, R. G. Bergman, M. Brookhart, J. Am. Chem. Soc. 2002, 124, 4192.

- [72] S. R. Klei, T. Don Tilley, R. G. Bergman, J. Am. Chem. Soc. 2000, 122, 1816.
- [73] A. H. Janowicz, R. G. Bergman, J. Am. Chem. Soc. 1983, 105, 392.
- [74] E. Ben-Ari, M. Gandelman, H. Rozenberg, L. J. W. Shimon, D. Milstein, J. Am. Chem. Soc. 2003, 125, 4714.
- [75] M. J. Burk, R. H. Crabtree, C. P. Parnell, R. J. Uriarte, Organometallics 1984, 3, 816.
- [76] M. Gupta, C. Hagen, R. J. Flesher, W. C. Kaska, C. M. Jensen, Chem. Commun. 1996, 2687.
- [77] M. Gupta, C. Hagen, W. C. Kaska, R. E. Cramer, C. M. Jensen, J. Am. Chem. Soc. 1997, 119, 840.
- [78] M. W. Haenel, S. Oevers, K. Angermund, W. C. Kaska, H.-J. Fan, M. B. Hall, *Angew. Chem. Int. Ed.* **2001**, *40*, 3596.
- [79] M. Kanzelberger, B. Singh, M. Czerw, K. Krogh-Jespersen, A. S. Goldman, J. Am. Chem. Soc. 2000, 122, 11017.
- [80] X. Zhang, A. Fried, S. Knapp, A. S. Goldman, Chem. Commun. 2003, 2060.
- [81] M. Gupka, W. C. Kaska, C. M. Jensen, Chem. Commun. 1997, 461.
- [82] D. Morales-Morales, R. Redon, Z. H. Wang, D. W. Lee, C. Yung, K. Magnuson, C. M. Jensen, *Can. J. Chem.* **2001**, *79*, 823.
- [83] T. Fujii, Y. Higashini, Y. Saito, J. Chem. Soc., Dalton Trans. 1993, 517.
- [84] T. Fujii, Y. Saito, Chem. Commun. 1990, 757.
- [85] W.-W. Xu, G. P. Rosini, M. Gupka, C. M. Jensen, W. C. Kaska, K. Krogh-Jespersen, A. S. Goldman, *Chem. Commun.* **1997**, 2273.
- [86] F. C. Liu, A. S. Goldman, Chem. Commun. 1999, 655.
- [87] I. Göttker-Schnetmann, P. S. White, M. Brookhart, J. Am. Chem. Soc. 2004, 126, 1804.
- [88] K. Krogh-Jespersen, M. Czerw, K. Zhu, B. Singh, M. Kanzelberger, N. Darji, P. D.
- Achord, K. B. Renkema, A. S. Goldman, J. Am. Chem. Soc. 2002, 124, 10797.
- [89] M. A. McLoughlin, R. J. Flesher, W. C. Kaska, H. Mayer, Organometallics 1994, 13, 386.
- [90] I. Göttker-Schnetmann, P. S. White, M. Brookhart, Organometallics 2004, 23, 1766.
- [91] D. G. DeWitt, Coord. Chem. Rev 1996, 147, 209.
- [92] K. K. Pandey, Coord. Chem. Rev 1992, 121, 1.
- [93] M. J. Shaw, W. E. Geiger, J. Hyde, C. White, Organometallics 1998, 17, 5486.
- [94] M. Gerisch, J. R. Krumper, R. G. Bergman, T. Don Tilley, *Organometallics* 2003, 22, 47.
- [95] M. P. Garcia, M. V. Jimenez, F. J. Lahoz, J. A. Lopez, L. A. Oro, J. Chem. Soc., Dalton Trans. 1998, 4211.
- [96] P. Paul, B. Tyagi, A. Kilakhiya, Bhadbhade, E. Suresh, J. Chem. Soc., Dalton Trans. 1999, 2009.
- [97] N. G. Connelly, D. J. H. Emslie, W. E. Geiger, O. D. Hayward, E. B. Linehan, A. G. Orpen, M. J. Quayle, P. H. Rieger, *J. Chem. Soc., Dalton Trans.* **2001**, 670.
- [98] F. M. Dixon, M. S. Masar III, P. E. Doan, J. R. Farrell, F. P. Arnold Jr., C. A. Mirkin, C. D. Incarvito, L. N. Zakharov, A. L. Rheingold, *Inorg. Chem.* **2003**, *42*, 3245.
- [99] S. T. H. Willems, J. C. Russcher, P. H. M. Budzelar, B. de Bruin, R. de Gelder, J. M. M. Smits, A. W. Gal, *Chem. Commun.* **2002**, 148.
- [100] W. Kaim, R. Rheinhardt, S. Greulich, Organometallics 2003, 22, 2240.
- [101] D. G. H. Hetterscheid, J. M. M. Smits, B. de Bruin, Organometallics 2004, 23, 4236.
- [102] E. Soulié, T. Berclaz, M. Geoffroy, dans *Computer and Chemistry* (Eds.: F. Bernardi, J.-L. Rivail), **1996**, pp. 627.
- [103] A. D. Becke, *Phys. Rev. A* **1988**, *38*, 3098.
- [104] C. Lee, W. Yang, R. G. Parr, Phys. Rev. A 1988, B 37, 785.
- [105] J. P. Perdew, Phys. Rev. B. 1986, 33, 8822.
[106] B. N. Figgis, M. A. Hitchman, *Ligand Field Theory and its Applications*, Wiley-VCH, New York, **2000**.

[107] K. R. Dunbar, S. C. Haefner, Organometallics 1992, 11, 1431.

[108] K. R. Dunbar, S. C. Haefner, L. E. Pence, J. Am. Chem. Soc. 1989, 111, 5504.

VI. Annexes du chapitre

Tableau 2 : paramètres structuraux des complexes de rhodium [Rh(SPS^{Me})(COD)] 401, [Rh(SPS^{Men})(CO)] 410, [Rh(SPS^{Men})(L)]. Les distances sont exprimées en Å et les angles en °.

Distances	401	[Rh(CO)	L = -	$\mathbf{L} = \boldsymbol{\eta}^2 - \mathbf{O}_2$	L = CO	$L = \eta^2$ -	$L = SO_2$	$L = Cl_2$	L = Me, I
Angles		(SPS ^{Men})]	405	416	404	(CS ₂) 416	417	420	418
P1-C2	1.787(3)	1.789(2)	1.794(2)	1.782(2)	1.788(2)	1.799(2)	1.776(3)	1.785(2)	1.7936(3)
C2-C3	1.397(5)	1.397(3)	1.401(3)	1.412(3)	1.410(2)	1.389(3)	1.410(5)	1.400(3)	1.4025(4)
C3-C4	1.405(5)	1.407(3)	1.406(3)	1.407(3)	1.408(3)	1.424(3)	1.393(4)	1.411(2)	1.4021(4)
C4-C5	1.409(5)	1.409(3)	1.404(3)	1.404(3)	1.409(3)	1.397(3)	1.416(4)	1.408(3)	1.4111(4)
C5-C6	1.401(5)	1.395(3)	1.385(3)	1.396(3)	1.405(2)	1.414(3)	1.393(5)	1.401(3)	1.3980(4
C6-P1	1.795(3)	1.789(2)	1.805(2)	1.789(2)	1.794(2)	1.768(2)	1.786(3)	1.783(2)	1.7991(3)
P1-R	1.835(3)	1.882(2)	1.820(2)	1.805(2)	1.825(2)	1.813(2)	1.806(3)	1.802(2)	1.8238(3)
C2-P2	1.766(3)	1.778(3)	1.763(2)	1.762(2)	1.767(2)	1.775(2)	1.755(3)	1.753(2)	1.7592(3)
P2-S1	1.995(1)	2.027(1)	2.0235(8)	2.0326(8)	2.0043(7)	2.0135(8)	2.035(1)	2.026(1)	2.0335(1)
C6-P3	1.762(3)	1.781(2)	1.769(2)	1.759(2)	1.768(2)	1.762(2)	1.759(3)	1.762(2)	1.7634(3)
P3-S2	1.998(1)	2.027(1)	2.0219(7)	2.032(1)	2.0021(6)	2.025(1)	2.027(1)	2.0377(8)	2.0161(2
P1-Rh	2.272(1)	2.2958(6)	2.2428(6)	2.2630(7)	2.2783(5)	2.2771(8)	2.259(1)	2.2795(7)	2.2746(1
S1-Rh	2.546(1)	2.3317(7	2.3197(6)	2.4057(8)	2.4846(5)	2.5040(8)	2.3558(8)	2.335(1)	2.3672(1)
S2-Rh	2.515(1)	2.3321(7)	2.3213(6)	2.3765(8)	2.5720(5)	2.4193(7)	2.3756(8)	2.3407(8)	2.5068(2)
P4-Rh	-	-	2.3034(6)	2.3655(7)	2.3248(5)	2.379(1)	2.386(1)	2.4377(7)	2.4045(1
C2-P1-C6	100.8(2)	100.3(1)	101.4(1)	101.4(1)	101.36(8)	100.4(1)	100.5(2)	100.6(1)	101.22(1)
S1-Rh-S2	88.21(3)	169.87(2)	172.51(2)	98.68(3)	87.49(2)	92.26(3)	162.12(3)	88.27(2)	88.394(3)
P1-Rh-P4	-	-	174.65(2)	177.94(2)	177.39(2)	177.81(2)	172.86(3)	175.99(2)	177.788(3)
plan-P1	23.1	23.6	16.7	23.3	23.2	26.3	23.2	23.5	23.8
plan-C4	6.7	8.4	7.1	8.6	8.5	8.2	6.2	8.9	9.3
Σ angles P1	305.1	313.3	311.2	313.4	309.9	307.6	309.6	311.8	307.6
C47 _{eq} -C48 _{eq}	1.425(6)								
$C43_{ax}$ - $C44_{ax}$	1.346(6)								
Rh-C43 _{av}	2.286(4)								
Rh-C44	2.275(4)								
Rh-C47	2.101(3)								
Rh-C48	2.106(3)								
P1-Rh-Ctay	177.39								
S1-Rh-Ct	140.49								
S2-Rh-Ct	131.27								
Rh-C16		1 859(3)			1.820(2)				
C16-O1		1.039(3) 1.138(4)			1.020(2) 1.157(2)				
Rh-C16-O1		174 8(3)			1793(2)				
P1-Rh-C16		173.0(1)			179.5(2)				
S1-Rh-C		175.0(1)			143 52(7)				
S2-Rh-C					128.97(7)				
Rh-O1				2.050(2)	120197(7)				
Rh-O2				2.030(2) 2.004(2)					
01-02				1.431(2)					
$O1_Rh_O2$				41 32(6)					
S1-Rh-O1				151 84(5)					
S2-Rh-O2				109 05(5)					
C-\$3				107.05(5)		1 670(3)			
C \$4						1.070(3) 1.631(3)			
Dh C						2.002(2)			
KII-C						2.005(5)			

Rh-S3	2.3866(7)
S3-Rh-C	43.65(8)
S3-C-S4	140.2(2)
Rh-S3	2.342(1)
S3-O1	1.471(2)
S3-O2	1.465(2)
O1-S3-O2	112.0(1)
Rh-Cl1	2.3798(8)
Rh-Cl2	2.393(1)
Cl1-Rh-Cl2	91.44(2)
Rh-Me	2.0891(3)
Rh-I	2.6531(x)
Me-Rh-I	87.88(1)
S1-Rh-Me	89.08(1)

Tableau 3 : paramètres structuraux des complexes de rhodium [M(SPS^{Me})(PPh₃)(L)]. Les distances sont exprimées en Å et les angles en °.

Distances	$[Rh(SPS^{Me})(PPh_3)(\eta^2-O_2)]$	$[Ir(SPS^{Me})(PPh_3)(\eta^2-O_2)]$	$[Ir(SPS^{Me})(PPh_3)(H)_2]$
Angles	415	427	429
P1-C2	1.782(2)	1.78(2)	1.785(2)
C2-C3	1.412(3)	1.43(2)	1.401(3)
C3-C4	1.407(3)	1.40(2)	1.417(3)
C4-C5	1.404(3)	1.41(3)	1.406(3)
C5-C6	1.396(3)	1.39(2)	1.799(2)
C6-P1	1.789(2)	1.79(2)	1.824(2)
P1-Me	1.805(2)	1.79(2)	1.824(2)
C2-P2	1.762(2)	1.74(2)	1.771(2)
P2-S1	2.0326(8)	2.030(6)	2.0140(8)
C6-P3	1.759(2)	1.75(2)	1.762(2)
P3-S2	2.032(1)	2.033(6)	2.0127(7)
P1-M	2.2630(7)	2.263(4)	2.2635(6)
S1-M	2.4057(8)	2.405(5)	2.4717(6)
S2-M	2.3765(8)	2.397(4)	2.4514(5)
P4-M	2.3655(7)	2.337(4)	2.2920(6)
C2-P1-C6	101.4(1)	100.8(7)	101.8(1)
S1-M-S2	98.68(3)	85.4(2)	90.14(2)
P1-M-P4	177.94(2)	172.4(2)	176.70(2)
(C2C3C5C6)-P1	23.3	24.1	21.8
(C2C3C5C6)-C4	8.6	6.5	6.8
Σ angles P1	313.4	315.3	310.9
M-O1	2.050(2)	2.01(1)	
M-O2	2.004(2)	2.03(1)	
01-02	1.431(2)	1.46(2)	
O1-M-O2	41.32(6)	42.5(5)	
S1-M-O1	151.84(5)	113.3(4)	
S2-M-O2	109.05(5)	118.7(4)	
M-H1			1.57(2)
M-H2			1.54(2)
H1-H2			2.116
H1-M-H2			86(1)
S1-M-H1			92.6(8)

Distances	442	447a-b
Angles		
P1-C2	1.765(3)	1.803(2)
C2-C3	1.431(4)	1.413(3)
C3-C4	1.392(5)	1.399(3)
C4-C5	1.417(5)	1.413(3)
C5-C6	1.386(4)	1.393(3)
C6-P1	1.806(3)	1.795(2)
P1-R	1.803(4)	1.819(2)
C2-P2	1.755(3)	1.755(2)
P2-S1	2.040(1)	2.0321(7
C6-P3	1.781(3)	1.759(2)
P3-S2	2.017(1)	2.0370(6)
P1-M	2.2661(8)	2.2419(5
S1-M	2.3641(8)	2.2594(5
S2-M	2.4462(8)	2.3312(5
P4-M	2.2617(7)	2.2494(5)
C2-P1-C6	101.7(1)	100.32(8)
S1-M-S2	90.55(3)	92.01(2)
P1-M-P4	98.96(3)	105.21(2)
Σ angles P1	310.4	306.6
M-S3	2.4458(8)	2.3321(5)
M-S4	2.3693(8)	2.2613(5)
P1-M-S3	171.40(3)	165.95(2)
S1-M-S4	178.85(3)	175.37(2)
P4-M-S2	172.06(3)	166.96(2)
M-S1-P2	108.26(4)	108.71(2)
P1-M-S2-S4	91.4	91.5

Tableau 4 : paramètres structuraux des complexes homoleptiques [M(SPS^{Me})₂][Cl] de rhodium 442 et de cobalt 447a-b. Les distances sont exprimées en Å et les angles en °.

Tableau 5 : Simulation du spectre RPE de 443 en solution gelée (Figure 20B).

Tenseur g			Tenseur de couplage isotrope avec deux noyaux 1/2 (MHz)			Tenseur de couplage isotrope avec un noyau 1/2 (MHz)		
2.1197	0.0	0.0	63.0	0.0	0.0	44.0	0.0	5.3
0.0	2.1197	0.0	0.0	63.0	0.0	0.0	8.0	4.3
0.0	0.0	1.9979	0.0	0.0	63.0	5.3	4.3	27.0

Chapitre 5 : Fixation de molécules sur les métaux des groupes 9 et 10 : approche théorique

Dans le chapitre précédent, nous avons montré que les complexes de rhodium^I 405 et d'iridium^I 411 sont capables de fixer ou d'activer de petites molécules. Nous avons constaté expérimentalement par le biais de structures aux rayons X que cette addition se produisait toujours de manière *syn* par rapport au substituant porté par le phosphore central (Équation 1). Dans cette partie, nous nous proposons d'étudier cette discrimination faciale par des calculs DFT,^[1, 2] d'expliquer la différence de réactivité entre les complexes de rhodium et d'iridium et de prévoir celle des complexes isoélectroniques de palladium et de platine.

I. Choix de la base et de la fonctionnelle

Nous avons cherché avant toute chose à choisir le meilleur couple fonctionnelle/base pour que les géométries optimisées soient les plus proches possible des structures obtenues par diffraction aux rayons X. Pour cela, nous avons testé deux fonctionnelles (B3LYP^[3-5] et B3PW91^[6]) et deux ensembles de bases (B1 et B2). Pour la base B1, un pseudo potentiel *quasi* relativiste de type Hay Wadt a été utilisé pour représenter les 28 électrons de cœur du rhodium et les 60 électrons de cœur de l'iridium, ainsi que pour les électrons de cœur des atomes de phosphore et de soufre.^[7] La base double- ζ lanl2dz associée au pseudo potentiel est utilisée pour le métal.^[7] Pour les atomes de phosphore et de soufre, la base lanl1dz^[7] associée au pseudo potentiel est complétée par des fonctions de polarisation d.^[8] Enfin, la base 6-31G* est utilisée pour décrire les atomes de carbone et 6-31G pour les atomes d'hydrogène.^[9-11] Avec la base B2, plus étendue et plus gourmande en temps de calcul, nous avons cherché à améliorer la description des liaisons métal-ligand. La base du métal est complétée par des fonctions de polarisation f^[12] et les atomes de phosphore et de soufre sont décrits en 6-31+G*.^[13]

Nous avons optimisé les complexes plans carrés modèles de rhodium^I et d'iridium^I dans lesquels les neufs groupes phényles sont remplacés par des atomes d'hydrogène (Schéma 1). Ces minima sont ensuite caractérisés par un calcul de fréquences afin de confirmer la nature du point stationnaire.

Schéma 1

L'optimisation du complexe de rhodium¹ conduit dans les quatre cas à un complexe pseudo plan carré autour du métal (principaux paramètres structuraux dans le Tableau 1). La Figure 1a présente le complexe [Rh(SPS^{Me})(PH₃)] optimisé au niveau B3PW91/B2. Au niveau B3LYP/B1, on obtient une bonne approximation des distances et des angles du squelette SPS et des liaisons Rh-P, P=S, et P-C avec des déviations inférieures à 0.039 Å. La grande différence provient de la distance Rh-S qui est surestimée de 0.133 Å. Au niveau B3PW91/B1, la structure modèle est bien plus proche de la structure expérimentale avec une déviation maximale de 0.024 Å pour le squelette SPS, Rh-P, P-C et P=S et une réduction de la surestimation de Rh-S à 0.094 Å. Le passage à la base B2, plus étendue, permet de réduire encore ces différences. La fonctionnelle B3BW91 donnent à nouveau les meilleurs résultats avec une déviation maximale de 0.008 Å pour le squelette SPS, Rh-P, P-C et P=S et 0.081 Å pour Rh-S. Par conséquent, dans la suite de ce chapitre, nous employons exclusivement la fonctionnelle B3PW91 et la base B2.

Figure 1 : a) Complexe modèle [Rh(SPS^{Me})(PH₃)] optimisé au niveau B3PW91/B2. b) complexe réel [Rh(SPS^{Me})(PPh₃)] optimisé au niveau ONIOM(B3PW91:UFF)/B2. La partie MQ (resp. MM) est représentée en boules et bâtons (resp. tubes) c) structure obtenue par diffraction aux rayons X (405). Les principaux paramètres structuraux sont regroupés dans le Tableau 1.

Nous avons également testé l'influence des neuf groupes phényles et calculé le complexe réel (Figure 1b) que nous avons comparé au complexe expérimental (Figure 1c). Pour cela, nous avons utilisé une méthode mixte mécanique quantique/mécanique moléculaire (MQ/MM) au niveau ONIOM(B3PW91:UFF) avec les phényles dans la partie MM.^[14] La partie MQ est traitée comme précédemment au niveau B3PW91 avec la base B2 et la partie MM avec le champ de forces UFF.^[15] On constate ainsi que la distance Rh-S est mieux reproduite (différence de 0.067 Å) si l'on considère le système réel (Tableau 1).

$[Rh(SPS^{Me})(PR_3)]$	B3LYP/B1	B3PW91/B1	B3LYP/B2	B3PW91/B2	QM/MM	Exp. (405)
Rh-P1	2.279	2.265	2.276	2.259	2.257	2.2428(6)
Rh-P4	2.342	2.314	2.333	2.303	2.332	2.3034(6)
Rh-S (moy)	2.454	2.415	2.439	2.401	2.388	2.3207(6)
P1-Me	1.858	1.851	1.850	1.839	1.839	1.820(2)
P1-C2	1.814	1.810	1.806	1.799	1.803	1.794(2)
P1-C6	1.814	1.810	1.806	1.799	1.799	1.805(2)
P2-C2	1.773	1.770	1.767	1.762	1.780	1.763(2)
P3-C6	1.773	1.770	1.767	1.762	1.774	1.769(2)
P2-S1	2.054	2.047	2.042	2.030	2.036	2.0235(8)
C2-P1-C6	99.6	99.3	100.0	99.8	100.6	101.4(1)
Σ (C-P1-C)	309.6	309.7	311.0	311.0	309.7	311.2
S1-Rh-S2	174.1	174.2	174.0	173.9	170.1	172.51(2)
P1-Rh-P4	175.5	174.9	175.2	174.3	172.3	174.65(2)
P1-C2-P2	112.6	111.8	112.6	111.9	109.2	113.6(1)
P1-C6-P3	112.6	111.8	112.6	111.9	110.4	111.1(1)
C2-P2-S1	112.4	112.1	112.1	111.9	110.4	109.83(7)
C6-P3-S2	112.4	112.1	112.1	111.9	110.7	109.63(7)
Rh-S1-P2	100.4	99.8	100.1	99.4	96.4	107.73(3)
Rh-S2-P3	100.4	99.8	100.1	99.4	99.5	101.34(3)

Tableau 1 : Paramètres structuraux optimisés de [Rh(SPS^{Me})(PR₃)] aux niveaux B3LYP (R = H), B3PW91 (R = H) et ONIOM(B3PW91:UFF) (R = Ph). Les distances sont exprimées en Å et les angles en °.

Le complexe plan carré d'iridium a également été optimisé au niveau B3PW91/B2 et ONIOM(B3PW91:UFF)/B2 (Figure 2). On obtient des géométries semblables à celles des complexes de rhodium.

Figure 2 : a) Complexe modèle [Ir(SPS^{Me})(PH₃)] optimisé au niveau B3PW91/B2. b) complexe réel [Ir(SPS^{Me})(PPh₃)] optimisé au niveau ONIOM(B3PW91:UFF)/B2. La partie MQ (resp. MM) est représentée en boules et bâtons (resp. tubes).

Dans ce cas, les paramètres structuraux théoriques obtenus ne peuvent malheureusement pas être comparés à des valeurs expérimentales puisque le complexe [Ir(SPS^{Me})(PPh₃)] n'a pu être cristallisé (Tableau 2). Cependant, compte tenu de la précision des résultats pour le complexe analogue du rhodium, on peut supposer les structures optimisées du complexe modèle et du complexe réel d'iridium sont satisfaisantes.

$[Ir(SPS^{Me})(PR_3)]$	B3PW91/B2	QM/MM
Ir-P1	2.274	2.268
Ir-P4	2.272	2.305
Ir-S (moy)	2.380	2.370
P1-Me	1.837	1.838
P1-C2	1.797	1.800
P1-C6	1.797	1.796
P2-C2	1.763	1.780
P3-C6	1.763	1.794
P2-S1	2.041	2.048
P3-S2	2.041	2.050
C2-P1-C6	100.1	101.1
Σ (C-P1-C)	312.6	310.4
S1-Ir-S2	172.7	169.0
P1-Ir-P4	171.4	172.4
P1-C2-P2	111.7	109.4
P1-C6-P3	111.6	110.5
C2-P2-S1	111.4	110.0
C6-P3-S2	111.4	110.3
Ir-S1-P2	97.9	96.2
Ir-S2-P3	97.9	99.2

Tableau 2 : Paramètres structuraux optimisés de [Ir(SPS^{Me})(PR₃)] aux niveaux B3PW91/B2 (R = H) et ONIOM(B3PW91:UFF)/B2 (R = Ph). Les distances sont exprimées en Å et les angles en °.

En conclusion, l'optimisation du complexe plan carré modèle et réel sont en bon accord avec le complexe expérimental et valide le niveau de calcul (B3PW91/B2) utilisé pour tout le chapitre.

II. Complexes du groupe 9

Dans cette partie, nous nous proposons d'étudier par calculs DFT et ONIOM la discrimination faciale constatée expérimentalement lors de l'addition de H_2 et O_2 et lors de la fixation de CO (Schéma 2).¹ A chaque fois, les résultats théoriques seront comparés aux résultats expérimentaux décrits dans le chapitre précédent. Il est cependant important de préciser que les calculs théoriques concernant l'addition de H_2 ont été réalisés avant les expériences.

¹ La base 6-31++G^{**} a été utilisée pour décrire H_2 ,^[9, 10] et 6-31+G^{*} pour O_2 et CO.^[13]

II.1. Addition de H₂

Lors de l'activation du dihydrogène par le complexe plan carré d'iridium¹ [Ir(SPS^{Me})(PPh₃)], il se forme exclusivement le complexe dihydrure [Ir(SPS^{Me})(PPh₃)(H)₂] pseudo octaédrique. Nous avons donc considéré les différents modes d'attaques possibles qui conduisent à un tel complexe (Équation 2). L'addition de la molécule de dihydrogène peut avoir lieu i) de manière *syn* ou *anti* par rapport au groupe P-Me ii) de manière coplanaire aux liaisons M-S (SS) ou M-P (PP). Vu sous un autre angle, SS (resp.PP) correspond à la pliure de l'angle S-M-S (resp. P-M-P). On obtient ainsi quatre isomères possibles. Le complexe obtenu expérimentalement correspond à l'isomère *syn*-SS : *syn* car l'attaque a lieu du côté du groupe P-Me et SS car c'est l'angle S-M-S qui s'est plié.

Par ailleurs, on imagine aisément que lors de l'addition du dihydrogène sur les complexes de rhodium et iridium d'autres isomères peuvent être envisagés : existe-t-il un complexe de dihydrogène moléculaire stable ? Est-ce que la liaison H-H se casse de manière homolytique ? Hétérolytique ? Une isomérie *cis trans* est-elle envisageable ?

II.1.1. Optimisation des complexes de rhodium

La géométrie du complexe d'addition $[Rh(SPS^{Me})(PH_3)(H)_2]$ est optimisée pour les quatre isomères *syn*-SS, *syn*-PP, *anti*-SS et *anti*-PP et on l'obtient quatre structures caractérisées comme des minima de la surface de potentiel. Ces isomères sont représentés sur la Figure 3 (**Ia-IVa**). Dans chaque cas, on forme des complexes dihydrures en position *cis* (par exemple, pour **Ia** : H-H 2.085 contre 0.744 Å pour H₂ libre et Rh-H 1.550 Å). Les attaques *syn*-SS, *syn*-PP, *anti*-PP (**Ia-IIIa**) conduisent à un complexe pseudo octaédrique de rhodium^{III} tandis que l'attaque *anti*-SS (**IVa**) aboutit à la décoordination d'un atome de soufre (Rh-S1 2.480 Å *vs* Rh-S2 4.736 Å) et à la formation d'un complexe de géométrie bipyramide trigonale avec les hydrures qui occupent deux sites équatoriaux. En accord avec les résultats expérimentaux, l'isomère *syn*-SS est le plus stable. L'ordre relatif des isomères est le suivant (en kcal.mol⁻¹) : *syn*-SS (0) (**Ia**) < *anti*-SS (+ 11.5) (**IVa**) < *anti*-PP (+18.0) (**II-a**) < *syn*-PP (+23.6) (**III-a**). On constate par ailleurs que la formation de l'isomère *syn*-SS est favorisée thermodynamiquement (énergie de -14.9 kcal.mol⁻¹ plus stable que celle des réactifs).

Figure 3 : Géométries optimisées de $[Rh(SPS^{Me})(PH_3)(H)_2]$. Les atomes d'hydrogène autres que ceux qui sont liés au métal sont omis par souci de clarté. Sélection de paramètres géométriques (liaisons en Å et angles en °) : Ia : H-H 2.085, Rh-H 1.550, Rh-S 2.591, Rh-P1 2.283, Rh-P4 2.311, S1-Rh-S2 93.9, P1-Rh-P4 171.3. IIa : H-H 2.021, Rh-H1 1.574, Rh-H2 1.565, Rh-S 2.419, Rh-P1 2.379, Rh-P4 2.394, S1-Rh-S2 172.2, P1-Rh-P4 101.7. IIIa : H-H 2.066, Rh-H1 1.603, Rh-H2 1.554, Rh-S 2.416, Rh-P1 2.330, Rh-P4 2.416, S1-Rh-S2 172.0, P1-Rh-P4 106.2. IVa : H-H 1.756, Rh-H1 1.510, Rh-H2 1.547, Rh-S1 2.480, Rh-S2 4.736, Rh-P1 2.306, Rh-P4 2.328, S1-Rh-H1 124.6, S1-Rh-H2 165.3, P1-Rh-P4 172.1. Va : Rh-H1 1.638, Rh-H2 1.684, Rh-S1 2.426, Rh-S2 2.426, Rh-P1 2.269, Rh-P4 2.317, H1-Rh-H2 179.9, S1-Rh-S2 172.5, P1-Rh-P4 177.7. VIa : Rh-H1 1.562, S2-H2 1.358, Rh-S1 2.530, Rh-S2 3.252, Rh-P1 2.262, Rh-P4 2.295, S1-Rh-H1 168.0, P1-Rh-P4 168.9. E : énergie relative exprimée en kcal.mol⁻¹.

Il est important de noter que le complexe où les hydrures sont *trans* l'un par rapport à l'autre (**Va**, Figure 3) est moins stable que l'isomère (*cis*) syn-SS de 24.5 kcal.mol⁻¹. Il en va de même lors d'une rupture hétérolytique de H₂ (attaque du métal par H⁻ et du soufre par H⁺) qui conduit au complexe [Rh(SP^{Me}...SH)(PH₃)(H)] (**VIa**, Figure 3) : l'énergie de 34.9

kcal.mol⁻¹ place cet isomère hors d'atteinte énergétiquement. Par ailleurs, les essais pour optimiser des complexes d'hydrogène moléculaire se sont toujours soldés par l'évolution vers une structure dihydrure déjà optimisée, du type **Ia** ou **IVa** selon les cas.

Finalement, d'un point de vue théorique, l'addition d'hydrogène sur le complexe modèle de rhodium^I [Rh(SPS^{Me})(PH₃)] conduit préférentiellement à la formation du complexe dihydrure *syn*-SS qui correspond au type de structures obtenues expérimentalement lors de l'addition d'autres petites molécules.

II.1.2. Régiosélectivité expliquée par un cycle thermodynamique

Nous avons ensuite analysé les facteurs responsables de la régiosélectivité par le biais d'un cycle thermodynamique qui connecte les réactifs (complexe plan carré ${}^{1}[Rh(SPS^{Me})(PH_{3})]$ et H₂) au complexe dihydrure *cis* $[Rh(SPS^{Me})(PH_{3})(H)_{2}]$ (**Ia-IVa**). La réaction a été décomposée suivant les étapes suivantes :

i) Distorsion du complexe ${}^{1}[Rh(SPS^{Me})(PH_{3})]$ de sa géométrie plan carré initiale à sa géométrie dans le produit dihydrure ${}^{1}[Rh(SPS^{Me})(PH_{3})]_{dist.}$ ($\Delta E_{dist.}$ (ML₄)) (Équation 3);

ii) Formation de l'état triplet ³[Rh(SPS^{Me})(PH₃)]_{dist.} du fragment métallique distordu ¹[Rh(SPS^{Me})(PH₃)]_{dist.} (ΔE_{S/T}). Avec deux électrons non appariés, le fragment métallique est désormais dans une géométrie et une structure électronique optimale pour coordonner deux autres ligands de type X lors de la réaction d'addition oxydante (Équation 4);

iii) Rupture de la liaison H-H ($-\Delta E_1(H_2)$) (Équation 5);

iv) Formation de deux liaisons Rh-H $(2\Delta E_1 (M-H))$ (Équation 6).

L'énergie associée à cette réaction d'addition oxydante s'exprime donc sous la forme $\Delta E_R = \Delta E_{dist} (ML_4) + \Delta E_{S/T} - \Delta E_1 (H-H) + 2\Delta E_1 (M-H)$ (Schéma 3). Pour la suite de la discussion, introduisons la somme $\Sigma = \Delta E_{T \ dist.} = \Delta E_{dist} (ML_4) + \Delta E_{S/T}$ qui représente l'énergie nécessaire pour « préparer » le fragment métallique à l'addition oxydante. Cette décomposition d'énergie montre que la réaction d'addition est favorisée par une faible valeur de $\Delta E_T_{\ dist}$ et une grande énergie de liaison M-H ($2\Delta E_1 (M-H)$).

Le Tableau 3 présente les résultats de cette décomposition d'énergie pour les quatre isomères. On constate que l'isomère *syn*-SS (**Ia**) est favorisé par rapport aux autres isomères (**IIa-IVa**) en raison de sa plus faible énergie de distorsion du fragment métallique triplet (ΔE_T _{dist.} = +22.8 kcal.mol⁻¹ pour **Ia** contre +30.8 kcal.mol⁻¹ pour le deuxième isomère le plus stable **IVa**) et de sa plus forte énergie de liaison Rh-H ($2\Delta E_1$ (M-H) = -145.0 kcal.mol⁻¹ pour **Ia** contre -141.5 kcal.mol⁻¹ pour **IVa**). La discrimination faciale entre l'attaque *syn*-SS et *anti*-SS d'une part ($\Delta(\Delta E_R) = 11.5 \text{ kcal.mol}^{-1}$ en faveur du premier) et l'attaque *syn*-PP et *anti*-PP ($\Delta(\Delta E_R) = 5.6 \text{ kcal.mol}^{-1}$ en faveur du second) s'explique principalement par le terme énergétique lié à la formation du fragment métallique triplet : $\Delta(\Delta E_T _{dist}) = +8.0 \text{ kcal.mol}^{-1}$ pour les isomères SS, et +7.1 kcal.mol⁻¹ pour les isomères PP. Comme cela a été montré précédemment,^[16-18] le terme $\Delta E_T _{dist}$ est un facteur important pour expliquer la plus ou moins grande facilité d'une réaction d'addition oxydante.

$\mathbf{M} = \mathbf{R}\mathbf{h}$	Syn-SS (Ia)	Anti-PP (IIa)	Syn-PP (IIIa)	Anti –SS (IVa)
$\Delta E_{dist.}$ (RhL ₄)	+26.9	+30.6	+32.4	+29.9
$\Delta E_{S/T}$	-4.1	-4.0	+1.3	+0.9
$\Sigma = \Delta E_{T \text{ dist.}}$	+22.8	+26.6	+33.7	+30.8
- ΔE_1 (H-H)	+107.3	+107.3	+107.3	+107.3
$2\Delta E_{l}$ (Rh-H)	-145.0	-130.8	-132.3	-141.5
ΔE_R	-14.9	+3.1	+8.7	-3.4

Tableau 3: Décomposition de l'énergie de réaction (kcal.mol⁻¹) pour la formation des isomères *syn*-SS (Ia), *anti*-PP (IIa), *syn*-PP (IIIa) et *anti*-SS (IVa) par addition oxydante de H₂ sur [Rh(SPS^{Me})(PH₃)].

II.1.3. Et l'iridium ?

Nous avons suivi la même démarche avec le complexe d'iridium. L'optimisation des quatre isomères *syn*-SS, *syn*-PP, *anti*-SS et *anti*-PP conduit au même ordre énergétique que pour les complexes de rhodium : *syn*-SS (0) (**Ib**) < *anti*-SS (+15.8) (**IVb**) < *anti*-PP (+ 17.6) (**IIb**) < *syn*-PP (+23.1) (**IIIb**). La Figure 4 représente les structures optimisées des quatre minima (**Ib-IVb**). La géométrie de l'isomère le plus bas en énergie (**Ib**) correspond à la structure expérimentale et les paramètres structuraux concordent avec une très bonne approximation (Tableau 7) : Ir-H : 1.583 Å (exp. : 1.55(2) en moyenne), Ir-P1 : 2.289 Å (exp. : 2.2635(6)), Ir-P4 : 2.295Å (exp. : 2.2920(6)), Ir-S1 : 2.557 Å (exp. : 2.4717(6)), Ir-S2 : 2.558 Å (exp. : 2.4514(6)). De plus, la formation de cet isomère est très exothermique ($\Delta E_R = -36.1$ kcal.mol⁻¹). Les structures des trois autres isomères (*anti*-PP **IIb**, *syn*-PP **IIIb** et *anti*-SS **IVb**) ressemblent en tous points aux complexes analogues de rhodium.

Par ailleurs, aucune isomérisation *cis-trans* n'est attendue car l'énergie de l'isomère *trans* (**Vb**, Figure 4) est situé 21.6 kcal.mol⁻¹ au dessus de celle de l'isomère *syn*-SS (**Ib**). Enfin, l'énergie du complexe pseudo plan carré monohydrure ([Ir(H)(SP^{Me}...SH)(PH₃)], **VIb**, Figure 4), qui résulte de l'activation hétérolytique de l'hydrogène, est beaucoup trop élevée (45.2 kcal.mol⁻¹ plus haut que **Ib**) pour que la formation d'un tel complexe puisse être observée.

Figure 4 : Géométries optimisées de $[Ir(SPS^{Me})(PH_3)(H)_2]$. Les atomes d'hydrogène autres que ceux qui sont liés au métal et au soufre sont omis par souci de clarté. Sélection de paramètres géométriques (liaisons en Å et angles en °) : lb : H-H 2.175, Ir-H 1.583, Ir-S 2.557, Ir-P1 2.289, Ir-P4 2.295, S1-Ir-S2 91.5, P1-Ir-P4 171.2. Ilb : H-H 2.104, Ir-H1 1.611, Ir-H2 1.607, Ir-S1 2.416, Ir-S2 2.418, Ir-P1 2.345, Ir-P4 2.343, S1-Ir-S2 173.0, P1-Ir-H1 168.9, P4-Ir-H2 171.6. Illb : H-H 2.150, Ir-H1 1.632, Ir-H2 1.596, Ir-S 2.414, Ir-P1 2.308, Ir-P4 2.357, S1-Ir-S2 172.5, P1-Ir-P4106.0, P1-Ir-H1172.1, P4-Ir-H2 165.4. IVb : H-H 1.786, Ir-H1 1.551, Ir-H2 1.567, Ir-S1 2.410, Ir-S2 4.735, Ir-P1 2.312, Ir-P4 2.302, S1-Ir-H1 137.5, S1-Ir-H2 152.6, P1-Ir-P4 1723.0. Vb : Ir-H1 1.650, Ir-H2 1.696, Ir-S1 2.424, Ir-S2 2.424, Ir-P1 2.281, Ir-P4 2.300, H1-Ir-H2 180.0, S1-Ir-S2 173.0, P1-Ir-P4 174.5. VIb : Ir-H1 1.588, S2-H2 1.356, Ir-S1 2.475, Ir-S2 3.260, Ir-P1 2.272, Ir-P4 2.291, S1-Ir-H1 166.3, P1-Ir-P4 170.2. E : énergie relative exprimée en kcal.mol⁻¹.

L'étude du cycle thermodynamique décrit précédemment (Schéma 3) révèle la même tendance (Tableau 4) : l'isomère *syn*-SS est favorisé à la fois par une plus faible valeur de l'énergie de distorsion du fragment métallique triplet ($\Delta E_{T \text{ dist.}}$) (27.8 pour **Ib** au lieu de 35.1 kcal.mol⁻¹ pour **IVb**) et par une plus forte valeur de l'énergie de liaison iridium hydrogène ($2\Delta E_1$ (Ir-H)) (-171.2 pour **Ib** au lieu de -162.7 kcal.mol⁻¹ pour **IVb**).

M = Ir	Syn-SS (Ib)	Anti-PP (IIb)	Syn-PP (IIIb)	Anti –SS (IVb)
$\Delta E_{dist.}$ (ML ₄)	35.8	+36.7	41.1	38.5
$\Delta E_{S/T}$	-8.0	-1.2	1.5	-3.4
$\Sigma = \Delta E_{T \text{ dist.}}$	+27.8	+35.5	+42.6	+35.1
- ΔE_1 (H-H)	+107.3	+107.3	+107.3	+107.3
$2\Delta E_{l}$ (Ir-H)	-171.2	-161.3	-162.9	-162.7
ΔE_R	-36.1	-18.5	-13.0	-20.3

Tableau 4: Décomposition de l'énergie de réaction (kcal.mol⁻¹) pour la formation des isomères *syn*-SS (Ib), *anti*-PP (IIb), *syn*-PP (IIIb) et *anti*-SS (IVb) par addition oxydante de H₂ sur [Ir(SPS^{Me})(PH₃)].

II.1.4. Comparaison des isomères les plus stables de rhodium et d'iridium

La plus grande différence entre l'addition oxydante du dihydrogène sur les complexes de rhodium et d'iridium [M(SPS^{Me})(PH₃)] (M = Rh, Ir) pour former les complexes les plus stables *syn*-SS Ia et Ib provient de l'exothermicité de la réaction (ΔE_R); elle est de -36.1 kcal.mol⁻¹ pour l'iridium contre -14.9 kcal.mol⁻¹ pour le rhodium. Le cycle thermodynamique permet d'expliquer ce résultat très facilement (Tableau 5). En effet, la décomposition de l'énergie de l'isomère *syn*-SS du rhodium (Ia) et de l'iridium (Ib) montre que le terme de distorsion du fragment métallique ($\Delta E_{T dist}$) favorise le complexe de rhodium de 5.0 kcal.mol⁻¹. Ce terme devrait avantager l'exothermicité du complexe de rhodium (Ia) par rapport à celui de l'iridium (Ib). Cependant, l'énergie de liaison métal hydrogène ($2\Delta E_I$ (M-H)) favorise très largement le complexe d'iridium : sa valeur est de -171.2 kcal.mol⁻¹ par liaison pour l'iridium et de -145.0 kcal.mol⁻¹ pour le rhodium. Ce facteur se révèle décisif et cela met en évidence l'importance de l'énergie des liaisons en formation lors de l'addition oxydante d'une molécule.

Tableau 5: Décomposition de l'énergie de réaction (kcal.mol⁻¹) pour la formation des isomères *syn*-SS à partir de H₂ et du complexe [M(SPS^{Me})(PH₃)] (M = Rh (Ia), Ir (Ib)).

	Rh (Ia)	Ir (Ib)
$\Delta E_{dist.}$ (ML ₄)	26.9	35.8
$\Delta E_{S/T}$	-4.1	-8.0
$\Sigma = \Delta E_{T \text{ dist.}}$	+22.8	+27.8
- ΔE_1 (H-H)	+107.3	+107.3
$2\Delta E_{l}$ (M-H)	-145.0	-171.2
ΔE_R	-14.9	-36.1

Comme nous l'avons expliqué dans le chapitre précédent, expérimentalement, l'addition de dihydrogène sur le complexe de rhodium [Rh(SPS^{Me})(PPh₃)] **405** est réversible en solution tandis qu'elle conduit de manière irréversible au complexe dihydrure avec le complexe d'iridium. Dans les deux cas, les réactions sont fortement exothermiques, mais il faut noter que le terme entropique est défavorable à cette réaction d'addition. En effet, la valeur calculée pour l'enthalpie libre (Tableau 6) est proche de zéro pour le complexe de rhodium, en accord avec la réversibilité de l'addition du dihydrogène que l'on observe expérimentalement en solution, tandis qu'elle reste très négative (-22.2 kcal.mol⁻¹) pour le complexe d'iridium. Ceci explique pourquoi la formation d'un complexe dihydrure d'iridium est irréversible.

Tableau 6: Enthalpie libre de réaction (kcal.mol⁻¹) pour la formation des isomères *syn*-SS à partir de H₂ et le complexe [M(SPS^{Me})(PH₃)] (M = Rh (Ia), Ir (Ib)).

	Rh (Ia)	Ir (Ib)
ΔG_R	-2.2	-22.2

Finalement, le terme d'énergie de liaison métal hydrogène est responsable de la plus grande exothermicité de la réaction d'addition oxydante de dihydrogène sur le complexe

d'iridium par rapport au complexe de rhodium. La différence de réactivité observée expérimentalement des complexes de rhodium et d'iridium (addition de dihydrogène réversible pour le complexe de rhodium et formation irréversible du complexe dihydrure d'iridium) a été rationalisée par les valeurs des enthalpies libres de réaction (proche de zéro pour le rhodium et négative pour l'iridium).

II.1.5. Influence des groupes phényles

Nous avons également étudié l'influence des groupes phényles. Pour cela, nous avons optimisé le complexe réel (**cr**) dans la géométrie de l'isomère le plus stable *syn*-SS du rhodium (**Ia-cr**) et de l'iridium (**Ib-cr**) par une méthode hybride MQ/MM (ONIOM(B3PW91:UFF)) dans laquelle les neufs groupes phényles sont optimisés en mécanique moléculaire (Figure 5b). D'un point de vue énergétique, un calcul purement quantique, B3PW91//(B3PW91:UFF), est effectué sur la géométrie optimisée au niveau ONIOM. Dans ce calcul simple point, les atomes de carbone et d'hydrogène des groupes phényles sont décrits par la base 6-31G. La pertinence de ce calcul est validée grâce aux données structurales de la structure aux rayons X du complexe dihydrure d'iridium (Figure 5c, Tableau 7).

Figure 5 : a) Structure optimisée du complexe $[Ir(SPS^{Me})(PH_3)(H)_2]$ (Ib) au niveau B3PW91, b) structure optimisée de $[Ir(SPS^{Me})(PPh_3)(H_2)]$ (Ib-cr) au niveau ONIOM (B3PW91:UFF). La partie MQ (resp. MM) représentée en boules et bâtons (resp. tubes), c) structure de 431 obtenue par diffraction aux rayons X. Pour a) et c), seuls les atomes d'hydrogène liés au métal sont représentés.

Avec les complexes réels, on retrouve que l'exothermicité de la réaction d'addition du dihydrogène sur le rhodium et l'iridium augmente en passant du rhodium **Ia-cr** à l'iridium **Ib-cr**, de 21.1 au lieu de 21.2 kcal.mol⁻¹ pour les complexes non substitués **Ia** et **Ib**. Nous avons également décomposé l'énergie de la réaction d'addition par le cycle thermodynamique décrit au Schéma 3. L'énergie de liaison métal hydrogène est à nouveau responsable de la différence d'exothermicité entre le rhodium et l'iridium. Elle est d'ailleurs très proche de celle calculée précédemment pour les complexes non substitués (ΔE_1 (M-H) = -85.6 pour **Ib-cr** et -72.4 kcal.mol⁻¹ pour **Ia-cr** au lieu de -85.6 et -72.5 kcal.mol⁻¹ pour les complexes non substitués **Ib** et **Ia**, respectivement).

[Ir(SPS ^{Me})(PR ₃)(H) ₂]	B3PW91	ONIOM(B3PW91:UFF)	Exp.
	Ib	Ib-cr	431
Ir-P1	2.289	2.272	2.2635(6)
Ir-P4	2.295	2.334	2.2920(6)
Ir-H1	1.583	1.583	1.57(2)
Ir-H2	1.583	1.585	1.54(2)
Ir-S1	2.558	2.526	2.4717(6)
Ir-S2	2.557	2.524	2.4514(5)
H1-H2	2.175	2.133	2.116(x)
Σ (C-P1-C)	313.6	312.1	310.9
S1-Ir-S2	91.5	85.7	90.14(2)
P1-Ir-P4	173.2	171.0	176.70(2)
S1-Ir-H1	90.8	93.6	92.6(8)
H1-Ir-H2	86.8	84.7	86(1)

Tableau 7 : Paramètres structuraux optimisés de $[Ir(SPS^{Me})(PR_3)(H)_2]$ aux niveaux B3PW91 (R = H), ONIOM(B3PW91:UFF) (R = Ph) et valeurs expérimentales. Les distances sont exprimées en Å et les angles en °.

Tableau 8 : Décomposition de l'énergie de réaction (kcal.mol⁻¹) pour la formation des isomères *syn*-SS à partir de H₂ et le complexe [M(SPS^{Me})(PH₃)] (M = Rh (Ia), Ir (Ib)) ou [M(SPS^{Me})(PPh₃)] (M = Rh (Ia-cr), Ir (Ib-cr))

	Rh (Ia)	Rh (Ia-cr)	Ir (Ib)	Ir (Ib-cr)
$\Delta E_{dist.}$ (ML ₄)	26.9	+21.4	35.8	+30.7
$\Delta E_{S/T}$	-4.1	-4.3	-8.0	-9.1
$\Sigma = \Delta E_{T \text{ dist.}}$	+22.8	+17.1	+27.8	+21.6
- ΔE_1 (H-H)	+107.3	+107.3	+107.3	+107.3
$2\Delta E_{l}(M-H)$	-145.0	-144.8	-171.2	-170.4
ΔE_R	-14.9	-20.4	-36.1	-41.5

Finalement, les calculs sur les complexes réels confirment les résultats des calculs sur les complexes modèles de rhodium et d'iridium : la plus grande exothermicité de la réaction d'addition du dihydrogène sur l'iridium provient de la plus forte énergie de liaison iridium hydrogène.

II.1.6. Calcul des états de transition

Enfin, nous nous sommes penchés sur le mécanisme d'addition oxydante du dihydrogène sur le complexe [M(SPS^{Me})(PH₃)] (M = Rh, Ir) en optimisant et en caractérisant l'état de transition qui conduit aux isomères *syn*-SS Ia et Ib au niveau B3PW91/B2 (Figure 6). Dans les états de transition du rhodium (TS-Ia) et de l'iridium (TS-Ib), la liaison H-H est légèrement allongée (0.818 et 0.825 Å pour TS-Ia et TS-Ib, resp.) par rapport à la molécule H₂ libre (0.744 Å). L'état de transition de la réaction d'addition oxydante conduisant au complexe dihydrure *syn*-SS est donc un complexe d'hydrogène moléculaire. La liaison M-H est environ 0.3-0.4 Å plus longue que dans le complexe dihydrure *syn*-SS et le fragment métallique est distordu par rapport à la géométrie initiale : il possède une géométrie papillon avec un angle S-M-S de 131.6° pour le rhodium et 153.3° pour l'iridium (contre 173.9° et

172.7° dans le réactif [M(SPS^{Me})(PH₃)]). Ainsi, la géométrie de l'état de transition est une bipyramide trigonale distordue avec une molécule de dihydrogène qui occupe un site équatorial.

Les valeurs de l'angle de pliage S-M-S (l'angle S-M-S est plus grand pour l'iridium) permettent de conclure que l'état de transition du complexe d'iridium est plus précoce que celui de rhodium, en accord avec la plus forte exothermicité de réaction du complexe d'iridium (Tableau 9). Cependant, l'énergie d'activation ΔE^{\ddagger} est légèrement plus élevée dans le cas de l'iridium (+8.8 kcal.mol⁻¹ contre +8.2 kcal.mol⁻¹ pour le rhodium). On retrouve le même ordre d'énergie pour les valeurs de l'enthalpie libre ΔG^{\ddagger} (+19.1 contre +19.6 kcal.mol⁻¹ pour le rhodium). Ainsi, les valeurs de l'énergie d'activation ($\Delta E^{\ddagger} \sim 8$ kcal.mol⁻¹) et de l'enthalpie libre de la réaction ($\Delta G^{\ddagger} \sim 19$ kcal.mol⁻¹) s'accorde avec la réactivité expérimentale de l'addition oxydante qui est réalisée à température ambiante.

Figure 6 : Géométries optimisées des états de transition pour l'addition de H₂ sur le complexe [Rh(SPS^{Me})(PH₃)]. Les atomes d'hydrogène autres que ceux qui sont liés au métal sont omis par souci de clarté. Sélection de paramètres géométriques (liaisons en Å et angles en °) : Rh (TS-Ia) : H-H 0.818, Rh-H1 1.879, Rh-H2 1.893, S1-Rh 2.490, S2-Rh 2.509, P1-Rh 2.281, P4-Rh 2.316, S1-Rh-S2 131.6, P1-Rh-P4 170.7. Ir (TS-Ib) : H-H 0.825, Ir-H1 1.897, Ir-H2, 1.944, S1-Ir 2.432, S2-Ir 2.447, P1-Ir 2.287, P4-Ir 2.291, S1-Ir-S2 153.3, P1-Ir-P4 162.3.

La valeur du terme d'énergie d'activation a également été analysée par le biais d'un cycle thermodynamique. Comme l'état de transition correspond à un complexe de dihydrogène moléculaire, la réaction d'addition oxydante n'a pas eu lieu, et l'état de transition correspond à l'interaction du fragment métallique singulet distordu ¹[M(SPS^{Me})(PH₃)]_{dist.} avec une molécule d'hydrogène très légèrement allongée. L'énergie d'activation (ΔE^{\ddagger}) de la réaction d'addition du dihydrogène sur les complexes de rhodium et d'iridium conduisant aux isomères *syn*-SS se décompose comme :

i) L'énergie de distorsion du complexe ${}^{1}[M(SPS^{Me})(PH_{3})]$ de sa géométrie plan carré initiale à sa géométrie dans l'état de transition ${}^{1}[M(SPS^{Me})(PH_{3})]_{dist.}$ ($\Delta E_{S \ dist.}$) (Équation 7);

ii) L'énergie d'élongation du dihydrogène ($\Delta E_{\text{stretch.}}$ (H-H)) (Équation 8) ;

iii) L'énergie d'interaction entre le fragment métallique distordu ${}^{1}[M(SPS^{Me})(PH_{3})]_{dist.}$ et la molécule d'hydrogène allongée $(H_{2})_{allongé}$ (Équation 9).

L'énergie d'activation associée à cette réaction d'addition oxydante pour former l'isomère *syn*-SS s'exprime donc sous la forme $\Delta E^{\ddagger} = \Delta E_{S \text{ dist.}} + \Delta E_{\text{stretch.}}(\text{H-H}) + \Delta E_{\text{int.}}$ (Schéma 4).

Le résultat de cette décomposition de l'énergie d'activation est présenté Tableau 9. On constate que le terme $\Delta E_{S \text{ dist.}}$ qui caractérise la distorsion du fragment métallique représente la plus grande partie de l'énergie d'activation (+9.5 sur +8.2 kcal.mol⁻¹ pour le complexe de rhodium et +7.4 sur +8.8 kcal.mol⁻¹ pour le complexe d'iridium). De plus, on vérifie que la valeur du terme de distorsion du fragment métallique ($\Delta E_{S \text{ dist.}}$) croit avec la pliure de l'angle S-M-S ; en effet, quand on passe du complexe d'iridium au complexe de rhodium, l'énergie de distorsion du fragment métallique croit de +7.4 à +9.5 kcal.mol⁻¹ tandis que l'angle S-M-S, voisin de 173° dans les réactifs, se ferme de 153.3° à 131.6°. Ainsi, le terme de distorsion du fragment métallique favorise légèrement la formation du complexe d'iridium. Cependant, l'énergie d'interaction métal dihydrogène moléculaire, plus favorable pour le rhodium (-3.3 contre -1.0 kcal.mol⁻¹ pour l'iridium) explique la faible augmentation de l'énergie d'activation quand on passe du rhodium (+8.2 kcal.mol⁻¹) à l'iridium (+8.8 kcal.mol⁻¹).

Tableau 9 : Décomposition de l'énergie d'activation (ΔE^{\ddagger} exprimée en kcal.mol⁻¹) pour l'addition de H₂ sur [M(SPS^{Me})(PH₃)] conduisant à l'isomère *syn*-SS (M = Rh (TS-Ia), Ir (TS-Ib)).

TS (syn-SS)	Rh (TS-Ia)	Ir (TS-Ib)
$\Delta E_{S \text{ dist.}}$	+9.5	+7.4
$\Delta E_{\text{stretch.}}$ (H-H)	+2.0	+2.4
$\Delta E_{int.}$	-3.3	-1.0
ΔE^{\ddagger}	+8.2	+8.8

Il est cependant étonnant que pour les deux états de transition l'énergie d'interaction métal dihydrogène moléculaire reste faible (-3.3 et -1.0 kcal.mol⁻¹) et ce malgré des distances métal dihydrogène relativement courtes 1.887 Å (1.920 Å resp.) en moyenne pour le rhodium (l'iridium resp.). Ce résultat s'explique simplement par le diagramme d'interaction faisant intervenir les OM du fragment métallique dans la géométrie papillon et les OM de la molécule de dihydrogène allongée (Figure 7). Les principales OM du fragment métallique sont constituées de deux orbitales doublement occupées de symétries différentes (la HOMO est l'orbitale d_{vz} antisymétrique et la HOMO-1 est l'orbitale d_{z2} symétrique) et d'une OM vacante symétrique (LUMOmétal). Les OM de la molécule d'hydrogène sont l'orbitale doublement occupée σ_{H2} et l'orbitale vacante σ_{H2}^* . La rétrodonation fait intervenir les OM d_{yz} et σ_{H2}^{*} et conduit à une stabilisation. La donation de la σ_{H2} dans la LUMO du fragment métallique est fortement perturbée par une interaction répulsive de l'OM d_{z2} . On observe alors une interaction à trois OM et quatre électrons. Cette interaction répulsive conduit à une HOMO antiliante entre le métal et l'hydrogène. On comprend ainsi pourquoi l'énergie d'interaction métal dihydrogène moléculaire est au total proche de zéro : une forte interaction répulsive s'ajoute aux deux interactions stabilisantes (donation et rétrodonation).

Figure 7 : Principales interactions entre les OM du fragment métallique et de H₂ à l'état de transition.

Cette analyse qualitative est corroborée par la forme des deux OM les plus hautes en énergie (Figure 8). La HOMO-1 illustre la rétrodonation (donc la combinaison liante) de l'orbitale d_{yz} vers la σ_{H2}^{*} et la HOMO (orbitale d_{z2} polarisée combinée à l'orbitale σ_{H2}) est antiliante entre le fragment métallique et le dihydrogène.

Figure 8 : Dessins des deux OM les plus hautes en énergie dans l'état de transition Rh(TS-Ia).

II.1.7. Conclusion

Les calculs DFT permettent d'expliquer convenablement la régiosélectivité de l'addition oxydante du dihydrogène sur le complexe modèle $[M(SPS^{Me})(PH_3)]$ (M = Rh, Ir). La discrimination faciale qui conduit à l'isomère *syn*-SS est gouvernée tant par l'énergie de distorsion du fragment métallique à l'état triplet que par la force des liaisons métal hydrogène qui se forment. La plus forte exothermicité de la réaction dans le cas du complexe d'iridium provient de la plus grande force de la liaison M-H. Des calculs menés sur les complexes réels

confirment ces résultats. Enfin, l'état de transition de cette réaction d'addition oxydante est un complexe d'hydrogène moléculaire situé entre 8 et 9 kcal.mol⁻¹ au dessus des réactifs.

Il est par contre important de préciser que les calculs DFT ont été réalisés avant les expériences et qu'ils prédisent et concordent à tous points de vue à la réactivité expérimentale. La valeur du terme d'enthalpie libre d'activation (de l'ordre de 19 kcal.mol⁻¹) s'accorde avec une réaction d'addition oxydante réalisée à température ambiante. La différence de réactivité expérimentale des complexes de rhodium et d'iridium (addition de dihydrogène réversible pour le complexe de rhodium et formation irréversible du complexe dihydrure d'iridium) a été rationalisée par les valeurs de l'enthalpie libre de réaction (proche de zéro pour le rhodium et très négative pour l'iridium).

II.2. Addition de O₂^[19]

Nous avons également étudié d'un point de vue théorique l'addition de l'oxygène sur les complexes modèles $[(M(SPS^{Me})(PH_3)(O_2)]$ de rhodium et d'iridium. La géométrie des complexes d'addition de l'oxygène $[(M(SPS^{Me})(PH_3)(O_2)]$ a été optimisée pour les quatre isomères *syn*-SS, *anti*-SS, *syn*-PP et *anti*-PP (Équation 10).

II.2.1. Complexe de rhodium

Dans le cas du rhodium, les approches *syn*-SS (**Ic**), *anti*-PP (**IIc**) et *syn*-PP (**IIIc**) conduisent à des complexes pseudo octaédriques avec l'oxygène lié au métal de manière η^2 tandis que l'approche *anti*-SS (**IVc**) aboutit à la décoordination d'un atome de soufre et à une structure bipyramide trigonale distordue avec une molécule η^2 -O₂ qui occupe deux sites équatoriaux.² D'un point de vue énergétique, l'ordre des isomères est (en kcal mol⁻¹) : *syn*-SS (**Ic**) (0) < *anti*-PP (**IIc**) (+7.1) < *anti*-SS (**IVc**) (+11.7) < *syn*-PP (**IIIc**) (+13.7). Ces différences d'énergie sont suffisamment importantes pour expliquer pourquoi seul l'isomère *syn*-SS (**Ic**) est observé expérimentalement. Les distances O-O, allongée de 1.208 Å dans O₂ libre à 1.386 Å (exp. : 1.431(2) Å), et Rh-O de 2.021 et 2.023 Å (exp. :(2.027(2))_{moyenne} Å) sont en accord avec une structure péroxo de rhodium^{III} (Tableau 10).^[20-24] Les angles du plan [S1-S2-O1-O2] sont aussi reproduits de façon satisfaisante : S1-Rh-S2 = 93.2° (exp. : 98.7°) et O1-Rh-O2 = 40.1° (exp. : 41.3°). Par ailleurs, **Ic** est le seul isomère plus stable que les réactifs ($\Delta E_R = -5.1$ kcal mol⁻¹).

² On trouve également une structure octaédrique caractérisée comme un minimum d'énergie lors de l'approche *anti*-SS, mais elle est située 9.7 kcal.mol⁻¹ au dessus de **IVc**. Il en va de même pour l'iridium avec une énergie 17.7 kcal.mol⁻¹ au dessus de **IVd**.

Figure 9 : Géométries optimisées de [Rh(SPS^{Me})(PH₃)(O₂)]. Les atomes d'hydrogène sont omis par souci de clarté. Sélection de paramètres géométriques (liaisons en Å et angles en °) : Ic : O1-O2 1.386, Rh-O1 2.021, Rh-O2 2.023, Rh-S1 2.494, Rh-S2 2.500, Rh-P1 2.297, Rh-P4 2.358, S1-Rh-S2 93.2, P1-Rh-P4 173.4. IIc : O1-O2 1.384, Rh-O1 1.989, Rh-O2 2.062, Rh-S1 2.420, Rh-S2 2.4420, Rh-P1 2.307, Rh-P4 2.321, S1-Rh-S2 177.7, P1-Rh-P4 104.6. IIIc : O1-O2 1.380, Rh-O1 2.005, Rh-O2 2.061, Rh-S1 2.425, Rh-S2 2.426, Rh-P1 2.265, Rh-P4 2.345, S1-Rh-S2 171.5, P1-Rh-P4 101.5. IVc : O1-O2 1.359, Rh-O1 2.003, Rh-O2 1.999, Rh-S1 5.601, Rh-S2 2.328, Rh-P1 2.327, Rh-P4 2.400, S2-Rh-O1 161.3, S2-Rh-O2 158.2, P1-Rh-P4 175.1. E : énergie relative exprimée en kcal.mol⁻¹.

Tableau 10 : Paramètres structuraux optimisés de $[Rh(SPS^{Me})(PR_3)(O_2)]$ aux niveaux B3PW91 (R = H), ONIOM(B3PW91:UFF) (R = Ph) et valeurs expérimentales. Les distances sont exprimées en Å et les angles en °.

$[Rh(SPS^{Me})(PR_3)(O_2)]$	B3PW91	ONIOM(B3PW91:UFF)	Exp.
	Ic	Ic-cr	415
P1-Rh	2.297	2.285	2.2630(7)
S1-Rh	2.494	2.464	2.4057(8)
S2-Rh	2.500	2.470	2.3765(8)
P4-Rh	2.358	2.399	2.3655(7)
Rh-O1	2.021	2.017	2.050(2)
Rh-O2	2.023	2.030	2.004(2)
01-02	1.386	1.388	1.431(2)
Σ (C-P-C)	321.9	315.0	313.38
S1-Rh-S2	93.2	87.6	98.68(3)
O1-Rh-O2	40.1	40.1	41.32(6)
S1-Rh-O1	113.2	114.6	151.84(5)
S2-Rh-O2	113.5	117.7	109.05(5)

II.2.2. Régiosélectivité expliquée par un cycle thermodynamique

Les facteurs responsables de la régiosélectivité de l'addition oxydante de l'oxygène sur le complexe [Rh(SPS^{Me})(PH₃)] peuvent être mis en évidence par le biais d'un cycle thermodynamique qui connecte réactifs (1 [M(SPS^{Me})(PH₃)] et ${}^{3}O_{2}$) et complexes péroxo (**Ic-IVc**). La réaction se décompose, comme dans le cas de l'addition de H₂, en :

i) La distorsion du complexe ${}^{1}[M(SPS^{Me})(PH_{3})]$ de sa géométrie plan carré initiale à sa géométrie dans le complexe péroxo ${}^{1}[M(SPS^{Me})(PH_{3})]_{dist.}$ ($\Delta E_{dist.}$ (ML₄)) (Équation 11);

ii) La formation de l'état triplet ${}^{3}[M(SPS^{Me})(PH_{3})]_{dist.}$ du fragment métallique distordu ${}^{1}[M(SPS^{Me})(PH_{3})]_{dist.}$ ($\Delta E_{S/T}$) (Équation 12) ;

iii) L'élongation de la liaison O-O jusqu'à sa longueur dans le complexe péroxo $(\Delta E_{\text{stretch}}, (O_2))$ (Équation 13);³

iv) La formation de deux liaisons métal oxygène $(2\Delta E_1 (M-O))$ (Équation 14).

 3 Contrairement au cas de l'addition de H₂ où la molécule se rompt, O₂ est simplement allongée.

L'énergie de réaction (ΔE_R) s'exprime alors (Schéma 5) : $\Delta E_R = \Delta E_{dist.}$ (ML₄) + $\Delta E_{S/T}$ + $\Delta E_{stretch.}$ (O₂) + 2 ΔE_1 (M-O). La somme des deux premiers termes, notée $\Sigma = \Delta E_T_{dist.}$, correspond à l'énergie nécessaire à préparer le fragment métallique à l'addition oxydante.

Le Tableau 11a présente la décomposition de l'énergie ainsi obtenue. Ce cycle thermodynamique montre notamment que l'isomère le plus stable (**Ic**) est à la fois favorisé par la plus faible énergie de distorsion du fragment métallique triplet ($\Delta E_{T \text{ dist.}}$) (+25.7 pour **Ic** contre +30.4 kcal.mol⁻¹ pour **IIc**) et par la plus forte énergie de liaison rhodium oxygène ($2\Delta E_1$ (Rh-O)) (-51.4 pour **Ic** contre -48.6 kcal.mol⁻¹ pour **IIc**).

<i>anti</i> -PP (II), <i>syn</i> -PP (III) et <i>anti</i> -SS (IV) par addition de O_2 sur [M(SPS ^{Me})(PH ₃)] : M = Rh (c), M = Ir (d).
a)

a)				
$\mathbf{M} = \mathbf{R}\mathbf{h}$	Syn-SS (Ic)	Anti-PP (IIc)	Syn-PP (IIIc)	Anti –SS (IVc)
$\Delta E_{dist.}$ (ML ₄)	+27.1	+31.2	+35.3	+31.9
$\Delta E_{S/T}$	-1.4	-0.8	-1.9	+4.9
$\Sigma = \Delta E_{T \text{ dist.}}$	+25.7	+30.4	+33.4	+36.8
$\Delta E_{\text{stretch.}}^{3}(O_{2})$	+20.6	+20.2	+19.4	+15.6
$2\Delta E_{l}$ (M-O)	-51.4	-48.6	-44.2	-45.8
ΔE_{R}	-5.1	+2.0	+8.6	+6.6
b)				
M = Ir	Syn-SS (Id)	Anti-PP (IId)	Syn-PP (IIId)	Anti –SS (IVd)
$\Delta E_{dist.}$ (ML ₄)	+36.9	+39.1	+48.1	+41.2
$\Delta E_{S/T}$	-6.3	-2.3	-5.7	-0.6
$\Sigma = \Delta E_{T \text{ dist.}}$	+30.6	+36.8	+42.4	+40.6
$\Delta E_{\text{stretch.}}^{3}(O_{2})$	+26.8	+27.4	+27.3	+20.4
$2\Delta E_{l}$ (M-O)	-73.4	-77.7	-74.2	-63.7
ΔE_{R}	-16.0	-13.5	-4.5	-2.7

II.2.3. Et l'iridium?

Nous avons entrepris des calculs semblables pour le complexe péroxo d'iridium et nous obtenons quatre isomères structuralement très proches de ceux du rhodium (Figure 9). On constate à nouveau que l'isomère *syn*-SS (**Id**) est le plus stable en énergie, l'ordre énergétique étant (en kcal mol⁻¹) : *syn*-SS (**Id**) (0) < *anti*-PP (**IId**) (+2.5) < *syn*-PP (**IIId**) (+11.5) < *anti*-SS (**IVd**) (+13.3). La géométrie de l'isomère le plus bas en énergie (**Id**) correspond à la structure expérimentale d'un complexe d'iridium pseudo octaédrique avec l'oxygène qui est lié de manière η^2 au métal et les paramètres structuraux concordent avec une bonne approximation (Tableau 12) : O-O : 1.418 Å (exp. : 1.46(2)), Ir-O : 2.025 Å (exp. : 2.02(1) en moyenne), Ir-P1 : 2.302 Å (exp. : 2.263(4)), Ir-P4 : 2.335 Å (exp. : 2.337(4)), Ir-S1 : 2.468 Å (exp. : 2.405(5) et 2.397(4)). Les structures des trois autres isomères (*syn*-PP, *anti*-SS et *anti*-PP) ressemblent en tout point à leurs analogues au rhodium. L'isomère *anti*-PP (**IId**) bien que très proche en énergie de l'isomère le plus stable *syn*-SS n'est pas obtenu expérimentalement ($\Delta E = 2.5$ kcal.mol⁻¹).

Tableau 12 : Paramètres structuraux optimisés de $[Ir(SPS^{Me})(PR_3)(O_2)]$ aux niveaux B3PW91 (R = H), ONIOM(B3PW91:UFF) (R = Ph) et valeurs expérimentales. Les distances sont exprimées en Å et les angles en °.

$[Ir(SPS^{Me})(PR_3)(O_2)]$	DFT-B3PW91	ONIOM(B3PW91:UFF)	Exp.
	IIb	IIb-cr	427
Ir-P1	2.302	2.287	2.263(4)
Ir-P4	2.335	2.379	2.337(4)
Ir-S1	2.468	2.447	2.405(5)
Ir-S2	2.468	2.444	2.397(4)
Ir-O1	2.025	2.021	2.01(1)
Ir-O2	2.025	2.032	2.03(1)
01-02	1.418	1.419	1.46(2)
Σ (C-P1-C)	317.0	314.9	315.3
S1-Ir-S2	89.2	85.1	85.4(2)
P1-Ir-P4	173.4	173.3	172.4(2)
S1-Ir-O1	114.9	116.3	113.3(4)
O1-Ir-O2	41.0	41.0	42.5(5)
O2-Ir-S2	114.9	117.7	118.7(4)

La décomposition de l'énergie de réaction (Tableau 11b) montre que la régiosélectivité s'explique principalement par l'énergie de distorsion du fragment métallique triplet ($\Delta E_{T \text{ dist.}}$). En effet, ce terme croit parallèlement à l'énergie des trois isomères les plus stables tandis que l'énergie de liaison iridium oxygène favorise plutôt l'addition de l'oxygène *trans* aux liaisons Ir-P (isomère *anti*-PP **IId** et *syn*-PP **Id**). La faible différence énergétique (2.5 kcal mol⁻¹) entre les deux isomères les plus stables (*syn*-SS et *anti*-PP) provient du fait que les termes énergie de liaison iridium oxygène ($2\Delta E_1$ (Ir-O)) et énergie de distorsion du fragment métallique à l'état triplet ($\Delta E_T _{\text{ dist.}}$) varient en sens opposé.

Ainsi, l'addition oxydante de l'oxygène sur le complexe d'iridium $[Ir(SPS^{Me})(PH_3)]$ conduit préférentiellement à l'isomère *syn*-SS et confirme la structure obtenue expérimentalement. Cependant, on obtient également un autre isomère (*anti*-PP) très proche en énergie (2.5 kcal.mol⁻¹).

II.2.4. Comparaison des isomères les plus stables de rhodium et d'iridium

Le cycle thermodynamique permet également d'expliquer la plus grande exothermicité de la réaction de formation des isomères *syn*-SS dans le cas de l'iridium ($\Delta E_R = -16.0$ pour **Id** (Ir) au lieu de -5.1 kcal mol⁻¹ pour **Ic** (Rh)) aussi bien que l'élongation de la distance O-O (de 1.386 pour **Ic** à 1.418 Å pour **Id**) (Tableau 13). L'évolution du terme $\Delta E_{T \text{ dist.}}$ va à l'encontre de l'énergie de réaction ΔE_R si bien que, pris séparément, il favorise le complexe de rhodium. Le seul facteur qui rende la réaction plus exothermique dans le cas de l'iridium est l'énergie de liaison métal oxygène qui est bien plus élevée ($2\Delta E_1$ (M-O) = -73.4 contre -51.4 kcal mol⁻¹ pour le rhodium). Ceci montre à nouveau que la force des liaisons métal ligand formées est importante lors d'une addition oxydante.

Tableau 13 : Décomposition de l'énergie de réaction (kcal.mol⁻¹) pour la formation des isomères *syn*-SS à partir de O₂ et le complexe [M(SPS^{Me})(PH₃)] (M = Rh (Ic), Ir (Id)) ou [M(SPS^{Me})(PPh₃)] (M = Rh (Ic-cr), Ir (Id-cr))

	Rh (Ic)	Rh (Ic-cr)	Ir (Id)	Ir (Id-cr)
$\Delta E_{dist.}$ (ML ₄)	+27.1	+21.0	+36.9	+31.2
$\Delta E_{S/T}$	-1.4	+2.0	-6.3	-8.2
$\Sigma = \Delta E_{T \text{ dist.}}$	+25.7	+23.0	+30.6	+23.0
$\Delta E_{\text{stretch.}}^{3}(O_2)$	+20.6	+20.0	+26.8	+25.9
$2\Delta E_{l}$ (M-O)	-51.4	-58.9	-73.4	-75.7
ΔE_R	-5.1	-15.9	-16.0	-26.8

Expérimentalement, la réaction d'addition oxydante d'oxygène sur les complexes de rhodium et d'iridium conduit de manière irréversible à un complexe péroxo qui précipite dans le THF. Alors que la réaction est exothermique ($\Delta E_R = -5.1$ et -16.0 kcal.mol⁻¹ pour les complexes de rhodium et d'iridium resp.), l'enthalpie libre de réaction est positive ($\Delta G_R = +8.6$ kcal mol⁻¹) pour le complexe de rhodium et légèrement négative ($\Delta G_R = -2.7$ kcal.mol⁻¹) pour le complexe d'iridium (Tableau 14). La formation du complexe péroxo de rhodium^{III} s'explique néanmoins par sa précipitation en solution ; il sort alors de l'équilibre de la réaction. L'équilibre est alors déplacé dans le sens de sa formation.

Tableau 14: Enthalpie libre de réaction (kcal.mol⁻¹) pour la formation des isomères *syn*-SS à partir de O_2 et le complexe [M(SPS^{Me})(PH₃)] (M = Rh (Ic), Ir (Id)).

	Rh (Ic)	Ir (Id)
ΔG_R	+8.6	-2.7

II.2.5. Influence des groupes phényles

Nous avons évalué l'influence des groupes phényles et optimisé la géométrie des complexes réels (**cr**) par la méthode hybride MQ/MM (ONIOM(B3PW91:UFF)) dans laquelle les neufs groupes phényles sont optimisés en mécanique moléculaire. D'un point de vue énergétique, un calcul purement quantique est effectué sur la géométrie optimisée au

niveau ONIOM. Les atomes de carbone et d'hydrogène des groupes phényles sont décrits par la base 6-31G. Les paramètres structuraux des complexes de rhodium et d'iridium *syn*-SS (**Ic-cr** et **Id-cr** resp.)) sont en bon accord avec les structures expérimentales (Tableau 10 et Tableau 12 resp.).

Figure 10 : a) Structure optimisée du complexe $[Ir(SPS^{Me})(PH_3)(O_2)]$ (Id) au niveau B3PW91, b) structure optimisée de $[Ir(SPS^{Me})(PPh_3)(O_2)]$ (Id-cr) au niveau de calcul ONIOM (B3PW91:UFF). La partie MQ (resp. MM) représentée en boules et bâtons (resp. tubes), c) structure de 427 obtenue par diffraction aux rayons X.

Avec les complexes réels *syn*-SS les plus stables, on trouve que la variation d'exothermicité de la réaction d'addition de l'oxygène sur le rhodium et l'iridium reste identique en passant du rhodium **Ic-cr** à l'iridium **Id-cr** (10.9 kcal.mol⁻¹ de **Ic** à **Id** et de **Ic-cr** à **Id-cr**) (Tableau 13). La valeur de l'énergie de réaction, ΔE_R , est néanmoins plus importante avec les complexes réels (stabilité accrue de -10.8 kcal.mol⁻¹). La valeur accrue de l'exothermicité de la réaction s'explique principalement par une force de liaison métal oxygène plus élevée pour le complexe de rhodium **Ic-cr** (ΔE_I (Rh-O) = -58.9 au lieu de -51.9 kcal.mol⁻¹ dans le complexe non substitué **Ic**) et par une plus faible énergie de distorsion du fragment métallique pour le complexe d'iridium **Id-cr** (ΔE_T dist. = +23.0 au lieu de +30.6 kcal.mol⁻¹ dans le complexe non substitué **Id**) (Schéma 5).

Nous nous sommes également intéressés à l'ordre énergétique des complexes d'iridium *syn*-SS et *anti*-PP qui étaient très proches en énergie (2.5 kcal.mol⁻¹) en version non substitué. Le calcul des complexes réels (**Id-cr** et **IId-cr**) permet de trancher indiscutablement en faveur de la formation exclusive du complexe de géométrie *syn*-SS (**Id-cr**) (0 contre 10.3 kcal.mol⁻¹ pour **IId-cr**), analogue du complexe expérimental.

Finalement, le calcul sur les complexes réels ne modifie pas les tendances relevées pour la formation de complexes non substitués, mais permet de mieux rendre compte des différences observées. Ainsi, on montre que les isomères les plus stables (et de beaucoup) sont effectivement les mêmes que les complexes expérimentaux. La valeur accrue de l'exothermicité de la réaction lors de l'addition d'oxygène sur les complexes de rhodium et d'iridium reflète plus convenablement la réactivité expérimentale que le calcul de complexes modèles non substitués.

II.2.6. Conclusion

Pour conclure, les calculs DFT rationalisent convenablement la régiosélectivité de l'addition de l'oxygène sur les complexes de rhodium et d'iridium, obtenu expérimentalement. La différence d'exothermicité de la réaction (favorable au complexe d'iridium) provient de la plus forte énergie de liaison entre l'iridium et l'oxygène.

II.3. Fixation de CO^[25]

Nous avons également étudié la fixation de CO sur des complexes SPS de rhodium et d'iridium. Les quatre modes d'attaque de CO restent inchangés (*syn*-SS, *anti*-SS, *syn*-PP et *anti*-PP), mais vont conduire cette fois-ci à la formation d'un complexe de géométrie bipyramide trigonale (Schéma 6).

II.3.1. Cas du complexe de rhodium

Nous avons d'abord optimisé la géométrie des quatre isomères modèles (Figure 11). Les approches syn-SS et anti-SS conduisent toutes les deux à une décoordination d'un atome de soufre (S2) et à la formation d'un complexe plan carré [Rh(SP)(PH₃)(CO)] avec le groupe CO trans au ligand soufré (S1). Deux minima ont été caractérisés, un par approche : ce sont des rotamères qui diffèrent principalement par l'orientation de l'atome de soufre décoordonné (angle dièdre P1-C6-P3-S2 = $+69.6^{\circ}$ ou -70.3°). Leur énergie est très proche (0.8 kcal.mol⁻¹) et l'isomère le plus stable (Ie) est 27.7 kcal.mol⁻¹ ($\Delta G = -15.2$ kcal.mol⁻¹) plus stable que les réactifs. Par ailleurs, l'approche anti-PP aboutit à un complexe pseudo pyramide à base carrée [Rh(SPS^{Me})(PH₃)(CO)] avec des angles S1-Rh-S2 et P1-Rh-CO de 168.3 et 152.4°, respectivement, et le ligand PH₃ qui occupe le site apical (IIe). La distance Rh-P4 est très allongée comparée à sa valeur dans le réactif plan carré (2.504 Å au lieu de 2.303 Å). Enfin, l'attaque syn-PP entraîne le départ du ligand PH₃ (Rh-P4 = 4.030 Å) et on forme un complexe plan carré [Rh(SPS^{Me})(CO)] (IIIe). L'ordre énergétique en kcal.mol⁻¹des isomère est : Ie (0) < **He** (14.2) < **He** (14.9). Par conséquent, le produit le plus stable est de loin **Ie** pour lequel l'addition de CO s'accompagne de la décoordination d'un soufre. La réaction se révèle très exothermique ($\Delta E_R = -27.7 \text{ kcal.mol}^{-1}$) et la valeur de l'enthalpie libre ($\Delta G_R = -15.2 \text{ kcal.mol}^{-1}$) ¹) explique la facilité et l'irréversibilité de cette réaction d'un point de vue expérimental.

Figure 11 : Géométries optimisées du complexe de rhodium Ie-IIIe, Ie-bis. Les atomes d'hydrogène sont omis par souci de clarté. Sélection de paramètres géométriques (liaisons en Å et angles en °) : Ie : C7-O 1.154, Rh-C7 1.842, Rh-S1 2.437, Rh-S2 4.903, Rh-P1 2.344, Rh-P4 2.330, S1-Rh-C7 174.1, P1-Rh-P4 176.6, P1-Rh-C7 92.1. IIe : C7-O 1.156, Rh-C7 1.881, Rh-S1 2.455, Rh-S2 2.455, Rh-P1 2.334, Rh-P4 2.504, S1-Rh-S2 168.3, P1-Rh-P4 100.3, P1-Rh-C7 152.4, S1-Rh-C7 90.8. IIIe : C7-O 1.154, Rh-C7 1.883, Rh-S1 2.408, Rh-S2 2.405, Rh-P1 2.325, Rh-P4 4.030, S1-Rh-S2 172.2, P1-Rh-C7 174.4. Ie-bis : C7-O 1.163, Rh-C7 1.824, Rh-S1 2.675, Rh-S2 2.675, Rh-P1 2.303, Rh-P4 2.336, S1-Rh-S2 89.5, P1-Rh-P4 177.2, S1-Rh-C7 135.2. E : énergie relative exprimée en kcal.mol⁻¹.

Toutefois, la géométrie la plus stable **Ie**, plan carré avec la décoordination d'un soufre (Rh-S1 = 2.437 Å, Rh-S2 = 4.903 Å), reste tout de même très éloignée de la structure expérimentale, une bipyramide trigonale distordue avec des distances Rh-S qui diffèrent seulement de 0.1 Å (Tableau 15). Ce résultat est relativement étonnant compte tenu de la très bonne adéquation entre la géométrie du complexe plan carré [Rh(SPS^{Me})(PH₃)] et la structure expérimentale.

[Rh(SPS ^{Me})(PR ₃)(CO)]	Ie	Ie-bis	Ie-cr	Exp.
Rh-P1	2.344	2.303	2.295	2.2783(5)
Rh-P4	2.330	2.336	2.365	2.3248(5)
Rh-S1	2.437	2.675	2.560	2.4846(5)
Rh-S2	4.903	2.675	2.677	2.5720(5)
Rh-CO	1.843	1.824	1.825	1.820(2)
C-O	1.154	1.163	1.165	1.157(2)
Σ (C-P1-C)	312.0	312.7	310.1	309.9
S1-Rh-CO	174.1	135.2	148.1	143.52(7)
S2-Rh-CO	48.6	135.2	128.7	128.97(7)
S1-Rh-S2	137.4	89.5	83.1	87.49(2)

Tableau 15: Paramètres structuraux optimisés de [Rh(SPS^{Me})(PR₃)(CO)] aux niveaux B3PW91 (R = H, Ie, Ie-bis), ONIOM(B3PW91:UFF) (R = Ph, Ie-cr) et valeurs expérimentales. Les distances sont exprimées en Å et les angles en °.

Nous avons donc optimisé la structure *syn*-SS avec la <u>contrainte *Cs*</u> qui impose l'<u>égalité des liaisons Rh-S</u> et empêche la décoordination d'un atome de soufre (**Ie-bis**, Figure 11). On obtient une structure avec des distances Rh-S (2.675 Å) comparables aux valeurs expérimentales (Rh-S1 = 2.485 et Rh-S2 = 2.572 Å) et une valeur de l'angle OC-Rh-S (135.2°) intermédiaire entre celles de la structure expérimentale (143.5 et 129.0°, resp.) (Tableau 15). La structure expérimentale, pseudo bipyramide trigonale, est donc intermédiaire entre les structures théoriques **Ie**, avec un soufre décoordonné, et **Ie-bis**, avec la contrainte *Cs*. D'un point de vue énergétique, **Ie-bis** est situé 3.5 kcal.mol⁻¹ au dessus de **Ie** et est caractérisé

comme l'état de transition (faible fréquence imaginaire de -38.2 icm⁻¹) qui connecte deux minima équivalents avec S1 ou S2 décoordonné. La surface de potentiel qui relie **Ie** et **Ie-bis** est donc extrêmement plate, ce qui peut au moins en partie permettre de comprendre le désaccord entre structure expérimentale et structure calculée.

II.3.2. Influence des groupes phényles

Compte tenu du désaccord expérience théorie sur la structure la plus stable, nous avons étudié le rôle des groupes phényles lors de l'approche *syn*-SS au niveau ONIOM (B3PW91:UFF) en étudiant le complexe réel (**cr**). La géométrie de la structure la plus basse en énergie (**Ie-cr**, Figure 12b, Tableau 15) s'accorde convenablement avec la structure expérimentale (Figure 12c) : les deux atomes de soufre restent coordonnés au métal avec des distances Rh-S inégales (Rh-S1 = 2.560 Å (exp. : 2.485 Å) et Rh-S2 = 2.677 Å (exp. : 2.572 Å)) et des angles OC-Rh-S inégaux (S1-Rh-CO = 148.1° (exp. : 143.5°) et S2-Rh-CO=128.7° (exp. : 129.0°)). De plus, la variation d'énergie associée à la fixation de CO demeure dans la même échelle de grandeur que dans le complexe modèle non substitué **Ie** (-31.5 au lieu de - 27.7 kcal.mol⁻¹).

Figure 12 : a) Structure optimisée du complexe [Rh(SPS^{Me})(PH₃)(CO)] (le) au niveau de calcul B3PW91, b) structure optimisée de [Rh(SPS^{Me})(PPh₃)(CO)] (le-cr) au niveau de calcul ONIOM (B3PW91:UFF). La partie MQ (resp. MM) représentée en boules et bâtons (resp. tubes). c) structure aux rayons X du complexe expérimental 404. Les atomes d'hydrogène sont omis par souci de clarté.

Enfin, la structure *syn*-SS avec la contrainte *Cs* **Ie-bis-cr** (Rh-S = 2.616 Å et S-Rh-CO = 138.6°) a été optimisée. Son énergie est située 6.5 kcal.mol⁻¹ au dessus de la structure **Ie-cr**. Cette structure est donc moins stable, mais la faible différence d'énergie peut expliquer l'équivalence des groupes PPh₂=S dans le spectre RMN ³¹P à température ambiante malgré la dissymétrie de la structure du cristal.⁴

Alors que les approches *anti*-SS et *syn*-SS en version non substituée conduisaient toutes les deux à l'isomère le plus stable, l'approche *anti*-SS à ce niveau de calcul conduit,

⁴ Avant le calcul simple point (i.e. au niveau de calcul ONIOM(B3PW91:UFF)), on trouve que le complexe *Cs* est plus stable que le complexe dissymétrique **Ie-cr** de 2.0 kcal.mol⁻¹. Par ailleurs, la structure *anti-*SS avec un soufre décoordonné reste plus haute en énergie que **Ie-cr** (13.3 kcal.mol⁻¹). On observe le même résultat pour les complexes d'iridium (1.8 et 15.3 kcal.mol⁻¹, respectivement).

comme pour le complexe non substitué, à la décoordination d'un atome de soufre (Rh...S1 = 3.81 Å et Rh-S2 = 2.450 Å), mais cette structure est bien moins stable que **Ie-cr** (12.5 kcal.mol⁻¹).

Ainsi, la prise en considération des groupes phényles favorise la structure *syn*-SS dans laquelle les deux ligands soufrés restent liés au métal.

II.3.2. Et l'iridium ?

Nous avons entrepris des calculs similaires pour la fixation de CO sur le complexe d'iridium [Ir(SPS^{Me})(PH₃)], réaction encore inconnue expérimentalement (Figure 13). Les approches syn-SS et anti-SS conduisent à des résultats comparables à ceux obtenus pour le rhodium, i.e. décoordination d'un atome de soufre (S1) et formation d'un complexe plan carré avec le ligand carbonyl trans à un soufre (S2) (If). On obtient à nouveau deux minima, proches en énergie (1.0 kcal.mol⁻¹), rotamères par rapport au ligand soufre décoordonné (P1- $C6-P3-S2 = +78.6^{\circ}$ ou -72.3°). La réaction est fortement exothermique et l'isomère le plus stable (If) est 40.3 kcal.mol⁻¹ ($\Delta G = -27.2$ kcal.mol⁻¹) plus stable que les réactifs. L'approche anti-PP (IIf) aboutit à une géométrie bipyramide trigonale distordue (P4-Ir-P1 = 101.5°, OC- $Ir-P1 = 140.4^{\circ}$ et OC-Ir-P4 = 118.1°) avec les atomes de soufre en position axiale (S1-Ir-S2 = 171.9°). Enfin, l'attaque syn-PP ne se solde pas comme dans le cas du rhodium par l'expulsion de la phosphine PH₃, mais par une géométrie de type bipyramide trigonale régulière IIIf (P4-Ir-P1 = 120.3°, OC-Ir-P1 = 119.2° et OC-Ir-P4 = 120.5°). D'un point de vue énergétique, If est de loin l'isomère le plus stable : If (0) < IIIf (14.6) < IIIIf (21.2). Par ailleurs, la structure syn-SS avec la géométrie Cs If-bis a été caractérisée comme un état de transition (fréquence imaginaire de -29.9 icm⁻¹) qui connecte les structures plan carré avec un soufre ou l'autre décoordonné et est située seulement 3.4 kcal.mol⁻¹ au dessus de l'isomère IIf. Par conséquent, la surface d'énergie qui relie la structure plan carré If à la structure pentavalente If-bis est extrêmement plate, tout comme pour le rhodium.

Figure 13 : Géométries optimisées du complexe d'iridium If-IIIf, If-bis. Les atomes d'hydrogène sont omis par souci de clarté. Sélection de paramètres géométriques (liaisons en Å et angles en °) : If : C7-O 1.159, Ir-C7 1.832, Ir-S1 2.425, Ir-S2 4.933, Ir-P1 2.343, Ir-P4 2.312, S1-Ir-C7 174.9, P1-Ir-P4 176.7, P1-Ir-C7 92.5. IIf : C7-O 1.159, Ir-C7 1.832, Ir-S1 2.425, Ir-S2 4.933, Ir-P1 2.343, Ir-P1 2.343, Ir-P4 2.312, S1-Ir-C7 174.9, P1-Ir-P4 176.7, P1-Ir-P4 176.7, P1-Ir-C7 92.5. IIIf : C7-O 1.162, Ir-C7 1.903, Ir-S1 2.437, Ir-S2 2.430, Ir-P1 2.297, Ir-P4 2.334, S1-Ir-S2 171.4, P1-Ir-C7 119.2, P1-Ir-P4 120.3, S1-Ir-C7 93.9. If-bis : C7-O 1.170, Ir-C7 1.818, Ir-S1 2.623, Ir-S2 2.623, Ir-P1 2.310, Ir-P4 2.323, S1-Ir-S2 86.2, P1-Ir-P4 178.4, S1-Ir-C7 136.9. E : énergie relative exprimée en kcal.mol⁻¹.

Nous avons également entrepris des optimisations de type MQ/MM, suivie par des calculs simple point sur le complexe réel (**cr**) avec neuf groupes phényles. L'approche *syn*-SS

aboutit à une structure légèrement dissymétrique (**If-cr**) avec les deux atomes de soufre liés au métal (Ir-S1 = 2.546 Å, Ir-S2 = 2.639 Å et S1-Ir-CO = 149.1°, S2-Ir-CO = 129.7°). Cette structure est plus stable que celle que l'on obtient avec la contrainte *Cs* (Ir-S = 2.592, S-Ir-CO = 139.5°) de 6.1 kcal.mol⁻¹. Enfin, la variation d'énergie de la réaction d'addition de CO reste très proche de celle que l'on a calculé pour le complexe modèle non substitué **If** (-43.8 au lieu de -40.3 kcal.mol⁻¹). L'attaque *anti*-SS conduit, comme dans le cas du rhodium, à la décoordination d'un atome de soufre (Rh...S1 = 4.039 Å, Rh-S2 = 2.420 Å), mais cette structure est bien moins stable que **If-cr** de 17.8 kcal.mol⁻¹. Ainsi, tout comme dans le cas du rhodium, le calcul des complexes réels conduit à une structure dissymétrique où les deux atomes de soufre souf liés au métal. La décoordination d'un atome de soufre reste néanmoins possible en raison de la planéité de la surface d'énergie.

II.3.3. Comparaison des isomères les plus stables de rhodium et d'iridium

Le changement le plus significatif lors de la fixation de CO sur le complexe de rhodium et d'iridium demeure, tout comme dans le cas de l'addition de H₂ ou O₂, la plus forte exothermicité de la réaction (12.5 kcal.mol⁻¹ en faveur du complexe d'iridium). Cette tendance s'explique par un cycle thermodynamique qui connecte les réactifs (1 [M(SPS^{Me})(PR₃)] et CO avec M = Rh, Ir et R = H, Ph) et le produit d'addition ([M(SPS^{Me})(PR₃)(CO)]). Il se décompose ainsi :

i) Distorsion du complexe 1 [M(SPS^{Me})(PR₃)] de sa géométrie plan carré initiale à sa géométrie 1 [M(SPS^{Me})(PR₃)]_{dist.} dans le complexe final [M(SPS^{Me})(PR₃)(CO)] ($\Delta E_{dist.}$ (ML₄)) (Équation 15). On garde le fragment métallique à l'état singulet car la fixation de CO ne fait pas intervenir un processus d'addition oxydante comme dans le cas de H₂ et de O₂.

ii) Elongation de CO libre jusqu'à sa valeur dans le complexe final ($\Delta E_{stretch.}$ (CO)) (Équation 16);

Équation 16

iii) Formation de la liaison métal carbone (ΔE_1 (M-C)) (Équation 17).

L'énergie de réaction de fixation de CO sur les complexes de rhodium et d'iridium s'écrit donc alors (Schéma 7) $\Delta E_R = \Delta E_{dist.}$ (ML₄) + $\Delta E_{stretch}$ (CO) + ΔE_l (M-C).

La décomposition de l'énergie des complexes non substitués de rhodium (**Ie**) et d'iridium (**If**) révèle que la distorsion du fragment métallique ($\Delta E_{dist.}$ (ML₄)) de l'iridium nécessite une plus forte énergie (environ 10.0 kcal.mol⁻¹) que pour le rhodium ce qui défavorise la réactivité du complexe d'iridium (Tableau 16). Par ailleurs, l'énergie d'élongation de la molécule de CO ($\Delta E_{stretch.}$ (CO)) demeure très faible car dans les deux complexes **Ie** et **If** les longueurs optimisées de CO (1.154 et 1.160 Å, respectivement) sont très proches de la valeur de CO libre (1.137 Å). Par conséquent, la plus forte exothermicité de la réaction de fixation de CO sur l'iridium ne peut provenir que de la force de la liaison métal carbone qui se forme (-56.3 pour le rhodium et -79.4 kcal.mol⁻¹ pour l'iridium) plus favorable pour l'iridium de 23.1 kcal.mol⁻¹. Cette explication n'est en aucun cas remise en question si l'on tient compte de l'influence du groupe phényles (**Ie-cr** et **If-cr**) car l'énergie de liaison métal carbone reste plus élevé pour l'iridium de 25.7 kcal.mol⁻¹. De plus, les valeurs des énergies de distorsion du fragment métallique ($\Delta E_{dist.}$ (ML₄)), de l'énergie de liaison métal carbone (ΔE_1 (M-C)) et de l'énergie de réaction (ΔE_R) varient très peu lors du passage du calcul des complexes modèles aux complexes réels.

	Ie (Rh)	If (Ir)	Ie-cr (Rh)	If-cr (Ir)
$\Delta E_{dist.}$ (ML ₄)	+28.2	+38.3	+24.3	+37.2
$\Delta E_{\text{stretch}}$ (CO)	+0.4	+0.7	+1.1	+1.6
ΔE_{l} (M-C)	-56.3	-79.3	-56.9	-82.6
ΔE_R	-27.7	-40.3	-31.5	-43.8

Tableau 16 : Décomposition de l'énergie de réaction (kcal.mol⁻¹) de l'isomère *syn*-SS (Rh : Ie, Ie-cr ; Ir : If, If-cr) pour l'addition de CO sur $[M(SPS^{Me})(PR_3)]$.

Tableau 17 : Enthalpie libre de réaction (kcal.mol⁻¹) pour la formation des isomères *syn*-SS à partir de CO et le complexe $[M(SPS^{Me})(PH_3)]$ (M = Rh (Ie), Ir (If)).

	(Ie) Rh	(If) Ir
ΔG_R	-15.2	-27.2

II.3.4. Conclusion

L'étude théorique de l'addition de CO sur le complexe modèle $[M(SPS^{Me})(PH_3)]$ (M = Rh, Ir) prévoit la décoordination d'un atome de soufre et la formation d'un complexe plan carré $[M(SP)(PH_3)(CO)]$. Cette structure est seulement légèrement (3-4 kcal.mol⁻¹) plus stable que la structure pentacoordonnée avec les deux atomes de soufre lié au métal obtenue par la contrainte *Cs*. Cependant, une optimisation de type MQ/MM sur le complexe réel favorise une structure pentacoordonnée, très proche de celle que l'on a obtenu expérimentalement par diffraction aux rayons X pour le rhodium. Enfin, l'exothermicité de la réaction, plus grande pour l'iridium que pour le rhodium, s'explique par la force de la liaison métal carbone qui se forme. Ces résultats suggèrent que la synthèse expérimentale du complexe $[Ir(SPS^{Me})(PPh_3)(CO)]$ devrait être plus facile que dans le cas du rhodium.

II.4. Conclusion générale

La régiosélectivité de l'addition de H_2 , O_2 sur les complexes modèles de rhodium et d'iridium est bien reproduite par calculs théoriques. L'isomère le plus stable correspond effectivement au complexe obtenu expérimentalement. La plus grande exothermicité des réactions d'addition sur le complexe d'iridium est reliée à la plus forte énergie de liaison iridium hydrogène ou oxygène.

De plus, les valeurs de l'enthalpie libre de réaction concordent avec la réactivité observée : sa valeur négative explique la formation irréversible observée expérimentalement des complexes de [Rh(SPS^{Me})(PPh₃)(CO)], [Rh(SPS^{Me})(PPh₃)(O₂)], [Ir(SPS^{Me})(PPh₃)(O₂)] et [Ir(SPS^{Me})(PPh₃)(H)₂] tandis que sa valeur proche de zéro est en accord avec l'addition réversible de H₂ sur [Rh(SPS^{Me})(PPh₃)].

Enfin, le calcul des complexes réels est très important surtout dans le cas de la fixation de CO car seule la prise en compte des groupes phényles permet de reproduire convenablement la structure expérimentale.

III. Complexes du groupe 10

Le très bon accord entre la réactivité expérimentale et les calculs DFT des complexes du groupe 9 [M(SPS^{Me})(PPh₃)] vis-à-vis de petites molécules (H₂, O₂, CO) nous ont poussés à étudier la réactivité de complexes isoélectroniques du groupe 10 (Pd, Pt) face à l'addition de H₂ qui représentait précédemment le cas thermodynamiquement le plus favorable. Nous avons donc étudié théoriquement l'addition de H₂ sur des complexes pinceurs de palladium^{II} et platine^{II} [M(SPS^{Me})(X)] (X = (PH₃)⁺, Cl).⁵ Les complexes [M(SPS^{Me})(Cl)] ont été synthétisés expérimentalement. Il nous paraissait donc intéressant de prédire leur réactivité vis-à-vis du dihydrogène.

III.1. Régiosélectivité

Nous avons optimisé et caractérisé les quatre structures *syn*-SS, *syn*-PP, *anti*-SS et *anti*-PP. On obtient des complexes dihydrures de géométrie octaédrique pour les approches *syn*-SS, *syn*-PP et *anti*-PP des quatre complexes ainsi que pour l'approche *anti*-SS dans le cas du complexe [Pt(SPS^{Me})Cl]. On constate que l'isomère *syn*-SS (**Ig-j**) est toujours le complexe le plus stable (Tableau 18). Les structures des isomères les plus stables sont représentées à la Figure 14.

Tableau 18 : Energie relative (kcal.mol⁻¹) associée à la réaction d'addition de H₂ sur les complexes $[M(SPS^{Me})(X)]$ (M = Pd, Pt ; X = Cl, (PH₃)⁺) suivant les approches *syn*-SS (l), *syn*-PP, *anti*-PP et *anti*-SS.

Isomère	PdCl (g)	$Pd(PH_3^+)(h)$	PtCl (i)	Pt(PH ₃ ⁺) (j)
Syn-SS (I)	0	0	0	0
Syn-PP	+9.2	+15.5	+9.9	+14.6
Anti-PP	+16.3	+16.1	+16.3	+18.6
Anti-SS	-	-	+7.4	-

Figure 14 : Géométries optimisées de Ig-Ij (isomères syn-SS). Les atomes d'hydrogène autres que ceux qui sont liés au métal sont omis par souci de clarté. Sélection de paramètres géométriques (liaisons en Å et angles en °) : Ig : H-H 1.997, Pd-H1 1.521, Pd-S1 1.588, Pd-P1 2.305, Pd-Cl 2.358, S-Pd-S 96.6, P1-Pd-Cl 173.2. Ih : H-H 2.042, Pd-H1 1.540 Pd-S 2.527, Pd-P1 2.324, Pd-P4 2.383, S-Pd-S 97.0, P1-Pd-P4 172.3. Ii : H-H 2.105, Pd-H1 1.544, Pt-S1 2.577, Pt-P1 2.286, Pt-Cl 2.386, S-Pt-S 94.2, P1-Pt-Cl 177.5. Ij : H-H 2.135,

⁵ Un pseudo potentiel *quasi* relativiste de type Hay Wadt a été utilisé pour représenter les 28 électrons de cœur du palladium et les 60 électrons de cœur du platine.^[7] La base double-ζ lanl2dz associée au pseudo potentiel est utilisée pour le métal^[7] et est complétée par des fonctions de polarisation f.^[12] La base 6-31+G* a été utilisée pour décrire l'atome de chlore.^[13]

Pt-H1 1.560, Pt-S1 2.534, Pt-P1 2.327, Pt-P4 2.370, S-Pt-S 93.8, P1-Pt-P4 176.1. E : énergie comparée aux réactifs exprimée en kcal.mol⁻¹.

III.2. Réactivité comparée des complexes de palladium et de platine

On constate que la réaction est plus facile pour les complexes de platine ($\Delta E_R = -1.0$ et +0.8 kcal.mol⁻¹ pour X= Cl et (PH₃)⁺, resp.) que pour les complexes de palladium (+21.6 et +24.2 kcal.mol⁻¹ pour X= Cl et (PH₃)⁺, resp.). Cette tendance s'explique parfaitement à l'aide du cycle thermodynamique décrit au Schéma 3 par la valeur de l'énergie de liaison métal hydrogène (ΔE_1 (M-H)) qui augmente lorsque l'on passe de la deuxième à la troisième ligne des métaux de transition (63.0 et 74.9 kcal.mol⁻¹ en moyenne pour Pd et Pt resp.) (Tableau 19). On retrouve le même résultat que pour les complexes du groupe 9.

Tableau 19 : Décomposition de l'énergie de réaction (kcal.mol⁻¹) pour la formation des isomères *syn*-SS à partir de H₂ et le complexe [Pd(SPS^{Me})(X)] (X = Cl (Ig), (PH₃)⁺(Ih)) et [Pt(SPS^{Me})(X)] (X = Cl (Ii), (PH₃)⁺(Ij)).

syn-SS	PdCl (Ig)	Pd(PH ₃ ⁺) (Ih)	PtCl (Ii)	Pt(PH ₃ ⁺) (Ij)
$\Delta E_{dist.}$ (ML ₄)	+24.5	+31.9	+34.4	+39.8
$\Delta E_{S/T}$	+9.8	+11.0	+5.0	+5.6
$\Sigma = \Delta E_{T \text{ dist.}}$	+34.3	+42.9	+39.4	+45.4
- ΔE_1 (H-H)	107.3	107.3	107.3	107.3
$2\Delta E_{l}$ (M-H)	-120.0	-126.0	-147.7	-151.9
ΔE_R	+21.6	+24.2	-1.0	+0.8

III.3. Réactivité comparée des complexes des groupes 9 et 10

Cependant, on constate que l'énergie associée à l'addition d'hydrogène sur les complexes de palladium et de platine conduisant à l'isomère *syn*-SS est soit très proche de zéro (cas du platine), soit très largement positive (cas du palladium) alors que dans le cas des complexes du groupe 9, la réaction de formation de l'isomère *syn*-SS est toujours exothermique (Tableau 20). Ceci illustre la difficulté des métaux du groupe 10 à former des complexes à l'état d'oxydation (IV) (Pd^{IV}, Pt^{IV}) alors que les métaux du groupe 9 forment facilement des complexes à l'état d'oxydation (III) (Rh^{III}, Ir^{III}).

La décomposition de l'énergie de réaction (ΔE_R) des complexes du groupe 9 (**Ia** et **Ib**) et du groupe 10 (**Ig**, **Ih**, **Ii** et **Ij**) permet d'éclaircir le facteur énergétique responsable d'un tel changement (Tableau 20). On s'aperçoit d'abord que l'énergie nécessaire pour distordre le complexe plan carré dans un état singulet ($\Delta E_{dist.}$ (ML₄)) est semblable pour les complexes de rhodium^I et le palladium^{II} d'une part (26.9 et (28.2)_{moyenne} kcal.mol⁻¹, resp.) et pour les complexes d'iridium^I et de platine^{II} d'autre part (35.8 et (37.1)_{moyenne} kcal.mol⁻¹, resp.). Deux facteurs vont néanmoins à l'encontre de l'addition oxydante de H₂ sur les complexes du groupe 10 : d'une part l'énergie de séparation singulet / triplet du fragment métallique ($\Delta E_{S/T}$) qui est environ 15 kcal.mol⁻¹ plus élevée que pour les complexes du groupe 9, et d'autre part le gain énergétique associé à la formation des deux liaisons métal hydrogène est plus faible d'environ 20 kcal.mol⁻¹ lorsque l'on passe du rhodium au palladium et de l'iridium au platine.
syn-SS	Rh (Ia)	Ir (lb)	PdCl (Ig)	$Pd(PH_3^+)$ (Ih)	PtCl (Ii)	$Pt(PH_3^+)(Ij)$
$\Delta E_{dist.}$ (ML ₄)	26.9	35.8	+24.5	+31.9	+34.4	+39.8
$\Delta E_{S/T}$	-4.1	-8.0	+9.8	+11.0	+5.0	+5.6
$\Sigma = \Delta E_{T \text{ dist.}}$	+22.8	+27.8	+34.3	+42.9	+39.4	+45.4
- ΔE_1 (H-H)	+107.3	+107.3	107.3	107.3	107.3	107.3
$2\Delta E_{l}$ (M-H)	-145.0	-171.2	-120.0	-126.0	-147.7	-151.9
ΔE_R	-14.9	-36.1	+21.6	+24.2	-1.0	+0.8

Tableau 20 : Décomposition de l'énergie de réaction (kcal.mol⁻¹) pour la formation des isomères *syn*-SS à partir de H₂ et les complexes [M(SPS^{Me})(PH₃)] (M = Rh (Ia), Ir (Ib)), [Pd(SPS^{Me})(X)] (X = Cl (Ig), (PH₃)⁺(Ih)) et [Pt(SPS^{Me})(X)] (X = Cl (Ii), (PH₃)⁺(Ij)).

III.4. Autres isomères

La difficulté à effectuer une addition oxydante avec les complexes de palladium et de platine nous a conduits à chercher des produits d'addition de H₂ dans lesquels l'état d'oxydation du métal reste inchangé. Nous avons optimisé et caractérisé comme minima d'énergie des complexes d'hydrogène moléculaire pour les deux complexes de palladium (**IIg-IIh**) et un complexe de platine (**IIj**) (Figure 15). Dans ces structures, on constate la décoordination d'un atome de soufre (par exemple, Pd-S = 2.346 et 4.493 Å pour **IIf**) et une légère élongation de H-H (0.814 Å pour **IIg**) par rapport à H₂ libre (0.744 Å). La géométrie autour du métal est de type pseudo plan carré (par exemple, P1-Pd-Cl = 177.1°, S1-Pd-H1 = 168.7° S1-Pd-H2 = 162.8° pour **IIg**). Les complexes de dihydrogène moléculaire de palladium (**IIg** et **IIh**) sont plus stables que l'isomère dihydrure *syn*-SS (**Ig** et **Ih**) de 10.2 et 4.1 kcal.mol⁻¹, respectivement, mais leur formation reste néanmoins très endothermique. Quant au platine, l'isomère *syn*-SS **Ii** demeure plus stable que le complexe de dihydrogène moléculaire **IIi** de 8.8 kcal.mol⁻¹ (Tableau 21).

Figure 15 : Géométries optimisées de IIg-i (complexes d'hydrogène moléculaire). Les atomes d'hydrogène autres que ceux qui sont liés au métal sont omis par souci de clarté. Sélection de paramètres géométriques (liaisons en Å et angles en °) : IIg : H1-H2 0.814, Pd-H1 1.792, Pd-H2 1.758, Pd-S1 2.346, Pd-S2 4.493, Pd-P1 2.314, Pd-Cl 2.370, P1-Pd-Cl 177.1, S1-Pd-H1 168.7, S1-Pd-H2 162.8. IIh : H1-H2 0.834, Pd-H1 1.864, Pd-H2 1.738, Pd-S1 2.406, Pd-S2 3.953, Pd-P1 2.355, Pd-P4 2.448, P1-Pd-P4 175.8, S1-Pd-H1 163.2, S1-Pd-H2 169.7. IIi : H1-H2 0.931, Pd-H1 1.642, Pd-H2 1.673, Pd-S1 2.355, Pd-S2 4.145, Pd-P1 2.296, Pd-Cl 2.374, P1-Pd-Cl 179.4, S1-Pd-H1 161.6, S1-Pd-H2 164.5. E : énergie comparée aux réactifs exprimée en kcal.mol⁻¹.

r		-) ()) /		
Isomère	PdCl (g)	$PdPH_{3}^{+}(h)$	PtCl (i)	$PtPH_3^+(j)$
syn-SS (I)	+21.6	+24.2	-1.0	+0.8
Mol. H ₂ (II)	+11.4	+20.1	+7.8	-
MHSH (III)	+8.2	+7.7	+1.2	-0.2

Tableau 21 : Variation d'énergie (kcal.mol⁻¹) associée à la formation des complexes dihydrure syn-SS (I), d'hydrogène moléculaire (II), de monohydrure [MH...SH] (III) à partir de H₂ et des complexes de palladium et platine [M(SPS^{Me})(X)] (X = Cl, (PH₃)⁺).

Nous avons également trouvé un deuxième complexe caractérisé comme un minimun d'énergie qui laisse le degré d'oxydation du métal inchangé. Il provient de l'activation hétérolytique de H₂ :^[26, 27] on forme un complexe monohydrure par addition de H⁻ sur le centre métallique tandis que H⁺ réagit avec la paire libre d'un atome de soufre qui se décoordonne (Figure 16). Ces complexes, notés [MH...SH], sont les isomères les plus stables pour les complexes de palladium (Tableau 21) ; leurs énergies se situent 8.2 et 7.7 kcal.mol⁻¹ au dessus des réactifs pour X = Cl (**IIIg**) et X = (PH₃)⁺ (**IIIh**), respectivement. Ces isomères en version platine entrent même en compétition avec les isomères dihydrures *syn*-SS de platine^{IV} (**Ii** et **Ij**) : leurs différences énergétiques étant respectivement de +2.2 et -1.0 kcal.mol⁻¹ pour X = Cl (**IIIi**) et X = (PH₃)⁺ (**IIIj**).

Figure 16 : Géométries optimisées de IIIg-i (complexe monohydrure). Les atomes d'hydrogène autres que ceux qui sont liés au métal et au soufre sont omis par souci de clarté. Sélection de paramètres géométriques (liaisons en Å et angles en °) : IIIg : Pd-H1 1.535, Pd-S1 2.538, Pd-P1 2.227, Pd-Cl 2.394, S2-H2 1.403, H2-Cl 2.143, S1-Pd-H1 176.2, P1-Pd-Cl 156.7. IIIh : Pd-H1 1.555, Pd-H2 2.745, Pd-S1 2.458, Pd-P1 2.302, Pd-P4 2.342, S2-H2 1.359, S1-Pd-H1 178.9, P1-Pd-P4 170.6. IIIi : Pt-H1 1.553, Pt-H2 1.931, Pt-S1 2.520, Pt-P1 2.245, Pt-Cl 2.360, S2-H2 1.491, S1-Pt-H1 175.5, P1-Pt-Cl 177.4. IIIj : Pt-H1 1.571, Pt-H2 2.265, Pt-S1 2.461, Pt-P1 2.303, Pt-P4 2.325, S2-H2 1.394, S1-Pt-H1 178.7, P1-Pt-P4 173.4. E : énergie comparée aux réactifs exprimée en kcal.mol⁻¹.

III.5. Réactivité expérimentale et calculs théoriques

Nous avons constaté que la variation d'énergie associée à la réaction d'addition du dihydrogène sur les complexes de palladium et de platine est soit positive (+8.8 et +7.7 kcal.mol⁻¹ pour **IIIg** et **IIIh**), soit très proche de zéro (-1.0 et -0.2 kcal.mol⁻¹ pour **Ii** et **IIIj**). De plus, les valeurs de l'enthalpie libre pour ces réactions bimoléculaires sont très largement positives pour les quatre complexes (+19.5, +17.5, +11.5 et +10.3 kcal.mol⁻¹ pour **IIIg**, **IIIh**, **Ii** et **IIIj**, resp.) (Tableau 22). On confirme ainsi expérimentalement qu'aucune addition ne se

produit entre H_2 et le complexe [Pt(SPS^{Me})(Cl)], même à forte pression (réaction réalisée en autoclave dans le CH₂Cl₂ ou le MeOH avec une pression de 20 bars).

Tableau 22 :	Enthalpie libre	(kcal.mol ⁻¹)) associée à l	a formation	ı des con	nplexes	dihydrur	e syn-SS (I),
d'hydrogène	moléculaire (II)), de monoh	ydrure [MH	SH] (III)	à partir	de H ₂	et des c	omplexes de
palladium et	platine [M(SPS ^N	$^{(e)}(X) = 0$	Cl, (PH ₃) ⁺).					

Isomère	PdCl (g)	$PdPH_{3}^{+}(h)$	PtCl (i)	PtPH ₃ ⁺ (j)
syn-SS (I)	+33.7	+36.5	+11.5	+13.4
Mol. H ₂ (II)	+21.1	+19.6	+17.8	-
MHSH (III)	+19.4	+17.5	+11.4	+10.3

III.6. Conclusion

En conclusion, l'addition oxydante de H₂ sur les complexes du groupe 10 $[M(SPS^{Me})(X)]$ (M = Pd, Pt, X = Cl, PH₃⁺) pour conduire à des complexes dihydrures de M^{IV} est plus facile pour le platine que pour le palladium. Des adduits de type M^{II} / H₂ restent néanmoins beaucoup plus accessibles pour le palladium (énergie plus basse que le complexe dihydrure) que pour le platine (énergie comparable). Contrairement aux métaux du groupe 9, l'énergie de réaction de l'addition de H₂ sur le complexe plan carré ΔE_R est systématiquement positive ou proche de zéro et l'enthalpie libre de réaction ΔG_R est toujours nettement positive. Ceci s'accorde parfaitement avec les résultats expérimentaux : aucune réaction d'addition de H₂ n'a lieu même sous forte pression.

On peut résumer les résultats obtenus lors de l'addition de H₂ de manière *syn*-SS sur les complexes de paladium^{II}, platine^{II}, rhodium^I, et iridium^I par un graphe. Si l'on trace $\Delta E_R = f (\Delta E_T_{dist.} + 2 \Delta E_I(M-H))$, on obtient par construction une droite d'après le cycle thermodynamique au Schéma 3.⁶ Si l'on reporte $\Delta G_R = f (\Delta E_T_{dist.} + 2 \Delta E_I(M-H))$, le demiplan $y = \Delta G_R < 0$ correspond aux réactions possibles thermodynamiquement et vérifiées expérimentalement et le demi-plan $y = \Delta G_R > 0$ correspond aux réactions qui ne se font pas (Schéma 8).

⁶ D'après le Schéma 3, on a $\Delta E_R = \Delta E_T _{dist} - \Delta E_1 (H-H) + 2\Delta E_1 (M-H)$ avec $\Delta E_T _{dist} = \Delta E_{dist} (ML_4) + \Delta E_{S/T}$ et $\Delta E_1 (H-H) = \text{constante} = 107.3 \text{ kcal.mol}^{-1}$.

 $\Delta E_{dist.} - 2 \Delta E_{I}(M-H) (kcal.mol^{-1})$

Schéma 8 : $\Delta E_R = f (\Delta E_{T \text{ dist.}} + 2 \Delta E_l(M-H))$ et $\Delta G_R = f (\Delta E_{T \text{ dist.}} + 2 \Delta E_l(M-H))$ pour les isomères Ia, Ib, Ig-j.

IV. Annexe : énergie de liaison

Les valeurs d'énergie de liaison métal hydrure, métal oxygène et métal carbonyle sont évidemment à comparer avec celles que l'on trouve expérimentalement. Pour cela, il est nécessaire de revenir sur la définition de l'énergie de liaison. On rencontre dans les publications deux expressions de l'énergie de liaison (Schéma 9) :

- i) Première définition : l'énergie de liaison représente l'énergie de rupture de la liaison M-R pour former M et R dans leur géométrie optimale (D_l).
- ii) Deuxième définition : l'énergie de liaison représente l'énergie de rupture de la liaison M-R pour former M* et R* dans une géométrie distordue *i.e.* sans optimisation des fragments M* et R* $(D*_1)$.

Pour obtenir une comparaison des valeurs d'énergie de liaison, on doit donc tirer parti de l'équation $D_1 = D^*_1 + E(M/M^*) + E(R/R^*)$.

Dans le cycle thermodynamique que nous employons, le fragment métallique n'est absolument pas dans sa géométrie optimale, mais dans une géométrie gelée M*: ${}^{3}[M(SPS^{Me})(PH_{3})]_{dist.}$ dans le cas où il se produit une addition oxydante (cas de H₂ et O₂) et ${}^{1}[M(SPS^{Me})(PH_{3})]_{dist.}$ dans le cas de la fixation de CO. Le terme ΔE_{1} (M-H), ΔE_{1} (M-O) ou ΔE_{1} (M-C) correspond donc à une énergie de liaison entre M* et 2H, (O₂)_{allongé} ou (CO)_{allongé} soit à la deuxième définition de l'énergie de liaison (D*₁).

Ainsi, dans le cas du cycle thermodynamique employé ci-dessous (Schéma 10), on a $-2D_1 = 2\Delta E_1 (M-H) + \Delta E_{S/T} + \Delta E_{dist.} (ML_4)$. Dans notre cas, cela fournit les énergies de liaison D_1 présentées au Tableau 23. Ces valeurs sont du même ordre de grandeur que celles que l'on trouve dans la littérature (ces dernières étant souvent entachées d'une grande incertitude).

Tableau 23 : Energie de liaison (kcal.mol⁻¹) associée à la formation des liaisons M-H, M-O et M-CO conduisant aux complexes réels de rhodium et d'iridium (Ia, Ib, Ic, Id, Ie, If).

	M-H	I	M-(r	$\mathbf{M} - (\eta^2 - \mathbf{O}_2)$		CO)
	D_l	$D*_1$	Dı	$D*_1$	D_1	$D*_1$
$[Rh(SPS^{Me})(PH_3)(H)_2] (Ia)$	-61.1	-72.5				
$[Ir(SPS^{Me})(PH_3)(H)_2]$ (Ib)	-71.7	-85.6				
$[Rh(SPS^{Me})(PH_3)(O_2)] (Ic)$			-5.1	-51.4		
$[Ir(SPS^{Me})(PH_3)(O_2)] (Id)$			-16.0	-73.4		
$[Rh(SPS^{Me})(PH_3)(CO)]$ (Ie)					-27.7	-56.3
$[Ir(SPS^{Me})(PH_3)(CO)]$ (If)					-40.3	-79.3
Littérature Rh ^[28]	-61.8 ± 5.0					
	-58.9 ± 5.0					
Littérature Ir ^[28]	-74.0 ± 5.0					

V. Bibliographie

- [1] T. Ziegler, Chem. Rev. 1991, 91, 651.
- [2] R. G. Parr, W. Yang, *Density functional theory of atoms and molecules*, Oxford University Press, Oxford, Royaume Uni, **1989**.
- [3] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- [4] C. Lee, W. Yang, R. G. Parr, Phys. Rev. A 1988, B 37, 785.
- [5] P. J. Stephens, F. J. Delvin, C. F. Chabalowski, M. J. Frisch, J. Phys. Chem. 1994, 98, 11623.
- [6] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- [7] P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299.
- [8] A. Höllwarth, M. Böhme, S. Dapprich, A. Ehlers, A. Gobbi, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp, G. Frenking, *Chem. Phys. Lett.* **1993**, *208*, 237.
- [9] W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257.
- [10] M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, *J. Chem. Phys.* **1982**, *77*, 3654.
- [11] P. C. Hariharan, J. A. Pople, Theor. Chim. Acta 1973, 28, 213.
- [12] A. Ehlers, M. Böhme, S. Dapprich, A. Gobbi, A. Höllwarth, V. Jonas, K. F. Köhler, R. Stegmann, A. Veldkamp, G. Frenking, *Chem. Phys. Lett.* **1993**, *208*, 111.
- [13] T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. von Ragué Schleyer, J. Comput. Chem. **1983**, *4*, 294.
- [14] M. Svensson, S. Humbel, R. D. J. Froese, T. Matsubara, S. Sieber, K. J. Morokuma, J. *Phys. Chem.* **1996**, *100*, 19357.
- [15] A. K. Rappé, C. J. Casewitt, K. S. Colwell, W. A. Goddard, W. M. Skiff, J. Am. Chem. Soc. 1992, 114, 10024.
- [16] M.-D. Su, S. Y. Chu, J. Am. Chem. Soc. 1997, 119, 5373.
- [17] H. Lesnard, I. Demachy, Y. Jean, A. Lledos, Chem. Commun. 2003, 850.
- [18] J. Tomas, A. Lledos, Y. Jean, Organometallics 1998, 17, 4932.
- [19] M. Doux, L. Ricard, P. Le Floch, Y. Jean, Organometallics 2005, 24, 1608.
- [20] R. Dorta, L. J. W. Shimon, H. Rozenberg, D. Milstein, Eur. J. Inorg. Chem. 2002, 1827.
- [21] H. F. Haarman, F. R. Bregman, P. van Leeuwen, K. Vrieze, *Organometallics* 1997, 16, 979.
- [22] M. C. Nicasio, M. Paneque, P. J. Perez, A. Pizzano, M. L. Poveda, L. Rey, S. Sirol, S. Taboada, M. Trujillo, A. Monge, C. Ruiz, E. Carmona, *Inorg. Chem.* **2000**, *39*, 180.
- [23] C. Busetto, A. Dalfonso, F. Maspero, G. Perego, A. Zazzetta, J. Chem. Soc., Dalton Trans. 1977, 1828.
- [24] M. J. Bennet, P. B. Donaldson, Inorg. Chem. 1977, 16, 1581.
- [25] M. Doux, P. Le Floch, Y. Jean, Theochem-J. Mol. Struct. 2005, 724, 73.
- [26] D. H. Lee, B. P. Patel, E. Clot, O. Eisenstein, R. H. Crabtree, Chem. Commun. 1999, 297.
- [27] K. Gruet, E. Clot, O. Eisenstein, D. H. Lee, B. Patel, A. Macchioni, R. H. Crabtree, *New J. Chem.* **2003**, *27*, 80.
- [28] J. A. Martinho Simoes, J. L. Beauchamp, Chem. Rev. 1990, 90, 629.

Chapitre 6 : Complexes des groupes 11, 8 et 7

Ce chapitre s'efforcera de décrire les principaux résultats que nous avons obtenus en chimie de coordination avec les métaux du groupe 11 (Cu, Au), du groupe 8 (Fe, Ru) et du groupe 7 (Mn, Re).

I. Coordination à des métaux du groupe 11

I.1. Complexes de cuivre

I.1.1. Synthèse

L'anion **211** réagit avec [CuI] ou [CuBr.SMe₂]. La solution initialement rouge devient orange avec la formation concomitante d'un précipité de même couleur. Après une nuit, le spectre RMN ³¹P ne présente aucun signal, ce qui indique que tout le ligand a été consommé. Le produit formé est insoluble dans les solvants organiques usuels et a donc été purifié par lavages successifs. L'analyse élémentaire révèle que la composition du produit **601** est un multiple de [Cu(SPS^{Me})] (Équation 1). Le manque de solubilité du complexe vient donc probablement du caractère polymérique de **601**. Afin d'accroître la solubilité du complexe, nous avons réalisé la même expérience avec l'anion **213** où l'on remplace le méthyle du phosphore central par le groupe *n*-butyle. On obtient à nouveau un précipité orange, insoluble dans les solvants organiques classiques. Enfin, l'emploi de l'anion scorpionate **217** conduit à la formation d'un complexe soluble dans le CH₂Cl₂ **603** qui a été caractérisé par RMN ³¹P et ¹H et analyse élémentaire. On forme une structure au moins dimérique avec deux groupes PPh₂S magnétiquement inéquivalents ($\delta = 42.2$ et 42.7 ppm en RMN ³¹P).

Malgré leur caractère insoluble, les complexes **601** et **602** réagissent avec des ligands donneurs à deux électrons comme les isonitriles, les phosphines, les phosphites ou la pyridine et l'on forme les complexes de cuivre^I tétraédriques complètement solubles dans le THF et le CH_2Cl_2 avec des rendements *quasi* quantitatifs (Équation 2).

Les complexes **604-611** ont été complètement caractérisés par RMN et analyse élémentaire. La structure des complexes **604-606** et **608** a été confirmée par diffraction aux rayons X. Pour **604-611**, le signal RMN ³¹P apparaît sous la forme attendue d'un triplet compris entre -17 et -28 ppm (P_{central}) et d'un doublet à environ 49 ppm (PPh₂S) avec une grande constante de couplage ²J_{P-P} de 150 Hz (Tableau 1). La variation du déplacement chimique du phosphore central P-R entre **604** et **609** ($\Delta\delta$ = 12.5 ppm) et **605** et **610** ($\Delta\delta$ = 7.6 ppm) s'accorde avec celle de PPh₂Me et PPh₂Bu ($\Delta\delta$ = 10.0 ppm).^[1] En RMN ¹H, la nature électronique du ligand L ne modifie pas significativement le déplacement chimique du proton H₄ (δ compris entre 5.50 ppm pour **608** à 6.07 ppm pour **611**, comparé à 5.13 ppm pour **211**).

Composé	$\delta (P-R)^{[a]}$	${}^{2}J_{\text{P-P}}{}^{[b]}$	$\delta (Ph_2PS)^{[a]}$	$\delta \left(P_{ligand} \right)^{[a]}$
211	-66.2	156.0	45.8	-
213	-65.7	155.5	45.9	-
217	-37.1	148.5	43.1	
604	-28.0	150.7	47.3	-
605	-25.5	154.3	48.4	-
606	-20.1	162.8	49.8	3.5 (PPh ₃)
607	-19.6	159.1	49.1	113.7 (P(OPh) ₃)
608	-36.0	151.9	46.6	-
609	-15.5	152.5	47.5	-
610	-17.9	143.4	46.8	-
611	-17.8	153.7	46.7	-

Tableau 1: Déplacements chimiques RMN ³¹P de 211, 213, 207, 604-611. ^[a] en ppm, ^[b] en Hz.

Seules les structures de **604** et **608** seront commentées en raison des similitudes de **604** et **605** d'une part et de **606** et **608** d'autre part. Le Tableau 7 en fin de chapitre regroupe les paramètres structuraux de ces complexes. Les structures aux rayons X montrent que la géométrie autour de l'atome de cuivre^I est pseudo tétraédrique, ce qui est conforme à ce que l'on attend d'un complexe [ML₄] d¹⁰. Pour **604**, les angles S2-Cu1-S1 et P1-Cu1-C43 mesurent respectivement 112.64(2) et 143.39(6)° tandis que dans **608** les angles S1-Cu1-S1' et P1-Cu1-N1 valent restectivement 101.35(3)° et 124.5(1)°.

Les paramètres structuraux les plus significatifs sont les longueurs des liaisons P-C externes (C1-P2 1.781(2) Å, C5-P3 1.769(2) Å pour **604** et C1-P2 1.776(2) Å pour **608**) qui sont incontestablement plus courtes que dans le ligand libre **211** (P-C 1.826(2) Å); elles présentent désormais un caractère de double liaison. De plus, on constate l'allongement des distances P-C internes (P1-C1 1.794(2) Å, C5-P1 1.797(2) Å pour **604** et P1-C1 1.797(2) Å pour **608**) par rapport au ligand libre **211** (1.742(2) Å). Ces distances demeurent plus courtes que la longueur P-Me (P1-C6 1.827(2) Å pour **604** et C4-P1 1.835(3) Å pour **608**) et sont légèrement plus longueus que pour les complexes de palladium^{II} (1.761(7) Å pour [Pd(SPS^{*n*-Bu})Cl] **302**). Les longueurs P=S (P2-S1 2.0021(6) Å, P3-S2 2.0014(6) Å pour **604** et P2-S1 2.0072(8) Å pour **608**) sont au contraire plus longues que dans le ligand libre **211** (1.956(1) Å).

Figure 1 : Structures de 604-606, 608. Paramètres structuraux rassemblés dans le Tableau 7.

Ces données structurales permettent d'établir que le ligand se comporte plutôt comme une phosphine tertiaire classique (forme B, Schéma 1) et non comme un anion λ^4 -phosphinine (forme A, Schéma 1). On suppose néanmoins que les deux formes participent à la liaison avec le centre métallique.

Par ailleurs, on constate que dans **604**, le ligand isonitrile n'est pas parfaitement linéaire : les valeurs des angles C43-N1-C44 (176.4°) et N1-C43-Cu1 (170.9°) suggèrent un changement de l'hybridation de l'atome de carbone C43. On attend, dans ce cas, une longueur de liaison Cu1-C43 plus courte lui conférant un caractère de double liaison. Pourtant, sa longueur (Cu1-C43 = 1.887(2) Å) correspond à une liaison simple. Ces deux résultats semblent contradictoires ; nous nous sommes alors penchés sur les vibrations d'élongation infrarouge (IR) de CN (Tableau 2). On constate pour les complexes **604** et **609** une faible variation de cette valeur si on la compare à l'isonitrile libre. Pour **605** et **610**, on remarque, au contraire, un acroissement significatif de la fréquence d'élongation ($\Delta v = +36$ et +18 cm⁻¹ pour **605** et **610** resp.), ce qui se traduit par une absence de rétrodonation de la part du centre métallique. Cette variation a également été observée dans le cas de complexes de cuivre [Cu(CO)_n]⁺ (n = 1, 2) et rationalisée par calculs DFT.^[2, 3] Cela indique que la coordination métal-ligand est seulement une donation σ de l'isonitrile vers le centre métallique.

Complexe	$v(CN)^{[a]}$	Complexe	$v(CN)^{[a]}$	Ligand libre v(CN) ^{[a][b]}
604	2131	609	2130	2122
605	2174	610	2158	2140 (CH ₂ Cl ₂)
				2138

Tableau 2: Spectre IR des complexes 604, 605, 609, 610. ^[a] en cm⁻¹, ^[b] voir références ^[4, 5].

I.1.2. Réactivité

Nous avons dirigé notre étude sur la réaction catalytique de cyclopropanation des alcènes et avons choisi la réaction du styrène avec le diazoacétate d'éthyle pour tester les complexes nouvellement synthétisés (Équation 3).^[6]

Comme la sphère de coordination de l'atome de cuivre des complexes **604-607** et **609-610** est saturée, nous nous sommes intéressés au complexe insoluble **601** et au complexe [Cu(SPS^{Me})Py] **608** en espérant qu'un excès d'alcène puisse conduire au complexe monométallique soluble à partir de **601** et que la pyridine serait facilement déplacée.

Malheureusement, la RMN ³¹P indique que l'ajout d'un excès de styrène à une solution de **601** dans des solvants variés n'induit aucune solubilisation, même partielle et que la pyridine de **608** n'est pas substituée par le styrène. Nous nous sommes alors tournés vers la réaction de ces complexes avec le diazoacétate d'éthyle (Équation 4). Le premier résultat surprenant est que la réaction procède avec deux équivalents de diazoacétate d'éthyle par atome de cuivre pour que la réaction soit propre. Après l'ajout de diazoacétate d'éthyle, la solution passe de l'orange au marron et l'on observe la formation d'un unique produit **612** qui a été purifié sur gel de silice et complètement caractérisé par RMN. Ce dernier se caractérise en RMN ³¹P par un triplet à 18.2 ppm (P-Me) et un doublet à 35.7 ppm (PPh₂S) avec une constante de couplage ²*J*_{P-P} de 42.0 Hz, caractéristique d'une structure de type λ^5 -phosphinine. La formation de la λ^5 -phosphinine **612** a été établie grâce aux données RMN : blindage important des atomes de carbone C_{2,6} (δ 65.8 ppm) et C₄ (δ 119.1 ppm), présence d'un groupe CH₂ en RMN ¹³C (δ 34.5 ppm, ¹*J*_{P-C} = 42.2 Hz). Cette fonction apparaît sous la forme d'un doublet à 3.3 ppm (²*J*_{H-P} = 16.7 Hz) en RMN ¹H. L'unité CH₃-CH₂ est également visible à 1.2 et 4.1 ppm (triplet et quadruplet).

Ainsi, l'addition de diazoacétate d'éthyle oxyde l'atome de cuivre et entraîne la décoordination du ligand. C'est la première fois que l'oxydation d'un complexe à base du

ligand **SPS** induit cette réactivité : par exemple, rappelons nous que l'oxydation des complexes de rhodium^I [Rh(SPS^{R1})(PPh₃)] conduit à des complexes de rhodium^{III} tandis que les complexes de palladium^{II} du type [Pd(SPS^{R1})Cl] sont stables dans des solvants oxydants et non dégazés même à des températures élevées.

Nous avons alors étudié la réactivité du complexe **608** vis-à-vis de divers agents oxydants. Le complexe **608** évolue dans une solution de CDCl₃ ; la moitié du complexe a été consommée et il se forme au bout d'une nuit deux composés dans les proportions 5:1. L'isomère majoritaire (resp. minoritaire) se caractérise en RMN ³¹P par un ensemble de triplet à 42.8 ppm (resp. 66.2 ppm) et de doublet à 31.9 (resp. 35.9 ppm) avec une constante de couplage ${}^{2}J_{P-P}$ de 26.7 Hz (resp. 43.7 Hz). La valeur de la constante de couplage ${}^{2}J_{P-P}$, inférieure à 50 Hz, indique que le squelette SPS n'est pas coordonnée à un métal de transition, mais est impliquée dans une structure de type λ^{5} -phosphinine.¹ Au bout de deux jours, tout le complexe **608** a évolué en quatre produits phosphorés qui n'ont pu être séparés. L'un d'entre eux est la λ^{5} -phosphinine **223**, synthétisée au chapitre 2. Cette dernière peut également être synthétisée à partir de **608** et de C₂Cl₆ avec un excellent rendement (Équation 5).

I.2. Complexes d'or

Nous nous sommes ensuite intéressés aux complexes d'or. L'anion **211** réagit avec une quantité stoechiométrique de [AuCl.SMe₂]. La solution, initialement rouge, devient orange et la RMN ³¹P montre la formation d'un unique produit, **613**, au bout d'une heure : on obtient trois séries de signaux à 45 ppm (doublet), 39 ppm (doublet) et -12 ppm (doublet de doublet) (Équation 6). Cette figure de couplage suggère une structure dans laquelle seul un des bras ancillaires soufrés est coordonné à l'or. De plus, comme la géométrie des complexes [AuLX] est linéaire, nous avons supposé que la structure de **613** était dimérique. Après isolation du complexe, l'accumulation sur une plus petite fenêtre RMN ³¹P révèle que le signal à -12 ppm n'est pas un doublet de doublet, mais un système beaucoup plus compliqué du type AA'MM'XX'. Par ailleurs, les signaux à 45 et 39 ppm demeurent de simples doublets. Le spectre RMN ¹H est plus simple que ce à quoi l'on pourrait s'attendre : seulement un doublet à 1.20 ppm pour le substituant méthyle et un triplet à 5.72 ppm pour le proton H₄ du cycle de la phosphinine.

¹ Une valeur ${}^{2}J_{P-P}$ supérieure à 100 Hz indique que le ligand SPS est coordinée à un métal de transition.

La structure de **613** a été déterminée par diffraction aux rayons X (Équation 6). La géométrie autour d'un atome d'or est (presque) linéaire avec un atome de soufre d'un ligand en position *trans* de l'atome de phosphore d'un autre ligand. Il y a de plus une interaction oror entre les deux centres métalliques (Au1-Au1' 3.0481(2) Å).² Cette interaction est suffisament forte pour contraindre la géométrie à dévier d'une structure linéaire (P1'-Au1-S1 173.87(3) Å). Les longueurs des liaisons P-C externes sont très différentes l'une de l'autre (P2-C1 = 1.746(3) Å et P3-C5 = 1.799(3) Å) : la première a gagné un fort caractère de double liaison (comparable aux distances P=C internes délocalisée dans **SPS** : 1.742(2) Å) tandis que la deuxième est légèrement plus courte que dans le ligand libre (1.826(2) Å). On retrouve cette disymétrie pour les liaisons P=S (S4-P3 1.967(1) Å *vs* S1-P2 2.037(1) Å). Quant aux distances P-C internes, P1-C1 (1.759(3) Å) est beaucoup plus courte que P1-C5 (1.829(3) Å) qui peut être considérée comme une liaison simple. L'alternance des longueurs C-C (C1-C2 1.431(4) Å, C2-C3 1.369(4) Å, C3-C4 1.441(4) Å, C4-C5 1.377(4) Å) suggère la structure électronique suivante (Schéma 2).

Schéma 2

La structure dimérique de **613** est rompue par des ligands donneurs à deux électrons comme dans le cas des complexes de cuivre. L'ajout de PPh₃ conduit en l'espace de quelques minutes au complexe **614** (Équation 7). Ce dernier se caractérise en RMN ³¹P par trois séries de signaux : un doublet de triplets à 3.0 ppm (PPh₃, ${}^{2}J_{P-P} = 286.0 \text{ Hz}$, ${}^{3}J_{P-P} = 90.9 \text{ Hz}$), un doublet à 41.5 ppm (PMe, ${}^{2}J_{P-P} = 286.0 \text{ Hz}$) et un doublet à 42.5 ppm (PPh₂S, ${}^{2}J_{P-P} = 90.6 \text{ Hz}$). La grande constante de couplage indique que deux atomes de phosphore sont *trans* l'un par rapport à l'autre. Ce complexe a également été caractérisé par RMN ¹H, ¹³C, analyse élémentaire et diffraction aux rayons X. La structure symétrique de la molécule est mise en évidence par l'équivalence des groupes PPh₂S en RMN ³¹P et des carbones C_{2,6} et C_{3,5} en

² A titre de comparaison, le rayon de van der Waals d'un atome d'or est de 1.44 Å.

RMN ¹³C. Nous avons également synthétisé **614** à partir de **211** et de [Au(PPh₃)Cl] (Équation 7).

La structure de **614** est présentée Figure 2. On constate une géométrie en T avec la coordination d'un seul atome de soufre au centre métallique (P1-Au-P4 = $162.93(2)^\circ$, P1-Au-S1 $87.56(2)^\circ$, S1-Au-P4 $108.90(2)^\circ$). La géométrie de complexes [ML₃] d¹⁰ est habituellement trigonale plane ; Cette géométrie en T peut s'expliquer par le caractère tridente du squelette SPS qui impose une contrainte géométrique. La distance Au-S1 est longue (2.7903(6) Å). Contrairement au dimère **613**, l'unité phosphinine est symétrique avec des distances P-C internes et externes et C-C identiques (P2-C1 1.787(2) Å, P3-C5 1.771(3) Å et P1-C5 1.776(2) Å, P1-C1 1.799(2) Å respectivement). Comme l'indiquait la RMN ³¹P, les deux atomes de phosphore sont *trans* l'un par rapport à l'autre (angle P4-Au1-P1 de $162.93(2)^\circ$). La déviation de la géométrie linéaire provient de l'interaction or-soufre. Cette géométrie en T est simplement observée à l'état solide. En effet, on observe en RMN ³¹P deux groupes PPh₂S magnétiquement équivalents.³

Figure 2 : Structure de 614. Les groupes phényles sont omis par soucis de clarté. Les paramètres structuraux rassemblés dans le Tableau 7.

La réaction du dimère **613** avec trois équivalents d'isonitrile est plus lente qu'avec PPh₃ et conduit au complexe **615**. Une fois isolé, le complexe **615** reforme environ 20% de réactif, ce qui montre que l'intéraction entre l'isonitrile et l'atome d'or est faible (Équation 8). Par ailleurs, le dimère d'or **613** n'est pas clivé par la pyridine, les alcènes ou les alcynes.

³ Une expérience RMN ³¹P à basse température aurait permis de conclure sur le caractère fluxionnel de **614** en solution, mais elle n'a pas été réalisée.

L'étude électrochimique du dimère d'or **613** a été entreprise (Figure 3). Comme on pouvait le prévoir, on observe à -1.8 V (*vs* SCE) une vague irréversible, même à vitesse de balayage élevée ($10V.s^{-1}$), qui correspond à la réduction de l'or^I en or⁰, instable. La vague d'oxydation réversible à +0.48V, couplée à une réduction à +0.26V, indique qu'après oxydation le complexe change de géométrie. Ceci nous a poussés à étudier l'oxydation chimique de **613**. Cependant, contrairement aux complexes de cuivre, le dimère **613** est robuste et ne réagit pas avec C₂Cl₆. Aucun produit d'oxydation n'a pu être isolé par ailleurs.

Figure 3 : Voltamétrie cyclique de 613 (3 mM) dans le CH₂Cl₂ à 20°C. Vitesse de balayage : 100 mV.s⁻¹. Electrolyte : [NBu₄][BF₄] (0.3 M).

I.3. Conclusion

Nous avons formé une série de complexes pinceurs avec les métaux du groupe 11 de configuration d¹⁰ (cuivre^I, or^I). Tous les complexes de cuivre sont stables sauf **608**. La faible interaction pyridine cuivre rend ce complexe réactif vis-à-vis de divers agents oxydants (oxygène, solvants chlorés, C₂Cl₆). L'augmentation de la vibration infrarouge v(CN) des complexes substitués par des isonitriles (**604**, **605**, **609**, **610**) indique une rétrodonation négligeable des orbitales d du métal vers l'orbitale π^* de l'isonitrile. Le dimère d'or **613** présente une interaction or-or mise en évidence par diffraction aux rayons X. Il peut être clivé par des ligands donneurs à deux électrons pour former des complexes de géométrie en T. Le complexe **615** substitué par l'isonitrile évolue vers le réactif dimérique, ce qui suggère uniquement une interaction de type σ de l'isonitrile vers l'or.

I.4. Perspectives

Il reste à présent à tester ces complexes en catalyse. Nous avons sélectionné quelques réactions qui pourraient servir de pistes.

Les complexes de cuivre polymériques **601-603** pourraient être utilisés dans la réaction d'hydrosilylation de cétones étudiée notamment par Lipschutz *et al.* (Équation 9).^[7, 8]

II. Coordination à des métaux du groupe 8

II.1. Complexes de ruthénium

Nous avons synthétisé un complexe de ruthénium^{II} **616** à partir de l'anion **213** et de [RuCp*Cl]₄ (Cp* = anion pentaméthylcyclopentadiényle) (Équation 10). Ce dernier a été complètement caractérisé par RMN. Le spectre RMN ³¹P, du deuxième ordre (système AB₂ modélisé avec le logiciel gNMR), indique que les deux groupes Ph₂PS sont magnétiquement équivalents. Ce résultat est corroboré par l'unique signal obtenu pour les atomes de carbone C_{2,6} (δ (C₆D₆) = 75.1 ppm) et C_{3,5} (δ (C₆D₆) = 145.1 ppm). De plus, on observe la libre rotation du ligand Cp* comme en témoigne la RMN ¹H (doublet à 1.46 ppm intégrant pour quinze protons avec ⁴J_{H-P} = 1.2 Hz) et la RMN ¹³C (singulet à 10.8 ppm pour C₅Me₅ et doublet à 58.9 ppm pour C₅Me₅ avec ³J_{C-P} = 2.6 Hz). **616** se conserve sous atmosphère inerte puisqu'il se dégrade au contact de l'oxygène.

La structure de **616** a indiscutablement été établie par diffraction aux rayons X (Figure 4). On constate que la géométrie autour de l'atome de ruthénium est de type tabouret de piano avec le ligand SPS qui occupe un côté de l'espace (S-Rh-S = $85.69(2)^\circ$). Les distances internes du squelette SPS sont tout à fait particulières et aucun exemple de ce type n'a été obtenu précédemment. En effet, l'atome de phosphore central possède les propriétés géométriques d'une phosphine : les trois distances P1-C ont une valeur de liaison simple (C1-P1 1.819(2) Å, C5-P1 1.802(2) Å et C6-P1 1.843(2) Å) et l'atome de phosphore est pyramidal (Σ angles = 301.2°). On observe une désaromatisation du cycle avec des distances C1-C2 et C3-C4 courtes (1.381(3) Å et 1.399(3) Å resp.) par rapport aux liaisons C2-C3 et C4-C5

(1.417(3) Å et 1.412(3) Å resp.). La charge négative est uniquement délocalisée sur les bras ancillaires C-P-S comme le révèlent l'allongement des longueurs P=S (P2-S1 = 2.0130(8) Å *vs* 1.974(4) Å pour **211**) et le raccourcissement des liaisons P-C externes (P2-C1 = 1.766(2) Å *vs* pour 1.773(4) Å pour **211**) par rapport à la structure de l'anion [SPS^{Me}][Li(THF)₂] **211**. Enfin, si l'on s'intéresse au ligand Cp*, les longueurs C-C de l'anion cyclopentadiényle sont comparables à celles du complexe [Ru(Cp*)₂] (1.425(3) Å à 1.442(3) Å au lieu de 1.428 Å pour [Ru(Cp*)₂]).^[9] Une information plus intéressante est donnée par la distance Rucentroïde(Cp*) qui est plus longue dans le cas de **616** que dans le complexe homoleptique [Ru(Cp*)₂] (1.840 Å pour **616** *vs* 1.800 Å pour [Ru(Cp*)₂]).^[9]

Figure 4 : a) Structure de 616. Les paramètres structuraux sont regroupés dans le Tableau 8 en fin de chapitre. b) Structure électronique du squelette SPS dans 616.

Comme on peut le voir sur la Figure 5, **616** s'oxyde réversiblement à $E_{1/2} = -0.01$ V, 0.90 V et 1.40 V *vs* SCE. Si l'on compare le potentiel d'oxydation de **616** à d'autres complexes de type ruthénocène (Tableau 3), on constate que l'oxydation est beaucoup plus accessible pour **616** que pour [Ru(Cp*)₂] ($E_{1/2} = -0.01$ V pour **616** *vs* $E_{1/2} = +0.61$ V pour [Ru(Cp*)₂]).^[10] Par conséquent, le ligand [SPS^{*n*-Bu}] stabilise beaucoup mieux le ruthénium^{III} que le ligand Cp* et est donc plus riche que Cp*. Ce résultat est validé par la distance ruthénium-centroïde(Cp*) des structures aux rayons X de **616** et de [Ru(Cp*)₂] : 1.840 Å pour **616** au lieu de 1.800 Å pour [Ru(Cp*)₂].^[9]

Figure 5 : Voltamétrie cyclique de 616 (3 mM) dans le THF à 20°C. Vitesse de balayage : 250 mV.s⁻¹. Electrolyte : [NBu₄][BF₄] (0.3 M).

Complexe	E _{1/2}	Référence
$[\operatorname{Ru}(\operatorname{Cp}^*)(\operatorname{C}_5\operatorname{F}_5)]$	1.53 ^[a]	[10]
$[\operatorname{Ru}(\operatorname{Cp}^*)(\operatorname{C_5Cl_5})]$	1.57	[10]
$[Ru(Cp^*)(C_5H_4NO_2)]$	$1.16^{[a]}$	[10]
$[Ru(Cp^*)(C_5(CF_3)_4H)]$	$1.76^{[a]}$	[10]
$[Ru(Cp)_2]$	0.87	[11]
$[Ru(Cp^*)(Cp)]$	$0.81^{[a]}$	[10]
$[Ru(Cp^*)_2]$	0.61	[10]
$[Ru(Cp^*)(SPS^{n-Bu})]$ 616	-0.01	

Tableau 3 : Potentiel d'oxydation (exprimé en V vs SCE) de ruthénocènes dans le CH₂Cl₂ et du complexe 616 dans le THF.^[a] Pic anodique, oxydation *quasi* réversible.

L'oxydation chimique de **616** peut être réalisée par le complexe de ferricinium $[FeCp_2][BF_4]$ ($E_{1/2} = 0.47$ V) (Équation 11).^[12] On observe alors la disparition de tout signal en RMN ³¹P et l'on forme le complexe de ruthénium^{III} **617**. Ce dernier est actuellement étudié en RPE par le groupe du Pr. Michel Geoffroy (Université de Genève).⁴

II.2. Complexes de fer

Nous avons essayé de synthétiser un complexe analogue de fer. La réaction de **213** avec $[Fe(Cp)(CO)_2I]$ à 80°C conduit au composé **618**, extrêmement réactif (Équation 10). Ce dernier a simplement été caractérisé en RMN ³¹P : il s'agit d'un système symétrique du type AX₂ et nous avons supposé que sa géométrie était semblable à celle du complexe de ruthénium^{II} **616**. Une solution de **618** dans le THF exposée à l'air génère au bout d'une dizaine de minutes un précipité, **619**. Ce dernier, extrait puis dissout dans le CH₂Cl₂, ne présente aucun signal en RMN ³¹P et fait pencher en faveur d'un complexe de fer^{III} paramagnétique.

⁴ L'oxydation de **616** peut également avoir lieu à l'air.

Équation 12

Une diffusion de **618** en boîte à gants conduit à la formation de cristaux. La structure proposée est confirmée par diffraction aux rayons X (Figure 6). La géométrie du complexe est à nouveau de type tabouret de piano et les distances internes du squelette SPS conservent les même tendances que pour le complexe analogue de ruthénium^{II} **616**. Les distances C-C de l'anion cyclopentadiényle sont comparables à celles du férocène (1.398(4) Å à 1.428(4) Å *vs* 1.435 Å).^[13] Comme pour **616**, la longueur fer-centroïde(Cp) est plus longue pour **618** que pour le ferrocène (1.694 Å *vs* 1.658 Å pour [FeCp₂]).^[13]

La nature de **619** a également été déterminée par diffraction aux rayons X (Figure 6). Il s'agit effectivement d'un complexe de fer^{III} cationique avec un atome d'iode en contre ion. La géométrie du complexe **619** est comme pour le complexe de fer^{II} **618** de type tabouret de piano. Les distances C-C de l'anion cyclopentadiènyle sont comparables à celles du ferricinium (1.39(2) Å à 1.41(2) Å vs 1.344 Å pour $[FeCp_2]^+$).^[14] Comme pour **618**, on observe une distance fer-centroïde(Cp) plus longue que dans le ferricinium (1.757 Å pour **619** vs 1.754 Å pour $[FeCp_2]^+$).^[14] Le nombre d'oxydation du métal change profondément les paramètres structuraux du squelette SPS. L'atome de phosphore P1 est toujours pyramidal (Σ angles = 307.1° pour **619** vs 1.815(3) Å pour **618**). La charge négative n'est plus seulement délocalisée sur les bras ancillaires C-P-S, mais également sur le squelette carboné de la phosphinine : on constate l'égalité des distances C-C dans la limite des 3 σ (1.39(2) Å à 1.43(2) Å).

Figure 6 : a) Structure de 618, b) structure de 619. Les paramètres structuraux sont regroupés dans le Tableau 8 en fin de chapitre.

Nous avons étudié la réduction électrochimique de **619**. On observe une vague réversible à $E_{1/2} = -0.19$ V *vs* SCE (Figure 7). Si l'on compare ce potentiel de réduction à d'autres complexes du type ferrocène (Tableau 4), on constate que le potentiel de réduction de **619** est situé au-delà de celui de $[Fe(Cp)_2]^+$ (+0.47 V) et de $[Fe(Cp^*)_2]^+$ (-0.10 V). Il a été montré que la présence d'un groupe méthyle supplémentaire sur un métallocène diminue de

50 mV le potentiel de réduction.^[15] On obtient donc un potentiel de réduction de +0.22V pour $[Fe(Cp)(Cp^*)]^+$. On en déduit par conséquent que l'anion $[SPS^{n-Bu}]$ est plus riche que le ligand pentaméthylcyclopentadiényle dans le complexe de fer. On retrouve le même résultat que pour le complexe de ruthénium.

Figure 7 : Voltamétrie cyclique de 619 (4 mM) dans le CH_2Cl_2 à 20°C. Vitesse de balayage : 50 mV.s⁻¹. Electrolyte : [NBu₄][BF₄] (0.3 M).

Tableau 4 : Potentiel de réduction (exprimé en V vs SCE) de ferrocènes et du complexe 619.

Complexe	$E_{1/2}$	Référence	
$\left[\operatorname{Fe}(\operatorname{Cp})_{2}\right]^{+}$	+0.47	[12]	
$[Fe(Cp^*)(Cp)]^+$	+0.22	Estimé ^[15]	
$[Fe(Cp^*)_2]^+$	-0.10	[12]	
$[Fe(SPS^{n-Bu})(Cp)][I]$ 619	-0.19		

II.3. Conclusion

Nous avons synthétisé des complexes de ruthénium et de fer à l'état d'oxydation II et III. Ces complexes, du type $[Ru(SPS^{n-Bu})Cp^*][X]$ et $[Fe(SPS^{n-Bu})Cp][X]$ (X = rien ou anion), montrent que le ligand anionique $[SPS^{n-Bu}]$ peut être considéré comme un analogue de ligand cyclopendadiényle. La richesse de ce ligand a été étudiée en électrochimie et nous avons montré que $[SPS^{n-Bu}]$ était beaucoup plus riche que le ligand Cp* dans les complexes de ruthénium et de fer. Le faible potentiel d'oxydation de ces complexes ($E_{1/2} = -0.01$ V pour le complexe de ruthénium et -0.16 V pour le complexe de fer) en font des réactifs de choix pour les réactions de transfert d'électrons.

II.4. Perspectives

La synthèse du complexe de fer^{II} **618** est peu efficace et produit au moins un tiers de produits secondaires. Il pourrait être interessant de se pencher plus en détails sur l'étude d'autres précurseurs de fer^{II} tels [Fe(Cp)(CO)₂Br] ou avec des ligands plus labiles que des groupes carbonyles.

Il reste à présent à étudier les complexes de ruthénium^{III} **617** et fer^{III} **619** en RPE. Ceci devrait être réalisé prochainement à l'université de Genève par l'équipe du professeur Michel Geoffroy.

La synthèse de complexes de fer^{II/III}, de ruthénium^{II/III} couplée à une étude électrochimique a permis de comparer la richesse de l'anion [SPS^{*n*-Bu}] à des dérivés du ligand anionique cyclopentadiényle. La synthèse systématique de complexes du type

 $[Ru(SPS^{R_1})Cp^*]$ et $[Fe(SPS^{R_1})Cp]$ suivie de leur étude électrochimique devrait permettre de quantifier les effets du substituant présent sur l'atome de phosphore central (Schéma 3).

Cette étude pourrait être complétée par des calculs du type CDA⁵ qui permettrait de comprendre d'un point de vue donation / rétrodonation comment les ligands [SPS^{R1}]⁻ se situent les uns par rapport aux autres et de les comparer aux ligands cyclopentadiényles.

III. Coordination à des métaux du groupe 7

III.1. Complexes de manganèse

L'étude photochimique des complexes de manganèse et de rhénium décrits dans cette partie a été réalisée en collaboration avec l'équipe du Dr Frantisek Härtl (Taasje Mahabiersing, Ron T.F. Jukes, Marcia S. Mora) à l'université d'Amsterdam.

III.1.1. Synthèse

L'anion **213** réagit avec [Mn(CO)₅Br] au bout d'une nuit de chauffage et forme le complexe **620** caractérisé par RMN ³¹P, ¹H, analyse élémentaire et infra rouge (IR) (Équation 13). En RMN ³¹P, **620** présente un sytème AX₂ suggérant une structure symétrique : on peut alors proposer deux structures différentes (*fac* et *mer*) avec deux groupes PPh₂S magnétiquement équivalents. La géométrie *fac* a été déduite grâce aux motifs v(CO) du spectre IR qui présentent une bande de grande intensité à 2013 cm⁻¹ et deux bandes d'intensité moyenne à 1934 et 1909 cm⁻¹.

⁵ Voir chapitre 3 pour la description de la méthode.

La structure de **620** a été confirmée par diffraction aux rayons X (Figure 8). Les paramètres structuraux sont regroupés dans le Tableau 5. La géométrie autour de l'atome de manganèse est pseudo octaédrique. Le ligand [SPS^{*n*-Bu}] occupe une face triangulaire de l'octaèdre, ce qui confirme la géométrie *fac*. Le cycle de la phosphinine n'est pas plan puisque les atomes P1 et C3 sortent du plan défini par [C1-C2-C4-C5] d'un angle dièdre de 23.3° et 9.0°. Cette déviation ainsi que la pyramidalité de l'atome de phosphore P1 (Σ angles = 307.3°) est comparable à d'autres structures incorporant le ligand **SPS** (318.1° pour [Pd(SPS^{*n*-Bu})C1] **302**, 305.1° pour [Rh(COD)(SPS^{Me})] **401**, 308.9° pour [Cu(SPS^{Me})(Py)] **608**). Les autres paramètres structuraux seront décrits plus loin dans ce chapitre.

Figure 8 : Structures des isomères 620 (*fac*) et 621 (*mer*). Les groupes phényles sont omis par soucis de clarté. Les paramètres structuraux sont présentés Tableau 5.

L'irradiation de **620** par le soleil ou une lampe à mercure induit une photoisomérisation *fac / mer* vers le complexe **621** et provoque un changement de couleur du jaune ($\lambda_{max} = 470$ nm, Figure 10) vers le rouge ($\lambda_{max} = 500$ nm, Figure 10) (Équation 14). Les fréquences v(CO) du spectre IR de **621** sont caractéristiques d'une géométrie *mer* (bande large à 2024 cm⁻¹, forte à 1930 cm⁻¹ et moyenne à 1915 cm⁻¹). Le spectre RMN ³¹P de **621** est également un système AX₂ : alors que le déplacement chimique des groupes PPh₂S reste quasiment inchangé (58.2 ppm dans **621**, soit $\Delta\delta = +0.7$ ppm), l'isomérisation provoque un blindage important de l'atome de phosphore du cycle (47.5 ppm dans **621**, soit $\Delta\delta = -35.2$ ppm). L'isomérisation de complexe carbonyle de manganèse^I est commune et est généralement induite thermiquement, électrochimiquement ou photochimiquement.^[16-20]

621 est instable : on reforme le complexe **620** au bout de huit heures dans le noir (Figure 9). Par conséquent, il n'a pu être caractérisé par analyse élémentaire et RMN ¹³C (également à cause de sa faible solubilité). Le temps de vie de l'isomère *mer* **621** est remarquable comparé aux complexes *mer*-[Mn(X)(CO)₃(α -diimine)] (X = halogène) qui ont une durée de vie de l'ordre de quelques secondes. Ces complexes s'isomérisent en l'isomère *fac* avec des temps de réaction qui dépendent fortement de la nature de la α -diimine puisque

la première étape du mécanisme fait intervenir le clivage de la liaison Mn-N.^[21] L'encombrement stérique, associé au caractère tridente de SPS représente un obstacle au mécanisme dissociatif et augmente ainsi la durée de vie du complexe **621**.

Figure 9 : Isomérisation thermique *mer* \rightarrow *fac* enregistrée en spectroscopie IR (échelle en heures) de 621 (bleu) vers 620 (rouge) dans le THF.

La géométrie *mer* du complexe **621** a été confirmée par diffraction aux rayons X (Figure 8, Tableau 5). Des cristaux analysables se sont déposés dans une solution de **621** dans le CH₂Cl₂ sous irradiation continue. La géométrie autour de l'atome de manganèse est pseudo octaédrique avec le ligand SPS qui occupe un plan de l'octaèdre. Les paramètres structuraux (ligand SPS, Mn-S, Mn-P1) de **621** sont semblables à ceux de **620** mis à part les longueurs P=S qui sont plus courtes dans l'isomère *fac* **620** (2.0212(7) et 2.0145(7) Å) que dans l'isomère *mer* **621** (2.034(2) et 2.030(2) Å). La plus grande différence provient des distances Mn-C-O. Dans **621**, les deux distances équatoriales Mn–C46 et Mn–C48 sont plus longues que dans **620** (1.858(4) *vs* 1.792(2) Å et 1.831(4) *vs* 1.783(2) Å), ce qui reflète l'influence *trans* des ligands ancillaires Ph₂PS. Par conséquent, les liaisons C46-O1 et C48-O3 sont légèrement plus courtes dans **621**. Par ailleurs, le groupe carbonyle axial de **621** subit une plus forte influence *trans* du ligand P^{*n*-Bu} que dans l'isomère *fac* **620** : la rétrodonation qui en résulte conduit à des distances Mn-C47 plus courte et C47-O2 plus longue dans l'isomère *mer*. Les variations de longueurs C-O sont responsables des modifications des fréquences d'élongation v(CO) du spectre IR.

III.1.2. Photoisomérisation et propriétés luminescentes

L'isomère *fac* **620** (*mer* **621** resp.) absorbe dans le visible à 471 nm (498 nm resp.) avec un coefficient d'absorption molaire de $\varepsilon_{max} = 9150 \text{ M}^{-1} \cdot \text{cm}^{-1} (\varepsilon_{max} = 8500 \text{ M}^{-1} \cdot \text{cm}^{-1} \text{ resp.})$ (Figure 10). La bande à 470 nm n'est pas solvatochromique et le maximum d'absorption n'est pas modifié même dans des pastilles de KBr. Cette observation indique une transition électronique avec un caractère négligeable de transfert de charge et un état excité avec un faible moment dipolaire.

L'irradiation de la bande d'absorption du complexe *fac* **620** induit une réaction photochimique avec un rendement quantique de 0.80 ± 0.05 pour $\lambda_{exc} = 460$ nm et forme l'isomère *mer* **621**.⁶ La valeur de ce rendement quantique est exceptionnel ; à titre d'exemple,

⁶ Pour la détermination du rendement quantique, voir partie expérimentale.

l'isomérisation *mer / fac* du complexe *mer*-tris[2-(4',6'-difluorophényl)pyridine]iridium^{III} est de l'ordre de 7%.^[22] L'excitation UV avec une lampe au mercure ou au xénon conduit également à la même photoréaction.

Figure 10 : Spectre d'absorption de 620 (rouge) et 621 (bleu). Solutions équimolaires dans le THF à 293 K.

Les isomères **620** et **621** sont luminescents dans le domaine du visible (Figure 11). L'émission de l'isomère *fac* **620** à 566 nm est faible ; le rendement quantique d'émission augmente lorsque l'on passe du THF oxygéné au THF dégazé (de 1.1×10^{-4} (THF oxygéné) et 4.0×10^{-4} (THF dégazé) pour $\lambda_{exc} = 340$ nm à 2.8×10^{-4} (THF oxygéné) et 5.1×10^{-4} (THF dégazé) pour $\lambda_{exc} = 446$ nm). La sensibilité à l'oxygène (${}^{3}O_{2}$) indique que l'émission passe par l'état ${}^{3}IL$ (Intra Ligand) à l'état excité. Après photo-isomérisation, l'intensité du spectre d'émission est quintuplée et son maximum dévie à 585 nm (Figure 11).

Figure 11 : Spectre d'émission de 620 (rouge) et 621 (bleu). Solutions équimolaires dans le THF à 293K.

III.1.3. Calculs DFT

Nous avons entrepris une série de calculs DFT^[23, 24] afin de confirmer la stabilité thermodynamique du complexe **620** et de comprendre les propriétés physiques des complexes **620** et **621**. Les calculs ont été réalisés sur les complexes modèles I et II dans lesquels les groupes phényles ont été remplacés par des atomes d'hydrogène et la chaîne *n*-butyle par un groupe méthyle. Nous avons employé un pseudo potentiel de type Hay-Wadt pour décrire les 18 électrons de cœur du manganèse associé à la base $(441/2111/41)^{[25, 26]}$ et complété par des polarisations f.^[27] Les atomes de phosphore, de soufre sont décrits en 6-311+G*^[28] les atomes de carbone liés au manganèse en 6-31+G*^[29] et les autres atomes en 6-31G*.^[30-32] Nous avons employé la fonctionnelle B3PW91.^[33]

Les complexes I et II ont été caractérisés comme des minima de la surface d'énergie par un calcul de fréquences (Figure 12). On constate un excellent accord entre calculs théoriques et structures expérimentales (Tableau 5). La déviation maximale étant de 0.078 Å pour les liaisons P=S et de moins de 0.029 Å pour toutes les autres longueurs. D'un point de vue énergétique, l'isomère *fac* I est plus stable que l'isomère *mer* II de 9.2 kcal.mol⁻¹, ce qui confirme le résultat expérimental.

Figure 12 : Structures optimisées de I et II au niveau B3PW91. Numérotation identique pour les deux complexes. E : énergie relative (corrigée ZPE) exprimée en kcal.mol⁻¹.

	620 <i>-fac</i> (Mn) RX	I <i>-fac</i> (Mn) DFT	621 <i>-mer</i> (Mn) RX	II <i>-mer</i> (Mn) DFT	622 (Re)
P1-C2	1.785(2)	1.795	1.783(4)	1.795	1.786(3)
C2-C3	1.413(3)	1.395	1.398(5)	1.392	1.424(4)
C3-C4	1.400(3)	1.404	1.413(5)	1.405	1.404(4)
C2-P2	1.760(2)	1.753	1.765(4)	1.760	1.756(3)
P2-S1	2.0212(7)	2.019	2.034(2)	2.026	2.026(1)
P1-R	1.838(2)	1.835	1.832(4)	1.837	1.835(3)
M-P1	2.2937(6)	2.324	2.2937(6)	2.298	2.423(1)
M-S1	2.4002(6)	2.480	2.401(1)	2.449	2.5074(8)
M-C1'	1.792(2)	1.776	1.831(4)	1.837	1.922(3)
M-C2'	1.829(2)	1.814	1.797(4)	1.801	1.953(3)
M-C3'	1.783(2)	1.776	1.858(4)	1.827	1.923(3)
01-C1'	1.155(3)	1.159	1.151(5)	1.152	1.139(4)
O2-C2'	1.144(3)	1.152	1.158(5)	1.156	1.144(4)
O3-C3'	1.159(3)	1.159	1.147(4)	1.155	1.150(4)
P1-C2-C3	116.8(1)	119.479	119.5(3)	119.956	115.5(2)
C2-C3-C4	122.4(2)	124.470	122.6(3)	124.423	122.5(3)
C3-C4-C5	124.0(2)	121.181	125.0(3)	122.006	124.3(3)
C6-P1-C2	100.72(8)	99.643	100.8(2)	100.179	100.9(1)
Σ angles P1	307.4	310.2	311.4	310.5	309.5

Tableau 5 : Paramètres structuraux de 620, 621, 622, I et II. Distances exprimées en Å et angles en °.

Le dessin des orbitales frontières montre que la HOMO et la LUMO de 620 et 621 sont essentiellement localisées sur le squelette SPS (Figure 13). On constate de plus que l'écart entre les orbitales frontières est plus important dans le cas de l'isomère *fac* I.

Figure 13 : orbitales frontières des complexes I (fac) et II (mer).

III.1.4. Voltamétrie cyclique

La voltamétrie cyclique de l'isomère *fac* **620** enregistrée dans le THF à 293K montre une vague d'oxydation réversible à $E_{1/2} = +0.34$ V vs Fc/Fc⁺ (Figure 14).^[34, 35] La stabilité du radical cation **620**⁺⁺ à température ambiante est surprenante pour un complexe de manganèse tricarbonyle et peut s'expliquer par une HOMO localisée exclusivement sur le ligand SPS (Figure 13). Dans la région cathodique, on observe la réduction réversible de **620** en **620**⁻⁻ à $E_{1/2} = -2.34$ V. Cette étape est suivie de la réduction irréversible à E = -2.82 V de **620**⁻⁻ en **620**²⁻ qui entraîne l'apparition d'un produit d'oxydation à E = -1.05 V (Figure 14).

Figure 14: Voltamétrie cyclique du complexe *fac*-620 (THF, [NBu₄][PF₆], 293K, 100mV.s⁻¹). * repère l'oxydation du produit formé lors de la réduction biélectronique de 620.

La conversion photochimique de **620** vers l'isomère *mer* **621** a été réalisée et enregistrée dans la cellule de voltamétrie cyclique. Le passage de l'isomère *fac* **620** à l'isomère *mer* **621** déplace la vague anodique réversible de $E_{1/2} = +0.34$ V à $E_{1/2} = -0.08$ V. La réduction de **621** indique deux vagues identiques à celles de l'isomère **620** à la vitesse de 100 mV.s⁻¹. L'enregistrement parallèle de la réduction électrochimique de **621** en voltamétrie cyclique (vitesse de balayage de 2 mV.s⁻¹) et en spectroscopie IR montre une rapide conversion *mer / fac* de l'isomère *mer* **621** en l'isomère *fac* **620** (Figure 15). Aucune vague de réduction ou bande d'élongation IR de CO attestant la présence d'un intermédiaire du type **621**⁻ n'a été observée lors de la conversion de **621** en **620**. L'isomérisation électrochimique

de **621** en **620** est beaucoup plus rapide (de l'ordre de quelques minutes) que lorsqu'elle est réalisée thermiquement (environ huit heures).

Figure 15 : Spectre IR de la conversion de l'isomère *mer* 621 en l'isomère *fac* 620 lors de la réduction électrochimique.

III.1.5. Spectroélectrochimie

Les expériences spectroélectrochimiques collectent des données spectroscopiques afin de déterminer la forme des orbitales frontières des isomères **620** et **621** et de leurs produits d'oxydation et de réduction. Malheureusement, tous nos essais pour caractériser les produits redox de l'isomère *mer* **621** se sont révélés infructueux : la formation du radical cation **621**⁺⁺ est suivie très rapidement d'une étape de décarbonylation due vraisemblablement à la faible liaison manganèse carbone des deux ligands carbonyles équatoriaux et la réduction de **621** en **621**⁻ n'est pas observée puisqu'elle évolue vers la formation de l'isomère *fac* **620**.

L'oxydation à un électron de l'isomère *fac* **620** dans le THF à température ambiante entraîne un déplacement vers les hautes fréquences des bandes d'élongation v(CO) du complexe parent **620** (2013, 1933 et 1909 cm⁻¹) vers le composé **620⁺⁺** (2033, 1961 et 1935 cm⁻¹) (Figure 16). De plus, le motif de ces trois bandes indique que **620⁺⁺** est de géométrie *fac*. On observe le même déplacement des bandes d'élongation v(CO) lors de l'oxydation dans le CH₂Cl₂ (de 2014, 1936 et 1907 cm⁻¹ pour **620** à 2037, 1967 et 1934 cm⁻¹ pour le radical cation **620⁺⁺**). La faible variation des bandes d'élongation v(CO) (de l'ordre de 20 à 30 cm⁻¹) atteste d'une oxydation centrée sur le ligand SPS, en accord parfait avec la forme de la HOMO de **620** complètement localisée sur le squelette SPS (Figure 13). Dans les deux électrolytes, la formation de **620⁺⁺** s'accompagne en fin de réaction d'un sous produit dicarbonylé qui émet à 2075 à 2021 cm⁻¹ et ce même si l'oxydation est conduite à basse température (223K).

Figure 16 : Changements du spectre IR lors de l'oxydation à un électron de 620 en 620⁺⁺. Conditions : THF, 293 K. * : bande supérieure du produit secondaire dicarbonylé.

La réduction à un électron de **620** dans le THF à température ambiante conduit au radical anion **620**⁻. Dans le spectre IR, les bandes v(CO) du complexe parent **620** (2013, 1933 et 1909 cm⁻¹) laissent place à trois nouvelles bandes à 1990, 1904 et 1887 cm⁻¹ (Figure 17). Comme précédemment, la magnitude de la variation des bandes v(CO) indique que la réduction est localisée sur le ligand et s'accorde avec la forme de la LUMO de **620** développée principalement sur le squelette SPS (Figure 13).

Figure 17 : Changements du spectre IR lors de la réduction de 620 en 620⁻. Conditions : THF, 293 K.

La localisation de l'électron sur le ligand SPS dans le radical anion **620**⁻ est confirmée par RPE (Figure 18). La simulation du triplet fait intervenir le couplage avec le ³¹P des deux groupes PPh₂S équivalents ($a_P = 1.41 \text{ mT}$) et le ⁵⁵Mn (I = 5/2) (sextuplet non résolu avec $a_{Mn} = 0.2 \text{ mT}$).

Figure 18 : Spectre RPE expérimental (a), simulé (b) du radical anion 620[°] à g = 2.0066. Conditions : THF, 243K.

III.1.6. Conclusion

Le ligand **SPS** est suffisament flexible pour stabiliser le complexe $[Mn(SPS^{n-Bu})(CO)_3]$ dans les géométries *fac* et *mer*. La durée de vie du complexe *mer* **621** est inhabituelle et permet sa caractérisation spectroscopique, cristallographique et électrochimique et de le comparer avec l'isomère *fac* **620**.

Les orbitales frontières des deux isomères sont localisées sur le squelette SPS, ce qui induit des conséquences profondes sur leurs propriétés spectrales et d'oxydoréduction. La réduction et l'oxydation à un électron de l'isomère *fac* **620** sont réversibles, ce qui est peu courant pour les complexes de manganèse^I.

Une série d'expériences d'électrochimiluminescence est prévue cet été à Cambridge (Royaume Uni) pour comprendre plus en détail le comportement d'oxydo-réduction de **620** et le mécanisme d'isomérisation *fac / mer*.

III.2. Complexe de rhénium

De manière analogue, l'anion **213** réagit avec [Re(CO)₅Br] et forme le complexe **622** caractérisé par RMN ³¹P, ¹H, analyse élémentaire et infra rouge (IR) (Équation 15). En RMN ³¹P, **622** présente un sytème AX₂ suggérant une structure symétrique. **622** a été caractérisé en RMN ³¹P, ¹H et analyse élémentaire. Sa faible solubilité a empêché l'enregistrement d'un spectre RMN ¹³C. La géométrie *fac* a été déduite grâce aux motifs v(CO) du spectre IR qui présente une bande de grande intensité à 2018 cm⁻¹ et deux bandes d'intensité moyenne à 1929 et 1896 cm⁻¹.

La structure de **622** a été confirmée par diffraction aux rayons X (Figure 19). Les paramètres structuraux sont regroupés dans le Tableau 5. La géométrie autour de l'atome de rhénium est pseudo octaédrique. Le ligand [SPS^{*n*-Bu}] occupe une face triangulaire de l'octaèdre, ce qui confirme la géométrie *fac*. Le passage du manganèse (**620**) au rhénium (**622**) ne change aucunement les tendances des paramètres stucturaux.

Figure 19 : Structure de 622. Les groupes phényles sont omis par soucis de clarté. Les paramètres structuraux sont présentés Tableau 5.

Contrairement au complexe analogue de manganèse **620**, le complexe *fac* **622** ne subit aucune isomérisation photochimique vers l'isomère *mer* (Équation 16).

La voltamétrie cyclique de **622** ressemble à celle du complexe de manganèse *fac* **620** (**620** : Figure 14, **622** : Figure 20). On observe une vague d'oxydation réversible **622** en **622**⁺⁺ à $E_{1/2} = 1.05$ V vs SCE et une vague de réduction réversible **622** en **622**⁺⁻ à $E_{1/2} = -1.61$ V vs SCE. Cette dernière est suivie d'une deuxième vague de réduction à E = -2.06 V de **622**⁺⁻ en **622**²⁻.

Figure 20 : Voltamétrie cyclique de 622 (2 mM) dans le THF à 20°C. Vitesse de balayage : 250 mV.s⁻¹. Electrolyte : [NBu₄][BF₄] (0.3 M).

Si l'on compare les complexes analogues de manganèse **620** et de rhénium **622** (Tableau 6), on constate que le complexe de rhénium **622** se réduit plus facilement que le complexe de manganèse **620** et donc que le complexe de rhénium **622** est moins riche électroniquement. Ce résultat est à mettre en relation avec la hauteur relative des LUMO des deux complexes qui est localisée sur le ligand SPS (Figure 13). Plus le métal est attracteur, plus la LUMO sera basse en énergie et plus le complexe se réduira facilement. L'électronégativité du rhénium (1.9) étant supérieure à celle du manganèse (1.5), ce complexe devrait se réduire plus facilement, ce que l'on observe bien expérimentalement. En oxydation, au contraire, plus le métal est attracteur, plus l'oxydation va être difficile et l'on retrouve bien un potentiel d'oxydation plus élevé pour le complexe de rhénium.

Tableau 6 : Potentiels d'oxydation et de réduction exprimés en V vs SCE des complexe 620 et 622.

Complexe	$E_{1/2}^{+/0}$	$E_{1/2}^{0/-}$	E ^{-/2-}
$[Mn{fac-(SPS^{n-Bu})}(CO)_3]$ 620	+0.81	-1.87	-2.35
$[\text{Re}\{fac-(\text{SPS}^{n-\text{Bu}})\}(\text{CO})_3]$ 622	+1.05	-1.61	-2.06

III.3. Perspectives

Nous avons constaté dans la partie II de ce chapitre que l'anion $[SPS^{n-Bu}]^{-}$ peut se comparer au ligand pentaméthylecyclopentadiényle. En s'inspirant des travaux de Hartwig *et al.* sur la formation de complexes présentant une liaison σ -borane à partir de $[Mn(Cp-Me)(CO)_3]$ (Équation 17),^[36] on peut déplacer photochimiquement un ligand carbonyle par des ligands donneurs à deux électrons (Équation 18).⁷ Ces derniers seront à choisir parmi des phosphines, des phosphites, la pyridine, les boranes...

⁷ A titre de comparaison, les fréquences d'élongation infrarouge de $[Mn(CO)_3(Me-Cp)]$ sont 2010 et 1924 cm⁻¹ au lieu de 2013, 1934 et 1909 cm⁻¹ pour l'isomère *fac*-**620** et 2024, 1930 et 1915 cm⁻¹ pour le complexe *mer*-**621**.

Quelques questions se posent alors (Équation 18) : quel complexe va réagir : le *fac* ou le *mer*? Si oui, les complexes formés seront-ils stables? Quelle est la géométrie du squelette SPS ? Où a lieu la substitution ? Est ce que le ligand L peut être déplacée par un autre ligand L'? Est-ce que la nature du substituant du phosphore central (alkyle ou alcoolate) a une influence sur ces réactions ?

La RMN et les fréquences d'élongation infrarouge v(CO) permetront de répondre en partie aux questions de géométrie du complexes : l'équivalence du signal RMN ³¹P des bras ancillaires Ph₂PS signifie que la structure obtenue est symétrique. L'emploi de ligands phosphorés donnera immédiatement la structure du produit car une constante de couplage ${}^{2}J_{P}$. P supérieure à 300 Hz indique que les deux ligand phosphorés P-*n*Bu et PR₃ sont en *trans* l'un par rapport. Pour le complexe borane, la coordination de type σ est mise en évidence en RMN du ¹¹B par un signal à environ 45 ppm (*vs* 30 ppm pour le borane libre) et en RMN ¹H par un signal de type hydrure à -10 ppm.

Ces réactions peuvent bien entendu se dupliquer dans le cas du complexe de rhénium **622**. Compte tenu de la plus forte énergie de liaison métal-carbonyle dans le cas du complexe

de rhénium, on peut s'attendre à une réaction de substitution bien plus difficile à mettre en œuvre. Le complexe de rhénium σ -borane de Hartwig *et al.* a d'ailleurs été synthétisé par une autre méthode que celle décrite précédemment (Équation 19).^[36, 37]

On peut également utiliser directement les complexes de manganèse **620** et de rhénium **622** pour fonctionnaliser des alcanes en position terminale. Cette réaction a lieu dans des conditions douces (25° C) et est réalisée de manière stoechiométrique pour les complexes de type cymantrène et catalytique (2.4% à 5% de catalyseur) pour le complexe cyrhétrène.^[37]

Activité de 620, 622 ? Équation 20

IV. Références

[1] M. M. Crutchfield, C. H. Dungan, J. H. Letcher, V. Mark, J. R. van Wazer, *P31 Nuclear Magnetic Resonance, Vol. 5*, Interscience Publishers, **1967**.

[2] I. Antes, S. Dapprich, G. Frenking, P. Schwerdterfeger, Inorg. Chem. 1996, 35, 2089.

- [3] A. J. Lupinetti, V. Jonas, W. Thiel, S. H. Strauss, G. Frenking, Chem. Eur. J. 1999, 5, 2573.
- [4] M. Hanack, R. Thies, Chem. Ber. 1988, 121, 1225.
- [5] P. C. J. Kamer, R. J. M. Nolte, W. Drenth, J. Am. Chem. Soc. 1988, 110, 6818.
- [6] H. Lebel, J.-F. Marcoux, C. Molinaro, A. B. Charrette, Chem. Rev. 2003, 103, 977.
- [7] B. H. Lipshutz, A. Lower, K. Noson, Org. Lett. 2002, 4, 4045.
- [8] B. H. Lipshutz, K. Noson, W. Chrisman, J. Am. Chem. Soc. 2001, 123, 12917.
- [9] Y. Zhang, C. D. Kim, P. Coppens, Chem. Comm. 2000, 2299.
- [10] D. E. Richardson, M. F. Ryan, W. E. Geiger, T. T. Chin, R. P. Hughes, O. J. Curnow, *Organometallics* 1993, *12*, 613.
- [11] S. Trupia, A. Nafady, W. E. Geiger, Inorg. Chem. 2003, 42, 5480.
- [12] D. Astruc, *Electron transfer and radical processes in transition metal chemistry*, Wiley-VCH, New York, **1995**.
- [13] P. Seiler, J. D. Dunitz, Acta Crystallogr., Sect.B: Struct. Crystallogr. Cryst. Chem. 1982, 38, 1741.
- [14] J. R. Bryant, J. E. Taves, J. M. Mayer, Inorg. Chem. 2002, 41, 2769.
- [15] J. L. Robbins, N. Edelstein, B. Spencer, J. C. Smart, J. Am. Chem. Soc. 1982, 104, 1882.
- [16] G. J. Stor, S. L. Morrison, D. J. Stufkens, A. Oskam, Organometallics 1994, 13, 2641.
- [17] N. C. Brown, G. A. Carriedo, N. G. Connelly, F. J. Garcia Alonso, I. C. Quermby, A. L.
- Rieger, P. H. Rieger, V. Riera, M. Vivanco, J. Chem. Soc., Dalton Trans. 1994, 3745.
- [18] G. A. Carriedo, M. C. Crespo, C. Diaz, V. Riera, J. Organomet. Chem. 1990, 397, 309.
- [19] C. J. Kleverlaan, F. Hartl, D. J. Stufkens, J. Photochem. Photobiol., A 1997, 103, 231.
- [20] B. D. Rossenaar, F. Hartl, D. J. Stufkens, C. Amatore, E. Maisonhaute, J.-N. Verpeaux, *Organometallics* **1997**, *16*, 4675.
- [21] C. J. Kleverlaan, F. Hartl, D. J. Stufkens, J. Organomet. Chem. 1998, 561, 57.
- [22] T. Karatsu, T. Nakamura, S. Yagai, A. Kitamura, K. Yamaguchi, Y. Matsushima, T. Iwata, Y. Hori, T. Hagiwara, *Chem. Lett.* **2003**, *32*, 886.
- [23] T. Ziegler, Chem. Rev. 1991, 91, 651.
- [24] R. G. Parr, W. Yang, *Density Functional Theory of Atoms and Molecules*, Oxford University Press, Oxford, Royaume Uni, **1989**.
- [25] P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 270.
- [26] P. J. Hay, W. R. Wadt, J. Chem. Phys. 1985, 82, 299.
- [27] A. Ehlers, M. Bohme, S. Dapprich, A. Gobbi, A. Hollwarth, V. Jonas, K. Kohler, R. Stegmenn, A. Veldkamp, G. Frenking, *Chem. Phys. Lett.* **1993**, *208*, 111.
- [28] R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650.
- [29] T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. von Ragué Schleyer, J. Comput. Chem. 1983, 4, 294.
- [30] W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257.
- [31] M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, *J. Chem. Phys.* **1982**, *77*, 3654.
- [32] P. C. Hariharan, J. A. Pople, Theor. Chim. Acta 1973, 28, 213.
- [33] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- [34] V. V. Pavlishchuk, A. W. Addison, Inorg. Chim. Acta 2000, 298, 97.
- [35] G. Gritzner, J. Kta, Pure Appl. Chem. 1984, 56, 461.

- [36] S. Schlecht, J. F. Hartwig, J. Am. Chem. Soc. 2000, 122, 9435.
- [37] H. Chen, J. F. Hartwig, Angew. Chem. Int. Ed. 1999, 38, 3391.

V. Annexes du chapitre 6

Tableau 7 : paramètres structuraux des complexes de cuivre [Cu(SPS^R)L] et d'or. Les distances sont exprimées en Å et les angles en °.

	SPS	604	605	606	608	613	614
P1-C2	1.742(2)	1.794(2)	1.789(3)	1.798(2)	1.797(2)	1.759(3)	1.799(2)
C2-C3	1.409(3)	1.410(2)	1.409(3)	1.397(3)	1.403(3)	1.431(4)	1.400(3)
C3-C4	1.399(3)	1.406(2)	1.400(3)	1.415(3)	1.413(3)	1.369(4)	1.417(3)
C4-C5	1.399(3)	1.408(2)	1.401(3)	1.395(3)	1.413(3)	1.441(4)	1.402(3)
C5-C6	1.417(3)	1.402(2)	1.401(3)	1.413(3)	1.403(3)	1.377(4)	1.404(3)
C6-P1	1.745(2)	1.797(2)	1.806(2)	1.786(2)	1.797(2)	1.829(3)	1.776(2)
P1-R		1.827(2)	1.829(3)	1.832(2)	1.835(3)	1.837(3)	1.822(3)
C2-P2	1.826(2)	1.781(2)	1.765(3)	1.788(2)	1.776(2)	1.746(3)	1.787(2)
P2-S1	1.956(1)	2.0021(6)	2.005(1)	2.0027(7)	2.0072(8)	2.037(1)	1.983(1)
C6-P3	1.835(2)	1.769(2)	1.773(2)	1.772(2)	1.776(2)	1.799(3)	1.771(3)
P3-S2	1.9532(8)	2.0014(6)	1.999(1)	2.0031(7)	2.0072(8)	1.967(1)	1.9709(8)
P1-M		2.2377(5)	2.2280(8)	2.2311(5)	2.2088(8)	2.2691(8)	2.3080(6)
S1-M		2.3694(5)	2.428(1)	2.3546(6	2.3621(6)	2.3352(8)	2.7903(6)
S2-M		2.4321(6)	2.412(1)	2.3821(6)	2.3621(6		
S1-M-S2		112.64(2)	109.34(3)	107.35(2)	101.35(3)		
C2-P1-C6	103.9(1)	100.08(8)	100.4(1)	100.3(1)	101.5(1)	102.6(2)	102.3(1)
CCC-P1	4.1	24.1	22.7	23.0	23.1	23.5	17.7
CCC-C4	3.7	9.0	7.6	8.4	6.9	10.1	6.3
Pyram. P		306.5	307.9	308.1	106.7	310.9	311.2
C43-Cu		1.154(2)	1.890(3)				
C13-N1		1.154(2)	1.141(4)				
P1-Cu-C43		143.39(6)	139.3(1)				
N1-C43-Cu		170.9(2)	177.4(3)				
P4-Cu				2.2223(5)			
P1-Cu-P4				124.66(2)			
Cu-N1					2.026(3)		
P1-Cu-N1					124.5(1)		
Au-Au						3.0481(2)	
P1-Au-S1'						173.87(3)	
M-P4						· _ · ź	2.2862(7)
P1-Au-P4							162.93(2)
S1-Au-P4							108.90(2)

Tableau 8 : paramètres structuraux des complexes de ruthénium 616 et de fer 618-619. Les distances sont exprimées en Å et les angles en °.

	Ru ^{II}	[Ru(Cp*) ₂] ^[9]	Fe ^{II}	FeCp ₂ ^[13]	Fe ^{III}	$[FeCp_2]^{+[14]}$
	616		618	-	619	
P1-C2	1.819(2)		1.815(3)		1.76(1)	
C2-C3	1.381(3)		1.395(4)		1.43(2)	
C3-C4	1.417(3)		1.416(4)		1.39(2)	
C4-C5	1.399(3)		1.395(4)		1.41(2)	
C5-C6	1.412(3)		1.404(4)		1.41(2)	
C6-P1	1.808(2)		1.791(3)		1.79(1)	
P1-R	1.843(2)		1.851(3)		1.83(1)	
C2-P2	1.766(2)		1.774(3)		1.73(1)	
P2-S1	2.0130(8)		2.012(1)		2.050(5)	
C6-P3	1.759(2)		1.751(2)		1.75(1)	
P3-S2	2.0161(8)		2.014(1)		2.039(4)	
C46-C47	1.427(3)	1.430	1.423(5)	1.437	1.39(2)	1.344
C47-C48	1.428(3)		1.402(4)		1.40(2)	
C48-C49	1.434(3)		1.428(4)		1.41(2)	
C49-C50	1.425(3)		1.398(4)		1.39(2)	
C50-C46	1.442(3)		1.412(4)		1.41(2)	
P1-M	2.2938(6)		2.1927(7)		2.234(4)	
S1-M	2.4135(6)		2.3050(8)		2.222(4)	
S2-M	2.4019(6)		2.3193(8)		2.300(4)	
Ct-M	1.840	1.800	1.694	1.655	1.757	1.706
C2-P1-C6	98.8(1)		101.5(1)		100.3(6)	
(plan)-P1	23.6		20.3		24.95	
(plan)-C4	7.8		7.5		7.7	
Σ angles P	301.2		305.5		307.1	

Chapitre 7 : Emploi d'un ligand bidente λ^4 -phosphinine

I. Un ligand bidente, pourquoi?

Depuis les travaux de Grim dans le milieu des années 1970,^[1] de nombreux travaux ont porté sur des ligands mixtes de type phosphine-chalcogène ((λ^3 - σ^3)P-P(X) (X = O, S)).^[2-7] Ces systèmes combinent à la fois des propriétés σ -donneur (P) et π -donneur (O, S) et se démarquent considérablement des ligands bidentes classiques de type diphosphine. De plus, certains se sont montrés particulièrement efficaces en catalyse. On peut notamment citer un complexe de rhodium¹ incorporant le monosulfure de la dppm (dppm = Ph₂PCH₂PPh₂) qui catalyse la carbonylation du méthanol^[8] ou son complexe de palladium^{II} qui est très actif dans la réaction de copolymérisation de l'éthylène et du monoxyde de carbone.^[9] Les ligands mixtes P-O, mono-oxydes de la dppm (Ph₂PCH₂PPh₂), dppe (Ph₂PC₂H₄PPh₂) et dppp (Ph₂PC₃H₆PPh₂), ne sont pas en reste et se révèlent plus efficaces que les diphosphines en hydroformylation d'époxydes catalysée au cobalt grâce à leurs propriétés hémilabiles.^[10] En 2004, le groupe de Yoshifuji a reporté la synthèse d'un ligand P-S du type (R¹P=C-P=S) qui comporte un phosphaalcène et un sulfure de phosphine^[11, 12] employé dans le couplage d'alcool allylique avec une amine primaire.^[13]

Dans les chapitres précédents, nous avons montré que la présence de deux groupes ancillaires sulfure de phosphine permet d'obtenir à partir d'anion 1-alkyl-phosphininyl des complexes dans le mode de coordination η^1 et non des complexes η^5 ou η^2 . Qu'en est-il avec des ligands bidentes (Équation 1) ? Quelle est leur activité en catalyse ?

Nous nous intéresserons d'abord à la synthèse de la phosphinine bidente **SP**, puis à la réactivité de l'anion dérivé sur le ruthénium^{II}, le rhodium^I et le palladium^{II}.

II. Synthèse du ligand SP

La stratégie de synthèse de **SP** repose sur la réactivité de la 4,6-di-*t*-butyl-1,3,2diazaphosphinine **201** et d'alcynes fonctionnalisés.^[14, 15] On forme tout d'abord **701** en chauffant **201** à 80°C en présence d'un équivalent de diphénylacétylène (Équation 2). Le composé **701** est assez réactif pour subir une deuxième cycloaddition / cycloréversion avec un équivalent d'alcyne fonctionnalisé par le groupe sulfure de diphénylphosphine. Nous avons choisi Me-CC-P(S)Ph₂ afin d'augmenter la solubilité du ligand **SP**. Cette réaction conduit uniquement à la phosphinine **SP**, obtenue sous la forme d'une poudre blanche stable à l'air après purification par lavages successifs. **SP** a été complètement caractérisée par RMN, spectrométrie de masse et analyse élémentaire. La présence du groupe Ph₂P(S) en α du phosphore est mise en évidence par une grande constante de couplage ²J_{P-P} (108.2 Hz) en RMN ³¹P.

La formule de **SP** est confirmée par diffraction aux rayons X (Figure 1). Les paramètres structuraux concordent avec ceux des λ^3 -phosphinines.

Figure 1 : Structure du ligand SP. Sélection de paramètres structuraux (distance en Å et angle en °) : P1-C1 1.739(2), C1-C2 1.406(2), C2-C3 1.395(2), C3-C4 1.392(2), C4-C5 1.404(2), C5-P1 1.736(2), C1-P2 1.824(2), P2-S1 1.954(1), P1-C1-C2 124.4(1), C1-C2-C3 120.8(2), C2-C3-C4 126.6(2), C3-C4-C5 121.7(2), C4-C5-P1 123.9(1), C5-P1-C1 102.60(7), P1-C1-P2 115.1(1), (plan moyen C1-C2-C4-C5)-P1 0.45, (plan moyen C1-C2-C4-C5)-C3 0.8.

III. Coordination

III.1. Complexes de ruthénium"

III.1.1. Synthèse

La synthèse d'anion 1-alkyl-phosphininyl s'obtient par ajout d'un équivalent de nucléophile sur la phosphinine. Ainsi, l'ajout de méthyllithium sur **SP** dans le THF à -78°C conduit à l'anion **703** qui a été caractérisé par RMN ³¹P (Équation 3). Son signal RMN apparaît sous la forme d'un système AX (δ (THF) = -40.7 (P-Me) et 42.5 ppm (PPh₂) avec ²J P-P = 156.7 Hz) dont le déplacement chimique de l'atome central de phosphore est comparable à celui d'autres anions phosphinines.^[16] La réaction de **703** avec un demi équivalent de [Ru(η^6 -C₁₀H₁₄)Cl₂]₂ à -78°C aboutit à un mélange de deux complexes **704** qui sont formés dans un rapport 4:1. En RMN ³¹P, le signal de ces deux complexes apparaît sous la forme de

systèmes AB avec des déplacements chimiques (37.2 et 45.3 pour **704a** et 35.8 et 43.4 pour **704b**) et une constante de couplage ${}^{2}J_{P-P}$ (115.9 Hz pour **704a** et 101.0 Hz pour **704b**) très proches.

Nous avons envisagé la formation de deux types d'isomères (Schéma 1) : le méthyle porté par l'atome de phosphore pouvant être i) du côté du groupe cymène (isomère *syn*) ou ii) opposé au groupe cymène (isomère *anti*).

Schéma 1 : Isomères de 704.

Afin de défavoriser l'éventuelle formation de l'isomère *syn*, nous avons employé un nucléophile avec une chaîne plus longue comme le *n*-butyllithium ou encore une chaîne complètement rigide comme le MeCCLi. Ainsi, l'ajout de *n*-butyllithium (resp. MeCCLi) sur **SP** dans le THF à -78°C conduit à l'anion **705** (resp. **706**) qui a été caractérisé par RMN ³¹P. La réaction de l'anion **705** (resp. **706**) avec un demi équivalent de $[Ru(\eta^6-C_{10}H_{14})Cl_2]_2$ à -78°C aboutit également à un mélange de deux isomères **707** (resp. **708**) qui sont formés dans un rapport 3:1 (resp. 2:1) (Équation 4).

Équation 4

En RMN ³¹P, le signal des complexes **707** et **708** apparaît sous la forme de systèmes AB avec des déplacements chimiques (par exemple : 40.7 et 44.3 pour **707a** et 43.4 et 45.9

pour **707b**) et une constante de couplage ${}^{2}J_{P-P}$ (par exemple : 115.5 Hz pour **707a** et 97.2 Hz pour **707b**) très proches des isomères de **704**.

Par ailleurs, en RMN ¹H, les déplacements chimiques des protons aromatiques du cymène sont très différents : dans 707a deux signaux sortent en champ fort (doublets à δ = 3.17 et 3.69 ppm avec ${}^{3}J_{H-H} = 5.5$ et 6.1 Hz) comparés à ceux de **707b** (doublets à $\delta = 4.13$ et 4.17 ppm avec ${}^{3}J_{H-H} = 6.0$ et 5.6 Hz) et à d'autres complexes de type [Ru(cymène)].^[17] Par chance, ces deux isomères ont pu être séparés par différence de solubilité dans l'éther (707a est insoluble). Des cristaux du complexe 707a ont été obtenus dans le C₆D₆ (ils se déposent pendant la nuit dans un tube RMN). La Figure 2 présente la structure de 707a. On constate que le complexe adopte une géométrie de type tabouret de piano et que le groupe butyle porté par le phosphore de la phosphinine pointe du côté opposé au cymène, probablement pour éviter la gène stérique. Les données structurales les plus intéressantes concernent les longueurs P=S et P-C externes. Le raccourcissement de la liaison C1-P2 (de 1.824(2) dans SP à 1.745(2) Å dans 707a) et l'élongation de la longueur P2=S1 (de 1.954(1) dans SP à 2.0283(7) Å) indique une délocalisation de la charge négative sur le squelette P1-C1-P2-S1-Ru1. Cela induit une relocalisation des liaisons P-C internes et C-C de la phosphinine : par exemple, les longueurs C2-C3 et C4-C5 se raccourcissent (1.372(3) et 1.376(3) Å dans 707a) par rapport au ligand non complexé (1.395(2) et 1.404(2) Å dans SP) tandis que les liaisons C1-C2, C3-C4 et C5-P1 s'allongent (1.422(3), 1.435(2) et 1.805(2) Å pour 707a au lieu de 1.404(2), 1.394(2) et 1.736(2) Å dans SP). Par ailleurs, la longueur de la liaison S-Ru concorde parfaitement avec les longueurs de P=S-Ru que l'on trouve dans la littérature.^[18, 19] Comme dans le cas des complexes incorporant le ligand tridente SPS, les atomes P1 et C3 sortent du plan défini par les atomes [C1-C2-C4-C5] de 12.6° et 1.8° respectivement et le cycle de la phosphinine est ainsi dans une conformation de type bateau. L'atome de phosphore P1 est désormais pyramidal (Σ angles au phosphore = 313.8°) et sa géométrie se compare à celle d'une phosphine.

Figure 2 : Structure du complexe 707a. Principaux paramètres structuraux regroupés dans le Tableau 1.

Nous avons cherché à déterminer les facteurs qui faisaient varier le *ratio* entre les isomères **707a** et **707b**. Cependant, quelques qu'aient été les conditions expérimentables (concentration, température et temps de réaction), le *ratio* initial 3:1 n'a pu être modifié de manière notable. Des expériences RMN ³¹P à température variable (chauffage jusqu'à 80°C) ont également été menées sur le mélange des isomères **707a** et **707b** dans le toluène et aucune inter conversion n'a été observée. Nous nous sommes alors tournés vers l'emploi de précurseurs métalliques qui possèdent des arènes symétriques, comme le benzène, afin

d'éviter la formation de deux diastéréoisomères et de mettre en lumière la rotation bloquée du ligand cymène dans **707a-b**. Malheureusement, le manque de solubilité de [Ru(η^6 -C₆H₆)Cl₂]₂ dans la plupart des solvants a empêché la formation du complexe **709** (Équation 5).

Finalement, comme la stéréochimie de l'isomère **707b** ne pouvait être établie à la vue des seules données RMN, nous avons optimisé par calculs DFT les géométries des quatre isomères qui pouvaient se former (Schéma 2).^[20, 21] Bien que des simples calculs de mécanique moléculaire suggèrent que la formation des isomères **707c** et **707d** est défavorisée à cause de l'encombrement stérique entre le ligand cymène et le substituant porté par l'atome de phosphore, nous avons optimisé la géométrie des quatre isomères avec la méthode de calcul mixte MQ/MM au niveau ONIOM^[22] (B3LYP^[23-25]:UFF^[26]). Dans ces calculs, la chaîne *n*-butyle a été remplacée par un groupe méthyle afin de diminuer le nombre de degrés de liberté. Les groupes phényles et méthyle de la phosphinine ainsi que les groupes *i*-propyle et méthyle du cymène composent la partie MM. Un pseudo potentiel de type Hay Wadt a été utilisé pour représenter les 28 électrons de cœur de l'atome de ruthénium et une base double- ζ lanl2dz lui a été associée.^[27] Les atomes de phosphore, de soufre et de carbone du cycle du cymène sont décrits par la base $6-31+G^*$.^[29-31]

On constate que l'optimisation des complexes modèles dérivés des isomères 707c et 707d échoue puisque aucun minimum n'est atteint : on observe la décoordination de la phosphinine du fragment [Ru(cymène)Cl]. La présence du groupe *n*-butyle sur l'atome de phosphore dans le complexe réel et non d'un groupe méthyle comme dans le complexe modèle devrait conduire au même résultat compte tenu du plus grand encombrement stérique de la chaîne carbonée. Au contraire, la géométrie des isomères Ia (modèle de 707a) et Ib (modèle de 707b) a été optimisée et l'on obtient deux structures caractérisées comme des minima de la surface de potentiel (Figure 3). Les principaux paramètres structuraux sont représentés Tableau 1. On obtient une très bonne approximation des distances et des angles entre la structure expérimentale 707a et le complexe modèle Ia pour les distances internes du

fragment [Ru(SP^R)Cl] et du groupe cymène (différence inférieure à 0.024 Å). Une plus grande déviation concerne la distance ruthénium cymène qui est surestimée de 0.092 Å en moyenne.

Figure 3 : Structure optimisée des complexes la et lb au niveau ONIOM(B3LYP:UFF). La partie MQ (resp. MM) représentée en boules et bâtons (resp. tubes). La numérotation est identique pour la et lb. E : énergie relative exprimée en kcal.mol⁻¹.

Tableau 1: Paramètres structuraux les plus significatifs de 707a, Ia et Ib (distances en Å et angles en °). La numérotation employée est celle des calculs.

	Exp. 707a	Ia	Ib
P1-C2	1.805(2)	1.812	1.810
C2-C3	1.376(3)	1.388	1.387
C3-C4	1.435(2)	1.440	1.439
C4-C6	1.372(3)	1.386	1.386
C6-C7	1.422(3)	1.429	1.431
C7-P1	1.790(2)	1.806	1.814
C26-C2	1.492(2)	1.492	1.491
C37-C3	1.491(3)	1.491	1.491
C48-C6	1.511(2)	1.512	1.513
C7-P12	1.745(2)	1.757	1.759
P12-S13	2.0283(7)	2.061	2.059
P1-Ru14	2.3351(5)	2.385	2.391
S13-Ru14	2.4239(5)	2.449	2.432
Cl15-Ru14	2.4186(5)	2.443	3.329
C16-Ru14	2.189(2)	2.328	2.407
C18-Ru14	2.276(2)	2.385	2.349
C20-Ru14	2.239(2)	2.327	2.361
C21-C20	1.442(3)	1.431	1.433
C20-C19	1.401(3)	1.407	1.408
C19-C18	1.420(3)	1.442	1.433
C18-C17	1.408(3)	1.404	1.403
C17-C16	1.430(3)	1.429	1.429
C16-C21	1.402(3)	1.412	1.412
C74-cycle	1.511(3)	1.499	1.499
C78-cycle	1.521(3)	1.517	1.519
C79-C78	1.534(3)	1.531	1.532
C80-C78	1.516(3)	1.536	1.530

D'un point de vue énergétique, un calcul mécanique quantique simple point a été réalisé sur les structures **Ia** et **Ib** optimisées au niveau ONIOM.¹ On constate que l'isomère **Ia** est plus stable que l'isomère **Ib** ($\Delta E = -4.8 \text{ kcal.mol}^{-1}$), ce qui confirme le résultat expérimental (la proportion de l'isomère **707a** étant plus importante que celle de l'isomère **707b**). De plus, aucune structure (état de transition) reliant les isomères **Ia** et **Ib** n'a pu être observée puisque la rotation du ligand cymène autour de l'axe centroïde ruthénium est bloquée par deux des groupes phényles périphériques. Ce résultat permet d'expliquer pourquoi l'inter conversion entre les complexes **707a** et **707b** n'a pas lieu même en chauffant.

II.1.2. Application en catalyse

Nous avons testé l'activité du mélange d'isomères **707a-b** dans la réaction d'hydrogénation de cétones par transfert d'hydrogène (Équation 6).^[32-37] Cette réaction a été réalisée dans l'*i*-propanol qui sert à la fois de solvant et de source d'hydrure, en présence de KOH avec un taux de catalyseur de 0.5% molaire dans la plupart des cas.

$$R^{1} R^{2} \xrightarrow{\text{KOH 0.1M}} R^{1} R^{2} \xrightarrow{\text{FrOH, 80°C}} R^{1} R^{2}$$

*i*PrOH, 80°C
707a-b
Équation 6

Le mécanisme de la réaction fait intervenir (Schéma 3) : i) l'attaque de l'ion *i*propylate qui conduit à un complexe de ruthénium anionique, ii) la β -élimination de l'hydrogène du ligand *i*-propylate qui forme l'acétone et un complexe de ruthénium hydrure, iii) la complexation de la cétone au ruthénium par l'atome d'oxygène, iv) la migration [1-2] de l'hydrure de ruthénium sur la cétone, v) l'élimination de l'alcoolate (Schéma 3).^[38]

¹ Calcul réalisé au niveau B3LYP avec la base 6-31G pour les atomes de carbone, hydrogène, phosphore et soufre et la base lanl2dz associé au pseudo potentiel de Hay Wadt pour l'atome de ruthénium.

Les résultats obtenus avec les complexes de ruthénium **707a-b** sont présentés Tableau 2. On constate que des temps importants de réaction (2.5 jours) sont nécessaires pour obtenir une conversion totale. On obtient des TON allant jusqu'à 300 très modestes comparés au record de 7 millions.^[32]

Tableau 2 : Réaction d'hydrogénation de cétones par transfert d'hydrogène catalysée par 707a-b (0.5 mol %). [a] rendement déterminé par RMN ¹H NMR, [b] catalyseur 707a-b (1 mol %), [c] catalyseur 707a-b (0.8 mol %), [d] temps de réaction exprimé en jours, [e] réaction réalisée dans un mélange NEt₃/*i*-propanol, ^[35] [f] catalyseur 707a-b (0.1 mol %), [g] réaction réalisée dans un mélange NEt₃/HCO₂H.

Entrée	substrat	Rendement [%] ^[a]	Temps ^[d]	TON
1	4-heptanone	92	2.5	184
2	1,3-diphénylacétone	100	2.5	200
3	Cyclohexanone	100	2.5	200
4	2,6-diméthylcyclohexanone	100	2.5	200
5	Acétophénone	82 ^[b]	0.5	82
6	Acétophénone	98	2.5	195
9	4-Br- acétophénone	97	2.5	194
10	4-F- acétophénone	100	2.5	200
11	4-methyl- acétophénone	94	2.5	188
12	Benzophénone	99	2.5	198
13	4,4'-diméthoxy-benzophénone	72 ^[c]	2.5	90
14	Trans-chalcone	100	2.5	200
$15^{[e]}$	Acétophénone	$30^{[f]}$	2.5	300
16 ^[g]	Acétophénone	30 ^[f]	2.5	0

III.2. Complexes de rhodium¹

III.2.1. Synthèse

Nous nous sommes également intéressés à la synthèse de complexes du rhodium¹. L'anion **703** réagit avec un demi équivalent de $[Rh(COD)Cl]_2$ pour former le complexe de rhodium **710**, complètement caractérisé par RMN et analyse élémentaire (Équation 7). En RMN ³¹P (Figure 5), le signal de **710** apparaît sous la forme d'un système AXY avec une constante de couplage ¹*J*_{P-Rh} de 140.3 Hz, caractéristique d'une coordination de la phosphinine au rhodium du type η^1 . L'inéquivalence des signaux CH du COD en RMN ¹H (δ à 3.16, 3.88, 5.23 et 5.46 ppm) et en RMN ¹³C (δ à 74.7, 80.6, 98.7 et 99.5 ppm) conduit à la structure proposée ci-dessous (Équation 7).

Équation 7

Tout comme pour les complexes tridentes $[Rh(SPS^{Me})(COD)]$ **401**, nous avons tenté de dériver le complexe **710** en substituant par exemple le ligand COD par la triphénylphosphine. Malheureusement, la formation du complexe correspondant **711** est en équilibre avec le complexe **710** même avec un grand excès de PPh₃: on observe le signal large de PPh₃ ainsi qu'un système extrêmement couplé observé en RMN ³¹P (Équation 8). Nous nous sommes alors tournés vers le ligand bidente dppe (Ph₂PCH₂CH₂PPh₂) dont la coordination à l'atome de rhodium est favorisée entropiquement. L'ajout de dppe au complexe **710** induit un changement du spectre RMN ³¹P (système ABXYZ au lieu de AXY, Figure 5) et forme le complexe **712**, complètement caractérisé par RMN.

La structure de **712** a été confirmée par analyse aux rayons X (Figure 4a).² La géométrie autour du rhodium est pseudo plan carré, en accord avec un métal de configuration électronique d⁸ : les valeurs des angles P1-Rh-P3 et S1-Rh-P4 sont respectivement 176.56(2) et 168.09(2)°. De plus, comme pour le complexe de ruthénium **707a**, on constate, que la distance P2-S1 s'allonge (2.019(4) dans **712** au lieu de 1.954(1) Å dans **SP**) et que la distance C1-P2 se raccourcit (1.736(4) dans **712** au lieu de 1.824(2) Å dans **SP**). Ces variations de longueurs confirment la délocalisation de la charge sur les atomes S1-P2-C1-P1. Par ailleurs, la différence de pouvoir σ -donneur des atomes P1 et S1 se manifeste par une plus grande longueur de la liaison Rh-P3 par rapport à Rh-P4 (2.2614(6) et 2.2167(5) Å respectivement).

Figure 4 : a) structure du complexe 712. Sélection de paramètres structuraux (distance en Å et angle en °) : P1-C1 1.788(2), C1-C2 1.410(3), C2-C3 1.374(3), C3-C4 1.438(3), C4-C5 1.381(3), C5-P1 1.813(2), P1-C6 1.841(2), C1-P2 1.736(2), P2-S1 2.0194(8), Rh-P1 2.3227(5), Rh-S1 2.3719(5), Rh-P3 2.2614(6), Rh-P4 2.2167(5), C5-P1-C1 101.0(1), P1-Rh-P3 176.56(2), S1-Rh-P4 168.09(2), P1-Rh-S1 89.00(2), (plan moyen C1-C2-C4-C5)-P1 22.9, Σ angles P1 305.8, (plan moyen C1-C2-C4-C5)-C3 7.5. b) structure du complexe 713. Sélection de paramètres structuraux (distance en Å et angle en °) : O1-O2 1.435(2), P1-C1 1.784(2), C1-C2 1.427(3), C2-C3 1.371(3), C3-C4 1.437(3), C4-C5 1.374(3), C5-P1 1.812(2), P1-C6 1.822(2), C1-P2 1.738(2), P2-S1 2.022(1), Rh-O1 2.021(2), Rh-O2 2.041(2), Rh-P1 2.3321(6), Rh-S1 2.3321(5), Rh-P3

 $^{^2}$ Les cristaux sont obtenus par diffusion en boîte à gants d'un mélange d'hexane dans une solution de **712** dans le THF.

2.2876(6), Rh-P4 2.3469(6), C5-P1-C1 103.0(1), P1-Rh-P4 175.28(2), S1-Rh-P3 83.88(2), S1-Rh-O2 113.18(5), O1-Rh-O2 41.36(7), O1-Rh-P3 121.51(5), P1-Rh-S1 89.34(2), (plan moyen C1-C2-C4-C5)-P1 15.1, Σ angles P1 312.2, (plan moyen C1-C2-C4-C5)-C3 2.0.

Figure 5 : Spectre RMN ³¹P des complexes 710 (haut), 712 (milieu) et 713 (bas) dans le THF. * est une impureté.

Comme dans le cas du complexe de rhodium incorporant le ligand tridente **SPS** ([Rh(SPS^{Me})(PPh₃)] **405**), le complexe de rhodium **712** est sensible à l'oxygène (Équation 9). Lorsque l'on bulle de l'oxygène (1 atm) dans une solution fraîchement préparée de **712**, on observe un changement de couleur de la solution du marron à l'orange et la formation du complexe **713** (Figure 5). Ce complexe est malheureusement instable en solution : l'évaporation d'une solution de **713** conduit à la reformation du complexe **712**, tout comme une solution de **713** laissée en l'absence d'oxygène. **713** a néanmoins été caractérisé par RMN (en présence d'oxygène), analyse élémentaire et infrarouge. La valeur de la fréquence d'élongation v(OO) (873 cm⁻¹) est cohérente avec celle de complexe de rhodium η^2 -péroxo.³, [³⁹⁻⁴⁴]

³ Une fréquence d'élongation de 880 cm⁻¹ correspond à une distance O-O de l'ordre de 1.413(9) Å,^[39] tandis que 990 cm⁻¹ va de pair avec une distance O-O de 1.03(1) Å.^[40]

La structure de **713** a été confirmée par diffraction aux rayons X (Figure 4b). Les cristaux ont été obtenus par diffusion d'un mélange d'hexane dans une solution de **713** en présence d'oxygène. On constate que **713** est un complexe péroxo de rhodium : la valeur de la distance O1-O2 (1.435(2) Å) concorde avec celle du complexe péroxo [Rh(SPS^{Me})(PPh₃)(O₂)] **415** décrit au chapitre 4 (1.431(2) Å).^[39, 44-46] La géométrie autour du centre métallique est une bipyramide trigonale distordue avec les deux atomes d'oxygène qui occupent un site équatorial : les angles P1-Rh-P4, S1-Rh-P3, S1-Rh-O2, O1-Rh-P3 valant respectivement 175.28(2), 83.88(2), 113.18(5) et 121.51(5)°.

III.2.2. Application en catalyse

Nous avons testé le complexe **710** dans des réactions classiques catalysées par des complexes de rhodium^I (Schéma 4).

Nous nous sommes d'abord intéressés à la réaction d'hydroformylation car il est important de comparer l'activité catalytique de **710** à deux autres complexes de rhodium^I incorporant des phosphinines (complexes **A** de Breit *et al.*^[47, 48] et **B** de Le Floch *et al.*^[49]) (Équation 10).

Le mécanisme de la réaction d'hydroformylation fait d'abord intervenir la coordination de l'alcène, puis l'insertion migratoire de l'hydrogène sur l'alcène. La coordination d'un ligand carbonyle est suivie de l'insertion de ce dernier dans la liaison métal carbone. L'addition oxydante de l'hydrogène et l'élimination réductrice de l'aldéhyde constituent les deux dernières étapes du mécanisme. Selon le mode de l'insertion de l'hydrogène sur l'alcène, le produit final est un aldéhyde linéaire (désiré industriellement) ou un aldéhyde branché (Schéma 5).

Le tableau suivant présente les résultats obtenus lors de l'hydroformylation du 1octène et du styrène. Ce résultats sont très médiocres : on observe dans le cas du 1-octène une isomérisation de la double liaison très importante et dans le cas du styrène une mauvaise conversion (rendement inférieur à 32%). L'activité catalytique du complexe **710** est très inférieure à celle des complexes de Breit *et al.* (A) et de Le Floch *et al.* (B).

Tableau 3: Réaction d'hydroformylation d'alcène catalysée par 710. [a] taux de catalyseur : 0.01 mol%, H_2 : 7 bars, CO : 7 bars, [b] en heures, [c] en °C. [d] rendement déterminé par GC (b : branché, l : linéaire), [e] taux de catalyseur : 0.5 mol%, H_2 : 10 bars, CO : 10 bars, [f] taux de catalyseur : 0.37 mol%, H_2 : 10 bars, CO : 10 bars.

Entrée	substrat	Tps ^[b]	T ^[c]	Conversion ^[d]	Isomérisation ^[d]	Hydrogénation ^[d]	Aldéhyde ^[d]
1 ^[a]	1-octène	3h	40	18	12	2	4
2 ^[a]	1-octène	3h	80	18	14	2	2
3 ^[a]	1-octène	12h	80	98	83	7	8
4 ^[a]	1-octène	24h	80	98	73	12	13
5 ^[a]	Styrène	3h	80	0			
$6^{[a]}$	Styrène	20h	80	8			8
7 ^[e]	Styrène	24h	80	32			32
							b/l:53/47
$[Rh(Cp^*)(COD)]^{[e]}$	Styrène	16h	40	6			6
							b/l:84/16
Le Floch ^[e]	Styrène	20h	40	100.0			100.0
							b/l:83/17
Breit ^[f]	Styrène	22h	25	21			21
							b/l:95/5

III.2.2.2. Autres réactions

Aucun résultat significatif n'a pu être obtenu lors des réactions d'hydrosylilation (rendement de l'ordre de 3%). La réaction d'hydrogénation par transfert d'hydrure donne un bon résultat, mais demeure peu intéressante puisqu'elle a également lieu avec le complexe de ruthénium **707a-b**.

III.3. Complexes de palladium["]

III.3.1. Coordination

Nous avons également coordonné l'anion **703** à des précurseurs de palladium^{II}. L'emploi d'un demi équivalent ou d'un équivalent de $[Pd(COD)Cl_2]$ conduit à un mélange d'isomères qui n'ont pu être séparés (Équation 12).

Équation 12

Nous nous sommes donc tournés vers la réactivité de l'anion **703** vis-à-vis du complexe [Pd(η^3 -C₃H₅)Cl]₂. La réaction conduit à un mélange de deux complexes **716a** et **716b** qui sont formés dans un rapport 3:1 et qui n'ont pu être séparés (Équation 13). En RMN ³¹P, les signaux des deux complexes apparaissent sous la forme de systèmes AB très similaires aussi bien en déplacements chimiques (doublets à 24.6 et 52.4 ppm pour **716a** et doublets à 23.4 et 52.0 ppm pour **716b**) qu'en constantes de couplage ²J_{P-P} (135.8 Hz pour **716a** et 132.7 Hz pour **716b**). Ces deux complexes ont été complètement caractérisés par RMN et analyse élémentaire. Dans le spectre RMN ¹H, on observe deux séries de cinq protons non équivalents qui correspondent aux déplacements chimiques du ligand η^3 -allyl. Nous avons entrepris des expériences de RMN à température variables et aucune conversion n'a lieu entre les complexes **716a** et **716b** : la rotation du ligand η^3 -allyl est bloquée probablement par répulsion stérique entre le CH₂ de l'allyl et le groupe phényle en α du phosphore de la phosphinine. Ce phénomène a par ailleurs déjà été observé dans d'autres complexes.^[50, 51]

La structure du complexe **716** a pu être vérifiée par diffraction aux rayons X (Figure 6). Les cristaux ont été obtenus par diffusion d'un mélange d'hexane dans une solution de **716a-b** dans CDCl₃. La structure de **716** confirme la coordination η^3 du ligand allyl et la géométrie autour du palladium est trigonale. Les distances P1-Pd (2.2778(6) Å) et S1-Pd (2.3371(6) Å) sont du même ordre de grandeur que les longueurs de liaison phosphine-palladium et P=S-Pd.^[51] Les distances palladium allyl ou C-C du ligand allyl sont également classiques.^[52-55]

Nous avons essayé d'attribuer la structure obtenue à l'un des deux isomères **716a-b**. Pour l'isomère majoritaire, la corrélation C,H-HSQC montre que les protons à 2.16 et à 2.52 ppm d'une part et les protons à 3.00 et 4.21 ppm d'autre part sont portés par le même fragment CH₂ allyl. L'expérience RMN ¹H 2D montre des effets NOESY entre les protons du groupe méthyle porté par l'atome de phosphore et le fragment CH₂ allyl (à 2.16 et 2.52 ppm) et une absence d'effet NOESY entre le groupe P-Me et les fragments CH et CH₂ (à 4.89, 3.00 et 4.21 ppm) du fragment allyl. On en déduit donc que la structure représentée ci-dessous correspond à l'isomère majoritaire **716a**. Le nombre de cristaux n'est pas suffisant pour obtenir les spectres RMN de **716a** après dissolution de ceux-ci.

Figure 6 : Structure du ligand 716a. Sélection de paramètres structuraux (distance en Å et angle en °) : P1-C1 1.802(2), C1-C2 1.360(3), C2-C3 1.444(3), C3-C4 1.378(3), C4-C5 1.422(3), C5-P1 1.756(2), P1-C6 1.828(2), C5-P2 1.733(2), P2-S1 2.0288(8), Pd1-P1 2.2778(6), Pd-S1 2.3371(6), Pd-C32 2.138(3), Pd-C33 2.137(3), Pd-C34 2.199(3), C32-C33 1.359(4), C33-C34 1.383(5). P1-C1-C2 117.2(2), C1-C2-C3 123.4(2), C2-C3-C4 124.5(2), C3-C4-C5 121.0(2), C4-C5-P1 117.5(2), C5-P1-C1 101.7(1), P1-C5-P2 117.8(1), C32-C33-C34 123.8(3), (plan moyen C1-C2-C4-C5)-P1 21.7; (plan moyen C1-C2-C4-C5)-C3 7.3.

III.3.2. Applications en catalyse

Nous avons testé le mélange d'isomère **716a-b** dans deux types de réactions catalysées au palladium : les réactions de couplage et la réaction de substitution allylique.

III.3.2.1. Couplage de Suzuki-Miyaura

Les réactions de couplage représentent un outil puissant en synthèse organique. Cette méthode a d'ailleurs permis de synthétiser une grande variété de composés allant des polymères, des matériaux et des cristaux liquides à des produits naturels et pharmaceutiques. Le couplage de Suzuki-Miyaura permet la synthèse de biphényles à partir d'halogénoaryles et d'acides arylboroniques (Équation 14) en présence de base.^[56-64]

Le mécanisme de la réaction fait intervenir l'addition oxydante de l'halogénoaryle sur le centre métallique, suivie d'une transmétallation halogène bore. La réaction se termine par l'élimination réductrice du biphényle. On comprend aisément que l'emploi d'halogénoaryle déficient en électrons va favoriser l'étape d'addition oxydante par rapport à un halogénoaryle riche en électrons.

Les réactions ont été réalisées dans le toluène en présence de K_2CO_3 avec un taux de catalyseur de 0.0001% dans la plupart des cas (Tableau 4). On obtient une bonne conversion des dérivés du bromobenzène avec des TON allant de 242000 pour les espèces riches en électrons (4-bromoanisole) à 799000 pour les espèces déficientes en électrons (4-bromoacétophénone). Aucune conversion n'a cependant été observée avec les dérivés du chlorobenzène.

Entrée	Substrat	Rendement[%] ^[a]	Benzene[%] ^[a]	TON
1	Bromobenzène	80.9 ^[b]	5.6	80 900
2	Bromobenzène	50.0	5.4	500 000
3	4-bromoanisole	43.2	8.6	432 000
4	4-bromotoluène	24.4	9.8	244 000
5	4-bromoacétophénone	79.9	9.4	799 000
6	Chlorobenzène	$0^{[c]}$	0	0

Tableau 4: Réaction de Suzuki-Miyaura avec les bromures d'arènes catalysée par 716a-b (0.0001 mol %). Temps : 24h. [a] rendement déterminé par GC, [b] catalyseur 716a-b (0.01 mol %), [c] catalyseur 716a-b (2 mol %).

III.3.2.2. Couplage de Sonogashira

Le couplage de Sonogashira constitue un outil performant pour synthétiser des liaisons carbone-carbone avec un atome hybridé sp. (Équation 15).^[65]

Le mécanisme de la réaction fait intervenir i) l'addition oxydante de l'halogénure d'aryle sur le palladium, ii) la transmétallation de l'halogène par une espèce cuivrée, iii) l'élimination réductrice conduit enfin au produit de couplage C-C (Schéma 7). L'espèce cuivrée est obtenue à partir de [CuI] à l'aide de la base. [CuI] est placé en quantité catalytique et est régénéré au cours de la réaction.

Les résultats que nous avons obtenus avec le complexe **716a-b** sont présentés dans le Tableau 5. Le taux de catalyseur est de 0.1% par rapport aux réactifs. On obtient des résultats médiocres avec une série d'iodures d'aryles (conversion allant de 19 à 100%). De plus, aucune réaction (ou presque) n'a lieu avec les dérivés bromés. Ce dernier résultat est un peu surprenant car la réaction de Suzuki-Miyaura a lieu avec des dérivés bromés : la première étape du mécanisme de ces deux réactions est identique et fait intervenir l'addition oxydante du bromure d'aryle.

Entrée	Substrat	Additif	Catalyseur[% mol]	Rendement[%] ^[a]
1	Iodobenzène		0.1	100
2	Iodobenzène		0.01	11
3	Iodobenzène	HCOOH	0.1	41
4	Iodobenzène	CF ₃ COOH	0.1	100
5	o-iodotoluène		0.1	71
6	2-iodo- <i>m</i> -xylène ^[b]		0.1	38
7	Iodothiophène ^[b]		0.1	19
8	<i>p</i> -iodoanisole		0.1	63
9	Bromobenzène		0.1	0
10	Bromobenzène	HCOOH	0.1	3
11	Bromobenzène	CF ₃ COOH	0.1	3

Tableau 5: Réaction de Sonogashira avec les halogénures d'aryle catalysée par 716a-b. Temps : 24h. [a] rendement déterminé par GC, [b] temps : 48h.

III.3.2.3. Substitution allylique

Les substitutions allyliques constituent une méthode efficace de création de liaisons C-C, C-N et C-O. Elles sont en général réalisées à partir de carboxylates, de carbonates ou de phosphates d'allyle. Cependant, d'un point de vue d'économie d'atomes, il serait plus intéressant d'arriver à activer directement les alcools allyliques dont sont dérivés ces réactifs. La synthèse de catalyseurs efficaces pour allyler à partir des alcools allyliques dans des conditions de réaction douces reste cependant un défi (voir chapitre 8).

IV. Conclusion

Nous avons synthétisé un complexe bidente de type **SP** incorporant une phosphinine. La réaction de ce dernier avec des nucléophiles conduit à un anion λ^4 -phosphinine capable de

se coordonner de manière η^1 à des centres métalliques (palladium^{II}, rhodium^{II}, rhodium^{III}, ruthénium^{II}). La présence d'un seul bras ancillaire suffit ainsi à favoriser la coordination η^1 .

Les isomères du complexe de ruthénium **707a-b** ont été modélisés par calculs théoriques de type ONIOM. Un calcul d'énergie a confirmé la géométrie de l'isomère majoritaire.

Les propriétés catalytiques des complexes de ruthénium^{II} **707a-b** en hydrogénation de cétones et de rhodium^I **710** en hydroformylation d'alcènes se sont révélées modestes. Le couplage de bromure d'aryles avec l'acide phénylboronique catalysé par le complexe de palladium^{II} **716a,b** fournit au contraire des résultats extrêmement satisfaisants (nombre de rotation allant jusqu'à 799000).

V. Perspectives

Une extension immédiate de ce travail consisterait à synthétiser le complexe de nickel C, analogue du complexe **716a-b**, à partir de l'anion **703** et de $[Ni(\eta^3-C_3H_4R)X]_2$ (R = H, X = Cl ou R = CO₂Me, X = Br) (Équation 17).^[66] Le complexe C pourrait être testé en polymérisation de l'éthylène.

Les systèmes de polymérisation de l'éthylène les plus efficaces sont constitués de complexes neutres de nickel^{II} incorporant un ligand bidente anionique ou de complexes cationiques de fer, de cobalt de palladium incorporant des ligands neutres bidentes ou tridentes azotés substitués par des groupes encombrés (Schéma 8).^[67] Le poids moléculaire du polymère est contrôlé par les propriétés électroniques et stériques du ligand. En 1995, Brookhart *et al.* a introduit une nouvelle génération de ligands chélatants, les α -diimines ; associés au nickel ou au palladium, ils conduisent à des polymères hautement branchés et de poids moléculaire élevé ce qui n'était possible auparavant que par copolymérisation de l'éthylène avec d'autres oléfines α .^[68, 69] Les 1,4-disphospha-1,3-butadiènes se sont également révélés des ligands de choix car ils sont beaucoup plus stables que les ligands de type α -diimines^[70] et conduisent à des polymères beaucoup moins branchés.^[71] Le complexe mixte **C** mérite donc d'être testé dans la réaction de polymérisation de l'éthylène.

Des complexes mixtes P-S comme **D** et **E** ont été utilisés avec succès dans la réaction de carbonylation du méthanol (150-200°C, 25-45 bars en présence de d'anions iodure). On peut supposer que tout comme le squelette **SPS** (voir chapitre 3), celui de **SP** est également robuste. Dans ce cas, il paraît envisageable de tester le complexe de rhodium **F** dans cette réaction (Équation 18).^[8, 73] Le complexe **710** serait également candidat à cette réaction puisque dans ce dernier le ligand COD est en équilibre avec deux ligands PPh₃.

Équation 18

Comme pour le ligand tridente **SPS**, un prolongement envisageable de ces travaux est de faire varier la nature du bras ancillaire Ph_2PS en remplaçant par exemple l'atome de soufre par un oxygène afin de coordonner des métaux plus durs. La stratégie de synthèse de **PO** repose sur deux séries de cycloaddition / cycloréversion à partir de la diazaphosphinine **201**, du diphénylacétylène et Ph-CC-P(O)Ph₂, obtenu facilement à partir de **202** par oxydation de la phosphine avec H_2O_2 (Équation 19).

Il pourrait être également intéressant de comparer l'activité catalytique des complexes incorporant le ligand **SP** ou **PO** à celle de complexes incorporant le ligand mixte pyridinesulfure de phosphine **D**. Ce dernier devrait s'obtenir facilement par sulfuration de **E**, décrit par McFarlane *et al.* en 1990 (Équation 20).^[74]

Équation 20

Enfin, la présence d'un ligand ancillaire chiral sur le ligand bidente **G** permettrait de coordonner l'anion dérivé **H** à des fragments métallique de type palladium allyle par exemple et de tester le complexe résultant en catalyse asymétrique (couplage de Tsuji-Trost) (Équation 21).

VI. Références

- [1] S. O. Grim, J. D. Mitchell, Syn. React. Met. Org. Chem. 1974, 4, 221.
- [2] S. M. Aucott, A. M. Z. Slawin, J. D. Woolins, Eur. J. Inorg. Chem. 2002, 2408.
- [3] L. Gonsalvi, H. Adams, G. J. Sunley, E. Ditzel, A. Haynes, J. Am. Chem. Soc. 2002, 124, 13597.
- [4] T. C. Blagborough, R. Davis, P. Ivison, J. Organomet. Chem. 1994, 467, 85.
- [5] K. M. Pietrusiewicz, M. Kuznikowski, Heteroatom. Chem. 1991, 3, 37.
- [6] T. Mizuta, Y. Imamura, K. Miyoshi, J. Am. Chem. Soc. 2003, 125, 2068.
- [7] P. Mastrorilli, C. F. Nobile, G. P. Suranna, F. P. Fanizzi, G. Ciccarella, U. Englert, Q. Li, *Eur. J. Inorg. Chem.* 2004, 1234.
- [8] M. J. Baker, M. F. Giles, A. G. Orpen, M. J. Taylor, R. J. Watt, Chem. Commun. 1995, 197.
- [9] G. P. Suranna, P. Mastrorilli, C. F. Nobile, W. Keim, Inorg. Chim. Acta 2000, 305, 151.
- [10] R. Weber, U. Englert, B. Ganter, W. Keim, M. Möthrath, Chem. Commun. 2000, 1419.
- [11] S. Ito, H. Liang, M. Yoshifuji, Chem. Commun. 2003, 398.
- [12] H. Liang, K. Nishide, S. Ito, M. Yoshifuji, Tetrahedron Lett. 2003, 44, 8297.
- [13] H. Liang, S. Ito, M. Yoshifuji, Org. Lett. 2004, 6, 425.
- [14] N. Avarvari, P. Le Floch, F. Mathey, J. Am. Chem. Soc. 1996, 118, 11978.
- [15] N. Avarvari, P. Le Floch, L. Ricard, F. Mathey, Organometallics 1997, 16, 4089.
- [16] A. Moores, L. Ricard, P. Le Floch, N. Mezailles, Organometallics 2003, 22, 1960.
- [17] V. Cadierno, P. Crochet, J. Josefina Díez, J. García-Álvarez, S. E. García-Garrido, S.
- García-Granda, J. Gimeno, M. A. Rodríguez, J. Chem. Soc., Dalton trans. 2003, 3240.
- [18] Q. F. Zhang, H. G. Zheng, W. Y. Wong, W. T. Wong, W. H. Leung, *Inorg. Chem.* 2000, *39*, 5255.
- [19] M. Valderrama, R. Contreras, V. Arancibia, P. Munoz, D. Boys, M. P. Lamata, F. Viguri, D. Carmona, F. J. Lahoz, J. A. Lopez, L. A. Oro, *J. Organomet. Chem.* **1997**, *546*, 507.
- [20] T. Ziegler, Chem. Rev. 1991, 91, 651.
- [21] R. G. Parr, W. Yang, *Density Functional Theory of Atoms and Molecules*, Oxford University Press, Oxford, Royaume Uni, **1989**.
- [22] M. Svensson, S. Humbel, R. D. J. Froese, T. Matsubara, S. Sieber, K. J. Morokuma, J. Phys. Chem. 1996, 100, 19357.
- [23] J. P. Perdew, Phys. Rev. B. 1986, 33, 8822.
- [24] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
- [25] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785.
- [26] A. K. Rappé, C. J. Casewitt, K. S. Colwell, W. A. Goddard, W. M. Skiff, J. Am. Chem. Soc. 1992, 114, 10024.
- [27] P. J. Hay, R. L. Martin, J. Am. Chem. Soc. 1992, 114, 2736.
- [28] T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. von Ragué Schleyer, J. Comput. Chem. 1983, 4, 294.
- [29] M. M. Francl, W. J. Pietro, W. J. Hehre, J. S. Binkley, M. S. Gordon, D. J. DeFrees, J. A. Pople, *J. Chem. Phys.* **1982**, *77*, 3654.
- [30] W. J. Hehre, R. Ditchfield, J. A. Pople, J. Chem. Phys. 1972, 56, 2257.
- [31] P. C. Hariharan, J. A. Pople, Theor. Chim. Acta 1973, 28, 213.
- [32] C. Thoumazet, M.-A. Melaimi, L. Ricard, F. Mathey, P. Le Floch, *Organometallics* 2003, 22, 1580.
- [33] R. Noyori, T. Ohkuma, Angew. Chem., Int. Ed. Engl. 2001, 40, 40.
- [34] R. Noyori, S. Hashiguchi, Acc. Chem. Res. 1997, 30, 97.

- [35] A. Fujii, S. Hashiguchi, N. Uematsu, T. Ikariya, R. Noyori, J. Am. Chem. Soc. 1996, 118, 2521.
- [36] M. Albrecht, J. R. Miecznikowski, A. Samuel, J. W. Faller, R. H. Crabtree, *Organometallics* **2002**, *21*, 3596.
- [37] M. Albrecht, R. H. Crabtree, J. Mata, E. Peris, Chem. Commun. 2002, 32.
- [38] R. L. Chowdhury, J.-E. Bäckvall, Chem. Commun. 1991, 1063.
- [39] M. J. Bennet, P. B. Donaldson, Inorg. Chem. 1977, 16, 1581.
- [40] C. Busetto, A. Dalfonso, F. Maspero, G. Perego, A. Zazzetta, J. Chem. Soc., Dalton Trans. 1977, 1828.
- [41] M. Schäfer, J. Wolf, H. Werner, J. Organomet. Chem. 1994, 476, 85.
- [42] A. F. Hill, A. J. P. White, D. J. Williams, J. D. E. T. Wilton-Ely, *Organometallics* **1998**, *17*, 3152.
- [43] E. Mieczynska, A. M. Trzeciak, J. J. Ziolkovski, T. Lis, J. Chem. Soc., Dalton Trans. 1995, 105.
- [44] H. F. Haarman, F. R. Bregman, P. W. N. M. van Leeuwen, K. Vrieze, *Organometallics* **1997**, *16*, 979.
- [45] M. C. Nicasio, M. Paneque, P. J. Perez, A. Pizzano, M. L. Poveda, L. Rey, S. Sirol, S. Taboada, M. Trujillo, A. Monge, C. Ruiz, E. Carmona, *Inorg. Chem.* **2000**, *39*, 180.
- [46] R. Dorta, L. J. W. Shimon, H. Rozenberg, D. Milstein, Eur. J. Inorg. Chem. 2002, 7, 1827.
- [47] B. Breit, R. Winde, K. Harms, J. Chem. Soc., Perkin Trans. 1 1997, 2681.
- [48] B. Breit, R. Winde, T. Mackewitz, R. Paciello, K. Harms, Chem. Eur. J. 2001, 7, 3106.
- [49] A. Moores, N. Mézailles, L. Ricard, P. Le Floch, Organometallics 2005, 24, 508.
- [50] M. Kollmar, H. Steinhagen, J. P. Janssen, B. Goldfuss, S. A. Malinovskaya, J. Vázquez, F. Rominger, G. Helmchen, *Chem. Eur. J.* **2002**, *8*, 3103.
- [51] S. K. Mandal, G. A. N. Gowda, S. S. Krishnamurthy, M. Nethaji, J. Chem. Soc., Dalton Trans. 2003, 1016.
- [52] K. Boog-Wick, P. S. Pregosin, M. Worle, A. Albinati, Helv. Chim. Acta 2002, 81, 1622.
- [53] D. A. Evans, K. R. Campos, J. S. Tedrow, F. E. Michael, M. R. Gagne, *J.Org.Chem.* 1999, 64, 2994.
- [54] A. L. Rheingold, L. M. Liable-Sands, S. Trofimenko, Inorg. Chim. Acta 2002, 330, 38.
- [55] J. Spencer, V. Gramlich, R. Hausel, A. Togni, Tetrahedron: Asymm. 1996, 7, 41.
- [56] S. D. Walker, T. E. Barder, J. R. Martinelli, S. L. Buchwald, Angew. Chem. Int. Ed. 2004, 43, 1871.
- [57] A. Suzuki, J. Organomet. Chem. 1999, 576, 147.
- [58] O. Navarro, R. A. Kelly, S. P. Nolan, J. Am. Chem. Soc. 2003, 125, 16194.
- [59] N. Miyaura, Angew. Chem. Int. Ed. 2004, 43, 2201.
- [60] N. Miyaura, Top. Curr. Chem. 2002, 219, 11.
- [61] N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457.
- [62] I. Kondolff, H. Doucet, M. Santelli, Tetrahedron 2004, 60, 3813.
- [63] R. B. Bedford, C. S. J. Cazin, S. J. Coles, T. Gelbrich, M. B. Hursthouse, V. J. M.
- Scordia, J. Chem. Soc., Dalton Trans. 2003, 3350.
- [64] M. an der Heiden, H. Plenio, Chem. Eur. J. 2004, 10, 1789.
- [65] K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett. 1975, 16, 4467.
- [66] G. Wilke, B. Bogdanovic, P. Hardt, P. Heimbach, W. Keim, M. Kroner, W. Oberkirch,
- K. Tanaka, E. Steinbucke, D. Walter, H. Zimmerman, Angew. Chem. Int. Ed. 1966, 26, 777.
- [67] S. Mecking, Angew. Chem. Int. Ed. 2001, 40, 534.
- [68] L. K. Johnson, S. Mecking, M. S. Brookhart, J. Am. Chem. Soc. 1996, 118, 267.
- [69] L. K. Johnson, C. M. Killian, M. S. Brookhart, J. Am. Chem. Soc. 1995, 117, 6414.

- [70] S. Ikeda, F. Ohhata, M. Miyoshi, R. Tanaka, T. Minami, F. Ozawa, M. Yoshifuji, *Angew. Chem. Int. Ed.* **2000**, *39*, 4512.
- [71] S. D. Ittel, L. K. Johnson, M. Brookhart, Chem. Rev. 2000, 100, 1169.
- [72] A. Ionkin, W. Marshall, Chem. Commun. 2003.
- [73] J. R. Dilworth, J. R. Miller, N. Wheatley, M. J. Baker, G. J. Sunley, *Chem. Commun.* 1995, 1579.
- [74] H. C. E. McFarlane, W. McFarlane, A. S. Muir, Polyhedron 1990, 9, 1757.

Chapitre 8 : Emploi de 1-phosphabarrélène

I. Rappels bibliographiques

Dans ce chapitre, nous allons décrire l'emploi d'un autre type de ligand : les phosphabarrélènes. On sait désormais que les phosphinines peuvent se comporter comme des dipôles masqués 1-phosphacyclobutadiène et plusieurs études tirent avantage de la réactivité du système π diénique de la phosphinine dans des réactions de cycloaddition [4+2] avec les alcynes pour former des 1-phosphabarrélènes (Équation 1).

Équation 1

Néanmoins, cette réaction est difficile et nécessite l'emploi d'alcynes très activés : on constate, par exemple, qu'aucune réaction ne se produit entre la 2,4,6-triphénylphosphinine et le butyn-1,4-dioate de diméthyle ou l'anhydride maléique. On observe une réaction avec un alcyne encore plus activé : l'héxafluorobut-2-yne (Équation 2).^[1, 2]

Cette réaction de cycloaddition [4+2] devient réalisable lorsque le cycle de la phosphinine est activé par sulfuration^[3] (Équation 3) ou coordination de la paire libre du phosphore.

Équation 3

Lorsque la phosphinine est coordonnée à un complexe du groupe 6 (Cr, Mo, W), elle conduit facilement, avec des rendements corrects, à des phosphabarrélènes à partir d'alcyne moyennement activé et même d'alcènes non activés (cyclopentadiène) (Équation 4).^[4, 5]

Équation 4

Cette réactivité s'étend également aux complexes du groupe 11 (Équation 5).^[6]

Équation 5

Enfin, cette réaction peut avoir lieu en version intramoléculaire lorsque la géométrie de la molécule est contrainte (Équation 6).^[7]

Comme le nombre de phosphabarrélène libre est très faible, leur utilisation en catalyse reste très limitée ; il n'existe à ce jour qu'un seul exemple. Le phosphabarrélène **B**, issu de la phosphinine trisubstituée en positions 2, 4 et 6 **A** et formellement d'un intermédiaire de type benzyne, est employée dans la réaction d'hydroformylation des alcènes catalysée au rhodium.^[8] Ce catalyseur présente une activité catalytique 1000 fois supérieure au système $[Rh(CO)_2(acac)]/PPh_3$, utilisé industriellement, et est extrêmement sélectif car il agit sur des oléfines internes avec un très faible taux d'isomérisation.

II. Synthèse

Nous avons testé la réactivité de la phosphinine tridente **SPS** et de la phosphinine bidente **SP** face aux alcynes dans la réaction de cycloaddition [4+2]. Si l'on compare le caractère dipôle [1-4] de ces phosphinines avec la phosphinine parente C_5H_5P par un calcul de charges NBO^[9] par exemple,¹ on constate que le caractère dipôle [1-4] va croissant de la phosphinine parente, à **SP** puis à **SPS** (Schéma 1). On prévoit alors une meilleure réactivité de **SPS**, puis de **SP** et enfin de C_5H_5P vis-à-vis des alcynes.

Sc	h	éma	1

Nous avons commencé notre étude avec un alcyne non activé : le diphénylacétylène. Sa réaction avec **SPS** est particulièrement difficile à réaliser et nécessite un chauffage prolongé de 10 jours au reflux du toluène. On forme le phosphabarrélène **801**, avec un rendement de 65%, après un lavage à l'éther. Ce produit a été caractérisé par RMN, spectrométrie de masse et analyse élémentaire. Alors que le déplacement chimique en RMN ³¹P du groupe sulfure de phosphine reste quasiment inchangé (43.4 ppm dans **SPS** *vs* 40.5 ppm dans **801**), la formation de la structure bicyclique induit un important blindage de l'atome de phosphore du cycle, de 253.1 ppm dans **SPS** à -39.1 ppm dans **801**, comme

¹ B3LYP^[10-12]/6-31+G*^[13]

attendu pour le passage à un phosphore sp³. Aucune réaction n'a lieu avec la phosphinine **SP** même après un chauffage prolongé (plusieurs semaines à 120°C) et avec un large excès de diphénylacétylène (10 équivalents).

Il en va de même lorsque l'on emploie un alcyne donneur comme le oct-4-yne : aucune réaction n'a lieu avec les phosphinines **SPS** et **SP** même après un chauffage prolongé (Équation 9).

On observe des résultats bien plus satisfaisants lorsque l'on utilise un alcyne plus activé comme le butyn-1,4-dioate de diméthyle (Équation 10). Avec **SPS**, la réaction a lieu à 80°C pendant 12h et l'on isole le phosphabarrélène **802** avec un très bon rendement. Tout comme son analogue **801**, **802** est une molécule très stable qui se manipule à l'air sans que la paire libre du phosphore central ne s'oxyde. De manière similaire, la phosphinine bidente **SP** est suffisamment réactive pour réagir avec le butyn-1,4-dioate de diméthyle et forme **803**, mais cette réaction nécessite un temps de chauffage supérieur (18h pour **803** *vs* 12h pour **802**) et une température plus élevée (90°C pour **803** *vs* 80°C pour **802**). **802** et **803** ont été caractérisés par RMN, spectrométrie de masse et analyse élémentaire.

III. Etude théorique de la réaction de Diels-Alder

Nous avons cherché à expliquer par des calculs DFT^[14, 15] pourquoi la réactivité de la phosphinine tridente **SPS** est meilleure que celle de la phosphinine bidente **SP** vis-à-vis du butyn-1,4-dioate de diméthyle et pourquoi aucune réaction n'a lieu avec l'octyne.

III.1. Réactivité comparée des phosphinines vis-à-vis de l'acétylène

III.1.1. Modélisation

Pour ces calculs, nous avons optimisé trois profils réactionnels qui correspondent à la réaction de la phosphinine parente C_5H_5P **Ia** et des phosphinines modèles bidente **Ib** et tridente **Ic** avec les alcynes. Dans **Ib** et **Ic**, nous avons remplacé les groupes phényles et méthyle par des atomes d'hydrogène (Schéma 2). Dans un premier temps, nous avons de plus modélisé le butyn-1,4-dioate de diméthyle (DMADC) et l'octyne par l'acétylène.

III.1.2. Profil réactionnel

Nous avons optimisé et caractérisé par un calcul de fréquences les réactifs (phosphinines **Ia-c**, alcyne), les produits (barrélènes **IIa-c**) et les états de transitions (**Ia-TS-IIa**, **Ib-TS-IIb**, **Ic-TS-IIc**) par calcul DFT avec la fonctionnelle B3LYP (Schéma 3).^[10-12] Tous les atomes sont décrits par la base $6-311+G^{**[16]}$.

L'analyse de l'écart HOMO-LUMO des réactifs montre que la cycloaddition [4+2] procède suivant une demande inverse : la plus forte interaction orbitalaire a lieu entre la LUMO de la phosphinine et la HOMO de l'acétylène (Schéma 4 et Tableau 1). On prévoit ainsi une réaction beaucoup plus favorable dans le cas de la phosphinine tridente SPS **Ic**.

Schéma 4 : Orbitales frontières de l'acétylène et des phosphinines Ia-c.

ΔE Orbitales frontières	Phosphine Ia	Phosphine SP Ib	Phosphine SPS Ic
ΔE HOMO _{acétylène} LUMO _{phosphinine}	6.50	5.74	5.14
Demande inverse			
ΔE LUMO _{acétylène} HOMO _{phosphinine}	7.27	7.81	8.25
Demande normale			

Tableau 1 : Différence d'énergie (exprimée en eV) entre les orbitales frontières des phosphinines modèles Ia, Ib et Ic et celles de l'acétylène.

De plus, d'un point de vue énergétique (Tableau 2), on constate que les valeurs de l'énergie d'activation (**Ia-TS-IIa**, **Ib-TS-IIb**, **Ic-TS-IIc**) restent du même ordre de grandeur (entre 25.7 et 31.7 kcal.mol⁻¹). On observe néanmoins une diminution de cette valeur lorsque l'on passe de l'état de transition parent (**Ia-TS-IIa**, 31.7 kcal.mol⁻¹), au bidente SP (**Ib-TS-IIb**, 28.7 kcal.mol⁻¹), puis au tridente SPS (**Ic-TS-IIc**, 25.7 kcal.mol⁻¹), en accord avec la diminution de l'écart d'énergie HOMO_{acétylène} / LUMO_{phosphinine} des réactifs.

On constate que la formation du barrélène est d'autant plus exothermique que la phosphinine est substituée par un ou deux bras ancillaire H₂P(S) ($\Delta E = -2.8 \text{ kcal.mol}^{-1}$ pour **Ha**, -6.7 kcal.mol⁻¹ pour **Hb** et -10.5 kcal.mol⁻¹ pour **Hc**) (Tableau 2).

La cycloaddition de Diels-Alder est une réaction bimoléculaire et l'énergie relative des réactifs et des produits nécessite d'être considérée en terme d'enthalpie libre (Tableau 2). La formation du barrélène parent (**IIa**) est endoergique ($\Delta G = +8.2 \text{ kcal.mol}^{-1}$), ce qui explique pourquoi les phosphinines ne réagissent habituellement pas avec des alcynes, même sous conditions dures. La formation des barrélènes **IIb** et **IIc** est plus favorisée thermodynamiquement ($\Delta G = +3.4$ pour **IIb** et +1.6 kcal.mol⁻¹ pour **IIc**), en accord avec la tendance expérimentale : la réaction est beaucoup plus facile pour la phosphinine tridente **SPS** que pour la phosphinine bidente **SP** et aucune réaction n'a lieu avec la phosphinine parente.

Tableau 2 : Energie (corrigée ZPE) et enthalpie libre entre parenthèses exprimées en kcal.mol⁻¹ de la réaction de Diels-Alder des phosphinines modèles Ia, Ib et Ic avec l'acétylène (produits IIa-c).

Transformati	Ι	I-TS-II	II	
Phosphinine parente :	Ia vers IIa	0 (0)	+31.7 (+42.1)	-2.8 (+8.2)
Phosphinine SP :	Ib vers IIb	0 (0)	+28.7 (+38.2)	-6.7 (+3.4)
Phosphinine SPS :	Ic vers IIc	0 (0)	+25.7 (+37.2)	-10.5 (+1.6)

III.1.3. Etats de transition avec l'acétylène

D'un point de vue géométrique, on constate que pour l'ensemble des états de transition la formation de la liaison phosphore-carbone est plus avancée que celle de la liaison carbone-carbone (Tableau 3). Ceci est mis en évidence par le pourcentage d'élongation des liaisons qui se forment entre les barrélènes d'une part et les états de transition d'autre part (Schéma 5). Ainsi, la valeur de l'élongation de la liaison phosphore carbone est de 126% en moyenne contre 150% en moyenne pour la liaison carbone-carbone (Tableau 3). La différence de vitesse de formation de ces deux liaisons est également mise en lumière par la valeur des angles H-C-C de l'acétylène. En effet, l'angle H-C-C est plus faible du côté du phosphore (146° en moyenne contre 154° en moyenne) et cela correspond à un caractère sp² plus marqué du carbone de l'acétylène relié au phosphore.

Schéma 5 : Comparaison structurale du barrélène et de l'état de transition associé à la réaction de cycloaddition de l'acétylène sur la phosphinine parente (vue de profil).

Tableau 3 : Sélection de paramètres structuraux des états de transition (Ia-TS-IIa, Ib-TS-IIb, Ic-TS-IIc) **associés à la réaction de cycloaddition de l'acétylène avec les phosphinines** Ia-Ic **conduisant aux barrélènes** IIa-IIc **(distances exprimées en Å et angles en °).**

$\begin{array}{c} & H_{10} \\ C_{9}' \\ H_{7} C_{8}' \\ C_{5} \\ C_{5} \\ C_{6}' \\ C_{2} \\ C_{2} \\ R^{1} \\ C_{6}' \\ C_{2} \\ R^{2} \end{array}$	Ia-TS-IIa Parent	Ib-TS-IIb SP	Ic-TS-IIc SPS	IIa Parent	IIb SP	IIc SPS
C ₈ -C ₉	1.242	1.241	1.239	1.328	1.328	1.328
Pyramidalité P ₁	276.7	278.2	279.7	280.7	280.5	280.5
H ₇ -C ₈ -C ₉	145.8	145.2	144.6	124.1	124.1	124.2
$C_8-C_9-H_{10}$	154.1	156.6	158.9	123.9	123.8	123.8
P_1-C_8 (%)	127.5	126.3	125.6	100	100	100
C_4-C_9 (%)	147.3	150.0	153.2	100	100	100

Ce résultat peut s'interpréter en remarquant que le coefficient de l'atome de phosphore de la phosphinine est plus important que celui de l'atome de carbone C_4 et ce quelles que soient les orbitales frontières considérées (Schéma 6). Lors de l'approche de l'acétylène, il y a ainsi un meilleur recouvrement phosphore-carbone que carbone-carbone et la liaison phosphore-carbone se forme plus rapidement.

Schéma 6 : Orbitales frontières de la phosphinine parente et du benzène.

III.1.4. Conclusion

Cette étude théorique a permis de montrer que la cycloaddition de l'acétylène sur la phosphinine procède comme une réaction de Diels Alder à demande inverse. Cette réaction est d'autant plus facile que la phosphinine est substituée par un ou deux groupes sulfure de phosphine en position α de l'atome de phosphore.

Néanmoins, la modélisation du butyn-1,4-dioate de diméthyle et de l'octyne par l'acétylène peut être considérée comme draconienne et ne peut expliquer pourquoi la formation de barrélènes à partir des phosphinines **SP** et **SPS** a lieu pour le premier et pas pour le second.

III.2. Réaction avec le butyn-1,4-dioate de diméthyle

III.2.1. Modélisation

Pour ces calculs, nous avons optimisé trois profils réactionnels qui correspondent à la réaction de la phosphinine parente C_5H_5P Ia et des phosphinines modèles bidente Ib et tridente Ic avec le butyn-1,4-dioate de diméthyle. Nous avons modélisé ce dernier par le diacide correspondant (DMADCH) (Schéma 7).

Schéma 7

Remplacer les groupes esters par des fonctions acides n'est pas sans conséquence sur l'optimisation des barrélènes qui se forment : on obtient deux structures, caractérisées comme des minima de la surface de potentiel, très proches en énergie ($\Delta E = 1.1 \text{ kcal.mol}^{-1}$) et qui se différencient par la présence de liaisons hydrogènes (Figure 1).

Comme les esters ne peuvent pas former de liaisons hydrogènes, nous privilégions le minimum d'énergie de type a) dans la suite de cette partie.

III.2.2. Profil réactionnel

Nous avons entrepris la même démarche que précédemment et avons optimisé et caractérisé par un calcul de fréquences le DMADCH, les barrélènes (IIIa-c) et les états de transitions (Ia-TS-IIIa, Ib-TS-IIIb, Ic-TS-IIIc) par calcul DFT (Schéma 8).

D'un point de vue énergétique, on observe une stabilisation thermodynamique significative des trois barrélènes (**IIIa-c**) par rapport aux réactifs (**Ia-c**) (Tableau 4). Comme précédemment dans le cas de la cycloaddition de l'acétylène sur la phosphinine, la réaction du DMADCH sur les phosphinines est cinétiquement et thermodynamiquement plus favorable lorsque un ou deux groupes sulfure de phosphine sont présents en position α de l'atome de phosphore de la phosphinine (E[‡] = 26.3 kcal.mol⁻¹ pour **Ia-TS-IIIa** *vs* 23.9 kcal.mol⁻¹ pour **Ic-TS-IIIc** et $\Delta E = -7.9$ kcal.mol⁻¹ pour **IIIa** *vs* -13.0 kcal.mol⁻¹ pour **IIIc**, Tableau 4).

Les valeurs de l'enthalpie libre très légèrement supérieures à zéro pour les réactions des phosphinines **SP** et **SPS** ($\Delta G = +2.7 \text{ kcal.mol}^{-1}$ pour **Ib** et +2.0 kcal.mol⁻¹ pour **Ic**) sont en accord avec le fait que la réaction a lieu entre le butyn-1,4-dioate de diméthyle et les phosphinines **SP** et **SPS** (Tableau 4).

Tableau 4 : Energie (corrigée ZPE) et enthalpie libre entre parenthèse exprimées en kcal.mol⁻¹ de la réaction de Diels-Alder des phosphinines modèles Ia, Ib et Ic avec le DMADCH (produits IIIa-c).

Transformation			Ι	I-TS-III	III
	Phosphinine parente :	Ia vers IIIa	0 (0)	+26.3 (+38.8)	-7.9 (+5.5)
	Phosphinine SP :	Ib vers IIIb	0 (0)	+25.2 (+36.7)	-10.4 (+2.7)
	Phosphinine SPS :	Ic vers IIIc	0 (0)	+23.9 (+37.5)	-13.0 (+2.0)

Il est par contre surprenant d'observer une diminution de l'énergie d'activation lorsque l'on utilise à la place de l'acétylène un alcyne attracteur comme le DMADCH (de 31.7 pour **Ia-TS-IIa** à 26.3 kcal.mol⁻¹ pour **Ia-TS-IIIa**). Si l'on compare l'acétylène au DMADCH, on note une baisse significative de l'énergie de la LUMO de l'alcyne. Par contre, l'énergie de la HOMO varie peu (Schéma 9). Cette baisse d'énergie a pour origine le caractère électroattracteur des groupes acides. Ce phénomène est néanmoins compensé pour la HOMO

Schéma 9 : Orbitales frontières de l'acétylène, du DMADCH et du but-2-yne.

La modification de la hauteur relative des orbitales frontières du DMADCH par rapport aux phosphinines **Ia-c** entraîne une réactivité du type demande normale (interaction principale entre la HOMO de la phosphinine et la LUMO de l'alcyne) pour la formation des barrélènes **IIIa** et **IIIb** (Tableau 5). Il est beaucoup plus difficile de conclure dans le cas du barrélène SPS **IIIc** sur le procédé mis en jeu (demande normale ou inverse) car l'écart HOMO-LUMO des réactifs est très proche (5.60 eV en demande normale *vs* 5.66 eV en demande inverse).

Tableau 5 : Différence d'énergie (exprimée	e en eV) entre les	s orbitales frontières de	es phosphinines modèles
Ia, Ib et Ic et le DMADCH.			

ΔE Orbitales frontières	Phosphine Ia	Phosphine SP Ib	Phosphine SPS Ic
ΔE HOMO _{DMADCH} LUMO _{phosphinine}	6.97	6.20	5.60
Demande inverse			
$\Delta E LUMO_{DMADCH} HOMO_{phosphinine}$	4.68	5.22	5.66
Demande normale			

III.3. Réaction avec le oct-4-yne

Il nous reste désormais à comprendre pourquoi la cycloaddition du oct-4-yne sur les phosphinines **SP** et **SPS** n'a pas lieu expérimentalement même sous conditions forcées (chauffage à 120°C et excès d'alcyne)
III.3.1. Modélisation

Nous avons modélisé le oct-4-yne par le but-2-yne afin de diminuer le nombre de degrés de liberté de la chaîne alkyle et de réduire ainsi le temps de calcul (Schéma 10).

III.3.2. Profil réactionnel

Nous avons optimisé et caractérisé par un calcul de fréquences le but-2-yne, les barrélènes (**IVa-c**) et les états de transitions (**Ia-TS-IVa**, **Ib-TS-IVb**, **Ic-TS-IVc**) par calcul DFT (Schéma 11).

On constate que la réaction de cycloaddition du but-2-yne sur la phosphinine parente **Ia** et sur la phosphinine bidente **Ib** est soit endothermique ($\Delta E_{ZPE} = +4.3 \text{ kcal.mol}^{-1}$) soit athermique ($\Delta E_{ZPE} = -0.1 \text{ kcal.mol}^{-1}$) (Tableau 6). Seule la cycloaddition mettant en jeu la phosphinine tridente **Ic** est (faiblement) exothermique ($\Delta E_{ZPE} = -4.3 \text{ kcal.mol}^{-1}$). Par contre, toutes les trois sont nettement endoergiques ($\Delta G > 9.0 \text{ kcal.mol}^{-1}$), ce qui est en accord avec le fait qu'aucune réaction n'a lieu entre avec le oct-4-yne et les phosphinine **SP** et **SPS** (Tableau 6).

La modification de la hauteur relative des orbitales frontières du but-2-yne par rapport aux phosphinines **Ia-c** entraîne une réactivité du type demande inverse (interaction principale entre la HOMO de l'alcyne et la LUMO de la phosphinine) pour la formation des barrélènes **IIIa-c** (Schéma 9). On a par exemple, pour **Ic**, un écart HOMO / LUMO de 3.86 eV en demande inverse contre 9.11 eV en demande normale (Tableau 7).

Comme précédemment, la diminution de l'énergie d'activation des états de transition **I-TS-IV** observée lorsque l'on passe du composé parent ($E^{\ddagger} = 37.9 \text{ kcal.mol}^{-1}$ pour **Ia-TS-IVa**), au composé bidente ($E^{\ddagger} = 34.1 \text{ kcal.mol}^{-1}$ pour **Ib-TS-IVb**) puis au composé tridente ($E^{\ddagger} = 30.2 \text{ kcal.mol}^{-1}$ pour **Ic-TS-IIIc**) va bien dans le même sens que la diminution de l'écart HOMO_{butyne} / LUMO_{phosphinine} des réactifs (Tableau 6).

Tableau 6 : Energie (corrigée ZPE) et enthalpie libre exprimées en kcal.mol⁻¹ de la réaction de Diels-Alder des phosphinines modèles Ia, Ib et Ic avec le but-2-yne (produits IVa-c).

Transformation		Ι	I-TS-IV	IV
Phosphinine parente :	Ia vers IVa	0 (0)	+37.9 (+49.5)	+4.3 (+16.5)
Phosphinine SP :	Ib vers IVb	0 (0)	+34.1 (+44.5)	+0.1 (+11.1)
Phosphinine SPS :	Ic vers IVc	0 (0)	+30.2 (+42.5)	-4.3 (+9.0)

Tableau 7 : Différence d'énergie (exprimée en eV) entre les orbitales frontières des phosphinines modèles Ia, Ib et Ic et le but-2-yne.

ΔE Orbitales frontières	Phosphine Ia	Phosphine SP Ib	Phosphine SPS Ic
AE HOMO _{butyne} LUMO _{phosphinine}	5.23	4.46	3.86
Demande inverse			
ΔE LUMO _{butyne} HOMO _{phosphinine}	8.13	8.68	9.11
Demande normale			

III.4. Conclusion

Les calculs théoriques montrent pour les trois systèmes que la cycloaddition de l'acétylène, du butyn-1,4-dioate de diméthyle modèle et du but-2-yne sur la phosphinine est d'autant plus exothermique que un ou deux groupes sulfure de phosphine sont présents en α de l'atome de phosphore de la phosphinine. On retrouve la même tendance pour les valeurs de l'énergie d'activation. De plus, dans le cas de la cycloaddition du butyn-1,4-dioate de diméthyle sur la phosphinine, ces dernières, de l'ordre de 25 kcal.mol⁻¹, sont en accord avec la température à laquelle la réaction de cycloaddition est conduite (80-90°C).

Les calculs théoriques confortent la réactivité expérimentale pour la cycloaddition du butyn-1,4-dioate de diméthyle et du oct-4-yne sur la phosphinine : dans le premier cas, l'enthalpie libre de réaction est proche de zéro et rend compte de la faisabilité de la réaction entre le butyn-1,4-dioate de diméthyle et les phosphinines bidente **SP** et tridente **SPS** ; Dans le deuxième cas, celui du but-2-yne, la forte valeur de l'enthalpie libre ($\Delta G > 9$ kcal.mol⁻¹) explique pourquoi la cycloaddition du oct-4-yne n'a pas lieu ni sur la phosphinine parente ni sur les phosphinines bidente **SPS**

IV. Coordination des barrélènes à des centres métalliques

Nous avons ensuite complexé les barrélènes **801** et **803** à des centres métalliques. Nous nous sommes limités à des complexes d'or^I, palladium^{II}, platine^{II} et rhodium^I en vue de les utiliser ensuite dans des procédés catalytiques.

IV.1. Complexes de palladium^{II}

Nous avons d'abord testé la coordination du barrélène tridente **801** et bidente **803** à des centres métalliques de palladium^{II}. On forme en l'espace de quelques minutes à température ambiante le complexe cationique **804** et le complexe neutre **805** par substitution du COD sur [Pd(COD)Cl₂] dans le dichlorométhane (Équation 11). Pour la synthèse de **804**, on substitue également un atome de chlore qui joue désormais le rôle de contre ion. La structure symétrique de **804** a été établie par RMN ³¹P ; en effet, le spectre de **804** apparaît sous la forme d'un système classique AX₂. Les complexes **804** et **805** ont été complètement caractérisés par RMN et par analyse élémentaire.

La structure de **805** a été confirmée par diffraction aux rayons X (Figure 2). On constate que la géométrie du complexe est plan carré (P1-Pd-Cl1 = 176.26(4)° et S1-Pd-Cl2 = 172.87(3)°) comme on peut l'attendre pour des complexes [ML4] de configuration électronique d⁸. Nous avons comparé ces données structurales à d'autres complexes de palladium^{II} coordonnés par des ligands (P, S). La longueur des deux liaisons Pd-Cl est différente et reflète la différence de pouvoir σ -donneur entre le phosphore et le soufre (influence *trans*). Ainsi, la longueur Pd-Cl1 (*trans* à P) est plus longue que Pd-Cl2 (*trans* à P=S) (2.3570(8) *vs* 2.3158(8) Å). Ce résultat est relativement habituel et apparaît dans d'autres complexes de palladium. Par exemple, dans [PdCl₂{Cp₂Fe(PPh₂)(PPh₂=S)}], la longueur Pd-Cl *trans* au phosphore est plus longue que celle qui est située *trans* au ligand P=S ligand (2.3696(7) *vs* 2.3160(7) Å).^[17] On en déduit que le phosphore en tête de pont possède des propriétés électroniques (pouvoir σ -donneur) semblables à celles des arylphosphines.

Figure 2 : Structure du complexe 805. Les phényles portés par C4 et C5 sont omis par clarté. Sélection de distances (Å) et angles (°) : Pd1-P1 2.1753(8), Pd1-S1 2.3070(8), Pd1-Cl2 2.3158(8), Pd1-Cl1 2.3570(8), S1-P2 2.026(1), P1-C1 1.823(3), P1-C6 1.825(3), P1-C5 1.831(3), P2-C1 1.790(3), C2-C3 1.533(4), C3-C7 1.522(4), C3-C4 1.547(4) C4-C5 1.355(4) C6-C7 1.328(4), P1-Pd1-S1, 90.67(3), P1-Pd1-Cl2, 83.33(3), S1-Pd1-Cl1 88.47(3), Cl2-Pd1-Cl1 97.26(3), Σ angles P1 295.4.

Par ailleurs, on observe que la distance P1-Pd (2.1753(8) Å) est beaucoup plus courte que celle de complexes classiques palladium^{II} phosphine (2.23 Å en moyenne). La distance P1-Pd observée est à rapprocher de celle du complexe de palladium^{II} incorporant le ligand mixte (phosphaalcène, sulfure de phosphine) décrit par Yoshifugi et Ito (2.186(3) Å).^[18-20] Cela suggère que le barrélène est, tout comme les phosphaalcènes, un bon ligand accepteur.

Nous avons également synthétisé le complexe cationique $[Pd(\eta^3-C_3H_5)(803)][OTf]$ 806 à partir d'un demi équivalent de $[Pd(\eta^3-C_3H_5)Cl]_2$ et de AgOTf comme abstracteur de chlore (Équation 12). La présence d'AgOTf est primordiale, car le complexe est instable lorsque l'atome de chlore est laissé comme contre ion. Cette réaction forme un mélange de deux diastéréoisomères, mis en évidence par deux systèmes AB en RMN ³¹P, dans des proportions 45/55. Ces deux isomères résultent de l'orientation différente du ligand η^3 -allyl. Des expériences de RMN ³¹P à température variable (chauffage dans le toluène jusqu'à 90°C) ne montrent aucunement la rotation du ligand η^3 -allyl et l'inter-conversion entre les deux isomères. Le complexe 807 (contre ion NTf₂⁻ à la place de OTf pour 806) a été synthétisé de manière analogue avec AgNTf₂. On peut imaginer que les comportements de 806 et 807 vont être différents en catalyse en raison de la différence de pouvoir coordonnant du contre ion. 806 et 807 ont été complètement caractérisés par RMN et analyse élémentaire.

On vérifie la structure de **806** par diffraction aux rayons X (Figure 3). On constate que les deux diastéréoisomères co-cristallisent dans la maille dans un rapport 2/1. Les paramètres structuraux de **806** sont très semblables à ceux de **805** et à des complexes allyliques de

palladium qui incorporent des ligands P et P=S.^[19] Comme dans **805**, la longueur Pd-C8 (*trans* au phosphore) est plus longue que Pd-C10 (2.229(7) et 2.13(1) Å resp.); ceci reflète la meilleure influence *trans* du ligand phosphine.

Figure 3 : Structure du complexe 806. Les phényles portés par C4 et C5 sont omis par clarté. Sélection de distances (Å) et angles (°) : Pd1-C8 2.229(7), Pd1-C9 2.128(3), Pd1-C10 2.13(1), Pd1-P1 2.2541(5), Pd1-S1 2.3877(5), S1-P2 2.0090(6), P1-C1 1.826(2), P1-C6 1.828(2), P1-C5 1.842(2), P2-C1 1.793(2), C1-C2 1.338(2), C2-C3 1.541(2), C3-C7 1.523(3), C3-C4 1.545(2), C4-C5 1.346(2), C6-C7 1.336(2), C8-C9 1.441(7), C9-C10 1.45(1), P1-Pd1-S1 89.70(2), C10-Pd1-C8 69.9(3), C10-Pd1-P1 102.5(3), Σ angles P1 293.2.

IV.2. Complexes d'or¹, platine¹¹ et rhodium¹

Nous avons également coordonné le ligand bidente **803** à des précurseurs d'or^I, de platine^{II} et de rhodium^I. On obtient les complexes **808**, **809** et **810** par substitution de ligands (Équation 13). Ces complexes ont été complètement caractérisés par RMN et analyse élémentaire.

Les structures proposées pour les complexes **808** et **809** ont pu être vérifiées par diffraction aux rayons X (Figure 4).

Figure 4 : Les phényles portés par C4, C5 et P2 sont omis par clarté. a) Structure du complexe 808. Sélection de distances (Å) et angles (°) : Au1-P1 2.210(3), Au1-Cl1 2.270(3), S1-P2 1.953(4), P1-C1 1.83(1), P1-C6 1.83(1), P1-C5 1.76(2), P2-C1 1.79(1), C2-C3 1.58(2), C3-C7 1.51(2), C3-C4 1.56(1) C4-C5 1.33(2) C6-C7 1.31(2), P1-Au1-Cl1 172.6(1), Σ angles P1 294.3. b) Structure du complexe 809. Sélection de distances (Å) et angles (°) : Pt-P1 2.184(1), Pt-S1 2.313(1), Pt1-Cl2 2.334(1), Pt-Cl1 2.310(1), S1-P2 2.020(1), P1-C1 1.840(4), P1-C6 1.843(4), P1-C5 1.845(4), P2-C1 1.784(4), C2-C3 1.548(5), C3-C7 1.518(5), C3-C4 1.549(5), C4-C5 1.331(5), C6-C7 1.331(5), P1-Pt-S1 88.84(3), P1-Pt-Cl2 174.31 (3), S1-Pt-Cl1 91.71(3), S1-Pt-Cl1 175.76(4), Cl2-Pt-Cl1 91.34(4), Σ angles P1 293.7.

V. Applications en catalyse

Comme il a été mentionné dans l'introduction, il n'existe à ce jour qu'un seul exemple de complexes de phosphabarrélène utilisé en catalyse. Il s'agit du procédé d'hydroformylation d'alcènes au rhodium.^[8] Nous avons donc testé le complexe de rhodium **810** dans la réaction d'hydroformylation du styrène.

Nous avons également testé l'activité catalytique des complexes de palladium^{II} **804**, **806** et **807** dans deux procédés : la couplage de Suzuki-Miyaura et la substitution allylique.

V.1. Réaction d'hydroformylation

Aucune conversion n'est observée dans la réaction d'hydroformylation du styrène avec le complexe **810** (0.5 mol%) dans des conditions douces (Équation 14). Ce résultat est plutôt surprenant compte tenu des résultats observés par Breit *et al.* avec un complexe de rhodium-phosphabarrélène.^[8]

V.2. Réaction de Suzuki-Miyaura

Nous avons choisi la réaction de Suzuki-Miyaura car il est connu que le couplage d'halogénures d'aryles et d'acide phénylboronique nécessite des complexes de palladium^{II}

incorporant des phosphines qui présentent un caractère σ -donneur marqué et de fortes propriétés π -acceptrices (Équation 15).^[21-29]

Les complexes **804**, **806** et **807** sont d'excellents catalyseurs et l'on observe des TON très élevés (TON_{max} = 95000 pour **804**, 7 millions pour **806** et 960000 pour **807**) (Tableau 8). L'activité du complexe **806** est inférieure d'un facteur 10 par rapport au système tétraphosphine de palladium de Doucet *et al.* qui constitue avec un nombre de rotation de 96 millions le meilleur catalyseur avec les dérivés bromés.^{2, [30]}

Les complexes **804**, **806** et **807** demeurent néanmoins inactifs vis-à-vis du couplage de chloroarènes et ne peuvent se comparer au sytème di(t-butyl)biphénylphosphine de Buchwald.^[31]

Tableau 8: Réaction de couplage des bromoarènes et de l'acide phénylboronique catalysée par 804, 806 et 807. **Température : 110°C, solvant : toluène. [a] rendement déterminé par GC.**

Substrat	Complexe	Cat. [mol%]	Temps[h]	Rendement[%] ^[a]	TON	TOF[h ⁻¹]
∏ −Br	804	10 ⁻³	24	95	9.5x10 ⁴	3 958
── Br	806	10 ⁻³	2	90	9x10 ⁴	4 500
─── Br	807	10 ⁻⁴	24	96	9.6x10 ⁵	40 000
── Br	806	10 ⁻⁵	24	70	7x10 ⁶	291 667
─── Br	807	10 ⁻⁵	24	2	2x10 ⁵	8 333
O- Br	806	10 ⁻³	24	84	$8.4 x 10^4$	3 500
O- Br	806	10 ⁻⁴	24	24	2.4×10^5	10 000
O- Br	807	10 ⁻⁴	24	19	1.9x10 ⁵	7 917
0 Br	806	10 ⁻³	24	97	9.7×10^4	4 042
O Br	806	10 ⁻⁴	24	62	6.2×10^5	25 833
O →────────────────────────────────────	807	10 ⁻⁴	24	2	2.0×10^5	8 333
Br	806	10 ⁻³	24	63	6.3×10^4	2 625
Br	806	10 ⁻⁴	24	28	2.8x10 ⁵	11 667
Br	807	10 ⁻⁴	24	17	1.7x10 ⁵	7 083

² Si l'on raisonne en terme de TOF, l'activité de **806** est également inférieure à celle du complexe de Doucet *et al.* (TOF_{max} = 0.3 million pour **806** *vs* 4.8 millions), mais demeure extrêmement intéressante.

V.3. Allylation d'amine

Le procédé d'allylation d'amine forme diverses amines allyliques à partir d'alcool allylique et d'amines primaires. Il a été décrit en 2002 par Yoshifuji et Ozawa.^[32, 33] Contrairement à la substitution allylique classique de Tsuji-Trost,^[34-38] cette méthode ne nécessite pas l'activation de la fonction OH en dérivé carboxylique, carbonate ou encore phosphate. Nous avons choisi de tester cette réaction avec les complexes **806** et **807** car des résultats très encourageants avaient été obtenus avec un complexe cationique de [Pd(η^3 -allyl)] et un ligand mixte (phosphaalcène, sulfure de phosphine) (Équation 16).^[19]

Le mécanisme de la réaction fait intervenir (Schéma 12) : i) l'attaque nucléophile de l'amine sur l'allyl, ii) l'addition oxydante de l'amine, iii) l'élimination de l'amine allylique et la coordination de l'alcool allylique, iv) le transfert de l'hydrogène sur la fonction alcool, v) l'élimination d'eau reforme l'espèce active.³

Les résultats de l'allylation de l'aniline sont présentés Tableau 9. Dans une première série d'expériences (conditions de Yoshifuji : toluène, température ambiante, présence de MgSO₄), on constate que le complexe **806** est moins réactif que le système de Yoshifuji, mais qu'il se forme en plus du composé de monoallylation une quantité non négligeable de produit

³ Le mécanisme proposé est à l'étude au laboratoire.

de bis-allylamine. Le taux de conversion de la réaction est peu différent lorsque l'on emploie du THF en l'absence de MgSO₄. Ainsi par exemple, avec 2% de **806**, l'aniline réagit quantitativement avec l'alcool allylique et forme l'allylaniline (60%) et la bis-allylaniline (40%) en 24h à 70°C. La formation de produit de bis-allylation ne peut être évitée quelles que soient les conditions expérimentales (rapport des réactifs, solvant, température).

Tableau 9 : Allylation de l'aniline catalysée par 806 (2%mol). Temps : 24h. [a] Rendement déterminé par GC. [b] réaction réalisée à température ambiante l'été, soit 30°C. [c] la faible solubilité de 806 permet d'expliquer l'incohérence apparente de ces résultats.

Catalyseur	Solvant	Temp.[°C]	Conversion[%] ^[a]	monoallylation[%] ^[a]	diallylation[%] ^[a]
Yoshifuji	Toluène/MgSO ₄	20	63	60	3
806	Toluène/MgSO ₄	30 ^{[b][c]}	77	66	9
806	Toluène/MgSO ₄	40 ^[c]	57	53	4
806	THF	20	65	60	5
806	THF	45	100	60	40

Cette observation nous a poussés à étudier la réaction d'allylation d'amines secondaires (Équation 17). Cette dernière a été peu explorée et reste *a priori* une réaction difficile. On peut mentionner, par exemple, le système $[Ni(COD)_2]/dppb (0.5\%) (dppb = 1,2-bis-diphénylphosphinobutane) de Mortreux$ *et al.* $pour la monoallylation de la diéthylamine^[39] et l'emploi de <math>[PdL_4]$ (5%) en présence de BF₃ pour l'allylation d'amines secondaires et la bis allylation d'amines primaires.^[40]

OH + $R^1 R^2 NH$ $\xrightarrow{\text{806 ou 807 (2\%)}}$ $\xrightarrow{\text{R}^1}$ $\stackrel{\text{N}}{\xrightarrow{\text{N}}} R^2$ THF, 70°C, 24 h Équation 17

Les complexes **806** et **807** (2% mol) catalysent efficacement cette réaction avec des rendements compris entre 57 et 96% pour **806** et entre 52 et 99% pour **807** (Tableau 10). La présence d'un contre ion moins coordonnant (NTf₂ pour **807** au lieu de OTf pour **806**) ne change pas l'ordre de grandeur du rendement car aucune étape du cycle catalytique ne fait intervenir la coordination du contre ion au centre métallique.

Tableau 10 : Allylation d'amines secondaires catalysée par 806 et 807 (2%mol). Solvant : THF, temps :24h, température : 70°C. [a] Rendement déterminé par GC.

Substrat	Catalyseur	Rendement[%] ^[a]
N-méthylaniline	806	85
N-méthylaniline	807	-
N, N-dibenzylamine	806	57
N, N-dibenzylamine	807	52
Morpholine	806	96
Morpholine	807	99

V.4. Comparaison avec des complexes de la dppmS

Nous avons voulu vérifier le rôle de l'atome de phosphore en tête de pont du phosphabarrélène dans les réactions catalytiques. Pour cela, nous avons préparé le complexe cationique de palladium allyl de la dppmS **811** (monosulfure du diphénylphosphinométhane). La synthèse est semblable à celle de **806** et **807** : **811** réagit avec un demi équivalent de $[Pd(\eta^3-allyl)Cl]_2$ en présence de AgOTf comme abstracteur de chlore et l'on forme le complexe **812**. Ce dernier a été caractérisé par RMN et analyse élémentaire.

Sa structure a été confirmée par étude aux rayons X (Figure 5). On retrouve comme précédemment l'influence *trans* de la phosphine sur la longueur des liaisons Pd-C : la distance Pd-C4 (*trans* à P) est plus longue que Pd-C2 (*trans* à P=S) (2.192(3) vs 2.115(3) Å).

Figure 5 : Structure du complexe 812. Les phényles portés par P1 et P2 sont omis par clarté. Sélection de distances (Å) et angles (°) : Pd1-C2 2.115(3), Pd1-C3 2.155(4), Pd1-C4 2.192(3), Pd1-P1 2.2828(8), Pd1-S1 2.364(1), S1-P2 2.005(1), P1-C1 1.854(3), P2-C1 1.805(1), P1-Pd1-S1 95.74(3), C2-Pd1-C4 67.9(2), C2-Pd1-P1 98.3(1), C4-Pd1-S1 97.1(1).

Le complexe **812** a ensuite été testé pour les deux réactions catalytiques mentionnées ci-dessus. Pour le couplage de Susuki-Miyaura, la réaction du bromobenzène et de l'acide phénylboronique conduit exclusivement à la formation de benzène (70% avec un taux de catalyseur **812** de 0.5% mol) et pas au biphényle. De plus, aucun produit de couplage ne se forme lors de l'allylation d'amines primaires ou secondaires. Ces deux exemples montrent à quel point la nature électronique du phosphore en tête de pont du barrélène et la rigidité du système sont des facteurs importants en catalyse.

VI. Conclusion

Nous avons montré dans ce chapitre que les phosphinines **SP** et **SPS** pouvaient être utilisées comme précurseurs de 1-phosphabarrélènes et conduire à des ligands dans lesquels l'atome de phosphore du cycle est à la fois un bon σ -donneur et un excellent σ -accepteur.

Les barrélènes ont pu être complexés à des précurseurs métalliques d'or^I, de palladium^{II}, de platine^{II} et de rhodium^I. Les complexes de palladium^{II} se sont révélés

d'excellents catalyseurs notamment pour le couplage de Suzuki-Miyaura avec les bromoarènes (TON allant jusqu'à 7 millions) et pour l'allylation d'amines secondaires.

Des calculs théoriques ont permis d'expliquer la réactivité comparée des phosphinines **SP** et **SPS** vis-à-vis du butyn-1,4-dioate de diméthyle lors de la réaction de cycloaddition. Ils expliquent également l'absence de réaction que l'on constate expérimentalement entre les phosphinines **SP** et **SPS** et le oct-4-yne.

VII. Perspectives

Une ouverture possible de ce travail consiste à étendre la synthèse de ces 1phosphabarrélènes. Nous disposons en effet au laboratoire d'une vaste gamme de phosphinines fonctionnalisées et il est relativement aisé de transformer ces molécules en phosphabarrélènes correspondants au moyen de réactions de type Diels Alder ou bien en faisant réagir des précurseurs de type benzyne (Schéma 13).^[8, 41, 42]

Schéma 13

Ce type de synthèse peut s'appliquer aussi bien à des ligands monodentes qu'à des ligand bidentes et former un ligand énantiomériquement pur (Schéma 14).

Schéma 14

Enfin, la synthèse de phosphabarrélènes chiraux peut également être envisagée à partir de la phosphinine énantiomériquement pure décrite dans les perspectives du chapitre 7. On

forme alors un mélange de deux diastéréoisomères qui pourraient éventuellement être séparés (Équation 19).

Un autre ligand intéressant est le phosphabarrélène C comportant trois unités butyn-1,4-dioate de diméthyle. C devrait se synthétiser facilement à partir de la phosphinine silylée D en position 2 et 4 et d'un excès d'alcyne (Équation 20). La présence de six groupes esters sur C confèrerait à ce ligand un fort pouvoir accepteur. De plus, la saponification des groupes esters conduirait à un ligand hydrosoluble.

Les ligands décrits ci-dessus doivent ensuite être testés dans des procédés catalytiques (réaction d'hydroformylation des oléfines par exemple). Enfin, le mécanisme proposé pour la réaction catalytique d'allylation d'amine doit être validé par calculs DFT (Schéma 12).

Il pourrait être intéressant d'estimer de manière théorique les propriétés σ -donneur et σ -accepteur des barrélènes. Dans le cas de la rétrodonation, le pouvoir σ -accepteur d'un phosphabarrélène dépend de la hauteur de sa LUMO. Si l'on a une liaison P-X, la LUMO sera d'autant plus basse que X est électronégatif (Schéma 15). Pour le phosphabarrélène, l'atome de phosphore est substitué par des groupes vinyles voire des groupes vinyles substitués par des esters ce qui rend le phosphabarrélène un excellent accepteur.

Le moyen le plus simple de mesurer le pouvoir σ -donneur d'une phosphine revient à comparer l'énergie de sa HOMO qui décrit la paire libre de l'atome de phosphore.^[43] Sa hauteur est directement liée à la pyramidalité de l'atome de phosphore : une phosphine est d'autant plus basique que l'angle au phosphore est important (Schéma 15).^[44] On peut *a priori* prévoir que le phosphabarrélène est un meilleur σ -donneur que le phosphanorbornène car l'angle au phosphore est plus ouvert par contrainte géométrique (Schéma 16). Néanmoins, la comparaison des niveaux d'énergie de la HOMO d'une série de phosphines et de phosphabarrélènes donnerait de précieux renseignements.

Schéma 16

VIII.Références

- [1] G. Märkl, F. Lieb, Angew. Chem. Int. Ed. 1968, 7, 733.
- [2] A. J. Ashe, M. D. Gordon, J. Am. Chem. Soc. 1972, 94, 7596.
- [3] J. M. Alcaraz, F. Mathey, J. Chem. Soc., Chem. Commun. 1984, 508.
- [4] G. Märkl, H. J. Beckh, Tetrahedron Lett. 1987, 28, 3475.
- [5] J. M. Alcaraz, F. Mathey, Tetrahedron Lett. 1984, 25, 207.
- [6] S. Welfelé, N. Mézailles, N. Maigrot, L. Ricard, F. Mathey, P. Le Floch, New J. Chem. 2001, 25, 1264.
- [7] N. Mézailles, L. Ricard, F. Mathey, P. Le Floch, Eur. J. Inorg. Chem. 1999, 2233.
- [8] B. Breit, E. Fuchs, Chem. Commun. 2004, 6, 694.
- [9] A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev. 1988, 88, 899.
- [10] A. D. Becke, *Phys. Rev. A* **1988**, *38*, 3098.
- [11] C. Lee, W. Yang, R. G. Parr, Phys. Rev. A 1988, B 37, 785.
- [12] J. P. Perdew, *Phys. Rev. B* . **1986**, *33*, 8822.
- [13] T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. v. R. Schleyer, J. Comput. Chem. 1983, 4, 294.
- [14] R. G. Parr, W. Yang, *Density Functional Theory of Atoms and Molecules*, Oxford University Press, Oxford, U. K., **1989**.
- [15] T. Ziegler, Chem. Rev. 1991, 91, 651.
- [16] R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 1980, 72, 650.
- [17] R. Broussier, E. Bentabet, M. Laly, P. Richard, L. G. Kuz'mina, P. Serp, N. Wheatley, P.
- Kalck, B. Gautheron, J. Organomet. Chem. 2000, 613, 77.
- [18] S. Ito, H. Liang, M. Yoshifuji, Chem. Commun. 2003, 398.
- [19] H. Z. Liang, S. Ito, M. Yoshifuji, Org. Lett. 2004, 6, 425.
- [20] H. Liang, S. Ito, M. Yoshifuji, Org. Biomol. Chem. 2003, 1, 3054.
- [21] M. an der Heiden, H. Plenio, Chem. Eur. J. 2004, 10, 1789.
- [22] R. B. Bedford, C. S. J. Cazin, S. J. Coles, T. Gelbrich, M. B. Hursthouse, V. J. M. Scordia, *J. Chem. Soc., Dalton Trans.* **2003**, 3350.
- [23] I. Kondolff, H. Doucet, M. Santelli, *Tetrahedron* 2004, 60, 3813.
- [24] N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457.
- [25] N. Miyaura, Top. Curr. Chem. 2002, 219, 11.
- [26] N. Miyaura, Angew. Chem. Int. Ed. 2004, 43, 2201.
- [27] O. Navarro, R. A. Kelly, S. P. Nolan, J. Am. Chem. Soc. 2003, 125, 16194.
- [28] A. Suzuki, J. Organomet. Chem. 1999, 576, 147.
- [29] S. D. Walker, T. E. Barder, J. R. Martinelli, S. L. Buchwald, Angew. Chem. Int. Ed. 2004, 43, 1871.
- [30] M. Feuerstein, D. Laurenti, H. Doucet, M. Santelli, Synthesis 2001, 15, 2320.
- [31] J. P. Wolfe, S. L. Buchwald, Angew. Chem. Int. Ed. 1999, 38, 2413.
- [32] F. Ozawa, H. Okamoto, S. Kawagishi, S. Yamamoto, T. Minami, M. Yoshifuji, J. Am. Chem. Soc. 2002, 124, 10968.
- [33] F. Ozawa, T. Ishiyama, S. Yamamoto, S. Kawagishi, H. Murakami, M. Yoshifuji, *Organometallics* **2004**, *23*, 1698.
- [34] S. A. Godleski, dans *Comprehensive Organic Synthesis, Vol. 3* (Eds.: B. M. Trost, I. Fleming), Pergamon Press, New York, **1991**, p. 535.
- [35] J. A. Davis, dans *Comprehensive Organometallic Chemistry II, Vol. 9* (Eds.: E. W. Abel, F. G. A. Stone, G. Wilkinson), Pergamon, Oxford, **1995**, p. 291.
- [36] J. Tsuji, Transition Metal Reagents and Catalysts, Wiley, New York, 2000.
- [37] B. M. Trost, Science 1991, 254, 1471.

[38] B. M. Trost, Angew. Chem. Int. Ed. 1995, 34, 259.

- [39] H. Bricout, J.-F. Carpentier, A. Mortreux, J. Mol. Catal. A 1998, 136, 243.
- [40] M. Kimura, M. Futamata, K. Shibata, Y. Tamaru, Chem. Commun. 2003, 234.
- [41] Y. Himeshima, T. Sonoda, H. Kobayashi, Chem. Lett. 1983, 1211.
- [42] B. Wang, B. Mu, D. Chen, S. Xu, X. Zhou, Organometallics 2004, 23, 6225.
- [43] H. M. Senn, D. V. Deubel, P. E. Blochl, A. Togni, G. Frenking, *Theochem-J. Mol. Struct.* **2000**, *506*, 233.

[44] Y. Jean, Volatron, F. Burdett, dans *An introduction to molecular Orbital* (Ed.: J. Burdett), Oxford University Press, New York, **1993**.

Conclusion

Partant du constat que les phosphinines sont des ligands fragiles des métaux de transition lors d'applications catalytiques, nous avons développé deux types de ligands incorporant le squelette phosphinine et obtenu d'excellents résultats tant en chimie de coordination qu'en catalyse.

Nous avons montré qu'il est possible de synthétiser une vaste gamme d'anion λ^4 phosphinine à partir du ligand tridente **SPS**. Nous avons étudié le comportement de ces derniers en présence de métaux de transition et prouvé que la présence de deux bras ancillaires entraîne une coordination de type η^1 . L'existence de site d'attache de nature électronique différente (P,S) a permis de développer une chimie de coordination très riche avec des complexes allant de l'or¹ au rhénium^{1,1} Deux autres voies de synthèse de complexes du groupe 10 ont aussi été développées à partir de λ^5 -phosphinines et directement à partir du ligand **SPS**.

Équation 1

D'un point de vue électronique, la nature du substituant présent sur l'atome de phosphore central modifie considérablement la réactivité du complexe formé. Nous avons également montré que l'anion $[SPS^{n-Bu}]^-$, ligand à six électrons, était un analogue de ligand cyclopentadiényle et que sa richesse électronique est supérieure à celle de l'anion Cp* (Schéma 1).

L'obtention de complexes de ruthénium^{II}, rhodium^{II}, rhodium^{III} et palladium^{II} bidentes à squelette λ^4 -phosphinine illustre les nouvelles stratégies de synthèse que nous avons développées (Équation 2).

¹ Et même jusqu'à l'uranium^{IV} (Thérèse Arliguie, résultats non publiés)

En termes de catalyse, les complexes bidentes et tridente de palladium^{II} incorporant des anions λ^4 -phosphinine se sont révélés bien adaptés pour les réactions de Miyaura (couplage d'halogènoarène et de borane) et de Suzuki-Miyaura (couplage d'halogènoarène et d'acide phénylboronique) et font parti pour la première réaction des meilleurs catalyseurs à l'heure actuelle.

Des complexes de rhodium^I et d'iridium^I sont capables de fixer ou d'activer de petites molécules (CO, O_2 , CS_2 , SO_2 , MeI, H_2 , borane) et nous ouvrent de nombreuses perspectives d'application. Des calculs DFT ont permis d'expliquer la sélectivité observée (Équation 3).

Enfin, la synthèse de structure polycyclique de type phosphabarrélène a permis de synthétiser une nouvelle classe de ligands tridente et bidente pour lesquels les complexes de palladium^{II} sont extrêmement actifs pour la réaction de Suzuki-Miyaura et l'allylation d'amines secondaires (Schéma 2).

Schéma 2

Chapitre 9 : Partie expérimentale

Les spectres RMN ont été enregistrés sur un spectromètre Brücker 300 Advance opérant à 300 MHz pour le ¹H, 96.3 MHz pour le ¹¹B, 75.5 MHz pour le ¹³C et 121.5 MHz ³¹P. Les déplacements chimiques positifs vers les champs faibles sont exprimés en partie par million (ppm) par rapport au TMS (référence interne) pour le ¹H et le ¹³C, par rapport à BF₃OEt₂ (référence externe) pour ¹¹B et par rapport à H₃PO₄ (référence externe) pour le ³¹P. Les constantes de couplage sont exprimées en Hertz. Les abréviations suivantes sont utilisées pour décrire les spectres RMN : s (singulet), d (doublet), t (triplet), q (quadruplet), quint (quintuplet), m (multiplet), dd (doublet de doublet), 1 (large)... La simulation de certains spectres RMN ³¹P a été réalisée à l'aide du programme gRMN.¹

Les microanalyses ont été effectuées au service de microanalyse du CNRS à Gif-sur-Yvette. Les spectres IR ont été enregistrés sur un Perkins Elmer 297. On emploie les abréviations suivantes : f (fort), m (moyen), l (large), p (petit).

Les spectres de masses en impact électronique (IE) et en ionisation chimique avec du NH₃ (IC, NH₃) ont été effectués en introduction directe à 70 eV sur un spectromètre HP 5989B couplé à une chromatographie en phase gazeuse HP 5890.

Les spectres RPE ont été enregistrés sur un spectromètre Brücker 200 et un spectromètre Brücker ESP 300 (X-bet) équipé d'un système de température variable. La réduction électrochimique a été réalisée, *in situ*, dans la cavité RPE au moyen d'une cellule électrolytique équipée d'électrodes de platines et d'un potentiostat EGG PAR 362. L'électrolyte utilisé est $[N(n-Bu)_4][PF_6]$. L'optimisation et la simulation des spectres en solution gelée ont été réalisées par un programme mettant en oeuvre l'algorithme de Levenberg-Marquardt.²

La voltamétrie cyclique des complexes 442, 445, 613, 616, 619, 620, 622 a été réalisée avec un analyseur électrochimique digital DEA-I (Radiometer Coppenhagen) qui inclut un potentiostat DEA 332. L'électrode de travail est un disque d'or de diamètre 0.5 mm ou 0.125 mm, l'électrode de référence est une électrode de calomel saturé (ECS) et la contre électrode est une spirale de platine avec une surface de *ca*. 1 cm². L'électrode de référence est séparée de la solution du produit à étudier dans une solution de [*n*-Bu₄N][BF₄] (0.3 M) dans le THF (12 mL) par un pont (3 mL) rempli avec une solution identique.

La conversion photochimique de **620** (*fac*) en **621** (*mer*) a été réalisée par irradiation d'échantillons (10^{-3} - 10^{-2} M) pendant une minute avec une lampe au mercure haute pression (200W, Oriel, Model 6137) équipée d'un filtre à 460 nm. Le rendement quantique de la photoisomérisation réalisée dans le THF à la longueur d'onde $\lambda_{exc} = 460$ nm et à 293K a été mesuré avec un spectrofluorimètre (Spex Fluorolog 1681, lampe au xénon de pression moyenne). Le flux incident à la longueur d'onde $\lambda_{exc} = 460$ nm, I₀ (2.00 x 10-9 einstein.s⁻¹), a

¹ gRMN v4.1.0 de Peter H.M. Budzelaar IvorySoft 1995.

² E. Soulié, T. Berclaz, M. Gedefroy, *Computer et Chemistry*, dans AIP Conference Proceedings 330, F. Bernardi, J.-L. Rivail, **1996**, p 627.

été mesuré avec un actinomètre Aberchrome 540P,³ fourni par Aberchromics Ltd., (Pays de Galles, Royaume Uni). Le rendement quantique a été calculé suivant l'équation⁴ :

$$\ln\frac{A-A_{\infty}}{A_0-A_{\infty}} = \frac{\Phi I_0 \varepsilon l}{V} \int_0^t \frac{1-10^{-A}}{A} dt$$

A, A_0 et A_∞ représentent l'absorbance de l'échantillon à la longueur d'onde λ_{exc} à l'instant t, avant irradiation et après photoisomérisation totale. ε est le coefficient d'extinction molaire du composé **620** avant irradiation à la longueur d'onde λ_{exc} (8100 M⁻¹ cm⁻¹). Le rendement quantique Φ est la moyenne d'irradiations réalisée au intervalles $\Delta t = t_{i+1} - t_i$ avec un modification maximale de 5% pour l'absorbance. L'intégrale ci-dessus a été approximée par :

$$\frac{t_{i+1} - t_i}{2} \left(\frac{1 - 10^{-A_i}}{A_i} + \frac{1 - 10^{-A_{i+1}}}{A_{i+1}} \right)$$

Le rendement quantique Φ est la moyenne de trois mesures.

Les réactions ont été effectuées, sauf mention particulière, sous atmosphère d'azote ou d'argon. Le tétrahydrofurane, l'éther, l'hexane sont distillés sur sodium/benzophénone. Le toluène est obtenu anhydre par deux distillations successives sur sodium. Le dichlorométhane et la triéthylamine sont obtenus anhydres par distillation sur P_2O_5 . L'acétonitrile et le méthanol sont séchés par distillation sur CaH_2 . On emploie de la célite séchée à l'étuve pour les filtrations et un gel de silice de granulométrie 0.063-0.200 mm pour les séparations chromatographiques. Les réactifs sont commerciaux ou préparés selon les méthodes décrites dans la littérature.

I. Précurseurs métalliques

Les précurseurs métalliques employés ont été synthétisés selon les modes opératoires ci-dessous. Les autres sont commerciaux (Strem Chemicals).

[AuCl.SMe₂]: R. Uson, A. Laguma, dans *Organometallic Syntheses, Vol. 3* (Eds.: R. B. King, J. Eisch), Elsevier Science, Amsterdam, **1986**, p. 324.

[Au(PPh₃)Cl] : P. Braunstein, H. Lehner, D. Matt, dans *Inorganic Syntheses, Vol. 27* (Ed.: A.P. Grinsberg), John Wiley & Sons, Inc, New York, **1990**, p. 218.

[Ni(dme)Br₂]: R. B. King, dans *Organometallic Syntheses Academic, Vol. 1*, New York, 1965, p. 71.

[Pd(COD)Cl₂]: D. Drew, J. R. Doyle, dans *Inorganic Syntheses, Vol. 28* (Ed.: R. J. Angelici), John Wiley & Sons, Inc, New York, **1990**, p. 348.

[Pd(dba)₂]: M. F. Rettig, P. M. Maitlis, F.A. Cotton, T.R. Webb, dans *Inorganic Syntheses, Vol. 28* (Ed.: R. J. Angelici), John Wiley & Sons, Inc, New York, **1990**, p. 110.

[Pt(COD)Cl₂]: J. X. McDermott, J. F. White, J. F. Whitesides, J. Am. Chem. Soc. 1976, 98, 6521.

[Co(PPh₃)₃Cl]: Y. Wakatsuki, H. Yamasaki, E. Lindner, A. Bosamle, dans *Inorganic Syntheses, Vol. 21* (Ed.: H.D. Kaesz), John Wiley & Sons, Inc, New York, **1989**, p. 190.

[Rh(COD)Cl]₂: G. Giordano, R.H. Crabtree, R.M. Heintz, D. Forster, D.E. Morris, dans *Inorganic Syntheses, Vol. 28* (Ed.: R. J. Angelici), John Wiley & Sons, Inc, New York, **1990**, p. 88.

³ H. G. Heller, J. Chem. Soc., Dalton Trans. 1981, 341.

⁴ D. M. Manuta, A. J. Lees, *Inorg. Chem.* 1986, 25, 1354

[Rh(COE)₂Cl]₂: A. van der Ent, A.L. Onderdelinden, R.A. Schumm, dans *Inorganic Syntheses, Vol. 14* (Ed.: A. Wold, J.K. Ruff), John Wiley & Sons, Inc, New York, **1973**, p. 93. [Rh(thf)₃Cl₃]: E. A. Allen, W. Wilkinson, *J. Chem. Soc., Dalton Trans.* **1972**, 613.

[Ir(COE)₂Cl]₂: J. L. Herde, J. C. Lambert, C. V. Senoff, M. A. Cushing, dans *Inorganic Syntheses, Vol. 15* (Ed.: G. W. Parshall), R. E. Krieger Publishing Company, Malabar, Floride, **1982**, p. 19.

[FeCp₂][BF₄]: D. N. Hendrickson, Y. S. Sohn, H. B. Gray, Inorg. Chem. 1971, 10, 1559.

[Fe(CO)₂(Cp)I] : R.B. King, F.G.A. Stone, W.L. Jolly, G. Austin, W. Covey, D. Rabinovich, H. Steinberg, R. Tsugawa, dans *Inorganic Syntheses, Vol.* 7 (Ed.: J. Kleinberg), John Wiley & Sons, Inc, New York, MacGraw-Hill Book Company, Inc, **1963**, p. 110.

[Ru(Cp*)Cl]₄: P. J. Fagan, M. D. Ward, J. C. Calabrese, *J. Am. Chem. Soc.* **1989**, *111*, 1698. [Ru(cymène)Cl₂]₂: M. A. Bennett, T. N. Huang, T. W. Matheson, A. K. Smith, dans *Inorganic Syntheses, Vol. 21* (Ed.: J.P. Fackler, Jr.), John Wiley & Sons, Inc, New York, **1982**, p. 74.

 $[Ru(\eta^6-C_6H_6)Cl_2]_2$: procédure identique à celle de $[Ru(cymène)Cl_2]_2$ avec du 1,3-cyclohexadiène.

[Mn(CO)₅Cl]: M. H. Quick, R. J. Angelici, J. R. Kenneth, A. Shaver, dans *Inorganic Syntheses, Vol. 28* (Ed.: R. J. Angelici), John Wiley & Sons, Inc, New York, **1990**, p. 156.

[Re(CO)₅Cl] : S. P. Schmidt, W. C. Trogler, F. Basolo, M. A. Urbancic, J. R. Shapley, dans *Inorganic Syntheses, Vol. 28* (Ed.: R. J. Angelici), John Wiley & Sons, Inc, New York, **1990**, p. 162.

II. Chapitre 2

1,3,2-diazaphosphinine 201

La synthèse de **201**, telle que décrite en 1996 (N. Avarvari, P. Le Floch, F. Mathey *J. Am. Chem. Soc.* **1996**, *118*, 11978.), a été simplifiée et son rendement amélioré. Cette réaction est réalisée dans une verrerie fumée (schlenck, fritté) à cause de la sensibilité de $[TiCp_2Me_2]$ à la lumière.

On ajoute une solution de MeLi dans l'éther (25 mL, C = 1.6 M dans l'éther, 40 mmol) à une solution de [TiCp₂Cl₂] (5 g, 20 mmol) dans l'hexane (150 mL) à -78°C. Après retour à température ambiante et agitation pendant 4h, on vérifie la disparition de [TiCp₂Cl₂] et la formation de [TiCp₂Me₂] par RMN ¹H, puis on évapore 1/4 de la solution. LiCl est filtré par cannulation vers un schlenck surmonté d'un fritté (fumé) recouvert de célite. La solution est rincée à l'hexane (3 x 25 mL). Après évaporation de la solution, on ajoute le pivalonitrile (7.5 mL), puis 120 mL de toluène à température ambiante. On chauffe la solution pendant 72h à 80°C. On prélève un aliquot de la solution et la formation de **a** est vérifiée par RMN ¹H. Après retour à température ambiante, on ajoute successivement la triéthylamine (15 mL, 108 mmol) et la trichlorophosphine (1.75 mL, 20 mmol) à 0°C. La solution est ensuite chauffée à 60°C pendant 2h. On vérifie en ³¹P RMN qu'il ne subsiste aucun pic dans la zone 200-240 ppm. On filtre enfin la solution sur fritté et on rince avec du toluène (3 x 25 mL). La concentration de la solution est dosée par ³¹P RMN avec PPh₃ (10 mg, 0.038 mmol) pour 0.5 mL de la solution. Rendement : C = 10⁻⁵ mol.mL⁻¹ (16 mmol, 80%).

 $[TiCp_2Cl_2] : RMN {}^{1}H (CDCl_3) : \delta 6.15 (s, 10H, Cp). \\ [TiCp_2Me_2] : RMN {}^{1}H (CDCl_3) : \delta -0.15 (s, 6H, Me), 6.06 (s, 10H, Cp). \\ a : RMN {}^{1}H (CDCl_3) : \delta 0.99 (s, 9H, t-Bu), 1.08 (s, 9H, t-Bu), 4.60 (s, 1H, H_4), 5.85 (s, 10H, Cp), 6.12 (s, 1H, NH). \\ 201 : RMN {}^{31}P (Toluène) : \delta 269.0 (s) \\ \end{cases}$

Alcyne 202

Ph-PPh2

On ajoute une solution de *n*-BuLi dans l'hexane (62.4 mL, C = 1.6 M, 0.1 mol) à une solution de phénylacétylène (11 mL, 0.1 mol) dans le THF (250 mL) à -78°C. Après retour à température ambiante, on agite la solution pendant 1h. On ajoute ensuite la chlorodiphénylphosphine (18 mL, 0.1 mol) à la solution précédente à 0°C. Après retour à température ambiante et agitation pendant 1h, on ajoute 2g de célite et l'on tire à sec la solution. La poudre obtenue est ensuite chromatographiée sur gel de silice (colonne de 7 cm de diamètre, 15 cm de silice) et éluée avec 0.5 L d'hexane, 1 L d'hexane/toluène (70/30), 1 L d'hexane/toluène (50/50), 1L de CH₂Cl₂. Après évaporation des solvants, on obtient une poudre jaune pâle. L'éventuelle présence de phosphine oxyde (RMN ³¹P (CH₂Cl₂) : δ 7.2 ppm) peut être éliminée par lavage avec EtOH. Rendement : 24.0 g (84%). RMN ³¹P (CH₂Cl₂) : δ -32.6 (s).

Pour une caractérisation complète, voir : A. Hengefeld, R. Nast Chem. Ber. 1983, 116, 2035.

Phosphinine 204

La synthèse proposée est plus simple à mettre en œuvre et plus efficace que celle qui a déjà été décrite dans la littérature (N. Avarvari, P. Le Floch, F. Mathey J. Am. Chem. Soc. 1996, 118, 11978.).

Une solution de **201** dans le toluène (256 mL, C = 6.82×10^{-5} mmol.mL⁻¹, 17.5 mmol) et de **202** (10 g, 35 mmol) est chauffée à 120°C pendant 48h. On observe intermédiairement la formation de **203** en RMN ³¹P. Après retour à température ambiante, on concentre la solution de moitié et on rince successivement la mélasse obtenue par du MeOH (3 x 15 mL) et du toluène (3 x 15 mL) jusqu'à obtenir une poudre beige. Après évaporation du solvant, on obtient une poudre beige, mélange de deux phosphinines ($\alpha\beta/\alpha_2 = 5/95$). La séparation des deux phosphinines est réalisée par filtration grâce à leur différence de solubilité dans le THF (**PPP-\alpha\beta** n'est pas soluble dans le THF). Des cristaux analysables par diffraction aux rayons X ont pu être obtenus par diffusion d'hexane dans une solution de **PPP-\alpha_2** dans le CH₂Cl₂. Rendement : 16.6 g (77%).

203 : RMN ³¹P (toluène) : δ -19.1 (d, ²*J* (P-P) = 10.0, PPh₂), 289.5 (d, ²*J* (P-P) = 10.0, P_A). **PPP-** $\alpha\beta$: RMN ³¹P (toluène) : δ -18.2 (d, ²*J* (P-P) = 20.7, P_XPh₂), -14.5 (s, P_YPh₂), 225.1 (d, ²*J* (P-P) = 20.7, P_A) **PPP-** α_2 : RMN ³¹P (CDCl₃) : δ -10.7 (d, ²*J* (P-P) = 22.0, PPh₂), 254.7 (d, ²*J* (P-P) = 22.0, P_A). Pour une caractérisation complète de **PPP-\alpha_2**, voir : N. Avarvari, P. Le Floch, F. Mathey J. *Am. Chem. Soc.* **1996**, *118*, 11978.

Phosphinine 205 ou SPS

On chauffe une solution de **PPP-\alpha_2** (4 g, 6.5 mmol) et de soufre élémentaire (0.415 g, 13 mmol) dans le toluène (50 mL) pendant 12h à 120°. Après concentration de la solution de moitié, le mélange est filtré et un solide blanc se dépose sur le fritté. Ce dernier est lavé au toluène (3 x 10 mL) puis à l'éther (2 x 10 mL). Après évaporation, on obtient **SPS** sous la forme d'une poudre blanche. Des cristaux analysables par diffraction aux rayons X ont pu être obtenus par diffusion d'hexane dans une solution de **SPS** dans le CH₂Cl₂. Rendement : 4.23 g (96 %).

Analyse élémentaire pour $[C_{41}H_{31}P_3S_2]$ (680.7) : calculé : C 72.34, H 4.59 ; trouvé : C 72.08, H 4.48.

SM (CH₂Cl₂) m/z 681 (M)⁺, 464 (M-PPh₂S)⁺.

RMN ¹H (CDCl₃): δ 6.94 (t, ⁴J (H-P_X) = 3.0, 1H, H₄), 6.96-7.76 (m, 30H, H de Ph).

RMN ¹³C (CDCl₃): δ 127.1-131.6 (m, CH de Ph), 132.5 (dd, ¹*J* (C-P_X) = 48.9, ³*J* (C-P_A) = 5.4, C de P_XPh₂), 133.0-133.3 (m, CH de Ph), 140.2 (t, ³*J*(C-P_X) = 4.0, C₄H), 140.6 (m, C_{3,5}), 154.3 (d, ³*J*(C-P_A) = 9.0, C de Ph), 159.7 (ABB'X, ddd, ¹*J*(C-P_A) = 85.3, ¹*J*(C-P_B) = 66.2, ³*J*(C-P_B) = 12.4, C_{2,6}).

RMN ³¹P (CDCl₃) : δ 43.4 (d, ²J (P-P) = 115.0, P_XPh₂) 253.1 (t, ²J (P-P) = 115.0, P_A).

Phosphine oxyde 206

On ajoute 0.1 mL d'eau à une solution de **SPS** (370 mg, 0.54 mmol) dans le THF (20 mL). On agite le mélange réactionnel pendant 5 min puis on évapore le solvant. On rince le solide obtenu à l'éther (3 x 5 mL). Après évaporation, on obtient **206** sous la forme d'une poudre jaune. Des cristaux analysables par diffraction aux rayons X ont pu être obtenus par diffusion d'hexane dans une solution de **206** dans le CH_2Cl_2 . Rendement : 366 mg (97%).

Analyse élémentaire pour $[C_{41}H_{33}OP_3S_2]$ (698.8) : calculé C 70.47, H 4.76 ; trouvé C 70.03, H 4.34.

SM (EI) : $m/z = 681 [M^+-(H_2O)]$.

RMN ¹H (CDCl₃) : δ 5.05 (AXX'Y, td, ²J (H-P_A) = ²J (H-P_X) = 16.6, ³J (H-H) = 2.1, 1H, H₂), 6.55 (AXX'Y, m, Σ J = 9.0, 1H, H₄), 6.74 (dd, ¹J (H-P_A) = 580.0, ³J (H-H) = 2.7, 1H, PH), 6.82-8.20 (m, 30H, CH de Ph).

RMN ¹³C (CDCl₃) : δ 43.5 (m, C₂H), 119.9 (m, C₆), 127.7-133.4 (m, C₄H, CH et C de Ph), 137.4 (m, $\Sigma J = 20.0$, C_{5 ou 3}), 140.5 (m, $\Sigma J = 21.0$, C_{3 ou 5}), 163.4 (d, ³*J* (C-P_A) = 3.7, C de Ph).

RMN ³¹P (CDCl₃) : δ 4.2 (ddd, ¹J (H-P_A) = 580.0, ²J (P_A-P_X) = 35.3, ²J (P_A-P_{X'}) = 17.0, P_AH), 36.5 (d, ²J (P_A-P_X) = 35.3, P_XPh₂), 38.9 (d, ²J (P_A-P_{X'}) = 17.0, P_{X'}Ph₂).

λ^5 -Phosphinine 207

On chauffe à 40°C pendant 24h une solution de **SPS** (100 mg, 0.15 mmol) et de méthanol (200 μ L, 4.9 mmol) dans le THF (5 mL). Après évaporation du solvant, on rince le solide obtenu à l'hexane (3 x 2 mL) puis à l'éther (3 x 2 mL). Après séchage, on obtient **207** sous la forme d'une poudre jaune. Rendement : 78 mg (73%).

Analyse élémentaire pour $[C_{42}H_{35}OP_3S_2]$ (712.8) : calculé C 70.77, H 4.95 ; trouvé C 70.31, H 4.44.

SM (EI): $m/z = 681 [M^+-(MeOH)]$.

RMN ¹H (CD₂Cl₂) : δ 3.38 (d, ³J (H-P_A) = 13.8, 3H, CH₃), 5.7 (td, ⁴J (H-P_X) = 3.8, ⁴J (H-P_A) = 1.7, 1H, H₄), 7.56 (dt, ¹J (H-P_A) = 619.0, ³J (H-P_X) = 1.9, 1H, PH), 6.80-7.76 (m, 30H, CH de Ph).

 $\dot{\text{RMN}}^{13}$ C (CD₂Cl₂) : δ 49.5 (ls, CH₃), 80.7 (m, C_{2,6}), 116.3 (m, C₄H), 125.8-133.5 (m, CH et C de Ph), 140.5 (m, ΣJ (C-P) = 20.7, C_{3,5}), 156.4 (s, C de Ph).

RMN ³¹P (CD₂Cl₂) : δ 27.6 (dt, ¹J (H-P_A) = 619.0, ²J (P_A-P_X) = 43.7, P_A), 39.5 (d, ²J (P_A-P_X) = 43.7, P_XPh₂).

λ^5 -Phosphinine 208

On chauffe à 40°C pendant 24h une solution de **SPS** (550 mg, 0.8 mmol) et d'éthanol (200 μ L, 3.4 mmol) dans le THF (5 mL). Après évaporation du solvant, on rince le solide obtenu à l'hexane (3 x 2 mL) puis à l'éther (3 x 2 mL). Après séchage, on obtient **208** sous la forme d'une poudre jaune. Rendement : 433 mg (78%).

Analyse élémentaire pour $[C_{43}H_{37}OP_3S_2]$ (726.8) : calculé C 71.06, H 5.13 ; trouvé C 70.67, H 4.82.

SM (EI) : $m/z = 681 [M^+-(EtOH)]$.

RMN ¹H (CD₂Cl₂) : δ 1.26 (t, ³J (H-H) = 7.2, 3H, CH₃), 3.90 (dq, ³J (H-H) = ³J (H-P_A) = 7.2, 2H, CH₂), 5.72 (t, ⁴J (H-P_X) = 7.2, 1H, H₄), 6.84-7.76 (m, 30H, CH de Ph), 7.73 (d, ¹J (H-P_A) = 613.0, 1H, PH).

RMN ¹³C (CD₂Cl₂) : δ 15.1 (d, ³*J* (C-P_A) = 16.0, CH₃), 63.3 (d, ²*J* (C-P_A) = 6.9, CH₂O), 81.7 (dd, ¹*J* (C-P_A) = 101.2, ¹*J* (C-P_X) = 80.5, ³*J* (C-P_{X'}) = 4.6, C_{2,6}), 117.2 (m, C₄H), 127.1-132.2 (m, CH de Ph), 133.5 (dd, ¹*J* (C-P_X) = 11.5, ³*J* (C-P_A) = 3.5, C de Ph), 134.7 (dd, ¹*J* (C-P_X) = 13.8, ³*J* (C-P_A) = 3.4, de Ph), 141.5 (dt, ²*J* (C-P_A) = 11.5, ²*J* (C-P_X) = ⁴*J* (C-P_{X'}) = 3.4, C_{3,5}), 156.3 (s, C de Ph).

RMN ³¹P (CD₂Cl₂) : δ 25.9 (dt, ¹J (H-P_A) = 613.0, ²J (P_A-P_X) = 43.1, P_A), 39.5 (d, ²J (P_A-P_X) = 43.1, P_XPh₂).

λ^5 -Phosphinine 209

On agite à température ambiante une solution de **SPS** (100 mg, 0.15 mmol) et de diéthylamine (200 μ L, 1.9 mmol) dans le CH₂Cl₂ (5 mL). Après évaporation du solvant, on rince le solide obtenu à l'hexane (3 x 2 mL) puis à l'éther (3 x 2 mL). Après séchage, on obtient **209** sous la forme d'une poudre jaune. Rendement : 98 mg (87%).

Analyse élémentaire pour $[C_{45}H_{42}NP_3S_2]$ (753.9): calculé C 71.69, H 5.62; trouvé C 41.26, H 5.17.

SM (EI): $m/z = 681 [M^+-(NHEt_2)]$.

RMN ¹H (CDCl₃) : δ 1.14 (t, ³J (H-H) = 6.9, 6H, CH₃), 2.92 (q, ³J (H-H) = 6.9, 4H, CH₂), 5.59 (t, ³J (H-P_X) = 4.6, 1H, H₄), 7.29 (dt, ¹J (H-P_A) = 545.0, ³J (H-P_X) = 2.0, 1H, PH), 6.76-7.72 (m, 30H, CH de Ph).

RMN ¹³C (CDCl₃) : δ 10.9 (s, CH₃), 41.5 (d, ²*J* (C-P_A) = 19.6, CH₂), 87.6 (m, C_{2,6}), 113.9 (d, ⁴*J* (C-P_A) = 13.6, C₄H), 122.6-131.1 (m, CH de Ph), 134.5 (d, ¹*J* (C-P_X) = 84.1, C de Ph), 135.2 (d, ¹*J* (C-P_X) = 86.8, C de Ph), 141.4 (m, C_{3,5}), 155.5 (m, C de C₆H₅).

RMN ³¹P (CDCl₃) : δ -0.31 (dt, ¹J (H-P_A) = 545.0, ²J (P_A-P_X) = 50.6, P_A), 37.36 (d, ²J (P_A-P_X) = 50.6, P_XPh₂).

1,2-dibromophosphinine 210

On ajoute 1 mL d'une solution de brome (C = 0.44 M dans CH₂Cl₂, 0.44 mmol) à une solution de **SPS** (300 mg, 0.44 mmol) dans le CH₂Cl₂ (10 mL) à -78°C. La solution prend immédiatement une coloration orange. Après retour à température ambiante, le mélange est agité pendant 5 minutes puis le solvant est évaporé. Rendement : 369 mg (94%). **210** est stable quelques heures en solution, ce qui explique l'absence de spectre RMN ¹³C.

RMN ¹H (CD_2Cl_2) : δ 5.42 (ddd, ⁴J (H-P_A) = 5.0, ⁴J (H-P_X) = 4.2, ⁴J (H-P_{X'}) = 3.3, 1H, H₄), 6.91-8.04 (m, 30H, CH de C₆H₅).

RMN ³¹P (CD₂Cl₂) : δ 37.3 (d, ²J (P_A-P_X) = 46.7, P_XPh₂), 46.4 (d, ²J (P_A-P_{X'}) = 88.3, P_{X'}Ph₂), 65.8 (*pseudo* t, Σ ²J (P_A-P) = 93.6, P_A).

Anion [SPS^{Me}][Li(THF)₂] 211

On ajoute une solution de MeLi dans l'éther (1.8 mL, C = 0.16 M, 0.29 mmol) à une solution de **SPS** (200 mg, 0.29 mmol) dans le THF (10 mL) à -78°C. Après retour à température ambiante, on agite le mélange pendant 20 min. La solution initialement blanche devient immédiatement rouge. Après évaporation du solvant, on obtient **211** sous la forme d'une poudre rouge. Rendement : 245 mg (100%). Des cristaux analysables par diffraction aux rayons X ont pu être obtenus par diffusion d'hexane dans une solution de **211** dans le THF en boîte à gants (structure avec le lithium tétravalent) ou en tube scellé conservé à -40°C dans un mélange hexane/THF (structure avec le lithium pentavalent).

211 est trop sensible à l'eau pour conduire à une analyse élémentaire satisfaisante.

RMN ¹H (THF-d8) : δ 0.99 (d, ²J (H-P_A) = 3.4, 3H, CH₃), 5.13 (t, ⁴J (H-P_B) = 4.8, 1H, H₄), 6.53-7.57 (m, 30H, CH de Ph).

RMN ¹³C (THF-d8) : δ 10.6 (dt, ¹*J* (C-P_A) = 17.2, ³*J* (C-P_B) = 5.8, CH₃), 73.6 (ddd, ¹*J* (C-P_A) = 83.9, ¹*J* (C-P_B) = 6.0, ³*J* (C-P_B) = 2.7, C_{2,6}), 119.9 (t, ³*J* (C-P_B) = 11.8, C₄), 126.6-133.6 (m, 9 x CH de Ph), 140.3 (d, ¹*J* (C-P_B) = 81.1, C de PPh₂), 140.7 (d, ¹*J* (C-P_B) = 83.1, C de PPh₂), 146.1 (m, ΣJ (C-P) = 8.4, C_{3,5}), 155.2 (m, ΣJ (C-P) = 11.0, C de Ph).

RMN ³¹P (THF-d8) : δ 45.9 (d, ²J (P_A-P_B) = 155.5, P_BPh₂), -65.7 (t, ²J (P_A-P_B) = 155.5, P_AMe).

Anion [SPS^{Me}][K(THF)₂] 212

En boîte à gants, on pèse **211** (150 mg, 0.18 mmol) et *t*-BuOK (21 mg, 0.185 mmol) que l'on place dans un tube de schlenck. En dehors de la boîte, on canule lentement de l'éther (20 mL) refroidie à -78°C vers le schlenck contenant les réactifs. On agite le mélange réactionnel pendant 4h à -78°C puis on laisse remonter doucement la solution à température ambiante pendant la nuit (schlenck placé dans un Dewar recouvert de papier d'aluminium). Un solide orange précipite. En boîte à gants, la solution est transférée dans des tubes en pyrex qui sont centrifugés pendant 5 min. Le solide est ensuite rincé deux fois à l'éther (2 x 10 mL) par deux centrifugations successives. Le solide est ensuite dissout dans le THF (20 mL) et transféré dans un schlenck. Après évaporation du solvant, on obtient **212** sous la forme d'une poudre orange conservée en boîte à gants. Rendement : 141 mg (89%). Des cristaux analysables par diffraction aux rayons X ont pu être obtenus par diffusion d'hexane dans une solution de **212** dans le THF en boîte à gants.

212 est trop sensible à l'eau pour conduire à une analyse élémentaire satisfaisante.

RMN ¹H (THF-d8) : δ 1.14 (d, ²J (H-P_A) = 5.1, 3H, CH₃), 1.79 (l s, CH₂), 3.65 (l s, CH₂), 5.36 (t, ⁴J (H-P_B) = 5.1, 1H, H₄), 6.69-8.02 (m, 30H, CH de Ph).

RMN ¹³C (THF-d8) : δ 10.2 (dt, ¹*J* (C-P_A) = 20.4, ³*J* (C-P_B) = 4.6, CH₃), 26.5 (s, CH₂), 68.4 (s, CH₂), 74.8 (ddd, ¹*J* (C-P_A) = 87.6, ¹*J* (C-P_B) = 13.3, ³*J* (C-P_{B'}) = 7.1, C_{2,6}), 118.6 (t, ³*J* (C-P_B) = 12.0, C₄), 126.6 (s, CH de Ph), 127.4 (s, CH de Ph), 127.7 (d, *J* (C-P) = 11.9, CH de Ph), 128.2 (d, *J* (C-P) = 11.7, CH de Ph), 129.4 (d, *J* (C-P) = 2.7, CH de Ph), 130.1 (d, *J* (C-P) = 2.7, CH de Ph), 130.6 (s, CH de Ph), 133.1 (d, *J* (C-P) = 10.3, CH de Ph), 133.5 (d, *J* (C-P) = 10.4, CH de Ph), 140.7 (dd, ¹*J* (C-P_B) = 79.3, ¹*J* (C-P_A) = 2.9, C de Ph), 141.8 (d, ¹*J* (C-P) = 83.0, CH de Ph), 146.4 (d, *J* (C-P) = 6.0, C_{3,5}), 154.5 (dd, *J* (C-P) = 7.4, *J* (C-P) = 2.6, C de Ph).

RMN ³¹P (THF-d8) : δ -62.0 (t, ²J (P_A-P_B) = 151.9, P_AMe), 43.1 (d, ²J (P_A-P_B) = 155.9, P_APh₂).

Anion [SPS^{Bu}][Li(THF)₂] 213

On ajoute une solution de BuLi dans l'hexane (1.8 mL, C = 0.16 M, 0.29 mmol) à une solution de **SPS** (200 mg, 0.29 mmol) dans le THF (10 mL) à -78°C. Après retour à température ambiante, on agite le mélange pendant 20 min. La solution initialement blanche devient immédiatement rouge. Après évaporation du solvant, on obtient **213** sous la forme d'une poudre rouge. Rendement : 245 mg (100%).

213 est trop sensible à l'eau pour conduire à une analyse élémentaire satisfaisante.

RMN ¹H (THF-d8) : δ 1.08 (t, ³J (H-H) = 7.5, 3H, CH₃), 1.20-2.26 (m, 6H, CH₂), 5.32 (t, ⁴J (H-P_B) = 4.6, 1H, H₄), 6.68-7.77 (m, 30H, CH de Ph).

RMN ¹³C (THF-d8) : δ 11.9 (s, CH₃), 23.7 (s, CH₂), 30.2 (s, CH₂), 35.7 (m, CH₂-P), 71.9 (ddd, ¹*J* (C-P_A) = 81.8, ¹*J* (C-P_B) = 5.7, ³*J* (C-P_B) = 3.3, C_{2,6}), 120.8 (t, ³*J* (C-P_B) = 11.3, C₄), 126.6-133.6 (m, 9 x CH de Ph), 139.5 (d, ¹*J* (C-P_B) = 80.7, C de PPh₂), 141.0 (d, ¹*J* (C-P_B) = 83.1, C de PPh₂), 145.9 (m, ΣJ (C-P) = 6.9, C_{3,5}), 155.8 (m, ΣJ (C-P) = 9.6, C de Ph).

RMN ³¹P (THF-d8) : δ 45.8 (d, ²J (P_A-P_B) = 156.0, P_BPh₂), -66.2 (t, ²J (P_A-P_B) = 156.0, P_ABu).

Anion [SPS^{t-Bu}][Li(THF)₂] 214

On ajoute une solution de *t*-BuLi dans le pentane (39 μ L, C = 1.5 M, 0.06 mmol) à une solution de **SPS** (40 mg, 0.06 mmol) dans le THF-d8 (0.5 mL) à -78°C. Après retour à température ambiante, on agite le mélange pendant 2 min. La solution initialement blanche devient immédiatement rouge. **214** est obtenu intermédiairement et ne peut être isolé.

RMN ¹H (THF-d8) (sélection de données) : δ 5.20 (t, ⁴J (H-P_B) = 4.0, 1H, H₄).

RMN ³¹P (THF-d8) : δ 46.2 (d, ²J (P_A-P_B) = 158.0, P_BPh₂), -43.1 (t, ²J (P_A-P_B) = 158.0, P_At-Bu).

Anion [SPS^H][Li(THF)₂] 215

On ajoute une solution de *t*-BuLi dans le pentane (39 μ L, C = 1.5 M, 0.06 mmol) à une solution de **SPS** (40 mg, 0.06 mmol) dans le THF-d8 (0.5 mL) à -78°C. Après retour à température ambiante, on agite le mélange pendant 20 min. La solution initialement blanche devient immédiatement rouge. Rendement RMN : 100%. **215** ne doit pas être tiré à sec ou chauffé sinon il se décompose.

RMN ¹H (THF-d8) : δ 4.41 (dt, ¹J (H-P_A) = 195.8, ³J (H-P_B) = 15.0, 1H, P-H), 5.59 (t, ⁴J (H-P_B) = 5.2, 1H, H₄), 6.70-7.91 (m, 30H, CH de Ph).

RMN ¹³C (THF-d8) : δ 66.2 (m, C_{2,6}), 122.1 (t, ³J (C-P_B) = 12.0, C₄), 126.6-133.8 (m, 9 x CH de Ph), 139.7 (dd, ¹J (C-P_B) = 81.1, ³J (C-P_A) = 1.5, C de Ph), 140.0 (dd, ¹J (C-P_B) = 83.7, ³J (C-P_A) = 3.3, C de Ph), 146.0 (d, J (C-P) = 5.5, C_{3,5}), 160.0 (d, ³J (C-P_A) = 7.0, C de Ph).

RMN ³¹P (THF-d8) : δ -73.7 (dt, ¹J (P_A-H) = 195.8, ²J (P_A-P_B) = 148.2, P_AH), 43.2 (d, ²J (P_A-P_B)) = 148.2, P_AH), 43.2 (d, ²J (P_A-P_A)), 43.2 (d, ²J (P_A- P_B) = 148.2, P_BPh_2).

Anion [PyCH₂][Li] 216

On ajoute une solution de MeLi dans Et_2O (2.8 mL, C = 1.6 M, 4.5 mmol) à une solution de α-picoline (0.5 mL, 5 mmol) dans le THF (5 mL) à -78°C. Après retour à température ambiante, la solution de 216 (C = 0.62 M) est immédiatement utilisée.

Pour une caractérisation complète voir : R. R. Fraser, T. S. Mansour, S. Savard, J. Org. Chem. 1985, 50, 3232.

Anion [SPS^{CH2Py}][Li(THF)₂] 217

En boîte à gants, on ajoute à la seringue une solution de **216** dans le THF (237 μ L, C = 0.62 M, 0.15 mmol) à une solution de SPS (100 mg, 0.15 mmol) dans le THF (3 mL). On agite le mélange réactionnel pendant 10 min à température ambiante. Après évaporation du solvant, on obtient 217 sous la forme d'une poudre orange. Des cristaux analysables par diffraction aux rayons X ont pu être obtenus par diffusion d'hexane dans une solution de 217 dans le THF en boîte à gants. Rendement : 116 mg (91%).

217 est trop sensible à l'eau pour conduire à une analyse élémentaire satisfaisante. RMN ¹H (THF-d8) : δ 3.36 (d, ²J (H-P) = 2.5, 2H, CH₂), 5.41 (t, ⁴J (H-P) = 5.0, 1H, H₄), 6.73-7.03 (m, 12H, CH de Ph), 7.15-7.49 (m, 15H, 1 x CH de Py et 14 x CH de Ph), 7.47 (d, ${}^{3}J$ (H-H) = 7.7, CH de Py), 7.70 (td, ${}^{3}J$ (H-H) = 7.7, ${}^{5}J$ (H-H) = 1.9, 1H, CH de Py), 8.00 (dd, J(H-P) = 12.6, J(H-H) = 7.8, 4H, CH de Ph), 8.44 (d, J(H-H) = 5.3, 1H, CH de Py).

RMN ¹³C (THF-d8) : δ 38.3 (d, ¹J (C-P) = 32.7, CH₂), 74.6 (ddd, ¹J (C-P) = 87.2, ¹J (C-P) = $18.9, {}^{3}J(C-P) = 7.2, C_{2,6}, 120.8 \text{ (t, } {}^{3}J(C-P) = 11.9, C_{4}\text{H}), 122.2 \text{ (d, } J(C-P) = 1.5, CH de Py),$ 128.0 (s, CH de Ph), 128.2 (d, J (C-P) = 2.5, CH de Py), 128.5 (s, CH de Ph), 128.7 (d, J (C-P) = 12.1, CH de Ph), 129.1 (d, J(C-P) = 12.1, CH de Ph), 130.4 (d, J(C-P) = 2.5, CH de Ph), 131.2 (d, J(C-P) = 2.4, CH de Ph), 133.9 (d, J(C-P) = 10.4, CH de Ph), 134.7 (dd, J(C-P) = 10.4, Ph), 144.7 (dd, J(C-P) = 10.4, Ph), 14 10.4, J (C-P) = 2.0, CH de Ph, 138.9 (s, CH de Py), 141.3 (dd, J (C-P) = 86.1, J (C-P) = 4.9,C de Ph), 141.5 (dd, J(C-P) = 74.2, J(C-P) = 1.1, C de Ph), 146.9 (dd, J(C-P) = 5.1, J(C-P)= 2.4, C de Ph ou C_{3.5}), 150.2 (s, CH de Py), 156.9 (dd, J (C-P) = 6.7, J (C-P) = 2.9, C de Ph ou $C_{3,5}$), 163.5 (d, ²J (C-P) = 5.3, C de Py).

RMN³¹P (THF-d8) : δ -37.1 (t, ²J (P_A-P_B) = 148.5, P_A), 43.1 (d, ²J (P_A-P_B) = 148.5, P_BPh₂).

Anion [SPS^{OMe}][Na] 218

On agite en boîte à gants, une solution de **SPS** (150 mg, 0.22 mmol) et de MeONa (11 mg, 0.66 mmol) dans le THF (5 mL) pendant 15 min. Après évaporation, on obtient **218** sous la forme d'une poudre jaune. Rendement RMN : 100%.

RMN ³¹P (THF) : δ 44.6 (d, ²J (P_B-P_A) = 153.2, P_BPh₂), 66.5 (t, ²J (P_A-P_B) = 153.2, P_A-OMe).

Anion [SPS^{OEt}][Li(THF)₂] 219

On agite en boîte à gants, une solution de **SPS** (150 mg, 0.22 mmol) et de EtOLi (12 mg, 0.22 mmol) dans le THF (15 mL) pendant 15 min. Après évaporation, on obtient **219** sous la forme d'une poudre jaune. Rendement RMN : 100%.

RMN ³¹P (THF): δ 42.7 (d, ²J (P_A-P_B) = 147.1, P_BPh₂), 68.2 (t, ²J (P_A-P_B) = 147.1, P_A-OEt).

Anion [SPS^{SBu}][Li(THF)₂] 221

On agite en boîte à gants, une solution de **SPS** (150 mg, 0.22 mmol) et de BuSLi (21 mg, 0.22 mmol) dans le THF (15 mL) pendant 15 min. Après évaporation, on obtient **221** sous la forme d'une poudre jaune. Rendement RMN : 100%.

³¹P RMN (THF-d8): δ 44.37 (d, ²J (P_A-P_B) = 170.1, P_BPh₂), 20.9 (t, ²J (P_A-P_B) = 170.1, P_A-SBu).

λ^5 -phosphinine 222

On ajoute une solution de MeLi dans l'éther (275 μ L, C = 1.6 M, 0.44 mmol) à une solution de **SPS** (300 mg, 0.44 mmol) dans le THF (10 mL) à -78°C. Après retour à température ambiante, on agite le mélange pendant 20 min. La solution initialement blanche devient immédiatement rouge. On vérifie par RMN ³¹P la formation de **211**, auquel on ajoute, à - 78°C, MeI (50 μ l, 0.29 mmol). Après retour à température ambiante, on agite la solution pendant 15 min. Après évaporation du solvant, on rince le solide obtenu à l'hexane (3 x 2 mL) puis à l'éther (3 x 2 mL). Après évaporation, le solide est dissout dans CH₂Cl₂ et filtré à travers un fritté recouvert de célite. Après évaporation, on obtient **222** sous la forme d'une poudre jaune. Rendement : 278 mg (89%). Des cristaux analysables par diffraction aux rayons X ont pu être obtenus par diffusion d'hexane dans une solution de **222** dans CDCl₃.

Analyse élémentaire pour $[C_{43}H_{37}P_3S_2]$ (710.8) : calculé : C 72.66, H 5.25 ; trouvé : C 72.28, H 4.91.

SM (EI): $m/z = 711 [M^+]$.

¹H RMN (CDCl₃) : δ 1.64 (d, ²*J* (P_A-H) = 13.4, 6H, CH₃), 5.34 (t, ⁴*J* (H-P_B) = 4.8, 1H, H₄), 6.71-7.81 (m, 30H, CH de Ph).

¹³C RMN (CDCl₃) : δ 12.2 (d, ¹*J*(C-P_A) = 58.4, CH₃), 67.0 (ddd, ¹*J*(C-P_A) = 88.8, ¹*J*(C-P_B) = 76.9, ³*J* (C-P_{B'}) = 2.9, C_{2,6}), 118.5 (m, Σ *J*(C-P) = 42.8, C₄H), 127.6-131.9 (m, CH de Ph), 136.5 (dd, ¹*J*(C-P_B) = 85.4, ³*J*(C-P_A) = 2.5, C de Ph), 142.8 (ddd, ²*J*(C-P_A) = 10.9, ²*J*(C-P_B) = 6.9, ⁴*J*(C-P_{B'}) = 3.3, C_{3,5}), 157.8 (s, C de Ph). ³¹P RMN (THF) : δ 20.8 (AB₂, t, ²*J*(P_A-P_B) = 41.1, P_A), 37.4 (AB₂, d, ²*J*(P_A-P_B) = 41.1,

λ^5 -phosphinine 223

On ajoute une solution de MeLi dans l'éther (1.8 mL, C = 0.16 M, 0.29 mmol) à une solution de **SPS** (200 mg, 0.29 mmol) dans le THF (10 mL) à -78°C. Après retour à température ambiante, on agite le mélange pendant 20 min. La solution initialement blanche devient immédiatement rouge. On vérifie par RMN ³¹P la formation de **211**, auquel on ajoute, à -78°C, C₂Cl₆ (69 mg, 0.29 mmol). Après retour à température ambiante, on agite la solution pendant 20 min. Après évaporation du solvant, on rince le solide obtenu à l'hexane (3 x 2 mL) puis à l'éther (3 x 2 mL). Après évaporation, le solide est dissout dans CH₂Cl₂ et filtré à travers un fritté recouvert de célite. Après évaporation, on obtient **223** sous la forme d'une poudre jaune. Rendement : 201 mg (95%). Des cristaux analysables par diffraction aux rayons X ont pu être obtenus par diffusion d'hexane dans une solution de **223** dans le THF.

223 est trop sensible à l'eau pour conduire à une analyse élémentaire satisfaisante.

SM (IE): $m/z = 732 [M^+]$.

RMN ¹H (THF-d8) : δ 2.04 (d, ²J (H-P_A) = 15.1, 3H, CH₃), 6.16 (*pseudo* q, ⁴J (H-P_A) = ⁴J (H-P_B) = 4.1, 1H, H₄), 6.97-8.15 (m, 30H, CH de Ph).

RMN ¹³C (THF-d8) : δ 18.6 (d, ¹*J* (C-P_A) = 67.3, CH₃), 83.8 (dd, ¹*J* (C-P_A) = 90.9, ¹*J* (C-P_B) = 83.1, ³*J* (C-P_{B'}) = 3.2, C_{2,6}), 117.7 (dt, ³*J* (C-P_A) = 27.8, ³*J* (C-P_B) = 9.0, C₄H), 128.5-138.7 (m, C et CH de Ph), 143.5 (m, ΣJ (C-P) = 18.3, C_{3,5}), 157.6 (d, ³*J* (C-P) = 5.3, C de Ph). RMN ³¹P (THF-d8) : δ 65.6 (t, ²*J* (P_A-P_B) = 42.5, P_A), 35.2 (d, ²*J* (P_A-P_B) = 42.5, P_B).

 λ^5 -phosphinine 224

En boîte à gants, on ajoute à la seringue 1.3 équivalent de $[BH_3.Me_2S]$ (C = 2.0 M dans Et₂O, 169 µl, 0.338mmol) à une solution de **212** (210 mg, 0.260 mmol) dans le THF (50 mL). On agite le mélange réactionnel pendant 4h à température ambiante. Après évaporation du solvant, le solide est recristallisé et lavé à l'éther (40 mL). On obtient **224** sous la forme d'une poudre orange. Des cristaux analysables par diffraction aux rayons X ont pu être obtenus par diffusion d'hexane dans une solution de **224** dans le THF en présence de Kryptofix [18C6]. Rendement : 184 mg (90%).

28 est trop sensible à l'eau pour conduire à une analyse élémentaire satisfaisante.

 $P_{\rm B}Ph_2$).⁵

⁵ Spectre du deuxième ordre simulé avec gNMR.

RMN ¹H (THF-d8) : δ -0.06 (broad s, $w_{1/2} = 170.0$, 3H, BH₃), 1.30 (d, ²J (H-P_A) = 9, 3H, CH₃), 5.19 (t, ⁴J (H-P_B) = 4.8, 1H, H₄), 6.65-8.21 (m, 30 H, CH de Ph). RMN ¹¹B (THF-d8) : δ -37.3 (ls, $w_{1/2} = 290.0$, BH₃). RMN ³¹P (THF-d8) : δ 37.4 (AX₂, d, ²J (P_A-P_X) = 60.0, P_XPh₂), 2.9 (ls, $w_{1/2} = 165.0$, BH₃P_AMe).

1,2-dihydrophosphinine 225

On ajoute une solution de MeLi dans l'éther (1.8 mL, C = 0.16 M, 0.29 mmol) à une solution de **SPS** (200 mg, 0.29 mmol) dans le THF (10 mL) à -78°C. Après retour à température ambiante, on agite le mélange pendant 20 min. La solution initialement blanche devient immédiatement rouge. On vérifie par RMN ³¹P la formation de **211**, auquel on ajoute de l'éthanol (69 mg, 0.29 mmol). Après retour à température ambiante, on agite la solution pendant 20 min. Après évaporation, le solide est dissout dans CH_2Cl_2 et filtré à travers un fritté recouvert de célite. Après évaporation, on obtient **225** sous la forme d'une poudre jaune. Rendement : 184 mg (91%). Des cristaux analysables par diffraction aux rayons X ont pu être obtenus par évaporation lente d'une solution de **225** dans le méthanol.

Analyse élémentaire pour $[C_{42}H_{35}P_3S_2]$ (696.1) : calculé : C 72.40, H 5.06 ; trouvé : C 72.03, H 4.76.

SM (IE): $m/z = 697 [M^+]$.

RMN ¹H (CDCl₃) : δ 1.54 (d, ²*J* (H-P_A) = 6.5, 3H, CH₃), 4.35 (dd, ²*J* (H-P_X) = 16.7, ²*J* (H-P_A) = 1.9, 1H, H₂), 6.67 (dd, ⁴*J* (H-P) = 5.7, ⁴*J* (H-P) = 2.2, 1H, H₄), 6.89-8.24 (m, 30H, CH de Ph).

RMN ¹³C (CDCl₃) : δ 13.2 (dd, ¹*J*(C-P) = 22.7, ³*J*(C-P) = 18.1, CH₃), 42.9 (ddd, *J*(C-P) = 49.5, *J*(C-P) = 35.4, *J*(C-P) = 8.5, C₂H), 124.6 (ddd, *J*(C-P) = 117.0, *J*(C-P) = 41.5, *J*(C-P) = 3.0, C₆), 126.3-134.3 (m, CH et C de Ph), 135.2 (dd, ³*J*(C-P) = 13.6, ³*J*(C-P) = 10.6, C₄H), 141.3 (d, *J*(C-P) = 8.3, C), 142.5 (s, C), 155.4 (dd, *J*(C-P) = 5.3, *J*(C-P) = 3.0, C).

RMN ³¹P (CDCl₃) : δ -62.9 (AXX', dd, ²J (P_A-P_X) = 127.9, ²J (P_A-P_{X'}) = 83.8, P_AMe), 41.4 (AXX', d, ²J (P_A-P_B) = 127.9, P_XPh₂), 42.3 (AXX', d, ²J (P_A-P_{X'}) = 83.8, P_{X'}Ph₂).

1,2-dihydrophosphinine 226, λ^5 -phosphinine 227

On agite en boîte à gants, une solution de **SPS** (150 mg, 0.22 mmol) et de BuSLi (21 mg, 0.22 mmol) dans le THF (15 mL) pendant 15 min. On vérifie par RMN ³¹P la formation de **211**, auquel on ajoute de l'éthanol (69 mg, 0.29 mmol). Après retour à température ambiante, on agite la solution pendant 20 min. Après évaporation, le solide est dissout dans CH₂Cl₂ et filtré à travers un fritté recouvert de célite. Après évaporation, on obtient un mélange de **226** et **227** (dans un rapport 3:1) sous la forme d'une poudre jaune. Rendement : 144 mg (85%). **226 :** RMN ³¹P (THF) : δ 44.6 (d, ²*J* (P_A-P_B) = 158.8, P_BPh₂), 44.6 (d, ²*J* (P_A-P_{B'}) = 150.0,

 $P_{B'}Ph_2$), 66.0 (dd, ${}^{2}J(P_{A}-P_{B}) = 158.8$, ${}^{2}J(P_{A}-P_{B'}) = 150.0$, $P_{A}-SBu$).

227 : RMN ³¹P (THF) : δ -1.5 (t, ¹*J* (P_A-H) = 533.0, ²*J* (P_A-P_B) = 45.9, P_A), 40.0 (d, ²*J* (P_A-P_B) = 45.9, P_BPh₂).

Anion [SPS^{OMen}][Li(THF)₂] 228

On agite en boîte à gants, une solution de **SPS** (150 mg, 0.22 mmol) et de MenOLi (35.7 mg, 0.66 mmol) dans le THF (5 mL) pendant 15 min. Après évaporation, on obtient **228** sous la forme d'une poudre jaune. Rendement RMN : 100%.

RMN ³¹P (THF) : δ 45.1 (AXX', d, ²J (P_X-P_A) = 171.6, P_xPh₂), 45.4 (AXX', d, ²J (P_{X'}-P_A) = 176.2, P_{X'}Ph₂), 61.8 (*pseudo* t, ²J (P_A-P_X) = ²J (P_A-P_{X'}) = 176.9, P_A-OMen).

MenMgCl 229

Synthèse de (-)-MenCl :

On dissout par petites quantités $ZnCl_2$ (180g, 1.13 mol) dans 124 mL de HCl (30%), le mélange réactionnel s'échauffe. Lorsque tout est dissout et que la température du mélange est à nouveau à 25°C, on ajoute le (-)-menthol (62.4 g, 0.4 mol) puis on chauffe la solution pendant 3h à 35°C. MenCl est extrait à l'hexane et lavé plusieurs fois avec H₂SO₄ concentré (2 x 10 mL). La phase organique est séchée sur MgSO₄. MenCl est distillé sous pression réduite (bain : 120°C, colonne : 54°C). On obtient (-)-MenCl sous la forme d'un liquide incolore. Rendement : 63.51g (91%).

Pour un mode opératoire et une caractérisation complète, voir : J.G. Smith, G.F. Wright J. Org. Chem. 1952, 17, 1116.

Synthèse de (-)- MenMgCl :

Dans un tricol de 100 mL, on place 1g de magnésium (45 mmol) que l'on recouvre à peine de THF (5 mL) et l'on ajoute 3 gouttes de 1,2-dibromoétane. On chauffe ensuite au dessiccateur le mélange réactionnel jusqu'à ce qu'il bouillonne et devienne laiteux. On additionne alors goutte à goutte une solution de (-)-MenCl (6.5 mL, 35 mmol) dans le THF (10 mL). On agite le mélange réactionnel à 60°C pendant 1h. Après retour à température ambiante, la solution est canulée vers un schlenck surmonté d'un fritté. La concentration de la solution est dosée par colorimétrie. Rendement : 78%.

Anion [SPS^{Men}][MgCl] 230

On ajoute une solution de MenMgCl dans l'éther (0.64 mL, C = 0.46 M, 0.30 mmol) à une solution de **SPS** (100 mg, 0.15 mmol) dans le THF (5 mL) à -78°C. Après retour à température ambiante, on agite le mélange pendant 1h. La solution initialement blanche devient lentement rouge et extrêmement visqueuse. Rendement RMN : 100%.

RMN ³¹P (THF) : δ -38.7 à -35.4 (ABB', m, P_AMen), 42.1-44.3 (ABB', m, PPh₂).

On ajoute une solution de MenMgCl dans l'éther (1.28 mL, C = 0.46 M, 0.60 mmol) à une solution de **SPS** (200 mg, 0.30 mmol) dans le THF (5 mL) à -78°C. Après retour à température ambiante, on agite le mélange pendant 1h. On vérifie par RMN ³¹P la formation de **230**, auquel on ajoute de l'éthanol (60 μ L, 1 mmol). Après retour à température ambiante, on agite la solution pendant 20 min. Après évaporation, le solide est filtré rapidement sur gel de silice (colonne de 2 cm de diamètre et 3 cm de hauteur) élué au CH₂Cl₂. Après évaporation, on obtient **35** sous la forme d'une poudre jaune. Rendement : 214 mg (87%). En solution, **231** s'isomérise partiellement en **232** et **233** en l'espace de 30 min.

RMN ¹H (C₆D₆) : δ 1.04 (d, ³*J* (H-H) = 6.9, 3H, CH₃), 1.07 (t, ³*J* (H-H) = 6.6, 3H, CH₃), 1.19-1.27 (m, 3H), 1.39 (s, 3H, CH₃), 1.56-1.98 (m, 3H, CH et CH₂), 2.21 (m, 1H, CH), 3.54 (m, 2H), 3.31 (m, 1H, CH), 5.73 (*pseudo* t, ⁴*J* (P_B-H) = ⁴*J* (P_B·H) = 3.8, 1H, H₄), 6.74-7.04 (m, 17H, CH de Ph), 7.39-7.49 (m, 3H, CH de Ph), 7.73-7.85 (m, 5H, CH de Ph), 8.18-8.29 (m, 5H, CH de Ph), 8.63 (d *pseudo* t, ¹*J* (P_A-H) = 493.9, ⁴*J* (P_B-H) = ⁴*J* (P_B·-H) = 5.5, 1H, P-H) RMN ³¹P (C₆D₆) : δ -6.3 (AXX', d *pseudo* t, ¹*J* (P_A-H) = 493.9, ²*J* (P_A-P_X) = 40.0, P_AMen), 38.7 (AXX', d, ²*J* (P_A-P_X) = 39.2, P_XPh₂), 38.7 (AXX', d, ²*J* (P_A-P_X) = 41.8, P_X·Ph₂). **232** : RMN ³¹P (C₆D₆) : δ -55.3 (AXX', dd, ²*J* (P_A-P_X) = 127.6, ²*J* (P_A-P_X) = 109.4, P_AMen), 40.8 (AXX', d, ²*J* (P_A-P_X) = 127.6, P_XPh₂), 44.1 (AXX', d, ²*J* (P_A-P_X) = 109.4, P_X·Ph₂). **233** : RMN ³¹P (C₆D₆) : δ -53.9 (AXX', *pseudo* t, ²*J* (P_A-P_X) = ²*J* (P_A-P_{X'}) = 120.3, P_AMen), 39.9 (AXX', d, ²*J* (P_A-P_X) = 122.3, P_XPh₂), 43.6 (AXX', d, ²*J* (P_A-P_{X'}) = 117.1, P_{X'}Ph₂).

Anion [SPS^{Men}][Li(THF)₂] 234

On ajoute une solution de MeLi dans l'hexane (0.182 mL, C = 1.6 M, 0.29 mmol) à une solution de **231-233** (200 mg, 0.24 mmol) dans le THF (10 mL) à -78° C. Après retour à température ambiante, on agite le mélange pendant 20 min. La solution initialement jaune devient immédiatement rouge. Après évaporation du solvant, on obtient **234** sous la forme d'une poudre rouge. Rendement RMN : 100%.

RMN ³¹P (THF) : δ -45.1 (ABB', *pseudo* t, ²J (P_A-P_B) = ²J (P_A-P_{B'}) = 154.3, P_AMe), 43.1 (ABB', d, ²J (P_A-P_B) = 159.2, P_BPh₂), 43.7 (ABB', d, ²J (P_A-P_B) = 153.1, P_{B'}Ph₂).

λ^5 -phosphinine 235

On ajoute une solution de MeLi dans l'hexane (0.182 mL, C = 1.6 M, 0.29 mmol) à une solution de **231-233** (200 mg, 0.24 mmol) dans le THF (10 mL) à -78°C. Après retour à température ambiante, on agite le mélange pendant 20 min. La solution initialement jaune devient immédiatement rouge. On vérifie par RMN ³¹P la formation de **234**, auquel on ajoute, à -78°C, MeI (50 µl, 0.29 mmol). Après retour à température ambiante, on agite la solution pendant 15 min. Après évaporation du solvant, on rince le solide obtenu à l'hexane (3 x 2 mL) puis à l'éther (3 x 2 mL). Après évaporation, le solide est dissout dans CH₂Cl₂ et filtré à travers un fritté recouvert de célite. Après évaporation, on obtient **235** sous la forme d'une poudre jaune. Rendement : 156 mg (78%).

Analyse élémentaire pour $[C_{52}H_{53}P_3S_2]$ (835.0) : calculé : C 74.79, H 6.40 ; trouvé : C 74.31, H 6.15.

RMN ¹H (CDCl₃) : δ 0.80-0.96 (m, 2H, CH₂), 1.07 (d, ³*J* (H-H) = 6.7, 3H, CH-*CH*₃), 1.15 (s, 3H, Me), 1.24 (d, ³*J* (H-H) = 6.6, 3H, CH-*CH*₃), 1.34 (l s, 1H, CH), 1.50 (d, ³*J* (H-H) =, 1H, CH), 1.61-1.78 (m, 3H), 2.23 (d, ²*J* (H-P_A) = 16.5, 3H, P_A-Me), (l s, w_{1/2} = 8.0, *J* (H-H) = 11.8, 1H, CH), 2.85 (tdd, *J* (H-H) = *J* (H-P) = 12.1, *J* (H-H) = 3.0, 1H, CH), 3.40 (t, *J* (H-H) = 6.8, 1H, CH), 5.85 (t, ⁴*J* (H-P_B) = 4.0, 1H, H₄), 6.72-7.11 (m, 20H, CH de Ph), 7.24-7.41 (m, 2H, CH de Ph), 7.48-7.57 (m, 2H, CH de Ph), 7.71-7.79 (m, 2H, CH de Ph), 8.22-8.34 (m, 4H, CH de Ph).

RMN ¹³C (CDCl₃) : δ 9.9 (m, P-CH₃), 18.1 (s, CH-*CH*₃), 22.6 (s, CH₃), 23.3 (s, CH-*CH*₃), 26.4 (d, *J*(C-P) = 12.8, CH₂), 29.0 (d, *J*(C-P) = 2.6, CH), 34.2 (d, *J*(C-P) = 14.5, CH), 34.5 (d, *J*(C-P) = 1.0, CH₂), 36.5 (s, CH₂), 37.9 (s, CH), 43.6 (d, *J*(C-P) = 1.4, CH), 121.6 (m, C₄H), 127.7-133.9 (m, CH de Ph), 138.8 (m, C de PPh₂), 139.0 (m, C de PPh₂), 139.8 (m, C de PPh₂), 140.9 (m, C de PPh₂), 142.6 (m, C₃), 143.2 (m, C₅), 158.0 (m, C de Ph), 158.5 (m, C de Ph). C_{2,6} non observés.

RMN ³¹P (THF) : δ 22.7 (AB₂, t, ²J (P_A-P_B) = 30.9, P_A), 37.1 (AB₂, d, ²J (P_A-P_B) = 30.9, P_BPh₂).

III. Chapitre 3

Complexe de palladium 301

Méthode A : On agite pendant 30 min une solution de $[Pd(dba)_2]$ (79 mg, 0.14 mmol) et de **223** (100 mg, 0.14 mmol) dans le CH₂Cl₂ (10 mL). Après évaporation du solvant, on rince le solide obtenu à l'hexane (3 x 5 mL) puis à l'éther (3 x 2 mL). Après évaporation, on obtient **301** sous la forme d'une poudre marron. Rendement : 108 mg (92%).

Méthode B : On ajoute une solution de MeLi dans l'hexane (90 μ L, C = 1.6 M, 0.15 mmol) à une solution de **SPS** (100 mg, 0.15 mmol) dans le THF (5 mL) à -78°C. Après retour à température ambiante, on agite le mélange pendant 10 min. On vérifie par RMN ³¹P la formation de **211** auquel on ajoute, dans la boîte à gants, [Pd(COD)Cl₂] (43 mg, 0.15 mmol). On agite le mélange pendant 10 min. Après évaporation du solvant, on rince le solide obtenu à l'hexane (3 x 2 mL) puis à l'éther (3 x 2 mL). Après évaporation, le solide est dissout dans CH₂Cl₂ et filtré à travers un fritté recouvert de célite. Après évaporation, on obtient **301** sous la forme d'une poudre marron. Rendement : 109 mg (87%).

Méthode C: On chauffe pendant 30 min une solution de **225** (104 mg, 0.15 mmol) et de $[Pd(COD)Cl_2]$ (43 mg, 0.15 mmol) dans le THF (5 mL). Après évaporation du solvant, on rince le solide obtenu à l'hexane (3 x 5 mL) puis à l'éther (3 x 2 mL). Après évaporation, on obtient **301** sous la forme d'une poudre marron. Rendement : 110 mg (88%).

Analyse élémentaire pour $[C_{42}H_{34}ClP_3PdS_2]$ (837.7) : calculé : C 60.22 H 4.09 ; trouvé C 59.83 H 3.86.

RMN ¹H (CD₂Cl₂) : δ 1.88 (d, ²J (H-P_A) = 9.6, 3H, CH₃), 5.42 (t, ⁴J (H-P_B) = 4.4, 1H, H₄), 6.61-7.47 (m, 30H, CH de Ph).

RMN ¹³C (CD₂Cl₂) : δ 24.3 (m, CH₃), 74.2 (dd, ¹J (C-P_A) = 97.4, ¹J (C-P_B) = 53.0, C_{2,6}), 117.7 (m, Σ J (C-P) = 36.5, C₄H), 127.6-132.5 (m, C et CH de Ph), 141.5 (m, Σ J (C-P) = 23.1, C_{3,5}), 158.9 (s, C de Ph).

RMN ³¹P (CD₂Cl₂) : δ 49.4 (AB₂, m, ²J (P_A-P_B) = 35.0, P_A), 50.4 (AB₂, m, ²J (P_A-P_B) = 35.0, P_BPh₂).⁵

Complexe de palladium 302

On ajoute une solution de *n*-BuLi dans l'hexane (3.4 mL, C = 1.6 M, 4.4 mmol) à une solution de **SPS** (3 g, 4.4 mmol) dans le THF (100 mL) à -78°C. Après retour à température ambiante, on agite le mélange pendant 20 min. On vérifie par RMN ³¹P la formation de l'anion **213** auquel on ajoute, à -78°C, [Pd(COD)Cl₂] (1.25 g, 4.4 mmol). Après agitation pendant 15 min, on évapore la solution et l'on rince le solide obtenu à l'hexane (3 x 20 mL) puis à l'éther (3 x 20 mL). Après évaporation du solvant, on dissout le solide dans du CH₂Cl₂ (80 mL) et l'on filtre la solution à travers un fritté recouvert de célite. Après évaporation, on obtient **302** sous la forme d'un solide marron. Rendement : 3.29 g (52%). Des cristaux analysables par diffraction aux rayons X sont obtenus par diffusion d'hexane dans une solution de **302** dans le CH₂Cl₂.

Analyse élémentaire pour $[C_{45}H_{40}ClP_3PdS_2]\ (879.7)$: calculé : C 61.44, H 4.58 ; trouvé : C 61.06, H 4.34.

RMN¹H (CD₂Cl₂) : δ 1.06 (t, ³*J* (H-H) = 7.4, 3H, CH₃), 1.60 (m, 2H, CH₂), 2.00 (m, 2H, CH₂), 2.26 (m, 2H, CH₂), 5.50 (t, ⁴*J* (H-P_B) = 4.7, 1H, H₄), 6.61-7.80 (m, 30H, CH de Ph).

RMN ¹³C (CD₂Cl₂) : δ 13.9 (s, CH₃), 24.2 (s, CH₂), 24.6 (d, 2J (C-P) = 2.6, CH2), 38.0 (m, CH2-P), 72.5 (m, C_{2,6}), 118.7 (m, C₄H), 127.7-133.3 (m, C et CH de Ph), 139.9 (m, C_{3,5}), 159.4 (s, C de Ph).

RMN ³¹P (CD₂Cl₂) : δ 49.2 (AB₂, m, ²J (P_A-P_B) = 87.0, P_BPh₂), 55.4 (AB₂, m, ²J (P_A-P_B) = 87.0, P_A-Bu).⁵

Complexe de palladium 303

On ajoute à la micro seringue 500 μ L de **216** (C = 0.62 M, 0.31 mmol, 1.05 eq.) à une solution de SPS (200 mg, 0.29 mmol) dans le THF (5 mL) à -78°C. La solution devient immédiatement rouge. Après retour à température ambiante, la formation de **217** est contrôlée par RMN ³¹P. On ajoute ensuite dans la boîte à gants [Pd(COD)Cl₂] (83.6 mg, 0.29 mmol) et on agite la solution pendant une heure. Il se forme un précipité orange. Après évaporation du solvant, on lave successivement le solide à l'hexane (3 x 2 mL) puis à l'éther (3 x 2 mL). Le solide est dissout dans CH₂Cl₂ et la solution est filtrée à travers un fritté recouvert de célite. Après évaporation du solvant, on obtient une poudre rouge. Rendement : 200 mg (74%). Des cristaux se déposent dans le tube RMN de CDCl₃ pendant la nuit.

Analyse élémentaire pour $[C_{47}H_{37}CINP_3PdS_2]$ (914.7) : calculé C 61.71, H 4.08 ; trouvé C 61.25, H 3.62.

¹H RMN (CDCl₃) : δ 3.83 (d, ²*J* (H-P_A) = 12.5, 2H, CH₂), 5.46 (t, ⁴*J* (H-P_B) = 4.3, 1H, H₄), 6.74-7.52 (m, 31H, CH de Ph et de Py), 7.71-7.83 (m, 2H, CH de Py), 8.53 (d, *J* (H-H) = 3.9, 1H, CH de Py).

¹³C RMN (CDCl₃) : δ 47.7 (d, ¹*J* (C-P) = 22.7, CH₂), 72.3 (ddd, ¹*J* (C-P) = 92.9, ¹*J* (C-P) = 51.5, ³*J* (C-P) = 3.1, C_{2,6}), 119.3 (*pseudo* q, ³*J* (C-P) = 11.3, C₄H), 121.9 (d, *J* (C-P) = 3.0, CH de Py), 126.8 (d, *J* (C-P) = 3.0, CH de Py), 127.8-129.0 (m, CH de Ph), 131.5 (dd, ¹*J* (C-P) = 83.8, ³*J* (C-P) = 9.1, C de PPh₂), 132.3-132.5 (m, CH de Ph), 132.9 (m, C de PPh₂), 132.9-133.2 (m, CH de Ph), 136.6 (d, *J* (C-P) = 2.3, CH de Py), 140.0 (dt, ²*J* (C-P) = 7.6, ²*J* (C-P) = ⁴*J* (C-P) = 3.0, C_{3,5}), 149.6 (d, *J* (C-P) = 2.3, CH de Py), 153.4 (d, ²*J* (C-P) = 7.6, C de Py), 159.6 (s, C de Ph).

³¹P RMN (CDCl₃) : δ 48.4 (AB₂, m, ²J (P_A-P_B) = 89.0, P_BPh₂), 51.9 (AB₂, m, ²J (P_A-P_B) = 89.0, P_A).⁵

Complexe de palladium 304

Méthode A : On mélange pendant 1h une solution de $[Pd(COD)Cl_2]$ (28 mg, 0.1 mmol) et de **207** (71 mg, 0.1 mmol) dans le THF (10 mL). Après évaporation du solvant, on rince le solide obtenu à l'hexane (3 x 2 mL) puis à l'éther (3 x 2mL). Après évaporation, on obtient **304** sous la forme d'une poudre jaune. Rendement : 78 mg (92%).

Méthode B : On agite dans la boîte à gants pendant 5 min une solution de $[Pd(COD)Cl_2]$ (125 mg, 0.44 mmol) et de **SPS** (300 mg, 0.44 mmol) dans le CH₂Cl₂ (5 mL). La solution se solubilise progressivement et devient rose fuschia. On ajoute ensuite du méthanol (200 µL, 0.49 mmol) au mélange réactionnel et l'on agite la solution pendant 10 min. Après évaporation du solvant, on rince le solide obtenu à l'hexane (3 x 5 mL). Après évaporation, on obtient **304** sous la forme d'une poudre jaune. Rendement : 365 mg (97%).

Méthode C : On mélange pendant 10 min en boîte à gants une solution de MeONa (8 mg, 0.15 mmol) et de **SPS** (100 mg, 0.15 mmol) dans le THF (6 mL). On vérifie par RMN ³¹P la

formation de **218** puis on ajoute, en boîte à gants, $[Pd(COD)Cl_2]$ (42.7 mg, 0.15 mmol). On agite le mélange pendant 10 min. Après évaporation du solvant, on dissout le solide dans du CH₂Cl₂ (5 mL) et l'on filtre la solution à travers un fritté recouvert de célite. Après évaporation du solvant, on rince le solide obtenu à l'hexane (3 x 5 mL). Après évaporation, on obtient **304** sous la forme d'une poudre jaune. Rendement : 113 mg (89%).

Analyse élémentaire pour $[C_{42}H_{34}ClOP_3PdS_2]$ (852.0) : calculé : C 59.09 H 4.01 ; trouvé C 58.85 H 4.10.

RMN ¹H (CD₂Cl₂) : δ 3.84 (d, ¹*J* (H-P_A) = 14.4, 3H, CH₃O), 5.59 (dt, ⁴*J* (H-P_B) = 8.9, ⁴*J* (H-P_A) = 4.7, 1H, H₄), 6.70-7.71 (m, 30H, CH de Ph).

RMN ¹³C (CD₂Cl₂) : δ 30.0 (s, CH₃), 93.5 (ABB'X, ddd, ¹J (C-P_A) = 91.3, ¹J (C-P_B) = 67.2, ³J (C-P_{B'}) = 7.4, C_{2,6}), 115.6 (m, C₄), 127.6-128.8 (m, CH de Ph), 130.6 (ABX, dd, ¹J (C-P_B) = 84.8, ³J (C-P_A) = 7.5, C de PPh₂), 131.6 (ABX, dd, ¹J (C-P_B) = 78.5, ³J (C-P_A) = 4.5, C de PPh₂), 132.1-132.6 (m, CH de Ph), 140.1 (ABB'X, dt, ²J (C-P_A) = 8.2, ²J (C-P_B) = ⁴J (C-P_{B'}) = 3.2, C_{3,5}), 156.8 (d, ³J (C-P_A) = 2.3, C de Ph).

RMN ³¹P (CD₂Cl₂) : δ 51.1 (d, ²J (P_A-P_B) = 102.3, P_BPh₂), 97.3 (t, P_A).

Complexe de palladium 305

Méthode A : On mélange pendant 1h une solution de $[Pd(COD)Cl_2]$ (28 mg, 0.1 mmol) et de **208** (73 mg, 0.1 mmol) dans le THF (10 mL). Après évaporation du solvant, on rince le solide obtenu à l'hexane (3 x 2 mL) puis à l'éther (3 x 2 mL). Après évaporation, on obtient **305** sous la forme d'une poudre jaune. Rendement : 76 mg (78%).

Méthode B : On agite dans la boîte à gants pendant 5 min une solution de $[Pd(COD)Cl_2]$ (125 mg, 0.44 mmol) et de **SPS** (300 mg, 0.44 mmol) dans le CH₂Cl₂ (5 mL). La solution se solubilise progressivement et devient rose fuschia. On ajoute ensuite de l'éthanol (200 µL) au mélange réactionnel et l'on agite la solution pendant 10 min. Après évaporation du solvant, on rince le solide obtenu à l'hexane (3 x 5 mL). Après évaporation, on obtient **305** sous la forme d'une poudre jaune. Rendement : 363 mg (95%).

Méthode C : On mélange pendant 10 min en boîte à gants une solution de EtOLi (8 mg, 0.15 mmol) et de **SPS** (100 mg, 0.15 mmol) dans le THF (6 mL). On vérifie par RMN ³¹P la formation **219**, puis on ajoute, en boîte à gants, $[Pd(COD)Cl_2]$ (42.7 mg, 0.15 mmol). On agite le mélange pendant 10 min. Après évaporation du solvant, on dissout le solide dans du CH₂Cl₂ (5 mL) et l'on filtre la solution à travers un fritté recouvert de célite. Après évaporation du solvant, on rince le solide obtenu à l'hexane (3 x 5 mL). Après évaporation, on obtient **305** sous la forme d'une poudre jaune. Rendement : 118 mg (91%).

Analyse élémentaire pour $[C_{43}H_{36}ClOP_3PdS_2]$ (867.7) : calculé : C 59.52 H 4.18 ; trouvé C 59.14 H 3.79.

RMN ¹H (CD₂Cl₂) : δ 1.20 (t, ³*J*(H-H) = 7.0, 3H, CH₃), 4.30 (dq, ²*J*(H-P_A) = 9.0, ⁴*J*(H-H) = 7.0, 2H, CH₂), 5.47 (t, ³*J*(H-P_B) = 7.0, 1H, H₄), 6.68-7.89 (m, 30H, CH de Ph).

RMN ¹³C (CD₂Cl₂) : δ 17.6 (m, CH₃), 66.0 (d, ²*J* (C-P_A) = 4.6, CH₂), 95.9 (ddd, ¹*J* (C-P_A) = 91.0, ¹*J* (C-P_B) = 66.3, ³*J* (C-P_{B'}) = 7.7, C_{2,6}), 116.1 (q, ⁴*J* (C-P_A) = ⁴*J* (C-P_B) = 12.2, C₄H), 128.8-129.9 (m, CH de Ph), 131.7 (dd, ¹*J* (C-P_B) = 84.3, ³*J* (C-P_A) = 8.5, C de PPh₂), 132.8 (dd, ¹*J* (C-P_B) = 37.2, ³*J* (C-P_A) = 3.8, C de PPh₂), 133.2-133.8 (m, CH de Ph), 141.5 (dt, ²*J* (C-P_A) = 9.2, ²*J* (C-P_B) = ⁴*J* (C-P_{B'}) = 3.5, C_{3,5}), 155.5 (d, ³*J* (C-P_A) = 2.3, C de Ph).
Complexe de palladium 306

Méthode A : On agite dans la boîte à gants pendant 15 min une solution de $[Pd(COD)Cl_2]$ (125 mg, 0.44 mmol) et de **SPS** (300 mg, 0.44 mmol) dans le CH_2Cl_2 (10 mL). La solution se solubilise progressivement et devient rose fuschia. On ajoute ensuite du menthol (6.9 mg, 0.44 mmol) au mélange réactionnel et l'on agite la solution pendant 1h. Après évaporation du solvant, on rince le solide obtenu à l'hexane (3 x 5 mL) puis à l'éther. Après évaporation, on obtient **306** sous la forme d'une poudre jaune. Rendement : 404 mg (94%).

Méthode B : On mélange pendant 10 min en boîte à gants une solution de MenOLi (24 mg, 0.15 mmol) et de **SPS** (100 mg, 0.15 mmol) dans le THF (6 mL). On vérifie par RMN ³¹P la formation de **228** puis on ajoute, en boîte à gants, [Pd(COD)Cl₂] (42.7 mg, 0.15 mmol). On agite le mélange pendant 10 min. Après évaporation du solvant, on dissout le solide dans du CH₂Cl₂ (5 mL) et l'on filtre la solution à travers un fritté recouvert de célite. Après évaporation du solvant, on rince le solide obtenu à l'hexane (3 x 5 mL). Après évaporation, on obtient **306** sous la forme d'une poudre jaune. Rendement : 127 mg (87%). Des cristaux analysables par diffraction aux rayons X ont pu être obtenus par diffusion d'hexane dans une solution de **306** dans le CH₂Cl₂.

Analyse élémentaire pour $[C_{51}H_{50}ClOP_3PdS_2]$ (977.9) : calculé : C 62.64 H 5.15 ; trouvé C 62.19 H 4.84.

RMN ¹H (CD₂Cl₂) : δ 0.75 (d, ³J (H-H) = 7.1, 3H, CH₃), 0.87 (d, ³J (H-H) = 6.2, 3H, CH₃), 0.95 (d, ³J (H-H) = 6.8, 3H, CH₃), 1.08-1.75 (m, 8H, CH et CH₂), 2.57 (d, ²J (H-H) = 13.4, 1H, CH₂), 4.78-4.87 (m, 1H, O-CH), 5.65 (t, ⁴J (H-P_B) = 4.3, 1H, H₄), 6.64-7.60 (m, 30H, CH de Ph).

RMN ¹³C (CD₂Cl₂) : δ 16.7 (s, CH₃), 20.4 (s, CH₃), 21.2 (s, CH₃), 22.4 (s, CH₂), 24.4 (s, CH), 31.3 (s, CH), 33.6 (s, CH₂), 44.2 (s, CH₂), 48.9 (d, ³*J* (C-P_A) = 6.6, O-CH-*CH*), 77.2 (d, ¹*J* (C-P_A) = 6.4, O-*CH*), 89.8 (m, C₂), 93.8 (m, C₆), 116.6 (AB₂X, q, ⁴*J* (C-P_A) = ⁴*J* (C-P_B) = 10.7, C₄H), 127.0-128.2 (m, CH de Ph), 130.1 (dd, ¹*J* (C-P_B) = 83.3, ³*J* (C-P_A) = 7.6, C de PPh₂), 130.4 (dd, ¹*J* (C-P_B) = 84.3, ³*J* (C-P_A) = 7.2, C de PPh₂), 131.2-132.1 (m, CH de Ph), 139.2 (m, C_{3.5}), 155.8 (ls, C de Ph), 156.4 (l s, C de Ph).

RMN ³¹P (CD₂Cl₂) : δ 47.67 (ABB', d, ²J (P_A-P_B) = 111.3, P_BPh₂), 49.89 (ABB', d, ²J (P_A-P_{B'}) = 104.1, P_{B'}Ph₂), 88.24 (ABB', dd, ²J (P_A-P_B) = 111.3, ²J (P_A-P_{B'}) = 104.1, P_AOMen).

Complexe de palladium 307

On ajoute une solution de MeLi dans l'hexane (0.182 mL, C = 1.6 M, 0.29 mmol) à une solution de **231-233** (200 mg, 0.24 mmol) dans le THF (10 mL) à -78°C. Après retour à température ambiante, on agite le mélange pendant 20 min. On vérifie par RMN ³¹P la formation de **230** puis on ajoute, en boîte à gants, [Pd(COD)Cl₂] (68.3 mg, 0.24 mmol). On

agite le mélange pendant 10 min. Après évaporation du solvant, on dissout le solide dans du CH_2Cl_2 (5 mL) et l'on filtre la solution à travers un fritté recouvert de célite. Après évaporation du solvant, on rince le solide obtenu à l'hexane (3 x 5 mL). Après évaporation, on obtient **307** sous la forme d'une poudre orange. Rendement : 248 mg (87%). Des cristaux analysables par diffraction aux rayons X ont pu être obtenus par diffusion d'hexane dans une solution de **307** dans le CH_2Cl_2 .

Analyse élémentaire pour $[C_{51}H_{50}ClP_3PdS_2]$ (961.9) : calculé : C 63.68 H 5.24 ; trouvé C 63.37 H 4.91.

¹H RMN (CD₂Cl₂) : δ 0.92 (s, d, ³*J* (H-H) = 6.9, 3H, CH₃), 0.95 (d, ³*J* (H-H) = 6.7, 3H, CH₃), 0.99 (d, ³*J* (H-H) = 6.7, 3H, CH₃), 1.13-2.03 (m, 6H), 2.42-2.51 (m, 2H), 3.58-3.67 (m, 2H), 5.51 (*pseudo* t, ⁴*J* (H-P_B) = ⁴*J* (H-P_B) = 4.2, 1H, H₄), 6.71-7.54 (m, 30H, CH de Ph).

¹³C RMN (CD₂Cl₂) : δ 16.1 (s, CH₃), 21.3 (s, CH₃), 22.7 (s, CH₃), 22.7 (d, *J* (P-H) = 12.7, CH₂), 29.3 (s, CH), 33.3 (d, *J* (P-H) = 13.5, CH), 33.9 (s, CH₂), 36.4 (s, CH₂), 41.7 (s, CH), 56.5 (s, CH), 70.6 (m, C_{2 ou 6}), 75.6 (m, C_{2 ou 6}), 120.1 (q, ⁴*J* (C-P_B) = 20.6, ⁴*J* (C-P_{B'}) = 11.2, C₄H), 127.4-128.5 (m, CH de Ph), 133.3 (m, C de PPh₂), 131.3 (m, C de PPh₂), 131.5-132.7 (m, CH de Ph), 133.0 (m, C de PPh₂), 133.3 (m, C de PPh₂), 139.7 (m, C_{3 ou 5}), 139.9 (m, C_{3 ou 5}), 159.2 (m, C de Ph), 159.3 (m, C de Ph).

³¹P RMN (CD₂Cl₂) : δ 47.4 (ABB', d, ²J (P_A-P_B) = 83.8, P_BPh₂), 48.6 (ABB', d, ²J (P_A-P_{B'}) = 84.6, P_B·Ph₂), 88.24 (ABB', *pseudo* t, ²J (P_A-P_B) = ²J (P_A-P_{B'}) = 84.1, P_A-Men).

Complexes de palladium 308 et 309

On agite en boîte à gants, une solution de **SPS** (150 mg, 0.22 mmol) et de BuSLi (21 mg, 0.22 mmol) dans le THF (15 mL) pendant 15 min. On vérifie par RMN ³¹P la formation de **221** puis on ajoute, en boîte à gants, $[Pd(COD)Cl_2]$ (63 mg, 0.22 mmol). On agite le mélange pendant 10 min. On obtient **SPS**, **308** et **309** dans des proportions égales.

308 : RMN ³¹P (THF) : δ 52.3 (d, ²J (P_A-P_X) = 108.1, P_XPh₂), 73.5 (AX₂, t, ²J (P_A-P_X) = 108.1, P_A-SBu).

309 : RMN ³¹P (THF) : δ 42.5 (d, ²J (P_A-P_X) = 122.7, P_XPh₂), 96.4 (t, ²J (P_A-P_B) = 122.7, P_A-SBu).

Complexe de palladium 310

Méthode A : On agite une solution de $[Pd(COD)Cl_2]$ (155 mg, 0.54 mmol) et de **206** (380 mg, 0.54 mmol) dans le CH₂Cl₂ (10 mL) pendant 2 h. Après évaporation du solvant, on rince le solide obtenu à l'hexane (3 x 5 mL). Après séchage, on obtient **310** sous la forme d'une poudre jaune. Des cristaux analysables par diffraction aux rayons X ont pu être obtenu par diffusion d'hexane dans une solution de CDCl₃. Rendement : 376 mg (83%).

Méthode B : On agite dans la boîte à gants pendant 15 min une solution de $[Pd(COD)Cl_2]$ (125 mg, 0.44 mmol) et de **SPS** (300 mg, 0.44 mmol) dans le CH_2Cl_2 (10 mL). La solution se solubilise progressivement et devient rose fuschia. On ajoute ensuite de l'eau (0.1 mL) au mélange réactionnel et l'on agite la solution pendant 1h. Un précipité jaune se forme petit à petit. Après évaporation du solvant, le solide jaune est filtré puis lavé à l'hexane (3 x 5mL). Rendement : 350 mg (95 %).

Analyse élémentaire pour $[C_{41}H_{32}ClOP_3PdS_2]$ (839.6) : calculé C 58.65, H 3.84 ; trouvé C 58.28, H 3.47.

¹H RMN (CDCl₃) : δ 5.83 (m, 1H, H₄), 6.60-7.60 (m, 30H, CH de Ph). OH non observé. **310** est trop insoluble pour donner un spectre RMN ¹³C RMN exploitable.

³¹P RMN (CDCl₃) : δ 54.4 (AB₂, d, ²J (P_A-P_B) = 105.7, P_BPh₂), 90.1 (AB₂, t, ²J (P_A-P_B) = 105.7, P_A).

Complexe de palladium 311

On mélange pendant 30 min une solution de $[Pd(COD)Cl_2]$ (38 mg, 0.13 mmol) et de λ^5 -phosphinine **209** (100 mg, 0.13 mmol) dans le CH₂Cl₂ (5 mL). Le précipité jaune qui se forme est rincé à l'hexane (3 x 2 mL) puis à l'éther (3 x 2 mL). Après évaporation, on obtient **311** sous la forme d'une poudre jaune. Rendement : 114 mg (90%).

Analyse élémentaire pour $[C_{45}H_{42}Cl_2NP_3PdS_2]$ (931.2) : calculé : C 58.04 H 4.55 ; trouvé C 57.91 H 4.37.

¹H RMN (acétone-d6) : δ 1.27 (t, ³*J*(H-H) = 6.3, 6H, CH₃), 2.95 (dq, ³*J*(H-P_A) = ³*J* (H-H) = 6.3, 4H, CH₂), 5.84 (dt, ³*J* (H-P_A) = ³*J* (H-P_B) = 3.5, 1H, H₄), 6.66-7.70 (m, 30H, CH de Ph), 9.25 (ls, 1H, NH).

209 est trop insoluble pour fournir un spectre RMN ¹³C RMN exploitable.

³¹P RMN (CH₂Cl₂) : $\delta = 49.32$ (AB₂, d, ²J (P_A-P_B) = 100.1, P_BPh₂), 82.18 (AB₂, t, ²J (P_A-P_B) = 100.1, P_A).

Complexe de palladium 312

On ajoute en boîte à gants $[Pd(dba)_2]$ (84.3 mg, 0.15 mmol) à une solution fraîchement préparée de **210** (125 mg, 0.15 mmol) dans le CH₂Cl₂ (5mL). La solution orange devient immédiatement rouge/bordeaux ; elle est agitée pendant 1 heure. Après évaporation du solvant, le solide est filtré puis lavé à l'hexane (3 x 1 mL). Rendement : 126 mg (89 %).

³¹P RMN (CH₂Cl₂) : δ 52.7 (AB₂, d, ²*J* (P_A-P_B) = 119.4, P_BPh₂), 91.3 (AB₂, t, ²*J* (P_A-P_B) = 119.4, P_A). Ces déplacements sont à comparer avec ceux de son analogue chloré **313** qui a été complètement caractérisé. (RMN ³¹P : doublet à 52.6 ppm et triplet à 94.9 ppm avec ²*J* (P_A-P_B) = 115.3).

Complexe de palladium 313

On agite dans la boîte à gants pendant 5 min une solution de [Pd(COD)Cl₂] (125 mg, 0.44 mmol) et de SPS (300 mg, 0.44 mmol) dans le CH₂Cl₂ (5 mL). La solution se solubilise progressivement et devient rose fuschia. Après évaporation du solvant, on rince, en boîte à gants, le solide obtenu à l'hexane (3 x 5 mL). Après évaporation, on obtient **313** sous la forme d'une poudre orange. Des cristaux analysables par diffraction aux rayons X ont pu être obtenus par diffusion d'hexane dans une solution de CH₂Cl₂. Rendement : 370 mg (98%).

Le complexe 313 est trop sensible à l'eau pour conduire à une analyse élémentaire satisfaisante.

¹H RMN (CD₂Cl₂) : δ 5.84 (dt, ⁴J (H-P_B) = 4.8, ⁴J (H-P_A) = 3.3, 1H, H₄), 6.60-7.63 (m, 30H, CH de Ph).

¹³C RMN (CD₂Cl₂) : δ 94.3 (ABB'X, ddd, ¹J (C-P_A) = 91.2, ¹J (C-P_B) = 55.2, ³J (C-P_{B'}) = 7.6, $C_{2,6}$, 119.9 (AB₂X, dt, ³J (C-P_A) = 18.2, ³J (C-P_B) = 9.1, C₄), 127.8-129.0 (m, CH de Ph), 129.7 (ABX, dd, ${}^{1}J$ (C-P_B) = 86.1, ${}^{3}J$ (C-P_A) = 10.2, C de PPh₂), 130.5 (ABX, dd, ${}^{1}J$ (C-P_B) = 86.7, ${}^{3}J(C-P_{A}) = 4.7$, C de PPh₂), 132.3-132.9 (m, CH de Ph), 139.3 (ABB'X, dt, ${}^{2}J(C-P_{A}) =$ 8.0, ${}^{2}J(C-P_{B}) = {}^{4}J(C-P_{B'}) = 3.0, C_{3,5}$, 157.8 (d, ${}^{3}J(C-P_{A}) = 6.3, C \text{ de Ph}$). ³¹P RMN (CD₂Cl₂) : δ 52.6 (d, ²J (P_A-P_B) = 115.3, P_BPh₂), 94.9 (t, P_A).

Complexe de palladium 315

On agite dans la boîte à gants pendant 15 min une solution de $[Pd(COD)Cl_2]$ (42 mg, 0.15 mmol) et de SPS (100 mg, 0.15 mmol) dans le CH₂Cl₂ (2 mL). La solution se solubilise progressivement et devient rose fuschia. On ajoute ensuite du phénol (14 mg, 0.15 mmol) au mélange réactionnel et l'on agite la solution pendant 1h. Après évaporation du solvant, on rince le solide obtenu à l'hexane (3 x 5 mL) puis à l'éther. Après évaporation, on obtient 315 sous la forme d'une poudre jaune. Rendement : 126 mg (92%).

Analyse élémentaire pour $[C_{47}H_{36}ClOP_3PdS_2]$ (914.0) : calculé : C 61.65 H 3.87 ; trouvé C 61.31 H 3.46.

RMN ¹H (CD₂Cl₂) : δ 5.86 (AB₂X, td, ⁴J (H-P_B) = 4.7, ⁴J (H-P_B) = 1.3, 1H, H₄), 6.68-7.52 (m, 30H, CH de Ph).

RMN ¹³C (CD₂Cl₂) : δ 91.8 (m, C_{2.6}), 117.2 (m, C₄H), 123.7-132.8 (m, C₄H, CH et C de Ph), 139.7 (m, C de Ph), 150.2 (d, ${}^{2}J$ (C-P_A) = 10.3, C_{3.5}), 157.6 (d, ${}^{3}J$ (C-P_A) = 3.4, C de Ph). RMN³¹P (CD₂Cl₂) : δ 49.6 (d, ²J (P_A-P_B) = 108.7, P_B), 94.4 (t, ²J (P_A-P_B) = 108.7, P_A).

Complexe de palladium 316

On agite dans la boîte à gants pendant 15 min une solution de $[Pd(COD)Cl_2]$ (125 mg, 0.44 mmol) et de **SPS** (300 mg, 0.44 mmol) dans le CH_2Cl_2 (10 mL). La solution se solubilise progressivement et devient rose fuschia. On ajoute ensuite, en boîte à gants, Et₂NLi (15 mg, 0.19 mmol) au mélange réactionnel et l'on agite la solution pendant 30 min. Après évaporation du solvant, on rince le solide obtenu à l'hexane (3 x 2 mL) puis à l'éther (3 x 2 mL). Après évaporation, le solide est dissout dans CH_2Cl_2 et filtré à travers un fritté recouvert de célite. Après évaporation, on obtient **316** sous la forme d'une poudre jaune. Rendement : 132 mg (89%). Des cristaux analysables par diffraction aux rayons X ont pu être obtenus par diffusion d'hexane dans une solution de **316** dans le CH_2Cl_2 .

Analyse élémentaire pour $[C_{45}H41CINP_3PdS_2]$ (894.7) : calculé : C 60.41 H 4.62 ; trouvé C 59.96 H 4.13.

RMN ¹H (CD₂Cl₂) : δ 1.14 (t, ³*J* (H-H) = 7.1, 6H, CH₃), 4.30 (dq, ³*J* (H-P_A) = 11.3, ⁴*J* (H-H) = 7.1, 4H, CH₂), 5.45 (t, ⁴*J* (H-P_B) = 4.9, H₄), 6.71-7.52 (m, 30H, CH de Ph).

RMN ¹³C (CD₂Cl₂) : δ 11.1 (s, CH₃), 42.1 (m, CH₂), 89.1 (ddd, ¹*J* (C-P_A) = 89.0, ¹*J* (C-P_B) = 64.3, ³*J* (C-P_B) = 7.6, C_{2,6}), 115.0 (td, ⁴*J* (C-P_B) = 10.3, ⁴*J* (C-P_A) = 2.9, C₄H), 127.6-128.8 (m, CH de Ph), 131.6 (dd, ¹*J* (C-P_B) = 78.9, ³*J* (C-P_A) = 5.4, C de PPh₂), 132.4 (dd, ¹*J* (C-P_B) = 84.3, ³*J* (C-P_A) = 5.7, C de PPh₂), 132.1-132.7 (m, CH de Ph), 141.5 (m, Σ ²*J* (C-P) = 14.8, C_{3,5}), 155.5 (m, C de Ph).

RMN ³¹P (CD₂Cl₂) : δ 51.8 (d, ²J (P_A-P_B) = 100.0, P_BPh₂), 66.46 (t, ²J (P_A-P_B) = 100.0, P_A).

Complexe de nickel 317

On ajoute une solution de *n*-BuLi dans l'hexane (0.275 mL, C = 1.6 M, 0.38 mmol) à une solution de SPS (300 mg, 0.44 mmol) dans le THF (10 mL) à -78°C. Après retour à température ambiante, on agite le mélange pendant 20 min. On vérifie par RMN ³¹P la formation de **213** auquel on ajoute, à -78°C, [Ni(dme)Br₂] (136 mg, 0.44 mmol). Après agitation pendant 15 min, on évapore la solution et l'on rince le solide obtenu à l'hexane (3 x 2 mL) puis à l'éther (3 x 2 mL). Après évaporation du solvant, on dissout le solide dans du CH₂Cl₂ (8 mL) et l'on filtre la solution à travers un fritté recouvert de célite. Après évaporation, on obtient **317** sous la forme d'un solide marron. Rendement : 350 mg (91%). Des cristaux analysables par diffraction aux rayons X ont pu être obtenus par diffusion d'hexane dans une solution de **317** dans le CH₂Cl₂.

Analyse élémentaire pour $[C_{45}H_{40}BrNiP_3S_2]$ (876.5) : calculé : C 61.67, H 4.60 ; trouvé : C 61.31, H 4.24.

RMN ¹H (CD₂Cl₂) : δ 0.97 (t, ³J (H-H) = 7.2, 3H, CH₃), 1.53 (m, 2H, CH₂), 2.00 (ls, 4H, CH₂), 5.38 (t, ⁴J (H-P_B) = 4.2, 1H, H₄), 6.62-7.44 (m, 30H, CH de Ph).

RMN ¹³C (CD₂Cl₂) : δ 12.8 (s, CH₃), 23.2 (d, ³*J* (C-P_A) = 13.7, CH₂), 25.2 (s, CH₂), 38.9 (d, ¹*J* (C-P_A) = 25.7, CH₂), 72.5 (m, C_{2,6}), 118.6 (m, C₄H), 126.7-132.0 (m, CH et C de Ph), 139.4 (d, ²*J* (C-P_A) = 6.8, C_{3,5}), 158.1 (s, C de Ph). RMN ³¹P (THF) : δ = 57.3-63.1 (m, P).

Complexe de platine 318

On ajoute une solution de *n*-BuLi dans l'hexane (0.275 mL, C = 1.6 M, 0.38 mmol) à une solution de **SPS** (300 mg, 0.44 mmol) dans le THF (10 mL) à -78°C. Après retour à température ambiante, on agite le mélange pendant 20 min. On vérifie par RMN ³¹P la formation de **213** auquel on ajoute, à -78°C, [Pt(COD)Cl₂] (165 mg, 0.44 mmol). Après agitation pendant 15 min, on évapore la solution et l'on rince le solide obtenu à l'hexane (3 x 2 mL) puis à l'éther (3 x 2 mL). Après évaporation du solvant, on dissout le solide dans du CH₂Cl₂ (8 mL) et l'on filtre la solution à travers un fritté recouvert de célite. Après évaporation, on obtient **318** sous la forme d'un solide jaune. Rendement : 392 mg (92%).

Analyse élémentaire pour $[C_{45}H_{40}ClP_3PtS_2]$ (968.4) : calculé : C 55.81, H 4.16 ; trouvé : C 55.43, H 3.75.

¹H RMN (CD₂Cl₂) : δ 1.1-2.22 (m, 9H, CH₃ et CH₂), 5.60 (ld, ⁴J (H-P_A) = 2.4, 1H, H₄), 6.70-7.70 (m, 30H, CH de C₆H₅).

318 est trop insoluble pour conduire à un spectre RMN ¹³C satisfaisant.

³¹P RMN (THF) : $\delta = 21.5$ (t et Pt satellites, ²J (P_A-Pt) = 3030.6, ²J (P_A-P_B) = 81.0, P_A), 47.0 (d, ²J (P_A-P_B) = 87.0, P_BPh₂).

Complexe de nickel 319

On ajoute à la micro seringue 250 μ L de **216** (C = 0.62 M, 0.15 mmol, 1.05 eq.) à une solution de **SPS** (100 mg, 0.15 mmol) dans le THF (3 mL) à -78°C. La solution devient immédiatement rouge. Après retour à température ambiante, la formation de **217** est contrôlée par RMN ³¹P. On ajoute ensuite dans la boîte à gants [Ni(dme)Br₂] (83.6 mg, 0.29 mmol) et on agite la solution pendant une heure. Après évaporation du solvant, on lave successivement le solide à l'hexane (3 x 2 mL) puis à l'éther (3 x 2 mL). Le solide est dissout dans CH₂Cl₂ et la solution est filtrée à travers un fritté recouvert de célite. Après évaporation du solvant, on obtient une poudre marron. Rendement : 107 mg (78%).

Analyse élémentaire pour $[C_{47}H_{37}CINP_3NiS_2]$ (911.5) : calculé C 61.93, H 4.09 ; trouvé C 61.54, H 3.75.

RMN ¹H (CD₂Cl₂) : δ 3.70 (ls, 2H, CH₂), 5.33 (ls, 1H, H₄), 6.70-7.47 (m, 31H, CH de Ph et de Py), 7.54-7.70 (m, 1H, CH de Py), 7.80-7.82 (m, 1H, CH de Py), 8.45 (ls, 1H, CH de Py). RMN ¹³C (CD₂Cl₂) : δ 46.7 (s, CH₂), 69.9 (ls, C_{2, 6}), 118.0 (t, ³*J* (C-P) = 8.3, C₄H), 120.5 (s, CH de Py), 124.8 (s, CH de Py), 126.8-128.0 (m, CH de Ph), 129.4 (d, *J* (C-P) = 83.8, C de PPh₂), 130.7-131.6 (m, CH de Ph), 131.6 (m, C de PPh₂), 131.7-132.0 (m, CH de Ph), 135.1 (s, CH de Py), 139.1 (s, C_{3,5}), 148.4 (s, CH de Py), 152.4 (s, C de Py), 158.2 (s, C de Ph). RMN ³¹P (CD₂Cl₂) : δ 55.9 (l s), 56.6 (l s), 59.3 (m, Σ ²*J* (P-P) = 258.4).

Complexe de platine 320

On ajoute à la micro seringue 390 μ L de **216** (C = 0.62 M, 0.24 mmol, 1.05 eq.) à une solution de **SPS** (156 mg, 0.23 mmol) dans le THF (5 mL) à -78°C. La solution devient immédiatement rouge. Après retour à température ambiante, la formation de **217** est contrôlée par RMN ³¹P. On ajoute ensuite dans la boîte à gants [Pt(COD)Cl₂] (85.6 mg, 0.23 mmol) et on agite la solution pendant une heure. Il se forme un précipité orange. Après évaporation du solvant, on lave successivement le solide à l'hexane (3 x 2 mL) puis à l'éther (3 x 2 mL). Le solide est dissout dans CH₂Cl₂ et la solution est filtrée à travers un fritté recouvert de célite. Après évaporation du solvant, on obtient une poudre orange fluo. Rendement : 155 mg (74%). Analyse élémentaire pour [C₄₇H₃₇ClNP₃PtS₂] (1003.4) : calculé C 56.26, H 3.72 ; trouvé C 55.87, H 3.32.

RMN ¹H (CD₂Cl₂) : δ 3.86 (d et Pt satellites, ³J (H-Pt) = 28.4, ²J (H-P_A) = 13.0, 2H, CH₂), 5.57 (t, ⁴J (H-P_B) = 4.9, 1H, H₄), 6.67-7.49 (m, 31H, CH de Ph et de Py), 7.78-7.80 (m, 2H, CH de Py), 8.57 (d, J (H-H) = 4.6, 1H, CH de Py).

RMN ¹³C (CD₂Cl₂) : δ 42.5 (d et Pt satellites, ²J (C-Pt) = 51.8, ¹J (C-P) = 31.6, CH₂), 67.7 (ddd et Pt satellites, ¹J (C-P) = 92.6, ²J (C-Pt) = 60.7, ¹J (C-P) = 60.0, ³J (C-P) = 2.6, C_{2,6}), 118.4 (*pseudo* q, ³J (C-P) = 11.3, C₄H), 120.5 (d, J (C-P) = 3.8, CH de Py), 125.4 (d, J (C-P) = 4.5, CH de Py), 126.4-131.8 (m, CH et C de Ph), 135.3 (d, J (C-P) = 3.0, CH de Py), 139.0 (dt, ²J (C-P) = 6.0, ²J (C-P) = ⁴J (C-P) = 2.3, C_{3,5}), 148.3 (d, J (C-P) = 3.0, CH de Py), 152.3 (d, ²J (C-P) = 7.6, C de Py), 158.0 (s et Pt satellites, ⁴J (C-Pt) = 48.3, C de Ph).

RMN ³¹P (CD₂Cl₂) : δ 20.3 (t et Pt satellites, ¹J (P_A-Pt) = 3124.9, ²J (P_A-P_B) = 84.8, P_A), 46.2 (d, ²J (P_B-P_A) = 84.8, P_BPh₂).

Complexe de nickel 321

On agite une solution de [Ni(dme)Br₂] (136 mg, 0.44 mmol) et de **SPS** (300 mg, 0.44 mmol) dans le CH₂Cl₂ (15 mL) pendant 1 h à 40°C. Après évaporation du solvant, on rince, en boîte à gants, le solide obtenu à l'hexane (3 x 5 mL). Après évaporation, on obtient **321** sous la forme d'une poudre orange. Des cristaux analysables par diffraction aux rayons X ont pu être obtenus par diffusion d'hexane dans une solution de **321** dans le CH₂Cl₂. Rendement : 384 mg (97%).

RMN ³¹P (CD₂Cl₂) : $\delta = 55.9$ (AB₂, d, ²J (P_A-P_B) = 137.4, P_BPh₂), 98.5 (AB₂, t, ²J (P_A-P_B) = 137.4, P_A).

Complexe de platine 322

On agite une solution de $[Pt(COD)Cl_2]$ (165 mg, 0.44 mmol) et de **SPS** (300 mg, 0.44 mmol) dans le CH₂Cl₂ (15 mL) pendant 15 min. Après évaporation du solvant, on rince, en boîte à gants, le solide obtenu à l'hexane (3 x 5 mL). Après évaporation, on obtient **322** sous la forme d'une poudre orange. Des cristaux analysables par diffraction aux rayons X ont pu être obtenus par diffusion d'hexane dans une solution de **322** dans le CH₂Cl₂. Rendement : 400 mg (96%).

RMN ³¹P (CD₂Cl₂) : $\delta = 48.0$ (d, ²J (P_A-P_B) = 109.1, P_BPh₂), 67.1 (t et Pt satellites, ¹J (P_A-Pt) = 3860.3, ²J (P_A-P_B) = 109.1, P_A).

Complexe de nickel 323

On agite une solution de [Ni(dme)Br₂] (136 mg, 0.44 mmol) et de **SPS** (300 mg, 0.44 mmol) dans le CH₂Cl₂ (15 mL) pendant 30 min puis on ajoute de l'éthanol (200 μ L, 3.4 mmol). Après agitation pendant 15 min, on évapore la solution et l'on rince le solide obtenu à l'hexane (3 x 2 mL) puis à l'éther (3 x 2 mL). Après évaporation, on obtient **323** sous la forme d'une poudre marron. Rendement : 365 mg (96%).

Analyse élémentaire pour $[C_{43}H_{36}BrNiOP_3S_2]$ (864.4) : calculé : C 59.75 H 4.20 ; trouvé C 59.29 H 3.80.

RMN ¹H (CD₂Cl₂) : δ 1.27 (d, ³J (H-H) = 7.0, CH₃), 4.52 (AB₂X, dq, ³J (H-H) = ³J (H-P_A) = 7.2, 2H, CH₂), 6.73-7.82 (m, 31H, H₄ et CH de Ph).

RMN ¹³C (CD₂Cl₂) : δ 16.4 (d, ³*J* (C-P_A) = 8.0, CH₃), 65.4 (d, ²*J* (C-P_A) = 4.0, CH₂), 95.9 (m, ΣJ (C-P) = 158.1, C_{2,6}), 114.8 (q, ³*J* (C-P_A) = ³*J* (C-P_B) = 10.1, C₄H), 127.6-132.5 (m, C et CH de Ph), 140.9 (p, ²*J* (C-P_A) = ²*J* (C-P_B) = ⁴*J* (C-P_{B'}) = 3.4, C_{3,5}), 154.4 (s, C de Ph). RMN ³¹P (CD₂Cl₂) : δ 58.3 (d, ²*J* (P_A-P_B) = 123.9, P_BPh₂), 104.6 (t, ²*J* P_A-P_B) = 123.9, P_A).

Complexe de platine 324

On agite une solution de [Pt(COD)Cl₂] (165 mg, 0.44 mmol) et de **SPS** (300 mg, 0.44 mmol) dans le CH₂Cl₂ (15 mL) pendant 15 min puis on ajoute de l'éthanol (200 μ L, 3.4 mmol). Après agitation pendant 15 min, on évapore la solution et l'on rince le solide obtenu à l'hexane (3 x 2 mL) puis à l'éther (3 x 2 mL). Après évaporation, on obtient **324** sous la forme d'une poudre jaune. Rendement : 400 mg (95%).

Analyse élémentaire pour $[C_{43}H_{36}ClOP_3PtS_2]$ (956.3) : calculé : C 54.00 H 3.79 ; trouvé C 53.64 H 3.48.

RMN ¹H (CD₂Cl₂) : δ 1.38 (d, ³*J* (H-H) = 7.0, CH₃), 4.31 (dq, ³*J* (H-P_A) = 9.0, ³*J* (H-H) = 7.0, 2H, CH₂), 5.66 (dt, ⁴*J* (H-P_B) = 4.8, ⁴*J* (H-P_A) = 0.8, 1H, H₄), 6.69-7.67 (m, 30H, CH de Ph). RMN ¹³C (CD₂Cl₂) : δ 16.6 (d, ³*J* (C-P_A) = 7.3, CH₃), 62.7 (d, ²*J* (C-P_A) = 5.0, CH₂), 88.8 (ddd, ¹*J* (C-P_A) = 92.6, ¹*J* (C-P_B) = 80.0, ³*J* (C-P_B) = 5.0, C_{2,6}), 116.3 (q, ⁴*J* (C-P_A) = ⁴*J* (C-P_B) = 12.8, C₄H), 127.6-128.8 (m, CH de Ph), 130.7 (dd, ¹*J* (C-P_B) = 83.9, ³*J* (C-P_A) = 5.7, C de PPh₂), 131.5 (dd, ¹*J* (C-P_B) = 86.6, ³*J* (C-P_A) = 3.4, C de PPh₂), 132-132.8 (m, CH de Ph), 140.5 (dt, ²*J* (C-P_A) = 8.3, ²*J* (C-P_B) = ⁴*J* (C-P_{B'}) = 2.9, C_{3,5}), 155.5 (s, C de Ph). RMN ³¹P (CD₂Cl₂) : δ 48.9 (d, ²*J* (P_A-P_B) = 98.5, P_BPh₂), 65.47 (t et Pt satellites, ¹*J* (P_A-Pt) = 3640.0, ²*J* (P_A-P_B) = 98.5, P_A).

Complexe de palladium 325

On ajoute de l'acétonitrile (50 μ L, 0.96 mmol) à une solution de **302** (150 mg, 0.17 mmol) et de AgBF₄ (37 mg, 0.19 mmol) dans le CH₂Cl₂ (5 mL). On agite la solution pendant 15 min puis on la filtre à travers un fritté recouvert de célite. Après évaporation, on obtient **325** sous la forme d'un solide jaune. Rendement : 140 mg (85%).

Analyse élémentaire pour $[C_{47}H_{43}BF_4NP_3PdS_2]$ (972.1) : calculé : C 58.07, H 4.46 ; trouvé : C 57.67, H 4.02.

RMN ¹H (CD₂Cl₂) : δ 1.05 (t, ³*J* (H-H) = 7.3, 3H, CH₃ de *n*Bu), 1.62 (qt, ³*J* (H-H) = 14.6, ³*J* (H-H) = 7.3, CH₂), 2.03 (m, 2H, CH₂), 2.26 (m, 2H, CH₂), 2.23 (s, 3H, CH₃ de CH₃CN), 2.44 (m, 2H, CH₂), 5.60 (t, ⁴*J* (H-P_B) = 5.1, 1H, H₄), 6.69-7.89 (m, 30H, CH de Ph).

RMN ¹³C (CD₂Cl₂) : δ 8.6 (s, CH₃ de CH₃CN), 13.4 (s, CH₃ de *n*Bu), 23.5 (d, ³*J* (C-P_A) = 17.2, CH₂), 25.7 (d, ²*J* (C-P_A) = 15.7, CH₂), 45.2 (d, ¹*J* (C-P_A) = 38.2, CH₂), 71.5 (m, C_{2,6}), 119.3 (m, C₄H), 126.2 (d, ²*J* (C-P_A) = 25.5, C de CH₃CN), 125.2-134.5 (m, CH et C de Ph), 138.4 (ABB'X, dt, ²*J* (C-P_A) = ²*J* (C-P_B) = 9.0, ⁴*J* (C-P_{B'}) = 3.1, C_{3,6}), 163 (m, C de Ph). RMN ³¹P (THF) : δ 49.7 (d, ²*J* (P_A-P_B) = 69.6, P_BPh₂), 64.6 (t, ²*J* (P_A-P_B) = 69.6, P_A).

Complexe de nickel 326

On ajoute de l'acétonitrile (50 μ L, 0.96 mmol) à une solution de **323** (138 mg, 0.17 mmol) et de AgBF₄ (37 mg, 0.19 mmol) dans le CH₂Cl₂ (5 mL). On agite la solution pendant 15 min puis on la filtre à travers un fritté recouvert de célite. Après évaporation, on obtient **326** sous la forme d'un solide marron. Rendement : 134 mg (92%).

Analyse élémentaire pour $[C_{45}H_{39}BF_4NNiOP_3S_2]$ (912.4) : calculé : C 59.24, H 4.31 ; trouvé : C 58.79, H 3.92.

RMN ¹H (CD₂Cl₂) : δ 1.20 (ls, 3H, CH₃ de Et), 2.30 (ls, 3H, CH₃ de CH₃CN), 4.15 (ls, 2H, CH₂), 5.60 (ls, 1H, H₄), 6.40-7.80 (m, 30H, CH de Ph).

RMN ¹³C (CD₂Cl₂) : δ 7.8 (s, CH₃ de CH₃CN), 15.7 (s, ³*J*(C-P_A) = 8.0, CH₃ de Et), 64.6 (d, ²*J* (C-P_A) = 6.9, CH₂), 91.9 (m, C_{2,6}), 115.1 (q, ⁴*J*(C-P_A) = ⁴*J*(C-P_B) = 9.8, C₄H), 127.19-132.4 (m, CH et C de Ph et C de CH₃CN), 139.0 (dt, ⁴*J*(C-P_B) = 8.0, ²*J*(C-P_A) = ²*J*(C-P_B) = 4.0, C_{3,5}), 156.5 (s, C de Ph).

RMN ³¹P (THF) : δ 55.2 (d, ²J (P_A-P_B) = 106.3, P_B), 88.8 (t, ²J (P_A-P_B) = 106.3, P_A).

Complexe de palladium 327

On ajoute de l'acétonitrile (50 μ L, 0.96 mmol) à une solution de **305** (148 mg, 0.17 mmol) et de AgBF₄ (37 mg, 0.19 mmol) dans le CH₂Cl₂ (5 mL). On agite la solution pendant 15 min puis on la filtre à travers un fritté recouvert de célite. Après évaporation, on obtient **327** sous la forme d'un solide orange. Rendement : 155 mg (95%).

Analyse élémentaire pour $[C_{45}H_{39}BF_4NOP_3PdS_2]$ (960.1) : calculé : C 56.30, H 4.09 ; trouvé : C 55.84, H 3.75.

RMN ¹H (CD₂Cl₂) : δ 1.35 (t, ³*J* (H-H) = 7.0, 3H, CH₃ de EtO), 2.20 (s, 3H, CH₃ de CH₃CN), 4.22 (dq, ³*J* (H-P_A) = 1.2, ³*J* (H-H) = 7.0, 2H, CH₂), 5.71 (t, ⁴*J* (H-P_B) = 4.9, 1H, H₄), 6.69-7.79 (m, 30H, CH de Ph).

RMN ¹³C (CD₂Cl₂) : δ 2.3 (s, CH₃), 16.2 (d, ³*J* (C-P_A) = 8.6, CH₃), 66.9 (d, ²*J* (C-P_A) = 8.1, CH₂), 91.6 (ddd, ¹*J* (C-P_A) = 93.2, ¹*J* (C-P_B) = 71.0, ³*J* (C-P_{B'}) = 7.7, C_{2,6}), 117.1 (q, ⁴*J* (C-P_A) = ⁴*J* (C-P_B) = 12.2, C₄H), 121.2 (ls, C de CH₃CN), 127.8 (dd, ¹*J* (C-P_B) = 84.7, ³*J* (C-P_A) = 7.4, C de PPh₂), 128.1 (ABX, d, ¹*J* (C-P_B) = 86.6, C de PPh₂), 128.1-134.8 (m, CH de Ph), 139.0 (dt, ²*J* (C-P_A) = 9.1, ²*J* (C-P_B) = ⁴*J* (C-P_{B'}) = 3.5, C_{3,5}), 160.5 (s, C de Ph). RMN ³¹P (THF) : δ 49.0 (d, ²*J* (P_A-P_B) = 85.5, P_BPh₂), 87.8 (t, ²*J* (P_A-P_B) = 85.5, P_A).

Complexe de platine 328

On ajoute de l'acétonitrile (50 μ L, 0.96 mmol) à une solution de **324** (153 mg, 0.16 mmol) et de AgBF₄ (37 mg, 0.19 mmol) dans le CH₂Cl₂ (5 mL). On agite la solution pendant 15 min puis on la filtre à travers un fritté recouvert de célite. Après évaporation, on obtient **328** sous la forme d'un solide marron. Rendement : 156 mg (93%).

Analyse élémentaire pour $[C_{45}H_{39}BF_4NOP_3PtS_2]$ (1048.7) : calculé : C 51.54, H 3.75 ; trouvé : C 51.29, H 3.24.

RMN ¹H (CD₂Cl₂) : δ 1.49 (t, ³J (H-H) = 7.0, 3H, CH₃ de Et), 2.37 (s, 3H, CH₃ de CH₃CN), 4.15 (p, ³J (H-P_B) = ³J (H-H) = 7.0, 2H, CH₂), 5.97 (t, ⁴J (H-P_B) = 5.1, 1H, H₄), 6.75-7.82 (m, 30H, CH de Ph).

RMN ¹³C (CD₂Cl₂) : δ 3.5 (s, CH₃), 16.5 (d, ³*J*(C-P_A) = 7.5, CH₃), 65.0 (d, ²*J* (C-P_A) = 9.8, CH₂), 84.5 (ddd, ¹*J* (C-P_A) = 96.8, ¹*J* (C-P_B) = 87.2, ³*J* (C-P_{B'}) = 5.6, C_{2,6}), 118.5 (q, ⁴*J*(C-P_A) = ⁴*J* (C-P_B) = 2.1, C₄H), 125.0 (d, ²*J* (C-P_A) = 21.4, C de CH₃CN), 127 (dd, ¹*J* (C-P_B) = 91.0, ³*J* (C-P_A) = 4.1, C de PPh₂), 128 (dd, ¹*J* (C-P_B) = 95.7, ³*J* (C-P_A) = 3.7, C de PPh₂), 128.1-134.8 (m, CH de Ph), 139 (m, C_{3,5}), 160.5 (s, C de Ph).

RMN ³¹P (THF) : δ 48.9 (d, ²J (P_A-P_B) = 80.4, P_B), 54.6 (t et Pt satellites, ¹J (P_A-Pt) = 3592.9, ²J (P_A-P_B) = 75.2, P_A).

Complexe de palladium 329

On agite pendant 15 min une solution de **302** (97 mg, 0.11 mmol) et de AgOTf (49 mg, 0.19 mmol) dans le CH_2Cl_2 (3 mL) puis on la filtre à travers un fritté recouvert de célite. Après évaporation, on obtient **329** sous la forme d'un solide rouge. Rendement : 95 mg (87%).

Analyse élémentaire pour $[C_{46}H_{40}F_3O_3P_3PdS_3]$ (993.3) : calculé : C 55.62, H 4.06 ; trouvé : C 55.43, H 3.86.

RMN¹H (CD₂Cl₂) : δ 1.05 (t, ³*J* (H-H) = 6.9, 3H, CH₃), 1.62 (qt, ³*J* (H-H) = 6.9, ³*J* (H-H) = 13.8, CH₂), 1.92-2.06 (m, 2H, CH₂), 2.19-2.31 (m, 2H, CH₂), 5.50 (t, ⁴*J* (H-P_B) = 4.7, 1H, H₄), 6.68-7.56 (m, 30H, CH de Ph).

RMN ¹³C (CD₂Cl₂) : δ 13.9 (s, CH₃ de *n*Bu), 23.5 (d, ³*J*(C-P_A) =, CH₂), 25.5 (d, ²*J*(C-P_A) = 2.6, CH₂), 38.3 (m, CH₂), 71.6 (m, C_{2,6}), 118.6 (q, ⁴*J*(C-P_A) = ⁴*J*(C-P_B) = 10.6, C₄H), 127.7-128.8 (m, CH de Ph), 131.1 (dd, ¹*J*(C-P_B) = 83.8, ³*J*(C-P_A) = 8.3, C de Ph), 131.9-133.0 (m, CH de Ph), 139.6 (m, C_{3,5}), 159.5 (m, C de Ph), CF₃ pas observé.

RMN ³¹P (THF) : δ 49.5 (d, ²J (P_A-P_B) = 84.4, P_B), 56.1 (t, ²J (P_A-P_B) = 84.4, P_A).

Complexe de nickel 330

On ajoute 21 mg de $AgBF_4$ (21 mg, 0.11 mmol, 1.1 eq.) à une solution de **319** (85 mg, 0.10 mmol). La solution est agitée pendant 1 heure puis elle est filtrée à travers un fritté recouvert de célite. Après évaporation du solvant, on obtient une poudre marron. Rendement : 77 mg (90%)

Analyse élémentaire pour $[C_{47}H_{37}BF_4NNiP_3S_2]$ (917.1) : calculé C 61.47, H 4.06 ; trouvé C 61.06, H 3.73.

Les spectres RMN ¹H et ¹³C n'ont pu être enregistrés car il était impossible de shimmer.

RMN ³¹P (CDCl₃) : δ 41.6 (t, ²J (P-P) = 98.0, P_A), 50.4 (m, ΣJ (P-P) = 289.6, P_BPh₂), 52.81 (m, ΣJ (P-P) = 307.4, P_BPh₂).

Complexe de palladium 331

On ajoute 20 mg de $AgBF_4$ (20 mg, 0.10 mmol, 1.1 eq.) à une solution de **303** (82 mg, 0.09 mmol). La solution est agitée pendant 1 heure puis elle est filtrée à travers un fritté recouvert de célite. Après évaporation du solvant, on obtient une poudre marron. Rendement : 75 mg (86%).

Analyse élémentaire pour $[C_{47}H_{37}BF_4NP_3PdS_2]$ (966.1) : calculé C 58.43, H 3.86 ; trouvé C 58.04, H 2.81.

RMN ¹H (CD₂Cl₂) : δ 4.08 (dd, ²J (H-H) = 13.6, ²J (H-P_A) = 8.9, 1H, CH₂), 4.39 (*pseudo* t, ²J (H-P_A) = ²J (H-H) = 13.6, 1H, CH₂), 6.08 (t, ⁴J (H-P_B) = 4.7, 1H, H₄), 6.24 (dd, ²J (H-P_A) = 14.0, ²J (H-H) = 7.3, 2H, CH de Py ou de Ph) 6.77-7.79 (m, 30H, CH de Ph et de Py), 7.99 (td, J (H-H) = 7.8, J (H-H) = 1.3, 1H, CH de Py), 8.43 (d, J (H-H) = 5.7, 1H, CH de Py).

RMN ¹³C (CD₂Cl₂) : δ 44.3 (d, ¹*J* (C-P) = 20.0, CH₂), 65.6 (m, C_{2 ou 6}), 72.1 (m, C_{2 ou 6}), 119.9 (*pseudo* q, ³*J* (C-P) = 10.6, C₄H), 123.3 (ls, CH de Py), 127.0-132.8 (m, CH de Py, CH et C de Ph), 136.7 (m, ΣJ = 12.8, C_{3 ou 5}), 137.3 (m, ΣJ = 13.6, C_{3 ou 5}), 138.6 (s, CH de Py), 151.0 (d, ²*J* (C-P) = 6, C de Py), 153.0 (s, CH de Py), 159.7 (s, C de Ph), 160.0 (s, C de Ph). RMN ³¹P (CD₂Cl₂) : δ 45.4-49.8 (ABB', m, P_A-CH₂, P_B·Ph₂ P_BPh₂).⁶

Complexe de platine 332

On ajoute 15 mg de $AgBF_4$ (15.6 mg, 0.08 mmol, 1.1 eq.) à une solution de **320** (71 mg, 0.07 mmol). La solution est agitée pendant 1 heure puis elle est filtrée à travers un fritté recouvert de célite. Après évaporation du solvant, on obtient une poudre orange. Rendement : 66 mg (89%).

Analyse élémentaire pour $[C_{47}H_{37}BF_4NP_3PtS_2]\ (1054.7)$: calculé C 53.42 , H 3.54 ; trouvé C 53.09, H 3.17.

RMN ¹H (CDCl₃) : δ 4.11 (*pseudo* t, ²J (H-H) = ²J (H-P_A) = 13.1, 1H, CH₂), 4.39 (dd, ²J (H-P_A) = 16.2, ²J (H-H) = 13.1, 1H, CH₂), 6.12 (t, ⁴J (H-P_B) = 4.9, 1H, H₄), 6.25 (dd, ²J (H-P_A) = 14.0, ²J (H-H) = 7.5, 2H, CH de Py ou de Ph), 6.67-7.72 (m, 30H, CH de Ph et de Py), 8.03 (t, J (H-H) = 7.5, 1H, CH de Py), 8.49 (d, J (H-H) = 5.7, 1H, CH de Py).

RMN ¹³C (CDCl₃) : δ 40.2 (m, CH₂), 63.6 (m, C_{2 ou 6}), 66.9 (m, C_{2 ou 6}), 119.9 (*pseudo* q, ³*J* (C-P) = 11.5, C₄H), 123.1 (s, CH de Py), 125.6 (s, CH de Py ou de Ph) 125.9-133.5 (m, CH de Py, CH et C de Ph), 136.7 (dd, *J* (C-P) = 9.2, *J* (C-P) = 3.4, C_{3 ou 5}), 137.3 (dd, *J* (C-P) = 9.2, *J* (C-P) = 4.6, C_{3 ou 5}), 138.8 (s, CH de Py), 152.2 (d, ²*J* (C-P) = 7.5, C de Py), 153.6 (s, CH de Py), 158.8 (m, ΣJ = 4.5, C de Ph), 159.3 (m, ΣJ = 6.0, C de Ph).

⁶ Spectre du deuxième ordre non simulé.

RMN ³¹P (CDCl₃) : δ 13.1 (t et Pt satellites, ¹J (P_A-Pt) = 2913.1, ²J (P_A-P_B) = 80.3, P_A), 44.2 (d, ²J (P_B-P_A) = 80.3, P_BPh₂).

Complexe de palladium 333

On ajoute de la pyridine (30 μ L, 0.58 mmol) à une solution de **331** (50 mg, 0.05 mmol) dans le CH₂Cl₂ (1 mL). On agite la solution pendant 15 min. Rendement RMN : 100%. L'évaporation de **333** conduit à la reformation complète de **331**.

RMN ³¹P (CD₂Cl₂) : δ 45.1-49.8 (AB₂, m, P_A-CH₂, P_B·Ph₂, P_BPh₂).⁶

Complexe de palladium 334

On ajoute de la pyridine (10 μ L, 0.12 mmol) à une solution de **331** (98 mg, 0.10 mmol) dans le CH₂Cl₂ (2 mL). On agite la solution pendant 15 min. Rendement RMN : 100%. L'évaporation de **334** conduit à la reformation partielle de **331**.

RMN¹H (CDCl₃) : δ 3.94 (d, ²J (H-P_A) = 11.5, 2H, CH₂), 5.58 (t, ⁴J (H-P_B) = 4.4, 1H, H₄), 6.82-8.74 (m, 29H, CH de Py et de Ph).

RMN ¹³C (CDCl₃)⁷ : δ 48.5 (s, CH₂), 71.1 (s, C_{2, 6}), 119.6 (s, C₄H), 122.7 (s, CH de α -picoline), 124.2 (s, CH de Py), 126.1 (s, CH de α -picoline), 128.1-129.3 (s, 5 x CH de Ph), 130.1 (s, C de PPh₂), 131.2 (s, C de PPh₂), 131.9-133.4 (s, 4 x CH de Ph), 136.5 (s, CH de Py), 138.7 (s, CH de α -picoline), 139.0 (s, C_{3, 5}), 150.2 (s, CH de Py), 150.6 (s, CH de α -picoline), 151.1 (s, C de α -picoline), 160.9 (s, C de Ph).

RMN ³¹P (CDCl₃) : δ 45.7 (AB₂, m, ²J (P_B-P_A) = 79.5, P_BPh₂), 47.6 (AB₂, m, ²J (P_B-P_A) = 79.5, P_A).⁵

IV. Chapitre 4

⁷ Spectre RMN ¹³C découplé phosphore.

Une solution de MeLi dans Et₂O (1.9 mL, C = 0.15 M, 0.28 mmol) est ajouté à une solution de **SPS** (193m g, 0.28 mmol) dans le THF (15 mL) à -78°C. Après retour à température ambiante, on agite la solution pendant 20 min. La RMN ³¹P indique alors la formation quantitative de **211** auquel on ajoute [Rh(COD)Cl]₂ (70 mg, 0.14 mmol) à -78°C. La solution initialement rouge devient rapidement marron. Le mélange est agité pendant 20 min puis les solvants sont évaporés sous vide. Le solide obtenu est dissout dans le CH₂Cl₂ (8 mL) puis filtré sur célite. Après séchage, on obtient une poudre marron. Rendement : 270 mg (70%). Des cristaux se sont déposés dans un tube de THF.

Analyse élémentaire pour $[C_{50}H_{46}P_3RhS_2]$ (906.9) : calculé C 66.22, H 5.11 ; trouvé C 65.87, H 4.76.

RMN ¹H (CD₂Cl₂) : δ 1.25 (d, ²J (H-P) = 8.4, 3H, CH₃), 1.7 (ls, 8H, CH₂ du COD), 3.89 (ls, 4H, CH du COD), 5.48 (dt, ⁴J (H-P_B) = 4.2, ⁴J (H-P_A) = 0.8, 1H, H₄), 6.64-8.18 (m, 30H, H de Ph).

RMN ¹³C (CD₂Cl₂): δ 5.7 (ddt, ¹*J* (C-P_A) = 35.7, ³*J* (C-P_B) = 5.7, ²*J* (C-Rh) = 2.8, CH₃), 35.6 (s, CH₂ du COD), 72.3 (m, C_{2,6}), 78.6 (ls, ΣJ (C-P) = 54.5, CH du COD), 117.1 (q, ³*J* (C-P_A) = ³*J* (C-P_B) = 11.3, C₄H), 127.3-137.1 (m, CH et C de Ph), 142.9 (*pseudo* td, *J* (C-P_B) = 6.8, ⁴*J* (C-P_A) = 3.8, C_{3,5}), 152.7 (s, C de Ph).

RMN ³¹P (CD₂Cl₂) : δ 33.0 (td, ²J (P_A-P_B) = 106.3, ¹J (P-Rh) = 103.4, P_A), 46.7 (d, ²J (P_A-P_B) = 106.3, P_BPh₂).

Complexe de rhodium 402

On mélange pendant 10 min en boîte à gants une solution de MeONa (8 mg, 0.15 mmol) et de **SPS** (100 mg, 0.15 mmol) dans le THF (6 mL). On vérifie par RMN ³¹P la formation de **218** puis on ajoute, en boîte à gants, $[Rh(COD)Cl]_2$ (36 mg, 0.08 mmol). On agite le mélange pendant 10 min. Après évaporation du solvant, on dissout le solide dans du CH₂Cl₂ (5 mL) et l'on filtre la solution à travers un fritté recouvert de célite. Après évaporation, on obtient **402** sous la forme d'une poudre jaune. Rendement : 104 mg (73%).

Analyse élémentaire pour $[C_{50}H_{46}OP_3RhS_2]\ (922.9)$: calculé C 65.07, H 5.02 ; trouvé C 64.71, H 4.68.

RMN ¹H (CDCl₃) : δ 1.52-1.59 (m, 8H, CH₂ du COD), 3.37 (d, ²J (H-P) = 10.0, 3H, CH₃), 4.23 (ls, 4H, CH du COD), 5.53 (t, ⁴J (H-P_B) = 4.0, 1H, H₄), 6.69-8.34 (m, 30H, H de Ph). RMN ¹³C non réalisée : dégradation du complexe en solution.

RMN ³¹P (THF) : δ 51.3 (d, ²J (P_A-P_B) = 125.3, P_BPh₂), 33.0 (dt, ¹J (P-Rh) = 145.5, ²J (P_A-P_B) = 125.3, P_A-OMe).

Une solution de MeLi dans Et₂O (1.9 mL, C = 0.15 M, 0.28 mmol) est ajoutée à une solution de **SPS** (193m g, 0.28 mmol) dans le THF (15 mL) à -78°C. Après retour à température ambiante, on agite la solution pendant 20 min. La RMN ³¹P indique alors la formation quantitative de **211** auquel on ajoute [Rh(CO)₂Cl]₂ (54.4 mg, 0.14 mmol) à -78°C. La solution initialement rouge vermillon devient rapidement bordeaux. Le mélange est agité pendant 20 min. Le complexe **403** se dégrade s'il est tiré à sec. Rendement RMN : 100%.

RMN ³¹P (THF) : δ 32.2 (dt, ²J (P_A-P_B) = 107.7, ²J (P_A-Rh) = 92.9, P_AMe), 38.2 (d, ²J (P_B-P_A) = 108.7, P_BPh₂)

Complexe de rhodium 404

Méthode A : CO (1 atm) est bullé pendant 1 min dans une solution de **401** (121 mg, 0.11 mmol) dans le THF (10 mL) à -78°C. Après retour à température et agitation pendant 1h, la solution initialement marron foncé devient orange. Après évaporation du solvant, on rince le solide à l'hexane (2 x 2 mL) puis à l'éther (2 x 2 mL). Rendement : 95 mg (79%). Des cristaux ont pu être obtenus par diffusion d'hexane dans une solution de **401** dans le CH₂Cl₂ pendant la nuit dans un tube RMN de THF.

Méthode B : Une solution de MeLi dans Et₂O (1.9 mL, C = 0.15 M, 0.28 mmol) est ajoutée à une solution de SPS (193m g, 0.28 mmol) dans le THF (15 mL) à -78°C. Après retour à température ambiante, on agite la solution pendant 20 min. La RMN ³¹P indique alors la formation quantitative de **211** auquel on ajoute $[Rh(CO)_2Cl]_2$ (54.4 mg, 0.14 mmol) à -78°C. La solution initialement rouge devient rapidement marron. Le mélange est agité pendant 20 min. On observe en RMN ³¹P la formation quantitative du complexe $[Rh(CO)_2(SPS^{Me})]$ **403**. Ce dernier ne peut être isolé. L'ajout de PPh₃ (73.4 mg, 0.28 mmol) conduit à la libération concomitante de CO. Après évaporation, le solide obtenu est dissout dans le CH₂Cl₂ (8 mL) puis filtré sur célite. Après séchage, on obtient une poudre orange. Rendement : 278 mg (79%).

Analyse élémentaire pour $[C_{61}H_{49}OP_4RhS_2 CH_2Cl_2]$ (1258.8) : calculé C 60.11, H 4.24 ; trouvé C 59.79, H 3.82.

IR (KBr): v 1913 (CO) cm⁻¹.

RMN ¹H (CD₂Cl₂) : δ 1.77 (d, ²J (H-P_A) = 8.0, 3H, CH₃), 5.60 (td, ⁴J (H-P_B) = 4.5, ⁴J (H-P_A) = 1.1, 1H, H₄), 6.75-8.10 (m, 45H, H de Ph).

RMN ¹³C (CD₂Cl₂) : δ 15.0 (d, ¹*J* (C-Rh) = 4.3, CH₃), 70.86 (m, C_{2,6}), 116.1 (*pseudo* q, ³*J* (C-P_A) = ³*J* (C-P_B) = 12.8, C₄), 126.4-135.0 (m, CH et C de Ph), 142.2 (m, C_{3,5}), 152.4 (s, C de Ph), 194.7 (m, ¹*J* (C-Rh) = 86.8, CO).

RMN ³¹P (CD₂Cl₂) : δ 32.2 (dd *pseudo* t, ²J (P_A-P_C) = 309.8, ²J (P_A-P_B) = 107.3, ²J (P_A-Rh) = 96.1, P_AMe), 38.2 (ddt, ²J (P_C-P_A) = 309.8, ¹J (P_C-Rh) = 108.7, ³J (P_C-P_B) = 24.6, P_CPh₃), 47.4 (dd, ²J (P_B-P_A) = 107.3, ³J (P_B-P_C) = 24.6, P_BPh₂).

Dans la boîte à gants, on ajoute 1 équivalent de PPh₃ (30 mg) à une solution de **401** (104 mg, 0.11 mmol) in THF. La consommation de PPh₃ est vérifiée par RMN ³¹P. Après évaporation du solvant, le solide obtenu est lavé à l'hexane (3 x 2 mL) et recristallisé par diffusion d'hexane dans une solution de THF. Rendement : 80 mg (69%).

405 est trop sensible à O_2 pour donner une analyse élémentaire satisfaisante.

RMN ¹H (THF-d8) : δ 1.69 (d, ²J (H-P_A) = 6.6, 3H, CH₃), 5.35 (t, ⁴J (H-P_B) = 3.9, 1H, H₄), 6.75-8.10 (m, 45H, H de Ph).

RMN ¹³C (THF-d8) : δ 18.8 (d, ¹J (C-Rh) = 14.3, CH₃), 77.1 (m, C_{2,6}), 119.3 (m, C₄), 128.6-138.8 (m, CH et C de Ph), 144.5 (s, C_{3,5}), 157.7 (s, C de Ph).

RMN ³¹P (THF-d8) : δ 29.8 (m, $\Sigma J = 540.1$, ²J (P_A-Rh) = 100.0, P_AMe et P_CPh₃), 41.86 (dd, ²J (P_B-P_A) = 123.8, ³J (P_B-P_C) = 49.7, P_BPh₂).⁵

Complexe de rhodium 406

Dans la boîte à gants, on ajoute 1 équivalent de PPh₃ (30 mg) à une solution de **402** (100 mg, 0.11 mmol) in THF. La consommation de PPh₃ est vérifiée par RMN ³¹P. Après évaporation du solvant, le solide obtenu est lavé à l'hexane (3 x 2 mL). Après séchage, on obtient **406** sous la forme d'une poudre marron. Rendement : 86 mg (85%).

406 est trop sensible à O₂ pour donner une analyse élémentaire satisfaisante.

RMN ¹H (THF-d8) : δ 1.94 (d, ²J (H-P_A) = 13.1, 3H, CH₃), 5.52 (t, ⁴J (H-P_B) = 4.8, 1H, H₄), 6.77-8.31 (m, 45H, H de Ph).

RMN ¹³C (THF-d8) : δ 27.5 (s, CH₃), 93.9 (m, ²J (C-Rh) = 3.8, C_{2,6}), 117.0 (t, ³J (C-P) = 10.6, C₄), 128.6-138.7 (m, CH et C de Ph), 144.7 (m, C_{3,5}), 157.7 (s, C de Ph).

RMN ³¹P (THF-d8) : δ 33.1 (ddt, ²J (P_C-P_A) = 447.1, ¹J (P_C-Rh) = 106.9, ³J (P_C-P_B) = 18.3, P_CPh₃), 44.9 (dd, ²J (P_B-P_A) = 155.5, ³J (P_B-P_C) = 18.3, P_BPh₂), 109.6 (ddt, ²J (P_A-P_C) = 447.1, ²J (P_A-P_B) = 155.5, ²J (P_A-Rh) = 138.5, P_AMe).

Complexe de rhodium 407

On ajoute en boîte à gant du THF à un mélange de **401** (100 mg, 0.11 mmol) et de 2,6diméthylbenzoisonitrile (29 mg, 0.22 mmol). On agite le mélange réactionnel pendant 30 minutes. Après évaporation du solvant, le solide obtenu est lavé à l'hexane (3 x 2 mL) en boîte à gants. On obtient **407** sous la forme d'une poudre orange. Rendement RMN : 100%. Rendement isolé : 84 mg (72%).

RMN ³¹P (THF) : δ 20.0 (td, ¹J (P-Rh) = 117.9, ²J (P_A-P_B) = 104.6, P_A-Me), 46.1 (d, ²J (P_A-P_B) = 104.6, P_BPh₂).

Complexe de rhodium 408

Méthode A : On ajoute en boîte à gant du THF à un mélange de **401** (100 mg, 0.11 mmol) et de 2,6-diméthylphénylisonitrile (29 mg, 0.22 mmol). On agite le mélange réactionnel pendant 30 minutes. Puis on vérifie la formation de **407** par RMN ³¹P. L'ajout de PPh₃ (29 mg, 0.11 mmol) conduit à la libération concomitante d'un équivalent d'isonitrile. Après évaporation du solvant, on rince le solide à l'hexane (2 x 2 mL). Après évaporation, le solide obtenu est dissout dans le CH₂Cl₂ (8 mL) puis filtré sur célite. Après séchage, on obtient une poudre orange. Rendement : 100 mg (76%).

Méthode B : On ajoute en boîte à gants du 2,6-diméthylphénylisonitrile (15 mg, 0.11 mmol) à une solution de **405** (121 mg, 0.11 mmol) dans THF (5 mL). Le mélange réactionnel est agité pendant 30 minutes. Après évaporation du solvant, on rince le solide à l'hexane (2 x 2 mL) puis à l'éther (2 x 2 mL). Rendement : 109 mg (83%).

Complexe de rhodium 410

On ajoute une solution de BuLi dans l'hexane (0.088 mL, C = 1.6 M, 0.14 mmol) à une solution de **231-233** (100 mg, 0.12 mmol) dans le THF (5 mL) à -78°C. Après retour à température ambiante, on agite le mélange pendant 20 min. On vérifie par RMN ³¹P la formation de **234** puis on ajoute, en boîte à gants, $[Rh(CO)_2Cl]_2$ (24 mg, 0.08 mmol). On agite le mélange pendant 24h. Après évaporation du solvant, on rince le solide obtenu à l'hexane (3 x 2 mL). Après évaporation, on obtient **410** sous la forme d'une poudre rouge foncé. LiCl n'a été séparé en raison de la dégradation de **410** dans les solvants chlorés et du manque de solubilité de ce complexe dans le toluène. Rendement (avec LiCl) : 94 mg (78%). Des cristaux analysables par diffraction aux rayons X ont pu être obtenus par diffusion d'hexane dans une solution de **410** dans le THF.

IR (KBr): v 1978 (CO) cm⁻¹.

¹H RMN (CD₂Cl₂) : δ 0.86-3.72 (m, CH, CH₂ et CH₃ de menthyle), 5.54 (*pseudo* t, ⁴J (H-P_B) = ⁴J (H-P_B) = 4.3, 1H, H₄), 6.86-7.76 (m, 30H, CH de Ph).

¹³C RMN (CD₂Cl₂) : δ 16.8 (s, CH₃), 22.0 (s, CH₃), 22.5 (s, CH₃), 29.6 (d, J (P-C) = 5.6, CH), 30.5 (s, CH₂), 34.5 (d, J (P-C) = 9.9, CH), 35.3 (s, CH₂), 37.9 (s, CH₂), 42.6 (d, J (P-C) = 4.6, CH), 56.5 (m, Σ J (P-C) = 22.3, CH), 71.3 (m, C_{2 ou 6}), 73.5 (m, C_{2 ou 6}), 122.0 (m, Σ J (P-C) = 22.0, C₄H), 127.8-133.2 (m, CH de Ph), 135.6 (m, C de PPh₂), 135.8 (m, C de PPh₂), 137.0 (m, C de PPh₂), 142.6 (m, Σ J (P-C) = 7.6, C_{3 ou 5}), 143.0 (m, Σ J (P-C) = 7.8, C_{3 ou 5}), 159.1 (m, C de Ph), 159.2 (m, C de Ph), 186.4 (d, ¹J (C-Rh) = 73.2, CO).

RMN ³¹P (THF-d8) : δ 33.0 (ABB'M, *pseudo* td, ²J (P_A-P_B) = ²J (P_A-P_{B'}) = 125.1, ¹J (P_A-Rh) = 92.9, P_AMen), 43.3 (d, ²J (P_B-P_A) = 122.2, P_BPh₃), 47.5 (d, ²J (P_{B'}-P_A) = 126.7, P_{B'}Ph₂)

Complexe d'iridium 411

Une solution de MeLi dans Et₂O (95 μ L, C = 1.6 M, 0.15 mmol) est ajoutée à une solution de **SPS** (100 mg, 0.15 mmol) dans le THF (5 mL) à -78°C. Après retour à température ambiante, on agite la solution pendant 20 min. La RMN ³¹P indique alors la formation quantitative de **211** auquel on ajoute successivement, dans la boîte à gants, [Ir(COE)₂Cl]₂ (63 mg, 0.8 mmol) et PPh₃ (40 mg, 0.15 mmol). On agite la solution pendant 2h. La solution initialement rouge devient marron foncé. Ce complexe est trop sensible pour être isolé sous la forme d'une poudre (dégradation du produit). Rendement RMN : 100%.

RMN ³¹P (THF) : δ 19.8 (td, ²J (P_C-P_A) = 370.2, ²J (P_B-P_A) = 128.1, P_AMe), 30.9 (td, ²J (P_A-P_C) = 370.2, ³J (P_B-P_C) = 37.9, P_CPh₃), 37.7 (dd, ²J (P_B-P_A) = 128.1, ³J (P_B-P_C) = 37.9, P_BPh₂).

Complexe d'iridium 412

Une solution de MeLi dans Et₂O (95 μ L, C = 1.6 M, 0.15 mmol) est ajoutée à une solution de **SPS** (100 mg, 0.15 mmol) dans le THF (5 mL) à -78°C. Après retour à température ambiante, on agite la solution pendant 20 min. La RMN ³¹P indique alors la formation quantitative de **211** auquel on ajoute [Ir(COD)Cl]₂ (49.3 mg, 0.07 mmol) à -78°C. Après retour à température et agitation pendant 30 min, la solution initialement rouge devient orange. Après évaporation du solvant, on dissout le solide obtenu dans du CH₂Cl₂ (20 mL) et l'on filtre la solution à travers de la célite. Après évaporation du solvant, on rince le solide à l'hexane (3 x 2 mL) puis à l'éther (3 x 2 mL). Rendement : 126 mg (86%).

Analyse élémentaire pour $[C_{50}H_{46}IrP_3S_2]$ (996.2) : calculé C 60.28, H 4.65 ; trouvé C 59.92, H 4.17.

RMN ¹H (CDCl₃) : δ 1.29 (d, ²J (H-P_A) = 8.4, 3H, CH₃), 1.51 (s, 8H, CH₂ de COD), 3.32 (s, 4H, CH de COD), 5.53 (t, ⁴J (H-P_B) = 4.2, 1H, H₄), 6.67-8.05 (m, 30H, CH de Ph).

RMN ¹³C (CDCl₃) : δ 5.7 (s, ¹*J* (C-P_A) = 40.2, CH₃), 32.9 (s, CH₂), 62.0 (d, ²*J* (C-P_A) = 6.3, CH de COD), 72.3 (dd, ¹*J* (C-P) = 95.9, ¹*J* (C-P) = 39.3, C_{2,6}), 117.1 (*pseudo* q, ⁴*J* (C-P_A) = ⁴*J* (C-P_B) = 10.7, C₄H), 127.4-133.1 (m, CH de Ph), 134.4 (s, C de Ph), 135.7 (s, C de Ph), 143.3 (ls, C_{3,5}), 153.5 (br s, C de Ph).

RMN ³¹P (CDCl₃) : δ 7.86 (t, ²J (P_A-P_B) = 112.4, P_AMe), 47.84 (d, ²J (P_A-P_B) = 112.4, P_BPh₂).

Complexe d'iridium 413

Une solution de MeLi dans Et₂O (95 μ L, C = 1.6 M, 0.15 mmol) est ajoutée à une solution de **SPS** (100 mg, 0.15 mmol) dans le THF (5 mL) à -78°C. Après retour à température ambiante, on agite la solution pendant 20 min. La RMN ³¹P indique alors la formation quantitative de **211** auquel on ajoute en boîte à gants, [Ir(COE)₂Cl]₂ (63 mg, 0.8 mmol). On agite la solution pendant 5 min. La solution initialement rouge devient marron foncé. Ce complexe se décompose en solution dans le THF en l'espace de 30 min. Aucun signal RMN n'est alors obtenu.

RMN ³¹P (THF) : δ 13.9 (t, ²J (P_A-P_B) = 114.2, P_AMe), 33.6 (d, ²J (P_B-P_A) = 114.2, P_BPh₂).

Complexe de cobalt 414

Une solution de MeLi dans Et₂O (95 μ L, C = 1.6 M, 0.15 mmol) est ajoutée à une solution de **SPS** (100 mg, 0.15 mmol) dans le THF (5 mL) à -78°C. Après retour à température ambiante, on agite la solution pendant 20 min. La RMN ³¹P indique alors la formation quantitative de **211** auquel on ajoute en boîte à gants, [Co(PPh₃)₃Cl] (54 mg, 0.15 mmol). On agite la solution pendant 20 min. La solution initialement rouge devient marron foncé. Après évaporation du solvant, on rince le solide obtenu à l'éther (3 x 2 mL) Après évaporation, le solide est dissout dans toluène et filtré à travers un fritté recouvert de célite. Après évaporation, on obtient **414** sous la forme d'une poudre marron.

Aucun signal RMN n'est observé.

Complexe de rhodium 415

Une solution de **405** (121 mg, 0.11 mmol) dans le THF (10 mL) est agitée sous atmosphère de O_2 (1 atm) pendant 2h et un solide orange précipite. Le précipité est filtré et lavé au THF (3 x 2 mL). Rendement : 105 mg (86%). Des cristaux ont pu être obtenus par diffusion d'hexane dans une solution de **415** dans CH₂Cl₂.

Analyse élémentaire pour $[C_{60}H_{49}O_2P_4RhS_2,\ 3\ CH_2Cl_2]\ (1347.8)$: calculé C 56.14, H 4.11 ; trouvé C 55.87, H 3.72.

IR (KBr) : v 802 (OO) cm⁻¹.

RMN ¹H (CD₂Cl₂) : δ 1.48 (dd, ²J (H-P) = 11.7, ³J (H-Rh) = 2.9, 3H, CH₃), 5.76 (td, ⁴J (H-P_B) = 4.2, ⁴J (H-P_A) = 1.5, 1H, H₄), 6.98-8.03 (m, 45H, H de Ph).

RMN ¹³C (CD₂Cl₂) : δ 5.1 (d, ¹*J* (C-P) = 32.0, CH₃), 70.2 (m, C_{2,6}), 117.5 (*pseudo* q, ³*J* (C-P_A) = ³*J* (C-P_B) = 11.3, C₄), 127.5-134.8 (m, CH et C de Ph), 142.4 (m, C_{3,5}), 154.4 (s, C de Ph).

 $\dot{RMN}^{31}P(CD_2Cl_2): \delta 25.47 (m, \Sigma J = 338.5, P_CPh_3), 50.62 (m, \Sigma J = 406.0, P_AMe \text{ et } P_BPh_2).^5$

Complexe de rhodium 416

 CS_2 (10 equiv.) est ajouté à une solution de **405** (121 mg, 0.11 mmol) dans THF (10 mL) à -78°C. Après retour à température et agitation pendant 1h, la solution initialement marron foncé s'éclaircit. Après évaporation du solvant, on rince le solide à l'hexane (2 x 2 mL) puis à l'éther (2 x 2 mL). Rendement : 107 mg (86%). Des cristaux ont pu être obtenus par diffusion d'hexane dans une solution de **416** dans le THF.

416 est trop sensible à O_2 pour donner une analyse élémentaire satisfaisante. IR (KBr): v 1143 (CS₂) cm⁻¹.

RMN ¹H (C₆D₆) : δ 2.00 (dd, ²J (H-P) = 9.7, ³J (H-Rh) = 1.8, 3H, CH₃), 5.93 (dt, ⁴J (H-P_B) = 3.8, ⁴J (H-P_A) = 0.9, 1H, H₄), 6.56-8.08 (m, 45H, H de Ph).

RMN ¹³C (C₆D₆) : δ 5.3 (d, ¹*J* (C-P_A) = 39.4, CH₃), 67.0 (m, C_{2 ou 6}), 77.5 (m, C_{6 ou 2}), 119.6 (*pseudo* q, ³*J* (C-P_A) = ³*J* (C-P_B) = 7.9, C₄), 127.0-138.7 (m, CH et C de Ph), 142.6 (m, C_{3 ou} 5), 144.1 (m, C_{5 ou 3}), 154.1 (s, C de Ph), 155.8 (s, C de Ph), 251.06 (m, ΣJ = 38.8, ¹*J* (C-Rh) = 38.8, CS₂).

RMN ³¹P (C₆D₆) : δ 25.73 (ddt, ²*J* (P_C-P_A) = 437.5, ¹*J* (P_C-Rh) = 95.1, ³*J* (P_C-P_B) = ³*J* (P_C-P_B) = 32.8, P_CPh₃), 42.05 (d *pseudo* q, ²*J* (P_A-P_C) = 437.5, ²*J* (P_A-P_B) = 106.7, ²*J* (P_A-Rh) = 100.0, ²*J* (P_A-P_B) = 97.7, P_AMe), 47.52 (dd, ²*J* (P_B-P_A) = 97.7, ³*J* (P_B-P_C) = 32.8, P_BPh₂), 50.58 (dd, ²*J* (P_B-P_A) = 106.7, ³*J* (P_B-P_C) = 32.8, P_BPh₂).

Complexe de rhodium 417

 SO_2 (1 atm) est bullé pendant 1 min dans une solution de **405** (121 mg, 0.11 mmol) dans le THF (10 mL) à -78°C. Après retour à température et agitation pendant 3h, la solution initialement marron foncé devient orange. Après évaporation du solvant, on rince le solide à l'hexane (2 x 2 mL) puis à l'éther (2 x 2 mL). Rendement : 100 mg (81%). Des cristaux se sont déposés pendant la nuit dans un tube RMN de THF.

417 est trop sensible à O₂ pour donner une analyse élémentaire satisfaisante.

IR (KBr): v 1148, 1028 (SO₂) cm⁻¹.

RMN ¹H (THF-d8) : δ 2.09 (dd, ²J (H-P) = 10.3, ³J (H-Rh) = 3.0, 3H, CH₃), 5.62 (t, ⁴J (H-P_B) = 4.7, 1H, H₄), 6.73-7.49 (m, 45H, H de Ph).

¹³C (THF-d8) : δ 19.4 (m, CH₃), 120.44 (m, C₄H), 129.0-136.5 (m, C et C de Ph), 143.4 (ls, C_{3.5}), 158.74 (s, C de Ph), C_{2.6} non observé.

RMN ³¹P (THF-d8) : δ 25.65 (ddt, ²J (P_C-P_A) = 360.6, ¹J (P_C-Rh) = 117.9, ³J (P_C-P_B) = 27.7, P_CPh₃), 41.41 (dd *pseudo* t, ²J (P_A-P_C) = 360.6, ²J (P_A-P_B) = 118.3, ²J (P_A-Rh) = 106.3, P_AMe), 49.71 (dd, ²J (P_B-P_A) = 118.3, ³J (P_B-P_C) = 27.7, P_BPh₂).

Complexe de rhodium 418

MeI (20 μ L, 0.32 mmol) est ajouté à une solution de **405** (100 mg, 0.09 mmol) dans le THF (4 mL) à -78°C. Après retour à température et agitation pendant 1h, la solution initialement marron foncé s'éclaircit. Après évaporation du solvant, on rince le solide à l'hexane (2 x 2 mL) puis à l'éther (2 x 2 mL). Rendement : 94 mg (87%). Des cristaux ont pu être obtenus par diffusion d'hexane dans une solution de **418** dans le THF.

Analyse élémentaire pour $[C_{61}H_{52}IP_4RhS_2]$ (1202.90) : calculé C 60.91, H 4.36 ; trouvé C 60.62, H 3.86.

RMN ¹H (CDCl₃) : δ 0.47 (d, ²J (H-Rh) = 7.1, 3H, Rh-CH₃), 2.33 (d, ²J (H-P_A) = 8.4, 3H, P-CH₃), 5.93 (*pseudo* t, ⁴J (H-P_B) = ⁴J (H-P_{B'}) = 3.9, 1H, H₄), 6.64-8.13 (m, 45H, H de Ph).

RMN ¹³C (CDCl₃) : δ 11.9 (d, ¹*J* (C-Rh) = 56.9, Rh-CH₃), 12.4 (m, ¹*J* (C-P_A) = 39.4, P-CH₃), 70.2 (m, C_{2 ou 6}), 75.4 (m, C_{6 ou 2}), 119.3 (*pseudo* q, ³*J* (C-P_A) = ³*J* (C-P_B) = ³*J* (C-P_B) = 10.6, C₄), 127.5-136.2 (m, CH et C de Ph), 142.8 (m, C_{3 ou 5}), 143.3 (m, C_{5 ou 3}), 154.1 (m, C de Ph), 155.5 (m, C de Ph).

RMN ³¹P (CDCl₃): δ 17.1-22.1 (ABB'CM, m, P_CPh₃), 47.3-53.2 (ABB'CM, m, P_AMe, P_BPh₂, P_B·Ph₂).⁶

Complexe de rhodium 419

PhI (20 μ L, 0.18 mmol) est ajouté à une solution de **405** (100 mg, 0.09 mmol) dans le THF (4 mL) à -78°C. Après retour à température et agitation pendant 1h à 60°C, la solution initialement marron foncé s'éclaircit. Après évaporation du solvant, on rince le solide à l'hexane (2 x 2 mL) puis à l'éther (2 x 2 mL). Rendement : 94 mg (82%).

RMN ¹H (CD₂Cl₂) : δ 2.95 (dd, ²J (H-P_A) = 10.4, ³J (H-Rh) = 2.5, 3H, CH₃), 5.93 (t, ⁴J (H-P_B) = 4.0, 1H, H₄), 6.42-8.32 (m, 45H, H de Ph).

RMN 13 C : non réalisée car le produit se dégrade dans CD₂Cl₂.

RMN ³¹P (CD₂Cl₂) : δ 25.4 (dd *pseudo* t, ²*J* (P_C-P_A) = 463.3, ¹*J* (P_C-Rh) = 93.6, ³*J* (P_C-P_B) = 26.7, ³*J* (P_C-P_{B'}) = 25.3, P_CPh₃), 55.0 (d *pseudo* q, ²*J* (P_A-P_C) = 463.3, ²*J* (P_A-Rh) = 91.2, ²*J* (P_A-P_{B'}) = 90.5, ²*J* (P_A-P_B) = 85.9, P_AMe), 60.9 (dd, ²*J* (P_B-P_A) = 85.9, ³*J* (P_B-P_C) = 25.3, P_BPh₂), 63.8 (dd, ²*J* (P_{B'}-P_A) = 90.5, ³*J* (P_{B'}-P_C) = 26.7, P_{B'}Ph₂).

 C_2Cl_6 (21 mg, 0.09 mmol) est ajouté à une solution de **405** (100 mg, 0.09 mmol) dans le THF (4 mL) à -78°C. Après retour à température et agitation pendant 1h, la solution initialement marron foncé devient orange. Après évaporation du solvant, on rince le solide à l'hexane (2 x 2 mL) puis à l'éther (2 x 2 mL). Rendement : 87 mg (85%). Des cristaux ont pu être obtenus par diffusion d'hexane dans une solution de **420** dans le CH₂Cl₂.

Analyse élémentaire pour $[C_{60}H_{49}Cl_2P_4RhS_2]$ (1131.90) : calculé C 63.67, H 4.36 ; trouvé C 63.14, H 3.89.

RMN ¹H (CD₂Cl₂) : δ 2.28 (dd, ²J (H-P_A) = 12.3, ³J (H-Rh) = 3.0, 3H, CH₃), 5.93 (t, ⁴J (H-P_B) = 4.0, 1H, H₄), 6.76-7.98 (m, 45H, H de Ph).

RMN ¹³C (CD₂Cl₂) : δ 9.5 (d, ¹J (C-P_A) = 48.5, CH₃), 70.8 (m, C_{2,6}), 119.6 (*pseudo* q, ³J (C-P_A) = ³J (C-P_B) = 11.3, C₄), 127.3-131.9 (m, CH et C de Ph), 132.3 (dd, ¹J (C-P) = 33.2, ³J (C-P) = 3.8, C de Ph), 132.6-132.8 (m, CH et C de Ph), 133.4 (dd, ¹J (C-P) = 112.5, ³J (C-P) = 11.3, C de Ph), 134.1-135.3 (m, CH et C de Ph), 142.2 (m, C_{3,5}), 155.8 (ls, C de Ph).

RMN ³¹P (CD₂Cl₂) : δ 8.7 (AB₂CM, ddt, ²J (P_C-P_A) = 515.5, ¹J (P-Rh) = 82.62, ³J (P_C-P_B) = 34.0, P_CPh₃), 52.3 (AB₂C, ²J (P_B-P_A) = 42.3, ³J (P_B-P_C) = 34.0, P_BPh₂), 58.7 (AB₂CM, ddt, ²J (P_A-P_C) = 515.5, ²J (P_A-P_B) = 106.7, ²J (P_A-Rh) = 102.2, P_AMe).

Complexe de rhodium 421

Méthode A : On bulle SO₂ (1atm) pendant une minute dans une solution de **417** (100 mg, 0.09 mmol) dans le CH₂Cl₂ (2 mL) à -78°C. Le mélange réaction est agité pendant une nuit et il se forme un précipité rouge. Après filtration, on obtient **421** sous la forme de petits cristaux rouges. Rendement : 83 mg (86%).

Méthode B : On bulle SO₂ (1atm) pendant une minute dans une solution de **415** (100 mg, 0.09 mmol) dans le THF (2 mL) à -78°C. Le mélange réaction est agité pendant une nuit et il se dépose de petits cristaux rouges. Après filtration, on obtient **421** sous la forme de petits cristaux rouges. Rendement : 84 mg (82%).

IR (KBr): v 1262, 1149 (SO₂) cm⁻¹.

421 est trop insoluble pour conduire à des spectres RMN exploitables.

Complexe de rhodium 422

O₂ (1 atm) est bullé dans une solution de **406** (100 mg, 0.09 mmol) dans le THF (4 mL) à -78°C. Après retour à température et agitation pendant 1h, la solution initialement marron foncé s'éclaircit et devient orange. L'évaporation du solvant conduit à la dégradation du complexe, l'ajout de CH₂Cl₂ conduit au complexe **425**. De plus, **422** se dégrade en solution et forme PPh₃P=0 quantitativement (δ = 26.7 ppm en RMN ³¹P). **422** n'a donc pas été isolé.

RMN ³¹P (THF-d8) : δ 22.8 (AX₂YM, ddt, ²J (P_Y-P_A) = 548.0, ¹J (P_Y-Rh) = 110.6, ³J (P_Y-P_X) = 31.6, P_YPh₃), 44.7(AX₂Y, ²J (P_X-P_A) = 156.7, ³J (P_Y-P_X) = 31.6, P_XPh₂), 109.3 (AX₂YM, dtd, ²J (P_A-P_Y) = 548.0, ²J (P_A-P_X) = 156.7, ²J (P_A-Rh) = 130.0, P_A-OMe).

Complexe de rhodium 423

 CS_2 (10 equiv.) est ajouté à une solution de **406** (100 mg, 0.09 mmol) dans le THF (4 mL) à -78°C. Après retour à température et agitation pendant 1h, la solution initialement marron foncé s'éclaircit. L'évaporation du solvant conduit à la dégradation du complexe et l'ajout de CH_2Cl_2 au complexe **425**. **423** n'a donc pas été isolé. La réaction en tube RMN a permis la caractérisation du complexe **423** (C₆D₆, 0.4 mL).

RMN ¹H (C₆D₆) : δ 3.80 (d, ²J (H-P_A) = 7.9, 3H, CH₃), 5.99 (t, ⁴J (H-P_B) = 4.0, 1H, H₄), 6.56-8.08 (m, 45H, H de Ph).

RMN ¹³C (C₆D₆) : δ 55.9 (d, ¹J (C-P_A) = 9.1, CH₃), 85.2 (m, C_{2,6}), 121.0 (*pseudo* q, ³J (C-P_A) = ³J (C-P_B) = 9.1, C₄), 128.7-139.6 (m, CH et C de Ph), 144.3 (m, C_{3,5}), 154.9 (s, C de Ph). CS₂ non observé.

RMN ³¹P (THF) : δ 23.8 (AB₂CM, ddt, ²J (P_C-P_A) = 507.9, ¹J (P-Rh) = 91.7, ³J (P_C-P_B) = 22.8, P_CPh₃), 47.9 (AB₂C, ²J (P_B-P_A) = 127.7, ³J (P_B-P_C) = 22.8, P_BPh₂), 115.9 (AB₂CM, dtd, ²J (P_A-P_C) = 507.9, ²J (P_A-P_B) = 127.7, ²J (P_A-Rh) = 110.9, P_A-OMe).

Complexe de rhodium 424

 SO_2 (1 atm) est bullé pendant 1 min dans une solution de **406** (100 mg, 0.09 mmol) dans le THF (4 mL) à -78°C. Après retour à température et agitation pendant 1h, la solution initialement marron foncé devient orange. Après évaporation du solvant, on rince le solide à l'hexane (2 x 2 mL) puis à l'éther (2 x 2 mL). Rendement : 84 mg (83%).

424 est trop sensible à O2 pour donner une analyse élémentaire satisfaisante.

RMN ¹H (THF-d8) : δ 5.69 (t, ⁴J (H-P_B) = 4.9, 1H, H₄), 6.79-7.79 (m, 45H, H de Ph), 10.59 (s, 1H, P-OH).

RMN ¹³C (THF-d8) : δ 92.1 (d, ³J (C-Rh) = 3.8, C_{2,6}), 117.6 (*pseudo* q, ³J (C-P_B) = ³J (C-P_B) = 11.3, C₄H), 129.1-136.6 (m, C de PPh₂ et CH de Ph), 144.3 (m, C_{3,5}), 156.3 (s, C de Ph).

RMN ³¹P (THF-d8) : δ 23.6 (AB₂CM, ddt, ²J (P_C-P_A) = 402.5, ¹J (P-Rh) = 111.5, ³J (P_C-P_B) = 26.1, P_CPh₃), 52.5 (AB₂C, ²J (P_B-P_A) = 132.4, ³J (P_B-P_C) = 26.1, P_BPh₂), 90.3 (AB₂CM, dtd, ²J (P_A-P_C) = 402.5, ²J (P_A-P_B) = 132.4, ²J (P_A-Rh) = 116.9, P_A-OMe).

CH₂Cl₂ (0.05 mL, 0.8 mmol) est ajouté à une solution de **406** (100 mg, 0.09 mmol) dans le THF (4 mL) à -78°C. Après retour à température et agitation pendant 1h, la solution initialement marron foncé devient jaune. Après évaporation du solvant, on rince le solide à l'hexane (2 x 2 mL) puis à l'éther (2 x 2 mL). Après séchage, on obtient **425** sous la forme d'une poudre jaune. Rendement : 89 mg (84%). Des cristaux ont pu être obtenus par diffusion d'hexane dans une solution de **425** dans le CH₂Cl₂.

Analyse élémentaire pour $[C_{62}H_{53}Cl_2OP_4RhS_2]$ (1175.9) : calculé C 63.33, H 4.54 ; trouvé C 62.87, H 4.13.

RMN ¹H (CD₂Cl₂) : δ 3.82 (d, ³*J* (H-P_A) = 10.8, 3H, OMe), 4.37 (*pseudo* pentuplet, ³*J* (H-Rh) = 5.2, ⁴*J* (H-P_B) = 2.6, 2H, CH₂Cl), 5.58 (t, ⁴*J* (H-P_B) = 4.7, 1H, H₄), 6.97-7.96 (m, 45H, H de Ph).

RMN ¹³C (CD₂Cl₂) : δ 28.4 (s, OMe), 54.7 (d, ¹*J* (C-Rh) = 14.6, CH₂Cl), 87.8 (m, C_{2,6}), 115.3 (t, ³*J* (C-P_B) = 9.8, C₄H), 127.0-129.3 (m, CH de Ph), 130.0 (dd, ¹*J* (C-P) = 83.8, ³*J* (C-P) = 5.3, C de PPh₂), 131.2-134.6 (m, CH de Ph), 135.8 (dd, ¹*J* (C-P) = 86.8, ³*J* (C-P) = 5.3, C de PPh₂), 142.1 (m, C_{3,5}), 157.4 (s, C de Ph).

RMN ³¹P (CD₂Cl₂) : δ 17.3 (AB₂CM, ddt, ²J (P_C-P_A) = 541.9, ¹J (P-Rh) = 96.0, ³J (P_C-P_B) = 26.7, P_CPh₃), 52.6 (AB₂C, ²J (P_B-P_A) = 117.9, ³J (P_B-P_C) = 26.7, P_BPh₂), 113.6 (AB₂CM, d *pseudo* q, ²J (P_A-P_C) = 541.9, ²J (P_A-P_B) = ²J (P_A-Rh) = 117.9, P_A-OMe).

Complexe de rhodium 426

 O_2 (1 atm) est bullé pendant 1 min dans une solution de **424** (100 mg, 0.09 mmol) dans le THF (4 mL) à -78°C. Après retour à température, il se dépose progréssivement des petits cristaux qui ont pu être analysés par diffraction aux rayons X. Après filtration du solide, on rince le solide à l'hexane (2 x 2 mL) puis à l'éther (2 x 2 mL).

426 est trop insoluble pour conduire à des spectres RMN exploitables.

Complexe d'iridium 427

Une solution de **411** (0.15 mmol) dans le THF (5 mL) est agitée sous atmosphère de O_2 (1 atm) pendant 2h et un solide orange précipite. Le précipité est filtré et lavé au THF (3 x 2 mL). Après évaporation, on obtient **427** sous la forme d'une poudre orange. Rendement : 145 mg (82%). Des cristaux ont pu être obtenus par diffusion d'hexane dans une solution de **427** dans CH_2Cl_2 .

Analyse élémentaire pour $[C_{60}H_{49}IrO_2P_4S_2]\ (1182.3)$: calculé C 60.95, H 4.18 ; trouvé C 60.53, H 3.91.

RMN ¹H (CD₂Cl₂) : δ 1.32 (dd, ²J (H-P) = 11.3, ⁴J (H-P) = 1.9, 3H, CH₃), 5.77 (t, ⁴J (H-P_B) = 4.4, 1H, H₄), 6.87-8.07 (m, 45H, H de Ph).

RMN ¹³C (CD₂Cl₂) : δ 1.0 (m, CH₃), 69.5 (m, C_{2,6}), 116.2 (t, ³*J* (C-P_B) = 11.8, C₄), 126.4-133.8 (m, CH et C de Ph), 141.7 ($\Sigma J = 10.6$, C_{3,5}), 153.5 (ls, C de Ph). RMN ³¹P (CD₂Cl₂) : δ 4.9 (td, ²*J* (P_C-P_A) = 428.5, ³*J* (P_C-P_B) = 24.2, P_CPh₃), 17.7 (td, ²*J* (P_A-P_C) = 428.5, ²*J* (P_A-P_B) = 100.1, P_AMe), 50.2 (dd, ²*J* (P_B-P_A) = 100.1, ³*J* (P_B-P_C) = 24.2, P_BPh₂).

Complexe de rhodium 428

On bulle H₂ (1 atm) dans une solution de **405** (20 mg, 0.02 mmol) dans le THF-d8 (0.5 mL) pendant 30 min. La solution passe immédiatement du marron à l'orange et l'on observe la conversion complète de **405** en **428**en RMN ³¹P. **428** ne peut être isolé : au bout de 30 min, on constate la reformation partielle de **405** (**405**: **428**= 1:3).

RMN ¹H (THF-d8) (sélection de données): δ -14.64 (dt, ¹J (H-Rh) = 24.5, ²J (H-P_A) = ²J(H-P_C) = 12.3, 2H, Rh-H).

RMN ³¹P (THF-d8): δ 36.5-47.9 (AB₂CY, m, $\Sigma J = 1387.5$, P_AMe et P_CPh₃), 49.6-50.8 (AB₂CY, m, $\Sigma J = 145.8$, P_BPh₂).⁶

Complexe d'iridium 429

On bulle H₂ (1 atm) dans une solution de **411** (C = 0.05M, 0.15 mmol) dans le THF (5 mL) pendant 3 min et on agite le mélange réactionnel pendant 30 min. La solution passe immédiatement du marron à l'orange. Après évaporation du solvant, on rince le solide à l'hexane (2 x 2 mL) puis à l'éther (2 x 2 mL). Après séchage, le solide est dissous dans CH₂Cl₂ et la solution est filtré à travers un fritté recouvert de célite. Après évaporation, on obtient **429** sous la forme d'une poudre orange. Rendement : 130 mg (76%). Des cristaux ont pu être obtenus par diffusion d'hexane dans une solution de **429** dans le CH₂Cl₂.

Analyse élémentaire pour $[C_{60}H_{51}IrP_4S_2]$ (1152.2) : calculé C 62.54, H 4.46 ; trouvé C 62.24, H 4.17.

RMN ¹H (CD₂Cl₂) : δ -18.39 (*pseudo* t, ²J (H-P_A) = ²J (H-P_C) = 15.5, 2H, Ir-H), 1.87 (d, ²J (H-P_A) = 8.7, 3H, CH₃), 5.60 (t, ⁴J (H-P_B) = 5.6, 1H, H₄), 6.73-8.12 (m, 45H, H de Ph).

RMN ¹³C (CD₂Cl₂) : δ 20.4 (m, CH₃), 71.4 (m, C_{2,6}), 116.4 (m, C₄H), 127.2-134.5 (m, CH et C de Ph), 137.4 (dd, *J* (H-P) = 44.6, *J* (H-P) = 4.0, C de Ph), 141.7 (bs, C_{3,5}), 154.2 (bs, C de Ph).

RMN ³¹P (CD₂Cl₂) : δ 9.7 (td, ²J (P_A-P_C) = 336.0, ²J (P_B-P_A) = 107.0, P_AMe), 16.8 (dt, ²J (P_C-P_A) = 336.0, ³J (P_C-P_B) = 27.7, P_CPh₃), 50.3 (dd, ²J (P_B-P_A) = 107.0, ³J (P_B-P_C) = 27.7, P_BPh₂).

Complexe de rhodium 430

On ajoute à la microseringue deux équivalents de PMe₃ (0.22 mL, C = 1M dans le toluène, 0.22 mmol) à une solution de **401** (104 mg, 0.11 mmol) dans le THF (4 mL). La consommation de PMe₃ est vérifiée par RMN ³¹P et la solution passe immédiatement de l'orange au marron. Le complexe **432** ne peut être tiré à sec et se dégrade en solution au bout de quelques jours, même en boîte à gants. Rendement RMN : 100%.

RMN ³¹P (THF) : δ -14.8 (ddt, ²J (P_C-P_A) = 396.1, ¹J (P_C-Rh) = 136.1, ³J (P_C-P_B) = 40.1, P_CPh₃), 27.4 (dtd, ²J (P_A-P_C) = 396.1, ²J (P_B-P_A) = 138.5, ¹J (P_A-Rh) = 97.2, P_AMe), 40.5 (dd, ²J (P_B-P_A) = 138.5, ³J (P_B-P_C) = 40.1, P_BPh₂).

Complexe de rhodium 431

Dans la boîte à gants, on ajoute PCy₃ (31 mg, 0.11) à une solution de **401** (100 mg, 0.11 mmol) dans le THF. La consommation de PCy₃ (δ (PCy₃) = 10.6 ppm) est vérifiée par RMN ³¹P. Après évaporation du solvant, le solide obtenu est lavé à l'hexane (3 x 2 mL). Après séchage, on obtient **431** sous la forme d'une poudre marron. Rendement : 95 mg (80%).

431 est trop sensible à O_2 pour donner une analyse élémentaire satisfaisante.

RMN ¹H (THF-d8) : δ 1.08-1.37 (m, 15H, H_a, H_b et H_c de CH₂), 1.59 (l s, 6H, H_b, de CH₂), 1.65 (d, ²J (H-P) = 5.8, 3H, CH₃), 1.77 (brs, 9H, H_a, et H_c, de CH₂), 1.95-2.03 (m, 3H, CH de PCy₃), 5.34 (t, ⁴J (H-P_B) = 4.8, 1H, H₄), 6.77-6.79 (m, 8H, CH de Ph), 6.92-6.98 (m, 2H, CH de Ph), 7.15-7.21 (m, 4H, CH de Ph), 7.34-7.51 (m, 12H, CH de Ph), 7.80-7.88 (m, 4H, CH de Ph).

RMN ¹³C (THF-d8) : δ 18.7 (m, CH₃), 29.9 (s, C_{b,b}·H₂), 32.1 (s, C_{b,b}·H₂), 33.4 (d, ²*J* (C-P) = 12.8, C_{a,a}·H₂), 35.8 (dd, ¹*J* (C-P) = 7.8, *J* (C-P) = 7.4, CH de PCy₃), 77.7 (m, C_{2,6}), 118.9 (m, C₄), 128.3-134.6 (m, 9 fois CH de Ph), 137.4 (d, *J* (C-P) = 78.3, C de PPh₂), 138.9 (d, *J* (C-P) = 78.0, C de PPh₂), 144.7 (ls, C_{3,5}), 157.7 (s, C de Ph).

RMN ³¹P (THF-d8) : δ 31.6-34.37 (AB₂C, m, P_AMe et P_CCy₃), 43.1-44.6 (AB₂C, m, P_APh₂).⁶

Complexe de rhodium 432

En boîte à gants, PinBH (0.019 mL, 0.18 mmol) est ajouté à une solution de **430** (0.18 mmol) dans THF (3 mL). La solution initialement marron foncé s'éclaircit. Le complexe **432** ne peut être tiré à sec et n'a pas été isolé. Rendement RMN : 100%. RMN ¹¹B (THF) : δ 4.2 (ls).

RMN ³¹P (THF) : δ -6.0 (dddd, ²J (P_C-P_A) = 366.9, ¹J (P_C-Rh) = 112.6, ³J (P_C-P_B) = 36.6, ³J (P_C-P_B) = 20.2, P_CPh₃), 38.9 (dd *pseudo* t, ²J (P_A-P_C) = 366.9, ²J (P_A-P_B) = 124.3, ²J (P_A-P_B) = ²J (P_A-Rh) = 102.5, P_AMe), 46.6 (dd, ²J (P_{B'}-P_A) = 102.5, ³J (P_{B'}-P_C) = 20.2, P_{B'}Ph₂), 54.5 (dd, ²J (P_B-P_A) = 124.3, ³J (P_B-P_C) = 36.6, P_BPh₂).

Complexe de rhodium 433

 H_2 (1 atm) est bullé dans une solution de **430** (0.18 mmol) dans le THF (3 mL). La solution initialement marron foncé s'éclaircit. Le complexe **433** ne peut être tiré à sec et n'a pas été isolé. Rendement RMN : 100%.

RMN ³¹P (THF) : δ -5.6 (ddt, ²J (P_C-P_A) = 386.9, ¹J (P_C-Rh) = 108.6, ³J (P_C-P_B) = 29.8, P_CPh₃), 39.0 (dtd, ²J (P_A-P_C) = 386.9, ²J (P_A-P_B) = 119.8, ²J (P_A-Rh) = 101.4, P_AMe), 52.3 (dd, ²J (P_B-P_A) = 119.8, ³J (P_B-P_C) = 29.8, P_BPh₂).

Complexe de rhodium 436

 H_2 (1 atm) est bullé dans une solution de **431** (30 mg, 0.03 mmol) dans le THF-d8 (0.4 mL). La solution initialement marron foncé s'éclaircit. Le complexe **436** ne peut être tiré à sec et n'a pas été isolé. Rendement RMN : 100%.

RMN ¹H (THF-d8) (sélection de données) : δ -15.93 (dt, ¹J(H-Rh) = 26.8, ²J(H-P_A) = ²J(H-P_C) = 14.3, 2H, Rh-H).

RMN ³¹P (THF-d8) : δ 43.1 (dtd, ²J (P_A-P_C) = 344.3, ²J (P_A-P_B) = 112.2, ²J (P_A-Rh) = 96.0, P_AMe), 51.7 (dd, ²J (P_B-P_A) = 112.2, ³J (P_B-P_C) = 24.1, P_BPh₂), 54.9 (ddt, ²J (P_C-P_A) = 344.3, ¹J (P_C-Rh) = 109.6, ³J (P_C-P_B) = 24.1, P_CPh₃),

Synthèse du complexe d'iridium 438

Une solution de MeLi dans Et₂O (112 μ L, C = 1.6 M, 0.18 mmol) est ajoutée à une solution de **SPS** (122 mg, 0.18 mmol) dans le THF (5 mL) à -78°C. Après retour à température ambiante, on agite la solution pendant 20 min. La RMN ³¹P indique alors la formation quantitative de **211** auquel on ajoute successivement, dans la boîte à gants, [Ir(COE)₂Cl]₂ (90 mg, 0.10 mmol) et PCy₃ (50 mg, 0.18 mmol). On agite la solution pendant 1h. La solution initialement rouge devient noire. Ce complexe est trop sensible pour être isolé sous la forme d'une poudre (évaporation du solvant impossible). Rendement RMN : 100%.

³¹P (THF) : δ 20.6 (td, ²*J* (P_C-P_A) = 351.0, ²*J* (P_B-P_A) = 126.0, P_AMe), 27.0 (td, ²*J* (P_A-P_C) = 351.0, ³*J* (P_B-P_C) = 37.2, P_CPh₃), 37.6 (dd, ²*J* (P_B-P_A) = 126.0, ³*J* (P_B-P_C) = 37.2, P_BPh₂).

Complexe d'iridium 440

On bulle H₂ (1 atm) dans une solution de **438** (0.18 mmol) dans le THF (5 mL) pendant 3 min et on agite le mélange réactionnel pendant une nuit. La solution passe immédiatement du marron à l'orange. Après évaporation du solvant, on rince le solide à l'hexane (2 x 2 mL) puis à l'éther (2 x 2 mL). LiCl n'est pas éliminé car le produit se dégrade dans CH_2Cl_2 . Après séchage, on obtient **440** sous la forme d'une poudre orange, mélange de trois isomères **440a**, **440b** et **440c**. Rendement RMN : 100%.

Isomère 440a :

RMN ¹H (THF-d8) (sélection de données) : δ -19.50 (*pseudo* t, ²J (H-P_A) = ²J (H-P_C) = 15.9, Ir-H), 5.59 (t, ⁴J (H-P_B) = 3.8, 1H, H₄).

³¹P (THF-d8) : δ 16.3 (td, ²J (P_C-P_A) = 322.2, ²J (P_B-P_A) = 118.1, P_AMe), 27.5 (td, ²J (P_A-P_C) = 322.2, ³J (P_B-P_C) = 22.8, P_CCy₃), 53.1 (dd, ²J (P_B-P_A) = 118.1, ³J (P_B-P_C) = 22.8, P_BPh₂). Isomère **440b** :

RMN ¹H (THF-d8) (sélection de données) : δ -25.00 (*pseudo* t, ²J (H-P_A) = ²J (H-P_C) = 14.0, Ir-H), 5.17 (t, ⁴J (H-P_B) = 5.0, 1H, H₄).

³¹P (THF-d8) : δ 2.3 (td, ²*J* (P_A-P_C) = 371.2, ³*J* (P_B-P_C) = 28.8, P_CCy₃), 34.8 (td, ²*J* (P_C-P_A) = 371.2, ²*J* (P_B-P_A) = 114.8, P_AMe), 54.2 (dd, ²*J* (P_B-P_A) = 114.8, ³*J* (P_B-P_C) = 28.8, P_BPh₂). Isomère **440c** :

RMN ¹H (THF-d8) (sélection de données) : δ -20.62 (*pseudo* t, ²J (H-P_A) = ²J (H-P_C) = 11.6, Ir-H), 5.76 (t, ⁴J (H-P_B) = 3.8, 1H, H₄).

³¹P (THF-d8) : δ 7.0 (td, ²J (P_A-P_C) = 360.3, ³J (P_B-P_C) = 21.9, P_CCy₃), 23.5 (td, ²J (P_C-P_A) = 360.3, ²J (P_B-P_A) = 112.5, P_AMe), 53.8 (dd, ²J (P_B-P_A) = 112.5, ³J (P_B-P_C) = 21.9, P_BPh₂).

Complexe d'iridium 441

Une solution de MeLi dans Et₂O (130 μ L, C = 1.6 M, 0.20 mmol) est ajoutée à une solution de **SPS** (140 mg, 0.20 mmol) dans le THF (5 mL) à -78°C. Après retour à température ambiante, on agite la solution pendant 20 min. La RMN ³¹P indique alors la formation quantitative de **211** auquel on ajoute successivement, dans la boîte à gants, [Ir(COE)₂Cl]₂ (104 mg, 0.12 mmol) et PCy₃ (58 mg, 0.20 mmol). On agite la solution pendant 1h ; La solution initialement rouge devient noire et on vérifie par RMN ³¹P la formation de **438**. En boîte à gants, PinBH (0.120 mL, 0.80 mmol) est ajouté à la solution. La solution initialement noire s'éclaircit et devient orange. Après évaporation du solvant, on rince le solide à l'hexane (2 x 2 mL) puis à l'éther (2 x 2 mL). Après séchage, le solide est dissous dans le toluène et la

solution est filtrée à travers un fritté recouvert de célite. Après évaporation, on obtient **441** sous la forme d'une poudre orange. Rendement : 205 mg (79%).

¹H (THF-d8) : -17.74 (*pseudo* t, ²J (H-P) = 15.0, 1H, Ir-H), 1.19-1.41 (m, 24H, H_a, H_b de CH₂ et CH₃ du pinacol), 1.62-1.67 (m, 9H, H_a et H_c de CH₂), 1.78-1.89 (m, 6H, H_b, de CH₂), 2.09 (d, ²J (H-P) = 8.9, 3H, CH₃), 2.21 (brs, 3H, H_c, de CH₂), 2.35-2.47 (l s, 3H, CH de PCy₃), 5.83 (t, ⁴J (H-P_B) = 3.4, 1H, H₄), 6.82-8.19 (m, 30H, CH de Ph). ¹¹B (THF-d8) : 24.8 (s).

¹³C (THF-d8) : 16.2 (dd, ¹*J* (C-P) = 43.2, ³*J* (C-P) = 9.9, ³*J* (C-P) = 4.8, P-CH₃), 25.2 (s, CH₃ du pinacol), 25.9 (s, CH₃ du pinacol), 26.6 (s, CH₃ du pinacol), 26.7 (s, CH₃ du pinacol), 27.9 (1 s, CH_{2 (a)} de PCy₃), 28.8 (d, *J* (C-P) = 9.2, CH_{2 (b)} de PCy₃), 30.7 (1 s, CH_{2 (c)} de PCy₃), 36.6 (m, CH de PCy₃), 67.3 (m, C_{2 ou 6}), 81.2 (m, C_{2 ou 6}), 81.3 (s, C du pinacol), 82.4 (s, C du pinacol), 120.3 (vq, ³*J* (C-P) = 10.6, C₄H), 127.7-135.3 (m, 18 x CH de Ph), 134.5 (m, C de Ph), 135.1 (C de Ph), 137.5 (dd, *J* (C-P) = 82.3, *J* (C-P) = 5.2, C de Ph), 139.6 (dd, *J* (C-P) = 80.6, *J* (C-P) = 2.1, C de Ph), 144.0 (dd, *J* (C-P) = 6.1, *J* (C-P) = 2.4, C_{3 ou 5}), 144.8 (m, ΣJ (C-P) = 12.1, C_{3 ou 5}), 155.3 (m, ΣJ (C-P) = 10.9, C de Ph), 155.4 (m, ΣJ (C-P) = 10.9, C de Ph).

³¹P (THF-d8) : 16.0 (dddd, ²*J* (P_A - P_C) = 307.6, ²*J* (P_C - P_B) = 19.8, ²*J* (P_C - P_B) = 18.3, P_CCy_3), 22.5 (dddd, ²*J* (P_A - P_C) = 307.6, ²*J* (P_A - P_B) = 119.1, ²*J* (P_A - P_B) = 96.7, P_A -Me), 46.8 (dd, ²*J* (P_A - P_B) = 96.7, ²*J* (P_C - P_B) = 18.3, P_B · P_h_2), 54.4 (dd, ²*J* (P_A - P_B) = 119.1, ²*J* (P_C - P_B) = 19.8, P_BPh_2).

Complexe de rhodium 442

Une solution de MeLi dans Et₂O (275 μ L, C = 1.6 M, 0.44 mmol) est ajoutée à une solution de **SPS** (300 mg, 0.44 mmol) dans le THF (15 mL) à -78°C. Après retour à température ambiante, on agite la solution pendant 20 min. La RMN ³¹P indique alors la formation quantitative de **211** auquel on ajoute [Rh(tht)₃Cl₃] (334 mg, 0.22 mmol) à -78°C. Après retour à température et agitation pendant 24h, la solution initialement marron foncé devient orange. Après évaporation du solvant, on dissout le solide obtenu dans du CH₂Cl₂ (20 mL) et l'on filtre la solution à travers de la célite. Après évaporation du solvant, on rince le solide à l'hexane (3 x 5 mL) puis à l'éther (3 x 5 mL). Rendement : 280 mg (87%). Des cristaux ont pu être obtenus par diffusion d'hexane dans une solution de **442** dans le CHCl₃.

Analyse élémentaire pour $[C_{84}H_{68}ClP_6RhS_4]$ (1529.9) : calculé C 65.95, H 4.48 ; trouvé C 65.51, H 4.07.

RMN ¹H (CDCl₃) : δ 1.72 (d, ²J (H-P_A) = 10.3, 6H, CH₃), 5.89 (t, ⁴J (H-P_{B, B'}) = 3.3, 2H, H₄), 6.70-7.93 (m, 60H, CH de Ph).

RMN ¹³C (CDCl₃) : δ 15.4 (m, $\Sigma J = 66.0$, CH₃), 63.8 (m, C_{2 ou 6}), 80.7 (m, C_{6 ou 2}), 123.3 (*pseudo* t, J (C-P_{B,B'}) = 11.3, C₄H), 127.7-134.3 (m, CH et C de Ph), 140.7 (m, $\Sigma J = 23.0$, C₃ ou 5), 140.9 (m, $\Sigma J = 23.0$, C_{5 ou 3}), 155.9 (m, $\Sigma J = 10.0$, C de Ph), 156.8 (m, $\Sigma J = 9.0$, C de Ph).

RMN ³¹P (CDCl₃) : δ 45.8 (A₂B₂C₂, d, ²J (P_B-P_A) = 72.9, P_BPh₂), 51.8 (A₂B₂C₂, d, ²J (P_B-P_A) = 93.0, P_B·Ph₂), 57.6 (A₂B₂C₂, *pseudo* q, ¹J (P_A-Rh) = 105.0, ²J (P_A-P_B) = 93.0, ²J (P_A-P_B) = 72.9, P_AMe).

Complexe de rhodium 443

La réduction du complexe **442** (100 mg, 0.07 mmol) est réalisée dans le THF (10 mL) en présence de poudre de zinc en excès (100 mg, 1.5 mmol). On agite la solution pendant 12h dans la boîte à gants. La solution initialement orange devient marron foncé. Après évaporation du solvant, on ajoute du toluène (5 mL) et l'on filtre le mélange. Après évaporation du solvant, on obtient une poudre marron. Rendement : 91 mg (95%).

Complexe de cobalt 445

Une solution de *n*-BuLi dans l'hexane (275 μ L, C = 1.6 M, 0.44 mmol) est ajoutée à une solution de **SPS** (300 mg, 0.44 mmol) dans le THF (15 mL) à -78°C. Après retour à température ambiante, on agite la solution pendant 20 min. La RMN ³¹P indique alors la formation quantitative de **211** auquel on ajoute, en boîte à gants, [CoCl₂] (30 mg, 0.22 mmol). La solution initialement rouge devient marron insoluble et l'on observe la disparition de tout signal RMN ³¹P. En boîte à gants, on ajoute C₂Cl₆ (52 mg, 0.22 mmol) et la solution se solubilise partiellement en l'espace de 30 min et devient violette. Après évaporation du solvant, on dissout partiellement le solide obtenu dans du CH₂Cl₂ (20 mL) et l'on filtre la solution à travers de la célite. Après évaporation du solvant, on rince le solide à l'hexane (3 x 5 mL). On obtient **445** sous la forme d'une poudre violet foncé. Rendement : 221 mg (64%). RMN ¹H (CD₂Cl₂) : δ 0.89 (t, ³*J* (H-H) = 7.4, 3H, CH₃), 1.40 (ls, w_{1/2} = 13.7, 2H, CH₂), 2.06 (ls, w_{1/2} = 26.2, 2H, CH₂), 2.26 (*pseudo* t, *J* = 13.1, 1H, P-CH₂), 2.57 (*pseudo* t, *J* = 14.0, 1H, P-CH₂), 5.39 (t, ⁴*J* (H-P_{B,B'}) = 4.7, 1H, H₄), 6.60.-7.57 (m, 30H, CH de Ph).

RMN ¹³C (CD₂Cl₂) : δ 13.2 (s, CH₃), 23.2 (t, ³*J* (C-P) = 6.3, CH₂), 25.4 (s, CH₂), 38.0 (t, ¹*J* (C-P) = 11.5, P-CH₂), 72.9 (m, C_{2 ou} 6), 76.2 (m, C_{6 ou} 2), 118.0 (*pseudo* t, *J* (C-P_{B,B'}) = 9.0, C₄H), 126.9-132.9 (m, CH de Ph et C de PPh₂), 140.1 (m, C_{3,5}), 158.9 (ls, C de Ph), 160.8 (ls, C de Ph).

RMN ³¹P (CD₂Cl₂) : δ 49.5 (A₂B₂C₂, *pseudo* q, *J* (P_A-P) = 76.1, P_A-*n*Bu), 54.1 (A₂B₂C₂, dd, *J* (P_B-P) = 81.6, *J* (P_B-P) = 67.3, P_BPh₂), 58.4 (A₂B₂C₂, dd, *J* (P_B'-P) = 89.8, *J* (P_B'-P) = 79.0, P_B·Ph₂).

Complexe de cobalt 446

Une solution de *n*-BuLi dans l'hexane (275 μ L, C = 1.6 M, 0.44 mmol) est ajoutée à une solution de **SPS** (300 mg, 0.44 mmol) dans le THF (15 mL) à -78°C. Après retour à température ambiante, on agite la solution pendant 20 min. La RMN ³¹P indique alors la formation quantitative de **211** auquel on ajoute, en boîte à gants, [CoI₂] (71 mg, 0.22 mmol). La solution initialement rouge devient marron insoluble et l'on observe la disparition de tout signal RMN ³¹P. En boîte à gants, on ajoute C₂Cl₆ (52 mg, 0.22 mmol) et la solution se solubilise en l'espace de 30 min et devient violette. Après évaporation du solvant, on dissout le solide obtenu dans du CH₂Cl₂ (20 mL) et l'on filtre la solution à travers de la célite. Après évaporation du solvant, on rince le solide à l'hexane (3 x 5 mL). On obtient **446** sous la forme d'une poudre violet foncé. Rendement : 325 mg (89%).

Analyse élémentaire pour $[C_{90}H_{80}IP_6CoS_4]$ (1660.2) : calculé C 65.06, H 4.85 ; trouvé C 64.82, H 4.59.

RMN ¹H (CDCl₃) : δ 0.87 (t, ³J (H-H) = 7.3, 3H, CH₃), 1.34-1.44 (m, 2H, CH₂), 1.86 (ls, 1H, CH₂), 2.00 (ls, 1H, CH₂), 2.20 (*pseudo* t, J = 12.9, 1H, P-CH₂), 2.53 (*pseudo* t, J = 12.1, 1H, P-CH₂), 5.38 (t, ⁴J (H-P_{B, B'}) = 4.5, 1H, H₄), 6.56-7.58 (m, 30H, CH de Ph).

RMN ¹³C (CDCl₃) : δ 14.3 (s, CH₃), 24.1 (t, ³*J* (C-P) = 6.1, CH₂), 26.3 (s, CH₂), 38.9 (t, ¹*J* (C-P) = 10.0, P-CH₂), 73.7 (m, C_{2 ou 6}), 77.6 (m, C_{6 ou 2}), 119.0 (*pseudo* t, *J* (C-P_{B,B'}) = 11.2, C₄H), 127.7-133.8 (m, CH de Ph et C de PPh₂), 141.1 (m, C_{3 ou 5}), 141.2 (m, C_{5 ou 3}), 159.9 (ls, C de Ph), 161.8 (ls, C de Ph).

RMN ³¹P (CDCl₃) : δ 49.0 (A₂B₂C₂, *pseudo* q, *J* (P_A-P) = 57.7, P_A-*n*Bu), 53.5 (A₂B₂C₂, dd, *J* (P_B-P) = 60.1, *J* (P_B-P) = 83.0, P_BPh₂), 57.8 (A₂B₂C₂, dd, *J* (P_B-P) = 77.7, *J* (P_B-P) = 97.8, P_B·Ph₂).

Complexe de cobalt 447

Une solution de MeLi dans l'hexane (275 μ L, C = 1.6 M, 0.44 mmol) est ajoutée à une solution de **SPS** (300 mg, 0.44 mmol) dans le THF (15 mL) à -78°C. Après retour à température ambiante, on agite la solution pendant 20 min. La RMN ³¹P indique alors la formation quantitative de **211** auquel on ajoute, en boîte à gants, [CoI₂] (69 mg, 0.22 mmol). La solution initialement rouge devient marron insoluble et l'on observe la disparition de tout signal RMN ³¹P. En boîte à gants, on ajoute C₂Cl₆ (52 mg, 0.22 mmol) et la solution se solubilise en l'espace de 30 min et devient violette. Après évaporation du solvant, on dissout le solide obtenu dans du CH₂Cl₂ (20 mL) et l'on filtre la solution à travers de la célite. Après évaporation du solvant, on rince le solide à l'hexane (3 x 5 mL). On obtient **447** sous la forme d'une poudre violet foncé. Des cristaux ont pu être obtenus par diffusion d'hexane dans une solution d'hexane dans le CHCl₃. Rendement : 295 mg (85%).

Composé majoritaire :

RMN ¹H (CD₂Cl₂) : δ 1.77 (d, ²J (H-P) = 7.1, 3H, CH₃), 5.94 (ls, 1H, H₄), 6.69.-7.90 (m, 30H, CH de Ph).

RMN ¹³C (CD₂Cl₂) : δ 15.4 (dm, ¹J (C-P) = 33.7, CH₃), 64.8 (m, C_{2 ou 6}), 82.3 (m, C_{6 ou 2}), 123.6 (*pseudo* q, J (C-P_{A,B,B'}) = 11.0, C₄H), 127.5-134.1 (m, CH de Ph et C de PPh₂), 140.6 (m, C_{5 ou 5}), 140.7 (m, C_{3 ou 5}), 155.4 (ls, C de Ph), 156.1 (ls, C de Ph).

RMN ³¹P (CD₂Cl₂) : δ 46.0 (A₂B₂C₂, dd, *J* (P_B-P_A) = 72.7, P_BPh₂), 29.1 (A₂B₂C₂, d, *J* (P_{B'}-P_A) = 99.9, P_{B'}Ph₂), 65.2 (A₂B₂C₂, sl, *w*_{1/2} = 136.2, P_A-Me).

Composé minoritaire : RMN ¹H (CD₂Cl₂) : δ 1.71 (d, ²J (H-P) = non mesurable, 3H, CH₃), 6.04 (ls, 1H, H₄), 6.69.-7.90 (m, 30H, CH de Ph).

V. Chapitre 6

Complexe de cuivre 601

Une solution de MeLi dans Et₂O (1.25 mL, C = 0.16 M, 2.0 mmol) est ajouté à une solution de **SPS** (1.36 g, 2.0 mmol) dans le THF (30 mL) à -78°C. Après retour à température ambiante, on agite la solution pendant 20 min. La RMN ³¹P indique alors la formation quantitative de **211** auquel on ajoute [CuI] (380 mg, 2.0 mmol). La solution initialement rouge devient rapidement orange avec la formation concommitante d'un précipité orange. Le mélange est agité pendant 15h puis le solide est filtré, lavé au THF puis séché sous vide. Rendement : 1.40 g (92%).

Analyse élémentaire pour $[C_{42}H_{34}P_3S_2Cu]_n\ (759.3)_n$: calculé C 66.43, H 4.51 ; trouvé C 66.63, H 4.75.

Complexe de cuivre 602

Une solution de *n*-BuLi dans l'hexane (1.25 mL, C = 0.16 M, 2.0 mmol) est ajouté à une solution de **SPS** (1.36 g, 2.0 mmol) in THF (30 mL) à -78°C. Après retour à température ambiante, on agite la solution pendant 20 min. La RMN ³¹P indique alors la formation quantitative de **213** auquel on ajoute [CuI] (380 mg, 2.0 mmol). La solution initialement rouge devient rapidement orange avec la formation concommitante d'un précipité orange. Le mélange est agité pendant 15h puis le solide est filtré, lavé au THF puis séché sous vide. Rendement : 1.40 g (89%).

Analyse élémentaire pour $[C_{45}H_{40}P_3S_2Cu]_n$ (801.4)_n : calculé C 67.44, H 5.03 ; trouvé C 67.69, H 5.31.

Complexe de cuivre 603

On ajoute à la micro seringue 500 μ L de **216** (C = 0.62 M, 0.31 mmol, 1.05 eq.) à une solution de **SPS** (200 mg, 0.29 mmol) dans le THF (5 mL) à -78°C. La solution devient immédiatement rouge. Après retour à température ambiante, la formation de **217** est contrôlée par RMN ³¹P. On ajoute ensuite dans la boîte à gants [CuI] (55 mg, 0.29 mmol) et on agite la solution pendant une heure. Après évaporation du solvant, on lave successivement le solide à l'hexane (3 x 2 mL) puis à l'éther (3 x 2 mL). Le solide est dissout dans CH₂Cl₂ et la solution est filtrée à travers un fritté recouvert de célite. Après évaporation du solvant, on obtient une poudre orange. Rendement : 213 mg (88%).

Analyse élémentaire pour $[C_{47}H_{37}CuNP_3S_2]_n$ (835.1)_n : calculé C 67.49, H 4.46 ; trouvé C 67.17, H 4.21.

¹H RMN (CD₂Cl₂) : δ 3.77 (m, ΣJ = 18.0, ³*J* (H-H) = 12.5, 2H, CH₂), 5.78 (t, ⁴*J* (H-P_X) = 4.4, 1H, H₄), 3.37 (m, ΣJ = 21.1, 3H, H de Py ou Ph), 6.66-7.71 (m, 30H, CH de Ph ou Py), 8.53 (d, *J* (H-H) = 4.7, 1H, CH de Py).

RMN ³¹P (CD₂Cl₂) : δ -23.5 (AXX', *pseudo* t large, ²J (P_A-P_X) = ²J (P_A-P_X) = 135.5, P_AMe), 42.2 (AXX', d, ²J (P_A-P_X) = 116.5, P_XPh₂), 42.7 (AXX', d, ²J (P_A-P_{X'}) = 131.0, P_{X'}Ph₂).

Complexe de cuivre 604

L'ajout de xylyl-isonitrile (17 mg, 0.13 mmol) à une suspension de **601** (100 mg, 0.13 mmol) dans CH_2Cl_2 (5 mL) conduit instantanément à la dissolution du précipité. La RMN ³¹P du mélange réactionel montre la formation d'un unique produit. La solution est séchée sous vide. Après lavage du solide à l'hexane (3 x 2 mL) du solide et évaporation du solvant, on obtient un solide orange. Rendement : 110 mg (95%). Des cristaux ont pu être obtenus par diffusion d'hexane dans une solution de **604** dans CDCl₃.

Analyse élémentaire pour $[C_{51}H_{43}P_3S_2NCu]\ (890.5)$: calculé C 68.79, H 4.87 ; trouvé C 69.01, H 5.10.

IR (KBr) : v 2131 (f).

RMN ¹H (CDCl₃) : δ 1.44 (d, ²J (H-P) = 2.5, 3H, CH₃), 2.19 (s, 6H, CH₃), 5.65 (t, ²J (H-P) = 4.1, 1H, H₄), 6.70-7.9 (m, 33H, CH de Ph).

RMN ¹³C (CD₂Cl₂) : δ 11.2 (dt, ¹*J* (C-P) = 12.1, ³*J* (C-P) = 9.1, CH₃ de P-Me), 18.8 (s, CH₃ de xylyl), 65.6 (dd, *J* (C-P) = 85.3, *J* (C-P) = 23.4, C_{2,6}), 119.6 (m, C₄H), 127.0-132.6 (m, CH

de Ph), 135.3 (s, C de Ph), 135.7 (d, J (C-P) = 86.7, C de Ph), 136.7 (d, J (C-P) = 78.8, C de Ph), 143.5 (d, J (C-P) = 3.8, C de Ph), 152.9 (d, J (C-P) = 8.3, C_{3.5}). C de l'isonitrile non observé. RMN ³¹P (CDCl₃) : δ -25.5 (AB₂, t, ²J (P_A-P_B) = 154.3, P_AMe), 48.4 (AB₂, d, ²J (P_A-P_B) = 154.3, P_BPh₂).

Complexe de cuivre 605

L'ajout de butyl-isonitrile (14 μ L, 0.13 mmol) à une suspension de **601** (100 mg, 0.13 mmol) dans CH₂Cl₂ (5 mL) conduit instantanément à la dissolution du précipité. La RMN ³¹P du mélange réactionel montre la formation d'un unique produit. La solution est séchée sous vide. Après lavage du solide à l'hexane (3 x 2 mL) du solide et évaporation du solvant, on obtient un solide orange. Rendement : 110 mg (96%). Des cristaux ont pu être obtenus par diffusion d'hexane dans une solution de **605** dans CDCl₃.

Analyse élémentaire pour $[C_{47}H_{43}P_3S_2NCu]$ (842.5) : calculé 67.01, H 5.14 ; trouvé C 67.25, H 5.35.

IR (KBr): v 2175 (f).

RMN ¹H (CDCl₃) : δ 1.37 (s, 9H, CH₃ de *t*-Bu), 1.41 (d, ²J (H-P) = 2.2, 3H, CH₃ de P-Me), 5.66 (t, ²J (H-P) = 4.0, 1H, H₄), 6.70-7.90 (m, 30H, CH de Ph).

¹³C RMN (CDCl₃) : δ 12.2 (dt, ¹*J* (C-P) = 12.2, ³*J* (C-P) = 8.2, CH₃ de P-Me), 30.5 (s, CH₃ de *t*-Bu), 56.0 (s, C de *t*-Bu), 66.41 (ddd, *J* (C-P) = 84.8, *J* (C-P) = 26.5, *J* (C-P) = 2.9, C_{2,6}), 119.7 (td, ³*J* (C-P_B) = 10.9, ³*J* (C-P_A) = 5.5, C₄H), 127.1-132.8 (m, CH de Ph), 136.3 (d, *J* (C-P) = 80.5, C de Ph), 137.4 (d, *J* (C-P) = 85.2, C de Ph), 143.6 (m, C de Ph), 153.0 (m, C_{3,5}). C de l'isonitrile non observé.

RMN ³¹P (CDCl₃) : δ -28.0 (AB₂, t, ²J (P_A-P_B) = 150.7, P_AMe), 47.3 (AB₂, d, ²J (P_A-P_B) = 150.7, P_BPh₂).

Complexe de cuivre 606

L'ajout de PPh₃ (34.1 mg, 0.13 mmol) à une suspension de **601** (100 mg, 0.13 mmol) dans le CH_2Cl_2 (5 mL) conduit instantanément à la dissolution du précipité. La RMN ³¹P du mélange réactionel montre la formation d'un unique produit. La solution est séchée sous vide. Après lavage à l'hexane (3 x 2 mL) du solide et évaporation du solvant, on obtient un solide orange. Rendement : 123 mg (93%). Des cristaux ont pu être obtenus par diffusion d'hexane dans une solution de **606** dans CH_2Cl_2 .

Analyse élémentaire pour $[C_{60}H_{48}P_4S_2Cu]$ (1021.6) : calculé C 70.54, H 4.73 ; trouvé C 70.90, H 5.03.

RMN ¹H (CDCl₃) : δ 1.30 (d, ²*J* (H-P) = 2.0, 3H, CH₃), 5.60 (t, ²*J* (H-P) = 4.0, 1H, H₄), 6.70-7.9 (m, 30H, CH de Ph). RMN ¹³C (CDCl₃) : δ 11.8 (dt, ¹*J* (C-P) = 11.8, ³*J* (C-P) = 9.9, CH₃), 66.4 (m, C_{2,6}), 119.7 (m, C₄H), 127.1-134.4 (m, CH de Ph), 135.1 (dd, *J* (C-P) = 29.0, *J* (C-P) = 2.9, C de Ph), 136.4 (d, *J* (C-P) = 86.9, C de Ph), 137.6 (d, *J* (C-P) = 86.2, C de Ph), 144.1 (m, C de Ph), 152.8 (m, C_{3,5}). RMN ³¹P (CDCl₃) : δ -20.1 (ls, P_AMe), 3.5 (ls, PPh₃), 49.8 (AB₂, d, ²*J* (P_A-P_B) = 162.8, P_BPh₂).

Complexe de cuivre 607

L'ajout de P(OPh)₃ (35 μ L, 0.13 mmol) à une suspension de **601** (100 mg, 0.13 mmol) dans le CH₂Cl₂ (5 mL) conduit instantanément à la dissolution du précipité. La RMN ³¹P du mélange réactionel montre la formation d'un unique produit. La solution est séchée sous vide. Après lavage à l'hexane (3 x 2 mL) du solide et évaporation du solvant, on obtient un solide orange. Rendement : 129 mg (93%).

Analyse élémentaire pour $[C_{60}H_{48}P_4S_2O_3Cu]\ (1069.62)$: calculé C 67.37, H 4.52 ; trouvé 67.43, H 4.72.

RMN ¹H (CDCl₃) : δ 0.91 (d, ²J (H-P) = 2.2, 3H, CH₃), 5.53 (t, ²J (H-P) = 4.2, 1H, H₄), 6.70-7.9 (m, 30H, CH de Ph).

RMN ¹³C (CDCl₃) : δ 10.8 (m, CH₃), 66.34 (ddd, *J* (C-P) = 86.5, *J* (C-P) = 25.5, *J* (C-P) = 2.2, C_{2,6}), 115.9 (s, CH de Ph), 119.5 (m, C₄H), 121.5-133.1 (m, CH de Ph), 135.9 (d, *J* (C-P) = 77.5, C de Ph), 136.8 (d, *J* (C-P) = 84.7, C de Ph), 143.6 (d, *J* (C-P) = 2.8, C de Ph), 151.4.6 (ls, C de Ph), 152.8 (m, C_{3,5}).

RMN ³¹P (CDCl₃) : δ -19.6 (ls, P_A), 49.8 (AB₂C, dd, ²J (P_B-P_A) = 159.1, ²J (P_B-P_C) = 19.5, P_BPh₂), 113.7 (ls, P_C(OPh)₃).

Complexe de cuivre 608

Le complex **601** (50 mg, 0.065 mmol) est dissout dans la pyridine et donne une solution orange foncé. La RMN ³¹P du mélange réactionel montre la formation d'un unique produit. La solution est séchée sous vide. Après lavage du solide à l'hexane (3 x 2 mL) et évaporation du solvant, on obtient un solide orange. Rendement : 129 mg (100%). Des cristaux ont pu être obtenus par diffusion d'hexane dans une solution de **608**dans la pyridine.

Analyse élémentaire pour $[C_{47}H_{39}P_3S_2NCu]$ (838.43) : calculé C 67.33, H 4.68 ; trouvé C C 67.63, H 4.72.

RMN ¹H (CDCl₃) : δ 1.31(s, 3H, CH₃), 5.50 (t, ²J (H-P) = 4.3, 1H, H₄), 6.70-7.9 (m, 30H, CH de Ph).

RMN ¹³C (C₅D₅N) : δ 11.4 (dt, ¹*J* (C-P) = 9.2, ³*J* (C-P) = 7.9, CH₃), 68.1 (ddd, *J* (C-P) = 86.6, *J* (C-P) = 26.0, *J* (C-P) = 3.3, C_{2,6}), 119.0 (td, ³*J* (C-P_B) = 10.6, ³*J* (C-P_A) = 5.0, C₄H), 123.7 (s, CH de Py), 126.9-132.7 (m, CH de Ph), 135.7 (s, CH de Py), 136.6 (d, *J* (C-P) = 81.4, C de Ph), 137.8 (d, *J* (C-P) = 85.8, C de Ph), 144.0 (vq, *J* (C-P) = 3.4, C de Ph), 149.9 (s, CH de Py), 153.1 (m, ΣJ = 12.4, C_{3,5}).

RMN ³¹P (CDCl₃) : δ -36.0 (ls, P_A), 46.6 (AB₂, d, ²J (P_A-P_B) = 151.9, P_BPh₂).

Complexe de cuivre 609

L'ajout de xylyl-isonitrile (17 mg, 0.13 mmol) à une suspension du complexe **602** (104 mg, 0.13 mmol) dans CH_2Cl_2 (5 mL) conduit instantanément à la dissolution du précipité. La RMN ³¹P du mélange réactionel montre la formation d'un unique produit. La solution est séchée sous vide. Après lavage du solide à l'hexane (3 x 2 mL) du solide et évaporation du solvant, on obtient un solide orange. Rendement : 116 mg (96%).

Analyse élémentaire pour $[C_{54}H_{49}P_3S_2NCu]\ (932.57)$: calculé C 69.55, H 5.30 ; trouvé C 69.34, H 5.07.

IR (KBr): v 2129.9 (f).

RMN ¹H (CDCl₃) : δ 0.91 (t, ³J (H-H) = 7.1, 3H, CH₃ de Bu), 1.52 (m, ΣJ = 33.9, 4H, CH₂), 1.84 (m, ΣJ = 19.7, 2H, CH₂), 2.22 (s, 6H, CH₃ de xylyl), 5.59 (t, ²J (H-P) = 4.0, 1H, H₄), 6.70-7.75 (m, 33H, CH de Ph).

RMN ¹³C (CD₂Cl₂) : δ 13.1 (s, CH₃ de Bu), 17.6 (s, CH₃ de xylyl), 22.4 (dd, *J* (C-P) = 15.9, *J* (C-P) = 8.3, CH₂), 23.2 (d, *J* (C-P) = 14.3, CH₂), 25.6 (d, *J* (C-P) = 10.6, CH₂), 63.6 (m, C_{2,6}), 119.5 (m, C₄H), 126.0-131.5 (m, CH de Ph), 127.8 (s, C de Ph), 134.3 (s, C de Ph), 135.2 (d, *J* (C-P) = 81.5, C de Ph), 135.9 (d, *J* (C-P) = 85.7, C de Ph), 142.2 (s, C de Ph), 152.4 (s, C_{3,5}). C de l'isonitrile non observé.

RMN ³¹P (CD₂Cl₂) : δ -15.5 (AB₂, t, ²J (P_A-P_B) = 152.5, P_AMe), 47.5 (AB₂, d, ²J (P_A-P_B) = 152.5, P_BPh₂).

Complexe de cuivre 610

L'ajout de butyl-isonitrile (14 μ L, 0.13 mmol) à une suspension du complexe **602** (104 mg, 0.13 mmol) dans CH₂Cl₂ (5 mL) conduit instantanément à la dissolution du précipité. La RMN ³¹P du mélange réactionel montre la formation d'un unique produit. La solution est
séchée sous vide. Après lavage du solide à l'hexane (3 x 2 mL) du solide et évaporation du solvant, on obtient un solide orange. Rendement : 110 mg (94%).

Analyse élémentaire pour $[C_{50}H_{49}P_3S_2NCu]$ (884.3) : calculé C 67.89, H 5.58 ; trouvé C 67.51, H 5.23.

IR (KBr): v 2158.6 (f).

RMN ¹H (CDCl₃) : δ 0.91 (t, ³*J* (H-H) = 7.0, 3H, CH₃ de Bu), 1.24 (ls, 2H, CH₂), 1.42 (m, ΣJ = 41.2, 20H, CH₂ de Bu et CH₃ de *t*-Bu), 1.79 (m, ΣJ = 16.0, 2H, CH₂), 5.56 (t, ²*J* (H-P) = 4.2, 1H, H₄), 6.70-7.72 (m, 30H, CH de Ph).

RMN ¹³C (CD₂Cl₂) : δ 13.3 (s, CH₃ de Bu), 22.4 (dd, *J* (C-P) = 14.5, *J* (C-P) = 7.9, CH₂), 23.2 (d, *J* (C-P) = 14.0, CH₂), 25.6 (d, *J* (C-P) = 10.3, CH₂), 29.4 (s, CH₃ de *t*-Bu), 52.5 (s, C de *t*-Bu), 64.1 (m, C_{2,6}), 119.6 (m, C₄H), 126.0-131.8 (m, CH de Ph), 135.2 (d, *J* (C-P) = 81.6, C de Ph), 135.9 (d, *J* (C-P) = 85.5, C de Ph), 142.2 (s, C de Ph), 152.4 (s, C_{3,5}). C de isonitrile non observé.

RMN ³¹P (CD₂Cl₂) : δ -17.9 (AB₂, t, ²J (P_A-P_B) = 143.4, P_A), 46.8 (AB₂, d, ²J (P_A-P_B) = 143.4, P_BPh₂).

Complexe de cuivre 611

On ajoute de la pyridine (10 μ L, 0.12 mmol) à une solution de **603** (100 mg, 0.12 mmol) dans le CH₂Cl₂ (2 mL). Après évaporation du solvant, on obtient un solide orange. Rendement : 109 mg (100%).

Analyse élémentaire pour $[C_{52}H_{42}CuN_2P_3S_2] \ (914.1)$: calculé C 68.22, H 4.62 ; trouvé C 67.94, H 4.36.

RMN ¹H (CD₂Cl₂) : δ 3.87 (d, ²J (H-P) = 4.9, 2H, CH₂), 6.07 (t, ²J (H-P) = 4.2, 1H, H₄), 6.89-7.87 (m, 34H, CH de Ph et de Py), 8.71-8.75 (m, 4H, CH de Py).

RMN ¹³C (C₅D₅N) : δ 35.9 (m, ΣJ (C-P) = 23.8, CH₂), 67.4 (m, C_{2,6}), 121.2 (AX₂Y, td, ³J (C-P_Y) = 10.7, ³J (C-P_Y) = 2.7, C₄H), 121.2 (d, J (C-P) = 10.2, CH de CH₂-Py), 125.6 (d, J (C-P) = 5.9, CH de CH₂-Py), 127.8-131.0 (m, CH de Ph), 133.2 (d, J (C-P) = 8.2, CH de Py), 137.5 (d, ¹J (C-P) = 82.7, C de PPh₂), 138.7 (d, ¹J (C-P) = 82.7, C de PPh₂), 144.5 (ls, C_{3,5}), 150.1 (s, CH de Py), 155.0 (ls, C de Ph), 150.1 (s, CH de CH₂-Py), 150.7 (s, CH de Py), 159.1 (s, C de CH₂-Py). 1 CH de CH₂-Py non observé.

RMN ³¹P (CH₂Cl₂) : δ -17.8 (AX₂, t, ²J (P_A-P_X) = 153.7, P_A), 46.7 (AX₂, d, ²J (P_A-P_X) = 153.7, P_XPh₂).

λ^5 -phosphinine 612

RMN ¹H (CD₂Cl₂) : δ 1.21 (t, ³*J* (H-H) = 7.1, 3H, *CH*₃-CH₂), 1.80 (d, ²*J* (H-P) = 14.0, 3H, P-*CH*₃), 3.37 (²*J* (H-P) = 15.2, 2H, P-*CH*₂), 4.14 (q, ³*J* (H-H) = 7.1, 2H, CH₃-*CH*₂), 5.50 (t, ²*J* (H-P) = 4.8, 1H, H₄), 6.54-8.10 (m, 30H, CH de Ph). RMN ¹³C (CDCl₃) : δ 10.1 (d, ¹*J*(C-P) = 59.5, P-CH₃), 14.1 (d, ¹*J*(C-P) = 9.2, *CH*₃-CH₂), 35.6 (d, ¹*J*(C-P) = 42.5, P-CH₂), 62.0 (s, CH₃-*CH*₂), 65.8 (dd, ¹*J*(C-P) = 89.8, ¹*J*(C-P) = 12.1, C_{2,6}), 119.1 (m, C₄H), 127.5-132.1 (m, CH de Ph), 134.4 (dd, ¹*J*(C-P) = 108.9, ¹*J*(C-P) = 6.4, C de PPh₂), 137.1 (d, ¹*J*(C-P) = 86.6, C de PPh₂), 142.3 (m, C_{3,5}), 157.4 (C de Ph), 167.7 (d, ²*J* (C-P) = 6.0, C=O). RMN ³¹P (CD₂Cl₂) : δ 18.2 (AB₂, t, ²*J* (P_A-P_B) = 42.0, P_A), 35.7 (AB₂, d, ²*J* (P_A-P_B) = 42.0, P_BPh₂).

Complexe d'or 613

Une solution de MeLi dans Et₂O (625 μ L, C = 0.16 M, 1.0 mmol) est ajouté à une solution de **SPS** (680 mg, 1.0 mmol) dans le THF (15 mL) à -78°C. Après retour à température ambiante, on agite la solution pendant 20 min. La RMN ³¹P indique alors la formation quantitative de **211** auquel on ajoute [AuCl.SMe₂] (294 mg, 1.0 mmol). La solution initialement rouge devient rapidement orange. Le mélange est agité pendant 1h. La RMN ³¹P RMN du mélange réactionel montre la formation d'un unique produit. La solution est séchée sous vide. Après lavage du solide à l'hexane (3 x 2 mL) et évaporation du solvant, on obtient un solide orange. Rendement : 848 mg (94%). Des cristaux ont pu être obtenus par diffusion d'hexane dans une solution de **613** dans CDCl₃.

Analyse élémentaire pour $[C_{42}H_{34}P_3S_2Au]$ (892.8) : calculé C 56.51, H 3.84 ; trouvé C 56.80, H 4.02.

RMN ¹H (CDCl₃) : δ 1.20 (d, ²*J*(H-P) = 8.6, 3H, CH₃), 5.72 (t, ²*J* (H-P) = 4.4, 1H, H₄), 6.70-7.9 (m, 30H, CH de Ph).

RMN ¹³C (CDCl₃) : δ 13.7 (s, CH₃), 72.0 (m, C_{2 ou 6}), 90.5 (m, C_{6 ou 2}), 120.6 (m, C₄H), 127.0-134.3 (m, CH de Ph), 135.1 (m, C de Ph), 135.6 (m, C de Ph), 142.9 (ls, C de Ph), 145.0 (ls, C de Ph), 155.7 (ls, C_{3 ou 5}), 157.6 (s, C_{5 ou 3}).

RMN³¹P (CDCl₃) : δ -12.6 (m, AA'MM'XX', P_{A,A'}), 39.2 (d, AA'MM'XX', ΣJ (P_A-P_M) = 72.9, P_MPh₂), 45.2 (d, AA'MM'XX', ΣJ (P_A-P_X) = 86.3, P_XPh₂).

Complexe d'or 614

Méthode A : On ajoute PPh₃ (57 mg, 0.22 mmol) à une solution du complexe dimerique **613** (200 mg, 0.11 mmol) dans le CH₂Cl₂ (5 mL). La RMN ³¹P du mélange réactionel montre la formation d'un produit monomérique au bout de quelques minutes. La solution est séchée sous vide. Après lavage du solide à l'hexane (3 x 2 mL) et évaporation du solvant, on obtient un solide orange. Rendement : 129 mg (97%).

Méthode B : Une solution de MeLi dans Et₂O (125 μ L, C = 0.16 M, 0.2 mmol) est ajouté à une solution de **SPS** (136 mg, 0.2 mmol) dans le THF (3 mL) à -78°C. Après retour à température ambiante, on agite la solution pendant 20 min. La RMN ³¹P indique alors la formation quantitative de **211** auquel on ajoute, à -78°C, [AuClPPh₃] (99 mg, 0.2 mmol) dissous dans le THF (2 mL). Après retour à température ambiante, la solution initialement rouge devient orange. Le mélange est agité pendant 1h. La solution est séchée sous vide et le solide est dissous dans le CH₂Cl₂ et filtré sur célite. Après évaporation du solvant, on obtient un solide orange. Rendement : 212 mg (92%). Des cristaux ont pu être obtenus par diffusion d'hexane dans une solution de **614** dans CH₂Cl₂.

Analyse élémentaire pour $[C_{60}H_{49}P_4S_2Au]$ (1155.0) : calculé C 62.39, H 4.28 ; trouvé C 62.60, H 4.62.

RMN ¹H (CDCl₃) : δ 1.55 (d, ²J (H-P) = 7.7, 3H, CH₃), 5.53 (t, ²J (H-P) = 10.9, 1H, H₄), 6.70-7.9 (m, 30H, CH de Ph).

RMN ¹³C (CDCl₃) : δ 15.5 (s, CH₃), 69.5 (m, C_{2, 6}), 118.8.6 (td, ³*J* (C-P) = 9.6, ³*J* (C-P) = 5.8, C₄H), 128.8-135.0 (m, CH de Ph), 137.7 (d, *J* (C-P) = 85.8, C de Ph), 137.8 (d, *J* (C-P) = 85.8, C de Ph), 144.1 (t, *J* (C-P) = 6.4, C_{3, 5}), 155.7 (ls, C de Ph).

RMN ³¹P (CDCl₃) : δ 2.2 (dt, AB₂C, ²J (P_A-P_C) = 286.0, ²J (P_A-P_B) = 90.9, P_AMe), 41.5 (d, AB₂C, ²J (P_A-P_C) = 286.0, P_CPh₃), 42.6 (d, AB₂C, ²J (P_A-P_B) = 90.9, P_BPh₂).

Complexe d'or 615

On ajoute du *t*-butylisonitrile (73 μ L, 0.66 mmol) à une solution du complexe dimerique **613** (200 mg, 0.11 mmol) dans le CH₂Cl₂ (5 mL). La solution est agitée pendant quelques heures. La RMN ³¹P du mélange réactionel indique la formation d'un produit. La solution est séchée sous vide. Le solide est recristallisé par diffusion d'hexane dans une solution de **615** dans le CHCl₃. Les cristaux oranges qui se déposent dans CHCl₃ montrent la reformation partielle du réactif (20%). Le spectre RMN ¹H est celui du mélange.

RMN ¹H (CDCl₃) : δ 1.35 (s, 9H, CH₃), 1.45 (d, ²J (H-P) = 9.5, 3H, CH₃), 5.52 (t, ²J (H-P) = 10.9, 1H, H₄), 6.70-7.9 (m, 30H, CH de Ph).

RMN ³¹P (CDCl₃) : δ -7.18 (t, AB₂, ²J (P_A-P_B) = 83.7, P_B), 41.30 (d, AB₂, ²J (P_A-P_B) = 83.7, P_BPh₂).

Complexe de ruthénium 616

Une solution de BuLi dans l'hexane (110 μ L, C = 1.6 M, 0.18 mmol) est ajouté à une solution de **SPS** (120 mg, 0.18 mmol) dans le THF (3 mL) à -78°C. Après retour à température

ambiante, on agite la solution pendant 20 min. La RMN ³¹P indique alors la formation quantitative de **213** auquel on ajoute, à -78°C, $[RuCp*Cl]_4$ (48 mg, 0.045 mmol). Après retour à température ambiante, la solution initialement rouge devient marron. Le mélange est agité pendant 1h. La solution est séchée sous vide et le solide est dissout dans le toluène (5 mL) et filtré sur célite. Après évaporation du solvant, on obtient un solide marron. Rendement : 147 mg (86%). Des cristaux ont pu être obtenus par diffusion d'hexane dans une solution de **616** dans le THF.

RMN ¹H (C₆D₆) : δ 1.15 (t, ³*J* (H-H) = 7.21, 3H, CH₃ du *n*-Bu), 1.46 (d, ⁴*J* (H-P_A) = 1.2, 15H, CH₃ de Cp*), 1.67 (q, ³*J* (H-H) = 7.5, 2H, CH₂), 2.30 (m, ΣJ = 23.0, 2H, CH₂), 2.64 (m, ΣJ = 22.5, 2H, CH₂), 5.94 (td, ⁴*J* (H-P_B) = ⁴*J* (H-P_{B'}) = 3.9, ⁴*J* (H-P_A) = 1.1, 1H, H₄), 6.60-8.30 (m, 30H, CH de Ph).

RMN ¹³C (C₆D₆) : δ 10.8 (s, CH₃ de Cp*), 14.6 (s, CH₃ de *n*-Bu), 25.5 (d, ⁴*J* (C-P) = 12.2, CH₂), 28.8 (d, ³*J* (C-P) = 4.2, CH₂), 25.5 (d, ²*J* (C-P) = 12.2, CH₂), 34.8 (dt, ¹*J* (C-P) = 28.2, ³*J* (C-P) = 4.5, CH₂), 75.1 (ABB'X, ΣJ (C-P) = 125.9, C_{2, 6}), 85.9 (d, ²*J* (C-P) = 2.6, C de Cp*), 119.8 (m, ΣJ (C-P) = 14.4, C₄H), 127.0-133.8 (m, CH de Ph), 135.4 (ABB'X, ΣJ (C-P) = 84.5, C de PPh₂), 137.8 (ABB'X, ΣJ (C-P) = 85.5, C de PPh₂), 145.1 (m, ΣJ (C-P) = 6.7, C de Ph).

RMN ³¹P (C₆D₆) : δ 49.7 (AB₂, m, ²J (P_A-P_B) = 138.5, P_BPh₂), (AB₂, m, ²J (P_A-P_B) = 138.5, P_A).⁵

Complexe de ruthénium 617

On mélange pendant 10 minutes une solution de **616** (100 g, 0.10 mmol) et de $[FeCp_2][BF_4]$ (42 mg, 0.10 mmol) dans le THF. La solution est séchée sous vide. Après lavage du solide à l'hexane (3 x 1 mL) et évaporation du solvant, on obtient un solide marron. Rendement : 89 mg (82%).

Aucun signal n'est observé en RMN ³¹P.

Complexe de fer 618

Une solution de BuLi dans l'hexane (95 μ L, C = 1.6 M, 0.15 mmol) est ajouté à une solution de **SPS** (100 mg, 0.15 mmol) dans le THF (3 mL) à -78°C. Après retour à température ambiante, on agite la solution pendant 20 min. La RMN ³¹P indique alors la formation quantitative de **213** auquel on ajoute, à -78°C, [Fe(CO)₃CpI]₄ (45 mg, 0.15 mmol). Après retour à température ambiante, le mélange est chauffé à 80°C pendant une nuit. La solution initialement rouge devient marron. On observe en RMN ³¹P 30% de produits secondaires. Des cristaux ont pu être obtenus par diffusion d'hexane dans une solution de **618** dans le THF.

³¹P RMN (THF) : δ 52.2 (d, ²J (P_A-P_B) = 127.6, P_BPh₂), 91.0 (t, ²J (P_A-P_B) = 127.6, P_A).

Complexe de fer 619

Une solution de BuLi dans l'hexane (95 μ L, C = 1.6 M, 0.15 mmol) est ajouté à une solution de **SPS** (100 mg, 0.15 mmol) dans le THF (3 mL) à -78°C. Après retour à température ambiante, on agite la solution pendant 20 min. La RMN ³¹P indique alors la formation quantitative de **213** auquel on ajoute, à -78°C, [Fe(CO)₃CpI]₄ (45 mg, 0.15 mmol). Après retour à température ambiante, le mélange est chauffé à 80°C pendant une nuit. On vérifie le lendemain la formation de **618** en RMN ³¹P auquel on ajoute [FeCp₂][BF₄] (42 mg, 0.10 mmol). Il se forme alors un précipité marron isolé après centrifugation. Rendement : 64 mg (46%). Des cristaux ont pu être obtenus par diffusion d'hexane dans une solution de **619** dans le CH₂Cl₂.

Aucun signal n'est observé en RMN ³¹P.

Complexe de manganèse 620

Une solution de *n*-BuLi dans l'hexane (0.637 mL, C = 1.6 M, 0.59 mmol) est ajouté à une solution de **SPS** (400 g, 0.59 mmol) dans le THF (20 mL) à -78°C. Après retour à température ambiante, on agite la solution pendant 20 min. La RMN ³¹P indique alors la formation quantitative de **213** auquel on ajoute [Mn(CO)₅Br] (164 mg, 0.59 mmol) à -78°C. Après retour à température ambiante, la solution est chauffée pendant une nuit à 80°C. La solution initialement rouge devient rapidement orange avec la formation concommitante d'un précipité orange. Le solide est centrifugé et rincé au THF (3 x 5 mL). Rendement : 422 mg (82%). Des cristaux analysables par diffraction aux rayons X sont obtenus par refroidissement d'une solution de **620** dans le CH₂Cl₂ chaud.

Analyse élémentaire pour $[C_{48}H_{40}MnO_3P_3S_2]$ (876.1) : calculé C C 65.75, H 4.60 ; trouvé C 65.41, H 4.27.

IR (THF): 2013 (faible), 1934 (moyen), 1909 (moyen) cm⁻¹.

RMN ¹H (CDCl₃): δ 1.00 (m, ΣJ = 18.7, 3H, CH₃), 1.50 (m, ΣJ = 21.7, 2H, CH₂), 1.85 (m, ΣJ = 25.6, 2H, CH₂), 2.31 (m, ΣJ = 24.9, 2H, CH₂), 5.79 (t, ΣJ = 11.2, 1H, H₄), 6.80-8.06 (m, 30H, CH de Ph).

620 est trop insoluble pour conduire à un spectre RMN ¹³C exploitable.

RMN ³¹P (THF): δ 57.5 (d, ²J (P_A-P_B) = 119.7, P_BPh₂), 82.7 (t, ²J (P_A-P_B) = 119.7, P_A).

Complexe de manganèse 621

On place une solution de **620** (20 mg, 0.025 mmol) dans le THF (0.5 mL) dans un tube RMN que l'on scelle. On immerge un tube RMN dans un photoréacteur rempli d'eau (400mL) et l'on irradie la solution pendant 3 heures avec une lampe à mercure TQ-150 Heraeus. La solution initialement orange devient rouge et beaucoup plus soluble. Après évaporation, on obtient **621** sous la forme d'une poudre orange. Rendement RMN : 100%. Rendement quantique : 0.90 ± 0.05 pour λ_{exc} = 460 nm. Des cristaux analysables par diffraction aux rayons X se déposent dans une solution de **621** dans le CH₂Cl₂ (0.5 mL) dans un tube RMN sous irradiation continue.

IR (THF): 2024 (large), 1930 (faible), 1915 (moyen) cm⁻¹.

RMN ¹H (CDCl₃): δ 1.00 (l s, 3H, CH₃), 1.50 (l s, 2H, CH₂), 1.83 (l s, 2H, CH₂), 2.25 (l s, 2H, CH₂), 5.58 (l s, 1H, H₄), 7.02-8.08 (m, 30H, CH de Ph).

621 est trop insoluble et trop instable thermiquement pour pouvoir enregistrer à un spectre RMN 13 C.

RMN ³¹P (THF): δ 47.6 (t, ²*J* (P_A-P_B) = 127.5, P_A), 58.2 (d, ²*J* (P_A-P_B) = 127.5, P_BPh₂).

Complexe de rhénium 622

Une solution de *n*-BuLi dans l'hexane (0.340 mL, C = 1.6 M, 0.54 mmol) est ajouté à une solution de **SPS** (370 g, 0.54 mmol) dans le THF (20 mL) à -78°C. Après retour à température ambiante, on agite la solution pendant 20 min. La RMN ³¹P indique alors la formation quantitative de **213** auquel on ajoute [Re(CO)₅Br] (221 mg, 0.54 mmol) à -78°C. Après retour à température ambiante, la solution est chauffée pendant une nuit à 80°C. La solution initialement rouge devient rapidement orange avec la formation concommitante d'un précipité orange. Le solide est centrifugé et rincé au THF (3 x 5 mL). Rendement : 422 mg (85%). Des cristaux analysables par diffraction aux rayons X sont obtenus par diffusion d'hexane dans une solution de **622** dans le CH₂Cl₂.

Analyse élémentaire pour $[C_{48}H_{40}O_3P_3ReS_2]$ (1008.1) : calculé C 57.19, H 4.00 ; trouvé C 56.90, H 3.68.

IR (CH₂Cl₂): 20148 (fort), 1929 (moyen), 1896 (moyen) cm⁻¹.

RMN ¹H (CDCl₃): δ 1.00 (t, ³J (H-H) = 7.2, 3H, CH₃), 1.43 (m, Σ J = 17.2, 2H, CH₂), 1.70 (m, Σ J = 17.1, 2H, CH₂), 2.19 (m, Σ J = 12.2, 2H, CH₂), 5.78 (td, ⁴J (H-P_B) = 4.1, ⁴J (H-P_A) = 1.0, 1H, H₄), 6.77-8.15 (m, 30H, CH de Ph).

VI. Chapitre 7

Alcyne MeCCP(S)Ph₂

On fait buller du propyne dans du THF (200 mL) à -78° C jusqu'à obtenir par différence de pesée une masse de 2.2 g (55 mmol). On y ajoute une solution de *n*-BuLi dans l'hexane (32 mL, C = 1.55 M, 49 mmol) et on agite le mélange réactionnel pendant 2h à -78° C. On ajoute ensuite Ph₂PCl (8.9 mL, 49 mmol) à -78° C et l'on agite pendant 1h. On évapore le solvant sous vide puis on filtre le produit à l'hexane. On obtient A sous la forme d'une huile orange. Rendement : 10.80 g (98%).

A : RMN 31 P (CDCl₃) : δ -32.3 (s).

On chauffe à 120°C pendant 2h une solution de **A** (10.8 g, 48 mmol) et de S₈ (1.54 g, 6 mmol) dans le toluène (30 mL). Après évaporation du solvant, on obtient **B** sous la forme d'une poudre marron. Rendement : 11.70 g (95%).

B : RMN 31 P (CDCl₃) : δ 19.7 (s).

Pour une caractérisation complète voir : A. M. Aguiar, J. R. Smiley Irelan, N. S. Bhacca, J. Org. Chem. 1969, 34, 3349.

On évapore le toluène d'une solution de **201** (C = 8.10^{-5} mol/mL dans le toluène, 22 mmol). On rince le solide obtenu à l'hexane (3 x 20 mL). La solution est ensuite évaporée sous vide. On chauffe ensuite pendant 72h à 80°C la solution de **201** purifiée et de diphénylacétylène (3.97 g, 22 mmol) dans le toluène (20 mL). La disparition de **201** et la formation de **702** est vérifiée par RMN ³¹P (Resp. δ (toluène) = 269.0 ppm et 267.4 ppm). On ajoute ensuite du 1-(diphénylphosphino sulphide)-2-méhylacétylène (3.44 g, 22 mmol) et l'on chauffe le mélange réactionnel pendant 48h. On concentre la solution de moitié et l'on rince le solide obtenu à l'hexane (3 x 20 mL), au MeOH (3 x 10 mL) puis à l'éther (3 x 5 mL). Après évaporation des solvants, on obtient **SP** sous la forme d'une poudre blanche. Des cristaux analysables par diffraction aux rayons X ont pu être obtenus par diffusion d'hexane dans une solution de **SP** dans le CH₂Cl₂. Rendement : 7.90 g (75%).

Analyse élémentaire pour $[C_{30}H_{24}P_2S]$ (478.5) : calculé C 75.30, H 5.06 ; Trouvé : C 74.97, H 4.72.

SM (CH₂Cl₂) : m/z 479 (M)⁺, 447 (M-S)⁺, 416 (M-PS).

RMN ¹H (CDCl₃) : δ 2.67 (s, CH₃), 7.00-7.98 (m, 21H, CH de Ph et H₄).

RMN ¹³C (CDCl₃) : δ 25.4 (d, ³*J* (C-P_B) = 8.2, CH₃), 127.2-133.5 (m, CH de Ph), 132.9 (dd, *J* (C-P_B) = 84.6, *J* (C-P_A) = 5.3, C), 138.6 (*pseudo* t, ³*J* (C-P_A) = ³*J* (C-P_B) = 12.8, C₄H), 141.3 (s, C), 141.7 (s, C), 148.0 (dd, *J* (C-P_B) = 9.1, *J* (C-P_A) = 3.8, C), 149.0 (dd, *J* (C-P_B) = 12.8, *J* (C-P_A) = 4.5, C), 159.4 (dd, *J* (C-P_B) = 76.3, *J* (C-P_A) = 67.2, C), 166.2 (dd, *J* (C-P_B) = 58.9, *J* (C-P_A) = 14.3, C).

RMN ³¹P (CDCl₃) : δ 42.6 (d, ²J (P_A-P_B) = 108.1, P_BPh₂), 226.7 (d, ²J (P_A-P_B) = 108.1, P_A).

Anion 703

On ajoute une solution de MeLi dans l'éther (0.235 mL, C = 1.6 M, 0.38 mmol) à une solution de **SP** (180 mg, 0.38 mmol) dans le THF (6 mL) à -78°C. Après retour à température ambiante, on agite le mélange pendant 20 min. La solution initialement blanche devient immédiatement rouge. Après évaporation du solvant, on rince le solide obtenu à l'hexane (3 x 2 mL). Après séchage, on obtient **703** sous la forme d'une poudre rouge. Rendement : 100%. RMN ³¹P (THF) : δ -46.7 (d, ²*J* (P_A-P_B) = 156.7, P_A-Me), 42.5 (d, ²*J* (P_A-P_B) = 156.7, P_BPh₂).

Complexe de ruthénium 704a-b

On ajoute une solution de MeLi dans l'éther (0.235 mL, C = 1.6 M, 0.38 mmol) à une solution de **SP** (180 mg, 0.38 mmol) dans le THF (6 mL) à -78°C. Après retour à température ambiante, on agite le mélange pendant 20 min. On vérifie par RMN ³¹P la formation de l'anion **703** auquel on ajoute, dans la boîte à gants, $[Ru(cym)Cl_2]_2$ (115 mg, 0.19 mmol). On agite le mélange pendant 1h. Après évaporation du solvant, on dissout le solide dans du toluène (5 mL) et l'on filtre la solution à travers un fritté recouvert de célite. Après évaporation, on obtient **704** sous la forme d'un solide rouge. **704** est un mélange de deux diastéréoisomères dans les proportions (4:1). Rendement : 258 mg (89%).

Analyse élémentaire pour $[C_{41}H_{41}ClP_2RuS]$ (764.1) : calculé : C 64.43, H 5.41 ; trouvé : C 64.06, H 5.19.

Isomère majoritaire :

RMN ¹H (C_6D_6) : δ 1.14 (d, ³*J* (H-H) = 0.9, 3H, *CH*₃-CH de cymène), 1.16 (d, ³*J* (H-H) = 0.9, 3H, *CH*₃-CH de cymène), 1.20 (d, ²*J* (H-P) = 6.5, 3H, P-CH₃), 1.68 (s, 3H, CH₃ de phosphinine), 2.61 (s, 3H, Ar-*CH*₃ de cymène), 2.65-2.75 (m, 1H, Ar-*CH* de cymène), 3.15 (d, ³*J* (H-H) = 5.4, 1H, Ar-H de cymène), 3.37 (d, ³*J* (H-H) = 6.7, 1H, Ar-H de cymène), 4.71 (d, ³*J* (H-H) = 6.0, 1H, Ar-H de cymène), 5.10 (d, ³*J* (H-H) = 4.9, 1H, Ar-H de cymène), 5.61 (d, ⁴*J* (H-P) = 6.6, H₄), 6.88-7.97 (m, 20H, H de Ph).

RMN ³¹P (THF) : δ 37.2 (d, ²*J* (P_A-P_B) = 115.9, P), 45.3 (d, ²*J*(P_A-P_B) = 115.9, P). *Isomère minoritaire :*

RMN ³¹P (THF) : δ 35.8 (d, ²J (P_A-P_B) = 101.0, P), 43.4 (d, ²J(P_A-P_B) = 101.0, P).

Anion 705

On ajoute une solution de *n*-BuLi dans l'hexane (0.235 mL, C = 1.6 M, 0.38 mmol) à une solution de **SP** (180 mg, 0.38 mmol) dans le THF (6 mL) à -78°C. Après retour à température ambiante, on agite le mélange pendant 20 min. La solution initialement blanche devient immédiatement rouge. Après évaporation du solvant, on rince le solide obtenu à l'hexane (3 x 2 mL). Après séchage, on obtient **705** sous la forme d'une poudre rouge. Rendement : 100%. RMN ³¹P (THF) : δ -37.6 (d, ²*J* (P_A-P_B) = 151.9, P_A-Bu), 42.4 (d, ²*J* (P_A-P_B) = 151.9, P_BPh₂).

Alcyne MeCCLi

—<u>—</u>—Li

On fait buller du propyne dans du THF (200 mL) à -78°C jusqu'à obtenir par différence de pesée une masse de 2.2 g (55 mmol). On y ajoute une solution de *n*-BuLi dans l'hexane (32 mL, C = 1.55 M, 49 mmol) et on agite le mélange réactionnel pendant 2h à -78°C. On évapore le solvant sous vide et l'on obtient MeCCLi sous la forme d'un solide blanc. Rendement : 2.25 g (97%).

Anion 706

Complexe de ruthénium 707a-b

On ajoute une solution de *n*-BuLi dans l'hexane (0.235 mL, C = 1.6 M, 0.38 mmol) à une solution de **SP** (180 mg, 0.38 mmol) dans le THF (6 mL) à -78°C. Après retour à température ambiante, on agite le mélange pendant 20 min. On vérifie par RMN ³¹P la formation de l'anion **705** auquel on ajoute, dans la boîte à gants, $[Ru(cym)Cl_2]_2$ (115 mg, 0.19 mmol). On agite le mélange pendant 1h. Après évaporation du solvant, on dissout le solide dans du toluène (5 mL) et l'on filtre la solution à travers un fritté recouvert de célite. Après évaporation, on obtient **707** sous la forme d'un solide rouge. **707** est un mélange de deux diastéréoisomères dans les proportions (1:3). Rendement : 242 mg (80%).

Analyse élémentaire pour $[C_{44}H_{47}ClP_2RuS]$ (806.3) : calculé : C 65.54, H 5.87 ; trouvé : C 65.22, H 5.48.

L'isomère majoritaire **707a**, insoluble à l'éther, peut être obtenu par lavage du mélange des complexes à l'éther (3 x 10 mL). Le filtrat est ensuite conservé pendant une nuit à 0°C ce qui permet de séparer le diastéréoisomère minoritaire (partie soluble).

Isomère majoritaire **707***a* : Rendement : 150 mg (49%). Des cristaux analysables par diffraction aux rayons X se sont déposés pendant la nuit dans un tube de **707***a* dans C_6D_6 .

RMN ¹H (C₆D₆) : δ 0.97 (d, ³*J* (H-H) = 7.0, 3H, *CH*₃-CH de cymène), 0.97 (t, ³*J* (H-H) = 7.2, 3H, CH₃ de *n*-Bu), 1.17 (d, ³*J* (H-H) = 6.7, 3H, *CH*₃-CH de cymène), 1.50-1.58 (m, 2H, CH₂ de *n*-Bu), 1.72 (s, 3H, CH₃ de phosphinine), 1.95 (s, 3H, Ar-*CH*₃ de cymène), 2.14-2.28 (m, 1H, CH₂ de *n*-Bu), 2.32-2.50 (m, 1H, CH₂ de *n*-Bu), 2.52-2.69 (m, 1H, CH₂ de *n*-Bu), 2.99-3.09 (m, 2H, Ar-*CH* de cymène et CH₂ de *n*-Bu), 3.17 (d, ³*J* (H-H) = 5.5, Ar-H de cymène), 3.69 (d, ³*J* (H-H) = 6.1, Ar-H de cymène), 4.67 (d, ³*J* (H-H) = 6.1, Ar-H de cymène), 5.06 (d, ³*J* (H-H) = 5.5, Ar-H de cymène), 5.43 (d, ⁴*J* (H-P) = 6.3, H₄), 6.88-7.12 (m, 12H, H de Ph), 7.55-7.58 (m, 2H, H de Ph), 7.69-7.80 (m, 4H, H de Ph), 7.88-7.95 (m, 2H, H de Ph).

RMN ¹³C (C₆D₆) : δ 13.2 (s, CH₃ de *n*-Bu), 15.4 (s, Ar-CH₃ de cymène), 18.2 (s, CH₃ de *i*-propyl), 22.9 (*pseudo* t, ΣJ (C-P) = 5.1, CH₃ de *i*-propyl), 23.6 (d, ³J (C-P_A) = 11.6, CH₂ de *n*-Bu), 24.5 (s, CH₃ de phosphinine), 25.9 (d, ²J (C-P_A) = 7.5, CH₂ de *n*-Bu), 29.1 (s, CH de *i*-propyl), 42.5 (d, ¹J (C-P_A) = 19.8, P_A-CH₂), 60.0 (dd, ¹J (C-P_A) = 104.9, ¹J (C-P_B) = 55.9, C₂), 67.5 (s, C de cymène), 75.1 (s, CH de cymène), 87.1 (s, CH de cymène), 89.1 (s, CH de cymène), 90.4 (d, ²J (C-P_A) = 9.1, CH de cymène), 94.4 (s, C de cymène), 99.3 (dd, ¹J (C-P_A) = 43.8, ³J (C-P_B) = 7.6, C₆), 112.6 (dd, J (C-P) = 12.8, J (C-P) = 6.8, C₄H), 114.8 (d, J (C-P) = 9.1, C), 123.3-132.8 (m, CH de Ph), 134.1 (m, C de Ph), 134.7 (m, C de Ph), 141.8 (dd, J (C-P) = 15.9, J (C-P) = 2.3, C de Ph), 144.2 (d, J (C-P) = 5.3, C₃), 145.1 (d, J (C-P) = 7.6, C₅), 150.2 (d, J (C-P) = 1.5, C de Ph).

RMN ³¹P (C₆D₆) : δ 40.7 (d, ²J (P_A-P_B) = 115.5, P), 44.3 (d, ²J(P_A-P_B) = 115.5, P). *Isomère minoritaire* **707b** : Rendement : 33 mg (11 %).

RMN ¹H (C₆D₆): δ 0.88-2.44 (m, 25H, *n*-Bu, *i*-Pr, 3 x Me), 4.13 (d, ³J (H-H) = 6.0, Ar-H de cymène), 4.17 (d, ³J (H-H) = 5.6, Ar-H de cymène), 4.91 (d, ³J (H-H) = 6.0, Ar-H de cymène), 4.96 (d, ³J (H-H) = 5.7, Ar-H de cymène), 5.31 (d, ⁴J (H-P) = 5.5, H₄), 6.70-8.25 (m, 20H, H de Ph).

RMN ³¹P (C₆D₆) : δ 43.4 (d, ²J (P_A-P_B) = 97.2, P), 45.9 (d, ²J(P_A-P_B) = 97.2, P).

Complexe de ruthénium 708a-b

On ajoute du THF (6 mL) à -78°C à un mélange de **SP** (180 mg, 0.38 mmol) et de MeCCLi (18 mg, 0.38 mmol). Après retour à température ambiante, on agite le mélange pendant 20 min. On vérifie par RMN ³¹P la formation de l'anion **706** auquel on ajoute, dans la boîte à gants, [Ru(cym)Cl₂]₂ (115 mg, 0.19 mmol). On agite le mélange pendant 1h. Après évaporation du solvant, on dissout le solide dans du CH₂Cl₂ (5 mL) et l'on filtre la solution à travers un fritté recouvert de célite. Après évaporation, on obtient **708** sous la forme d'un solide rouge. **708** est un mélange de deux diastéréoisomères dans les proportions (2:1). Rendement : 245 mg (82%).

Analyse élémentaire pour $[C_{43}H_{41}ClP_2RuS]$ (788.1) : calculé : C 65.51, H 5.24 ; trouvé : C 65.17, H 4.98.

L'isomère majoritaire, soluble à l'éther, peut être obtenu par lavage du mélange des complexes à l'éther (3 x 10 mL).

Isomère majoritaire:

RMN ¹H (C₆D₆) : δ 0.94 (d, ³*J* (H-H) = 2.2, 3H, *CH*₃-CH de cymène), 0.96 (d, ³*J* (H-H) = 2.4, 3H, *CH*₃-CH de cymène), 1.70 (d, ⁴*J* (H-P) = 2.3, 3H, CH₃ de phosphinine), 1.76 (s, 3H, Ar-*CH*₃ de cymène), 2.19 (d, ⁴*J* (H-P) = 3.0, 3H, CH₃ de Me-CCP), 2.60-2.66 (m, 1H, Ar-*CH* de cymène), 3.90 (d, ³*J* (H-H) = 6.6, Ar-H de cymène), 4.42 (d, ³*J* (H-H) = 5.1, Ar-H de cymène), 4.91 (d, ³*J* (H-H) = 6.6, Ar-H de cymène), 5.00 (d, ³*J* (H-H) = 6.1, Ar-H de cymène), 5.63 (d, ⁴*J* (H-P) = 5.9, H₄), 6.83-7.12 (m, 10H, H de Ph), 7.41-8.24 (m, 10H, H de Ph).

RMN ³¹P (THF) : δ 15.0 (d, ²J (P_A-P_B) = 113.1, P-CCMe), 45.3 (d, ²J(P_A-P_B) = 113.1, PPh₂). Isomère minoritaire :

RMN ³¹P (THF) : δ 20.1 (d, ²J (P_A-P_B) = 117.9, P-CCMe), 45.6 (d, ²J(P_A-P_B) = 117.9, PPh₂).

Hydrogénation de cétones par transfert d'hydrogène

$$\begin{array}{ccc} O & \textbf{cat.} & OH \\ R^1 & R^2 & \overrightarrow{i\text{-PrOH, KOH, 80°C}} & R^1 & \overset{\wr}{\underset{R}{\overset{\wr}{\overset{\circ}}}} R^2 \end{array}$$

On ajoute le mélange de diastéréoisomères **707a-b** (8 mg, 0.01 mmol, 0.5% eq.) à une solution de cétone (2 mmol, 1eq.) dans KOH/*i*-propanol (C = 0.1 M, V = 10 mL). On chauffe le mélange pendant 2.5 jours à 80°C. La réaction est suivie par GC, spectroscopie de masse ou RMN ¹H. Le mélange est neutralisé par une solution de HCl (C = 3M, 5 mL) et par une solution saturée de NaHCO₃ (15 mL). On extrait la phase aqueuse par du CH₂Cl₂ (3 x 15 mL). On rassemble les phases organiques que l'on sèche avec MgSO₄ et l'on évapore le solvant. On identifie les alcools en comparant leurs spectres RMN ¹H et ¹³C avec ceux reportés dans la littérature et par spectroscopie de masse.

Identification des alcools secondaires :

4-heptanol : E. A. Shokova, Y. N. Luzikov, V. V. Kovalev, J. Org. Chem. USSR 1984, 201, 2104.

1,3-diphényl-2-propanol : D. H. R. Barton, D. Crich, W. B. Motherwell, Tetrahedron 1985, 41, 3901-3924.

syn-2,5-diméthylcyclohexanol : M. Raban, S. K. Lauderback, D. Kost, J. Am. Chem. Soc. 1975, 97, 5178-5183.

1-phényléthanol : P. L. Rinaldi, N. J. Baldwin, J. Am. Chem. Soc. 1983, 105, 7523-7527.

Diphenylmethanol: C. G. Screttas, M. Micha-Screttas, J. Org. Chem. 1982, 47, 3008-3011.

1-(p-Bromophényl)-éthanol : C. H. Wang, C. A. Kingsbury, J. Org. Chem. 1972, 37, 2489-2494.

bis(p-méthoxyphényl)-méthanol : T. Ohwada, K. Shudo, J. Am. Chem. Soc. **1988**, 110, 1862-1870.

Complexe de rhodium 710

On ajoute une solution de MeLi dans l'hexane (0.156 mL, C = 1.6 M, 0.25 mmol) à une solution de **SP** (120 mg, 0.25 mmol) dans le THF (5 mL) à -78°C. Après retour à température ambiante, on agite le mélange pendant 20 min. On vérifie par RMN ³¹P la formation de l'anion **703** auquel on ajoute, dans la boîte à gants, [Rh(COD)Cl]₂ (59 mg, 0.12 mmol). On agite le mélange pendant 1h. Après évaporation du solvant, on dissout le solide dans CH₂Cl₂ (5 mL) et l'on filtre la solution à travers un fritté recouvert de célite. Après évaporation, on obtient **710** sous la forme d'un solide jaune foncé. Rendement : 172 mg (94%).

Analyse élémentaire pour $[C_{41}H_{43}P_2RhS]$ (732.2) : calculé : C 67.21, H 5.92 ; trouvé : C 66.93, H 5.79.

RMN ¹H (C₆D₆) : δ 1.27 (AX, d, ²*J* (H-P) = 7.8, 3H, P-CH₃), 1.40-1.55 (m, 3H, CH₂ COD), 1.60-1.72 (m, 3H, CH₂ COD), 1.83 (s, 3H, Ar-CH₃), 1.85-1.95 (m, 1H, CH₂ COD), 2.07-2.15 (m, 1H, CH₂ COD), 3.16 (l s, 1H, CH COD), 3.88 (l s, 1H, CH COD), 5.23 (l s, 1H, CH COD), 5.46 (l s, 1H, CH COD), 6.01 (AX, d, ⁴*J* (H-P) = 5.2, 1H, C₄H), 6.82-8.34 (m, 20H,CH de Ph).

RMN ¹³C (THF-d8) : δ 11.6 (m, P-CH₃), 27.5 (s, Ar-CH₃), 29.7 (d, ²*J* (C-Rh) = 29.7, CH₂ COD), 31.5 (d, ²*J* (C-Rh) = 26.2, CH₂ COD), 33.3 (d, ²*J* (C-Rh) = xx, CH₂ COD), 35.7 (s, CH₂ COD), 55.5 (m, C₂), 74.7 (d, ¹*J* (C-Rh) = 11.3, CH COD), 80.6 (d, ¹*J* (C-Rh) = 12.8, CH COD), 98.7 (d, ¹*J* (C-Rh) = 6.8, CH COD), 99.5 (d, ¹*J* (C-Rh) = 6.8, CH of COD), 111.0 (ABX, dd, *J* (C-P_A) = 47.1, *J* (C-P_B) = 2.3, C₆), 116.8 (dd, ³*J* (C-P_A) = 12.1, ³*J* (C-P_B) = 9.8, C₄H), 126.4-130.2 (m, 6 x CH de Ph), 130.4 (s, C de Ph), 130.8 (s, CH de Ph), 131.8 (m, C de Ph), 132.8-134.8 (m, 4 x CH de Ph), 138.4 (s, C), 138.5 (s, C), 144.1 (d, *J* (C-Rh) = 2.3, C), 146.4-146.6 (d, *J* (C-Rh) = 14.3, C).

RMN ³¹P (THF) : δ 17.8 (AXM, dd, ²J (P_A-P_X) = 128.8, J (P_A-Rh) = 140.3, P_AMe), 47.0 (AXM, d, ²J (P_A-P_X) = 128.8, P_XPh₂).

Complexe de rhodium 711

En boîte à gants, on ajoute PPh₃ (367 mg, 1.4 mmol) à une solution de **710** (100 mg, 0.14 mmol) dans le THF (3 mL). On agite le mélange réactionnel pendant 24h à température ambiante puis pendant 24h à 60°C. On observe en RMN ³¹P un équilibre entre le complexe **710**, PPh₃ (l s, -5.0 ppm) et un système extrêmement couplé **711** (m à 14.0-17.0 et à 37.0-42.0 ppm).

Complexe de rhodium 712

En boîte à gants, on ajoute la dppe (58 mg, 0.14 mmol) à une solution de **710** (100 mg, 0.14 mmol) dans le THF (3 mL). On agite le mélange réactionnel pendant 1h à température ambiante puis on évapore le solvant sous vide. Le solide obtenu est rincé à l'hexane (3 x 2

mL). Après évaporation, on obtient **712** sous la forme d'un solide jaune pâle. Rendement : 127 mg (91%). Des cristaux de **712** analysables par diffraction aux rayons X ont pu être obtenus par diffusion d'hexane dans une solution de **712** dans le THF en boîte à gants. **712** est trop sensible à l'oxygène pour conduire à une analyse élémentaire satisfaisante.

RMN ¹H (THF-d8) : $\delta 0.65$ (d, ²J (H-P) = 6.7, 3H, P-CH₃), 1.59 (s, 3H, Ar-CH₃), 2.33-2.65 (m, 4H, CH₂ dppe), 5.49 (d, ⁴J (H-P) = 5.6, 1H, C₄H), 6.34-8.16 (m, 40H, CH de Ph).

RMN ¹³C (THF-d8) : δ 13.1 (dd, *J* (C-P_A) = 24.7, ²*J* (C-Rh) = 2.0, P_A-CH₃), 26.5-27.1 (m, CH₂ dppe), 27.4 (s, Ar-CH₃), 35.1-35.9 (m, CH₂ dppe), 55.8 (m, C₂), 110.2 (dt, ¹*J* (C-P_A) = 36.8, ³*J* (C-P_B) = ³*J* (C-P_{C ou D}) = 2.3, ₆), 115.6 (dd, ³*J* (C-P_A) = 13.2, ³*J* (C-P_B) = 9.8, C₄H), 124.8-135.6 (m, 23 x CH de Ph), 136.3 (d, *J* (C-P) = 10.1, C de Ph), 136.3 (dd, *J* (C-P) = 34.1, *J* (C-P) = 2.3, C de Ph), 137.6 (d, *J* (C-P) = 12.8, CH de Ph), 139.3 (d, *J* (C-P) = 36.2, C), 139.4 (dm, *J* (C-Rh) = 2.0, C), 139.9 (dm, *J* (C-Rh) = 1.8, C), 140.1 (d, *J* (C-P) = 87.3, C), 143.9 (s, C), 144.3 (bd, *J* (C-P) = 9.8, C), 146.3 (d, *J* (C-Ph) = 16.1, C), 147.8 (d, *J* (C-Ph) = 7.5, C).

RMN ³¹P (THF-d8) : δ 12.3 (ABCC'X, dddd, ²J (P_A-P_C) = 313.2, ²J (P_A-P_B) = 145.8, ²J (P_A-Rh) = 121.7, ²J (P_A-P_D) = 33.3, P_AMe), 42.5 (ABCC', ddd, ²J (P_B-P_A) = 145.8, ³J (P_B-P_C) = 36.0, ³J (P_B-P_D) = 4.70, P_BPh₂), 63.0 (ABCC'X, dddd, ²J (P_C-P_A) = 313.2, ¹J (P_C-Rh) = 131.6, ³J (P_C-P_B) = 36.0, ²J (P_C-P_{C'}) = 32.0, P_CPh₂), 65.9 (ABCC'X, dddd, ¹J (P_{C'}-Rh) = 181.5, ²J (P_{C'}-P_A) = 36.0, ²J (P_{C'}-P_C) = 32.0, ²J (P_{C'}-P_B) = 4.7, P_{C'}Ph₂).⁵

Complexe de rhodium 713

Méthode A : On bulle pendant 1 min de l'oxygène (1 atm) à une solution de **712** (70 mg, 0.07 mmol) dans le THF-d8 (0.5 mL) à -78°C. Après retour à température ambiante, on agite le tube RMN pendant 5 min. On obtient le complexe **713** en solution (l'évaporation de **713** conduit à la reformation de **712**). Rendement (déterminé par RMN ³¹P) : 100%.

Méthode B : On laisse le complexe **712** sous forme de poudre (70 mg, 0.07 mmol) sous air pendant 48h. On obtient **713** sous la forme d'une poudre jaune. Rendement : 72 mg (100%). Des cristaux de **713** analysables par diffraction aux rayons X ont pu être obtenus par diffusion d'hexane dans une solution de **713** dans le THF (à l'air).

Analyse élémentaire pour $[C_{57}H_{51}O_2P_4RhS]$ (1026.2) : calculé : C 66.67, H 5.01 ; trouvé : C 66.31, H 4.68.

IR (KBr) : 872.7 (OO) cm⁻¹.

RMN ¹H (C₆D₆) : δ 1.40 (1 s, 2H, CH₂), 1.60 (s, 3H, Ar-CH₃), 1.99 (d, ²J (H-P) = 9.5, 3H, P-CH₃), 2.40 (1 s, 2H, CH₂), 5.59 (d, ⁴J (H-P) = 7.1, 1H, C₄H), 6.48-8.09 (m, 50H, CH de Ph).

RMN ³¹P (C₆D₆) : δ 27.4 (ABCC'X, ddd, ²J (P_A-P_C) = 467.5, ²J (P_A-P_B) = 114.5, ²J (P_A-Rh) = 92.8 ²J (P_A-P_{C'}) = 25.2, P_AMe), 37.4 (ABCC'X, ddd, ²J (P_C-P_A) = 467.5, ¹J (P_C-Rh) = 91.1, ³J (P_C-P_B) = 34.5, ²J (P_C-P_{C'}) = 13.2, P_CPh₂), 42.1 (ABC, dd, ²J (P_B-P_A) = 113.1, ³J (P_B-P_C) = 34.5, P_BPh₂), 52.2 (ABCC', ddd, ¹J (P_{C'}-Rh) = 142.8, ²J (P_{C'}-P_A) = 25.2, ²J(P_{C'}-P_C) = 13.2, P_{C'}Ph₂).

Réaction d'hydroformylation

On ajoute le catalyseur (0.01 mmol) à une solution de styrène (243 μ L, 2.11 mmol) dans le toluène (5 mL) sous azote. Après dissolution complète du complexe, la solution est placée

dans un autoclave, puis mise sous pression de CO puis d'H₂ (20 bars, 1:1). Après réaction, l'autoclave est ramené à température ambiante et dépressurisé. La solution est analysée en GC avec les standards internes et les facteurs de correction requis.

Réaction d'hydrosilylation

On ajoute HSiPh₃ (516 mg, 1.9 mmol) à une solution d'acétophénone (192 μ L, 1.6 mmol) et de catalyseur **710** (12 mg, 0.016 mmol) dans le THF (2 mL). On chauffe la solution pendant 72h à 60°C. On prélève alors un aliquot qui est évaporé sous vide. Le résidu est dissout dans CDCl₃ (0.5 mL) et le rendement de la réaction est déterminé par RMN ¹H par intégration.

Complexe de palladium 716a-b

On ajoute une solution de MeLi dans l'hexane (0.156 mL, C = 1.6 M, 0.25 mmol) à une solution de **SP** (120 mg, 0.25 mmol) dans le THF (5 mL) à -78°C. Après retour à température ambiante, on agite le mélange pendant 20 min. On vérifie par RMN ³¹P la formation de l'anion **703** auquel on ajoute, dans la boîte à gants, [Pd (η^3 -C₃H₅)Cl]₂ (44 mg, 0.12 mmol). On agite le mélange pendant 1h. Après évaporation du solvant, on dissout le solide dans CH₂Cl₂ (5 mL) et l'on filtre la solution à travers un fritté recouvert de célite. Après évaporation, on obtient **716** sous la forme d'un solide brun, mélange de deux diastéréoisomères dans les proportions (25:75). Aucune séparation des diastéréoisomères n'a pu être réalisée. Des cristaux de **716a** analysables par diffraction aux rayons X ont pu être obtenus par diffusion d'hexane dans une solution de **716a-b** dans CH₂Cl₂. Rendement : 123 mg (77%).

Analyse élémentaire pour $[C_{34}H_{32}P_2PdS]$ (641.00) : calculé : C 63.70, H 5.03 ; trouvé : C 63.46, H 4.81.

Isomère majoritaire 716a :

RMN ¹H (CDCl₃) : δ 1.19 (d, ²*J* (H-P_A) = 8.1, 3H, P_AMe), 1.65 (s, 3H, Me), 2.16 (d, ²*J* (H-H) = 13.2, 1H, CH₂ allyl), 2.52 (d, ³*J* (H-H) = 6.4, 1H, CH₂ allyl), 3.00 (dd, ²*J* (H-H) = 13.2, ³*J* (H-H) = 10.4, 1H, CH₂ allyl), 4.21 (*pseudo* t, ²*J* (H-H) = ³*J* (H-H) = 6.5, 1H, CH₂ allyl), 4.89 (m, CH allyl), 5.57 (d, ⁴*J* (H-P_A) = 5.9, H₄), 7.04-8.09 (m, 20H, H de Ph)

RMN ¹³C (CDCl₃) : δ 17.1 (dd, ¹*J* (C-P) = 20.6, ³*J* (C-P) = 2.7, P_AMe), 25.9 (dd, ³*J* (C-P) = 4.2, ³*J* (C-P) = 3.1, Me), 55.0 (dd, *J* (C-P) = 111.7, *J* (C-P) = 54.2, C_{2 ou 6}), 59.6 (d, ²*J* (C-P) = 5.7, CH₂ allyl), 69.1 (dd, ²*J* (C-P) = 32.4, ⁴*J* (C-P) = 4.5, CH₂ allyl), 109.8 (dd, *J* (C-P) = 47.9, *J* (C-P) = 5.1, C_{6 ou 2}), 113.4 (dd, *J* (C-P) = 12.6, *J* (C-P) = 10.1, C₄), 117.0 (d, ²*J* (C-P) = 6.4, CH allyl), 125.1-133.1 (m, CH et C de Ph), 136.9 (dd, *J* (C-P) = 78.1, *J* (C-P) = 7.2, C_{3 ou 5}), 143.5 (dd, *J* (C-P) = 8.8, *J* (C-P) = 2.9, C_{5 ou 3}), 144.4 (d, *J* (C-P) = 15.6, C de Ph), 145.4 (d, *J* (C-P) = 1.9, C de Ph)

RMN ³¹P (CDCl₃) : δ 24.6 (d, ²J (P-P) = 135.8, P_A), 52.4 (d, ²J (P-P) = 135.8, P_BPh₂). *Isomère minoritaire* **716b** :

RMN ¹H (CDCl₃) : δ 1.16 (ls, 3H, P_AMe), 1.65 (s, 3H, Me), 1.72 (d, ²J (H-H) = 13.3, 1H, CH₂ allyl), 2.90 (d, ²J (H-H) = 13.4, 1H, CH₂ allyl), 3.18 (d, ²J (H-H) = 7.0, 1H, CH₂ allyl), 5.01 (m, 1H, CH allyl), 7.04-8.09 (m, 20H, H de Ph). 1H de CH₂ allyl et H₄ non observés.

RMN ¹³C (CDCl₃) : δ 18.2 (dd, ¹*J*(C-P) = 20.0, ³*J*(C-P) = 2.7, P_AMe), 25.9 (m, Me), 55.0 (m, C_{2 ou 6}), 59.1 (d, ²*J*(C-P) = 5.1, CH₂ allyl), 70.0 (m, CH₂ allyl), 108.7 (m, C_{2 ou 6}), 113.6 (dd, *J* (C-P) = 12.8, *J*(C-P) = 9.5, C₄), 116.8 (d, ²*J*(C-P) = 6.3, CH allyl), 124.4-133.5 (m, CH et C

de Ph), 136.2 (d, J(C-P) = 83.9, $C_{3 \text{ ou} 5}$), 143.2 (dd, J(C-P) = 11.7, J(C-P) = 3.0, $C_{3 \text{ ou} 5}$), 144.2 (d, J(C-P) = 8.8, C de Ph), 145.7 (d, J(C-P) = 2.1, C de Ph) RMN ³¹P (CDCl₃) : δ 23.4 (d, ²J(P-P) = 132.7, P_AMe), 52.0 (d, ²J(P-P) = 132.7, PPh₂).

Réaction de Suzuki-Miyaura

On ajoute une solution de **716a-b** dans le toluène (réalisée par dilution d'une solution mère) à une solution d'halogénure d'aryle (1.0 mmol), de PhB(OH)₂ (0.183 g, 1.5 mmol) et de K₂CO₃ (0.276 g, 2.0 mmol) dans le toluène (10 mL). On chauffe le mélange pendant 24 h à 110°C. Le mélange est neutralisé par une solution de HCl (C = 2M, 40 mL). On extrait la phase aqueuse par du toluène (3 x 50 mL). On rassemble les phases organiques que l'on sèche avec MgSO₄ et l'on évapore le solvant. On dissout le résidu dans un mélange de toluène (6 mL), hexadécane (0.068 M dans CH₂Cl₂, 1.00 mL, référence interne) et l'on détermine le rendement de la réaction par GC. On identifie les biaryles en comparant leurs spectres RMN ¹H et ¹³C avec ceux reportés dans la littérature et par spectroscopie de masse.

Identification des produits de couplage :

Biphényle : comparaison avec produit commercial (Aldrich).

4-méthylbiphényle, 4-méthoxybiphényle : D. W. Old, J. P. Wolfe, S. L. Buchwald, J. Am. Chem. Soc. 1998, 120, 9722-9723.

4-acétylbiphényle : G. Häfelinger, M. Beyer, P. Burry, B. Eberle, G. Ritter, G. Westermayer, M. Westermayer, *Chem. Ber.* **1984**, *117*, 895-903.

Réaction de Sonogashira

On ajoute **716a-b** (6 mg, 0.01 mmol) à une solution de phénylacétylène (2.2 mL, 20 mmol), de iodobenzène (1.2 mL, 10 mmol), de CuI (95 mg, 0.5 mmol) et de K_2CO_3 (2.77 g, 20 mmol) dans la NMP (10 mL). On chauffe le mélange réactionnel à 110°C pendant 24h. Le rendement de la réaction est déterminé par GC.

Couplage de Tsuji-Trost

Mode opératoire 1 : Méthode BSA

Dans un tube de Schlenk sous azote, on place le catalyseur (0.01 mmol) dans le CH_2Cl_2 (2 mL). On ajoute successivement l'acétate de 1,3-diphénylpropén-2-yle (252 mg, 1 mmol) dissout dans 2 mL de CH_2Cl_2 , le malonate de méthyle (396 mg, 3 mmol) dissout dans 1 mL de CH_2Cl_2 , la BSA (610 mg, 3 mmol) dissoute dans 1 mL de CH_2Cl_2 et d'une quantité catalytique de KOAc (2 mg). La solution est agitée à 50°C pendant 24h.

Le mélange réactionnel est ensuite dilué dans 20 mL d'éther, filtré sur célite et neutralisé par une solution saturée de NH₄Cl. La phase organique est rincée à l'eau, séchée sur sulfate de magnésium, et la conversion est déterminée par RMN ¹H. Le produit de couplage est isolé par chromatographie sur gel de silice.

Mode opératoire 2 : Méthode NaH

Dans un tube de Schlenk sous argon, on place 120 mg de NaH (60% en masse dans l'huile minérale, 3 mmol) que l'on rince deux fois à l'aide de pentane sec. A 0°C sont ajoutés successivement 5 mL de THF, 3 mmol de nucléophile (malonate de méthyle, acétylacétone) et 1 mmol d'acétate de 1,3-diphénylpropén-2-yle. Après avoir laissé le mélange revenir à température ambiante, on ajoute lentement une solution de 0.01 mmol de catalyseur (1%) dissous dans le THF. La solution est agitée à température ambiante pendant la durée désirée. La réaction est stoppée par l'ajout de 0.5 mL d'eau. Le mélange réactionnel est ensuite extrait à l'éther, séché sur sulfate de magnésium, et la conversion est déterminée par RMN ¹H. Le produit de couplage est isolé par chromatographie sur gel de silice.

Allylation de l'aniline et de la méthylaniline : voir partie expérimentale du chapitre 8

VII. Chapitre 8

Phosphabarrélène 801

On chauffe pendant 10 jours à 120°C une solution de **SPS** (200 mg, 0.29 mmol) et de diphénylacétylène (209.5 mg, 1.18 mmol) dans le toluène (5 mL). La solution initialement blanche et insoluble devient marron et complètement soluble. Après évaporation du solvant, on rince le solide obtenu à l'éther (3 x 2 mL). On obtient **801** sous la forme d'un solide beige. Rendement : 156 mg (65%).

Analyse élémentaire pour $[C_{55}H_{41}P_3S_2]$ (858.2) : calculé : C 76.90 H 4.81 ; trouvé C 76.45 H 4.51.

 $SM: m/z^+ = 859 (M^+).$

RMN ¹H (CDCl₃) : δ 5.69 (t, 1H, ⁴*J* (H-P_B) = 3.4, H₄), 6.87-7.85 (m, 40H, H de Ph). RMN ¹³C (CDCl₃) : δ 80.1 (AB₂X, dt, ³*J* (C-P_B) = 8.8, ³*J* (C-P_A) = 3.4, C₄H), 125.64-131.15 (m, CH de Ph), 132.45 (ABX, dd, ¹*J* (C-P_B) = 86.1, ³*J* (C-P_A) = 3.0, C de Ph), 132.4-132.5 (m, CH de Ph), 132.8 (ABX, dd, ¹*J* (C-P_B) = 86.8, ³*J* (C-P_A) = 3.0, C de Ph), 138.8 (d, *J* (C-P) = 27.9, *C*), 138.8 (dd, *J* (C-P) = 27.9, *J* (C-P) = 3.0, C), 139.4 (d, *J* (C-P) = 5.3, C), 139.9 (d, *J* (C-P) = 1.5, C), 147.1 (dd, *J* (C-P) = 30.2, *J* (C-P) = 3.0, C₂), 153.3 (q, *J* (C-P) = 2.3, C),

172.6 (dd, J(C-P) = 6.4, J(C-P) = 2.0, C).

RMN ³¹P (CDCl₃) : δ -38.1 (t, ²J (P_A-P_B) =106.9, P_A), 41.5 (d, ²J (P_A-P_B) = 106.9, P_BPh₂).

Phosphabarrélène 802

On chauffe pendant 12h à 80°C une solution de **SPS** (300 mg, 0.44 mmol) et de diméthylacétylènedicarboxylate (54 μ L, 0.44 mmol) dans le toluène (10 mL). La solution initialement blanche et insoluble devient marron et complètement soluble. Après évaporation du solvant, on rince le solide obtenu à l'éther (3 x 2 mL). On obtient **802** sous la forme d'un solide beige. Rendement : 257 mg (71%).

Analyse élémentaire pour $[C_{47}H_{37}O_4P_3S_2]$ (822.1) : calculé C 68.60 H 4.53 ; trouvé C 68.53 H 4.25.

SM m/z^+ : 822 (M^+).

RMN ¹H (CDCl₃) : δ 3.78 (s, 3H, Me), 3.92 (s, 3H, Me), 6.00 (t, ⁴J (H-P_B) = 3.0, 1H, H₄), 6.87-7.78 (m, 30H, CH de Ph).

RMN ¹³C (CDCl₃) : δ 51.7 (d, *J* (C-P_A) = 3.8, Me), 52.2 (d, *J* (C-P_A) = 3.8, Me), 71.1 (m, C₄H), 126.8-131.0 (m, CH de Ph), 136.4 (m, C de Ph), 137.0 (d, *J* (C-P) = 5.3, C de Ph), 149.1 (m, C), 150.8 (m, C), 164.3 (s, C), 166.2 (d, *J* (C-P) = 27.9, C), 170.6 (d, *J* (C-P) = 4.5, C).

RMN ³¹P (CDCl₃) : δ -47.4 (t, ²J (P_A-P_B) = 110.2, P_A), 41.7 (d, ²J (P_A-P_B) = 110.2, P_BPh₂).

Phosphabarrélène 803

On chauffe pendant 18h à 90°C une solution de **SP** (2 g, 4.2 mmol) et de diméthylacétylènedicarboxylate (0.52 mL, 4.2 mmol) dans le toluène (10 mL). La solution initialement blanche et insoluble devient marron et complètement soluble. Après évaporation du solvant, on rince le solide obtenu à l'éther (3 x 5 mL). On obtient **803** sous la forme d'un solide beige. Rendement : 1.3 g (50%).

Analyse élémentaire pour $[C_{36}H_{30}O_4P_2S]~(620.1)$: calculé C 69.67 H 4.87 ; trouvé C 69.31 H 4.42.

SM m/z^+ : 620 (M⁺), 480 (M⁺- diméthylacétylènedicarboxylate).

RMN ¹H (CDCl₃) : δ 2.09 (s, 3H, Me), 3.76 (s, 3H, Me de CO₂Me), 3.88 (s, 3H, Me de CO₂Me), 5.68 (d, ⁴*J* (H-P_B) = 2.9, 1H, H₄), 6.97-7.85 (m, 20H, CH de Ph).

RMN ¹³C (CDCl₃) : δ 23.9 (d, ²*J* (C-P) = 6.3, Me), 52.9 (s, Me de CO₂Me), 53.4 (s, Me de CO₂Me), 69.4 (dd, ³*J* (C-P) = 9.7, ³*J* (C-P) = 3.0, C₄H), 127.4-132.3 (m, CH de Ph), 133.4 (m, C), 133.5 (m, C), 133.8 (m, C), 138.1 (d, ²*J* (C-P) = 27.6, C), 138.8 (d, *J* (C-P) = 1.2, C), 144.1 (d, *J* (C-P) = 28.5, C), 151.3 (s, C), 151.8 (dd, *J* (C-P) = 40.7, *J* (C-P) = 3.8, C), 154.6 (d, *J* (C-P) = 2.2, C), 164.8 (s, C), 168.0 (d, *J* (C-P) = 26.3, C=O), 173.3 (dd, *J* (C-P) = 8.2, *J* (C-P) = 2.3, C=O).

RMN ³¹P (CDCl₃) : δ -43.5 (d, ²J (P_A-P_B) = 106.3, P_A), 40.3 (d, ²J (P_A-P_B) = 106.3, P_BPh₂).

Complexe de palladium 804

On agite pendant 5 min une solution de **801** (100 mg, 0.12 mmol) et de $[Pd(COD)Cl_2]$ (33 mg, 0.12 mmol) dans le CH₂Cl₂ (3mL). Après évaporation du solvant, on rince le solide obtenu à l'hexane (3 x 2 mL) puis à l'éther (1 mL). Après séchage, on obtient le complexe **804** sous la forme d'une poudre orange. Rendement : 48 mg (40%).

Analyse élémentaire pour $[C_{55}H_{41}Cl_2P_3PdS_2]$ (1034.0) : calculé C 63.75 H 3.99 ; trouvé C 63.28 H 3.67.

RMN ¹H (CDCl₃) : δ 6.07 (td, 1H, ⁴J (H-P_B) = 4.4, ⁴J (H-P_A) = 3.7, H₄), 6.88-7.77 (m, 40H, H de Ph).

RMN ¹³C (CDCl₃) : δ 75.3 (d, ⁴*J* (C-P_B) = 23.4, C₄H), 123.4 (s, C), 123.5 (d, *J* (C-P) = 89.6, C), 124.4 (dd, *J* (C-P) = 84.4, *J* (C-P) = 9.8, C), 126.6-131.8 (m, CH de Ph), 131.9 (s, C), 132.6 (m, CH de Ph), 133.4 (m, C), 134.8 (m, C), 134.9-135.3 (m, CH de Ph), 138.5 (d, *J* (C-P) = 34.6, C), 154.7 (s, C), 178.7 (d, *J* (C-P) = 5.4, C).

RMN ³¹P (CDCl₃) : δ 39.6 (t, ²J (P_A-P_B) = 84.0, P_A), 50.2 (d, ²J (P_A-P_B) = 84.0, P_BPh₂).

Complexe de palladium 805

On agite pendant 5 min une solution de **803** (100 mg, 0.16 mmol) et de $[Pd(COD)Cl_2]$ (46 mg, 0.16 mmol) dans le CH₂Cl₂ (5 mL). Après évaporation du solvant, on rince le solide obtenu à l'hexane (3 x 2 mL) puis à l'éther (1 mL). Après séchage, on obtient le complexe **805** sous la forme d'une poudre jaune. Des cristaux analysables par diffraction aux rayons X ont pu être obtenus par diffusion d'hexane dans une solution de 7 dans le CH₂Cl₂. Rendement : 113 mg (89%).

Analyse élémentaire pour $[C_{36}H_{30}Cl_2O_4P_2PdS]$ (796.0) : calculé C 54.19 H 3.79; trouvé : C 53.80 H 3.42.

RMN ¹H (CDCl₃) : δ 1.95 (s, 3H, Me), 3.77 (s, 3H, Me de CO₂Me), 3.91 (s, 3H, Me de CO₂Me), 5.94 (d, ⁴*J* (H-P) = 2.9, 1H, H₄), 7.12-7.15 (m, 20H, CH de Ph).

RMN ¹³C (CDCl₃) : δ 23.1 (vt, ³*J* (C-P_A) = ³*J* (C-P_B) = 4.6, Me), 53.5 (s, Me de CO₂Me), 53.8 (s, Me de CO₂Me), 64.5 (dd, ³*J* (C-P) = 20.2, ³*J* (C-P) = 9.3, C₄H), 124.1 (dd, *J* (C-P) = 86.8, *J* (C-P) = 4.3, C), 124.6 (dd, *J* (C-P) = 84.4, *J* (C-P) = 7.0, C), 128.2-132.6 (m, CH de Ph), 133.5 (d, *J* (C-P) = 13.8, C), 134.5 (d, *J* (C-P) = 3.1, CH de Ph), 134.6 (d, *J* (C-P) = 3.0, CH de Ph), 134.8 (dd, *J* (C-P) = 85.2, ³*J* (C-P) = 22.7, C), 136.3 (d, *J* (C-P) = 8.9, C), 137.4 (dd, *J* (C-P) = 35.1, *J* (C-P) = 1.1, C), 144.8 (dd, *J* (C-P) = 27.1, *J* (C-P) = 2.5, C), 147.0 (dd, *J* (C-P) = 4.9, *J* (C-P) = 1.8, C), 155.0 (vt, *J* (C-P) = *J* (C-P_B) = 1.7, C), 162.7 (d, *J* (C-P) = 9.7, C), 163.5 (d, *J* (C-P) = 14.6, C), 178.3 (vt, *J* (C-P) = 4.2, C).

RMN ³¹P (CDCl₃) : δ 19.7 (d, ²J (P_A-P_B) = 90.9, P_A), 48.0 (d, ²J (P_A-P_B) = 90.9, P_BPh₂).

Complexe de palladium 806

On agite pendant 5 min une solution de **803** (150 mg, 0.24 mmol), $[Pd(\eta^3-C_3H_5)(Cl)]_2$ (44 mg, 0.12 mmol) et de AgOTf (62 mg, 0.24 mmol) dans le CH₂Cl₂ (5 mL). La RMN ³¹P montre la présence de deux diastéréoisomères **806a** et **806b** dans la proportion 55/45. On filtre la solution sur un fritté recouvert de célite. Après évaporation du solvant, complexe **806** sous la forme d'une poudre marron. Des cristaux analysables par diffraction aux rayons X ont pu être

obtenus par diffusion d'hexane dans une solution de **806** dans le $CDCl_3$. Les deux diastéréoisomères sont présents dans la maille du cristal. Rendement : 210 mg (89%).

Analyse élémentaire pour $[C_{40}H_{35}F_3O_7P_2PdS_2]$ (916.0) : calculé C 52.38 H 3.85 ; trouvé : C 51.89 H 3.46.

Diastéréoisomère 806a:

RMN ¹H (CD₂Cl₂) : δ 1.92 (s, 3H, Me), 2.01 (d, 1H, ³J (H-H) =12.6, H de CH_{2a} allyl), 3.39-3.54 (m, 1H, H de CH_{2b} allyl), 3.62-3.89 (m, 6H, Me de CO₂Me), 4.14 (m, 1H, H de CH_{2a} allyl), 4.92 (m, 1H, H de CH_{2b} allyl), 5.34 (m, 1H, CH allyl), 5.98 (s, H, H₄), 6.52 (m, 2H, H de Ph), 7.07-7.23 (m, 10H, H de Ph), 7.47-7.69 (m, 8H, H de Ph).

RMN ¹³C (CD₂Cl₂) : δ 24.0 (m, Me), 53.6 (m, Me de CO₂Me), 54.1 (m, Me de CO₂Me), 65.5 (s, CH_{2a} de allyl), 67.6 (vt, ³*J* (C-P_A) = ³*J* (C-P_B) = 21.3, C₄H), 78.1 (d, ²*J* (C-P) = 32.2, CH_{2b} de allyl), 119.1 (s, C), 119.9 (d, ²*J* (C-P) = 6.6, CH de allyl), 126.0 (dd, *J* (C-P) = 87.0, *J* (C-P) = 3.0, C), 128.4-134.8 (s, CH de Ph), 135.6 (d, *J* (C-P) = 18.3, C), 136.0 (d, *J* (C-P) = 7.0, C), 138.4 (d, *J* (C-P) = 21.7, C), 144.4 (d, *J* (C-P) = 11.4, C), 151.8 (m, C), 156.7 (m, C), 163.6 (d, *J* (C-P) = 6.8, C), 164.7 (d, *J* (C-P) = 19.1, C), 178.8-179.1 (m, C). CF₃ non observé. RMN ³¹P (CD₂Cl₂) : δ 12.7 (d, ²*J* (P_A-P_B) = 116.7, P_A), 49.8 (d, ²*J* (P_A-P_B) = 116.7, P_BPh₂). *Diastéréoisomère* **806b** :

RMN ¹H (CD₂Cl₂) : δ 1.92 (s, 3H, Me), 2.75 (d, 1H, ³*J* (H-H) = 12.6, H de CH_{2a} allyl), 3.39-3.54 (m, 2H, 1H de CH_{2a} et 1H de CH_{2b} allyl), 3.62-3.89 (m, 6H, Me de CO₂Me), 4.92 (m, 1H, H de CH_{2b} allyl), 5.04 (m, 1H, CH allyl), 5.98 (s, H, H₄), 6.67 (m, 2H, H de Ph), 7.07-7.23 (m, 10H, H de Ph), 7.47-7.69 (m, 8H, H de Ph).

RMN ¹³C (CD₂Cl₂) : δ 24.0 (m, Me), 53.6 (m, Me de CO₂Me), 54.1 (m, Me de CO₂Me), 65.5 (s, CH_{2a} de allyl), 67.6 (vt, ³*J* (C-P_A) = ³*J* (C-P_B) = 20.9, C₄H), 78.3 (d, ²*J* (C-P) = 31.2, CH_{2b} de allyl), 120.3 (d, ²*J* (C-P) = 7.5, CH de allyl), 123.4 (s, C), 126.0 (dd, *J* (C-P) = 87.0, *J* (C-P) = 3.0, C), 128.4-134.8 (s, CH de Ph), 135.3 (d, *J* (C-P) = 17.9, C), 136.0 (d, *J* (C-P) = 7.0, C), 138.4 (d, *J* (C-P) = 21.7, C), 144.1 (d, *J* (C-P) = 12.1, C), 151.3 (m, C), 156.5 (m, C), 163.3 (d, *J* (C-P) = 7.6, C), 164.7 (d, *J* (C-P) = 19.1, C), 178.8-179.1 (m, C). CF₃ non observé. RMN ³¹P (CD₂Cl₂) : δ 12.1 (d, ²*J* (P_A-P_B) = 115.6, P_A), 49.6 (d, ²*J* (P_A-P_B) = 115.6, P_BPh₂).

Complexe de palladium 807

On agite pendant 5 min une solution de **803** (107 mg, 0.17 mmol), $[Pd(\eta^3-C_3H_5)(Cl)]_2$ (39 mg, 0.08 mmol) et de AgNTf₂ (64 mg, 0.17 mmol) dans le CH₂Cl₂ (5 mL). La RMN ³¹P montre la présence de deux diastéréoisomères **807a** et **807b** dans la proportion 55/45. On filtre la solution sur un fritté recouvert de célite. Après évaporation du solvant, complexe **807** sous la forme d'une poudre marron. Rendement : 148 mg (82%).

Analyse élémentaire pour $[C_{41}H_{35}F_6NO_8P_2PdS_3]\ (1048.3)$: calculé C 46.98 H 3.37 ; trouvé : C 46.61 H 3.06.

Diastéréoisomère 807a:

RMN ¹H (CD₂Cl₂) : δ 1.98 (m, 3H, Me), 2.08 (d, 1H, ³*J* (H-H) =12.5, H de CH_{2a} allyl), 3.45-3.54 (m, 1H, H de CH_{2b} allyl), 3.70-3.97 (m, 6H, Me de CO₂Me) , 4.22 (d, 1H, ³*J* (H-H) =12.5, H de CH_{2a} allyl), 4.97-5.02 (m, 1H, H de CH_{2b} allyl), 5.41 (m, 1H, CH allyl), 6.04 (s,

H, H₄), 6.56-6.60 (m, 1H, H de Ph), 7.10-7.31 (m, 1H, H de Ph), 7.10-7.31 (m, 8H, H de Ph), 7.51-7.78 (m, 10H, H de Ph).

RMN ¹³C (CD₂Cl₂) : δ 22.9 (d, *J* (C-P) = 3.8, Me), 52.4 (m, Me de CO₂Me), 52.9 (m, Me de CO₂Me), 64.4 (d, *J* (C-P) = 3.9, CH_{2a} de allyl), 66.1-66.6 (m, C₄H), 77.2 (m, CH_{2b} de allyl), 112.5 (s, C), 118.8 (d, ²*J* (C-P) = 7.1, CH de allyl), 121.0 (s, C), 124.7 (m, C), 125.3 (s, C), 127.1-133.7 (s, CH de Ph), 134.0 (d, *J* (C-P) = 17.8, C), 134.4 (d, *J* (C-P) = 17.7, C), 134.7 (d, *J* (C-P) = 7.1, C), 137.2 (d, *J* (C-P) = 22.5, C), 142.9 (m, C), 150.0 (m, C), 155.3 (m, C), 162.2 (d, *J* (C-P) = 7.4, C), 163.5 (d, *J* (C-P) = 19.0, C), 177.8-178.0 (m, C). CF₃ non observé. RMN ³¹P (CD₂Cl₂) : δ 14.2 (d, ²*J* (P_A-P_B) = 115.2, P_A), 51.5 (d, ²*J* (P_A-P_B) = 115.2, P_BPh₂). *Diastéréoisomère* **807b** :

RMN ¹H (CD₂Cl₂) : δ 1.98 (m, 3H, Me), 2.82 (d, 1H, ³*J* (H-H) =11.9, H de CH_{2a} allyl), 3.52-3.61 (m, 2H, H de CH_{2b} allyl), 3.70-3.97 (m, 6H, Me de CO₂Me), 4.97-5.02 (m, 1H, H de CH_{2b} allyl), 5.11 (m, 1H, CH allyl), 6.04 (s, H, H₄), 6.56-6.60 (m, 1H, H de Ph), 7.10-7.31 (m, 1H, H de Ph), 7.10-7.31 (m, 8H, H de Ph), 7.51-7.78 (m, 10H, H de Ph).

RMN ¹³C (CD₂Cl₂) : δ 22.9 (d, *J* (C-P) = 3.8, Me), 52.4 (m, Me de CO₂Me), 52.9 (m, Me de CO₂Me), 64.4 (d, *J* (C-P) = 3.9, CH_{2a} de allyl), 66.1-66.6 (m, C₄H), 77.3 (m, CH_{2b} de allyl), 112.5 (s, C), 119.1 (d, ²*J* (C-P) = 7.3, CH de allyl), 121.0 (s, C), 124.7 (m, C), 125.3 (s, C), 127.1-133.7 (s, CH de Ph), 134.0 (d, *J* (C-P) = 17.8, C), 134.4 (d, *J* (C-P) = 17.7, C), 134.7 (d, *J* (C-P) = 7.1, C), 137.2 (d, *J* (C-P) = 22.5, C), 143.2 (m, C), 150.5 (m, C), 155.5 (m, C), 162.4 (d, *J* (C-P) = 7.4, C), 163.5 (d, *J* (C-P) = 19.0, C), 177.8-178.0 (m, C). CF₃ non observé. RMN ³¹P (CD₂Cl₂) : δ 14.9 (d, ²*J* (P_A-P_B) = 116.2, P_A), 51.7 (d, ²*J* (P_A-P_B) = 116.2, P_BPh₂).

Complexe d'or 808

On agite pendant 5 min une solution de **803** (100 mg, 0.16 mmol) et de [AuCl(SMe₂)] (42 mg, 0.16 mmol) dans le CH_2Cl_2 (5 mL). Après évaporation du solvant, on rince le solide obtenu à l'hexane (3 x 2 mL) puis à l'éther (1 mL). Après séchage, on obtient le complexe **808** sous la forme d'une poudre marron. Des cristaux analysables par diffraction aux rayons X ont pu être obtenus par diffusion d'hexane dans une solution de **808** dans le CH_2Cl_2 . Rendement : 108 mg (79%).

Analyse élémentaire pour $[C_{36}H_{30}AuClO_4P_2S]$ (852.1) : calculé C 50.69 H 3.54; trouvé : C 50.32 H 3.69.

RMN ¹H (CDCl₃) : δ 1.67 (s, 3H, Me), 3.81 (s, 3H, Me de CO₂Me), 3.93 (s, 3H, Me de CO₂Me), 5.78 (*pseudo* t, ⁴*J* (H-P_A) = ⁴*J* (H-P_B) = 2.6, 1H, H₄), 7.09-7.95 (m, 20H, CH de Ph). RMN ¹³C (CDCl₃) : δ 23.3 (*pseudo* t, ³*J* (C-P_A) = ³*J* (C-P_B) = 6.3, Me), 53.4 (s, Me de CO₂Me), 53.6 (s, Me de CO₂Me), 65.3 (dd, ³*J* (C-P) = 23.3, ³*J* (C-P) = 8.6, C₄H), 128.3-129.7 (m, 7 x CH de Ph), 130.6 (d, *J* (C-P) = 91.0, C), 130.9 (dd, *J* (C-P) = 84.5, *J* (C-P) = 1.7, C), 132.3 (d, *J* (C-P) = 10.1, CH de Ph), 132.4 (d, *J* (C-P) = 10.1, CH de Ph), 132.6 (d, *J* (C-P) = 2.9, CH de Ph), 132.7 (d, *J* (C-P) = 3.0, CH de Ph), 134.9 (d, *J* (C-P) = 15.6, C), 136.6 (d, *J* (C-P) = 8.9, C), 137.5 (dd, *J* (C-P) = 39.3, *J* (C-P) = 1.0, C), 145.9 (dd, *J* (C-P) = 25.5, *J* (C-P) = 2.8, C), 149.5 (*pseudo* t, *J* (C-P) = 15.0, C), 155.6 (*pseudo* t, *J* (C-P) = 4.2, C). RMN ³¹P (CDCl₃) : δ 6.5 (d, ²*J* (P-P) = 67.1, P_A), 41.2 (d, ²*J* (P_A-P_B) = 81.7, P_BPh₂).

Complexe de rhodium 809

On agite pendant 5 min une solution de **803** (100 mg, 0.16 mmol) et de $[Rh(COD)_2][BF_4]$ (65 mg, 0.16 mmol) dans le THF (5 mL). Après évaporation du solvant, on rince le solide obtenu à l'hexane (3 x 2 mL) puis à l'éther (1 mL). Après séchage, on obtient le complexe **809** sous la forme d'une poudre marron. Rendement : 125 mg (85%).

Analyse élémentaire pour $[C_{44}H_{42}BF_4O_4P_2RhS]$ (918.5) : calculé C 57.53 H 4.61; trouvé : C 57.19 H 4.32.

RMN ¹H (CDCl₃) : δ 1.30-1.43 (m, 1H, CH₂ de COD), 1.81 (m, 1H, CH₂ de COD) 1.89 (s, 3H, Me), 2.02-2.18 (m, 6H, CH₂ de COD), 3.37 (m, 1H, CH de COD), 3.80 (s, 3H, Me de CO₂Me), 3.94 (s, 3H, Me de CO₂Me), 4.23 (m, 1H, CH de COD), 5.68 (m, 1H, CH de COD), 6.00 (dd, ⁴*J* (H-P) = 3.9, ⁴*J* (H-P) = 1.8, 1H, H₄), 6.97-7.01 (m, 2H, CH de Ph) 7.05-7.09 (m, 2H, CH de Ph), 7.22-7.32 (m, 6H, CH de Ph), 7.58-7.80 (m, 10H, CH de Ph).

¹³C RMN (CDCl₃) : δ 22.6 (*pseudo* t, ³*J* (C-P_A) = ³*J* (C-P_B) = 4.4, Me), 27.5 (s, CH₂ de COD), 27.6 (s, CH₂ de COD), 31.1 (d, ²*J* (C-Rh) = 2.4, CH₂ de COD), 31.2 (d, ²*J* (C-Rh) = 3.0, CH₂ de COD), 63.7 (dd, ³*J* (C-P) = 15.1, ³*J* (C-P) = 9.2, C₄H), 79.5 (d, ¹*J* (C-Rh) = 11.1 CH de COD), 80.3 (d, ¹*J* (C-Rh) = 10.8, CH de COD), 105.1-105.7 (m, CH de COD), 123.9 (*pseudo* t, *J* = 4.3, C), 125.1 (*pseudo* t, *J* = 4.5, C), 127.2-131.3 (m, CH de Ph), 133.4-133.6 (m, CH de Ph), 134.9 (d, *J* (C-P) = 22.5, C), 135.1 (d, *J* (C-P) = 13.3, C), 137.3 (d, *J* (C-P) = 22.4, C), 145.3 (m, C), 147.1 (m, C), 155.6 (s, C), 161.1 (d, *J* (C-P) = 7.1, C), 165.1 (d, *J* (C-P) = 17.8, C), 177.2 (m, C). Les carbones de CO₂<u>Me</u> sont masqués par le pic de CHDCl₂.

RMN ³¹P (CD₂Cl₂) : δ 13.7 (dd, ¹J (P-Rh) = 168.5, ²J (P-P) = 105.3, P_A), 47.2 (d, ²J (P_A-P_B) = 104.9, P_B(S)Ph₂).

Complexe de platine 810

On agite pendant 5 min une solution de **803** (100 mg, 0.16 mmol) et de [Pt(COD)Cl₂] (60 mg, 0.16 mmol) dans le CH₂Cl₂ (5 mL). Après évaporation du solvant, on rince le solide obtenu à l'hexane (3 x 2 mL) puis à l'éther (1 mL). Après séchage, on obtient le complexe **810** sous la forme d'une poudre jaune. Des cristaux analysables par diffraction aux rayons X ont pu être obtenus par diffusion d'hexane dans une solution de **810** dans le CH₂Cl₂. Rendement : 123 mg (87%).

Analyse élémentaire pour $[C_{36}H_{30}Cl_2O_4P_2PtS]$ (885.0) : calculé C 48.77 H 3.41; trouvé : C 48.42 H 3.19.

RMN ¹H (CDCl₃) : δ 1.95 (s, 3H, Me), 3.72 (s, 3H, Me de CO₂Me), 3.87 (s, 3H, Me de CO₂Me), 5.99 (dd, ⁴J (H-P) = 4.2, ⁴J (H-P) = 2.6, 1H, H₄), 7.10-7.75 (m, 20H, CH de Ph).

RMN ¹³C (CDCl₃) : δ 23.6 (dd, ³*J* (C-P_A) = 5.7, ³*J* (C-P_B) = 4.5, Me), 53.4 (s, Me de CO₂Me), 54.0 (s, Me de CO₂Me), 65.0 (dd, ³*J* (C-P) = 22.3, ³*J* (C-P) = 9.1, C₄H), 123.6 (m, C), 123.9 (m, C), 128.6-130.5 (m, CH de Ph), 132.9 (d, *J* (C-P) = 11.5, CH de Ph), 133.0 (d, *J* (C-P) = 11.9, CH de Ph), 134.3 (d, *J* (C-P) = 13.0, C), 134.9 (d, *J* (C-P) = 3.1, CH de Ph), 135.0 (d, *J* (C-P) = 3.0, CH de Ph), 136.3 (m, C), 136.7 (m, C), 144.1 (d, *J* (C-P) = 31.4, C), 147.5 (s, C), 156.1 (s, C), 162.6 (d, *J* (C-P) = 10.4, C), 164.4 (d, *J* (C-P) = 13.6, C), 179.2 (d, *J* (C-P) = 6.0, C).

RMN ³¹P (CDCl₃) : δ -1.6 (d et satellites ¹⁹⁵Pt, ¹J (P-Pt) = 4016.0, ²J (P-P) = 81.7, P_A), 44.1 (d et satellites ¹⁹⁵Pt, ²J (P_A-P_B) = 81.7, ²J (P_B-Pt) = 72.3, P_BPh₂).

Ligand dppmS

S.O. Grim, J.D. Mitchell Syn. React. Inorg. Met. Org. Chem. 1974, 4, 221.

Complexe de palladium 812

On agite pendant 5 min une solution de **dppmS** (150 mg, 0.36 mmol), $[Pd(\eta^3-C_3H_5)(Cl)]_2$ (65 mg, 0.18 mmol) et de AgOTf (93 mg, 0.36 mmol) dans le CH₂Cl₂ (5 mL). On filtre la solution sur un fritté recouvert de célite. Après évaporation du solvant, complexe **10** sous la forme d'une poudre jaune pale. Des cristaux analysables par diffraction aux rayons X ont pu être obtenus par diffusion d'hexane dans une solution de **812** dans le THF. Rendement : 210 mg (82%).

RMN ¹H (CDCl₃) : δ 3.14 (d, 1H, ³*J* (H-H) = 12.4, H de CH_{2a} allyl), 3.68 (dd, ³*J* (H-H) = 13.8, ³*J* (H-P) = 10.2, 1H, H de CH_{2b} allyl), 4.21-4.48 (m, 3H, 2H de PCH₂P et 1H de CH_{2a} allyl), 5.01 (vtd, ³*J* (P-H) = ³*J* (H-H) = 7.5, ⁴*J* (H-H) = 2.0, 1H, H de CH_{2b} allyl), 5.79 (vtt, 1H, ³*J* (H-H) = 13.8, ³*J* (H-H) = 7.5, CH allyl), 7.20-7.58 (m, 16H, H de Ph), 7.76-7.93 (m, 4H, H de Ph).

RMN ¹³C (CDCl₃) : δ 37.1 (dd, ¹*J* (C-P) = 55.0, ¹*J* (C-P) = 20.8, PCH₂P), 64.9 (d, ²*J* (C-P) = 3.0, CH_{2a} allyl), 75.4 (dd, ²*J* (C-P) = 29.6, ³*J* (C-P) = 3.6, CH_{2b} allyl), 119.4 (d, ²*J* (C-P) = 6.0, CH allyl), 126.0 (d, ¹*J* (C-P)= 81.9, C de Ph), 126.1 (d, ¹*J* (C-P)= 82.0, C de Ph), 126.3 (d, ¹*J* (C-P)= 82.3, C de Ph), 126.4 (d, ¹*J* (C-P)= 82.2, C de Ph), 129.1-133.4 (m, CH de Ph). CF₃ non observé.

RMN ³¹P (CDCl₃) : δ 27.3 (d, ²J (P_A-P_B) = 59.9, P_A), 62.4 (d, ²J (P_A-P_B) = 59.9, P_B=S). Analyse élémentaire pour [C₂₉H₂₇F₃O₃P₂PdS₂] (712.0) : calculé C 48.85 H 3.82 ; trouvé C 48.47 H 3.34.

Procédure générale pour l'hydroformylation du styrène : Voir partie expérimentale du chapitre 7.

Procédure générale pour le couplage de Suzuki-Miyaura : Voir partie expérimentale du chapitre 7.

Procédure générale pour l'allylation de l'aniline :

Mode expérimental de Yoshifuji : On ajoute successivement MgSO₄ (500 mg, 4 mmol), l'aniline (91 μ L, 1 mmol) et l'alcool allylique (136 μ L, 2 mmol) à une solution de catalyseur (0.01 mmol, cat = 2% mol) dans le toluène. On agite la solution pendant 24h à température ambiante ou à 45°C.

Mode expérimental dans le THF : On ajoute successivement l'aniline (91 μ L, 1 mmol) et l'alcool allylique (136 μ L, 2 mmol) à une solution de catalyseur (0.01 mmol, cat = 2% mol) dans le toluène. On agite la solution pendant 24h à température ambiante ou à 45°C.

Les rendements de la réaction sont déterminés par GC. Après évaporation du solvant, l'huile obtenue est chromatographiée sur gel de silice éluée à l'hexane.

N-allyl-aniline et N,N-diallyl-aniline : F. Ozawa, H. Okamoto, S. Kawagishi, S. Yamamoto, T. Minami, M. Yoshifuji *J. Am. Chem. Soc.* **2002**, *124*, 10968).

Procédure générale pour l'allylation d'amines secondaires :

On ajoute successivement de la N-méthylaniline (129 μ L, 1 mmol) et de l'alcool allylique (136 μ L, 2 mmol) à une solution de catalyseur (0.01 mmol, cat = 2% mol) dans le CH₂Cl₂. On agite la solution pendant 24h à 70 °C. Les rendements de la réaction sont déterminés par GC. Après évaporation du solvant, l'huile obtenue est chromatographiée sur gel de silice éluée à l'hexane.

N-allyl, N-méthylaniline : L. G. Beholz, J.R. Stille J. Org. Chem. 1993, 19, 5095.

N-allylpipéridine : D.E. Bergbreiter, B. Chen, J. Chem. Soc. Chem. Commun. 1983, 1238.

N-allyldibenzylamine : M. Moreno-Manas, L. Morral, R. Pleixats J. Org. Chem. 1998, 63, 6160.

N-allylmorpholine :

SM m/z^+ : 128 (M+1).

RMN ¹H (CDCl₃) : δ 2.45 (t, ³J (H-H) = 4.4, 4H, H de CH₂-N), 3.01 (dt, ³J (H-H) = 6.6, ⁴J (H-H) = 1.2, 2H, H de N-CH₂-CH=CH₂), 3.72 (t, ³J (H-H) = 4.4, 4H, H de CH₂O), 5.14-5.23 (m, 2H, H de CH₂=CH-), 5.85 (ddt, ³J (H-H) = 10.1, ³J (H-H) = 6.8, H de CH allyl).

RMN ¹³C (CDCl₃) : δ 53.6 (s, C de CH₂N), 62.3 (s, C de N-CH₂-CH=CH₂), 67.1 (s, C de CH₂O), 118.5 (s, C de CH₂=CH-), 134.6 (s, CH de allyl).

Chapitre 10 : Annexe cristallographique

Les données de diffraction aux rayons X sont enregistrées à 150.0(1) K sur un diffractomètre Nonius Kappa CCD qui utilise une source aux rayons X Mo K α ($\lambda = 0.71069$ Å) et un monochromateur au graphite. Toutes les mesures utilisent des scans phi et omega. Les structures aux rayons X ont été résolues à l'aide des programmes SIR 97¹ et Shelxl-97.² Les dessins ont été réalisés à l'aide des programmes ORTEP III³ et POV-RAY pour Windows.

I. Chapitre 2

Compound	PPP-α ₂
Molecular formula	$C_{41}H_{31}P_3$
Molecular weight	616.57
Crystal habit	colorless plate
Crystal dimensions(mm)	0.22x0.20x0.14
Crystal system	Triclinic
Space group	P-1
a(Å)	9.814(5)
b(Å)	13.576(5)
c(Å)	14.107(5)
$\alpha(^{\circ})$	111.871(5)
β(°)	95.196(5)
$\gamma(^{\circ})$	108.502(5)
$V(Å^3)$	1606.9(12)
Z	2
$d(g-cm^{-3})$	1.274
F(000)	644
$\mu(cm^{-1})$	0.214
Absorption corrections	Multi-scan; 0.9544 min, 0.9706 max
Diffractometer	KappaCCD
X-ray source	ΜοΚα
$\lambda(A)$	0.71069
Monochromator	graphite
T (K)	150.0(10)
Scan mode	phi

¹ A. Altomare, M. C. Burla, M. Camalli, G. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, G. Polidori, R. Spagna, *SIR97, an integrated package of computer programs for the solution and refinement of crystal structures using single crystal data.*

² G. M. Sheldrick, *SHELXL-97*, Universität Göttingen, Allemagne, **1997**.

³ L. J. Farrugia, *ORTEP-3*, Department of Chemistry, University of Glasgow, Royaume Uni, 2000.

Maximum θ HKL ranges Reflections measured Unique data Rint Reflections used Criterion Refinement type Hydrogen atoms Parameters refined Reflections / parameter wR2 R1 Weights a, b GoF difference peak / hole (e Å ⁻³)	30.02 -13 13 ; -16 19 ; - 13332 9308 0.0239 7211 I > 2sigma(I) Fsqd mixed 397 18 0.1105 0.0417 0.0396 ; 0.5 44 1.049 0.373(0.065) / -0	-19 19 .431(0.065)	
TABLE XX. Bond lengths (A) and angles	(deg) for $PPP-a_2$	
P(1) -C(1) $P(2) -C(12)$ $P(2) -C(1)$ $P(3) -C(36)$ $C(1) -C(2)$ $C(2) -C(18)$ $C(4) -C(5)$ $C(6) -C(11)$ $C(7) -C(8)$ $C(9) -C(10)$ $C(12) -C(13)$ $C(13) -C(14)$ $C(15) -C(16)$ $C(18) -C(23)$ $C(19) -C(20)$ $C(21) -C(22)$ $C(24) -C(25)$ $C(25) -C(26)$ $C(27) -C(28)$ $C(30) -C(35)$ $C(31) -C(32)$ $C(31) -C(32)$ $C(33) -C(34)$ $C(36) -C(41)$ $C(37) -C(38)$ $C(39) -C(40)$	1.745(2) $1.835(2)$ $1.849(2)$ $1.832(2)$ $1.408(2)$ $1.399(2)$ $1.397(2)$ $1.390(3)$ $1.385(3)$ $1.390(2)$ $1.390(2)$ $1.390(2)$ $1.390(2)$ $1.390(2)$ $1.386(2)$ $1.394(2)$ $1.394(2)$ $1.393(2)$ $1.385(2)$ $1.382(2)$ $1.388(2)$	P(1) -C(5) $P(2) -C(6)$ $P(3) -C(30)$ $P(3) -C(5)$ $C(2) -C(3)$ $C(4) -C(24)$ $C(6) -C(7)$ $C(8) -C(9)$ $C(10) -C(11)$ $C(12) -C(17)$ $C(14) -C(15)$ $C(16) -C(17)$ $C(18) -C(19)$ $C(20) -C(21)$ $C(20) -C(21)$ $C(22) -C(23)$ $C(24) -C(29)$ $C(26) -C(27)$ $C(28) -C(29)$ $C(30) -C(31)$ $C(32) -C(33)$ $C(34) -C(35)$ $C(36) -C(37)$ $C(38) -C(39)$ $C(40) -C(41)$	1.748(2) $1.839(2)$ $1.830(2)$ $1.848(2)$ $1.399(2)$ $1.398(2)$ $1.495(2)$ $1.495(2)$ $1.380(3)$ $1.384(2)$ $1.384(2)$ $1.386(2)$ $1.386(2)$ $1.386(2)$ $1.387(2)$ $1.388(2)$
C(1) - P(1) - C(5) $C(12) - P(2) - C(1)$ $C(30) - P(3) - C(36)$ $C(36) - P(3) - C(5)$ $C(2) - C(1) - P(2)$ $C(3) - C(2) - C(1)$ $C(1) - C(2) - C(18)$ $C(3) - C(4) - C(5)$ $C(5) - C(4) - C(24)$ $C(4) - C(5) - P(3)$ $C(11) - C(6) - C(7)$ $C(7) - C(6) - P(2)$ $C(9) - C(8) - C(7)$ $C(11) - C(10) - C(9)$ $C(13) - C(12) - C(17)$	103.44(7) 104.84(7) 101.86(7) 101.55(7) 117.1(1) 121.7(1) 124.3(1) 122.2(1) 123.0(1) 117.1(1) 118.1(2) 116.3(1) 120.1(2) 120.2(2) 118.8(1)	C (12) - P (2) - C (6) C (6) - P (2) - C (1) C (30) - P (3) - C (5) C (2) - C (1) - P (1) P (1) - C (1) - P (2) C (3) - C (2) - C (18) C (4) - C (3) - C (2) C (3) - C (4) - C (24) C (4) - C (5) - P (1) P (1) - C (5) - P (3) C (11) - C (6) - P (2) C (8) - C (7) - C (6) C (8) - C (9) - C (10) C (10) - C (11) - C (6) C (13) - C (12) - P (2)	100.30(7) 104.94(7) 104.28(6) 123.2(1) 118.81(8) 113.9(1) 126.2(1) 114.8(1) 123.1(1) 119.40(8) 125.2(1) 120.8(2) 119.9(2) 121.0(2) 115.8(1)

C(17)-C(12)-P(2)
C(15)-C(14)-C(13)
C(15)-C(16)-C(17)
C(23)-C(18)-C(19)
C(19)-C(18)-C(2)
C(21)-C(20)-C(19)
C(23)-C(22)-C(21)
C(25)-C(24)-C(29)
C(29)-C(24)-C(4)
C(25)-C(26)-C(27)
C(27)-C(28)-C(29)
C(35)-C(30)-C(31)
C(31)-C(30)-P(3)
C(33)-C(32)-C(31)
C(33)-C(34)-C(35)
C(41)-C(36)-C(37)
C(37)-C(36)-P(3)
C(37)-C(38)-C(39)
C(41)-C(40)-C(39)

125.3(1)	C(14)-C(13)-C(12)	120.8(1)
119.8(2)	C(14)-C(15)-C(16)	120.1(2)
120.2(1)	C(16)-C(17)-C(12)	120.2(1)
118.5(1)	C(23)-C(18)-C(2)	122.3(1)
118.8(1)	C(20)-C(19)-C(18)	120.8(1)
120.2(2)	C(20)-C(21)-C(22)	119.3(2)
120.8(2)	C(22)-C(23)-C(18)	120.4(1)
118.9(1)	C(25)-C(24)-C(4)	119.3(1)
121.7(1)	C(26)-C(25)-C(24)	120.6(1)
119.9(1)	C(28)-C(27)-C(26)	120.0(1)
120.2(1)	C(28)-C(29)-C(24)	120.4(1)
118.7(1)	C(35)-C(30)-P(3)	124.4(1)
116.9(1)	C(32)-C(31)-C(30)	120.3(2)
120.4(2)	C(32)-C(33)-C(34)	119.8(2)
120.4(2)	C(34)-C(35)-C(30)	120.4(1)
118.4(1)	C(41)-C(36)-P(3)	125.0(1)
116.6(1)	C(38)-C(37)-C(36)	120.9(2)
119.8(2)	C(38)-C(39)-C(40)	120.1(2)
120.0(2)	C(40)-C(41)-C(36)	120.8(1)

SPS

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) α(°) β(°) γ(°) $V(Å^3)$ Ζ $d(g-cm^{-3})$ F(000) $\mu(\text{cm}^{-1})$ Absorption corrections Diffractometer X-ray source λ(Å) Monochromator T (K) Scan mode $Maximum \ \theta$ HKL ranges Reflections measured

 $C_{42}H_{33}Cl_2P_3S_2 \!=\! C_{41}H_{31}P_3S_2 CH_2Cl_2$ 765.61 colorless needle 0.22x0.09x0.09 monoclinic $P2_1/n$ 9.4560(10) 28.7580(10) 13.5950(10) 90.00 95.5600(10) 90.00 3679.6(5) 4 1.382 1584 0.452 multi-scan; 0.9072 min, 0.9605 max KappaCCD ΜοΚα 0.71069 graphite 150.0(10) phi and omega scans 26.37 -11 11 ; -35 34 ; -16 16 13188

335

Unique data	7483		
Rint	0.0301		
Reflections used	5431		
Criterion	I > 2sigma(I)		
Refinement type	Fsqd		
Hydrogen atoms	mixed		
Parameters refined	442		
Reflections / parameter	12		
wR2	0.1168		
R1	0.0437		
Weights a, b	0.0521 ; 0.8261		
GoF	1.040		
difference peak / hole (e A ⁻³)	0.352(0.067) / -0.0	616(0.067)	
Table 3. Bond lengths (A)	and angles (deg) for SPS	
Cl(1)-C(42)	1.738(3)	Cl(2)-C(42)	1.743(3)
S(1)-P(2)	1.956(1)	S(2) - P(3)	1.9532(8)
P(1) - C(1)	1.742(2)	P(1) - C(5)	1.745(2)
P(2) - C(6)	1.812(2) 1.926(2)	P(2) - C(12)	1.825(2) 1.912(2)
P(3) - C(1) P(3) - C(30)	1.820(2) 1.819(2)	P(3) - C(5)	1.815(2) 1.835(2)
C(1) - C(2)	1.409(3)	C(2) - C(3)	1.399(3)
C(2) - C(18)	1.498(3)	C(3) - C(4)	1.399(3)
C(3)-H(3)	0.9500	C(4) - C(5)	1.417(3)
C(4) - C(24)	1.494(3)	C(6) - C(7)	1.392(3)
C(6) - C(11) C(7) - H(7)	1.394(3)	C(7) = C(8)	1.38/(4) 1.379(1)
C(8) - H(8)	0.9500	C(9) - C(10)	1.378(4)
C(9) - H(9)	0.9500	C(10) - C(11)	1.380(3)
C(10)-H(10)	0.9500	C(11)-H(11)	0.9500
C(12) - C(13)	1.388(3)	C(12) - C(17)	1.397(3)
C(13) - C(15)	1.396(4) 1.267(4)	C(13) - H(13)	0.9500
C(14) - C(15) C(14) - H(14)	1.307(4) 0.9500	C(14) - C(16) C(15) - H(15)	1.376(4) 0.9500
C(16) - C(17)	1.383(3)	C(16) - H(16)	0.9500
C(17)-H(17)	0.9500	C(18) - C(19)	1.385(3)
C(18)-C(23)	1.403(3)	C(19)-C(20)	1.389(3)
C(19) - H(19)	0.9500	C(20) - C(21)	1.386(3)
C(20) - H(20)	0.9500	C(21) - C(22)	1.381(4) 1.202(2)
C(21) - H(21)	0.9500	C(22) - C(23)	1.302(3)
C(22) = H(22) C(24) - C(29)	1.396(3)	C(23) - C(25)	1.398(3)
C(25) - C(26)	1.389(3)	С(25)-Н(25)	0.9500
C(26)-C(27)	1.384(4)	C(26)-H(26)	0.9500
C(27) - C(28)	1.388(4)	C(27) - H(27)	0.9500
C(28) - C(29)	1.385(3)	C(28) - H(28)	0.9500
C(29) - H(29) C(30) - C(31)	1 401(3)	C(31) = C(32)	1.393(3) 1.381(3)
C(31) - H(31)	0.9500	C(32) - C(34)	1.392(4)
С(32)-Н(32)	0.9500	C(33) - C(34)	1.375(4)
C(33)-C(35)	1.395(3)	C(33)-H(33)	0.9500
C(34) - H(34)	0.9500	C(35) - H(35)	0.9500
C(30) - C(41) C(37) - C(38)	1,300(3) 1,383(3)	C(30) - C(37)	1.399(3)
C(38) - C(39)	1.381(4)	C(38) - H(38)	0.9500
C(39) - C(40)	1.377(4)	С(39)-Н(39)	0.9500
C(40)-C(41)	1.393(4)	C(40)-H(40)	0.9500
C(41) - H(41)	0.9500	C(42)-H(42A)	0.9900
C(42)-H(42B)	0.9900		
C(1) - P(1) - C(5) C(6) - P(2) - C(1)	103.9(1) 108.9(1)	C(6) - P(2) - C(12) C(12) - P(2) - C(1)	101.8(1)
C(6) - P(2) - S(1)	115.09(8)	C(12) - P(2) - S(1)	111.82(8)
C(1) - P(2) - S(1)	112.73(7)	C(36)-P(3)-C(30)	103.2(1)
C(36)-P(3)-C(5)	109.8(1)	C(30)-P(3)-C(5)	103.1(1)
C(36)-P(3)-S(2)	115.28(8)	C(30)-P(3)-S(2)	111.88(8)

C(5) - P(3) - S(2)	112.54(8)	C(2) - C(1) - P(1)	123.2(2)
C(2) - C(1) - P(2) C(3) - C(2) - C(1)	125.0(2) 121.0(2)	P(1) - C(1) - P(2) C(3) - C(2) - C(18)	111.8(1) 114.3(2)
C(1) - C(2) - C(18)	124.6(2)	C(4) - C(3) - C(2)	127.9(2)
C(4)-C(3)-H(3)	116.1	C(2)-C(3)-H(3)	116.1
C(3) - C(4) - C(5)	120.4(2)	C(3) - C(4) - C(24)	115.4(2)
C(5) - C(4) - C(24) C(4) - C(5) - P(3)	124.2(2) 123.2(2)	P(1) - C(5) - P(1) P(1) - C(5) - P(3)	123.3(2) 112 9(1)
C(7) - C(6) - C(11)	119.3(2)	C(7) - C(6) - P(2)	118.4(2)
C(11) - C(6) - P(2)	122.0(2)	C(8) - C(7) - C(6)	120.0(3)
C(8) - C(7) - H(7)	120.0	C(6) - C(7) - H(7)	120.0
C(9) - C(8) - C(7) C(7) - C(8) - H(8)	120.1(3) 120 0	C(9) - C(8) - H(8) C(10) - C(9) - C(8)	120.0 120.2(2)
C(10) - C(9) - H(9)	119.9	C(8) - C(9) - H(9)	119.9
C(9) - C(10) - C(11)	120.3(3)	C(9) - C(10) - H(10)	119.9
C(11) - C(10) - H(10)	119.9	C(10) - C(11) - C(6)	120.1(2)
C(10) - C(11) - H(11) C(13) - C(12) - C(17)	120.0	C(6) - C(11) - H(11) C(13) - C(12) - P(2)	120.0
C(17) - C(12) - P(2)	121.5(2)	C(12) - C(13) - C(15)	119.7(3)
C(12)-C(13)-H(13)	120.1	С(15)-С(13)-Н(13)	120.1
C(15) - C(14) - C(16)	120.1(2)	C(15) - C(14) - H(14)	119.9
C(16) - C(14) - H(14) C(14) - C(15) - H(15)	119.9 119 7	C(14) - C(15) - C(13) C(13) - C(15) - H(15)	120.6(3)
C(14) - C(16) - C(17)	120.2(3)	C(14) - C(16) - H(16)	119.9
C(17) - C(16) - H(16)	119.9	C(16) - C(17) - C(12)	120.3(2)
C(16) - C(17) - H(17)	119.9	C(12) - C(17) - H(17)	119.9
C(19) - C(18) - C(23) C(23) - C(18) - C(2)	119.0(2) 118 1(2)	C(19) - C(18) - C(2) C(18) - C(19) - C(20)	122.8(2)
C(18) - C(19) - H(19)	119.7	C(10) - C(19) - E(20) C(20) - C(19) - H(19)	119.7
C(21) - C(20) - C(19)	120.0(2)	С(21)-С(20)-Н(20)	120.0
C(19) - C(20) - H(20)	120.0	C(22) - C(21) - C(20)	119.8(2)
C(22) - C(21) - H(21) C(21) - C(22) - C(23)	120.1 120.5(2)	C(20) - C(21) - H(21) C(21) - C(22) - H(22)	120.1
C(21) - C(22) - C(23) C(23) - C(22) - H(22)	119.8	C(21) - C(22) - R(22) C(22) - C(23) - C(18)	120.1(2)
C(22)-C(23)-H(23)	119.9	С(18)-С(23)-Н(23)	119.9
C(29) - C(24) - C(25)	118.3(2)	C(29) - C(24) - C(4)	121.2(2)
C(25) - C(24) - C(4) C(26) - C(25) - H(25)	120.3(2)	C(26) - C(25) - C(24) C(24) - C(25) - H(25)	120.7(2)
C(27) - C(26) - C(25)	120.1(2)	C(27) - C(26) - H(26)	119.9
С(25)-С(26)-Н(26)	119.9	C(26) - C(27) - C(28)	119.9(2)
C(26) - C(27) - H(27)	120.0	C(28) - C(27) - H(27)	120.0
C(29) - C(28) - C(27) C(27) - C(28) - H(28)	119.9(2)	C(29) - C(28) - H(28) C(28) - C(29) - C(24)	120.1
C(28) - C(29) - H(29)	119.5	C(24) - C(29) - H(29)	119.5
C(35) - C(30) - C(31)	119.2(2)	C(35) - C(30) - P(3)	123.0(2)
C(31) - C(30) - P(3)	117.8(2)	C(32) - C(31) - C(30)	120.1(2)
C(32) - C(31) - H(31) C(31) - C(32) - C(34)	120.0 120.3(2)	C(30) - C(31) - H(31) C(31) - C(32) - H(32)	120.0 119 9
C(34) - C(32) - H(32)	119.9	C(34) - C(33) - C(35)	120.0(2)
С(34)-С(33)-Н(33)	120.0	С(35)-С(33)-Н(33)	120.0
C(33) - C(34) - C(32)	120.2(2)	C(33) - C(34) - H(34)	119.9
C(32) - C(34) - H(34) C(30) - C(35) - H(35)	119.9 119.9	C(30) - C(35) - C(33) C(33) - C(35) - H(35)	120.3(2)
C(41) - C(36) - C(37)	119.7(2)	C(41) - C(36) - P(3)	118.9(2)
C(37) - C(36) - P(3)	121.1(2)	C(38) - C(37) - C(36)	119.9(2)
C(38) - C(37) - H(37)	120.1	C(36) - C(37) - H(37)	120.1
C(37) - C(38) - H(38)	120.1(3)	C(39) - C(38) - H(38) C(40) - C(39) - C(38)	± 20.0 120.4(2)
C(40)-C(39)-H(39)	119.8	C(38)-C(39)-H(39)	119.8
C(39)-C(40)-C(41)	120.2(3)	C(39)-C(40)-H(40)	119.9
C(41) - C(40) - H(40)	119.9	C(36) - C(41) - C(40)	119.7(2)
$C_{(30)} - C_{(41)} - \pi_{(41)}$ $C_{(1)} - C_{(42)} - C_{(2)}$	113.1(2)	C(40) = C(41) = H(41) C(1) = C(42) = H(42a)	109 N
Cl(2) - C(42) - H(42A)	109.0	Cl(1) - C(42) - H(42B)	109.0
Cl(2)-C(42)-H(42B)	109.0	H(42A)-C(42)-H(42B)	107.8

P(2) - C(1) $P(3) - C(5)$ $C(1) - C(2)$ $C(2) - C(3)$ $C(3) - C(4)$ $C(4) - C(5)$ $C(6) - C(7)$ $C(7) - C(8)$ $C(8) - C(9)$ $C(9) - C(10)$ $C(10) - C(11)$ $C(11) - H(11)$ $C(12) - C(17)$ $C(13) - H(13)$ $C(14) - H(14)$ $C(15) - H(15)$ $C(16) - H(16)$ $C(18) - C(23)$ $C(19) - C(20)$ $C(20) - C(21)$ $C(21) - C(22)$ $C(22) - C(23)$ $C(22) - C(23)$ $C(23) - H(23)$ $C(24) - C(25)$ $C(26) - H(26)$ $C(27) - H(27)$ $C(28) - H(28)$ $C(30) - C(35)$ $C(31) - C(32)$ $C(32) - C(33)$ $C(33) - C(34)$ $C(34) - C(35)$ $C(35) - H(35)$ $C(36) - C(37)$ $C(37) - H(37)$ $C(38) - H(38)$ $C(39) - H(39)$ $C(40) - H(40)$	1.858(1) $1.821(1)$ $1.513(2)$ $1.347(2)$ $1.468(2)$ $1.364(2)$ $1.384(2)$ $1.385(3)$ $1.381(3)$ $1.377(3)$ $1.386(2)$ 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 $1.380(2)$ $1.380(2)$ $1.380(2)$ $1.382(3)$ 0.9500 $1.382(3)$ 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 0.9500 $1.397(2)$ 0.9500 0.9500 $1.397(2)$ $1.385(2)$ $1.385(2)$ $1.387(2)$ $1.381(2)$ $1.389(2)$ 0.9500 0.9500 0.9500 $1.393(2)$ 0.9500 0.9500 0.9500 0.9500 0.9500 $1.393(2)$ 0.9500 0.950	P(3) - C(30) $P(3) - C(36)$ $C(1) - H(1A)$ $C(2) - C(18)$ $C(3) - H(3)$ $C(4) - C(24)$ $C(6) - C(11)$ $C(7) - H(7)$ $C(8) - H(8)$ $C(9) - H(9)$ $C(10) - H(10)$ $C(12) - C(13)$ $C(13) - C(14)$ $C(14) - C(15)$ $C(15) - C(16)$ $C(16) - C(17)$ $C(17) - H(17)$ $C(18) - C(19)$ $C(19) - H(19)$ $C(20) - H(20)$ $C(21) - H(21)$ $C(22) - H(22)$ $C(24) - C(29)$ $C(25) - C(26)$ $C(26) - C(27)$ $C(27) - C(28)$ $C(28) - C(29)$ $C(29) - H(29)$ $C(30) - C(31)$ $C(31) - H(31)$ $C(32) - H(32)$ $C(33) - H(33)$ $C(34) - H(34)$ $C(36) - C(41)$ $C(39) - C(40)$ $C(41) - H(41)$	1.816(2) 1.824(2) 1.0000 1.484(2) 0.9500 1.491(2) 1.393(2) 0.9500 0.9500 0.9500 1.378(2) 1.388(3) 1.365(3) 1.371(3) 1.386(3) 0.9500 1.393(2) 0.9500 0.9500 0.9500 0.9500 0.9500 1.384(2) 1.384(2) 1.384(2) 1.384(2) 1.384(2) 1.384(2) 1.392(2) 0.9500 1.398(2) 0.9500 1.390(2) 1.379(3) 1.375(3) 1.372(2) 0.9500 1.392(2) 0.9500 1.392(2) 1.379(3) 1.375(3) 1.392(2) 0.9500 1.392(2) 1.392(2) 0.9500 1.392(2) 1.379(3) 1.375(3) 1.392(2) 0.9500 1.392(2) 1.392(2) 0.9500 1.392(2) 1.379(3) 1.375(3) 1.392(2) 0.9500 1.392(2) 1.392(2) 0.9500 1.392(2) 1.379(3) 1.375(3) 1.392(2) 0.9500 1.392(2) 1.392(2) 0.9500 1.392(2) 1.392(2) 1.392(2) 1.392(2) 1.395(2) 1.392(2) 1.395(2) 1.395(2) 1.395(2) 1.392(2) 1.395(2) 1.395(2) 1.395(2) 1.392(2) 1.395(2) 1.392(2) 1.395(2) 1
O(1) - P(1) - C(5) $C(5) - P(1) - C(1)$ $C(5) - P(1) - H(1P)$ $C(12) - P(2) - C(6)$ $C(6) - P(2) - C(1)$ $C(30) - P(3) - C(5)$ $C(5) - P(3) - C(36)$ $C(5) - P(3) - C(36)$ $C(5) - P(3) - S(2)$ $C(2) - C(1) - P(1)$ $P(1) - C(1) - P(2)$ $P(1) - C(1) - H(1A)$ $C(3) - C(2) - C(18)$ $C(18) - C(2) - C(18)$ $C(18) - C(2) - C(1)$ $C(2) - C(3) - H(3)$ $C(5) - C(4) - C(3)$ $C(3) - C(4) - C(24)$ $C(4) - C(5) - P(3)$ $C(7) - C(6) - C(11)$ $C(11) - C(6) - P(2)$ $C(6) - C(7) - H(7)$	116.84(7) 104.53(6) 105.0(8) 105.57(7) 103.74(7) 113.53(6) 106.36(7) 111.87(5) 109.4(1) 114.27(7) 106.7 120.2(1) 119.8(1) 116.0 123.0(1) 112.3(1) 126.7(1) 119.3(2) 123.4(1) 119.9	O(1) - P(1) - C(1) O(1) - P(1) - H(1P) C(1) - P(1) - H(1P) C(12) - P(2) - C(1) C(12) - P(2) - S(1) C(1) - P(2) - S(1) C(30) - P(3) - C(36) C(30) - P(3) - S(2) C(36) - P(3) - S(2) C(2) - C(1) - P(2) C(2) - C(1) - H(1A) P(2) - C(1) - H(1A) P(2) - C(1) - H(1A) C(3) - C(2) - C(1) C(2) - C(3) - C(4) C(4) - C(3) - H(3) C(5) - C(4) - C(24) C(4) - C(5) - P(1) P(1) - C(5) - P(3) C(7) - C(6) - P(2) C(6) - C(7) - H(7)	111.05(6) 113.3(7) 105.1(7) 105.51(7) 113.62(6) 113.91(5) 102.50(7) 114.47(5) 111.97(5) 112.5(1) 106.7 106.7 106.7 119.9(1) 128.0(1) 116.0 124.7(1) 115.8(1) 117.02(7) 117.3(1) 120.1(2) 119.9

C(9) - C(8) - C(7)	120.3(2)	С(9)-С(8)-Н(8)	119.8
C(7) - C(8) - H(8)	119.8	C(10) - C(9) - C(8)	119.9(2)
C(10) - C(9) - H(9)	120.1	C(8) - C(9) - H(9)	120.1
C(9) - C(10) - C(11)	120.2(2)	C(9) - C(10) - H(10)	119.9
C(11) - C(10) - H(10)	119.9	C(10) - C(11) - C(6)	120.1(2)
C(10) - C(11) - H(11)	119.9	C(6) - C(11) - H(11)	119.9
C(13) - C(12) - C(17)	119.3(2)	C(13) - C(12) - P(2)	120.0(1)
C(17) - C(12) - P(2)	120 7(1)	C(12) - C(13) - C(14)	1197(2)
C(12) - C(13) - H(13)	120.1	C(14) - C(13) - H(13)	120.1
C(15) - C(14) - C(13)	121 0(2)	C(15) - C(14) - H(14)	119 5
C(13) - C(14) - H(14)	119.5	C(14) - C(15) - C(16)	119.5(2)
C(14) - C(15) - H(15)	120.3	C(16) - C(15) - H(15)	120.3
C(15) - C(16) - C(17)	120.4(2)	C(15) - C(16) - H(16)	119.8
C(17) - C(16) - H(16)	119.8	C(12) - C(17) - C(16)	120.0(2)
C(12) - C(17) - H(17)	120.0	C(16) - C(17) - H(17)	120.0
C(23) - C(18) - C(19)	117.8(2)	C(23) - C(18) - C(2)	121.3(1)
C(19) - C(18) - C(2)	120.9(1)	C(20) - C(19) - C(18)	120.6(2)
C(20) - C(19) - H(19)	119.7	C(18) - C(19) - H(19)	119.7
C(21) - C(20) - C(19)	120 5(2)	C(21) - C(20) - H(20)	119 8
C(19) - C(20) - H(20)	119 8	C(20) - C(21) - C(22)	119 2(2)
C(20) - C(21) - H(21)	120 4	C(22) - C(21) - H(21)	120 4
C(21) - C(22) - C(23)	120.7(2)	C(21) - C(22) - H(22)	119.7
C(23) - C(22) - H(22)	119.7	C(18) - C(23) - C(22)	121.0(2)
C(18) - C(23) - H(23)	119.5	C(22) - C(23) - H(23)	119.5
C(29) - C(24) - C(25)	119.6(1)	C(22) - C(24) - C(4)	122.0(1)
C(25) - C(24) - C(4)	118.4(1)	C(26) - C(25) - C(24)	120.1(2)
C(26) - C(25) - H(25)	119.9	C(24) - C(25) - H(25)	119.9
C(27) - C(26) - C(25)	119.9(2)	C(27) - C(26) - H(26)	120.0
C(25) - C(26) - H(26)	120 0	C(28) - C(27) - C(26)	120 2(2)
C(28) - C(27) - H(27)	119.9	C(26) - C(27) - H(27)	119.9
C(27) - C(28) - C(29)	120.2(2)	C(27) - C(28) - H(28)	119.9
C(29) - C(28) - H(28)	119.9	C(24) - C(29) - C(28)	119.9(2)
C(24) - C(29) - H(29)	120.1	C(28) - C(29) - H(29)	120.1
C(35) - C(30) - C(31)	119.3(1)	C(35) - C(30) - P(3)	118.8(1)
C(31) - C(30) - P(3)	121.9(1)	C(32) - C(31) - C(30)	120.1(1)
C(32) - C(31) - H(31)	119.9	C(30) - C(31) - H(31)	119.9
C(31) - C(32) - C(33)	120.0(2)	C(31) - C(32) - H(32)	120.0
C(33) - C(32) - H(32)	120.0	C(34) - C(33) - C(32)	120.3(2)
C(34) - C(33) - H(33)	119.8	C(32) - C(33) - H(33)	119.8
C(33) - C(34) - C(35)	119.9(2)	C(33) - C(34) - H(34)	120.1
C(35) - C(34) - H(34)	120.1	C(34) - C(35) - C(30)	120.4(1)
C(34) - C(35) - H(35)	119.8	C(30) - C(35) - H(35)	119.8
C(41) - C(36) - C(37)	119.3(2)	C(41) - C(36) - P(3)	119.5(1)
C(37) - C(36) - P(3)	121.1(1)	C(38) - C(37) - C(36)	120.2(2)
С(38) – С(37) – Н(37)	119.9	С(36)-С(37)-Н(37)	119.9
C(39) - C(38) - C(37)	120.1(2)	C(39) - C(38) - H(38)	119.9
С(37) – С(38) – Н(38)	119.9	C(40) - C(39) - C(38)	119.9(2)
С(40) – С(39) – Н(39)	120.0	С(38) –С(39) –Н(39)	120.0
C(39) - C(40) - C(41)	120.6(2)	C(39) -C(40) -H(40)	119.7
C(41)-C(40)-H(40)	119.7	C(36) - C(41) - C(40)	119.8(2)
С(36)-С(41)-Н(41)	120.1	C(40)-C(41)-H(41)	120.1

211a

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) $\alpha(^{\circ})$ β(°) $\gamma(^{\circ})$ $V(Å^3)$ Ζ $d(g-cm^{-3})$ F(000) $\mu(\text{cm}^{-1})$ Absorption corrections Diffractometer X-ray source λ(Å) Monochromator T (K) Scan mode Maximum θ HKL ranges Reflections measured Unique data Rint Reflections used Criterion Refinement type Hydrogen atoms Parameters refined Reflections / parameter wR2 R1 Weights a, b GoF difference peak / hole (e Å⁻³) Table 3. Bond lengths (A) S(1) - P(2)

S(2) - P(3)

S(3)-P(5)

	$C_{58}H_{66}LiO_4P_3S_2 = C_{50}H_{50}LiO_4P_3S_2.4$ THF
	991.08
	vermilion block
	0.20x0.20x0.20
	triclinic
	P-1
	12.4280(10)
	17.8430(10)
	24.4450(10)
	77.0100(10)
	87.6400(10)
	89.4500(10)
	5277.5(6)
	4
	1.247
	2104
	0.238
	multi-scan : 0.9540 min. 0.9540 max
	KappaCCD
	ΜοΚα
	0.71069
	graphite
	150 0(10)
	phi and omega scans
	24.11
	-14 14 · -20 20 · -25 28
	26699
	16562
	0.0289
	11710
	I > 2sigma(I)
	Fsqd
	mixed
	1242
	9
	0.1783
	0.0611
	0.0931 ; 4.2399
	1.025
	0.823(0.061) / -0.499(0.061)
)	and angles (deg) for 211a
	1.982(1) S(1)-Li(1)
	1.981(1) $S(2)-Li(1)$

S(3)-Li(2)

1.985(1)

2.800(8)

2.820(8)

2.758(7)

S(4)-P(6)	1.980(1)	S(4)-L1(2)	2.764(7)
P(1) - C(5)	1.802(4)	P(1) - C(1)	1.815(3)
P(1)-C(6)	1.835(4)	P(1)-Li(1)	2.484(8)
P(2) - C(1)	1.773(4)	P(2)-C(7)	1.816(4)
P(2)-C(13)	1.823(4)	P(3)-C(5)	1.774(4)
P(3) - C(37)	1 820(4)	P(3) - C(31)	1 825(4)
P(4) - C(55)	1 803(3)	P(4) = C(51)	1 805(3)
D(4) C(55)	1 0 0 0 (0)	D(4) = 1 + (2)	2.000(3)
P(4) = C(50)	1.041(4)	$P(4) = \Box I(2)$	Z.JI/(/)
P(5) - C(51)	1.765(4)	P(5) - C(63)	1.820(3)
P(5) - C(57)	1.824(4)	P(6) - C(55)	1./81(3)
P(6) - C(81)	1.806(4)	P(6) - C(87)	1.818(4)
O(1)-C(43)	1.422(5)	O(1)-C(46)	1.426(5)
O(1) - Li(1)	1.923(8)	O(2)-C(50A)	1.38(2)
O(2)-C(47)	1.437(5)	O(2)-C(50)	1.473(7)
O(2) - Li(1)	1.916(7)	O(3)-C(93)	1.417(7)
O(3) - C(96)	1.430(5)	O(3) - C(93A)	1.48(2)
$O(3) - I_{1}i(2)$	1,934(7)	O(4) - C(97)	1,428(5)
O(4) - C(100)	1 447(5)	$O(4) - I_{1}(2)$	1 940(8)
C(1) - C(2)	1 389(5)	C(2) = C(3)	1.910(0) 1.406(5)
C(1) C(2)	1.500(5)	C(2) C(3)	1 400(5)
C(2) - C(19)	1,200(5)	C(3) = C(4)	1.409(5)
C(4) - C(5)	1.399(5)	C(4) - C(25)	1.496(5)
C(1) - C(12)	1.388(6)	C(7) - C(8)	1.400(5)
C(8) - C(9)	1.383(6)	C(9) - C(10)	1.374(6)
C(10) - C(11)	1.381(6)	C(11) - C(12)	1.370(6)
C(13)-C(14)	1.382(5)	C(13)-C(18)	1.390(5)
C(14)-C(15)	1.389(5)	C(15) - C(16)	1.367(6)
C(16) - C(17)	1.383(6)	C(17)-C(18)	1.389(6)
C(19) - C(24)	1.370(6)	C(19) - C(20)	1.386(5)
C(20) - C(21)	1.383(6)	C(21) - C(22)	1.368(7)
C(22) - C(23)	1 354(7)	C(23) - C(24)	1 397(6)
C(25) - C(30)	1,370(5)	C(25) - C(26)	1 396(5)
C(25) = C(27)	1,370(3) 1,402(7)	C(27) - C(28)	1,350(3)
C(20) - C(27)	1.402(7) 1.250(7)	C(27) = C(28)	1, 202(C)
C(28) - C(29)	1.359(7)	C(29) - C(30)	1.383(0)
C(31) - C(32)	1.387(5)	C(31) - C(36)	1.393(5)
C(32) - C(33)	1.387(5)	C(33) - C(34)	1.378(6)
C(34)-C(35)	1.384(6)	C(35)-C(36)	1.384(5)
C(37)-C(42)	1.381(5)	C(37)-C(38)	1.396(5)
C(38)-C(39)	1.388(6)	C(39)-C(40)	1.376(6)
C(40)-C(41)	1.376(6)	C(41)-C(42)	1.388(5)
C(43)-C(44)	1.467(7)	C(44)-C(45)	1.446(8)
C(45)-C(46)	1.502(7)	C(47)-C(48)	1.495(7)
C(48) - C(49)	1,507(8)	C(49) - C(50A)	1.45(2)
C(49) - C(50)	1,503(8)	C(51) - C(52)	1,413(5)
C(52) - C(53)	1 398(5)	C(52) - C(69)	1 500(5)
C(53) - C(54)	1 407(5)	C(54) - C(55)	1 399(5)
C(54) - C(75)	1 109(5)	C(57) - C(52)	1 200(5)
C(54) - C(75)	1, 490(3) 1, 201(5)	C(57) = C(52)	1 205(5)
C(57) = C(50)	1.391(3) 1.207(6)	C(50) - C(59)	1.303(0)
C(59) = C(60)	1.307(0)	C(60) - C(61)	1.371(0)
C(61) - C(62)	1.389(5)	C(63) - C(64)	1.3/9(5)
C(63) - C(68)	1.396(5)	C(64) - C(66)	1.388(5)
C(65) - C(66)	1.364(6)	C(65) - C(67)	1.384(6)
C(67)-C(68)	1.378(5)	C(69)-C(70)	1.374(5)
C(69)-C(74)	1.388(5)	C(70)-C(71)	1.386(6)
C(71)-C(72)	1.370(7)	C(72)-C(73)	1.368(7)
C(73)-C(74)	1.384(6)	C(75)-C(80)	1.384(6)
C(75)-C(76)	1.389(5)	C(76)-C(77)	1.384(6)
C(77) - C(78)	1.358(7)	C(78) - C(79)	1.398(7)
C(79) - C(80)	1 386(6)	C(81) - C(86)	1 389(6)
C(81) - C(82)	1 398(5)	C(82) - C(83)	1 386(6)
C(83) - C(84)	1 377(6)	C(84) - C(85)	1 380(6)
C(85) = C(85)	1 207/61	C(87) - C(88)	1 202/51
C(87) = C(92)	1 205/(0)	C(07) = C(00)	1 202(5)
C(0) = C(32)	エ・ンラン(ン) 1 つのつ/に、	C(00) - C(09)	1 276/5/
C(0) = C(0)	⊥.303(5) 1.204(F)	C(90) - C(91)	$\pm .5/0(5)$
C(91) - C(92)	1.304(5)	C(93) - C(94)	\bot .5 \bot (\bot)
C(94) - C(95)	1.53(1)	C(93A) - C(94A)	1.31(4)
C(94A)-C(95)	⊥.44(4)	C(95) - C(96)	1.476(6)
C(97)-C(98)	1.505(7)	C(98)-C(99A)	1.40(2)
C(98)-C(99)	1.49(1)	C(99)-C(100)	1.47(1)
C(99A)-C(100)	1.49(2)	C(101)-O(105)	1.45(1)
C(101)-C(102)	1.47(1)	C(102)-C(103)	1.41(1)

C(103) - C(104) C(106) - C(110) C(107) - O(108) C(109) - C(110) C(111) - O(112) C(113) - C(114) C(116) - C(117) C(117) - O(118) C(119) - C(120)	1.44(1) 1.42(1) 1.397(8) 1.46(1) 1.49(2) 1.43(1) 1.33(1) 1.43(1) 1.38(1)	C(104) - O(105) C(106) - C(107) O(108) - C(109) C(111) - C(115) O(112) - C(113) C(114) - C(115) C(116) - C(120) O(118) - C(119)	1.37(1) 1.44(1) 1.397(8) 1.41(1) 1.38(1) 1.30(1) 1.41(1) 1.51(1)
P(2) - S(1) - Li(1) P(5) - S(3) - Li(2) C(5) - P(1) - C(1) C(1) - P(1) - Li(1) C(1) - P(2) - C(7) C(7) - P(2) - C(13) C(7) - P(2) - S(1) C(5) - P(3) - C(37) C(37) - P(3) - C(31) C(37) - P(3) - S(2) C(55) - P(4) - C(51) C(51) - P(4) - Li(2) C(51) - P(4) - Li(2) C(51) - P(5) - C(63) C(63) - P(5) - S(3) C(63) - P(5) - S(3) C(63) - P(6) - C(81) C(81) - P(6) - C(87) C(81) - P(6) - C(1) C(50) - O(2) - Li(1) C(50A) - O(2) - Li(2) C(93A) - O(3) - Li(2) C(93A) - O(3) - Li(2) C(97) - O(4) - Li(2) C(2) - C(1) - P(1) C(1) - C(2) - C(19) C(2) - C(3) - C(4) C(5) - C(4) - C(25) C(4) - C(5) - P(3) P(3) - C(5) - P(1) C(12) - C(7) - P(2) C(2) - C(1) - P(2) P(3) - C(5) - P(1) C(12) - C(7) - P(2) C(9) - C(10) - C(11) C(11) - C(12) - C(7) C(14) - C(13) - P(2) C(13) - C(14) - C(15) C(15) - C(16) - C(17) C(14) - C(13) - P(2) C(21) - C(20) - C(19) C(22) - C(20) - C(19) C(23) - C(24) - C(23) C(30) - C(25) - C(4) C(25) - C(30) - C(29) C(31) - C(12) - C(7) C(17) - C(18) - C(13) C(24) - C(19) - C(2) C(21) - C(20) - C(19) C(22) - C(3) - C(21) C(13) - C(14) - C(13) C(24) - C(13) - P(3) C(33) - C(34) - C(35) C(33) - C(36) - C(31) C(41) - C(40) - C(39) C(37) - C(42) - C(41)	97.4(1) 103.3(1) 100.3(2) 100.5(2) 112.9(2) 110.8(2) 107.4(2) 109.1(1) 109.0(2) 106.2(2) 107.4(2) 102.6(2) 114.4(2) 109.7(2) 106.2(2) 107.8(1) 106.2(2) 107.8(1) 106.6(2) 109.6(3) 126.2(3) 40.4(8) 129.7(8) 125.6(4) 127.3(3) 125.6(4) 127.3(3) 124.8(3) 125.6(4) 120.5(4) 120.5(4) 120.5(4) 120.5(4) 120.5(4) 120.5(4) 120.5(4) 120.5(4) 120.5(4) 120.5(4) 120.5(4) 120.5(4) 120.5(4) 120.5(4) 120.5(4) 120.5(4) 120.5(4) 120.5(4) 120.5(4) 120.6($\begin{array}{c} P(3) - S(2) - Li(1) \\ P(6) - S(4) - Li(2) \\ C(5) - P(1) - C(6) \\ C(5) - P(1) - Li(1) \\ C(1) - P(2) - C(13) \\ C(1) - P(2) - S(1) \\ C(13) - P(2) - S(1) \\ C(13) - P(2) - S(1) \\ C(5) - P(3) - C(31) \\ C(5) - P(3) - S(2) \\ C(31) - P(3) - S(2) \\ C(55) - P(4) - Li(2) \\ C(55) - P(4) - Li(2) \\ C(56) - P(4) - Li(2) \\ C(56) - P(4) - Li(2) \\ C(51) - P(5) - S(3) \\ C(57) - P(5) - S(3) \\ C(57) - P(6) - S(4) \\ C(87) - P(6) - S(4) \\ C(87) - P(6) - S(4) \\ C(87) - P(6) - S(4) \\ C(43) - O(1) - Li(1) \\ C(50A) - O(2) - C(47) \\ C(47) - O(2) - C(50) \\ C(47) - O(2) - Li(1) \\ C(93) - O(3) - C(96) \\ C(96) - O(3) - Li(2) \\ C(97) - O(4) - C(100) \\ C(100) - O(4) - Li(2) \\ C(2) - C(1) - P(1) \\ C(1) - C(2) - C(3) \\ C(3) - C(2) - C(19) \\ C(3) - C(4) - C(3) \\ C(3) - C(4) - C(25) \\ C(4) - C(5) - P(1) \\ C(12) - C(7) - C(8) \\ C(8) - C(7) - P(2) \\ C(10) - C(9) - C(8) \\ C(12) - C(11) - C(10) \\ C(14) - C(13) - C(18) \\ C(12) - C(11) - C(10) \\ C(14) - C(13) - C(18) \\ C(24) - C(15) - C(14) \\ C(16) - C(17) - C(18) \\ C(24) - C(19) - C(20) \\ C(20) - C(23) - C(24) \\ C(30) - C(25) - C(26) \\ C(26) - C(25) - C(4) \\ C(30) - C(25) - C(26) \\ C(26) - C(25) - C(4) \\ C(30) - C(25) - C(26) \\ C(26) - C(25) - C(4) \\ C(28) - C(27) - C(38) \\ C(34) - C(33) - C(32) \\ C(36) - C(31) - P(3) \\ C(40) - C(39) - C(38) \\ C(40) - C(41) - C(42) \\ O(1) - C(43) - C(44) \\ \end{array}$	102.5(2) 97.6(1) 103.1(2) 115.5(2) 121.5(2) 108.0(2) 111.6(1) 109.9(1) 111.4(2) 112.8(1) 108.4(1) 100.8(2) 111.3(2) 124.4(2) 110.7(2) 113.2(1) 108.9(1) 107.9(2) 11.5(1) 103.7(4) 102.9(7) 109.0(4) 127.4(3) 108.1(4) 105(1) 128.0(3) 109.8(3) 123.1(3) 113.7(3) 123.1(3) 113.7(3) 122.3(3) 113.7(3) 123.6(3) 120.2(4) 120.2(4) 120.3(4) 120.9(5) 119.5(4) 120.9(5) 119.8(4) 120.3(4) 120.3(4) 120.9(5) 119.8(4) 120.3(4) 120.3(4) 120.3(4) 120.5(3) 120.5(3) 120.5(3) 120.5(3) 120.5(3) 120.5(3) 120.8(4) 120.3(4) 120.7(4) 120.3(4)

$\alpha(AE) = \alpha(AA) = \alpha(AD)$	105 0(5)	$\alpha(AA) = \alpha(AE) = \alpha(AC)$	
C(45) - C(44) - C(43)	105.8(5)	C(44) - C(45) - C(46)	105.8(5)
O(1) - C(46) - C(45)	105.3(4)	O(2)-C(47)-C(48)	107.0(4)
C(47) - C(48) - C(49)	105 8(4)	C(50A) - C(49) - C(50)	39 0(8)
C(E03) $C(40)$ $C(40)$		C(E0) = C(40) = C(40)	105 1(5)
C(30A) - C(49) - C(40)	99.7(0)	C(50) = C(49) = C(40)	103.1(5)
O(2) - C(50) - C(49)	102.9(5)	O(2)-C(50A)-C(49)	110(1)
C(52) - C(51) - P(5)	126.7(3)	C(52) - C(51) - P(4)	118.4(3)
P(5) - C(51) - P(4)	1149(2)	C(53) - C(52) - C(51)	1224(3)
P(J) = C(JT) = P(T)	112.0(2)	C(JJ) = C(JZ) = C(JI)	102 (2)
C(53) - C(52) - C(69)	113.9(3)	C(51) - C(52) - C(69)	123.6(3)
C(52) - C(53) - C(54)	125.1(3)	C(55) - C(54) - C(53)	122.5(3)
C(55) - C(54) - C(75)	123 2(3)	C(53) - C(54) - C(75)	114 2(3)
Q(EA) Q(EE) D(E)	126 1(2)	Q(E4) = Q(EE) = D(4)	110 2(2)
C(54) - C(55) - P(6)	120.1(3)	C(54) - C(55) - P(4)	119.3(2)
P(6)-C(55)-P(4)	114.4(2)	C(62)-C(57)-C(58)	118.9(3)
C(62) - C(57) - P(5)	121.7(3)	C(58) - C(57) - P(5)	119.3(3)
C(EQ) = C(EQ) = C(EQ)	120.9(4)	C(EQ) = C(EQ) = C(EQ)	110 1(1)
C(3) - C(3) - C(3)	120.0(4)	C(30) - C(39) - C(00)	
C(61) - C(60) - C(59)	120.5(4)	C(60) - C(61) - C(62)	120.1(4)
C(61) - C(62) - C(57)	120.4(4)	C(64)-C(63)-C(68)	118.5(3)
C(64) - C(63) - P(5)	1246(3)	C(68) - C(63) - P(5)	116 8(3)
$\alpha(\epsilon_2) \alpha(\epsilon_4) \alpha(\epsilon_5)$	120 E(4)	Q(66) Q(65) Q(67)	120.0(3)
C(03) - C(04) - C(00)	120.5(4)	C(66) - C(65) - C(67)	120.4(4)
C(65) - C(66) - C(64)	120.2(4)	C(68)-C(67)-C(65)	119.4(4)
C(67) - C(68) - C(63)	120.9(4)	C(70) - C(69) - C(74)	117.6(3)
C(70) = C(69) = C(52)	100 - 5(2)	C(74) = C(69) = C(52)	1107(2)
C(70) - C(09) - C(32)	101 0(4)	C(74) - C(09) - C(32)	119.7(3)
C(69) - C(70) - C(71)	121.9(4)	C(/2) - C(/1) - C(/0)	119.8(4)
C(73)-C(72)-C(71)	119.3(4)	C(72)-C(73)-C(74)	120.9(4)
C(73) - C(74) - C(69)	120.5(4)	C(80) - C(75) - C(76)	118.4(3)
C(80) - C(75) - C(54)	121 1/21	C(76) - C(75) - C(54)	120 1/1
	101 0(1)		100.4(4)
C(77) - C(76) - C(75)	121.0(4)	C(78)-C(77)-C(76)	120.1(4)
C(77) - C(78) - C(79)	120.3(4)	C(80)-C(79)-C(78)	119.2(4)
C(75) - C(80) - C(79)	121 0 (4)	C(86) - C(81) - C(82)	118 7(4)
C(15) C(00) C(15)	117 0(1)	C(00) C(01) C(02)	104 1(2)
C(86) - C(81) - P(6)	11/.2(3)	C(82) - C(81) - P(6)	124.1(3)
C(83) - C(82) - C(81)	120.2(4)	C(84)-C(83)-C(82)	120.3(4)
C(83) - C(84) - C(85)	120.1(4)	C(84) - C(85) - C(86)	119.9(4)
C(85) - C(86) - C(81)	1208(4)	C(88) - C(87) - C(92)	1187(3)
	110.0(1)	C(00) C(07) C(52)	101 0(2)
C(88) - C(87) - P(6)	119.9(3)	C(92) - C(87) - P(6)	$\perp 2 \perp \cdot 2 (3)$
C(87) - C(88) - C(89)	120.7(3)	C(90)-C(89)-C(88)	120.1(4)
C(91) - C(90) - C(89)	119.6(4)	C(90) - C(91) - C(92)	120.5(3)
C(01) $C(02)$ $C(07)$	120 2(2)	O(2) C(02) C(04)	106 4(E)
C(91) - C(92) - C(07)	120.3(3)	O(3) = C(93) = C(94)	100.4(5)
C(93) - C(94) - C(95)	103.9(6)	C(94A) - C(93A) - O(3)	108(2)
C(93A) - C(94A) - C(95)	114(3)	C(94A)-C(95)-C(96)	102(2)
$C(94\Delta) - C(95) - C(94)$	24(1)	C(96) - C(95) - C(94)	1055(5)
O(2) O(06) O(06)	100 2(2)	O(4) = O(2) = O(2)	105.5(3)
U(3) - U(96) - U(95)	100.2(3)	O(4) = C(97) = C(98)	105.5(4)
C(99A) - C(98) - C(99)	27(1)	C(99A)-C(98)-C(97)	108(1)
C(99) - C(98) - C(97)	105.9(6)	C(100) - C(99) - C(98)	104.2(7)
C(98) - C(99A) - C(100)	108(1)	O(4) - C(100) - C(99)	107 7(5)
O(4) - C(100) - C(203)	105(1)	C(99) = C(100) = C(993)	26 1/21
$\bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_{j=1}^{n} \bigcup_{j=1}^{n} \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_{j=1}^{n} \bigcup_{j=1}^{n} \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_{i=1}^{n} \bigcup_{j=1}^{n} \bigcup_{j$		C(33) = C(100) = C(33A)	20.1(0)
U(105) - C(101) - C(102)	99.2(8)	C(103) - C(102) - C(101)	T07.3(8)
C(102) - C(103) - C(104)	105.6(7)	O(105)-C(104)-C(103)	107.1(8)
C(104) - O(105) - C(101)	109(1)	C(110) - C(106) - C(107)	105.5(8)
O(109) O(107) O(106)	107 2(7)	C(100) O(100) C(107)	107 2(6)
O(100) - C(107) - C(100)	107.2(7)	C(109) = O(100) = C(107)	107.2(0)
O(108) - C(109) - C(110)	107.8(7)	C(106) - C(110) - C(109)	102.5(8)
C(115) - C(111) - O(112)	100.0(7)	C(113)-O(112)-C(111)	106(1)
O(112) - C(113) - C(114)	100(1)	C(115) - C(114) - C(113)	102(2(8))
C(114) $C(115)$ $C(111)$	100(1)	C(117) C(116) C(120)	100 2(0)
C(114) - C(115) - C(111)	109(1)	C(117) - C(110) - C(120)	109.2(0)
C(116) - C(117) - O(118)	109.1(8)	C(117) - O(118) - C(119)	102.5(8)
C(120) - C(119) - O(118)	104.0(8)	C(119)-C(120)-C(116)	105.1(8)
$O(2) - I_{i}(1) - O(1)$	1097(4)	$O(2) - I_i (1) - P(1)$	1231(4)
O(1) - T + (1) - D(1)	107 1/21	O(2) = I + (1) = O(1)	Q2 1/2\
$\cup (\perp) = \sqcup \perp (\perp) = P(\perp)$	100 0(0)	$\bigcup (2) = \Box \perp (1) = \Im (1)$	74.4() 77.4()
$O(1) - L_1(1) - S(1)$	100.8(3)	$P(1) - L_1(1) - S(1)$	77.1(2)
O(2) - Li(1) - S(2)	94.7(3)	O(1) - Li(1) - S(2)	101.5(3)
P(1) - Li(1) - S(2)	76.9(2)	S(1) - Li(1) - S(2)	152.7(3)
-(2) - 1 + (2) - 0(4)	100 6/41	O(2) = T + (2) = D(4)	100 0/01
$\bigcup (3) = \Box \bot (2) = \bigcup (4)$	100.5(4)	$O(3) = \Box \perp (2) = P(4)$	143.9(3)
O(4)-Li(2)-P(4)	127.6(3)	O(3) - Li(2) - S(3)	96.2(3)
O(4) - Li(2) - S(3)	99.2(3)	P(4)-Li(2)-S(3)	77.9(2)
$O(3) - T_1 i (2) - S(4)$	92.9(3)	$O(4) - I_1(2) - S(4)$	100 2(3)
$D(4) = \frac{1}{2} (2) + \frac{1}{2} (4)$	74·7(3) 77 F(3)	O(1) = O(1) O(2) = O(2) = O(1)	164 7/2
г(4)-LI(Z)-S(4)	11.5(2)	$S(3) - \Box \perp (Z) - S(4)$	154./(3)

211b

846.87

P-1

 $C_{50}H_{50}LiO_2P_3S_2$

orange block

10.5650(10)

13.3160(10)

17.5460(10)

73.0770(10)

74.3800(10)

75.7700(10)

multi-scan; 0.9439 min, 0.9538 max

2236.5(3)

2

1.258

0.265

КарраССD МоКα

0.71069 graphite

150.0(10)

27.48

15496 10204

0.0156

I > 2sigma(I)

8291

Fsqd

15

mixed 528

0.1053

0.0383

1.069

0.0471; 0.5647

phi and omega scans

-13 13 ; -17 17 ; -22 22

892

0.22x0.18x0.18 triclinic

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) $\alpha(^{\circ})$ $\beta(^{\circ})$ $\gamma(^{\circ})$ $V(Å^3)$ Ζ $d(g-cm^{-3})$ F(000) $\mu(cm^{-1})$ Absorption corrections Diffractometer X-ray source λ(Å) Monochromator T (K) Scan mode Maximum θ HKL ranges Reflections measured Unique data Rint Reflections used Criterion Refinement type Hydrogen atoms Parameters refined Reflections / parameter wR2 R1 Weights a, b GoF difference peak / hole (e Å⁻³)

Table 3. Bond lengths (A) and angles (deg) for 211b

0.334(0.047) / -0.315(0.047)

S(1) - P(2)	1.9887(6	S(1) - Li(1)	2.469(3)
S(2)-P(3)	1.9678(6	P(1) - C(1)	1.811(2)

345
P(1)-C(5) P(1)-Li(1) P(2)-C(7) P(3)-C(5) P(3)-C(31) O(1)-C(50) O(1)-Li(1) O(2)-C(43) C(1)-C(2) C(2)-C(19) C(4)-C(5) C(7)-C(12) C(8)-C(9) C(10)-C(11) C(13)-C(14) C(14)-C(15) C(16)-C(17) C(19)-C(20) C(20)-C(21) C(22)-C(23) C(25)-C(26) C(26)-C(27) C(28)-C(29) C(31)-C(36) C(32)-C(33) C(34)-C(35) C(37)-C(42) C(38)-C(39) C(40)-C(41) C(43)-C(44) C(45)-C(46) C(49)-C(50)	$\begin{array}{c} 1.821(2)\\ 2.600(3)\\ 1.819(2)\\ 1.779(2)\\ 1.831(2)\\ 1.455(3)\\ 1.921(3)\\ 1.440(3)\\ 1.440(3)\\ 1.404(2)\\ 1.499(2)\\ 1.390(2)\\ 1.390(2)\\ 1.392(2)\\ 1.391(2)\\ 1.380(3)\\ 1.388(2)\\ 1.388(2)\\ 1.388(2)\\ 1.388(2)\\ 1.388(2)\\ 1.388(2)\\ 1.388(2)\\ 1.388(2)\\ 1.388(2)\\ 1.388(2)\\ 1.388(2)\\ 1.388(3)\\ 1.390(2)\\ 1.388(3)\\ 1.378(3)\\ 1.388(3)\\ 1.373(4)\\ 1.389(2)\\ 1.383(2)\\ 1.383(2)\\ 1.382(3)\\ 1.500(3)\\ 1.507(3)\\ 1.500(4)\\ 1.500(4)\\ \end{array}$	P(1) - C(6) $P(2) - C(1)$ $P(2) - C(13)$ $P(3) - C(37)$ $O(1) - C(47)$ $O(1) - C(50A)$ $O(2) - Li(1)$ $C(2) - Li(1)$ $C(2) - C(3)$ $C(3) - C(4)$ $C(4) - C(25)$ $C(7) - C(8)$ $C(9) - C(10)$ $C(11) - C(12)$ $C(13) - C(18)$ $C(15) - C(16)$ $C(17) - C(18)$ $C(19) - C(24)$ $C(21) - C(22)$ $C(23) - C(24)$ $C(25) - C(30)$ $C(27) - C(28)$ $C(29) - C(30)$ $C(31) - C(32)$ $C(33) - C(34)$ $C(35) - C(36)$ $C(37) - C(38)$ $C(39) - C(40)$ $C(41) - C(42)$ $C(44) - C(45)$ $C(47) - C(48)$ $C(49) - C(50A)$	1.831(2) $1.766(2)$ $1.819(2)$ $1.825(2)$ $1.438(2)$ $1.538(8)$ $1.439(2)$ $1.933(3)$ $1.397(2)$ $1.415(2)$ $1.445(2)$ $1.392(2)$ $1.381(3)$ $1.385(3)$ $1.394(2)$ $1.385(2)$ $1.385(2)$ $1.385(2)$ $1.385(2)$ $1.385(2)$ $1.385(2)$ $1.385(2)$ $1.382(2)$ $1.380(3)$ $1.384(2)$ $1.390(3)$ $1.362(4)$ $1.392(3)$ $1.384(2)$ $1.384(2)$ $1.393(2)$ $1.384(2)$ $1.384(2)$ $1.392(3)$ $1.384(2)$ $1.384(2)$ $1.386(2)$ $1.384(2)$ $1.384(2)$ $1.384(2)$ $1.384(2)$ $1.384(2)$ $1.384(2)$ $1.384(2)$ $1.384(2)$ $1.384(2)$ $1.384(2)$ $1.384(2)$ $1.384(2)$ $1.384(2)$ $1.343(8)$
P(2)-S(1)-Li(1)C(1)-P(1)-C(6)C(1)-P(1)-Li(1)C(6)-P(1)-Li(1)C(1)-P(2)-C(13)C(1)-P(2)-S(1)C(13)-P(2)-S(1)C(5)-P(3)-C(31)C(5)-P(3)-S(2)C(31)-P(3)-S(2)C(47)-O(1)-C(50A)C(47)-O(1)-Li(1)C(50A)-O(1)-Li(1)C(50A)-O(1)-Li(1)C(2)-C(1)-P(2)P(2)-C(1)-P(2)P(2)-C(1)-P(1)C(3)-C(2)-C(19)C(2)-C(3)-C(4)C(5)-C(4)-C(25)C(4)-C(5)-P(3)P(3)-C(5)-P(1)C(12)-C(7)-P(2)C(9)-C(8)-C(7)C(11)-C(10)-C(9)C(11)-C(12)-C(7)C(11)-C(13)-P(2)C(13)-C(14)-C(15)C(15)-C(16)-C(17)C(15)-C(16)-C(17)C(17)-C(18)-C(13)C(20)-C(19)-C(2)C(21)-C(20)-C(19)C(23)-C(22)-C(21)C(23)-C(24)-C(19)C(23)-C(24)-C(19)C(26)-C(25)-C(4)C(27)-C(28)-C(29)	$\begin{array}{c} 103.27(7)\\ 101.82(8)\\ 108.2(1)\\ 109.4(1)\\ 110.44(7)\\ 113.60(5)\\ 107.56(5)\\ 114.37(7)\\ 113.90(5)\\ 109.46(6)\\ 97.1(3)\\ 123.2(2)\\ 135.4(3)\\ 121.0(2)\\ 126.1(1)\\ 115.70(8)\\ 122.4(1)\\ 125.9(1)\\ 123.5(1)\\ 129.7(1)\\ 110.98(8)\\ 120.2(1)\\ 120.5(2)\\ 120.1(2)\\ 120.4(2)\\ 120.7(1)\\ 120.7(2)\\ 119.8(2)\\ \end{array}$	$\begin{array}{c} C(1) - P(1) - C(5) \\ C(5) - P(1) - Li(1) \\ C(1) - P(2) - C(7) \\ C(7) - P(2) - C(13) \\ C(7) - P(2) - S(1) \\ C(5) - P(3) - C(37) \\ C(37) - P(3) - C(31) \\ C(37) - P(3) - S(2) \\ C(47) - O(1) - C(50) \\ C(50) - O(1) - C(50A) \\ C(50) - O(1) - Li(1) \\ C(46) - O(2) - C(43) \\ C(50) - O(1) - Li(1) \\ C(46) - O(2) - C(43) \\ C(43) - O(2) - Li(1) \\ C(2) - C(1) - P(1) \\ C(3) - C(2) - C(1) \\ C(1) - C(2) - C(19) \\ C(5) - C(4) - C(3) \\ C(3) - C(4) - C(25) \\ C(4) - C(5) - P(1) \\ C(12) - C(7) - C(8) \\ C(8) - C(7) - P(2) \\ C(10) - C(9) - C(8) \\ C(10) - C(11) - C(12) \\ C(14) - C(13) - C(18) \\ C(18) - C(13) - P(2) \\ C(16) - C(15) - C(14) \\ C(16) - C(17) - C(18) \\ C(20) - C(19) - C(24) \\ C(24) - C(19) - C(2) \\ C(22) - C(21) - C(20) \\ C(22) - C(23) - C(24) \\ C(26) - C(25) - C(30) \\ C(30) - C(25) - C(4) \\ C(28) - C(27) - C(26) \\ C(28) - C(29) - C(30) \\ \end{array}$	$100.27(7) \\ 101.56(8) \\ 131.75(8) \\ 109.39(7) \\ 105.42(8) \\ 110.10(5) \\ 104.33(7) \\ 101.45(7) \\ 112.60(5) \\ 111.6(2) \\ 37.9(3) \\ 123.1(2) \\ 109.1(2) \\ 127.3(2) \\ 118.2(1) \\ 122.9(1) \\ 124.7(1) \\ 124.7(1) \\ 124.7(1) \\ 124.7(1) \\ 124.7(1) \\ 118.7(1) \\ 118.7(1) \\ 118.9(2) \\ 120.9(1) \\ 120.3(2) \\ 119.8(2) \\ 120.3(2) \\ 119.8(2) \\ 120.1(2) \\ 120.0(2) \\ 119.9(1) \\ 119.7(2) \\ 120.9(2) \\ 118.4(1) \\ 120.2(2) \\ 1$

C(29)-C(30)-C(25) C(36)-C(31)-P(3) C(33)-C(32)-C(31) C(33)-C(34)-C(35) C(31)-C(36)-C(35) C(42)-C(37)-P(3) C(42)-C(37)-P(3) C(41)-C(40)-C(39) C(41)-C(42)-C(37) C(41)-C(42)-C(37) C(45)-C(44)-C(43) O(2)-C(46)-C(45) C(47)-C(48)-C(49) C(50A)-C(49)-C(48) O(1)-Li(1)-O(2) O(2)-Li(1)-S(1) O(2)-Li(1)-P(1)	120.6(2) $120.3(2)$ $120.3(2)$ $119.8(2)$ $119.8(1)$ $120.7(2)$ $105.7(2)$ $105.7(2)$ $106.1(4)$ $102.7(2)$ $101.9(2)$ $105.5(2)$ $146.2(2)$	C(36)-C(31)-C(32)C(32)-C(31)-P(3)C(34)-C(33)-C(32)C(34)-C(35)-C(36)C(42)-C(37)-C(38)C(38)-C(37)-P(3)C(38)-C(37)-P(3)C(40)-C(41)-C(42)O(2)-C(43)-C(44)C(44)-C(45)-C(46)O(1)-C(47)-C(48)C(50A)-C(49)-C(50)C(50)-C(49)-C(50)C(50)-C(49)-C(48)C(49)-C(50A)-O(1)O(1)-Li(1)-S(1)O(1)-Li(1)-P(1)S(1)-Li(1)-P(1)	$119.3(2) \\ 120.1(1) \\ 120.0(2) \\ 120.3(2) \\ 119.0(2) \\ 121.1(1) \\ 120.0(2) \\ 120.5(2) \\ 107.2(2) \\ 103.1(2) \\ 105.7(2) \\ 39.7(4) \\ 104.9(2) \\ 106.3(5) \\ 110.2(1) \\ 104.5(1) \\ 84.7(1)$
Compound	212	P3 c5 C4 C3 P1 C1 K1 C6 P2 O1 S1 O2	
Molecular formula	$C_{50}H_{50}KO_2P_3S_2$		
Molecular weight Crystal habit	8/9.03 vermilion block		
Crystal dimensions(mm)	0.20x0.18x0.15		
Crystal system	triclinic		
Space group	P-1		
a(Å)	12.3240(10)		
b(A)	13.1050(10)		
C(A)	13.8440(10) 74 1120(10)		
β(°)	68 1430(10)		
γ(°)	86.0870(10)		
$V(A^3)$	2282.6(3)		
Z	2		
$d(g-cm^3)$	1.279		
$\Gamma(000)$	924		
Absorption corrections	multi-scan : 0.9330	min. 0.9491 max	
Diffractometer	KappaCCD		
X-ray source	ΜοΚα		
$\lambda(\text{\AA})$	0.71069		
Monochromator	graphite		
I (K) Scan mode	150.0(10)		
Maximum A	30.00	15	
HKL ranges	-17 16 : -17 18 : -22	2 22	
Reflections measured	19152		
Unique data	13220		
Rint Beflections and	0.0183		
Criterion	9480 I > 2sigma(I)		
Refinement type	$1 < 2 \operatorname{sigma}(1)$ Fsod		
Hydrogen atoms	mixed		

))

))))))))))))))))

Parameters refined Reflections / parameter wR2 R1 Weights a, b GoF difference peak / hole (e Å ⁻³)	564 16 0.1471 0.0486 0.0800 ; 0.0909 1.092 0.659(0.065) / -0.4	610(0.065)	
Table 3. Bond lengths (A) and angles ((deg) for 212	
K(1) - O(1) K(1) - O(2) K(1) - S(2) # 2 K(1) - C(37) S(1) - P(2) S(2) - K(1) # 2 P(1) - C(1) P(2) - C(7) P(3) - C(31) C(1) - C(2) C(2) - C(19) C(4) - C(5) C(7) - C(8) C(8) - C(9) C(10) - C(11) C(13) - C(14) C(14) - C(15) C(16) - C(17) C(19) - C(24) C(20) - C(21) C(22) - C(23) C(25) - C(26) C(26) - C(27) C(28) - C(29) C(31) - C(32) C(32) - C(33) C(34) - C(35) C(37) - C(38) C(38) - C(39) C(40) - C(41) C(44) - C(45) C(46) - O(1) O(2) - C(50) C(47A) - C(48A) C(49A) - C(50A)	2.711(1) 2.800(2) 3.2962(4) 3.488(1) 1.9768(4) 3.2962(5) 1.824(1) 1.778(1) 1.817(1) 1.817(1) 1.816(1) 1.394(2) 1.394(2) 1.398(2) 1.388(2) 1.387(2) 1.387(2) 1.387(2) 1.387(2) 1.387(2) 1.388(2) 1.387(2) 1.388(2) 1.387(2) 1.379(2) 1.375(2) 1.375(2) 1.375(2) 1.375(2) 1.371(2) 1.420(2) 1.420(2) 1.458(5) 1.432(2) 1.394(2) 1.394(2) 1.394(2) 1.394(2) 1.394(2) 1.394(2) 1.394(2)	K(1) - O(2A) $K(1) - P(1)$ $K(1) - S(1)$ $K(1) - C(43)$ $S(2) - P(3)$ $P(1) - C(5)$ $P(1) - C(6)$ $P(2) - C(13)$ $P(3) - C(5)$ $P(3) - C(5)$ $P(3) - C(25)$ $C(3) - C(4)$ $C(4) - C(25)$ $C(7) - C(12)$ $C(9) - C(10)$ $C(11) - C(12)$ $C(13) - C(18)$ $C(15) - C(16)$ $C(17) - C(18)$ $C(19) - C(20)$ $C(21) - C(22)$ $C(23) - C(24)$ $C(25) - C(30)$ $C(27) - C(28)$ $C(29) - C(30)$ $C(27) - C(28)$ $C(29) - C(30)$ $C(31) - C(36)$ $C(33) - C(34)$ $C(35) - C(42)$ $C(39) - C(40)$ $C(41) - C(42)$ $C(43) - C(44)$ $C(45) - C(46)$ $O(2) - C(47)$ $C(47) - C(48)$ $C(48A) - C(50A)$	2.746(1) 3.2712(5) 3.3793(4) 3.515(2) 1.9775(5) 1.811(1) 1.844(1) 1.844(1) 1.816(1) 1.761(1) 1.410(2) 1.402(1) 1.402(1) 1.499(2) 1.388(2) 1.382(2) 1.384(2) 1.384(2) 1.390(2) 1.379(2) 1.385(2) 1.385(2) 1.385(2) 1.385(2) 1.385(2) 1.385(2) 1.385(2) 1.385(2) 1.385(2) 1.385(2) 1.385(2) 1.385(2) 1.385(2) 1.385(2) 1.388(2) 1.377(2) 1.389(2) 1.389(2) 1.512(3) 1.409(5) 1.40(1) 1.35(6) 1.457(2) 1.520(1)
$\begin{array}{c} O(1)-K(1)-O(2A)\\ O(2A)-K(1)-O(2)\\ O(2A)-K(1)-P(1)\\ O(1)-K(1)-S(2)\#2\\ O(2)-K(1)-S(2)\#2\\ O(2)-K(1)-S(1)\\ O(2)-K(1)-S(1)\\ O(2)-K(1)-S(1)\\ O(2A)-K(1)-C(37)\\ P(1)-K(1)-C(37)\\ P(1)-K(1)-C(37)\\ O(2A)-K(1)-C(43)\\ P(1)-K(1)-C(43)\\ P(1)-K(1)-C(43)\\ P(2)-S(1)-K(1)\\ C(5)-P(1)-C(1)\\ C(1)-P(1)-C(6)\\ C(1)-P(1)-K(1)\\ \end{array}$	102.48(5) $11.84(7)$ $103.61(4)$ $87.36(3)$ $91.36(5)$ $91.55(2)$ $72.61(5)$ $161.88(1)$ $147.72(4)$ $58.90(2)$ $112.39(2)$ $85.46(5)$ $127.44(3)$ $73.44(3)$ $102.84(2)$ $99.49(5)$ $101.63(5)$ $118.28(4)$	$\begin{array}{c} O(1)-K(1)-O(2)\\ O(1)-K(1)-P(1)\\ O(2)-K(1)-P(1)\\ O(2A)-K(1)-S(2)\#2\\ P(1)-K(1)-S(2)\#2\\ O(2A)-K(1)-S(1)\\ P(1)-K(1)-S(1)\\ O(1)-K(1)-C(37)\\ O(2)-K(1)-C(37)\\ O(2)-K(1)-C(37)\\ S(2)\#2-K(1)-C(43)\\ O(2)-K(1)-C(43)\\ O(2)-K(1)-C(43)\\ S(2)\#2-K(1)-C(43)\\ S(2)\#2-K(1)-C(43)\\ P(3)-S(2)-K(1)\#2\\ C(5)-P(1)-C(6)\\ C(5)-P(1)-K(1)\\ C(6)-P(1)-K(1)\\ \end{array}$	114.22(6) 133.57(3) 93.43(5) 89.25(4) 130.43(1) 73.32(3) 60.815(9) 108.92(3) 136.48(6) 84.97(2) 21.86(4) 96.51(7) 100.83(3) 126.82(4) 127.32(2) 101.16(5) 121.73(3) 111.47(4)

C(1) - P(2) - C(13) $C(13) - P(2) - C(7)$ $C(13) - P(2) - S(1)$ $C(5) - P(3) - C(31)$ $C(31) - P(3) - S(2)$ $C(2) - C(1) - P(2)$ $P(2) - C(1) - P(1)$ $C(1) - C(2) - C(19)$ $C(4) - C(3) - C(2)$ $C(5) - C(4) - C(25)$ $C(4) - C(5) - P(3)$ $P(3) - C(5) - P(1)$ $C(8) - C(7) - P(2)$ $C(7) - C(8) - C(9)$ $C(9) - C(10) - C(11)$ $C(11) - C(12) - C(7)$ $C(14) - C(13) - P(2)$ $C(13) - C(14) - C(15)$ $C(15) - C(16) - C(17)$ $C(17) - C(18) - C(13)$ $C(24) - C(19) - C(2)$ $C(21) - C(20) - C(19)$ $C(23) - C(24) - C(19)$ $C(23) - C(24) - C(19)$ $C(23) - C(24) - C(19)$ $C(25) - C(26) - C(27)$ $C(27) - C(28) - C(29)$ $C(29) - C(30) - C(25)$ $C(31) - C(32) - C(33)$ $C(31) - C(32) - C(33)$ $C(33) - C(34) - C(35)$ $C(31) - C(37) - K(1)$ $P(3) - C(37) - K(1)$ $P(3) - C(37) - K(1)$ $C(40) - C(43) - C(44)$ $C(44) - C(43) - K(1)$ $C(46) - C(1) - K(1)$ $C(47) - O(2) - K(1)$	<pre>111.91(5) 102.45(5) 109.13(4) 111.84(6) 103.11(6) 111.29(5) 129.30(8) 112.30(6) 125.0(1) 125.6(1) 124.2(1) 129.52(8) 111.28(6) 121.1(1) 120.7(1) 120.0(1) 120.7(1) 120.7(1) 120.7(1) 120.7(1) 119.6(1) 120.7(1) 119.6(1) 120.7(1) 119.4(1) 121.5(1) 119.8(1) 120.3(1) 120.1(1) 120.1(1) 120.5(1) 120.2(2) 119.7(2) 120.4(2) 121.7(1) 81.63(7) 106.75(5) 120.5(1) 120.7(1) 103.9(2) 105.5(1) 120.0(1) 135.5(2)</pre>	C(1) - P(2) - C(7) $C(1) - P(2) - S(1)$ $C(7) - P(2) - S(1)$ $C(5) - P(3) - C(37)$ $C(5) - P(3) - S(2)$ $C(37) - P(3) - S(2)$ $C(3) - C(2) - C(19)$ $C(5) - C(4) - C(3)$ $C(3) - C(4) - C(25)$ $C(4) - C(5) - P(1)$ $C(8) - C(7) - P(2)$ $C(10) - C(9) - C(8)$ $C(12) - C(11) - C(10)$ $C(14) - C(13) - C(18)$ $C(18) - C(13) - P(2)$ $C(16) - C(15) - C(14)$ $C(16) - C(17) - C(18)$ $C(24) - C(19) - C(20)$ $C(20) - C(21) - C(22)$ $C(20) - C(21) - C(22)$ $C(20) - C(21) - C(24)$ $C(26) - C(25) - C(4)$ $C(26) - C(25) - C(4)$ $C(28) - C(27) - C(26)$ $C(28) - C(29) - C(30)$ $C(30) - C(25) - C(4)$ $C(28) - C(27) - C(26)$ $C(36) - C(31) - P(3)$ $C(34) - C(35) - C(36)$ $C(36) - C(37) - P(3)$ $C(34) - C(37) - P(3)$ $C(42) - C(37) - P(3)$ $C(42) - C(37) - P(3)$ $C(42) - C(37) - P(3)$ $C(41) - C(40) - C(39)$ $C(41) - C(40) - C(39)$ $C(41) - C(44) - C(45)$ $O(1) - C(46) - C(45)$ $C(43) - O(1) - K(1)$ $C(47) - O(2) - C(50)$ $C(50) - O(2) - K(1)$	$\begin{array}{c} 108.88(5)\\ 112.64(4)\\ 111.39(4)\\ 105.16(5)\\ 114.31(4)\\ 110.35(4)\\ 118.33(8)\\ 122.9(1)\\ 112.1(1)\\ 121.6(1)\\ 114.2(1)\\ 114.2(1)\\ 119.1(1)\\ 119.4(1)\\ 119.7(1)\\ 120.5(1)\\ 118.7(1)\\ 118.6(1)\\ 120.2(1)\\ 120.2(1)\\ 120.2(1)\\ 120.2(1)\\ 120.2(1)\\ 120.2(1)\\ 120.2(1)\\ 120.2(1)\\ 120.2(1)\\ 120.2(1)\\ 120.2(1)\\ 120.2(1)\\ 120.2(1)\\ 120.2(1)\\ 120.2(1)\\ 120.2(2)\\ 119.8(1)\\ 121.5(1)\\ 121.5(1)\\ 121.5(1)\\ 121.5(1)\\ 121.5(1)\\ 121.5(1)\\ 121.5(1)\\ 121.5(1)\\ 121.5(1)\\ 121.5(1)\\ 121.5(1)\\ 120.1(2)\\ 118.8(1)\\ 119.6(1)\\ 81.44(8)\\ 120.5(1)\\ 119.3(1)\\ 120.2(1)\\ 45.30(8)\\ 103.9(2)\\ 107.1(1)\\ 112.8(1)\\ 103.1(3)\\ 116.9(3)\\ \end{array}$
C(46) - C(45) - C(44) $C(43) - O(1) - C(46)$ $C(46) - O(1) - K(1)$ $C(47) - O(2) - K(1)$	103.9(2) 105.5(1) 120.0(1) 135.5(2)	O(1) - C(46) - C(45) $C(43) - O(1) - K(1)$ $C(47) - O(2) - C(50)$ $C(50) - O(2) - K(1)$ $C(47) - C(48) - C(48)$	$107.1(1) \\112.8(1) \\103.1(3) \\116.9(3) \\102.1(2)$
C(40) - C(47) - O(2) C(50) - C(49) - C(48) C(47A) - O(2A) - C(49A) C(49A) - O(2A) - K(1) C(47A) - C(48A) - C(50A) C(49A) - C(50A) - C(48A)	105.2(6) 105.72(8) 126.4(1) 105.6(1) 104.8(1)	C(49)-C(40)-C(49) $C(49)-C(50)-O(2)$ $C(47A)-O(2A)-K(1)$ $C(48A)-C(47A)-O(2A)$ $C(50A)-C(49A)-O(2A)$	103.1(8) 113.3(4) 121.2(1) 109.8(1) 108.2(1)

Compound Molecular formula Molecular weight Crystal habit **217** $C_{51}H_{45}LiNOP_3S_2 = C_{47}H_{37}LiNP_3S_2$. THF 851.85 orange block

Crystal dimensions(mm)	0.22x0.22x0.20	
Crystal system	monoclinic	
Space group	$P2_1/c$	
a(Å)	13.7370(10)	
b(Å)	12.3660(10)	
c(Å)	26.4530(10)	
$\alpha(^{\circ})$	90.00	
β(°)	104.7470(10)	
γ(°)	90.00	
$V(Å^3)$	4345.6(5)	
Z	4	
$d(g-cm^{-3})$	1.302	
F(000)	1784	
$\mu(\text{cm}^{-1})$	0.273	
Absorption corrections	multi-scan; 0.9424 min, 0.9475	max
Diffractometer	KappaCCD	
X-ray source	ΜοΚα	
λ(Å)	0.71073	
Monochromator	graphite	
T (K)	150.0(10)	
Scan mode	phi and omega scans	
Maximum θ	30.00	
HKL ranges	-19 18 ; -15 17 ; -37 25	
Reflections measured	68403	
Unique data	12572	
Rint	0.0327	
Reflections used	9396	
Criterion	I > 2sigma(I)	
Refinement type	Fsqd	
Hydrogen atoms	mixed	
Parameters refined	536	
Reflections / parameter	17	
wR2	0.1058	
R1	0.0392	
Weights a, b	0.0518; 2.0526	
GoF	1.002	
difference peak / hole (e Å ⁻³)	0.380(0.055) / -0.308(0.055)	
Table 3. Bond lengths (A)	and angles (deg) for 2	217
S(1)-P(2)	1.9735(5 S(2)-P(3) 1.9945(5)
S(2) - Li(1)	2.459(3) P(1)-C(5) 1.781(1)
P(1) - C(1)	1.825(1) P(1)-C(6) 1.865(2)
P(1) - L1(1) P(2) - C(18)	2.482(3) $P(2)-C(1)$	$1 - \frac{1}{8} \frac{1}{8} \frac{1}{2} $
P(3) - C(5)	1.759(1) $P(3)-C(4)$	2) 1.823(2)
P(3) - C(36)	1.825(2) N(1)-C(1)	1) 1.345(2)
N(1)-C(7)	1.348(2) N(1)-Li(1	1) 2.071(4)
C(1) - C(2)	1.382(2) C(2)-C(3) 1.434(2)
C(2) - C(24)	1.495(2) C(3)-C(4) 1.385(2)
C(4) - C(5) C(6) - C(7)	1.423(2) $C(4) - C(3)1.499(2)$ $C(7) - C(8)$	J = 1.495(2) 1.396(2)
C(8) - C(9)	1 388(3) C(9) - C(1)	1 369(4)
C(10) - C(11)	1.365(3) $C(12)-C(12)$	13) $1.390(2)$
C(12) - C(17)	1.402(2) C(13)-C(1	14) 1.391(2)
C(14)-C(15)	1.386(3) C(15)-C(2	16) 1.377(3)
C(16) - C(17)	1.390(2) C(18)-C(2	23) 1.394(2)
C(18) - C(19) C(20) - C(21)	1.398(2) $C(19)-C(2)$	20 $1.381(2)$ $1.70(2)$
C(20) = C(21) C(22) = C(23)	1 395(2) C(21) - C(2)	22, 1.3/0(2) 29) 1.388(2)
C(24) - C(25)	1.394(2) $C(25)-C(2)$	1.385(2)
C(26) - C(27)	1.380(3) C(27)-C(2	28) 1.378(3)
C(28)-C(29)	1.390(2) C(30)-C(3	31) 1.387(2)

C(30) - C(35) C(32) - C(33) C(34) - C(35) C(36) - C(41) C(38) - C(39) C(40) - C(41) C(42) - C(43) C(44) - C(45) C(46) - C(47) O(1) - C(48) C(48) - C(49B) C(49A) - C(50) C(50) - C(51)	1.394(2) 1.381(3) 1.383(2) 1.400(2) 1.377(3) 1.386(2) 1.393(2) 1.376(3) 1.389(2) 1.441(2) 1.475(5) 1.440(6) 1.497(3)	C(31)-C(32)C(33)-C(34)C(36)-C(37)C(37)-C(38)C(39)-C(40)C(42)-C(47)C(43)-C(44)C(45)-C(46)O(1)-C(51)O(1)-Li(1)C(48)-C(49A)C(49B)-C(50)	1.397(2) 1.383(3) 1.395(2) 1.395(2) 1.383(3) 1.392(2) 1.393(2) 1.387(3) 1.420(2) 1.893(3) 1.568(7) 1.485(5)
P(3) - S(2) - Li(1) C(5) - P(1) - C(6) C(5) - P(1) - Li(1) C(1) - P(2) - C(12) C(1) - P(2) - S(1) C(12) - P(2) - S(1) C(12) - P(2) - S(1) C(5) - P(3) - S(2) C(36) - P(3) - S(2) C(11) - N(1) - Li(1) C(2) - C(1) - P(2) P(2) - C(1) - P(2) P(2) - C(1) - P(2) C(3) - C(4) - C(30) C(4) - C(5) - P(3) P(3) - C(5) - P(1) N(1) - C(7) - C(8) C(8) - C(7) - C(6) C(10) - C(9) - C(8) N(1) - C(11) - C(10) C(13) - C(12) - P(2) C(12) - C(13) - C(14) C(16) - C(15) - C(14) C(16) - C(15) - C(14) C(16) - C(17) - C(12) C(23) - C(18) - P(2) C(20) - C(19) - C(18) C(22) - C(21) - C(20) C(18) - C(23) - C(22) C(29) - C(24) - C(2) C(26) - C(25) - C(24) C(26) - C(25) - C(24) C(30) - C(31) - C(32) C(31) - C(30) - C(4) C(31) - C(30) - C(4) C(34) - C(35) - C(30) C(37) - C(36) - P(3) C(38) - C(37) - C(36) C(38) - C(37) - C(36) C(44) - C(42) - P(3) C(44) - C(45) - C(44) C(44) - C(45) - C(44) C(44) - C(45) - C(46) C(47) - C(42) - P(3) C(42) - C(43) - C(44) C(44) - C(45) - C(46) C(46) - C(47) - C(42) C(51) - 0(1) - Li(1) O(1) - C(48) - C(49B) C(49B) - C(48) - C(49B) C(49B) - C(50) - C(51) O(1) - Li(1) - P(1) S(2) - Li(1) - P(1)	102.83(7) 101.97(7) 104.4(1) 93.6(1) 105.76(7) 111.05(5) 100.40(5) 109.36(7) 114.62(5) 108.01(5) 116.9(2) 132.0(1) 109.63(8) 124.5(1) 124.5(1) 124.5(1) 123.9(1) 118.68(8) 121.8(2) 121.8(2) 121.8(2) 122.4(1) 120.3(2) 119.5(2) 122.4(1) 120.2(2) 119.7(2) 120.2(2) 119.7(2) 120.6(1) 120.2(2) 120.3(2) 120.3(2) 120.3(2) 120.3(2) 120.3(2) 120.4(2) 120.2(2) 120.2(2) 120.2(2) 120.4(2) 120.2(2) 120.2(2) 120.2(2) 120.3(2) 120.4(2) 120.2(2) 120.2(2) 120.2(2) 120.2(2) 120.2(2) 120.4(2) 120.2	C(5) - P(1) - C(1) $C(1) - P(1) - Li(1)$ $C(1) - P(2) - C(18)$ $C(18) - P(2) - C(12)$ $C(18) - P(2) - S(1)$ $C(5) - P(3) - C(42)$ $C(42) - P(3) - C(42)$ $C(42) - P(3) - S(2)$ $C(11) - N(1) - C(7)$ $C(7) - N(1) - Li(1)$ $C(2) - C(1) - P(1)$ $C(1) - C(2) - C(3)$ $C(3) - C(2) - C(24)$ $C(3) - C(4) - C(5)$ $C(5) - C(4) - C(30)$ $C(4) - C(5) - P(1)$ $N(1) - C(7) - C(6)$ $C(7) - C(6) - P(1)$ $N(1) - C(7) - C(6)$ $C(7) - C(8) - C(9)$ $C(11) - C(10) - C(9)$ $C(13) - C(12) - P(2)$ $C(15) - C(14) - C(13)$ $C(15) - C(14) - C(13)$ $C(15) - C(16) - C(17)$ $C(23) - C(18) - C(19)$ $C(19) - C(18) - P(2)$ $C(19) - C(18) - P(2)$ $C(19) - C(20) - C(21)$ $C(21) - C(22) - C(23)$ $C(29) - C(24) - C(25)$ $C(25) - C(24) - C(25)$ $C(27) - C(26) - C(25)$ $C(37) - C(36) - C(41)$ $C(33) - C(32) - C(31)$ $C(35) - C(30) - C(4)$ $C(33) - C(32) - C(31)$ $C(35) - C(34) - C(33)$ $C(37) - C(36) - C(41)$ $C(41) - C(36) - P(3)$ $C(39) - C(40) - C(41)$ $C(43) - C(42) - P(3)$ $C(43) - C(42) - P(3)$ $C(45) - C(44) - C(43)$ $C(49A) - C(50) - C(49B)$ $C(49B) - C(50) - C(51)$ $O(1) - Li(1) - N(1)$ $N(1) - Li(1) - N(1)$ $N(1) - Li(1) - P(1)$	100.22(7) 101.42(7) 147.8(1) 113.54(7) 106.89(7) 109.07(5) 111.50(7) 104.85(7) 108.00(5) 117.8(2) 121.7(1) 118.2(1) 122.3(1) 113.1(1) 122.1(1) 122.1(1) 122.1(1) 122.1(1) 122.1(1) 122.1(1) 122.1(1) 122.2(1) 116.7(1) 109.3(1) 116.7(1) 109.3(1) 116.9(1) 119.2(2) 118.2(2) 119.1(1) 118.9(1) 120.2(2) 120.7(2) 119.5(1) 118.0(1) 120.2(2) 120.3(2) 118.4(1) 119.9(1) 120.4(2) 120.5(2) 119.0(2) 119.0(2) 119.0(2) 119.0(2) 119.2(1) 120.1(2) 120.1(2) 120.3(2) 109.0(2) 117.0(2) 103.5(4) 29.1(2) 109.6(1) 81.6(1)

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) α(°) β(°) γ(°) $V(Å^3)$ Ζ $d(g-cm^{-3})$ F(000) $\mu(\text{cm}^{-1})$ Absorption corrections Diffractometer X-ray source λ(Å) Monochromator T (K) Scan mode Maximum θ HKL ranges Reflections measured Unique data Rint Reflections used Criterion Refinement type Hydrogen atoms Parameters refined Reflections / parameter wR2 R1 Weights a, b GoF difference peak / hole (e Å⁻³)

218 $C_{60}H_{70}N_2NaO_7P_3S_2 = C_{42}H_{34}OP_3S_2$. $C_{18}H_{36}N_2O_6Na$ 1111.20 yellow plate 0.20x0.16x0.10 triclinic P-1 9.1270(10) 17.6240(10) 17.9000(10) 94.9800(10) 98.6500(10) 96.4100(10) 2813.0(4) 2 1.312 1176 0.242 multi-scan; 0.9531 min, 0.9762 max KappaCCD ΜοΚα 0.71069 graphite 150.0(10) phi and omega scans 22.98 -9 10 ; -19 19 ; -19 19 13666 7760 0.0504 5963 I > 2sigma(I) Fsqd mixed 677 8 0.2142 0.0784 0.1143; 5.6195 1.054 0.688(0.093) / -0.475(0.093)

Table 3. Bond lengths (A) and angles (deg) for $\mathbf{218}$

$\begin{split} S(1) - P(2) \\ P(1) - O(1) \\ P(2) - C(7) \\ P(3) - C(5) \\ P(3) - C(31) \\ Na(1) - O(2) \\ Na(1) - O(4) \\ Na(1) - O(3) \\ Na(1) - N(1) \\ O(2) - C(45) \\ O(3) - C(46) \\ O(4) - C(51) \\ O(5) - C(52) \\ O(6) - C(57) \\ O(7) - C(59) \\ N(1) - C(55) \\ N(1) - C(55) \\ N(1) - C(54) \\ N(2) - C(60) \\ C(1) - C(2) \\ C(2) - C(19) \\ C(4) - C(5) \\ C(7) - C(12) \\ C(8) - C(9) \\ C(10) - C(11) \\ C(13) - C(18) \\ C(14) - C(15) \\ C(16) - C(17) \\ C(19) - C(20) \\ C(20) - C(21) \\ C(22) - C(23) \\ C(22) - C(23) \\ C(25) - C(26) \\ C(31) - C(36) \\ C(32) - C(33) \\ C(34) - C(35) \\ C(37) - C(38) \\ C(38) - C(39) \\ C(40) - C(41) \\ C(43) - C(44) \\ C(47) - C(48) \\ C(51) - C(52) \\ C(55) - C(56) \\ C(59) - C(60) \\ \end{split}$	1.968(2) 1.661(4) 1.802(4) 1.816(5) 1.770(4) 1.835(5) 2.478(4) 2.482(4) 2.518(4) 2.720(5) 1.407(7) 1.418(7) 1.400(7) 1.414(7) 1.418(7) 1.424(7) 1.424(7) 1.424(7) 1.424(7) 1.422(8) 1.470(7) 1.390(7) 1.390(7) 1.385(8) 1.37(1) 1.387(1) 1.383(8) 1.37(1) 1.387(7) 1.387(7) 1.384(7) 1.384(7) 1.384(7) 1.382(8) 1.376(8) 1.376(8) 1.376(8) 1.361(8) 1.361(8) 1.361(8) 1.50(1) 1.49(1) 1.50(1)	S(2) - P(3) P(1) - C(5) P(2) - C(1) P(2) - C(13) P(3) - C(37) Na(1) - O(6) Na(1) - O(5) Na(1) - O(7) Na(1) - N(2) O(1) - C(6) O(2) - C(44) O(3) - C(47) O(4) - C(50) O(5) - C(53) O(6) - C(56) O(7) - C(58) N(1) - C(43) N(2) - C(48) N(2) - C(48) N(2) - C(49) C(2) - C(3) C(3) - C(4) C(4) - C(25) C(7) - C(8) C(9) - C(10) C(11) - C(12) C(13) - C(14) C(15) - C(16) C(17) - C(18) C(19) - C(24) C(21) - C(22) C(23) - C(24) C(27) - C(28) C(27) - C(28) C(33) - C(34) C(35) - C(36) C(37) - C(42) C(40) - C(40) C(41) - C(42) C(40) - C(50) C(53) - C(54) C(57) - C(58)	1.974(2) $1.791(5)$ $1.794(5)$ $1.822(5)$ $1.826(5)$ $2.406(4)$ $2.478(4)$ $2.504(4)$ $2.691(5)$ $1.410(7)$ $1.451(7)$ $1.425(7)$ $1.428(7)$ $1.428(7)$ $1.428(7)$ $1.428(7)$ $1.428(7)$ $1.428(7)$ $1.428(7)$ $1.428(7)$ $1.450(8)$ $1.456(7)$ $1.497(7)$ $1.393(6)$ $1.497(7)$ $1.393(6)$ $1.497(7)$ $1.395(7)$ $1.37(1)$ $1.377(8)$ $1.395(7)$ $1.36(1)$ $1.392(8)$ $1.384(8)$ $1.399(7)$ $1.399(7)$ $1.399(7)$ $1.399(7)$ $1.375(8)$ $1.393(7)$ $1.389(8)$ $1.382(7)$ $1.382(7)$ $1.382(7)$ $1.382(7)$ $1.382(7)$ $1.382(7)$ $1.382(7)$ $1.382(7)$ $1.382(7)$ $1.508(8)$ $1.52(1)$ $1.506(8)$
$\begin{array}{c} 0(1) - P(1) - C(5) \\ C(5) - P(1) - C(1) \\ C(1) - P(2) - C(13) \\ C(1) - P(2) - S(1) \\ C(13) - P(2) - S(1) \\ C(5) - P(3) - C(31) \\ C(5) - P(3) - S(2) \\ C(31) - P(3) - S(2) \\ C(31) - P(3) - S(2) \\ O(6) - Na(1) - O(5) \\ O(6) - Na(1) - O(4) \\ O(5) - Na(1) - O(4) \\ O(5) - Na(1) - O(4) \\ O(2) - Na(1) - O(7) \\ O(4) - Na(1) - O(7) \\ O(4) - Na(1) - O(7) \\ O(4) - Na(1) - O(3) \\ O(4) - Na(1) - O(3) \\ O(6) - Na(1) - N(2) \\ O(5) - Na(1) - N(2) \\ O(5) - Na(1) - N(2) \\ O(5) - Na(1) - N(2) \\ O(6) - Na(1) - N(1) \\ O(5) - Na(1) - N(1) \\ O(7) - Na(1) - N(1) \\ O(44) - O(2) - C(44) \\ C(44) - O(2) - Na(1) \\ \end{array}$	$\begin{array}{c} 105.0(2)\\ 98.5(2)\\ 106.8(2)\\ 119.6(2)\\ 111.0(2)\\ 104.9(2)\\ 120.4(2)\\ 110.3(2)\\ 107.2(2)\\ 173.5(2)\\ 66.9(1)\\ 173.3(2)\\ 107.7(2)\\ 66.2(1)\\ 107.0(1)\\ 112.0(1)\\ 111.1(2)\\ 68.6(1)\\ 68.5(1)\\ 69.3(2)\\ 112.3(2)\\ 179.1(2)\\ 114.6(4)\\ 111.3(3) \end{array}$	$\begin{array}{c} O(1) - P(1) - C(1) \\ C(1) - P(2) - C(7) \\ C(7) - P(2) - C(13) \\ C(7) - P(2) - S(1) \\ C(5) - P(3) - C(37) \\ C(37) - P(3) - C(31) \\ C(37) - P(3) - S(2) \\ O(6) - Na(1) - O(2) \\ O(2) - Na(1) - O(2) \\ O(2) - Na(1) - O(5) \\ O(2) - Na(1) - O(4) \\ O(6) - Na(1) - O(7) \\ O(5) - Na(1) - O(7) \\ O(6) - Na(1) - O(7) \\ O(6) - Na(1) - O(3) \\ O(5) - Na(1) - O(3) \\ O(7) - Na(1) - O(3) \\ O(7) - Na(1) - N(2) \\ O(4) - Na(1) - N(2) \\ O(3) - Na(1) - N(1) \\ O(4) - Na(1) - N(1) \\ O(3) - Na(1) - N(1) \\ C(6) - O(1) - P(1) \\ C(45) - O(2) - Na(1) \\ \end{array}$	$102.6(2) \\ 104.4(2) \\ 106.1(2) \\ 108.1(2) \\ 108.1(2) \\ 109.8(2) \\ 109.8(2) \\ 109.8(2) \\ 107.4(2) \\ 108.4(1) \\ 77.7(1) \\ 67.6(1) \\ 77.7(1) \\ 79.1(1) \\ 173.1(2) \\ 107.9(1) \\ 110.6(2) \\ 69.0(1) \\ 68.3(1) \\ 68.5(1) \\ 110.6(1) \\ 111.2(2) \\ 120.9(3) \\ 114.7(4) \\ 114.7(4) \\ 106.1(2) \\ 106.1$

C(46)-O(3)-Na(1)	113.3(3)	C(47)-O(3)-Na(1)	112.3(3)
C(51) - O(4) - C(50)	113,9(4)	C(51) - O(4) - Na(1)	113.5(4)
$C(E_0) = O(A) = N_0(1)$	111 0(2)	$C(E_2) = O(E_1) = C(E_2)$	1152(4)
C(50) = O(4) = Na(1)	111.0(3)	C(52) = O(5) = C(53)	110.5(4)
C(52) - O(5) - Na(1)	112.4(3)	C(53) - O(5) - Na(1)	110.7(3)
C(57) - O(6) - C(56)	113.8(4)	C(57)-O(6)-Na(1)	114.6(3)
$C(56) = O(6) = N_2(1)$	112 1(2)	C(59) = O(7) = C(58)	1111(1)
C(50) = O(0) = Na(1)	110 0(2)	C(39) = O(7) = C(38)	111 1 (2)
C(59) - O(7) - Na(1)	112.8(3)	C(58) - O(7) - Na(1)	$\perp \perp \perp \cdot \perp (3)$
C(55) - N(1) - C(43)	113.1(5)	C(55) - N(1) - C(54)	110.3(5)
C(43) - N(1) - C(54)	110 6(4)	C(55) - N(1) - Na(1)	1070(3)
$O(42)$ $N(1)$ $N_{-}(1)$	100 4(2)	C(55) $N(1)$ $Na(1)$	107.2(2)
C(43) = N(1) = Na(1)	108.4(3)	C(54) = N(1) = Na(1)	107.3(3)
C(48) - N(2) - C(60)	112.3(4)	C(48)-N(2)-C(49)	110.5(5)
C(60) - N(2) - C(49)	110.7(4)	C(48) - N(2) - Na(1)	108.2(3)
$C(60) = N(2) = N_2(1)$	107 0(2)	$C(49) = N(2) = N_2(1)$	1071(3)
C(00) = N(2) = Na(1)	107.9(3)	C(49) = N(2) = Na(1)	107.1(3)
C(2) - C(1) - P(2)	121.5(3)	C(2) - C(1) - P(1)	122.4(3)
P(2) - C(1) - P(1)	115.9(3)	C(1) - C(2) - C(3)	122.6(4)
C(1) - C(2) - C(19)	122 1(4)	C(3) - C(2) - C(19)	115 2(4)
C(1) C(2) C(1)		a(2) a(4) a(5)	101 4(4)
C(4) - C(3) - C(2)	125.4(4)	C(3) = C(4) = C(5)	121.4(4)
C(3) - C(4) - C(25)	116.6(4)	C(5)-C(4)-C(25)	122.0(4)
C(4) - C(5) - P(3)	121.3(4)	C(4) - C(5) - P(1)	122.2(3)
D(2) = C(5) = D(1)	116 A(2)	C(12) = C(7) = C(8)	119 0(5)
P(3) = C(3) = P(1)	110.4(3)	C(12) - C(7) - C(0)	119.0(3)
C(12) - C(7) - P(2)	119.2(4)	C(8) - C(7) - P(2)	121.8(4)
C(7) - C(8) - C(9)	119.2(5)	C(10) - C(9) - C(8)	120.7(5)
C(11) - C(10) - C(9)	120.1(5)	C(10) - C(11) - C(12)	120.1(6)
C(11) - C(12) - C(7)	120 8(5)	C(18) - C(13) - C(14)	118 6(5)
C(11) C(12) C(7)	120.0(3)	C(10) C(13) C(11)	120.0(3)
C(18) - C(13) - P(2)	121.0(4)	C(14) - C(13) - P(2)	120.4(4)
C(15) - C(14) - C(13)	120.8(6)	C(16)-C(15)-C(14)	120.4(6)
C(15) - C(16) - C(17)	120.1(6)	C(16) - C(17) - C(18)	119.7(7)
C(13) = C(18) = C(17)	1204(6)	C(20) = C(19) = C(24)	119 1(5)
C(13) $C(10)$ $C(17)$	$110.0(\Gamma)$	C(20) C(10) C(21)	
C(20) - C(19) - C(2)	118.8(5)	C(24) - C(19) - C(2)	122.1(5)
C(19) - C(20) - C(21)	119.5(6)	C(22)-C(21)-C(20)	121.4(6)
C(21) - C(22) - C(23)	119.4(5)	C(22) - C(23) - C(24)	120.3(6)
C(19) - C(24) - C(23)	120 2(6)	C(26) - C(25) - C(30)	118 1(5)
C(15) = C(21) = C(23)	101.4(4)	C(20) C(25) C(30)	120.4(4)
C(20) - C(25) - C(4)	121.4(4)	C(30) - C(25) - C(4)	120.4(4)
C(25)-C(26)-C(27)	121.1(5)	C(28)-C(27)-C(26)	120.0(5)
C(27) - C(28) - C(29)	119.8(5)	C(28) - C(29) - C(30)	120.4(5)
C(29) - C(30) - C(25)	1205(5)	C(36) - C(31) - C(32)	118 6(5)
Q(26), Q(21), D(2)	120.9(3)	a(22) a(21) p(2)	120.0(3)
C(30) - C(31) - P(3)	120.0(4)	C(32) - C(31) - P(3)	120.5(4)
C(33) - C(32) - C(31)	120.3(5)	C(34) - C(33) - C(32)	120.3(5)
C(33) - C(34) - C(35)	119.5(5)	C(34)-C(35)-C(36)	120.8(5)
C(35) - C(36) - C(31)	1205(5)	C(38) - C(37) - C(42)	1195(4)
C(33) C(30) C(31)	110 E(4)	a(42) a(27) b(2)	1210(1)
C(30) - C(37) - P(3)	110.3(4)	C(42) = C(37) = P(3)	121.9(4)
C(37) - C(38) - C(39)	119.4(5)	C(38)-C(39)-C(40)	120.7(5)
C(41) - C(40) - C(39)	120.0(5)	C(40) - C(41) - C(42)	119.9(5)
C(41) - C(42) - C(37)	1205(5)	N(1) - C(43) - C(44)	1125(5)
O(2) = C(AA) = C(A3)	1126(5)	O(2) - C(45) - C(46)	107 7(5)
O(2) O(3) O(3)		O(2) = O(42) = O(40)	
U(3) - C(46) - C(45)	LO8.0(5)	U(3) - C(47) - C(48)	112.4(5)
N(2) - C(48) - C(47)	112.8(5)	N(2) - C(49) - C(50)	110.9(5)
O(4) - C(50) - C(49)	112.4(5)	O(4) - C(51) - C(52)	107.2(5)
O(5) = O(52) = O(51)	107 0(5)	O(5) - C(53) - C(54)	112 2/5
$\mathbf{U}(\mathbf{J}) = \mathbf{U}(\mathbf{J}\mathbf{Z})^{-\mathbf{U}}(\mathbf{J}\mathbf{Z})$	$\pm \cup / \cdot \cup (\cup)$	$U(J) = U(JJ)^{-}U(JT)$	111 4/5
N(1) - C(54) - C(53)	111.4(4)	IN(I) - C(55) - C(56)	111.4(5)
U(6)-C(56)-C(55)	111.4(5)	O(6)-C(57)-C(58)	106.4(5)
O(7) - C(58) - C(57)	106.3(4)	O(7) - C(59) - C(60)	112.2(5)
N(2) - C(60) - C(59)	113.1(5)		. ,
. , ,	/		

Compound Molecular formula Molecular weight

222 $C_{44}H_{38}Cl_3P_3S_2 = C_{43}H_{37}P_3S_2$.CHCl₃ 830.12

Crystal habit	orange plate		
Crystal dimensions(mm)	0.18x0.18x0.12		
Crystal system	Monoclinic		
Space group	$P2_1/n$		
a(Å)	9 225(5)		
$h(\mathbf{A})$	17593(5)		
$o(\mathbf{A})$	17.595(5)		
	24.920(3)		
$\alpha(1)$	90.00		
β(°)	92.167(5)		
$\gamma(^{\circ})_{2}$	90.00		
V(Å ³)	4042(3)		
Ζ	4		
$d(g-cm^{-3})$	1.364		
F(000)	1720		
$\mu(\text{cm}^{-1})$	0.481		
Absorption corrections	Multi-scan: 0.918	5 min. 0.9446 max	
Diffractometer	KappaCCD	,	
X-ray source	MoKa		
$\lambda(\hat{\lambda})$	0.71060		
λ(A) Monochromotor	0./1009		
1 (K)	150.0(10)		
Scan mode	phi and omega sca	ns	
Maximum θ	28.70		
HKL ranges	-12 12 ; -21 23 ; -3	3 33	
Reflections measured	17199		
Unique data	10430		
Rint	0.0269		
Reflections used	7671		
Criterion	I > 2sigma(I)		
Refinement type	Fsqd		
Hydrogen atoms	mixed		
Parameters refined	471		
Reflections / parameter	16		
wR?	0 1098		
R1	0.0415		
Wajahta a h	0.0413 $0.0440 \cdot 1.0442$		
CoE	0.0449, 1.0445		
$difference neets / hele (a \lambda^{-3})$	1.040	71(0.0(4)	
difference peak / noie (e A ⁺)	0.335(0.064) / -0.5	/1(0.064)	
S(1) - D(2)	1 0675/0	S(2) = D(2)	1 0610(0)
S(1) = P(2)	1.96/5(8	S(2) = P(3)	1.9648(8)
P(1) = C(1)	1.767(2)	P(1) = C(5)	1.768(2)
P(1) - C(6)	1.799(2)	P(1) - C(7)	1.806(2)
P(2) - C(1)	1.789(2)	P(2) - C(8)	1.821(2)
P(2) - C(14)	1.824(2)	P(3)-C(5)	1.792(2)
P(3)-C(38)	1.821(2)	P(3)-C(32)	1.824(2)
C(1)-C(2)	1.410(2)	C(2)-C(3)	1.402(2)
C(2)-C(20)	1.499(2)	C(3)-C(4)	1.411(2)
C(4)-C(5)	1.404(2)	C(4)-C(26)	1.496(2)
C(8)-C(13)	1.389(3)	C(8)-C(9)	1.397(3)
C(9)-C(10)	1.379(3)	C(10)-C(11)	1.381(3)
C(11)-C(12)	1.380(3)	C(12)-C(13)	1.386(3)
C(14)-C(19)	1.391(3)	C(14)-C(15)	1.393(3)
C(15)-C(16)	1.383(3)	C(16)-C(17)	1.380(4)
C(17)-C(18)	1.374(4)	C(18)-C(19)	1.389(3)
C(20)-C(21)	1.389(3)	C(20)-C(25)	1.391(3)
C(21)-C(22)	1.385(3)	C(22)-C(23)	1.378(3)
C(23)-C(24)	1.383(3)	C(24)-C(25)	1.386(3)
C(26)-C(31)	1.387(3)	C(26)-C(27)	1.394(3)
C(27) –C(28)	1.382(3)	C(28)-C(29)	1.381(3)
C(29)-C(30)	1.379(3)	C(30)-C(31)	1.392(3)

C (32) -C (33) C (33) -C (34) C (35) -C (36) C (38) -C (43) C (39) -C (40) C (41) -C (42) C (44) -Cl (3) C (44) -Cl (2)	1.384(3) 1.390(3) 1.374(3) 1.393(2) 1.385(3) 1.378(3) 1.750(2) 1.765(2)	C (32) -C (37) C (34) -C (35) C (36) -C (37) C (38) -C (39) C (40) -C (41) C (42) -C (43) C (44) -Cl (1)	1.390(3) 1.378(3) 1.386(3) 1.396(3) 1.385(3) 1.385(3) 1.758(2)
C(1) - P(1) - C(5)	106.25(8)	C(1) - P(1) - C(6)	115.65(8)
C(5) - P(1) - C(6)	114.6(1)	C(1) - P(1) - C(7)	109.2(1)
C(5) - P(1) - C(7)	109.0(1)	C(6) - P(1) - C(7)	101.9(1)
C(1) - P(2) - C(8)	106.26(8)	C(1) - P(2) - C(14)	109.94(8)
C(8) - P(2) - C(14)	102.4(1)	C(1) - P(2) - S(1)	114.24(7)
C(8) - P(2) - S(1)	111.57(7)	C(14) - P(2) - S(1)	111.67(7)
C(5)-P(3)-C(38)	106.58(8)	C(5)-P(3)-C(32)	110.60(8)
C(38)-P(3)-C(32)	100.23(8)	C(5)-P(3)-S(2)	113.36(7)
C(38)-P(3)-S(2)	111.50(7)	C(32)-P(3)-S(2)	113.60(7)
C(2)-C(1)-P(1)	112.3(1)	C(2)-C(1)-P(2)	124.2(1)
P(1)-C(1)-P(2)	120.9(1)	C(3)-C(2)-C(1)	123.1(2)
C(3)-C(2)-C(20)	113.6(2)	C(1)-C(2)-C(20)	123.3(2)
C(2)-C(3)-C(4)	126.6(2)	C(5)-C(4)-C(3)	122.7(2)
C(5)-C(4)-C(26)	124.3(2)	C(3)-C(4)-C(26)	112.9(2)
C(4)-C(5)-P(1)	113.0(1)	C(4)-C(5)-P(3)	125.6(1)
P(1)-C(5)-P(3)	119.2(1)	C(13)-C(8)-C(9)	119.1(2)
C(13)-C(8)-P(2)	120.0(1)	C(9)-C(8)-P(2)	120.8(1)
C(10) - C(9) - C(8)	120.4(2)	C(9) - C(10) - C(11)	120.2(2)
C(12)-C(11)-C(10)	119.8(2)	C(11)-C(12)-C(13)	120.6(2)
C(12) - C(13) - C(8)	119.9(2)	C(19) - C(14) - C(15)	118.8(2)
C(19) - C(14) - P(2)	119.1(2)	C(15) - C(14) - P(2)	122.0(2)
C(16) - C(15) - C(14)	120.6(2)	C(17) - C(16) - C(15)	120.2(2)
C(18) - C(17) - C(16)	119.6(2)	C(17) = C(18) = C(19)	120.9(2)
C(18) - C(19) - C(14)	119.9(2)	C(21) = C(20) = C(25)	118.8(2)
C(21) = C(20) = C(2)	120.9(2) 120.5(2)	C(23) = C(20) = C(2)	119.8(2)
C(22) = C(21) = C(20)	120.3(2)	C(23) = C(24) = C(21)	120.3(2)
C(22) = C(23) = C(24) C(24) = C(25) = C(20)	119.7(2) 120.4(2)	C(23) = C(24) = C(23)	118 7(2)
C(24) = C(25) = C(20)	120.4(2) 121.0(2)	C(27) = C(26) = C(27)	110.7(2)
C(21) = C(20) = C(26)	121.0(2) 120.6(2)	C(29) - C(28) - C(27)	120 3(2)
C(20) = C(29) = C(28)	120.0(2) 119.8(2)	C(29) - C(30) - C(31)	120.3(2)
C(26) - C(31) - C(30)	120.5(2)	C(33) = C(32) = C(37)	1190(2)
C(33) - C(32) - P(3)	120.9(1)	C(37) - C(32) - P(3)	119.8(2)
C(32) - C(33) - C(34)	120.5(2)	C(35) - C(34) - C(33)	120.0(2)
C(36) - C(35) - C(34)	119.8(2)	C(35) - C(36) - C(37)	120.5(2)
C(36) - C(37) - C(32)	120.1(2)	C(43) - C(38) - C(39)	119.1(2)
C(43)-C(38)-P(3)	118.5(1)	C(39) -C(38) -P(3)	122.0(1)
C(40)-C(39)-C(38)	120.1(2)	C(39)-C(40)-C(41)	120.2(2)
C(42)-C(41)-C(40)	119.9(2)	C(41)-C(42)-C(43)	120.3(2)
C(42)-C(43)-C(38)	120.3(2)	Cl(3)-C(44)-Cl(1)	110.5(1)
Cl(3)-C(44)-Cl(2)	111.2(1)	Cl(1)-C(44)-Cl(2)	110.5(1)

Compound 223 Molecular formula $C_{46}H_{42}ClOP_3S_2 = C_{42}H_{34}ClP_3S_2$. THF 803.28 Molecular weight Crystal habit yellow block Crystal dimensions(mm) 0.20x0.18x0.16 triclinic Crystal system P-1 Space group a(Å) 9.2430(10) b(Å) 18.6220(10) c(Å) 25.1370(10) $\alpha(^{\circ})$ 74.8890(10) β(°) 88.8110(10) $\gamma(^{\circ})$ 76.7560(10) $V(Å^3)$ 4062.5(5) Ζ 4 $d(g-cm^{-3})$ 1.313 F(000) 1680 $\mu(\text{cm}^{-1})$ 0.350 Absorption corrections multi-scan; 0.9332 min, 0.9461 max KappaCCD Diffractometer ΜοΚα X-ray source λ(Å) 0.71069 Monochromator graphite T (K) 150.0(10) Scan mode phi and omega scans Maximum θ 27.48 -12 11 ; -24 24 ; -32 32 HKL ranges Reflections measured 28154 Unique data 28154 Rint 0.0000 Reflections used 22594 Criterion I > 2sigma(I)Refinement type Fsqd Hydrogen atoms mixed Parameters refined 977 Reflections / parameter 23 wR2 0.1721 0.0576 R1 Weights a, b 0.1050; 2.5637 GoF 1.001 difference peak / hole (e Å⁻³) 0.161(0.033) / -0.167(0.033) Note: non-merhohedral twin law found in wingx rotax; refined as a twin BASF = 0.236.

Table 3. Bond lengths (A) and angles (deg) for 223 Cl(1) - P(1)2.0821(7 Cl(2) - P(4)S(2)-P(3) S(1) - P(2)1.9573(7 S(3) - P(5)1.9593(8 S(4) - P(6)

P(1) - C(1) P(1) - C(6) P(2) - C(13) P(3) - C(5) P(3) - C(47) P(5) - C(49) P(6) - C(73) C(1) - C(2) C(2) - C(19) C(4) - C(5) C(7) - C(12) C(8) - C(9) C(10) - C(11) C(13) - C(14) C(14) - C(15) C(16) - C(17) C(19) - C(20) C(20) - C(21) C(22) - C(23) C(22) - C(23) C(26) - C(27) C(28) - C(29) C(31) - C(32) C(32) - C(30) C(26) - C(27) C(28) - C(29) C(31) - C(32) C(32) - C(33) C(34) - C(35) C(37) - C(38) C(38) - C(41) C(43) - C(44) C(44) - C(61) C(46) - C(47) C(49) - C(54) C(50) - C(51) C(52) - C(53) C(55) - C(56) C(56) - C(57) C(58) - C(59) C(61) - C(66) C(56) - C(57) C(58) - C(59) C(61) - C(66) C(62) - C(63) C(64) - C(77) C(79) - C(71) C(73) - C(74) C(74) - C(75) C(76) - C(77) C(79) - C(80) C(80) - C(81) C(82) - C(83) C(80) - C(81) C(82) - C(82) C(80) - C(91) C(80) - C(91) C(80) - C(81) C(80) - C(81)	1.733(2) 1.783(2) 1.823(2) 1.810(2) 1.822(2) 1.741(2) 1.806(2) 1.824(2) 1.819(2) 1.415(3) 1.494(3) 1.494(3) 1.385(4) 1.386(4) 1.386(4) 1.386(4) 1.386(4) 1.390(3) 1.380(4) 1.385(5) 1.388(3) 1.388(4) 1.388(4) 1.387(3) 1.381(4) 1.387(3) 1.38	P(1) - C(5) $P(2) - C(1)$ $P(2) - C(7)$ $P(3) - C(31)$ $P(4) - C(43)$ $P(4) - C(48)$ $P(5) - C(55)$ $P(6) - C(79)$ $C(2) - C(3)$ $C(3) - C(4)$ $C(4) - C(25)$ $C(7) - C(8)$ $C(9) - C(10)$ $C(11) - C(12)$ $C(13) - C(18)$ $C(15) - C(16)$ $C(17) - C(18)$ $C(19) - C(24)$ $C(21) - C(22)$ $C(23) - C(24)$ $C(25) - C(26)$ $C(27) - C(28)$ $C(29) - C(30)$ $C(31) - C(36)$ $C(37) - C(42)$ $C(35) - C(36)$ $C(37) - C(42)$ $C(35) - C(36)$ $C(37) - C(42)$ $C(44) - C(45)$ $C(44) - C(50)$ $C(51) - C(52)$ $C(53) - C(54)$ $C(55) - C(60)$ $C(57) - C(58)$ $C(59) - C(60)$ $C(61) - C(67)$ $C(63) - C(64)$ $C(65) - C(66)$ $C(67) - C(78)$ $C(77) - C(78)$ $C(79) - C(84)$ $C(81) - C(82)$ $C(83) - C(84)$ $C(87) - C(86)$ $C(85) - 0(1)$ $O(2) - C(90)$ $C(89) - C(93)$ $C(90) - C(94)$	1.743(2) $1.807(2)$ $1.807(2)$ $1.824(2)$ $1.822(2)$ $1.730(2)$ $1.790(2)$ $1.823(2)$ $1.810(2)$ $1.821(2)$ $1.398(3)$ $1.405(3)$ $1.497(3)$ $1.405(3)$ $1.386(4)$ $1.383(4)$ $1.384(3)$ $1.362(4)$ $1.383(4)$ $1.390(3)$ $1.364(5)$ $1.385(4)$ $1.395(3)$ $1.370(4)$ $1.393(3)$ $1.392(3)$ $1.388(4)$ $1.387(3)$ $1.387(3)$ $1.387(3)$ $1.387(3)$ $1.387(3)$ $1.382(4)$ $1.382(5)$ $1.385(4)$ $1.382(5)$ $1.310(4)$ $1.27(1)$ $1.58(1)$
C(93)-C(94) $C(1)-P(1)-C(5)$ $C(5)-P(1)-C(6)$ $C(5)-P(1)-C1(1)$ $C(1)-P(2)-C(13)$ $C(13)-P(2)-C(7)$ $C(13)-P(2)-S(1)$ $C(5)-P(3)-C(31)$ $C(31)-P(3)-C(37)$	1.40(1) 108.2(1) 117.8(1) 106.75(7) 107.3(1) 102.0(1) 114.17(8) 109.9(1) 102.5(1)	C(1)-P(1)-C(6) C(1)-P(1)-C1(1) C(6)-P(1)-C1(1) C(1)-P(2)-C(7) C(1)-P(2)-S(1) C(7)-P(2)-S(1) C(5)-P(3)-C(37) C(5)-P(3)-S(2)	117.0(1) 106.58(8) 99.08(7) 106.0(1) 114.85(7) 111.42(7) 105.6(1) 113.03(7)
C(31)-P(3)-S(2) C(43)-P(4)-C(47) C(47)-P(4)-C(48)	112.92(7) 108.1(1) 117.6(1)	C(37)-P(3)-S(2) C(43)-P(4)-C(48) C(43)-P(4)-Cl(2)	112.23(7) 117.5(1) 106.43(8)

a(47) b(4) a(2)	107 01(0)	a(40) p(4) a(2)	00 71(0)
C(47) = P(4) = CI(2)	107.01(8)	C(48) - P(4) - CI(2)	98.71(8)
C(43)-P(5)-C(55)	106.2(1)	C(43)-P(5)-C(49)	106.2(1)
C(55) - P(5) - C(49)	102.7(1)	C(43) - P(5) - S(3)	115.21(8)
C(55) - P(5) - S(3)	114.03(8)	C(49) - P(5) - S(3)	111.43(8)
C(47) - P(6) - C(73)	109 3(1)	C(47) - P(6) - C(79)	105 8(1)
C(47) P(0) C(73)	100.5(1)	C(47) P(0) C(7)	110 07(0)
C(73) - P(6) - C(79)	102.7(1)	C(47) - P(6) - S(4)	112.97(8)
C(73)-P(6)-S(4)	113.4(1)	C(79)-P(6)-S(4)	111.83(7)
C(2) - C(1) - P(1)	113.3(2)	C(2) - C(1) - P(2)	125.0(2)
P(1) - C(1) - P(2)	119.9(1)	C(3) - C(2) - C(1)	122.7(2)
C(3) - C(2) - C(19)	1144(2)	C(1) - C(2) - C(19)	122 7(2)
C(3) - C(2) - C(1)	124.4(2)	C(1) - C(2) - C(1)	122.7(2)
C(2) - C(3) - C(4)	126.9(2)	C(5) - C(4) - C(3)	122.8(2)
C(5)-C(4)-C(25)	123.8(2)	C(3)-C(4)-C(25)	113.2(2)
C(4) - C(5) - P(1)	113.7(2)	C(4) - C(5) - P(3)	125.9(2)
P(1) - C(5) - P(3)	118.0(1)	C(12) - C(7) - C(8)	119,2(2)
C(12) = C(7) = D(2)	1191(2)	C(8) - C(7) - P(2)	121 6(2)
C(12) C(1) F(2)	110 7(2)	C(0) C(7) F(2)	121.0(2)
C(9) = C(0) = C(7)	119.7(2)	C(8) = C(9) = C(10)	120.0(2)
C(11) - C(10) - C(9)	119.5(2)	C(12) - C(11) - C(10)	120.3(2)
C(11) - C(12) - C(7)	120.6(2)	C(14) - C(13) - C(18)	119.2(2)
C(14) - C(13) - P(2)	119.4(2)	C(18) - C(13) - P(2)	121.3(2)
C(13) - C(14) - C(15)	120.6(2)	C(16) - C(15) - C(14)	1199(3)
C(15) $C(16)$ $C(17)$	1100(2)	C(16) $C(13)$ $C(11)$	120 4(2)
C(15) = C(10) = C(17)	119.9(2)	C(10) - C(17) - C(18)	120.4(3)
C(17) - C(18) - C(13)	120.0(2)	C(20) - C(19) - C(24)	118.9(2)
C(20) - C(19) - C(2)	119.4(2)	C(24)-C(19)-C(2)	121.4(2)
C(19) - C(20) - C(21)	119.9(3)	C(22) - C(21) - C(20)	120.7(3)
C(21) - C(22) - C(23)	120.0(3)	C(22) - C(23) - C(24)	119,9(3)
C(23) - C(24) - C(19)	1207(3)	C(30) - C(25) - C(26)	1189(2)
C(23) C(24) C(1)	$110 \Gamma(2)$	C(30) C(23) C(20)	10.0(2)
C(30) - C(25) - C(4)	119.5(2)	C(26) - C(25) - C(4)	121.0(2)
C(27)-C(26)-C(25)	120.3(2)	C(28)-C(27)-C(26)	120.5(2)
C(27) - C(28) - C(29)	119.8(2)	C(28) - C(29) - C(30)	120.4(2)
C(25) - C(30) - C(29)	120.1(2)	C(32) - C(31) - C(36)	119.6(2)
C(32) - C(31) - P(3)	121 7(2)	C(36) - C(31) - P(3)	1186(2)
C(31) - C(32) - C(33)	120 3(2)	C(34) - C(33) - C(32)	110.0(2)
C(31) - C(32) - C(33)	120.3(2)	C(34) - C(33) - C(32)	119.9(2)
C(35) - C(34) - C(33)	120.3(2)	C(34) - C(35) - C(36)	120.3(2)
C(35)-C(36)-C(31)	119.7(2)	C(38)-C(37)-C(42)	119.3(2)
C(38) - C(37) - P(3)	118.4(2)	C(42) - C(37) - P(3)	122.3(2)
C(39) - C(38) - C(37)	120.3(2)	C(38) - C(39) - C(40)	120.3(2)
C(39) - C(40) - C(41)	1195(2)	C(42) - C(41) - C(40)	1204(2)
C(3) C(40) C(41)	120.2(2)	C(42) C(41) C(40)	1120.1(2)
C(41) - C(42) - C(37)	120.2(2)	C(44) = C(43) = P(4)	113.4(2)
C(44) - C(43) - P(5)	124.2(2)	P(4) - C(43) - P(5)	120.6(1)
C(45)-C(44)-C(43)	122.7(2)	C(45)-C(44)-C(61)	114.4(2)
C(43) - C(44) - C(61)	122.7(2)	C(44) - C(45) - C(46)	127.0(2)
C(47) - C(46) - C(45)	122.3(2)	C(47) - C(46) - C(67)	124.3(2)
C(45) - C(46) - C(67)	113 2(2)	C(46) - C(47) - D(4)	1138(1)
C(15) C(10) C(07)	$125 \cdot 2(2)$	D(4) C(47) D(6)	110 5(1)
C(40) - C(47) - P(0)	110 2(0)	P(4) = C(4) = P(0)	118.5(1)
C(54) - C(49) - C(50)	119.3(2)	C(54) - C(49) - P(5)	118./(2)
C(50)-C(49)-P(5)	121.8(2)	C(51)-C(50)-C(49)	119.7(2)
C(50)-C(51)-C(52)	120.4(2)	C(53)-C(52)-C(51)	119.7(2)
C(52) - C(53) - C(54)	120.5(2)	C(53) - C(54) - C(49)	120.3(2)
C(56) - C(55) - C(60)	1195(2)	C(56) - C(55) - P(5)	1195(2)
C(50) - C(55) - D(5)	120.9(2)	C(55) - C(55) - C(57)	120 2(2)
C(00) C(55) F(5)	120.2(2)	C(55) C(50) C(57)	110 7(2)
C(58) - C(57) - C(56)	120.1(2)	C(57) - C(58) - C(59)	119.7(3)
C(58) - C(59) - C(60)	120.4(3)	C(59) - C(60) - C(55)	120.0(2)
C(66)-C(61)-C(62)	119.2(2)	C(66)-C(61)-C(44)	121.5(2)
C(62) - C(61) - C(44)	118.8(2)	C(61) - C(62) - C(63)	119.9(3)
C(64) - C(63) - C(62)	120.5(3)	C(63) - C(64) - C(65)	119.6(2)
C(66) - C(65) - C(64)	120 3(3)	C(61) - C(66) - C(65)	1204(2)
C(00) C(03) C(01)	110 1(2)	C(01) C(00) C(00)	120.1(2)
C(72) - C(67) - C(66)	119.1(2)	C(72) - C(67) - C(46)	120.1(2)
C(68) - C(67) - C(46)	120.1(2)	C(69) - C(68) - C(67)	120.1(2)
C(70)-C(69)-C(68)	120.4(2)	C(69)-C(70)-C(71)	120.0(2)
C(70) - C(71) - C(72)	120.4(3)	C(67) - C(72) - C(71)	120.1(2)
C(74) - C(73) - C(78)	119.5(2)	C(74) - C(73) - P(6)	122.1(2)
C(78) - C(73) - P(6)	118 2(2)	C(73) - C(74) - C(75)	120 0(3)
C(76) = C(75) = C(74)	110 1/2)	C(77) = C(76) = C(75)	100 = (0)
C(70) = C(73) = C(74)	100 0(2)	C(77) = C(70) = C(75)	110 0(3)
C(76) - C(77) - C(78)	$\perp 20.8(3)$	C(77) - C(78) - C(73)	TT 3 .8(3)
C(80) - C(79) - C(84)	119.5(2)	C(80) - C(79) - P(6)	118.5(2)
C(84)-C(79)-P(6)	122.0(2)	C(79) - C(80) - C(81)	120.1(2)
C(82) - C(81) - C(80)	120.2(2)	C(81) - C(82) - C(83)	120.2(2)
C(82) - C(83) - C(84)	1200(2)	C(83) - C(84) - C(79)	1200(2)
C(88) - C(87) - C(86)	102 6(2)	C(87) - C(86) - C(85)	102 1/21
O(1) O(2E) O(2C)	101 E/21	C(07) C(00) - C(05)	110 0(2)
$\cup(\bot) - \cup(\delta 5) - \cup(\delta 6)$	LU4.5(3)	C(05) - O(1) - C(88)	⊥⊥U.∠(3)

O(1)-C(88)-C(87) C(93)-C(89)-C(91) C(91)-C(89)-O(2) O(2)-C(90)-C(92) C(89)-C(91)-C(92) C(89)-C(93)-C(94)

107.3(3)	C(90)-O(2)-C(89)	112.3(4)
111.5(7)	C(93)-C(89)-O(2)	95.1(6)
99.2(5)	O(2)-C(90)-C(94)	89.1(4)
94.1(4)	C(94)-C(90)-C(92)	89.1(5)
106.3(5)	C(91) - C(92) - C(90)	103.6(5)
109.5(7)	C(93)-C(94)-C(90)	105.7(6)

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) $\alpha(^{\circ})$ β(°) $\gamma(^{\circ})$ $V(Å^3)$ Ζ $d(g-cm^{-3})$ F(000) $\mu(cm^{-1})$ Absorption corrections Diffractometer X-ray source λ(Å) Monochromator T (K) Scan mode Maximum θ HKL ranges Reflections measured Unique data Rint Reflections used Criterion Refinement type Hydrogen atoms Parameters refined Reflections / parameter

wR2

R1

224 C₄₂H₃₇BP₃S₂,C₁₆H₃₂KO₇,C₄O 1157.18 translucent light orange plate 0.35x0.25x0.10 monoclinic $P 2_1/m$ 9.3537(2) 20.6676(6) 15.8981(7) 90.00 93.3020(10) 90.00 3068.30(17) 2 1.253 1228 0.285 none; min, max KappaCCD ΜοΚα 0.71073 graphite 100(2)phi scans 25.68 0 11; 0 25; -19 19 5987 5987 0.0627 5068 $I > 2\sigma I$) Fsqd constr 373 13 0.1619

0.0558

Weights a, b GoF	0.0861 ; 4.4990 1.057		
difference peak / hole (e Å ⁻³)	1.140(0.079) / -0.7	(61(0.079)	
Table 3. Bond lengths (A) K-O(3)	and angles (d 2.774(2)	eg) for 224 K-O(3)#4	2.774(2)
K = O(2) K = O(4) P(1) = C(1) # 4 P(1) = C(4) P(2) = C(1)	2.826(2) 2.956(3) 1.801(3) 1.822(4) 1.782(3)	$ \begin{array}{c} K = O(2) \# 1 \\ K = O(5) \\ K = B(1) \\ P(1) - C(1) \\ P(1) - B(1) \\ P(2) - C(5) \end{array} $	2.845(4) 3.343(5) 1.801(3) 1.945(5) 1.821(3)
P(2) - C(11) $O(1) - C(23)$ $O(2) - C(24)$ $O(3) - C(27)$ $O(4) - C(28) # 4$ $O(5) - C(29) # 4$ $C(1) - C(2)$	1.836(3) 1.423(4) 1.423(4) 1.429(4) 1.431(3) 1.426(5) 1.404(4) 1.405(4)	P(2)-S(1) O(1)-C(23)#4 O(2)-C(25) O(3)-C(26) O(4)-C(28) O(5)-C(29) O(2)	1.973(1) 1.423(4) 1.431(4) 1.433(4) 1.431(3) 1.426(5) 1.406(2)
C(1) - C(2) $C(2) - C(17)$ $C(5) - C(10)$ $C(6) - C(7)$ $C(8) - C(9)$ $C(11) - C(12)$ $C(12) - C(13)$	1.404(4) 1.496(4) 1.387(4) 1.383(4) 1.382(4) 1.395(4) 1.390(4)	C(2)-C(3) = C(2) = 4 $C(5)-C(6) = C(7)-C(8)$ $C(9)-C(10) = C(11)-C(16)$ $C(11)-C(16) = C(14)$	1.406(3) 1.406(3) 1.397(4) 1.389(4) 1.388(4) 1.395(4) 1.383(5)
C(14) - C(15) $C(17) - C(22)$ $C(18) - C(19)$ $C(20) - C(21)$ $C(23) - C(24)$ $C(27) - C(28)$ $C(30) - C(30) # 4$	1.385(5) 1.392(4) 1.391(4) 1.376(5) 1.505(5) 1.496(4) 1.435(9)	C(15) - C(16) $C(17) - C(18)$ $C(19) - C(20)$ $C(21) - C(22)$ $C(25) - C(26)$ $C(29) - C(30)$ $O(6) - C(34)$	1.391(5) 1.396(4) 1.380(5) 1.386(5) 1.506(5) 1.482(6) 1.408(8)
O(6)-C(31) C(31)-C(32) C(32)-C(33) C(33)-C(34)	1.445(9) 1.496(9) 1.467(9) 1.442(8)	O(6)-O(6)#4 C(31)-C(31)#4 C(32)-C(31)#4 C(34)-O(6)#4	1.74(2) 1.81(4) 1.496(9) 1.408(8)
O(3) - K - O(3) #4 O(3) #4 - K - O(1) O(3) #4 - K - O(2) #4 O(3) - K - O(2) O(1) - K - O(2) O(1) - K - O(5) O(2) - K - O(5) O(2) #4 - K - O(4) O(2) #4 - K - O(4) O(3) #4 - K - B(1) O(2) #4 - K - B(1) O(5) - K - B(1) O(1) - P(1) - C(1) C(1) - P(1) - C(4) C(1) - P(1) - B(1) C(1) - P(2) - C(5) C(5) - P(2) - C(11) C(24) - O(2) - C(25) C(28) #4 - O(4) - C(28) C(2) - C(1) - P(1) P(2) - C(1) - P(1) P(2) - C(1) - P(1) C(1) - C(2) - C(17) C(2) - C(2) + 4	$116.9(1) \\ 121.21(5) \\ 60.09(6) \\ 60.09(6) \\ 61.27(5) \\ 93.84(6) \\ 74.4(1) \\ 74.45(6) \\ 58.93(5) \\ 114.40(5) \\ 87.7(1) \\ 99.28(6) \\ 93.50(6) \\ 154.7(1) \\ 102.0(2) \\ 103.9(1) \\ 121.1(1) \\ 107.4(1) \\ 100.3(1) \\ 112.3(1) \\ 114.3(2) \\ 111.1(2) \\ 109.7(3) \\ 122.2(2) \\ 119.3(2) \\ 124.1(2) \\ 126.0(4) \\ \end{array}$	$\begin{array}{c} O(3) - K - O(1) \\ O(3) - K - O(2) \# 4 \\ O(1) - K - O(2) \# 4 \\ O(3) \# 4 - K - O(2) \\ O(2) \# 4 - K - O(2) \\ O(3) \# 4 - K - O(5) \\ O(2) \# 4 - K - O(5) \\ O(3) - K - O(4) \\ O(1) - K - O(4) \\ O(1) - K - O(4) \\ O(2) - K - O(4) \\ O(2) - K - B(1) \\ O(1) - K - D(1) \\ O(1) - K - D(1) \\ O(1) - B(1) \\ O(1) - C(2) - C(1) \\ O(1) - C(1) \\ O(1) - C(1) \\ O(1) \\ $	$\begin{array}{c} 121.21(5)\\ 167.21(7)\\ 61.27(5)\\ 167.21(7)\\ 119.8(1)\\ 93.84(6)\\ 74.45(6)\\ 58.93(5)\\ 162.1(1)\\ 114.40(5)\\ 99.28(6)\\ 80.3(1)\\ 93.50(6)\\ 117.6(1)\\ 103.9(1)\\ 121.1(1)\\ 102.4(2)\\ 109.1(1)\\ 115.3(1)\\ 115.3(1)\\ 111.2(1)\\ 115.3(1)\\ 111.4(2)\\ 106.9(4)\\ 115.5(2)\\ 122.8(3)\\ 112.8(3)\\ 119.5(3)\end{array}$
C(10)-C(5)-P(2) C(7)-C(6)-C(5) C(9)-C(8)-C(7) C(5)-C(10)-C(9)	119.0(2) 119.7(3) 119.7(3) 120.4(3)	C(6)-C(5)-P(2) C(6)-C(7)-C(8) C(8)-C(9)-C(10) C(12)-C(11)-C(16)	121.0(2) 120.6(3) 120.0(3) 118.7(3)

Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) $\alpha(^{\circ})$ β(°) $\gamma(^{\circ})$ $V(Å^3)$ Ζ $d(g-cm^{-3})$ F(000) $\mu(cm^{-1})$ Absorption corrections Diffractometer X-ray source λ(Å) Monochromator T (K) Scan mode Maximum θ HKL ranges Reflections measured Unique data

Rint

Criterion Refinement type

Reflections used

Hydrogen atoms

KappaCCD ΜοΚα 0.71073 graphite 100(2)phi scans 25.68 -16 16 ; -17 16 ; -21 21 24573 6730 0.0706 4970 $I > 2\sigma I$)

Fsqd

constr

Parameters refined Reflections / parameter wR2 R1 Flack's parameter Weights a, b GoF difference peak / hole (e Å ⁻³)	426 11 0.1095 0.0515 0.37(9) 0.0350 ; 0.5221 1.018 0.238(0.060) / -0.	288(0.060)	
Table 3. Bond lengths	(A) and angles	(deg) for 225	
$\begin{array}{c} P(1) - C(5) \\ P(1) - C(1) \\ P(2) - C(7) \\ P(2) - S(1) \\ P(3) - C(31) \\ P(3) - S(2) \\ C(1) - H(1) \\ C(2) - C(19) \\ C(3) - H(3) \\ C(4) - C(25) \\ C(6) - H(6B) \\ C(7) - C(12) \\ C(8) - C(9) \\ C(9) - C(10) \\ C(10) - C(11) \\ C(11) - C(12) \\ C(12) - H(12) \\ C(13) - C(14) \\ C(14) - H(14) \\ C(15) - H(15) \\ C(16) - H(16) \\ C(17) - H(17) \\ C(19) - C(20) \\ C(20) - C(21) \\ C(21) - C(22) \\ C(22) - C(23) \\ C(22) - C(23) \\ C(23) - C(24) \\ C(24) - H(24) \\ C(25) - C(30) \\ C(26) - H(26) \\ C(27) - H(27) \\ C(28) - H(28) \\ C(29) - H(29) \\ C(31) - C(32) \\ C(32) - C(33) \\ C(33) - C(34) \\ C(34) - C(35) \\ C(35) - C(36) \\ C(36) - H(36) \\ C(37) - C(42) \\ C(38) - H(38) \\ C(39) - H(39) \\ C(40) - H(40) \\ C(41) - H(41) \\ \end{array}$	$1.830(4) \\ 1.872(4) \\ 1.872(4) \\ 1.828(4) \\ 1.953(2) \\ 1.812(4) \\ 1.970(2) \\ 0.9800 \\ 1.477(5) \\ 0.9300 \\ 1.489(5) \\ 0.9600 \\ 1.395(6) \\ 1.394(6) \\ 1.382(6) \\ 1.382(6) \\ 1.382(6) \\ 1.382(6) \\ 1.383(7) \\ 1.393(6) \\ 0.9300 \\ 0.9300 \\ 0.9300 \\ 0.9300 \\ 0.9300 \\ 1.397(5) \\ 1.387(6) \\ 1.385(6) \\ 1.382(6) \\ 0.9300 \\ 1.394(6) \\ 1.382(6) \\ 0.9300 \\ 0.9300 \\ 0.9300 \\ 0.9300 \\ 0.9300 \\ 1.389(5) \\ 1.405(6) \\ 1.380(6) \\ 0.9300 \\ 1.393(6) \\ 0.9300 \\ 1.416(5) \\ 0.9300 \\ 0.9300 \\ 0.9300 \\ 0.9300 \\ 1.416(5) \\ 0.9300 \\ 0.930 $	P(1)-C(6) P(2)-C(13) P(2)-C(1) P(3)-C(37) P(3)-C(5) C(1)-C(2) C(2)-C(3) C(3)-C(4) C(4)-C(5) C(6)-H(6A) C(6)-H(6C) C(7)-C(8) C(8)-H(8) C(9)-H(9) C(10)-H(10) C(11)-H(11) C(13)-C(18) C(14)-C(15) C(15)-C(16) C(16)-C(17) C(17)-C(18) C(18)-H(18) C(19)-C(24) C(20)-H(20) C(21)-H(21) C(22)-H(22) C(23)-H(23) C(25)-C(26) C(26)-C(27) C(27)-C(28) C(28)-C(29) C(29)-C(30) C(30)-H(30) C(31)-C(36) C(32)-H(32) C(33)-H(33) C(34)-H(34) C(35)-H(35) C(37)-C(38) C(39)-C(40) C(41)-C(42) C(42)-H(42)	$1.848(4) \\ 1.809(4) \\ 1.802(4) \\ 1.813(4) \\ 1.525(5) \\ 1.351(5) \\ 1.455(5) \\ 1.381(5) \\ 0.9600 \\ 0.9600 \\ 1.395(6) \\ 0.9300 \\ 0.9300 \\ 0.9300 \\ 0.9300 \\ 0.9300 \\ 1.398(5) \\ 1.384(5) \\ 1.386(6) \\ 1.386(6) \\ 1.395(6) \\ 0.9300 \\ 1.395(6) \\ 0.9300 \\ 0.9300 \\ 1.395(6) \\ 1.395(6) \\ 1.382(6) \\ 1.385(6) \\ 1.385(6) \\ 1.385(6) \\ 0.9300 \\ 1.385(6) \\ 1.385(6) \\ 0.9300 \\ 0.9300 \\ 1.385(6) \\ 0.9300 \\ 0.9300 \\ 0.9300 \\ 1.385(6) \\ 0.9300 \\ 0.930$
C(5)-P(1)-C(6) C(6)-P(1)-C(1) C(13)-P(2)-C(1) C(13)-P(2)-S(1) C(1)-P(2)-S(1) C(37)-P(3)-C(5) C(37)-P(3)-S(2) C(5)-P(3)-S(2) C(2)-C(1)-P(1) C(2)-C(1)-H(1) P(1)-C(1)-H(1) C(3)-C(2)-C(1)	101.5(2) 97.3(2) 103.7(2) 112.3(1) 115.3(1) 111.1(2) 110.9(1) 108.8(1) 113.9(3) 105.6 105.6 119.4(4)	$\begin{array}{c} C(5) - P(1) - C(1) \\ C(13) - P(2) - C(7) \\ C(7) - P(2) - C(1) \\ C(7) - P(2) - S(1) \\ C(37) - P(3) - C(31) \\ C(31) - P(3) - C(5) \\ C(31) - P(3) - S(2) \\ C(2) - C(1) - P(2) \\ P(2) - C(1) - P(1) \\ P(2) - C(1) - H(1) \\ C(3) - C(2) - C(19) \\ C(19) - C(2) - C(1) \end{array}$	100.8(2) 108.4(2) 104.3(2) 112.1(1) 106.6(2) 109.6(2) 109.9(1) 112.4(3) 112.8(2) 105.6 120.5(4) 120.2(3)

C(2)-C(3)-C(4) C(4)-C(3)-H(3) C(5)-C(4)-C(25)	128.0(4) 116.0 123.9(4) 124.8(2)	C(2)-C(3)-H(3) C(5)-C(4)-C(3) C(3)-C(4)-C(25)	116.0 121.9(4) 114.2(3)
P(3)-C(5)-P(3) P(1)-C(6)-H(6B) P(1)-C(6)-H(6C)	124.8(3) 113.5(2) 109.5 109.5	P(1) - C(6) - H(6A) H(6A) - C(6) - H(6B) H(6A) - C(6) - H(6C)	109.5 109.5 109.5
H(6B)-C(6)-H(6C)	109.5	C(12)-C(7)-C(8)	119.5(4)
C(12)-C(7)-P(2)	118.4(3)	C(8)-C(7)-P(2)	122.0(3)
C(9)-C(8)-C(7)	119.6(4)	C(9)-C(8)-H(8)	120.2
C(7)-C(8)-H(8)	120.2	C(10)-C(9)-C(8)	120.8(4)
C(10)-C(9)-H(9)	119.6	C(8)-C(9)-H(9)	119.6
C(9)-C(10)-C(11)	119.6(4)	C(9)-C(10)-H(10)	120.2
C(11) - C(10) - H(10)	120.2	C(10)-C(11)-C(12)	120.4(4)
C(10) - C(11) - H(11)	119.8	C(12)-C(11)-H(11)	119.8
C(7) - C(12) - C(11)	120.0(4)	C(7)-C(12)-H(12)	120.0
C(11) - C(12) - H(12)	120.0	C(18)-C(13)-C(14)	118.7(4)
C(18)-C(13)-P(2)	117.4(3)	C(14)-C(13)-P(2)	123.5(3)
C(15)-C(14)-C(13)	119.9(4)	C(15)-C(14)-H(14)	120.1
C(13)-C(14)-H(14)	120.1	C(14)-C(15)-C(16)	121.2(4)
C(14)-C(15)-H(15)	119.4	C(16)-C(15)-H(15)	119.4
C(15)-C(16)-C(17)	119.7(4)	C(15)-C(16)-H(16)	120.2
C(17)-C(16)-H(16)	120.2	C(16)-C(17)-C(18)	119.6(4)
C(16) - C(17) - H(17)	120.2	C(18)-C(17)-H(17)	120.2
C(17) - C(18) - C(13)	120.9(4)	C(17)-C(18)-H(18)	119.5
C(13) - C(18) - H(18)	119.5	C(20)-C(19)-C(24)	118.0(4)
C(20) - C(19) - C(2)	120.9(4)	C(24)-C(19)-C(2)	121.0(4)
C(21)-C(20)-C(19)	121.0(4)	C(21)-C(20)-H(20)	119.5
C(19)-C(20)-H(20)	119.5	C(22)-C(21)-C(20)	120.3(4)
C(22)-C(21)-H(21)	119.9	C(20)-C(21)-H(21)	119.9
C(21)-C(22)-C(23)	119.3(4)	C(21)-C(22)-H(22)	120.4
C(23)-C(22)-H(22)	120.4	C(24)-C(23)-C(22)	120.3(4)
C(24)-C(23)-H(23)	119.8	C(22)-C(23)-H(23)	119.8
C(23) - C(24) - C(19)	121.1(4)	C(23)-C(24)-H(24)	$119.5 \\ 118.9(4) \\ 120.4(4) \\ 119.5 $
C(19) - C(24) - H(24)	119.5	C(26)-C(25)-C(30)	
C(26) - C(25) - C(4)	120.5(4)	C(30)-C(25)-C(4)	
C(25) - C(26) - C(27)	120.9(4)	C(25)-C(26)-H(26)	
C(27)-C(26)-H(26)	119.5	C(28)-C(27)-C(26)	119.8(4)
C(28)-C(27)-H(27)	120.1	C(26)-C(27)-H(27)	120.1
C(27)-C(28)-C(29)	119.8(4)	C(27)-C(28)-H(28)	120.1
C(29)-C(28)-H(28)	120.1	C(30)-C(29)-C(28)	119.9(4)
C(30)-C(29)-H(29)	120.1	C(28)-C(29)-H(29)	120.1
C(29)-C(30)-C(25)	120.7(4)	C(29)-C(30)-H(30)	119.7
C(25) - C(30) - H(30) C(32) - C(31) - P(3) C(31) - C(32) - C(33) C(33) - C(32) - H(32)	$119.7 \\ 123.9(3) \\ 120.0(4) \\ 120.0$	C(32)-C(31)-C(36) C(36)-C(31)-P(3) C(31)-C(32)-H(32) C(34)-C(33)-C(32)	$ \begin{array}{c} 119.3(4) \\ 116.8(3) \\ 120.0 \\ 119.9(4) \end{array} $
C(34)-C(33)-H(33)	120.1	C(32)-C(33)-H(33)	120.1
C(33)-C(34)-C(35)	120.0(4)	C(33)-C(34)-H(34)	120.0
C(35)-C(34)-H(34)	120.0	C(36)-C(35)-C(34)	120.0(4)
C(36)-C(35)-H(35)	120.0	C(34)-C(35)-H(35)	120.0
C(35)-C(36)-C(31)	120.8(4)	C(35)-C(36)-H(36)	119.6
C(31)-C(36)-H(36)	119.6	C(38)-C(37)-C(42)	118.6(4)
C(38) - C(37) - P(3)	122.0(3)	C(42)-C(37)-P(3)	119.2(3)
C(39) - C(38) - C(37)	120.4(4)	C(39)-C(38)-H(38)	119.8
C(37) - C(38) - H(38)	119.8	C(38)-C(39)-C(40)	120.3(4)
C(38) - C(39) - H(39)	119.9	C(40)-C(39)-H(39)	119.9
C(41)-C(40)-C(39)	119.5(4)	C(41)-C(40)-H(40)	120.2
C(39)-C(40)-H(40)	120.2	C(40)-C(41)-C(42)	121.0(4)
C(40)-C(41)-H(41)	119.5	C(42)-C(41)-H(41)	119.5
C(41)-C(42)-C(37) C(37)-C(42)-H(42)	120.2(4) 119.9	C(41)-C(42)-H(42)	119.9

II. Chapitre 3

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) $\alpha(^{\circ})$ β(°) $\gamma(^{\circ})$ $V(Å^3)$ Ζ $d(g-cm^{-3})$ F(000) $\mu(\text{cm}^{-1})$ Absorption corrections Diffractometer X-ray source λ(Å) Monochromator T (K) Scan mode Maximum θ HKL ranges Reflections measured Unique data Rint Reflections used Criterion Refinement type Hydrogen atoms Parameters refined Reflections / parameter wR2 R1 Flack's parameter Weights a, b GoF difference peak / hole (e Å⁻³)

302 $C_{46}H_{42}Cl_3P_3PdS_2 = C_{45}H_{40}ClP_3PdS_2$. CH_2Cl_2 964.62 yellow plate 0.20x0.16x0.03 Orthorhombic $Pna2_1$ 19.482(5) 24.081(5) 9.337(5) 90.00 90.00 90.00 4380(3) 4 1.463 1968 0.844 0.8493 min, 0.9751 max KappaCCD ΜοΚα 0.71069 graphite 150.0(10) phi and omega scans 21.96 -20 20 ; -25 25 ; -9 9 24182 5292 0.1142 4122 I > 2sigma(I) Fsqd mixed 497 8 0.1106 0.0475 0.01(4) 0.0467; 4.04 1.028

0.603(0.067) / -0.419(0.067)

TABLE XX. Bond lengths (A) and angles (deg) for 302

	2 1 9 0 (2)		2 217(2)
Pa(1)-P(1)	2.180(2)	Pa(1)-S(2)	2.31/(2)
Pd(1)-S(1)	2.321(2)	Pd(1)-Cl(1)	2.377(3)
S(1) - P(2)	2.037(3)	S(2) - P(3)	2.031(4)
D(1) C(5)	1 7 61 (7)	D(1) C(1)	1 762(7)
P(1) = C(3)	1./01(/)	P(1) = C(1)	1.762(7)
P(1)-C(42)	1.820(8)	P(2)-C(1)	1.760(7)
P(2) - C(6)	1 791(8)	P(2) = C(12)	1 797 (7)
I(2) C(0)	1 752(0)	P(2) = Q(2C)	1 70 (1)
P(3) - C(5)	1./58(8)	P(3) = C(36)	1./8(1)
P(3)-C(30)	1.816(7)	C(1)-C(2)	1.40(1)
C(2) - C(3)	$1 \ 43(1)$	C(2) - C(18)	1 49(1)
$\mathcal{O}(2)$ $\mathcal{O}(3)$	1 41 (1)	$\mathcal{C}(2)$ $\mathcal{C}(10)$	1 10(1)
C(3) - C(4)	\perp .4 \perp (\perp)	C(4) - C(5)	1.40(1)
C(4)-C(24)	1.49(1)	C(6)-C(7)	1.40(1)
C(6) - C(11)	1 40(1)	C(7) - C(8)	1 36(1)
	1 20(1)	$\mathcal{C}(7) \mathcal{C}(0)$	1.26(1)
C(8) - C(9)	1.38(1)	C(9) - C(10)	1.36(1)
C(10)-C(11)	1.37(1)	C(12)-C(17)	1.39(1)
C(12) - C(13)	1 39(1)	C(13) - C(14)	1 39(1)
C(12) C(13)	1 - 2 - (1)	C(15) C(11)	1 40(1)
C(14) - C(15)	1.36(1)	C(15) - C(16)	1.40(1)
C(16)-C(17)	1.40(1)	C(18)-C(19)	1.37(1)
C(18) - C(23)	1 37(1)	C(19) - C(20)	1 39(1)
	1 07 (1)	(20)	1 0 4 (1)
C(20) - C(21)	1.3/(1)	C(21) - C(22)	1.34(1)
C(22)-C(23)	1.36(1)	C(24)-C(29)	1.38(1)
C(24) - C(25)	$1 \ 41 \ (1)$	C(25) - C(26)	1 39(1)
$\bigcirc (27) \bigcirc (27)$	エ・ユエ (エノ 1 つワ / 1)	(27) (20)	$\pm \cdot \bigcirc \bigcirc (\pm)$
C(26)-C(27)	⊥.3/(⊥)	C(27) - C(28)	1.38(1)
C(28)-C(29)	1.39(1)	C(30)-C(31)	1.36(1)
C(30) - C(35)	1 40(1)	C(31) - C(32)	$1 \ 40(1)$
	1 20 (0)	C(31) C(32)	1 26(1)
C(32)-C(33)	1.38(2)	C(33) - C(34)	1.36(1)
C(34)-C(35)	1.38(1)	C(36)-C(41)	1.38(1)
C(36) - C(37)	1 39(1)	C(37) - C(38)	1 36(1)
	1 07 (1)	e(37) e(30)	1.20(1)
C(38) - C(39)	1.3/(1)	C(39) - C(40)	1.39(1)
C(40)-C(41)	1.35(1)	C(42)-C(43)	1.46(1)
C(43) - C(44)	1 49(2)	C(44) - C(45)	1 35(2)
C(43) $C(44)$	1.79(2)	C(44) C(45)	1.55(2)
CI(2) - C(46)	1./4(1)	CL(3) - C(46)	1.72(1)
P(1) - Pd(1) - S(2)	88 09(8)	P(1) - Pd(1) - S(1)	87 32 (8)
1(1) 10(1) 0(2)		$\Gamma(1) = \Gamma(1) = O(1)$	1 (0 5 (1))
S(2) - Pa(1) - S(1)	1/2.9(1)	P(1) - Pa(1) - CI(1)	168.5(1)
S(2)-Pd(1)-Cl(1)	91.73(8)	S(1)-Pd(1)-Cl(1)	93.84(8)
P(2) - S(1) - Pd(1)	104.9(1)	P(3) - S(2) - Pd(1)	101.8(1)
C(E) D(1) C(1)	1024(4)	C(E) D(1) C(42)	110 9 (4)
C(3) = P(1) = C(1)	103.4(4)	C(3) = P(1) = C(42)	110.0(4)
C(1)-P(1)-C(42)	103.9(3)	C(5)-P(1)-Pd(1)	115.0(3)
C(1)-P(1)-Pd(1)	115.7(3)	C(42)-P(1)-Pd(1)	107.5(3)
C(1) - D(2) - C(6)	111 0 (1)	C(1) = D(2) = C(12)	1110(1)
C(1) - F(2) - C(0)	111.0(4)	C(1) = P(2) = C(12)	114.0(4)
C(6)-P(2)-C(12)	104.6(4)	C(1) - P(2) - S(1)	107.6(3)
C(6)-P(2)-S(1)	109.7(3)	C(12)-P(2)-S(1)	108.3(3)
C(5) = P(3) = C(36)	1109(1)	C(5) = P(3) = C(30)	115 9(3)
C(3) I(3) C(30)	10.5(4)	C(5) I(5) C(50)	100 0 (3)
C(36) - P(3) - C(30)	105.5(4)	C(5) - P(3) - S(2)	107.7(3)
C(36)-P(3)-S(2)	110.1(3)	C(30)-P(3)-S(2)	106.7(3)
C(2) - C(1) - P(2)	129 4 (5)	C(2) - C(1) - P(1)	117 0(5)
\bigtriangledown $(-) \land (+) (+) \land (+) \land (+) \land (+) \land (+) (+ $		$\bigcirc (2) \bigcirc (1) \frown (2) \frown (2)$	±±/•0(J)
P(Z) = C(T) = P(T)	⊥⊥3.5(4)	C(1) - C(2) - C(3)	123.1(7)
C(1)-C(2)-C(18)	121.4(6)	C(3)-C(2)-C(18)	115.4(7)
C(4) - C(3) - C(2)	123 8(8)	C(5) - C(4) - C(3)	123 3(7)
$\sim \langle - \rangle \sim \langle $	100 4/7		110 0 (7)
C(3) = C(4) = C(24)	⊥∠∪.4(/)	C(3) = C(4) = C(24)	110.3(/)
C(4)-C(5)-P(3)	129.4(6)	C(4)-C(5)-P(1)	117.1(6)
P(3) - C(5) - P(1)	112 5(4)	C(7) - C(6) - C(11)	118 4 (8)
(-1) (-1) (-1)	110 5 (7)	C(11) C(C) D(2)	100 1(0)
C(1) - C(0) - P(2)	119.5(/)	C(11) - C(6) - P(2)	$\perp \angle \angle \cdot \perp$ (6)
C(8)-C(7)-C(6)	120.6(8)	C(7)-C(8)-C(9)	120.4(8)
C(10) - C(9) - C(8)	120(1)	C(9) - C(10) - C(11)	121(1)
C(10) = C(11) = C(0)		C(17) C(12) C(12)	
C(TO) = C(TT) = C(O)	119.4(/)	C(17) = C(12) = C(13)	120 . 1(/)
C(17)-C(12)-P(2)	119.1(6)	C(13)-C(12)-P(2)	120.8(6)
C(14)-C(13)-C(12)	118.2(8)	C(15) - C(14) - C(13)	123(1)
C(14) = C(15) = C(16)	110 7/01	C(17) = C(16) = C(16)	
C(14) = C(10) = C(10)	119./(δ)	C(17) - C(10) - C(15)	TTA(T)
C(12)-C(17)-C(16)	120.8(8)	C(19)-C(18)-C(23)	118.1(8)
C(19)-C(18)-C(2)	122.4(7)	C(23)-C(18)-C(2)	119.4(8)
- , - , - , - , - , - , - , - , - , - ,		,	

C(18)-C(19)-C(20)
C(22)-C(21)-C(20)
C(22)-C(23)-C(18)
C(29)-C(24)-C(4)
C(26)-C(25)-C(24)
C(26)-C(27)-C(28)
C(24)-C(29)-C(28)
C(31)-C(30)-P(3)
C(30)-C(31)-C(32)
C(34)-C(33)-C(32)
C(34)-C(35)-C(30)
C(41)-C(36)-P(3)
C(38)-C(37)-C(36)
C(38)-C(39)-C(40)
C(40)-C(41)-C(36)
C(42)-C(43)-C(44)
Cl(3)-C(46)-Cl(2)

120.0(8)	C(21)-C(20)-C(19)	120(1)
120(1)	C(21)-C(22)-C(23)	120(1)
122(1)	C(29)-C(24)-C(25)	118.1(7)
121.2(8)	C(25)-C(24)-C(4)	120.7(7)
119.8(8)	C(27)-C(26)-C(25)	120(1)
122(1)	C(27)-C(28)-C(29)	117.8(8)
123(1)	C(31)-C(30)-C(35)	120.3(7)
121.8(6)	C(35)-C(30)-P(3)	118.0(6)
119(1)	C(33)-C(32)-C(31)	120(1)
121(1)	C(33)-C(34)-C(35)	120(1)
120(1)	C(41)-C(36)-C(37)	116.4(8)
120.6(7)	C(37)-C(36)-P(3)	123.0(6)
121.7(8)	C(37)-C(38)-C(39)	121(1)
118(1)	C(41)-C(40)-C(39)	120.1(8)
122.4(8)	C(43)-C(42)-P(1)	116.4(6)
114(1)	C(45)-C(44)-C(43)	121(1)
115.2(6)		

303

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) $\alpha(^{\circ})$ β(°) γ(°) $V(Å^3)$ Ζ $d(g-cm^{-3})$ F(000) $\mu(\text{cm}^{-1})$ Absorption corrections Diffractometer X-ray source λ(Å) Monochromator T (K) Scan mode Maximum θ HKL ranges Reflections measured Unique data Rint Reflections used

 $C_{50}H_{40}Cl_{10}NP_3PdS_2 = C_{47}H_{37}ClNP_3PdS_2$, 3 CHCl₃ 1272.76 orange plate 0.22x0.20x0.12 monoclinic $P2_1/c$ 9.3110(10) 40.894(3)14.6660(10) 90.00 103.8700(10) 90.00 5421.5(8) 4 1.559 2560 1.037 multi-scan; 0.8040 min, 0.8857 max KappaCCD ΜοΚα 0.71069 graphite 150.0(10) phi and omega scans 27.48 -12 12 ; -53 48 ; -18 19 19701 11969 0.0216 9526

Criterion	I > 2sigma(I)
Refinement type	Fsqd
Hydrogen atoms	mixed
Parameters refined	627
Reflections / parameter	15
wR2	0.1457
R1	0.0479
Weights a, b	0.0856; 3.3180
GoF	1.050
difference peak / hole (e Å ⁻³)	1.391(0.095) / -1.030(0.095)

Note: Three disordered CHCl3 molecules were found in the asymmetric unit. While it was possible to resolve this disorder for two of them, the third could not be and this solvent molecule was accounted for using the Platon SQUEEZE function.

Table 3. Bond lengths (A) and angles (deg) for $303\,$

$\begin{array}{c} Pd(1) - P(1) \\ Pd(1) - S(2) \\ S(1) - P(2) \\ P(1) - C(5) \\ P(1) - C(6) \\ P(2) - C(12) \\ P(3) - C(5) \\ P(3) - C(42) \\ N(1) - C(11) \\ C(2) - C(3) \\ C(3) - C(4) \\ C(4) - C(30) \\ C(7) - C(8) \\ C(9) - C(10) \\ C(12) - C(13) \\ C(13) - C(14) \\ C(15) - C(16) \\ C(18) - C(23) \\ C(19) - C(20) \\ C(21) - C(22) \\ C(24) - C(29) \\ C(25) - C(26) \\ C(27) - C(28) \\ C(30) - C(35) \\ C(31) - C(32) \\ C(33) - C(34) \\ C(36) - C(37) \\ C(37) - C(38) \\ C(39) - C(40) \\ C(42) - C(43) \\ C(43) - C(44) \\ C(45) - C(46) \\ C(49) - C1(5) \\ C(49) - C1(5) \\ C(49) - C1(5) \\ C(50) - C1(10) \\ C(50) - C1(12) \\ \end{array}$	2.1783(8 2.332(1) 2.033(1) 1.760(3) 1.839(3) 1.807(3) 1.756(3) 1.756(3) 1.413(4) 1.344(5) 1.494(4) 1.494(4) 1.494(4) 1.396(4) 1.363(8) 1.392(5) 1.363(8) 1.392(5) 1.384(5) 1.386(5) 1.386(5) 1.386(5) 1.386(5) 1.386(5) 1.386(5) 1.386(5) 1.386(5) 1.386(5) 1.386(5) 1.384(5) 1.386(5) 1.386(5) 1.384(5) 1.384(5) 1.386(5) 1.384(5) 1.384(5) 1.384(5) 1.384(5) 1.384(5) 1.384(5) 1.384(5) 1.384(5) 1.384(5) 1.384(5) 1.384(5) 1.382(5) 1.382(5) 1.377(7) 1.641(8) 1.731(7) 1.75(2)	Pd(1)-S(1) Pd(1)-Cl(1) S(2)-P(3) P(1)-C(1) P(2)-C(18) P(3)-C(36) N(1)-C(7) C(1)-C(2) C(2)-C(24) C(4)-C(5) C(6)-C(7) C(8)-C(9) C(10)-C(11) C(12)-C(17) C(14)-C(15) C(16)-C(17) C(16)-C(17) C(18)-C(19) C(20)-C(21) C(22)-C(23) C(24)-C(25) C(26)-C(27) C(28)-C(29) C(30)-C(31) C(32)-C(33) C(34)-C(35) C(36)-C(41) C(38)-C(39) C(40)-C(41) C(42)-C(47) C(44)-C(45) C(46)-C(47) C(49)-C1(6) C(49)-C1(6A) C(49)-C1(11) C(51)-C1(13)	2.3207(8) 2.3894(8) 2.043(1) 1.761(3) 1.767(3) 1.809(3) 1.810(3) 1.334(5) 1.388(4) 1.496(4) 1.411(4) 1.496(4) 1.411(4) 1.397(5) 1.397(5) 1.375(7) 1.397(5) 1.371(7) 1.381(5) 1.400(5) 1.371(7) 1.381(5) 1.385(6) 1.399(5) 1.385(6) 1.399(5) 1.383(6) 1.379(5) 1.387(5) 1.382(6) 1.388(5) 1.382(6) 1.359(6) 1.359(6) 1.359(6) 1.359(6) 1.39(7) 1.803(7) 1.91(1) 1.729(7) 1.70(2) 1.79(2)
P(1)-Pd(1)-S(1) S(1)-Pd(1)-S(2) S(1)-Pd(1)-Cl(1) P(2)-S(1)-Pd(1) C(5)-P(1)-C(1) C(1)-P(1)-C(6) C(1)-P(1)-Pd(1) C(1)-P(2)-C(12) C(12)-P(2)-C(18) C(12)-P(2)-S(1)	87.93(3) 172.76(3) 91.25(3) 101.85(4) 103.0(2) 107.7(2) 114.7(1) 109.8(2) 106.9(2) 110.8(1)	P(1)-Pd(1)-S(2) P(1)-Pd(1)-Cl(1) S(2)-Pd(1)-Cl(1) P(3)-S(2)-Pd(1) C(5)-P(1)-C(6) C(5)-P(1)-Pd(1) C(6)-P(1)-Pd(1) C(1)-P(2)-C(18) C(1)-P(2)-S(1) C(18)-P(2)-S(1)	$\begin{array}{c} 87.17(3) \\ 170.25(3) \\ 94.48(3) \\ 105.81(4) \\ 102.4(2) \\ 116.5(1) \\ 111.5(1) \\ 114.6(2) \\ 107.5(1) \\ 107.1(1) \end{array}$

C(5) - D(3) - C(36)	112 7(2)	C(5) = D(3) = C(42)	111 1(2)
C(3) = P(3) = C(30)	107 1(2)	C(5) - P(3) - C(42)	
C(36) - P(3) - C(42)	107.1(2)	C(5) - P(3) - S(2)	107.5(1)
C(36) - P(3) - S(2)	106.4(1)	C(42)-P(3)-S(2)	110.9(1)
C(7) - N(1) - C(11)	116.8(4)	C(2) - C(1) - P(1)	117.5(2)
C(2) - C(1) - P(2)	129.2(2)	P(1) - C(1) - P(2)	112.7(2)
C(2) = C(2) = C(2)	122 1(2)	C(1) = C(2) = C(21)	1100(2)
C(1) - C(2) - C(3)	122.7(3)	C(1) - C(2) - C(24)	125.5(3)
C(3) - C(2) - C(24)	11/.8(3)	C(4) - C(3) - C(2)	125.3(3)
C(3) - C(4) - C(5)	122.1(3)	C(3) - C(4) - C(30)	117.4(3)
C(5) - C(4) - C(30)	120.4(3)	C(4) - C(5) - P(3)	129.4(2)
C(4) - C(5) - P(1)	116.6(2)	P(3) - C(5) - P(1)	114.0(2)
C(7) - C(6) - P(1)	117 8(2)	N(1) - C(7) - C(8)	123 1(4)
N(1) - C(7) - C(6)	116 1(2)	C(2) = C(7) = C(6)	120.2(1)
A(1) - C(7) - C(0)	117.0(5)	C(0) - C(7) - C(0)	120.9(4)
C(9) = C(8) = C(7)	11/.8(5)	C(10) = C(9) = C(8)	119.8(4)
C(9) - C(10) - C(11)	118.1(4)	N(1) - C(11) - C(10)	124.4(5)
C(13) - C(12) - C(17)	119.9(3)	C(13) - C(12) - P(2)	119.0(3)
C(17) - C(12) - P(2)	121.0(3)	C(14) - C(13) - C(12)	119.9(3)
C(15) - C(14) - C(13)	120.5(4)	C(14) - C(15) - C(16)	120.2(4)
C(17) - C(16) - C(15)	1199(4)	C(16) - C(17) - C(12)	1196(4)
C(17) C(10) C(13)	120 1(2)	C(10) C(11) C(12)	101 2(2)
C(23) - C(10) - C(19)	120.4(3)	C(23) - C(10) - P(2)	121.3(3)
C(19) - C(18) - P(2)	118.2(3)	C(20) - C(19) - C(18)	118.3(4)
C(21) - C(20) - C(19)	121.4(4)	C(20)-C(21)-C(22)	120.0(4)
C(21) - C(22) - C(23)	120.2(4)	C(22)-C(23)-C(18)	119.7(3)
C(29) - C(24) - C(25)	119.9(3)	C(29) - C(24) - C(2)	122.1(3)
C(25) - C(24) - C(2)	118.0(3)	C(26) - C(25) - C(24)	119.8(4)
C(25) - C(26) - C(27)	120.9(4)	C(28) - C(27) - C(26)	119.5(4)
C(27) - C(28) - C(29)	120 8(4)	C(24) - C(29) - C(28)	1191(3)
C(2F) C(20) C(2)	110 0(2)	C(21) C(20) C(20)	100 7(2)
a(31) = a(30) = a(4)	110.9(3)	C(33) - C(30) - C(4)	122.7(3)
C(31) - C(30) - C(4)	118.2(3)	C(32) - C(31) - C(30)	120.5(3)
C(31) - C(32) - C(33)	120.1(3)	C(32) - C(33) - C(34)	119.7(3)
C(35)-C(34)-C(33)	120.1(4)	C(34)-C(35)-C(30)	120.6(3)
C(37)-C(36)-C(41)	120.3(3)	C(37)-C(36)-P(3)	117.8(3)
C(41) - C(36) - P(3)	121.9(3)	C(38) - C(37) - C(36)	120.4(4)
C(39) - C(38) - C(37)	119.4(4)	C(40) - C(39) - C(38)	121.0(4)
C(39) - C(40) - C(41)	1205(4)	C(36) - C(41) - C(40)	118 3(4)
C(43) - C(42) - C(47)	1198(3)	C(43) - C(42) - D(3)	121 1(3)
C(12) C(12) C(17)	110 0(2)	C(13) C(12) C(3)	110 2(4)
C(47) - C(42) - P(3)	129.0(3)	C(44) - C(45) - C(42)	119.2(4)
C(45) - C(44) - C(43)	120.2(4)	C(46) - C(45) - C(44)	120.2(4)
C(47)-C(46)-C(45)	119.8(4)	C(46) - C(47) - C(42)	120.7(4)
Cl(5)-C(49)-Cl(6)	123.7(5)	Cl(5)-C(49)-Cl(7)	116.2(3)
Cl(6) - C(49) - Cl(7)	107.3(3)	Cl(5)-C(49)-Cl(6A)	94.4(5)
Cl(6)-C(49)-Cl(6A)	108.5(3)	Cl(7)-C(49)-Cl(6A)	29.5(4)
Cl(5) - C(49) - Cl(5A)	109.4(5)	Cl(6) - C(49) - Cl(5A)	18.5(2)
$C_1(7) - C(49) - C_1(5\Delta)$	1086(3)	$C_1(6A) - C(49) - C_1(5A)$	100 3(4)
$C_1(5) = C(49) = C_1(7x)$	13 0(4)	$C_1(6) = C(49) = C_1(7\lambda)$	110 7(5)
$C_{1}(3) C(12) C_{1}(7A)$	105 0(1)	$C_{1}(G)$ $C_{1}(J)$ $C_{1}(J)$	1000(6)
$C_{\perp}(1) = C(43) = C_{\perp}(1A)$	123.0(4) 07.0(5)	$C_{\perp}(OA) = C(A) = C_{\perp}(A)$	$\pm 00.0(0)$
$C_{1}(5A) - C(49) - C_{1}(/A)$	9/.0(5)	$C_{1}(10) - C(50) - C_{1}(8)$	$\perp \perp \angle \cdot \perp (4)$
CI(IU) - C(5U) - CI(9)	115.0(4)	CI(8) - C(50) - CI(9)	109.0(4)
C1(11)-C(51)-Cl(12)	112(1)	$C_{1}(11) - C(51) - Cl(13)$	111(1)
Cl(12) - C(51) - Cl(13)	105(1)		

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm)

${\bf 306} \\ C_{52}H_{52}Cl_3OP_3PdS_2 = C_{51}H_{50}Cl_3OP_3PdS_2$. CH_2Cl_2 1062.72 yellow cube 0.20x0.20x0.20

2.313(1) 2.396(1) 2.033(2) 1.751(3) 1.778(3) 1.805(3) 1.806(3) 1.466(3) 1.389(4) 1.409(4) 1.482(4) 1.528(4) 1.522(5) 1.514(5) 1.557(5) 1.521(5) 1.405(5) 1.380(6)

1.384(5)

1.412(4)

Crystal system Space group a(Å) b(Å) c(Å) a(°) $\beta(°)$ $\gamma(°)$ $V(Å^3)$ Z $d(g-cm^{-3})$ F(000) $\mu(cm^{-1})$ Absorption corrections Diffractometer X-ray source $\lambda(Å)$ Monochromator T (K) Scan mode Maximum θ HKL ranges Reflections measured Unique data Rint Reflections used Criterion Refinement type Hydrogen atoms Parameters refined Reflections / parameter wR2	Orthorhombic P $2_1 2_1 2_1$ 9.597(5) 18.767(5) 26.834(5) 90.00 90.00 90.00 4833(3) 4 1.461 2184 0.774 multi-scan; 0.8606 min, 0.8606 max KappaCCD MoK α 0.71069 graphite 150.0(10) phi and omega scans 30.03 -13 13; -26 26; -37 37 13591 13591 0.0000 11109 I > 2sigma(I) Fsqd mixed 562 19		
Weights a, b	-0.042(18) 0.058 ; 0.0000		
GoF	1.022		
difference peak / noie (e A)	1.486(0.096)7-0.844(0.096)		
TABLE XX. Bond lengths (A)	and angles (deg) for 306		
Pd $(1) - P (1)$ Pd $(1) - S (1)$ S $(1) - P (2)$ P $(1) - O (1)$ P $(1) - C (1)$ P $(2) - C (16)$ P $(3) - C (5)$ P $(3) - C (46)$ C $(1) - C (2)$ C $(2) - C (28)$ C $(4) - C (5)$ C $(6) - C (7)$ C $(7) - C (8)$ C $(8) - C (9)$ C $(10) - C (11)$ C $(13) - C (14)$ C $(16) - C (21)$	2.188(1) $Pd(1) - S(2)$ $2.328(1)$ $Pd(1) - Cl(1)$ $2.033(2)$ $S(2) - P(3)$ $1.600(2)$ $P(1) - C(5)$ $1.761(3)$ $P(2) - C(1)$ $1.800(3)$ $P(2) - C(22)$ $1.774(3)$ $P(3) - C(40)$ $1.809(3)$ $O(1) - C(6)$ $1.493(4)$ $C(2) - C(3)$ $1.493(4)$ $C(3) - C(4)$ $1.509(4)$ $C(6) - C(11)$ $1.531(4)$ $C(8) - C(12)$ $1.524(5)$ $C(9) - C(10)$ $1.543(4)$ $C(11) - C(13)$ $1.519(5)$ $C(13) - C(17)$		

1.387(6)

1.382(4)

C(20)-C(21)

C(22)-C(23)

C(19)-C(20)

C(22)-C(27)

C (23) - C (24) C (25) - C (26) C (28) - C (29) C (29) - C (30) C (31) - C (32) C (34) - C (35) C (35) - C (36) C (37) - C (38) C (40) - C (41) C (41) - C (42) C (43) - C (44) C (46) - C (51) C (47) - C (48) C (49) - C (50) C (52) - C1 (2)	1.372(5) 1.370(5) 1.394(4) 1.381(4) 1.370(5) 1.390(4) 1.382(5) 1.371(5) 1.391(4) 1.386(4) 1.376(5) 1.391(5) 1.391(5) 1.372(5)	C (24) - C (25) C (26) - C (27) C (28) - C (33) C (30) - C (31) C (32) - C (33) C (34) - C (39) C (36) - C (37) C (38) - C (39) C (40) - C (45) C (42) - C (43) C (44) - C (45) C (46) - C (47) C (48) - C (49) C (50) - C (51) C (52) - C1 (3)	1.387(5) 1.391(4) 1.403(4) 1.397(5) 1.396(4) 1.399(4) 1.375(5) 1.390(5) 1.395(4) 1.362(5) 1.384(5) 1.397(4) 1.376(5) 1.393(4) 1.760(4)
P(1) - Pd(1) - S(2) S(2) - Pd(1) - S(1) S(2) - Pd(1) - Cl(1) P(2) - S(1) - Pd(1) O(1) - P(1) - C(5) C(5) - P(1) - C(1) C(5) - P(1) - Pd(1) C(1) - P(2) - C(16)	87.41(3) 172.98(3) 91.39(3) 100.88(4) 102.2(1) 102.3(1) 116.0(1)	P(1)-Pd(1)-S(1) P(1)-Pd(1)-Cl(1) S(1)-Pd(1)-Cl(1) P(3)-S(2)-Pd(1) O(1)-P(1)-C(1) O(1)-P(1)-Pd(1) C(1)-P(1)-Pd(1) C(1)-P(2)-C(22)	87.55(3) 170.11(3) 94.41(3) 102.93(4) 108.8(1) 111.38(8) 115.1(1)
C (1) - P (2) - C (16) C (16) - P (2) - C (22) C (16) - P (2) - S (1) C (5) - P (3) - C (40) C (40) - P (3) - C (46) C (40) - P (3) - S (2) C (6) - O (1) - P (1) C (2) - C (1) - P (2)	117.1(1) 105.7(2) 106.9(1) 109.7(1) 103.9(1) 111.2(1) 126.5(2) 128.9(2)	C(1) - P(2) - C(22) $C(1) - P(2) - S(1)$ $C(22) - P(2) - S(1)$ $C(5) - P(3) - C(46)$ $C(5) - P(3) - S(2)$ $C(46) - P(3) - S(2)$ $C(2) - C(1) - P(1)$ $P(1) - C(1) - P(2)$	109.4(1) 107.5(1) 110.3(1) 117.7(1) 107.8(1) 106.5(1) 118.2(2) 111.6(2)
C(3) - C(2) - C(1) $C(1) - C(2) - C(28)$ $C(5) - C(4) - C(3)$ $C(3) - C(4) - C(34)$ $C(4) - C(5) - P(3)$ $O(1) - C(6) - C(7)$ $C(7) - C(6) - C(11)$ $C(12) - C(8) - C(9)$	122.0(3) 118.6(3) 121.2(3) 118.3(3) 128.7(2) 108.4(2) 113.2(2) 111.2(3)	C(3) - C(2) - C(28) $C(2) - C(3) - C(4)$ $C(5) - C(4) - C(34)$ $C(4) - C(5) - P(1)$ $P(1) - C(5) - P(3)$ $O(1) - C(6) - C(11)$ $C(6) - C(7) - C(8)$ $C(12) - C(8) - C(7)$	119.4(2) 125.7(3) 120.4(3) 118.6(2) 111.9(2) 107.9(2) 112.9(3) 111.2(3)
C (12) - C (8) - C (7) $C (9) - C (10) - C (11)$ $C (6) - C (11) - C (13)$ $C (14) - C (13) - C (15)$ $C (15) - C (13) - C (11)$ $C (21) - C (16) - P (2)$ $C (18) - C (17) - C (16)$	109.4(3) 111.0(3) 113.1(3) 109.3(3) 111.3(3) 120.8(3) 119.7(3)	C(12) - C(0) - C(1) C(10) - C(9) - C(8) C(6) - C(11) - C(10) C(10) - C(11) - C(13) C(14) - C(13) - C(11) C(21) - C(16) - C(17) C(17) - C(16) - P(2) C(19) - C(18) - C(17)	111.7 (3) 107.3 (3) 115.5 (3) 114.2 (3) 119.2 (3) 120.0 (2) 121.0 (4)
C (18) -C (19) -C (20) $C (20) -C (21) -C (16)$ $C (27) -C (22) -P (2)$ $C (24) -C (23) -C (22)$ $C (26) -C (25) -C (24)$ $C (22) -C (27) -C (26)$ $C (29) -C (28) -C (2)$	119.7(4) 120.0(3) 122.1(2) 119.7(3) 120.0(3) 120.4(3) 119.9(3)	C(21) - C(20) - C(19) $C(27) - C(22) - C(23)$ $C(23) - C(22) - P(2)$ $C(23) - C(24) - C(25)$ $C(25) - C(26) - C(27)$ $C(29) - C(28) - C(33)$ $C(33) - C(28) - C(2)$	120.4(3) 119.1(3) 118.8(2) 120.7(3) 120.1(3) 118.9(3) 121.2(3)
C (30) - C (23) - C (28) $C (32) - C (31) - C (30)$ $C (32) - C (33) - C (28)$ $C (35) - C (34) - C (4)$ $C (36) - C (35) - C (34)$ $C (38) - C (37) - C (36)$ $C (38) - C (39) - C (34)$ $C (41) - C (40) - P (3)$	121.4(3) 119.6(3) 118.9(3) 120.4(3) 120.6(3) 120.8(3) 120.1(3) 122.1(2)	C(35) - C(30) - C(31) $C(31) - C(32) - C(33)$ $C(35) - C(34) - C(39)$ $C(39) - C(34) - C(4)$ $C(37) - C(36) - C(35)$ $C(37) - C(38) - C(39)$ $C(41) - C(40) - C(45)$ $C(45) - C(40) - P(3)$	119.5(3) 121.7(3) 118.7(3) 120.9(3) 119.8(3) 119.8(3) 119.3(3) 118.5(2)

C(42)-C(41)-C(40)	119.8(3)	C(43)-C(42)-C(41)	120.5(3)
C(42)-C(43)-C(44)	120.5(3)	C(43)-C(44)-C(45)	120.1(3)
C(44)-C(45)-C(40)	119.8(3)	C(51)-C(46)-C(47)	119.7(3)
C(51)-C(46)-P(3)	120.2(2)	C(47)-C(46)-P(3)	120.1(2)
C(48)-C(47)-C(46)	119.7(3)	C(49)-C(48)-C(47)	120.1(3)
C(50) - C(49) - C(48)	120.5(3)	C(49) - C(50) - C(51)	120.2(3)
C(46)-C(51)-C(50)	119.7(3)	Cl(2)-C(52)-Cl(3)	112.9(2)

307

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) α(°) β(°) γ(°) $V(Å^3)$ Ζ $d(g-cm^{-3})$ F(000) $\mu(\text{cm}^{-1})$ Absorption corrections Diffractometer X-ray source λ(Å) Monochromator T (K) Scan mode Maximum θ HKL ranges Reflections measured Unique data Rint Reflections used Criterion Refinement type Hydrogen atoms Parameters refined Reflections / parameter wR2 R1 Flack's parameter Weights a, b

 $C_{52}H_{52}Cl_3P_3PdS_2 = C_{51}H_{50}ClP_3PdS_2$, CH_2Cl_2 1046.72 orange needle 0.18x0.06x0.04 orthorhombic P 2₁ 2₁ 2₁ 9.7690(10) 18.2860(10) 26.6390(10) 90.00 90.00 90.00 4758.7(6) 4 1.461 2152 0.783 multi-scan; 0.8719 min, 0.9693 max KappaCCD ΜοΚα 0.71069 graphite 150.0(10) phi and omega scans 24.74 -10 11 ; -21 20 ; -31 31 30890 8104 0.0785 6836 I > 2sigma(I) Fsqd mixed 526 12 0.1237 0.0474 -0.02(3)0.0658; 1.4507

C(3) - C(4) - C(34)

C(4) - C(5) - P(3)

P(3) - C(5) - P(1)

C(11) - C(6) - P(1)

C(12) - C(7) - C(8)

C(10) - C(9) - C(8)

C(15) - C(10) - C(9)

C(6) - C(11) - C(10)

C(7) - C(12) - C(13)

C(8) - C(7) - C(6)

GoF difference peak / hole (e Å ⁻³) Note: A disordered CH2Cl2 molecul accounted for using the Platon SQUEE	1.056 1.031(0.086) / -0.5 le could not be re ZE function.	559(0.086) efined with anisotropic ther	mal parameters and was
Table 3. Bond lengths (A)	and angles (d	leg) for 307	
$\begin{array}{c} Pd(1) - P(1) \\ Pd(1) - S(2) \\ S(1) - P(2) \\ P(1) - C(1) \\ P(1) - C(6) \\ P(2) - C(16) \\ P(3) - C(5) \\ P(3) - C(40) \\ C(2) - C(3) \\ C(3) - C(4) \\ C(4) - C(34) \\ C(4) - C(34) \\ C(6) - C(7) \\ C(7) - C(8) \\ C(9) - C(10) \\ C(10) - C(11) \\ C(12) - C(13) \\ C(16) - C(17) \\ C(18) - C(19) \\ C(20) - C(21) \\ C(22) - C(27) \\ C(24) - C(25) \\ C(26) - C(27) \\ C(28) - C(29) \\ C(30) - C(31) \\ C(32) - C(33) \\ C(34) - C(39) \\ C(36) - C(37) \\ C(38) - C(39) \\ C(36) - C(37) \\ C(38) - C(39) \\ C(40) - C(45) \\ C(44) - C(45) \\ C(44) - C(45) \\ C(46) - C(47) \\ C(48) - C(49) \\ C(50) - C(51) \end{array}$	2.201(2) 2.326(1) 2.032(2) 1.770(6) 1.851(6) 1.799(5) 1.770(6) 1.437(8) 1.370(7) 1.510(7) 1.545(8) 1.51(1) 1.58(1) 1.54(1) 1.58(1) 1.58(1) 1.403(8) 1.390(8) 1.36(1) 1.364(8) 1.36(1) 1.364(8) 1.36(1) 1.378(8) 1.403(8) 1.403(8) 1.36(1) 1.378(8) 1.397(8) 1.395(8) 1.389(8) 1.389(8) 1.387(8)	Pd(1)-S(1) Pd(1)-Cl(1) S(2)-P(3) P(1)-C(5) P(2)-C(1) P(2)-C(22) P(3)-C(46) C(1)-C(2) C(2)-C(28) C(4)-C(5) C(6)-C(11) C(7)-C(12) C(8)-C(9) C(10)-C(15) C(12)-C(14) C(16)-C(21) C(17)-C(18) C(19)-C(20) C(22)-C(23) C(23)-C(24) C(23)-C(24) C(25)-C(26) C(28)-C(33) C(29)-C(30) C(31)-C(32) C(34)-C(35) C(35)-C(36) C(37)-C(38) C(40)-C(41) C(41)-C(42) C(43)-C(44) C(46)-C(51) C(49)-C(50) P(1)-C(10) P(1)-P(10) P	2.317(1) 2.399(1) 2.036(2) 1.780(6) 1.789(6) 1.809(6) 1.809(5) 1.393(8) 1.487(7) 1.394(7) 1.530(8) 1.46(1) 1.530(8) 1.46(1) 1.55(1) 1.400(8) 1.364(8) 1.361(8) 1.361(8) 1.361(8) 1.361(8) 1.361(8) 1.375(7) 1.40(1) 1.375(7) 1.363(8) 1.387(7) 1.363(8) 1.340(8) 1.367(8) 1.400(8) 1.403(8) 1.37(1)
P(1)-Pd(1)-S(1) S(1)-Pd(1)-S(2) S(1)-Pd(1)-Cl(1) P(2)-S(1)-Pd(1) C(1)-P(1)-C(5) C(5)-P(1)-C(6) C(5)-P(1)-Pd(1) C(1)-P(2)-C(16) C(16)-P(2)-C(22) C(16)-P(2)-S(1) C(5)-P(3)-C(46) C(46)-P(3)-C(40) C(46)-P(3)-S(2) C(2)-C(1)-P(1) P(1)-C(1)-P(2) C(1)-C(2)-C(28) C(4)-C(3)-C(2)	88.81(5) 170.43(6) 90.99(5) 101.80(7) 105.5(3) 113.4(2) 107.7(3) 103.1(3) 105.7(2) 115.9(3) 104.7(3) 106.6(2) 118.5(4) 112.1(3) 122.0(5) 124.6(5)	$P(1)-Pd(1)-S(2) P(1)-Pd(1)-Cl(1) S(2)-Pd(1)-Cl(1) P(3)-S(2)-Pd(1) C(1)-P(1)-C(6) C(1)-P(1)-Pd(1) C(6)-P(1)-Pd(1) C(1)-P(2)-C(22) C(1)-P(2)-S(1) C(22)-P(2)-S(1) C(5)-P(3)-C(40) C(5)-P(3)-S(2) C(40)-P(3)-S(2) C(2)-C(1)-P(2) C(1)-C(2)-C(3) C(3)-C(2)-C(28) C(3)-C(4)-C(5) \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	$\begin{array}{c} 88.12(5)\\ 170.06(6)\\ 93.59(5)\\ 101.85(7)\\ 109.2(3)\\ 114.6(2)\\ 112.0(2)\\ 110.4(2)\\ 108.0(2)\\ 111.8(2)\\ 111.7(3)\\ 107.8(2)\\ 109.9(2)\\ 127.3(4)\\ 120.6(5)\\ 117.4(5)\\ 123.5(5)\end{array}$

117.5(5)

130.2(4)

113.1(3)

110.6(4)

120.1(7) 106.7(5)

113.8(7)

111.8(7)

112.2(5)

113.6(6)

C(5) - C(4) - C(34)

C(4) - C(5) - P(1)

C(11) - C(6) - C(7)

C(7) - C(6) - P(1)

C(12) - C(7) - C(6)

C(7) - C(8) - C(9)

C(15)-C(10)-C(11)

C(11) - C(10) - C(9)

C(7) - C(12) - C(14)

C(14) - C(12) - C(13)

119.0(5)

116.3(4)

113.0(5)

115.5(4)

118.0(6)

103.9(7)

109.3(7)

106.0(6) 110.6(7)

105.5(7)

C(21) - C(16) - C(17)
C(17) - C(16) - P(2)
C(17) - C(18) - C(19)
C(21) - C(20) - C(19)
C(23) - C(22) - C(27)
C(27) - C(22) - P(2)
C(25) - C(24) - C(23)
C(27) - C(26) - C(25)
C(33) - C(28) - C(29)
C(29)-C(28)-C(2)
C(31) - C(30) - C(29)
C(33) - C(32) - C(31)
C(35)-C(34)-C(39)
C(39)-C(34)-C(4)
C(35)-C(36)-C(37)
C(37)-C(38)-C(39)
C(41)-C(40)-C(45)
C(45)-C(40)-P(3)
C(43)-C(42)-C(41)
C(45)-C(44)-C(43)
C(51)-C(46)-C(47)
C(47)-C(46)-P(3)
C(49)-C(48)-C(47)
C(49) - C(50) - C(51)

118.4(5) 120.9(4) 121.0(6) 121.2(6) 118.2(5) 118.4(4) 118.9(6) 118.7(6) 118.6(5) 119.4(5) 120.4(6) 119.4(6) 119.6(5) 122.4(6) 120.3(5) 120.9(4) 119.3(5) 119.4(6) 119.7(5) 119.1(4)	C(21) - C(16) - P(2) $C(18) - C(17) - C(16)$ $C(20) - C(19) - C(18)$ $C(20) - C(21) - C(16)$ $C(23) - C(22) - P(2)$ $C(24) - C(23) - C(22)$ $C(24) - C(25) - C(26)$ $C(26) - C(27) - C(22)$ $C(33) - C(28) - C(2)$ $C(33) - C(38) - C(2)$ $C(30) - C(31) - C(32)$ $C(30) - C(31) - C(32)$ $C(35) - C(34) - C(4)$ $C(36) - C(35) - C(34)$ $C(38) - C(37) - C(36)$ $C(38) - C(39) - C(34)$ $C(41) - C(40) - P(3)$ $C(41) - C(42) - C(42)$ $C(42) - C(43) - C(44)$ $C(44) - C(45) - C(40)$ $C(51) - C(46) - P(3)$	120.7(4) 121.2(6) 118.0(6) 120.1(6) 123.4(4) 122.3(6) 121.1(6) 120.8(6) 122.0(5) 119.7(6) 120.3(6) 120.3(6) 120.9(5) 122.1(6) 119.1(6) 118.8(4) 120.8(6) 120.8(6) 120.8(6) 120.8(6) 121.1(4) 119.3(6)
119.7(5) 119.1(4) 120.5(6) 121.1(6)	C(51) - C(46) - P(3) C(46) - C(47) - C(48) C(48) - C(49) - C(50) C(46) - C(51) - C(50)	121.1(4) 119.3(6) 120.1(6) 119.3(6)
/		- (-)

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) $\alpha(^{\circ})$ β(°) γ(°) $V(Å^3)$ Ζ $d(g-cm^{-3})$ F(000) $\mu(\text{cm}^{-1})$ Absorption corrections Diffractometer X-ray source λ(Å) Monochromator T (K) Scan mode

310

 $C_{42}H_{34}Cl_3OP_3PdS_2 = C_{41}H_{32}ClOP_3PdS_2, CH_2Cl_2$ 924.47 yellow needle 0.18x0.04x0.03 monoclinic $P2_1/n$ 15.644(5) 12.229(5) 21.024(5) 90.00 96.100(5) 90.00 3999(2) 4 1.535 1872 0.923 multi-scan; 0.8515 min, 0.9728 max KappaCCD ΜοΚα 0.71069 graphite 150.0(10) phi and omega scans

C(12)-P(2)-S(1)

C(5) - P(3) - C(30)

Maximum θ HKL ranges Reflections measured Unique data Rint Reflections used Criterion Refinement type Hydrogen atoms Parameters refined Reflections / parameter wR2 R1 Weights a, b GoF difference peak / hole (e Å ⁻³)	25.35 -18 18 ; -13 14 ; 12483 7319 0.0542 4986 I > 2sigma(I) Fsqd mixed 470 10 0.0925 0.0482 0.0285 ; 0.0000 1.000 1.212(0.104) / -1	-25 25 067(0.104)	
TABLE XX. Bond lengths (A)	and angles	(deg) for 310	
Pd (1) -P (1) Pd (1) -S (2) C1 (2) -C (42) S (1) -P (2) P (1) -O (1) P (1) -C (5) P (2) -C (12) P (3) -C (5) P (3) -C (36) C (2) -C (3) C (3) -C (4) C (4) -C (24) C (6) -C (7) C (8) -C (9) C (10) -C (11) C (12) -C (17) C (14) -C (15) C (16) -C (17) C (18) -C (23) C (20) -C (21) C (22) -C (23) C (24) -C (29) C (26) -C (27) C (28) -C (29) C (30) -C (31) C (32) -C (33) C (34) -C (35) C (36) -C (37) C (38) -C (39) C (40) -C (41)	$\begin{array}{c} 2.186(1)\\ 2.353(1)\\ 1.751(6)\\ 2.039(2)\\ 1.597(3)\\ 1.767(4)\\ 1.820(4)\\ 1.776(4)\\ 1.802(4)\\ 1.391(5)\\ 1.407(5)\\ 1.506(5)\\ 1.384(6)\\ 1.378(7)\\ 1.384(6)\\ 1.378(7)\\ 1.384(6)\\ 1.405(5)\\ 1.382(6)\\ 1.378(6)\\ 1.393(6)\\ 1.393(6)\\ 1.393(6)\\ 1.394(5)\\ 1.368(6)\\ 1.394(5)\\ 1.389(5)\\ 1.387(5)\\ 1.387(5)\\ 1.387(5)\\ 1.372(6)\\ 1.379(6)\\$	Pd (1) -S (1) Pd (1) -Cl (1) Cl (3) -C (42) S (2) -P (3) P (1) -C (1) P (2) -C (1) P (2) -C (6) P (3) -C (30) C (1) -C (2) C (2) -C (18) C (4) -C (5) C (6) -C (11) C (7) -C (8) C (9) -C (10) C (12) -C (13) C (13) -C (14) C (15) -C (16) C (18) -C (19) C (19) -C (20) C (21) -C (22) C (24) -C (25) C (25) -C (26) C (30) -C (35) C (31) -C (32) C (36) -C (41) C (37) -C (38) C (39) -C (40)	$\begin{array}{c} 2.310(1)\\ 2.405(1)\\ 1.745(6)\\ 2.018(2)\\ 1.757(4)\\ 1.759(4)\\ 1.759(4)\\ 1.822(4)\\ 1.420(5)\\ 1.494(6)\\ 1.384(5)\\ 1.384(5)\\ 1.384(5)\\ 1.384(5)\\ 1.364(7)\\ 1.381(6)\\ 1.391(5)\\ 1.384(6)\\ 1.392(5)\\ 1.376(6)\\ \end{array}$
P(1) - Pd(1) - S(1) S(1) - Pd(1) - S(2) S(1) - Pd(1) - Cl(1) P(2) - S(1) - Pd(1) O(1) - P(1) - C(1) C(1) - P(1) - C(5) C(1) - P(1) - Pd(1) C(1) - P(2) - C(12) C(12) - P(2) - C(6)	89.00(4) 174.67(4) 92.30(4) 108.19(5) 108.6(2) 102.7(2) 115.6(1) 110.7(2) 107.2(2)	P(1)-Pd(1)-S(2) P(1)-Pd(1)-Cl(1) S(2)-Pd(1)-Cl(1) P(3)-S(2)-Pd(1) O(1)-P(1)-C(5) O(1)-P(1)-Pd(1) C(5)-P(1)-Pd(1) C(1)-P(2)-C(6) C(1)-P(2)-S(1)	8 17 9 1 1 1 1 1 1

109.0(1)

113.7(2)

C(6)-P(2)-S(1)

C(5) - P(3) - C(36)

85.71(4) 174.66(4) 92.91(4) 94.24(5) 104.9(2) 114.2(1) 109.6(1) 116.5(2)

107.9(1)

105.3(1)

108.9(2)

C(30)-P(3)-C(36)	107.8(2)	C(5)-P(3)-S(2)	107.1(1)
C(30)-P(3)-S(2)	109.1(1)	C(36)-P(3)-S(2)	110.2(1)
C(2)-C(1)-P(1)	117.5(3)	C(2)-C(1)-P(2)	127.7(3)
P(1)-C(1)-P(2)	114.6(2)	C(3)-C(2)-C(1)	122.2(4)
C(3)-C(2)-C(18)	116.7(3)	C(1)-C(2)-C(18)	121.1(3)
C(2)-C(3)-C(4)	125.2(4)	C(5)-C(4)-C(3)	122.6(4)
C(5)-C(4)-C(24)	120.0(4)	C(3)-C(4)-C(24)	117.4(4)
C(4)-C(5)-P(1)	119.3(3)	C(4)-C(5)-P(3)	128.9(3)
P(1)-C(5)-P(3)	110.8(2)	C(11)-C(6)-C(7)	119.0(4)
C(11)-C(6)-P(2)	117.0(3)	C(7)-C(6)-P(2)	124.0(3)
C(8)-C(7)-C(6)	120.5(4)	C(7)-C(8)-C(9)	119.7(5)
C(10)-C(9)-C(8)	120.5(5)	C(9)-C(10)-C(11)	119.9(5)
C(6)-C(11)-C(10)	120.3(4)	C(13)-C(12)-C(17)	118.5(4)
C(13)-C(12)-P(2)	121.3(3)	C(17)-C(12)-P(2)	119.8(3)
C(12)-C(13)-C(14)	121.1(4)	C(13)-C(14)-C(15)	120.0(4)
C(14)-C(15)-C(16)	119.8(4)	C(17)-C(16)-C(15)	120.0(4)
C(16)-C(17)-C(12)	120.5(4)	C(19)-C(18)-C(23)	118.5(4)
C(19)-C(18)-C(2)	119.5(4)	C(23)-C(18)-C(2)	121.9(4)
C(20)-C(19)-C(18)	119.7(4)	C(21)-C(20)-C(19)	121.1(5)
C(20)-C(21)-C(22)	119.8(5)	C(21)-C(22)-C(23)	120.5(5)
C(22)-C(23)-C(18)	120.4(5)	C(25)-C(24)-C(29)	118.8(3)
C(25)-C(24)-C(4)	121.0(3)	C(29)-C(24)-C(4)	120.2(4)
C(24)-C(25)-C(26)	120.4(4)	C(27)-C(26)-C(25)	120.2(4)
C(26)-C(27)-C(28)	119.8(4)	C(29)-C(28)-C(27)	120.6(4)
C(28)-C(29)-C(24)	120.1(4)	C(35)-C(30)-C(31)	119.4(3)
C(35)-C(30)-P(3)	122.4(3)	C(31)-C(30)-P(3)	118.1(3)
C(32)-C(31)-C(30)	120.0(4)	C(31)-C(32)-C(33)	119.7(4)
C(34)-C(33)-C(32)	120.7(4)	C(33)-C(34)-C(35)	120.1(4)
C(34)-C(35)-C(30)	120.0(4)	C(41)-C(36)-C(37)	119.7(4)
C(41)-C(36)-P(3)	119.2(3)	C(37)-C(36)-P(3)	120.9(3)
C(38)-C(37)-C(36)	119.1(4)	C(39)-C(38)-C(37)	120.3(4)
C(38)-C(39)-C(40)	120.8(4)	C(39)-C(40)-C(41)	119.8(4)
C(40)-C(41)-C(36)	120.3(4)	Cl(3)-C(42)-Cl(2)	110.3(3)

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å)b(Å)c(Å)a(°) $\beta(°)$ $\gamma(°)$

313

 $\begin{array}{l} C_{42}H_{33}Cl_4P_3PdS_2 = C_{41}H_{31}Cl_2P_3PdS_2, \ CH_2Cl_2\\ 942.91\\ orange \ cube\\ 0.20x0.20x0.20\\ Monoclinic\\ P2_1/c\\ 14.316(5)\\ 22.241(5)\\ 14.356(5)\\ 90.00\\ 117.510(5)\\ 90.00 \end{array}$

$V(Å^3)$	4054(2)	
Z	4	
$d(g-cm^{-3})$	1.545	
F(000)	1904	
$u(cm^{-1})$	0.974	
Absorption corrections	multi-scan · 0 8291 min 0 8291 max	
Diffractometer	KappaCCD	
X-ray source	MoKa	
$\lambda(\hat{\lambda})$	0.71060	
A(A) Monochromotor	0./1009	
T(V)	150.0(10)	
I (K) Seen mede	130.0(10)	
Scan mode	phi and omega scans	
Maximum 0	27.48	
HKL ranges	-18 18 ; -28 26 ; -18 18	
Reflections measured	1694 /	
Unique data	9282	
Rint	0.0274	
Reflections used	7399	
Criterion	1 > 2sigma(1)	
Refinement type	Fsqd	
Hydrogen atoms	mixed	
Parameters refined	469	
Reflections / parameter	15	
wR2	0.1025	
R1	0.0369	
Weights a, b	0.0581; 0.0000	
GoF	1.056	
difference peak / hole (e Å ⁻³)	1.290(0.090) / -0.960(0.090)	
Pd (1) -P (1) Pd (1) -S (2) Cl (1) -P (1)	2.1746(8 Pd(1)-S(1) 2.3277(8 Pd(1)-C1(2) 2.139(1) S(1)-P(2)	2.317(1) 2.3720(8) 2.036(1)
S(2) - P(3)	$2 \cdot 100 (1) = 0 (1) - 0 (1)$	1 743(3)
P(1) - C(5)	1.754(2) P(2)-C(1)	1.779(2)
P(2) - C(6)	1.802(2) $P(2) - C(12)$	1.807(2)
P(3) - C(5)	1,777(3) P(3) –C(30)	1 795(2)
P(3) = C(36)	1 807(2) $C(1) - C(2)$	1 409(3)
C(2) - C(3)	1,402(3) $C(2)-C(18)$	1.486(3)
C(3) - C(4)	1,405(3) $C(4) - C(5)$	1.398(3)
C(4) - C(24)	1.497(3) C(6)-C(11)	1.377(3)
C(6) - C(7)	1.406(4) $C(7) - C(8)$	1.388(4)
C(8) - C(9)	1,377(4) $C(9) - C(10)$	1.378(4)
C(10) - C(11)	1.392(4) C(12)-C(13)	1.386(3)
C(12) - C(17)	1.395(4) C(13)-C(14)	1.395(4)
C(14) - C(15)	1.378(4) C(15)-C(16)	1.376(4)
C(16) - C(17)	1.388(3) C(18)-C(19)	1.398(3)
C(18) - C(23)	1.398(3) C(19)-C(20)	1.380(4)
C(20) - C(21)	1.375(4) C(21)-C(22)	1.380(4)
C(22) - C(23)	1.381(4) C(24) -C(29)	1.385(3)
C(24) - C(25)	1.399(3) C(25)-C(26)	1.391(3)
C(26) - C(27)	1.378(4) C(27)-C(28)	1.390(4)
C(28) –C(29)	1.380(4) C(30)-C(35)	1.378(3)
C(30) -C(31)	1.404(3) C(31)-C(32)	1.380(3)
C(32) - C(33)	1.375(4) C(33)-C(34)	1.378(4)
C(34) - C(35)	1.402(3) C(36)-C(37)	1.391(3)
C(36) - C(41)	1.396(4) C(37)-C(38)	1.396(4)
C(38) - C(39)	1.366(4) C(39)-C(40)	1.396(4)
C(40) - C(41)	1.382(4) C(42)-Cl(3)	1.744(3)
	1 75((2)	

P(1)-Pd(1)-S(1)	85.33(3)	P(1)-Pd(1)-S(2)	90.13(3)
S(1)-Pd(1)-S(2)	173.36(2)	P(1)-Pd(1)-Cl(2)	177.34(2)
S(1)-Pd(1)-Cl(2)	92.97(3)	S(2)-Pd(1)-Cl(2)	91.73(3)
P(2)-S(1)-Pd(1)	104.64(4)	P(3)-S(2)-Pd(1)	106.51(4)
C(1)-P(1)-C(5)	105.7(1)	C(1)-P(1)-Cl(1)	105.07(8)
C(5)-P(1)-Cl(1)	104.96(8)	C(1)-P(1)-Pd(1)	117.0(1)
C(5)-P(1)-Pd(1)	116.6(1)	Cl(1)-P(1)-Pd(1)	106.26(3)
C(1)-P(2)-C(6)	110.7(1)	C(1)-P(2)-C(12)	114.2(1)
C(6)-P(2)-C(12)	108.1(1)	C(1)-P(2)-S(1)	108.6(1)
C(6)-P(2)-S(1)	110.6(1)	C(12)-P(2)-S(1)	104.5(1)
C(5)-P(3)-C(30)	111.2(1)	C(5)-P(3)-C(36)	111.1(1)
C(30)-P(3)-C(36)	108.6(1)	C(5)-P(3)-S(2)	108.31(8)
C(30)-P(3)-S(2)	107.49(8)	C(36)-P(3)-S(2)	110.1(1)
C(2)-C(1)-P(1)	119.5(2)	C(2)-C(1)-P(2)	130.1(2)
P(1)-C(1)-P(2)	110.3(1)	C(3)-C(2)-C(1)	122.6(2)
C(3)-C(2)-C(18)	115.4(2)	C(1)-C(2)-C(18)	122.0(2)
C(2)-C(3)-C(4)	126.2(2)	C(5)-C(4)-C(3)	122.4(2)
C(5)-C(4)-C(24)	121.7(2)	C(3)-C(4)-C(24)	115.8(2)
C(4)-C(5)-P(1)	119.9(2)	C(4)-C(5)-P(3)	128.3(2)
P(1)-C(5)-P(3)	111.7(1)	C(11)-C(6)-C(7)	119.7(2)
C(11)-C(6)-P(2)	122.0(2)	C(7)-C(6)-P(2)	118.3(2)
C(8)-C(7)-C(6)	119.5(3)	C(9)-C(8)-C(7)	119.9(3)
C(8)-C(9)-C(10)	120.9(3)	C(9)-C(10)-C(11)	119.5(3)
C(6)-C(11)-C(10)	120.4(2)	C(13)-C(12)-C(17)	120.2(2)
C(13)-C(12)-P(2)	117.9(2)	C(17)-C(12)-P(2)	121.9(2)
C(12)-C(13)-C(14)	119.6(3)	C(15)-C(14)-C(13)	120.0(3)
C(16)-C(15)-C(14)	120.3(3)	C(15)-C(16)-C(17)	120.6(3)
C(16)-C(17)-C(12)	119.2(2)	C(19)-C(18)-C(23)	118.3(2)
C(19)-C(18)-C(2)	121.8(2)	C(23)-C(18)-C(2)	119.8(2)
C(20)-C(19)-C(18)	120.3(3)	C(21)-C(20)-C(19)	120.6(3)
C(20)-C(21)-C(22)	120.1(3)	C(21)-C(22)-C(23)	119.9(3)
C(22)-C(23)-C(18)	120.8(3)	C(29)-C(24)-C(25)	118.5(2)
C(29)-C(24)-C(4)	122.4(2)	C(25)-C(24)-C(4)	119.1(2)
C(26)-C(25)-C(24)	120.4(2)	C(27)-C(26)-C(25)	120.3(2)
C(26)-C(27)-C(28)	119.5(2)	C(29)-C(28)-C(27)	120.2(2)
C(28)-C(29)-C(24)	121.1(2)	C(35)-C(30)-C(31)	120.3(2)
C(35)-C(30)-P(3)	122.7(2)	C(31)-C(30)-P(3)	116.9(2)
C(32)-C(31)-C(30)	119.2(2)	C(33)-C(32)-C(31)	120.8(2)
C(32)-C(33)-C(34)	120.3(2)	C(33)-C(34)-C(35)	120.0(3)
C(30)-C(35)-C(34)	119.4(2)	C(37)-C(36)-C(41)	119.9(2)
C(37)-C(36)-P(3)	121.3(2)	C(41)-C(36)-P(3)	118.8(2)
C(36)-C(37)-C(38)	119.8(3)	C(39)-C(38)-C(37)	120.0(3)
C(38)-C(39)-C(40)	120.7(2)	C(41)-C(40)-C(39)	119.8(3)
C(40)-C(41)-C(36)	119.8(3)	Cl(3)-C(42)-Cl(4)	112.6(2)

Compound Molecular formula Molecular weight

316 $C_{46}H_{43}Cl_3NP_3PdS_2 = C_{45}H_{41}ClNP_3PdS_2, CH_2Cl_2$ 979.59

Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) a(°) $\beta(°)$ $\gamma(°)$ $V(Å^3)$ Z $d(g\text{-cm}^{-3})$ F(000) $\mu(cm^{-1})$ Absorption corrections Diffractometer X-ray source $\lambda(Å)$ Monochromator T (K) Scan mode Maximum θ HKL ranges Reflections measured Unique data Rint Reflections used	orange cube 0.20x0.20x0.20 Monoclinic $P2_1$ 9.507(5) 19.410(5) 24.136(5) 90.00 90.290(5) 90.00 4454(3) 4 1.461 2000 0.832 multi-scan; 0.8513 KappaCCD MoK α 0.71069 graphite 150.0(10) phi and omega scar 30.03 -13 13; -27 24; -33221883129550.02708989	min, 0.8513 max 1s 3 33	
Criterion Criterion	8989 I > 2sigma(I)		
Refinement type	Fsqd		
Hydrogen atoms	mixed		
Parameters refined Parameters / parameter	480		
wR2	0 1166		
R1	0.0414		
Weights a, b	0.0591 ; 0.0000		
GoF	1.008		
difference peak / hole (e Å ⁻³)	1.356(0.090) / -0.87	74(0.090)	
TABLE XX. Bond lengths (A)	and angles (c	leg) for 316	
Pd(1)-P(1)	2.186(1)	Pd(1)-S(1)	2.3250(8)
Pd(1) - S(2)	2.3275(8	Pd(1)-Cl(1)	2.404(1)
S(1) - P(2) P(1) - N(1)	2.029(1) 1.681(2)	S(2) - P(3) P(1) - C(1)	2.033(1) 1.756(2)
P(1) = N(1) P(1) = C(5)	1.001(2) 1.763(2)	P(1) = C(1) P(2) = C(1)	1.750(2) 1.766(2)
P(2) - C(12)	1.807(2)	P(2) - C(6)	1.812(2)
P(3)-C(5)	1.762(2)	P(3)-C(36)	1.803(2)
P(3)-C(30)	1.816(2)	N(1)-C(44)	1.469(3)
N(1)-C(42)	1.475(3)	C(1) - C(2)	1.409(3)
C(2) - C(3)	1.408(3)	C(2) - C(18)	1.488(3)
C(3) - C(4) C(4) - C(24)	1.400(3)	C(4) = C(3) C(6) = C(7)	1.411(3) 1 382(3)
C(6) - C(11)	1.400(3)	C(7) - C(8)	1.388(3)
C(8)-C(9)	1.385(4)	C(9)-C(10)	1.383(3)
C(10)-C(11)	1.371(3)	C(12)-C(13)	1.393(3)
C(12) - C(17)	1.401(3)	C(13) - C(14)	1.388(4)
C(14) = C(15) C(16) = C(17)	1.3/5(4) 1.300/2)	C(13) = C(16)	1.38U(4)
C(18) - C(19)	1.387(3)	C (19) –C (20)	1.390(3)

C(20) - C(21) $C(22) - C(23)$ $C(24) - C(25)$ $C(26) - C(27)$ $C(28) - C(29)$ $C(30) - C(35)$ $C(32) - C(33)$ $C(34) - C(35)$ $C(36) - C(41)$ $C(38) - C(39)$ $C(40) - C(41)$ $C(44) - C(45)$	1.360(4) 1.399(3) 1.397(3) 1.378(4) 1.381(3) 1.389(3) 1.379(4) 1.384(3) 1.402(3) 1.389(4) 1.370(3) 1.513(4)	C (21) -C (22) C (24) -C (29) C (25) -C (26) C (27) -C (28) C (30) -C (31) C (31) -C (32) C (33) -C (34) C (36) -C (37) C (37) -C (38) C (39) -C (40) C (42) -C (43)	1.368(4) 1.388(3) 1.389(3) 1.389(3) 1.384(3) 1.384(3) 1.381(4) 1.393(3) 1.389(3) 1.391(4) 1.507(3)
P(1) - Pd(1) - S(1) S(1) - Pd(1) - S(2) S(1) - Pd(1) - Cl(1) P(2) - S(1) - Pd(1) N(1) - P(1) - C(5) C(1) - P(1) - Pd(1) C(1) - P(2) - C(12) C(12) - P(2) - C(6) C(12) - P(2) - S(1) C(5) - P(3) - C(30) C(36) - P(3) - C(30) C(42) - N(1) - P(1) C(2) - C(1) - P(2) C(3) - C(2) - C(18) C(3) - C(2) - C(18) C(3) - C(4) - C(5) C(5) - C(4) - C(24) C(4) - C(5) - P(1) C(7) - C(6) - C(11) C(11) - C(6) - P(2) C(9) - C(8) - C(7) C(11) - C(10) - C(9) C(13) - C(12) - C(17) C(11) - C(10) - C(9) C(13) - C(12) - C(17) C(15) - C(14) - C(13) C(15) - C(16) - C(17) C(23) - C(18) - C(19) C(15) - C(16) - C(17) C(23) - C(18) - C(19) C(19) - C(18) - C(2) C(21) - C(20) - C(19) C(21) - C(20) - C(23) C(20) - C(24) - C(25) C(25) - C(24) - C(4) C(27) - C(26) - C(25) C(29) - C(28) - C(27) C(31) - C(30) - C(35) C(33) - C(32) - C(31) C(33) - C(34) - C(35) C(37) - C(36) - C(41) C(41) - C(36) - P(3)	87.92(2) 171.42(2) 93.76(2) 104.63(3) 105.4(1) 105.4(1) 105.24(7) 115.3(1) 104.2(1) 107.51(8) 110.0(1) 104.3(1) 110.96(8) 115.3(2) 117.7(2) 122.3(2) 120.7(2) 122.2(2) 119.7(2) 117.3(2) 119.9(2) 118.1(2) 120.2(2) 120.2(2) 120.4(3) 120.7(3) 119.5(2) 121.4(2) 120.0(2) 119.5(2) 121.6(2) 120.0(2) 119.7(2) 119.5(2) 121.6(2) 120.0(2) 119.7(2) 119.5(2) 121.6(2) 120.0(2) 119.7(2) 119.6(2) 119.9(3) 118.9(2) 118.9(2) 120.0(2)	P(1) - Pd(1) - S(2) $P(1) - Pd(1) - Cl(1)$ $S(2) - Pd(1) - Cl(1)$ $P(3) - S(2) - Pd(1)$ $N(1) - P(1) - C(5)$ $N(1) - P(1) - Pd(1)$ $C(5) - P(1) - Pd(1)$ $C(1) - P(2) - S(1)$ $C(6) - P(2) - S(1)$ $C(5) - P(3) - C(30)$ $C(5) - P(3) - S(2)$ $C(30) - P(3) - S(2)$ $C(44) - N(1) - P(1)$ $C(2) - C(1) - P(1)$ $P(1) - C(1) - P(2)$ $C(3) - C(2) - C(18)$ $C(4) - C(3) - C(2)$ $C(3) - C(5) - P(3)$ $P(3) - C(5) - P(3)$ $P(3) - C(5) - P(1)$ $C(7) - C(6) - P(2)$ $C(6) - C(7) - C(8)$ $C(10) - C(11) - C(6)$ $C(13) - C(12) - P(2)$ $C(14) - C(13) - C(12)$ $C(14) - C(15) - C(16)$ $C(16) - C(17) - C(12)$ $C(23) - C(18) - C(2)$ $C(14) - C(15) - C(16)$ $C(16) - C(17) - C(12)$ $C(23) - C(18) - C(2)$ $C(18) - C(19) - C(20)$ $C(20) - C(21) - C(22)$ $C(18) - C(23) - C(22)$ $C(29) - C(24) - C(4)$ $C(26) - C(27) - C(28)$ $C(20) - C(21) - C(22)$ $C(18) - C(20) - C(24)$ $C(20) - C(21) - C(22)$ $C(18) - C(20) - C(24)$ $C(20) - C(21) - C(22)$ $C(18) - C(20) - C(24)$ $C(20) - C(21) - C(22)$ $C(30) - C(31) - C(32)$ $C(30) - C(31) - C(30)$ $C(37) - C(36) - P(3)$ $C(38) - C(37) - C(36)$	<pre>88.69(2) 167.07(2) 91.31(2) 101.81(3) 105.4(1) 112.47(7) 113.94(7) 111.2(1) 107.85(7) 10.67(8) 110.67(8) 116.7(1) 107.64(7) 107.17(8) 120.1(2) 117.0(2) 113.9(1) 117.0(2) 125.3(2) 118.1(2) 127.8(2) 113.7(1) 121.9(2) 120.2(2) 120.2(2) 120.2(2) 120.6(2) 120.6(2) 120.6(3) 120.4(3) 120.4(2) 119.6(2) 120.6(3) 120.4(2) 119.6(2) 120.7(2) 120.7(2) 120.2(2) 120.2(2) 120.2(2) 120.2(2) 120.2(2) 120.3(2) 120.2(2) 120.2(2)</pre>
C(39) - C(38) - C(37) C(41) - C(40) - C(39) N(1) - C(42) - C(43)	120.4(2) 120.6(2) 114.7(2)	C (38) -C (39) -C (40) C (40) -C (41) -C (36) N (1) -C (44) -C (45)	119.3(2) 120.6(2) 112.3(2)

Compound 317 Molecular formula $C_{46}H_{42}BrCl_2NiP_3S_2 = C_{45}H_{40}BrNiP_3S_2 \cdot CH_2Cl_2$ Molecular weight 961.34 Crystal habit dark red plate Crystal dimensions(mm) 0.18x0.12x0.04 Crystal system orthorhombic $Pna2_1$ Space group a(Å) 19.445(5) b(Å) 23.835(5) c(Å) 9.475(5) $\alpha(^{\circ})$ 90.00 β(°) 90.00 $\gamma(^{\circ})$ 90.00 $\dot{V}(Å^3)$ 4391(3) Ζ 4 $d(g-cm^{-3})$ 1.454 F(000) 1968 $\mu(cm^{-1})$ 1.710 multi-scan; 0.7483 min, 0.9347 max Absorption corrections Diffractometer **KappaCCD** X-ray source ΜοΚα 0.71069 $\lambda(Å)$ Monochromator graphite T (K) 150.0(10)phi and omega scans Scan mode Maximum θ 28.70 HKL ranges -26 26 ; -32 32 ; -12 12 Reflections measured 11058 Unique data 11058 Rint 0.0000 Reflections used 9596 I > 2sigma(I) Criterion Refinement type Fsqd Hydrogen atoms mixed Parameters refined 541 Reflections / parameter 17 0.0945 wR2 0.0399 R1 Flack's parameter 0.511(7)0.0376; 4.8888 Weights a, b GoF 1.009 difference peak / hole (e Å⁻³) 0.200(0.037) / -0.192(0.037) Refined as a racemic twin. Disorder in the n-Bu chain was only partially resolved.

TABLE XX. Bond lengths (A) and angles (deg) for 317

Br(1)-Ni(2) 2.363(1) Ni(2)-P(1	2.111(1)	
--------------------	--------------	----------	
Ni(2)-S(1)	2.185(1)	Ni(2)-S(2)	2.194(1)
---	-----------------------	---	-----------------------
S(1) - P(2)	2.039(2)	S(2)-P(3)	2.045(2)
P(1)-C(1)	1.776(3)	P(1)-C(5)	1.778(3)
P(1)-C(6)	1.829(4)	P(2)-C(1)	1.768(3)
P(2)-C(16)	1.806(3)	P(2)-C(10)	1.814(3)
P(3) - C(5)	1.761(3)	P(3)-C(34)	1.810(3)
P(3) - C(40)	1.816(3)	C(1) - C(2)	1.384(5)
C(2) = C(3)	1.412(4)	C(2) = C(22)	1.494(4) 1.200(5)
C(3) = C(4) C(4) = C(28)	1.412(4) 1.491(4)	C(4) = C(3) C(6) = C(7)	1.590(5) 1.503(6)
C(7) - C(8)	1.49(1)	C(7) - C(8A)	1.56(2)
C(8) - C(9)	1.43(2)	C(8A) - C(9A)	1.46(2)
C(10)-C(15)	1.388(5)	C(10) - C(11)	1.405(5)
C(11)-C(12)	1.367(5)	C(12)-C(13)	1.392(6)
C(13)-C(14)	1.385(5)	C(14)-C(15)	1.378(5)
C(16)-C(21)	1.381(5)	C(16)-C(17)	1.400(5)
C(17) - C(18)	1.393(5)	C(18) - C(19)	1.368(7)
C(19) = C(20)	1.3/1(7) 1.205(5)	C(20) = C(21)	1.396(5) 1.396(5)
C(22) = C(27) C(23) = C(24)	1.393(5) 1.388(5)	C(22) = C(23)	1.396(3) 1 381(7)
C(25) = C(24)	1.387(7)	C(24) = C(23) C(26) = C(27)	1.396(5)
C (28) -C (33)	1.379(5)	C(28) - C(29)	1.392(4)
C(29) -C(30)	1.388(5)	C(30)-C(31)	1.353(7)
C(31)-C(32)	1.373(6)	C(32)-C(33)	1.393(5)
C(34)-C(39)	1.387(5)	C(34)-C(35)	1.392(5)
C(35)-C(36)	1.376(5)	C(36)-C(37)	1.375(6)
C(37) - C(38)	1.391(6)	C (38) –C (39)	1.388(5)
C(40) - C(41)	1.3/(5)	C(40) - C(45)	1.398(4)
C(41) = C(42) C(43) = C(44)	1.388(5) 1.383(6)	C(42) = C(43) C(44) = C(45)	1.377(5) 1.383(5)
Cl(1) - C(46)	1.734(5)	Cl(2)-C(46)	1.738(5)
P(1) - Ni(2) - S(1)	89.49(3)	P(1) - Ni(2) - S(2)	88.88(3)
S(1) - N1(2) - S(2) S(1) - Ni(2) - Dr(1)	1/2.5/(4)	P(1) - Ni(2) - Br(1)	163.89(3)
P(2) - S(1) - Ni(2)	90.42(3) 104 29(4)	P(3) - S(2) - Ni(2)	95.15(3) 106 65(4)
C(1) - P(1) - C(5)	101.8(2)	C(1) - P(1) - C(6)	100.05(4) 109.6(2)
C(5) - P(1) - C(6)	103.9(2)	C(1) - P(1) - Ni(2)	116.5(1)
C(5)-P(1)-Ni(2)	116.7(1)	C(6)-P(1)-Ni(2)	107.6(1)
C(1)-P(2)-C(16)	116.4(1)	C(1)-P(2)-C(10)	110.9(2)
C(16)-P(2)-C(10)	106.0(2)	C(1)-P(2)-S(1)	106.7(1)
C(16) - P(2) - S(1)	107.4(1)	C(10) - P(2) - S(1)	109.3(1)
C(5) - P(3) - C(34)	115.3(1)	C(5) - P(3) - C(40)	111.5(2)
C(34) = P(3) = C(40) C(34) = P(3) = S(2)	103.4(2) 108.6(1)	C(3) = P(3) = S(2) C(40) = P(3) = S(2)	100.0(1) 109.4(1)
C(2) - C(1) - P(2)	129.4(2)	C(2) - C(1) - P(1)	109.4(1) 119.3(2)
P(2) - C(1) - P(1)	109.9(2)	C(1) - C(2) - C(3)	121.8(3)
C(1) - C(2) - C(22)	121.4(3)	C(3)-C(2)-C(22)	116.8(3)
C(2)-C(3)-C(4)	124.9(3)	C(5)-C(4)-C(3)	122.8(3)
C(5)-C(4)-C(28)	121.3(3)	C(3)-C(4)-C(28)	115.8(3)
C(4) - C(5) - P(3)	130.7(2)	C(4) - C(5) - P(1)	118.0(2)
P(3) = C(5) = P(1)	111.2(2) 120(1)	C(7) - C(6) - P(1)	116.7(3)
C(0) = C(7) = C(0) C(6) = C(7) = C(8A)	⊥∠∪(⊥) 106(1)	C(0) = C(7) = C(8A) C(9) = C(8) = C(7)	⊥/(∠) 118/2)
C(9A) - C(8A) - C(7)	112(2)	C(15) - C(10) - C(11)	119.1(3)
C(15) - C(10) - P(2)	122.5(3)	C(11) -C(10) -P(2)	118.4(3)
c(12) - c(11) - c(10)	120.5(3)	C(11) -C(12) -C(13)	120.1(3)
C(14)-C(13)-C(12)	119.7(3)	C(15)-C(14)-C(13)	120.6(4)
C(14)-C(15)-C(10)	120.1(3)	C(21)-C(16)-C(17)	119.9(3)
C(21)-C(16)-P(2)	121.9(3)	C(17)-C(16)-P(2)	118.2(3)
C(18)-C(17)-C(16)	119.4(4)	C(19)-C(18)-C(17)	120.3(4)

C(18)-C(19)-C(20)
C(16) - C(21) - C(20)
C(27) - C(22) - C(2)
C(24) - C(23) - C(22)
C(24) -C(25) -C(26)
C(22) -C(27) -C(26)
C(33)-C(28)-C(4)
C(30)-C(29)-C(28)
C(30)-C(31)-C(32)
C(28)-C(33)-C(32)
C(39)-C(34)-P(3)
C(36)-C(35)-C(34)
C(36)-C(37)-C(38)
C(34)-C(39)-C(38)
C(41)-C(40)-P(3)
C(40)-C(41)-C(42)
C(42)-C(43)-C(44)
C(44)-C(45)-C(40)

120.4(4) 119.5(4) 121.1(3)	C (19) -C (20) -C (21) C (27) -C (22) -C (23) C (23) -C (22) -C (2)	120.5(4) 120.2(3) 118.7(3)
120.1(4)	C(25)-C(24)-C(23)	120.0(4)
120.2(4)	C(25)-C(26)-C(27)	120.7(4)
118.9(4)	C(33)-C(28)-C(29)	119.1(3)
121.8(3)	C(29)-C(28)-C(4)	118.9(3)
119.7(4)	C(31)-C(30)-C(29)	121.2(4)
119.6(4)	C(31)-C(32)-C(33)	120.5(4)
119.9(4)	C(39)-C(34)-C(35)	119.9(3)
119.4(3)	C(35)-C(34)-P(3)	120.6(2)
119.7(3)	C(37)-C(36)-C(35)	121.0(4)
119.6(3)	C(39)-C(38)-C(37)	120.1(4)
119.7(4)	C(41)-C(40)-C(45)	120.5(3)
121.3(2)	C(45)-C(40)-P(3)	118.2(3)
119.3(3)	C(43)-C(42)-C(41)	120.6(4)
120.2(3)	C(43)-C(44)-C(45)	119.9(3)
119.6(3)	Cl(1)-C(46)-Cl(2)	114.4(3)

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) $\alpha(^{\circ})$ β(°) $\gamma(^{\circ})$ $V(Å^3)$ Ζ $d(g-cm^{-3})$ F(000) $\mu(\text{cm}^{-1})$ Absorption corrections Diffractometer X-ray source λ(Å) Monochromator T (K) Scan mode Maximum θ HKL ranges Reflections measured Unique data Rint

 $C_{42}H_{33}Br_2Cl_2NiP_3S_2 = C_{41}H_{31}Br_2NiP_3S_2$. CH_2Cl_2 984.14 dark red plate 0.18x0.16x0.12 monoclinic $P2_1/c$ 12.5210(10) 22.4710(10) 14.8320(10) 90.00 91.2000(10) 90.00 4172.2(5) 4 1.567 1976 2.754 sadabs ; 0.6370 min, 0.7335 max KappaCCD ΜοΚα 0.71069 graphite 150.0(10) phi and omega scans 28.70 -16 16 ; -27 30 ; -14 20 24699 10719

321

0.0782

383

Reflections used Criterion Refinement type Hydrogen atoms Parameters refined Reflections / parameter wR2 R1 Weights a, b GoF difference peak / hole (e Å ⁻³)	7725 I > 2sigma(I) Fsqd mixed 469 16 0.1280 0.0493 0.0672 ; 0.0000 0.981 1.044(0.114) / -0.	840(0.114)	
Table 3. Bond lengths (A	A) and angles (deg) for 321	
Br(1)-P(1) $Ni(3)-P(1)$ $Ni(3)-S(1)$ $Cl(2)-C(42)$ $S(2)-P(3)$ $P(1)-C(5)$ $P(2)-C(12)$ $P(3)-C(5)$ $P(3)-C(36)$ $C(2)-C(3)$ $C(4)-C(24)$ $C(6)-C(11)$ $C(6)-C(11)$ $C(12)-C(13)$ $C(14)-C(15)$ $C(16)-C(17)$ $C(18)-C(23)$ $C(20)-C(21)$ $C(22)-C(23)$ $C(24)-C(25)$ $C(26)-C(27)$ $C(28)-C(29)$ $C(30)-C(35)$ $C(32)-C(33)$ $C(34)-C(35)$ $C(36)-C(37)$ $C(38)-C(39)$ $C(40)-C(41)$	$\begin{array}{c} 2.357(1)\\ 2.089(1)\\ 2.184(1)\\ 1.735(5)\\ 2.043(1)\\ 1.749(3)\\ 1.798(4)\\ 1.778(3)\\ 1.811(3)\\ 1.394(5)\\ 1.402(4)\\ 1.498(4)\\ 1.401(5)\\ 1.394(5)\\ 1.402(4)\\ 1.401(5)\\ 1.378(7)\\ 1.399(5)\\ 1.401(7)\\ 1.385(6)\\ 1.395(6)\\ 1.395(6)\\ 1.395(6)\\ 1.395(6)\\ 1.398(5)\\ 1.397(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(6)\\ 1.383(5)\\$	Br(2) -Ni(3) $Ni(3) -S(2)$ $Cl(1) -C(42)$ $S(1) -P(2)$ $P(1) -C(1)$ $P(2) -C(1)$ $P(2) -C(6)$ $P(3) -C(30)$ $C(1) -C(2)$ $C(2) -C(18)$ $C(4) -C(5)$ $C(6) -C(7)$ $C(7) -C(8)$ $C(9) -C(10)$ $C(12) -C(17)$ $C(13) -C(14)$ $C(15) -C(16)$ $C(18) -C(19)$ $C(19) -C(20)$ $C(21) -C(22)$ $C(24) -C(29)$ $C(25) -C(26)$ $C(27) -C(28)$ $C(30) -C(31)$ $C(31) -C(32)$ $C(33) -C(34)$ $C(36) -C(41)$ $C(39) -C(40)$	2.3332(5) 2.180(1) 1.742(6) 2.043(1) 1.745(4) 1.784(3) 1.813(3) 1.789(3) 1.405(5) 1.405(5) 1.394(5) 1.385(5) 1.385(5) 1.385(5) 1.385(5) 1.367(7) 1.395(5) 1.380(6) 1.364(7) 1.383(5) 1.378(7) 1.387(5) 1.385(6) 1.373(5) 1.364(6) 1.390(5) 1.375(6)
P(1) -Ni(3) -S(2) S(2) -Ni(3) -Br(2) P(2) -S(1) -Ni(3) C(1) -P(1) -C(5) C(5) -P(1) -Ni(3) C(5) -P(1) -Br(1) C(1) -P(2) -C(12) C(12) -P(2) -C(6) C(12) -P(2) -S(1) C(5) -P(3) -C(30) C(30) -P(3) -C(36) C(30) -P(3) -S(2) C(2) -C(1) -P(1) P(1) -C(1) -P(2) C(3) -C(2) -C(18) C(2) -C(3) -C(4) C(5) -C(4) -C(24) C(4) -C(5) -P(1) P(1) -C(5) -P(3) C(7) -C(6) -P(2) C(6) -C(7) -C(8) C(10) -C(9) -C(8)	91.30(3) 172.34(4) 89.73(3) 108.83(4) 104.9(2) 118.0(1) 106.2(1) 110.2(2) 108.9(2) 108.5(1) 110.1(2) 110.6(2) 109.9(2) 115.7(3) 126.3(3) 121.0(3) 121.4(2) 110.8(2) 118.2(3) 120.3(4) 119.9(4)	$\begin{array}{c} P(1) - Ni(3) - S(1) \\ P(1) - Ni(3) - Br(2) \\ S(1) - Ni(3) - Br(2) \\ P(3) - S(2) - Ni(3) \\ C(1) - P(1) - Ni(3) \\ C(1) - P(1) - Br(1) \\ Ni(3) - P(1) - Br(1) \\ C(1) - P(2) - C(6) \\ C(1) - P(2) - S(1) \\ C(6) - P(2) - S(1) \\ C(6) - P(2) - S(1) \\ C(5) - P(3) - C(36) \\ C(5) - P(3) - S(2) \\ C(36) - P(3) - S(2) \\ C(36) - P(3) - S(2) \\ C(3) - C(2) - C(1) \\ C(1) - C(2) - C(1) \\ C(1) - C(2) - C(18) \\ C(5) - C(4) - C(3) \\ C(3) - C(4) - C(24) \\ C(4) - C(5) - P(3) \\ C(7) - C(6) - C(11) \\ C(11) - C(6) - P(2) \\ C(9) - C(10) - C(11) \\ \end{array}$	$\begin{array}{c} 88.80(3)\\ 175.85(3)\\ 90.71(3)\\ 109.07(4)\\ 118.0(1)\\ 103.9(1)\\ 104.37(4)\\ 116.0(2)\\ 106.5(1)\\ 106.5(1)\\ 106.4(1)\\ 112.5(2)\\ 106.7(1)\\ 108.5(1)\\ 129.9(3)\\ 122.8(3)\\ 121.4(3)\\ 121.9(3)\\ 121.9(3)\\ 127.2(2)\\ 120.0(3)\\ 121.8(3)\\ 120.0(4)\\ 121.5(4)\end{array}$

C(10) - C(11) - C(6) C(17) - C(12) - P(2)
C(14) - C(13) - C(12)
C(16) - C(15) - C(14)
C(16) - C(17) - C(12)
C(19) - C(18) - C(2)
C(20) - C(19) - C(18)
C(20) - C(21) - C(22)
C(22) - C(23) - C(18)
C(29) - C(24) - C(4)
C(26) - C(25) - C(24)
C(26) - C(27) - C(28)
C(28) - C(29) - C(24)
C(31)-C(30)-P(3)
C(32) - C(31) - C(30)
C(34) - C(33) - C(32)
C(34) - C(35) - C(30)
C(41)-C(36)-P(3)
C(38) - C(37) - C(36)
C(40) - C(39) - C(38)
C(40)-C(41)-C(36)

118.3(4)	C(17) - C(12) - C(13)	118.8(3)
119.8(3)	C(13) - C(12) - P(2)	120.8(3)
119.8(4)	C(13)-C(14)-C(15)	120.6(4)
119.4(4)	C(15) - C(16) - C(17)	120.8(4)
120.5(4)	C(19) - C(18) - C(23)	118.9(4)
120.9(4)	C(23) - C(18) - C(2)	120.1(3)
120.6(5)	C(21) - C(20) - C(19)	120.3(4)
120.5(4)	C(21) - C(22) - C(23)	119.7(5)
120.0(4)	C(29) - C(24) - C(25)	119.3(3)
122.4(3)	C(25) - C(24) - C(4)	118.3(3)
120.2(3)	C(27) - C(26) - C(25)	120.4(4)
119.6(3)	C(27) - C(28) - C(29)	120.8(4)
119.7(3)	C(31) - C(30) - C(35)	119.8(3)
116.4(2)	C(35) - C(30) - P(3)	123.7(3)
120.2(3)	C(31) - C(32) - C(33)	119.9(4)
120.1(3)	C(33) - C(34) - C(35)	120.8(4)
119.2(4)	C(41) - C(36) - C(37)	119.8(3)
120.5(3)	C(37) - C(36) - P(3)	119.4(3)
119 3(4)	C(37) - C(38) - C(39)	1204(4)
120 2(4)	C(39) - C(40) - C(41)	1199(4)
120.2(1)	C(3), C(4), C(4)	111 7(2)
120.4(4)	$\Box_{\perp}(\Delta) = \Box(\exists \Delta) = \Box_{\perp}(\perp)$	LTT./(2)

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) α(°) β(°) $\gamma(^{\circ})$ $V(Å^3)$ Ζ $d(g-cm^{-3})$ F(000) $\mu(\text{cm}^{-1})$ Absorption corrections Diffractometer X-ray source λ(Å) Monochromator T (K) Scan mode Maximum θ HKL ranges Reflections measured

322 C₄₁H₃₁Cl₂P₃PtS₂ 946.68 lemon yellow needle 0.18x0.10x0.10 triclinic P-1 9.2970(10) 10.8530(10) 20.4690(10) 98.0660(10) 101.1620(10) 109.7870(10) 1858.6(3) 2 1.692 932 4.190 multi-scan; 0.5192 min, 0.6793 max KappaCCD ΜοΚα 0.71069 graphite 150.0(10) phi and omega scans 28.70 -12 12 ; -9 14 ; -27 27 13029

385

Unique data Rint Reflections used Criterion Refinement type Hydrogen atoms Parameters refined Reflections / parameter wR2 R1 Weights a, b GoF difference peak / hole (e Å ⁻³)	9611 0.0254 7552 I > 2sigma(I) Fsqd mixed 442 17 0.0730 0.0358 0.0259 ; 0.0000 0.996 2.780(0.127) / -1.	516(0.127)	
Table 3. Bond lengths (A	A) and angles	(deg) for 322	
$\begin{array}{c} \texttt{Pt}(1) - \texttt{P}(1) \\ \texttt{Pt}(1) - \texttt{S}(1) \\ \texttt{Cl}(1) - \texttt{P}(1) \\ \texttt{S}(2) - \texttt{P}(3) \\ \texttt{P}(1) - \texttt{C}(5) \\ \texttt{P}(2) - \texttt{C}(6) \\ \texttt{P}(3) - \texttt{C}(5) \\ \texttt{P}(3) - \texttt{C}(5) \\ \texttt{P}(3) - \texttt{C}(36) \\ \texttt{C}(2) - \texttt{C}(3) \\ \texttt{C}(3) - \texttt{C}(4) \\ \texttt{C}(4) - \texttt{C}(24) \\ \texttt{C}(6) - \texttt{C}(11) \\ \texttt{C}(8) - \texttt{C}(9) \\ \texttt{C}(10) - \texttt{C}(11) \\ \texttt{C}(12) - \texttt{C}(13) \\ \texttt{C}(14) - \texttt{C}(15) \\ \texttt{C}(16) - \texttt{C}(17) \\ \texttt{C}(18) - \texttt{C}(23) \\ \texttt{C}(20) - \texttt{C}(21) \\ \texttt{C}(22) - \texttt{C}(23) \\ \texttt{C}(24) - \texttt{C}(29) \\ \texttt{C}(26) - \texttt{C}(27) \\ \texttt{C}(28) - \texttt{C}(29) \\ \texttt{C}(30) - \texttt{C}(35) \\ \texttt{C}(34) - \texttt{C}(35) \\ \texttt{C}(36) - \texttt{C}(41) \\ \texttt{C}(38) - \texttt{C}(39) \\ \texttt{C}(40) - \texttt{C}(41) \end{array}$	$\begin{array}{c} 2.159(1)\\ 2.3258(8\\ 2.103(1)\\ 2.046(1)\\ 1.750(3)\\ 1.803(4)\\ 1.779(3)\\ 1.810(3)\\ 1.409(4)\\ 1.409(4)\\ 1.409(4)\\ 1.493(4)\\ 1.393(5)\\ 1.387(5)\\ 1.392(6)\\ 1.394(5)\\ 1.374(5)\\ 1.380(5)\\ 1.380(5)\\ 1.389(5)\\ 1.381(5)\\ 1.381(5)\\ 1.387(5)\\ 1.375(5)\\ 1.372(6)\\ 1.390(5)\\ 1.390(5)\\ \end{array}$	Pt(1)-S(2) Pt(1)-Cl(2) S(1)-P(2) P(1)-C(1) P(2)-C(1) P(2)-C(12) P(3)-C(30) C(1)-C(2) C(2)-C(18) C(4)-C(5) C(6)-C(7) C(7)-C(8) C(9)-C(10) C(12)-C(17) C(13)-C(14) C(15)-C(16) C(18)-C(19) C(19)-C(20) C(21)-C(22) C(24)-C(25) C(25)-C(26) C(27)-C(28) C(30)-C(31) C(31)-C(32) C(33)-C(34) C(36)-C(37) C(37)-C(38) C(39)-C(40)	2.3243(8) $2.342(1)$ $2.045(1)$ $1.743(3)$ $1.779(3)$ $1.809(4)$ $1.804(4)$ $1.388(5)$ $1.500(4)$ $1.395(5)$ $1.393(5)$ $1.371(5)$ $1.367(6)$ $1.380(5)$ $1.377(5)$ $1.372(5)$ $1.372(5)$ $1.372(5)$ $1.399(5)$ $1.371(6)$ $1.389(5)$ $1.370(5)$ $1.389(5)$ $1.389(5)$ $1.381(5)$ $1.385(5)$ $1.369(6)$
$\begin{array}{c} P(1) - Pt(1) - S(2) \\ S(2) - Pt(1) - S(1) \\ S(2) - Pt(1) - C1(2) \\ P(2) - S(1) - Pt(1) \\ C(1) - P(1) - C(5) \\ C(5) - P(1) - C1(1) \\ C(5) - P(1) - Pt(1) \\ C(1) - P(2) - C(6) \\ C(6) - P(2) - C(12) \\ C(6) - P(2) - S(1) \\ C(5) - P(3) - C(30) \\ C(30) - P(3) - C(36) \\ C(30) - P(3) - C(36) \\ C(30) - P(3) - S(2) \\ C(2) - C(1) - P(1) \\ P(1) - C(1) - P(2) \\ C(1) - C(2) - C(18) \\ C(4) - C(3) - C(2) \\ C(5) - C(4) - C(24) \\ C(4) - C(5) - P(1) \\ P(1) - C(5) - P(3) \\ C(7) - C(6) - P(2) \\ \end{array}$	87.91(3) 176.07(3) 91.90(3) 102.04(4) 104.8(2) 103.5(1) 116.6(1) 108.8(2) 107.7(2) 111.3(1) 110.8(2) 108.3(2) 109.8(1) 118.7(2) 112.4(2) 122.6(3) 118.3(2) 111.7(2) 119.5(3)	$\begin{array}{c} P(1) - Pt(1) - S(1) \\ P(1) - Pt(1) - Cl(2) \\ S(1) - Pt(1) - Cl(2) \\ P(3) - S(2) - Pt(1) \\ C(1) - P(1) - Cl(1) \\ C(1) - P(1) - Pt(1) \\ Cl(1) - P(1) - Pt(1) \\ Cl(1) - P(2) - C(12) \\ C(1) - P(2) - S(1) \\ C(12) - P(2) - S(1) \\ C(5) - P(3) - C(36) \\ C(5) - P(3) - S(2) \\ C(36) - P(3) - S(2) \\ C(36) - P(3) - S(2) \\ C(3) - C(2) - C(18) \\ C(3) - C(2) - C(18) \\ C(3) - C(2) - C(18) \\ C(3) - C(4) - C(24) \\ C(4) - C(5) - P(3) \\ C(11) - C(6) - P(2) \\ \end{array}$	$\begin{array}{c} 88.65(3)\\ 179.24(4)\\ 91.52(3)\\ 103.26(4)\\ 105.0(1)\\ 116.0(1)\\ 109.67(5)\\ 114.7(2)\\ 108.3(1)\\ 106.0(1)\\ 113.1(2)\\ 109.0(1)\\ 105.7(1)\\ 127.9(2)\\ 122.3(3)\\ 115.8(3)\\ 122.2(3)\\ 115.2(3)\\ 129.9(3)\\ 119.1(4)\\ 121.4(3)\\ \end{array}$

(partie cationique)

333

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) $\alpha(^{\circ})$ β(°) γ(°) V(Å³) Ζ $d(g-cm^{-3})$ F(000) $\mu(\text{cm}^{-1})$ Absorption corrections Diffractometer X-ray source λ(Å) Monochromator

 $C_{52}H_{42}N_2P_3PdS_2, 2CHCl_3, BF_4$ 1283.85 orange block 0.20x0.20x0.16 triclinic P-1 12.7870(10) 13.5470(10) 17.3590(10) 111.8200(10) 100.4000(10) 93.6300(10) 2717.6(3) 2 1.569 1296 0.855 multi-scan; 0.8475 min, 0.8753 max KappaCCD ΜοΚα 0.71069 graphite

)))

)

)

T (K)	150.0(1)
Scan mode	phi and omega scans
Maximum θ	30.03
HKL ranges	-17 17 ; -15 19 ; -24 24
Reflections measured	23605
Unique data	15786
Rint	0.0183
Reflections used	12722
Criterion	$I > 2\sigma I$)
Refinement type	Fsqd
Hydrogen atoms	mixed
Parameters refined	586
Reflections / parameter	21
wR2	0.1527
R1	0.0466
Weights a, b	0.0957 ; 0.0829
GoF	1.115
difference peak / hole (e Å ⁻³)	1.607(0.093) / -1.121(0.093)

Note: Two $CHCl_3$ molecules revealed too disordered to be included in least-squares and were accounted for using the Platon SQUEEZE function. The data at hand do not permit to solve an eventual disorder in the BF_4 anion.

Table 3. Bond lengths (A)	and angles	(deg) for 333	
$\begin{array}{c} Pd(1) -N(2) \\ Pd(1) -S(1) \\ S(1) -P(2) \\ P(1) -C(5) \\ P(1) -C(6) \\ P(2) -C(18) \\ P(3) -C(5) \\ P(3) -C(42) \\ N(2) -C(52) \\ C(2) -C(3) \\ C(2) -C(3) \\ C(3) -C(4) \\ C(4) -C(30) \\ C(7) -N(1) \\ N(1) -C(11) \\ C(9) -C(10) \\ C(12) -C(17) \\ C(13) -C(14) \\ C(15) -C(16) \\ C(18) -C(19) \\ C(19) -C(20) \\ C(21) -C(22) \\ C(24) -C(29) \\ C(25) -C(26) \\ C(27) -C(28) \\ C(30) -C(35) \\ C(31) -C(32) \\ C(33) -C(34) \\ C(36) -C(37) \\ C(37) -C(38) \\ C(39) -C(40) \\ C(42) -C(47) \\ C(43) -C(44) \\ C(45) -C(46) \\ C(48) -C(49) \\ C(50) -C(51) \\ B(1) -F(4) \\ B(1) -F(3) \end{array}$	2.140(2) 2.3126(6) 2.0313(8) 1.771(2) 1.841(2) 1.808(2) 1.767(2) 1.357(3) 1.404(3) 1.420(3) 1.493(3) 1.354(4) 1.354(4) 1.354(4) 1.397(7) 1.380(3) 1.378(4) 1.396(3) 1.378(4) 1.396(4) 1.390(4) 1.397(4) 1.385(5) 1.379(3) 1.397(4) 1.368(5) 1.379(4) 1.384(5) 1.379(7) 1.379(7)	$\begin{array}{c} \text{Pd}(1) - \text{P}(1) \\ \text{Pd}(1) - \text{S}(2) \\ \text{S}(2) - \text{P}(3) \\ \text{P}(1) - \text{C}(1) \\ \text{P}(2) - \text{C}(12) \\ \text{P}(3) - \text{C}(36) \\ \text{N}(2) - \text{C}(48) \\ \text{C}(1) - \text{C}(2) \\ \text{C}(4) - \text{C}(5) \\ \text{C}(6) - \text{C}(7) \\ \text{C}(7) - \text{C}(8) \\ \text{C}(8) - \text{C}(9) \\ \text{C}(10) - \text{C}(11) \\ \text{C}(12) - \text{C}(13) \\ \text{C}(14) - \text{C}(15) \\ \text{C}(16) - \text{C}(17) \\ \text{C}(18) - \text{C}(23) \\ \text{C}(20) - \text{C}(21) \\ \text{C}(22) - \text{C}(23) \\ \text{C}(24) - \text{C}(25) \\ \text{C}(26) - \text{C}(27) \\ \text{C}(28) - \text{C}(29) \\ \text{C}(30) - \text{C}(31) \\ \text{C}(32) - \text{C}(33) \\ \text{C}(34) - \text{C}(35) \\ \text{C}(36) - \text{C}(41) \\ \text{C}(38) - \text{C}(39) \\ \text{C}(40) - \text{C}(41) \\ \text{C}(42) - \text{C}(43) \\ \text{C}(44) - \text{C}(45) \\ \text{C}(46) - \text{C}(47) \\ \text{C}(49) - \text{C}(50) \\ \text{C}(51) - \text{C}(52) \\ \text{B}(1) - \text{F}(1) \\ \end{array}$	2.2040(6) 2.3359(6) 2.036(1) 1.776(2) 1.762(2) 1.813(2) 1.805(3) 1.342(3) 1.414(3) 1.494(3) 1.392(3) 1.500(4) 1.390(4) 1.345(5) 1.400(7) 1.402(3) 1.383(4) 1.385(4) 1.385(4) 1.385(4) 1.385(4) 1.385(4) 1.385(4) 1.385(4) 1.385(4) 1.385(4) 1.385(4) 1.385(4) 1.385(4) 1.385(4) 1.388(4) 1.379(5) 1.403(4) 1.388(5) 1.376(4) 1.395(5) 1.395(4) 1.395(5) 1.395(4) 1.383(4) 1.371(7) 1.405(6)
N(2)-Pd(1)-P(1) P(1)-Pd(1)-S(1) P(1)-Pd(1)-S(2)	175.43(5) 87.49(2) 86.38(2)	N(2)-Pd(1)-S(1) N(2)-Pd(1)-S(2) S(1)-Pd(1)-S(2)	91.37(5) 94.66(5) 173.78(2)

389

P(2)-S(1)-Pd(1) C(5)-P(1)-C(1)	101.49(3) 103.1(1)	P(3)-S(2)-Pd(1) C(5)-P(1)-C(6)	102.20(3) 106.4(1)
C(1) - P(1) - C(6)	110.7(1)	C(5) - P(1) - Pd(1)	114.08(8)
C(1) - P(2) - C(18)	113.94(7) 110.7(1)	C(0) - P(1) - PQ(1) C(1) - P(2) - C(12)	116 7(1)
C(18) - P(2) - C(12)	106.9(1)	C(1) - P(2) - S(1)	108.28(8)
C(18) - P(2) - S(1)	110.13(8)	C(12) - P(2) - S(1)	103.90(8)
C(5)-P(3)-C(36)	111.3(1)	C(5) - P(3) - C(42)	114.0(1)
C(36) - P(3) - C(42)	107.5(1)	C(5) - P(3) - S(2)	107.45(8)
C(36) - P(3) - S(2) C(48) - N(2) - C(52)	109.9(1) 118 2(2)	C(42) - P(3) - S(2) C(48) - N(2) - Dd(1)	106.5(1) 120.9(2)
C(52) - N(2) - Pd(1)	120.9(2)	C(2) - C(1) - P(2)	120.9(2) 129.4(2)
C(2) - C(1) - P(1)	117.3(2)	P(2) - C(1) - P(1)	111.9(1)
C(3)-C(2)-C(1)	122.8(2)	C(3)-C(2)-C(24)	114.6(2)
C(1) - C(2) - C(24)	122.5(2)	C(2) - C(3) - C(4)	124.6(2)
C(5) - C(4) - C(3) C(2) - C(4) - C(3)	122.1(2)	C(5) - C(4) - C(30)	121.5(2)
C(3) - C(4) - C(30) C(4) - C(5) - P(1)	118.6(2)	P(3) - C(5) - P(1)	120.1(2) 112.7(1)
C(7) - C(6) - P(1)	111.7(2)	N(1) - C(7) - C(8)	122.9(3)
N(1) - C(7) - C(6)	117.2(2)	C(8) - C(7) - C(6)	119.7(3)
C(7) - N(1) - C(11)	116.5(3)	C(9) - C(8) - C(7)	121.4(4)
C(8) - C(9) - C(10)	117.3(4)	C(9) - C(10) - C(11)	118.9(4) 120.7(2)
P(1) = C(11) = C(10) C(17) = C(12) = P(2)	123.0(4) 121 9(2)	C(17) - C(12) - C(13) C(13) - C(12) - P(2)	120.7(2) 117 3(2)
C(14) - C(13) - C(12)	119.2(2)	C(15) - C(14) - C(13)	120.2(2)
C(16) - C(15) - C(14)	120.3(2)	C(15) - C(16) - C(17)	120.4(2)
C(12)-C(17)-C(16)	119.2(2)	C(19) - C(18) - C(23)	119.6(2)
C(19) - C(18) - P(2)	118.6(2)	C(23) - C(18) - P(2)	121.8(2)
C(18) - C(19) - C(20) C(22) - C(21) - C(20)	120.1(2) 121 0(2)	C(21) - C(20) - C(19) C(21) - C(22) - C(23)	119.4(2) 120.3(3)
C(22) - C(23) - C(18)	119.7(2)	C(21) - C(22) - C(25)	119.0(2)
C(29) - C(24) - C(2)	119.0(2)	C(25) - C(24) - C(2)	121.8(2)
C(26)-C(25)-C(24)	119.6(3)	C(27)-C(26)-C(25)	121.2(3)
C(26) - C(27) - C(28)	119.3(3)	C(29) - C(28) - C(27)	120.0(3)
C(28) - C(29) - C(24) C(25) - C(20) - C(4)	120.8(3)	C(35) - C(30) - C(31) C(31) - C(30) - C(4)	119.4(2) 110 7(2)
C(30) - C(31) - C(32)	120.0(2) 120.1(3)	C(33) - C(32) - C(31)	120.2(3)
C(32) - C(33) - C(34)	120.1(3)	C(33) - C(34) - C(35)	119.5(3)
C(30)-C(35)-C(34)	120.6(3)	C(37)-C(36)-C(41)	119.5(2)
C(37) - C(36) - P(3)	121.3(2)	C(41) - C(36) - P(3)	119.2(2)
C(36) - C(37) - C(38)	120.3(3)	C(39) - C(38) - C(37)	119.0(3) 120.7(2)
C(40) - C(39) - C(36)	120.9(3) 119 7(3)	C(47) - C(42) - C(41) C(47) - C(42) - C(43)	120.7(3) 120.8(2)
C(47) - C(42) - P(3)	116.8(2)	C(43) - C(42) - P(3)	122.4(2)
C(42)-C(43)-C(44)	119.6(3)	C(45)-C(44)-C(43)	119.3(3)
C(46) - C(45) - C(44)	120.4(2)	C(45) - C(46) - C(47)	120.4(3)
C(42) - C(47) - C(46)	119.4(3)	N(2) - C(48) - C(49)	122.8(3)
C(40) - C(49) - C(50) C(52) - C(51) - C(50)	119.0(3)	N(2) - C(52) - C(49) N(2) - C(52) - C(51)	122 1(2)
F(4) - B(1) - F(2)	117.9(7)	F(4) - B(1) - F(3)	115.4(8)
F(2) - B(1) - F(3)	99.4(4)	F(4) - B(1) - F(1)	109.0(4)
F(2)-B(1)-F(1)	102.8(5)	F(3)-B(1)-F(1)	111.4(4)

III. Chapitre 4

Compound 401 Molecular formula $C_{50}H_{46}P_3RhS_2, C_4H_8O$ Molecular weight 978.91 Crystal habit orange needle Crystal dimensions(mm) 0.22x0.06x0.04 triclinic Crystal system P-1 Space group a(Å) 8.8950(10) b(Å) 12.3420(10) c(Å) 21.7470(10) $\alpha(^{\circ})$ 77.004(2) β(°) 78.883(2) $\gamma(^{\circ})$ 83.638(2) $V(Å^3)$ 2276.9(3) Ζ 2 $d(g-cm^{-3})$ 1.428 F(000) 1016 $\mu(cm^{-1})$ 0.612 Absorption corrections multi-scan; 0.8771 min, 0.9759 max Diffractometer KappaCCD ΜοΚα X-ray source λ(Å) 0.71069 Monochromator graphite T (K) 150.0(1)Scan mode phi and omega scans 27.47 Maximum θ HKL ranges -11 11 ; -15 15 ; -28 28 Reflections measured 14520 10293 Unique data 0.0329 Rint Reflections used 7947 Criterion $I > 2\sigma I$) Refinement type Fsqd Hydrogen atoms mixed Parameters refined 563 Reflections / parameter 14 wR2 0.1509 R1 0.0515 Weights a, b 0.0986;0 GoF 0.996 difference peak / hole (e Å⁻³) 1.649(0.1

inque duti	10275
Rint	0.0329
Reflections used	7947
Criterion	$I > 2\sigma I$)
Refinement type	Fsqd
Iydrogen atoms	mixed
arameters refined	563
Reflections / parameter	14
vR2	0.1509
81	0.0515
Veights a, b	0.0986 ; 0.0000
GoF	0.996
ifference peak / hole (e Å ⁻³)	1.649(0.136) / -1.533(0.136)
Table 3. Bond lengths (A)	and angles (deg) for 401

Rh(1)-C(47)	2.101(3)	Rh(1)-C(48)	2.106(3)
Rh(1) - P(1)	2.272(1)	Rh(1)-C(44)	2.275(4)

Rh(1)-C(43) Rh(1)-S(1) S(2)-P(3) P(1)-C(5) P(2)-C(1) P(2)-C(7) P(3)-C(31) C(1)-C(2) C(2)-C(19) C(4)-C(5) C(7)-C(8) C(8)-C(9) C(10)-C(11) C(13)-C(18) C(14)-C(15) C(16)-C(17) C(19)-C(24) C(20)-C(21) C(22)-C(23) C(25)-C(30) C(26)-C(27) C(28)-C(29) C(31)-C(32) C(32)-C(33) C(34)-C(35) C(37)-C(42) C(38)-C(39) C(40)-C(41) C(43)-C(44) C(44)-C(45) C(46)-C(47) C(48)-C(49) O(1)-C(54) C(51)-C(52) C(53)-C(54)	$\begin{array}{c} 2.286(4)\\ 2.546(1)\\ 1.998(1)\\ 1.795(3)\\ 1.766(3)\\ 1.815(3)\\ 1.815(3)\\ 1.815(3)\\ 1.815(3)\\ 1.401(5)\\ 1.493(5)\\ 1.401(5)\\ 1.388(5)\\ 1.385(5)\\ 1.385(5)\\ 1.385(5)\\ 1.385(5)\\ 1.385(5)\\ 1.385(5)\\ 1.382(5)\\ 1.382(5)\\ 1.384(6)\\ 1.392(5)\\ 1.384(6)\\ 1.394(5)\\ 1.388(5)\\ 1.392(5)\\ 1.381(6)\\ 1.393(5)\\ 1.380(5)\\ 1.390(5)\\ 1.346(6)\\ 1.521(6)\\ 1.519(6)\\ 1.509(5)\\ 1.430(5)\\ 1.516(5)\\ 1.527(5)\\ \end{array}$	Rh(1)-S(2) S(1)-P(2) P(1)-C(1) P(1)-C(6) P(2)-C(13) P(3)-C(5) P(3)-C(5) P(3)-C(2) C(2)-C(3) C(2)-C(3) C(4)-C(25) C(7)-C(12) C(9)-C(10) C(11)-C(12) C(13)-C(14) C(15)-C(16) C(17)-C(18) C(19)-C(20) C(21)-C(22) C(23)-C(24) C(25)-C(26) C(27)-C(28) C(29)-C(30) C(31)-C(36) C(33)-C(34) C(35)-C(36) C(37)-C(38) C(39)-C(40) C(41)-C(42) C(43)-C(50) C(45)-C(46) C(47)-C(48) C(49)-C(50) O(1)-C(51) C(52)-C(53)	2.515(1) 1.995(1) 1.787(3) 1.835(3) 1.813(3) 1.762(3) 1.822(3) 1.405(5) 1.409(5) 1.493(5) 1.397(5) 1.397(5) 1.399(5) 1.377(5) 1.399(5) 1.382(6) 1.382(6) 1.382(6) 1.384(5) 1.384(5) 1.384(5) 1.399(5) 1.399(5) 1.399(5) 1.399(5) 1.399(5) 1.399(5) 1.396(5) 1.381(5) 1.520(5) 1.516(6) 1.425(6) 1.437(5) 1.525(5)
C(47)-Rh(1)-C(48) C(48)-Rh(1)-P(1) C(48)-Rh(1)-C(44) C(47)-Rh(1)-C(43) P(1)-Rh(1)-S(2) P(1)-Rh(1)-S(2) P(1)-Rh(1)-S(2) C(43)-Rh(1)-S(2) C(43)-Rh(1)-S(1) C(44)-Rh(1)-S(1) P(3)-S(2)-Rh(1) C(1)-P(1)-C(6) C(1)-P(1)-Rh(1) C(1)-P(1)-Rh(1) C(1)-P(2)-C(7) C(1)-P(2)-S(1) C(7)-P(2)-S(1) C(5)-P(3)-C(37) C(5)-P(3)-S(2) C(37)-P(3)-S(2) C(3)-C(2)-C(19) C(3)-C(2)-C(19) C(3)-C(2)-C(19) C(3)-C(2)-C(19) C(3)-C(2)-C(12) C(4)-C(25)-P(1) C(1)-C(25)-P(1) C(1)-C(22)-C(10) C(10)-C(11)-C(12) C(18)-C(13)-P(2) C(14)-C(13)-P(2) C(16)-C(14)	39.6(2) 90.7(1) 94.8(1) 88.0(1) 161.9(1) 160.3(1) 87.61(3) 85.0(1) 150.9(1) 80.2(1) 88.21(3) 100.72(4) 101.6(2) 114.5(1) 120.2(1) 109.4(1) 109.8(1) 109.8(1) 109.8(1) 109.3(1) 117.4(2) 122.4(3) 122.4(3) 125.9(3) 122.2(3) 116.0(3) 117.3(2) 119.0(3) 120.8(3)	$\begin{array}{c} C(47) - Rh(1) - P(1) \\ C(47) - Rh(1) - C(44) \\ P(1) - Rh(1) - C(44) \\ C(48) - Rh(1) - C(43) \\ C(48) - Rh(1) - C(43) \\ C(44) - Rh(1) - S(2) \\ C(44) - Rh(1) - S(2) \\ C(44) - Rh(1) - S(1) \\ P(1) - Rh(1) - S(1) \\ P(1) - Rh(1) - S(1) \\ P(2) - S(1) - Rh(1) \\ C(43) - Rh(1) - S(1) \\ P(2) - S(1) - Rh(1) \\ C(1) - P(1) - C(5) \\ C(5) - P(1) - C(6) \\ C(5) - P(1) - Rh(1) \\ C(1) - P(2) - C(13) \\ C(13) - P(2) - C(7) \\ C(13) - P(2) - C(7) \\ C(13) - P(2) - C(31) \\ C(5) - P(3) - C(31) \\ C(5) - P(3) - C(37) \\ C(31) - P(3) - C(37) \\ C(31) - P(3) - C(37) \\ C(2) - C(1) - P(2) \\ P(2) - C(1) - P(2) \\ P(2) - C(1) - P(1) \\ C(1) - C(2) - C(19) \\ C(2) - C(3) - C(4) \\ C(5) - C(4) - C(25) \\ C(4) - C(5) - P(1) \\ C(8) - C(7) - P(2) \\ C(9) - C(8) - C(7) \\ C(11) - C(10) - C(9) \\ C(11) - C(12) - C(7) \\ C(18) - C(13) - P(2) \\ C(15) - C(14) - C(13) \\ C(15) - C(14) - C(13) \\ C(15) - C(14) - C(13) \\ C(15) - C(16) - C(17) \\ \end{array}$	$\begin{array}{c} 93.5(1)\\ 81.0(1)\\ 163.4(1)\\ 79.0(1)\\ 34.3(2)\\ 120.7(1)\\ 102.9(1)\\ 111.5(1)\\ 87.40(3)\\ 108.8(1)\\ 100.91(4)\\ 100.8(2)\\ 102.7(2)\\ 114.4(1)\\ 109.6(2)\\ 108.2(2)\\ 109.0(1)\\ 109.4(2)\\ 108.8(2)\\ 108.8(2)\\ 108.8(2)\\ 108.8(2)\\ 108.8(2)\\ 108.8(2)\\ 108.8(2)\\ 108.8(2)\\ 108.8(2)\\ 108.8(2)\\ 108.8(2)\\ 108.8(2)\\ 108.8(2)\\ 108.8(2)\\ 108.8(2)\\ 108.8(2)\\ 108.8(2)\\ 109.0(1)\\ 109.4(2)\\ 109.6(3)\\ 120.6(3)\\ 120.1(3)\\ 12$

120.1(3)

120.4(3)

120.6(3)

119.9(3) 121.7(3)

121.5(3)

121.3(3)

119.3(3)

120.6(4)

123.9(3)

119.9(3)

120.2(3)

120.0(4)

119.6(2)

120.1(3)

119.8(3)

120.2(3)

126.8(4)

105.5(2)

113.7(3) 70.4(2)

125.9(4)

113.7(3)113.3(3)

104.8(3)

103.0(3)

72.4(2)

C(16) - C(17) - C(18)	
C(24) - C(19) - C(20)	
C(20) - C(19) - C(2)	
C(22) - C(21) - C(20)	
C(22) - C(23) - C(24)	
C(30) - C(25) - C(26)	
C(26) - C(25) - C(4)	
C(20) C(23) C(4)	
C(20) - C(27) - C(20)	
C(28) - C(29) - C(30)	
C(32) - C(31) - C(36)	
C(36) - C(31) - P(3)	
C(34) - C(33) - C(32)	
C(36) - C(35) - C(34)	
C(42) - C(37) - C(38)	
C(38)-C(37)-P(3)	
C(38) - C(39) - C(40)	
C(42) - C(41) - C(40)	
C(44) - C(43) - C(50)	
C(50) - C(43) - Rh(1)	
C(43) - C(44) - Rh(1)	
C(46) - C(45) - C(44)	
C(48) - C(47) - C(46)	
C(46) - C(47) - Rh(1)	
C(47) - C(48) - Rh(1)	
C(50) - C(49) - C(48)	
C(54) = O(1) = C(51)	
C(51) - C(52) - C(52)	
O(1) O(E4) O(E2)	
U(1) = U(34) = U(33)	

C(13) - C(18) - C(17) $C(24) - C(19) - C(2)$ $C(21) - C(20) - C(19)$ $C(21) - C(22) - C(23)$ $C(23) - C(24) - C(19)$ $C(30) - C(25) - C(4)$ $C(27) - C(26) - C(25)$ $C(29) - C(30) - C(25)$ $C(32) - C(31) - P(3)$ $C(31) - C(32) - C(33)$ $C(35) - C(34) - C(33)$ $C(35) - C(36) - C(31)$ $C(42) - C(37) - P(3)$ $C(39) - C(40) - C(41)$ $C(41) - C(42) - C(37)$ $C(44) - C(43) - Rh(1)$ $C(44) - C(45)$ $C(44) - C(45)$ $C(45) - C(44) - Rh(1)$ $C(45) - C(46) - C(47)$ $C(48) - C(47) - Rh(1)$ $C(47) - C(48) - C(43)$ $C(49) - C(50) - C(43)$ $O(1) - C(51) - C(52)$ $C(52) - C(53) - C(54)$
--

119.5(3)

117.8(3)

121.8(3)

120.6(4)

119.4(4)117.9(3)

120.6(3)

120.2(3)

120.8(4)

119.8(3)

116.3(3)

119.8(4)

120.3(4)

119.3(3)

120.9(2)

120.4(3)

120.1(3)

124.8(4)

111.0(2)

73.3(2)

114.0(3)

123.6(4)114.7(3)

70.0(2)

113.9(4)

108.4(3) 100.6(3)

107.0(3)

404

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) $\alpha(^{\circ})$ β(°) $\gamma(^{\circ})$ $V(Å^3)$ Ζ $d(g-cm^{-3})$ F(000) $\mu(cm^{-1})$ Absorption corrections Diffractometer X-ray source λ(Å) Monochromator T (K)

1258.76 orange plate 0.20x0.16x0.12 monoclinic $P2_1/c$ 12.5310(1) 13.3225(1) 34.2747(3) 90.00 94.2447(6) 90.00 5706.27(8) 4 1.465 2576 0.715 multi-scan; 0.8703 min, 0.9191 max KappaCCD ΜοΚα 0.71069 graphite 150.0(10)

 $C_{63}H_{53}Cl_4OP_4RhS_2 = C_{61}H_{49}Cl_4OP_4RhS_2$, 2 CH_2Cl_2

Scan mode	phi and omega scans		
Maximum θ	30.03		
HKL ranges	-17 17; -17 18;	-48 48	
Reflections measured	27770		
Unique data	16529		
Rint	0.0302		
Reflections used	13124		
Criterion	I > 2sigma(I)		
Refinement type	Fsqd		
Hydrogen atoms	mixed		
Parameters refined	677		
Reflections / parameter	19		
wR2	0.0989		
R1	0.0366		
Weights a, b	0.0439; 2.1607		
GoF	1.042		
difference peak / hole (e Å ⁻³)	0.827(0.084) / -0	.747(0.084)	
TABLE XX. Bond lengths (A)	and angles	(deg) for 404	
	1 000 (0)		
Kn(1) - C(7)	1.82U(2)	Kn(1) - P(1)	2.2/83(5)
RII(1) = P(4) Ph(1) = S(2)	2.5240(5	RII(1) = S(1)	2.4040(J) 1.762(2)
RII(1) = 5(2)	2.3720(3)	C1(1) = C(02) C1(3) = C(63)	1.705(3) 1.755(3)
C1(2) = C(02) C1(4) = C(63)	1,752(3)	S(1) - P(2)	2 0043(7)
S(2) - P(3)	2 0021(6	P(1) - C(1)	1 788(2)
P(1) - C(5)	1.794(2)	P(1) - C(6)	1.825(2)
P(2) - C(1)	1.767(2)	P(2) - C(14)	1.801(2)
P(2)-C(8)	1.815(2)	P(3)-C(5)	1.768(2)
P(3)-C(32)	1.811(2)	P(3)-C(38)	1.821(2)
P(4)-C(44)	1.830(2)	P(4)-C(56)	1.831(2)
P(4)-C(50)	1.833(2)	O(1)−C(7)	1.157(2)
C(1)-C(2)	1.410(2)	C(2)-C(3)	1.408(3)
C(2)-C(20)	1.493(3)	C(3)-C(4)	1.409(3)
C(4)-C(5)	1.405(2)	C(4)-C(26)	1.494(2)
C(8)-C(9)	1.389(3)	C(8)-C(13)	1.397(3)
C(9) - C(10)	1.391(3)	C(10) - C(11)	1.384(3)
C(11) - C(12)	1.384(3)	C(12) - C(13)	1.388(3)
C(14) - C(19)	1.382(3)	C(14) - C(15)	1.391(3)
C(15) = C(16)	1.387(3)	C(16) - C(17)	1.3/3(4) 1.201(2)
C(17) = C(18)	1.3/(3)	C(18) - C(19)	1.391(3)
C(20) = C(23)	1,300(3)	C(20) = C(21)	1.404(3) 1.201(2)
C(21) = C(22) C(23) = C(24)	1,300(3)	C(22) = C(25) C(24) = C(25)	1 393(3)
C(26) - C(31)	1.391(3)	C(26) - C(27)	1,403(3)
C(27) - C(28)	1.391(3)	C(28) - C(29)	1.381(3)
C(29) - C(30)	1.376(3)	C(30)-C(31)	1.393(3)
C(32)-C(37)	1.387(3)	C(32)-C(33)	1.399(3)
C(33)-C(34)	1.388(3)	C(34)-C(35)	1.380(4)
C(35)-C(36)	1.378(3)	C(36)-C(37)	1.391(3)
C(38)-C(39)	1.393(3)	C(38)-C(43)	1.398(3)
C(39)-C(40)	1.392(3)	C(40)-C(41)	1.387(3)
C(41)-C(42)	1.386(3)	C(42)-C(43)	1.386(3)
C(44) - C(45)	1.385(3)	C(44) - C(49)	1.396(3)
C(45) - C(46)	1.395(3)	C(46) - C(47)	1.368(4)
C(4/) - C(48)	1.380(4)	C(48) - C(49)	1.396(3)
C(50) - C(55)	1,394(3)	C(50) - C(51)	1,396(3)
C(52) = C(52)	エ・3岁4(3) 1 382(3)	C(52) = C(53) C(54) = C(55)	1.30U(3) 1.306(3)
C (56) -C (57)	1 390(3)	C(54) = C(55) C(56) = C(61)	1 405(3)
C(57) = C(57)	1 395(3)	C(58) - C(59)	1 201(3)
	±•000(0)	(30) (30)	T. J J T (J)

C(59)-C(60)	1.381(4)	C(60)-C(61)	1.389(3)
C(7)-Rh(1)-P(1)	91.10(6)	C(7)-Rh(1)-P(4)	91.27(6)
P(1) - Rh(1) - P(4)	177.39(2)	C(7) - Rh(1) - S(1)	143.52(7)
P(1) - Rh(1) - S(1)	88 32 (2)	P(4) - Rh(1) - S(1)	89 13(2)
C(7) - Bh(1) - S(2)	$128 \ 97(7)$	P(1) - Rh(1) - S(2)	88 59(2)
P(4) - Rh(1) - S(2)	90, 76(2)	S(1) - Bh(1) - S(2)	87 49(2)
P(2) - S(1) - Rh(1)	98 75 (2)	P(3) - S(2) - Bh(1)	97 42 (2)
C(1) - P(1) - C(5)	$101 \ 36(8)$	C(1) - P(1) - C(6)	104 4(1)
C(5) - P(1) - C(6)	$104 \ 1 \ (1)$	C(1) - P(1) - Rb(1)	113 81 (6)
C(5) = P(1) = Bh(1)	114 15(6)	C(1) = P(1) = Rh(1)	117 24(6)
C(1) - P(2) - C(14)	111 33(8)	C(1) - P(2) - C(8)	110 6(1)
C(14) = P(2) = C(8)	107 7 (1)	C(1) - P(2) - S(1)	11043(7)
C(14) - P(2) - S(1)	10656(6)	C(8) - P(2) - S(1)	110 09(6)
C(5) - P(3) - C(32)	112 38(8)	C(5) - P(3) - C(38)	109 7(1)
C(32) - P(3) - C(38)	107 8(1)	C(5) - P(3) - S(2)	111 67 (6)
C(32) - P(3) - S(2)	105.76(6)	C(38) - P(3) - S(2)	109.36(6)
C(44) - P(4) - C(56)	102.7(1)	C(44) - P(4) - C(50)	103.3(1)
C(56) - P(4) - C(50)	106.9(1)	C(44) - P(4) - Bh(1)	113.34(6)
C(56) - P(4) - Rh(1)	115.81(7)	C(50) - P(4) - Rh(1)	113.51(6)
C(2) - C(1) - P(2)	129.1(1)	C(2) - C(1) - P(1)	117.1(1)
P(2) - C(1) - P(1)	112.5(1)	C(3) - C(2) - C(1)	121.1(2)
C(3) - C(2) - C(20)	116.1(2)	C(1) - C(2) - C(20)	122.8(2)
C(2) - C(3) - C(4)	125.8(2)	C(5) - C(4) - C(3)	121.5(2)
C(5) - C(4) - C(26)	122.3(2)	C(3)-C(4)-C(26)	116.2(2)
C(4)-C(5)-P(3)	129.9(1)	C(4)-C(5)-P(1)	116.8(1)
P(3)-C(5)-P(1)	112.7(1)	O(1)-C(7)-Rh(1)	179.3(2)
C(9)-C(8)-C(13)	119.3(2)	C(9)-C(8)-P(2)	121.7(1)
C(13)-C(8)-P(2)	119.0(2)	C(8)-C(9)-C(10)	120.6(2)
C(11)-C(10)-C(9)	120.0(2)	C(12)-C(11)-C(10)	119.6(2)
C(11)-C(12)-C(13)	120.9(2)	C(12)-C(13)-C(8)	119.7(2)
C(19)-C(14)-C(15)	119.5(2)	C(19)-C(14)-P(2)	123.3(2)
C(15)-C(14)-P(2)	117.2(2)	C(16)-C(15)-C(14)	120.1(2)
C(17)-C(16)-C(15)	120.0(2)	C(16)-C(17)-C(18)	120.1(2)
C(17) - C(18) - C(19)	120.3(2)	C(14) - C(19) - C(18)	119.8(2)
C(25)-C(20)-C(21)	117.6(2)	C(25)-C(20)-C(2)	122.3(2)
C(21) - C(20) - C(2)	120.1(2)	C(22) - C(21) - C(20)	120.9(2)
C(23) - C(22) - C(21)	120.2(2)	C(24) - C(23) - C(22)	119.9(2)
C(23) = C(24) = C(25)	119.8(2)	C(20) - C(25) - C(24)	121.6(2)
C(31) = C(26) = C(27)	11/./(2)	C(31) = C(26) = C(4)	121.3(2)
C(27) = C(28) = C(4)	120.7(2)	C(20) - C(27) - C(20)	110 5(2)
C(29) = C(20) = C(27)	120.3(2)	C(30) = C(23) = C(20)	121.2(2)
C(37) = C(32) = C(31)	120.4(2) 119.2(2)	C(20) = C(31) = C(30)	121.2(2) 123.4(2)
C(33) - C(32) - P(3)	117.2(2) 117.2(2)	C(34) - C(33) - C(32)	120.1(2)
C(35) - C(34) - C(33)	119.9(2)	C(36) - C(35) - C(34)	120.1(2) 120.6(2)
C(35) - C(36) - C(37)	119.7(2)	C(32) - C(37) - C(36)	120.0(2)
C(39) - C(38) - C(43)	119.1(2)	C(39) - C(38) - P(3)	120.1(2) 121.2(2)
C(43) - C(38) - P(3)	119.7(2)	C(40) - C(39) - C(38)	120.3(2)
C(41) - C(40) - C(39)	119.9(2)	C(42) - C(41) - C(40)	120.1(2)
C(43) - C(42) - C(41)	120.0(2)	C(42) - C(43) - C(38)	120.4(2)
C(45) - C(44) - C(49)	119.6(2)	C(45) - C(44) - P(4)	121.0(2)
C(49) - C(44) - P(4)	119.1(2)	C(44) - C(45) - C(46)	120.0(3)
C(47)-C(46)-C(45)	120.3(3)	C(46)-C(47)-C(48)	120.4(2)
C(47)-C(48)-C(49)	120.0(3)	C(44)-C(49)-C(48)	119.6(2)
C(55)-C(50)-C(51)	118.7(2)	C(55)-C(50)-P(4)	117.7(1)
C(51)-C(50)-P(4)	123.6(2)	C(52)-C(51)-C(50)	119.9(2)
C(53)-C(52)-C(51)	120.8(2)	C(52)-C(53)-C(54)	119.7(2)
C(53)-C(54)-C(55)	120.1(2)	C(54)-C(55)-C(50)	120.9(2)
C(57)-C(56)-C(61)	119.2(2)	C(57)-C(56)-P(4)	118.6(1)
C(61)-C(56)-P(4)	122.2(2)	C(56)-C(57)-C(58)	120.6(2)

C(59)-C(58)-C(57)	119.7(2)	C(60)-C(59)-C(58)	120.1(2)
C(59)-C(60)-C(61)	120.5(2)	C(60)-C(61)-C(56)	119.9(2)
Cl(2)-C(62)-Cl(1)	110.4(1)	Cl(4)-C(63)-Cl(3)	113.4(2)

Compound	405
Molecular formula	$C_{60}H_{49}P_4RhS_2$
Molecular weight	1060.90
Crystal habit	brown plate
Crystal dimensions(mm)	0.20x0.08x0.0
Crystal system	triclinic
Space group	P-1
a(Å)	9.08070(10)
b(Å)	13.1944(2)
c(Å)	22.3339(5)
α(°)	80.7880(10)
β(°)	79.5600(10)
$\gamma(^{\circ})$	75.7780(10)
$V(Å^3)$	2532.15(7)
Ζ	2
$d(g-cm^{-3})$	1.391
F(000)	1092
μ (cm ⁻¹)	0.586
Absorption corrections	multi-scan; 0.
Diffractometer	KappaCCD
X-ray source	ΜοΚα
$\lambda(\text{\AA})$	0.71069
Monochromator	graphite
T (K)	150.0(10)
Scan mode	phi and omega
Maximum θ	30.02
HKL ranges	-12 12 ; -18 16
Reflections measured	21199
Unique data	14712
Rint	0.0302
Reflections used	11023
Criterion	I > 2sigma(I)
Refinement type	Fsqd
Hydrogen atoms	mixed
Parameters refined	605
Reflections / parameter	18
wR2	0.0908
	0.0400
weights a, b	0.0256; 0.650
GOF difference people (help (a^{k-3}))	1.029
unterence peak / note (e A)	0.937(0.091)/

1060.90 brown plate 0.20x0.08x0.03 triclinic P-1 9.08070(10) 13.1944(2) 22.3339(5) 80.7880(10) 79.5600(10) 75.7780(10) 2532.15(7) 2 1.391 1092 0.586 multi-scan; 0.8919 min, 0.9826 max KappaCCD ΜοΚα 0.71069 graphite 150.0(10) phi and omega scans 30.02 -12 12 ; -18 16 ; -31 30 21199 14712 0.0302 11023 I > 2sigma(I) Fsqd mixed 605 18 0.0908 0.0400 0.0256; 0.6503 1.029 0.937(0.091) / -0.952(0.091)

TABLE XX. Bond lengths (A) and angles (deg) for $405\,$

Bh(1) - P(1)	2 2428(6	Rh(1) - P(4)	2 3034(6)
Ph(1) = Q(1)	2 31 97 (6	Ph(1) = P(2)	$2 \cdot 3 \cdot 3 \cdot 1 \cdot (0)$
R(1) = S(1)	2.3197(0	RII(1) = S(2)	2.3213(0)
S(1) - P(2)	2.0235(8	S(2) = P(3)	2.0219(7)
P(1) - C(1)	1./94(2)	P(1) - C(5)	1.805(2)
P(1)-C(6)	1.820(2)	P(2)-C(1)	1.763(2)
P(2)-C(13)	1.810(2)	P(2)-C(7)	1.815(2)
P(3)-C(5)	1.769(2)	P(3)-C(37)	1.810(2)
P(3) - C(31)	1.818(2)	P(4) - C(55)	1.830(2)
P(4) = C(43)	1 834(2)	P(4) = C(49)	1 840(2)
C(1) - C(2)	1 401 (2)	C(2) = C(2)	1 406(2)
C(1) = C(2)	1.401(3)	C(2) = C(3)	1.400(3)
C(2) - C(19)	1.495(3)	C(3) = C(4)	1.404(3)
C(4) - C(5)	1.385(3)	C(4) - C(25)	1.503(3)
C(7)-C(8)	1.386(3)	C(7)-C(12)	1.394(3)
C(8)-C(9)	1.392(3)	C(9)-C(10)	1.381(4)
C(10)-C(11)	1.373(4)	C(11)-C(12)	1.391(3)
C(13)-C(18)	1.386(3)	C(13)-C(14)	1.399(3)
C(14)-C(15)	1.382(3)	C(15)-C(16)	1.381(4)
C(16) - C(17)	1.378(3)	C(17) - C(18)	1.390(3)
C(19) - C(20)	1 394 (3)	C(19) - C(24)	1 395 (3)
C(20) = C(21)	1 380(3)	C(21) = C(22)	1 375(4)
C(20) = C(21)	1,300(3)	C(22) = C(22)	1 204(2)
C(22) = C(23)	1.304(3)	C(23) = C(24)	1.304(3)
C(25) - C(26)	1.384(3)	C(25) - C(30)	1.392(3)
C(26)-C(27)	1.389(3)	C(27)-C(28)	1.381(3)
C(28)-C(29)	1.373(3)	C(29)-C(30)	1.391(3)
C(31)-C(36)	1.386(3)	C(31)-C(32)	1.396(3)
C(32)-C(33)	1.391(3)	C(33)-C(34)	1.380(4)
C(34)-C(35)	1.374(4)	C(35)-C(36)	1.393(3)
C(37)-C(42)	1.387(3)	C(37) - C(38)	1.400(3)
C(38) - C(39)	1.383(3)	C(39) - C(40)	1.381 (4)
C(40) - C(41)	1 382(4)	C(41) - C(42)	1 386(3)
C(43) - C(42)	1 380(3)	C(43) = C(44)	1 398(3)
C(43) - C(48)	1 205(2)	C(45) - C(44)	1, 201 (4)
C(44) - C(45)	1.303(3)	C(43) = C(48)	1.301(4)
C(46) - C(47)	1.380(4)	C(4/) - C(48)	1.398(3)
C(49)-C(54)	1.385(3)	C(49) - C(50)	1.396(3)
C(50)-C(51)	1.385(3)	C(51)-C(52)	1.377(3)
C(52)-C(53)	1.379(3)	C(53)-C(54)	1.391(3)
C(55)-C(56)	1.391(3)	C(55)-C(60)	1.397(3)
C(56)-C(57)	1.379(3)	C(57)-C(58)	1.386(4)
C(58)-C(59)	1.378(4)	C(59)-C(60)	1.378(3)
P(1)-Rh(1)-P(4)	174.65(2)	P(1)-Rh(1)-S(1)	88.35(2)
P(4) - Bh(1) - S(1)	90 29(2)	P(1) - Bh(1) - S(2)	86 68 (2)
P(4) - Rh(1) - S(2)	94 15(2)	S(1) - Rh(1) - S(2)	172 51(2)
P(2) = Q(1) = Ph(1)	107 73(3)	D(3) = C(2) = Db(1)	101 34(3)
P(2) = S(1) = RII(1)	107.73(3)	P(3) = S(2) = RII(1)	104 0(1)
C(1) = P(1) = C(3)	101.4(1)	C(1) = P(1) = C(0)	114.20(7)
C(5) - P(1) - C(6)	103.9(1)	C(1) - P(1) - Rn(1)	114.32(7)
C(5)-P(1)-Rh(1)	111.98(7)	C(6)-P(1)-Rh(1)	118.45(8)
C(1)-P(2)-C(13)	111.0(1)	C(1)-P(2)-C(7)	113.2(1)
C(13)-P(2)-C(7)	107.7(1)	C(1)-P(2)-S(1)	109.83(7)
C(13)-P(2)-S(1)	109.45(8)	C(7)-P(2)-S(1)	105.43(7)
C(5)-P(3)-C(37)	112.8(1)	C(5)-P(3)-C(31)	108.8(1)
C(37) - P(3) - C(31)	108.1(1)	C(5) - P(3) - S(2)	109.63(7)
C(37) - P(3) - S(2)	106.22(7)	C(31) - P(3) - S(2)	111.37(7)
C(55) - P(4) - C(43)	102.7(1)	C(55) - P(4) - C(49)	101.6(1)
C(43) - P(4) - C(49)	103 5(1)	C(55) - P(4) - Rh(1)	120 24(7)
C(A3) = D(A) = Dh(1)	106 25/71	C(AQ) = D(A) = Dh(1)	100 11/7)
C(4) = C(4) = C(4)	100.00(7)	C(49) = C(4) = KII(1) C(2) = C(1) = D(1)	110 0(0)
C(2) = C(1) = P(2)	110 (1)	$\cup (2) = \cup (1) = P(1)$	119.8(2)
P(2) = C(1) = P(1)	113.6(1)	C(1) - C(2) - C(3)	122.6(2)
C(1) - C(2) - C(19)	121.8(2)	C(3) - C(2) - C(19)	115.3(2)
C(4)-C(3)-C(2)	124.9(2)	C(5)-C(4)-C(3)	123.0(2)
C(5)-C(4)-C(25)	122.5(2)	C(3)-C(4)-C(25)	114.3(2)

C(4)-C(5)-P(3)	127.6(2)	C(4)-C(5)-P(1)	119.9(2)
P(3)-C(5)-P(1)	111.1(1)	C(8)-C(7)-C(12)	119.8(2)
C(8)-C(7)-P(2)	120.4(2)	C(12)-C(7)-P(2)	119.5(2)
C(7)-C(8)-C(9)	119.5(2)	C(10)-C(9)-C(8)	120.7(2)
C(11)-C(10)-C(9)	119.8(2)	C(10)-C(11)-C(12)	120.4(2)
C(11)-C(12)-C(7)	119.8(2)	C(18)-C(13)-C(14)	119.6(2)
C(18)-C(13)-P(2)	123.2(2)	C(14)-C(13)-P(2)	117.0(2)
C(15)-C(14)-C(13)	120.1(2)	C(16)-C(15)-C(14)	119.9(2)
C(17)-C(16)-C(15)	120.3(2)	C(16)-C(17)-C(18)	120.2(2)
C(13)-C(18)-C(17)	119.8(2)	C(20)-C(19)-C(24)	118.2(2)
C(20)-C(19)-C(2)	119.9(2)	C(24)-C(19)-C(2)	121.9(2)
C(21)-C(20)-C(19)	121.1(2)	C(22)-C(21)-C(20)	120.1(2)
C(21)-C(22)-C(23)	119.8(2)	C(22)-C(23)-C(24)	120.4(2)
C(23)-C(24)-C(19)	120.5(2)	C(26)-C(25)-C(30)	118.6(2)
C(26)-C(25)-C(4)	122.0(2)	C(30)-C(25)-C(4)	119.3(2)
C(25)-C(26)-C(27)	120.9(2)	C(28)-C(27)-C(26)	120.0(2)
C(29)-C(28)-C(27)	119.8(2)	C(28)-C(29)-C(30)	120.4(2)
C(29)-C(30)-C(25)	120.3(2)	C(36)-C(31)-C(32)	119.1(2)
C(36)-C(31)-P(3)	120.0(2)	C(32)-C(31)-P(3)	120.8(2)
C(33)-C(32)-C(31)	120.1(2)	C(34)-C(33)-C(32)	120.0(2)
C(35)-C(34)-C(33)	120.4(2)	C(34)-C(35)-C(36)	119.9(2)
C(31)-C(36)-C(35)	120.5(2)	C(42)-C(37)-C(38)	119.1(2)
C(42)-C(37)-P(3)	123.2(2)	C(38)-C(37)-P(3)	117.6(2)
C(39)-C(38)-C(37)	120.0(2)	C(40)-C(39)-C(38)	120.5(2)
C(39)-C(40)-C(41)	119.8(2)	C(40)-C(41)-C(42)	120.2(2)
C(41)-C(42)-C(37)	120.5(2)	C(48)-C(43)-C(44)	119.1(2)
C(48)-C(43)-P(4)	124.5(2)	C(44)-C(43)-P(4)	116.2(2)
C(45)-C(44)-C(43)	120.2(2)	C(46)-C(45)-C(44)	120.4(2)
C(47)-C(46)-C(45)	119.9(2)	C(46)-C(47)-C(48)	120.0(2)
C(43)-C(48)-C(47)	120.5(2)	C(54)-C(49)-C(50)	118.5(2)
C(54)-C(49)-P(4)	122.5(2)	C(50)-C(49)-P(4)	119.0(2)
C(51)-C(50)-C(49)	120.4(2)	C(52)-C(51)-C(50)	120.4(2)
C(51)-C(52)-C(53)	119.9(2)	C(52)-C(53)-C(54)	119.8(2)
C(49)-C(54)-C(53)	121.0(2)	C(56)-C(55)-C(60)	118.0(2)
C(56)-C(55)-P(4)	118.8(2)	C(60)-C(55)-P(4)	123.1(2)
C(57)-C(56)-C(55)	121.1(2)	C(56)-C(57)-C(58)	120.2(2)
C(59)-C(58)-C(57)	119.3(2)	C(58)-C(59)-C(60)	120.8(2)
C(59)-C(60)-C(55)	120.7(2)		

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å)

410

 $\begin{array}{c} C_{52}H_{50}OP_3RhS_2\\ 950.86\\ red \ needle\\ 0.20x0.12x0.12\\ orthorhombic\\ P2_12_12_1\\ 9.8890(10)\\ 18.6510(10) \end{array}$

$\begin{array}{llllllllllllllllllllllllllllllllllll$	nax
$\begin{array}{ccc} \alpha(^{\circ}) & 90.00 \\ \beta(^{\circ}) & 90.00 \\ \gamma(^{\circ}) & 90.00 \\ V(Å^3) & 4665.8(6) \\ Z & 4 \\ d(g\text{-cm}^{-3}) & 1.354 \\ F(000) & 1968 \end{array}$	nax
$\begin{array}{lll} \beta(°) & 90.00 \\ \gamma(°) & 90.00 \\ V(Å^3) & 4665.8(6) \\ Z & 4 \\ d(g\text{-cm}^{-3}) & 1.354 \\ F(000) & 1968 \end{array}$	nax
$ \begin{array}{cccc} \gamma(^{\circ}) & 90.00 \\ V(Å^3) & 4665.8(6) \\ Z & 4 \\ d(g\text{-cm}^{-3}) & 1.354 \\ F(000) & 1968 \end{array} $	nax
$V(Å^3)$ 4665.8(6) Z 4 d(g-cm ⁻³) 1.354 F(000) 1968	nax
Z 4 d(g-cm ⁻³) 1.354 F(000) 1968	nax
d(g-cm ⁻³) 1.354 F(000) 1968	nax
F(000) 1968	nax
	nax
$\mu(cm^{-1})$ 0.595	nax
Absorption corrections sadabs ; 0.8902 min, 0.9320 min	
Diffractometer KappaCCD	
X-ray source MoKα	
λ(Å) 0.71069	
Monochromator graphite	
T (K) 150.0(10)	
Scan mode phi and omega scans	
Maximum θ 29.99	
HKL ranges -13 13 ; -26 23 ; -35 35	
Reflections measured 41533	
Unique data 12177	
Rint 0.0284	
Reflections used 9560	
Criterion I > 2sigma(I)	
Refinement type Fsqd	
Hydrogen atoms mixed	
Parameters refined 535	
Reflections / parameter 17	
wR2 0.0682	
RI 0.0325	
Flack's parameter $-0.04/(16)$	
Weights a, b 0.0245 ; 2.2384 CoE 1.046	
$\frac{1040}{1.040}$	
0.722(0.080)/-0.499(0.080)	
Table 3. Bond lengths (A) and angles (deg) for	410
Rh(1)-C(16) 1.859(3) Rh(1)-E Rh(1)-S(1) 2.3317(7 Rh(1)-S	·(1)

Rh(1)-C(16)	1.859(3)	Rh(1)-P(1)	2.2958(6)
Rh(1)-S(1)	2.3317(7	Rh(1)-S(2)	2.3321(7)
S(1) - P(2)	2.027(1)	S(2)-P(3)	2.027(1)
P(1) - C(1)	1.789(2)	P(1) - C(5)	1.789(2)
P(1) - C(6)	1.882(2)	P(2) - C(1)	1.778(3)
P(2) - C(23)	1.817(3)	P(2) - C(17)	1.819(3)
P(3) - C(5)	1.781(2)	P(3) - C(47)	1.806(3)
P(3) - C(41)	1.818(2)	O(1) - C(16)	1.138(4)
C(1) - C(2)	1.397(3)	C(2) - C(3)	1.407(3)
C(2) - C(29)	1.502(3)	C(3) - C(4)	1.409(3)
C(4) - C(5)	1.395(3)	C(4) - C(35)	1.497(3)
C(6) - C(11)	1.534(4)	C(6) - C(7)	1.543(3)
C(7) - C(12)	1.531(4)	C(7) - C(8)	1.560(4)
C(8) - C(9)	1.525(5)	C(9) - C(10)	1.492(4)
C(10) - C(15)	1.521(4)	C(10) - C(11)	1.522(4)
C(12) - C(13)	1.512(4)	C(12) - C(14)	1.534(4)
C(17) - C(22)	1.388(4)	C(17) - C(18)	1.394(4)
C(18) - C(19)	1.381(4)	C(19) - C(20)	1.378(5)
C(20) - C(21)	1.381(5)	C(21) - C(22)	1.386(4)
C(23) - C(24)	1.379(4)	C(23) - C(28)	1.385(4)
C(24) - C(25)	1.391(4)	C(25) - C(26)	1.373(4)
C(26) - C(27)	1.372(4)	C(27) - C(28)	1.389(4)
C(29) - C(30)	1.384(4)	C(29) - C(34)	1.388(3)
C(30) - C(31)	1.389(4)	C(31) - C(32)	1.377(4)
C(32) - C(33)	1.367(4)	C(33) - C(34)	1.386(4)
C(35) - C(40)	1.390(4)	C(35) - C(36)	1.391(3)
C(36) - C(37)	1.384(4)	C(37) - C(38)	1.384(4)
C(38) - C(39)	1.376(4)	C(39) - C(40)	1.389(4)

C(41) - C(46) C(42) - C(43) C(44) - C(45) C(47) - C(52) C(48) - C(49) C(50) - C(51)	1.381(4)	C(41)-C(42)	1.389(4)
	1.381(4)	C(43)-C(44)	1.365(4)
	1.365(4)	C(45)-C(46)	1.395(4)
	1.392(4)	C(47)-C(48)	1.396(4)
	1.382(4)	C(49)-C(50)	1.373(4)
	1.368(4)	C(51)-C(52)	1.390(4)
C(16) - Rh(1) - P(1) $P(1) - Rh(1) - S(1)$ $P(1) - Rh(1) - S(2)$ $P(2) - S(1) - Rh(1)$ $C(1) - P(1) - C(5)$ $C(5) - P(1) - Rh(1)$ $C(1) - P(2) - C(23)$ $C(23) - P(2) - C(17)$ $C(23) - P(2) - C(17)$ $C(47) - P(3) - C(41)$ $C(47) - P(3) - C(41)$ $C(47) - P(3) - S(2)$ $C(2) - C(1) - P(1)$ $C(1) - C(2) - C(29)$ $C(2) - C(1) - P(1)$ $C(1) - C(2) - C(29)$ $C(2) - C(3) - C(4)$ $C(5) - C(4) - C(35)$ $C(4) - C(5) - P(3)$ $P(3) - C(5) - P(1)$ $C(11) - C(6) - P(1)$ $C(12) - C(7) - C(6)$ $C(6) - C(7) - C(8)$ $C(10) - C(9) - C(8)$ $C(10) - C(11) - C(6)$ $C(13) - C(12) - C(14)$ $O(1) - C(16) - Rh(1)$ $C(22) - C(17) - C(2)$ $C(19) - C(18) - C(17)$ $C(19) - C(18) - C(17)$ $C(19) - C(18) - C(17)$ $C(19) - C(20) - C(21)$ $C(21) - C(22) - C(17)$ $C(24) - C(23) - P(2)$ $C(23) - C(24) - C(25)$ $C(23) - C(26) - C(25)$ $C(23) - C(26) - C(25)$ $C(23) - C(28) - C(27)$ $C(30) - C(29) - C(2)$ $C(30) - C(31)$ $C(33) - C(32) - C(31)$ $C(33) - C(34) - C(29)$ $C(40) - C(35) - C(4)$ $C(37) - C(36) - C(35)$ $C(39) - C(38) - C(37)$ $C(39) - C(40) - C(35)$ $C(40) - C(45) - C(41)$ $C(45) - C(44) - C(43)$ $C(41) - C(46) - C(45)$ $C(52) - C(47) - P(3)$ $C(49) - C(48) - C(47)$ $C(51) - C(52) - C(47)$	$\begin{array}{c} 173.0(1)\\ 87.60(2)\\ 87.09(2)\\ 102.71(3)\\ 100.3(1)\\ 103.6(1)\\ 112.06(8)\\ 110.8(1)\\ 103.8(1)\\ 111.1(1)\\ 115.5(1)\\ 104.7(1)\\ 104.9(1)\\ 127.3(2)\\ 113.2(1)\\ 127.3(2)\\ 122.4(2)\\ 122.4(2)\\ 122.4(2)\\ 130.0(2)\\ 112.2(1)\\ 127.3(2)\\ 114.0(2)\\ 110.0(2)\\ 110.5(2)\\ 109.2(3)\\ 114.9(2)\\ 109.2(2)\\ 109.2(2)\\ 174.8(3)\\ 120.8(3)\\ 120.8(3)\\ 120.8(3)\\ 120.8(3)\\ 120.3(3)\\ 120.4(3)\\ 119.9(3)\\ 120.5(3)\\ 122.0(2)\\ 121.5(2)\\ 119.8(3)\\ 120.5(3)\\ 120.5(3)\\ 120.3(3)\\ 120.0(3)\\ 119.2(3)\\ \end{array}$	C(16) - Rh(1) - S(1) $C(16) - Rh(1) - S(2)$ $P(3) - S(2) - Rh(1)$ $C(1) - P(1) - C(6)$ $C(1) - P(1) - Rh(1)$ $C(6) - P(1) - Rh(1)$ $C(1) - P(2) - S(1)$ $C(17) - P(2) - S(1)$ $C(5) - P(3) - C(41)$ $C(5) - P(3) - S(2)$ $C(41) - P(3) - S(2)$ $C(41) - P(3) - S(2)$ $C(41) - P(3) - S(2)$ $C(3) - C(2) - C(29)$ $C(5) - C(4) - C(3)$ $C(3) - C(2) - C(29)$ $C(5) - C(4) - C(3)$ $C(3) - C(4) - C(35)$ $C(4) - C(5) - P(1)$ $C(11) - C(6) - C(7)$ $C(7) - C(6) - P(1)$ $C(12) - C(7) - C(8)$ $C(9) - C(10) - C(15)$ $C(15) - C(10) - C(11)$ $C(13) - C(12) - C(7)$ $C(7) - C(12) - C(14)$ $C(22) - C(17) - C(18)$ $C(18) - C(17) - P(2)$ $C(20) - C(19) - C(18)$ $C(20) - C(19) - C(18)$ $C(20) - C(21) - C(22)$ $C(24) - C(23) - C(28)$ $C(26) - C(27) - C(28)$ $C(26) - C(27) - C(28)$ $C(30) - C(29) - C(34)$ $C(30) - C(29) - C(34)$ $C(30) - C(29) - C(34)$ $C(30) - C(35) - C(4)$ $C(36) - C(37) - C(38)$ $C(36) - C(41) - C(42)$ $C(44) - C(43) - C(42)$ $C(44) - C(43) - C(42)$ $C(44) - C(43) - C(43)$ $C(44) - C(45) - C(46)$ $C(52) - C(47) - P(3)$ $C(50) - C(51) - C(52)$	$\begin{array}{c} 92.8(1)\\ 93.5(1)\\ 169.87(2)\\ 101.89(3)\\ 109.3(1)\\ 112.28(8)\\ 117.62(8)\\ 116.5(1)\\ 108.97(8)\\ 105.6(1)\\ 111.3(1)\\ 109.67(8)\\ 100.4(1)\\ 117.6(2)\\ 122.0(2)\\ 116.4(2)\\ 121.5(2)\\ 116.4(2)\\ 121.5(2)\\ 116.4(2)\\ 121.5(2)\\ 116.4(2)\\ 121.5(2)\\ 116.4(2)\\ 121.5(2)\\ 116.4(2)\\ 121.5(2)\\ 116.4(2)\\ 121.5(2)\\ 116.4(2)\\ 122.0(2)\\ 116.4(2)\\ 122.0(2)\\ 116.4(2)\\ 122.0(2)\\ 116.4(2)\\ 122.0(2)\\ 116.4(2)\\ 122.0(2)\\ 116.4(2)\\ 122.0(2)\\ 116.4(2)\\ 122.0(2)\\ 116.4(2)\\ 120.7(2)\\ 120.7(2)\\ 120.7(2)\\ 120.0(3)\\ 119.5(3)\\ 119.6(2)\\ 120.4(3)\\ 119.7(3)\\ 120.4(3)\\ 119.3(2)\\ 120.4(3)\\ 119.3(2)\\ 120.4(3)\\ 119.3(2)\\ 120.4(3)\\ 119.3(2)\\ 120.4(3)\\ 119.3(2)\\ 120.3(3)\\ 121.1(3)\\ \end{array}$

2.050(2)

2.3655(7)

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) $\alpha(^{\circ})$ β(°) γ(°) $V(Å^3)$ Ζ $d(g-cm^{-3})$ F(000) $\mu(cm^{-1})$ Absorption corrections Diffractometer X-ray source λ(Å) Monochromator T (K) Scan mode Maximum θ HKL ranges Reflections measured Unique data Rint Reflections used Criterion Refinement type Hydrogen atoms Parameters refined Reflections / parameter wR2 R1 Weights a, b GoF difference peak / hole (e Å⁻³) TABLE XX. Bond lengths (A)

Rh(1)-O(2)

Rh(1)-P(1)

415
$C_{63}H_{55}Cl_6O_2P_4RhS_2 = C_{60}H_{49}O_2P_4RhS_2$, 3 CH ₂ Cl
1347.68
orange plate
0.20x0.20x0.16
triclinic
P-1
12.792(5) 12.00((5)
13.090(5)
18.390(3)
91.000(3)
104.500(5)
101.450(5)
3051.3(18)
2 1 467
1376
0.759
multi-scan : 0.8629 min 0.8881 max
KappaCCD
ΜοΚα
0.71069
graphite
150.0(10)
phi and omega scans
30.03
-18 16 ; -19 19 ; -25 25
25422
17751
0.0296
13076
I > 2sigma(I)
Fsqd
mixed
704
18
0.1111
0.0425
0.0482; 0.6795
1.035
0.997(0.093)7-0.940(0.093)
and angles (deg) for 415
- 5 (5)
2.004(2) Rh(1)-O(1)
2.2630(7 Rh(1)-P(4)

Rh(1)-S(2)	2.3765(8	Rh(1)-S(5)	2.4057(8)
Cl(1)-C(61)	1.766(3)	Cl(2) - C(61)	1.760(3)
Cl(3)-C(62)	1.734(3)	C1(4) - C(62)	1.726(4)
C1(5) - C(63)	1,731(4)	C1(6) - C(63)	1,756(3)
S(2) - P(3)	2 032(1)	S(5) - P(2)	2 0326(8)
P(1) = C(1)	1 782(2)	P(1) = C(5)	1 789(2)
$\Gamma(1) C(1)$	1 005(2)	P(2) = C(1)	1,762(2)
P(1) = C(0)	1.00J(2)	P(2) = C(1)	1,702(2)
P(2) = C(13)	1.813(2)	P(2) = C(7)	1.814(3)
P(3) = C(5)	1.759(2)	P(3) = C(31)	1.801(2)
P(3)-C(37)	1.811(2)	P(4)-C(49)	1.821(2)
P(4)-C(43)	1.827(2)	P(4)-C(55)	1.830(2)
0(1)-0(2)	1.431(2)	C(1)-C(2)	1.412(3)
C(2)-C(3)	1.407(3)	C(2)-C(19)	1.492(3)
C(3)-C(4)	1.404(3)	C(4)-C(5)	1.396(3)
C(4)-C(25)	1.492(3)	C(7)-C(8)	1.394(3)
C(7)-C(12)	1.396(3)	C(8)-C(9)	1.385(4)
C(9)-C(10)	1.382(4)	C(10)-C(11)	1.378(4)
C(11)-C(12)	1.393(4)	C(13)-C(14)	1.390(3)
C(13)-C(18)	1.395(3)	C(14)-C(15)	1.390(3)
C(15)-C(16)	1.376(4)	C(16) - C(17)	1.382(4)
C(17) - C(18)	1.385(3)	C(19) - C(20)	1.388(3)
C(19) - C(24)	1,396(3)	C(20) - C(21)	1,386(3)
C(21) - C(22)	1 381(4)	C(22) - C(23)	1 389(4)
C(23) - C(24)	1 382(3)	C(25) = C(26)	1 388(3)
C(25) = C(30)	1,302(3) 1,395(3)	C(26) = C(27)	1 393(3)
C(23) = C(30)	1, 393(3)	C(20) = C(27)	1, 395(3)
C(27) - C(28)	1 200(2)	C(20) = C(29)	1 207(2)
C(29) = C(30)	1.300(3)	C(31) = C(30)	1.307(3)
C(31) - C(32)	1.399(3)	C(32) = C(33)	1.38/(3)
C(33) - C(34)	1.3/0(4)	C(34) - C(35)	1.38/(4)
C (35) –C (36)	1.385(4)	C(37) - C(38)	1.388(3)
C(37)-C(42)	1.399(3)	C(38)-C(39)	1.392(3)
C(39)-C(40)	1.384(4)	C(40)-C(41)	1.385(4)
C(41)-C(42)	1.379(4)	C(43)-C(48)	1.388(3)
C(43)-C(44)	1.394(3)	C(44)-C(45)	1.382(3)
C(45)-C(46)	1.372(4)	C(46)-C(47)	1.387(4)
C(47)-C(48)	1.388(3)	C(49)-C(54)	1.390(3)
C(49)-C(50)	1.393(3)	C(50)-C(51)	1.381(3)
C(51)-C(52)	1.385(4)	C(52)-C(53)	1.391(4)
C(53)-C(54)	1.382(4)	C(55)-C(56)	1.392(3)
C(55)-C(60)	1.394(3)	C(56) - C(57)	1.387(3)
C(57) - C(58)	1.388(4)	C(58) - C(59)	1.375(4)
C(59) - C(60)	1.393(3)	- () - ()	
O(2)-Rh(1)-O(1)	41.32(6)	O(2)-Rh(1)-P(1)	88.21(5)
O(1) - Rh(1) - P(1)	91,53(5)	O(2) - Rh(1) - P(4)	90.43(5)
O(1) - Rh(1) - P(4)	88.46(5)	P(1) - Rh(1) - P(4)	177.94(2)
O(2) - Bh(1) - S(2)	109 05(5)	O(1) - Bb(1) - S(2)	150 34(5)
P(1) = Ph(1) = S(2)	88 12 (3)	P(1) = Pb(1) = S(2)	90 87 (3)
O(2) = Pb(1) = O(5)	$151 \ 84 \ (5)$	O(1) = Pb(1) = Q(5)	110 95 (5)
D(2) - RI(1) - S(3) D(1) - Dh(1) - S(5)	$1 J 1 \cdot 0 + (J)$	D(1) - RII(1) - S(3)	
P(1) = RII(1) = S(3)	07.92(3)	P(4) = RII(1) = S(3)	94.01(3)
S(2) - Ril(1) - S(3)	98.68(3)	P(3) = S(2) = RH(1)	98.07(3)
F(2) = S(3) = Kn(1)	100.4U(3)	C(1) - P(1) - C(5)	101.4(1)
C(1) - P(1) - C(6)	106.0(1)	C(5) - P(1) - C(6)	106.0(1)
C(1) - P(1) - Rh(1)	116.60(7)	C(5) - P(1) - Rh(1)	110.93(7)
C(6) - P(1) - Rh(1)	114.65(8)	C(1) - P(2) - C(13)	112.7(1)
C(1)-P(2)-C(7)	110.6(1)	C(13)-P(2)-C(7)	108.0(1)
C(1)-P(2)-S(5)	109.61(8)	C(13)-P(2)-S(5)	105.31(8)
C(7)-P(2)-S(5)	110.48(8)	C(5)-P(3)-C(31)	112.5(1)
C(5)-P(3)-C(37)	112.6(1)	C(31)-P(3)-C(37)	106.7(1)
C(5)-P(3)-S(2)	107.49(7)	C(31)-P(3)-S(2)	107.25(8)
C(37)-P(3)-S(2)	110.24(7)	C(49)-P(4)-C(43)	102.8(1)

C(49)-P(4)-C(55)	104.7(1)	C(43)-P(4)-C(55)	103.1(1)
C(49)-P(4)-Rh(1)	114.05(7)	C(43)-P(4)-Rh(1)	116.56(7)
C(55)-P(4)-Rh(1)	114.13(7)	O(2)-O(1)-Rh(1)	67.6(1)
O(1)-O(2)-Rh(1)	71.1(1)	C(2)-C(1)-P(2)	126.1(2)
C(2)-C(1)-P(1)	116.2(2)	P(2)-C(1)-P(1)	116.1(1)
C(3) - C(2) - C(1)	122.4(2)	C(3) - C(2) - C(19)	114.6(2)
C(1)-C(2)-C(19)	122.8(2)	C(4)-C(3)-C(2)	124.6(2)
C(5)-C(4)-C(3)	121.8(2)	C(5)-C(4)-C(25)	121.3(2)
C(3)-C(4)-C(25)	116.8(2)	C(4)-C(5)-P(3)	125.8(2)
C(4)-C(5)-P(1)	116.8(2)	P(3)-C(5)-P(1)	113.9(1)
C(8)-C(7)-C(12)	118.7(2)	C(8)-C(7)-P(2)	117.8(2)
C(12)-C(7)-P(2)	123.4(2)	C(9)-C(8)-C(7)	120.5(3)
C(10)-C(9)-C(8)	120.5(3)	C(11)-C(10)-C(9)	119.7(3)
C(10)-C(11)-C(12)	120.4(3)	C(11)-C(12)-C(7)	120.3(2)
C(14)-C(13)-C(18)	119.1(2)	C(14)-C(13)-P(2)	117.7(2)
C(18)-C(13)-P(2)	122.9(2)	C(13)-C(14)-C(15)	120.3(2)
C(16)-C(15)-C(14)	120.2(2)	C(15)-C(16)-C(17)	119.8(2)
C(16)-C(17)-C(18)	120.7(3)	C(17)-C(18)-C(13)	119.9(2)
C(20)-C(19)-C(24)	118.6(2)	C(20)-C(19)-C(2)	119.3(2)
C(24)-C(19)-C(2)	122.0(2)	C(21)-C(20)-C(19)	120.9(2)
C(22)-C(21)-C(20)	120.0(2)	C(21)-C(22)-C(23)	119.8(2)
C(24)-C(23)-C(22)	120.1(2)	C(23)-C(24)-C(19)	120.5(2)
C(26)-C(25)-C(30)	119.0(2)	C(26)-C(25)-C(4)	120.3(2)
C(30)-C(25)-C(4)	120.7(2)	C(25)-C(26)-C(27)	120.7(2)
C(28)-C(27)-C(26)	119.7(2)	C(29)-C(28)-C(27)	120.1(2)
C(28)-C(29)-C(30)	120.7(2)	C(29)-C(30)-C(25)	119.8(2)
C(36)-C(31)-C(32)	119.8(2)	C(36)-C(31)-P(3)	119.2(2)
C(32)-C(31)-P(3)	121.1(2)	C(33)-C(32)-C(31)	119.8(2)
C(34)-C(33)-C(32)	120.3(2)	C(33)-C(34)-C(35)	120.1(2)
C(36)-C(35)-C(34)	120.5(3)	C(35)-C(36)-C(31)	119.6(2)
C(38)-C(37)-C(42)	119.5(2)	C(38)-C(37)-P(3)	120.9(2)
C(42)-C(37)-P(3)	119.6(2)	C(37)-C(38)-C(39)	119.9(2)
C(40)-C(39)-C(38)	120.1(3)	C(39)-C(40)-C(41)	120.2(3)
C(42)-C(41)-C(40)	120.1(2)	C(41)-C(42)-C(37)	120.3(2)
C(48)-C(43)-C(44)	118.5(2)	C(48)-C(43)-P(4)	118.5(2)
C(44)-C(43)-P(4)	122.9(2)	C(45)-C(44)-C(43)	120.4(2)
C(46)-C(45)-C(44)	120.7(2)	C(45)-C(46)-C(47)	119.7(2)
C(46)-C(47)-C(48)	119.8(3)	C(43)-C(48)-C(47)	120.8(2)
C(54)-C(49)-C(50)	118.6(2)	C(54)-C(49)-P(4)	118.3(2)
C(50)-C(49)-P(4)	123.0(2)	C(51)-C(50)-C(49)	121.0(2)
C(50)-C(51)-C(52)	120.1(2)	C(51)-C(52)-C(53)	119.2(2)
C(54)-C(53)-C(52)	120.6(2)	C(53)-C(54)-C(49)	120.5(2)
C(56)-C(55)-C(60)	119.4(2)	C(56)-C(55)-P(4)	117.6(2)
C(60)-C(55)-P(4)	123.0(2)	C(57)-C(56)-C(55)	120.0(2)
C(56)-C(57)-C(58)	120.5(2)	C(59)-C(58)-C(57)	119.5(2)
C(58)-C(59)-C(60)	120.7(2)	C(59)-C(60)-C(55)	119.8(2)
Cl(2)-C(61)-Cl(1)	111.9(1)	Cl(4)-C(62)-Cl(3)	112.2(2)
Cl(5)-C(63)-Cl(6)	111.8(2)		

416 Compound Molecular formula $C_{67}H_{61}O_{1.50}P_4RhS_4 = C_{61}H_{49}P_4RhS_4, 1.5 C_4H_8O$ Molecular weight 1245.19 Crystal habit orange cube Crystal dimensions(mm) 0.20x0.20x0.20 Crystal system monoclinic Space group P21/c a(Å) 14.305(5) b(Å) 32.880(5) c(Å)13.680(5) α(°) 90.00 β(°) 115.300(5) $\gamma(^{\circ})$ 90.00 $V(Å^3)$ 5817(3) Ζ 4 $d(g-cm^{-3})$ 1.422 F(000) 2576 $\mu(\text{cm}^{-1})$ 0.592 Absorption corrections multi-scan; 0.8907 min, 0.8907 max Diffractometer KappaCCD X-ray source ΜοΚα λ(Å) 0.71069 Monochromator graphite T (K) 150.0(10) Scan mode phi and omega scans Maximum θ 29.96 -20 20 ; -46 42 ; -19 19 HKL ranges Reflections measured 27055 Unique data 16336 Rint 0.0248 Reflections used 12818 Criterion I > 2sigma(I) Refinement type Fsqd Hydrogen atoms mixed 642 Parameters refined 19 Reflections / parameter 0.1202 wR2 R1 0.0402 Weights a, b 0.0668; 0.8412 GoF 1.054 difference peak / hole (e Å⁻³) 1.424(0.092) / -0.949(0.092) Note: The unit cell contains 1.5 THF highly disordered THF molecules. They were accounted for using the Platon SQUEEZE function.

TABLE XX. Bond lengths (A) and angles (deg) for $416\,$

Rh(1)-C(7A)	1.973(6)	Rh(1)-C(7)	2.003(3)
Rh(1)-P(1)	2.2771(8	Rh(1)-P(4)	2.379(1)
Rh(1)-S(3)	2.3866(7	Rh(1)-S(2)	2.4193(7)
Rh(1)-S(5)	2.426(7)	Rh(1)-S(1)	2.5040(8)
S(1)-P(2)	2.0135(8	S(2)-P(3)	2.025(1)
P(1)-C(5)	1.768(2)	P(1)−C(1)	1.799(2)
P(1)-C(6)	1.813(2)	P(2)-C(1)	1.775(2)
P(2)-C(14)	1.804(2)	P(2)-C(8)	1.807(2)
P(3)-C(5)	1.762(2)	P(3)-C(38)	1.815(2)
P(3)-C(32)	1.816(2)	P(4)−C(56)	1.832(2)
P(4)-C(50)	1.835(2)	P(4)−C(44)	1.841(2)
C(1)-C(2)	1.389(3)	C(2)-C(3)	1.424(3)
C(2)-C(20)	1.499(3)	C(3)-C(4)	1.397(3)

C(4)-C(5)	1.414(3)	C(4)-C(26)	1.497(3)
S(4)-C(7)	1.631(3)	S(3)-C(7)	1.670(3)
S(6)-C(7A)	1.631(2)	S(5)-C(7A)	1.669(2)
C(8)-C(9)	1.383(3)	C(8)-C(13)	1.405(3)
C(9)-C(10)	1.388(3)	C(10)-C(11)	1.381(3)
C(11) - C(12)	1.384(3)	C(12) - C(13)	1.383(3)
C(14) - C(15)	1.398(3)	C(14) = C(19)	1.399(3)
C(13) = C(18)	1 390(3)	C(18) = C(17)	1.377(4) 1.375(3)
C(20) - C(21)	1 393(3)	C(20) = C(25)	1 393(3)
C(21) - C(22)	1.392(3)	C(22) - C(23)	1.385(4)
C(23) -C(24)	1.385(4)	C(24) -C(25)	1.398(3)
C(26)-C(27)	1.387(3)	C(26)-C(31)	1.398(3)
C(27)-C(28)	1.388(3)	C(28)-C(29)	1.381(3)
C(29)-C(30)	1.371(4)	C(30)-C(31)	1.388(3)
C(32)-C(33)	1.383(3)	C(32) - C(37)	1.400(3)
C(33) - C(34)	1.390(3)	C(34) - C(35)	1.366(4)
C(33) = C(33)	1 300(3)	C(38) = C(37)	1,03(3)
C(39) - C(40)	1,393(3)	C(40) - C(41)	1 384(3)
C(41) - C(42)	1.394(3)	C(42) - C(43)	1.380(3)
C(44) - C(49)	1.393(3)	C(44) - C(45)	1.396(3)
C(45)-C(46)	1.387(3)	C(46)-C(47)	1.386(4)
C(47)-C(48)	1.372(4)	C(48)-C(49)	1.389(3)
C(50)-C(55)	1.386(3)	C(50)-C(51)	1.408(3)
C(51)-C(52)	1.384(3)	C(52)-C(53)	1.386(4)
C(53) - C(54)	1.378(4)	C(54) - C(55)	1.387(3)
C(56) - C(51)	1.386(3) 1.201(2)	C(58) = C(57)	1.400(3)
C(57) = C(58) C(59) = C(60)	1.391(3) 1.371(4)	C(50) = C(59) C(60) = C(61)	1 404(3)
	1.0,1(1)	0(00) 0(01)	1.101(0)
C(7A)-Rh(1)-C(7)	32.5(2)	C(7A)-Rh(1)-P(1)	89.0(7)
C(7)-Rh(1)-P(1)	88.52(7)	C(7A)-Rh(1)-P(4)	92.7(7)
C(7) - Rh(1) - P(4)	95.52(7)	P(1) - Rh(1) - P(4)	174.81(2)
C(/A) - Rh(1) - S(3)	11.4(3)	C(7) = Rh(1) = S(3)	43.65(8)
P(1) - RII(1) - S(3) C(7A) - Pb(1) - S(2)	91.93(2) 138 2(2)	P(4) = RII(1) = S(3) C(7) = Pb(1) = S(2)	00./0(2) 105.64(8)
P(1) - Rh(1) - S(2)	89 28 (3)	P(4) - Rh(1) - S(2)	92 75(2)
S(3) - Rh(1) - S(2)	149.18(2)	C(7A) - Rh(1) - S(5)	43.1(1)
C(7) - Rh(1) - S(5)	10.9(1)	P(1)-Rh(1)-S(5)	91.6(2)
P(4)-Rh(1)-S(5)	93.0(2)	S(3)-Rh(1)-S(5)	54.0(1)
S(2)-Rh(1)-S(5)	95.2(1)	C(7A)-Rh(1)-S(1)	129.3(2)
C(7) - Rh(1) - S(1)	161.43(8)	P(1) - Rh(1) - S(1)	6.77(2)
P(4) - Rh(1) - S(1)	88.37(2)	S(3) - Rh(1) - S(1)	18.56(2)
S(2) - RI(1) - S(1) P(2) - S(1) - Pb(1)	92.20(3) 101 33(3)	S(3) - Rn(1) - S(1) P(3) - S(2) - Ph(1)	1/2.3(1) 106 94(3)
C(5) - P(1) - C(1)	101.33(3) 100.4(1)	C(5) = P(1) = C(6)	100.94(3) 104.7(1)
C(1) - P(1) - C(6)	100.1(1) 102.4(1)	C(5) - P(1) - Rh(1)	115.28(7)
C(1) - P(1) - Rh(1)	113.84(7)	C(6) - P(1) - Rh(1)	117.90(7)
C(1)-P(2)-C(14)	112.4(1)	C(1)-P(2)-C(8)	111.7(1)
C(14)-P(2)-C(8)	106.0(1)	C(1)-P(2)-S(1)	108.31(7)
C(14)-P(2)-S(1)	108.15(7)	C(8)-P(2)-S(1)	110.30(7)
C(5) - P(3) - C(38)	108.3(1)	C(5)-P(3)-C(32)	111.8(1)
C(38) - P(3) - C(32)	$10^{7}.0(1)$	C(5) - P(3) - S(2)	110.40(7)
C(38) = F(3) = S(2) C(56) = P(4) = C(50)	, 40(/)	C(3Z)-P(3)-S(2)	LU/.85(7)
していめた ニビュタナーレインサナ	100 6/11	C(56) $D(A)$ $C(AA)$	100 0/11
C(50) - P(4) - C(44)	103.6(1) 103.3(1)	C(56) - P(4) - C(44) C(56) - P(4) - Pb(1)	102.2(1)
C(50) - P(4) - C(44) C(50) - P(4) - Rh(1)	103.6(1) 103.3(1) 115.62(7)	C(56)-P(4)-C(44) C(56)-P(4)-Rh(1) C(44)-P(4)-Rh(1)	102.2(1) 114.94(7) 115 34(6)
C(50) - P(4) - C(44) C(50) - P(4) - Rh(1) C(2) - C(1) - P(2)	103.6(1) 103.3(1) 115.62(7) 127.9(2)	C(56)-P(4)-C(44) C(56)-P(4)-Rh(1) C(44)-P(4)-Rh(1) C(2)-C(1)-P(1)	102.2(1) 114.94(7) 115.34(6) 115.2(2)
C(50) - P(4) - C(44) C(50) - P(4) - Rh(1) C(2) - C(1) - P(2) P(2) - C(1) - P(1)	103.6(1) 103.3(1) 115.62(7) 127.9(2) 115.2(1)	C (56) -P (4) -C (44) C (56) -P (4) -Rh (1) C (44) -P (4) -Rh (1) C (2) -C (1) -P (1) C (1) -C (2) -C (3)	102.2(1) 114.94(7) 115.34(6) 115.2(2) 122.4(2)

C(4)-C(3)-C(2)	123.7(2)	C(3)-C(4)-C(5)	121.9(2)
C(3)-C(4)-C(26)	117.4(2)	C(5)-C(4)-C(26)	120.6(2)
C(4)-C(5)-P(3)	123.3(2)	C(4)-C(5)-P(1)	115.4(2)
P(3)-C(5)-P(1)	116.7(1)	C(7)-S(3)-Rh(1)	55.9(1)
S(4) - C(7) - S(3)	140.2(2)	S(4)-C(7)-Rh(1)	139.0(2)
S(3) - C(7) - Rh(1)	80.5(1)	C(7A)-S(5)-Rh(1)	53.8(2)
S(6) - C(7A) - S(5)	140.4(3)	S(6)-C(7A)-Rh(1)	136.5(3)
S(5)-C(7A)-Rh(1)	83.1(3)	C(9) - C(8) - C(13)	119.9(2)
C(9) - C(8) - P(2)	121.4(2)	C(13)-C(8)-P(2)	118.5(2)
C(8) - C(9) - C(10)	119.8(2)	C(11) - C(10) - C(9)	120.2(2)
C(10) - C(11) - C(12)	120.4(2)	C(13) - C(12) - C(11)	120.0(2)
C(12) - C(13) - C(8)	119.7(2)	C(15) - C(14) - C(19)	119.2(2)
C(15) - C(14) - P(2)	121.0(2)	C(19) - C(14) - P(2)	119.8(2)
C(16) - C(15) - C(14)	119.6(2)	C(17) - C(16) - C(15)	120.5(2)
C(16) - C(17) - C(18)	120.2(2)	C(19) - C(18) - C(17)	119.8(2)
C(18) - C(19) - C(14)	120.7(2)	C(21) - C(20) - C(25)	119.7(2)
C(21) - C(20) - C(2)	119.7(2)	C(25) - C(20) - C(2)	120.5(2)
C(22) - C(21) - C(20)	119.9(2)	C(23) - C(22) - C(21)	120.5(2)
C(22) - C(23) - C(24)	1198(2)	C(23) - C(24) - C(25)	120.1(2)
C(20) - C(25) - C(24)	120.0(2)	C(27) = C(26) = C(31)	118 9(2)
C(27) - C(26) - C(4)	120.0(2) 121.4(2)	C(31) - C(26) - C(4)	119.6(2)
C(26) - C(27) - C(28)	1207(2)	C(29) - C(28) - C(27)	119.8(2)
C(20) = C(29) = C(28)	120.2(2)	C(29) - C(30) - C(31)	120.5(2)
C(30) - C(31) - C(26)	1199(2)	C(33) - C(32) - C(37)	1194(2)
C(33) - C(32) - P(3)	124 6(2)	C(37) - C(32) - P(3)	115.8(2)
C(32) - C(32) - C(34)	121.0(2) 120.4(2)	C(35) - C(34) - C(33)	119.0(2) 119.9(2)
C(32) = C(35) = C(36)	120.1(2) 120.6(2)	C(35) = C(36) = C(37)	120.0(3)
C(36) - C(37) - C(32)	120.0(2) 119.6(2)	C(43) = C(38) = C(39)	118 1(2)
C(43) - C(38) - P(3)	122 4(2)	C(39) = C(38) = P(3)	110.1(2) 119.4(2)
C(40) = C(30) = C(38)	122.4(2) 120.7(2)	C(39) - C(40) - C(41)	120.6(2)
C(40) - C(41) - C(42)	120.7(2) 119.2(2)	C(43) - C(42) - C(41)	120.0(2) 120.5(2)
C(42) - C(43) - C(38)	120.8(2)	C(49) - C(44) - C(45)	120.3(2) 118.7(2)
C(42) = C(43) = C(30)	120.0(2) 121.6(2)	C(45) - C(44) - P(4)	110.7(2) 119.7(2)
C(45) = C(45) = C(44)	121.0(2) 119.9(2)	C(47) = C(46) = C(45)	120.7(2)
C(40) = C(47) = C(46)	119.7(2)	C(47) = C(48) = C(49)	120.7(2) 120.2(2)
C(48) - C(49) - C(40)	120.8(2)	C(55) = C(50) = C(51)	120.2(2) 119 0(2)
C(55) = C(50) = P(4)	120.0(2) 123.8(2)	C(55) = C(50) = D(4)	117.0(2)
C(53) = C(51) = C(50)	123.0(2)	C(51) = C(50) = P(4) C(51) = C(52) = C(52)	117.2(2) 120 5(2)
C(52) = C(51) = C(50)	119.9(2) 110.6(2)	C(51) = C(52) = C(53)	120.5(2)
C(54) = C(55) = C(52)	$120 \ 1(2)$	C(55) = C(54) = C(55) C(61) = C(56) = C(57)	110.0(2)
C(50) = C(50) = C(54) C(61) = C(56) = D(4)	120.4(2)	C(57) = C(56) = D(4)	$\pm \pm \Im \cdot \angle (\angle)$ 110 6(2)
C(01) = C(30) = F(4) C(50) = C(57) = C(56)	$\perp \angle \perp \cdot \angle (\angle)$ 110 0(2)	C(50) = C(50) = F(4)	120 5(2)
C(50) = C(57) = C(50)	120.0(2)	C(59) = C(56) = C(57)	120.3(2)
C(50) = C(59) = C(58)	120.0(2)	C(23) = C(00) = C(01)	120.3(2)
U(30) - U(01) - U(00)	12U.U(2)		

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system

417 $C_{74}H_{77}O_{5.50}P_4RhS_3 = C_{60}H_{49}O_2P_4RhS_3$, 3.5 C_4H_8O 1377.33 orange plate 0.18x0.12x0.02 monoclinic

Space group	$P2_1/n$
a(Å)	11.3990(10)
b(Å)	27.9050(10)
c(Å)	21.2860(10)
α(°)	90.00
β(°)	90.8000(10)
γ(°)	90.00
$V(Å^3)$	6770.2(7)
Z	4
$d(g-cm^{-3})$	1.351
F(000)	2872
μ (cm ⁻¹)	0.491
Absorption corrections	multi-scan; 0.9169 min, 0.9903 max
Diffractometer	KappaCCD
X-ray source	ΜοΚα
λ(Å)	0.71069
Monochromator	graphite
T (K)	150.0(10)
Scan mode	phi and omega scans
Maximum θ	26.37
HKL ranges	-14 14 ; -31 34 ; -26 26
Reflections measured	24918
Unique data	13780
Rint	0.0375
Reflections used	9322
Criterion	I > 2sigma (I)
Refinement type	Fsqd
Hydrogen atoms	mixed
Parameters refined	768
Reflections / parameter	12
wR2	0.1288
R1	0.0464
Weights a, b	0.0670 ; 0.0000
GoF	1.024
difference peak / hole (e Å ⁻³)	0.680(0.081) / -0.678(0.081)

Note: The asymmetric unit contains 3.5 THF molecules. One of these, near a symmetry center, proved too disordered to be correctly refined and was consequently accounted for using the Platon SQUEEZE function.

Table 3. Bond lengths (A) and angles (deg) for $417\,$

Rh(1) - P(1)	2.259(1)	Rh(1) - S(3)	2.342(1)
Rh(1) - S(1)	2 3558(8	Rh(1) - S(2)	23756(8)
Ph(1) - P(4)	2.3350(0) 2.386(1)	S(1) = D(2)	2.3750(0) 2.035(1)
C(2) D(2)	2.300(1)	$C(2) \cap (2)$	1 465(2)
S(2) - P(3)	2.027(1) 1 471(2)	S(3) = O(2)	1.405(2)
S(3) = O(1)	1.4/1(2)	P(1) - C(1)	1.7/6(3)
P(1) - C(5)	1.786(3)	P(1) - C(6)	1.806(3)
P(2) - C(1)	1.755(3)	P(2) - C(13)	1.805(3)
P(2)-C(7)	1.814(3)	P(3)-C(5)	1.759(3)
P(3)-C(31)	1.801(3)	P(3)-C(37)	1.813(3)
P(4)-C(43)	1.827(4)	P(4)-C(49)	1.841(3)
P(4)-C(55)	1.841(3)	C(1) - C(2)	1.410(5)
C(2) - C(3)	1.393(4)	C(2) - C(19)	1.500(4)
C(3) - C(4)	1.416(4)	C(4) - C(5)	1.393(5)
C(4) - C(25)	1,496(4)	C(7) - C(12)	1.386(5)
C(7) - C(8)	1 393(5)	C(8) - C(9)	1 384(5)
C(9) - C(10)	1 382(6)	C(10) - C(11)	1 382(5)
C(11) - C(12)	1 388(5)	C(13) - C(14)	1 384(5)
C(12) - C(12)	1.305(5)	C(14) - C(15)	1 289(6)
C(15) - C(16)	1.303(3)	C(14) - C(13)	1.309(0)
C(15) = C(10)	1.303(0) $1.400(\Gamma)$	C(10) - C(17)	1.302(0)
C(17) - C(18)	1.400(5)	C(19) - C(24)	1.3/3(6)
C(19) - C(20)	1.382(5)	C(20) - C(21)	1.375(6)
C(21)-C(22)	1.365(8)	C(22) - C(23)	1.348(8)
C(23)-C(24)	1.392(6)	C(25)-C(30)	1.372(5)

C(25)-C(26) C(27)-C(28) C(29)-C(30) C(31)-C(32) C(33)-C(34) C(35)-C(36) C(37)-C(38) C(39)-C(40) C(41)-C(42) C(43)-C(44) C(45)-C(46) C(47)-C(48) C(49)-C(50) C(51)-C(52) C(53)-C(54) C(55)-C(56) C(57)-C(58) C(59)-C(60) O(3)-C(64) C(62)-C(63) O(4)-C(65) C(67)-C(68) O(5)-C(69) C(70)-C(71)	$\begin{array}{c} 1.398(5)\\ 1.338(7)\\ 1.392(5)\\ 1.399(5)\\ 1.375(5)\\ 1.371(5)\\ 1.371(5)\\ 1.394(5)\\ 1.394(5)\\ 1.380(5)\\ 1.380(5)\\ 1.381(5)\\ 1.381(5)\\ 1.381(5)\\ 1.381(5)\\ 1.388(4)\\ 1.364(5)\\ 1.388(5)\\ 1.388(5)\\ 1.388(4)\\ 1.356(8)\\ 1.46(1)\\ 1.390(6)\\ 1.484(7)\\ 1.517(8)\\ 1.62(1)\\ 1.44(1)\\ \end{array}$	C(26) - C(27) $C(28) - C(29)$ $C(31) - C(36)$ $C(32) - C(33)$ $C(34) - C(35)$ $C(37) - C(42)$ $C(38) - C(39)$ $C(40) - C(41)$ $C(43) - C(48)$ $C(44) - C(45)$ $C(44) - C(45)$ $C(46) - C(47)$ $C(50) - C(51)$ $C(52) - C(53)$ $C(55) - C(60)$ $C(56) - C(57)$ $C(58) - C(59)$ $O(3) - C(61)$ $C(61) - C(62)$ $C(63) - C(64)$ $O(4) - C(68)$ $C(66) - C(72)$ $C(69) - C(70)$ $C(71) - C(72)$	1.374(5) $1.389(7)$ $1.389(5)$ $1.384(5)$ $1.388(5)$ $1.389(5)$ $1.385(5)$ $1.387(5)$ $1.387(5)$ $1.377(6)$ $1.377(6)$ $1.377(6)$ $1.377(5)$ $1.387(5)$ $1.382(5)$ $1.388(5)$ $1.382(5)$ $1.382(5)$ $1.38(1)$ $1.55(1)$ $1.459(7)$ $1.470(7)$ $1.47(1)$ $1.17(1)$ $1.40(1)$
P(1) - Rh(1) - S(3) $S(3) - Rh(1) - S(1)$ $S(3) - Rh(1) - P(4)$ $P(1) - Rh(1) - P(4)$ $P(2) - S(1) - Rh(1)$ $O(1) - S(3) - Rh(1)$ $O(1) - P(1) - Rh(1)$ $O(1) - P(1) - Rh(1)$ $O(1) - P(1) - Rh(1)$ $O(1) - P(2) - C(7)$ $C(1) - P(2) - S(1)$ $C(7) - P(2) - S(1)$ $C(7) - P(2) - S(1)$ $C(5) - P(3) - C(37)$ $C(5) - P(3) - S(2)$ $C(37) - P(3) - S(2)$ $C(37) - P(3) - S(2)$ $C(43) - P(4) - Rh(1)$ $C(55) - P(4) - Rh(1)$ $C(55) - P(4) - Rh(1)$ $C(2) - C(1) - P(1)$ $C(3) - C(2) - C(1)$ $C(1) - C(2) - C(19)$ $C(5) - C(4) - C(3)$ $C(3) - C(4) - C(25)$ $C(4) - C(5) - P(1)$ $C(12) - C(7) - P(2)$ $C(10) - C(9) - C(8)$ $C(10) - C(13) - P(2)$ $C(10) - C(13) - P(2)$ $C(10) - C(13) - P(2)$ $C(16) - C(15) - C(14)$ $C(16) - C(17) - C(18)$ $C(24) - C(19) - C(20)$ $C(20) - C(19) - C(20)$ $C(22) - C(23) - C(24)$ $C(30) - C(25) - C(4)$ $C(28) - C(27) - C(26)$ $C(28) - C(29) - C(30)$ $C(36) - C(31) - P(3)$	96.78(3) 99.97(3) 97.68(3) 172.86(3) 91.85(3) 108.39(4) 112.0(1) 107.5(1) 104.6(2) 113.9(1) 118.3(1) 109.4(2) 108.8(1) 111.1(1) 109.0(2) 108.3(1) 110.2(1) 103.8(2) 113.1(1) 114.7(1) 116.8(2) 122.7(3) 121.6(3) 122.1(3) 122.2(3) 120.2(4) 120.1(4) 119.1(3) 121.9(3) 119.8(4) 119.8(4) 119.9(3) 120.1(5) 120.9(5) 119.1(3) 121.4(4) 118.4(5) 119.8(3) 121.4(4) 118.2(3)	$\begin{array}{c} P(1) - Rh(1) - S(1) \\ P(1) - Rh(1) - S(2) \\ S(1) - Rh(1) - S(2) \\ S(3) - Rh(1) - P(4) \\ P(3) - S(2) - Rh(1) \\ O(2) - S(3) - Rh(1) \\ O(1) - P(1) - C(5) \\ C(5) - P(1) - C(6) \\ C(5) - P(1) - Rh(1) \\ C(1) - P(2) - C(13) \\ C(13) - P(2) - C(7) \\ C(13) - P(2) - S(1) \\ C(5) - P(3) - C(31) \\ C(31) - P(3) - C(37) \\ C(31) - P(3) - C(37) \\ C(31) - P(3) - S(2) \\ C(43) - P(4) - C(49) \\ C(49) - P(4) - C(49) \\ C(49) - P(4) - C(55) \\ C(49) - P(4) - Rh(1) \\ C(2) - C(1) - P(2) \\ P(2) - C(1) - P(1) \\ C(3) - C(2) - C(19) \\ C(2) - C(3) - C(4) \\ C(5) - C(4) - C(25) \\ C(4) - C(5) - P(3) \\ P(3) - C(5) - P(1) \\ C(12) - C(7) - P(2) \\ C(9) - C(8) - C(7) \\ C(9) - C(10) - C(11) \\ C(7) - C(12) - C(11) \\ C(13) - C(13) - P(2) \\ C(13) - C(14) - C(15) \\ C(17) - C(16) - C(15) \\ C(13) - C(18) - C(17) \\ C(24) - C(19) - C(2) \\ C(21) - C(20) - C(19) \\ C(23) - C(22) - C(21) \\ C(19) - C(24) - C(23) \\ C(30) - C(25) - C(4) \\ C(27) - C(26) - C(25) \\ C(27) - C(28) - C(29) \\ C(25) - C(30) - C(29) \\ C(36) - C(31) - P(3) \\ C(33) - C(32) - C(31) \\ \end{array}$	$\begin{array}{c} 88.75(3)\\ 86.32(3)\\ 96.32(3)\\ 90.13(3)\\ 90.97(3)\\ 100.50(4)\\ 108.8(1)\\ 100.5(2)\\ 104.6(2)\\ 104.6(2)\\ 104.6(2)\\ 103.0(1)\\ 112.6(2)\\ 108.0(2)\\ 106.9(1)\\ 114.1(2)\\ 107.6(2)\\ 107.6(1)\\ 104.1(2)\\ 107.6(2)\\ 107.6(1)\\ 104.1(2)\\ 100.9(1)\\ 118.4(1)\\ 127.5(2)\\ 115.4(2)\\ 115.7(3)\\ 124.3(3)\\ 121.5(3)\\ 127.4(2)\\ 115.7(3)\\ 124.3(3)\\ 121.5(3)\\ 127.4(2)\\ 117.2(2)\\ 117.2(2)\\ 119.6(4)\\ 120.2(3)\\ 119.7(3)\\ 118.9(3)\\ 120.4(4)\\ 120.9(4)\\ 123.8(4)\\ 121.1(5)\\ 119.7(5)\\ 120.1(5)\\ 121.0(3)\\ 119.0(3)\\ \end{array}$

C(34)-C(33)-C(32)
C(36)-C(35)-C(34)
C(42) - C(37) - C(38)
C(38)-C(37)-P(3)
C(40) - C(39) - C(38)
C(42) - C(41) - C(40)
C(48)-C(43)-C(44)
C(44)-C(43)-P(4)
C(46)-C(45)-C(44)
C(46)-C(47)-C(48)
C(54)-C(49)-C(50)
C(50)-C(49)-P(4)
C(52) - C(51) - C(50)
C(52)-C(53)-C(54)
C(60)-C(55)-C(56)
C(56)-C(55)-P(4)
C(58)-C(57)-C(56)
C(58) - C(59) - C(60)
C(61)-O(3)-C(64)
C(61) - C(62) - C(63)
O(3)-C(64)-C(63)
O(4)-C(65)-C(66)
C(66)-C(67)-C(68)
C(72)-O(5)-C(69)
C(69) - C(70) - C(71)
C(71) - C(72) - O(5)

121.1(4) $120.5(3)$ $119.8(3)$ $119.9(3)$ $121.2(4)$ $120.2(3)$ $118.5(3)$ $118.2(3)$ $120.2(4)$ $120.5(4)$ $118.8(3)$ $119.7(3)$ $120.1(3)$ $119.3(4)$ $119.3(3)$ $120.6(3)$ $120.6(3)$ $120.6(3)$ $120.6(3)$ $120.6(3)$ $105(1)$ $103.0(7)$ $105.0(6)$ $107.6(4)$ $105.6(5)$	C(33) - C(34) - C(35) $C(35) - C(36) - C(31)$ $C(42) - C(37) - P(3)$ $C(39) - C(38) - C(37)$ $C(39) - C(40) - C(41)$ $C(41) - C(42) - C(37)$ $C(48) - C(43) - P(4)$ $C(45) - C(44) - C(43)$ $C(47) - C(46) - C(45)$ $C(47) - C(48) - C(43)$ $C(54) - C(49) - P(4)$ $C(49) - C(50) - C(51)$ $C(51) - C(52) - C(53)$ $C(49) - C(54) - C(53)$ $C(60) - C(55) - P(4)$ $C(57) - C(56) - C(55)$ $C(57) - C(58) - C(59)$ $C(55) - C(61) - C(62)$ $C(65) - O(4) - C(68)$ $C(67) - C(66) - C(65)$	119.6(3 120.0(3 120.2(3 119.3(4 119.3(4 120.2(3 123.4(3 120.5(3 120.5(3 120.5(3 120.5(3 120.5(3 120.5(3 120.2(3 121.0(3 121.0(3 120.0(3 120.0(3 120.0(3 120.1(3 116(1) 102.2(6 107.3(4 102.4(5
105.0(6) 107.6(4)	C(65) - O(4) - C(68) C(67) - C(66) - C(65)	107.3(4) 102.4(5)
105.6(5)	O(4) - C(68) - C(67)	105.6(4)
98(1) 109(1)	C(70)-C(69)-O(5) C(72)-C(71)-C(70)	93(1) 107(1)
97.3(8)		

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) α(°) β(°) $\gamma(^{\circ})$ $\dot{V}(\dot{A}^3)$ Ζ $d(g-cm^{-3})$ F(000) $\mu(\text{cm}^{-1})$ Absorption corrections Diffractometer X-ray source λ(Å) Monochromator

418 C₆₁H₅₂IP₄RhS₂, 3 (C₄H₈O) 1419.15 orange cube 0.22x0.22x0.22 monoclinic $P2_1/c$ 13.9510(10) 17.5970(10) 27.0060(10) 90.00 98.9200(10) 90.00 6549.7(6) 4 1.439 2912 0.941 multi-scan; 0.8197 min, 0.8197 max KappaCCD ΜοΚα 0.71069 graphite

T (K) Scan mode	150.0(1) phi and omega s	cans	
Maximum θ	30.03		
HKL ranges	-19 19 ; -20 24 ;	-38 37	
Reflections measured	30620		
Unique data	18920		
Rint	0.0237		
Reflections used	14922		
Criterion Definition	I > 2σI) Fand		
Hydrogen atoms	Fsqa		
Parameters refined	770		
Reflections / parameter	19		
wR2	0.1409		
R1	0.0469		
Weights a, b	0.0836 ; 6.3978		
GoF	1.022		
difference peak / hole (e Å ⁻³)	2.563(0.112) / -3	3.203(0.112)	
Table 3. Bond lengths (A)	and angles	(deg) for 418	
Rh(1)-C(7A)	2.0434(1	Rh(1)-C(7)	2.0891(3)
Rh(1) - P(1)	2.2746(1	Rh(1)-S(1)	2.3672(1)
Rh(1) - P(4)	2.4045(1	Rh(1) - S(2)	2.5068(2)
Rn(1) - I(2)	2.64/5(2	Rn(1) - I(1)	2.6531 1.7001(2)
P(1) = C(1)	1 8238 (3	P(2) - C(1)	1 7592(3)
P(2) - C(14)	1.8005(3	P(2) - C(8)	1.8028(3)
P(2)-S(1)	2.0335(1	P(3)-C(5)	1.7634(3)
P(3)-C(38)	1.8131(3	P(3)-C(32)	1.8189(3)
P(3)-S(2)	2.0161(2	P(4)-C(44)	1.8266(3)
P(4) - C(56)	1.8376(3	P(4) - C(50)	1.8419(3)
C(1) = C(2) C(2) = C(20)	1 4025(4	C(2) = C(3) C(3) = C(4)	1.4021(4) 1.4111(4)
C(4) - C(5)	1.3980(4	C(4) - C(26)	1.4939(4)
C(8)-C(13)	1.3877(5	C(8)-C(9)	1.3986(5)
C(9)-C(10)	1.3901(5	C(10)-C(11)	1.3800(6)
C(11)-C(12)	1.3728(7	C(12)-C(13)	1.3934(5)
C(14) - C(19)	1.3873(4	C(14) - C(15)	1.4115(4)
C(15) - C(16) C(17) - C(18)	1.3891(5	C(16) = C(17) C(18) = C(19)	1.3/80(5)
C(20) - C(21)	1.3869(5	C(20) - C(25)	1.4018(5)
C(21) -C(22)	1.3868(5	C(22) – C(23)	1.3746(6)
C(23)-C(24)	1.3758(6	C(24)-C(25)	1.3878(5)
C(26)-C(27)	1.3917(5	C(26)-C(31)	1.3938(5)
C(27)-C(28)	1.3946(5	C(28)-C(29)	1.3771(6)
C(29) - C(30)	1.3742(6	C(30) - C(31)	1.3933(5)
C(32) = C(33)	1.3961(4	C(32) = C(37) C(34) = C(35)	1.3966(5) 1.3851(5)
C(35) = C(36)	1 3885(5	C(34) - C(37)	1 3841(5)
C(38) - C(39)	1.3841(5	C(38)-C(43)	1.4023(4)
C(39) -C(40)	1.3836(5	C(40)-C(41)	1.3843(5)
C(41)-C(42)	1.3803(6	C(42)-C(43)	1.3828(5)
C(44)-C(49)	1.3909(5	C(44)-C(45)	1.3908(5)
C(45) - C(46)	1.3825(5	C(46) - C(47)	1.3813(6)
C(47) - C(48) C(50) - C(51)	1.3/84(6 1.3838//	C(48) - C(49) C(50) - C(55)	1,3988(5)
C(51) - C(52)	1,3917(5	C(50) = C(53) C(52) = C(53)	1 3846(5)
C(53) - C(54)	1.3900(5	C(54) - C(55)	1.3905(5)
C (56) -C (57)	1.3898(5	C(56)-C(61)	1.3977(4)
C(57) –C(58)	1.3939(5	C(58)-C(59)	1.3803(5)

C(59)-C(60) O(1)-C(62) C(62)-C(63) C(64)-C(65) O(2)-C(66) C(67)-C(68) O(3)-C(73) C(70)-C(71) C(71)-C(72A) C(73)-C(72)	1.3809(6 1.4331(8 1.3667(8 1.5300(8 1.4133(7 1.531(1) 1.4102(8 1.4923(8 1.547(1) 1.561(2)	C(60)-C(61) O(1)-C(65) C(63)-C(64) O(2)-C(69) C(66)-C(67) C(68)-C(69) O(3)-C(70) C(71)-C(72) C(73)-C(72A)	1.3858(5) 1.503(1) 1.523(1) 1.4013(7) 1.4943(8) 1.532(1) 1.4178(8) 1.429(1) 1.508(1)
C(7A)-Rh(1)-C(7)	89.77(1)	C(7A)-Rh(1)-P(1)	88.974(6)
C(7)-Rh(1)-P(1)	88.415(9)	C(7A)-Rh(1)-S(1)	177.832(4)
C(7)-Rh(1)-S(1)	89.08(1)	P(1)-Rh(1)-S(1)	89.159(6)
C(7A) - Rh(1) - P(4)	90.097(5)	C(7) - Rh(1) - P(4)	89.574(9)
P(1) - Rh(1) - P(4)	177.788(3)	S(1) - Rh(1) - P(4)	91.730(5)
C(7A) = RI1(1) = S(2) P(1) = Rb(1) = S(2)	92.638(5) 87.899(3)	C(7) = RI(1) = S(2) S(1) = Rb(1) = S(2)	1/5.56(1) 88 394(3)
P(4) - Rh(1) - S(2)	94,149(3)	C(7A) - Rh(1) - T(2)	88,989(5)
C(7) - Rh(1) - I(2)	3.20(1)	P(1) - Rh(1) - I(2)	85.299(4)
S(1)-Rh(1)-I(2)	89.760(4)	P(4)-Rh(1)-I(2)	92.678(4)
S(2)-Rh(1)-I(2)	172.977(4	C(7A)-Rh(1)-I(1)	2.459(4)
C(7)-Rh(1)-I(1)	87.88(1)	P(1)-Rh(1)-I(1)	90.498(5)
S(1) - Rh(1) - I(1)	176.949(2	P(4) - Rh(1) - I(1)	88.507(5)
S(2) - Rn(1) - I(1) C(1) - P(1) - C(5)	94.623(3) 101 22(1)	I(2) - Rn(1) - I(1) C(1) - R(1) - C(6)	8/.190(4)
C(5) - P(1) - C(6)	101.22(1) 103.01(1)	C(1) - P(1) - Rh(1)	103.52(1) 113.58(1)
C(5) - P(1) - Rh(1)	114.850(9	C(6)-P(1)-Rh(1)	118.70(1)
C(1)-P(2)-C(14)	110.07(1)	C(1)-P(2)-C(8)	113.35(1)
C(14)-P(2)-C(8)	106.76(2)	C(1) - P(2) - S(1)	109.21(1)
C(14) - P(2) - S(1)	107.36(1)	C(8) - P(2) - S(1)	109.90(1)
C(38) - P(3) - C(38)	113.22(1) 106.95(1)	C(5) = P(3) = C(32)	110.19(1) 109.51(1)
C(38) - P(3) - S(2)	100.95(1) 109.25(1)	C(32) - P(3) - S(2) C(32) - P(3) - S(2)	109.51(1) 107.54(1)
C(44) - P(4) - C(56)	104.53(1)	C(44) - P(4) - C(50)	102.57(1)
C(56)-P(4)-C(50)	98.89(1)	C(44)-P(4)-Rh(1)	110.586(9)
C(56)-P(4)-Rh(1)	119.28(1)	C(50)-P(4)-Rh(1)	118.79(1)
P(2)-S(1)-Rh(1)	104.825(6	P(3)-S(2)-Rh(1)	104.807(4)
C(2) - C(1) - P(2)	125.06(2)	C(2) - C(1) - P(1)	116.56(2)
P(2) = C(1) = P(1) C(3) = C(2) = C(20)	115.39(2) 116.31(2)	C(3) = C(2) = C(1) C(1) = C(2) = C(20)	121.92(3)
C(2) - C(3) - C(4)	124.19(3)	C(5) - C(4) - C(3)	123.09(3)
C(5)-C(4)-C(26)	121.69(3)	C(3)-C(4)-C(26)	115.16(2)
C(4)-C(5)-P(3)	125.29(2)	C(4)-C(5)-P(1)	115.41(2)
P(3) - C(5) - P(1)	117.19(2)	C(13) - C(8) - C(9)	119.41(3)
C(13) - C(8) - P(2)	121.43(3)	C(9) - C(8) - P(2)	118.96(2)
C(10) = C(9) = C(8) C(12) = C(11) = C(10)	119.70(3) 120.50(4)	C(11) = C(10) = C(9) C(11) = C(12) = C(13)	120.20(4)
C(12) = C(11) = C(10) C(8) = C(13) = C(12)	120.22(4)	C(19) - C(14) - C(15)	119.42(3)
C(19)-C(14)-P(2)	123.86(2)	C(15)-C(14)-P(2)	116.46(2)
C(16)-C(15)-C(14)	119.69(3)	C(17)-C(16)-C(15)	120.32(3)
C(16)-C(17)-C(18)	120.39(3)	C(17)-C(18)-C(19)	119.97(3)
C(14) - C(19) - C(18)	120.22(3)	C(21) - C(20) - C(25)	118.50(3)
C(21) = C(20) = C(2) C(22) = C(21) = C(20)	120.72(3) 120.90(3)	C(23) = C(20) = C(2) C(23) = C(22) = C(21)	120.70(3) 120.06(4)
C(22) - C(23) - C(24)	119.97(4)	C(23) - C(24) - C(25)	120.59(4)
C (24) -C (25) -C (20)	119.94(3)	C(27) – C(26) – C(31)	119.41(3)
C(27)-C(26)-C(4)	120.35(3)	C(31)-C(26)-C(4)	120.20(3)
C(26)-C(27)-C(28)	120.02(3)	C(29)-C(28)-C(27)	120.20(4)
C (30) -C (29) -C (28)	120.07(3)	C(29)-C(30)-C(31)	120.63(4)
C(30)-C(31)-C(26)	119.67(3)	C(33)-C(32)-C(37)	119.23(3)

C (33) - C (32) - P (3) C (34) - C (33) - C (32) C (34) - C (35) - C (36) C (36) - C (37) - C (32) C (39) - C (38) - P (3) C (40) - C (39) - C (38) C (42) - C (41) - C (40) C (42) - C (41) - C (40) C (42) - C (43) - C (38) C (49) - C (44) - P (4) C (46) - C (45) - C (44) C (48) - C (47) - C (46) C (44) - C (49) - C (48) C (51) - C (50) - P (4) C (50) - C (51) - C (52) C (52) - C (53) - C (54) C (54) - C (55) - C (50) C (57) - C (56) - P (4) C (56) - C (57) - C (58) C (58) - C (59) - C (60) C (60) - C (61) - C (56) C (63) - C (64) - C (65) C (66) - C (67) - C (68) O (2) - C (69) - C (71) C (72) - C (71) - C (72A) O (3) - C (73) - C (72A)	123.48(2) 119.79(3) 120.11(3) 120.74(3) 121.93(2) 120.42(3) 119.54(3) 120.52(3) 121.39(2) 121.13(3) 120.25(3) 119.98(3) 119.66(2) 120.67(3) 119.77(3) 120.47(3) 120.45(3) 121.42(3) 107.01(5) 100.03(5) 107.31(5) 102.69(5) 106.06(5) 106.87(5) 42.01(7) 104.67(6) 40.85(6)	C (37) - C (32) - P (3) C (35) - C (34) - C (33) C (37) - C (36) - C (35) C (39) - C (38) - C (43) C (43) - C (38) - P (3) C (43) - C (40) - C (41) C (41) - C (42) - C (43) C (49) - C (44) - C (45) C (47) - C (46) - C (45) C (47) - C (46) - C (45) C (47) - C (48) - C (49) C (51) - C (50) - C (55) C (55) - C (50) - P (4) C (53) - C (52) - C (51) C (53) - C (54) - C (55) C (57) - C (56) - C (61) C (59) - C (58) - C (57) C (59) - C (60) - C (61) C (62) - O (1) - C (65) C (62) - C (63) - C (64) O (1) - C (65) - C (64) O (1) - C (68) - C (69) C (73) - O (3) - C (70) C (70) - C (71) - C (72) O (3) - C (72) - C (73)	117.23(2) 120.47(3) 119.66(4) 118.70(3) 119.15(2) 120.60(3) 120.20(3) 119.21(2) 119.68(4) 120.12(4) 119.09(3) 121.09(2) 120.15(3) 120.14(3) 118.27(3) 121.47(2) 120.07(4) 119.30(3) 105.93(5) 110.62(5) 107.01(4) 105.00(5) 107.06(5) 108.65(7) 94.18(6) 105.29(6)
C (72A) –C (73) –C (72) C (73) –C (72A) –C (71)	40.85(6) 99.63(8)	C (71) -C (72) -C (73)	102.57(8)

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) $\alpha(^{\circ})$ β(°) γ(°) $V(Å^3)$ Ζ d(g-cm⁻³) F(000)

420

 $C_{62}H_{53}Cl_6P_4RhS_2 = C_{60}H_{49}Cl_2P_4RhS_2$, 2 CH_2Cl_2 1301.65 orange cube 0.22x0.22x0.22 triclinic P-1 13.351(5) 13.715(5) 17.502(5) 82.880(5) 74.840(5) 68.810(5) 2882.6(17) 2 1.500 1328

$\mu(\text{cm}^{-1})$	0.798
Absorption corrections	multi-scan; 0.8439 min, 0.8439 max
Diffractometer	KappaCCD
X-ray source	ΜοΚα
$\lambda(\text{\AA})$	0.71069
Monochromator	graphite
T (K)	150.0(10)
Scan mode	phi and omega scans
Maximum θ	30.03
HKL ranges	-18 18 ; -19 19 ; -24 23
Reflections measured	25603
Unique data	16704
Rint	0.0275
Reflections used	13813
Criterion	I > 2sigma (I)
Refinement type	Fsqd
Hydrogen atoms	mixed
Parameters refined	623
Reflections / parameter	22
wR2	0.1246
R1	0.0401
Weights a, b	0.0725 ; 0.7008
GoF	1.094
difference peak / hole (e Å ⁻³)	1.388(0.090) / -1.335(0.090)
Note : deux molecules de CH2Cl2 traité	es par SQWEEZE dans Platon.

TABLE XX. Bond lengths (A) and angles (deg) for $420\,$

Rh(1)-P(1)	2.2795(7	Rh(1)-S(1)	2.335(1)
Rh(1)-S(2)	2.3407(8	Rh(1)-Cl(1)	2.3798(8)
Rh(1)-Cl(2)	2.393(1)	Rh(1)-P(4)	2.4377(7)
S(1)-P(2)	2.026(1)	S(2)-P(3)	2.0377(8)
P(1) - C(5)	1.783(2)	P(1) - C(1)	1.785(2)
P(1) - C(6)	1.802(2)	P(2) - C(1)	1.753(2)
P(2) - C(7)	1.806(2)	P(2)-C(13)	1.808(2)
P(3)-C(5)	1.762(2)	P(3)-C(37)	1.805(2)
P(3)-C(31)	1.812(2)	P(4)-C(55)	1.823(2)
P(4)-C(49)	1.832(2)	P(4)-C(43)	1.840(2)
C(1) - C(2)	1.400(3)	C(2) - C(3)	1.411(2)
C(2)-C(19)	1.497(3)	C(3)-C(4)	1.408(3)
C(4)-C(5)	1.401(3)	C(4)-C(25)	1.496(3)
C(7)-C(8)	1.392(3)	C(7)-C(12)	1.395(3)
C(8)-C(9)	1.381(3)	C(9)-C(10)	1.392(4)
C(10)-C(11)	1.369(4)	C(11)-C(12)	1.385(3)
C(13)-C(18)	1.392(3)	C(13)-C(14)	1.402(3)
C(14)-C(15)	1.380(3)	C(15)-C(16)	1.395(3)
C(16)-C(17)	1.378(3)	C(17)-C(18)	1.390(3)
C(19)-C(24)	1.396(3)	C(19)-C(20)	1.398(3)
C(20)-C(21)	1.389(3)	C(21)-C(22)	1.381(4)
C(22)-C(23)	1.365(4)	C(23)-C(24)	1.399(3)
C(25)-C(26)	1.395(3)	C(25)-C(30)	1.402(3)
C(26)-C(27)	1.391(3)	C(27)-C(28)	1.372(4)
C(28)-C(29)	1.385(4)	C(29)-C(30)	1.389(3)
C(31)-C(36)	1.397(3)	C(31)-C(32)	1.398(3)
C(32)-C(33)	1.385(4)	C(33)-C(34)	1.389(5)
C(34)-C(35)	1.383(4)	C(35)-C(36)	1.393(3)
C(37)-C(38)	1.393(3)	C(37)-C(42)	1.394(3)
C(38)-C(39)	1.393(3)	C(39)-C(40)	1.385(3)
C(40)-C(41)	1.374(4)	C(41)-C(42)	1.394(3)
C(43)-C(48)	1.384(3)	C(43)-C(44)	1.399(3)
C(44)-C(45)	1.392(3)	C(45)-C(46)	1.381(4)

C (46) -C (47) C (49) -C (50) C (50) -C (51) C (52) -C (53) C (55) -C (60) C (56) -C (57) C (58) -C (59)	1.375(4) 1.381(3) 1.397(4) 1.381(5) 1.394(3) 1.388(3) 1.386(4)	C (47) -C (48) C (49) -C (54) C (51) -C (52) C (53) -C (54) C (55) -C (56) C (57) -C (58) C (59) -C (60)	1.392(3) 1.388(4) 1.367(5) 1.404(4) 1.398(3) 1.373(4) 1.391(3)
P(1) - Rh(1) - S(1) S(1) - Rh(1) - S(2) S(1) - Rh(1) - Cl(1) P(1) - Rh(1) - Cl(2) S(2) - Rh(1) - Cl(2) P(1) - Rh(1) - P(4) S(2) - Rh(1) - P(4) P(3) - S(2) - Rh(1) C(5) - P(1) - C(6) C(5) - P(1) - Rh(1) C(6) - P(1) - Rh(1) C(1) - P(2) - C(13) C(1) - P(2) - S(1) C(13) - P(2) - S(1) C(5) - P(3) - C(31) C(5) - P(3) - S(2) C(31) - P(3) - S(2) C(55) - P(4) - C(43) C(43) - P(4) - Rh(1)	87.31(3) 88.27(2) 92.53(2) 90.08(3) 87.67(2) 175.99(2) 92.95(3) 93.29(3) 107.87(3) 106.6(1) 114.94(7) 114.64(8) 110.5(1) 107.75(6) 103.19(7) 110.9(1) 109.18(6) 105.08(8) 104.0(1) 114.78(7) 113.14(7)	P(1) - Rh(1) - S(2) $P(1) - Rh(1) - Cl(1)$ $S(2) - Rh(1) - Cl(1)$ $S(1) - Rh(1) - Cl(2)$ $Cl(1) - Rh(1) - Cl(2)$ $S(1) - Rh(1) - P(4)$ $P(2) - S(1) - Rh(1) - P(4)$ $P(2) - S(1) - Rh(1)$ $C(5) - P(1) - C(1)$ $C(1) - P(1) - C(6)$ $C(1) - P(1) - Rh(1)$ $C(1) - P(2) - C(7)$ $C(7) - P(2) - C(13)$ $C(7) - P(2) - S(1)$ $C(5) - P(3) - C(37)$ $C(37) - P(3) - C(31)$ $C(37) - P(3) - C(31)$ $C(37) - P(3) - S(2)$ $C(55) - P(4) - C(43)$ $C(49) - P(4) - Rh(1)$ $C(2) - C(1) - P(2)$	89.36(3) 88.86(3) 178.00(2) 175.20(2) 91.44(2) 89.48(3) 88.89(3) 104.98(3) 104.98(3) 104.6(1) 114.07(6) 113.5(1) 111.1(1) 10.27(7) 112.2(1) 109.6(1) 109.61(7) 103.0(1) 101.0(1) 118.98(8) 124.9(2)
C (43) - P (4) - Rn (1) $C (2) - C (1) - P (1)$ $C (1) - C (2) - C (3)$ $C (3) - C (2) - C (19)$ $C (5) - C (4) - C (25)$ $C (4) - C (5) - P (1)$ $C (8) - C (7) - C (12)$ $C (12) - C (7) - P (2)$ $C (8) - C (9) - C (10)$ $C (10) - C (11) - C (12)$ $C (13) - C (13) - C (14)$ $C (14) - C (13) - P (2)$ $C (14) - C (15) - C (16)$ $C (16) - C (17) - C (18)$ $C (24) - C (19) - C (20)$ $C (20) - C (19) - C (2)$	113.14(7) 117.6(1) 121.9(2) 115.7(2) 122.5(2) 116.1(2) 119.6(2) 119.1(2) 119.9(2) 120.3(2) 119.8(2) 115.6(1) 119.7(2) 120.8(2) 118.5(2) 120.1(2) 120.5(2)	C(2) - C(1) - P(2) $P(2) - C(1) - P(1)$ $C(1) - C(2) - C(19)$ $C(4) - C(3) - C(2)$ $C(5) - C(4) - C(25)$ $C(4) - C(5) - P(3)$ $P(3) - C(5) - P(1)$ $C(8) - C(7) - P(2)$ $C(9) - C(8) - C(7)$ $C(11) - C(10) - C(9)$ $C(11) - C(12) - C(7)$ $C(11) - C(12) - C(7)$ $C(18) - C(13) - P(2)$ $C(15) - C(14) - C(13)$ $C(17) - C(16) - C(15)$ $C(17) - C(16) - C(15)$ $C(17) - C(18) - C(13)$ $C(24) - C(19) - C(2)$ $C(21) - C(20) - C(19)$ $C(23) - C(22) - C(21)$	124.9(2) 114.1(1) 122.3(2) 123.7(2) 121.2(2) 125.3(1) 115.8(1) 120.9(2) 120.0(2) 120.3(2) 119.9(2) 124.5(2) 120.2(2) 120.1(2) 119.3(2) 121.3(2) 120.4(2) 129.6(2)
C (22) - C (23) - C (24) $C (26) - C (25) - C (30)$ $C (30) - C (25) - C (4)$ $C (28) - C (27) - C (26)$ $C (28) - C (29) - C (30)$ $C (36) - C (31) - C (32)$ $C (32) - C (31) - P (3)$ $C (32) - C (31) - P (3)$ $C (32) - C (33) - C (34)$ $C (34) - C (35) - C (36)$ $C (38) - C (37) - C (42)$ $C (42) - C (37) - P (3)$ $C (40) - C (39) - C (38)$ $C (40) - C (41) - C (42)$ $C (48) - C (43) - C (44)$ $C (44) - C (43) - P (4)$	121.0(2) 118.3(2) 120.6(2) 120.2(2) 120.3(3) 119.8(2) 123.3(2) 120.1(2) 119.7(3) 119.3(2) 121.8(2) 119.6(2) 120.2(2) 118.6(2) 117.2(2)	C (19) - C (24) - C (23) $C (26) - C (25) - C (4)$ $C (27) - C (26) - C (25)$ $C (27) - C (28) - C (29)$ $C (29) - C (30) - C (25)$ $C (36) - C (31) - P (3)$ $C (33) - C (32) - C (31)$ $C (35) - C (34) - C (33)$ $C (35) - C (36) - C (31)$ $C (38) - C (37) - P (3)$ $C (39) - C (38) - C (37)$ $C (41) - C (40) - C (39)$ $C (41) - C (42) - C (37)$ $C (48) - C (43) - P (4)$ $C (45) - C (44) - C (43)$	120.0(2) 121.1(2) 120.8(2) 120.0(2) 120.3(2) 116.8(2) 119.8(3) 120.6(2) 120.0(2) 118.6(2) 120.3(2) 120.6(2) 120.6(2) 120.0(2) 124.2(2) 120.1(2)

C(46)-C(45)-C(44)
C(46)-C(47)-C(48)
C(50)-C(49)-C(54)
C(54)-C(49)-P(4)
C(52)-C(51)-C(50)
C(52)-C(53)-C(54)
C(60)-C(55)-C(56)
C(56)-C(55)-P(4)
C(58)-C(57)-C(56)
C(58)-C(59)-C(60)

120.5(2)	C(47)-C(46)-C(45)	119.5(2)
120.4(3)	C(43)-C(48)-C(47)	120.8(2)
119.6(2)	C(50)-C(49)-P(4)	121.2(2)
119.1(2)	C(49)-C(50)-C(51)	119.8(3)
120.9(3)	C(51)-C(52)-C(53)	119.7(3)
120.1(3)	C(49)-C(54)-C(53)	119.8(3)
118.4(2)	C(60)-C(55)-P(4)	119.4(2)
122.2(2)	C(57)-C(56)-C(55)	120.4(2)
120.6(2)	C(57)-C(58)-C(59)	120.0(2)
119.8(2)	C(59)-C(60)-C(55)	120.8(2)

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) $\alpha(^{\circ})$ β(°) $\gamma(^{\circ})$ $V(Å^3)$ Ζ $d(g-cm^{-3})$ F(000) $\mu(\text{cm}^{-1})$ Absorption corrections Diffractometer X-ray source λ(Å) Monochromator T (K) Scan mode Maximum θ HKL ranges Reflections measured Unique data Rint Reflections used Criterion Refinement type Hydrogen atoms Parameters refined Reflections / parameter wR2

425 $C_{62}H_{53}Cl_4OP_4RhS_2$ 1246.75 yellow needle 0.20x0.12x0.12 monoclinic C2/c23.1200(10) 12.9520(10) 38.6240(10) 90.00 103.6200(10) 90.00 11240.7(10) 8 1.473 5104 0.725 multi-scan; 0.8686 min, 0.9181 max KappaCCD ΜοΚα 0.71069 graphite 150.0(10) phi and omega scans 29.97 -23 32 ; -18 18 ; -54 54 41852 16220 0.0404 12870 I > 2sigma(I) Fsqd mixed 684 18 0.0989

R1 0.0402 Weights a, b 0.0408; 21.473 GoF 1.024 difference peak / hole (e Å⁻³) 1.642(0.086) / -1.635(0.086) TABLE XX. Bond lengths (A) and angles (deg) for 425Rh(1)-C(7) 2.077(2)Rh(1)-P(1) 2.2599(6)Rh(1)-S(2) 2.3604(5 Rh(1)-S(1) 2.3708(5)2.3963(6 Rh(1)-P(4) Rh(1)-Cl(2) 2.4556(5)Cl(1)-C(7) 1.812(2) S(1)-P(2) 2.0249(8)S(2)-P(3) 2.0313(7 P(1)-O(1) 1.622(2) P(1)-C(5) 1.760(2)P(1)-C(1) 1.791(2)P(2)-C(1) 1.801(2)P(2)-C(14) 1.812(2)P(2)-C(8) 1.820(2)P(3)-C(5) 1.757(2)1.815(2) P(3)-C(38) P(3)-C(32) 1.816(2)1.828(2)1.828(2)P(4) - C(56)P(4)-C(44) 1.846(2) 1.448(3)P(4) - C(50)O(1) - C(6)C(1) - C(2)1.382(3)C(2) - C(3)1.420(3)C(2) - C(20)1.492(3)C(3)-C(4) 1.383(3)0.9500 C(3)-H(3) C(4)-C(5) 1.426(3)C(4) - C(26)1.497(3)C(6)-H(6A) 0.9800 C(6)-H(6B) 0.9800 C(6)-H(6C) 0.9800 C(7)-H(7A) 0.91(3)C(7)-H(7B) 0.87(3)C(8)-C(9) 1.392(3)C(8)-C(13) 1.402(3)C(9) - C(10)1.385(3)C(9)-H(9) 0.9500 C(10)-C(11) 1.384(4) C(10)-H(10) 0.9500 1.377(4)0.9500 C(11)-C(12) C(11)-H(11) 0.9500 C(12)-C(13) 1.386(4)C(12)-H(12) 0.9500 C(13)-H(13) C(14)-C(15) 1.390(3)C(14) - C(19)1.393(3)C(15) - C(16)1.392(3)0.9500 C(15)-H(15) C(16) - C(17)1.375(4)C(16)-H(16) 0.9500 C(17) - C(18)1.379(4)C(17)-H(17) 0.9500 C(18)-C(19) 1.383(4)C(18)-H(18) 0.9500 C(19)-H(19) 0.9500 C(20)-C(25) 1.391(3) C(20)-C(21) 1.393(4)C(21)-C(22) C(21)-H(21) 0.9500 1.391(4) C(22)-C(23) 1.378(5) 0.9500 C(22)-H(22) 0.9500 C(23)-C(24) 1.364(5) C(23)-H(23) C(24)-C(25) 1.391(4) C(24)-H(24) 0.9500 C(26)-C(27) C(25)-H(25) 0.9500 1.393(4)C(26)-C(31) 1.395(3) C(27)-C(28) 1.393(4)C(27)-H(27) 0.9500 C(28)-C(29) 1.376(5) C(28)-H(28) 0.9500 C(29)-C(30) 1.380(5) C(29)-H(29) 0.9500 C(30)-C(31) 1.389(4) C(30)-H(30) 0.9500 C(31)-H(31) 0.9500 C(32)-C(33) 1.384(3)C(32)-C(37) 1.395(3)C(33)-C(34) 1.387(3)C(33)-H(33) 0.9500 C(34)-C(35) 1.387(3)C(34)-H(34) 0.9500 C(35)-C(36) 1.373(3) C(35)-H(35) 0.9500 C(36)-C(37) 1.387(3) C(36)-H(36) 0.9500 C(37)-H(37) 0.9500 C(38)-C(43) 1.388(3) C(38)-C(39) 1.395(3) C(39)-C(40) 1.393(3)C(39)-H(39) 0.9500 C(40)-C(41) 1.377(4) C(40)-H(40) 0.9500 1.375(4) C(41)-C(42) 0.9500 C(41)-H(41) C(42)-C(43) 1.387(4)C(42)-H(42) 0.9500 C(43)-H(43) 0.9500 C(44)-C(49) 1.389(3)C(44)-C(45) 1.404(3)C(45)-C(46) 1.380(3) C(45)-H(45) 0.9500 C(46)-C(47) 1.390(4) C(46)-H(46) 0.9500 C(47) - H(47)C(47)-C(48) 1.375(4) 0.9500

C (48) - C (49) C (49) - H (49) C (50) - C (55) C (51) - H (51) C (52) - H (52) C (53) - H (53) C (54) - H (54) C (56) - C (57) C (57) - C (58) C (58) - C (59) C (59) - C (60) C (60) - C (61) C (61) - H (61) C (61) - H (61) C (62) - H (62B) C (62A) - H (62D)	1.392(3) 0.9500 1.401(3) 0.9500 0.9500 0.9500 1.388(3) 1.392(3) 1.377(4) 1.384(4) 1.387(3) 0.9500 1.87(2) 0.9900 1.62(3) 0.9900	C (48) -H (48) C (50) -C (51) C (51) -C (52) C (52) -C (53) C (53) -C (54) C (54) -C (55) C (55) -H (55) C (56) -C (61) C (57) -H (57) C (58) -H (58) C (59) -H (59) C (60) -H (60) C1 (3) -C (62) C (62A) -H (62C)	0.9500 1.387(3) 1.391(3) 1.380(4) 1.381(4) 1.384(3) 0.9500 1.400(3) 0.9500 0.9500 0.9500 0.9500 1.74(1) 0.9900 1.78(1) 0.9900
C(62A) - H(62D) $C(7) - Rh(1) - P(1)$ $P(1) - Rh(1) - S(2)$ $P(1) - Rh(1) - S(1)$ $C(7) - Rh(1) - P(4)$ $S(2) - Rh(1) - Cl(2)$ $S(2) - Rh(1) - Cl(2)$ $P(4) - Rh(1) - Cl(2)$ $P(3) - S(2) - Rh(1)$ $O(1) - P(1) - Rh(1)$ $C(1) - P(1) - Rh(1)$ $C(1) - P(1) - Rh(1)$ $C(1) - P(2) - C(8)$ $C(1) - P(2) - S(1)$ $C(5) - P(3) - C(32)$ $C(5) - P(3) - S(2)$ $C(56) - P(4) - Rh(1)$ $C(50) - P(4) - Rh(1)$ $C(50) - P(4) - Rh(1)$ $C(50) - P(4) - Rh(1)$ $C(2) - C(1) - P(1)$ $P(1) - C(1) - P(2)$ $C(1) - C(2) - C(20)$ $C(4) - C(3) - C(2)$ $C(2) - C(3) - H(3)$ $C(3) - C(4) - C(26)$ $C(4) - C(5) - P(3)$ $P(3) - C(5) - P(1)$ $O(1) - C(6) - H(6B)$ $O(1) - C(6) - H(6C)$ $H(6B) - C(6) - H(6C)$ $H(7A) - C(7) - H(7B)$	93.95(7) 87.21(2) 82.90(2) 92.73(7) 91.57(2) 179.50(7) 95.43(2) 86.78(2) 103.51(3) 106.2(1) 112.67(6) 111.77(7) 118.2(1) 107.11(7) 111.22(8) 117.7(1) 109.68(7) 104.15(7) 103.8(1) 111.50(7) 118.88(8) 119.7(2) 111.5(1) 123.0(2) 125.8(2) 117.1 116.9(2) 124.6(2) 113.9(1) 109.5 109.5 109.5 105(2) 106(2) 107(2) 118.2(2)	C (7) -Rh (1) -S (2) C (7) -Rh (1) -S (1) S (2) -Rh (1) -S (1) P (1) -Rh (1) -P (4) P (1) -Rh (1) -P (4) P (1) -Rh (1) -C1 (2) S (1) -Rh (1) -C1 (2) P (2) -S (1) -Rh (1) O (1) -P (1) -C (5) C (5) -P (1) -Rh (1) C (1) -P (2) -C (14) C (14) -P (2) -C (14) C (14) -P (2) -C (18) C (14) -P (2) -S (1) C (5) -P (3) -C (38) C (38) -P (3) -C (32) C (38) -P (3) -S (2) C (56) -P (4) -C (44) C (44) -P (4) -Rh (1) C (6) -O (1) -P (1) C (2) -C (1) -P (2) C (1) -C (2) -C (3) C (3) -C (2) -C (20) C (4) -C (3) -H (3) C (3) -C (4) -C (55) C (5) -C (4) -C (26) C (4) -C (5) -P (1) O (1) -C (6) -H (6R) H (6A) -C (6) -H (6B) H (6A) -C (6) -H (6B) H (6A) -C (7) -Rh (1) Rh (1) -C (7) -Rh (1) Rh (1) -C (7) -H (7R) Rh (1) -C (7) -H (7R) C (13) -C (4) -C (13) C (13) -C (13) -C (13) C (13) -C	84.69(6) 89.18(6) 167.97(2) 173.07(2) 99.06(2) 86.55(2) 90.79(2) 104.48(3) 108.2(1) 103.2(1) 114.14(7) 110.3(1) 106.1(1) 102.92(8) 110.7(1) 103.9(1) 110.42(8) 108.4(1) 96.9(1) 115.79(7) 120.9(1) 128.7(2) 123.1(2) 113.9(2) 117.1 121.8(2) 121.3(2) 109.5 10
C (9) - C (8) - P (2) $C (10) - C (9) - C (8)$ $C (8) - C (9) - H (9)$ $C (11) - C (10) - H (10)$ $C (12) - C (11) - C (10)$ $C (10) - C (11) - H (11)$ $C (11) - C (12) - H (12)$ $C (12) - C (13) - C (8)$	118.2(2) 120.1(2) 119.9 119.8 119.8(2) 120.1 119.7 119.8(2)	C (13) -C (8) -P (2) C (10) -C (9) -H (9) C (11) -C (10) -C (9) C (9) -C (10) -H (10) C (12) -C (11) -H (11) C (11) -C (12) -C (13) C (13) -C (12) -H (12) C (12) -C (13) -H (13)	122.5(2) 119.9 120.4(2) 119.8 120.1 120.6(2) 119.7 120.1

C(8) - C(13) - H(13)	120.1	C(15) - C(14) - C(19)	119.5(2)
C(15) = C(14) = P(2)	122 0 (2)	C(19) - C(14) - P(2)	1181(2)
C(14) = C(14) = C(16)	122.0(2)	C(14) C(15) U(15)	120.2
C(14) - C(15) - C(16)	119.3(2)	C(14) = C(15) = H(15)	120.3
C(16) - C(15) - H(15)	120.3	C(17) - C(16) - C(15)	120.3(2)
С(17)-С(16)-Н(16)	119.8	С(15)-С(16)-Н(16)	119.8
C(16)-C(17)-C(18)	120.5(2)	С(16)-С(17)-Н(17)	119.7
С(18)-С(17)-Н(17)	119.7	C(17)-C(18)-C(19)	119.7(3)
C(17) - C(18) - H(18)	120.1	C(19) - C(18) - H(18)	120.1
C(18) - C(19) - C(14)	120.4(2)	C(18) - C(19) - H(19)	119 8
C(10) C(10) C(14)	110 0	C(10) C(10) n(10)	110 1 (0)
C(14) - C(19) - H(19)	119.0	C(23) = C(20) = C(21)	119.1(2)
C(25) - C(20) - C(2)	122.1(2)	C(21) - C(20) - C(2)	118.7(2)
C(22)-C(21)-C(20)	120.1(3)	С(22)-С(21)-Н(21)	120.0
С(20)-С(21)-Н(21)	120.0	C(23)-C(22)-C(21)	119.8(3)
С(23)-С(22)-Н(22)	120.1	С(21)-С(22)-Н(22)	120.1
C(24) - C(23) - C(22)	120.7(3)	С(24)-С(23)-Н(23)	119.7
C(22) - C(23) - H(23)	119 7	C(23) - C(24) - C(25)	120 3 (3)
C(22) = C(24) = H(24)	110 0	C(25) = C(24) = H(24)	110 0
C(23) = C(24) = H(24)	119.9	C(23) = C(24) = H(24)	119.9
C(24) = C(25) = C(20)	120.0(3)	C(24) - C(25) - H(25)	120.0
С(20)-С(25)-Н(25)	120.0	C(27)-C(26)-C(31)	118.8(2)
C(27)-C(26)-C(4)	119.9(2)	C(31)-C(26)-C(4)	121.1(2)
C(26)-C(27)-C(28)	120.2(3)	С(26)-С(27)-Н(27)	119.9
С(28)-С(27)-Н(27)	119.9	C(29)-C(28)-C(27)	120.4(3)
С(29)-С(28)-Н(28)	119.8	С(27)-С(28)-Н(28)	119.8
C(28) - C(29) - C(30)	1197(3)	C(28) - C(29) - H(29)	120 1
C(20) = C(29) = H(29)	120 1	C(29) = C(30) = C(31)	1205(3)
C(20) = C(20) = H(20)	110 0	C(31) = C(30) = H(30)	110 8
C(20) = C(31) = C(26)	120 2(2)	C(31) = C(31) = H(31)	110 0
C(30) = C(31) = C(20)	120.2(3)	C(30) = C(31) = H(31)	110 2(2)
C(20) = C(31) = H(31)	119.9	C(33) = C(32) = C(37)	119.3(2)
C(33) - C(32) - P(3)	119.9(2)	C(37) - C(32) - P(3)	120.8(2)
C(32) - C(33) - C(34)	120.1(2)	С(32)-С(33)-Н(33)	119.9
С(34)-С(33)-Н(33)	119.9	C(35)-C(34)-C(33)	120.4(2)
С(35)-С(34)-Н(34)	119.8	С(33)-С(34)-Н(34)	119.8
C(36)-C(35)-C(34)	119.6(2)	С(36)-С(35)-Н(35)	120.2
С(34)-С(35)-Н(35)	120.2	C(35)-C(36)-C(37)	120.5(2)
С(35)-С(36)-Н(36)	119.7	С(37)-С(36)-Н(36)	119.7
C(36)-C(37)-C(32)	120.0(2)	С(36)-С(37)-Н(37)	120.0
C(32) - C(37) - H(37)	120.0	C(43) - C(38) - C(39)	119.5(2)
C(43) = C(38) = P(3)	1227(2)	C(39) = C(38) = P(3)	117 8(2)
C(10) = C(30) = C(30)	$110 \ 8(2)$	C(40) = C(30) = H(30)	120 1
C(30) = C(30) = H(30)	120 1	C(40) = C(40) = C(20)	120.12)
C(30) - C(39) - H(39)	120.1	C(41) - C(40) - C(39)	120.0(3)
C(41) - C(40) - H(40)	120.0	C(39) - C(40) - H(40)	120.0
C(42) - C(41) - C(40)	120.5(2)	C(42) - C(41) - H(41)	119.8
С(40)-С(41)-Н(41)	119.8	C(41)-C(42)-C(43)	120.2(3)
С(41)-С(42)-Н(42)	119.9	С(43)-С(42)-Н(42)	119.9
C(42)-C(43)-C(38)	120.1(2)	С(42)-С(43)-Н(43)	119.9
С(38)-С(43)-Н(43)	119.9	C(49)-C(44)-C(45)	118.1(2)
C(49)-C(44)-P(4)	125.6(2)	C(45)-C(44)-P(4)	116.2(2)
C(46) - C(45) - C(44)	121.1(2)	C(46) - C(45) - H(45)	119.4
C(44) - C(45) - H(45)	119 4	C(45) - C(46) - C(47)	1199(2)
C(45) - C(46) - H(46)	120 0	C(47) - C(46) - H(46)	120 0
C(18) - C(17) - C(16)	1105(2)	C(48) = C(47) = H(47)	120.0
C(40) - C(47) - C(40)	119.3(2)	C(43) - C(47) - H(47)	120.2
(40) = (4/) = H(4/)	110 0	C(47) = C(48) = C(49)	110 (2)
$C(4/) - C(4\delta) - H(4\delta)$	119.0	C(49) - C(48) - H(48)	119.6
C(44) - C(49) - C(48)	120.4(2)	C(44) - C(49) - H(49)	TTA'8
С(48)-С(49)-Н(49)	119.8	C(51)-C(50)-C(55)	118.8(2)
C(51)-C(50)-P(4)	123.2(2)	C(55)-C(50)-P(4)	117.8(2)
C(50)-C(51)-C(52)	120.0(2)	C(50)-C(51)-H(51)	120.0
C(52)-C(51)-H(51)	120.0	C(53)-C(52)-C(51)	120.7(2)
С(53)-С(52)-Н(52)	119.7	С(51)-С(52)-Н(52)	119.7
C(52)-C(53)-C(54)	119.9(2)	С(52)-С(53)-Н(53)	120.1

C(54)-C(53)-H(53) 120.1 C(53)-C(54)-C(55) 119.8(2)
С(53)-С(54)-Н(54)
C(54)-C(55)-C(50)
С(50)-С(55)-Н(55)
C(57)-C(56)-P(4)
C(56)-C(57)-C(58)
С(58)-С(57)-Н(57)
C(59)-C(58)-H(58)
C(58)-C(59)-C(60)
С(60)-С(59)-Н(59)
С(59)-С(60)-Н(60)
C(60)-C(61)-C(56)
C(56)-C(61)-H(61)
Cl(3)-C(62)-H(62A)
Cl(3)-C(62)-H(62B)
H(62A)-C(62)-H(62B)
Cl(4A)-C(62A)-H(62C)
Cl(4A)-C(62A)-H(62D)
H(62C)-C(62A)-H(62D)

120.1	С(55)-С(54)-Н(54)	120.1
120.8(2)	С(54)-С(55)-Н(55)	119.6
119.6	C(57)-C(56)-C(61)	118.4(2)
120.4(2)	C(61)-C(56)-P(4)	120.6(2)
120.8(2)	С(56)-С(57)-Н(57)	119.6
119.6	C(59)-C(58)-C(57)	120.3(2)
119.9	С(57)-С(58)-Н(58)	119.9
119.7(2)	С(58)-С(59)-Н(59)	120.2
120.2	C(59)-C(60)-C(61)	120.3(2)
119.8	С(61)-С(60)-Н(60)	119.8
120.5(2)	С(60)-С(61)-Н(61)	119.7
119.7	Cl(3)-C(62)-Cl(4)	109.2(8)
109.8	Cl(4)-C(62)-H(62A)	109.8
109.8	Cl(4)-C(62)-H(62B)	109.8
108.3	Cl(4A)-C(62A)-Cl(3A)	110.3(8)
109.6	Cl(3A)-C(62A)-H(62C)	109.6
109.6	Cl(3A)-C(62A)-H(62D)	109.6
108.1		

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) $\alpha(^{\circ})$ β(°) γ(°) $V(Å^3)$ Ζ $d(g-cm^{-3})$ F(000) $\mu(\text{cm}^{-1})$ Absorption corrections Diffractometer X-ray source λ(Å) Monochromator T (K) Scan mode Maximum θ HKL ranges

 $C_{67}H_{63}O_7P_4RhS_3$ 1303.14 orange plate 0.12x0.10x0.05 triclinic P-1 13.9270(10) 14.5210(10) 15.6620(10) 73.7400(10) 82.7400(10) 83.1000(10) 3004.4(4) 2 1.441 1348 0.550 multi-scan; 0.9369 min, 0.9730 max KappaCCD ΜοΚα 0.71069 graphite 150.0(10) phi and omega scans 24.10 -15 16 ; -16 16 ; -17 17

426

Reflections measured Unique data Rint Reflections used Criterion Refinement type Hydrogen atoms Parameters refined Reflections / parameter wR2 R1 Weights a, b GoF difference peak / hole (e Å ⁻³)	15965 9531 0.0314 6987 I > 2sigma(I) Fsqd mixed 740 9 0.1157 0.0446 0.0529;0.3559 1.045 0.602(0.074) / -(0.589(0.074)	
Rh(1)-O(2) Rh(1)-P(1) Rh(1)-S(2) Rh(1)-S(3) S(2)-P(3) S(3)-O(1) P(1)-C(5) P(2)-C(1) P(2)-C(13) P(4)-C(55) P(4)-C(49) C(2)-C(3) C(4)-C(25) C(7)-C(12) C(7)-C(12) C(1)-C(12) C(1)-C(12) C(13)-C(14) C(15)-C(16) C(17)-C(18) C(19)-C(24) C(22)-C(30) C(22)-C(30) C(27)-C(28) C(29)-C(30) C(31)-C(36) C(33)-C(34) C(35)-C(36) C(37)-C(42) C(39)-C(40) C(41)-C(42) C(43)-C(44) C(45)-C(46) C(47)-C(48) C(49)-C(50) C(51)-C(52) C(53)-C(56) C(57)-C(58) C(59)-C(60) C(61)-O(62) C(61)-O(62) C(67)-O(68) C(69)-C(70)	$\begin{array}{c} 2.110(2)\\ 2.291(1)\\ 2.331(1)\\ 2.727(1)\\ 2.043(1)\\ 1.466(3)\\ 1.525(2)\\ 1.762(3)\\ 1.762(3)\\ 1.794(4)\\ 1.789(4)\\ 1.816(4)\\ 1.843(4)\\ 1.843(4)\\ 1.418(5)\\ 1.405(5)\\ 1.503(5)\\ 1.397(5)\\ 1.368(6)\\ 1.375(5)\\ 1.396(5)\\ 1.396(5)\\ 1.396(5)\\ 1.396(5)\\ 1.391(5)\\ 1.391(5)\\ 1.381(6)\\ 1.391(5)\\ 1.391(5)\\ 1.382(6)\\ 1.392(5)\\ 1.382(6)\\ 1.377(6)\\ 1.382(6)\\ 1.377(6)\\ 1.382(6)\\ 1.377(6)\\ 1.382(6)\\ 1.375(7)\\ 1.382(6)\\ 1.375(7)\\ 1.383(6)\\ 1.375(7)\\ 1.386(6)\\ 1.375(7)\\ 1.386(6)\\ 1.375(7)\\ 1.387(6)\\ 1.375(8)\\ 1.390(6)\\ 1.43(1)\\ 1.48(1)\\ 1.41(1)\\ 1.26(1)\\ 1.44(1)\\ \end{array}$	Rh(1)-O(1) Rh(1)-S(1) Rh(1)-P(4) S(1)-P(2) S(3)-O(4) S(3)-O(2) P(1)-O(6) P(1)-C(1) P(2)-C(7) P(3)-C(5) P(3)-C(5) P(4)-C(43) C(1)-C(2) C(2)-C(19) C(4)-C(5) C(7)-C(8) C(7)-C(8) C(10)-C(11) C(13)-C(18) C(14)-C(15) C(16)-C(17) C(19)-C(20) C(20)-C(21) C(22)-C(23) C(22)-C(23) C(25)-C(26) C(26)-C(27) C(28)-C(29) C(31)-C(32) C(32)-C(33) C(34)-C(35) C(37)-C(38) C(38)-C(39) C(40)-C(41) C(43)-C(48) C(44)-C(45) C(46)-C(47) C(49)-C(51) C(52)-C(53) C(55)-C(60) C(56)-C(57) C(58)-C(59) C(61)-C(65) O(62)-C(65) C(66)-C(70) O(68)-C(69)	$\begin{array}{c} 2.118(2)\\ 2.328(1)\\ 2.328(1)\\ 2.451(1)\\ 2.047(1)\\ 1.432(3)\\ 1.524(3)\\ 1.581(2)\\ 1.770(3)\\ 1.791(4)\\ 1.765(3)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.392(5)\\ 1.378(5)\\ 1.378(5)\\ 1.378(5)\\ 1.378(6)\\ 1.378(6)\\ 1.378(6)\\ 1.378(6)\\ 1.375(6)\\ 1.375(6)\\ 1.375(6)\\ 1.375(6)\\ 1.375(6)\\ 1.375(6)\\ 1.375(6)\\ 1.375(6)\\ 1.375(6)\\ 1.375(6)\\ 1.375(6)\\ 1.375(6)\\ 1.375(6)\\ 1.375(6)\\ 1.372(6)\\ 1.372(6)\\ 1.372(6)\\ 1.382(6)\\ 1.382(6)\\ 1.382(6)\\ 1.382(6)\\ 1.385(6)\\ 1.385(6)\\ 1.378(2)\\ 1.43(1)\\ 1.40(1)\\ 1.48(1)\\ 1.30(1)\\ \end{array}$
O(2)-Rh(1)-O(1)	67.6(1)	O(2)-Rh(1)-P(1)	8

88.57(7)

O(1) - Rh(1) - P(1)	$91 \ 20(7)$	O(2) - Rh(1) - S(1)	170 10(7)
O(1) - Rh(1) - S(1)	103.00(7)	P(1) - Rh(1) - S(1)	88.64(3)
O(2) - Rh(1) - S(2)	101.93(7)	O(1) - Rh(1) - S(2)	169.38(7)
P(1) - Rh(1) - S(2)	90.04(3)	S(1) - Rh(1) - S(2)	87.57(3)
O(2) - Rh(1) - P(4)	93.83(7)	O(1) - Rh(1) - P(4)	91.63(7)
P(1) - Rh(1) - P(4)	176.83(4)	S(1) - Rh(1) - P(4)	89.33(3)
S(2) - Rh(1) - P(4)	87.44(3)	O(2) - Rh(1) - S(3)	33.78(7)
O(1) - Rh(1) - S(3)	33.82(6)	P(1) - Rh(1) - S(3)	88.69(3)
S(1)-Rh(1)-S(3)	136.63(3)	S(2) - Rh(1) - S(3)	135.71(3)
P(4) - Rh(1) - S(3)	94.46(3)	P(2)-S(1)-Rh(1)	101.47(4)
P(3)-S(2)-Rh(1)	101.17(5)	O(4)-S(3)-O(3)	112.7(2)
O(4)-S(3)-O(2)	112.1(2)	O(3)-S(3)-O(2)	109.5(2)
O(4) - S(3) - O(1)	112.0(2)	O(3) - S(3) - O(1)	109.1(2)
O(2) - S(3) - O(1)	100.9(1)	O(4) - S(3) - Rh(1)	128.2(1)
O(3) - S(3) - Rh(1)	119.1(1)	O(2) - S(3) - Rh(1)	50.3(1)
O(1) - S(3) - Rh(1)	50.6(1)	O(6) - P(1) - C(5)	105.9(2)
O(6) - P(1) - C(1)	105.7(2)	C(5) - P(1) - C(1)	101.5(2)
O(6) - P(1) - Rn(1)	116.0(1)	C(5) - P(1) - Rh(1)	112.5(1)
C(1) - P(1) - Rn(1)	113.9(1)	C(1) - P(2) - C(7)	100 0(2)
C(1) - P(2) - C(13) C(1) - P(2) - C(13)	112.5(2) 107.2(1)	C(7) - P(2) - C(13)	109.8(Z)
C(1) - P(2) - S(1) C(12) - D(2) - G(1)	107.2(1) 105.2(1)	C(7) - P(2) - S(1) C(5) - P(3) - C(31)	107.3(1) 112 1(2)
C(13) - F(2) - S(1) C(5) - D(3) - C(37)	113 7(2)	C(3) = P(3) = C(31) C(31) = P(3) = C(37)	108 1(2)
C(5) = P(3) = S(2)	108 0(1)	C(31) = P(3) = C(37)	106 4(1)
C(37) = P(3) = S(2)	108.2(1)	C(51) = P(4) - C(43)	103.3(2)
C(55) - P(4) - C(49)	105.0(2)	C(43) - P(4) - C(49)	103.3(2) 101.9(2)
C(55) - P(4) - Rh(1)	114.5(1)	C(43) - P(4) - Rh(1)	114.6(1)
C(49) - P(4) - Rh(1)	115.9(1)	S(3) - O(1) - Rh(1)	95.6(1)
S(3) - O(2) - Rh(1)	95.9(1)	C(2) - C(1) - P(2)	129.3(3)
C(2) - C(1) - P(1)	118.4(2)	P(2) - C(1) - P(1)	111.2(2)
C(1) - C(2) - C(3)	121.7(3)	C(1) - C(2) - C(19)	121.7(3)
C(3) - C(2) - C(19)	116.6(3)	C(4)-C(3)-C(2)	124.4(3)
C(5)-C(4)-C(3)	122.4(3)	C(5)-C(4)-C(25)	120.3(3)
C(3)-C(4)-C(25)	117.2(3)	C(4) - C(5) - P(1)	118.0(2)
C(4) - C(5) - P(3)	127.7(3)	P(1)-C(5)-P(3)	113.1(2)
C(8) - C(7) - C(12)	119.1(3)	C(8) - C(7) - P(2)	122.2(3)
C(12) - C(7) - P(2)	118.4(3)	C(7) - C(8) - C(9)	119.0(4)
C(10) - C(9) - C(8)	121.0(4)	C(11) - C(10) - C(9)	120.1(4)
C(10) - C(11) - C(12)	120.4(4)	C(11) - C(12) - C(7)	120.3(4)
C(18) - C(13) - C(14) C(14) - C(12) - D(2)	119.8(3) 121.0(2)	C(18) - C(13) - P(2)	110.3(3)
C(14) - C(15) - P(2) C(16) - C(15) - C(14)	121.9(3) 121 $A(A)$	C(15) - C(14) - C(13) C(15) - C(16) - C(17)	110.7(4)
C(16) - C(17) - C(18)	121.4(4) 120 1(4)	C(13) - C(18) - C(17)	120.1(3)
C(20) - C(19) - C(24)	117 8(4)	C(20) - C(19) - C(2)	120.1(3) 121.2(4)
C(24) - C(19) - C(2)	121.1(3)	C(21) - C(20) - C(19)	121.8(4)
C(22) - C(21) - C(20)	119.5(4)	C(23) - C(22) - C(21)	120.0(4)
C(22) - C(23) - C(24)	120.5(4)	C(23) - C(24) - C(19)	120.5(4)
C(26) - C(25) - C(30)	118.8(3)	C(26) - C(25) - C(4)	121.5(3)
C(30) - C(25) - C(4)	119.7(3)	C(25)-C(26)-C(27)	120.1(4)
C(28)-C(27)-C(26)	120.2(4)	C(29)-C(28)-C(27)	120.3(4)
C(28)-C(29)-C(30)	119.7(4)	C(25)-C(30)-C(29)	120.8(4)
C(32) - C(31) - C(36)	118.2(4)	C(32) - C(31) - P(3)	119.6(3)
C(36) - C(31) - P(3)	122.2(3)	C(33) - C(32) - C(31)	120.8(4)
C(32) - C(33) - C(34)	120.5(4)	C(35) - C(34) - C(33)	119.7(4)
C(34) - C(35) - C(36)	120.4(4)	C(35) - C(36) - C(31)	120.4(4)
C(38) - C(37) - C(42)	119.3(3)	C(38) - C(37) - P(3)	121.8(3)
C(42) - C(37) - P(3)	118.7(3) 120.0(4)	C(37) - C(38) - C(39)	120.1(4)
C(40) - C(39) - C(38) C(42) - C(41) - C(40)	120.0(4) 119 $4(4)$	C(39) = C(40) = C(41) C(41) = C(42) = C(37)	120.0(4) 120.4(4)
C(48) - C(43) - C(44)	117 4(4)	C(48) - C(43) - D(4)	120.7(4)
C(44) - C(43) - P(4)	122.5(3)	C(45) - C(44) - C(43)	120.1(3)
C(44) - C(45) - C(46)	121.5(5)	C(47) - C(46) - C(45)	118.5(5)
C(46) - C(47) - C(48)	120.3(5)	C(47) - C(48) - C(43)	121.9(4)
C(54) - C(49) - C(50)	118.7(4)	C(54) - C(49) - P(4)	119.4(3)
C(50) - C(49) - P(4)	121.9(3)	C(51) - C(50) - C(49)	120.0(4)
C(52) - C(51) - C(50)	121.3(5)	C(51)-C(52)-C(53)	119.5(4)
C(52)-C(53)-C(54)	119.5(4)	C(49) - C(54) - C(53)	120.9(4)
C(60)-C(55)-C(56)	117.9(4)	C(60)-C(55)-P(4)	122.2(3)
C(56)-C(55)-P(4)	119.9(3)	C(57)-C(56)-C(55)	122.3(5)
C(56) - C(57) - C(58)	119.2(5)	C(57) - C(58) - C(59)	120.2(5)

C(58)-C(59)-C(60)	120.0(5)	C(55)-C(60)-C(59)	120.3(5)
C(65)-C(61)-O(62)	105(1)	C(63)-O(62)-C(61)	106.3(8)
O(62)-C(63)-C(64)	105.4(6)	C(65)-C(64)-C(63)	103.8(7)
C(61)-C(65)-C(64)	107.1(8)	C(67)-C(66)-C(70)	101.9(7)
O(68)-C(67)-C(66)	107.5(8)	C(67)-O(68)-C(69)	119(1)
O(68)-C(69)-C(70)	101(1)	C(69)-C(70)-C(66)	107.3(8)

427

1.027

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) $\alpha(^{\circ})$ β(°) $\gamma(^{\circ})$ $V(Å^3)$ Ζ $d(g-cm^{-3})$ F(000) $\mu(\text{cm}^{-1})$ Absorption corrections Diffractometer X-ray source λ(Å) Monochromator T (K) Scan mode Maximum θ HKL ranges Reflections measured Unique data Rint Reflections used Criterion Refinement type Hydrogen atoms Parameters refined Reflections / parameter wR2 R1 Weights a, b GoF

C₆₀H₄₉IrO₂P₄S₂, C₄H₈O 1254.30 vermilion plate 0.14x0.10x0.03 monoclinic $P2_1/n$ 16.891(2) 13.1160(10) 28.127(3) 90.00 106.870(10) 90.00 5963.2(11) 4 1.397 2536 2.460 multi-scan ; 0.7246 min, 0.9299 max KappaCCD ΜοΚα 0.71069 graphite 150.0(1) phi and omega scans 23.82 -19 19 ; -14 13 ; -31 31 16433 9044 0.0437 7935 $I > 2\sigma I$) Fsqd mixed 669 11 0.2296 0.0767 0.1159;149.04

difference peak / hole (e Å⁻³) 1.812(0.191) / -3.036(0.191)

Note: Small, relatively poor quality crystals were obtained from THF solutions. They were found to be twinned by two-fold rotation about de c direct lattice direction, twin operator: -1000 - 10101, BASF = 0.325.

Table 3. Bond lengths (A) and angles (deg) for $427\,$

Ir(1) - O(1) $Ir(1) - F(1)$ $Ir(1) - S(2)$ $O(1) - O(2)$ $S(2) - P(3)$ $P(1) - C(6)$ $P(2) - C(1)$ $P(2) - C(7)$ $P(3) - C(31)$ $P(4) - C(55)$ $P(4) - C(49)$ $C(2) - C(3)$ $C(3) - C(4)$ $C(4) - C(25)$ $C(7) - C(8)$ $C(9) - C(10)$ $C(11) - C(12)$ $C(13) - C(14)$ $C(15) - C(16)$ $C(17) - C(18)$ $C(19) - C(24)$ $C(25) - C(30)$ $C(27) - C(28)$ $C(29) - C(30)$ $C(31) - C(32)$ $C(33) - C(34)$ $C(35) - C(36)$ $C(37) - C(42)$ $C(33) - C(42)$ $C(33) - C(43)$ $C(35) - C(36)$ $C(37) - C(42)$ $C(43) - C(48)$ $C(45) - C(46)$ $C(47) - C(48)$ $C(49) - C(54)$ $C(55) - C(60)$ $C(57) - C(58)$ $C(59) - C(60)$ $O(3) - C(61)$ $C(62) - C(63)$	$\begin{array}{c} 2.01(1)\\ 2.263(4)\\ 2.397(4)\\ 1.46(2)\\ 2.033(6)\\ 1.79(2)\\ 1.74(2)\\ 1.83(2)\\ 1.80(2)\\ 1.82(2)\\ 1.82(2)\\ 1.87(2)\\ 1.40(2)\\ 1.41(3)\\ 1.50(2)\\ 1.41(2)\\ 1.35(3)\\ 1.41(2)\\ 1.35(3)\\ 1.41(2)\\ 1.35(3)\\ 1.41(2)\\ 1.35(3)\\ 1.44(3)\\ 1.35(3)\\ 1.44(3)\\ 1.38(3)\\ 1.39(4)\\ 1.39(3)\\ 1.42(2)\\ 1.37(3)\\ 1.42(2)\\ 1.37(3)\\ 1.42(2)\\ 1.37(3)\\ 1.42(2)\\ 1.37(3)\\ 1.42(2)\\ 1.37(3)\\ 1.42(2)\\ 1.37(3)\\ 1.38(3)\\ 1.38(3)\\ 1.38(3)\\ 1.38(3)\\ 1.38(3)\\ 1.38(3)\\ 1.38(3)\\ 1.38(3)\\ 1.38(3)\\ 1.38(3)\\ 1.38(3)\\ 1.38(3)\\ 1.38(3)\\ 1.38(3)\\ 1.35(4)\\ \end{array}$	Ir(1) - O(2) $Ir(1) - P(4)$ $Ir(1) - S(1)$ $S(1) - P(2)$ $P(1) - C(1)$ $P(1) - C(5)$ $P(2) - C(13)$ $P(3) - C(5)$ $P(3) - C(37)$ $P(4) - C(43)$ $C(1) - C(2)$ $C(2) - C(19)$ $C(4) - C(5)$ $C(7) - C(12)$ $C(8) - C(9)$ $C(10) - C(11)$ $C(13) - C(18)$ $C(14) - C(15)$ $C(16) - C(17)$ $C(19) - C(20)$ $C(20) - C(21)$ $C(22) - C(23)$ $C(25) - C(26)$ $C(26) - C(27)$ $C(28) - C(29)$ $C(31) - C(36)$ $C(32) - C(33)$ $C(34) - C(35)$ $C(37) - C(38)$ $C(38) - C(39)$ $C(40) - C(41)$ $C(43) - C(44)$ $C(44) - C(45)$ $C(46) - C(47)$ $C(49) - C(50)$ $C(50) - C(51)$ $C(52) - C(53)$ $C(55) - C(56)$ $C(56) - C(57)$ $C(58) - C(59)$ $O(3) - C(64)$ $C(61) - C(62)$ $C(63) - C(64)$	$\begin{array}{c} 2.03(1)\\ 2.337(4)\\ 2.405(5)\\ 2.030(6)\\ 1.78(2)\\ 1.79(2)\\ 1.82(2)\\ 1.75(2)\\ 1.83(2)\\ 1.85(2)\\ 1.43(2)\\ 1.49(2)\\ 1.39(2)\\ 1.39(2)\\ 1.39(2)\\ 1.38(2)\\ 1.43(3)\\ 1.38(2)\\ 1.43(3)\\ 1.38(3)\\ 1.38(3)\\ 1.38(3)\\ 1.38(3)\\ 1.38(3)\\ 1.38(3)\\ 1.38(3)\\ 1.38(3)\\ 1.38(3)\\ 1.38(3)\\ 1.38(3)\\ 1.39(3)\\ 1.36(3)\\ 1.35(3)\\ 1.41(3)\\ 1.35(3)\\ 1.41(3)\\ 1.35(3)\\ 1.39(3)\\ 1.39(3)\\ 1.39(3)\\ 1.35(3)\\ 1.39(3)\\ 1.39(3)\\ 1.35(3)\\ 1.41(4)\\ 1.47(4)\\ 1.40(4)\\ \end{array}$
$\begin{array}{c} O(1) - Ir(1) - O(2) \\ O(2) - Ir(1) - P(1) \\ O(2) - Ir(1) - P(4) \\ O(1) - Ir(1) - S(2) \\ P(1) - Ir(1) - S(2) \\ O(1) - Ir(1) - S(1) \\ P(1) - Ir(1) - S(1) \\ S(2) - Ir(1) - S(1) \\ O(1) - O(2) - Ir(1) \\ P(3) - S(2) - Ir(1) \\ O(1) - P(1) - Ir(1) \\ C(1) - P(1) - Ir(1) \\ C(5) - P(1) - Ir(1) \\ C(1) - P(2) - C(7) \\ C(1) - P(2) - S(1) \\ C(7) - P(2) - S(1) \\ C(5) - P(3) - C(37) \\ C(5) - P(3) - S(2) \\ C(37) - P(3) - S(2) \\ \end{array}$	$\begin{array}{c} 42.5(5)\\ 90.9(4)\\ 81.6(4)\\ 160.9(4)\\ 89.2(2)\\ 113.3(4)\\ 88.4(2)\\ 85.4(2)\\ 68.2(7)\\ 103.9(2)\\ 100.8(7)\\ 112.8(5)\\ 114.1(6)\\ 113(1)\\ 108.5(6)\\ 106.7(5)\\ 114.1(8)\\ 108.7(6)\\ 107.3(6)\\ \end{array}$	$\begin{array}{c} O(1) - Ir(1) - P(1) \\ O(1) - Ir(1) - P(4) \\ P(1) - Ir(1) - P(4) \\ O(2) - Ir(1) - S(2) \\ P(4) - Ir(1) - S(2) \\ O(2) - Ir(1) - S(1) \\ P(4) - Ir(1) - S(1) \\ O(2) - O(1) - Ir(1) \\ O(2) - O(1) - Ir(1) \\ O(2) - S(1) - Ir(1) \\ O(1) - P(1) - C(6) \\ C(6) - P(1) - C(5) \\ C(6) - P(1) - Ir(1) \\ C(1) - P(2) - C(13) \\ C(13) - P(2) - C(13) \\ C(13) - P(2) - S(1) \\ C(31) - P(3) - C(37) \\ C(31) - P(3) - S(2) \\ C(55) - P(4) - C(43) \\ \end{array}$	$\begin{array}{c} 87.6(4)\\ 86.2(4)\\ 172.4(2)\\ 118.7(4)\\ 95.1(2)\\ 155.8(4)\\ 98.1(2)\\ 69.3(7)\\ 97.6(2)\\ 107.4(8)\\ 106.8(8)\\ 113.8(6)\\ 111.4(8)\\ 109.0(8)\\ 108.4(6)\\ 110.3(8)\\ 108.1(6)\\ 104(1)\\ \end{array}$

C(55) - P(4) - C(49) $C(55) - P(4) - Ir(1)$ $C(49) - P(4) - Ir(1)$ $C(2) - C(1) - P(1)$ $C(3) - C(2) - C(19)$ $C(5) - C(4) - C(3)$ $C(3) - C(4) - C(25)$ $C(4) - C(5) - P(1)$ $C(12) - C(7) - P(2)$ $C(10) - C(9) - C(8)$ $C(12) - C(11) - C(10)$ $C(18) - C(17) - P(2)$ $C(16) - C(15) - C(14)$ $C(18) - C(17) - C(16)$ $C(20) - C(19) - C(24)$ $C(24) - C(19) - C(2)$ $C(22) - C(21) - C(20)$ $C(22) - C(25) - C(4)$ $C(26) - C(25) - C(4)$ $C(28) - C(27) - C(26)$	104.9(8) 111.5(6) 113.2(6) 117(1) 121(2) 120(2) 123(2) 118(2) 116(1) 120(2) 117(1) 118(2) 116(2) 119(2) 122(2) 122(2) 122(2) 120(2) 120(2) 119(2) 122(2)	C(43) - P(4) - C(49) $C(43) - P(4) - Ir(1)$ $C(2) - C(1) - P(2)$ $P(2) - C(1) - P(1)$ $C(3) - C(2) - C(19)$ $C(2) - C(3) - C(4)$ $C(5) - C(4) - C(25)$ $C(4) - C(5) - P(3)$ $P(3) - C(5) - P(1)$ $C(12) - C(7) - P(2)$ $C(9) - C(10) - C(11)$ $C(7) - C(12) - C(11)$ $C(13) - C(13) - P(2)$ $C(13) - C(14) - C(15)$ $C(15) - C(16) - C(17)$ $C(17) - C(18) - C(13)$ $C(20) - C(19) - C(2)$ $C(19) - C(20) - C(21)$ $C(21) - C(22) - C(23)$ $C(23) - C(24) - C(19)$ $C(26) - C(25) - C(4)$ $C(25) - C(28) - C(27)$ $C(29) - C(28) - C(27)$	102.7(8) 119.5(6) 130(1) 112.0(8) 119(1) 125(2) 119(2) 128(1) 125(1) 123(1) 121(2) 124(2) 124(2) 122(2) 119(2) 117(2) 120(2) 121(2) 121(2) 121(2) 121(2) 121(2) 122(2) 122(2) 122(2) 122(2)
C(38) - C(37) - C(42) $C(42) - C(37) - P(3)$ $C(40) - C(39) - C(38)$ $C(40) - C(41) - C(42)$ $C(44) - C(43) - C(48)$ $C(48) - C(43) - P(4)$ $C(46) - C(45) - C(44)$	121(2) 121(1) 120(2) 119(2) 121(2) 123(2) 122(2)	C(38)-C(37)-P(3) $C(37)-C(38)-C(39)$ $C(41)-C(40)-C(39)$ $C(37)-C(42)-C(41)$ $C(44)-C(43)-P(4)$ $C(43)-C(44)-C(45)$ $C(45)-C(46)-C(47)$	118(1) 119(2) 122(2) 119(2) 116(1) 120(2) 116(2)
C(18) - C(17) - C(46) $C(50) - C(49) - C(54)$ $C(54) - C(49) - P(4)$ $C(52) - C(51) - C(50)$ $C(54) - C(53) - C(52)$ $C(56) - C(55) - C(60)$	121(2) 120(2) 122(1) 122(2) 122(2) 122(2)	C(47) - C(48) - C(43) $C(50) - C(49) - P(4)$ $C(49) - C(50) - C(51)$ $C(51) - C(52) - C(53)$ $C(53) - C(54) - C(49)$ $C(56) - C(55) - P(4)$	120(2) 118(1) 118(2) 119(2) 120(2) 124(2)
C(60) - C(55) - P(4) $C(58) - C(57) - C(56)$ $C(58) - C(59) - C(60)$ $C(64) - O(3) - C(61)$ $C(63) - C(62) - C(61)$ $C(63) - C(64) - O(3)$	118(2) 118(2) 120(2) 106(2) 113(3) 105(2)	C(57) - C(56) - C(55) C(59) - C(58) - C(57) C(59) - C(60) - C(55) C(62) - C(61) - O(3) C(62) - C(63) - C(64)	121(2) 122(2) 120(2) 97(2) 107(2)

Compound Molecular formula Molecular weight Crystal habit

$\begin{array}{l} \textbf{429} \\ C_{60}H_{51}IrP_4S_{2,2}(CH_2Cl_2) \\ 1322.06 \\ orange \ plate \end{array}$

Crystal dimensions(mm)	0.21x0.20x0.12	
Crystal system	triclinic	
Space group	P-1	
a(Å)	11.3410(10)	
b(Å)	14.4510(10)	
c(Å)	18.6570(10)	
$\alpha(^{\circ})$	85.2690(10)	
β(°)	77.1100(10)	
$\gamma(^{\circ})$	73.9350(10)	
$V(Å^3)$	2863.5(4)	
Z	2	
$d(g-cm^{-3})$	1.533	
F(000)	1328	
$\mu(\text{cm}^{-1})$	2.742	
Absorption corrections	gaussian ; 0.5967 min, 0.7344 max	
Diffractometer	KappaCCD	
X-ray source	ΜοΚα	
$\lambda(\text{\AA})$	0.71069	
Monochromator	graphite	
T (K)	150.0(1)	
Scan mode	phi and omega scans	
Maximum θ	30.03	
HKL ranges	-14 15 ; -20 20 ; -24 26	
Reflections measured	40104	
Unique data	16646	
Rint	0.0473	
Reflections used	14664	
Criterion	$I > 2\sigma I$)	
Refinement type	Fsqd	
Hydrogen atoms	mixed	
Parameters refined	6/3	
Reflections / parameter	21	
WK2	0.0664	
KI Walaha a h	0.0281	
weights a, b	0.0289;0.0000	
GOF	1.018	
difference peak / noie (e A)	1.210(0.115)/-1.185(0.115)	
Table 3. Bond lengths (A)	and angles (deg) for 429	
T (1) D(1)		0,000,000
$\operatorname{Ir}(1) - \operatorname{P}(1)$ $\operatorname{Ir}(1) - \operatorname{P}(2)$	2.2635(6 Ir(1) - P(4))	2.2920(6)
Tr(1) - H(1)	1.57(2) $Tr(1)-H(2)$	1 54(2)
S(1) - P(2)	2.0140(8 S(2) - P(3))	2.0127(7)
P(1)-C(1)	1.785(2) P(1)-C(5)	1.799(2)
P(1) - C(6)	1.824(2) P(2)-C(1)	1.771(2)
P(2) - C(13)	1.806(2) P(2)-C(7) 1.762(2) P(2) C(21)	1.820(2)
P(3) = C(5) P(3) = C(37)	1.702(2) $P(3)-C(31)1.822(2)$ $P(4)-C(55)$	1.806(2) 1.830(2)
P(4) - C(49)	1.831(2) P(4)-C(43)	1.837(2)
C(1) - C(2)	1.401(3) $C(2)-C(3)$	1.417(3)
C(2)-C(19)	1.492(3) C(3)-C(4)	1.406(3)
C(3) - H(3)	0.9500 $C(4)-C(5)$	1.402(3)
C(4) - C(25)	1.501(3) $C(6) - H(6A)$	0.9800
C(7) - C(8)	1.379(3) $C(7)-C(12)$	1.398(3)
C(8) - C(9)	1.396(3) $C(8) - H(8)$	0.9500
C(9) - C(10)	1.376(4) C(9)-H(9)	0.9500
C(10) - C(11)	1.389(4) C(10)-H(10)	0.9500
C(11) - C(12)	1.381(3) $C(11)-H(11)$	0.9500
C(12) - H(12) C(13) - C(14)	U.9500 $C(13)-C(18)1 393(3) C(14)-C(15)$	1.392(3)
C(14)-H(14)	0.9500 $C(15)-C(16)$	1.387(3)

C(15)-H(15) C(16)-H(16) C(17)-H(17) C(19)-C(20) C(20)-C(21) C(21)-C(22) C(22)-C(23) C(22)-C(23) C(24)-H(24) C(25)-C(30) C(26)-H(26) C(27)-H(27) C(28)-H(28) C(32)-C(36) C(32)-C(36) C(32)-C(36) C(32)-C(36) C(35)-C(36) C(35)-C(36) C(35)-C(36) C(36)-H(36) C(37)-C(38) C(38)-H(38) C(39)-H(39) C(40)-H(40) C(41)-H(41) C(43)-C(44) C(44)-C(45) C(45)-C(46) C(46)-C(47) C(47)-C(48) C(48)-H(48) C(48)-H(48) C(49)-C(54) C(50)-H(50) C(51)-H(51) C(52)-H(52) C(53)-C(60) C(56)-C(57) C(57)-C(58) C(59)-C(60) C(60)-H(60) C(61)-C1(2) C(61)-H(61B) C(62)-C1(4) C(62)-C1(3) C(62)-H(62D)	0.9500 0.9500 1.392(3) 1.386(3) 1.386(3) 1.378(3) 1.378(3) 1.378(3) 1.393(3) 0.9500 1.393(3) 0.9500 0.9500 1.396(3) 1.381(3) 1.381(3) 1.384(3) 1.384(3) 1.384(3) 1.391(3) 1.391(3) 1.377(4) 1.384(4) 1.377(4) 1.384(4) 1.377(4) 1.384(4) 1.377(4) 1.384(4) 1.377(4) 1.384(4) 1.391(3) 1.392(3) 0.9500 0.9500 0.9500 1.392(3) 0.9500 1.383(4) 1.391(3) 1.367(4) 1.391(3) 1.367(4) 1.395(4) 0.9500 1.767(3) 0.9900 1.688(4) 1.883(4) 0.9900 0.9900	C(16) - C(17) $C(17) - C(18)$ $C(18) - H(18)$ $C(19) - C(24)$ $C(20) - H(20)$ $C(21) - H(21)$ $C(22) - H(22)$ $C(23) - H(23)$ $C(25) - C(26)$ $C(26) - C(27)$ $C(27) - C(28)$ $C(29) - C(30)$ $C(30) - H(30)$ $C(31) - C(32)$ $C(32) - H(32)$ $C(32) - H(32)$ $C(33) - H(33)$ $C(34) - H(34)$ $C(35) - H(35)$ $C(37) - C(42)$ $C(38) - C(39)$ $C(39) - C(40)$ $C(40) - C(41)$ $C(41) - C(42)$ $C(42) - H(42)$ $C(43) - C(48)$ $C(44) - H(44)$ $C(45) - H(45)$ $C(46) - H(46)$ $C(47) - H(47)$ $C(49) - C(50)$ $C(50) - C(51)$ $C(51) - C(52)$ $C(52) - C(53)$ $C(54) - H(54)$ $C(54) - H(54)$ $C(55) - C(56)$ $C(56) - H(56)$ $C(57) - H(57)$ $C(58) - H(58)$ $C(59) - H(59)$ $C(61) - C1(1)$ $C(62) - C1(4A)$ $C(62) - C1(4A)$ $C(62) - H(62C)$	$\begin{array}{c} 1.383(3)\\ 1.387(3)\\ 0.9500\\ 1.400(3)\\ 0.9500\\ 0.9500\\ 0.9500\\ 0.9500\\ 1.391(3)\\ 1.392(3)\\ 1.376(3)\\ 1.377(3)\\ 1.389(3)\\ 0.9500\\ 1.389(3)\\ 0.9500\\ 0.9500\\ 0.9500\\ 0.9500\\ 0.9500\\ 1.389(3)\\ 1.381(3)\\ 1.381(4)\\ 1.387(4)\\ 1.387(4)\\ 1.395(3)\\ 0.9500\\ 1.400(3)\\ 0.9500\\ 0.9500\\ 0.9500\\ 0.9500\\ 0.9500\\ 0.9500\\ 0.9500\\ 0.9500\\ 0.9500\\ 0.9500\\ 0.9500\\ 0.9500\\ 0.9500\\ 0.9500\\ 0.9500\\ 1.387(3)\\ 1.386(4)\\ 1.352(5)\\ 1.375(4)\\ 0.9500\\ 0.9900\\ 0.990$
$\begin{array}{l} P(1) - Ir(1) - P(4) \\ P(4) - Ir(1) - S(2) \\ P(4) - Ir(1) - S(1) \\ P(1) - Ir(1) - H(1) \\ S(2) - Ir(1) - H(1) \\ P(1) - Ir(1) - H(2) \\ S(2) - Ir(1) - H(2) \\ H(1) - Ir(1) - H(2) \\ H(1) - Ir(1) - H(2) \\ P(3) - S(2) - Ir(1) \\ C(1) - P(1) - C(6) \\ C(1) - P(1) - Ir(1) \\ C(6) - P(1) - Ir(1) \\ C(6) - P(1) - Ir(1) \\ C(1) - P(2) - C(7) \\ C(1) - P(2) - S(1) \\ C(7) - P(2) - S(1) \\ C(5) - P(3) - C(37) \\ C(5) - P(3) - S(2) \\ C(55) - P(4) - C(43) \\ C(55) - P(4) - Ir(1) \\ C(43) - P(4) - Ir(1) \end{array}$	176.70(2) 92.23(2) 93.73(2) 85.5(8) 91.3(8) 89.4(8) 177.0(8) 86(1) 98.43(3) 104.7(1) 114.03(7) 116.87(8) 110.3(1) 110.15(8) 108.53(8) 109.9(1) 109.60(7) 108.71(7) 103.4(1) 116.01(8) 114.46(7)	$\begin{array}{c} P(1) - Ir(1) - S(2) \\ P(1) - Ir(1) - S(1) \\ S(2) - Ir(1) - S(1) \\ P(4) - Ir(1) - H(1) \\ S(1) - Ir(1) - H(1) \\ P(4) - Ir(1) - H(2) \\ S(1) - Ir(1) - H(2) \\ P(2) - S(1) - Ir(1) \\ C(1) - P(1) - C(5) \\ C(5) - P(1) - C(6) \\ C(5) - P(1) - Ir(1) \\ C(1) - P(2) - C(13) \\ C(13) - P(2) - C(13) \\ C(13) - P(2) - C(31) \\ C(31) - P(3) - C(37) \\ C(31) - P(3) - S(2) \\ C(55) - P(4) - C(43) \\ C(49) - P(4) - Ir(1) \\ C(2) - C(1) - P(2) \\ \end{array}$	$89.27(2) \\89.20(2) \\90.14(2) \\91.5(8) \\174.5(8) \\89.0(8) \\92.6(8) \\98.28(3) \\101.8(1) \\104.3(1) \\113.47(7) \\112.2(1) \\109.1(1) \\106.45(7) \\114.4(1) \\109.2(1) \\104.80(7) \\103.1(1) \\102.1(1) \\115.86(8) \\129.5(2) \\$

C(2) = C(1) = D(1)	117 Q(1)	D(2) = C(1) = D(1)	111 7/1)
C(Z) = C(I) = P(I)	11/.0(1)	P(Z) = C(I) = P(I)	TTT • / (T)
C(1) - C(2) - C(3)	121.5(2)	C(1) - C(2) - C(19)	122.2(2)
C(3) - C(2) - C(19)	116 4(2)	C(4) - C(3) - C(2)	125 9(2)
	110.1(2)	C(4) C(5) C(2)	123.7(2)
C(4) - C(3) - H(3)	117.1	C(2) - C(3) - H(3)	117.1
C(5) - C(4) - C(3)	122 1(2)	C(5) - C(4) - C(25)	121 0(2)
C(J) C(H) C(J)	122.1(2)	C(J) C(H) C(ZJ)	121.0(2)
C(3) - C(4) - C(25)	116.9(2)	C(4) - C(5) - P(3)	130.9(2)
C(A) $C(E)$ $D(1)$	117 2(2)	D(2) C(5) D(1)	111 2/1
C(4) = C(5) = P(1)	$\perp \perp / \cdot \angle (\angle)$	P(3) = C(3) = P(1)	$\pm\pm\pm\cdot\cdot\cdot(\pm)$
P(1) - C(6) - H(6A)	109.5	P(1) - C(6) - H(6B)	109.5
$\mathbf{U}(\mathbf{C}\mathbf{A}) = \mathbf{O}(\mathbf{C}) = \mathbf{U}(\mathbf{C}\mathbf{D})$	100 5	D(1) O(C) U(CQ)	100 5
H(6A) - C(6) - H(6B)	109.5	P(I) - C(6) - H(6C)	109.5
H(6A) - C(6) - H(6C)	109.5	H(6B) - C(6) - H(6C)	109.5
a(0), a(7), a(10)		a(0) a(7) b(0)	100 0/01
C(8) - C(7) - C(12)	119.3(2)	C(8) - C(7) - P(2)	120.9(2)
C(12) - C(7) - P(2)	1196(2)	C(7) - C(8) - C(9)	120 8(2)
	110 6		110 (1)
C(7) - C(8) - H(8)	119.6	C(9) - C(8) - H(8)	119.6
C(10) - C(9) - C(8)	1196(2)	C(10) - C(9) - H(9)	120 2
	1.00(2)		110.2
C(8) - C(9) - H(9)	120.2	C(9) - C(10) - C(11)	119.9(2)
C(9) - C(10) - H(10)	120 1	C(11) - C(10) - H(10)	120 1
	120.1		120.1
C(12) - C(11) - C(10)	120.6(2)	C(12) - C(11) - H(11)	119.7
C(10) = C(11) = U(11)	110 7	C(11) - C(12) - C(7)	110 8(2)
	112.7		117.0(2)
C(11) - C(12) - H(12)	120.1	C(7) - C(12) - H(12)	120.1
C(18) = C(13) = C(14)	1106(2)	C(18) - C(13) - D(2)	102 7(2)
	117.0(2)	C(10) C(13) F(2)	123.7(2)
C(14) - C(13) - P(2)	116.6(2)	C(15) - C(14) - C(13)	120.0(2)
C(15) - C(14) - H(14)	120 0	C(13) - C(14) - H(14)	120 0
	120.0		120.0
C(14) - C(15) - C(16)	120.2(2)	C(⊥4)-C(15)-H(15)	119.9
C(16) - C(1E) = U(1E)	110 0	C(17) = C(16) C(16)	110 0/21
C(10) - C(10) - H(10)	119.9	C(1) = C(10) = C(10)	119.9(2)
C(17) - C(16) - H(16)	120.0	C(15)-C(16)-H(16)	120.0
a(16) a(17) a(10)	120 2(2)	$a(16) a(17) \pi(17)$	110 0
C(10) - C(17) - C(10)	120.2(2)	C(10) = C(17) = H(17)	119.9
C(18) - C(17) - H(17)	119.9	C(17) - C(18) - C(13)	120.1(2)
$a(17)$ $a(10)$ $\pi(10)$	100 0	$a(12)$ $a(10)$ $\pi(10)$	100 0
C(17) - C(18) - H(18)	120.0	C(13) - C(18) - H(18)	120.0
C(20) - C(19) - C(24)	117.6(2)	C(20) - C(19) - C(2)	121.3(2)
a(24) $a(10)$ $a(2)$	101 1(0)	a(20) a(20) a(20)	101 0(0)
C(24) - C(19) - C(2)	$\perp \angle \perp \cdot \perp (\angle)$	C(21) - C(20) - C(19)	$\bot \angle \bot$. $\angle (\angle)$
C(21) - C(20) - H(20)	119 4	C(19) - C(20) - H(20)	119 4
a(22) $a(21)$ $a(20)$	100 0(0)	a(22) $a(21)$ $u(21)$	110 0
C(22) - C(21) - C(20)	120.2(2)	C(2Z) - C(ZI) - H(ZI)	119.9
C(20) - C(21) - H(21)	119 9	C(23) - C(22) - C(21)	1195(2)
	100 0	C(23) $C(22)$ $C(21)$	100 0
C(23) - C(22) - H(22)	120.2	C(21) - C(22) - H(22)	120.2
C(22) - C(23) - C(24)	120 3(2)	C(22) - C(23) - H(23)	119 9
	110.0	C(22) C(23) H(23)	101 0(0)
C(24) - C(23) - H(23)	119.9	C(23) - C(24) - C(19)	121.2(2)
C(23) - C(24) - H(24)	119 4	C(19) - C(24) - H(24)	119 4
C(25) C(21) II(21)	110 0(0)	C(1) = C(21) = H(21)	
C(26) - C(25) - C(30)	117.8(2)	C(26) - C(25) - C(4)	120.7(2)
C(30) = C(25) = C(4)	121 5(2)	C(25) = C(26) = C(27)	121 5(2)
	121.3(2)	C(25) C(20) C(27)	121.3(2)
C(25) - C(26) - H(26)	119.3	C(27) - C(26) - H(26)	119.3
C(28) - C(27) - C(26)	1196(2)	C(28) - C(27) - H(27)	120 2
	100(2)	C(20) C(27) II(27)	110.2
C(26) - C(27) - H(27)	120.2	C(27) - C(28) - C(29)	119.9(2)
C(27) - C(28) - H(28)	120 0	C(29) - C(28) - H(28)	120 0
C(27) C(20) II(20)	120.0		120.0
C(28) - C(29) - C(30)	120.4(2)	C(28) - C(29) - H(29)	119.8
C(30) - C(29) - H(29)	119 8	C(29) - C(30) - C(25)	120 8(2)
	110 6	C(25) C(30) C(25)	110.0(2)
C(29) - C(30) - H(30)	119.6	C(25) - C(30) - H(30)	119.6
C(36) - C(31) - C(32)	1193(2)	C(36) - C(31) - D(3)	117 2(2)
C(30) C(31) C(32)	100.0(0)	C(30) C(31) T(3)	110 0(0)
C(32) - C(31) - P(3)	123.0(2)	C(33) - C(32) - C(31)	119.8(2)
C(33) - C(32) - H(32)	120.1	C(31) - C(32) - H(32)	120 1
	120.4	$a(24) a(22) \pi(22)$	110 7
C(34) - C(33) - C(32)	12U.0(2)	U(34) - U(33) - H(33)	119./
C(32) - C(33) - H(33)	119.7	C(33) - C(34) - C(35)	119.7(2)
(22) (24) (24)	100 1	O(2E) O(2A) TT(2A)	120 1
C(33) = C(34) = H(34)	120.1	C(35) - C(34) - H(34)	120.1
C(34) - C(35) - C(36)	120.5(2)	C(34)-C(35)-H(35)	119.7
C(36) - C(35) - U(25)	110 7	C(25) - C(26) - C(21)	120 0/21
C(30) - C(30) - H(30)	エエフ・/	C(35) = C(35) = C(31)	⊥∠∪.∪(∠)
C(35)-C(36)-H(36)	120.0	C(31)-C(36)-H(36)	120.0
C(42) - C(37) - C(28)	119 0(2)	C(42) = C(37) = D(2)	110 7/21
		C(IZ) C(J) = F(J)	
C(38) - C(37) - P(3)	121.1(2)	C(39) - C(38) - C(37)	120.9(2)
C(39) - C(38) - U(38)	110 5	C(37) - C(38) - U(38)	110 5
	TTA.C		112.3
C(40) - C(39) - C(38)	120.0(2)	C(40)-C(39)-H(39)	120.0
C(38) - C(39) - H(39)	120 0	C(39) - C(40) - C(41)	119 8/21
	100.0		
C(39) - C(40) - H(40)	120.1	C(4⊥)-C(40)-H(40)	120.1
C(40) - C(41) - C(42)	120 2(2)	C(40) - C(41) - H(41)	119 Q
C(10) C(11) C(12)	110 0		
C(42) - C(41) - H(41)	119.9	C(37) - C(42) - C(41)	120.0(2)
C(37) - C(42) - H(42)	120 0	C(41) - C(42) - H(42)	120 0
C(J) = C(JZ) = II(TZ)	110.0/0	$C(11) C(12) \Pi(T2)$	100.0
C(44) - C(43) - C(48)	118.2(2)	C(44) - C(43) - P(4)	122.9(2)
C(48) - C(43) - D(4)	118 8(2)	C(43) - C(44) - C(45)	120 6121
	110.0(2)		110.0(Z)
C(43) - C(44) - H(44)	119.7	C(45) - C(44) - H(44)	119.7
C(46) - C(45) - C(44)	120 5(3)	C(46) - C(45) - H(45)	110 7
	110 5		110 6 (2)
C(44) - C(45) - H(45)	119.7	C(45)-C(46)-C(47)	119.6(3)
C(45) - C(46) - H(46)	120.2	C(47) - C(46) - H(46)	120 2

C(48) - C(47) - C(46)	120 0(3)	C(48) - C(47) - H(47)	120 0
C(46) - C(47) - H(47)	120.0(3)	C(47) - C(48) - C(43)	121 1(2)
C(40) = C(40) = H(40)	110 /	C(47) = C(48) = U(48)	110 /
C(47) - C(40) - H(40)	110.4	C(43) - C(40) - H(40)	122.7
C(50) - C(49) - C(54)	110.0(2)	C(50) - C(49) - P(4)	110 E(2)
C(54) - C(49) - P(4)	100.7(2)	C(51) - C(50) - C(49)	120.2
C(51) - C(50) - H(50)	120.3	C(49) - C(50) - H(50)	120.3
C(52) - C(51) - C(50)	121.3(3)	C(52) - C(51) - H(51)	119.4
C(50) - C(51) - H(51)	119.4	C(51) - C(52) - C(53)	120.1(3)
C(51) - C(52) - H(52)	119.9	C(53) - C(52) - H(52)	119.9
C(54) - C(53) - C(52)	119.4(3)	C(54) - C(53) - H(53)	120.3
C(52)-C(53)-H(53)	120.3	C(53)-C(54)-C(49)	121.1(3)
C(53)-C(54)-H(54)	119.5	C(49)-C(54)-H(54)	119.5
C(60)-C(55)-C(56)	118.6(2)	C(60)-C(55)-P(4)	123.6(2)
C(56) - C(55) - P(4)	117.8(2)	C(57)-C(56)-C(55)	120.6(3)
C(57)-C(56)-H(56)	119.7	С(55)-С(56)-Н(56)	119.7
C(58) - C(57) - C(56)	120.1(3)	C(58)-C(57)-H(57)	120.0
C(56)-C(57)-H(57)	120.0	C(57)-C(58)-C(59)	120.2(3)
C(57)-C(58)-H(58)	119.9	C(59)-C(58)-H(58)	119.9
C(58) - C(59) - C(60)	120.1(3)	C(58)-C(59)-H(59)	120.0
C(60) - C(59) - H(59)	120.0	C(55) - C(60) - C(59)	120.4(3)
C(55) - C(60) - H(60)	119.8	C(59) - C(60) - H(60)	119.8
Cl(1) - C(61) - Cl(2)	111.7(2)	Cl(1)-C(61)-H(61A)	109.3
$C_{1}(2) - C_{61}(61) - H_{61A}$	109.3	C(1) - C(61) - H(61B)	109.3
$C_1(2) - C(61) - H(61B)$	109 3	H(61A) - C(61) - H(61B)	108 0
$C_1(3A) - C(62) - C_1(4)$	1336(3)	$C_1(3A) - C(62) - C_1(4A)$	119 9(3)
$C_1(4) - C(62) - C_1(4A)$	20.8(2)	$C_1(3A) - C(62) - C_1(3)$	24 1(2)
$C_1(4) - C_1(62) - C_1(3)$	1099(2)	$C_1(4\Delta) - C(62) - C_1(3)$	96 0(2)
$C_1(3\Delta) = C(62) = H(62\Delta)$	99 6	$C_1(4) = C(62) = H(62\Delta)$	109 7
$C_1(4\Delta) - C(62) - H(62\Delta)$	101 7	C1(3) - C(62) - H(62A)	109.7
$C_1(3\lambda) = C(62) = H(62R)$	02 F	$C_1(4) = C(62) = H(62R)$	100.7
CI(3A) C(62) II(02B)	120 2	C1(2) C(52) H(52B)	100.7
$U(62\lambda) = C(62) = H(62B)$	100.2	CI(3) = C(02) = H(02B)	107.7
n(02A) - C(02) - n(02B)	100.2	CI(3A) - C(02) - H(02C)	107.3
CI(4) = C(02) = H(02C)		U(4A) - C(02) - H(02C)	107.5
U(3) - U(62) - H(62U)	115.9	H(62A) - C(62) - H(62C)	107 2
$\Pi(02B) - U(02) - \Pi(02U)$	44.9	$C_1(3A) = C(6Z) = H(6ZD)$	LU/.3
CL(4) - C(bZ) - H(bZD)	110.0	$U_1(4A) = U(6Z) = H(6ZD)$	LU/.3
$C_1(3) - C(62) - H(62D)$	121.6	H(62A) - C(62) - H(62D)	14.9
H(62B) - C(62) - H(62D)	94.7	H(62C)-C(62)-H(62D)	106.9

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å)b(Å)c(Å)c(Å) $\alpha(°)$ $\beta(°)$ **442** C₈₄H₆₈P₆RhS₄, 6(CHCl₃), Cl 2246.01 orange plate 0.22x0.22x0.14 triclinic P-1 16.8120(10) 17.6280(10) 20.1680(10) 106.3980(10) 93.6800(10)

$\gamma(^{\circ})$	117.5760(10)
$V(Å^3)$	4947.3(5)
Z	2
$d(g-cm^{-3})$	1.508
F(000)	2272
$\mu(\text{cm}^{-1})$	0.911
Absorption corrections	multi-scan; 0.8247 min, 0.8830 max
Diffractometer	KappaCCD
X-ray source	ΜοΚα
λ(Å)	0.71069
Monochromator	graphite
T (K)	150.0(1)
Scan mode	phi and omega scans
Maximum θ	27.47
HKL ranges	-21 21 ; -22 22 ; -26 26
Reflections measured	36627
Unique data	22455
Rint	0.0250
Reflections used	17685
Criterion	I > 2sigma (I)
Refinement type	Fsqd
Hydrogen atoms	mixed
Parameters refined	975
Reflections / parameter	18
wR2	0.1706
R1	0.0547
Weights a, b	0.0997; 3.3565
GoF	1.104
difference peak / hole (e Å ⁻³)	2.187(0.104) / -1.131(0.104)
Note. The asymmetric unit contains a	total of six CHCl ₂ molecules of which

Note: The asymmetric unit contains a total of six $CHCl_3$ molecules of which three were too disordered to be included in the refinement and were hence accounted for using the Platon SQUEEZE function.

Table 3. Bond lengths (A) and angles (deg) for $442\,$

Rh(1)-P(4)	2.2617(7	Rh(1)-P(1)	2.2661(8)
Rh(1) - S(1)	2.3641(8	Rh(1) - S(4)	2.3693(8)
Rh(1) - S(3)	2.4458(8	Rh(1) - S(2)	2.4462(8)
S(1) - P(2)	2.040(1)	S(2) - P(3)	2.017(1)
S(3) - P(5)	2.016(1)	S(4) - P(6)	2.041(1)
P(1) - C(1)	1.765(3)	P(1) - C(6)	1.803(4)
P(1) - C(5)	1.806(3)	P(2) - C(1)	1.755(3)
P(2) - C(7)	1.808(3)	P(2) - C(13)	1.808(3)
P(3) - C(5)	1.781(3)	P(3) - C(31)	1.807(3)
P(3) - C(37)	1.810(3)	P(4) - C(47)	1.772(3)
P(4)-C(48)	1.805(3)	P(4)-C(43)	1.807(3)
P(5)-C(43)	1.777(3)	P(5)-C(55)	1.808(3)
P(5)-C(49)	1.811(3)	P(6)-C(47)	1.755(3)
P(6)-C(79)	1.815(3)	P(6)-C(73)	1.818(3)
C(1) - C(2)	1.431(4)	C(2) - C(3)	1.392(5)
C(2) - C(19)	1.500(5)	C(3)-C(4)	1.417(5)
C(4)-C(5)	1.386(4)	C(4)-C(25)	1.499(4)
C(7)-C(8)	1.377(5)	C(7) - C(12)	1.391(5)
C(8)-C(9)	1.389(5)	C(9) - C(10)	1.374(6)
C(10) - C(11)	1.373(6)	C(11) - C(12)	1.406(5)
C(13) - C(14)	1.382(5)	C(13) - C(18)	1.396(5)
C(14)-C(15)	1.379(5)	C(15)-C(16)	1.381(6)
C(16)-C(17)	1.376(6)	C(17) - C(18)	1.392(5)
C(19)-C(20)	1.378(6)	C(19)-C(24)	1.390(6)
C(20)-C(21)	1.396(6)	C(21)-C(22)	1.361(9)
C(22)-C(23)	1.367(9)	C(23)-C(24)	1.398(7)
C(25)-C(26)	1.380(6)	C(25) - C(30)	1.398(5)
C(26)-C(27)	1.390(5)	C(27)-C(28)	1.356(8)
C(28)-C(29)	1.408(8)	C(29)-C(30)	1.378(5)
C(31)-C(36)	1.389(5)	C(31)-C(32)	1.392(5)

C(32) - C(33) $C(34) - C(35)$ $C(37) - C(42)$ $C(38) - C(39)$ $C(40) - C(41)$ $C(43) - C(41)$ $C(44) - C(61)$ $C(46) - C(47)$ $C(49) - C(50)$ $C(50) - C(51)$ $C(52) - C(53)$ $C(55) - C(56)$ $C(56) - C(57)$ $C(58) - C(59)$ $C(61) - C(62)$ $C(62) - C(63)$ $C(64) - C(65)$ $C(64) - C(65)$ $C(68) - C(69)$ $C(70) - C(71)$ $C(73) - C(74)$ $C(74) - C(75)$ $C(76) - C(77)$ $C(79) - C(84)$ $C(80) - C(81)$ $C(82) - C(83)$ $C(85) - C1(4)$ $C(85) - C1(3)$ $C(87) - C1(10)$	$\begin{array}{c} 1.387(5)\\ 1.366(6)\\ 1.384(5)\\ 1.387(5)\\ 1.362(6)\\ 1.391(4)\\ 1.492(4)\\ 1.425(4)\\ 1.386(5)\\ 1.385(5)\\ 1.385(5)\\ 1.388(5)\\ 1.388(5)\\ 1.388(5)\\ 1.388(5)\\ 1.388(5)\\ 1.385(5)\\ 1.387(6)\\ 1.387(5)\\ 1.387(5)\\ 1.387(6)\\ 1.377(5)\\ 1.387(6)\\ 1.377(5)\\ 1.387(6)\\ 1.387(6)\\ 1.379(5)\\ 1.385(6)\\ 1.739(5)\\ 1.64(1)\\ 1.697(8)\\ 1.734(7)\\ \end{array}$	C(33)-C(34) C(35)-C(36) C(37)-C(38) C(39)-C(40) C(41)-C(42) C(44)-C(45) C(45)-C(46) C(46)-C(67) C(49)-C(54) C(51)-C(52) C(53)-C(54) C(55)-C(60) C(57)-C(58) C(59)-C(60) C(61)-C(66) C(63)-C(66) C(63)-C(66) C(67)-C(72) C(69)-C(70) C(71)-C(72) C(73)-C(78) C(75)-C(76) C(77)-C(78) C(79)-C(80) C(81)-C(82) C(83)-C(4) C(85)-C1(2) C(86)-C1(6) C(87)-C1(9)	1.388(6) $1.404(5)$ $1.392(5)$ $1.385(6)$ $1.394(5)$ $1.416(5)$ $1.390(4)$ $1.488(4)$ $1.388(5)$ $1.386(7)$ $1.385(7)$ $1.393(5)$ $1.395(5)$ $1.395(5)$ $1.389(6)$ $1.382(5)$ $1.382(5)$ $1.390(5)$ $1.373(7)$ $1.386(5)$ $1.372(6)$ $1.382(5)$ $1.399(5)$ $1.385(6)$ $1.389(5)$ $1.396(4)$ $1.378(6)$ $1.388(5)$ $1.745(5)$ $1.59(1)$ $1.85(1)$ $1.707(8)$
P(4) - Rh(1) - P(1) P(1) - Rh(1) - S(1) P(1) - Rh(1) - S(3) S(1) - Rh(1) - S(3) S(1) - Rh(1) - S(2) S(1) - Rh(1) - S(2) S(3) - Rh(1) - S(2) S(3) - Rh(1) - S(2) P(3) - S(2) - Rh(1) P(6) - S(4) - Rh(1) C(1) - P(1) - C(5) C(1) - P(1) - Rh(1) C(5) - P(1) - Rh(1) C(1) - P(2) - C(13) C(1) - P(2) - S(1) C(13) - P(2) - S(1) C(5) - P(3) - C(37) C(5) - P(3) - S(2) C(47) - P(4) - C(43) C(47) - P(4) - Rh(1) C(43) - P(5) - S(3) C(47) - P(6) - C(73) C(47) - P(6) - S(4) C(73) - P(6) - S(4) C(73) - P(6) - S(4) C(73) - P(6) - S(4) C(2) - C(1) - P(1) C(3) - C(2) - C(19) C(5) - C(4) - C(25) C(4) - C(5) - P(1) C(3) - C(7) - P(2) C(10) - C(9) - C(8) C(10) - C(11) - C(12) C(11) - C(11) - C(12)	98.96(3) 88.97(3) 92.18(3) 89.25(3) 89.25(3) 83.32(3) 172.06(3) 90.55(3) 83.02(3) 102.70(4) 108.14(4) 101.7(1) 114.8(1) 112.8(1) 109.2(2) 108.7(1) 106.8(1) 111.1(2) 107.2(1) 111.5(1) 101.8(1) 115.1(1) 115.1(1) 112.5(1) 101.8(1) 115.1(1) 112.0(1) 108.1(1) 108.1(1) 108.9(1) 106.9(1) 114.7(2) 122.3(3) 120.8(3) 122.9(3) 113.9(3) 118.2(3) 120.0(4) 118.9(4)	$\begin{array}{c} P(4) - Rh(1) - S(1) \\ P(4) - Rh(1) - S(4) \\ S(1) - Rh(1) - S(3) \\ P(1) - Rh(1) - S(3) \\ P(1) - Rh(1) - S(2) \\ S(4) - Rh(1) - S(2) \\ P(2) - S(1) - Rh(1) \\ P(5) - S(3) - Rh(1) \\ P(5) - S(3) - Rh(1) \\ C(1) - P(1) - C(6) \\ C(6) - P(1) - C(5) \\ C(6) - P(1) - Rh(1) \\ C(1) - P(2) - C(7) \\ C(7) - P(2) - C(13) \\ C(7) - P(2) - C(13) \\ C(7) - P(2) - C(31) \\ C(31) - P(3) - C(37) \\ C(31) - P(3) - C(37) \\ C(31) - P(3) - S(2) \\ C(47) - P(4) - C(48) \\ C(48) - P(4) - C(48) \\ C(48) - P(4) - C(43) \\ C(48) - P(4) - Rh(1) \\ C(43) - P(5) - C(55) \\ C(55) - P(5) - C(55) \\ C(55) - P(5) - C(49) \\ C(55) - P(5) - S(3) \\ C(47) - P(6) - C(79) \\ C(79) - P(6) - C(73) \\ C(79) - P(6) - C(79) \\ C(2) - C(1) - P(1) \\ C(3) - C(2) - C(19) \\ C(2) - C(3) - C(4) \\ C(5) - P(3) - C(5) \\ P(3) - C(5) - P(1) \\ C(8) - C(7) - P(2) \\ C(7) - C(8) - C(9) \\ C(11) - C(10) - C(9) \\ C(7) - C(12) - C(11) \\ \end{array}$	$\begin{array}{c} 91.06(3)\\ 88.82(3)\\ 178.85(3)\\ 178.85(3)\\ 171.40(3)\\ 90.53(3)\\ 88.85(3)\\ 89.41(3)\\ 108.26(4)\\ 102.81(4)\\ 102.81(4)\\ 102.81(4)\\ 105.6(2)\\ 103.1(2)\\ 117.0(1)\\ 117.4(2)\\ 105.3(2)\\ 108.9(1)\\ 113.2(2)\\ 106.5(2)\\ 107.5(1)\\ 105.0(2)\\ 107.5(1)\\ 105.0(2)\\ 103.4(1)\\ 117.3(1)\\ 113.2(1)\\ 106.2(2)\\ 106.2(2)\\ 107.7(1)\\ 117.2(2)\\ 106.2(2)\\ 106.2(2)\\ 108.9(1)\\ 123.2(2)\\ 117.6(2)\\ 116.8(3)\\ 124.1(3)\\ 123.2(3)\\ 127.5(2)\\ 125.5(2)\\ 122.5(3)\\ 120.3(4)\\ 121.0(4)\\ 120.4(4)\\ 120.4(4)\\ \end{array}$

C(14)-C(13)-C(18)	119.4(3)	C(14) - C(13) - P(2)	117.4(3)
C(18) - C(13) - P(2) C(14) - C(15) - C(16)	123.2(3)	C(15)-C(14)-C(13) C(17)-C(16)-C(15)	120.9(4)
C(14) - C(13) - C(10) C(16) - C(17) - C(18)	120.0(4)	C(17) - C(18) - C(13)	119.6(4)
C(20) - C(19) - C(24)	119.1(4)	C(20) - C(19) - C(2)	117.4(3)
C(24) - C(19) - C(2)	123.6(4)	C(19) - C(20) - C(21)	121.3(4)
C(22) - C(21) - C(20)	119.3(5) 101.2(5)	C(21) - C(22) - C(23)	120.2(5)
C(22) - C(23) - C(24) C(26) - C(25) - C(30)	118.8(3)	C(26) - C(25) - C(4)	121.1(3)
C(30) - C(25) - C(4)	119.9(3)	C(25) - C(26) - C(27)	120.3(4)
C(28)-C(27)-C(26)	120.6(5)	C(27)-C(28)-C(29)	120.5(4)
C(30) - C(29) - C(28)	118.6(5)	C(29) - C(30) - C(25)	121.2(4)
C(32) - C(31) - P(3)	121.3(3)	C(33) - C(31) - P(3) C(33) - C(32) - C(31)	110.0(3) 119.3(4)
C(32) - C(33) - C(34)	121.1(4)	C(35) - C(34) - C(33)	119.5(3)
C(34)-C(35)-C(36)	120.6(4)	C(31)-C(36)-C(35)	119.6(4)
C(42) - C(37) - C(38)	119.6(3)	C(42) - C(37) - P(3)	121.2(3)
C(38) - C(37) - P(3) C(40) - C(39) - C(38)	119.2(3) 119.8(4)	C(39) - C(38) - C(37) C(41) - C(40) - C(39)	119.8(4) 120.8(4)
C(40) - C(41) - C(42)	119.9(4)	C(37) - C(42) - C(41)	120.1(4)
C(44)-C(43)-P(5)	127.0(2)	C(44) - C(43) - P(4)	116.0(2)
P(5) - C(43) - P(4)	116.1(2)	C(43) - C(44) - C(45)	122.0(3)
C(43) - C(44) - C(61) C(46) - C(45) - C(44)	124.3(3) 125 1(3)	C(45) - C(44) - C(61) C(45) - C(46) - C(47)	113.6(3) 121 9(3)
C(45) - C(46) - C(67)	116.1(3)	C(47) - C(46) - C(67)	122.0(3)
C(46) - C(47) - P(6)	123.2(2)	C(46) - C(47) - P(4)	114.6(2)
P(6) - C(47) - P(4)	117.1(2)	C(50) - C(49) - C(54)	119.6(3)
C(50) - C(49) - P(5) C(51) - C(50) - C(49)	119.5(3) 120.0(4)	C(54) - C(49) - P(5) C(50) - C(51) - C(52)	120.8(3)
C(51) - C(50) - C(49) C(53) - C(52) - C(51)	120.5(4)	C(52) - C(51) - C(52) C(52) - C(53) - C(54)	120.1(4)
C(49) - C(54) - C(53)	119.9(4)	C(56) - C(55) - C(60)	119.6(3)
C(56) - C(55) - P(5)	121.5(3)	C(60) - C(55) - P(5)	118.9(2)
C(57) - C(56) - C(55)	120.2(4)	C(56) - C(57) - C(58)	119.9(4)
C(59) - C(58) - C(57) C(59) - C(60) - C(55)	119.8(3) 119 4(3)	C(58) - C(59) - C(60) C(62) - C(61) - C(66)	121.0(4) 118 5(3)
C(62) - C(61) - C(44)	121.0(3)	C(66) - C(61) - C(44)	120.3(3)
C(61) - C(62) - C(63)	120.9(4)	C(64) - C(63) - C(62)	120.4(4)
C(63) - C(64) - C(65)	119.4(4)	C(66) - C(65) - C(64)	119.9(4)
C(65) - C(66) - C(61) C(68) - C(67) - C(46)	120.9(4) 122 4(3)	C(68) - C(67) - C(72) C(72) - C(67) - C(46)	118.8(3) 118.6(3)
C(69) - C(68) - C(67)	119.4(4)	C(72) - C(69) - C(68)	121.0(4)
C(69) - C(70) - C(71)	120.2(4)	C(70) - C(71) - C(72)	119.9(4)
C(71) - C(72) - C(67)	120.5(3)	C(74) - C(73) - C(78)	120.3(3)
C(74) - C(73) - P(6) C(73) - C(74) - C(75)	1197(4)	C(74) - C(75) - C(76)	122.6(3) 121 0(4)
C(75) - C(76) - C(77)	119.1(3)	C(76) - C(77) - C(78)	120.8(4)
C(77) - C(78) - C(73)	119.2(4)	C(84) - C(79) - C(80)	120.0(3)
C(84) - C(79) - P(6)	122.2(2)	C(80) - C(79) - P(6)	117.8(3)
C(81) - C(80) - C(79) C(81) - C(82) - C(83)	119.6(4) 120 4(4)	C(82) - C(81) - C(80) C(82) - C(83) - C(84)	119.9(3) 119.9(4)
C(79) - C(84) - C(83)	120.2(3)	Cl(4) - C(85) - Cl(2)	111.2(2)
Cl(4) - C(85) - Cl(3)	110.5(3)	Cl(2) - C(85) - Cl(3)	109.2(3)
Cl(6) - C(86) - Cl(5)	126.0(8)	Cl(6) - C(86) - Cl(7)	115.2(5)
$C_{1}(5) - C(86) - C_{1}(7)$ $C_{1}(8) - C(87) - C_{1}(10)$	$\pm 07.8(7)$ 113 5(5)	$C_{1}(8) - C(8/) - C_{1}(9)$ $C_{1}(9) - C(87) - C_{1}(10)$	110 4(4)

Compound 447a-b C₈₆H₇₆Cl₅CoO₂P₆S₄ Molecular formula Molecular weight 1691.71 Crystal habit brown block Crystal dimensions(mm) 0.22x0.20x0.14 Crystal system triclinic Space group P-1 a(Å) 14.8640(10) b(Å) 15.0750(10) c(Å) 20.2670(10) $\alpha(^{\circ})$ 105.6220(10) β(°) 95.2960(10) 112.1250(10) $\gamma(^{\circ})$ $V(Å^3)$ 3954.8(4) Ζ 2 $d(g-cm^{-3})$ 1.421 F(000) 1748 $\mu(\text{cm}^{-1})$ 0.662 multi-scan; 0.8680 min, 0.9130 max Absorption corrections Diffractometer KappaCCD X-ray source ΜοΚα λ(Å) 0.71069 Monochromator graphite T (K) 150.0(10) Scan mode phi and omega scans Maximum θ 30.00 -20 20 ; -20 21 ; -27 28 HKL ranges Reflections measured 31284 Unique data 22863 Rint 0.0174 Reflections used 17356 Criterion I > 2sigma(I) Refinement type Fsqd Hydrogen atoms mixed Parameters refined 951 Reflections / parameter 18 0.1263 wR2 R1 0.0429 Weights a, b 0.0669; 0.8310 GoF 1.068 difference peak / hole (e Å⁻³) 1.295(0.075) / -1.252(0.075) Table 3. Bond lengths (A) and angles (deg) for 447a-b Co(1)-P(1)

Co(1)-S(1)

2.2419(5	Co(1)-P(4)	2.2494(5)
2.2594(5	Co(1)-S(4)	2.2613(5)

431

S(1) - P(2) $S(3) - P(5)$ $P(1) - C(5)$ $P(1) - C(6)$ $P(2) - C(13)$ $P(3) - C(5)$ $P(3) - C(43)$ $P(5) - C(49)$ $P(6) - C(79)$ $C(1) - C(2)$ $C(2) - C(19)$ $C(4) - C(5)$ $C(7) - C(8)$ $C(8) - C(9)$ $C(10) - C(11)$ $C(13) - C(14)$ $C(14) - C(15)$ $C(16) - C(17)$ $C(19) - C(20)$ $C(20) - C(21)$ $C(22) - C(23)$ $C(22) - C(23)$ $C(26) - C(27)$ $C(28) - C(29)$ $C(31) - C(36)$ $C(32) - C(33)$ $C(34) - C(35)$ $C(37) - C(38)$ $C(38) - C(39)$ $C(40) - C(41)$ $C(44) - C(61)$ $C(44) - C(61)$ $C(44) - C(61)$ $C(46) - C(47)$ $C(49) - C(50)$ $C(50) - C(51)$ $C(52) - C(53)$ $C(55) - C(60)$ $C(50) - C(57)$ $C(58) - C(59)$ $C(61) - C(66)$ $C(62) - C(77)$ $C(70) - C(71)$ $C(73) - C(74)$ $C(74) - C(75)$ $C(76) - C(77)$ $C(79) - C(80)$ $C(80) - C(81)$ $C(82) - C(33)$ $C(86) - C(15)$	2.0321(7) 2.0318(6) 1.795(2) 1.819(2) 1.800(2) 1.759(2) 1.759(2) 1.763(2) 1.763(2) 1.763(2) 1.393(3) 1.501(3) 1.413(3) 1.393(3) 1.393(3) 1.393(3) 1.386(3) 1.378(3) 1.384(3) 1.382(4) 1.382(4) 1.382(4) 1.384(3) 1.378(3) 1.378(3) 1.378(3) 1.378(3) 1.378(3) 1.378(3) 1.378(3) 1.378(3) 1.378(3) 1.378(3) 1.378(3) 1.378(3) 1.378(3) 1.378(3) 1.378(3) 1.384(3) 1.385(3) 1.384(3) 1.385(3) 1.382(3) 1.385(3) 1.385(3) 1.385(3) 1.385(3) 1.388(3) 1.385(3) 1.385(3) 1.388(3) 1.385(3) 1.385(3) 1.388(3) 1.385(3) 1.388(3) 1.385(3) 1.388(3) 1.385(3) 1.388(3) 1.385(3) 1.388(3) 1.385(3) 1.388(3) 1.	S(2) - P(3) S(4) - P(6) P(1) - C(1) P(2) - C(1) P(2) - C(7) P(3) - C(31) P(4) - C(47) P(4) - C(48) P(5) - C(55) P(6) - C(73) C(2) - C(3) C(3) - C(4) C(4) - C(25) C(7) - C(12) C(9) - C(10) C(11) - C(12) C(13) - C(18) C(15) - C(16) C(17) - C(18) C(17) - C(18) C(19) - C(24) C(21) - C(22) C(23) - C(24) C(25) - C(26) C(27) - C(28) C(29) - C(30) C(31) - C(32) C(33) - C(34) C(35) - C(36) C(37) - C(42) C(39) - C(40) C(41) - C(42) C(44) - C(45) C(45) - C(46) C(44) - C(52) C(53) - C(56) C(57) - C(58) C(57) - C(58) C(59) - C(60) C(61) - C(62) C(63) - C(64) C(65) - C(66) C(77) - C(78) C(79) - C(78) C(79) - C(84) C(85) - C1(2) C(83) - C(14)	2.0370(6) 2.0265(6) 1.803(2) 1.755(2) 1.808(2) 1.797(2) 1.816(2) 1.806(2) 1.751(2) 1.806(2) 1.413(3) 1.399(3) 1.490(2) 1.395(3) 1.394(3) 1.394(3) 1.384(3) 1.384(3) 1.386(3) 1.385(3) 1.385(3) 1.382(4) 1.382(4) 1.399(3) 1.382(4) 1.382(4) 1.399(3) 1.406(3) 1.384(3) 1.384(3) 1.406(3) 1.384(3) 1.384(3) 1.386(3) 1.386(3) 1.386(3) 1.386(3) 1.386(3) 1.386(3) 1.386(3) 1.386(3) 1.386(3) 1.386(3) 1.386(3) 1.386(3) 1.386(3) 1.386(3) 1.386(3) 1.386(3) 1.386(3) 1.386(3) 1.387(3) 1.388(3) 1.392(4) 1.392(3) 1.388(3) 1.392(4) 1.399(3) 1.385(4) 1.385(4) 1.385(4) 1.385(3) 1.3
P(1)-Co(1)-P(4) P(4)-Co(1)-S(1) P(4)-Co(1)-S(4) P(1)-Co(1)-S(2) S(1)-Co(1)-S(2) P(1)-Co(1)-S(3) S(2)-Co(1)-S(3) P(3)-S(2)-Co(1) P(6)-S(4)-Co(1) C(5)-P(1)-C(6) C(5)-P(1)-Co(1) C(6)-P(1)-Co(1) C(1)-C(1)-C(1) C(1)-C(1)-C(1)-C(1) C(1)-C(1)-C(1) C(1)-C(1)-C(1) C(1)-C(1)-C(1) C(1)-C(1)-C(1) C(1)-C(1)-C(1)-C(1) C(1)-C(1)-C(1) C(1)-C(1)-C(1)-C(1) C(1)-C(1)-C(1)-C(1) C(1)-C(1)-C(1)-C(1) C(1)-C(1)-C(1)-C(1)-C(1) C(1)-C(1)-C(1)-C(1)-C(1) C(1)-C(1)-C(1)-C(1)-C(1)-C(1)-C(1)-C(1)-	105.21(2) 92.39(2) 90.49(2) 86.93(2) 92.01(2) 165.95(2) 83.08(2) 80.33(2) 106.51(2) 109.54(2) 102.1(1) 113.88(6) 120.50(7)	$\begin{array}{c} P(1)-Co(1)-S(1)\\ P(1)-Co(1)-S(4)\\ S(1)-Co(1)-S(4)\\ P(4)-Co(1)-S(2)\\ S(4)-Co(1)-S(2)\\ P(4)-Co(1)-S(3)\\ S(4)-Co(1)-S(3)\\ P(2)-S(1)-Co(1)\\ P(5)-S(3)-Co(1)\\ C(5)-P(1)-C(1)\\ C(1)-P(1)-C(6)\\ C(1)-P(1)-Co(1)\\ C(1)-P(2)-C(13)\\ \end{array}$	91.53(2) 91.22(2) 175.37(2) 166.96(2) 84.42(2) 88.02(2) 93.40(2) 108.71(2) 106.96(2) 100.32(8) 104.2(1) 113.28(6) 113.7(1)

C(1) - P(2) - C(7)	111.5(1)	C(13) - P(2) - C(7)	109.4(1)
C(1)-P(2)-S(1)	108.37(6)	C(13) - P(2) - S(1)	105.51(7)
C(7) - P(2) - S(1)	108.01(7)	C(5) - P(3) - C(31)	109.8(1)
C(5) - P(3) - C(37)	116.0(1)	C(31) - P(3) - C(37)	106.0(1)
C(5) - P(3) - S(2)	105.77(6)	C(31) - P(3) - S(2)	107.07(7)
C(37) - P(3) - S(2) C(47) - D(4) - C(48)	111.90(7)	C(47) - P(4) - C(43)	100.2(1)
C(47) - P(4) - C(40) C(47) - P(4) - Co(1)	104.0(1) 112 79(6)	C(43) - P(4) - C(40) C(43) - D(4) - Co(1)	102.40(0) 112.92(6)
C(47) - P(4) - CO(1) C(48) - P(4) - CO(1)	120 00(7)	C(43) - P(5) - C(55)	109 6(1)
C(43) - P(5) - C(49)	113 9(1)	C(55) - P(5) - C(49)	109.0(1) 108.4(1)
C(43) - P(5) - S(3)	106.57(6)	C(55) - P(5) - S(3)	104.61(6)
C(49) - P(5) - S(3)	113.31(7)	C(47) - P(6) - C(79)	112.5(1)
C(47)-P(6)-C(73)	112.4(1)	C(79)-P(6)-C(73)	106.8(1)
C(47)-P(6)-S(4)	107.85(7)	C(79)-P(6)-S(4)	110.47(6)
C(73) - P(6) - S(4)	106.69(6)	C(2) - C(1) - P(2)	125.7(1)
C(2) - C(1) - P(1)	118.2(1)	P(2)-C(1)-P(1)	115.1(1)
C(1) - C(2) - C(3)	122.6(2)	C(1) - C(2) - C(19)	121.7(2)
C(3) - C(2) - C(19) C(3) - C(4) - C(5)	123.2(2)	C(4) = C(3) = C(2) C(3) = C(4) = C(25)	123.3(2) 116 $1(2)$
C(5) - C(4) - C(25)	123.1(2) 120 1(2)	C(4) - C(5) - D(3)	$121 \ 4(1)$
C(4) - C(5) - P(1)	116 4(1)	P(3) - C(5) - P(1)	115 7(1)
C(8) - C(7) - C(12)	119.7(2)	C(8) - C(7) - P(2)	118.5(2)
C(12) - C(7) - P(2)	121.3(1)	C(9) - C(8) - C(7)	120.3(2)
C(8) - C(9) - C(10)	119.8(2)	C(11) - C(10) - C(9)	120.0(2)
C(10) - C(11) - C(12)	120.6(2)	C(11) - C(12) - C(7)	119.6(2)
C(14) - C(13) - C(18)	120.0(2)	C(14) - C(13) - P(2)	122.9(2)
C(18) - C(13) - P(2)	117.1(2)	C(15) - C(14) - C(13)	119.3(2)
C(16) - C(15) - C(14)	120.2(2)	C(17) - C(16) - C(15)	120.5(2)
C(18) - C(17) - C(16) C(20) - C(19) - C(24)	119.8(2) 118 5(2)	C(17) - C(18) - C(13) C(20) - C(19) - C(2)	120.2(2) 122 2(2)
C(24) - C(19) - C(24)	118 3(2)	C(20) = C(20) = C(2) C(21) = C(20) = C(19)	123.3(2) 120.5(2)
C(22) - C(21) - C(20)	120.3(2)	C(21) - C(22) - C(23)	120.3(2) 120.1(2)
C(24) - C(23) - C(22)	119.4(2)	C(23) - C(24) - C(19)	121.3(2)
C(30) - C(25) - C(26)	118.2(2)	C(30) - C(25) - C(4)	121.6(2)
C(26)-C(25)-C(4)	120.3(2)	C(27)-C(26)-C(25)	120.9(2)
C(26) - C(27) - C(28)	120.0(2)	C(29) - C(28) - C(27)	120.4(2)
C(28) - C(29) - C(30)	119.8(2)	C(29) - C(30) - C(25)	120.7(2)
C(36) - C(31) - C(32)	120.0(2)	C(36) - C(31) - P(3)	123.1(2)
C(32) - C(31) - P(3)	110.0(2)	C(35) - C(32) - C(31)	129.9(2) 120.8(2)
C(34) - C(35) - C(36)	120.4(2)	C(31) - C(36) - C(35)	119.4(2)
C(38) - C(37) - C(42)	119.4(2)	C(38) - C(37) - P(3)	121.7(2)
C(42)-C(37)-P(3)	119.0(2)	C(37)-C(38)-C(39)	119.9(2)
C(40)-C(39)-C(38)	120.6(2)	C(41)-C(40)-C(39)	119.6(2)
C(40) - C(41) - C(42)	120.8(2)	C(41) - C(42) - C(37)	119.6(2)
C(44) - C(43) - P(5)	122.1(1)	C(44) - C(43) - P(4)	117.3(1)
P(5) = C(43) = P(4) C(45) = C(44) = C(61)	115.0(1) 116.0(2)	C(43) - C(44) - C(43)	122.4(2) 101 1(2)
C(44) - C(45) - C(46)	123 4(2)	C(43) - C(44) - C(01) C(47) - C(46) - C(45)	121.1(2) 122 4(2)
C(47) - C(46) - C(67)	123.4(2)	C(45) - C(46) - C(67)	114.6(2)
C(46) - C(47) - P(6)	125.5(1)	C(46) - C(47) - P(4)	117.5(1)
P(6)-C(47)-P(4)	115.6(1)	C(50)-C(49)-C(54)	119.5(2)
C(50)-C(49)-P(5)	120.3(2)	C(54)-C(49)-P(5)	120.3(2)
C(51)-C(50)-C(49)	120.1(2)	C(50) - C(51) - C(52)	120.4(2)
C(53) - C(52) - C(51)	119.6(2)	C(52) - C(53) - C(54)	120.4(2)
C(53) - C(54) - C(49) C(60) - C(55) - D(5)	119.9(2) 125.4(2)	C(50) - C(55) - C(56)	119.4(2) 115.2(2)
C(50) - C(55) - C(55)	120.5(2)	C(56) - C(57) - C(58)	120 1(2)
C(59) - C(58) - C(57)	119.8(2)	C(58) - C(59) - C(60)	120.7(2)
C(55) - C(60) - C(59)	119.5(2)	C(66) - C(61) - C(62)	118.4(2)
C(66) - C(61) - C(44)	121.6(2)	C(62) - C(61) - C(44)	119.9(2)
C(63) - C(62) - C(61)	120.7(2)	C(62) - C(63) - C(64)	120.5(2)
C(65) - C(64) - C(63)	119.2(2)	C(64) - C(65) - C(66)	120.7(2)
C(b1) - C(bb) - C(b5)	120.3(2)	C(72) - C(67) - C(68)	128.5(2)
C(72) = C(67) = C(68) = C(67)	エエロ・ロ(<i>2</i>) 120 フ(2)	C(08) - C(07) - C(46) C(70) - C(69) - C(69)	⊥∠∠.9(∠) 120 1/2\
C(69) - C(70) - C(71)	119.9(2)	C(72) - C(71) - C(70)	120.1(2) 120.2(2)
C(71) - C(72) - C(67)	120.5(2)	C(74) - C(73) - C(78)	120.0(2)
C(74) - C(73) - P(6)	121.6(2)	C(78) - C(73) - P(6)	118.1(1)
C(75) - C(74) - C(73)	119.4(2)	C(74) - C(75) - C(76)	120.7(2)

C(75)-C(76)-C(77)	120.1(2)	C(78)-C(77)-C(76)	119.9(2)
C(77)-C(78)-C(73)	119.9(2)	C(80)-C(79)-C(84)	119.9(2)
C(80)-C(79)-P(6)	121.4(1)	C(84)-C(79)-P(6)	118.6(2)
C(81)-C(80)-C(79)	119.8(2)	C(82) - C(81) - C(80)	120.0(2)
C(83)-C(82)-C(81)	120.5(2)	C(82)-C(83)-C(84)	120.1(2)
C(83) - C(84) - C(79)	119.7(2)	Cl(3) - C(85) - Cl(2)	112.3(2)
Cl(5) - C(86) - Cl(4)	112.2(2)		

IV. Chapitre 6

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) $\alpha(^{\circ})$ β(°) γ(°) $V(Å^3)$ Ζ $d(g-cm^{-3})$ F(000) $\mu(\text{cm}^{-1})$ Absorption corrections Diffractometer X-ray source $\lambda(\text{Å})$ Monochromator T (K) Scan mode $Maximum \ \theta$ HKL ranges Reflections measured Unique data Rint Reflections used Criterion Refinement type Hydrogen atoms Parameters refined Reflections / parameter wR2

$C_{51}H_{43}CuNP_3S_2 \\$ 890.43 yellow cube 0.18x0.18x0.18 triclinic P-1 10.8652(2) 13.2635(2) 15.6616(3) 86.741(7) 73.493(6) 87.071(8) 2159.04(7) 2 1.370 924 0.751 multi-scan ; 0.8767 min, 0.8767 max KappaCCD ΜοΚα 0.71069 graphite 150.0(10) phi and omega scans 30.02 -12 15 ; -18 18 ; -22 22 18811 12567 0.0268 9720 I > 2sigma(I) Fsqd mixed 526 18 0.1096

R1 Weights a, b GoF difference peak / hole (e Å ⁻³)	0.0403 0.0508 ; 0.3313 1.054 0.759(0.075) / -0.	650(0.075)	
TABLE XX. Bond lengths (A)	and angles	(deg) for 604	
Cu (1) -C (43) Cu (1) -S (1) S (1) -P (2) P (1) -C (1) P (1) -C (6) P (2) -C (7) P (3) -C (5) P (3) -C (37) N (1) -C (44) C (2) -C (3) C (3) -C (4) C (4) -C (25) C (7) -C (12) C (9) -C (10) C (11) -C (12) C (13) -C (14) C (15) -C (16) C (17) -C (18) C (19) -C (24) C (21) -C (22) C (23) -C (24) C (22) -C (24) C (25) -C (30) C (27) -C (28) C (29) -C (30) C (31) -C (32) C (33) -C (34) C (35) -C (36) C (37) -C (38) C (39) -C (40) C (41) -C (42) C (44) -C (49) C (45) -C (50) C (47) -C (48) C (49) -C (51)	1.887(2) $2.3694(5)$ $2.0021(6)$ $1.794(2)$ $1.827(2)$ $1.818(2)$ $1.769(2)$ $1.401(2)$ $1.401(2)$ $1.406(2)$ $1.497(2)$ $1.396(2)$ $1.396(2)$ $1.383(3)$ $1.398(2)$ $1.372(3)$ $1.386(3)$ $1.384(3)$ $1.388(2)$ $1.387(3)$ $1.389(3)$ $1.389(3)$ $1.388(2)$ $1.388(2)$ $1.387(3)$ $1.389(3)$ $1.397(3)$ $1.388(3)$ $1.397(3)$ $1.388(3)$ $1.391(3)$ $1.390(2)$ $1.393(3)$ $1.504(3)$ $1.500(3)$	Cu (1) -P (1) Cu (1) -S (2) S (2) -P (3) P (1) -C (5) P (2) -C (1) P (2) -C (13) P (3) -C (31) N (1) -C (43) C (1) -C (2) C (2) -C (19) C (4) -C (5) C (7) -C (8) C (8) -C (9) C (10) -C (11) C (13) -C (18) C (14) -C (15) C (16) -C (17) C (19) -C (20) C (20) -C (21) C (22) -C (23) C (25) -C (26) C (26) -C (27) C (28) -C (29) C (31) -C (36) C (32) -C (33) C (34) -C (35) C (37) -C (42) C (38) -C (39) C (40) -C (41) C (44) -C (45) C (46) -C (47) C (48) -C (49)	2.2377(5) 2.4321(6) 2.0014(6) 1.797(2) 1.781(2) 1.819(2) 1.812(2) 1.154(2) 1.410(2) 1.497(2) 1.402(2) 1.397(3) 1.391(3) 1.395(3) 1.395(3) 1.392(3) 1.392(3) 1.392(3) 1.392(3) 1.392(3) 1.394(2) 1.383(3) 1.393(2) 1.381(3) 1.390(3) 1.382(3) 1.382(3) 1.385(3) 1.385(3) 1.398(3) 1.394(3)
C (43) -Cu (1) -P (1) $P (1) -Cu (1) -S (1)$ $P (1) -Cu (1) -S (2)$ $P (2) -S (1) -Cu (1)$ $C (1) -P (1) -C (5)$ $C (5) -P (1) -Cu (1)$ $C (1) -P (2) -C (7)$ $C (7) -P (2) -C (13)$ $C (7) -P (2) -C (13)$ $C (7) -P (2) -S (1)$ $C (5) -P (3) -C (31)$ $C (31) -P (3) -C (37)$ $C (31) -P (3) -S (2)$ $C (43) -N (1) -C (44)$ $C (2) -C (1) -P (1)$ $C (3) -C (2) -C (1)$ $C (1) -C (2) -C (19)$ $C (5) -C (4) -C (3)$ $C (3) -C (4) -C (25)$	143.39(6) 94.97(2) 93.20(2) 103.87(2) 100.08(8) 102.83(8) 111.31(5) 110.24(8) 108.69(8) 108.22(6) 109.19(8) 107.29(8) 108.45(6) 176.4(2) 116.5(1) 122.9(2) 122.0(1) 121.9(2) 115.5(1)	C (43) - Cu (1) - S (1) C (43) - Cu (1) - S (2) S (1) - Cu (1) - S (2) P (3) - S (2) - Cu (1) C (1) - P (1) - C (6) C (1) - P (1) - Cu (1) C (6) - P (1) - Cu (1) C (1) - P (2) - C (13) C (1) - P (2) - S (1) C (13) - P (2) - S (1) C (5) - P (3) - C (37) C (5) - P (3) - S (2) C (37) - P (3) - S (2) C (2) - C (1) - P (2) P (2) - C (1) - P (2) P (2) - C (1) - P (1) C (3) - C (2) - C (19) C (2) - C (3) - C (4) C (5) - C (4) - C (25) C (4) - C (5) - P (3)	109.47(5) 101.51(6) 112.64(2) 102.03(2) 103.58(8) 110.09(5) 125.78(6) 108.29(8) 112.39(6) 108.94(6) 110.47(8) 111.77(6) 109.55(5) 123.6(1) 117.9(1) 114.9(1) 123.7(1) 122.4(2) 124.0(1)

C(4)-C(5)-P(1)
C(8)-C(7)-C(12)
C(12)-C(7)-P(2)
C(10)-C(9)-C(8)
C(10)-C(11)-C(12)
C(18) - C(13) - C(14)
C(14) - C(13) - P(2)
C(16) - C(15) - C(14)
C(18) - C(17) - C(16)
C(20) = C(19) = C(24)
C(24) - C(19) - C(2)
C(22) - C(21) - C(20)
C(22) = C(23) = C(24)
C(26) = C(25) = C(30)
C(20) = C(25) = C(4)
C(26) = C(27) = C(28)
C(28) = C(29) = C(30)
C(36) = C(31) = C(32)
C(32) = C(31) = P(3)
C(32) = C(31) = F(3)
C(32) = C(35) = C(34)
C(34) = C(35) = C(36)
C(42) = C(37) = C(38)
C(38) = C(37) = P(3)
C(38) - C(39) - C(40)
C(40) = C(41) = C(42)
N(1) = C(43) = CU(1)
C(45) - C(44) - N(1)
C(44) - C(45) - C(46)
C(46) - C(45) - C(50)
C(46) - C(47) - C(48)
C(44) - C(49) - C(48)
C(48)-C(49)-C(51)

117.4(1) 118.8(2)	P(3) - C(5) - P(1) C(8) - C(7) - P(2)	116.78(8) 118 8(1)
$122 \ 3(2)$	C(0) = C(1) = C(2)	120.9(2)
119 6(2)	C(11) = C(10) = C(9)	120.9(2) 120.0(2)
120.6(2)	C(11) - C(12) - C(7)	120.0(2)
118.7(2)	C(18) - C(13) - P(2)	116.5(1)
124.7(2)	C(15) - C(14) - C(13)	120.2(2)
120.8(2)	C(15) - C(16) - C(17)	119.7(2)
119.9(2)	C(17) - C(18) - C(13)	120.7(2)
118.6(2)	C(20) - C(19) - C(2)	121.4(2)
119.9(2)	C(19)-C(20)-C(21)	120.5(2)
120.3(2)	C(21)-C(22)-C(23)	119.5(2)
120.3(2)	C(23)-C(24)-C(19)	120.6(2)
118.4(2)	C(26)-C(25)-C(4)	120.2(2)
121.4(2)	C(27)-C(26)-C(25)	120.7(2)
120.6(2)	C(29)-C(28)-C(27)	119.1(2)
120.6(2)	C(29)-C(30)-C(25)	120.6(2)
119.0(2)	C(36)-C(31)-P(3)	124.6(1)
116.4(1)	C(33)-C(32)-C(31)	120.6(2)
120.0(2)	C(35)-C(34)-C(33)	119.8(2)
120.5(2)	C(31)-C(36)-C(35)	120.1(2)
119.0(2)	C(42)-C(37)-P(3)	120.3(1)
120.6(1)	C(39)-C(38)-C(37)	120.5(2)
120.0(2)	C(39)-C(40)-C(41)	120.2(2)
119.8(2)	C(37)-C(42)-C(41)	120.5(2)
170.9(2)	C(45)-C(44)-C(49)	123.7(2)
118.2(2)	C(49) - C(44) - N(1)	118.1(2)
116.7(2)	C(44) - C(45) - C(50)	121.0(2)
122.3(2)	C(47) - C(46) - C(45)	121.1(2)
120.8(2)	C(47)-C(48)-C(49)	120.9(2)
116.9(2)	C(44)-C(49)-C(51)	121.1(2)
122.0(2)		

Compound

Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å)b(Å)c(Å)a(°) $\beta(°)$ $\gamma(°)$ $V(Å^3)$ Z

605

 $\begin{array}{c} C_{47}H_{43}CuNP_3S_2\\ 842.39\\ orange plate\\ 0.22x0.22x0.16\\ orthorhombic\\ P\ 2_1\ 2_1\ 2_1\\ 8.773(5)\\ 12.595(5)\\ 39.454(5)\\ 90.00\\ 90.00\\ 90.00\\ 90.00\\ 4360(3)\\ 4\end{array}$

d(g-cm ⁻³) F(000) μ (cm ⁻¹) Absorption corrections Diffractometer X-ray source λ (Å) Monochromator T (K) Scan mode Maximum θ HKL ranges Reflections measured Unique data Rint Reflections used Criterion Refinement type Hydrogen atoms Parameters refined Reflections / parameter wR2 R1 Flack's parameter Weights a, b GoF difference peak / hole (e Å ⁻³)	1.283 1752 0.740 multi-scan; 0.8542 min, 0.8908 max KappaCCD MoK α 0.71069 graphite 150.0(10) phi and omega scans 27.87 -11 11; -16 16; -51 51 10282 10282 0.0000 9129 I > 2sigma(I) Fsqd mixed 491 18 0.0964 0.0384 -0.004(9) 0.0563; 0.8855 1.016 0.586(0.058) / -0.475(0.058)	
TABLE XX. Bond lengths (A) Cu(1) - C(43) $Cu(1) - S(2)$ $S(1) - P(2)$ $P(1) - C(1)$ $P(1) - C(6)$ $P(2) - C(13)$ $P(3) - C(5)$ $P(3) - C(31)$ $N(1) - C(44)$ $C(2) - C(3)$ $C(3) - C(4)$ $C(4) - C(25)$ $C(7) - C(8)$ $C(9) - C(10)$ $C(11) - C(12)$ $C(13) - C(18)$ $C(15) - C(16)$ $C(17) - C(18)$ $C(19) - C(24)$ $C(21) - C(22)$ $C(23) - C(24)$ $C(21) - C(22)$ $C(23) - C(24)$ $C(25) - C(26)$ $C(27) - C(28)$ $C(29) - C(30)$ $C(31) - C(36)$ $C(33) - C(34)$ $C(35) - C(36)$ $C(37) - C(42)$ $C(39) - C(40)$ $C(41) - C(42)$	and angles (deg) for 605 1.890(3) $Cu(1) - P(1)$ 2.412(1) $Cu(1) - S(1)$ 2.005(1) $S(2) - P(3)$ 1.789(3) $P(1) - C(5)$ 1.829(3) $P(2) - C(1)$ 1.808(3) $P(2) - C(7)$ 1.773(2) $P(3) - C(37)$ 1.818(3) $N(1) - C(43)$ 1.473(4) $C(1) - C(2)$ 1.400(3) $C(2) - C(19)$ 1.401(3) $C(4) - C(5)$ 1.498(3) $C(7) - C(12)$ 1.394(4) $C(8) - C(9)$ 1.380(6) $C(10) - C(11)$ 1.392(4) $C(13) - C(14)$ 1.400(4) $C(14) - C(15)$ 1.361(5) $C(16) - C(17)$ 1.379(4) $C(20) - C(21)$ 1.379(4) $C(20) - C(21)$ 1.387(4) $C(25) - C(30)$ 1.396(4) $C(26) - C(27)$ 1.386(4) $C(28) - C(29)$ 1.393(4) $C(32) - C(33)$ 1.385(4) $C(34) - C(35)$ 1.385(4) $C(34) - C(35)$ 1.380(4) $C(40) - C(41)$ 1.386(4) $C(44) - C(47)$ 1.386(4) $C(44) - C(47)$	2.2280(8) 2.428(1) 1.999(1) 1.806(2) 1.765(3) 1.815(3) 1.815(3) 1.141(4) 1.409(3) 1.502(3) 1.401(3) 1.390(4) 1.395(4) 1.372(6) 1.389(4) 1.386(4) 1.389(4) 1.393(4) 1.393(4) 1.382(4) 1.388(4) 1.388(4) 1.388(4) 1.388(4) 1.382(4) 1.3

C(43)-Cu(1)-P(1)	139.3(1)	C(43)-Cu(1)-S(2)	105.94(8)
P(1)-Cu(1)-S(2)	95.00(3)	C(43)-Cu(1)-S(1)	110.7(1)
P(1)-Cu(1)-S(1)	93.98(4)	S(2)-Cu(1)-S(1)	109.34(3)
P(2)-S(1)-Cu(1)	99.77(4)	P(3)-S(2)-Cu(1)	102.09(3)
C(1) - P(1) - C(5)	100.4(1)	C(1) - P(1) - C(6)	102.8(1)
C(5) - P(1) - C(6)	104.7(1)	C(1) - P(1) - Cu(1)	110.8(1)
C(5) - P(1) - Cu(1)	109.71(8)	C(6) - P(1) - Cu(1)	125.4(1)
C(1) - P(2) - C(13)	108.1(1)	C(1) - P(2) - C(7)	112.4(1)
C(13) - P(2) - C(7)	106.9(1)	C(1) - P(2) - S(1)	112.13(8)
C(13) - P(2) - S(1)	108.7(1)	C(7) = P(2) = S(1)	$108 \ 3(1)$
C(5) - P(3) - C(37)	1090(1)	C(5) - P(3) - C(31)	109.8(1)
C(37) - P(3) - C(31)	103.0(1) 107.9(1)	C(5) - P(3) - S(2)	112 24(8)
C(37) - P(3) - S(2)	109.43(8)	C(31) - P(3) - S(2)	108 3(1)
C(43) - N(1) - C(44)	178 5(3)	C(2) = C(1) = P(2)	125.2(2)
C(2) - C(1) - P(1)	117 2(2)	P(2) = C(1) = P(1)	125.2(2) 115.7(1)
C(2) = C(1) = F(1) C(3) = C(2) = C(1)	127.2(2)	r(2) = C(1) = r(1) C(3) = C(2) = C(19)	113.7(1) 114.4(2)
C(3) = C(2) = C(1)	122.2(2)	C(3) = C(2) = C(13)	125 1(2)
C(1) = C(2) = C(13)	123.3(2)	C(2) = C(3) = C(4)	115 2(2)
C(3) = C(4) = C(3)	122.1(2)	C(3) = C(4) = C(25)	115.2(2)
C(3) = C(4) = C(23)	122.0(2)	C(4) - C(5) - P(3)	125.U(2)
C(4) = C(5) = P(1)	117.8(2)	P(3) = C(5) = P(1)	110.3(1)
C(12) = C(7) = C(8)	119.4(3)	C(12) - C(7) - P(2)	119.2(2)
C(8) = C(7) = P(2)	121.2(2)	C(7) = C(8) = C(9)	119.8(3)
C(10) - C(9) - C(8)	119.9(4)	C(11) - C(10) - C(9)	120.7(3)
C(10) - C(11) - C(12)	119.8(3)	C(7) - C(12) - C(11)	120.3(3)
C(14) - C(13) - C(18)	119.5(3)	C(14) - C(13) - P(2)	123.8(2)
C(18) - C(13) - P(2)	116.7(2)	C(15) - C(14) - C(13)	119.6(3)
C(16) - C(15) - C(14)	121.0(3)	C(15) - C(16) - C(17)	119.9(3)
C(18) - C(17) - C(16)	120.4(3)	C(17)-C(18)-C(13)	119.6(3)
C(20)-C(19)-C(24)	118.5(2)	C(20)-C(19)-C(2)	121.0(2)
C(24)-C(19)-C(2)	120.2(2)	C(19)-C(20)-C(21)	120.3(3)
C(22)-C(21)-C(20)	120.4(3)	C(23)-C(22)-C(21)	120.0(3)
C(22)-C(23)-C(24)	120.2(3)	C(23)-C(24)-C(19)	120.5(3)
C(30)-C(25)-C(26)	117.8(2)	C(30)-C(25)-C(4)	121.9(2)
C(26)-C(25)-C(4)	120.2(2)	C(27)-C(26)-C(25)	121.1(2)
C(26)-C(27)-C(28)	120.3(3)	C(29)-C(28)-C(27)	119.7(2)
C(28)-C(29)-C(30)	119.7(3)	C(25)-C(30)-C(29)	121.4(2)
C(32)-C(31)-C(36)	119.1(2)	C(32)-C(31)-P(3)	116.4(2)
C(36)-C(31)-P(3)	124.5(2)	C(31)-C(32)-C(33)	120.7(3)
C(34)-C(33)-C(32)	119.5(3)	C(35)-C(34)-C(33)	120.1(3)
C(34)-C(35)-C(36)	120.6(3)	C(35)-C(36)-C(31)	120.0(3)
C(38)-C(37)-C(42)	118.6(2)	C(38)-C(37)-P(3)	122.3(2)
C(42)-C(37)-P(3)	119.0(2)	C(39)-C(38)-C(37)	120.1(2)
C(38)-C(39)-C(40)	120.7(2)	C(41)-C(40)-C(39)	119.8(2)
C(40)-C(41)-C(42)	119.6(2)	C(41)-C(42)-C(37)	121.1(2)
N(1)-C(43)-Cu(1)	177.4(3)	N(1)-C(44)-C(47)	106.7(3)
N(1)-C(44)-C(46)	108.1(3)	C(47)-C(44)-C(46)	114.2(5)
N(1)-C(44)-C(45)	107.1(3)	C(47)-C(44)-C(45)	110.8(6)
C(46)-C(44)-C(45)	109.7(5)		

Compound 606 Molecular formula $C_{62}H_{53.50}ClCuP_4S_2 = C_{60}H_{49}CuP_4S_2$, 1/2 CH_2Cl_2 , 1/4 C_6H_{14} 1085.54 Molecular weight Crystal habit light orange cube Crystal dimensions(mm) 0.18x0.18x0.18 triclinic Crystal system P-1 Space group a(Å) 15.7730(10) b(Å) 17.3780(10) c(Å) 20.3450(10) $\alpha(^{\circ})$ 75.4440(10) β(°) 78.7570(10) $\gamma(^{\circ})$ 89.2700(10) $V(Å^3)$ 5290.2(5) Ζ 4 $d(g-cm^{-3})$ 1.363 F(000) 2254 $\mu(cm^{-1})$ 0.704 multi-scan; 0.8838 min, 0.8838 max Absorption corrections Diffractometer KappaCCD X-ray source ΜοΚα λ(Å) 0.71069 Monochromator graphite T (K) 150.0(10) Scan mode phi and omega scans Maximum θ 28.70 -21 21 ; -23 23 ; -27 27 HKL ranges Reflections measured 39941 Unique data 27266 Rint 0.0240 21349 Reflections used Criterion I > 2sigma(I) Refinement type Fsqd Hydrogen atoms mixed Parameters refined 1237 Reflections / parameter 17 wR2 0.1197 R1 0.0412 Weights a, b 0.0565; 1.5237 GoF 1.085 difference peak / hole (e Å⁻³) 1.289(0.069) / -1.276(0.069)

Note: the unit cell contains an hexane molecule on a symetry center. It has at least three different conformations and was accounted for using the Platon SQUEEZE function. The CH_2Cl_2 solvate disorder apparent in its rather large thermal factors could not be resolved.

TABLE XX. Bond lengths (A) and angles (deg) for 606

$C_{11}(1) - P(3)$	2 2223 (5	$C_{11}(1) - P(1)$	2 2311 (5)
$C_{11}(1) = C_{11}(1)$	2.2220(0)	Cu(1) = C(2)	2.2011(6)
Cu(1) = S(1)	2.3340(0	Cu(1) = S(2)	2.3021(0)
Cu(2) - P(8)	2.2235(6	Cu(2) - P(5)	2.2296(5)
Cu(2)-S(3)	2.3640(6	Cu(2)-S(4)	2.3884(5)
S(1)-P(2)	2.0027(7	S(2)-P(4)	2.0031(7)
S(3) - P(6)	2,0029(7	S(4) - P(7)	2.0089(7)
P(1) = C(5)	1,786(2)	P(1) = C(1)	1 798(2)
$\Gamma(1) = C(3)$	1,700(2)	$\Gamma(1) C(1)$	1,790(2)
P(1) = C(6)	1.832(2)	P(2) = C(1)	1.788(2)
P(2) = C(13)	1.814(2)	P(2)-C(7)	1.816(2)
P(3)-C(49)	1.826(2)	P(3)-C(43)	1.830(2)
P(3)-C(55)	1.834(2)	P(4)-C(5)	1.772(2)
P(4)-C(37)	1.815(2)	P(4)-C(31)	1.816(2)
P(5) - C(65)	1 794(2)	P(5) - C(61)	1 796(2)
P(5) = C(66)	1 827(2)	P(6) = C(61)	1 786(2)
F(3) = C(00)	1.027(2)	F(0) = C(01)	1.700(2)
P(6) = C(73)	1.812(2)	P(6) = C(67)	1.817(2)
P(7)-C(65)	1.775(2)	P('/)-C(9'/)	1.812(2)
P(7)-C(91)	1.818(2)	P(8)-C(115)	1.828(2)
P(8)-C(109)	1.831(2)	P(8)-C(103)	1.834(2)
C(1) - C(2)	1.397(3)	C(2) - C(3)	1.415(3)
C(2) - C(19)	1 486(3)	C(3) - C(4)	1 395 (3)
C(2) = C(5)	1,100(0)	C(4) - C(25)	1 = 500(3)
C(4) = C(3)	1,413(3)	C(4) = C(23)	1.300(3)
C(7) - C(12)	1.380(3)	C(7) - C(8)	1.393(3)
C(8)-C(9)	1.385(3)	C(9)-C(10)	1.371(4)
C(10)-C(11)	1.368(4)	C(11)-C(12)	1.394(3)
C(13)-C(18)	1.388(3)	C(13)-C(14)	1.395(3)
C(14) - C(15)	1.383(3)	C(15) - C(16)	1.375(3)
C(16) - C(17)	1 375(4)	C(17) - C(18)	1 390 (3)
C(10) = C(20)	1,3,5,(1) 1,3,0,5,(3)	C(19) = C(24)	1 396(3)
C(19) = C(20)	1.393(3)	C(13) = C(24)	1.390(3)
C(20) – C(21)	1.380(3)	C(21) -C(22)	1.387(3)
C(22)-C(23)	1.387(3)	C(23)-C(24)	1.394(3)
C(25)-C(30)	1.392(3)	C(25)-C(26)	1.394(3)
C(26)-C(27)	1.387(3)	C(27)-C(28)	1.390(4)
C(28) - C(29)	1,387(4)	C(29) - C(30)	1.388(3)
C(31) - C(36)	1 395 (3)	C(31) - C(32)	1 395 (3)
C(32) = C(33)	1 381 (3)	C(33) = C(34)	1 384(1)
C(32) C(33)	1,301(3)	C(35) C(34)	1 200(2)
C(34) = C(33)	1.302(3)	C(33) = C(38)	1.390(3)
C(37) - C(42)	1.388(3)	C(37) - C(38)	1.389(3)
C(38)-C(39)	1.391(4)	C(39)-C(40)	1.382(4)
C(40)-C(41)	1.355(5)	C(41)-C(42)	1.396(3)
C(43)-C(44)	1.390(3)	C(43)-C(48)	1.392(3)
C(44) - C(45)	1.391(3)	C(45) - C(46)	1.375(4)
C(46) - C(47)	1 378(4)	C(47) - C(48)	1 395 (3)
C(10) = C(50)	1 202(2)	C(40) - C(54)	1 200(2)
C(49) = C(50)	1.303(3)	C(43) = C(34)	1.000(0)
C(50) = C(51)	1.381(4)	C(51) = C(52)	1.3/4(4)
C(52)-C(53)	1.365(4)	C(53)-C(54)	1.385(3)
C(55)-C(60)	1.386(3)	C(55)-C(56)	1.394(3)
C(56)-C(57)	1.386(3)	C(57)-C(58)	1.391(3)
C(58)-C(59)	1.379(3)	C(59)-C(60)	1.396(3)
C(61) - C(62)	1.398(3)	C(62) - C(63)	1,416(2)
C(62) = C(79)	1 491 (3)	C(63) = C(64)	1 400(3)
C(G2) = C(F3)	1, 400(2)		1 405 (3)
C(64) = C(65)	1.408(3)	C(64) = C(85)	1.495(2)
C(6/) - C(68)	1.381(3)	C(6/) - C(7/2)	1.403(3)
C(68)-C(69)	1.393(3)	C(69)-C(70)	1.377(3)
C(70)-C(71)	1.379(3)	C(71)-C(72)	1.387(3)
C(73)-C(74)	1.386(3)	C(73)-C(78)	1.392(3)
C(74) - C(75)	1.386(3)	C(75) - C(76)	1.378(4)
C(76) - C(77)	1 376(4)	C(77) - C(78)	1 382(3)
C(79) = C(80)	1 205/21	C(79) = C(94)	1 207 (2)
C(2) $C(0)$	1 202/21	C(7) = C(04)	1 204 (J)
C(OU) = C(DI)	1, 202 (3)	$\cup (01) - \cup (02)$	1.384(4)
C(82)-C(83)	1.382(3)	C(83)-C(84)	1.380(3)
C(85)-C(90)	1.395(3)	C(85)-C(86)	1.397(3)

C (86) -C (87) C (88) -C (89) C (91) -C (92) C (92) -C (93) C (94) -C (95) C (97) -C (98) C (98) -C (99) C (100) -C (101) C (103) -C (104) C (104) -C (105) C (106) -C (107) C (109) -C (110) C (110) -C (111) C (112) -C (113) C (115) -C (116) C (116) -C (117) C (118) -C (119) C (121) -C1 (1)	1.390(3) 1.380(3) 1.393(3) 1.392(3) 1.376(4) 1.389(3) 1.390(3) 1.391(3) 1.396(3) 1.396(3) 1.378(4) 1.385(3) 1.394(3) 1.381(4) 1.384(3) 1.378(4) 1.378(4) 1.378(4) 1.378(4) 1.378(4) 1.378(4) 1.695(5)	C (87) - C (88) C (89) - C (90) C (91) - C (96) C (93) - C (94) C (95) - C (96) C (97) - C (102) C (101) - C (102) C (103) - C (108) C (105) - C (106) C (107) - C (108) C (109) - C (114) C (111) - C (112) C (113) - C (114) C (115) - C (120) C (117) - C (118) C (119) - C (120) C (121) - C1 (2)	1.384(3) 1.394(3) 1.395(3) 1.389(3) 1.394(3) 1.401(3) 1.383(3) 1.384(3) 1.396(3) 1.396(3) 1.396(3) 1.392(3) 1.390(3) 1.397(3) 1.381(3) 1.754(5)
C(121) - C1(1) $P(3) - Cu(1) - P(1)$ $P(1) - Cu(1) - S(1)$ $P(1) - Cu(1) - S(2)$ $P(3) - Cu(2) - P(5)$ $P(5) - Cu(2) - S(3)$ $P(5) - Cu(2) - S(4)$ $P(2) - S(1) - Cu(1)$ $P(6) - S(3) - Cu(2)$ $C(5) - P(1) - C(1)$ $C(1) - P(1) - C(6)$ $C(1) - P(1) - Cu(1)$ $C(1) - P(2) - C(13)$ $C(13) - P(2) - C(7)$ $C(13) - P(2) - C(13)$ $C(43) - P(3) - C(43)$ $C(43) - P(3) - C(43)$ $C(43) - P(3) - Cu(1)$ $C(5) - P(4) - C(37)$ $C(37) - P(4) - C(31)$ $C(37) - P(4) - S(2)$ $C(65) - P(5) - C(61)$ $C(61) - P(5) - C(66)$ $C(61) - P(5) - C(66)$ $C(61) - P(6) - C(73)$ $C(73) - P(6) - C(67)$ $C(73) - P(6) - S(3)$ $C(65) - P(7) - C(91)$ $C(97) - P(7) - S(4)$ $C(115) - P(8) - C(103)$ $C(109) - P(8) - Cu(2)$	1.695(1) 1.695(5) 124.66(2) 95.01(2) 95.33(2) 126.56(2) 95.74(2) 94.71(2) 103.97(2) 102.43(2) 100.3(1) 103.2(1) 103.2(1) 107.7(1) 107.32(7) 106.0(1) 107.32(7) 106.0(1) 109.03(7) 100.5(1) 109.06(7) 100.7(1) 109.06(7) 100.7(1) 109.96(6) 109.1(1) 107.5(1) 107.32(6) 102.0(1) 101.1(1) 117.94(7)	C(121) - C1(2) $P(3) - Cu(1) - S(1)$ $P(3) - Cu(1) - S(2)$ $S(1) - Cu(1) - S(2)$ $P(8) - Cu(2) - S(3)$ $P(8) - Cu(2) - S(4)$ $S(3) - Cu(2) - S(4)$ $P(4) - S(2) - Cu(1)$ $P(7) - S(4) - Cu(2)$ $C(5) - P(1) - Cu(1)$ $C(6) - P(1) - Cu(1)$ $C(6) - P(1) - Cu(1)$ $C(7) - P(2) - S(1)$ $C(7) - P(2) - S(1)$ $C(7) - P(2) - S(1)$ $C(49) - P(3) - C(55)$ $C(49) - P(3) - Cu(1)$ $C(55) - P(4) - C(31)$ $C(5) - P(4) - S(2)$ $C(31) - P(4) - S(2)$ $C(65) - P(5) - Cu(2)$ $C(66) - P(5) - Cu(2)$ $C(61) - P(6) - S(3)$ $C(65) - P(7) - C(91)$ $C(65) - P(7) - S(4)$ $C(115) - P(8) - Cu(2)$ $C(103) - P(8) - Cu(2)$	1.754(5) 1.754(5) 1.754(5) 1.754(5) 10.00(2) 120.71(2) 107.35(2) 110.66(2) 121.19(2) 103.26(2) 100.55(3) 101.51(2) 104.6(1) 110.27(6) 124.67(7) 109.17(8) 112.25(7) 108.28(6) 102.2(1) 116.05(7) 120.02(6) 107.9(1) 113.31(7) 108.93(6) 104.3(1) 110.84(6) 125.21(7) 112.1(1) 112.37(6) 107.65(6) 107.6(1) 115.96(6) 113.03(7)
C(2) - C(1) - P(2) $P(2) - C(1) - P(1)$ $C(1) - C(2) - C(19)$ $C(4) - C(3) - C(2)$ $C(3) - C(4) - C(25)$ $C(4) - C(5) - P(4)$ $P(4) - C(5) - P(1)$ $C(12) - C(7) - P(2)$ $C(9) - C(8) - C(7)$ $C(11) - C(10) - C(9)$	123.9(2) 116.4(1) 122.6(2) 124.5(2) 115.8(2) 123.9(1) 116.0(1) 124.8(2) 119.6(2) 119.8(2)	C(2) - C(1) - P(1) $C(1) - C(2) - C(3)$ $C(3) - C(2) - C(19)$ $C(3) - C(4) - C(5)$ $C(5) - C(4) - C(25)$ $C(4) - C(5) - P(1)$ $C(12) - C(7) - C(8)$ $C(8) - C(7) - P(2)$ $C(10) - C(9) - C(8)$ $C(10) - C(11) - C(12)$	117.6(1) 122.3(2) 114.9(2) 121.7(2) 122.5(2) 117.6(2) 119.5(2) 115.7(2) 120.7(2) 120.6(2)

C(7)-C(12)-C(11)	119.8(2)	C(18)-C(13)-C(14)	119.3(2)
C(18) - C(13) - P(2)	1207(2)	C(14) - C(13) - P(2)	1195(2)
C(10) C(10) I(2)	110 0 (0)	C(11) C(10) T(2)	100 (2)
C(15) - C(14) - C(13)	119.9(2)	C(16) - C(15) - C(14)	120.6(2)
C(15) - C(16) - C(17)	119.8(2)	C(16) - C(17) - C(18)	120.5(2)
a(12) $a(10)$ $a(17)$	110 0 (0)	a(20) $a(10)$ $a(21)$	
C(13) = C(18) = C(17)	119.8(2)	C(20) = C(19) = C(24)	118.5(2)
C(20) - C(19) - C(2)	120.0(2)	C(24) - C(19) - C(2)	121.5(2)
a(21) a(20) a(10)	101 0(0)	a(20) $a(21)$ $a(22)$	1200(2)
C(21) = C(20) = C(19)	$\perp \angle \perp \cdot \angle (\angle)$	C(20) = C(21) = C(22)	120.0(2)
C(21)-C(22)-C(23)	119.8(2)	C(22)-C(23)-C(24)	120.1(2)
C(23) = C(24) = C(19)	1203(2)	C(30) = C(25) = C(26)	118 3(2)
C(25) = C(24) = C(19)	120.3(2)	C(30) = C(23) = C(20)	110.3(2)
C(30)-C(25)-C(4)	120.5(2)	C(26)-C(25)-C(4)	121.1(2)
C(27) - C(26) - C(25)	121 1(2)	C(26) - C(27) - C(28)	1199(2)
	110 5 (0)		100 2(0)
C(29) - C(28) - C(27)	119.5(2)	C (28) – C (29) – C (30)	120.3(2)
C(29)-C(30)-C(25)	120.8(2)	C(36)-C(31)-C(32)	119.1(2)
C(26) = C(21) = D(4)	122 6(2)	C(22) = C(21) = D(4)	117 1(2)
C(30) = C(31) = F(4)	123.0(2)	C(32) = C(31) = F(4)	11/.1(2)
C(33)-C(32)-C(31)	120.3(2)	C(32)-C(33)-C(34)	120.5(2)
C(35) - C(34) - C(33)	1198(2)	C(34) - C(35) - C(36)	120 2(2)
	119.0(2)	C(34) C(35) C(30)	120.2(2)
C(35) - C(36) - C(31)	120.2(2)	C(42) - C(37) - C(38)	119.1(2)
C(42) - C(37) - P(4)	120.7(2)	C(38)-C(37)-P(4)	120.2(2)
	100 1 (2)		100 0 (2)
C(37) = C(30) = C(39)	12U.1(3)	C(40) = C(39) = C(38)	120.0(3)
C(41)-C(40)-C(39)	120.2(3)	C(40)-C(41)-C(42)	120.6(3)
C(37) - C(42) - C(41)	119,9(3)	C(44) - C(43) - C(48)	119.3(2)
O(AA) O(A2) D(2)	117 0/01	C(10) = C(10)	100 7 (0)
C(44) - C(43) - P(3)	$\perp \perp / \cdot \cup (\angle)$	C(48) - C(43) - P(3)	123./(2)
C(43)-C(44)-C(45)	120.4(2)	C(46)-C(45)-C(44)	120.1(3)
C(45) = C(46) = C(47)	1200(2)	C(A6) = C(A7) = C(A8)	120 5(2)
C(43) = C(40) = C(47)	120.0(2)	C(40) = C(47) = C(40)	120.3(2)
C(43)-C(48)-C(47)	119.6(2)	C(50)-C(49)-C(54)	117.6(2)
C(50) - C(49) - P(3)	118.4(2)	C(54) - C(49) - P(3)	123.9(2)
C(E1) = C(E0) = C(40)	101 1(0)	C(E1) = C(E1)	100 4 (2)
C(51) = C(50) = C(49)	$\perp \angle \perp \cdot \perp (\angle)$	C(52) = C(51) = C(50)	120.4(3)
C(53)-C(52)-C(51)	119.3(3)	C(52)-C(53)-C(54)	120.5(2)
C(53) - C(54) - C(49)	121 0(2)	C(60) = C(55) = C(56)	119 0(2)
	110 0 (2)	e(00) e(33) e(30)	100 0 (2)
C(60) - C(55) - P(3)	11/.0(2)	C(56) - C(55) - P(3)	123.9(2)
C(57)-C(56)-C(55)	120.3(2)	C(56)-C(57)-C(58)	120.1(2)
C(50) = C(50) = C(57)	120 1 (2)	C(59) - C(59) - C(60)	110 7 (2)
C(39) = C(38) = C(37)	$\perp \angle \cup \cdot \perp (\angle)$	C(38) - C(39) - C(80)	119.7(2)
C(55)-C(60)-C(59)	120.8(2)	C(62)-C(61)-P(6)	123.7(2)
C(62) - C(61) - P(5)	117 4(1)	P(6) - C(61) - P(5)	1167(1)
	100 0(0)		100.7(1)
C(61) - C(62) - C(63)	⊥∠∠.∠(∠)	C(61) - C(62) - C(79)	122.2(2)
C(63)-C(62)-C(79)	115.5(2)	C(64)-C(63)-C(62)	124.5(2)
C(62) = C(64) = C(65)	122 1(2)	C(62) = C(64) = C(95)	1155(2)
C(03) = C(04) = C(03)	$\perp \angle \angle \cdot \perp (\angle)$	C(03) = C(04) = C(03)	113.3(2)
C(65)-C(64)-C(85)	122.4(2)	C(64)-C(65)-P(7)	123.8(1)
C(64) - C(65) - P(5)	117.2(1)	P(7) - C(65) - P(5)	116.2(1)
	1104(2)		101 5(1)
C(68) = C(67) = C(72)	119.4(2)	C(68) = C(67) = P(6)	121.5(1)
C(72)-C(67)-P(6)	118.9(2)	С(67)-С(68)-С(69)	120.4(2)
C(70) = C(69) = C(68)	1199(2)	C(69) = C(70) = C(71)	120 2(2)
	1 2 2 5 (2)		120.2(2)
C(70) - C(71) - C(72)	120.5(2)	C(71) - C(72) - C(67)	119.6(2)
C(74) - C(73) - C(78)	119.0(2)	C(74) - C(73) - P(6)	125.1(2)
C(78) = C(73) = P(6)	115 0(2)	C(73) = C(74) = C(75)	120 1(2)
C(70) = C(73) = F(0)	113.9(2)	C(73) = C(74) = C(73)	120.4(2)
C(76)-C(75)-C(74)	120.0(2)	C(77)-C(76)-C(75)	120.0(2)
C(76) - C(77) - C(78)	1204(2)	C(77) - C(78) - C(73)	120 2(2)
	110 2 (2)		101 2(0)
C(80) = C(79) = C(84)	118.3(2)	C(80) = C(79) = C(62)	121.3(2)
C(84)-C(79)-C(62)	120.4(2)	C(81)-C(80)-C(79)	120.7(2)
C(80) = C(81) = C(82)	1202(2)	C(83) = C(82) = C(81)	1197(2)
	120.2(2)		119.7(2)
C(84)-C(83)-C(82)	120.3(2)	C(83)-C(84)-C(79)	120.7(2)
C(90) - C(85) - C(86)	118.4(2)	C(90) - C(85) - C(64)	121.1(2)
C(96) C(95) C(64)	120 = (2)	C(07) $C(06)$ $C(05)$	1200(2)
C(00) = C(00) = C(04)	120.0(Z)	C(07) = C(00) = C(03)	120.9(2)
C(88)-C(87)-C(86)	119.9(2)	C(89)-C(88)-C(87)	120.0(2)
C(88) - C(89) - C(90)	120.3(2)	C(89) - C(90) - C(85)	120.5(2)
		C(02) = C(01) = C(22)	110 - 11
C(37) - C(31) - C(30)	⊥⊥9.J(Z)	C(92) - C(91) - P(7)	110.5(l)
C(96)-C(91)-P(7)	123.9(2)	C(93)-C(92)-C(91)	120.5(2)
C(94) - C(93) - C(92)	119 6(2)	C(95) - C(94) - C(93)	120 2121
	100 4 (2)	C(JJ) C(JT) C(JJ)	110 0 (2)
C(94)-C(95)-C(96)	120.4(2)	C(95)-C(96)-C(91)	119.8(2)
C(98)-C(97)-C(102)	118.8(2)	C(98)-C(97)-P(7)	121.3(2)
C(100) C(07) D(7)	110 4 (0)		120 4 (2)
C(102) = C(97) = P(7)	⊥⊥୬.4(∠)	C(37) = C(30) = C(33)	⊥∠∪.4(Z)

C(100)-C(99)-C(98)	120.3(2)	C(99)-C(100)-C(101)	119.9(2)
C(102)-C(101)-C(100)	119.8(2)	C(101)-C(102)-C(97)	120.7(2)
C(104)-C(103)-C(108)	119.0(2)	C(104)-C(103)-P(8)	124.4(2)
C(108)-C(103)-P(8)	116.6(2)	C(103)-C(104)-C(105)	120.3(2)
C(106)-C(105)-C(104)	120.4(3)	C(105)-C(106)-C(107)	120.1(2)
C(106)-C(107)-C(108)	120.2(3)	C(103)-C(108)-C(107)	119.9(3)
C(110)-C(109)-C(114)	118.7(2)	C(110)-C(109)-P(8)	117.3(2)
C(114)-C(109)-P(8)	124.0(2)	C(109)-C(110)-C(111)	121.0(2)
C(112)-C(111)-C(110)	119.6(2)	C(111)-C(112)-C(113)	120.4(2)
C(112)-C(113)-C(114)	120.1(2)	C(113)-C(114)-C(109)	120.3(2)
C(116)-C(115)-C(120)	118.8(2)	C(116)-C(115)-P(8)	118.2(2)
C(120)-C(115)-P(8)	123.0(2)	C(117)-C(116)-C(115)	120.6(2)
C(118)-C(117)-C(116)	119.9(2)	C(119)-C(118)-C(117)	120.0(2)
C(118)-C(119)-C(120)	120.3(2)	C(119)-C(120)-C(115)	120.3(2)
Cl	(1)-C(121)-Cl(2)	115.5(2)	

115.5(2)

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) $\alpha(^{\circ})$ β(°) γ(°) $V(Å^3)$ Ζ $d(g-cm^{-3})$ F(000) $\mu(\text{cm}^{-1})$ Absorption corrections Diffractometer X-ray source λ(Å) Monochromator T (K) Scan mode Maximum θ HKL ranges Reflections measured Unique data Rint Reflections used

611 $C_{62}H_{54}CuN_4P_3S_2$ 1075.66 orange cube 0.18x0.18x0.18 monoclinic Cm 15.4940(10) 17.1260(10) 11.6850(10) 90.00 121.4650(10) 90.00 2644.7(3) 2 1.351 1120 0.628 multi-scan; 0.8954 min, 0.8954 max KappaCCD ΜοΚα 0.71069 graphite 150.0(10) phi and omega scans 30.04 -21 21 ; -24 21 ; -16 16 6931 6930 0.0040 6675

Criterion Refinement type Hydrogen atoms Parameters refined Reflections / parameter wR2 R1 Flack's parameter Weights a, b GoF difference peak / hole (e Å ⁻³)	I > 2sigma(I) Fsqd mixed 340 19 0.0986 0.0386 0.461(10) 0.0405 ; 4.5862 1.032 0.552(0.060) / -1.0	060(0.060)	
Table 3. Bond lengths (A)	and angles (d	leg) for 611	
$\begin{array}{c} Cu(1) - N(1) \\ Cu(1) - S(1) \# 2 \\ S(1) - P(2) \\ P(1) - C(1) \# 2 \\ P(2) - C(1) \\ P(2) - C(5) \\ C(2) - C(3) \\ C(3) - C(2) \# 2 \\ C(5) - C(10) \\ C(7) - C(8) \\ C(9) - C(10) \\ C(11) - C(12) \\ C(13) - C(14) \\ C(15) - C(16) \\ C(17) - C(18) \\ C(19) - C(20) \\ C(21) - C(22) \\ N(1) - C(23) \\ C(24) - C(25) \\ N(2) - C(30) \\ C(26) - C(27) \\ C(28) - C(29) \\ N(3) - C(32) \# 4 \\ C(32) - C(33) \\ N(4) - N(4) \# 2 \\ C(35) - C(35) \# 2 \end{array}$	$\begin{array}{c} 2.026(3)\\ 2.3621(6\\ 2.0072(8\\ 1.797(2)\\ 1.776(2)\\ 1.822(2)\\ 1.413(3)\\ 1.413(3)\\ 1.399(3)\\ 1.399(3)\\ 1.395(4)\\ 1.394(3)\\ 1.398(3)\\ 1.398(3)\\ 1.389(4)\\ 1.397(3)\\ 1.389(4)\\ 1.389(4)\\ 1.389(4)\\ 1.389(4)\\ 1.357(5)\\ 1.389(4)\\ 1.357(5)\\ 1.354(7)\\ 1.402(9)\\ 1.292(8)\\ 1.349(5)\\ 1.349(5)\\ 1.349(5)\\ 1.3788\\ 1.329(6)\\ 1.372(7)\end{array}$	Cu(1)-P(1) Cu(1)-S(1) P(1)-C(1) P(1)-C(4) P(2)-C(11) C(1)-C(2) C(2)-C(17) C(5)-C(6) C(6)-C(7) C(8)-C(9) C(11)-C(16) C(12)-C(13) C(14)-C(15) C(17)-C(22) C(18)-C(19) C(20)-C(21) N(1)-C(23)#2 C(23)-C(24) C(25)-C(24)#2 N(2)-C(26) C(27)-C(28) C(29)-C(30) N(3)-N(3)#2 C(33)-C(36) C(35)-C(36)	$\begin{array}{c} 2.2088(8)\\ 2.3621(6)\\ 1.797(2)\\ 1.835(3)\\ 1.812(2)\\ 1.403(3)\\ 1.496(3)\\ 1.397(3)\\ 1.391(4)\\ 1.370(4)\\ 1.385(4)\\ 1.385(4)\\ 1.385(5)\\ 1.392(4)\\ 1.385(5)\\ 1.392(4)\\ 1.375(4)\\ 1.381(4)\\ 1.381(4)\\ 1.357(5)\\ 1.388(8)\\ 1.294(8)\\ 1.362(8)\\ 1.378(8)\\ 1.349(5)\\ 1.331(6)\\ 1.362(4)\\ 1.377(5)\\ \end{array}$
N(1)-Cu(1)-P(1)P(1)-Cu(1)-S(1)#2P(1)-Cu(1)-S(1)P(2)-S(1)-Cu(1)C(1)-P(1)-Cu(1)C(1)-P(1)-Cu(1)C(1)-P(2)-C(5)C(1)-P(2)-S(1)C(5)-P(2)-S(1)C(5)-P(2)-S(1)C(2)-C(1)-P(1)C(1)-C(2)-C(3)C(3)-C(2)-C(17)C(6)-C(5)-P(2)C(6)-C(5)-P(2)C(6)-C(7)-C(8)C(8)-C(9)-C(10)C(16)-C(11)-P(2)C(16)-C(11)-P(2)C(12)-C(11)-P(2)C(14)-C(13)-C(12)C(14)-C(15)-C(16)C(22)-C(17)-C(18)C(18)-C(17)-C(2)C(20)-C(19)-C(18)C(20)-C(21)-C(22)C(23)#2-N(1)-C(23)	124.5(1) 98.94(2) 94.31(3) 102.6(1) 106.59(7) 133.1(1) 110.4(1) 112.61(8) 106.45(8) 116.9(2) 121.5(2) 116.4(2) 119.1(2) 121.7(2) 119.9(3) 120.7(2) 119.6(2) 117.8(2) 120.8(3) 120.9(2) 120.9(2) 120.9(2) 120.9(2) 120.5(3) 116.9(4)	$\begin{split} & N(1) - Cu(1) - S(1) \# 2 \\ & N(1) - Cu(1) - S(1) \\ & S(1) \# 2 - Cu(1) - S(1) \\ & C(1) - P(1) - C(1) \# 2 \\ & C(1) \# 2 - P(1) - C(4) \\ & C(1) \# 2 - P(1) - Cu(1) \\ & C(1) - P(2) - C(1) \\ & C(1) - P(2) - C(1) \\ & C(1) - P(2) - C(5) \\ & C(11) - P(2) - S(1) \\ & C(2) - C(1) - P(2) \\ & P(2) - C(1) - P(2) \\ & P(2) - C(1) - P(1) \\ & C(1) - C(2) - C(17) \\ & C(2) \# 2 - C(3) - C(2) \\ & C(6) - C(5) - P(2) \\ & C(7) - C(6) - C(5) \\ & C(9) - C(8) - C(7) \\ & C(9) - C(10) - C(5) \\ & C(10) - C(1) - P(2) \\ & C(13) - C(12) - C(11) \\ & C(13) - C(12) - C(11) \\ & C(13) - C(14) - C(15) \\ & C(11) - C(16) - C(15) \\ & C(22) - C(17) - C(2) \\ & C(19) - C(18) - C(17) \\ & C(21) - C(20) - C(19) \\ & C(21) - C(22) - C(17) \\ & C(23) \# 2 - N(1) - Cu(1) \end{split}$	114.74(5) $114.74(5)$ $101.35(3)$ $101.5(1)$ $102.6(1)$ $106.59(7)$ $112.7(1)$ $107.2(1)$ $107.13(8)$ $130.2(2)$ $112.2(1)$ $122.1(2)$ $122.1(2)$ $126.2(3)$ $119.1(2)$ $120.3(3)$ $120.1(2)$ $122.4(2)$ $119.4(3)$ $119.8(3)$ $120.4(3)$ $121.0(2)$ $120.3(3)$ $119.3(3)$ $121.1(2)$ $120.8(2)$

613

1.080

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) $\alpha(^{\circ})$ β(°) $\gamma(^{\circ})$ $V(Å^3)$ Ζ $d(g-cm^{-3})$ F(000) $\mu(cm^{-1})$ Absorption corrections Diffractometer X-ray source λ(Å) Monochromator T (K) Scan mode Maximum θ HKL ranges Reflections measured Unique data Rint Reflections used Criterion Refinement type Hydrogen atoms Parameters refined Reflections / parameter wR2 R1 Weights a, b GoF

 $C_{84}H_{68}Au_2P_6S_4$ 1870.30 redish orange plate 0.14x0.14x0.10 monoclinic C2/c 13.6310(10) 19.5090(10) 28.8930(10) 90.00 91.8680(10) 90.00 7679.4(7) 4 1.618 3704 4.165 multi-scan; 0.5932 min, 0.6808 max KappaCCD ΜοΚα 0.71073 graphite 150.0(1)phi and omega scans 30.03 -19 19 ; -27 25 ; -40 40 19109 11049 0.0305 8163 $I > 2\sigma I$) Fsqd mixed 434 18 0.1038 0.0346 0.0520; 0.0000

difference peak / hole (e Å⁻³)

1.672(0.140) / -2.692(0.140)

Table 5. Bolly tellyclis (A) and angles (deg) for 0	Table	3.	Bond	lengths	(A)	and	angles	(deq)	for	61
---	-------	----	------	---------	-----	-----	--------	-------	-----	----

Au(1)-P(1)#2 Au(1)-Au(1)#2 S(4)-P(3) P(1)-C(5) P(1)-Au(1)#2 P(2)-C(13) P(3)-C(5) P(3)-C(5) P(3)-C(31) C(2)-C(3) C(3)-C(4) C(4)-C(19) C(7)-C(8) C(9)-C(10) C(11)-C(12) C(13)-C(14) C(15)-C(16) C(17)-C(18) C(19)-C(20) C(21)-C(22) C(23)-C(24) C(25)-C(26) C(27)-C(28) C(29)-C(30) C(31)-C(36) C(37)-C(42) C(39)-C(40) C(41)-C(42)	$\begin{array}{c} 2.2691(8\\ 3.0479(3\\ 1.967(1)\\ 1.829(3)\\ 2.2690(8\\ 1.810(3)\\ 1.799(3)\\ 1.829(3)\\ 1.369(4)\\ 1.441(4)\\ 1.490(4)\\ 1.383(5)\\ 1.369(5)\\ 1.375(4)\\ 1.399(5)\\ 1.375(4)\\ 1.399(5)\\ 1.384(5)\\ 1.400(4)\\ 1.382(5)\\ 1.407(5)\\ 1.412(4)\\ 1.392(5)\\ 1.393(5)\\ 1.390(4)\\ 1.371(6)\\ 1.378(6)\\ 1.376(5)\\ \end{array}$	Au(1)-S(1) S(1)-P(2) P(1)-C(1) P(1)-C(6) P(2)-C(1) P(2)-C(7) P(3)-C(25) C(1)-C(2) C(2)-C(37) C(4)-C(5) C(7)-C(12) C(8)-C(9) C(10)-C(11) C(13)-C(18) C(14)-C(15) C(16)-C(17) C(19)-C(24) C(20)-C(21) C(22)-C(23) C(25)-C(30) C(26)-C(27) C(28)-C(29) C(31)-C(32) C(32)-C(33) C(34)-C(35) C(37)-C(38) C(38)-C(39) C(40)-C(41)	2.3352(8) $2.037(1)$ $1.759(3)$ $1.837(3)$ $1.746(3)$ $1.819(3)$ $1.806(3)$ $1.431(4)$ $1.501(4)$ $1.377(4)$ $1.382(4)$ $1.370(5)$ $1.386(5)$ $1.390(4)$ $1.390(5)$ $1.396(5)$ $1.398(5)$ $1.372(4)$ $1.381(5)$ $1.384(5)$ $1.384(5)$ $1.390(5)$ $1.390(5)$ $1.392(5)$ $1.392(6)$
P(1) #2-Au(1)-S(1) S(1)-Au(1)-Au(1)#2 C(1)-P(1)-C(5) C(5)-P(1)-Au(1)#2 C(1)-P(2)-C(13) C(13)-P(2)-C(7) C(13)-P(2)-S(1) C(5)-P(3)-C(25) C(25)-P(3)-C(25) C(25)-P(3)-C(31) C(2)-C(1)-P(2) P(2)-C(1)-P(1) C(3)-C(2)-C(37) C(2)-C(3)-C(4) C(5)-C(4)-C(19) C(4)-C(5)-P(3) P(3)-C(5)-P(1) C(12)-C(7)-P(2) C(9)-C(8)-C(7) C(9)-C(10)-C(11) C(11)-C(12)-C(7) C(18)-C(13)-P(2) C(15)-C(14)-C(13) C(15)-C(14)-C(13) C(15)-C(16)-C(17) C(17)-C(18)-C(13) C(24)-C(19)-C(4) C(21)-C(20)-C(19) C(23)-C(22)-C(21) C(19)-C(24)-C(23) C(30)-C(25)-P(3) C(27)-C(26)-C(25) C(29)-C(30)-C(25) C(29)-C(30)-C(25) C(32)-C(31)-P(3)	173.87(3) 101.89(2) 102.6(2) 104.5(1) 114.1(1) 110.4(2) 102.2(2) 109.6(1) 113.3(2) 104.5(2) 109.3(1) 124.8(2) 121.5(2) 117.5(3) 126.4(3) 124.6(3) 131.0(2) 113.7(2) 119.1(3) 120.3(3) 119.4(3) 120.7(3) 122.1(2) 120.4(3) 121.1(3) 121.7(3) 121.1(3) 121.1(3) 122.8(3) 120.7(3) 122.8(3) 120.7(3) 122.8(3) 120.7(3) 120.7(3) 121.1(3) 121.1(3) 121.2(3) 120.2(3)	$\begin{array}{c} P(1) \# 2 - Au(1) - Au(1) \\ P(2) - S(1) - Au(1) \\ C(1) - P(1) - C(6) \\ C(1) - P(1) - Au(1) \# 2 \\ C(6) - P(1) - Au(1) \# 2 \\ C(1) - P(2) - C(7) \\ C(1) - P(2) - S(1) \\ C(7) - P(2) - S(1) \\ C(5) - P(3) - C(31) \\ C(5) - P(3) - S(4) \\ C(31) - P(3) - S(4) \\ C(3) - C(2) - C(1) \\ C(1) - C(2) - C(37) \\ C(5) - C(4) - C(3) \\ C(3) - C(4) - C(19) \\ C(1) - C(2) - C(37) \\ C(5) - C(4) - C(19) \\ C(4) - C(5) - P(1) \\ C(12) - C(7) - C(8) \\ C(8) - C(7) - P(2) \\ C(10) - C(9) - C(8) \\ C(8) - C(7) - P(2) \\ C(10) - C(9) - C(8) \\ C(12) - C(11) - C(10) \\ C(18) - C(13) - C(14) \\ C(14) - C(13) - P(2) \\ C(16) - C(15) - C(14) \\ C(18) - C(17) - C(16) \\ C(24) - C(19) - C(20) \\ C(20) - C(21) - C(22) \\ C(22) - C(23) - C(24) \\ C(30) - C(25) - P(3) \\ C(26) - C(27) - C(28) \\ C(28) - C(29) - C(30) \\ C(32) - C(31) - P(3) \\ \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

C(31) - C(32) - C(33)	119.8(4)	C(34) - C(33) - C(32)	120.5(4)
C(33)-C(34)-C(35)	120.4(4)	C(34)-C(35)-C(36)	119.4(4)
C(35)-C(36)-C(31)	120.3(3)	C(38)-C(37)-C(42)	118.6(3)
C(38) - C(37) - C(2)	119.4(3)	C(42) - C(37) - C(2)	121.8(3)
C(37) - C(38) - C(39)	120.3(3)	C(40)-C(39)-C(38)	120.5(3)
C(39)-C(40)-C(41)	119.4(4)	C(42)-C(41)-C(40)	120.3(4)
C(41)-C(42)-C(37)	120.9(4)		

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) $\alpha(^{\circ})$ β(°) $\gamma(^{\circ})$ $V(Å^3)$ Ζ $d(g-cm^{-3})$ F(000) $\mu(cm^{-1})$ Absorption corrections Diffractometer X-ray source λ(Å) Monochromator T (K) Scan mode Maximum θ HKL ranges Reflections measured Unique data Rint Reflections used Criterion Refinement type Hydrogen atoms Parameters refined Reflections / parameter wR2 R1 Weights a, b GoF

difference peak / hole (e Å⁻³)

614 $C_{60}H_{49}AuP_4S_2$ 1154.96 orange red plate 0.16x0.10x0.06 Triclinic P-1 12.595(5) 13.589(5) 17.267(5) 70.440(5) 68.800(5) 70.900(5) 2523.8(15) 2 1.520 1160 3.164 Multi-scan; 0.6315 min, 0.8329 max KappaCCD ΜοΚα 0.71069 graphite 150.0(10) phi 27.48 -16 16 ; -17 17 ; -22 22 16814 11524 0.0367 8806 I > 2sigma(I) Fsqd mixed 605 14 0.0811 0.0401 0.044; 0.0000 1.005

2.007(0.129) / -1.079(0.129)

Au $(1) - P(4)$ Au $(1) - S(1)$ S $(2) - P(3)$ P $(1) - C(1)$ P $(2) - C(1)$ P $(2) - C(7)$ P $(3) - C(37)$ P $(4) - C(49)$ P $(4) - C(55)$ C $(2) - C(3)$ C $(3) - C(4)$ C $(4) - C(25)$ C $(7) - C(8)$ C $(9) - C(10)$ C $(11) - C(12)$ C $(13) - C(14)$ C $(15) - C(16)$ C $(17) - C(18)$ C $(19) - C(24)$ C $(21) - C(22)$ C $(23) - C(24)$ C $(25) - C(30)$ C $(27) - C(28)$ C $(29) - C(30)$ C $(31) - C(36)$ C $(31) - C(36)$ C $(37) - C(38)$ C $(39) - C(40)$ C $(41) - C(42)$ C $(43) - C(48)$ C $(45) - C(46)$ C $(47) - C(48)$ C $(49) - C(54)$ C $(51) - C(52)$ C $(53) - C(54)$ C $(55) - C(60)$	2.2862(7) 2.7903(6) 1.9709(8) 1.799(2) 1.787(2) 1.825(2) 1.825(3) 1.425(3) 1.425(3) 1.402(3) 1.498(3) 1.402(3) 1.498(3) 1.377(4) 1.387(3) 1.391(3) 1.371(4) 1.382(4) 1.389(3) 1.369(4) 1.382(4) 1.395(3) 1.386(4) 1.389(3) 1.378(4) 1.386(4) 1.381(4) 1.373(4) 1.383(4) 1.383(4) 1.393(4)	Au $(1) - P(1)$ S $(1) - P(2)$ P $(1) - C(5)$ P $(1) - C(6)$ P $(2) - C(13)$ P $(3) - C(5)$ P $(3) - C(31)$ P $(4) - C(43)$ C $(1) - C(2)$ C $(2) - C(19)$ C $(4) - C(5)$ C $(7) - C(12)$ C $(8) - C(9)$ C $(10) - C(11)$ C $(13) - C(18)$ C $(14) - C(15)$ C $(16) - C(17)$ C $(19) - C(20)$ C $(20) - C(21)$ C $(22) - C(23)$ C $(22) - C(23)$ C $(25) - C(26)$ C $(26) - C(27)$ C $(28) - C(29)$ C $(31) - C(32)$ C $(32) - C(33)$ C $(34) - C(35)$ C $(37) - C(42)$ C $(38) - C(39)$ C $(40) - C(41)$ C $(44) - C(45)$ C $(46) - C(47)$ C $(49) - C(50)$ C $(50) - C(51)$ C $(55) - C(56)$ C $(56) - C(57)$	2.3080(6) 1.983(1) 1.776(2) 1.822(3) 1.810(2) 1.771(3) 1.838(2) 1.821(3) 1.400(3) 1.405(3) 1.404(3) 1.386(4) 1.387(4) 1.381(4) 1.379(3) 1.382(4) 1.374(4) 1.381(4) 1.371(4) 1.388(3) 1.376(4) 1.387(3) 1.376(4) 1.381(3) 1.379(4) 1.381(3) 1.379(4) 1.381(4) 1.381(4) 1.381(4) 1.381(4) 1.381(4) 1.381(4) 1.381(4) 1.381(4) 1.381(4) 1.381(4) 1.381(4) 1.384(4) 1.384(4) 1.373(4) 1.390(4) 1.383(4)
C (57) –C (58) C (59) –C (60)	1.381(5) 1.378(4)	C (58) –C (59)	1.382(4)
P(4) -Au(1) -P(1) $P(1) -Au(1) -S(1)$ $C(5) -P(1) -C(1)$ $C(1) -P(1) -C(6)$ $C(1) -P(1) -Au(1)$ $C(1) -P(2) -C(13)$ $C(13) -P(2) -C(7)$ $C(13) -P(2) -S(1)$ $C(5) -P(3) -C(37)$ $C(37) -P(3) -C(31)$ $C(37) -P(3) -S(2)$ $C(49) -P(4) -C(43)$ $C(43) -P(4) -C(55)$ $C(43) -P(4) -Au(1)$ $C(2) -C(1) -P(2)$ $P(2) -C(1) -P(1)$ $C(1) -C(2) -C(19)$ $C(4) -C(3) -C(2)$	162.93(2) 87.56(2) 102.3(1) 104.8(1) 112.31(8) 113.0(1) 105.8(1) 107.7(1) 107.6(1) 107.6(1) 101.0(1) 110.2(1) 103.7(1) 113.83(8) 130.4(2) 113.9(1) 123.8(2) 126.1(2)	P (4) -Au (1) -S (1) $P (2) -S (1) -Au (1)$ $C (5) -P (1) -C (6)$ $C (5) -P (1) -Au (1)$ $C (6) -P (1) -Au (1)$ $C (1) -P (2) -C (7)$ $C (1) -P (2) -S (1)$ $C (7) -P (2) -S (1)$ $C (5) -P (3) -C (31)$ $C (5) -P (3) -S (2)$ $C (31) -P (3) -S (2)$ $C (49) -P (4) -C (55)$ $C (49) -P (4) -Au (1)$ $C (55) -P (4) -Au (1)$ $C (55) -P (4) -Au (1)$ $C (2) -C (1) -P (1)$ $C (1) -C (2) -C (3)$ $C (3) -C (2) -C (19)$ $C (3) -C (4) -C (5)$	108.90(2) 90.86(3) 104.1(1) 118.7(1) 113.1(1) 107.6(1) 113.1(1) 109.3(1) 107.0(1) 117.87(8) 111.74(8) 103.3(1) 115.6(1) 111.9(1) 115.6(2) 121.0(2) 115.2(2) 122.4(2)

TABLE XX. Bond lengths (A) and angles (deg) for $614\,$

C(3)-C(4)-C(25)	115.6(2)	C(5)-C(4)-C(25)	121.9(2)
C(4)-C(5)-P(3)	127.4(2)	C(4) - C(5) - P(1)	112.9(2)
P(3)-C(5)-P(1)	119.5(1)	C(12)-C(7)-C(8)	118.9(2)
C(12)-C(7)-P(2)	121.9(2)	C(8)-C(7)-P(2)	119.2(2)
C(9)-C(8)-C(7)	119.8(3)	C(10)-C(9)-C(8)	120.6(2)
C(9)-C(10)-C(11)	119.9(2)	C(10)-C(11)-C(12)	120.0(3)
C(7)-C(12)-C(11)	120.7(2)	C(18)-C(13)-C(14)	118.8(2)
C(18)-C(13)-P(2)	120.0(2)	C(14)-C(13)-P(2)	121.0(2)
C(15)-C(14)-C(13)	120.2(2)	C(16)-C(15)-C(14)	120.4(2)
C(15)-C(16)-C(17)	119.6(2)	C(16)-C(17)-C(18)	120.5(2)
C(13)-C(18)-C(17)	120.4(2)	C(20)-C(19)-C(24)	117.8(2)
C(20)-C(19)-C(2)	122.6(2)	C(24)-C(19)-C(2)	119.6(2)
C(19)-C(20)-C(21)	120.6(3)	C(22)-C(21)-C(20)	120.5(3)
C(21)-C(22)-C(23)	119.8(3)	C(22)-C(23)-C(24)	119.8(3)
C(23)-C(24)-C(19)	121.5(3)	C(26) - C(25) - C(30)	118.4(2)
C(26) - C(25) - C(4)	121.8(2)	C(30) - C(25) - C(4)	119.5(2)
C(27) -C(26) -C(25)	120.9(2)	C(28)-C(27)-C(26)	120.0(2)
C(29)-C(28)-C(27)	119.8(2)	C(28) - C(29) - C(30)	120.3(2)
C(29) - C(30) - C(25)	120.6(2)	C(32) - C(31) - C(36)	119.2(2)
C(32) - C(31) - P(3)	120.7(2)	C(36) - C(31) - P(3)	120.1(2)
C(33) - C(32) - C(31)	120.9(2)	C(34) - C(33) - C(32)	119.9(3)
C(33) - C(34) - C(35)	119.6(2)	C(34) - C(35) - C(36)	120.7(2)
C(35) - C(36) - C(31)	119.7(2)	C(42) - C(37) - C(38)	118.9(2)
C(42) - C(37) - P(3)	119.7(2)	C(38) - C(37) - P(3)	121.1(2)
C(39) - C(38) - C(37)	119.9(3)	C(40) - C(39) - C(38)	120.7(3)
C(39) - C(40) - C(41)	119.5(3)	C(40) - C(41) - C(42)	120.7(3)
C(41) - C(42) - C(37)	120.2(2)	C(44) - C(43) - C(48)	119.4(2)
C(44) - C(43) - P(4)	117.4(2)	C(48) - C(43) - P(4)	123.1(2)
C(43) - C(44) - C(45)	120.2(3)	C(46) - C(45) - C(44)	120.0(3)
C(47) - C(46) - C(45)	119.6(3)	C(46) - C(47) - C(48)	120.8(3)
C(43) - C(48) - C(47)	119.9(3)	C(50) - C(49) - C(54)	119 0(2)
C(50) - C(49) - P(4)	118.6(2)	C(54) - C(49) - P(4)	$122 \ 3(2)$
C(49) - C(50) - C(51)	110.0(2)	C(52) = C(51) = C(50)	120.4(3)
C(51) - C(52) - C(53)	119.9(3)	C(52) = C(53) = C(54)	120.4(3) 120.2(3)
C(51) = C(52) = C(33)	120.6(3)	C(56) = C(55) = C(60)	120.2(3)
C(56) - C(55) - P(4)	123 3(2)	C(60) = C(55) = P(4)	117.7(2)
C(57) = C(56) = C(55)	120 2(3)	C(58) = C(57) = C(56)	120 3(3)
C(57) = C(58) = C(59)	110 8(3)	C(50) = C(50) = C(50)	120.3(3)
C(57) = C(50) = C(55)	1205(3)	C(00) = C(39) = C(30)	120.2(3)
C(39) = C(80) = C(33)	⊥∠∪.J(J)		

 $C_{55}H_{55}P_3RuS_2$ 974.09 brownish yellow plate 0.20x0.14x0.08 monoclinic $P2_1/n$ 14.3510(10)

616

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å)

b(Å)	17.1180(10)
c(Å)	18.8710(10)
α(°)	90.00
β(°)	94.8600(10)
γ(°)	90.00
$V(A^3)$	4619.2(5)
Z	4
$d(g-cm^{-3})$	1.401
F(000)	2024
$\mu(\text{cm}^{-1})$	0.572
Absorption corrections	multi-scan; 0.8943 min, 0.9557 max
Diffractometer	KappaCCD
X-ray source	ΜοΚα
λ(Å)	0.71069
Monochromator	graphite
T (K)	150.0(10)
Scan mode	phi and omega scans
Maximum θ	27.46
HKL ranges	-18 18 ; -20 22 ; -24 24
Reflections measured	17500
Unique data	10493
Rint	0.0283
Reflections used	7845
Criterion	I > 2sigma(I)
Refinement type	Fsqd
Hydrogen atoms	mixed
Parameters refined	563
Reflections / parameter	13
wR2	0.0872
R1	0.0359
Weights a, b	0.0396 ; 0.0000
GoF	1.002
difference peak / hole (e A ⁻³)	0.405(0.067) / -0.704(0.067)

Table 3. Bond lengths (A) and angles (deg) for $616\,$

Ru(1)-C(49)	2.191(2)	Ru(1)-C(48)	2.194(2)
Ru(1) - C(50)	2.209(2)	Ru(1) - C(46)	2.217(2)
Ru(1) - C(47)	2.219(2)	Ru(1) - P(1)	2.2938(6)
Ru(1) - S(2)	2,4019(6	Ru(1) - S(1)	2.4135(6)
P(1) - C(5)	1.808(2)	P(1) - C(1)	1.819(2)
P(1) - C(6)	1.843(2)	P(2) - C(1)	1.766(2)
P(2) - C(16)	1.815(2)	P(2) - C(10)	1.816(2)
P(2) - S(1)	2.0130(8	P(3) - C(5)	1.759(2)
P(3) - C(34)	1.817(3)	P(3) - C(40)	1.822(2)
P(3) - S(2)	2.0161(8	C(1) - C(2)	1.381(3)
C(2) - C(3)	1.417(3)	C(2) - C(22)	1.500(3)
C(3) - C(4)	1.399(3)	C(4) - C(5)	1.412(3)
C(4) - C(28)	1.497(3)	C(6) - C(7)	1.525(4)
C(6)-C(7A)	1.61(1)	C(7)-C(8)	1.515(5)
C(8)-C(9)	1.579(4)	C(7A)-C(8A)	1.51(1)
C(8A)-C(9)	1.545(8)	C(10) - C(15)	1.387(3)
C(10) - C(11)	1.400(3)	C(11) - C(12)	1.372(3)
C(12) - C(13)	1.388(3)	C(13)-C(14)	1.387(3)
C(14)-C(15)	1.382(3)	C(16)-C(21)	1.391(3)
C(16) - C(17)	1.396(3)	C(17) - C(18)	1.384(3)
C(18) - C(19)	1.368(4)	C(19)-C(20)	1.383(4)
C(20)-C(21)	1.381(3)	C(22)-C(27)	1.383(3)
C(22)-C(23)	1.386(3)	C(23)-C(24)	1.384(3)
C(24)-C(25)	1.383(4)	C(25)-C(26)	1.377(4)
C(26)-C(27)	1.388(3)	C(28)-C(29)	1.389(3)
C(28)-C(33)	1.393(3)	C(29)-C(30)	1.376(3)
C(30)-C(31)	1.381(3)	C(31)-C(32)	1.377(3)
C(32) - C(33)	1.387(3)	C(34) - C(35)	1.386(3)

C(34) - C(39) $C(36) - C(37)$ $C(38) - C(39)$ $C(40) - C(41)$ $C(42) - C(43)$ $C(44) - C(45)$ $C(44) - C(45)$ $C(46) - C(50)$ $C(47) - C(48)$ $C(49) - C(49)$ $C(49) - C(50)$ $C(50) - C(55)$	1.387(3) 1.385(4) 1.381(4) 1.387(4) 1.378(4) 1.390(4) 1.442(3) 1.428(3) 1.434(3) 1.425(3) 1.495(3)	C(35)-C(36)C(37)-C(38)C(40)-C(45)C(41)-C(42)C(43)-C(44)C(46)-C(47)C(46)-C(51)C(47)-C(52)C(48)-C(53)C(49)-C(54)	1.374(4) 1.360(4) 1.384(3) 1.384(3) 1.364(5) 1.427(3) 1.503(3) 1.499(4) 1.498(3) 1.509(3)
C(49) - Ru(1) - C(48) $C(49) - Ru(1) - C(47)$ $C(49) - Ru(1) - C(47)$ $C(50) - Ru(1) - P(1)$ $C(49) - Ru(1) - P(1)$ $C(47) - Ru(1) - P(1)$ $C(47) - Ru(1) - S(2)$ $C(46) - Ru(1) - S(2)$ $C(46) - Ru(1) - S(2)$ $C(46) - Ru(1) - S(1)$ $C(46) - Ru(1) - S(1)$ $C(1) - P(1) - C(1)$ $C(1) - P(2) - C(10)$ $C(16) - P(2) - C(10)$ $C(16) - P(2) - C(10)$ $C(34) - P(3) - C(40)$ $C(34) - P(3) - C(40)$ $C(34) - P(3) - C(40)$ $C(34) - P(3) - C(22)$ $C(4) - C(2) - C(22)$ $C(4) - C(3) - C(2)$ $C(3) - C(4) - C(28)$ $C(4) - C(5) - P(3)$ $P(3) - C(5) - P(1)$ $C(7) - C(6) - P(1)$ $C(7) - C(6) - P(1)$ $C(8) - C(7) - C(6)$ $C(8A) - C(7A) - C(6)$ $C(8A) - C(7A) - C(6)$ $C(14) - C(13) - C(12)$ $C(14) - C(13) - C(12)$ $C(14) - C(15) - C(10)$ $C(14) - C(15) - C(10)$ $C(21) - C(16) - P(2)$ $C(14) - C(15) - C(10)$ $C(21) - C(16) - P(2)$ $C(14) - C(15) - C(10)$ $C(21) - C(16) - P(2)$ $C(14) - C(15) - C(10)$ $C(21) - C(16) - P(2)$ $C(14) - C(13) - C(20)$ $C(20) - C(21) - C(16)$ $C(27) - C(20) - C(20)$ $C(20) - C(21) - C(16)$ $C(30) - C(20) - C(20)$ $C(20) - C(21) - C(16)$ $C(30) - C(20) - C(20)$ $C(20) - C(21) - C(16)$ $C(30) - C(20) - C(20)$ $C(20) - C(21) - C(16)$ $C(30) - C(20) - C(20)$ $C(20) - C(21) - C(16)$ $C(30) - C(20) - C(20)$ $C(20) - C(21) - C(16)$ $C(30) - C(20) - C(20)$ $C(20) - C(21) - C(16)$ $C(30) - C(20) - C(20)$ $C(20) - C(21) - C(16)$ $C(30) - C(20) - C(20)$ $C(20) - C(21) - C(16)$ $C(30) - C(20) - C(20)$ $C(20) - C(21) - C(16)$ $C(30) - C(20) - C(20)$ $C(20) - C(21) - C(16)$ $C(30) - C(20) - C(20)$ $C(20) - C(21) - C(16)$ $C(30) - C(20) - C(20)$ $C(20) - C(21) - C(16)$ $C(30) - C(20) - C(20)$ $C(20) - C(21) - C(16)$ $C(30) - C(20) - C(20)$ $C(20) - C(21) - C(16)$ $C(30) - C(20) - C(20)$ $C(20) - C(21) - C(16)$ $C(30) - C(20) - C(20)$ $C(20) - C(21) - C(16)$ $C(30) - C(20) - C(20)$ $C(20) - C(21) - C(16)$ $C(30) - C(20) - C(20)$ $C(20) - C(20) - C(30)$ $C(30) - C(30$	38.2(1) 63.8(1) 63.6(1) 62.9(1) 63.0(1) 129.44(7) 104.97(6) 144.00(7) 105.43(7) 109.91(6) 87.04(2) 94.65(6) 155.54(7) 87.28(2) 98.8(1) 100.1(1) 113.99(7) 113.4(1) 105.1(1) 108.12(8) 109.2(1) 105.8(1) 103.44(3) 126.8(2) 113.1(1) 123.1(2) 124.6(2) 115.2(2) 123.3(2) 115.0(1) 115.6(2) 113.8(3) 111.4(7) 40.5(3) 121.8(2) 120.3(2) 120.3(2) 120.3(2) 120.3(2) 120.3(2) 120.4(2) 120.8(3) 120.4(3) 120.8(2) 120.8(2) 120.8(3) 12	C(49) - Ru(1) - C(50) $C(49) - Ru(1) - C(46)$ $C(50) - Ru(1) - C(47)$ $C(46) - Ru(1) - P(1)$ $C(46) - Ru(1) - P(1)$ $C(49) - Ru(1) - S(2)$ $C(50) - Ru(1) - S(2)$ $C(47) - Ru(1) - S(1)$ $C(50) - Ru(1) - S(1)$ $C(50) - Ru(1) - S(1)$ $C(5) - P(1) - C(6)$ $C(5) - P(1) - Ru(1)$ $C(1) - P(2) - S(1)$ $C(10) - P(2) - S(1)$ $C(5) - P(3) - C(40)$ $C(5) - P(3) - S(2)$ $P(3) - S(2) - Ru(1)$ $C(2) - C(1) - P(1)$ $C(1) - C(2) - C(3)$ $C(3) - C(2) - C(22)$ $C(3) - C(4) - C(28)$ $C(4) - C(5) - P(1)$ $C(7) - C(6) - C(7A)$ $C(7A) - C(6) - P(1)$ $C(7) - C(8A) - C(9)$ $C(11) - C(12) - C(13)$ $C(11) - C(12) - C(13)$ $C(15) - C(14) - C(13)$ $C(15) - C(14) - C(13)$ $C(11) - C(12) - C(13)$ $C(15) - C(14) - C(13)$ $C(11) - C(12) - C(13)$ $C(21) - C(16) - C(17)$ $C(11) - C(12) - C(13)$ $C(21) - C(16) - C(17)$ $C(21) - C(16) - C(17)$ $C(21) - C(20) - C(19)$ $C(27) - C(22) - C(23)$ $C(23) - C(24) - C(23)$ $C(23) - C(24) - C(33)$ $C(33) - C(28) - C(4)$ $C(29) - C(30) - C(31)$ $C(31) - C(32) - C(33)$ $C(35) - C(34) - C(39)$ $C(35) - C(34) - C(39)$ $C(35) - C(34) - C(39)$ $C(45) - C(40) - C(41)$ $C(41) - C(40) - P(3)$ $C(43) - C(44) - C(45)$	37.78(8) 63.3(1) 38.01(8) 37.7(1) 37.5(1) 167.49(7) 111.54(7) 143.44(7) 147.90(6) 89.69(7) 92.87(6) 123.88(6) 128.21(7) 85.69(2) 102.3(1) 115.92(8) 122.14(8) 111.8(1) 107.98(8) 10.43(8) 116.2(1) 109.69(8) 106.86(8) 108.18(3) 118.8(2) 122.0(2) 114.9(2) 122.3(2) 122.5(2) 117.6(2) 24.4(3) 107.3(4) 107.3(4) 107.3(4) 107.8(3) 105.0(7) 119.8(2) 122.0(2) 122.0(2) 122.0(2) 122.0(2) 122.0(2) 122.0(2) 122.0(2) 122.0(2) 120.1(2) 120.1(2) 120.1(2) 120.1(2) 120.2(2) 120.4(2) 120.4(2) 120.4(2) 120.4(2) 120.6(3) 119.8(3)

C(40) - C(45) - C(44)
C(47) - C(46) - C(51)
C(47) - C(46) - Ru(1)
C(51) - C(46) - Ru(1)
C(46) - C(47) - C(52)
C(46) - C(47) - Ru(1)
C(52) - C(47) - Ru(1)
C(47) - C(48) - C(53)
C(47) - C(48) - Ru(1)
C(53) - C(48) - Ru(1)
C(50) - C(49) - C(54)
C(50) - C(49) - Ru(1)
C(54) - C(49) - Ru(1)
C(49) - C(50) - C(55)
C(49) - C(50) - Ru(1)
C(55) - C(50) - Ru(1)

120.3(3)	C(47)-C(46)-C(50)	107.5(2)
123.7(2)	C(50) - C(46) - C(51)	127.5(2)
71.3(1)	C(50)-C(46)-Ru(1)	70.7(1)
133.5(2)	C(46) - C(47) - C(48)	109.0(2)
124.0(2)	C(48) - C(47) - C(52)	126.9(2)
71.2(1)	C(48)-C(47)-Ru(1)	70.2(1)
126.8(2)	C(47)-C(48)-C(49)	107.0(2)
126.2(2)	C(49)-C(48)-C(53)	126.8(2)
72.1(1)	C(49)-C(48)-Ru(1)	70.8(1)
124.7(2)	C(50) - C(49) - C(48)	108.9(2)
125.5(2)	C(48) - C(49) - C(54)	125.2(2)
71.8(1)	C(48) - C(49) - Ru(1)	71.0(1)
128.8(2)	C(49) - C(50) - C(46)	107.5(2)
125.5(2)	C(46) - C(50) - C(55)	126.4(2)
70.4(1)	C(46) - C(50) - Ru(1)	71.3(1)
130.6(2)	· · · · · · · · ·	

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) $\alpha(^{\circ})$ β(°) γ(°) V(Å³) Ζ $d(g-cm^{-3})$ F(000) $\mu(cm^{-1})$ Absorption corrections Diffractometer X-ray source λ(Å) Monochromator T (K) Scan mode Maximum θ HKL ranges Reflections measured Unique data Rint Reflections used Criterion Refinement type Hydrogen atoms Parameters refined

618

 $C_{50}H_{45}FeP_3S_2$ 858.74 red plate 0.20x0.16x0.04 triclinic P-1 10.6480(10) 11.8080(10) 17.8760(10) 83.3060(10) 84.4630(10) 69.7430(10) 2090.4(3) 2 1.364 896 0.611 multi-scan ; 0.8875 min, 0.9760 max KappaCCD ΜοΚα 0.71073 graphite 150.0(10) phi and omega scans 27.48 -13 10 ; -15 14 ; -23 23 13684 9490 0.0428 6981 I > 2sigma(I)Fsqd mixed 506

Reflections / parameter wR2	13 0.1449 0.0532		
Weights a, b	0.0858; 0.0000		
GoF	1.008		
difference peak / hole (e A ⁻⁵)	0.933(0.097)/-0.	714(0.097)	
Table 3. Bond lengths (A) and angles	(deg) for 618	
Fe(1) - C(48) $Fe(1) - C(50)$ $Fe(1) - S(1)$ $S(1) - P(2)$ $P(1) - C(5)$ $P(1) - C(6)$ $P(2) - C(16)$ $P(3) - C(5)$ $P(3) - C(40)$ $C(2) - C(3)$ $C(3) - C(4)$ $C(4) - C(28)$ $C(7) - C(8)$ $C(10) - C(11)$ $C(11) - C(12)$ $C(13) - C(14)$ $C(16) - C(17)$ $C(17) - C(18)$ $C(19) - C(20)$ $C(22) - C(23)$ $C(23) - C(24)$ $C(25) - C(26)$ $C(28) - C(29)$ $C(29) - C(30)$ $C(31) - C(32)$ $C(34) - C(39)$ $C(35) - C(36)$ $C(37) - C(38)$ $C(40) - C(45)$ $C(41) - C(42)$ $C(43) - C(48)$ $C(49) - C(50)$	2.059(3) 2.079(3) 2.098(3) 2.3050(8) 2.012(1) 1.791(3) 1.851(3) 1.851(3) 1.808(3) 1.751(2) 1.812(3) 1.416(4) 1.395(4) 1.390(4) 1.388(4) 1.374(4) 1.382(5) 1.383(5) 1.380(4) 1.385(4) 1.385(4) 1.385(4) 1.385(4) 1.385(4) 1.385(4) 1.385(4) 1.385(4) 1.388(4) 1.381(5) 1.381(4) 1.378(4) 1.412(4) 1.398(4)	Fe(1)-C(47) $Fe(1)-F(1)$ $Fe(1)-F(1)$ $Fe(1)-S(2)$ $S(2)-P(3)$ $P(1)-C(1)$ $P(2)-C(10)$ $P(2)-C(10)$ $P(3)-C(34)$ $C(1)-C(2)$ $C(2)-C(22)$ $C(4)-C(5)$ $C(6)-C(7)$ $C(8)-C(9)$ $C(10)-C(15)$ $C(10)-C(15)$ $C(12)-C(13)$ $C(14)-C(15)$ $C(16)-C(21)$ $C(18)-C(19)$ $C(20)-C(21)$ $C(22)-C(27)$ $C(24)-C(25)$ $C(26)-C(27)$ $C(28)-C(33)$ $C(30)-C(31)$ $C(32)-C(33)$ $C(34)-C(35)$ $C(36)-C(37)$ $C(38)-C(39)$ $C(40)-C(41)$ $C(42)-C(43)$ $C(44)-C(45)$ $C(48)-C(49)$	$\begin{array}{c} 2.062(3)\\ 2.085(3)\\ 2.1927(7)\\ 2.3193(8)\\ 2.014(1)\\ 1.815(3)\\ 1.774(3)\\ 1.825(3)\\ 1.395(4)\\ 1.493(4)\\ 1.493(4)\\ 1.404(4)\\ 1.511(4)\\ 1.511(4)\\ 1.504(5)\\ 1.393(4)\\ 1.383(4)\\ 1.386(4)\\ 1.386(4)\\ 1.386(5)\\ 1.384(4)\\ 1.386(4)\\ 1.386(4)\\ 1.386(4)\\ 1.386(4)\\ 1.386(4)\\ 1.398(4)\\ 1.398(4)\\ 1.398(4)\\ 1.398(4)\\ 1.398(4)\\ 1.398(4)\\ 1.398(4)\\ 1.398(4)\\ 1.397(4)\\ 1.397(4)\\ 1.393(4)\\ 1.393(4)\\ 1.423(5)\\ 1.428(4)\\ \end{array}$
C(48) - Fe(1) - C(47) $C(47) - Fe(1) - C(49)$ $C(47) - Fe(1) - C(50)$ $C(48) - Fe(1) - C(50)$ $C(49) - Fe(1) - P(1)$ $C(49) - Fe(1) - P(1)$ $C(50) - Fe(1) - P(1)$ $C(47) - Fe(1) - S(1)$ $C(46) - Fe(1) - S(1)$ $C(47) - Fe(1) - S(2)$ $P(1) - Fe(1) - C(1)$ $C(5) - P(1) - C(1)$ $C(1) - P(1) - Fe(1)$ $C(1) - P(2) - C(16)$ $C(16) - P(2) - C(10)$ $C(5) - P(3) - C(34)$ $C(34) - P(3) - C(40)$	39.8(1) 67.0(1) 40.1(1) 66.5(1) 39.1(1) 120.24(8) 160.1(1) 141.3(1) 149.3(1) 109.4(1) 90.13(3) 123.7(1) 157.6(1) 90.73(3) 102.96(3) 101.5(1) 103.5(1) 114.92(8) 114.0(1) 105.3(1) 107.9(1) 110.2(1) 107.0(1)	$\begin{array}{c} C(48) - Fe(1) - C(49) \\ C(48) - Fe(1) - C(46) \\ C(49) - Fe(1) - C(46) \\ C(47) - Fe(1) - C(50) \\ C(46) - Fe(1) - P(1) \\ C(46) - Fe(1) - P(1) \\ C(48) - Fe(1) - P(1) \\ C(48) - Fe(1) - S(1) \\ C(49) - Fe(1) - S(1) \\ C(50) - Fe(1) - S(2) \\ C(49) - Fe(1) - S(2) \\ C(50) - Fe(1) - S(2) \\ S(1) - Fe(1) - S(2) \\ S(1) - Fe(1) - S(2) \\ P(3) - S(2) - Fe(1) \\ C(5) - P(1) - Fe(1) \\ C(5) - P(1) - Fe(1) \\ C(5) - P(1) - Fe(1) \\ C(6) - P(1) - Fe(1) \\ C(1) - P(2) - C(10) \\ C(1) - P(2) - S(1) \\ C(5) - P(3) - C(40) \\ C(5) - P(3) - S(2) \\ \end{array}$	$\begin{array}{c} 40.3(1)\\ 67.2(1)\\ 66.7(1)\\ 66.3(1)\\ 39.5(1)\\ 94.64(8)\\ 104.49(8)\\ 109.57(8)\\ 109.5(1)\\ 91.5(1)\\ 91.5(1)\\ 91.5(1)\\ 127.94(8)\\ 86.43(3)\\ 100.40(3)\\ 100.5(1)\\ 112.56(8)\\ 121.2(1)\\ 112.5(1)\\ 107.47(8)\\ 109.5(1)\\ 113.3(1)\\ 108.1(1)\end{array}$

)))))

))))))))
C(34) - P(3) - S(2)	109.7(1)	C(40) - P(3) - S(2)	108.5(1)
C(2) - C(1) - P(2)	130.1(2)	C(2) - C(1) - P(1)	118.1(2)
P(2) - C(1) - P(1)	109.8(1)	C(1) - C(2) - C(3)	122.5(2)
C(1) - C(2) - C(22)	123.3(2)	C(3) - C(2) - C(22)	114.1(2)
C(4) - C(3) - C(2)	125.5(2)	C(3) - C(4) - C(5)	122.1(2)
C(3) - C(4) - C(28)	115 3(2)	C(5) - C(4) - C(28)	122.6(2)
C(4) - C(5) - P(3)	126 5(2)	C(4) - C(5) - P(1)	118 1(2)
P(3) - C(5) - P(1)	112 7(1)	C(7) - C(6) - P(1)	116 1(2)
C(6) - C(7) - C(8)	1137(3)	C(9) - C(8) - C(7)	114 1(3)
C(11) - C(10) - C(15)	1185(2)	C(11) - C(10) - P(2)	118 4(2)
C(15) - C(10) - P(2)	122 9(2)	C(12) - C(11) - C(10)	120.1(2) 120.6(3)
C(13) - C(12) - C(11)	119 9(3)	C(12) = C(11) = C(10) C(14) = C(13) = C(12)	120.0(3) 120.2(3)
C(13) - C(14) - C(15)	1199(3)	C(14) - C(15) - C(10)	120.2(3)
C(17) = C(16) = C(21)	118 9(3)	C(17) - C(16) - P(2)	120.0(3) 122.7(2)
C(21) = C(16) = D(2)	118 4(2)	C(17) = C(10) = (2) C(18) = C(17) = C(16)	122.7(2) 120.3(3)
C(21) - C(10) - P(2) C(17) - C(18) - C(19)	120.4(2) 120.3(3)	C(10) - C(17) - C(10) C(20) - C(19) - C(18)	120.3(3)
C(19) = C(20) = C(21)	110 0(3)	C(20) = C(21) = C(16)	120.7(3)
C(23) = C(20) = C(21)	1177(2)	C(20) = C(21) = C(10) C(23) = C(22) = C(2)	120.7(3)
C(23) - C(22) - C(27)	120 2(2)	C(23) = C(22) = C(21)	122.1(3) 121 2(2)
C(27) - C(22) - C(2)	120.2(2)	C(22) - C(23) - C(24) C(24) - C(25) - C(24)	110 0(2)
C(23) = C(24) = C(23)	120.7(3)	C(24) - C(25) - C(20)	120.9(3)
C(27) - C(20) - C(23)	1100(2)	C(20) - C(27) - C(22)	121.1(3) 121 0(2)
C(29) - C(28) - C(33)	119.0(3)	C(29) - C(20) - C(4)	121.0(3)
C(33) - C(20) - C(4)	119.9(3) 110.7(4)	C(30) - C(29) - C(20)	120.0(3)
C(31) - C(30) - C(29)	129.7(4)	C(32) - C(31) - C(30)	120.5(3)
C(31) - C(32) - C(33)	120.2(3)	C(20) - C(33) - C(32)	122.0(2)
C(39) - C(34) - C(35)	119.7(3)	C(39) - C(34) - P(3)	122.8(2)
C(35) - C(34) - P(3)	117.3(2)	C(36) - C(35) - C(34)	120.1(3)
C(37) - C(36) - C(35)	120.1(3)	C(36) - C(37) - C(38)	120.7(3)
C(37) - C(38) - C(39)	119.9(3)	C(34) - C(39) - C(38)	119.5(3)
C(45) - C(40) - C(41)	119.0(3)	C(45) - C(40) - P(3)	122.3(2)
C(41) - C(40) - P(3)	118.3(2)	C(42) - C(41) - C(40)	120.3(3)
C(41) - C(42) - C(43)	120.3(3)	C(44) - C(43) - C(42)	119.9(3)
C(43) - C(44) - C(45)	120.2(3)	C(40) - C(45) - C(44)	120.4(2)
C(50) - C(46) - C(47)	106.8(3)	C(50) - C(46) - Fe(1)	70.8(2)
C(4/) - C(46) - Fe(1)	69.1(2)	C(48) - C(47) - C(46)	108.6(3)
C(48) - C(47) - Fe(1)	70.0(2)	C(46) - C(47) - Fe(1)	70.8(2)
C(47) - C(48) - C(49)	107.7(3)	C(47) - C(48) - Fe(1)	70.2(2)
C(49) - C(48) - Fe(1)	70.6(2)	C(50) - C(49) - C(48)	107.6(3)
C(50) - C(49) - Fe(1)	71.2(2)	C(48) - C(49) - Fe(1)	69.1(2)
C(49) - C(50) - C(46)	109.2(3)	C(49)-C(50)-Fe(1)	69.7(2)
C(46)-C(50)-Fe(1)	69.8(2)		

(partie cationique, contre ion I⁻)

619

 $\begin{array}{c} C_{50.25}H_{45.50}Cl_{0.50}FeI_{1.50}P_{3}S_{2}\\ 1070.32\\ dark brown block\\ 0.14x0.14x0.12\\ triclinic\\ P-1\\ 12.3420(10) \end{array}$

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å)

b(Å)	22.4680(10)
c(Å)	34.026(2)
$\alpha(^{\circ})$	84.037(2)
β(°)	82.355(2)
$\gamma(^{\circ})$	89.607(2)
$V(Å^3)$	9300.7(10)
Z	8
$\overline{d}(g-cm^{-3})$	1.529
F(000)	4304
$\mu(cm^{-1})$	1.576
Absorption corrections	multi-scan : 0.8095 min. 0.8334 max
Diffractometer	KappaCCD
X-ray source	ΜοΚα
$\lambda(\text{Å})$	0.71069
Monochromator	graphite
T (K)	150.0(10)
Scan mode	phi and omega scans
Maximum θ	20.81
HKL ranges	-12 12 ; -21 22 ; -34 32
Reflections measured	27682
Unique data	17351
Rint	0.0260
Reflections used	14011
Criterion	I > 2sigma(I)
Refinement type	Fsqd
Hydrogen atoms	mixed
Parameters refined	2101
Reflections / parameter	6
wR2	0.2193
R1	0.0724
Weights a, b	0.1156 ; 106.60
GoF	1.071
difference peak / hole (e Å ⁻³)	2.543(0.134) / -2.559(0.134)
Notes Design to the second second second second	· · · · · · · · · · · · · · · · · · ·

Note: Due to the poor resolution of our data set, disorder apparent in some butyl and cyclopentadienyl fragments could not be resolved.

Table 3.	Bond	lengths	(A)	and	angles	(deg)	for	619

I(1) - I(2)	3.024(2)	I(2) - I(3)	2.863(2)
Fe(1)-C(50)	2.09(1)	Fe(1)-C(46)	2.09(1)
Fe(1)-C(47)	2.12(1)	Fe(1)-C(48)	2.14(1)
Fe(1)-C(49)	2.16(1)	Fe(1)-S(21)	2.222(4)
Fe(1)-P(1)	2.234(4)	Fe(1)-S(13)	2.300(4)
Fe(2)-C(100)	2.08(1)	Fe(2)-C(96)	2.10(1)
Fe(2)-C(99)	2.11(1)	Fe(2)-C(97)	2.14(1)
Fe(2)-C(98)	2.14(1)	Fe(2)-S(26)	2.219(4)
Fe(2)-P(4)	2.231(4)	Fe(2)-S(30)	2.301(4)
Fe(3)-C(148)	2.09(1)	Fe(3)-C(147)	2.09(1)
Fe(3)-C(146)	2.12(1)	Fe(3)-C(150)	2.14(1)
Fe(3)-C(149)	2.15(1)	Fe(3)-S(20)	2.215(4)
Fe(3)-P(7)	2.217(4)	Fe(3)-S(12)	2.295(4)
Fe(4)-C(200)	2.09(1)	Fe(4)-C(196)	2.10(1)
Fe(4)-C(197)	2.13(1)	Fe(4)-C(198)	2.14(1)
Fe(4)-C(199)	2.15(1)	Fe(4)-P(10)	2.226(4)
Fe(4)-S(17)	2.233(3)	Fe(4)-S(16)	2.295(4)
S(12)-P(9)	2.037(4)	S(13)-P(3)	2.039(4)
S(16)-P(11)	2.036(4)	S(17)-P(12)	2.054(4)
S(20)-P(8)	2.041(5)	S(21)-P(2)	2.050(5)
S(26)-P(6)	2.055(5)	S(30)-P(5)	2.036(5)
P(1) - C(1)	1.76(1)	P(1)-C(5)	1.79(1)
P(1)-C(6)	1.83(1)	P(2)-C(1)	1.73(1)
P(2)-C(10)	1.81(1)	P(2)-C(16)	1.83(1)
P(3)-C(5)	1.75(1)	P(3)-C(40)	1.80(1)

P(3) - C(34) P(4) - C(51) P(5) - C(66) P(6) - C(84) P(7) - C(105) P(7) - C(106) P(8) - C(116) P(9) - C(115) P(10) - C(151) P(11) - C(151) P(11) - C(166) P(12) - C(184) C(1) - C(2) C(2) - C(22) C(4) - C(5) C(6) - C(7) C(8) - C(9) C(10) - C(11) C(12) - C(13) C(14) - C(15) C(16) - C(21) C(20) - C(21) C(22) - C(23) C(24) - C(25) C(26) - C(27) C(28) - C(31) C(32) - C(31) C(32) - C(33) C(34) - C(35) C(36) - C(37) C(38) - C(39) C(40) - C(45) C(42) - C(43) C(44) - C(45) C(42) - C(43) C(44) - C(45) C(46) - C(50) C(48) - C(49) C(51) - C(52) C(52) - C(72) C(54) - C(55) C(56) - C(57) C(58) - C(57) C(58) - C(59) C(60) - C(61) C(62) - C(61) C(62) - C(63) C(64) - C(65) C(66) - C(67) C(68) - C(67) C(70) - C(71) C(72) - C(73) C(74) - C(75) C(76) - C(77) C(78) - C(83) C(80) - C(81) C(82) - C(83) C(84) - C(85) C(88) - C(87) C(90) - C(95) C(90)	$\begin{array}{c} 1.83(1)\\ 1.80(1)\\ 1.75(1)\\ 1.81(1)\\ 1.81(1)\\ 1.83(1)\\ 1.83(1)\\ 1.80(1)\\ 1.78(1)\\ 1.81(1)\\ 1.81(1)\\ 1.81(1)\\ 1.81(1)\\ 1.81(1)\\ 1.81(1)\\ 1.81(1)\\ 1.43(2)\\ 1.50(2)\\ 1.41(2)\\ 1.55(2)\\ 1.41(2)\\ 1.38(2)\\ 1.40(2)\\ 1.40(2)\\ 1.38(2)\\ 1.40(2)\\ 1.40(2)\\ 1.38(2)\\ 1.38(2)\\ 1.40(2)\\ 1.38(2)\\ 1.38(2)\\ 1.40(2)\\ 1.38($	P(4) - C(55) P(4) - C(56) P(5) - C(60) P(6) - C(90) P(7) - C(101) P(8) - C(101) P(8) - C(110) P(9) - C(155) P(10) - C(155) P(10) - C(155) P(12) - C(190) C(2) - C(3) C(3) - C(4) C(4) - C(28) C(7) - C(8) C(10) - C(15) C(11) - C(12) C(13) - C(14) C(16) - C(17) C(17) - C(18) C(19) - C(20) C(22) - C(27) C(23) - C(24) C(25) - C(26) C(28) - C(29) C(29) - C(30) C(31) - C(32) C(31) - C(32) C(34) - C(38) C(40) - C(41) C(41) - C(42) C(43) - C(44) C(46) - C(47) C(47) - C(48) C(40) - C(41) C(41) - C(42) C(43) - C(44) C(46) - C(47) C(47) - C(48) C(49) - C(50) C(52) - C(53) C(53) - C(54) C(54) - C(78) C(57) - C(58) C(60) - C(65) C(61) - C(62) C(63) - C(64) C(66) - C(71) C(72) - C(77) C(73) - C(74) C(75) - C(76) C(78) - C(79) C(79) - C(80) C(81) - C(82) C(81) - C(82) C(81) - C(82) C(81) - C(88) C(90) - C(91) C(91) - C(92) C(91) - C(92	$\begin{array}{c} 1.78(1)\\ 1.81(1)\\ 1.81(1)\\ 1.75(1)\\ 1.81(1)\\ 1.75(1)\\ 1.81(1)\\ 1.75(1)\\ 1.83(1)\\ 1.75(1)\\ 1.83(1)\\ 1.76(1)\\ 1.83(1)\\ 1.77(1)\\ 1.81(1)\\ 1.39(2)\\ 1.41(2)\\ 1.39(2)\\ 1.39(2)\\ 1.39(2)\\ 1.35(2)\\ 1.34(2)\\ 1.35(2)\\ 1.36(2)\\ 1.35(2)\\ 1.36(2)\\ 1.38($
C(86)-C(87) $C(88)-C(89)$ $C(90)-C(95)$ $C(92)-C(93)$ $C(94)-C(95)$ $C(96)-C(100)$ $C(98)-C(99)$ $C(101)-C(102)$ $C(102)-C(122)$ $C(104)-C(105)$ $C(106)-C(107)$ $C(108)-C(109)$	1.35(3) 1.41(2) 1.39(2) 1.38(2) 1.39(2) 1.36(2) 1.40(2) 1.43(2) 1.46(2) 1.42(2) 1.52(2) 1.13(4)	C(87)-C(88) C(90)-C(91) C(91)-C(92) C(93)-C(94) C(96)-C(97) C(97)-C(98) C(99)-C(100) C(102)-C(103) C(103)-C(104) C(104)-C(128) C(107)-C(108) C(110)-C(111)	1.38(3) 1.38(2) 1.37(2) 1.34(2) 1.36(2) 1.34(2) 1.46(3) 1.41(2) 1.41(2) 1.41(2) 1.49(2) 1.54(3) 1.36(2)

C(120) - C(127) $C(128) - C(133)$ $C(130) - C(131)$ $C(132) - C(133)$ $C(134) - C(135)$ $C(136) - C(137)$ $C(138) - C(139)$ $C(140) - C(145)$ $C(142) - C(143)$ $C(144) - C(145)$ $C(144) - C(145)$ $C(146) - C(150)$ $C(151) - C(152)$ $C(152) - C(172)$ $C(154) - C(155)$ $C(156) - C(157)$ $C(156) - C(157)$ $C(158) - C(159)$ $C(160) - C(165)$ $C(160) - C(165)$ $C(166) - C(167)$ $C(168) - C(167)$ $C(168) - C(169)$ $C(170) - C(171)$ $C(172) - C(173)$ $C(174) - C(175)$ $C(176) - C(177)$ $C(178) - C(179)$ $C(180) - C(181)$ $C(182) - C(183)$ $C(184) - C(183)$ $C(184) - C(189)$ $C(190) - C(191)$ $C(192) - C(193)$ $C(194) - C(195)$ $C(194) - C(195)$ $C(196) - C(200)$ $C(198) - C(199)$ $C(10) - C(11) # 2$ $I(3) - I(2) - I(1)$ $C(50) - Fe(1) - C(47)$ $C(50) - Fe(1) - C(48)$ $C(47) - Fe(1) - C(49)$ $C(48) - Fe(1) - C(49)$	$\begin{array}{c} 1.39(2)\\ 1.40(2)\\ 1.35(2)\\ 1.39(2)\\ 1.40(2)\\ 1.37(2)\\ 1.36(2)\\ 1.40(2)\\ 1.41(2)\\ 1.39(2)\\ 1.45(2)\\ 1.49(2)\\ 1.49(2)\\ 1.49(2)\\ 1.49(2)\\ 1.49(2)\\ 1.49(2)\\ 1.49(2)\\ 1.39(2)\\ 1.39(2)\\ 1.39(2)\\ 1.37(2)\\ 1.37(2)\\ 1.37(2)\\ 1.39(2)\\ 1.38(2)\\ 1.39(2)\\ 1.41(2)\\ 1.38(2)\\ 1.39(2)\\ 1.41(2)\\ 1.38(2)\\ 1.39(2)\\ 1.40(2)\\ 1.39(2)\\ 1.40(2)\\ 1.39(2)\\ 1.40(2)\\ 1.39($	C(128) - C(129) $C(129) - C(130)$ $C(131) - C(132)$ $C(134) - C(139)$ $C(135) - C(136)$ $C(137) - C(138)$ $C(140) - C(141)$ $C(141) - C(142)$ $C(143) - C(144)$ $C(146) - C(147)$ $C(147) - C(148)$ $C(152) - C(153)$ $C(152) - C(153)$ $C(152) - C(158)$ $C(160) - C(161)$ $C(161) - C(162)$ $C(163) - C(164)$ $C(166) - C(171)$ $C(167) - C(168)$ $C(169) - C(170)$ $C(172) - C(177)$ $C(173) - C(174)$ $C(175) - C(176)$ $C(178) - C(183)$ $C(197) - C(180)$ $C(181) - C(182)$ $C(184) - C(185)$ $C(185) - C(186)$ $C(187) - C(195)$ $C(191) - C(192)$ $C(193) - C(194)$ $C(196) - C(197)$ $C(197) - C(201) #1$ $C(201) - C(201) #1$ $C(201) - C(21) #1$ $C(50) - Fe(1) - C(46)$ $C(46) - Fe(1) - C(49)$ $C(47) - Fe(1) - C(49)$ $C(47) - Fe(1) - C(49)$ $C(50) - Fe(1) - C(49)$	$\begin{array}{c} 1.38(2) \\ 1.39(2) \\ 1.39(2) \\ 1.39(2) \\ 1.41(2) \\ 1.40(2) \\ 1.40(2) \\ 1.37(2) \\ 1.38(2) \\ 1.39(2) \\ 1.43(2) \\ 1.39(2) \\ 1.41(2) \\ 1.41(2) \\ 1.41(2) \\ 1.41(2) \\ 1.41(2) \\ 1.41(2) \\ 1.38(2) \\ 1.38(2) \\ 1.38(2) \\ 1.38(2) \\ 1.38(2) \\ 1.38(2) \\ 1.38(2) \\ 1.38(2) \\ 1.38(2) \\ 1.38(2) \\ 1.39(2) \\ 1.38(2) \\ 1.39(2) \\ 1.38(2) \\ 1.39(2) \\ 1.38(2) \\ 1.39(2) \\$
C(46) - Fe(1) - S(21) $C(48) - Fe(1) - S(21)$ $C(50) - Fe(1) - P(1)$ $C(47) - Fe(1) - P(1)$ $C(49) - Fe(1) - S(13)$ $C(47) - Fe(1) - S(13)$ $C(47) - Fe(1) - S(13)$ $C(49) - Fe(1) - S(13)$ $C(100) - Fe(2) - C(99)$ $C(100) - Fe(2) - C(97)$ $C(99) - Fe(2) - C(98)$ $C(97) - Fe(2) - C(98)$ $C(96) - Fe(2) - C(98)$ $C(96) - Fe(2) - S(26)$ $C(97) - Fe(2) - S(26)$ $C(100) - Fe(2) - P(4)$	87.8(4) 152.0(4) 108.6(4) 152.3(4) 93.3(4) 154.0(4) 91.2(4) 124.2(4) 88.2(1) 40.8(7) 62.9(6) 63.5(6) 63.2(6) 36.6(6) 115.8(6) 150.9(5) 148.0(8)	$\begin{array}{c} C(47) - Fe(1) - S(21) \\ C(49) - Fe(1) - S(21) \\ C(46) - Fe(1) - P(1) \\ C(48) - Fe(1) - P(1) \\ S(21) - Fe(1) - P(1) \\ C(46) - Fe(1) - S(13) \\ C(48) - Fe(1) - S(13) \\ C(48) - Fe(1) - S(13) \\ C(100) - Fe(2) - C(96) \\ C(96) - Fe(2) - C(96) \\ C(96) - Fe(2) - C(97) \\ C(100) - Fe(2) - C(98) \\ C(99) - Fe(2) - C(98) \\ C(99) - Fe(2) - S(26) \\ C(98) - Fe(2) - S(26) \\ C(96) - Fe(2) - P(4) \\ \end{array}$	$116.4\\132.6\\147.1\\114.0\\90.6\\124.1\\91.4\\103.1\\38.0\\65.7\\37.4\\64.6\\38.5\\88.3\\98.0\\135.5\\152.9$

C(99) - Fe(2) - P(4) $C(98) - Fe(2) - P(4)$ $C(100) - Fe(2) - S(30)$ $C(99) - Fe(2) - S(30)$ $C(98) - Fe(2) - S(30)$ $C(148) - Fe(3) - C(146)$ $C(148) - Fe(3) - C(150)$ $C(146) - Fe(3) - C(150)$ $C(147) - Fe(3) - C(149)$ $C(150) - Fe(3) - C(149)$ $C(150) - Fe(3) - S(20)$ $C(147) - Fe(3) - S(20)$ $C(148) - Fe(3) - P(7)$ $C(146) - Fe(3) - P(7)$ $C(146) - Fe(3) - P(7)$ $C(148) - Fe(3) - P(7)$ $C(148) - Fe(3) - P(7)$ $C(148) - Fe(3) - S(12)$ $C(149) - Fe(3) - S(12)$ $C(149) - Fe(3) - S(12)$ $P(7) - Fe(3) - S(12)$ $C(200) - Fe(4) - C(197)$	108.0(6) $95.0(4)$ $123.4(8)$ $154.6(4)$ $122.9(5)$ $88.1(1)$ $65.5(5)$ $64.9(5)$ $39.6(5)$ $65.5(5)$ $37.9(5)$ $86.4(4)$ $151.4(4)$ $108.2(4)$ $154.9(4)$ $94.6(4)$ $155.2(4)$ $92.0(4)$ $123.6(4)$ $87.6(1)$ $64.6(5)$	C(97) - Fe(2) - P(4) S(26) - Fe(2) - P(4) C(96) - Fe(2) - S(30) C(97) - Fe(2) - S(30) S(26) - Fe(2) - S(30) C(148) - Fe(3) - C(147) C(147) - Fe(3) - C(146) C(147) - Fe(3) - C(149) C(148) - Fe(3) - C(149) C(146) - Fe(3) - S(20) C(146) - Fe(3) - S(20) C(146) - Fe(3) - S(20) C(146) - Fe(3) - S(20) C(147) - Fe(3) - S(20) C(147) - Fe(3) - P(7) C(150) - Fe(3) - P(7) C(150) - Fe(3) - P(7) C(147) - Fe(3) - S(12) C(147) - Fe(3) - S(12) C(150) - Fe(3) - S(12) C(200) - Fe(4) - C(196) C(196) - Fe(4) - C(197)	115.6(5)90.9(2)91.0(5)92.1(4)101.3(2)40.1(5)38.5(5)65.6(5)38.6(5)97.6(4)113.6(4)135.0(4)147.0(4)115.3(4)91.1(1)125.2(4)91.4(4)101.1(1)39.1(6)38.2(5)
C(200) - Fe(4) - C(198) $C(197) - Fe(4) - C(198)$ $C(196) - Fe(4) - C(199)$ $C(198) - Fe(4) - C(199)$ $C(196) - Fe(4) - P(10)$ $C(198) - Fe(4) - P(10)$ $C(200) - Fe(4) - S(17)$ $C(197) - Fe(4) - S(17)$ $C(197) - Fe(4) - S(16)$ $C(197) - Fe(4) - S(16)$ $C(197) - Fe(4) - S(16)$ $C(199) - Fe(4) - S(16)$ $P(3) - S(13) - Fe(1)$ $P(12) - S(17) - Fe(4)$ $P(5) - S(30) - Fe(2)$	63.7(5) 38.5(5) 64.3(5) 37.3(5) 147.1(5) 113.6(4) 97.0(4) 117.0(4) 133.3(4) 153.3(4) 90.5(4) 123.2(4) 103.3(1) 103.1(2) 109.3(2) 109.1(2) 102.6(2) 103.6(5)	C(196) - Fe(4) - C(198) C(200) - Fe(4) - C(199) C(197) - Fe(4) - C(199) C(200) - Fe(4) - P(10) C(197) - Fe(4) - P(10) C(199) - Fe(4) - P(10) C(196) - Fe(4) - S(17) C(198) - Fe(4) - S(17) C(198) - Fe(4) - S(16) C(198) - Fe(4) - S(16) P(10) - Fe(4) - S(16) P(11) - S(16) - Fe(3) P(11) - S(16) - Fe(3) P(6) - S(26) - Fe(2) C(1) - P(1) - C(5)	64.0(5) 38.2(5) 63.9(5) 108.6(5) 152.1(4) 93.7(4) 88.7(4) 152.6(4) 90.2(1) 123.5(4) 91.0(4) 88.7(1) 103.5(2) 103.7(2) 108.5(2) 108.3(2) 100.3(6) 102.2(6)
C(1) - P(1) - C(6) $C(1) - P(1) - Fe(1)$ $C(6) - P(1) - Fe(1)$ $C(1) - P(2) - C(16)$ $C(1) - P(2) - S(21)$ $C(5) - P(3) - C(34)$ $C(5) - P(3) - S(13)$ $C(34) - P(3) - S(13)$ $C(55) - P(4) - C(56)$ $C(55) - P(4) - Fe(2)$ $C(56) - P(4) - Fe(2)$ $C(56) - P(4) - Fe(2)$ $C(51) - P(5) - C(66)$ $C(51) - P(5) - S(30)$ $C(66) - P(5) - S(30)$ $C(55) - P(6) - C(90)$ $C(55) - P(6) - C(90)$	103.6(6) $114.0(4)$ $120.1(4)$ $115.2(6)$ $107.2(4)$ $106.1(5)$ $111.7(6)$ $105.4(4)$ $107.8(4)$ $103.5(6)$ $114.1(5)$ $119.4(4)$ $112.7(6)$ $106.1(4)$ $107.5(5)$ $111.2(6)$ $107.5(5)$	C(5)-P(1)-C(6) $C(5)-P(1)-Fe(1)$ $C(1)-P(2)-C(10)$ $C(10)-P(2)-C(16)$ $C(10)-P(2)-S(21)$ $C(5)-P(3)-C(40)$ $C(40)-P(3)-C(34)$ $C(40)-P(3)-S(13)$ $C(55)-P(4)-C(51)$ $C(51)-P(4)-C(56)$ $C(51)-P(4)-Fe(2)$ $C(51)-P(4)-Fe(2)$ $C(51)-P(5)-C(66)$ $C(60)-P(5)-C(66)$ $C(60)-P(5)-S(30)$ $C(55)-P(6)-C(84)$ $C(84)-P(6)-C(90)$ $C(84)-P(6)-S(26)$	103.2(6) $113.3(4)$ $113.3(6)$ $106.4(6)$ $108.2(4)$ $114.6(6)$ $109.4(6)$ $107.5(4)$ $100.3(6)$ $104.2(6)$ $113.0(4)$ $114.8(6)$ $107.7(6)$ $107.6(4)$ $115.8(6)$ $107.7(7)$ $105.3(5)$
C(90) - P(6) - S(26) $C(105) - P(7) - C(106)$ $C(105) - P(7) - Fe(3)$ $C(106) - P(7) - Fe(3)$ $C(101) - P(8) - C(110)$ $C(101) - P(8) - S(20)$ $C(110) - P(8) - S(20)$ $C(105) - P(9) - C(140)$ $C(105) - P(9) - S(12)$ $C(140) - P(9) - S(12)$ $C(140) - P(9) - S(12)$ $C(155) - P(10) - C(156)$ $C(155) - P(10) - Fe(4)$ $C(156) - P(10) - Fe(4)$ $C(151) - P(11) - C(166)$ $C(151) - P(11) - S(16)$	$109.0(5) \\ 104.6(6) \\ 113.9(4) \\ 119.3(4) \\ 118.2(6) \\ 107.0(4) \\ 105.5(5) \\ 114.4(6) \\ 105.1(4) \\ 106.6(4) \\ 102.6(6) \\ 114.8(4) \\ 119.1(4) \\ 110.8(6) \\ 106.2(4) \\ \end{tabular}$	C(105)-P(7)-C(101) C(101)-P(7)-C(106) C(101)-P(7)-Fe(3) C(101)-P(8)-C(116) C(116)-P(8)-C(110) C(116)-P(8)-S(20) C(105)-P(9)-C(134) C(134)-P(9)-C(140) C(134)-P(9)-S(12) C(155)-P(10)-C(151) C(151)-P(10)-C(156) C(151)-P(10)-Fe(4) C(151)-P(11)-C(160) C(160)-P(11)-S(16) C(160)-P(11)-S(16) C(100)-P(11)-S(16) C(100)-P(10)-S(16) C(100)-P(10)-S(16) C(100)-P(10)-S(16) C(100)-P(10)-S(16) C(100)-P(10)-S(16) C(100)-P(10)-S(16) C(100)-P(10)-S(16) C(100)-P(10)-S(16) C(100)-	100.2(6) 102.8(6) 113.7(4) 111.4(6) 104.3(6) 110.0(4) 113.7(6) 107.9(6) 108.7(4) 100.2(6) 104.4(6) 113.4(4) 113.3(6) 110.2(5) 107.5(4)

$Q(1(\zeta)) = D(11) = Q(1(\zeta))$	100 C(1)	$a(1 \in E) = b(1 = 2) = a(1 = 4)$	112 0/6)
C(100) - P(11) - S(10) C(155) - D(12) - C(100)	100.0(4)	C(155) - P(12) - C(164) C(194) - D(12) - C(100)	113.0(0)
C(155) - P(12) - C(190) C(155) - D(12) - C(17)	112.3(0) 106 6(5)	C(184) - P(12) - C(190) C(184) - D(12) - C(17)	103.8(0) 107.4(4)
C(155) - P(12) - S(17) C(190) - P(12) - S(17)	110.8(4)	C(104) - P(12) - S(17) C(2) - C(1) - P(2)	107.4(4) 125(1)
C(1) = C(1) = D(1)	116(1)	P(2) - C(1) - P(1)	116 6(6)
C(2) - C(1) - C(1)	122(1)	C(3) = C(2) = C(22)	118(1)
C(1) - C(2) - C(22)	121(1)	C(2) - C(2) - C(4)	125(1)
C(5) - C(4) - C(3)	121(1)	C(5) - C(4) - C(28)	120(1)
C(3) - C(4) - C(28)	119(1)	C(4) - C(5) - P(3)	127(1)
C(4) - C(5) - P(1)	118(1)	P(3) - C(5) - P(1)	113.5(7)
C(7) - C(6) - P(1)	115(1)	C(8) - C(7) - C(6)	112(1)
C(7) - C(8) - C(9)	115(1)	C(15) - C(10) - C(11)	118(1)
C(15) - C(10) - P(2)	121(1)	C(11) - C(10) - P(2)	121(1)
C(12) - C(11) - C(10)	121(1)	C(11) - C(12) - C(13)	120(1)
C(14) - C(13) - C(12)	121(2)	C(13) - C(14) - C(15)	120(1)
C(10) - C(15) - C(14)	120(1)	C(17) - C(16) - C(21)	122(1)
C(17) - C(16) - P(2)	119(1)	C(21)-C(16)-P(2)	119(1)
C(16) - C(17) - C(18)	120(1)	C(19) - C(18) - C(17)	119(2)
C(18) - C(19) - C(20)	121(1)	C(19) - C(20) - C(21)	119(2)
C(16) - C(21) - C(20)	118(1)	C(27) - C(22) - C(23)	119(1)
C(27) - C(22) - C(2)	122(1)	C(23) - C(22) - C(2)	119(1)
C(24) - C(23) - C(22)	119(1)	C(25) - C(24) - C(23)	$\perp \angle \perp (\angle)$ 1 2 2 (2)
C(26) - C(25) - C(24)	118(2) 120(2)	C(25) - C(26) - C(27)	123(2)
C(20) - C(21) - C(22) C(20) - C(28) - C(4)	120(2) 122(1)	C(29) - C(20) - C(33)	119(1)
C(29) - C(20) - C(4) C(28) - C(29) - C(30)	122(1) 121(1)	C(31) - C(30) - C(29)	119(1)
C(20) - C(21) - C(30)	121(1)	C(31) - C(32) - C(33)	120(1)
C(32) - C(33) - C(28)	120(1)	C(39) - C(34) - C(35)	121(1)
C(39) - C(34) - P(3)	120(1)	C(35) - C(34) - P(3)	119(1)
C(36) - C(35) - C(34)	119(1)	C(35) - C(36) - C(37)	120(1)
C(38) - C(37) - C(36)	120(1)	C(37) - C(38) - C(39)	120(1)
C(34)-C(39)-C(38)	120(1)	C(41)-C(40)-C(45)	118(1)
C(41)-C(40)-P(3)	118(1)	C(45)-C(40)-P(3)	123(1)
C(42)-C(41)-C(40)	121(1)	C(41)-C(42)-C(43)	121(1)
C(44) - C(43) - C(42)	119(1)	C(43) - C(44) - C(45)	121(1)
C(44) - C(45) - C(40)	120(1)	C(47) - C(46) - C(50)	108(1)
C(47) - C(46) - Fe(1)	71.9(8)	C(50) - C(46) - Fe(1)	70.3(7)
C(46) - C(47) - C(48)	108(1)	C(46) - C(47) - Fe(1)	69./(/)
C(48) - C(47) - Fe(1)	71.6(7)	C(47) - C(48) - C(49)	109(1)
C(47) - C(48) - Fe(1) C(50) - C(49) - C(48)	10.0(7) 107(1)	C(49) - C(40) - Fe(1) C(50) - C(49) - Fe(1)	71.0(0)
$C(48) - C(49) - F_{e}(1)$	70 1(8)	C(49) - C(50) - C(46)	109(1)
C(49) - C(50) - Fe(1)	73.7(8)	C(46) - C(50) - Fe(1)	70.4(8)
C(52) - C(51) - P(5)	127(1)	C(52) - C(51) - P(4)	117(1)
P(5) - C(51) - P(4)	113.2(7)	C(53) - C(52) - C(51)	121(1)
C(53) - C(52) - C(72)	118(1)	C(51) - C(52) - C(72)	121(1)
C(54)-C(53)-C(52)	125(1)	C(53)-C(54)-C(55)	121(1)
C(53)-C(54)-C(78)	119(1)	C(55)-C(54)-C(78)	120(1)
C(54) - C(55) - P(6)	126(1)	C(54) - C(55) - P(4)	116(1)
P(6) - C(55) - P(4)	115.3(8)	C(57) - C(56) - P(4)	116(1)
C(58) - C(57) - C(56)	11/(2)	C(59) - C(58) - C(57)	130(2)
C(65) - C(60) - C(61)	120(1)	C(65) - C(60) - P(5) C(62) - C(61) - C(60)	122(1) 110(1)
C(61) - C(60) - P(5) C(63) - C(62) - C(61)	110(1)	C(62) - C(61) - C(60)	123(1)
C(63) - C(64) - C(65)	119(1)	C(60) - C(65) - C(64)	120(1)
C(71) - C(66) - C(67)	120(1)	C(71) - C(66) - P(5)	121(1)
C(67) - C(66) - P(5)	118(1)	C(68) - C(67) - C(66)	116(1)
C(69) - C(68) - C(67)	123(1)	C(70) - C(69) - C(68)	120(1)
C(69) - C(70) - C(71)	122(1)	C(70)-C(71)-C(66)	120(1)
C(77)-C(72)-C(73)	119(1)	C(77)-C(72)-C(52)	121(1)
C(73) - C(72) - C(52)	121(1)	C(74) - C(73) - C(72)	120(1)
C(73) - C(74) - C(75)	121(1)	C(76) - C(75) - C(74)	119(1)
C(75) - C(76) - C(77)	$\perp 2 \perp (\perp)$	C(76) - C(77) - C(72)	121(1)
C(79) - C(78) - C(83)	⊥⊥9(⊥) 1 21 (1)	C(79) - C(78) - C(54)	⊥∠∪(⊥) 121/1)
C(3) = C(3) = C(3)	⊥⊿⊥(⊥) 120(2)	C(82) - C(81) - C(80)	⊥⊿⊥(⊥) 120(2)
C(81) - C(82) - C(83)	121(2)	C(82) - C(83) - C(78)	120(2)
C(89) - C(84) - C(85)	120(1)	C(89) - C(84) - P(6)	122(1)
C(85) - C(84) - P(6)	118(1)	C(86) - C(85) - C(84)	119(2)
C(87)-C(86)-C(85)	122(2)	C(86) - C(87) - C(88)	120(2)

	100(0)	$\alpha(0.1)$ $\alpha(0.0)$ $\alpha(0.0)$	110(0)
C(87) - C(88) - C(89)	120(2)	C(84) - C(89) - C(88)	TT8(Z)
C(91) - C(90) - C(95)	119(1)	C(91) - C(90) - P(6)	120(1)
C(0E) C(00) D(E)	100(1)	C(02) $C(01)$ $C(00)$	101(0)
C(95) - C(90) - P(6)	$\perp \angle \angle (\perp)$	C(92) - C(91) - C(90)	
C(91) - C(92) - C(93)	120(2)	C(94) - C(93) - C(92)	122(2)
C(93) - C(94) - C(95)	119(1)	C(90) = C(95) = C(94)	120(1)
C(97) - C(96) - C(100)	108(2)	C(97)-C(96)-Fe(2)	73(1)
C(100) - C(96) - Fe(2)	70(1)	C(98) - C(97) - C(96)	111(2)
$a(00), a(07), \pi_{-}(0)$	70(1)	C(90) = C(97) = C(90)	
C(98) - C(97) - Fe(2)	/2(1)	C(96) - C(97) - Fe(2)	/U(I)
C(97) - C(98) - C(99)	109(2)	C(97)-C(98)-Fe(2)	71.5(8)
$C(99) - C(98) - F_{0}(2)$	69 5 (8)	C(98) - C(99) - C(100)	104(1)
C(JJ) C(JO) FC(Z)	09.5(0)		101(1)
C(98)-C(99)-Fe(2)	72.0(8)	C(100)-C(99)-Fe(2)	68(1)
C(96) - C(100) - C(99)	108(2)	C(96) - C(100) - Fe(2)	72(1)
Q(00) = Q(100) = Q(0)	$\pm 0.0(2)$	Q(102) = Q(101) = D(0)	
C(99) - C(100) - Fe(2)	/ _ (_)	C(102) - C(101) - P(8)	IZS(I)
C(102) - C(101) - P(7)	117(1)	P(8) - C(101) - P(7)	115.7(7)
C(102) = C(102) = C(101)	121(1)	C(103) - C(102) - C(122)	110/1)
C(103) - C(102) - C(101)		C(103) - C(102) - C(122)	
C(101) - C(102) - C(122)	120(1)	C(104) - C(103) - C(102)	125(1)
C(103) - C(104) - C(105)	120(1)	C(103) - C(104) - C(128)	118(1)
a(105) a(104) a(100)	$\pm 20(\pm)$	C(103) $C(101)$ $C(120)$	104(1)
C(105) - C(104) - C(128)	$\perp \angle \angle (\perp)$	C(104) - C(105) - P(9)	124(I)
C(104) - C(105) - P(7)	119(1)	P(9) - C(105) - P(7)	113.6(7)
C(107) = C(106) = D(7)	114(1)	C(106) - C(107) - C(108)	112(1)
C(107) C(100) I(7)		C(100) $C(107)$ $C(100)$	100(1)
C(109) - C(108) - C(107)	132(4)	C(111) - C(110) - C(115)	122(I)
C(111) - C(110) - P(8)	120(1)	C(115) - C(110) - P(8)	118(1)
C(110) C(111) C(112)	110(2)	C(112) $C(112)$ $C(111)$	1 2 2 (2)
C(110) = C(111) = C(112)	110(2)	C(113) - C(112) - C(111)	
C(112)-C(113)-C(114)	119(2)	C(115)-C(114)-C(113)	121(2)
C(110) - C(115) - C(114)	119(2)	C(117) - C(116) - C(121)	118(1)
C(110) C(110) C(111)	1 2 2 (1)	C(121) = C(110) = C(121)	110(1)
C(117) - C(116) - P(8)	$\perp 23(\perp)$	C(121) - C(116) - P(8)	II9(I)
C(116) - C(117) - C(118)	121(1)	C(117) - C(118) - C(119)	119(1)
C(120) = C(110) = C(110)	120(1)	C(110) - C(120) - C(121)	122(1)
C(120) - C(119) - C(110)	120(1)	C(119) - C(120) - C(121)	
C(120) - C(121) - C(116)	120(1)	C(127) - C(122) - C(123)	117(1)
C(127) - C(122) - C(102)	122(1)	C(123) - C(122) - C(102)	121(1)
a(124) $a(122)$ $a(122)$	120(2)	Q(12E) Q(12A) Q(122)	100(0)
C(124) - C(123) - C(122)	$\perp \angle O(\angle)$	C(125) - C(124) - C(123)	$\perp \angle \angle (\angle)$
C(124)-C(125)-C(126)	120(2)	C(127) - C(126) - C(125)	117(2)
C(122) - C(127) - C(126)	124(2)	C(129) - C(128) - C(133)	119(1)
C(122) C(127) C(120)	101(1)	C(12) $C(120)$ $C(100)$	
C(129) - C(128) - C(104)	$\perp \angle \perp (\perp)$	C(133) - C(128) - C(104)	120(1)
C(128) - C(129) - C(130)	120(1)	C(131) - C(130) - C(129)	121(1)
C(130) - C(131) - C(132)	121(1)	C(131) - C(132) - C(133)	110(1)
C(130) - C(131) - C(132)		C(131) - C(132) - C(133)	
C(132) - C(133) - C(128)	121(1)	C(139) - C(134) - C(135)	120(1)
C(139) - C(134) - P(9)	120(1)	C(135) - C(134) - P(9)	121(1)
a(124) a(125) a(126)	110(1)	a(127) a(126) a(126)	101(1)
C(134) - C(135) - C(136)	$\pm \pm 0(\pm)$	C(137) - C(136) - C(135)	$\perp \angle \perp (\perp)$
C(136)-C(137)-C(138)	120(1)	C(139)-C(138)-C(137)	120(1)
C(138) - C(139) - C(134)	121(1)	C(141) - C(140) - C(145)	120(1)
a(141) a(140) b(0)	101(1)	Q(14F) = Q(140) = D(0)	110(1)
C(141) - C(140) - P(9)	$\perp \angle \perp (\perp)$	C(145) - C(140) - P(9)	TTO(T)
C(142) - C(141) - C(140)	120(1)	C(141) - C(142) - C(143)	120(1)
C(144) - C(143) - C(142)	120(1)	C(143) - C(144) - C(145)	120(1)
a(144) a(14E) a(140)	120(1)	O(147) O(146) O(160)	100(1)
C(144) - C(145) - C(140)	$\perp 20(\perp)$	C(147) - C(140) - C(150)	T00(T)
C(147)-C(146)-Fe(3)	69.6(7)	C(150)-C(146)-Fe(3)	70.8(7)
C(146) - C(147) - C(148)	108(1)	C(146) - C(147) - Fe(3)	71.9(7)
C(1/8) = C(1/7) = C(2)	60 8/71	C(1/Q) = C(1/Q) = C(1/Q)	100/11
C(140) - C(147) - Fe(3)	09.0(7)	C(149) - C(140) - C(147)	T00(T)
C(149)-C(148)-Fe(3)	73.0(7)	C(147)-C(148)-Fe(3)	70.2(7)
C(150) - C(149) - C(148)	109(1)	C(150) - C(149) - Fe(3)	$70 \ 8(7)$
$a(149) a(140) E_2(2)$	(2)	Q(140) Q(1E0) Q(146)	100/1)
C(140) - C(149) - Fe(3)	00.4(7)	C(149) - C(150) - C(146)	T00(T)
C(149)-C(150)-Fe(3)	71.3(7)	C(146)-C(150)-Fe(3)	69.5(7)
C(152) - C(151) - P(11)	128(1)	C(152) - C(151) - P(10)	116.6(8)
$\nabla (-22) = (-$		a(1E1) a(1E2) a(1E2)	100/11
F(TT) - C(T2T) - F(T0)	⊥⊥J.⊥(/)	C(151) - C(152) - C(153)	⊥∠3(⊥)
C(151) - C(152) - C(172)	120(1)	C(153)-C(152)-C(172)	117(1)
C(154) - C(153) - C(152)	124(1)	C(155) - C(154) - C(153)	122(1)
$a(1 \Gamma \Gamma) a(1 \Gamma A) a(1 \Gamma A)$	+ 4 + (+ / 1 0 0 / 1 \	a(1E2) a(1E4) a(1E2)	
C(155) - C(154) - C(1/8)	$\perp \angle \angle (\perp)$	C(153) - C(154) - C(1/8)	エエノ(上)
C(154)-C(155)-P(12)	125(1)	C(154)-C(155)-P(10)	116(1)
P(12) - C(155) - P(10)	116 2(7)	C(157) - C(156) - P(10)	114 2/81
2(10) = 0(100) = (10)	±±0,4(//	$\begin{array}{c} (1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 $	110/0/
C(158) - C(157) - C(156)	⊥⊥3(⊥)	C(157) - C(158) - C(159)	⊥⊥5(1)
C(161)-C(160)-C(165)	117(1)	C(161)-C(160)-P(11)	119(1)
C(165) - C(160) - D(11)	125(1)	C(162) - C(161) - C(160)	101(1)
$C(\pm 0.5) = C(\pm 0.0) = P(\pm 1.5)$		C(102) = C(101) = C(100)	
C(163)-C(162)-C(161)	120(l)	C(162)-C(163)-C(164)	121(1)
C(165) - C(164) - C(163)	119(1)	C(164) - C(165) - C(160)	123(1)
$\alpha(171) \alpha(166) \alpha(167)$	110(1)	O(171) O(166) D(11)	120(1)
C(T)T) = C(TOD) = C(TD)	$\perp \perp \supset (\perp)$	C(T T) - C(T D D) - F(T T)	$\perp \angle \cup (\perp)$
C(167)-C(166)-P(11)	121(1)	C(168)-C(167)-C(166)	120(1)
C(169) - C(168) - C(167)	120(1)	C(170) - C(169) - C(168)	121(1)
a(160) a(170) a(171)	110(1)	a(166) a(171) a(170)	101/1\
$C(\pm 09) - C(\pm 70) - C(\pm 71)$	$\perp \perp \Im (\perp)$	C(100) - C(1/1) - C(1/0)	$\perp \angle \perp (\perp)$
C(177)-C(172)-C(173)	118(1)	C(177)-C(172)-C(152)	121(1)
C(173) - C(172) - C(152)	120(1)	C(174) - C(173) - C(172)	119/11
(-, -, -) $((-, -)$ $((-, -)$ $(-, -)$		(-, -, -) = (-, -)	/

C(175) C(174) C(172)
C(1/5) - C(1/4) - C(1/5)
C(1/5) - C(1/6) - C(1/7)
C(183) - C(178) - C(179)
C(179) - C(178) - C(154)
C(181) - C(180) - C(179)
C(181) - C(182) - C(183)
C(101) - C(102) - C(103)
C(185) - C(184) - C(189)
C(189) - C(184) - P(12)
C(187) - C(186) - C(185)
C(187) - C(188) - C(189)
C(195) - C(190) - C(191)
C(191) - C(190) - P(12)
C(193) - C(192) - C(191)
C(195) - C(194) - C(193)
C(1)(1) = C(1)(1)(1) = C(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(
C(197) - C(196) - C(200)
C(200) - C(196) - Fe(4)
C(196)-C(197)-Fe(4)
C(199) - C(198) - C(197)
C(197)-C(198)-Fe(4)
C(198) - C(199) - Fe(4)
C(199) - C(200) - C(196)
C(1)(1) = C(2)(1) = C(1)(1)
C(I 90) - C(Z 00) - Fe(4)

C(174)-C(175)-C(176)	120(1)
C(172) - C(177) - C(176)	122(1)
C(183)-C(178)-C(154)	122(1)
C(178) - C(179) - C(180)	118(1)
C(180) - C(181) - C(182)	121(1)
C(178) - C(183) - C(182)	120(1)
C(185) - C(184) - P(12)	121(1)
C(184) - C(185) - C(186)	122(1)
C(188) - C(187) - C(186)	122(1)
C(188) - C(189) - C(184)	119(1)
C(195) - C(190) - P(12)	120(1)
C(190) - C(191) - C(192)	121(1)
C(192) - C(193) - C(194)	120(1)
C(194) - C(195) - C(190)	118(1)
C(197)-C(196)-Fe(4)	72.4(7)
C(196) - C(197) - C(198)	107(1)
C(198)-C(197)-Fe(4)	71.2(7)
C(199) - C(198) - Fe(4)	71.5(7)
C(198) - C(199) - C(200)	108(1)
C(200)-C(199)-Fe(4)	68.7(8)
C(199) - C(200) - Fe(4)	73.1(8)
Cl(1)#2-C(201)-Cl(2)#1	112(1)
	C(174) - C(175) - C(176) $C(172) - C(177) - C(176)$ $C(183) - C(178) - C(154)$ $C(178) - C(179) - C(180)$ $C(180) - C(181) - C(182)$ $C(178) - C(183) - C(182)$ $C(185) - C(184) - P(12)$ $C(184) - C(185) - C(186)$ $C(188) - C(187) - C(186)$ $C(188) - C(187) - C(186)$ $C(195) - C(190) - P(12)$ $C(190) - C(191) - C(192)$ $C(192) - C(193) - C(194)$ $C(194) - C(195) - C(190)$ $C(197) - C(196) - Fe(4)$ $C(198) - C(197) - Fe(4)$ $C(198) - C(199) - Fe(4)$ $C(199) - C(200) - Fe(4)$ $C(191) + 2 - C(201) - C(2) + 1$

-

620

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) $\alpha(^{\circ})$ β(°) γ(°) $V(Å^3)$ Ζ $d(g-cm^{-3})$ F(000) $\mu(\text{cm}^{-1})$ Absorption corrections Diffractometer X-ray source λ(Å) Monochromator T (K) Scan mode Maximum θ HKL ranges Reflections measured Unique data

 $C_{48.50}H_{41}ClMnO_3P_3S_2 = C_{48}H_{40}MnO_3P_3S_2, 0.5 CH_2Cl_2$ 919.23 yellow block 0.26x0.22x0.20 orthorhombic Pbca 14.8150(10) 22.8510(10) 25.5540(10) 90.00 90.00 90.00 8651.0(8) 8 1.412 3800 0.617 multi-scan; 0.8560 min, 0.8865 max KappaCCD ΜοΚα 0.71069 graphite 150.0(10) phi and omega scans 30.03 -20 20 ; -31 31 ; -35 35 23625 12574

Rint	0.0282
Reflections used	8984
Criterion	I > 2sigma(I)
Refinement type	Fsqd
Hydrogen atoms	mixed
Parameters refined	515
Reflections / parameter	17
wR2	0.1394
R1	0.0468
Weights a, b	0.0815;0.0000
GoF	1.017
difference peak / hole (e Å ⁻³)	0.912(0.074) / -0.584(0.074)
N. (

Note: The compound crystallizes with half a CH_2Cl_2 molecule located near a symmetry center. Anisotropic refinement led to non-positively defined U's for its carbon atom. Therefore the solvate was accounted for using the Platon SQUEEZE function.

Table 3. Bond lengths (A) and angles (deg) for ${\bf 620}$

$\begin{array}{l} Mn(1) - C(48) \\ Mn(1) - C(47) \\ Mn(1) - S(1) \\ S(1) - P(2) \\ P(1) - C(1) \\ P(1) - C(6) \\ P(2) - C(16) \\ P(3) - C(5) \\ P(3) - C(5) \\ P(3) - C(40) \\ O(2) - C(47) \\ C(1) - C(2) \\ C(2) - C(22) \\ C(4) - C(5) \\ C(6) - C(7) \\ C(8) - C(9) \\ C(10) - C(15) \\ C(10) - C(15) \\ C(12) - C(13) \\ C(14) - C(15) \\ C(16) - C(21) \\ C(20) - C(21) \\ C(22) - C(23) \\ C(24) - C(25) \\ C(24) - C(25) \\ C(26) - C(27) \\ C(28) - C(29) \\ C(30) - C(31) \\ C(32) - C(33) \\ C(34) - C(35) \\ C(36) - C(37) \\ C(38) - C(39) \\ C(40) - C(41) \\ C(42) - C(43) \\ C(44) - C(45) \end{array}$	$\begin{array}{c} 1.783(2)\\ 1.829(2)\\ 2.4002(6\\ 2.0212(7\\ 1.785(2)\\ 1.838(2)\\ 1.809(2)\\ 1.757(2)\\ 1.814(2)\\ 1.144(3)\\ 1.413(3)\\ 1.413(3)\\ 1.494(2)\\ 1.4403(3)\\ 1.519(3)\\ 1.519(3)\\ 1.519(3)\\ 1.516(3)\\ 1.392(4)\\ 1.392(4)\\ 1.392(3)\\ 1.392(3)\\ 1.392(3)\\ 1.369(3)\\ 1.380(3)\\ 1.380(3)\\ 1.387(4)\\ 1.389(3)\\ 1.387(3)\\ 1.382(3)\\ 1.396(3)\\ 1.396(3)\\ 1.398(3)\\ 1.398(3)\\ 1.398(3)\\ 1.383(3)\\ 1.397(3)\\ 1.383(3)\\ 1.397(3)\\ 1.383(3)\\ 1.397(3)\\ 1.397(3)\\ 1.383(3)\\ 1.397(3)$	$\begin{array}{l} Mn(1) - C(46) \\ Mn(1) - P(1) \\ Mn(1) - S(2) \\ S(2) - P(3) \\ P(1) - C(5) \\ P(2) - C(1) \\ P(2) - C(10) \\ P(3) - C(34) \\ O(1) - C(46) \\ O(3) - C(48) \\ C(2) - C(3) \\ C(3) - C(4) \\ C(4) - C(28) \\ C(7) - C(8) \\ C(10) - C(11) \\ C(10) - C(11) \\ C(10) - C(11) \\ C(11) - C(12) \\ C(13) - C(14) \\ C(16) - C(17) \\ C(16) - C(17) \\ C(17) - C(18) \\ C(19) - C(20) \\ C(22) - C(27) \\ C(23) - C(24) \\ C(25) - C(26) \\ C(28) - C(33) \\ C(31) - C(32) \\ C(31) - C(38) \\ C(40) - C(45) \\ C(41) - C(42) \\ C(43) - C(44) \\ \end{array}$	1.792(2) $2.2937(6)$ $2.4080(6)$ $2.0145(7)$ $1.800(2)$ $1.760(2)$ $1.811(2)$ $1.159(3)$ $1.155(3)$ $1.400(3)$ $1.414(2)$ $1.501(3)$ $1.498(3)$ $1.381(3)$ $1.381(3)$ $1.384(3)$ $1.384(3)$ $1.389(3)$ $1.381(4)$ $1.390(3)$ $1.401(3)$ $1.388(4)$ $1.395(3)$ $1.377(4)$ $1.395(3)$ $1.377(4)$ $1.384(3)$ $1.389(3)$ $1.377(4)$ $1.395(3)$ $1.380(3)$ $1.384(3)$ $1.380(3)$ $1.384(3)$ $1.380(3)$ $1.384(3)$ $1.380(3)$ $1.384(3)$ $1.380(3)$ $1.384(3)$ $1.384(3)$ $1.380(3)$ $1.384(3)$ $1.384(3)$ $1.384(3)$ $1.384(3)$ $1.384(3)$ $1.384(3)$ $1.384(3)$ $1.384(3)$ $1.384(3)$ $1.384(3)$ $1.384(3)$ $1.384(3)$ $1.384(3)$ $1.384(3)$ $1.384(3)$ $1.384(3)$ $1.384(3)$ $1.383(3)$
C(48) - Mn(1) - C(46) $C(46) - Mn(1) - C(47)$ $C(46) - Mn(1) - P(1)$ $C(48) - Mn(1) - S(1)$ $C(47) - Mn(1) - S(2)$ $C(47) - Mn(1) - S(2)$ $C(47) - Mn(1) - S(2)$ $P(3) - S(2) - Mn(1)$ $C(1) - P(1) - C(6)$ $C(1) - P(1) - Mn(1)$ $C(6) - P(1) - Mn(1)$ $C(1) - P(2) - C(10)$ $C(10) - P(2) - S(1)$	$\begin{array}{c} 90.6(1)\\ 90.5(1)\\ 93.52(7)\\ 178.06(8)\\ 87.20(7)\\ 90.23(8)\\ 87.50(8)\\ 88.01(2)\\ 105.37(3)\\ 104.4(1)\\ 114.83(7)\\ 118.22(7)\\ 114.4(1)\\ 109.09(6)\\ 108.40(7) \end{array}$	$\begin{array}{c} C(48) - Mn(1) - C(47) \\ C(48) - Mn(1) - P(1) \\ C(47) - Mn(1) - P(1) \\ C(46) - Mn(1) - S(1) \\ P(1) - Mn(1) - S(2) \\ P(1) - Mn(1) - S(2) \\ P(2) - S(1) - Mn(1) \\ C(1) - P(1) - C(5) \\ C(5) - P(1) - C(6) \\ C(5) - P(1) - Mn(1) \\ C(1) - P(2) - C(16) \\ C(16) - P(2) - C(10) \\ C(16) - P(2) - S(1) \\ C(5) - P(3) - C(34) \end{array}$	$\begin{array}{c} 93.5(1)\\ 92.17(7)\\ 172.95(7)\\ 91.15(8)\\ 86.96(2)\\ 177.91(7)\\ 88.35(2)\\ 106.33(3)\\ 100.72(8)\\ 102.3(1)\\ 114.14(6)\\ 109.8(1)\\ 108.2(1)\\ 106.64(7)\\ 113.3(1)\\ \end{array}$

C(5)-P(3)-C(40) C(5)-P(3)-S(2) C(40)-P(3)-S(2) C(2)-C(1)-P(1) C(2)-C(1)-P(1) C(2)-C(2)-C(1) C(2)-C(2) C(2)-C(2)-C(2) C(2)-C(2)-C(2) C(2)-C(2)-C(2) C(2)-C(2)-C(2) C(2)-C(2)-C(2) C(2)-C(2)-C(2) C(2)-C(2)-C(2)-C(2) C(2)-C(2)-C(2)-C(2) C(2)-C(2)-C(2)-C(2) C(2)-C(2)-C(2)-C(2)-C(2)-C(2)-C(2) C(2)-C(2)-C(2)-C(2)-C(2)-C(2)-C(2)-C(2)-	
C(3) - C(2) - C(1) C(1) - C(2) - C(22) C(5) - C(4) - C(3) C(3) - C(4) - C(28) C(4) - C(5) - P(1) C(7) - C(6) - P(1)	
C(7) - C(8) - C(9) $C(11) - C(10) - P(2)$ $C(10) - C(11) - C(12)$ $C(14) - C(13) - C(12)$ $C(14) - C(15) - C(10)$	
C(14)-C(15)-C(10) C(17)-C(16)-P(2) C(16)-C(17)-C(18) C(18)-C(19)-C(20) C(20)-C(21)-C(16) C(20)-C(21)-C(16) C(20)-C(21)-C(20) C(20)-C(21)-C(20) C(20)-C(21)-C(20) C(20)-C(21)-C(20) C(20)-C(20)-C(20) C(20)-C(20)-C(20)-C(20) C(20)-C(20)-C(20)-C(20) C(20)-C(20)-C(20)-C(20) C(20)-C(20)-C(20)-C(20)-C(20) C(20)-C(20)-C(20)-C(20)-C(20)-C(20) C(20)-C(20	
$\begin{array}{c} C(27) - C(22) - C(2) \\ C(22) - C(23) - C(24) \\ C(24) - C(25) - C(26) \\ C(26) - C(27) - C(22) \\ C(33) - C(28) - C(4) \end{array}$	
C(30) - C(29) - C(28) C(32) - C(31) - C(30) C(32) - C(33) - C(28) C(39) - C(34) - P(3) C(36) - C(35) - C(34)	
C(38)-C(37)-C(36)C(38)-C(39)-C(34)C(45)-C(40)-P(3)C(42)-C(41)-C(40)C(42)-C(41)-C(40)	
C(42)-C(43)-C(44) C(40)-C(45)-C(44) O(2)-C(47)-Mn(1)	

$110.2(1) \\108.98(7) \\110.55(7) \\116.8(1) \\122.4(2) \\120.9(2) \\122.3(2) \\116.4(2) \\117.2(1) \\115.7(2) \\111.8(2) \\120.7(2) \\120.7(2) \\120.1(2) \\120.1(2) \\120.1(2) \\119.5(2) \\124.7(2) \\119.6(2) \\119.3(2) \\120.5(2) \\120.2(2) \\119.4(2) \\120.5(2) \\12$	C(34) - P(3) - C(40) $C(34) - P(3) - S(2)$ $C(2) - C(1) - P(2)$ $P(2) - C(1) - P(1)$ $C(3) - C(2) - C(22)$ $C(2) - C(3) - C(4)$ $C(5) - C(4) - C(28)$ $C(4) - C(5) - P(3)$ $P(3) - C(5) - P(1)$ $C(8) - C(7) - C(6)$ $C(11) - C(10) - C(15)$ $C(15) - C(10) - P(2)$ $C(11) - C(12) - C(13)$ $C(13) - C(14) - C(15)$ $C(17) - C(16) - C(21)$ $C(21) - C(16) - P(2)$ $C(19) - C(18) - C(17)$ $C(21) - C(20) - C(19)$ $C(27) - C(22) - C(23)$ $C(23) - C(22) - C(23)$ $C(25) - C(26) - C(27)$ $C(33) - C(28) - C(29)$	$107.6(1) \\ 106.12(7) \\ 122.8(1) \\ 115.5(1) \\ 116.6(2) \\ 124.0(2) \\ 124.0(2) \\ 126.9(1) \\ 114.9(1) \\ 115.3(2) \\ 119.1(2) \\ 119.4(2) \\ 120.8(2) \\ 119.0(2) \\ 121.3(2) \\ 120.2(2) \\ 121.0(2) \\ 120.2(2)$
113.7(2) 111.8(2)	C(11) - C(10) - C(15)	119.1(2)
120.7(2)	C(15)-C(10)-P(2)	119.9(2)
121.0(2)	C(11) - C(12) - C(13)	119.4(2)
120.1(2) 119.5(2)	C(13) - C(14) - C(15) C(17) - C(16) - C(21)	120.0(2) 119.0(2)
124.7(2)	C(21) - C(16) - P(2)	116.3(2)
119.6(2)	C(19) - C(18) - C(17)	121.3(2)
119.3(2) 120 5(2)	C(21) - C(20) - C(19) C(27) - C(22) - C(23)	119 1(2)
119.9(2)	C(23) - C(22) - C(2)	121.0(2)
120.2(2)	C(25) - C(24) - C(23)	120.2(2)
119.4(2) 120 5(2)	C(25) - C(26) - C(27)	120.6(2)
120.5(2) 121.5(2)	C(23) - C(23) - C(29) C(29) - C(28) - C(4)	118.9(2) 119.6(2)
120.1(2)	C(31) - C(30) - C(29)	120.2(2)
119.8(2)	C(31) - C(32) - C(33)	120.5(2)
120.4(2) 123.4(2)	C(35) - C(34) - C(35) C(35) - C(34) - P(3)	119.0(2) 117.0(2)
119.9(2)	C(35) - C(36) - C(37)	120.7(2)
119.6(2)	C(37) - C(38) - C(39)	120.4(2)
120.1(1)	C(45) - C(40) - C(41) C(41) - C(40) - P(3)	129.4(2) 120.4(2)
119.7(2)	C(43) - C(42) - C(41)	120.2(2)
120.8(2)	C(43) - C(44) - C(45)	118.8(2)
120.9(2)	O(1) - C(46) - Mn(1) O(3) - C(48) - Mn(1)	177.1(2)
工/0.4(4)		1/0.3(Z)

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) $\alpha(^{\circ})$ β(°) $\gamma(^{\circ})$ $V(Å^3)$ Ζ $d(g-cm^{-3})$ F(000)

621

 $C_{48}H_{40}MnO_3P_3S_2 \\$ 876.77 red plate 0.22x0.15x0.05 monoclinic $P2_1$ 10.3740(10) 9.3240(10) 22.0760(10) 90.00 91.7340(10) 90.00 2134.4(3) 2 1.364 908

μ (cm ⁻¹)	0.561
Absorption corrections	multi-scan; 0.8865 min, 0.9725 max
Diffractometer	KappaCCD
X-ray source	ΜοΚα
$\lambda(\text{Å})$	0.71069
Monochromator	graphite
T (K)	150.0(1)
Scan mode	phi and omega scans
Maximum θ	27.48
HKL ranges	-12 13 ; -12 12 ; -28 28
Reflections measured	20760
Unique data	20760
Rint	0.0000
Reflections used	17631
Criterion	I > 2sigma (I)
Refinement type	Fsqd
Hydrogen atoms	mixed
Parameters refined	537
Reflections / parameter	32
wR2	0.1499
R1	0.0578
Flack's parameter	-0.02(2)
Weights a, b	0.0621 ; 3.6771
GoF	1.076
difference peak / hole (e Å ⁻³)	0.569(0.111) / -0.631(0.111)

Note: Crystals proved to be twinned by 180 degrees rotation about the -1 0 1 lattice direction. Integration of the frames was hence performed accordingly in evalccd(1). The structure was solved using a non-overlapping subset produced by sadabs(2) and subsequently refined as a twin in SHELXL; BASF = 0.498.

1) An intensity evaluation method: EVAL-14 A. J. M. Duisenberg, L. M. J. Kroon-Batenburg and A. M. M. Schreurs J. Appl. Cryst. (2003). 36, 220-229

2) Sheldrick, G. M. (1996) SADABS: A Program for Absorption Correction of Crystallographic Data (Univ. of Göttingen, Göttingen, Germany).

Table 3. Bond lengths (A) and angles (deg) for $621\,$

Mn(1)-C(47)	1.797(4)	Mn(1)-C(48)	1.831(4)
Mn(1) - C(46)	1.858(4)	Mn(1) - P(1)	2.297(1)
Mn(1) - S(1)	2.401(1)	Mn(1) - S(2)	2.409(1)
S(1) - P(2)	2.034(2)	S(2) - P(3)	2.030(2)
P(1) - C(1)	1.783(4)	P(1) - C(5)	1.784(4)
P(1) - C(6)	1.832(4)	P(2) - C(1)	1.765(4)
P(2) - C(16)	1 806(4)	P(2) - C(10)	1 806(4)
P(3) - C(5)	1.766(4)	P(3) - C(40)	1.810(4)
P(3) - C(34)	1,827(4)	O(1) - C(46)	1.147(4)
O(2) - C(47)	1.158(5)	O(3) - C(48)	1.151(5)
C(1) - C(2)	1.398(5)	C(2) - C(3)	1.413(5)
C(2) - C(22)	1.488(5)	C(3) - C(4)	1.399(5)
C(4) - C(5)	1.412(5)	C(4) - C(28)	1.499(6)
C(6) - C(7A)	1.28(1)	C(6) - C(7)	1.409(8)
C(7) - C(8)	1.59(1)	C(8) - C(9)	1.48(2)
C(7A) - C(8A)	1.58(2)	C(8A) - C(9A)	1.55(2)
C(10) - C(11)	1.394(6)	C(10) - C(15)	1.397(6)
C(11) - C(12)	1.373(6)	C(12) - C(13)	1.376(7)
C(13) - C(14)	1.386(7)	C(14) - C(15)	1.382(5)
C(16) - C(21)	1.376(6)	C(16) - C(17)	1.416(5)
C(17)-C(18)	1.383(6)	C(18) - C(19)	1.375(8)
C(19)-C(20)	1.378(7)	C(20)-C(21)	1.389(6)
C(22)-C(23)	1.379(6)	C(22)-C(27)	1.405(6)
C(23)-C(24)	1.395(6)	C(24)-C(25)	1.385(7)
C(25)-C(26)	1.341(7)	C(26)-C(27)	1.389(6)
C(28)-C(33)	1.392(6)	C(28)-C(29)	1.399(6)
C(29)-C(30)	1.386(6)	C(30)-C(31)	1.372(7)
C(31)-C(32)	1.383(8)	C(32)-C(33)	1.378(6)

C(34)-C(39)	1.381(5)	C(34) - C(35)	1.385(6)
C(35)-C(36)	1.382(6)	C(36) - C(37)	1.382(6)
C(37)-C(38)	1.370(7)	C(38) - C(39)	1.378(6)
C(40)-C(45)	1.399(6)	C(40) - C(41)	1.405(6)
C(41)-C(42)	1.373(6)	C(42) - C(43)	1.377(8)
C(43)-C(44)	1.372(8)	C(44) - C(45)	1.376(6)
C(47) - Mn(1) - C(48) C(48) - Mn(1) - P(1) C(47) - Mn(1) - S(1) C(47) - Mn(1) - S(2) C(46) - Mn(1) - S(2) C(46) - Mn(1) - S(2) P(3) - S(2) - Mn(1) C(1) - P(1) - C(6) C(1) - P(1) - Mn(1) C(1) - P(2) - C(10) C(1) - P(2) - S(1) C(10) - P(2) - S(1) C(5) - P(3) - C(34) C(5) - P(3) - S(2) C(34) - P(3) - S(2) C(2) - C(1) - P(1) C(1) - C(2) - C(3) C(3) - C(2) - C(22) C(3) - C(4) - C(5) C(5) - C(4) - C(5) C(5) - C(4) - C(5) C(5) - C(4) - C(7) C(7) - C(6) - P(1) C(7A) - C(6) - C(7) C(7) - C(6) - P(1) C(11) - C(10) - P(2) C(12) - C(11) - C(10) C(12) - C(13) - C(14) C(11) - C(10) - P(2) C(12) - C(11) - C(10) C(21) - C(16) - P(2) C(12) - C(11) - C(10) C(21) - C(16) - P(2) C(18) - C(17) - C(16) C(18) - C(2) - C(20) C(23) - C(22) - C(24) C(26) - C(27) - C(22) C(33) - C(28) - C(4) C(26) - C(27) - C(22) C(33) - C(28) - C(4) C(30) - C(29) - C(28) C(30) - C(31) - C(32) C(30) - C(31) - C(32) C(32) - C(33) - C(28) C(30) - C(31) - C(32) C(32) - C(33) - C(28) C(30) - C(31) - C(32) C(32) - C(33) - C(28) C(30) - C(31) - C(32) C(32) - C(33) - C(34) C(38) - C(37) - C(36) C(38) - C(37) - C(36) C(38) - C(39) - C(34) C(42) - C(41) - C(40) - P(3) C(44) - C(41) - C(40) - P(3) C(44) - C(42) - C(41) - C(40) - P(3) C(44) - C(42) - C(41) - C(40) - P(3) C(44) - C(42) - C(41) - C(40) - P(3) C(44) - C(41) - C(40) - C(41) - C(40) - C(40) - C(41) - C(40) - C(41) - C(40) - C(41) - C(40) - C	87.7(2) 170.5(2) 93.8(1) 93.8(2) 94.2(1) 100.0(2) 92.7(1) 165.14(3) 103.04(5) 104.5(2) 113.3(1) 115.6(2) 113.1(2) 107.8(1) 108.4(2) 110.7(2) 108.9(1) 108.8(1) 119.5(3) 122.6(3) 116.4(3) 122.0(3) 121.0(3) 119.6(3) 71.9(6) 126.4(5) 109(1) 117(1) 118.5(3) 120.8(4) 120.3(4) 120.3(4) 120.3(4) 120.4(5) 119.9(4) 120.6(4) 122.3(3) 120.0(5) 119.9(4) 120.8(4) 120.8(4) 120.0(5) 119.9(4) 120.8(4)	C(47) - Mn(1) - C(46) $C(47) - Mn(1) - P(1)$ $C(46) - Mn(1) - P(1)$ $C(48) - Mn(1) - S(1)$ $P(1) - Mn(1) - S(2)$ $P(1) - Mn(1) - S(2)$ $P(2) - S(1) - Mn(1)$ $C(1) - P(1) - C(5)$ $C(5) - P(1) - C(6)$ $C(5) - P(1) - Mn(1)$ $C(1) - P(2) - C(16)$ $C(16) - P(2) - C(10)$ $C(16) - P(3) - C(34)$ $C(40) - P(3) - C(34)$ $C(40) - P(3) - C(22)$ $C(2) - C(1) - P(1)$ $C(1) - C(2) - C(22)$ $C(4) - C(3) - C(28)$ $C(4) - C(5) - P(1)$ $C(7A) - C(6) - P(1)$ $C(6) - C(7A) - C(8A)$ $C(11) - C(10) - C(15)$ $C(15) - C(10) - P(2)$ $C(11) - C(12) - C(13)$ $C(21) - C(16) - P(2)$ $C(11) - C(12) - C(13)$ $C(21) - C(16) - P(2)$ $C(11) - C(12) - C(13)$ $C(21) - C(16) - P(2)$ $C(11) - C(12) - C(13)$ $C(21) - C(16) - P(2)$ $C(11) - C(12) - C(13)$ $C(21) - C(16) - P(2)$ $C(11) - C(12) - C(13)$ $C(21) - C(16) - P(2)$ $C(11) - C(12) - C(23)$ $C(22) - C(23)$ $C(23) - C(24) - C(23)$ $C(25) - C(24) - C(23)$ $C(33) - C(32) - C(31)$ $C(37) - C(36) - C(35)$ $C(37) - C(38) - C(39)$ $C(45) - C(40) - C(41)$ $C(41) - C(42) - C(43)$ $C(44) - C(42) - C(43)$	$\begin{array}{c} 83.2(2)\\ 176.4(2)\\ 95.5(1)\\ 89.1(1)\\ 82.95(4)\\ 86.1(1)\\ 83.33(4)\\ 103.84(5)\\ 100.8(2)\\ 106.1(2)\\ 114.9(1)\\ 110.9(2)\\ 107.2(2)\\ 107.2(2)\\ 109.4(1)\\ 113.6(2)\\ 106.9(2)\\ 107.8(2)\\ 127.4(3)\\ 113.1(2)\\ 125.0(3)\\ 117.0(3)\\ 125.0(3)\\ 117.0(3)\\ 128.0(3)\\ 111.8(2)\\ 128.6(6)\\ 117.2(7)\\ 113(1)\\ 118.6(4)\\ 122.6(3)\\ 120.1(5)\\ 119.9(5)\\ 119.5(4)\\ 117.9(3)\\ 119.2(5)\\ 119.5(4)\\ 117.9(3)\\ 119.2(5)\\ 120.2(4)\\ 122.0(4)\\ 122.0(4)\\ 122.1(3)\\ 120.0(5)\\ 120.$
C(44) - C(45) - C(40)	120.2(5)	O(1) - C(46) - Mn(1)	170.3(3)
O(2) - C(47) - Mn(1)	178.9(5)	O(3) - C(48) - Mn(1)	173.6(3)

Compound 622 Molecular formula $C_{48.50}H_{41}ClO_3P_3ReS_2 = C_{48}H_{40}O_3P_3ReS_2, 0.5 CH_2Cl_2$ Molecular weight 1050.49 Crystal habit lemon yellow plate 0.14x0.10x0.04 Crystal dimensions(mm) orthorhombic Crystal system Space group Pbca a(Å) 14.835(5) b(Å) 23.106(5) c(Å) 25.547(5) $\alpha(^{\circ})$ 90.00 β(°) 90.00 $\gamma(^{\circ})$ 90.00 V(Å³) 8757(4) Ζ 8 $d(g-cm^{-3})$ 1.594 F(000) 4200 $\mu(cm^{-1})$ 3.084 multi-scan; 0.6721 min, 0.8866 max Absorption corrections Diffractometer KappaCCD ΜοΚα X-ray source λ(Å) 0.71069 Monochromator graphite T (K) 150.0(10) Scan mode phi and omega scans Maximum θ 30.03 HKL ranges -20 20 ; -32 32 ; -35 35 Reflections measured 24458 Unique data 12772 Rint 0.0323 Reflections used 9299 Criterion I > 2sigma(I) Refinement type Fsqd Hydrogen atoms mixed 544 Parameters refined 17 Reflections / parameter wR2 0.0958 R1 0.0361 Weights a, b 0.0509; 0.0000 GoF 1.027 difference peak / hole (e Å⁻³) 2.504(0.132) / -2.028(0.132) TABLE XX. E

XX. Bond lengths (A	and angles	(deg) for 622	
Re (1) -C (48)	1.922(3)	Re (1) -C (46)	1.923(3)
Re (1) -C (47)	1.953(3)	Re (1) -P (1)	2.423(1)
Re (1) -S (1)	2.5074(8	Re (1) -S (2)	2.514(1)
S (1) -P (2)	2.026(1)	S (2) -P (3)	2.019(1)
P (1) -C (1)	1.786(3)	P (1) -C (5)	1.803(3)

D(1) C(6)	1 0 2 5 / 2)	D(2) C(1)	1 756/2)
P(1) = C(0)	1.035(3)	P(2) = C(1)	1.756(5)
P(2)-C(10)	1.809(3)	P(2)-C(16)	1.811(3)
P(3)-C(5)	1.763(3)	P(3)-C(40)	1.810(3)
P(3) = C(31)	1 811 (3)	O(1) = C(16)	1 150(1)
	1.011(3)	O(1) C(40)	1.100(4)
O(2) - C(47)	1.144(4)	O(3)-C(48)	1.139(4)
C(1) - C(2)	1.424(4)	C(2) - C(3)	1.404(4)
C(2) - C(22)	1 100(1)	C(2) = C(4)	1 1 0 7 (1)
C(2) = C(22)	1.400(4)	C(3) = C(4)	1.407(4)
C(4)-C(5)	1.405(4)	C(4)-C(28)	1.491(4)
C(6) - C(7)	1.514(4)	C(7) - C(8)	1.502(4)
C(9) = C(9)	1 502 (5)	C(10) = C(11)	1 205 (1)
C(0) = C(9)	1.323(3)	C(10) = C(11)	1.383(4)
C(10)-C(15)	1.403(4)	C(11)-C(12)	1.389(5)
C(12)-C(13)	1.373(5)	C(13) - C(14)	1.385(5)
C(14) - C(15)	1 382(1)	C(16) - C(21)	1 387 (5)
C(14) - C(15)	1.302(4)	C(10) = C(21)	1.307(3)
C(16) - C(17)	1.391(4)	C(17) - C(18)	1.401(5)
C(18)-C(19)	1.376(5)	C(19) - C(20)	1.372(5)
C(20) - C(21)	1 386(5)	C(22) = C(23)	1 395(1)
	1.300(3)	C(22) $C(23)$	1.000(4)
C(22) – C(27)	1.39/(4)	C(23)-C(24)	1.384(4)
C(24)-C(25)	1.377(5)	C(25)-C(26)	1.378(5)
C(26) - C(27)	1 388(1)	C(28) = C(33)	1 391 (1)
C(20) = C(27)	1.300(4)	C(20) = C(33)	1.000(4)
C(28) – C(29)	1.396(4)	C(29)-C(30)	1.390(4)
C(30)-C(31)	1.380(5)	C(31)-C(32)	1.373(5)
C(32) - C(33)	1 393 (5)	C(34) - C(35)	1 388(4)
	1 201 (2)	(31) (30)	1 204(4)
C(34)-C(39)	⊥.39⊥(4)	C(35) - C(36)	1.394(4)
C(36)-C(37)	1.381(5)	C(37)-C(38)	1.382(5)
C(38) - C(39)	1 390 (5)	C(40) - C(41)	1 387(4)
C(30) C(35)	1,200(3)		1 200 (4)
C(40) - C(45)	1.399(4)	C(41) - C(42)	1.382(4)
C(42)-C(43)	1.384(5)	C(43)-C(44)	1.378(5)
C(44) - C(45)	1 385(4)	$C_{1}(1) - C_{1}(2) \# 5$	0 679(4)
C(11) C(10)	1.704(0)	$C_{1}(1) = C_{1}(2) = 0$	0.00/1
C1(1) - C(49)	1./84(8)	CI(I) = C(49) #5	2.22(1)
Cl(2)-Cl(1)#5	0.679(4)	Cl(2)-C(49)#5	1.163(8)
$C_{1}(2) - C(49)$	1 74(1)	C1(2) - C1(2) # 5	2 232(7)
01(1) 0(1)		01(2) 01(2) 00	2.202())
C(48)-Re(1)-C(46)	90.6(2)	C(48)-Re(1)-C(47)	92.5(1)
C(46)-Re(1)-C(47)	90.3(1)	C(48)-Re(1)-P(1)	93.7(1)
$C(16) - P_{0}(1) - P(1)$	0/1 1/1	$C(47) - D_{C}(1) - D(1)$	172 1(1)
C(40) - Re(1) - F(1)	94.1(1)	C(47) = Re(1) = F(1)	1/2.4(1)
C(48) - Re(1) - S(1)	1/5.9(1)	C(46)-Re(1)-S(1)	93.3(1)
C(47)-Re(1)-S(1)	88.8(1)	P(1)-Re(1)-S(1)	84.67(3)
C(48) - Be(1) - S(2)	91 0(1)	C(46) - Be(1) - S(2)	178 4(1)
C(40) $RC(1)$ $D(2)$	51.0(1)	C(40) IC(1) D(2)	1,0.1(1)
C(47) - Re(1) - S(2)	89.6(I)	P(1)-Re(1)-S(2)	85.83(3)
S(1)-Re(1)-S(2)	85.08(3)	P(2)-S(1)-Re(1)	105.91(4)
P(3) - S(2) - Re(1)	104.76(4)	C(1) - P(1) - C(5)	100.9(1)
P(1) = P(1) = Q(2)	105 (1)	O(1) = (1) = O(0)	100.0(1)
C(1) = P(1) = C(6)	105.0(1)	C(5) = P(1) = C(6)	103.0(1)
C(1)-P(1)-Re(1)	113.9(1)	C(5)-P(1)-Re(1)	113.7(1)
C(6)-P(1)-Re(1)	117.8(1)	C(1) - P(2) - C(10)	114.5(1)
C(1) = P(2) = C(16)	1095(1)	C(10) = P(2) = C(16)	108 3 (2)
C(1) = P(2) = C(10)	109.3(1)	C(10) = P(2) = C(10)	100.3(2)
C(1) - P(2) - S(1)	110.5(1)	C(10) - P(2) - S(1)	107.7(1)
C(16)-P(2)-S(1)	106.0(1)	C(5)-P(3)-C(40)	110.0(1)
C(5) - P(3) - C(34)	112 7(1)	C(AO) = P(3) = C(3A)	108 2(1)
	112.7(1)	C(40) I(3) C(34)	100.2(1)
C(5) - P(3) - S(2)	110.4(1)	C(40) - P(3) - S(2)	110.1(1)
C(34)-P(3)-S(2)	105.3(1)	C(2) - C(1) - P(2)	123.0(2)
C(2) = C(1) = P(1)	115 5(2)	P(2) = C(1) = P(1)	117 0(2)
C(2) C(1) I(1)	100 5 (2)	1(2) = 0(1) = 1(1)	117.0(2)
C(3) = C(2) = C(1)	122.5(3)	C(3) - C(2) - C(22)	LL/.U(3)
C(1)-C(2)-C(22)	120.5(3)	C(2)-C(3)-C(4)	124.3(3)
C(5) - C(4) - C(3)	122 3(3)	C(5) - C(4) - C(28)	121 4(3)
(0, 0, 1) = (0, 1)	1100000	O(4) O(E) D(2)	$1 \circ c \circ (\circ)$
C(3) = C(4) = C(28)	116.3(2)	C(4) - C(5) - P(3)	126.8(2)
C(4)-C(5)-P(1)	116.6(2)	P(3)-C(5)-P(1)	115.6(2)
C(7) - C(6) - P(1)	114 9(2)	C(8) - C(7) - C(6)	114 4 (3)
C(7) C(9) C(9)	110 1 (0)	C(11) C(10) C(11)	110 0(0)
C(7) - C(8) - C(9)	$\perp \perp \angle \cdot \perp (3)$	C(11) - C(10) - C(15)	TT8.8(3)
C(11)-C(10)-P(2)	120.8(3)	C(15)-C(10)-P(2)	119.9(2)
C(10) - C(11) - C(12)	120.8(3)	C(13) - C(12) - C(11)	120.0(3)
(10) (11) (12) (14)	100 0(0)	O(1E) O(1A) O(1A)	100 5 (0)
し (エヱ) ーじ (エろ) ーじ (エ4)	⊥∠U.U(J)	C(IS)-C(I4)-C(I3)	12U.5(3)

C(14)-C(15)-C(10)	119.8(3)	C(21)-C(16)-C(17)	119.5(3)
C(21)-C(16)-P(2)	116.5(3)	C(17)-C(16)-P(2)	124.0(3)
C(16)-C(17)-C(18)	119.0(3)	C(19)-C(18)-C(17)	120.6(3)
C(20)-C(19)-C(18)	120.3(3)	C(19)-C(20)-C(21)	119.8(4)
C(20)-C(21)-C(16)	120.8(4)	C(23)-C(22)-C(27)	118.0(3)
C(23) - C(22) - C(2)	120.7(3)	C(27)-C(22)-C(2)	121.3(3)
C(24)-C(23)-C(22)	120.6(3)	C(25)-C(24)-C(23)	120.9(4)
C(24)-C(25)-C(26)	119.3(3)	C(25)-C(26)-C(27)	120.5(3)
C(26)-C(27)-C(22)	120.8(3)	C(33)-C(28)-C(29)	118.3(3)
C(33)-C(28)-C(4)	120.2(3)	C(29)-C(28)-C(4)	121.4(3)
C(30)-C(29)-C(28)	120.8(3)	C(31)-C(30)-C(29)	120.1(3)
C(32)-C(31)-C(30)	119.7(3)	C(31)-C(32)-C(33)	120.8(3)
C(28)-C(33)-C(32)	120.3(3)	C(35)-C(34)-C(39)	119.7(3)
C(35)-C(34)-P(3)	123.2(2)	C(39)-C(34)-P(3)	117.0(2)
C(34)-C(35)-C(36)	119.9(3)	C(37)-C(36)-C(35)	120.0(3)
C(36)-C(37)-C(38)	120.5(3)	C(37)-C(38)-C(39)	119.6(3)
C(38)-C(39)-C(34)	120.3(3)	C(41)-C(40)-C(45)	119.0(3)
C(41)-C(40)-P(3)	120.3(2)	C(45)-C(40)-P(3)	120.6(2)
C(42)-C(41)-C(40)	120.8(3)	C(41)-C(42)-C(43)	120.1(3)
C(44)-C(43)-C(42)	119.4(3)	C(43)-C(44)-C(45)	121.2(3)
C(44)-C(45)-C(40)	119.5(3)	O(1)-C(46)-Re(1)	177.8(3)
O(2)-C(47)-Re(1)	178.5(3)	O(3)-C(48)-Re(1)	178.4(4)
Cl(2)-Cl(1)#5-C(49)	19.1(6)	Cl(2)-Cl(1)#5-C(49)#5	38.1(6)
C(49)-Cl(1)-C(49)#5	56.8(4)	Cl(1)-Cl(2)#5-C(49)#5	150(1)
Cl(1)-Cl(2)#5-C(49)	128.0(8)	C(49)-Cl(2)#5-C(49)	81.5(6)
Cl(1)-Cl(2)#5-Cl(2)#5	158.5(8)	C(49)-Cl(2)#5-Cl(2)#5	50.5(4)
C(49)-Cl(2)-Cl(2)#5	31.0(3)	Cl(2)-C(49)-Cl(1)	109.3(5)

V. Chapitre 7

SP C30H24P2S 478.49 colorless cube 0.20x0.20x0.20 Monoclinic $P2_1/c$ 6.611(5) 42.648(5)17.464(5) 90.00 92.430(5) 90.00 4919(4) 8 1.292 2000 0.278

Absorption corrections Diffractometer X-ray source $\lambda(\text{Å})$ Monochromator T (K) Scan mode Maximum θ	multi-scan ; 0.9464 m KappaCCD MoK α 0.71069 graphite 150.0(10) phi and omega scans 28 70	in, 0.9464 max	
HKL ranges	-8 8 ; -55 57 ; -23 23		
Reflections measured	22198		
Unique data	12430		
Rint Reflections used	0.0251		
Criterion	$1 > 2 \operatorname{sigma}(1)$		
Refinement type	Fsqd		
Hydrogen atoms	mixed		
Parameters refined	597		
Reflections / parameter	16		
WK2 B1	0.1143		
Weights a, b1	0.053 : 1.4534		
GoF	1.054		
difference peak / hole (e Å ⁻³)	0.352(0.060) / -0.404	(0.060)	
TABLE XX. Bond lengths	(A) and angles	(deg) for SP	
S(1) - P(2)	1 954(1)	S(2) - P(4)	1 949(1)
P(1)-C(5)	1.736(2)	P(1)-C(1)	1.739(2)
P(2)-C(12)	1.812(2)	P(2)-C(6)	1.823(2)
P(2)-C(1)	1.824(2)	P(3)-C(31)	1.738(2)
P(3) - C(35)	1.741(2)	P(4) - C(42)	1.817(2)
P(4) = C(36) C(1) = C(2)	1.819(2)	P(4) = C(31) C(2) = C(3)	1.828(2)
C(2) - C(18)	1.514(2)	C(3) - C(4)	1.392(2)
C(4) - C(5)	1.404(2)	C(4)-C(19)	1.496(2)
C(5)-C(25)	1.495(2)	C(6)-C(11)	1.392(3)
C(6) - C(7)	1.395(3)	C(7) - C(8)	1.388(3)
C(8) - C(9)	1.372(4)	C(9) - C(10)	1.382(4)
C(10) = C(11) C(12) = C(13)	1,309(3)	C(12) = C(17) C(13) = C(14)	1.395(2) 1.387(2)
C(12) - C(13) C(14) - C(15)	1.382(3)	C(15) - C(14)	1.377(3)
C(16)-C(17)	1.384(3)	C(19)-C(24)	1.388(2)
C(19)-C(20)	1.395(2)	C(20)-C(21)	1.385(3)
C(21) - C(22)	1.387(3)	C(22)-C(23)	1.386(3)
C(23) - C(24)	1.388(2)	C(25) - C(30)	1.392(2)
C(23) = C(28)	1 384(3)	C(28) - C(29)	1.390(3) 1.382(3)
C(29) -C(30)	1.391(3)	C(31)-C(32)	1.412(2)
C(32)-C(33)	1.395(2)	C(32)-C(48)	1.507(2)
C(33)-C(34)	1.397(2)	C(34)-C(35)	1.406(2)
C(34) - C(55)	1.495(2)	C(35) - C(49)	1.488(2)
C(36) = C(37)	1.390(2)	C(36) = C(41) C(38) = C(39)	1.394(2)
C(39) - C(30)	1.371(3)	C(38) = C(39) C(40) = C(41)	1.370(3) 1.382(3)
C (42) -C (43)	1.390(3)	C(42) - C(47)	1.394(3)
C(43)-C(44)	1.394(3)	C(44)-C(45)	1.380(4)
C(45)-C(46)	1.368(3)	C(46)-C(47)	1.387(3)
C(49) - C(54)	1.397(2)	C(49) - C(50)	1.398(2)
C(50) = C(51) C(52) = C(53)	⊥.38/(3) 1 38/(3)	C(51) = C(52) C(53) = C(54)	⊥.384(3) 1 386(3)
C (55) –C (56)	1.394(2)	C(55)-C(60)	1.401(2)

C(56)-C(57) C(58)-C(59)	1.388(2) 1.376(3)	C (57) -C (58) C (59) -C (60)	1.388(3) 1.392(2)
C(5) - P(1) - C(1) C(12) - P(2) - C(1)	102.60(7) 107.17(8)	C(12)-P(2)-C(6) C(6)-P(2)-C(1)	105.21(8) 106.75(8)
C(12) = P(2) = S(1) C(1) = P(2) = S(1)	112.61(6)	C(6) - P(2) - S(1) C(31) - P(3) - C(35)	111./1(/) 102.85(8)
C(42) - P(4) - C(36)	106.89(8)	C(42) - P(4) - C(31)	102.03(0)
C(36)-P(4)-C(31)	104.69(8)	C(42) - P(4) - S(2)	113.75(7)
C(36)-P(4)-S(2)	111.40(7)	C(31)-P(4)-S(2)	114.64(6)
C(2)-C(1)-P(1)	124.4(1)	C(2)-C(1)-P(2)	120.4(1)
P(1) - C(1) - P(2)	115.1(1)	C(3) - C(2) - C(1)	120.8(2)
C(3) - C(2) - C(18) C(4) - C(3) - C(2)	116.6(1) 126.6(2)	C(1) = C(2) = C(18) C(3) = C(4) = C(5)	122.6(1) 121.7(2)
C(4) - C(3) - C(2) C(3) - C(4) - C(19)	120.0(2) 118 7(1)	C(5) = C(4) = C(5) C(5) = C(4) = C(19)	121.7(2) 119.7(1)
C(4) - C(5) - C(25)	121.3(1)	C(4) - C(5) - P(1)	123.9(1)
C(25) - C(5) - P(1)	114.7(1)	C(11) - C(6) - C(7)	119.2(2)
C(11)-C(6)-P(2)	121.9(1)	C(7)-C(6)-P(2)	118.8(2)
C(8)-C(7)-C(6)	120.0(2)	C(9)-C(8)-C(7)	120.5(2)
C(8)-C(9)-C(10)	120.1(2)	C(9)-C(10)-C(11)	120.1(2)
C(10) - C(11) - C(6)	120.1(2)	C(17) - C(12) - C(13)	119.4(2)
C(17) - C(12) - P(2)	118.3(1)	C(13) - C(12) - P(2)	122.2(1)
C(14) = C(15) = C(12) C(16) = C(15) = C(14)	119.4(2) 120.1(2)	C(15) = C(14) = C(13) C(15) = C(16) = C(17)	120.7(2) 119.9(2)
C(16) - C(17) - C(12)	120.4(2)	C(24) - C(19) - C(20)	119.3(2)
C(24) - C(19) - C(4)	120.3(2)	C(20) - C(19) - C(4)	120.3(2)
C(21)-C(20)-C(19)	120.2(2)	C(20)-C(21)-C(22)	120.2(2)
C(23)-C(22)-C(21)	119.8(2)	C(22)-C(23)-C(24)	120.1(2)
C(23)-C(24)-C(19)	120.3(2)	C(30)-C(25)-C(26)	118.6(2)
C(30) - C(25) - C(5)	120.7(2)	C(26) - C(25) - C(5)	120.6(2)
C(27) = C(26) = C(25)	120.5(2)	C(28) - C(27) - C(26)	120.3(2)
C(29) = C(20) = C(27)	119.6(2) 120.6(2)	C(20) = C(29) = C(30)	120.4(2) 121.4(1)
C(22) = C(30) = C(23) C(32) = C(31) = P(4)	120.0(2) 119.9(1)	P(3) - C(31) - P(4)	115.6(1)
C(33) - C(32) - C(31)	120.4(2)	C(33) - C(32) - C(48)	117.1(1)
C(31)-C(32)-C(48)	122.5(1)	C(32)-C(33)-C(34)	127.1(2)
C(33)-C(34)-C(35)	121.3(1)	C(33)-C(34)-C(55)	116.7(1)
C(35)-C(34)-C(55)	121.9(2)	C(34)-C(35)-C(49)	123.0(1)
C(34) - C(35) - P(3)	123.7(1)	C(49)-C(35)-P(3)	113.2(1)
C(37) - C(36) - C(41)	118.9(2)	C(37) - C(36) - P(4)	123.2(1)
C(41) = C(30) = P(4) C(30) = C(38) = C(37)	117.9(1) 120.7(2)	C(30) = C(37) = C(30)	120.0(2)
C(39) - C(40) - C(41)	120.7(2) 120.6(2)	C(40) - C(41) - C(36)	120.2(2)
C(43) - C(42) - C(47)	119.4(2)	C(43) - C(42) - P(4)	120.1(1)
C(47)-C(42)-P(4)	120.4(1)	C(42)-C(43)-C(44)	119.6(2)
C(45)-C(44)-C(43)	120.3(2)	C(46)-C(45)-C(44)	120.2(2)
C(45)-C(46)-C(47)	120.4(2)	C(46)-C(47)-C(42)	120.0(2)
C(54) - C(49) - C(50)	118.4(2)	C(54) - C(49) - C(35)	120.2(2)
C(50) = C(49) = C(35) C(52) = C(51) = C(50)	121.3(2)	C(51) - C(50) - C(49)	120.4(2)
C(52) = C(51) = C(50) C(52) = C(53) = C(54)	120.0(2)	C(53) = C(52) = C(51) C(53) = C(54) = C(49)	120 Q(2)
C(52) = C(53) = C(54) C(56) = C(55) = C(60)	119.0(2)	C(56) - C(55) - C(34)	120.9(2) 121.9(1)
C(60) - C(55) - C(34)	119.1(2)	C(57) - C(56) - C(55)	120.4(2)
C (56) -C (57) -C (58)	120.0(2)	C(59)-C(58)-C(57)	120.2(2)
C(58)-C(59)-C(60)	120.2(2)	C(59)-C(60)-C(55)	120.1(2)

0.654

ΜοΚα

0.71069

graphite

30.03

18845

11031

0.0232

8413

Fsqd

18

mixed 447

0.1046

0.0377

1.007

2.189(2)

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) $\alpha(^{\circ})$ β(°) $\gamma(^{\circ})$ $V(Å^3)$ Ζ $d(g-cm^{-3})$ F(000) $\mu(\text{cm}^{-1})$ Absorption corrections Diffractometer X-ray source λ(Å) Monochromator T (K) Scan mode Maximum θ HKL ranges Reflections measured Unique data Rint Reflections used Criterion Refinement type Hydrogen atoms Parameters refined Reflections / parameter wR2 R1 Weights a, b GoF difference peak / hole (e Å⁻³) Table 3. Bond lengths (A) and angles (deg) for 707a

multi-scan; 0.8914 min, 0.9375 max KappaCCD 150.0(10) phi and omega scans -16 16 ; -29 31 ; -20 20 I > 2sigma(I) 0.0587; 0.0000 0.983(0.084) / -0.932(0.084)

Ru(1) - C(40)

Ru(1) - C(37)

2.196(2)

Ru(1)-C(35) Ru(1)-C(39) Ru(1)-P(1) Ru(1)-S(1) P(1)-C(1) P(1)-C(6) P(2)-C(16) C(1)-C(2) C(2)-C(22) C(4)-C(5) C(5)-C(29) C(7)-C(8) C(10)-C(11) C(11)-C(12) C(13)-C(14) C(16)-C(21) C(17)-C(18) C(19)-C(20) C(23)-C(24) C(24)-C(25) C(26)-C(27) C(29)-C(34) C(30)-C(31) C(32)-C(33) C(35)-C(40) C(35)-C(41) C(37)-C(38) C(38)-C(42) C(42)-C(44)	2.237(2) 2.257(2) 2.3351(5) 2.4239(5) 1.790(2) 1.852(2) 1.422(3) 1.422(3) 1.511(2) 1.376(3) 1.398(3) 1.398(3) 1.395(3) 1.395(3) 1.384(3) 1.376(3) 1.379(3) 1.384(3) 1.387(3) 1.384(3) 1.387(3) 1.384(3) 1.384(3) 1.384(3) 1.395(3) 1.376(3) 1.379(3) 1.384(3) 1.384(3) 1.384(3) 1.387(3) 1.511(3) 1.521(3) 1.516(3)	Ru(1)-C(36) Ru(1)-C(38) Ru(1)-P(2) P(1)-C(5) P(2)-C(1) P(2)-C(10) C(2)-C(3) C(3)-C(4) C(4)-C(23) C(6)-C(7) C(8)-C(9) C(10)-C(15) C(10)-C(15) C(12)-C(13) C(14)-C(15) C(16)-C(17) C(18)-C(19) C(20)-C(21) C(23)-C(28) C(25)-C(26) C(27)-C(28) C(29)-C(30) C(31)-C(32) C(33)-C(34) C(35)-C(36) C(36)-C(37) C(38)-C(39) C(39)-C(40) C(42)-C(43)	$\begin{array}{c} 2.239(2)\\ 2.276(2)\\ 2.4186(5)\\ 2.0283(7)\\ 1.805(2)\\ 1.745(2)\\ 1.823(2)\\ 1.372(3)\\ 1.435(2)\\ 1.435(2)\\ 1.491(3)\\ 1.521(3)\\ 1.515(3)\\ 1.515(3)\\ 1.515(3)\\ 1.376(3)\\ 1.376(3)\\ 1.376(3)\\ 1.375(3)\\ 1.386(3)\\ 1.386(3)\\ 1.387(3)\\ 1.386(3)\\ 1.386(3)\\ 1.386(3)\\ 1.402(3)\\ 1.386(3)\\ 1.402(3)\\ 1.402(3)\\ 1.402(3)\\ 1.402(3)\\ 1.402(3)\\ 1.402(3)\\ 1.408(3)\\ 1.408(3)\\ 1.430(3)\\ 1.534(3$
C(40) - Ru(1) - C(37) $C(37) - Ru(1) - C(35)$ $C(37) - Ru(1) - C(39)$ $C(40) - Ru(1) - C(39)$ $C(40) - Ru(1) - C(38)$ $C(35) - Ru(1) - C(38)$ $C(35) - Ru(1) - C(38)$ $C(37) - Ru(1) - P(1)$ $C(36) - Ru(1) - P(1)$ $C(36) - Ru(1) - P(1)$ $C(37) - Ru(1) - C(1)$ $C(36) - Ru(1) - S(1)$ $P(1) - Ru(1) - C(6)$ $C(1) - P(1) - Ru(1)$ $C(6) - P(1) - Ru(1)$ $C(1) - P(2) - S(1)$ $C(10) - P(2) - S(1)$ $C(10) - P(2) - S(1)$ $C(1) - C(2) - C(10)$ $C(1) - C(2) - C(1)$ $C(1) - C(2) - C(1)$ $C(1) - C(2) - C(2)$ $C(5) - C(4) - C(3)$ $C(3) - C(4) - C(23)$ $C(4) - C(5) - P(1)$ $C(7) - C(6) - P(1)$ $C(7) - C(6) - P(1)$ $C(1) - C(10) - P(2)$ $C(11) - C(10) - P(2)$ $C(10) - C(11) - C(12)$ $C(12) - C(13) - C(14)$ $C(14) - C(15) - C(10)$ $C(21) - C(16) - P(2)$ $C(18) - C(17) - C(16)$ $C(18) - C(19) - C(20)$	$78.52(7) \\ 67.00(7) \\ 36.81(7) \\ 37.48(7) \\ 67.01(8) \\ 66.64(7) \\ 79.25(7) \\ 36.20(7) \\ 127.49(6) \\ 99.09(5) \\ 164.44(5) \\ 88.90(5) \\ 114.49(5) \\ 89.98(5) \\ 94.62(5) \\ 121.33(5) \\ 92.81(5) \\ 79.17(2) \\ 101.41(2) \\ 106.7(1) \\ 107.87(7) \\ 114.99(7) \\ 115.7(1) \\ 107.46(6) \\ 109.25(7) \\ 121.1(1) \\ 122.5(2) \\ 120.1(2) \\ 125.1(2) \\ 125.1(2) \\ 125.1(2) \\ 125.1(2) \\ 125.1(2) \\ 125.1(2) \\ 125.1(2) \\ 126.2(2) \\ 120.5(2) \\ 120.5(2) \\ 120.5(2) \\ 120.5(2) \\ 120.5(2) \\ 120.5(2) \\ 120.5(2) \\ 120.5(2) \\ 120.6(2) \\ 119.8(2) \\ 100.000000000000000000000000000000000$	$\begin{array}{c} C(40) - Ru(1) - C(35) \\ C(40) - Ru(1) - C(36) \\ C(35) - Ru(1) - C(39) \\ C(37) - Ru(1) - C(39) \\ C(37) - Ru(1) - C(38) \\ C(36) - Ru(1) - C(38) \\ C(36) - Ru(1) - P(1) \\ C(35) - Ru(1) - P(1) \\ C(35) - Ru(1) - P(1) \\ C(40) - Ru(1) - C1(1) \\ C(35) - Ru(1) - C1(1) \\ C(35) - Ru(1) - C1(1) \\ C(35) - Ru(1) - C1(1) \\ C(37) - Ru(1) - C1(1) \\ C(37) - Ru(1) - S(1) \\ C(36) - Ru(1) - S(1) \\ C(36) - Ru(1) - S(1) \\ C(38) - Ru(1) - S(1) \\ C(1) - P(1) - C(5) \\ C(5) - P(1) - C(6) \\ C(5) - P(1) - Ru(1) \\ C(1) - P(2) - C(16) \\ C(16) - P(2) - C(10) \\ C(16) - P(2) - C(10) \\ C(2) - C(1) - P(1) \\ C(3) - C(2) - C(22) \\ C(2) - C(3) - C(4) \\ C(5) - C(4) - C(23) \\ C(4) - C(5) - P(1) \\ C(15) - C(10) - C(15) \\ C(15) - C(10) - P(2) \\ C(15) - C(10) - P(2) \\ C(15) - C(14) - C(15) \\ C(15) - C(14) - C(13) \\ C(21) - C(16) - P(2) \\ C(17) - C(16) - P(2) \\ C(17) - C(16) - P(2) \\ C(17) - C(16) - P(2) \\ C(19) - C(17) \\ C(19) - C(20) - C(21) \\ \end{array}$	36.92(7) 66.81(7) 37.59(7) 65.82(7) 78.54(7) 36.98(7) 66.73(7) 114.87(5) 93.35(6) 151.08(5) 154.49(6) 152.05(5) 117.04(5) 90.42(2) 153.02(6) 158.93(6) 116.37(5) 86.58(2) 102.82(8) 104.2(1) 103.8(1) 108.22(7) 126.6(1) 111.9(1) 117.4(2) 125.3(2) 119.9(2) 124.0(2) 118.0(2) 119.7(2) 118.6(2) 123.4(2) 120.3(2) 120.4(2)

C(20) - C(21) - C(16))
C(24) - C(23) - C(4)	
C(25)-C(24)-C(23)
C(27) - C(26) - C(25))
C(27)-C(28)-C(23)
C(34) - C(29) - C(5)	
C(31) - C(30) - C(29))
C(31) - C(32) - C(33))
C(33) - C(34) - C(29))
C(40) - C(35) - C(41))
C(40) - C(35) - Ru(1))
C(41) - C(35) - Ru(1))
C(37) - C(36) - Ru(1))
C(36) - C(37) - C(38))
C(38) - C(37) - Ru(1))
C(39) - C(38) - C(42))
C(39) - C(38) - Ru(1))
C(42) - C(38) - Ru(1))
C(38) - C(39) - Ru(1))
C(35) - C(40) - C(39))
C(39) - C(40) - Ru(1) C(44) - C(42) - C(42))
	1

120.3(2) 120.0(2) 121.0(2) 119.9(2) 120.6(2) 120.4(2) 121.0(2) 119.1(2) 121.0(2)	C(24)-C(23)-C(28) C(28)-C(23)-C(4) C(24)-C(25)-C(26) C(26)-C(27)-C(28) C(34)-C(29)-C(30) C(30)-C(29)-C(5) C(32)-C(31)-C(30) C(32)-C(33)-C(34) C(40)-C(35)-C(36)	118.2(2) 121.9(2) 120.1(2) 120.1(2) 117.5(2) 121.8(2) 120.7(2) 120.7(2) 118.0(2)
$\perp \angle \angle \cdot \perp (\angle)$	C(36) - C(35) - C(41)	119.9(2)
69.7(I)	C(36) - C(35) - Ru(1)	71.2(1)
131.0(1)	C(37)-C(36)-C(35)	118.8(2)
69.9(1)	C(35)-C(36)-Ru(1)	71.2(1)
123.4(2)	C(36)-C(37)-Ru(1)	73.3(1)
74.6(1)	C(39)-C(38)-C(37)	117.6(2)
122.2(2)	C(37)-C(38)-C(42)	120.2(2)
71.2(1)	C(37)-C(38)-Ru(1)	68.4(1)
131.0(1)	C(38)-C(39)-C(40)	119.7(2)
72.6(1)	C(40)-C(39)-Ru(1)	68.7(1)
122.3(2)	C(35)-C(40)-Ru(1)	73.4(1)
73.8(1)	C(44)-C(42)-C(38)	114.0(2)
111.6(2)	C(38) - C(42) - C(43)	108.0(2)

712

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) $\alpha(^{\circ})$ β(°) $\gamma(^{\circ})$ $V(Å^3)$ Ζ $d(g-cm^{-3})$ F(000) $\mu(cm^{-1})$ Absorption corrections Diffractometer X-ray source λ(Å) Monochromator T (K) Scan mode Maximum θ HKL ranges Reflections measured Unique data Rint

C₅₇H₅₁P₄RhS, (C₄H₈O), (C₆H₁₄) 1147.06 yellow needle 0.22x0.08x0.06 triclinic P-1 11.7150(10) 13.3120(10) 19.3460(10) 73.2600(10) 84.2500(10) 84.8000(10) 2868.6(4) 2 1.328 1196 0.489 multi-scan; 0.9001 min, 0.9713 max KappaCCD ΜοΚα 0.71069 graphite 150.0(1)phi and omega scans 30.03 -16 16 ; -18 18 ; -26 27 26162 16672 0.0257

473

Reflections used	12118
Criterion	I > 2σI)
Refinement type	Fsqd
Hydrogen atoms	mixed
Parameters refined	570
Reflections / parameter	21
wR2	0.1181
R1	0.0410
Weights a, b	0.0650 ; 0.0000
GoF	0.958
difference peak / hole (e Å ⁻³)	0.523(0.082) / -0.665(0.082)

Note: THF and hexane solvate were too disordered to model correctly and were accounted for using the Platon SQUEEZE function.

Rh(1) - P(4) $Rh(1) - P(1)$ $S(1) - P(2)$ $P(1) - C(5)$ $P(2) - C(1)$ $P(2) - C(13)$ $P(3) - C(38)$ $P(4) - C(46)$ $P(4) - C(45)$ $C(2) - C(3)$ $C(3) - C(4)$ $C(4) - C(20)$ $C(7) - C(12)$ $C(8) - C(9)$ $C(10) - C(11)$ $C(13) - C(18)$ $C(14) - C(15)$ $C(16) - C(17)$ $C(20) - C(25)$ $C(21) - C(22)$ $C(23) - C(24)$ $C(26) - C(31)$ $C(27) - C(28)$ $C(29) - C(30)$ $C(32) - C(33)$ $C(33) - C(34)$ $C(35) - C(36)$ $C(38) - C(43)$ $C(39) - C(40)$ $C(41) - C(42)$ $C(44) - C(45)$ $C(46) - C(51)$ $C(48) - C(49)$ $C(50) - C(51)$ $C(52) - C(57)$ $C(54) - C(55)$ $C(56) - C(57)$	2.2167(5) 2.3227(5) 2.0194(8) 1.813(2) 1.736(2) 1.839(2) 1.839(2) 1.839(2) 1.839(2) 1.374(3) 1.438(3) 1.509(3) 1.393(3) 1.382(4) 1.360(4) 1.399(4) 1.360(4) 1.399(4) 1.360(4) 1.394(4) 1.368(4) 1.394(4) 1.359(5) 1.385(3) 1.382(4) 1.378(3) 1.392(3) 1.392(3) 1.392(3) 1.392(3) 1.392(3) 1.392(3) 1.392(3) 1.392(3) 1.392(3) 1.392(3) 1.392(3) 1.392(3) 1.392(3) 1.392(3) 1.392(3) 1.392(3) 1.392(3) 1.392(3) 1.398(3) 1.379(4) 1.382(4) 1.379(5) 1.378(3)	Rh(1)-P(3) Rh(1)-S(1) P(1)-C(1) P(1)-C(6) P(2)-C(7) P(3)-C(32) P(3)-C(44) P(4)-C(52) C(1)-C(2) C(2)-C(19) C(4)-C(5) C(5)-C(26) C(7)-C(8) C(9)-C(10) C(11)-C(12) C(13)-C(14) C(13)-C(14) C(15)-C(16) C(17)-C(18) C(20)-C(21) C(22)-C(23) C(24)-C(25) C(26)-C(27) C(28)-C(29) C(30)-C(31) C(32)-C(37) C(34)-C(35) C(36)-C(37) C(38)-C(39) C(40)-C(41) C(42)-C(43) C(40)-C(41) C(42)-C(43) C(40)-C(50) C(52)-C(56)	2.2614(6) $2.3719(5)$ $1.788(2)$ $1.841(2)$ $1.815(3)$ $1.832(2)$ $1.852(2)$ $1.852(2)$ $1.410(3)$ $1.513(3)$ $1.381(3)$ $1.376(4)$ $1.383(4)$ $1.376(4)$ $1.383(4)$ $1.383(4)$ $1.383(5)$ $1.403(4)$ $1.383(4)$ $1.381(4)$ $1.383(5)$ $1.403(4)$ $1.383(5)$ $1.402(3)$ $1.383(5)$ $1.401(4)$ $1.369(4)$ $1.394(4)$ $1.391(3)$ $1.391(3)$ $1.395(3)$ $1.395(3)$ $1.385(3)$ $1.387(4)$
P(4)-Rh(1)-P(3)	83.85(2)	P(4)-Rh(1)-P(1)	99.50(2)
P(3)-Rh(1)-P(1)	176.56(2)	P(4)-Rh(1)-S(1)	168.09(2)
P(3)-Rh(1)-S(1)	87.81(2)	P(1)-Rh(1)-S(1)	89.00(2)
P(2)-S(1)-Rh(1)	97.22(2)	C(1)-P(1)-C(5)	101.0(1)
C(1)-P(1)-C(6)	104.1(1)	C(5)-P(1)-C(6)	100.6(1)
C(1)-P(1)-Rh(1)	110.84(7)	C(5)-P(1)-Rh(1)	121.92(7)
C(6)-P(1)-Rh(1)	115.97(8)	C(1)-P(2)-C(7)	111.0(1)
C(1)-P(2)-C(13)	114.2(1)	C(7)-P(2)-C(13)	106.2(1)
C(1)-P(2)-S(1)	110.16(7)	C(7)-P(2)-S(1)	109.30(8)
C(13)-P(2)-S(1)	105.72(8)	C(32)-P(3)-C(38)	103.3(1)
C(32)-P(3)-C(44)	105.6(1)	C(38)-P(3)-C(44)	104.0(1)
C(32)-P(3)-Rh(1)	114.90(8)	C(38)-P(3)-Rh(1)	115.87(7)

Table 3. Bond lengths (A) and angles (deg) for $712\,$

C(44) - P(3) - Rh(1) $C(46) - P(4) - C(45)$ $C(46) - P(4) - Rh(1)$ $C(45) - P(4) - Rh(1)$ $C(2) - C(1) - P(1)$ $C(3) - C(2) - C(19)$ $C(5) - C(4) - C(3)$ $C(3) - C(4) - C(20)$ $C(4) - C(5) - P(1)$ $C(12) - C(7) - C(8)$ $C(8) - C(7) - P(2)$ $C(8) - C(9) - C(10)$ $C(12) - C(11) - C(10)$ $C(12) - C(11) - C(10)$ $C(14) - C(13) - P(2)$ $C(16) - C(15) - C(14)$ $C(16) - C(15) - C(14)$ $C(25) - C(20) - C(21)$ $C(21) - C(20) - C(4)$ $C(23) - C(22) - C(21)$ $C(23) - C(24) - C(25)$ $C(31) - C(26) - C(27)$ $C(27) - C(28) - C(29)$ $C(27) - C(28) - C(29)$ $C(29) - C(30) - C(31)$ $C(33) - C(32) - P(3)$ $C(35) - C(34) - C(33)$ $C(35) - C(36) - C(37)$ $C(43) - C(38) - P(3)$ $C(41) - C(40) - C(39)$ $C(41) - C(40) - C(39)$ $C(41) - C(44) - P(3)$ $C(47) - C(46) - P(4)$ $C(49) - C(48) - C(47)$ $C(51) - C(50) - C(49)$	$112.03(7) \\ 102.2(1) \\ 111.09(7) \\ 109.07(7) \\ 117.9(2) \\ 120.6(2) \\ 121.7(2) \\ 124.6(2) \\ 121.7(2) \\ 124.6(2) \\ 113.5(2) \\ 115.3(2) \\ 115.3(2) \\ 118.2(2) \\ 122.9(2) \\ 120.6(3) \\ 120.0(3) \\ 118.7(2) \\ 118.9(2) \\ 120.6(3) \\ 120.0(3) \\ 118.7(2) \\ 118.3(3) \\ 120.3(3) \\ 118.2(2) \\ 118.3(3) \\ 120.3(3) \\ 118.2(2) \\ 118.3(3) \\ 120.3(3) \\ 118.2(2) \\ 119.7(2) \\ 120.5(3) \\ 120.4(3) \\ 117.1(2) \\ 120.5(3) \\ 120.4(3) \\ 117.1(2) \\ 120.5(3) \\ 120.4(3) \\ 117.1(2) \\ 120.5(3) \\ 120.4(3) \\ 117.1(2) \\ 120.5(3) \\ 119.7(2) \\ 120.9(3) \\ 118.9(2) \\ 120.0(3) \\ 108.3(2) \\ 118.5(2) \\ 122.7(2) \\ 119.7(2) \\ 110.7($	C(46) - P(4) - C(52) $C(52) - P(4) - Rh(1)$ $C(2) - C(1) - P(2)$ $P(2) - C(1) - P(1)$ $C(3) - C(2) - C(19)$ $C(2) - C(3) - C(4)$ $C(5) - C(3) - C(4)$ $C(5) - C(5) - C(26)$ $C(26) - C(5) - P(1)$ $C(12) - C(7) - P(2)$ $C(9) - C(8) - C(7)$ $C(11) - C(10) - C(9)$ $C(11) - C(12) - C(7)$ $C(13) - C(14) - C(15)$ $C(17) - C(16) - C(15)$ $C(13) - C(18) - C(17)$ $C(25) - C(20) - C(4)$ $C(20) - C(21) - C(22)$ $C(24) - C(25) - C(20)$ $C(31) - C(26) - C(5)$ $C(28) - C(7) - C(28)$ $C(26) - C(31) - C(30)$ $C(33) - C(32) - P(3)$ $C(34) - C(35) - C(36)$ $C(36) - C(37) - C(32)$ $C(43) - C(38) - P(3)$ $C(38) - C(39) - C(40)$ $C(40) - C(41) - C(42)$ $C(43) - C(43) - C(42)$ $C(44) - C(45) - P(4)$ $C(47) - C(46) - P(4)$ $C(46) - C(47) - C(48)$ $C(48) - C(49) - C(50)$ $C(50) - C(51) - C(46)$	$\begin{array}{c} 103.7(1)\\ 100.6(1)\\ 127.17(7)\\ 130.6(2)\\ 111.5(1)\\ 117.7(2)\\ 124.7(2)\\ 124.8(2)\\ 119.9(2)\\ 118.8(2)\\ 119.9(2)\\ 118.8(2)\\ 129.2(3)\\ 120.3(2)\\ 120.3(2)\\ 122.0(2)\\ 121.5(2)\\ 122.0(2)\\ 122.0(3)\\ 120.6(3)\\ 122.1(2)\\ 120.6(3)\\ 122.1(2)\\ 120.6(3)\\ 122.1(2)\\ 120.6(3)\\ 122.1(2)\\ 120.6(3)\\ 122.1(2)\\ 120.6(3)\\ 122.1(2)\\ 120.6(3)\\ 122.1(2)\\ 120.6(3)\\ 122.1(2)\\ 120.6(3)\\ 122.1(2)\\ 120.6(3)\\ 122.1(2)\\ 120.6(3)\\ 122.1(2)\\ 120.6(3)\\ 120.6(3)\\ 122.1(2)\\ 120.6(3)\\ 120.6(3)\\ 120.1(2)\\ 119.4(3)\\ 120.1(2)\\ 119.4(3)\\ 120.1(2)\\ 119.4(3)\\ 120.1(2)\\ 119.3(3)\\ 121.0(2)\\ 120.8(2)\\ 120.3(3)\\ 121.0(2)\\ 120.6(2)\\ 120.3(3)\\ 121.0(2)\\ 120.6(2)\\ 120.3(3)\\ 121.0(2)\\ 120.6(2)$
C(51) - C(46) - P(4) $C(49) - C(48) - C(47)$ $C(51) - C(50) - C(49)$ $C(53) - C(52) - C(57)$ $C(57) - C(52) - P(4)$ $C(55) - C(54) - C(53)$ $C(57) - C(56) - C(55)$	122.7(2) 119.7(2) 119.7(2) 118.7(2) 117.4(2) 120.3(3) 120.0(3)	C(46) - C(47) - C(48) $C(48) - C(49) - C(50)$ $C(50) - C(51) - C(46)$ $C(53) - C(52) - P(4)$ $C(52) - C(53) - C(54)$ $C(54) - C(55) - C(56)$ $C(56) - C(57) - C(52)$	120.8(2) 120.3(3) 121.0(2) 123.8(2) 120.7(3) 119.3(3) 121.1(3)

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) α(°)

713

 $C_{57}H_{51}O_2P_4RhS, 2(C_6H_6)$ 1183.04 redish orange plate 0.18x0.16x0.14 monoclinic P2₁/n 14.3420(10) 25.0130(10) 16.5630(10) 90.00

β(°)	100.2500(10)		
$\gamma(^{\circ})$	90.00		
$V(A^3)$	5846.9(6)		
Z	4		
d(g-cm ⁻³)	1.344		
F(000)	2456		
$\mu(cm^{-1})$	0.483		
Absorption corrections	multi-scan; 0.918	1 min, 0.9355 max	
Diffractometer	KappaCCD		
X-ray source	ΜοΚα		
$\lambda(\text{Å})$	0.71069		
Monochromator	graphite		
T (K)	150.0(1)		
Scan mode	phi and omega sca	ins	
Maximum θ	30.03		
HKL ranges	-20 20 ; -30 35 ; -2	23 23	
Reflections measured	26605		
Unique data	16798		
Rint	0.0227		
Reflections used	13239		
Criterion	$I > 2\sigma I$)		
Refinement type	Fsad		
Hydrogen atoms	mixed		
Parameters refined	697		
Reflections / parameter	18		
wR2	0.1205		
R1	0.0428		
Weights a, b	0.0500 : 5.5239		
GoF	1.038		
difference peak / hole (e Å ⁻³)	0.590(0.072) / -0.7	72(0.072)	
Table 2 Dand langths (A)	and angles (d_{ac} for 713	
Table 3. Bond lengths (A)	and angles (deg) for /13	
Rh(1) - O(1)	2.021(2)	Rh(1) - O(2)	2.041(2)
Rn(1) - P(3) $Rn(1) - D(4)$	2.28/0(0	Rn(1) - P(1) Ph(1) - C(1)	2.3321(6)
$R_{II}(1) - P(4)$ S(1) - P(2)	2.3409(0) 2.022(1)	P(1) - C(1)	1 784(2)
P(1) - C(5)	1.812(2)	P(1) - C(6)	1.822(2)
P(2) - C(1)	1.738(2)	P(2) - C(7)	1.813(3)
P(2)-C(13)	1.821(3)	P(3)-C(32)	1.825(2)
P(3)-C(38)	1.829(2)	P(3)-C(44)	1.841(2)
P(4) - C(52)	1.824(2)	P(4) - C(46)	1.829(3)
P(4) - C(45)	1.837(2) 1.427(2)	O(1) - O(2)	1.435(2) 1.271(2)
C(2) - C(2)	1.427(3) 1.517(3)	C(2) - C(3)	1.371(3) 1 437(3)
C(4) - C(5)	1.374(3)	C(4) - C(20)	1.499(3)
C(5) - C(26)	1.487(3)	C(7) - C(8)	1.386(4)
C(7) - C(12)	1.387(4)	C(8)-C(9)	1.379(5)
C(9) - C(10)	1.381(6)	C(10) - C(11)	1.360(5)
C(11) - C(12)	1.387(4)	C(13) - C(18)	1.393(4)
C(15) - C(14) C(15) - C(16)	1.390(4) 1.382(5)	C(14) - C(15) C(16) - C(17)	1.305(4) 1.378(5)
C(17) - C(18)	1.395(4)	C(20) - C(25)	1.395(3)
C(20) - C(21)	1.395(3)	C(21) - C(22)	1.388(4)
C(22)-C(23)	1.371(4)	C(23)-C(24)	1.393(4)
C(24) - C(25)	1.381(4)	C(26) - C(27)	1.400(3)
C(26) - C(31)	1.400(4) 1.270(5)	C(27) - C(28)	1.394(4)
C(28) - C(29) C(30) - C(31)	1.3/9(5) 1 388(4)	C(29) - C(30) C(32) - C(37)	1.370(4) 1 392(4)
C(32) - C(33)	1.397(3)	C(33) - C(34)	1.388(4)
C(34) - C(35)	1.371(4)	C(35) - C(36)	1.388(4)
C(36) - C(37)	. ,		
	1.389(4)	C(38)-C(39)	1.390(3)
C(38)-C(43)	1.389(4) 1.394(3)	C(38)-C(39) C(39)-C(40)	1.390(3) 1.394(4)

1.523(4) 1.392(4) 1.381(5) 1.402(4) 1.396(3) 1.377(4) 1.387(3) 1.394(7) 1.388(7) 1.321(7) 1.451(9) 1.319(6) 1.370(9)	$\begin{array}{ccccc} 11.370(9) \\ 121.51(5) \\ P(1) & 88.55(5) \\ P(1) & 100.34(2) \\ P(4) & 85.88(5) \\ P(4) & 175.28(2) \\ P(4) & 105.25(3) \\ P(4) & 105.25(3) \\ P(6) & 105.6(1) \\ P(1) & 107.9(1) \\ P(1) & 107.3(1) \\ P(4) & 102.9(1) \\ P(1) & 107.3(1) \\ P(4) & 102.9(1) \\ P(1) & 107.3(1) \\ P(4) & 102.9(1) \\ P(1) & 126.29(8) \\ P(1) & 106.0(1) \\ P(1) & 126.29(8) \\ P(1) & 106.0(1) \\ P(1) & 126.29(8) \\ P(2) & 127.8(2) \\ P(1) & 126.29(8) \\ P(2) & 127.8(2) \\ P(2) & 127.8(2) \\ P(2) & 124.8(2) \\ P(2) & 124.8(2) \\ P(2) & 124.8(2) \\ P(2) & 122.9(2) \\ P(2) & 122.9(2) \\ P(2) & 123.7(2) \\ P(2) & 122.9(2) \\ P(2) & 122.9(2) \\ P(2) & 122.9(2) \\ P(2) & 122.9(2) \\ P(2) & 120.9(3) \\ P(2) & 120.9(3) \\ P(2) & 120.9(3) \\ P(3) & 120.4(3) \\ P(3) & 120.9(3) \\ P(3) & 120.5(2) \\ P(3) & 120.5(2) \\ P(3) & 120.5(2) \\ P(3) & 120.5(3) \\ P(3) & 109.1(2) \\ P(1) & 109.1(2) \\ P(1)$
C(44)-C(45) $C(46)-C(47)$ $C(48)-C(49)$ $C(50)-C(51)$ $C(52)-C(57)$ $C(54)-C(55)$ $C(56)-C(57)$ $C(58)-C(59)$ $C(60)-C(61)$ $C(62)-C(63)$ $C(64)-C(69)$ $C(66)-C(67)$ $C(68)-C(69)$	$\begin{array}{c} 0(1) - Rh(1) - P(3) \\ 0(1) - Rh(1) - P(1) \\ P(3) - Rh(1) - P(1) \\ 0(2) - Rh(1) - P(4) \\ P(1) - Rh(1) - P(4) \\ 0(2) - Rh(1) - S(1) \\ P(1) - Rh(1) - S(1) \\ P(2) - S(1) - Rh(1) \\ C(1) - P(1) - Rh(1) \\ C(1) - P(1) - Rh(1) \\ C(1) - P(2) - S(1) \\ C(32) - P(3) - C(44) \\ C(32) - P(3) - C(44) \\ C(32) - P(3) - Rh(1) \\ C(44) - P(3) - Rh(1) \\ C(52) - P(4) - C(45) \\ C(52) - P(4) - Rh(1) \\ C(45) - P(4) - Rh(1) \\ C(45) - P(4) - Rh(1) \\ C(2) - C(1) - P(1) \\ C(3) - C(2) - C(1) \\ C(1) - C(1) - C(12) \\ C(12) - C(7) - P(2) \\ C(8) - C(7) - C(12) \\ C(13) - C(13) - C(14) \\ C(14) - C(13) - P(2) \\ C(16) - C(17) - C(18) \\ C(25) - C(20) - C(21) \\ C(21) - C(20) - C(4) \\ C(23) - C(22) - C(21) \\ C(21) - C(20) - C(4) \\ C(23) - C(22) - C(21) \\ C(25) - C(24) - C(23) \\ C(27) - C(26) - C(31) \\ C(31) - C(26) - C(31) \\ C(37) - C(32) - C(33) \\ C(37) - C(32) - C(33) \\ C(35) - C(34) - C(33) \\ C(35) - C(34) - C(33) \\ C(35) - C(36) - C(37) \\ \end{array}$
1.381(3) $1.385(4)$ $1.382(4)$ $1.356(5)$ $1.392(3)$ $1.388(4)$ $1.381(4)$ $1.361(7)$ $1.361(7)$ $1.341(7)$ $1.373(8)$ $1.358(7)$ $1.320(8)$	$\begin{array}{c} 41.320(3)\\ \\ 41.36(7)\\ 160.59(5)\\ 89.46(5)\\ 89.46(5)\\ 88.47(5)\\ 84.34(2)\\ 154.46(5)\\ 83.88(2)\\ 91.78(2)\\ 103.0(1)\\ 103.6(1)\\ 122.57(8)\\ 112.3(1)\\ 104.9(1)\\ 107.8(1)\\ 104.9(1)\\ 107.8(1)\\ 101.9(1)\\ 107.8(1)\\ 100.1(1)\\ 117.18(8)\\ 100.8(1)\\ 106.4(1)\\ 118.7(1)\\ 70.1(1)\\ 126.1(2)\\ 113.4(1)\\ 116.5(2)\\ 125.9(2)\\ 120.9(2)\\ 123.4(2)\\ 118.3(2)\\ 117.0(2)\\ 120.9(2)\\ 120.4(3)\\ 120.2(3)\\ 120.1(3)\\ 120.2(3)\\ 120.1(3)\\ 120.2(3)\\ 120.1(3)\\ 120.2(3)\\ 120.1(3)\\ 120.2(3)\\ 120.1(3)\\ 120.2(3)\\ 120.1(3)\\ 120.8(3)\\ 121.1(2)\\ 120.8(3)\\ 121.2(3)\\ 120.5(3)\\ 120.5(3)\\ 120.0(3)\\ \end{array}$
C(42) - C(43) $C(46) - C(51)$ $C(47) - C(48)$ $C(49) - C(50)$ $C(52) - C(53)$ $C(53) - C(54)$ $C(55) - C(56)$ $C(58) - C(63)$ $C(59) - C(60)$ $C(61) - C(62)$ $C(64) - C(65)$ $C(65) - C(66)$ $C(67) - C(68)$	C(07) - C(08) $O(1) - Rh(1) - O(2)$ $O(2) - Rh(1) - P(3)$ $O(2) - Rh(1) - P(1)$ $O(1) - Rh(1) - P(4)$ $P(3) - Rh(1) - S(1)$ $P(3) - Rh(1) - S(1)$ $P(4) - Rh(1) - S(1)$ $C(1) - P(1) - C(5)$ $C(5) - P(1) - Rh(1)$ $C(1) - P(2) - C(7)$ $C(7) - P(2) - C(13)$ $C(32) - P(3) - C(38)$ $C(38) - P(3) - C(44)$ $C(38) - P(3) - Rh(1)$ $C(52) - P(4) - C(46)$ $C(46) - P(4) - Rh(1)$ $C(2) - O(1) - Rh(1)$ $C(2) - O(1) - Rh(1)$ $C(2) - C(1) - P(2)$ $P(2) - C(1) - P(1)$ $C(3) - C(2) - C(19)$ $C(4) - C(5) - C(26)$ $C(26) - C(5) - P(1)$ $C(8) - C(7) - P(2)$ $C(9) - C(8) - C(7)$ $C(11) - C(10) - C(9)$ $C(7) - C(12) - C(11)$ $C(13) - P(2)$ $C(15) - C(14) - C(13)$ $C(17) - C(16) - C(15)$ $C(13) - C(13) - P(2)$ $C(15) - C(14) - C(13)$ $C(17) - C(16) - C(15)$ $C(13) - C(26) - C(26)$ $C(27) - C(26) - C(20)$ $C(22) - C(23) - C(24)$ $C(24) - C(25) - C(20)$ $C(27) - C(26) - C(5)$ $C(20) - C(31) - C(26)$ $C(30) - C(29) - C(28)$ $C(30) - C(31) - C(26)$ $C(30) - C(31) - C(26)$ $C(30) - C(31) - C(26)$ $C(31) - C(26) - C(5)$ $C(30) - C(31) - C(26)$ $C(31) - C(26) - C(3)$ $C(31) - C(26) - C(3)$ $C(34) - C(33) - C(32)$ $C(34) - C(35) - C(36)$

C(46) - C(51) - C(50) $C(53) - C(52) - P(4)$ $C(54) - C(53) - C(52)$ $C(54) - C(55) - C(56)$ $C(56) - C(57) - C(52)$ $C(60) - C(59) - C(58)$ $C(62) - C(61) - C(60)$ $C(58) - C(63) - C(62)$	120.7(3) 121.6(2) 119.9(2) 120.1(2) 119.8(2) 121.3(5) 120.4(5) 122.1(6)	C(53) - C(52) - C(57) $C(57) - C(52) - P(4)$ $C(55) - C(54) - C(53)$ $C(55) - C(56) - C(57)$ $C(63) - C(58) - C(59)$ $C(59) - C(60) - C(61)$ $C(63) - C(62) - C(61)$ $C(65) - C(64) - C(69)$	119.6(2) 118.7(2) 120.3(3) 120.3(3) 118.3(6) 116.8(5) 121.0(6) 116.5(6)
C(66)-C(65)-C(64) C(66)-C(67)-C(68) C(68)-C(69)-C(64)	121.6(5) 121.1(6) 117.6(5)	C(67)-C(66)-C(65) C(67)-C(68)-C(69)	120.9(5) 122.3(6)
	C3 C2 C1 C1 C1 C6 C6 C32 C33	Pd C34	
ompound	716a		
olecular formula	$C_{34}H_{32}P_2PdS$		

Co M Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) $\alpha(^{\circ})$ β(°) $\gamma(^{\circ})$ $\dot{V}(\dot{A}^3)$ Ζ $d(g-cm^{-3})$ F(000) $\mu(\text{cm}^{-1})$ Absorption corrections Diffractometer X-ray source λ(Å) Monochromator T (K) Scan mode Maximum θ HKL ranges Reflections measured Unique data Rint Reflections used Criterion Refinement type Hydrogen atoms Parameters refined Reflections / parameter wR2

641.00 orange plate 0.22x0.18x0.05 triclinic P-1 11.2180(10) 12.0220(10) 12.7300(10) 67.8200(10) 77.4300(10) 69.3200(10) 1480.3(2) 2 1.438 656 0.827 multi-scan ; 0.8389 min, 0.9598 max KappaCCD ΜοΚα 0.71069 graphite 293.0(10) phi and omega scans 30.03 -15 15 ; -16 15 ; -17 17 18500 8591 0.0262 6275 I > 2 sigma(I)Fsqd mixed 360 17 0.0790

R1 Weights a, b GoF	0.0344 0.0285 ; 0.6563 1.018	750/0 072	
Table 2 Dond longths ()	0.853(0.072) -0.	750(0.072)	
Pd(1)-C(33) Pd(1)-C(34) Pd(1)-C(5) P(1)-C(6) P(2)-C(20) C(1)-C(2) C(2)-C(3) C(3)-C(4) C(4)-C(5) C(6)-H(6A) C(6)-H(6C) C(7)-C(8) C(8)-H(8) C(9)-H(9) C(10)-H(10) C(11)-H(11) C(13)-C(18) C(14)-C(15) C(15)-C(16) C(16)-C(17) C(17)-C(18) C(16)-C(17) C(17)-C(18) C(18)-H(18) C(19)-H(19B) C(20)-C(25) C(21)-C(22) C(22)-C(23) C(22)-C(23) C(24)-C(25) C(25)-H(25) C(26)-C(27) C(27)-H(27) C(28)-H(28) C(29)-H(29) C(30)-H(30) C(32)-C(33) C(32)-H(32B) C(34)-H(34B)	<pre>) and angles (0 2.137(3) 2.199(3) 2.3371(6 1.756(2) 1.828(2) 1.816(2) 1.360(3) 1.444(3) 1.378(3) 1.422(3) 0.9600 0.9600 1.387(3) 0.9300 0.9300 0.9300 0.9300 0.9300 1.382(3) 1.389(3) 1.365(4) 1.370(4) 1.381(4) 0.9300 0.9600 1.384(3) 1.379(4) 1.365(4) 1.372(4) 1.385(4) 0.9300 0.9600 0.9300</pre>	Pd(1)-C(32) Pd(1)-P(1) S(1)-P(2) P(1)-C(1) P(2)-C(5) P(2)-C(26) C(1)-C(7) C(2)-C(13) C(3)-H(3) C(4)-C(19) C(6)-H(6B) C(7)-C(12) C(8)-C(9) C(9)-C(10) C(10)-C(11) C(11)-C(12) C(12)-H(12) C(13)-C(14) C(13)-C(14) C(14)-H(14) C(15)-H(15) C(16)-H(16) C(17)-H(17) C(19)-H(19A) C(19)-H(19A) C(19)-H(19C) C(20)-C(21) C(21)-H(21) C(22)-H(22) C(23)-H(23) C(24)-H(24) C(26)-C(31) C(27)-C(28) C(29)-C(30) C(30)-C(31) C(31)-H(31) C(32)-H(32A) C(34)-H(34A)	2.138(3) 2.2778(6) 2.0288(8) 1.802(2) 1.733(2) 1.822(2) 1.491(3) 1.502(3) 0.9300 1.510(3) 0.9600 1.384(3) 1.376(4) 1.368(4) 1.392(3) 0.9300
C(33) - Pd(1) - C(32) $C(32) - Pd(1) - C(34)$ $C(32) - Pd(1) - P(1)$ $C(33) - Pd(1) - S(1)$ $P(2) - S(1) - Pd(1)$ $C(5) - P(1) - Pd(1)$ $C(5) - P(1) - Pd(1)$ $C(6) - P(1) - Pd(1)$ $C(5) - P(2) - C(26)$ $C(5) - P(2) - S(1)$ $C(26) - P(2) - S(1)$ $C(26) - P(2) - S(1)$ $C(2) - C(1) - P(1)$ $C(1) - C(2) - C(3)$ $C(3) - C(2) - C(13)$ $C(4) - C(3) - H(3)$ $C(3) - C(4) - C(5)$ $C(5) - C(4) - C(19)$ $C(4) - C(5) - P(1)$ $P(1) - C(6) - H(6A)$ $H(6A) - C(6) - H(6B)$	37.1(1) 67.8(1) 100.9(1) 132.6(1) 98.4(1) 105.04(3) 106.7(1) 111.55(7) 111.9(1) 110.6(1) 112.00(7) 107.19(8) 117.2(2) 123.4(2) 114.6(2) 117.7 121.0(2) 120.8(2) 117.5(2) 109.5 109.5	C(33) - Pd(1) - C(34) $C(33) - Pd(1) - P(1)$ $C(34) - Pd(1) - P(1)$ $C(32) - Pd(1) - S(1)$ $P(1) - Pd(1) - S(1)$ $C(5) - P(1) - C(1)$ $C(1) - P(1) - C(6)$ $C(1) - P(1) - Pd(1)$ $C(5) - P(2) - C(20)$ $C(20) - P(2) - C(26)$ $C(20) - P(2) - S(1)$ $C(2) - C(1) - C(7)$ $C(7) - C(1) - P(1)$ $C(1) - C(2) - C(13)$ $C(4) - C(3) - C(2)$ $C(2) - C(3) - H(3)$ $C(3) - C(4) - C(19)$ $C(4) - C(5) - P(2)$ $P(2) - C(5) - P(1)$ $P(1) - C(6) - H(6B)$ $P(1) - C(6) - H(6C)$	37.2(1) 133.4(1) 168.5(1) 164.6(1) 92.51(2) 101.7(1) 102.8(1) 120.87(7) 111.5(1) 108.4(1) 106.98(7) 124.9(2) 117.8(2) 121.9(2) 124.5(2) 117.7 118.1(2) 124.7(2) 117.8(1) 109.5 109.5

C(12) - C(7) - C(8)	118.1(2)	C(12) - C(7) - C(1)	120.8(2)
C(8) - C(7) - C(1)	121.0(2)	C(9) - C(8) - C(7)	121.3(2)
C(9)-C(8)-H(8)	119.4	C(7)-C(8)-H(8)	119.4
C(10) - C(9) - C(8)	119.9(2)	C(10) - C(9) - H(9)	120.1
C(8) - C(9) - H(9)	120.1	C(11) - C(10) - C(9)	119.6(2)
C(11) - C(10) - H(10)	120.2	C(9)-C(10)-H(10)	120.2
C(10) - C(11) - C(12)	120.5(2)	C(10)-C(11)-H(11)	119.7
C(12)-C(11)-H(11)	119.7	C(7) - C(12) - C(11)	120.6(2)
C(7) - C(12) - H(12)	119.7	C(11)-C(12)-H(12)	119.7
C(18) - C(13) - C(14)	117.8(2)	C(18) - C(13) - C(2)	121.0(2)
C(14) - C(13) - C(2)	121.1(2)	C(13) - C(14) - C(15)	120.8(2)
C(13) - C(14) - H(14)	119.6	C(15)-C(14)-H(14)	119.6
C(16) - C(15) - C(14)	120.4(2)	C(16)-C(15)-H(15)	119.8
C(14) - C(15) - H(15)	119.8	C(15)-C(16)-C(17)	119.4(2)
C(15) - C(16) - H(16)	120.3	C(17) - C(16) - H(16)	120.3
C(16) - C(17) - C(18)	120.5(3)	C(16) - C(17) - H(17)	119.7
C(18) - C(17) - H(17)	119.7	C(17) - C(18) - C(13)	121.0(3)
C(17) - C(18) - H(18)	119.5	C(13) - C(18) - H(18)	119.5
C(4) - C(19) - H(19A)	109.5	C(4) - C(19) - H(19B)	109.5
H(19A) - C(19) - H(19B)	109.5	C(4) - C(19) - H(19C)	109.5
H(19A) - C(19) - H(19C)	109.5	H(19B)-C(19)-H(19C)	109.5
C(25) - C(20) - C(21)	118.7(2)	C(25) - C(20) - P(2)	119.2(2)
C(21) - C(20) - P(2)	121.9(2)	C(22) - C(21) - C(20)	120.8(3)
C(22) - C(21) - H(21)	119.6	C(20) - C(21) - H(21)	119.6
C(23) - C(22) - C(21)	119.9(3)	C(23) - C(22) - H(22)	120.0
C(21) - C(22) - H(22)	120.0	C(22) - C(23) - C(24)	120.1(3)
С(22)-С(23)-Н(23)	119.9	С(24)-С(23)-Н(23)	119.9
C(23) - C(24) - C(25)	120.5(3)	С(23)-С(24)-Н(24)	119.8
C(25) - C(24) - H(24)	119.8	C(20) - C(25) - C(24)	119.9(2)
С(20)-С(25)-Н(25)	120.0	C(24)-C(25)-H(25)	120.0
C(31) - C(26) - C(27)	118.8(2)	C(31) - C(26) - P(2)	125.2(2)
C(27) - C(26) - P(2)	115.8(2)	C(28) - C(27) - C(26)	121.0(2)
C(28) - C(27) - H(27)	119.5	C(26)-C(27)-H(27)	119.5
C(27) - C(28) - C(29)	119.9(3)	C(27)-C(28)-H(28)	120.1
С(29)-С(28)-Н(28)	120.1	C(30) - C(29) - C(28)	119.8(3)
С(30)-С(29)-Н(29)	120.1	С(28)-С(29)-Н(29)	120.1
C(29) - C(30) - C(31)	121.0(3)	С(29)-С(30)-Н(30)	119.5
C(31) - C(30) - H(30)	119.5	C(26) - C(31) - C(30)	119.5(2)
С(26)-С(31)-Н(31)	120.2	C(30)-C(31)-H(31)	120.2
C(33) - C(32) - Pd(1)	71.4(2)	C(33)-C(32)-H(32A)	109(2)
Pd(1)-C(32)-H(32A)	94(2)	C(33)-C(32)-H(32B)	127(2)
Pd(1)-C(32)-H(32B)	119(2)	H(32A)-C(32)-H(32B)	120(3)
C(32) - C(33) - C(34)	123.8(3)	C(32)-C(33)-Pd(1)	71.5(2)
C(34)-C(33)-Pd(1)	73.8(2)	C(32)-C(33)-H(33)	109(2)
C(34)-C(33)-H(33)	125(2)	Pd(1)-C(33)-H(33)	113(2)
C(33)-C(34)-Pd(1)	69.0(2)	C(33)-C(34)-H(34A)	113(2)
Pd(1)-C(34)-H(34A)	98(2)	C(33)-C(34)-H(34B)	119(2)
Pd(1)-C(34)-H(34B)	121(2)	H(34A)-C(34)-H(34B)	124(3)

VI. Chapitre 8

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) $\alpha(^{\circ})$ β(°) $\gamma(^{\circ})$ $V(Å^3)$ Ζ $d(g-cm^{-3})$ F(000) $\mu(\text{cm}^{-1})$ Absorption corrections Diffractometer X-ray source λ(Å) Monochromator T (K) Scan mode Maximum θ HKL ranges Reflections measured Unique data Rint Reflections used Criterion Refinement type Hydrogen atoms Parameters refined Reflections / parameter wR2 R1 Flack's parameter Weights a, b GoF difference peak / hole (e Å⁻³)

805 $C_{36}H_{30}Cl_2O_4P_2PdS, CH_2Cl_2$ 882.83 pale orange plate 0.22x0.14x0.08 orthorhombic $P2_{1}2_{1}2_{1}$ 11.0880(10) 17.2800(10) 19.3660(10) 90.00 90.00 90.00 3710.5(4) 4 1.580 1784 0.970 multi-scan ; 0.8149 min, 0.9264 max KappaCCD ΜοΚα 0.71069 graphite 150.0(1)phi and omega scans 30.00 -9 15 ; -24 24 ; -27 25 24611 10818 0.0372 8689 $I > 2\sigma I$) Fsqd mixed 446 19 0.0903 0.0347 0.201(19) 0.0415; 0.0000 1.008

0.610(0.093) / -0.525(0.093)

Table	3.	Bond	lengths	(A)	and	angles	(deq)	for	805
10.010	•••	20110	101190110	()	0.110.	0119200	(0.05)		000

Pd(1) - P(1) $Pd(1) - Cl(2)$ $Cl(3) - C(37)$ $S(1) - P(2)$ $P(1) - C(6)$ $P(2) - C(1)$ $P(2) - C(8)$ $O(2) - C(33)$ $O(3) - C(35)$ $O(4) - C(36)$ $C(2) - C(20)$ $C(3) - C(7)$ $C(4) - C(5)$ $C(5) - C(27)$ $C(6) - C(33)$ $C(8) - C(9)$ $C(9) - C(10)$ $C(11) - C(12)$ $C(14) - C(15)$ $C(15) - C(16)$ $C(17) - C(18)$ $C(21) - C(26)$ $C(22) - C(23)$ $C(24) - C(25)$ $C(27) - C(28)$ $C(28) - C(29)$ $C(30) - C(31)$	$\begin{array}{c} 2.1753(8\\ 2.3158(8\\ 1.761(4)\\ 2.026(1)\\ 1.825(3)\\ 1.790(3)\\ 1.801(3)\\ 1.337(4)\\ 1.200(4)\\ 1.455(4)\\ 1.455(4)\\ 1.455(4)\\ 1.455(4)\\ 1.522(4)\\ 1.355(4)\\ 1.355(4)\\ 1.355(4)\\ 1.375(4)\\ 1.375(4)\\ 1.387(5)\\ 1.377(4)\\ 1.383(5)\\ 1.370(5)\\ 1.383(5)\\ 1.383(5)\\ 1.383(5)\\ 1.388(4)\\ 1.384(5)\\ 1.370(6)\\ \end{array}$	Pd(1)-S(1) Pd(1)-Cl(1) Cl(4)-C(37) P(1)-C(1) P(1)-C(5) P(2)-C(14) O(1)-C(33) O(2)-C(34) O(4)-C(35) C(1)-C(2) C(2)-C(3) C(3)-C(4) C(4)-C(21) C(6)-C(7) C(7)-C(35) C(8)-C(13) C(10)-C(11) C(12)-C(13) C(10)-C(11) C(12)-C(13) C(14)-C(19) C(16)-C(17) C(18)-C(19) C(21)-C(22) C(23)-C(24) C(25)-C(26) C(27)-C(32) C(29)-C(30) C(31)-C(32) Pd(1)-C(1) Pd(1)-Pd(1) Pd(1)-Pd(1)-Pd(1) Pd(1)-Pd(1)-Pd(1) Pd(1)-Pd(1)-Pd(1) Pd(1)-Pd(1)-Pd(1)-Pd(1) Pd(1)-Pd($\begin{array}{c} 2.3070(8)\\ 2.3570(8)\\ 1.745(4)\\ 1.823(3)\\ 1.831(3)\\ 1.800(4)\\ 1.194(3)\\ 1.451(4)\\ 1.333(4)\\ 1.339(4)\\ 1.533(4)\\ 1.533(4)\\ 1.533(4)\\ 1.547(4)\\ 1.482(4)\\ 1.328(4)\\ 1.504(4)\\ 1.392(5)\\ 1.374(5)\\ 1.397(5)\\ 1.397(5)\\ 1.405(4)\\ 1.376(5)\\ 1.377(5)\\ 1.391(4)\\ 1.395(5)\\ 1.395(4)\\ 1.386(6)\\ 1.384(5)\\ \end{array}$
P(1) - Pd(1) - S(1) $S(1) - Pd(1) - C1(2)$ $S(1) - Pd(1) - C1(1)$ $P(2) - S(1) - Pd(1)$ $C(1) - P(1) - Pd(1)$ $C(1) - P(2) - C(8)$ $C(1) - P(2) - S(1)$ $C(3) - P(2) - S(1)$ $C(35) - O(4) - C(36)$ $C(2) - C(1) - P(1)$ $C(1) - C(2) - C(20)$ $C(20) - C(2) - C(3)$ $C(7) - C(3) - C(4)$ $C(5) - C(4) - C(21)$ $C(21) - C(4) - C(21)$ $C(7) - C(6) - C(33)$ $C(33) - C(6) - P(1)$ $C(6) - C(7) - C(3)$ $C(9) - C(8) - C(13)$ $C(13) - C(8) - P(2)$ $C(11) - C(12) - C(13)$ $C(15) - C(14) - C(19)$ $C(15) - C(14) - P(2)$ $C(17) - C(16) - C(15)$ $C(17) - C(16) - C(15)$ $C(17) - C(18) - C(19)$ $C(22) - C(21) - C(4)$ $C(22) - C(23) - C(24)$ $C(24) - C(25) - C(26)$ $C(28) - C(27) - C(32)$ $C(30) - C(31) - C(32)$ $O(1) - C(33) - O(2)$	90.67(3) 172.87(3) 88.47(3) 104.43(4) 99.1(1) 114.5(1) 117.9(1) 112.8(2) 107.3(1) 109.3(1) 115.2(3) 114.0(2) 129.1(3) 116.3(3) 110.5(2) 126.4(3) 117.0(3) 111.4(2) 126.4(3) 121.9(2) 117.8(3) 119.6(3) 120.3(4) 120.4(3) 120.4(3) 120.4(3) 117.0(3) 119.4(4) 120.4(3) 120.6(3) 120.0(3) 120.0(3) 120.0(3) 120.0(3) 120.3(4) 120.3(4) 120.3(4) 125.2(3)	$\begin{array}{c} P(1) - Pd(1) - C1(2) \\ P(1) - Pd(1) - C1(1) \\ C1(2) - Pd(1) - C1(1) \\ C(1) - P(1) - C(6) \\ C(6) - P(1) - P(2) \\ C(1) - P(2) - C(14) \\ C(14) - P(2) - C(14) \\ C(14) - P(2) - C(14) \\ C(14) - P(2) - C(3) \\ C(14) - P(2) - C(3) \\ C(2) - C(1) - P(2) \\ P(2) - C(1) - P(1) \\ C(1) - C(2) - C(3) \\ C(2) - C(3) - C(2) \\ C(2) - C(3) - C(4) \\ C(5) - C(4) - C(3) \\ C(7) - C(3) - C(2) \\ C(2) - C(3) - C(4) \\ C(5) - C(4) - C(3) \\ C(4) - C(5) - C(27) \\ C(27) - C(5) - P(1) \\ C(7) - C(6) - P(1) \\ C(6) - C(7) - C(35) \\ C(35) - C(7) - C(35) \\ C(35) - C(7) - C(3) \\ C(9) - C(8) - P(2) \\ C(8) - C(9) - C(10) \\ C(12) - C(11) - C(10) \\ C(8) - C(13) - C(12) \\ C(15) - C(14) - P(2) \\ C(14) - C(15) - C(16) \\ C(18) - C(17) - C(16) \\ C(18) - C(17) - C(16) \\ C(18) - C(12) - C(44) \\ C(26) - C(21) - C(4) \\ C(21) - C(22) - C(23) \\ C(25) - C(24) - C(23) \\ C(25) - C(24) - C(25) \\ C(28) - C(27) - C(5) \\ C(29) - C(28) - C(27) \\ C(31) - C(30) - C(29) \\ C(31) - C(32) - C(27) \\ O(1) - C(33) - C(6) \\ \end{array}$	$\begin{array}{c} 83.33(3)\\ 176.26(4)\\ 97.26(3)\\ 97.5(1)\\ 98.7(1)\\ 124.4(1)\\ 109.7(1)\\ 105.8(2)\\ 112.1(1)\\ 113.9(2)\\ 133.3(2)\\ 112.6(2)\\ 114.7(3)\\ 109.8(2)\\ 107.2(2)\\ 114.7(3)\\ 109.8(2)\\ 107.2(2)\\ 116.5(3)\\ 127.0(3)\\ 121.5(2)\\ 111.7(2)\\ 122.1(3)\\ 120.6(3)\\ 120.6(3)\\ 120.6(3)\\ 120.6(3)\\ 120.6(3)\\ 120.6(3)\\ 120.3(3)\\ 119.8(3)\\ 119.1(3)\\ 122.5(2)\\ 119.8(3)\\ 121.4(4)\\ 118.9(3)\\ 120.4(3)\\ 120.8(3)\\ 120.8(3)\\ 120.8(3)\\ 120.8(3)\\ 120.4(3)\\ 120.2(3)\\ 120.2(3)\\ 124.9(3)\\ \end{array}$

O(2)-C(33)-C(6) O(3)-C(35)-C(7) Cl(4)-C(37)-Cl(3)	109.9(2) 124.8(3) 111.7(2)	O(3)-C(35)-O(4) O(4)-C(35)-C(7)	125.5(3) 109.6(3)
C24 C26 C24 C26 C3 C10 C24 C24 C10 C5 C10 C5 C10 C5 C10 C10 C5 C10 C25 C10 C10 C5 C10 C10 C5 C10 C10 C10 C10 C10 C10 C10 C10 C10 C10	€ C10 C10 C10 C10 C10 C10 C10 C10 C10 C10	03 004 0226 024 01 06 07 01 06 07 01 06 07 01 06 07 01 01 06 01 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 01 00 00	07 55 C40 F3 F2
ompound olecular formula olecular weight ystal habit ystal dimensions(mm) ystal system ace group Å) Å) Å) Å) Å)	806 $C_{39}H_{35}O_4P_2PdS_5C_917.14$ pale yellow block 0.20x0.16x0.14 triclinic P-1 9.8490(10) 11.2220(10) 19.0690(10) 92.4700(10) 101.4400(10) 109.4600(10) 1934.1(3)	F3O3S	
g-cm ⁻³) 000) cm ⁻¹) osorption corrections ffractometer ray source	2 1.575 932 0.735 multi-scan ; 0.866 KappaCCD ΜοΚα	9 min, 0.9041 max	

Comp Molec Molec Crysta Crysta Crysta Space a(Å) b(Å) c(Å) $\alpha(^{\circ})$ β(°) $\gamma(^{\circ})$ V(Å³) Ζ d(g-cn F(000 µ(cm⁻ Absor Diffra X-ray λ(Å) Monochromator T (K) Scan mode Maximum θ HKL ranges Reflections measured Unique data Rint Reflections used Criterion Refinement type Hydrogen atoms Parameters refined Reflections / parameter wR2 R1 Weights a, b GoF

difference peak / hole (e Å⁻³)

0.71069 graphite 150.0(1)phi and omega scans 30.03 -13 13 ; -15 15 ; -26 25 16812 11233 0.0205 9303 $I > 2\sigma I$) Fsqd mixed 529 17 0.0959 0.0342 0.0544; 0.0000 1.030

0.914(0.078) / -0.940(0.078)

Table	3. Bond lengths	(A) and angles	deg) for 806	
C (8A)	Pd(1)-C(8A) Pd(1)-C(9) Pd(1)-C(9A) Pd(1)-P(1) S(1)-P(2) P(1)-C(6) P(2)-C(11) P(2)-C(17) O(2)-C(24) O(3)-C(26) O(4)-C(27) C(2)-C(23) C(3)-H(3) C(4)-C(28) C(6)-C(7) C(7)-C(26) C(8)-H(8A) C(9)-C(10) C(10)-H(10A) C(8A)-C(9A) C(8A)-H(8A2) C(9A)-H(9A) C(10A)-H(10D) C(11)-C(12) C(12)-H(12) C(12)-H(12) C(13)-H(13) C(14)-H(14) C(15)-H(15) C(17)-C(18) C(18)-C(19) C(20)-C(21) C(21)-C(22) C(22)-H(22) C(22)-H(22) C(23)-H(25A) C(25)-H(25A) C(25)-H(25A) C(25)-H(25A) C(25)-H(25A) C(25)-H(25A) C(25)-H(25C) C(27)-H(27B) C(28)-C(29) C(29)-C(30) C(30)-C(31) C(31)-C(32) C(32)-C(33) C(34)-C(39) C(35)-H(35) C(36)-H(36) C(37)-H(37) C(38)-H(38) S(5)-O(7) S(5)-O(5) F(1)-C(40) F(3)-C(10)	$\begin{array}{c} 2.07(2)\\ 2.128(3)\\ 2.196(6)\\ 2.2541(5\\ 2.0090(6\\ 1.828(2)\\ 1.792(2)\\ 1.800(2)\\ 1.325(2)\\ 1.207(2)\\ 1.447(2)\\ 1.497(2)\\ 1.523(3)\\ 1.0000\\ 1.488(2)\\ 1.336(2)\\ 1.497(2)\\ 0.9900\\ 1.45(1)\\ 0.9900\\ 1.35(2)\\ 0.9900\\ 1.35(2)\\ 0.9900\\ 1.35(2)\\ 0.9900\\ 1.35(2)\\ 0.9900\\ 1.35(2)\\ 0.9900\\ 1.35(2)\\ 0.9900\\ 1.35(2)\\ 0.9900\\ 1.35(2)\\ 0.9900\\ 1.35(2)\\ 0.9900\\ 1.35(2)\\ 0.9900\\ 1.388(3)\\ 1.387(3)\\ 1.375(3)\\ 1.384(3)\\ 1.384(3)\\ 1.388(3)\\ 1.388(3)\\ 1.388(3)\\ 1.379(3)\\ 1.375(3)\\ 1.375(3)\\ 1.375(3)\\ 1.375(3)\\ 1.375(3)\\ 1.375(3)\\ 1.375(3)\\ 1.388(3)\\ 1.388(3)\\ 1.379(3)\\ 1.375(3)\\ 1.393(3)\\ 0.8393\\ 1.399(2)\\ 0.8560\\ 0.9006\\ 0.9873\\ 0.9859\\ 1.438(2)\\ 1.440(1)\\ 1.331(3)\\ 1.37(2)\\ 0.8560\\ 0.9066\\ 0.9873\\ 0.9859\\ 1.438(2)\\ 1.440(1)\\ 1.337(2)\\ 0.857($	Pd(1) - C(10) $Pd(1) - C(10A)$ $Pd(1) - C(1)$ $P(1) - C(1)$ $P(1) - C(1)$ $P(1) - C(1)$ $P(1) - C(2)$ $P(2) - C(1)$ $O(1) - C(2A)$ $O(2) - C(25)$ $O(4) - C(26)$ $C(1) - C(2)$ $C(2) - C(3)$ $C(3) - C(4)$ $C(4) - C(5)$ $C(5) - C(34)$ $C(6) - C(24)$ $C(8) - C(9)$ $C(8) - H(8B)$ $C(9) - H(9)$ $C(10) - H(10B)$ $C(8A) - H(8A1)$ $C(9A) - C(10A)$ $C(10A) - H(10C)$ $C(11) - C(16)$ $C(12) - C(13)$ $C(13) - C(14)$ $C(14) - C(15)$ $C(15) - C(16)$ $C(16) - H(16)$ $C(17) - C(22)$ $C(18) - H(18)$ $C(19) - H(19)$ $C(20) - H(20)$ $C(21) - H(21)$ $C(23) - H(23A)$ $C(23) - H(23A)$ $C(23) - H(23A)$ $C(23) - H(27A)$ $C(27) - H(27C)$ $C(28) - C(33)$ $C(29) - H(29)$ $C(30) - H(30)$ $C(31) - H(31)$ $C(32) - H(32)$ $C(34) - C(35)$ $C(36) - C(37)$ $C(37) - C(38)$ $C(39) - H(39)$ $S(5) - O(6)$ $S(5) - C(40)$ $F(2) - C(40)$	2.13(1) 2.17(2) 2.229(7) 2.3877(5) 1.826(2) 1.842(2) 1.793(2) 1.196(2) 1.447(2) 1.329(2) 1.338(2) 1.541(2) 1.545(2) 1.442(2) 1.442(2) 1.442(2) 1.441(7) 0.9900 0.9500 0.9900 1.31(2) 0.9900 1.391(2) 1.389(3) 1.381(3) 0.9647 1.395(3) 0.9298 0.9069 0.9051 0.8460 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 0.9800 1.398(3) 0.388(3) 0.8087 0.8676 0.9217 1.0370 1.398(2) 1.389(3) 1.382(3) 0.9444 1.439(2) 1.332(3) 30.7(5)
C(10) C(10) C(8A) C(9)- C(8A) C(9)- C(9A) C(10) C(10A C(10) C(10A) C(10)	-Pd(1)-C(9) -Pd(1)-C(10A) -Pd(1)-C(9A) -Pd(1)-C(9A) -Pd(1)-C(8) -Pd(1)-C(8) -Pd(1)-C(8) -Pd(1)-P(1) A)-Pd(1)-P(1) -Pd(1)-P(1) -Pd(1)-S(1)	39.9(2) 10.7(4) 36.6(6) 27.6(2) 8.2(6) 38.5(2) 40.4(3) 102.5(3) 103.2(6) 172.3(2) 167.7(3)	C(8A)-Pd(1)-C(10A) C(9)-Pd(1)-C(10A) C(10)-Pd(1)-C(9A) C(10A)-Pd(1)-C(9A) C(10A)-Pd(1)-C(8) C(10A)-Pd(1)-C(8) C(10A)-Pd(1)-P(1) C(9A)-Pd(1)-P(1) C(9A)-Pd(1)-P(1) C(8A)-Pd(1)-S(1)	63.0(8) 63.0(8) 34.9(6) 31.2(3) 35.0(6) 69.9(3) 69.7(6) 166.1(5) 135.6(1) 131.9(2) 103.4(5) 128.8(1)

484

C(10A) - Pd(1) - S(1) $C(8) - Pd(1) - S(1)$ $P(2) - S(1) - Pd(1)$ $C(1) - P(1) - Pd(1)$ $C(1) - P(1) - Pd(1)$ $C(1) - P(2) - S(1)$ $C(11) - P(2) - S(1)$ $C(17) - P(2) - S(1)$ $C(2) - C(1) - P(1)$ $C(1) - C(2) - C(23)$ $C(2) - C(1) - P(1)$ $C(1) - C(2) - C(23)$ $C(2) - C(3) - C(4)$ $C(7) - C(3) - H(3)$ $C(4) - C(3) - H(3)$ $C(4) - C(5) - C(34)$ $C(7) - C(6) - P(1)$ $C(6) - C(7) - C(26)$ $C(26) - C(7) - C(3)$ $C(9) - C(8) - H(8A)$ $C(9) - C(8) - H(8B)$ $C(9) - C(10) - H(10B)$ $C(10A) - C(9A) - H(8A2)$ $C(10A) - C(9A) - H(9A)$ $C(9A) - C(10A) - H(10D)$ $H(10C) - C(10A) - H(10D)$ $H(10C) - C(10A) - H(10D)$ $C(16) - C(11) - P(2)$ $C(13) - C(12) - H(12)$ $C(13) - C(14) - H(13)$ $C(15) - C(14) - C(13)$ $C(13) - C(14) - H(14)$ $C(14) - C(15) - H(15)$ $C(15) - C(16) - C(11)$ $C(11) - C(16) - H(16)$ $C(13) - C(10) - H(19)$ $C(10) - C(10) - H(10)$ $C(10) - C(10) - H(10)$ $C(11) - C(10) - H(10)$ $C(12) - C(12) - H(12)$ $C(12) - C(20) - H(20)$ $C(20) - C(20) - H(20)$ $C(21) - C(20) - H(20)$ $C(22) - C(23) - H(23B)$ $C(2) - C(23) - H(23C)$ $C(2) - C(2$	162.6(5) 97.9(2) 98.99(2) 98.99(2) 98.44(8) 110.91(6) 121.68(6) 107.63(8) 112.20(6) 115.5(2) 114.4(1) 129.1(2) 115.5(1) 109.2(1) 110.2 117.5(2) 129.0(2) 119.0(1) 113.1(1) 125.7(2) 117.3(1) 117.0 117.0 117.0 117.0 117.0 117.0 117.0 117.0 117.0 116.6 116.6 115.8 115.8 115.8 115.8 115.8 115.8 115.8 115.8 115.8 115.8 115.8 115.8 115.8 115.8 115.8 115.8 115.8 115.8 112.0.3 120.1 119.0(1) 123.3 130.4 116.2 116.2 116.2 116.2 118.4(2) 128.4(2) 120.2(2) 19.9 120.0 120.2(2) 119.9 120.0 120.1(2) 120.4 119.8(2) 120.1 109.5	C(9A) - Pd(1) - S(1) $P(1) - Pd(1) - C(6)$ $C(6) - P(1) - P(2)$ $C(1) - P(2) - C(1)$ $C(1) - P(2) - C(1)$ $C(1) - P(2) - S(1)$ $C(24) - O(2) - C(25)$ $C(2) - C(1) - P(2)$ $P(2) - C(1) - P(1)$ $C(1) - C(2) - C(3)$ $C(7) - C(3) - C(2)$ $C(2) - C(3) - C(4)$ $C(2) - C(3) - H(3)$ $C(5) - C(4) - C(28)$ $C(28) - C(4) - C(3)$ $C(4) - C(5) - P(1)$ $C(7) - C(6) - C(24)$ $C(24) - C(6) - P(1)$ $C(6) - C(7) - C(3)$ $C(9) - C(8) - H(8A)$ $Pd(1) - C(8) - H(8A)$ $Pd(1) - C(8) - H(8B)$ $C(8) - C(9) - C(10)$ $C(10) - C(9) - Pd(1)$ $Pd(1) - C(10) - H(10A)$ $Pd(1) - C(10) - H(10B)$ $C(9A) - C(8A) - Pd(1)$ $Pd(1) - C(10) - H(10B)$ $C(9A) - C(8A) - Pd(1)$ $Pd(1) - C(8A) - H(8A1)$ $Pd(1) - C(10A) - H(10D)$ $C(10A) - C(9A) - C(8A)$ $C(8A) - C(9A) - Pd(1)$ $C(10A) - C(10A) - H(10D)$ $C(11) - C(10A) - H(10D)$ $C(12) - C(11) - P(2)$ $C(13) - C(12) - H(12)$ $C(14) - C(13) - C(12)$ $C(13) - C(12) - H(13)$ $C(15) - C(14) - H(14)$ $C(14) - C(15) - C(16)$ $C(16) - C(17) - C(22)$ $C(22) - C(17) - P(2)$ $C(12) - C(18) - H(18)$ $C(20) - C(19) - C(18)$ $C(18) - C(19) - H(19)$ $C(19) - C(20) - H(20)$ $C(20) - C(21) - H(23)$ $H(23A) - C(23) - H(23B)$ $H(23A) - C(23) - H(23B)$ $H(23A) - C(23) - H(23C)$	$\begin{array}{c} 137.2(2)\\ 89.70(2)\\ 97.40(8)\\ 97.38(8)\\ 97.38(8)\\ 125.59(6)\\ 109.09(8)\\ 108.91(8)\\ 108.91(8)\\ 108.67(6)\\ 115.9(2)\\ 132.8(1)\\ 112.7(1)\\ 115.3(2)\\ 108.8(1)\\ 108.2(1)\\ 110.2\\ 125.5(2)\\ 108.8(1)\\ 108.2(1)\\ 110.2\\ 125.5(2)\\ 116.9(1)\\ 111.8(1)\\ 128.5(2)\\ 118.4(1)\\ 117.0(2)\\ 66.9(2)\\ 117.0\\ 117.0\\ 119.4(5)\\ 70.0(4)\\ 120.3\\ 70.1(4)\\ 116.6\\ 116.6\\ 76.6(8)\\ 115.8\\ 112.0.1\\ 120.3(2)\\ 120.1\\ 120.1\\ 120.0\\ 120.0\\ 120.1(2)\\ 119.6\\ 119.9\\ 120.0(2)\\ 120.1\\ 120.1\\ 109.5$
C(19)-C(20)-C(21) $C(21)-C(20)-H(20)$ $C(22)-C(21)-H(21)$ $C(21)-C(22)-C(17)$ $C(17)-C(22)-H(23B)$ $C(2)-C(23)-H(23C)$ $H(23B)-C(23)-H(23C)$ $H(23B)-C(23)-H(23C)$ $O(1)-C(24)-C(6)$ $O(2)-C(25)-H(25A)$ $H(25A)-C(25)-H(25B)$ $H(25A)-C(25)-H(25C)$ $O(3)-C(26)-O(4)$ $O(4)-C(26)-C(7)$ $O(4)-C(27)-H(27C)$	120.6(2) 119.7 120.1 119.8(2) 120.1 109.5 109.5 109.5 109.5 109.5 109.5 124.7(2) 112.1(2) 109.5 109.5 109.5	C(19)-C(20)-H(20) C(22)-C(21)-C(20) C(20)-C(21)-H(21) C(21)-C(22)-H(22) C(2)-C(23)-H(23A) H(23A)-C(23)-H(23B) H(23A)-C(23)-H(23C) O(1)-C(24)-O(2) O(2)-C(24)-C(6) O(2)-C(25)-H(25B) O(2)-C(25)-H(25C) H(25B)-C(25)-H(25C) O(3)-C(26)-C(7) O(4)-C(27)-H(27A) H(27A)-C(27)-H(27B) H(27A)-C(27)-H(27C) C(29)-C(28)-C(33)	119.7 119.9(2) 120.1 120.1 109.5 109.5 109.5 124.6(2) 111.6(1) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5

C(29)-C(28)-C(4)
C(30) - C(29) - C(28)
C(28)-C(29)-H(29)
C(31) - C(30) - H(30)
C(32) - C(31) - C(30)
C(30) - C(31) - H(31)
C(31) - C(32) - H(32)
C(32) - C(33) - C(28)
C(28) - C(33) - H(33)
C(36) - C(36) - C(36)
C(34) - C(35) - H(35)
C(37) - C(36) - H(36)
C(36) - C(37) - C(38)
C(38) - C(37) - H(37)
C(39)-C(38)-H(38)
C(38)-C(39)-C(34)
C(34)-C(39)-H(39)
O(7) - S(5) - O(5)
O(7) - S(5) - C(40)
O(5) - S(5) - C(40)
F(1) = C(40) = F(3) F(1) = C(40) = C(5)
F(1) = C(40) = S(5) F(2) = C(40) = C(5)
r(3)-C(HU)-S(3)

121.1(2) 120.3(2) 119.9 119.9 120.2(2) 119.9 120.0(2) 120.0 121.3(2) 121.2(2) 119.4 119.9 119.6(2) 120.2 119.8 120.8(2) 119.6 114.8(1)	$\begin{array}{c} C(33) - C(28) - C(4) \\ C(30) - C(29) - H(29) \\ C(31) - C(30) - C(29) \\ C(29) - C(30) - H(30) \\ C(32) - C(31) - H(31) \\ C(31) - C(32) - C(33) \\ C(33) - C(32) - H(32) \\ C(32) - C(33) - H(32) \\ C(32) - C(33) - H(33) \\ C(35) - C(34) - C(39) \\ C(36) - C(35) - H(35) \\ C(36) - C(35) - H(35) \\ C(36) - C(35) - H(35) \\ C(36) - C(37) - H(37) \\ C(39) - C(38) - C(37) \\ C(39) - C(38) - H(38) \\ C(38) - C(39) - H(39) \\ O(7) - S(5) - O(6) \\ O(6) - S(5) - O(5) \end{array}$	119.8(2) 119.9 120.2(2) 119.9 120.1(2) 119.9 120.0 117.8(2) 120.8(2) 120.8(2) 119.4 120.2(2) 119.9 120.2 120.5(2) 119.8 119.6 115.5(1) 114.7(1)
119.8 120.8(2)	C(37) - C(38) - H(38) C(38) - C(39) - H(39) C(7) - C(5) - C(6)	119.8 119.6
114.8(1) 103.4(1)	O(7) - S(5) - O(6) O(6) - S(5) - O(5) O(6) - S(5) - C(40)	114.7(1) 102.9(1)
103.1(1) 107.3(2) 112.1(2)	F(1) - C(40) - F(2) F(2) - C(40) - F(3) F(2) - C(40) - S(5)	107.1(2) 107.4(2) 111.7(2)
111.0(2)	F(2)-C(40)-S(5)	III./(Z)

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) $\alpha(^{\circ})$ β(°) γ(°) $V(Å^3)$ Ζ $d(g-cm^{-3})$ F(000) $\mu(\text{cm}^{-1})$ Absorption corrections Diffractometer X-ray source λ(Å) Monochromator T (K) Scan mode

Maximum θ

808

 $C_{36}H_{30}AuClO_4P_2S$ 853.02 colorless plate 0.14x0.08x0.02 monoclinic Pn 8.6970(10) 12.6110(10) 31.127(2) 90.00 90.946(3) 90.00 3413.5(5) 4 1.660 1680 4.581 multi-scan; 0.5664 min, 0.9345 max KappaCCD ΜοΚα 0.71069 graphite 150.0(1) phi and omega scans 23.81

HKL ranges	-99;-1412;-3535
Reflections measured	15288
Unique data	9721
Rint	0.0457
Reflections used	7701
Criterion	$I > 2\sigma I$)
Refinement type	Fsqd
Hydrogen atoms	mixed
Parameters refined	812
Reflections / parameter	9
wR2	0.0769
R1	0.0430
Flack's parameter*	0.455(7)
Weights a, b	0.0158; 0.0000
GoF	0.976
difference peak / hole (e Å ⁻³)	1.683(0.127) / -0.718(0.127)

* Refined as an inversion twin.

Table 3. Bond lengths (A) and angles (deg) for $\mathbf{808}$

<pre>))))))))))))))))))))))))))))))))))))</pre>	2.210(3) 2.205(3) 1.953(4) 1.76(2) 1.83(1) 1.80(1) 1.87(1) 1.79(1) 1.22(2) 1.45(2) 1.33(2) 1.22(2) 1.41(2) 1.34(2) 1.58(2) 1.56(1) 1.50(2) 1.31(2) 1.50(2) 1.39(2) 1.36(2) 1.32(2) 1.39(2) 1.39(2) 1.39(2) 1.39(2) 1.39(2) 1.39(2) 1.39(2) 1.39(2) 1.38(2) 1.37(1) 1.51(2) 1.35(2) 1.46(2) 1.39(2) 1.46(2) 1.39(2) 1.46(2) 1.39(2) 1.42(2) 1.39(2) 1.35(2) 1.46(2) 1.39(2) 1.42(2) 1.39(2) 1.39(2) 1.42(2) 1.39(2) 1.42(2) 1.39(2) 1.42(2) 1.39(2) 1.42(2) 1.39(2) 1.42(2) 1.39(2) 1.42(2) 1.39(2) 1.42(2) 1.39(2) 1.42(2) 1.39(2) 1.42(2) 1.39(2) 1.42(2) 1.39(2) 1.42(2) 1.39(2) 1.42(2) 1.39(2) 1.42(2) 1.39(2) 1.42(2) 1.39(2) 1.42(2) 1.42(2) 1.42(2) 1.42(2) 1.42(2) 1.42(2) 1.42(2) 1.42(2) 1.42(2) 1.42(2) 1.42(2) 1.42(2	Au(1)-C1(1) Au(2)-C1(2) S(2)-P(4) P(1)-C(1) P(2)-C(1) P(2)-C(14) P(3)-C(37) P(4)-C(44) P(4)-C(37) O(2)-C(33) O(3)-C(35) O(4)-C(36) O(6)-C(69) O(7)-C(71) O(8)-C(72) C(2)-C(20) C(3)-C(7) C(4)-C(5) C(5)-C(27) C(6)-C(33) C(8)-C(13) C(9)-C(10) C(11)-C(12) C(14)-C(15) C(15)-C(16) C(17)-C(18) C(21)-C(26) C(22)-C(23) C(24)-C(25) C(27)-C(32) C(24)-C(25) C(27)-C(32) C(28)-C(31) C(37)-C(38) C(38)-C(31) C(37)-C(38) C(39)-C(40) C(40)-C(57) C(42)-C(43) C(43)-C(71) C(44)-C(49) C(46)-C(47) C(48)-C(49)	$\begin{array}{c} 2.270(3)\\ 2.286(3)\\ 1.949(4)\\ 1.83(1)\\ 1.79(1)\\ 1.82(1)\\ 1.82(1)\\ 1.82(1)\\ 1.9(1)\\ 1.80(1)\\ 1.31(1)\\ 1.24(2)\\ 1.49(1)\\ 1.34(2)\\ 1.49(1)\\ 1.34(2)\\ 1.47(1)\\ 1.48(2)\\ 1.51(2)\\ 1.33(2)\\ 1.52(2)\\ 1.50(2)\\ 1.37(2)\\ 1.40(2)\\ 1.38(2)\\ 1.38(2)\\ 1.38(2)\\ 1.39(2)\\ 1.38(2)\\ 1.39(2)\\ 1.39(2)\\ 1.39(2)\\ 1.39(2)\\ 1.39(2)\\ 1.39(2)\\ 1.39(2)\\ 1.39(2)\\ 1.39(2)\\ 1.39(2)\\ 1.39(2)\\ 1.39(2)\\ 1.39(2)\\ 1.35(2)\\ 1.39(2)\\ 1.35(2)\\ 1.35(2)\\ 1.35(2)\\ 1.35(2)\\ 1.35(2)\\ 1.34(2)\\ 1.34(2)\\ 1.50(2)\\ 1.42(2)\\ 1.4$
9) 5) 6) 8) 1) 2) 4) 2) 9)	1.49(2) 1.39(2) 1.42(2) 1.35(2) 1.38(2) 1.40(2) 1.37(2) 1.34(2) 1.39(2)	C(43) - C(71) $C(44) - C(49)$ $C(46) - C(47)$ $C(48) - C(49)$ $C(50) - C(55)$ $C(52) - C(53)$ $C(54) - C(55)$ $C(57) - C(58)$ $C(59) - C(60)$	$\begin{array}{c} 1.50(2) \\ 1.42(2) \\ 1.43(2) \\ 1.40(2) \\ 1.42(2) \\ 1.37(2) \\ 1.37(2) \\ 1.42(2) \\ 1.38(2) \end{array}$
	<pre>)))))))))))))))))))))))))))))</pre>	$\begin{array}{llllllllllllllllllllllllllllllllllll$) 2.210(3) Au(1)-Cl(1)) 2.205(3) Au(2)-Cl(2) 1.953(4) $S(2)-P(4)$ 1.76(2) $P(1)-C(1)$ 1.83(1) $P(2)-C(14)$ 1.80(1) $P(2)-C(14)$ 1.80(1) $P(4)-C(37)$) 1.87(1) $P(4)-C(44)$) 1.79(1) $P(4)-C(35)$) 1.22(2) $O(2)-C(33)$) 1.45(2) $O(3)-C(35)$) 1.33(2) $O(4)-C(36)$) 1.22(2) $O(6)-C(69)$) 1.41(2) $O(7)-C(71)$) 1.34(2) $C(2)-C(20)$ 1.58(2) $C(3)-C(7)$ 1.56(1) $C(4)-C(5)$) 1.50(2) $C(5)-C(27)$ 1.31(2) $C(6)-C(13)$ 1.39(2) $C(9)-C(10)$ 1.39(2) $C(9)-C(10)$ 1.39(2) $C(11)-C(12)$ 3) 1.32(2) $C(11)-C(15)$ 9) 1.40(1) $C(15)-C(16)$ 7) 1.37(2) $C(17)-C(18)$ 9) 1.40(2) $C(22)-C(23)$ 4) 1.38(2) $C(24)-C(25)$ 6) 1.37(2) $C(21)-C(26)$ 2) 1.41(2) $C(22)-C(23)$ 4) 1.38(2) $C(24)-C(25)$ 6) 1.51(2) $C(39)-C(10)$ 1.38(2) $C(24)-C(25)$ 6) 1.37(2) $C(17)-C(18)$ 9) 1.40(2) $C(28)-C(29)$ 0) 1.38(2) $C(24)-C(25)$ 6) 1.37(2) $C(17)-C(18)$ 9) 1.40(2) $C(28)-C(29)$ 0) 1.38(2) $C(24)-C(25)$ 6) 1.37(2) $C(37)-C(38)$ 6) 1.51(2) $C(39)-C(40)$ 1) 1.51(2) $C(39)-C(40)$ 1) 1.35(2) $C(40)-C(57)$ 3) 1.46(2) $C(42)-C(43)$ 9) 1.49(2) $C(44)-C(49)$ 6) 1.49(2) $C(44)-C(49)$ 1) 1.35(2) $C(44)-C(55)$ 2) 1.34(2) $C(57)-C(58)$ 9) 1.39(2) $C(59)-C(60)$

C(60)-C(61)	1.38(2)	C(61)-C(62)	1.37(2)
C(63)-C(68)	1.37(2)	C(63)-C(64)	1.38(2)
C(64)-C(65)	1.38(2)	C(65)-C(66)	1.36(2)
C(66)-C(67)	1.37(2)	C(67)-C(68)	1.38(2)
P(1) -Au(1) -C1(1) $C(5) -P(1) -C(1)$ $C(1) -P(1) -Au(1)$ $C(1) -P(2) -C(8)$ $C(1) -P(2) -C(14)$ $C(3) -P(2) -S(1)$ $C(42) -P(3) -C(37)$ $C(37) -P(3) -Au(2)$ $C(44) -P(4) -C(51)$ $C(51) -P(4) -S(2)$ $C(51) -P(4) -S(2)$ $C(33) -O(2) -C(34)$ $C(69) -O(6) -C(70)$ $C(2) -C(1) -P(2)$ $P(2) -C(1) -P(2)$ $P(2) -C(1) -P(2)$ $P(2) -C(1) -P(2)$ $P(2) -C(3) -C(4)$ $C(4) -C(3) -C(2)$ $C(5) -C(4) -C(3)$ $C(7) -C(3) -C(4)$ $C(4) -C(5) -C(27)$ $C(27) -C(5) -P(1)$ $C(7) -C(6) -P(1)$ $C(7) -C(6) -P(1)$ $C(6) -C(7) -C(35)$ $C(35) -C(7) -C(3)$ $C(13) -C(8) -P(2)$ $C(13) -C(8) -P(2)$ $C(13) -C(8) -P(2)$ $C(13) -C(8) -P(2)$ $C(14) -P(1) -C(12)$ $C(12) -C(13) -C(8)$ $C(15) -C(14) -P(2)$ $C(14) -C(15) -C(16)$ $C(18) -C(17) -C(16)$ $C(21) -C(22) -C(23)$ $C(25) -C(24) -C(23)$ $C(25) -C(26) -C(21)$ $C(25) -C(26) -C(21)$ $C(25) -C(26) -C(21)$ $C(27) -C(32) -C(31)$ $O(1) -C(33) -C(6)$ $O(3) -C(35) -O(4)$ $O(4) -C(35) -C(7)$ $C(38) -C(56)$ $C(56) -C(38) -C(56)$ $C(56) -C(38) -C(57)$ $C(40) -C(40) -C(40)$ $C(41) -P(3)$ $C(42) -C(43) -C(39)$ $C(43) -C(42) -P(3)$ $C(43) -C(42) -P(3)$ $C(43) -C(42) -P(3)$ $C(43) -C(42) -P(4)$ $C(45) -C(44) -P(4)$ $C(45) -C(45) -C(55)$ $C(50) -C(55) -C(58)$ $C(50) -C(55) -C(58)$ $C(50) -C(55) -C(58)$ $C(50) -C(57) -C(58)$ $C(50) -C(55) -C(58)$ $C(58) -C(57) -C(40)$	172.6(1) 99.4(7) 96.9(6) 124.7(4) 104.8(6) 103.8(6) 114.1(4) 97.1(5) 97.6(6) 123.2(4) 105.5(6) 105.1(6) 112.5(4) 117(1) 117(1) 129(1) 129(1) 117.4(7) 116(1) 108(1) 106(1) 114(1) 122(1) 122(1) 122(1) 122(1) 122(1) 122(1) 122(1) 122(1) 122(1) 122(1) 122(1) 122(1) 122(1) 122(1) 123(1) 123(1) 123(1) 124(1) 123(1) 124(1) 123(1) 121(1) 123(1) 121(1) 123(1) 121(1) 123(1) 121(1) 123(1) 121(1) 123(1) 121(1) 123(1) 121(1) 123(1) 121(1) 123(1) 121(1) 123(1) 121(1) 123(1) 121(1) 123(1) 121(1) 123(1) 121(1)	$P(3) - Au(2) - Cl(2) \\ C(5) - P(1) - Au(1) \\ C(6) - P(1) - Au(1) \\ C(1) - P(2) - C(14) \\ C(1) - P(2) - S(1) \\ C(14) - P(2) - S(1) \\ C(42) - P(3) - Au(2) \\ C(42) - P(3) - Au(2) \\ C(41) - P(3) - Au(2) \\ C(41) - P(4) - C(37) \\ C(44) - P(4) - C(37) \\ C(44) - P(4) - S(2) \\ C(37) - P(4) - S(2) \\ C(35) - O(4) - C(36) \\ C(71) - O(8) - C(72) \\ C(2) - C(1) - P(1) \\ C(1) - C(2) - C(20) \\ C(20) - C(2) - C(3) \\ C(7) - C(3) - C(2) \\ C(5) - C(4) - C(21) \\ C(21) - C(4) - C(3) \\ C(7) - C(6) - C(33) \\ C(3) - C(6) - P(1) \\ C(7) - C(6) - C(33) \\ C(33) - C(6) - P(1) \\ C(6) - C(7) - C(3) \\ C(13) - C(8) - P(2) \\ C(11) - C(10) - C(9) \\ C(13) - C(12) - C(11) \\ C(15) - C(14) - C(19) \\ C(17) - C(16) - C(15) \\ C(17) - C(16) - C(15) \\ C(17) - C(18) - C(19) \\ C(26) - C(21) - C(22) \\ C(22) - C(21) - C(4) \\ C(24) - C(23) - C(22) \\ C(24) - C(23) - C(22) \\ C(24) - C(23) - C(22) \\ C(24) - C(23) - C(23) \\ C(30) - C(31) - C(32) \\ O(1) - C(33) - O(2) \\ O(2) - C(33) - O(2) \\ O(2) - C(33) - C(6) \\ O(3) - C(31) - C(32) \\ O(1) - C(33) - O(2) \\ O(2) - C(33) - C(4) \\ C(44) - C(45) - C(46) \\ C(43) - C(4) - P(4) \\ P(4) - C(47) - P(3) \\ C(43) - C(4) - P(3) \\ C(43) - C(4) - P(4) \\ P(4) - C(43) - C(39) \\ C(43) - C(4) - P(4) \\ C(44) - C(45) - C(46) \\ C(48) - C(47) - C(40) \\ C(50) - C(51) - C(52) \\ C(52) - C(53) - C(50) \\ C(52) -$	174.8(1) 98.1(6) 117.1(5) 115.8(5) 107.0(5) 111.4(4) 114.8(4) 98.5(5) 117.8(4) 109.2(6) 113.3(5) 110.7(4) 117(1) 112(1) 112(1) 129(1) 129(1) 129(1) 116(1) 130(1) 199(1) 129(1) 117(1) 121(1) 120(2) 119(1) 120(1) 122(1) 118(1) 118(1) 118(1) 117(1) 122(1) 118(1) 117(1) 122(1) 118(1) 117(1) 122(1) 118(1) 117(1) 122(1) 119(1) 124(1) 122(1) 121(1) 122(1) 119(1) 122(1) 110(1) 122(1) 111(1) 122(1) 112(1) 122(1) 112(1) 122(1) 112(1) 122(1)

C(60)-C(59)-C(58)	121(1)	C(61)-C(60)-C(59)	118(2)
C(62) - C(61) - C(60)	122(2)	C(57)-C(62)-C(61)	121(1)
C(68)-C(63)-C(64)	118(1)	C(68)-C(63)-C(41)	121(1)
C(64)-C(63)-C(41)	121(1)	C(63)-C(64)-C(65)	121(1)
C(66)-C(65)-C(64)	121(1)	C(65)-C(66)-C(67)	118(1)
C(66)-C(67)-C(68)	122(1)	C(63)-C(68)-C(67)	120(1)
O(5)-C(69)-O(6)	125(1)	O(5)-C(69)-C(42)	124(1)
O(6)-C(69)-C(42)	111(1)	O(7) - C(71) - O(8)	129(1)
O(7) - C(71) - C(43)	123(1)	O(8) - C(71) - C(43)	109(1)

Compound Molecular formula Molecular weight Crystal habit Crystal dimensions(mm) Crystal system Space group a(Å) b(Å) c(Å) $\alpha(^{\circ})$ β(°) $\gamma(^{\circ})$ $V(Å^3)$ Ζ $d(g-cm^{-3})$ F(000) $\mu(cm^{-1})$ Absorption corrections Diffractometer X-ray source λ(Å) Monochromator T (K) Scan mode Maximum θ HKL ranges Reflections measured Unique data Rint Reflections used Criterion Refinement type Hydrogen atoms Parameters refined

Reflections / parameter

809 $C_{36}H_{30}Cl_2O_4P_2PtS,CHCl_3$ 1005.96 pale yellow plate 0.20x0.18x0.10 monoclinic P2₁ 10.1160(10) 15.5140(10) 12.8540(10) 90.00 103.9400(10) 90.00 1957.9(3) 2 1.706 988 4.098 multi-scan; 0.4945 min, 0.6847 max KappaCCD ΜοΚα 0.71069 graphite 150.0(1) phi and omega scans 30.01 -14 14 ; -19 21 ; -18 18 9170 9170 0.0000 8614 I > 2sigma(I) Fsqd mixed 455 18
wR2 R1 Flack's parameter Weights a, b GoF difference peak / hole (e Å ⁻³)	0.0629 0.0260 -0.010(4) 0.0333 ; 0.0000 1.015 2.000(0.099) / -1.1	84(0.099)	
Table 3. Bond lengths	(A) and angles (d	eg) for 809	
$\begin{array}{c} \texttt{Pt}(1) - \texttt{P}(1) \\ \texttt{Pt}(1) - \texttt{S}(1) \\ \texttt{Cl}(3) - \texttt{C}(37) \\ \texttt{Cl}(5) - \texttt{C}(37) \\ \texttt{P}(1) - \texttt{C}(1) \\ \texttt{P}(1) - \texttt{C}(1) \\ \texttt{P}(1) - \texttt{C}(5) \\ \texttt{P}(2) - \texttt{C}(14) \\ \texttt{O}(1) - \texttt{C}(33) \\ \texttt{O}(2) - \texttt{C}(34) \\ \texttt{O}(4) - \texttt{C}(35) \\ \texttt{C}(1) - \texttt{C}(2) \\ \texttt{C}(2) - \texttt{C}(3) \\ \texttt{C}(3) - \texttt{C}(4) \\ \texttt{C}(4) - \texttt{C}(21) \\ \texttt{C}(6) - \texttt{C}(7) \\ \texttt{C}(7) - \texttt{C}(35) \\ \texttt{C}(8) - \texttt{C}(9) \\ \texttt{C}(10) - \texttt{C}(11) \\ \texttt{C}(12) - \texttt{C}(13) \\ \texttt{C}(14) - \texttt{C}(19) \\ \texttt{C}(16) - \texttt{C}(17) \\ \texttt{C}(18) - \texttt{C}(19) \\ \texttt{C}(21) - \texttt{C}(26) \\ \texttt{C}(23) - \texttt{C}(24) \\ \texttt{C}(25) - \texttt{C}(26) \\ \texttt{C}(27) - \texttt{C}(28) \\ \texttt{C}(29) - \texttt{C}(30) \\ \texttt{C}(31) - \texttt{C}(32) \end{array}$	2.184(1) 2.313(1) 1.745(6) 1.759(5) 1.840(4) 1.845(4) 1.788(4) 1.788(4) 1.198(4) 1.336(5) 1.334(5) 1.548(5) 1.549(5) 1.549(5) 1.331(5) 1.387(5) 1.383(7) 1.396(6) 1.401(6) 1.392(6) 1.393(6) 1.400(5) 1.367(5)	Pt(1)-Cl(1) Pt(1)-Cl(2) Cl(4)-C(37) S(1)-P(2) P(1)-C(6) P(2)-C(1) P(2)-C(8) O(2)-C(33) O(3)-C(35) O(4)-C(36) C(2)-C(20) C(3)-C(7) C(4)-C(5) C(5)-C(27) C(6)-C(33) C(8)-C(13) C(9)-C(10) C(11)-C(12) C(14)-C(15) C(15)-C(16) C(17)-C(18) C(21)-C(22) C(22)-C(23) C(24)-C(25) C(27)-C(32) C(28)-C(29) C(30)-C(31)	2.310(1) 2.334(1) 1.757(6) 2.020(1) 1.843(4) 1.784(4) 1.795(4) 1.330(5) 1.495(5) 1.495(5) 1.445(5) 1.445(5) 1.331(5) 1.445(5) 1.331(5) 1.473(5) 1.386(5) 1.388(6) 1.388(6) 1.385(7) 1.384(6) 1.387(5) 1.384(6) 1.387(5) 1.392(5) 1.378(6) 1.398(6)
$\begin{array}{c} P(1) - Pt(1) - Cl(1) \\ Cl(1) - Pt(1) - Cl(2) \\ P(2) - S(1) - Pt(1) \\ C(1) - P(1) - C(5) \\ C(1) - P(1) - Pt(1) \\ C(5) - P(1) - Pt(1) \\ C(5) - P(1) - Pt(1) \\ C(1) - P(2) - C(8) \\ C(1) - P(2) - S(1) \\ C(8) - P(2) - S(1) \\ C(8) - P(2) - S(1) \\ C(35) - O(4) - C(36) \\ C(2) - C(1) - P(1) \\ C(1) - C(2) - C(20) \\ C(20) - C(2) - C(3) \\ C(20) - C(2) - C(3) \\ C(7) - C(3) - C(4) \\ C(5) - C(4) - C(21) \\ C(21) - C(4) - C(21) \\ C(21) - C(4) - C(3) \\ C(4) - C(5) - P(1) \\ C(7) - C(6) - C(3) \\ C(33) - C(6) - P(1) \\ C(6) - C(7) - C(3) \\ C(13) - C(8) - C(9) \\ C(13) - C(8) - P(2) \\ C(11) - C(10) - C(9) \\ C(11) - C(12) - C(13) \\ C(15) - C(14) - P(2) \\ C(17) - C(16) - C(15) \\ C(17) - C(18) - C(19) \\ C(22) - C(21) - C(26) \\ \end{array}$	$\begin{array}{c} 92.71(3)\\ 175.76(4)\\ 91.34(4)\\ 96.67(4)\\ 98.7(2)\\ 110.0(1)\\ 122.1(1)\\ 109.0(2)\\ 105.2(1)\\ 110.8(1)\\ 115.2(4)\\ 114.8(3)\\ 128.7(3)\\ 116.8(3)\\ 128.7(3)\\ 116.8(3)\\ 109.0(3)\\ 126.3(3)\\ 115.8(3)\\ 111.7(3)\\ 127.1(3)\\ 127.1(3)\\ 122.0(3)\\ 119.2(3)\\ 120.3(3)\\ 120.1(3)\\ 120.1(3)\\ 120.6(4)\\ 119.9(4)\\ 119.8(4)\\ 119.9(4)\\ 119.9(4)\\ 119.9(4)\\ 119.9(4)\\ 119.9(4)\\ 119.9(4)\\ 119.9(4)\\ 119.9(4)\\ 119.9(4)\\ 119.9(4)\\ 119.9(4)\\ 119.9(4)\\ 119.9(4)\\ 119.9(4)\\ 119.9(4)\\ 118.0(4)\\ \end{array}$	$\begin{array}{c} {\sf P(1)-Pt(1)-S(1)}\\ {\sf P(1)-Pt(1)-Cl(2)}\\ {\sf S(1)-Pt(1)-Cl(2)}\\ {\sf C(1)-P(1)-C(6)}\\ {\sf C(6)-P(1)-Pt(1)}\\ {\sf C(1)-P(2)-C(14)}\\ {\sf C(14)-P(2)-C(14)}\\ {\sf C(14)-P(2)-S(1)}\\ {\sf C(14)-P(2)-S(1)}\\ {\sf C(33)-O(2)-C(34)}\\ {\sf C(2)-C(1)-P(2)}\\ {\sf P(2)-C(1)-P(1)}\\ {\sf C(2)-C(1)-P(1)}\\ {\sf C(1)-C(2)-C(3)}\\ {\sf C(7)-C(3)-C(2)}\\ {\sf C(2)-C(3)-C(4)}\\ {\sf C(5)-C(4)-C(3)}\\ {\sf C(4)-C(5)-C(27)}\\ {\sf C(27)-C(5)-P(1)}\\ {\sf C(7)-C(6)-P(1)}\\ {\sf C(7)-C(6)-P(1)}\\ {\sf C(6)-C(7)-C(35)}\\ {\sf C(35)-C(7)-C(35)}\\ {\sf C(35)-C(7)-C(35)}\\ {\sf C(35)-C(7)-C(35)}\\ {\sf C(13)-C(8)-P(2)}\\ {\sf C(13)-C(8)-P(2)}\\ {\sf C(13)-C(12)-C(10)}\\ {\sf C(12)-C(11)-C(10)}\\ {\sf C(8)-C(13)-C(12)}\\ {\sf C(14)-C(15)-C(16)}\\ {\sf C(16)-C(17)-C(18)}\\ {\sf C(18)-C(19)-C(14)}\\ {\sf C(22)-C(21)-C(4)}\\ \end{array}$	$\begin{array}{c} 88.84(3)\\ 174.31(3)\\ 87.40(3)\\ 97.0(2)\\ 98.1(2)\\ 125.4(1)\\ 110.3(2)\\ 111.6(2)\\ 109.7(1)\\ 115.2(3)\\ 134.0(3)\\ 110.7(2)\\ 114.4(3)\\ 109.0(3)\\ 108.1(3)\\ 109.0(3)\\ 108.1(3)\\ 117.9(3)\\ 130.0(3)\\ 118.3(3)\\ 111.0(3)\\ 125.3(3)\\ 115.6(3)\\ 119.6(3)\\ 119.6(3)\\ 119.8(4)\\ 120.2(4)\\ 120.2(4)\\ 120.6(4)\\ 119.7(4)\\ 120.8(3)\end{array}$

Résumé

Partant du constat que les phosphinines (analogues phosphorés de la pyridine) sont des ligands fragiles des métaux de transition lors d'applications catalytiques (chapitre 1), nous avons introduit deux types de ligands mixtes phosphore-soufre à squelette phosphinine. Cette thèse présente les résultats que nous avons obtenus en chimie de coordination, catalyse et calculs théoriques.

Le chapitre 2 justifie le choix de la phosphinine tridente SPS que nous avons employée pour favoriser la complexation sigma(P) à des centres métalliques et décrit la formation d'anions λ^4 -phosphinine.

Les chapitres suivants décrivent la coordination de l'anion SPS à des métaux du groupe X (Ni, Pd, Pd) (chapitre 3), IX (Co, Rh, Ir) (chapitre 4), XI (Cu, Au), VIII (Fe, Ru) et VII (Mn, Re) (chapitre 6). Ces complexes trouvent des applications en catalyse (Pd), activation de petites molécules (Rh, Ir) et photochimie (Mn). Ces études montrent que l'anion SPS se comporte comme un ligand anionique à six électrons dont la richesse électronique est supérieure à celle de Cp*.

Le chapitre 5, purement théorique, explique pourquoi l'addition de petites molécules comme H_2 , O_2 et CO sur des complexes de Rh et d'Ir incorporant l'anion SPS se produit de manière stéréospécifique. Une étude analogue est développée pour l'addition de H_2 sur des complexes isoélectroniques de Pd et de Pt.

La coordination sigma(P) d'anions λ^4 -phosphinine ne se limite pas à des ligands tridentes et peut également avoir lieu avec des ligands bidentes SP. Les complexes synthétisés ont été valorisés en catalyse (chapitre 7). Le chapitre 8 décrit la synthèse, la chimie de coordination et les applications en catalyse de phosphabarrélène.

Abstract

It is well established that phosphinines (phosphorus analogues of pyridines) are fragile ligands when used in catalytic applications at metal centres (chapter 1). To provide a more robust ligand class, we have introduced two types of mixed phosphorus-sulphur ligands based on a phosphinine skeleton. This work describes their synthesis, coordination chemistry and theoretical study.

Chapter 2 deals with the synthesis of λ^4 -phosphinine anions. The use of a tridentate S-P-S phosphinine to favour sigma(P)- coordination to metal centres is outlined and justified.

The following chapters describe the coordination chemistry of tridentate S-P-S phosphinine anions towards group X (Ni, Pd, Pt in chapter 3), IX (Co, Rh, Ir in chapter 4), XI (Cu, Au), VIII (Fe, Ru) and VII (Mn, Re, chapter 6) metal centres. Applications in the field of catalysis (Pd), activation of small molecules (Rh, Ir) and photochemistry (Mn) are described. Studies showing that the S-P-S anion can be described as a 6-electron anionic ligand which is electronically richer than anion Cp* are presented.

A theoretical treatment (Chapter 5) rationalizes the experimental observation that addition of small molecules such as H_2 , O_2 and CO to S-P-S based Rh and Ir complexes occurs regiospecifically. An analogous study is presented for the addition of H_2 to isoelectronic Pd and Pt complexes.

Sigma(P)-coordination of λ^4 -phosphinine anions is not limited to tridentate ligands and can occur with bidentate S-P ligands. The use of the resulting complexes in catalysis is described in chapter 7. Synthesis, coordination chemistry and catalytic applications of related phosphabarrelenes are also described in chapter 8.