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Résumé

Cette thèse combine des résultats récents et des algorithmes originaux pour créer deux
applications temps-réel robustes d'aide à la conduite (projet aussi appelé "le véhicule intelli-
gent"). Les applications - commande de croisière adaptative ("ACC") et prédiction d'impact
piétons - sont conçues pour être installées sur un véhicule et détectent d'autres utilisateurs
de la route, en utilisant une seule caméra frontale.

La thèse commence par un état de l'art sur la vision arti�cielle. Elle s'ouvre en passant en
revue certaines avancées récentes dans le domaine. En particulier, nous traitons l'utilisation
récente d'un nouvel algorithme nommé AdaBoost pour la détection des objets visuels dans
une image, rapidement et sûrement. Nous développons la théorie, ajoutons des algorithmes
et des méthodes (y compris une variante à base d'algorithme génétique) et en améliorons les
résultats, dans le but d'adapter ces algorithmes aux besoins de vraies applications d'aide à la
conduite. En particulier, nous prouvons plusieurs nouveaux résultats sur le fonctionnement
de l'algorithme AdaBoost.

Toujours sur le plan théorique, nous traitons des algorithmes d'évaluation de mouvement
et des �ltres particulaires et leur utilisation dans la vision. De ces développements algo-
rithmiques, nous arrivons à la description de deux applications d'aide à la conduite, toutes
les deux entièrement mises en application, validées et démontrées sur le véhicule d'essai du
Centre de Robotique de l'Ecole de Mines de Paris.

La première application, la commande de croisière adaptative ("ACC"), exploite les
formes caractéristiques des véhicules pour les détecter. Ainsi, l'application détecte des vé-
hicules en utilisant un ensemble d'algorithmes classiques de traitement d'image (détection
d'ombres, des feux arrières, de symétrie et de bords), ainsi que l'algorithme AdaBoost men-
tionné ci-dessus. Cet ensemble d'algorithmes est fusionné en se plaçant dans le cadre du
�ltrage particulaire, a�n de détecter les véhicules devant notre voiture. Puis, le système de
contrôle prend pour cible la voiture située devant et garde une distance constante par rapport
à celle-ci, tout en commandant l'accélération et le freinage de notre voiture.

La deuxième application, la prédiction d'impact piétons, estime au temps t la probabilité
d'un impact de notre voiture avec un piéton au temps t+δ. Dans l'application, la trajectoire de
chaque piéton est calculée, et la probabilité d'impact est calculée selon la direction du piéton,
du bruit et d'autres facteurs. Cette application utilise un accélérateur matériel spéci�que créé
dans le cadre du projet européen CAMELLIA (Core for Ambient and Intelligent Imaging
Applications).

Mots-clés : vision arti�cielle, systèmes de transport intelligent, détection de piétons, com-
mande de croisière adaptative.
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This thesis presents two ITS applications, which are designed to be installed on a moving
vehicle and detect other road users, using a single frontal camera. The two applications are
Stop&Go ACC and Pedestrian impact prediction.

The thesis opens by describing the history and current status of the ITS domain. We
review several existing systems which represent several approaches and research directions.
Among these systems there are ones which are operational or almost operational, and ones
which are futuristic.

Next we present some novel results in the �eld of computer vision/machine learning.
These results are using, and are partly motivated by, the example of pedestrian detection. In
particular we present new type of weak-classi�ers to be learned by the AdaBoost algorithm, a
classi�er which is working faster than others and is not dependant of scene lighting conditions.
We also present a novel way to collect large high-quality training sets in order to vastly improve
the training results.

Using these results, we present a Stop&Go adaptive cruise control (ACC). We implemen-
ted this application with a set of known image processing algorithms, demonstrating how the
combination of several relatively-simple algorithms can yield a reliable system. The applica-
tion is running in 10 images per second and follows the car in front, while using a motion
estimator to detect cut-ins.

Our second application is a pedestrian detection and impact prediction application. The
system is running in 10 image per second and reliably predict the probability of an impact
with a pedestrian in some time frame.

Keywords : computer vision, intelligent transportation systems, stop&go ACC, pedestrian
detection.
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Chapitre 1

Introduction

1.1 État de l'art

Les transports se sont considérablement développés au siècle dernier. Aujourd'hui, on peut
atteindre n'importe laquelle des régions habitées dans le monde dans un temps raisonnable.
Au début du 20ème siècle, les gens n'imaginaient pas qu'une personne aille quotidiennement
travailler à 30 km de chez elle. De nos jours, cette situation est très commune.

Cependant, malgré cet important développement, de sérieux problèmes persistent. Les
perturbations du tra�c et les accidents sont sans doute les plus courants. Ces problèmes sont
survenus lorsque la production en masse de voiture a débuté.

Aujourd'hui, environ 700 000 personnes sont tuées et 10 millions sont blessés chaque an-
née dans le monde lors d'accidents de voiture, des milliards d'heures sont perdues dans les
embouteillages et la recherche de places de parking. Par exemple, en Californie, les embou-
teillages coûtent 21 milliards de dollars chaque année en temps perdu et en gaspillage de
carburant.

Il existe quelques solutions, partielles et onéreuses à ces problèmes. La première est l'usage
des transports en commun. Les problèmes évoqués ci-dessus (ou bien la plupart d'entre eux)
n'existent pas dans certaines catégories de transports tels que les trains. Cependant, la voiture
personnelle demeure aujourd'hui le seul moyen de transport porte-à-porte et, par conséquent,
ne pourrait être totalement remplacée. La seconde solution est de construire davantage d'in-
frastructures - autoroutes, barrières de sécurité et d'autres moyens de prévenir les accidents.
C'est une solution très coûteuse, et donc qui ne répond au problème que partiellement.

Les "Systèmes de Transport Intelligent", ou STI, sont un domaine de recherche qui a
pour but d'associer des systèmes informatiques à l'infrastructure du tra�c et aux véhicules
a�n d'en améliorer les performances. Les applications "STI" sont conçues pour être installés
dans les voitures et/ou sur l'infrastructure du réseau routier a�n de prévenir des accidents et
des perturbations du tra�c.

Un état de l'art des STI est présenté au chapitre 2. Cette introduction propose seulement
un bref aperçu du domaine.

Au premier niveau des applications des STI se trouvent les systèmes de gestion du tra�c
basés sur l'infrastructure. Ces systèmes permettent de renseigner le conducteur sur la vitesse
à laquelle il doit rouler, l'informe des incidents et des embouteillages. Ces systèmes sont déjà
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sur le marché.
A un niveau plus avancé, les STI commencent à pénétrer les véhicules. L'idée est d'équi-

per un véhicule avec des capteurs, a�n qu'il puisse "comprendre" son environnement. Cette
"compréhension" peut être utile pour informer le conducteur ou même s'y substituer en cas
de défaillance. Dans cette famille de produits, encore à l'état de prototype, on trouve des
applications d'avertissement de collision à l'avant (FCW - Forward Collision Warning) et de
régulation de vitesse automatique (ACC - Adaptive Cruise Control).

La vision �nale de la communauté STI est, naturellement, des voitures qui circulent
toutes seules. Une personne pourrait entrer dans sa voiture, entrer la destination désirée
et y arriver sans intervention humaine. Cela reste naturellement une vision très lointaine.
Un premier essai pour mettre en application un tel système fut les "systèmes autoroutier
automatisés" (AHS - Automated Highway Systems) décrits dans le chapitre 2. Le succès des
expérimentations techniques ne fut pas suivi d'un succès industriel : ces systèmes ne sont
pas installés aujourd'hui sur de vraies autoroutes et ne sont pas prêt de l'être. Il y a de
cette expérience de nombreux enseignements à tirer quant à l'acceptabilité par le public de
systèmes complexes où des machines prennent un contrôle jusqu'alors dévolu à l'être humain.

Dans cette thèse, nous traitons du sous-domaine des systèmes installés à bord des véhi-
cules - les rendant ainsi "intelligents" -, et en particulier de systèmes basés sur des caméras.
Les caméras sont des capteurs très peu onéreux, à l'information très riche - notamment du
fait de leur large ouverture -, sans partie mécanique fragile. Leur principal avantage est que
la conduite humaine est basée elle-même essentiellement sur la vue, et donc l'environnement
à observer - la route, et les autres véhicules - est naturellement très structuré. Comme les al-
gorithmes de vision progressent continûment, de plus en plus d'information peut être extraite
à partir des caméras.

Des travaux dans le domaine sont menés dans le monde entier, dans les divisions de
recherche de beaucoup de fabricants de voitures ou d'équipementiers, ainsi que dans les
écoles et universités. Une vue d'ensemble de ces activités est donnée dans le chapitre 2.

Dans notre laboratoire au Centre de Robotique à École des Mines de Paris, nous travaillons
sur diverses applications du véhicule intelligent. Quelques exemples des travaux incluent :

� La fusion entre radar et vision, en vue d'exploiter les avantages des di�érents capteurs
suivant les situations.

� Le contrôle latéral. Ce système contrôle automatiquement le volant du véhicule en
fonction de la position du véhicule sur la route mesuré par la caméra embarquée..

� La détection de piétons, a�n d'alerter le conducteur.
� Le capteur de tra�c. C'est un système qui mesure le �ot de circulation au lieu de la
voiture à un moment donné. La mesure est faite en combinant l'observation par la
caméra et les données présentes sur le bus CAN du véhicule (vitesse, clignotants, etc.).

� L'avertissement de collision frontale. C'est un système qui alerte le conducteur quand
il y a un risque de choc avec la voiture de devant.

Ces exemples sont élaborés dans le chapitre 2. Mon travail a été concentré sur deux
applications :

� La commande de croisière adaptative (ACC - Adaptive Cruise Control).
� La détection de piétons
Ces deux applications sont décrites dans la prochaine sous-section. Tout en mettant en
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÷uvre ces applications, j'ai développé quelques idées novatrices dans le domaine de la détec-
tion visuelle d'objets. Ces résultats forment le fond théorique de ma thèse.

1.2 Description des applications

Le premier problème traité dans cette thèse est le problème de la commande longitudinale
à vitesse réduite de la voiture. Dans la circulation dense, le conducteur doit accélérer et freiner
très fréquemment. Ceci accélère l'usure de la voiture, augmente la consommation et peut
également causer des accidents avant-arrière. Ce genre d'accident, bien qu'habituellement
non mortel, est très fréquent et cause de nombreux embouteillages.

A�n de résoudre le problème de la conduite en circulation dense, un système appelé la
commande de croisière adaptative (ACC - Adaptive Cruise Control) peut être développé.
Considérant que la "commande de croisière" traditionnelle garde une vitesse constante, sa
version adaptative garde elle une distance constante à la voiture de devant. De telles appli-
cations existent déjà aujourd'hui sur les voitures de haut de gamme et utilisent le radar pour
détecter la voiture de devant. Ces systèmes d'ACC sont très chers et relativement peu �ables,
du fait des faibles angles d'ouverture des radars utilisés et donc de leur ine�cacité en courbe.

Ici, nous avons développé un système qui est basé sur la vision et par conséquent peut être
installé sur des voitures de bas de gamme. Ce système cependant est conçu pour fonctionner
à vitesse réduite, c'est à dire dans une circulation dense, quand le conducteur s'arrête et
repart sans arrêt. C'est pourquoi il porte ici le nom d'application "Stop'n'Go".

* * *

Les chocs avec des piétons expliquent approximativement 25% des accidents mortels et
17% des dommages liés à des accidents dans le monde entier. Ces accidents sont provoqués
par les conducteurs qui ne voient pas les piétons qui croisent leur trajectoire.

Un système installé dans la voiture qui détecterait les piétons serait donc utile. L'appli-
cation présentée dans cette thèse, la détection de piétons et la prédiction de choc piéton,
détecte les piétons situés devant notre voiture.

Une fois détecté, un piéton est localisé et suivi. Selon sa vitesse et sa direction, le système
calcule la probabilité de l'impact entre notre voiture et ce piéton dans l'intervalle de temps
qui suit. Si cette probabilité est supérieure à un seuil donné, une alerte au conducteur est
déclenchée.

L'application est novatrice parce qu'elle obtient le taux le plus élevé obtenu jusqu'ici
en matière de détection de piétons en temps réel. Des applications plus lentes existent, qui
détectent des piétons avec un taux plus élevé de succès, mais elles ne sont pas adaptées à
des applications en temps réel. En outre, c'est la première fois qu'une application calcule en
temps réel la probabilité de l'impact avec un piéton. Une telle probabilité peut être employée
également pour appliquer des mesures de sécurité, tel que le déclenchement d'un airbag piéton
ou plus simplement l'anticipation du freinage. Une diminution même relativement faible de
la vitesse de l'impact peut réduire considérablement les dégâts liés à l'impact.
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1.3 Contribution théorique

Au cours du développement des deux applications, j'en suis arrivé au besoin de créer un
système �able et rapide de détection d'objets, qui détecterait e�cacement des voitures et
des piétons dans une image en temps réel. Le système que j'ai développé et qui est présenté
dans cette thèse, est basé sur celui de Viola et Jones [Viol 02] et est amélioré en ajoutant
un nouveau genre de primitives visuelles, discuté en détail dans le chapitre 3. Ces primitives
permettent de détecter des voitures et des piétons plus rapidement et mieux que les méthodes
existantes. Dans le domaine de la détection de piétons, nous montrons dans cette thèse que
notre système obtient de meilleurs résultats que n'importe quel travail publié dans le domaine,
en utilisant des images statiques en noir et blanc.

Dans le développement de l'application d'ACC, nous avons employé pour la première fois
la méthode du �ltrage particulaire, qui donne une localisation précise de la voiture de devant.

1.4 Plan de la thèse

Dans cette thèse, le chapitre 2 fournit un examen complet de l'historique et des dévelop-
pements courants dans le domaine des STI, dans le monde et dans notre laboratoire. Puis, il
présente nos choix et justi�e l'approche spéci�que mise en ÷uvre dans nos applications.

Le chapitre 3 donne la situation actuelle dans le domaine de l'apprentissage automatique
pour la détection visuelle d'objets, suivie de nos développements à la base de nos applications.
Le même schéma est suivi dans le chapitre 4 et le chapitre 5, qui portent respectivement de la
détection du mouvement et du �ltre particulaire. Les applications elles-mêmes sont décrites
dans les chapitres 6 et 7.

1.5 Background

Transportation systems have dramatically developed during the last 100 years. Today,
one can arrive, within reasonable times, between almost any inhabited points on earth. In
the beginning of the 20th century, people could not imagine a situation where a person moves
30 km from his home to work every day. Nowadays, such a situation is not rare.

However, despite of this great development, serious problems still exist. Tra�c congestion
and accidents are perhaps the most common ones. These problems emerged as the mass
production of cars began in the world. Today, about 700,000 people are killed and 10 million
are injured every year worldwide in tra�c accidents, and billions of hours of time lost in
tra�c jams and search-driving for a parking lot (for example, only in California, tra�c jams
statewide cost $21 billion a year in lost time and wasted fuel).

There are some expensive, partial solutions to these problems. The �rst is public trans-
portation. The above problems do not exist (or almost don't exist) in some forms of public
transportation such as trains ; however, the private car remains today the only mean to
provide door-to-door service and therefore cannot be fully replaced.

The second solution is to build more infrastructure - highways, security fences and other
accident preventive infrastructure. This is a costly solution, and as such can address these
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problems only partially.
Intelligent Transportation Systems (ITS) is a domain that tries to combine computerized

systems in tra�c infrastructure and vehicles in order to increase its performance. ITS are
designed to be installed in cars and/or in road infrastructure in order to prevent accidents
and tra�c congestion.

A full review of the domain of ITS is given in chapter 2 ; in this introduction we will only
provide a brief overview. In the "low level" ITS applications we can see the infrastructure-
based tra�c management systems, these systems that tell drivers about what speed to drive
and inform them about incidents and tra�c jams. This type of systems is already in the
market today.

More advanced, ITS systems are beginning to enter the vehicles themselves. The idea is
to equip the vehicle with sensors in order to allow it to "understand" its environment. This
"understanding" can be used to inform the driver or to apply some operations. In this family
of products, which is found today in development stages, we can �nd applications such as
Forward Collision Warning (FCW) or Adaptive Cruise Control (ACC).

The ultimate vision of the ITS community is, naturally, cars that drive by themselves.
A person could enter his car, enter the desired destination and get there without human
intervention. This, of course, is a far vision. A �rst attempt to implement a similar system
was in the case of the Automated Highway Systems (AHS) which is described in chapter 2.
The technical success, together with the fact that these systems are not installed today in
real roads, can teach us a bit about how ITS systems will propagate in the future.

In this thesis, we deal with the ITS sub-domain of in-vehicle smart systems, mostly ones
which are based on cameras. Cameras are relatively cheap sensors which give broad view of
the scene, and as vision algorithms advance, more information can be extracted from them.
Work in this sub-domain is carried out in the research division of many car manufacturers,
in other companies and in academic institutes worldwide. An overview of these activities is
given in chapter 2.

In our laboratory in the Center of Robotics in École des Mines de Paris, we are working
on various in-vehicle applications. Some examples of the works include :

� Fusion of radar and vision : ways to integrate the information coming from radar and
video cameras.

� Lateral control : automatic control of the wheel of the vehicle by a video camera obser-
ving the lane markings.

� Pedestrian detection : a system that detects pedestrians using a frontal camera and
alerts the driver.

� Tra�c sensor : a system that knows the situation of the tra�c congestion at the location
of the car at a given moment. This is done using various sensors, including camera and
information on the speed of the car.

� Forward collision warning : A system that alerts the driver when the headway to the
car in front is too small.

These examples are elaborated in chapter 2.
My work was focused on two applications - adaptive cruise control and pedestrian detec-

tion, described in the next subsection. While implementing these applications, I developed
some innovative ideas in visual object detection. These results form the theoretical back-
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ground of my thesis.

1.6 Description of applications

The �rst problem addressed in this thesis is the problem of low-speed longitudinal control
of the car. In heavy tra�c, the driver has to accelerate and brake very frequently. This
accelerates the erosion of the parts of the car and can cause front-back accidents. This kind
of accidents, although usually not fatal, is still severe and can also cause heavy tra�c jams.

In order to solve the problem of driving in heavy tra�c, a system called "adaptive cruise
control" can be developed. Whereas the traditional "cruise control" is keeping steady speed,
its adaptive version keeps a steady headway to the car in front.

Such applications exist on high-end cars and are using radar to "lock" on the car in front.
These ACC systems are very expensive. Here, for the �rst time, we have developed a system
which is based on vision and hence can be installed on low-end cars. The system, however,
is designed to work in low-speed, that is, in heavy tra�c, when the driver stops and goes all
the time. This is why it is usually referred as "Stop and go".

* * *
Pedestrian accidents account for approximately 25% of fatal accidents and 17% of injuries

accidents worldwide. These accidents are caused by drivers who don't see the pedestrians
entering their trajectory. A device installed in the car that can detect pedestrians can be
therefore useful. The Pedestrian detection and impact prediction application presented in this
thesis, is detecting pedestrians in front of our car. Once detected, a pedestrian is localized
and tracked. According to his speed and direction, the system calculates the probability of
impact between our car and that pedestrian within δ from now. If this probability is superior
of a given threshold, an alert to the driver is issued.

The application is innovative because it obtains the highest rate published so far of pedes-
trian detection in real-time. Slower applications exist which detect pedestrians with higher
success rate but they are not adequate for real-time applications. In addition, this is the
�rst time where an application is calculating in real-time the probability of impact with a
pedestrian. Such a probability can be used also for applying some safety measurements.

1.7 Theoretical contribution

During the development of both applications, I have come to a need to create a reliable
and fast object detector scheme, one which will reliably detect cars and pedestrians in an
image in real-time. The scheme I developed, which is presented in this thesis, is based on
the one of Viola and Jones [Viol 02] and is improved by adding new kind of visual features,
discussed in details in chapter 3. These features are allowing to detect cars and pedestrians
faster and better than the existing methods. In the domain of pedestrian detection, we show
in this thesis that our system obtains better results than any published work in the �eld,
using black and white static images.

In the development of the ACC application we have used for the �rst time the method of
particles �lter, which give steadier localization of the car in front.
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1.8 Program of this thesis

In this thesis, chapter 2 is providing a thorough review of the ITS history and current
developments, in the world and in our laboratory. Then it explains the motivation of choosing
the speci�c approach we took to implement the applications.

Chapter 3 gives the state of the art in machine learning for visual object detection,
followed by our developments that form the basis to the implementation of the applications.
The same format is used in chapters 4 and 5 that deal with motion estimation and particles
�lter, respectively.

The applications themselves are described in chapters 6 and 7.
Conclusions are given in chapters 8.



Chapitre 2

Intelligent Transportation Systems (ITS)

2.1 What is ITS ?

2.1.1 Introduction

Intelligent Transportation Systems, or ITS, is a general name for every computerized
system integrated into the transportation infrastructure or vehicles. Such systems help to
reduce accidents and tra�c congestion by helping the driver to drive and, later on, automating
some parts of the driving process.

2.1.2 Historical background

ITS Timeline

History of ITS can be divided [Hide 96] into 3 stages :
Stage 1 - The beginning of ITS research - stretches back to the 1960s and 1970s. This

early research was characterized by Japan's CACS, the Electronic Route Guidance System
(ERGS) in the United States, and a similar system in Germany. All of these systems focused
on route guidance and were based on central processing systems with huge computers and
communications systems. These systems never resulted in practical application because of
the limitations of computers of that era.

The next period, from 1980 through about 1995, could be called stage 2. Conditions
for ITS development had improved by the 1980s. Improvements in computers - memory
and computation power - made applications possible. New research and development e�orts
started :

� In Europe two projects were going on : the PROgraM for a European Tra�c System
with Higher E�ciency and Unprecedented Safety (PROMETHEUS), which was esta-
blished by car manufacturers, and the Dedicated Road Infrastructure for Vehicle safety
in Europe (DRIVE), organized by the European Community.

� In the United States, there was the Intelligent Vehicle-Highway Systems (IVHS) project.
� In Japan, work on the Road/Automobile Communication System (RACS) project,
began in 1984.

8
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Fig. 2.1 � History of ITS development : in the early and middle period of ITS development,
large projects are presented, divided by geographical areas. In the last 10 years, the numerous
individual projects are not presented, but the domains in which worldwide research and
development were carried out.

Our situation today can be considered as Stage 3. In this stage practical applications are
starting to appear ; the potential of ITS is fully understood, but also the ways in which it has
to be implemented. We are more aware of deployment problems and social and economical
limitations.

Figure 2.1 gives a timeline of the development of ITS.

2.1.3 ITS Categories

When speaking about intelligent transportation systems one can distinguish between three
kinds of systems :

1. Systems installed in the transportation infrastructure, that is, on the road, without
assisting any system components installed on cars.

2. Systems installed on a car and functioning independently, that is, without assisting any
system components outside of the car.

3. Systems which consist on components which are installed both on a car and on the
infrastructures. These systems employ cooperation between the mobile and immobile
component of the system.

Nowadays, the overwhelming majority of the operational ITS belongs to type 1. This type
of systems can be described as a high tech extension of the existing infrastructure (roads,
bridges). They can tolerate relatively high cost, because one system is serving many cars.
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They are initiated and created mostly by public authorities and do not su�er from deployment
problems. Subsection 2.2 provides a detailed description of these systems.

Systems of type 2 above are said to be "the next step" in ITS. Some of these systems are
already integrated in today high edge vehicles, and the majority will be made available in
the next decade. This type of systems su�er from severe limitation of price, since the price of
such a system is added to the cost of each individual car. As a result, most popular systems
will use very cheap sensors like simple cameras and lidars. This type of systems is described
in subsection 2.3.

Systems of type 3 were developed and tested in the last decade, with the American AHS
being the most standing example. The big advantage of these systems is that they allow
almost any function to be realized : once an on board system has the cooperation of an
outside system (e.g. road beacons with radio connection) it can provide excellent results,
such as totally automatic driving in any weather condition. One can consider the control of
airplanes as an example of what can be achieved with such cooperative systems. However,
as was slowly discovered during the period of these developments, these technologies su�er
from severe problems of deployment, even before arriving to the question of system price.
The deployment problem means, essentially, that it is not clear who will install the system
�rst : will it be the car manufacturers who will install expensive equipment in their cars
when the infrastructure part is still not active, or will it be the authorities (e.g. highway
managers) which will install expensive equipment and possibly cause inconvenience to the
general public before having the majority of the cars equipped with the necessary equipment ?
The situation, as of today, is that none of these poles is going to make the �rst move. This
is discussed in subsection 2.4.

2.2 Infrastructure-based ITS

2.2.1 Informative infrastructure systems

Infrastructure ITS applications are the most popular ones today. This type of applications
are usually carried out by state authorities using the same procedure by which roads are
constructed ; they don't need any cooperation with car manufacturers.

Infrastructure ITS applications mostly give information to drivers. They can relieve tra�c
congestions or alert from dangers. Here are some common types of such applications :

� Advanced Tra�c Management Systems (ATMS) employ a variety of relatively inexpen-
sive detectors, cameras, and communication systems to monitor tra�c, optimize signal
timings and thus control the �ow of tra�c. For example, we see in �gure 2.2 a tra�c
sign in Paris which informs the drivers about the time it takes to arrive to a certain
point.

� Incident Management Systems, for their part, provide tra�c operators with the tools to
allow quick and e�cient response to accidents, hazardous spills, and other emergencies.

� Electronic toll systems are implemented in toll-roads and allow easy registration of the
cars passing in the road. An example to this type of applications is found in Israel's road
number 6 (the Yitzhak Rabin Cross Israel Highway), employing ITS systems made by
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Fig. 2.2 � A tra�c sign in France, telling the number of minutes it takes to arrive to a certain
point

Fig. 2.3 � Cross-Israel highway, with cameras that identify the plate number of the passing
cars.

Raytheon. The system provides fully automatic toll collection, either by cameras which
"read" the license plates of the passing cars or by contacting a special transponder that
frequent drivers are encouraged to buy. In both cases, drivers do not have to stop in the
entrance to the toll-road ; their credit cards are being charged automatically (or they
receive the bill via mail if no credit card information is available).
Raytheon's system in Israel's road number 6 employs for the �rst time several advanced
features, such as real-time enforcements of speed-limits and the use of transponder data
for incident detection.

2.2.2 The smart junction

The idea of the so-called "smart junction" is that the junction will detect dangerous
situations and alert drivers before an accident occurs. Following is one important example.

Research on infrastructure-based systems is currently being conducted under the Infra-
structure Consortium, which is comprised of the U.S. DOT, and the California, Minnesota,
and Virginia DOTs, which are sponsoring the Intersection Decision Support System research
project. The research is being conducted by University of California at Berkeley PATH (Part-
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Fig. 2.4 � Intersection Collision Scenarios. Top, from left to right : Left Turn Across Path
Opposite Direction, Left Turn Across Path Lateral Direction, Left Turn Into Path. Bottom,
from left to right : Right Turn Into Path, Straight Crossing Path

ners for Advanced Transit and Highways) Program, University of Minnesota Intelligent Trans-
portation Systems Institute, and Virginia Polytechnic Institute/Virginia Tech Transportation
Institute.

Intersection Collision Avoidance Systems use sensors to gather information about vehicle
movements near an intersection, process that information to determine if a collision is at
risk of occurring, and issue warnings to drivers of vehicles in danger. They di�er from tra�c
control signals in that they are continuously processing information when vehicles are present
and creating messages tailored to speci�c vehicles' paths, speeds and driver behaviors.

Intersection crashes may be classi�ed into one of the following �ve categories, as shown
in Figure 2.4 :

a Left Turn Across Path - Opposite Direction

b Left Turn Across Path - Lateral Direction

c Left Turn Into Path

d Right Turn Into Path

e Straight Crossing Path

Roughly 43 percent of vehicle crashes in the U.S. occur at intersections or are intersection-
related. A signi�cant share of them take place at intersections with tra�c signals or stop
signs. Their causes are often due to drivers' misjudgment of the situation, failure to correctly
observe the situation, or inability to accurately perceive the degree of danger. Some 60% of
rural intersection crashes occur even after the driver entering the main roadway has stopped
before proceeding, researchers have found. Another signi�cant share of crashes are caused by
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Fig. 2.5 � Left Turn Across Path at UC Berkeley : note the red sign that alerts from dangers.

the driver entering the intersection against the signal or failing to stop at a stop sign. These
�ndings suggest that interventions such as warning systems and driver assistance could be
particularly e�ective in reducing intersection crashes.

Left Turn Across Path : Opposite Direction at UC Berkeley PATH

Opposite Direction crashes account for 27.3% of intersection related crashes in the US.
Two-thirds of them occur at signalized intersections. Reasons for these types of crashes in-
clude :

� Failure to judge safe gaps in tra�c correctly,
� Failure to judge speeds of closing vehicles correctly,
� Obstruction of driver's view,
� Failure to perceive opposing vehicle.
The PATH research is working with remote sensors for upstream tra�c and loop detectors

to detect downstream tra�c and the subject vehicle. Sensors measure and relay range, rate
and trajectories. The sensor data is processed in a warning algorithm. If a potential con�ict
is detected, a signal is sent to a dynamic warning sign, which will activate (see �gure 2.5).

Left Turn Across Path : Lateral Direction at University of Minnesota ITS Insti-
tute

University of Minnesota's ITS Institute demonstrated an IDS system that addressed Left
Turn Across Path : Lateral Direction crashes, which typically occur in rural areas when a
vehicle attempts to cross or turn onto a road at an unsignalized intersection. ITS Institute



14 CHAPITRE 2. INTELLIGENT TRANSPORTATION SYSTEMS (ITS)

researchers found that 60 percent of crashes at rural intersections happen even after drivers
stop before proceeding into the intersection. They termed this a gap perception problem.

The ITS Institute system was designed to tell a driver if it is unsafe to enter the main
roadway. Radar detectors are deployed at �ve points around the roadway to detect approa-
ching vehicles. The detectors communicate to a central processor via a wireless connection.
The processor then runs an algorithm, which calculates which gaps are safe or unsafe to
enter the roadway. Depending on the result, the algorithm may activate an LED no-left-turn
signal.

Straight Crossing Path Crashes at Virginia Tech Transportation Institute

According to Virginia Tech Transportation Institute researchers, approximately 30% of
intersection crashes involve vehicles executing a straight crossing path. The Institute research
is focusing in ways to prevent those crashes caused by tra�c signal and stop sign violations.

The system being tested includes pole-mounted radar at signalized intersections to deter-
mine an approaching vehicle's speed and location and warn the driver with dynamic signing
(LED stop sign and strobe light) if a violation is likely. An additional countermeasure that
researchers have begun is a set of "intelligent" rumble strips that would deploy if a violation
seemed imminent.

2.3 IV independent applications

Under the de�nition of Intelligent Vehicle (IV) independent applications we group all
the applications which are not cooperating with any infrastructure device. These application
therefore have to "get on by themselves" - �nd all the information they need through inde-
pendent sensors such as camera, lidar or radar. In this section we will review some of the
common applications - GPS-based localization systems (which barely passes the de�nition of
"intelligent" system), as well as more advanced applications such as pedestrians detection,
automatic cruise control (ACC), side and forward collision warning (SCW and FCW) and
lane departure warning (LDW). A small part of these applications is already available in
the market, mainly radar applications in high-end cars. More applications are expected to
penetrate the market in the next �ve years. It is likely that this kind of applications will
become a standard security device like the airbag.

2.3.1 On-board GPS-based localization system

The advances of global positioning systems (GPS) allowed most new cars today to be
equipped with a system that give extra data to the driver. The GPS localization, together
with a details map (which is pre-installed on the car's computer) can create systems that
give driving directions to a desired destination ("never lost"). See �gure 2.6.

When combined with tra�c information (which can be downloaded from the internet),
the system can calculate travel times and advice the driver as to what is the best route to a
given destination.
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Fig. 2.6 � An on-board never-lost system.

2.3.2 On-board signalization

The information found in road signs, road geometries and other infrastructure such as
crosswalks, is huge. Today, each driver perceives the road signs visually and use them to
control his vehicle. Many accidents are related to disrespect of road signs, resulting from
human errors - tiredness, careless driving or bad interpretation. We can ask the following
question : why can't technology today allow the vehicle to read the road signs automatically
and report them to the driver ?

In the Center of Robotics in École des Mines de Paris, a system called "on-board si-
gnalization" was developed. The system makes it possible to perceive the road signs and to
visually present them on the dashboard of the car.

We can imagine two technical approaches to solve the problem. The �rst consists in
establishing a communication of the infrastructure towards the vehicle. The tra�c signs
becoming of the coded active transmitters, inform the vehicle of their presence. This solution
is conceivable technically but not very realistic from an economic standpoint because it
supposes any road's infrastructure is equipped. In France, for example, there are several
million panels on the road network.

The second solution, which was chosen by the Center of Robotics, consists in exploiting
the potential GPS systems (or soon Galileo) and of the numerical cartography (GIS systems).

France has a road network of approximately one million kilometers. Let us imagine that
the every two hundred meters, one puts a point of marking on the roads with longitude,
latitude and altitude coded in sixteen bits ; that makes for six bytes per point, thirty bytes
per kilometer and a total of 30 megabytes to store all the roadmap of France. This is not a
lot ; one can put all this data, together with the roads signs in these roads, in a single data
CD.

Naturally, the production of such a database and its maintenance requires a considerable
work of collection and veri�cation of information. But the data already exist within the
databases of the road network managers.

To demonstrate the system, a system was shown working in a test circuit. In �gure 2.7
we can see several examples.
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Fig. 2.7 � The on-board signalization of the Center of Robotics in École des Mines de Paris.
Top left : the driver is alerted about the existence of a crosswalk. Top right : the driver is
informed that the car in front is braking. Bottom : the driver is informed about the maximum
allowed speed and that a vehicle is about to cross the junction.

2.3.3 Pedestrian detection

Applications of visual pedestrian detection are detecting the location of pedestrians in
the environment of our vehicle and possibly, upon detecting an hazardous case, alert the
driver or apply some safety measurements. Following there are two principal types of such
an application.

Pedestrian visualization

The simplest application is presenting the driver with a map of pedestrians which are
found in the environment of the car. The system does not do anything in case of potential
danger, because it does not assume that its level of detection is exact enough in order to
calculate reliable impact probability. Rather than that, pedestrians are simply presented to
the driver, in case he didn't see them himself. This application can be very useful at night
where the camera can use night vision and easily "see" better than the driver.

Once pedestrians in the area of the car have been detected, they are presented to the
driver as red rectangles drawn on an on-board monitor, which exists already today in many
new cars. Once certain types of visualization systems will be ready, the red rectangles could
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Fig. 2.8 � Pedestrian visualization through the front glass

be drawn on the front glass of the car, as shown in �gure 2.8. A camera installed in the
interior of the car is detecting the position of the eyes of the driver. This position is used to
calculate an exact location on the front glass where the red rectangle has to be drawn. The
driver's attention is immediately drawn to the existence of the pedestrian.

The exactness of the detection needed for such application is not high. A rectangle which
is located approximately on the pedestrian will do for this matter. Also, the false detection
rate can be slightly higher than in other applications.

Pedestrian impact prediction

This type of applications will not just detect pedestrians in the surrounding of the car,
but also try to estimate the probability of impact with our vehicle within a certain time
interval (e.g. at time t the system is giving the probability of impact with any pedestrian
at time t + δ). In order to do that, the detection of the pedestrians has to be exact. Exact
location of the legs and head must be known in order to calculate - over several images - the
trajectory of the pedestrian, and to calculate the probability that it will intersect with the
proximity of our car.

Once the impact probability is higher than a certain threshold, the system can alert the
driver by drawing a red rectangle around the pedestrian (using a visualization system as
described above) and/or making a sound. In a more advanced application, the system could
automatically apply some active measurements like applying the brakes, opening an airbag
or leveraging the front cover (see �gure 2.9). Of course, the reliability level of such a system
should be much higher in this case : while a driver might tolerate a small visual false alert
once per week, he could de�nitely not tolerate a false application of the brakes even once per
year. For this reason, fully automatic systems are still far from being implemented. Simple
systems which alert visually and/or with a sound are expected in the coming years.

2.3.4 Lane departure warning (LDW)

Lane departure warning is one of the vision applications which are more likely to penetrate
into passenger cars in the short term. It is relatively simpler than cars detection, and de�nitely
from pedestrian detection.

One of the most advanced LDW systems which are already in advanced tests by cars
manufacturers is the system of the Israeli company Mobileye [MobilEye]. Mobileye's Lane
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Fig. 2.9 � Front cover which is opening to reduce pedestrian impact

Fig. 2.10 � The lane departure warning system of MobilEye (source : Mobileye's website)

Departure Warning (LDW) system uses monocular image processing for detection of lanes
marking on the road, and for measuring the position of the vehicle relative to the lanes. The
LDW application provides indications to unintentional roadway departure.

According to the published information, Mobileye's system operates at all vehicle speeds
and for all types of roads : highways, country roads and urban freeways. It is said to "perform
well even in urban conditions" ; apparently urban conditions were found to be harder than
non-urban ones, and this is obvious, due to the cluttered background and the high volume of
cars inside the city. Mobileye's system is said to be able to detect and di�erentiate between
di�erent types of lane markings : solid, dashed, boxed and cat-eyes, and is not sensitive to
the line width. In the absence of lane markings the system is claimed to utilize road edges
(boundary between paved surface and ground) and curbs. It will be noted that this is an
important feature of an LDW system, since many ways do not contain lines, but still much
of the visual information hides in the environment.

Mobileye explains that the system �ts a three-parameter road model that accounts for
lateral position, slope and curvature. The curvature parameter is used for increasing the
warning reliability under curved roads and for estimating time to lane crossing. In addition the
system holds several lane models at all times so that it can choose between them immediately
in ambiguous conditions such as urban roads, merging lanes, or exit lane situations.

As expected, the LDW software includes a "light" version of Mobileye's vehicle detection
algorithm in order to avoid confusion of passing vehicles and their shadows with lane mar-
kings. Apparently, an LDW system which does not take into account the obstacles on the
road can never function perfectly.

Mobileye's LDW system is claimed to incorporate an advanced warning scheme that
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supports early warning capability, based on measurement of lateral vehicle motion, to predict
the time to lane crossing providing an early warning signal before the vehicle actually crosses
the lane.

The system is also said to take into account driver behavior and suppresses the warning
signal accordingly. Is seems that such a system should indeed stop the alarm signal if the
lane departure was suppressed, and not force the driver to shut o� the alarm manually. In
Mobileye's publications it is said that lane departure warnings are suppressed in cases of :

� Intentional lane departures (indicated by the turn signal on),
� No lane markings (e.g. within junctions),
� Inconsistent lane markings (e.g. road construction areas)
It will be noted that Mobileye's system is purely vision based. A good system of this

type must su�ciently operate in a variety of weather and illumination conditions, to perform
well under partially visible or poor lane markings, and in di�cult conditions such as strong
shadows, clutter and inclement weather conditions including rain and wet roads. When lane
marks are not available or under poor visibility conditions, the system must be able to shut
o� and notify the driver.

Observing this information of Mobileye about the system, one can �nd out what are
the characteristics of a good LDW system. This is correct regardless of whether Mobileye's
systems functions indeed as described (it will be noted that the descriptions are probably
not far from reality since the company has many evaluation agreements in advanced stages,
and is expected to see its system on the road as early as 2007).

Enhancements of LDW

Mobileye o�ers its system with several possible "mini-applications", some of the comfort,
some can enhance safety. These applications are nice ideas that demonstrate to us how in-
vehicle intelligent applications are actually a "package" of driver support and not a set of
separate applications.

The enhancements are :
� Lane keeping and heading control - slightly "helping" the driver to control the wheel
before a lane departure occurs.

� Road geometry prediction - "seeing" the curves ahead and alerting the driver.
� Lane position monitoring for transportation �eets - something like the PROMETHEUS
European project [G Re 95].

� Automatic headlamps activation.
� Intelligent high-beam control - when a car appears in front, can turn o� high-beam
until this car passes.

� Detecting wet road conditions and advising the driver to reduce speed.

2.3.5 Forward Collision Warning (FCW)

In order to review Forward collision warning we found it again useful to resort to Mobi-
leye's publications. Their description of the system forms a good example of the characteristics
of such a system (again, regardless if their description is correct or not).



20 CHAPITRE 2. INTELLIGENT TRANSPORTATION SYSTEMS (ITS)

Fig. 2.11 � The forward collision warning of MobilEye (source : Mobileye's website)

Fig. 2.12 � Adaptive cruise control.

Typically, a FCW system continuously computes time-to-contact to the vehicle ahead,
based on range and relative velocity measurements. According to Mobileye's publications,
their system uses an image processing algorithm to determine whether the vehicle ahead is
in a collision path (even in the absence of lane markings). In case of collision conditions, the
system provides audiovisual warnings to the driver at predetermined time intervals prior to
collision (e.g. 2.5, 1.6 and 0.7 seconds, in increasingly stronger sounds) alerting the driver
about the danger and allowing appropriate action such as braking or steering away from the
obstacle ahead.

An important issue, as in the case of LDW, is the suppression of the alert. In Mobileye's
case, it is said that the system uses information about driver actions (e.g. braking) to suppress
warnings in situations that are under the driver's control.

2.3.6 Adaptive cruise control (ACC)

Adaptive cruise control improves on traditional cruise control by allowing a vehicle to
automatically adapt to the speed of highway tra�c - follow another vehicle at a set distance.
With ACC, the driver selects a desired interval to follow tra�c as well as the desired cruise
speed.

When slower tra�c is encountered the ACC alters vehicle speed to maintain the desired
interval while following tra�c. Speed is controlled by ACC with braking when needed. When
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Fig. 2.13 � The Adaptive Cruise Control system of MobilEye (source : Mobileye's website)

tra�c clears, ACC resumes the desired cruise speed. Of course, the driver may override the
system by braking at any time.

How it works

When activated by the driver, a radar, laser and/or a video camera on the front of the
vehicle determines the distance and relative speed of any vehicle which is in the path of
driving. The ACC computer continually controls the throttle and brakes to maintain cruise
speed or adapted speed of tra�c.

ACC with radars exist today on the market on high-end cars (e.g. Mercedes-Benz S-
class). ACC with vision and/or laser are on mature phases of development and are expected
on the market towards 2007. One of the systems which is perhaps in most advanced stages
of deployment is, again, the Mobileye system, and we chose to review it brie�y here.

The MobilEye ACC

As in other systems, in Mobileye's system the camera detects and classi�es targets in
front of our vehicle and sends distance information to the ACC controller. The ACC controller
maintains a constant distance between the host and target vehicles. This is done using control
of the throttle and breaks.

An important point is that the vision system must see the road and use lane markings
to determine if targets in front are really in front - that is, if they are in our path. Then,
it should "lock" on to the "primary" target, or as called in the industry the CIPV (Closest
In-Path moving Vehicle). According to Mobileye's description of their system, the sensor's
look-ahead characteristic allows estimation of the curvatures ahead of us, and this helps to
have a stable lock on the target when the road is twisting. The system is claimed to perform
well in heavy tra�c, to be able to distinguish between moving and stationary targets, and to
provide distance control for both types of targets.

Mobileye's system can work with a wide �eld camera. A wide �eld of view allows early
detection of vehicles when they "cut-in". Cutting-in vehicles (or ones which seem to be
cutting in) are detected at an early stage (as early as the car appears) and a cut-in signal is
generated. This is done, as in the application described in this thesis, using motion detection
and segmentation.
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Target Tracking range 0-110 meters 0-220 meters

New target detection range 5-60 meters 5-110 meters

System operation frequency 30 fps 30 fps

Tab. 2.1 � MobiEye's ACC speci�cations.

Fig. 2.14 � Automatic vehicle guidance presented by the Center of Robotics of École des
Mines de Paris, in IV2002 using vision. In the second image, we can see the driver's hands
outside of the car, while the car is driving at about 50 km/h on curve.

In case of heavy rain or dense fog, Mobileye's system's can detect that it cannot work
reliably. It then noti�es the driver and turns itself o�.

Table 2.1 provides some technical details of the Mobileye ACC system. One can clearly
see that for detecting a new target the system needs a closer distance than to maintain one.
This is a common feature of all detection systems.

2.3.7 Non-cooperative lateral control

Lateral control of vehicles (that is, automatic control of the wheel) is a delicate subject ;
if such a system fails, someone might get killed... therefore the only technologically sound
systems are those who cooperate with the infrastructure. Such cooperative systems exist for
airplane (automatic guidance and landing) using ground beacons. For cars there are systems
like the ones described in the next section.

In the term "Non-cooperative lateral control" we refer to systems who control the wheel
of the car without having the need to installed something on the ground. Such a system was
introduced by the Center of Robotics of École des Mines de Paris in the IV 2002 symposium
in Versailles, France.

The system works on vision only using a frontal camera. It follows the two white lines of
the road, and can cope well even if one line is absent. In the demonstration (see �gure 2.14),
the car drove over 100 km/h in the straight road and 50 km/h in curves. The vision system
was also capable of directing a lane change (although at low speed)
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Fig. 2.15 � Di�erent levels of vehicle-infrastructure cooperation

2.4 Vehicle-Infrastructure cooperative systems

Cooperative vehicle-highway systems o�er the potential to enhance the e�ectiveness of
independent vehicle applications as the ones described in section 2.3. These autonomous
vehicle-based safety systems, even though they are e�ective, have some limitations based on
two simple facts :

� Since they operate in an environment which is not supportive, they must employ non-
cooperative detection modes such as camera and radar. Imagine an automatic landing
of an airplane without the use of beacons in the airport, just by radar detection of the
runway.

� Even when they "see" reliably the surroundings, they can't see around blind curves,
for instance.

At the same time, autonomous infrastructure systems as the ones described in section 2.2
can detect dangerous situations in real-time and know about the structure of the road, but
such infrastructure systems su�er from the limitation that they can only in�uence drivers
who choose to pay attention to them. And even then, it depends on the drivers to make
correct and fast decisions.

Cooperative intelligent vehicle-highway systems (CIVHS) o�er an improved level of overall
functionality by bridging this gap. These systems are cooperative in that the vehicles can
receive information from the infrastructure and react accordingly, and vehicles can detect and
report dangerous situations to the infrastructure, to be used by other vehicles. In a higher-
level, vehicles can receive information about the geometry of the road and drive automatically,
as in the AHS (Automatic Highway System) program. This program, whose story is brought
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Fig. 2.16 � The AHS demonstration in San-Diego in 1997

in the next subsections, started in the United States in the early 1990s, and had the ambitious
goal of fully automatic driving on passenger cars.

2.4.1 The AHS project

The idea of Automated Highway Systems (AHS) was very popular during the 1990s. The
U.S. department of transportation (USDOT) sponsored a program which was done by the
National Automated Highway System Consortium (NAHSC). The result of this work was
shown in the Demo '97 in San Diego. In the demo, a group of vehicles drove automatically
(i.e. without driver) on a highway, and arrived to high speed. This, in front of a large number
of viewers, making a lot of impact on the media (see image 2.16).

However, USDOT canceled the NAHSC program in 1998. The reasons were lack of budget
and the change of focus to more realistic ITS systems which would yield results in the near
term. In the next subsection we will try to explain "whatever happened to AHS", as the
name of the article by Richard Bishop [Bish]. But �rst, we will brie�y review some technical
aspects of AHS, according to o�cial publications of the PATH project [Cali].

Longitudinal Control

In the platoon demonstration in San Diego in 1997, eight vehicles drove with close inter-
vehicle distance with fully automated longitudinal and lateral control. The cars maintained
a �xed spacing of 6.5 meters (21 feet) between them at all speeds up to full highway speed.
The spacing was maintained with an accuracy of +/- 10 cm. (4 inches) during cruising and
+/- 20 cm. (8 inches) during maneuvers like acceleration and deceleration. It is claimed that
in the future improved spacing accuracy should reduce the spacing to less than 2 meters (6.5
feet).

This short spacing between vehicles can increase the throughput of the highway - the
highway will carry three times as many vehicles (per lane per hour) than now. The other
major advantages of the "platooning" system are better safety and less fuel consumption.
Safety is becoming better by the automation of the vehicles (no place for driver human
errors). Also, the fact that the relative speed between the cars (the di�erence between the
speed of two adjacent cars) is very small inside the platoon. Because of this, even sudden
high accelerations/decelerations cannot cause a serious damage.

Accurate spacing between the cars in the platoon is achieved by the longitudinal control
system. This system uses radar and radio communication between cars : each car in the
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Fig. 2.17 � Fully automated LeSabre on test track : lateral control

platoon uses its radar to measure the distance to the preceding car. The radio communication
system provides each car with broadcast information on the velocity and acceleration of the
preceding car and the lead car of the platoon. All of these signals are used by the longitudinal
feedback control system to continuously decide what is the desired acceleration of the car.
The throttle or the brake is then used to provide the desired acceleration. Apparently the
system has some knowledge of the dynamic behavior of the throttle and brake actuators, so it
can control it in a way that the desired acceleration is achieved accurately. The longitudinal
control system updates the actuators at a rate of 50 times per second.

The platoon demonstration also showed how a car can leave or join the platoon. The
radio communication system is used to coordinate such maneuvers within the platoon. A car
that wants to leave the platoon informs the leading car. The leading car gives a permission
for the process, and the car who wants to leave opens a larger space with the car in front and
back. Then, the car makes a lane-change, and once it has exited the platoon, the other cars
close the gap which was created. After that, the spacing between the cars in the platoon is
preserved.

In the San Diego demo, the car that exited from the platoon returned to it after about one
mile. The car exited from the front part of the platoon, slowed down and adjusted its speed
to match exactly the tail of the platoon. Then it changed back to the lane of the platoon,
and accelerated a little bit to stick to the platoon as the last car. Cars that enter the highway
will always join platoons in this way.

Lateral Control

The AHS systems demands that the road will be equipped with some indicators that
de�ne its boundaries (see �gure 2.17). The vehicle then uses a special kind of sensors to
detect the indicators and to determine its location with respect to the road. The computer
in the car uses this information to control the steering of the car and thus guide the car to
follow the indicators.

The PATH automatic steering control system uses magnetic markers which are buried
inside the road with distance of 4 feet between two consecutive markers. Laterally, they are
positioned in road center. The polarities of the magnets can be changed and thus send infor-
mation to the car. Information that is transmitted in this way is road geometry information,
entrance and exit information, etc.

Six three-axis �uxgate magnetometers, developed by the company "Applied Physics",
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located below the front and rear bumpers of the host vehicle, detect the magnetic �eld of
the magnets. A signal processing algorithm compares the magnetic strength to the virtual
'magnetic �eld map' of the magnet, that it has, and eliminates the background noises. Then
it determines the relative position of the vehicle to the road center. This information is
passed to a PC computer that runs the algorithm that decides which steering angle we need.
The desired steering angle is sent to a servo motor which was added to the steering system
(the motor was developed by the company "Delphi Saginaw"). This way the car is driven
according to the indicators on the road.

The resulting system tracks the indication on the road with a maximal error of about 8
cm, and the passengers enjoy good steering comfort (no sharp movements). The system can
be economical, because the price of the magnets is not high (per km). It is of course more
expensive than a white line, but the results are much more robust. The system works well
under all weather conditions such as rain, snow, and low visibility, since it is not using vision.

Fault Management

A very important feature of the vehicle control system is the automated fault management
system that was implemented on the cars. The fault management system should detect and
handle failures in the sensors of the car or in its actuators.

Usually, the failure is reported to be detected within a small time (0.1 seconds). If the
failure is simple, the driver is even not informed. Otherwise, for example when the radio
communication is not working, then the driver is informed and the space between cars is
being widen to 15 meters. If an actuator stopped working, the driver is informed and the
automatic control shuts o�.

When one car has a failure, all the other cars are informed. Even if the car's computer
crashes, the other cars will know it, probably because they are using a "heart beat" signal
(not fully clear from the PATH publications).

2.4.2 The deployment problem

Whatever happened to AHS

AHS is a great test case of the problems that prevent vehicle-highway cooperative ITS
application from massively di�using into the industry. The AHS system worked properly ;
it did not introduce any unsolvable problem. However, the USDOT support was stopped in
1998 with the feeling that one could not a�ord to block a whole lane in the highway, when the
overwhelming majority of the cars are not equipped with the appropriate devices. This is the
deployment problem, in its simplicity : the cars industry will not equip cars with expensive
devices before infrastructure is ready ; the highway managers could not justify an expense
of preparing the infrastructure before a large amount of cars are equipped with appropriate
devices. In the case of AHS, "preparing the infrastructure" means adding a dedicated lane
(or using an existing lane, which is equally unaccepted) - de�nitely a large expense.
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The future of vehicle-highway cooperative systems

According to Richard Bishop [Bish], the next thing are cars which are operating in today's
roads with no complicated cooperation from the infrastructure or no cooperation at all. This
is what he calls the �rst generation. Then, he estimates that co-pilots (driver assistance) will
develop to full pilot (full driving automation). We agree with Bishop. We think that after
the penetration of non-cooperative IV applications into vehicles, simple cooperation between
cars and infrastructure will start to emerge.

For instance : a vision-based system will guide vehicles fully automatically, but only on
speci�c roads where the white line will be redrawn, and some radio communication will mark
the entrance to the "automatic zone". The road will contain mixed tra�c (also regular cars)
but as time goes on, more and more cars will be automatic in such roads, and more and more
roads will have this equipment. The system that these cars will have will be a developed
version of LDW.

The distance between cars in such "semi-automated roads" will be, also according to
Bishop, smaller and smaller.

Even though non-automated cars will be able to travel around for many years from now,
they will be restricted. Automated cars could enter high-occupancy vehicle (HOV) lanes, and
this will create motivation to have such a car. The results will be a small improvement in
capacity of roads, a certain improvement in safety and in tra�c �ow.

Once these systems are mature and widely used, we (or our grandchildren...) will start to
see more and more dedicated roads which are forbidden for "manual" cars. More and more
items in the infrastructure will be designed for automated vehicles. All this will happen, to
our opinion, only in long segments of roads (between two junctions) and never in a road
that contains a junction. The driving in a junction will remain manual, to our opinion, much
longer than on restricted road segments. The form will be "leave the junction manually, and
get into auto-pilot. Once a junction arrives, the auto-pilot shuts o�".

Regarding the time scale, we agree with the estimation of Bishop :

� Until 2010 : wide use of non-cooperative IV applications like the ones described in
section 2.3.

� Until 2025 : wide use of on-boards systems which are simply cooperating with the
infrastructure - mainly on restricted road segments. Very beginning of restriction on
non-automated vehicles (fully-dedicated lanes).

� Far future (perhaps 2050) : Fully dedicated lanes in broad use, applications working to
some extent also in urban areas and junctions.

Bishop indicates that according to the last intelligent vehicles congresses, it is clearly
demonstrated that driver assistance systems have graduated from the R&D phase to real
product development. He says that both European and Japanese car-makers have active
programs focused on automated driving. As described above, these projects will �t well with
the safety and convenience systems which have arrived or will arrive to the market, like ACC
and LDW.
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2.5 Choice of applications

This thesis deals with application using a single frontal on-board camera. There are many
applications that use such equipment. In this section, we explain the choice of the two appli-
cations we developed.

2.5.1 List of possible applications

Let us list some applications that were mentioned in this chapter. All these applications
are based on the use of one camera associated to an image processing hardware.

Obstacle detection

A camera is �xed behind the window looking forward the vehicle. The goal is to detect
any obstacle located a few meters in front of the vehicle [1]. This function is used by the 3
applications described below :

� Low speed obstacle detection : A camera is �xed behind the window looking forward
the vehicle. The goal is to detect any vehicle located a few meters in front of the vehicle
in urban conditions. Then the system will calculate the distance between the vehicle
and the car detected. This application may help the driver in certain tra�c conditions
in order to decrease his stress and his tiredness [1]. It may also help him to deal with
the complexity of the situations including cut-in scenarios.

� Pedestrian detection : A camera is �xed behind the window looking forward the
vehicle. The system must detect pedestrians crossing the street few meters in front of
the vehicle in order to have enough time to activate any electronic system such as "pe-
destrian airbag" [Bert 00][Gavr 01]. The goal is to reduce the injuries of the pedestrians
bumped by a car. It is an application of obstacle detection using classi�cation.

� Stop&Go ACC : A camera is �xed behind the window looking forward the vehicle.
The goal is to detect any vehicle located a few meters in front of the vehicle in urban
conditions. Then the system will calculate the distance between the vehicle and the car
detected. This distance is used to regulate the car's speed in order to keep a steady
headway to the car in front.

Lane detection

A camera is �xed behind the window looking forward the vehicle. The system has to detect
the white lines marked on the road. Then it calculates the distance between the vehicle and
the lines [3]. The purpose is to warn the driver to help him to avoid a run-o�-road. The
warning interface may be acoustic or tactile.

Driver recognition

A camera is looking at the driver to recognize him in order to do the seating adjustment
and / or the mirrors adjustment and / or the steering wheel adjustment automatically.
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Fall asleep warning

A camera is looking at the eyes of the driver. The system warns the driver if the eye
blinking means that the driver falls asleep. The goal is to reduce accidents due to drowsiness
and tiredness. The di�culty of this function comes from the fact that it has to detect few
seconds before the driver falls asleep. Another question is how to wake the driver up.

Blind spot detection

A camera is �xed in the side mirror looking backward. The goal is to detect vehicles in
the blind spot which are not visible in the side mirror [4]. The purpose is to increase the
visibility of the driver and to reduce lateral collision during lane change maneuver.

Curve detection

A camera is �xed behind the window looking forward the vehicle. The system will measure
the orientation of the road especially the road curvature [5]. Regarding other typical systems
used to measure the curvature such as gyroscope, the advantage of this system corresponds
to its capability to predict the type of the curve. The aim of the application is to reduce
accidents due to overspeed.

Climatic environment measurement

A camera is �xed behind the window looking outside the vehicle. The goal is to measure
di�erent climatic conditions like rain or brightness to activate automatically the wipers and
the lights.

2.5.2 Applications quotation

The purpose is to evaluate the di�erent functions listed in the previous paragraph in term
of customer interest, compatibility with the pre-existing algorithms available in a standard
video encoder such as motion estimation, feasibility and bene�ts in order to choose the two
functions developed in this thesis.

Description of criteria

� Customer interest : This criterion corresponds to the will of a customer to buy this
application and the possibility for a car manufacturer to earn money regarding the price
the customer is ready to pay and the cost of such a function. The values are shown in
table 2.2.

� Compatibility : This criterion is the level of compatibility of the algorithm needed
for the function with the pre-existing algorithms available in a standard video encoder
such as motion estimation. The value goes from 1 (bad) to 5 (very good).

� Feasibility : This criterion takes into account the possibility to develop this algorithm
and to integrate it into a speci�c hardware. The value goes from 1 (bad) to 5 (very
good)
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Value Description
3 The customer agrees to pay more to get

the function and the price allows the
�rm to earn money

2 The customer agrees to pay more to get
the function but the price does not al-
low the �rm to earn money the �rst
years

0 The function will be enjoyed by the cus-
tomer but he does not agree to pay
more to have it

-3 The function will not help the customer

Tab. 2.2 � Description of values.

Function Customer
interest

Compat-
ibility

Feasibil-
ity

Bene�ts TOTAL

Low speed obstacle detec-
tion

3 5 5 5 18

Pedestrian detection 2 5 5 5 17
Lane detection 0 3 4 1 8
Driver recognition 0 2 2 2 6
Fall asleep warning 0 2 2 2 6
Blind spot detection 0 3 3 1 7
Curve detection 2 2 3 4 11
Climatic environment mea-
surement

2 1 2 3 8

Tab. 2.3 � Quotation.

� Bene�ts : The bene�ts mean the interest for car manufacturers to develop this function
facing their regulations and strategic policy. The value goes from 1 (bad) to 5 (very
good)

Quotation

The applications developed in this thesis were developed in cooperation with (among
others) Renault research division. The quotation of the di�erent applications is based on
Renault experience of driving assistance systems and on studies of accident statistics and
situations. It also takes into account the new regulations in the next years. The quotation
appears in table 2.3.

In this thesis we chose to implement the two applications that have the higher score, na-
mely pedestrian detection and low speed obstacle detection. For low speed obstacle detection,
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we choose to detect vehicles and use it for a low-speed ACC application.

2.6 Choice of implementation methods

2.6.1 Requirements for general detection and tracking applications

Both applications are basically detection and tracking systems. Coming to design such a
system, we should analyze the input and output of the system. The main input of the system
- the images arriving from the camera - can be analyzed by several observations. Each one of
these observations detects di�erent features of the image - motion, dark areas, symmetries,
vertical edges etc. The output, on the other hand, should be a list of targets, with accurate
spatial position of each target, plus a measure of this accuracy (=con�dence value). The
question, therefore, is how to go from the input observations to the output.

The problem is di�cult :
� Image processing is a non-linear and non-gaussian observation process.
� Projection in an image is also non-linear and non-gaussian.
� Simple Kalman �lter (typical algorithm for model inversion) is out of focus here. Ex-
tended Kalman �lter might operate poorly (it is not known what model to provide).

2.6.2 Previous approaches

Bayesian Networks

Bayesian Networks-based data fusion was used in a previous project (FADE 1, see [Steu 02]),
and provided good results. Unfortunately, this method exhibits severe limitations, as discus-
sed below.

Advantages :
� This is a diagnosis approach : enables the detection of failing algorithms (especially
image processing algorithms), through the computation of correlations between propo-
sals made up from several sources.

� Observation is completely independent of the ground plane constraint, since we use a
model of the width of the target for retro-projection (typically 1.75m).

� Accuracy of localization is high, since we combine many di�erent "sensor outputs" from
many di�erent algorithms, thus yielding in a typical 10% distance accuracy.

Inconveniences :
� One target = one hypothesis (one state space position). No real state space exploration.
� Bayesian nets don't allow to distinguish between con�dence and accuracy of localization
of the target. When a hypothesis gets a low score, it is di�cult to state whether the
target is badly located (inaccuracy of detection) or the target simply doesn't exist or
doesn't �t the model (uncertainty). It's very di�cult to set up a "split" strategy from
the results provided by the Bayesian net.

� The major disadvantage is that the actual setup can only use image processing algo-
rithms that provide vertical features (in order to combine inputs). This is good for edge
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detection, lights, shadow, symmetry detection but how to integrate motion segmenta-
tion into that framework ?

� The fusion algorithm is di�cult to tune. We have to attribute a priori belief to each
source, which was found to be tricky.

� Bayesian net computation is heavy, so it's generally necessary to get back to approxi-
mations of Bayesian nets (which were done in FADE 1), which to some extent tends to
deteriorate the results.

Problems :
� It is unclear how to integrate motion segmentation into such a framework.
� It is not possible to cope with di�erent kinds of targets, like motorcycles and trucks.

2.6.3 Particle �ltering

Particle �ltering is a useful method to track targets in non-linear, non-gaussian environ-
ment [Douc 02], as is our system. Particle �ltering is a technique for implementing a recursive
Bayesian �lter by Monte Carlo simulations. The reader is referred to chapter 5 for a complete
overview.

Compared to the Bayesian nets approach, using particle �ltering has several advantages :
� One target = n hypotheses. This is the basis for the algorithm, and it makes fusion and
splitting between targets more natural. Accuracy of localization should be high, due
to the high number of particles. Averaging these positions (according to their weight)
yields the global target position output.

� Visual results : eases the tuning. Tuning is done through likelihood functions, which
can be of any sort (including non-linear functions) and thus are very adapted to image
processing algorithms.

� Allows to distinguish between con�dence (weights of particles) and inaccuracy (spatial
distribution of particles).

� Allows the integration of many di�erent algorithms (of any kind, providing any kind
of input). Makes possible the integration of horizontal edge detection and the use of
di�erent models than just the width of the car (i.e. height of lights at short distance,
by using the hypothesis of plane road, which is accurate at very low distance).

2.6.4 The need for motion estimation

When detecting objects in scenes, it is essential to use the motion information ; that is,
the information that is discovered by comparing several images.

To understand why motion is needed, look at �gure 2.18. This image, taken from an on
board frontal camera, contains something that was classi�ed by a detector as "pedestrian".
From a �rst look at the static image, it is not clear whether this detection is correct. Only
while looking at the moving video (which cannot be included in this thesis for understandable
reasons, see �gure 2.19 for one image out of this video) one can see that this is a true
pedestrian, detected only by his upper part. He is colliding at that point of time with the
right part of a car and with a street light, and in fact, only the head belongs to him. The
"body" (seen in �gure 2.18) is the car and the street light.
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Fig. 2.18 � A pedestrian or not ?

Fig. 2.19 � The wider image

2.6.5 The need for a learning algorithm

Cars detection can go quite well with traditional algorithms, such as rear lights and plate
detection, symmetry, vertical edges etc. When dealing with pedestrian detection, however,
there are not many algorithms which can perform well for this problem. For this purpose, we
need a learning algorithm that will adapt itself to the variable shapes of pedestrians.

Among learning algorithms, we preferred AdaBoost over SVM and neural networks (two
popular learning algorithms), because of the following reasons :

1 AdaBoost is easy to implement and understand.

2 For AdaBoost, there is proof of convergence that shows exactly what measured results
one can obtain.

3 AdaBoost can be implemented in the cascade method of Viola and Jones (see details
in chapter 3) and works faster than any other algorithm.

4 There are possibilities to combine AdaBoost easily with hardware, thanks to the free-
dom to choose whatever we want as "weak classi�ers".

More information about learning algorithms, AdaBoost and how we used it is given in
chapter 3.
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2.7 Conclusion

In this chapter, we have presented a comprehensive review of the current situation in the
world in the domain of ITS. We have seen that e�orts are ongoing in many countries, both in
car manufacturers and in public authorities. In particular we have presented the work being
carried out in our laboratory.

Based on this review, we described how we chose the ITS applications of this thesis.
We explain the motivation of building these applications as well as of choosing the speci�c
implementation methods.

In the next chapters we will describe the algorithms that allow us to implement these
applications.



Chapitre 3

Visual object detection with machine
learning

When we speak about object detection, we mean that we take an image and would like
to detect if and where there is an object of a certain type. In our case relevant objects are
pedestrians or cars1.

In this chapter, we discuss systems that learn object detection. Such a system is using
a large amount of negative and positive examples in order to learn the shape of a speci�c
object. Such examples are simply small image �les that contain the object (for positive) or
without the object (for negative).

We will begin this chapter by several conventions and de�nitions, followed by the state
of the art existing in this domain. Then, we will present our contribution to this �eld.

3.1 Conventions and de�nitions

3.1.1 Motion information

In this work, unless stated otherwise, we speak about only static detectors. This means,
that the detector works on each image separately and �nds the locations of the objects,
without relation to previous images.

3.1.2 Detection window

Each detector is associated with some conventions, which should be determined prior to
the learning process, and even prior to the collection of the learning data. The conventions
de�ne the way in which the pedestrian is related to the detection sub-window. In our imple-
mentation, we used for pedestrians a 1 :2 rectangle positioned on the pedestrian with about
10% margins from each side (see Figure 3.1). For cars, we used a 1 :1 rectangle with 15%
margins (see 3.2).

1Much of the work presented in the chapter is relevant as well for other types of objects, such as human
faces.

35
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Fig. 3.1 � The pedestrian conventions : the detection window's height is twice as large as its
width, and the pedestrian leaves margins of about 10%.

Fig. 3.2 � The car conventions : the detection window's height is the same size as its width,
and the car leaves margins of about 15%.

3.1.3 Measuring the detection rate of a detector

Ground truth evaluation

To measure the success of a detector on a given image, we need ground truth information.
This means, that all the pedestrians in an image will be exactly marked by hand prior to
the evaluation of the detector. The ground truth indicates where the pedestrians really are.
The ground truth for image I is given as a (possibly empty) list of rectangles g1, g2 . . . gm,
positioned on the pedestrians in the image, according to the same conventions mentioned in
the previous section.

To evaluate the detector, we apply it on the image. The detector returns a (possibly
empty) list of detected rectangles d1, d2 . . . dn. We now have to compare these rectangles to
the ground truth to measure the success. For this, we de�ne the following simple de�nitions :

1 Two rectangles r1 and r2 are said to be close if :

� | L(r1)− L(r2) |< 0.3 ∗max(W (r1),W (r2))
� | R(r1)−R(r2) |< 0.3 ∗max(W (r1),W (r2))
� | T (r1)− T (r2) |< 0.3 ∗max(H(r1), H(r2))
� | B(r1)−B(r2) |< 0.3 ∗max(H(r1), H(r2))

� 2
3
≤ W (r1)

W (r2)
≤ 3

2
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� 2
3
≤ H(r1)

H(r2)
≤ 3

2

where L(r), R(r), T (r), B(r),W (r), H(r) are the left, right, top, bottom, width and
height of a rectangle r, respectively.

2 A ground truth location g is considered as detected if there exists a detection d ∈
d1, d2 . . . dn for which g and d are close.

3 A detection d is a false detection if there is not any ground truth location g for which
g and d are close.

De�nition 1 above is, of course, arbitrary. One has to choose reasonable values in order
to decide when two rectangles are close. In de�nition 1 we verify that the 4 borders are close
(up to 30% of the width or height) and that the dimensions are similar (up to 50%).

For a given image, using these de�nitions, we can determine F , the number of false
detections among d1, d2 . . . dn, and S, the relative part of the ground truth which are detected.

In the literature, the false detection rate is sometimes expressed as a percentage of the
total number of examined sub-windows. For simplicity, we deal here with absolute numbers.

These two numbers - the detection rate and the false detection rate - are the only infor-
mation needed to evaluate a detector in terms of detection success.

The ROC curve

The two numbers mentioned in the previous section must come together. No one of them
alone is su�cient. For examples : if I told you I have a detector that detects 100% of the
pedestrians in an image, is that good ? not necessarily ; it can be a detector that "detects" in
each image all the possible sub-windows, therefore having many false detections. In order to
really evaluate a detector we must say, for example that "it detects 85% of the pedestrians
while having 3 false detections per a 640x480 image".

The sentence above, however, reveals only a part of the characteristics of the detector. We
want to know also how many false detections are obtained if we tune the detector to detect
90% and 95% of the pedestrians, etc. The tool to explore the full space of information is the
Receiver Operating Characteristic (ROC) analysis. In this analysis we draw a curve for all
the matching values of detection rate and false positive rate.

3.2 State of the art

3.2.1 Support vector machine (SVM)

SVM is a technique which is known for many years [Vapn 95] as a useful mechanism for
machine learning. Given an object class, SVM is capable of learning this object class through
a set of positive and negative examples. If, for examples, the object class is a pedestrian
image, then the SVM can learn this object class provided that it has access to a large set of
positive (=pedestrian images) and negative (images not containing pedestrians) examples.
This is the training process.

The result of the training process is a binary classi�er. Given a new object, the classi�er
can tell if it belongs to the object class or not. In our example : given a image, it can tell,
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up to some error, if it contains a pedestrian or not. The error, of course, depends on many
factors, like the intra-class variability (how objects inside the class di�er from each other),
the amount of training examples, the parameters of the SVM and more.

We will now see a brief explanation of SVM. The following is based on [Burg 98].
In this introduction we limit ourselves to linear support vector machine.
SVM is based on the idea of seeing the data as points in a multidimensional space and

separating two sets of points (i.e. negative and positive examples) by a hyperplane . Suppose
we have N training data points {(x1, y1), (x2, y2), . . . , (xN , yN)} where xi ∈ <d (every type
of data can be translated into some d dimensional space) and yi ∈ {1,−1} (1 for positive
examples, -1 for negative). We would like to learn a linear separating hyperplane classi�er :

f(x) = sgn(w · x− b) (3.1)

Meaning that the hyperplane having normal w and factor b is separating the positive
and negative points. Furthermore, we want this hyperplane to have the maximum separating
width with respect to the positive and negative data points. That is, we want to �nd a
hyperplane H : y = w · x − b = 0 and two "side" hyperplanes parallel to it and with equal
distances to it,

H1 : y = w · x− b = +1 (3.2)

H2 : y = w · x− b = −1 (3.3)

with the condition that there are no data points between H1 and H2, and the distance
between H1 and H2 is maximized.

Note that the values of +1 and −1 are always possible - that is, for any separating plane
H and corresponding H1 and H2, we can always "normalize" the coe�cients vector w so that
H1 will be y = w · x− b = +1, and H2 will be y = w · x− b = −1.

We want to maximize the distance between H1 and H2, so there will be some positive
examples exactly on H1 and some negative examples exactly on H2. These examples are
called support vectors because only these points actually participate in the de�nition of the
separating hyperplane, and other data points can be removed or changed as long as they
don't cross the planes H1 and H2.

Recall that in the two dimensional case the distance from a point (x0, y0) to a line Ax+

By + C = 0 is |Ax0+By0+C|√
A2+B2 . On the d dimensional case, the distance of a point on H1 to

H : w · x − b = 0 is |w·x−b|
‖w‖ , and the distance between H1 and H2 is 2

‖w‖ . So, in order to

maximize the distance, we should minimize ‖w‖ = wTw with the condition that there are no
data points between H1 and H2 :

w · x− b ≥ +1, for positive examples yi = +1
w · x− b ≥ −1, for negative examples yi = −1
These two conditions can be written together as one condition :

yi(w · xi − b) ≥ 1 (3.4)
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So our problem can be expressed by the following formula, which is a convex quadratic
programming problem :

minw,b
1
2
wTw, subject to yi(w · xi− b) ≥ 1

We can use Lagrange multipliers α1, α2, . . . , αN ≥ 0, and then we have the following
Lagrangian :

L(w, b, α) ≡ 1

2
wTw −

N∑
i=1

αiyi(w · xi − b) +
N∑

i=1

αi (3.5)

To proceed, we can solve the Wolfe problem which is equivalent to our problem : maximize
L(w, b, α) with respect to α, subject to the constraints that the gradient of L(w, b, α) with
respect to the primal variables w and b will disappear :

dL
dw

= 0 (3.6)

dL
db

= 0 (3.7)

and that :

α ≥ 0 (3.8)

From Equations 3.6 and 3.7, we have

w =
N∑

i=1

αiyixi (3.9)

N∑
i=1

αiyi = 0 (3.10)

Substitute them into L(w, b, α), we have

LD ≡
N∑

i=1

αi −
1

2

∑
i,j

αiαjyiyjxi · xj (3.11)

in which the primal variables are eliminated. When we solve αi, we can get w =
N∑

i=1

αiyixi,

(we will later show how to compute the threshold b). Now, when we have a new object x to
classify, all we have to compute is :

f(x) = sgn(w · x+ b) = sgn((
N∑

i=1

αiyixi) · x+ b) = sgn(
N∑

i=1

αiyi(xi · x) + b) (3.12)

It is important to observe that in this calculation, all the training data points xi appear
only in the form of dot product. This implies that for classifying an object it is enough to know
a function (i.e. the dot product with the data points) and not the data points themselves.
This can save computations.
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Fig. 3.3 � The top row shows examples of images of pedestrians in the training database
of Papageorgiou et al. The examples vary greatly in color, texture, and background. The
bottom row shows the corresponding edge maps generated by a Sobel �lter

3.2.2 Wavelets features for visual object detection

In this subsection we review the work of Papageorgiou et al [Oren 97] [Papa 98a] [Evgc 00]
[Papa 99] [Moha 01], which tried to solve the problem of pedestrian detection using SVM.
These authors have developed a general, trainable object detection system that can �nd
pedestrians in rather complex images. Their system learns from examples, each example is
an 128x64 pixels image of a pedestrian or non-pedestrian.

The work of Papageorgiou et al is unique and was chosen to be mentioned here because
most previous systems designed to detect pedestrians in video sequences have used hand-
crafted models and/or motion information. Hand-crafted models limit systems to be used only
for the speci�c case (in this case, pedestrians) and can not be ported to other cases. The as-
sumption that all pedestrians are moving is of course not correct in the general case and is very
problematic when camera is moving, which is the case in the context of this thesis. Discussions
of some of the systems mentioned above can be found in [Tsuk 85][Leun 87][IHar 98][Bert 02].

The system of Papageorgiou et al is based on a novel object representation that uses
projections of the object images onto a space with less dimensions - what they call a dense
Haar wavelet basis. This projection e�ciently encodes the structure of the pedestrians, in
two di�erent scales. The set of coe�cients they use contains 1326 components - and this is
obviously much less than the dimension of an 128x64 image, which is 8192. These features
are used to train a SVM classi�er. With this representation, their system can reliably detect
pedestrians in static images with no motion information. In further sections we will see how
motion information can be combined.

Transforming images to wavelet representation

One of the important things in object detection is what object representation to use.
We search for the representation that yields high inter-class variability (between pedestrians
and themselves) and low intra-class variability (between pedestrians and non-pedestrians).
Figure 3.3 shows several example images of pedestrians from the training set used by these
authors. From these images, we can see that a pixel-based representation would give poor
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Fig. 3.4 � Ensemble average values of the wavelet coe�cients coded using gray level. Coef-
�cients whose values are above the average are darker, those below the average are lighter.
(a)-(c) vertical, horizontal, and diagonal coe�cients at scale 32

results because of the high variability in the color of the pedestrian patterns. As seen in the
lower line of the image, a traditional edges representation is also not so good. In the �gure
we can see how the processing to edges in the images have very little consistency between
the patterns of the pedestrians and a lot of noisy information which has nothing to do with
the shape of the pedestrian.

Actually all the approaches that use color would have the same problems because there
is no consistent color information. The representation used by Papageorgiou et al tries to
overcome these problems by looking at intensity di�erences in small local regions. These
di�erences are called Haar wavelets [Mall 89]. The Haar wavelet transform goes over an
image and calculates a set of coe�cients at di�erent scales - each coe�cient measures the
response of the wavelet feature by calculating the di�erence between two rectangular regions.
Wavelets appear in three types : vertical, horizontal, and diagonally oriented. So the transform
being performed on the image yields three sets of coe�cients, one for each of the wavelet
orientations. Since these authors used color images, they run the Haar transform over each
color channel separately. Then, for a given spatial location and orientation, they choose as
the wavelet coe�cient the one from the three color channels that gives the maximal response.
To reduce computation by a factor of 3, they can use only intensity images. Of course, as
seen towards the end of this section, results of the detection will be less successful in this
case.

Manual reduction of wavelets

The training database used by Papageorgiou et al is a set of 1848 frontal and rear color
views of pedestrians (924 plus mirror images) that have been scaled to 128x64 pixels and
aligned such that the pedestrian is in the center of the image. The data is available on the
web and indeed in further chapters we will use this data set for our experiments. Using
the Haar wavelet representation, they look at both coarse-scale (32x32 pixels) and �ne-scale
(16x16 pixels) features. At these scales of wavelets, there are 1326 total features for a 128x64
pattern. Many of these coe�cients will be irrelevant for the task of pedestrian detection (e.g.



42 CHAPITRE 3. VISUAL OBJECT DETECTION

the coe�cients at the corner areas that do not touch the pedestrian's body), therefore in
some stage of their work they obtained a much smaller representation (29 instead of 1326)
by choosing a small subset of the coe�cients that are consistently strong or weak.

Average responses for each coe�cient for the three orientations and the two scales are
shown in Figure 3.4. In the �gure, a dark coe�cient indicates consistently strong response
and a light coe�cient indicates consistent weak response. If we want to choose a subset of
wavelets as mentioned above, we manually choose 29 of these coe�cients. This way each
pedestrian image is represented by a 29-dimensional feature vector.

SVM usage

the SVM classi�er is trained using the 1848 pedestrian patterns and a set of 7189 negative
patterns collected from images of outdoor scenes not containing pedestrians. The advantage
of SVM that these authors took advantage of, is that SVM, instead of minimizing the training
error of a classi�er (i.e. the error on the training set, which often doesn't say much about the
results on other sets), minimizes an upper bound on its generalization error This is actually
the distance between the two hyperplanes we saw in the previous section.

To detect pedestrians in a new image, Papageorgiou et al shift the 128x64 detection
window over all locations in the image. Of course, this will only detect pedestrians at a
single scale. To perform multi-scale detection, they incrementally resize the image (creating
a so-called "pyramid") and run the detection window over each of these resized images2.

Results

To evaluate the performance of a detection system, it is necessary to analyze the full ROC
curve which gives an indication of the tradeo� between detection rate (i.e. how many of the
pedestrians are successfully detected) and the number of false positives. Of course, the ROC
curves are computed over an out-of-sample test set (gathered by the authors around MIT
and over the Internet). Figure 3.5 compares the ROC curves of several di�erent versions of
the system. They are as follows :

� color processing with 29 features using a homogeneous polynomial of degree two.
� color processing with 29 features using a polynomial of degree two.
� color processing with 29 features using a polynomial of degree three.
� grey-level processing with 29 features using a homogeneous polynomial of degree two.
� grey-level processing with 29 features using a polynomial of degree two.
� grey-level processing with 29 features using a polynomial of degree three.
� color processing with all 1326 features using a polynomial of degree two.

2this method is common in all the work we will review hereinafter. In the case of one work (Viola and
Jones, see further sections) the authors succeed to scale the feature and not the image. This saves them the
time needed to create this "pyramid". However scaling a feature is not always convenient because the pixels
locations are discrete (you cannot increase a distance of 4 pixels by 10%). One simple but tedious solution
is to rerun the learning over all scales (each time the training set is scaled to another scale), and actually
produce an independent detection system for each di�erent scale. This solution seems to be perfect, but it is
left for future research.
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Fig. 3.5 � ROC curves for di�erent detection systems. The detection rate is plotted against
the false positive rate, measured on a logarithmic scale. The false detection rate is de�ned as
the number of false detections per inspected window.

Fig. 3.6 � Results from the pedestrian detection system of Papageorgiou et al.

From the ROC curve, it is clear that the type of the features (color versus no color and 29
versus 1326 coe�cients) makes most of the di�erence on the performance. The complexity of
the classi�er (homogeneous/non homogeneous, degree two/three) is secondary. As expected,
using color features results in a more powerful system. The curve of the system with no
feature selection is clearly better than all the others. This indicates that if one wants the
maximum performance, using all the features is optimal.

It may be possible to achieve the same performance as the 1326 feature system with
fewer features (but more than the 29 used here) ; this was an open question at the time of
that work, and was solved using the AdaBoost algorithm, as described in further sections.
In Figure 3.6 we see examples of some outdoor images that were processed by the system of
Papageorgiou et al. These images were not part of the training set.
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3.2.3 AdaBoost

To understand AdaBoost we �rst need to understand the notion of boosting. To do that,
we might use the following nice example which is taken from [Freu 99].

A horse-racing gambler, hoping to maximize his winnings, decides to create a computer
program that will accurately predict the winner of a horse race based on the usual information
(number of races recently won by each horse, betting odds for each horse, etc.). To create
such a program, he asks a highly successful expert gambler to explain his betting strategy.
Not surprisingly, the expert is unable to articulate a grand set of rules for selecting a horse.
On the other hand, when presented with the data for a speci�c set of races, the expert has
no trouble coming up with a "rule of thumb" for that set of races (such as, "Bet on the
horse that has recently won the most races" or "Bet on the horse with the most favored
odds"). Although such a rule of thumb, by itself, is obviously very rough and inaccurate, it
is not unreasonable to expect it to provide predictions that are at least a little bit better
than random guessing. Furthermore, by repeatedly asking the expert's opinion on di�erent
collections of races, the gambler is able to extract many rules of thumb.

In order to use these rules of thumb to maximum advantage, there are two problems faced
by the gambler : First, how should he choose the collections of races presented to the expert
so as to extract rules of thumb from the expert that will be the most useful ? Second, once he
has collected many rules of thumb, how can they be combined into a single, highly accurate
prediction rule ?

Boosting refers to a general and provably e�ective method of producing a very accurate
prediction rule by combining rough and moderately inaccurate rules of thumb in a manner
similar to that suggested above.

Background

The following summary is based on [Freu 99].
Originally, boosting started from a theory of machine learning called "Probably Approxi-

mately Correct" (PAC) [Vali 84] [Kear 94]. This model allows us to derive bounds on esti-
mation error for a choice of model space and given training data. In [Kear 88] [Kear 89] the
question was asked if a "weak" learning algorithm, which works just slightly better than ran-
dom guessing (according to the PAC model) can be made stronger (or "boosted") to create
a "strong" learning algorithm. The �rst researcher to develop an algorithm and to prove its
correctness is Schapire [Scha 89]. Later, Freund [Freu 90] developed a more e�cient boosting
algorithm that was optimal but had several practical problems. Some experiments with these
algorithms were done by Drucker, Schapire and Simard [Druc 93] on an OCR task.

The algorithm

The AdaBoost algorithm was introduced in 1995 by Freund and Schapire [Freu 95]. Ada-
Boost solved many of the practical problems that existed in the previous algorithms mentio-
ned above. In �gure 3.1 we bring the original AdaBoost algorithm. The algorithm takes as
input a training set 〈x1, y1 . . . xm, ym〉 where each xi belongs to some domain X (as in the
case of SVM - any kind of training examples can be translated to a d dimensional space,
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for some d) and each label yi is in some label set Y . To our purposes we need only binary
classi�cation and thus can assume Y = {+1,−1} as in the case of SVM above. Generalization
to the multi-class case is not discussed here.

AdaBoost calls a given weak learning algorithm repeatedly in a series of "cycles" t =
1 . . . T . The most important idea of the algorithm is that it holds at all times a distribution
over the training set (i.e. a weight for each example). We will denote the weight of this
distribution on training example 〈xi, yi〉 on round t by Dt(i). At the beginning, all weights
are set equally, but on each round, the weights of incorrectly classi�ed examples are increased
so that the weak learner is forced to focus on the hard examples in the training set.

The role of the weak learner is to �nd a weak rule (classi�er) Ht : X → Y appropriate
for the distribution Dt. But what is "appropriate" ? The "quality" of a weak classi�er is
measured by its error, according to the weights :

εt =
∑

i:ht(xi) 6=yi

Dt(i) (3.13)

The error is measured, of course, with respect to the distribution Dt on which the weak
learner was trained, so each time the weak learner �nds a di�erent weak classi�er. In practice,
the weak learner is an algorithm - doesn't matter which algorithm - that is allowed to use
the weights Dt on the training examples.

Coming back to the horse-racing example given above, the instances xi correspond to
descriptions of horse races (such as which horses are running, what are the odds, the track
records of each horse, etc.) and the label yi gives a binary outcome (i.e., if your horse won or
not) of each race. The weak classi�ers are the rules of thumb provided by the expert gambler,
where he chooses each time a di�erent set of races, according to the distribution Dt. Here is
the "AdaBoost" algorithm which runs in the head of the gambler :

Algorithm
� "If I look at the entire set of races I've seen in my life, I can tell that it is very important
that the other horses (other than the one I gamble on) will not be too strong. This is
an important rule."

� "I will now concentrate on the races where my horse was the strongest horse, but
nevertheless it didn't win. I recall that in some of these races, it was because there
was a lot of wind, and even a strong horse might be sensitive to wind. This cannot be
known in advance about a certain horse."

� "In another case the horse I chose was not the strongest, but even though, it won. This
was because he was in the outer lane, and it is easier to run there."

Resulting strong classi�er
� The other horses (other than the one I gamble on) should not be too strong. Importance
of rule : 7 (on a scale of 1 to 10).

� These should not be wind in the day of the race. Importance : 3.
� The horse should be in the outer lane. Importance : 2.
Note that the importance of the rules are calculated according to their error in the execu-

tion of AdaBoost. this corresponds to the α of the rule in the algorithm (see table). Once the
weak hypothesis ht has been received from the weak learner, AdaBoost chooses a parameter
αt as in the table. Intuitively, αt measures the importance that is assigned to ht.
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• Input : a sequence of N labeled examples X = 〈(x1, y1), . . . , (xm, ym)〉 where xi ∈ X and
yi ∈ Y = {−1, 1}
integer T specifying number of iterations of AdaBoost.

• Initialize the weight vector : w1
i = 1

m
.

• Do for t = 1, 2, . . . , T

1. Run the weak learner, providing it with the weights wt.
The weak learner will return a simple classi�er ht

with Γ(ht) = εt.

2. Set the new weights vector :

wi
t+1 ← {

wi
tβt if xi is classi�ed correctly by ht

wi
t otherwise

where βt = εt

1−εt

3. Normalize the weights such that
N∑

j=1

wt
j = 1.

• Output the classi�er :

h(x) = sign(
T∑

t=1

αtht(x)

where αt = log 1
βt

Tab. 3.1 � The AdaBoost algorithm, in its original form
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Fig. 3.7 � Example rectangle features shown relative to the enclosing detection window. The
sum of the pixels which lie within the white rectangles are subtracted from the sum of pixels
in the grey rectangles. Two-rectangle features are shown in (A) and (B). Figure (C) shows a
three-rectangle feature, and (D) a four-rectangle feature.

Note that αt ≥ 0 if εt < 1
2
(which we can assume without loss of generality), and that αt

gets larger as εt gets smaller. The distribution Dt is then updated using the rule shown in the
�gure. This rule actually increases the weight of examples misclassi�ed by ht , and decreases
the weight of correctly classi�ed examples. Thus, the weight tends to concentrate on "hard"
examples.

The �nal hypothesis H is a weighted majority vote of the T weak hypotheses where αt is
the weight assigned to ht .

3.2.4 Training a detector with AdaBoost

While the work of Papageorgiou et al presented in subsection 3.2.2 was innovative in terms
of detection results, it left a substantial performance problem. The calculation of the wavelets
demanded summing of pixels in a wide region, and this had to be done more than 1000 times
for each examined subwindow ! Of course, this could not be performed in something which
comes near real-time processing, even when using specialized hardware.

The work of Viola and Jones [Viol 03] [Viol 01] brought a solution to this problem. Like
Papageorgiou et al, Viola and Jones also use a set of features which are some version of
Haar basis (though they also use related �lters which are more complex than Haar �lters,
as we will see next). In order to compute these features very rapidly at many scales they
introduce a new representation of an image called the integral image. The integral image can
be computed from an original image using a few operations per pixel. Once computed, any
one of these Haar-like features can be computed at any scale or location in constant time
(not dependent of the size of the rectangle of the "wavelet").

Their second contribution is a method for constructing a classi�er by selecting a small
number of important features using AdaBoost. Recall that Papageorgiou et al chose their
subset of 29 wavelet-like features manually.

If we consider all possible wavelet-like features (in all scales and all directions, as seen
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in �gure 3.7), then within any image subwindow the total number of these features is very
large, far larger than the number of pixels. In order to ensure fast classi�cation, the learning
process must drop a large majority of the available features, and focus on a relatively small
set of critical features. The solution of Viola and Jones for this feature selection is achieved by
the AdaBoost algorithm : the weak learner is an algorithm that searches for a weak classi�er
consisting on only a single feature (this idea is originated in [Tieu 99]). As a result of this
method, each stage of the boosting process, which selects a new weak classi�er, is actually a
"feature selection" process. AdaBoost is good for this purpose because it provides high level
of learning - that is, the results are well generalized on new data (some proofs of this are
given in [Scha 97],[Osun 97],[Papa 98b]).

The third major contribution of Viola and Jones is a method for combining successively
more complex classi�ers in a "cascade" structure which dramatically increases the speed of
a detector by focusing on "promising" regions of the image. The idea behind the focus of
attention is that it is often possible to rapidly determine where in an image an object might
occur (see results for this hypothesis in [Amit 97][Itti 98][Tsot 95]). Once "easy" parts are
dropped, more processing is performed only for the regions which are left.

To make this approach work, it is very important that the "false negative" rate of such
step in this process be very low. In other works, almost all objects should be selected by each
layer of the detection process ; if one of them drops the object, it will not be detected in the
�nal result.

The training process of the "cascade" is done layer after layer, when each layer is trained
as a simple AdaBoost, as described in the previous section.

For a good example of the process, we give some details from the domain of face detection,
where Viola and Jones actually started their research of the "cascade" (only in a later work
they used pedestrians). In this case, they show that it is possible to achieve fewer than 1%
false negatives (that is, 99% of the positive cases remain) and 40% false positives using a
classi�er constructed from only two Haar-like features.

The e�ect of such a simple �lter is to reduce by over one half the number of locations
where the �nal detector must be evaluated. Those sub-windows which are not rejected by the
initial classi�er are processed by a sequence of classi�ers, each slightly more complex than
the last. If any classi�er rejects the sub-window, no further processing is performed.

The rest of this subsection is describing the framework of detection with AdaBoost and
the use of the integral image. The next subsection is giving some more details about the
attentional cascade.

Extended wavelet-like features

The object detection procedure of Viola and Jones classi�es images based on the value
of simple features. These features are based on the "Haar basis" functions which have been
used by Papageorgiou et al. However, here they are expended a little bit.

Viola and Jones use three kinds of features. The value of a two-rectangle feature is the
di�erence between the sum of the pixels within two rectangular regions. The regions have
the same size and shape and are horizontally or vertically adjacent (see Figure 3.7). A three-
rectangle feature computes the sum within two outside rectangles subtracted from the sum in
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Fig. 3.8 � The sum of the pixels within rectangle D can be computed with four array
references. The value of the integral image at location 1 is the sum of the pixels in rectangle
A. The value of the integral image at location 2 is the sum of the pixels in rectangles A and
B. The value of the integral image at location 3 is the sum of the pixels in rectangles A and
C. The value of the integral image at location 4 is the sum of the pixels in rectangles A,B,C
and D. Therefore 4+1-2-3=(A+B+C+D)+A-(A+B)-(A+C)=D.

a center rectangle. Finally a four-rectangle feature computes the di�erence between diagonal
pairs of rectangles. In the case of face detection, they used a base resolution of 24x24. With
this resolution, the size of the entire set of rectangle features is around 180,000. We say
that this set of rectangle features is overcomplete (unlike the Haar-basis) because there are
elements which can be achieved by summing other elements (the same meaning as in a basis
of numbers in a space, in algebra).

The integral image

As already mentioned above, the rectangle features can be computed very rapidly using
a new representation for the image which they call the integral image. The integral image at
location x, y contains the sum of the pixels above and to the left of x, y , inclusive :

ii(x, y) =
∑

x′≤x,y′≤y

i(x′, y′) (3.14)

where ii(x, y) is the integral image and i(x, y) is the original image. The integral image
can be calculated from an input image in one pass (trivial).

Using the integral image any rectangular sum can be computed in four array references
(see Figure 3.8). Therefore the di�erence between two rectangular sums can be computed
in eight references. However since the two-rectangle features de�ned above have adjacent
rectangular sums, they can be computed in six array references. In the same way we can
see that we need eight references in the case of the three-rectangle features, and nine for
four-rectangle features. As this seem very little, in further chapters in this thesis we will see
that we develop features which need around 4 image references (in average) and do not need
the preparation of the integral image.
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AdaBoost usage

Given a feature set and a training set of positive and negative images, Viola and Jones
chose to use AdaBoost, as already mentioned. Recall that there are over 180,000 rectangle
features in each image sub-window, more than the number of pixels. Even though each feature
can be computed very e�ciently, computing the complete set is too di�cult. Viola and Jones
followed the feeling that Papageorgiou already had, that a small number of features is enough.
But instead of selecting it manually (as done by Papageorgiou) they used AdaBoost.

While running AdaBoost, the weak learning algorithm is designed to select the single
rectangle feature which best separates the positive and negative examples (it runs on all
the 180,000 possibilities). For each feature, the weak learner determines also the optimal
threshold value, such that the minimum number of examples are misclassi�ed (according to
the weights given to it by AdaBoost). A weak classi�er hj(x) thus consists of a feature fj ,
a threshold θj and a parity pj indicating the direction of the inequality sign :

hj(x) = { 1 if pjfj(x) < pjθj

0 otherwise
(3.15)

In this case x is a sub-window of an image3. See Table 3.2 for a summary of the boosting
process.

Of course, no single feature can perform the classi�cation task with low error. It is inter-
esting however to see the errors of the selected simple features learned by AdaBoost : features
which are selected in early rounds of the boosting process have error rates between 0.1 and
0.3. Features selected in later rounds, as the task becomes more di�cult, have error rates
between 0.4 and 0.5.

The Cascade

This subsection gives more details about the other major contribution of Viola and Jones,
namely an algorithm for building a "cascade" of classi�ers which achieves about the same
detection performance as "�at" AdaBoost, and dramatically reduces computation time. As
mentioned above the general idea is that smaller (and more e�cient) strong classi�ers can
be built and reject many of the negative sub-windows, and still detect almost all positive
instances. This can be achieved by "playing" with the threshold of a boosted classi�er, so
that the false negative rate is close to zero. After simpler classi�ers are used to reject the
majority of subwindows, more and more complex classi�ers are used to achieve low false
positive rates.

The overall form of the detection process is that of a degenerate decision tree (see Figure
3.8). Each classi�er is activated for a given sub-window if the classi�er before it answered
positively. If one of the classi�ers answers negatively, the sub-window is dropped.

The "layers" in the cascade are constructed by training classi�ers using AdaBoost as
described in previous subsection, and then adjusting the threshold (the number which is
usually 0.5) to minimize false negatives rate. Note that the default AdaBoost threshold (0.5)

3as mentioned already Viola and Jones used 24x24 window for face detection. In later work they used
16x24 for pedestrian detection
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• Input : a sequence of N labeled examples X = 〈(x1, y1), . . . , (xN , yN)〉 where yi ∈ {0, 1}
integer T specifying number of iterations of AdaBoost.

• Initialize the weight vector : w1
i = 1

2m
, 1

2l
for yi = 0, 1 respectively, where m and l are the

number of negative and positive examples, respectively.

• Do for t = 1, 2, . . . , T

1. Normalize the weights such that
N∑

j=1

wt
j = 1.

2. Run the weak learner, providing

it with the error function Γ(h) =
N∑

i=1

wt
i | h(xi)− yi |

The weak learner will return a simple classi�er ht

with Γ(ht) = εt.

3. Set the new weights vector :

wi
t+1 ← {

wi
tβt if xi is classi�ed correctly by ht

wi
t otherwise

where βt = εt

1−εt

• Output the classi�er :

h(x) = { 1 if
T∑

t=1

αtht(x) ≥ 1/2
T∑

t=1

αt

0 otherwise

where αt = log 1
βt

Tab. 3.2 � The AdaBoost algorithm, in the same way used by Viola and Jones
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is designed to give a low error rate on the training data and not speci�cally low false negative.
So in general, layers of the cascade have a lower threshold, in order to yield higher detection
rates (i.e. lower false negative rate) and higher false positive rates.

In the training process, each classi�er is trained using the examples which passed all the
previous classi�ers. So in the training process, the classi�er has to solve a "harder" problem
than the previous classi�er. More formally, the training process consists of the steps shown
in table 3.3.

Note that during this process, some layers will not need any features in order to achieve
their "task". On the other hand, it can happen that a layer will add more and more features
and will never reach its goal. This means that the input values were too hard.

Using motion information

A later work of Viola and Jones describes a pedestrian detection system that integrates
intensity information with motion information. In the work described here, Viola and Jones
use information about motion as well as intensity information. The implementation detects
pedestrians at small scales (the base size is 20x15 pixels).

The system is calculating short term motion, based only on the di�erence between an
image and the previous image. Theoretically, they try to create one system which will perform
the detection and the tracking. We will review the system and later see its advantages and
disadvantages.

General framework

The dynamic pedestrian detector that Viola and Jones built is based on the simple rec-
tangle �lters presented in the previous subsection. Here it will be described how they extend
these �lters to act on motion pairs.

Viola and Jones describe a generalization of their original features by working with the
di�erences between consecutive pairs of images. Of course, some information about motion
can be extracted from these di�erences, and in the case of pedestrians (cyclic movement of legs
and hands) it seems quite promising. To improve results, information about the direction of
motion can be extracted by calculating the di�erence between the second image after shifting
and the �rst image. Formally, the motion �lters used by Viola and Jones work on 5 images :

∆ = abs(It − It+1) (3.16)

U = abs(It − It+1 ↑) (3.17)

L = abs(It − It+1 ←) (3.18)

R = abs(It − It+1 →) (3.19)

D = abs(It − It+1 ↓) (3.20)
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� Input :

1 a positive examples set Sp

2 a large set of negative examples Ŝn (in the order of millions of examples ;
in our work, we typically took all the sub-windows of a video sequence
not containing the object)

3 desired detection rate 0 < t < 1 (typical example : 0.85)

4 desired false positive rate 0 < f < 1 (typical example : 0.000001).

5 desired number of layers L

6 Validation set V combined of negative and positive examples. To achieve
good training, this set must be large. Typically we use several hundreds
of positive and several millions of negatives.

� Initialize an empty classi�er H0 (answering "yes" for every example it gets as
input)

� We denote by t̂l = tl/L the desired detection rate of the detector made of layers
1 . . . L.

� We denote by f̂l = f l/L the desired false positive rate of the detector made of
layers 1 . . . L.

� for l = 1 . . . L do :

1 Prepare a set Sn ⊂ Ŝn made of 10000 examples which are positively
classi�ed by Hl−1. These are, actually, the false detections of all the
previous layers. We want to concentrate on them.

2 Run normal AdaBoost training to train layer l, in the following way :

� Each time, before adding another feature to the layer l, test the whole
detector (made of layers 1 . . . l−1 and the part already existing of layer
l) on the validation set V .

� Tune the threshold of layer l until the detection rate on the validation
set becomes higher/equal than t̂l. This will a�ect the false positive
rate.

� After having found the threshold that provides a detection rate hi-
gher/equal than t̂l, check the false positive rate. If it is smaller than
f̂l, continue to add layers. If not, the layer is ready.

Tab. 3.3 � The cascade training process
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Fig. 3.9 � A close look on 20x15 pixel images, an example of the various shifted di�erence
images used in the algorithm of Viola and Jones. The �rst two images are two typical frames
with a low resolution pedestrian. The following images show the ∆, U , D, L and R images
described in the text. Notice that the right-shifted image di�erence (∆), which corresponds
to the direction of motion shown in the two frames, has the lowest energy.

where It and It+1 are images in time, and {↑,←,→, ↓} are image shift operators (for
example, It ↑ is It shifted up by one pixel). See Figure 3.9 for an example of these images.

The �lters themselves are as follows :

fi = ri(∆)− ri(S) (3.21)

fj = φj(S) (3.22)

fk = rk(S) (3.23)

fm = φm(It) (3.24)

where S is one of U,L,R,D and ri() is a single box rectangular sum in the detection
window. φi is one of the rectangle �lters shown in �gure 3.7.

fi compares sums of absolute di�erences between ∆ and one of U,L,R,D. fj compares
sums within the same motion image. fk measures the magnitude of motion in one of the
motion images. fm are the static �lters described in the previous sections, which are simply
rectangle �lters that work on the �rst input image, It.

Because the �lters shown in �gure 3.7 can have any size, aspect ratio or position as long
as they �t in the detection window, there are very many possible motion and appearance
�lters. The learning algorithm selects features from this large number of �lters and builds
the best classi�er. A classi�er, C, is a thresholded sum of features :

C(It, It+1) = { 1 if
N∑

i=1

Fi(It,∆, U, L,R,D > θ)

0 otherwise
(3.25)

where a feature F is a thresholded �lter that outputs one of two values :

C(It, It+1) = { α if fi(It,∆, U, L,R,D > ti)
β otherwise

(3.26)
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Fig. 3.10 � Sample frames from each of the 6 sequences we used for training.

where ti ∈ < is a feature threshold and fi is one of the motion or appearance �lters
de�ned above. The real values α and β are computed during AdaBoost learning, and also
the �lter itself, the �lter threshold ti, and the classi�er threshold θ.

Experimental data and the training process

For working with the system, the authors created a set of 8 video sequences of street scenes
with all pedestrians marked with a box in each frame. Each sequence contained around 2000
frames. 6 sequences were used for training (see Figure 3.10) and 2 for testing.

In the learning process, they learned both a dynamic pedestrian detector and a static
pedestrian detector. The dynamic detector was trained on consecutive frame pairs and the
static detector was trained on single frames. The static pedestrian, of course, did not use the
motion �lters but only the static set of �lters (denoted fm above).

Each stage of the cascade is a boosted classi�er trained using a set of 2250 positive
examples and 2250 negative examples. Each positive training example is a pair of 20 x
15 pedestrian images taken from two consecutive frames of a video sequence (or a single
image, for the static detector). Negative examples are similar image pairs of non-pedestrians
images. During training, the variance of all example images is normalized to reduce contrast
variations. Of course, the same variance normalization is performed when testing a new image.

In �gure 3.11, we see the �rst 5 features learned for the dynamic detector. We see that
the detector is using the motion information. In �gure 3.12, we see the �rst 5 features learned
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Fig. 3.11 � The �rst 5 �lters learned for the dynamic pedestrian detector. The 6 images used
in the motion and appearance representation are shown for each �lter.

Fig. 3.12 � The �rst 5 �lters learned for the static pedestrian detector.

for the static detector.

Results

The authors ran both the static and dynamic detectors over test sequences for which they
created ground truth. The resulting ROC curves are shown in �gures 3.13 and 3.14. The ROC
curve for the dynamic case is much better on sequence 2 than the static case. On sequence
1, the dynamic detector is only slightly better than the static one.

3.3 The control-points features

One notable problem in all the works presented in previous sections is the need to nor-
malize the images before passing them to the classi�er. Wavelet-based features are based on
thresholding sums of pixel values. This implies strong dependency on image intensity, and this
is why these features need histogram stretching or equalization prior to classifying. Without
this prior normalization, results dramatically deteriorate [Evgc 00]. Figure 3.15 demonstrates
how wavelet-based features focus primarily on intensity and not on shapes.

Normalization operations dramatically reduce the overall performance of the system. In
addition, one can never be sure that such an operation performs well, since a single pedestrian
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Fig. 3.13 � ROC curve on test sequence 1 for both the dynamic and static pedestrian detec-
tors.

Fig. 3.14 � ROC curve on test sequence 2 for both the dynamic and static pedestrian detec-
tors.
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(a) (b)

Fig. 3.15 � The intensity problem in wavelet-based features. In both images, we apply a
simple wavelet feature which calculates the di�erence between the sum of pixels found in the
rectangle marked by + and the sum of pixels found in the rectangle marked by -. One can
observe that the feature yields approximately the same value for both images, even though the
shapes presented in the images are not the same. This example explains why the performance
of this kind of features dramatically depends on prior normalization of the image.

can have di�erent intensities in his di�erent parts. The features we de�ne in this paper are
intensity independent, because they do not use numerical summing of pixel values.

Another issue that needs to be mentioned in this context is the use of dynamic informa-
tion. Papageorgiou et al show moderate improvement in detection rate when using temporal
information [Papa 99]. Viola and Jones show excellent results in their dynamic pedestrian
detector but rather poor results in the static one [Viol 03]. When considering a system with
an on-board camera, using dynamic information is problematic. Camera movements add a
large amount of noise, which is not always easy to eliminate. From the application side, it
should be reminded that pedestrian detection and impact prediction is the most important
when the car is moving.

The features we present in this subsection work faster than the features of Viola and
Jones, with much less preparations that have to be done on the image. They work on static,
gray images.

3.3.1 Independency of illumination

Given an image of width W and height H, we de�ne a control point to be an image
location in the form 〈i, j〉, where 0 ≤ i < H and 0 ≤ j < W . Given an image location i, we
denote by val(i) the pixel value in that location.

Our feature consists of two sets of control points, x1 . . . xn and y1 . . . ym. The sizes of the
sets are bounded : n,m ≤ Φ, where the optimal value of Φ is discussed later. The feature
contains also a threshold value T and a working resolution R of the image, which can be
either 48x24, 24x12 or 6x12.
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(a) (b)

Fig. 3.16 � The intensity-independent features. The feature answers "yes" if and only if the
di�erence between every black control point and every white control point is larger than a
certain threshold (the feature is symmetric ; black and white can be switched). This veri�es
that only images which have a certain shape (in this case, a vertical border) will be positively
classi�ed. When such a shape is absent (as in �gure (a)), the feature will answer negatively,
regardless of the intensity of the pixels.

To classify a given image, we �rst scale the image to the resolution R. Then, the feature
answers "yes" if and only if for every control point x ∈ x1 . . . xn and every control point
y ∈ y1 . . . ym, the value ‖val(x) − val(y)‖ is larger than T . This is demonstrated in �gure
3.16.

One can immediately notice that for computing the result, a good implementation does
not have always to check all them+n control points. The calculation can be stopped once the
condition of the feature is broken, and this usually happens much before all the control points
are checked. In later sections we show that the average number of control points checked is
around 4. Thus, this feature demands even less operations than the features of Viola and
Jones without preparing an integral image.

One can also argue that this type of features is too sensitive to noise, because it relies
on the values of single pixels and not of regions (with one exception, that using the quarter
and sixteenth resolution is somewhat similar to checking regions). While this is true, the fact
remains (as it is shown later in this document) that these features achieve similar detection
rates in less operations, comparing to the wavelet-based features. In section 3.3.4 we further
discuss the issue of sensitivity to noise.

To achieve high detection speed, we work only on gray images. While this reduces the
detection rate, it is essential for obtaining real-time operation with this feature.
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Fig. 3.17 � ROC curve of the illumination-independent feature on the MIT set.

Fig. 3.18 � Successful detections in outdoor images. One can see that the feature operates
equally at night and day, without any normalization of the image.

3.3.2 Initial experiments

With the MIT pedestrian images

We have tested our new features using AdaBoost and a the 924 pedestrian images used in
[Oren 97]. We used 824 images for training and 100 for testing. As negative examples we used
7310 (for the learning) and about 1 million (for the testing) sub-windows from outdoor images
not containing pedestrians. Using Φ = 6 we ran 1320 AdaBoost steps after verifying that no
over�tting occurs. The resulting strong classi�er was tested on the test data, obtaining the
ROC curve shown in �gure 3.17. One can see that results are similar to the ones obtained
by Papageorgiou et al [Oren 97], using gray images and 1326 wavelet features trained with
SVM.
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Fig. 3.19 � ROC curve of the illumination-independent features on the SEVILLE data set

With the SEVILLE pedestrian images

We also tested the feature on the data set created by the SEVILLE program, which
is described in section 3.7. The SEVILLE data set contains 1183 positive examples (24x48
pedestrian images) and 13175 negative examples (24x48 images not containing pedestrians).
1/3 of these images were left aside as a validation set, and the remaining 2/3 were used for
the learning. Then, results are tested on the validation set. These results are reliable, since
the examples in the validation set were not used in the training process.

Figure 3.19 shows the ROC curve on the validation set with 2000 weak rules. Note that
the SEVILLE set is much harder than the MIT data set. Here, resolution is smaller, and the
pedestrians are appearing in di�erent angles, not just forward and backward facing pedes-
trians.

Figure 3.20 shows the learning graph on the validation set and the training set. The error
on the positive and negative examples is evaluated as a function of the number of weak
learners. Obviously the learning set is well adapted after a small number of weak rules. From
observation of the validation set graph, it is clearly seen that after 2000 weak rules, there is
no more improvement.
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(a)

(b)

Fig. 3.20 � Learning graph of the illumination-independent features on the SEVILLE data
set - (a) learning set, (b) validation set.
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3.3.3 Genetic algorithm as a weak learner

The AdaBoost algorithm needs a weak learner - an algorithm which will provide a "good"
feature each time, when the goodness is measured according to the current weights of the
examples. Obviously, choosing the best simple classi�er at each step of AdaBoost cannot be
done by testing all the possibilities, since there are about 1036 of them. Therefore, a genetic-
like algorithm is used, which starts with a set of random simple classi�ers and iteratively
improves them while using the following mutations :

� RemoveControlPoint chooses a control point and removes it from the feature.
� AddControlPoint adds a control point with random location to the feature.
� MoveControlPoint chooses a control point and changes its location.

The genetic-like algorithm, given in table 3.4, maintains a set of simple classi�ers which
are initialized as random ones. Each step of the algorithm a new "generation" of simple
classi�ers is produced by applying the 3 types of mutations on each of the simple classi�ers.
All 3 mutations are tested and the one with the lowest error might replace the "parent" if it
has a lower error. In addition, some random simple classi�ers are added at each step.

The genetic algorithm continues to evolve the generations until there is no improvement
during 40 consecutive generations. An improvement for that matter is of course a reduction
in the error of the best feature in the generation.

Figure 3.5 shows a snapshot from the operation of the AdaBoost and the genetic algo-
rithm. Here are some explanations :

At the beginning of the process it is indicated that we are using features with a maximum
of 6 control points and pedestrian dimensions of 24x48. Next the examples set is divided into
validation and training set.

Next, training examples are used for the learning. AdaBoost is started, and weights are
uniformly assigned to the examples. Then, the genetic algorithm is called, generating a �rst
generation whose best feature has an error of about 36% (with 50 positive examples out of 59
well classi�ed and 204 out of 466 negative examples well classi�ed). Next generation contains
already a better feature (23%, 43/59 pos, 378/466 neg) and more generations are produced.
At some stage, there is no improvement after 41 consecutive generations, and the process
stops. AdaBoost then continues with more steps.

In the exert, two more AdaBoost steps are executed, obtaining a strong classi�er made
of 3 weak rules.

The validation phase of the process is checking the �nal strong classi�er with respect to
the training set and the validation set. See section 3.7 for details and graphs.

3.3.4 Feature discussion

Figure 3.21 shows several interesting features that were learned in the training process.
Figure 3.18 shows successful detections on new images obtained by scanning all possible sub-
windows. It can be seen that the same detection quality is obtained in all lighting conditions.
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• Input : an error measurement Γ that matches an error to every simple classi�er, a number
G of generations to run, and a number N of "survivors" at each generation.

• Let Υ be a generator of random simple classi�ers. Initialize the �rst generation's simple
classi�ers vector C1 as :
c1i ← Υ i = 1 . . . N

• Do for g = 1, 2, . . . , G :

1. Build the next generation vector Cg+1 as :
cg+1
i ← cgi i = 1 . . . N

2. Do for m = 1, 2, 3 :
if =m(cgi ) is valid and Γ(=m(cgi )) < Γ(cg+1

i ) then
cg+1
i ← =m(cgi ) i = 1 . . . N

3. Enlarge the vector Cg+1 with N additional simple
classi�ers, chosen randomly :
cg+1
i ← Υ i = N + 1, . . . , 2N

4. Sort the vector Cg+1 such that
Γ(cg+1

1 ) ≤ Γ(cg+1
2 ) ≤ . . . ≤ Γ(cg+1

2N )

• Output the simple classi�er cG+1
1 .

A simple classi�er is valid if it consists of a valid image region (i.e. with a positive surface
and not exceeding image borders) and of a threshold in the range [0, 255].

Tab. 3.4 � The genetic-like algorithm.
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Starting, MAX_CONTROL_POINTS=6, dimensions (24,48)

Dividing the examples: 2/3 training, 1/3 validation

Division file exists in ..\..\PedesData\simpleSet\/positive, not dividing.

Division file exists in ..\..\PedesData\simpleSet\/negative, not dividing.

Division file exists in ..\..\PedesData\simpleSet\/nolabel, not dividing.

....Loaded direcory 27 positive

.................................Loaded direcory 257 negative

Loaded direcory 0 unlabled

Read validation images (27 positive, 257 negative)

.....Loaded direcory 59 positive

........................................Loaded direcory 466 negative

Loaded direcory 0 unlabled

Read training images (59 positive, 466 negative)

**** Start training

Initializing weights...

Starting AdaBoost run.

AdaBoost step 0

Minimum error = 0.357387, 0th time (50/59 pos, 204/466 neg)

Minimum error = 0.230014, 0th time (43/59 pos, 378/466 neg)

Minimum error = 0.206209, 0th time (51/59 pos, 337/466 neg)

Minimum error = 0.179275, 0th time (50/59 pos, 370/466 neg)

Minimum error = 0.179275, 1th time (50/59 pos, 370/466 neg)

Minimum error = 0.160617, 0th time (56/59 pos, 340/466 neg)

Minimum error = 0.158453, 0th time (46/59 pos, 421/466 neg)

Minimum error = 0.080036, 0th time (55/59 pos, 423/466 neg)

Minimum error = 0.080036, 1th time (55/59 pos, 423/466 neg)

Minimum error = 0.080036, 2th time (55/59 pos, 423/466 neg)

Minimum error = 0.074671, 0th time (55/59 pos, 428/466 neg)

Minimum error = 0.074671, 1th time (55/59 pos, 428/466 neg)

Minimum error = 0.074671, 2th time (55/59 pos, 428/466 neg)

Minimum error = 0.070488, 0th time (56/59 pos, 424/466 neg)

...

Minimum error = 0.025533, 40th time (57/59 pos, 458/466 neg)

Minimum error = 0.025533, 41th time (57/59 pos, 458/466 neg)

AdaBoost step 1

Minimum error = 0.359515, 0th time (31/59 pos, 402/466 neg)

...

Minimum error = 0.008753, 41th time (58/59 pos, 458/466 neg)

AdaBoost step 2

Minimum error = 0.245077, 0th time (56/59 pos, 242/466 neg)

...

Minimum error = 0.013993, 41th time (53/59 pos, 463/466 neg)

** Validation phase **

Begin of AdaBoost ROC analyze for training set...

Filling classification matrix....

Performing steps analysis......

Performig ROC analysis............................................

End of ROC analysis.

Begin of AdaBoost ROC analyze for validation set...

Filling classification matrix....

Performing steps analysis......

Performig ROC analysis............................................

End of ROC analysis.

Tab. 3.5 � The operation of the genetic-like algorithm as a weak learner.
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Fig. 3.21 � Some examples of features learned in di�erent stages of the training process. The
two sets of control points are shown in green and red. The input image is tested in one of
three resolutions.

Fig. 3.22 � Some examples of false positives. One can see these are not conventional.

Sensitivity to noise

Since this feature is checking the value in single pixels and not in regions, it is expected to
be more sensitive to noise. Rather surprisingly, this sensitivity is well hidden by the boosting
process and the strong classi�er resulting from AdaBoost is yielding good results, as seen
before. However, it is interesting to look at some false positives obtained by the classi�ers, as
shown in �gure 3.22. One can see that these are not "conventional" false positives. They are far
from visually resembling a pedestrian. This implies, that a combination with a conventional,
simple classi�er (like a simple vertical edges detector, or a single wavelet-like feature) might
improve results.

When working with video sequences, another interesting phenomenon is observed : as
opposed to conventional false positives, these ones are more chaotic ; they are less likely
appear in the same area in consecutive images. Thus, they might be easier to cope with than
"logic" false positives. One can think of a simple temporal �lter that validates a pedestrian
target only if it appears in the same area of the image in 2-3 consecutive images, thus
easily removing false positives coming from noise. Such a �lter would have much harder work
eliminating false positives originating from real pedestrian-like shapes, because they might
repeat themselves in consecutive images.
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Fig. 3.23 � The ROC curve on a test set with various values of Φ.

Selection of the maximal number of control points

In section 3.3.1 we mentioned that the sizes of the two sets of control points are bounded
by a number Φ. In this section we discuss how to choose the right Φ. Obviously we can
expect that a higher Φ would yield better detection rate, but also slower operation. Figure
3.23 shows the ROC curves obtained on the test data using classi�ers that were trained with
di�erent values of Φ. On the other hand, table 3.6 shows the average number of image access
operations needed for the classi�ers which were trained with these di�erent values. One can
see that substantial improvement is achieved until Φ = 6 with moderate performance cost.
According to this information, a value of Φ = 6 seems like a good choice.

It is interesting to see that on Φ = 7 the detection rates fall down a bit. This phenomenon
has a possible explanation related to the training process : since we are not checking for
all possibilities of the learning process (in each AdaBoost step) but use various searching
techniques, a larger Φ implies a larger search space. This lowers the chances to �nd a good
feature.

To understand this point, consider again the genetic algorithm described in table 3.4.
We can see, that the search advances using mutations (see step 2 of the algorithm) ; in such
a way, if a good solution is found, the algorithm tries to �nd an even better one in its
neighborhood. At the same time, the algorithm keeps searching randomly for new features,
using randomization (see step 3 of the algorithm). It is clear, that the larger the space is, the
lesser the chance to "fall" randomly on a feature that is better than the best one found so
far.

3.3.5 Using the attentional cascade

The results given in the previous sub-sections were used to construct a real-time pedestrian
detection application. The application uses the illumination independent features and Viola
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Tab. 3.6 � The average number of operations needed to calculate the feature as a function
of Φ, the upper bound on the number of control points.

value of Φ Average number of operations

2 3.306

3 3.624

4 3.781

5 4.014

6 4.061

7 4.112

and Jones' attentional cascade.
Training a cascade is a long process, as described in [Viol 01]. After each AdaBoost round,

the selected feature is tuned to yield the desired detection rate. In our case, the tuning is
done as before by changing the threshold, but it can also be done by removing control points
from the feature (if a higher positive detection rate is desired).

The system is down-scaling the image to create a "pyramid" of resolutions, in order to
detect pedestrians in di�erent scales. In [Viol 01] Viola and Jones show that this operation
can be spared by scaling the feature and not the image. While this can also be done here,
this is left for future work.

The system was tested on several test sequences. Its detection rates are similar to the
ones obtained without using a cascade. It runs on a regular PC in a speed of 10 images per
second. However, from the 100 ms spent on each image, 70 ms are for creating the "pyramid"
of images and only 30 ms are for the actual detection. Therefore, if we would have made the
learning separately for each resolution, we could avoid the need to create a pyramid and run
the system at more than 30 fps. This is better than previously published results.

The cascade contains 16 layers, containing 6, 19, 62, 167, 140, 92, 63, 130, 217, 272, 408,
74, 374, 256, 378 and 157 features respectively.

3.4 The 5x5 moving kernel features

In this section we present another kind of visual feature, to be used with the AdaBoost
algorithm. The feature has the following characteristics :

1 It is using di�erences between sum of pixels in two areas, like the wavelet features.
However, instead of just calculating the di�erence between two rectangular regions, it
is applying a 5x5 shape to di�erent locations within a sub-region.

2 It is adopted to the needs of a specialized hardware "smart imaging core" developed in
the CAMELLIA project. The European IST-2001-34410 CAMELLIA project, which is
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fully described in [Jach 03], focuses on a platform-based development of a smart ima-
ging core to be embedded in smart cameras. This imaging core provides low-level image
processing operations like morphological and arithmetic operations, and the high-level
applications developed in this context are designed to take advantage of these opera-
tions. The features described in this section are designed to be used in the pedestrian
detection application of CAMELLIA.

3.4.1 De�nition

A simple classi�er in our context is a 4-tuple 〈R,E, T, S〉, where R = 〈Rx
←, R

x
→, R

y
↑, R

y
↓〉

is an image rectangular region, E is a 5x5 linear-�ltering element (=matrix) consisting of
integers from the set {−2,−1, 0, 1, 2}, T is a threshold value between 0 and 255, and S ∈
{0, 1, 2} is the resolution value.

Given a rectangular image region Rpedes taken from an input gray image, our goal is to
determine if it contains a pedestrian or not. The rectangle must contain the whole pedestrian
and be aligned on it with margins of up to 10% from each side. A given simple classi�er
f = 〈Rf , Ef , T f , Sf〉 tests the image region as follows :

� Warp Rpedes to target size. Target size is the original size (48x24 in the case of our work
with pedestrians) when S = 0, quarter size (24x12 in the case of pedestrians) when
S = 1 and sixteenth of the size (12x6 in the case of pedestrians) when S = 2.

� Normalize Rpedes to an average pixel value of 128.
� Perform linear �ltering, using the element Ef , on the sub-region Rf of Rpedes.
� Find the maximum value over the sub-region Rf . If this value is larger than T f , the
classi�er's answer is positive. Otherwise, the answer is negative.

A simple classi�er of this type attempts to detect a certain shape, designated by its
element E, on some region of the rectangle, de�ned by its region R. Note that a classi�er
with S = 0 detects patterns which take approximately 0.7% of the region surface (like the
top of the pedestrian's head), the ones with S = 1 detect larger parts (approx. 5% of the
region), like the entire structure of the shoulders, and the ones with S = 2 detect global
structures, as the entire body.

The number of possible simple classi�ers of this type is huge (approx. 1027). Intuitively,
there is not one single simple classi�er of this type that could tell a pedestrian to some high
accuracy, but a relatively small set of such classi�ers, decided by voting, could de�nitely
accomplish this. The selection of such voting-set instead of using only one simple classi�er,
is done, as in previous chapters, by the AdaBoost algorithm as in the previous section.

Again, like in the previous chapter, choosing the best simple classi�er at each step of
AdaBoost cannot be done by testing all the possibilities. Therefore, a genetic-like algorithm
is used, which starts with a set of random simple classi�ers and iteratively improves them
while using the following mutations :

� =1(〈R,E, T, S〉) = 〈R′, E, T, S〉
where R′ = 〈Rx

← + α,Rx
→ + β,Ry

↑ + γ,Ry
↓ + δ〉

and α, β, γ δ ∈ [−5, 5] are chosen randomly
� =2(〈R,E, T, S〉) = 〈R,E ′, T, S〉
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where E ′ is produced from E by changing one of its 25 values to a random number in
the set {−2,−1, 0, 1, 2}.

� =3(〈R,E, T, S〉) = 〈R,E, T ′, S〉
where T ′ = T + α
and α ∈ [−5, 5] is chosen randomly

The genetic-like algorithm, given in table 3.7, maintains a set of simple classi�ers which
are initialized as random ones. Each step of the algorithm a new "generation" of simple
classi�ers is produced by applying the 3 types of mutations on each of the simple classi�ers.
All 3 mutations are tested and the one with the lowest error might replace the "parent" if it
has a lower error. In addition, some random simple classi�ers are added at each step.

Although AdaBoost is described in previous sections, it is brought here in table 3.8 to be
understood in this context.

3.4.2 Initial experiments

To initially test the features, we ran 10 features training process on a set of 1220 positive
and 2072 negative examples of cars. The resulting features are shown in �gure 3.24.

Among these features, one can easily observe features that concentrate on the roof, rear
lights, wheels, and vertical edges of the car.

3.5 Analysis of features on synthetic data

We have tested the two types of features, control-points features and 5x5-kernel features,
to see how well they cope with di�cult image conditions. The tests consisted of two types of
such conditions : image noise and hiding crosses.

3.5.1 Noise sensitivity

The input data to the process was a 288x384 movie, in which, at �rst step, the background
is totally black and a single white rectangle of size 20x20 is slowly moving in a random manner
across the image (see image 3.25). The goal here was to see the functioning of the features is
a non-noisy image.

We created arti�cially 5000 positive example images, each one of size 40x40 pixels, in
which a white 20x20 pixels rectangle is posed on a black background. The rectangle was
centered on the example images, with a movement of 5 pixels to each direction. We equally
prepared 5000 negative examples of size 40x40 totally black. We ran the learning process
using the control-points features, and a single-feature AdaBoost was produced. This feature
was su�cient to classify 100% of the cases in new video sequences (see �gure 3.25). Same
results were obtained for the 5x5 features.

Next we added noise, by spreading on each 384x288 image 5000 white dots in random
locations. In both types of features, applying the single-feature detector which was prepared
in the previous step yielded many false detections. See �gure 3.26.
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• Input : an error measurement Γ that matches an error to every simple
classi�er, a number G of generations to run, and a number N of "survivors"
at each generation.

• Let Υ be a generator of random simple classi�ers. Initialize the �rst
generation's simple classi�ers vector C1 as :
c1i ← Υ i = 1 . . . N

• Do for g = 1, 2, . . . , G :

1. Build the next generation vector Cg+1 as :
cg+1
i ← cgi i = 1 . . . N

2. Do for m = 1, 2, 3 :
if =m(cgi ) is valid and Γ(=m(cgi )) < Γ(cg+1

i ) then
cg+1
i ← =m(cgi ) i = 1 . . . N

3. Enlarge the vector Cg+1 with N additional simple
classi�ers, chosen randomly :
cg+1
i ← Υ i = N + 1, . . . , 2N

4. Sort the vector Cg+1 such that
Γ(cg+1

1 ) ≤ Γ(cg+1
2 ) ≤ . . . ≤ Γ(cg+1

2N )

• Output the simple classi�er cG+1
1 .

A simple classi�er is valid if it consists of a valid image region (i.e. with
a positive surface and not exceeding image borders) and of a threshold in
the range [0, 255].

Tab. 3.7 � The genetic-like algorithm
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• Input : a sequence of N labeled examples X = 〈(x1, y1), . . . , (xN , yN)〉
where yi ∈ {0, 1}
integers T,G specifying number of iterations of AdaBoost and genetic al-
gorithms respectively.

• Initialize the weight vector : w1
i = 1

2m
, 1

2l
for yi = 0, 1 respectively, where

m and l are the number of negative and positive examples, respectively.

• Do for t = 1, 2, . . . , T

1. Normalize the weights such that
∑N

j=1w
t
j = 1.

2. Run the genetic-like algorithm G generations, providing
it with the error function Γ(h) =

∑N
i=1w

t
i | h(xi)− yi |

The genetic algorithm will return a simple classi�er ht

with Γ(ht) = εt.

3. Set the new weights vector :

wi
t+1 ← {

wi
tβt if xi is classi�ed correctly by ht

wi
t otherwise

where βt = εt

1−εt

• Output the classi�er :

h(x) = { 1 if
∑T

t=1 αtht(x) ≥ 1/2
∑T

t=1 αt

0 otherwise

where αt = log 1
βt

Tab. 3.8 � The AdaBoost algorithm, in the same way used by Viola and Jones, with the
genetic-like algorithm as a weak learner
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Fig. 3.24 � 10 examples of the 5x5 feature, learned for car detection. Each feature is brought
in a pair of images (in two columns). On the left of each pair, we have drawn the intensity
that this feature responds on that particular image. On the right, we see the 5x5 array of the
feature, drawn on the spot where it gives the maximum response for that image.
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Fig. 3.25 � Left : a non-noisy image with the white rectangle used for the tests. Right : the
detection with a single-feature.

Fig. 3.26 � False detections using a single-feature on the noisy image.

Again, we prepared 5000 positive examples with a white rectangle positioned in the same
way as before, but now we added noise made of white points in the same intensiveness as
in the noisy �lm. We also prepared 5000 negative examples with only that noise, without
a rectangle. In both types of features we had the same e�ect : in the learning process, the
system could not produce more than one feature (due to complete adaptation to the learning
set), but after several "Seville sessions" in which we enriched the negative examples set with
harder negative examples, we arrived to a single feature that detected well the white rectangle
in all new sequences with 5000 points, as well as with 15000 points per image (see �gure 3.27).
This feature is shown in �gure 3.29, both for 5x5 and control points.

We repeated the learning process with a noise level of 25000 dots per 384x288 image. At
this stage, a single control-points feature was su�cient to detect the rectangle, but 5 features
were needed to detect perfectly the rectangle with the 5x5 features type. See �gure 3.28.

We made the same test with 150000 dots per image. This time we needed 15 control-
points features to obtain a perfect detector, as seen in �gure 3.30. For the 5x5 type, the same
5-features detector as before was still working. For the control-points, all the 15 features were
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Fig. 3.27 � An image with 15000 random points : the rectangle is perfectly detected by a
single feature control-points detector (left) and a single-feature 5x5 feature (right).

Fig. 3.28 � An image with 25000 random points : we needed a single control-points feature
and 5 features of type 5x5 to perfectly detect the rectangle.

of the same type of the feature shown in �gure 3.29 : some points inside the rectangle area
and some points outside.

In that level of noise, we note that the capability to detect the rectangle is almost as
strong as the human capability.

At a noise level of 275000 dots per image, we could not avoid some false detections when
using the control-points detector produced in the previous step (with 15 features). The extent
was one false detection per two 384x288 images, each image containing 100,000 sub-window
examined. As seen in �gure 3.31 we see that the false detections are "almost rectangles" - they
consist of full white rectangle almost �lled. Because these kinds of features cover individual
points, they think that these areas are actually rectangles. With the 5x5 type, we managed
to produce a perfect detector with 30 features.

A level of 400000 dots per image was already impossible to work with, in both types of
features. Also a human could not see if a rectangle is found. See �gure 3.32.

To summarize, we concentrated all the numbers of needed features in table 3.9.
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Fig. 3.29 � The single features. The control-points feature compares symmetrically between
the inside and the outside of the rectangle (see the section de�ning this kind of features for
a precise de�nition). Inside, we have 5 points (the dark squares). Outside, 3 points. The 5x5
feature compares the intensity inside the rectangle and at the border.

Fig. 3.30 � Tests with heavy noise of 150000 dots per image.

3.5.2 Sensitivity to hiding

Next step we tested how the features cope with hiding of the detected object. We used the
same white rectangle, and added 100 cross-like hiding objects in the image. The same process
was repeated with 300 such objects. In both cases, we managed to produce a 30-features
control-points detector that detect perfectly the white rectangle without false detections (see
image 3.33). A 30-feature 5x5 detector was also created, and also detected perfectly the two
cases.

Later we increased the number of hiding objects to 1500. At this point, all the rectangles
were detected by the control points, but also were detected some false positives where black
areas were formed in the absence of hiding objects (see image 3.34). This is explained by the
fact that the control points features are symmetric. The 5x5 detector continued to perform
perfectly on this problem.

When using 3000 hiding objects, no detection was possible (see image 3.35). However,
even a human could not reliably spot the rectangle.
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Fig. 3.31 � False detections in a noise level of 275000 dots per image, with a 15-features
detector.

Fig. 3.32 � False detections in a noise level of 400000 dots per image, with both feature
types. Even a human eye cannot reliably �nd the rectangle here.

The sensitivity of both features to hiding objects is summarized in table 3.10.

3.5.3 Conclusions

The 5x5 features are obviously more stable for noise, because they test regions and use
thresholds. In the noise, the control-points feature needed more and more points to "cover"
the problem each time, whereas the number of features needed for the 5x5 features was rather
stable.

With hidden objects, the strength of the 5x5 is also shown, but less than in noise. The
reason is, perhaps, that the hiding objects are not really "noise" ; there is no need for thre-
sholds, but more to detect shapes. In detecting shapes, the control-points features are getting
close to the capability of the 5x5 features.
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Tab. 3.9 � Number of features needed for perfect detection of the white rectangle as a function
of the noise intensity.

Number of random
points per 288x384
image

Number of control-
points features needed

Number of 5x5 fea-
tures needed

0 1 1
5000 1 1
15000 1 1
25000 1 5
75000 7 5
150000 15 5
275000 - 30
400000 - -

Tab. 3.10 � Number of features needed for perfect detection of the white rectangle as a
function of the hiding objects intensity.

Number of hi-
ding crosses per
288x384 image

Number of
control-points
features needed

Number of 5x5
features needed

remarks

0 1 1
100 30 30
300 30 30
1500 30 30 Control points

failed symme-
trically

3000 - -



3.5. ANALYSIS OF FEATURES ON SYNTHETIC DATA 79

Fig. 3.33 � White rectangle among 100 and 300 hiding objects, detected by a 30-feature
detector. Top : control points feature. Bottom : 5x5 features.

Control-points features : statistical explanation

A good understanding of how control-points features work with noise can be obtain by
observing the following :

� a 40x40 rectangle contains 1600 pixels. From these, 20x20 (400 pixels) are �lled with
the white rectangle. The remaining 1200 contain the noise.

� Assuming the noise intensity is such, that 0 ≤ p ≤ 1 of the 1200 pixels described above
are white.

� Assume all 20x20 white rectangles are in the middle of the 40x40 detection window,
and that the average feature is testing 3 pixels inside the rectangle region ("the outside
control points") and 3 pixels outside ("the inside control points"). Such a feature is
shown in �gure 3.29.

� The probability of a single outside control point to fall on a noisy (white) pixel is p.
The probability of all three outside points to avoid a noisy pixel is (1− p)3.

� For a feature to succeed on a positive example (i.e. classify positively) the above is
enough. So the probability of a single feature to say "yes" on a positive example is
Pp = (1− p)3. The "no" probability is Np = 1− Pp.

� To fail on a negative example (i.e. classify positively) a feature has to fall on white
pixels on all 3 inside control points, and on black pixels outside. The probability for
that is Pn = p3 ∗ (1− p)3. So the success probability is Nn = 1− p3 ∗ (1− p)3.

� Assume we set the boosting threshold on 0 ≤ t ≤ 1. Assume we use N features. For a
positive example, we need more than N ∗t features to say "no" in order to fail. This has
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Fig. 3.34 � White rectangle among 1500 hiding objects, detected by a 30-feature detector.
Left : control-points feature with some false detections. Right : 5x5 features.

Fig. 3.35 � White rectangle among 3000 hiding objects : no detection was possible. Left :
control-points. Right : 5x5.

a probability of NN∗t
p . For a negative example, we need more than N ∗ (1− t) features

to say "yes" in order to fail. This has a probability of PN∗(1−t)
n .

� If we use N = 10 and t = 0.5, then values of 5000,15000,25000,75000, 150000, 275000
and 400000 white points per 288x384 image correspond approx. to p=0.05, 0.1, 0.2,
0.35, 0.6, 0.75, 0.9 respectively. The corresponding probabilities of error on positive
example are 0.000059, 0.001, 0.027, 0.2, 0.71, 0.92 and 0.99. On negative examples
these are 1.41 ∗ 10−20, 2.05 ∗ 10−16, 1.15 ∗ 10−12, 2.2 ∗ 10−10, 5 ∗ 10−10, 1.2 ∗ 10−11 and
2 ∗ 10−16.

Observing these numbers, we see that until 75000 we have a good detection rate with false
detection rate which is very close to zero. On 150000, however, we start to have low detection
(0.71 failure means 29% detection). To handle this, we can add features (say N = 25) and
elevate the threshold (say t = 0.9). Then we have 95% detection rate with 5e-10 false detection
rate, which is good.

Until now, the numbers conform with the results of table 3.9. However, when we move to
275000 points, we expect to �nd out that no detector is possible. According to the theoretical
calculations, this is not correct. If we choose N = 200, t = 0.97 we get 95% detection rate
with 8 ∗ 10−14 false detection. In fact, it turns out that for every amount of noise (which is
not 100%) we can theoretically reach high detection levels. Imagine a situation where 99%
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of the points in an image are noisy (i.e. white). Then, p = 0.99. If we choose N = 2500000
and t = 0.999999, we get 91.5% detection rate and 9 ∗ 10−16 false positives.

This is, of course, not true in the practical case, where image is made of individual
pixels ; because in many 40x40 rectangles there will not be 99% noise but 100% noise (i.e. the
rectangle will be all white), in which case no success is possible. If the image was continuous,
the conclusion above would have been true.

3.6 Analysis of features on real data

We have tested the di�erent kinds of features on real video sequences taken from an on-
board frontal camera. The sequences were taken in the Parisian area in France at di�erent
times of day and lighting conditions.

We marked by hand 323 images from these video sequences. In each image, all the loca-
tions of cars were exactly marked. Then, we applied the various detectors on these images,
compared the detections to the ground truth and created ROC curves, using the methods
described in section 3.1.

3.6.1 Without normalization

To understand the real quality of the various features, one has to consider the time
domain. Therefore, we have generated a 3D curve showing the various 2D ROC curves that
can be obtained in relation to the detection time. We compared three kinds of features :

� The control-points features of the kind described in section 3.3
� The 5x5 features described in section 3.4
� The rectangular features used by Viola and Jones [Viol 01].

Fig. 3.36 � The e�ect of illumination on Viola and Jones features (without prior normalization
of the image). On the left, we see how the features function quite well when good illumination
is on the scene (for the bright car). On the right, we see that once the scene is dark, the
feature detects false positives where light is found.

The 3D ROC graphs are shown in �gure 3.37. In these tests, we did not normalize the
input images before applying the features. One can see that this fact deteriorates the results
of the Viola & Jones and the 5x5 features, because they rely on thresholds. In fact, in
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these 3D ROC curves, the control-points features are far better even without considering the
performance issue. To better understand this, we bring in �gure 3.36 a demonstration of how
VJ features depend on the illumination.

Fig. 3.37 � The 3D ROC graph for various kinds of features. The X and Y axes are of the
same kind of the conventional (2D) ROC curve explained in the text previously. The Z axes
is the time in microseconds needed to apply the detector on one sub-window. Obviously, the
control-points features are better in this case.

3.6.2 With normalization

To better evaluate the 5x5 and Viola/Jones features, we normalized each examined sub-
windows prior to applying these features. The results change, such that the VJ features
are better, when given enough time to operate (about 15 microsecond per sub-window).
The control-points features rest better, when time is limited (about 6 microsecond per sub-
window).
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3.7 SEVILLE : SEmi-automatic VIsuaL LEarning

The use of machine learning methods for visual object detection has become popular
in recent years [Viol 02, Papa 98a]. It is now generally accepted that detection algorithms
developed using machine learning are more accurate, more robust and faster than hand-
crafted ones.

However, for these methods to work well, one needs large amounts of labeled training
data. It is becoming increasingly evident that the manual work involved in hand labeling
images has become a major factor in the time it takes to develop an accurate object detector.
Levin et al. [Levi 03] used co-training in the context of visual car detection to improve the
accuracy of a classi�er using unlabeled examples. In this document we use active learning in
the context of visual pedestrian detection to concentrate the human feedback on the most
informative and hard to classify examples.

An important observation in this context is that while it is relatively easy for a human
to identify pedestrians in images, it is very hard to identify those elements of the image that
are not pedestrians but are �hard� to identify as such. Clearly, this depends heavily on the
details of the detection method and changes learning progresses. It thus makes common sense
to select for labeling those examples that the learning system, in its current state, �nds hard
to classify or �borderline�.

While this makes sense on an intuitive level, it is hard to justify it when one is working
with a generative model for images as it creates a heavy bias in the data sampling process.
It is easy and natural to justify selective sampling when the goal is to learn a classi�cation
function, rather than a distribution.

As a realization of our method, we present the details of a system named SEVILLE (SEmi
automatic VIsuaL LEarning) [seville] which is running AdaBoost [Freu 95], in the same way
used by Viola and Jones [Viol 02] but with a di�erent set of features.

3.7.1 The setup

We used quarter PAL (384x288 pixels) color video sequences that were taken from a
forward-looking camera mounted on a car. The video was recorded as the car was driven
on variety of rural and urban roads in and around Paris. The overall length of the recorded
video was about 6 hours, from which we have cut short sequences of duration ranging from
several seconds to several minutes each. It will be noted that these sequences were cut from
the parts containing pedestrians, which is about 30% of the entire data.

The color images in our data were transformed to grey-level images in order to reduce
computation. We use images 48 pixels high and 24 pixels wide. We de�ne an image to be
a true positive detection of a pedestrian if it contains the complete body (possibly partially
occluded) with margins of approximately 20% of the body size around it.

The video data contains approximately 250 di�erent pedestrians per hour. When using
these pedestrians for training, we usually took one image out of 3-4, in order to avoid examples
that are too similar to each other.

In the images that contain pedestrians, usually 1-4 appear at the same time. Approxi-
mately third of the pedestrians are walking on sidewalks, parallel to our car, where the rest
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are crossing the road, mostly on crosswalks. It will be noted that crossing pedestrians are of-
ten using various diagonal crossing directions, so our database covers all viewing angles fairly
well. The scenes contain various lighting conditions and various types of complex background.

Fig. 3.38 � The Seville user interface.

The visual features

Instead of the wavelet-based weak classi�er used in [Viol 02] we used the illumination-
independent features described in section 3.3, because they run faster and are easier to imple-
ment. Wavelet features are calculating the di�erence between the sum of the pixel values in
some rectangular regions (see �gure 3.39), and comparing this di�erence to some �xed thre-
shold. While these features capture well the pedestrian class, they depend on the luminosity
of the image and demand histogram equalization for each examined sub-window. Illumination
independent features were shown to yield the same detection results while consuming less
image access operations and without resorting to histogram normalization. These features
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work in 3 resolutions (full, quarter and sixteenth) and compare the pixel values in two sets of
"control points" in the image. The feature classi�es positively if and only if the values of all
the points in one set is superior of the values of all the points in the other set. The feature
does not use any threshold and can detect objects independently of the distribution of the
image histogram. Applying this feature on a sub-window demands approximately 4 image
access operations.

Fig. 3.39 � Examples of wavelet features used by Viola and Jones (left) and the illumination
independent features used in this work (right). Wavelet features are calculating the di�erence
between the sums of the pixel values in the red and the blue region, and classifying positively
when this di�erence is superior of a �xed threshold. Illumination independent features work
on 3 resolutions (full, quarter and sixteenth) and examine the image in single-pixel "control
points". The feature is classifying positively when all the pixel values in the red points are
larger than the pixel values in all the blue points

The learning algorithm

The learning algorithm we used is AdaBoost based on single-feature decision stumps. We
use the same learning procedure as Viola and Jones [Viol 02], only our choice of features is
di�erent. We assume that each visual feature fi outputs +1 or -1 and the polarity is set such
that each feature is positively correlated with the detection event, so that the feature weights
are all positive. We normalize the total score generated by AdaBoost using the sum of the
feature weights, s =

∑
i αifi/

∑
i αi, so that the total score always ranges between -1 and +1.

Since it is too computationally expensive to check all possibilities of visual features in
each AdaBoost step, we used a heuristic search based on genetic programming. Our search
procedure starts with a �rst "generation" of 100 random features, and uses various types of
crossovers and mutations in order to improve the features to yield minimal weighted error on
the training set. Our search stops when no improvement is obtained during 40 consecutive
generations.

The interactive labeling system

Our experiments were carried out using a software system named SEVILLE which pro-
vides a graphical user interface for interactive labeling of training examples. The system
is playing an input video sequence while possibly applying an existing AdaBoost classi�er
on a set of sub-windows in the image, in di�erent scales and locations. The examined sub-
windows are starting in the standard size (24x48) and scaling up 10% each time. To reduce
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computations, we de�ned a horizontal line - the scene horizon - and used only rectangles
which intersect this line. Altogether, the classi�er examines around 170,000 rectangles for
each image.

The user can instruct the system to display all sub-windows of which classifying score falls
inside a speci�ed range. These rectangles can be selected (individually or by groups) and be
turned into learning examples by labeling them as negative or positive. Such rectangles are
warped to the prede�ned standard size (24x48) and put as JPEG images in the appropriate
directory, according to their label. The system allows the same treatment for rectangles which
are marked manually (i.e. by dragging the mouse).

The idea is that in mature stages of the examples collection process, one can use the
already-collected examples to build a good classi�er, which in turn can aid in the selection of
examples. Such classi�er can point out which examples are hard to separate and the role of
the human labor is only in telling "positive" or "negative" for each of these examples. This
task eventually becomes much faster than manual collection of labeled examples.

3.7.2 The design of the experiment

Most machine learning procedures consist of four steps : data collection, labeling, training
and testing. As we discussed earlier, in visual detection problems, labeling is a very labor
intensive step. The goal of our experiment is to demonstrate how an iterative procedure
which alternates between training and labeling can be used to substantially reduce the work
involved in labeling.

In order to ensure an unbiased measure of the test accuracy of our detector we started
by collecting 215 pedestrians and 37,064,791 non-pedestrian images, chosen from a video
sequence of 2 :08 minutes. We later use this data-set to measure the ROC of the detectors
generated by our process. Note that in order for the system to be e�ective we need the false
positive rate to be around 10−5.

Each step in our procedure consists of two phases : collection of labeled examples and
training. The training phase uses all of the labeled examples collected so far, separates them
into 2/3 for training and 1/3 for validation and then runs the boosting algorithm on the
training set until the ROC curve on the validation set stops improving.

Each labeling phase (other than the �rst) uses the detection scoring function generated by
the training phase of the previous step. Each labeling phase uses a new, previously-unused
video sequence. When applying the detector, the system is instructed to show detections
whose boosting score (a number ranging between -1 and 1) is higher than µ− and lower
than µ+. These values are chosen manually, such that approximately 0.1% of the negative
examples and around a half of the positive examples are shown.

Once detections appear on the screen, the GUI is used to label each detection and to turn
it into a training example. Some detections can remain unlabeled if is not clear if they are
positive or negative. All the labeled examples are added to the training set and the following
training phase is executed.



3.7. SEVILLE : SEMI-AUTOMATIC VISUAL LEARNING 87

3.7.3 Theoretical justi�cation

The theoretical justi�cation of considering the normalized boosting score s =
∑

i αifi/
∑

i αi

as a measure of prediction con�dence was provided by Schapire et al in [Scha 98]. Intuitively,
the normalized score value of a random test example varies only little if we select di�erent
training sets from the same distribution.

However, in our application we take one step further and assume that we get an accurate
classi�er even if we signi�cantly alter the distribution of the examples by selecting mostly
those examples that are close to the decision boundary. Note that if we were creating a gene-
rative model of the data, then such skewing of the distribution would be likely to introduce
signi�cant bias into our classi�er. However, our goal is to minimize classi�cation error, not
to maximize model likelihood, which is the reason that our learning algorithm can tolerate
such skewing of the distribution of examples.

This is not true in general, but is true when the initial unbiased sample is su�cient to
restrict the set of good classi�ers to a unique approximation of the optimal classi�er. In
other words, the distribution of the scores generated by AdaBoost is such that all convex
combinations of the weak rules that are signi�cantly di�erent from the one we found have
error that is much higher than the one we found. As a result, we can eliminate these classi�ers
from consideration and concentrate on identifying the optimal classi�er that is close to the
one we have already found, which means that we only need to know the labels of examples
that are close to the decision boundary.

As we shall see in the experimental results. This condition indeed holds in our case and
so the procedure is justi�ed.

Of course, the ultimate proof of the e�ectiveness of our method is given provided by
considering the error of the �nal classi�er on held-out test data.

(a) (b)

Fig. 3.40 � Use of the initial classi�er in step 2 - (a) original detections (b) with grouping.
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Step positive
examples

negative
examples

Weak
rules

µ− µ+ data
length

human
la-
bor

training
time

1 6 10 1 -1 1 0 :06 3m 2s

2 36 374 3 -1 1 0 :14 3m 8s

3 46 520 7 0.6 1 0 :24 10m 30s

4 86 1332 30 0.4 1 1 :05 20m 2m

5 182 2675 59 0.1 0.8 1 :36 30m 10m

6 417 7804 270 0 0.6 3 :03 2h 1h20m

7 848 8236 893 -
0.02

0.5 3 :31 5h 9h

8 1178 16613 1500 -
0.02

0.5 5 :14 8h 28h

Tab. 3.11 � The details of the training steps. Data length is in format MM :SS. Amount of
human labor and training time is cumulative (h=hours, m=minutes, s=seconds).

Step positive examples negative examples weak rules human labor

1 15 57 1 3m

2 52 215 12 10m

3 73 527 18 20m

4 98 832 40 30m

5 291 2207 82 2h

6 1012 7658 330 5h

7 1183 13175 2250 8h

Tab. 3.12 � The details of the training steps, second time.
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Fig. 3.41 � The simple and complex sequences used in the initial and mature steps, respec-
tively.

Fig. 3.42 � Results of the classi�er in step 8 on two independent test sequences.

3.7.4 The experiment

The starting step

The process started by using a simple sequence (see �gure 3.41) taken on a parking space,
to collect 15 positive examples (pedestrians) and about 57 negative ones (non-pedestrians)
by hand. This is done by playing the video sequence, marking rectangles over pedestrians
and non-pedestrians, and telling the software to transfer these rectangles to the positive or
negative examples directory, using buttons "NEG" and "POS" (see �gure 3.38. The system
automatically warps the rectangles into the standard size (24x48) and stores the examples
as uncompressed JPEG images.

Then, one round of AdaBoost was performed, obtaining one weak-classi�er which was
already over�tting because it had 100% detection rate with zero false positives on this tiny
training set.

The second step

The classi�er obtained at the �rst step is applied to consecutively classify all the sub-
windows in some images in the same video sequence as well as three other simple "parking"
sequences. As mentioned above, in our con�guration of 24x48 pedestrians, the system exa-
mines about 400,000 sub-windows of each image, consisting on all the possible sub-windows
in 16 scales, starting with the basic size of 24x48 and enlarging the size in 10 percent each
time (26x53,29x58 etc). These parameters can be controlled by the software.
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Fig. 3.43 � Positive (left) and negative (right) examples for the di�erent steps (each line is a
step, from top to bottom). These examples received the minimal (for positive examples) or
maximal (for negative examples) score during classi�cation in their respective step.

Those sub-windows which were positively classi�ed by the classi�er are marked with a
dark rectangle. Obviously, there were many such rectangles and it is almost impossible to
extract any useful information at this step (see �gure 3.40. A special option in the software
groups adjacent rectangles and makes the situation a little bit clearer.

We now continued to collect more examples. The collection of negative examples became
much easier now, as each of the dark rectangles (the grouped "detections" of the classi�er)
could be selected by the mouse and turned into a negative example using the button "NEG".
Moreover, when there was a part of the sequence which was veri�ed not to contain correct
detections, we could use a special button "ALL NEG" which transfers all the detections
into the negative examples repository. Using this function we could obtain many negative
examples in a few moments, enlarging the set to 215 negative examples. One can see in �gure
3.43 that these negative examples are already better than random negative examples, since
they do not contain "trivial" negative examples like the sky.

We used the same method to collect positive examples. However, at this step it was not
always possible to do it because many times the pedestrian was not detected, so we also
marked some pedestrians by hand (by dragging the mouse) as in the �rst step. The total
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Fig. 3.44 � Three positive images (left of each �ve) and two negative images (right of each
�ve) for the seven steps done in the second time (each �ve images is a step, from left to right,
top to bottom).

number of positive examples was now 52.
We now divided the examples set to training set (2

3
of the images) and validation set (the

remaining 1
3
), and ran 25 cycles of AdaBoost. Testing the resulting strong classi�er on the

validation set showed that 10-12 weak classi�ers were enough at this stage, so we used only
12 weak classi�ers in the strong classi�er used for the third step.

Further startup steps

The next three steps, as the �rst two ones described above, can be characterized as startup
steps because the amount of data is still not large. Due to this fact, training graphs are still
not fully reliable and intuition plays an important role in selecting the various parameters.
Also, in these steps, positive examples are many times collected by hand (that is, by marking
a rectangle over a pedestrian) rather than using detections.

At each of the steps 3,4 and 5, the strong classi�er produced in the previous step was
again used on a new video sequence. This time we started to use urban sequences (see �gure
3.41). Now, the program is directed to present only sub-windows whose boosting value (the
sum of the weights of all the weak classi�ers who classi�ed positively) was larger than a value
µ−. This value was calculated such that 99% of the negative examples in the validation set
received less than µ− from this classi�er.

We then selected those rectangles which are non-pedestrians and turned them into ne-
gative examples. Once again, by using only these "hard" negative examples we ensured the
high quality of the examples set.

We also selected those detected rectangle which are pedestrians (the correct detections)
and turned them into positive examples. Note that in this case, we do not limit ourselves to
"hard" positive examples but take all of them, because of the need to arrive to a large number
of positive examples in these startup steps. In later, more "mature" steps, we could activate
an option in the software, causing the system to actually put into the positive examples set
only rectangles which received less then a value µ+. This value is calculated such that 90% of
the positive examples in the validation set received more than µ+ from this classi�er.

In the case that a pedestrian was not marked by the system (that is, it received a boosting
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value of less than µ−), we mark it "manually" (that is, by dragging the mouse) and add it
to the examples set as a positive example.

The thresholds of 99% and 90% were chosen arbitrarily ; one could choose di�erent thre-
sholds (provided that the validation set is large enough) and obtain negative and positive
examples of a higher quality less rapidly, or the other way around. In our experiments, we
started with these values, then changed the negative threshold from 99% to 99.9% when the
validation set was large enough.

At each of the steps 3,4 and 5 we enlarged the number of positive examples to 73,98
and 291 and the number of negative examples to 527, 832 and 2207, respectively. After each
step, we followed the procedure described in step 2 and divided the examples set to training
(2

3
) and validation (1

3
). Then we ran AdaBoost and decided about the number of weak rules

according to the results on the validation set. In these 3 steps we used 18, 40 and 82 weak
rules.

The mature steps

In the following steps we followed a strict procedure of examples collection, training
and validation. At each of the steps, as in previous ones, we used the classi�er trained in
the previous step to classify all the sub windows in new video sequences. However, while
the startup steps we used one short video sequence of 3-4 minutes containing 2-3 di�erent
pedestrians each time, we now used at each step about 15-30 minutes of video containing
dozens and later hundreds of di�erent pedestrians. Each time a classi�er was used, we tuned
the software to put into the positive examples repository only those who received a boosting
value of less than µ+ and negative ones which received more than µ−. As mentioned above, at
some stage we leveraged µ− a little bit so that 99.9% and not 99% of the negative examples
received a boosting value smaller than µ−.

At the time of writing this document, we executed two mature steps, enlarging the
examples set to 1012 and 1183 positive examples and 7658 and 13175 negative examples,
respectively. The number of weak rules used in the strong AdaBoost classi�er is 330 and
2250, respectively.

Figure 3.45 shows the ROC curve of our classi�ers in the di�erent steps, tested on 3
video sequences which did not take part in the learning process. We see that throughout the
steps, results are improving. Note that the problem in question is pedestrian detection in any
angle (not just forward looking pedestrians), in a relatively small resolutions (24x48 pixels),
using gray images and without using any motion information. Figure 3.42 shows examples of
successful detection in complex urban environment, using the classi�er obtained in the last
training step. Some movies can be found in the SEVILLE website.

3.7.5 Experimental results

We ran eight steps of labeling and training. The growth of the examples set in the di�erent
steps is shown in table 3.7.3. In the table, we show also the number of AdaBoost cycles (weak
rules) used in each step, the values µ− and µ+ used in the collection process, the length of
the input sequence and an approximation of the human labor and the training time that
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was needed to complete that step. (Training was done on a standard PC with a single 3GHz
Pentium processor.)

Much insight into the active learning process can be gained from looking at the type of
mistakes that are dominant after each step. In �gure 3.43 we show the positive examples
with smallest scores and the negative examples with largest scores as a function of the step
number. During our experiments so far, we identify three types of steps :

Steps 1-3 can be considered as "startup steps", where no valuable detector is available,
positive examples are collected mostly manually, while negative examples are collected from
the numerous false detections (see �gure 3.40). As mentioned above, in these steps we used
simple and short sequences (see �gure 3.41), where the goal is only to obtain a stable detector.
The mistakes made during the startup steps are trivial.

Steps 4-6 can be described as intermediate steps, where a valuable detector exists and
where quality of the examples produced is already much higher than that of examples col-
lected randomly by hand. However, these steps are not yet "mature" in the sense that trivial
negative examples are still appearing and pedestrians in the new sequences are not always
detected. The mistakes that are made during these steps are on image frames that contain
complex backgrounds.

Steps 7-8 are mature steps, where µ− and µ+ are stabilizing around -0.02 and 0.5 res-
pectively, examples are hard to separate and most of the new pedestrians are detected. The
mistakes made by the detector on these steps are much more subtle. Some of the false positive
examples in steps 6-8 are mistakes that might be made by a human (using this restricted
view and no movement or color information). Some of these look pedestrians, and others are
actual pedestrians but the image is not well positioned in the detection frame.

The experiment was conducted once more. The results of the second time are presented
in table 3.12 and �gure 3.44, in the same format described above.

Quantitative results

We tested the detectors obtained by the di�erent steps on the test data. The resulting
ROC curve is shown in �gure 3.45. One can observe that the detector improves as the process
advances. Some successful detections from the test data are shown in �gure 3.42. We can see
that signi�cant gains are made in the false positive rates throughout the process.

In �gure 3.47, the ROC curves for the validation set show that boosting makes continual
progress throughout the 1895 cycles of the 8th step. Note that the ultimate validation error
is much worse than the actual test error because the validation set, like the training set, is
biased towards hard examples. Also note that the ROC curve continues to improve much
beyond the point at which the separation between positive and negative examples on the
training set is perfect. A phenomenon that is explained by the increase of the separation
margin between the positive and negative training sets (indicated by the bold red and blue
curves on the bottom right graph).

In �gure 3.48 it is interesting to analyze the di�erence between the distribution of scores
on the new labeled examples that are added at iteration 8 with the examples that we added in
earlier steps. One can clearly see that the main di�erence is that the new negative examples
have signi�cantly higher scores, or, in other words, they are the ones that are harder to
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Fig. 3.45 � The test-set ROC of the detectors generated in each of the 10 steps.

separate from the positive examples.
Figures 3.49 and 3.50 show the training graphs for steps 3-8 (this data is quite meaningless

for the startup steps 1-2, and to some extent even to step 3, as seen in the �gure). In the
graphs, we can see the positive and negative error as a function of the number of weak learner.
We see that each step we need more weak learners to reach approximately the same rates.
Nevertheless these rates are reached each step, and this is a good sign : even as we add more
and more di�cult examples, the rates remain the same.

3.7.6 Observation at the separation process

It is interesting to observe the learning process as it separates the positive and negative
examples. In �gure 3.51 we see the histograms of the boosting values of the examples with
di�erent numbers of weak learners. The green data are the positive examples, the red are
the negative ones and the blue are unlabeled examples chosen randomly from the input
images. Naturally, the large majority of these examples are negative examples, but not hard-
to-separate as the labeled negative examples. This is why they get a slightly smaller boosting
value, as one can see in the histograms.

We see that with 1895 weak learners, the validation set is almost totally separated - one
can select a threshold above which almost all are positive and below which almost all are
negative. We said "almost" - because there are still outliers which are not separable. One can



3.7. SEVILLE : SEMI-AUTOMATIC VISUAL LEARNING 95

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1
0

50

100

150

200

250

300

normalized score

nu
m

be
r o

f e
xa

m
pl

es

800−neg
800−pos
1895−neg
1895−pos

Fig. 3.46 � The distribution of training set scores at step 8 as a function of the boosting
cycle.

see these outliers in �gure 3.44 in the line of step 8.
In �gure 3.52 we see the same kind of histograms for the learning set. We see that, of

course, the learning set is totally separable and that after 300 weak learners there is already
a clear line that can totally separate positive and negative examples. This, of course, makes
sense, and has also a theoretical justi�cation. It was proven (see [Freu 95]) that AdaBoost
always reaches the point of separation for the learning set.

3.7.7 Conclusions and future work

We have presented a method for graduate collection of high quality training examples. In
the results of our experiments, it is clearly seen that the examples we collect are becoming
more and more hard to separate. In the experiments, we did not use all the input data which
were available. It is interesting to observe the development of the process in further steps.

False positives generated in mature steps can guide us in choosing which features to add in
order to further improve the detector's accuracy. These might be more complex features such
as wavelet features as used by Viola and Jones [Viol 03], color based features, or movement
based features. While these features are more computationally expensive, we can use the
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Fig. 3.47 � The validation-set ROC of the detector generated in step 8 as a function of the
boosting cycle.

cascading method of Viola and Jones to restrict their calculation to very few cases and thus
have small impact on the average time calculation while still achieving high accuracy.

3.8 Comparison between various camera types

This section brings quantitative results for pedestrian detection in various camera types.
Results are brought for three types of camera : normal camera at daylight, near-infra-red
(NIR) and far-infra-red (FIR) cameras at night. For each of these types we provide the curve
of detection rate versus false detection rate (ROC curve), and the speed of operation.

3.8.1 Training details

In these experiments we used training and validation data. It will be noted that the
sequences used for validation are never the same ones from which the learning examples are
taken ; nor they contain the same pedestrians.

The training for all camera types was done on single-CPU Pentium-4 2.4Ghz desktop
computers. For each type of camera, training time was in the order of one week for the
cascaded and 3-4 days for the non-cascaded detector.
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Fig. 3.48 � The cumulative distribution of the scores for examples in the validation set
collected on step 8 versus examples collected in earlier steps.

3.8.2 Regular camera at daylight time

We trained a detector for pedestrian at daylight time, using a regular camera. For this
training we used a mixture of video sequences : �rst, some video sequences taken in Ver-
sailles using a high-quality camera. Second, sequences taken in SmallVille4 in the Parisian
area, using a lower-quality camera. Examples for these data can be seen in Figure 3.53.
The Versailles sequences had a resolution of 384x288 pixels, and the Smallville ones had a
640x480 resolution. To have an uni�ed size, the Smallville sequences were downscaled to have
a 384x288 resolution.

The training used 2428 positive and 22495 negative examples collected from these se-
quences, and validation ground truth containing 378 manual marking of pedestrians.

We carried out non-cascaded learning with 3000 features. Figure 3.54 shows the ROC
curve for the detector.

3.8.3 Near Infra Red (NIR) camera

We trained a detector for pedestrian at night time, using a NIR camera. We used video
sequences taken in Smallville, with a resolution of 640x480. An example of these sequences

4we are not using the real name of the town for reasons of con�dentiality
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can be seen in Figure 3.55.
The training used 2300 positive and 5600 negative examples previously collected from

similar video sequences. For validation, we marked ground truth location of 145 pedestrians.
We carried out 3000-feature non-cascaded learning. Figure 3.56 shows the ROC curve for

the detector.

3.8.4 Far Infra Red (FIR) camera

We trained a detector for pedestrian at night time, using a FIR camera. We used video
sequences taken in Smallville, with a resolution of 640x480. An example of these sequences
can be seen in Figure 3.57.

The training used 1647 positive and 3875 negative examples collected from similar video
sequences. For validation, we marked ground truth location of 181 pedestrians.

We carried out 3000-feature non-cascaded learning. Figure 3.58 shows the ROC curve for
the detector.

3.8.5 Conclusions

It's clearly seen from the graphs, that infra-red cameras see pedestrians at night better
than normal cameras at daytime. This conclusion is not obvious at all. From the two types
of infra-red, the FIR camera is clearly the best one.

3.9 Analysis of the cascade

The cascaded detector is an important contribution made by Viola and Jones. In their
publications (e.g. [Viol 01]) they roughly state that the detection capability of a cascaded
detector is about the same as a non-cascaded one. In this section, we would like to test that
observation and explore this issue.

We will �rst compare the 2D ROC curve (that is, the conventional ROC curve) of a cascade
with that of a non-cascaded detector. Later on, we will insert also the time dimension, and
compare performance as well.

For the following experiments, we used video sequences taken from a frontal camera
mounted on a moving vehicle, and collected 1224 positive and 2067 negative examples of
cars. The cars are always viewed from the back, as seen in �gure 3.59.

We trained a 20-layer detector. The number of features in the layers are : 3, 0, 0, 1, 0,
0, 2, 0, 3, 0, 6, 4, 7, 10, 16, 66, 9, 35, 65 and 162. The layers with 0 feature are degenerate
layers which do nothing ; the code is optimized to ignore them5.

In parallel, we trained a �at (i.e. non-cascaded) detector with 500 features on the same
training set.

5The zero-feature layers are created because in the learning process, as explained in section 3.2, each layer
gets a task to arrive to a certain detection rate and false detection. Some layers' task is already accomplished
by the layers when the process arrives to them.
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3.9.1 2D-ROC analysis

In �gure 3.60 we see a ROC multi-curve of each layer of the cascade, together with a
ROC-curve of the non-cascaded version. Let us concentrate on the cascaded part �rst. This
complex graph is prepared as follows :

� Step 0 Layer 0 (the �rst layer) is used to create a standard ROC curve. Its threshold is
being driven from 0 to 1 while the combinations of detection-rate and false positive are
being plotted. Note that detection rate is in the range 0 to 1 (the number of detected
objects divided by the number of objects), and the false positive rate is in the form
1 :N, meaning one false detection for each N sub-windows examined.

� Step 1 A cascaded detector is being composed of layer 0, whose threshold is being �xed
on the one that came out of the learning process, and layer 1, whose threshold is being
driven from 0 to 1 in a similar manner as in the previous step. Again, combinations
of detection-rate and false positive rate (using the combined 2-features detector) are
being plotted.

� Steps 2-19 We continue with this process for the rest of the layers. That is, in step k
a cascaded detector is being composed of layers 0 to k− 1, the threshold of these layers
being �xed on the ones that came out of the learning process, together with layer k,
whose threshold is being driven from 0 to 1. Again, combinations of detection-rate and
false positive rate (using the combined k-features detector) are being plotted.

The envelope of this multi-curve re�ects the actual performance of the cascade. These
are the best detection rates that can be obtained for any given false detection rate (or vice
versa). Now, we can compare this performance with that of a non-cascaded detector.

Let us consider now the ROC curve of the non-cascaded 500 features detector, whose
ROC-curve is also presented in �gure 3.60. We can see, that the detection of the non-
cascaded detector is much better than that of the cascaded one. This conclusion is
not surprising : if a sub-window was rejected by one of the layers in the cascaded detector,
it will not appear as detected. This will reduce the detection rate, because this sub-window
could have been approved by one of the later layers, if that layer had seen it. In the non-
cascaded detector, such a sub-window is detected because it passes all the features.

In the next subsection we will see that, when taking into account the e�ciency data (i.e.
processing speed), the advantages of the cascade are fully seen.

3.9.2 3D-ROC analysis

The results shown in the previous subsection are not complete, if we don't mention the
time domain.

In �gure 3.61 we see a 3D graph that represents the ROC curve of the non-cascaded
detector as a function of the number of classi�ers used. This number has a direct (and linear)
impact on the detection speed.

The average number of classi�ers applied on each sub-window in our cascaded detector
is around 5. Therefore, to perform a real comparison between the cascaded version and the
non-cascaded one, one should place the ROC multi-curve of the cascade near slice number
5 of the 3D ROC curve shown in �gure 3.61. However, by observing the 3D ROC curve,
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we can see that the cascaded detector has detection capabilities that are similar to that of
the non-cascaded detector with 300-400 features, and surely much better than a 5-features
non-cascaded detector.

3.9.3 Conclusions

It is quite clear that a single-layer 5-features detector cannot e�ciently detect vehicles.
However, its performance is similar to that of the cascade, because in the cascade, most of
the sub-window �ltering work is done by the rest of the layers without signi�cant
time consuming. This is the big innovation of the cascade.

However, when compared with a full non-cascaded detector (with 500 features), the
detection of the cascade cannot reach the same level. This is a certain price to pay
for the high speed.

3.10 Conclusions

In this chapter we have reviewed and contributed to the domain of visual object detection
using machine learning. We have presented the state of the art and shown how previous
works used AdaBoost for object detection. Then, we have introduced our own types of visual
features, which were designed to better �t the needs of on-board automotive applications.

We have presented the 5x5 visual feature, which was specially optimized to work with the
CAMELLIA project prototype. We have presented also the control-points features, that were
designed to be highly e�cient both in memory and time. We have compared the features with
each other and with the work of Viola and Jones and shown that our features yield better
results.

In particular, we have chosen to present the data in 3D-ROC curves, in a way that we
feel re�ects the best the real advantages of a system. The control-points features produce the
best 3D-ROC curves on real-world data.

We have shown that the attentional cascade, suggested by Viola and Jones, is reducing
the quality of detection. Again, viewing the data in 3D-ROC curves, shows that the cascade
gives high speed bene�t as opposed to the reduction in detection rates it causes.

We have chosen to concentrate on several additional points : one is the SEVILLE me-
thod we developed to collect new examples. This method makes it much faster to collect a
good training set. The second issue if the comparison of various camera types. Among other
conclusions, we have shown that Far Infra Red (FIR) camera at night time performs much
better than a regular camera.

3.11 Future work

The research presented in this chapter can be further developed to many directions, which
get out of the scope of this thesis. We hereby brie�y review what can be done in order to
improve the object detectors.
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3.11.1 The image pyramid

To detect pedestrian of all sizes, an input image I is �rst preprocessed : the system creates
a set of images I0 . . . Ik (so called a "pyramid" of images) where I0 = I, and each I i is created
by warping I i−1 to 75% of its size. The detector than runs a constant 48x24 detection window
on all these images, eventually detecting di�erent scales of pedestrians.

Another way to implement the multi-scale search is to upscale the features, rather than
downscale the image. In such a way we get rid of the need to create the image pyramid
(see [Viol 01]). An adaptation of this method has to be done to our visual features. Such
adaptation, however, is not trivial since one can scale regions, but not points... some intelligent
process might be possible, however, to avoid the preparation of a full image pyramid.

3.11.2 Spatial density

From various observations, it seems that detections of pedestrians usually come in groups,
as opposed to false detections, which come separately. See Figure 3.62. One might be able
to take advantage of this phenomenon to throw away false detection. This work is also not
trivial ; a full analysis must be carried out to see how this information can be used and if it,
indeed, brings better detection rates.

3.11.3 Tracking (temporal density)

The same phenomenon exists also in the temporal axis : a pedestrian which was at position
X in one image, is likely to be around that position also in the next image. Therefore, the
system has to validate only pedestrians which were detected several times around closely-
related positions.

In further chapters of this thesis, we implement a variant of this method. We use particle
�ltering to track detections created partly by AdaBoost.

3.11.4 Low-level motion

It was found [Viol 03] that it can help to take into account motion data between two
subsequent images. To accomplish this, we allow the weak classi�ers to examine not only the
image Ik, but also the di�erence image Ik − Ik−1. It turns out that pedestrians have a very
special movement, especially in the area of the hands and legs.

3.11.5 Limited search area

We can tune the system to detect only pedestrians with high con�dence, then run it on
many hours of video. Then, the system will have all the possible positions where pedestrians
can be found. Having this "mask" in hand, we can later limit the search only to these
positions. This will not only accelerate the system, but also will omit false detections which
could have been created in the "excluded" positions.

This operation can be considered as learning the camera parameters automatically.
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3.11.6 Context learning

A recent work [Fink 04] shows that it is worthwhile to apply AdaBoost also on the relations
between objects. In such learning, the system learns to identify pedestrians together with
other outdoor objects such as cars, trees, sidewalks and crosswalks. Then, the system uses
some weak rules which have information on the relations between the objects. This way, for
example, a pedestrian could never be detected above a car, or on a tree (although the later
is possible in special situations...).
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Fig. 3.49 � Learning graphs for steps 3-5.
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Fig. 3.50 � Learning graphs for steps 6-8.
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Fig. 3.51 � Boosting values histogram for the validation set in step 8, for di�erent numbers
of weak learners. From left to right, top to bottom : 2,3,10,20,30,100,200,300,1000,1895 weak
learners.
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Fig. 3.52 � Boosting values histogram for the learning set in step 8, for di�erent numbers of
weak learners. From left to right, top to bottom : 2,3,4,10,20,30,40,100,200,300 weak learners.
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Fig. 3.53 � Images from the video sequences used for the training of pedestrian detection at
daytime : the Versailles sequences (top) and the Smallville sequences (bottom).

Fig. 3.54 � ROC curve for daylight pedestrian detection with a regular camera.
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Fig. 3.55 � An image from the video sequences used for the training with the NIR camera.

Fig. 3.56 � ROC curve for night-time pedestrian detection with the NIR camera.

Fig. 3.57 � An image from the video sequences used for the training with the FIR camera.
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Fig. 3.58 � ROC curve for night-time pedestrian detection with the FIR camera.

Fig. 3.59 � Examples of cars used for the learning.

Fig. 3.60 � The ROC multi-curve for the 20-layers cascaded cars detector. The x axis mea-
sures the false detection rate in the form 1 :N (one false detection for each N examples
examined). The y axis measures the detection rate (number of detected objects, divided
by the number of objects). In dashed line, is shown the ROC-curve of the non-cascaded
500-features detector. The non-cascaded detector is clearly superior.
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Fig. 3.61 � The 3D ROC graph of the non-cascaded detector.

Fig. 3.62 � The dense nature of detections. Note that around the pedestrians, several detec-
tions are formed, whereas the false detections stand alone.



Chapitre 4

Motion estimation algorithms

4.1 Background

This chapter describes an algorithm for detection of object motion in video sequences.
The algorithm was originally based on an algorithm described by Wittebrood and de Haan
[Witt 01], yet it has undergone several important changes. The newly implemented algorithm
forms the basis of Camellia high-level applications, and will be called hereinafter CMSA
(Camellia Motion Segmentation Algorithm). It is also used in the Stop&Go system described
in chapter 6.

The basic method employed in the CMSA algorithm is motion estimation (ME). This
method is taken from the �eld of video compression. Roughly speaking, ME tries to detect
objects in the video scene, which are moving. The input of the algorithm is a video sequence
and the output appears in two levels : a map of movement directions in the lower level, and
a set of detected moving objects in the higher one.

4.2 General overview of the algorithm

4.2.1 Motion models

A motion model is a set of numbers expressing the nature of a movement of an object in
the scene. Motion models can appear in various levels to model di�erent kinds of movements :
the basic level introduces two numbers which express the 2D movement of an object on the
screen. A higher level models also zooming, for which it uses additional two numbers for the
zoom center and another number for the zoom extent. The article [Witt 01] uses two numbers
for the zooming extent, which allows also bodies to zoom di�erently in the X and Y axis (this
gives 6 numbers altogether). Further enhancements can model rotations, deformations, etc.

At this version of the algorithm we chose to limit ourselves to 2 numbers only. A look
at the result shows, that using only 2D movement, plus some adjustments, gives reasonable
results. We believe that using more than 2D models will complicate the situation to a large
extent because it will add more dimensions and thus dramatically enlarge the space of the
possible models. This overhead will take more than it will give.

111



112 CHAPITRE 4. MOTION ESTIMATION ALGORITHMS

The motion model is a fundamental notion in our algorithm. What we try to do in the
algorithm, basically, is to match a motion model to each object in the image (and in the
video sequence).

4.2.2 Other de�nitions

A block in a video image is a 16x16 pixels block. This is the basic unit for analyzing the
image.

Given a block in an image and a motion model, we can check if this motion model is a
good motion model for that block. What we do is simply compare the block in the current
image, with the same block, translated and zoomed, in the previous image. We compare pixel
by pixel and calculate the Sum of Absolute Di�erences (SAD). The lowest the SAD is, the
better the motion model is. And indeed, in the rest of this paper we will use the term of good
motion model (with respect to a speci�c block in an image) to express a motion model that
yields a low SAD. It will be noted that SAD is typically a task to be performed by hardware.
In particular the CAMELLIA low-level algorithms include SAD computation.

4.2.3 Basic diagram

Figure 4.1 gives a diagram that summarizes the operations of the algorithm. As seen in
the diagram, the algorithm runs on an internal and external loop.

The internal loop (bounded in dotted line) runs on all the blocks of a single image, taking
block after block and checking di�erent motion models to �nd the best one. It involves
creating sets of candidate motion models for checking. The external loop is running on the
di�erent images of the video sequence ; for each image it creates a map of motion models,
and then tries to group together blocks of similar motion models. The last step is forming
these groups into objects, maintaining con�dence for each of them. The following sections
describe in details these steps.

4.3 Main (internal) loop on blocks

The inner loop of the algorithm runs on blocks. The image is divided into blocks. We
repeatedly run on the image blocks, passing the image several times. Our goal in this loop
is to �nd, for every block, a good motion model. That is, we would like ideally to �nd the
exact same block in the previous image in the sequence, may be moved. If we could do this,
then this translation is a perfect motion model for this block. In real life, we rarely �nd the
exact same block in the previous image, but many times we �nd the same block, moved - and
slightly changed. If this change is indeed low, then this moving forms a good motion model
for that block.

4.3.1 Fetching of new blocks

At the beginning we have tried to use sophisticated mechanism which tried to bring each
time a block that is most suitable for handling. In practice we found that the best way is
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Fig. 4.1 � The algorithm component diagram.

Fig. 4.2 � Di�erent directions of scanning
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to scan the image in alternating directions and just pass on all the blocks two times, as
demonstrated in Figure 4.2. The 2 directions are (according to the numbers in the �gure) :

� 1, 2, 3, . . . 9, 10, 11, 12, . . . 69, 70
� 70, 69, 68, . . . 62, 61, 60, 59, 58, . . . 3, 2, 1
This is enough for the di�usion of the spatial candidates within the image : the �rst will

di�use spatial candidates down and right, the second will di�use them up and left. Also note
that in the second pass, the system will not take blocks, which are considered as "done".
Among these we can count non-unique blocks (see further), or blocks for which we tested
many motion models already (we will use some upper bound on the number of possible
checks).

These two passes can be repeated if a stronger di�usion is needed. For example, in the
image stabilization application of CAMELLIA (see [Abra 04]), this process is repeated 16
times. After these passes a special process, called uniqueness contradictor, is applied (see
subsection 4.3.7).

4.3.2 Motion-model checking

The motion model checking is the heart of the algorithm. The idea here is to use a set of
candidate motion models and to check if any of them is a good motion model for the current
block. The algorithm is getting as input the following data :

� a block in the image (the algorithm will access the block's pixels in this image, as well
as pixels in the previous image) ;

� several candidate motion models - some taken from already-analyzed neighboring blocks
(spatial candidates), some taken from already analyzed blocks in the previous image
(temporal candidates), some randomly generated (random candidates), and some deli-
berately generated (initiated candidates). See further sections about the generation of
these candidates.

The algorithm is taking each candidate motion model and checks if this model is a good
model for this block. This is done by calculating the SAD for all the pixels in the blocks,
compared to the previous image. The algorithm is giving the following outputs :

� a motion model, chosen from the candidates, which yields the lowest SAD ;
� the SAD value for that selected motion model ;
� the uniqueness of the SAD among the SAD of other candidate motion models.
The uniqueness value is explained in subsection 4.3.4.

4.3.3 The actual SAD calculation

The input of the algorithm comes as a YUV image. The SAD is �rst calculated on the
Y component of the image. Then, the U and V components are sub sampled in a ratio of
1 :2 (for each axis), and the SAD is computed on the resulting 8x8 blocks of the U and V
image components. The resulting SADs of the Y, U and V are added with weights of 50%
for the Y, 25% for the U and 25% for the V. These weighting is intuitively conforming with
the size of the blocks ; further experiments have to be conducted in order to �nd the optimal
weighting. This scheme conforms to the 4 :2 :2 format.
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It is important to note that sometimes it is useful to compare each image not with the
image before it, but with N images before. This is what we do in the vehicle application :
we compare with 3 images before. That is, if G1, G2 . . . GN are a sequence of video images,
then G4 is compared with G1, G5 is compared with G2, and so on. This gives a better signal
to noise ratio since it sums the real movement, while continuing to have the same amount
of noise. In image stabilization we simply compare with the previous image, since movement
there is, by de�nition, not smooth.

Why not more than three ? It was seen that using more than 3 images back gives unwanted
e�ects, as :

� Movement of objects is no longer linear.
� Motion model is appearing after too long delay.
In addition we have to consider memory limitations. This is why an o�set of 3 was chosen.

4.3.4 The uniqueness of a motion model

Experiments have shown that, in addition to the quality of the SAD of a motion model
(in relation to a speci�c block in a speci�c image), there is another important value, which
is the uniqueness. To understand the uniqueness value, consider the example of a smooth
object, like the sky. Inside this object, you will �nd many blocks, which will match many
motion models with a good SAD. If you take a block in the sky and move it left, it will
match. Move it right, it will also perfectly match. Move it up, it will match again. This e�ect
will appear many times inside objects, even ones that are less smooth than the sky. Figure
4.3 shows how blocks on the edges of a car are giving duplicate motion models.

Note, however, that in some blocks we might have several di�erent motion models, which
all match with good SAD, but all directed in the same approximate direction. Usually these
models have a di�erence of 1 pixel. It will be a waste to decide that these are non-unique
motion models and not use them for the analysis, because this set of models do express the
true motion of the object. Hence we should be careful before we "declare" that a motion
model is not unique and subsequently abandon it.

We need, therefore, to de�ne what uniqueness is. We give the following set of de�nitions :
Two models are considered close if their corresponding movement vectors are close :
� with respect to direction (angles are close within a minimum angle αmin) ;
� with respect to vector length (lengths are close within a minimum distance Lmin).
Actual optimal values for the last two constants were found in experiments and are

αMIN = 0.6 (in radians), Lmin = 1.0. In addition, it might be better not to take into
account the angle distance, if the lengths of both vectors are very small. This however was
not addressed up to now because we are not grouping the zero motion models.

Consider a block B in a speci�c image, in a video sequence. Say that for this block, a
set of motion models m1 . . .mN has been already found, and assume that this set is ordered
from good (low) SAD to bad (high) SAD - that is, m1 is the best motion model.

We say thatm1 is the selected motion model of the block B. IfN = 1, thenm1 is absolutely
unique and has a uniqueness value of 100. Otherwise, it has a uniqueness of :
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Fig. 4.3 � One object contains several 2D motion models.

Uniqueness(m1) = min
m∈S

SAD(m)

SAD(m1)
(4.1)

where S ⊆ {m2, . . .mN} are all the rest of the motion models which were found, and
which are :

� pair-wise not close to each other,
� pair-wise not close to m1.
and SAD(m) is the SAD value of a motion model m with respect to the block B.
An uniqueness of 1.0 means, that there is another motion model, substantially di�erent,

which gives the same SAD value. This is clearly the lowest uniqueness. A SAD of 2.0 is
considered to be a quite good uniqueness. Actual values for de�ning which block has a
unique motion model are moving between 1.5 and 2.5, depending on the application. In the
actual algorithm we hold for every block an array with several motion models, up to a �xed
number of models (currently 3). We hold them sorted by the SAD, from low to high. This
set is actually giving the whole picture about the status of this block. When a new result (a
motion model + SAD value) arrives, we run on the existing models and we might insert the
new result, depending on its SAD. Note that if the array contains a model which is close to
the new result, but with worse SAD, it will be replaced. If it's with a better SAD, the new
result will not get in.
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4.3.5 Minimal SAD values

Experiments have shown, that it is essential to �x a minimum value of SAD, under which
formula 4.1 in section 4.3.4 is not active. For example : if a speci�c motion model yields a
SAD of 2.4 pixels, and another model yields a SAD of 0.8 pixels, we could conclude, according
to formula 4.1, that we have a uniqueness of 2.4

0.8
= 3.0. However, both values, 0.8 and 2.4, are

very low and can be considered "good" SAD values. Therefore we must �x formula 4.1 so it
will determine, in such case as our example, that the uniqueness is low. All we have to do to
achieve this is de�ne an extended SAD function :

SADextended(m) = max(SAD(m), Ŝ)

where Ŝ is a constant that expresses an extremely "good" SAD. Actual experiments have
shown that a good value for this constant is ranging between 1.0 and 2.5, depending on the
application.

4.3.6 Spatial candidates generator

Generating the spatial candidates is a simple task that, for each block, takes the motion
model of its neighboring blocks which already have a calculated motion model, and uses
them as a candidate motion model for this block. The current provided version uses 8 spatial
candidates in each of the 4 scans. This is likely to be improved without loss of performance
to 2 spatial candidates in each of the 2 scans.

4.3.7 Initiated candidates generator (uniqueness contradictor)

In actual experiments, it was shown that the program tends to miss many cases of non-
uniqueness and attach to some blocks a good motion model which it believes to be unique.
A typical case would be on the edge of an object - the chosen model seems to be unique,
but the opposite of this model is also giving good SAD. However the opposite model was
never checked, because it accidentally did not di�use through the random-spatial-temporal
candidates system.

This phenomenon causes many arti�cial e�ects which appear as noise in the output. A
good method to solve it is to run a complementary process, after the process of motion model
�nding, which tries to contradict the fact that a block contains a unique motion model.

Given such a block with a motion model 〈mX ,mY 〉 which is believed to be unique, we
perform a SAD test with the following motion models :

� 〈0, 0〉
� 〈−mX ,−mY 〉
Testing with a zero motion model usually helps when a block is inside a smooth object,

was accidentally tested on a small number of non-zero motion models, and one of them
happened to be good. By testing with the zero model we are likely to get a SAD, which will
render the current model non-unique. This is because usually inside a smooth object most of
the motion models have similar SAD.
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Fig. 4.4 � The car entering on the right appears only by its exterior. The interior blocks are
not unique, therefore are not considered as having valuable information.

By testing with an opposite motion model we are contradicting cases of long edges (e.g.
the side of a car) which tend to falsely conclude that they are moving in one direction of the
edge. By testing the other way of the edge, we can see that this block is not unique.

4.3.8 Weights for di�erent types of candidates

In [Witt 01] it is noted that di�erent kinds of candidates should be weighted di�erently.
Indeed, we used this conclusion and we weighted our candidates. Actual experiments show
that the SAD of a motion model should be multiplied by :

� 0.85 - if it is a temporal candidate
� 1.0 - if it is a spatial candidate
� 1.1 - random candidate
� 1.0 - initiated candidate

4.4 External loop on images

4.4.1 Grouping of areas

After the inner loop has �nished working on an image, we have a motion model for every
block. Our goal now is to group blocks that belong to the same object.

In principle, the blocks of a single object are moving together ; therefore we expect, inside
an object, to �nd high continuity of motion models with low SAD. To �nd the bodies of this
continuity (the objects), we employ a BFS (Breadth First Search) algorithm on the blocks.
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The algorithm starting blocks are blocks with the highest uniqueness, to increase the quality
and performance of the grouping. The algorithm continues from a block B to its neighbor if :

� the neighbor is unique,
� the neighbor has a su�cient SAD,
� the neighbor has a similar motion model to B.
Coming to analyze this process, we can notice the following cases :

1 The classic case is where a di�erent object is detected. The neighboring block will have
a totally di�erent motion model, good (low SAD) and unique (high uniqueness). We
do not continue with this block, because it probably belongs to a di�erent object.

2 We might hit many neighbors with high SAD, with which we will also not continue.

3 Another interesting case is the interior of smooth objects (like the sky). A typical block
in this area would have a good motion model which is not unique, because it can be
moved according to many motion models and still yield low SAD. We do not include
these blocks, so many objects indeed appear only by their exterior (see Figure 4.4).

4.4.2 High level information in grouping

This is the place in the algorithm to plug in external, high-level information that will help
to group the objects. If, for instance, we know that every too lights ordered horizontally are
the lights of a car, we can group them together even though the low-level algorithm will not
do so. This grouping can later help to produce better candidates of motion models.

4.4.3 Minimal motion value

It is clear that we don't have to assign every block to an object. First of all, blocks without
unique, good, motion model are not assigned. In addition, in a typical image, the background
forms a big and non-continuous "object", which we should not try to group. To achieve this
we de�ned a minimum movement threshold, under which we are not considering a block as
belonging to a speci�c object. In the sequences with this report this threshold is 0.33 pixel
per frame.

4.4.4 Smoothing of objects

On the borders of objects we are very likely to get a lot of single-block objects. In these
regions there will be a lot of blocks which will have poor motion models - that is, motion
models with high SAD. Most of them are not real objects but artifacts of the algorithm.
They will be cleaned by smoothing the map of objects up to a certain threshold that de�nes
what is the minimum size for a real object is. Actual experiments show that only objects of
2 blocks and above are considered.

4.4.5 Parameters calculation

Once we have a segmentation of the image to objects, we want to compute for each object
its uni�ed motion model. An object is moving uniformly ; it was detected during the grouping
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phase because it had similar motion model between its blocks ; now we want to compute the
motion model of the object.

The computation is trying to �nd a motion model such that it will minimize the sum of
SADs on all the blocks of the object, according to that model. There are several options,
which can be implemented. Here they are, from complex to simple :

� To use a gradient search to �nd a good model, in each step of the search to re-compute
the sum of SADs to all blocks in the object ;

� To give the average motion model of all the blocks in the object ;
� To give the median motion model of all the blocks in the object ;
� To give the motion model of the starting block.
We chose the last way, which is giving the motion model of the starting block. The starting

block was chosen by the grouping process to start a new object because it had the highest
uniqueness, therefore it can be considered as a good representative of the block's motion
model. This is also obviously the fastest way.

4.4.6 Temporal candidates generating

Once an image is ready, i.e. the objects in this image have been detected and every one
of them has a motion model, we can use these motion models as candidates to the analysis
of the next image. This is one of the most important parts of the algorithm - it is based on
the fact that the next image is very likely to contain the same objects or almost the same
objects, hence their motion models can be used.

To produce temporal candidates we take each block, and take its motion model from the
previously analyzed image. Note that as opposed to the SAD comparison, we do not take the
motion model from 3 images before, but from the very last one.

4.4.7 Object based candidates

Instead of simple temporal candidates we can expand to model-temporal candidates. This
means that we do not take the motion model of the same block in the previous image, but we
take the motion model of the object, to which the same block in the previous image belongs.
This is the core element in the idea of "object based motion segmentation". Once we will use
other techniques to re�ne the shape of the object - as edge detection - we will improve the
quality of this model-temporal candidate motion model.

4.4.8 Randomization

The algorithm uses a strong element of di�usion. Therefore, if none of the spatial or
temporal candidates are relevant, we need a small component of randomization in the gene-
ration of the candidates. We implement this by generating more candidates, in addition to
the spatial and temporal candidates. We do it as follows :

� De�ning a "motion span" distance D̄ - a range of motion we would like to be able to
detect, measured in pixels per second1.

1This value is 5 pixels in the FADE2 application, and 16 pixels in the CAMELLIA stabilization application,
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� Generating a �xed number (normally 3) of candidates of the form 〈mX ,mY 〉, where
mX = rand(−D̄, D̄) and mY = rand(−D̄, D̄).

� Using the sole temporal candidate 〈mT
X ,m

T
Y 〉 to generate a �xed number (currently

also 3) of candidates of the form 〈mX ,mY 〉, where mX = mT
X + rand(−D̄, D̄) and

mY = mT
Y + rand(−D̄, D̄).

By rand(a, b) we denote a function that returns each time a di�erent random �oat number
in the range [a, b].

4.5 Object tracking

4.5.1 General method

Object tracking is an isolated part of this algorithm. It "sits" on the output of the earlier
phases of the algorithm, and tries to maintain its hypothesis about what moving objects are
present on the scene.

Note that in the next phase of the development this part of the algorithm will be replaced
by a much larger system, which will use the results of many image processing algorithms to
spot the location of a vehicle. See further sections about future work.

The method which is employed now is simple �lter : generally speaking, the algorithm
numbers the objects detected by the grouping phase, gives each of them a con�dence rate, and
tries to match each image to the previous one. For each object, if it succeeds, it keeps the same
identi�er and raises the con�dence. New objects receive a new ID and an initial con�dence.
When an object "disappears", its con�dence is starting to drop. As long as the con�dence
is still high, the object is remembered and the system keeps trying, in each image, to match
this object to newly appearing objects. Once the con�dence falls below some threshold, the
object is removed from memory.

4.5.2 Upper and bottom con�dence thresholds

The level of con�dence needed for an object to start being considered as a "true" object
is higher than the level under which it stops being "real". Let's look at an example with real
values used in our algorithm : an object always starts with a con�dence of 0.3. Each step
this object is re-detected, it raises its con�dence by 1.2. If it's not detected, its con�dence is
multiplied by 0.9.

Once an object passes 1.3, it starts being "real". It will continue to be "real" until it falls
below 0.8. This eliminates oscillations that could have been caused if the upper and bottom
thresholds were identical.

where sharper motions are found
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4.6 Algorithm future work - directions and risks

4.6.1 Extended motion models

Remark : The following changes are not likely to be implemented in the framework of
this thesis. The information is brought here for the academic discussion.

Currently our program uses 2D movement motion models only. That is - only 2D mo-
vement on the screen is taken into account. This model, in theory, cannot capture cases of
objects that are zooming towards the camera. However in actual experiments we saw that
good results can be obtained in most of the cases, except for objects which are zooming very
strong.

A typical case that demonstrates the extent to which the algorithm can work with 2D
models is shown in Figure 4.5. The car that comes from the left is zooming out. If we would
have used zooming-enabling motion models, then this whole object should have had the same
model, and could easily be grouped. In the case of 2D model this object contains a varying
range of movement vectors, as seen in the image. However, with loose grouping criterion,
we manage to capture this entire object together and make it one body, as demonstrated
in Figure 4.6. This technique has the risk of capturing some parts of the road as well, and
indeed this is one of the problems that we had to cope with. It is obvious therefore, that
2D models do not give su�cient results, and that it is desired to implement models can that
model zooming.

Paper [Witt 01] is talking about a motion model made of 6 parameters - 2 for translation,
2 for zooming center and 2 for zooming extent. This information contains a lot of redundancy.
In particular :

� Zoom extent is proportional in both axes, because our objects are rigid. Therefore there
is a need only for one number there.

� Translation is actually zooming with an in�nite zoom center.

This redundancy is hard to handle because two models, which are actually the same,
could be represented di�erently, and will not be united when needed. We will try to shrink
this model to a less redundant form. A possible option is using zooming model only. This
type of model involves three numbers : the zoom extent - 1 number, the zoom center - and
two numbers in polar form. Note that a pure movement is actually zooming to a point which
is far from the image center. Therefore when we would want to model the movement (0,1) -
a vector that moves up - we would express it as an un-zooming to the point (PI/2, INF) - a
zoom center which is found straight up in the in�nity. For practical cases, the in�nity value
will be any number above some threshold.

4.7 Uniqueness of motion models

In this section we will discuss the subject of uniqueness and try to develop the notion of
one dimensional uniqueness.
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Fig. 4.5 � Edges in the car body produce multiple motion models on the same line.

Fig. 4.6 � Using smoothing, we capture the whole object even if its 2D models are varying.
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4.7.1 Motion estimation for object detection and tracking

Object detection involves the segmentation of continuous regions having the same motion
models. A typical scene shown in �gure 4.4 shows the division of the image into two separate
regions : the track entering from the right and the background.

When dealing with object detection and tracking, one is not only interested in having a
low distortion, but also in having the real motion of object on the real scene. The example of
the sky (where many motion models are correct at the same point) proves that low distortion
is not enough. Because the absence of texture, smooth objects tend to produce motion models
with low distortion, but which are not correct.

4.7.2 Simple uniqueness

To overcome this problem, we note that a smooth object contains many motion models
with low distortion. These motion models can be completely di�erent from each other. On
the other hand, a motion model which exists on the real scene, will be the only one giving
a low level of distortion. Therefore, the key measure of a block is the uniqueness of its best
motion model.

Given a block B, assume that we found a motion modelm0 which minimizes the distortion
on B across =. The uniqueness Φ value, in respect to B and k is de�ned as :

Φk(B) =
Λk(B,m

1)

Λk(B,m0)

wherem1 minimizes the distortion on B across =−m0. Whilem0 is intuitively interpreted
as the "best" motion model, the model m1 is the "next best" one. The comparison between
them actually measures how "special" is m0 in its low distortion. Low uniqueness (towards
1) means "bad" uniqueness. A higher one means "good" uniqueness. Revisiting the previous
example, a typical block in the sky will have a uniqueness smaller than 1.2, because several
motion models will yield low distortion.

4.7.3 Weighted uniqueness

The use of uniqueness as de�ned in previous section might not be accurate, because the
"best" motion model is often replaced by several similar motion models with low distortion.
An object having the movement of mreal pixels in reality (or, to be precise, in the re�ection
of the reality in the image), creates for its corresponding block B several motion models
m0 . . .mk where | mi−mreal |< ε2. The distortion of these motion models will all be low, and
as a result it often happens that the uniqueness of the best motion model is very low (close
to 1). In such case the uniqueness measure doesn't form a good indicator if the movement
is a real one. In order to �x that, we improve the notion and de�ne weighted uniqueness Φ̂,
which takes into account the distance between motion models :

Φ̂k(B) = minm∈=

{
wm

Λk(B,m)

Λk(B,m0)

}
2we use the Euclidean distance between motion models.
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where wm = 1− e−|m−m0| is the weight of the motion model, giving low values for motion
models close to m9 and getting very close to 1 as the distance to m0 is larger than 2 pixels.
This calculation, as in simple uniqueness, calculates the ratio between the distortion of the
"second best" motion model and the distortion of the best motion model. But here, the
"second best" is not automatically taken to be the one having the lowest distortion across
the set =−m0, but searches for one also having a reasonable distance to m0. A motion model
having a low distance to m0 will have a low weight and thus will not be the most dominant
in the calculation of the uniqueness.

We note that for purposes of e�ciency, the weight function wm can be approximated by :

w′m = { 1 if | m−m0 |> 1.5ε
0 otherwise

We also note that in practice, one doesn't check the distortion on the entire set =, unless
full search is used. Instead, a smaller set =′ ⊂ = is checked, according to the block matching
algorithm used.

Figure 4.4 is a good example. Marked blocks are ones with uniqueness value larger than
1.3. As we saw before, this choice well detects moving objects, without any false detection of
movement.

4.7.4 Towards one dimensional uniqueness

A close observation of some particular cases (see �gure 4.5) shows that by dropping
the blocks without unique motion models we might lose important information. The blocks
marked by red circles do not contain a unique motion model with low distortion, because they
fall on a smooth part of an object. However, the smoothness goes only vertically, and therefore
all their low-distortion motion models lie on the same line. This observation sparks the
notion of one-dimensional uniqueness, which is a generalization of the uniqueness measure.
To develop this notion, we need some further de�nitions.

4.7.5 Uniqueness as statistical dispersion

One can give a somewhat di�erent de�nition of uniqueness. Given a block B at frame k
of the video sequence, let us look at the set of all motion models = as a set of 2D weighted
data points, where for each model m ∈ = its weight is wB,k(m) = e−Λk(B,m)/ρ for some value
of ρ. From this type of representation, it seems that our intuitive de�nition of uniqueness
collides with the weighted variance of these data :

Φ̃k(B) =

∑
m∈=wB,k(m) | m− m̄B,k |2∑

m∈=wB,k(m)

where m̄B,k =
∑

m∈=mwB,k(m) is the weighted average of the data points.
Note that Φ̃ can be quickly computed as the motion models with the distortion higher

than 2ρ can be omitted.
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4.7.6 One dimensional uniqueness as the weighted least squares

Similar to the statistical uniqueness Φ̃, we can develop the notion of one-dimensional
uniqueness as a statistical measure of the same data points. However this time we will measure
the dispersion of these points around a line and not a point. The measure we use is the
weighted least squares :

Φ̃1d
k (B) =

∑
m∈=wB,k(m)dist(m,LB,k)

2∑
m∈=wB,k(m)

where LB,k = Ax + By + C is the line which minimizes Φ̃1d
k . This line can be calculated

using the standard method, by taking 3 partial derivatives of Φ̃1d
k with respect to A, B and C,

comparing to zero and solving the resulting system of three equations with three unknowns.

4.7.7 Using the one dimensional uniqueness to enhance detection

We revisit the example shown in �gure 4.5. This time, we used the newly de�ned Φ̃. in
the �gure we marked the weighted average motion model for blocks with Φ̃ < 1.3 (Note that
with Φ̃ the threshold is opposite than with Φ̂). In addition we show the one dimensional
uniqueness and mark the best regression line for Φ̃1d

k < 1.3.
Because of the nature of objects, many times we will �nd a block B1 where Φ̃k(B1) is

low (a "2D-unique" block), with proximity to another block B2 having high Φ̃k(B2) but low
Φ̃1d

k (B1) (a "1D-unique block"), and m̄B1,k lies or almost lies on the line LB2,k. This case
occurs in �gure 4.5. In such case, we can propagate the best motion model of B1 to B2.

4.8 Conclusion

In this chapter we have presented an algorithm for motion estimation. We started from
an existing algorithm described by Wittebrood and de Haan [Witt 01], and improved it to
meet our needs in the domain of visual detection of objects from an on-board camera. In
particular, we have developed the notion of uniqueness as a tool to handle moving objects.

In the next chapters, we will see how the motion algorithm is taking its place near the
AdaBoost based algorithms in order to create a visual detection and tracking system.



Chapitre 5

Particles �lter

5.1 Introduction

In order to develop e�cient intelligent-vehicle applications it is not enough to have the
visual detection and motion estimation techniques described in the last two chapters. In order
to track and estimate the localization and speed of objects (cars or pedestrians) one needs
an e�cient �lter.

This problem is actually quite general : like many scienti�c problems, we require here an
estimation of the state of a system that changes over time according to a sequence of noisy
measurements taken from the system. The noisy measurements, in our case, might be the
detection algorithm and movement estimation described in the previous chapters, as well as
other traditional vision algorithms.

In this chapter, we will describe methods to solve this problem. We will not speak on the
speci�c problem (detection and tracking of cars or pedestrians), but we will speak about the
general problem. However, will not be too general as well : because we deal with systems being
fed by a video camera, we will concentrate on the state-space approach for the modeling of
dynamic systems - that is, on the discrete-time formulation of the general theoretical problem.
Thus, we will develop equations and algorithms to model the evolution of the system along
time, and assume that measurements are available at discrete times (which is indeed the case,
since each image provides measurements).

The following is taken from [Arul 02]. The main idea in such modeling is to have a state
vector. Such a vector contains all the relevant information needed to describe the system
that we are investigating. In addition, we have a measurement vector. The measurement
vector represents noisy observations that are related to the state vector. The measurement
vector is generally, but not necessarily, of lower dimension than the state vector.

To model a system we need two models :

1 System model : a model describing the evolution of the state with time.

2 Measurement model : a model relating the noisy measurements to the state.

We will assume that these models are available in a probabilistic form. The probabilistic
state-space formulation and the requirement for the updating of information on receipt of

127
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new measurements are ideally suited for the Bayesian approach. This provides a rigorous
general framework for dynamic state estimation problems.

In the Bayesian approach to dynamic state estimation, one attempts to construct the
posterior probability density function (pdf) of the state based on all available information,
including the set of received measurements. Since this pdf embodies all available statistical
information, it may be said to be the complete solution to the estimation problem.

In principle, an optimal (with respect to any criterion) estimate of the state may be
obtained from the pdf. A measure of the accuracy of the estimate may also be obtained.
For many problems, an estimate is required every time that a measurement is received. In
this case, a recursive �lter is a convenient solution. A recursive �ltering approach means
that received data can be processed sequentially rather than as a batch so that it is not
necessary to store the complete data set nor to reprocess existing data if a new measurement
becomes available. Such a �lter consists of essentially two stages : prediction and update. The
prediction stage uses the system model to predict the state pdf forward from one measurement
time to the next. Since the state is usually subject to unknown disturbances (modeled as
random noise), prediction generally translates, deforms, and spreads the state pdf.

The update operation uses the latest measurement to modify the prediction pdf. This is
achieved using Bayes theorem, which is the mechanism for updating knowledge about the
target state in the light of extra information from new data.

The following is taken from [Arul 02]. We begin in Section 5.2 with a description of the
nonlinear tracking problem and its optimal Bayesian solution. When certain constraints hold,
this optimal solution is tractable. The Kalman �lter and grid-based �lter, which is described
in Section 5.3, are two such solutions. Often, the optimal solution is intractable. Particles
�lter is described in Section 5.4.

5.2 Nonlinear Bayesian Tracking

To de�ne the problem of tracking, consider the evolution of the state sequence {xk, k ∈
N} of a target given by :

xk = fk(xk−1, vk−1) (5.1)

where fk : RNx+Nv → RNx is a possibly nonlinear function of the state xk−1, {vk−1, k ∈
N} is a process noise sequence and Nx and Nv are dimensions of the state and process noise
vectors, respectively. The objective of tracking is to recursively estimate xk from measure-
ments :

zk = hk(xk, nk) (5.2)

where hk : RNx+Nn → RNz is a possibly nonlinear function, {nk, k ∈ N} is a measurement
noise sequence and Nz and Nn are dimensions of the measurements and measurement noise
vectors, respectively. In particular, we seek �ltered estimates of xk based on the set of all
available measurements z1:k = {zi, i = 1 . . . k} up to time k.

From a Bayesian perspective, the tracking problem is to recursively calculate some de-
gree of belief in the state xk at time k, taking di�erent values, given the data z1:k up to
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time k. Thus, it is required to construct the pdf p(xk‖z1:k). It is assumed that the initial
pdf p(x0‖z0) ≡ p(x0) of the state vector, which is also known as the prior, is available (z0

is actually an empty set of measurements). Then, in principle, the pdf p(xk‖z1:k) may be
obtained, recursively, in two stages : prediction and update.

Suppose that the required pdf p(xk−1‖z1:k−1) at time k − 1 is available. The prediction
stage involves using the system model to obtain the prior pdf of the state at time k via the
Chapman-Kolmogorov equation :

p(xk‖z1:k−1) =
∫
p(xk‖xk−1)p(xk−1‖z1:k−1)dxk−1 (5.3)

In equation 5.3 we used the fact that p(xk|xk−1z1:k−1) = p(xk‖xk−1) because equation 5.1
is a Markov process of order one. The probabilistic model of the state evolution p(xk‖xk−1)
is de�ned in equation 5.1.

At time step k, a measurement zk becomes available, and this may be used to update the
prior (update stage) via Bayes' rule :

p(xk‖z1:k) =
p(zk‖xk)p(xk‖z1:k−1)

p(zk‖z1:k−1)
(5.4)

where the normalizing constant

p(zk‖z1:k−1) =
∫
p(zk‖xk)p(xk‖z1:k−1)dxk (5.5)

depends on the likelihood function p(zk‖xk) de�ned by the measurement model 5.2 and the
known statistics of nk. In the update stage 5.4, the measurement zk is used to modify the prior
density to obtain the required posterior density of the current state. The recurrence relations
5.3 and 5.4 form the basis for the optimal Bayesian solution. This recursive propagation of
the posterior density is only a conceptual solution in that in general, it cannot be determined
analytically. Solutions do exist in a restrictive set of cases, including the Kalman �lter and
grid-based �lters described in the next section.We also describe how, when the analytic
solution is intractable, extended Kalman �lters, approximate grid-based �lters, and particle
�lters approximate the optimal Bayesian solution.

5.3 Optimal Algorithms

5.3.1 Kalman Filter

The Kalman �lter assumes that the posterior density at every time step is Gaussian and,
hence, parameterized by a mean and covariance.

If p(xk−1‖z1:k−1) is Gaussian, it can be proved that p(xk‖z1:k) is also Gaussian, provided
that certain assumptions hold :

� vk−1 and nk are drawn from Gaussian distributions of known parameters.
� fk(xk−1, vk−1) is known and is a linear function of xk−1 and vk−1.
� hk(xk, nk) is a known linear function of xk and nk.
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That is, equation 5.1 and 5.2 can be rewritten as :

xk = Fkxk−1 + vk−1 (5.6)

zk = Hkxk + nk (5.7)

Fk and Hk are known matrices de�ning the linear functions. The covariances of vk−1 and
nk are, respectively, Qk−1 and Rk. Here, we consider the case when vk−1 and nk have zero
mean and are statistically independent. Note that the system and measurement matrices Fk

and Hk, as well as noise parameters Qk−1 and Rk, are allowed to be time variant.
The Kalman �lter algorithm, which was derived using 5.3 and 5.4, can then be viewed as

the following recursive relationship :

p(xk−1‖z1:k−1) = N (xk−1;mk−1‖k−1, Pk−1‖k−1) (5.8)

p(xk‖z1:k−1) = N (xk−1;mk‖k−1, Pk‖k−1) (5.9)

p(xk‖z1:k) = N (xk−1;mk‖k, Pk‖k) (5.10)

where :

mk‖k−1 = Fkmk−1‖k−1 (5.11)

Pk‖k−1 = Qk−1 + FkPk−1‖k−1F
T
k (5.12)

mk‖k = mk‖k−1 +Kk(zk −Hkmk‖k−1) (5.13)

Pk‖k = Pk‖k−1 −KkHkPk‖k−1 (5.14)

Sk = HkPk‖k−1 −KkHkPk‖k−1 (5.15)

Kk = Pk‖k−1 −KkHkPk‖k−1 (5.16)

The notation N (x;m,P ) stands for a Gaussian density with argument x, mean m, and
covariance P .

Sk is the covariance of the innovation term zk −Hkmk‖k−1, and Kk is the Kalman gain.
This is the optimal solution to the tracking problem if the (highly restrictive) assumptions

hold. The implication is that no algorithm can ever do better than a Kalman �lter in this
linear Gaussian environment. It should be noted that it is possible to derive the same results
using a least squares (LS) argument [Jazw 70]. All the distributions are then described by
their means and covariances, and the algorithm remains unaltered, but the distributions
are not constrained to be Gaussian. Assuming the means and covariances to be unbiased
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and consistent, the �lter then optimally derives the mean and covariance of the posterior.
However, this posterior is not necessarily Gaussian, and therefore, if optimality is the ability
of an algorithm to calculate the posterior, the �lter is then not certain to be optimal.

5.3.2 Grid-based Methods

Grid-based methods provide the optimal recursion of the �ltered density p(xk‖z1:k) if the
state space is discrete and consists of a �nite number of states. Suppose the state space at
time k−1 consists of discrete states xi

k−1, i = 1 . . . Ns. For each state xi
k−1, let the conditional

probability of that state, given measurements up to time k − 1 be denoted by wi
k−1‖k−1. In

other words : Pr(xk−1 = xi
k) = wi

k−1‖k−1. Then, the posterior pdf at k− 1 can be written as :

p(xk−1‖z1:k−1) =
Ns∑
i=1

wi
k−1‖k−1δ(xk−1 − xi

k−1) (5.17)

where delta is the Dirac delta measure. Substitution of 5.17 into 5.3 and 5.4 yields the
prediction and update equations, respectively :

p(xk‖z1:k−1) =
Ns∑
i=1

wi
k‖k−1δ(xk − xi

k) (5.18)

p(xk‖z1:k) =
Ns∑
i=1

wi
k‖kδ(xk − xi

k) (5.19)

Note that wi
k‖k−1 can be calculated using the known probability (actually, the model

evolvement) p(xi
k‖x

j
k−1) :

wi
k‖k−1 =

Ns∑
j=1

wj
k−1‖k−1p(x

i
k‖x

j
k−1) (5.20)

and that wi
k‖k can be calculated using the known probability (actually, the likelihood

function) p(zk‖xi
k) :

wi
k‖k =

wi
k‖k−1p(zk‖xi

k)
Ns∑
j=1

wj
k‖k−1p(zk‖xi

k)

(5.21)

We assume that the likelihood function and the model evolution are known (otherwise,
the problem is unde�ned..) and that these probabilities can appear in any form, as long that
they can be calculated.

Again, this is the optimal solution if the assumptions made hold.
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5.4 Particles �lter

5.4.1 Sequential Importance Sampling (SIS) Algorithm

The sequential importance sampling (SIS) algorithm is a Monte Carlo (MC) method that
forms the basis for most sequential MC �lters developed over the past decades ; see [Douc 02]
(in the chapter "An introduction to sequential Monte Carlo methods"), or [Douc 01]. This se-
quential MC (SMC) approach is known variously as bootstrap �ltering [Gord 93], the conden-
sation algorithm [MacC 99], particle �ltering [Carp 99], interacting particle approximations
[Cris 99], [Mora 96], and survival of the �ttest [Kana 95]. It is a technique for implementing
a recursive Bayesian �lter by MC simulations. The key idea is to represent the required pos-
terior density function by a set of random samples with associated weights and to compute
estimates based on these samples and weights. As the number of samples becomes very large,
this MC characterization becomes an equivalent representation to the usual functional des-
cription of the posterior pdf, and the SIS �lter approaches the optimal Bayesian estimate.
In order to develop the details of the algorithm, let {xi

0:k, w
i
k}Ns

i denote a random measure
that characterizes the posterior pdf p(x0:k‖z1:k), where {xi

0:k, i = 0 . . . NS} is a set of support
points with associated weights {wi

k, i = 0 . . . NS} and x0:k = {xj, j = 0 . . . k} is the set of all
states up to time k. The weights are normalized such that Σiw

i
k = 1. Then, the posterior

density at k can be approximated as :

p(X0:k|Z1:k) ≈ wiδ(x− xi) (5.22)

where :

wi ∝ π(xi)

q(xi)
(5.23)

is the normalized weight of the ith particle.
Therefore, if the samples X i

0:k were drawn from an importance density q(x0:k‖z1:k), then
the weights in 5.22 are de�ned by 5.23 to be :

wi ∝ p(x0:k‖z1:k)

q(x0:k‖z1:k)
(5.24)

Returning to the sequential case, at each iteration, one could have samples constituting
an approximation to p(x0:k−1‖z1:k−1) and want to approximate p(x0:k‖z1:k) with a new set of
samples. If the importance density is chosen such that

q(x0:k‖z1:k) = q(x1|x0:k, z1:k)q(x0:k−1, z1:k−1) (5.25)

then one can obtain samples xi
0:k ∝ q(x0:k‖z1:k) by augmenting each of the existing samples

xi
0:k−1 ∝ q(x0:k−1‖z1:k−1) with the new state xi

k ∝ q(xk‖x0:k−1‖z1:k). To derive the weight
update equation p(x0:k‖z1:k), it is �rst expressed in terms of p(x0:k−1, z1:k−1), p(zk, xk) and
p(xk, xk−1). A series of computations can show that the new weights are calculated by the
old weights according to :
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SIS Particle Filter
[{X i

k, w
i
k}

N0
i=1] = SIS[{X i

k−1, w
i
k−1}

N0
i=1, zk]

- FOR i = 1 : Ns

- Draw xi
k ∼ q(Xk‖X i

k−1, zk)
- Assign the particle a weight, wi

k, according
to 5.27
- END FOR

Tab. 5.1 � The SIS particle �lter algorithm.

wi
k ∝

p(zk, xk)p(xk, xk−1)

q(xi
k‖xi

0:k−1, z1:k)
(5.26)

Furthermore, if q(xk‖x0:k−1, z1:k) = q(xk‖xk−1, zk), then the importance density becomes
only dependent on xk−1 and zk. This is particularly useful in the common case when only a
�ltered estimate of p(xk‖z1:k) is required at each time step. From this point on, we will assume
such a case, except when explicitly stated otherwise. In such scenarios, one can discard the
path and history of observations z1:k−1. The modi�ed weight is then

wi
k ∝

p(zk, xk)p(xk, xk−1)

q(xi
k‖xi

k−1, zk)
(5.27)

and the posterior �ltered density p(xk‖z1:k) can be approximated as :

p(xk‖z1:k ≈
NS∑
i=1

wi
kδ(xk − xi

k) (5.28)

where the weights are de�ned in (5.27). It can be shown that as NS →∞, the approxima-
tion (5.28) approaches the true posterior density p(xk‖z1:k). The SIS algorithm thus consists
of recursive propagation of the weights and support points as each measurement is received
sequentially. A pseudo-code description of this algorithm is given by algorithm 5.1.

5.4.2 Resampling and the generic particles �lter

A common problem with the SIS particle �lter is the degeneracy phenomenon, where
after a few iterations, all but one particle will have negligible weight. It has been shown
[Douc 01] that the variance of the importance weights can only increase over time, and thus,
it is impossible to avoid the degeneracy phenomenon. This degeneracy implies that a large
computational e�ort is devoted to updating particles whose contribution to the approximation
to p(Xk|Z1:k) is almost zero. A suitable measure of degeneracy of the algorithm is the e�ective
sample size NEFF introduced in [Berg 99] and [Liu 98], and de�ned as
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NEFF =
NS

1 + var(w∗ik )
(5.29)

where w∗ik = p(xi
k|z1:k)/q(x

i
k|xi

k−1, zk) is referred to as the "true weight". This cannot be
evaluated exactly, but an estimate N̂EFF of NEFF can be obtained by :

N̂EFF =
1

NS∑
i=1

(wi
k)

2

(5.30)

where wi
k is the normalized weight obtained using (5.26). Notice that NEFF ≤ NS, and

small NEFF indicates severe degeneracy. Clearly, the degeneracy problem is an undesirable
e�ect in particle �lters. The brute force approach to reduce its e�ect is to use a very large
NS. This is often impractical ; therefore, we rely on another method called resampling.

The e�ects of degeneracy can be reduced to use resampling whenever a signi�cant degene-
racy is observed (i.e., when Neff falls below some threshold NT ). The basic idea of resampling
is to eliminate particles that have small weights and to concentrate on particles with large
weights. The resampling step involves generating a new set {X i

k}Ns
i=1 by resampling (with re-

placement) NS times from an approximate discrete representation of p(xk|z1:k). The resulting
sample is in fact an i.i.d.1 sample from the discrete density ; therefore, the weights are now
reset to wi

k = 1
NS

. It is possible to implement this resampling procedure in O(NS) operations
by sampling NS ordered uniforms using an algorithm based on order statistics [Carp 99],
[Ripl 87]. Note that other e�cient (in terms of reduced MC variation) resampling schemes,
such as strati�ed sampling and residual sampling [Liu 98], may be applied as alternatives to
this algorithm.

A generic particle �lter is then as described by table 5.2. Although the resampling step
reduces the e�ects of the degeneracy problem, it introduces other practical problems. First,
it limits the opportunity to parallelize since all the particles must be combined. Second,
the particles that have high weights wi

k are statistically selected many times. This leads to
a loss of diversity among the particles as the resultant sample will contain many repeated
points. This problem, which is known as sample impoverishment, is severe in the case of small
process noise. In fact, for the case of very small process noise, all particles will collapse to a
single point within a few iterations. Third, since the diversity of the paths of the particles is
reduced, any smoothed estimates based on the particles' paths degenerate. Schemes exist to
counteract this e�ect. One approach considers the states for the particles to be predetermined
by the forward �lter and then obtains the smoothed estimates by recalculating the particles'
weights via a recursion from the �nal to the �rst time step [Gods 00]. Another approach is
to use MCMC [Carl 92].

5.4.3 Sequential Importance Resampling (SIR) Algorithm

The SIR �lter proposed in [Gord 93] is an MC method that can be applied to recursive
Bayesian �ltering problems. The assumptions required to use the SIR �lter are very weak.

1independent and identically distributed
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Generic Particle Filter
[{X i

k, w
i
k}

N0
i=1] = PF [{X i

k−1, w
i
k−1}

N0
i=1, zk]

- FOR i = 1 : Ns

- Draw xi
k ∼ q(Xk‖X i

k−1, zk)
- Assign the particle a weight, wi

k, according
to 5.27
- END FOR
- Calculate total weight : t=SUM[{wi

k}
N0
i=1]

- FOR i = 1 : Ns

- Normalize : wi
k = t−1wi

k

- END FOR
- Calculate ˆNeff using 5.30
- IF ˆNeff < NT

- Resample
- END IF

Tab. 5.2 � The generic particle �lter algorithm.

The state dynamics and measurement functions fk(· : ·) and hk(· : ·) in (5.1) and (5.2),
respectively, need to be known, and it is required to be able to sample realizations from
the process noise distribution of vk−1 and from the prior. Finally, the likelihood function
p(zk : xk) needs to be available for pointwise evaluation (at least up to proportionality). The
SIR algorithm can be easily derived from the SIS algorithm by an appropriate choice of i)
the importance density, where q(xk|xi

k−1, z1:k) is chosen to be the prior density p(xk|xi
k−1),

and ii) the resampling step, which is to be applied at every time index. The above choice of
importance density implies that we need samples from p(xk|xi

k−1). A sample xi
k ∼ p(xk|xi

k−1)
can be generated by �rst generating a process noise sample vi

k−1 ∼ pv(Vk−1) and setting
xi

k = fk(x
i
k−1, v

i
k−1), where pv(·) is the pdf of vk−1. For this particular choice of importance

density, it is evident that the weights are given by :

wi
k ∝ wi

k−1p(zk|xi
k) (5.31)

However, noting that resampling is applied at every time index, we have wi
k = 1/N∀i ;

therefore

wi
k ∝ p(zk|xi

k) (5.32)

The weights given by the proportionality in (5.32) are normalized before the resampling
stage. An iteration of the algorithm is then described by Algorithm 5.3. As the importance
sampling density for the SIR �lter is independent of measurement zk, the state space is
explored without any knowledge of the observations. Therefore, this �lter can be ine�cient
and is sensitive to outliers. Furthermore, as resampling is applied at every iteration, this can
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SIR Particle Filter
[{X i

k, w
i
k}

N0
i=1] = SIR[{X i

k−1, w
i
k−1}

N0
i=1, zk]

- FOR i = 1 : Ns

- Draw xi
k ∼ q(Xk‖X i

k−1, zk)
- Assign the particle a weight, wi

k, according
to 5.27
- END FOR
- Calculate total weight : t=SUM[{wi

k}
N0
i=1]

- FOR i = 1 : Ns

- Normalize : wi
k = t−1wi

k

- END FOR
- Resample

Tab. 5.3 � The SIR particle �lter algorithm.

result in rapid loss of diversity in particles. However, the SIR method has the advantage that
the importance weights are easily evaluated and that the importance density can be easily
sampled.

5.5 Conclusion

In this chapter, we have seen the need for �ltering for the purpose of tracking. Towards
this goal, we've passed over di�erent methods of �ltering. We have seen some optimal �lters
that work perfectly when the signal is linear and gaussian. Then we've presented the particle
�lter and exaplained why it is suitable for visual detection in-vehicle system. We have seen
several types of this �lter.



Chapitre 6

Application I : Stop&Go system

This chapter describes a close range ACC (so called "Stop&Go") application. This type
of application is designed to be installed on a moving vehicle equipped with a single frontal
camera and a lidar. The goal of the system is to automatically control the car's speed in order
to keep a constant distance from the car in front. The name of the system ("Stop&Go") comes
from the situation where it's the most useful - heavy tra�c, where the driver has to stop
and go every few seconds to follow the car in front. The system identi�es the car in front,
estimating the distance to it and control the car speed automatically to preserve a �x distance.

The system is activated manually by the driver. Once activated, the system searches for a
target to lock on. An important feature of the system is its ability to automatically deactivate
itself when it feels that it cannot reliably tell where is the car in front, or when it feels that
some other obstacle has entered the space between the host vehicle and the car we follow.
Such a deactivation could take place immediately after activation or after a long period of
operation.

The application employs a tracking engine for detection and tracking of target vehicles in
front of the host vehicle. The output of this tracking engine is a list of targets. The application
selects one target (the one in front of the host vehicle) and outputs activation/deactivation
command and a desired car speed. This data is transferred to a control unit which is control-
ling the hardware in the car (gas, brakes, etc.).

6.1 The detection and tracking framework

6.1.1 Requirements for the application

Coming to design this detection and tracking system, we should analyze the input and
output of the system. The main input of the system - the images arriving from the camera
- can be analyzed by several observations. Each one of these observations detects di�erent
features of the image - motion, dark areas, symmetries, vertical edges etc. The output, on
the other hand, should be a list of targets, with accurate spatial position of each target, plus
a measure of this accuracy (con�dence value). The question, therefore, is how to go from the
input observations to the output.

The problem is di�cult :

137
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� Image processing is a non-linear and non-gaussian observation process.
� Projection in an image is also non-linear and non-gaussian.
� Simple Kalman �lter (typical algorithm for model inversion) is out of focus here. Ex-
tended Kalman �lter might operate poorly (it is not known what model to provide).

6.1.2 Previous approaches

Bayesian Networks

Bayesian Networks-based data fusion was used in a previous project (FADE 1, see [Steu 02]),
and provided good results. Unfortunately, this method exhibits severe limitations, as discus-
sed below.

Advantages :
� This is a diagnosis approach : enables the detection of failing algorithms (especially
image processing algorithms), through the computation of correlations between propo-
sals made up from several sources.

� Observation is completely independent of the ground plane constraint, since we use a
model of the width of the target for retro-projection (typically 1.75m).

� Accuracy of localization is high, since we combine many di�erent "sensor outputs" from
many di�erent algorithms, thus yielding in a typical 10% distance accuracy.

Drawbacks :
� One target = one hypothesis (one state space position). No real state space exploration.
� Bayesian nets don't allow to distinguish between con�dence and accuracy of localization
of the target. When a hypothesis gets a low score, it is di�cult to state whether the
target is badly located (inaccuracy of detection) or the target simply doesn't exist or
doesn't �t the model (uncertainty). It's very di�cult to set up a "split" strategy from
the results provided by the Bayesian net.

� The major drawback is that the actual setup can only use image processing algorithms
that provide vertical features (in order to combine inputs). This is good for edge de-
tection, lights, shadow, symmetry detection but how to integrate motion segmentation
into that framework ?

� The fusion algorithm is di�cult to tune. You have to attribute a priori belief to each
source, which was found to be tricky.

� Bayesian net computation is heavy, so it's generally necessary to get back to approxi-
mations of Bayesian nets (which were done in FADE 1), which to some extent tend to
deteriorate the results.

Problems :
� It is unclear how to integrate motion segmentation into such a framework.
� It is not possible to cope with di�erent kinds of targets, like motorcycles and trucks.

6.1.3 Particle �ltering

Particle �ltering, as described in chapter 5, is a useful method to track targets in non-
linear, non-gaussian environment, as is our system.
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Fig. 6.1 � The fusion process.
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Fig. 6.2 � The resampling process.

{xi
k, w

i
k}Ni=1 ← SIR({xi

k−1, w
i
k−1}Ni=1, zk)

1. For i = 1 . . . N , do :

1.1 Draw xi
k
∼= p(xk | xi

k−1)

1.2 Calculate wi = p(zk | xi
k−1)

2. Send {xi
k, w

i
k}Ni=1 to output stage

3. For all i = 1 . . . N , Normalize wi
k ←

wi
k

t

Where t =
N∑

i=1

wi
k

4. {xi
k, w

i
k}Ni=1 ← RESAMPLE({xi

k, w
i
k}Ni=1)

Tab. 6.1 � The SIR particles �lter algorithm.

Figure 6.1 shows a diagram representing how we use particle �ltering in an application
using several image processing algorithms. The particle �lter is used to make the fusion
between all these algorithms, which individually are not sophisticated enough to yield a good
result, but can be combined together to provide a robust system.

Our chosen version of particles �lter is the SIR �lter, because of its simplicity. The algo-
rithm is given in table 6.1. The resampling algorithm appears in table 6.2. A visual explana-
tion of the resampling process appears in �gure 6.2.

We will use hereinafter the notation of steps. Step k of the execution corresponds to the
status of the application after processing input image number k. Thus, at the beginning of
the execution k = 0.

The system is maintaining, at each moment, a set of targets. At k = 0, this set is empty.
New targets are initialized by several algorithms in a way that will be described later.

At step k when k > 0, some targets have been initialized and the targets set is possibly not
empty. For each existing target we maintain a probability density function (PDF) p(xk | z1−k)
of the state xk of the target, according to all the observations z1, . . . , zk received at steps 1
to k. We use the notation z1−k for these observations.
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{xi
k, w

i
k}Ni=1 ← RESAMPLE({xi

k, w
i
k}Ni=1)

1. Initialize the CDF (cumulative density function) to
cl = 0

1. For i = 2 . . . N , do :

1.1 cl ← cl−1 + wi
k

2. Assign i← 1.

3. For j = 1 . . . N , do :

3.2 While j−1
N

> ci, do i← i+ 1

3.3 Assign particle's sample xj
k ← xi

k

3.4 Assign particle's weight wj
k ← 1

N

Tab. 6.2 � The resampling algorithm.

The PDF is represented using a set of N random samples1 with associated weights
{xi

k, w
i
k}Ni=1, called particles 
Each indexParticleexisting target in the system, therefore, has

a set of particles and each particle is a weighted hypothesis about that target.

6.1.4 The state space

In our particular case, the state xi
k is a triple 〈X,Y, T 〉 representing a box-like vehicle

whose bottom rear edge is centered around the ground point 〈X, Y, 0〉. The parameter T can
have one of the three values {MOTORCY CLE,CAR, TRUCK}, corresponding to motor-
cycle, car or truck.

The vehicle dimensions are determined by T using table 6.13. Vehicle is assumed to be
aligned with the axes system (i.e. θ = 0, φ = 0, ψ = 0), as well as the ground, which is
supposed to be �at in the area of interest.

The state space was deliberately designed to be of low dimension. Theoretically, it was
ideal to include in the state space also the width and length of the vehicle, its angle and
may be also its speed and acceleration. However, choosing a high-dimensional state space
causes lower convergence, or alternatively a need for a huge number of particles (which in
turn causes a slow operation).

Therefore, we chose to keep only 〈x, y〉 in the particle state space, plus a discrete value
T of the type of the vehicle. This makes the state space easily observable with a top view of
the situation, and thus eases the understanding and tuning of the system.

1in our implementation, N = 100
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Fig. 6.3 � A typical vehicle target, frontal image (left) and its particles on a bird's eye view
(right).

The discrete value T saves us the need to include the width in the state space since by
determining the type of the vehicle we can roughly know its width.

Figure 6.3 shows a typical tra�c vehicle target and its particles.

6.1.5 How algorithms are combined

When speaking about image processing algorithms in this context, we are referring to
a type of algorithms which is being ran one time per image of the video sequence. Typical
algorithm will get the input image. In addition, it will typically get some bounding boxes
that specify where we suspect there are targets. For some algorithms, this information is
crucial because they are target-speci�c. For others, this information is helping to perform
faster, because it allows them to perform some processing only on the expected area of these
targets.

After processing the input image, algorithms generally do one or both of the following
operations : initialize new targets and support/decline hypotheses about the location of
already-discovered targets.

Initialization of targets

To create new functions, an algorithm should give us as output a list of new targets, and
for each target provide a list of theses where it believes the target is found. For example,
when the motion segmentation algorithm spots a movement in the scene, and this movement
does not seem to correspond with an existing target, it creates a new target. However, it does
not know exactly where the target is ; it can be close or far, a little bit to the right or to
the left. It therefore produces a list of theses (embodied as particles in our particle �ltering
system) about where the target is. In section 6.2 we explain how the di�erent algorithms are
initializing targets.

The likelihood functions

To support or decline existing targets, we use the mechanism of the likelihood function.
Each one of the 5 participating algorithms provides, after it has executed its initial prepro-



6.1. THE DETECTION AND TRACKING FRAMEWORK 143

Fig. 6.4 � The likelihood function. On the left, a frontal view of a typical situation. On the
right, a birds-eye view of the particles (the left "cloud" of each group) and the likelihood
functions of 5 algorithms (the 5 right clouds in each group)

cessing stage on the input image, a likelihood function p(zk | xk) ∈ [0, 1], where zk is the
observation of the algorithm and xk is the state of the target.

A visualization of typical likelihood function is shown in �gure 6.4.

6.1.6 Advantages of using particle �ltering

Compared to the Bayesian nets approach, using particle �ltering has several advantages :
� One target = n hypotheses. This is the basis for the algorithm, and it makes fusion and
splitting between targets more natural. Accuracy of localization should be high, due
to the high number of particles. Averaging these positions (according to their weight)
yields the global target position output.

� Visual results : eases the tuning. Tuning is done through likelihood functions, which
can be of any sort (including non-linear functions) and thus are very adapted to image
processing algorithms.

� Allows to distinguish between con�dence (weights of particles) and inaccuracy (spatial
distribution of particles).

� Allows the integration of many di�erent algorithms (of any kind, providing any kind
of input). Makes possible the integration of horizontal edge detection and the use of
di�erent models than just the width of the car (i.e. height of lights at short distance,
by using the hypothesis of plane road, which is accurate at very low distance).

6.1.7 Con�dence of targets

Each particle belonging to a target carries a weight, which states the probability of its
hypothesis. The sum of the weights for each target is 1, for convenience of the algorithm.
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Fig. 6.5 � The coordination system.

However, we would like to have a number indicating the probability that the target exists at
all. For this we maintain for each target a con�dence value. The con�dence is changing over
the execution according to several parameters :

� The initial con�dence value for a new target.
� The maximal con�dence value.
� The con�dence value below which a target is deleted.
� The con�dence value above which a target is said to be validated for the purpose of the
Stop&Go application.

In our implementation we used 1,1000000,0.2 and 1000 for the 4 values above.

6.2 Image processing algorithms

6.2.1 Introduction

Conventions

When we speak about a location of a vehicle on the world, we will specify a pair of the
form <x,y>. Unless stated otherwise, we denote by this a vehicle which is located on the
ground and its rear, bottom, middle point is at point <x,y,0>, as drawn in Figure 6.5

Projection and retro-projection

Image processing algorithms work on the screen ; real targets exist in the real world. These
di�erent coordinates need converting to both directions. In our program, we assume speci�c
parameters of the camera, with which the video sequence was taken. Using the values of these
parameters, we can provide a projection of a point <x,y,z> to a screen point <u,v> and vice
versa. Note that throughout this chapter, when we say that we project a vehicle located at
<x,y> to the screen, we mean that we do the following sequence of operations :

� Produce the 3D box of the vehicle, which is located at <x,y> (as de�ned above).
� Project all the 8 points of this box.
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Fig. 6.6 � The retroprojection method
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Fig. 6.7 � Shadows corresponding to cars

� Calculate on the screen the 3 following rectangles : the rectangle Rrear which is the
projection of the rear face of the vehicle ("the rear projected rectangle"), the rectangle
Rfront which is the projection of the front face of the vehicle ("the front projected
rectangle"), and the rectangle Rglobal which is the union of the two �rst rectangles
("the global projected rectangle").

When we say "the projection rectangle", without specifying which of the 3 rectangles we
mean, then we mean the global rectangle.

Figure 6.6 shows the projection and retroprojection method.

6.2.2 Vehicle shadow detection

Shadow detection is based on the thresholding of images to �nd areas of darkness on
the road. These areas are often shadows made by vehicles (see �gure 6.7). The results are
used both to generate new targets and to support/decline the existence of already discovered
targets.

One of the parameters of the algorithm is a rectangle which is likely to fall entirely on the
road, as demonstrated on Figure 6.8 (top right). As seen in the �gure, this rectangle should
be selected according to camera parameters. If, in the course of the execution, the algorithm
suspects (we will later see how) that the rectangle is not falling on the road, it deactivates
automatically and no analysis is done. Otherwise, it computes the histogram of pixel values
on this rectangle. A typical histogram, as the one shown in �gure 6.8 (top left), will consist
of a narrow value, which is the pixel value of the color of the road.

The histogram is used to calculate the variance of the pixel values in the rectangle. If the
variance is larger than a threshold2, the algorithm concludes that the rectangle is not entirely
on the road. See �gure 6.14 for an example.

The algorithm thresholds the entire image with a threshold value equal to 90% of the
peak of the histogram. The result is that all objects which are darker than the road are
appearing in the thresholded image. On the area of the road, these are typically shadows of

2in our implementation, this threshold is equal to 60.
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Fig. 6.8 � The shadow detection algorithm. The histogram (top left) is calculated on the
road rectangle (top right). The image is thresholded (bottom left) and later eroded (bottom
right).
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obstacles on the road, and this is the idea behind this algorithm. To smooth noise, we apply
a simple temporal �lter on the threshold value. If we consider that in each step k we obtain
a threshold value of m, we maintain at all times a smoothed threshold value tk computed as
follows :

t0 = 0

tk = m ∗ γ + tk−1 ∗ (1− γ)
This �lter uses a factor γ to blend the newest result with previous ones. Typical useful

value for γ is 0.9.
After thresholding, the image is full of small parts, which are not valuable for analysis of

shadows on the road. We use Erosion with a simple 3x3 element to remove these small parts.
The two images at the bottom of �gure 6.8 show the result of this operation.

Next, we perform an analysis of the blobs in the thresholded image, and use the parameters
of the camera and our knowledge of the approximate width of cars, trucks and motorcycles
to determine if a blob really represents one of these objects. The blob shown in �gure 6.15
for example, cannot represent a car, a truck and a motorcycle. According to the parameters
of the camera, we can tell that this blob represents an object of width of several dozens of
meters, and this cannot be a vehicle. We �lter, therefore, a large number of blobs before
interpreting them into target vehicles.

The preprocessing of the image in this algorithm includes therefore the histogram, the
thresholding and the blob analysis. The output of the preprocessing is a list of blobs. We will
see below how this list is used to evaluate existing targets (by the likelihood function) and
to create new targets.

A summary of the preprocessing of this algorithm is given in table 6.3.

The likelihood function

The input of the likelihood function, as explained in subsection 6.1.5, is a single particle
which represents a single hypothesis for the location and type of a speci�c target. As explained
in subsection 6.1.4, the hypothesis is a triple 〈X, Y, T 〉, with 〈X, Y 〉 being the location,
in world coordinates, and T ∈ {MOTORCY CLE,CAR, TRUCK} being the type. The
likelihood function will try to evaluate the probability that this hypothesis is correct3, using
the list of blobs produced in the preprocessing phase.

The entire likelihood function is given in table 6.4
There are limits, beyond which information is beginning to become fuzzy. We have found

that limits as the ones appearing in �gure 6.18 are the most adequate. In terms of table 6.4,
we have X̂ = 60, Ŷ = 15, X̄ = 10, Ȳ = 7. Beyond these limits, we do not try to estimate
the probability. Rather than that, we return a probability of 0.5 to represent the fact that in
such a distance, this algorithm cannot donate any meaningful information. This is shown in
steps 2-4 of the function.

Next thing to do is to determine the width of the object we are trying to match to the
blobs. We calculate, according to table 6.13, the desired width. Then, we project (step 5

3When saying "correct" we have to remember that we are speaking about a discrete sample of a continuous
density function and therefore we are actually evaluating the environment of this hypothesis.
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Input : an image Ik, coming from the Y plane of the input YUV image at step k of the
execution, and a value tk−1 from the previous step (if k = 0, we consider tk−1 = 0).

Parameters : a rectangle Rroad which normally falls on the road, a factor γ for the temporal
�lter and a variance threshold δ.

Output : a list of blobs b1 . . . bn.

The algorithm :

• Calculate the histogram v0, v1 . . . v255 of the pixel values in Rroad (vi is the number
of times the pixel value i appears in this rectangle). From the histogram, calculate the

mean x̄ = 1
N

255∑
i=0

i ∗ vi, the variance σ2 = 1
N

255∑
i=0

vi ∗ (i− x̄)2 and one of the maximal values

m ∈ {v | v ≥ vi∀i}. N is the surface (in pixels) of the rectangle Rroad.

• If σ2 > δ, deactivate the algorithm and exit.

• Calculate tk = m ∗ γ + tk−1 ∗ (1− γ)
• Threshold the image Ik with the threshold value 0.9 ∗ tk.
• Erode the image with the following kernel e2x3 to remove noise :

e2x3 =

(
1 1 1
1 1 1

)

• Analyze the resulting image and obtain the output list of connected bodies, or blobs,
b1 . . . bn. Each blob is represented by its bounding rectangle on the image.

Tab. 6.3 � The shadow detection preprocessing phase.
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of the function) the vehicle (whose bottom rear center is located at 〈X, Y 〉) on the screen,
according to the camera parameters.

The projection is three-dimensional - that is, it is a 8-point box, as explained in subsection
6.2.1. We know that shadows can be created by the rear of the vehicle or by the entire vehicle
(see �gure 6.16). Therefore, we will try to match blobs to both the rear projected rectangle
and to the global projected rectangle.

A good test to robustify this algorithm is the two-bases check. Without this check, there
are many blobs which match to the particle's hypothesis projection, like the ones shown in
�gure 6.17. These blobs have the common feature that they are not horizontal. The two-bases
check veri�es that the blob intersects with the left and right bottom rectangles of the vehicle,
as demonstrated in �gure 6.19. Intersection should occupy at least 10% of the rectangle area ;
one or two pixels - which can be caused by a noisy image - are not enough. This test can be
seen in step 6 of the function, with λ = 0.1.

Note, that it is not always the case that a single vehicle produces a single shadow. Often,
shadows are not strong and are divided into several pieces. This can be seen in �gure 6.21.
Therefore, to achieve better reliability, we will allow the matching of di�erent blobs to the
right and to the left sides of the vehicle.

Now we go over all the blobs, and try to match blobs with the projected vehicle. We do
not take all the blobs, but only ones complying with certain conditions. First (step 7.1 of the
function) we omit very small blobs, because they are too small to conclude the existence of
a target. In terms of table 6.4, we use ŵ = 6, ĥ = 2.

A special treatment is given to hypothesis (particles) where the target vehicle is not
entirely located inside the image (step 7.2). Such a case, like the one shown in image 6.22,
should be treated di�erently because we look for only one shadow. The hidden side of the
vehicle should not be matched with a shadow. In such case, we use only blobs which are
touching the image borders to match the visible side of the vehicle.

Third, we check vertical consistency. We compare the bottom of the blob with the bottom
of the global projected rectangle, and allow freedom of V = 12 pixels (see step 7.3).

After the matching operation we have :

1 a blob minimizing the distance between the left of the blob and the left of the global
projected rectangle of the vehicle.

2 a blob minimizing the distance between the right of the blob and the right of the global
projected rectangle of the vehicle.

3 a blob minimizing the distance between the left of the blob and the left of the rear
projected rectangle of the vehicle.

4 a blob minimizing the distance between the right of the blob and the right of the rear
projected rectangle of the vehicle.

As seen in the table (steps 8, 9 and 10), we calculate a probability between 0 and 1
according to the best left distance (the minimum between the blobs in 1 and 3) and the best
right distance (2 and 4). For vehicles which fall outside of the image, we use only the distance
which relates to the visible side.
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Input : a particle containing a hypothesis 〈X, Y, T 〉 about an existing target, where 〈X, Y 〉 is the
position of this target and T ∈ {MOTORCY CLE, CAR, TRUCK} is its type.
Parameters : X̂ and Ŷ , a maximal working range and width, X̄ and Ȳ , a medium working range
and width, ŵ, ĥ minimum blob width and height, V , a vertical freedom threshold, λ, a threshold
for the two-bases test, L, maximum horizontal distance and µ1, µ2, factors for calculating the
�nal value for one or two shadows

Output : a real value between 0 and 1, representing the likelihood that this target is indeed of
the type T and found in 〈X, Y 〉.
Additional data : the list of blobs b1 . . . bn, the output of the preprocessing phase.

The function :

1. If the algorithm is deactivated, or X > X̂, or X̂ ≥ X > X̄ and | Y |> Ŷ , or X̄ ≥ X > 0 and
| Y |> Ȳ , return 0.5

2. project the position 〈X, Y 〉 on the image and obtain Rglobal and Rrear as explained in subsection
6.2.1

3. The two-bases check : consider the two sub-rectangles of Rrear,
←−
R and

−→
R , de�ned as :

left(←−R ) = left(Rrear)
right(←−R ) = left(Rrear) + 1

4width(Rrear)
top(←−R ) = top(Rrear) + 3

4height(Rrear)
bottom(←−R ) = bottom(Rrear)
left(−→R ) = left(Rrear) + 3

4width(Rrear)
right(−→R ) = right(Rrear)
top(−→R ) = top(Rrear) + 3

4height(Rrear)
bottom(−→R ) = bottom(Rrear)
For a rectangle R we de�ne as val(R) the number of pixels in the thresholded image which are
equal to 1 and fall inside the rectangle R.
If
←−
R is entirely inside the image and val(←−R ) < sufrace(←−R ) ∗ λ or val(−→R ) < sufrace(−→R ) ∗ λ,

then return 0.25
4. let B ⊆ {b1 . . . bn} be the set of all blobs b for which the following conditions hold :

4.1 height(b) ≥ ĥ or width(b) ≥ ŵ

4.2 if Rglobal is not entirely in the image, the blob b is touching one of the image borders (that
is left(b) = 0 or top(b) = 0 etc.)

4.3 | bottom(bi)− bottom(Rglobal) |≤ V

5. de�ne :←−∆ = minb∈Bmin(| left(Rrear)− left(b) |, | left(Rglobal)− left(b) |)−→∆ = minb∈Bmin(| right(Rrear)− right(b) |, | right(Rglobal)− right(b) |)
6. if

←−∆ > L then
←−∆ ← L, same for

−→∆
7. If only the right (left) side of Rglobal is inside the image, then calculate the likelihood value
according to the right shadow only :
result = 1−−→∆ ∗ µ1 (1−←−∆ ∗ µ1)
otherwise, calculate according to both shadows :
result = 1− (−→∆ +←−∆) ∗ µ2

8. Clip the result in the range [0.25, 1] and return it

Tab. 6.4 � The shadow detection likelihood function.
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As in the other algorithms, the result is always clipped with the range [0.25, 1]. A proba-
bility below 0.25 cannot be evaluated by this algorithm, because it can never be sure that its
analysis is perfect (step 11).

Initializing new targets

Targets are initialized when there is a blob which might represent a vehicle. Not entirely
unlike the calculations we make in the likelihood function, we run the following tests for each
blob to see if it corresponds to a real object :

1 We check, according to the camera parameters, if the width of the blob in the real world
is approximately the width of a car, truck or motorcycle. To do that, we retro-project
the blob to the scene six times - two times for each type (car, truck, motorcycle). The
�rst time, assuming it is the shadow of the rear of the vehicle. The second, assuming
it is the shadow of the entire vehicle. Both cases are identical if the vehicle is situated
exactly in front of us. For each of these six retro-projections, we project back the six
vehicles to the image, and see if we got the same vertical location (up to an error of
10 pixels). If the blob cannot represent that vehicle, the projection will be far from the
blob, as seen in image 6.14.

2 We perform the two-bases check, to see if the blob is horizontal, as described above.

3 We only use blobs which are not touching the image borders. Blobs touching the image
borders might correspond to vehicles entering the scene, but these types of vehicles
will be initialized by motion estimation later. Shadow detection only initializes targets
which are entirely on the scene. Using shadow detection to initialize entering vehicles
produces too much noise because often shadows are created on the sides by sidewalks,
�elds, etc.

To initialize, we take each one of the retroprojections which passed test 1 above (it might
be all the six retroprojections, some of them, or none), and spread 100 particles over its
location, in a net structure. The result is up to 600 particles representing di�erent kinds of
vehicles in di�erent positions, all according to the given blob. This is done for each blob
which passed the 3 tests above.

6.2.3 Car's rear-lights detection

This algorithm uses the fact that cars and trucks usually have noticeable red rear lights,
and a yellow license plate. The algorithm is using the V plane of the input image. High values
in this plane represent red and yellow, and thus a simple threshold on this plane can reveal
car's lights and plate. This algorithm is slightly less e�ective on motorcycles, where there is
only one light, but it can also help in this case.

The algorithm uses information about targets which existed already in the previous step.
For each existing target t, we take an image rectangle Rt = ∪p∈tproj(p), where proj(p) is the
global projected rectangle of the particle p.

The algorithm starts by computing the histogram of the V plane in the bounding rectangle
Rt of each existing target t. For each rectangle, using the histogram, we choose a value which
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(a) (b)

(c)

Fig. 6.9 � Lights detection algorithm. First, the histogram is calculated (a). Then, the region
is thresholded using a value calculated from the histogram (b). The obtained blobs are used
to detect the rear lights (c).

is superior of 98% of the pixels in that rectangle. This is demonstrated in �gure 6.9. Typically,
pixels having a larger value than this threshold will represent strong red or yellow intensities.
Next we threshold each rectangle with its corresponding threshold value and obtain, ideally,
a clear view of the lights and plate.

After the threshold, a blob analysis is performed on each rectangle and the resulting lists
of blob (one list Lt for each existing target t) are the output of the preprocessing stage. We
will see how these lists are used to calculate the likelihood.

The whole process is repeated one more time for the whole image. That is, the histogram,
the threshold value and the thresholding are performed not on a speci�c region, but on the
entire image. The resulting list of blobs Lall will be used to initialize new targets, as we will
see later.

Table 6.5 gives the entire algorithm for the lights detection.
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Input : an image Ik, coming from the V plane of the input YUV image at step k of the
execution, and a list of image rectangular regions r1 . . . rm, each region ri being associated
with an existing target ti.

Parameters : Histogram percentage γ, minimum threshold value T .

Output : For each target ti a list of blobs bi1 . . . b
i
ni
, plus a global list of blobs b01 . . . b

0
n0
.

The algorithm :

1. De�ne r0 are an image rectangular region consisting of the entire image.

2. For i = 0 . . .m do :

2.1 Calculate the histogram vi
0, v

i
1 . . . v

i
255 of the pixel values in the region ri (vi

p is the
number of times the pixel value p appears in ri). From the histogram, calculate m, the

minimal value such that
m∑

p=0

vi
p > γ ∗

255∑
p=0

vi
p

2.2 If m < T , then m← T

2.3 Threshold Ik with the threshold value m

2.4 Erode the image with the following kernel e2x3 to remove noise :

e2x3 =

(
1 1 1
1 1 1

)

2.5 Analyze the resulting image and obtain the output list of connected bodies, or blobs,
bi1 . . . b

i
ni
. Each blob is represented by its bounding rectangle on the image.

Tab. 6.5 � The rear lights detection preprocessing phase.
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The likelihood function

The input of the likelihood function, as in the previous algorithm, is a particle containing
a hypothesis 〈X, Y, T 〉 of an existing target t. The function is running on the list of blobs Lt

discovered for this target in the preprocessing phase. Our goal is to �nd 1,2 or 3 blobs which
will optimally match the vehicles lights and plate.

There are several cases, shown in �gure 6.23 :
� In case of a motorcycle, we search for one blob, corresponding to the single rear light,
which should be situated in the middle of the rear projected rectangle of the motorcycle.

� In case of a car or a truck which are not entirely on the scene, we are searching only
for one light.

� In case of a fully visible car or truck, we are searching for two lights, and preferably
also a plate. However, even if we don't �nd a plate, and even if one light is missing, we
will give a moderate probability estimation, because sometimes the plate or one of the
lights are not clear enough to appear on the thresholded image.

� In some cases the lights and even the plate are appearing as one long blob, in which
case we should also give reasonable probability estimation.

To cover all these cases, we simply assign each blob its best "role" - that is, does it
resemble a left light, a right light or a plate. To test if a blob corresponds to a left or right
light, we :

� check if the top and bottom of the blob are within the limits shown in �gure 6.20 ;
� check if the width of the blob is at least 1/10 of the width of the vehicle.
To test if a blob corresponds to a license plate, we :
� check if the top and bottom of the blob are within the limits shown in �gure 6.20 ;
� check if the width of the blob is at least 1/8 of the width of the vehicle ;
� check if the blob is �at - its width must be at least 3 times larger than its height.
The entire likelihood function is given in table 6.6. After the matching operation we have :

1 bl - a blob which is the most likely to be the left light - it complies with the relevant
conditions above and minimizes the distance between the left of the blob and the left
of the rear projected rectangle of the vehicle.

2 br - a blob which is the most likely to be the right light - it complies with the relevant
conditions above and minimizes the distance between the right of the blob and the right
of the rear projected rectangle of the vehicle.

3 bl - a blob which is the most likely to be the plate - it complies with the relevant
conditions above and minimizes the distance between the center of the blob and the
center of the rear projected rectangle of the vehicle.

As seen in the table, we calculate a probability between 0 and 1 according to these
distances. For vehicles which fall outside the image, we use only the distance which relates
to the visible side.

The result is always clipped within the range [0.25, 1].
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Input : a particle containing a hypothesis 〈X, Y, T 〉 about an existing target ti, where 〈X, Y 〉 is
the position of this target and T ∈ {MOTORCY CLE, CAR, TRUCK} is its type.
Parameters : a factor λ for the minimum result calculation, µ1, µ2 and µ3, factors for calculating
the �nal value for one or two lights and for a plate, a maximal value M̄ for case of no plate, ρ - a
penalty for two connected lights

Output : a real value between 0 and 1, representing the likelihood that this target is indeed of
the type T and found in 〈X, Y 〉.
Additional data : for each existing target ti, i = 1 . . .m, a list of blobs bi

1 . . . bi
ni
, the output of

the preprocessing phase.

The function :

1. project the position 〈X, Y 〉 on the image and obtain Rglobal and Rrear as explained in subsection
6.2.1

2. If Rrear is entirely not in the image, return 0.5

3. Determine the minimum possible result of this algorithm, p :
p = min(0.5, 0.25 + X ∗ λ)
4. Find all blobs corresponding to lights : let L ⊆ {bi

1 . . . bi
ni
} be the set of all blobs b for which

the following conditions hold :
4.1 width(b) > 1

10width(Rrear)
4.2 top(Rrear) ≤ top(b) ≤ top(Rrear) + 3

4height(Rrear)
4.3 top(Rrear) + 1

4height(Rrear) ≤ bottom(b) ≤ bottom(Rrear)
5. Find all blobs corresponding to plates : let P ⊆ {bi

1 . . . bi
ni
} be the set of all blobs b for which

the following conditions hold :
5.1 width(b) > 1

8width(Rrear)
5.2 top(Rrear) + 3

8height(Rrear) ≤ bottom(b) ≤ top(Rrear) + 3
4height(Rrear)

5.3 width(b) > 3 ∗ height(b)
6. de�ne :
6.1
←−∆ = minb∈L | left(Rrear)− left(b) |

6.2
−→∆ = minb∈L | right(Rrear)− right(b) |

6.3 ∆̄ = minb∈P | left(Rrear)− left(b) |
7. if the blob of the minimum in 6.3 is the same one as the blob of the minimum of 6.1 or 6.2,
then ∆̄ = M̄

8. If only the right side of Rrear is inside the image, then calculate the likelihood value according
to the right light and possible plate only :
result = 1−−→∆ ∗ µ1 + ∆̄ ∗ µ3

If only the left side of Rrear is inside the image, then calculate the likelihood value according to
the left light and possible plate only :
result = 1−←−∆ ∗ µ1 + ∆̄ ∗ µ3

otherwise, calculate according to both shadows and possible plate :
result = 1− (−→∆ +←−∆) ∗ µ2 + ∆̄ ∗ µ3

9. if the blob of the minimum in 6.1 is the same one as the blob of the minimum of 6.2, then :
result← result− ρ
except if T = MOTORCY CLE

10. Clip the result in the range [0.25, 1] and return it

Tab. 6.6 � The rear lights detection likelihood function.
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(a) (b)

Fig. 6.10 � The selection of the blobs for lights detection.

6.2.4 Symmetry detection

Symmetry detection is based on calculating the SAD (Sum of Absolute Di�erences) bet-
ween some area of the image and its adjacent area in the mirror image, as seen in Figure
6.11. If the two areas are two parts of a symmetry, the SAD will be zero.

For each existing target, we repeat the calculation of the SAD on a set of adjacent pairs
of regions and obtain a symmetry function as shown in Figure 6.11. The symmetry function
of a car typically has the "MacDonald" M-shape as shown in the image. This is due to the
fact that the car is symmetric in the middle, but its sides are anti-symmetric. Note that the
low symmetry on the sides is as important as the symmetry at the middle. To understand
this, consider the sky, which has good symmetry in all the places.

The results are used only to provide likelihood value for particles of existing targets. This
algorithm does not initialize new targets.

The processing phase is listed in table 6.7. The output of the preprocessing phase is a
symmetry function for each existing target.

The likelihood function

Basically, we would like to give a high likelihood value if the symmetry function resembles
the "McDonald" shape. That is :

1 is having two maximum points located horizontality near the left and right sides of the
vehicle (i.e. its rear projected rectangle).

2 is having a minimum located horizontally near the center of the vehicle.

3 these points should be regional, not local, extremum points. That is, they must be
larger/smaller than the majority of their environment.

4 the derivative of the function must take the form up-down-up-down-up.
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Input : an image Ik, coming from the Y plane of the input YUV image at step k of the
execution, and a list of image rectangular regions r1 . . . rm, each region ri being associated
with an existing target ti, and a list of corresponding width values w1 . . . wm of typical
width of the target

Parameters : .

Output : For each target ti a symmetry function (sequence of integers) f i
0 . . . f

i
width(ri)−2∗wi

The algorithm :

1. Calculate the mirror image I ′k from Ik.
We will use the notion val(x, y) to represent the pixel value in point 〈x, y〉 in the image Ik,
and val′(x, y) for the pixel value in the mirrored point of 〈x, y〉 in the mirrored image I ′k

2. For i = 1 . . .m do :

2.1 For each j = 0 . . . width(ri)− 2 ∗ wi, de�ne rectangles R
left
j and Rright

j as follows :

left(Rleft
j ) = left(ri) + j

right(Rleft
j ) = left(ri) + wi − 1 + j

left(Rright
j ) = left(ri) + wi + j

right(Rright
j ) = left(ri) + 2 ∗ wi − 1 + j

top(Rleft
j ) = top(Rright) = top(ri)

bottom(Rleft
j ) = bottom(Rright) = bottom(ri)

2.2 If Rleft
j or Rright

j are not entirely inside the image, deactivate the algorithm for this
target and continue (back to step 2)

2.3 For each j = 0 . . . width(ri)− 2 ∗ wi, de�ne the output :

f i
j = SAD(Rleft, Rright)

Where for two rectangles R1 and R2 having the same width and height, we have :

SAD(R1, R2) =
∑

y1=top(R1)...bottom(R1),y2=top(R2)...bottom(R2)∑
x1=left(R1)...right(R1),y2=right(R2)...left(R2) | val(x1, y1)− val′(x2, y2) |

Tab. 6.7 � The symmetry algorithm preprocessing phase.
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Fig. 6.11 � The Symmetry detection. From top to bottom : the original image, the mirrored
image, left and right rectangles.
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The likelihood function, given in tables 6.8 and 6.9, is searching for three such extremum
points. It searches for the points in the environment of the location where it expects them to
be - that is, on the left, center or right of the vehicle.

For each of the 3 points, it tests the 3 conditions above (conditions 1,3,4 for the left and
right, and conditions 2,3,4 for the center), and gives each point a compatibility mark. The
�nal likelihood function considers the lowest compatibility mark of the three points. This
assures that only real "McDonald" shapes will get high likelihood.

Figures 6.24 and 6.25 show several symmetry functions and their likelihood value.

6.2.5 Vertical edges detection

Vertical edges detection is based on looking for typical patterns of the vertical summing
of the Sobel image. The Sobel image, like in the example given in �gure 6.13, is created from
the original image by linear �ltering with the following kernel :

e3 =

 1 0 −1
1 0 −1
1 0 −1


One can clearly see that cars and trucks have two strong vertical edges on their sides. If

we vertically sum these values and visually present the obtained function, we will see two
peaks at the sides of the vehicle, as shown in �gure 6.13. The two peaks become three when
the car is diagonally positioned.

Our algorithm is based on detecting these peaks. Like in the symmetry algorithm, this
algorithm does not initialize new targets, and provides the likelihood value based on the
vertical edges function. The algorithm is given in table 6.10. For each existing target, we
calculate the vertical edges function, which is the output of the preprocessing phase.

The likelihood function

Given a particle, we project it on the image and create the "ideal" function, according to
the type and location of the vehicle. To obtain the likelihood value, we convolute the function
with an "ideal" function. The convolution yields a number between 0 and 1, according to the
similarity of the vertical edges function to the ideal one.

The likelihood function is given in table 6.11.

6.2.6 Detection with AdaBoost

In chapter 3 we give results of cars detection by AdaBoost. These results are used here.
This algorithm contains no preprocessing stage, and it does not initialize targets. It simply
provides likelihood value for existing targets, as described below.

The likelihood function

Given a particle with an hypothesis 〈X, Y, T 〉, we �rst check its type T . According to the
type, we employ the correct AdaBoost classi�er previously trained for this type of objects.
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Fig. 6.12 � The actual symmetry function, general view (top) and closer look (middle), and
the synthetic function (bottom)
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Input : a particle containing a hypothesis 〈X, Y, T 〉 about an existing target ti, where 〈X, Y 〉 is
the position of this target and T ∈ {MOTORCY CLE, CAR, TRUCK} is its type.
Parameters : a factor λ for the left, center and right point calculation

Output : a real value between 0 and 1, representing the likelihood that this target is indeed of
the type T and found in 〈X, Y 〉.
Additional data : For each existing target ti a symmetry function (sequence of integers)
f i
0 . . . f i

width(ri)−2∗wi
, the output of the preprocessing phase.

The function :

1. If the algorithm is deactivated for ti, return 0.5

2. project the position 〈X, Y 〉 on the image and obtain Rglobal and Rrear as explained in subsection
6.2.1

3. Let P left = left(Rrear), P center = left(Rrear)+right(Rrear)
2 , P right = right(Rrear) (the expec-

ted left,center and right of the expected "McDonald" shape), and let W = 1
2width(Rrear) (the

expected width of each "leg" of the expected "McDonald" shape)

4. Search for a the left peak of the expected shape. For each i = P left−W
4 . . . P left+ W

4 , calculate :

4.1 αleft
i = CalculateExtremumMarkTOP, W

4
(i) the mark of this point in terms of extremum

(should be higher than most of its neighbors)

4.2 βleft
i = CalculateDerivativeMarkTOP, W

4
(i) the mark of this point in terms of derivative

(should be mostly increasing before the point and decreasing after it)
the de�nition of the auxiliary functions is found in table 6.9.

5. The marks αleft
i and βleft

i express the compatibility of the point i to be the left peak of the
"McDonald" shape. The total compatibility mark considers the minimum of the 2 marks and also
the distance of the point from the expected location P left :
δleft
i = min(αleft

i , βleft
i )− | i− P left | ∗λ

6. We choose the best candidate P̂ left as the position i maximizing the mark δleft
i . De�ne the

best obtained mark δleft

P̂ left
as δ̂left

7. Repeat steps 4-6 for the center point (with a "BOTTOM" parameter for the 3 auxiliary
functions) and right point (with a "TOP" parameter) of the "McDonald" shape and obtain
P̂ center,δ̂center and P̂ right,δ̂right.

8. Let the �nal likelihood value be :
result = 1− 1

100min(δ̂left, δ̂center, δ̂right)

Tab. 6.8 � The symmetry likelihood function
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Auxiliary functions, calculating the compatibility of a point to be a top/bottom point in a
"McDonald" shape, according to di�erent criteria. All 3 functions have an input location
p and parameter T ∈ {TOP,BOTTOM} (wether to search for top or bottom point) and
search width Ŵ .

CalculateExtremumMark is testing the compatibility in terms of extremum point. If
T = TOP we return :
|{j|p−Ŵ≤j≤p+Ŵ ,f i

p>f i
j}|

2∗Ŵ

if T = BOTTOM return
|{j|p−Ŵ≤j≤p+Ŵ ,f i

p<f i
j}|

2∗Ŵ

CalculateDerivativeMark is testing the compatibility in terms of derivative environment.
If T = TOP we return :
|{j|p−Ŵ≤j≤p+Ŵ ,sign(f i

j−f i
j−1) 6=sign(j−p)}|

2∗Ŵ

if T = BOTTOM return
|{j|p−Ŵ≤j≤p+Ŵ ,sign(f i

j−f i
j−1)=sign(j−p)}|

2∗Ŵ

Tab. 6.9 � The symmetry auxiliary functions
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Fig. 6.13 � The edges detection process. From top to bottom : the Sobel image, the resulting
vertical edges function, and the synthetic function.
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Input : an image Ik, coming from the Y plane of the input YUV image at step k of the
execution, and a list of image rectangular regions r1 . . . rm, each region ri being associated
with an existing target ti.

Parameters : .

Output : For each target ti a vertical edges function (sequence of integers) f i
0 . . . f

i
width(ri)−1

The algorithm :

1. For i = 1 . . .m do :

1.1 If ri are not entirely inside the image, deactivate the algorithm for this target and
continue (back to step 1)

1.2 Apply the linear �ltering on the region ri with the following element :

e2x3 =

 1 0 −1
1 0 −1
1 0 −1


1.2 For each j = 0 . . . width(ri)− 1, de�ne the output :

f i
j =

bottom(ri)∑
p=top(ri)

valIk
(j, p)

where valIk
(x, y) is the pixel value in the image Ik at point 〈x, y〉

Tab. 6.10 � The vertical edges algorithm preprocessing phase.
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Input : a particle containing a hypothesis 〈X, Y, T 〉 about an existing target ti, where 〈X, Y 〉 is
the position of this target and T ∈ {MOTORCY CLE, CAR, TRUCK} is its type.
Parameters : Ξ, the margins of the synthetic function, K̄, a factor for �nal calculation of the
likelihood value

Output : a real value between 0 and 1, representing the likelihood that this target is indeed of
the type T and found in 〈X, Y 〉.
Additional data : For each existing target ti a vertical edges function (sequence of integers)
f i
0 . . . f i

width(ri)−1, the output of the preprocessing phase.

The function :

1. If the algorithm is deactivated for ti, return 0.5

2. project the position 〈X, Y 〉 on the image and obtain Rglobal and Rrear as explained in subsection
6.2.1

3. De�ne the 3 visible edges of the vehicle p1, p2,3. If left(Rglobal) < left(Rrear), then :
p1 = left(Rglobal)
p2 = left(Rrear)
p3 = right(Rrear)
otherwise :
p1 = left(Rrear)
p2 = right(Rrear)
p3 = right(Rglobal)
4. Create the synthetic function v1 . . . vm, where m = p3 − p1 + 2 ∗ Ξ :
di = mini=1,2,3 | i− pi |
ei = M̂ − di ∗ M̃

vi = { ei if ei > 0
k otherwise

where k = −

m∑
i=0

max(ei,0)

|{i|ei<0}|

Note that the k value is calculated such that the
m∑

i=0

vi = 0

5. �nd the portion of the vertical edges function that we are going to use :
uleft = p1 − Ξ− left(ri)
uleft = p3 + Ξ− left(ri)
6. Normalize this portion of the vertical edges function :

∀j = uleft . . . uright, f
i
j ←

f i
j

uright∑
j=uleft

f i
j

7. Calculate the convolution :
conv =

∏uright

j=uleft
f i

j ∗ vj

8. Calculate the �nal result as :
result = conv

K̄

9. Result is clipped with the range [0.25, 1]

Tab. 6.11 � The vertical edges likelihood function.
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At the time of writing this document, no training results are available for motorcycle, so if
T = MOTORCY CLE, we return 0.5. Otherwise, for cars and trucks, we use the vehicle
training described in chapter 3.

We project to the image a 8-point box whose center bottom rear point is 〈X, Y 〉. Then,
we take the rear projected rectangle and warp it to dimensions 36x24 - the dimensions of
the training of cars. Then we apply our strong classi�er and return the boosting value as the
likelihood value. This technique allows smooth evaluation instead of yes/no style answer.

If the result is less than 0.1, it is �xed on 0.1, since 10% is the possible error of the
algorithm, according to our estimation.

6.2.7 Weakness of algorithms

Algorithms do not always provide us with perfect results. In some conditions, it might
be better to deactivate some of them. For example, over a certain distance, some algorithms
do not work anymore and their output can be considered as noise. In this section, we will
describe the limitations of each algorithm.

Shadow detection

The shadow detection algorithm depends primarily on adequate lighting conditions. Wi-
thout such conditions, we might observe e�ect which resemble shadows, but in fact these will
not be shadows. In order to avoid these conditions, as mentioned in table 6.3, the algorithm
deactivates itself when the variance of the "road ROI" drops below a certain threshold.

Symmetry and vertical edges detection

The main problem with these algorithms arises on the sides of the image. In these areas
the objects are less symmetric and have less vertical edges, due to the di�erent positions of the
car. As a result, the symmetry and vertical edges measurements are not reliably expressing
the desired likelihood. To avoid this, we deactivate the symmetry and the vertical edges
algorithms if the target is found in the sides, as de�ned in tables 6.10 and 6.7.

Lights detection

The weakness of the light detection algorithm is mainly in the fact that lights are not red
enough to be distinguished from their neighborhood. It was seen in experiments, that above
a certain distance, the lights signal contains mainly noise and cannot be used. Therefore, the
algorithm is deactivated above certain distance, as described in table 6.5.

6.3 Additional algorithms

6.3.1 Motion segmentation as a tool for fast detection of cut-ins

This algorithm uses the motion detector of [Witt 01], which is highly e�cient. This motion
segmentation algorithm is fully described in chapter 4. The system computes motion models



168 CHAPITRE 6. APPLICATION I : STOP&GO SYSTEM

for each image block, then groups blocks with similar motion, to form objects. These objects
pass through a temporal �lter that keeps only the motions which are consistent for several
consecutive images.

The algorithm is used to initialize targets and to provide likelihood values. The calcula-
tion is done simply by correlation with the detected moving objects. As will be shown, the
likelihood value of this algorithm is quite coarse ; its important value is in initializing targets.

The motion estimator is acting on the current image Ik and on the previous one Ik−1

(because of this, the entire application starts working in the second image). The estimator is
providing us with a list of blocks b1 . . . bm which represent moving objects in the scene. Each
object contains its bounding rectangle and a motion vector in screen coordinates.

Likelihood function

Given a particle, we project it on the image and obtain the global projected rectangle
Rglobal. The likelihood value is simply the amount of intersection between this rectangle and
some moving object. However, we take only object which are moving to the image center, so
the background (trees, etc.) is not taken into account.

The likelihood function is given in table 6.12. Note that we do not give less than 0.5 as
likelihood. This is because objects are allowed not to move.

6.3.2 Integration with LIDAR

The lidar is the only non-vision source in our system. It is a device which gives a more
precise information, but has a limited angle of view. For this subsection, it is enough to
say that the lidar's input to our system is a list of detected points 〈ẋ1, ẏ1〉 . . . 〈ẋm, ẏm〉 in
world coordinates. We use these points both for initializing new targets and for estimating
likelihood of hypotheses about existing targets.

Likelihood of an hypothesis 〈X, Y, T 〉 is using the following formula (result is clipped in
the range [0.25, 1]) :

result = maxi=1...m(1− | Y − ẏ | ∗εy− | X − ẋ | ∗εx

The factors εy and εx are the accuracy factors of the lidar. In our implementation we
chose εy = 1 and εx = 0.25.

Initialization of targets by lidar is simple. All we do is take the detection points which
are not in proximity to an existing target, and create a new target in that place. For each
such point 〈ẋ, ẏ〉 we create a target with the following PDF :

p(〈X, Y, T 〉) = 1
3
e−εx∗(X−ẋ)2+εy∗(Y−ẏ)2

uniformly between motorcycle, car and truck.

We sample this PDF by 300 particles, so for each vehicle type there are 100 particles
concentrated around the point 〈ẋ, ẏ〉.
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Input : a particle containing a hypothesis 〈X, Y, T 〉 about an existing target, where 〈X, Y 〉
is the position of this target and T ∈ {MOTORCY CLE,CAR, TRUCK} is its type.
Parameters : A margin value M , an opening angle 0 ≤ α < 180◦

Output : a real value between 0 and 1, representing the likelihood that this target is indeed
of the type T and found in 〈X, Y 〉.
Additional data to use : a list of blocks b1 . . . bm which represent moving objects in the scene.
Each object b contains its bounding rectangle rect(b) and a motion vector motion(b) =
〈motionX(b),motionY (b)〉 in screen coordinates.

The function :

1. project the position 〈X, Y 〉 on the image and obtain Rglobal and Rrear as explained in
subsection 6.2.1

2. let B ⊆ {b1 . . . bm} be the set of all moving objects b for which the following conditions
hold :

2.1 if right(rect(b)) > C −M , then motionX(b) > 0

2.2 if left(rect(b)) < C +M , then motionX(b) < 0

2.3 | motionX(b)
motionY (b)

|> tan 1
2
α

Where C = 1
2
width(Ik) is the horizontal center of the image

3. Calculate the result by :
result = maxb∈B

surface(Rglobal∩b)2

surface(Rglobal)∗surface(b)

4. If result < 0.5, then result← 0.5

Tab. 6.12 � The motion detection likelihood function.

Tab. 6.13 � The dimensions of vehicle types.

Type Width Length Height

Car 1.70 3.70 1.43

Truck 3.20 6.50 2.80

Motorcycle 0.50 1.30 0.90
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Fig. 6.14 � Examples for cases where the shadow rectangle do not provide a homogenous
histogram.

Fig. 6.15 � A shadow which cannot represent a vehicle, according to camera parameters.
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Fig. 6.16 � Two forms of shadows : the global projection and the rear projection.

Fig. 6.17 � Shadows which might resemble a vehicle without the two-bases test.

Fig. 6.18 � The limits of the shadow detection algorithm.
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Fig. 6.19 � The two-bases test.

Fig. 6.20 � The limits of the location of the lights.
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Fig. 6.21 � Use of only one side of a blob.

Fig. 6.22 � The shadow shape of a cut-in vehicle.
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Fig. 6.23 � Di�erent cases of lights.
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Fig. 6.24 � Di�erent likelihood functions.



176 CHAPITRE 6. APPLICATION I : STOP&GO SYSTEM

Fig. 6.25 � Di�erent likelihood functions.
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Fig. 6.26 � Architecture of the application.

6.4 The Stop&Go system

6.4.1 System architecture

As seen in �gure 6.26, the entire application is made of three parts :
� the detection unit, described in section 6.1. Its output is a list of targets ;
� the central unit, which is using the results of the detector to lock on a frontal target
and decide when to activate or deactivate the system ;

� the control unit, which is actually controlling the gas and breaks of the host vehicle, if
needed.

The central unit is the one which "locks" on a target. As seen in the �gure, the input of
the central unit is :

� a list of targets detected by the detector ;
� a "START"/"STOP" request from the user.
The output of the central unit is :
� desired distance to target (which is actually the target's distance when a "START"
signal was accepted) ;

� actual distance to target (according to the detector) ;
� "ON"/"OFF" command to the automatic control.
The central unit is fully described in subsections 6.4.2 and 6.4.3.
The control unit is the one which receives the actual and desired distance to target, and

translates it into gas/break controls. The unit is activated and deactivated by the "ON" and
"OFF" commands given to it by the central unit.

At the beginning, the car's gas/breaks are not controlled by the application and will not
be so until the control unit is activated by receiving an "ON" command. An "OFF" command
cuts the controlling of the car by the application.

The control unit input is :
� "ON"/"OFF" commands to activate and deactivate the control ;
� desired distance to target ;
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Fig. 6.27 � A cut-in situation.

� actual distance to target.
The output of the control unit is control commands it sends to the gas and breaks.

6.4.2 Identifying the Stop&Go target

The system is being activated by the driver, with a "START" command. Once this is
done, the system runs the detection unit. After several images (needed for the detector to
gain targets' con�dence) we have some detections of targets on the scene. The �rst thing to do
now is to locate the Stop&Go target. This target should be located in our lane (‖y‖ < 2) and
not too far x < X̂. The value X̂ should not be too high. Typically, such system is designed
to be activated in short ranges, and the value we chose is X̂ = 15m. This doesn't mean that
a target, after it is chosen, cannot get to be far than 15 meters. But the distance of the initial
"lock" on the target should be close-ranged because we want to avoid the in�uence of curves.

If indeed, when activated, the application succeeds to lock on a target, it issues a "ON"
command and starts sending desired and current target distance to the control unit. Other-
wise (if a target could not be found) it does nothing, and the car retains driver's control. In
such a case we say the system did not succeed to initialize. Driver could try again later to
initialize the system, if he thinks a target is available.

6.4.3 Automatic disconnection of the system

If a target was found and an "ON" command was sent to the car, then the system is
longitudinally controlling the car. At this time, if the driver is giving a "STOP" command
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(a) (b) (c)

Fig. 6.28 � Template matching : (a) the mask (b) the part of the image within the mask,
and (c) the entire image
(source : http ://ise.stanford.edu/class/ee368a_proj00/project16/main.html).

(by pressing a key), the central unit will immediately send a corresponding "OFF" command
to the control unit. However, the central unit might do this even when driver did not stop
the system. We will now discuss the cases in which it happens.

The system should stop itself as soon as it suspects that something has gotten between
the host vehicle and the target vehicle. In such a case, the system must, of course, be stopped
because this "something" might be an object which risks us. There are two ways in which
the system can do this :

� when detecting a cut-in vehicle target which is entering the space between us and the
Stop&Go target ;

� when noticing that our view of the Stop&Go target is not clear, may be because another
object is hiding it. This is done using template matching.

These two ways will be now discussed.

Cut-in targets

Consider a situation like the one shown in �gure 6.27. We are following a target, and the
system detects another target which is entering into "the sterile zone" between us and the
target vehicle. This "sterile zone" is basically our lane, in the part between us and the target
vehicle. A vehicle is considered to have entered this space if any part of its body is inside the
space. That is, as seen in the �gure, even if the left of the entering car is in the sterile zone
(and not its center) it's considered to have broken into this zone. In such a case, the central
unit is sending an "OFF" command to the control unit.

Of course, one could say that in such a case we could have tried to acquire a new Stop&Go
target - the vehicle that was entering this space. However, this is hard to perform ; we estimate
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that it will not improve the application, but will make it less useful and more dangerous.

Template matching

The method described above is useful - we disconnect the system once another car has
penetrated the space between us and the target. But what if it's not a car that penetrated ?
what if it's an animal or an object falling from a truck ? And what if there is simply a failure
of the detection system to continuing tracking the stop&Go target ? For all these cases we
must have a mechanism that will alert us at the moment that we stop to obtain a clear image
of our target.

Template matching is a classical method for object tracking. The main idea is to tailor
a mask which will contain all the pixels which remain similar over consecutive images. In
the case of �gure 6.28, for example, the mask contains the details of the face of the baby.
Assuming that after image Ik we already have such a mask (we will later see how such a mask
is prepared ; meanwhile we donate the set of locations in the mask by M), then in order to
locate the face of the baby in image Ik+1 we can search several o�sets 〈dx1, dy1〉 . . . 〈dxn, dyn〉
and calculate for each of them the sum of absolute di�erences with the previous image :

SADi =
∑

〈x,y〉∈M

‖Ik+1(x+ dxi, y + dyi)− Ik(x, y)‖

Then, if we take an index j for which SADj ≤ SADi ∀i = 1 . . . n, then 〈dxj, dyj〉 is the
o�set of the baby's face between the two images. This allows us to track the face from image
to image.

Use of template matching for cut-in detection

In our application, we don't need template matching for tracking ; for this we have several
other algorithms which give good results. Our use of template matching will be to detect
objects which hide the Stop&Go target. The basic algorithm, which is a little di�erent than
the classic one, uses a real-valued mask instead of a binary one. The algorithm is described
here and is being started each time a new Stop&Go target is found :

1 Constants : W,H - the width and height of the template. In our implementation we
used W = 60 and H = 45.

2 Input :

� an input image Ik.
� a rectangle 〈x1, x2, y1, y2〉 donating the rear projected rectangle4 of the Stop&Go
target on the image. Our goal is to determine if the content of this rectangle (on the
image) has dramatically changed relative to previous images.

� a real-valued mask Mi,j i = 1 . . .W, j = 1 . . . H, initialized to 0.5 at the beginning.
The cell Mi,j is the con�dence that this point in the template belongs indeed to the
tracked object and not to the background.

4the projection of the rear of the car ; see subsection 6.2.1
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� a template Ti,j i = 1 . . .W, j = 1 . . . H. Ti,j is actually the value that exists in
location 〈i, j〉. If Mi,j = 0, it's meaningless.

3 Perform warping from the image Ik in the locations x1, x2, y1, y2 to an auxiliary image
AUX of width W and height H.

4 If this is the �rst time, copy AUX to T and continue to the next image.

5 Otherwise, calculate the sum of absolute di�erence with the existing template, taking
into account the con�dence :

SAD =
∑

i=1..W,j=1..H

Mi,j‖Ti,j − Ik(x1 + i− 1, y1 + j − 1)‖

6 Update the con�dence accordingly.

Each time the SAD is higher than a given threshold, the system concludes that something
is found between us and the Stop&Go target. The result is an immediate disconnection of
the system.

6.5 Results

In this section we demonstrate, by showing real-life situations, that the particle �ltering
mechanism optimally exploits the analysis coming from the �ve algorithms.

6.5.1 Typical examples of the particles �ltering

Figure 6.29 shows a typical daylight situation. A car is found about 30 meters in front
of the host vehicle, and is initialized by the shadow detector. The target is quickly validated
by all the algorithms except the motion detector (since the projected image of the car is not
moving).

In �gure 6.30 we see a continuation of that sequence with a car entering from the right
("cut-in" situation). The car is initialized very early by the shadow or motion detection
(whichever detects �rst ; usually in the second image after the appearance) and is maintained
at the beginning mainly by the shadow detection. The �gure shows the scene a little bit later,
after the rear of the car is beginning to appear. At this stage we can already see some initial
contributions from the lights and vertical edges detection. As seen, motion detection is giving
a high probability to the existence of the target, but very little localization information.

6.5.2 Analysis on a long sequence

We tried our system on a long sequence (approx. two hours) taken in the wide parisian
area in France. The sequence contains highway scenes, urban scenes, tunnels and bridges,
and a wide variety of lighting conditions (daylight, darkness, "afternoon conditions" with
direct sun and long shadows etc). We hereby bring the results

Figure 6.31 bring several examples for successful detection. We see that the system copes
well, in these cases, with all types of lighting conditions.
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(a) (b) (c) (d) (e) (f)

Fig. 6.29 � A typical situation of a vehicle in front of our car. The frontal view (f) and
likelihood functions (from bird's eye view) of the shadow detection (a), the vertical edges
detector (b), the symmetry detector (c), the motion estimator (d) and the rear lights detector
(e). Values are denoted from black (0) to white (1).

(a) (b) (c) (d) (e) (f)

Fig. 6.30 � A vehicle entering from the left ("cut-in" situation). The frontal view (f) and
likelihood functions (from bird's eye view) of the shadow detection (a), the vertical edges
detector (b), the symmetry detector (c), the motion estimator (d) and the rear lights detector
(e). Values are denoted from black (0) to white (1).
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Fig. 6.31 � Successful detections in a variety of conditions.
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Fig. 6.32 � Successful detections in a variety of conditions.
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Fig. 6.33 � Case 1 (see text).

The more interesting cases, of course, are the non-successful ones... We will now analyze
some important examples and conclude with the identi�ed weaknesses of the system.

Case 1

This case is an example of how bad lighting conditions can in�uence the shadow detection
algorithm. In �gure 6.33 we see a target entering the scene, but due to the direct sun light
the shadow created is larger than the car. The target is detected by the motion detector but
its localization, which is supposed to be done according to the shadows, is not correct. We
see that several images later the target is still not localized.

The problem occurs at an early stage of the car localization, when symmetry and vertical
edges are still not e�ective. When they are, the target is too far from the actual car.

Case 2

This case (see �gure 6.34) is not entirely di�erent from the previous one. Here, it is the
direction of the light which causes a long shadow to the car. This time the shadow is really
of the car - but it's too long. As a result, a target is misplaced.

Again, the problem occurs at an early stage of the car localization, when symmetry and
vertical edges are still not e�ective. When they are, the target is too far from the actual car.
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Fig. 6.34 � Case 2 (see text).

Case 3

This case shows the results of the weak signals while driving in a tunnel. Two of the most
important algorithms - shadow and real lights - do not function well. We see in �gure 6.35
that shadows barely exist and that lights cannot be detected because the background of the
tunnel is all colored in yellow and red. As a result, the load is falling mainly on the symmetry
algorithm, since vertical edges are also weak in the absence of light. The symmetry algorithm
itself, however, cannot hold the target in place for a long time.

Case 4

Here we see another aspect of the tunnel problem. In �gure 6.36 we can see that the
shadow algorithm believes to have found a good shadow, and it gives the likelihood according
to it. However, the position of the shadow is wrong, and the target is mal positioned. At the
beginning, the symmetry and vertical edges algorithms are holding the target in place (rear
lights are not red in the environment of the tunnel). But at some point, the shadows algorithm
gives high con�dence for the false localization.

Case 5

This is an example of a car, which is very close to us, but is not initializing a target.
As seen in �gure 6.37, the shadow algorithm does not detect a correct shadow and therefore
cannot initialize, and the lights algorithm cannot �nd a high value in the V plane, since the
lights are not red at all.

Case 6

In �gure 6.37 we see a case of a major false detection. The target is initialized by red-
yellow color coming from the afternoon sunlight, creating by coincidence a lights-and-plate
structure which initializes a target. The target later is supported by the same "rear lights",
and no other algorithm can decline this target : shadow algorithm is not active because the
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Fig. 6.35 � Case 3 (see text).

Fig. 6.36 � Case 4 (see text).
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Fig. 6.37 � Case 5 (see text).

Fig. 6.38 � Case 6 (see text).

road-rectangle is not providing a clean histogram. The symmetry and vertical edges are not
active because the target is too close to the right side of the image.

6.6 Conclusion

In this chapter, we have presented an application for keeping a steady distance between our
car and the car in front. The application, known as "Stop&Go" or "low-speed ACC", is using
vision and lidar to �nd out the headway between us and the car in front. This information
is used to control the car's braking and acceleration pedals and therefore the car's speed.
We have presented the various algorithms used to analyze the vision signal coming from the
camera as well as the lidar signal.

We have tested the operation of the system on a long sequence. The application seem to
work �ne in most conditions. Some adjustments need to be done in speci�c cases.



Chapitre 7

Application II : pedestrian detection and
impact prediction

Detection of pedestrians from a video camera installed on a moving vehicle is an im-
portant problem with applications in driver assistance systems. This domain has attracted
a considerable amount of research in recent years [Tsuk 85][Leun 87][IHar 98][Bert 02]. Ho-
wever, the task of creating a reliable system which predicts at time k the probability of an
impact with a pedestrian at time k + δ received less attention so far. Generally, the focus in
pedestrian detection is to achieve high rate of detection versus false detections. While this
e�ort is preserved here, there is an additional focus on exact localization of the pedestrian
and e�cient estimation of its speed and direction.

7.1 SEVILLE-based applications

This section describes an application for pedestrian detection and impact-prediction using
only the SEVILLE method. In the next sections, we will describe more advanced applications
using particles �lter and medium level algorithms.

The application predicts, at time k, the probability of impact between our vehicle and a
pedestrian at time k + δ.

Our system runs on the RT-MAPS framework [Steu 00]. Figure 7.1 presents the diagram
of the system : the input image, after being converted to a gray intensity image, enters the
SEVILLE component, a pedestrian detector which uses a binary classi�er to detect all the
pedestrians in the image. These detections - in image coordinates - are transferred to the
impact predictor, which is interpreting these results in terms of world coordinates (according
to camera parameters), tracks the di�erent targets and predicts while calculating their speed
and direction. The output of the impact predictor is double :

First, it outputs the same detections it received as input, while coloring the "dangerous"
pedestrians in red (see �gure 7.2). These detections are drawn on the input image using an
overlay drawing component, and presented to the user with an image viewer.

Second output of the predictor is the impact probability. This probability is estimated
according to a prede�ned pedestrian model.

189
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Fig. 7.1 � The RT-MAPS diagram used in the application.

As we will now see, the pedestrian detector is not just analyzing static images. It has
a built-in simple temporal �lter which performs some minimal tracking on the pedestrians.
Thus, the detections which are transferred to the impact predictor already contain an ID
which might link them with those of the previous image.

7.1.1 The SEVILLE pedestrian detector

SEVILLE (SEmi automatic VIsuaL LEarning) is described in section 3.7 as a system for
fast collection of training data. The same system was integrated into an RT-MAPS component
and it detects pedestrians on gray images. The detection procedure is performed in the same
way : given an input image, we apply an AdaBoost classi�er to consecutively classify all
the sub-windows in the image. Here we used the same con�guration of 24x48 pedestrians
described in section 3.7, and the system examines about 400,000 sub-windows of each image,
consisting on all the possible sub-windows in 16 scales, starting with the basic size of 24x48
and enlarging the size in 10 percent each time (26x53,29x58 etc).

The AdaBoost classi�er is using the same illumination independent features described in
section 3.3. The classi�er used is the one obtained at the last step of the SEVILLE collection
procedure.

The AdaBoost detections are passed to further processing - grouping and temporal �lte-
ring. These two units will be discussed now.
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Fig. 7.2 � A pedestrian detected in an early stage (top) and when it is in risk of impact
(bottom).
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Grouping adjacent detections

The detection process is usually yielding several rectangles around a detected pedestrian
(see �gure 3.40). To remove this e�ect, we have implemented grouping of adjacent rectangles.

The detection process provides us with all the rectangles which received a score of more
than a certain threshold λ. First, we divide these detections into sets. Two rectangles belong
to the same set if they overlap (we take the transitive closure of this relation ; that is, is A
overlaps B and B overlaps C, then A and C are also in the same set).

Each set S yields one �nal detection R, which is the weighted average of all the rectangles.
The weights are the scores :

left(R) =

∑
r∈S left(r)(score(r)− λ)∑

r∈S(score(r)− λ)

right(R) =

∑
r∈S right(r)(score(r)− λ)∑

r∈S(score(r)− λ)

top(R) =

∑
r∈S top(r)(score(r)− λ)∑

r∈S(score(r)− λ)

bottom(R) =

∑
r∈S bottom(r)(score(r)− λ)∑

r∈S(score(r)− λ)

The temporal �lter

The temporal �lter contained in the SEVILLE component is a simple one which allows
(i) to remove contemporary false detections and (ii) to perform minimal tracking in the sense
that the detections passed out of the component already contain an ID which is consistent
in time.

The �lter is based on the notion of con�dence. Each detection has a con�dence which
increases when the detection repeats itself in consecutive images and decreases otherwise.

The algorithm maintains, at all times, a set D of detections with con�dences. In addition
to the con�dence, each detection can be "visible" or "invisible". In the output of the temporal
�lter, the systems draws only the "visible" detections.

The algorithm has four parameters : C, C, C ↑ and C ↓. Upon receiving fresh detections
d1 . . . dn from the current image (after having been grouped as described above), the following
operations are performed :

� For each di, i = 1 . . . n, check if there is an existing detection d ∈ D such that d and
di are near. The de�nition of near is the heart of this �lter and can be done in several
ways, which will be discussed further.

� If there is such detection, copy the location of di to d (that is left(d) ← left(di),
and the same for right, bottom and top). Increase the con�dence of d by one. Do not
increase the con�dence if it reached a maximum of C. If the con�dence is superior of
C ↑, the detection becomes "visible".
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� If there isn't such detection, add di to the set D with an initial con�dence of C, and
mark it as "invisible".

� For each d ∈ D which was not coupled with a new detection (and which is not one of
the newly added detections), decrease the con�dence by one. If it reached 0, remove it
from D. If it dropped below C ↓, make it "invisible".

In our implementation, typical values for the parameters were C = 2, C = 10, C ↑= 5
and C ↓= 4.

7.2 Particle-�lter-based applications

In this section, we present a more advanced application, using particle �lter. The use of
a �lter allows us to run in real time while preserving the same detection results.

7.2.1 Introduction

The Pedestrian Detection Application uses the same general framework as the Low Speed
Obstacle Detection application : we apply a set of MLAs (Medium Level Algorithms) and
fuse the results through a particle �lter. The fusion approach allows us to get the best from
algorithms that give weak results when taken individually.

The selected MLAs themselves are rather classical (legs/diagonal detection, body detec-
tion, vertical edge detection and motion estimation) - see for example [Bert 02] - except for
the pedestrian classi�er, based on an innovative hardware-friendly AdaBoost/GA algorithm.

Globally, our particle �lter based approach can be considered as very close to the state
of the art in the domain of visual pedestrian detection [Bert 02], though most of the existing
systems use stereo vision instead of monocular vision [Gavr 01].

7.2.2 Pedestrian representation

When we speak about a location of a pedestrian on the world, we will specify a pair of
the form 〈x, y〉. Unless stated otherwise, we denote by this a pedestrian which stands on the
ground with its bottom center part being at the point 〈x, y, 0〉, as drawn in Figure 7.3.

7.2.3 The basic algorithms and the likelihood function

When speaking about image processing algorithms in this context, we are referring to a
type of algorithms which is being run in the following way :

� Pre-processing : one time per image of the video sequence. The output of this stage is a
structure which contains the pre-processing results (shadows, symmetry functions etc.)

� Likelihood function : can be run many times in each image. This function is using the
preprocessing results to evaluate the probability that a given target exists in a given
location.

� Create new targets (only a part of the algorithms) : this step is using the pre-processing
data to create new targets. Figure 7.4 explains this method of work.
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Fig. 7.3 � The box of a pedestrian, and its origin in the bottom centre point.

Fig. 7.4 � The steps of the particle �ltering process.
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Fig. 7.5 � The region of interest of the input images.

7.2.4 The input of the algorithms

Typical algorithm will get as input the image in high resolution. This is a gray image,
originated from the Y plane of an input YUV image. The dimensions of the image are 384x288
(half PAL)1 with a ROI (region of interest) de�ned as the rectangle 〈(8, 100)− (376, 188)〉.

Figure 7.5 shows the location of the ROI on the image. This ROI was selected so as to
detect a pedestrian δ before impact. Taking a bigger ROI is not necessary : a pedestrian
bigger than the ROI is too much next to the car.

In addition to the images, an algorithm will typically get some information about the
previously detected targets, so it will know to focus the pre-processing to the areas where we
are likely to �nd targets. The information about an existing target consists of :

� a bounding box that covers all the area where we believe the target to be ;
� several values of WIDTH that estimate what could be the width of the target ;
� several pairs of values <top,bottom> that represent some possible values for top and
bottom of the pedestrian, according to previous estimations.

7.2.5 The projection and retro-projection

Image processing algorithms work on the screen ; real targets exist in the real world. These
are di�erent coordinates, which need converting to both directions. In our application, we
assume speci�c parameters of the camera, with which the video sequence was taken. Using
the values of these parameters, we can provide a projection of a point 〈x, y, z〉 to a screen
point 〈u, v〉 and vice versa. Note that throughout this document, when we say that we project
a pedestrian located at 〈x, y〉 to the screen, we mean that we do the following sequence of
operations :

� produce the 3D box of the pedestrian, which is located at 〈x, y〉 (as de�ned above) ;
� project only the closer 4 points of this box ;
� calculate on the screen the projection of the rectangle.

7.2.6 The particle �ltering framework

The pedestrian application uses the same known framework of particle �ltering that is
used by CAMELLIA's low speed obstacle detection application, and by the face tracking
application. The system uses the input of 5 MLAs (Medium Level Algorithms) :

� Legs detection,
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Fig. 7.6 � The left diagonals in the image are marked with a purple rectangle, while the
right diagonals are marked with yellow ones. The intersection between the two is marked by
a pink triangle - and this exists only in the area of the legs of the pedestrian.

� Body detection,
� Vertical edges excluding algorithm,
� Motion segmentation,
� Image Features (AdaBoost/GA).
Only the legs detection and motion segmentation algorithms are producing new targets,

while all the 5 algorithms are supporting existing ones (via the likelihood function mecha-
nism).

7.3 The medium-level algorithms (MLA)

7.3.1 The legs/diagonal detection algorithm

Introduction

The legs detection, or the diagonals detection, is a special algorithm that was designed
specially to detect and to verify the existence of pedestrian in a video image. The principle
behind this algorithm is that, usually, the legs of a walking pedestrian are found in diagonal
positions, in an alternating fashion. Figure 7.6 shows a typical scene, while marking the
places in the scene where left and right diagonals are found. We can see that the only place
in the image where there are both directions of diagonals is the location of the legs of the
pedestrian.

Given the assumption that intersection of left and right diagonals are occurring mostly
in the area of pedestrians' legs, we run some low level processing of the image in order to
detect such areas, as described in the next subsection.

However, if we stick only to the assumption above, we are likely to be disappointed in
many scenes which contain a walking pedestrian. This is because, usually, we indeed have
both direction of diagonals in the area of the legs, but often not in the same image. In
many cases the pedestrian's legs area contain a left diagonal, and the right diagonal appears
only several images later. To catch situations like this, we have added a temporal �lter to
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Fig. 7.7 � The gradient image.

our algorithm. Roughly speaking, each detection of a diagonal in the images "lives" several
images, and not just in the image it was detected in. If an opposite diagonal appears several
images after, than an intersection occurs with the "old" diagonal. This is formally described
in the next subsection.

Algorithm �rst step : detecting the edges image

The �rst step in detecting diagonals is to generate the image of the edges of the image, in
order to further �nd the diagonal ones. For this we calculate a dilated version of the image,
named D, and an eroded version of the image, named E. Both erosion and dilatation are done
with the 3x3 element ((1, 1, 1), (1, 1, 1)(1, 1, 1)). The edges image is obtained by calculating
the image (D-E) - that is, the di�erence between the dilated image and the eroded one, as
shown in Figure 8. Note that all the operations are done only on the region of interest of the
image as described above.

Why does the image (D-E) represents the image of the edges of the �gure ? This can be
intuitively explained as follows :

When dilating with a 3x3 element as speci�ed above, each pixel gets the maximum value
of its 3x3 environment. When eroding with this element, each pixel gets the minimum of
this environment. Therefore, each pixel in the image (D-E) contains the di�erence between
the maximum and the minimum of its 3x3 environment. This di�erence is high in pixels,
which reside on the edges of objects - they have a large di�erence between the values of
the object, which are in their 3x3 environment, and the background, which is also in that
environment. This is in contrast with pixels which reside in the interior of objects, or totally
on the background, which have a relatively homogenous 3x3 environment. Therefore, in the
image (D-E) we see high values where we have edges in the original image.
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Fig. 7.8 � The result of applying linear �ltering with "diagonal" elements : the image on the
left is the result of linear �ltering with the element above it, and the same on the right.

Creating the diagonals image

Once we have the edges image, we want to highlight the right and left diagonals (each
direction in a di�erent image). To do this, we run a linear �ltering of this edges image with
one of the 5x5 elements described in Figure 7.8. The results of applying these linear �lters
are also demonstrated in Figure 7.8.

Eroding again to sharpen the detection

Many times, even after the linear �ltering, we �nd that the resulting image still has some
traces of edges which are not in the correct diagonal direction, as seen in Figure 7.9. By
applying erosion with a sharp 5x5 diagonal element we leave only the diagonals which we
really want.

Detecting the diagonals

All the operations until now gave us two images, one emphasizing the right diagonals and
the other emphasizing the left ones. To get a discrete detection of such diagonal edges we
now perform a simple threshold of the two images, followed by labeling and blob1 analysis.
From the resulting blobs, we take only the blobs which are larger than a speci�c value. The
important characteristic of a blob for us is its diagonal length, because this is actually the
length of the detected diagonal edges. Therefore we go blob by blob and compare its diagonal
length to a �xed value, L, which was empirically de�ned as

√
150 ∼ 12.24.

In practice we do the comparison by taking the square of the length of the blob, adding
it to the square of the width of the blob, and checking if it exceeds 150.

A detection of such a blob means that we found a diagonal in the respective direction.
Figure 7.6 shows a typical scene with some detected diagonals. The yellow and purple squares
are the bounding boxes of the detected right and left blobs, respectively.

1A blob, in English, is de�ned as a "soft, amorphous mass". In computer vision we mean an object in an
image that does not have a speci�c form.
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Fig. 7.9 � The result of linear �ltering with the left diagonals (upper image) still contains
many right diagonals, due to the strong edges to the closely-passing car. After erosion with a
simple 5x5 diagonal element (in the middle), we get a better image without right diagonals
(lower image).
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The temporal �lter

As mentioned in the introduction, our goal is not just to �nd an intersection of left and
right diagonals in a given image, but to �nd even an intersection of such two diagonals that
appear with a temporal o�set of several images. The number of images chosen for this �lter
was 15, because this is generally the average duration of a pedestrian step. Therefore we
proceed as follows :

1 Each detection of a blob, as described in the previous subsection, creates a "diagonal
object" with age of 0 and with the relevant direction (right or left).

2 Each image we go over all the objects and increase their age by 1. Objects which are
older than 15 are deleted.

3 On the remaining objects we run a process, which detects all the intersections between
a left object and a right object. Each one of these intersections is described by the
intersection of the squares of the two blobs, and its age is the minimum of their ages.

The resulting set of intersections are the places where we are likely to �nd a pedestrian's
legs, and therefore it forms the �nal output of the processing of this algorithm. All the rest
of the work is done in the higher-level code (the likelihood function and the generation of
new targets).

The likelihood function

The likelihood function is designed in view of the following principles :
� A result coming out from the processing step of the algorithm, is likely to be a place
of legs of a pedestrian.

� The more the age of the result, the less it is exact.
Therefore we have designed the following function :
� For a given particle, �nd a result of the algorithm, which is the closest to the projection
of the particle's pedestrian.

� If the distance to this result is too large then we conclude that this pedestrian is not
supported by diagonals, and we give a likelihood of 0.25 (which is usually the minimum
likelihood of the MLAs). But what is "too large" ? This depends on the age of the
detection. The oldest the detection, the larger its span is. That is, if we have a diagonal
detection of 10 images ago, it will support particles which are in a wider range, because
these might be pedestrians that have already moved. In practice we use the value of
AGE*3 as the number of pixels which are considered as "too large".

� If the pedestrian was found in the range of the detection, we give a likelihood function
which is higher as the age of the detection is smaller - this is because a fresh detection
of diagonal from the current image is more likely to imply the existence of a pedestrian
than a detection from 10 images ago. The practical value is 1.0 - (0.025*AGE).

Creation of new targets

Creating new targets is done simply when some diagonal detection was not used to support
an existing pedestrian. In such case, we initiate a new pedestrian target with particles spread
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Fig. 7.10 � Several examples of a pedestrian.

around the projection of the detection. This is similar to what is done in shadow detection
in the LSOD application.

7.3.2 Learning algorithm using AdaBoost

This algorithm uses the learning technique from chapter 3 to �nd a good classi�er of
pedestrians. Each simple feature is a small "classi�er" that knows to decide, upon receiving
an image rectangle, if this rectangle contains a pedestrian (we will later elaborate how it does
it). AdaBoost selects a set of these features and gives each of them a weight. As explained in
chapter 3, this set is a "voting system" : upon receiving an image rectangle, each classi�er
gives its opinion, and if the total weight of the ones which answered positively exceeds 0.5,
it's a pedestrian.

As explained in chapter 3, the algorithm described here is not used, in our context, for
pedestrian detection, but for classi�cation of a given image rectangle : it tells us if a given
rectangle is aligned on a pedestrian. Figure 7.10 shows several examples of positive and
negative cases.

The classi�er used is the one described in section 3.4. The only thing which is new is the
likelihood function. The likelihood function simply returns 1 if AdaBoost responds "yes",
and 0.1 if it responds "no".

7.3.3 Body detection

Introduction

The body detection algorithm is another algorithm, which is designed specially to support
the existence of pedestrians. The algorithm is based on the fact that in many cases the upper
part of the body of a pedestrian forms a relatively homogenous "stain" on the image, while the
borders of this part contain some edges (on the right and left - the border of the pedestrian ;
on the top - the neck and head ; at the bottom - the di�erence between the shirt and the
trousers, and the legs).

To detect such e�ect, we use the same edges image used in the previous algorithm. Figure
7.11 shows an example of how a typical pedestrian looks in such an image.

Algorithm steps

The course of the algorithm begins by producing the edges image as described above.
There, we run a sequence of some measures calculations. We begin by two small ROIs and
calculate the sum of the pixels in the large ROI, minus the sum of the pixels in the small ROI.
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Fig. 7.11 � A typical pedestrian in an edges image. In the zoomed part on the right we see
that indeed the upper body of the pedestrian is characterized by a "hole" block whereas the
outline of this body part has some edges.

Fig. 7.12 � The moving pair of ROIs in the body detection algorithm.

Note that this value will be the highest in a case of a pedestrian upper body as described
above. We proceed by dividing this value by the width of the large ROI, to be independent
of the size of the pedestrian.

After we do this calculation for these two ROIs, we move both of the ROIs one pixel to
the right and calculate again. In this way we create a one dimensional function drawn in
green dots in Figure 7.12.

Note that the highest value of this function is, indeed, in the center of the pedestrian
body.

This algorithm is used only for supporting existing targets, using the likelihood function.
Creating of new targets is not done with it, because it sometimes gives high values to places
where there are no pedestrians, as seen also in Figure 7.13.

The likelihood function

The likelihood function is directly derived from the output function of the algorithm.
Given a pedestrian in position 〈x, y, 0〉, we project it to the screen and take the center
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Fig. 7.13 � The resulting function of the body detection algorithm. The green dots express,
for each horizontal value, the extent of this function. The lower the point, the higher the
value is. We see that indeed in the center of the pedestrian's body, the value is the largest.
However, there is another area of high values about 20 pixels left of that location.

horizontal value of the projected rectangle. We take the value of the output function in this
horizontal location. This value is typically large. We divide it therefore by a constant value
(practical value stands on 60). The result is the likelihood value between 0 to 1.

7.3.4 Motion detection

Introduction

The motion segmentation (or estimation) system was already used in the �rst two appli-
cations of CAMELLIA and is widely described in a separate chapter. We therefore describe
here only the use of this system as another MLA in our application.

The motion segmentation is, as it was in the LSOD application, highly useful to detect
insertions of new objects to the scene. Inserted objects are, by de�nition, moving, and this
algorithm can give an unmatched capability of spotting such objects. In this application the
motion segmentation helps even more, because the ability of all the other algorithms to detect
any type of pedestrian, in any location and background, is obviously limited.

The likelihood function

The motion segmentation algorithm is being run on the images. When an object was
detected, as shown in Figure 7.14, we have a rectangle on the screen. The likelihood function is
obtained by projecting the particle's pedestrian to obtain a projected rectangle, and, similarly
to the corresponding likelihood function in the LSOD application, calculating the intersection
rectangle between the two rectangles. The likelihood (values 0-1) is obtained by the following
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Fig. 7.14 � A pedestrian's movement is detected (green rectangle with an arrow from its
middle to the right). Note that also the car on his left is detected by its movement. Here we
rely on the other algorithms to understand that this moving object is not a pedestrian.

division :

Surfaceofintersectionrectangle

SurfaceofMSobjectrectangle

As in the LSOD application, we do not take into account the size of the pedestrian
rectangle. The same explanation of this decision holds here.

7.3.5 Vertical edges excluding detection

Introduction

Vertical edges in its original form (like in the LSOD application) would not work in
this application. It's enough to look at Figure 7.15 to understand that a typical scene can
contain many vertical edges which are much stronger than the pedestrian. Moreover, a typical
pedestrian will never have very strong vertical edges, due to its moving legs, hands structure
and the head. This is why we decided to make an excluding algorithm : an algorithm that
will say where a pedestrian is not found. A pedestrian is not found in areas of strong edges.
This algorithm is based on computing the vertical sums of the vertical edges image, as in the
LSOD application, but the likelihood function will give high likelihood only when the value
is under some �xed number.

The basic algorithm

The algorithm runs as follows :
� produce the vertical edges image by �ltering the original image by the �lter described
in Figure 7.15 ;
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Fig. 7.15 � Vertical edges image. The pedestrian is on the right part of the region. Above
the image, the 3x3 �lter used to produce this image.

� for each input existing target's bounding box B, output a vertical summing sequence
V1 . . . Vn T of integers that describes the vertical extensiveness of the image at each
point.

Figure 7.15 is a good example for a typical vertical edges image of a scene with a pedes-
trian. Note that indeed the pedestrian is not giving very strong lines.

The likelihood function

The likelihood function starts as always by taking a particle and producing the projected
rectangle of the pedestrian. After that, we check the maximum value of the vertical summing
in the area of this rectangle. If the value exceeds a �xed number (actually 70) then the
likelihood is 0.25 (which is very low). Otherwise the likelihood is 1.

7.4 Impact prediction

7.4.1 Introduction

The application we present here has two outputs. The �rst is the raw detections of pedes-
trians, presented in the previous sections. The second is a single real number - the probability
that an impact with a pedestrian will occur in the next time interval δ. This number, if larger
than a certain threshold, can cause that the system will alert the driver about the danger,
or perhaps even apply some active safety measurements.
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7.4.2 Calculation of pedestrian's movement vector

In order to calculate the impact probability we �rst estimate the movement vector of the
pedestrian. This is essential for estimating its future trajectory and for �nding out if he will
hit our car.

The movement vector of the pedestrian is estimated according to several last detections.
As mentioned before, the SEVILLE component, having applied a simple temporal �lter,
passes to the predictor an ID for each detection. The detector uses this ID to look at the
last 3 positions of a given pedestrian. Given 3 positions p1, p2 and p3, we can estimate the
movement in a relatively reliable way, since we can check if the di�erence δ2 = p3 − p2 is
similar to δ1 = p2−p1. If it isn't, it implies that the movement vector is not reliable, in which
case we do not estimate any impact probability for this pedestrian. If it is, then we take the
average of δ1 and δ2 and we have a reliable movement vector of the pedestrian.

7.4.3 Impact prediction mechanism

Once we have a good positioning of a pedestrian and a good estimation of its movement
vector, we have to predict if within δ seconds he will hit our car. Given the location and
movement of the pedestrian and of the car, this seems like a simple geometric task to solve.
However, there are certain factors which intervene :

1 The detection of the pedestrian has an estimation error. We saw in the previous subsec-
tion that if the error in the movement vector estimation is too high, we are not trying
to estimate an impact probability. However, even if the error is su�ciently small, we
have to take it into account.

2 We have to ask ourselves is there a possibility that the pedestrian will react in δ seconds.

3 Same for our driver : will he react in δ seconds ?

The answer for 3 is de�nitely negative. It is our assumption that our vehicle will not be
able to change its trajectory or slow down in δ seconds, taking into account the driver and
the vehicle's reaction time.

For 2, one can try to build a pedestrian model (see next subsection). However, from
experiments we made it seems that the best is to assume that a pedestrian will not change
its movement vector within the δ seconds in question.

The only thing which should be taken into account, therefore, is the detection error.
The error σx, σy is assumed to be gaussian on world coordinates. Therefore, the prediction
algorithm works as follows :

� Let d̂x be the speed of our vehicle (in the X axis).
� For each pedestrian with location 〈x0, y0〉 and visible movement 〈dx, dy〉, do :
� Calculate the real movement of the pedestrian 〈dx+ d̂x, dy〉 ;
� Calculate the most likely position of the pedestrian in δ seconds 〈x1, y1〉 = 〈x0 +

0.3(dx+ d̂x), y0 + 0.3dy〉 ;
� According to the real movement and the noise, draw 1000 samples from the distri-

bution p(〈x, y〉) = e
− (x−x1)2

σ2
x
− (y−y1)2

σ2
y ;
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Fig. 7.16 � The zone of pedestrian impact.

� The �nal output probability is the number of samples which fall into the vehicle area
as shown in �gure 7.16, divided par 1000.

7.4.4 Using a pedestrian model

In the previous section, it is assumed that the pedestrian cannot react within δ seconds.
If we assume that he can react within this time frame, we have to develop a model to predict
the behavior of the pedestrian. Such a model is brought in this subsection.

The model presented here describes, how will the pedestrian behave in the next δ seconds.
The model should be constructive - that is, we should be able to write a program according
to that model, a program that takes a pdf of a location of a pedestrian (and optionally an
approximate speed) and outputs a pdf of the location of the pedestrian after δ seconds.

The road-pavement model

To describe a reliable pedestrian model we de�ne an area of the road in which pedestrian
behaves di�erently. Our coordination system is centered on the front middle bottom of our
vehicle, while X is oriented forwards, Y is oriented left, and Z is oriented up, all as described
in Figure 7.17.

Pedestrian speed

The speed of a pedestrian is represented as a state belonging to one of the states described
in table 7.1.

The motivation for expressing the speed in a discrete system is the fact that people do
not move in any arbitrary speed, but in separate, discrete activities. Indeed, inside any state
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Fig. 7.17 � The axes system and the road dimensions. This is a look on the road from above.

Tab. 7.1 � The speed table of the pedestrian model.

State Base speed (m/s)

Standing still 0

Walking 1

Jogging 2

Running 4

there is a range of continuous speeds, and we will now show how we model the continuous
speeds.

A pedestrian in a speed state S is assigned a speed according to the normal distribution,
where the average value is the base speed of S and the variance is 0.2 m/s.

We will now try to estimate the probability that a pedestrian will change his status in a
time frame of 40 ms (typical video image timeframe). Table 7.2 contains our estimation of
these probabilities for pedestrians which are on the road.

In table 7.3 we bring our estimation of these probabilities for pedestrians which are o�
the road. Note that an o�-road pedestrian is much more likely to stop.

Tab. 7.2 � State transition probabilities for on-road pedestrians.

State Standing Walking Jogging Running

Standing 0.0001 0.99 0.009 0.0009

Walking 0.0001 0.99 0.009 0.0009

Jogging 0.0001 0.009 0.99 0.0009

Running 0.0001 0.0099 0.01 0.98
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Tab. 7.3 � State transition probabilities for o�-road pedestrians.

State Standing Walking Jogging Running

Standing 0.995 0.005 0 0

Walking 0.005 0.992 0.003 0

Jogging 0.005 0.003 0.99 0.002

Running 0.005 0.003 0.002 0.99

Tab. 7.4 � The pedestrian direction states, in degrees.

State Base angle (0 is forward, to X)

Ahead 0

Back 180

Crossing left 90

Crossing right 270

Pedestrian direction

The direction of a pedestrian is, again, classi�ed into 4 discrete states. The direction of a
pedestrian is represented as a state belonging to one of the states described in table 7.4.

The motivation for expressing the direction in a discrete system is the fact that in the area
of a road, people do not move in any arbitrary direction, but in separate, discrete activities.
Indeed, inside any state there is a range of continuous directions, and we will now show how
we model the continuous directions.

A pedestrian in a direction state S is assigned a direction angle according to the normal
distribution, where the average value is the base direction of S and the divergence is 18
degrees.

We will now try to estimate the probability that a pedestrian will change his direction
status in a time frame of 40 ms (typical video image timeframe). Table 7.5 contains our
estimation of these probabilities for pedestrians which are on the road. These estimations are
based on observations of video sequences.

In table 7.6 we bring our estimation of these probabilities for pedestrians which are o�
the road, on its left side.

In table 7.7 we bring our estimation of these probabilities for pedestrians which are o�
the road, on its right side.
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Tab. 7.5 � Direction state transition probabilities for on-road pedestrians.

State Ahead Back Cross Left Cross Right

Ahead 0 0 0.5 0.5

Back 0 0 0.0005 0.9995

Cross Left 0 0 0.9995 0.0005

Cross Right 0 0 0.0005 0.9995

Tab. 7.6 � Direction state transition probabilities for o�-road pedestrians, left of the road.

State Ahead Back Cross Left Cross Right

Ahead 0.99925 0.0005 0.00005 0.0002

Back 0.0005 0.99925 0.00005 0.0002

Cross Left 0.04975 0.04975 0.9 0.0005

Cross Right 0.0005 0.0005 0.0005 0.9985

Tab. 7.7 � Direction state transition probabilities for o�-road pedestrians, on the right side.

State Ahead Back Cross Left Cross Right

Ahead 0.99925 0.0005 0.0002 0.00005

Back 0.0005 0.99925 0.0002 0.00005

Cross Left 0.0005 0.0005 0.9985 0.0005

Cross Right 0.04975 0.04975 0.0005 0.9



7.5. RESULTS 211

The pedestrian model function

We have written a function that simulates the movement of a random pedestrian according
to the rules above. The program runs, therefore, as follows :

� Given a pedestrian in position 〈x, y〉 with speed 〈dx, dy〉, determine a speed state ac-
cording to the estimated speed. If no speed information is available, start with status
"standing" (speed 0).

� Determine if the pedestrian is on or o� the road, and if o�, on which side of the road
(according to its X value).

� Calculate a new speed state according to the current state and tables 7.2 or 7.3 above
(depending if the pedestrian is o�- or on-road). Calculate a new direction state ac-
cording to the current state and tables 7.5, 7.6, or 7.7 above (depending again on the
location of the pedestrian).

� Determine the exact speed and direction angle of the pedestrian according to his states.
� Advance the pedestrian (change its location) according to his speed and direction.

The procedure above is an evolvement of a single pedestrian in a single time unit of 40
ms.

We have implemented and run a simple program which initializes 1000 pedestrians and
run them simultaneously. The results of this application indeed looks like a road in the middle
of the day.

7.5 Results

7.5.1 Results on several examples

A simple example

In Figure 7.18, we see a debug image with the results of several algorithms on the input
scene. The pedestrian on the right was well detected by the motion segmentation, as well as
by some diagonals that his legs were "spreading" along his trajectory. Some of these diagonals
where, indeed, intersecting, and this allowed the legs detection algorithm to contribute its
part.

Multiple pedestrians

In Figure 7.19, we see a far pedestrian and a close one. This was an experimental run
which was made without the vertical edges algorithm. Moreover, the legs detection algorithm
did not function so well in this sequence. However, the motion segmentation catched well
both the far and the close pedestrian, while the body detection gave an exact positioning to
both of them, as can be seen from the scene image, and from the likelihood image drawn
from above.
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Fig. 7.18 � The simple example.

Fig. 7.19 � Several pedestrians crossing the roads, correctly detected by our pedestrian
detection algorithm.
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Fig. 7.20 � A pedestrian on a complex background.

Complex background

In Figure 7.20, we see a pedestrian walking on a complex background, which contains
buildings, tra�c signs, street lights etc. In this part of the sequence the car is turning,
and motion detection becomes hard. Edges detection is not contributing much, and also
body detection is, to some extent, malfunctioning because of the background. As seen in the
�gure, in this case the legs detection is functioning well and giving a strong positioning of the
pedestrian. This is another example of the process where several algorithms work together,
each time another algorithm plays the role of the "leading opinion" where the others are used
only to support.

7.5.2 Summarized results

Table 7.8 summarizes the results obtained with the �rst set of sequences provided by
Renault. On 10 scenarios, only 2 false detections were noted, and one pedestrian was not
detected. Concerning the impact prediction, 2 predictions are not correct : in scenario 6,
where the impact prediction is low compared to the real impact information, and in scenario
16, where no prediction is given.

7.6 Conclusion

In this chapter, we have presented an application of pedestrian detection and impact
prediction. The system detects, in real-time, the existence of a pedestrian near our car and
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Tab. 7.8 � Results on some test sequences, including impact prediction.

Scenario Duration Real
im-
pact

Impact
predic-
tion

False
de-
tec-
tions

Remarks

1 5.493s No No 0 Pedestrian is not de-
tected

2 5.493s No No 0 OK
3 4.971s No No 0 OK
6 4.971s Yes 0.8% 0
9 4.986s No ? 3% 0 Almost impact
16 4.986s Yes ? No 0 Very hard sequence
32 5.471s No No 0 OK
5 7.484s Yes 2.6% 0
7 7.484s No No 1 Part of car is detected
11 8.491s No ? 1.7% 1 Almost impact

calculates the probability of collision with him.
It will be noted that for an operational system which automatically applies active mea-

surements one needs a highly reliable system. In general it can be said that with a detection
rate of 90% we can tolerate the following false detection rate :

1 For "polite" driver alert (a red light with some sound) - one false detection per 10
driving hours.

2 For brakes automatic application - one false detection per 6 months.

3 For "pedestrian airbag" or any other replaceable hardware - virtually no false detection.

On a frame rate of 25 fps with 384x288 images, even level 1 above implies one false
detection out of every 180 billion sub-windows examines (based on 200,000 sub-windows per
image). This rate is far better than any published results, which is one false detection every
400,000 sub-windows examined [Viol 03], or every two images.

If considering that the temporal �lter can reduce this rate to one false detection out of
100 images (or 4 seconds), and the fact that only 1 out of 100 false detections will cause a
driver alert (most false detections are far and/or on the sides), we still have one system fault
every 400 seconds, or about 6 minutes. It is therefore clear that some improvements should
be done until such a system could become a commercial product.



Chapitre 8

Conclusion

Dans cette thèse, nous avons présenté deux applications dans le domaine des transports
intelligent. Après avoir passé en revue le contexte général de tels systèmes, nous avons mon-
tré pourquoi nous avons choisi de mettre en ÷uvre ces applications spéci�ques. Puis, nous
avons présenté les raisons qui nous ont amenés à choisir les méthodes appliquées. Au niveau
pratique, nous avons obtenu des résultats théoriques intéressants dans divers domaines de
la vision arti�cielle, que nous récapitulons dans la section 8.1. La section 8.2 conclut sur les
applications elles-mêmes, puis terminons sur les perspectives de développement (section 8.3).

8.1 Vision arti�cielle

Algorithmes basés sur AdaBoost

Suite à l'analyse de l'existant en matière de détection de voitures et de piétons, nous
avons pu observer que les résultats obtenus par ailleurs n'étaient pas su�samment bons en
vue d'une utilisation industrielle devant fonctionner en temps réel et ne tolérant que très peu
d'erreurs.

Nous avons choisi de nous concentrer sur les systèmes à base de AdaBoost en raison de
leur e�cacité et de l'existence de preuves théoriques quant à leur capacité d'apprentissage.
Nous avons développé deux types de primitives visuelles pour travailler avec AdaBoost.

Les premières primitives visuelles développées sont les "points de contrôle ". Nous avons
prouvé que cette primitives sont plus rapides et donnent de meilleurs résultats que l'état de
l'art en prenant en compte le temps d'exécution (courbe 3D ROC). Ces primitives n'ont par
ailleurs pas besoin de normalisation de l'image et consomment beaucoup moins de mémoire.

La deuxième primitive visuelle développée a été adaptée aux besoins du projet CAMEL-
LIA, où le matériel spécialisé développé a permis d'accélérer les opérations de vision.

Nous avons examiné ces nouvelles primitives aussi bien sur des données synthétiques que
sur des données réelles, en les comparant aux primitives de référence. Nous avons prouvé que
nos primitives sont meilleures.

Nous avons présenté quelques résultats intéressants au sujet de la "cascade" présentée
par Viola et Jones. Nous avons montré que le taux de détection est meilleur dans le cas de
détecteurs non-cascadés, et ne peut être atteint par des détecteurs cascadés. Cependant, si
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l'on tient compte du facteur temps (courbe 3D ROC), la mise en cascade prend tout son sens
et o�re des performances très supérieures.

Une dernière expérience a été tirée sur l'utilisation de di�érents types de cameras. Le
résultat principal est que, de nuit, une caméra à infrarouge lointain (FIR - Far Infra Red)
donne des résultats de détection sensiblement supérieurs.

Evaluation du mouvement

Nous avons mis en ÷uvre des algorithmes développés par Wittebrood et de Haan [Witt 01].
Ces algorithmes sont très e�caces et détectent très �dèlement le mouvement. Le but original
de ces algorithmes étant la compression d'image, ils ne sont pas particulièrement adaptés à
la détection d'objet. Puisque nous nous intéressons à la localisation et à la vitesse des objets
mobiles, nous avons adapté ces algorithmes à nos besoins, tout en développant l'idée d'uni-
cité (Uniqueness). Nous avons prouvé que l'unicité peut être un bon outil pour améliorer la
détection d'objets.

Filtrage Particulaire

Nous avons montré que des algorithmes de vision élémentaires pris séparément ne sont
pas assez e�caces pour développer un système qui soit capable de détecter des voitures ou
des piétons de manière e�cace. Nous avons choisi de développer un �ltre particulaire pour
fusionner les résultats fournis par chacun des algorithmes élémentaires et ainsi décupler la
capacité de détection de l'ensemble.

Nous avons apporté une vue d'ensemble complète des algorithmes de �ltrage particulaire
et avons développé le code nécessaire à son intégration dans un véhicule.

8.2 Applications dans le domaine de l'automobile

Les concepts théoriques que nous avons développés ont été exploités dans deux applica-
tions du domaine des transports intelligents, l'ACC et la prédiction de collision d'un piéton.

L'application ACC "Stop&Go" emploie le �ltrage particulaire pour suivre les véhicules
précédant notre voiture. Nous avons montré comment divers algorithmes traditionnels sont
combinés pour obtenir des résultats �ables.

La prédiction de collision d'un piéton a été menée en utilisant deux méthodes. La première
méthode applique un détecteur d'AdaBoost sur l'image entière, et utilise les détections résul-
tantes. La seconde est plus avancée et utilise le �ltrage particulaire pour limiter le domaine
de recherche.

Les deux versions de l'application dédiée aux piétons utilisent un modèle de prévision de
la probabilité de choc. Nous avons donné les détails de ce modèle, basé sur une analyse du
comportement des piétons.
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8.3 Perspectives

Plusieurs directions existent pour continuer le travail engagé au cours de cette thèse. Dans
le domaine des applications, on peut continuer et augmenter la robustesse des deux applica-
tions, en faisant plus d'essais et en analysant les problèmes rencontrés. Pour l'application de
piétons, il est clair que des améliorations du taux de détection sont nécessaires pour qu'un
tel système puisse aboutir à un produit commercial.

Concernant l'ACC, l'application pourrait certainement employer plus d'algorithmes dans
le cadre du �ltrage particulaire.

Dans le domaine plus théorique de la vision, la recherche peut être prolongée dans plusieurs
directions décrites à la �n du chapitre 3. Ces directions pro�teront à la détection d'objets en
général, et pas simplement dans le domaine de transport, tant l'exploitation d'AdaBoost et
de ses variantes apparaît riche de promesses.

* * * * *

In this thesis, we have presented two intelligent-vehicle applications. After reviewing the
general context of intelligent transportation systems, we have shown why we chose to imple-
ment these speci�c applications. Then, we presented the reasons that led us to choose the
speci�c ways to implement the applications.

On the way to the ready applications, we obtained some interesting theoretical results in
various sub-domains of computer vision. In the section 8.4 we conclude these results. The
conclusions related to the speci�c applications are brought later, in section 8.5.

8.4 Computer vision

AdaBoost-based algorithms

We have reviewed previous results in car and pedestrian detection. We saw, that these
results were not su�cient for real-world applications that should be running on real-time and
obtaining high detection rates.

We chose to concentrate on AdaBoost-based systems because of their e�ciency and the
existence of theoretical proofs for their detection rates. We developed two kinds of visual
features to work with AdaBoost.

The �rst visual feature is the control-points feature. We have shown that these features
are faster and give better results when tested using the time domain (3D ROC curves). These
features do not need normalization of the image and consume much less memory.

The second visual feature was adapted to the needs of the CAMELLIA project, where
specialized hardware was developed in order to accelerate vision operations.

We have tested the new features on synthetical as well as real-world data, comparing
them with traditional, previously-presented features. We have shown that our features are
better.
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We have presented some interesting results concerning the attentional cascade presen-
ted by Viola and Jones. We have shown that the absolute result is better in non-cascaded
detectors, but when considering the time domain, the cascade is much better.

One last experiment was done using di�erent kinds of cameras. The main result was that
at night time, far infra red (FIR) camera gives superior results.

Motion estimation

We have built on the algorithms developed by Wittebrood and de Haan [Witt 01]. These
algorithms are highly e�cient and detect movement.

The original goal of the developers of these algorithms was image compression, hence they
were not interested in object detection. Since we needed to know the localization and speed
of moving objects, we adapted these algorithms to our needs, while developing the idea of
uniqueness. We have shown that uniqueness can be a good tool to enhance object detection.

Particle �ltering

We have shown, that basic algorithms are not enough to develop a system that should
track cars or pedestrians. In order to combine everything, we chose particles �lter. We brought
a comprehensive overview of particle �ltering and developed all the code needed to integrate
the other algorithms inside it.

8.5 Automotive applications

The theoretical grounds that we developed were used to develop two automotive applica-
tions, namely Stop&Go ACC and pedestrian impact prediction.

The Stop&Go ACC application is using, again, particles �lter to track the vehicles in
front of our car. We have shown how various traditional algorithms are combined to achieve
reliable results.

The pedestrian impact prediction was presented using two methods. The �rst method is
applying an AdaBoost detector on the entire image, and using the resulting detections. The
second one is more advanced, it is using a particles �lter to limit the search, thus running in
real time.

We have shown, that both versions of the pedestrian applications use a special model to
predict the impact probability. We have given the details of this model, based on pedestrian
behavior.

8.6 Future work

Several directions exist to continue the work of this thesis. In the application domain,
one can continue in making the two application more robust. This involves more testing and
analyzing the problems that occur.
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For the pedestrian detection application, it is clear that some improvements in the detec-
tion rate should be done until such a system could become a commercial product. For the
Stop&Go, the application can perhaps use more algorithms in the framework of the particle
�lter.

In the theoretical vision domain, the research can be extended to several directions, as
described in the end of chapter 3. These directions will improve the general domain of object
detection, not just in the transportation domain.
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Intelligent Transportation Systems, 8

Kalman �lter, 129, 138

Lane departure warning, 14, 17
Lane Detection, 28
Lateral control, 22, 25
Learning algorithm, 33
Learning examples, 90
Learning process, 55, 63, 96

cascaded, 53
Lidar, 137, 168
Likelihood function, 142, 193, 200

of the diagonal detection, 202
of the motion detection, 168
of the shadow detection, 148
of the symmetry detection, 157
of the vertical edges, 160, 205

Low speed obstacle detection, 28, 203

Machine learning, 83
Medium level algorithms, 193
MobilEye, 17
Motion estimation, 32, 111, 167, 203
Motion information, 52
Motion model, 111

NIR camera, 96
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Normalization, 82

On-board signalization, 15

PAC model, 44
Particle, 150
Particle �lter, 32, 132, 193

generic, 134
SIR algorithm, 134, 138
SIS algorithm, 132

PATH, 13
Pedestrian detection, 16, 28, 52, 193
Pedestrian impact prediction, 205
Pedestrian model, 207
Probability density function, 140
Projection, 144
PROMETHEUS, 8

Rear lights detection, 152, 167
Resampling, 134, 140
ROC curve, 37, 81

2D, 99
3D, 99
di�erent camera types, 98
Papageorgiou, 43
Seville, 93

RT-MAPS, 189

SAD, 114, 181
SEVILLE, 83, 189
Shadow detection, 146
Side collision warning, 14
Smart junction, 11
Stop&Go, 28, 137
Strong classi�er, 47
SVM, 33, 37, 42
Symmetry detection, 157

Target, 137, 193
Template matching, 180
Temporal �lter, 192, 200, 214
Tracking, 121, 128, 137
Two-base check, 150

Uniqueness, 115, 122

Visual features
5x5, 68, 70, 81
Control points, 70
Viola and Jones, 81

Wavelets, 40, 84
Weak learner, 45, 63


