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Notations

Some of the notations used throughout this work are defined below.

C : the set of complex numbers;

(.)∗ : complex conjugate;

(.)T : matrix transpose;

(.)H : conjugate transpose;

() : (()H)T ;

(.)† : Moore-Penrose pseudoinverse;

<{.}, ={.} : real, imaginary part of complex variable;

|.| : absolute value;

‖.‖ : Euclidian norm;

E{.} : mathematical expectation;

δmn, δk : Kronecker delta (= 1 for m = n or k = 0 and 0 elsewhere);

I : identity matrix;

Im : m×m identity matrix;

0 : matrix with zero entries;

Ai,j : the (i, j)th entry of matrix A;

Ak : the kth column of matrix A;

span{A} : column span of matrix A;

rank{A} : the dimension of span{A};
Trace{A} : trace of square matrix A;

⊗ : Kronecker product of matrices:

A⊗B
def
=




A1,1B . . . A1,kB . . .
...

. . .

An,1B An,kB
...

. . .




;

O(.) : bn = O(an) ⇔ ∃N, γ1 > 0, γ2 > 0 : γ2|an| ≤ |bn| ≤ γ1|an|, ∀n > N .



Unless specified otherwise, the following semantic conventions are used:

• small Latin or Greek letters (like a or α) are used for scalar complex or real variables

and integers;

• small Latin or Greek boldface letters (like a or α) are used for complex or real

vectors;

• capital Latin or Greek boldface letters (like A) are used for complex or real matrices.



Résumé en Français

Le contexte de la thèse est la détection en liaison descendante de l’UMTS-FFD. Cepen-

dant, la majorité des contributions restent valides dans un contexte de CDMA plus

général. Le rapport est divisé en deux parties. Dans la première partie, nous présentons

quelques algorithmes susceptibles d’améliorer la détection en liaison descendante tout en

restant de complexité réduite. Dans la deuxième partie, nous discutons les performances

asymptotiques de quelques récepteurs présentés dans la première partie et de quelques

techniques plus générales.

Dans la liaison descendante de l’UMTS-FDD, nous avons un ensemble d’utilisateurs syn-

chrones ayant des codes d’étalement orthogonaux (qui peuvent être de tailles différentes).

Les symboles de ces utilisateurs sont étalés à l’aide de leurs codes respectifs. La somme

des signaux résultants est alors brouillée (scramblée) avec un long code de scrambling

pseudo aléatoire. Le signal chip résultant est mis en forme et transmis aux différents

mobiles. Le canal de propagation est sélectif en fréquence à cause de sa nature multi

trajets. L’orthogonalité des codes d’étalement n’est plus garantie à la réception. Le

récepteur RAKE (récepteur en râteau) combine les différents échos de façon cohérente.

Ce récepteur est optimal si l’on considère que l’Interférence Multi Utilisateurs (MAI) est

un bruit blanc. Le MAI a une structure très différente d’un bruit blanc. Par conséquent,

le récepteur RAKE est très limité pour les canaux sélectifs en fréquence. Plusieurs al-

ternatives ont été proposées qui couvrent tout le spectre complexité/performance. Parmi

ces alternatives, les récepteurs basés sur un égaliseur MMSE au rythme chip représentent

un bon compromis entre la complexité et la performance.

Notre première contribution est d’adapter deux algorithmes de filtrage MMSE à com-

plexité réduite au cas de l’égalisation pour le CDMA. Les deux algorithmes sont inspirés

du Multi Stage Wiener Filter (MSWF) et du Conjugate Gradient Reduced Rank Filter

(CGRRF) Ces algorithmes permettent de calculer des égaliseurs à rang-réduit. Dans un

13



14 Summary in French

filtre MMSE à rang réduit, on essaie d’adapter quelques coefficients du filtre seulement.

Ceci induit une perte en performance mais le gain en complexité est considérable.

Une deuxième méthode pour s’affranchir de l’interférence est d’utiliser l’élimination

d’interférence en parallèle (PIC). Dans un scénario de PIC, les symboles des interféreurs

sont estimés et leur effet est retranché du signal reçu. Pour procéder au PIC, les codes

des interféreurs (ou leurs estimés) doivent être disponible au récepteur. Le problème de

l’UMTS-FDD réside dans le fait que les codes soient de facteurs différents. Ceci rend

impossible leur estimation en utilisant une technique de moyennage. Dans ce contexte,

nous proposons une technique qui combine l’égalisation avec le concept d’utilisateurs

virtuels. Un utilisateur virtuels est un utilisateur dont le code est de la même longueur

que l’utilisateur d’intérêt. Les simulations montrent que cela permet d’éliminer une grande

partie de l’interférence.

Dans le cas du CDMA périodique (absence du code de scrambling), on peut profiter de la

cyclo-stationnarité du signal reçu pour estimer les codes d’étalement. Dans l’appendice

D, on donne un article qui traite ce cas. L’algorithme proposé dans ce cas est basé sur le

sous-espace bruit en s’inspirant d’un article basé sur le sous-espace signal.

Dans la deuxième partie, on analyse les performances asymptotiques des récepteurs de

Wiener optimaux et sous optimaux à rang réduit. La performance de la diversité à la

transmission (STTD) est aussi étudiée avec l’égaliseur MMSE et le récepteur RAKE. Pour

étudier les performances asymptotiques, on suppose que la matrice des codes d’étalement

est aléatoire suivant une certaine distribution. On suppose aussi que le facteur d’étalement

N et le nombre d’utilisateurs K tendent vers l’infini et que leur rapport reste fixe. On peut

alors démontrer que les SINRs à la sortie des différents récepteurs tendent vers des valeurs

déterministes indépendant des codes d’étalement. L’interprétation de ces SINRs asymp-

totique permet une meilleure compréhension du comportement des différents récepteurs.

Le chapitre 4 résume les travaux précédents sur les performances asymptotiques des

récepteurs de Wiener optimaux à rang réduit. Une partie de ces travaux (le travail de

Loubaton-Hachem) a été utilisée dans un article publié dans Eusipco 2004. La conclusion

principale de ce travail est de démontrer que la convergence du SINR à rang réduit vers

le SINR à rang plein est localement exponentielle. Par conséquent, les performances at-

teintes en utilisant un filtre de rang 8 sont très proches de celles obtenues en utilisant un

filtre de rang plein.

Les égaliseurs à rang réduit (les filtres de Wiener sous optimaux) sont étudiés dans le

chapitre 5. Les conclusions restent les mêmes que dans le cas des filtres de Wiener opti-
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maux. La convergence est très rapide et le rang requis pour atteindre des performances

proches du rang plein reste modéré.

Une troisième technique pour améliorer la détection (autre que l’égalisation et le PIC) est

la diversité à la transmission (STTD). Cette technique, originalement proposé par Alam-

outi en 1998, est devenu très popular et a été retenu dans les standard 3GPP. Dans le

chapitre 6, on étudie les performances asymptotiques du STTD combiné avec un récepteur

RAKE ou un égaliseur MMSE. On conclue que l’égalisation permet de profiter de la di-

versité à la transmission.

Le chapitre 7 résume les conclusions et les perspectives futures de ce travail de thèse.
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Introduction:

Thesis Context, Overview and Contributions



Introduction

In this summary, we give an overview of the problems discussed in this thesis along with

the contributions. This is done in an informal way, the goal is to give a flavor of the way

in which we approached the problems.

The present report is the result of a C.I.F.R.E thesis conducted at Wavecom and E.N.S.T.

The context of the thesis is the detection in the downlink of UMTS-FDD. However, most

of the contributions are valid for a general CDMA framework. The thesis is split into two

parts. The first part concerns different algorithms that can be used to improve the detec-

tion while keeping reasonable complexity. The second part is about the performances of

the receivers discussed in the first part and other more general receivers.

In the downlink of UMTS-FDD, we have a set of synchronous users with (possibly differ-

ent length) orthogonal spreading codes. The sum of those users symbols spread by their

spreading codes is scrambled with a long pseudo-random scrambling code. The resulting

signal is pulse-shaped and transmitted through the propagation channel. In practical sit-

uations, propagation channels are highly frequency selective (because of the presence of

many paths). This means that the orthogonality of the spreading codes is no more guaran-

teed at the receiver. The conventional receiver of CDMA, the RAKE receiver, coherently

combines the echoes obtained from different paths. This is the optimal linear receiver

if the Multi Access Interference (MAI) (i.e. the interference created due the non ideal

property of the channel) is white. Of course, the MAI is far from white noise. Different

receivers have been proposed ranging from non linear very complex ones to linear simple

to implement ones. Recently, there has been an increasing interest in receivers that use an

(MMSE) equalizer followed by descrambling and despreading. Equalizer based receivers

represent a family that gives a good compromise between complexity and performance.

Our first contribution lies in the equalizer based receiver domain. More precisely, we pro-

pose an adaptive way to calculate a reduced-rank equalizer that is applied to the received

17
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signal to restore the orthogonality between the codes. Reduced-rank means that the equal-

izer is different from the Wiener (MMSE) equalizer in that only some of the coefficients

are optimized. This represents a loss in performance with respect to the full-rank (MMSE)

equalizer. On the other hand, the computational complexity is reduced by a non neg-

ligible amount. The utility of reduced-rank filtering depend of course on a compromise

between the complexity and the required performance.

Another way to enhance the performance is to use Parallel Interference Cancellation

(PIC). In the PIC scenario, symbol estimates of different interferers are used to regener-

ate their effect and subtract it from the received signal. This allows a better detection of

the user of interest provided that the interferers estimates are correct. The problem that

arises in the UMTS-FDD Downlink is twofold: first, the interferers codes are not known to

the receiver; second, they cannot be estimated by some averaging scheme because they are

multi-rate (this means that the receiver sees a set of different spreading codes of different

lengths modulated by random symbols). In this context, we propose to combine MMSE

equalization with a Blind PIC method that supposes the presence of virtual codes of the

same rate. As will be shown, most of the time this allows to reject much of the interference.

In the case of short-code (single-rate) CDMA, we can take advantage of the cyclostation-

arity of the received signal to design blind PIC algorithms. The code-detection is easier in

this case. As the short-code CDMA is not part of this thesis, we only provide in Appendix

D an article that treats this case. The algorithm proposed is based on the noise-subspace

method as opposed to a previously proposed signal-subspace method.

The Second part of the thesis concerns the Asymptotic Performance Analysis of CDMA

receivers. The asymptotic analysis (also called large-system analysis) means that we sup-

pose that the spreading codes are random following a given distribution and find the limit

of the output SINR associated with a given receiver when the spreading factor N and the

number of users K both tend to infinity with fixed ratio. Studying the performance for

finite values of the spreading factor is very difficult because the SINR of a given receiver

depends in a complex manner on the spreading codes. To overcome the difficulty of inter-

preting the SINRs, we study the limit of the (random) SINRs in the asymptotic regime.

Fortunately, the SINRs tend to deterministic limits independent of the spreading codes.

The different parameters influencing the SINR can then be interpreted.

In chapter 4, we discuss the performance of reduced-rank optimum Wiener receivers for

CDMA downlink under random spreading. This means that the receiver is supposed to

know the channel and the interferers codes and uses an optimum reduced-rank linear

receiver to detect the symbols of the user of interest. In this context, we characterize
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the convergence of a reduced-rank Wiener receiver SINR to the full-rank Wiener receiver

SINR. The convergence is shown to be locally exponential. This means that essentially,

by using a reduced rank receiver of rank 8 we obtain the close to full-rank performance

even for spreading factors tending to infinity.

Our next contribution, presented in chapter 5 concerns the asymptotic performance of

suboptimum receivers based on a MMSE equalizer (both full-rank and reduced-rank) fol-

lowed by despreading. Using the results of chapter 4, we analyze the performance of full

and reduced rank suboptimum receivers based on equalization. We show that, similar to

the optimum case, the convergence of reduced-rank SINR to the full-rank one is locally

exponential.

A third way to improve the detection performance (besides equalization and PIC) is to

use Space Time Block Codes (STBC). In the downlink, however, a lot of effort is being

done to keep the mobile small and cheap. This limits the possibility of using multiple

antennas at the receiver side. As proposed by Alamouti, Transmit Diversity can be used.

Two transmit antennas are used with one receive antenna. In the flat fading case, The

diversity provided by two transmit antennas and one receive antenna is the same as that

provided by two receive antennas and one transmit antenna. In the mutlipath (frequency-

selective) case, this no more valid.

In chapter 6, we analyze the asymptotic performance of Space-Time Transmit Diversity

with and without equalization. We show that without equalization, the STTD performance

can be worse that the performance without STTD. This means that the interference caused

by using two transmit antennas is higher than the diversity provided. While, when using

equalization, the benefit of diversity is restored.

Chapter 7 provides some conclusions and possible future research directions.
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Summary of thesis contributions

Algorithm Development Performance Analysis

Optimum Reduced-Rank Thesis [20] Chapter 4, Appx E

CDMA Wiener Receivers

Suboptimum Reduced-Rank Chapter 2 Chapter 5

CDMA Wiener Receivers

Alamouti Space-Time Chapter 6

Block-Code

Parallel Interference Cancellation Chapter 3, Appx D

Table 1: Summary of Thesis Chapters

The presented study has resulted in the following contributions (The main Topics of

the contributions are summarized in Table 1.):

• Equalizer-based receivers for long-code CDMA [1, 2]

– Adaptation of two reduced-rank algorithms (SG-MSWF and ACGRRF), orig-

inally proposed for short-code CDMA detection, to the equalization in the

downlink of long-code CDMA.

– Proposing a pilot-based adaptation of the algorithms and proving the equiva-

lence between an equalizer trained on a code-multiplexed pilot with chip-known

adaptation.

• Interference Cancellation for long-code multi-rate CDMA [5, 8, 10, 13]

– Proposing a new Blind PIC algorithm suitable for multi-rate CDMA systems

by using the concept of single-rate virtual codes.

• Interference Cancellation for short-code CDMA [6]

– Proposing a new (noise) subspace-based Blind PIC algorithms.
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• Asymptotic Performance of optimum Reduced-Rank Wiener receivers

[3, 7]

– Characterization of the speed of convergence of the reduced-rank Wiener filter

to the full-rank Wiener (MMSE) filter for a general filtering model.

– Derivation of the asymptotic SINR performance of optimum reduced-rank

CDMA receivers under multipath channels for isometric random-spreading.

• Asymptotic Performance of suboptimum Reduced-Rank Wiener receivers

[4, 12]

– Characterization of the speed of convergence of the reduced-rank suboptimum

Wiener filter to the full-rank suboptimum Wiener filter for CDMA with fre-

quency selective channels.

– Derivation of the asymptotic SINR of reduced-rank equalizer-based receivers

for the downlink of W-CDMA (multipath channel, orthogonal spreading and

i.i.d scrambling)

• Asymptotic Performance of Space-Time Transmit Diversity [9]

– Derivation of the asymptotic SINR of Space-Time Transmit Diversity for Down-

link W-CDMA with RAKE-Reception.

– Derivation of the asymptotic SINR of STTD for Downlink W-CDMA with

MMSE-equalizer based receiver.
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Chapter 1

The UMTS-FDD Downlink

1.1 Introduction

Mobile communication has become an important part of everyday’s life since the intro-

duction of the first cellular networks in the early 1980s. First Generation (1G) systems

were based on analog technology and provided mainly voice communication to mobile

users. Two major standards were used: Total Access Communication System (TACS)

and Nordic Mobile Telephone (NMT). The need of a second generation (2G) was identi-

fied in Europe as early as 1982. The main goal of the second generation was to overcome

the limited capacity of the 1G and to switch to the digital mode. The “Groupe Spécial

Mobile” (GSM) committee was established to provide the technical specifications. Later,

the GSM became the acronym for “Global System for Mobile communications”. Other

2G standard were developed in parallel in other countries like Digital-AMPS/IS-136, Per-

sonal Digital Cellular (PDC) and cdmaOne/IS-95. The main novelty of the GSM was to

provide other services additional to digital voice communication like text messaging and

access to data networks.

Even before the GSM was launched, a new action started in Europe in the late 1980’s to

identify services and technologies for the Third Generation (3G) known as the Universal

Mobile Telecommunications System (UMTS). The goal of the 3G is to provide services

that require very high data rates like multimedia capabilities and internet access. In the

late 90’s, there has been a huge effort to harmonize the different candidate technologies

of the 3G emerging in different parts in the world. Moreover, the success of 2G systems

(One billion subscribers) has induced other activities aiming at a smooth transition from
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the 2G to the 3G via a 2.5G 1 system such as the Enhanced Data rate for GSM Evolution

(EDGE) that is able to provide some multimedia communications at a relatively high

data rates.

1.2 From 2G to 3G

Instead of switching abruptly to 3G systems, most organizations believe in a smooth evo-

lution of the 2G to 3G and slowly the 2G spectra will be reframed to provide extra 3G

spectra [36]. This is supported by the big success of the 2G specially the GSM with more

than one billion subscribers in 200 countries. Initially the bit rate per time slot for the

GSM was 9.6 kbps (kilobits per second). 14.4 kbps per physical channel i.e. time slot was

achieved by reducing the power of channel coding. In High Speed Circuit Switched Data

(HSCSD) mode, several time slots per frame per user are allocated. The General Packet

Radio Service (GPRS) uses packet-oriented connections with a bit rate up to 144 kbps per

user. The last evolution is the Enhanced Data Rate for GSM Evolution (EDGE). EDGE

is based on variable modulation schemes depending on the radio link quality. Thereby the

system throughput is increased and the system can offer bit rates over 383 kbps per user.

GPRS and EDGE can be considered 3G systems in a 2G network because they provide

some interactive multimedia services that were not originally intended by the GSM.

The main requirements of the UMTS are [50]:

• full coverage and mobility for 144 Kbps (384 Kbps later) and limited coverage and

mobility for 2 Mbps

• variable bit rates to offer bandwidth on demand and higher spectrum efficiency

• higher flexibility and multiplexing of new services with different qualities on a single

connection (e.g. speech, video and packet data)

• asymmetric uplink and downlink traffic

• quality requirements for 10−1 frame error rate and 10−6 Bit Error Rate (BER)

Another requirement is, of course, the coexistence and compatibility with second genera-

tion systems during the transition period.

1The General Packet Radio Service (GPRS) is informally called the 2.5 G and the Enhanced Data
Rate for GSM Evolution (EDGE) is called the 2.75G
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1.3 Standardization of The UMTS

Different standardization processes shaping the 3G have been conducted in the world: Eu-

ropean Telecommunications Standard Institute (ETSI) in Europe, Association of Radio

Industries and Business (ARIB) in Japan, T1P1 in United States and Telecommunica-

tions Technologies Association (TTA) in South Korea. There are also efforts to harmonize

these parallel works inside different forums. In Europe, the earlier program in the third

generation technologies was initiated within the RACE I (Research of Advanced Commu-

nication technologies in Europe) in 1988. It was followed by the RACE II program within

which two air interfaces have been evaluated: CDMA and TDMA in the COde DIvision

Testbed (CODIT) and the Advanced TDMA (A-TDMA) projects respectively. Inside the

Advanced Communications Technologies and Services (ACTS) program launched in 1995,

the Future Radio Wideband Multiple Access System (FRAMES) project defined multiple

access platform based on two modes: FMA1 and FMA2 based on WTDMA and WCDMA

schemes respectively. These two modes were submitted to ETSI and ITU as UMTS and

IMT-2000 air interfaces respectively. In 1998, strong support behind WCDMA led to the

selection of WCDMA as an air interface for the UMTS Terrestrial Radio Access (UTRA)

by the ETSI. Since then, the standardization task was transferred to the 3G Partnership

Project (3GPP).

1.3.1 3GPP

The 3GPP was created to ensure a common specification on WCDMA and therefore an

equipment compatibility. The main partners involved in this action are ARIB, ETSI,

TTA, TTC and T1P1. The major goal is to define a unified platform of the standard-

ization for the Universal Terrestrial Radio Access (UTRA). Recently the ChinaWireless

Telecommunication Standard group (CWTS) and other market partners became mem-

bers of the 3GPP. The 3GPP2 was created to support the merged work done in TR45.5

and TTA for cdma2000 direct-sequence (DS) and multi-carrier (MC). Other members are

ARIB, TTC and CWTS. There was a general consensus on harmonized global 3G CDMA

technologies with 3 modes: multi-carrier based on cdma2000, direct sequence spread based

on UTRA FDD and TDD mode based on UTRA TDD.

1.4 Wideband CDMA FDD Downlink

In this section the main features and key parameters of the UTRA-WCDMA (FDD) are

described without going into details but with some emphasis on the physical layer. For
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more information the reader is referred to the web site of the 3GPP and ITU in addition

to theses [36, 50].

1.4.1 Physical channels

The higher layers provide data to the transport channel. The transport channel maps

these data to the physical layer. Most of the work in this thesis considers the physical

layer, i.e. we consider a set of symbols that are transmitted without differentiating their

origin in the higher layers. Basically, there are two generic classifications of physical chan-

nels: common and dedicated physical channels.

The Common Physical CHannel (CPCH) is shared by a set of active users in a cell. On

the other hand, the Dedicated Physical CHannel (DPCH) is used to carry either user traf-

fic information and is called dedicated Physical Data CHannel (DPDCH), or user control

information and is named Dedicated Physical Control CHannel (DPCCH). The DPCCH

used for control traffic contains pilot symbols for coherent detection, Transmission Power

Control (TPC) symbols to increase or decrease the transmitted power and the Transport

Format Combination Indicator (TFCI) to inform the receiver about the active Transport

channels in the current frame.

The Common Pilot Channel (CPICH)

The Common Pilot Channel (CPICH) is an unmodulated code channel, which is scram-

bled with the cell specific scrambling code. The function of the CPICH is to aid the

channel estimation at the terminal for the dedicated channel and to provide the chan-

nel estimation reference for the common channels when they are not associated with the

dedicated channel. In an advanced receiver setting, the CPICH can be used to train a

MMSE (full or reduced-rank) equalizer.

The CPICH can be seen as a user whose spreading factor is 256 and whose spreading

code is all ones. Its transmitted symbols are always 1+j√
2
. Note that because the spreading

code is all ones, the spreading factor can be considered any one between the smallest and

the highest spreading factor present in the system. Another important remark is that the

CPICH chip sequence is up to a constant factor equal to the scrambling code.
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Figure 1.1: The slot structure of the physical channels of UMTS-FDD.

1.4.2 Frames and Slots

The Dedicated Physical CHannel (DPCH) forms a slot and is the result of a timemul-

tiplexing of two dedicated subchannels, the data DPCH (DPDCH) and control DPCH

(DPCCH), see Figure 1.1. In this thesis, we assume the use of the DPCH as transport

channel. Each slot contains 2560 chips periods. The chip rate of UMTS is 3.84 Mchips/sec.

This means that the chip period becomes 260.42 ns. The slot duration is 0.6667 ms. There

are 15 slot in each frame that lasts for 10 ms. Frames are finally organized in superframes

of 720 ms.

Table 11 of 3GPP specification TS 25.211 [14] gives the exact number of bits/field for

every slot format, while Table 12 in the same document specifies the pilot symbol patterns.

The DPDCH contains user data bits.

1.4.3 Spreading and Scrambling

Figure 1.2 illustrates the block diagram of spreading and modulation of the

DPDCH/DPCCH. The modulation is QPSK where each pair of consecutive bits passes

through a serial to parallel converter and get mapped to the Inphase (I) and Quadrature

(Q) branches respectively. The two branches are then spread at the chip rate by the same

real-valued channelization code. The I and Q sequences are treated as a single complex

valued sequence that is scrambled by a complex-valued long scrambling code. The real
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Figure 1.2: Spreading and Modulation of UMTS-FDD.

and imaginary parts are low pass filtered by a filter having a square root raised cosine

impulse response with a roll-off factor of 0.22. The outputs are multiplied by the quadra-

ture carriers cos(ωt) and sin(ωt) and added to yield the RF transmitted signal. The

mechanisms used to spread and scramble the symbol sequence are detailed in the 3GPP

specification TS 25.213 [15]. The spreading operation is necessary not only to widen the

signal spectrum, but also to separate different users within a cell. The scrambling op-

eration is needed to separate neighbor cells (base stations). A brief description of the

spreading (channelization) and the scrambling codes is given below.

Spreading (Channelization) Codes

Because of the synchronicity of user signals and of the common downlink radio channel,

the spreading codes (or channelization codes) for the FDD downlink have been chosen

to be orthonormal to each other, so that, in case of a channel equalizer receiver, codes

are separable just by a simple correlation with the user of interest’s channelization code.

Mathematically, if ci = [ci(0), ..., ci(N − 1)] is the ith user spreading code, orthonormality

is expressed by

cT
i cj =

N−1∑
m=0

ci(m)cj(m) = δ(i− j)
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Figure 1.3: OVSF spreading Codes.

In this thesis, we will consider the spreading factor to be constant for all users (except in

chapter 3 where the proposed methods are specific for multi-rate systems). The UMTS

norm specifies that the system should support different data rates via Orthogonal Variable

Spreading Factors (OVSF), see Fig 1.3. Codes are generated with the help of the Walsh-

Hadamard matrices, that is, codes are the (real-valued) columns (or rows) of the square

(N by N) matrix WN such that

WH
NWN = IN ,

where IN is the identity matrix of size N, the spreading factor. For example, for N = 4 :

W4 =




1 1 1 1

1 1 −1 −1

1 −1 1 −1

1 −1 −1 1




and

W8 =

[
W4 W4

W4 −W4

]

the first row (or column) is usually used as pilot channel code . The spreading factor

N can only be a power of 2, but the norm sets the possible values for N in the range

[4, ..., 512]. In case of different user data rates, codes are assigned from the OVSF tree in

Figure 1.3 under the condition that two codes cannot be on same path towards the root

of the tree.

Scrambling codes

The scrambling stands for the multiplication of the chips resulting from the spreading

operation by a quasi random QPSK scrambling code. Note that the scrambling does not
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provide any additional “spreading” or spectrum widening since the multiplication is done

chip-by-chip. The scrambling codes are frame periodic (38400 chips) and are segments

of a Gold code of length 218 − 1. The polynomials that generate the real and imaginary

parts of the code are X18 +X7 +X1 and X18 +X10 +X7 +X5 +X1 . Along the Thesis we

consider the scrambling sequence as a unit magnitude complex (QPSK) i.i.d. sequence,

independent from the symbol sequence as well. In this case the chip sequence can be

considered as white random signal; (chip rate i.i.d. sequence, hence stationary).

The scrambling code is often described as a long code because it is much longer than the

symbol period. The cyclostationarity of the transmitted signal is destroyed by the scram-

bling code. Note that the presence of a long scrambling codes presents a real difficulty

to apply much of the multiuser detection algorithms originally developed for periodic

CDMA. It should be noted that UMTS TDD mode uses periodic (w.r.t. the symbol pe-

riod ) scrambling codes.

1.5 The Propagation Channel Model

Radio propagation from the base-station to the mobile unit is characterized by various

undesired effects such as reflection, refraction and attenuation of the transmitted signal

energy. Those effects result in what we call multipath propagation. More specifically,

multipath stands for the composition of the originally transmitted signal plus duplicate

images attenuated and shifted by a certain delay. The last path delay which represents the

length of the channel is called the delay spread. Depending on the location of the mobile

and its mobility we have many kinds of environments like: indoor, urban , pedestrian,

vehicular, rural.

Figure 1.4 summarizes the undesired effects that the receiver has to face to detect a given
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transmitted signal. The multipath propagation is the first undesired effect, it arises be-

cause of multiple replicas from neighboring buildings or hills for example. The second

undesired effect is the Multi Access Interference (MAI). MAI is due to other users signal

propagating through a non-ideal channel. The third undesired effect is the sum of noise

and interference from other base stations. This is usually modelled as a white Gaussian

noise.

The amplitude variation that the signal undergoes is known as signal fading. There are

basically two types of fading : Large scale fading and Small scale fading. Large scale

fading stands for the average signal attenuation caused by mobility over large areas. This

includes the two main parameters that define a path: the propagation delay and the av-

erage power. Large scale fading varies very slowly with respect to the Small Scale fading

which stands for the very rapid variation of the amplitude and the phase of a given path

due to the superposition of a large number of undistinguishable multipath components

impinging at the receiver antenna. This is usually modelled using the Jakes model [46].

Most of the thesis deals with slow-fading frequency selective multipath channels. The

propagation channels is defined by a number of paths. Each path is defined by its corre-

sponding delay and its average power. The propagation channel impulse response is given

by:

hp(t) =
P−1∑
q=0

λqδ(t− τq), (1.1)

where λq and τq are the complex gain and the delay associated with path q, and P is the

total number of echoes.

The transmitted signal is passed through a pulse-shaping filter at the transmitter and at

the receiver. The UMTS norm proposes to use the Root Raised Cosine (RRC) p(t) with

a roll-off factor αro = 0.22. The total channel (propagation and pulse-shaping ) is then

given by:

h(t) =
P−1∑
q=0

λqp(t− τq) (1.2)

we usually deal with a chip-rate sampled version of this impulse response, the channel

vector h is given by:

h = [h(0) h(Tc) . . . h(LTc)]
T (1.3)

where L is the delay-spread (in chip periods).
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Figure 1.5: Simplified long-code CDMA model.

1.6 Downlink Received Signal Model

Figure 1.5 shows the model that will be used for the rest of the thesis. We consider a

single base station transmitting the sum of K users chip signals given by:

d(i) = s(i)
K∑

k=1

µkck(i mod Nk)bk(b i

Nk

c) (1.4)

where s(i) is the base-station dependent QPSK (long) scrambling code, Nk, bk(b i
Nk
c), µk

and ck(i) are the spreading factor, the QPSK symbol sequence, the gain and the (Nk-

periodic) spreading code of user k, respectively. (mod stands for the modulo and b.c for

the integer part).

Unless stated otherwise, we will assume that the scrambling sequence is a realization of

an i.i.d sequence, and that users bits are independent zero mean QPSK signals. We will

also assume that the index of the user of interest is 1 and, whenever needed, the index of

the permanent pilot(CPICH) is 2.

The sum chip signal (1.4) is transmitted through a multipath channel whose impulse

response is given by

h(t) =
P−1∑
q=0

λqp(t− τq) (1.5)

where p(t) is the total shaping filter (including the transmitter and the receiver matched

filters), λq and τq are the complex gain and the delay associated with path q, and P is

the total number of resolvable paths.
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The complex envelope of the received signal at the desired user terminal is then given by:

x(t) =
∑

i

d(i)h(t− iTc) + v(t) (1.6)

where v(t) is a noise process (that we will assume to be white and Gaussian) and Tc is

the chip period.

Chip-rate sampling of the received signal (1.6) results in:

x(i) =
L−1∑

l=0

hld(i− l) + v(i) (1.7)

where hl
4
=h(t)|t=lTc is the lth overall channel path sampled at chip rate, L is the number of

channel coefficients and v(i) is a discrete white Gaussian noise resulting from the sampling

of v(t).

Let the spreading factor of the user of interest be N1 = N . If we suppose that L < N

then the received signal vector obtained by concatenating N samples of the received signal

(1.7) can be written as 2:

x(m) = H0d(m) + H1d(m− 1) + v(m), (1.8)

where

H0 =




h0 0 0
... h0

hL−1

. . . . . .

0 hL−1 h0




, (1.9)

H1 =




hL−1 . . . h1

. . .
...

hL− 1

0


 , (1.10)

x(m) = [x(mN), x(mN + 1), ..., x(mN + N − 1)]T ,

d(m) = [d(mN), d(mN + 1), ..., d(mN + N − 1)]T

and v(m) = [v(mN), v(mN + 1), ..., v(mN + N − 1)]T .

2Throughout the thesis, we will use the index i for chip-rate variables while index m will be used for
symbol-rate variables.
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For the majority of applications we usually use a model in which the spreading factors are

all equal, i.e. Nk = N . We will use this model throughout the thesis except in chapter 3

where this model cannot be used.

In case of single SF system, the chip sequence d(m) can be written as:

d(m) = S(m)C
√

P b(m), (1.11)

where S(m) is a N×N diagonal matrix whose diagonal entries are s(mN), ..., s(mN +N),

C = [c1, ..., cK ] is the N×K spreading code matrix,
√

P is a K×K diagonal matrix whose

columns are µ1, ..., µK and b(m) = [b1(m), ..., bK(m)]T is the K × 1 vector of transmitted

symbols. The received signal can then be written as:

x(m) = H0S(m)C
√

P b(m) + H1S(m− 1)C
√

P b(m− 1) + v(m), (1.12)

we usually group the overall code (scrambling and spreading) and the powers in a single

matrix W(m) given by:

W(m) = S(m) C
√

P, (1.13)

finally we have the model:

x(m) = H0W(m)b(m) + H1W(m− 1)b(m− 1) + v(m). (1.14)

Note that model (1.14) includes many other models. In fact, for short-code (periodic)

CDMA, we have:

W(m) = W(m− 1) = W

Model 1.14 thus reduces to the general faded CDMA model with InterSymbol Interference

(ISI)

x(m) = H0Wb(m) + H1Wb(m− 1) + v(m), (1.15)

If we further neglect the ISI term, we have the model:

x(m) = H0Wb(m) + v(m), (1.16)

which is the faded-CDMA model usually used in the literature.

In the case where the propagation channel is considered to be an Additive White Gaussian

Noise (AWGN) channel, i.e. H0 = I, we have the famous unfaded CDMA model:

x(m) = Wb(m) + v(m). (1.17)

The time index m can be removed in this case as it is irrelevant.
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1.7 Conclusions

In this chapter, we discussed the different generation of communication systems. We

highlighted the main steps of the standardization of Third Generation systems. We then

briefly introduced the physical layer of the UMTS-FDD and the main requirements that

should be fulfilled by third generation wireless communication systems. After this, we

introduced the Downlink CDMA model that will be used throughout the thesis.
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Chapter 2

Optimum and Suboptimum

Reduced-Rank CDMA Wiener

Receivers

2.1 Introduction

Adaptive filtering has been used extensively in many signal processing applications like

Interference Suppression [54], Multi-User Detection and equalization [42]. Depending on

the application, an adaptive filter allows to estimate a set of parameters that are needed

to estimate a given unknown information symbol. In short-code CDMA, for example,

adaptive multiuser detection allows to estimate a set of filters. Those filters are used to

estimate the transmitted symbols for each user. Adaptive techniques are useful where the

statistics of the propagation media are not known and/or are time-varying. Numerous

contributions have been made in the direction of improving the tradeoff between perfor-

mance and complexity (see [37] and the references therein).

Recently, an elegant technique known as reduced-rank adaptive filtering has emerged and

found its way in many signal processing applications. The basic idea behind reduced-rank

filtering is to project the observation into a subspace SD of dimension D that is smaller

than the total observation dimension N (the spreading factor in CDMA for example). A

D-coefficients filter is then applied to the projected signal.

Different reduced-rank methods differ in the choice of the projection subspace SD. Prin-

cipal Components (PC) method, for example, uses the subspace generated by the D

39
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eigenvectors corresponding to the D largest eigenvectors of the received signal covariance

matrix R. The Cross-Spectral method, on the other hand, chooses the D eigenvectors of

R that minimize the Mean Squared-Error (MSE). There is a third method, called Partial

Despreading (PD) [66], in which the received signal is partially despread over consecutive

segments of j chips, where j is a parameter. The partially despread vector has dimension

D = dN/je and is the input to the D-tap filter. Consequently, j = 1 corresponds to the

full-rank MMSE filter, and j = N corresponds to the matched filter (RAKE). for PD

method, SD is spanned by non-overlapping segments of the channel vector c̃, where each

segment is of length j.

The Krylov subspace methods use the Krylov subspace associated to the observation co-

variance matrix R and the data-observation cross correlation vector c̃. The Krylov vectors

are the vectors obtained by multiplying successive powers of R by the cross correlation

vector c̃. The advantage of this choice and the performance of the corresponding receivers

will be discussed throughout the thesis.

In this chapter, we present the Krylov subspace reduced-rank filtering techniques. We

discuss both exact and approximate methods. These techniques can be applied to train the

optimum Wiener receiver in the case of short code CDMA. The main part of this chapter

is the extension of these techniques to the equalization in long-code CDMA (UMTS-FDD

for example). Simulations results are presented and general conclusions are given.

2.2 Reduced-Rank Methods

Let us begin with the generic signal model

x(m) = c̃ b(m) + I(m), (2.1)

where x(m) is the N×1 received signal, c̃ is a N×1 vector, b(m) is a unit-variance scalar

signal to be estimated and I(m) is a signal decorrelated from b(m) modelling interferences

and/or noise. The N ×N covariance matrix of I(m) is denoted RI and will be assumed

invertible.

We consider the problem of estimating the scalar b(m) from the received signal x(m)

using a N × 1 linear receiver w. The soft estimate b̃(m) is given by:

b̃(m) = wHx(m), (2.2)

where w is a N × 1 vector (filter). In particular, the filter corresponding to the MMSE

detector (the Wiener filter) can be obtained as a solution of the following linear system
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(normal equations):

RwN
opt = c̃, (2.3)

where the covariance matrix of x(m) is given by:

R
def
= E[x(m)xH(m)] = c̃c̃H + RI ,

and the observation-desired signal cross correlation signal

c̃ = E[x(m)b∗(m)].

The important property of the Wiener filter is that it is the only filter that minimizes the

Mean-Squared estimation Error (MSE), or, in other words, average error energy. In our

notations, the MSE can be written as:

J(w) = E[‖b(m)− b̃(m)‖2] = 1 + wHRw −wH c̃− c̃Hw. (2.4)

The Wiener filter owes its popularity not only to this property but also to its relatively

simple expression as a solution of a linear system (2.3). However, in most practical appli-

cations, including multiuser detection in CDMA systems, exact values of the covariance

matrix and of the cross-covariance vector are not available. For example, in a synchronous

CDMA system, such characteristics as number of CDMA users, user spreading codes, user

fading and the signal-to-noise ratio are partially or completely unknown. Moreover, noise

and signal powers, as well as the overall channel matrix may exhibit slow variations due

to user’s motion and, generally, changes in signal propagation conditions. Therefore, one

has to deal with some estimates of R and c̃. By way of example, the estimate of R can

be obtained as:

R̂(m) = γR̂(m− 1) + (1− γ)x(m)xH(m), (2.5)

where 0 < γ < 1 is a forgetting factor. As soon as exact values of R and c̃ are replaced by

the time-varying estimates R̂(m) and ˆ̃c(m), the system (2.3) has to be resolved each time

these estimates are updated in order to take into account the most recent samples of x(m).

The observation dimension N can be very high. In the case of CDMA N represents the

processing gain ( the spreading factor) which can be as high as 512. This can be further

combined with multi antennas reception and/or oversampling. For these reasons, it may

be quite a problem from the computational viewpoint to calculate the Wiener filter. For

example, using Recursive Least-Squares (RLS) algorithm for adaptive inversion of R̂(m)

leads to the computational cost of O(N2) multiplications per symbol. Moreover, as the

system to solve has the form

R̂(m)w(m) = ˆ̃c(m), (2.6)

natural questions arise such as the speed of the convergence of w(m) to the Wiener

filter wN
opt and the tracking ability of the solution w(m) in a non-stationary environ-

ment. These questions can only be answered taking into account the particular method
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of solving (2.6). Unfortunately, the answers provided by conventional adaptive filtering

techniques (the Sample Matrix Inversion (SMI), Recursive Least Squares (RLS) and Least

Mean Squares (LMS) algorithms [37]) are often unsatisfactory for applications when the

amount of training data (that is, the number of observations) is limited: for example,

multiuser detection in fast fading environment.

Reduced-rank methods, as an alternative to full-rank Wiener filter optimization, provide

fast and efficient (approximate) solutions to (2.6). The idea behind reduced-rank filtering

is to try to adapt only some of the coefficients of w that are needed to keep reasonable

performance.

2.2.1 Filter rank reduction

Let SD be a D-dimensional subspace of CN . The reduced-rank Wiener filter in subspace

SD is defined as

wD
opt

def
= arg min

w∈SD
J(w). (2.7)

The above definition includes the full-rank Wiener filter as a particular case when D =

N . Let {qj} , j = 1, . . . , D, be a basis (not necessarily orthogonal) of SD. Define the

projection matrix Q
def
= [q1 q2 . . . qD]. As wD

opt = Qµ for some µ ∈ CD, (2.7) can be

rewritten as

wD
opt = Q

(
arg min

µ∈CD
J(Qµ)

)
= QµD

opt. (2.8)

Substituting w = Qµ into (2.4) yields

J(Qµ) = 1 + µHRtµ− µH c̃t − c̃H
t µ, (2.9)

where the transformed covariance matrix Rt and the transformed signal-data cross-correlation

vector c̃t are defined as

Rt
def
= QHRQ, (2.10)

c̃t
def
= QH c̃. (2.11)

It then follows that µD
opt in (2.8) is the solution of

Rtµ
D
opt = c̃t. (2.12)

Therefore, the reduced-rank Wiener filter is found by solving (2.12) and substituting µD
opt

into (2.8). The rank-D estimate of the b(m) is given by:

b̃D(m) = wD
optQ

Hx(m) = c̃HQ(QHRQ)−1QHx(m). (2.13)



2.2. REDUCED-RANK METHODS 43

Note that the reduced-rank filter wD
opt operates on the projection of x(m) on Q and not

directly on x(m).

Contrary to (2.3), (2.12) is a system of D linear equations. Therefore, confining the filter-

ing operation to a low-dimensional subspace SD leads to substantial gains in complexity

when D ¿ N . Better convergence and tracking properties can also be expected [60, 77].

On the other hand, confining the Wiener filter to a low-dimensional subspace implies a

loss of degrees of freedom of the filter and, therefore, this operation should increase the

minimum MSE achieved by a reduced-rank method:

J(wD
opt) ≥ J(wN

opt). (2.14)

As for the complexity, the computational overhead due to eventual estimation of Q also

has to be taken into account.

Different reduced-rank method differ in the choice of the subspace SD or equivalently

the projection matrix Q. A ‘good’ choice of SD (and of the rank-reduction method) is

always a compromise dictated by the requirements of a given application. In the next

section, we briefly discuss the Krylov subspace that is common to many of the reduced-

rank algorithms proposed recently. For more information, the reader is referred to [22]

and to thesis [20].

2.2.2 The Krylov subspace KD(R, c̃).

Definition. Given a square matrix A and a nonzero vector v, the subspace defined by

KD ≡ span
{
v,Av,A2v, . . . AD−1v

}
(2.15)

is referred to as a Dth Krylov subspace associated with the pair (A,v) and is denoted

KD(A,v) [64].

In this work, we deal with a family of reduced-rank methods for which SD = KD(R, c̃).

The natural question is: what kind of reasoning leads to this particular choice for SD ?.

To answer this question, consider the gradient of the MSE (2.4):

∇J(w) = 2 (Rw − c̃) . (2.16)

Now let us take an arbitrary i-dimensional subspace Si . Let wi
opt be the reduced-rank

Wiener filter in Si, i.e.,

wi
opt = arg min

w∈Si
J(w). (2.17)

Suppose that one seeks to extend the subspace Si to a (i + 1)-dimensional subspace Si+1.

Since J(w) decreases most rapidly in the direction of −∇J(w), a reasonable strategy is
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to require that

∇J(wi
opt) ∈ Si+1. (2.18)

It follows from (2.16) that for the condition above to be satisfied it is sufficient for Si+1

to contain the pair (c̃,Rwi
opt).

Now let {Si, i = 1, 2, . . . D} be a chain of Krylov subspaces, i.e., Si = Ki(R, c̃), i =

1, 2, . . . D. It is then easy to prove by induction that in this case the condition (2.18) is

satisfied for each i within the range 1 . . . D. Therefore, the Krylov subspace KD(R, c̃)

results from D steps of a sequential procedure, which i) is initialized with the matched

filter (S1 = c̃); ii) at step i, solves the reduced-rank minimization problem (2.17) and

extends the minimization subspace Si with the gradient of the cost function (MSE) taken

at the point wi
opt.

Remark 2.1 Other approaches leading to Krylov subspaces can be found in literature.

For example, one can consider the polynomial decomposition of R−1:

R−1 = α0I + α1R + . . . αN−1R
N . (2.19)

A reduced-rank filter is obtained by truncating the right-hand side of (2.19) to D terms

and by multiplying the result by c̃:

wN
opt = R−1c̃ ⇒ wD

opt = α
′
0c̃ + α

′
1Rc̃ + . . . α

′
D−1R

D−1c̃. (2.20)

The coefficients {α′i} are chosen in order to minimize the MSE (the Cayley-Hamilton Re-

ceiver of [58]) or to maximize the Signal-to-Interference ratio [59]. In [34], the MSWF is

developed through the decomposition of the full-rank Wiener filter into a linear combina-

tion of the matched filter c̃N and of the reduced-rank Wiener filter vN−1
opt in the orthogonal

to c̃N subspace:

wN
opt = β1c̃

N + β2v
N−1
opt . (2.21)

The filter vN−1
opt can be further represented as a linear combination of the matched filter

c̃N−1 (in the subspace orthogonal to c̃N) and of the Wiener filter vN−2
opt of rank N − 2 (in

the subspace orthogonal to span{c̃N , c̃N−1}), and so on. The vectors c̃i so obtained again

generate the Krylov subspace.

2.3 Reduced-rank techniques based on the Krylov

subspace projection

In this section, we present three methods to calculate the reduced-rank Wiener filter.

The subspace of the three methods is the Krylov subspace associated to the observation

covariance matrix and the signal-observation cross-correlation vector.
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2.3.1 The Powers of R (POR) receiver

The most direct way to implement a Krylov subspace reduced-rank receiver is to construct

the Krylov matrix as the succesive powers of the covariance matrix multiplied by the cross-

correlation vector. The POR receiver [43] can be considered as the simplest reduced-rank

filter because it directly uses this remark. Vectors ti, i = 1, 2 . . . D, which generate the

Krylov subspace KD(R, c̃) are computed as

ti = Ri−1c̃. (2.22)

The algorithm is summarized in Table 2.1. It is noteworthy that for the POR receiver,

[i, j]th element of Rt can be written as

Rt[i, j] = c̃HRi+j−1c̃, (2.23)

therefore, Rt is a Hankel matrix. This fact can be used to simplify calculations.

t1 = c̃

ti = Rti−1, i = 2, . . . , D

T = [t1 t2 . . . tD]

Rt = THRT

c̃t = TH c̃

Solve Rtµ = c̃t for µ

wD
opt = Tµ

Table 2.1: Summary of the POR algorithm

2.3.2 The Multi-Stage Wiener Filter (MSWF)

The Multi-Stage Wiener Filter [34] consists of two distinct iterative procedures. The first

one (forward recursion, Table 2.2) builds an orthonormal basis of the Krylov subspace

KD(R, c̃) giving the projection matrix Q = [q1 q2 . . . qD]. The second procedure (back-

ward recursion, Table 2.3) solves the system (2.12) giving the transformed Wiener filter

µD
opt, or, equivalently, the weighting of basis vectors. The resulting structure of the MSWF

is depicted in Fig. 2.1. At stage i of the MSWF, the received signal is projected onto the

subspace orthogonal to the filters qj (j = 1, 2, . . . , i) of the preceding stages giving the

projected observation

x0(m)
def
= x(m), xi(m) =

i∏
j=1

(I− qjq
H
j )x(m) (i > 0).
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The projected observation xi−1(m) is subsequently filtered with the filter qi giving the

output di(m) of the ith stage. The outputs of all D stages of the MSWF are then

linearly combined. The derivation of the equations of Tables 2.2 and 2.3 can be found,

for example, in [22]. The D-stage MSWF computes the rank D Wiener filter in Krylov

subspace KD(R, c̃). Hence, the MSWF is mathematically equivalent to POR.

Remark 2.2 It can be verified that the basis vectors of the MSWF qj result from the

Gramm-Schmidt orthonormalization procedure applied to the POR basis vectors ti = Ric̃

i = 1...D.

Figure 2.1: Multi-Stage Wiener Filter (rank D = 4).

Initialization:

p1 = c̃

δ1 = ‖c̃‖
x0(m) = x(m)

i := 1

Do While (δi 6= 0) and (i ≤ D)

qi = pi/δi

xi(m) = (I− qiq
H
i )xi−1(m)

di(m) = qH
i xi−1(m)

i := i + 1

pi = E[xi−1(k)d∗i−1(m)]

δi = ‖pi‖

Table 2.2: Forward recursion of the rank D MSWF.
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Initialization:

εD(m) = dD(m)

Decrement i = D, . . . , 1

ωi = δi/E [|εi(m)|2]
if i = 1

b̂(m) = ω1ε1(m)

else

εi−1(m) = di−1(m)− ωiεi(m)

Table 2.3: Backward recursion of the rank D MSWF.

2.3.3 The Conjugate-Gradient Reduced-Rank Filter (CGRRF)

The Conjugate Gradient Reduced-Rank Filter [21] or Conjugate Gradient Implementation

of the MSWF [31] are inspired directly from the Conjugate Gradient Algorithm (CGA)

for systems of linear equations [35]. For that reason, we start by a brief introduction into

conjugate gradient methods.

Consider the following general iterative procedure:

w0 = 0 (2.24)

wi = wi−1 + ciui, i = 1, 2, . . . , D (2.25)

with the sequences of complex coefficients ci and of vectors ui chosen according to some

optimization criterion.

The criterion considered here is J(wi), so it is natural to require that J(wi) ≤ J(wi−1).

Note also from (2.25) that wi is always in U i = span{u1,u2, . . . ,ui}. The question is:

whether it is possible to choose ci and ui to give the reduced-rank Wiener filter in U i? In

other words, we require that

wi = wi
opt = arg min

w∈U i
J(w). (2.26)

The following lemma answers this question.

Lemma 2.1 For the requirement (2.26) to be satisfied, it is sufficient that

1. ui be mutually R-conjugate, that is,

uH
i Ruj = 0, i 6= j (2.27)

2. ci be given by

ci = uH
i ei−1/u

H
i Rui, (2.28)

where

ei
def
= c−Rwi. (2.29)
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Proof 2.1. See [35].

It is easy to show that the value of the coefficient ci as given by (2.28) minimizes the MSE

in the direction of the line L = {wi−1 + cui}. Therefore, the condition (2.27) guarantees

that the reduced-rank Wiener filter wi
opt lies on L.

Different versions of the conjugate-gradient algorithm result from different ways to com-

pute the sequence of R-conjugate vectors ui [35]. The version shown in Table 2.4 requires

only one matrix-by-vector multiplication per iteration. D iterations of the algorithm re-

sult in a sequence
{
wi

opt

}
of D reduced-rank Wiener filters in U i. The following lemma

establishes the equivalence between the CGA and other exact methods (MSWF, POR).

Lemma 2.2 For all 1 ≤ i ≤ D, U i = Ki−1(R, c̃).

Proof 2.2. See [35].

Therefore, the reduced-rank Wiener filter in U i generated at the ith CGA iteration is also

the reduced-rank Wiener filter in the Krylov subspace Ki−1(R, c̃).

Basically, the CGRRF of rank D performs D CGA iterations. The CGRRF has a multi-

stage structure, as shown in Fig. 2.2, with the stage i computing the reduced-rank Wiener

filter of the rank i and filtering the received signal to give the estimate b̃i(m).

Initialization:

w0
opt = 0

u1 = e0 = c̃

For i = 1, 2, . . . , D

if i > 1

βi = −‖ei−1‖2/‖ei−2‖2 (1)

ui = ei−1 − βiui−1 (2)

End

zi = Rui (3)

copt
i = uH

i ei−1/u
H
i zi (4)

ei = ei−1 − copt
i zi (5)

wi
opt = wi−1

opt + ciui (6)

Table 2.4: The Conjugate-Gradient Algorithm.

The complexity of block implementations of exact methods is given in Table 2.5. Here T

is the block size. Note the complexity gain of reduced-rank methods (linear in N) with

respect to Sample Matrix Inversion (SMI) which varies as N3 and the RLS which varies

as N2.
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Figure 2.2: The Conjugate-Gradient Reduced-Rank Filter (rank D = 4).

Algorithm Number of multiplications per block

SMI N3/6 + TN2

RLS TN2 + 3NT + 2T

POR 2TND + 3ND −N + 2D2

MSWF 3TN(D − 1) + (N + T )(2D − 1) + D

CGRRF 2TND + 7ND − 3N + D

Table 2.5: Complexity of block implementations [20].
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2.3.4 Low-complexity approximate implementations

Low-complexity sample-by-sample adaptive implementations of exact methods can also be

derived. By replacing some of the quantities that involve matrix-vector multiplications

by some sample averages as a function of the previous samples. It should be noted,

however, that these approximations incur a loss in performance especially for rapidly

varying channels.

The Adaptive Conjugate Gradient Reduced Rank Filter

Let us take, as an example, the following equation of the CGRRF (equation (3) in Table

2.4):

zi = Rui. (2.30)

Implemented as it is, the matrix multiplication in (2.30) costs N2 flops. Instead, one may

write:

zi(m) = R(m)ui(m) = (α1(m)R(m− 1) + α2(m)r(m)rH(m))ui(m),

where the coefficients α1 and α2 depend on the estimator of R1. Approximation

R(m− 1)ui(m) ≈ R(m− 1)ui(m− 1) (2.31)

leads to

zi(m) = α1(m)zi(m− 1) + α2(m)r(m)rH(m)ui(m).

If zi(m) is computed as above, it costs only 3N flops. The resulting low-complexity version

of CGRRF proposed in [22] is given in Table 2.6.

The Stochastic Gradient Multi-Stage Wiener Filter

A similar adaptive implementation based on the MSWF: the Stochastic Gradient MSWF

(SG-MSWF) was proposed in [40]. As for the CGRRF algorithm, the MSWF algorithm

requires matrix-vector multiplications. In fact, when the statistics are not known, we

concatenate the received signal vector x(1), ...,x(T ), where T is the block size, in a single

Matrix X. The training symbols b(1), ..., b(T ) are also grouped in a single vector b.

The vector p1 is then estimated by: p1 = Xb. The vectors pi i = 2...D are estimated

similarly after filtering X by the blocking matrix (see [40] for a batch version of the MSWF

based on training when the statistics are not known). In order to avoid the matrix-vector

multiplication, it was proposed in [40] to approximate the MSWF parameters by sample

averages. This means that the vectors pi i = 1...D are updated using the forgetting

factor γ as:

pi(m) = γpi(m− 1) + (1− γ)d∗i−1(m)xi−1(m). (2.32)

1For example, if exponentially-forgetting window is used, then α1(m) = 1 and α2(m) = γ (with
0 ≤ γ ≤ 1 being the forgetting factor).
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The details of the SG-MSWF are given in Table 2.7.

Because of the approximations of the type (2.31), performance degradation (with the

respect to exact versions of these algorithms) is generally observed. This point will be

highlighted when discussing simulation results.

Initialization:

w0(m) = 0

β1(k) = 0

γ ∈ [0; 1](forgetting factor)

u1(m) = e0(m) = c̃

For i = 1, 2, . . . , D

if i > 1

βi(m) = ‖ei−1(m)‖2/‖ei−2(m)‖2

ui(m) = ei−1(m) + βi(n)ui−1(m)

End

zi(m) = γzi(m− 1) + r(m)rH(m)ui(m)

αi(m) = γαi(m− 1) + |uH
i (m)r(m)|2

ci(m) = uH
i (m)ei−1(m)/αi(m)

ei(m) = ei−1(m)− ci(k)zi(m)

wi(m) = wi−1(m− 1) + ci(m)ui(m)

Table 2.6: Summary of the Adaptive Conjugate Gradient Reduced-Rank Filter.

The complexity of approximate sample-by-sample implementations is given in table 2.8.

2.4 Optimum Reduced-Rank CDMA Wiener Receivers

An optimum reduced-rank Wiener receiver stands for a reduced-rank version of the full-

rank Wiener receiver. The full-rank receiver is the classical Wiener receiver. To explain

how reduced-rank filtering can be applied to CDMA systems, we consider the faded CDMA

model (1.14) that is repeated here for convenience:

x(m) = H0W(m)b(m) + H1W(m− 1)b(m− 1) + v(m), (2.33)

where the quantities are defined in Chapter 1. We first precise that this model is a

particular case of (2.1). We consider that user 1 is the user of interest and partition

W(m) and b(m) as:

W(m) = [w1(m) U(m)],
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Forward recursion: Initialization:

d0(m) = b(m)

x0(m) = x(m)

i := 1

At each n; Do While (δi 6= 0) and (i ≤ D)

pi(m) = γpi(m− 1) + (1− γ)d∗i−1(m)xi−1(m)

δi = |pi(m)|2
qi = pi/δi

di(m) = qH
i (m)xi−1(m)

i := i + 1

xi(m) = (I− qiq
H
i )xi−1(m)

Backward Recursion: Initilization

εD(m) = dD(m)

Decrement i = D, . . . , 1

ζi(m) = γζi(m− 1) + (1− γ)

ωi = δi/ζi(m)|εi(m)|2
if i = 1

b̂(m) = ω1ε1(m)

else

εi−1(m) = di−1(m)− ωiεi(m)

Table 2.7: Summary of the Stochastic-Gradient MSWF.

Algorithm Number of multiplications per sample

RLS N2 + 3N + 2

SG-MSWF 7ND

Adaptive CGRRF 8ND − 2N

Table 2.8: Complexity of some sample-by-sample algorithms
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and

b(m) = [b1(m) bI(m)T ]T ,

where w1(m) and b1(m) are the code and the transmitted symbol of the user of interest at

time instant m whereas U(m) and bI(m) are the interferers code matrix and transmitted

symbol vector. If we let:

rxb(m) = c̃
def
= H0w1(m) (2.34)

IN
def
= H0U(m)bI(m) + H1U(m− 1)b(m− 1) + v(m) (2.35)

Then model (2.33) appears as a particular form of (2.1). The Wiener receiver is given by:

w = R−1
xx (m)rxb(m) (2.36)

where

Rxx(m) = E
{
x(m)x(m)H

}
= H0W(m)W(m)HHH

0 +H1W(m−1)W(m−1)HHH
1 +σ2IN .

The reduced-rank receiver of rank D corresponding to this receiver is obtained by con-

structing the Krylov matrix:

KD(m) = [rxb(m) Rxx(m)rxb(m) ... RD−1
xx (m)rxb(m)], (2.37)

and calculating the reduced-rank filter:

wD =
({

KD(m)
}H

Rxx(m)KD(m)
)−1 {

KD(m)
}H

rxb(m). (2.38)

The corresponding estimate of bD
1 (m) is given by:

b̃D
1 (m) = (wD)H

{
KD(m)

}H
x(m). (2.39)

This kind of receiver can be implemented if we know all the quantities. The scrambling

code should be known at each time instant m. This is usually the case, but one has

to reevaluate the covariance matrix each time. In the case of short-code CDMA, the

interferers spreading codes are not known, but we know that W(m) = W(m − 1). Rxx

becomes independent of time and can be estimate by

R̃xx =
1

T

T∑
m=1

x(m)x(m)H ,

and the methods discussed previously can be used to calculate the reduced-rank estimate

of b1(m). The asymptotic performance of this kind of receivers will be discussed in chapter

4. For more information about the performance of different adaptive algorithms with this

kind of receiver the reader is referred to thesis [20].
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2.5 Suboptimum Reduced-Rank CDMA Wiener Re-

ceivers

The conventional detector for CDMA systems is the RAKE receiver. The RAKE re-

ceiver is known to suffer from Multiple Access Interference (MAI) that is created due to

multipath channels. The use of multiuser detection gives a huge performance gain [74]

but requires a substantial increase in the computational cost. Therefore, it cannot be

used in the downlink where severe limitations are imposed on the mobile unit in terms of

power consumption and computational complexity. Furthermore, most of the proposed

multiuser detection algorithms, like the MMSE detector discussed previously, assume the

knowledge of codes allocated to the active users present in the system. In the downlink,

however, the mobile unit has very limited knowledge and cannot take advantage of mul-

tiuser detection.

Most of the methods for multiuser detection in CDMA rely on the cyclostationarity of

the received signal [41] (no scrambling). Those methods cannot be used in W-CDMA sys-

tems where the short spreading codes are multiplied by a long cell specific pseudo-random

scrambling code [15].The received signal cyclostationarity is broken by the scrambling se-

quence. To overcome these difficulties, chip-level equalization was proposed to restore the

orthogonality between spreading codes, thus reducing MAI [49, 48].

A Suboptimum Reduced-Rank receiver stands for a class of receivers that consist of a

reduced-rank MMSE channel equalizer followed by descrambling and despreading. This

receiver structure is shown in Figure 2.3. The main difference with optimum reduced rank

Wiener receiver resides in the fact that interferers codes are not needed to implement this

receiver. The channel effect is inverted by using an equalizer and any of the users can be

detected without the need to know other codes.

Figure 2.3: Suboptimum reduced-rank receiver structure.

To explain reduced-rank equalization, let the (Ng × 1) discrete-time received signal be

given by:

x(i) = Hd(i) + v(i), (2.40)
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where Ng is the length of the equalizer to be introduced later, and

d(i) =
[
d(i− L + 1), .., d(i), ..., d(i + Ng − 1)

]T
,

x(i) =
[
x(i), x(i + 1), ..., x(i + Ng − 1)

]T
,

H =




hL−1 · · · h0 · · · 0

0 hL−1 · · · h0
...

0
. . . . . . . . . 0

... 0 hL−1 · · · h0




,

where hk
4
=h(t)|t=kTc , v(i) is defined as x(i) with v(k)

4
=v(t)|t=kTc and LTc is the overall

channel length.

2.5.1 Adaptive Chip Level MMSE Equalization

Chip level channel equalization is needed in order to restore the orthogonality between

chip signals prior to despreading and descrambling. We will adopt the MMSE equalizer

because it outperforms both Zero Forcing and RAKE [49].

Suppose that we want to design an MMSE equalizer of length Ng and delay Dg to restore

d(i) from the observation x(i). Under the assumption that the chip sequence is an i.i.d

sequence2, the MMSE equalizer is given by [49]:

g = {σ2
dHHH + σ2INg}−1h (2.41)

where σ2
d is the average chip sequence power, h is the (Dg + 1)th column of H.

Let Rxx = σ2
dHHH + σ2INg and rxd = h. Rxx can be shown to coincide with:

lim
M→∞

1

MN

MN−1∑
i=0

E
{
x(i)x(i)H

}
, (2.42)

where x(m) is generated using the model (1.14).

Rxx can be estimated consistently by:

R̃xx =
1

MN

MN−1∑
i=0

x(i)x(i)H . (2.43)

2The scrambling sequence is a realization of an i.i.d sequence that is known by the receiver. Note that
the chip sequence can be considered i.i.d if the scrambling sequence is a realization of an i.i.d sequence
unknown to the receiver.



56 Reduced-Rank CDMA Receivers

Similarly,

rxd = lim
M→∞

1

MN

MN−1∑
i=0

E
{
x(i + Dg)d

∗(i)
}

(2.44)

rxd can be estimated consistently by:

r̃xd =
1

MN

MN−1∑
i=0

x(i + Dg)d
∗(i), (2.45)

where the expectation is over all the symbols bk(m) and noise.

The equalizer restores the orthogonality of the spreading codes. The reconstructed chip

sequence (d̂(i)) is obtained by filtering the received signal x(i) by the equalizer filter

g(z) corresponding to vector g. An estimate of the symbol b̂k(m) is then obtained by

descrambling and despreading the equalized chip sequence d̂(i):

b̂k(m) =
N−1∑
i=0

d̂(mN + i)s∗(mN + i)c∗k(i)

=
N−1∑
i=0

Ng−1∑

l=0

g∗l x(mN − l + i)s∗(mN + i)c∗k(i)

=

Ng−1∑

l=0

g∗l yl,k(m) = gHCH
k (m)x̃(m)

= gHyk(m) (2.46)

where
g = [g0, . . . , gNg−1]

T

yk(m) = [y0,k(m), . . . , yNg−1,k(m)]T

yl,k(m) =
∑N−1

i=0 x(mN − l + i)s∗(mN + i)c∗k(i)
x̃(m) = [x(mN + N − 1), . . . , x(mN), . . . , x(mN −NG + 1)]T

c̃k(m) = [s(mN + N − 1)ck(N − 1), . . . , s(mN)ck(0)]T

and Ck(m) = T (c̃k(m)) is the (N + Ng − 1)×Ng Toeplitz matrix associated with the

vector c̃k(m) (padded with zeros) given by:

Ck(m) =




s(mN + N − 1)ck(N − 1) 0 . . . 0
...

. . .
...

s(mN + 1)ck(1)
. . . s(mN + N − 1)ck(N − 1)

s(mN)ck(0) s(mN + N − 2)ck(N − 2)
. . .

...

0 . . .
. . . s(mN)ck(0)




.
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Equations 2.46 show that the order of the equalization step and the despreading (+

descrambling) step can be changed since they are two linear operations. This is a very

important remark since it allows to train the equalizer using the known pilot symbols.

Equation (2.41) is of the form of the well known Wiener-Hopf Equation. As for the

symbol level receiver, the equalization step can be done in a reduced-rank fashion. The

reduced-rank equalizer of rank D is given by:

gD = KD
({

KD
}H

RxxK
D
)−1 {

KD
}H

rxd, (2.47)

where KD is now the Krylov matrix associated to the pair (Rxx, rxd) given by:

KD = [rxd Rxxrxd ... RD−1
xx rxd]. (2.48)

We cannot train the MMSE equalizer on the chip sequence (because the mobile is not

supposed to know other users’ codes and symbols). Future 3G CDMA systems (like the

UMTS-FDD) consider the use of a permanent pilot channel which employs a code of

all 1’s, this sequence will be used to train the equalizer. The preceding set of equation

show that the order of the equalization step and the despreading (+ descrambling) step

can be interchanged. The error-driven adaptive algorithm is thus fed by the despread

pilot signal and the desired signal is the pilot symbol. The resulting coefficients are the

equalizer coefficients used for equalization. We need, however, to show that the resulting

equalizer is the same. For this purpose we need to use the following proposition:

Proposition 2.1 under the assumption that the scrambling sequence is i.i.d (so that the

chip sequence is i.i.d), the solution of:

Rxxg = rxd (2.49)

is equal up to a constant multiplicative factor to the solution of:

Ryyg = ryb, (2.50)

where

Ryy = lim
M→∞

1

M

M−1∑
m=0

E
{
yk(m)yk(m)H

}
(2.51)

and

ryb = lim
M→∞

1

M

M−1∑
n=0

E
{
yk(m)b∗k(m)

}
. (2.52)

Proof. See Appendix A.1.
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Consistent estimate of Ryy and ryb can be obtained by:

R̃yy =
1

M

M−1∑
m=0

yk(m)yk(m)H , (2.53)

r̃yb =
1

M

M−1∑
m=0

.yk(m)b∗k(m) (2.54)

The reduced-rank algorithms discussed previously can be used by using implicitly the

proposition 2.1. They provide a reduced rank MMSE equalizer using y1(m) as input and

the known pilot sequence b1(m) as desired output instead of using x(m) and the unknown

chip sequence d(i) and update the equalizer at each symbol.

Once the equalizer is updated, it is applied to yk(m) to estimate the symbol bk(m) where

k is the index of the user of interest. The corresponding performances are presented in

the next section.

2.6 Simulation Results

In what follows, we present extensive simulation results to highlight the performance of

reduced-rank equalization in the forward link of UMTS-FDD. Both exact and approximate

methods are considered in static and time-varying channels environment.

2.6.1 Exact methods for available Rxx and rdx = h

We begin by considering the case where we have exact estimates of the covariance matrix

Rxx and the cross-correlation vector rxd. We consider the physical channel of UMTS-FDD.

All users are considered to have the same spreading factor N . We consider a system with

N = 32 and a number of users K = 16, all fixed to 10 dB. The propagation channel is

the Vehicular A channel (The profile of the Vehicular A channel is shown in table 2.9).

On each frame a different realization of channel following this profile is generated. The

equalizer length Ng is taken to be 20. Figure 2.4 shows the BER of exact methods (either

MSWF or CGRRF) as a function of the rank D. The BER of the MMSE equalizer

solution and the RAKE receiver are given for comparison.

Path Delay in chips 0 1.19 2.73 4.19 6.65 9.65

Average Power (dB) 0 -1.0 -9.0 -10.0 -15.0 -20.0

Table 2.9: The Vehicular A channel power profile.
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1 2 3 4 5 6 7 8 9
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Rank D
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RAKE Receiver
Exact Reduced−Rank Equalizer
MMSE Equalizer−Based Receiver

Figure 2.4: Performance of exact algorithms

We see that the reduced-rank BER converges rapidly to the full-rank (MMSE) BER. We

see also that the rank D = 1 corresponds to a RAKE receiver. The speed of convergence

of the reduced-rank BER to the full-rank BER will be analyzed in Chapter 4 for optimum

reduced-rank receivers. The speed of convergence of equalizer-based receivers considered

in this chapter will be discussed in Chapter. 5.

2.6.2 Exact method with adaptive estimation of Ryy and ryb

We switch to the case where Ryy and ryb are estimated using a forgetting factor. We start

by evaluating the performance of exact methods (either MSWF or CGRRF). For this, we

simulate a system with the following parameters: a Spreading Factor (SF) N = 32 , a

number of users K = 20. The user 1 is considered to be a pilot channel (CPICH) spread

by a code of all ones and used to train the equalizer. The user of interest is taken to

be one of the remaining users (we average the performance over the different spreading

codes). The user of interest and the pilot are fixed to a power of 12 dB while all the

remaining users are fixed to 10 dB. The propagation channel is taken to be the multipath

”channel 1” with chip-spaced coefficients shwon in Table. 2.10.

The equalizer length Ng is taken to be 20 and the forgetting factor α = 0.99. The mobile

is supposed to know neither interfering users codes nor the propagation channel, the only
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Path Delay in chips 0 3 6 8

Channel Coefficient 0.45 - 0.45i 0.45 + 0.45i -0.22 + 0.22i 0.22 - 0.22i

Table 2.10: The channels coefficients of “Channel 1” used in simulations.

knowledge required is the pilot sequence, the scrambling sequence and the spreading codes

of the user of interest and the pilot.

We evaluate the convergence of exact methods versus time. The algorithm used to train

the equalizer is the MSWF of rank D = 33. Figure 2.5 shows the BER convergence of

MSWF and compare it to adaptive RAKE4 and SMI. Exact RAKE and exact MMSE are

given for comparison.

0 50 100 150 200 250
10

−2

10
−1

10
0

Sample number

B
E

R

Exact RAKE
Adaptive RAKE
MSWF D=3
SMI
Exact MMSE

Figure 2.5: Performance of exact reduced rank equalization vs time (symbol period).

First, we note that adaptive RAKE and SMI tend to exact RAKE and exact MMSE

respectively when the estimate R̂yy and r̂yb converge to Ryy and ryb respectively. We re-

mark also that the reduced-rank method give performance that is very close to the SMI.

3The same results are obtained for CGRRF and POR since exact algorithms are equivalent
4adaptive RAKE stands for a RAKE where the coefficients are estimated adaptively using a forgetting

factor, where exact RAKE stands for a RAKE receiver which knows exactly the channel
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Another important remark is that a reduced-rank equalizer trained only on the pilot gives

a better performance that an exact RAKE.

In the next experiment, we keep the same setting as the previous experiment (N=32,

K=20) and the same propagation channel. We evaluate the BER after convergence (after

300 samples) as a function of the SNR of each user. All users are considered to have the

same SNR and are varied together. Figure 2.6 shows the results for different values of the

Rank D.

4 6 8 10 12 14 16 18 20
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b
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D=2
D=3
D=4
D=5 
D=6
SMI

Figure 2.6: Performance of reduced rank exact algorithms.

We notice that the reduced-rank BER converges rapidly to the full-rank. This is more

remarkable for low SNRs. We also remark that the RAKE receiver (which corresponds to

D = 1 flattens for high values of SNR because it is interference limited. This means that

after a certain SNR, there is no interest in increasing the SNR because the limiting factor

is no more noise, but interference. The MMSE equalizer (corresponding to SMI), on the

other hand, as well as its reduced-rank versions suffer less from the interference and do

not flatten for high values of the SNR.
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2.6.3 Approximate sample by sample methods

In the next experiment, we test the performance of approximate methods (Adaptive

CGRRF and Stochastic Gradient MSWF), we keep the same setting as the exact methods

case: a Spreading Factor (SF) N = 32 , a number of users K = 20. The user of interest

and the pilot are fixed to a power of 12 dB while all the remaining users are fixed to 10

dB. We keep the same multipah channel ”channel 1”. The equalizer length Ng is taken

to be 20 and the forgetting factor α = 0.99. The results are shown in figure 2.7.
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R

Exact MMSE
Exact RAKE
Adaptive RAKE
ACGRRF, D=3
SG−MSWF, D=3
RLS

Figure 2.7: Performance of approximate reduced rank methods vs time.

We notice that the BER provided by approximate methods is slightly worse than exact

methods due to the inherent approximations discussed previously. We also remark that

the SG-MSWF converges slowly after some 50 samples but outperforms the ACGRRF

after 150 samples. This means that the ACGRRF has better convergence properties

when the training data are limited, whereas the SG-MSWF is better if the training data

is sufficient to attain steady state performance.

2.6.4 Time-varying channels with exact methods

In the next experiments, we test the performance of the discussed algorithms under time-

varying channels. Using Jakes model [46] we simulate a time-varying channel with Vehic-

ular A profile and a mobile speed of 80 kmh. The forgetting factor γ = 0.98, the spreading
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factor N=32, K=15 users all fixed to 11 dB. The results for CGRRF of D=3 are shown

in Figure 2.8. Note that the RLS gives no improvement over CGRRF. It is even worse
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Figure 2.8: Performance of exact algorithms In time-varying channels environment.

at the beginning, this is a very important property of reduced-rank filtering. When the

number of training data is not sufficient, the reduced-rank performance is better than the

full-rank (Sample matrix inversion) performance.

In Figure 2.9, we plot the BER after convergence (i.e. after Ns=200 samples) of the

MSWF of rank D=3 as a function of the mobile speed for a system with N = 16, K = 10

all fixed to 11 dB. Vehicular A channel profile and a forgetting factor γ = 0.98.

We remark that the performance gap between Sample Matrix Inversion (SMI) and MSWF

decreases as the mobile speed increases. At 200 Kmh there is practically no difference

between the two methods.

2.6.5 Time-Varying Channels with approximate methods

In the last experiment, We consider the performance of approximate methods in Time-

Varying environment. We test the performance of both SG-MSWF and ACGRRF for the

following setting: a vehicular A profile , a mobile speed of 80 kmh, a forgetting factor

γ = 0.98, a spreading factor N=32, K=15 users all fixed to 11 dB. The results are shown
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Figure 2.9: Performance of RAKE, MSWF and SMI as a function of the mobile speed.

in Figure 2.10.

The first remark is that the performance of approximate methods degrades completely

for time varying environment. The improvement with respect to RAKE becomes almost

negligible. We note also that the ACGRRF provides a better BER (recall that the SG-

MSWF is better for static channels and sufficient training samples).

2.7 Conclusion

Reduced-rank filtering methods were discussed in this chapter. We started by a brief

presentation of existing exact methods that are based on the Krylov subspace, namely:

The MSWF the CGRRF and the POR algorithms. We then discussed approximate meth-

ods such as the Adaptive CGRRF and the Stochastic Gradient MSWF. The difference

between optimum and suboptimum reduced-rank receivers was highlighted. Extensive

simulation results were given to explain the performance of reduced-rank equalization in

the CDMA downlink.
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Figure 2.10: Performance of approximate algorithms In time-varying channels environ-

ment.
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Chapter 3

Blind Interference Cancellation for

Multi-rate Long-Code CDMA

3.1 Introduction

Third Generation (3G) mobile communication systems like UMTS are intended to provide

a large variety of services like voice communication and internet browsing. This diversity

of services implies the use of different data rates. 3G systems are termed as ”multi-rate”.

In Code Division Multiple Access (CDMA) systems, data rates depend on the Spreading

Factor (SF). Thus, different spreading factors are used depending on the rate intended

for each physical channel.

As discussed in Chapter 2, because of the scrambling code, the cyclostationarity of the

received signal is broken. Thus, the statistics of the channel and the received signal can-

not be estimated. Wiener receivers and multiuser methods in general cannot be used.

Equalization prior to descrambling and despreading allows to improve the performances

of the RAKE receiver and overcome the MAI limitation.

Intercell Parallel Interference Cancellation (PIC) is another way of reducing MAI. If we

know the codes that are active, we can make decision on some (or all) of the users interfer-

ing with the user of interest. Those decisions (either hard decisions, or soft estimations)

are passed through a channel estimate thus producing a reliable version of MAI. This

MAI can be removed either by subtraction or projection methods [55].

67
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In this chapter, we propose a new blind interference cancellation scheme suitable for

downlink multi-rate CDMA systems. The received signal is passed through a channel

equalizer to restore orthogonality between spreading codes. Fast Walsh Transform (FWT)

is used to produce estimates of the transmitted bits corresponding to all effective codes.

Comparing with a threshold at the output of the FWT, the active codes are decided for.

A Parallel Interference Cancellation stage follows the equalization and FWT. Simulations

are carried for UMTS-FDD and show the gain in performance when using the proposed

scheme with respect to Interference Cancellation with a RAKE receiver1.

3.2 Preliminaries

We consider a single base station transmitting the sum of K users chip signals given by:

d(i) = s(i)
K∑

k=1

µkck(i mod Nk)bk(b i

Nk

c), (3.1)

where s(i) is the base-station dependent QPSK (long) scrambling code, Nk, bk(b i
Nk
c), µk

and ck(i mod Nk) are the spreading factor, the BPSK symbol sequence, the gain and the

(Nk-periodic) spreading code of user k, respectively. (mod stands for the modulo and b.c
for the integer part).

In this chapter, we deal with BPSK users symbols because the Effective Spreading Code

concept to be presented in the sequel is valid for BPSK symbols only. The PIC algorithms

is based on the Effective Spreading Code concept. In the case of QPSK symbols, the PIC

should be carried out into two distinct branches: the I branch and the Q branch.

Let the index of the user of interest be 1. The sum chip signal (3.1) is transmitted through

a multipath channel whose impulse response is given by:

h(t) =
P−1∑
q=0

λ(q)p(t− τq), (3.2)

where p(t) is the total shaping filter (including the transmitter and the receiver matched

filters), λ(q) and τq are the complex gain and the delay associated with path q, and P is

the total number of resolvable paths.

The complex envelope of the received signal at the desired user terminal is then given by:

x(t) =
∑

i

d(i)h(t− iTc) + v(t), (3.3)

1To concentrate on the PIC stage, we consider only ideal MMSE equalization. It is obvious, however,
that reduced-rank adaptive equalization discussed in chapter 2 can be adapted to this situation.
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where v(t) is a noise process (that we will assume to be white and gaussian) and Tc is the

chip period.

Assume for a while that all spreading factors Nk are equal to N . The extension to the

multi-rate case will be explained later.

It is more convenient to express the received vector x(m) defined by:

x(m) =
[
x(mN), x(mN + 1), ..., x(mN + N − 1)

]T

as a function of the transmitted chip sequence d(m) defined by:

d(m) =
[
d(mN), d(mN + 1), ..., d(mN + N − 1)

]T
.

The transmitted chip sequence is given by:

d(m) = S(m)C
√

Pb(m), (3.4)

where S(m) and P are N × N and K × K diagonal matrices whose diagonal elements

are s(mN), s(mN + 1), ..., s(mN + N − 1) and µ2
1, µ

2
2, ..., µ

2
K respectively, C is a N ×K

matrix whose columns are the spreading codes assigned to different users and b(m) =

[b1(m), ..., bK(m)]T .

The received signal can be written as:

x(m) = H0d(m) + H1d(m− 1) + v(m), (3.5)

where

H0 =




h[0] 0 0
... h[0]

h[L− 1]
. . . . . .

0 h[L− 1] h[0]




, (3.6)

and

H1 =




h[L− 1] . . . h[1]
. . .

...

h[L− 1]

0


 , (3.7)

h(q)
4
=h(t)|t=qTc , LTc is the overall channel length, and v(m) = [v(mN), v(mN+1), ..., v(mN+

N − 1)]T .
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3.3 Parallel Interference Cancellation

The conventional detector of CDMA systems is the RAKE receiver. The RAKE receiver

estimates the transmitted symbol of the user of interest by:

b̂1(m) = Dec{cT
1 SH(m)HH

0 x(m)}, (3.8)

where Dec is a decision operator that transforms the soft estimate into a hard decision.

For BPSK signals we use the signum function as decision operator.

Now, suppose that we know the active users in the system (i.e. their spreading codes)

along with their powers. we denote by U the N × (K − 1) matrix obtained by deleting

the first column of C, or equivalently:

C = [c1 U]. (3.9)

Similarly, let Q be the K − 1 ×K − 1 matrix obtained from P by deleting its first row

and column.

We can obtain estimates of all the interferers by:

b̂2:K(m)
4
=




b̂2(m)
...

b̂K(m)


 = Dec{UTSH(m)HH

0 x(m)}. (3.10)

Then regenerate the Multi Access Interference (MAI)2:

x̄(m) = H0S(m)UQb̂2:K(m). (3.11)

Then use Parallel Interference Cancellation (PIC) to cancel the effects of the interferers on

the received signal, thus obtaining an Interference Free signal (provided that the decisions

are correct)

z(m) = x(m)− x̄(m). (3.12)

Finally a better estimate of the symbol of interest can be obtained by applying RAKE

detection on the interference free observation z by:

b̂1(m) = Dec{cT
1 SH(m)HH

0 z(m)}. (3.13)

Now, to apply PIC in W-CDMA we have to consider different spreading factors. We will

show that the model (3.4) remains valid to some extent by using the concept of Effective

Spreading Code (ESC) and virtual symbols introduced in [55].

2In this chapter, we neglect the InterSymbol Interference (ISI), i.e. we assume that ||H1d(m−1)|| <<

||H0d(m)||. This is a valid assumption especially for large spreading factors
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3.3.1 Effective Spreading Codes and Virtual data symbols

Different spreading factors are used in W-CDMA. The orthogonal variable spreading

factors (OVSF) used in W-CDMA [15] have a very important property: they are of

different lengths (which may be any power of two between 4 and 256), but still, they

remain orthogonal. As a consequence of this property, each user sees a set of orthogonal

codes regardless of his spreading factor. This can be represented mathematically by the

following condition:

∀l, k such that Nl ≥ Nk,

Nk−1∑
i=0

ck(i)cl(i + mNk) = δ(l − k),

for m = 0, 1, ..., Nl

Nk
− 1.

If we know all the spreading codes and, thus, their spreading factors (which is the case

in the uplink), we can estimate all the transmitted symbols and use standard PIC to

suppress interference. In the downlink however, only limited knowledge is available at the

mobile unit, and standard PIC cannot be used.

It was shown in [55, 23] that the knowledge of all the active codes is not mandatory to

remove interference. The lack of knowledge can be circumvented by using the concept

of Effective Spreading Code (ESC) introduced in [55]. This concept can be explained as

follows: any active user can be seen as a virtual user with the same spreading factor as

the user of interest and with virtual symbols and effective spreading codes that depend

on the actual spreading factor, the actual spreading code, and actual symbols.

To explain the ESC concept suppose that we have a user of interest (user 1) with Spread-

ing Factor N , and three interfering users (users 2,3 and 4) with Spreading Factors N/2,

N/4 and 2N respectively. In one symbol period (of user 1), the spread signal correspond-

ing to user 1 can be written in vector form as [b1(1)cT
1 ] while users 2, 3 and 4 transmit

[b2(1)cT
2 b2(2)cT

2 ], [b3(1)cT
3 b3(2)cT

3 b3(3)cT
3 b3(4)cT

3 ] [b4(1)cT
1 (0 : 2N

2
− 1)] respec-

tively. User 2 can be seen as a N -Spreading Factor user with virtual symbol b2(1) and

code c̃T
2 = [cT

2 b2(1)b2(2)cT
2 ]; user 3 can be seen as a N -Spreading Factor user with

virtual symbol b3(1) and code c̃T
3 = [cT

3 b3(1)b3(2)cT
3 b3(1)b3(3)cT

3 b3(1)b3(4)cT
3 ]

while user 4 can be seen as a N -Spreading Factor user with virtual symbol b4(1) and code

c̃T
4 = cT

4 (0 : 2N
2
− 1).

In the sequel we will refer to users 2, 3 and 4 as “actual” users, and refer to users of the

same spreading factor as the user of interest, i.e. users with Effective Spreading Codes

c̃2, c̃3 and c̃4 as “virtual” users. Note that the symbols are required to be BPSK for the

analysis to hold.
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Like the case of single spreading factor (3.4), the transmitted chip sequence can be given

by:

d(m) = S(m)C̃(m)
√

Pb(m), (3.14)

where C̃(m) is the effective code matrix at time m. Note that the effective spreading codes

belong to the set of Walsh Hadamard codes of the same length as the user of interest.

Madkour et. al [55] proposed to use this interference cancellation scheme for downlink

W-CDMA. Interference Cancellation is carried out using the combining correlation values

after the Maximal Ratio Combining (MRC) that combines the contribution from all the

fingers. On each finger of the RAKE we estimate the received symbols of all users and

decide on the active users. After MRC, interference is removed and better estimates of the

user of interest transmitted symbols are obtained. We propose to combine this technique

with equalization in order to obtain better estimates of virtual interferers.

3.4 Equalization

The RAKE receiver could be applied to (3.5) to give an estimate of the transmitted bit

of the user of interest. However, Due to the multipath channel, Multiple Access Interfer-

ence (MAI) is created. The RAKE receiver is no more optimal in the presence of MAI.

Chip-level equalization was proposed to restore the orthogonality between the spreading

codes and hence MAI is reduced [49, 48].

The most popular equalizers are the Zero Forcing (ZF) and the Minimum Mean Squared

Error (MMSE) equalizers. the ZF completely eliminates MAI at the expense of enhanced

noise. The MMSE, on the other hand, strives to keep a balance between MAI elimination

and noise enhancement. Chip-level MMSE equalization was compared to Zero Forcing

(ZF) and RAKE [49], where it was shown that the MMSE equalizer outperforms both

ZF and RAKE.

In Chapter 2, we discussed chip-rate equalization. For the sake of simplicity, we work

on symbol level, i.e. we try to design a MMSE equalizer matrix G that acts on a single

symbol interval and minimizes

E||d(m)−GHx(m)||2. (3.15)

Using (3.5), the MMSE Equalizer G is given by (we neglect the ISI term):

G = (H0PHH
0 + σ2I)−1H0

√
P, (3.16)

where σ2 is the noise variance. After equalization, a ”better” version of the chip sequence

is obtained by:

d̂(m) = GHx(m). (3.17)
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Now, we can descramble and despread with the code of the user of interest to obtain an

estimate of the transmitted symbol:

b̃1(m) = Dec{c1
TSH(m)d̂(m)}. (3.18)

MMSE equalization was shown to improve the performance of a plain RAKE receiver.

In what follows, we propose a new blind PIC scheme for multi-rate systems. The PIC

stage is preceded by a MMSE equalizer that restores code orthogonality, and thus leads

to better estimates of interferers symbols than those of section 3.3.

Remark 3.1 The assumption L << N and the related expressions of the MMSE equalizer

in (3.16 are made here for simplicity. The equalization being done at chip level, this

assumption is clearly not necessary and the chip level equalizer implementation can be

performed without such an assumption such as in Chapter 2.

3.5 Improvement Through BPIC

Equalization allows to have better estimates of the user of interest symbols, and even of

interferers. We propose to combine both PIC and equalization for multi-rate systems as

explained below.

Let us assume first that we know the virtual codes of active users along with their powers

(i.e. K and U are known to the receiver). We can obtain estimates of the active (virtual)

users by:

b̂2:K(m)
4
=




b̂2(m)
...

b̂K(m)


 = Dec{UTSH(m)d̂(m)}. (3.19)

The interference is recalculated:

x̄(m) = H0S(m)UQb̂2:K(m). (3.20)

Then, it is subtracted from the received signal:

z(m) = x(m)− x̄(m). (3.21)

Thanks to the Interference Cancellation stage, the estimate of the user of interest can be

calculated according to:

b̂1(m) = Dec{cT
1 SH(m)GHz(m)}. (3.22)
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Now, we discuss how to obtain the effective codes. To estimate U we proceed as follows:

we descramble and despread with respect to every possible (virtual) spreading code, thus

obtaining soft estimates: 


b̃1

...

b̃N


 = CT

NSH(m)d̂(m) (3.23)

where CN is the N ×N Hadamard matrix.

Equation (3.23) seems to be demanding in terms of calculation. However, the Fast Walsh

Transform (FWT) [55, 18] can be used to calculate the output of the despreader in

O(NlogN) flops per symbol duration. Furthermore, the scrambling matrix S is a diago-

nal matrix, its multiplication with the output of the despreader is of the order of a scalar

by matrix multiplication.

Depending on the estimates in (3.23), we decide on the active codes by comparing the

outputs with a carefully chosen threshold (or if we know the number of users, we can take

the K − 1 codes that give the strongest outputs).

Concerning the power matrix Q, we can estimate it by averaging the received powers over

a many symbols, typically a frame duration by taking into account the structure of the

OVSF codes. In our simulations we suppose that the power matrix Q is known.

Once estimates of U and Q are available, we carry out interference cancellation similar

to equations. (3.12) and (3.13). The proposed receiver structure is shown in Fig 3.1.

subtraction
      OR
Projection

MMSE
Equalizer

Descramble
   and
   FWT

Select M highest energies
Decode and generate the 
spreading codes

Spreading
Scrambling
+ Adder

Regenerate  
A channel 
Estimate

received
signal

estimate of user 1

Figure 3.1: The proposed receiver structure.

Remark 3.2 Efficient implementations of an approximate MMSE equalizer using reduced

rank filtering theory discussed in Chapter 2 can be used. For example, using a D-rank

MMSE equalizer together with FWT in an adaptive scheme leads to a reasonable compu-

tational complexity of order O(DN + N log(N) + LN) flops per symbol duration.
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Remark 3.3 In order to further reduce the computational complexity, it is possible to

skip the second stage of PIC if not necessary. This may be the case for example in a

weakly-loaded system context. To chose whether to perform the PIC or not, we can use

a measure of the SINR at the output of the MMSE equalizer and activate the PIC stage

only if smaller than a properly chosen threshold (target SINR).

3.6 Simulation Results

3.6.1 Comparison of Rake and Equalized PIC for Single Rate

CDMA

To evaluate the performances of the proposed algorithm, we start by considering a down-

link synchronous CDMA system in which each user transmits BPSK information symbols.

Those symbols are spread with a spreading code of length 32. After spreading, the result-

ing sum signal is scrambled using an i.i.d QPSK scrambling sequence. The chip sequence

is then transmitted through a 10 path channel with a delay spread of 10 chips. The chips

spaced coefficients of the propagation channel , that will be referred as channel 2 are given

in table 3.1. We assume that the receivers have a priori obtained exact estimates of the

powers and the spreading codes of interfering users.

Figures 3.2 and 3.3 show the performance of 4 reception schemes as a function of the

SNR of each user for 31 and 15 users respectively (all users are considered with the same

SNR). The considered receivers are the following: the RAKE receiver, PIC with decisions

obtained using a RAKE receiver [55], MMSE equalizer followed by despreading and de-

scrambling and finally the proposed ”PIC + equalization” scheme. Note the huge gain in

performance between PIC + RAKE and PIC + MMSE equalization.

We see that, for the first configuration (a fully loaded system), the MMSE equalization

is better than the PIC scheme with decisions obtained by RAKE reception, while for the

second configuration (a half loaded system) the PIC is better. This can be explained

by the fact that for the first configuration, the RAKE receiver sees too much interfer-

ence, which makes its decisions about interfering users not very reliable. In the second

configuration, the system is only half loaded, and the RAKE decisions are more reliable.

Consequently , IC provides better results. The equalization, on the other hand, consists

of inverting the channel, and is unaffected (to some extent) by the number of users.
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Delay in chips Complex coefficient

0 -0.2607 + 0.2718i

1 0.0965 - 0.1268i

2 0.2255 + 0.1755i

3 -0.4047 + 0.2077i

4 0.3612 + 0.1438i

5 -0.2885 - 0.1588i

6 -0.2123 + 0.1985i

8 0.3661 - 0.2572i

Table 3.1: Channel 2 coefficients

3.6.2 Comparison of Rake and Equalized PIC for Multi-Rate

CDMA

Next, We consider the case of different spreading factors. We simulate the physical channel

of the downlink of UMTS-FDD with the following configuration: 4 users with a spreading

factor of 16, 8 users with a spreading factor of 32, and 16 users (including the user of

interest) with a spreading factor 64. We evaluate the performances of the four reception

schemes in two cases: hard decisions and soft estimates. In the case of hard decisions,

we assume that we know the number of active users and the powers allocated to them.

If a users is detected at the output of FWT, we remove its hard decision weighted by its

exact power. In the soft estimation case, we assume no knowledge about the powers, only

the number of users is known. We decide for the active virtual users by taking those with

the highest energies at the output of the FWT, and we subtract their soft estimates. No

(hard) decision is taken since we assume no knowledge of the users powers.

The simulations results for hard decisions are shown in Fig. 3.4. We compare the BER

versus the SNR per virtual user (i.e. we consider that all the users have the same chip

energy which makes the energy of higher rate ”actual” users greater. The virtual user
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Figure 3.2: Performance of different reception schemes Vs the SNR for a loaded system.
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Figure 3.3: Performance of different reception schemes Vs the SNR for a half loaded

system.
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power, corresponding to a spreading factor of 64 is, on the other hand, considered the

same). We see that the PIC schemes improve the BER in both cases (with RAKE and

with equalization). The improvement after equalization, however, is much larger than

that obtained after RAKE reception.

Fig. 3.5 shows the results for soft decisions versus the SNR per virtual user. In this case,

RAKE reception followed by PIC deteriorates the BER performance of a plain RAKE

receiver. While PIC after equalization still gives some improvement, albeit with a limited

degree. This is a very important result, because this reception scheme does not require

any power or active users prior knowledge.
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Figure 3.4: Performance of reception schemes for different SF and hard decisions.

3.6.3 Comparison of Blind PIC with Known Codes PIC

Finally, to assess the utility of virtual spreading codes we compare the performance of our

Blind PIC method with the case where we perform classical PIC with known multi-rate

codes. For this, we keep the same setting as the previous experiment and add two curves

that assume perfect knowledge of multi-rate interfering codes. The first curve is for the

RAKE-based PIC receiver and the second is for equalizer-based PIC receiver. The results

are shown in Figure 3.6. We see that the gap between Blind PIC and known codes PIC

is not negligible. But the RAKE-based PIC performs only as good as an equalizer based

receiver for SNR=15dB. We remark also that the equalizer-based PIC with estimated
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Figure 3.5: Performance of reception schemes for different SF and soft estimates.

codes performs much better than RAKE-based PIC even with exact codes knowledge.

This means that the codes ignorance can be compensated by using equalization. Another

very important remark is the additional diversity provided by equalization. We note

that the slope of the three equalizer curves (blue dashed curves) is better that the three

RAKE curves (black solid curves). This means that the RAKE curves flatten after a

certain SNR and equalizer curves perform better with less knowledge. This is due to the

MAI limitation of the RAKE.

3.7 Conclusion

In this chapter, we have proposed a new reception scheme consisting of MMSE equalization

and blind Parallel Interference Cancellation (PIC). Our scheme is suitable for multi-rate

CDMA systems like the 3G W-CDMA. The proposed methods takes advantage of the

virtual users and Effective Spreading Codes (ESC) concepts. Simulation results show

that the proposed scheme allows a significant gain with respect to RAKE-based PIC.
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Chapter 4

Asymptotic Performance of

Reduced-Rank Wiener Receivers

4.1 Introduction

The performance evaluation of existing CDMA receivers has received considerable atten-

tion recently. In this course, several works were devoted to the performance study of

linear detectors such as the conventional matched filter, the decorrelator, the Minimum

Mean-Squared Error (MMSE) receiver, and various kinds of linear interference cancellers.

The main measure of performance used in evaluating the performance is the output Signal

to Interference plus Noise Ratios (SINR). The reason why the study of the whole system

can be replaced by the study of the SINR is that the Multi Access Interference (MAI)

at the output of these receivers can be approximated by a Gaussian distribution. This

was thoroughly justified in [63] and quite recently in [78]. It was pointed out in [71] that

the SINR analytical expressions depend on several parameters such as the received pow-

ers and the code sequences allocated to the users. In particular, no clear insight on the

compared performance of the detectors can be obtained directly from the SINR formulas.

To overcome this conceptual difficulty, it has become now classical to model the code

sequences as random sequences following a certain distribution. The various SINRs can

in this situation be interpreted as random variables, and it has been shown that, under

certain conditions, they converge almost surely toward deterministic quantities when the

spreading factor and the number of users tend to infinity with fixed ratio. The forms of

these limit SINRs become more explicit, and allow to obtain more insight on the param-

eters that influence the performance of the detectors.

83
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Recently, the asymptotic (large-system) performance analysis under random spreading

was applied to reduced-rank receivers. The same problem arises when trying to extract

useful information about the SINR β(N) provided by a reduced-rank receiver for a given

spreading factor N . More precisely, studying the convergence rate of the the rank n SINR

β
(N)
n toward the full-rank SINR β(N) is impossible 1. Honig and Xiao proposed to follow

the same philosophy as in [71] and showed that SINRs β
(N)
n and β(N) tend toward de-

terministic limits βn and β respectively when N and K tend to infinity with fixed ratio.

They replaced the study of the rate of convergence of β
(N)
n toward β(N) by that of βn

toward β. The study proved to be very useful in the case where all the users are allo-

cated the same power. In this case, a recursive relation between βn+1 and βn was derived.

Computer simulations were carried out and it was concluded that full-rank performance

was attained for moderate values of n.

In this chapter, we revisit previous work concerning the large-system performance. We

start by the pioneering work of Tse and Hanly [71] on full-rank MMSE receiver per-

formance. We then review the work of Honig and Xiao [44] on reduced-rank receivers

performance under equal-powers. New results of Loubaton and Hachem [53], (see also

[3]), will be discussed. These results can be used to study the asymptotic performance

of reduced rank receivers corrupted by frequency selective fading channels. A paper that

discusses this issue is given in the appendix E. In the next chapter we use these results

to study the large-system performance of reduced-rank suboptimum receivers.

4.2 Asymptotic Analysis of Wiener receivers for i.i.d

spread CDMA (Tse-Hanly)

We consider a CDMA system with K users and spreading factor N . The received signal

yN obtained by concatenating N received chips is given by:

yN = WN,K

√
PKbK + vN (4.1)

where bK is the K dimensional vector of transmitted symbols, the N ×K matrix WN,K

contains in its columns the codes allocated to different users, PK is the K ×K diagonal

matrix containing users powers. Finally, vN represents the AWGN matrix of variance

σ2IN .

We want to retrieve the symbol transmitted by user 1. i.e. b1 the first entry of vector bK .

1From here on, we denote by n the rank of equalizer in the asymptotic study. The full-rank is the
spreading factor N .
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We let

WN,K = (w1,UN,K),

where w1 is the code of user 1 and UN,K is the interferers code matrix. We also call QK

the interferers power matrix obtained from PK by suppressing its first row and column.

i.e.

PK =

[
p1

QK

]

In order to simplify the notations, we suppose that the power of the first user p1 is equal

to 1. If we can estimate matrices WN,K ,PK and the noise variance σ2, then the classical

Wiener receiver can be used. The symbol b1 is estimated by

b̂1 = wH
1 R−1

N yN (4.2)

where

RN = E(yNyH
N ) = WN,KPKWH

N,K + σ2IN (4.3)

is the N×N covariance matrix of yN . In the sequel, we call RI,N the ”Interference+Noise”

matrix given by

RI,N = UN,KQKUH
N,K + σ2IN . (4.4)

It is classical to use the SINR as a measure of performance. The SINR of the Wiener

receiver, β(N), is given by

β(N) = wH
1 R−1

I,Nw1 (4.5)

It is sometimes more convenient to use the equivalent form:

β(N) =
η(N)

1− η(N)
(4.6)

where η(N) is defined by

η(N) = wH
1 R−1

N w1 . (4.7)

The MMSE SINR (4.5) can be rewritten as:

β(N) = wH
1

(
UN,KQKUH

N,K + σ2IN

)−1
w1 (4.8)

In order to obtain a more informative expression, Tse and Hanly [71] proposed to study

the behavior of β(N) when N and K tend to infinity with fixed ratio. The code matrix

WN,K was modelled as a random matrix with i.i.d entries of variance 1
N

. The hope is

that due to a certain averaging effect, β would converge toward a simpler-to-interpret

deterministic expression independent of the code matrix WN,K . This turns out to be the

case. The following lemmas are needed in order to present the results:
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Lemma 4.1 Let zN be a N × 1 random vector and BN a N × N random matrix inde-

pendent of zN . Assume that the elements of zN are centered i.i.d with variance 1
N

, and

that supN∈N ‖BN‖ < +∞ where (‖ ‖ denotes the spectral norm ). Then,

zH
NBNzN − Trace(BN)

N
→ 0

when N →∞ and the convergence stands for the convergence in probability.

Lemma 4.2 Suppose that the powers allocated to different users converge to a limit dis-

tribution with compact support [pmin, pmax]. Then, the empirical distribution of the eigen-

values of the interference+noise covariance matrix RI,N , namely the distribution with

CDF FN given by :

FN(λ) =
number of eigenvalues of RI,N smaller than λ

N
,

converges almost surely when N and K tend to ∞ and K/N → α to a deterministic

probability measure ω with compact support [δ1, δ2], where δ1 ≥ σ2. In other words, if we

note (λN,k)k=1,...,N the eigenvalues of RI,N , then

lim
N→∞

1

N

N∑

k=1

φ(λN,k) =

∫
φ(λ) dω(λ) (4.9)

for every continuous function φ bounded on [δ1, δ2].

Lemma 4.1 show that β(N) and 1
N

Trace(R−1
I,N) have the same asymptotic behavior. More-

over, it is clear that

1

N
Trace(R−1

I,N) =
1

N

N∑

k=1

(λN,k)
−1

Now using lemma 4.2, we have:

lim
N→∞

1

N

N∑

k=1

(λN,k)
−1 =

∫ δ2

δ1

1

λ
dω(λ) (4.10)

the preceding equality means that β(N) converges almost surely towards a deterministic

constant

β =

∫
1

λ
dω(λ)



ANALYSIS OF WIENER RECEIVERS FOR i.i.d SPREAD CDMA 87

We now introduce the Stieltjes transform Gω(z) of the measure ω defined by2:

Gω(z) =

∫
1

λ− z
dω(λ) (4.11)

we note that β coincides with Gω(0). In order to compute β, we need the following theo-

rem proved in [65]:

Theorem 4.1 Let WN,K be a random N × K matrix with zero mean and variance 1
N

i.i.d. entries, and let TN be a random N × N hermitian matrix independent of WN,K

admitting a limiting eigenvalue distribution µT . Consider a deterministic diagonal K×K

matrix PK admitting a limit eigenvalue distribution µP and let R be the matrix defined

by:

RN = WN,KPKWH
N,K + TN

When N and K tend toward +∞ in such a way that K
N
→ α (0 < α < ∞), then

the empirical eigenvalue distribution ωN of RN converges weakly almost everywhere to a

deterministic probability distribution ω. ω is characterized by its Stieltjes transform Gω(z)

defined as the unique solution of the functional equation:

Gω(z) = GµT

(
−z + α

∫
λ

1− λGω(z)
dµP (λ)

)
. (4.12)

Comparing with matrix RI,N , we see that matrix TN coincides with σ2I. The distribution

µT is reduced to δ(λ− σ2) and the corresponding Stieltjes transform is equal to

GµT
(z) =

1

σ2 − z
.

By substituting its value in (4.12), we get that the Stieltjes transform Gω(z) of measure

ω is given by:

Gω(z) =

(
−z + σ2 + α

∫
λ

1− λGω(z)
dµP (λ)

)−1

(4.13)

Where are now in a position to present the main result of [71]. Using (4.13) for z = 0 we

get the following theorem:

Theorem 4.2 Let N,K →∞ such that K
N
→ α. The SINR β(N) converges in probability

to β the unique solution of the fixed point equation:

2The Stieltjes Transform is also known as the Cauchy transform and it is equal to −π times the Hilbert
transform when defined on the real axis. As with the Fourier transform, there is no universal agreement
on its definition, as sometimes the Stieltjes transform is defined as Gω(−z) or −Gω(z)[72].
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β =
1

σ2 + α
∫∞

0
I(λ, β)dµP (λ)

(4.14)

where

I(p, x) =
p

1 + px

It is interesting to recall how this result was interpreted in [71]. Heuristically, the result

says that in a large system,

β(N) ≈ 1

σ2 + 1
N

∑K
k=2 I(pk, β(N))

(4.15)

For a target SINR β, the term I(pk, β) = pk

1+pkβ
can be interpreted as the variance of

the interference produced by user k on the output of the MMSE receiver. This term is

called in [71] the Effective Interference of user k at target SINR β. The factor 1
N

can be

interpreted as the spreading gain on the interference produced by user k. Moreover, the

total multiuser interference can be decoupled into a sum of interference terms from each

of the interfering users

4.3 Asymptotic Analysis of Reduced Rank Receivers

for i.i.d spread CDMA (Honig-Xiao)

As discussed in chapter 2, the covariance matrix RN has to be inverted in order to

implement the Wiener receiver. When the spreading factor is high, this may be very

costly. Reduced-rank filtering solves this problem. We estimate b1 by its projection on

the n-dimensional space n < N produced by the components of yn,N = KH
n yN where Kn

is the Krylov-subspace matrix defined by:

Kn = [w1,RI,Nw1, . . . ,R
n−1
I,N w1] (4.16)

As pointed out in [44], the matrix RI,N can be replaced by RN in expression (4.16) since

the subspace generated by Kn(RI,N ,w1) is identical to that generated by Kn(RN ,w1).

However, the form (4.16) is more convenient for the analysis to be presented.

The symbol of interest is estimated by a reduced-rank filter of rank n as:

b̂1,n = wH
1 Kn

(
KH

n RNKn

)−1
KH

n yN . (4.17)

The SINR β
(N)
n associated to the rank-n reduced-rank filter is given by:

β(N)
n = wH

1 Kn

(
KH

n RI,NKn

)−1
KH

n w1 (4.18)
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As for, β(N), the reduced-rank SINR β
(N)
n can be written as

β(N)
n =

η
(N)
n

1− η
(N)
n

(4.19)

where η
(N)
n is now defined by

η(N)
n = wH

1 Kn

(
KH

n RNKn

)−1
KH

n w1 (4.20)

Reduced-rank receivers are useful if close to optimal performance is obtained for moderate

values of the rank n. In terms of the SINR, this would mean that β
(N)
n ≈ β(N) for n << N .

It is very difficult to extract any conclusion about the convergence rate by looking at the

expressions of β(N) and β
(N)
n .

Honig and Xiao proposed to replace the study of the convergence of β
(N)
n toward β(N) by

that of the limiting values βn toward β =
∫ δ2

δ1
1
λ
dσ(λ). (see [70] for a simpler proof). They

have established that if PK = IK ( the same power is allocated to all users), then βn+1

can be written as a function of βn. The main result of [44] is the following theorem:

Theorem 4.3 As K = αN → ∞, the output SINR of the rank-n reduced-rank MMSE

receiver converges in probability to the limit βn which satisfies:

βn+1 =
1

σ2 + α 1
1+βn

(4.21)

where β0 = 0 and β1 = 1
σ2+α

is the large-system limit of the matched filter.

The importance of equation (4.21) resides in the fact that it is independent of n. Thus,

the speed of convergence of βn towards β can be very fast and can be evaluated easily

by simulations. Honig and Xiao noticed that βn is very close to β as far as n ≥ 8. This

means that one can obtain performances very close to the optimal Wiener filter without

the need to invert the covariance matrix.

The Honig-Xiao recurrence relation (4.21) is closely related to the Tse-Hanly fixed-point

equation (4.14). In fact, for a uniform power distribution (P = IK), formula (4.14) boils

down to:

β =
1

σ2 + α 1
1+β

(4.22)

Now, looking at the Honig-Xiao formula (4.21) , we note that βn+1 = βn when n → ∞.

Furthermore, the reduced rank SINR βn converges to the full-rank SINR β when n →∞.



90 Asymptotic Analysis of Reduced Rank Receivers

replacing βn+1 and βn by β in (4.21) we obtain (4.22)3.

In the case of non-equal powers, Honig and Xiao claimed that it was not possible to obtain

a recurrence relation like (4.21). They provided an approximate relation very similar to

(4.14):

βn+1 ≈ 1

σ2 + α
∫∞
0

λ
1+λβn

dµP (λ)
(4.23)

Honig and Xiao claimed that this relation works quiet well for most of the cases but

remains an approximation. they did not specify, however, the cases for which it works.

Illustration of Tse-Hanly and Honig-Xiao formulas

In what follows, we check whether the asymptotic analysis discussed allows to understand

real-life systems (with finite spreading factors and number of users). For this, we simulate

a CDMA system with a spreading factor N = 64 and K = 32 users (which corresponds to

α = 0.5). All users are received with power=1, and σ2 is fixed such that the SNR (Eb/N0)

per user is equal to 10dB. We plot the (empirical) SINR provided by a reduced-rank

Wiener receiver under random spreading. We also plot the (asymptotic) theoretical SINR

given by the Honig-Xiao Formula (4.21). In the same figure we plot the SINR provided by

a (full-rank) Wiener receiver and the corresponding (asymptotic) theoretical SINR given

by the Tse-Hanly Formula (4.14). the results are shown in figure 4.3.

We remark that even for moderate values of the spreading factor N , the asymptotic

evaluation allows to approximate very well the empirical results (the fit is quasi-total for

N = 256). We also remark that the reduced-rank SINR converges very rapidly to the

full-rank SINR. This confirms the utility of reduced-rank filtering based on the Krylov

subspace. The convergence rate is the same for finite-values and asymptotic-values of N

and K, this means that the rank n required for a given performance does not scale with

N and K. This is a very important result since this claim is not true for reduced-rank

techniques based on other methods (other subspaces) like Principal Component (PC) [44].

4.4 New results of Loubaton-Hachem

Using a more general model than Honig and Xiao, Loubaton and Hachem [53] proposed

to study ”analytically” the convergence of βn towards β even when the powers allocated

to the different users are not equal. Consider the following model:

yN = hNb1 + xN , (4.24)

3Amazingly enough, if we want to find the SINR β of the Tse-Hanly formula (4.22) we will use the
recurrence relation of (4.21) and take βn+1 after a sufficient number of iteration as a solution (i.e. when
we notice that βn+1 ≈ βn)
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Figure 4.1: Simulated and Asymptotic SINR for reduced-rank and full-rank receivers.

where yN is the received N × 1 signal, b1 is the unit-variance scalar signal to be esti-

mated, hN is the signature of the desired symbol and xN is a signal decorrelated from

b1 representing interference and/or background noise but not necessarily resulting from

i.i.d spreading of interfering users. The N ×N covariance matrix of xN is denoted RI,N

and will be assumed invertible. RN = hNhH
N + RI,N is the received signal yN covariance

matrix.

It is clear that model (4.24) is a more general case of model (4.1). In fact, if we let

hN = w1 and

xN = UN,K

√
QKbI + vN

where bK = [b1 bT
I ]T , then model (4.1) appears as a particular case of (4.24). The Wiener

receiver estimates the symbol b1 by:

b̃1 = hH
NR−1

N yN . (4.25)

The output SINR provided corresponding to the Wiener receiver is given by the standard

expression

β(N) = hH
NR−1

I,NhN . (4.26)

The nth Krylov matrix associated to the pair (RI,N ,hN) is given by:

Kn = [hN ,RI,NhN , . . . ,Rn−1
I,N hN ].
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The rank-n reduced-rank receiver estimates b1 by:

b̃1,n = hH
NKn

(
KH

n RNKn

)−1
KH

n yN . (4.27)

As for, β(N), the reduced-rank SINR β
(N)
n provided by this receiver is given by:

β(N)
n = hH

NKn

(
KH

n RI,NKn

)−1
KH

n hN . (4.28)

In order to present the results, we need to formulate the following assumptions:

Assumption 4.1 We assume that for each k, s
(N)
k = hH

NRk
I,NhN converges when N →

+∞ to a finite limit sk, and that s0 = 1.

It is easily seen that β
(N)
n is equal to

(s
(N)
0 , . . . , s

(N)
n−1)




s
(N)
1 s

(N)
2 . . . s

(N)
n

s
(N)
2 s

(N)
3 . . . s

(N)
n+1

...
...

...
...

s
(N)
n s

(N)
n+1 . . . s

(N)
2n−1




−1 


s
(N)
0
...

s
(N)
n−1


 (4.29)

Assumption 4.1 thus implies that for each n, β
(N)
n converges to the quantity βn obtained

by replacing (s
(N)
k )k=1,2n−1 in (4.29) by sequence (sk)k=1,2n−1. Moreover, KH

n Kn and

KH
n RI,NKn are positive Hankel matrices converging to the Hankel matrices

(sk+l)(k,l)=0,...,n−1 and (sk+l+1)(k,l)=0,...,n−1. Therefore, matrices (sk+l)(k,l)=0,...,n−1 and

(sk+l+1)(k,l)=0,...,n−1 are also positive. Using well known results (see e.g. [16]), there exists

a probability measure ω such that

sk =

∫ ∞

0

λkdω(λ). (4.30)

Assumption 4.2 Measure ω is carried by an the interval [δ1, δ2], and is thus uniquely

defined by (4.30) (see [16]). Moreover, ω is absolutely continuous, and its density is

almost surely strictly positive on [δ1, δ2].

Assumption 4.3 There exist D1 > 0 and D2 > 0 such that ‖R−1
I,N‖ ≤ D1 and

‖RI,N‖ ≤ D2 for each N .

The assumption that measure ω is absolutely continuous (Assumption 4.2) implies in par-

ticular that α defined as the limit of K
N

is greater than 1. otherwise, the limit distribution

ω has clearly a mass at point σ2. The case K
N

< 1 can be treated using a slightly different

approach explained in Remark 4.2.



4.4. NEW RESULTS OF LOUBATON-HACHEM 93

Under the above assumptions, β(N) = hNR−1
I,NhN can be shown to converge to β =∫ δ2

δ1
1
λ
dω(λ). Therefore, we have to evaluate the convergence rate of:

βn = (s0, . . . , sn−1)




s1 s2 . . . sn

s2 s3 . . . sn+1

...
...

...
...

sn sn+1 . . . s2n−1




−1 


s0

...

sn−1




towards β =
∫ δ2

δ1
1
λ
dω(λ).

The analysis of this kind of convergence is a classical mathematical problem. Let us

suppose that the measure ω is absolutely continuous and that its density is almost surely

positive in [δ1, δ2]. We mention that the Stieltjes transform is analytic in C− [δ1, δ2], and

can be developed in the neighborhood of the infinity as

Gσ(z) = −
∞∑

k=0

sk

zk+1

As mentioned previously, it is is important to recall that the SINR β of the Wiener filter

coincides with Gω(0). We define in the space of square-integrable function with respect

to ω the scalar product

< f(λ), g(λ) >=

∫ δ2

δ1

f(λ)g(λ)dω(λ) .

We also define the family (pk(λ))k≥0 of orthonormal polynomials obtained by using the

Gram-Schimdt orthogonalization procedure of the functions 1, λ, λ2, . . . , λk, . . .. Polyno-

mials (pk)k≥0 are called orthogonal polynomials of the first kind. The polynomials of

the second kind (qk)k≥0 are defined from the polynomials of the first kind (pk)k≥0 by the

following recurrence equation

qk(λ) =

∫ δ2

δ1

pk(λ)− pk(u)

λ− u
dω(u) (4.31)

It is known that the sequence of functions (− qn(z)
pn(z)

)n≥0 converges uniformly in every com-

pact support of C− [δ1, δ2] toward Gω(z) (see for example [16]). The link with the analysis

of the rate of convergence of βn towards β resides in the following proposition:

Proposition 4.1 The SINR βn of a reduced-rank filter of rank n coincides with − qn(0)
pn(0)

.

By using useful results of [68], [19] et [67], we can prove the following result:
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Theorem 4.4 Let µ > 1 and φ < 1 be defined by µ =
1+

δ1
δ2

1− δ1
δ2

and φ = 1

µ+
√

µ2−1
. Then,

there exist 2 strictly positive constants A and B such that

Aφ2n ≤ |β − βn| ≤ Bφ2n (4.32)

for n large enough.

This result is derived from the fact that:

|pn(0)| ∼ Cφ−n if n →∞ (4.33)

where C is a constant (see for example [68]), and from the inequality:

1

δ2

|pn(0)|−2 ≤ |β − βn| ≤ 1

δ1

|pn(0)|−2 for every n (4.34)

(see for example [67] and [19]). Under these conditions, the constants A and B are of the

order of 1
C2δ2

et 1
C2δ1

respectively, if n is chosen so that pn(0) is sufficiently close to Cφ−n.

Remark 4.1 As δ1 ≥ ω2 > 0, µ is strictly greater than 1, and the factor φ is strictly

smaller than 1. Thus, βn converges locally exponentially towards β at a speed that depends

on the support [δ1, δ2] of measure ω. It is interesting to remark that the factor that can

slow down the convergence rate is the proximity from zero of the ratio δ1
δ2

. In order to ex-

press this in terms more significant parameters, we note that the condition α ≥ 1 implies

that δ1 ≥ pmin(
√

α − 1)2 + σ2 and that δ2 ≤ pmax(
√

α + 1)2 + σ2. Furthermore, if all the

users have the same power (i.e. pmin = pmax = 1), then δ1 is equal to (
√

α− 1)2 + σ2 and

δ2 = (
√

α+1)2 +σ2. consequently, the factors that can slow down the speed of convergence

of βn towards β are i) a weak noise, ii) a dispersed distribution of powers and iii) a factor

α close to 1.

The theorem 4.4 is a local convergence result. This means that inequality (4.34) holds

for values of n for which pn(0) is close to Cφ−n. In the case of Honig-Xiao (equal powers

case), we have pmin = pmax = 1. It is possible in this case to calculate explicitly the

limit distribution ω (which coincides with the Marchenko-Pastur distribution),and the

corresponding orthogonal polynomials. We can thus deduce that (see [53])

pn(0) = rn(0) +
1√
α

rn−1(0) (4.35)

where rn(0) is given by

rn(0) = (−1)n (φ−(n+1) − φ(n+1))

(φ−1 − φ)
(4.36)
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Consequently, |pn(0)| ' Cφ−n if n → ∞ with C = (1 − φ
α
). Furthermore, It is easy to

see that |pn(0)| is close from Cφ−n as far as φ2n is negligible with respect to 0. We can

thus perfectly predict the values of n for which the behavior of |β − βn| is controlled by

inequality (4.34).

Remark 4.2 The full-rank SINR β(N) can be written as:

β(N) =
η(N)

1− η(N)
(4.37)

where η(N) is defined by

η(N) = hH
NR−1

N hN (4.38)

while the SINR β
(N)
n provided by a reduced-rank receiver of rank n can be written as:

β(N)
n =

η
(N)
n

1− η
(N)
n

(4.39)

where η
(N)
n is now defined by

η(N)
n = hH

NKn

(
KH

n RNKn

)−1
KH

n hN . (4.40)

Since β
(N)
n and β(N) are functions of η

(N)
n and η(N) respectively, we can study the conver-

gence of η
(N)
n toward η(N). In fact, if we define: s

(N)
k = hH

NRk
NhN and assume that, for

each k, s
(N)
k converges when N → +∞ to a finite limit sk (like Assumption 4.1), then

there exists a probability measure ω such that

sk =

∫ ∞

0

λkdω(λ). (4.41)

η
(N)
n converges when N, K → +∞ with K

N
→ α to a deterministic limit ηn given by:

ηn = (s0, . . . , sn−1)




s1 s2 . . . sn

s2 s3 . . . sn+1

...
...

...
...

sn sn+1 . . . s2n−1




−1 


s0

...

sn−1




while η(N) converges to η given by:
∫ δ2

δ1

1

λ
dω(λ).

By using similar arguments, we can find a relation similar to (4.32) that controls the

behavior of |η − ηn|. We conclude then that the convergence of ηn towards η is locally

exponential. It is noteworthy that, in this case, the restriction K
N

> 1 is no more required.

The study of ηn is more convenient for the analysis to be presented in Chapter 5.
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4.5 Conclusion

In this chapter, previous work on the asymptotic performance of Wiener receivers [71] and

reduced-rank Wiener receivers [44] under random spreading was discussed. New results

[53, 3] that are more general were also presented. The results of [53] will be used in the

next chapter to discuss the asymptotic performance of suboptimum reduced-rank CDMA

Wiener receivers. The study of optimum-reduced rank receivers corrupted by frequency

selective fading channels can be carried out using the same results. In appendix E, a

paper that was published in Eusipco 2004 and discusses this issue is presented.



Chapter 5

Asymptotic Performance of

Reduced-Rank Equalization in

CDMA Downlink

In long-code downlink CMDA systems, the receiver is aware of the code allocated to

the user of interest, but not of the codes allocated to the other users. The covariance

matrix of the observation is therefore unknown nor it can be estimated at the receiver

side. Therefore, conventional MMSE receivers cannot be used in this context. Chip rate

MMSE equalization followed by despreading was proposed as an alternative ([32], [49],

[51], [45]). The corresponding receiver is usually called the suboptimum Wiener receiver

because, unlike the optimum Wiener receiver, it has no knowledge about the interfering

users codes. For the same reasons as in the short-code case, the chip rate MMSE equal-

ization step can be done in a reduced-rank fashion.

Since the suboptimum Wiener receiver (both full-rank and reduced-rank) are more recent

than their optimum counterparts, their large system asymptotic performance analysis

has received much less attention. The suboptimum MMSE receiver was analyzed in [25]

in the context of certain random orthogonal code matrices. However, to our knowledge,

the asymptotic performance of reduced-rank suboptimum receivers was not performed yet.

In this chapter, we study the performance of reduced-rank suboptimum CDMA down-

link Wiener receivers consisting of a reduced-rank equalizer MMSE equalizer followed by

despreading. We use the results of Loubaton-Hachem [53] to show that the convergence

of the reduced-rank SINR toward the full-rank SINR is locally exponential. We provide

simulation results where we highlight the fact that for very moderate values of the rank

97
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n the output reduced-rank SINR can be very close to the full-rank SINR.

5.1 Reduced-Rank Equalization for CDMA Down-

link

We consider a downlink CDMA system. A base station transmits K symbol sequences

(bk)k=1,...,K to K mobile units of the corresponding cell. It is assumed that the number

of users K is smaller than the spreading factor N . Motivated by the specifications of the

downlink of the Third Generation (3G) mobile communication systems (UMTS) [14], we

assume that the spreading codes change from one symbol to another, and that at time

m, code matrix WN,K(m) is obtained as follows

WN,K(m) = S(m)CN,K (5.1)

where:

• CN,K is a time-invariant orthogonal N×K matrix obtained by extracting K columns

from a N×N Walsh-Hadamard matrix (this implies that each entry of CN,K is equal

to ± 1√
N

),

• S(m) = diag(s1(m), . . . , sN(m)) is a time-varying diagonal matrix whose entries

(sl(m))l=1,...,N are QPSK distributed (sl(m) ∈ {± 1√
2

+ ±i 1√
2
}) and represent the

long scrambling code of the cell under consideration.

We remark that WN,K(m)HWN,K(m) = IK for each m. We take into account the effect of

the propagation channel between the base station and the mobile of interest (say mobile

1), and we denote by

h(z) =
L∑

l=0

hlz
−l

its chip rate discrete-time equivalent transfer function. h(z) is assumed to be known at

the receiver side, and is normalized in such a way that
∑L

l=0 |hl|2 = 1. (d(i))i∈Z represents

the chip sequence transmitted by the base station. Therefore, the received signal (y(i))i∈Z
sampled at the chip rate can be written as

y(i) =
L∑

l=0

hld(i− l) + v(i) (5.2)

where v is an additive white Gaussian noise of variance σ2 It is more convenient to express

this in matrix form. Let

dN(m) =
(
d(mN), d(mN + 1), ..., d(mN + N − 1)

)T
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be the transmitted chip-vector sequence at symbol instant m. dN(m) is of course given

by

dN(m) = WN,K(m)bK(m) (5.3)

where bK(m) = (b1(m), . . . , bK(m))T represents the K symbols transmitted at time m

by the base station. We put yN(m) =
(
y(mN), y(mN + 1), ..., y(mN + N − 1)

)T
. Then,

(5.2) is equivalent to

yN(m) = H0,NdN(m) + H1,NdN(m− 1) + vN(m) (5.4)

where

H0,N =




h[0] 0 0
... h[0]

h[L− 1]
. . . . . .

0 h[L− 1] h[0]




and

H1,N =




h[L− 1] . . . h[1]
. . .

...

h[L− 1]

0




In contrast with the uplink context, the mobile of interest is not supposed to be aware of

the codes allocated to the other users of the cell. Moreover, the covariance matrix cannot

be estimated consistently using the cyclostationarity of the received signal like the short-

code CDMA case. It is therefore impossible to implement neither the optimum Wiener

filter nor reduced-rank Wiener filters since they are based on the complete knowledge of the

code matrix or the covariance matrix. To overcome this difficulty, chip-rate equalization

prior to despreading was proposed. Chip-rate equalization allows to partially restore the

orthogonality between the spreading codes, thus reducing Multiple Access Interference

(MAI) (see e.g. [32], [45], [48], [49], [51]). More precisely, chip sequence (d(i))i∈Z is

estimated by a filtered version d̂(i) = [g(z)]y(i) of the received signal. If the action of

filter g(z) compensates the effect of channel h(z), vector d̂N(m) = (d̂(mN), . . . , d̂(mN +

N − 1))T can nearly be written as

d̂N(m) ' WN,K(m)bK(m) + uN(m),

where uN(m) is the contribution of the background noise to the chip rate equalized output.

In this case, the orthogonality between the spreading codes is restored, and wH
N,1(m)d̂N(m)

is a quite relevant estimate of symbol b1(m). Here, wN,1(m) represents the code allocated
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to user 1 at time m, i.e. the first column of matrix WN,K(m).

In this chapter, we consider non causal FIR chip rate (reduced-rank) MMSE equalizers

with transfer functions g(z) =
∑N

k=−(N−1) gkz
−k, the coefficients of which are designed as

if the chip sequence (d(i))i∈Z were a decorrelated sequence with variance K
N

. This property

is of course not verified because (5.3) implies that the covariance matrix of dN(m) is rank

deficient. The variance K
N

is justified by the fact that as WN,K(m)HWN,K(m) = IK , then

E‖dN(m)‖2 = E‖bK(m)‖2 = K. If (d(i))i∈Z were an i.i.d. sequence, its variance would

therefore be equal to K
N

. In the following, we collect the coefficients of any of the above

equalizers g(z) into the 2N–dimensional vector g = (gN , . . . , g0, g−1, . . . , g−(N−1))
T . The

plain MMSE chip-rate equalizer thus corresponds to vector g2N given by

g2N = hH
2N

(
H2NHH

2N +
σ2

K/N
I

)−1

(5.5)

where h2N is defined by h = (0, . . . , 0, h0, . . . , hL, 0, . . . , 0)T and whereH2N is the 2N×3N

Sylvester matrix given by

H2N =

[
H1,N H0,N 0

0 H1,N H0,N

]
(5.6)

In the following, we denote by R2N the 2N × 2N matrix

R2N = H2NHH
2N +

σ2

K/N
I (5.7)

and by Kn,2N the n× 2N Krylov matrix associated to the pair (R2N ,h2N), i.e.

Kn,2N =
[
h2N ,R2NhN , . . . ,Rn−1

2N hN

]

The n-th stage reduced-rank Wiener equalizer corresponds to vector gn given by

gn = hH
2NKH

n,2N

(
KH

n,2NR2NKn,2N

)−1
KH

n,2N (5.8)

We denote by gn(z) the transfer function associated to vector gn and define d̂n(i) as the

corresponding estimated chip sequence d̂n(i) = [gn(z)]y(i). We propose to study the effect

of n on the performance of the estimator of symbol b1(m) defined by

b̂1,n(m) = wH
N,1(m)d̂n,N(m) (5.9)

where d̂n,N(m) = (d̂n(mN), . . . , d̂n(mN + N − 1))T .
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5.2 Asymptotic analysis of reduced-rank equalizers.

From now on, we formulate the following realistic assumption:

Assumption 5.1 The long code sequence is a realization of a QPSK i.i.d. sequence.

Therefore, due to the presence of the matrix S(m), matrix WN,K(m) can be seen as the

realization of a quite particular random matrix. In the following, we study the perfor-

mance of the above reduced-rank receivers in the asymptotic regime N and K tend to

+∞ in such a way that K
N
→ α where 0 < α < 1. For the sake of simplicity, we also

assume that the length L of the impulse response of the channel is assumed to be kept

constant. However, we conjecture that our results can be extended if L also converges to

∞ in such a way that L < N provided that supN

∑L
l=0 |hl| < +∞. As the proofs of the

main results are more technical in this context, we do not address this case. However,

some simulations are given to support this claim.

As K
N
→ α, we replace factor K

N
by α in definition (5.7) of matrix R2N in order to simplify

the exposition. This, of course, modifies the expressions of matrices Kn,2N and of vectors

gn.

In order to characterize the performance of receiver (5.9), we first evaluate its output

SINR. For this, we consider the filter fn(z) =
∑N+L

l=−(N−1) fn,lz
−l = gn(z)h(z), and remark

that the estimated chip sequence d̂n(i) is given by

d̂n(i) = [fn(z)]d(i) + [gn(z)]v(i) (5.10)

Vector d̂n,N(m) can thus be written as

d̂n,N(m) = Fn,N




dN(m− 2)

dN(m− 1)

dN(m)

dN(m + 1)


 + Gn,N




vN(m− 1)

vN(m)

vN(m + 1)


 (5.11)

Here, matrix Gn,N is the N × 3N Sylvester matrix associated to filter gn(z), i.e.

Gn,N =




gn,N . . . gn,0 . . . gn,−(N−1) 0 . . . . . . 0

0 gn,N . . . gn,0 . . . gn,−(N−1) 0
. . . 0

...
. . . . . . . . . . . . . . . . . . . . .

...

0 . . . 0 gn,N . . . gn,0 . . . gn,−(N−1) 0



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and Fn,N is the N × 4N Sylvester matrix associated to fn(z) defined as Gn,N from 3N–

dimensional vector fn = (0, . . . , 0, fN+L, . . . , f0, f−1, . . . , f−(N−1))
T . As fn(z) = gn(z)h(z),

vector fn is equal to gnH2N and matrix Fn,N can be written as

Fn,N = Gn,NH3N

where H3N is the 3N×4N Sylvester matrix defined in the same way that matrix H2N (see

eq. (5.6)). For convenience, we partition Fn,N as Fn,N = (Fn,2,N ,Fn,1,N ,Fn,0,N ,Fn,−1,N)

where the 4 blocks are N ×N .

For the sake of simplicity and readability, we simplify from now on the previous notations

as follows:

• Matrix CN,K is denoted C. c1 represents its first column, and C is partitioned as

C = (c1,C2).

In order to express the output SINR provided by receiver (5.9), it is necessary to identify

in (5.9) the contribution of symbol b1(m), of symbols (bj(m))j=2,...,K and symbols (bj(m−
k))j=1,...,K,k=−1,1,2, and of the noise. After straightforward calculations, we get that the

output SINR at time m, denoted β̃
(N)
n (m), is given by

β̃(N)
n (m) =

|cH
1 S(m)HFn,0,NS(m)c1|2∑2

k=−1 Tn,k,N + σ2cH
1 S(m)HGn,NGH

n,NS(m)c1

(5.12)

where the terms (Tn,k)k=−1,...,2 are defined by

Tn,0,N = cH
1 S(m)HFn,0,NS(m)C2C

H
2 S(m)HFH

n,0,NS(m)c1 (5.13)

Tn,k,N = cH
1 S(m)HFn,k,NS(m− k)CCHS(m− k)HFH

n,k,NS(m)c1 for k 6= 0 (5.14)

In order to simplify the notations, the SINR β̃
(N)
N (m) of the plain MMSE receiver (i.e.

n = N) is denoted β̃(N)(m).

The expression (5.12) is quite complicated, and does not allow to obtain any insight on

the performance of the reduced-rank receivers, in particular on the influence of n on the

SINR. We also note that, considered as symbol rate receivers, the chip rate (reduced-rank)

Wiener equalizers followed by a despreading are not Wiener filters in the classical

sense. This explains why β̃(N)(m) and β̃
(N)
n (m) are not given by expressions similar to

(4.37) and (4.39). Therefore, some work is needed in order to be able to use the results

of Loubaton-Hachem [53].

β̃
(N)
n (m) depends on the values of the scrambling code. It can thus be interpreted as a

random variable. The key point of this chapter is the following result, which states that
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as N and K converge to +∞ in such a way that K
N
→ α, then β̃

(N)
n (m) has the same

behavior as a certain deterministic quantity which does not depend on the entries of the

code matrix WN,K(m) (not only of the values of the scrambling code, but also of the

entries of the Walsh-Hadamard part C of WN,K(m)).

Theorem 5.1 For each n ≤ N , we define η
(N)
n by

η(N)
n = hH

2NKn,2N(KH
n,2NR2NKn,2N)−1KH

n,2Nh2N (5.15)

Then, for any fixed n,

lim
N→+∞,K/N→α

β̃(N)
n (m)− 1

α

η
(N)
n

(1− η
(N)
n )

= 0 (5.16)

where the convergence stands for the convergence in probability.

We also define η(N) by η(N) = hH
2NR−1

2Nh2N . Then,

lim
N→+∞,K/N→α

(
β̃(N)(m)− 1

α

η(N)

(1− η(N))

)
= 0 (5.17)

This result is quite useful because, up to the term 1
α
, eq. (5.16) shows that asymptotically,

the SINR has an expression similar to (4.39). The results of [53] can therefore be used in

order to study the influence of n on the performance of the receiver (see below). More-

over, expressions at the righthand side of (5.17) and (5.16) have a simple interpretation.

In fact, it is easy to check that η(N)

(1−η(N))
coincides with the SINR provided by the plain

Wiener filter gN(z) ((5.10) for n = N) if the chip sequence (d(i))i∈Z in (5.10) were

an i.i.d. sequence of variance α. The term 1
α

at the righthand side of (5.17) can thus

be interpreted as the gain produced in (5.9) by the despreading. (5.16) can be interpreted

similarly. It is also interesting to notice that (5.17) coincides with the asymptotic SINR

found in [25] in the case where the code matrix WN,K is obtained by extracting K columns

from a Haar distributed random unitary matrix 1. This is a surprising result because our

actual code matrix model (equation (5.1) and assumption 5.1) looks very different from

a Haar distributed matrix.

The proof of Theorem 5.1 needs some work. We just outline the main steps of (5.16) and

provide more details in the Appendix B. We finally briefly justify (5.17).

1A random unitary matrix U is said to be Haar distributed if for each deterministic unitary matrix
Q, the distribution of U coincides with the distribution of UQ
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In order to study the asymptotic behavior of β̃
(N)
n (m), it is necessary to study separately

the various terms of the righthand side of (5.12).

First step: study of |cH
1 S(m)HFn,0,NS(m)c1|2 and cH

1 S(m)HGn,NGH
n,NS(m)c1.

The above terms can be studied by using the following useful lemma.

Lemma 5.1 Let BN be a deterministic N×N uniformly bounded matrix, that is supN ‖BN‖ <

+∞. Then,

lim
N→+∞

E
∣∣∣∣cH

1 S(m)HBNS(m)c1 − 1

N
Trace(BN)

∣∣∣∣
2

= 0 (5.18)

This result is an immediate consequence of a classical result used extensively in previous

work like [71](See section 4.2 , Lemma 4.1 ).

In order to be able to use Lemma 5.1, we need to verify that matrices Fn,0,N and Gn,NGH
n,N ,

or equivalently Gn,N , are uniformly bounded.

Lemma 5.2 For each n fixed, matrix Gn,N is unformly bounded, i.e. supN ‖Gn,N‖ < +∞.

The proof is given in Appendix B.1. Matrix Fn,N is given by Fn,N = Gn,NH3N . Matrix

H3N is a Toeplitz matrix associated to the filter h(z) =
∑L

l=0 hlz
−L. Therefore, for each

N , ‖H3N‖ ≤ ‖h‖∞ = supf |h(e2iπf )|. This shows that H3N is uniformly bounded. As

‖Fn,N‖ ≤ ‖Gn,N‖‖H3N‖, Lemma 5.2 implies that Fn,N , and thus matrices (Fn,k,N)k=−1,...,2

are uniformly bounded.

Lemma 5.1 and the above discussion imply the following corollary:

Corollary 5.1

cH
1 S(m)HFn,0,NS(m)c1 − η(N)

n → 0 (5.19)

cH
1 S(m)HGnGH

n S(m)c1 − ‖gn‖2 → 0 (5.20)

where the convergence stands for the convergence in probability.

Proof. In order to prove the first statement of Corollary 5.1, we remark that Lemma 5.1

and the fact that Fn,0,N is uniformly bounded imply that

cH
1 S(m)HFn,0,NS(m)c1 − 1

N
Trace(Fn,0,N)

converges in the mean-square sense, and thus in probability, to 0. As Fn,0 is a Toeplitz

matrix, its normalized trace coincides with the constant term fn,0 of transfer function

fn(z) = gn(z)h(z), which is equal to fn,0 = gnh = η
(N)
n . The second statement of

Corollary 5.1 follows directly from Lemmas 5.1 and 5.2 and from the observation that
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1
N

Trace(GnGH
n ) = ‖gn‖2.

Second step: study of Tn,0,N .

The asymptotic behaviour of Tn,0,N = cH
1 S(m)HFn,0,NS(m)C2C

H
2 S(m)HFH

n,0,NS(m)c1 is

a straightforward consequence of the following Lemma.

Lemma 5.3 Let BN be a N × N uniformly bounded Toeplitz matrix,
i.e. supN ‖BN‖ < +∞. Then, the limit when N → +∞ and K

N
→ α of

E
∣∣∣∣cH

1 S(m)HBNS(m)C2CH
2 S(m)HBH

NS(m)c1 − α

(
1
N

Trace(BNBH
N )− | 1

N
Trace(BN )|2

)∣∣∣∣
2

(5.21)
is equal to 0.

Proof. See Appendix B.2.

Lemma 5.2 implies that matrix Fn,0,N is uniformly bounded. As the mean-square conver-

gence implies the convergence in probability, Lemma 5.3 shows that Tn,0,N converges in

probability to α
(

1
N

Trace(Fn,0,NFH
n,0,N)− | 1

N
Trace(Fn,0,N)|2). As 1

N
Trace(Fn,0,N) = η

(N)
n ,

we get immediately the following Corollary.

Corollary 5.2

Tn,0,N → α

(
1

N
(Trace(Fn,0,NFH

n,0,N)− (η(N)
n )2

)
(5.22)

where the convergence stands for the convergence in probability.

Third step: study of Tn,k,N for k = −1, 1, 2.

The following lemma allows to precise the behaviour of Tn,k,N for k = −1, 1, 2.

Lemma 5.4 Let BN be a uniformly bounded N ×N matrix. Then, for k = −1, 1, 2,

lim
N→+∞, K

N
→α
E

∣∣∣∣cH
1 S(m)HBNS(m− k)CCHS(m− k)HBH

NS(m)c1 − α
1

N
Trace(BNBH

N)

∣∣∣∣
2

= 0

(5.23)

Proof. See Appendix B.3 for a sketch of the proof.

Lemma 5.2 implies that matrices Fn,k,N are bounded. As the mean-square convergence

implies the convergence in probability, Lemma 5.4 shows that

Tn,k,N → α
1

N
Trace(Fn,k,NFH

n,k,N) (5.24)
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where the convergence stands for the convergence in probability.

Fourth step: proof of (5.16)

We are now in position to complete the proof of (5.16). From the above discussions, we

get that

β̃(N)
n − (η

(N)
n )2

α
(∑2

k=−1
1
N

Trace(Fn,k,NFH
n,k,N)− (η

(N)
n )2

)
+ σ2‖gn‖2

converges to 0 in probability. We remark that

2∑

k=−1

1

N
Trace(Fn,k,NFH

n,k,N) =
1

N
Trace(Fn,NFH

n,N)

As Fn,NFH
n,N is a N ×N Toeplitz matrix, its normalized trace coincides with its diagonal

term which is equal to ‖fn‖2. As fn = gnH2N , we get that

1

N
Trace(Fn,NFH

n,N) = gnH2NHH
2NgH

n

and that

α

2∑

k=−1

1

N
Trace(Fn,k,NFH

n,k,N) + σ2‖gn‖2 = αgn

(
H2NHH

2N +
σ2

α
I2N

)
gH

n = αgnR2NgH
n

But, as gn is given by (5.8), gnR2NgH
n coincides with

hH
2NKH

n,2N

(
Kn,2NR2NKH

n,2N

)−1
Kn,2Nh2N , i.e. with η

(N)
n . Putting all pieces together, we

get that

(η
(N)
n )2

α
(∑2

k=−1
1
N

Trace(Fn,k,NFH
n,k,N)− (η

(N)
n )2

)
+ σ2‖gn‖2

=
1

α

η
(N)
n

1− η
(N)
n

which, eventually, proves (5.16).

We finally justify (5.17). For this, we just mention that, as the full rank Wiener filter

gN(z) converges when N → +∞ to the usual non causal filter g∞(z) = h∗(z−1)
h(z)h∗(z−1)+σ2 ,

which verifies ‖g∞‖∞ < +∞, then supN ‖gN‖∞ < +∞. Therefore, matrices GN,N and

FN,N are uniformly bounded. One may check that this allows to generalize the above

arguments to the case where n = N .

Theorem 5.1 is important in that it allows to use the material of section 4.4 in order to

obtain insights on the convergence speed of β̃
(N)
n toward β̃(N) when N and K are large



5.2. ASYMPTOTIC ANALYSIS OF REDUCED-RANK EQUALIZERS. 107

enough. In fact, relation (5.16) implies that it is sufficient to evaluate the convergence

speed of η
(N)
n toward η(N) when N → +∞, K/N → α, a simpler problem. For this, it is

possible to use the results of section 4.4. Formula (5.15) coincides with (4.38) when N is

exchanged with 2N . In our context, matrix R2N is R2N = H2NHH
2N + σ2

α
I while vector h2N

is h2N = (0, . . . , 0, h0, . . . , hL, 0, . . . , 0)T . We have thus only to check that Assumptions

4.1, 4.2, 4.3 hold.

As R2N is a Toeplitz matrix associated to the spectral density |h(e2iπf )|2 + σ2

α
, the term

s
(2N)
k = hH

2NRk
2Nh2N defined in Assumption 4.1 is easily seen to converge towards sk

defined by

sk =

∫ 1

0

|h(e2iπf )|2(|h(e2iπf )|2 +
σ2

α
)k df

when N → +∞. We put δ1 = |hmin|2 + σ2

α
and δ2 = |hmax|2 + σ2

α
where

|hmin| = minf |h(e2iπf )| and |hmax| = maxf |h(e2iπf )|. Then, it is easy to check that

sk can be written as

sk =

∫ δ2

δ1

λk dν(λ)

where ν is the probability measure supported by [δ1, δ2] defined by

∫ δ2

δ1

φ(λ) dν(λ) =

∫ 1

0

|h(e2iπf )|2 φ
(|h(e2iπf )|2 +

σ2

α

)
df

for each continuous function φ. Measure ν is easily seen to be absolutely continuous and

to have a strictly positive density on [δ1, δ2]. Thus Assumptions 4.1 and 4.2 hold. As for

Assumption 4.3, we remark that as R2N is a Toeplitz matrix associated to the spectral

density |h(e2iπf )|2 + σ2

α
, then,

||R2N || ≤ max
f

(|h(e2iπf )|2 +
σ2

α
) = δ2

||R−1
2N || ≤

(
min

f
(|h(e2iπf )|2 +

σ2

α
)

)−1

=
1

δ1

(5.25)

Theorem 4.4 thus shows that η
(N)
n and η(N) converge toward ηn and η defined in section

4.4. Hence, β
(N)
n and β(N) converge toward βn and β defined by

βn =
1

α

ηn

1− ηn

(5.26)

β =
1

α

η

1− η

Moreover, the convergence speed of ηn and βn toward η and β is locally exponential, and

the rate of convergence essentially depends on the ratio µ =
1+

δ1
δ2

1− δ1
δ2

. If µ is close to 1, or
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equivalently if δ1
δ2

<< 1, the convergence speed is low. Using standard results on Toeplitz

matrices, the smallest and the largest eigenvalue of R2N converge to δ1 and δ2 respectively

when N →∞. Therefore, the ratio δ1
δ2

is for N large enough nearly equal to the condition

number of matrix R2N . It thus appears that, for N large enough, the convergence rate is

poor if R2N is ill conditioned and vice and versa. Our result also allows to evaluate the

influence of the load of the cell, i.e. parameter α. In effect, δ1
δ2

can be written as

δ1

δ2

=
σ2 + α|hmin|2
σ2 + α|hmax|2

Therefore, the smaller α is, the better the convergence rate is.

Remark 5.1 It can be shown that the same results are obtained if, instead of working

with a matrix R2N of size 2N , we work with a matrix RN of size N and neglect the Inter

Symbol Interference (ISI). This is equivalent to replacing model (5.4) by:

yN(m) = HNdN(m) + vN(m), (5.27)

where HN is the circulant matrix defined by

HN = H0,N + H1,N .

However, this approach is not convenient in our case because the proofs are tedious.

For more details see [4, 25]. This idea is also used in Chapter 6.

5.3 Simulation results

5.3.1 Comparison of empirical and theoretical (asymptotic) BER

In this section, we first verify that our asymptotic SINR evaluations allow to predict

the empirical performance of the studied receivers. For this, we have implemented the

physical layer of the downlink of the UMTS-FDD, and have compared the measured bit

error rate with its asymptotic evaluation given by Q(
√

βn). The results are presented

in Figure 5.3.1. Here, the propagation channel is the so-called Vehicular A the profile

of which is given in Table. 5.1. (on each frame, a different realization of the channel is

generated). Note that the chip period Tc is equal to Tc = 260nsec. The signal to noise

ratio (for each user) Eb

N0
is equal to 10 dB and the load factor α is equal to 1

2
.

Figure 5.3.1 shows that our asymptotic evaluations allow to predict rather accurately the

performance of the true system even for spreading factors as low as N = 16 2.

2This means that this asymptotic analysis can be used to study the reduced-rank equalizer raw BER
performance in the context of the very recent High-Speed Downlink Packet Access (HSDPA) mode of
the UMTS in which many spreading codes of length 16 are allocated to the same user with 16QAM
constellation symbols.
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Figure 5.1: Comparison of empirical and theoretical BER for the Vehicular A channel.

Vehicular A Path Delay in nsec 0 310 710 1090 1730 2510

Vehicular A Average Power (dB) 0 -1.0 -9.0 -10.0 -15.0 -20.0

Vehicular B Path Delay in nsec 0 300 8900 12900 17100 20000

Vehicular B Average Power (dB) -2.5 0 -12.8 -10.0 -25.2 -16.0

Table 5.1: The Vehicular A and Vehicular B channel profiles.

5.3.2 Comparison of empirical and theoretical BER for very

long delay spread channels

In section 5.2, we claimed that the results remain valid even for channels with very long

delay spread (comparable to N). To verify this, we consider the Vehicular B channel (see

Table. 5.1). The delay spread in this case is roughly equal to 80Tc. We consider the case

N = 128 and α = 1
2
. The SNR Eb

N0
is equal to 10 dB. The results are given in Figure 5.4.

We see that the fit is as good as the Vehicular A case. Thus, the results remain valid for

channels with delay spreads growing with the spreading factor (provided that L < N).
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5.3.3 Effect of the load factor α on the convergence rate

As we have verified that βn and β allow to predict accurately the performance of the

above real life system, we next study the influence of the different parameters on the

convergence speed of βn toward β. For this, we represent in the following figures the

relative SINR defined as the ratio βn

β
as a function of the rank n. In Figure 5.4, , we first

study the influence of α on the convergence speed of the relative SINR toward 1. Here,

the propagation channel is the Vehicular A channel, and the ratio Eb

N0
is equal to 7 dB.

This figure confirms that the convergence speed of the reduced rank receivers depends

crucially on the load factor.

5.3.4 Effect of the channel on the convergence rate

In Figure 5.4, we study the effect of the channel on the convergence speed of βn toward β.

For this, we consider a 2 taps channel with transfer function h(z) = h0+h1z
−1 and change

the relative power of the two taps. In this case, the ratio δ1
δ2

is minimum if |h0| = |h1|
and is equal to σ2/α

2+σ2/α
: h(z) has a zero on the unit circle, so that |hmin| = 0, while

|hmax| = 2|h0| =
√

2 (because |h0|2 + |h1|2 = 1).Therefore, If |h0| = |h1|, the convergence

speed of βn toward β is expected to be minimum. This is confirmed by Figure 5.4 obtained

for α = 1
2

and Eb

N0
= 7dB.

5.4 Conclusion

In this chapter, we have addressed the performance of downlink CDMA receivers con-

sisting of reduced rank Wiener equalizers followed by despreading. We have studied

the convergence speed of their SINR versus their order in the asymptotic regime N →
+∞, K/N → α. In this context, we have shown that for each n, the SINR provided by

the rank n receiver converges to a deterministic term βn, and that the convergence of βn

when n increases is locally exponential. We have evaluated the corresponding rate which

only depends on the condition number of the covariance matrix to be inverted in order

to calculate the full rank receiver. Simulation results have shown that our asymptotic

results allow to predict the performance of finite dimension CDMA system even for very

short spreading factors.
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Figure 5.2: Comparison of empirical and theoretical BER for the Vehicular B channel
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Chapter 6

Asymptotic Analysis of Space-Time

Transmit Diversity with and without

Equalization

6.1 Introduction

Third generation (3G) mobile communications systems such cdma2000 and W-CDMA

are intended to provide higher data rates than current second generation systems. High

data rates can be achieved by combatting channel fading between the transmitter and the

receiver. Diversity is one way to combat channel fading. Multiple antennas at the receiver

can be used to provide diversity. The dilemma is that, in the downlink, multiple antennas

at the receiver induces an increase in the size of the mobile unit, while significant effort is

being done to make wireless mobile devices smaller and cheaper. By using a very simple

Space-Time Block Code (STBC), Alamouti [17] has shown that the diversity provided by

using two transmit antennas and one receive antenna is the same as that provided by one

transmit antenna and two receive antennas. The Alamouti scheme allows to double the

diversity without the need to include multiple antennas at the receiver side. However,

this result is valid for flat fading channels only.

Space Time Transmit Diversity (STTD) based on the Alamouti STBC has been adopted

in the W-CDMA norm [14]. In W-CDMA, the propagation channels are known to be

frequency selective. It is then of great importance to study the performance of STTD

in frequency selective fading channels when associated with the conventional receiver of

113
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Figure 6.1: A Communication system with 2 transmit antennas and one receive antenna.

CDMA systems (the RAKE receiver).

A promising alternative to the RAKE reception is chip-rate Minimum Mean Squared Er-

ror (MMSE) equalization prior to descrambling and despreading (see Chapter 2). The

orthogonality between the spreading codes is destroyed due to the multipath propagation

channel. MMSE equalization allows to partially restore the orthogonality. Thus, after

descrambling and despreading the symbol estimate is better than that obtained by the

RAKE receiver. It is thus very useful to study the performance of STTD in frequency

selective fading channels when associated with a MMSE equalizer-based receiver.

In this chapter, we consider the use of STTD in the downlink of W-CDMA. We discuss

the applicability of the Alamouti scheme in the case of multipath (frequency-selective)

fading channels when using a RAKE receiver or a MMSE equalizer-based receiver. We

follow the classical approach used for the first time in [71], and assume that the spreading

factor N and the number of users K tend to +∞ at the same rate. The spreading codes

are supposed to coincide with Walsh Hadamard codes scrambled by an Independent Iden-

tically Distributed (i.i.d) sequence. In this context, the SINRs of the two receiver tend

to deterministic limits independent of the scrambling and the spreading codes. We derive

the asymptotic SINRs, compare the two receivers and discuss the gain that we obtain by

using STTD for both of them.

6.2 The Alamouti Space Time Block Code (STBC)

In this section, we discuss the originally proposed Alamouti scheme proposed in [17].

Consider the scenario shown in figure 6.1. We have two Transmit antennas and one

receive antenna. The transmission setting is shown in Table 1. At time instant m we

transmit the symbol b(m) from antenna 1 and symbol b(m+1) from antenna 2. At time
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instant m+1, −b∗(m+1) is transmitted from antenna 1, while b∗(m) is transmitted from

antenna 2.

time m time m+1

Antenna 1 b(m) −b∗(m + 1)

Antenna 2 b(m + 1) b∗(m)

Table 1. The Original Alamouti STBC

Now, the received signals at time instants m and m + 1 are given by:

x(m) = h1b(m) + h2b(m + 1) + v(m) (6.1)

x(m + 1) = −h1b
∗(m + 1) + h2b

∗(m) + v(m + 1) (6.2)

The receiver calculates the following estimates:

b̃(m) = h∗1x(m) + h2x
∗(m + 1) (6.3)

b̃(m + 1) = h∗2x(m)− h1x
∗(m + 1) (6.4)

This is the decoding scheme. The trick behind the Alamouti scheme is to separate the

two symbols by getting rid of the cross-channel interference i.e. terms that depends on

both channels. In fact,

b̃(m) = h∗1(h1b(m) + h2b(m + 1) + v(m)) + h2(−h∗1b(m + 1) + h∗2b(m) + v∗(m + 1))

= (|h1|2 + |h2|2)b(m) + (h∗1v(m) + h2v
∗(m + 1)) (6.5)

similarly,

b̃(m + 1) = (|h1|2 + |h2|2)b(m + 1) + (h∗2v(m)− h1v
∗(m + 1)) (6.6)

Note that, unlike the single antenna case, the estimate of each symbol depends on both

channels. This provides extra diversity because the two channels are supposed indepen-

dent and the probability of deep fades in both is smaller than a deep fade in each one

separately. The Alamouti scheme provides the same diversity as the one with one transmit

antennas and two receive antennas (if the same power is transmitted from each transmit

antenna). Figure 6.2 show the BER performance as a function of the total transmitted

power for three transmission schemes: one transmit antenna and one receive antenna,

one transmit antenna and two receive antennas and finally two transmit antenna and one

receive antenna employing the Alamouti Space Time Block Code. We note that the di-

versity provided by the Alamouti scheme is the same as that provided by the two receive

antennas. The 3dB difference is due to the transmission of half the power from each
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Figure 6.2: BER performance comparison for coherent QPSK of Alamouti scheme with

other schemes.

transmit antenna for the comparison to be fair. The diversity, though, is the same 1. If

we double the power, the two curves will be identical.

In order to simplify the asymptotic analysis to be presented in the sequel, it is more

convenient to write the previous equations in matrix form. The received samples in two

consecutive time instants are given by:

[
x(m)

x∗(m + 1)

]
=

[
h1 h2

h∗2 −h∗1

] [
b(m)

b(m + 1)

]
+

[
v(m)

v∗(m + 1)

]

Then the decoding scheme is to pre-multiply the received vector by the conjugate of the

channel matrix, i.e.

[
b̃(m)

b̃(m + 1)

]
=

[
h∗1 +h2

h∗2 −h1

] [
x(m)

x(m + 1)

]

1The diversity is sometimes defined as the slope of the BER curve as a function of the SNR
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finally, we get:

[
b̃(m)

b̃(m + 1)

]
=

[ |h1|2 + |h2|2 0

0 |h1|2 + |h2|2
] [

b(m)

b(m + 1)

]
+

[
h∗1v(m) + h2v

∗(m + 1)

h∗2v(m)− h1v
∗(m + 1)

]

Note that the anti-diagonal entries of the matrix resulting for the product of channel

matrix with its conjugate are equal to zero.

The Alamouti scheme is valid for frequency-flat fading channels. Its elegance and sim-

plicity has helped in its standardization in the UMTS norm even though the radio com-

munication channels are highly frequency selective. In the sequel, we study the effect of

the presence of multipath (frequency selective) fading channels when using the Alamouti

scheme.

6.3 CMDA System Model under STTD

We consider a single base station transmitting the sum of K users chip signals given by:

d(i) = s(i)
K∑

k=1

ck(i mod N)bk(b i

N
c) (6.7)

where s(i) is the base-station dependent QPSK (long) scrambling code, N is the spread-

ing factor, K is the number of users, bk(b i
N
c) and ck(i mod N) are the QPSK symbol

sequence and the (N -periodic) normalized spreading code of user k, respectively. (mod

stands for the modulo and b.c for the integer part).

Throughout the chapter, we will assume that the scrambling sequence is i.i.d, and that the

user’s bits are independent zero mean QPSK signals. The index of the user of interest is 1.

The transmitted chip vector in one symbol period

d(m) =
[
d(mN), d(mN + 1), ..., d(mN + N − 1)

]T
is given by:

d(m) = S(m)Cb(m) (6.8)

where S(m) is the N ×N diagonal matrix whose diagonal elements are s(mN), s(mN +

1), ..., s(mN + N − 1) and C is a N ×K matrix whose columns are the spreading codes

assigned to different users and b(m) = [b1(m), ..., bK(m)]T .

The sum chip signal (6.7) is transmitted through two multipath frequency-selective fading

channels whose impulse responses are given by

hj(t) =
P−1∑
q=0

λj(q)p(t− τ i
q) j = (1, 2) (6.9)
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where p(t) is the total shaping filter (including the transmitter and the receiver matched

filters), λj(q) and τ j
q are the complex gain and the delay associated with path q of the

channel between transmit antenna j = (1, 2) and the receiver, and P is the total number

of resolvable paths. For the sake of simplicity we suppose that the number of resolvable

paths is the same for both channels.

A symbol-level Alamouti STBC is applied at the base station.This is equivalent to trans-

mitting the chip vectors defined by equation 6.8 according to Table. 2 2.

time m− 2 m− 1 m m + 1

Antenna

1 d(m− 2) d(m− 1) d(m) d(m + 1)

2 d(m− 1) −d(m− 2) d(m + 1) −d(m)

Table 1. The Alamouti STBC for W-CDMA

If we call the chips transmitted from antenna 1 d1(i) and the chips transmitted from

antenna 2 d2(i) then the chip-rate sampled received signal is given by:

x(i) =
L−1∑

l=0

h1,ld1(i− l) +
L−1∑

l=0

h2,ld2(i− l) + v(i) (6.10)

where hj,l
4
=hj(t)|t=lTc , L is the overall channel length (in chip periods) and v(i) is a

centered white Gaussian noise process with variance σ2.

It is more convenient to express the model (6.10) in matrix form. By concatenating the

received signal in 2N chips we get:

[
x(m)

x(m + 1)

]
=

[
H1,0 H2,0

−H2,0 H1,0

] [
d(m)

d(m + 1)

]
+

[
H1,1 0

0 −H1,2

] [
d(m− 1)

d(m− 2)

]

+

[
H1,1 0

0 H1,2

] [
d(m)

d(m + 1)

]
+

[
v(m)

v(m + 1)

]
(6.11)

where x(m) and v(m) are defined as d(m),

Hj,0 =




hj,0 0 0
... hj,0

hj,L−1

. . . . . .

0 hj,L−1 hj,0




2Note that the WCDMA STBC differs slightly from the original Alamouti STBC. This is done to
ensure that one antenna operates under normal mode. i.e. by switching off the second antenna, we have
the normal transmission of sequence d(m)
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and

Hj,1 =




hj,L−1 . . . hj,1

. . .
...

hj,L−1

0




6.4 Asymptotic Performance of STTD

To study the asymptotic performance of the two considered receivers, we suppose that

the spreading factor and the number of users tend to infinity while their ratio remains

constant (see for example [71, 25]). In this scenario, it can be shown that the Inter Symbol

Interference (ISI) term has no effect on the asymptotic SINR (see Chapter 5 and [25] for

example). Model (6.11) can be replaced by the following model:

[
x(m)

x(m + 1)

]
=

[
H1 H2

−H2 H1

] [
d(m)

d(m + 1)

]
+

[
v(m)

v(m + 1)

]
(6.12)

where Hj is the circulant Toeplitz matrix defined by:

Hj =




hj,0 0 hj,L−1 . . . hj,1

... hj,0
. . .

...

hj,L−1 hj,L−1

. . . . . .

0 hj,L−1 hj,0




To simplify the analysis, we can replace (6.12) by the following equivalent model:

y = HCB + V (6.13)

where

y = [x(mN + 1) x∗((m + 1)N + 1)...x(mN + N) x∗((m + 1)N + N)]T

H is a block Toeplitz matrix of the same structure as Hj whose 2× 2 blocks are equal to[
h1,l h2,l

−(h2,l)
∗ (h1,l)

∗

]

C = (S(m)C)⊗A1,1 + (S(m + 1)C)⊗A2,2

Ai,j stands for a 2 by 2 matrix whose entry (i, j) is equal to 1 and all other entries are

equal to zero,

B = [b1(m) b∗1(m + 1) b2(m) b∗2(m + 1)...bK(m) b∗K(m + 1)]T
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and V has the same structure as y. C can be interpreted as the overall code matrix. Note

we have omitted the time index as it is irrelevant.

6.4.1 The receivers

The RAKE receiver is a matched filter matched to the signature of the user of interest.

Suppose that we want to retrieve b1(m), that is the symbol transmitted by user 1 at time

instant m from antenna 1. Let C = [w1 U], where w1 is the overall code of the user of

interest and U represents the matrix of interferers codes.

The soft estimate of b1(m) is given by:

b̃1(m) = wH
1 HHy (6.14)

The SINR, that we index by the spreading factor, corresponding to this receiver is given

by :

β
(N)
RAKE =

|wH
1 HHHw1|2

wH
1 HH(HU1U

H
1 HH + σ2I)Hw1

(6.15)

The MMSE equalizer-based receiver consists of a MMSE channel-equalizer followed by a

despreader. The MMSE equalizer is given by:

G = HH(HHH +
Nσ2

K
I)−1 (6.16)

The soft estimate of b1(m) is given by:

b̃1(m) = wH
1 Gy (6.17)

Note that this is exactly the Wiener receiver that would be implemented if the chip

sequence were considered i.i.d with variance K
N

. The corresponding SINR is:

β
(N)
MMSE =

|wH
1 GHw1|2

wH
1 G(HU1U

H
1 HH + σ2I)GHw1

(6.18)

6.4.2 Asymptotic analysis

The expressions of the MMSE and the RAKE SINRs depend in a complex way on the

spreading codes. To overcome the difficulty of interpreting them, we study their limit

in the asymptotic regime, i.e. we suppose that N → ∞, K → ∞ while K
N
→ α where

1 > α > 0. Under these conditions β
(N)
MMSE and β

(N)
RAKE can be shown to converge to

deterministic limits βMMSE and βRAKE respectively. These limits depend only on the

channel, the noise variance and the load factor (and not on the spreading codes or the

specific realization of the scrambling code anymore). Note that, asymptotically, model

(6.13) is equivalent to the following chip-rate 2× 2 MIMO system:
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[
x(n)

x(n + N)

]
= H(z)

[
d(n)

d(n + N)

]
+

[
v(n)

v(n + N)

]
(6.19)

for 2kN < n ≤ (2k + 1)N ,

where H(z) =

[
h1(z) h2(z)

−h2(z) h1(z)

]

The MMSE equalizer designed to recover d(n) from x(n) is thus given by:

[
g1(z) g2(z)

]
= [h1(z

−1)− h2(z
−1)](H(z)HH(z−1) +

σ2

α
)−1 (6.20)

where we have replaced K
N

by α.

We are now in a position to give the two main results of this chapter. The limit SINR of

the RAKE and MMSE-equalizer are given in theorems 6.1 and 6.2. A sketch of the proof

are given in appendix C.1.

Theorem 6.1 Under the assumption that the scrambling sequence is i.i.d with variance

1,

lim
N→∞, K

N
→α

β
(N)
RAKE → βRAKE

given by:

βRAKE =
|Rh1(0)|2

α
( ∑

k 6=0 |Rh1(k)|2 +
∑

k |Rh2(k)|2) + σ2Rh1(0)
(6.21)

where:

|h1(e
2iπkf )|2 + |h2(e

2iπkf )|2 =
∑

k

Rh1(k)e−2iπkf (6.22)

h1(e
−2iπf )h2(e

2iπf )− h2(e
−2iπf )h1(e

2iπf ) =
∑

k

Rh2(k)e−2iπkf (6.23)

and the convergence stands for the convergence in probability.

Theorem 6.2 Under the assumption that the scrambling sequence is i.i.d with variance

1,

lim
N→∞, K

N
→α

β
(N)
MMSE → βMMSE

given by:

βMMSE =
|Rg1(0)|2

α
( ∑

k 6=0 |Rg1(k)|2 +
∑

k |Rg2(k)|2) + σ2(
∑

k |g1(k)|2 + |g2(k)|2) (6.24)

where:
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g1(e
2iπf )h1(e

2iπf )− g2(e
2iπf )h2(e

2iπf ) =
∑

k

Rg1(k)e−2iπkf (6.25)

g1(e
2iπf )h2(e

2iπf ) + g2(e
2iπf )h1(e

2iπf ) =
∑

k

Rg2(k)e−2iπkf (6.26)

and the convergence stands for the convergence in probability.

6.4.3 Discussion of the two theorems

The expression of the RAKE receiver SINR contains the desired signal term in the nu-

merator and three undesired terms in the denominator. The third term stems from the

effect of noise and will not be discussed. The first undesired term

α
( ∑

k 6=0

|Rh1(k)|2)

is the classical Multi Access Interference (MAI) which is due to the non-perfect nature of

each channel separately. The second undesired term α
( ∑

k |Rh2(k)|2) is more interesting

and can be interpreted as the Cross-Channel Interference (CCI) due to the simultaneous

use of two multipath channels (see equation 6.22). Note that if the channels were single

path (flat-fading), then we would have (by virtue of equation 6.22) Rh1(k) = 0 and

Rh2(k) = 0 for k 6= 0. This means that the first term in the denominator would vanish.

The second term would also vanish because:

∑

k

Rh2(k)e−2iπkf = (h1,0)
∗h2,0 − h2,0(h1,0)

∗ = 0

and only the noise term would remain in the denominator. On the other hand, when

there is no transmit diversity (i.e. h2(z) = 0), part of the first term (α
∑

k 6=0 |Rh1(k)|2)
would still be present (see equation (6.22)), while the second term would vanish.

The remark that the CCI vanishes for single path channels was behind the original Alam-

outi STBC proposed for single-user flat-fading channels. For multipath channels, however,

the CCI can be very high, and the STBC may deteriorate the performances when used

with a RAKE receiver. The MAI and CCI terms are both weighted by the load factor

α. This explains the fact that the SINR is higher for lightly loaded systems and vice versa.

Concerning βMMSE, we first mention how Rg1(k) and Rg2(k) behave. The MMSE-

equalizer tries to recover d(m) from x(m) and x(m + 1) (see equation 6.19). It strives

to make Rg1(e
2iπf ) close to a single path channel (which is the case in the absence of

noise). This is done by concentrating the energy of in the central term Rg1(0). On the

other hand, the coefficients Rg2(k) are made as close to zero as possible. Now, looking at
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the expression of βMMSE, we see that the first term in the denominator decreases with

respect to the first term in the denominator of βRAKE. The second term, the CCI, also

decreases and the noise is this time filtered by the two equalizers. The numerator, on the

other hand, remains comparable to the RAKE case. By decreasing the first and second

terms in the denominator while keeping the third term and the numerator comparable,

the SINR is increased.

6.5 Simulation Results

6.5.1 Comparison of empirical BER and asymptotic BER

We begin by verifying that our asymptotic analysis allows to predict the performance of

W-CDMA. We have implemented the physical layer of the downlink of the UMTS-FDD,

and we have compared the measured Bit Error Rate (BER) obtained for N = 256 and

K = 128 with its asymptotic evaluation given by Q(
√

βMMSE) and Q(
√

βRAKE). The

results are presented in Figure 6.3. The propagation channel is the Vehicular A channel.

The profile of the vehicular A channels is shown in Table 6.1. Recall that the chip period

Tc is equal to Tc = 260nsec.

Vehicular A Path Delay in nsec 0 310 710 1090 1730 2510

Vehicular A Average Power (dB) 0 -1.0 -9.0 -10.0 -15.0 -20.0

Pedestrian A Path Delay in nsec 0 110 190 410

Pedestrian A Average Power (dB) 0 -9.7 -19.2 -22.8

Table 6.1: The Vehicular A and Pedestrian A channel profiles.

It is noteworthy that the receiver we implemented is based on the correct model (6.10),

thus showing that the approximation (6.12) is justified in this context. Figure 6.3. shows

that our asymptotic evaluations allow to predict rather accurately the BER performance

for N = 256.

6.5.2 Gain of STTD for non-severe channels

We next study the gain obtained by using the Alamouti scheme in CDMA with multipath

channels. For this, we represent in the following the asymptotic BER for a half-loaded

CDMA system obtained by using a RAKE receiver and a MMSE equalizer-based receiver.

We compare the performances in the case where we use transmit diversity with the case
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Figure 6.3: Comparison of empirical and theoretical BER.

where there is no transmit diversity 3. We start first by considering a case where STTD

gives some improvement. For this we consider the propagation channel to be the Pedes-

trian A channel. The power profile of the Pedestrian A channel is given in Table 6.1. The

load factor is equal to 1/2. The results are shown in Figure 6.4.

We remark that the use of STTD allows a very important gain for both receivers: The

RAKE and the Equalizer-based one. Note, however, that the Pedestrian A channel is

not a severe channel because the power profile decreases very rapidly as a function of the

channel path. The gain provided in severe channels will be investigated in the following

figures.

6.5.3 Gain of STTD for severe channels

We keep the same setting as the previous experiment and consider the propagation chan-

nel to have three equal power paths spaced by twice the chip period. The results are

shown in Figure 6.5. We note that in this setting, the transmit diversity deteriorates the

performances of the RAKE receiver because the CCI is greater than the diversity pro-

vided. In the case of the equalizer-based receiver, not only does it outperform the RAKE

receiver in both cases, but it gives a better performance in the case of STTD because the

3For the comparison to be fair, the total transmitted power should be the same in both cases.
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Figure 6.4: The BER of the two receivers with and without transmit diversity for the

Pedestrian A channel,α = 0.5
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Figure 6.5: The BER of the two receivers with and without transmit diversity for a three

equal path channel,α = 0.5.
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Figure 6.6: BER with and without transmit diversity Vs the number of channel paths

CCI is partially cancelled out.

6.5.4 Effect of multipah channels on the performance of STTD

To have a clearer idea about the effect of multipath channels on the performance of STTD,

we plot the BER obtained by using the two receivers (with and without diversity) as a

function of the number of the channel paths. All the paths are assumed to have the same

power and to be spaced by a chip period, Eb/N0 = 10dB. The results are shown in Figure

6.6. The MMSE equalizer is known to outperform the RAKE receiver (without diversity).

We note that the use of STTD deteriorates the BER performance when using a RAKE

receiver, while it improves the BER performance when using a MMSE equalizer. This is

a very important remark since it is another argument toward the use of equalizer-based

receivers for third generation systems.

6.6 Conclusion

In this chapter, we have addressed the performance of Space Time Transmit Diversity

in the downlink of W-CDMA over frequency-selective fading channels. We have derived

asymptotic expressions of SINR provided by two kinds of receiver: the RAKE receiver

and the chip-level MMSE equalizer-based receiver. Simulation results show that our
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asymptotic expressions allow to predict the performance of UMTS-FDD for N = 256. We

have noticed that for some channels, the RAKE receiver deteriorates the BER performance

when using STTD, while the equalizer based receiver still gives some improvement. This

is another reason to use equalizer based receiver for 3G systems other than the fact that

the MMSE equalizer outperforms the RAKE receiver when used without diversity.
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Chapter 7

Concluding remarks

In this thesis, we study the performance of reduced-rank receivers for Downlink Code

Division Multiple Access (CDMA) systems. A reduced-rank receiver stands for a receiver

that differs from the full-rank one in that only some of the filter coefficients are optimized.

This represents an important gain in the computational complexity and can speed up the

convergence in the case of rapidly varying channels. Two kinds or receivers are consid-

ered: the optimum reduced-rank receiver and the suboptimum reduced-rank receivers.

The optimum reduced-rank receiver, sometimes called symbol-level receiver, stands for

the classical Wiener receiver whose output is the estimated user symbols. The subop-

timum reduced-rank receiver, on the other hand, stands for a class of receivers which

consist of a reduced-rank chip-level equalizer followed by despreading. These receivers

are strong candidates to replace the conventional receiver for CDMA: the RAKE receiver.

Two other techniques that allow to improve the RAKE performance are discussed: the

Parallel Interference Cancellation (PIC) and Space Time Transmit Diversity (STTD). In

what follows, we present a summary of the contributions with possible improvement and

future work.

7.1 Equalizer and Blind Interference Cancellation based

receivers

7.1.1 Reduced-rank equalization algorithms

In the first part, we consider the reduced-rank filtering algorithms and their application to

the equalization in the forward link of W-CDMA. The problem that arises in W-CDMA

129
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is the presence of a long scrambling code that breaks the received signal cyclostation-

arity. For this reason, symbol level receivers cannot be used. The solution is to use

equalization prior to despreading (and descrambling). The equalization can be used in a

reduced-rank fashion, thus reducing the overall complexity. In chapter 2, we adapt two

algorithms originally proposed for periodic CDMA to long-code CDMA with a perma-

nent code-multiplexed pilot. The error driven filter can be trained using the received

signal as an input and the pilot chips as a desired output. The problem with this method

of adaptation is that it suffers from Multi Access Interference (MAI) because we only

know part of the desired output (the pilot chips). An alternative approach would be to

perform despreading (and descrambling) of shifted versions of the received signal. The

resulting modified received signal is then used as an input to the error-driven filter. The

corresponding desired output is the pilot symbols. We show that the Wiener equalizer

obtained in the two cases is equal up to a constant multiplicative factor. Extensive simu-

lation results are presented where we remark that the BER performance is very close to

the optimal (MMSE) equalizer even for moderate values of the rank. This phenomenon

can be understood better by using the asymptotic performance discussed in the second

part of the thesis.

7.1.2 Blind Interference Cancellation

Blind PIC for multi-rate CDMA

Another way to improve the BER performance is to use Parallel Interference Cancellation

(PIC) in which interferers symbols are estimated and their effect is subtracted from the

received signal. This allows a better detection of the desired user symbols. The problem

that arises in WCDMA is that the users codes are not known and cannot be estimated

by averaging because they are of different lengths (multi-rate). In chapter 3, we propose

to combine equalization with a partial PIC technique that assumes the presence of (vir-

tual) codes of the same length as the user of interest. By doing this, we remove a very

important part of the interference while keeping reasonable complexity.

Noise-subspace based PIC for periodic CDMA

In the case of short code CDMA, the cyclostationariy of the received signal can be

exploited to estimate the signal and noise subspaces. Following a previously proposed

method based on signal subspace, we propose a new method: the Code Detection Blind

Interfering Cancellation (CD-BIC) algorithm, based on the noise subspace that performs

very well for a weak number of users using Walsh-Hadamard codes. The corresponding
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article is given in appendix D.

It is possible to further reduce the computational cost of the CD-BIC by considering

only few noise vectors instead of the whole noise subspace. Indeed, it can be shown that

both the subspace-based channel estimation and the code-detection can be achieved con-

sistently using one or few noise vectors only. This would lead to a considerable reduction

of the computational cost. A further improvement would be to design an adaptive al-

gorithm of the CD-BIC algorithm by tracking the noise-subspace using existing work on

this subject.

7.2 Asymptotic performance of CDMA receivers

The second part of the thesis concerns the analysis of the performance of reduced-rank

Wiener receivers, reduced-rank MMSE equalizers and Space Time Transmit Diversity

(STTD). The study of these receivers for finite size of the spreading factor N is very dif-

ficult. In fact, the Signal to Interference Noise Ratios (SINRs) of these receivers, usually

considered as a performance measure, depends in a complicated way on the spreading

codes, the powers, the system load and the channel. It has become classical now to model

the code matrix as a random matrix following a certain distribution. The SINR can be

interpreted in this case as a random variable. Due to some averaging phenomena, the

SINR converges in probability to a deterministic limit when the number of users K and

the spreading factor N tend to infinity at the same rate. We apply the same technique

to study the performance of the reduced-rank receivers. Both optimal and suboptimal

receivers are considered. The Space-Time Transmit diversity is also studied when com-

bined with the RAKE receiver and the MMSE equalizer based receiver.

7.2.1 Asymptotic performance of reduced-rank Wiener receivers

In the context of randomly spread CDMA, Tse and Hanly have obtained a fixed point

equation for the asymptotic SINR of the Wiener receiver. This equation allows a better

understanding of the parameters influencing the performance of the Wiener receiver. In

the same context, Honig and Xiao obtained a recurrence relation between the asymptotic

SINRs of reduced-rank receivers of successive ranks. The Honig-Xiao formula is valid for

equal power case but allows nevertheless to show by simulations that the convergence

of the reduced-rank SINR to the full-rank SINR is very rapid. In chapter 4, we review

the main results of Tse-Hanly and Honig-Xiao. We then present new results that were

developed during this thesis with the work of Loubaton and Hachem. We show that the
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convergence of the reduced-rank SINR to the full-rank SINR is locally exponential (thus

very rapid) and exhibit the different parameters that can speed up or slow down the con-

vergence.

The results of chapter 4 concern mainly the randomly spread CDMA with i.i.d spread-

ing and no fading. In appendix E, we use the results of Loubaton-Hachem to study the

performance of reduced-rank Wiener receivers for CDMA systems corrupted by frequency

selective fading channels. The spreading matrix is considered to be extracted from a Haar

matrix. Thus, although this matrix is random, it remains orthogonal. This allows a better

approximation of real life systems in which orthogonal Walsh-Hadamard codes are used.

7.2.2 Asymptotic performance of reduced-rank equalization

The performance of suboptimum Wiener receivers (both full-rank and reduced-rank) has

received much less attention than their optimum counterparts. Apart from some work

on the asymptotic performance of full-rank suboptimum Wiener receivers, we could not

find any previous work that treats this aspect. In chapter 5, we consider the performance

of reduced-rank suboptimum Wiener receivers in the context of downlink W-CDMA in

frequency-selective fading channels. Motivated by the specifications of the UMTS-FDD,

we consider a random scrambling code and orthogonal Walsh-Hadamard codes. In this

context, we show that, like the optimum case, the convergence of the reduced-rank SINR

to the full-rank SINR is locally exponential. We exhibit the different parameters that

influence the convergence.

7.2.3 Asymptotic performance of Space Time Transmit Diver-

sity

Besides equalization and Parallel Interference Cancellation, Space-Time Transmit Diver-

sity represents a simple, yet powerful, technique to improve the system performance. By

using two transmit antennas and one receive antenna, we can take advantage of increased

diversity without the need to include additional antennas at the receiver side. In the cur-

rent specifications, the STTD is intended to work with the RAKE receiver. However, the

MMSE equalizer can be used with STTD and gives a better performance. Following simi-

lar arguments as in chapters 4 and 5, we study in chapter 6 the asymptotic performance of

Space Time Transmit Diversity when used with a RAKE receiver and an equalizer-based

receiver. We notice that the performance of the RAKE receiver can be worse when used

with STTD for some very selective channels. The equalizer based STTD, however, does
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not suffer from this problem. Thanks to channel ”inversion”, the diversity provided is

made higher than the cross-channel interference created due to the simultaneous use of

two multipath channels.

Chapter 6 considers the performance of the RAKE (rank 1) and the MMSE equalizer

(full-rank) when coupled with Space Time Transmit Diversity. In the same context, it

would be interesting to consider the performance of reduced-rank equalization (of differ-

ent ranks ranging from 1 to full rank) when used with STTD. Other forms of Transmit

Diversity have been proposed and standardized in the UMTS-FDD. The other main open

loop transmit diversity scheme is the Orthogonal Transmit Diversity (OTD). In OTD,

two tranmit antennas and one receive antenna are used. The symbols are transmitted

through different antennas using spreading codes that are twice longer than the spreading

factor (to keep the same rate). The Asymptotic analysis can be extended Orthogonal

Transmit Diversity (OTD) since the principle is very close to STTD.
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Appendix A

Appendix to chapter 2

A.1 Proof of proposition 2.1

In this appendix, we will show that R−1
yy ryb is equal up to a constant multiplicative factor

to R−1
xx rxd.

i) The first step: It can be shown that:

Ryy = Rxx + γ1hhH , (A.1)

where γ1 is a scalar, See [32, 24]. Then, matrix Ryy differs from Rxx by a rank 1 matrix.

ii) The second step: is to show that:

ryb = arxd (A.2)

That is ryb and rxd are equal up to a constant multiplicative factor. In fact,

E
{
yl,1(m)b∗1(m)

}

= E
{∑

i

x(nN − l+)]s∗(mN + i)c∗1(i)b1∗(m)

}

= E
{∑

i

x(mN − l + i)d∗1(mN + i)

}

recall that for each m, the sequence d1(mN + i) is a known deterministic sequence (it

represents the N pilot chips at the mth symbol), thus we can write:

E
{
yl,1(m)b∗1(m)

}
=

∑
i

{
E

{
x(mN − l + i)

}
d∗1(mN + i)

}

Now, x(mN − l + i) is the sum of the received signal due to the pilot chips and all the

remaining users. because of the assumption that users symbols are independent, the
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received signal of all the remaining users is a zero-mean one. Then we can write:

E
{
yl,1(m)b∗1(m)

}
=

∑
i

x1(mN − l + i) d∗1(mN + i)

Now, the lth coefficient of vector ryb is given by:

lim
M→∞

1

M

M−1∑
m=0

{
E

{
yl,1(m)b∗1(m)

}}

=
∑

i

lim
M→∞

1

M

M−1∑
m=0

x1(mN − k + i)d∗1(mN + i)

=
∑

i

lim
M→∞

1

M

M−1∑
m=0

E
{
x(mN − l + i)d∗(mN + i)

}

=
∑

i

lim
M→∞

1

M

M−1∑
m=0

E
{
x(mN − l + i)d∗(mN)

}

the last expression is equal up to a constant multiplicative factor to

lim
M→∞

1

M

M−1∑
m=0

E
{
x(m− l)d∗(mN)

}

which is the (l)th channel coefficient.

then ryb = ah = arxd. This completes the second step

iii) The third step: Let us compute R−1
yy ryb

R−1
yy = (Rxx + γ1hhH)−1 (A.3)

using the matrix inversion lemma

R−1
yy = R−1

xx + R−1
xx h(

1

γ1

+ hHR−1
xx h)hHR−1

xx (A.4)

now

R−1
yy ryb = aR−1

xx h + βR−1
xxhhHR−1

xxh (A.5)

= R−1
xxha(1 + βζ) (A.6)

where ζ = hHR−1
xxh.

It is clear from A.6 that R−1
yy ryb = κR−1

xx rxd.

This completes the proof.
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Appendix to chapter 5

B.1 Proof of Lemma 5.2

We show that supN ‖Gn,N‖ < +∞. For this, we note that matrix Gn,N is a Toeplitz matrix

associated to the transfer function gn(z). Therefore, for each N , ‖Gn,N‖ < ‖gn‖∞ =

supf |gn(e2iπf )|. Hence,

sup
N
‖Gn,N‖ < sup

N
‖gn‖∞

We now prove that supN ‖gn‖∞ < +∞. As h(z) is a degree L FIR filter, we claim that if

N is large enough, then the number of non zero coefficients of gn(z) is less than (2n−1)L,

and thus remains finite when N → +∞. In effect, row vector gn is a linear combination

of the rows (hH
2N ,hH

2NR2N , . . . ,hH
2NRn−1

2N ) of matrix KH
n,2N . If N is large enough, for each

1 ≤ k ≤ (n − 1), Rk
2N is a band matrix whose entries (Rk

2N)i,j are zero if |i − j| > kL.

It is therefore easy to check that components 1 to N − kL − 1 and N + (k + 1)L + 1 to

2N of vector hH
2NRk

2N are zero. This implies that components 1 to N − (n− 1)L− 1 and

N + nL + 1 to 2N of any linear combination of the rows of KH
n,2N are zero if N is large

enough. In order to establish that supN ‖gn‖∞ < +∞, it is therefore sufficient to show

that the (euclidian) norm ‖gn‖ of vector gn remains bounded when N increases. For this,

we remark that

‖gn‖2 = hH
2NKn,2N(KH

n,2NR2NKn,2N)−1KH
n,2NKn,2N(KH

n,2NR2NKn,2N)−1KH
n,2Nh2N .

As R2N ≥ σ2

α
I2N , it is clear that (KH

n,2NR2NKn,2N)−1 ≤ ασ−2(KH
n,2NKn,2N)−1, and that

Kn,2N(KH
n,2NR2NKn,2N)−1KH

n,2N ≤ ασ−2Kn,2N(KH
n,2NKn,2N)−1KH

n,2N , which is itself less

than ασ−2I2N . This, in turn, shows that ‖gn‖2 ≤ α‖h2N‖2
σ2 , and that the norm ‖gn‖ remains

bounded when N increases.

137



138 APPENDIX B. APPENDIX TO CHAPTER 5

B.2 Proof of Lemma 5.3.

The proof of Lemma 5.3 needs some work. In order to make the proof easier to follow, we

simplify the notations: As the parameter m is irrelevant here, S(m) is denoted S. Finally,

matrix BN is denoted B. We denote by b0 the diagonal term of B, and put A = B− b0I

and

TN = cH
1 SHBSC2C

H
2 SHBHSc1

We remark that, as the entries of matrix C are equal to ± 1√
N

, then, the diagonal entries

of C2C
H
2 are equal to K−1

N
. We denote by D the matrix D = C2C

H
2 − K−1

N
I. The diagonal

entries of A and D are of course zero. TN can be written as

TN = cH
1 SH(A + b0I)SC2C

H
2 SH(A + b0I)

HSc1

As cH
1 C2 = 0 and S is unitary, this reduces to

TN = cH
1 SHASC2C

H
2 SHAHSc1

Writing C2C
H
2 as D + K−1

N
I, we get that TN is given by

TN =
K − 1

N
cH

1 SHAAHSc1 + cH
1 SHASDSHAHSc1

B uniformly bounded implies that AAH is uniformly bounded. Therefore, Lemma 5.1

implies that K−1
N

cH
1 SHAAHSc1 converges in quadratic mean to α 1

N
Trace(AAH). But, it

is easy to check that

1

N
Trace(AAH) =

1

N
Trace(BBH)−

∣∣∣∣
1

N
Trace(B)

∣∣∣∣
2

Therefore, in order to establish that TN converges in the least-squares sense toward

α

(
1

N
Trace(BBH)−

∣∣∣∣
1

N
Trace(B)

∣∣∣∣
2
)

it is sufficient to show that εN = cH
1 SHASDSHAHSc1 converges in the least-squares

sense to 0, i.e. that limN→+∞, K
N
→α E(ε2

N) = 0 (note that εN is real). For this, we have to

express E(ε2
N) by taking benefit that the entries (si)i=1,...,N of S are independent QPSK

sequences and that the diagonal entries of D and A are zero. εN can be written as

εN =
∑

i1,j1,i2,j2

ci1,1s
∗
i1
Ai1,j1sj1Dj1,i2s

∗
i2
(AH)i2,j2sj2cj2,1

Hence, E(ε2
N) is equal to

∑

(i1,i2,i3,i4),(j1,j2,j3,j4)

ci1,1Ai1,j1Dj1,i2(A
H)i2,j2cj2,1ci3,1Ai3,j3Dj3,i4(A

H)i4,j4cj4,1E(s∗i1sj1s
∗
i2sj2s

∗
i3sj3s

∗
i4sj4)
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As (si)i=1,...,N is an independent QPSK sequence, the term E(s∗i1sj1s
∗
i2
sj2s

∗
i3
sj3s

∗
i4
sj4) is non

zero if and only if it exists a permutation π (depending on the multi-index (i1, i2, i3, i4))

from the set {1, 2, 3, 4} for which jk = iπ(k) for each k ∈ {1, 2, 3, 4}. In this case,

E(s∗i1sj1s
∗
i2
sj2s

∗
i3
sj3s

∗
i4
sj4) is equal to 1. As the diagonal entries of A and D are zero,

coefficient

ci1,1Ai1,j1Dj1,i2(A
H)i2,j2cj2,1ci3,1Ai3,j3Dj3,i4(A

H)i4,j4cj4,1

is possibly non zero only if jk 6= ik for k ∈ {1, 2, 3, 4} and jk−1 6= ik for k ∈ {2, 4}, that is

if

π(1) 6= 1, π(1) 6= 2, π(2) 6= 2, π(3) 6= 3, π(3) 6= 4, π(4) 6= 4

Therefore, a permutation π corresponds to a possibly non zero term if

π(1) ∈ {3, 4}, π(2) ∈ {1, 3, 4}, π(3) ∈ {1, 2}, π(4) ∈ {1, 2, 3}

This corresponds to the following 5 possible permutations:

• π(1) = 3, π(3) = 1, π(2) = 4, π(4) = 2, permutation π1,

• π(1) = 3, π(3) = 2, π(2) = 4, π(4) = 1, permutation π2,

• π(1) = 4, π(3) = 1, π(2) = 3, π(4) = 2, permutation π3,

• π(1) = 4, π(3) = 2, π(2) = 1, π(4) = 3, permutation π4,

• π(1) = 4, π(3) = 2, π(2) = 3, π(4) = 1, permutation π5.

In the following, we denote by i = (i1, i2, i3, i4) a four-dimensional multi-index, and for

each k = 1, . . . , 5, by πk(i) the multi-index (iπk(1), iπk(2), iπk(3), iπk(4)). We will show below

that for each k = 1, 2, . . . , 5, then,

∑

i

∑

j=πk(i)

ci1,1Ai1,j1Dj1,i2(A
H)i2,j2cj2,1ci3,1Ai3,j3Dj3,i4(A

H)i4,j4cj4,1 → 0 (B.1)

Unfortunately, this does not show that E(ε2
N) converges to 0 because

E(ε2
N) 6=

5∑

k=1

∑

i

∑

j=πk(i)

ci1,1Ai1,j1Dj1,i2(A
H)i2,j2cj2,1ci3,1Ai3,j3Dj3,i4(A

H)i4,j4cj4,1 (B.2)

This is because, for certain multi-indices i having identical components, it may exist k 6= l

for which πk(i) = πl(i). For example, if i1 = i2, then π1(i) = π2(i). These multi-indices

are thus taken into account at least 2 times in the righthandside of equation (B.2). In

order to show that E(ε2
N) converges toward 0, the reader may check that it is sufficient

to prove (B.1) for k = 1, . . . , 5, as well as (B.1) but in which the summation over i is
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restricted to indices for which (i1 = i2), (i1 = i3), (i3 = i4), (i1 = i2) and (i3 = i4).

We now prove (B.1) for k = 1, i.e. that
∑

i

ci1,1Ai1,i3Di3,i2(A
H)i2,i4ci4,1ci3,1Ai3,i1Di1,i4(A

H)i4,i2ci2,1 → 0 (B.3)

For this, we replace D by C2C
H
2 − K−1

N
I, and verify that

∑

i

ci1,1Ai1,i3(C2C
H
2 )i3,i2(A

H)i2,i4ci4,1ci3,1Ai3,i1(C2C
H
2 )i1,i4(A

H)i4,i2ci2,1 → 0, (B.4)

and
∑

i ci1,1Ai1,i3δi3−i2(A
H)i2,i4ci4,1ci3,1Ai3,i1(C2C

H
2 )i1,i4(A

H)i4,i2ci2,1 → 0∑
i ci1,1Ai1,i3(C2C

H
2 )i3,i2(A

H)i2,i4ci4,1ci3,1Ai3,i1δi1−i4(A
H)i4,i2ci2,1 → 0

(B.5)

as well as
∑

i

ci1,1Ai1,i3δi3−i2(A
H)i2,i4ci4,1ci3,1Ai3,i1δi1−i4(A

H)i4,i2ci2,1 → 0 (B.6)

We first check (B.4). We recall that matrix (Ci,k)i=1,...,N,k=1,...,K is obtained by extracting

K columns from a N × N (unitary) Walsh-Hadamard matrix. In order to simplify the

notations, we denote by (ck)k=1,...,N the columns of this unitary matrix, and by (ci,k)i=1,...,N

the components of vector ck. In particular, matrix C2 is equal to C2 = (c2, . . . , cK). The

term to be studied, denoted u1,N , is equal to

u1,N =
K∑

k=2

K∑

l=2

∑

(i1,i2,i3,i4)

ci1,1Ai1,i3ci3,kci2,k(A
H)i2,i4ci4,1ci3,1Ai3,i1ci1,lci4,l(A

H)i4,i2ci2,1

It can also be written as

u1,N =
K∑

k=2

K∑

l=2

∣∣∣∣∣
∑
i1,i3

ci1,1ci3,1ci1,lci3,kAi1,i3Ai3,i1

∣∣∣∣∣

2

It is clear that u1,N is smaller than the term v1,N defined by

v1,N =
N∑

k=1

N∑

l=1

∣∣∣∣∣
∑
i1,i3

ci1,1ci3,1ci1,lci3,kAi1,i3Ai3,i1

∣∣∣∣∣

2

v1,N is equal to

v1,N =
∑

i

N∑

k=1

N∑

l=1

ci1,1ci3,1ci2,1ci4,1ci1,lci2,lci3,kci4,kAi1,i3Ai3,i1A
∗
i2,i4

A∗
i4,i2
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As
∑N

l=1 ci1,lci2,l = δi1−i2 and
∑N

k=1 ci3,kci4,k = δi3−i4 , we get that

v1,N =
∑
i1,i3

(ci1,1)
2(ci3,1)

2|Ai1,i3|2|Ai3,i1|2 =
1

N2

∑
i1,i3

|Ai1,i3|2|Ai3,i1|2

because the entries of C are equal to ± 1√
N

. We finally show that v1,N → 0, which in

turn, implies that u1,N → 0. For this, we have to check that 1
N

∑
i1,i3

|Ai1,i3|2|Ai3,i1|2 is

bounded. If E and F are N×N matrices, we denote by E•F the Schur-Hadamard product

of E and F defined by (E •F)k,l = Ek,lFk,l. It is easily seen that ‖E •F‖ ≤ ‖E‖‖F‖. We

remark that
1

N

∑
i1,i3

|Ai1,i3|2|Ai3,i1|2 =
1

N
Trace(A •AT )(A •AT )H

and is thus upper bounded by ‖A •AT‖2 ≤ ‖A‖4. As A is uniformly bounded,

sup
N

1

N
Trace(A •AT )(A •AT )H < +∞

This shows that v1,N , and thus u1,N converges to 0.

We now prove the first part of (B.5). We put

u2,N =
∑

i

ci1,1Ai1,i3δi3−i2(A
H)i2,i4ci4,1ci3,1Ai3,i1(C2C

H
2 )i1,i4(A

H)i4,i2ci2,1

Using that (ci3,1)
2 = 1

N
, we get immediately that

u2,N =
1

N

∑
i1,i4

ci1,1ci4,1(C2C
H
2 )i1,i4Ei1,i4

where E is the N ×N matrix defined by

Ei1,i4 =
∑
i3

Ai1,i3Ai3,i1(A
H)i3,i4(A

H)i4,i3

It is easy to check that E = (A •AT )(A •AT )H . Therefore, u2,N can be rewritten as

u2,N =
1

N
cH

1

(
(C2C

H
2 ) • E

)
c1

As A and C2C
H
2 are uniformly bounded, matrix (C2C

H
2 ) • E is uniformly bounded. As

‖c1‖ = 1, this implies that

sup
N

cH
1

(
(C2C

H
2 ) • E

)
c1 < +∞

thus showing that u2,N → 0.

The second part of (B.5) and (B.6) are obtained similarly. This establishes (B.1) for

k = 1. The proof of (B.1) for k ∈ {2, 3, 4, 5}, and of (B.1), k ∈ {1, 2, 3, 4, 5} restricted to

multi-indices satisfying i1 = i2, i1 = i3, i3 = i4, i1 = i2 and i3 = i4 are similar, and thus

omitted.
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B.3 Proof of Lemma 5.4.

As in the proof of Lemma 5.3, we simplify the notations. We put BN = B, S(m) = S,

S(m−k) = S
′
, and denote (si)i=1,...,N and (s

′
i)i=1,...,N their diagonal entries. The diagonal

terms of matrix CCH all coincide with K
N

, and we denote by D the matrix D = CCH−K
N
I.

Finally, we denote by TN the term to be studied, i.e.

TN = cH
1 SHBS

′
CCHS

′HBHSc1 − α
1

N
Trace(BBH)

Writing CCH as D + K
N
I and using that S

′
is unitary, we get that

TN = εN +
K

N
cH

1 SHBBHSc1 − α
1

N
Trace(BBH)

where

εN = cH
1 SHBS

′
DS

′HBHSc1

As BBH is uniformly bounded, Lemma 5.1 implies that

cH
1 SHBBHSc1 − 1

N
Trace(BBH)

converges to 0 in the mean square sense. As K
N
→ α, E(ε2

N) → 0 implies that E(T 2
N) → 0.

In the following, we therefore prove that E(ε2
N) → 0. For this, we expand E(ε2

N) as

∑

(i1,i2,i3,i4),(j1,j2,j3,j4)

ci1,1Bi1,j1Dj1,i2(B
H)i2,j2cj2,1ci3,1Bi3,j3Dj3,i4(B

H)i4,j4cj4,1E(s∗i1s
′
j1s

′∗
i2sj2s

∗
i3s

′
j3s

′∗
i4sj4)

As sequences (si)i=1,...,N and (s
′
i)i=1,...,N are independent, it is clear that

E(s∗i1s
′
j1

s
′∗
i2
sj2s

∗
i3
s
′
j3

s
′∗
i4
sj4) = E(s∗i1sj2s

∗
i3
sj4)E(s

′
j1

s
′∗
i2
s
′
j3

s
′∗
i4
)

But,

E(s∗i1sj2s
∗
i3
sj4) = δi1−j2δi3−j4 + δi1−j4δj2−i3 − δi1−j2δi3−j4δi1−j4δj2−i3

E(s
′
j1

s
′∗
i2
s
′
j3

s
′∗
i4
) = δj1−i2δj3−j4 + δj1−i4δi2−j3 − δj1−i2δj3−j4δj1−i4δi2−j3

As the diagonal terms of D are 0, the terms for which j1 = i2 or j3 = i4 do not contribute
to E(ε2

N). Therefore, E(ε2
N) reduces to

∑

(i1,i2,i3,i4),(j1,j2,j3,j4)

ci1,1Bi1,j1Dj1,i2(B
H)i2,j2cj2,1ci3,1Bi3,j3Dj3,i4(B

H)i4,j4cj4,1E(s∗i1sj2s
∗
i3sj4)δj1−i4δi2−j3

Starting from this expression, it is easy to check that E(ε2
N) → 0.



Appendix C

Appendix to chapter 6

C.1 Proof of Theorems 6.1 and 6.2

Suppose that we want to use a receiver G(z) to recover

[
d̃(n)

d̃(n + N)

]
from

[
x(n)

x(n + N)

]

(see equation(6.19)). The overall transfer function between

[
d(n)

d(n + N)

]
and

[
d̃(n)

d̃(n + N)

]

is given by the multiplication of the two transfer functions G(z) and H(z)

F(z) = G(z)H(z) =

[
g11(z) g12(z)

g21(z) g22(z)

] [
h1(z) h2(z)

−h2(z) h1(z)

]
(C.1)

F(z) = G(z)H(z) =

[
g11(z)h1(z)− g12(z)h2(z) g11(z)h2(z) + g12(z)h1(z)

g21(z)h1(z)− g22(z)h2(z) g21(z)h2(z)− g22(z)h1(z)

]
(C.2)

evaluating this expression on the unit circle z = e2iπf , we get:

[
g11(e

2iπf )h1(e
2iπf )− g12(e

2iπf )h2(e
2iπf ) g11(e

2iπf )h2(e
2iπf ) + g12(e

2iπf )h1(e
2iπf )

g21(e
2iπf )h1(e

2iπf )− g22(e
2iπf )h2(e

2iπf ) g21(e
2iπf )h2(e

2iπf )− g22(e
2iπf )h1(e

2iπf )

]

(C.3)

Now, recall that the SINR associated to this receiver is given by

β(N) =
|wH

1 GHw1|2
wH

1 G(HU1U
H
1 HH + σ2I)GHw1

(C.4)
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and that

C =




s(mN)c1(1) 0 s(mN)c2(1) 0 . . .

0 s∗(mN + N)c1(1) 0 s∗(mN + N)c2(1) . . .

s(mN + 1)c1(2) 0 s(mN + 1)c2(1) 0 . . .

0 s∗(mN + N + 1)c1(2) 0 s∗(mN + N + 1)c2(1) . . .
...

...
...

...
...




(C.5)

or

C =
[

w1,1 w2,1 w1,2 w2,2 . . . w1,K w2,K

]
(C.6)

so that the fist column w1 = w1,1 is given by:

w1 = [s(mN)c1(1) 0 s(mN + 1)c1(2) 0 . . . s(mN + N − 1)c1(N)]T (C.7)

We Now consider the asymptotic behavior of the numerator:

(wH
1 GHw1) = [X 0 X 0 . . .]F




X

0

X

0
...




, (C.8)

where we denote by X the non-zero entries of w1 and replace GH by F. F is the block

circulant matrix with (2× 2) blocks having the same structure as the matrix in C.2.This

means that the non-zero entries of (w1 act on the matrix F1,1 resulting from F = GH by

taking entries (1, 1) from each (2×2) block. Using lemma 4.1, (wH
1 GHw1) coincides with

1
N

Trace(F1,1). But F1,1 is the filtering Toeplitz matrix associated to the transfer function

g11(e
2iπf )h1(e

2iπf )− g12(e
2iπf )h2(e

2iπf )

(see equation C.2) and Trace(F1,1) coincides with 1
N

∑
i λi,F1,1 , where λi,F1,1 stands for the

i-th eigenvalue of F1,1. By using Lemma 4.2, this is seen to coincide with

g11(e
2iπf )h1(e

2iπf )− g12(e
2iπf )h2(e

2iπf ).

Then, asymptotically, we have:

(wH
1 GHw1)

2 ←→ [ ∫ 1

0

g11(e
2iπf )h1(e

2iπf )− g12(e
2iπf )h2(e

2iπf ) df
]2

(C.9)
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Now, we consider the denominator:

wH
1 G(HUUHHH)GHw1 + σ2w1GGHw1 (C.10)

U can be divided into W2U1 so that

UUH = W2W
H
2 + U1U

H
1

where

W2 = [w2,1 w2,2 w2,3 . . .w2,K ]

and

U1 = [w1,2 w1,3 w1,4 . . .w1,K ]

Now, the denominator C.10 can be rewritten as:

wH
1 G(HU1U

H
1 HH)GHw1 + wH

1 G(HW2W
H
2 HH)GHw1 + σ2w1GGHw1 (C.11)

Taking (C.11) term by term. The first term can be written as:

wH
1 FU1U

H
1 FHw1 = w̃H

1 F1,1Ũ1Ũ
H

1 FH
1,1w̃1 (C.12)

where w̃1 (resp. Ũ1) is obtained from w1 (resp. U1) by removing even all-zeros elements

(resp. rows ). and F1,1 is obtained by taking entries 1,1 of the (2 × 2) blocks of F.

equation (C.12) has the same asymptotic behavior as:

αw̃H
1 F1,1(I− w̃1w̃

H
1 )FH

1,1w̃1 (C.13)

or equivalently,

α
[
w̃H

1 (F1,1)
2w̃1 − (w̃H

1 F1,1w̃1)
2
]
. (C.14)

Following the same arguments as the numerator, equation C.14 has the same asymptotic

behavior as:

α

{
1

N
Trace(F1,1)

2 −
(

1

N
TraceF1,1

)2
}

, (C.15)

which coincides with

α





1

N

∑
i

λ2
i,F1,1

−
(

1

N

∑
i

λi,F1,1

)2


 (C.16)

Finally the asymptotic behavior of the first term boils down to the product of α with:
∫ 1

0

{
g11(e2iπf )h1(e2iπf )− g12(e2iπf )h2(e2iπf )

}2
df−[ ∫ 1

0
g11(e2iπf )h1(e2iπf )−g12(e2iπf )h2(e2iπf )df

]2

(C.17)
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The second term is given by:
wH

1 FW2WH
2 FHw1 (C.18)

note that W2 has all-zeros in the odd rows. Thus, wH
1 FW2 takes into account the entry (1,2)

of the blocks of the matrix F. Therefore, (C.18) has the same behavior as:

α

N
trace(F1,2FH

1,2)

which has the same asymptotic behavior as:

α
[ ∫ 1

0

{
g11(e2iπf )h2(e2iπf ) + g12(e2iπf )h1(e2iπf )

}2
df

]
(C.19)

The third terms stems from the noise effect, it is given by:

σ2wH
1 GGHw1 (C.20)

for the same reason as (C.8), the result includes only entries (1,1) of the (2 × 2) blocks of the
matrix GGH and asymptotically the third term of the denominator is given by:

σ2

∫ 1

0
(|g11(e2iπf )|2 + |g12(e2iπf )|2)df = σ2(

∑
q

|g11,q|2 + |g12,q|2) (C.21)

Now, putting all pieces together, we get the asymptotic SINR of a receiver G is given by:

βG =
[
∫ 1
0 {Rg1(e2iπf )}df ]2

α{∫ 1
0 {Rg1(e2iπf )}2df − [

∫ 1
0 {Rg1(e2iπf )}df ]2}+ α[

∫ 1
0 {Rg2(e2iπf )}df ]2 + σ2(

∑
q |g11,q|2 + |g12,q|2)

(C.22)
where

Rg1(e2iπf ) = g11(e2iπf )h1(e2iπf )− g12(e2iπf )h2(e2iπf ) (C.23)

Rg2(e2iπf ) = g11(e2iπf )h2(e2iπf ) + g12(e2iπf )h1(e2iπf ) (C.24)

Expression (C.22) gives the SINR of a general receiver

G(z) =

[
g11(z) g12(z)
g21(z) g22(z)

]

Expressing βG as a function of the coefficients Rg1(k) and Rg2(k) we get for the MMSE equalizer
SINR (it is understood that we replace g11(z) and g12(z) by g1(z) and g2(z) the MMSE equalizers
):

βMMSE =
|Rg1(0)|2

α
(∑

k 6=0 |Rg1(k)|2 +
∑

k |Rg2(k)|2) + σ2(
∑

k |g1(k)|2 + |g2(k)|2) (C.25)

The RAKE receiver corresponds to:

g11(z) = h1(z−1) and g12(z) = −h2(z−1).
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Substituting these expressions in (C.22) we get the SINR of the RAKE receiver with:

βRAKE =
[
∫ 1
0 {Rh1(e2iπf )}df ]2

α{∫ 1
0 {Rh1(e2iπf )}2df − [

∫ 1
0 Rh1(e2iπf )df ]2}+ α[

∫ 1
0 {Rh2(e2iπf )}df ]2 + σ2

∑
q |h1,q|2 + |h2,q|2

(C.26)
where

Rh1(e2iπf ) = |h1(e2iπf )|2 + |h2(e2iπf )|2 (C.27)

Rh2(e2iπf ) = h1(e−2iπf )h2(e2iπf ) + h2(e−2iπf )h1(e2iπf ) (C.28)

Expressing βRAKE as a function of the coefficients Rh1(k) and Rh2(k) we get:

βRAKE =
|Rh1(0)|2

α
( ∑

k 6=0 |Rh1(k)|2 +
∑

k |Rh2(k)|2) + σ2Rh1(0)
(C.29)
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D.1 Abstract

In this paper, We propose a new blind interference cancellation algorithm suitable for the Direct-
Sequence Code-Division Multiple Access (DS/CDMA) downlink. Interferers codes are unknown
but the family to which they belong is supposed to be known. The proposed technique is
blind in the sense that only the desired user’s spreading code is assumed to be known a priori.
The remaining parameters required for the interference cancellation such as spreading codes
and energies of interfering users are estimated using subspace decomposition and projection
on the family of codes. Fast and efficient implementations are discussed. Therefore, unlike
standard interference cancellers which can be used only in the uplink, the proposed method can
be implemented at the mobile terminal.

D.2 Introduction

In DS/CDMA communications, it is well known that channel orthogonality at the receiver is
impossible to ensure in practice, whether on the forward or reverse link. This leads to a loss in
capacity compared to the orthogonal case, regardless of the type of receiver used. The capacity
loss is however greatest for RAKE (or conventional) receiver, and smallest for the optimal
detector which performs joint maximum likelihood decoding of all users. In between these
two extremes, there are the linear mean squared error (MMSE) and decorrelating detectors
[74]. Still, the performance gap between the linear and optimal multiuser detectors becomes
considerable when the number of users increase, which acts as a strong inducement to find
non-linear, computationally tractable detectors.

An important class of non-linear sub-optimal receivers is the interference cancellers (IC)
[39, 73], where an estimate of the Multiple-Access Interference (MAI) is subtracted from the
received signal before making the decision on the desired user. Unlike linear multiuser detectors,
IC has the potential to approach the single-user performance bound when the MAI estimate is
reliable. Because of the need to re-generate the interfering signal at the receiver, all existing IC
schemes have been proposed for the uplink as they require the knowledge of all users’ codes and
energies. As a result, ICs have thus far been assumed to be applicable at a base station, and not
at the mobile terminal where only one information stream is to be decoded and the spreading
codes of interfering users are unknown.

In [23], a blind interference cancellation (BIC) scheme that estimates the energies and codes
of interfering users using subspace decomposition and the constant modulus (CM) property of
the transmitted symbols has been proposed. the BIC algorithm is suitable when the number of
users is small, because its complexity is of the order of O((N +T )K2), where N is the spreading
factor, T is the sample size and K is the number of users.
In this paper, a new interference cancellation scheme is proposed for DS/CDMA downlink which
estimates blindly1 the spreading codes and energies of interfering users. As a consequence, this
cancellation scheme can be implemented at the mobile terminal. The estimation procedures

1Meaning that no pilot nor training symbols are required, but the desired user’s signature is known.
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are based on subspace decomposition and Fast Walsh Transform (FWT) projection. Unlike the
algorithm proposed in [23], this algorithm is more convenient when the number of users is high
because its complexity is proportional to the number of excess codes, i.e. the number of codes
that are not being used by the system.

Notations: Throughout the paper, T , ∗, H and † are used to denote transpose, conjugate,
conjugate transpose and Moore-Penrose pseudoinverse operations, respectively. <{x} and ={x}
denote real and imaginary parts of x, respectively. Mi,j denotes the {i, j}th element of matrix
M.

D.3 Data model

In CDMA downlink, the received baseband continuous-time signal is given by

r(t) =
K∑

k=1

√
εk

∑
n

bk(n)ak(t− nTb) + v(t), (D.1)

where K , εk, bk(n) and ak(t) denote the number of active system users, the received energy,
the unit-power transmitted symbols and the channel signature of the kth user, respectively; Tb

is the symbol period and v(t) stands for the additive channel noise.
The channel signature ak(t) can be written as

ak(t) =
N−1∑

m=0

ck(m)h(t−mTc),

where Tc
def= Tb/N , {ck(m)} is the normalized spreading sequence of user k (N -periodic spreading

codes are assumed in this work) and h(t) is the composite channel impulse response having finite
support [0; (L− 1)Tc].

Chip-rate sampling of r(t) with subsequent stacking of N samples so obtained gives the
following model2:

r(n) def= [r(0) . . . r(N − 1)]T = HCEb(n) + v(n), (D.2)

where

H def=




h0 0 . . . . . . 0

h1 h0
...

...
. . .

hL−1 hL−2 . . . h0
...

. . . . . .
...

0 . . . hL−1 hL−2 . . . h0




,

2Here we assume that L ¿ N so that the intersymbol interference can be ignored. The generalization
of the presented technique to the case of non-negligible ISI is straightforward, but cumbersome.
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C def= [c1, c2, . . . , cK ], ck
def= [ck(0) ck(1) . . . ck(N − 1)]T , E def= diag(

√
ε1, . . . ,

√
εK), b(n) def=

[b1(n), . . . bK(n)]T and v(n) def= [v(0) v(1) . . . v(N − 1)]T .
In the sequel, the matrix A def= CE will be called ‘signature matrix’ and the matrix Acs

def=
HCE = HA will be called ‘channel signature matrix’. Finally, T vectors r(n), n = 0, 1, . . . , T−1
can be stacked into one N × T observation matrix X:

X def= [r(0), r(1), . . . , r(T − 1)] = AcsB + V, (D.3)

where B def= [b(0), . . . ,b(T − 1)] and V def= [v(0), . . . ,v(T − 1)].
Our further assumptions 3 will be: 1) information symbols bk(n) belong to a CM constel-

lation, for example, QAM-4 or M-PSK; 2) the number of users K < N and their correspond-
ing spreading codes are extracted from a Walsh-Hadamard matrix ; 3) additive noise v(t) is
white so that E[v(n)vH(n)] = σ2I; 4) information symbols are mutually decorrelated so that
E[b(n)bH(n)] = I.

In further developments, we will need the concepts of signal and noise subspaces. Consider
the covariance matrix of the observation vector r(n):

R def= E[r(n)rH(n)] = AcsAH
cs + σ2I. (D.4)

As Acs is of column rank K, it follows that K principal eigenvectors of R correspond to eigen-
values λi > σ2, i = 1, 2, . . . ,K. These eigenvectors span the signal subspace. The remaining
N − K eigenvectors constitute a basis of the noise subspace and correspond to eigenvalues
λi = σ2, i = K + 1, . . . , N . Therefore, the eigendecomposition of R can be written as

R = UsΛsUH
s + σ2UnUH

n , (D.5)

where Λs is the diagonal matrix of signal subspace eigenvalues and Us (Un) are the matrices of
signal (repectively, noise) subspace eigenvectors.

D.4 Review of the BIC algorithm [23]

In this section we review the main aspects of the BIC algorithm proposed in [23]. To discuss
the BIC algorithm, we need to introduce the following proposition:

Proposition D.1 There exists a certain K ×K unitary matrix Q such that

Acs = HCE = Us(Λs − σ2I)1/2Q.

Therefore, the channel signature matrix (which contains the information about the spreading
codes of all system users and their corresponding energies) can be obtained from the following
parameters: the matrix of signal subspace eigenvectors Us, the matrix of signal subspace eigen-
values Λs, noise variance σ2 and a certain unitary factor Q. The former three can be extracted

3Assumption 1 is needed only for the BIC algorithm while assumption 2 is needed for the new proposed
algorithm.
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directly from the SVD of the covariance matrix (or its sample estimate)4. Hence, it remains to
find a way to estimate the unitary matrix Q.

For the notational convenience, define M0
def= Us(Λs−σ2I)1/2 so that Acs = M0Q. Consider

the following set of linear detectors parametrized by a certain K ×K unitary matrix V:

WV = VHM†
0. (D.6)

It follows easily from Proposition D.1 that V = Q results in the decorrelating detector [74].
Hence, in the absence of noise, one would have

WQX = B. (D.7)

Next, recall that the transmitted symbols belong to a CM
constellation5. Using (D.7), this can be expressed as

C(Q) def=
K∑

k=1

T−1∑

n=0

(|(WQX)k,n|2 − 1
)2 = 0.

Generally, consider the following criterion:

C(V) def=
K∑

k=1

T−1∑

n=0

(|(WVX)k,n|2 − 1
)2

. (D.8)

Clearly, C(V) ≥ 0 and C(V) reaches its global minimum (zero) for V = Q. Therefore, the
following estimate of Q can be proposed:

Q̂ = arg min
V

C(V), (D.9)

where the minimization is carried over all unitary K ×K matrices V. A practical method for
the minimization of (D.9) relying on the Givens rotations is proposed in [23].

Having obtained an estimate of Q, one may compute the channel signature matrix Acs as

Âcs = M0Q̂ = Acs + Ne = HA + Ne, (D.10)

where Ne represents the estimation noise. In order to get the unknown spreading codes and
energies, we would like to have an estimate of the signature matrix A = CE. Let us assume
that the channel H (or its estimate, e.g., [75]) is available at the receiver. Then, the zero-forcing
estimate of A has the form

Â = H†Âcs. (D.11)

However, similarly to the zero-forcing equalizer or decorrelating detector [74], this estimate will
suffer from noise enhancement. To counter this problem, we propose the ‘regularized’ zero-
forcing estimate:

Â = HH(HHH + δI)−1Âcs.

4The noise variance σ2 can be estimated as the mean value of N −K smallest singular values of R.
5As for the standard CDMA algorithm, the BIC algorithm proposed in [23] can be generalized and

applied to sub-gaussian non-CM signals.
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The regularized ZF estimate differs from (D.11) in that it introduces into the pseudo-inverse the
term δI, where δ is a small constant (regularization parameter). The regularization can also be
seen as modelling the estimation noise as white noise process with the variance δ.
The users’ powers matrix E can be estimated from the norm values of the column vectors of Â
(the spreading sequences are assumed to be of unit norm) and hard decisions on the entries of A
can be used as well: Ã = Dec(ÂE−1), where Dec represents the hard symbol decision operator.

D.5 BIC based on subspace decomposition and FWT

projection

In this section, we propose a new blind interference cancellation algorithm that we will call
Code-Detection Blind Interference Cancellation (CD-BIC).
To explain the code-detection scheme, assume that we have correctly estimated the channel
matrix H and the noise subspace Un. let CN = [C C̃] where CN is the complete family of
Walsh Hadamard codes, and C̃ is the matrix of unused codes. The noise subspace is orthogonal
to the signature matrix HC which spans the signal subspace. this means that:

(HC)HUn = 0

or equivalently:
CHHHUn = 0

In other words, the projection of HHUn on the active spreading codes is null. This can be used
as a criterion to distinguish the active from excess (unused) codes by projecting on the complete
code set and comparing the outputs. This is done by calculating:

F = CH
NHHUn =

[
CHHHUn

C̃HHHUn

]
=

[
0

C̃HHHUn

]
,

This suggests to detect the active codes as those corresponding to the K rows of F with smallest
norm values.
The projection of any vector on a Walsh-Hadamard matrix can be performed efficiently by
using the Fast Walsh Transform (FWT) which costs Nlog(N) instead of N2. This means
that the above operation can be carried using FWT and the total number of operations is
(N −K)Nlog(N).

The proposed (CD-BIC) algorithm can be summarized as follows:

1. Accumulate T observations of the received signal: X = [r(0), r(1), . . . , r(T − 1)] and
estimate the received covariance matrix R̂ = XXH/T .

2. Estimate the signal subspace eigenvalues and eigenvectors (Us and Λs) as well as the
noise subspace eigenvalues Un from the SVD of R̂.
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3. Estimate the channel coefficients vector ĥ using subspace method [75] (see Remark D.1)
or the pilot sequence if available.

4. Let M1 = ĤHUn, calculate F = FWT (M1).

5. For i=1 to N , calculate the norm of the ith row of F. Decide for interfering users codes
ĉ2 . . . ĉK as the codes corresponding to the (K-1) smallest row norm values. the complete
Code matrix Ĉ = [c1ĉ2 . . . ĉK ]

6. Compute K − 1 MMSE detectors for the interferers
wk = UsΛs

−1UH
s Ĥĉk, k = 2, 3, . . . , K.

7. Interference cancellation: for n = 0, 1, . . . , T − 1 do

(a) Detect the interfering bits: b̃k(n) = Dec
(
b̂k(n)

)
where b̂k(n) =

(
wH

k r(n)
)
.

(b) Estimate the interferers powers as:√
ε̂k = (

∑T−1
n=0 b̂k(n)b̃∗k(n))−1 (see remark D.2)

(c) Subtract the estimated interference: rs(n) = r(n)−∑K
k=2

√
ε̂kĤĉk b̂k(n);

(d) Perform the desired user’s detection:
b̂1(n) = Dec

(
(Ĥc1)Hrs(n)

)
.

Remark D.1 The channel coefficients can be estimated as

ĥ = arg min
||h||=1

(||UH
n C̃1h||2)

where C̃1h = Hc1 with

C̃1
def=




c1(0) 0
...

. . . c1(0)
...

...
c1(N − 1) . . . c1(N − L)




,

Remark D.2 Indeed, the output of the MMSE detector wk is equal to b̂k(n) = 1√
εk

bk(n) +

noise. Consequently, under the assumption of correct decision (b̃k(n) = bk(n)), we have:
E(b̂k(n)b̃∗k(n)) = 1√

εk

Remark D.3 It is noteworthy that the two algorithms (BIC and CD-BIC) differ in estimating
the spreading codes only, this means that for sufficiently high SNRs, the interfering codes are
detected correctly, and the two algorithms give the same performance.

D.6 Discussion

We provide here some coments to highlight certain points related to the proposed algorithm.
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D.6.1 Computational complexity

The overall computational cost of the proposed algorithm corresponds to O(NK2) for the eigen-
decomposition of R [?] plus O((N−K)Nlog2(N)) for the code detection using subspace orthog-
onality and FWT plus O((L+K)KN) for the interference cancellation. We can notice that the
cost due to the code detection step is not the dominant one and ,in general, the CD-BIC has
an overall computational cost comparable to that of the blind MMSE detector in [75]. More-
over, comparatively to the BIC algorithm in [23], the CD-BIC is in most cases less expensive,
especially for large number of users K.

D.6.2 Blind channel estimation indeterminacy

In the blind context, the channel parameter vector h can be estimated only up to a constant
scalar, which corresponds to the phase and amplitude ambiguities inherent to the problem.
Consequently the BIC scheme cannot be applied, in this case ,unless a differential modulation
is used for the transmitted symbols to get rid of the phase ambiguity.

D.6.3 Channel estimation

At low SNRs, the subspace-based channel estimate may be too noisy and inadequate for the
interference cancellation. In that case, we propose to use a two-step procedure to refine the
channel estimation using an input output least squares fitting criterion. The inputs are decided
for in the first step using a MMSE detector computed from the first channel estimate.

D.6.4 Further improvements

It is possible to further reduce the computational cost of the CD-BIC by considering only few
noise vectors instead of the whole noise subspace. Indeed, it can be shown that both the
subspace-based channel estimation and the code-detection can be achieved consistently using
one or few noise vectors only. This would lead to a considerable reduction of the computational
cost. This point will be developed and presented in future works.

D.7 Computer simulations

In this section, we provide computer simulations to validate both the code-detection scheme,
and the interference cancellation algorithm based on it.
We start by evaluating the code detection scheme. We simulate a DS/CDMA system with
a spreading factor N = 64, QPSK information symbols, Walsh-Hadamard Codes are used for
spreading, the propagation channel is a 10 path channel generated randomly with a delay spread
of 10 chips. All the users are assigned the same power.
We consider two configurations corresponding to a number of users K = 10 (weakly loaded
system) and K = 32 (half loaded system), respectively. Figure D.1 shows the probability of
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false detection (i.e. that a Walsh Hadamard Code would be detected given that it is not present
in the system) under both configurations for two values of the block size T = 128 and 256. We
see that the probability of false detection is higher for a weakly loaded system, this makes our
algorithm suitable for moderately loaded systems (note that we have already mentioned that
the complexity of the code-detection scheme is smaller when the number of users is high). We
see also that the larger the sample size, the better the noise subspace estimation, and the lower
the probability of false detection
Next, We evaluate the performance of the CD-BIC algorithm as compared to a MMSE detector
(without interference cancellation) and a single user system. We simulate a DS/CDMA systems
with a spreading factor N = 32, K = 10 users transmitting QPSK information symbols. The
chip sequence is transmitted through a 5 path channel generated randomly, users powers (in-
cluding the user of interest) are considered equal. Figure D.2 shows the BER performance of
the three detection methods versus the symbol SNR per user. We see that the MMSE detector
provides no improvement due to the residual interference, while the CD-BIC approaches the
single user performance.
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Figure D.1: Code Detection Probability of Error vs. SNR for a 64 SF system.

D.8 Conclusions

In this paper we have proposed a new blind interference cancellation algorithms based on sub-
space decomposition and Fast Walsh Transform projection. The code detection method was
shown to perform quite well especially for moderately or highly loaded systems. The proposed
algorithm was shown to outperform the MMSE receiver and give performances that are close to
single user detection.
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E.1 Abstract

In this paper, we study the performance of reduced rank Wiener filters in the context of downlink
CDMA systems corrupted by a frequency selective channel. For this, we consider the output
signal to interference plus noise ratio (SINR), and study its convergence speed versus the order
of the receiver. Unfortunately, this is a difficult task because the SINR expressions depend on
the spreading codes allocated to the various users in a rather complicated way. In order to be
able to obtain positive results, we follow the classical approach used for the first time in [71]:
the code matrix is modelled as the realization of a certain random matrix, and the behavior
of the SINRs is studied when the spreading factor N and the number of users K converges
to +∞ in such a way that K

N → +α. As the code matrices used in the downlink of CDMA
systems are very often orthogonal, we model the code matrix allocated to the various users as a
realization of a Haar distributed random unitary matrix. In this context, we show that the SINR
of each order n reduced rank receiver converge toward a deterministic limit βn independent of
the spreading codes. In order to study the performance of the receiver versus n, we therefore
study the convergence speed of βn when n → +∞, a simpler problem. For this, we use the
results of [53] based on the theory of orthogonal polynomials for the power moment problem.
We obtain the convergence rate of βn, and exhibit the parameters influencing the convergence
speed.

E.2 Introduction

In multidimensional signal processing, it is often useful to approximate the Wiener filter by a
reduced rank version of this filter. The latter acts on a projection of the received signal on a
judiciously chosen small dimensional subspace. The use of a reduced rank filter can be moti-
vated by complexity constraints or, in an adaptive setting, by fast convergence requirements.
It is then of major interest to quantify the SNR loss at the output of this filter due to its non
optimum character.

The Krylov subspaces, widely used as projection subspaces, will be considered in this paper.
To fix our ideas, let us begin with the generic signal model

yN = hNb + xN (E.1)

where yN is the received N × 1 signal, b is the unit-variance scalar signal to be estimated and
xN is a signal decorrelated with b representing interference and/or background noise . The
N ×N covariance matrix of xN is denoted RN,I and will be assumed invertible. Recall that the
MMSE receiver is described by the equation sMMSE = hH

NR−1
N y where RN = hNhH

N + RN,I is
the received signal yN covariance matrix. This receiver will be called in the sequel the full rank
MMSE receiver. Its output SNR that we index by the number of dimensions of the received
signal is given by the standard expression

β(N) =
η(N)

1− η(N)
(E.2)
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where η(N) is defined by
η(N) = hH

NR−1
N hN . (E.3)

The nth Krylov subspace associated to the pair (RN ,hN ) is the subspace of CN spanned by
the columns of Kn,N = [hN ,RNhN , . . . ,Rn−1

N hN ]. The n-th stage reduced rank Wiener filter
considered in this paper is the MMSE estimator of b operating on the transformed signal ỹn,N =
KH

n,NyN .
The motivation behind choosing the Krylov subspaces and the implementation of the subsequent
filters are discussed in a number of works (see e.g. [44] and [34]).

The output SINR β
(N)
n of the n-th stage reduced rank Wiener filter is given by

β(N)
n =

η
(N)
n

1− η
(N)
n

(E.4)

where η
(N)
n is now defined by

η(N)
n = hH

NKn,N

(
KH

n,NRNKn,N

)−1
KH

n,NhN . (E.5)

The use of reduced rank Wiener filters is of course attractive if close to optimum performance
can be achieved for small values n. In order to precise in which contexts this nice condition
holds, the convergence speed of β

(N)
n to β(N), or equivalently of η

(N)
n to η(N) when n increases

has to be studied. This problem has been successfully addressed in the recent work [44] (see
also ([70], [69]) in the context of the following simple CDMA transmission model

yN = WN,KbK + vN . (E.6)

bK = [b1, . . . , bK ]T is the K1 symbol vector where K is the number of users, WN,K is the NK

code matrix, and vN is the classical noise with covariance matrix ω2IN . The purpose is to
estimate the symbol b1, so this equation appears as a particular case of (E.1) : if we partition
WN,K and bK as WN,K = [wN UN,K−1] and bK = [b1 bT

I ]T , then we replace hN by wN and
xN by UN,K−1bI +vN . Honig and Xiao ([44]) assumed that the code matrix WN,K is a random
matrix with centered i.i.d. elements having a variance of 1/N , and studied the performance of
the reduced rank filter in the ”large system” regime where N tends to infinity in such a way that
K/N converges toward a constant α. They established that η

(N)
n and η(N) converge to finite

limits ηn and η, and were able to show that η is a continued fraction expansion whose order n

truncation coincides with ηn. From this, they concluded for the rapid convergence of this SNR
toward the full rank SNR.

Note that partial results have been obtained in more general models than (E.6) (see [29] and
[52]). In these works, the convergence of η

(N)
n toward ηn is established. However, the conver-

gence speed of ηn toward η is not addressed.

In [53], we also addressed the influence of n on the performance of the receiver in the asymp-
totic regime when N → +∞, but in the much more general context defined by model (E.1).
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Under the hypothesis that for each integer k, s
(N)
k = hH

NRk
NhN converges when N → +∞ to

a finite limit sk, we showed that η(N) and η
(N)
n also converge to certain finite limits η and ηn

respectively. More importantly, the convergence speed of ηn toward η can be evaluated using
properties of certain orthogonal polynomials.

The purpose of this paper is to show that the results of [53] can be used in order to study
the convergence speed of reduced rank Wiener filters in the context of downlink CDMA systems
corrupted by frequency selective channels. This paper is organized as follows. We first recall in
section II the main results of [53]. In section III, we present the downlink CDMA system model
as well as the reduced rank Wiener filters under consideration. The received data is corrupted by
a frequency selective channel, and the code matrix is modelled as the realization of a orthogonal
random Haar distributed matrix. In section IV, we study the performance of the above receivers
in the asymptotic regime N and K converge to ∞ in such a way that K

N → α. We show that the
hypotheses formulated in section II are valid, and deduce the convergence speed of the reduced
rank receivers.

E.3 A review of the main results of Loubaton-Hachem

We still consider model E.1 and formulate the following assumption.

Assumption E.1 We assume that for each k, s
(N)
k = hH

NRk
NhN converges when N → +∞ to

a finite limit sk, and that s0 = 1.

It is easily seen that η
(N)
n is equal to

(s(N)
0 , . . . , s

(N)
n−1)




s
(N)
1 s

(N)
2 . . . s

(N)
n

s
(N)
2 s

(N)
3 . . . s

(N)
n+1

...
...

...
...

s
(N)
n s

(N)
n+1 . . . s

(N)
2n−1




−1 


s
(N)
0
...

s
(N)
n−1


 (E.7)

Assumption E.1 thus implies that for each n, η
(N)
n converges to the quantity ηn obtained by re-

placing (s(N)
k )k=1,2n−1 in (E.7) by sequence (sk)k=1,2n−1. Moreover, KH

n,NKn,N and KH
n,NRNKn,N

are positive Hankel matrices converging to the Hankel matrices (sk+l)(k,l)=0,...,n−1 and
(sk+l+1)(k,l)=0,...,n−1. Therefore, matrices (sk+l)(k,l)=0,...,n−1 and (sk+l+1)(k,l)=0,...,n−1 are also
positive. Using well known results (see e.g. [16]), it exists a probability measure σ such that

sk =
∫ ∞

0
λkdσ(λ). (E.8)

Assumption E.2 Measure σ is carried by an interval [δ1, δ2], and is thus uniquely defined by
(E.8) (see [16]). Moreover, σ is absolutely continuous, and its density is almost surely strictly
positive on [δ1, δ2].
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Assumption E.3 There exists A > 0 and B > 0 such that ‖R−1
N ‖ ≤ A and ‖RN‖ ≤ B for

each N .

Under the above assumptions, η(N) = hNR−1
N hN can be shown to converge to η =

∫ δ2
δ1

1
λdσ(λ).

Therefore, we have to evaluate the convergence speed of

ηn = (s0, . . . , sn−1)




s1 s2 . . . sn

s2 s3 . . . sn+1
...

...
...

...
sn sn+1 . . . s2n−1




−1 


s0
...

sn−1




toward η =
∫ δ2
δ1

1
λdσ(λ). The main result of [53] is the following theorem.

Theorem E.1 Let µ > 1 and φ < 1 be defined by µ =
1+

δ1
δ2

1− δ1
δ2

and φ = 1

µ+
√

µ2−1
. Then, there

exist 2 strictly positive constants C and D such that

Cφ2n ≤ (η − ηn) ≤ Dφ2n (E.9)

for n large enough.

This results implies that the convergence is locally exponential, and that its rate only depends
on the ratio δ1

δ2
, and not on the particular form of measure σ. In particular,if δ1

δ2
is close to 0,

then µ is close to 1, and the convergence is slow. If however δ1
δ2

is close to 1, then µ is large, and
the convergence is fast.

E.4 The downlink CDMA model.

We now show how to apply these results in order to evaluate the convergence speed of reduced
rank suboptimum Wiener filters in the context of downlink CDMA systems. In this section,
we first present the downlink CDMA model. We denote by N and K the spreading factor and
the number of users of the cell respectively, and by h(z) =

∑L
l=0 hlz

−l the transfer function of
the chip rate discrete-time equivalent channel between the base station and the mobile station
of interest. h(z) is assumed to be known at the receiver side, and is normalized in such a way
that

∑L
l=0 |hl|2 = 1. (d(m))m∈Z represents the chip sequence transmitted by the base station.

Therefore, the received signal (y(m))m∈Z sampled at the chip rate can be written as

y(m) =
L∑

l=0

hld(m− l) + v(m)

where v is an additive white noise of variance ω2. We denote by yN (n) the N–dimensional
vector defined by yN (n) = (y(nN), . . . , y(nN + N − 1))T . yN (n) can be written as

yN (n) = H0,NWN,K(n)bK(n) + H1,NWN,K(n− 1)bK(n− 1) + vN (n) (E.10)
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bK(n) represents the vector of transmitted symbols at time n, and we assume that the user
of interest is user 1. H0,N and H1,N are 2 Toeplitz band matrices depending on sequence
(hl)l=0,...,L. Matrix WN,K(n) represents the code matrix at time n. We denote wN (n) the
first column of WN,K(n) (i.e. the code vector of the user of interest), and by UN,K−1(n) the
orthogonal N × (K − 1) matrix such that WN,K(n) = (wN (n),UN,K−1(n)). In the following,
we study the performance of reduced rank Wiener filters in the asymptotic regime N and K

converge to +∞ in such a way that K
N → α where 0 < α < 1. It is important to notice that

the lenght L of the impulse response of the channel is assumed to be kept constant. Therefore,
the intersymbol interference term H1,NWN,K(n − 1) can be shown to have no effect on the
performance of our receivers. In particular, the term H1,NWN,K(n − 1) can be replaced by
H1,NWN,K(n) without changing the asymptotic behavior of the output SNRs of the receivers.
We can therefore exchange (E.10) with

y = HNWN,KbK + v (E.11)

Here, HN is the circulant matrix HN = H0,N + H1,N , the first column of which is vector hN

defined by
hN = (h0, . . . , hL, 0, . . . , 0)T .

This observation allows to simplify many further calculations. Note that we omit from now on
the time index n which is irrelevant.

We now explain how the random matrix WN,K is generated. For this purpose, some nota-
tions and definitions need to be introduced. Denote by U the multiplicative group of N × N

unitary matrices, and by Q a random N ×N unitary matrix. Q is said to be Haar distributed if
the probability distribution of Q is invariant by left multiplication by constant unitary matrices.
Since the group U is compact, this condition is known to be equivalent to the invariance of the
probability distribution of Q by right multiplication by constant unitary matrices. In order to
generate Haar distributed unitary random matrices, let X = [xi,j ]1≤i,j≤N be a N ×N random
matrix with independent complex Gaussian centered unit variance entries. The unitary matrix
X(XHX)−1/2 is Haar distributed. Unless otherwise stated, it will be assumed in the following
that matrix WN,K is generated by extracting K columns from a N ×N Haar unitary random
matrix Q.

E.5 The reduced rank Wiener receivers.

Model (E.11) coincides with model (E.1) for hN = HNwN and RN = HNWN,KWH
N,KHH

N +ω2I.
The SINRs of the plain Wiener filter and of the reduced rank Wiener filters are thus given by
formulas (E.2) to (??). Moreover, in order to study the convergence speed of η

(N)
n to η(N) in

our asymptotic regime, the results of section (E.3) can be used provided assumptions E.1 to E.3
hold.

In order to check assumption E.1, we observe that s
(N)
k is given by

s
(N)
k = wH

NHH
N (HNWN,KWH

N,KHH
N + ω2I)kHNwN . Using the properties of the Haar dis-
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tribution, it can be shown as in [30] that s
(N)
k has the same asymptotic behavior that the term

1
K

Trace(WH
N,KHH

N (HNWN,KWH
N,KHH

N + ω2I)kHNWN,K) (E.12)

Denote by (λ(N)
l )l=1,...,N the eigenvalues of HNWN,KWH

N,KHH
N . Then, (E.12) is equal to

1
K

∑N
l=1 λ

(N)
l (λ(N)

l + ω2)k).
In order to precise the asymptotic behavior of this term when N → +∞ and K/N → α,

we first note that the eigenvalue distributions of matrices WN,KWH
N,K and HN

HHN converge
toward two probability distributions denoted ν and µ respectively. It is clear that dν(t) = αδ(t−
1)+(1−α)δ(t). In order to precise the behavior of µ, we remark that the eigenvalues of HH

NHN

coincide with (|h(e2iπl/N )|2)l=0,...,N−1. Therefore, µ is carried by the interval [|hmin|2, |hmax|2]
where |hmin| = minf |h(e2iπf )| and |hmax| = maxf |h(e2iπf )|, and is defined by

∫
φ(t)dµ(t) =∫ 1

0 φ(|h(e2iπf )|2)df .
As matrices WN,KWH

N,K and HN
HHN are almost surely asymptotically free (see [30], [38]),

the eigenvalue distribution of matrix HNWN,KWH
N,KHH

N converges toward a probability mea-
sure, denoted µ⊗ ν, called the free multiplicative convolution product of µ and ν. This implies
that

lim
N→+∞,K/N→α

s
(N)
k =

1
α

∫
t(t + ω2)kdµ⊗ ν(t) (E.13)

We note sk the above limit. This shows that assumption E.1 holds.
Assumption E.3 is obviously satisfied. We now verify assumption E.2. We first note that 0 is

eigenvalue of matrix HNWN,KWH
N,KHH

N with multiplicity N−K. The remaining eigenvalues are
strictly positive, and coincide with the eigenvalues of matrix WH

N,KHN
HHNWN,K . Therefore,

measure dµ⊗ ν(t) can be written as dµ⊗ ν(t) = (1−α)δ(t)+αdγ(t) where dγ(t) represents the
limit eigenvalue distribution of WH

N,KHN
HHNWN,K . It can be checked that dγ(t) is absolutely

continuous, and that its density is almost surely strictly positive on a certain interval [x1, x2]. It is
clear that the eigenvalues of WH

N,KHN
HHNWN,K are contained in the interval [|hmin|2, |hmax|2]

for each N and K. Therefore, the interval [x1, x2] is itself contained in [|hmin|2, |hmax|2].
In order to complete the verification of assumption E.2, we remark that sk can be written

as sk =
∫ x2

x1
t(t + ω2)kdγ(t), or equivalently

sk =
∫ x2+ω2

x1+ω2

(λ− ω2)λkdγ(λ− ω2)

This shows that measure σ defined by sk =
∫

λkdσ(λ) is given by

dσ(λ) = (λ− ω2)dγ(λ− ω2) (E.14)

As dγ(t) is compactly supported and absolutely continuous, so is σ. Moreover, the support of
σ is the interval [δ1, δ2] where δ1 = x1 + ω2 and δ2 = x2 + ω2, and its density is almost surely
strictly positive on [δ1, δ2].

As assumptions E.1 to E.3 hold, the results of [53] can be applied. It turns out that the
convergence speed of ηn toward η is exponential, and depends on factor (x1+ω2)

(x2+ω2)
: if this ratio
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is close to 1, the convergence is fast, while if it is close to 0, the convergence is slow. In
order to discuss this point, we assume that the effect of ω2 on the ratio is negligible. The
important term is thus x1

x2
, which depends both on α and |hmin|2 and |hmax|2. It is clear that

the ratio x2−x1
|hmax|2−|hmin|2 increases from 0 to 1 when α increases from 0 to 1. Moreover, one can

expect that the condition number |hmin|2
|hmax|2 also affects x1

x2
. In order to be able to understand the

influence of α and (|hmin|2, |hmax|2) on (x1, x2), we mention that x1 and x2 can be evaluated
numerically rather easily. For this, we denote by Gγ(z) the Stieljs transform of dγ(t) defined
by Gγ(z) =

∫ x2

x1

dγ(t)
t−z . For each z ∈ C − [x1,x2], Gγ(z) can be shown to satisfy the equation

α(1 + zGγ(z)) = T (z,Gγ(z)) where T (z, g) is defined by

T (z, g) =
∫ 1

0

|h(e2iπf )|2
|h(e2iπf )|2 − z + 1−α

αg

(E.15)

Moreover, x1 is the unique positive real number for which there exists g1 > 0 satisfying

α(1 + x1g1) = T (x1, g1)

αx1 =
∂T

∂g
(x1, g1) (E.16)

x2 is characterized similarly, but the corresponding value g2 is strictly negative. This result will
be used more extensively in a forthcoming paper.

E.6 Simulation results

We now illustrate the influence of α and (|hmin|2, |hmax|2) on the convergence speed of βn = ηn

1−ηn

toward β = η
1−η . For this, we represent in the following figures the relative SINR defined as

the ratio βn

β . In Figure E.6 , we first study the influence of α on the convergence speed of the
relative SINR toward 1. Here, the ratio Eb

N0
is equal to 10 dB. This figure confirms that the

convergence speed of the reduced rank receivers depends crucially on the load factor.
In figure E.6 , we study the effect of the channel on the convergence speed of βn toward β.

For this, we consider a 2 taps channel with transfer function h(z) = h1 + h2z
−1. In this case, if

|h1| = |h2|, h(z) has a zero on the unit circle, so that |hmin| = 0. If [h1| = |h2|, the convergence
speed of βn toward β is thus expected to be minimum. This is confirmed by ?? obtained for
α = 1

2 and Eb
N0

= 17dB.
We finally verify that our asymptotic SINR evaluations allow to predict the empirical per-

formance of the studied receivers. For this, we have compared the measured bit error rate with
its asymptotic evaluation given by Q(

√
βn) (we have used a QPSK constellation). The results

are presented in figure E.6 . Here, the propagation channel is the so-called Vehicular A (on each
frame, a different realization of the channel is generated). The signal to noise ratio Eb

N0
is equal to

7dB and the load factor α is equal to 1
2 . Figure 3 shows that our asymptotic evaluations allow to

predict rather accurately the performance of the true system if N ≥ 128. However, for smaller
values of N , the asymptotic performance is too optimistic. We finally note that the receiver we
implemented is based on the correct model (E.10), thus showing that the approximation (E.11)
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Figure E.1: Influence of α on the convergence of the reduced-rank SINR.
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used in order to derive the asymptotic performance is justified in the context of the vehicular A
channel
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−1

Rank n

B
E

R
N=256,K=128
Asymptotic
N=128,K=64
N=64, K=32

Figure E.3: Comparison of empirical and theoretical BER

E.7 Conclusion

In this paper, we have shown that the results of [53] can be used in order to study the convergence
speed of reduced rank Wiener filters in the context of downlink CDMA systems corrupted by
frequency selective channels. we exhibited the different parameters affecting the convergence of
a reduced-rank Wiener receiver to the full-rank Wiener receiver SINR. Simulation results show
that the asymptotic SINRs can be used in order to predict real-life receivers performances.
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