N

N

”Systéme distribué de capteurs pots de miel:
discrimination et analyse corrélative des processus
d’attaques”

Fabien Pouget

» To cite this version:

Fabien Pouget. ”Systeme distribué de capteurs pots de miel: discrimination et analyse corrélative des
processus d’attaques”. domain_ other. Télécom ParisTech, 2006. Francais. NNT: . pastel-00001751

HAL 1Id: pastel-00001751
https://pastel.hal.science/pastel-00001751
Submitted on 16 Nov 2010

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://pastel.hal.science/pastel-00001751
https://hal.archives-ouvertes.fr

T=L =C¢
P A R | S

These

présentée pour obtenir le grade de docteur

de I'Ecole nationale supérieure
des téléecommunications

Spécialité : Informatique et Réseaux
Fabien Pouget

Systéme Distribué de Capteurs Pots

de Miel; .
Discrimination et Analyse Corrélative

des Processus d’'Attaques

soutenue le 23 01 2005 devant le jury composé de

Pr. Ludovic ME Président
Pr. John McHUGH Rapporteurs
Dr. Hervé DEBAR

Pr. Pascal URIEN Examinateurs
Pr. Marc DACIER Directeur de thése

Ecole nationale supérieure des télecommunications

T=L =C¢
P A R | S

PhD thesis

Ecole nationale supérieure des télécommunications
Communications and Electronics department

Computer Science group

Fabien Pouget

Distributed System of Honeypot Sen-
SOrs:

Discrimination _and Correlative Anal-
ysis of Attack Processes

Defense date: 01, 23 2005

Committee in charge:

Pr. Ludovic ME Chairman
Pr. John McHUGH Reporters
Dr. Hervé DEBAR

Pr. Pascal URIEN Examiners
Pr. Marc DACIER Advisor

Ecole nationale supérieure des télecommunications

Je dédie ce travail aux personnes qui en ont le plus souffert : ma famille et Noémie...
sans rancune? :)

Remerciements

[’aboutissement de travaux, que ce soit dans le monde du batiment ou de la recherche,
n’est jamais 'oeuvre d’une seule et unique personne. C’est le résultat d’un ensemble
favorable de facteurs concomitants.

Il en va de méme pour cette thése, effectuée a I'Institut Eurécom, qui n’aurait jamais
pu aboutir sans la collaboration avec le Professeur Marc Dacier. Je lui dois bien plus
qu’il ne serait possible d’écrire en une page de remerciements. Ses conseils, son attention,
sa curiosité et son impressionnante lucidité sont autant de facteurs qui m’ont été trés
favorables, tant sur le plan professionnel que personnel. Je n’ai jamais eu a regretter cette
aventure académique, bien au contraire. Un tout grand merci !

Merci également aux membres du jury de cette thése qui ont pris soin de lire le doc-
ument et qui, par leurs conseils avisés, ont permis son aboutissement. Je remercie tout
particulierement Monsieur John McHugh, Professeur a I’'Université Dalhousie au Canada,
ainsi que Monsieur Hervé Debar, travaillant au sein du département Sécurité des Services
et des Réseaux (SSR) de France Télécom R&D a Caen, qui ont accepté de juger ce travail
et d’en étre les rapporteurs. Je tiens également a adresser mes remerciements & Mon-
sieur Ludovic Mé, Professeur & Supelec Rennes, et & Monsieur Pascal Urien, Professeur a
Télécom Paris (ENST), pour leur participation au jury de cette thése.

Je suis fier en tout cas du projet Leurré.com, et des différents contacts que celui-ci
m’a permis de créer. J’ai eu le privilége et 'honneur de cotoyer des personnes de grande
valeur: merci & Hervé Debar pour ses différents soutiens au projet, merci & George Mohay
et Andrew Clark, de m’avoir fait découvrir les richesses australiennes, merci & Mohammed
Kaaniche, Vincent Nicomette et Eric Alata pour toutes les discussions que nous avons pu
avoir a Toulouse, et un grand merci a tous les partenaires du projet, qui ont, grace
a leur confiance, permis de construire un tel outil. Je remercie également toutes les
personnes ayant contribué 4 mes travaux, sous forme de publications ou de discussions, et
en particulier Guillaume Urvoy-Keller, qui a passé beaucoup de son temps & me supporter.
Ses multiples apparitions dans le bureau C022 ont ensoleillé nombre de mes journées.

Parmi les facteurs favorables, il faut aussi noter ’environnement d’Eurécom, cadre
propice abritant une multitude de personnes charmantes et compétentes, sans oublier la

vue plongeante sur la mer Méditerranée. Je tiens a saluer la sympathie du personnel
administratif et technique, que je n’ai eu cesse d’harceler. A noter la sérénité (sirement

6 REMERCIEMENTS

apparente) du service informatique, vis-a-vis de mes requétes incessantes, mes ennuis et
mes besoins. Patrick Petitmengin aura particulierement souffert de ma présence a Euré-
com, et je lui suis reconnaissant de sa patience et de son sérieux. Je remercie également
Gwenaelle le Stir, qui a eu I’'amabilité de se charger des nombreuses démarches relatives
a cette these.

A tous, amis, collégues, merci.

Il y a ceux qui sont déja partis, Anwar Alhamra, Laurent Bussard, Raphael Chand.
Il y a ceux qui restent et qui ont guidé cette fin de thése, Walid Bagga, Jérome Haerri,
Matti Siekkinen et Melek Onen. Il y a enfin ceux qui ne sont pas directement en rela-
tion avec Eurécom et ces travaux. Ils sont résidents de la Cote d’Azur, comme Karine
et Stephan (quelles belles soirées Trivial Poursuite et Brainstorm!) et la petite famille
Courtel: Gérard, Sophie et Chantal. D’autres sont un peu plus éloignés, mais je garde
toujours pour eux une immense estime: Laurent Perpéte, Cedric Lochon, Francois Pitie,
Sebastian Hirschler, Benoit Huet, Francois Ferrand, Nicolas Kiefer. Et a tous ceux que
j'oublie, pardonnez-moi. L’age commence déja a peser... :)

Et puis, j’adresse une dédicace particuliére a mes parents, a ma grand-mére et & ma
soeur, pour m’avoir en permanence soutenu, méme si mes choix n’ont jamais été simples.
De la méme facon qu’'un arc-en-ciel, je leur en ai fait voir de toutes les couleurs, mais leur
soutien et leur confiance ont été imperturbables tout au long de ces années d’études. Sans
oublier pour autant le reste de la famille qui s’est trés agréablement élargie ces derniéres
années.

Enfin Noémie, toi qui partage ma vie. Que dire que tu ne saches déja? Cette thése est
a toi, pour toi, et avec toi... Je ne pourrai pas finir non plus cette page de remerciements
sans laisser une empreinte de mon humour, s’il n’est glorieux, du moins populaire. Donc
Noémie, voici une phrase que je te souffle: "You are such a honey!.... from your favorite
honey buzzard."

Merci a tous, et bonne lecture!

Resumé

Il est difficilement concevable de construire les systémes de sécurité sans avoir une
bonne connaissance préalable des activités malveillantes pouvant survenir dans le réseau,
ni une bonne compréhension des processus d’attaques. Malheureusement, il apparait
que ce savoir n’est pas aisément disponible, ou du moins il reste anecdotique et souvent
biaisé par des suppositions injustifiées, des sources d’information partiales ou des bruits
de couloir.

Cette these a pour objectif principal de faire progresser I'acquisition de ce savoir sur
les activités malveillantes par une solide méthodologie.

Dans un premier temps, il convient de travailler sur un ensemble intéressant de don-
nées. Malheureusement, les données sont rarement publiques, ou alors, elles mélangent
a la fois du trafic normal dit de production et du trafic malveillant, comme par exemple
les échantillons fournis par la métrologie des réseaux. Dans cette situation, il est diffi-
cile d’établir un distinguo entre les deux formes de trafic; ce probléme est au coeur des
soucis de la communauté de recherche travaillant sur la détection d’intrusions, et ce depuis
plusieurs années. Pour contourner ceci, nous avons déployé un réseau distribué de sondes,
aussi appelées pots de miel, a travers le monde. Les pots de miel sont des machines sans
activité particuliére, ce qui implique que toute connexion les ciblant est potentiellement
malveillante. Ce réseau de sondes nous a donc permis de capturer un volume important
de données suspectes sur plusieurs mois. Il est important de noter que cette architecture
particuliére nous fournit une surveillance trés locale de ce genre de trafic.

Dans le cadre de cette thése, nous présentons une méthodologie appelée HoRaSis (pour
Honeypot tRaffic analySis), qui a pour but d’extraire automatiquement des informations
originales et intéressantes a partir de cet ensemble remarquable de données. Elle est for-
mée de deux étapes distinctes: i) la discrimination puis i) 'analyse corrélative du trafic
collecté. Plus précisément, nous discriminons d’abord les activités observées qui parta-
gent une empreinte similaire sur les sondes. Cette étape doit tenir également compte des
diverses influences du réseau. La solution proposée s’appuie sur des techniques de classifi-
cation et de regroupement. Puis, dans une seconde phase, nous cherchons a identifier les
précédentes empreintes qui manifestent des caractéristiques communes. Ceci est effectué
sur les bases d’une technique de graphes et de recherche de cliques. De multiples exemples
illustrent les intéréts respectifs de ces deux phases.

Plus qu’une technique, 'approche HoRaSis que nous proposons témoigne de la richesse
des informations pouvant étre récupérées a partir de cette vision originale du trafic mali-
cieux de I'Internet. Elle montre également la nécessité d’une analyse rigoureuse et ordon-
née du trafic pour parvenir a I’obtention de cette base de connaissances susmentionnée.

RESUME

Abstract

Security systems cannot be efficiently designed without i) a good preliminary under-
standing of malicious activities which might occur in the wild and ii) a good comprehension
of attack processes. Unfortunately, it seems that this knowledge is either not available or
remains anecdotal and often biased by unclear assumptions, partial information sources
and rumors.

The goal of this thesis is primarily to better understand the malicious activities that
occur and to provide a methodology that would help to acquire this knowledge. It is
necessary in a first step to work on a valuable dataset. However, public data is not
easily available, or it frequently mixes production and malicious traffic, like with network
measurement datasets. In this scenario, the distinction between production and malicious
traffic is a complex problem that has occupied the Intrusion Detection community for
several years. To address this issue, we have deployed a worldwide distributed network of
sensors, also called Honeypots. Honeypots are machines that are not publicly advertised.
Hence, any connection targeting such a machine is potentially malicious. This network
of sensors has thus contributed to capture a huge amount of suspicious data over several
months. In addition, this particular sensor architecture enables us to obtain a local
monitoring of malicious traffic.

In the scope of this thesis, we propose a framework, called HoRaSis (for Honeypot
tRaffic analySis), which aims at automatically extracting meaningful information out of
this remarkable dataset. It basically consists in two major stages: i) the discrimination
and i) the correlative analysis of the collected traffic. More precisely, we first discriminate
collected activities according to the fingerprints they let on each sensor. This stage must
also consider the potential disturbances introduced by the network. The proposed solution
relies on dedicated clustering and classification techniques. We then identify all previous
fingerprints which share strong common characteristics. This task is performed thanks to
a graph-theory approach, and, in particular, thanks to the search of maximal weighted
cliques within graphs. Different characteristics based on our preliminary experiments have
been considered. Several cases exemplify the value of combining these two stages.

Thanks to the proposed HoRaSis framework, we show that a rigorous and methodi-
cal analysis of honeypot traffic clearly helps to get a better understanding of malicious
activities.

10

ABSTRACT

11

Contents

Remerciements

Résumé

Abstract

Table of Content

Table of Figures

List of Tables

Notations

Synthése en francais

1 Introduction

2 Background and Related Work

2.1

2.2

2.3

Backgroundo
2.1.1 Introduction
2.1.2 Monitoring Malware Activities
2.1.3 The Purposes
On the Capture of Relevant Traffic
2.2.1 Honeypots, Honeynets, Honeytokens
2.2.2 Darknets, Telescopes, Blackholes
2.2.3 Logs Sharing
224 Others
On the Analysis of Traffic
2.3.1 Positioning
2.3.2 Netflow
233 Billy Goat
2.3.4 Monitoring Consoles 0oL
2.3.5 Vizualization Techniques
2.3.6 Modeling
2.3.7 Challenges and Personal Accomplishments

10

14

16

17

19

12 CONTENTS
2.3.8° Others e 26

2.4 SUmMmary . .o oL e e 27
2.4.1 Observations from this State-of-the-Art 27
2.4.2 First Conclusions 28

3 The Information Generation 29
3.1 Introduction e 29
3.2 The Leurré.com Project 30
3.2.1 The Objectives 30
3.2.2 Principleso 30
3.2.3 Honeypot Sensors 32

3.3 Global Picture e 33
3.3.1 First Figures 33
3.3.2 First Analyses 34
3.3.3 On the Advantages of Local Distributed Sensors 36
3.3.4 First Discussions 37

3.4 Observation Positioning Lo 38
3.4.1 Sensors Limitations 38
3.4.2 About Non-Observable Malicious Activities. 39

3.5 Data Storage 40
3.5.1 A Need e 40
3.5.2 Definitions 40
3.5.3 ERdiagram Lo 42
3.5.4 Webinterface 42
3.5.5 Collection Issues 43
3.5.6 Conclusion. e 44

4 Discrimination Step: Fingerprinting Activities 47
4.1 Introduction e 47
4.1.1 Need for Classification 47
4.1.2 Concepts and Challenges 48

4.2 Fingerprints of Activities Lo L 49
4.2.1 Definitions 49
4.2.2 Analytical Evidence o0 50
4.2.3 Classification Requirements o1

4.3 Clustering Algorithm 52
4.3.1 High Level Description 52
4.3.2 Network Disturbances 53
4.3.3 Discrete Parameters 59
4.3.4 Supervised Intervals o oL 62
4.3.5 Validation: Unsupervised Classification 68
4.3.6 Global Consistency Index 73
4.3.7 Incremental Version of the Algorithm 75

4.4 The Resulting Fingerprints L. 7

4.4.1 Global Statistics 77

CONTENTS 13
4.4.2 Attackers vs. Scanners L 78
4.4.3 Ports, Ports Sequences and Clusters 79
4.4.4 Interesting Activity Behaviors L. 80
4.4.5 Attack Tool Identification 82

4.5 Misclassified Traffic and Refinement 84
4.6 Potential Evasions Mechanisms 86
4.6.1 Potential Scenarios 86
4.6.2 The Witty Worm Scenario 87

4.7 Summary ..o .. 88
5 Correlative Analysis 91
5.1 Preliminary Studies 91
5.1.1 Introduction 91
5.1.2 Case Study 1: Country C Specialties 91
5.1.3 Case Study 2: Attacks From Serbia-Montenegro 92
5.1.4 Case Study 3: Apparent Temporal Relations 93
5.1.5 Interesting Analyses 94

5.2 The Theory e 95
5.2.1 Underlying Motivations. 95
5.2.2 Building Similarity Matrices 97
5.2.3 The Theory 98
5.2.4 Relation Discovery: Maximal Cliques using Dominant Sets 98

5.3 Building Similarity Matriceso 0oL 107
5.3.1 Characteristics Representations 107
5.3.2 Potential Distances0 107

5.4 Similarity Matrices: Applications oL 114
5.4.1 Introduction and Chosen Distances 114
5.4.2 Geographical Location 115
5.4.3 Targeted Environments L. 116
5.4.4 Attacking Operating Systems 116
5.4.5 Name Resolution and Regular Expressions 117
54.6 CommonIPs 118
5.4.7 Time Series Analysiso 119
5.4.8 IP Proximities 119
5.4.9 Summary 120

5.5 Derived Properties 121
5.5.1 Mixing Similarity Matrices oL 121
5.5.2 Algorithm Limitations 122
5.5.3 Validation: Relation Projection 123

5.6 Conclusion e e 124
6 Automated Knowledge Discovery 127
6.1 Preliminary Results oo 127
6.1.1 Summary e 127
6.1.2 Example 1: A Geo. 127

14 TABLE OF CONTENTS
6.1.3 Example 2: A Env 129

6.1.4 Example3: A Geovs. A _Env. 130

6.1.5 Time Correlation between Fingerprints 132

6.1.6 Checking Time Series Technique 136

6.2 Knowledge Discovery L 138
6.2.1 Surprising Results. o oo 138

6.2.2 Case Study 1 138

6.2.3 Case Study 2 139

6.3 Discussion e 140
6.3.1 Abnormal Correlation and Potential Improvements 140

6.3.2 On the Labeling of Dominant Sets 141

6.3.3 On the Derivation of Observations 141

6.3.4 Summary 142

7 Conclusions and Perspectives 145
Bibliography 151
A Entity Relationship Diagram 169
B Leurré.com Interfaces 171
C Reporting Activities on the Leurré.com Project 173

D Identification of Deloder among the Activity Fingerprints 175

15

List of Figures

T W N~

2.1
2.2
2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
411
4.12
4.13

Méthode d’analyse via un réseau distribué de pots de miel 25
Des journaux Tcpdump a une base de donnée structurée 29
Exemple de fiche signalétique obtenue L. 33
Exemple de fiche signalétique obtenue 37
Schéma de la méthode HoRaSis 39
Distributed Honeypot Sensor Analysis 6
Darknet Traffic Garbage Meter from [87] 16
Blaster’s Infection Steps [93] Lo 21
Database Structure used in Billy Goat [118] 23
Architecture of a Honeypot Sensor 33
Average Number of Attacking IPs per Honeypot Environment 34
Distinct IP Sources Observed per Day on Three Sensors 35
Average Number of Bytes sent by Attacking IPs per Platform (TCP payload) 35
Average Number of Attacking IPs per Hour (local time) 36
Dshield vs Leurré.com data: Dshield [14] 37
Dshield vs Leurré.com data: Leurré.com data 37
Cumulative Log Size Collected from the Sensors 40
UML Diagram: Relationships between Definitions 42
A Cubic Spline Interpolation of y = (sin(z) 4 cos(x))s 44
From Dump Logs to a Structured Database 46
A Ports Sequence Associated to an Observed Activity 51
Forward Reordering from [48] 54
Honeypot-oriented Observations during Packet Losses or Reordering 55
Classification Process of Out-of-Sequence Packets [57] 56
Impact of Loss and Retransmission a7
CDF: # Received Packets per Virtual Machine 60
Distribution of Sizes among Clusters 62
Distribution of the Duration Values over all Large Sessions 63
Examples of Duration Distribution among Two Clusters 64
Peak Terminology of a Given Distribution 65
Modal Property of Attribute D: Weight of First 5 Peaks 66
Distribution of Average Inter-Request Time Values 67

Peak Picking: Intersection btw Baselines 69

16

TABLE OF FIGURES

4.14
4.15
4.16
4.17
4.18
4.19
4.20
4.21
4.22
4.23

5.1
5.2
5.3
5.4
)
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15

6.1
6.2
6.3

Al

B.1
B.2

C.1
D.1

Simple Application of the Levenshtein Distance 70
Pyramid: Levenshtein-Based Distance Splitting 72
Splitting: Cluster Consistency 72
Global Consistency Ladder 74
Pyramid: Incremental Hierarchy Approach 7
Larges Sessions Targeting All vs. One Virtual Machines from Feb.2003 . . 79
Deloder Activity (Nb associated attack sources) 81
An Example of the Attack Phrase Generalization 83
Example of a Cluster Signature 83
Observation of HPSIM Activities 85
Attacking Countries Observed on Sensors Cand F. 92
Attacks from YU Observed on Each Honeypot Sensor per Month 93
Examples of Time Correlation between Clusters 94
Observed Activities on some Targeted Ports 95
Simple Examples of Cliques 99
Removing Edges vs. Removing Nodes 102
Dominant Set Extraction: A Simple Example 106
Peak Picking Distance between Distributions 109
Peak Picking: Concept and Example 110
Time Series Analysis: SAX-Based Steps 112
Application of the SAX Steps on a Time Series 112
Example of a Lookup Table for an Alphabet of Cardinality 4 113
IP _Dist Computation and Distance Distribution 120
Mixing 3 Similarity Matrices: an Example 121
Projection on Honeypot Environments 124
SAX and Compression Ratios 137
Labeled Clusters 141
New Cluster Signature L 143
Data Storage: Database Architecture 170
Public Interface www.leurrecom.org 171
Partner DB Interface: GUI 172
Partner Reports from the Leurré.com Interface 173

Deloder Signature [237] 176

17

List of Tables

DO

2.1
3.1

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

Les étapes de chaque analyse corrélative 36
Les étapes de chaque analyse corrélative : un exemple 36
Matrices d’analyses utilisées dans cette thése 36
Some Relevant NetFlow Fields (v5) 20
Level Interaction and Honeypots 31
Classification in function of some discrete values 62
Tolerance indexes 7; 67
Classification with Supervised Intervals 68
Classification with Supervised Intervals 76
Ports vs Clusters: different information levels 80
Countries considered in the distribution (% Total Sources) 125
Considered Operating Systems used to build A _OSs 126
Hostnames Classification based on Regular-Expressions 126
Analysis Matrices used in this thesis 126
Cliques obtained from Matrix A _Geo. 130
Cliques obtained from Matrix A _Env 130
Clique Intersection from A Envand A Geo 131
Clusters from A EnvID2and A GeolD3 131
Cliques obtained from Matrix A _SAX 132
Some cliques obtained from Matrix 4 SAX 133
Intersection btw A SAX and other matrices 134

A SAX:Alphabet Sizes vs. Compression Ratios. 137

18

LisT OF TABLES

19

Acronyms

We group in this section most of the acronyms or notations which have been used in the
different chapters of this thesis.

CERT
CR
CSIRT
DNS
DFT
DoS
DS
DWT
FHP
FIRST
GCI
HoRaS'is
ICMP
IDS
IGR
IP
IPID
IPS
IRC
ISAC
NAT
PAA
RCA
SAX
SR
TLD
TCP
WARP

Computer Emergency Response Team
Compression Ratio (SAX method)
Computer Security Incident Response Team
Domain Name System

Discrete Fourier Transform

Denial of Service

Dominant Set

Discrete Wavelet Transform

French Honeynet Project

Forum of Incident Response and Security Teams
Global Consistency Index

Honeypot Traffic Analysis framework
Internet Control Message Protocol
Intrusion Detection System

Information Gain Ratio

Internet Protocol

IP Identifier

Intrusion Prevention System

Internet Relay Chat

Information Sharing and Analysis Center
Network Address Translation

Piecewise Aggregate Approximation
Root-Cause Analysis

Symbolic Aggregate Approximation
Splitting Ratio

Top-Level Domain

Transmission Control Protocol

Warning, Advice and Reporting Point

20

ACRONYMS

21

Synthése en francais

Introduction

La sécurité est le souci d’'un grand nombre de domaines d’activité. Internet a la partic-
ularité de connecter les gens de facon plus ou moins anonyme, et sans grand contrdle du
trafic. Cet atout, qui fait le succes de la toile, présente aussi des inconvénients majeurs
: des activités malveillantes peuvent prendre aisément une grande amplitude et produire
des catastrophes. A valeur illustrative, I’équipe américaine de Staniford montre dans [215]
qu’il est possible, en théorie, pour un ver, de saturer un million de machines vulnérables
en 'espace de 510 milli-secondes. Dans la méme idée, il faut noter la recrudescence des
fraudes électroniques, qui peuvent se chiffrer & plusieurs millions de dollars par an. Inter-
net facilite le banditisme et les crimes a grande échelle. Il semble alors trés important, si ce
n’est vital, d’acquérir de solides connaissances sur les menaces et les stratégies d’attaques.
Une méthode pour obtenir ce savoir réside dans I'observation et I'analyse a grande échelle
d’activités malveillantes.

Plusieurs techniques existent actuellement, dont certaines appartiennent a la catégorie
nommeée pot de miel (ou honeypot en anglais). Ce terme est récent, quand bien méme
le concept existe depuis de nombreuses années. Dans les années 1980, Clifford Stoll a
eu lI'idée de placer des données en apparence confidentielles afin de tromper et mettre
en évidence les voleurs. L’idée a été reprise sous le terme anglais honeytoken par Lance
Spitzner dans [214|. Ce dernier a proposé dans ce méme ouvrage la définition suivante
d’un pot de miel :

Un pot de miel est une partie ou I’ensemble d’un systéme d’information dont la
valeur ajoutée est d’étre compromise ou utilisée de maniére illicite.

Nous garderons cette définition tout au long de la theése.

Le grand avantage de ces pots de miel réside dans leur capacité a collecter du trafic
suspect uniquement. Depuis plusieurs années, ces traces particuliéres se mélangeaient
avec celles dites de production, ce qui n’aidait pas les personnes en charge de la sécurité
a déterminer les activités malveillantes. Ce probléme est maintenant révolu grace aux
pots de miel. Ces trois derniéres années, un effort certain a été effectué par diverses
communautés pour construire des architectures pots de miel sires et utiles, i.e. des
systémes capables de récupérer de 'information, allant de simples paquets de balayage de
ports & une communication IRC compléte, sans mettre en danger le réseau hébergeur. Les
solutions sont donc nombreuses, et les technologies de type pots de miel sont largement

22 SYNTHESE EN FRANCAIS

utilisées, présentant un intérét aussi bien pour les grands groupes antivirus que pour les
organisations internationales et gouvernementales, telles les CSIRTs, 'ENISA (European
Network and Information Security Agency ou les centres d’analyse ISAC (Information
Sharing and Analysis Center).

Malheureusement, nous constatons que trés peu d’efforts sont faits pour partager les
informations collectées au moyen des pots de miel. A contrario, des données publiques ex-
istent, grace a des initiatives comme Dhshield, MyNetWatchman ou le Computer Network
Defense Operational Picture [34]. Ces projets présentent sur des pages Internet attractives
des statistiques, mais la source de ces informations n’est pas toujours claire. Ils invitent
tout un chacun a envoyer les archives de pare-feux ou de systémes de détection d’intrusions
(IDS) pour extraire des valeurs statistiques relativement simples. L’'information est ainsi
limitée (comptage par port), et les chiffres intégrent le biais lié au trafic de production.

En résumé, les pots de miel sont une source d’information de grande valeur. Cepen-
dant, comme il a était briévement mentionné ci-dessus, le plus gros effort est fait pour
optimiser leur architecture, et peu d’initiatives ont émergé pour organiser et tirer tous les
bénéfices de la richesse des données qu’ils fournissent.

En paralléle, les solutions d’analyse existantes se limitent fréquemment & résoudre
un probléme en particulier. Il peut s’agir de techniques pour surveiller les attaques par
déni de service, les balayages de ports, ou certains scénarios d’attaques bien précis. La
plupart de 'existant a d’ailleurs été développé par les personnes de la communauté de la
Détection d’Intrusion. Cependant, ’approche est sensiblement différente avec les pots de
miel, comme tout le trafic capturé reste par définition suspect. Les faux-positifs ne sont
donc plus le souci principal, comme cela est encore le cas pour la majorité des techniques
de détection d’intrusions. Ceci nous améne a établir le constat suivant :

Constat : Les pots de miel sont largement déployés, et ils sont techniquement ma-
tures. Les techniques d’analyse, en revanche, sont mal adaptées pour profiter de la qualité
de l'information offerte.

Sur la base de ce constat, nous avons décidé de construire notre propre environnement
de type pot de miel, dans le but de collecter d’indispensables données ; la motivation
premiére étant de travailler sur des données de trafic malveillant accessibles et utiles pour
I’analyse. Ceci a été fait dans le cadre d'un projet nommé Leurré.com, qui regroupe des
partenaires de nombreux pays. Grace a cette communauté, nous avons réussi a collecter
un volume de données considérable a partir de plusieurs environnements pots de miel.
Il est important de comprendre que cet ensemble de données est unique, et qu’il est
accessible pour chaque partenaire. Nous ne connaissons pas d’équivalent pour le moment.
L’hypothése de notre probléme est donc la suivante :

Hypothése : Nous travaillons sur un ensemble de données unique, constitué d’activités
malveillantes observées dans différents endroits du globe et dans des réseaux trés divers.

Que pouvons-nous faire avec de telles données 7 Nombreuses sont les techniques

SYNTHESE EN FRANGCAIS 23

d’analyse de trafic : il existe les outils traditionnels comme netflow ([75]) ou tcpdump
([17]), ou des méthodes théoriques plus complexes. En revanche, aucune n’est spécifique
au type de données fournies par les pots de miel. Plus important encore, rien de trés
constructif n’a été proposé, jusqu’'a présent, pour échanger aisément de l'information a
partir de ces analyses. Il est légitime a ce stade de se demander si ce nouvel ensemble de
données apporte de I'information nouvelle et originale. Si la réponse devait étre positive,
serait-il possible de ’extraire automatiquement ? Pour simplifier, nous cherchons donc a
savoir s’il existe une méthode pour faire cela. Si elle existe, nous la nommerons HoRaSis
(pour Honeypot tRaffic analySis), comme étant une base pour 'analyse de trafic des pots
de miel. La thése présentée dans ce document se résume ainsi :

Positionnement de la thése : Nous voulons montrer dans cette thése que

1. un réseau distribué de simples sondes pots de miel fournit des données intéressantes
pour 'analyse et la compréhension des menaces et stratégies d’attaques.

2. il existe une méthode automatique pour extraire de I'information intéressante a par-
tir de ces données. Celle-ci sera nommeée HoRaSis (pour Honeypot t Raffic analy Sis).

Les pots de miel permettent de recueillir des données trés singuliéres, qui peuvent
nécessiter une technique d’analyse dédiée. Cette remarque sera plus amplement justi-
fite dans les premiers chapitres de ce document, par les expérimentations préliminaires
prometteuses des données. A partir de notre savoir-faire construit au fil des données, il est
apparu comme vital de créer une méthode (appelée Honeypot Traffic Analysis ou HoRa-
Sis) afin de rendre mécanique l'extraction d’information a partir des données collectées.

[’analyse de traces issues des pots de miel est a la jonction de plusieurs espaces de
recherche, et la méthode HoRaSis que nous cherchons ne peut prétendre les surclasser
tous. Par voie de conséquence, la méthode doit étre ouverte a4 de futures améliorations,
en offrant une structure modulaire. De maniére plus générale, nous listons ci-dessous les
critéres que la méthode HoRaSis doit préserver :

e Validité : Un ensemble d’analyses a été effectué de facon empirique, en tirant peu
a peu le fil d’Ariane. Cette tache, bien que peu efficace, a fourni des résultats
préliminaires prometteurs. La méthode automatique que nous cherchons ne doit pas
contredire ces expériences, et a contrario devrait enrichir les observations, comme
le critére suivant indique.

e Découverte d’information : La méthode HoRaSis doit étre une nouvelle source de
connaissances.

e Modularité : La méthode HoRaSis se trouve a la croisée de plusieurs domaines de
recherche. Nous pouvons d’ores et déja citer ceux des Réseaux, de la Sécurité et de
I’Analyse de Données. Il existe aussi une multitude de sous-domaines, prenant di-
verses directions théoriques et techniques. De nouveaux apparaissent réguliérement,
et il est capital que la méthode présente une structure modulaire afin de pouvoir
bénéficier des derniéres avancées dans chacun de ces domaines.

24 SYNTHESE EN FRANCAIS

e Généralisation : Les données collectées peuvent changer de maniére drastique selon
I’apparition de nouvelles activités et de nouveaux procédés d’attaque. La méthode
HoRaSis doit donc étre suffisamment indépendante des données, ou du moins, étre
adaptable a des ensembles de données aux caractéristiques trés différentes.

e Simplicité : La méthode HoRaSis doit extraire de I'information & partir d’un en-
semble de données (dans notre cas, fourni par le projet Leurré.com). Le destinataire
de cette information est ’analyste; ce dernier doit comprendre le cheminement qui
a conduit a 'extraction de ces nouvelles connaissances. La méthode ne doit pas se
présenter comme une boite noire aux résultats obscurs.

Nous prouvons dans ce rapport qu’une telle méthode existe, et qu’elle nous permet de
trouver des résultats prometteurs sur les activités malveillantes observables. HoRaSis est
un moyen automatique de valider (ou de rejeter) nombre de suppositions.

Les contributions de cette thése sont :

e Le déploiement et administration d’un systéme distribué de pots de miel pour col-
lecter des données.

e La conception d’une méthode appelée HoRaSis pour analyser les données.

e La création de nouvelles techniques pour tirer profit des propriétés de données issues
de pots de miel.

e La validation de la méthode HoRaSis grace aux analyses préliminaires effectuées.

e [’amélioration de la compréhension des activités observées. Certaines de ces activ-
ités ont pu étre clairement identifiées, les autres sont de nouvelles questions offertes
a la communauté Sécurité.

Alinsi, la thése peut se résumer au schéma suivant :

e HYPOTHESES : Une architecture de pots de miel déployée pour collecter des don-
nées.

e DONNEES INITIALES : Un grand volume de traces réseaux, chacune étant malveil-
lante, ou du moins suspecte.

e PROBLEME : Est-ce une nouvelle source d’information d’intérét ? Si tel est le cas,
comment batir une solide méthode analytique & partir ce celle-ci ?

D’une maniére concréte, HoRaSis est une méthode articulée autour de quelques étapes
majeures, qui sont symbolisées sur la figure 1. Les étapes 1 et 2 concernent le déploiement
et la collecte de données a partir de pots de miel. Ce travail a été rendu possible par
I'intermédiaire du projet académique appelé Leurré.com. Afin de faciliter la compréhen-
sion d’HoRaSis et des problématiques existantes, nous décrivons ce projet dans le chapitre
3, qui compléte le chapitre 2 dédié a I'état de I'art. Le lecteur trouvera les détails des

SYNTHESE EN FRANGCAIS 25

étapes 3 et 4 dans les chapitres respectifs 4 et 5. L’étape 3 consiste a grouper les activ-
ités présentant des caractéristiques identiques, ou, en d’autres termes, toutes les adresses
[Ps ayant laissé une empreinte équivalente sur les différentes sondes pots de miel. Dans
I’étape 4, nous analysons les relations émergentes qui peuvent apparaitre suite a ce premier
groupement. Toutes les empreintes observées sur les sondes pots de miel qui partagent
de mémes singularités sont détectées puis analysées. Le chapitre 6 décrit 'information
obtenue suite a ’application d’HoRaSis, celle-ci étant alors exploitable et partageable au
sein de la communauté Sécurité. Chaque chapitre reprend des résultats obtenus a partir
de I'ensemble de données Leurré.com.

Les étapes de la méthode HoRaSis se trouvent sur la figure 1, ainsi que le numéro
des chapitres correspondants. Elles sont briévement résumées dans les paragraphes qui
suivent en francais.

SONDES HONEYPOTS CAPTURE & STOCKAGE EMPREINTES ACTIVITES ANALYSE GRAPHES CONCLUSIONS

N
N
/ *
’ \ B S
' ! H \
e T i H . 1 — H
S \ . h .
.. gl \ N
AT i N ,
» - » N . ’ »
SHR = AN e

0000000 i : N

Chapitre 3 Chapitre 4 Chapitre 5 Chapitre 6

Figure 1: Méthode d’analyse via un réseau distribué de pots de miel

Motivations et terminologie d’usage

Introduction de cet état de ’art

La compréhension des activités malveillantes est un pré requis a 1’élaboration d’'une tech-
nique défensive efficace. Par analogie, construire un mur ne protégera pas d’une agression
aérienne. Ainsi, connaitre la menace ne peut étre un facteur a ignorer, particuliérement
quand les vendeurs sont friands de technologies aguichantes, mais qui peuvent s’avérer
inutiles, ou tout simplement inadaptées.

HoRaSis est la méthode que nous cherchons pour analyser des données issues des
pots de miel, afin de bénéficier de leurs propriétés intrinséques. De nombreux projets ont
récemment émergé pour capturer des traces malveillantes. En paralléle, une multitude de
solutions provenant de divers axes de recherche sont apparues pour effectuer des analyses
sur des données afin d’en identifier des activités anormales. Pour ces raisons, et pour
garder une certaine clarté dans ’état de ’art, nous choisissons de distinguer de catégories,
discutées par la suite :

e Les techniques dont la finalité est d’offrir la possibilité de capturer du trafic malveil-
lant.

26

SYNTHESE EN FRANCAIS

Les techniques dont la finalité est d’extraire de l'information & partir d’'un trafic
donné.

Capturer des traces originales

Il existe plusieurs projets récents qui ont pour finalité de batir des environnements de
capture efficaces, souvent dans 'idée de capturer de nouvelles activités malveillantes (les
activités malveillantes qui n’ont pas encore été observées sont appelées 0-jour). Nous
détaillons en particulier dans le document original :

Les outils en logiciel libre associés aux termes anglais honeypots, honeynet, honey-
tokens.

Le télescope réseau (ou Network Telescope développé par CAIDA (Cooperative As-
sociation for Internet Data Analysis), qui consiste a I'observation au niveau d’un
équipement réseau d’une trés large plage (préfixe /8 par exemple) d’adresses IP non
utilisées (ou trés peu utilisées).

Le projet Darknet de Team Cymru, proche dans ’esprit du projet précédent. Leur
site offre quelques graphes représentant une estimation quantitative du bruit de fond
(ou background radiation observeé.

iSink de l'université de Wisconsin-Madison, qui était d’avantage un outil d’analyse
de performance réseau a l'origine.

IMS (ou Internet Motion Sensor proposé par 1'Université Michigan, qui propose
I'utilisation de sondes. L’information, par contre, est extraite de chaque sonde, sans
analyse corrélative entre les informations trouvées.

MINOS de l'université UC Davis, dont le principe fondamental est de marquer le
trafic suspect afin de pouvoir le suivre plus aisément.

Lobster (anciennement SCAMPI), projet européen cherchant a faciliter la surveil-
lance des réseaux au niveau matériel.

Mwecollect, outil trés récent, ayant fusionné avec un autre projet nommé Nepenthes,
dont I'objectif consiste a capturer des activités malveillantes cherchant a exploiter
des vulnérabilités bien précises (DCOM, Local Security Authority Service LSASS,
NetBIOS, SQL Server, etc).

Le partage d’archivage, proposé par de nombreux sites, tels WormRadar, Internet
Storm Center de I'Institut SANS, Dshield, MyNetWatchman, etc. Les résultats se
basent malheureusement sur des données incertaines a la source.

Techniques d’analyse

Parmi les techniques ayant vocation a analyser le trafic brut collecté par des méthodes
comme celles précédemment citées, le document détaille :

SYNTHESE EN FRANGCAIS 27

e NetFlow, le format d’agrégation en flux utilisé dans des appareils de type routeurs
pour limiter le volume de données stocké. Quelques analyses s’appuient sur ces flux,
bien qu’ils présentent des limitations : un flux NetFlow n’a pas d’équivalent clair
au niveau protocolaire (TCP), et se limite & un ensemble restrictif de champs.

e Le projet Billy Goat proposé par Duponchel et al. d’'IBM, ot un effort est fait pour
archiver les données collectées de maniére pratique. L’extraction d’information reste
cependant limité a ce stade.

e honeyStat, ainsi que d’autres techniques issues du monde de la détection d’intrusion
(projet Collapsar de I'université de Purdue). Ces techniques se résument souvent
a une innovation théorique testée dans des conditions particuliéres. L’information
extraite reste donc d’autant limitée, méme si ces techniques peuvent s’appliquer
dans des analyses bien précises.

e Les consoles de surveillance sont nombreuses et variées. Une analyse que nous avons
faite montre I’étendue des solutions existantes. Nous sommes malheureusement
arrivés a la conclusion que la plupart se limitent & des techniques pragmatiques
simples, comme des expressions réguliéres ou des requétes SQL dans une base de
données a la structure assez standard.

e La modélisation est un sujet actif de recherche. Le manque de données librement
utilisable empéche néanmoins la validation des modéles proposés. Ceux-ci se limitent
par ailleurs a quelques stratégies de propagation de vers connus a priori.

Conclusions concernant 1’état de ’art

Certaines techniques de capture et d’analyses sont prometteuses. Cependant, elles restent
cloisonnées et s’adaptent mal au contexte des pots de miel. Ainsi, les nouvelles solutions
pour capturer du trafic via un pot de miel ne bénéficient pas vraiment de méthodes
d’analyse propres et efficaces. C’est ici la contribution de cette thése, qui constitue a
apporter un élément de réponse a ce probléme.

Projet Leurré.com

Bréve introduction au projet

Au sein de I'Institut Eurécom (www.eurecom.fr), nous avons utilisé la technologie des pots
de miel afin d’arriver & une meilleure compréhension des processus d’attaques. Nous avons
implémenté une plateforme de test qui a été ensuite installée dans un réseau comprenant
actuellement une quarantaine de partenaires provenant des cinq continents. Les données
collectées depuis deux ans sont enrichies puis étudiées au moyen de techniques diverses
et variées, qui sont détaillées dans les trois derniers chapitres du document (analyse en
séries temporelles, techniques de regroupement, régles associatives, graphes).

Le choix de la plateforme s’est porté sur un systéme ayant une interaction faible
(honeyd), afin de limiter les risques de compromission. Cette plateforme émule trois

28 SYNTHESE EN FRANCAIS

machines différentes (Windows NT Server, WIndows 98 et Linux Red Hat 7.3), avec
les ports de l'installation par défaut ouverts, ainsi que quelques scripts correspondant
a des services choisis (serveurs ftp et web par exemple). Une comparaison des données
collectées est par ailleurs maintenue avec un systéme plus complexe (i.e. des services réels,
non émulés) correspondant a une configuration équivalente. Celle-ci a pour but de vérifier
qu’aucun biais n’est introduit par I'utilisation de ce systéme a faible interaction. Il est
important de comprendre les limitations de la capture avant une quelconque analyse.

Leurré.com est un projet ouvert a tout partenaire curieux et désireux de mieux com-
prendre l'activité malveillante ciblant ses ressources. Il lui suffit pour cela d’installer
une plateforme pot de miel décrite ci-dessus a 'extérieur de son réseau. L’installation
et la maintenance sont totalement prises en charge par Eurécom et ne nécessitent pas
d’investissement particulier : un simple ordinateur et quatre adresses IP routables (une
pour la machine d’accueil, et trois pour les machines émulées par le pot de miel) sont suff-
isants pour sa mise en place. En contrepartie, Eurécom offre ’accés a ’analyse des infor-
mations collectées et étudiées par le groupe de recherche sur les attaques de la plateforme
partenaire. Nous proposons une interface intégrant des résultats simplifiés répondant a
des requétes fréquentes, ou un accés direct aux données par le moyen d’une base intégrant
différents degrés d’information. Un rapport d’activité personnalisé de la plateforme est
également émis sur demande pour chaque partenaire.

Archivage des données

Nous récupérons chaque jour les traces réseau (format tcpdump) sur les plateformes,
correspondant au trafic échangé entre les machines virtuelles et d’autres machines de
I'Internet. Elle contient actuellement des données a partir de février 2003, et le nombre
de partenaires ne cesse de croitre. Pour stocker un si gros volume de données, nous avons
construit la base de données dans I'idée de pouvoir :

e chercher tout type d’information rapidement, que ce soit de 'information générale
ou pointue (champs protocolaires).

e ajouter rapidement une nouvelle source d’analyse, en relation avec les informations
déja stockées.

Sans rentrer dans les détails de I'architecture, nous avons décidé de la batir autour de
quatre définitions, décrites ci-dessous :

Source : Une Source correspond a une adresse IP observée sur une ou plusieurs
plateformes, et pour laquelle le temps d’arrivée entre deux paquets consécutifs recus reste
inférieur & un certain seuil (25 heures). La différence de temps se calcule en convertissant
toutes les dates au format GMT.

Global Session : Une Global_ Session est I'ensemble de paquets qui ont été échangés
entre une Source et toutes les plateformes pots de miel du projet Leurré.com.

Large Session : Une Large_ Session est I’ensemble de paquets qui ont été échangés
entre une Source et une plateforme pot de miel particuliére (sonde).

SYNTHESE EN FRANGCAIS 29

Tiny Session : Une Tiny_ Session est 'ensemble de paquets qui ont été échangés
entre une Source et une machine virtuelle donnée. Comme chaque plateforme pot de miel
émule trois machines virtuelles, une Large Session est composée d’au plus 3 Tiny Sessions.

Les données sont introduites dans la base, mais nous appliquons également un ensem-
ble d’applications pour enrichir ces données primaires. Par exemple, pour chaque Source,
nous voulons associer une position géographique, ou du moins un pays (Maxmind, Net-
geo, IP2location). De méme, pour chaque Global Session, nous voulons déterminer (de
maniére passive) quel systéme d’exploitation est utilisé par la Source (p0f, ettercap, disco).
Le processus global pour archiver I’ensemble des données est symbolisé par la figure 2.

Sensor 1: logs(t’) Sensor N: logs(t)

13ANIILNI

EVENTS

IP headers
TCP headers
ICMP headers
UDP headers X ¥
Payloads

NOD3dN3 LNLILSNI

TOOLS

IP geolocation
Name resolution (DNS, whois|

Generalization Script{

TCP stats o
Passive OS fingerprinting
IDS alerts
SOURCES <
GLOBAL SESSIONS <
LARGE SESSIONS <
TINY SESSIONS | =

Figure 2: Des journaux Tepdump a une base de donnée structurée

30 SYNTHESE EN FRANCAIS

Ce travail préliminaire de collecte et de stockage évolue a travers le projet Leurré.com.
L’ensemble de données collectées au cours des trois derniéres années est unique a ce
jour. Mais quelles valeurs apportent-elles réellement 7 Dans quelles mesures peut-on tirer
partie de ces données pour améliorer notre compréhension des processus d’attaques 7 Ces
questions qui découlent naturellement de ce paragraphe, sont a l'origine de la méthode
d’analyse proposée dans les chapitres 4 et 5 du présent document, et dans la continuité
des motivations a développer une méthode HoRaSis.

Empreintes d’Activités

Concepts

[’analyse doit profiter de la propriété suivante : les sondes (ou "plateformes pots de
miel" : nous utiliserons les deux termes indifféeremment dans la suite du document) sont
distribuées dans différents pays, différents réseaux et différentes organisations. Il faut alors
chercher un moyen de comparer ce qui survient sur chaque sonde, afin d’étre a méme d’en
déduire ce qui est commun ou pas sur un ensemble de sondes. Cette étape est primordiale
pour appréhender les caractéristiques des processus observés.

Nous avons défini dans un paragraphe précédent une Large Session comme étant
I’ensemble des paquets envoyés par une Source sur une sonde. Une Large_Session est
donc la manifestation d’une activité, celle-ci étant :

Activité : Une activité est 'ensemble des actions exécutées par une Source sur une
plateforme pot de miel.

Il est possible de caractériser une activité par I’empreinte qu’elle peut laisser sur une
sonde pot de miel. Ceci conduit & définir une empreinte d’activité comme :

Empreinte d’activité : Une empreinte d’activité est un ensemble de paramétres
(non nécessairement uniques) qui caractérise une méme activité sur différentes sondes
pots de miel.

Il est important a ce stade de comprendre qu’'une activité se caractérise par une em-
preinte, mais que cette empreinte peut caractériser différents outils (si jamais les activités
de ces outils ne sont pas distinguables & partir de la configuration actuelle des sondes).
Nous supposons donc, d’une certaine mesure, que si les outils d’attaque ont un com-
portement suffisamment déterministe, nous devrions observer des empreintes d’activités
semblables sur toutes les sondes ayant été la cible de mémes outils d’attaque.

Parameétres caractérisant une empreinte

Nous décidons, dans la continuité des remarques précédentes, de regrouper toutes les
activités observées (stockées sous la forme de Large Sessions dans des groupes, appelés
clusters. Les paramétres choisis sont basés sur I'expérience que nous avons acquise pour
distinguer manuellement les activités, aprés lecture directe de fichiers tcpdump. Les
parameétres initiaux sont ainsi :

1. Le nombre de machines virtuelles ciblées sur la plateforme pot de miel.

SYNTHESE EN FRANGCAIS 31

7.

Les séquences de ports : a partir des paquets ordonnés par temps d’arrivée, nous
pouvons extraire la séquence de ports distincts ciblés sur chaque machine virtuelle.

Le nombre total de paquets envoyés par la Source a I’attention d’une plateforme pot
de miel.

Le nombre de paquets envoyés par la Source vers chaque machine virtuelle.

La durée totale pendant laquelle la source a été observée sur la plateforme (différence
entre la date d’arrivée de son dernier paquet envoyé et de son premier paquet émis).

Ordonnancement de l'activité. Les paquets ont-ils été envoyés vers toutes les ma-
chines virtuelles en paralléle, ou vers I'une puis les autres ?

Le contenu des paquets (s’il existe) envoyé par la Source.

Malheureusement, ces paramétres peuvent varier d’une instance d’attaque a 'autre,
du simple fait de certaines perturbations dans le réseau Internet. Parmi les perturbations
envisageables, il peut y avoir :

du réordonnancement : quand les paquets ne sont pas recus dans leur ordre d’émission.

de pertes : quand des éléments actifs du réseau (routeurs) décident de jeter des
paquets.

des retransmissions : quand I’émetteur ne recoit pas dans les temps un accusé de
réception.

du retard : quand les éléments du réseau introduisent des latences et délais de
traitement difficilement prévisibles.

etc

Nous présentons dans le document une technique, qui s’appuie sur une propriété du champ
IPID des entétes IPs. Dans la plupart des systémes d’exploitation actuels, ce champ n’est
pas utilisé¢, mais s’incrémente de 1 a chaque envoi d’un nouveau paquet IP. En s’appuyant
sur cette propriété, il est possible de limiter les impacts du réordonnancement et d’estimer
les pertes. Cette technique ne peut malheureusement prétendre & corriger toutes les
perturbations du réseau. Ceux-ci sont autant de fluctuations dans certains parameétres
décrits ci-dessus pour définir une empreinte d’activité.

A partir de ce constat, nous avons choisi de classer les paramétres en deux groupes
distincts :

Les paramétres discrets : nous estimons que ces parameétres sont peu sensibles aux
perturbations du réseau, et leurs valeurs doivent étre considérées de maniére exacte.
Parmi ceux-ci, il peut y avoir les séquences de ports, ou le nombre de machines
ciblées.

32 SYNTHESE EN FRANCAIS

e Les paramétres modaux : il s’agit de parameétres présentant une distribution modale
forte. Dans ce cas, leurs valeurs peuvent se généraliser par des intervalles, dont la
largeur correspond a l'incertitude liée aux perturbations du réseau. Le nombre total
de paquets envoyés par une Source, ou la durée pendant laquelle cette Source a été
observée, font partie de ces paramétres aux valeurs généralisées.

La contribution respective de chaque paramétre dans la formation de clusters peut
étre évaluée au moyen d’indicateurs utilisés en théorie de I'information, comme I'TGR
(pour Information Gain Ratio). Cet indice nous permet de réaliser, par exemple, que le
choix du paramétre n’est (ou n’est pas) discriminant.

Nous regroupons donc a ce stade toutes les manifestations d’activité (Large Sessions),
ayant les mémes valeurs discrétes, et ayant les valeurs des paramétres modaux dans les
mémes intervalles, en clusters.

L’étape suivante consiste a vérifier que les clusters ainsi obtenus sont bien valides.
La démarche que nous avons entreprise consiste a vérifier que les Large Sessions ainsi
regroupées restent cohérentes en terme de contenu (ou payload) de paquets. L’algorithme
proposé s’appuie sur la concaténation des différents contenus de paquets au sein d’une
méme Large Session sous forme de phrase. La distance de Levenshtein et utilisée pour
évaluer la distance entre les différentes phrases au sein d’un cluster. Une trop grande
disparité en terme de distance peut amener a diviser le cluster en de nouveaux clusters
plus homogeénes.

Remarques générales et résultats

Cette méthode a permis de regrouper 1431000 Large Sessions dans 52159 clusters, dont
8382 contiennent plus de 5 Large Sessions. Ce regroupement en activité distincte offre
plusieurs résultats détaillés dans le document, dont :

e Une étude de I’évolution des activités ciblant systématiquement les trois machines
virtuelles, ce qui peut étre associé a un balayage linéaire dans une plage d’adresses
donnée. Ce scénario, fréquent parmi les activités observées au début de ’expérience,
s’est raréfié au cours de 'année 2004, pour s’accentuer de nouveau en 2005. Cet
exemple témoigne de I'importance d’une surveillance des codes malveillants, car leur
comportement change rapidement au fil des mois.

e Une étude relationnelle entre trois types d’analyses, s’appuyant respectivement sur
1) les ports ciblés, 2) les séquences de ports ciblés et 3) les activités associées a un
port et une séquence de ports donnés. Cette analyse montre clairement qu’il est peu
significatif de produire uniquement des statistiques sur un port donné, voire méme
de se limiter & la séquence de ports.

e L’observation de l'apparition (ou disparition) de certaines activités au cours des
mois. Nous montrons dans le document, a valeur illustrative, I’observation de la
mort d’un ver. Ce ver, nommeé Deloder, a fait grand bruit dans les médias au moment
de sa diffusion, mais sa mort serait restée inapercue, sans l’effort de personnes pour

SYNTHESE EN FRANGCAIS 33

faire de la rétro-ingénierie de code (tache non triviale), ou sans une surveillance et
une distinction des activités comme nous venons de le présenter.

Identification des outils

Nous rappelons ici que le terme outil représente tout code a l'origine de l'activité ob-
servée sur I'une des plateformes. Chaque activité est associée & un ensemble de valeurs
de paramétres (discrétes ou modales). En ce qui concerne le contenu des paquets, il est
possible d’extraire une phrase résumant ceux associés a une méme activité. Les phrases
sont estimées proches selon la distance de Levenshtein. Nous nous sommes appuyés sur
le calcul de cette distance pour proposer une méthode simple de généralisation. Des solu-
tions plus complexes existent (comme par exemple 'algorithme teiresias, 'e¢hantillonneur

ELPH Gibbs, etc).

Regroupant ainsi toutes ses valeurs, il est possible de créer une fiche signalétique, ou
d’identification, des outils. Une telle fiche est présentée par la figure 3.

CLUSTER ID: IDENTIFICATION:

W32/Agobot—-GM (sophos), also known as:

Backdoor.Agobot.ld
2145 W32/Gaobot.worm.gen.k

FINGERPRINT:

* Number Targeted Virtual Machines: 1
* Ports Sequence: 2745,2082,135,1025,445,3127,6129,139,1433,5000
* Number Packets sent VM: 33
* Global Duration: 7s <t < 11s
* Avg Inter Arrival Time: < 1s

* Payloads: yes (DCOM, Netbios, WebDav)

Figure 3: Exemple de fiche signalétique obtenue

L’étape suivante consiste a associer un nom commun a chaque fiche. Cette tache n’est
cependant pas aisée, pour plusieurs raisons :

e Les outils en activité ne sont pas parfaitement connus. Certains font 'objet d’une
certaine popularité, mais ne constituent pas nécessairement la majorité du trafic
malveillant collecté. Ce besoin d’une meilleure compréhension est la motivation
premiére du projet Leurré.com.

e Suite a la remarque précédente, nous notons aussi une déconcertante uniformité
de I'information, quand celle-ci semble disponible. Les sites tendent a répandre de
I'information, non validée, et dont la source reste obscure.

e En s’appuyant sur les résultats préliminaires de notre analyse d’empreintes, nous
obtenons un ordre de grandeur du nombre d’outils observables a partir des sondes
installées, et ce, depuis quelques mois. 1l s’agit de quelques milliers de clusters (8392

34 SYNTHESE EN FRANCAIS

ont été observés comme provenant d’au minimum 5 sources distinctes). L’association
entre fiche signalétique et nom commun ne peut donc pas étre résolue de maniére
simple.

e Quelques outils ne sont que des variantes (différentes configurations et implémen-
tations) d’'un méme outil générique. Il correspondra donc & plusieurs fiches signalé-
tiques, telles que nous les concevons.

Discussion

Cette classification des activités observées conduit a des résultats intéressants, et certains
d’entre eux ont fait I’objet de publications. Il faut aussi avoir conscience que celle-ci n’est
pas insensible a des techniques malveillantes pour la contourner. Nous décrivons de tels
scénarii dans la section 4.6 du document. Les outils peuvent changer de comportement
pour tromper cette classification, mais ce changement ne sera visible que par une obser-
vation de leurs activités. Il faut alors controler certains indicateurs (nombre de nouvelles
activités enregistrées, fréquences de leur apparitions, etc), afin de détecter tout change-
ment comportemental. Ceci est une direction propre du projet que nous n’aborderons pas
dans la suite, car elle n’est pas directement liée a la problématique posée par ce document.

[’étude des empreintes d’activités nous renseigne pour conclure sur plusieurs aspects.
Parmi ceux-ci, nous pouvons citer :

e L’évolution temporelle des activités d’'un méme outil sur une échelle de temps de
plusieurs mois (années).

e La détermination d’activités propres a une unique plateforme, ou un un ensemble
(voire la totalité) de plateformes.

e [’évaluation statistique de la représentation d’une activité donnée sur une plate-
forme donnée.

e La mise en garde annoncant 1'observation de nouvelles activités.

e La corrélation qui peut exister entre les activités observées et les alertes émises par
les systémes de détection d’intrusions insérés dans le réseau hébergeur.

Chacun de ses aspects est abordé dans le projet Leurré.com, et ils restent ouverts a
I’application de nouvelles solutions et innovations.

La méthode que nous proposons, priiommée HoRaSis pourrait s’en tenir a cette classi-
fication par empreinte d’activité, car elle est ’élément fondateur pour de nouvelles études.
Il apparait néanmoins des questions récurrentes, a chacune de ces études sur les empreintes

« Peut-on extrapoler la propriété de cette empreinte a un ensemble d’autres empreintes
7%, ou «Est-ce que la propriété observée pour ces empreintes peut étre mise en relation
avec les propriétés précédemment annotées 7%

En d’autres termes, les empreintes d’activité suscitent en permanence une étude appro-

fondie. Celle-ci conduit & déterminer ou vérifier une propriété propre a I'empreinte, mais

SYNTHESE EN FRANGCAIS 35

qui n’est pas obligatoirement partagée par I’ensemble. Ainsi, certains outils implémentent
une couche protocolaire TCP propre, contenant des erreurs, ou du moins certaines car-
actéristiques, qui forment un moyen supplémentaire d’identification. Il est bon de savoir
si plusieurs empreintes possédent les mémes caractéristiques, afin de savoir si les codes a
I'origine de ces traces s’appuient sur la méme couche protocolaire imparfaite. Dans un
souci d’automatisation, nous sommes alors confronter au probléme suivant :

e Comment marquer toutes les empreintes d’activités qui possédent de mémes pro-
priétés 7

e Comment trouver rapidement toutes les empreintes qui partagent les mémes ensem-
bles de propriétés ?

e Comment ajouter de maniére rapide et aisée une nouvelle analyse (étude d’une
nouvelle propriété) aux résultats déja établis par les deux questions précédentes ?

C’est dans le but de répondre a ces trois questions que nous proposons dans la section
suivante une méthode complémentaire pour corréler toutes les analyses baties ou a batir
a partir des empreintes. Il s’agit de ’analyse corrélative.

Analyse Corrélative

Cette étape répond a la problématique précédente. Elle vise & automatiser la recherche
de relations entre des propriétés partagées par un ensemble limité d’activités. Elle permet
de conduire indiffétremment deux catégories d’analyse :

e Analyse intra-activité : Au sein d’'un méme cluster (associé a une activité), ce type
d’analyse cherche & extraire des propriétés qui sont plus spécifiques a celui-ci qu’aux
autres, afin d’enrichir nos connaissances sur le phénomeéne a 'origine de ces traces.

e Analyse inter-activité : La seconde analyse cherche a trouver des propriétés com-
munes a certaines activités, puis a les regrouper. Dans I'exemple cité dans les lignes
précédentes, ce type d’analyse permet de regrouper toutes les activités qui ont des
empreintes présentant la méme caractéristique au niveau protocolaire.

Nous cherchons donc ici a trouver tous les ensembles d’activités partageant plusieurs
propriétés. Nous voulons bien siir que ces ensembles n’oublient aucune empreinte. Dans
le cas d'une analyse intra-activité, les ensembles ne contiendront au plus qu’un élément,
a la différence d'une analyse intra-empreinte.

Pour parvenir a ce résultat, nous profitons d’une technique extraite de la théorie
des graphes. Nous ramenons le probléme a celui plus connu de la recherche de sous-
graphes complets (cliques) de poids maximum (dominant set dans un graphe. De maniére
simplifiée, il est nécessaire pour chaque analyse considérée de suivre un algorithme en 5
étapes, décrites ci-dessous dans le tableau 1. Le tableau 2 illustre chaque étape par un
exemple concret qui a été implémenté. Il s’agit de chercher toutes les activités qui ont été
lancées a partir d’'un méme groupe de pays :

36 SYNTHESE EN FRANCAIS

Table 1: Les étapes de chaque analyse corrélative
Etape Description
Définir une propriété a étudier
Représenter la propriété pour chaque activité
Quantifier sa représentation
Définir une distance pour comparer les activités
Construire la matrice de similarité entre activités
pour cette propriété

Y = | W N —

Table 2: Les étapes de chaque analyse corrélative : un exemple

Etape Description
1 Distribution des pays a l'origine de chaque activité
2 Distribution vectorielle
3 Pourcentage des empreintes provenant du pays X pour une méme activité
4 Distance euclidienne vectorielle
(ou technique du peak picking
5 Matrice nommée ici A Geo

Nous avons suivi cet algorithme pour différentes analyses. Dans le cadre de ce rapport,
nous avons pu ainsi construire un ensemble de matrices, chacune représentant 1’étude
d’une propriété particuliére, liée & une finalité donnée :

Table 3: Matrices d’analyses utilisées dans cette thése

Nom de la matrice Propriétés étudiées

A Geo Distribution des pays d’ou chaque activité est observée

A _ Env Distribution des plateformes ciblées par chaque activité
A _OSs Distribution des OSs associés a chaque activité

A IPprox Proximités des adresses IPs attaquantes
A_TLDs Distribution des TLDs (Top-Level Domains)

A Hostnames Catégories des machines attaquantes (noms de machines)
A CommonlIPs Activités lancées par des adresses IPs attaquantes communes
A SAX Evolution des empreintes de chaque activité (par semaine)

Pour chaque matrice, nous extrayons alors les ensembles de clusters (ou activités) de
taille et de similarité maximales. Afin d’effectuer chaque analyse dans un intervalle de
temps raisonnable, nous avons eu recours a une méthode proposée par Pellilo et Pavin
dans ??. Elle s’appuie sur l'itération de fonctions particuliéres, issues de la théorie des

SYNTHESE EN FRANGCAIS 37

jeux, pour accélérer la convergence vers les solutions (I’extraction des ensembles de taille
et de similarité maximales).

Une fois que ceci est appliqué a chaque matrice, il est alors possible de marquer les
activités par un label, indiquant leur attachement a la propriété étudiée. Un exemple est
fournie en figure 4.

CLUSTER ID: IDENTIFICATION:

W32.Blaster.A (symantec), also known 3
1931 W32/Lovesan.worm.a (McAffee)
Win32.Poza.A (CA)

Lovesan (F-Secure)
WORM_MSBLAST.A (Trend)
W32/Blaster (Panda)
Worm.Win32.Lovesan (KAV)

FINGERPRINT:

* Number Targeted Virtual Machines: 3

* Ports Sequence VM1: {135,4444,135,4444}
* Ports Sequence VM2: {135}

* Ports Sequence VM3: {135}

* Number Packets sent VM1: 10

* Number Packets sent VM2: 3

* Number Packets sent VM3: 3

* Global Duration: < 5s

* Avg Inter Arrival Time: < 1s

* Payloads: 72 bytes + 1460 bytes + 244 bytes

CORRELATIVE ANALYSIS:

A(SAX): clique 21
A(Env):

A(Geo0):
A(Hostnames):
A(TLDs):
A(commonlPs):
A(IPprox):
A(OSs): clique 3

Figure 4: Exemple de fiche signalétique obtenue
L’intersection des ensembles obtenus pour chaque matrice permet également de récupérer
les sous-ensembles vérifiant non plus une mais plusieurs propriétés fortes.
Découverte Automatique d’Information

Nous détaillons dans la section 6 de ce document des résultats obtenus a partir de certaines
analyses (matrices) crées ci-dessus. En particulier, nous étudions :

e A Geo

38 SYNTHESE EN FRANCAIS

e A Env

e L’intersection de A Geo et de A Env

o A SAX

e L’intersection de A SAX avec A _commonlIPs, A _Hostnames et A_OSs

A SAX est intéressante, car elle s’appuie sur une méthode innovante (SAX, pour
Symbolic Aggregate approXimation) pour comparer les évolutions temporelles des dif-
férentes activités. Elle s’intégre facilement dans I'architecture de la base de données.

Les intersections révélent aussi la pertinence de certaines analyses. Ainsi, les ensembles
obtenus en croisant les deux matrices A _Env et A _Geo regroupent des activités venant
de mémes pays et ayant ciblées les mémes plateformes. Ces activités peuvent étre par
ailleurs trés différentes en terme d’attaques (services visés, contenus des paquets, etc).
On peut y voir plusieurs raisons :

e Certaines machines mal configurées ciblent réguliérement un méme réseau.
e [l s’agit de la méme origine, ou organisation, pour toutes ces activités.

D’autres scénarii sont aussi envisageables. Il est possible de continuer ’analyse en croisant
ces informations avec d’autres complémentaires (les noms des machines indiquent-ils des
serveurs 7 etc) afin d’affiner la compréhension de ce phénoméne.

Chacune de ces matrices peut étre également remodelée par de nouvelles techniques
(séries temporelles, distances entre adresses IPs, etc) et de nouveaux outils (techniques
de détection passive de systémes d’exploitation, etc). D’autres, enfin, peuvent s’ajouter
aisément dans cette architecture.

Conclusion

Nous avons présenté dans ce document une méthode, nommée HoRaSis qui peut se ré-
sumer par la figure 5.

Des capteurs de type pots de miel ont été déployés dans divers réseaux et divers
pays dans le monde. Ils ont une configuration suffisamment légére pour permettre leur
déploiement, et un controle par des capteurs étalons plus complexes est requis pour véri-
fier périodiquement qu’aucun biais n’est introduit pas le choix des capteurs. Les don-
nées brutes, ou paquets capturés, sont collectés grace au projet Leurré.com, et stockés
dans une base de données dédiée. Les paquets liant une Source (terme qui qualifie une
adresse TP dans une fenétre de temps court) a un capteur forment une Large Session.
Les Large Sessions sont les représentations de différentes activités. Nous regroupons
alors toutes les Larges Sessions partageant des paramétres similaires qui caractérisent
I'empreinte d’une activité. A ce stade, sur la premiére ligne de la figure 5, nous avons
regroupé toutes les activités qui partagent une méme empreinte sur au moins un capteur.
Ensuite, nous appliquons différentes analyses, qui se construisent, chacune, sous la forme

SYNTHESE EN FRANGCAIS 39

é

Large-Sessions d’activitée gy

> PHASE DE
. DISCRIMINATION

I
@
O
fm

i

Qe
Ensembles . Pidentité

Qlagthg dominants "

ANALYSE
> CORRELATIVE

i
%

Figure 5: Schéma de la méthode HoRaSis

d’'un graphe pondéré entre les différentes activités identifiées. La méthode est automa-
tisée grace a une technique de la théorie de graphes, nommeée "extraction de graphes
dominants". Nous obtenons in fine une cartographie des différentes activités observées
sur chaque capteur, ainsi que 1’ensemble des propriétés les liant (ou les différenciant) des
autres. Cette méthode répond aux critéres initiaux d’'une méthode HoRaSis.

Nous avons montré au moyen d’un ensemble conséquent de données que cette méthode
apporte une solide fondation pour accroitre les connaissances des activités observables sur
Internet.

Cette approche ouvre aussi différents axes de recherche, notamment :

¢ Quelles relations peuvent exister entre des observations trés générales (télescopes)
et locales comme celles du projet Leurré.com 7 Sont-elles modélisables 7

e La configuration actuelle des plateformes est statique. Existe-t-il un moyen d’intégrer
un certain dynamisme des configurations dans la méthode présentée 7 Cela est
d’autant plus important que les applications et les systémes d’exploitation ont des
versions changeant plus rapidement que la durée totale de notre analyse, qui peut
s’étaler sur plusieurs années.

e La récupération d’information contextuelle est utile, mais pas suffisamment con-
sidérée par la méthode HoRaSis décrite dans ce document. Elle peut se formuler,
cependant, aux moyens de matrices ou graphes de similarité, et s’intégrer dans
I’analyse corrélative choisie.

40 SYNTHESE EN FRANCAIS

Il n’est pas extraordinaire de finir une thése par une ouverture vers plusieurs axes de
recherche. Au contraire, cela nous conforte dans 'idée qu’il existe un besoin évident pour
mieux comprendre les activités qui surviennent, et que la méthode proposée, nommée
HoRaSis, offre une bonne fondation pour continuer sur cette voie. Elle permet déja
de répondre a un certain nombre de questions, et d’offrir de solides bases pour essayer
de répondre a d’autres. Nous invitons maintenant le lecteur a se reporter directement
au document, si 'anglais ne l'effraie pas, pour de plus amples détails concernant les

techniques de la méthode et les résultats obtenus.

Chapter 1

Introduction

Security is a global concern in many domains of activity. Internet has the particular
property of connecting people in quite an anonymous way and without strong traffic
control. This advantage has also major drawbacks: malicious activities can take large
amplitudes and have catastrophic consequences. As an illustration, it has been shown
by Staniford et al. in [215| that a worm could saturate, in theory, 95% of one million
vulnerable hosts on the Internet in 510 milliseconds. Another example is the increasing
threat of electronic fraud that can result in losses reaching several millions of dollars per
year (a cost of $150 million has been reported by the Commonwealth Government in 2001
in [106]). Internet makes large-scale crimes and devastating damages possible. It is thus
really important to acquire a good understanding of threats and attack strategies. One
method to obtain this knowledge is the monitoring and analysis of malicious activities, and
it must be performed at a large scale to gain a global understanding of those phenomena.

This method is currently tried by means of numerous techniques, some of which belong
to the category of so-called honeypots. Honeypots, honeytokens and honeynets have been
used for some time in computing systems even if the use of this terminology is recent. In
the late 80’s, Clifford Stoll [218] had the idea of placing interesting data in appropriate
places to lure hackers. This idea is now formalized as a honeytoken by Lance Spitzner
[214]. In the 90’s, Cheswik implemented and deployed a real honeypot [72]. Bellovin
discussed the very same year the advantages and problems related to its usage [50]. In
1998, Grundschober and Dacier introduced in [107] the notion of sniffer detector, one of
the various forms of what is also called today a honeytoken. As an attempt to clarify the
terminology, Lance Spitzner has proposed the following definition for a honeypot [214]:

A honeypot is an information system resource whose value lies in unauthorized or
illicit use of that resource.

This definition will be used throughout this thesis. The main advantage of so-called

2 1. INTRODUCTION

honeypots is their intrinsic capacity to collect suspicious traffic only. In the last decades,
all logs were mixed with production traffic, which made it difficult for security adminis-
trators to determine the malicious activities. This issue is now bypassed by honeypots.
During the last three years, a lot of work has been done to design safe and useful honeypot
architectures, that is, systems which are able to capture relevant information, from simple
scan packets to IRC communication of the hacker without any danger for the network.
Solutions are diverse and honeypot technologies are already used in a large variety of
domains, from the major antivirus companies to governmental and international organi-
zations. Monitoring malicious activities and reporting anomalies can be directly linked
to some governmental initiatives and organizations such as the various Computer Emer-
gency Response Teams (CERT™ou CSIRSTs) in many countries including France, US,
Japan, Australia, Korea, Malaysia, Germany, etc!. Alternatively, governments promote
privately-funded information sharing agencies, both for work related to overall network
concerns and for specific sector-based needs. For instance, the UK is handling the Warn-
ing, Advice and Reporting Point (WARP) work to establish an interdisciplinary network
to share critical security information. Other countries (the US, Canada, Japan, Germany,
and Netherlands) have established industry-specific Information Sharing and Analysis
Centers (ISAC) to serve a similar purpose.

Unfortunately, very few efforts are made to share information collected from these
honeypots, except for some emerging challenges between security experts [35]. On the
other hand, collective data exist from other initiatives like Dshield, MyNetWatchman
or the Computer Network Defense Operational Picture [34]. These initiatives present
informative statistics on attractive web pages, but the original source of information
is not always clear. They invite any and all Internet users to send their firewall or
Intrusion Detection Systems (IDS) logs in order to extract basic statistics out of them.
The information is thus quite limited (hits per port), and contain statistics of not only
malicious but also production traffic.

Thus, honeypots are a more valuable source of information than other existing tech-
niques. Unfortunately, as we will explain in detail in the following chapter, a large effort
is made toward optimizing their architecture, but few initiatives have emerged to organize
and take benefits of the richness of the data. It is important to note that all the traffic
collected by honeypots is by definition suspicious, so the analysis should not be biased
by high false positive rates. In addition, the existing analyses are often limited to solving
a particular problem. They can be techniques to monitor distributed Denial-of-Service
attacks, fast and large scans, or typical attack scenarios. Most of the monitoring tech-
niques have been implemented by the members of the Intrusion Detection community.
However, the approach is slightly different with honeypots, as all collected traffic remains
suspicious. False positives are therefore not the major worries anymore, whereas it is still
the case with the majority of Intrusion Detection techniques.

!The European Commission recently established the European Network and Information Security
Agency, ENISA, to coordinate the national efforts on cybersecurity and to serve as an advisory unit to
the Commission and its component parts.

1. INTRODUCTION 3

Observation: Honeypots are now widely deployed and technically mature. Analysis
techniques, on the other hand, are really immature and targeted for solving particular
problems.

From this observation, we have decided to build our own honeypot environment in
order to collect such valuable data. The major motivation is that there is no trace of
malicious data from honeypots that is publicly available and opened for analysis. This
has been done through a project called Leurré.com 2, which has involved many partners
from various countries and generated great enthusiasm from the security community [185].
Thanks to this informal consortium, we have managed to collect a huge amount of data
from various honeypot sensors. It is important to note here that it represents a unique
dataset of information, which is public® and that contain many months (years) of collected
traffic. We are not aware of any other datasets like this one at this time writing.

Hypothesis: We have a unique set of data at our disposal, that represents malicious
activities collected in various places in the world and from different network types.

What can we do with such valuable data? People have worked on lots of traffic analysis
techniques. We can cite standard tools for network traffic monitoring like netflow ([75]),
tecpdump ([17]), simple stats, or more complex but too specific theoretical methods. Noth-
ing specific to honeypot data has emerged, and, more importantly, nothing constructive
has been suggested as a basis to work on and exchange information. We can wonder at
this stage if such dataset contain useful and original information, that would be hardly
found by other approaches. If the answer is positive, could we identify such information
in an automatic way? In short, we look for a potential framework, that would automatize
the adequate analysis of such data. This framework, if it exists, will be called HoRaSis,
as the bases for Honeypot tRaffic analySis.

Thesis Statement: In this thesis, we want to show that:

e a distributed network of simple honeypots provides valuable data for the analysis
and evaluation of threats and attack strategies.

e there exists an automatic way to extract information which seems relevant. Such
framework will be called HoRaSis, for Honeypot t Raffic analy Sis.

Honeypots offer a particular set of data, that might require a dedicated analysis tech-
nique. This claim will be justified in the first chapters through preliminary and promising
experiments carried out on the data. Based on the acquired experience, it becomes clear
that we need to develop a framework (called Honeypot Traffic Analysis or HoRaSis) to
do automated analysis by means of a distributed network of honeypots. This framework
should be an open one, that is, available for other potential analyses not yet performed.

2leurré = ’to lure’ in French; leurré.com = allusion to the Eurecom Institute.
3For any partner that agrees to host one of our platforms, see Chapter 3.

4 1. INTRODUCTION

HoRaSis must be an efficient framework that has to be validated through a dataset
of honeypot traffic. The analysis is at the junction of many research domains, and the
potential framework will not pretend to test all the research directions. From another
point of view, the hypothetical HoRaSis should be open to several improvements by
means of a modular structure. In a more general manner, the HoRaSis framework must
fulfill at least the following requirements:

e Validity: A few analyses tasks have been performed manually, by digging into the
data and pulling Ariadne’s clew. This task, even tedious, has provided interesting
observations. We thus impose any HoRaSis framework to show up these preliminary
observations. There should not be any contradiction with manual analysis, and we
expect, a contrario, an enrichment of these preliminary observations, as detailed by
the next property.

e Knowledge Discovery: This property is clearly related to the previous one. We
assume that manual observations might not be the unique ones. The HoRaSis
framework must bring new and original knowledge. This new knowledge could
be validated of course by complementary manual analysis and would justify the
automation of analysis processes over the dataset.

o Modularity: The HoRaSis framework should cover several research domains. Indeed,
we can easily identify several major distinct research branches such as Networking,
Security and Data Analysis, and dozens of subdomains from which the framework
might borrow techniques and algorithms. New techniques are constantly emerging
in all of these fields. As a consequence, it is important that the framework presents
a modular architecture. It will be easier, in this situation, to take advantage of
new technologies by integrating them into the existing framework, and eventually,
compare them with the ones already implemented.

e Generality: Collected data can drastically change with the appearance of new
threats and new attack processes. The HoRaSis framework should consider that
the analyzed data is evolutive. We should thus avoid building the framework on
parameters which are related to particular data characteristics. In other words, the
framework should be adapted to other types of dataset.

e Simplicity and Intuitiveness: The HoRaSis framework must extract information
out of a given honeypot dataset (in this case from the Leurré.com project). The
recipient of the information remains the analyst, who relies on the analysis to derive
observations and decisions. It is thus important for the analyst to precisely under-
stand the different steps which have led to this information discovery. The HoRaSis
framework must avoid including opaque techniques, or magic black boxes.

It is proved in this report that such a framework exists and it has helped us finding
other valuable results on malware activities. The proposed HoRaSis offers an automatic
way to validate (or invalidate) these assumptions.

1. INTRODUCTION 5t

Thesis Contributions: The thesis contains the following contributions:

e Deployment and administration of a distributed honeypot architecture to collect
data.

e Conception of a framework called HoRaSis to analyze honeypot data.
e Creation of new techniques to deal with honeypot data properties.

e Validation of the HoRaSis framework based on results obtained in a preliminary
step by digging into the data.

e Presentation of new findings about monitored activities. Some of them have been
clearly identified, others are new questions addressed to the security community.

To summarize, the thesis can be mathematically symbolized by the following problem
statement:

e HYPOTHESIS: A honeypot architecture deployed to collect data.

e INPUT: A large volume of network traffic, all packets being malicious or at least
suspicious.

e PROBLEM: 1Is this new source of information valuable? If so, how to build a
reproductive, useful, valid and open analysis framework (HoRaSis) out of this?

In a concrete manner, HoRaSis is made of several important steps, that are illustrated
in Figure 2.2. Steps 1 and 2 are the deployment and collection of information from
honeypots. This work has been built on top of an academic initiative called the Leurré.com
project. For a better understanding of the HoRaSis method, this project is detailed in
Chapter 3, after an overview of existing approaches, both for monitoring and analyzing
malicious traffic, presented in Chapter 2. The reader can find the details of the proposed
HoRaSis that consists of steps 3 and 4 in Figure 2.2 in Chapters 4 and 5 respectively.
Step 3 aims at grouping activities sharing some identical patterns, that is, all IPs sharing
similar fingerprints on the honeypot sensors are identified and clustered. This is described
in Chapter 4. In Step 4, we aim at analyzing the relationship between such groups based
on a dedicated graph method. All fingerprints observed on the sensors which present
common characteristics are automatically detected and analyzed. The method is carefully
described in Chapter 5. Finally, Step 5 is the outcome of the proposed HoRaSis, the
valuable and concise information the expert can exploit and share with the community.
Each chapter is illustrated by results obtained from the Leurré.com dataset.

Steps of the HoRaSis framework are represented in Figure 2.2, together with the
corresponding Sections.

1. INTRODUCTION

HONEYPOT SENSORS CAPTURE & STORAGE CLUSTERING STEP GRAPH ANALYSIS EXPERT CONCLUSION
step 1 step 2 _step3 step 4 step 5
@
—. . e ¥
= 0000000 ®
Chapter 2 Chapter 3 Chapter 4 Chapter 5

Figure 1.1: Distributed Honeypot Sensor Analysis

Chapter 2

Background and Related Work

An deus immensi venias maris, ne tua nautae

Numina sola colant, tibi serviat ultima Thule.

(Virg., Georg.,i,29.)

(Explanation: The Ultima Thule was, in ancient times, the
northernmost region of the habitable world -

hence, any distant, unknown or mysterious land.)

2.1 Background

2.1.1 Introduction

Monitoring malicious traffic is an important step to build efficient defensive techniques.
Building a very high wall will take time but will be totally inefficient against underground
intrusions. Knowing the enemy and his strategies is an important step that seems to
be underestimated by many companies today [213, 144, 168]. Some vendors produce
more and more complex boxes, integrating brand new technologies. However, it seems
important, as a preliminary risk assessment, to get a very good feeling of the current
threats.

HoRaSis is a framework we are looking for to analyze data obtained from honeypots
in order to take benefit of the data intrinsic properties. Many techniques and projects
are currently focusing on capturing malicious traffic. In other words, they intend, like
honeypots, to capture meaningful data of suspicious activities. In parallel, many existing
solutions from various research domains have already been applied to perform analysis of
abnormal activities occurring in the wild. Thus, for a better understanding of this work

8 2. BACKGROUND AND RELATED WORK

motivations, we briefly introduce these techniques in this section. However, as they are
not clearly related, we prefer to distinguish the two categories separately:

1. Techniques which aim at capturing original traffic

2. Techniques which aim at performing original but specific analysis

“I keep siz honest serving-men (They taught me all I knew); Their names are What
and Why and When and How and Where and Who.” ("The Elephant’s Child", Rudyard
Kipling, Just Stories 1902).

These six questions are often tools we as humans use in an attempt to gain knowledge.
The same principle will be followed to better understand malicious Internet activities.
“What” is what we call “monitoring malware activities” and will be defined in Section
2.1.2.

“Why” and “When” and “Where” are discussed in Section 2.1.3.

“Who” is discussed in the Related Work Sections 2.2 and 2.3.

“How” is the major contribution of the thesis which presents a new manner to operate.

2.1.2 Monitoring Malware Activities

It has been heard that "knowledge will set you free". When it comes to real-world
network security, this phrase takes all its meaning. One can make a short experiment.
If someone asks her friends or her network administrator the following question: “do you
know what kind of attacks your machines are facing?”, she will normally get the usual
responses, including "well, the traditional worms, you know, Blaster, etc.", or "I do not
know exactly. We have set up firewalls, antivirus, intrusion detection systems. They are
doing their job quite well". The knowledge that can be acquired on pernicious activities
normally comes by trusting the information spread over the Internet and the defense tools
designed by specialists.

To handle this problem, many people are using network monitoring approaches!, as

defined by Bejtlich et al. in [47, 46] with the NSM acronym (Network Security Monitor-
ing). He defines this activity as: the collection, analysis, and escalation of indications and
warnings to detect and respond to intrusions.
Machines are interconnected within networks. It is thus possible, by looking at the con-
nection level, in theory, to see everything. Unfortunately, there also exist many problems
to monitor all activities, like encrypted packets, a large complexity in terms of protocols,
standards and implementation bugs. It is also not sufficient to collect the data, without
understanding what is under scrutiny. The analysis is a straightforward step to acquire
useful knowledge of collected data.

'Historically applied for the Network Management tasks and the Performance Evaluations.

2.1. BACKGROUND 9

In the following, the focus is put on existing methods that aim at capturing and
analyzing useful data, with the admitted goal of improving the knowledge of existing
network threats.

2.1.3 The Purposes

There are many reasons why one would wish to monitor malicious activities, as stated in
the previous paragraph. Among other things, we distinguish five major domains which
may benefit from such a knowledge:

1. To build early warning systems: it is important to react fast against new threats,
and at least, limit their overall impact.

2. To ease the alert correlation task: the administrator receives too many alerts from
different systems in real time. A review of the state of the art of the correlation
techniques has been described in [189, 188], however, most of them remain very
basic or too theoretical.

3. To enforce the security policies toward the new threat trends: a concrete example
can be found with the PacketScore project [127]. The authors prioritize packets
based on a per packet score which estimates the legitimacy of a packet given the
attribute values it carries. This is based on the distinction of nominal attribute
value.

4. To perform tracebacks and forensics, in order to determine the root causes of the
attacks and find the culprits: this is an important step for law enforcement, even if
this technique might present social and legal problems in some cases, as reported in
[137].

5. To confirm or reject some assumptions: for instance, the author explains in their
report for the SANS GIAC Institute ([219]) that an army of more than 100,000
machines exist, but he does not bring any concrete proof for this claim that would
let the reader check its validity.

There already exist several and various sources of information which intend to collect
malware activities. They often differ in the way the system is positioned and the type
of information it is collecting. Traditionally, approaches to threat monitoring fall into
two broad categories, host based monitoring and network based monitoring. Host based
techniques fall into two basic approaches, forensics and host based honeypots. Antivirus
software and host based intrusion detection systems seek to alert users of malicious code
execution on the target machine by watching for patterns of behavior or signatures of
known attacks. Host based honeypots track threats by providing an exploitable resource
and monitoring it for abnormal behavior. A major goal of host-based honeypots is to

10 2. BACKGROUND AND RELATED WORK

provide insight into the motivation and techniques behind these threats. The second
monitoring approach is to observe threats from the network viewpoint. Passive network
techniques are characterized by the fact that they do little to intrude on the existing
operation of the network. By far the most common technique is the passive measurement
of live networks. They fall into three main categories: data from security or policy
enforcement devices, data from traffic characterization mechanisms, and direct sensing or
sniffing infrastructure. By either watching firewall logs, looking for policy violations, or
by aggregating IDS alerts across multiple enterprises, one can infer information regarding
a worm’s spread. Other policy enforcement mechanisms, such as logs from router ACLs
provide coarse-grained information about blocked packets. Data collection techniques
from traffic planning tools offer another rich area of pre-existing network instrumentation
useful in characterizing threats. Coarse-grained interface counters and more fine-grained
flow analysis tools such as NetFlow offer another readily available source of information.

We propose in the following to give a short overview of all existing techniques. As
previously written, most of them tend to focus on one direction only, either monitoring
activities or analyzing collected information. It seems thus easier to split the related work
description into two major branches:

e Techniques which aim mainly at collecting traffic. They are presented in Section
2.2.

e Techniques which aim mainly at analyzing collected traffic. They are presented in

Section 2.3.

A summary of the state of the art is offered in Section 2.4 and justifies the thesis position.

2.2 On the Capture of Relevant Traffic

2.2.1 Honeypots, Honeynets, Honeytokens

Many projects derive from the honeypots and other honeypot-based architectures. It
seems thus important, as a preliminary step, to clarify the terminology used. The inter-
ested reader can report to the two technical reports we have written at the beginning of
this work, and that aimed at clarifying the terminology in use in the literature [190, 191].

A methodology has been proposed for students’ practical works in [202]. We will con-
sider indifferently, in the following, these three terms, and will employ the only honeypot
word, following the definition suggested by L. Spitzner in [212], which is:

A honeypot is an information system resource whose value lies in unauthorized or
illicit use of that resource.

2.2. ON THE CAPTURE OF RELEVANT TRAFFIC 11

How to architect a honeypot depends on the objectives it has to fulfill. A complex
honeypot can be built to give the attacker a complete operating system with which he
interacts. However, for detecting any unauthorized activity such as scanning, a simpler
honeypot which merely emulates a variety of services in operation can be built. However,
when capturing the latest worm for analysis is the main requirement, then a customized
honeypot with the intelligence to interact with the worm and capture its activity is more
appropriate. A honeypot can offer many different functionalities and the level of inter-
action they offer to attackers is important. It is supposed to give a granular scale with
which to measure and compare honeypots. The more a honeypot can do and the more
an attacker can do to a honeypot, the greater the information that can be derived from
it. However, by the same token, the more an attacker can do to the honeypot, the more
potential damage an attacker can do. We distinguish two different levels of interactions:
respectively low and high.

A low-interaction honeypot is a computer system that provides certain fake services
[44]. In a basic form, these services can only be implemented by having somebody listening
on a specific port. Services are limited to listening ports. For example a simple Unix
command like: netcat — I — p80 > /log/honeypot/port 80.log could be used to listen on
port 80 (HTTP) and log all incoming traffic to a log file. In such a way all incoming
traffic can easily be recognized and stored. However, with such a simple solution it is not
possible to catch communication of complex protocols. The honeypot cannot trace TCP
connections for instance as it logs only the first connection requests without answering.
Another solution consists in building simple fake services that emulate a machine behavior.
Generally speaking the attacker gets a better illusion that a real operating system exists
and he has more possibilities to interact and probe the system. Special care has to be
taken for security checks as all developed fake daemons need to be as secure as possible
(buffer overflow risk, etc). Furthermore the knowledge for developing such a system is very
high as each protocol and service has to be understood with expert details. In existing
implementations though, fake services are often limited to simple scripts. Honeyd, Specter
and LaBrea are honeypot solutions that can be classified as low-interaction honeypots (see
[190, 191] for more information on these tools).

On the contrary, a high-interaction honeypot has a real underlying operating system
to offer to the attacker. This leads to much higher risk as the complexity increases.
On the other hand, the possibilities to gather information, the possible attacks and the
attractiveness increase a lot. The goal of an intruder will most likely be to get as many
privileges as possible on the target machine. By providing a full operating system to
the attacker we offer him the possibility to upload and install new services/applications.
This implies that the system must continuously be under surveillance. All actions can,
and must, be recorded and analyzed to gather more information about the blackhat
community.

Lance Spitzner explains that: “(his) perception of low interaction vs. high interaction is
intent”. With low interaction, we intend on limiting the attacker to only emulated services.
With high interaction honeypots, we intend on giving attacker access to the full operating

12 2. BACKGROUND AND RELATED WORK

system. Both deployments require a real operating system. With low interaction, the
emulated services do run on a real operating system, as in Tiny Honeypot, Specter, and
Honeyd [25, 9, 190]. However, the goal is to limit the attacker to interact with just the
emulated services and not give them access to the operating system.

Honeypots are often generic names to define such architecture that follow the definition

of L. Spitzner, and which remain, actually, very close to Intrusion Detection Systems, as
they incorporate one or many of the following functionalities:

Data collection

Malicious activities Detection

Logging capabilities

Analysis techniques

e Decision and Reaction

Their originality mainly lies on the particular traffic they are monitoring, as it consists,
echoing previous paragraphs, in data representing suspicious traffic only.

2.2.2 Darknets, Telescopes, Blackholes
CAIDA’s Network Telescope

The Cooperative Association for Internet Data Analysis, also called CAIDA, has devel-
oped particular honeypots, called network telescopes. They define a network telescope as
a portion of routed IP address space in which little or no legitimate traffic exists. Thus,
monitoring unexpected traffic arriving at a network telescope provides the opportunity to
view remote network security events such as various forms of flooding denial-of-service at-
tacks, infection of hosts by Internet worms, or network scanning. As the authors mention
in [158], network telescopes were named as an analogy to astronomical telescopes, and in
both of these cases, have a large size (fraction of address space or telescope aperture).
The ranges can be quite large (e.g. a /8 prefix corresponds to 16 million addresses), and
telescopes cannot be used by anyone in practice. The telescopes used by CAIDA also
assume that the telescope is monitoring contiguous range of address space. In terms of
probability, they can extrapolate this way the monitored activity, based on the fact that
for an IPv4 network of size /x, the probability of monitoring a chosen target is given by:
Dy = 2% This unique observation has lead to interesting worm studies, like:

e the Saphire/Slammer worm [159, 156]

2.2. ON THE CAPTURE OF RELEVANT TRAFFIC 13

e the Witty worm [157]
e the Code Red and Code Red II worms [22]

Telescopes are also very useful to detect and observe large Denial of Service attacks,
as spoofed Source IP addresses involve a large range of IPs, and result in an important
number of packet residues called backscatters. Such studies have been presented in [160,
162].

The extrapolation task is meaningful for all attacks that are involving the whole IPv4
address space, but this global approach might present a few limitations:

1. The probabilistic model does not sometimes hold, for the reason that some IP space
regions are inexistent or not routed. Such IP spaces are commonly called the bogons
[97]. These addresses, and other unallocated blocks are not taken into account in
the probabilistic model.

2. Many attack tools are source-dependent and target nearby addresses. This has been
shown in the Cod Red II propagation strategies [243], and it has also been confirmed
by some experiments in [67] that a few attacks are specific to particular networks.

3. The coding of the worm might contain some bugs, especially the pseudo-random
number generator. This can introduce a bias in the probabilistic model.

4. The amount of collected information is colossal, especially if the analysis needs to be
performed over several months. It is not explicitly mentioned how telescope-based
systems manage to store such data, but it either requires huge memory capacities
and lookup resources or it is based on the NetFlow aggregated information. In this
last case, some information might reveal to be missing during punctual experiments
(see Section 2.3.2).

The CAIDA’s Network Telescope is a very high-level monitoring system. This ap-
proach has led to noticeable results and we are convinced it has opened large avenues for
investigation [76, 161]. This technique has also been deployed in other research projects
that we detail in the next sections. However, despite these benefits, the huge amount of
data is an important limitation for performing lower-level analyses. Furthermore, deter-
mining how the CAIDA members organize data is difficult. We can imagine that there also
exists potential privacy issues, as the telescope should monitor some production traffic
despite the fact that the range of IPs is theoretically unused. These two major drawbacks
have motivated the creation of the Leurré.com project described in Section 3 and the need
to organize efficiently the collected data and gather experience on the traffic over a long
period of time (in terms of months, and even years).

Finally, we want to mention the interesting initiative launched by the CATDA members
and called the Internet Measurement Data Catalog (IMDC) [77]. This initiative is not

14 2. BACKGROUND AND RELATED WORK

directly related to the Telescope approach, but it aims at building a system that would
facilitate access, archiving, and long-term storage of Internet data as well as sharing the
data among Internet researchers. CUrrently, though, they only share meta-data, that is,
outcome of analysis (which makes the work on it not always simple). Concerning malware
analysis, they offer at this time an access to backscatter? data from the UCSD network
telescope. Unfortunately, they currently offer researchers only three weeks of DoS attacks
data from January 2001. Despite this, the authors mention in [77] the same underlying
motivations for network measurement research than those we defend in this thesis: a lack
of meaningful and organized data to be shared with the community. This problem of data
availability is recurrent for all considered solutions in the following.

The Internet Motion Sensor: IMS

The Internet Motion Sensor is a project from the Michigan University that utilizes a
distributed sensing network based on the monitoring of globally routable but unused
address space. The concept is similar to the Network Telescopes. To make things shorter,
this technique has a variety of other names including network telescopes, darknets, and
blackholes. Each blackhole sensor monitors a dedicated range of unused IP address space
[27, 82]. As the architecture was deployed to monitor quite large TP Address spaces (/8,
/16 and /24 networks), the authors do not have the capacity to log all packet information.
In their defense, they have developed an efficient technique to manage the overhead of
storing payloads. However, the project remains limited to traffic collection and storage.
The analysis consists in some statistics and, as presented in [82], the analysis of a worm
is restricted to the statistics of a single port and to the counting of packet payloads
matching the signature of that particular worm. It is hard at this stage to make stronger
comparisons between the sensors than the ones they have deployed.

However, Cooke et al. have presented an interesting study based on simple criteria
in [81]. They use 10 large IMS sensors in different networks, belonging to major service
providers, large enterprises and academic networks. Then, the authors have compared
the observed traffic on each IMS according to three dimensions:

e Over all protocols and services (ports): they have concluded that the amount of
traffic (between sensors) varies dramatically and can differ by more than two orders
of magnitude between sensors

e Over a specific protocol (TCP) and port (135): this time, they have concluded
that there are large disparities between the number of unique source IPs seen across
platforms, and that these differences correlate with differences in overall traffic.

e Over a worm (Blaster) signature: they finally have concluded that there are still
significant differences in the number of unique sources between sensors.

2Backscatters are residues of Denial of Service attacks.

2.2. ON THE CAPTURE OF RELEVANT TRAFFIC 15

This work has highlighted the fact that the CAIDA’s approach, which extrapolates a large
IP traffic observation into the whole Internet, cannot properly hold. First, there might
be inhomogeneous activities within the monitored IP range. Second, there can be dissim-
ilarities between TP ranges. This is another interesting justification of the deployment of
smaller and more local sensors. The Leurré.com Project we have developed over the last
years in order to collect valuable data is based on the same principle. Local positioning of
honeypot sensors might bring different, or at least, complementary and valuable informa-
tion. This partially explains the decision to develop a distributed architecture of sensors,
instead of a global monitoring system like the telescopes presented in the previous section.

The information is not centralized. Each IMS sensor is responsible for gathering and
archiving data, performing queries on its local data store, and generating alerts that are
sent to a third element called aggregator. In this distributed storage environment, it
seems hard to make cross sensors analysis, except on a few global statistics.

Team CYMRU’s Darknet Project

A group of researchers founded in 2004 the Team CYMRU, Inc. One of their apparent
objectives was to share their security experience with the community. They have launched
the TEAM CYMRU’s Darknet Project and have provided all the directions in their web
site to settle such an environment [87]. The principle is also very close to the Network
Telescope®. The authors’ recommendations can be found on their web page: At a mini-
mum we recommend a /24, though smaller address space - even up to a /32 - will work.
This unclear requirement is completed by the directions to configure the router and to
monitor the traffic. They give poor information, however, on the techniques to analyze
the data. They only suggest to create simple garbage meters based on the traffic entering
the Darknets. Figure 2.1 found on their web page illustrates such a metric. It shows sim-
ple statistics on the number of packets received per second (pps) on each sensor (noted
DARKXX in the Figure). It is worth noting that values vary a lot among Darknets. It
remains coherent with the remarks made in the previous section. However, one more time,
a prevalent effort is made to build a useful architecture for monitoring malicious traffic,
but no real effort is made towards the analysis.

iSink

Among systems that monitor large unused address spaces like the ones previously de-
scribed, we can also mention iSink, developed by the University of Wisconsin-Madison
[235, 236]. A large effort has been made on the architecture interaction provided by
the Active Sink built on the Click elements [12]. The monitoring and analysis parts are
based on measurement tools, like MRTG [167], FlowScan [1], and Argus [13]. These tools

3Team Cymru is also a collaborative member of CAIDA.

16 2. BACKGROUND AND RELATED WORK

Team Cymru Darknets Total Traffic Overview (packets week)

-

i ""\'

i, P
i i FI..'-'-.'l" iy “?\I'I'I“ !‘I:f*ﬂ'.'ﬁiw ll"d_“lu""q*l.’l.'-_""-ﬁ‘!ud
' I;u‘Fl.lﬂ-\lll'nl!JF .. M’r-ﬂ'\‘\'\;‘-ﬂf‘? ' ']

packets/sec

| ’
ikl wwﬁ’m'.#.-

Sun Mon Tue Wed Thu Fri Sat Sun Mon

[DARKGL (1,536 IPs) packets per second - currently 3.7 pps

[DARKOZ (262,144 IPs) packets per second - currently 198.0 pps
O DARKGZ (2,560 IPs) packets per second - currently 3.2 pps

[DARKG4 (65,536 IPs) packets per second - currently 22.4 pps
[DARKOS (32,768 IPs) packets per second - currently 64.9 pps
@ DARKGE | 256 IPs) packets per second - currently 440.1 pps
O DARKGY (131,872 IPs) packets per second - currently 700.6 pps
[DARKGE (131,072 IPs) packets per second - currently 80.9 pps

Figure 2.1: Darknet Traffic Garbage Meter from [87|

provide valuable flow level information and can deal with large packets traffic (iSink col-
lects unsolicited traffic destined for approximately 100,000 unused IPv4 addresses within
4 class-B networks). The authors gather statistics concerning inbound traffic (bits or
packets per seconds), TCP flows and other traffic measurement metrics. This provides
interesting remarks on the traffic, like the packet sizes, which are relatively constant, and
the number of bytes and packets which follow a predictable ratio, one reason being the
important volume of TCP traffic. These measurement tools cannot be considered stricto
sensu as malware analysis tools. They provide interesting pieces of information but are
intrinsically not sufficient to identify, and thus to understand, malware activities.

MINOS

Minos is an emulation tool proposed by the University of UC Davis that presents the
advantage of tagging network data considered as low priority, and then propagating these
tags through filesystem operations and the processor pipeline to potentially raise an alert,
whenever low integrity data is used as control data in a control flow transfer [84]. It
implies a tuning at the processor level and the operating system.

Thus, Minos is by definition a host-based intrusion detection system. In [85], the
authors have deployed it in machines plugged in the wild, to use its features as a honeypot.
However, this architecture is very specific to monitor attacks that intend to hijack the
control flow of the CPU. The authors provide in [85] few examples of buffer overflow
exploits against services like SQL Server 2000, Linux wu-ftpd, etc. The monitoring of the
activities is restricted to Minos alerting system and assembly codes. The capture process
is here very close to a detection mechanism.

2.2. ON THE CAPTURE OF RELEVANT TRAFFIC 17

Lobster

Lobster (for Large Scale Monitoring of Broadband Internet Infrastructure) is a European
project with a research Consortium (including among others the greek FORTH foundation
and the University of Amsterdam) that aims at deploying a pilot European infrastructure
for accurate Internet traffic monitoring [60]. In order to support collaborative passive
network monitoring across a large number of geographically distributed uniform access
platform sensors, Lobster is based on a distributed uniform access platform, which pro-
vides a common interface for applications to interact with the distributed monitoring
sensors. This interface is build onto the Monitoring Application Programming Interface
(MAPI), while the network monitoring system is called SCAMPI (SCAlable Monitor-
ing Platform for the Internet [83, 166, 86, 55]). A great effort has been made during the
project on the technical architecture of the traffic capture, as it can handle high-speed net-
work cards (10 Gbits/s) and has been directly implemented in some Network Processors.
The architecture can also measure network performance and behavior at high-speeds, in
order to feed billing components. First, this architecture has not been designed to collect
malicious traffic only. This is thus not a distributed honeypot architecture, by definition.
Second, the analysis of malicious traffic is handled by a dedicated Network Intrusion Sys-
tem (IDS) using converted Snort rules. As a consequence, and despite its title, this project
remains quite far from the initial problem statement we have defined, as the monitoring
of malicious activities remains limited to the observation of the snort alerts.

2.2.3 Logs Sharing

There are some other approaches very similar to monitoring consoles, which differ from
the origin of the data. Unlike monitoring consoles that aim at representing logs and alerts
issued by the active security elements of the supervised network, these approaches collect
data from... everywhere. Anyone who is willing to send data registers, installs a small
software that periodically sends data. Then, some scripts parse these datasets, grabbing
a small number of elements, like the targeted services, the number of observed different
IPs, etc. Among these approaches, we note the interesting projects called WormRadar,
Internet Storm Center from the SANS Institute, Dshield, MyNetWatchman [36, 33, 5,
163]. They give a very good overview coming from different profiles, and are thus, useful
to get a first hint on the malicious activities happening in the Internet. However, they
collect logs from any network. Thus, all these projects make the assumption that what
they receive in the logs is a good representation of global activities. Such an approach
presents a few inconveniences:

e They trust all entities that send their logs.

e They mix security policies filtering and malware activities.

18 2. BACKGROUND AND RELATED WORK

e We have no information on the exact source of the information (academic, military,
industry network?)

e They do not give explanations on how they extract information from these various
log formats.

e They make simplistic links between activities on a given port and worm names.
However, many malware can take benefits of the very same port; the same malware
can be characterized by activities on many ports ...and vice-versa.

e There is no way to dig into the data. The analysis remains limited to the plotted
statistics and reports.

WormRadar is slightly different, as it relies more on a visualization principle [36]. The
software to install emulates a couple of services, (IIS, FTP, Telnet), for a brief period
before it cuts the connection with a FIN allowing such things as a login to the FTP
server as anonymous or to see what the GET/Head etc. It then allows listening on a
user-defined series of ports (both TCP and UDP). On these ports, WormRadar seems
to accept any data sent. It is an interesting little toy but the docs on its site are sadly
lacking so there is a need to experiment to find out what it does. In any cases, these
tools are practical synthetic elements and visualization methods of Internet activities.
However, they cannot be considered as valid and trustworthy providers to build on a
certain knowledge of malware activities. As an illustration, Wormradar can be perceived
as an aggregated port hit statistic site: the offered data is the web interface. However,
data is sent by anybody willing to participate. Conclusions and available data are thus
limited to exposed graphs in the web interface.

2.2.4 Others

In Large

Other tools can be used as well to monitor malicious traffic. They are not dedicated
to this task only, or, so to say, they do not pretend to collect malicious traffic only.
This includes all approaches hidden behind the expressions Intrusion Detection Systems
(IDSs), or Intrusion Prevention Systems (IPSs) [18]. Concerning IDSs, it is important
to note that they still tend today to trigger an abundance of mostly false alerts. In
[122, 123], Julisch et al. explain this fact by a few reasons, including the under and over
specified signatures, or the lack of abstraction. The major difficulty consists in classifying
traffic into two categories: normal and abnormal. This issue does not exist anymore,
however, with respect to honeypot technologies. TPSs normally collect logs of the traffic
they block, so, they are not monitoring malicious traffic only, but instead, all packets
that do not match the security policy chosen in the considered network. This is not the
exact expectations, as each traffic is then tightly correlated to the network security policy
within which it is captured.

2.2. ON THE CAPTURE OF RELEVANT TRAFFIC 19

Mwcollect and Nepenthes

Among other collection tools, we can mention the new mwcollect tool [31]. Mwcollect
is somehow different from typical honeypots because it was originally designed to collect
bot software, but the current version collects worms and other forms of malware that take
advantage of vulnerabilities that mwcollect exposes. According to the mwcollect Web
site, systems that run the tool cannot be infected with malware due to the way mwecollect
operates internally. It binds to specified ports, waits for an exploit attempt, scans for
shell code, and tries to download any related malware. Captured malware can then be
added to a database at the mwcollect Web site.

The second collection tool Nepenthes is similar to mwcollect [32]*. It also presents
known vulnerabilities to the network and waits for intrusion attempts. Current modules
for Nepenthes enable it to emulate vulnerabilities with DCOM, Local Security Authority
Service (LSASS), WINS, ASN1, NetBIOS, SQL Server, and a lot more Microsoft services.
Since Nepenthes runs on Linux systems, none of those services would actually be available,
which means exploits against them would have little or no effect on the underlying OS.
Just like mwecollect, when Nepenthes detects intrusion attempts, it tries to download
any related malware through a variety of methods including FTP, Trivial FTP (TFTP),
and HTTP. Captured malware is then sent to a center server hosted by the developers
of the tool. These tools are very interesting to collect the whole malware, including
payloads and binaries. They are thus very interesting to capture meaningful information.
Unfortunately, there are dedicated to a small number of activities, the ones that take
benefit of offered vulnerabilities. Furthermore, it remains to the analyst, once the data
has been collected, to perform a non-obvious task for dissecting captured data.

HoneyTank

HoneyTank can be seen as a good complement of large telescopes and darknets. It has
been designed with the idea that such architectures might have difficulties in logging all
activities for thousands of unused IPs. The authors suggest to tag packets in a particular
way, exploiting the timestamp option of TCP. This avoids monopolizing lots of memory
and cpu resources to keep connection states. This technique, however, is restricted and
can only work to emulate TCP services. In addition, it requires the attacker to correctly
reply to TCP timestamps (TSecr field must echo the last received Tval value). One more
time, a noticeable effort is made to participate in the building of a honeypot architecture,
but very few to monitor and analyze the output.

4In February 2006, the two projects merged operations into a single malware collection tool also called
Nepenthes.

20 2. BACKGROUND AND RELATED WORK

2.3 On the Analysis of Traffic

2.3.1 Positioning

There are many techniques which aim at analyzing the traffic. All active techniques
are not considered in this document. We identify two major categories: some tools aim
at capturing packets, while others bring add-ons on the traffic they collect by somehow
interpreting them. The first category is out of the scope of this section, as it has been
briefly introduced in Section 2.2. We detail in the following some techniques that could
compete as candidates to analyze malicious traffic.

2.3.2 Netflow

name Description
srcaddr Source address
dstaddr | Destination address
input Input interface

output Output interface
dPkts Number of packets
dBytes Number of bytes

First Start of NetFlow
Last End of NetFlow
sreport Source port
dstport Destination port
tep flags TCP flags
tos IP type-of-service

Table 2.1: Some Relevant NetFlow Fields (v5)

Many router manufacturers implement interesting logging capabilities that offer to sum-
marize and analyze the traffic. One famous data is the CISCO’s NetFlow®. The concept of
flow has been proposed by Claffy et al. [78] as: a flow is active as long as observed packets
that are meeting the flow specification are observed separated in time by less than a speci-
fied timeout value. Flows have proven to be a very useful tool for measurements and traffic
characterization. This is also reflected in the efforts to standardize flow data measurement
and collection architectures [59, 180, 91]. CISCO’s flow level aggregation technique [75]
almost fit the model by Claffy et al. According to CISCO documentation, the NetFlow

5We use the term NetFlow for both the concept as well as individual records

2.3. ON THE ANALYSIS OF TRAFFIC 21

implementation identifies a flow by the tuple (srcaddr, srcport, input, dstaddr, destport,
tos). Table 2.1 summarizes some of the relevant fields related to NetFlow records.

NetFlow presents a few limitations. For instance, it may aggregate packets from several
TCP connections into one NetFlow, e.g. if the same socket is used for several connection
attempts, as done by file-sharing applications or some attack tools [207]. A contrario, a
TCP connection can be split into many NetFlows, if the TCP connection is longer than
the flow timeout. As a consequence, it is very hard from the aggregated NetFlows layer
to deduce the TCP connection layer. The flow model is very interesting though, and has
been proved useful in quite a few studies. For example, it has been used by Thompson et
al. [224] for traffic measurement and characterization. Lin et al [143] evaluate the effect
of different flow classifiers on switching performance, while Feldmann et al. [98] examine
the impact of application-layer aspects on the flow characteristics. Newman et al. [164]
propose IP switching based on flows.

More in the focus of this document, NetFlows have also been used to monitor malicious
network traffic. CISCO itself offers a product called The Cisco Security Monitoring, Anal-
ysis and Response System (Cisco Security MARS) that models the flows in the network,
and make periodic comparisons based on expert rules and network topology information.
Many reports have been applied on NetFlow traffic from high-speed networks. As an
illustration, Duebendorfer et al. present in [93] a study of the Blaster.A and Sobig.F
worms in a Swiss backbone network called SWITCH. We have extracted from [93| the
details of Blaster’s infection and presented it in Figure 2.2. Blaster infection mechanism
is currently well-known, and is split into activities against two distinct TCP ports, 135
and 4444 on the victim size.

Blaster

infected Host Victim Host

AT ~ ™
L. initialise |
2. scan _ _
Blaster i 135 TCP
or 3. transmit RPC DCOM exploit code Y
worm > p | 135 TCP hu_n_u[]___:
| 4. initiate worm code download = TR |
: - T[4 TCP ===~
Ylaunch 5. download worm code by TFTP | Wi
tftpd | | = - —| | TFPT client|~= dows
69 UDP
6. execute remote Blaster worm code launch| shell
—||= — = | 4444 TCP- -
Blaster :
worm e
N 0/ N e

EE— —]
transmission (new flow) transmission (aggregated to previous flow)

Figure 2.2: Blaster’s Infection Steps [93]

The authors have then defined four different infection stages that classify to which
extent a Blaster infection attempt on a victim machine is successful. They have asso-

22 2. BACKGROUND AND RELATED WORK

ciated each infection stage to its corresponding NetFlows. Finally, they have extracted
flow-level plots for each infection stage, in order to estimate the number of stage cases.
Unfortunately, it is not completely sure that they are seeing Blaster.A activity by observ-
ing activities on port 135 or on port 4444, and by imposing a few constraints on the flows
(ranges for flow byte sizes). This limitation comes from the intrinsic definition of flows.
Another important limitation is that the correlation between NetFlows and Blaster’s in-
fection stages has been possible thanks to the diagram presented in Figure 2.2. However,
the knowledge about attack tools is either kept secret or simply not acquired. Thus, this
technique can only be applied a posteriori, when the attack tools have been well-studied.
The solution we propose will be inspired from the NetFlow fields to classify our data, but,
at the same time, will be designed to avoid the same pitfalls and limitations.

It is also worth noting that other protocols and standards similar to Netflow exist.
One is sFlow. sFlow is an open standard defined in RFC 3176 [179]. It is based on
packet sampling, and while NetFlow only captures information about IP packets, sFlow
can be used to analyze other protocols like Ethernet, IPX and Appletalk. IPFIX and
PSAMP are two IETF working groups that are working on standardizing IP flow export
and sampling. PSAMP concentrates on defining methods for sampling based passive
measurement of flows, while IPFIX is a new effort to define what information flow records
should contain and how they are exported to collectors. At the moment, nothing concrete
has emerged, and none of the tools based on these solutions are dedicated, as far as we
know, to monitor malicious activities in particular [147]. The interested reader can have
a look at [15] where an interesting state-of-the-art of many dozens of netflow-based tools
is presented.

2.3.3 Billy Goat

Duponchel et al. introduce in [118] "Billy Goat", a honeypot-like system dedicated to
worm detection. The capture tool, at first glance, is similar to products like WormScout, or
even honeyd ([195]), but is built on top of iptables in a clever way. With the system basing
all its feigned services on an infrastructure for virtualization, a single Billy Goat machine
can appear as many addresses on the network. At the same time, the virtualization
infrastructure allows the use of standard programming tools and interfaces to create new
feigned services for Billy Goat. The mountains of data that these virtual services create
are stored and cataloged (that is, logged) in a relational database, which is summarized
in Figure 2.3. An interesting effort has been made to help organizing the data. Data is
aggregated for each observed source address over a specific time frame (not specified in
[118]). The aggregation results from five main parameters:

e The Source IP address
e The time period covered by the data in the model

e The IP addresses of the Billy Goat sensors that have reported the activity

2.3. ON THE ANALYSIS OF TRAFFIC 23

e the description of network/transport level activities (Source and Destination IP
addresses/ports, Protocol, flags)

e Description at the application level (XML fields: REQUEST and HOST, see Figure
2.3)

Unfortunately, it is not really clear how the authors can map each application level
data into a XML format. The document remains very vague on that field. Furthermore,
the authors apparently avoid completely other meaningful packet exchange formats like
TCP, ICMP or UDP. However, the impact is different in the case the packet is flagged
RST/ACK with payload (crafted packet for instance), or if it is SYN-flagged. Finally, the
real purpose of the database is not clear, as most of the (reduced) collected information
is in fine generalized during the analysis by means of a simple summarization of the
data (orders of magnitude, statistics). We note here a clear effort to organize the data.
Unfortunately, the extraction of information remains too restricted to build upon a strong
analysis as we intend to.

IPTABLES ACTIVITY ~ REQUEST
TIME F--------- TIME REQUEST_INDEX
TIME_OFFSET |--------- TIME_OFFSET — SENSOR
REPORTER REPORTER REQUEST
SRC SRC SEQID
PROTOCOL SPT
DST REQUEST INDEX — HOST
SPT SENSOR SENSOR
DPT HOST_INDEX HOST_INDEX
FLAGS SEQID HOST
SEQID SEQID

Figure 2.3: Database Structure used in Billy Goat [118]

HoneyStat

It seems also relevant to present HoneyStat [197]. This original approach considers Des-
tination/Source Correlation (DSC) to match the same port being used for source and
destination scans to identify compromised machines. The authors demonstrate in [197]
that this approach works fine for analyzing scan-based, fast spreading worms. The general
idea behind DSC consists in keeping a sliding window of local network traffic. Two general
items are tracked: for each port witnessed in this traffic, the authors record the address
of the inside destination host and the scanning source from the monitored network. If a

24 2. BACKGROUND AND RELATED WORK

source scan originates from a host that previously received a scan on an identical port,
i.e., they observe a worm behavior-like infection pattern, and treat this local host as a
suspicious victim. In other words, if a host gets a packet on port 7, and then starts sending
packets destined for port 4, it becomes suspect. Then, if the immediate outgoing scan rate
for the suspect hosts deviates from a normal profile, the suspicious victim is considered
to be infected.

This analysis technique is quite specific to worm detection. We can also cite a few
other techniques, having similar approaches, like Collapsar from Purdue University [121].
Researchers have also proposed statistical models, e.g. Kalman Filter [244|, analyzing re-
peated outgoing connections [232], and victim counter-based detection algorithms [233].
All these approaches, however, remain quite worm oriented. We are interested in the fol-
lowing to classify traffic more than to find a detection technique that would be applicable
in very specific conditions or to very specific classes of attacking activities.

2.3.4 Monitoring Consoles

The topic has been widely studied in [188, 189], in which we have described many tech-
niques and existing tools. The monitoring consoles are often relying on the alerts and
logs issued by security systems (firewalls, IDSs). We have shown the gap that exists,
as of today, between sophisticated techniques presented in research papers and actual
implementations that are readily available. We have presented solutions not only from
the Intrusion Detection community but also from the Network Management community,
which has tried to solve similar problems for many years. Solutions exist that come from
various research domains and that have proven their efficiency in many cases. However,
we have reached a deceiving observation: among tools and products that have been pro-
posed so far in Alert Correlation, very few implement such approaches. Most of them are
limited to down-to-earth, pragmatic techniques, such as pattern matching or database
queries. As a consequence, we do not detail more this field in the following, but we invite
the interested reader to have a look at [188, 189] for a more complete state-of-the-art.

2.3.5 Vizualization Techniques

Network security visualization is an emergent field and a number of systems exist that
focus on event visualization with an eye for relatively dense data display. Their goal is
both to facilitate awareness of the global network status and to subsequently explore the
dataset. Some solutions can be also seen as extensions of the category presented in the pre-
vious section called Monitored Consoles. Among the solutions, we note NvisionIP, which
shows activities between pairs of IP addresses and the similar but more abstract SeeNet
[132, 45]. Colombe et al. present an interesting data representation for visualization. The
idea of the display is to tap into the user visuospatial pattern recognition skills (rainbow

2.3. ON THE ANALYSIS OF TRAFFIC 25

palette coloration, position on the screen, etc)|[79]. PortVis ([153]) is also an interesting
visualization tool which aims at displaying network flows. The authors characterize the
traffic by a tuple, each tuple representing the activity on a given port during a given hour,
through a given protocol. This is a first step to organize information, but this choice was
made to build the tool, more than to classify the data for other investigations. In all
cases, the analysis they provide is based on the expert’s view of the offered graphs. They
give a few possibilities to traceback information from the graph to the packets®, and are
often limited to plotting useful but non sufficient statistics, like the number of alerts, the
quantity of data transfers, the ports activities, etc. It is thus hard to understand the real
malicious activities. These tools are designed to detect, or at least, show up anomalies,
more than to understand the occurring threats.

2.3.6 Modeling

Modeling malware activities is an active research domain. Very interesting approaches
have been observed in recent security conferences like the Workshop on Rapid Malcode
(WORM) or the Conference on Recent Advances in Intrusion Detection (RAID). It is re-
ally interesting to analyze the malware activities by reproducing in a theoretical environ-
ment its behavior, either by applying mathematical formula (most of them are currently
based on the epidemiologic domain [69, 204, 126, 245, 246, 205, 140, 68]) or dedicated sim-
ulation testbeds ([227, 96, 170, 239, 139]). Unfortunately, these models can be validated
as correct if and only if they match (during a certain period of time) the propagation and
evolution of existing threats. This directly implies to have full access to some particu-
lar dataset where this information can be easily retrieved. Such dataset does not exist
however, or some very specific logs are applied as references without numerous details re-
garding their relevance. Some other tests have a questionable validity, as the ones based
on famous datasets provided by the Lincoln Lab of the MIT in 1999 {146, 150]. This basic
observation has motivated the decision to offer access to the whole dataset to all partners
of the Leurré.com project. The modeling techniques, in addition, are limited to a few
propagation strategies implemented by popular worms (see for instance the analysis of
CodeRed IT in [157]). As a conclusion, these techniques will really show their values when
being compared to large and valid datasets from various places. They cannot replace the
monitoring and analyzing steps we are considering.

2.3.7 Challenges and Personal Accomplishments

Among the interesting analysis techniques, we can also mention the personal accomplish-
ments of individuals, who design their own environments, and share their information
within a community. Many security researchers report such analysis and tools in incident

6Tt is all the more true that most of the tools presented in this section are directly working on Netflow
logs.

26 2. BACKGROUND AND RELATED WORK

and forensics mailing lists |74, 113|. Another approach is to organize challenges. As an
illustration, the Honeynet Alliance organize a monthly challenge, called Forensic Chal-
lenge, which consists for incident handlers around the world in all looking at the same
data (an image reproduction of the same compromised system) [35]. The jury determines
who has dig the most out of that system and has managed to communicate her findings in
a concise manner. This is an expert study of tools, techniques, and procedures applied to
postcompromise incident handling. As the organizers say in [35], "the challenge is to have
fun, to solve a common real world problem, and for everyone to learn from the process".
This is a good experimental analysis, but it remains anecdotal, not perfectly rigorous in
many cases, and might not reflect the current threats networks are facing. This can give,
however, another hint at some malicious activities.

2.3.8 Others

Sets, Bags and Rock 'N Roll

McHugh has presented in [151] interesting concepts that have led to the creation of a series
of tools called SiLKtools (also detailed in [105]), designed in the context of the CERT
Coordination Center from Carnegie Mellon University. The author shows that there is
value to use sets, in order to provide a compact way of describing and reasoning about
the Internet and about traffic observed at various points on it. For example, this might
be useful to consider such things as the set of external hosts that are observed performing
a scanning activity during a time interval. Similarly, one might want to identify the set
of users of some service provided by the local network (e.g. web services) to the outside
world during the interval. The use of sets and bags allows abstracting from individual
behaviors to clusters of activities. It is also important to mention that this clustering is
performed on the data monitored by the CERT, that is a very large amount of packets per
second. As a consequence, the clustering tools have been built on Netflows (see Section
2.3.2 for more details). This can lead to the same drawbacks as the ones previously
described with other Netflow-based applications. The author however mentions a future
packet to Netflow code that should be included within the SiLKtools to limit the Netflow
perturbations. This work is important for us as it appears to be one of the first initiatives
to focus on malware data analysis. It seems relevant at this stage to cite a sentence of
the document ([151]), which is also a major principle of the HoRaSis method presented
in the next chapters.

"Sets and set theory are abstractions that facilitate reasoning about many
classes of problems.”

2.4. SUMMARY 27

2.4 Summary

2.4.1 Observations from this State-of-the-Art

From the previous sections, it seems quite clear that most of the effort has been devoted
to the design of efficient architectures, which:

1. capture original and specific malware activities.

2. analyze the very same particular and specific malware activities.

Some of them are very promising, and we believe that the research should go on with
the same eagerness. However, we also believe from this observation that there is a clear
lack of commonly shared information. Many research studies aim at designing tools
and architectures, without proving first that there is high value in doing so. In other
terms, the security community fails to find concrete validation examples. Furthermore, the
global understanding of malware activities is still unknown. We can cite for instance the
relationships between attacks and networks, the order of magnitude of different malware
propagating in the wild, their localization, etc. An illustration lies in the numerous
articles and publications which aim at detecting large sweeping scans {217, 135]. The
first such algorithm in the literature was that used by the Network Security Monitor
(NSM) [109], which has rules to detect any source IP address connecting to more than 15
distinct destination IP addresses within a given time window. Such approaches present
the same limitations, that is, once the window size is known it is easy for attackers to
evade detection by simply increasing their scanning interval. Snort implements similar
methods [209]. Does it seem relevant to activate this Snort feature?

The previous approaches have interesting approaches but the major problem remains
that there is no available information to work on. Furthermore, once data is collected
from the honeypots, there is no existing technique or framework which helps at grabbing
the useful information by taking benefit of their particular property.

Finally, we want to recall an interesting event: the European IP Network RIPE, in
charge of allocating IP addresses and administrating AS blocks organized in the course

of year 2005 a global meeting between ISPs. One of the most important conclusions was
[152]:

Attack fingerprint sharing and similar mechanisms need to be further researched,
developed and deployed to combat the existing threats.

28 2. BACKGROUND AND RELATED WORK

2.4.2 First Conclusions

The honeypots do not, conceptually speaking, represent any major breakthrough and are
certainly no rocket science. However, they bring an important set of information, only
dedicated to malicious activities. The interpretation of this dataset is then different from
the one performed by IDSs, as this drastically reduces a priori the false positive rates. The
current techniques are only based on acquired technologies, one being the traffic analysis
in terms of flows, the other one being simple statistics. This leads to wonder to which
extent it can be interesting to develop a specific analysis for that type of information. In
addition, this implies not to stay in a global perspective, like telescopes, but to have a
nearer, more refined view of the attacks from a local perspective. This complementary
approach might reveal original threats which cannot be observed otherwise. And vice-
versa.

The next chapter aims at describing the distributed environment which has been
deployed in order to gather more local information and at presenting the corresponding
dataset which has been collected. We feel it is important to let the reader understand
where the information is coming from, and how it has been stored during the three first
years of the leurré.com project. We will also show how we designed, built and deployed
this environment, and how it complements and addresses the weaknesses of the previously
described approaches.

29

Chapter 3

The Information Generation

An expert problem solver must be endowed with
two incompatible qualities,

a restless imagination and a patient pertinacity.
(Howard W. Eves)

3.1 Introduction

As the state-of-art presented in Chapter 2 has highlighted it, there is a need of data and
information to start acquiring a global knowledge of malicious activities that occur in the
wild. Archives of traffic data over a long period of time are rare and difficult to get access
to due to privacy laws or data security concerns. For those which exist, we note a lack
of details concerning their origins, the challenge and costs of handling large amount of
data, and a potential interference with current network operations and accounting (mix
of production and unexpected traffic).

This section aims at explaining how it has been possible, over several years, to collect
meaningful data from honeypot platforms placed in different networks and countries,
thanks to the success of the Leurré.com Project. This section could have been introduced
in an experimental section at the end of the document, but we think it is important for the
reader to understand the richness of the data and its current uniqueness before describing
the analysis theory. The reader who is already aware of the Leurré.com Project dataset
can skip this Section and move ahead to Chapter 4.

30 3. THE INFORMATION GENERATION

3.2 The Leurré.com Project

3.2.1 The Objectives

The project we have launched aims at disseminating similar honeypot sensors everywhere
thanks to motivated partners, on a voluntary basis. Partners are invited to join this
open project and install a honeypot sensor on the premises of their own networks. We,
at Institut Eurécom, take care of the installation by furnishing the sensor image and
configuration files. Thus, the installation process is automatic. In exchange, we give the
partners access to the centralized database and its enriched information. A dedicated web
site has been developed to make research faster and more efficient. The project has started
triggering interest from many academic, industrial, and governmental organizations. As
of this writing, around 35 platforms are deployed in 25 different countries covering the
five continents. We keep installing new ones regularly.

3.2.2 Principles
On the choice of a honeypot sensor

The deployment of honeypot sensors in a variety of places requires first to choose the most
appropriate sensor types. As it has been detailed in Section 2.2.1, the security community
often distinguishes two major categories. First, there are sensors running on real systems
(OSs, services, users, etc). They belong to the high interaction category. Secondly, others
exist, which interaction is limited to a few emulation scripts. They belong to the low
interaction category. Each of them presents interesting advantages but also limitations,
that are summarized in Table 3.1 extracted from [212|. In the row entitled Work to
Deploy and Maintain, one finds the time required to run and to maintain the honeypot.
In the Knowledge to develop one, one sees the amount of prerequired knowledge to build
a honeypot environment. The Compromise Whised row express the expected goal of the
honeypot, that is, if it aims at being compromised, or in a more restricted and mode, if
it aims at collecting malware traffic without letting an intruder enter the system . The
Level of Risk row is an indicator of the risk run when implementing a honeypot into a
system.

It seems straightforward, from Table 3.1, that Low interaction is adapted to the re-
quirements of the Project described in previous Section 3.2.1. Indeed, partners can be
from any country, and the tasks of deployment and maintenance of the sensors must re-
main acceptable. Furthermore, the risks must be as low as possible to motivate partners

3.2. THE LEURRE.COM PROJECT 31

Table 3.1: Level Interaction and Honeypots

level of Interaction Low High
Information Gathering Connection Attempts All
Work to deploy and Maintain Easy Difficult
Compromise Wished No Yes
Knowledge to Develop Low High
Level of Risk Low High

in joining the project. It seems hard to imagine asking industry partners to join the
project and introduce new vulnerabilities in their network.

Low interaction is the most sensible choice at this stage. Unfortunately, information
which is collected from it might differ from real systems. More generally, it is important
to qualify and quantify the amount of information that might differ when using one of
the two interaction sensors. We have published a detailed comparative analysis in this
direction in [187]. It is briefly summarized in the next section.

A comparison between Low and High Honeypots

We have described in [187] two distinct honeypot platforms. They have been called H; and
H,. Hy is a high interaction honeypot, running three different OSs and various services.
H, is a low interaction honeypot, based on an open tool called honeyd [9]. Hs has been
configured in a very particular way: we have scanned the open ports in H; and opened
the very same ones in the honeyd configuration file for each of the three virtual machines.
Some service scripts that are available in [9] have been linked to open ports, like port
80 (web server) or port 21 (ftp). As a consequence, Hy can be seen as offering a similar
yet simplified behavioral model as H;. We connect every day to both host machines in
the same way to retrieve traffic logs and check the integrity of chosen files. Data is then
stored in the very same database (described in Section 3.5.3).

The paper reports a comparison over 3 months of data. The results show in particular
that:

1. Both approaches provide very similar global statistics based on the collected infor-
mation. High-interaction honeypots are more or less attacked the same way than
low interaction ones.

2. A comparison of data collected by both types of environments leads to an interesting
study of malicious activities that are hidden by the noise of less interesting ones.
One example has been the discovery of scans targeting one out of two successive
IPs [187]. Another example is that 3% of activities which have targeted only two
virtual machines out of the three have precisely targeted two windows machines on

32 3. THE INFORMATION GENERATION

both environments H; and H,.

3. This analysis highlights the complementarities of the two approaches: a high in-
teraction honeypot offers a simple way to control the relevance of low interaction
honeypot configurations and can be used as an effective "etalon system”. Thus, both
interaction levels are required to build an efficient network of distributed honeypots.

Algorithms have been described to make this comparison automatically, but we re-
port the authors to [187] for more details and illustrations of these contributions. The
important result worth keeping in mind is that:

Lemma: The collect is not biased by the use of low interaction honeypots in a
distributed sensor network. Furthermore the deployment of a few number of contiguous
high interaction ones can help controlling the relevance of the collected information.

In the next section, the configuration which has been used to build H, is detailed.

3.2.3 Honeypot Sensors

The sensors which have been deployed along with the Leurré.com project are based on
several open source utilities, which emulate operating systems and services. The basic
building block used is honeyd [23]. The sensor only needs a single host station, which is
carefully secured by means of access controls and integrity checks. This host implements
a proxy ARP. This way, the host machine answers to requests sent to several IP addresses.
Each IP is bound to a certain profile (or personality in the honeyd jargon). Thus, the
emulation capacity of the sensor is limited to a configuration file and a few scripts’.
The sensor we are using emulates three Operating Systems: Windows 98, Windows NT
Server and Linux RedHat 7.3, respectively?. Some service scripts that are available in
[23] have been linked to open ports, like port 80 (web server) or port 21 (ftp), among
others. A simple sensor architecture is presented in Figure 1. Finally, we connect to the
host machine to retrieve traffic logs and check the integrity of the system files every day.
Next sections aim at presenting the global data which has been collected so far and its
particular storage at the Institut Eurécom.

!New emulation scripts have appeared during the last months of this thesis: FakeNetBIOS emulates
traffic on ports UDP 137 and 138 only [66]. Scriptgen described in [138] generates in an automated and
clever way scripts derived from tcpdump traces. They were not available when we started deploying the
sensors.

2These OSs have been chosen three years ago to mimic and thus to be compared with other high
interaction honeypots already emulating these OSs.

3.3. GLOBAL PICTURE 33

Figure 3.1: Architecture of a Honeypot Sensor

3.3 Global Picture

3.3.1 First Figures

Some platforms have started running in February 2003. Each month, new partners come
and increase the volume of data. Some global statistics are listed here.

e Number of observed distinct IP Addresses: 989,712

e Number of received packets: 41,937,600

e Number of emitted packets: 39,911,933

e Total number of collected packets: 81,849,533

e Number of received TCP packets: 74,428,652, that is 90.93% of all packets
e Number of received UDP packets: 635,363, that is 0.77% of all packets

e Number of received ICMP packets: 4,218,109, that is 5.16% of all packets
e Others: (malformed packets, etc) 2,567,409, that is 3.14% of all packets

In short, with a maximum of platforms up and running at this time writing, it is
possible to observe more than 5000 new IP addresses per day, and collect 100000 new
packets issued by these IPs. This represents an important volume of data, and the numbers
increase each day, as new partners join the project. This explains in the next chapter the
need to classify the data in such a way that any kind of lookup can be efficiently performed.

34 3. THE INFORMATION GENERATION

3.3.2 First Analyses

This section aims at presenting global statistics, which are the historical motives of this
work. Some results have been described in [88, 89]. We present here four interesting data
representations which are part of the initial observations we made.

Average Number of Attacking IPs per Honeypot Environment

Figure 3.2 shows the average number of attacking IPs observed each day and per en-
vironment. Values are definitely not uniform, and it is important to notice that some
environments (identifiers 12 or 5) can be attacked almost 100 times more than others
(identifiers: 20 or 32).

1000

Average Number of IPs

0 5 10 15 20 25 30 35
Honeypot Environments: Identifiers

Figure 3.2: Average Number of Attacking IPs per Honeypot Environment

Number of IP Sources observed per Day and per Environment

Figure 3.3 shows the number of TP addresses observed per day and per environment. We
have represented three different environments for clarity concerns, but the others present
similar characteristics. Dates are comprised between February 1st 2005 and March 31st
2005. We note here that a given platform might not observe the same number of distinct
IPs over days, and some high variations can occur. We also note that for a given day,
three platforms can observe very different numbers of distinct IP sources.

3.3. GLOBAL PICTURE 35

sources Emirantment_Name:

17 . ke s :
o 1 AA |
" # IE .:f: ! * : o 5 3 % s
730 - .. / [| ;l"" 4 ...__
520 T N4 .‘. N
EU ' |
W, W)
" W 4W #W MWW‘*%W

130

([ASRAERCS SRSy oa o o bt SACRARIN A

0 5 10 15 2 25 30 35 40 45 50 55

Figure 3.3: Distinct IP Sources Observed per Day on Three Sensors

Average Number of Bytes sent by Attacking IPs per platform (TCP payloads)

Figure 3.4 gives the average data payload® that have been observed in average on all
platforms between May and July 2005, when all platforms have been up and running for
several days. This is of course not completely meaningful, as it is also highly dependent to
the emulation level of the honeypot sensors. It however indicates that some environments
present very strong differences compared to others, in terms of received bytes.

1400

1200

1000

800

600 -

400 -

200

Average Number of payload bytes received per packet (TCP or UDP)

0 5 10 15 20 25 30 35
Honeypot Environments: Identifiers

Figure 3.4: Average Number of Bytes sent by Attacking IPs per Platform (TCP payload)

3Data payload includes all data for layers 4+, except TCP and UDP headers (with options for TCP).

36 3. THE INFORMATION GENERATION

Average Number of Attacking IPs per hour (capture time)

Figure 3.5 shows the cumulative number of attacking sources that have been observed in
different hours during the day on any environment. We consider here the whole dataset.
For instance, the first column gives the number of distinct IPs which have sent their
first packet to an environment between midnight and 1am, the second between lam and
2am, etc. The considered time is the capture time, that is, the time on the environment
observing the activity. These simple statistics show a strong temporal pattern, with about
third less attacks during night hours than working hours. This statistics have also been
produced for several periods during the year (over months, 2-months and 6-months), but
they show the very same property than by looking at the global dataset.

x 10"

Number of observed Attacking IPs (first packet)

0 5 10 15 20 25
Daily Hours

Figure 3.5: Average Number of Attacking IPs per Hour (local time)

3.3.3 On the Advantages of Local Distributed Sensors

The first graphs presented in Section 3.3.2 indicate in a clear manner that sensors collect
activities which might differ from sensors to sensors. They are not facing same activities.
From another point of view, Figure 3.6 presents on one side the activities on port 445
as shown by a web site (Dshield [14]) during September 2004, to be compared with the
activities collected on one of our sensors during the same period in Figure 3.7.

The peak observed on September 26th does not appear in any Dshield reports or
mailing list posts. The reason for this has not been investigated further by the partner.
The Leurré.com dataset contain numerous similar examples. Nevertheless, it clearly shows
that local observations might differ from global trends. This claim is also defended in
[82]. The authors demonstrate differences observed in class A IP ranges and smaller

3.3. GLOBAL PICTURE 37

Fort 445
LTOROOO0] Bonoos
]
i
S E000000
&

F FOOOHH
14000000

1zZon00cn (=lelelelelsB

Targets Sources

pelulslelulala]

{alslsTulele]
S000000
(=T TuTaTu TN} OO0

SOO0000

L SO0
Z000000

2 | \ L L ||= recoras

- Targets

Sep 19
Sep 23 (
Sep 27

= Sources

Date

Figure 3.6: Dshield vs Leurré.com data: Dshield [14]

Evolution of attack targeting platform France3 ports sequence {445}

-3 B3 EBB88 5

= e | RN N |
B0 B B0 B B2E B BE B0 B0 B0 B2 B6 BY 36 BrF B3 B8 BN B2 B2 BAE BA BS5 BE BY B8

Figure 3.7: Dshield vs Leurré.com data: Leurré.com data

subnetworks along at least three dimensions: over all protocols and services, over a specific
protocol and service and over a particular worm signature. This leads to the two following
lemmas, considered for the different analyses we intend to perform in the next chapters.

Lemma 1: Local observations of malicious activities DO NOT bring same informa-

tion as more global techniques. This architecture is thus a complementary and essential
approach.

Lemma 2: Local sensors share some common similarities, but the global statistics
also indicate strong dissimilarities w.r.t. monitored activities.

3.3.4 First Discussions

The analysis of Leurré.com data could stop here. The previous sections have demonstrated
the usefulness of deploying local sensors, and the new dimension it can bring for monitoring
malware activities. Other similar examples have been detailed in our earlier publications
[186, 192|. However, these first results also highlight the motivations for further analyses.

38 3. THE INFORMATION GENERATION

It would be interesting for instance to characterize the differences between platforms.
Current techniques are however quite limited to directly understand the exact meaning
of these differences and the relationships between them. The HoRaSis framework should
help improving the knowledge acquisition and the extraction of new information in an
automatic way, that is, it should perform analysis steps further than simple statistics.

3.4 Observation Positioning

3.4.1 Sensors Limitations

One first remark goes to the deployment of sensors. It has been shown that their deploy-
ment brings interesting and complementary information. However, we have not presented
the impact of their configuration to the quality of the data collection [54]. This is another
dimension which is not taken into account in the following sections. A few preliminary
experiments have been considered in the course of this work and reported in [192], but it
is admitted, in the following, that the whole experiments have been applied on a unique
sensor configuration. It is also worth mentioning that sensors are, and this is not a real
surprise, not perfectly undetectable. None of the existing honeypot-based systems are,
and honeyd, the software on which the Leurré.com sensors are built, follows this rule. As
an illustration, an experiment has been presented by Kohno et al. in [129]. They have
presented a technique to remotely fingerprint hardware devices via remote clock skew es-
timation, and tested it on honeyd platforms. The sensor time is not maintained via NTP
or SNTP, and the fingerprint of honeyd would be possible by sending ICMP Timestamp
Requests (type 13) against honeypot sensors. Therefore, we have carefully looked for such
packets and have observed only 38 of them so far. They are unlikely due to this detection
mechanism, as they have been observed one year before the first public reference to that
problem. Another bug has been found in the early versions of honeyd (< 0.8, [9]), which
has not been used. A system running honeyd can be detected as it replies to invalid TCP
packets (with SYN and RST flags) -which it should not.

In a general manner, this has to be related to the work presented in [187]. Such
risks can be minimized by frequently comparing the sensor captures with other "etalon
systems". Attempts to fingerprint the honeypot sensors would also be interesting insofar
as it would indicate that this monitoring disturbs some particular communities.

3.4. OBSERVATION POSITIONING 39

3.4.2 About Non-Observable Malicious Activities
Discussion

As it has been said in the previous section, sensors implement the very same honeyd
configuration. There might be some attacks the sensors will not monitor due to their
configuration. It is by nature impossible to catch every malicious activity in the Internet,
but it is expected to have a very good overview of the major threats with quite standard
machine configurations.

In addition, the environment will not observe a unique attack, dedicated to a target
which is not a Leurré.com sensor. It does not pretend to be a perfect early warning
system. However, such a distributed system could help identifying the common activities,
also called background radiations in [171]* and to detect new threats and activity changes
monitored by the different environments.

Worm Propagation Strategies

There are now many worm species, and some books have already started building phy-
logenetic classifications. We can cite as examples the noteworthy study of Szor et al. in
[223], or the one of Filiol et al. in [100]. As they both explain, worms are network viruses
replicating on networks. They all present a large diversity of spreading strategies. Among
them, we note:

e Local-Subnet propagation: it involves worms scanning for vulnerable hosts in a class-
C or smaller subnet. It usually increases the number of infected machines more
quickly, as the worm can find less protected machines and a less heteregeneous
network environment once the firewall is bypassed. This technique has been used
by the Code Red IT ® and Nimda worms for instance [228]. If the worm limits its
propagation to a very small subnet that is not covered by a honeypot sensor, its
activities will remain unobserved by the proposed architecture. On the other hand,
the risk remains for the same reason limited to the uncovered subnet.

e Hit list propagation: This technique is applied when the worm propagates based
on a list of victims. This list is given by the attacker, either by a hard-written list
of IPs/networks, or by collecting information from publicly available resources. A
theoretical worm, named Flash Worm, propagating this way, has been studied by
Staniford et al. in [216, 215].

4Background radiation reflects fundamentally nonproductive traffic, either malicious (flooding
backscatter, scans for vulnerabilities, worms) or benign (misconfigurations) in [171].
®Code Red II has three propagation strategies, one being to favor local class-C subnets [157].

40 3. THE INFORMATION GENERATION

Activities will never be detected by one of the Leurré.com sensors if the propagation
is too local. This will also be the case of propagations over a restricted hitlist.

3.5 Data Storage

3.5.1 A Need

Data logged by each Leurré.com sensor is copied to a centralized machine. The sizes of
the logs highly depend on the sensor and the activities against it. Figure 3.8 represents
the cumulative size of logs collected during the considered period.

x10"

Collected log files (Bytes)
-
s

L L L L
0 5 10 15 20 25 30 35
Months of Data Collection (Feb.2003 - Oct.2005)

Figure 3.8: Cumulative Log Size Collected from the Sensors

The traffic is limited during the first months of 2003 to a few dozens of Megabytes per
months, as the only sensors working at this time were the ones implemented at Eurecom.
The regular increase in 2004 corresponds to the first phases of the Leurré.com project
and its first partners. The steep increase in 2005 is the manifestion of the keen interest to
the project from multiple communities. It seems important, from Figure 3.8, to organize
data in an efficient way, in order to query it easily. The data organization is described in
the next paragraphs.

3.5.2 Definitions

This data needs to be properly organized, as it will be used for further analysis and
experiments. In theory, no traffic should be observed from the machines we have set up.
As a matter of fact, many packets hit the different virtual machines, coming from different
IP addresses. Typically, if an attacker decides to choose one of our honeypots as her next
victim, she tries to establish direct TCP connections or to send UDP, or ICMP, packets

3.5. DATA STORAGE 41

against it. She can behave differently when targeting each of the three virtual machines.
As a consequence, we distinguish in the database three major classes of information:

1. Information that characterizes the attacking source. It includes its IP address, the
date it has been observed, the domain and geographical location associated to this
address,etc.

2. Information that characterizes the behavior of the attacking source against the
global sensor. It includes the number of virtual machines it has targeted, the global
duration it has been observed on it, the way it has targeted the virtual machines
(sequence vs. parallel), etc.

3. Information that characterizes the behavior of the attacking source with respect to
a single virtual machine. It includes the sequence of ports that have been targeted
on that machine, the data sent, the number of exchanged packets, etc.

For the sake of conciseness, we do not want to describe the full database architecture
here. All details are precisely described in [184]. We just want to point out that most of
the comparisons that are presented in the following rely on this efficient way to organize
the information. This organization leads us to frequently make use of the following four
definitions that derive from the previous classification.

Definition 3.1. Source: A Source corresponds to an IP address observed on one or many
platforms, and for which the inter-arrival time difference between consecutive received
packets does not exceed a given threshold (25 hours). The time difference is computed by
converting all times to GMT.

As an illustration, two packets observed at "2005-02-17 10:00:00 GMT" (Sensor A)
and at "2005-08-05 13:00:00 GMT+5" (Sensor B) which share the same IP source address
will be associated to two distinct attacking Sources.

Definition 3.2. Global Sesston: A Global _Session is the set of packets which have
been exchanged between one Source and all Honeypot Environments of the Leurré.com
distributed monitoring system.

Definition 3.3. Large Sesston: A Large_Session is the set of all packets which have
been exchanged between one Source and a particular Honeypot Environment (sensor).

Definition 3.4. Tiny Session: A Tiny_Session is the set of packets which have been
exchanged between one Source and a single Virtual Machine. As each honeypot Envi-
ronment is made of three virtual machines, a Large Session is associated to 1, 2 or 3
Tiny_Sessions.

42 3. THE INFORMATION GENERATION

3.5.3 ER diagram

A dedicated database has been designed to store the information at different abstraction
levels. The UML diagram in Figure 3.9 offers its over simplified structure. Many tools
are used to enrich the data. For instance, for each Source, we look for, and include in
the database, its geographical location (Maxmind, Netgeo, IP2location [11, 63, 117]), its
passive OS fingerprinting attack (pOf, ettercap, disco [24, 7, 4]), its name by means of
domain name lookups, etc. The details are carefully described in [184]. A more complete
view of the UML diagram, including important attributes, is presented in Annexe A.

Large_Session

+Large Session Id
1 hsource 1d

+Environment_Id ‘ -
L.* | Environment
A +Environment Id

1. Lid
Source L3
+iource _Id
+IP_Address 1
+Date Id
1 1
1% &
Tiny_Session 1] Host
+Tiny Session Id tHost 1d
+Host Id +Environment Id
+Source Id
+Large_Session_Id

Figure 3.9: UML Diagram: Relationships between Definitions

3.5.4 Web interface

Two distinct web interfaces have been developed along with the Leurré.com project. One is
the public project web site, www.leurrecom.org. It presents some global statistics, without
mentioning any partner name nor IP address 6. The partnership offer is described on the
site and many papers are available on it. The other interface is a protected GUI to the
database, with a personal access for each partner. Some useful queries are implemented to
ease the task of the partner. A direct access to the database has also been made possible
for more personal or complex queries. Both are briefly presented in Annexe B.

6 A Non-Disclosure Agreement has been signed by all partners to keep such information confidential.

3.5. DATA STORAGE 43

3.5.5 Collection Issues
Sensors Stability

Honeypot sensors are not perfectly stable. They might be down for some days for several
reasons, like electrical problems, network changes or human incidents (powering off, etc).
This introduces a bias in the data collection and analysis, as missing data can have two
different meanings: either there was an important decrease of the attack during a period,
or the platform was not working. It is important to distinguish between these two scenarios
for the analysis. The missing logs are reported in a dedicated table of the database. We
note that 10% of log files are globally missing. To address this issue which might impact
global statistics, it has been implemented an interpolation technique called Cubic Spline.
This name comes from the fact that this procedure closely approximates a technique that
has long been used by draftsmen. A draftman who wishes to plot a smooth curve through
a set of n + 1 observations will place a set of weights on a thin elastic rod called a spline.
The weights are placed in such a way that the rod passes over each of the observed points.
The draftsman then traces the curve formed by the rod. The theoretical details can be
found in [43|. As many other techniques, an interpolation cannot be perfect, except in
rare cases (mathematical functions), and it is hard to estimate the error. However, the
cubic spline interpolation has some interesting features, compared to other techniques:

e Splines are smooth and continuous across an interval. A polynomial, for instance,
fitted to many data points, could exhibit erratic behavior.

e The spline curve interpolates the data while remaining within the range of the
dataset.

e Splines are piece-wise defined functions whose individual curves meet at the points.

e The splines not only interpolate the data but match the first and second derivatives
at the points.

The set of points are called the knots. The set of cubic splines on a fixed set of knots, forms
a vector space for cubic spline addition and scalar multiplication. An example is shown
as illustration in Figure 3.10 .This Figure represents on the light curve an erratic function
(y = (sin(z) + cos(x))?), while the bolder curve has been generated by connecting data
points (the knots) along the above line with a cubic spline function. While the fit is not
perfect, it does closely approximate the function without a great degree of divergence.
Future work will consist in adapting other interpolation functions which would suit more
closely the properties of the curves under study.

44 3. THE INFORMATION GENERATION

1
\‘v
0.8 ,\\
\
0.6 \ R
6k \ i J
\) // \ y P
0.4 \ it A\ /A
\ \ /
\ y \ /
0.2 \\ /;5 i ‘j
& A \ [
\ / . /
0 § @ X f
\ [By a
o f N 7)
Y I !
Rl e \._\ / A [
N \ J"
0.4 | § / \ /
: \ / N i
% s A !
\ \ /
0.6} @ W/
)
]

-0.8 t L t ¢ I

3
4

Figure 3.10: A Cubic Spline Interpolation of y = (sin(x) + cos(z))

Data Synchronization

Another potential issue is the Synchronization problem between sensors, as it has been
reported by Lamport in [133]. For security concerns, there is no Network Time Protocol
(NTP) daemon running on the platforms. Thus, comparing the activities on the sensors
consists in determining the time lag between sensors. It is performed by performing
periodic date commands which results are then stored in the database. The rate error of
each sensor is quite constant over months and never exceeds a few seconds per month.

In the other chapters, we work on the stored data, and for some similarity studies, make
use of the Cubic Spline interpolation technique. When done, this is explicitly mentioned.
Furthermore, the synchronization is not a major issue in the results presented in this
thesis, as the analysis we present is not bias significantly by the desynchronization effects.

3.5.6 Conclusion

Figure 3.11 presents in a simple diagram the different steps that are followed, from the tcp-
dump packets fetched on each sensor to the global database contents which are the founda-
tions of the next chapters. The database is precisely built around a small number of infor-
mation categories, called Sources, Global_ Sessions, Large_ Sessions and Tiny Sessions.
These definitions described in Section 3.5.2 are a first attempt to organize the collected
data and start making comparisons and analyses. The generalization scripts presented in
Figure 3.11 aim at deriving the attributes of these new information levels from the raw
packets tables. We have also considered several tools to enrich this information, some of
them being commercial solutions, others being open source software or hand-made scripts.

3.5. DATA STORAGE 45

The database architecture is flexible enough to insert a posteriori results from other tools
which are not considered today.

The data collection and storage were a preliminary and intuitive work, that has been
enriched all along the project. The obtained dataset is quite unique and represents several
years of data. It can be wondered whether valuable information can be extracted from such
a dataset, and how should the analysis be performed to do it. The first statistics tend to
indicate that sensors collect similar but also different traffic. As a consequence, it would
be interesting at this stage to distinguish the different activities which are monitored.
The next chapters precisely justify a way to analyze data and characterize the activities
observed on the Leurré.com sensors. We are following, as expected from the Introduction,
the directions to build an HoRaSis framework.

3. THE INFORMATION GENERATION

Sensor 1: logs(t’) Sensor N: logs(t)

13ANIILNI

EVENTS

IP headers
TCP headers
ICMP headers
UDP headers
Payloads

NOD3dN3 LNLILSNI

TOOLS

Generalization Script{

IP geolocation
Name resolution (DNS, whois|

TCP stats o
Passive OS fingerprinting
IDS alerts
SOURCES <
GLOBAL SESSIONS <
LARGE SESSIONS <
TINY SESSIONS | =

Figure 3.11: From Dump Logs to a Structured Database

47

Chapter 4

Discrimination Step: Fingerprinting
Activities

Problems worthy of attack,
prove their worth by hitting back.
(Piet Hein)

4.1 Introduction

4.1.1 Need for Classification

In the Leurré.com Project, traffic is collected from each honeypot sensor with tcpdump.
The dump files contain plain raw packets. Information as such is not intuitive. A first step
is to store packets according to their respective protocol levels, as it has been detailed in
Chapter 3. Packets by themselves are also not really meaningful, as their analysis remains
fastidious. We presented in Section 3 some global statistics on packets, but the analysis at
this stage remains at a too coarse level. We also observed when storing such packets into
the database, that grouping packets according to their origins and destinations is helpful.
This led us to create four distinct information levels, called Sources, Global Sessions,
Large_ Sessions and Tiny Sessions'.

They represent all four different abstraction levels. By choosing different abstraction
levels we can switch between levels and analyze the appropriateness of the abstraction for
a specific situation.

!Complete definitions are in Chapter 3.

48 4. DISCRIMINATION STEP: FINGERPRINTING ACTIVITIES

Abstraction mechanisms are often complex, and provide means for identification and
design of invariant components and structures [206, 201, 210]. One of them is classi-
fication, often complemented by two other underlying mechanisms: generalization and
specialization.

In the following, we present a generalization process, that will lead to a useful abstrac-
tion level of the data. This abstraction level generates clusters that will be the basis of
the automatic analysis process that we present in Chapter 5.

4.1.2 Concepts and Challenges

Previous work has shown that address blocks in different networks can see different traffic
traces [82, 186]. Furthermore, the global statistics extracted from the database (see
Section 3.3.3) also indicate that each sensor presents unique properties compared with
one another, in terms of the number of observed IP sources, targeted ports, received
bytes, etc. Thus, sensors do not monitor exactly the same ’'events’. To exemplify this
property, we make use of the following terminology:

Definition 4.1. An Activity is the set of actions performed by an IP source on a honeypot
Sensor.

An activity can be characterized by a given Large Session. We remind here that
a Large Session is the set of packets exchanged between an IP source and a honeypot
sensor. So, rephrasing the previous remarks, we have observed so far that:

Observation: Honeypot sensors do not monitor exactly the same activities.

The HoRaSis framework aims at better understanding the activities that are moni-
tored through the distributed network of sensors. One implication would be to compare
somehow the activities on each sensor, in order to determine what makes them differ
and what kind of information this can bring. The HoRaSis framework must contain a

functionality that helps at comparing activity fingerprints; an activity fingerprints being
defined as:

Definition 4.2. An activity fingerprint is a set of parameters that characterize an activity
observed on a honeypot sensor.

The set of parameters we chose to perform this study is detailed in the next sec-
tion. Continuing previous reasoning, it seems reasonable to think that attacking tools,
if they consist of purely automatized deterministic activities, should generate the very
same activity fingerprints on all targeted sensors. This leads us to formulate the following
assumption:

4.2. FINGERPRINTS OF ACTIVITIES 49

Assumption: If the attacking tool has a deterministic behavior, we must observe the
very same activity fingerprint on all sensors which have been the target of this attacking
tool.

Most, of the tools have, as far as we observed, no random behavior, and share this
deterministic property?. In Section 4.2 we describe the set of parameters used as activity
fingerprints. In Section 4.3, we explain that this theoretical activity fingerprint might dif-
fer due to network distorsion, e.g. losses. These phenomena are not part of the fingerprint
and then must be considered when comparing the activities. We have developed dedicated
algorithms to group efficiently the IP sources sharing an identical activity fingerprint while
considering these network distorsions.

The analysis we intend to perform requires to group malicious activities (in a general
sense) that share a common fingerprint. Clustering techniques are natural candidates for
this task. Note that the proposed solution might not be (and does not pretend to be) the
unique one. We make use of techniques steering from a large variety of research domains,
from knowledge discovery to data mining, and other solutions might be possible. The
goal here is to present, based on the experience gained with our data, HoRaSis, a simple
but meaningful technique to organize and classify data. This method is validated and
produces, at each step, new interesting results which contribute to the final analysis.

4.2 Fingerprints of Activities

4.2.1 Definitions

We make use, all along the thesis, of the terms activities fingerprint and cluster. They
must so be carefully defined:

Definition 4.3. A Cluster is a set of IP sources having exhibited the same activity fin-
gerprint on a honeypot sensor.

Definition 4.4. We copy here the definition of fingerprint found in [80]. A Fingerprint
18!

1. An impression on a surface of the curves formed by the ridges on a fingertip, espe-
cially such an impression made in ink and used as a means of identification.

2. A distinctive or identifying mark or characteristic: "the invisible fingerprint that’s
used on labels and packaging to sort out genuine products from counterfeits” (Gene

G. Marcial, [80]).

2We discuss in Section 4.6.2 situations when this assumption might not be valid.

50 4. DISCRIMINATION STEP: FINGERPRINTING ACTIVITIES

3. a DNA fingerprint, a chemical fingerprint.

We are interested in the second and generic definition. The fingerprint should not be
an add-on. A fingerprint is a unique set of parameters that allow characterizing an object.
There might be many fingerprints for a given object (just like the eye , DNA or thumb,
etc for human beings), but it is important to remark that the combination of several
fingerprints remain a fingerprint. Here, we propose to identify fingerprints of attack tools
from the honeypot datasets, in order to analyze and correlate them, to understand attack
processes and detect new threats, etc. We also show in the following sections the first
advantages this classification brings to the analysis. Based on the previous remarks, we
can define an Activity Fingerprint as:

Definition 4.5. An Activity Fingerprint is an analytical evidence that characterizes a
specific malicious activity on any sensor of a group of IP sources.

4.2.2 Analytical Evidence

We want to define the fingerprints of an attack in terms of a few parameters. In a passive
manner, all the info we receive constitute the fingerprint. However, we need to determine
the dimension of this fingerprint. We base this step on our own experience of traffic
monitoring, and on techniques commonly used for network monitoring. This leads us to
define the following list of attributes:

1. The number of targeted virtual machines on the honeypot platform

2. The sequences of ports: From the ordered packets (received time) sent to one vir-
tual machine, we extract the exact sequence of distinct targeted ports. Figure 4.1
illustrates the definition.

3. The total number of packets sent by the attacking source

4. The number of packets sent by the attacking source to each honeypot virtual machine
5. The duration of the attack

6. The inter-arrival time between packets received by the targeted machine

7. Ordering of the attack

8. The packet contents (if any) sent by the attacking source

We can also imagine to take other parameters into account, like the packet size. This
information is often misleading, as some protocols implement padding to build normalized
size packets. This whould not allow us to discriminate several attacks using such protocols.

4.2. FINGERPRINTS OF ACTIVITIES 51

This is the main reason why we focused on packet payload only, as delivered to the upper
layer. These seven attributes are more precisely detailed and justified in the following
sections.

Attacking Machine Virtual machine

ICMP echo

TCP port 80
TCP port 80
TCP port 80 Associated Ports Sequence:

UDP Port 137 {1,7.80,U_137,T_135}
TCP port 135

TCP port 80
TCP port 80

i

Figure 4.1: A Ports Sequence Associated to an Observed Activity

4.2.3 Classification Requirements

The analytical evidence of an activity fingerprint is made of all concrete attributes pre-
viously listed and observed directly from collected data. They do not require particular
tools (only traffic sniffing and simple computations) to compute them. An offensive tool
can have different activities, depending on the way it is configured. We want to find
clusters, i.e. groups of IP sources that share the same activity fingerprints.

Preliminary analysis of the traffic we have scrutinized has revealed that network distur-
bance might affect in some ways the activity fingerprint. Obviously, the clusters we intend
to obtain must not be biased by these disturbances which are not directly related to the
attack activity. As a consequence, the HoRaSis framework must contain a classification
mechanism for the IP sources which consider this problem.

Generalization process has been used to characterize DoS attacks in [115], and it is,
as far as we know, the only publicized effort which is going so far in the generalization
process of the traffic. The authors identify the attack stream, that is the sequence of attack
packets created by the host machine and the attack tool. However, the attack stream is
shaped by many factors: number of attackers, attack tool, operating system, host CPU,
network speed, host load, and network cross-traffic. Since they define an attack scenario
as a combination of the attacker and attack tool, the fingerprinting techniques should be
robust to variability in host load and network cross traffic.

The classification task consists in assigning objects to classes (groups) on the basis
of measures made on the objects. Classification is unsupervised if classes are unknown,
and if we want to discover them from the data (cluster analysis) [110]. Classification

52 4. DISCRIMINATION STEP: FINGERPRINTING ACTIVITIES

is supervised if classes are predefined. In this case, we can use a (training or learning)
set of labeled objects to form a classifier for the classification of future observations. In
our situation, we have no predefined classes. However, as we explain below, we have a
good intuition based on the experience of digging into the database on possible classes,
or at least attributes to build classes. Thus, the proposed classification method must be
unsupervised but controlled.

Clustering comes into two general flavors: Partitioning or Hierarchical [61]. Parti-
tioning usually requires to pre-specify the number £ of mutually exclusive and exhaustive
groups (k-means, self-organizing maps, PAM, etc). The hierarchy-based clustering meth-
ods produce a tree or dendogram. They avoid specifying how many clusters are appro-
priate by providing a partition for each k obtained from cutting the tree at some level.
This tree can be built in two distinct ways:

e bottom-up: agglomerative clustering

e top-down: divisive clustering

Some techniques also exist to estimate the number of clusters (silhouette width in PAM
[92], Gap statistics [230], etc). In our situation, we have no indication on the initial
number of classes. Furthermore, the initial dataset is the whole database, that is all
packets collected so far. Our clustering technique should be in this case a hierarchy-
based and top-down approach. It is important to point out that clustering cannot not
work. That is, every clustering methods will return clusters. Clustering helps to group
information and it is a visualization (abstraction) tool for learning more about the data.

To conclude, we intend to classify attacking Sources according to their activity finger-
prints on each platform. Some clustering techniques are applied to make this grouping,
and the global method, presented in the next sections, is a hierarchy-based and top-down
approach.

4.3 Clustering Algorithm

4.3.1 High Level Description

The purpose of classification here is to group all the TP sources that share common
characteristics as defined in the previous section. This task is however not as simple as it
appears, for at least two reasons. First, traffic in the network is subject to a few bothering
effects, e.g. losses, delays or reordering. Second, the notion of similarity associated to
each parameter is not clearly defined. There exists dozens of distance functions, and
others can also be generated. To deal with these potential issues, we split the clustering
algorithm into four steps:

4.3. CLUSTERING ALGORITHM 53

1. We withdraw all network influences from the dataset;

2. We classify the data according to deterministic parameters;

3. We cluster the sources together according to non-deterministic parameters;

4. We validate the clusters and provide a consistency attribute.

Each of these steps is presented in the following subsections.

4.3.2 Network Disturbances

Introduction

We are interested in this section in estimating the impact of some network effects, and
especially losses and reordering, in the analysis of attacks. As an illustration, consider the
analysis of Win32.Rbot.H which is described in [40]. Win32.Rbot.H is an IRC controlled
backdoor that spreads by scanning ports 139 and 445 respectively. If reordering or packet
losses occur, the sequence of ports can be altered, and so will the analysis in an indirect
manner. Win32.Rbot.H could then be associated to ports sequences {139}, {445} (if loss),
or {445,139} (if reordering), instead of the "exact" sequence {139,445}. To the best of our
knowledge, no study of the impact of packet losses and/or reordering on attack forensics
has been carried out so far. We have described the whole study in [193], and we provide
in the following the main results.

In addition, we are collecting packets on precise and unique locations, the Honeypot
sensors. The general problem of vantage points has been detailed in [177]: the location
where packets capture is performed can significantly skew the interpretation of the cap-
ture, in quite non-apparent ways. Some vantage-point issues cannot be corrected without
additional information, and this leads to a fundamental problem in network intrusion
detection of adversaries being able to exploit vantage-point ambiguities to evade security
monitoring [196, 102]. In our case, data collection is made at the receiver side. Only a
small fraction of the traffic from the attacking Source is observed: the sole packets target-
ing the Leurré.com sensors. As a conclusion, existing solutions from the traffic analysis
field are not directly applicable to our case [71, 120, 169, 241|. This led us to devise a
new solution that we detail in the next section. This solution is based on a particular IP

header field. An advantage of this method is that it relies on layer 3 information and is
thus applicable to TCP, UDP and ICMP traffic altogether.

54 4. DISCRIMINATION STEP: FINGERPRINTING ACTIVITIES

Reordering and Losses

We have focused on some particular network effects, namely the packet losses, retrans-
mission, duplicates and forward reordering. A good definition of forward reordering can
be found in [48] and is illustrated in Figure 4.2. It refers to packets sent by a source which
are not received in the correct order at the receiver side.

Forward
Reordering

Figure 4.2: Forward Reordering from [48]

In order to detect forward reordering, we have developed a technique relying on a
particular IP field called the identification field, or IPID that is normally used in fragment
reassembly (see RFC 791 for more details [90]). As RFCs do not clearly specify it, this field
is implemented in different ways, depending on OS flavors. Five different implementation
scenarios have been observed so far ([30]):

Scenario 1: IPID is a non-null (C) constant.

Scenario 2: TPID is increased by a standard increment of one for each sent packet.

Scenario 3: TPID is increased by an offset of 256 each time a packet is sent. This
results from an unintentional error in Microsoft IP stack.

Scenario 4: TPID is randomly chosen each time a packet is sent.

Scenario 5: TPID is always a zero value.

The authors in [49, 62| report that the id field in the IP Header is generally imple-
mented as a simple counter incremented by one each time an IP packet is sent. Bellovin
also uses this particular property in [49] to detect NATs and to count the number of active

4.3. CLUSTERING ALGORITHM 55

hosts behind them. We have demonstrated in [193| that most of the traffic we collect has
the very same property. More precisely, around 75% of the sources having sent more than
one packet share this property. It has also been demonstrated in [193] thatit is quite
unlikely that ordered sequences of TPIDs could be due to random effects and, thus, that
any disorder is most likely the representation of reordering effects.

We present in [193] a few algorithms to detect packet reordering which are applicable
to the sources that use incremental IPIDs. In these cases, as presented in Figure 4.3, the
receiver will only observe packets with IPID n and n+2 (resp. n and n+512), and not the
one with n+ 1 (resp.n 4+ 256) in case of a packet loss and an IPID sequence n,n+2,n+ 1
(resp.n,n + 512, n + 256) in case of reordering.

IPIDs
n-1 n

g Sender

UHoneypotVMs: ; ; \ \

n+l?

EI

IPIDs
n-1 n

g Sender

D Honeypot VMs : ; X\

(n+1)->n?
l:l

Figure 4.3: Honeypot-oriented Observations during Packet Losses or Reordering

For example, we identify reordering by looking at the sequences of received packets
from each attacking source on a honeypot environment (Large Sessions). Each mismatch
between the sequence of IPIDs and the sequence of capture timestamps is labeled as a
reordering. Algorithm 1 provides the pseudo-code to detect reordering for an attacking
source sending packets (Pkt;);<;<n captured at time (T;);-;«n with IPIDs (IPID;)i<i<n-
Such sessions are flagged with a reordering flag.

Algorithm 1 IPID Analysis: Reordering detection
for each sequence of packets and each attacking source
within the set of those identified as implementing scenarios 2 or 3 do
if 31i€[l..N —1] verifying
T; < T;y1 AND IPID; > IPID;; (mod2'®) then
detect reordering = true
break
end if
end for

To avoid reordering effects, the easiest solution consists in ordering packets by their
IPIDs when the source is labeled with a reordering flag.

516) 4. DISCRIMINATION STEP: FINGERPRINTING ACTIVITIES

A missing IPID can either be due to a loss or simply to packets sent by the Source to
other destinations. At this stage, we can only make assumptions on the missing packets,
and label the corresponding packets session with loss labels. The statistics method we
have presented in [193| however helps providing a good confidence on the labeling. De-
tected losses will be taken into account in the following when comparing packet traces.
There is no easy way however to interpolate the missing packets, except by statistically
interpolating the traffic with the others on quite similar ports. We limit in the following
the loss impacts by generalizing the parameters of the activity fingerprint.

Duplicates and Retransmission

It might happen that the network duplicates the original packet and generates at least two
packets with the very same sequence number. The causes and impacts of these anomalies
have been extensively studied in [119, 174, 155].

Brosh et al. have presented an interesting way to classify out-of-sequence packets,
by comparing only two headers fields, namely the IPTD and the TCP sequence numbers.
Following Jaiswal et al. in [119], they have defined an out-of-sequence (OOS) packet to
be a packet which TCP sequence number is smaller than previously observed sequence
numbers (receiver time) in that connection. Duplicates, as well as reordering and re-
transmission, are classified as presented in Figure 4.4. Duplicates are easily identified as
completely identical packets, including tcp sequence numbers and IPID. We remove them
before any further analysis in our data. Reordering is detected and fixed as presented in
the previous section.

Is packet
previously
abserved?

Is the ID of both
packets different?

Retransmission

Duplicate Reordering

Figure 4.4: Classification Process of Out-of-Sequence Packets [57]

Retransmission corresponds to the two other outputs (see Figure 4.4). It is important
to note that retransmission and loss are different, and might not be correlated. As some

4.3. CLUSTERING ALGORITHM 57

attack tools might implement particular transport layer?, a loss could not be detected
and not imply a retransmission. This is illustrated in Figure 4.5 where the first figure
presents a loss followed by a retransmission, while the second figure represents a loss
without retransmission. Both scenarios are possible, but in the second case, we miss one
packet. On the contrary, it is sufficient in the first case to reorder the out-of-sequence
packet to get the initial sequence of packets.

Attacking Source Honeypot Attacking Source Honeypot
Virtual Machine Virtual Machine

Pck 1 Pck 1
Pck 2
Pck 3
Pck 4

Pck 2
Pck 3
Pck 4

\x\
/

(a) Loss with Retransmis- (b) Loss without Retrans-
sion mission

Pck1

Y

Figure 4.5: Impact of Loss and Retransmission

Other biases

We have shown in the previous section how to limit the impact of packet retransmissions,
duplicates and reordering. Other network disturbances exist, like the time it takes for a
packet to travel from its source to its destination (delay, sometimes called latency and its
variations aka jitter).

We explain in the following how to deal with the remaining effects, including:

e packet loss

e delay, jitter

Another network effect is the IP dynamic allocation. This issue has been avoided thanks
to the definition of a Source (Section 3.5.2). We consider an IP as the same source as long
as the observed IP activity does not contain more than a 25-hour period of inactivity.
However, lots of other network problems might be considered. As an illustration, it has

3 An interesting summary of the ambiguities in the true semantics of observed traffic has been presented
by Paxson in a recent talk [175].

H8 4. DISCRIMINATION STEP: FINGERPRINTING ACTIVITIES

been shown in [203] that the simple task of identifying the end of a TCP connection
is not easy, as many flavors are currently implemented in TCP stacks and despite the
recommendations in RFCs [182, 38, 173]. It is also worth mentioning at this stage the
study presented by Paxson et al. in [176], which aims at describing a few problems that
might arise while conducting Internet Measurement. More precisely, the author focuses
in [176] on some imperfect capture devices, which can exhibit limitations both intrinsic
to their design and how we use them. This danger of misconception can lead to errors in
equating what we are actually measuring with what we wish to measure. Paxson points
out a few of these problems, including:

e Measuring TCP packet loss by counting retransmitted packets, leads to overlooking
the problem of packets retransmitted unnecessarily, or of packets replicated by the
network (see [119] for a study that explicitly acknowledges this difficulty, and [39]
for a study demonstrating that differences in the two rates can be quite significant).

e tcpdump only produces an end-of-run summary of the total number of drops, so it
is not possible to associate drops with the point in time at which they occurred.

e tcpdump, as a majority of tools, suffers from implementation flaws. As an illus-
tration, major advisories appeared in 2004, as researchers found that tcpdump
could crash or misbehave after parsing particular protocols like L2TP (port 1701),
ISAKMP (port 500) or RADIUS (ports 1645,1646,1812,1813).

As a complementary illustration, it has been studied in a student project [65] some
techniques to determine network anomalies due to attack crafted packets or to capture
bugs and misbehaviors. The author focus on some TTL anomalies. This is another net-
work influence that has not been considered at this time on the classification mechanism.
We have, however, determined a bug in the capture of Snort, which modified particular
fields (TTLs and IPIDs) due to a code error in the TCP stream/ preprocessor.

We can imagine to study all of the potential biases, and this must definitely be done.
However, this is a huge amount of work, and not an easy task. We avoid the problem
in the following by generalizing some attributes, like the number of packets, with regards
to these potential network influences. This generalization approach remains realistic and
feasible in the scope of our study.

Drawbacks

The techniques presented to address the impact of reordering, retransmission, duplicates
modify the data and can be considered as an attempt to normalize the monitored traffic.
It is worth pointing out here that such a normalization of the traffic might lead to some
drawbacks. By withdrawing duplicates, we might miss particular types of attacks, e.g. the
ones that sent very same crafted packets (all packets having the very same ip/tcp layer, in

4.3. CLUSTERING ALGORITHM 59

terms of seq number, etc.). As a consequence, we limit the number of such data changes
to one per Tiny Session. This is justified as a large majority of connections concern a
small number of sent packets. Thus, these network influences should remain limited. The
most difficult point is to determine certain criteria, which help deciding if the observed
phenomenon is only due to an artifact unrelated to the attack, or if the phenomenon itself
is an additional feature of the attack. The framework must tolerate network anomalies,
instead of withdrawing them all, in order not to bias attack analysis. This remark also
justifies why we have not looked at other disturbances and why we leave them for future
work.

4.3.3 Discrete Parameters

Different parameter categories

Influences due to the network have been accounted for in the previous section, and some
of them have been cancelled. They are not related to the attack processes. The following
step consists in classifying data. The fingerprint attributes have been briefly described
in Section 4.2.2. Two packet traces (Large_Sessions) will be said similar if all of their
fingerprint attributes (see Section 4.2.2) are similar. It implies that a similarity function
must be defined for each attribute. These functions must at least consider the previously
mentioned case of losses. We estimate that some attributes are less impacted by losses
(or delays) than others. Those we believe cannot be impacted by losses are called discrete
values hereafter and are described in the next section. Others highly fluctuate depending
on losses. They are generalized in Supervised Intervals which are detailed hereafter.

Discrete Values

When applying machine learning in practical settings the first difficulty is raised by the
attribute evaluation phase for the data at hand. The basic idea of attribute selection
algorithms is searching through all possible combinations of attributes in the data to find
which subset of attributes works the best for prediction. The selection is done by reducing
the number of attributes of the attribute vectors, keeping the most meaningful attributes
(which together convey sufficient information to make learning tractable), discriminating
ones, and removing the irrelevant or redundant ones. In practice, the choice of a learning
scheme (the next phase) is usually far less important than coming up with a suitable set
of attributes.

We come out with three major discrete attributes out of the seven characterizing an
activity fingerprint (see Section 4.2.2), that seem characteristic of different attack tool
fingerprints and represent major semantics:

60 4. DISCRIMINATION STEP: FINGERPRINTING ACTIVITIES

1. Attribute A: The number of targeted machines: An IP source can target either 1,
2 or 3 virtual machines in each Leurré.com environment.

2. Attribute B: The ordering of the attack against virtual machines. If the virtual
machine has targeted several virtual machines, we give a boolean value 0 if the
packets were sent in sequence and 1 otherwise. In sequence means that the Source
sends all its packets to a virtual machine before targeting another one.

3. Attribute C: The list of ports sequences used against each virtual machine of an
environment.

Figure 4.6 presents the cumulative distribution function (CDF) of the number of re-
ceived packets per Virtual Machine, for each IP source (that is, each Tiny Session in
the Leurré.com terminology). 30% of the Tiny Sessions contain at less 3 packets. This
makes the number of machines quite stable against packet losses, and confirm our choice
of Attribute A as a first clustering criterion. This property is also valid with ports, even
if the average number of packets per port per Tiny Sessions is smaller. Furthermore,
due to the complexity of the interpolation processes, it is reasonable, in a first stage, to
consider the sequences of ports as a discrete value. A refinement will be proposed in the
next chapter. Following the very same idea, it would also have been possible to consider
the sequences of targeted virtual machines instead of their number. The choice has been
justified by the fact that whenever IP sources target several virtual machines (VMs), they
follow the natural order of the VM IP addresses of a sensor in 99,7% of the cases.

! i I i I i [
0 10 20 30 40 50 60 70 80 90 100
x: # rev Packets per Virtual Machines

[L L i

Figure 4.6: CDF: # Received Packets per Virtual Machine

The attribute evaluation can be done in different ways. They are listed hereafter,
according to the entropy of classes. We compute the entropy H of each class probability
distribution P as:

H(Class) = — Z P(z).log(P(x)) (4.1)

z€Class

4.3. CLUSTERING ALGORITHM 61

e The Information Gain evaluates the worth of an attribute by measuring the infor-
mation gain with respect to the class.

InfoGain(Class, Attribute) = H(Class) — H(Class| Attribute) (4.2)
e The Information Gain Ratio that evaluates the worth of an attribute by measuring
the gain ratio with respect to the class.

(H(Class) — H(Class|Attribute))
H (Attribute)

GainR(Class, Attribute) = (4.3)

o The Symmetrical Uncertainty that evaluates the worth of an attribute by measuring
the symmetrical uncertainty with respect to the class.

H(Class) — H(Class|Attribute)
H(Class)

SymmU (Class, Attribute) = 2 x + H(Attribute)

(4.4)

e The Chi-Squared Statistic x* (or Pearson-Chi-squared statistic) evaluates the worth
of an attribute by computing the value of the chi-squared statistics with respect to
the class. The computation is made between each pair of attributes in order to feed
a contingency table.x? is then quite easily derived from the table and express how
related the two attributes are.

We intend in the following to evaluate the attributes thanks to the Information Gain
Ratio (IGR), also used in some decision tree algorithms like C4.5 ([198]), as it provides
a fairer value than the Information Gain only. Indeed, this last notion tends to favor
attributes that have many values. It is important to note here that we intend to keep all
of the chosen parameters which depict an activity fingerprint. However, given a sample
space of p dimensions, it is possible that some dimensions are less discriminatory than
others. This measure intends to quantify this difference.

In Table 4.1, we give the number of clusters obtained by splitting the whole dataset
(from February 1st 2003 to July 31st 2005) depending on the number of chosen attributes:

It can be observed from Table 4.1 that Attribute B is not really discriminatory. Its
overall Information Gain Ratio remains very small. In other words, its contribution to the
classification is not really significant. Actually, this is not surprising as it provides quite
redundant information with Attribute A and as it discriminates the activities on several
virtual machines only. This table provides an interesting estimate of the correlation among
parameters, in the case this correlation is not straightforward.

62 4. DISCRIMINATION STEP: FINGERPRINTING ACTIVITIES

Table 4.1: Classification in function of some discrete values

Splitting Attributes | Number of clusters | Info(F)
Attribute A 3 1.0940
Attribute B 2 0.0034
Attribute C 46446 4.269547

Attributes A and B 4 0.760566
Attributes A and C 46476 4.269695
Attributes B and C 46449 4.269569
Attributes A and B and C 46479 4.269717

12

10

3

=k

%

9

8‘4

I+

2

0 11 Ll

8ize Clusiebs (# grodped LardeSSessiong)

Figure 4.7: Distribution of Sizes among Clusters

Figure 4.7 gives the distribution of sizes among clusters (y-axis in thousands of clus-
ters). There is a clear prevalence for small ones. In a more general manner, only 2702
clusters contain at least five Sources, 8759 at least 2 and 1699 at least 10. We re-
mind here that the database contains 1431093 Large Sessions, that is, there is a very
small diversity of attacks with respect to Attributes A, B and C (in average, there is
% ~ 31 Large Sessions per cluster). It is also important to note that more than
95% of large _Sessions are thus included within 2702 clusters. Without considering other

attributes, this leads to the following corollary:

Corollary: The grouping of malicious activities by ports sequences and number of tar-
geted virtual machines indicates that there does not exist a large variety of combinations
in the wild.

4.3.4 Supervised Intervals
Attributes Description

We defined in the previous section some attributes with discrete values. Classification
is simple in this case, as any combination of n values defines a new class. There are

4.3. CLUSTERING ALGORITHM 63

other attributes, however, that characterize a fingerprint, but which cannot be considered
as different for each different discrete values because the gain ratio would be very close
to zero, as there would be too many generated classes. In other words, in such case, a
very same fingerprint can have an interval of values for a given attribute. Among these
parameters, we consider:

e Attribute D — Duration: The total duration during which an attacking source
was observed on one honeypot environment. It is computed, for a given source, as
the difference between the date the last packet has been received on the environment
and the date the first packet has been received. This attribute aims at considering
network delays as a simple artifact of the Internet and not as intrinsic features of
the attack activities.

Duration = t(last_received_packet) — t(first_received packet) (4.5)

e Attribute E — Number of packets sent to each virtual machine by an attacking
source. This attribute also varies because of packet losses. Variations might be
simple artifact of the Internet and not intrinsic features of the attack activities.

e Attribute F — Average inter-request time: the average time interval between each
packet received from the attacking source.

Large Session (log2)

’ duration (s) 6
Figure 4.8: Distribution of the Duration Values over all Large Sessions

It is not obvious to perform a good generalization with respect to different and unpre-
dictable distributions. For example, Figure 4.8 describes the distribution of the duration
values (Attribute D), in seconds, over all Large Sessions in the database. A simple glance
at the figure indicates the hard task of generalizing such an attribute. A contrario, Figure
4.9 presents the very same distribution, but limited to Large Sessions within clusters
2404 and 1062 (obtained after having considered the discrete attributes in Section 4.3.3).

64 4. DISCRIMINATION STEP: FINGERPRINTING ACTIVITIES

These two clusters are relatively larger than the average, and consist of a few dominant
peaks. We consider for instance, that the two peaks of Cluster 2404 characterize two
different fingerprints.

600 T T T T T T T T T 300

500 b 250

100 b 50

[0.5 1 15 2 25 3 35 4 45 5 0 0.5 1 15 2 25 3
duration (s) duration (s)

(a) Cluster 2404 (b) Cluster 1062

Figure 4.9: Examples of Duration Distribution among Two Clusters

Modal properties of these three parameters

As illustrated by the previous example, it seems important here to check that all clusters
share the same property: there exist for Attributes D, E and F clear peaks that can be
used to generalize their values. In order to prove this assumption, we make use of a
so-called peak picking technique. Peaks of a distribution are often called modes. Many
techniques which aim at extracting them automatically have been proposed [131, 134]. In
the following, we intend to prove that there are a few of them in each cluster, and that
their corresponding bins stem for the majority of their components. A bin is computed
by a given baseline around the peak value. The baseline is determined according to the
tolerance we give around the values (see Figure 4.10). The choice of a tolerance threshold
is justified in the following, as it does not really impact on this demonstration.

The technique is detailed in Algorithm 2. We extract the weight of the 5 higher
peaks of each cluster and we compute their global weight (relative to the cluster size,
in %). These relative weights across clusters are then represented in Figure 4.11 for
Attribute D*. The x-axis represents the indexes of the 1699 clusters gathering more than
10 large Sessions. All values are higher than 85% (except for the 2 largest clusters, out
of the 1699 considered clusters). In other words, the majority of the distribution of each
attribute D, E or F can be expressed by no more than half a dozen of peaks. It seems thus
relevant to apply this simple peak picking technique to all clusters in order to generalize
the attribute values.

4The graph of Attributes E and F are very close to this one.

4.3. CLUSTERING ALGORITHM

frequency

A

peak

L
2T \
Baseline

Figure 4.10: Peak Terminology of a Given Distribution

Algorithm 2 Distribution Properties of Attributes D,E and F

for all Attributes A; with tolerance 7; do
for all Clusters C; do
W@Zght(W”) =0
Compute the distribution Dj;
while There exists dominant peaks & counter <5 do
Extract Dominant Peak P,
Compute its baseline:
Interval [Py, + 7;]
This bin has a weight w;;(k)
Weight(W;;) = Weight(W;;) + w;; (k)
Remove the bin from Distribution D;;
Increment counter +1
end while
end for
Plot distribution of Weight (W;;)
end for

Generalization Process

As another illustration, Figure 4.12 represents the distribution of attribute F, i.e. the
average inter-arrival time, over all Large Sessions. The x-axis describes the attribute
values while the y-axis represents the frequency of the values in terms of Large Sessions.
Clusters also present interesting modal distributions, as it has been described in an anal-
ysis of Inter-Arrival Times (IATs) in [242| carried out in cooperation with Zimmermann
et al. The analysis of some modal characteristics has led to interesting results, and the

findings of two different activity anomalies:

e A strange IAT peak of value 28800s involving UDP port 38293: it turned out to
be the misconfiguration of a Norton Antivirus automatic update server against a

particular sensor. [242, 16].

66 4. DISCRIMINATION STEP: FINGERPRINTING ACTIVITIES

110

100 ‘
90
80
70r
60

50

5 peaks: Total Weight (%)

40

30

20

10r-

I I I I I I I I
0 200 400 600 800 1000 1200 1400 1600 1800
Clusters (size > 10)

Figure 4.11: Modal Property of Attribute D: Weight of First 5 Peaks

e A strange TAT peak of value 9754s involving UDP port 1026: this port is used by
Microsoft Windows operating systems for the Windows Messenger service, among
other things. At least one worm is also known to propagate via a vulnerability using
this service [242, 19]. This port is also known to be utilized for the distribution of
spam over the Windows Messenger service [20]. The traffic has been periodically
sent by two Chinese servers and monitored by several honeypot sensors.

As shown through the examples in [242], there are some clear and meaningful peaks.
We use a dedicated algorithm to generalize these values according to some particular
thresholds that are explained hereafter. In general, we have decided to keep on splitting
the classes with certain tolerance indices (or bin baselines), where a tolerance index is
defined for each attribute. The tolerance indexes are associated to probabilities of loss
and delay in the network. The technique is summarized in Algorithm 3. It simply consists
in considering peaks by decreasing frequency. For each peak, the baseline is computed
according to the tolerance index. We also avoid the situation where there is a baseline
overlap: in this case, the new baseline does not take values already included in the other
baseline. An illustration of such a scenario is presented in Figure 4.13. Baseline of Bin 2
is shorten as it partially covers baseline of Bin 1.

For each attribute presented above, we have used the tolerance thresholds presented
in Table 4.2. Small variations of the different tolerance indexes does not make large
classification changes. This is quite straightforward when looking at the two examples
presented in Figure 4.9.

4.3. CLUSTERING ALGORITHM 67

Tiny sessions —+—
4588 | B

4000 | .
ases || -
3000 | -

2560 £ .

26808

Nunber of sessions

15608

10868

586

2] 16600 20000 30800 40800 a1 el] 60800 70808 gooua 99808
Seconds

Figure 4.12: Distribution of Average Inter-Request Time Values

Table 4.2: Tolerance indexes 7;

duration 2%
total number of received packets 8%
received packets per Virtual Machine | 8%
average inter-packet time 2%

Information Gain and Remarks

The Information Gain summarizing this new clustering step is presented in Table 4.3. We
only present the outcome of this method applied on the previous 2702 clusters, that is
the ones grouping at least 5 sources (97,5% of all Large Sessions). Globally speaking, all
attributes are quite equally discriminatory. The splitting caused by Attribute D associated
to F, i.e. the observation duration and the average inter arrival time) does not bring more
additional information than the attributes considered alone. This is not totally surprising,
as the attributes are not completely uncorrelated: the values of Attribute F are simply
computed by dividing Attribute E by Attribute D for each Large Session. This explains
that the Information Gain Ratio is similar when considering Attributes (D and E), or (D,
E and F).

68 4. DISCRIMINATION STEP: FINGERPRINTING ACTIVITIES

Algorithm 3 Process of Generalization
for all Attributes A; with tolerance 7; do

Compute the distribution D;

Order D; in decreasing order

for all Frequent Values D;(j) do
Take Interval with:
Omin = min(D;(j).(1 — 7;),0)
Omaz = Dl(])(l + Ti)
for all Other already-built intervals [a;b] do

if a > a,,i, AND a < ay,,, then
Omaz = 0 — 1

end if
if b> o, AND b < a0, then
Cmin = b+1
end if
end for
Add new interval [min; Qmae] in the list
end for
end for
Table 4.3: Classification with Supervised Intervals
Spliting Attributes F Number of clusters | Info(F)
Attribute D 4109 1.0940
Attribute E 3100 0.0034
Attribute F 3085 4.2696
Attributes D and E 4813 0.7606
Attributes D and F 4703 1.0962
Attributes E and F 3112 4.3121
Attributes D and E and F 4815 4.3127

4.3.5 Validation: Unsupervised Classification

Introduction

At this stage, we have classified the data according to 6 major attributes, described in
Sections 4.3.3 (discrete values) and 4.3.4 (supervised intervals). Another attribute has
been mentioned but has not been considered so far: it is the payload of packets, which is
also an interesting fingerprint attribute. It does not fit into the previous two categories.
Taking the exact values is not relevant, as many fields in the protocol layers 5+ often
include timestamps or other identifiers, which make the payload somehow unique. More
generally, two major issues must be considered before comparing Large Sessions and
their associated data payloads:

4.3. CLUSTERING ALGORITHM 69

Frequency
Bin 1

“ /
........ Bin 2

Y

Baseline 1 Baseline 2

Figure 4.13: Peak Picking: Intersection btw Baselines

e First, when comparing two Large Sessions in terms of all packets sent by each at-
tacking source to an environment. Each Large Session consists in several payloads
to be compared with.

e Second, Payloads can include some random or changing fields that must not disturb
the comparison.

A distance function is applied between payloads of each Large Session from a given
cluster. This function is called the Levensthein distance and is discussed in the next
paragraph. The clustering top-down hierarchy is explained in the following paragraph, as
well as the splitting criteria to get the new clusters.

Levenshtein-based Phrase Distance

In order to validate the consistency of clusters, we consider packet data contents. The
payloads of all packets sent from the same source are concatenated to form a simple text
phrase thanks to the tethereal utility [6]. Tethereal is the command line version of the
popular network traffic analyzer tool ethereal. It allows examining data from a capture
file and browsing detailed information for each packet in a text format. Thus, we consider
each phrase as a concatenation of tethereal lines, with || separators. Figure 4.14 gives
a short phrase of an ftp attack for illustration. Each cluster gathers all attack sources
that are assumed to be due to a single root cause, i.e. to the use of the same attack
tool against our honeypots. We define for each attack source its associated attack phrase.
Then, we compare for each attack of one given cluster distances to all others phrases
of the same cluster. This technique is based on the Levenshtein edit distance which is
explained below.

The Levenshtein distance (LD) algorithm has been used in many domains, such as

70 4. DISCRIMINATION STEP: FINGERPRINTING ACTIVITIES

EXTRACTED FROM ETHEREAL LOG: Source X attack (2 packets received):

Packet 1-> File Transfer Protocol (FTP) || Request: USER || Request Arg: anonymous
Packet 2-> File Transfer Protocol (FTP) || Request; PASS || Request Arg: Agpuser@home.com

EXTRACTED FROM ETHEREAL LOG: Source Y attack (2 packets received):

Packet 1-> File Transfer Protocol (FTP) || Request: USER || Request Arg: anonymous
Packet 2-> File Transfer Protocol (FTP) || Request: PASS || Request Arg: Mgpuser@home.com

Phrase distance: 1
One substitution Agpuser@home.com —* Mgpuser@home.com

Figure 4.14: Simple Application of the Levenshtein Distance

spell checking, speech recognition, DNA analysis or plagiarism detection. It is a measure
of the similarity between two strings, which we will refer to as the source string (s) and
the target string (t) [10]. The distance (sometimes called edit distance) is the number of
deletions, insertions, or substitutions required to transform s into ¢. For example,

e If s is "Agpuser@home.com" and t is "Agpuser@home.com", then LD(s,t) = 0,
because no transformation is required to change s into t as they already are identicas
are needed.

e If s is "Agpuser@home.com" and t is "Mgpuser@home.com", then LD(s,t) = 1,
because one substitution (change "A" to "M") is sufficient to transform s into t.

In general the two components of the phrase distance (i.e. the string distance and the
positional distance) can have a different cost from the default (that is 1 for both) to give
another type of phrase distance. There is a third component: a cost which gives weights on
the phrases that have less exact matches. It is described in details by Roger et al. in [10].
This third component is disabled by default (i.e. it has a 0 cost), but it can be enabled with
custom cost. The method we apply sums the phrase distance from the words from the set
(i.e. formed by the defined set of characters) and the phrase distance is calculated from
the "words" belonging to the complementary set. Moreover, the algorithm used to find the
distance is the "Stable marriage problem" one [114, 148|. This is a matching algorithm,
used to harmonize the elements of two sets on the ground of the preference relationships.
The positional distance only limits the impact of packet loss when comparing the attack
phrases and computing their global distance. More complex methods could have also
been considered, most of them being currently tested in bioinformatics to compare DNA
sequences [58, 220, 229]. We leave this study for future work, as this simpler solution
performs well with our dataset, as we will show later.

4.3. CLUSTERING ALGORITHM 71

Hierarchy-based clustering

The hierarchy clustering technique which has been chosen to split within a same cluster all
Large Sessions that have similar payload sentences is the classical pyramidal clustering
model built by an agglomerative bottom-up algorithm [94, 52, 53]. The goal is to obtain a
hierarchical structure where each class of Large Sessions is also partioned into sub-classes
and so on, according to a given distance function between classes. The distance between
two subclusters (or sub-classes) is the maximum of all pairwise distances between sentences
contained in each subcluster. Applying the Levenshtein phrase distance combined with a
hierarchy threshold 7., (which is an upper bound of the maximum value of all pairwise
distances) could generate new clusters from the original cluster, gathering Large Sessions
with similar payload contents (similarity given by small values of the phrase distances).
As an illustration, we present in Figure 4.15 a pyramid built from the 8 payload sentences
(wg, 0 < k < 9) associated to a given cluster, as well as the resulting four subclusters
obtained by considering a given hierarchy threshold 77, (the y-axis representing the
considered inter-cluster distance). Let {C;; | 7 € N} be the set of clusters obtained
from the original C; cluster (considering attributes: A --» F'). We estimate the initial
cluster consistency C; by computing the ratio of the largest size obtained among the new
subclusters over the initial C; cardinality:

- mazx(card(C; ;,Vj))
C; =
card(C)

(4.6)

If the value is close to 1, it means that the cluster size has not significantly decreased
during the splitting process. To illustrate this definition, it is worth noticing that the
cluster consistency C; is equal in Figure 4.16 to %.

Another interesting value is the Splitting Ratio SR, which intuitively represents the
number of obtained subclusters after applying the Levenshtein validation phase.

1

SR(C;) = (4.7)

_ 1
" #ObtainedSubclusters

card(jC; jexists)

We have computed the SR values obtained with several Levenshtein clustering thresholds
Trew € [10..200]. We first remark that the splitting does not change significantly when 7,
varies. We also note some cases where the splitting remains very low. These particular
cases are discussed in the next sections, as well as the exact splitting criteria we have cho-
sen, based on these experiments. Both indices Splitting Ratio SR and cluster consistency
C; are employed to quantify and evaluate the impact of hierarchy-based splitting. They
can also be used with other splitting methods as well.

Splitting Phase

It is important to note that some worms, also called polymorphic worms, can change their
form of functionality as they propagate from machine to machine [130]. For instance,

72 4. DISCRIMINATION STEP: FINGERPRINTING ACTIVITIES

Levenshtein Thresholc

Figure 4.16: Splitting: Cluster Consistency

some families of worms contain an encryption engine, that could be very simple, e.g. just
inserts no-ops (unnecessary system calls) into the worm code to evade signature-based
detection engines, or could be as sophisticated as encrypting the entire worm using a
random seed for every hop so as to evade detection during transit. Interesting studies
have been presented by E. Filiol in [99, 100]. To date, only a few computer worms
have used polymorphism successfully [223]. In a more general case, many packets can
be encrypted or might contain random parts. Thus, the length and the content of the
packets in a Session can be or not static, but are characteristic of such attacks. If such
a polymorphic worm exists, it will generate a cluster, as previously described, but with
a very low consistency value, in terms of the Levenshtein distance. All packets should
be quite different in terms of payload sentences. The cluster should not be split in that
case. For the same reasons, it might happen that a small field changes over the sessions
of a very same attack. This can be a different identifier, or a timestamp that makes all
payload sentences slightly different. In this situation, the cluster must also not be split.

We decide to split clusters only if cutting the hierarchy at threshold distance 7, does

4.3. CLUSTERING ALGORITHM 73

not lead an high value of the index 74, 74 being computed as:

B # Obtained Subclusters
~ # Sources grouped in the initial Cluster

Yd (4.8)
v4 gives an indication of the number of created subclusters compared to the number of
initial elements. We have presented in [242| the impact of splitting the existing clusters
according to these two parameters. There is no real sense choosing high values for both 7
and 4, according to the previous remarks. We however note that there is no real splitting
impacts when choosing small 7, or v4. The splitting phase is quite stable for small values.
In the following, we consider the new clusters, obtained by choosing the following values:

e 7, =50

® Vg — 0.2

It is also important to keep in mind that the definition of 74 does not reflect the size
distribution of subclustering. As an illustration, consider a cluster Cj, of cardinality Cj.
We guarantee with the previous method that the splitting phase cannot generate more
than 7, * Ci new clusters. However, both extreme scenarios are possible:

1. The method generates exactly 4 * Cj, each of size 'Yid

2. The method generates two clusters, one being of size 1 and one being of size C}, — 1

This does not present major drawbacks, except that we could consider in the second case
the marginal cluster of cardinality 1 as a strong exception of the bigger one. We take the
decision, however, to create two new subclusters, as we estimate that there might exist
other reasons that could explain why this single source cannot be linked to the others.

It is important to note that each time this technique does not decide to split a cluster,
according to the Levenshtein Distance, it estimates that there is a too large variety of
different payloads within the cluster. This can be explained for two reasons: either the
cluster gathers too many unique attacks, or the cluster is made of encrypted attacks. This
case has been found for 5 clusters.

4.3.6 Global Consistency Index

New clusters can be obtained thanks to the Levenshtein phrase distance. We stop at this
stage the discrimination phase (clustering), as we consider that all the criteria which have
been determined as important for an attack tool fingerprint, have been taken into account
in the clustering approach. However, it is still possible to imagine new criteria to check

74 4. DISCRIMINATION STEP: FINGERPRINTING ACTIVITIES

the consistency of certain clusters. For instance, we can imagine home-made attacking
tool which contains a bug, and which has the particularity of incrementing by 1 the TTL
value of each packet it sends (modulo the maximum value 256). Such a tool exists, and
has been reported in an analysis of the TTL field in [65]. This new attribute can then be
considered as an additional fingerprint attribute for the cluster (or clusters) which is (are)
associated to this tool (or configurations of that tool). On the other hand, this attribute
might be a relevant attribute for that cluster only. We thus concentrate on the assessment
of the consistency of the current clustering.

We define a ladder, the Global Consistency Ladder, which represents the Global Con-
sistency index (GCI) of a cluster. Each time a precise attribute like the one previously
mentioned (incremented TTL) is determined, GCI is incremented by 1 (GCT + 1) if the
attribute matches the associated cluster, and decremented (GCI — 1) otherwise. The
ladder is depicted in Figure 4.17. The matching is performed from the same equation pre-
sented by Equation 4.8 and a threshold of 90%. This means that if the attribute property
covers more than 90% of the cluster, the cluster is said to be consistent with respect to
the attribute (GCT + 1).

The GCI of each cluster might change. Some students at Eurecom have worked on
particular tools that have made the associated clusters change their GCI value [65]. By
default, the value is otherwise 0.

Consistency

+4
+3
+2
+1

Inconsistency

Figure 4.17: Global Consistency Ladder

4.3. CLUSTERING ALGORITHM 75

4.3.7 Incremental Version of the Algorithm
Preliminaries

The classification described in the previous sections remains a method which is applied
once, on collected data. Launching it on a simple computer can take several hours, and
even days. This cannot work to carry out the analysis on arrivig data, to build early-
warning systems. In other words, a newly observed Source should be classified according
to the already existing classification. Thus, we propose, in the following, an adaptive
technique which aims at providing an incremental complement of the algorithm presented
in the previous section. The technique highly depends on the type of attributes, as the
clustering method. Thus, three incremental steps are identified, for each attribute type.

This incremental step is important as HoRaSis can contribute to the building of an
early-warning system. In this case, the incoming data should be analyzed and stored
as fast as possible. This explains why we do not simply use fuzzy algorithms and have
implemented more supervised ones. It is also worth noting that if the new monitored
activity (Large Session) cannot be related to already built clusters, then it means that
the activity has not been observed so far. A report must be sent to the owner of the
platform and a specific concern should be taken for this particular activity. These two
features have been implemented in the Leurré.com project. First, anomalies are listed on
the interface for all users. Second, reports are sent periodically to each partners, with
different levels of details depending on the partner interests. An example of such a report
can be found in Annexe E.

Discrete values

Taking the examples of Attributes A, B or C described in Section 4.3.3, it is easy to
see that the incremental version will first offer to compare the triplets already observed.
Otherwise, let Source S; be the new Source and its associated traffic to a given honeypot
environment: If the triplet A;, B;, C; does not exist, a new cluster is created.

Modal properties

Attributes D, E and F are based on the modal properties of their distribution. We
keep for each cluster an array of their values in a decreasing order according to their
intensity. For each new incoming data from Source S;, we update the array. The incoming
Source increases by one the peak corresponding to the values of its Attributes D, E and
F. Furthermore, each of these values can normally be attached to an existing interval.
Otherwise, a new interval is created following initial algorithm presented in Section 4.3.4.
The reason why peaks are monitored is justified by the fact that if a new peak modifies the

76 4. DISCRIMINATION STEP: FINGERPRINTING ACTIVITIES

top 10 existing ones, it means that the initial frequency intervals are not valid anymore.
In other words, the initial distribution has significantly changed. To date, this has not
happened. In addition, it is important to note here that if there are too frequent updates,
this will indicate that the distributions do not match the modal property anymore. Thus,
it is something worth investigating. We have applied the algorithm presented in Section
4.3.4 during three periods of three months and for clusters defined in this period. We
have then compared the obtained algorithms in terms of peaks and resulting intervals.
The results are reported in Table 4.4. They clearly show the stability of each peak over
several months.

Table 4.4: Classification with Supervised Intervals

Oct-Dec 04 | Jan-Mar 05 | Apr-Jun 05
Similar top 5 peaks 94% 97% 98%
Avg Interval Overlap 3% 3% 5%
Avg Weight of the top 5 peaks 85% 91% 89%

Incremental Hierarchy-Based Partitioning

We saw in Section 4.3.5 how the clustering technique is refined by an hierarchy algorithm
which splits the Large Sessions sharing homogeneous payload sentences with the Lev-
enshtein distance. This technique must also exhibit an incremental property in order to
avoid the rebuilding of the hierarchy tree from scratch at each insertion. Sensitivity to
input ordering is one of the major issues in incremental hierarchical clustering [101]. A
basic method to update the tree would be to compare all the existing clusters with the
new values. If the distance is higher than a fixed threshold, then the comparison with
the cluster is considered unsuccessful. We however propose to make use of the particular
structure of a hierarchy tree, as proposed in [231]. A cluster hierarchy is basically a tree
structure with leaf nodes representing singleton clusters that cover single data points.
Each node in the tree maintains three types of information: cluster center, cluster size
and cluster density. The cluster density describes the spatial distribution of child nodes
of a node. We define a clusters density as the maximum distance to the closest neigh-
bor among the clusters members. Figure 4.18 represents the same pyramid as the one
described in Figure 4.15. It includes, however, the nodes information previously listed.

Our approach for incorporating a new Large Session payload sentence into the cluster
hierarchy consists of two stages. During the first stage, the algorithm locates a node in the
hierarchy that can host the new payload sentence. The second stage performs hierarchy
restructuring, changing the density and size attributes of involved nodes. The approach
is described in Algorithm 4:

4.4. THE RESULTING FINGERPRINTS 7

A

Node Info:
mean
density (max distance)

Figure 4.18: Pyramid: Incremental Hierarchy Approach

Other optimized versions might exist to parse the tree in more efficient way than this
top-down approach. However, we are not in a situation where this optimization really
matters. The incremental version is to date fast enough. This direction is also left for
future work.

4.4 The Resulting Fingerprints

4.4.1 Global Statistics

The resulting number of clusters, including the ones which have not been split because
of their heterogeneity with their content (see the Levenshtein distance splitting criterion
in Section 4.3.5) is 8382. The average splitting ratio is thus % = 1.74. If we also
consider the ones with less than 5 Sources which have not been considered in the second
part of the algorithm, the technique has classified the whole dataset within 52159 distinct
clusters. In other words, 52159 different activity fingerprints have been observed along
the several months of data collection. This validation has an impact on the small number
of clusters which are still quite large after having considered attributes A --+ F. The
limited splitting ratio is also due to the lack of sufficient payloads. More interaction from

the honeypot sensors would improve the ratio and the global discrimination process.

This step gives the final clusters. These are the attack fingerprints we are looking for,
as they gather all IPs sharing the same parameters. We detail and discuss the resulting
clustering hereafter.

78 4. DISCRIMINATION STEP: FINGERPRINTING ACTIVITIES

Algorithm 4 Incremental Algorithm for Hierarchy Clustering

Res Clus <+ ()
New attribute wy, to insert (payload sentence)
Let C'H be the Clustering Hierarchy Tree for Attribute A
Parse the tree in a top-down manner
for all cluster N; in C'H with density 7; do
for all Values w;(j) do
Compute w; = MAX (d(w;(j),wg))
d() being here the Levenshtein-based phrase distance
end for
end for
Consider the node N; with the largest depth that verifies:
w; < T
if Node N; exists then
return V;
link wj, to node Nj;
if Node N; included in a cluster Cr then
Res Clus =Cr
else
Res Clus = {wy}
Send a notice indicating the creation of a new cluster
end if
else
Create new node with closest node and V}, as child nodes
Send a notice indicating that the new entry does not match previous hierarchy
Update tree path information if necessary for parents nodes
Res_Clus = {wy}
end if

4.4.2 Attackers vs. Scanners

One of the attribute which is taken into account when building clusters is the number of
targeted virtual machines on the Honeypot environment (Attribute A in the clustering
process). Figure 4.19 represents two different evolutions over time. The first curve (-o-)
represents all activities (Large Sessions), which have targeted a single virtual machine
on one honeypot environment, while the second curve (-x-) represents all activities which
have targeted all virtual machines in an environment. Values are given in percentages,
and we do not represent the activities against two virtual machines only, as they stem
for less than 8% of the total number of activities and for each month.We also consider
all honeypot environments. We let same analyses but performed on each environment
for future work. It is interesting to observe that in the first 6 months of the experiment,
the second category of activities was largely dominant, while in the last 6 months, it is
the opposite situation. We note that at the beginning of 2004 (11th month), the trend
abruptly changed. We have checked that it cannot be only explained by popular worms

4.4. THE RESULTING FINGERPRINTS 79

3 Targets vs. 1 Target
80 T

-&- 1target
—<— 3 targets

Percentage
N w IS o @ ~
S S S 3 3 =)
T T T

.
o
T

o

I I I I I
0 5 10 15 20 25 30
Months

Figure 4.19: Larges Sessions Targeting All vs. One Virtual Machines from Feb.2003

active at this date like Sasser®.

This result also shows that scans on several consecutive IPs are still common. In
addition, we have shown in [187] that almost all scans which target three consecutive IPs
are programmed to hit them sequentially in increasing IP address order. In other words,
it could be sufficient to define three unused IP addresses at the beginning of a network
range, and block all external IPs that try to contact these three IPs in sequence. It would
definitely block a large part of the so-called background radiation traffic.

Claim: This example shows the importance of monitoring malware activities over
long periods of time. This allows determining quite easily the new trends and global
changes of monitored activities. It also gives the opportunity to adapt security defenses
to these trends.

4.4.3 Ports, Ports Sequences and Clusters
Ports Sequences and Clusters

Table 4.5 shows the differences between the notion of activity on a port, as reported in
several web sites, and the concrete number of clusters associated to that port. The first
column of Table 4.5 presents the top 10 ports given by the Internet Storm Center for
the month of December 2005 [14]. The second column presents the number of distinct
sequences of ports which have been observed including this port, and the third column
represents the number of clusters®, or activity fingerprint targeting at least that port on

5Sasser actually appeared three months after the abrupt decrease of the first curve, in the last days
of April 2004 [26].
6All clusters, including the ones of size equal to 1.

80

4. DISCRIMINATION STEP: FINGERPRINTING ACTIVITIES

a leurré.com sensor during the same month.

Table 4.5: Ports vs Clusters: different in

formation levels

Ports Sequences of Ports | Clusters
TCP 1026 221 446
TCP 6881 11 4
TCP 445 10447 16568

TCP 80 7504 2464
TCP 27015 2 1
TCP 135 7437 13122
TCP 40000 5 2

TCP 53 134 112
TCP 1025 9715 3413
TCP 65535 34 8

As a reminder, it is important to understand that there might exist more ports se-
quences than clusters. For instance, a given cluster can represent an activity which has
different behaviors on each virtual machine, and can thus target different ports. We first
observe from table 4.5 that there are a large number of sequences of ports. They are
a first indication that many different attacks target a same port. The second column
gives the number of distinct suspicious activities observed at least on that port. With
no surprise, there is an important number of activities against the popular ports. It is
worth investigating, at this stage, if some unexpected peaks on a port are due to a single
activity or several ones. This step is made possible by the monitoring of attack activities
instead of port statistics. This observation leads to the two following claims:

Claim: An analysis of malware activities cannot be limited only to statistics on a
single port.

Claim: An analysis of malware activities cannot even be limited only to statistics on
the ports sequences.

Clusters already give a better notion of activities, and are thus more meaningful for

studying traffic on honeypots. We will show in the next chapter that activities might
share common features that are also worth being investigated.

4.4.4 Interesting Activity Behaviors

One of our experiments related in [192] has led us to look at the clusters associated to
the Deloder worm. The detection of the Deloder worm among the clusters is described

4.4. THE RESULTING FINGERPRINTS 81

in more details in Annexe D. This worm, which spreads over Windows 2K /XP machines,
attempts to copy and execute itself on remote systems, via accessible network shares.
It tries to connect to the IPC$ share” and uses specific passwords. In Figure 4.20, we
represent, per month and per country of origin, the amount of attack sources compromised
by the Deloder worm that have tried to contact the honeypot sensors. More details of the
Deloder identification are presented in Annexe D.

450

400
350 / \\\
s = N

250 +— 7

200 \

o AN
100 \ e -\\§

5 \M"\ \OW

0

& 5] & & & D
& RS & S & S
» & &

S &
G oV W v W» U
& [N 5 > " P o

‘——CN — —JP =KR ——TW -e—us‘

Figure 4.20: Deloder Activity (Nb associated attack sources)

A surprising observation from Figure 4.20 is the rapid decrease of its propagation
around July 2003. [157] mentions that the shutdown of CodeRedII was preprogrammed
for October 1, 2001. [222] mentions that Welchia worm self terminated on June 1st, 2004,
or after having run 120 days. A similar mechanism could have been used for Deloder but,
as far as we know, no one has ever made mention of it publicly. In the absence of such a
mechanism, it is worth trying to imagine the reasons for such a sudden death. We have
come with the following possible scenarios:

1. Deloder is still active but our virtual machines are not scanned anymore, for some
unknown reasons. Statistically speaking, this seems unlikely and should be validated
by means of other similar platforms.

2. All machines have been patched. Deloder has been eradicated. This is another
unlikely scenario since Deloder has targeted a large number of platforms, many
of them being personal computers which will probably never be patched. Newer
successful worms targeting the same port (eg Sasser, Welchia, the Korgo family,
etc.) tend to confirm this.

"or ADMINS$,C$,E$ shares depending on the Deloder variants.

82 4. DISCRIMINATION STEP: FINGERPRINTING ACTIVITIES

3. Deloder bots are listening on IRC channels for commands to run attacks. One of
these commands might have told them to stop the propagation process. In this
case, the Deloder worm is not visible anymore but its botnet remains as dangerous
as before.

At this point in time, unless a pre programmed shutdown is included in the Deloder worm
code, we consider the third option as the most plausible one. A definitive answer to that
question could be brought forward by someone who has access to the Deloder worm code,
which we have not. If our assumption holds true, this would imply that worms writers have
developed a new strategy. Instead of continuously trying to compromise more machines,
they have decided to enter into a silent mode when the size of their botnets is sufficient
[219]. By doing so, they dramatically reduce the likelihood of seeing an in-depth study
of their worm being done as invisible worms are definitely less interesting to the security
community than virulent ones. The bottom line of our findings is that such an in-depth
analysis of that worm is probably worth being done if it has not been done yet. Sleeping
worms might actually be more sophisticated and nefarious than active ones. We also
deduce the following claim from this example:

Claim: Distributed sensor monitoring coupled with time analysis of attack fingerprints
gives a good overview of the attack evolution over time. Fast increases or decreases of
activities should be considered as abnormal behaviors, worth being investigated.

Other examples have been discussed in [192]. Due to space limitations, we report the
interested reader to this work.

4.4.5 Attack Tool Identification

Cluster Signatures

The first step before doing any attack tool identification is to build a Cluster Signature,
which represents the values of each attribute A --» F used by the clustering technique.
The discrete values are directly extracted for attributes A --+ C, or the supervised
intervals for attributes D --» F.

The main issue to determine a relevant cluster signature is the generalization of the
attack phrases. The idea consists here in generating a regular expression from the different
attack phrases, by taking the same approach as with the Levenshtein distance. Each
detected deletion, insertion or substitution is replaced by a star . This method has been
carefully described in [165], and is illustrated by Figure 4.21.

More sophisticated techniques have been developed by research communities in bioin-
formatics (Pattern Discovery [178]) like the ELPH Gibbs sampler ([181]) and the teire-

4.4. THE RESULTING FINGERPRINTS 83

1 deletion
D

leurreico 1 deletion

Figure 4.21: An Example of the Attack Phrase Generalization

sias algorithm (]200]). Future work will consist in testing and applying such techniques
to replace the simple generalization mechanism currently implemented. However, the
Levenshtein-based distance is currently sufficient for the clustering refinement.

As a conclusion, each cluster can be summarized by a signature. Figure 4.22 shows
such an example. It symbolizes an activity observed on one single platform against the
following TCP ports 80,135,139,445,1025,1433,2082,2745,3127, 5000 and 6129 for a couple
of seconds (8s <t < 10s). The activity targets a unique virtual machine,

CLUSTER ID: IDENTIFICATION:

W32/Agobot-GM (sophos), also known as:

Backdoor.Agobot.Id
2145 W32/Gaobot.worm.gen.k

FINGERPRINT:

* Number Targeted Virtual Machines: 1
* Ports Sequence: 2745,2082,135,1025,445,3127,6129,139,1433,500Q
* Number Packets sent VM: 33
* Global Duration: 7s <t < 11s
* Avg Inter Arrival Time: < 1s

* Payloads: yes (DCOM, Netbios, WebDav)

Figure 4.22: Example of a Cluster Signature

Toward an automatic identification technique

The cluster presented in Figure 4.22 can be easily identified by googling as one out of the
numerous Agobot variants [208]. Unfortunately, the general part which associates a name
to each activity fingerprint (cluster), is currently missing in the presented framework.
An on-going work intends to automatically link well-known exploit databases to attack
fingerprints [226, 234].

The observed clusters can be well-known activities, or other activities hidden in the
noise of bigger ones. These signatures have been applied to create new Snort alerts in the
standard IDMEF format in [165]. The goal is here to add another information source to
the current alert correlation engines, in order to refine their analysis. The presentation
of this work is out of the scope of this document, even if it illustrates a concrete usage of
the information provided by each cluster.

84 4. DISCRIMINATION STEP: FINGERPRINTING ACTIVITIES

The method which we prone to identify tools is:

e First, look at potential tool candidates on Incident mailing lists.

e Second, run all of them in a secure environment against a honeypot sensor, to
compare their traces with the clusters signature.

e Third, if a match is found, it indicates that such a fingerprint has already been
observed. The cluster size can also present for a given period of time the frequency
of such activity. On the other hand, no matching clearly indicates that the tool
candidate, as such, has not been observed during the whole monitoring period.

To date, a few cases have been analyzed. Some tools have been determined by the
previous method and have been detailed in [242]. They include:

e The RTSP scanner, exploiting a vulnerability on port 554 [112].
e The Grim’s ping ftp scanner [2].

e The Roadkil’s ftp probe [116].

e The SQLSnake worm (against port 1433) [8].

e The SFind.exe scanner (against port 1433 also) [103].

e ctc.

This is however a fastidious task. One reason lies in the large amount of attack tools,
or at least instances of attack tools that have been observed so far. The number of distinct
clusters gives here a good hint of the value. Second, many tools are not available, or hard
to find, as they are shared by a small community of users. These tools, on the other hand,
would not be observed without the preliminary studies which we have made so far, and
the particular environment given by the Leurré.com set up. It is thus quite unlikely that
these tools are well-known in the security community.

4.5 Misclassified Traffic and Refinement

A Source has been defined as an IP address during a certain time window, depending
on the inter-arrival time of the packets it sent. Packets sent within a 25-hour sliding
window are attached to the same Source. Looking at the traffic which generated clusters
of size 1 leads to the conclusion that the clustering method cannot be applied for particular
scenarios, like the one illustrated in Figure 4.23. This diagram represents the arrival times

4.5. MISCLASSIFIED TRAFFIC AND REFINEMENT 85

of packets from a given IP Address to the honeypot sensor. This IP address corresponds
to a HPOpenview server (or more precisely a HP Systems Insight Manager HPSIM) that
periodically scans machines in the network, using different layer 3 protocols and transport
layer ports (UDP 161: SNMP, TCP 280: http-management, TCP 80: http) [29]. We have
presented in Figure 4.23 its activity over a 7-day period, but it is important to note that
it has been observed for five months.

23 packets 217 packets 104 packets 14 packets

>
)
D

s ¥ . P : .
: g g Vol Vol :
[] [} o [] .
: £ ol o y
'l .' '. ol] : 3 :
: P O i :
& .‘ I a l" AN N5] ;‘z .I L: : I u .
% I :' ! ‘0’. "0' | 'v. I ..f . | :l
- - L * L
06/01 07/01 o 08/01 “*e,, 09/01 10/01,+** 1101 %, 12001 #1301 % 1401
DA L ot * o* + *
M T LLTT T L \‘___F/ LT ast
= 25 hours = 25 hours = 25 hours

Figure 4.23: Observation of HPSIM Activities

According to our definitions, this traffic will be split into four distinct Sessions, and
four different Sources. However, it is also clear at this point that the honeypot platform
faces the very same activity. The fingerprint of this activity should group the four Sessions.
Thus, it appears that the previous technique does not suit well for very long and recurrent
yet not periodic processes like this one. Small clusters corresponding to such scenarios
should be gathered into the same one. Thus, misclassified traffic might correspond to
some particular misconfigured machines and/or network management activities. Instead
of keeping them unclassified, it has been decided to group them by relaxing the clustering
conditions. These particular misclassified activities are thus simply determined by very
simple parameters. We decide to merge all very small clusters (less than 2 Sources) if and
only if :

Parameter 1: They contain the very same IP addresses.

parameter 2: They are characterized by the same list of ports for each targeted virtual
machine.

We thus relax the constraints of the clustering algorithm but we also add a third constraint
to check that we deal with a scenario similar to the one presented in Figure 4.23 :

86 4. DISCRIMINATION STEP: FINGERPRINTING ACTIVITIES

e The IP addresses in all clusters must be in the same subnet as the targeted virtual
machines.

Such a property aims at identifying the recurrent activities from a given machine plugged
in the same subnet than the honeypot sensor. As an illustration, the four clusters rep-
resented in Figure 4.23 are merged into a single cluster as they verify the three previous
constraints. This technique allows to merge 64% of the Large Sessions that were found
in unique clusters (containing less than 2 Sources). These new clusters are interesting
but remain anecdotal, as they are quite likely no malicious traffic. They are reported
however to each network administrator in order for them to check the configuration of
the corresponding machines and to stop if necessary these activities against the honeypot
environments. Applying successively the clustering and this refinement algorithm, we find
that 4% of the Large _Sessions remain within clusters of size 1. Some possible reasons are
listed in the following sections.

4.6 Potential Evasions Mechanisms

4.6.1 Potential Scenarios

Our clustering algorithm has the advantage of grouping similar activities. It is however
important to notice that the clustering method can be evaded. This could bias the
clustering technique. This would also indicate that such a monitoring of activities in the
wild disturb some communities at the origin of some traffic. Many evasion scenarii have
however been considered at this time writing, and the clustering method remains efficient
with most of them. A brief summary of the three most likely is given below:

1. Scenario 1: What if an activity had a random duration on the attacked platforms?
First, TCP timeouts induce many constraints for this approach. Indeed, most TCP
implementations utilize a drop timer which indicates the time period after which
a connection not responding to keepalive probes may be considered as dead. Sec-
ond, the splitting phase would generate an abnormally high splitting ratio. In other
words, the randomness would make these attributes loose their modal properties.
It would thus disturb the generalization process described in Section 4.3.4 by gener-
ating too many peaks. A splitting threshold limits this effect and allows detecting
such a new trend. This scenario has not been observed so far. However, some tools
already offer such a feature, like advscan which allows setting some variables such
as the number of concurrent threads, the delay or the scanning duration [28].

2. Scenario 2: What if an activity would send several random packets in addition to
the ones necessary for launching the attack? This would also disturb the splitting
phase due to Attribute D. As with the previous case, a splitting threshold allows

4.6. POTENTIAL EVASIONS MECHANISMS 87

detecting such a trend. However, this scenario, as the previous one, can be detected
but is not rigorously addressed in the current version of the Algorithm. The splitting
indicates that it has not been observed yet.

3. Scenario 3: What if the attack targets a random port before or after having tar-
geted the one against which the exploit is launched? This scenario cannot be easily
detected by the current clustering technique. It would however induce an important
variation in the number of distinct ports sequences (Attribute A). Another detection
mechanism would be here to build a graph with ports as nodes (vertices), and the
number of ports sequences including the two ports as the edge weight between two
nodes. Nodes with a high degree or a high variation in their degrees would detect
such a scenario. This method is not implemented yet and is left for future work.

Our clustering technique works well, and has been proved efficient on the dataset
collected for the last three years. However, attack techniques can change very fast, and
the method must stay adapted to new changes. We have presented in this section possible
attacks against our clustering algorithm. The first two are correctly considered at this
time by the technique. To date, it is not the case of Scenario 3. However, new trends can
be quite easily identified, which is by itself something important and which justifies the
sensors deployment.

4.6.2 The Witty Worm Scenario

We have noted in previous Section 4.5 that 4% of the Large Sessions are associated to
clusters of Size 1. They might be due to losses that were not correctly considered during
the generalization process. Another explanation could also be that we are monitoring
particular activities like the Witty worm: This worm has been carefully described by
the members of Caida in [22]. It is the first worm to target a particular set of security
products — in this case Internet Security System’s BlackICE and RealSecure. It infected
and destroyed only computers that had particular versions of this software running. These
tools contain a Protocol Analysis Module (PAM) to monitor application traffic. The
PAM routine in version 3.6.16 of iss-pam1.dll that analyzes 1CQ server traffic assumes
that incoming packets on port 4000 are ICQv5 server responses but this code contain a
series of buffer overflow vulnerabilities. To propagate, the worm thus generates packets
with a random destination IP address, a random size between 796 and 1307 bytes, and
a random destination port. The worm payload of 637 bytes is padded with data from
system memory to fill this random size and a packet is sent out from source port 4000.

In this scenario, the activity fingerprinting as defined in our clustering will not work,
as the worm does not target particular ports on the machine, but the firewall itself. Thus,
each packet received on our sensor from Witty worm activities are likely to be found in
clusters of size 1 (different destination ports, different payloads, etc). Looking to the

88 4. DISCRIMINATION STEP: FINGERPRINTING ACTIVITIES

Source ports, it appears that only 2045 Large Sessions share this property. It is normal
as Witty was not a very active worm [22].

Thus the remaining clusters of size 1 are not artifact of this worm. However, this
example shows an interesting evasion technique. The activities which intend to target
tools capturing traffic® (like firewall, IDSs), instead of services listening on the machine
ports, will not be correctly classified. It might also be the case for crafted packets which
target network sniffers like ethereal or tcpdump. Such activities can however be monitored
by analyzing several parameters (source ports for instance) for Large Sessions associated
to clusters of very small sizes.

4.7 Summary

This section has been rich in information. It seems important, at this stage, to summarize
what has been shown so far. First, the traffic collected by the Leurré.com project has
been gathered in a particular way: as each sensor of the project presents the very same
configuration, we have grouped all Attack Sources sharing similar activity fingerprints
on the sensors. The grouping has been made possible thanks to a particular clustering
algorithm. Network effects are taken into account before and while grouping Sources.
Then, a small number of parameters are considered as defining a fingerprint and help
grouping all the Sources. The grouping has been also eased by the properties of some
attributes:

e Number of targeted virtual machines

e Ordering of the attacks against the virtual machines

e Sequences of ports targeted against the virtual machines

e Duration of the observed activity

e Average time between sent packets

e Total number of packet sent by the source on the sensor

e Data payload sent by the source on the sensor

The clustering technique is by itself extensible and other techniques can be integrated

instead of, or in addition to the ones presented and justified in this document. This
direction will clearly be considered as the next steps of the project.

81t is not necessary for the capture to be in promiscuous mode.

4.7. SUMMARY &9

The study of the attack fingerprints presents very valuable information. Some results
have been described in the previous sections. Some other results can be found in related
papers [183, 186, 192, 187, 242|. These clusters are the basis for forensics investigation.
They provide a very interesting abstraction level to distinguish and compare activities
between sensors and to distinguish the activities. Many studies can be performed at this
data abstraction level, including:

e The temporal evolution of activities in a long term perspective;
e The determination of unique or global activities on the sensors;
e The statistical evaluation of the activities per platform;

e The early warning of newly observed activities;

e The correlation between monitored activities and alerts generated in the network
hosting the honeypot sensor;

e etc.

The framework could thus be limited at this abstraction level. Indeed, all the bricks to
build interesting studies now exist. We have performed a few of them, which have involved
particular clusters (activity fingerprints). However, some important remarks emerge from
these preliminary studies. When clusters are studied, there are some recurrent questions
which arise, e.g. ’can the property observed on that cluster be generalized to other
clusters?’ ’Is this property somehow related to other properties?’

There might exist similarities between isolated activities (clusters), and the current
technique does not manage to automatically extract all of them. We intend to move one
step further, and propose in the next chapter a technique to identify these similarities
in an automatic way, as defined by the initial requirements of the HoRaSis framework
defined in the Introduction.

To conclude this chapter, it is important to repeat once more that all the analysis
bricks have been created. They are the attack activities against the Leurré.com dis-
tributed network of sensors. The next two chapters will present an automated approach
to extract all these activities that share strong similarities. They are illustrated all along
by several experiences that have been carried out. This offers to the analyst an interest-
ing framework to better understand and analyze the activities. This will complete the
HoRaSis framework.

90

4. DISCRIMINATION STEP: FINGERPRINTING ACTIVITIES

91

Chapter 5

Correlative Analysis

5.1 Preliminary Studies

5.1.1 Introduction

In Chapter 4, we have shown how to classify IP sources sharing similar activity fingerprints
on our sensors and how to group them into so called clusters. Further to this classification
mechanism, this section intends, by means of three short examples, to illustrate the pos-
sible relationships that might exist between some fingerprints. These relations have been
found by digging into data, one thing leading to another. All of them have been reported
in our previous publications (|67, 242, 186]), but are briefly summarized in the next three
subsections. At this stage, it seems important to check in an automatic way if other
similar relationships exist among the clusters, and determine the kind of information it
can bring to the analyst.

5.1.2 Case Study 1: Country C Specialties

We have described several interesting results concerning Country C! in [67]. This honey-
pot environment presents some interesting features that have been detailed and related.
Among them, we distinguish:

1. Very local attacks: attacks against Sensor C all originate from the same country
than where C is located.

'The country is actually Taiwan. A complete analysis of this case study can be found in [67], as this
last document has been written with the partner’s consent.

92 5. CORRELATIVE ANALYSIS

2. Original attacks (attack fingerprints which have been observed on the sole Sensor

Q).

First, we compare the countries associated to the sources having targeted Sensor C
with those having targeted a Sensor F (located in France). We observe in Figure 5.1 that
the countries at the origin of the attacks against Sensor C and Sensor F are very different.
The Figure provides the top five countries on each sensor, and all the other countries are
grouped into the others category. We notice that 28003 distinct IP addresses (70% of the
attacks) observed on Sensor C are coming from the very same country, Taiwan. This fact
is in contrast with Sensor F where 53674 distinct IPs, that is 51% of all observed IPs, are
found in the others category. Thus, there is no clear prevalence of attacking countries on
Sensor F. Such a particularity is only encountered in the C Sensor. It has been confirmed
by comparing with the other platforms as well.

(a) Sensor T (b) Sensor F
Figure 5.1: Attacking Countries Observed on Sensors C and F

It has also been shown in [67] that Sensor C has been targeted by very surprising
attacks, which are unique to this sensor. They are most likely due to some specific
malware scanning randomly the local network and its vicinity. Among them, we find
frequent attacks targeting ports {8080,3128,1080,1813,80}. Such attacks have not been
observed in any other honeypot sensor.

5.1.3 Case Study 2: Attacks From Serbia-Montenegro

Digging into the data, it has been discovered that YU (acronym of Serbia-Montenegro)?
is quite an active country, as it belongs to the top fifteen most attacking countries over all
the dataset. Strangely enough, all the attacks coming from YU have targeted a unique
environment. We illustrate this in Figure 5.2, with a snapshot of the Leurré.com web

2As of 2006, YU is deprecated in favor of CS,as specified in the standard ISO 3166-1

5.1. PRELIMINARY STUDIES 93

interface. The Figure represents the distribution of attacks coming from YU over the
honeypot sensors and per month. Sensor 6 (Env_6 in the Figure) is the only one that
has been periodically targeted. From our preliminary studies, we have also found that
the attack tools, or fingerprints on this Sensor were not associated to YU only: in other
words, several activities observed on the considered Sensor 6 have been monitored on
other platforms, but they have been all identified as coming from YU on that sole Sensor.

v BEnvi_6

sources Emironment_Name:

10500 F —
0450 |- -
8400 |- - — - -
7350 - il A
e — b =
5250 g
4200 1+

[¥l | Others 3150 '//’

2100 —

1050 | ¥

0

T T T T T T v T T
0 1 2 3 4 5 6 7 8 9 10

Figure 5.2: Attacks from YU Observed on Each Honeypot Sensor per Month

5.1.4 Case Study 3: Apparent Temporal Relations

We have shown in the previous chapter and publications ([242, 186, 192]) that the clusters
obtained by the clustering algorithm are coherent in terms of their contents and may also
reveal worth-investigating attack features (like the geographical locations of the attacks,
the attack ordering, the raw profile of attacking machines, etc). We have been able to
name a few of those clusters by comparing the fingerprints of some known tools on our
honeypot, obtained in a controlled environment, to the fingerprints obtained in the wild.
However, this task is tedious, and only a few dozens of tools have been clearly identified so
far. To further complement our clustering method, we looked at the time behavior of the
clusters. Indeed, as illustrated by Figures 5.3, where the y-axis represents the number of
I[P addresses associated to each cluster, as a function of time (with a granularity of 3 days
on the x-axis), some clusters clearly exhibit a similar time evolution. It is however striking
that those similar (w.r.t. time) clusters correspond to very different attack fingerprints.
What is more, Figures 5.4 further highlight that the global activities against some of those
ports (by summing the activities of all the clusters targeting those ports) are completely
uncorrelated. Without going into the details, intervals between brackets show periods
where no evident time correlation is noticeable. We report the reader to [194] for more
in-depth treatment of this phenomena. An important conclusion from those examples
is that some temporal correlations exist between attack fingerprints that seem otherwise

94 5. CORRELATIVE ANALYSIS

unrelated. This result clearly deserves further investigation, and it will be done in Section
5.4.7.

o
e
e

— e

e

Ty
IO O -

T

g
ek

s
i
s
T

S S

AN o W om

)2 clisters =2 attacks tataeting port 135) b) 2 clusters = 2 attacks targeting port {80} and

and ports {135,444} resp. port {135} resp.

oM W # 7 BM % W N

¢) 2 clusters = 2 attacks targeting port {1433}) 2 clusters = 2 attacks targeting port {445} and
and port {139} resp. ports {5554,1023.9898} resp.

Figure 5.3: Examples of Time Correlation between Clusters

5.1.5 Interesting Analyses

The previously described examples highlight the fact that some questions can frequently
appear when looking into the data. Do we observe more numerous attacks in average
coming from a very specific country against some sensors? Do the other sensors also
monitor attacks coming from their local hosting network? In a more general way, would
it be possible to find other clusters sharing particular distributions in terms of the origins
of the sources? And in terms of the targeted sensors? Of course, the geographical location
of the sources is definitely not the only question that might arise. For instance, which
other clusters share temporal relationships? What are all the temporal relationships that
can be deduced from the whole activity fingerprint classification? If so, do the group
of time-correlated clusters also present some similarities in terms of the origin (country,
domain) of the attack, or at least on the Operating Systems launching such activities?
These simple but recurrent questions have led us to define a new method that would
automatically deal with these recurrent questions by considering the various similarities

5.2. THE THEORY 95

1300 1 e
m i . ™ 1 s ™
100 L2 0y i
I I 4’ lom |
I, a
t
i
fi
!
i
1 il ©
B
d k o §
a) Number of attacks having targeted port 80 or b) Number of attacks having targeted port 139 or
attacks having targeted port 135 attacks having targeted port 1433

Figure 5.4: Observed Activities on some Targeted Ports

that might exist among clusters. They will enable us to determine in an automatic way
all the cases which have been observed coincidentally so far.

5.2 The Theory

5.2.1 Underlying Motivations

Let try first to summarize what has been presented so far. We have gathered the traffic
collected from a distributed honeypot environment, according to the fingerprint of the
activities. Each cluster gathers all TP sources sharing the same fingerprint, or attack
activity, on a honeypot platform. The honeypot data is now turned into clusters, and the
rest of this thesis intends to prove the interest of working at this abstraction level. First,
it is important to note that many analyses are applicable on the clusters. We distinguish
two distinct analysis classes:

e Intra-Cluster Analysis: Within a cluster, the analysis aims at extracting features
that are more specific to this cluster than to others, in order to enrich the knowledge
and understanding of the phenomenon which has created those traces (root cause
of the activity fingerprint).

o FExtra-Cluster Analysis: The analysis aims at finding relationships between clusters,
and potentially to group a few of them sharing common characteristics.

96 5. CORRELATIVE ANALYSIS

This chapter offers to address both analysis classes. The first type of analysis aims at
finding specific features of some attacks. When they are clearly identified, they can be
used to improve and check the consistency of the cluster and to improve the matching of
new incoming Sessions candidates. The second type of analysis aims at checking if the
previous features are shared as well as other properties by several clusters. The technique
to extract such information between clusters must satisfy at least three major constraints:

1. Modularity: Any kind of analysis should be easily applicable and compared with
other results. Attack mechanisms are more and more complex, or at least, imagina-
tive. It is sensible to think that an analysis might not be relevant for long periods
of time, and can be evaded by new attack characteristics.

2. Cross-Analysis: The combinations of existing analyses must be cross-correlated to
find, if they exist, emerging properties. The a priori knowledge might help choosing
the analysis methods, but new clusters correlation might emerge a posteriori by
crossing analyses.

3. Validation: It is quite frequent that the analysis relies on several parameters (in-
dexes, thresholds, etc). Several values should be tested and compared on the data
set to estimate their impact and the stability of the analysis w.r.t. such parameters.

Obviously enough, there are other constraints, that have been respected from the begin-
ning of this research. The solution must remain intuitive and meaningful, and it must
scale to the dataset, that is it should deal with at least thousands of clusters and to a few
millions of TP sources. With respect to all these criteria, we have considered applying a
method based on the graph theory. Before explaining what has led to this decision, let
first summarize the global clustering overview: we have N clusters, N being in the order
of a few thousands. In the worst case, an extra-cluster analysis can show up relations
among all the clusters, that is w From another perspective, if N = 1000, we get
499500 relations, and in a more normal case, if N = 50000, we get 1.25.10° relation-
ships. This relationship among clusters cannot be interpreted easily. The computation
remains quite important. We want to extract the useful, most important sets of clusters
that present strong relationships. This kind of problem might be addressed by several
techniques issued from the Discovery Knowledge domain. However, we can also add some
other constraints. First, the solution should work with multiple similarity functions, that
is, for any analysis we will potentially perform. Second, the solution should be able to
take into account many combinations of analyses, that is, we focus on a large discov-
ery method. The method should follow simple and non counter-intuitive steps, and the
outcome should remain readable and exploitable by the analyst.

Among solutions to determine relationships between large datasets, one simple but
widespread solution consists in applying association rule (AR) mining, which have a wide
range of applications in many areas of business practice and research - from the analysis of
consumer preferences or human resource management, to the history of language |37, 242|.
For instance, these techniques enable analysts and researchers to uncover hidden patterns

5.2. THE THEORY 97

in large data sets for so-called market basket analysis, which aims at finding regularities
in the shopping behavior of customers of supermarkets. With the induction of association
rules one tries to find sets of products that are frequently bought together, so that from the
presence of certain products in a shopping cart one can infer (with a high probability) that
certain other products are present. AR algorithms induce rules (A and B imply C), while
we want to find sets of clusters sharing similarities. The notion of rule deduction among
clusters can be interesting but does not correspond exactly to the previously described
criteria.

Another area that deals with information extraction from data sets is graph and matrix
theories. Graphs, or matrices, are widely used with large data. Matrices can be one
representation of satellite images, or graphs can be the representation of large class A
networks. Many techniques and methods have been designed in this direction to deal with
big datasets. Graph-Theory is a mature and important research domain, which is very
interesting in this situation. Graphs can be easily visualized by end-analysts, and many
algorithms have already been developed, in a large panel of areas, like telecommunications,
image processing, video monitoring, etc. Many mathematical problems have found their
solutions in a simple graph abstraction.

The solution we propose in the following answers the previous requirements. It is
based on a particular set of graphs called cliques ([56]), and algorithms which aim at
extracting dominant sets (maximal weighted cliques) out of each analysis graph.

5.2.2 Building Similarity Matrices

The technique we present can be applied on matrices expressing similarities. Thus, as
a preliminary step, it is important to explain the different logic stages which lead an
analysis on the clusters to be turned into a matrix composed of integers or real values.

The starting point is the characteristic which is under scrutiny. This characteristic is
associated to either an extra or intra cluster analysis. Then, several steps are required to
express the characteristic in terms of a similarity matrix among clusters. They are listed
below:

1. Definition of a characteristic
2. Representation of this characteristic (as a vector, for instance)
3. Quantification of this representation (values to be included in the vector for instance)

4. Definition of a distance to measure how far away two clusters are w.r.t. this char-
acteristic

5. To insert the values in the similarity matrix associated to the analysis

98 5. CORRELATIVE ANALYSIS

It is important to note that each of these steps can be implemented in diffrent ways. We
present the ones we have applied in the next Section 5.3 by means of several examples.
The different steps lead to the creation of a matrix M, with the similarity value between
Cluster 7 and Cluster j being reported in M(4, j) and M(j,7) (symmetrical matrix). The
diagonal only contains null values. Let now assume we have these similarity matrices.
Next section intends to show how they can be used to extract information out of them.

5.2.3 The Theory

A clique C in a simple undirected graph G is a set of nodes such that there is in G an
edge between every pair of nodes in the set C;. A clique of k£ nodes is called a k-clique.
The size of the largest clique in the graph is called the clique number of that graph. As
a simple example, every complete (fully connected) graph K, is a clique consisting of all
n nodes as illustrated in Figure 5.5 with 3-clique and 4-clique. Let G be an undirectional
edge-weighted graph with no self-loops G = (V, E, w) where V' = (CY, ..., Cy) is the vertex
set, £ C V x V its edge set and w() be the weighted function associated to each edge :

Definition 5.1. Maximal Cliques: A clique is a subset C) C V' such that (i,j) € E for
all 1,7 € C). A clique is maximal if it is not contained within any other clique.

We formalize the problem of discovering fingerprint relationships as the problem of
searching for edge-weighted maximal cliques in the graph of N nodes (or clusters). Indeed,
in the past, some authors have argued that maximal clique is the strictest definition of
a cluster [41]. The process is the following: we find a maximal clique in the graph and
remove the edges of that clique from the graph; we repeat the process sequentially with
the remaining set of nodes and edges, until there remain non-trivial®> maximal cliques in
the graph. The leftover nodes after the removal of maximal cliques are dissimilar from
most of the nodes. All these steps are detailed in the next Section.

5.2.4 Relation Discovery: Maximal Cliques using Dominant Sets
The Concept

Many graph-theoretic clustering algorithms consist in searching for certain combinatorial
structures in the similarity graph, such as a minimum spanning tree, or a minimum
cut and, among these methods, a classical approach reduces to a search for a complete
subgraph, namely a clique. Unfortunately, while the minimum spanning tree and the

3The notion of non-trivial cliques will be discussed in the next Sections.

5.2. THE THEORY 99

4—clique

v

Figure 5.5: Simple Examples of Cliques

minimum cut (and variations thereof) are notions that are explicitly defined on edge-
weighted graphs, the concept of a maximal tree is defined on unweighted graphs, but it
has also been generalized to the edge-weighted case [56].

Finding maximal cliques in an edge-weighted undirected graph is a classical problem
in graph theory. Since combinatorially searching for maximal cliques is computationally
hard, numerous approximations to the solution of this problem have been proposed [199].
For our purposes, we adopt the approximate approach of iteratively finding dominant sets
of maximally similar nodes in a graph [172]. Beside providing an efficient approximation
to finding maximal cliques, the framework of dominant sets naturally provides a principled
measure of the cohesiveness of a class as well as a measure of node participation in its
membership class. This measure of class participation may be used for an instance based
representation of a clique [128].

We have introduced in Section 5.2.2 the notion of similarity matrices which can be used
to express certain similarities among clusters. Such matrices can also be seen as graph
representations. We represent the similarity matrix as an undirectional edge-weighted
graph with no self-loops G = (V, E, w) where V' = (C}, ...,Cy) is the vertex set (the list
of clusters), E C V x V is the edge set, and w: E — 9+ is the positive weight function
(the similarity values inserted in the matrix). In summary, we represent the graph G with
the corresponding weighted adjacency (or similarity) matrix, which is the n x n symmetric
matrix A(i,j) defined as:

_ {w(@j) v (ij) € E
;5 = . (51)
0 otherwise

This matrix is computed using the notion of similarity described in Section 5.2.2. To
quantize the cohesiveness of a node in a cluster, let us define the average weighted degree
of a node, as described in [172]. Let S C V be a non-empty subset of vertices and k € S,

100 5. CORRELATIVE ANALYSIS

such that: .
awdegs (k) = 5l Z Qs (5.2)

JES

Observe that awdeggy (k) = 0 for any k£ € V. In addition, for j ¢ S, we define:

Pg(k,j) = ar; — awdegs(k) (5.3)

®g(k,j) measures intuitively the similarity between nodes k£ and j with respect to the
average similarity between node k£ and its neighbors in S. Note that ®5(k, j) can either
be positive or negative, and that ®y(k, j) = ax;, for all k,j € V' with k # j.

We are now in a position to formalize the notion of induction of node-weights, which
is captured by the following recursive definition. Let S C V be a non-empty subset of
vertices and k£ € S. The weight of k£ w.r.t. S is:

1 if |S] =1
ws(k) = ' ! N ' (5.4)
ZjeS\{k} P g1 (J, B)ws g1 (j) otherwise

Moreover, the total weight of S is defined to be:

W(s) =) ws(k) (55)

keS

Note that w3 (k) = w,;y(J) = axy, for all k, 5 € V' (k # j). Also observe that wg(k) is
calculated simply as a function of the weights on the edges of the subgraph induced by S.
Intuitively, wg(k) gives us a measure of the overall similarity between fingerprint £ and
the vertices of S\ {k} with respect to the overall similarity among the vertices in S\ {k}.

We are now in a position to define dominant sets. A non-empty subset of vertices

S C V such that W(T') > 0 for any non empty 7 C S, is said to be dominant if:

1. wg(k) > 0, Vk € S, i.e. internal homogeneity

2. wsumky (k) <0, VEk ¢ S, ie. external homogeneity

5.2. THE THEORY 101

Algorithm 5 Generating Dominant Sets within weighted graphs
for all weighted graph G = (V, FE, w) with N nodes do
P = (), be the set of dominant sets
while stopping criterion(G) do
S < dominant_set(G)
P+ PU{S}
E « E\ Fjs
end while
end for

Considering this definition introduced in [172], the algorithm we have designed basi-
cally consists of iteratively finding a dominant set in the graph and then removing involved
edges from the graph, until all vertices have been clustered. The algorithm is explained
in pseudo-code in Algorithm 5.

In this pseudo code, the procedure dominant set(G) finds a dominant set in the
current graph G. The procedure is based on a technique proposed by Pavan et al. in
[172], and discussed in more details in the next paragraphs.

The function stopping criterion(G) simply checks whether the current graph is valid
according to a few constraints we add (for instance if it contains at least two vertices or
not). This is also detailed in the following paragraphs. The assignment of node weights
naturally provides us with a measure of the overall similarity of a dominant set. Given a
dominant set S C V' , we measure its overall cohesiveness with:

_ 1) pes awdegs (k)ws (k)
2 W (S)

(5.6)

cohesiveness(S)

As a remark, it would have been possible, in Algorithm 5 to remove the nodes instead
of the edges, at each algorithm iteration. However, this scenario prevents us from de-
termining some other interesting relationships among clusters. Figure 5.6 presents such
a problematic situation: The first dominant graph that is extracted is {B,C, F'}. If we
then remove nodes B,C and F from the graph, we miss the other dominant set C, D, G.
Simply removing the edges B — C,C — F, B — F avoids such a situation, as {C, D,G}
is then extracted in a next algorithm iteration. In addition, F will not appear in a next
dominant set as it is now isolated*.

4We remind here that a degree of a vertex is the number of edge ends at that vertex. A vertex of
degree zero (with no edge connected) is said to be isolated.

102 5. CORRELATIVE ANALYSIS

©0°'0°9 "9
\ /
50\ 59/ 20,720

Figure 5.6: Removing Edges vs. Removing Nodes

Estimating Dominant Sets

The theory of dominant sets seems attractive. There is however a major limitation. The
described algorithm would require awful amount of time to compute the weights W (S) of
all potential subset candidates. Assume a graph of § nodes. This implies computing the
weights of 20 — § candidate subsets, and the weight of each node in the subset w.r.t. the
subset (wg(k)). At this stage, it is thus a theoretical approach to determine correlation
between clusters, but it could not be applied in our concrete dataset. However, the
authors in [172| have proved the tight correspondence between the problem of finding
dominant sets in an edge-weighted graph and the one of finding solutions of a quadratic
problem. They propose to first localize a solution of the quadratic problem with an
appropriate continuous optimization technique, and then picking up the support set of
the solution found. In other words, solving the problem of extracting dominant sets can
be translated into the one of making a particular temporal expression converge. Solving
such equations makes use of particular functions, called replicator equations, which are
also used in theoretical biology and evolutionary game theory, since they are applied to
model evolution over time of relative frequencies of interacting, self-replicating entities.
The discrete time dynamical equations turn out to be a special case of a general class of
dynamical systems in the context of Markov chains theory. Getting back to the pseudo-
code in 5, the procedure dominant set(G) simply involves the simulation of the following
dynamical system?:

(5.7)

Starting from an arbitrary initial state (¢ = 0), this replicator dynamical system is at-
tracted by the nearest asymptotically stable point. This corresponds to a dominant set,
as it has been proven in [172]. In more details, the stable vector (z;);<y corresponds
to what the authors called the weighted characteristic vector z°: a non-empty subset of
vertices S admits a weighted characteristic vector z° if it has non-null total weight W(S).
2° is defined as:

>z(t)T being the transposed vector of x(t).

5.2. THE THEORY 103

ws(d) e
W) ifieS (5.8)
0 otherwise

The demonstration of this property can be found in [199]. It is worth mentioning that by
definition, dominant sets always admit a weighted characteristic vector. Characterizing
the complexity of this approach appears to be difficult since it involves the simulation
of dynamical system. However, we have noted experimentally that the system converges
quite quickly (¢ < 1000) when applied to all examples presented in the next Section.
Furthermore, in our experiments, the initial vector choice does not apparently impact the
final results. This property has been checked by running different tests with various initial
vectors. All have converged in a very short amount of time to the same solution.

Stopping Criterion

We have mentioned at the beginning of this section and in Algorithm 5 a function called
stopping_ criterion() that stops the execution of the algorithm after extracting nontrivial
maximal cliques. More generally, it is important to specify some restrictions that have
been imposed to the method. One is the stopping criterion. Indeed, the algorithm stops,
theoretically, when the simplified matrix does not contain edges anymore. However, the
last dominant sets are not really meaningful. In addition, performing the algorithm while
some edges remain brings a major drawback: the technique will produce dominant sets,
whatever their concrete weight, compared to the others. It can be easily imagined the
scenario where all nodes are isolated, except two, which are linked by an extremely small
weight. The algorithm will automatically extract them as last dominant sets, whereas we
would not consider them as meaningful in the context of this study.

One solution would consist in specifying the maximum number of dominant sets to be
extracted (or numerus clausus). This solution works fine with simple graph samples, but
some limitations remain:

e The number of meaningful dominant sets varies depending on the analyzed graph.
It is thus hard to adapt this value between graphs, and, as we will explain later, to
combinations of graphs.

e Among the extracted dominant sets, we could have meaningless ones within those

selected by the numerus clausus.

Another approach consists in setting a few global criteria that the algorithm must
check.

104 5. CORRELATIVE ANALYSIS

e The matrix does not contain edges anymore. All nodes are isolated. This case is
quite obvious.

e The algorithm generates a too large dominant set. T is the maximal coverage value
of the dominant set. If the ratio between the number of nodes contained in the
extracted set and the total number of nodes in the graph exceeds Ty, the algorithm
stops, as the dominant set is not pertinent (or at least the chosen characteristic).
The value we set is T = 75%. This case has not been observed so far, as the
cliques we extract are (for this time writing) quite small. This phenomenon can
depend on the similarity matrices which have been used. Thus, a uniform or non
discriminatory matrix would be excluded by this criterion. The maximal coverage
value will also be used in the next Sections to represent the relative size of each
dominant set among all IPs contained in a cluster. It is also important to note
that in such specific situation, the complementary set would be also worth being
investigated. Indeed, if 90% of the clusters are very similar with respect to a given
characteristic, it would be relevant to understand why the remaining 10% clusters
are not.

e We observe that most of the last extracted dominant sets are couples. They are
extracted until none remains, that is, all nodes become isolated. However, these
couples might present limited interest, especially if they all share the same weight
value. We thus precise that the last couples with same values are not considered as
dominant sets in the following. An illustration is provided in the next paragraph.

A Short Example

An illustration is better than a long explanation. Thus let us consider the analysis matrix
presented in Figure 5.7. The initial weighted graph linking the five involved clusters can
be found in Figure 5.7(a). We intuitively observe that the subset of vertices {1,2,3} is
dominant, and this may be intuitively explained by observing that the edge weights inter-
nal to that set (60,65 and 70) are larger than those between internal and external vertices
(which are between 5 and 25). As this example suggests, the main property of a domi-
nant set is that the overall similarity among internal nodes is higher than that between
external and internal nodes, and this fact is the motivation of considering a dominant set
as a particular grouping of nodes (i.e. clusters). More precisely, the algorithm converges
to the following weighted characteristic vector x5, S = {1,2,3}:

[] ,T{1’2’3}(1) - 03360
o Z123)(2) = 0.3062

® l‘{1’2’3}(3) = 0.3579

[} l‘{1’2’3} (4) =0

5.2. THE THEORY 105

® T(123(5) =0

The edges involved in the first dominant set are removed from the graph as shown
in Figure 5.7(b). A new dominant set, composed of {1,4,5} emerges. The new weighted
characteristic vector x°, S = {1,4,5} is then:

° x{1’4’5}(1) = 0.3636
® 1145 (2)=0
® 1145 (3)=0
o 2145 (4) = 0.3636
o 2145(5) = 0.2727

The dominant set is also removed in the next step presented in Figure 5.7(c). A dominant
set made of two nodes (3 and 4) is finally extracted from the resulting graph.

Without the stopping criterion described in the previous paragraph, the next extracted
dominant set would be {2,5}, as illustrated in Figure 5.7(d). However, we are not con-
vinced by the correlation between these two nodes. First, their shared edge has quite a
small weight. Second, this value is not clearly dominant, if it is compared with the other
remaining weight values, that are exactly similar. According to the stopping criterion, it
is thus not identified as a dominant set.

In conclusion, the algorithm extracts the three dominant sets in this order:

1. {1,2,3}
2. {145}
3. {3,4)

This example ends the theory section. The reader who took enough time to go through
it now understands that the whole technique relies on the so-called weighted similarity
matrices. We do not pretend, in this document, to show all potential matrix candidates.
It is even more impossible that the number of candidate matrices is only limited by the
researcher imagination and the available resources. Based on the experience we have
acquired along the project, we propose a few of them, which are carefully motivated by
preliminary studies. Such studies are presented in Section 5.1, and the resulting matrices
we have decided to manipulate are detailed in Section 5.4. The underlying expectation
is at least to find by this automatic approach an enriched version of the results of the
preliminary studies.

106 5. CORRELATIVE ANALYSIS

1 1
70
5 \20 25/ \20
2 /W\ 3 2 3
>~ 5y \ 10 7/ ~ 5 19
5\ S~ /5 5\ ~ - /5
\ // N \\ , \ _ N~ - ,
- 5 —6 4 (5
(a) Step 1 (b) Step 2
1 1
2 2 3
. . 5 /
5 /5
\
4 5
(c) Step 3 (d) Step 4

Figure 5.7: Dominant Set Extraction: A Simple Example

5.3. BUILDING SIMILARITY MATRICES 107

5.3 Building Similarity Matrices

5.3.1 Characteristics Representations

This section aims at detailing the few similarity matrices which have been used in this
thesis. As it has been mentioned in Section 5.2.2, there are several steps which lead from
the abstract characteristic we intend to study on the clusters to the similarity matrix
filled with figures.

The first step consists in representing the characteristic of the analysis. We have
considered, over this thesis, three major representation types:

e Representation 1: — Vectors: they are used to compare the distribution of a certain
class of attributes over the clusters. Assume for instance that Characteristic C can
be expressed by the set of Attributes A, then each Attribute A; is a new dimension
of that vector. The number of Large Sessions associated to that cluster, and which
share the property of Attribute A; (Vi) gives the dimension value for the vector.

e Representation 2: — Intervals Intersection: the intersection is computed to deter-
mine which Large Sessions among several clusters share a same property. This
representation has been applied, for instance, to compare the common IP addresses
which have been observed with different fingerprints at different periods (see Section
5.4.6).

e Representation 3: — Time Series: a particular representation of time series, using
the SAX method, has been applied to compare the evolution over time of clusters.
This time series representation will be detailed in Section 5.4.7. We group the
description of this representation and the associated distance into a single section
in order to ease the understanding of both of them. It is however important to keep
in mind that they are two distinct steps (so potentially alterable) which lead to a
matrix expressing temporal similarities.

Scenarios presented in Section 5.4 exemplify these three representations.

5.3.2 Potential Distances
Discussion

From the beginning of this Section, we have indifferently used terms like similarity mea-
sures or distance functions. The thesis cannot include all and one distance functions,
but it is often more easy to find distance functions in the literature, depending on the

108 5. CORRELATIVE ANALYSIS

type of the performed analyses. The dominant set method, however, must be applied
with similarity matrices, as indicated in Section 5.2.4 and not distance matrices. There
are some guidelines that all similarity functions should follow. These guidelines are in-
trinsically linked to what they must express. We must pay great care to testing whether
these mathematical techniques are actually appropriate when dealing with clusters. For
instance, some of the properties of mathematical metrics are not always ideal for describ-
ing distances between clusters. The next Sections present a few case studies in what can
go wrong if we are not careful and sensitive to the goal of our work, which is not using
mathematical ideas of distance but inferring similarity of meaning in attack fingerprints
(clusters). To make things more clear, we have distinguished two particular notions: one
is called distance, and one similarity.

Distance Functions

A distance function allocates a value to a pair of points in a space which indicates how
far those points are from one another. Let S be a finite set. A distance on S is a function
D: S x S — R, satisfying the following two properties:

e Symmetry: Yo, w € S, D(v,w) = D(w,v)

e Non-Negativity: Yo, w € S, D(v,w) > 0

The most standard distance measures in mathematics are called metrics, which must
satisfy certain conditions or azioms. However, we do not impose here that the distance
functions obey the triangular inequality®, and self similarities D(i,i) are not defined”. We
have used distances to build so far the analysis matrices A _p summarized in Table 5.4.

We present here as illustration some distances that have been frequently used over
our experiments. Once again, they are not the unique ones, but the framework gives a
good opportunity to compare resulting analysis matrices. They will be named Distance 1,
Distance 2, Similarity 3 and SAX Distance respectively in the following Sections. They
are associated to the three distinct characteristic representations described in Section
5.3. The two Distance 1 and Distance 2 have been chosen with a particular underlying
idea: the correlation between attack fingerprints, or clusters, is often transposed to a
comparison and proximity evaluation of their respective distributions according to some
particular attributes. The distributions are simple vectors of dimension n, n being the
number of possible attributes in the distribution. This corresponds to Representation 1.
Distance 3 is a distance dedicated to comparing interval intersections, that is Represen-
tation 2. Distance SAX is the distance related to the particular representation of time
series (symbols) we have previously described. It thus corresponds to Representation 3.

6D(a,b) + D(b,¢) > D(a,c)
"The similarity matrices we are using must have null values all along their diagonal.

5.3. BUILDING SIMILARITY MATRICES 109

Both the representation and the distance are presented in the very same Section, to ease
the understanding of this method.

Distance 1

The first distance we decide to use in order to compare two distributions is the simple
euclidean one. This distance between two points x and y in an Euclidean Space R" is

given by:
hle) =l =yl =3l it (5.9)

Distance 1 gives a good feeling of the closeness of each cluster within the attribute dimen-
sions, but it does not provide any idea of which attributes are more involved than others
in the distribution. In other words, as presented in Figure 5.8, three distributions can
have a close distance but not the same coordinates. Cluster 1 has no attribute coordinate,
while Cluster 2 and Cluster 3 share a same direction along with Attribute 3. This distance
is thus interesting but limited, and it justifies the choice of complementing it by Distance
2.

5 Attributes
Distribution Cluster 1 ‘ 0 ‘ 0 ‘ ‘
> distance = 10
Distribution Cluster 2 ‘ 0 ‘ 0 ‘
distance = 10
Distribution Cluster 3 ‘ 0 ‘ 0 ‘ 20 ‘ 0 ‘

Figure 5.8: Peak Picking Distance between Distributions

Distance 2

This distance also aims at comparing distributions. Indeed, there are many possible
distances to compare two groups of values. Some of them being to compute the largest
cross-distance, the shortest one, the one between centroids, etc [70]. A distribution is
represented as a simple vector, the dimension being the distribution attributes, and the
values being the attribute frequencies. For each of this vector, we apply a peak picking
technique, which aims at picking most frequent peaks. All peaks that are n times more
intense than the average distribution are extracted and ordered in decreasing order®.
This list of peaks is then compared with the list of another distribution. A distance of 1
characterizes a complete match of their ordered list of peaks, otherwise its value remains

8We consider p = 2 in the report, as most of the distribution are not uniformly distributed and they
present clear peak activities like the one illustrated in Figures 5.8.

110 5. CORRELATIVE ANALYSIS

null. In a more formal way, the distance is defined as:

Let dq and d; be two vectors of size n
[pp1] = peak_pickmg(dq)

[pp2] = peak_picking(d;)
[pp1] and [pps] being ordered sequences of peaks

o 0 if [pp1] = [ppo]
dZSt(dl’dQ):{l otherlvvise 2 (5.10)

Two ordered sequences [pp;] and [pps]| are equal, if for each i, ppi(i) = ppa(i). The
peak picking function is detailed by Algorithm 6:

Distance 1 distribution

0
0412345678 9101142431415161718402021 222324 25262725 293031

Figure 5.9: Peak Picking: Concept and Example

Algorithm 6 Details of the peak picking Function

Require: A distribution vector d; of size n
Ensure: Ordered list of prevalent peaks pp,
: Compute the average value of d,

1

2

3

4: for all dimensions d,(k) do

5. if dy(k) > nd, then

6 PPz $— PPus k

7. end if

8: end for

9: Order pp, by decreasing distribution frequency

Figure 5.9 represents a given distribution of one cluster. The peak_picking algorithm
will then return the following list: pp, = {3,2}. If we now consider again the example of
Figure 5.8, Cluster 1 would be found with pp; = (), Cluster 2 with pp; = {2} and Cluster
3 with ppy = {2}. Thus, only Cluster 2 and Cluster 3 are correlated with a distance of

5.3. BUILDING SIMILARITY MATRICES 111

1. The frequency is not rounding. However, it might happen that two frequencies share
an equal value. In this case, the respected order is the one given by the list of attributes,
in order to ensure in this case a same peak sequence. The presented distance fulfills the
symmetry and non-negativity of each distance property. This is however not a metric
insofar as the triangular inequality is not satisfied. It also does not give any information
on the amplitude of the peaks.

These two distances have been applied by looking at particular distributions among
clusters, detailed in the following paragraphs. They include:

1. The distribution of countries as origins of attacks
2. The distribution of targeted Environments

3. The distribution of Operating Systems having launched attacks against the honeypot
Sensors

4. The distribution of IP distances between attacking machines and targeted honeypot
Sensors

Simailarity 3

This similarity aims at comparing the intersections between two clusters. It can be sum-
marized in theory like the following:

Let A and B be two distinct sets,

, ANB
simrp(A, B) = 1 B_AnD (5.11)

To summarize, the more common elements sets A and B have, the more important
this value becomes. The minimum is 0 and the maximum is 1. This similarity function
has been applied for a very particular analysis: the common IP addresses that have been
observed using several fingerprints at different dates. This similarity matrix is justified
and detailed in the following Section.

SAX Representation and SAX Distance

An interesting correlation among clusters is their temporal evolution. The Leurré.com
database contains data collected for many months (even years), thus it seems important
to compare how attack fingerprints evolve over time. It seems all the more relevant that
many worm models characterize different steps in the life cycle of a worm (generally 3:

112 5. CORRELATIVE ANALYSIS

Slow—Start Phase, Epidemic Phase and Slow-Finish Phase, as described in [51]). How
many fingerprints follow such pattern? Are these models really accurate? To answer all
these questions, we have built an analysis matrix expressing some temporal similarities
among clusters. The major problem is to formulate such temporal similarity. We have
presented in [183] an interesting method that aims at comparing the time evolution of
clusters. The Time Series method that has been applied is called the Symbolic Aggregate
ApproXimation (SAX), and as already been proven efficient in a large variety of domains.
The authors propose in [142, 73] a symbolic representation for time series, that allows for
dimensionality reduction and indexing with lower-bounding distance measure. In classic
data mining tasks such as clustering, classification, indexing, etc, SAX is as good as well-
known representations such as Discrete Wavelet Transform (DWT) and Discrete Fourier
Transform (DFT), while requiring less storage space [142, 73|.

Time Seties Mortral. Quart Symbal.

1 =) T = ™ = W,

Figure 5.10: Time Series Analysis: SAX-Based Steps

| i
4 mn
Wl Mr'“ﬁﬂ'ﬁ"’h y _

a 50 100 150 200 250 300

Figure 5.11: Application of the SAX Steps on a Time Series

In the configuration we use, each Cluster C}, is associated to a given time series T's.
The steps of the SAX method are represented in Figure 5.10 with the corresponding
notations. We invite the interested reader to look at the full method description for
more details on each of these steps, which are respectively the Dimensionality Reduction,
the Discretization and the Symbolic Representation. The dimensionality reduction is
known as the Piecewise Aggregate Approximation (PAA [125]), or Segmented Means
[238]. The discretization technique is built on the creation of breakpoints, that determine
symbols with equiprobability. Once the breakpoints have been obtained, the serie can
be discretized in the following manner. All the PAA coefficients that are below the
smallest breakpoint are mapped to the symbol a, all coefficients greater than or equal to

5.3. BUILDING SIMILARITY MATRICES 113

the smallest breakpoint and less than the second smallest breakpoint are mapped to the
symbol b, etc. Figure 5.11 illustrates the idea.

The distance between two SAX representations (as the one in Figure 5.11) C} and

C; of length n reduced into w symbols, is then given by the following distance function
detailed in [142, 73]:

d(k, j) = \/g > (dist(cg i, cji))? (5.12)

=1

The subfunction dist() can be implemented using a lookup table that gives the distance
value between each character of the alphabet. An example of such a table is given in
Figure 5.12 for an alphabet of cardinality 4. The distance can be read off by examining
the corresponding row and column. For example dist(a,b) = 0 and dist(a,c) = 0.67. The
details on how to build such a lookup table can be found in [142, 73].

a b ¢ d

0 0 067|134

0 0 0 1067
0671 0))
134 {0671 0 0

p=\)

=

o

Figure 5.12: Example of a Lookup Table for an Alphabet of Cardinality 4

It is important to notice that SAX, or at least the discretization and symbolization
steps, could have been implemented as an original peak picking technique. The peaks can
be extracted by looking at all attributes that have the highest symbols (d in Figure 5.11).
We report the interested reader to [194], in which we detail the whole SAX analysis.

Similarity Measures

A similarity measure is the converse of a distance function. Similarity functions take a
pair of points and return a large similarity value for nearby points, a small similarity
value for distant points. If A and B are highly similar objects, than intuitively they have

114 5. CORRELATIVE ANALYSIS

small distances. A contrario, a large distance might induce that A and B are similar.
At some points, it will be more important to claim that they are similar if this large
distance is rare, instead of having the majority of distance values in the same range. As
an illustration, a A mark will be more prestigious for a student if he is the only one of
his promotion getting it than if 90% manage to reach this mark. The attentive reader
will notice that we have mixed both notions in the previous paragraphs. Distances 1,2
and SAX are three distance functions, whereas Similarity & is, at its name indicates, a
similarity measure.

One way to transform a distance function into a similarity measure is to take the
reciprocal, the standard method for transforming between resistance and conductance in
physics and electronics. There exist many other distributional similarity measures. A
good start reference can be the state of the art presented by Lee et al. in [136].

To address the problem of transforming a distance into a similarity , we have used the
following transformation: let apply an Analysis A _p, the vector is made of n distance
values dy, ds, ..., dg, ..., d,. The similarity corresponding to the distance dj, is computed as
follows:

Wy = dmax - dk (513)

ez 1S the maximum distance value found in A _p. The resulting matrix composed of
all wy, is called M _p, and is the Similarity Matrix of Analysis p. The theory of dominant
sets can then be applied on each of the eight M p resulting from the Distance matrices
described in Table 5.4. We have introduced all the elements necessary to start presenting
the similarity matrices we have used in this thesis. They are all carefully listed in the
next Section.

5.4 Similarity Matrices: Applications

5.4.1 Introduction and Chosen Distances

We emphasize the fact that there is no creativity limit on building similarity matrices,
as there is a large choice of similarity measures, and a few others can be designed on
purpose to serve the analysis. We do not claim to list all of them. Interesting studies
on existing distances and similarity functions can be found in [95, 124, 225, 141, 108|.
We present in the following the ones that have appeared as the most simple and relevant
for the preliminary studies. Each distance, or similarity function, addresses a particular
analytical question, related to the previously described examples.

5.4. SIMILARITY MATRICES: APPLICATIONS 115

5.4.2 Geographical Location

Presentation

It has been shown in Case Study 1 that some clusters might present very strong rela-
tionships in terms of the originating country of the attack. It is thus important at this
stage to define an analysis matrix expressing the relationship in terms of the geographical
origins of the clusters attacks. Clusters that have very close percentage of IP attacks
issued from the same countries should be considered more similar than those which have
different ones. There are 191 countries members of the United Nations and 192 countries
are recognized by the United States State Department®. The Leurré.com dataset has ob-
served over the considered period addresses coming from 185 distinct countries. However,
some countries are frequently observed, while a few remain very rare. To build simple
matrices, we have decided to limit the distribution of the top 30 countries presented in
Table 5.1, that stem for 91.5% of all observed Sources.

The distribution attributes

Each cluster is the gathering of IP sources sharing a same fingerprint on a Honeypot plat-
form. It is suggested here to compute the country frequency as the ratio (in percentage)
between attacking sources identified as coming from one particular country over the total
attacking sources within the same cluster. This gives the distribution of 30 countries over
each cluster. An alternative would be to choose the real number of IP sources per coun-
try instead of the ratios. The distribution would then represent two distinct information
types: the ratio of countries over the cluster, and the amount of sources included in the
cluster. The vector we present describes the first type of information. The second one
will be expressed by another vector. Both might then be combined, as we will discuss in
Section 5.5.1. The matrix resulting from the first vector category and distance 2 is called

A Geo.

Many sources offer different answers, and depending on the source, there are 189, 191, 192, 193 or
194 independent countries in the world today. The United Nations has 191 members (including East
Timor, the newest nation) but that number does not include the Vatican, an independent nation. The
US State Department recognizes 192 independent countries around the world and does not include for
instance Taiwan as China claims that Taiwan is simply a province of China. The 192 countries also do
not include East Timor, Palestine, Greenland, Western Sahara, etc.

116 5. CORRELATIVE ANALYSIS

5.4.3 Targeted Environments

This new vector aims at finding correlation between clusters that have targeted particular
environments, in comparison with those which have been observed on the majority of Hon-
eypot sensors. The motivation comes from the first observations made with Case Study 1
and the platform in country C. This matrix will help determining if such phenomena are
also observed against other environments. The resulting matrix is called A _FEnv. The
process of generating the matrix is similar to the one described for A _Geo. We compute
each environment frequency as the ratio (in percentage) between the fingerprints observed
on that environment over the total number of fingerprints represented in the very same
cluster.

5.4.4 Attacking Operating Systems

Many malware propagate thanks to specific operating systems. A large majority of them
are currently spreading over Windows machines [223|. It is even said that most of the
current malware are not dangerous for old versions of Windows (Windows 3.1, 98SE,
etc.). An illustration comes from August 2005, a week after Microsoft issued a patch for
the Plug-and-Play vulnerability described in Microsoft’s August 2005 Security Bulletin
MS05-039. The Zotob (w32.zotob.worm) worm family scans the Internet looking for
unpatched Windows 2000 machines, then downloads malicious code to those machines
via remote access; users of Windows 95, 98, and Me are not considered to be targets.
Windows XP SP2 users should be safe unless they have enabled Null sessions [3]|. Users
of Mac OS X, Linux, and Unix are not affected. Zotob fingerprints will typically be
characterized by Windows 2000 (or undetermined) operating systems, given the passive
fingerprinting analysis performed on the Leurré.com dataset. Is it the only one working on
Windows 2000 machines only? Some other malware are also spreading over less common,
but not less immune, operating systems, like Linux (Adore, Ramen, Lion worms), MAC
OSes (SH/Renepo.A worm for instance), CISCO IOS ([104]) . It is thus interesting to
correlate attacks that are identified as coming from these specific Operating Systems.

We compute each OS frequency as the ratio (in percentage) between the fingerprints
observed running on that OS over the total number of fingerprints represented in the very
same cluster. The resulting matrix is called A _OSs.

Table 5.2 gives the different OSs that have been found on this experiment. They have
been chosen according to their frequency on the global dataset. Other Operating Systems
are more seldomly observed. It is sometimes hard to determine with passive fingerprinting
techniques the exact OS, especially if the amount of packets remains limited. A fingerprint
can then be counted twice, both as Windows 2000 and Windows NT, if the OS passive
fingerprint looks like Windows NT,2000. This lack of precision is due to the passive
fingerprinting tools we have used: ettercap, disco and pOf [24, 4, 7|. The details of passive
fingerprinting are carefully detailed in [240]. For building the matrix, we have used the

5.4. SIMILARITY MATRICES: APPLICATIONS 117

tool that appears to be the most reliable one at this time writing: pOf. The current version
uses a number of detailed metrics, often invented specifically for pOf, and achieves a very
high level of accuracy. It provides four different detection modes:

—_

. Incoming connection fingerprinting (SYN mode, default)

[\

. Outgoing connection (remote party) fingerprinting (SYN+ACK mode)

w

. Outgoing connection refused (remote party) fingerprinting (RST+ mode)

4. Established connection fingerprinting (stray ACK mode)

Modes 1, 3 and 4 are the most solicited ones in the configuration of our platforms.

5.4.5 Name Resolution and Regular Expressions
Introduction

The Leurré.com dataset contains reverse DNS! lookups [154]. This function normally
turns an IP address into a hostname. For example, it might turn 192.168.0.5 into
host.example.com. This property does not work in many cases, including the ones where
the IP is simply not registered in a DNS server, or in the case the DNS server is not
correctly configured to answer reverse DNS queries (correct DNS entry is "5.0.168.192.in-
addr.arpa" in our example). A domain name usually consists of two or more parts (tech-
nically called labels), separated by dots. For example host.example.com.

1. The rightmost label conveys the top-level domain (TLD, for example, the address
host.example.com has the top-level domain com).

2. Each label to the left specifies a subdivision or subdomain of the domain above it.

3. Finally, the leftmost part of the domain name (usually) expresses the hostname.
The rest of the domain name simply specifies a way of building a logical path to
the information required; the hostname is the actual target system name for which
an IP address is desired. For example, the domain name host.example.com has the
hostname "host".

19The Domain Name System, or DNS, is a system that stores information about hostnames and domain
names in a type of distributed database on networks, such as the Internet. Of the many types of
information that can be stored, most importantly it provides a physical location (IP address) for each
domain name, and lists the mail exchange servers accepting e-mail for each domain.

118 5. CORRELATIVE ANALYSIS

For each cluster, we have decided to build two distinct distributions, which are represent-
ing the TLD and the hostname.

Distribution over TLDs

In order to build the attribute vector, we need to limit the number of possible TLDs. We
thus consider as attributes all TLDs that have been observed from at least 10 observed IP
addresses in the whole database. We count 178 out of all TLDs, including the undeter-
mined one. We introduce this class of TLD as there is an important number of unresolved
names in the Leurré.com dataset. More precisely, they correspond to 39% of all observed
attacking IPs. Furthermore, we note that a few of the selected TLDs can be associated
to a large volume of observed IPs. In the decreasing order of importance, we can cite the
four major ones .net, .com, .jp and .de. Distance 2 is also applied to each pair of TLD
vectors (one vector per cluster). The resulting matrix built is called A TLDs.

Distribution over Hostname types

The hostnames often reveal some information about the type of machine the TP has
been assigned to. For instance, we can estimate the number of personal machines by
looking at specific strings in the complete hostname. If the hostname includes strings
such as "%dial%’,’%dsl%’ or '%cable%’, there is a good probability that those machines
are personal computers. We have classified the machines within five major categories.
We list them in Table 5.3 with their associated regular expressions. Distance 2 is again
applied, this time to each pair of hostname vectors (one vector per cluster). The resulting
matrix is called A _Hostnames.

5.4.6 Common IPs

Another meaningful matrix is the one that reveals the percentage of common IP addresses
between clusters. It can be imagined that an address A.A.A.A first launches attack Y
(for example a scan), and then, a few days later come back to launch attack Z. According
to the classification we made so far, address A.A.A.A appears as two Attacking Sources
(time interval between appearance dates is longer than the defined 25-hour threshold),
each of them having left a different fingerprint on the honeypot sensors.

This scenario also implies that the address A.A.A.A is not dynamic. In these cases,
the two involved clusters should show up a large number of common IP addresses, even
if this is not a full coverage.

5.4. SIMILARITY MATRICES: APPLICATIONS 119

There are also some worms that take benefits of ports opened by other worms. A
famous example is the Dabber worm that exploits the same vulnerability than another
one called Sasser in order to spread. It uses pieces of code installed by the Sasser-FTP
exploit application to burrow into a PC, remove Sasser, and install a server on the infected
machine to further propagate. We can expect, according to this scenario, and if the volume
of activities is representative enough, that clusters associated to Sasser and Dabber will
share common IPs. The requirement consists in making this analysis generic in order to
find, if they exist, all relationships similar to this one. To build the analysis matrix, it
appears that both Distance 1 and Distance 2 are not convenient. We cannot adapt the
two initial distances in this situation, as there is no particular distribution (and vectors a
fortiori). Thus, the resulting matrix A _CommonlI Ps is built from the Similarity 3.

We have also explained in Section 4 that some sources might not be properly classified
within clusters, after having applied the clustering technique. The small resulting clusters
share many common IPs identified by several sources. Such relationship should appear
as well with such a similarity matrix.

5.4.7 Time Series Analysis

We do not explain here the building of the matrix which express the temporal similarity
between clusters. The SAX method has already been carefully described in the previous
Section 5.3.2. A specific distance function which makes use of the symbolic representation
of the time series has been presented. The resulting matrix is called A SAX.

5.4.8 IP Proximities
IPs D:ist Definition

For this analysis, we have made use of an original vector. We use a particular comparison
that returns the first bit position from which two IP addresses IP; and IP, differ, with
a Big-Endian approach. This distance thus gives the i bit position between IP; and
IP,. An illustration is presented in Figure 5.13. The first bit which differ between
1P, = X.X.X.X and IP, = Y.Y.YY is at position 1, so the distance is 1. The obtained
value is thus within the interval [0,32]. This operation is performed for each pair of
large Session within a cluster and the considered vector is simply the distribution of
these values over all the cluster. As a first consequence, attacks which favor specific
CIDR masks should have a particular distribution with a high peak around CIDR values.
Indeed, some malware have been found favoring the propagation over local networks,
changing the last IP bits. Code Red II implements a similar strategy [157]. This worm
will 1/8th of the time generates a random IP not within any ranges of the local IP Address.
1/2th of the time, it will stay within the same class A range of the local IP Address 3/8th

120 5. CORRELATIVE ANALYSIS

of the time, it will stay within the same class B range of the local IP Address. If the IP
the worm generates is 127.x.x.x, 224.x.x.x, or the same as the local systems IP address
then the worm will skip that IP address and generate a new IP address. Therefore, this
worm has a particular signature in terms of IP distances. Over the whole fingerprints
characterized by Code Red, the distribution should tend to the above ratios.

Code Red II has been carefully analyzed and modeled [157, 243|. Zotob worm also
propagates by keeping the first 2 bytes and tries to connect to random IP addresses
within the same B-class (255.255.0.0) than the compromised machine [3]. However, reverse
engineering of worm codes is a time-consuming task, and it does not help determining if
other malwares propagate and follow the same characteristics. To provide such answers,
the matrix A I Pprox is built from this IPs_Dist vectors. As an example, the distribution
would be incremented by 1 for attribute number 1, after having computed the value
presented in Figure 5.13 and described at the beginning of this Section.

123 ... 31 32
XXXX [1]i]1]1]o]1]o]o] [o]1]1]o]1]of1]0]
Y.YY.Y [0[i[i][i]0]1]1]0] . [a]][]0 1]0]2]0]
.‘._\\D"”
=
Distribution +1 0 0 0 0 0+1 O ----- 00 00O O O OO

Figure 5.13: IP_ Dist Computation and Distance Distribution

It is important to note that this particular technique to compute IP distances be-
tween attackers and attackees does not allow to identify the malware which propagate by
switching dedicated bits in the TP address of their victim. Another approach would have
consisted for analyzing such tools in computing the cumulative bit-to-bit XOR, between
1P, and IP,. This would have been the final distribution presented at the bottom of
Figure 5.13, after having performed all the XORs. This new similarity would indicate the
different malware codes that change specific bits from the infected IP to propagate. Such
a scenario will not show up from the previous distance. However, this second analysis
is left for future work, as this scenario seems at this time writing less used by popular
worms [223].

5.4.9 Summary

We have presented in the last paragraphs the Analysis matrices which are used with the
method of dominant set extraction. We summarize in Table 5.4 their names and their
principal features.

5.5. DERIVED PROPERTIES 121

5.5 Derived Properties

5.5.1 Mixing Similarity Matrices

The matrices have been created, based on some analyses we intended to automatize. It
could be interesting, at this stage, to check if there are groups of clusters sharing several
characteristics. In other words, it would be relevant to determine all the clusters which
are linked each other within distinct dominant sets. One solution consists in looking for
the intersection of extracted dominant sets.

Algorithm 7 Combination of Analyses

for all M, Similarity Matrix of Analysis p, 0 <p < N +1 do
Compute DS(M,) M, (k)
the extracted dominant sets
DS(M,) = {M,(k)}
as described in Section 4.2.

end for

for all Combinations C; of M, do
Compute the new dominant sets
associated to C;: .
DS(C:) = Nice, Milk)

end for

The algorithm can be found in Algorithm 7. It simply computes the intersection
of dominant sets extracted for each matrix individually. It can be easily proved that
computing the intersection of cliques (we remind here that dominant sets are maximal
weighted cliques) generates cliques. The algorithm works on the corresponding 27 — 1
combinations of analyses, P being the number of matrices. In this thesis, we present 8
matrices (see Table 5.4). It thus implies 55 different combinations of matrices. Figure
5.14 describes the situation with three analysis matrices, labeled A;, A> and As.

o — iy

R
T TR
AL& A2 — m

AL&A3 %m
A2 & A3 4&

AL&A2&A3 — &

Figure 5.14: Mixing 3 Similarity Matrices: an Example

122 5. CORRELATIVE ANALYSIS

Another approach would have been to combine matrices into another resulting matrix,
and extract dominant sets from it. There is however a difficulty in mixing up matrices.
The mixing could be performed by computing a weighted average value of each edge
coming from the initial matrices. In other words, for two analyses matrices A and B, a new
resulting matrix C will be C,,,, = [cij]:m.(aA.Amn + aB.Bu,) = m.[a,;.aij +
ap.b;;]. For the sake of clarity, we do not investigate this possibility here, and only present
results from the simple intersection method described in Algorithm 7. An issue might also
arise in the case where analysis matrices are not of the same size, that is, are not performed
on the same set of clusters. In this situation, the method must be applied on the set of
clusters common to both analyses, that is the intersection of cliques that have been used
for the two analyses. Indeed, the dominant node sets are extracted with respect to other
nodes in the graph. Thus, the intersection of dominant sets must be considered for the
same set of nodes. For some clarity concerns, we will not investigate this possibility here,
and only present results from the simple intersection method described by Algorithm 7.
In other words, we consider for all following analyses the same set of clusters (the ones
with size larger than 10 Sources as described in Section).

5.5.2 Algorithm Limitations

Applying this algorithm on each Similarity Matrix M __p enables us to deal with any size
of graphs, from small to large ones (with thousands of nodes). However, it presents some
negative points that are worth being mentioned and considered.

1. There is no guarantee on the order of which the sets are found. Let imagine that two
sets share an equal weight on the Similarity Matrix, there is no way to determine
which one will be extracted first. This is not a real problem, however, as both will
be extracted and collected.

2. The resulting dominant sets highly depend on the weights distribution in the matrix.
(constant high values distances?) We have decided not to extract the overlarge
dominant sets, but there is no way to handle this limitation better, except by refining
the initial analysis and maybe by changing the distance function.

3. The resulting dominant sets might also be biased in the case the matrix contains
too many disconnected nodes, as the dominant sets are computed as the maximal
weighted cliques within the complete graph.

5.5. DERIVED PROPERTIES 123

5.5.3 Validation: Relation Projection
Concept

The matrix analysis considers potential similarities among activity fingerprints, also called
clusters. It would be interesting to determine if the similarities are still valid on each
environment, or if they are emerging properties when looking at the fingerprints over all
sensors. This implies to build the same approach than previously described but on a small
cluster portion; the large Sessions associated to this cluster and to a given Environment.
We propose in this section a method to test the relationship observed between clusters
per Environment (honeypot sensor). This is also an interesting approach to evaluate the
relevance of the dominant sets resulting from the previous algorithms.

First Solution

We decide in the following to project each cluster onto the different environment dimen-
sions. Such a projection is described as follows (see Figure 5.15 as an illustration): A
cluster is by definition the set of IP sources sharing the same attack fingerprints against
honeypot environments. We call P;(C;) the set of sources having targeted the environ-
ment number ¢ with the fingerprint associated to Cluster C;. The weight of this subset
of IP sources is defined as:

Wght(j,4) = Zi“;ﬁ;fggjj)) (5.14)

It represents the weight of sources in a cluster with respect to the environment. We can
compute this value for each cluster of the dominant set. The average value gives the
average weight of the environment representation within the cluster. Thus, high values
indicate the environment is strongly represented within the cluster, while a small value
indicates that cluster characteristic is not strongly represented on the environment.

Another Solution

Another solution would be to build other matrices to filter relationships in terms of
environments. Each similarity function will be applied to the Large Sessions of a cluster
from a given honeypot environment. This method is however very costful. It can be
considered, but in some very specific cases. Let assume the database has currently E
environments. The user gives directly the matrices corresponding to each cluster partition,

124 5. CORRELATIVE ANALYSIS

that is, one matrix per environment. However, the average partitioning of N clusters into
SN partitions (0 < 8 < E) induces a potential increase of N2(62_1>2_N(ﬁ_1) edges, that is,
for N = 30000 and 3 = 15, 10" more edges than between initial clusters. It seems more
sensible to restrict this analysis to the previously extracted clusters.

R(A,B)

E
@

Env_1 Env_k Env_1 Env_m

Wght_A_1 Wght_A_k ¢ Wght B_1 Wght: B.m
Projection

RA LB D ?
On Environment 1 S
2

On Environment R(A2B2) ¢
|

On Environment R(A p,Bp) ?
|

Figure 5.15: Projection on Honeypot Environments

5.6 Conclusion

Suspicious activities have been classified according to the fingerprints they leave on each
honeypot sensor. The first results have shown very interesting properties and trigger the
need to automate the analysis. This chapter has presented a graph-based technique to help
identifying groups of activity fingerprints that share strong similarities. The preliminary
analyses have helped orienting the creation of simple similarity matrices. The next chapter
intends to first check that the case studies found and described in Section 5.1 are correctly
found, and that all similar properties are discovered for all clusters. It is also expected
at this stage to discover other interesting relationships by computing the intersection
between dominant sets extracted from distinct matrices.

5.6. CONCLUSION

125

Table 5.1: Countries considered in the distribution (% Total Sources)

USA 18.2%
China 10.6%
Germany 6.5%
Taiwan 6.0%
Serbia-Montenegro | 5.8%
France 4.5%
Republic of Korea | 4.1%
Japan 3.7%
Canada 3.6%
UK 3.6%
Spain 3.4%
Italy 2.4%
Poland 2.2%
Russia 1.8%
Sweden 1.7%
The Netherlands 1.6%
Brazil 1.1%
Turkey 1.1%
Switzerland 1.0%
Greece 1.0%
Portugal 0.9%
Austria 0.9%
Australia 0.9%
Danemark 0.9%
Hong-Kong 0.8%
Belgium 0.8%
Mexique 0.8%
Israel 0.6%
Norway 0.5%
Finland 0.5%

126 5. CORRELATIVE ANALYSIS

Table 5.2: Considered Operating Systems used to build A_OS's
Chosen Operating Systems

Windows 98 SP2

Windows NT 4.0

Windows 2000 (All service packs 1-4)
Windows XP Service Pack 1

Windows XP Service Pack 2

Linux (RedHat, Debian, Mandrake: 2.4-2.6)
Solaris (versions 8 and 9)

OpenBSD (versions 3.0-3.4))

FreeBSD (versions 4.6-4.8)

Cisco IOS (all versions)

Table 5.3: Hostnames Classification based on Regular-Expressions

Hostname Category Regular Expressions
Personal Machines %dial%,%ds1%, %cable%

Mail Servers % pop%,%smtp%,%imap%,%mail %
Web Servers Y%oweb%,%http%

Routers %.cisco%,%route%, %gw%
Unresolved names Y%undetermined%

Table 5.4: Analysis Matrices used in this thesis

Matrix Name Similarity Meaning btw clusters

A _Geo Distribution of attacking countries

A Env Distribution of targeted environments

A _OSs Distribution of attacking OSs

A _IPprox Attacking sources IP proximities

A TLDs Distribution of attacking Top-Level Domains
A _Hostnames Attacking machine types

A _CommonlIPs Shared attacking IPs

A SAX Temporal evolution over weeks

127

Chapter 6

Automated Knowledge Discovery

6.1 Preliminary Results

6.1.1 Summary

This section aims at presenting the application of the method presented in Chapter 5 on
the clusters built and detailed in Chapter 4. We have considered the whole Leurré.com
dataset representing activities during one year and a half, i.e. from April 2004 to November
2005. In brief, the traffic collected on the different Leurré.com honeypot sensors has been
clustered according to traces left by the observed IPs on a given platform. Each cluster
thus gathers all TP Sources having the very same fingerprint on at least one sensor. A
contrario, it can be found a same Source in different clusters, but this scenario is rare: it
would mean that a Source has been observed during the same period of time attacking
several sensors in different ways. The results shown so far have led to the remark that
there exists different and potentially correlated similarities between these clusters. The
technique presented in Chapter 5 aims at extracting dominant sets (or cliques) from
similarity matrices and it has been designed to automatically extract the similarities we
have noticed so far among clusters. This chapter details the concrete results and the
information which has been inferred from the dominant sets.

6.1.2 Example 1: A Geo

Two important points have been explained in Section 5: first, the dominant set extraction
is a technique that can work on any kind of similarity matrices. Second, a small number
of matrices (see Table 5.4) can be easily derived from all experiments we have conducted

128 6. AUTOMATED KNOWLEDGE DISCOVERY

by hand. As a follow-up, this section intends to show that such matrices can easily help
finding similarities between clusters in an automatic way, and more importantly, that the
extracted similarities have been found for all clusters in the current dataset.

The first matrix which has been introduced in Section 5.4.2 is A _Geo. It presents an
analysis of the distribution of attacking countries per cluster. Clusters coming from a few
and clear identical countries will be considered as similar. We intend here to extract all
clusters that present such strong relationships.

The dominant set extraction algorithm generates 9 cliques from matrix A _Geo. Their
major characteristics are presented in Table 6.1. Each clique is identified by a dedicated
identifier (Cligue ID). We introduce a simple indicator (in percentage) which gives a
hint of the degree of difference between clusters within a dominant set, named Clique
Relevance!'. Tt indicates how clusters within a dominant set differ between each other

with respect to the two following attributes:

e The average percentage of distinct targeted ports among sequences of ports between
each couple of clusters.

e The percentage of clusters which have different numbers of targeted virtual ma-
chines.

The more different the clusters within a dominant set are (in terms of targeted machines
and ports), the more relevant we label the dominant set. In other words, it means that we
put here more emphasis on clusters which have very distinct fingerprint characteristics (in
terms of targeted ports or number of targeted machines) but which share a very strong
common property expressed by the dominant set. We compute the Clique Relevance as
the product of the two previous percentages (expressing a new percentage). This is not
a perfect solution, but it is a first indicator to compare relances of dominant sets. It is
computed as follows:

The Clique Coverage value provides the ratio of involved Large Sessions within the
clique out of the total number of Large Sessions considered in the dataset. It gives a
good incentive of the practical volume of Large Sessions of the clique over the dataset.
Thus, a small Clique Coverage would imply that the similarity (or similarities) associated
to that clique is quite rare in the dataset, while a large value indicates that it is a common
relationship. The Peaks attribute is related to our definition of similarity, which aims at
picking peaks. Each clique is the manifest, as such, of a different sequence of distribution
peaks. The peaks are here the most frequent attacking countries.

'We remind here that a dominant set is a particular clique, called the maximal weighted clique.

6.1. PRELIMINARY RESULTS 129

Algorithm 8 Computing Clique Relevance
varl =0
var2 =0
Require: Clique CLIQUE; be a set of k clusters C;,1 < j <k
for all C,,,C;, 1 <m <[<k clusters of CLZQUE; do
Compute the percentage p; of common ports
Over the respective sequence of ports
See Cluster Signatures in Section 4.4.5
Ex: Cy, : {445,135,80} and C; : {80} — 3
varl = varl + (1 —py)
Compute var2 as:
if Num_Targets,, ' = Num_Targets, then
var2 = var2 + 1
end if
end for
2

varl = gy * varl (normalized value)
2

var2 = gy * var2 (normalized value)

Clique Relevance= varl % var2 * 100 (combined percentage)

It can be noted that there is a prevalence of clusters very specific to Asian countries,
as we have observed manually. Peak extraction is quite stable, insofar as most of the
peaks are limited to 2 or 3. Furthermore, we note that the magnitude order of the peak is
not really important in this situation: we do not observe cliques corresponding to peaks
{P1,P2} and then {P2,P1} for instance, that is different sequences of similar peaks?.

6.1.3 Example 2: A FEnv

The second matrix we have defined in the previous section is A _Enwv. Peaks are, in this
case, sequences of Environment IDs. The results of the dominant set extraction algorithm
generates this time 12 cliques. They are all presented in Table 6.2, with the same column
definitions than those already used in Table 6.1.

We note from Table 6.2 that peaks are various and not numerous for each dominant
set. Six cliques involve a single environment. As an illustration, we note that 30 distinct
fingerprints (or clusters) are specific to platform 20, and 28 are only observed on platform
6, etc. This confirms once more the distinctive nature of some attacks. All those which
have been observed on a unique set of honeypot sensors appear in the list of Table 6.2.

2In addition, we note that only 8 countries (CN, US, YU, GR, JP, KR, CA, TW) out of 192 appear
in the cliques! CN appears in 6 out of 9 cliques, YU in 2, JP in 2, KR in 2 and all others in only one
clique.

130 6. AUTOMATED KNOWLEDGE DISCOVERY
Table 6.1: Cliques obtained from Matrix A _Geo

Clique ID | # Clusters | Clique Relevance | Clique Coverage (%) Peaks
D 1 20 61.7 2.17 {CN}

D 2 14 50.4 9.08 {CN,US}
D 3 12 6.5 0.95 YU}

D 4 11 8.8 0.82 {YU,GR}
D 5 10 434 1.78 {CN,US,IP}
D 6 6 58.7 0.49 {CN,KR}
D 7 10 8.1 1.08 {CN,CA}
D 8 1 33.4 0.39 [CN.KR,JP}
ID 9 9 37.6 0.98 {CN,US, TW}

Table 6.2: Cliques obtained from Matrix A _FEnv

Clique ID | # Clusters | Clique Relevance | Clique Coverage (%) Peaks

D 1 30 3.5 162 (20}

D 2 28 12.3 2.39 {6}

D 3 20 135 3.00 20.8]

D 4 18 31.8 2.39 (32

D 5 14 5.6 2.01 120,25}

D 6 26 31.9 3.88 25)

D 7 13 11 6.42 {6,311

D 8 10 54.3 0.97 (8.6}

D 9 8 8.3 0.93 {6.8)

D 10 14 5.1 1.60 (23}

D 11 12 17.3 2.28 {10}

D 12 5 61.2 0.42 125,20,36)

6.1.4 Example 3: A Geo vs. A Env

We present in Table 6.3 the result of the intersection between cliques obtained from the two
previous analyses. Rows are the cliques presented in Table 6.1 from the A _Geo analysis,
while columns are the cliques described in Table 6.2. The values in the cells indicate the
number of clusters two cliques have in common. The other value (between brackets) is
computed as the number of clusters in the intersection divided by the minimum cardinality
of the root cliques. The value is given as a percentage (%). This percentage gives an
indication of the number of clusters within an initial matrix that are also found after the
intersection. A value of 100% means that all clusters sharing characteristic A also share
characteristic B when intersecting matrices A A with A B3,

3 Assuming that the number of clusters in A is smaller or equal to the number of clusters in B.

6.1. PRELIMINARY RESULTS 131

Table 6.3: Clique Intersection from A Env and A _Geo

1 2 3 4 5 6 718910 11 12
1[0 0 0 0 014(20%) [0]0]0] 0 0 1 (20%)
210 0 0 0 0 0 0]0[0] 0 |1(83%) 1 (20%)
3107 (583%) |0 0 0 0 0/0[0] 0 0 0
4107 (636%) |0 0 0 0 0/0[0] 0 0 0
50 0 0 0 0 0 0/0[0] 0 0 0
60 0 0 0 0 0 0/0[0] 0 0 0
710 0 0 0 012(20%) [0]0]0] 0 0 0
810 0 0 0 0 0 0/0[0] O 0 0
910 0 01 (1L.1%) |0 0 0/0[0] O 0 0

The intersection of the clique ID 3 from A Geo and ID 2 of A Env is a new clique
containing 7 clusters. These 7 clusters are 7 distinct fingerprints which have been issued
from Serbia-Montenegro on the Environment 6. Table 6.4 provides a few details associated
to each Cluster. It highlights the diversity of the attacks identified thanks to this method,
but also the surprising fact that all fingerprints have been observed against a Microsoft
port (445). The cluster details, however, indicate these activities have nothing else in
common?. Yet, they are only issued from one specific country to a unique platform. The
7 fingerprints can be presented to the administrator in charge of the Network hosting the
honeypot Environment 6. It is again important to notice that we have found here all
fingerprints that share both a strong correlation in terms of origin of the attacks and of
targeted environments. The method has enabled us to find all of them, whereas in our
preliminary studies, we had found only one, by a tedious process of trials and errors.

Table 6.4: Clusters from A _FEnv ID 2 and A _Geo ID 3

Cluster | Ports Sequences | Avg Duration | Number VMs | Rcv payload
1 {445} 7h 1 0 byte

2 {445} 15s 1 40 bytes

3 {445} 5s 1 0 byte

4 {445} 15min 2 0 byte

5 {445} 15min 2 240 bytes

6 {445} 2min 2 105 bytes

7 {445} 10s 2 0 byte

4The other cluster parameters are also very different.

132 6. AUTOMATED KNOWLEDGE DISCOVERY

6.1.5 Time Correlation between Fingerprints

About the A SAX Matrix

Table 6.5: Cliques obtained from Matrix A SAX

Clique ID | # Clusters | Clique Relevance | Clique Coverage (%)
ID 1 9 2.1 3.06
ID 2 5 11.7 0.65
ID 3 7 2.5 3.04
1D 4 4 28.2 0.40
ID 5 5) 12.4 0.40
ID 6 3 67.8 0.31
ID 7 4 0 0.39
ID 8 3 35.1 0.61
ID9 3 0 0.98

We present in Table 6.5 the result of the dominant set extraction algorithm applied to the
matrix A SAX. This matrix gives the similarity between fingerprints in terms of time
series as computed with the SAX technique (see Section 5.4.7). We limit the details to the
nine first dominant sets, whereas 38 dominant sets have been extracted in total. There
is a maximal size of 12 clusters for one particular dominant set. 32 of them also group
no more than 5 clusters. The method has been applied with the following parameters,
justified in [194]:

e Alphabet Size: 5

e Compression Ratio: 8

We have chosen a compression ratio equal to 8. The fingerprint activities observed within
the same fixed time window of 8 days are thus counted together. There is one SAX
symbol for each value. This simply means that the evolution of the activity fingerprints
are compared per period of 8 days, instead of a per day granularity. One motivation is that
most of the activities , except about a hundred ones which are large enough, have a time
series which is too irregular: the time series are often made of long periods of inactivity,
and, conversely, very intensive periods. Furthermore, there is no specific requirement for
this time scale. A discussion about compressions ratios is presented in Section 6.1.6.

There are a few surprising cliques, showing explicitely that clusters share similar time
evolutions. It is in agreement with the preliminary remarks presented in Section 5.1.4. Tt

6.1. PRELIMINARY RESULTS 133

is important to note that the probability of getting one similarity out of K symbolized
time series of size w, with the previously chosen parameters is:

K.(K-1) 13

p= (=2
2 25

) (6.1)
The probability of getting one similarity out of 600 time series is thus smaller than 1075,
A first remark is that the size of each clique is relatively small. The largest clique does
not include more than 9 clusters. The others are limited to three or two clusters. On the
other hand, it is also very surprising to find so many similarities for such a long period.
Table 6.6 presents for each clique the different ports associated to each of its cluster.
Dominant set with ID 9 corresponds to the scenario described in Section 4. The tool has
launched successive attacks against two closed ports on all virtual machines, respectively
ports 5554 and 9998°. Two small clusters have been created, one associated to the ports
sequence {9898}, and one to sequence {5554}. They are both residues of losses, and have
been identified by means of the clusters temporal similarity. As we have mentioned in
Chapter 4, the task of interpolating losses is quite hard. Such a result, however, shows
that this task can be addressed in original ways.

Table 6.6: Some cliques obtained from Matrix A SAX

Clique ID Ports Lists

ID 1 {80},{139}

ID 2 {139},{1433}

ID 3 {1434 udp},{445,135}

ID 4 {1433},{1434 udp},{445,135}
ID 5 {80},{1434}

ID 6 {445}

ID 7 {445},{135},{5000},{6129}
ID 8 {80},{22}

ID 9 {9898} ,{5554},{5554, 9898}

Crossing Matrices: A SAX with A commonIPs, A Hostnames and A _OSs

This section aims at presenting the results of intersecting the dominant sets obtained
from the different matrices introduced in Chapter 5. Table 6.7 represents the details
of the intersection between A SAX and the other matrices. The colums provide the

°It is worth mentioning here that many web sites like [145] associate activities on ports 5554 and 9898
to the dabber worm. They precise that the worm first send its exploit via port 5554, and then scans port
9898 to check that its backdoor is correctly opened. It is precisely said that: Sequential scans on port
5554 and 9898 are an indicator of a dabber infection.In our situation, both ports are closed, thus this
scenario cannot be possible and the clique indicates another activity over the very same ports.

134

6. AUTOMATED KNOWLEDGE DISCOVERY

number of common clusters, as well as the percentage of clusters existing in the initial
A _SAX dominant sets, and which are still correlated after the intersection with the other
matrices®.

Table 6.7: Intersection btw A _SAX and other matrices

Intersection A SAX | #/ Common Clusters | % initial clusters
with A _commonlPs 7 6.1%
with A _Hostnames 35 30.7%
with A_OSs 102 86.5%

Without going into the details of each intersection, it seems that clusters which share

temporal similarities also share either common IPs or similar patterns of hostnames. The
crossing with A _OS's also confirms that most of these clusters are issued from Windows
or undetermined machines, as the percentage is a little bit higher than the average values
(82.4% Windows machines and 8.4% unresolved names are found in the whole dataset”).
This intersection, however, is quite limited at this stage and examplifies the limitations of
current passive OS fingerprinting techniques, which have an important uncertainty about
the OS versions (resp. kernels).

We distinguish three major scenarii from the analyses we have described in [194]:

1. Dominant sets involving clusters that share clear relationships w.r.t.

ports sequences: while the sequences of ports differ from one cluster signature
to another (see the definition of a cluster signature in Section 4.4.5), one port se-
quence is always a prefix of the other. Let PS, and PSj be the ports sequences
associated to a pair of clusters C,, Cy,. We find in this scenario that PS, = (PS, *)
or PS, = (PS,,*). Such a behavior is a characteristic of sophisticated tools that
always scan the same sequence of ports on a machine, but stop scanning if ever one
of the ports is closed. The use of time analysis is thus a good way to find out this
type of tools. It represents a costless alternative to a complex reverse engineering
of the code (that first needs to be captured!) that would reveal that the tool stops
scanning a machine whenever a port in the pre-defined sequence of scanned ports is
closed. This property is one reason that motivates the need for enriching the diver-
sity of the sensors configuration in a near future. It is also important to notice that
this scenario can be easily cross-correlated with the attributes of the clusters from
the dominant sets. The number of targeted virtual machines for all these clusters
is equal to 1 or 2 (out of 3), and the port status of each virtual machine must be
different.

6We remind here that, by definition of a clique, the intersection of two cliques can only be one clique
or an empty set.
Taccording to pOf Passive Fingerprint tool [24]

6.1.

PRELIMINARY RESULTS 135

Loss interpolation: As described in the previous Section, a few clusters of small
sizes could be correlated in terms of time series with larger ones, but they are not
because of insidious losses. Unlike the previous scenario, the clusters share several
common ports, except that one is missing compared to the other port sequences.
This scenario is also easily validated by checking that targeted ports are currently
closed on the machines, and that all combinations of missing ports are equally
distributed. Formalization of losses and interpolation approaches are two tasks
which are left for future work.

Dominant sets involving clusters that do not match the previous scenarii:
they stem for 12 dominant sets, out of the 38 extracted ones. They are expressions
of what has been called multi-headed worms in [194]: These worms combine several
known exploits within a single piece of software. This is not a new technique,
as the very first worm, the Internet worm, did already contain several infection
techniques [211]. However, the specificity of this class of attacks is that only one
of the available exploits will be used to launch an attack against a given target.
In other words, machines targeted by those multi-headed tools see different attacks
originating from different sources that can easily be interpreted as different tools.
As a consequence, the fact that several exploits have been combined within a single
piece of code remains invisible to the victims as long as the malware is not captured
and analyzed. If the spread of the malware is not too aggressive, its existence may
remain unknown for a while. A few of these sophisticated tools have already been
identified, e.g. Welchia. However, this is the result of their malicious activities
on users’ machines and there is a high probability that some other similar, but
stealthier, tools of this type are currently active in the Internet. The identification
of these tools remains a great challenge, and the comparison of attack fingerprints
over time enables us to identify a few of them.

From the cliques perspective, we have identified a variant of the worm Nachi, also

called Welchia [222] that exploits one of the following vulnerabilities:

e DCOM RPC vulnerability described in MS03-026 bulletin
e WebDav vulnerability described in MS03-007 bulletin

e Workstation Service vulnerability described in MS03-049 bulletin Welchia is an ex-

ample of multi-headed tools. To infect other machines, it randomly chooses an TP
address and then attacks it either against port 135 or port 445, but not both (it
is thus a real multi-headed tool). From our platform viewpoint, traces left by ma-
chines infected by Welchia look very different. They are thus stored in two different
clusters, one for the attacks against a unique virtual machine on port 135 while the
other contains attacks against port 445.

Another example of such multi-headed tools is Spybot.FCD [64, 221]. This tool tries to
exploit Windows vulnerabilities either on port 135, 445 or 443. In the case of Spybot.FCD,

136 6. AUTOMATED KNOWLEDGE DISCOVERY

we have thus observed three similar clusters in the clique. Welchia, Spybot.FCD or
W32.Kobot.A are examples of multi-headed stealthy tools that have been studied and
analyzed. Many more remain to be identified. Our time signature analysis provides a
simple and efficient way to reveal their existence. It should provide valuable input to other
research teams interested in studying specific attack tools and/or in reverse engineering
them.

6.1.6 Checking Time Series Technique
Alphabet size Impact on the Cliques

This small section aims at showing that the graph approach presented in Chapter 5 can
be used to check the clique consistency with different analysis techniques or algorithm
flavors. It has been explained in [194] that the alphabet size would normally not impact
severely the similarity analysis. A short comparison is presented in the following for three
different alphabet sizes (or discrete degrees): 4, 5 and 6. The results are presented with
different compression ratios in the next paragraph.

Compression ratio impact on the Cliques

We intend to present here the impact of different compression ratios on the method of
dominant set extraction. Table 6.8 gives for different values of alphabet sizes (As) and
compression ratios (CRs®) the corresponding number of dominant sets. The number
of dominant sets remains quite stable, when changing either the alphabet size or the
compression ratios, around the ones we have used (A = 5 and CR = 8). It is however
interesting to notice that changing the alphabet size for a given compression ratio does not
impact much on the dominant sets, which keep gathering the same clusters (except a few
exceptions). The opposite is not true: for a given alphabet size, the different compression
ratios might induce completely different sets of clusters, even if the overall number of
cliques is quite similar. The reason is explained through a small example presented in
Figure 6.1. The x-axis represents a given time window, while the y-axis represents the
time series amplitude. With regards to compression ratio 2 (that represents the whole
curve into a single SAX symbol), the two curves in this figure are correlated, as they
globally have the very symbol {a}. Unfortunately, the compression ratio 1 (two SAX
symbols for each curve) gives two different sequences of symbols, resp. {a,a}, and {a,b}.
SAX is an efficient technique to determine similarities between time series, however, the
granularity of the time series is also an important factor as some peak effects can be
smoothed and hidden. The details of SAX analysis are described in [194].

8The different CR values have been chosen so that the length of the initial time series remains a
multiple of the compressed one.

6.1. PRELIMINARY RESULTS 137

Table 6.8: A SAX:Alphabet Sizes vs. Compression Ratios

CR2|CR4|CR5|CR8|CR10
A4 2 30 31 40 101
A5 3 28 28 38 65
A6 3 23 27 35 o8

SAX symbol threshold
_____ -~ o ____——'?‘_:. - curve 2
~fe - -— P -
"""""""""""""""""""""""" CreL . cerreeoocurve 1
: .>
1 1
0 1 2

Figure 6.1: SAX and Compression Ratios

Conclusion on SAX

This section leads to two major remarks: First, comparing the resulting cliques enable us
to determine the stability of the cliques according to these various analysis techniques.
Second, the chosen example, SAX, with different parameter values (CR € [4,8], AS €
{4,5,6}), keeps providing very stable cliques. This confirms the results presented in [194]
that the SAX approach is quite stable for sensible parameter choices. They do not impact
the analysis. Future work will consist in applying SAX to other types of series, and not
necessarily temporal ones, but still related to the Leurré.com dataset.

SAX is a clear example of the value of dominant sets to evaluate the impact of different
techniques on the dataset. For a given technique, it is thus possible to test the extracted
cliques and check their stability over the parameters.

138 6. AUTOMATED KNOWLEDGE DISCOVERY

6.2 Knowledge Discovery

6.2.1 Surprising Results

Each extracted dominant set requires at this stage an in-depth analysis. The first results
have permitted to determine the attack scenarios which have been observed (somehow)
by chance so far. In the following Section, we present two different dominant sets which
have been picked up and analyzed. It is important to note here that all dominant sets are
worth being investigated, as they do not express the same information. Unfortunately,
due to space and time limitations, we limit their analysis to two particularly interesting
ones.

6.2.2 Case Study 1

We focus in this section on two dominant sets which have been introduced in Table 6.2
with IDs 8 and 9. These dominant sets group together all activity fingerprints (or clusters)
which have targeted two honeypot sensors in particular: namely sensors 6 and 8. The
first one is placed in a European industry network, while the second one runs on an
Asian academic network. The IPs in use are apparently not correlated. Furthermore, the
intersections of this clique with matrices A _TLDs and A _IPprox are invariant. In other
words, this clique is included in one dominant set extracted from A T LDs, in another
dominant set from A _IPprox. The clique however does not appear when computing the
intersection with A SAX dominant sets.

The vector associated to the related dominant set of A_IPprox is the peak {24}. This
result can be interpreted as follows: the fingerprints associated to the considered clusters
have been observed on these two unique sensors, and they have been left by machines from
the /24 network they belong to. This result is confirmed when computing the intersection
of the cliques with the other matrix A T LDs. It provides, without any surprise, the Top
level Domain of the two /24 networks. A deeper analysis of the clusters signatures reveals
that all the fingerprints have been each time observed against the two virtual machines
emulating Windows. They have targeted their port 135 (Microsoft Remote Procedure
Call RPC?), but in a large variety of manners (in terms of duration, payload, etc).

This analysis thus provides an interesting example of a weird, or at least unusual,
activity, and indicates a few things:

e The involved clusters only concern the two Windows machines. It is very unlikely
that they have been targeted randomly. The attack was a priori aware of the

9An RPC service is a protocol that allows a computer program running on one host to cause code to
be executed on another host without the programmer needing to explicitly code for this.

6.2. KNOWLEDGE DISCOVERY 139

operating systems running on these machines. It imposes that a scanning phase from
different IP sources have been launched and have been successful in determining the
OS of our virtual machines.

e The attack always target port 135, but in a large variety of manners, and the
fingerprints are unique to these two platforms.

e They cannot be interpreted as Windows radiations noises, as there is no service
running on port 135 of the virtual machines and they do not respond to multicast
requests.

e There should be different attackers, insofar as the attack has been launched several
times on the virtual machines, without being successful.

e There is no evident temporal pattern between the different attacks. It is thus not a
process trying to test the Windows machines in a periodic manner. It can however be
a monitoring process distributed over different machines with random time intervals.

This example leads to the following conclusion:

Observation: Both class C networks where Sensors 6 and 8 are running host a com-
mon (or very similar) botnet. Let first recall the botnet definition, as given in|[149, 111]:
"a botnet is a structure consisting of many compromised machines which can be re-
motely managed (in general from an Internet Relay Chat TRC channel)". The authors
report such 'many-to-many’ tools, and their numerous remarks correctly match the previ-
ously described scenario. The activities we are observing characterize a very same botnet
launching multiple attacks against port 135 on the same class C windows machines than
the compromised ones. In addition, the activity fingerprints characterize this botnet, as
its fingerprints have not been observed in any other honeypot sensors.

6.2.3 Case Study 2

The extraction of dominant sets from the A SAX matrix has also shown that some
clusters are temporarily correlated, while they group activity fingerprints on different
ports. One example is the clique with ID 8 on Table 6.6: it involves three clusters, linked
to two distinct ports sequences {80} (one cluster) and {22} (two clusters). The clique has
been observed as well with a SAX alphabet size of 6.

The analysis is not obvious, as the intersections with other matrices remain empty.
However, this information, if it does not allow to conclude on the activity, helps deter-
mining what property it does not present. The empty intersections with matrices like
A TLDs, A _IPprox, A Hostnames and A_Geo therefore indicate there is no obvi-
ous relationships among the Sources of each cluster. The empty correlation with matrix
A _Env also indicates that the activities have not targeted the same sets of honeypot

140 6. AUTOMATED KNOWLEDGE DISCOVERY

sensors. There is no payload, whereas ports were opened on some virtual machines. Etc.
In short, there are very few properties between these three clusters, except that they all
belong to the large dominant set representing Windows machines with A OSs. This
intersection, unfortunately, does not help so much the analysis.

There is a unique property shared by these activities, apart from their strong temporal
relationship: they are all grouping fingerprints which target the three virtual machines.

Observation: The three clusters represent scanning activities. They have been
observed on all honeypot sensors indifferently. Their strong temporal similarity tends,
however, to indicate that they have a common root cause and are launched in parallel by
a large number of machines in the wild.

Nothing else can be deduced at this stage. Further cross-analyses would maybe en-
riched this initial observation. In addition, it would be interesting, in this scenario, to
compare the activities of the scanning IPs from a more global Internet point of view. As
it was stated from the beginning of this thesis, the approach we offer is complementary
to other larger visions, like telescopes, darknets and blackholes. These solutions have all
been introduced in Chapter 3. They would typically enrich this case study.

6.3 Discussion

6.3.1 Abnormal Correlation and Potential Improvements

The example of SAX is rich, in the sense that it clearly shows the values and limitations
of the dominant set method. Among its advantages, it enables to compare different
parameters from one technique (see the different alphabet sizes and compression ratios).
It also gives a good framework to compare different techniques. However, the weakest
or most sensitive point remains the intrinsic matrix. Most of the attention must be paid
to the similarity function it represents and the characteristics it intends to highlight.
Moreover, the final intersections are obviously limited to the existing matrices. Further
inquiries might be required after picking up one clique. If such inquiries starts being
frequent, it will be relevant to also express their characteristics in terms of a similarity
matrix. Another issue is the understanding of overconsistent intersections: in the scenario
where the intersection conserves the large majority of clusters in the initial clique, it
seems important to understand why a small number does not follow this rule. Either they
are exceptions worth investigating, or error reflects of the chosen similarity functions.
Both scenarii are hard to discriminate to date. Finally, the previous case studies have
been interpreted from the two randomly chosen dominant sets. This interpretation, if not
completely automatic, must be simplified and clear to the analyst. Next section offers a
simple method to ease the interpretation step.

6.3. DISCUSSION 141

6.3.2 On the Labeling of Dominant Sets

Some examples have been presented so far. The method however generates all possible
dominant sets, given the similarity matrices. The idea consists in avoiding to extract
several times the dominant sets for a given similarity matrix. Thus, the clusters involved
in a clique are labeled by the doublet made of:

1. The similarity matrix unique identifier

2. The different dominant sets identifiers for this matrix when the cluster is associated
to one of them

It is important to note here that a cluster can be labeled twice or even more for the same
similarity matrix, if it is related to several extracted cliques from that matrix. The labels
are then an easy way to work on Clusters and to consider all the analyses made so far. A
simple schema illustrates the labeling process in Figure 6.2.

Dominant Set ID 21
Dominant Set ID 9

A(Geo): A(OSs):
Dominant Set ID 13 Dominant Set ID 3
A(commonIPs): A(Hostnames):

Figure 6.2: Labeled Clusters

Dominant Set ID 5

)

A(Env):

A(TLDs):

A(SAX):

6.3.3 On the Derivation of Observations

As the case studies have shown in Section 6.2.1, there is good value in extracting a
summary of all observations obtained so far. It has also been noticed that the clusters
might not be all in the same sets of dominant sets. It is thus worth mentioning these
cases as well. To date, we derive the observations based on the Algorithm 9. It simply
consists in labeling each cluster with all dominant sets it belongs to, and also the matrix
analyses in which it was not involved (not included in any resulting dominant set). This
labeling process enables us to complete the cluster signature as illustrated by Figure 6.3.

This Signature is the one of a Blaster variant. The identification task was quite easy
due to a few publications on that worm, like [42, 93|. The worm exploits a remote pro-
cedure call (RPC) vulnerability of Microsoft Windows 2000 and Windows XP operating
systems. The infection steps have already been presented in Figure 2.2 of Section 2.3.2.

142 6. AUTOMATED KNOWLEDGE DISCOVERY

Seven distinct clusters have been identified as Blaster variants in our dataset. Only three
have been found correlated with the temporal matrix A_SAX (Clique ID 21). The others
have not been found for two reasons:

e They are less frequent and have not been considered in the 683 clusters considered
as big enough for the SAX analysis (time series).

e Even though, they have very different temporal patterns and have been first observed
four months after the first Blaster infections in August 11th, 2003.

The cluster has been merged with other clusters by the A OSs. Unfortunately, the
precision of our fingerprinting method does not let us precisely determine, to date, what
Windows machines were mostly infected. It would have been interesting, however, to
validate the Symantec claim in [21]. According to this antivirus company, the worm
decides whether it will use the exploit code for Windows XP with a 80% probability, or
the one for Windows 2000 with 20% probability. These two scenarii belong to two distinct
clusters in our case, as the fingerprints are distinct. This is thus a variant of what has
been called multi-headed tool in previous Section 6.1.5.

Algorithm 9 Deriving observations from the dominant sets labeling
Let C; be one cluster
expressing an activity fingerprint on the sensors
(See Chapter 4)
Let L(C;) be the sets of labels attached to C;
for all Dominant Sets DS, from Characteristic analysis A, do
if (p,k) € L(C;) then
Cluster C; has characteristic A,
List all other clusters linked to DSy,
else
Cluster C; does not show up with characteristic A,
end if
end for

6.3.4 Summary

We can now work on the fingerprint level, and quite easily perform analyses by simply
looking at labels, instead of digging once more into the data. This ends here the HoRaS's
framework we were looking at, as it seems the current method fulfills the requirements
listed in the introduction. Other interesting reporting approaches can complement the
labeling previously described. The method, however, enables, at this stage, any analyst
to understand the activities on the network where the honeypot sensor is placed, as well
as their distinctiveness and their relationships with others. The framework is quite open
to develop other analyses.

6.3. DISCUSSION 143

CLUSTER ID: IDENTIFICATION:

W32.Blaster.A (symantec), also known g

1931 W32/Lovesan.worm.a (McAffee)
Win32.Poza.A (CA)
Lovesan (F-Secure)

WORM_MSBLAST.A (Trend)
W32/Blaster (Panda)
Worm.Win32.Lovesan (KAV)

FINGERPRINT:

* Number Targeted Virtual Machines: 3

* Ports Sequence VM1: {135,4444,135,4444}
* Ports Sequence VM2: {135}

* Ports Sequence VM3: {135}

* Number Packets sent VM1: 10

* Number Packets sent VM2: 3

* Number Packets sent VM3: 3

* Global Duration: < 5s

* Avg Inter Arrival Time: < 1s

* Payloads: 72 bytes + 1460 bytes + 244 bytes

CORRELATIVE ANALYSIS:

A(SAX): clique 21
A(Env):

A(Geo):
A(Hostnames):
A(TLDs):
A(commonlPs):
A(IPprox):
A(OSs): clique 3

Figure 6.3: New Cluster Signature

144 6. AUTOMATED KNOWLEDGE DISCOVERY

145

Chapter 7

Conclusions and Perspectives

Conclusions

Summary

We have proposed in the previous Chapters to create a kind of identity card for each activ-
ity observed against the honeypot sensors. These cards express two different information
categories:

1. First, the characteristics of the activity fingerprints which enable us to discriminate
this activity from others.

2. Second, the correlation that might exist between all activity fingerprints. This
correlation might exist for several reasons, some of them having been discussed
along the thesis.

A few thousands of distinct identity cards have been extracted from the data collected
with the Leurré.com project by several sensors deployed for many months in a large variety
of places. These cards can then be reused for different purposes, including the following
ones:

e To determine the root causes of some activities.

e To insert the information they carry for event and alert correlation, as an additional
contextual information source.

146 7. CONCLUSIONS AND PERSPECTIVES

To detect new or original abnormal activities and provide meaningful information
from this discovery.

To understand the life cycles of activities over a long period of time.

To validate assumptions and to explode myths.

To model certain activities or improve current models.

The method we have proposed is composed of several steps, from data storage of
raw packets to classification of packets into activity fingerprints and given prominence of
relationships among these fingerprints. Several techniques have been applied and tuned to
reach this abstraction level, including clustering and graph-oriented algorithms. Several
steps of the method have been published along with this thesis, and have also been
described in the respective chapters of the document. Some listed applications have
also started being investigated, like the modeling aspects and the insertion of contextual
information within alert correlation engines.

Critics

The framework we propose has also some limitations, or, said differently, a few points that
must be considered or/and improved in the future. The proposed techniques have been
chosen because of their relevance and their simplicity, and they have helped building an
interesting framework. These applied techniques have proved that they were applicable
in our context as they have provided interesting results. Other techniques however might
be applied as well. This work is at the intersection of various research domains. We have
tried to build something coherent. This work does not mean that no other solution exists
or cannot be applied. A contrario, this framework would really benefit from the work
of specialists improving each step of this technique. Some other potential applications
should be worth being tested.

The experiments have also clearly shown that the current interaction of the honeypot
sensors is limited. The technique would really benefit from additional traffic to improve the
discrimination phase and collect more exploit information. The new Scryptgen technique
described in [138| will solve this problem and should be deployed in the Leurré.com sensors
soon. It is also important to keep comparing regularly the activities on different interaction
honeypots, in order to check that the honeypot sensor itself does not introduce particular
bias in the collect of data; or it is important, at least, to qualify and quantify this bias.
We have presented a mechanism to deal with this problem in [187].

The framework does not include, by definition, too many detection mechanisms, as it
is not its initial purpose. However, it seems relevant, at this stage, to incorporate several
mechanisms which would detect changes, either directly related to attack fingerprints, or
other more global trends. They will be very useful, among other things, for reporting

7. CONCLUSIONS AND PERSPECTIVES 147

the activities and for warning against recent abnormal activities. These mechanisms can
be inserted at different steps of the framework. We have mentioned some of them along
the thesis, but other techniques, derived from the Intrusion Detection System (IDS) field,
could also be easily integrated. In addition, the framework has not been optimized with
the prospect of being an efficient early-warning system. The tuning of some steps to
shorten the warning delays might also be possible. An additional advantage of detecting
changes can also be to potentially adapt the discrimination step and to create a new
correlative analysis between the observed activities.

Conclusion

Echoing the Introduction, there were two major questions we wanted to address in this
thesis. First, we wondered if the dataset at our disposal, which represents malicious ac-
tivities collected by various sensors in the world, contains useful and original information.
All examples cited in this thesis bring a clear affirmative answer to that question: data
collected locally for a long time period enables to better understand the activities that
occur in the Internet and are definitely worth being considered. Secondly, we were looking
for a possible framework called HoRaSis that would automatize the adequate analysis of
the data. If it exists, it should at least follow a few properties that have been detailed in
the introduction.

Along this thesis, we have presented an analysis technique which has both confirmed
the preliminary findings we made and has permitted to acquire a new and original knowl-
edge out of the huge amount of collected data from the Leurré.com project. This analysis
technique is open to other approaches, due to its interesting approach of classifying data.
Its modular aspects ease the evolution of the mechanism and the plug-in of additional
analysis layers. Finally, the methods we have proposed to classify data and extract in-
formation remain intuitive enough for the analyst to understand the outcome of the
technique. In other words, the proposed technique is not an obscure or magical black
box, and the analyst should now be able to understand all the steps that have led us to
particular observations.

As a conclusion, we have correctly presented over this thesis a HoRaSis framework,
with respect to the properties imposed in the Introduction. The proposed framework is
the bases for Honeypot tRaffic analySis. It has been implemented and applied on the data
collected from the Leurré.com distributed network of honeypot sensors.

The HoRaSis framework we have defined is a key element in our argumentation in
favor of a better knowledge acquisition of malware activities. However, we think that
the proposed framework presents more value by the questions it arises than by its imple-
mentation itself. Instead of being an end in itself, this framework is the illustration of
positions defended in this document. We thus hope it will provide food for thoughts for
future work. We conclude by giving a hint of potential research directions which seem

148

7. CONCLUSIONS AND PERSPECTIVES

promising.

Perspectives

As previously mentioned, we believe that the framework we have proposed opens new
interesting perspectives, and also many questions.

e Global vs. Local Monitoring: it is clear from this presented work that both ap-

proaches are complementary. A complete analysis of attack processes clearly re-
quires the two positioning. We have not addressed, in this thesis, the problem of
making them interact and exchange information. They both provide different ab-
straction levels and it would be interesting to merge the two approaches within a
general monitoring system, able to interpret both types of abstraction, and thus,
understand their respective limitations.

Dynamic Configuration of Sensors: To determine the fingerprints of activities, it
has been assumed that all sensors share the very same configuration. However, it
would be worth diversifying the configurations, with different types of services and
operating systems. in other words, it would be interesting to copy the diversity of
real world systems into the network of sensors. Unfortunately, a few issues must
then be correctly addressed. First, this approach might require quite numerous
sensors deployed over the Internet. Second, the cross-correlation between activity
fingerprints and configurations must be carefully understood and formalized. The
database architecture used within the Leurré.com project has however been designed
with this perspective in mind.

Context Provisioning: To date, each activity is reported as a card, including its fin-
gerprint parameters and the labels characterizing particular correlation with other
activities. From another point of view, vulnerabilities and exploits are frequently
published and many incidents are also reported. They all form an additional infor-
mation context that might help understanding the monitored activities. It would
thus be interesting to associate both and express their potential relationships.

Sensor Positioning: The sensors have all been plugged in a large variety of places,
in front of partners’ networks. It would be interesting to determine if a very same
framework can be applied with sensors inside a private network. This, however,
presents a few privacy issues, and most of the partners would be reluctant to share
such information. On the other hand, the discrimination phase of the framework
might help the administrator in her analysis. A direct application would then be
the insertion of the resulting information into the correlation engines she uses.

It is not an ordinary fact that we end a thesis with so many research directions. We

have wanted to highlight the large exploratory fields which have appeared when consider-

7. CONCLUSIONS AND PERSPECTIVES 149

ing the requirement of a better understanding of malware activities. Such an understand-
ing is necessary and possible to acquire. We hope that it is now demonstrated with the
proposed HoRaSis framework.

151

Bibliography

[1] “The CAIDA Project: FlowScan, Network Traffic Flow Visualization and Reporting
Tool”, Internet: http://www.caida.org/tools/utilities/flowscan/.

[2] “CJB pages: The Grim’s Ping homepage”, Internet: http://grimsping.cjb.net/.

[3] “CNET Security Center: reviews: Zotob prevention and cure”, Internet:
http://reviews.cnet.com/4520-6600 7-6299565.html.

[4] “Disco Passive Fingerprinting Tool”, Internet: http://www.altmode.com /disco.

[5] “DShield Distributed Intrusion Detection System”, Internet:
http://www.dshield.org.

[6] “Ethereal Software: Tethereal, a Network Protocol Analyzer”, Internet:
http://www.ethereal.com/docs/man-pages/tethereal.1.html.

[7] “Ettercap: Passive scanning of the LAN”, Internet: http://ettercap.sourceforge.net.

[8] “GIAC Practical Reports: SQLSnake presentation”, Internet:
http://www.giac.org/practical /Christopher Short GCIH.doc.

[9] “Honeyd Virtual Honeypot from N. Provos”, Internet: http://www.honeyd.org.

[10] “Levenshtein association: Efficient Implementation of the Levenshtein Algorithm,
Fault-Tolerant Search Technology”, Internet: http://www.levenshtein.net.

[11] “MaxMind GeoIP Country Database - Commercial Product”, Internet:
http://www.maxmind.com /app/products.

[12] “MIT LCS’s Parallel and Distributed Operating Systems Group: The Click Modular
Router Project”, Internet: http://pdos.csail.mit.edu/click/.

[13] “QoSient Inc.: Argus Open Project, AUditing Network Activity”, Internet:
http://www.qosient.com /argus/index.htm.

[14] “The SANS Institute - Internet Storm Center: The Trusted Source for Computer
Security Trainind, Certification and Research”, Internet: http://isc.sans.org.

152 BIBLIOGRAPHY

[15] “The SCAMPI Eureopean Project: A Scalable Monitoring Platform for the Internet
Contract No IST-2001-32404: DO0.1 Description and analysis of the state-of-the-art”,
Internet: www.ist-scampi.org/publications/deliverables/.

[16] “Symante Service Support: Ports used for communication in Norton Antivirus
Corporate Edition”, Internet: http://servicel.symantec.com/SUPPORT /ent-
security.nsf/docid /20000101210181048.

[17] “TCPDump utility”, Internet: http://www.tcpdump.org.

[18] “Towards a taxonomy of intrusion-detection systems”, Comput. Networks,
31(9):805-822, 1999.

[19] “LURHQ and Corporation: Critical Microsoft Messenger Patch Released”, October

2003.

[20] “LURHQ and Corporation: Windows Messenger Popup Spam on UDP Port 1026”,
June 2003.

[21] “Symantec ~ Security =~ Response - W32.Blaster.Worm”, Inter-
net: http://securityresponsel.symantec.com /sarc/sarc-intl.nsf/html/fr-

w32.blaster.worm.html, August 2003.

[22] “The CAIDA Project: The Spread of the Witty Worm”, Internet:
www.caida.org/analysis/security /witty/, 2004.

[23] “honeyd Homepage”, Internet: http://wwww.honeyd.org/, 2004.

[24] “poOf: Passive 0OS Fingerprinting Tool”, Internet:
http://lcamtuf.coredump.cx/pO0f.shtml, 2004.

[25] “Specter Homepage”, Internet: http://www.specter.com/, 2004.

[26] “Symantec Security =~ Response - W32.Sasser.Worm”, Internet:
http://securityresponse.symantec.com/ avcenter/venc/data/w32.sasser.worm.html,
2004.

[27] “University of Michigan Internet Motion Sensor (IMS)”, Internet:
http://ims.eecs.umich.edu/, 2004.

[28] “The AdvanceSCAN advscan utility”, Internet:
http://advancemame.sourceforge.net /doc-advscan.html, 2005.

[29] “Hewlett Packard: Managing HP servers through fire-
walls with HP Systems Insight Manager”, Internet:

http://h200001.www2.hp.com/b¢/docs/support /SupportManual, 2005.

[30] “Insecure post: Idle Scanning and Related IPID Games”, Internet:
http://www.insecure.org/nmap/idlescan.html, 2005.

BIBLIOGRAPHY 153

[31] “MWCollect Trac, The Honeynet Project”, Internet: http://www.mwcollect.org/,
2005.

[32] “Nepenthes official Website”, Internet: http://nepenthes.sourceforge.net/, 2005.

[33] “SANS - Internet Storm Center - Cooperative Cyber Threat Monitor And Alert
System”, Internet: http://isc.sans.org/, 2005.

[34] “The Computer Network Defence Operational Picture”, Internet:
http://securitywizardry.com /radar.htm, 2005.

[35] “The Honeynet Scan of the Month Challenges”, Internet:
http://www.honeynet.org/misc/chall.html, 2005.

[36] “The WormRadar Project”, Internet: http://www.wormradar.com, 2005.

[37] R. Agrawal and R. Srikant, “Fast Algorithms for Mining Association Rules”, In
J. B. Bocca, M. Jarke, and C. Zaniolo, editors, Proc. 20th Int. Conf. Very Large
Data Bases, VLDB, pp. 487-499, Morgan Kaufmann, 12-15 1994.

[38] M. Allman, V. Paxson, and W. Stevens, “TCP Congestion Control”, RFC 2581,
April 1999.

[39] M. Allman, W. M. Eddy, and S. Ostermann, “Estimating loss rates with TCP”,
SIGMETRICS Perform. Eval. Rev., 31(3):12-24, 2003.

[40] C. Associates, “Computer Associates, Virus Information Cen-
ter: Win32.Rbot.H Method of Distribution”, Internet:
http://www3.ca.com/securityadvisor/virusinfo/virus.aspx?id=39662, 2004.

[41] J. G. Augustson and J. Minker, “An Analysis of Some Graph Theoretical Cluster
Techniques”, J. ACM, 17(4):571-588, 1970.

[42] M. Bailey, E. Cooke, F. Jahanian, D. Watson, and J. Nazario, “The Blaster Worm:
Then and Now”, In IEEFE Journal on Security and Privacy, pp. 26-31, Washington,
DC, USA, 2005, IEEE Computer Society.

[43] R. Bartels, J. Beatty, and B. Barsky, “Hermite and Cubic Spline Interpolation”,
Ch. 3 in An Introduction to Splines for Use in Computer Graphics and Geometric
Modelling, Morgan Kaufmann, pp. 9-17, 1998.

[44] R. Baumann and C. Plattner, “White Paper: Honeypots”, Internet: "cite-
seer.ist.psu.edu/baumann02white.html.

[45] R. A. Becker, S. G. Eick, and A. R. Wilks, “Visualizing Network Data”, IEFE
Transactions on Visualization and Computer Graphics, 1(1):16-28, 1995.

[46] R. Bejtlich, “Network Security Monitoring with Sguil”, In The Technical BSD
Conference BSDCan2004, Ottawa, Canada, May 2004.

154

BIBLIOGRAPHY

[47]

48]

[49]

[50]

[51]

[52]

[53]
[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

R. Bejtlich, The Tao of Network Security Monitoring, Beyond Intrusion Detection,
Addison-Wesley, 2004.

J. Bellardo and S. Savage, “Measuring Packet Reordering”, In Proc. of the Internet
Measurement Workshop IMW 2002, 2002.

S. Bellovin, “A Technique for Counting NATed Hosts”, Marseille, France, November
2002, In Proc.of the 2nd Internet Measurement Workshop 2002 (IMW’(2).

S. M. Bellovin, “There Be Dragons”, In Proc. of the Third Useniz UNIX Security
Symposium, 1992,

V. H. Berk, R. S. Gray, and G. Bakos, “Using Sensor Networks and Data Fusion
for Early Detection of Active Worms”, In Proc. of AeroSense 2003: SPIE’s 17th
Annual International Symposium on Aerospace/Defense Sensing, Simulation, and
Controls, Orlando, Florida, April 2003.

P. Bertrand and M. F. Janowitz, “Pyramids and weak hierarchies in the ordinal
model for clustering”, Discrete Appl. Math., 122(1-3):55-81, 2002.

P. Bertrand, “Set systems and dissimilarities”, Fur. J. Comb., 21(6):727-743, 2000.

J. Bethencourt, J. Franklin, and M. Vernon, “Mapping Internet Sensors With Probe
Response Attacks”, In Proc. of the 14th Useniz Security Symposium (USENIX’05),
Anaheim, CA, USA, April 2005.

H. Bos and K. Huang, “Towards software-based signature detection for intrusion
prevention on the network card”, In Proc. of the Eighth International Symposium
on Recent Advances in Intrusion Detection (RAID2005), Seattle, WA, September
2005.

C. Bron and J. Kerbosch, “Algorithm 457: finding all cliques of an undirected
graph”, Commun. ACM, 16(9):575-577, 1973.

E. Brosh, G. Sharon, and Y. Shavitt, “Spatial-Temporal Analysis of Passive TCP
Measurements”, In Proc. of the 24th Annual IEEE Infocom Conference 2005, Miami,
USA, March 2005.

M. Brown, W. Grundy, D. Lin, N. Christianini, C. Sugnet, M. Jr, and D. Haussler,
“Support vector machine classification of microarray gene expression data”, Internet:
citeseer.ist.psu.edu/brown99support.html, 1999.

N. Brownlee and M. Murray, “Streams, flows and torrents”, In Proc. of the Passive
and Active Measurement PAM Workshop, 2001.

J. Buhmann, “Large Scale Monitoring of Broadband Internet Infrastructure: lobster
Home Page”, Internet: http://www.ist-lobster.org.

J. Buhmann, “Learning and data clustering”, Internet: cite-
seer.ist.psu.edu/buhmann95learning.html, 1995.

BIBLIOGRAPHY 155

[62] H. Burch, “Measuring an IP Network in situ”, 2005, PhD report, School of Computer
Science, Carnegie Mellon University, Pittsburgh.

[63] CAIDA, “The CAIDA Project: Netgeo Utility - The Internet Geographical
Database”, Internet: http://www.caida.org/tools/utilities/netgeo/.

[64] M. Cauzomb, “symsvc.exe: a forum post”, Internet:
http://www.iamnotageek.com/history/topic.php/77580-1.html.

[65] S. Chainay, “Leurrécom, Répartition de pots de miel: Outil d’analyse pour la
caractérisation des attaques informatiques”, M.S. Thesis, ENST Paris, 2005.

[66] P. Chambet and T. F. H. Project, “FakeNetBIOS tools for Honeyd”, Internet:
http://honeynet.rstack.org/tools.php, 2005.

[67] P. T. Chen, C. S. Laih, F. Pouget, and M. Dacier, “Comparative survey of local hon-
eypot sensors to assist network forensics”, In Proc. of SADFE’05, 1rst International

Workshop on Sytematic Approaches to Digital Forensic Engineering, November 7-9,
2005, Taiper, Taiwan, Nov 2005.

[68] S. Chen and Y. Tang, “Slowing Down Internet Worms”, In Proc. of the 24th
International Conference on Distributed Computing Systems (ICDCS), pp. 312-319,
IEEE Computer Society, March 2004.

[69] Z. Chen, L. Gao, and K. Kwiat, “Modeling the Spread of Active Worms”, In IEEE
INFOCOM, 2003.

[70] C.-H. Cheng, “A new approach for ranking fuzzy numbers by distance method”,
Fuzzy Sets Syst., 95(3):307-317, 1998.

[71] Y. Cheng, U. Hoelzle, N. Cardwell, S. Savage, and G. Voelker, “Monkey See, Mon-
key Do: A Tool for TCP Tracing and Replaying”, In Proc. of USENIX Technical
Conference, June 2004.

[72] W. Cheswick, “An evening with Berferd”, pp. 103-116, 1998.

[73] B. Chiu, E. Keogh, and S. Lonardi, “Probabilistic discovery of time series motifs”, In
Proc. of KDD 03, the ninth ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 493-498, New York, NY, USA, 2003, ACM Press.

[74] A. Chuvakin, “Days of the Honeynet: Attacks, Tools, Incidents”, Internet:
http://www.linuxsecurity.com /feature _stories/feature storyl41.html, 2003.

[75] Cisco, “Cisco Systems Inc.: NetFlow Services and Applications, White Paper”,
Internet: cisco.com/warp/public/cc/pd/iosw/ioft /neflct /tech /nappswp.htm.

[76] K. C. Claffy, “CAIDA: Visualizing the Internet”, IEEE Internet Computing, 5(1):88,
2001.

156 BIBLIOGRAPHY
[77] K. Claffy, “Correlating ~ Heterogeneous Measurement Data to
Achieve System-Level Analysis of Internet Traffic Trends”, Internet:

78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

38

http://www.caida.org/projects/trends/, February 2004.

K. C. Claffy, H.-W. Braun, and G. C. Polyzos, “A Parameterizable Methodology for
Internet Traffic Flow Profiling”, IEEFE Journal of Selected Areas in Communications,
13(8):1481-1494, 1995.

J. B. Colombe and G. Stephens, “Statistical profiling and visualization for detection
of malicious insider attacks on computer networks”, In Proc. of VizSEC/DMSEC
04, the 2004 ACM workshop on Visualization and data mining for computer secu-
rity, pp. 138-142, New York, NY, USA, 2004, ACM Press.

H. M. Company, “The American Heritage Dictionary of the English Language”,
Internet: http://www.thefreedictionary.com, 2003.

E. Cooke, M. Bailey, Z. Mao, D. Watson, F. Jahanian, and D. McPherson, “Toward
Understanding Distributed Blackhole Placement”, In Proc. of the Recent Advances
of Intrusion Detection RAID’0/, September 2004.

E. Cooke, M. Bailey, Z. M. Mao, D. Watson, F. Jahanian, and D. McPherson,
“Toward understanding distributed blackhole placement”, In Proc. of WORM 04,
the 2004 ACM workshop on Rapid malcode, pp. 54—64, New York, NY, USA, 2004,
ACM Press.

J. Coppens, S. V. den Berghe, H. Bos, E. P. Markatos, F. D. Turck, A. Oslebo,
and S. Ubik, “SCAMPI: A Scalable and Programmable Architecture for Monitoring
Gigabit Networks.”, In MMNS, pp. 475-487, 2003.

J. R. Crandall and F. T. Chong, “Minos: Control Data Attack Prevention Orthog-
onal to Memory Model”, In Proc. of MICRO 37, the 37th annual International
Symposium on Microarchitecture, pp. 221-232, Washington, DC, USA, 2004, TEEE
Computer Society.

J. R. Crandall, S. F. Wu, and F. T. Chong, “Experiences Using Minos as a Tool for
Capturing and Analyzing Novel Worms for Unknown Vulnerabilities.”, In DIMVA,
pp- 32-50, 2005.

M. Cristea, W. de Bruijn, and H. Bos, “FPL-3: towards language support for
distributed packet processing”, In Proc. of IFIP Networking’05, Waterloo, Ontario,
Canada, May 2005.

T. Cymru, “Team Cymru: The Darknet Project”, Internet:
http://www.cymru.com/Darknet, 2004.

M. Dacier, F. Pouget, and H. Debar, “Attack Processes found on the Internet”, In
Proc. of the NATO Symposium IST-041/RSY-013, April 2004.

BIBLIOGRAPHY 157

[89]

[90]

[91]

[92]

193]

[94]

[95]

[96]

97]

98]

[99]

[100]

[101]

[102]

[103]

M. Dacier, F. Pouget, and H. Debar, “Honeypots, a Practical Mean to Validate
Malicious Fault Assumptions”, In Proc. of the 10th Pacific Ream Dependable Com-
puting Conference (PRDC04), February 2004.

Darpa, “RFC 791: Internet Procol, Darpa Internet Program, Protocol Specification”,
Internet: http://www.fags.org/rfcs/rfc791.html, September 1981.

F. Dressler, C. Sommer, and G. Muenz, “IPFIX Aggregation”, Internet-Draft, IETF,

jul 2005.

S. Dudoit and R. Gentleman, “Cluster Analysis in DNA Microarray Experiments”,
Internet: bioconductor.org/workshops/2002/Seattle02/Cluster/cluster.pdf, 2002.

T. Duebendorfer and B. Plattner, “Observations of the Blaster and Sobig Worm
Outbreaks in an Internet Backbone”, In the IEEE Conference on Detection of
Intrusions and Malware & Vulnerability Assessment DIMVA 2005, July 2005.

M. Eisen and M. de Hoon, “Cluster 3.0 Manual, Stanford University”, Internet:
http://bonsai.ims.u-tokyo.ac.jp, 2002.

T. Eiter and H. Mannila, “Distance Measures for Point Sets and their Computation”,
Acta Informatica, 34(2):109-133, 1997.

D. Ellis, “Worm anatomy and model”, In Proc. of WORM 03, the 2003 ACM
workshop on Rapid Malcode, pp. 42-50, New York, NY, USA, 2003, ACM Press.

N. Feamster, J. Jung, and H. Balakrishnan, “An Empirical Study of “Bogon” Route
Advertisements”, In Compute Communication Review, Volumn 35, Number 1,
January 2005.

A. Feldmann, J. Rexford, and R. Cáceres, “Efficient policies for carrying Web
traffic over flow-switched networks”, IEEE/ACM Trans. Netw., 6(6):673-685, 1998.

E. Filiol, “Applied Cryptanalysis of Cryptosystems and Computer Attacks Through
Hidden Ciphertexts Computer Viruses”, ISSN 0249-6399, INRIA Rennes, IRISA,
January 2002.

E. Filiol, Computer Viruses: from theory to applications, Springer Paris, 1. Ed.
edition, 2005.

D. Fisher, .. Xu, and N. Zard, “Ordering effects in clustering”, In Proc. of ML92,
the ninth international workshop on Machine learning, pp. 163—168, San Francisco,
CA, USA, 1992, Morgan Kaufmann Publishers Inc.

S. Floyd and V. Paxson, “Difficulties in simulating the internet”, IEEE/ACM Trans.
Netw., 9(4):392-403, 2001.

Forcebweb, “Sfind Scanner homepage”, Internet:
http://www.forceSweb.com/articles/sql _scan.htm.

158 BIBLIOGRAPHY

[104] V. R. Garza, “Security Researcher causes furor by releasing flaw in Cisco Systems
10S”, July 2005, from SearchSecurity.com News.

[105] C. Gates, M. Collins, M. Duggan, A. Kompanek, and M. Thomas, “More Netflow
Tools for Performance and Security.”, In LISA, pp. 121-132, 2004.

[106] A. Graycar and R. Smith, “Identifying and Responding to Electronic Fraud Risks”,
In Proc. of the 30th Australian Registrars’s Conference, Australian Institute of Tech-
nology, November 2002.

[107] S. Grundschober and M. Dacier, “Design and Implementation of a Sniffer Detector”,
In Proc. of Recent Advances in Intrusion Detection Workshop RAID98, 1998.

[108] L. Hamers, Y. Hemeryck, G. Herweyers, M. Janssen, H. Keters, R. Rousseau, and
A. Vanhoutte, “Similarity measures in scientometric research. The Jaccard index

versus Saltons cosine formula”, Information processing and management, 25(3):315-
333, 19809.

[109] L. T. Herberlein, G. V. Dias, K. N. Levitt, B. Mukherjee, J. Wood, and D. Wolber,
“A Network Security Monitor.”, In IEEE Symposium on Security and Privacy, pp.
296-305, 1990.

[110] K. K. Hirji, “Discovering Data Mining: From Concept to Implementation (Book
Review).”, SIGKDD Ezxplorations, 1(1):44-45, 1999.

[111] T. Holz, “The Honeynet Project and Research Alliance: Know Your Enemy: Track-
ing Botnets”, Internet: http://www.honeynet.org/papers/bots/, March 2005.

[112] Homelinux, “RTSP Scanner”, Internet: http://iperl.homelinux.org/haxor/scanner.pl.

[113] H. Hubbard, “Scob Infection statistics, etc...”, Internet:
http://www.securityfocus.incidents, June 2004.

[114] W. Hunt, “Lecture note: The Stable Marriage Problem”, Internet:
http://www.csee.wvu.edu/%7Eksmani/courses/fa01/random /lecnotes/lecture5.pdf.

[115] F. A. Hussain, “Identification of Repeated Attacks Using Network Traffic”, Internet:
citeseer.ist.psu.edu/640480.html.

[116] THUG, “Roadkil’'s FTP Probe home page”, Internet:
http://homepages.ihug.com.au/ roadkil /ftpprobe.htm.

[117] TP2Location.com, “Map IP Address to Geographical Location for the Internet:
[P2Location”, Internet: http://www.ip2location.com.

[118] Y. D. J. Riordan, D. Zamboni, “Lessons Learned from Billy Goat, an Accurate
Worm-Detection System”, Zurich IBM Research laboratory, Research Report.

BIBLIOGRAPHY 159

[119]

[120]

[121]

[122]

[123]

124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

S. Jaiswal, G. lannaccone, C. Diot, J. Kurose, and D. Towsley, “Measurement and
classification of out-of-sequence packets in a tier-1 IP backbone”, In Proc. of IMW
02, the 2nd ACM SIGCOMM Workshop on Internet measurment, pp. 113-114,
New York, NY, USA, 2002, ACM Press.

S. Jaiswal, G. Iannaccone, C. Diot, and D. F. Towsley, “Inferring TCP Connection
Characteristics Through Passive Measurements.”, In INFOCOM, 2004.

X. Jiang and D. Xu, “Collapsar: A VM-Based Architecture for Network Attack
Detention Center.”, In USENIX Security Symposium, pp. 15-28, 2004.

K. Julisch, “Mining Alarm Clusters to Improve Alarm Handling Efficiency”, In
Proc. of the 17th Annual Computer Security Applications Conference (ACSAC),
pp. 12-21, December 2001.

K. Julisch, “Clustering intrusion detection alarms to support root cause analysis”,
ACM Trans. Inf. Syst. Secur., 6(4):443-471, 2003.

J.-K. Kamarainen, V. Kyrki, J. Ilonen, and H. Kälviäinen, “Improving
similarity measures of histograms using smoothing projections”, Pattern Recogn.
Lett., 24(12):2009-2019, 2003.

E. J. Keogh, K. Chakrabarti, M. J. Pazzani, and S. Mehrotra, “Dimensionality
Reduction for Fast Similarity Search in Large Time Series Databases”, Knowledge
and Information Systems, 3(3):263-286, 2001.

S. A. Khayam and H. Radha, “Analyzing the Spread of Active Worms over VANET”,
In Proc. of the ACM VANET 2004, ACM, 2004.

Y. Kim, W. cheong Lau, M. C. Chuah, and H. J. Chao, “PacketScore: Statistical-
based overload control against Distributed Denial-of-Service Attacks.”, In INFO-
COM, 2004.

J. M. Kleinberg, “Authoritative sources in a hyperlinked environment”, Journal of
the ACM, 46(5):604-632, 1999.

T. Kohno, A. Broido, and K. C. Claffy, “Remote Physical Device Fingerprinting”, In
Proc. of SP 05, the 2005 IEEE Symposium on Security and Privacy, pp. 211-225,
Washington, DC, USA, 2005, IEEE Computer Society.

O. Kolesnikov and W. Lee, “Advanced Polymorphic Worms: Evading IDS by Blend-
ing in with Normal Traffic”, Internet: citeseer.ist.psu.edu/678163.html.

R. Koradi, M. Billeter, M. Engeli, P. Guntert, and K. Wuthrich, “Automated peak
Picking and Peak Integration in Macromolecular Nmr Spectra AUTOPSY”, In
Journal of Magnetic Resonance 135, 288-297, 1998, Article N. MN981570.

160

BIBLIOGRAPHY

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

K. Lakkaraju, W. Yurcik, and A. J. Lee, “NVisionIP: netflow visualizations of
system state for security situational awareness”, In Proc. of VizSEC/DMSEC 04,

the 2004 ACM workshop on Visualization and data mining for computer security,
pp. 65-72, New York, NY, USA, 2004, ACM Press.

L. Lamport, “Time, clocks, and the ordering of events in a distributed system”,
Commun. ACM, 21(7):558-565, 1978.

E. Lange, C. Gr"opl, K. Reinert, O. Kohlbacher, and A. Hildebrandt, “High-
Accuracy Peak Picking of Proteomics Data using Wavelet Techniques”, In Proc.
of the Pacific Symposium on Biocomputing (PSB 2006), 2006, To appear.

A. J. Lee, G. A. Koenig, X. Meng, and W. Yurcik, “Searching for Open Windows
and Unlocked Doors: Port Scanning in Large-Scale Commodity Clusters”, In 5th
IEEFE International Symposium on Cluster Computing and the Grid, May 2005.

L. Lee, “Measures of Distributional Similarity”, In 37th Annual Meeting of the
Association for Computational Linguistics, pp. 25-32, 1999.

S. Lee and C. Shields, “Tracing the Source of Network Attack: A Technical, Legal
and Societal Problem”, In IEEE Workshop on Information Assurance and Security,
US Military Academy, West Point, NY, June 2001.

C. Leita, K. Mermoud, and M. Dacier, “ScriptGen: an automated script genera-
tion tool for honeyd”, In Proc. of the 21st Annual Computer Security Applications
Conference (ACSAC2005), December 2005.

M. Liljenstam, D. M. Nicol, V. H. Berk, and R. S. Gray, “Simulating realistic
network worm traffic for worm warning system design and testing”, In Proc. of the
2003 ACM Workshop on Rapid Malcode (WORM), pp. 24-33, ACM Press, 2003.

M. Liljenstam, Y. Yuan, B. J. Premore, and D. M. Nicol, “A Mixed Abstraction
Level Simulation Model of Large-Scale Internet Worm Infestations.”, In Proc. of
the 10th International Workshop on Modeling, Analysis, and Simulation of Com-
puter and Telecommunication Systems (MASCOTS), pp. 109-116, IEEE Computer
Society, 2002.

D. Lin, “An Information-Theoretic Definition of Similarity”, In Proc. of ICML
"98, the Fifteenth International Conference on Machine Learning, pp. 296-304, San
Francisco, CA, USA, 1998, Morgan Kaufmann Publishers Inc.

J. Lin, E. Keogh, S. Lonardi, and B. Chiu, “A symbolic representation of time series,
with implications for streaming algorithms”, In Proc. of DMKD ’03, the 8th ACM
SIGMOD workshop on Research issues in data mining and knowledge discovery, pp.
2-11, New York, NY, USA, 2003, ACM Press.

S. Lin and N. McKeown, “A simulation study of IP switching”, In Proc. of SIG-
COMM °97, the ACM SIGCOMM ’97 conference on Applications, technologies, ar-

chitectures, and protocols for computer communication, pp. 15-24, New York, NY,
USA, 1997, ACM Press.

BIBLIOGRAPHY 161

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

153

[154]

[155]

[156]

P. Liu, W. Zang, and M. Yu, “Incentive-based modeling and inference of attacker
intent, objectives, and strategies”, ACM Trans. Inf. Syst. Secur., 8(1):78-118, 2005.

LURHQ), “Dabber Worm Analysis”, Internet: http://www.lurhq.com/dabber.html,
2004.

M. Mahoney and P. Chan, “An Analysis of the 1999 DARPA /Lincoln Laboratory
Evaluation Data for Network Anomaly Detection”, In Proceeding of Recent Advances
in Intrusion Detection (RAID)-2003, volume 2820 of Lecture Notes in Computer
Science, pp. 220-237, Springer Verlag, September 8-10 2003.

G. R. Malan and F. Jahanian, “An extensible probe architecture for network proto-
col performance measurement”, In Proc. of SIGCOMM °98, the ACM SIGCOMM
98 conference on Applications, technologies, architectures, and protocols for com-
puter communication, pp. 215-227, New York, NY, USA, 1998, ACM Press.

MathWorld, “Stable Marriage Problem”, Internet:
http://mathworld.wolfram.com /StableMarriageProblem.html.

B. McCarty, “Botnets: Big and Bigger”, IEEE Security €& Privacy, 1(4):87-90,
2003.

J. McHugh, “Testing Intrusion detection systems: a critique of the 1998 and 1999
DARPA intrusion detection system evaluations as performed by Lincoln Labora-
tory”, ACM Trans. Inf. Syst. Secur., 3(4):262-294, 2000.

J. McHugh, “Sets, Bags, and Rock and Roll: Analyzing Large Data Sets of Network
Data.”, In ESORICS, pp. 407-422, 2004.

D. McPherson, “Attack Fingerprint Sharing: The Need for Automation of Inter-
Domain Information Sharing”, Internet: http://www.ripe.net/ripe/meetings/ripe-
50/presentations/ripe50-plenary-tue-attack-fingerprint.pdf, May 2005,

J. McPherson, K.-L.. Ma, P. Krystosk, T. Bartoletti, and M. Christensen, “PortVis:
a tool for port-based detection of security events”, In Proc. of VizSEC/DMSEC 04,

the 2004 ACM workshop on Visualization and data mining for computer security,
pp. 73-81, New York, NY, USA, 2004, ACM Press.

P. Mockapetris and K. J. Dunlap, “Development of the domain name system”, In
Proc. of SIGCOMM ’88: Symposium proceedings on Communications architectures
and protocols, pp. 123-133, New York, NY, USA, 1988, ACM Press.

S. B. Moon, Measurement and analysis of end-to-end delay and loss in the internet,
Ph.D. Thesis, 2000, Director-James F. Kurose and Director-Donald F. Towsley.

D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver, “The
Spread of the Sapphire/Slammer Worm”, | CAIDA, ICSI, Silicon Defense, UC
Berkeley EECS and UC San Diego CSE, 2003.

162

BIBLIOGRAPHY

[157]

[158]

159

[160]

[161]

[162]

163

[164]

(165

[166]

[167]

[168]

[169]

[170]

D. Moore, C. Shannon, and J. Brown, “Code-Red: a case study on the spread and
victims of an Internet worm”, In Proc. of Internet Measurement Workshop 2002,
Nov 2002.

D. Moore, C. Shannon, G. Voelker, and S. Savage, “Network Telescopes: Technical
Report”, Internet: http://www.caida.org.

D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver, “Inside
the Slammer Worm”, IEEE Security and Privacy, 1(4):33-39, 2003.

D. Moore, C. Shannon, D. Brown, G. Voelker, and S. Savage, “Inferring Inter-
net Denial-of-Service activity”, 2006, To appear in IEEE/ACM Transactions on
Computer Science.

D. Moore, C. Shannon, G. M. Voelker, and S. Savage, “Network Telescopes”, ,
CAIDA, 2003.

D. Moore, G. Voelker, and S. Savage, “Inferring Internet denial of service activity”,
August 2001, Proc. of the Usenix Security Symposium.

myNetWatchman, “Network Intrusion Detection and Reporting”, Internet:
http://www.mynetwatchman.com.

P. Newman, G. Minshall, and T. L. Lyon, “IP switchingATM under IP”, IEEE/ACM
Trans. Netw., 6(2):117-129, 1998.

H. Q. Nguyen, “Rapport de stage de fin d’etudes: Programme d’alertes base sur des
pots de miel”, Master Thesis 2005, IFI and Institut Eurecom.

T. Nguyen, W. de Bruijn, M. Cristea, and H. Bos, “Scalable network monitors
for high-speed links:a bottom-up approach”, In Proc. of IEEE IPOM’04, Beijing,
China, October 2004.

T. Oetiker and D. Rand, “MRTG, The Multi Router Trafic Grapher”, Internet:
http://people.ee.ethz.ch/ oetiker/webtools/mrtg/.

G. Ollmann, “Stopping Automated Attack Tools: NGSSoft-
ware Insight Security Research report”, Internet:
http://www.ngssoftware.com /papers/StoppingAutomated Attack Tools.pdf.

V. Padmanabhan, L. Qiu, and H. Wang, “Server-based inference of Internet link
lossiness”, In Proc. of IEEE INFOCOM’03, San Francisco, CA, USA, April 2003.

Y. Paker and T. Kindberg, “The worm program model: an application centred point
of view for distributed architecture design”, In Proc. of EW 3, the 3rd workshop
on ACM SIGOPS European workshop, pp. 1-4, New York, NY, USA, 1988, ACM
Press.

BIBLIOGRAPHY 163

[171] R. Pang, V. Yegneswaran, P. Barford, V. Paxson, and L. Peterson, “Characteristics
of internet background radiation”, In Proc. of IMC ’04: the jth ACM SIGCOMM
conference on Internet measurement, pp. 27-40, New York, NY, USA, 2004, ACM
Press.

[172] M. Pavan and M. Pelillo, “A new graph-theoretic approach to clustering and seg-
mentation”, In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition, 2003.

[173] V. Paxson and et al, “Known TCP Implementation Problems”, RFC 2525, March
1999.

[174] V. Paxson, “End-to-End Internet Packet Dynamics”, In Proc. of the ACM SIG-
COMM 97 conference on Applications, Technologies, Architectures, and Protocols
for Computer Communication, volume 27,4 of Computer Communication Review,
pp. 139-154, Cannes, France, September 1997, ACM Press.

[175] V. Paxson, “Measuring adversaries”, In Proc. of SIGMETRICS 2004/PERFOR-
MANCE 2004, the joint international conference on Measurement and modeling of
computer systems, pp. 142-142, New York, NY, USA, 2004, ACM Press.

[176] V. Paxson, “Strategies for sound internet measurement”, In Proc. of IMC 04, the
Jth ACM SIGCOMM conference on Internet measurement, pp. 263-271, New York,
NY, USA, 2004, ACM Press.

[177] V. E. Paxson, Measurements and analysis of end-to-end Internet dynamics, Ph.D.
Thesis, Berkeley, CA, USA, 1998.

[178] P. A. Pevzner and S.-H. Sze, “Combinatorial Approaches to Finding Subtle Signals
in DNA Sequences”, In Proc. of the International Conference on Intelligent Systems
for Molecular Biology, pp. 269-278, AAAI Press, 2000.

[179] P. Phaal, S. Panchen, and N. McKee, “RFC 3176: InMon Corporation’s sFlow:
A Method for Monitoring Traffic in Switched and Routed Networks”, Internet:
http://www.fags.org/rfcs/rfc3176.html, September 2001.

[180] R. Poortinga, R. van de Meent, and A. Pras, “Analyzing campus traffic using the
meter-MIB”, Internet: citeseer.ist.psu.edu/poortinga02analyzing.html.

[181] M. Pop, S. L. Salzberg, and M. Shumway, “Genome Sequence Assembly: Algorithms
and Issues”, Computer, 35(7):47-54, 2002.

[182] J. Postel, “Transmission Control Protocol”, RFC 793, September 1981.

[183] F. Pouget and M. Dacier, “Honeypot-based Forensics”, In Proc. of the AusCERT
Asia Pacific Information Technology Security Conference 2004 (AusCERTZ2004),
May 2004.

164

BIBLIOGRAPHY

184]

[185]

[186]

[187]

[188]

[189]

[190]

[191]

[192]

193]

[194]

[195]

[196]

197]

F. Pouget, M. Dacier, and H. Debar, “HOneynets: Foundations For the Develop-
ment of Early Warning Systems”, In Proc. of the Cyberspace Security and Defense:
Research Issues, 2005, Publisher Springler-Verlag, LNCS, NATO ARW Series.

F. Pouget, M. Dacier, and V. Pham, “The Leurre.com Project home page”, Internet:
http://www.leurrecom.org, 2004.

F. Pouget, M. Dacier, and V. Pham, “Leurre.com: On the advantages of Deploying a
Large Scale Distributed Honeypot Platform”, In Proc. of the E-Crime and Computer
Evidence Conference(ECCE 2005), March 2005.

F. Pouget and T. Holz, “A Pointillist Approach for Comparing Honeypots”, In Proc.
of the IEEE Conference on Detection of Intrusions and Malware € Vulnerability
Assessment DIMVA 2005, Vienna, Austria, July 2005.

F. Pouget and M. Dacier, “Alert correlation”, EURECOM+1291, Institut Eurecom,
France, Dec 2003.

F. Pouget and M. Dacier, “Alert correlation: Review of the state of the art”,
EURECOM+1271, Institut Eurecom, France, Dec 2003.

F. Pouget and M. Dacier, “White paper: honeypot, honeynet: a comparative
survey’, EURECOM+1273, Institut Eurecom, France, Sep 2003.

F. Pouget, M. Dacier, and H. Debar, “White paper: honeypot, honeynet, honey-
token: terminological issues”, EURECOM+1275, Institut Eurecom, France, Sep
2003.

F. Pouget, M. Dacier, and V. H. Pham, “Understanding threats: a prerequisite to
enhance survivability of Computing Systems”, In Proc. of IISW’04, International In-
frastructure Survivability Workshop 2004, in conjunction with the 25th IEEE Inter-
national Real-Time Systems Symposium (RTSS 04) December 5-8, 2004 Lisbonne,
Portugal, Dec 2004.

F. Pouget, G. Urvoy-Keller, and M. Dacier, “Impact of losses and reordering on
malware analysis”, EURECOM-+1813, Institut Eurecom, France, Nov 2005.

F. Pouget, G. Urvoy-Keller, and M. Dacier, “Time signatures to detect multi-headed
stealthy attack tools”, EURECOM-+1814, Institut Eurecom, France, Nov 2005.

N. Provos, “A Virtual Honeypot Framework”, In Proc. of the 13th USENIX Security
Symposium, pp. 1-14, 2004.

T. H. Ptacek and T. N. Newsham, “Insertion, Evasion, and Denial of Service:
Eluding Network Intrusion Detection”, , 1998.

X. Qin, D. Dagon, G. Gu, and a Lee, “Worm detection using local networks”,
Internet: citeseer.ist.psu.edu/qin04worm.html, 2004.

BIBLIOGRAPHY 165

[198] J. R. Quinlan, C4.5: programs for machine learning, Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1993.

[199] V. V. Raghavan and M. Y. L. Ip, “Techniques for measuring the stability of cluster-
ing: a comparative study”, In Proc. of SIGIR 82, the 5th annual ACM conference

on Research and development in information retrieval, pp. 209-237, New York, NY,
USA, 1982, Springer-Verlag New York, Inc.

[200] 1. Rigoutsos and A. Floratos, “Combinatorial pattern discovery in biological se-
quences: The TEIRESIAS algorithm [published erratum appears in Bioinformatics
1998;14(2): 229|.”, Bioinformatics, 14(1):55-67, 1998.

[201] E. Rosch, “Principles of Categorization”, In E. Rosch and B. B. Lloyd, editors,
Cognition and Categorization, pp. 27-48, Lawrence Erlbaum, Hillsdale, 1978.

[202] K. Sadasivam, B. Samudrala, and T. A. Yang, “Design of network security projects
using honeypots”, J. Comput. Small Coll., 20(4):282-293, 2005.

[203| C. Schleippmann, “Design and Implementation of a TCP Rate Analysis Tool”, M.S.
Thesis, TU Muenchen/Eurecom, 2003.

[204] G. Serazzi and S. Zanero, “Computer virus propagation models”, In M. C. Calzarossa
and E. Gelenbe, editors, Tutorials of the 11th IEEE/ACM Int’l Symp. on Modeling,
Analysis and Simulation of Computer and Telecom. Systems - MASCOTS 2003,
2003.

[205] S. Sidiroglou and A. Keromytis, “A Network Worm Vaccine Architecture”, In Proc.
of the IEEE Workshop on Enterprise Technologies: Infrastructure for Collaborative
Enterprises (WETICE), Workshop on Enterprise Security, 2003.

[206] J. M. Smith and D. C. P. Smith, “Database abstractions: aggregation”, Commun.
ACM, 20(6):405-413, 1977.

[207] R. Sommer and A. Feldmann, “NetFlow: information loss or win?”, In Proc. of
IMW 02, the 2nd ACM SIGCOMM Workshop on Internet measurment, pp. 173—
174, New York, NY, USA, 2002, ACM Press.

[208] SOPHOS, “Sophos Virus Analysis: W32/Agobot-PQ”, Internet:
http://www.sophos.com.au/virusinfo/analyses/w32agobotpq.html, 2004.

[209] SourceFire, “Snort, the de facto standard for intrusion detection and prevention”,
Internet: http://www.snort.org.

[210] J. F. Sowa, Conceptual structures: information processing in mind and machine,
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1984.

[211] E. Spafford, “An Analyis of the Internet Worm”, In Proc. European Software
Engineering Conference, pp. 446—468, Lecture Notes in Computer Science, Vol.
LNCS 387, Springer-Verlag, September 1989.

166 BIBLIOGRAPHY

[212| L. Spitzner, Honeypots: Tracking Hackers, Addison-Wesley, 2002.

[213] L. Spitzner, “Know Your Enemy: Honeynets”,
http://project.honeynet.org/papers/honeynet/, 2001.

[214]| L. Spitzner, “The Honeynet Project: Trapping the Hackers”, 1(2):15-23, March/
April 2003.

[215] S. Staniford, D. Moore, V. Paxson, and N. Weaver, “The Top Speed of Flash
Worms”, In Proc. of the Recent Advances of Intrusion Detection RAID’04, Septem-
ber 2004.

[216] S. Staniford, V. Paxson, and N. Weaver, “How to Own the Internet in Your Spare
Time”, In Proc. of the 11th USENIX Security Symposium, pp. 149-167, USENIX
Association, 2002.

[217] S. Staniford, J. A. Hoagland, and J. M. McAlerney, “Practical automated detection
of stealthy portscans”, J. Comput. Secur., 10(1-2):105-136, 2002.

[218] C. Stoll, The Cuckoo’s Egg: Tracking a Spy through the Maze of Computer Espi-
onage, Pocket Books, 2000.

[219] V. Stone, “W32 Deloder Worm: The Building of an Army”, In GCIH Practical
Assignment, as part of GIAC Practical Respository, 2003.

[220] Z. Sun, G. Bebis, and R. Miller, “Object Detection Using Feature Subset Selection”,
Internet: citeseer.ist.psu.edu/638662.html.

[221] Symantec, “Symantec Security Response W32.Spybot.FCD”, Internet:
http://securityresponse.symantec.com/avcenter/venc/data/w32.spybot.fcd.html,
2004.

[222] Symantec, “Symantec Security Response W32.Welchia.Worm”, Internet:

http://response.symantec.com/avcentr/venc/data/w32.welchia.b.worm.html, 2004.
[223| P. Szor, The art of computer virus research and defense, Addison-Wesley, 2005.

[224] K. Thompson, G. Miller, and R. Wilder, “Wide-Area internet traffic patterns and
characteristics”.

[225] A. Tversky, “Features of Similarity”, Psychological Review, 84(4):327-352, 1977.
[226] urb23, “Metasploit Framework Tutorial”, pp. 1-5, 2005.

[227] A. Wagner, T. Dübendorfer, B. Plattner, and R. Hiestand, “Experiences with
worm propagation simulations”, In Proc. of WORM 03, the 2003 ACM workshop
on Rapid Malcode, pp. 34—41, New York, NY, USA, 2003, ACM Press.

[228] N. Weaver, “Potential Strategies for High Speed Active Worms: A Worst Case
Analysis”, http://www.cs.berkeley.edu/~nweaver /worms.pdf, Mar 2002.

BIBLIOGRAPHY 167

[229] X. wen Chen, “Clustering Gene Expression Data With Min-Max-Median Initialized
Fuzzy C-Means Algorithms”, Internet: citeseer.ist.psu.edu/573111.html.

[230] M. C. Wendl and S.-P. Yang, “Gap statistics for whole genome shotgun DNA
sequencing projects”, Bioinformatics, 20(10):1527-1534, 2004.

[231] D. Widyantoro, T. Toerger, and J. Yen, “An Incremental Approach to Building a
Cluster Hierarchy”, In Proc. of the 2 nd IEEFE International Conference on Data
Mining, pp. 705-708., 2002.

[232] M. M. Williamson, “Throttling Viruses: Restricting propagation to defeat malicious
mobile code”, In Proc. of ACSAC 02, the 18th Annual Computer Security Appli-
cations Conference, p. 61, Washington, DC, USA, 2002, IEEE Computer Society.

[233] J. Wu, S. Vangala, L. Gao, and K. A. Kwiat, “An Effective Architecture and
Algorithm for Detecting Worms with Various Scan.”, In NDSS, 2004.

[234] Xoops, “WHAX3.1 started”, Internet: http://www.iwhax.net/modules/news.

[235] V. Yegneswaran, P. Barford, and D. Plonka, “the design and use of internet sinks for
network abuse monitoring”, In Proc. of the Recent Advances in Intrusion Detection
2004, 2004.

[236] V. Yegneswaran, P. Barford, and S. Jha, “Global Intrusion Detection in the
DOMINO Overlay System.”, In NDSS, 2004.

[237] V. Yegneswaran, J. T. Giffin, P. Barford, and S. Jha, “An Ar-
chitecture for Generating Semantics-Aware Signatures”, Internet:
http://www.cs.wisc.edu/wisa/papers/security05/, 2005.

[238] B.-K. Yi and C. Faloutsos, “Fast Time Sequence Indexing for Arbitrary Lp Norms”,
In Proc. of VLDB 00, the 26th International Conference on Very Large Data Bases,
pp. 385-394, San Francisco, CA, USA, 2000, Morgan Kaufmann Publishers Inc.

[239] Y. Yuan, “On the Design of an Immersive Environment for Security-Related Stud-
ies”, TR2005-552, Dartmouth College, Computer Science, Hanover, NH, August
2005.

[240] M. Zalewski, Silence on the Wire: A Field Guide to Passive Reconnaissance and
Indirect Attacks (Paperback), No Starch Press, 2005.

[241] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker, “On the characteristics and origins
of internet flow rates”, In Proc. of SIGCOMM ’02, the 2002 conference on Applica-

tions, technologies, architectures, and protocols for computer communications, pp.
309-322, New York, NY, USA, 2002, ACM Press.

[242] J. Zimmermann, A. Clark, G. Mohay, F. Pouget, and M. Dacier, “The use of
packet inter-arrival times for investigating unsolicited Internet traffic”, In Proc.
of SADFE’05, 1rst International Workshop on Sytematic Approaches to Digital
Forensic Engineering, November 7-9, 2005, Taipei, Taiwan, Nov 2005.

168 BIBLIOGRAPHY

[243] C. Zou, W. Gong, and D. Towsley, “Code Red Worm Propagation Modeling and
Analysis”, In ACM CCS 02, November 2002.

[244] C. C. Zou, L. Gao, W. Gong, and D. Towsley, “Monitoring and early warning for
internet worms”, In Proc. of CCS 03, the 10th ACM conference on Computer and
communications security, pp. 190-199, New York, NY, USA, 2003, ACM Press.

[245] C. C. Zou, W. Gong, and D. Towsley, “Worm propagation modeling and analy-
sis under dynamic quarantine defense”, In Proc. of WORM ’03, the 2003 ACM
workshop on Rapid Malcode, pp. 51-60, New York, NY, USA, 2003, ACM Press.

[246] C. C. Zou, D. F. Towsley, and W. Gong, “Email Worms Modeling and Defense.”,
In ICCCN, pp. 409-414, 2004.

169

Appendix A

Entity Relationship Diagram

The following diagram has been described in [184]. It represents the database structure
used to store the data from each Leurré.com honeypot sensor.

170 A. ENTITY RELATIONSHIP DIAGRAM

belong to

SContinent 14

Network Doroe i ~awe
TNetwork_Td Fhomain T4
+cidr +Doma 1n_Name Maxmind
+lb_address +Descriprtion -
Bol te belo o ~
~— _ - " {for}
Precision Date Info_Source Maxmind Osii
= = =
“Prec Date Td
TR Tng hav_Ta +Longtitude Tosgtems
+Hours Interval Twin
ey
Hetrrun i 1 pelong to +DE
= 2 +WReaT e
TTiny Sescion Id piegats)
+8Bits Dietance Pt
+1sBite_Distance TETEL
+24Bite_Distance
+Typo ry
Query
Touerv _Id use
+Command_Type
+Data_T
= | Gourcs. SLarge Ssceion TA
+Brotocol - L e L
+Parameters +Host_TId (1) +Source_1d
| = +Who_Starba rEnvironment_Id Info_oOF
1 +Av InterReq Time squip
List &ll _Ports_Dest +Number_gue TGS _ID
FList_ A1l _Port_1d = +Duration tlLarge session .d
+List _mll _Port Desc +Serie _Req Td (3) FOS_Finder Td
E +List_ld_ (5)
of +Lisl_mll_Porls_Td (6)
Listrortslest +Cluster _Tda decermineda by
+List_14
+List_Desc P NN v
—_— congfet of
OS_Finder
| Honeypot_ Hacket Packets | Erivicorments
TTiny Sescion T4 | e T
ER=ry [Haclicr_Honoypot_Paclcta | Fy P
b ! [Fiiny _seseion 14 +Latency
+cia
o
data_backup belond to
— can be
+data_payload [iphdr_backup (1) Host
_— Foid tHost T4 belong to
\cthere iphdr fields FHoAT_Name
1 gan be +Domain

E a
Can be Iy +Environment_Td
a

YPort Liect T -
a Meta_ Clusters
icmphdr_backup ndphdr_backup Tos 1 =
mphde | E Toid YComrig_ta TTool 54
il ca p=14 +IP_Address +Cluster Id
+reme_typo “udp_dport _—

+icmp _seq

[tephdr_backup (2) | [
R e tephar_rician |

Clusters Characteristics
+Cluster Id
+Ite characteristics

(1,2) due to large size table problem with MySQL,
iphdr backup and tephdr_backup are splitted into
emall=r talbls=s ({ip _flag, ip _hl=n,...} and
{tep_flage, top_port] rocpoctivoly)

(3) Serie_Req Id 18 a list of Query_Td

(4) Tiny Sesion.Host _TId is address of honeypot
Honeypot.Host Id=inet aton(Host.IP _address)

(5) List_TId is ports sequence identification of
tep packets

(6) List_all_pPorts_Id is ports sequence identificacion
of all packet Eypes tcop, icmp, udp

Figure A.1: Data Storage: Database Architecture

171

App

endix B

Leurrée.com Interfaces

This Appendix epresents two different Screenshots. Figure B.1 is the global public project

homepage, with global statistics on the dataset.

accessible for partners to write queries on the database.

Fichier

o Affichage Alerd Margue-pages Outls 2

Papers Contacts

‘Weleome to the LEURRE.COM presentation website

This page presents some data collected from omr distiibuted honeypots during four periods of time. The clusters are ordered depending on the
number of somces from each cluster. The countries are ordered depending on the mumber of sonrces coming from each country. The domains

are ordered depending on the mmnber of sowces from each domain. The ports es are ordered depending on the number of sowces

targeting each ports sequence. We remind you that the results presented in this page concern all confused honeypots. You can choose the
petiod of thne to see the infortaation about one day, one weel, one month and one semester.

Week - Month - Semester
4payh

01/06/2005

This map shows the dishibution of the most attacking rlusters from North America, | o0 nr
South America, Ewrope, Africa, Asia and Oceania continents. attacked ports
Oz 13.0x | W7o 3 O 732 di.2x |

Hses 127 Ore 1 0 1270 10.0%
7o B4t roow
5] s

Mare information

Top 5 attacking

Top 5 attacking

countries - domains
[41 24 W7 e7en | [494 575
B 15570 12| Bl 732 10.8% B 751 28%
o5 1o 0 10546 5.3 Hses 12.5% -
O 75z 125 B 15570 5. Hez sz | e
O tther 45 Bl tkher 31a [sais 12.5% |

The size of each pie part depends on the number of sources from all attacking clusters from

Figure B.1: Public Interface www.leurrecom.org

Figure B.2 is a simple GUI that is

172

B. Leurré.com INTERFACES

Eichier Edition Affichage

Aller &

Margue-pages Outils 2

LEURRE'COM: EURECOM HONEYPOT PROJECT

Query By Selection

Select

™ Dateinterval | From :|2005 ~||2 =|[28 +

To:

Ports Sequence
Cluster_Id:
Destination Ports
Attacked Hosts

B Al |

03
Protecel

Environment:

SV

Country:

Interface to query the database

[2005 ~][3 <][14 =]tryy-mm-dd)
if—‘ciear
{7—-ciear
1f—-ciear
F——ciear
Only One Host [Only Two Hosts I Three Hosts T
17—‘ciear
Jf—‘ciear
1f—‘ciear
F—_—_d@ar

—select— ha
—select— b
—select— hd

—select— b
—select— x

Wiew Result |according to | Source v| Rate Threshold |3 = (% View Others I

Clear All

Step 2|1 =] DAY -

—select— | (Mot Meta Clusters? [)

—select— x| (O3 Fingerprinting | potEmi_1)]

—select— | (Mazmind ¥ Hetgeo M)

Group by :
=

= 1m T

i), (i
|

Figure B.2: Partner DB Interface: GUI

173

Appendix C

Reporting Activities on the Leurré.com
Project

Figure C.1 is a screenshot of the main reporting page each partner can access and where
she can get information on her specific Leurré.com honeypot sensor.

Summary of the Honeypot Data

General Information View older reports
Eavirotiment 20 Summary 15 created for the time pertod from 2005-02-10 to 2005-02-16 (week) Select date of the
' The prnting threshold used in the fizures is 4% (vahues below the threshold are grouped s 'others) report from e drienn
belowr
Total munber of attackimg sources :
durina this period. Evolution of the nunber of attack sowrces by week from 2004-08-12 to |2005-02-17 |
2005-02-16 View |
1285 Bidaas
60.1% comparedio 06 6 enorth Only the values efter the sefup of the Honeypot are shown. The scale i5 the same in both figures Links
average of STBLT sources i a0y \ ,
sk i This environment Al enwironmerts EnaecdlD datibac

B0 T o0 (country code

' =gvalution mf ormahon)
= ; o 30000 | = pyerage -
Top 10 attacked port sequences (s000 - =
— /\/\ = N
fRank}Pm sequence ﬁiﬂte)1 e b A | \/ / \

Gz S 20000 H
(E T

b 190 40t 2
,T[[ggi 60 10000
’4_{192'5| iﬁO— 2 5000 |
A

’6_ 135| 1025| 14 0 5 045 25 & 0 5 w0 15 n B

| Frangais [F!ance]"

Figure C.1: Partner Reports from the Leurré.com Interface

174 C. REPORTING ACTIVITIES ON THE Leurré.com Project

175

Appendix D

Identification of Deloder among the
Activity Fingerprints

This appendix is related to the description of the Deloder worm presented in Section 4.4.4.

The Deloder worm spreads by scanning random IPs, and attempts to connect to
Windows 2000 or XP shares, which is TCP port 445 (SMB over TCP).

Barford et al. presents in [237| an interesting signature of the worm that can be
matched with the activity fingerprints we have. Figure D.1 has been extracted from one

of the signatures presented in [237].

The clusters derived from Deloder are then easily identified. They have the following
parameter values:

Number Virtual Machines = 1

Targeted Ports Sequence= {445, 139}

Number Received Packets = [20, 23]

Duration < 10s

Date First Observation = March2003

Payloads Netbios as detailed in [237]'

Tt is also interesting to note that Snort has no particular rule for Deloder. The worm generates Snort
alerts for IPC share access only.

176 D. IDENTIFICATION OF DELODER AMONG THE Activity Fingerprints

| staat |

[Fession Reguest
Fecsion Response
Jagotiate Reguest
fzzotiate Fesponss
[Fesston Setop Andx Fequest
Tres Connect Andx Fegueast

ADMENET??? [IPCETITTT

rae Connect fAnde Request

LSy stenn I ipoaxesve exe [more]

Figure D.1: Deloder Signature [237]

