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ResuméIl est di�
ilement 
on
evable de 
onstruire les systèmes de sé
urité sans avoir unebonne 
onnaissan
e préalable des a
tivités malveillantes pouvant survenir dans le réseau,ni une bonne 
ompréhension des pro
essus d'attaques. Malheureusement, il apparaîtque 
e savoir n'est pas aisément disponible, ou du moins il reste ane
dotique et souventbiaisé par des suppositions injusti�ées, des sour
es d'information partiales ou des bruitsde 
ouloir.Cette thèse a pour obje
tif prin
ipal de faire progresser l'a
quisition de 
e savoir surles a
tivités malveillantes par une solide méthodologie.Dans un premier temps, il 
onvient de travailler sur un ensemble intéressant de don-nées. Malheureusement, les données sont rarement publiques, ou alors, elles mélangentà la fois du tra�
 normal dit de produ
tion et du tra�
 malveillant, 
omme par exempleles é
hantillons fournis par la métrologie des réseaux. Dans 
ette situation, il est di�-
ile d'établir un distinguo entre les deux formes de tra�
; 
e problème est au 
÷ur dessou
is de la 
ommunauté de re
her
he travaillant sur la déte
tion d'intrusions, et 
e depuisplusieurs années. Pour 
ontourner 
e
i, nous avons déployé un réseau distribué de sondes,aussi appelées pots de miel, à travers le monde. Les pots de miel sont des ma
hines sansa
tivité parti
ulière, 
e qui implique que toute 
onnexion les 
iblant est potentiellementmalveillante. Ce réseau de sondes nous a don
 permis de 
apturer un volume importantde données suspe
tes sur plusieurs mois. Il est important de noter que 
ette ar
hite
tureparti
ulière nous fournit une surveillan
e très lo
ale de 
e genre de tra�
.Dans le 
adre de 
ette thèse, nous présentons une méthodologie appelée HoRaSis (pourHoneypot tRa�
 analySis), qui a pour but d'extraire automatiquement des informationsoriginales et intéressantes à partir de 
et ensemble remarquable de données. Elle est for-mée de deux étapes distin
tes: i) la dis
rimination puis ii) l'analyse 
orrélative du tra�

olle
té. Plus pré
isément, nous dis
riminons d'abord les a
tivités observées qui parta-gent une empreinte similaire sur les sondes. Cette étape doit tenir également 
ompte desdiverses in�uen
es du réseau. La solution proposée s'appuie sur des te
hniques de 
lassi�-
ation et de regroupement. Puis, dans une se
onde phase, nous 
her
hons à identi�er lespré
édentes empreintes qui manifestent des 
ara
téristiques 
ommunes. Ce
i est e�e
tuésur les bases d'une te
hnique de graphes et de re
her
he de 
liques. De multiples exemplesillustrent les intérêts respe
tifs de 
es deux phases.Plus qu'une te
hnique, l'appro
he HoRaSis que nous proposons témoigne de la ri
hessedes informations pouvant être ré
upérées à partir de 
ette vision originale du tra�
 mali-
ieux de l'Internet. Elle montre également la né
essité d'une analyse rigoureuse et ordon-née du tra�
 pour parvenir à l'obtention de 
ette base de 
onnaissan
es susmentionnée.
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Abstra
tSe
urity systems 
annot be e�
iently designed without i) a good preliminary under-standing of mali
ious a
tivities whi
h might o

ur in the wild and ii) a good 
omprehensionof atta
k pro
esses. Unfortunately, it seems that this knowledge is either not available orremains ane
dotal and often biased by un
lear assumptions, partial information sour
esand rumors.The goal of this thesis is primarily to better understand the mali
ious a
tivities thato

ur and to provide a methodology that would help to a
quire this knowledge. It isne
essary in a �rst step to work on a valuable dataset. However, publi
 data is noteasily available, or it frequently mixes produ
tion and mali
ious tra�
, like with networkmeasurement datasets. In this s
enario, the distin
tion between produ
tion and mali
ioustra�
 is a 
omplex problem that has o

upied the Intrusion Dete
tion 
ommunity forseveral years. To address this issue, we have deployed a worldwide distributed network ofsensors, also 
alled Honeypots. Honeypots are ma
hines that are not publi
ly advertised.Hen
e, any 
onne
tion targeting su
h a ma
hine is potentially mali
ious. This networkof sensors has thus 
ontributed to 
apture a huge amount of suspi
ious data over severalmonths. In addition, this parti
ular sensor ar
hite
ture enables us to obtain a lo
almonitoring of mali
ious tra�
.In the s
ope of this thesis, we propose a framework, 
alled HoRaSis (for HoneypottRa�
 analySis), whi
h aims at automati
ally extra
ting meaningful information out ofthis remarkable dataset. It basi
ally 
onsists in two major stages: i) the dis
riminationand ii) the 
orrelative analysis of the 
olle
ted tra�
. More pre
isely, we �rst dis
riminate
olle
ted a
tivities a

ording to the �ngerprints they let on ea
h sensor. This stage mustalso 
onsider the potential disturban
es introdu
ed by the network. The proposed solutionrelies on dedi
ated 
lustering and 
lassi�
ation te
hniques. We then identify all previous�ngerprints whi
h share strong 
ommon 
hara
teristi
s. This task is performed thanks toa graph-theory approa
h, and, in parti
ular, thanks to the sear
h of maximal weighted
liques within graphs. Di�erent 
hara
teristi
s based on our preliminary experiments havebeen 
onsidered. Several 
ases exemplify the value of 
ombining these two stages.Thanks to the proposed HoRaSis framework, we show that a rigorous and methodi-
al analysis of honeypot tra�
 
learly helps to get a better understanding of mali
iousa
tivities.
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Synthèse en français
Introdu
tionLa sé
urité est le sou
i d'un grand nombre de domaines d'a
tivité. Internet a la parti
-ularité de 
onne
ter les gens de façon plus ou moins anonyme, et sans grand 
ontr�le dutra�
. Cet atout, qui fait le su

ès de la toile, présente aussi des in
onvénients majeurs: des a
tivités malveillantes peuvent prendre aisément une grande amplitude et produiredes 
atastrophes. A valeur illustrative, l'équipe améri
aine de Staniford montre dans [215℄qu'il est possible, en théorie, pour un ver, de saturer un million de ma
hines vulnérablesen l'espa
e de 510 milli-se
ondes. Dans la même idée, il faut noter la re
rudes
en
e desfraudes éle
troniques, qui peuvent se 
hi�rer à plusieurs millions de dollars par an. Inter-net fa
ilite le banditisme et les 
rimes à grande é
helle. Il semble alors très important, si 
en'est vital, d'a
quérir de solides 
onnaissan
es sur les mena
es et les stratégies d'attaques.Une méthode pour obtenir 
e savoir réside dans l'observation et l'analyse à grande é
helled'a
tivités malveillantes.Plusieurs te
hniques existent a
tuellement, dont 
ertaines appartiennent à la 
atégorienommée pot de miel (ou honeypot en anglais). Ce terme est ré
ent, quand bien mêmele 
on
ept existe depuis de nombreuses années. Dans les années 1980, Cli�ord Stoll aeu l'idée de pla
er des données en apparen
e 
on�dentielles a�n de tromper et mettreen éviden
e les voleurs. L'idée a été reprise sous le terme anglais honeytoken par Lan
eSpitzner dans [214℄. Ce dernier a proposé dans 
e même ouvrage la dé�nition suivanted'un pot de miel :Un pot de miel est une partie ou l'ensemble d'un système d'information dont lavaleur ajoutée est d'être 
ompromise ou utilisée de manière illi
ite.Nous garderons 
ette dé�nition tout au long de la thèse.Le grand avantage de 
es pots de miel réside dans leur 
apa
ité à 
olle
ter du tra�
suspe
t uniquement. Depuis plusieurs années, 
es tra
es parti
ulières se mélangeaientave
 
elles dites de produ
tion, 
e qui n'aidait pas les personnes en 
harge de la sé
uritéà déterminer les a
tivités malveillantes. Ce problème est maintenant révolu grâ
e auxpots de miel. Ces trois dernières années, un e�ort 
ertain a été e�e
tué par diverses
ommunautés pour 
onstruire des ar
hite
tures pots de miel sûres et utiles, i.e. dessystèmes 
apables de ré
upérer de l'information, allant de simples paquets de balayage deports à une 
ommuni
ation IRC 
omplète, sans mettre en danger le réseau hébergeur. Lessolutions sont don
 nombreuses, et les te
hnologies de type pots de miel sont largement



22 Synthèse en françaisutilisées, présentant un intérêt aussi bien pour les grands groupes antivirus que pour lesorganisations internationales et gouvernementales, telles les CSIRTs, l'ENISA (EuropeanNetwork and Information Se
urity Agen
y ou les 
entres d'analyse ISAC (InformationSharing and Analysis Center).Malheureusement, nous 
onstatons que très peu d'e�orts sont faits pour partager lesinformations 
olle
tées au moyen des pots de miel. A 
ontrario, des données publiques ex-istent, grâ
e à des initiatives 
omme Dhshield, MyNetWat
hman ou le Computer NetworkDefense Operational Pi
ture [34℄. Ces projets présentent sur des pages Internet attra
tivesdes statistiques, mais la sour
e de 
es informations n'est pas toujours 
laire. Ils invitenttout un 
ha
un à envoyer les ar
hives de pare-feux ou de systèmes de déte
tion d'intrusions(IDS) pour extraire des valeurs statistiques relativement simples. L'information est ainsilimitée (
omptage par port), et les 
hi�res intègrent le biais lié au tra�
 de produ
tion.En résumé, les pots de miel sont une sour
e d'information de grande valeur. Cepen-dant, 
omme il a était brièvement mentionné 
i-dessus, le plus gros e�ort est fait pouroptimiser leur ar
hite
ture, et peu d'initiatives ont émergé pour organiser et tirer tous lesbéné�
es de la ri
hesse des données qu'ils fournissent.En parallèle, les solutions d'analyse existantes se limitent fréquemment à résoudreun problème en parti
ulier. Il peut s'agir de te
hniques pour surveiller les attaques pardéni de servi
e, les balayages de ports, ou 
ertains s
énarios d'attaques bien pré
is. Laplupart de l'existant a d'ailleurs été développé par les personnes de la 
ommunauté de laDéte
tion d'Intrusion. Cependant, l'appro
he est sensiblement di�érente ave
 les pots demiel, 
omme tout le tra�
 
apturé reste par dé�nition suspe
t. Les faux-positifs ne sontdon
 plus le sou
i prin
ipal, 
omme 
ela est en
ore le 
as pour la majorité des te
hniquesde déte
tion d'intrusions. Ce
i nous amène à établir le 
onstat suivant :Constat : Les pots de miel sont largement déployés, et ils sont te
hniquement ma-tures. Les te
hniques d'analyse, en revan
he, sont mal adaptées pour pro�ter de la qualitéde l'information o�erte.Sur la base de 
e 
onstat, nous avons dé
idé de 
onstruire notre propre environnementde type pot de miel, dans le but de 
olle
ter d'indispensables données ; la motivationpremière étant de travailler sur des données de tra�
 malveillant a

essibles et utiles pourl'analyse. Ce
i a été fait dans le 
adre d'un projet nommé Leurré.
om, qui regroupe despartenaires de nombreux pays. Grâ
e à 
ette 
ommunauté, nous avons réussi à 
olle
terun volume de données 
onsidérable à partir de plusieurs environnements pots de miel.Il est important de 
omprendre que 
et ensemble de données est unique, et qu'il esta

essible pour 
haque partenaire. Nous ne 
onnaissons pas d'équivalent pour le moment.L'hypothèse de notre problème est don
 la suivante :Hypothèse : Nous travaillons sur un ensemble de données unique, 
onstitué d'a
tivitésmalveillantes observées dans di�érents endroits du globe et dans des réseaux très divers.Que pouvons-nous faire ave
 de telles données ? Nombreuses sont les te
hniques
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 : il existe les outils traditionnels 
omme net�ow ([75℄) ou t
pdump([17℄), ou des méthodes théoriques plus 
omplexes. En revan
he, au
une n'est spé
i�queau type de données fournies par les pots de miel. Plus important en
ore, rien de très
onstru
tif n'a été proposé, jusqu'à présent, pour é
hanger aisément de l'information àpartir de 
es analyses. Il est légitime à 
e stade de se demander si 
e nouvel ensemble dedonnées apporte de l'information nouvelle et originale. Si la réponse devait être positive,serait-il possible de l'extraire automatiquement ? Pour simpli�er, nous 
her
hons don
 àsavoir s'il existe une méthode pour faire 
ela. Si elle existe, nous la nommerons HoRaSis(pour Honeypot tRa�
 analySis), 
omme étant une base pour l'analyse de tra�
 des potsde miel. La thèse présentée dans 
e do
ument se résume ainsi :Positionnement de la thèse : Nous voulons montrer dans 
ette thèse que1. un réseau distribué de simples sondes pots de miel fournit des données intéressantespour l'analyse et la 
ompréhension des mena
es et stratégies d'attaques.2. il existe une méthode automatique pour extraire de l'information intéressante à par-tir de 
es données. Celle-
i sera nommée HoRaSis (pour Honeypot tRa�
 analySis).Les pots de miel permettent de re
ueillir des données très singulières, qui peuventné
essiter une te
hnique d'analyse dédiée. Cette remarque sera plus amplement justi-�ée dans les premiers 
hapitres de 
e do
ument, par les expérimentations préliminairesprometteuses des données. A partir de notre savoir-faire 
onstruit au �l des données, il estapparu 
omme vital de 
réer une méthode (appelée Honeypot Tra�
 Analysis ou HoRa-Sis) a�n de rendre mé
anique l'extra
tion d'information à partir des données 
olle
tées.L'analyse de tra
es issues des pots de miel est à la jon
tion de plusieurs espa
es dere
her
he, et la méthode HoRaSis que nous 
her
hons ne peut prétendre les sur
lassertous. Par voie de 
onséquen
e, la méthode doit être ouverte à de futures améliorations,en o�rant une stru
ture modulaire. De manière plus générale, nous listons 
i-dessous les
ritères que la méthode HoRaSis doit préserver :� Validité : Un ensemble d'analyses a été e�e
tué de façon empirique, en tirant peuà peu le �l d'Ariane. Cette tâ
he, bien que peu e�
a
e, a fourni des résultatspréliminaires prometteurs. La méthode automatique que nous 
her
hons ne doit pas
ontredire 
es expérien
es, et a 
ontrario devrait enri
hir les observations, 
ommele 
ritère suivant indique.� Dé
ouverte d'information : La méthode HoRaSis doit être une nouvelle sour
e de
onnaissan
es.� Modularité : La méthode HoRaSis se trouve à la 
roisée de plusieurs domaines dere
her
he. Nous pouvons d'ores et déjà 
iter 
eux des Réseaux, de la Sé
urité et del'Analyse de Données. Il existe aussi une multitude de sous-domaines, prenant di-verses dire
tions théoriques et te
hniques. De nouveaux apparaissent régulièrement,et il est 
apital que la méthode présente une stru
ture modulaire a�n de pouvoirbéné�
ier des dernières avan
ées dans 
ha
un de 
es domaines.



24 Synthèse en français� Généralisation : Les données 
olle
tées peuvent 
hanger de manière drastique selonl'apparition de nouvelles a
tivités et de nouveaux pro
édés d'attaque. La méthodeHoRaSis doit don
 être su�samment indépendante des données, ou du moins, êtreadaptable à des ensembles de données aux 
ara
téristiques très di�érentes.� Simpli
ité : La méthode HoRaSis doit extraire de l'information à partir d'un en-semble de données (dans notre 
as, fourni par le projet Leurré.
om). Le destinatairede 
ette information est l'analyste; 
e dernier doit 
omprendre le 
heminement quia 
onduit à l'extra
tion de 
es nouvelles 
onnaissan
es. La méthode ne doit pas seprésenter 
omme une boîte noire aux résultats obs
urs.Nous prouvons dans 
e rapport qu'une telle méthode existe, et qu'elle nous permet detrouver des résultats prometteurs sur les a
tivités malveillantes observables. HoRaSis estun moyen automatique de valider (ou de rejeter) nombre de suppositions.Les 
ontributions de 
ette thèse sont :� Le déploiement et administration d'un système distribué de pots de miel pour 
ol-le
ter des données.� La 
on
eption d'une méthode appelée HoRaSis pour analyser les données.� La 
réation de nouvelles te
hniques pour tirer pro�t des propriétés de données issuesde pots de miel.� La validation de la méthode HoRaSis grâ
e aux analyses préliminaires e�e
tuées.� L'amélioration de la 
ompréhension des a
tivités observées. Certaines de 
es a
tiv-ités ont pu être 
lairement identi�ées, les autres sont de nouvelles questions o�ertesà la 
ommunauté Sé
urité.Ainsi, la thèse peut se résumer au s
héma suivant :� HYPOTHÈSES : Une ar
hite
ture de pots de miel déployée pour 
olle
ter des don-nées.� DONNÉES INITIALES : Un grand volume de tra
es réseaux, 
ha
une étant malveil-lante, ou du moins suspe
te.� PROBLÈME : Est-
e une nouvelle sour
e d'information d'intérêt ? Si tel est le 
as,
omment bâtir une solide méthode analytique à partir 
e 
elle-
i ?D'une manière 
on
rète, HoRaSis est une méthode arti
ulée autour de quelques étapesmajeures, qui sont symbolisées sur la �gure 1. Les étapes 1 et 2 
on
ernent le déploiementet la 
olle
te de données à partir de pots de miel. Ce travail a été rendu possible parl'intermédiaire du projet a
adémique appelé Leurré.
om. A�n de fa
iliter la 
ompréhen-sion d'HoRaSis et des problématiques existantes, nous dé
rivons 
e projet dans le 
hapitre3, qui 
omplète le 
hapitre 2 dédié à l'état de l'art. Le le
teur trouvera les détails des



Synthèse en français 25étapes 3 et 4 dans les 
hapitres respe
tifs 4 et 5. L'étape 3 
onsiste à grouper les a
tiv-ités présentant des 
ara
téristiques identiques, ou, en d'autres termes, toutes les adressesIPs ayant laissé une empreinte équivalente sur les di�érentes sondes pots de miel. Dansl'étape 4, nous analysons les relations émergentes qui peuvent apparaître suite à 
e premiergroupement. Toutes les empreintes observées sur les sondes pots de miel qui partagentde mêmes singularités sont déte
tées puis analysées. Le 
hapitre 6 dé
rit l'informationobtenue suite à l'appli
ation d'HoRaSis, 
elle-
i étant alors exploitable et partageable ausein de la 
ommunauté Sé
urité. Chaque 
hapitre reprend des résultats obtenus à partirde l'ensemble de données Leurré.
om.Les étapes de la méthode HoRaSis se trouvent sur la �gure 1, ainsi que le numérodes 
hapitres 
orrespondants. Elles sont brièvement résumées dans les paragraphes quisuivent en français.
Chapitre 3

SONDES HONEYPOTS CAPTURE & STOCKAGE

Chapitre 4

EMPREINTES ACTIVITES ANALYSE GRAPHES

Chapitre 5 Chapitre 6

CONCLUSIONS

Figure 1: Méthode d'analyse via un réseau distribué de pots de mielMotivations et terminologie d'usageIntrodu
tion de 
et état de l'artLa 
ompréhension des a
tivités malveillantes est un pré requis à l'élaboration d'une te
h-nique défensive e�
a
e. Par analogie, 
onstruire un mur ne protègera pas d'une agressionaérienne. Ainsi, 
onnaître la mena
e ne peut être un fa
teur à ignorer, parti
ulièrementquand les vendeurs sont friands de te
hnologies agui
hantes, mais qui peuvent s'avérerinutiles, ou tout simplement inadaptées.HoRaSis est la méthode que nous 
her
hons pour analyser des données issues despots de miel, a�n de béné�
ier de leurs propriétés intrinsèques. De nombreux projets ontré
emment émergé pour 
apturer des tra
es malveillantes. En parallèle, une multitude desolutions provenant de divers axes de re
her
he sont apparues pour e�e
tuer des analysessur des données a�n d'en identi�er des a
tivités anormales. Pour 
es raisons, et pourgarder une 
ertaine 
larté dans l'état de l'art, nous 
hoisissons de distinguer de 
atégories,dis
utées par la suite :� Les te
hniques dont la �nalité est d'o�rir la possibilité de 
apturer du tra�
 malveil-lant.



26 Synthèse en français� Les te
hniques dont la �nalité est d'extraire de l'information à partir d'un tra�
donné.Capturer des tra
es originalesIl existe plusieurs projets ré
ents qui ont pour �nalité de bâtir des environnements de
apture e�
a
es, souvent dans l'idée de 
apturer de nouvelles a
tivités malveillantes (lesa
tivités malveillantes qui n'ont pas en
ore été observées sont appelées 0-jour). Nousdétaillons en parti
ulier dans le do
ument original :� Les outils en logi
iel libre asso
iés aux termes anglais honeypots, honeynet, honey-tokens.� Le téles
ope réseau (ou Network Teles
ope développé par CAIDA (Cooperative As-so
iation for Internet Data Analysis), qui 
onsiste à l'observation au niveau d'unéquipement réseau d'une très large plage (pré�xe /8 par exemple) d'adresses IP nonutilisées (ou très peu utilisées).� Le projet Darknet de Team Cymru, pro
he dans l'esprit du projet pré
édent. Leursite o�re quelques graphes représentant une estimation quantitative du bruit de fond(ou ba
kground radiation observé.� iSink de l'université de Wis
onsin-Madison, qui était d'avantage un outil d'analysede performan
e réseau à l'origine.� IMS (ou Internet Motion Sensor proposé par l'Université Mi
higan, qui proposel'utilisation de sondes. L'information, par 
ontre, est extraite de 
haque sonde, sansanalyse 
orrélative entre les informations trouvées.� MINOS de l'université UC Davis, dont le prin
ipe fondamental est de marquer letra�
 suspe
t a�n de pouvoir le suivre plus aisément.� Lobster (an
iennement SCAMPI), projet européen 
her
hant à fa
iliter la surveil-lan
e des réseaux au niveau matériel.� Mw
olle
t, outil très ré
ent, ayant fusionné ave
 un autre projet nommé Nepenthes,dont l'obje
tif 
onsiste à 
apturer des a
tivités malveillantes 
her
hant à exploiterdes vulnérabilités bien pré
ises (DCOM, Lo
al Se
urity Authority Servi
e LSASS,NetBIOS, SQL Server, et
).� Le partage d'ar
hivage, proposé par de nombreux sites, tels WormRadar, InternetStorm Center de l'Institut SANS, Dshield, MyNetWat
hman, et
. Les résultats sebasent malheureusement sur des données in
ertaines à la sour
e.Te
hniques d'analyseParmi les te
hniques ayant vo
ation à analyser le tra�
 brut 
olle
té par des méthodes
omme 
elles pré
édemment 
itées, le do
ument détaille :



Synthèse en français 27� NetFlow, le format d'agrégation en �ux utilisé dans des appareils de type routeurspour limiter le volume de données sto
ké. Quelques analyses s'appuient sur 
es �ux,bien qu'ils présentent des limitations : un �ux NetFlow n'a pas d'équivalent 
lairau niveau proto
olaire (TCP), et se limite à un ensemble restri
tif de 
hamps.� Le projet Billy Goat proposé par Dupon
hel et al. d'IBM, où un e�ort est fait pourar
hiver les données 
olle
tées de manière pratique. L'extra
tion d'information reste
ependant limité à 
e stade.� honeyStat, ainsi que d'autres te
hniques issues du monde de la déte
tion d'intrusion(projet Collapsar de l'université de Purdue). Ces te
hniques se résument souventà une innovation théorique testée dans des 
onditions parti
ulières. L'informationextraite reste don
 d'autant limitée, même si 
es te
hniques peuvent s'appliquerdans des analyses bien pré
ises.� Les 
onsoles de surveillan
e sont nombreuses et variées. Une analyse que nous avonsfaite montre l'étendue des solutions existantes. Nous sommes malheureusementarrivés à la 
on
lusion que la plupart se limitent à des te
hniques pragmatiquessimples, 
omme des expressions régulières ou des requêtes SQL dans une base dedonnées à la stru
ture assez standard.� La modélisation est un sujet a
tif de re
her
he. Le manque de données librementutilisable empê
he néanmoins la validation des modèles proposés. Ceux-
i se limitentpar ailleurs à quelques stratégies de propagation de vers 
onnus a priori.Con
lusions 
on
ernant l'état de l'artCertaines te
hniques de 
apture et d'analyses sont prometteuses. Cependant, elles restent
loisonnées et s'adaptent mal au 
ontexte des pots de miel. Ainsi, les nouvelles solutionspour 
apturer du tra�
 via un pot de miel ne béné�
ient pas vraiment de méthodesd'analyse propres et e�
a
es. C'est i
i la 
ontribution de 
ette thèse, qui 
onstitue àapporter un élément de réponse à 
e problème.Projet Leurré.
omBrève introdu
tion au projetAu sein de l'Institut Euré
om (www.eure
om.fr), nous avons utilisé la te
hnologie des potsde miel a�n d'arriver à une meilleure 
ompréhension des pro
essus d'attaques. Nous avonsimplémenté une plateforme de test qui a été ensuite installée dans un réseau 
omprenanta
tuellement une quarantaine de partenaires provenant des 
inq 
ontinents. Les données
olle
tées depuis deux ans sont enri
hies puis étudiées au moyen de te
hniques diverseset variées, qui sont détaillées dans les trois derniers 
hapitres du do
ument (analyse enséries temporelles, te
hniques de regroupement, règles asso
iatives, graphes).Le 
hoix de la plateforme s'est porté sur un système ayant une intera
tion faible(honeyd), a�n de limiter les risques de 
ompromission. Cette plateforme émule trois
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hines di�érentes (Windows NT Server, WIndows 98 et Linux Red Hat 7.3), ave
les ports de l'installation par défaut ouverts, ainsi que quelques s
ripts 
orrespondantà des servi
es 
hoisis (serveurs ftp et web par exemple). Une 
omparaison des données
olle
tées est par ailleurs maintenue ave
 un système plus 
omplexe (i.e. des servi
es réels,non émulés) 
orrespondant à une 
on�guration équivalente. Celle-
i a pour but de véri�erqu'au
un biais n'est introduit par l'utilisation de 
e système à faible intera
tion. Il estimportant de 
omprendre les limitations de la 
apture avant une quel
onque analyse.Leurré.
om est un projet ouvert à tout partenaire 
urieux et désireux de mieux 
om-prendre l'a
tivité malveillante 
iblant ses ressour
es. Il lui su�t pour 
ela d'installerune plateforme pot de miel dé
rite 
i-dessus à l'extérieur de son réseau. L'installationet la maintenan
e sont totalement prises en 
harge par Euré
om et ne né
essitent pasd'investissement parti
ulier : un simple ordinateur et quatre adresses IP routables (unepour la ma
hine d'a

ueil, et trois pour les ma
hines émulées par le pot de miel) sont su�-isants pour sa mise en pla
e. En 
ontrepartie, Euré
om o�re l'a

ès à l'analyse des infor-mations 
olle
tées et étudiées par le groupe de re
her
he sur les attaques de la plateformepartenaire. Nous proposons une interfa
e intégrant des résultats simpli�és répondant àdes requêtes fréquentes, ou un a

ès dire
t aux données par le moyen d'une base intégrantdi�érents degrés d'information. Un rapport d'a
tivité personnalisé de la plateforme estégalement émis sur demande pour 
haque partenaire.Ar
hivage des donnéesNous ré
upérons 
haque jour les tra
es réseau (format t
pdump) sur les plateformes,
orrespondant au tra�
 é
hangé entre les ma
hines virtuelles et d'autres ma
hines del'Internet. Elle 
ontient a
tuellement des données à partir de février 2003, et le nombrede partenaires ne 
esse de 
roître. Pour sto
ker un si gros volume de données, nous avons
onstruit la base de données dans l'idée de pouvoir :� 
her
her tout type d'information rapidement, que 
e soit de l'information généraleou pointue (
hamps proto
olaires).� ajouter rapidement une nouvelle sour
e d'analyse, en relation ave
 les informationsdéjà sto
kées.. Sans rentrer dans les détails de l'ar
hite
ture, nous avons dé
idé de la bâtir autour dequatre dé�nitions, dé
rites 
i-dessous :Sour
e : Une Sour
e 
orrespond à une adresse IP observée sur une ou plusieursplateformes, et pour laquelle le temps d'arrivée entre deux paquets 
onsé
utifs reçus resteinférieur à un 
ertain seuil (25 heures). La di�éren
e de temps se 
al
ule en 
onvertissanttoutes les dates au format GMT.Global_Session : Une Global_Session est l'ensemble de paquets qui ont été é
hangésentre une Sour
e et toutes les plateformes pots de miel du projet Leurré.
om.Large_Session : Une Large_Session est l'ensemble de paquets qui ont été é
hangésentre une Sour
e et une plateforme pot de miel parti
ulière (sonde).



Synthèse en français 29Tiny_Session : Une Tiny_Session est l'ensemble de paquets qui ont été é
hangésentre une Sour
e et une ma
hine virtuelle donnée. Comme 
haque plateforme pot de mielémule trois ma
hines virtuelles, une Large_Session est 
omposée d'au plus 3Tiny_Sessions.Les données sont introduites dans la base, mais nous appliquons également un ensem-ble d'appli
ations pour enri
hir 
es données primaires. Par exemple, pour 
haque Sour
e,nous voulons asso
ier une position géographique, ou du moins un pays (Maxmind, Net-geo, IP2lo
ation). De même, pour 
haque Global_Session, nous voulons déterminer (demanière passive) quel système d'exploitation est utilisé par la Sour
e (p0f, etter
ap, dis
o).Le pro
essus global pour ar
hiver l'ensemble des données est symbolisé par la �gure 2.
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Figure 2: Des journaux T
pdump à une base de donnée stru
turée



30 Synthèse en françaisCe travail préliminaire de 
olle
te et de sto
kage évolue à travers le projet Leurré.
om.L'ensemble de données 
olle
tées au 
ours des trois dernières années est unique à 
ejour. Mais quelles valeurs apportent-elles réellement ? Dans quelles mesures peut-on tirerpartie de 
es données pour améliorer notre 
ompréhension des pro
essus d'attaques ? Cesquestions qui dé
oulent naturellement de 
e paragraphe, sont à l'origine de la méthoded'analyse proposée dans les 
hapitres 4 et 5 du présent do
ument, et dans la 
ontinuitédes motivations à développer une méthode HoRaSis.Empreintes d'A
tivitésCon
eptsL'analyse doit pro�ter de la propriété suivante : les sondes (ou "plateformes pots demiel" : nous utiliserons les deux termes indi�éremment dans la suite du do
ument) sontdistribuées dans di�érents pays, di�érents réseaux et di�érentes organisations. Il faut alors
her
her un moyen de 
omparer 
e qui survient sur 
haque sonde, a�n d'être à même d'endéduire 
e qui est 
ommun ou pas sur un ensemble de sondes. Cette étape est primordialepour appréhender les 
ara
téristiques des pro
essus observés.Nous avons dé�ni dans un paragraphe pré
édent une Large_Session 
omme étantl'ensemble des paquets envoyés par une Sour
e sur une sonde. Une Large_Session estdon
 la manifestation d'une a
tivité, 
elle-
i étant :A
tivité : Une a
tivité est l'ensemble des a
tions exé
utées par une Sour
e sur uneplateforme pot de miel.Il est possible de 
ara
tériser une a
tivité par l'empreinte qu'elle peut laisser sur unesonde pot de miel. Ce
i 
onduit à dé�nir une empreinte d'a
tivité 
omme :Empreinte d'a
tivité : Une empreinte d'a
tivité est un ensemble de paramètres(non né
essairement uniques) qui 
ara
térise une même a
tivité sur di�érentes sondespots de miel.Il est important à 
e stade de 
omprendre qu'une a
tivité se 
ara
térise par une em-preinte, mais que 
ette empreinte peut 
ara
tériser di�érents outils (si jamais les a
tivitésde 
es outils ne sont pas distinguables à partir de la 
on�guration a
tuelle des sondes).Nous supposons don
, d'une 
ertaine mesure, que si les outils d'attaque ont un 
om-portement su�samment déterministe, nous devrions observer des empreintes d'a
tivitéssemblables sur toutes les sondes ayant été la 
ible de mêmes outils d'attaque.Paramètres 
ara
térisant une empreinteNous dé
idons, dans la 
ontinuité des remarques pré
édentes, de regrouper toutes lesa
tivités observées (sto
kées sous la forme de Large_Sessions dans des groupes, appelés
lusters. Les paramètres 
hoisis sont basés sur l'expérien
e que nous avons a
quise pourdistinguer manuellement les a
tivités, après le
ture dire
te de �
hiers t
pdump. Lesparamètres initiaux sont ainsi :1. Le nombre de ma
hines virtuelles 
iblées sur la plateforme pot de miel.



Synthèse en français 312. Les séquen
es de ports : à partir des paquets ordonnés par temps d'arrivée, nouspouvons extraire la séquen
e de ports distin
ts 
iblés sur 
haque ma
hine virtuelle.3. Le nombre total de paquets envoyés par la Sour
e à l'attention d'une plateforme potde miel.4. Le nombre de paquets envoyés par la Sour
e vers 
haque ma
hine virtuelle.5. La durée totale pendant laquelle la sour
e a été observée sur la plateforme (di�éren
eentre la date d'arrivée de son dernier paquet envoyé et de son premier paquet émis).6. Ordonnan
ement de l'a
tivité. Les paquets ont-ils été envoyés vers toutes les ma-
hines virtuelles en parallèle, ou vers l'une puis les autres ?7. Le 
ontenu des paquets (s'il existe) envoyé par la Sour
e.Malheureusement, 
es paramètres peuvent varier d'une instan
e d'attaque à l'autre,du simple fait de 
ertaines perturbations dans le réseau Internet. Parmi les perturbationsenvisageables, il peut y avoir :� du réordonnan
ement : quand les paquets ne sont pas reçus dans leur ordre d'émission.� de pertes : quand des éléments a
tifs du réseau (routeurs) dé
ident de jeter despaquets.� des retransmissions : quand l'émetteur ne reçoit pas dans les temps un a

usé deré
eption.� du retard : quand les éléments du réseau introduisent des laten
es et délais detraitement di�
ilement prévisibles.� et
Nous présentons dans le do
ument une te
hnique, qui s'appuie sur une propriété du 
hampIPID des entêtes IPs. Dans la plupart des systèmes d'exploitation a
tuels, 
e 
hamp n'estpas utilisé, mais s'in
rémente de 1 à 
haque envoi d'un nouveau paquet IP. En s'appuyantsur 
ette propriété, il est possible de limiter les impa
ts du réordonnan
ement et d'estimerles pertes. Cette te
hnique ne peut malheureusement prétendre à 
orriger toutes lesperturbations du réseau. Ceux-
i sont autant de �u
tuations dans 
ertains paramètresdé
rits 
i-dessus pour dé�nir une empreinte d'a
tivité.A partir de 
e 
onstat, nous avons 
hoisi de 
lasser les paramètres en deux groupesdistin
ts :� Les paramètres dis
rets : nous estimons que 
es paramètres sont peu sensibles auxperturbations du réseau, et leurs valeurs doivent être 
onsidérées de manière exa
te.Parmi 
eux-
i, il peut y avoir les séquen
es de ports, ou le nombre de ma
hines
iblées.



32 Synthèse en français� Les paramètres modaux : il s'agit de paramètres présentant une distribution modaleforte. Dans 
e 
as, leurs valeurs peuvent se généraliser par des intervalles, dont lalargeur 
orrespond à l'in
ertitude liée aux perturbations du réseau. Le nombre totalde paquets envoyés par une Sour
e, ou la durée pendant laquelle 
ette Sour
e a étéobservée, font partie de 
es paramètres aux valeurs généralisées.La 
ontribution respe
tive de 
haque paramètre dans la formation de 
lusters peutêtre évaluée au moyen d'indi
ateurs utilisés en théorie de l'information, 
omme l'IGR(pour Information Gain Ratio). Cet indi
e nous permet de réaliser, par exemple, que le
hoix du paramètre n'est (ou n'est pas) dis
riminant.Nous regroupons don
 à 
e stade toutes les manifestations d'a
tivité (Large_Sessions),ayant les mêmes valeurs dis
rètes, et ayant les valeurs des paramètres modaux dans lesmêmes intervalles, en 
lusters.L'étape suivante 
onsiste à véri�er que les 
lusters ainsi obtenus sont bien valides.La démar
he que nous avons entreprise 
onsiste à véri�er que les Large_Sessions ainsiregroupées restent 
ohérentes en terme de 
ontenu (ou payload) de paquets. L'algorithmeproposé s'appuie sur la 
on
aténation des di�érents 
ontenus de paquets au sein d'unemême Large_Session sous forme de phrase. La distan
e de Levenshtein et utilisée pourévaluer la distan
e entre les di�érentes phrases au sein d'un 
luster. Une trop grandedisparité en terme de distan
e peut amener à diviser le 
luster en de nouveaux 
lustersplus homogènes.Remarques générales et résultatsCette méthode a permis de regrouper 1431000 Large_Sessions dans 52159 
lusters, dont8382 
ontiennent plus de 5 Large_Sessions. Ce regroupement en a
tivité distin
te o�replusieurs résultats détaillés dans le do
ument, dont :� Une étude de l'évolution des a
tivités 
iblant systématiquement les trois ma
hinesvirtuelles, 
e qui peut être asso
ié à un balayage linéaire dans une plage d'adressesdonnée. Ce s
énario, fréquent parmi les a
tivités observées au début de l'expérien
e,s'est raré�é au 
ours de l'année 2004, pour s'a

entuer de nouveau en 2005. Cetexemple témoigne de l'importan
e d'une surveillan
e des 
odes malveillants, 
ar leur
omportement 
hange rapidement au �l des mois.� Une étude relationnelle entre trois types d'analyses, s'appuyant respe
tivement sur1) les ports 
iblés, 2) les séquen
es de ports 
iblés et 3) les a
tivités asso
iées à unport et une séquen
e de ports donnés. Cette analyse montre 
lairement qu'il est peusigni�
atif de produire uniquement des statistiques sur un port donné, voire mêmede se limiter à la séquen
e de ports.� L'observation de l'apparition (ou disparition) de 
ertaines a
tivités au 
ours desmois. Nous montrons dans le do
ument, à valeur illustrative, l'observation de lamort d'un ver. Ce ver, nommé Deloder, a fait grand bruit dans les médias au momentde sa di�usion, mais sa mort serait restée inaperçue, sans l'e�ort de personnes pour



Synthèse en français 33faire de la rétro-ingénierie de 
ode (tâ
he non triviale), ou sans une surveillan
e etune distin
tion des a
tivités 
omme nous venons de le présenter.Identi�
ation des outilsNous rappelons i
i que le terme outil représente tout 
ode à l'origine de l'a
tivité ob-servée sur l'une des plateformes. Chaque a
tivité est asso
iée à un ensemble de valeursde paramètres (dis
rètes ou modales). En 
e qui 
on
erne le 
ontenu des paquets, il estpossible d'extraire une phrase résumant 
eux asso
iés à une même a
tivité. Les phrasessont estimées pro
hes selon la distan
e de Levenshtein. Nous nous sommes appuyés surle 
al
ul de 
ette distan
e pour proposer une méthode simple de généralisation. Des solu-tions plus 
omplexes existent (
omme par exemple l'algorithme teiresias, l'e¢hantillonneurELPH Gibbs, et
).Regroupant ainsi toutes ses valeurs, il est possible de 
réer une �
he signalétique, oud'identi�
ation, des outils. Une telle �
he est présentée par la �gure 3.

* Payloads: yes (DCOM, Netbios, WebDav)

CLUSTER ID: IDENTIFICATION:

2145
W32/Gaobot.worm.gen.k
Backdoor.Agobot.Id
W32/Agobot−GM (sophos), also known as:

FINGERPRINT:

* Number Targeted Virtual Machines: 1
* Ports Sequence: 2745,2082,135,1025,445,3127,6129,139,1433,5000,80
* Number Packets sent VM: 33
* Global Duration: 7s < t < 11s
* Avg Inter Arrival Time: < 1sFigure 3: Exemple de �
he signalétique obtenueL'étape suivante 
onsiste à asso
ier un nom 
ommun à 
haque �
he. Cette tâ
he n'est
ependant pas aisée, pour plusieurs raisons :� Les outils en a
tivité ne sont pas parfaitement 
onnus. Certains font l'objet d'une
ertaine popularité, mais ne 
onstituent pas né
essairement la majorité du tra�
malveillant 
olle
té. Ce besoin d'une meilleure 
ompréhension est la motivationpremière du projet Leurré.
om.� Suite à la remarque pré
édente, nous notons aussi une dé
on
ertante uniformitéde l'information, quand 
elle-
i semble disponible. Les sites tendent à répandre del'information, non validée, et dont la sour
e reste obs
ure.� En s'appuyant sur les résultats préliminaires de notre analyse d'empreintes, nousobtenons un ordre de grandeur du nombre d'outils observables à partir des sondesinstallées, et 
e, depuis quelques mois. Il s'agit de quelques milliers de 
lusters (8392



34 Synthèse en françaisont été observés 
omme provenant d'au minimum 5 sour
es distin
tes). L'asso
iationentre �
he signalétique et nom 
ommun ne peut don
 pas être résolue de manièresimple.� Quelques outils ne sont que des variantes (di�érentes 
on�gurations et implémen-tations) d'un même outil générique. Il 
orrespondra don
 à plusieurs �
hes signalé-tiques, telles que nous les 
on
evons.Dis
ussionCette 
lassi�
ation des a
tivités observées 
onduit à des résultats intéressants, et 
ertainsd'entre eux ont fait l'objet de publi
ations. Il faut aussi avoir 
ons
ien
e que 
elle-
i n'estpas insensible à des te
hniques malveillantes pour la 
ontourner. Nous dé
rivons de telss
énarii dans la se
tion 4.6 du do
ument. Les outils peuvent 
hanger de 
omportementpour tromper 
ette 
lassi�
ation, mais 
e 
hangement ne sera visible que par une obser-vation de leurs a
tivités. Il faut alors 
ontr�ler 
ertains indi
ateurs (nombre de nouvellesa
tivités enregistrées, fréquen
es de leur apparitions, et
), a�n de déte
ter tout 
hange-ment 
omportemental. Ce
i est une dire
tion propre du projet que nous n'aborderons pasdans la suite, 
ar elle n'est pas dire
tement liée à la problématique posée par 
e do
ument.L'étude des empreintes d'a
tivités nous renseigne pour 
on
lure sur plusieurs aspe
ts.Parmi 
eux-
i, nous pouvons 
iter :� L'évolution temporelle des a
tivités d'un même outil sur une é
helle de temps deplusieurs mois (années).� La détermination d'a
tivités propres à une unique plateforme, ou un un ensemble(voire la totalité) de plateformes.� L'évaluation statistique de la représentation d'une a
tivité donnée sur une plate-forme donnée.� La mise en garde annonçant l'observation de nouvelles a
tivités.� La 
orrélation qui peut exister entre les a
tivités observées et les alertes émises parles systèmes de déte
tion d'intrusions insérés dans le réseau hébergeur.Cha
un de ses aspe
ts est abordé dans le projet Leurré.
om, et ils restent ouverts àl'appli
ation de nouvelles solutions et innovations.La méthode que nous proposons, pr«ommée HoRaSis pourrait s'en tenir à 
ette 
lassi-�
ation par empreinte d'a
tivité, 
ar elle est l'élément fondateur pour de nouvelles études.Il apparaît néanmoins des questions ré
urrentes, à 
ha
une de 
es études sur les empreintes: � Peut-on extrap�ler la propriété de 
ette empreinte à un ensemble d'autres empreintes?�, ou �Est-
e que la propriété observée pour 
es empreintes peut être mise en relationave
 les propriétés pré
édemment annotées ?�En d'autres termes, les empreintes d'a
tivité sus
itent en permanen
e une étude appro-fondie. Celle-
i 
onduit à déterminer ou véri�er une propriété propre à l'empreinte, mais



Synthèse en français 35qui n'est pas obligatoirement partagée par l'ensemble. Ainsi, 
ertains outils implémententune 
ou
he proto
olaire TCP propre, 
ontenant des erreurs, ou du moins 
ertaines 
ar-a
téristiques, qui forment un moyen supplémentaire d'identi�
ation. Il est bon de savoirsi plusieurs empreintes possèdent les mêmes 
ara
téristiques, a�n de savoir si les 
odes àl'origine de 
es tra
es s'appuient sur la même 
ou
he proto
olaire imparfaite. Dans unsou
i d'automatisation, nous sommes alors 
onfronter au problème suivant :� Comment marquer toutes les empreintes d'a
tivités qui possèdent de mêmes pro-priétés ?� Comment trouver rapidement toutes les empreintes qui partagent les mêmes ensem-bles de propriétés ?� Comment ajouter de manière rapide et aisée une nouvelle analyse (étude d'unenouvelle propriété) aux résultats déjà établis par les deux questions pré
édentes ?C'est dans le but de répondre à 
es trois questions que nous proposons dans la se
tionsuivante une méthode 
omplémentaire pour 
orréler toutes les analyses bâties ou à bâtirà partir des empreintes. Il s'agit de l'analyse 
orrélative.Analyse CorrélativeCette étape répond à la problématique pré
édente. Elle vise à automatiser la re
her
hede relations entre des propriétés partagées par un ensemble limité d'a
tivités. Elle permetde 
onduire indi�éremment deux 
atégories d'analyse :� Analyse intra-a
tivité : Au sein d'un même 
luster (asso
ié à une a
tivité), 
e typed'analyse 
her
he à extraire des propriétés qui sont plus spé
i�ques à 
elui-
i qu'auxautres, a�n d'enri
hir nos 
onnaissan
es sur le phénomène à l'origine de 
es tra
es.� Analyse inter-a
tivité : La se
onde analyse 
her
he à trouver des propriétés 
om-munes à 
ertaines a
tivités, puis à les regrouper. Dans l'exemple 
ité dans les lignespré
édentes, 
e type d'analyse permet de regrouper toutes les a
tivités qui ont desempreintes présentant la même 
ara
téristique au niveau proto
olaire.Nous 
her
hons don
 i
i à trouver tous les ensembles d'a
tivités partageant plusieurspropriétés. Nous voulons bien sûr que 
es ensembles n'oublient au
une empreinte. Dansle 
as d'une analyse intra-a
tivité, les ensembles ne 
ontiendront au plus qu'un élément,à la di�éren
e d'une analyse intra-empreinte.Pour parvenir à 
e résultat, nous pro�tons d'une te
hnique extraite de la théoriedes graphes. Nous ramenons le problème à 
elui plus 
onnu de la re
her
he de sous-graphes 
omplets (
liques) de poids maximum (dominant set dans un graphe. De manièresimpli�ée, il est né
essaire pour 
haque analyse 
onsidérée de suivre un algorithme en 5étapes, dé
rites 
i-dessous dans le tableau 1. Le tableau 2 illustre 
haque étape par unexemple 
on
ret qui a été implémenté. Il s'agit de 
her
her toutes les a
tivités qui ont étélan
ées à partir d'un même groupe de pays :



36 Synthèse en françaisTable 1: Les étapes de 
haque analyse 
orrélativeEtape Des
ription1 Dé�nir une propriété à étudier2 Représenter la propriété pour 
haque a
tivité3 Quanti�er sa représentation4 Dé�nir une distan
e pour 
omparer les a
tivités5 Construire la matri
e de similarité entre a
tivitéspour 
ette propriétéTable 2: Les étapes de 
haque analyse 
orrélative : un exempleEtape Des
ription1 Distribution des pays à l'origine de 
haque a
tivité2 Distribution ve
torielle3 Pour
entage des empreintes provenant du pays X pour une même a
tivité4 Distan
e eu
lidienne ve
torielle(ou te
hnique du peak pi
king5 Matri
e nommée i
i A_Geo
Nous avons suivi 
et algorithme pour di�érentes analyses. Dans le 
adre de 
e rapport,nous avons pu ainsi 
onstruire un ensemble de matri
es, 
ha
une représentant l'étuded'une propriété parti
ulière, liée à une �nalité donnée :Table 3: Matri
es d'analyses utilisées dans 
ette thèseNom de la matri
e Propriétés étudiéesA_Geo Distribution des pays d'où 
haque a
tivité est observéeA_Env Distribution des plateformes 
iblées par 
haque a
tivitéA_OSs Distribution des OSs asso
iés à 
haque a
tivitéA_IPprox Proximités des adresses IPs attaquantesA_TLDs Distribution des TLDs (Top-Level Domains)A_Hostnames Catégories des ma
hines attaquantes (noms de ma
hines)A_CommonIPs A
tivités lan
ées par des adresses IPs attaquantes 
ommunesA_SAX Evolution des empreintes de 
haque a
tivité (par semaine)Pour 
haque matri
e, nous extrayons alors les ensembles de 
lusters (ou a
tivités) detaille et de similarité maximales. A�n d'e�e
tuer 
haque analyse dans un intervalle detemps raisonnable, nous avons eu re
ours à une méthode proposée par Pellilo et Pavindans ??. Elle s'appuie sur l'itération de fon
tions parti
ulières, issues de la théorie des
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élérer la 
onvergen
e vers les solutions (l'extra
tion des ensembles de tailleet de similarité maximales).Une fois que 
e
i est appliqué à 
haque matri
e, il est alors possible de marquer lesa
tivités par un label, indiquant leur atta
hement à la propriété étudiée. Un exemple estfournie en �gure 4.

A(OSs): clique 3

FINGERPRINT:

CORRELATIVE ANALYSIS:

* Number Targeted Virtual Machines: 3
* Ports Sequence VM1: {135,4444,135,4444}
* Ports Sequence VM2: {135}
* Ports Sequence VM3: {135}

* Number Packets sent VM2: 3
* Number Packets sent VM3: 3
* Global Duration: < 5s
* Avg Inter Arrival Time: < 1s

* Number Packets sent VM1: 10

CLUSTER ID: IDENTIFICATION:

W32.Blaster.A (symantec), also known as:
W32/Lovesan.worm.a (McAffee)
Win32.Poza.A (CA)
Lovesan (F−Secure)
WORM_MSBLAST.A (Trend)
W32/Blaster (Panda)
Worm.Win32.Lovesan (KAV)

* Payloads: 72 bytes + 1460 bytes + 244 bytes

1931

A(SAX): clique 21
A(Env): 
A(Geo):
A(Hostnames):
A(TLDs):
A(commonIPs):
A(IPprox):Figure 4: Exemple de �
he signalétique obtenueL'interse
tion des ensembles obtenus pour 
haque matri
e permet également de ré
upérerles sous-ensembles véri�ant non plus une mais plusieurs propriétés fortes.Dé
ouverte Automatique d'InformationNous détaillons dans la se
tion 6 de 
e do
ument des résultats obtenus à partir de 
ertainesanalyses (matri
es) 
rées 
i-dessus. En parti
ulier, nous étudions :� A_Geo



38 Synthèse en français� A_Env� L'interse
tion de A_Geo et de A_Env� A_SAX� L'interse
tion de A_SAX ave
 A_
ommonIPs, A_Hostnames et A_OSsA_SAX est intéressante, 
ar elle s'appuie sur une méthode innovante (SAX, pourSymboli
 Aggregate approXimation) pour 
omparer les évolutions temporelles des dif-férentes a
tivités. Elle s'intègre fa
ilement dans l'ar
hite
ture de la base de données.Les interse
tions révèlent aussi la pertinen
e de 
ertaines analyses. Ainsi, les ensemblesobtenus en 
roisant les deux matri
es A_Env et A_Geo regroupent des a
tivités venantde mêmes pays et ayant 
iblées les mêmes plateformes. Ces a
tivités peuvent être parailleurs très di�érentes en terme d'attaques (servi
es visés, 
ontenus des paquets, et
).On peut y voir plusieurs raisons :� Certaines ma
hines mal 
on�gurées 
iblent régulièrement un même réseau.� Il s'agit de la même origine, ou organisation, pour toutes 
es a
tivités.D'autres s
énarii sont aussi envisageables. Il est possible de 
ontinuer l'analyse en 
roisant
es informations ave
 d'autres 
omplémentaires (les noms des ma
hines indiquent-ils desserveurs ? et
) a�n d'a�ner la 
ompréhension de 
e phénomène.Cha
une de 
es matri
es peut être également remodelée par de nouvelles te
hniques(séries temporelles, distan
es entre adresses IPs, et
) et de nouveaux outils (te
hniquesde déte
tion passive de systèmes d'exploitation, et
). D'autres, en�n, peuvent s'ajouteraisément dans 
ette ar
hite
ture.Con
lusionNous avons présenté dans 
e do
ument une méthode, nommée HoRaSis qui peut se ré-sumer par la �gure 5.Des 
apteurs de type pots de miel ont été déployés dans divers réseaux et diverspays dans le monde. Ils ont une 
on�guration su�samment légère pour permettre leurdéploiement, et un 
ontr�le par des 
apteurs étalons plus 
omplexes est requis pour véri-�er périodiquement qu'au
un biais n'est introduit pas le 
hoix des 
apteurs. Les don-nées brutes, ou paquets 
apturés, sont 
olle
tés grâ
e au projet Leurré.
om, et sto
késdans une base de données dédiée. Les paquets liant une Sour
e (terme qui quali�e uneadresse IP dans une fenêtre de temps 
ourt) à un 
apteur forment une Large_Session.Les Large_Sessions sont les représentations de di�érentes a
tivités. Nous regrouponsalors toutes les Larges_Sessions partageant des paramètres similaires qui 
ara
térisentl'empreinte d'une a
tivité. A 
e stade, sur la première ligne de la �gure 5, nous avonsregroupé toutes les a
tivités qui partagent une même empreinte sur au moins un 
apteur.Ensuite, nous appliquons di�érentes analyses, qui se 
onstruisent, 
ha
une, sous la forme
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Figure 5: S
héma de la méthode HoRaSisd'un graphe pondéré entre les di�érentes a
tivités identi�ées. La méthode est automa-tisée grâ
e à une te
hnique de la théorie de graphes, nommée "extra
tion de graphesdominants". Nous obtenons in �ne une 
artographie des di�érentes a
tivités observéessur 
haque 
apteur, ainsi que l'ensemble des propriétés les liant (ou les di�éren
iant) desautres. Cette méthode répond aux 
ritères initiaux d'une méthode HoRaSis.Nous avons montré au moyen d'un ensemble 
onséquent de données que 
ette méthodeapporte une solide fondation pour a

roître les 
onnaissan
es des a
tivités observables surInternet.Cette appro
he ouvre aussi di�érents axes de re
her
he, notamment :� Quelles relations peuvent exister entre des observations très générales (téles
opes)et lo
ales 
omme 
elles du projet Leurré.
om ? Sont-elles modélisables ?� La 
on�guration a
tuelle des plateformes est statique. Existe-t-il un moyen d'intégrerun 
ertain dynamisme des 
on�gurations dans la méthode présentée ? Cela estd'autant plus important que les appli
ations et les systèmes d'exploitation ont desversions 
hangeant plus rapidement que la durée totale de notre analyse, qui peuts'étaler sur plusieurs années.� La ré
upération d'information 
ontextuelle est utile, mais pas su�samment 
on-sidérée par la méthode HoRaSis dé
rite dans 
e do
ument. Elle peut se formuler,
ependant, aux moyens de matri
es ou graphes de similarité, et s'intégrer dansl'analyse 
orrélative 
hoisie.



40 Synthèse en françaisIl n'est pas extraordinaire de �nir une thèse par une ouverture vers plusieurs axes dere
her
he. Au 
ontraire, 
ela nous 
onforte dans l'idée qu'il existe un besoin évident pourmieux 
omprendre les a
tivités qui surviennent, et que la méthode proposée, nomméeHoRaSis, o�re une bonne fondation pour 
ontinuer sur 
ette voie. Elle permet déjàde répondre à un 
ertain nombre de questions, et d'o�rir de solides bases pour essayerde répondre à d'autres. Nous invitons maintenant le le
teur à se reporter dire
tementau do
ument, si l'anglais ne l'e�raie pas, pour de plus amples détails 
on
ernant leste
hniques de la méthode et les résultats obtenus.
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Chapter 1
Introdu
tion

Se
urity is a global 
on
ern in many domains of a
tivity. Internet has the parti
ularproperty of 
onne
ting people in quite an anonymous way and without strong tra�

ontrol. This advantage has also major drawba
ks: mali
ious a
tivities 
an take largeamplitudes and have 
atastrophi
 
onsequen
es. As an illustration, it has been shownby Staniford et al. in [215℄ that a worm 
ould saturate, in theory, 95% of one millionvulnerable hosts on the Internet in 510 millise
onds. Another example is the in
reasingthreat of ele
troni
 fraud that 
an result in losses rea
hing several millions of dollars peryear (a 
ost of $150 million has been reported by the Commonwealth Government in 2001in [106℄). Internet makes large-s
ale 
rimes and devastating damages possible. It is thusreally important to a
quire a good understanding of threats and atta
k strategies. Onemethod to obtain this knowledge is the monitoring and analysis of mali
ious a
tivities, andit must be performed at a large s
ale to gain a global understanding of those phenomena.This method is 
urrently tried by means of numerous te
hniques, some of whi
h belongto the 
ategory of so-
alled honeypots. Honeypots, honeytokens and honeynets have beenused for some time in 
omputing systems even if the use of this terminology is re
ent. Inthe late 80's, Cli�ord Stoll [218℄ had the idea of pla
ing interesting data in appropriatepla
es to lure ha
kers. This idea is now formalized as a honeytoken by Lan
e Spitzner[214℄. In the 90's, Cheswik implemented and deployed a real honeypot [72℄. Bellovindis
ussed the very same year the advantages and problems related to its usage [50℄. In1998, Grunds
hober and Da
ier introdu
ed in [107℄ the notion of sni�er dete
tor, one ofthe various forms of what is also 
alled today a honeytoken. As an attempt to 
larify theterminology, Lan
e Spitzner has proposed the following de�nition for a honeypot [214℄:A honeypot is an information system resour
e whose value lies in unauthorized orilli
it use of that resour
e.This de�nition will be used throughout this thesis. The main advantage of so-
alled



2 1. Introdu
tionhoneypots is their intrinsi
 
apa
ity to 
olle
t suspi
ious tra�
 only. In the last de
ades,all logs were mixed with produ
tion tra�
, whi
h made it di�
ult for se
urity adminis-trators to determine the mali
ious a
tivities. This issue is now bypassed by honeypots.During the last three years, a lot of work has been done to design safe and useful honeypotar
hite
tures, that is, systems whi
h are able to 
apture relevant information, from simples
an pa
kets to IRC 
ommuni
ation of the ha
ker without any danger for the network.Solutions are diverse and honeypot te
hnologies are already used in a large variety ofdomains, from the major antivirus 
ompanies to governmental and international organi-zations. Monitoring mali
ious a
tivities and reporting anomalies 
an be dire
tly linkedto some governmental initiatives and organizations su
h as the various Computer Emer-gen
y Response Teams (CERTTMou CSIRSTs) in many 
ountries in
luding Fran
e, US,Japan, Australia, Korea, Malaysia, Germany, et
1. Alternatively, governments promoteprivately-funded information sharing agen
ies, both for work related to overall network
on
erns and for spe
i�
 se
tor-based needs. For instan
e, the UK is handling the Warn-ing, Advi
e and Reporting Point (WARP) work to establish an interdis
iplinary networkto share 
riti
al se
urity information. Other 
ountries (the US, Canada, Japan, Germany,and Netherlands) have established industry-spe
i�
 Information Sharing and AnalysisCenters (ISAC) to serve a similar purpose.Unfortunately, very few e�orts are made to share information 
olle
ted from thesehoneypots, ex
ept for some emerging 
hallenges between se
urity experts [35℄. On theother hand, 
olle
tive data exist from other initiatives like Dshield, MyNetWat
hmanor the Computer Network Defense Operational Pi
ture [34℄. These initiatives presentinformative statisti
s on attra
tive web pages, but the original sour
e of informationis not always 
lear. They invite any and all Internet users to send their �rewall orIntrusion Dete
tion Systems (IDS) logs in order to extra
t basi
 statisti
s out of them.The information is thus quite limited (hits per port), and 
ontain statisti
s of not onlymali
ious but also produ
tion tra�
.Thus, honeypots are a more valuable sour
e of information than other existing te
h-niques. Unfortunately, as we will explain in detail in the following 
hapter, a large e�ortis made toward optimizing their ar
hite
ture, but few initiatives have emerged to organizeand take bene�ts of the ri
hness of the data. It is important to note that all the tra�

olle
ted by honeypots is by de�nition suspi
ious, so the analysis should not be biasedby high false positive rates. In addition, the existing analyses are often limited to solvinga parti
ular problem. They 
an be te
hniques to monitor distributed Denial-of-Servi
eatta
ks, fast and large s
ans, or typi
al atta
k s
enarios. Most of the monitoring te
h-niques have been implemented by the members of the Intrusion Dete
tion 
ommunity.However, the approa
h is slightly di�erent with honeypots, as all 
olle
ted tra�
 remainssuspi
ious. False positives are therefore not the major worries anymore, whereas it is stillthe 
ase with the majority of Intrusion Dete
tion te
hniques.1The European Commission re
ently established the European Network and Information Se
urityAgen
y, ENISA, to 
oordinate the national e�orts on 
yberse
urity and to serve as an advisory unit tothe Commission and its 
omponent parts.



1. Introdu
tion 3Observation: Honeypots are now widely deployed and te
hni
ally mature. Analysiste
hniques, on the other hand, are really immature and targeted for solving parti
ularproblems.From this observation, we have de
ided to build our own honeypot environment inorder to 
olle
t su
h valuable data. The major motivation is that there is no tra
e ofmali
ious data from honeypots that is publi
ly available and opened for analysis. Thishas been done through a proje
t 
alled Leurré.
om 2, whi
h has involved many partnersfrom various 
ountries and generated great enthusiasm from the se
urity 
ommunity [185℄.Thanks to this informal 
onsortium, we have managed to 
olle
t a huge amount of datafrom various honeypot sensors. It is important to note here that it represents a uniquedataset of information, whi
h is publi
3 and that 
ontain many months (years) of 
olle
tedtra�
. We are not aware of any other datasets like this one at this time writing.Hypothesis: We have a unique set of data at our disposal, that represents mali
iousa
tivities 
olle
ted in various pla
es in the world and from di�erent network types.What 
an we do with su
h valuable data? People have worked on lots of tra�
 analysiste
hniques. We 
an 
ite standard tools for network tra�
 monitoring like net�ow ([75℄),t
pdump ([17℄), simple stats, or more 
omplex but too spe
i�
 theoreti
al methods. Noth-ing spe
i�
 to honeypot data has emerged, and, more importantly, nothing 
onstru
tivehas been suggested as a basis to work on and ex
hange information. We 
an wonder atthis stage if su
h dataset 
ontain useful and original information, that would be hardlyfound by other approa
hes. If the answer is positive, 
ould we identify su
h informationin an automati
 way? In short, we look for a potential framework, that would automatizethe adequate analysis of su
h data. This framework, if it exists, will be 
alled HoRaSis,as the bases for Honeypot tRa�
 analySis.Thesis Statement: In this thesis, we want to show that:� a distributed network of simple honeypots provides valuable data for the analysisand evaluation of threats and atta
k strategies.� there exists an automati
 way to extra
t information whi
h seems relevant. Su
hframework will be 
alled HoRaSis, for Honeypot tRa�
 analySis.Honeypots o�er a parti
ular set of data, that might require a dedi
ated analysis te
h-nique. This 
laim will be justi�ed in the �rst 
hapters through preliminary and promisingexperiments 
arried out on the data. Based on the a
quired experien
e, it be
omes 
learthat we need to develop a framework (
alled Honeypot Tra�
 Analysis or HoRaSis) todo automated analysis by means of a distributed network of honeypots. This frameworkshould be an open one, that is, available for other potential analyses not yet performed.2leurré = 'to lure' in Fren
h; leurré.
om = allusion to the Eure
om Institute.3For any partner that agrees to host one of our platforms, see Chapter 3.



4 1. Introdu
tionHoRaSis must be an e�
ient framework that has to be validated through a datasetof honeypot tra�
. The analysis is at the jun
tion of many resear
h domains, and thepotential framework will not pretend to test all the resear
h dire
tions. From anotherpoint of view, the hypotheti
al HoRaSis should be open to several improvements bymeans of a modular stru
ture. In a more general manner, the HoRaSis framework mustful�ll at least the following requirements:� Validity: A few analyses tasks have been performed manually, by digging into thedata and pulling Ariadne's 
lew. This task, even tedious, has provided interestingobservations. We thus impose any HoRaSis framework to show up these preliminaryobservations. There should not be any 
ontradi
tion with manual analysis, and weexpe
t, a 
ontrario, an enri
hment of these preliminary observations, as detailed bythe next property.� Knowledge Dis
overy: This property is 
learly related to the previous one. Weassume that manual observations might not be the unique ones. The HoRaSisframework must bring new and original knowledge. This new knowledge 
ouldbe validated of 
ourse by 
omplementary manual analysis and would justify theautomation of analysis pro
esses over the dataset.� Modularity: The HoRaSis framework should 
over several resear
h domains. Indeed,we 
an easily identify several major distin
t resear
h bran
hes su
h as Networking,Se
urity and Data Analysis, and dozens of subdomains from whi
h the frameworkmight borrow te
hniques and algorithms. New te
hniques are 
onstantly emergingin all of these �elds. As a 
onsequen
e, it is important that the framework presentsa modular ar
hite
ture. It will be easier, in this situation, to take advantage ofnew te
hnologies by integrating them into the existing framework, and eventually,
ompare them with the ones already implemented.� Generality: Colle
ted data 
an drasti
ally 
hange with the appearan
e of newthreats and new atta
k pro
esses. The HoRaSis framework should 
onsider thatthe analyzed data is evolutive. We should thus avoid building the framework onparameters whi
h are related to parti
ular data 
hara
teristi
s. In other words, theframework should be adapted to other types of dataset.� Simpli
ity and Intuitiveness: The HoRaSis framework must extra
t informationout of a given honeypot dataset (in this 
ase from the Leurré.
om proje
t). There
ipient of the information remains the analyst, who relies on the analysis to deriveobservations and de
isions. It is thus important for the analyst to pre
isely under-stand the di�erent steps whi
h have led to this information dis
overy. The HoRaSisframework must avoid in
luding opaque te
hniques, or magi
 bla
k boxes.It is proved in this report that su
h a framework exists and it has helped us �ndingother valuable results on malware a
tivities. The proposed HoRaSis o�ers an automati
way to validate (or invalidate) these assumptions.



1. Introdu
tion 5Thesis Contributions: The thesis 
ontains the following 
ontributions:� Deployment and administration of a distributed honeypot ar
hite
ture to 
olle
tdata.� Con
eption of a framework 
alled HoRaSis to analyze honeypot data.� Creation of new te
hniques to deal with honeypot data properties.� Validation of the HoRaSis framework based on results obtained in a preliminarystep by digging into the data.� Presentation of new �ndings about monitored a
tivities. Some of them have been
learly identi�ed, others are new questions addressed to the se
urity 
ommunity.To summarize, the thesis 
an be mathemati
ally symbolized by the following problemstatement:� HYPOTHESIS: A honeypot ar
hite
ture deployed to 
olle
t data.� INPUT: A large volume of network tra�
, all pa
kets being mali
ious or at leastsuspi
ious.� PROBLEM: Is this new sour
e of information valuable? If so, how to build areprodu
tive, useful, valid and open analysis framework (HoRaSis) out of this?In a 
on
rete manner, HoRaSis is made of several important steps, that are illustratedin Figure 2.2. Steps 1 and 2 are the deployment and 
olle
tion of information fromhoneypots. This work has been built on top of an a
ademi
 initiative 
alled the Leurré.
omproje
t. For a better understanding of the HoRaSis method, this proje
t is detailed inChapter 3, after an overview of existing approa
hes, both for monitoring and analyzingmali
ious tra�
, presented in Chapter 2. The reader 
an �nd the details of the proposedHoRaSis that 
onsists of steps 3 and 4 in Figure 2.2 in Chapters 4 and 5 respe
tively.Step 3 aims at grouping a
tivities sharing some identi
al patterns, that is, all IPs sharingsimilar �ngerprints on the honeypot sensors are identi�ed and 
lustered. This is des
ribedin Chapter 4. In Step 4, we aim at analyzing the relationship between su
h groups basedon a dedi
ated graph method. All �ngerprints observed on the sensors whi
h present
ommon 
hara
teristi
s are automati
ally dete
ted and analyzed. The method is 
arefullydes
ribed in Chapter 5. Finally, Step 5 is the out
ome of the proposed HoRaSis, thevaluable and 
on
ise information the expert 
an exploit and share with the 
ommunity.Ea
h 
hapter is illustrated by results obtained from the Leurré.
om dataset.Steps of the HoRaSis framework are represented in Figure 2.2, together with the
orresponding Se
tions.
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HONEYPOT SENSORS CAPTURE & STORAGE CLUSTERING STEP

Chapter 3 Chapter 4Chapter 2

GRAPH ANALYSIS EXPERT CONCLUSIONS

Chapter 5

step 1 step 2 step 3 step 4 step 5

Figure 1.1: Distributed Honeypot Sensor Analysis



7
Chapter 2
Ba
kground and Related Work

An deus immensi venias maris, ne tua nautaeNumina sola 
olant, tibi serviat ultima Thule.(Virg., Georg.,i,29.)(Explanation: The Ultima Thule was, in an
ient times, thenorthernmost region of the habitable world -hen
e, any distant, unknown or mysterious land.)2.1 Ba
kground2.1.1 Introdu
tionMonitoring mali
ious tra�
 is an important step to build e�
ient defensive te
hniques.Building a very high wall will take time but will be totally ine�
ient against undergroundintrusions. Knowing the enemy and his strategies is an important step that seems tobe underestimated by many 
ompanies today [213, 144, 168℄. Some vendors produ
emore and more 
omplex boxes, integrating brand new te
hnologies. However, it seemsimportant, as a preliminary risk assessment, to get a very good feeling of the 
urrentthreats.HoRaSis is a framework we are looking for to analyze data obtained from honeypotsin order to take bene�t of the data intrinsi
 properties. Many te
hniques and proje
tsare 
urrently fo
using on 
apturing mali
ious tra�
. In other words, they intend, likehoneypots, to 
apture meaningful data of suspi
ious a
tivities. In parallel, many existingsolutions from various resear
h domains have already been applied to perform analysis ofabnormal a
tivities o

urring in the wild. Thus, for a better understanding of this work



8 2. Ba
kground and Related Workmotivations, we brie�y introdu
e these te
hniques in this se
tion. However, as they arenot 
learly related, we prefer to distinguish the two 
ategories separately:1. Te
hniques whi
h aim at 
apturing original tra�
2. Te
hniques whi
h aim at performing original but spe
i�
 analysis�I keep six honest serving-men (They taught me all I knew); Their names are Whatand Why and When and How and Where and Who.� ("The Elephant's Child", RudyardKipling, Just Stories 1902).These six questions are often tools we as humans use in an attempt to gain knowledge.The same prin
iple will be followed to better understand mali
ious Internet a
tivities.�What� is what we 
all �monitoring malware a
tivities� and will be de�ned in Se
tion2.1.2.�Why� and �When� and �Where� are dis
ussed in Se
tion 2.1.3.�Who� is dis
ussed in the Related Work Se
tions 2.2 and 2.3.�How� is the major 
ontribution of the thesis whi
h presents a new manner to operate.
2.1.2 Monitoring Malware A
tivitiesIt has been heard that "knowledge will set you free". When it 
omes to real-worldnetwork se
urity, this phrase takes all its meaning. One 
an make a short experiment.If someone asks her friends or her network administrator the following question: �do youknow what kind of atta
ks your ma
hines are fa
ing?�, she will normally get the usualresponses, in
luding "well, the traditional worms, you know, Blaster, et
.", or "I do notknow exa
tly. We have set up �rewalls, antivirus, intrusion dete
tion systems. They aredoing their job quite well". The knowledge that 
an be a
quired on perni
ious a
tivitiesnormally 
omes by trusting the information spread over the Internet and the defense toolsdesigned by spe
ialists.To handle this problem, many people are using network monitoring approa
hes1, asde�ned by Bejtli
h et al. in [47, 46℄ with the NSM a
ronym (Network Se
urity Monitor-ing). He de�nes this a
tivity as: the 
olle
tion, analysis, and es
alation of indi
ations andwarnings to dete
t and respond to intrusions.Ma
hines are inter
onne
ted within networks. It is thus possible, by looking at the 
on-ne
tion level, in theory, to see everything. Unfortunately, there also exist many problemsto monitor all a
tivities, like en
rypted pa
kets, a large 
omplexity in terms of proto
ols,standards and implementation bugs. It is also not su�
ient to 
olle
t the data, withoutunderstanding what is under s
rutiny. The analysis is a straightforward step to a
quireuseful knowledge of 
olle
ted data.1Histori
ally applied for the Network Management tasks and the Performan
e Evaluations.



2.1. Ba
kground 9In the following, the fo
us is put on existing methods that aim at 
apturing andanalyzing useful data, with the admitted goal of improving the knowledge of existingnetwork threats.2.1.3 The PurposesThere are many reasons why one would wish to monitor mali
ious a
tivities, as stated inthe previous paragraph. Among other things, we distinguish �ve major domains whi
hmay bene�t from su
h a knowledge:1. To build early warning systems: it is important to rea
t fast against new threats,and at least, limit their overall impa
t.2. To ease the alert 
orrelation task: the administrator re
eives too many alerts fromdi�erent systems in real time. A review of the state of the art of the 
orrelationte
hniques has been des
ribed in [189, 188℄, however, most of them remain verybasi
 or too theoreti
al.3. To enfor
e the se
urity poli
ies toward the new threat trends: a 
on
rete example
an be found with the Pa
ketS
ore proje
t [127℄. The authors prioritize pa
ketsbased on a per pa
ket s
ore whi
h estimates the legitima
y of a pa
ket given theattribute values it 
arries. This is based on the distin
tion of nominal attributevalue.4. To perform tra
eba
ks and forensi
s, in order to determine the root 
auses of theatta
ks and �nd the 
ulprits: this is an important step for law enfor
ement, even ifthis te
hnique might present so
ial and legal problems in some 
ases, as reported in[137℄.5. To 
on�rm or reje
t some assumptions: for instan
e, the author explains in theirreport for the SANS GIAC Institute ([219℄) that an army of more than 100,000ma
hines exist, but he does not bring any 
on
rete proof for this 
laim that wouldlet the reader 
he
k its validity.There already exist several and various sour
es of information whi
h intend to 
olle
tmalware a
tivities. They often di�er in the way the system is positioned and the typeof information it is 
olle
ting. Traditionally, approa
hes to threat monitoring fall intotwo broad 
ategories, host based monitoring and network based monitoring. Host basedte
hniques fall into two basi
 approa
hes, forensi
s and host based honeypots. Antivirussoftware and host based intrusion dete
tion systems seek to alert users of mali
ious 
odeexe
ution on the target ma
hine by wat
hing for patterns of behavior or signatures ofknown atta
ks. Host based honeypots tra
k threats by providing an exploitable resour
eand monitoring it for abnormal behavior. A major goal of host-based honeypots is to



10 2. Ba
kground and Related Workprovide insight into the motivation and te
hniques behind these threats. The se
ondmonitoring approa
h is to observe threats from the network viewpoint. Passive networkte
hniques are 
hara
terized by the fa
t that they do little to intrude on the existingoperation of the network. By far the most 
ommon te
hnique is the passive measurementof live networks. They fall into three main 
ategories: data from se
urity or poli
yenfor
ement devi
es, data from tra�
 
hara
terization me
hanisms, and dire
t sensing orsni�ng infrastru
ture. By either wat
hing �rewall logs, looking for poli
y violations, orby aggregating IDS alerts a
ross multiple enterprises, one 
an infer information regardinga worm's spread. Other poli
y enfor
ement me
hanisms, su
h as logs from router ACLsprovide 
oarse-grained information about blo
ked pa
kets. Data 
olle
tion te
hniquesfrom tra�
 planning tools o�er another ri
h area of pre-existing network instrumentationuseful in 
hara
terizing threats. Coarse-grained interfa
e 
ounters and more �ne-grained�ow analysis tools su
h as NetFlow o�er another readily available sour
e of information.We propose in the following to give a short overview of all existing te
hniques. Aspreviously written, most of them tend to fo
us on one dire
tion only, either monitoringa
tivities or analyzing 
olle
ted information. It seems thus easier to split the related workdes
ription into two major bran
hes:� Te
hniques whi
h aim mainly at 
olle
ting tra�
. They are presented in Se
tion2.2.� Te
hniques whi
h aim mainly at analyzing 
olle
ted tra�
. They are presented inSe
tion 2.3.A summary of the state of the art is o�ered in Se
tion 2.4 and justi�es the thesis position.2.2 On the Capture of Relevant Tra�
2.2.1 Honeypots, Honeynets, HoneytokensMany proje
ts derive from the honeypots and other honeypot-based ar
hite
tures. Itseems thus important, as a preliminary step, to 
larify the terminology used. The inter-ested reader 
an report to the two te
hni
al reports we have written at the beginning ofthis work, and that aimed at 
larifying the terminology in use in the literature [190, 191℄.A methodology has been proposed for students' pra
ti
al works in [202℄. We will 
on-sider indi�erently, in the following, these three terms, and will employ the only honeypotword, following the de�nition suggested by L. Spitzner in [212℄, whi
h is:A honeypot is an information system resour
e whose value lies in unauthorized orilli
it use of that resour
e.



2.2. On the Capture of Relevant Traffi
 11How to ar
hite
t a honeypot depends on the obje
tives it has to ful�ll. A 
omplexhoneypot 
an be built to give the atta
ker a 
omplete operating system with whi
h heintera
ts. However, for dete
ting any unauthorized a
tivity su
h as s
anning, a simplerhoneypot whi
h merely emulates a variety of servi
es in operation 
an be built. However,when 
apturing the latest worm for analysis is the main requirement, then a 
ustomizedhoneypot with the intelligen
e to intera
t with the worm and 
apture its a
tivity is moreappropriate. A honeypot 
an o�er many di�erent fun
tionalities and the level of inter-a
tion they o�er to atta
kers is important. It is supposed to give a granular s
ale withwhi
h to measure and 
ompare honeypots. The more a honeypot 
an do and the morean atta
ker 
an do to a honeypot, the greater the information that 
an be derived fromit. However, by the same token, the more an atta
ker 
an do to the honeypot, the morepotential damage an atta
ker 
an do. We distinguish two di�erent levels of intera
tions:respe
tively low and high.A low-intera
tion honeypot is a 
omputer system that provides 
ertain fake servi
es[44℄. In a basi
 form, these servi
es 
an only be implemented by having somebody listeningon a spe
i�
 port. Servi
es are limited to listening ports. For example a simple Unix
ommand like: net
at� l � p80 > =log=honeypot=port_80:log 
ould be used to listen onport 80 (HTTP) and log all in
oming tra�
 to a log �le. In su
h a way all in
omingtra�
 
an easily be re
ognized and stored. However, with su
h a simple solution it is notpossible to 
at
h 
ommuni
ation of 
omplex proto
ols. The honeypot 
annot tra
e TCP
onne
tions for instan
e as it logs only the �rst 
onne
tion requests without answering.Another solution 
onsists in building simple fake servi
es that emulate a ma
hine behavior.Generally speaking the atta
ker gets a better illusion that a real operating system existsand he has more possibilities to intera
t and probe the system. Spe
ial 
are has to betaken for se
urity 
he
ks as all developed fake daemons need to be as se
ure as possible(bu�er over�ow risk, et
). Furthermore the knowledge for developing su
h a system is veryhigh as ea
h proto
ol and servi
e has to be understood with expert details. In existingimplementations though, fake servi
es are often limited to simple s
ripts. Honeyd, Spe
terand LaBrea are honeypot solutions that 
an be 
lassi�ed as low-intera
tion honeypots (see[190, 191℄ for more information on these tools).On the 
ontrary, a high-intera
tion honeypot has a real underlying operating systemto o�er to the atta
ker. This leads to mu
h higher risk as the 
omplexity in
reases.On the other hand, the possibilities to gather information, the possible atta
ks and theattra
tiveness in
rease a lot. The goal of an intruder will most likely be to get as manyprivileges as possible on the target ma
hine. By providing a full operating system tothe atta
ker we o�er him the possibility to upload and install new servi
es/appli
ations.This implies that the system must 
ontinuously be under surveillan
e. All a
tions 
an,and must, be re
orded and analyzed to gather more information about the bla
khat
ommunity.Lan
e Spitzner explains that: �(his) per
eption of low intera
tion vs. high intera
tion isintent�. With low intera
tion, we intend on limiting the atta
ker to only emulated servi
es.With high intera
tion honeypots, we intend on giving atta
ker a

ess to the full operating



12 2. Ba
kground and Related Worksystem. Both deployments require a real operating system. With low intera
tion, theemulated servi
es do run on a real operating system, as in Tiny Honeypot, Spe
ter, andHoneyd [25, 9, 190℄. However, the goal is to limit the atta
ker to intera
t with just theemulated servi
es and not give them a

ess to the operating system.Honeypots are often generi
 names to de�ne su
h ar
hite
ture that follow the de�nitionof L. Spitzner, and whi
h remain, a
tually, very 
lose to Intrusion Dete
tion Systems, asthey in
orporate one or many of the following fun
tionalities:� Data 
olle
tion� Mali
ious a
tivities Dete
tion� Logging 
apabilities� Analysis te
hniques� De
ision and Rea
tionTheir originality mainly lies on the parti
ular tra�
 they are monitoring, as it 
onsists,e
hoing previous paragraphs, in data representing suspi
ious tra�
 only.2.2.2 Darknets, Teles
opes, Bla
kholesCAIDA's Network Teles
opeThe Cooperative Asso
iation for Internet Data Analysis, also 
alled CAIDA, has devel-oped parti
ular honeypots, 
alled network teles
opes. They de�ne a network teles
ope asa portion of routed IP address spa
e in whi
h little or no legitimate tra�
 exists. Thus,monitoring unexpe
ted tra�
 arriving at a network teles
ope provides the opportunity toview remote network se
urity events su
h as various forms of �ooding denial-of-servi
e at-ta
ks, infe
tion of hosts by Internet worms, or network s
anning. As the authors mentionin [158℄, network teles
opes were named as an analogy to astronomi
al teles
opes, and inboth of these 
ases, have a large size (fra
tion of address spa
e or teles
ope aperture).The ranges 
an be quite large (e.g. a /8 pre�x 
orresponds to 16 million addresses), andteles
opes 
annot be used by anyone in pra
ti
e. The teles
opes used by CAIDA alsoassume that the teles
ope is monitoring 
ontiguous range of address spa
e. In terms ofprobability, they 
an extrapolate this way the monitored a
tivity, based on the fa
t thatfor an IPv4 network of size /x, the probability of monitoring a 
hosen target is given by:px = 12x . This unique observation has lead to interesting worm studies, like:� the Saphire/Slammer worm [159, 156℄
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 13� the Witty worm [157℄� the Code Red and Code Red II worms [22℄Teles
opes are also very useful to dete
t and observe large Denial of Servi
e atta
ks,as spoofed Sour
e IP addresses involve a large range of IPs, and result in an importantnumber of pa
ket residues 
alled ba
ks
atters. Su
h studies have been presented in [160,162℄.The extrapolation task is meaningful for all atta
ks that are involving the whole IPv4address spa
e, but this global approa
h might present a few limitations:1. The probabilisti
 model does not sometimes hold, for the reason that some IP spa
eregions are inexistent or not routed. Su
h IP spa
es are 
ommonly 
alled the bogons[97℄. These addresses, and other unallo
ated blo
ks are not taken into a

ount inthe probabilisti
 model.2. Many atta
k tools are sour
e-dependent and target nearby addresses. This has beenshown in the Cod Red II propagation strategies [243℄, and it has also been 
on�rmedby some experiments in [67℄ that a few atta
ks are spe
i�
 to parti
ular networks.3. The 
oding of the worm might 
ontain some bugs, espe
ially the pseudo-randomnumber generator. This 
an introdu
e a bias in the probabilisti
 model.4. The amount of 
olle
ted information is 
olossal, espe
ially if the analysis needs to beperformed over several months. It is not expli
itly mentioned how teles
ope-basedsystems manage to store su
h data, but it either requires huge memory 
apa
itiesand lookup resour
es or it is based on the NetFlow aggregated information. In thislast 
ase, some information might reveal to be missing during pun
tual experiments(see Se
tion 2.3.2).The CAIDA's Network Teles
ope is a very high-level monitoring system. This ap-proa
h has led to noti
eable results and we are 
onvin
ed it has opened large avenues forinvestigation [76, 161℄. This te
hnique has also been deployed in other resear
h proje
tsthat we detail in the next se
tions. However, despite these bene�ts, the huge amount ofdata is an important limitation for performing lower-level analyses. Furthermore, deter-mining how the CAIDA members organize data is di�
ult. We 
an imagine that there alsoexists potential priva
y issues, as the teles
ope should monitor some produ
tion tra�
despite the fa
t that the range of IPs is theoreti
ally unused. These two major drawba
kshave motivated the 
reation of the Leurré.
om proje
t des
ribed in Se
tion 3 and the needto organize e�
iently the 
olle
ted data and gather experien
e on the tra�
 over a longperiod of time (in terms of months, and even years).Finally, we want to mention the interesting initiative laun
hed by the CAIDA membersand 
alled the Internet Measurement Data Catalog (IMDC) [77℄. This initiative is not
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kground and Related Workdire
tly related to the Teles
ope approa
h, but it aims at building a system that wouldfa
ilitate a

ess, ar
hiving, and long-term storage of Internet data as well as sharing thedata among Internet resear
hers. CUrrently, though, they only share meta-data, that is,out
ome of analysis (whi
h makes the work on it not always simple). Con
erning malwareanalysis, they o�er at this time an a

ess to ba
ks
atter2 data from the UCSD networkteles
ope. Unfortunately, they 
urrently o�er resear
hers only three weeks of DoS atta
ksdata from January 2001. Despite this, the authors mention in [77℄ the same underlyingmotivations for network measurement resear
h than those we defend in this thesis: a la
kof meaningful and organized data to be shared with the 
ommunity. This problem of dataavailability is re
urrent for all 
onsidered solutions in the following.The Internet Motion Sensor: IMSThe Internet Motion Sensor is a proje
t from the Mi
higan University that utilizes adistributed sensing network based on the monitoring of globally routable but unusedaddress spa
e. The 
on
ept is similar to the Network Teles
opes. To make things shorter,this te
hnique has a variety of other names in
luding network teles
opes, darknets, andbla
kholes. Ea
h bla
khole sensor monitors a dedi
ated range of unused IP address spa
e[27, 82℄. As the ar
hite
ture was deployed to monitor quite large IP Address spa
es (/8,/16 and /24 networks), the authors do not have the 
apa
ity to log all pa
ket information.In their defense, they have developed an e�
ient te
hnique to manage the overhead ofstoring payloads. However, the proje
t remains limited to tra�
 
olle
tion and storage.The analysis 
onsists in some statisti
s and, as presented in [82℄, the analysis of a wormis restri
ted to the statisti
s of a single port and to the 
ounting of pa
ket payloadsmat
hing the signature of that parti
ular worm. It is hard at this stage to make stronger
omparisons between the sensors than the ones they have deployed.However, Cooke et al. have presented an interesting study based on simple 
riteriain [81℄. They use 10 large IMS sensors in di�erent networks, belonging to major servi
eproviders, large enterprises and a
ademi
 networks. Then, the authors have 
omparedthe observed tra�
 on ea
h IMS a

ording to three dimensions:� Over all proto
ols and servi
es (ports): they have 
on
luded that the amount oftra�
 (between sensors) varies dramati
ally and 
an di�er by more than two ordersof magnitude between sensors� Over a spe
i�
 proto
ol (TCP) and port (135): this time, they have 
on
ludedthat there are large disparities between the number of unique sour
e IPs seen a
rossplatforms, and that these di�eren
es 
orrelate with di�eren
es in overall tra�
.� Over a worm (Blaster) signature: they �nally have 
on
luded that there are stillsigni�
ant di�eren
es in the number of unique sour
es between sensors.2Ba
ks
atters are residues of Denial of Servi
e atta
ks.
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 15This work has highlighted the fa
t that the CAIDA's approa
h, whi
h extrapolates a largeIP tra�
 observation into the whole Internet, 
annot properly hold. First, there mightbe inhomogeneous a
tivities within the monitored IP range. Se
ond, there 
an be dissim-ilarities between IP ranges. This is another interesting justi�
ation of the deployment ofsmaller and more lo
al sensors. The Leurré.
om Proje
t we have developed over the lastyears in order to 
olle
t valuable data is based on the same prin
iple. Lo
al positioning ofhoneypot sensors might bring di�erent, or at least, 
omplementary and valuable informa-tion. This partially explains the de
ision to develop a distributed ar
hite
ture of sensors,instead of a global monitoring system like the teles
opes presented in the previous se
tion.The information is not 
entralized. Ea
h IMS sensor is responsible for gathering andar
hiving data, performing queries on its lo
al data store, and generating alerts that aresent to a third element 
alled aggregator. In this distributed storage environment, itseems hard to make 
ross sensors analysis, ex
ept on a few global statisti
s.Team CYMRU's Darknet Proje
tA group of resear
hers founded in 2004 the Team CYMRU, In
. One of their apparentobje
tives was to share their se
urity experien
e with the 
ommunity. They have laun
hedthe TEAM CYMRU's Darknet Proje
t and have provided all the dire
tions in their website to settle su
h an environment [87℄. The prin
iple is also very 
lose to the NetworkTeles
ope3. The authors' re
ommendations 
an be found on their web page: At a mini-mum we re
ommend a /24, though smaller address spa
e - even up to a /32 - will work.This un
lear requirement is 
ompleted by the dire
tions to 
on�gure the router and tomonitor the tra�
. They give poor information, however, on the te
hniques to analyzethe data. They only suggest to 
reate simple garbage meters based on the tra�
 enteringthe Darknets. Figure 2.1 found on their web page illustrates su
h a metri
. It shows sim-ple statisti
s on the number of pa
kets re
eived per se
ond (pps) on ea
h sensor (notedDARKXX in the Figure). It is worth noting that values vary a lot among Darknets. Itremains 
oherent with the remarks made in the previous se
tion. However, one more time,a prevalent e�ort is made to build a useful ar
hite
ture for monitoring mali
ious tra�
,but no real e�ort is made towards the analysis.iSinkAmong systems that monitor large unused address spa
es like the ones previously de-s
ribed, we 
an also mention iSink, developed by the University of Wis
onsin-Madison[235, 236℄. A large e�ort has been made on the ar
hite
ture intera
tion provided bythe A
tive Sink built on the Cli
k elements [12℄. The monitoring and analysis parts arebased on measurement tools, like MRTG [167℄, FlowS
an [1℄, and Argus [13℄. These tools3Team Cymru is also a 
ollaborative member of CAIDA.



16 2. Ba
kground and Related Work

Figure 2.1: Darknet Tra�
 Garbage Meter from [87℄provide valuable �ow level information and 
an deal with large pa
kets tra�
 (iSink 
ol-le
ts unsoli
ited tra�
 destined for approximately 100,000 unused IPv4 addresses within4 
lass-B networks). The authors gather statisti
s 
on
erning inbound tra�
 (bits orpa
kets per se
onds), TCP �ows and other tra�
 measurement metri
s. This providesinteresting remarks on the tra�
, like the pa
ket sizes, whi
h are relatively 
onstant, andthe number of bytes and pa
kets whi
h follow a predi
table ratio, one reason being theimportant volume of TCP tra�
. These measurement tools 
annot be 
onsidered stri
tosensu as malware analysis tools. They provide interesting pie
es of information but areintrinsi
ally not su�
ient to identify, and thus to understand, malware a
tivities.
MINOSMinos is an emulation tool proposed by the University of UC Davis that presents theadvantage of tagging network data 
onsidered as low priority, and then propagating thesetags through �lesystem operations and the pro
essor pipeline to potentially raise an alert,whenever low integrity data is used as 
ontrol data in a 
ontrol �ow transfer [84℄. Itimplies a tuning at the pro
essor level and the operating system.Thus, Minos is by de�nition a host-based intrusion dete
tion system. In [85℄, theauthors have deployed it in ma
hines plugged in the wild, to use its features as a honeypot.However, this ar
hite
ture is very spe
i�
 to monitor atta
ks that intend to hija
k the
ontrol �ow of the CPU. The authors provide in [85℄ few examples of bu�er over�owexploits against servi
es like SQL Server 2000, Linux wu-ftpd, et
. The monitoring of thea
tivities is restri
ted to Minos alerting system and assembly 
odes. The 
apture pro
essis here very 
lose to a dete
tion me
hanism.
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 17LobsterLobster (for Large S
ale Monitoring of Broadband Internet Infrastru
ture) is a Europeanproje
t with a resear
h Consortium (in
luding among others the greek FORTH foundationand the University of Amsterdam) that aims at deploying a pilot European infrastru
turefor a

urate Internet tra�
 monitoring [60℄. In order to support 
ollaborative passivenetwork monitoring a
ross a large number of geographi
ally distributed uniform a

essplatform sensors, Lobster is based on a distributed uniform a

ess platform, whi
h pro-vides a 
ommon interfa
e for appli
ations to intera
t with the distributed monitoringsensors. This interfa
e is build onto the Monitoring Appli
ation Programming Interfa
e(MAPI), while the network monitoring system is 
alled SCAMPI (SCAlable Monitor-ing Platform for the Internet [83, 166, 86, 55℄). A great e�ort has been made during theproje
t on the te
hni
al ar
hite
ture of the tra�
 
apture, as it 
an handle high-speed net-work 
ards (10 Gbits/s) and has been dire
tly implemented in some Network Pro
essors.The ar
hite
ture 
an also measure network performan
e and behavior at high-speeds, inorder to feed billing 
omponents. First, this ar
hite
ture has not been designed to 
olle
tmali
ious tra�
 only. This is thus not a distributed honeypot ar
hite
ture, by de�nition.Se
ond, the analysis of mali
ious tra�
 is handled by a dedi
ated Network Intrusion Sys-tem (IDS) using 
onverted Snort rules. As a 
onsequen
e, and despite its title, this proje
tremains quite far from the initial problem statement we have de�ned, as the monitoringof mali
ious a
tivities remains limited to the observation of the snort alerts.2.2.3 Logs SharingThere are some other approa
hes very similar to monitoring 
onsoles, whi
h di�er fromthe origin of the data. Unlike monitoring 
onsoles that aim at representing logs and alertsissued by the a
tive se
urity elements of the supervised network, these approa
hes 
olle
tdata from... everywhere. Anyone who is willing to send data registers, installs a smallsoftware that periodi
ally sends data. Then, some s
ripts parse these datasets, grabbinga small number of elements, like the targeted servi
es, the number of observed di�erentIPs, et
. Among these approa
hes, we note the interesting proje
ts 
alled WormRadar,Internet Storm Center from the SANS Institute, Dshield, MyNetWat
hman [36, 33, 5,163℄. They give a very good overview 
oming from di�erent pro�les, and are thus, usefulto get a �rst hint on the mali
ious a
tivities happening in the Internet. However, they
olle
t logs from any network. Thus, all these proje
ts make the assumption that whatthey re
eive in the logs is a good representation of global a
tivities. Su
h an approa
hpresents a few in
onvenien
es:� They trust all entities that send their logs.� They mix se
urity poli
ies �ltering and malware a
tivities.
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kground and Related Work� We have no information on the exa
t sour
e of the information (a
ademi
, military,industry network?)� They do not give explanations on how they extra
t information from these variouslog formats.� They make simplisti
 links between a
tivities on a given port and worm names.However, many malware 
an take bene�ts of the very same port; the same malware
an be 
hara
terized by a
tivities on many ports . . . and vi
e-versa.� There is no way to dig into the data. The analysis remains limited to the plottedstatisti
s and reports.WormRadar is slightly di�erent, as it relies more on a visualization prin
iple [36℄. Thesoftware to install emulates a 
ouple of servi
es, (IIS, FTP, Telnet), for a brief periodbefore it 
uts the 
onne
tion with a FIN allowing su
h things as a login to the FTPserver as anonymous or to see what the GET/Head et
. It then allows listening on auser-de�ned series of ports (both TCP and UDP). On these ports, WormRadar seemsto a

ept any data sent. It is an interesting little toy but the do
s on its site are sadlyla
king so there is a need to experiment to �nd out what it does. In any 
ases, thesetools are pra
ti
al syntheti
 elements and visualization methods of Internet a
tivities.However, they 
annot be 
onsidered as valid and trustworthy providers to build on a
ertain knowledge of malware a
tivities. As an illustration, Wormradar 
an be per
eivedas an aggregated port hit statisti
 site: the o�ered data is the web interfa
e. However,data is sent by anybody willing to parti
ipate. Con
lusions and available data are thuslimited to exposed graphs in the web interfa
e.2.2.4 OthersIn LargeOther tools 
an be used as well to monitor mali
ious tra�
. They are not dedi
atedto this task only, or, so to say, they do not pretend to 
olle
t mali
ious tra�
 only.This in
ludes all approa
hes hidden behind the expressions Intrusion Dete
tion Systems(IDSs), or Intrusion Prevention Systems (IPSs) [18℄. Con
erning IDSs, it is importantto note that they still tend today to trigger an abundan
e of mostly false alerts. In[122, 123℄, Julis
h et al. explain this fa
t by a few reasons, in
luding the under and overspe
i�ed signatures, or the la
k of abstra
tion. The major di�
ulty 
onsists in 
lassifyingtra�
 into two 
ategories: normal and abnormal. This issue does not exist anymore,however, with respe
t to honeypot te
hnologies. IPSs normally 
olle
t logs of the tra�
they blo
k, so, they are not monitoring mali
ious tra�
 only, but instead, all pa
ketsthat do not mat
h the se
urity poli
y 
hosen in the 
onsidered network. This is not theexa
t expe
tations, as ea
h tra�
 is then tightly 
orrelated to the network se
urity poli
ywithin whi
h it is 
aptured.
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 19Mw
olle
t and NepenthesAmong other 
olle
tion tools, we 
an mention the new mw
olle
t tool [31℄. Mw
olle
tis somehow di�erent from typi
al honeypots be
ause it was originally designed to 
olle
tbot software, but the 
urrent version 
olle
ts worms and other forms of malware that takeadvantage of vulnerabilities that mw
olle
t exposes. A

ording to the mw
olle
t Website, systems that run the tool 
annot be infe
ted with malware due to the way mw
olle
toperates internally. It binds to spe
i�ed ports, waits for an exploit attempt, s
ans forshell 
ode, and tries to download any related malware. Captured malware 
an then beadded to a database at the mw
olle
t Web site.The se
ond 
olle
tion tool Nepenthes is similar to mw
olle
t [32℄4. It also presentsknown vulnerabilities to the network and waits for intrusion attempts. Current modulesfor Nepenthes enable it to emulate vulnerabilities with DCOM, Lo
al Se
urity AuthorityServi
e (LSASS), WINS, ASN1, NetBIOS, SQL Server, and a lot more Mi
rosoft servi
es.Sin
e Nepenthes runs on Linux systems, none of those servi
es would a
tually be available,whi
h means exploits against them would have little or no e�e
t on the underlying OS.Just like mw
olle
t, when Nepenthes dete
ts intrusion attempts, it tries to downloadany related malware through a variety of methods in
luding FTP, Trivial FTP (TFTP),and HTTP. Captured malware is then sent to a 
enter server hosted by the developersof the tool. These tools are very interesting to 
olle
t the whole malware, in
ludingpayloads and binaries. They are thus very interesting to 
apture meaningful information.Unfortunately, there are dedi
ated to a small number of a
tivities, the ones that takebene�t of o�ered vulnerabilities. Furthermore, it remains to the analyst, on
e the datahas been 
olle
ted, to perform a non-obvious task for disse
ting 
aptured data.
HoneyTankHoneyTank 
an be seen as a good 
omplement of large teles
opes and darknets. It hasbeen designed with the idea that su
h ar
hite
tures might have di�
ulties in logging alla
tivities for thousands of unused IPs. The authors suggest to tag pa
kets in a parti
ularway, exploiting the timestamp option of TCP. This avoids monopolizing lots of memoryand 
pu resour
es to keep 
onne
tion states. This te
hnique, however, is restri
ted and
an only work to emulate TCP servi
es. In addition, it requires the atta
ker to 
orre
tlyreply to TCP timestamps (TSe
r �eld must e
ho the last re
eived Tval value). One moretime, a noti
eable e�ort is made to parti
ipate in the building of a honeypot ar
hite
ture,but very few to monitor and analyze the output.4In February 2006, the two proje
ts merged operations into a single malware 
olle
tion tool also 
alledNepenthes.
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kground and Related Work2.3 On the Analysis of Tra�
2.3.1 PositioningThere are many te
hniques whi
h aim at analyzing the tra�
. All a
tive te
hniquesare not 
onsidered in this do
ument. We identify two major 
ategories: some tools aimat 
apturing pa
kets, while others bring add-ons on the tra�
 they 
olle
t by somehowinterpreting them. The �rst 
ategory is out of the s
ope of this se
tion, as it has beenbrie�y introdu
ed in Se
tion 2.2. We detail in the following some te
hniques that 
ould
ompete as 
andidates to analyze mali
ious tra�
.2.3.2 Net�ow name Des
riptionsr
addr Sour
e addressdstaddr Destination addressinput Input interfa
eoutput Output interfa
edPkts Number of pa
ketsdBytes Number of bytesFirst Start of NetFlowLast End of NetFlowsr
port Sour
e portdstport Destination portt
p_�ags TCP �agstos IP type-of-servi
eTable 2.1: Some Relevant NetFlow Fields (v5)
Many router manufa
turers implement interesting logging 
apabilities that o�er to sum-marize and analyze the tra�
. One famous data is the CISCO's NetFlow5. The 
on
ept of�ow has been proposed by Cla�y et al. [78℄ as: a �ow is a
tive as long as observed pa
ketsthat are meeting the �ow spe
i�
ation are observed separated in time by less than a spe
i-�ed timeout value. Flows have proven to be a very useful tool for measurements and tra�

hara
terization. This is also re�e
ted in the e�orts to standardize �ow data measurementand 
olle
tion ar
hite
tures [59, 180, 91℄. CISCO's �ow level aggregation te
hnique [75℄almost �t the model by Cla�y et al. A

ording to CISCO do
umentation, the NetFlow5We use the term NetFlow for both the 
on
ept as well as individual re
ords



2.3. On the Analysis of Traffi
 21implementation identi�es a �ow by the tuple (sr
addr, sr
port, input, dstaddr, destport,tos). Table 2.1 summarizes some of the relevant �elds related to NetFlow re
ords.NetFlow presents a few limitations. For instan
e, it may aggregate pa
kets from severalTCP 
onne
tions into one NetFlow, e.g. if the same so
ket is used for several 
onne
tionattempts, as done by �le-sharing appli
ations or some atta
k tools [207℄. A 
ontrario, aTCP 
onne
tion 
an be split into many NetFlows, if the TCP 
onne
tion is longer thanthe �ow timeout. As a 
onsequen
e, it is very hard from the aggregated NetFlows layerto dedu
e the TCP 
onne
tion layer. The �ow model is very interesting though, and hasbeen proved useful in quite a few studies. For example, it has been used by Thompson etal. [224℄ for tra�
 measurement and 
hara
terization. Lin et al [143℄ evaluate the e�e
tof di�erent �ow 
lassi�ers on swit
hing performan
e, while Feldmann et al. [98℄ examinethe impa
t of appli
ation-layer aspe
ts on the �ow 
hara
teristi
s. Newman et al. [164℄propose IP swit
hing based on �ows.More in the fo
us of this do
ument, NetFlows have also been used to monitor mali
iousnetwork tra�
. CISCO itself o�ers a produ
t 
alled The Cis
o Se
urity Monitoring, Anal-ysis and Response System (Cis
o Se
urity MARS) that models the �ows in the network,and make periodi
 
omparisons based on expert rules and network topology information.Many reports have been applied on NetFlow tra�
 from high-speed networks. As anillustration, Duebendorfer et al. present in [93℄ a study of the Blaster.A and Sobig.Fworms in a Swiss ba
kbone network 
alled SWITCH. We have extra
ted from [93℄ thedetails of Blaster's infe
tion and presented it in Figure 2.2. Blaster infe
tion me
hanismis 
urrently well-known, and is split into a
tivities against two distin
t TCP ports, 135and 4444 on the vi
tim size.

Figure 2.2: Blaster's Infe
tion Steps [93℄The authors have then de�ned four di�erent infe
tion stages that 
lassify to whi
hextent a Blaster infe
tion attempt on a vi
tim ma
hine is su

essful. They have asso-
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iated ea
h infe
tion stage to its 
orresponding NetFlows. Finally, they have extra
ted�ow-level plots for ea
h infe
tion stage, in order to estimate the number of stage 
ases.Unfortunately, it is not 
ompletely sure that they are seeing Blaster.A a
tivity by observ-ing a
tivities on port 135 or on port 4444, and by imposing a few 
onstraints on the �ows(ranges for �ow byte sizes). This limitation 
omes from the intrinsi
 de�nition of �ows.Another important limitation is that the 
orrelation between NetFlows and Blaster's in-fe
tion stages has been possible thanks to the diagram presented in Figure 2.2. However,the knowledge about atta
k tools is either kept se
ret or simply not a
quired. Thus, thiste
hnique 
an only be applied a posteriori, when the atta
k tools have been well-studied.The solution we propose will be inspired from the NetFlow �elds to 
lassify our data, but,at the same time, will be designed to avoid the same pitfalls and limitations.It is also worth noting that other proto
ols and standards similar to Net�ow exist.One is sFlow. sFlow is an open standard de�ned in RFC 3176 [179℄. It is based onpa
ket sampling, and while NetFlow only 
aptures information about IP pa
kets, sFlow
an be used to analyze other proto
ols like Ethernet, IPX and Appletalk. IPFIX andPSAMP are two IETF working groups that are working on standardizing IP �ow exportand sampling. PSAMP 
on
entrates on de�ning methods for sampling based passivemeasurement of �ows, while IPFIX is a new e�ort to de�ne what information �ow re
ordsshould 
ontain and how they are exported to 
olle
tors. At the moment, nothing 
on
retehas emerged, and none of the tools based on these solutions are dedi
ated, as far as weknow, to monitor mali
ious a
tivities in parti
ular [147℄. The interested reader 
an havea look at [15℄ where an interesting state-of-the-art of many dozens of net�ow-based toolsis presented.2.3.3 Billy GoatDupon
hel et al. introdu
e in [118℄ "Billy Goat", a honeypot-like system dedi
ated toworm dete
tion. The 
apture tool, at �rst glan
e, is similar to produ
ts likeWormS
out, oreven honeyd ([195℄), but is built on top of iptables in a 
lever way. With the system basingall its feigned servi
es on an infrastru
ture for virtualization, a single Billy Goat ma
hine
an appear as many addresses on the network. At the same time, the virtualizationinfrastru
ture allows the use of standard programming tools and interfa
es to 
reate newfeigned servi
es for Billy Goat. The mountains of data that these virtual servi
es 
reateare stored and 
ataloged (that is, logged) in a relational database, whi
h is summarizedin Figure 2.3. An interesting e�ort has been made to help organizing the data. Data isaggregated for ea
h observed sour
e address over a spe
i�
 time frame (not spe
i�ed in[118℄). The aggregation results from �ve main parameters:� The Sour
e IP address� The time period 
overed by the data in the model� The IP addresses of the Billy Goat sensors that have reported the a
tivity
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 23� the des
ription of network/transport level a
tivities (Sour
e and Destination IPaddresses/ports, Proto
ol, �ags)� Des
ription at the appli
ation level (XML �elds: REQUEST and HOST, see Figure2.3)Unfortunately, it is not really 
lear how the authors 
an map ea
h appli
ation leveldata into a XML format. The do
ument remains very vague on that �eld. Furthermore,the authors apparently avoid 
ompletely other meaningful pa
ket ex
hange formats likeTCP, ICMP or UDP. However, the impa
t is di�erent in the 
ase the pa
ket is �aggedRST/ACK with payload (
rafted pa
ket for instan
e), or if it is SYN-�agged. Finally, thereal purpose of the database is not 
lear, as most of the (redu
ed) 
olle
ted informationis in �ne generalized during the analysis by means of a simple summarization of thedata (orders of magnitude, statisti
s). We note here a 
lear e�ort to organize the data.Unfortunately, the extra
tion of information remains too restri
ted to build upon a stronganalysis as we intend to.

Figure 2.3: Database Stru
ture used in Billy Goat [118℄HoneyStatIt seems also relevant to present HoneyStat [197℄. This original approa
h 
onsiders Des-tination/Sour
e Correlation (DSC) to mat
h the same port being used for sour
e anddestination s
ans to identify 
ompromised ma
hines. The authors demonstrate in [197℄that this approa
h works �ne for analyzing s
an-based, fast spreading worms. The generalidea behind DSC 
onsists in keeping a sliding window of lo
al network tra�
. Two generalitems are tra
ked: for ea
h port witnessed in this tra�
, the authors re
ord the addressof the inside destination host and the s
anning sour
e from the monitored network. If a
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e s
an originates from a host that previously re
eived a s
an on an identi
al port,i.e., they observe a worm behavior-like infe
tion pattern, and treat this lo
al host as asuspi
ious vi
tim. In other words, if a host gets a pa
ket on port i, and then starts sendingpa
kets destined for port i, it be
omes suspe
t. Then, if the immediate outgoing s
an ratefor the suspe
t hosts deviates from a normal pro�le, the suspi
ious vi
tim is 
onsideredto be infe
ted.This analysis te
hnique is quite spe
i�
 to worm dete
tion. We 
an also 
ite a fewother te
hniques, having similar approa
hes, like Collapsar from Purdue University [121℄.Resear
hers have also proposed statisti
al models, e.g. Kalman Filter [244℄, analyzing re-peated outgoing 
onne
tions [232℄, and vi
tim 
ounter-based dete
tion algorithms [233℄.All these approa
hes, however, remain quite worm oriented. We are interested in the fol-lowing to 
lassify tra�
 more than to �nd a dete
tion te
hnique that would be appli
ablein very spe
i�
 
onditions or to very spe
i�
 
lasses of atta
king a
tivities.2.3.4 Monitoring ConsolesThe topi
 has been widely studied in [188, 189℄, in whi
h we have des
ribed many te
h-niques and existing tools. The monitoring 
onsoles are often relying on the alerts andlogs issued by se
urity systems (�rewalls, IDSs). We have shown the gap that exists,as of today, between sophisti
ated te
hniques presented in resear
h papers and a
tualimplementations that are readily available. We have presented solutions not only fromthe Intrusion Dete
tion 
ommunity but also from the Network Management 
ommunity,whi
h has tried to solve similar problems for many years. Solutions exist that 
ome fromvarious resear
h domains and that have proven their e�
ien
y in many 
ases. However,we have rea
hed a de
eiving observation: among tools and produ
ts that have been pro-posed so far in Alert Correlation, very few implement su
h approa
hes. Most of them arelimited to down-to-earth, pragmati
 te
hniques, su
h as pattern mat
hing or databasequeries. As a 
onsequen
e, we do not detail more this �eld in the following, but we invitethe interested reader to have a look at [188, 189℄ for a more 
omplete state-of-the-art.2.3.5 Vizualization Te
hniquesNetwork se
urity visualization is an emergent �eld and a number of systems exist thatfo
us on event visualization with an eye for relatively dense data display. Their goal isboth to fa
ilitate awareness of the global network status and to subsequently explore thedataset. Some solutions 
an be also seen as extensions of the 
ategory presented in the pre-vious se
tion 
alled Monitored Consoles. Among the solutions, we note NvisionIP, whi
hshows a
tivities between pairs of IP addresses and the similar but more abstra
t SeeNet[132, 45℄. Colombe et al. present an interesting data representation for visualization. Theidea of the display is to tap into the user visuospatial pattern re
ognition skills (rainbow
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 25palette 
oloration, position on the s
reen, et
)[79℄. PortVis ([153℄) is also an interestingvisualization tool whi
h aims at displaying network �ows. The authors 
hara
terize thetra�
 by a tuple, ea
h tuple representing the a
tivity on a given port during a given hour,through a given proto
ol. This is a �rst step to organize information, but this 
hoi
e wasmade to build the tool, more than to 
lassify the data for other investigations. In all
ases, the analysis they provide is based on the expert's view of the o�ered graphs. Theygive a few possibilities to tra
eba
k information from the graph to the pa
kets6, and areoften limited to plotting useful but non su�
ient statisti
s, like the number of alerts, thequantity of data transfers, the ports a
tivities, et
. It is thus hard to understand the realmali
ious a
tivities. These tools are designed to dete
t, or at least, show up anomalies,more than to understand the o

urring threats.2.3.6 ModelingModeling malware a
tivities is an a
tive resear
h domain. Very interesting approa
heshave been observed in re
ent se
urity 
onferen
es like the Workshop on Rapid Mal
ode(WORM) or the Conferen
e on Re
ent Advan
es in Intrusion Dete
tion (RAID). It is re-ally interesting to analyze the malware a
tivities by reprodu
ing in a theoreti
al environ-ment its behavior, either by applying mathemati
al formula (most of them are 
urrentlybased on the epidemiologi
 domain [69, 204, 126, 245, 246, 205, 140, 68℄) or dedi
ated sim-ulation testbeds ([227, 96, 170, 239, 139℄). Unfortunately, these models 
an be validatedas 
orre
t if and only if they mat
h (during a 
ertain period of time) the propagation andevolution of existing threats. This dire
tly implies to have full a

ess to some parti
u-lar dataset where this information 
an be easily retrieved. Su
h dataset does not existhowever, or some very spe
i�
 logs are applied as referen
es without numerous details re-garding their relevan
e. Some other tests have a questionable validity, as the ones basedon famous datasets provided by the Lin
oln Lab of the MIT in 1999 [146, 150℄. This basi
observation has motivated the de
ision to o�er a

ess to the whole dataset to all partnersof the Leurré.
om proje
t. The modeling te
hniques, in addition, are limited to a fewpropagation strategies implemented by popular worms (see for instan
e the analysis ofCodeRed II in [157℄). As a 
on
lusion, these te
hniques will really show their values whenbeing 
ompared to large and valid datasets from various pla
es. They 
annot repla
e themonitoring and analyzing steps we are 
onsidering.2.3.7 Challenges and Personal A

omplishmentsAmong the interesting analysis te
hniques, we 
an also mention the personal a

omplish-ments of individuals, who design their own environments, and share their informationwithin a 
ommunity. Many se
urity resear
hers report su
h analysis and tools in in
ident6It is all the more true that most of the tools presented in this se
tion are dire
tly working on Net�owlogs.
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kground and Related Workand forensi
s mailing lists [74, 113℄. Another approa
h is to organize 
hallenges. As anillustration, the Honeynet Allian
e organize a monthly 
hallenge, 
alled Forensi
 Chal-lenge, whi
h 
onsists for in
ident handlers around the world in all looking at the samedata (an image reprodu
tion of the same 
ompromised system) [35℄. The jury determineswho has dig the most out of that system and has managed to 
ommuni
ate her �ndings ina 
on
ise manner. This is an expert study of tools, te
hniques, and pro
edures applied topost
ompromise in
ident handling. As the organizers say in [35℄, "the 
hallenge is to havefun, to solve a 
ommon real world problem, and for everyone to learn from the pro
ess".This is a good experimental analysis, but it remains ane
dotal, not perfe
tly rigorous inmany 
ases, and might not re�e
t the 
urrent threats networks are fa
ing. This 
an give,however, another hint at some mali
ious a
tivities.
2.3.8 OthersSets, Bags and Ro
k 'N RollM
Hugh has presented in [151℄ interesting 
on
epts that have led to the 
reation of a seriesof tools 
alled SiLKtools (also detailed in [105℄), designed in the 
ontext of the CERTCoordination Center from Carnegie Mellon University. The author shows that there isvalue to use sets, in order to provide a 
ompa
t way of des
ribing and reasoning aboutthe Internet and about tra�
 observed at various points on it. For example, this mightbe useful to 
onsider su
h things as the set of external hosts that are observed performinga s
anning a
tivity during a time interval. Similarly, one might want to identify the setof users of some servi
e provided by the lo
al network (e.g. web servi
es) to the outsideworld during the interval. The use of sets and bags allows abstra
ting from individualbehaviors to 
lusters of a
tivities. It is also important to mention that this 
lustering isperformed on the data monitored by the CERT, that is a very large amount of pa
kets perse
ond. As a 
onsequen
e, the 
lustering tools have been built on Net�ows (see Se
tion2.3.2 for more details). This 
an lead to the same drawba
ks as the ones previouslydes
ribed with other Net�ow-based appli
ations. The author however mentions a futurepa
ket to Net�ow 
ode that should be in
luded within the SiLKtools to limit the Net�owperturbations. This work is important for us as it appears to be one of the �rst initiativesto fo
us on malware data analysis. It seems relevant at this stage to 
ite a senten
e ofthe do
ument ([151℄), whi
h is also a major prin
iple of the HoRaSis method presentedin the next 
hapters."Sets and set theory are abstra
tions that fa
ilitate reasoning about many
lasses of problems."



2.4. Summary 272.4 Summary2.4.1 Observations from this State-of-the-ArtFrom the previous se
tions, it seems quite 
lear that most of the e�ort has been devotedto the design of e�
ient ar
hite
tures, whi
h:1. 
apture original and spe
i�
 malware a
tivities.2. analyze the very same parti
ular and spe
i�
 malware a
tivities.Some of them are very promising, and we believe that the resear
h should go on withthe same eagerness. However, we also believe from this observation that there is a 
learla
k of 
ommonly shared information. Many resear
h studies aim at designing toolsand ar
hite
tures, without proving �rst that there is high value in doing so. In otherterms, the se
urity 
ommunity fails to �nd 
on
rete validation examples. Furthermore, theglobal understanding of malware a
tivities is still unknown. We 
an 
ite for instan
e therelationships between atta
ks and networks, the order of magnitude of di�erent malwarepropagating in the wild, their lo
alization, et
. An illustration lies in the numerousarti
les and publi
ations whi
h aim at dete
ting large sweeping s
ans [217, 135℄. The�rst su
h algorithm in the literature was that used by the Network Se
urity Monitor(NSM) [109℄, whi
h has rules to dete
t any sour
e IP address 
onne
ting to more than 15distin
t destination IP addresses within a given time window. Su
h approa
hes presentthe same limitations, that is, on
e the window size is known it is easy for atta
kers toevade dete
tion by simply in
reasing their s
anning interval. Snort implements similarmethods [209℄. Does it seem relevant to a
tivate this Snort feature?The previous approa
hes have interesting approa
hes but the major problem remainsthat there is no available information to work on. Furthermore, on
e data is 
olle
tedfrom the honeypots, there is no existing te
hnique or framework whi
h helps at grabbingthe useful information by taking bene�t of their parti
ular property.Finally, we want to re
all an interesting event: the European IP Network RIPE, in
harge of allo
ating IP addresses and administrating AS blo
ks organized in the 
ourseof year 2005 a global meeting between ISPs. One of the most important 
on
lusions was[152℄:Atta
k �ngerprint sharing and similar me
hanisms need to be further resear
hed,developed and deployed to 
ombat the existing threats.
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kground and Related Work2.4.2 First Con
lusionsThe honeypots do not, 
on
eptually speaking, represent any major breakthrough and are
ertainly no ro
ket s
ien
e. However, they bring an important set of information, onlydedi
ated to mali
ious a
tivities. The interpretation of this dataset is then di�erent fromthe one performed by IDSs, as this drasti
ally redu
es a priori the false positive rates. The
urrent te
hniques are only based on a
quired te
hnologies, one being the tra�
 analysisin terms of �ows, the other one being simple statisti
s. This leads to wonder to whi
hextent it 
an be interesting to develop a spe
i�
 analysis for that type of information. Inaddition, this implies not to stay in a global perspe
tive, like teles
opes, but to have anearer, more re�ned view of the atta
ks from a lo
al perspe
tive. This 
omplementaryapproa
h might reveal original threats whi
h 
annot be observed otherwise. And vi
e-versa.The next 
hapter aims at des
ribing the distributed environment whi
h has beendeployed in order to gather more lo
al information and at presenting the 
orrespondingdataset whi
h has been 
olle
ted. We feel it is important to let the reader understandwhere the information is 
oming from, and how it has been stored during the three �rstyears of the leurré.
om proje
t. We will also show how we designed, built and deployedthis environment, and how it 
omplements and addresses the weaknesses of the previouslydes
ribed approa
hes.
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Chapter 3
The Information Generation

An expert problem solver must be endowed withtwo in
ompatible qualities,a restless imagination and a patient pertina
ity.(Howard W. Eves)
3.1 Introdu
tionAs the state-of-art presented in Chapter 2 has highlighted it, there is a need of data andinformation to start a
quiring a global knowledge of mali
ious a
tivities that o

ur in thewild. Ar
hives of tra�
 data over a long period of time are rare and di�
ult to get a

essto due to priva
y laws or data se
urity 
on
erns. For those whi
h exist, we note a la
kof details 
on
erning their origins, the 
hallenge and 
osts of handling large amount ofdata, and a potential interferen
e with 
urrent network operations and a

ounting (mixof produ
tion and unexpe
ted tra�
).This se
tion aims at explaining how it has been possible, over several years, to 
olle
tmeaningful data from honeypot platforms pla
ed in di�erent networks and 
ountries,thanks to the su

ess of the Leurré.
om Proje
t. This se
tion 
ould have been introdu
edin an experimental se
tion at the end of the do
ument, but we think it is important for thereader to understand the ri
hness of the data and its 
urrent uniqueness before des
ribingthe analysis theory. The reader who is already aware of the Leurré.
om Proje
t dataset
an skip this Se
tion and move ahead to Chapter 4.
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om Proje
t3.2.1 The Obje
tivesThe proje
t we have laun
hed aims at disseminating similar honeypot sensors everywherethanks to motivated partners, on a voluntary basis. Partners are invited to join thisopen proje
t and install a honeypot sensor on the premises of their own networks. We,at Institut Euré
om, take 
are of the installation by furnishing the sensor image and
on�guration �les. Thus, the installation pro
ess is automati
. In ex
hange, we give thepartners a

ess to the 
entralized database and its enri
hed information. A dedi
ated website has been developed to make resear
h faster and more e�
ient. The proje
t has startedtriggering interest from many a
ademi
, industrial, and governmental organizations. Asof this writing, around 35 platforms are deployed in 25 di�erent 
ountries 
overing the�ve 
ontinents. We keep installing new ones regularly.3.2.2 Prin
iplesOn the 
hoi
e of a honeypot sensorThe deployment of honeypot sensors in a variety of pla
es requires �rst to 
hoose the mostappropriate sensor types. As it has been detailed in Se
tion 2.2.1, the se
urity 
ommunityoften distinguishes two major 
ategories. First, there are sensors running on real systems(OSs, servi
es, users, et
). They belong to the high intera
tion 
ategory. Se
ondly, othersexist, whi
h intera
tion is limited to a few emulation s
ripts. They belong to the lowintera
tion 
ategory. Ea
h of them presents interesting advantages but also limitations,that are summarized in Table 3.1 extra
ted from [212℄. In the row entitled Work toDeploy and Maintain, one �nds the time required to run and to maintain the honeypot.In the Knowledge to develop one, one sees the amount of prerequired knowledge to builda honeypot environment. The Compromise Whised row express the expe
ted goal of thehoneypot, that is, if it aims at being 
ompromised, or in a more restri
ted and mode, ifit aims at 
olle
ting malware tra�
 without letting an intruder enter the system . TheLevel of Risk row is an indi
ator of the risk run when implementing a honeypot into asystem.
It seems straightforward, from Table 3.1, that Low intera
tion is adapted to the re-quirements of the Proje
t des
ribed in previous Se
tion 3.2.1. Indeed, partners 
an befrom any 
ountry, and the tasks of deployment and maintenan
e of the sensors must re-main a

eptable. Furthermore, the risks must be as low as possible to motivate partners
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om Proje
t 31Table 3.1: Level Intera
tion and Honeypotslevel of Intera
tion Low HighInformation Gathering Conne
tion Attempts AllWork to deploy and Maintain Easy Di�
ultCompromise Wished No YesKnowledge to Develop Low HighLevel of Risk Low Highin joining the proje
t. It seems hard to imagine asking industry partners to join theproje
t and introdu
e new vulnerabilities in their network.Low intera
tion is the most sensible 
hoi
e at this stage. Unfortunately, informationwhi
h is 
olle
ted from it might di�er from real systems. More generally, it is importantto qualify and quantify the amount of information that might di�er when using one ofthe two intera
tion sensors. We have published a detailed 
omparative analysis in thisdire
tion in [187℄. It is brie�y summarized in the next se
tion.A 
omparison between Low and High HoneypotsWe have des
ribed in [187℄ two distin
t honeypot platforms. They have been 
alledH1 andH2. H1 is a high intera
tion honeypot, running three di�erent OSs and various servi
es.H2 is a low intera
tion honeypot, based on an open tool 
alled honeyd [9℄. H2 has been
on�gured in a very parti
ular way: we have s
anned the open ports in H1 and openedthe very same ones in the honeyd 
on�guration �le for ea
h of the three virtual ma
hines.Some servi
e s
ripts that are available in [9℄ have been linked to open ports, like port80 (web server) or port 21 (ftp). As a 
onsequen
e, H2 
an be seen as o�ering a similaryet simpli�ed behavioral model as H1. We 
onne
t every day to both host ma
hines inthe same way to retrieve tra�
 logs and 
he
k the integrity of 
hosen �les. Data is thenstored in the very same database (des
ribed in Se
tion 3.5.3).The paper reports a 
omparison over 3 months of data. The results show in parti
ularthat:1. Both approa
hes provide very similar global statisti
s based on the 
olle
ted infor-mation. High-intera
tion honeypots are more or less atta
ked the same way thanlow intera
tion ones.2. A 
omparison of data 
olle
ted by both types of environments leads to an interestingstudy of mali
ious a
tivities that are hidden by the noise of less interesting ones.One example has been the dis
overy of s
ans targeting one out of two su

essiveIPs [187℄. Another example is that 3% of a
tivities whi
h have targeted only twovirtual ma
hines out of the three have pre
isely targeted two windows ma
hines on



32 3. The Information Generationboth environments H1 and H2.3. This analysis highlights the 
omplementarities of the two approa
hes: a high in-tera
tion honeypot o�ers a simple way to 
ontrol the relevan
e of low intera
tionhoneypot 
on�gurations and 
an be used as an e�e
tive "etalon system". Thus, bothintera
tion levels are required to build an e�
ient network of distributed honeypots.Algorithms have been des
ribed to make this 
omparison automati
ally, but we re-port the authors to [187℄ for more details and illustrations of these 
ontributions. Theimportant result worth keeping in mind is that:Lemma: The 
olle
t is not biased by the use of low intera
tion honeypots in adistributed sensor network. Furthermore the deployment of a few number of 
ontiguoushigh intera
tion ones 
an help 
ontrolling the relevan
e of the 
olle
ted information.In the next se
tion, the 
on�guration whi
h has been used to build H2 is detailed.
3.2.3 Honeypot SensorsThe sensors whi
h have been deployed along with the Leurré.
om proje
t are based onseveral open sour
e utilities, whi
h emulate operating systems and servi
es. The basi
building blo
k used is honeyd [23℄. The sensor only needs a single host station, whi
h is
arefully se
ured by means of a

ess 
ontrols and integrity 
he
ks. This host implementsa proxy ARP. This way, the host ma
hine answers to requests sent to several IP addresses.Ea
h IP is bound to a 
ertain pro�le (or personality in the honeyd jargon). Thus, theemulation 
apa
ity of the sensor is limited to a 
on�guration �le and a few s
ripts1.The sensor we are using emulates three Operating Systems: Windows 98, Windows NTServer and Linux RedHat 7.3, respe
tively2. Some servi
e s
ripts that are available in[23℄ have been linked to open ports, like port 80 (web server) or port 21 (ftp), amongothers. A simple sensor ar
hite
ture is presented in Figure 1. Finally, we 
onne
t to thehost ma
hine to retrieve tra�
 logs and 
he
k the integrity of the system �les every day.Next se
tions aim at presenting the global data whi
h has been 
olle
ted so far and itsparti
ular storage at the Institut Euré
om.1New emulation s
ripts have appeared during the last months of this thesis: FakeNetBIOS emulatestra�
 on ports UDP 137 and 138 only [66℄. S
riptgen des
ribed in [138℄ generates in an automated and
lever way s
ripts derived from t
pdump tra
es. They were not available when we started deploying thesensors.2These OSs have been 
hosen three years ago to mimi
 and thus to be 
ompared with other highintera
tion honeypots already emulating these OSs.



3.3. Global Pi
ture 33

Figure 3.1: Ar
hite
ture of a Honeypot Sensor3.3 Global Pi
ture3.3.1 First FiguresSome platforms have started running in February 2003. Ea
h month, new partners 
omeand in
rease the volume of data. Some global statisti
s are listed here.� Number of observed distin
t IP Addresses: 989,712� Number of re
eived pa
kets: 41,937,600� Number of emitted pa
kets: 39,911,933� Total number of 
olle
ted pa
kets: 81,849,533� Number of re
eived TCP pa
kets: 74,428,652, that is 90.93% of all pa
kets� Number of re
eived UDP pa
kets: 635,363, that is 0.77% of all pa
kets� Number of re
eived ICMP pa
kets: 4,218,109, that is 5.16% of all pa
kets� Others: (malformed pa
kets, et
) 2,567,409, that is 3.14% of all pa
ketsIn short, with a maximum of platforms up and running at this time writing, it ispossible to observe more than 5000 new IP addresses per day, and 
olle
t 100000 newpa
kets issued by these IPs. This represents an important volume of data, and the numbersin
rease ea
h day, as new partners join the proje
t. This explains in the next 
hapter theneed to 
lassify the data in su
h a way that any kind of lookup 
an be e�
iently performed.



34 3. The Information Generation3.3.2 First AnalysesThis se
tion aims at presenting global statisti
s, whi
h are the histori
al motives of thiswork. Some results have been des
ribed in [88, 89℄. We present here four interesting datarepresentations whi
h are part of the initial observations we made.Average Number of Atta
king IPs per Honeypot EnvironmentFigure 3.2 shows the average number of atta
king IPs observed ea
h day and per en-vironment. Values are de�nitely not uniform, and it is important to noti
e that someenvironments (identi�ers 12 or 5) 
an be atta
ked almost 100 times more than others(identi�ers: 20 or 32).
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Figure 3.2: Average Number of Atta
king IPs per Honeypot Environment
Number of IP Sour
es observed per Day and per EnvironmentFigure 3.3 shows the number of IP addresses observed per day and per environment. Wehave represented three di�erent environments for 
larity 
on
erns, but the others presentsimilar 
hara
teristi
s. Dates are 
omprised between February 1st 2005 and Mar
h 31st2005. We note here that a given platform might not observe the same number of distin
tIPs over days, and some high variations 
an o

ur. We also note that for a given day,three platforms 
an observe very di�erent numbers of distin
t IP sour
es.
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Figure 3.3: Distin
t IP Sour
es Observed per Day on Three SensorsAverage Number of Bytes sent by Atta
king IPs per platform (TCP payloads)Figure 3.4 gives the average data payload3 that have been observed in average on allplatforms between May and July 2005, when all platforms have been up and running forseveral days. This is of 
ourse not 
ompletely meaningful, as it is also highly dependent tothe emulation level of the honeypot sensors. It however indi
ates that some environmentspresent very strong di�eren
es 
ompared to others, in terms of re
eived bytes.
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Figure 3.4: Average Number of Bytes sent by Atta
king IPs per Platform (TCP payload)
3Data payload in
ludes all data for layers 4+, ex
ept TCP and UDP headers (with options for TCP).



36 3. The Information GenerationAverage Number of Atta
king IPs per hour (
apture time)Figure 3.5 shows the 
umulative number of atta
king sour
es that have been observed indi�erent hours during the day on any environment. We 
onsider here the whole dataset.For instan
e, the �rst 
olumn gives the number of distin
t IPs whi
h have sent their�rst pa
ket to an environment between midnight and 1am, the se
ond between 1am and2am, et
. The 
onsidered time is the 
apture time, that is, the time on the environmentobserving the a
tivity. These simple statisti
s show a strong temporal pattern, with aboutthird less atta
ks during night hours than working hours. This statisti
s have also beenprodu
ed for several periods during the year (over months, 2-months and 6-months), butthey show the very same property than by looking at the global dataset.
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Figure 3.5: Average Number of Atta
king IPs per Hour (lo
al time)
3.3.3 On the Advantages of Lo
al Distributed SensorsThe �rst graphs presented in Se
tion 3.3.2 indi
ate in a 
lear manner that sensors 
olle
ta
tivities whi
h might di�er from sensors to sensors. They are not fa
ing same a
tivities.From another point of view, Figure 3.6 presents on one side the a
tivities on port 445as shown by a web site (Dshield [14℄) during September 2004, to be 
ompared with thea
tivities 
olle
ted on one of our sensors during the same period in Figure 3.7.The peak observed on September 26th does not appear in any Dshield reports ormailing list posts. The reason for this has not been investigated further by the partner.The Leurré.
om dataset 
ontain numerous similar examples. Nevertheless, it 
learly showsthat lo
al observations might di�er from global trends. This 
laim is also defended in[82℄. The authors demonstrate di�eren
es observed in 
lass A IP ranges and smaller
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Figure 3.6: Dshield vs Leurré.
om data: Dshield [14℄

Figure 3.7: Dshield vs Leurré.
om data: Leurré.
om datasubnetworks along at least three dimensions: over all proto
ols and servi
es, over a spe
i�
proto
ol and servi
e and over a parti
ular worm signature. This leads to the two followinglemmas, 
onsidered for the di�erent analyses we intend to perform in the next 
hapters.Lemma 1: Lo
al observations of mali
ious a
tivities DO NOT bring same informa-tion as more global te
hniques. This ar
hite
ture is thus a 
omplementary and essentialapproa
h.Lemma 2: Lo
al sensors share some 
ommon similarities, but the global statisti
salso indi
ate strong dissimilarities w.r.t. monitored a
tivities.3.3.4 First Dis
ussionsThe analysis of Leurré.
om data 
ould stop here. The previous se
tions have demonstratedthe usefulness of deploying lo
al sensors, and the new dimension it 
an bring for monitoringmalware a
tivities. Other similar examples have been detailed in our earlier publi
ations[186, 192℄. However, these �rst results also highlight the motivations for further analyses.



38 3. The Information GenerationIt would be interesting for instan
e to 
hara
terize the di�eren
es between platforms.Current te
hniques are however quite limited to dire
tly understand the exa
t meaningof these di�eren
es and the relationships between them. The HoRaSis framework shouldhelp improving the knowledge a
quisition and the extra
tion of new information in anautomati
 way, that is, it should perform analysis steps further than simple statisti
s.
3.4 Observation Positioning
3.4.1 Sensors LimitationsOne �rst remark goes to the deployment of sensors. It has been shown that their deploy-ment brings interesting and 
omplementary information. However, we have not presentedthe impa
t of their 
on�guration to the quality of the data 
olle
tion [54℄. This is anotherdimension whi
h is not taken into a

ount in the following se
tions. A few preliminaryexperiments have been 
onsidered in the 
ourse of this work and reported in [192℄, but itis admitted, in the following, that the whole experiments have been applied on a uniquesensor 
on�guration. It is also worth mentioning that sensors are, and this is not a realsurprise, not perfe
tly undete
table. None of the existing honeypot-based systems are,and honeyd, the software on whi
h the Leurré.
om sensors are built, follows this rule. Asan illustration, an experiment has been presented by Kohno et al. in [129℄. They havepresented a te
hnique to remotely �ngerprint hardware devi
es via remote 
lo
k skew es-timation, and tested it on honeyd platforms. The sensor time is not maintained via NTPor SNTP, and the �ngerprint of honeyd would be possible by sending ICMP TimestampRequests (type 13) against honeypot sensors. Therefore, we have 
arefully looked for su
hpa
kets and have observed only 38 of them so far. They are unlikely due to this dete
tionme
hanism, as they have been observed one year before the �rst publi
 referen
e to thatproblem. Another bug has been found in the early versions of honeyd (< 0:8, [9℄), whi
hhas not been used. A system running honeyd 
an be dete
ted as it replies to invalid TCPpa
kets (with SYN and RST �ags) -whi
h it should not.In a general manner, this has to be related to the work presented in [187℄. Su
hrisks 
an be minimized by frequently 
omparing the sensor 
aptures with other "etalonsystems". Attempts to �ngerprint the honeypot sensors would also be interesting insofaras it would indi
ate that this monitoring disturbs some parti
ular 
ommunities.



3.4. Observation Positioning 393.4.2 About Non-Observable Mali
ious A
tivitiesDis
ussionAs it has been said in the previous se
tion, sensors implement the very same honeyd
on�guration. There might be some atta
ks the sensors will not monitor due to their
on�guration. It is by nature impossible to 
at
h every mali
ious a
tivity in the Internet,but it is expe
ted to have a very good overview of the major threats with quite standardma
hine 
on�gurations.In addition, the environment will not observe a unique atta
k, dedi
ated to a targetwhi
h is not a Leurré.
om sensor. It does not pretend to be a perfe
t early warningsystem. However, su
h a distributed system 
ould help identifying the 
ommon a
tivities,also 
alled ba
kground radiations in [171℄4 and to dete
t new threats and a
tivity 
hangesmonitored by the di�erent environments.Worm Propagation StrategiesThere are now many worm spe
ies, and some books have already started building phy-logeneti
 
lassi�
ations. We 
an 
ite as examples the noteworthy study of Szor et al. in[223℄, or the one of Filiol et al. in [100℄. As they both explain, worms are network virusesrepli
ating on networks. They all present a large diversity of spreading strategies. Amongthem, we note:� Lo
al-Subnet propagation: it involves worms s
anning for vulnerable hosts in a 
lass-C or smaller subnet. It usually in
reases the number of infe
ted ma
hines morequi
kly, as the worm 
an �nd less prote
ted ma
hines and a less heteregeneousnetwork environment on
e the �rewall is bypassed. This te
hnique has been usedby the Code Red II 5 and Nimda worms for instan
e [228℄. If the worm limits itspropagation to a very small subnet that is not 
overed by a honeypot sensor, itsa
tivities will remain unobserved by the proposed ar
hite
ture. On the other hand,the risk remains for the same reason limited to the un
overed subnet.� Hit list propagation: This te
hnique is applied when the worm propagates basedon a list of vi
tims. This list is given by the atta
ker, either by a hard-written listof IPs/networks, or by 
olle
ting information from publi
ly available resour
es. Atheoreti
al worm, named Flash Worm, propagating this way, has been studied byStaniford et al. in [216, 215℄.4Ba
kground radiation re�e
ts fundamentally nonprodu
tive tra�
, either mali
ious (�oodingba
ks
atter, s
ans for vulnerabilities, worms) or benign (mis
on�gurations) in [171℄.5Code Red II has three propagation strategies, one being to favor lo
al 
lass-C subnets [157℄.
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tivities will never be dete
ted by one of the Leurré.
om sensors if the propagationis too lo
al. This will also be the 
ase of propagations over a restri
ted hitlist.3.5 Data Storage3.5.1 A NeedData logged by ea
h Leurré.
om sensor is 
opied to a 
entralized ma
hine. The sizes ofthe logs highly depend on the sensor and the a
tivities against it. Figure 3.8 representsthe 
umulative size of logs 
olle
ted during the 
onsidered period.
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Figure 3.8: Cumulative Log Size Colle
ted from the SensorsThe tra�
 is limited during the �rst months of 2003 to a few dozens of Megabytes permonths, as the only sensors working at this time were the ones implemented at Eure
om.The regular in
rease in 2004 
orresponds to the �rst phases of the Leurré.
om proje
tand its �rst partners. The steep in
rease in 2005 is the manifestion of the keen interest tothe proje
t from multiple 
ommunities. It seems important, from Figure 3.8, to organizedata in an e�
ient way, in order to query it easily. The data organization is des
ribed inthe next paragraphs.3.5.2 De�nitionsThis data needs to be properly organized, as it will be used for further analysis andexperiments. In theory, no tra�
 should be observed from the ma
hines we have set up.As a matter of fa
t, many pa
kets hit the di�erent virtual ma
hines, 
oming from di�erentIP addresses. Typi
ally, if an atta
ker de
ides to 
hoose one of our honeypots as her nextvi
tim, she tries to establish dire
t TCP 
onne
tions or to send UDP, or ICMP, pa
kets
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an behave di�erently when targeting ea
h of the three virtual ma
hines.As a 
onsequen
e, we distinguish in the database three major 
lasses of information:1. Information that 
hara
terizes the atta
king sour
e. It in
ludes its IP address, thedate it has been observed, the domain and geographi
al lo
ation asso
iated to thisaddress,et
.2. Information that 
hara
terizes the behavior of the atta
king sour
e against theglobal sensor. It in
ludes the number of virtual ma
hines it has targeted, the globalduration it has been observed on it, the way it has targeted the virtual ma
hines(sequen
e vs. parallel), et
.3. Information that 
hara
terizes the behavior of the atta
king sour
e with respe
t toa single virtual ma
hine. It in
ludes the sequen
e of ports that have been targetedon that ma
hine, the data sent, the number of ex
hanged pa
kets, et
.For the sake of 
on
iseness, we do not want to des
ribe the full database ar
hite
turehere. All details are pre
isely des
ribed in [184℄. We just want to point out that most ofthe 
omparisons that are presented in the following rely on this e�
ient way to organizethe information. This organization leads us to frequently make use of the following fourde�nitions that derive from the previous 
lassi�
ation.De�nition 3.1. Sour
e: A Sour
e 
orresponds to an IP address observed on one or manyplatforms, and for whi
h the inter-arrival time di�eren
e between 
onse
utive re
eivedpa
kets does not ex
eed a given threshold (25 hours). The time di�eren
e is 
omputed by
onverting all times to GMT.As an illustration, two pa
kets observed at "2005-02-17 10:00:00 GMT" (Sensor A)and at "2005-08-05 13:00:00 GMT+5" (Sensor B) whi
h share the same IP sour
e addresswill be asso
iated to two distin
t atta
king Sour
es.De�nition 3.2. Global_Session: A Global_Session is the set of pa
kets whi
h havebeen ex
hanged between one Sour
e and all Honeypot Environments of the Leurré.
omdistributed monitoring system.De�nition 3.3. Large_Session: A Large_Session is the set of all pa
kets whi
h havebeen ex
hanged between one Sour
e and a parti
ular Honeypot Environment (sensor).De�nition 3.4. Tiny_Session: A Tiny_Session is the set of pa
kets whi
h have beenex
hanged between one Sour
e and a single Virtual Ma
hine. As ea
h honeypot Envi-ronment is made of three virtual ma
hines, a Large_Session is asso
iated to 1, 2 or 3Tiny_Sessions.
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ated database has been designed to store the information at di�erent abstra
tionlevels. The UML diagram in Figure 3.9 o�ers its over simpli�ed stru
ture. Many toolsare used to enri
h the data. For instan
e, for ea
h Sour
e, we look for, and in
lude inthe database, its geographi
al lo
ation (Maxmind, Netgeo, IP2lo
ation [11, 63, 117℄), itspassive OS �ngerprinting atta
k (p0f, etter
ap, dis
o [24, 7, 4℄), its name by means ofdomain name lookups, et
. The details are 
arefully des
ribed in [184℄. A more 
ompleteview of the UML diagram, in
luding important attributes, is presented in Annexe A.

Figure 3.9: UML Diagram: Relationships between De�nitions
3.5.4 Web interfa
eTwo distin
t web interfa
es have been developed along with the Leurré.
om proje
t. One isthe publi
 proje
t web site, www.leurre
om.org. It presents some global statisti
s, withoutmentioning any partner name nor IP address 6. The partnership o�er is des
ribed on thesite and many papers are available on it. The other interfa
e is a prote
ted GUI to thedatabase, with a personal a

ess for ea
h partner. Some useful queries are implemented toease the task of the partner. A dire
t a

ess to the database has also been made possiblefor more personal or 
omplex queries. Both are brie�y presented in Annexe B.6A Non-Dis
losure Agreement has been signed by all partners to keep su
h information 
on�dential.



3.5. Data Storage 433.5.5 Colle
tion IssuesSensors StabilityHoneypot sensors are not perfe
tly stable. They might be down for some days for severalreasons, like ele
tri
al problems, network 
hanges or human in
idents (powering o�, et
).This introdu
es a bias in the data 
olle
tion and analysis, as missing data 
an have twodi�erent meanings: either there was an important de
rease of the atta
k during a period,or the platform was not working. It is important to distinguish between these two s
enariosfor the analysis. The missing logs are reported in a dedi
ated table of the database. Wenote that 10% of log �les are globally missing. To address this issue whi
h might impa
tglobal statisti
s, it has been implemented an interpolation te
hnique 
alled Cubi
 Spline.This name 
omes from the fa
t that this pro
edure 
losely approximates a te
hnique thathas long been used by draftsmen. A draftman who wishes to plot a smooth 
urve througha set of n+ 1 observations will pla
e a set of weights on a thin elasti
 rod 
alled a spline.The weights are pla
ed in su
h a way that the rod passes over ea
h of the observed points.The draftsman then tra
es the 
urve formed by the rod. The theoreti
al details 
an befound in [43℄. As many other te
hniques, an interpolation 
annot be perfe
t, ex
ept inrare 
ases (mathemati
al fun
tions), and it is hard to estimate the error. However, the
ubi
 spline interpolation has some interesting features, 
ompared to other te
hniques:� Splines are smooth and 
ontinuous a
ross an interval. A polynomial, for instan
e,�tted to many data points, 
ould exhibit errati
 behavior.� The spline 
urve interpolates the data while remaining within the range of thedataset.� Splines are pie
e-wise de�ned fun
tions whose individual 
urves meet at the points.� The splines not only interpolate the data but mat
h the �rst and se
ond derivativesat the points.The set of points are 
alled the knots. The set of 
ubi
 splines on a �xed set of knots, formsa ve
tor spa
e for 
ubi
 spline addition and s
alar multipli
ation. An example is shownas illustration in Figure 3.10 .This Figure represents on the light 
urve an errati
 fun
tion(y = (sin(x) + 
os(x)) 34 ), while the bolder 
urve has been generated by 
onne
ting datapoints (the knots) along the above line with a 
ubi
 spline fun
tion. While the �t is notperfe
t, it does 
losely approximate the fun
tion without a great degree of divergen
e.Future work will 
onsist in adapting other interpolation fun
tions whi
h would suit more
losely the properties of the 
urves under study.
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Figure 3.10: A Cubi
 Spline Interpolation of y = (sin(x) + 
os(x)) 34Data Syn
hronizationAnother potential issue is the Syn
hronization problem between sensors, as it has beenreported by Lamport in [133℄. For se
urity 
on
erns, there is no Network Time Proto
ol(NTP) daemon running on the platforms. Thus, 
omparing the a
tivities on the sensors
onsists in determining the time lag between sensors. It is performed by performingperiodi
 date 
ommands whi
h results are then stored in the database. The rate error ofea
h sensor is quite 
onstant over months and never ex
eeds a few se
onds per month.In the other 
hapters, we work on the stored data, and for some similarity studies, makeuse of the Cubi
 Spline interpolation te
hnique. When done, this is expli
itly mentioned.Furthermore, the syn
hronization is not a major issue in the results presented in thisthesis, as the analysis we present is not bias signi�
antly by the desyn
hronization e�e
ts.3.5.6 Con
lusionFigure 3.11 presents in a simple diagram the di�erent steps that are followed, from the t
p-dump pa
kets fet
hed on ea
h sensor to the global database 
ontents whi
h are the founda-tions of the next 
hapters. The database is pre
isely built around a small number of infor-mation 
ategories, 
alled Sour
es, Global_Sessions, Large_Sessions and Tiny_Sessions.These de�nitions des
ribed in Se
tion 3.5.2 are a �rst attempt to organize the 
olle
teddata and start making 
omparisons and analyses. The generalization s
ripts presented inFigure 3.11 aim at deriving the attributes of these new information levels from the rawpa
kets tables. We have also 
onsidered several tools to enri
h this information, some ofthem being 
ommer
ial solutions, others being open sour
e software or hand-made s
ripts.



3.5. Data Storage 45The database ar
hite
ture is �exible enough to insert a posteriori results from other toolswhi
h are not 
onsidered today.The data 
olle
tion and storage were a preliminary and intuitive work, that has beenenri
hed all along the proje
t. The obtained dataset is quite unique and represents severalyears of data. It 
an be wondered whether valuable information 
an be extra
ted from su
ha dataset, and how should the analysis be performed to do it. The �rst statisti
s tend toindi
ate that sensors 
olle
t similar but also di�erent tra�
. As a 
onsequen
e, it wouldbe interesting at this stage to distinguish the di�erent a
tivities whi
h are monitored.The next 
hapters pre
isely justify a way to analyze data and 
hara
terize the a
tivitiesobserved on the Leurré.
om sensors. We are following, as expe
ted from the Introdu
tion,the dire
tions to build an HoRaSis framework.
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Chapter 4
Dis
rimination Step: FingerprintingA
tivities

Problems worthy of atta
k,prove their worth by hitting ba
k.(Piet Hein)4.1 Introdu
tion4.1.1 Need for Classi�
ationIn the Leurré.
om Proje
t, tra�
 is 
olle
ted from ea
h honeypot sensor with t
pdump.The dump �les 
ontain plain raw pa
kets. Information as su
h is not intuitive. A �rst stepis to store pa
kets a

ording to their respe
tive proto
ol levels, as it has been detailed inChapter 3. Pa
kets by themselves are also not really meaningful, as their analysis remainsfastidious. We presented in Se
tion 3 some global statisti
s on pa
kets, but the analysis atthis stage remains at a too 
oarse level. We also observed when storing su
h pa
kets intothe database, that grouping pa
kets a

ording to their origins and destinations is helpful.This led us to 
reate four distin
t information levels, 
alled Sour
es, Global_Sessions,Large_Sessions and Tiny_Sessions1.They represent all four di�erent abstra
tion levels. By 
hoosing di�erent abstra
tionlevels we 
an swit
h between levels and analyze the appropriateness of the abstra
tion fora spe
i�
 situation.1Complete de�nitions are in Chapter 3.



48 4. Dis
rimination Step: Fingerprinting A
tivitiesAbstra
tion me
hanisms are often 
omplex, and provide means for identi�
ation anddesign of invariant 
omponents and stru
tures [206, 201, 210℄. One of them is 
lassi-�
ation, often 
omplemented by two other underlying me
hanisms: generalization andspe
ialization.In the following, we present a generalization pro
ess, that will lead to a useful abstra
-tion level of the data. This abstra
tion level generates 
lusters that will be the basis ofthe automati
 analysis pro
ess that we present in Chapter 5.4.1.2 Con
epts and ChallengesPrevious work has shown that address blo
ks in di�erent networks 
an see di�erent tra�
tra
es [82, 186℄. Furthermore, the global statisti
s extra
ted from the database (seeSe
tion 3.3.3) also indi
ate that ea
h sensor presents unique properties 
ompared withone another, in terms of the number of observed IP sour
es, targeted ports, re
eivedbytes, et
. Thus, sensors do not monitor exa
tly the same 'events'. To exemplify thisproperty, we make use of the following terminology:De�nition 4.1. AnA
tivity is the set of a
tions performed by an IP sour
e on a honeypotsensor.An a
tivity 
an be 
hara
terized by a given Large_Session. We remind here thata Large_Session is the set of pa
kets ex
hanged between an IP sour
e and a honeypotsensor. So, rephrasing the previous remarks, we have observed so far that:Observation: Honeypot sensors do not monitor exa
tly the same a
tivities.The HoRaSis framework aims at better understanding the a
tivities that are moni-tored through the distributed network of sensors. One impli
ation would be to 
omparesomehow the a
tivities on ea
h sensor, in order to determine what makes them di�erand what kind of information this 
an bring. The HoRaSis framework must 
ontain afun
tionality that helps at 
omparing a
tivity �ngerprints; an a
tivity �ngerprints beingde�ned as:De�nition 4.2. An a
tivity �ngerprint is a set of parameters that 
hara
terize an a
tivityobserved on a honeypot sensor.The set of parameters we 
hose to perform this study is detailed in the next se
-tion. Continuing previous reasoning, it seems reasonable to think that atta
king tools,if they 
onsist of purely automatized deterministi
 a
tivities, should generate the verysame a
tivity �ngerprints on all targeted sensors. This leads us to formulate the followingassumption:



4.2. Fingerprints of A
tivities 49Assumption: If the atta
king tool has a deterministi
 behavior, we must observe thevery same a
tivity �ngerprint on all sensors whi
h have been the target of this atta
kingtool.Most of the tools have, as far as we observed, no random behavior, and share thisdeterministi
 property2. In Se
tion 4.2 we des
ribe the set of parameters used as a
tivity�ngerprints. In Se
tion 4.3, we explain that this theoreti
al a
tivity �ngerprint might dif-fer due to network distorsion, e.g. losses. These phenomena are not part of the �ngerprintand then must be 
onsidered when 
omparing the a
tivities. We have developed dedi
atedalgorithms to group e�
iently the IP sour
es sharing an identi
al a
tivity �ngerprint while
onsidering these network distorsions.The analysis we intend to perform requires to group mali
ious a
tivities (in a generalsense) that share a 
ommon �ngerprint. Clustering te
hniques are natural 
andidates forthis task. Note that the proposed solution might not be (and does not pretend to be) theunique one. We make use of te
hniques steering from a large variety of resear
h domains,from knowledge dis
overy to data mining, and other solutions might be possible. Thegoal here is to present, based on the experien
e gained with our data, HoRaSis, a simplebut meaningful te
hnique to organize and 
lassify data. This method is validated andprodu
es, at ea
h step, new interesting results whi
h 
ontribute to the �nal analysis.4.2 Fingerprints of A
tivities4.2.1 De�nitionsWe make use, all along the thesis, of the terms a
tivities �ngerprint and 
luster. Theymust so be 
arefully de�ned:De�nition 4.3. A Cluster is a set of IP sour
es having exhibited the same a
tivity �n-gerprint on a honeypot sensor.De�nition 4.4. We 
opy here the de�nition of �ngerprint found in [80℄. A Fingerprintis: 1. An impression on a surfa
e of the 
urves formed by the ridges on a �ngertip, espe-
ially su
h an impression made in ink and used as a means of identi�
ation.2. A distin
tive or identifying mark or 
hara
teristi
: "the invisible �ngerprint that'sused on labels and pa
kaging to sort out genuine produ
ts from 
ounterfeits" (GeneG. Mar
ial, [80℄).2We dis
uss in Se
tion 4.6.2 situations when this assumption might not be valid.



50 4. Dis
rimination Step: Fingerprinting A
tivities3. a DNA �ngerprint, a 
hemi
al �ngerprint.We are interested in the se
ond and generi
 de�nition. The �ngerprint should not bean add-on. A �ngerprint is a unique set of parameters that allow 
hara
terizing an obje
t.There might be many �ngerprints for a given obje
t (just like the eye , DNA or thumb,et
 for human beings), but it is important to remark that the 
ombination of several�ngerprints remain a �ngerprint. Here, we propose to identify �ngerprints of atta
k toolsfrom the honeypot datasets, in order to analyze and 
orrelate them, to understand atta
kpro
esses and dete
t new threats, et
. We also show in the following se
tions the �rstadvantages this 
lassi�
ation brings to the analysis. Based on the previous remarks, we
an de�ne an A
tivity Fingerprint as:De�nition 4.5. An A
tivity Fingerprint is an analyti
al eviden
e that 
hara
terizes aspe
i�
 mali
ious a
tivity on any sensor of a group of IP sour
es.4.2.2 Analyti
al Eviden
eWe want to de�ne the �ngerprints of an atta
k in terms of a few parameters. In a passivemanner, all the info we re
eive 
onstitute the �ngerprint. However, we need to determinethe dimension of this �ngerprint. We base this step on our own experien
e of tra�
monitoring, and on te
hniques 
ommonly used for network monitoring. This leads us tode�ne the following list of attributes:1. The number of targeted virtual ma
hines on the honeypot platform2. The sequen
es of ports: From the ordered pa
kets (re
eived time) sent to one vir-tual ma
hine, we extra
t the exa
t sequen
e of distin
t targeted ports. Figure 4.1illustrates the de�nition.3. The total number of pa
kets sent by the atta
king sour
e4. The number of pa
kets sent by the atta
king sour
e to ea
h honeypot virtual ma
hine5. The duration of the atta
k6. The inter-arrival time between pa
kets re
eived by the targeted ma
hine7. Ordering of the atta
k8. The pa
ket 
ontents (if any) sent by the atta
king sour
eWe 
an also imagine to take other parameters into a

ount, like the pa
ket size. Thisinformation is often misleading, as some proto
ols implement padding to build normalizedsize pa
kets. This whould not allow us to dis
riminate several atta
ks using su
h proto
ols.



4.2. Fingerprints of A
tivities 51This is the main reason why we fo
used on pa
ket payload only, as delivered to the upperlayer. These seven attributes are more pre
isely detailed and justi�ed in the followingse
tions.
{ I , T_80 , U_137 , T_135 }

TCP port 80

TCP port 80

TCP port 80

TCP port 80

TCP port 80

ICMP echo

UDP Port 137

TCP port 135

Attacking Machine Virtual machine

Associated Ports Sequence:

Figure 4.1: A Ports Sequen
e Asso
iated to an Observed A
tivity4.2.3 Classi�
ation RequirementsThe analyti
al eviden
e of an a
tivity �ngerprint is made of all 
on
rete attributes pre-viously listed and observed dire
tly from 
olle
ted data. They do not require parti
ulartools (only tra�
 sni�ng and simple 
omputations) to 
ompute them. An o�ensive tool
an have di�erent a
tivities, depending on the way it is 
on�gured. We want to �nd
lusters, i.e. groups of IP sour
es that share the same a
tivity �ngerprints.Preliminary analysis of the tra�
 we have s
rutinized has revealed that network distur-ban
e might a�e
t in some ways the a
tivity �ngerprint. Obviously, the 
lusters we intendto obtain must not be biased by these disturban
es whi
h are not dire
tly related to theatta
k a
tivity. As a 
onsequen
e, the HoRaSis framework must 
ontain a 
lassi�
ationme
hanism for the IP sour
es whi
h 
onsider this problem.Generalization pro
ess has been used to 
hara
terize DoS atta
ks in [115℄, and it is,as far as we know, the only publi
ized e�ort whi
h is going so far in the generalizationpro
ess of the tra�
. The authors identify the atta
k stream, that is the sequen
e of atta
kpa
kets 
reated by the host ma
hine and the atta
k tool. However, the atta
k stream isshaped by many fa
tors: number of atta
kers, atta
k tool, operating system, host CPU,network speed, host load, and network 
ross-tra�
. Sin
e they de�ne an atta
k s
enarioas a 
ombination of the atta
ker and atta
k tool, the �ngerprinting te
hniques should berobust to variability in host load and network 
ross tra�
.The 
lassi�
ation task 
onsists in assigning obje
ts to 
lasses (groups) on the basisof measures made on the obje
ts. Classi�
ation is unsupervised if 
lasses are unknown,and if we want to dis
over them from the data (
luster analysis) [110℄. Classi�
ation



52 4. Dis
rimination Step: Fingerprinting A
tivitiesis supervised if 
lasses are prede�ned. In this 
ase, we 
an use a (training or learning)set of labeled obje
ts to form a 
lassi�er for the 
lassi�
ation of future observations. Inour situation, we have no prede�ned 
lasses. However, as we explain below, we have agood intuition based on the experien
e of digging into the database on possible 
lasses,or at least attributes to build 
lasses. Thus, the proposed 
lassi�
ation method must beunsupervised but 
ontrolled.Clustering 
omes into two general �avors: Partitioning or Hierar
hi
al [61℄. Parti-tioning usually requires to pre-spe
ify the number k of mutually ex
lusive and exhaustivegroups (k-means, self-organizing maps, PAM, et
). The hierar
hy-based 
lustering meth-ods produ
e a tree or dendogram. They avoid spe
ifying how many 
lusters are appro-priate by providing a partition for ea
h k obtained from 
utting the tree at some level.This tree 
an be built in two distin
t ways:� bottom-up: agglomerative 
lustering� top-down: divisive 
lusteringSome te
hniques also exist to estimate the number of 
lusters (silhouette width in PAM[92℄, Gap statisti
s [230℄, et
). In our situation, we have no indi
ation on the initialnumber of 
lasses. Furthermore, the initial dataset is the whole database, that is allpa
kets 
olle
ted so far. Our 
lustering te
hnique should be in this 
ase a hierar
hy-based and top-down approa
h. It is important to point out that 
lustering 
annot notwork. That is, every 
lustering methods will return 
lusters. Clustering helps to groupinformation and it is a visualization (abstra
tion) tool for learning more about the data.To 
on
lude, we intend to 
lassify atta
king Sour
es a

ording to their a
tivity �nger-prints on ea
h platform. Some 
lustering te
hniques are applied to make this grouping,and the global method, presented in the next se
tions, is a hierar
hy-based and top-downapproa
h.4.3 Clustering Algorithm4.3.1 High Level Des
riptionThe purpose of 
lassi�
ation here is to group all the IP sour
es that share 
ommon
hara
teristi
s as de�ned in the previous se
tion. This task is however not as simple as itappears, for at least two reasons. First, tra�
 in the network is subje
t to a few botheringe�e
ts, e.g. losses, delays or reordering. Se
ond, the notion of similarity asso
iated toea
h parameter is not 
learly de�ned. There exists dozens of distan
e fun
tions, andothers 
an also be generated. To deal with these potential issues, we split the 
lusteringalgorithm into four steps:



4.3. Clustering Algorithm 531. We withdraw all network in�uen
es from the dataset;2. We 
lassify the data a

ording to deterministi
 parameters;3. We 
luster the sour
es together a

ording to non-deterministi
 parameters;4. We validate the 
lusters and provide a 
onsisten
y attribute.Ea
h of these steps is presented in the following subse
tions.
4.3.2 Network Disturban
esIntrodu
tionWe are interested in this se
tion in estimating the impa
t of some network e�e
ts, andespe
ially losses and reordering, in the analysis of atta
ks. As an illustration, 
onsider theanalysis of Win32.Rbot.H whi
h is des
ribed in [40℄. Win32.Rbot.H is an IRC 
ontrolledba
kdoor that spreads by s
anning ports 139 and 445 respe
tively. If reordering or pa
ketlosses o

ur, the sequen
e of ports 
an be altered, and so will the analysis in an indire
tmanner. Win32.Rbot.H 
ould then be asso
iated to ports sequen
es {139}, {445} (if loss),or {445,139} (if reordering), instead of the "exa
t" sequen
e {139,445}. To the best of ourknowledge, no study of the impa
t of pa
ket losses and/or reordering on atta
k forensi
shas been 
arried out so far. We have des
ribed the whole study in [193℄, and we providein the following the main results.In addition, we are 
olle
ting pa
kets on pre
ise and unique lo
ations, the Honeypotsensors. The general problem of vantage points has been detailed in [177℄: the lo
ationwhere pa
kets 
apture is performed 
an signi�
antly skew the interpretation of the 
ap-ture, in quite non-apparent ways. Some vantage-point issues 
annot be 
orre
ted withoutadditional information, and this leads to a fundamental problem in network intrusiondete
tion of adversaries being able to exploit vantage-point ambiguities to evade se
uritymonitoring [196, 102℄. In our 
ase, data 
olle
tion is made at the re
eiver side. Only asmall fra
tion of the tra�
 from the atta
king Sour
e is observed: the sole pa
kets target-ing the Leurré.
om sensors. As a 
on
lusion, existing solutions from the tra�
 analysis�eld are not dire
tly appli
able to our 
ase [71, 120, 169, 241℄. This led us to devise anew solution that we detail in the next se
tion. This solution is based on a parti
ular IPheader �eld. An advantage of this method is that it relies on layer 3 information and isthus appli
able to TCP, UDP and ICMP tra�
 altogether.



54 4. Dis
rimination Step: Fingerprinting A
tivitiesReordering and LossesWe have fo
used on some parti
ular network e�e
ts, namely the pa
ket losses, retrans-mission, dupli
ates and forward reordering. A good de�nition of forward reordering 
anbe found in [48℄ and is illustrated in Figure 4.2. It refers to pa
kets sent by a sour
e whi
hare not re
eived in the 
orre
t order at the re
eiver side.

Figure 4.2: Forward Reordering from [48℄In order to dete
t forward reordering, we have developed a te
hnique relying on aparti
ular IP �eld 
alled the identi�
ation �eld, or IPID that is normally used in fragmentreassembly (see RFC 791 for more details [90℄). As RFCs do not 
learly spe
ify it, this �eldis implemented in di�erent ways, depending on OS �avors. Five di�erent implementations
enarios have been observed so far ([30℄):� S
enario 1 : IPID is a non-null (C) 
onstant.� S
enario 2 : IPID is in
reased by a standard in
rement of one for ea
h sent pa
ket.� S
enario 3 : IPID is in
reased by an o�set of 256 ea
h time a pa
ket is sent. Thisresults from an unintentional error in Mi
rosoft IP sta
k.� S
enario 4 : IPID is randomly 
hosen ea
h time a pa
ket is sent.� S
enario 5 : IPID is always a zero value.The authors in [49, 62℄ report that the id �eld in the IP Header is generally imple-mented as a simple 
ounter in
remented by one ea
h time an IP pa
ket is sent. Bellovinalso uses this parti
ular property in [49℄ to dete
t NATs and to 
ount the number of a
tive



4.3. Clustering Algorithm 55hosts behind them. We have demonstrated in [193℄ that most of the tra�
 we 
olle
t hasthe very same property. More pre
isely, around 75% of the sour
es having sent more thanone pa
ket share this property. It has also been demonstrated in [193℄ thatit is quiteunlikely that ordered sequen
es of IPIDs 
ould be due to random e�e
ts and, thus, thatany disorder is most likely the representation of reordering e�e
ts.We present in [193℄ a few algorithms to dete
t pa
ket reordering whi
h are appli
ableto the sour
es that use in
remental IPIDs. In these 
ases, as presented in Figure 4.3, there
eiver will only observe pa
kets with IPID n and n+2 (resp. n and n+512), and not theone with n+1 (resp.n+256) in 
ase of a pa
ket loss and an IPID sequen
e n; n+2; n+1(resp.n; n + 512; n+ 256) in 
ase of reordering.
Sender

Honeypot VMs

IPIDs
n-1 n n+1 n+2 n+3

n+1 ?

Sender

Honeypot VMs

IPIDs
n-1 n n+1 n+2 n+3

(n+1) -> n ?Figure 4.3: Honeypot-oriented Observations during Pa
ket Losses or ReorderingFor example, we identify reordering by looking at the sequen
es of re
eived pa
ketsfrom ea
h atta
king sour
e on a honeypot environment (Large_Sessions). Ea
h mismat
hbetween the sequen
e of IPIDs and the sequen
e of 
apture timestamps is labeled as areordering. Algorithm 1 provides the pseudo-
ode to dete
t reordering for an atta
kingsour
e sending pa
kets (Pkti)1<i<N 
aptured at time (Ti)1<i<N with IPIDs (IPIDi)1<i<N .Su
h sessions are �agged with a reordering �ag.Algorithm 1 IPID Analysis: Reordering dete
tionfor ea
h sequen
e of pa
kets and ea
h atta
king sour
ewithin the set of those identi�ed as implementing s
enarios 2 or 3 doif 9 i 2 [1::N � 1℄ verifyingTi < Ti+1 AND IPIDi > IPIDi+1 (mod216) thendete
t_reordering = truebreakend ifend forTo avoid reordering e�e
ts, the easiest solution 
onsists in ordering pa
kets by theirIPIDs when the sour
e is labeled with a reordering �ag.



56 4. Dis
rimination Step: Fingerprinting A
tivitiesA missing IPID 
an either be due to a loss or simply to pa
kets sent by the Sour
e toother destinations. At this stage, we 
an only make assumptions on the missing pa
kets,and label the 
orresponding pa
kets session with loss labels. The statisti
s method wehave presented in [193℄ however helps providing a good 
on�den
e on the labeling. De-te
ted losses will be taken into a

ount in the following when 
omparing pa
ket tra
es.There is no easy way however to interpolate the missing pa
kets, ex
ept by statisti
allyinterpolating the tra�
 with the others on quite similar ports. We limit in the followingthe loss impa
ts by generalizing the parameters of the a
tivity �ngerprint.Dupli
ates and RetransmissionIt might happen that the network dupli
ates the original pa
ket and generates at least twopa
kets with the very same sequen
e number. The 
auses and impa
ts of these anomalieshave been extensively studied in [119, 174, 155℄.Brosh et al. have presented an interesting way to 
lassify out-of-sequen
e pa
kets,by 
omparing only two headers �elds, namely the IPID and the TCP sequen
e numbers.Following Jaiswal et al. in [119℄, they have de�ned an out-of-sequen
e (OOS) pa
ket tobe a pa
ket whi
h TCP sequen
e number is smaller than previously observed sequen
enumbers (re
eiver time) in that 
onne
tion. Dupli
ates, as well as reordering and re-transmission, are 
lassi�ed as presented in Figure 4.4. Dupli
ates are easily identi�ed as
ompletely identi
al pa
kets, in
luding t
p sequen
e numbers and IPID. We remove thembefore any further analysis in our data. Reordering is dete
ted and �xed as presented inthe previous se
tion.

Figure 4.4: Classi�
ation Pro
ess of Out-of-Sequen
e Pa
kets [57℄Retransmission 
orresponds to the two other outputs (see Figure 4.4). It is importantto note that retransmission and loss are di�erent, and might not be 
orrelated. As some
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k tools might implement parti
ular transport layer3, a loss 
ould not be dete
tedand not imply a retransmission. This is illustrated in Figure 4.5 where the �rst �gurepresents a loss followed by a retransmission, while the se
ond �gure represents a losswithout retransmission. Both s
enarios are possible, but in the se
ond 
ase, we miss onepa
ket. On the 
ontrary, it is su�
ient in the �rst 
ase to reorder the out-of-sequen
epa
ket to get the initial sequen
e of pa
kets.
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(a) Loss with Retransmis-sion

Attacking Source Honeypot
Virtual Machine

Pck 4

Pck 1

Pck 2

Pck 3

(b) Loss without Retrans-missionFigure 4.5: Impa
t of Loss and RetransmissionOther biasesWe have shown in the previous se
tion how to limit the impa
t of pa
ket retransmissions,dupli
ates and reordering. Other network disturban
es exist, like the time it takes for apa
ket to travel from its sour
e to its destination (delay, sometimes 
alled laten
y and itsvariations aka jitter).We explain in the following how to deal with the remaining e�e
ts, in
luding:� pa
ket loss� delay, jitterAnother network e�e
t is the IP dynami
 allo
ation. This issue has been avoided thanksto the de�nition of a Sour
e (Se
tion 3.5.2). We 
onsider an IP as the same sour
e as longas the observed IP a
tivity does not 
ontain more than a 25-hour period of ina
tivity.However, lots of other network problems might be 
onsidered. As an illustration, it has3An interesting summary of the ambiguities in the true semanti
s of observed tra�
 has been presentedby Paxson in a re
ent talk [175℄.



58 4. Dis
rimination Step: Fingerprinting A
tivitiesbeen shown in [203℄ that the simple task of identifying the end of a TCP 
onne
tionis not easy, as many �avors are 
urrently implemented in TCP sta
ks and despite there
ommendations in RFCs [182, 38, 173℄. It is also worth mentioning at this stage thestudy presented by Paxson et al. in [176℄, whi
h aims at des
ribing a few problems thatmight arise while 
ondu
ting Internet Measurement. More pre
isely, the author fo
usesin [176℄ on some imperfe
t 
apture devi
es, whi
h 
an exhibit limitations both intrinsi
to their design and how we use them. This danger of mis
on
eption 
an lead to errors inequating what we are a
tually measuring with what we wish to measure. Paxson pointsout a few of these problems, in
luding:� Measuring TCP pa
ket loss by 
ounting retransmitted pa
kets, leads to overlookingthe problem of pa
kets retransmitted unne
essarily, or of pa
kets repli
ated by thenetwork (see [119℄ for a study that expli
itly a
knowledges this di�
ulty, and [39℄for a study demonstrating that di�eren
es in the two rates 
an be quite signi�
ant).� t
pdump only produ
es an end-of-run summary of the total number of drops, so itis not possible to asso
iate drops with the point in time at whi
h they o

urred.� t
pdump, as a majority of tools, su�ers from implementation �aws. As an illus-tration, major advisories appeared in 2004, as resear
hers found that t
pdump
ould 
rash or misbehave after parsing parti
ular proto
ols like L2TP (port 1701),ISAKMP (port 500) or RADIUS (ports 1645,1646,1812,1813).As a 
omplementary illustration, it has been studied in a student proje
t [65℄ somete
hniques to determine network anomalies due to atta
k 
rafted pa
kets or to 
apturebugs and misbehaviors. The author fo
us on some TTL anomalies. This is another net-work in�uen
e that has not been 
onsidered at this time on the 
lassi�
ation me
hanism.We have, however, determined a bug in the 
apture of Snort, whi
h modi�ed parti
ular�elds (TTLs and IPIDs) due to a 
ode error in the TCP stream4 prepro
essor.We 
an imagine to study all of the potential biases, and this must de�nitely be done.However, this is a huge amount of work, and not an easy task. We avoid the problemin the following by generalizing some attributes, like the number of pa
kets, with regardsto these potential network in�uen
es. This generalization approa
h remains realisti
 andfeasible in the s
ope of our study.Drawba
ksThe te
hniques presented to address the impa
t of reordering, retransmission, dupli
atesmodify the data and 
an be 
onsidered as an attempt to normalize the monitored tra�
.It is worth pointing out here that su
h a normalization of the tra�
 might lead to somedrawba
ks. By withdrawing dupli
ates, we might miss parti
ular types of atta
ks, e.g. theones that sent very same 
rafted pa
kets (all pa
kets having the very same ip/t
p layer, in
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.). As a 
onsequen
e, we limit the number of su
h data 
hangesto one per Tiny_Session. This is justi�ed as a large majority of 
onne
tions 
on
ern asmall number of sent pa
kets. Thus, these network in�uen
es should remain limited. Themost di�
ult point is to determine 
ertain 
riteria, whi
h help de
iding if the observedphenomenon is only due to an artifa
t unrelated to the atta
k, or if the phenomenon itselfis an additional feature of the atta
k. The framework must tolerate network anomalies,instead of withdrawing them all, in order not to bias atta
k analysis. This remark alsojusti�es why we have not looked at other disturban
es and why we leave them for futurework.4.3.3 Dis
rete ParametersDi�erent parameter 
ategoriesIn�uen
es due to the network have been a

ounted for in the previous se
tion, and someof them have been 
an
elled. They are not related to the atta
k pro
esses. The followingstep 
onsists in 
lassifying data. The �ngerprint attributes have been brie�y des
ribedin Se
tion 4.2.2. Two pa
ket tra
es (Large_Sessions) will be said similar if all of their�ngerprint attributes (see Se
tion 4.2.2) are similar. It implies that a similarity fun
tionmust be de�ned for ea
h attribute. These fun
tions must at least 
onsider the previouslymentioned 
ase of losses. We estimate that some attributes are less impa
ted by losses(or delays) than others. Those we believe 
annot be impa
ted by losses are 
alled dis
retevalues hereafter and are des
ribed in the next se
tion. Others highly �u
tuate dependingon losses. They are generalized in Supervised Intervals whi
h are detailed hereafter.Dis
rete ValuesWhen applying ma
hine learning in pra
ti
al settings the �rst di�
ulty is raised by theattribute evaluation phase for the data at hand. The basi
 idea of attribute sele
tionalgorithms is sear
hing through all possible 
ombinations of attributes in the data to �ndwhi
h subset of attributes works the best for predi
tion. The sele
tion is done by redu
ingthe number of attributes of the attribute ve
tors, keeping the most meaningful attributes(whi
h together 
onvey su�
ient information to make learning tra
table), dis
riminatingones, and removing the irrelevant or redundant ones. In pra
ti
e, the 
hoi
e of a learnings
heme (the next phase) is usually far less important than 
oming up with a suitable setof attributes.We 
ome out with three major dis
rete attributes out of the seven 
hara
terizing ana
tivity �ngerprint (see Se
tion 4.2.2), that seem 
hara
teristi
 of di�erent atta
k tool�ngerprints and represent major semanti
s:



60 4. Dis
rimination Step: Fingerprinting A
tivities1. Attribute A: The number of targeted ma
hines: An IP sour
e 
an target either 1,2 or 3 virtual ma
hines in ea
h Leurré.
om environment.2. Attribute B: The ordering of the atta
k against virtual ma
hines. If the virtualma
hine has targeted several virtual ma
hines, we give a boolean value 0 if thepa
kets were sent in sequen
e and 1 otherwise. In sequen
e means that the Sour
esends all its pa
kets to a virtual ma
hine before targeting another one.3. Attribute C: The list of ports sequen
es used against ea
h virtual ma
hine of anenvironment.Figure 4.6 presents the 
umulative distribution fun
tion (CDF) of the number of re-
eived pa
kets per Virtual Ma
hine, for ea
h IP sour
e (that is, ea
h Tiny_Session inthe Leurré.
om terminology). 30% of the Tiny_Sessions 
ontain at less 3 pa
kets. Thismakes the number of ma
hines quite stable against pa
ket losses, and 
on�rm our 
hoi
eof Attribute A as a �rst 
lustering 
riterion. This property is also valid with ports, evenif the average number of pa
kets per port per Tiny_Sessions is smaller. Furthermore,due to the 
omplexity of the interpolation pro
esses, it is reasonable, in a �rst stage, to
onsider the sequen
es of ports as a dis
rete value. A re�nement will be proposed in thenext 
hapter. Following the very same idea, it would also have been possible to 
onsiderthe sequen
es of targeted virtual ma
hines instead of their number. The 
hoi
e has beenjusti�ed by the fa
t that whenever IP sour
es target several virtual ma
hines (VMs), theyfollow the natural order of the VM IP addresses of a sensor in 99,7% of the 
ases.
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Figure 4.6: CDF: # Re
eived Pa
kets per Virtual Ma
hineThe attribute evaluation 
an be done in di�erent ways. They are listed hereafter,a

ording to the entropy of 
lasses. We 
ompute the entropy H of ea
h 
lass probabilitydistribution P as: H(Class) = � Xx2ClassP (x):log(P (x)) (4.1)



4.3. Clustering Algorithm 61� The Information Gain evaluates the worth of an attribute by measuring the infor-mation gain with respe
t to the 
lass.InfoGain(Class; Attribute) = H(Class)�H(ClassjAttribute) (4.2)� The Information Gain Ratio that evaluates the worth of an attribute by measuringthe gain ratio with respe
t to the 
lass.GainR(Class; Attribute) = (H(Class)�H(ClassjAttribute))H(Attribute) (4.3)� The Symmetri
al Un
ertainty that evaluates the worth of an attribute by measuringthe symmetri
al un
ertainty with respe
t to the 
lass.SymmU(Class; Attribute) = 2 � H(Class)�H(ClassjAttribute)H(Class) +H(Attribute)(4.4)� The Chi-Squared Statisti
 �2 (or Pearson-Chi-squared statisti
) evaluates the worthof an attribute by 
omputing the value of the 
hi-squared statisti
s with respe
t tothe 
lass. The 
omputation is made between ea
h pair of attributes in order to feeda 
ontingen
y table.�2 is then quite easily derived from the table and express howrelated the two attributes are.We intend in the following to evaluate the attributes thanks to the Information GainRatio (IGR), also used in some de
ision tree algorithms like C4.5 ([198℄), as it providesa fairer value than the Information Gain only. Indeed, this last notion tends to favorattributes that have many values. It is important to note here that we intend to keep allof the 
hosen parameters whi
h depi
t an a
tivity �ngerprint. However, given a samplespa
e of p dimensions, it is possible that some dimensions are less dis
riminatory thanothers. This measure intends to quantify this di�eren
e.In Table 4.1, we give the number of 
lusters obtained by splitting the whole dataset(from February 1st 2003 to July 31st 2005) depending on the number of 
hosen attributes:
It 
an be observed from Table 4.1 that Attribute B is not really dis
riminatory. Itsoverall Information Gain Ratio remains very small. In other words, its 
ontribution to the
lassi�
ation is not really signi�
ant. A
tually, this is not surprising as it provides quiteredundant information with Attribute A and as it dis
riminates the a
tivities on severalvirtual ma
hines only. This table provides an interesting estimate of the 
orrelation amongparameters, in the 
ase this 
orrelation is not straightforward.



62 4. Dis
rimination Step: Fingerprinting A
tivitiesTable 4.1: Classi�
ation in fun
tion of some dis
rete valuesSplitting Attributes Number of 
lusters Info(F)Attribute A 3 1.0940Attribute B 2 0.0034Attribute C 46446 4.269547Attributes A and B 4 0.760566Attributes A and C 46476 4.269695Attributes B and C 46449 4.269569Attributes A and B and C 46479 4.269717
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Figure 4.7: Distribution of Sizes among ClustersFigure 4.7 gives the distribution of sizes among 
lusters (y-axis in thousands of 
lus-ters). There is a 
lear prevalen
e for small ones. In a more general manner, only 2702
lusters 
ontain at least �ve Sour
es, 8759 at least 2 and 1699 at least 10. We re-mind here that the database 
ontains 1431093 Large_Sessions, that is, there is a verysmall diversity of atta
ks with respe
t to Attributes A, B and C (in average, there is143109346479 � 31 Large_Sessions per 
luster). It is also important to note that more than95% of large_Sessions are thus in
luded within 2702 
lusters. Without 
onsidering otherattributes, this leads to the following 
orollary:Corollary: The grouping of mali
ious a
tivities by ports sequen
es and number of tar-geted virtual ma
hines indi
ates that there does not exist a large variety of 
ombinationsin the wild.4.3.4 Supervised IntervalsAttributes Des
riptionWe de�ned in the previous se
tion some attributes with dis
rete values. Classi�
ationis simple in this 
ase, as any 
ombination of n values de�nes a new 
lass. There are



4.3. Clustering Algorithm 63other attributes, however, that 
hara
terize a �ngerprint, but whi
h 
annot be 
onsideredas di�erent for ea
h di�erent dis
rete values be
ause the gain ratio would be very 
loseto zero, as there would be too many generated 
lasses. In other words, in su
h 
ase, avery same �ngerprint 
an have an interval of values for a given attribute. Among theseparameters, we 
onsider:� Attribute D ! Duration: The total duration during whi
h an atta
king sour
ewas observed on one honeypot environment. It is 
omputed, for a given sour
e, asthe di�eren
e between the date the last pa
ket has been re
eived on the environmentand the date the �rst pa
ket has been re
eived. This attribute aims at 
onsideringnetwork delays as a simple artifa
t of the Internet and not as intrinsi
 features ofthe atta
k a
tivities.Duration = t(last_re
eived_pa
ket)� t(first_re
eived_pa
ket) (4.5)� Attribute E ! Number of pa
kets sent to ea
h virtual ma
hine by an atta
kingsour
e. This attribute also varies be
ause of pa
ket losses. Variations might besimple artifa
t of the Internet and not intrinsi
 features of the atta
k a
tivities.� Attribute F! Average inter-request time: the average time interval between ea
hpa
ket re
eived from the atta
king sour
e.
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Figure 4.8: Distribution of the Duration Values over all Large_SessionsIt is not obvious to perform a good generalization with respe
t to di�erent and unpre-di
table distributions. For example, Figure 4.8 des
ribes the distribution of the durationvalues (Attribute D), in se
onds, over all Large_Sessions in the database. A simple glan
eat the �gure indi
ates the hard task of generalizing su
h an attribute. A 
ontrario, Figure4.9 presents the very same distribution, but limited to Large_Sessions within 
lusters2404 and 1062 (obtained after having 
onsidered the dis
rete attributes in Se
tion 4.3.3).



64 4. Dis
rimination Step: Fingerprinting A
tivitiesThese two 
lusters are relatively larger than the average, and 
onsist of a few dominantpeaks. We 
onsider for instan
e, that the two peaks of Cluster 2404 
hara
terize twodi�erent �ngerprints.
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(b) Cluster 1062Figure 4.9: Examples of Duration Distribution among Two ClustersModal properties of these three parametersAs illustrated by the previous example, it seems important here to 
he
k that all 
lustersshare the same property: there exist for Attributes D, E and F 
lear peaks that 
an beused to generalize their values. In order to prove this assumption, we make use of aso-
alled peak pi
king te
hnique. Peaks of a distribution are often 
alled modes. Manyte
hniques whi
h aim at extra
ting them automati
ally have been proposed [131, 134℄. Inthe following, we intend to prove that there are a few of them in ea
h 
luster, and thattheir 
orresponding bins stem for the majority of their 
omponents. A bin is 
omputedby a given baseline around the peak value. The baseline is determined a

ording to thetoleran
e we give around the values (see Figure 4.10). The 
hoi
e of a toleran
e thresholdis justi�ed in the following, as it does not really impa
t on this demonstration.The te
hnique is detailed in Algorithm 2. We extra
t the weight of the 5 higherpeaks of ea
h 
luster and we 
ompute their global weight (relative to the 
luster size,in %). These relative weights a
ross 
lusters are then represented in Figure 4.11 forAttribute D4. The x-axis represents the indexes of the 1699 
lusters gathering more than10 large_Sessions. All values are higher than 85% (ex
ept for the 2 largest 
lusters, outof the 1699 
onsidered 
lusters). In other words, the majority of the distribution of ea
hattribute D, E or F 
an be expressed by no more than half a dozen of peaks. It seems thusrelevant to apply this simple peak pi
king te
hnique to all 
lusters in order to generalizethe attribute values.4The graph of Attributes E and F are very 
lose to this one.
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frequency

peak

bin

2 τ

BaselineFigure 4.10: Peak Terminology of a Given DistributionAlgorithm 2 Distribution Properties of Attributes D,E and Ffor all Attributes Ai with toleran
e �i dofor all Clusters Cj doWeight(Wij) = 0Compute the distribution Dijwhile There exists dominant peaks & 
ounter < 5 doExtra
t Dominant Peak PkCompute its baseline:Interval [Pk � �i℄This bin has a weight wij(k)Weight(Wij) = Weight(Wij) + wij(k)Remove the bin from Distribution DijIn
rement 
ounter +1end whileend forPlot distribution of Weight(Wij)end forGeneralization Pro
essAs another illustration, Figure 4.12 represents the distribution of attribute F, i.e. theaverage inter-arrival time, over all Large_Sessions. The x-axis des
ribes the attributevalues while the y-axis represents the frequen
y of the values in terms of Large_Sessions.Clusters also present interesting modal distributions, as it has been des
ribed in an anal-ysis of Inter-Arrival Times (IATs) in [242℄ 
arried out in 
ooperation with Zimmermannet al. The analysis of some modal 
hara
teristi
s has led to interesting results, and the�ndings of two di�erent a
tivity anomalies:� A strange IAT peak of value 28800s involving UDP port 38293: it turned out tobe the mis
on�guration of a Norton Antivirus automati
 update server against aparti
ular sensor. [242, 16℄.
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rimination Step: Fingerprinting A
tivities
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Figure 4.11: Modal Property of Attribute D: Weight of First 5 Peaks� A strange IAT peak of value 9754s involving UDP port 1026: this port is used byMi
rosoft Windows operating systems for the Windows Messenger servi
e, amongother things. At least one worm is also known to propagate via a vulnerability usingthis servi
e [242, 19℄. This port is also known to be utilized for the distribution ofspam over the Windows Messenger servi
e [20℄. The tra�
 has been periodi
allysent by two Chinese servers and monitored by several honeypot sensors.As shown through the examples in [242℄, there are some 
lear and meaningful peaks.We use a dedi
ated algorithm to generalize these values a

ording to some parti
ularthresholds that are explained hereafter. In general, we have de
ided to keep on splittingthe 
lasses with 
ertain toleran
e indi
es (or bin baselines), where a toleran
e index isde�ned for ea
h attribute. The toleran
e indexes are asso
iated to probabilities of lossand delay in the network. The te
hnique is summarized in Algorithm 3. It simply 
onsistsin 
onsidering peaks by de
reasing frequen
y. For ea
h peak, the baseline is 
omputeda

ording to the toleran
e index. We also avoid the situation where there is a baselineoverlap: in this 
ase, the new baseline does not take values already in
luded in the otherbaseline. An illustration of su
h a s
enario is presented in Figure 4.13. Baseline of Bin 2is shorten as it partially 
overs baseline of Bin 1.For ea
h attribute presented above, we have used the toleran
e thresholds presentedin Table 4.2. Small variations of the di�erent toleran
e indexes does not make large
lassi�
ation 
hanges. This is quite straightforward when looking at the two examplespresented in Figure 4.9.



4.3. Clustering Algorithm 67

Figure 4.12: Distribution of Average Inter-Request Time ValuesTable 4.2: Toleran
e indexes �iduration 2%total number of re
eived pa
kets 8%re
eived pa
kets per Virtual Ma
hine 8%average inter-pa
ket time 2%Information Gain and RemarksThe Information Gain summarizing this new 
lustering step is presented in Table 4.3. Weonly present the out
ome of this method applied on the previous 2702 
lusters, that isthe ones grouping at least 5 sour
es (97,5% of all Large_Sessions). Globally speaking, allattributes are quite equally dis
riminatory. The splitting 
aused by Attribute D asso
iatedto F, i.e. the observation duration and the average inter arrival time) does not bring moreadditional information than the attributes 
onsidered alone. This is not totally surprising,as the attributes are not 
ompletely un
orrelated: the values of Attribute F are simply
omputed by dividing Attribute E by Attribute D for ea
h Large_Session. This explainsthat the Information Gain Ratio is similar when 
onsidering Attributes (D and E), or (D,E and F).



68 4. Dis
rimination Step: Fingerprinting A
tivitiesAlgorithm 3 Pro
ess of Generalizationfor all Attributes Ai with toleran
e �i doCompute the distribution DiOrder Di in de
reasing orderfor all Frequent Values Di(j) doTake Interval with:�min = min(Di(j):(1� �i); 0)�max = Di(j):(1 + �i)for all Other already-built intervals [a; b℄ doif a > �min AND a � �max then�max = a� 1end ifif b � �min AND b < �max then�min = b + 1end ifend forAdd new interval [�min;�max℄ in the listend forend for Table 4.3: Classi�
ation with Supervised IntervalsSpliting Attributes F Number of 
lusters Info(F)Attribute D 4109 1.0940Attribute E 3100 0.0034Attribute F 3085 4.2696Attributes D and E 4813 0.7606Attributes D and F 4703 1.0962Attributes E and F 3112 4.3121Attributes D and E and F 4815 4.31274.3.5 Validation: Unsupervised Classi�
ationIntrodu
tionAt this stage, we have 
lassi�ed the data a

ording to 6 major attributes, des
ribed inSe
tions 4.3.3 (dis
rete values) and 4.3.4 (supervised intervals). Another attribute hasbeen mentioned but has not been 
onsidered so far: it is the payload of pa
kets, whi
h isalso an interesting �ngerprint attribute. It does not �t into the previous two 
ategories.Taking the exa
t values is not relevant, as many �elds in the proto
ol layers 5+ oftenin
lude timestamps or other identi�ers, whi
h make the payload somehow unique. Moregenerally, two major issues must be 
onsidered before 
omparing Large_Sessions andtheir asso
iated data payloads:
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Figure 4.13: Peak Pi
king: Interse
tion btw Baselines� First, when 
omparing two Large_Sessions in terms of all pa
kets sent by ea
h at-ta
king sour
e to an environment. Ea
h Large_Session 
onsists in several payloadsto be 
ompared with.� Se
ond, Payloads 
an in
lude some random or 
hanging �elds that must not disturbthe 
omparison.A distan
e fun
tion is applied between payloads of ea
h Large_Session from a given
luster. This fun
tion is 
alled the Levensthein distan
e and is dis
ussed in the nextparagraph. The 
lustering top-down hierar
hy is explained in the following paragraph, aswell as the splitting 
riteria to get the new 
lusters.Levenshtein-based Phrase Distan
eIn order to validate the 
onsisten
y of 
lusters, we 
onsider pa
ket data 
ontents. Thepayloads of all pa
kets sent from the same sour
e are 
on
atenated to form a simple textphrase thanks to the tethereal utility [6℄. Tethereal is the 
ommand line version of thepopular network tra�
 analyzer tool ethereal. It allows examining data from a 
apture�le and browsing detailed information for ea
h pa
ket in a text format. Thus, we 
onsiderea
h phrase as a 
on
atenation of tethereal lines, with jj separators. Figure 4.14 givesa short phrase of an ftp atta
k for illustration. Ea
h 
luster gathers all atta
k sour
esthat are assumed to be due to a single root 
ause, i.e. to the use of the same atta
ktool against our honeypots. We de�ne for ea
h atta
k sour
e its asso
iated atta
k phrase.Then, we 
ompare for ea
h atta
k of one given 
luster distan
es to all others phrasesof the same 
luster. This te
hnique is based on the Levenshtein edit distan
e whi
h isexplained below.The Levenshtein distan
e (LD) algorithm has been used in many domains, su
h as
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Figure 4.14: Simple Appli
ation of the Levenshtein Distan
espell 
he
king, spee
h re
ognition, DNA analysis or plagiarism dete
tion. It is a measureof the similarity between two strings, whi
h we will refer to as the sour
e string (s) andthe target string (t) [10℄. The distan
e (sometimes 
alled edit distan
e) is the number ofdeletions, insertions, or substitutions required to transform s into t. For example,� If s is "Agpuser�home.
om" and t is "Agpuser�home.
om", then LD(s; t) = 0,be
ause no transformation is required to 
hange s into t as they already are identi
asare needed.� If s is "Agpuser�home.
om" and t is "Mgpuser�home.
om", then LD(s; t) = 1,be
ause one substitution (
hange "A" to "M") is su�
ient to transform s into t.In general the two 
omponents of the phrase distan
e (i.e. the string distan
e and thepositional distan
e) 
an have a di�erent 
ost from the default (that is 1 for both) to giveanother type of phrase distan
e. There is a third 
omponent: a 
ost whi
h gives weights onthe phrases that have less exa
t mat
hes. It is des
ribed in details by Roger et al. in [10℄.This third 
omponent is disabled by default (i.e. it has a 0 
ost), but it 
an be enabled with
ustom 
ost. The method we apply sums the phrase distan
e from the words from the set(i.e. formed by the de�ned set of 
hara
ters) and the phrase distan
e is 
al
ulated fromthe "words" belonging to the 
omplementary set. Moreover, the algorithm used to �nd thedistan
e is the "Stable marriage problem" one [114, 148℄. This is a mat
hing algorithm,used to harmonize the elements of two sets on the ground of the preferen
e relationships.The positional distan
e only limits the impa
t of pa
ket loss when 
omparing the atta
kphrases and 
omputing their global distan
e. More 
omplex methods 
ould have alsobeen 
onsidered, most of them being 
urrently tested in bioinformati
s to 
ompare DNAsequen
es [58, 220, 229℄. We leave this study for future work, as this simpler solutionperforms well with our dataset, as we will show later.
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hy-based 
lusteringThe hierar
hy 
lustering te
hnique whi
h has been 
hosen to split within a same 
luster allLarge_Sessions that have similar payload senten
es is the 
lassi
al pyramidal 
lusteringmodel built by an agglomerative bottom-up algorithm [94, 52, 53℄. The goal is to obtain ahierar
hi
al stru
ture where ea
h 
lass of Large_Sessions is also partioned into sub-
lassesand so on, a

ording to a given distan
e fun
tion between 
lasses. The distan
e betweentwo sub
lusters (or sub-
lasses) is the maximum of all pairwise distan
es between senten
es
ontained in ea
h sub
luster. Applying the Levenshtein phrase distan
e 
ombined with ahierar
hy threshold �Lev (whi
h is an upper bound of the maximum value of all pairwisedistan
es) 
ould generate new 
lusters from the original 
luster, gathering Large_Sessionswith similar payload 
ontents (similarity given by small values of the phrase distan
es).As an illustration, we present in Figure 4.15 a pyramid built from the 8 payload senten
es(wk; 0 < k < 9) asso
iated to a given 
luster, as well as the resulting four sub
lustersobtained by 
onsidering a given hierar
hy threshold �Lev (the y-axis representing the
onsidered inter-
luster distan
e). Let fCi;j j j 2 Ng be the set of 
lusters obtainedfrom the original Ci 
luster (
onsidering attributes: A 9 9 KF ). We estimate the initial
luster 
onsisten
y ~Ci by 
omputing the ratio of the largest size obtained among the newsub
lusters over the initial Ci 
ardinality:~Ci = max(
ard(Ci;j; 8j))
ard(Ci) (4.6)If the value is 
lose to 1, it means that the 
luster size has not signi�
antly de
reasedduring the splitting pro
ess. To illustrate this de�nition, it is worth noti
ing that the
luster 
onsisten
y ~Ci is equal in Figure 4.16 to 2939 .Another interesting value is the Splitting Ratio SR, whi
h intuitively represents thenumber of obtained sub
lusters after applying the Levenshtein validation phase.SR(Ci) = 1
ard(jCi;jexists) = 1#ObtainedSub
lusters (4.7)We have 
omputed the SR values obtained with several Levenshtein 
lustering thresholds�Lev 2 [10::200℄. We �rst remark that the splitting does not 
hange signi�
antly when �Levvaries. We also note some 
ases where the splitting remains very low. These parti
ular
ases are dis
ussed in the next se
tions, as well as the exa
t splitting 
riteria we have 
ho-sen, based on these experiments. Both indi
es Splitting Ratio SR and 
luster 
onsisten
y~Ci are employed to quantify and evaluate the impa
t of hierar
hy-based splitting. They
an also be used with other splitting methods as well.Splitting PhaseIt is important to note that some worms, also 
alled polymorphi
 worms, 
an 
hange theirform of fun
tionality as they propagate from ma
hine to ma
hine [130℄. For instan
e,
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Levenshtein Threshold

w1 w2 w3 w4 w5 w6 w7 w8Figure 4.15: Pyramid: Levenshtein-Based Distan
e Splitting
Cluster Ck

Figure 4.16: Splitting: Cluster Consisten
ysome families of worms 
ontain an en
ryption engine, that 
ould be very simple, e.g. justinserts no-ops (unne
essary system 
alls) into the worm 
ode to evade signature-baseddete
tion engines, or 
ould be as sophisti
ated as en
rypting the entire worm using arandom seed for every hop so as to evade dete
tion during transit. Interesting studieshave been presented by E. Filiol in [99, 100℄. To date, only a few 
omputer wormshave used polymorphism su

essfully [223℄. In a more general 
ase, many pa
kets 
anbe en
rypted or might 
ontain random parts. Thus, the length and the 
ontent of thepa
kets in a Session 
an be or not stati
, but are 
hara
teristi
 of su
h atta
ks. If su
ha polymorphi
 worm exists, it will generate a 
luster, as previously des
ribed, but witha very low 
onsisten
y value, in terms of the Levenshtein distan
e. All pa
kets shouldbe quite di�erent in terms of payload senten
es. The 
luster should not be split in that
ase. For the same reasons, it might happen that a small �eld 
hanges over the sessionsof a very same atta
k. This 
an be a di�erent identi�er, or a timestamp that makes allpayload senten
es slightly di�erent. In this situation, the 
luster must also not be split.We de
ide to split 
lusters only if 
utting the hierar
hy at threshold distan
e �d does
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d, 
d being 
omputed as:
d = # Obtained Sub
lusters# Sour
es grouped in the initial Cluster (4.8)
d gives an indi
ation of the number of 
reated sub
lusters 
ompared to the number ofinitial elements. We have presented in [242℄ the impa
t of splitting the existing 
lustersa

ording to these two parameters. There is no real sense 
hoosing high values for both �dand 
d, a

ording to the previous remarks. We however note that there is no real splittingimpa
ts when 
hoosing small �d or 
d. The splitting phase is quite stable for small values.In the following, we 
onsider the new 
lusters, obtained by 
hoosing the following values:� �d = 50� 
d = 0.2It is also important to keep in mind that the de�nition of 
d does not re�e
t the sizedistribution of sub
lustering. As an illustration, 
onsider a 
luster Ck of 
ardinality �Ck.We guarantee with the previous method that the splitting phase 
annot generate morethan 
d � �Ck new 
lusters. However, both extreme s
enarios are possible:1. The method generates exa
tly 
d � �Ck, ea
h of size 1
d2. The method generates two 
lusters, one being of size 1 and one being of size �Ck� 1This does not present major drawba
ks, ex
ept that we 
ould 
onsider in the se
ond 
asethe marginal 
luster of 
ardinality 1 as a strong ex
eption of the bigger one. We take thede
ision, however, to 
reate two new sub
lusters, as we estimate that there might existother reasons that 
ould explain why this single sour
e 
annot be linked to the others.It is important to note that ea
h time this te
hnique does not de
ide to split a 
luster,a

ording to the Levenshtein Distan
e, it estimates that there is a too large variety ofdi�erent payloads within the 
luster. This 
an be explained for two reasons: either the
luster gathers too many unique atta
ks, or the 
luster is made of en
rypted atta
ks. This
ase has been found for 5 
lusters.4.3.6 Global Consisten
y IndexNew 
lusters 
an be obtained thanks to the Levenshtein phrase distan
e. We stop at thisstage the dis
rimination phase (
lustering), as we 
onsider that all the 
riteria whi
h havebeen determined as important for an atta
k tool �ngerprint, have been taken into a

ountin the 
lustering approa
h. However, it is still possible to imagine new 
riteria to 
he
k
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rimination Step: Fingerprinting A
tivitiesthe 
onsisten
y of 
ertain 
lusters. For instan
e, we 
an imagine home-made atta
kingtool whi
h 
ontains a bug, and whi
h has the parti
ularity of in
rementing by 1 the TTLvalue of ea
h pa
ket it sends (modulo the maximum value 256). Su
h a tool exists, andhas been reported in an analysis of the TTL �eld in [65℄. This new attribute 
an then be
onsidered as an additional �ngerprint attribute for the 
luster (or 
lusters) whi
h is (are)asso
iated to this tool (or 
on�gurations of that tool). On the other hand, this attributemight be a relevant attribute for that 
luster only. We thus 
on
entrate on the assessmentof the 
onsisten
y of the 
urrent 
lustering.We de�ne a ladder, the Global Consisten
y Ladder, whi
h represents the Global Con-sisten
y index (GCI) of a 
luster. Ea
h time a pre
ise attribute like the one previouslymentioned (in
remented TTL) is determined, GCI is in
remented by 1 (GCI + 1) if theattribute mat
hes the asso
iated 
luster, and de
remented (GCI � 1) otherwise. Theladder is depi
ted in Figure 4.17. The mat
hing is performed from the same equation pre-sented by Equation 4.8 and a threshold of 90%. This means that if the attribute property
overs more than 90% of the 
luster, the 
luster is said to be 
onsistent with respe
t tothe attribute (GCI + 1).The GCI of ea
h 
luster might 
hange. Some students at Eure
om have worked onparti
ular tools that have made the asso
iated 
lusters 
hange their GCI value [65℄. Bydefault, the value is otherwise 0.
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Figure 4.17: Global Consisten
y Ladder
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remental Version of the AlgorithmPreliminariesThe 
lassi�
ation des
ribed in the previous se
tions remains a method whi
h is appliedon
e, on 
olle
ted data. Laun
hing it on a simple 
omputer 
an take several hours, andeven days. This 
annot work to 
arry out the analysis on arrivig data, to build early-warning systems. In other words, a newly observed Sour
e should be 
lassi�ed a

ordingto the already existing 
lassi�
ation. Thus, we propose, in the following, an adaptivete
hnique whi
h aims at providing an in
remental 
omplement of the algorithm presentedin the previous se
tion. The te
hnique highly depends on the type of attributes, as the
lustering method. Thus, three in
remental steps are identi�ed, for ea
h attribute type.This in
remental step is important as HoRaSis 
an 
ontribute to the building of anearly-warning system. In this 
ase, the in
oming data should be analyzed and storedas fast as possible. This explains why we do not simply use fuzzy algorithms and haveimplemented more supervised ones. It is also worth noting that if the new monitoreda
tivity (Large_Session) 
annot be related to already built 
lusters, then it means thatthe a
tivity has not been observed so far. A report must be sent to the owner of theplatform and a spe
i�
 
on
ern should be taken for this parti
ular a
tivity. These twofeatures have been implemented in the Leurré.
om proje
t. First, anomalies are listed onthe interfa
e for all users. Se
ond, reports are sent periodi
ally to ea
h partners, withdi�erent levels of details depending on the partner interests. An example of su
h a report
an be found in Annexe E.Dis
rete valuesTaking the examples of Attributes A, B or C des
ribed in Se
tion 4.3.3, it is easy tosee that the in
remental version will �rst o�er to 
ompare the triplets already observed.Otherwise, let Sour
e Si be the new Sour
e and its asso
iated tra�
 to a given honeypotenvironment: If the triplet Ai; Bi; Ci does not exist, a new 
luster is 
reated.Modal propertiesAttributes D, E and F are based on the modal properties of their distribution. Wekeep for ea
h 
luster an array of their values in a de
reasing order a

ording to theirintensity. For ea
h new in
oming data from Sour
e Si, we update the array. The in
omingSour
e in
reases by one the peak 
orresponding to the values of its Attributes D, E andF. Furthermore, ea
h of these values 
an normally be atta
hed to an existing interval.Otherwise, a new interval is 
reated following initial algorithm presented in Se
tion 4.3.4.The reason why peaks are monitored is justi�ed by the fa
t that if a new peak modi�es the
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rimination Step: Fingerprinting A
tivitiestop 10 existing ones, it means that the initial frequen
y intervals are not valid anymore.In other words, the initial distribution has signi�
antly 
hanged. To date, this has nothappened. In addition, it is important to note here that if there are too frequent updates,this will indi
ate that the distributions do not mat
h the modal property anymore. Thus,it is something worth investigating. We have applied the algorithm presented in Se
tion4.3.4 during three periods of three months and for 
lusters de�ned in this period. Wehave then 
ompared the obtained algorithms in terms of peaks and resulting intervals.The results are reported in Table 4.4. They 
learly show the stability of ea
h peak overseveral months. Table 4.4: Classi�
ation with Supervised IntervalsO
t-De
 04 Jan-Mar 05 Apr-Jun 05Similar top 5 peaks 94% 97% 98%Avg Interval Overlap 3% 3% 5%Avg Weight of the top 5 peaks 85% 91% 89%
In
remental Hierar
hy-Based PartitioningWe saw in Se
tion 4.3.5 how the 
lustering te
hnique is re�ned by an hierar
hy algorithmwhi
h splits the Large_Sessions sharing homogeneous payload senten
es with the Lev-enshtein distan
e. This te
hnique must also exhibit an in
remental property in order toavoid the rebuilding of the hierar
hy tree from s
rat
h at ea
h insertion. Sensitivity toinput ordering is one of the major issues in in
remental hierar
hi
al 
lustering [101℄. Abasi
 method to update the tree would be to 
ompare all the existing 
lusters with thenew values. If the distan
e is higher than a �xed threshold, then the 
omparison withthe 
luster is 
onsidered unsu

essful. We however propose to make use of the parti
ularstru
ture of a hierar
hy tree, as proposed in [231℄. A 
luster hierar
hy is basi
ally a treestru
ture with leaf nodes representing singleton 
lusters that 
over single data points.Ea
h node in the tree maintains three types of information: 
luster 
enter, 
luster sizeand 
luster density. The 
luster density des
ribes the spatial distribution of 
hild nodesof a node. We de�ne a 
lusters density as the maximum distan
e to the 
losest neigh-bor among the 
lusters members. Figure 4.18 represents the same pyramid as the onedes
ribed in Figure 4.15. It in
ludes, however, the nodes information previously listed.Our approa
h for in
orporating a new Large_Session payload senten
e into the 
lusterhierar
hy 
onsists of two stages. During the �rst stage, the algorithm lo
ates a node in thehierar
hy that 
an host the new payload senten
e. The se
ond stage performs hierar
hyrestru
turing, 
hanging the density and size attributes of involved nodes. The approa
his des
ribed in Algorithm 4:
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Figure 4.18: Pyramid: In
remental Hierar
hy Approa
hOther optimized versions might exist to parse the tree in more e�
ient way than thistop-down approa
h. However, we are not in a situation where this optimization reallymatters. The in
remental version is to date fast enough. This dire
tion is also left forfuture work.
4.4 The Resulting Fingerprints4.4.1 Global Statisti
sThe resulting number of 
lusters, in
luding the ones whi
h have not been split be
auseof their heterogeneity with their 
ontent (see the Levenshtein distan
e splitting 
riterionin Se
tion 4.3.5) is 8382. The average splitting ratio is thus 83824815 = 1:74. If we also
onsider the ones with less than 5 Sour
es whi
h have not been 
onsidered in the se
ondpart of the algorithm, the te
hnique has 
lassi�ed the whole dataset within 52159 distin
t
lusters. In other words, 52159 di�erent a
tivity �ngerprints have been observed alongthe several months of data 
olle
tion. This validation has an impa
t on the small numberof 
lusters whi
h are still quite large after having 
onsidered attributes A 9 9 KF . Thelimited splitting ratio is also due to the la
k of su�
ient payloads. More intera
tion fromthe honeypot sensors would improve the ratio and the global dis
rimination pro
ess.This step gives the �nal 
lusters. These are the atta
k �ngerprints we are looking for,as they gather all IPs sharing the same parameters. We detail and dis
uss the resulting
lustering hereafter.
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rimination Step: Fingerprinting A
tivitiesAlgorithm 4 In
remental Algorithm for Hierar
hy ClusteringRes_Clus ;New attribute wk to insert (payload senten
e)Let CH be the Clustering Hierar
hy Tree for Attribute AParse the tree in a top-down mannerfor all 
luster Ni in CH with density �i dofor all Values wi(j) doCompute ŵi = MAX(d(wi(j); wk))d() being here the Levenshtein-based phrase distan
eend forend forConsider the node Ni with the largest depth that veri�es:ŵi < �iif Node Ni exists thenreturn Nilink wk to node Niif Node Ni in
luded in a 
luster Cr thenRes_Clus = CrelseRes_Clus = fwkgSend a noti
e indi
ating the 
reation of a new 
lusterend ifelseCreate new node with 
losest node and Vk as 
hild nodesSend a noti
e indi
ating that the new entry does not mat
h previous hierar
hyUpdate tree path information if ne
essary for parents nodesRes_Clus = fwkgend if4.4.2 Atta
kers vs. S
annersOne of the attribute whi
h is taken into a

ount when building 
lusters is the number oftargeted virtual ma
hines on the Honeypot environment (Attribute A in the 
lusteringpro
ess). Figure 4.19 represents two di�erent evolutions over time. The �rst 
urve (-o-)represents all a
tivities (Large_Sessions), whi
h have targeted a single virtual ma
hineon one honeypot environment, while the se
ond 
urve (-x-) represents all a
tivities whi
hhave targeted all virtual ma
hines in an environment. Values are given in per
entages,and we do not represent the a
tivities against two virtual ma
hines only, as they stemfor less than 8% of the total number of a
tivities and for ea
h month.We also 
onsiderall honeypot environments. We let same analyses but performed on ea
h environmentfor future work. It is interesting to observe that in the �rst 6 months of the experiment,the se
ond 
ategory of a
tivities was largely dominant, while in the last 6 months, it isthe opposite situation. We note that at the beginning of 2004 (11th month), the trendabruptly 
hanged. We have 
he
ked that it 
annot be only explained by popular worms
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Figure 4.19: Larges_Sessions Targeting All vs. One Virtual Ma
hines from Feb.2003a
tive at this date like Sasser5.This result also shows that s
ans on several 
onse
utive IPs are still 
ommon. Inaddition, we have shown in [187℄ that almost all s
ans whi
h target three 
onse
utive IPsare programmed to hit them sequentially in in
reasing IP address order. In other words,it 
ould be su�
ient to de�ne three unused IP addresses at the beginning of a networkrange, and blo
k all external IPs that try to 
onta
t these three IPs in sequen
e. It wouldde�nitely blo
k a large part of the so-
alled ba
kground radiation tra�
.Claim: This example shows the importan
e of monitoring malware a
tivities overlong periods of time. This allows determining quite easily the new trends and global
hanges of monitored a
tivities. It also gives the opportunity to adapt se
urity defensesto these trends.4.4.3 Ports, Ports Sequen
es and ClustersPorts Sequen
es and ClustersTable 4.5 shows the di�eren
es between the notion of a
tivity on a port, as reported inseveral web sites, and the 
on
rete number of 
lusters asso
iated to that port. The �rst
olumn of Table 4.5 presents the top 10 ports given by the Internet Storm Center forthe month of De
ember 2005 [14℄. The se
ond 
olumn presents the number of distin
tsequen
es of ports whi
h have been observed in
luding this port, and the third 
olumnrepresents the number of 
lusters6, or a
tivity �ngerprint targeting at least that port on5Sasser a
tually appeared three months after the abrupt de
rease of the �rst 
urve, in the last daysof April 2004 [26℄.6All 
lusters, in
luding the ones of size equal to 1.



80 4. Dis
rimination Step: Fingerprinting A
tivitiesa leurré.
om sensor during the same month.Table 4.5: Ports vs Clusters: di�erent information levelsPorts Sequen
es of Ports ClustersTCP 1026 221 446TCP 6881 11 4TCP 445 10447 16568TCP 80 7504 2464TCP 27015 2 1TCP 135 7437 13122TCP 40000 5 2TCP 53 134 112TCP 1025 9715 3413TCP 65535 34 8
As a reminder, it is important to understand that there might exist more ports se-quen
es than 
lusters. For instan
e, a given 
luster 
an represent an a
tivity whi
h hasdi�erent behaviors on ea
h virtual ma
hine, and 
an thus target di�erent ports. We �rstobserve from table 4.5 that there are a large number of sequen
es of ports. They area �rst indi
ation that many di�erent atta
ks target a same port. The se
ond 
olumngives the number of distin
t suspi
ious a
tivities observed at least on that port. Withno surprise, there is an important number of a
tivities against the popular ports. It isworth investigating, at this stage, if some unexpe
ted peaks on a port are due to a singlea
tivity or several ones. This step is made possible by the monitoring of atta
k a
tivitiesinstead of port statisti
s. This observation leads to the two following 
laims:Claim: An analysis of malware a
tivities 
annot be limited only to statisti
s on asingle port.Claim: An analysis of malware a
tivities 
annot even be limited only to statisti
s onthe ports sequen
es.Clusters already give a better notion of a
tivities, and are thus more meaningful forstudying tra�
 on honeypots. We will show in the next 
hapter that a
tivities mightshare 
ommon features that are also worth being investigated.4.4.4 Interesting A
tivity BehaviorsOne of our experiments related in [192℄ has led us to look at the 
lusters asso
iated tothe Deloder worm. The dete
tion of the Deloder worm among the 
lusters is des
ribed



4.4. The Resulting Fingerprints 81in more details in Annexe D. This worm, whi
h spreads over Windows 2K/XP ma
hines,attempts to 
opy and exe
ute itself on remote systems, via a

essible network shares.It tries to 
onne
t to the IPC$ share7 and uses spe
i�
 passwords. In Figure 4.20, werepresent, per month and per 
ountry of origin, the amount of atta
k sour
es 
ompromisedby the Deloder worm that have tried to 
onta
t the honeypot sensors. More details of theDeloder identi�
ation are presented in Annexe D.

Figure 4.20: Deloder A
tivity (Nb asso
iated atta
k sour
es)A surprising observation from Figure 4.20 is the rapid de
rease of its propagationaround July 2003. [157℄ mentions that the shutdown of CodeRedII was preprogrammedfor O
tober 1, 2001. [222℄ mentions that Wel
hia worm self terminated on June 1st, 2004,or after having run 120 days. A similar me
hanism 
ould have been used for Deloder but,as far as we know, no one has ever made mention of it publi
ly. In the absen
e of su
h ame
hanism, it is worth trying to imagine the reasons for su
h a sudden death. We have
ome with the following possible s
enarios:1. Deloder is still a
tive but our virtual ma
hines are not s
anned anymore, for someunknown reasons. Statisti
ally speaking, this seems unlikely and should be validatedby means of other similar platforms.2. All ma
hines have been pat
hed. Deloder has been eradi
ated. This is anotherunlikely s
enario sin
e Deloder has targeted a large number of platforms, manyof them being personal 
omputers whi
h will probably never be pat
hed. Newersu

essful worms targeting the same port (eg Sasser, Wel
hia, the Korgo family,et
.) tend to 
on�rm this.7or ADMIN$,C$,E$ shares depending on the Deloder variants.



82 4. Dis
rimination Step: Fingerprinting A
tivities3. Deloder bots are listening on IRC 
hannels for 
ommands to run atta
ks. One ofthese 
ommands might have told them to stop the propagation pro
ess. In this
ase, the Deloder worm is not visible anymore but its botnet remains as dangerousas before.At this point in time, unless a pre programmed shutdown is in
luded in the Deloder worm
ode, we 
onsider the third option as the most plausible one. A de�nitive answer to thatquestion 
ould be brought forward by someone who has a

ess to the Deloder worm 
ode,whi
h we have not. If our assumption holds true, this would imply that worms writers havedeveloped a new strategy. Instead of 
ontinuously trying to 
ompromise more ma
hines,they have de
ided to enter into a silent mode when the size of their botnets is su�
ient[219℄. By doing so, they dramati
ally redu
e the likelihood of seeing an in-depth studyof their worm being done as invisible worms are de�nitely less interesting to the se
urity
ommunity than virulent ones. The bottom line of our �ndings is that su
h an in-depthanalysis of that worm is probably worth being done if it has not been done yet. Sleepingworms might a
tually be more sophisti
ated and nefarious than a
tive ones. We alsodedu
e the following 
laim from this example:Claim: Distributed sensor monitoring 
oupled with time analysis of atta
k �ngerprintsgives a good overview of the atta
k evolution over time. Fast in
reases or de
reases ofa
tivities should be 
onsidered as abnormal behaviors, worth being investigated.Other examples have been dis
ussed in [192℄. Due to spa
e limitations, we report theinterested reader to this work.4.4.5 Atta
k Tool Identi�
ationCluster SignaturesThe �rst step before doing any atta
k tool identi�
ation is to build a Cluster Signature,whi
h represents the values of ea
h attribute A 9 9 KF used by the 
lustering te
hnique.The dis
rete values are dire
tly extra
ted for attributes A 9 9 K C, or the supervisedintervals for attributes D 9 9 KF .The main issue to determine a relevant 
luster signature is the generalization of theatta
k phrases. The idea 
onsists here in generating a regular expression from the di�erentatta
k phrases, by taking the same approa
h as with the Levenshtein distan
e. Ea
hdete
ted deletion, insertion or substitution is repla
ed by a star �. This method has been
arefully des
ribed in [165℄, and is illustrated by Figure 4.21.More sophisti
ated te
hniques have been developed by resear
h 
ommunities in bioin-formati
s (Pattern Dis
overy [178℄ ) like the ELPH Gibbs sampler ([181℄) and the teire-
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leur*e*com

leurrecom

leurecom

leurreicom

1 deletion

1 deletion

leur*ecom

leurre*comFigure 4.21: An Example of the Atta
k Phrase Generalizationsias algorithm ([200℄). Future work will 
onsist in testing and applying su
h te
hniquesto repla
e the simple generalization me
hanism 
urrently implemented. However, theLevenshtein-based distan
e is 
urrently su�
ient for the 
lustering re�nement.As a 
on
lusion, ea
h 
luster 
an be summarized by a signature. Figure 4.22 showssu
h an example. It symbolizes an a
tivity observed on one single platform against thefollowing TCP ports 80,135,139,445,1025,1433,2082,2745,3127, 5000 and 6129 for a 
oupleof se
onds (8s � t � 10s). The a
tivity targets a unique virtual ma
hine,
* Payloads: yes (DCOM, Netbios, WebDav)

CLUSTER ID: IDENTIFICATION:

2145
W32/Gaobot.worm.gen.k
Backdoor.Agobot.Id
W32/Agobot−GM (sophos), also known as:

FINGERPRINT:

* Number Targeted Virtual Machines: 1
* Ports Sequence: 2745,2082,135,1025,445,3127,6129,139,1433,5000,80
* Number Packets sent VM: 33
* Global Duration: 7s < t < 11s
* Avg Inter Arrival Time: < 1sFigure 4.22: Example of a Cluster Signature

Toward an automati
 identi�
ation te
hniqueThe 
luster presented in Figure 4.22 
an be easily identi�ed by googling as one out of thenumerous Agobot variants [208℄. Unfortunately, the general part whi
h asso
iates a nameto ea
h a
tivity �ngerprint (
luster), is 
urrently missing in the presented framework.An on-going work intends to automati
ally link well-known exploit databases to atta
k�ngerprints [226, 234℄.The observed 
lusters 
an be well-known a
tivities, or other a
tivities hidden in thenoise of bigger ones. These signatures have been applied to 
reate new Snort alerts in thestandard IDMEF format in [165℄. The goal is here to add another information sour
e tothe 
urrent alert 
orrelation engines, in order to re�ne their analysis. The presentationof this work is out of the s
ope of this do
ument, even if it illustrates a 
on
rete usage ofthe information provided by ea
h 
luster.



84 4. Dis
rimination Step: Fingerprinting A
tivitiesThe method whi
h we prone to identify tools is:� First, look at potential tool 
andidates on In
ident mailing lists.� Se
ond, run all of them in a se
ure environment against a honeypot sensor, to
ompare their tra
es with the 
lusters signature.� Third, if a mat
h is found, it indi
ates that su
h a �ngerprint has already beenobserved. The 
luster size 
an also present for a given period of time the frequen
yof su
h a
tivity. On the other hand, no mat
hing 
learly indi
ates that the tool
andidate, as su
h, has not been observed during the whole monitoring period.To date, a few 
ases have been analyzed. Some tools have been determined by theprevious method and have been detailed in [242℄. They in
lude:� The RTSP s
anner, exploiting a vulnerability on port 554 [112℄.� The Grim's ping ftp s
anner [2℄.� The Roadkil's ftp probe [116℄.� The SQLSnake worm (against port 1433) [8℄.� The SFind.exe s
anner (against port 1433 also) [103℄.� et
.This is however a fastidious task. One reason lies in the large amount of atta
k tools,or at least instan
es of atta
k tools that have been observed so far. The number of distin
t
lusters gives here a good hint of the value. Se
ond, many tools are not available, or hardto �nd, as they are shared by a small 
ommunity of users. These tools, on the other hand,would not be observed without the preliminary studies whi
h we have made so far, andthe parti
ular environment given by the Leurré.
om set up. It is thus quite unlikely thatthese tools are well-known in the se
urity 
ommunity.4.5 Mis
lassi�ed Tra�
 and Re�nementA Sour
e has been de�ned as an IP address during a 
ertain time window, dependingon the inter-arrival time of the pa
kets it sent. Pa
kets sent within a 25-hour slidingwindow are atta
hed to the same Sour
e. Looking at the tra�
 whi
h generated 
lustersof size 1 leads to the 
on
lusion that the 
lustering method 
annot be applied for parti
ulars
enarios, like the one illustrated in Figure 4.23. This diagram represents the arrival times
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lassified Traffi
 and Refinement 85of pa
kets from a given IP Address to the honeypot sensor. This IP address 
orrespondsto a HPOpenview server (or more pre
isely a HP Systems Insight Manager HPSIM ) thatperiodi
ally s
ans ma
hines in the network, using di�erent layer 3 proto
ols and transportlayer ports (UDP 161: SNMP, TCP 280: http-management, TCP 80: http) [29℄. We havepresented in Figure 4.23 its a
tivity over a 7-day period, but it is important to note thatit has been observed for �ve months.

Figure 4.23: Observation of HPSIM A
tivitiesA

ording to our de�nitions, this tra�
 will be split into four distin
t Sessions, andfour di�erent Sour
es. However, it is also 
lear at this point that the honeypot platformfa
es the very same a
tivity. The �ngerprint of this a
tivity should group the four Sessions.Thus, it appears that the previous te
hnique does not suit well for very long and re
urrentyet not periodi
 pro
esses like this one. Small 
lusters 
orresponding to su
h s
enariosshould be gathered into the same one. Thus, mis
lassi�ed tra�
 might 
orrespond tosome parti
ular mis
on�gured ma
hines and/or network management a
tivities. Insteadof keeping them un
lassi�ed, it has been de
ided to group them by relaxing the 
lustering
onditions. These parti
ular mis
lassi�ed a
tivities are thus simply determined by verysimple parameters. We de
ide to merge all very small 
lusters (less than 2 Sour
es) if andonly if :Parameter 1: They 
ontain the very same IP addresses.parameter 2: They are 
hara
terized by the same list of ports for ea
h targeted virtualma
hine.We thus relax the 
onstraints of the 
lustering algorithm but we also add a third 
onstraintto 
he
k that we deal with a s
enario similar to the one presented in Figure 4.23 :
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rimination Step: Fingerprinting A
tivities� The IP addresses in all 
lusters must be in the same subnet as the targeted virtualma
hines.Su
h a property aims at identifying the re
urrent a
tivities from a given ma
hine pluggedin the same subnet than the honeypot sensor. As an illustration, the four 
lusters rep-resented in Figure 4.23 are merged into a single 
luster as they verify the three previous
onstraints. This te
hnique allows to merge 64% of the Large_Sessions that were foundin unique 
lusters (
ontaining less than 2 Sour
es). These new 
lusters are interestingbut remain ane
dotal, as they are quite likely no mali
ious tra�
. They are reportedhowever to ea
h network administrator in order for them to 
he
k the 
on�guration ofthe 
orresponding ma
hines and to stop if ne
essary these a
tivities against the honeypotenvironments. Applying su

essively the 
lustering and this re�nement algorithm, we �ndthat 4% of the Large_Sessions remain within 
lusters of size 1. Some possible reasons arelisted in the following se
tions.4.6 Potential Evasions Me
hanisms4.6.1 Potential S
enariosOur 
lustering algorithm has the advantage of grouping similar a
tivities. It is howeverimportant to noti
e that the 
lustering method 
an be evaded. This 
ould bias the
lustering te
hnique. This would also indi
ate that su
h a monitoring of a
tivities in thewild disturb some 
ommunities at the origin of some tra�
. Many evasion s
enarii havehowever been 
onsidered at this time writing, and the 
lustering method remains e�
ientwith most of them. A brief summary of the three most likely is given below:1. S
enario 1: What if an a
tivity had a random duration on the atta
ked platforms?First, TCP timeouts indu
e many 
onstraints for this approa
h. Indeed, most TCPimplementations utilize a drop timer whi
h indi
ates the time period after whi
ha 
onne
tion not responding to keepalive probes may be 
onsidered as dead. Se
-ond, the splitting phase would generate an abnormally high splitting ratio. In otherwords, the randomness would make these attributes loose their modal properties.It would thus disturb the generalization pro
ess des
ribed in Se
tion 4.3.4 by gener-ating too many peaks. A splitting threshold limits this e�e
t and allows dete
tingsu
h a new trend. This s
enario has not been observed so far. However, some toolsalready o�er su
h a feature, like advs
an whi
h allows setting some variables su
has the number of 
on
urrent threads, the delay or the s
anning duration [28℄.2. S
enario 2: What if an a
tivity would send several random pa
kets in addition tothe ones ne
essary for laun
hing the atta
k? This would also disturb the splittingphase due to Attribute D. As with the previous 
ase, a splitting threshold allows



4.6. Potential Evasions Me
hanisms 87dete
ting su
h a trend. However, this s
enario, as the previous one, 
an be dete
tedbut is not rigorously addressed in the 
urrent version of the Algorithm. The splittingindi
ates that it has not been observed yet.3. S
enario 3: What if the atta
k targets a random port before or after having tar-geted the one against whi
h the exploit is laun
hed? This s
enario 
annot be easilydete
ted by the 
urrent 
lustering te
hnique. It would however indu
e an importantvariation in the number of distin
t ports sequen
es (Attribute A). Another dete
tionme
hanism would be here to build a graph with ports as nodes (verti
es), and thenumber of ports sequen
es in
luding the two ports as the edge weight between twonodes. Nodes with a high degree or a high variation in their degrees would dete
tsu
h a s
enario. This method is not implemented yet and is left for future work.Our 
lustering te
hnique works well, and has been proved e�
ient on the dataset
olle
ted for the last three years. However, atta
k te
hniques 
an 
hange very fast, andthe method must stay adapted to new 
hanges. We have presented in this se
tion possibleatta
ks against our 
lustering algorithm. The �rst two are 
orre
tly 
onsidered at thistime by the te
hnique. To date, it is not the 
ase of S
enario 3. However, new trends 
anbe quite easily identi�ed, whi
h is by itself something important and whi
h justi�es thesensors deployment.4.6.2 The Witty Worm S
enarioWe have noted in previous Se
tion 4.5 that 4% of the Large_Sessions are asso
iated to
lusters of Size 1. They might be due to losses that were not 
orre
tly 
onsidered duringthe generalization pro
ess. Another explanation 
ould also be that we are monitoringparti
ular a
tivities like the Witty worm: This worm has been 
arefully des
ribed bythe members of Caida in [22℄. It is the �rst worm to target a parti
ular set of se
urityprodu
ts � in this 
ase Internet Se
urity System's Bla
kICE and RealSe
ure. It infe
tedand destroyed only 
omputers that had parti
ular versions of this software running. Thesetools 
ontain a Proto
ol Analysis Module (PAM) to monitor appli
ation tra�
. ThePAM routine in version 3.6.16 of iss-pam1.dll that analyzes ICQ server tra�
 assumesthat in
oming pa
kets on port 4000 are ICQv5 server responses but this 
ode 
ontain aseries of bu�er over�ow vulnerabilities. To propagate, the worm thus generates pa
ketswith a random destination IP address, a random size between 796 and 1307 bytes, anda random destination port. The worm payload of 637 bytes is padded with data fromsystem memory to �ll this random size and a pa
ket is sent out from sour
e port 4000.In this s
enario, the a
tivity �ngerprinting as de�ned in our 
lustering will not work,as the worm does not target parti
ular ports on the ma
hine, but the �rewall itself. Thus,ea
h pa
ket re
eived on our sensor from Witty worm a
tivities are likely to be found in
lusters of size 1 (di�erent destination ports, di�erent payloads, et
). Looking to the
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rimination Step: Fingerprinting A
tivitiesSour
e ports, it appears that only 2045 Large_Sessions share this property. It is normalas Witty was not a very a
tive worm [22℄.Thus the remaining 
lusters of size 1 are not artifa
t of this worm. However, thisexample shows an interesting evasion te
hnique. The a
tivities whi
h intend to targettools 
apturing tra�
8 (like �rewall, IDSs), instead of servi
es listening on the ma
hineports, will not be 
orre
tly 
lassi�ed. It might also be the 
ase for 
rafted pa
kets whi
htarget network sni�ers like ethereal or t
pdump. Su
h a
tivities 
an however be monitoredby analyzing several parameters (sour
e ports for instan
e) for Large_Sessions asso
iatedto 
lusters of very small sizes.4.7 SummaryThis se
tion has been ri
h in information. It seems important, at this stage, to summarizewhat has been shown so far. First, the tra�
 
olle
ted by the Leurré.
om proje
t hasbeen gathered in a parti
ular way: as ea
h sensor of the proje
t presents the very same
on�guration, we have grouped all Atta
k Sour
es sharing similar a
tivity �ngerprintson the sensors. The grouping has been made possible thanks to a parti
ular 
lusteringalgorithm. Network e�e
ts are taken into a

ount before and while grouping Sour
es.Then, a small number of parameters are 
onsidered as de�ning a �ngerprint and helpgrouping all the Sour
es. The grouping has been also eased by the properties of someattributes:� Number of targeted virtual ma
hines� Ordering of the atta
ks against the virtual ma
hines� Sequen
es of ports targeted against the virtual ma
hines� Duration of the observed a
tivity� Average time between sent pa
kets� Total number of pa
ket sent by the sour
e on the sensor� Data payload sent by the sour
e on the sensorThe 
lustering te
hnique is by itself extensible and other te
hniques 
an be integratedinstead of, or in addition to the ones presented and justi�ed in this do
ument. Thisdire
tion will 
learly be 
onsidered as the next steps of the proje
t.8It is not ne
essary for the 
apture to be in promis
uous mode.



4.7. Summary 89The study of the atta
k �ngerprints presents very valuable information. Some resultshave been des
ribed in the previous se
tions. Some other results 
an be found in relatedpapers [183, 186, 192, 187, 242℄. These 
lusters are the basis for forensi
s investigation.They provide a very interesting abstra
tion level to distinguish and 
ompare a
tivitiesbetween sensors and to distinguish the a
tivities. Many studies 
an be performed at thisdata abstra
tion level, in
luding:� The temporal evolution of a
tivities in a long term perspe
tive;� The determination of unique or global a
tivities on the sensors;� The statisti
al evaluation of the a
tivities per platform;� The early warning of newly observed a
tivities;� The 
orrelation between monitored a
tivities and alerts generated in the networkhosting the honeypot sensor;� et
.The framework 
ould thus be limited at this abstra
tion level. Indeed, all the bri
ks tobuild interesting studies now exist. We have performed a few of them, whi
h have involvedparti
ular 
lusters (a
tivity �ngerprints). However, some important remarks emerge fromthese preliminary studies. When 
lusters are studied, there are some re
urrent questionswhi
h arise, e.g. '
an the property observed on that 
luster be generalized to other
lusters?' 'Is this property somehow related to other properties?'There might exist similarities between isolated a
tivities (
lusters), and the 
urrentte
hnique does not manage to automati
ally extra
t all of them. We intend to move onestep further, and propose in the next 
hapter a te
hnique to identify these similaritiesin an automati
 way, as de�ned by the initial requirements of the HoRaSis frameworkde�ned in the Introdu
tion.To 
on
lude this 
hapter, it is important to repeat on
e more that all the analysisbri
ks have been 
reated. They are the atta
k a
tivities against the Leurré.
om dis-tributed network of sensors. The next two 
hapters will present an automated approa
hto extra
t all these a
tivities that share strong similarities. They are illustrated all alongby several experien
es that have been 
arried out. This o�ers to the analyst an interest-ing framework to better understand and analyze the a
tivities. This will 
omplete theHoRaSis framework.
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rimination Step: Fingerprinting A
tivities
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Chapter 5
Correlative Analysis
5.1 Preliminary Studies5.1.1 Introdu
tionIn Chapter 4, we have shown how to 
lassify IP sour
es sharing similar a
tivity �ngerprintson our sensors and how to group them into so 
alled 
lusters. Further to this 
lassi�
ationme
hanism, this se
tion intends, by means of three short examples, to illustrate the pos-sible relationships that might exist between some �ngerprints. These relations have beenfound by digging into data, one thing leading to another. All of them have been reportedin our previous publi
ations ([67, 242, 186℄), but are brie�y summarized in the next threesubse
tions. At this stage, it seems important to 
he
k in an automati
 way if othersimilar relationships exist among the 
lusters, and determine the kind of information it
an bring to the analyst.5.1.2 Case Study 1: Country C Spe
ialtiesWe have des
ribed several interesting results 
on
erning Country C1 in [67℄. This honey-pot environment presents some interesting features that have been detailed and related.Among them, we distinguish:1. Very lo
al atta
ks: atta
ks against Sensor C all originate from the same 
ountrythan where C is lo
ated.1The 
ountry is a
tually Taiwan. A 
omplete analysis of this 
ase study 
an be found in [67℄, as thislast do
ument has been written with the partner's 
onsent.



92 5. Correlative Analysis2. Original atta
ks (atta
k �ngerprints whi
h have been observed on the sole SensorC).First, we 
ompare the 
ountries asso
iated to the sour
es having targeted Sensor Cwith those having targeted a Sensor F (lo
ated in Fran
e). We observe in Figure 5.1 thatthe 
ountries at the origin of the atta
ks against Sensor C and Sensor F are very di�erent.The Figure provides the top �ve 
ountries on ea
h sensor, and all the other 
ountries aregrouped into the others 
ategory. We noti
e that 28003 distin
t IP addresses (70% of theatta
ks) observed on Sensor C are 
oming from the very same 
ountry, Taiwan. This fa
tis in 
ontrast with Sensor F where 53674 distin
t IPs, that is 51% of all observed IPs, arefound in the others 
ategory. Thus, there is no 
lear prevalen
e of atta
king 
ountries onSensor F. Su
h a parti
ularity is only en
ountered in the C Sensor. It has been 
on�rmedby 
omparing with the other platforms as well.

Figure 5.1: Atta
king Countries Observed on Sensors C and FIt has also been shown in [67℄ that Sensor C has been targeted by very surprisingatta
ks, whi
h are unique to this sensor. They are most likely due to some spe
i�
malware s
anning randomly the lo
al network and its vi
inity. Among them, we �ndfrequent atta
ks targeting ports {8080,3128,1080,1813,80}. Su
h atta
ks have not beenobserved in any other honeypot sensor.5.1.3 Case Study 2: Atta
ks From Serbia-MontenegroDigging into the data, it has been dis
overed that YU (a
ronym of Serbia-Montenegro)2is quite an a
tive 
ountry, as it belongs to the top �fteen most atta
king 
ountries over allthe dataset. Strangely enough, all the atta
ks 
oming from YU have targeted a uniqueenvironment. We illustrate this in Figure 5.2, with a snapshot of the Leurré.
om web2As of 2006, YU is depre
ated in favor of CS,as spe
i�ed in the standard ISO 3166-1
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e. The Figure represents the distribution of atta
ks 
oming from YU over thehoneypot sensors and per month. Sensor 6 (Env_6 in the Figure) is the only one thathas been periodi
ally targeted. From our preliminary studies, we have also found thatthe atta
k tools, or �ngerprints on this Sensor were not asso
iated to YU only: in otherwords, several a
tivities observed on the 
onsidered Sensor 6 have been monitored onother platforms, but they have been all identi�ed as 
oming from YU on that sole Sensor.
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Figure 5.2: Atta
ks from YU Observed on Ea
h Honeypot Sensor per Month5.1.4 Case Study 3: Apparent Temporal RelationsWe have shown in the previous 
hapter and publi
ations ([242, 186, 192℄) that the 
lustersobtained by the 
lustering algorithm are 
oherent in terms of their 
ontents and may alsoreveal worth-investigating atta
k features (like the geographi
al lo
ations of the atta
ks,the atta
k ordering, the raw pro�le of atta
king ma
hines, et
). We have been able toname a few of those 
lusters by 
omparing the �ngerprints of some known tools on ourhoneypot, obtained in a 
ontrolled environment, to the �ngerprints obtained in the wild.However, this task is tedious, and only a few dozens of tools have been 
learly identi�ed sofar. To further 
omplement our 
lustering method, we looked at the time behavior of the
lusters. Indeed, as illustrated by Figures 5.3, where the y-axis represents the number ofIP addresses asso
iated to ea
h 
luster, as a fun
tion of time (with a granularity of 3 dayson the x-axis), some 
lusters 
learly exhibit a similar time evolution. It is however strikingthat those similar (w.r.t. time) 
lusters 
orrespond to very di�erent atta
k �ngerprints.What is more, Figures 5.4 further highlight that the global a
tivities against some of thoseports (by summing the a
tivities of all the 
lusters targeting those ports) are 
ompletelyun
orrelated. Without going into the details, intervals between bra
kets show periodswhere no evident time 
orrelation is noti
eable. We report the reader to [194℄ for morein-depth treatment of this phenomena. An important 
on
lusion from those examplesis that some temporal 
orrelations exist between atta
k �ngerprints that seem otherwise
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learly deserves further investigation, and it will be done in Se
tion5.4.7.

Figure 5.3: Examples of Time Correlation between Clusters5.1.5 Interesting AnalysesThe previously des
ribed examples highlight the fa
t that some questions 
an frequentlyappear when looking into the data. Do we observe more numerous atta
ks in average
oming from a very spe
i�
 
ountry against some sensors? Do the other sensors alsomonitor atta
ks 
oming from their lo
al hosting network? In a more general way, wouldit be possible to �nd other 
lusters sharing parti
ular distributions in terms of the originsof the sour
es? And in terms of the targeted sensors? Of 
ourse, the geographi
al lo
ationof the sour
es is de�nitely not the only question that might arise. For instan
e, whi
hother 
lusters share temporal relationships? What are all the temporal relationships that
an be dedu
ed from the whole a
tivity �ngerprint 
lassi�
ation? If so, do the groupof time-
orrelated 
lusters also present some similarities in terms of the origin (
ountry,domain) of the atta
k, or at least on the Operating Systems laun
hing su
h a
tivities?These simple but re
urrent questions have led us to de�ne a new method that wouldautomati
ally deal with these re
urrent questions by 
onsidering the various similarities
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Figure 5.4: Observed A
tivities on some Targeted Portsthat might exist among 
lusters. They will enable us to determine in an automati
 wayall the 
ases whi
h have been observed 
oin
identally so far.
5.2 The Theory5.2.1 Underlying MotivationsLet try �rst to summarize what has been presented so far. We have gathered the tra�

olle
ted from a distributed honeypot environment, a

ording to the �ngerprint of thea
tivities. Ea
h 
luster gathers all IP sour
es sharing the same �ngerprint, or atta
ka
tivity, on a honeypot platform. The honeypot data is now turned into 
lusters, and therest of this thesis intends to prove the interest of working at this abstra
tion level. First,it is important to note that many analyses are appli
able on the 
lusters. We distinguishtwo distin
t analysis 
lasses:� Intra-Cluster Analysis: Within a 
luster, the analysis aims at extra
ting featuresthat are more spe
i�
 to this 
luster than to others, in order to enri
h the knowledgeand understanding of the phenomenon whi
h has 
reated those tra
es (root 
auseof the a
tivity �ngerprint).� Extra-Cluster Analysis: The analysis aims at �nding relationships between 
lusters,and potentially to group a few of them sharing 
ommon 
hara
teristi
s.



96 5. Correlative AnalysisThis 
hapter o�ers to address both analysis 
lasses. The �rst type of analysis aims at�nding spe
i�
 features of some atta
ks. When they are 
learly identi�ed, they 
an beused to improve and 
he
k the 
onsisten
y of the 
luster and to improve the mat
hing ofnew in
oming Sessions 
andidates. The se
ond type of analysis aims at 
he
king if theprevious features are shared as well as other properties by several 
lusters. The te
hniqueto extra
t su
h information between 
lusters must satisfy at least three major 
onstraints:1. Modularity: Any kind of analysis should be easily appli
able and 
ompared withother results. Atta
k me
hanisms are more and more 
omplex, or at least, imagina-tive. It is sensible to think that an analysis might not be relevant for long periodsof time, and 
an be evaded by new atta
k 
hara
teristi
s.2. Cross-Analysis: The 
ombinations of existing analyses must be 
ross-
orrelated to�nd, if they exist, emerging properties. The a priori knowledge might help 
hoosingthe analysis methods, but new 
lusters 
orrelation might emerge a posteriori by
rossing analyses.3. Validation: It is quite frequent that the analysis relies on several parameters (in-dexes, thresholds, et
). Several values should be tested and 
ompared on the dataset to estimate their impa
t and the stability of the analysis w.r.t. su
h parameters.Obviously enough, there are other 
onstraints, that have been respe
ted from the begin-ning of this resear
h. The solution must remain intuitive and meaningful, and it musts
ale to the dataset, that is it should deal with at least thousands of 
lusters and to a fewmillions of IP sour
es. With respe
t to all these 
riteria, we have 
onsidered applying amethod based on the graph theory. Before explaining what has led to this de
ision, let�rst summarize the global 
lustering overview: we have N 
lusters, N being in the orderof a few thousands. In the worst 
ase, an extra-
luster analysis 
an show up relationsamong all the 
lusters, that is N(N�1)2 . From another perspe
tive, if N = 1000, we get499500 relations, and in a more normal 
ase, if N = 50000, we get 1:25:109 relation-ships. This relationship among 
lusters 
annot be interpreted easily. The 
omputationremains quite important. We want to extra
t the useful, most important sets of 
lustersthat present strong relationships. This kind of problem might be addressed by severalte
hniques issued from the Dis
overy Knowledge domain. However, we 
an also add someother 
onstraints. First, the solution should work with multiple similarity fun
tions, thatis, for any analysis we will potentially perform. Se
ond, the solution should be able totake into a

ount many 
ombinations of analyses, that is, we fo
us on a large dis
ov-ery method. The method should follow simple and non 
ounter-intuitive steps, and theout
ome should remain readable and exploitable by the analyst.Among solutions to determine relationships between large datasets, one simple butwidespread solution 
onsists in applying asso
iation rule (AR) mining, whi
h have a widerange of appli
ations in many areas of business pra
ti
e and resear
h - from the analysis of
onsumer preferen
es or human resour
e management, to the history of language [37, 242℄.For instan
e, these te
hniques enable analysts and resear
hers to un
over hidden patterns
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alled market basket analysis, whi
h aims at �nding regularitiesin the shopping behavior of 
ustomers of supermarkets. With the indu
tion of asso
iationrules one tries to �nd sets of produ
ts that are frequently bought together, so that from thepresen
e of 
ertain produ
ts in a shopping 
art one 
an infer (with a high probability) that
ertain other produ
ts are present. AR algorithms indu
e rules (A and B imply C), whilewe want to �nd sets of 
lusters sharing similarities. The notion of rule dedu
tion among
lusters 
an be interesting but does not 
orrespond exa
tly to the previously des
ribed
riteria.Another area that deals with information extra
tion from data sets is graph and matrixtheories. Graphs, or matri
es, are widely used with large data. Matri
es 
an be onerepresentation of satellite images, or graphs 
an be the representation of large 
lass Anetworks. Many te
hniques and methods have been designed in this dire
tion to deal withbig datasets. Graph-Theory is a mature and important resear
h domain, whi
h is veryinteresting in this situation. Graphs 
an be easily visualized by end-analysts, and manyalgorithms have already been developed, in a large panel of areas, like tele
ommuni
ations,image pro
essing, video monitoring, et
. Many mathemati
al problems have found theirsolutions in a simple graph abstra
tion.The solution we propose in the following answers the previous requirements. It isbased on a parti
ular set of graphs 
alled 
liques ([56℄), and algorithms whi
h aim atextra
ting dominant sets (maximal weighted 
liques) out of ea
h analysis graph.5.2.2 Building Similarity Matri
esThe te
hnique we present 
an be applied on matri
es expressing similarities. Thus, asa preliminary step, it is important to explain the di�erent logi
 stages whi
h lead ananalysis on the 
lusters to be turned into a matrix 
omposed of integers or real values.The starting point is the 
hara
teristi
 whi
h is under s
rutiny. This 
hara
teristi
 isasso
iated to either an extra or intra 
luster analysis. Then, several steps are required toexpress the 
hara
teristi
 in terms of a similarity matrix among 
lusters. They are listedbelow:1. De�nition of a 
hara
teristi
2. Representation of this 
hara
teristi
 (as a ve
tor, for instan
e)3. Quanti�
ation of this representation (values to be in
luded in the ve
tor for instan
e)4. De�nition of a distan
e to measure how far away two 
lusters are w.r.t. this 
har-a
teristi
5. To insert the values in the similarity matrix asso
iated to the analysis



98 5. Correlative AnalysisIt is important to note that ea
h of these steps 
an be implemented in di�rent ways. Wepresent the ones we have applied in the next Se
tion 5.3 by means of several examples.The di�erent steps lead to the 
reation of a matrixM, with the similarity value betweenCluster i and Cluster j being reported inM(i; j) andM(j; i) (symmetri
al matrix). Thediagonal only 
ontains null values. Let now assume we have these similarity matri
es.Next se
tion intends to show how they 
an be used to extra
t information out of them.5.2.3 The TheoryA 
lique Cl in a simple undire
ted graph G is a set of nodes su
h that there is in G anedge between every pair of nodes in the set Cl. A 
lique of k nodes is 
alled a k-
lique.The size of the largest 
lique in the graph is 
alled the 
lique number of that graph. Asa simple example, every 
omplete (fully 
onne
ted) graph Kn is a 
lique 
onsisting of alln nodes as illustrated in Figure 5.5 with 3-
lique and 4-
lique. Let G be an undire
tionaledge-weighted graph with no self-loops G = (V;E; w) where V = (C1; :::; CN) is the vertexset, E � V x V its edge set and w() be the weighted fun
tion asso
iated to ea
h edge :De�nition 5.1. Maximal Cliques: A 
lique is a subset Cl � V su
h that (i; j) 2 E forall i; j 2 Cl. A 
lique is maximal if it is not 
ontained within any other 
lique.We formalize the problem of dis
overing �ngerprint relationships as the problem ofsear
hing for edge-weighted maximal 
liques in the graph of N nodes (or 
lusters). Indeed,in the past, some authors have argued that maximal 
lique is the stri
test de�nition ofa 
luster [41℄. The pro
ess is the following: we �nd a maximal 
lique in the graph andremove the edges of that 
lique from the graph; we repeat the pro
ess sequentially withthe remaining set of nodes and edges, until there remain non-trivial3 maximal 
liques inthe graph. The leftover nodes after the removal of maximal 
liques are dissimilar frommost of the nodes. All these steps are detailed in the next Se
tion.5.2.4 Relation Dis
overy: Maximal Cliques using Dominant SetsThe Con
eptMany graph-theoreti
 
lustering algorithms 
onsist in sear
hing for 
ertain 
ombinatorialstru
tures in the similarity graph, su
h as a minimum spanning tree, or a minimum
ut and, among these methods, a 
lassi
al approa
h redu
es to a sear
h for a 
ompletesubgraph, namely a 
lique. Unfortunately, while the minimum spanning tree and the3The notion of non-trivial 
liques will be dis
ussed in the next Se
tions.
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4−clique

3−clique

Figure 5.5: Simple Examples of Cliquesminimum 
ut (and variations thereof) are notions that are expli
itly de�ned on edge-weighted graphs, the 
on
ept of a maximal tree is de�ned on unweighted graphs, but ithas also been generalized to the edge-weighted 
ase [56℄.Finding maximal 
liques in an edge-weighted undire
ted graph is a 
lassi
al problemin graph theory. Sin
e 
ombinatorially sear
hing for maximal 
liques is 
omputationallyhard, numerous approximations to the solution of this problem have been proposed [199℄.For our purposes, we adopt the approximate approa
h of iteratively �nding dominant setsof maximally similar nodes in a graph [172℄. Beside providing an e�
ient approximationto �nding maximal 
liques, the framework of dominant sets naturally provides a prin
ipledmeasure of the 
ohesiveness of a 
lass as well as a measure of node parti
ipation in itsmembership 
lass. This measure of 
lass parti
ipation may be used for an instan
e basedrepresentation of a 
lique [128℄.We have introdu
ed in Se
tion 5.2.2 the notion of similarity matri
es whi
h 
an be usedto express 
ertain similarities among 
lusters. Su
h matri
es 
an also be seen as graphrepresentations. We represent the similarity matrix as an undire
tional edge-weightedgraph with no self-loops G = (V;E; w) where V = (C1; :::; CN) is the vertex set (the listof 
lusters), E � V x V is the edge set, and w: E ! R+ is the positive weight fun
tion(the similarity values inserted in the matrix). In summary, we represent the graph G withthe 
orresponding weighted adja
en
y (or similarity) matrix, whi
h is the n x n symmetri
matrix A(i,j) de�ned as: ai;j = (w(i; j) 8 (i,j) 2 E0 otherwise (5.1)This matrix is 
omputed using the notion of similarity des
ribed in Se
tion 5.2.2. Toquantize the 
ohesiveness of a node in a 
luster, let us de�ne the average weighted degreeof a node, as des
ribed in [172℄. Let S � V be a non-empty subset of verti
es and k 2 S,
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h that: awdegS(k) = 1jSjXj2S akj (5.2)Observe that awdegfkg(k) = 0 for any k 2 V . In addition, for j =2 S, we de�ne:
�S(k; j) = akj � awdegS(k) (5.3)�S(k; j) measures intuitively the similarity between nodes k and j with respe
t to theaverage similarity between node k and its neighbors in S. Note that �S(k; j) 
an eitherbe positive or negative, and that �fkg(k; j) = akj, for all k; j 2 V with k 6= j.We are now in a position to formalize the notion of indu
tion of node-weights, whi
his 
aptured by the following re
ursive de�nition. Let S � V be a non-empty subset ofverti
es and k 2 S. The weight of k w.r.t. S is:

wS(k) = (1 if jSj = 1Pj2S�fkg�S�fkg(j; k)wS�fkg(j) otherwise (5.4)Moreover, the total weight of S is de�ned to be:
W (S) =Xk2S wS(k) (5.5)Note that wfk;jg(k) = wfk;jg(j) = akj, for all k; j 2 V (k 6= j). Also observe that wS(k) is
al
ulated simply as a fun
tion of the weights on the edges of the subgraph indu
ed by S.Intuitively, wS(k) gives us a measure of the overall similarity between �ngerprint k andthe verti
es of S�fkg with respe
t to the overall similarity among the verti
es in S�fkg.We are now in a position to de�ne dominant sets. A non-empty subset of verti
esS � V su
h that W (T ) > 0 for any non empty T � S, is said to be dominant if:1. wS(k) > 0, 8k 2 S, i.e. internal homogeneity2. wS[fkg(k) < 0, 8k =2 S, i.e. external homogeneity



5.2. The Theory 101Algorithm 5 Generating Dominant Sets within weighted graphsfor all weighted graph G = (V;E; w) with N nodes doP = ;, be the set of dominant setswhile stopping_
riterion(G) doS  dominant_set(G)P  P [ fSgE  E�ESend whileend forConsidering this de�nition introdu
ed in [172℄, the algorithm we have designed basi-
ally 
onsists of iteratively �nding a dominant set in the graph and then removing involvededges from the graph, until all verti
es have been 
lustered. The algorithm is explainedin pseudo-
ode in Algorithm 5.In this pseudo 
ode, the pro
edure dominant_set(G) �nds a dominant set in the
urrent graph G. The pro
edure is based on a te
hnique proposed by Pavan et al. in[172℄, and dis
ussed in more details in the next paragraphs.The fun
tion stopping_
riterion(G) simply 
he
ks whether the 
urrent graph is valida

ording to a few 
onstraints we add (for instan
e if it 
ontains at least two verti
es ornot). This is also detailed in the following paragraphs. The assignment of node weightsnaturally provides us with a measure of the overall similarity of a dominant set. Given adominant set S � V , we measure its overall 
ohesiveness with:

ohesiveness(S) = 12Pk2S awdegS(k)ws(k)W (S) (5.6)As a remark, it would have been possible, in Algorithm 5 to remove the nodes insteadof the edges, at ea
h algorithm iteration. However, this s
enario prevents us from de-termining some other interesting relationships among 
lusters. Figure 5.6 presents su
ha problemati
 situation: The �rst dominant graph that is extra
ted is fB;C; Fg. If wethen remove nodes B,C and F from the graph, we miss the other dominant set C;D;G.Simply removing the edges B � C;C � F;B � F avoids su
h a situation, as fC;D;Ggis then extra
ted in a next algorithm iteration. In addition, F will not appear in a nextdominant set as it is now isolated4.4We remind here that a degree of a vertex is the number of edge ends at that vertex. A vertex ofdegree zero (with no edge 
onne
ted) is said to be isolated.



102 5. Correlative Analysis
A B C D E

F G

50 20

20 205050

5 5

Figure 5.6: Removing Edges vs. Removing NodesEstimating Dominant SetsThe theory of dominant sets seems attra
tive. There is however a major limitation. Thedes
ribed algorithm would require awful amount of time to 
ompute the weights W (S) ofall potential subset 
andidates. Assume a graph of Æ nodes. This implies 
omputing theweights of 2Æ � Æ 
andidate subsets, and the weight of ea
h node in the subset w.r.t. thesubset (wS(k)). At this stage, it is thus a theoreti
al approa
h to determine 
orrelationbetween 
lusters, but it 
ould not be applied in our 
on
rete dataset. However, theauthors in [172℄ have proved the tight 
orresponden
e between the problem of �ndingdominant sets in an edge-weighted graph and the one of �nding solutions of a quadrati
problem. They propose to �rst lo
alize a solution of the quadrati
 problem with anappropriate 
ontinuous optimization te
hnique, and then pi
king up the support set ofthe solution found. In other words, solving the problem of extra
ting dominant sets 
anbe translated into the one of making a parti
ular temporal expression 
onverge. Solvingsu
h equations makes use of parti
ular fun
tions, 
alled repli
ator equations, whi
h arealso used in theoreti
al biology and evolutionary game theory, sin
e they are applied tomodel evolution over time of relative frequen
ies of intera
ting, self-repli
ating entities.The dis
rete time dynami
al equations turn out to be a spe
ial 
ase of a general 
lass ofdynami
al systems in the 
ontext of Markov 
hains theory. Getting ba
k to the pseudo-
ode in 5, the pro
edure dominant_set(G) simply involves the simulation of the followingdynami
al system5:
xi(t+ 1) = xi(t) (Ax(t))ix(t)TAx(t) (5.7)Starting from an arbitrary initial state (t = 0), this repli
ator dynami
al system is at-tra
ted by the nearest asymptoti
ally stable point. This 
orresponds to a dominant set,as it has been proven in [172℄. In more details, the stable ve
tor (xi)i<V 
orrespondsto what the authors 
alled the weighted 
hara
teristi
 ve
tor xS: a non-empty subset ofverti
es S admits a weighted 
hara
teristi
 ve
tor xS if it has non-null total weight W(S).xS is de�ned as:5x(t)T being the transposed ve
tor of x(t).
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xSi = xS(i) = (wS(i)W (S) if i 2 S0 otherwise (5.8)The demonstration of this property 
an be found in [199℄. It is worth mentioning that byde�nition, dominant sets always admit a weighted 
hara
teristi
 ve
tor. Chara
terizingthe 
omplexity of this approa
h appears to be di�
ult sin
e it involves the simulationof dynami
al system. However, we have noted experimentally that the system 
onvergesquite qui
kly (t < 1000) when applied to all examples presented in the next Se
tion.Furthermore, in our experiments, the initial ve
tor 
hoi
e does not apparently impa
t the�nal results. This property has been 
he
ked by running di�erent tests with various initialve
tors. All have 
onverged in a very short amount of time to the same solution.Stopping CriterionWe have mentioned at the beginning of this se
tion and in Algorithm 5 a fun
tion 
alledstopping_
riterion() that stops the exe
ution of the algorithm after extra
ting nontrivialmaximal 
liques. More generally, it is important to spe
ify some restri
tions that havebeen imposed to the method. One is the stopping 
riterion. Indeed, the algorithm stops,theoreti
ally, when the simpli�ed matrix does not 
ontain edges anymore. However, thelast dominant sets are not really meaningful. In addition, performing the algorithm whilesome edges remain brings a major drawba
k: the te
hnique will produ
e dominant sets,whatever their 
on
rete weight, 
ompared to the others. It 
an be easily imagined thes
enario where all nodes are isolated, ex
ept two, whi
h are linked by an extremely smallweight. The algorithm will automati
ally extra
t them as last dominant sets, whereas wewould not 
onsider them as meaningful in the 
ontext of this study.One solution would 
onsist in spe
ifying the maximum number of dominant sets to beextra
ted (or numerus 
lausus). This solution works �ne with simple graph samples, butsome limitations remain:� The number of meaningful dominant sets varies depending on the analyzed graph.It is thus hard to adapt this value between graphs, and, as we will explain later, to
ombinations of graphs.� Among the extra
ted dominant sets, we 
ould have meaningless ones within thosesele
ted by the numerus 
lausus.Another approa
h 
onsists in setting a few global 
riteria that the algorithm must
he
k.
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ontain edges anymore. All nodes are isolated. This 
ase isquite obvious.� The algorithm generates a too large dominant set. �1 is the maximal 
overage valueof the dominant set. If the ratio between the number of nodes 
ontained in theextra
ted set and the total number of nodes in the graph ex
eeds �1, the algorithmstops, as the dominant set is not pertinent (or at least the 
hosen 
hara
teristi
).The value we set is �1 = 75%. This 
ase has not been observed so far, as the
liques we extra
t are (for this time writing) quite small. This phenomenon 
andepend on the similarity matri
es whi
h have been used. Thus, a uniform or nondis
riminatory matrix would be ex
luded by this 
riterion. The maximal 
overagevalue will also be used in the next Se
tions to represent the relative size of ea
hdominant set among all IPs 
ontained in a 
luster. It is also important to notethat in su
h spe
i�
 situation, the 
omplementary set would be also worth beinginvestigated. Indeed, if 90% of the 
lusters are very similar with respe
t to a given
hara
teristi
, it would be relevant to understand why the remaining 10% 
lustersare not.� We observe that most of the last extra
ted dominant sets are 
ouples. They areextra
ted until none remains, that is, all nodes be
ome isolated. However, these
ouples might present limited interest, espe
ially if they all share the same weightvalue. We thus pre
ise that the last 
ouples with same values are not 
onsidered asdominant sets in the following. An illustration is provided in the next paragraph.A Short ExampleAn illustration is better than a long explanation. Thus let us 
onsider the analysis matrixpresented in Figure 5.7. The initial weighted graph linking the �ve involved 
lusters 
anbe found in Figure 5.7(a). We intuitively observe that the subset of verti
es {1,2,3} isdominant, and this may be intuitively explained by observing that the edge weights inter-nal to that set (60,65 and 70) are larger than those between internal and external verti
es(whi
h are between 5 and 25). As this example suggests, the main property of a domi-nant set is that the overall similarity among internal nodes is higher than that betweenexternal and internal nodes, and this fa
t is the motivation of 
onsidering a dominant setas a parti
ular grouping of nodes (i.e. 
lusters). More pre
isely, the algorithm 
onvergesto the following weighted 
hara
teristi
 ve
tor xS, S = f1; 2; 3g:� xf1;2;3g(1) = 0:3360� xf1;2;3g(2) = 0:3062� xf1;2;3g(3) = 0:3579� xf1;2;3g(4) = 0



5.2. The Theory 105� xf1;2;3g(5) = 0The edges involved in the �rst dominant set are removed from the graph as shownin Figure 5.7(b). A new dominant set, 
omposed of {1,4,5} emerges. The new weighted
hara
teristi
 ve
tor xS, S = f1; 4; 5g is then:� xf1;4;5g(1) = 0:3636� xf1;4;5g(2) = 0� xf1;4;5g(3) = 0� xf1;4;5g(4) = 0:3636� xf1;4;5g(5) = 0:2727The dominant set is also removed in the next step presented in Figure 5.7(
). A dominantset made of two nodes (3 and 4) is �nally extra
ted from the resulting graph.Without the stopping 
riterion des
ribed in the previous paragraph, the next extra
teddominant set would be {2,5}, as illustrated in Figure 5.7(d). However, we are not 
on-vin
ed by the 
orrelation between these two nodes. First, their shared edge has quite asmall weight. Se
ond, this value is not 
learly dominant, if it is 
ompared with the otherremaining weight values, that are exa
tly similar. A

ording to the stopping 
riterion, itis thus not identi�ed as a dominant set.In 
on
lusion, the algorithm extra
ts the three dominant sets in this order:1. {1,2,3}2. {1,4,5}3. {3,4}This example ends the theory se
tion. The reader who took enough time to go throughit now understands that the whole te
hnique relies on the so-
alled weighted similaritymatri
es. We do not pretend, in this do
ument, to show all potential matrix 
andidates.It is even more impossible that the number of 
andidate matri
es is only limited by theresear
her imagination and the available resour
es. Based on the experien
e we havea
quired along the proje
t, we propose a few of them, whi
h are 
arefully motivated bypreliminary studies. Su
h studies are presented in Se
tion 5.1, and the resulting matri
eswe have de
ided to manipulate are detailed in Se
tion 5.4. The underlying expe
tationis at least to �nd by this automati
 approa
h an enri
hed version of the results of thepreliminary studies.
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(d) Step 4Figure 5.7: Dominant Set Extra
tion: A Simple Example



5.3. Building Similarity Matri
es 1075.3 Building Similarity Matri
es5.3.1 Chara
teristi
s RepresentationsThis se
tion aims at detailing the few similarity matri
es whi
h have been used in thisthesis. As it has been mentioned in Se
tion 5.2.2, there are several steps whi
h lead fromthe abstra
t 
hara
teristi
 we intend to study on the 
lusters to the similarity matrix�lled with �gures.The �rst step 
onsists in representing the 
hara
teristi
 of the analysis. We have
onsidered, over this thesis, three major representation types:� Representation 1: ! Ve
tors: they are used to 
ompare the distribution of a 
ertain
lass of attributes over the 
lusters. Assume for instan
e that Chara
teristi
 C 
anbe expressed by the set of Attributes A, then ea
h Attribute Ai is a new dimensionof that ve
tor. The number of Large_Sessions asso
iated to that 
luster, and whi
hshare the property of Attribute Ai (8i) gives the dimension value for the ve
tor.� Representation 2: ! Intervals Interse
tion: the interse
tion is 
omputed to deter-mine whi
h Large_Sessions among several 
lusters share a same property. Thisrepresentation has been applied, for instan
e, to 
ompare the 
ommon IP addresseswhi
h have been observed with di�erent �ngerprints at di�erent periods (see Se
tion5.4.6).� Representation 3: ! Time Series: a parti
ular representation of time series, usingthe SAX method, has been applied to 
ompare the evolution over time of 
lusters.This time series representation will be detailed in Se
tion 5.4.7. We group thedes
ription of this representation and the asso
iated distan
e into a single se
tionin order to ease the understanding of both of them. It is however important to keepin mind that they are two distin
t steps (so potentially alterable) whi
h lead to amatrix expressing temporal similarities.S
enarios presented in Se
tion 5.4 exemplify these three representations.5.3.2 Potential Distan
esDis
ussionFrom the beginning of this Se
tion, we have indi�erently used terms like similarity mea-sures or distan
e fun
tions. The thesis 
annot in
lude all and one distan
e fun
tions,but it is often more easy to �nd distan
e fun
tions in the literature, depending on the



108 5. Correlative Analysistype of the performed analyses. The dominant set method, however, must be appliedwith similarity matri
es, as indi
ated in Se
tion 5.2.4 and not distan
e matri
es. Thereare some guidelines that all similarity fun
tions should follow. These guidelines are in-trinsi
ally linked to what they must express. We must pay great 
are to testing whetherthese mathemati
al te
hniques are a
tually appropriate when dealing with 
lusters. Forinstan
e, some of the properties of mathemati
al metri
s are not always ideal for des
rib-ing distan
es between 
lusters. The next Se
tions present a few 
ase studies in what 
ango wrong if we are not 
areful and sensitive to the goal of our work, whi
h is not usingmathemati
al ideas of distan
e but inferring similarity of meaning in atta
k �ngerprints(
lusters). To make things more 
lear, we have distinguished two parti
ular notions: oneis 
alled distan
e, and one similarity.Distan
e Fun
tionsA distan
e fun
tion allo
ates a value to a pair of points in a spa
e whi
h indi
ates howfar those points are from one another. Let S be a �nite set. A distan
e on S is a fun
tionD: S x S 7! <+ satisfying the following two properties:� Symmetry: 8v; w 2 S, D(v; w) = D(w; v)� Non-Negativity: 8v; w 2 S, D(v; w) � 0The most standard distan
e measures in mathemati
s are 
alled metri
s, whi
h mustsatisfy 
ertain 
onditions or axioms. However, we do not impose here that the distan
efun
tions obey the triangular inequality6, and self similarities D(i,i) are not de�ned7. Wehave used distan
es to build so far the analysis matri
es A_p summarized in Table 5.4.We present here as illustration some distan
es that have been frequently used overour experiments. On
e again, they are not the unique ones, but the framework gives agood opportunity to 
ompare resulting analysis matri
es. They will be named Distan
e 1,Distan
e 2, Similarity 3 and SAX Distan
e respe
tively in the following Se
tions. Theyare asso
iated to the three distin
t 
hara
teristi
 representations des
ribed in Se
tion5.3. The two Distan
e 1 and Distan
e 2 have been 
hosen with a parti
ular underlyingidea: the 
orrelation between atta
k �ngerprints, or 
lusters, is often transposed to a
omparison and proximity evaluation of their respe
tive distributions a

ording to someparti
ular attributes. The distributions are simple ve
tors of dimension n, n being thenumber of possible attributes in the distribution. This 
orresponds to Representation 1.Distan
e 3 is a distan
e dedi
ated to 
omparing interval interse
tions, that is Represen-tation 2. Distan
e SAX is the distan
e related to the parti
ular representation of timeseries (symbols) we have previously des
ribed. It thus 
orresponds to Representation 3.6D(a; b) +D(b; 
) � D(a; 
)7The similarity matri
es we are using must have null values all along their diagonal.



5.3. Building Similarity Matri
es 109Both the representation and the distan
e are presented in the very same Se
tion, to easethe understanding of this method.Distan
e 1The �rst distan
e we de
ide to use in order to 
ompare two distributions is the simpleeu
lidean one. This distan
e between two points x and y in an Eu
lidean Spa
e <n isgiven by: d1(x; y) = jx� yj =rXni=1 jxi � yij2 (5.9)Distan
e 1 gives a good feeling of the 
loseness of ea
h 
luster within the attribute dimen-sions, but it does not provide any idea of whi
h attributes are more involved than othersin the distribution. In other words, as presented in Figure 5.8, three distributions 
anhave a 
lose distan
e but not the same 
oordinates. Cluster 1 has no attribute 
oordinate,while Cluster 2 and Cluster 3 share a same dire
tion along with Attribute 3. This distan
eis thus interesting but limited, and it justi�es the 
hoi
e of 
omplementing it by Distan
e2.
0 0 0
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Figure 5.8: Peak Pi
king Distan
e between Distributions
Distan
e 2This distan
e also aims at 
omparing distributions. Indeed, there are many possibledistan
es to 
ompare two groups of values. Some of them being to 
ompute the largest
ross-distan
e, the shortest one, the one between 
entroids, et
 [70℄. A distribution isrepresented as a simple ve
tor, the dimension being the distribution attributes, and thevalues being the attribute frequen
ies. For ea
h of this ve
tor, we apply a peak pi
kingte
hnique, whi
h aims at pi
king most frequent peaks. All peaks that are � times moreintense than the average distribution are extra
ted and ordered in de
reasing order8.This list of peaks is then 
ompared with the list of another distribution. A distan
e of 1
hara
terizes a 
omplete mat
h of their ordered list of peaks, otherwise its value remains8We 
onsider � = 2 in the report, as most of the distribution are not uniformly distributed and theypresent 
lear peak a
tivities like the one illustrated in Figures 5.8.



110 5. Correlative Analysisnull. In a more formal way, the distan
e is de�ned as:Let ~d1 and ~d2 be two ve
tors of size n[pp1℄ = peak_pi
king(~d1)[pp2℄ = peak_pi
king(~d2)[pp1℄ and [pp2℄ being ordered sequen
es of peaksdist(~d1; ~d2) = (0 if [pp1℄ = [pp2℄1 otherwise (5.10)Two ordered sequen
es [pp1℄ and [pp2℄ are equal, if for ea
h i, pp1(i) = pp2(i). Thepeak_pi
king fun
tion is detailed by Algorithm 6:

Figure 5.9: Peak Pi
king: Con
ept and ExampleAlgorithm 6 Details of the peak_pi
king Fun
tionRequire: A distribution ve
tor ~dx of size nEnsure: Ordered list of prevalent peaks ppx1: Compute the average value of ~dx2: �dx = 1nPi dx(i)3:4: for all dimensions dx(k) do5: if dx(k) > � �dx then6: ppx  � ppx; k7: end if8: end for9: Order ppx by de
reasing distribution frequen
yFigure 5.9 represents a given distribution of one 
luster. The peak_pi
king algorithmwill then return the following list: ppx = f3; 2g. If we now 
onsider again the example ofFigure 5.8, Cluster 1 would be found with pp1 = ;, Cluster 2 with pp2 = f2g and Cluster3 with pp2 = f2g. Thus, only Cluster 2 and Cluster 3 are 
orrelated with a distan
e of
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es 1111. The frequen
y is not rounding. However, it might happen that two frequen
ies sharean equal value. In this 
ase, the respe
ted order is the one given by the list of attributes,in order to ensure in this 
ase a same peak sequen
e. The presented distan
e ful�lls thesymmetry and non-negativity of ea
h distan
e property. This is however not a metri
insofar as the triangular inequality is not satis�ed. It also does not give any informationon the amplitude of the peaks.These two distan
es have been applied by looking at parti
ular distributions among
lusters, detailed in the following paragraphs. They in
lude:1. The distribution of 
ountries as origins of atta
ks2. The distribution of targeted Environments3. The distribution of Operating Systems having laun
hed atta
ks against the honeypotsensors4. The distribution of IP distan
es between atta
king ma
hines and targeted honeypotsensorsSimilarity 3This similarity aims at 
omparing the interse
tions between two 
lusters. It 
an be sum-marized in theory like the following:Let A and B be two distin
t sets,simIP (A;B) = A \BA +B � A \B (5.11)To summarize, the more 
ommon elements sets A and B have, the more importantthis value be
omes. The minimum is 0 and the maximum is 1. This similarity fun
tionhas been applied for a very parti
ular analysis: the 
ommon IP addresses that have beenobserved using several �ngerprints at di�erent dates. This similarity matrix is justi�edand detailed in the following Se
tion.SAX Representation and SAX Distan
eAn interesting 
orrelation among 
lusters is their temporal evolution. The Leurré.
omdatabase 
ontains data 
olle
ted for many months (even years), thus it seems importantto 
ompare how atta
k �ngerprints evolve over time. It seems all the more relevant thatmany worm models 
hara
terize di�erent steps in the life 
y
le of a worm (generally 3:
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 Phase and Slow-Finish Phase, as des
ribed in [51℄). Howmany �ngerprints follow su
h pattern? Are these models really a

urate? To answer allthese questions, we have built an analysis matrix expressing some temporal similaritiesamong 
lusters. The major problem is to formulate su
h temporal similarity. We havepresented in [183℄ an interesting method that aims at 
omparing the time evolution of
lusters. The Time Series method that has been applied is 
alled the Symboli
 AggregateApproXimation (SAX), and as already been proven e�
ient in a large variety of domains.The authors propose in [142, 73℄ a symboli
 representation for time series, that allows fordimensionality redu
tion and indexing with lower-bounding distan
e measure. In 
lassi
data mining tasks su
h as 
lustering, 
lassi�
ation, indexing, et
, SAX is as good as well-known representations su
h as Dis
rete Wavelet Transform (DWT) and Dis
rete FourierTransform (DFT), while requiring less storage spa
e [142, 73℄.
Figure 5.10: Time Series Analysis: SAX-Based Steps

Figure 5.11: Appli
ation of the SAX Steps on a Time SeriesIn the 
on�guration we use, ea
h Cluster Ck is asso
iated to a given time series Tsk.The steps of the SAX method are represented in Figure 5.10 with the 
orrespondingnotations. We invite the interested reader to look at the full method des
ription formore details on ea
h of these steps, whi
h are respe
tively the Dimensionality Redu
tion,the Dis
retization and the Symboli
 Representation. The dimensionality redu
tion isknown as the Pie
ewise Aggregate Approximation (PAA [125℄), or Segmented Means[238℄. The dis
retization te
hnique is built on the 
reation of breakpoints, that determinesymbols with equiprobability. On
e the breakpoints have been obtained, the serie 
anbe dis
retized in the following manner. All the PAA 
oe�
ients that are below thesmallest breakpoint are mapped to the symbol a, all 
oe�
ients greater than or equal to
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es 113the smallest breakpoint and less than the se
ond smallest breakpoint are mapped to thesymbol b, et
. Figure 5.11 illustrates the idea.The distan
e between two SAX representations (as the one in Figure 5.11) Ck andCj of length n redu
ed into w symbols, is then given by the following distan
e fun
tiondetailed in [142, 73℄:
d(k; j) =rnwvuut wXi=1 (dist(
k;i; 
j;i))2 (5.12)The subfun
tion dist() 
an be implemented using a lookup table that gives the distan
evalue between ea
h 
hara
ter of the alphabet. An example of su
h a table is given inFigure 5.12 for an alphabet of 
ardinality 4. The distan
e 
an be read o� by examiningthe 
orresponding row and 
olumn. For example dist(a; b) = 0 and dist(a; 
) = 0:67. Thedetails on how to build su
h a lookup table 
an be found in [142, 73℄.

Figure 5.12: Example of a Lookup Table for an Alphabet of Cardinality 4It is important to noti
e that SAX, or at least the dis
retization and symbolizationsteps, 
ould have been implemented as an original peak pi
king te
hnique. The peaks 
anbe extra
ted by looking at all attributes that have the highest symbols (d in Figure 5.11).We report the interested reader to [194℄, in whi
h we detail the whole SAX analysis.Similarity MeasuresA similarity measure is the 
onverse of a distan
e fun
tion. Similarity fun
tions take apair of points and return a large similarity value for nearby points, a small similarityvalue for distant points. If A and B are highly similar obje
ts, than intuitively they have
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es. A 
ontrario, a large distan
e might indu
e that A and B are similar.At some points, it will be more important to 
laim that they are similar if this largedistan
e is rare, instead of having the majority of distan
e values in the same range. Asan illustration, a A mark will be more prestigious for a student if he is the only one ofhis promotion getting it than if 90% manage to rea
h this mark. The attentive readerwill noti
e that we have mixed both notions in the previous paragraphs. Distan
es 1,2and SAX are three distan
e fun
tions, whereas Similarity 3 is, at its name indi
ates, asimilarity measure.One way to transform a distan
e fun
tion into a similarity measure is to take there
ipro
al, the standard method for transforming between resistan
e and 
ondu
tan
e inphysi
s and ele
troni
s. There exist many other distributional similarity measures. Agood start referen
e 
an be the state of the art presented by Lee et al. in [136℄.To address the problem of transforming a distan
e into a similarity , we have used thefollowing transformation: let apply an Analysis A_p, the ve
tor is made of n distan
evalues d1; d2; :::; dk; :::; dn. The similarity 
orresponding to the distan
e dk is 
omputed asfollows: wk = dmax � dk (5.13)dmax is the maximum distan
e value found in A_p. The resulting matrix 
omposed ofall wk is 
alledM_p, and is the Similarity Matrix of Analysis p. The theory of dominantsets 
an then be applied on ea
h of the eightM_p resulting from the Distan
e matri
esdes
ribed in Table 5.4. We have introdu
ed all the elements ne
essary to start presentingthe similarity matri
es we have used in this thesis. They are all 
arefully listed in thenext Se
tion.
5.4 Similarity Matri
es: Appli
ations5.4.1 Introdu
tion and Chosen Distan
esWe emphasize the fa
t that there is no 
reativity limit on building similarity matri
es,as there is a large 
hoi
e of similarity measures, and a few others 
an be designed onpurpose to serve the analysis. We do not 
laim to list all of them. Interesting studieson existing distan
es and similarity fun
tions 
an be found in [95, 124, 225, 141, 108℄.We present in the following the ones that have appeared as the most simple and relevantfor the preliminary studies. Ea
h distan
e, or similarity fun
tion, addresses a parti
ularanalyti
al question, related to the previously des
ribed examples.
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ations 1155.4.2 Geographi
al Lo
ationPresentationIt has been shown in Case Study 1 that some 
lusters might present very strong rela-tionships in terms of the originating 
ountry of the atta
k. It is thus important at thisstage to de�ne an analysis matrix expressing the relationship in terms of the geographi
alorigins of the 
lusters atta
ks. Clusters that have very 
lose per
entage of IP atta
ksissued from the same 
ountries should be 
onsidered more similar than those whi
h havedi�erent ones. There are 191 
ountries members of the United Nations and 192 
ountriesare re
ognized by the United States State Department9. The Leurré.
om dataset has ob-served over the 
onsidered period addresses 
oming from 185 distin
t 
ountries. However,some 
ountries are frequently observed, while a few remain very rare. To build simplematri
es, we have de
ided to limit the distribution of the top 30 
ountries presented inTable 5.1, that stem for 91.5% of all observed Sour
es.
The distribution attributesEa
h 
luster is the gathering of IP sour
es sharing a same �ngerprint on a Honeypot plat-form. It is suggested here to 
ompute the 
ountry frequen
y as the ratio (in per
entage)between atta
king sour
es identi�ed as 
oming from one parti
ular 
ountry over the totalatta
king sour
es within the same 
luster. This gives the distribution of 30 
ountries overea
h 
luster. An alternative would be to 
hoose the real number of IP sour
es per 
oun-try instead of the ratios. The distribution would then represent two distin
t informationtypes: the ratio of 
ountries over the 
luster, and the amount of sour
es in
luded in the
luster. The ve
tor we present des
ribes the �rst type of information. The se
ond onewill be expressed by another ve
tor. Both might then be 
ombined, as we will dis
uss inSe
tion 5.5.1. The matrix resulting from the �rst ve
tor 
ategory and distan
e 2 is 
alledA_Geo.9Many sour
es o�er di�erent answers, and depending on the sour
e, there are 189, 191, 192, 193 or194 independent 
ountries in the world today. The United Nations has 191 members (in
luding EastTimor, the newest nation) but that number does not in
lude the Vati
an, an independent nation. TheUS State Department re
ognizes 192 independent 
ountries around the world and does not in
lude forinstan
e Taiwan as China 
laims that Taiwan is simply a provin
e of China. The 192 
ountries also donot in
lude East Timor, Palestine, Greenland, Western Sahara, et
.



116 5. Correlative Analysis5.4.3 Targeted EnvironmentsThis new ve
tor aims at �nding 
orrelation between 
lusters that have targeted parti
ularenvironments, in 
omparison with those whi
h have been observed on the majority of Hon-eypot sensors. The motivation 
omes from the �rst observations made with Case Study 1and the platform in 
ountry C. This matrix will help determining if su
h phenomena arealso observed against other environments. The resulting matrix is 
alled A_Env. Thepro
ess of generating the matrix is similar to the one des
ribed for A_Geo. We 
omputeea
h environment frequen
y as the ratio (in per
entage) between the �ngerprints observedon that environment over the total number of �ngerprints represented in the very same
luster.5.4.4 Atta
king Operating SystemsMany malware propagate thanks to spe
i�
 operating systems. A large majority of themare 
urrently spreading over Windows ma
hines [223℄. It is even said that most of the
urrent malware are not dangerous for old versions of Windows (Windows 3.1, 98SE,et
.). An illustration 
omes from August 2005, a week after Mi
rosoft issued a pat
h forthe Plug-and-Play vulnerability des
ribed in Mi
rosoft's August 2005 Se
urity BulletinMS05�039. The Zotob (w32.zotob.worm) worm family s
ans the Internet looking forunpat
hed Windows 2000 ma
hines, then downloads mali
ious 
ode to those ma
hinesvia remote a

ess; users of Windows 95, 98, and Me are not 
onsidered to be targets.Windows XP SP2 users should be safe unless they have enabled Null sessions [3℄. Usersof Ma
 OS X, Linux, and Unix are not a�e
ted. Zotob �ngerprints will typi
ally be
hara
terized by Windows 2000 (or undetermined) operating systems, given the passive�ngerprinting analysis performed on the Leurré.
om dataset. Is it the only one working onWindows 2000 ma
hines only? Some other malware are also spreading over less 
ommon,but not less immune, operating systems, like Linux (Adore, Ramen, Lion worms), MACOSes (SH/Renepo.A worm for instan
e), CISCO IOS ([104℄) . It is thus interesting to
orrelate atta
ks that are identi�ed as 
oming from these spe
i�
 Operating Systems.We 
ompute ea
h OS frequen
y as the ratio (in per
entage) between the �ngerprintsobserved running on that OS over the total number of �ngerprints represented in the verysame 
luster. The resulting matrix is 
alled A_OSs.Table 5.2 gives the di�erent OSs that have been found on this experiment. They havebeen 
hosen a

ording to their frequen
y on the global dataset. Other Operating Systemsare more seldomly observed. It is sometimes hard to determine with passive �ngerprintingte
hniques the exa
t OS, espe
ially if the amount of pa
kets remains limited. A �ngerprint
an then be 
ounted twi
e, both as Windows 2000 and Windows NT, if the OS passive�ngerprint looks like Windows NT,2000. This la
k of pre
ision is due to the passive�ngerprinting tools we have used: etter
ap, dis
o and p0f [24, 4, 7℄. The details of passive�ngerprinting are 
arefully detailed in [240℄. For building the matrix, we have used the
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es: Appli
ations 117tool that appears to be the most reliable one at this time writing: p0f. The 
urrent versionuses a number of detailed metri
s, often invented spe
i�
ally for p0f, and a
hieves a veryhigh level of a

ura
y. It provides four di�erent dete
tion modes:1. In
oming 
onne
tion �ngerprinting (SYN mode, default)2. Outgoing 
onne
tion (remote party) �ngerprinting (SYN+ACK mode)3. Outgoing 
onne
tion refused (remote party) �ngerprinting (RST+ mode)4. Established 
onne
tion �ngerprinting (stray ACK mode)Modes 1, 3 and 4 are the most soli
ited ones in the 
on�guration of our platforms.
5.4.5 Name Resolution and Regular ExpressionsIntrodu
tionThe Leurré.
om dataset 
ontains reverse DNS10 lookups [154℄. This fun
tion normallyturns an IP address into a hostname. For example, it might turn 192:168:0:5 intohost.example.
om. This property does not work in many 
ases, in
luding the ones wherethe IP is simply not registered in a DNS server, or in the 
ase the DNS server is not
orre
tly 
on�gured to answer reverse DNS queries (
orre
t DNS entry is "5.0.168.192.in-addr.arpa" in our example). A domain name usually 
onsists of two or more parts (te
h-ni
ally 
alled labels), separated by dots. For example host:example:
om.1. The rightmost label 
onveys the top-level domain (TLD, for example, the addresshost.example.
om has the top-level domain 
om).2. Ea
h label to the left spe
i�es a subdivision or subdomain of the domain above it.3. Finally, the leftmost part of the domain name (usually) expresses the hostname.The rest of the domain name simply spe
i�es a way of building a logi
al path tothe information required; the hostname is the a
tual target system name for whi
han IP address is desired. For example, the domain name host.example.
om has thehostname "host".10The Domain Name System, or DNS, is a system that stores information about hostnames and domainnames in a type of distributed database on networks, su
h as the Internet. Of the many types ofinformation that 
an be stored, most importantly it provides a physi
al lo
ation (IP address) for ea
hdomain name, and lists the mail ex
hange servers a

epting e-mail for ea
h domain.
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h 
luster, we have de
ided to build two distin
t distributions, whi
h are represent-ing the TLD and the hostname.Distribution over TLDsIn order to build the attribute ve
tor, we need to limit the number of possible TLDs. Wethus 
onsider as attributes all TLDs that have been observed from at least 10 observed IPaddresses in the whole database. We 
ount 178 out of all TLDs, in
luding the undeter-mined one. We introdu
e this 
lass of TLD as there is an important number of unresolvednames in the Leurré.
om dataset. More pre
isely, they 
orrespond to 39% of all observedatta
king IPs. Furthermore, we note that a few of the sele
ted TLDs 
an be asso
iatedto a large volume of observed IPs. In the de
reasing order of importan
e, we 
an 
ite thefour major ones :net, :
om, :jp and :de. Distan
e 2 is also applied to ea
h pair of TLDve
tors (one ve
tor per 
luster). The resulting matrix built is 
alled A_TLDs.Distribution over Hostname typesThe hostnames often reveal some information about the type of ma
hine the IP hasbeen assigned to. For instan
e, we 
an estimate the number of personal ma
hines bylooking at spe
i�
 strings in the 
omplete hostname. If the hostname in
ludes stringssu
h as '%dial%','%dsl%' or '%
able%', there is a good probability that those ma
hinesare personal 
omputers. We have 
lassi�ed the ma
hines within �ve major 
ategories.We list them in Table 5.3 with their asso
iated regular expressions. Distan
e 2 is againapplied, this time to ea
h pair of hostname ve
tors (one ve
tor per 
luster). The resultingmatrix is 
alled A_Hostnames.
5.4.6 Common IPsAnother meaningful matrix is the one that reveals the per
entage of 
ommon IP addressesbetween 
lusters. It 
an be imagined that an address A.A.A.A �rst laun
hes atta
k Y(for example a s
an), and then, a few days later 
ome ba
k to laun
h atta
k Z. A

ordingto the 
lassi�
ation we made so far, address A.A.A.A appears as two Atta
king Sour
es(time interval between appearan
e dates is longer than the de�ned 25-hour threshold),ea
h of them having left a di�erent �ngerprint on the honeypot sensors.This s
enario also implies that the address A.A.A.A is not dynami
. In these 
ases,the two involved 
lusters should show up a large number of 
ommon IP addresses, evenif this is not a full 
overage.



5.4. Similarity Matri
es: Appli
ations 119There are also some worms that take bene�ts of ports opened by other worms. Afamous example is the Dabber worm that exploits the same vulnerability than anotherone 
alled Sasser in order to spread. It uses pie
es of 
ode installed by the Sasser-FTPexploit appli
ation to burrow into a PC, remove Sasser, and install a server on the infe
tedma
hine to further propagate. We 
an expe
t, a

ording to this s
enario, and if the volumeof a
tivities is representative enough, that 
lusters asso
iated to Sasser and Dabber willshare 
ommon IPs. The requirement 
onsists in making this analysis generi
 in order to�nd, if they exist, all relationships similar to this one. To build the analysis matrix, itappears that both Distan
e 1 and Distan
e 2 are not 
onvenient. We 
annot adapt thetwo initial distan
es in this situation, as there is no parti
ular distribution (and ve
tors afortiori). Thus, the resulting matrix A_CommonIPs is built from the Similarity 3.We have also explained in Se
tion 4 that some sour
es might not be properly 
lassi�edwithin 
lusters, after having applied the 
lustering te
hnique. The small resulting 
lustersshare many 
ommon IPs identi�ed by several sour
es. Su
h relationship should appearas well with su
h a similarity matrix.5.4.7 Time Series AnalysisWe do not explain here the building of the matrix whi
h express the temporal similaritybetween 
lusters. The SAX method has already been 
arefully des
ribed in the previousSe
tion 5.3.2. A spe
i�
 distan
e fun
tion whi
h makes use of the symboli
 representationof the time series has been presented. The resulting matrix is 
alled A_SAX.5.4.8 IP ProximitiesIPs_Dist De�nitionFor this analysis, we have made use of an original ve
tor. We use a parti
ular 
omparisonthat returns the �rst bit position from whi
h two IP addresses IP1 and IP2 di�er, witha Big-Endian approa
h. This distan
e thus gives the ith bit position between IP1 andIP2. An illustration is presented in Figure 5.13. The �rst bit whi
h di�er betweenIP1 = X:X:X:X and IP2 = Y:Y:Y:Y is at position 1, so the distan
e is 1. The obtainedvalue is thus within the interval [0; 32℄. This operation is performed for ea
h pair oflarge_Session within a 
luster and the 
onsidered ve
tor is simply the distribution ofthese values over all the 
luster. As a �rst 
onsequen
e, atta
ks whi
h favor spe
i�
CIDR masks should have a parti
ular distribution with a high peak around CIDR values.Indeed, some malware have been found favoring the propagation over lo
al networks,
hanging the last IP bits. Code Red II implements a similar strategy [157℄. This wormwill 1/8th of the time generates a random IP not within any ranges of the lo
al IP Address.1/2th of the time, it will stay within the same 
lass A range of the lo
al IP Address 3/8th



120 5. Correlative Analysisof the time, it will stay within the same 
lass B range of the lo
al IP Address. If the IPthe worm generates is 127.x.x.x, 224.x.x.x, or the same as the lo
al systems IP addressthen the worm will skip that IP address and generate a new IP address. Therefore, thisworm has a parti
ular signature in terms of IP distan
es. Over the whole �ngerprints
hara
terized by Code Red, the distribution should tend to the above ratios.Code Red II has been 
arefully analyzed and modeled [157, 243℄. Zotob worm alsopropagates by keeping the �rst 2 bytes and tries to 
onne
t to random IP addresseswithin the same B-
lass (255.255.0.0) than the 
ompromised ma
hine [3℄. However, reverseengineering of worm 
odes is a time-
onsuming task, and it does not help determining ifother malwares propagate and follow the same 
hara
teristi
s. To provide su
h answers,the matrixA_IPprox is built from this IPs_Dist ve
tors. As an example, the distributionwould be in
remented by 1 for attribute number 1, after having 
omputed the valuepresented in Figure 5.13 and des
ribed at the beginning of this Se
tion.
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Distribution +1 +10 0 0 0 0 0 ..... 0 0 0 0 0 0 0 0Figure 5.13: IP_Dist Computation and Distan
e DistributionIt is important to note that this parti
ular te
hnique to 
ompute IP distan
es be-tween atta
kers and atta
kees does not allow to identify the malware whi
h propagate byswit
hing dedi
ated bits in the IP address of their vi
tim. Another approa
h would have
onsisted for analyzing su
h tools in 
omputing the 
umulative bit-to-bit XOR betweenIP1 and IP2. This would have been the �nal distribution presented at the bottom ofFigure 5.13, after having performed all the XORs. This new similarity would indi
ate thedi�erent malware 
odes that 
hange spe
i�
 bits from the infe
ted IP to propagate. Su
ha s
enario will not show up from the previous distan
e. However, this se
ond analysisis left for future work, as this s
enario seems at this time writing less used by popularworms [223℄.5.4.9 SummaryWe have presented in the last paragraphs the Analysis matri
es whi
h are used with themethod of dominant set extra
tion. We summarize in Table 5.4 their names and theirprin
ipal features.



5.5. Derived Properties 1215.5 Derived Properties5.5.1 Mixing Similarity Matri
esThe matri
es have been 
reated, based on some analyses we intended to automatize. It
ould be interesting, at this stage, to 
he
k if there are groups of 
lusters sharing several
hara
teristi
s. In other words, it would be relevant to determine all the 
lusters whi
hare linked ea
h other within distin
t dominant sets. One solution 
onsists in looking forthe interse
tion of extra
ted dominant sets.Algorithm 7 Combination of Analysesfor all Mp Similarity Matrix of Analysis p, 0 < p < N + 1 doCompute DS(Mp) ~Mp(k)the extra
ted dominant setsDS(Mp) = f ~Mp(k)gas des
ribed in Se
tion 4.2.end forfor all Combinations Ci ofMp doCompute the new dominant setsasso
iated to Ci:DS(Ci) = Ti2Ci ~Mi(k)end forThe algorithm 
an be found in Algorithm 7. It simply 
omputes the interse
tionof dominant sets extra
ted for ea
h matrix individually. It 
an be easily proved that
omputing the interse
tion of 
liques (we remind here that dominant sets are maximalweighted 
liques) generates 
liques. The algorithm works on the 
orresponding 2P � 1
ombinations of analyses, P being the number of matri
es. In this thesis, we present 8matri
es (see Table 5.4). It thus implies 55 di�erent 
ombinations of matri
es. Figure5.14 des
ribes the situation with three analysis matri
es, labeled A1, A2 and A3.
A3

A2

A1

A1

A2

A3

A1 & A2

A1 & A3

A1 & A2 & A3

A2 & A3

Figure 5.14: Mixing 3 Similarity Matri
es: an Example
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h would have been to 
ombine matri
es into another resulting matrix,and extra
t dominant sets from it. There is however a di�
ulty in mixing up matri
es.The mixing 
ould be performed by 
omputing a weighted average value of ea
h edge
oming from the initial matri
es. In other words, for two analyses matri
es A and B, a newresulting matrix C will be Cnxn = [
ij℄= 1�A+�B :(�A:Anxn + �B:Bnxn) = 1�A+�B :[�A:aij +�B:bij℄. For the sake of 
larity, we do not investigate this possibility here, and only presentresults from the simple interse
tion method des
ribed in Algorithm 7. An issue might alsoarise in the 
ase where analysis matri
es are not of the same size, that is, are not performedon the same set of 
lusters. In this situation, the method must be applied on the set of
lusters 
ommon to both analyses, that is the interse
tion of 
liques that have been usedfor the two analyses. Indeed, the dominant node sets are extra
ted with respe
t to othernodes in the graph. Thus, the interse
tion of dominant sets must be 
onsidered for thesame set of nodes. For some 
larity 
on
erns, we will not investigate this possibility here,and only present results from the simple interse
tion method des
ribed by Algorithm 7.In other words, we 
onsider for all following analyses the same set of 
lusters (the oneswith size larger than 10 Sour
es as des
ribed in Se
tion).
5.5.2 Algorithm LimitationsApplying this algorithm on ea
h Similarity MatrixM_p enables us to deal with any sizeof graphs, from small to large ones (with thousands of nodes). However, it presents somenegative points that are worth being mentioned and 
onsidered.

1. There is no guarantee on the order of whi
h the sets are found. Let imagine that twosets share an equal weight on the Similarity Matrix, there is no way to determinewhi
h one will be extra
ted �rst. This is not a real problem, however, as both willbe extra
ted and 
olle
ted.2. The resulting dominant sets highly depend on the weights distribution in the matrix.(
onstant high values distan
es?) We have de
ided not to extra
t the overlargedominant sets, but there is no way to handle this limitation better, ex
ept by re�ningthe initial analysis and maybe by 
hanging the distan
e fun
tion.3. The resulting dominant sets might also be biased in the 
ase the matrix 
ontainstoo many dis
onne
ted nodes, as the dominant sets are 
omputed as the maximalweighted 
liques within the 
omplete graph.



5.5. Derived Properties 1235.5.3 Validation: Relation Proje
tionCon
eptThe matrix analysis 
onsiders potential similarities among a
tivity �ngerprints, also 
alled
lusters. It would be interesting to determine if the similarities are still valid on ea
henvironment, or if they are emerging properties when looking at the �ngerprints over allsensors. This implies to build the same approa
h than previously des
ribed but on a small
luster portion; the large_Sessions asso
iated to this 
luster and to a given Environment.We propose in this se
tion a method to test the relationship observed between 
lustersper Environment (honeypot sensor). This is also an interesting approa
h to evaluate therelevan
e of the dominant sets resulting from the previous algorithms.First SolutionWe de
ide in the following to proje
t ea
h 
luster onto the di�erent environment dimen-sions. Su
h a proje
tion is des
ribed as follows (see Figure 5.15 as an illustration): A
luster is by de�nition the set of IP sour
es sharing the same atta
k �ngerprints againsthoneypot environments. We 
all Pi(Cj) the set of sour
es having targeted the environ-ment number i with the �ngerprint asso
iated to Cluster Cj. The weight of this subsetof IP sour
es is de�ned as:
Wght(j; i) = 
ard(Pi(Cj))Pk 
ard(Pk(Cj)) (5.14)It represents the weight of sour
es in a 
luster with respe
t to the environment. We 
an
ompute this value for ea
h 
luster of the dominant set. The average value gives theaverage weight of the environment representation within the 
luster. Thus, high valuesindi
ate the environment is strongly represented within the 
luster, while a small valueindi
ates that 
luster 
hara
teristi
 is not strongly represented on the environment.Another SolutionAnother solution would be to build other matri
es to �lter relationships in terms ofenvironments. Ea
h similarity fun
tion will be applied to the Large_Sessions of a 
lusterfrom a given honeypot environment. This method is however very 
ostful. It 
an be
onsidered, but in some very spe
i�
 
ases. Let assume the database has 
urrently Eenvironments. The user gives dire
tly the matri
es 
orresponding to ea
h 
luster partition,



124 5. Correlative Analysisthat is, one matrix per environment. However, the average partitioning of N 
lusters into�N partitions (0 < � � E) indu
es a potential in
rease of N2(�2�1)�N(��1)2 edges, that is,for N = 30000 and � = 15, 1011 more edges than between initial 
lusters. It seems moresensible to restri
t this analysis to the previously extra
ted 
lusters.
Env_1 Env_k Env_1 Env_m

Cluster A Cluster B

R(A,B)

clustercluster A_1

cluster A_2

cluster B_1

cluster B_2

cluster B_pcluster A_p

R(A_1,B_1)  ?

R(A_2,B_2)  ?

R(A_p,B_p)  ?

Projection

On Environment 1

On Environment 2

On Environment p

Wght_A_1 Wght_B_1Wght_A_k Wght_B_m

Figure 5.15: Proje
tion on Honeypot Environments5.6 Con
lusionSuspi
ious a
tivities have been 
lassi�ed a

ording to the �ngerprints they leave on ea
hhoneypot sensor. The �rst results have shown very interesting properties and trigger theneed to automate the analysis. This 
hapter has presented a graph-based te
hnique to helpidentifying groups of a
tivity �ngerprints that share strong similarities. The preliminaryanalyses have helped orienting the 
reation of simple similarity matri
es. The next 
hapterintends to �rst 
he
k that the 
ase studies found and des
ribed in Se
tion 5.1 are 
orre
tlyfound, and that all similar properties are dis
overed for all 
lusters. It is also expe
tedat this stage to dis
over other interesting relationships by 
omputing the interse
tionbetween dominant sets extra
ted from distin
t matri
es.



5.6. Con
lusion 125
Table 5.1: Countries 
onsidered in the distribution (% Total Sour
es)USA 18.2%China 10.6%Germany 6.5%Taiwan 6.0%Serbia-Montenegro 5.8%Fran
e 4.5%Republi
 of Korea 4.1%Japan 3.7%Canada 3.6%UK 3.6%Spain 3.4%Italy 2.4%Poland 2.2%Russia 1.8%Sweden 1.7%The Netherlands 1.6%Brazil 1.1%Turkey 1.1%Switzerland 1.0%Gree
e 1.0%Portugal 0.9%Austria 0.9%Australia 0.9%Danemark 0.9%Hong-Kong 0.8%Belgium 0.8%Mexique 0.8%Israel 0.6%Norway 0.5%Finland 0.5%
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Table 5.2: Considered Operating Systems used to build A_OSsChosen Operating SystemsWindows 98 SP2Windows NT 4.0Windows 2000 (All servi
e pa
ks 1-4)Windows XP Servi
e Pa
k 1Windows XP Servi
e Pa
k 2Linux (RedHat, Debian, Mandrake: 2.4-2.6)Solaris (versions 8 and 9)OpenBSD (versions 3.0-3.4))FreeBSD (versions 4.6-4.8)Cis
o IOS (all versions)
Table 5.3: Hostnames Classi�
ation based on Regular-ExpressionsHostname Category Regular ExpressionsPersonal Ma
hines %dial%,%dsl%,%
able%Mail Servers %pop%,%smtp%,%imap%,%mail%Web Servers %web%,%http%Routers %.
is
o%,%route%,%gw%Unresolved names %undetermined%

Table 5.4: Analysis Matri
es used in this thesisMatrix Name Similarity Meaning btw 
lustersA_Geo Distribution of atta
king 
ountriesA_Env Distribution of targeted environmentsA_OSs Distribution of atta
king OSsA_IPprox Atta
king sour
es IP proximitiesA_TLDs Distribution of atta
king Top-Level DomainsA_Hostnames Atta
king ma
hine typesA_CommonIPs Shared atta
king IPsA_SAX Temporal evolution over weeks
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Chapter 6
Automated Knowledge Dis
overy
6.1 Preliminary Results6.1.1 SummaryThis se
tion aims at presenting the appli
ation of the method presented in Chapter 5 onthe 
lusters built and detailed in Chapter 4. We have 
onsidered the whole Leurré.
omdataset representing a
tivities during one year and a half, i.e. fromApril 2004 to November2005. In brief, the tra�
 
olle
ted on the di�erent Leurré.
om honeypot sensors has been
lustered a

ording to tra
es left by the observed IPs on a given platform. Ea
h 
lusterthus gathers all IP Sour
es having the very same �ngerprint on at least one sensor. A
ontrario, it 
an be found a same Sour
e in di�erent 
lusters, but this s
enario is rare: itwould mean that a Sour
e has been observed during the same period of time atta
kingseveral sensors in di�erent ways. The results shown so far have led to the remark thatthere exists di�erent and potentially 
orrelated similarities between these 
lusters. Thete
hnique presented in Chapter 5 aims at extra
ting dominant sets (or 
liques) fromsimilarity matri
es and it has been designed to automati
ally extra
t the similarities wehave noti
ed so far among 
lusters. This 
hapter details the 
on
rete results and theinformation whi
h has been inferred from the dominant sets.6.1.2 Example 1: A_GeoTwo important points have been explained in Se
tion 5: �rst, the dominant set extra
tionis a te
hnique that 
an work on any kind of similarity matri
es. Se
ond, a small numberof matri
es (see Table 5.4) 
an be easily derived from all experiments we have 
ondu
ted
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overyby hand. As a follow-up, this se
tion intends to show that su
h matri
es 
an easily help�nding similarities between 
lusters in an automati
 way, and more importantly, that theextra
ted similarities have been found for all 
lusters in the 
urrent dataset.The �rst matrix whi
h has been introdu
ed in Se
tion 5.4.2 is A_Geo. It presents ananalysis of the distribution of atta
king 
ountries per 
luster. Clusters 
oming from a fewand 
lear identi
al 
ountries will be 
onsidered as similar. We intend here to extra
t all
lusters that present su
h strong relationships.The dominant set extra
tion algorithm generates 9 
liques from matrix A_Geo. Theirmajor 
hara
teristi
s are presented in Table 6.1. Ea
h 
lique is identi�ed by a dedi
atedidenti�er (Clique ID). We introdu
e a simple indi
ator (in per
entage) whi
h gives ahint of the degree of di�eren
e between 
lusters within a dominant set, named CliqueRelevan
e1. It indi
ates how 
lusters within a dominant set di�er between ea
h otherwith respe
t to the two following attributes:� The average per
entage of distin
t targeted ports among sequen
es of ports betweenea
h 
ouple of 
lusters.� The per
entage of 
lusters whi
h have di�erent numbers of targeted virtual ma-
hines.The more di�erent the 
lusters within a dominant set are (in terms of targeted ma
hinesand ports), the more relevant we label the dominant set. In other words, it means that weput here more emphasis on 
lusters whi
h have very distin
t �ngerprint 
hara
teristi
s (interms of targeted ports or number of targeted ma
hines) but whi
h share a very strong
ommon property expressed by the dominant set. We 
ompute the Clique Relevan
e asthe produ
t of the two previous per
entages (expressing a new per
entage). This is nota perfe
t solution, but it is a �rst indi
ator to 
ompare relan
es of dominant sets. It is
omputed as follows:The Clique Coverage value provides the ratio of involved Large_Sessions within the
lique out of the total number of Large_Sessions 
onsidered in the dataset. It gives agood in
entive of the pra
ti
al volume of Large_Sessions of the 
lique over the dataset.Thus, a small Clique Coverage would imply that the similarity (or similarities) asso
iatedto that 
lique is quite rare in the dataset, while a large value indi
ates that it is a 
ommonrelationship. The Peaks attribute is related to our de�nition of similarity, whi
h aims atpi
king peaks. Ea
h 
lique is the manifest, as su
h, of a di�erent sequen
e of distributionpeaks. The peaks are here the most frequent atta
king 
ountries.
1We remind here that a dominant set is a parti
ular 
lique, 
alled the maximal weighted 
lique.



6.1. Preliminary Results 129Algorithm 8 Computing Clique Relevan
evar1 = 0var2 = 0Require: Clique CLIQUE i be a set of k 
lusters Cj; 1 � j � kfor all Cm; Cl, 1 � m < l � k 
lusters of CLIQUE i doCompute the per
entage p1 of 
ommon portsOver the respe
tive sequen
e of portsSee Cluster Signatures in Se
tion 4.4.5Ex: Cm : f445; 135; 80g and Cl : f80g ! 13var1 = var1 + (1� p1)Compute var2 as:if Num_Targetsm ! = Num_Targetsl thenvar2 = var2 + 1end ifend forvar1 = 2k(k�1) � var1 (normalized value)var2 = 2k(k�1) � var2 (normalized value)Clique Relevan
e= var1 � var2 � 100 (
ombined per
entage)It 
an be noted that there is a prevalen
e of 
lusters very spe
i�
 to Asian 
ountries,as we have observed manually. Peak extra
tion is quite stable, insofar as most of thepeaks are limited to 2 or 3. Furthermore, we note that the magnitude order of the peak isnot really important in this situation: we do not observe 
liques 
orresponding to peaks{P1,P2} and then {P2,P1} for instan
e, that is di�erent sequen
es of similar peaks2.6.1.3 Example 2: A_EnvThe se
ond matrix we have de�ned in the previous se
tion is A_Env. Peaks are, in this
ase, sequen
es of Environment IDs. The results of the dominant set extra
tion algorithmgenerates this time 12 
liques. They are all presented in Table 6.2, with the same 
olumnde�nitions than those already used in Table 6.1.We note from Table 6.2 that peaks are various and not numerous for ea
h dominantset. Six 
liques involve a single environment. As an illustration, we note that 30 distin
t�ngerprints (or 
lusters) are spe
i�
 to platform 20, and 28 are only observed on platform6, et
. This 
on�rms on
e more the distin
tive nature of some atta
ks. All those whi
hhave been observed on a unique set of honeypot sensors appear in the list of Table 6.2.2In addition, we note that only 8 
ountries (CN, US, YU, GR, JP, KR, CA, TW) out of 192 appearin the 
liques! CN appears in 6 out of 9 
liques, YU in 2, JP in 2, KR in 2 and all others in only one
lique.



130 6. Automated Knowledge Dis
overyTable 6.1: Cliques obtained from Matrix A_GeoClique ID # Clusters Clique Relevan
e Clique Coverage (%) PeaksID 1 20 61.7 2.17 {CN}ID 2 14 50.4 2.08 {CN,US}ID 3 12 6.5 0.95 {YU}ID 4 11 8.8 0.82 {YU,GR}ID 5 10 43.4 1.78 {CN,US,JP}ID 6 6 58.7 0.49 {CN,KR}ID 7 10 8.1 1.98 {CN,CA}ID 8 4 33.4 0.39 {CN,KR,JP}ID 9 9 37.6 0.98 {CN,US,TW}Table 6.2: Cliques obtained from Matrix A_EnvClique ID # Clusters Clique Relevan
e Clique Coverage (%) PeaksID 1 30 3.5 4.62 {20}ID 2 28 12.3 2.39 {6}ID 3 20 13.5 3.00 {20,8}ID 4 18 31.8 2.39 {32}ID 5 14 5.6 2.01 {20,25}ID 6 26 31.9 3.88 {25}ID 7 43 4.1 6.42 {6,31}ID 8 10 54.3 0.97 {8,6}ID 9 8 8.3 0.93 {6,8}ID 10 14 5.1 1.60 {23}ID 11 12 17.3 2.28 {10}ID 12 5 61.2 0.42 {25,20,36}6.1.4 Example 3: A_Geo vs. A_Env
We present in Table 6.3 the result of the interse
tion between 
liques obtained from the twoprevious analyses. Rows are the 
liques presented in Table 6.1 from the A_Geo analysis,while 
olumns are the 
liques des
ribed in Table 6.2. The values in the 
ells indi
ate thenumber of 
lusters two 
liques have in 
ommon. The other value (between bra
kets) is
omputed as the number of 
lusters in the interse
tion divided by the minimum 
ardinalityof the root 
liques. The value is given as a per
entage (%). This per
entage gives anindi
ation of the number of 
lusters within an initial matrix that are also found after theinterse
tion. A value of 100% means that all 
lusters sharing 
hara
teristi
 A also share
hara
teristi
 B when interse
ting matri
es A_A with A_B3.3Assuming that the number of 
lusters in A is smaller or equal to the number of 
lusters in B.
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tion from A_Env and A_Geo1 2 3 4 5 6 7 8 9 10 11 121 0 0 0 0 0 4 (20%) 0 0 0 0 0 1 (20%)2 0 0 0 0 0 0 0 0 0 0 1 (8.3%) 1 (20%)3 0 7 (58.3%) 0 0 0 0 0 0 0 0 0 04 0 7 (63.6%) 0 0 0 0 0 0 0 0 0 05 0 0 0 0 0 0 0 0 0 0 0 06 0 0 0 0 0 0 0 0 0 0 0 07 0 0 0 0 0 2 (20%) 0 0 0 0 0 08 0 0 0 0 0 0 0 0 0 0 0 09 0 0 0 1 (11.1%) 0 0 0 0 0 0 0 0The interse
tion of the 
lique ID 3 from A_Geo and ID 2 of A_Env is a new 
lique
ontaining 7 
lusters. These 7 
lusters are 7 distin
t �ngerprints whi
h have been issuedfrom Serbia-Montenegro on the Environment 6. Table 6.4 provides a few details asso
iatedto ea
h Cluster. It highlights the diversity of the atta
ks identi�ed thanks to this method,but also the surprising fa
t that all �ngerprints have been observed against a Mi
rosoftport (445). The 
luster details, however, indi
ate these a
tivities have nothing else in
ommon4. Yet, they are only issued from one spe
i�
 
ountry to a unique platform. The7 �ngerprints 
an be presented to the administrator in 
harge of the Network hosting thehoneypot Environment 6. It is again important to noti
e that we have found here all�ngerprints that share both a strong 
orrelation in terms of origin of the atta
ks and oftargeted environments. The method has enabled us to �nd all of them, whereas in ourpreliminary studies, we had found only one, by a tedious pro
ess of trials and errors.
Table 6.4: Clusters from A_Env ID 2 and A_Geo ID 3Cluster Ports Sequen
es Avg Duration Number VMs R
v payload1 {445} 7h 1 0 byte2 {445} 15s 1 40 bytes3 {445} 5s 1 0 byte4 {445} 15min 2 0 byte5 {445} 15min 2 240 bytes6 {445} 2min 2 105 bytes7 {445} 10s 2 0 byte

4The other 
luster parameters are also very di�erent.
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overy6.1.5 Time Correlation between FingerprintsAbout the A_SAX MatrixTable 6.5: Cliques obtained from Matrix A_SAXClique ID # Clusters Clique Relevan
e Clique Coverage (%)ID 1 9 2.1 3.06ID 2 5 11.7 0.65ID 3 7 2.5 3.04ID 4 4 28.2 0.40ID 5 5 12.4 0.40ID 6 3 67.8 0.31ID 7 4 0 0.39ID 8 3 35.1 0.61ID 9 3 0 0.98
We present in Table 6.5 the result of the dominant set extra
tion algorithm applied to thematrix A_SAX. This matrix gives the similarity between �ngerprints in terms of timeseries as 
omputed with the SAX te
hnique (see Se
tion 5.4.7). We limit the details to thenine �rst dominant sets, whereas 38 dominant sets have been extra
ted in total. Thereis a maximal size of 12 
lusters for one parti
ular dominant set. 32 of them also groupno more than 5 
lusters. The method has been applied with the following parameters,justi�ed in [194℄:� Alphabet Size: 5� Compression Ratio: 8We have 
hosen a 
ompression ratio equal to 8. The �ngerprint a
tivities observed withinthe same �xed time window of 8 days are thus 
ounted together. There is one SAXsymbol for ea
h value. This simply means that the evolution of the a
tivity �ngerprintsare 
ompared per period of 8 days, instead of a per day granularity. One motivation is thatmost of the a
tivities , ex
ept about a hundred ones whi
h are large enough, have a timeseries whi
h is too irregular: the time series are often made of long periods of ina
tivity,and, 
onversely, very intensive periods. Furthermore, there is no spe
i�
 requirement forthis time s
ale. A dis
ussion about 
ompressions ratios is presented in Se
tion 6.1.6.There are a few surprising 
liques, showing expli
itely that 
lusters share similar timeevolutions. It is in agreement with the preliminary remarks presented in Se
tion 5.1.4. It



6.1. Preliminary Results 133is important to note that the probability of getting one similarity out of K symbolizedtime series of size w, with the previously 
hosen parameters is:P = K:(K � 1)2 :(1325)w (6.1)The probability of getting one similarity out of 600 time series is thus smaller than 10�6.A �rst remark is that the size of ea
h 
lique is relatively small. The largest 
lique doesnot in
lude more than 9 
lusters. The others are limited to three or two 
lusters. On theother hand, it is also very surprising to �nd so many similarities for su
h a long period.Table 6.6 presents for ea
h 
lique the di�erent ports asso
iated to ea
h of its 
luster.Dominant set with ID 9 
orresponds to the s
enario des
ribed in Se
tion 4. The tool haslaun
hed su

essive atta
ks against two 
losed ports on all virtual ma
hines, respe
tivelyports 5554 and 99985. Two small 
lusters have been 
reated, one asso
iated to the portssequen
e {9898}, and one to sequen
e {5554}. They are both residues of losses, and havebeen identi�ed by means of the 
lusters temporal similarity. As we have mentioned inChapter 4, the task of interpolating losses is quite hard. Su
h a result, however, showsthat this task 
an be addressed in original ways.Table 6.6: Some 
liques obtained from Matrix A_SAXClique ID Ports ListsID 1 f80g,f139gID 2 f139g,f1433gID 3 f1434_udpg,f445; 135gID 4 f1433g,f1434_udpg,f445; 135gID 5 f80g,f1434gID 6 f445gID 7 f445g,f135g,f5000g,f6129gID 8 f80g,f22gID 9 f9898g,f5554g,f5554; 9898g
Crossing Matri
es: A_SAX with A_
ommonIPs, A_Hostnames and A_OSsThis se
tion aims at presenting the results of interse
ting the dominant sets obtainedfrom the di�erent matri
es introdu
ed in Chapter 5. Table 6.7 represents the detailsof the interse
tion between A_SAX and the other matri
es. The 
olums provide the5It is worth mentioning here that many web sites like [145℄ asso
iate a
tivities on ports 5554 and 9898to the dabber worm. They pre
ise that the worm �rst send its exploit via port 5554, and then s
ans port9898 to 
he
k that its ba
kdoor is 
orre
tly opened. It is pre
isely said that: Sequential s
ans on port5554 and 9898 are an indi
ator of a dabber infe
tion.In our situation, both ports are 
losed, thus thiss
enario 
annot be possible and the 
lique indi
ates another a
tivity over the very same ports.
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overynumber of 
ommon 
lusters, as well as the per
entage of 
lusters existing in the initialA_SAX dominant sets, and whi
h are still 
orrelated after the interse
tion with the othermatri
es6. Table 6.7: Interse
tion btw A_SAX and other matri
esInterse
tion A_SAX # Common Clusters % initial 
lusterswith A_
ommonIPs 7 6.1%with A_Hostnames 35 30.7%with A_OSs 102 86.5%
Without going into the details of ea
h interse
tion, it seems that 
lusters whi
h sharetemporal similarities also share either 
ommon IPs or similar patterns of hostnames. The
rossing with A_OSs also 
on�rms that most of these 
lusters are issued from Windowsor undetermined ma
hines, as the per
entage is a little bit higher than the average values(82.4% Windows ma
hines and 8.4% unresolved names are found in the whole dataset7).This interse
tion, however, is quite limited at this stage and exampli�es the limitations of
urrent passive OS �ngerprinting te
hniques, whi
h have an important un
ertainty aboutthe OS versions (resp. kernels).We distinguish three major s
enarii from the analyses we have des
ribed in [194℄:1. Dominant sets involving 
lusters that share 
lear relationships w.r.t.ports sequen
es: while the sequen
es of ports di�er from one 
luster signatureto another (see the de�nition of a 
luster signature in Se
tion 4.4.5), one port se-quen
e is always a pre�x of the other. Let PSa and PSb be the ports sequen
esasso
iated to a pair of 
lusters Ca; Cb. We �nd in this s
enario that PSa = (PSb; �)or PSb = (PSa; �). Su
h a behavior is a 
hara
teristi
 of sophisti
ated tools thatalways s
an the same sequen
e of ports on a ma
hine, but stop s
anning if ever oneof the ports is 
losed. The use of time analysis is thus a good way to �nd out thistype of tools. It represents a 
ostless alternative to a 
omplex reverse engineeringof the 
ode (that �rst needs to be 
aptured!) that would reveal that the tool stopss
anning a ma
hine whenever a port in the pre-de�ned sequen
e of s
anned ports is
losed. This property is one reason that motivates the need for enri
hing the diver-sity of the sensors 
on�guration in a near future. It is also important to noti
e thatthis s
enario 
an be easily 
ross-
orrelated with the attributes of the 
lusters fromthe dominant sets. The number of targeted virtual ma
hines for all these 
lustersis equal to 1 or 2 (out of 3), and the port status of ea
h virtual ma
hine must bedi�erent.6We remind here that, by de�nition of a 
lique, the interse
tion of two 
liques 
an only be one 
liqueor an empty set.7a

ording to p0f Passive Fingerprint tool [24℄
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ribed in the previous Se
tion, a few 
lusters of smallsizes 
ould be 
orrelated in terms of time series with larger ones, but they are notbe
ause of insidious losses. Unlike the previous s
enario, the 
lusters share several
ommon ports, ex
ept that one is missing 
ompared to the other port sequen
es.This s
enario is also easily validated by 
he
king that targeted ports are 
urrently
losed on the ma
hines, and that all 
ombinations of missing ports are equallydistributed. Formalization of losses and interpolation approa
hes are two taskswhi
h are left for future work.3. Dominant sets involving 
lusters that do not mat
h the previous s
enarii:they stem for 12 dominant sets, out of the 38 extra
ted ones. They are expressionsof what has been 
alled multi-headed worms in [194℄: These worms 
ombine severalknown exploits within a single pie
e of software. This is not a new te
hnique,as the very �rst worm, the Internet worm, did already 
ontain several infe
tionte
hniques [211℄. However, the spe
i�
ity of this 
lass of atta
ks is that only oneof the available exploits will be used to laun
h an atta
k against a given target.In other words, ma
hines targeted by those multi-headed tools see di�erent atta
ksoriginating from di�erent sour
es that 
an easily be interpreted as di�erent tools.As a 
onsequen
e, the fa
t that several exploits have been 
ombined within a singlepie
e of 
ode remains invisible to the vi
tims as long as the malware is not 
apturedand analyzed. If the spread of the malware is not too aggressive, its existen
e mayremain unknown for a while. A few of these sophisti
ated tools have already beenidenti�ed, e.g. Wel
hia. However, this is the result of their mali
ious a
tivitieson users' ma
hines and there is a high probability that some other similar, butstealthier, tools of this type are 
urrently a
tive in the Internet. The identi�
ationof these tools remains a great 
hallenge, and the 
omparison of atta
k �ngerprintsover time enables us to identify a few of them.From the 
liques perspe
tive, we have identi�ed a variant of the worm Na
hi, also
alled Wel
hia [222℄ that exploits one of the following vulnerabilities:� DCOM RPC vulnerability des
ribed in MS03-026 bulletin� WebDav vulnerability des
ribed in MS03-007 bulletin� Workstation Servi
e vulnerability des
ribed in MS03-049 bulletin Wel
hia is an ex-ample of multi-headed tools. To infe
t other ma
hines, it randomly 
hooses an IPaddress and then atta
ks it either against port 135 or port 445, but not both (itis thus a real multi-headed tool). From our platform viewpoint, tra
es left by ma-
hines infe
ted by Wel
hia look very di�erent. They are thus stored in two di�erent
lusters, one for the atta
ks against a unique virtual ma
hine on port 135 while theother 
ontains atta
ks against port 445.Another example of su
h multi-headed tools is Spybot.FCD [64, 221℄. This tool tries toexploit Windows vulnerabilities either on port 135, 445 or 443. In the 
ase of Spybot.FCD,
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overywe have thus observed three similar 
lusters in the 
lique. Wel
hia, Spybot.FCD orW32.Kobot.A are examples of multi-headed stealthy tools that have been studied andanalyzed. Many more remain to be identi�ed. Our time signature analysis provides asimple and e�
ient way to reveal their existen
e. It should provide valuable input to otherresear
h teams interested in studying spe
i�
 atta
k tools and/or in reverse engineeringthem.6.1.6 Che
king Time Series Te
hniqueAlphabet size Impa
t on the CliquesThis small se
tion aims at showing that the graph approa
h presented in Chapter 5 
anbe used to 
he
k the 
lique 
onsisten
y with di�erent analysis te
hniques or algorithm�avors. It has been explained in [194℄ that the alphabet size would normally not impa
tseverely the similarity analysis. A short 
omparison is presented in the following for threedi�erent alphabet sizes (or dis
rete degrees): 4, 5 and 6. The results are presented withdi�erent 
ompression ratios in the next paragraph.Compression ratio impa
t on the CliquesWe intend to present here the impa
t of di�erent 
ompression ratios on the method ofdominant set extra
tion. Table 6.8 gives for di�erent values of alphabet sizes (As) and
ompression ratios (CRs8) the 
orresponding number of dominant sets. The numberof dominant sets remains quite stable, when 
hanging either the alphabet size or the
ompression ratios, around the ones we have used (A = 5 and CR = 8). It is howeverinteresting to noti
e that 
hanging the alphabet size for a given 
ompression ratio does notimpa
t mu
h on the dominant sets, whi
h keep gathering the same 
lusters (ex
ept a fewex
eptions). The opposite is not true: for a given alphabet size, the di�erent 
ompressionratios might indu
e 
ompletely di�erent sets of 
lusters, even if the overall number of
liques is quite similar. The reason is explained through a small example presented inFigure 6.1. The x-axis represents a given time window, while the y-axis represents thetime series amplitude. With regards to 
ompression ratio 2 (that represents the whole
urve into a single SAX symbol), the two 
urves in this �gure are 
orrelated, as theyglobally have the very symbol {a}. Unfortunately, the 
ompression ratio 1 (two SAXsymbols for ea
h 
urve) gives two di�erent sequen
es of symbols, resp. {a,a}, and {a,b}.SAX is an e�
ient te
hnique to determine similarities between time series, however, thegranularity of the time series is also an important fa
tor as some peak e�e
ts 
an besmoothed and hidden. The details of SAX analysis are des
ribed in [194℄.8The di�erent CR values have been 
hosen so that the length of the initial time series remains amultiple of the 
ompressed one.



6.1. Preliminary Results 137Table 6.8: A_SAX:Alphabet Sizes vs. Compression RatiosCR 2 CR 4 CR 5 CR 8 CR 10A 4 2 30 31 40 101A 5 3 28 28 38 65A 6 3 23 27 35 58

10 2

a

b

curve 1

curve 2

SAX symbol threshold

Figure 6.1: SAX and Compression Ratios
Con
lusion on SAXThis se
tion leads to two major remarks: First, 
omparing the resulting 
liques enable usto determine the stability of the 
liques a

ording to these various analysis te
hniques.Se
ond, the 
hosen example, SAX, with di�erent parameter values (CR 2 [4; 8℄, AS 2f4; 5; 6g), keeps providing very stable 
liques. This 
on�rms the results presented in [194℄that the SAX approa
h is quite stable for sensible parameter 
hoi
es. They do not impa
tthe analysis. Future work will 
onsist in applying SAX to other types of series, and notne
essarily temporal ones, but still related to the Leurré.
om dataset.SAX is a 
lear example of the value of dominant sets to evaluate the impa
t of di�erentte
hniques on the dataset. For a given te
hnique, it is thus possible to test the extra
ted
liques and 
he
k their stability over the parameters.
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overy6.2 Knowledge Dis
overy6.2.1 Surprising ResultsEa
h extra
ted dominant set requires at this stage an in-depth analysis. The �rst resultshave permitted to determine the atta
k s
enarios whi
h have been observed (somehow)by 
han
e so far. In the following Se
tion, we present two di�erent dominant sets whi
hhave been pi
ked up and analyzed. It is important to note here that all dominant sets areworth being investigated, as they do not express the same information. Unfortunately,due to spa
e and time limitations, we limit their analysis to two parti
ularly interestingones.6.2.2 Case Study 1We fo
us in this se
tion on two dominant sets whi
h have been introdu
ed in Table 6.2with IDs 8 and 9. These dominant sets group together all a
tivity �ngerprints (or 
lusters)whi
h have targeted two honeypot sensors in parti
ular: namely sensors 6 and 8. The�rst one is pla
ed in a European industry network, while the se
ond one runs on anAsian a
ademi
 network. The IPs in use are apparently not 
orrelated. Furthermore, theinterse
tions of this 
lique with matri
esA_TLDs and A_IPprox are invariant. In otherwords, this 
lique is in
luded in one dominant set extra
ted from A_TLDs, in anotherdominant set from A_IPprox. The 
lique however does not appear when 
omputing theinterse
tion with A_SAX dominant sets.The ve
tor asso
iated to the related dominant set ofA_IPprox is the peak {24}. Thisresult 
an be interpreted as follows: the �ngerprints asso
iated to the 
onsidered 
lustershave been observed on these two unique sensors, and they have been left by ma
hines fromthe /24 network they belong to. This result is 
on�rmed when 
omputing the interse
tionof the 
liques with the other matrix A_TLDs. It provides, without any surprise, the Toplevel Domain of the two /24 networks. A deeper analysis of the 
lusters signatures revealsthat all the �ngerprints have been ea
h time observed against the two virtual ma
hinesemulating Windows. They have targeted their port 135 (Mi
rosoft Remote Pro
edureCall RPC9), but in a large variety of manners (in terms of duration, payload, et
).This analysis thus provides an interesting example of a weird, or at least unusual,a
tivity, and indi
ates a few things:� The involved 
lusters only 
on
ern the two Windows ma
hines. It is very unlikelythat they have been targeted randomly. The atta
k was a priori aware of the9An RPC servi
e is a proto
ol that allows a 
omputer program running on one host to 
ause 
ode tobe exe
uted on another host without the programmer needing to expli
itly 
ode for this.
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overy 139operating systems running on these ma
hines. It imposes that a s
anning phase fromdi�erent IP sour
es have been laun
hed and have been su

essful in determining theOS of our virtual ma
hines.� The atta
k always target port 135, but in a large variety of manners, and the�ngerprints are unique to these two platforms.� They 
annot be interpreted as Windows radiations noises, as there is no servi
erunning on port 135 of the virtual ma
hines and they do not respond to multi
astrequests.� There should be di�erent atta
kers, insofar as the atta
k has been laun
hed severaltimes on the virtual ma
hines, without being su

essful.� There is no evident temporal pattern between the di�erent atta
ks. It is thus not apro
ess trying to test the Windows ma
hines in a periodi
 manner. It 
an however bea monitoring pro
ess distributed over di�erent ma
hines with random time intervals.This example leads to the following 
on
lusion:Observation: Both 
lass C networks where Sensors 6 and 8 are running host a 
om-mon (or very similar) botnet. Let �rst re
all the botnet de�nition, as given in[149, 111℄:"a botnet is a stru
ture 
onsisting of many 
ompromised ma
hines whi
h 
an be re-motely managed (in general from an Internet Relay Chat IRC 
hannel)". The authorsreport su
h 'many-to-many' tools, and their numerous remarks 
orre
tly mat
h the previ-ously des
ribed s
enario. The a
tivities we are observing 
hara
terize a very same botnetlaun
hing multiple atta
ks against port 135 on the same 
lass C windows ma
hines thanthe 
ompromised ones. In addition, the a
tivity �ngerprints 
hara
terize this botnet, asits �ngerprints have not been observed in any other honeypot sensors.6.2.3 Case Study 2The extra
tion of dominant sets from the A_SAX matrix has also shown that some
lusters are temporarily 
orrelated, while they group a
tivity �ngerprints on di�erentports. One example is the 
lique with ID 8 on Table 6.6: it involves three 
lusters, linkedto two distin
t ports sequen
es {80} (one 
luster) and {22} (two 
lusters). The 
lique hasbeen observed as well with a SAX alphabet size of 6.The analysis is not obvious, as the interse
tions with other matri
es remain empty.However, this information, if it does not allow to 
on
lude on the a
tivity, helps deter-mining what property it does not present. The empty interse
tions with matri
es likeA_TLDs, A_IPprox, A_Hostnames and A_Geo therefore indi
ate there is no obvi-ous relationships among the Sour
es of ea
h 
luster. The empty 
orrelation with matrixA_Env also indi
ates that the a
tivities have not targeted the same sets of honeypot
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overysensors. There is no payload, whereas ports were opened on some virtual ma
hines. Et
.In short, there are very few properties between these three 
lusters, ex
ept that they allbelong to the large dominant set representing Windows ma
hines with A_OSs. Thisinterse
tion, unfortunately, does not help so mu
h the analysis.There is a unique property shared by these a
tivities, apart from their strong temporalrelationship: they are all grouping �ngerprints whi
h target the three virtual ma
hines.Observation: The three 
lusters represent s
anning a
tivities. They have beenobserved on all honeypot sensors indi�erently. Their strong temporal similarity tends,however, to indi
ate that they have a 
ommon root 
ause and are laun
hed in parallel bya large number of ma
hines in the wild.Nothing else 
an be dedu
ed at this stage. Further 
ross-analyses would maybe en-ri
hed this initial observation. In addition, it would be interesting, in this s
enario, to
ompare the a
tivities of the s
anning IPs from a more global Internet point of view. Asit was stated from the beginning of this thesis, the approa
h we o�er is 
omplementaryto other larger visions, like teles
opes, darknets and bla
kholes. These solutions have allbeen introdu
ed in Chapter 3. They would typi
ally enri
h this 
ase study.
6.3 Dis
ussion6.3.1 Abnormal Correlation and Potential ImprovementsThe example of SAX is ri
h, in the sense that it 
learly shows the values and limitationsof the dominant set method. Among its advantages, it enables to 
ompare di�erentparameters from one te
hnique (see the di�erent alphabet sizes and 
ompression ratios).It also gives a good framework to 
ompare di�erent te
hniques. However, the weakestor most sensitive point remains the intrinsi
 matrix. Most of the attention must be paidto the similarity fun
tion it represents and the 
hara
teristi
s it intends to highlight.Moreover, the �nal interse
tions are obviously limited to the existing matri
es. Furtherinquiries might be required after pi
king up one 
lique. If su
h inquiries starts beingfrequent, it will be relevant to also express their 
hara
teristi
s in terms of a similaritymatrix.Another issue is the understanding of over
onsistent interse
tions: in the s
enariowhere the interse
tion 
onserves the large majority of 
lusters in the initial 
lique, itseems important to understand why a small number does not follow this rule. Either theyare ex
eptions worth investigating, or error re�e
ts of the 
hosen similarity fun
tions.Both s
enarii are hard to dis
riminate to date. Finally, the previous 
ase studies havebeen interpreted from the two randomly 
hosen dominant sets. This interpretation, if not
ompletely automati
, must be simpli�ed and 
lear to the analyst. Next se
tion o�ers asimple method to ease the interpretation step.



6.3. Dis
ussion 1416.3.2 On the Labeling of Dominant SetsSome examples have been presented so far. The method however generates all possibledominant sets, given the similarity matri
es. The idea 
onsists in avoiding to extra
tseveral times the dominant sets for a given similarity matrix. Thus, the 
lusters involvedin a 
lique are labeled by the doublet made of:1. The similarity matrix unique identi�er2. The di�erent dominant sets identi�ers for this matrix when the 
luster is asso
iatedto one of themIt is important to note here that a 
luster 
an be labeled twi
e or even more for the samesimilarity matrix, if it is related to several extra
ted 
liques from that matrix. The labelsare then an easy way to work on Clusters and to 
onsider all the analyses made so far. Asimple s
hema illustrates the labeling pro
ess in Figure 6.2.
Cluster C_i

A(SAX):A(Env):

A(Geo):

A(TLDs):

A(OSs):

A(Hostnames):

Dominant Set ID 3

Dominant Set ID 5

A(commonIPs):

Dominant Set ID 13

Dominant Set ID 9
Dominant Set ID 21

Figure 6.2: Labeled Clusters6.3.3 On the Derivation of ObservationsAs the 
ase studies have shown in Se
tion 6.2.1, there is good value in extra
ting asummary of all observations obtained so far. It has also been noti
ed that the 
lustersmight not be all in the same sets of dominant sets. It is thus worth mentioning these
ases as well. To date, we derive the observations based on the Algorithm 9. It simply
onsists in labeling ea
h 
luster with all dominant sets it belongs to, and also the matrixanalyses in whi
h it was not involved (not in
luded in any resulting dominant set). Thislabeling pro
ess enables us to 
omplete the 
luster signature as illustrated by Figure 6.3.This Signature is the one of a Blaster variant. The identi�
ation task was quite easydue to a few publi
ations on that worm, like [42, 93℄. The worm exploits a remote pro-
edure 
all (RPC) vulnerability of Mi
rosoft Windows 2000 and Windows XP operatingsystems. The infe
tion steps have already been presented in Figure 2.2 of Se
tion 2.3.2.
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overySeven distin
t 
lusters have been identi�ed as Blaster variants in our dataset. Only threehave been found 
orrelated with the temporal matrixA_SAX (Clique ID 21). The othershave not been found for two reasons:� They are less frequent and have not been 
onsidered in the 683 
lusters 
onsideredas big enough for the SAX analysis (time series).� Even though, they have very di�erent temporal patterns and have been �rst observedfour months after the �rst Blaster infe
tions in August 11th, 2003.The 
luster has been merged with other 
lusters by the A_OSs. Unfortunately, thepre
ision of our �ngerprinting method does not let us pre
isely determine, to date, whatWindows ma
hines were mostly infe
ted. It would have been interesting, however, tovalidate the Symante
 
laim in [21℄. A

ording to this antivirus 
ompany, the wormde
ides whether it will use the exploit 
ode for Windows XP with a 80% probability, orthe one for Windows 2000 with 20% probability. These two s
enarii belong to two distin
t
lusters in our 
ase, as the �ngerprints are distin
t. This is thus a variant of what hasbeen 
alled multi-headed tool in previous Se
tion 6.1.5.Algorithm 9 Deriving observations from the dominant sets labelingLet Ci be one 
lusterexpressing an a
tivity �ngerprint on the sensors(See Chapter 4)Let L(Ci) be the sets of labels atta
hed to Cifor all Dominant Sets DSk from Chara
teristi
 analysis Ap doif (p; k) 2 L(Ci) thenCluster Ci has 
hara
teristi
 ApList all other 
lusters linked to DSkelseCluster Ci does not show up with 
hara
teristi
 Apend ifend for6.3.4 SummaryWe 
an now work on the �ngerprint level, and quite easily perform analyses by simplylooking at labels, instead of digging on
e more into the data. This ends here the HoRaSisframework we were looking at, as it seems the 
urrent method ful�lls the requirementslisted in the introdu
tion. Other interesting reporting approa
hes 
an 
omplement thelabeling previously des
ribed. The method, however, enables, at this stage, any analystto understand the a
tivities on the network where the honeypot sensor is pla
ed, as wellas their distin
tiveness and their relationships with others. The framework is quite opento develop other analyses.
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A(OSs): clique 3

FINGERPRINT:

CORRELATIVE ANALYSIS:

* Number Targeted Virtual Machines: 3
* Ports Sequence VM1: {135,4444,135,4444}
* Ports Sequence VM2: {135}
* Ports Sequence VM3: {135}

* Number Packets sent VM2: 3
* Number Packets sent VM3: 3
* Global Duration: < 5s
* Avg Inter Arrival Time: < 1s

* Number Packets sent VM1: 10

CLUSTER ID: IDENTIFICATION:

W32.Blaster.A (symantec), also known as:
W32/Lovesan.worm.a (McAffee)
Win32.Poza.A (CA)
Lovesan (F−Secure)
WORM_MSBLAST.A (Trend)
W32/Blaster (Panda)
Worm.Win32.Lovesan (KAV)

* Payloads: 72 bytes + 1460 bytes + 244 bytes

1931

A(SAX): clique 21
A(Env): 
A(Geo):
A(Hostnames):
A(TLDs):
A(commonIPs):
A(IPprox): Figure 6.3: New Cluster Signature
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Chapter 7
Con
lusions and Perspe
tives
Con
lusionsSummaryWe have proposed in the previous Chapters to 
reate a kind of identity 
ard for ea
h a
tiv-ity observed against the honeypot sensors. These 
ards express two di�erent information
ategories:1. First, the 
hara
teristi
s of the a
tivity �ngerprints whi
h enable us to dis
riminatethis a
tivity from others.2. Se
ond, the 
orrelation that might exist between all a
tivity �ngerprints. This
orrelation might exist for several reasons, some of them having been dis
ussedalong the thesis.A few thousands of distin
t identity 
ards have been extra
ted from the data 
olle
tedwith the Leurré.
om proje
t by several sensors deployed for many months in a large varietyof pla
es. These 
ards 
an then be reused for di�erent purposes, in
luding the followingones:� To determine the root 
auses of some a
tivities.� To insert the information they 
arry for event and alert 
orrelation, as an additional
ontextual information sour
e.
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lusions and Perspe
tives� To dete
t new or original abnormal a
tivities and provide meaningful informationfrom this dis
overy.� To understand the life 
y
les of a
tivities over a long period of time.� To validate assumptions and to explode myths.� To model 
ertain a
tivities or improve 
urrent models.The method we have proposed is 
omposed of several steps, from data storage ofraw pa
kets to 
lassi�
ation of pa
kets into a
tivity �ngerprints and given prominen
e ofrelationships among these �ngerprints. Several te
hniques have been applied and tuned torea
h this abstra
tion level, in
luding 
lustering and graph-oriented algorithms. Severalsteps of the method have been published along with this thesis, and have also beendes
ribed in the respe
tive 
hapters of the do
ument. Some listed appli
ations havealso started being investigated, like the modeling aspe
ts and the insertion of 
ontextualinformation within alert 
orrelation engines.Criti
sThe framework we propose has also some limitations, or, said di�erently, a few points thatmust be 
onsidered or/and improved in the future. The proposed te
hniques have been
hosen be
ause of their relevan
e and their simpli
ity, and they have helped building aninteresting framework. These applied te
hniques have proved that they were appli
ablein our 
ontext as they have provided interesting results. Other te
hniques however mightbe applied as well. This work is at the interse
tion of various resear
h domains. We havetried to build something 
oherent. This work does not mean that no other solution existsor 
annot be applied. A 
ontrario, this framework would really bene�t from the workof spe
ialists improving ea
h step of this te
hnique. Some other potential appli
ationsshould be worth being tested.The experiments have also 
learly shown that the 
urrent intera
tion of the honeypotsensors is limited. The te
hnique would really bene�t from additional tra�
 to improve thedis
rimination phase and 
olle
t more exploit information. The new S
ryptgen te
hniquedes
ribed in [138℄ will solve this problem and should be deployed in the Leurré.
om sensorssoon. It is also important to keep 
omparing regularly the a
tivities on di�erent intera
tionhoneypots, in order to 
he
k that the honeypot sensor itself does not introdu
e parti
ularbias in the 
olle
t of data; or it is important, at least, to qualify and quantify this bias.We have presented a me
hanism to deal with this problem in [187℄.The framework does not in
lude, by de�nition, too many dete
tion me
hanisms, as itis not its initial purpose. However, it seems relevant, at this stage, to in
orporate severalme
hanisms whi
h would dete
t 
hanges, either dire
tly related to atta
k �ngerprints, orother more global trends. They will be very useful, among other things, for reporting
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tives 147the a
tivities and for warning against re
ent abnormal a
tivities. These me
hanisms 
anbe inserted at di�erent steps of the framework. We have mentioned some of them alongthe thesis, but other te
hniques, derived from the Intrusion Dete
tion System (IDS) �eld,
ould also be easily integrated. In addition, the framework has not been optimized withthe prospe
t of being an e�
ient early-warning system. The tuning of some steps toshorten the warning delays might also be possible. An additional advantage of dete
ting
hanges 
an also be to potentially adapt the dis
rimination step and to 
reate a new
orrelative analysis between the observed a
tivities.Con
lusionE
hoing the Introdu
tion, there were two major questions we wanted to address in thisthesis. First, we wondered if the dataset at our disposal, whi
h represents mali
ious a
-tivities 
olle
ted by various sensors in the world, 
ontains useful and original information.All examples 
ited in this thesis bring a 
lear a�rmative answer to that question: data
olle
ted lo
ally for a long time period enables to better understand the a
tivities thato

ur in the Internet and are de�nitely worth being 
onsidered. Se
ondly, we were lookingfor a possible framework 
alled HoRaSis that would automatize the adequate analysis ofthe data. If it exists, it should at least follow a few properties that have been detailed inthe introdu
tion.Along this thesis, we have presented an analysis te
hnique whi
h has both 
on�rmedthe preliminary �ndings we made and has permitted to a
quire a new and original knowl-edge out of the huge amount of 
olle
ted data from the Leurré.
om proje
t. This analysiste
hnique is open to other approa
hes, due to its interesting approa
h of 
lassifying data.Its modular aspe
ts ease the evolution of the me
hanism and the plug-in of additionalanalysis layers. Finally, the methods we have proposed to 
lassify data and extra
t in-formation remain intuitive enough for the analyst to understand the out
ome of thete
hnique. In other words, the proposed te
hnique is not an obs
ure or magi
al bla
kbox, and the analyst should now be able to understand all the steps that have led us toparti
ular observations.As a 
on
lusion, we have 
orre
tly presented over this thesis a HoRaSis framework,with respe
t to the properties imposed in the Introdu
tion. The proposed framework isthe bases for Honeypot tRa�
 analySis. It has been implemented and applied on the data
olle
ted from the Leurré.
om distributed network of honeypot sensors.The HoRaSis framework we have de�ned is a key element in our argumentation infavor of a better knowledge a
quisition of malware a
tivities. However, we think thatthe proposed framework presents more value by the questions it arises than by its imple-mentation itself. Instead of being an end in itself, this framework is the illustration ofpositions defended in this do
ument. We thus hope it will provide food for thoughts forfuture work. We 
on
lude by giving a hint of potential resear
h dire
tions whi
h seem
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lusions and Perspe
tivespromising.Perspe
tivesAs previously mentioned, we believe that the framework we have proposed opens newinteresting perspe
tives, and also many questions.� Global vs. Lo
al Monitoring: it is 
lear from this presented work that both ap-proa
hes are 
omplementary. A 
omplete analysis of atta
k pro
esses 
learly re-quires the two positioning. We have not addressed, in this thesis, the problem ofmaking them intera
t and ex
hange information. They both provide di�erent ab-stra
tion levels and it would be interesting to merge the two approa
hes within ageneral monitoring system, able to interpret both types of abstra
tion, and thus,understand their respe
tive limitations.� Dynami
 Con�guration of Sensors: To determine the �ngerprints of a
tivities, ithas been assumed that all sensors share the very same 
on�guration. However, itwould be worth diversifying the 
on�gurations, with di�erent types of servi
es andoperating systems. in other words, it would be interesting to 
opy the diversity ofreal world systems into the network of sensors. Unfortunately, a few issues mustthen be 
orre
tly addressed. First, this approa
h might require quite numeroussensors deployed over the Internet. Se
ond, the 
ross-
orrelation between a
tivity�ngerprints and 
on�gurations must be 
arefully understood and formalized. Thedatabase ar
hite
ture used within the Leurré.
om proje
t has however been designedwith this perspe
tive in mind.� Context Provisioning: To date, ea
h a
tivity is reported as a 
ard, in
luding its �n-gerprint parameters and the labels 
hara
terizing parti
ular 
orrelation with othera
tivities. From another point of view, vulnerabilities and exploits are frequentlypublished and many in
idents are also reported. They all form an additional infor-mation 
ontext that might help understanding the monitored a
tivities. It wouldthus be interesting to asso
iate both and express their potential relationships.� Sensor Positioning: The sensors have all been plugged in a large variety of pla
es,in front of partners' networks. It would be interesting to determine if a very sameframework 
an be applied with sensors inside a private network. This, however,presents a few priva
y issues, and most of the partners would be relu
tant to sharesu
h information. On the other hand, the dis
rimination phase of the frameworkmight help the administrator in her analysis. A dire
t appli
ation would then bethe insertion of the resulting information into the 
orrelation engines she uses.It is not an ordinary fa
t that we end a thesis with so many resear
h dire
tions. Wehave wanted to highlight the large exploratory �elds whi
h have appeared when 
onsider-
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tives 149ing the requirement of a better understanding of malware a
tivities. Su
h an understand-ing is ne
essary and possible to a
quire. We hope that it is now demonstrated with theproposed HoRaSis framework.
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Appendix A
Entity Relationship Diagram
The following diagram has been des
ribed in [184℄. It represents the database stru
tureused to store the data from ea
h Leurré.
om honeypot sensor.
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Figure A.1: Data Storage: Database Ar
hite
ture
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Appendix B
Leurré.
om Interfa
es
This Appendix epresents two di�erent S
reenshots. Figure B.1 is the global publi
 proje
thomepage, with global statisti
s on the dataset. Figure B.2 is a simple GUI that isa

essible for partners to write queries on the database.

Figure B.1: Publi
 Interfa
e www.leurre
om.org
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Figure B.2: Partner DB Interfa
e: GUI
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Appendix C
Reporting A
tivities on the Leurré.
omProje
t
Figure C.1 is a s
reenshot of the main reporting page ea
h partner 
an a

ess and whereshe 
an get information on her spe
i�
 Leurré.
om honeypot sensor.

Figure C.1: Partner Reports from the Leurré.
om Interfa
e
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Appendix D
Identi�
ation of Deloder among theA
tivity Fingerprints
This appendix is related to the des
ription of the Deloder worm presented in Se
tion 4.4.4.The Deloder worm spreads by s
anning random IPs, and attempts to 
onne
t toWindows 2000 or XP shares, whi
h is TCP port 445 (SMB over TCP).Barford et al. presents in [237℄ an interesting signature of the worm that 
an bemat
hed with the a
tivity �ngerprints we have. Figure D.1 has been extra
ted from oneof the signatures presented in [237℄.The 
lusters derived from Deloder are then easily identi�ed. They have the followingparameter values:� Number Virtual Ma
hines = 1� Targeted Ports Sequen
e= f445; 139g� Number Re
eived Pa
kets = [20; 23℄� Duration < 10s� Date First Observation = Mar
h2003� Payloads Netbios as detailed in [237℄1

1It is also interesting to note that Snort has no parti
ular rule for Deloder. The worm generates Snortalerts for IPC share a

ess only.
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Figure D.1: Deloder Signature [237℄


