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ResuméIl est di�ilement onevable de onstruire les systèmes de séurité sans avoir unebonne onnaissane préalable des ativités malveillantes pouvant survenir dans le réseau,ni une bonne ompréhension des proessus d'attaques. Malheureusement, il apparaîtque e savoir n'est pas aisément disponible, ou du moins il reste anedotique et souventbiaisé par des suppositions injusti�ées, des soures d'information partiales ou des bruitsde ouloir.Cette thèse a pour objetif prinipal de faire progresser l'aquisition de e savoir surles ativités malveillantes par une solide méthodologie.Dans un premier temps, il onvient de travailler sur un ensemble intéressant de don-nées. Malheureusement, les données sont rarement publiques, ou alors, elles mélangentà la fois du tra� normal dit de prodution et du tra� malveillant, omme par exempleles éhantillons fournis par la métrologie des réseaux. Dans ette situation, il est di�-ile d'établir un distinguo entre les deux formes de tra�; e problème est au ÷ur dessouis de la ommunauté de reherhe travaillant sur la détetion d'intrusions, et e depuisplusieurs années. Pour ontourner ei, nous avons déployé un réseau distribué de sondes,aussi appelées pots de miel, à travers le monde. Les pots de miel sont des mahines sansativité partiulière, e qui implique que toute onnexion les iblant est potentiellementmalveillante. Ce réseau de sondes nous a don permis de apturer un volume importantde données suspetes sur plusieurs mois. Il est important de noter que ette arhiteturepartiulière nous fournit une surveillane très loale de e genre de tra�.Dans le adre de ette thèse, nous présentons une méthodologie appelée HoRaSis (pourHoneypot tRa� analySis), qui a pour but d'extraire automatiquement des informationsoriginales et intéressantes à partir de et ensemble remarquable de données. Elle est for-mée de deux étapes distintes: i) la disrimination puis ii) l'analyse orrélative du tra�olleté. Plus préisément, nous disriminons d'abord les ativités observées qui parta-gent une empreinte similaire sur les sondes. Cette étape doit tenir également ompte desdiverses in�uenes du réseau. La solution proposée s'appuie sur des tehniques de lassi�-ation et de regroupement. Puis, dans une seonde phase, nous herhons à identi�er lespréédentes empreintes qui manifestent des aratéristiques ommunes. Cei est e�etuésur les bases d'une tehnique de graphes et de reherhe de liques. De multiples exemplesillustrent les intérêts respetifs de es deux phases.Plus qu'une tehnique, l'approhe HoRaSis que nous proposons témoigne de la rihessedes informations pouvant être réupérées à partir de ette vision originale du tra� mali-ieux de l'Internet. Elle montre également la néessité d'une analyse rigoureuse et ordon-née du tra� pour parvenir à l'obtention de ette base de onnaissanes susmentionnée.
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9
AbstratSeurity systems annot be e�iently designed without i) a good preliminary under-standing of maliious ativities whih might our in the wild and ii) a good omprehensionof attak proesses. Unfortunately, it seems that this knowledge is either not available orremains anedotal and often biased by unlear assumptions, partial information souresand rumors.The goal of this thesis is primarily to better understand the maliious ativities thatour and to provide a methodology that would help to aquire this knowledge. It isneessary in a �rst step to work on a valuable dataset. However, publi data is noteasily available, or it frequently mixes prodution and maliious tra�, like with networkmeasurement datasets. In this senario, the distintion between prodution and maliioustra� is a omplex problem that has oupied the Intrusion Detetion ommunity forseveral years. To address this issue, we have deployed a worldwide distributed network ofsensors, also alled Honeypots. Honeypots are mahines that are not publily advertised.Hene, any onnetion targeting suh a mahine is potentially maliious. This networkof sensors has thus ontributed to apture a huge amount of suspiious data over severalmonths. In addition, this partiular sensor arhiteture enables us to obtain a loalmonitoring of maliious tra�.In the sope of this thesis, we propose a framework, alled HoRaSis (for HoneypottRa� analySis), whih aims at automatially extrating meaningful information out ofthis remarkable dataset. It basially onsists in two major stages: i) the disriminationand ii) the orrelative analysis of the olleted tra�. More preisely, we �rst disriminateolleted ativities aording to the �ngerprints they let on eah sensor. This stage mustalso onsider the potential disturbanes introdued by the network. The proposed solutionrelies on dediated lustering and lassi�ation tehniques. We then identify all previous�ngerprints whih share strong ommon harateristis. This task is performed thanks toa graph-theory approah, and, in partiular, thanks to the searh of maximal weightedliques within graphs. Di�erent harateristis based on our preliminary experiments havebeen onsidered. Several ases exemplify the value of ombining these two stages.Thanks to the proposed HoRaSis framework, we show that a rigorous and methodi-al analysis of honeypot tra� learly helps to get a better understanding of maliiousativities.
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Synthèse en français
IntrodutionLa séurité est le soui d'un grand nombre de domaines d'ativité. Internet a la parti-ularité de onneter les gens de façon plus ou moins anonyme, et sans grand ontr�le dutra�. Cet atout, qui fait le suès de la toile, présente aussi des inonvénients majeurs: des ativités malveillantes peuvent prendre aisément une grande amplitude et produiredes atastrophes. A valeur illustrative, l'équipe amériaine de Staniford montre dans [215℄qu'il est possible, en théorie, pour un ver, de saturer un million de mahines vulnérablesen l'espae de 510 milli-seondes. Dans la même idée, il faut noter la rerudesene desfraudes életroniques, qui peuvent se hi�rer à plusieurs millions de dollars par an. Inter-net failite le banditisme et les rimes à grande éhelle. Il semble alors très important, si en'est vital, d'aquérir de solides onnaissanes sur les menaes et les stratégies d'attaques.Une méthode pour obtenir e savoir réside dans l'observation et l'analyse à grande éhelled'ativités malveillantes.Plusieurs tehniques existent atuellement, dont ertaines appartiennent à la atégorienommée pot de miel (ou honeypot en anglais). Ce terme est réent, quand bien mêmele onept existe depuis de nombreuses années. Dans les années 1980, Cli�ord Stoll aeu l'idée de plaer des données en apparene on�dentielles a�n de tromper et mettreen évidene les voleurs. L'idée a été reprise sous le terme anglais honeytoken par LaneSpitzner dans [214℄. Ce dernier a proposé dans e même ouvrage la dé�nition suivanted'un pot de miel :Un pot de miel est une partie ou l'ensemble d'un système d'information dont lavaleur ajoutée est d'être ompromise ou utilisée de manière illiite.Nous garderons ette dé�nition tout au long de la thèse.Le grand avantage de es pots de miel réside dans leur apaité à olleter du tra�suspet uniquement. Depuis plusieurs années, es traes partiulières se mélangeaientave elles dites de prodution, e qui n'aidait pas les personnes en harge de la séuritéà déterminer les ativités malveillantes. Ce problème est maintenant révolu grâe auxpots de miel. Ces trois dernières années, un e�ort ertain a été e�etué par diversesommunautés pour onstruire des arhitetures pots de miel sûres et utiles, i.e. dessystèmes apables de réupérer de l'information, allant de simples paquets de balayage deports à une ommuniation IRC omplète, sans mettre en danger le réseau hébergeur. Lessolutions sont don nombreuses, et les tehnologies de type pots de miel sont largement



22 Synthèse en françaisutilisées, présentant un intérêt aussi bien pour les grands groupes antivirus que pour lesorganisations internationales et gouvernementales, telles les CSIRTs, l'ENISA (EuropeanNetwork and Information Seurity Ageny ou les entres d'analyse ISAC (InformationSharing and Analysis Center).Malheureusement, nous onstatons que très peu d'e�orts sont faits pour partager lesinformations olletées au moyen des pots de miel. A ontrario, des données publiques ex-istent, grâe à des initiatives omme Dhshield, MyNetWathman ou le Computer NetworkDefense Operational Piture [34℄. Ces projets présentent sur des pages Internet attrativesdes statistiques, mais la soure de es informations n'est pas toujours laire. Ils invitenttout un haun à envoyer les arhives de pare-feux ou de systèmes de détetion d'intrusions(IDS) pour extraire des valeurs statistiques relativement simples. L'information est ainsilimitée (omptage par port), et les hi�res intègrent le biais lié au tra� de prodution.En résumé, les pots de miel sont une soure d'information de grande valeur. Cepen-dant, omme il a était brièvement mentionné i-dessus, le plus gros e�ort est fait pouroptimiser leur arhiteture, et peu d'initiatives ont émergé pour organiser et tirer tous lesbéné�es de la rihesse des données qu'ils fournissent.En parallèle, les solutions d'analyse existantes se limitent fréquemment à résoudreun problème en partiulier. Il peut s'agir de tehniques pour surveiller les attaques pardéni de servie, les balayages de ports, ou ertains sénarios d'attaques bien préis. Laplupart de l'existant a d'ailleurs été développé par les personnes de la ommunauté de laDétetion d'Intrusion. Cependant, l'approhe est sensiblement di�érente ave les pots demiel, omme tout le tra� apturé reste par dé�nition suspet. Les faux-positifs ne sontdon plus le soui prinipal, omme ela est enore le as pour la majorité des tehniquesde détetion d'intrusions. Cei nous amène à établir le onstat suivant :Constat : Les pots de miel sont largement déployés, et ils sont tehniquement ma-tures. Les tehniques d'analyse, en revanhe, sont mal adaptées pour pro�ter de la qualitéde l'information o�erte.Sur la base de e onstat, nous avons déidé de onstruire notre propre environnementde type pot de miel, dans le but de olleter d'indispensables données ; la motivationpremière étant de travailler sur des données de tra� malveillant aessibles et utiles pourl'analyse. Cei a été fait dans le adre d'un projet nommé Leurré.om, qui regroupe despartenaires de nombreux pays. Grâe à ette ommunauté, nous avons réussi à olleterun volume de données onsidérable à partir de plusieurs environnements pots de miel.Il est important de omprendre que et ensemble de données est unique, et qu'il estaessible pour haque partenaire. Nous ne onnaissons pas d'équivalent pour le moment.L'hypothèse de notre problème est don la suivante :Hypothèse : Nous travaillons sur un ensemble de données unique, onstitué d'ativitésmalveillantes observées dans di�érents endroits du globe et dans des réseaux très divers.Que pouvons-nous faire ave de telles données ? Nombreuses sont les tehniques



Synthèse en français 23d'analyse de tra� : il existe les outils traditionnels omme net�ow ([75℄) ou tpdump([17℄), ou des méthodes théoriques plus omplexes. En revanhe, auune n'est spéi�queau type de données fournies par les pots de miel. Plus important enore, rien de trèsonstrutif n'a été proposé, jusqu'à présent, pour éhanger aisément de l'information àpartir de es analyses. Il est légitime à e stade de se demander si e nouvel ensemble dedonnées apporte de l'information nouvelle et originale. Si la réponse devait être positive,serait-il possible de l'extraire automatiquement ? Pour simpli�er, nous herhons don àsavoir s'il existe une méthode pour faire ela. Si elle existe, nous la nommerons HoRaSis(pour Honeypot tRa� analySis), omme étant une base pour l'analyse de tra� des potsde miel. La thèse présentée dans e doument se résume ainsi :Positionnement de la thèse : Nous voulons montrer dans ette thèse que1. un réseau distribué de simples sondes pots de miel fournit des données intéressantespour l'analyse et la ompréhension des menaes et stratégies d'attaques.2. il existe une méthode automatique pour extraire de l'information intéressante à par-tir de es données. Celle-i sera nommée HoRaSis (pour Honeypot tRa� analySis).Les pots de miel permettent de reueillir des données très singulières, qui peuventnéessiter une tehnique d'analyse dédiée. Cette remarque sera plus amplement justi-�ée dans les premiers hapitres de e doument, par les expérimentations préliminairesprometteuses des données. A partir de notre savoir-faire onstruit au �l des données, il estapparu omme vital de réer une méthode (appelée Honeypot Tra� Analysis ou HoRa-Sis) a�n de rendre méanique l'extration d'information à partir des données olletées.L'analyse de traes issues des pots de miel est à la jontion de plusieurs espaes dereherhe, et la méthode HoRaSis que nous herhons ne peut prétendre les surlassertous. Par voie de onséquene, la méthode doit être ouverte à de futures améliorations,en o�rant une struture modulaire. De manière plus générale, nous listons i-dessous lesritères que la méthode HoRaSis doit préserver :� Validité : Un ensemble d'analyses a été e�etué de façon empirique, en tirant peuà peu le �l d'Ariane. Cette tâhe, bien que peu e�ae, a fourni des résultatspréliminaires prometteurs. La méthode automatique que nous herhons ne doit pasontredire es expérienes, et a ontrario devrait enrihir les observations, ommele ritère suivant indique.� Déouverte d'information : La méthode HoRaSis doit être une nouvelle soure deonnaissanes.� Modularité : La méthode HoRaSis se trouve à la roisée de plusieurs domaines dereherhe. Nous pouvons d'ores et déjà iter eux des Réseaux, de la Séurité et del'Analyse de Données. Il existe aussi une multitude de sous-domaines, prenant di-verses diretions théoriques et tehniques. De nouveaux apparaissent régulièrement,et il est apital que la méthode présente une struture modulaire a�n de pouvoirbéné�ier des dernières avanées dans haun de es domaines.



24 Synthèse en français� Généralisation : Les données olletées peuvent hanger de manière drastique selonl'apparition de nouvelles ativités et de nouveaux proédés d'attaque. La méthodeHoRaSis doit don être su�samment indépendante des données, ou du moins, êtreadaptable à des ensembles de données aux aratéristiques très di�érentes.� Simpliité : La méthode HoRaSis doit extraire de l'information à partir d'un en-semble de données (dans notre as, fourni par le projet Leurré.om). Le destinatairede ette information est l'analyste; e dernier doit omprendre le heminement quia onduit à l'extration de es nouvelles onnaissanes. La méthode ne doit pas seprésenter omme une boîte noire aux résultats obsurs.Nous prouvons dans e rapport qu'une telle méthode existe, et qu'elle nous permet detrouver des résultats prometteurs sur les ativités malveillantes observables. HoRaSis estun moyen automatique de valider (ou de rejeter) nombre de suppositions.Les ontributions de ette thèse sont :� Le déploiement et administration d'un système distribué de pots de miel pour ol-leter des données.� La oneption d'une méthode appelée HoRaSis pour analyser les données.� La réation de nouvelles tehniques pour tirer pro�t des propriétés de données issuesde pots de miel.� La validation de la méthode HoRaSis grâe aux analyses préliminaires e�etuées.� L'amélioration de la ompréhension des ativités observées. Certaines de es ativ-ités ont pu être lairement identi�ées, les autres sont de nouvelles questions o�ertesà la ommunauté Séurité.Ainsi, la thèse peut se résumer au shéma suivant :� HYPOTHÈSES : Une arhiteture de pots de miel déployée pour olleter des don-nées.� DONNÉES INITIALES : Un grand volume de traes réseaux, haune étant malveil-lante, ou du moins suspete.� PROBLÈME : Est-e une nouvelle soure d'information d'intérêt ? Si tel est le as,omment bâtir une solide méthode analytique à partir e elle-i ?D'une manière onrète, HoRaSis est une méthode artiulée autour de quelques étapesmajeures, qui sont symbolisées sur la �gure 1. Les étapes 1 et 2 onernent le déploiementet la ollete de données à partir de pots de miel. Ce travail a été rendu possible parl'intermédiaire du projet aadémique appelé Leurré.om. A�n de failiter la ompréhen-sion d'HoRaSis et des problématiques existantes, nous dérivons e projet dans le hapitre3, qui omplète le hapitre 2 dédié à l'état de l'art. Le leteur trouvera les détails des



Synthèse en français 25étapes 3 et 4 dans les hapitres respetifs 4 et 5. L'étape 3 onsiste à grouper les ativ-ités présentant des aratéristiques identiques, ou, en d'autres termes, toutes les adressesIPs ayant laissé une empreinte équivalente sur les di�érentes sondes pots de miel. Dansl'étape 4, nous analysons les relations émergentes qui peuvent apparaître suite à e premiergroupement. Toutes les empreintes observées sur les sondes pots de miel qui partagentde mêmes singularités sont détetées puis analysées. Le hapitre 6 dérit l'informationobtenue suite à l'appliation d'HoRaSis, elle-i étant alors exploitable et partageable ausein de la ommunauté Séurité. Chaque hapitre reprend des résultats obtenus à partirde l'ensemble de données Leurré.om.Les étapes de la méthode HoRaSis se trouvent sur la �gure 1, ainsi que le numérodes hapitres orrespondants. Elles sont brièvement résumées dans les paragraphes quisuivent en français.
Chapitre 3

SONDES HONEYPOTS CAPTURE & STOCKAGE

Chapitre 4

EMPREINTES ACTIVITES ANALYSE GRAPHES

Chapitre 5 Chapitre 6

CONCLUSIONS

Figure 1: Méthode d'analyse via un réseau distribué de pots de mielMotivations et terminologie d'usageIntrodution de et état de l'artLa ompréhension des ativités malveillantes est un pré requis à l'élaboration d'une teh-nique défensive e�ae. Par analogie, onstruire un mur ne protègera pas d'une agressionaérienne. Ainsi, onnaître la menae ne peut être un fateur à ignorer, partiulièrementquand les vendeurs sont friands de tehnologies aguihantes, mais qui peuvent s'avérerinutiles, ou tout simplement inadaptées.HoRaSis est la méthode que nous herhons pour analyser des données issues despots de miel, a�n de béné�ier de leurs propriétés intrinsèques. De nombreux projets ontréemment émergé pour apturer des traes malveillantes. En parallèle, une multitude desolutions provenant de divers axes de reherhe sont apparues pour e�etuer des analysessur des données a�n d'en identi�er des ativités anormales. Pour es raisons, et pourgarder une ertaine larté dans l'état de l'art, nous hoisissons de distinguer de atégories,disutées par la suite :� Les tehniques dont la �nalité est d'o�rir la possibilité de apturer du tra� malveil-lant.



26 Synthèse en français� Les tehniques dont la �nalité est d'extraire de l'information à partir d'un tra�donné.Capturer des traes originalesIl existe plusieurs projets réents qui ont pour �nalité de bâtir des environnements deapture e�aes, souvent dans l'idée de apturer de nouvelles ativités malveillantes (lesativités malveillantes qui n'ont pas enore été observées sont appelées 0-jour). Nousdétaillons en partiulier dans le doument original :� Les outils en logiiel libre assoiés aux termes anglais honeypots, honeynet, honey-tokens.� Le télesope réseau (ou Network Telesope développé par CAIDA (Cooperative As-soiation for Internet Data Analysis), qui onsiste à l'observation au niveau d'unéquipement réseau d'une très large plage (pré�xe /8 par exemple) d'adresses IP nonutilisées (ou très peu utilisées).� Le projet Darknet de Team Cymru, prohe dans l'esprit du projet préédent. Leursite o�re quelques graphes représentant une estimation quantitative du bruit de fond(ou bakground radiation observé.� iSink de l'université de Wisonsin-Madison, qui était d'avantage un outil d'analysede performane réseau à l'origine.� IMS (ou Internet Motion Sensor proposé par l'Université Mihigan, qui proposel'utilisation de sondes. L'information, par ontre, est extraite de haque sonde, sansanalyse orrélative entre les informations trouvées.� MINOS de l'université UC Davis, dont le prinipe fondamental est de marquer letra� suspet a�n de pouvoir le suivre plus aisément.� Lobster (aniennement SCAMPI), projet européen herhant à failiter la surveil-lane des réseaux au niveau matériel.� Mwollet, outil très réent, ayant fusionné ave un autre projet nommé Nepenthes,dont l'objetif onsiste à apturer des ativités malveillantes herhant à exploiterdes vulnérabilités bien préises (DCOM, Loal Seurity Authority Servie LSASS,NetBIOS, SQL Server, et).� Le partage d'arhivage, proposé par de nombreux sites, tels WormRadar, InternetStorm Center de l'Institut SANS, Dshield, MyNetWathman, et. Les résultats sebasent malheureusement sur des données inertaines à la soure.Tehniques d'analyseParmi les tehniques ayant voation à analyser le tra� brut olleté par des méthodesomme elles préédemment itées, le doument détaille :



Synthèse en français 27� NetFlow, le format d'agrégation en �ux utilisé dans des appareils de type routeurspour limiter le volume de données stoké. Quelques analyses s'appuient sur es �ux,bien qu'ils présentent des limitations : un �ux NetFlow n'a pas d'équivalent lairau niveau protoolaire (TCP), et se limite à un ensemble restritif de hamps.� Le projet Billy Goat proposé par Duponhel et al. d'IBM, où un e�ort est fait pourarhiver les données olletées de manière pratique. L'extration d'information resteependant limité à e stade.� honeyStat, ainsi que d'autres tehniques issues du monde de la détetion d'intrusion(projet Collapsar de l'université de Purdue). Ces tehniques se résument souventà une innovation théorique testée dans des onditions partiulières. L'informationextraite reste don d'autant limitée, même si es tehniques peuvent s'appliquerdans des analyses bien préises.� Les onsoles de surveillane sont nombreuses et variées. Une analyse que nous avonsfaite montre l'étendue des solutions existantes. Nous sommes malheureusementarrivés à la onlusion que la plupart se limitent à des tehniques pragmatiquessimples, omme des expressions régulières ou des requêtes SQL dans une base dedonnées à la struture assez standard.� La modélisation est un sujet atif de reherhe. Le manque de données librementutilisable empêhe néanmoins la validation des modèles proposés. Ceux-i se limitentpar ailleurs à quelques stratégies de propagation de vers onnus a priori.Conlusions onernant l'état de l'artCertaines tehniques de apture et d'analyses sont prometteuses. Cependant, elles restentloisonnées et s'adaptent mal au ontexte des pots de miel. Ainsi, les nouvelles solutionspour apturer du tra� via un pot de miel ne béné�ient pas vraiment de méthodesd'analyse propres et e�aes. C'est ii la ontribution de ette thèse, qui onstitue àapporter un élément de réponse à e problème.Projet Leurré.omBrève introdution au projetAu sein de l'Institut Euréom (www.eureom.fr), nous avons utilisé la tehnologie des potsde miel a�n d'arriver à une meilleure ompréhension des proessus d'attaques. Nous avonsimplémenté une plateforme de test qui a été ensuite installée dans un réseau omprenantatuellement une quarantaine de partenaires provenant des inq ontinents. Les donnéesolletées depuis deux ans sont enrihies puis étudiées au moyen de tehniques diverseset variées, qui sont détaillées dans les trois derniers hapitres du doument (analyse enséries temporelles, tehniques de regroupement, règles assoiatives, graphes).Le hoix de la plateforme s'est porté sur un système ayant une interation faible(honeyd), a�n de limiter les risques de ompromission. Cette plateforme émule trois



28 Synthèse en françaismahines di�érentes (Windows NT Server, WIndows 98 et Linux Red Hat 7.3), aveles ports de l'installation par défaut ouverts, ainsi que quelques sripts orrespondantà des servies hoisis (serveurs ftp et web par exemple). Une omparaison des donnéesolletées est par ailleurs maintenue ave un système plus omplexe (i.e. des servies réels,non émulés) orrespondant à une on�guration équivalente. Celle-i a pour but de véri�erqu'auun biais n'est introduit par l'utilisation de e système à faible interation. Il estimportant de omprendre les limitations de la apture avant une quelonque analyse.Leurré.om est un projet ouvert à tout partenaire urieux et désireux de mieux om-prendre l'ativité malveillante iblant ses ressoures. Il lui su�t pour ela d'installerune plateforme pot de miel dérite i-dessus à l'extérieur de son réseau. L'installationet la maintenane sont totalement prises en harge par Euréom et ne néessitent pasd'investissement partiulier : un simple ordinateur et quatre adresses IP routables (unepour la mahine d'aueil, et trois pour les mahines émulées par le pot de miel) sont su�-isants pour sa mise en plae. En ontrepartie, Euréom o�re l'aès à l'analyse des infor-mations olletées et étudiées par le groupe de reherhe sur les attaques de la plateformepartenaire. Nous proposons une interfae intégrant des résultats simpli�és répondant àdes requêtes fréquentes, ou un aès diret aux données par le moyen d'une base intégrantdi�érents degrés d'information. Un rapport d'ativité personnalisé de la plateforme estégalement émis sur demande pour haque partenaire.Arhivage des donnéesNous réupérons haque jour les traes réseau (format tpdump) sur les plateformes,orrespondant au tra� éhangé entre les mahines virtuelles et d'autres mahines del'Internet. Elle ontient atuellement des données à partir de février 2003, et le nombrede partenaires ne esse de roître. Pour stoker un si gros volume de données, nous avonsonstruit la base de données dans l'idée de pouvoir :� herher tout type d'information rapidement, que e soit de l'information généraleou pointue (hamps protoolaires).� ajouter rapidement une nouvelle soure d'analyse, en relation ave les informationsdéjà stokées.. Sans rentrer dans les détails de l'arhiteture, nous avons déidé de la bâtir autour dequatre dé�nitions, dérites i-dessous :Soure : Une Soure orrespond à une adresse IP observée sur une ou plusieursplateformes, et pour laquelle le temps d'arrivée entre deux paquets onséutifs reçus resteinférieur à un ertain seuil (25 heures). La di�érene de temps se alule en onvertissanttoutes les dates au format GMT.Global_Session : Une Global_Session est l'ensemble de paquets qui ont été éhangésentre une Soure et toutes les plateformes pots de miel du projet Leurré.om.Large_Session : Une Large_Session est l'ensemble de paquets qui ont été éhangésentre une Soure et une plateforme pot de miel partiulière (sonde).



Synthèse en français 29Tiny_Session : Une Tiny_Session est l'ensemble de paquets qui ont été éhangésentre une Soure et une mahine virtuelle donnée. Comme haque plateforme pot de mielémule trois mahines virtuelles, une Large_Session est omposée d'au plus 3Tiny_Sessions.Les données sont introduites dans la base, mais nous appliquons également un ensem-ble d'appliations pour enrihir es données primaires. Par exemple, pour haque Soure,nous voulons assoier une position géographique, ou du moins un pays (Maxmind, Net-geo, IP2loation). De même, pour haque Global_Session, nous voulons déterminer (demanière passive) quel système d'exploitation est utilisé par la Soure (p0f, etterap, diso).Le proessus global pour arhiver l'ensemble des données est symbolisé par la �gure 2.
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Figure 2: Des journaux Tpdump à une base de donnée struturée



30 Synthèse en françaisCe travail préliminaire de ollete et de stokage évolue à travers le projet Leurré.om.L'ensemble de données olletées au ours des trois dernières années est unique à ejour. Mais quelles valeurs apportent-elles réellement ? Dans quelles mesures peut-on tirerpartie de es données pour améliorer notre ompréhension des proessus d'attaques ? Cesquestions qui déoulent naturellement de e paragraphe, sont à l'origine de la méthoded'analyse proposée dans les hapitres 4 et 5 du présent doument, et dans la ontinuitédes motivations à développer une méthode HoRaSis.Empreintes d'AtivitésConeptsL'analyse doit pro�ter de la propriété suivante : les sondes (ou "plateformes pots demiel" : nous utiliserons les deux termes indi�éremment dans la suite du doument) sontdistribuées dans di�érents pays, di�érents réseaux et di�érentes organisations. Il faut alorsherher un moyen de omparer e qui survient sur haque sonde, a�n d'être à même d'endéduire e qui est ommun ou pas sur un ensemble de sondes. Cette étape est primordialepour appréhender les aratéristiques des proessus observés.Nous avons dé�ni dans un paragraphe préédent une Large_Session omme étantl'ensemble des paquets envoyés par une Soure sur une sonde. Une Large_Session estdon la manifestation d'une ativité, elle-i étant :Ativité : Une ativité est l'ensemble des ations exéutées par une Soure sur uneplateforme pot de miel.Il est possible de aratériser une ativité par l'empreinte qu'elle peut laisser sur unesonde pot de miel. Cei onduit à dé�nir une empreinte d'ativité omme :Empreinte d'ativité : Une empreinte d'ativité est un ensemble de paramètres(non néessairement uniques) qui aratérise une même ativité sur di�érentes sondespots de miel.Il est important à e stade de omprendre qu'une ativité se aratérise par une em-preinte, mais que ette empreinte peut aratériser di�érents outils (si jamais les ativitésde es outils ne sont pas distinguables à partir de la on�guration atuelle des sondes).Nous supposons don, d'une ertaine mesure, que si les outils d'attaque ont un om-portement su�samment déterministe, nous devrions observer des empreintes d'ativitéssemblables sur toutes les sondes ayant été la ible de mêmes outils d'attaque.Paramètres aratérisant une empreinteNous déidons, dans la ontinuité des remarques préédentes, de regrouper toutes lesativités observées (stokées sous la forme de Large_Sessions dans des groupes, appeléslusters. Les paramètres hoisis sont basés sur l'expériene que nous avons aquise pourdistinguer manuellement les ativités, après leture direte de �hiers tpdump. Lesparamètres initiaux sont ainsi :1. Le nombre de mahines virtuelles iblées sur la plateforme pot de miel.



Synthèse en français 312. Les séquenes de ports : à partir des paquets ordonnés par temps d'arrivée, nouspouvons extraire la séquene de ports distints iblés sur haque mahine virtuelle.3. Le nombre total de paquets envoyés par la Soure à l'attention d'une plateforme potde miel.4. Le nombre de paquets envoyés par la Soure vers haque mahine virtuelle.5. La durée totale pendant laquelle la soure a été observée sur la plateforme (di�éreneentre la date d'arrivée de son dernier paquet envoyé et de son premier paquet émis).6. Ordonnanement de l'ativité. Les paquets ont-ils été envoyés vers toutes les ma-hines virtuelles en parallèle, ou vers l'une puis les autres ?7. Le ontenu des paquets (s'il existe) envoyé par la Soure.Malheureusement, es paramètres peuvent varier d'une instane d'attaque à l'autre,du simple fait de ertaines perturbations dans le réseau Internet. Parmi les perturbationsenvisageables, il peut y avoir :� du réordonnanement : quand les paquets ne sont pas reçus dans leur ordre d'émission.� de pertes : quand des éléments atifs du réseau (routeurs) déident de jeter despaquets.� des retransmissions : quand l'émetteur ne reçoit pas dans les temps un ausé deréeption.� du retard : quand les éléments du réseau introduisent des latenes et délais detraitement di�ilement prévisibles.� etNous présentons dans le doument une tehnique, qui s'appuie sur une propriété du hampIPID des entêtes IPs. Dans la plupart des systèmes d'exploitation atuels, e hamp n'estpas utilisé, mais s'inrémente de 1 à haque envoi d'un nouveau paquet IP. En s'appuyantsur ette propriété, il est possible de limiter les impats du réordonnanement et d'estimerles pertes. Cette tehnique ne peut malheureusement prétendre à orriger toutes lesperturbations du réseau. Ceux-i sont autant de �utuations dans ertains paramètresdérits i-dessus pour dé�nir une empreinte d'ativité.A partir de e onstat, nous avons hoisi de lasser les paramètres en deux groupesdistints :� Les paramètres disrets : nous estimons que es paramètres sont peu sensibles auxperturbations du réseau, et leurs valeurs doivent être onsidérées de manière exate.Parmi eux-i, il peut y avoir les séquenes de ports, ou le nombre de mahinesiblées.



32 Synthèse en français� Les paramètres modaux : il s'agit de paramètres présentant une distribution modaleforte. Dans e as, leurs valeurs peuvent se généraliser par des intervalles, dont lalargeur orrespond à l'inertitude liée aux perturbations du réseau. Le nombre totalde paquets envoyés par une Soure, ou la durée pendant laquelle ette Soure a étéobservée, font partie de es paramètres aux valeurs généralisées.La ontribution respetive de haque paramètre dans la formation de lusters peutêtre évaluée au moyen d'indiateurs utilisés en théorie de l'information, omme l'IGR(pour Information Gain Ratio). Cet indie nous permet de réaliser, par exemple, que lehoix du paramètre n'est (ou n'est pas) disriminant.Nous regroupons don à e stade toutes les manifestations d'ativité (Large_Sessions),ayant les mêmes valeurs disrètes, et ayant les valeurs des paramètres modaux dans lesmêmes intervalles, en lusters.L'étape suivante onsiste à véri�er que les lusters ainsi obtenus sont bien valides.La démarhe que nous avons entreprise onsiste à véri�er que les Large_Sessions ainsiregroupées restent ohérentes en terme de ontenu (ou payload) de paquets. L'algorithmeproposé s'appuie sur la onaténation des di�érents ontenus de paquets au sein d'unemême Large_Session sous forme de phrase. La distane de Levenshtein et utilisée pourévaluer la distane entre les di�érentes phrases au sein d'un luster. Une trop grandedisparité en terme de distane peut amener à diviser le luster en de nouveaux lustersplus homogènes.Remarques générales et résultatsCette méthode a permis de regrouper 1431000 Large_Sessions dans 52159 lusters, dont8382 ontiennent plus de 5 Large_Sessions. Ce regroupement en ativité distinte o�replusieurs résultats détaillés dans le doument, dont :� Une étude de l'évolution des ativités iblant systématiquement les trois mahinesvirtuelles, e qui peut être assoié à un balayage linéaire dans une plage d'adressesdonnée. Ce sénario, fréquent parmi les ativités observées au début de l'expériene,s'est raré�é au ours de l'année 2004, pour s'aentuer de nouveau en 2005. Cetexemple témoigne de l'importane d'une surveillane des odes malveillants, ar leuromportement hange rapidement au �l des mois.� Une étude relationnelle entre trois types d'analyses, s'appuyant respetivement sur1) les ports iblés, 2) les séquenes de ports iblés et 3) les ativités assoiées à unport et une séquene de ports donnés. Cette analyse montre lairement qu'il est peusigni�atif de produire uniquement des statistiques sur un port donné, voire mêmede se limiter à la séquene de ports.� L'observation de l'apparition (ou disparition) de ertaines ativités au ours desmois. Nous montrons dans le doument, à valeur illustrative, l'observation de lamort d'un ver. Ce ver, nommé Deloder, a fait grand bruit dans les médias au momentde sa di�usion, mais sa mort serait restée inaperçue, sans l'e�ort de personnes pour



Synthèse en français 33faire de la rétro-ingénierie de ode (tâhe non triviale), ou sans une surveillane etune distintion des ativités omme nous venons de le présenter.Identi�ation des outilsNous rappelons ii que le terme outil représente tout ode à l'origine de l'ativité ob-servée sur l'une des plateformes. Chaque ativité est assoiée à un ensemble de valeursde paramètres (disrètes ou modales). En e qui onerne le ontenu des paquets, il estpossible d'extraire une phrase résumant eux assoiés à une même ativité. Les phrasessont estimées prohes selon la distane de Levenshtein. Nous nous sommes appuyés surle alul de ette distane pour proposer une méthode simple de généralisation. Des solu-tions plus omplexes existent (omme par exemple l'algorithme teiresias, l'e¢hantillonneurELPH Gibbs, et).Regroupant ainsi toutes ses valeurs, il est possible de réer une �he signalétique, oud'identi�ation, des outils. Une telle �he est présentée par la �gure 3.

* Payloads: yes (DCOM, Netbios, WebDav)

CLUSTER ID: IDENTIFICATION:

2145
W32/Gaobot.worm.gen.k
Backdoor.Agobot.Id
W32/Agobot−GM (sophos), also known as:

FINGERPRINT:

* Number Targeted Virtual Machines: 1
* Ports Sequence: 2745,2082,135,1025,445,3127,6129,139,1433,5000,80
* Number Packets sent VM: 33
* Global Duration: 7s < t < 11s
* Avg Inter Arrival Time: < 1sFigure 3: Exemple de �he signalétique obtenueL'étape suivante onsiste à assoier un nom ommun à haque �he. Cette tâhe n'estependant pas aisée, pour plusieurs raisons :� Les outils en ativité ne sont pas parfaitement onnus. Certains font l'objet d'uneertaine popularité, mais ne onstituent pas néessairement la majorité du tra�malveillant olleté. Ce besoin d'une meilleure ompréhension est la motivationpremière du projet Leurré.om.� Suite à la remarque préédente, nous notons aussi une déonertante uniformitéde l'information, quand elle-i semble disponible. Les sites tendent à répandre del'information, non validée, et dont la soure reste obsure.� En s'appuyant sur les résultats préliminaires de notre analyse d'empreintes, nousobtenons un ordre de grandeur du nombre d'outils observables à partir des sondesinstallées, et e, depuis quelques mois. Il s'agit de quelques milliers de lusters (8392



34 Synthèse en françaisont été observés omme provenant d'au minimum 5 soures distintes). L'assoiationentre �he signalétique et nom ommun ne peut don pas être résolue de manièresimple.� Quelques outils ne sont que des variantes (di�érentes on�gurations et implémen-tations) d'un même outil générique. Il orrespondra don à plusieurs �hes signalé-tiques, telles que nous les onevons.DisussionCette lassi�ation des ativités observées onduit à des résultats intéressants, et ertainsd'entre eux ont fait l'objet de publiations. Il faut aussi avoir onsiene que elle-i n'estpas insensible à des tehniques malveillantes pour la ontourner. Nous dérivons de telssénarii dans la setion 4.6 du doument. Les outils peuvent hanger de omportementpour tromper ette lassi�ation, mais e hangement ne sera visible que par une obser-vation de leurs ativités. Il faut alors ontr�ler ertains indiateurs (nombre de nouvellesativités enregistrées, fréquenes de leur apparitions, et), a�n de déteter tout hange-ment omportemental. Cei est une diretion propre du projet que nous n'aborderons pasdans la suite, ar elle n'est pas diretement liée à la problématique posée par e doument.L'étude des empreintes d'ativités nous renseigne pour onlure sur plusieurs aspets.Parmi eux-i, nous pouvons iter :� L'évolution temporelle des ativités d'un même outil sur une éhelle de temps deplusieurs mois (années).� La détermination d'ativités propres à une unique plateforme, ou un un ensemble(voire la totalité) de plateformes.� L'évaluation statistique de la représentation d'une ativité donnée sur une plate-forme donnée.� La mise en garde annonçant l'observation de nouvelles ativités.� La orrélation qui peut exister entre les ativités observées et les alertes émises parles systèmes de détetion d'intrusions insérés dans le réseau hébergeur.Chaun de ses aspets est abordé dans le projet Leurré.om, et ils restent ouverts àl'appliation de nouvelles solutions et innovations.La méthode que nous proposons, pr«ommée HoRaSis pourrait s'en tenir à ette lassi-�ation par empreinte d'ativité, ar elle est l'élément fondateur pour de nouvelles études.Il apparaît néanmoins des questions réurrentes, à haune de es études sur les empreintes: � Peut-on extrap�ler la propriété de ette empreinte à un ensemble d'autres empreintes?�, ou �Est-e que la propriété observée pour es empreintes peut être mise en relationave les propriétés préédemment annotées ?�En d'autres termes, les empreintes d'ativité susitent en permanene une étude appro-fondie. Celle-i onduit à déterminer ou véri�er une propriété propre à l'empreinte, mais



Synthèse en français 35qui n'est pas obligatoirement partagée par l'ensemble. Ainsi, ertains outils implémententune ouhe protoolaire TCP propre, ontenant des erreurs, ou du moins ertaines ar-atéristiques, qui forment un moyen supplémentaire d'identi�ation. Il est bon de savoirsi plusieurs empreintes possèdent les mêmes aratéristiques, a�n de savoir si les odes àl'origine de es traes s'appuient sur la même ouhe protoolaire imparfaite. Dans unsoui d'automatisation, nous sommes alors onfronter au problème suivant :� Comment marquer toutes les empreintes d'ativités qui possèdent de mêmes pro-priétés ?� Comment trouver rapidement toutes les empreintes qui partagent les mêmes ensem-bles de propriétés ?� Comment ajouter de manière rapide et aisée une nouvelle analyse (étude d'unenouvelle propriété) aux résultats déjà établis par les deux questions préédentes ?C'est dans le but de répondre à es trois questions que nous proposons dans la setionsuivante une méthode omplémentaire pour orréler toutes les analyses bâties ou à bâtirà partir des empreintes. Il s'agit de l'analyse orrélative.Analyse CorrélativeCette étape répond à la problématique préédente. Elle vise à automatiser la reherhede relations entre des propriétés partagées par un ensemble limité d'ativités. Elle permetde onduire indi�éremment deux atégories d'analyse :� Analyse intra-ativité : Au sein d'un même luster (assoié à une ativité), e typed'analyse herhe à extraire des propriétés qui sont plus spéi�ques à elui-i qu'auxautres, a�n d'enrihir nos onnaissanes sur le phénomène à l'origine de es traes.� Analyse inter-ativité : La seonde analyse herhe à trouver des propriétés om-munes à ertaines ativités, puis à les regrouper. Dans l'exemple ité dans les lignespréédentes, e type d'analyse permet de regrouper toutes les ativités qui ont desempreintes présentant la même aratéristique au niveau protoolaire.Nous herhons don ii à trouver tous les ensembles d'ativités partageant plusieurspropriétés. Nous voulons bien sûr que es ensembles n'oublient auune empreinte. Dansle as d'une analyse intra-ativité, les ensembles ne ontiendront au plus qu'un élément,à la di�érene d'une analyse intra-empreinte.Pour parvenir à e résultat, nous pro�tons d'une tehnique extraite de la théoriedes graphes. Nous ramenons le problème à elui plus onnu de la reherhe de sous-graphes omplets (liques) de poids maximum (dominant set dans un graphe. De manièresimpli�ée, il est néessaire pour haque analyse onsidérée de suivre un algorithme en 5étapes, dérites i-dessous dans le tableau 1. Le tableau 2 illustre haque étape par unexemple onret qui a été implémenté. Il s'agit de herher toutes les ativités qui ont étélanées à partir d'un même groupe de pays :



36 Synthèse en françaisTable 1: Les étapes de haque analyse orrélativeEtape Desription1 Dé�nir une propriété à étudier2 Représenter la propriété pour haque ativité3 Quanti�er sa représentation4 Dé�nir une distane pour omparer les ativités5 Construire la matrie de similarité entre ativitéspour ette propriétéTable 2: Les étapes de haque analyse orrélative : un exempleEtape Desription1 Distribution des pays à l'origine de haque ativité2 Distribution vetorielle3 Pourentage des empreintes provenant du pays X pour une même ativité4 Distane eulidienne vetorielle(ou tehnique du peak piking5 Matrie nommée ii A_Geo
Nous avons suivi et algorithme pour di�érentes analyses. Dans le adre de e rapport,nous avons pu ainsi onstruire un ensemble de matries, haune représentant l'étuded'une propriété partiulière, liée à une �nalité donnée :Table 3: Matries d'analyses utilisées dans ette thèseNom de la matrie Propriétés étudiéesA_Geo Distribution des pays d'où haque ativité est observéeA_Env Distribution des plateformes iblées par haque ativitéA_OSs Distribution des OSs assoiés à haque ativitéA_IPprox Proximités des adresses IPs attaquantesA_TLDs Distribution des TLDs (Top-Level Domains)A_Hostnames Catégories des mahines attaquantes (noms de mahines)A_CommonIPs Ativités lanées par des adresses IPs attaquantes ommunesA_SAX Evolution des empreintes de haque ativité (par semaine)Pour haque matrie, nous extrayons alors les ensembles de lusters (ou ativités) detaille et de similarité maximales. A�n d'e�etuer haque analyse dans un intervalle detemps raisonnable, nous avons eu reours à une méthode proposée par Pellilo et Pavindans ??. Elle s'appuie sur l'itération de fontions partiulières, issues de la théorie des



Synthèse en français 37jeux, pour aélérer la onvergene vers les solutions (l'extration des ensembles de tailleet de similarité maximales).Une fois que ei est appliqué à haque matrie, il est alors possible de marquer lesativités par un label, indiquant leur attahement à la propriété étudiée. Un exemple estfournie en �gure 4.

A(OSs): clique 3

FINGERPRINT:

CORRELATIVE ANALYSIS:

* Number Targeted Virtual Machines: 3
* Ports Sequence VM1: {135,4444,135,4444}
* Ports Sequence VM2: {135}
* Ports Sequence VM3: {135}

* Number Packets sent VM2: 3
* Number Packets sent VM3: 3
* Global Duration: < 5s
* Avg Inter Arrival Time: < 1s

* Number Packets sent VM1: 10

CLUSTER ID: IDENTIFICATION:

W32.Blaster.A (symantec), also known as:
W32/Lovesan.worm.a (McAffee)
Win32.Poza.A (CA)
Lovesan (F−Secure)
WORM_MSBLAST.A (Trend)
W32/Blaster (Panda)
Worm.Win32.Lovesan (KAV)

* Payloads: 72 bytes + 1460 bytes + 244 bytes

1931

A(SAX): clique 21
A(Env): 
A(Geo):
A(Hostnames):
A(TLDs):
A(commonIPs):
A(IPprox):Figure 4: Exemple de �he signalétique obtenueL'intersetion des ensembles obtenus pour haque matrie permet également de réupérerles sous-ensembles véri�ant non plus une mais plusieurs propriétés fortes.Déouverte Automatique d'InformationNous détaillons dans la setion 6 de e doument des résultats obtenus à partir de ertainesanalyses (matries) rées i-dessus. En partiulier, nous étudions :� A_Geo



38 Synthèse en français� A_Env� L'intersetion de A_Geo et de A_Env� A_SAX� L'intersetion de A_SAX ave A_ommonIPs, A_Hostnames et A_OSsA_SAX est intéressante, ar elle s'appuie sur une méthode innovante (SAX, pourSymboli Aggregate approXimation) pour omparer les évolutions temporelles des dif-férentes ativités. Elle s'intègre failement dans l'arhiteture de la base de données.Les intersetions révèlent aussi la pertinene de ertaines analyses. Ainsi, les ensemblesobtenus en roisant les deux matries A_Env et A_Geo regroupent des ativités venantde mêmes pays et ayant iblées les mêmes plateformes. Ces ativités peuvent être parailleurs très di�érentes en terme d'attaques (servies visés, ontenus des paquets, et).On peut y voir plusieurs raisons :� Certaines mahines mal on�gurées iblent régulièrement un même réseau.� Il s'agit de la même origine, ou organisation, pour toutes es ativités.D'autres sénarii sont aussi envisageables. Il est possible de ontinuer l'analyse en roisantes informations ave d'autres omplémentaires (les noms des mahines indiquent-ils desserveurs ? et) a�n d'a�ner la ompréhension de e phénomène.Chaune de es matries peut être également remodelée par de nouvelles tehniques(séries temporelles, distanes entre adresses IPs, et) et de nouveaux outils (tehniquesde détetion passive de systèmes d'exploitation, et). D'autres, en�n, peuvent s'ajouteraisément dans ette arhiteture.ConlusionNous avons présenté dans e doument une méthode, nommée HoRaSis qui peut se ré-sumer par la �gure 5.Des apteurs de type pots de miel ont été déployés dans divers réseaux et diverspays dans le monde. Ils ont une on�guration su�samment légère pour permettre leurdéploiement, et un ontr�le par des apteurs étalons plus omplexes est requis pour véri-�er périodiquement qu'auun biais n'est introduit pas le hoix des apteurs. Les don-nées brutes, ou paquets apturés, sont olletés grâe au projet Leurré.om, et stokésdans une base de données dédiée. Les paquets liant une Soure (terme qui quali�e uneadresse IP dans une fenêtre de temps ourt) à un apteur forment une Large_Session.Les Large_Sessions sont les représentations de di�érentes ativités. Nous regrouponsalors toutes les Larges_Sessions partageant des paramètres similaires qui aratérisentl'empreinte d'une ativité. A e stade, sur la première ligne de la �gure 5, nous avonsregroupé toutes les ativités qui partagent une même empreinte sur au moins un apteur.Ensuite, nous appliquons di�érentes analyses, qui se onstruisent, haune, sous la forme
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Figure 5: Shéma de la méthode HoRaSisd'un graphe pondéré entre les di�érentes ativités identi�ées. La méthode est automa-tisée grâe à une tehnique de la théorie de graphes, nommée "extration de graphesdominants". Nous obtenons in �ne une artographie des di�érentes ativités observéessur haque apteur, ainsi que l'ensemble des propriétés les liant (ou les di�éreniant) desautres. Cette méthode répond aux ritères initiaux d'une méthode HoRaSis.Nous avons montré au moyen d'un ensemble onséquent de données que ette méthodeapporte une solide fondation pour aroître les onnaissanes des ativités observables surInternet.Cette approhe ouvre aussi di�érents axes de reherhe, notamment :� Quelles relations peuvent exister entre des observations très générales (télesopes)et loales omme elles du projet Leurré.om ? Sont-elles modélisables ?� La on�guration atuelle des plateformes est statique. Existe-t-il un moyen d'intégrerun ertain dynamisme des on�gurations dans la méthode présentée ? Cela estd'autant plus important que les appliations et les systèmes d'exploitation ont desversions hangeant plus rapidement que la durée totale de notre analyse, qui peuts'étaler sur plusieurs années.� La réupération d'information ontextuelle est utile, mais pas su�samment on-sidérée par la méthode HoRaSis dérite dans e doument. Elle peut se formuler,ependant, aux moyens de matries ou graphes de similarité, et s'intégrer dansl'analyse orrélative hoisie.



40 Synthèse en françaisIl n'est pas extraordinaire de �nir une thèse par une ouverture vers plusieurs axes dereherhe. Au ontraire, ela nous onforte dans l'idée qu'il existe un besoin évident pourmieux omprendre les ativités qui surviennent, et que la méthode proposée, nomméeHoRaSis, o�re une bonne fondation pour ontinuer sur ette voie. Elle permet déjàde répondre à un ertain nombre de questions, et d'o�rir de solides bases pour essayerde répondre à d'autres. Nous invitons maintenant le leteur à se reporter diretementau doument, si l'anglais ne l'e�raie pas, pour de plus amples détails onernant lestehniques de la méthode et les résultats obtenus.



1
Chapter 1
Introdution

Seurity is a global onern in many domains of ativity. Internet has the partiularproperty of onneting people in quite an anonymous way and without strong tra�ontrol. This advantage has also major drawbaks: maliious ativities an take largeamplitudes and have atastrophi onsequenes. As an illustration, it has been shownby Staniford et al. in [215℄ that a worm ould saturate, in theory, 95% of one millionvulnerable hosts on the Internet in 510 milliseonds. Another example is the inreasingthreat of eletroni fraud that an result in losses reahing several millions of dollars peryear (a ost of $150 million has been reported by the Commonwealth Government in 2001in [106℄). Internet makes large-sale rimes and devastating damages possible. It is thusreally important to aquire a good understanding of threats and attak strategies. Onemethod to obtain this knowledge is the monitoring and analysis of maliious ativities, andit must be performed at a large sale to gain a global understanding of those phenomena.This method is urrently tried by means of numerous tehniques, some of whih belongto the ategory of so-alled honeypots. Honeypots, honeytokens and honeynets have beenused for some time in omputing systems even if the use of this terminology is reent. Inthe late 80's, Cli�ord Stoll [218℄ had the idea of plaing interesting data in appropriateplaes to lure hakers. This idea is now formalized as a honeytoken by Lane Spitzner[214℄. In the 90's, Cheswik implemented and deployed a real honeypot [72℄. Bellovindisussed the very same year the advantages and problems related to its usage [50℄. In1998, Grundshober and Daier introdued in [107℄ the notion of sni�er detetor, one ofthe various forms of what is also alled today a honeytoken. As an attempt to larify theterminology, Lane Spitzner has proposed the following de�nition for a honeypot [214℄:A honeypot is an information system resoure whose value lies in unauthorized orilliit use of that resoure.This de�nition will be used throughout this thesis. The main advantage of so-alled



2 1. Introdutionhoneypots is their intrinsi apaity to ollet suspiious tra� only. In the last deades,all logs were mixed with prodution tra�, whih made it di�ult for seurity adminis-trators to determine the maliious ativities. This issue is now bypassed by honeypots.During the last three years, a lot of work has been done to design safe and useful honeypotarhitetures, that is, systems whih are able to apture relevant information, from simplesan pakets to IRC ommuniation of the haker without any danger for the network.Solutions are diverse and honeypot tehnologies are already used in a large variety ofdomains, from the major antivirus ompanies to governmental and international organi-zations. Monitoring maliious ativities and reporting anomalies an be diretly linkedto some governmental initiatives and organizations suh as the various Computer Emer-geny Response Teams (CERTTMou CSIRSTs) in many ountries inluding Frane, US,Japan, Australia, Korea, Malaysia, Germany, et1. Alternatively, governments promoteprivately-funded information sharing agenies, both for work related to overall networkonerns and for spei� setor-based needs. For instane, the UK is handling the Warn-ing, Advie and Reporting Point (WARP) work to establish an interdisiplinary networkto share ritial seurity information. Other ountries (the US, Canada, Japan, Germany,and Netherlands) have established industry-spei� Information Sharing and AnalysisCenters (ISAC) to serve a similar purpose.Unfortunately, very few e�orts are made to share information olleted from thesehoneypots, exept for some emerging hallenges between seurity experts [35℄. On theother hand, olletive data exist from other initiatives like Dshield, MyNetWathmanor the Computer Network Defense Operational Piture [34℄. These initiatives presentinformative statistis on attrative web pages, but the original soure of informationis not always lear. They invite any and all Internet users to send their �rewall orIntrusion Detetion Systems (IDS) logs in order to extrat basi statistis out of them.The information is thus quite limited (hits per port), and ontain statistis of not onlymaliious but also prodution tra�.Thus, honeypots are a more valuable soure of information than other existing teh-niques. Unfortunately, as we will explain in detail in the following hapter, a large e�ortis made toward optimizing their arhiteture, but few initiatives have emerged to organizeand take bene�ts of the rihness of the data. It is important to note that all the tra�olleted by honeypots is by de�nition suspiious, so the analysis should not be biasedby high false positive rates. In addition, the existing analyses are often limited to solvinga partiular problem. They an be tehniques to monitor distributed Denial-of-Servieattaks, fast and large sans, or typial attak senarios. Most of the monitoring teh-niques have been implemented by the members of the Intrusion Detetion ommunity.However, the approah is slightly di�erent with honeypots, as all olleted tra� remainssuspiious. False positives are therefore not the major worries anymore, whereas it is stillthe ase with the majority of Intrusion Detetion tehniques.1The European Commission reently established the European Network and Information SeurityAgeny, ENISA, to oordinate the national e�orts on yberseurity and to serve as an advisory unit tothe Commission and its omponent parts.



1. Introdution 3Observation: Honeypots are now widely deployed and tehnially mature. Analysistehniques, on the other hand, are really immature and targeted for solving partiularproblems.From this observation, we have deided to build our own honeypot environment inorder to ollet suh valuable data. The major motivation is that there is no trae ofmaliious data from honeypots that is publily available and opened for analysis. Thishas been done through a projet alled Leurré.om 2, whih has involved many partnersfrom various ountries and generated great enthusiasm from the seurity ommunity [185℄.Thanks to this informal onsortium, we have managed to ollet a huge amount of datafrom various honeypot sensors. It is important to note here that it represents a uniquedataset of information, whih is publi3 and that ontain many months (years) of olletedtra�. We are not aware of any other datasets like this one at this time writing.Hypothesis: We have a unique set of data at our disposal, that represents maliiousativities olleted in various plaes in the world and from di�erent network types.What an we do with suh valuable data? People have worked on lots of tra� analysistehniques. We an ite standard tools for network tra� monitoring like net�ow ([75℄),tpdump ([17℄), simple stats, or more omplex but too spei� theoretial methods. Noth-ing spei� to honeypot data has emerged, and, more importantly, nothing onstrutivehas been suggested as a basis to work on and exhange information. We an wonder atthis stage if suh dataset ontain useful and original information, that would be hardlyfound by other approahes. If the answer is positive, ould we identify suh informationin an automati way? In short, we look for a potential framework, that would automatizethe adequate analysis of suh data. This framework, if it exists, will be alled HoRaSis,as the bases for Honeypot tRa� analySis.Thesis Statement: In this thesis, we want to show that:� a distributed network of simple honeypots provides valuable data for the analysisand evaluation of threats and attak strategies.� there exists an automati way to extrat information whih seems relevant. Suhframework will be alled HoRaSis, for Honeypot tRa� analySis.Honeypots o�er a partiular set of data, that might require a dediated analysis teh-nique. This laim will be justi�ed in the �rst hapters through preliminary and promisingexperiments arried out on the data. Based on the aquired experiene, it beomes learthat we need to develop a framework (alled Honeypot Tra� Analysis or HoRaSis) todo automated analysis by means of a distributed network of honeypots. This frameworkshould be an open one, that is, available for other potential analyses not yet performed.2leurré = 'to lure' in Frenh; leurré.om = allusion to the Eureom Institute.3For any partner that agrees to host one of our platforms, see Chapter 3.



4 1. IntrodutionHoRaSis must be an e�ient framework that has to be validated through a datasetof honeypot tra�. The analysis is at the juntion of many researh domains, and thepotential framework will not pretend to test all the researh diretions. From anotherpoint of view, the hypothetial HoRaSis should be open to several improvements bymeans of a modular struture. In a more general manner, the HoRaSis framework mustful�ll at least the following requirements:� Validity: A few analyses tasks have been performed manually, by digging into thedata and pulling Ariadne's lew. This task, even tedious, has provided interestingobservations. We thus impose any HoRaSis framework to show up these preliminaryobservations. There should not be any ontradition with manual analysis, and weexpet, a ontrario, an enrihment of these preliminary observations, as detailed bythe next property.� Knowledge Disovery: This property is learly related to the previous one. Weassume that manual observations might not be the unique ones. The HoRaSisframework must bring new and original knowledge. This new knowledge ouldbe validated of ourse by omplementary manual analysis and would justify theautomation of analysis proesses over the dataset.� Modularity: The HoRaSis framework should over several researh domains. Indeed,we an easily identify several major distint researh branhes suh as Networking,Seurity and Data Analysis, and dozens of subdomains from whih the frameworkmight borrow tehniques and algorithms. New tehniques are onstantly emergingin all of these �elds. As a onsequene, it is important that the framework presentsa modular arhiteture. It will be easier, in this situation, to take advantage ofnew tehnologies by integrating them into the existing framework, and eventually,ompare them with the ones already implemented.� Generality: Colleted data an drastially hange with the appearane of newthreats and new attak proesses. The HoRaSis framework should onsider thatthe analyzed data is evolutive. We should thus avoid building the framework onparameters whih are related to partiular data harateristis. In other words, theframework should be adapted to other types of dataset.� Simpliity and Intuitiveness: The HoRaSis framework must extrat informationout of a given honeypot dataset (in this ase from the Leurré.om projet). Thereipient of the information remains the analyst, who relies on the analysis to deriveobservations and deisions. It is thus important for the analyst to preisely under-stand the di�erent steps whih have led to this information disovery. The HoRaSisframework must avoid inluding opaque tehniques, or magi blak boxes.It is proved in this report that suh a framework exists and it has helped us �ndingother valuable results on malware ativities. The proposed HoRaSis o�ers an automatiway to validate (or invalidate) these assumptions.



1. Introdution 5Thesis Contributions: The thesis ontains the following ontributions:� Deployment and administration of a distributed honeypot arhiteture to olletdata.� Coneption of a framework alled HoRaSis to analyze honeypot data.� Creation of new tehniques to deal with honeypot data properties.� Validation of the HoRaSis framework based on results obtained in a preliminarystep by digging into the data.� Presentation of new �ndings about monitored ativities. Some of them have beenlearly identi�ed, others are new questions addressed to the seurity ommunity.To summarize, the thesis an be mathematially symbolized by the following problemstatement:� HYPOTHESIS: A honeypot arhiteture deployed to ollet data.� INPUT: A large volume of network tra�, all pakets being maliious or at leastsuspiious.� PROBLEM: Is this new soure of information valuable? If so, how to build areprodutive, useful, valid and open analysis framework (HoRaSis) out of this?In a onrete manner, HoRaSis is made of several important steps, that are illustratedin Figure 2.2. Steps 1 and 2 are the deployment and olletion of information fromhoneypots. This work has been built on top of an aademi initiative alled the Leurré.omprojet. For a better understanding of the HoRaSis method, this projet is detailed inChapter 3, after an overview of existing approahes, both for monitoring and analyzingmaliious tra�, presented in Chapter 2. The reader an �nd the details of the proposedHoRaSis that onsists of steps 3 and 4 in Figure 2.2 in Chapters 4 and 5 respetively.Step 3 aims at grouping ativities sharing some idential patterns, that is, all IPs sharingsimilar �ngerprints on the honeypot sensors are identi�ed and lustered. This is desribedin Chapter 4. In Step 4, we aim at analyzing the relationship between suh groups basedon a dediated graph method. All �ngerprints observed on the sensors whih presentommon harateristis are automatially deteted and analyzed. The method is arefullydesribed in Chapter 5. Finally, Step 5 is the outome of the proposed HoRaSis, thevaluable and onise information the expert an exploit and share with the ommunity.Eah hapter is illustrated by results obtained from the Leurré.om dataset.Steps of the HoRaSis framework are represented in Figure 2.2, together with theorresponding Setions.



6 1. Introdution

HONEYPOT SENSORS CAPTURE & STORAGE CLUSTERING STEP

Chapter 3 Chapter 4Chapter 2

GRAPH ANALYSIS EXPERT CONCLUSIONS

Chapter 5

step 1 step 2 step 3 step 4 step 5

Figure 1.1: Distributed Honeypot Sensor Analysis



7
Chapter 2
Bakground and Related Work

An deus immensi venias maris, ne tua nautaeNumina sola olant, tibi serviat ultima Thule.(Virg., Georg.,i,29.)(Explanation: The Ultima Thule was, in anient times, thenorthernmost region of the habitable world -hene, any distant, unknown or mysterious land.)2.1 Bakground2.1.1 IntrodutionMonitoring maliious tra� is an important step to build e�ient defensive tehniques.Building a very high wall will take time but will be totally ine�ient against undergroundintrusions. Knowing the enemy and his strategies is an important step that seems tobe underestimated by many ompanies today [213, 144, 168℄. Some vendors produemore and more omplex boxes, integrating brand new tehnologies. However, it seemsimportant, as a preliminary risk assessment, to get a very good feeling of the urrentthreats.HoRaSis is a framework we are looking for to analyze data obtained from honeypotsin order to take bene�t of the data intrinsi properties. Many tehniques and projetsare urrently fousing on apturing maliious tra�. In other words, they intend, likehoneypots, to apture meaningful data of suspiious ativities. In parallel, many existingsolutions from various researh domains have already been applied to perform analysis ofabnormal ativities ourring in the wild. Thus, for a better understanding of this work



8 2. Bakground and Related Workmotivations, we brie�y introdue these tehniques in this setion. However, as they arenot learly related, we prefer to distinguish the two ategories separately:1. Tehniques whih aim at apturing original tra�2. Tehniques whih aim at performing original but spei� analysis�I keep six honest serving-men (They taught me all I knew); Their names are Whatand Why and When and How and Where and Who.� ("The Elephant's Child", RudyardKipling, Just Stories 1902).These six questions are often tools we as humans use in an attempt to gain knowledge.The same priniple will be followed to better understand maliious Internet ativities.�What� is what we all �monitoring malware ativities� and will be de�ned in Setion2.1.2.�Why� and �When� and �Where� are disussed in Setion 2.1.3.�Who� is disussed in the Related Work Setions 2.2 and 2.3.�How� is the major ontribution of the thesis whih presents a new manner to operate.
2.1.2 Monitoring Malware AtivitiesIt has been heard that "knowledge will set you free". When it omes to real-worldnetwork seurity, this phrase takes all its meaning. One an make a short experiment.If someone asks her friends or her network administrator the following question: �do youknow what kind of attaks your mahines are faing?�, she will normally get the usualresponses, inluding "well, the traditional worms, you know, Blaster, et.", or "I do notknow exatly. We have set up �rewalls, antivirus, intrusion detetion systems. They aredoing their job quite well". The knowledge that an be aquired on perniious ativitiesnormally omes by trusting the information spread over the Internet and the defense toolsdesigned by speialists.To handle this problem, many people are using network monitoring approahes1, asde�ned by Bejtlih et al. in [47, 46℄ with the NSM aronym (Network Seurity Monitor-ing). He de�nes this ativity as: the olletion, analysis, and esalation of indiations andwarnings to detet and respond to intrusions.Mahines are interonneted within networks. It is thus possible, by looking at the on-netion level, in theory, to see everything. Unfortunately, there also exist many problemsto monitor all ativities, like enrypted pakets, a large omplexity in terms of protools,standards and implementation bugs. It is also not su�ient to ollet the data, withoutunderstanding what is under srutiny. The analysis is a straightforward step to aquireuseful knowledge of olleted data.1Historially applied for the Network Management tasks and the Performane Evaluations.



2.1. Bakground 9In the following, the fous is put on existing methods that aim at apturing andanalyzing useful data, with the admitted goal of improving the knowledge of existingnetwork threats.2.1.3 The PurposesThere are many reasons why one would wish to monitor maliious ativities, as stated inthe previous paragraph. Among other things, we distinguish �ve major domains whihmay bene�t from suh a knowledge:1. To build early warning systems: it is important to reat fast against new threats,and at least, limit their overall impat.2. To ease the alert orrelation task: the administrator reeives too many alerts fromdi�erent systems in real time. A review of the state of the art of the orrelationtehniques has been desribed in [189, 188℄, however, most of them remain verybasi or too theoretial.3. To enfore the seurity poliies toward the new threat trends: a onrete examplean be found with the PaketSore projet [127℄. The authors prioritize paketsbased on a per paket sore whih estimates the legitimay of a paket given theattribute values it arries. This is based on the distintion of nominal attributevalue.4. To perform traebaks and forensis, in order to determine the root auses of theattaks and �nd the ulprits: this is an important step for law enforement, even ifthis tehnique might present soial and legal problems in some ases, as reported in[137℄.5. To on�rm or rejet some assumptions: for instane, the author explains in theirreport for the SANS GIAC Institute ([219℄) that an army of more than 100,000mahines exist, but he does not bring any onrete proof for this laim that wouldlet the reader hek its validity.There already exist several and various soures of information whih intend to olletmalware ativities. They often di�er in the way the system is positioned and the typeof information it is olleting. Traditionally, approahes to threat monitoring fall intotwo broad ategories, host based monitoring and network based monitoring. Host basedtehniques fall into two basi approahes, forensis and host based honeypots. Antivirussoftware and host based intrusion detetion systems seek to alert users of maliious odeexeution on the target mahine by wathing for patterns of behavior or signatures ofknown attaks. Host based honeypots trak threats by providing an exploitable resoureand monitoring it for abnormal behavior. A major goal of host-based honeypots is to



10 2. Bakground and Related Workprovide insight into the motivation and tehniques behind these threats. The seondmonitoring approah is to observe threats from the network viewpoint. Passive networktehniques are haraterized by the fat that they do little to intrude on the existingoperation of the network. By far the most ommon tehnique is the passive measurementof live networks. They fall into three main ategories: data from seurity or poliyenforement devies, data from tra� haraterization mehanisms, and diret sensing orsni�ng infrastruture. By either wathing �rewall logs, looking for poliy violations, orby aggregating IDS alerts aross multiple enterprises, one an infer information regardinga worm's spread. Other poliy enforement mehanisms, suh as logs from router ACLsprovide oarse-grained information about bloked pakets. Data olletion tehniquesfrom tra� planning tools o�er another rih area of pre-existing network instrumentationuseful in haraterizing threats. Coarse-grained interfae ounters and more �ne-grained�ow analysis tools suh as NetFlow o�er another readily available soure of information.We propose in the following to give a short overview of all existing tehniques. Aspreviously written, most of them tend to fous on one diretion only, either monitoringativities or analyzing olleted information. It seems thus easier to split the related workdesription into two major branhes:� Tehniques whih aim mainly at olleting tra�. They are presented in Setion2.2.� Tehniques whih aim mainly at analyzing olleted tra�. They are presented inSetion 2.3.A summary of the state of the art is o�ered in Setion 2.4 and justi�es the thesis position.2.2 On the Capture of Relevant Tra�2.2.1 Honeypots, Honeynets, HoneytokensMany projets derive from the honeypots and other honeypot-based arhitetures. Itseems thus important, as a preliminary step, to larify the terminology used. The inter-ested reader an report to the two tehnial reports we have written at the beginning ofthis work, and that aimed at larifying the terminology in use in the literature [190, 191℄.A methodology has been proposed for students' pratial works in [202℄. We will on-sider indi�erently, in the following, these three terms, and will employ the only honeypotword, following the de�nition suggested by L. Spitzner in [212℄, whih is:A honeypot is an information system resoure whose value lies in unauthorized orilliit use of that resoure.



2.2. On the Capture of Relevant Traffi 11How to arhitet a honeypot depends on the objetives it has to ful�ll. A omplexhoneypot an be built to give the attaker a omplete operating system with whih heinterats. However, for deteting any unauthorized ativity suh as sanning, a simplerhoneypot whih merely emulates a variety of servies in operation an be built. However,when apturing the latest worm for analysis is the main requirement, then a ustomizedhoneypot with the intelligene to interat with the worm and apture its ativity is moreappropriate. A honeypot an o�er many di�erent funtionalities and the level of inter-ation they o�er to attakers is important. It is supposed to give a granular sale withwhih to measure and ompare honeypots. The more a honeypot an do and the morean attaker an do to a honeypot, the greater the information that an be derived fromit. However, by the same token, the more an attaker an do to the honeypot, the morepotential damage an attaker an do. We distinguish two di�erent levels of interations:respetively low and high.A low-interation honeypot is a omputer system that provides ertain fake servies[44℄. In a basi form, these servies an only be implemented by having somebody listeningon a spei� port. Servies are limited to listening ports. For example a simple Unixommand like: netat� l � p80 > =log=honeypot=port_80:log ould be used to listen onport 80 (HTTP) and log all inoming tra� to a log �le. In suh a way all inomingtra� an easily be reognized and stored. However, with suh a simple solution it is notpossible to ath ommuniation of omplex protools. The honeypot annot trae TCPonnetions for instane as it logs only the �rst onnetion requests without answering.Another solution onsists in building simple fake servies that emulate a mahine behavior.Generally speaking the attaker gets a better illusion that a real operating system existsand he has more possibilities to interat and probe the system. Speial are has to betaken for seurity heks as all developed fake daemons need to be as seure as possible(bu�er over�ow risk, et). Furthermore the knowledge for developing suh a system is veryhigh as eah protool and servie has to be understood with expert details. In existingimplementations though, fake servies are often limited to simple sripts. Honeyd, Speterand LaBrea are honeypot solutions that an be lassi�ed as low-interation honeypots (see[190, 191℄ for more information on these tools).On the ontrary, a high-interation honeypot has a real underlying operating systemto o�er to the attaker. This leads to muh higher risk as the omplexity inreases.On the other hand, the possibilities to gather information, the possible attaks and theattrativeness inrease a lot. The goal of an intruder will most likely be to get as manyprivileges as possible on the target mahine. By providing a full operating system tothe attaker we o�er him the possibility to upload and install new servies/appliations.This implies that the system must ontinuously be under surveillane. All ations an,and must, be reorded and analyzed to gather more information about the blakhatommunity.Lane Spitzner explains that: �(his) pereption of low interation vs. high interation isintent�. With low interation, we intend on limiting the attaker to only emulated servies.With high interation honeypots, we intend on giving attaker aess to the full operating



12 2. Bakground and Related Worksystem. Both deployments require a real operating system. With low interation, theemulated servies do run on a real operating system, as in Tiny Honeypot, Speter, andHoneyd [25, 9, 190℄. However, the goal is to limit the attaker to interat with just theemulated servies and not give them aess to the operating system.Honeypots are often generi names to de�ne suh arhiteture that follow the de�nitionof L. Spitzner, and whih remain, atually, very lose to Intrusion Detetion Systems, asthey inorporate one or many of the following funtionalities:� Data olletion� Maliious ativities Detetion� Logging apabilities� Analysis tehniques� Deision and ReationTheir originality mainly lies on the partiular tra� they are monitoring, as it onsists,ehoing previous paragraphs, in data representing suspiious tra� only.2.2.2 Darknets, Telesopes, BlakholesCAIDA's Network TelesopeThe Cooperative Assoiation for Internet Data Analysis, also alled CAIDA, has devel-oped partiular honeypots, alled network telesopes. They de�ne a network telesope asa portion of routed IP address spae in whih little or no legitimate tra� exists. Thus,monitoring unexpeted tra� arriving at a network telesope provides the opportunity toview remote network seurity events suh as various forms of �ooding denial-of-servie at-taks, infetion of hosts by Internet worms, or network sanning. As the authors mentionin [158℄, network telesopes were named as an analogy to astronomial telesopes, and inboth of these ases, have a large size (fration of address spae or telesope aperture).The ranges an be quite large (e.g. a /8 pre�x orresponds to 16 million addresses), andtelesopes annot be used by anyone in pratie. The telesopes used by CAIDA alsoassume that the telesope is monitoring ontiguous range of address spae. In terms ofprobability, they an extrapolate this way the monitored ativity, based on the fat thatfor an IPv4 network of size /x, the probability of monitoring a hosen target is given by:px = 12x . This unique observation has lead to interesting worm studies, like:� the Saphire/Slammer worm [159, 156℄



2.2. On the Capture of Relevant Traffi 13� the Witty worm [157℄� the Code Red and Code Red II worms [22℄Telesopes are also very useful to detet and observe large Denial of Servie attaks,as spoofed Soure IP addresses involve a large range of IPs, and result in an importantnumber of paket residues alled baksatters. Suh studies have been presented in [160,162℄.The extrapolation task is meaningful for all attaks that are involving the whole IPv4address spae, but this global approah might present a few limitations:1. The probabilisti model does not sometimes hold, for the reason that some IP spaeregions are inexistent or not routed. Suh IP spaes are ommonly alled the bogons[97℄. These addresses, and other unalloated bloks are not taken into aount inthe probabilisti model.2. Many attak tools are soure-dependent and target nearby addresses. This has beenshown in the Cod Red II propagation strategies [243℄, and it has also been on�rmedby some experiments in [67℄ that a few attaks are spei� to partiular networks.3. The oding of the worm might ontain some bugs, espeially the pseudo-randomnumber generator. This an introdue a bias in the probabilisti model.4. The amount of olleted information is olossal, espeially if the analysis needs to beperformed over several months. It is not expliitly mentioned how telesope-basedsystems manage to store suh data, but it either requires huge memory apaitiesand lookup resoures or it is based on the NetFlow aggregated information. In thislast ase, some information might reveal to be missing during puntual experiments(see Setion 2.3.2).The CAIDA's Network Telesope is a very high-level monitoring system. This ap-proah has led to notieable results and we are onvined it has opened large avenues forinvestigation [76, 161℄. This tehnique has also been deployed in other researh projetsthat we detail in the next setions. However, despite these bene�ts, the huge amount ofdata is an important limitation for performing lower-level analyses. Furthermore, deter-mining how the CAIDA members organize data is di�ult. We an imagine that there alsoexists potential privay issues, as the telesope should monitor some prodution tra�despite the fat that the range of IPs is theoretially unused. These two major drawbakshave motivated the reation of the Leurré.om projet desribed in Setion 3 and the needto organize e�iently the olleted data and gather experiene on the tra� over a longperiod of time (in terms of months, and even years).Finally, we want to mention the interesting initiative launhed by the CAIDA membersand alled the Internet Measurement Data Catalog (IMDC) [77℄. This initiative is not



14 2. Bakground and Related Workdiretly related to the Telesope approah, but it aims at building a system that wouldfailitate aess, arhiving, and long-term storage of Internet data as well as sharing thedata among Internet researhers. CUrrently, though, they only share meta-data, that is,outome of analysis (whih makes the work on it not always simple). Conerning malwareanalysis, they o�er at this time an aess to baksatter2 data from the UCSD networktelesope. Unfortunately, they urrently o�er researhers only three weeks of DoS attaksdata from January 2001. Despite this, the authors mention in [77℄ the same underlyingmotivations for network measurement researh than those we defend in this thesis: a lakof meaningful and organized data to be shared with the ommunity. This problem of dataavailability is reurrent for all onsidered solutions in the following.The Internet Motion Sensor: IMSThe Internet Motion Sensor is a projet from the Mihigan University that utilizes adistributed sensing network based on the monitoring of globally routable but unusedaddress spae. The onept is similar to the Network Telesopes. To make things shorter,this tehnique has a variety of other names inluding network telesopes, darknets, andblakholes. Eah blakhole sensor monitors a dediated range of unused IP address spae[27, 82℄. As the arhiteture was deployed to monitor quite large IP Address spaes (/8,/16 and /24 networks), the authors do not have the apaity to log all paket information.In their defense, they have developed an e�ient tehnique to manage the overhead ofstoring payloads. However, the projet remains limited to tra� olletion and storage.The analysis onsists in some statistis and, as presented in [82℄, the analysis of a wormis restrited to the statistis of a single port and to the ounting of paket payloadsmathing the signature of that partiular worm. It is hard at this stage to make strongeromparisons between the sensors than the ones they have deployed.However, Cooke et al. have presented an interesting study based on simple riteriain [81℄. They use 10 large IMS sensors in di�erent networks, belonging to major servieproviders, large enterprises and aademi networks. Then, the authors have omparedthe observed tra� on eah IMS aording to three dimensions:� Over all protools and servies (ports): they have onluded that the amount oftra� (between sensors) varies dramatially and an di�er by more than two ordersof magnitude between sensors� Over a spei� protool (TCP) and port (135): this time, they have onludedthat there are large disparities between the number of unique soure IPs seen arossplatforms, and that these di�erenes orrelate with di�erenes in overall tra�.� Over a worm (Blaster) signature: they �nally have onluded that there are stillsigni�ant di�erenes in the number of unique soures between sensors.2Baksatters are residues of Denial of Servie attaks.



2.2. On the Capture of Relevant Traffi 15This work has highlighted the fat that the CAIDA's approah, whih extrapolates a largeIP tra� observation into the whole Internet, annot properly hold. First, there mightbe inhomogeneous ativities within the monitored IP range. Seond, there an be dissim-ilarities between IP ranges. This is another interesting justi�ation of the deployment ofsmaller and more loal sensors. The Leurré.om Projet we have developed over the lastyears in order to ollet valuable data is based on the same priniple. Loal positioning ofhoneypot sensors might bring di�erent, or at least, omplementary and valuable informa-tion. This partially explains the deision to develop a distributed arhiteture of sensors,instead of a global monitoring system like the telesopes presented in the previous setion.The information is not entralized. Eah IMS sensor is responsible for gathering andarhiving data, performing queries on its loal data store, and generating alerts that aresent to a third element alled aggregator. In this distributed storage environment, itseems hard to make ross sensors analysis, exept on a few global statistis.Team CYMRU's Darknet ProjetA group of researhers founded in 2004 the Team CYMRU, In. One of their apparentobjetives was to share their seurity experiene with the ommunity. They have launhedthe TEAM CYMRU's Darknet Projet and have provided all the diretions in their website to settle suh an environment [87℄. The priniple is also very lose to the NetworkTelesope3. The authors' reommendations an be found on their web page: At a mini-mum we reommend a /24, though smaller address spae - even up to a /32 - will work.This unlear requirement is ompleted by the diretions to on�gure the router and tomonitor the tra�. They give poor information, however, on the tehniques to analyzethe data. They only suggest to reate simple garbage meters based on the tra� enteringthe Darknets. Figure 2.1 found on their web page illustrates suh a metri. It shows sim-ple statistis on the number of pakets reeived per seond (pps) on eah sensor (notedDARKXX in the Figure). It is worth noting that values vary a lot among Darknets. Itremains oherent with the remarks made in the previous setion. However, one more time,a prevalent e�ort is made to build a useful arhiteture for monitoring maliious tra�,but no real e�ort is made towards the analysis.iSinkAmong systems that monitor large unused address spaes like the ones previously de-sribed, we an also mention iSink, developed by the University of Wisonsin-Madison[235, 236℄. A large e�ort has been made on the arhiteture interation provided bythe Ative Sink built on the Clik elements [12℄. The monitoring and analysis parts arebased on measurement tools, like MRTG [167℄, FlowSan [1℄, and Argus [13℄. These tools3Team Cymru is also a ollaborative member of CAIDA.
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Figure 2.1: Darknet Tra� Garbage Meter from [87℄provide valuable �ow level information and an deal with large pakets tra� (iSink ol-lets unsoliited tra� destined for approximately 100,000 unused IPv4 addresses within4 lass-B networks). The authors gather statistis onerning inbound tra� (bits orpakets per seonds), TCP �ows and other tra� measurement metris. This providesinteresting remarks on the tra�, like the paket sizes, whih are relatively onstant, andthe number of bytes and pakets whih follow a preditable ratio, one reason being theimportant volume of TCP tra�. These measurement tools annot be onsidered stritosensu as malware analysis tools. They provide interesting piees of information but areintrinsially not su�ient to identify, and thus to understand, malware ativities.
MINOSMinos is an emulation tool proposed by the University of UC Davis that presents theadvantage of tagging network data onsidered as low priority, and then propagating thesetags through �lesystem operations and the proessor pipeline to potentially raise an alert,whenever low integrity data is used as ontrol data in a ontrol �ow transfer [84℄. Itimplies a tuning at the proessor level and the operating system.Thus, Minos is by de�nition a host-based intrusion detetion system. In [85℄, theauthors have deployed it in mahines plugged in the wild, to use its features as a honeypot.However, this arhiteture is very spei� to monitor attaks that intend to hijak theontrol �ow of the CPU. The authors provide in [85℄ few examples of bu�er over�owexploits against servies like SQL Server 2000, Linux wu-ftpd, et. The monitoring of theativities is restrited to Minos alerting system and assembly odes. The apture proessis here very lose to a detetion mehanism.



2.2. On the Capture of Relevant Traffi 17LobsterLobster (for Large Sale Monitoring of Broadband Internet Infrastruture) is a Europeanprojet with a researh Consortium (inluding among others the greek FORTH foundationand the University of Amsterdam) that aims at deploying a pilot European infrastruturefor aurate Internet tra� monitoring [60℄. In order to support ollaborative passivenetwork monitoring aross a large number of geographially distributed uniform aessplatform sensors, Lobster is based on a distributed uniform aess platform, whih pro-vides a ommon interfae for appliations to interat with the distributed monitoringsensors. This interfae is build onto the Monitoring Appliation Programming Interfae(MAPI), while the network monitoring system is alled SCAMPI (SCAlable Monitor-ing Platform for the Internet [83, 166, 86, 55℄). A great e�ort has been made during theprojet on the tehnial arhiteture of the tra� apture, as it an handle high-speed net-work ards (10 Gbits/s) and has been diretly implemented in some Network Proessors.The arhiteture an also measure network performane and behavior at high-speeds, inorder to feed billing omponents. First, this arhiteture has not been designed to olletmaliious tra� only. This is thus not a distributed honeypot arhiteture, by de�nition.Seond, the analysis of maliious tra� is handled by a dediated Network Intrusion Sys-tem (IDS) using onverted Snort rules. As a onsequene, and despite its title, this projetremains quite far from the initial problem statement we have de�ned, as the monitoringof maliious ativities remains limited to the observation of the snort alerts.2.2.3 Logs SharingThere are some other approahes very similar to monitoring onsoles, whih di�er fromthe origin of the data. Unlike monitoring onsoles that aim at representing logs and alertsissued by the ative seurity elements of the supervised network, these approahes olletdata from... everywhere. Anyone who is willing to send data registers, installs a smallsoftware that periodially sends data. Then, some sripts parse these datasets, grabbinga small number of elements, like the targeted servies, the number of observed di�erentIPs, et. Among these approahes, we note the interesting projets alled WormRadar,Internet Storm Center from the SANS Institute, Dshield, MyNetWathman [36, 33, 5,163℄. They give a very good overview oming from di�erent pro�les, and are thus, usefulto get a �rst hint on the maliious ativities happening in the Internet. However, theyollet logs from any network. Thus, all these projets make the assumption that whatthey reeive in the logs is a good representation of global ativities. Suh an approahpresents a few inonvenienes:� They trust all entities that send their logs.� They mix seurity poliies �ltering and malware ativities.



18 2. Bakground and Related Work� We have no information on the exat soure of the information (aademi, military,industry network?)� They do not give explanations on how they extrat information from these variouslog formats.� They make simplisti links between ativities on a given port and worm names.However, many malware an take bene�ts of the very same port; the same malwarean be haraterized by ativities on many ports . . . and vie-versa.� There is no way to dig into the data. The analysis remains limited to the plottedstatistis and reports.WormRadar is slightly di�erent, as it relies more on a visualization priniple [36℄. Thesoftware to install emulates a ouple of servies, (IIS, FTP, Telnet), for a brief periodbefore it uts the onnetion with a FIN allowing suh things as a login to the FTPserver as anonymous or to see what the GET/Head et. It then allows listening on auser-de�ned series of ports (both TCP and UDP). On these ports, WormRadar seemsto aept any data sent. It is an interesting little toy but the dos on its site are sadlylaking so there is a need to experiment to �nd out what it does. In any ases, thesetools are pratial syntheti elements and visualization methods of Internet ativities.However, they annot be onsidered as valid and trustworthy providers to build on aertain knowledge of malware ativities. As an illustration, Wormradar an be pereivedas an aggregated port hit statisti site: the o�ered data is the web interfae. However,data is sent by anybody willing to partiipate. Conlusions and available data are thuslimited to exposed graphs in the web interfae.2.2.4 OthersIn LargeOther tools an be used as well to monitor maliious tra�. They are not dediatedto this task only, or, so to say, they do not pretend to ollet maliious tra� only.This inludes all approahes hidden behind the expressions Intrusion Detetion Systems(IDSs), or Intrusion Prevention Systems (IPSs) [18℄. Conerning IDSs, it is importantto note that they still tend today to trigger an abundane of mostly false alerts. In[122, 123℄, Julish et al. explain this fat by a few reasons, inluding the under and overspei�ed signatures, or the lak of abstration. The major di�ulty onsists in lassifyingtra� into two ategories: normal and abnormal. This issue does not exist anymore,however, with respet to honeypot tehnologies. IPSs normally ollet logs of the tra�they blok, so, they are not monitoring maliious tra� only, but instead, all paketsthat do not math the seurity poliy hosen in the onsidered network. This is not theexat expetations, as eah tra� is then tightly orrelated to the network seurity poliywithin whih it is aptured.



2.2. On the Capture of Relevant Traffi 19Mwollet and NepenthesAmong other olletion tools, we an mention the new mwollet tool [31℄. Mwolletis somehow di�erent from typial honeypots beause it was originally designed to olletbot software, but the urrent version ollets worms and other forms of malware that takeadvantage of vulnerabilities that mwollet exposes. Aording to the mwollet Website, systems that run the tool annot be infeted with malware due to the way mwolletoperates internally. It binds to spei�ed ports, waits for an exploit attempt, sans forshell ode, and tries to download any related malware. Captured malware an then beadded to a database at the mwollet Web site.The seond olletion tool Nepenthes is similar to mwollet [32℄4. It also presentsknown vulnerabilities to the network and waits for intrusion attempts. Current modulesfor Nepenthes enable it to emulate vulnerabilities with DCOM, Loal Seurity AuthorityServie (LSASS), WINS, ASN1, NetBIOS, SQL Server, and a lot more Mirosoft servies.Sine Nepenthes runs on Linux systems, none of those servies would atually be available,whih means exploits against them would have little or no e�et on the underlying OS.Just like mwollet, when Nepenthes detets intrusion attempts, it tries to downloadany related malware through a variety of methods inluding FTP, Trivial FTP (TFTP),and HTTP. Captured malware is then sent to a enter server hosted by the developersof the tool. These tools are very interesting to ollet the whole malware, inludingpayloads and binaries. They are thus very interesting to apture meaningful information.Unfortunately, there are dediated to a small number of ativities, the ones that takebene�t of o�ered vulnerabilities. Furthermore, it remains to the analyst, one the datahas been olleted, to perform a non-obvious task for disseting aptured data.
HoneyTankHoneyTank an be seen as a good omplement of large telesopes and darknets. It hasbeen designed with the idea that suh arhitetures might have di�ulties in logging allativities for thousands of unused IPs. The authors suggest to tag pakets in a partiularway, exploiting the timestamp option of TCP. This avoids monopolizing lots of memoryand pu resoures to keep onnetion states. This tehnique, however, is restrited andan only work to emulate TCP servies. In addition, it requires the attaker to orretlyreply to TCP timestamps (TSer �eld must eho the last reeived Tval value). One moretime, a notieable e�ort is made to partiipate in the building of a honeypot arhiteture,but very few to monitor and analyze the output.4In February 2006, the two projets merged operations into a single malware olletion tool also alledNepenthes.



20 2. Bakground and Related Work2.3 On the Analysis of Tra�2.3.1 PositioningThere are many tehniques whih aim at analyzing the tra�. All ative tehniquesare not onsidered in this doument. We identify two major ategories: some tools aimat apturing pakets, while others bring add-ons on the tra� they ollet by somehowinterpreting them. The �rst ategory is out of the sope of this setion, as it has beenbrie�y introdued in Setion 2.2. We detail in the following some tehniques that ouldompete as andidates to analyze maliious tra�.2.3.2 Net�ow name Desriptionsraddr Soure addressdstaddr Destination addressinput Input interfaeoutput Output interfaedPkts Number of paketsdBytes Number of bytesFirst Start of NetFlowLast End of NetFlowsrport Soure portdstport Destination porttp_�ags TCP �agstos IP type-of-servieTable 2.1: Some Relevant NetFlow Fields (v5)
Many router manufaturers implement interesting logging apabilities that o�er to sum-marize and analyze the tra�. One famous data is the CISCO's NetFlow5. The onept of�ow has been proposed by Cla�y et al. [78℄ as: a �ow is ative as long as observed paketsthat are meeting the �ow spei�ation are observed separated in time by less than a spei-�ed timeout value. Flows have proven to be a very useful tool for measurements and tra�haraterization. This is also re�eted in the e�orts to standardize �ow data measurementand olletion arhitetures [59, 180, 91℄. CISCO's �ow level aggregation tehnique [75℄almost �t the model by Cla�y et al. Aording to CISCO doumentation, the NetFlow5We use the term NetFlow for both the onept as well as individual reords



2.3. On the Analysis of Traffi 21implementation identi�es a �ow by the tuple (sraddr, srport, input, dstaddr, destport,tos). Table 2.1 summarizes some of the relevant �elds related to NetFlow reords.NetFlow presents a few limitations. For instane, it may aggregate pakets from severalTCP onnetions into one NetFlow, e.g. if the same soket is used for several onnetionattempts, as done by �le-sharing appliations or some attak tools [207℄. A ontrario, aTCP onnetion an be split into many NetFlows, if the TCP onnetion is longer thanthe �ow timeout. As a onsequene, it is very hard from the aggregated NetFlows layerto dedue the TCP onnetion layer. The �ow model is very interesting though, and hasbeen proved useful in quite a few studies. For example, it has been used by Thompson etal. [224℄ for tra� measurement and haraterization. Lin et al [143℄ evaluate the e�etof di�erent �ow lassi�ers on swithing performane, while Feldmann et al. [98℄ examinethe impat of appliation-layer aspets on the �ow harateristis. Newman et al. [164℄propose IP swithing based on �ows.More in the fous of this doument, NetFlows have also been used to monitor maliiousnetwork tra�. CISCO itself o�ers a produt alled The Ciso Seurity Monitoring, Anal-ysis and Response System (Ciso Seurity MARS) that models the �ows in the network,and make periodi omparisons based on expert rules and network topology information.Many reports have been applied on NetFlow tra� from high-speed networks. As anillustration, Duebendorfer et al. present in [93℄ a study of the Blaster.A and Sobig.Fworms in a Swiss bakbone network alled SWITCH. We have extrated from [93℄ thedetails of Blaster's infetion and presented it in Figure 2.2. Blaster infetion mehanismis urrently well-known, and is split into ativities against two distint TCP ports, 135and 4444 on the vitim size.

Figure 2.2: Blaster's Infetion Steps [93℄The authors have then de�ned four di�erent infetion stages that lassify to whihextent a Blaster infetion attempt on a vitim mahine is suessful. They have asso-



22 2. Bakground and Related Workiated eah infetion stage to its orresponding NetFlows. Finally, they have extrated�ow-level plots for eah infetion stage, in order to estimate the number of stage ases.Unfortunately, it is not ompletely sure that they are seeing Blaster.A ativity by observ-ing ativities on port 135 or on port 4444, and by imposing a few onstraints on the �ows(ranges for �ow byte sizes). This limitation omes from the intrinsi de�nition of �ows.Another important limitation is that the orrelation between NetFlows and Blaster's in-fetion stages has been possible thanks to the diagram presented in Figure 2.2. However,the knowledge about attak tools is either kept seret or simply not aquired. Thus, thistehnique an only be applied a posteriori, when the attak tools have been well-studied.The solution we propose will be inspired from the NetFlow �elds to lassify our data, but,at the same time, will be designed to avoid the same pitfalls and limitations.It is also worth noting that other protools and standards similar to Net�ow exist.One is sFlow. sFlow is an open standard de�ned in RFC 3176 [179℄. It is based onpaket sampling, and while NetFlow only aptures information about IP pakets, sFlowan be used to analyze other protools like Ethernet, IPX and Appletalk. IPFIX andPSAMP are two IETF working groups that are working on standardizing IP �ow exportand sampling. PSAMP onentrates on de�ning methods for sampling based passivemeasurement of �ows, while IPFIX is a new e�ort to de�ne what information �ow reordsshould ontain and how they are exported to olletors. At the moment, nothing onretehas emerged, and none of the tools based on these solutions are dediated, as far as weknow, to monitor maliious ativities in partiular [147℄. The interested reader an havea look at [15℄ where an interesting state-of-the-art of many dozens of net�ow-based toolsis presented.2.3.3 Billy GoatDuponhel et al. introdue in [118℄ "Billy Goat", a honeypot-like system dediated toworm detetion. The apture tool, at �rst glane, is similar to produts likeWormSout, oreven honeyd ([195℄), but is built on top of iptables in a lever way. With the system basingall its feigned servies on an infrastruture for virtualization, a single Billy Goat mahinean appear as many addresses on the network. At the same time, the virtualizationinfrastruture allows the use of standard programming tools and interfaes to reate newfeigned servies for Billy Goat. The mountains of data that these virtual servies reateare stored and ataloged (that is, logged) in a relational database, whih is summarizedin Figure 2.3. An interesting e�ort has been made to help organizing the data. Data isaggregated for eah observed soure address over a spei� time frame (not spei�ed in[118℄). The aggregation results from �ve main parameters:� The Soure IP address� The time period overed by the data in the model� The IP addresses of the Billy Goat sensors that have reported the ativity



2.3. On the Analysis of Traffi 23� the desription of network/transport level ativities (Soure and Destination IPaddresses/ports, Protool, �ags)� Desription at the appliation level (XML �elds: REQUEST and HOST, see Figure2.3)Unfortunately, it is not really lear how the authors an map eah appliation leveldata into a XML format. The doument remains very vague on that �eld. Furthermore,the authors apparently avoid ompletely other meaningful paket exhange formats likeTCP, ICMP or UDP. However, the impat is di�erent in the ase the paket is �aggedRST/ACK with payload (rafted paket for instane), or if it is SYN-�agged. Finally, thereal purpose of the database is not lear, as most of the (redued) olleted informationis in �ne generalized during the analysis by means of a simple summarization of thedata (orders of magnitude, statistis). We note here a lear e�ort to organize the data.Unfortunately, the extration of information remains too restrited to build upon a stronganalysis as we intend to.

Figure 2.3: Database Struture used in Billy Goat [118℄HoneyStatIt seems also relevant to present HoneyStat [197℄. This original approah onsiders Des-tination/Soure Correlation (DSC) to math the same port being used for soure anddestination sans to identify ompromised mahines. The authors demonstrate in [197℄that this approah works �ne for analyzing san-based, fast spreading worms. The generalidea behind DSC onsists in keeping a sliding window of loal network tra�. Two generalitems are traked: for eah port witnessed in this tra�, the authors reord the addressof the inside destination host and the sanning soure from the monitored network. If a



24 2. Bakground and Related Worksoure san originates from a host that previously reeived a san on an idential port,i.e., they observe a worm behavior-like infetion pattern, and treat this loal host as asuspiious vitim. In other words, if a host gets a paket on port i, and then starts sendingpakets destined for port i, it beomes suspet. Then, if the immediate outgoing san ratefor the suspet hosts deviates from a normal pro�le, the suspiious vitim is onsideredto be infeted.This analysis tehnique is quite spei� to worm detetion. We an also ite a fewother tehniques, having similar approahes, like Collapsar from Purdue University [121℄.Researhers have also proposed statistial models, e.g. Kalman Filter [244℄, analyzing re-peated outgoing onnetions [232℄, and vitim ounter-based detetion algorithms [233℄.All these approahes, however, remain quite worm oriented. We are interested in the fol-lowing to lassify tra� more than to �nd a detetion tehnique that would be appliablein very spei� onditions or to very spei� lasses of attaking ativities.2.3.4 Monitoring ConsolesThe topi has been widely studied in [188, 189℄, in whih we have desribed many teh-niques and existing tools. The monitoring onsoles are often relying on the alerts andlogs issued by seurity systems (�rewalls, IDSs). We have shown the gap that exists,as of today, between sophistiated tehniques presented in researh papers and atualimplementations that are readily available. We have presented solutions not only fromthe Intrusion Detetion ommunity but also from the Network Management ommunity,whih has tried to solve similar problems for many years. Solutions exist that ome fromvarious researh domains and that have proven their e�ieny in many ases. However,we have reahed a deeiving observation: among tools and produts that have been pro-posed so far in Alert Correlation, very few implement suh approahes. Most of them arelimited to down-to-earth, pragmati tehniques, suh as pattern mathing or databasequeries. As a onsequene, we do not detail more this �eld in the following, but we invitethe interested reader to have a look at [188, 189℄ for a more omplete state-of-the-art.2.3.5 Vizualization TehniquesNetwork seurity visualization is an emergent �eld and a number of systems exist thatfous on event visualization with an eye for relatively dense data display. Their goal isboth to failitate awareness of the global network status and to subsequently explore thedataset. Some solutions an be also seen as extensions of the ategory presented in the pre-vious setion alled Monitored Consoles. Among the solutions, we note NvisionIP, whihshows ativities between pairs of IP addresses and the similar but more abstrat SeeNet[132, 45℄. Colombe et al. present an interesting data representation for visualization. Theidea of the display is to tap into the user visuospatial pattern reognition skills (rainbow



2.3. On the Analysis of Traffi 25palette oloration, position on the sreen, et)[79℄. PortVis ([153℄) is also an interestingvisualization tool whih aims at displaying network �ows. The authors haraterize thetra� by a tuple, eah tuple representing the ativity on a given port during a given hour,through a given protool. This is a �rst step to organize information, but this hoie wasmade to build the tool, more than to lassify the data for other investigations. In allases, the analysis they provide is based on the expert's view of the o�ered graphs. Theygive a few possibilities to traebak information from the graph to the pakets6, and areoften limited to plotting useful but non su�ient statistis, like the number of alerts, thequantity of data transfers, the ports ativities, et. It is thus hard to understand the realmaliious ativities. These tools are designed to detet, or at least, show up anomalies,more than to understand the ourring threats.2.3.6 ModelingModeling malware ativities is an ative researh domain. Very interesting approaheshave been observed in reent seurity onferenes like the Workshop on Rapid Malode(WORM) or the Conferene on Reent Advanes in Intrusion Detetion (RAID). It is re-ally interesting to analyze the malware ativities by reproduing in a theoretial environ-ment its behavior, either by applying mathematial formula (most of them are urrentlybased on the epidemiologi domain [69, 204, 126, 245, 246, 205, 140, 68℄) or dediated sim-ulation testbeds ([227, 96, 170, 239, 139℄). Unfortunately, these models an be validatedas orret if and only if they math (during a ertain period of time) the propagation andevolution of existing threats. This diretly implies to have full aess to some partiu-lar dataset where this information an be easily retrieved. Suh dataset does not existhowever, or some very spei� logs are applied as referenes without numerous details re-garding their relevane. Some other tests have a questionable validity, as the ones basedon famous datasets provided by the Linoln Lab of the MIT in 1999 [146, 150℄. This basiobservation has motivated the deision to o�er aess to the whole dataset to all partnersof the Leurré.om projet. The modeling tehniques, in addition, are limited to a fewpropagation strategies implemented by popular worms (see for instane the analysis ofCodeRed II in [157℄). As a onlusion, these tehniques will really show their values whenbeing ompared to large and valid datasets from various plaes. They annot replae themonitoring and analyzing steps we are onsidering.2.3.7 Challenges and Personal AomplishmentsAmong the interesting analysis tehniques, we an also mention the personal aomplish-ments of individuals, who design their own environments, and share their informationwithin a ommunity. Many seurity researhers report suh analysis and tools in inident6It is all the more true that most of the tools presented in this setion are diretly working on Net�owlogs.



26 2. Bakground and Related Workand forensis mailing lists [74, 113℄. Another approah is to organize hallenges. As anillustration, the Honeynet Alliane organize a monthly hallenge, alled Forensi Chal-lenge, whih onsists for inident handlers around the world in all looking at the samedata (an image reprodution of the same ompromised system) [35℄. The jury determineswho has dig the most out of that system and has managed to ommuniate her �ndings ina onise manner. This is an expert study of tools, tehniques, and proedures applied topostompromise inident handling. As the organizers say in [35℄, "the hallenge is to havefun, to solve a ommon real world problem, and for everyone to learn from the proess".This is a good experimental analysis, but it remains anedotal, not perfetly rigorous inmany ases, and might not re�et the urrent threats networks are faing. This an give,however, another hint at some maliious ativities.
2.3.8 OthersSets, Bags and Rok 'N RollMHugh has presented in [151℄ interesting onepts that have led to the reation of a seriesof tools alled SiLKtools (also detailed in [105℄), designed in the ontext of the CERTCoordination Center from Carnegie Mellon University. The author shows that there isvalue to use sets, in order to provide a ompat way of desribing and reasoning aboutthe Internet and about tra� observed at various points on it. For example, this mightbe useful to onsider suh things as the set of external hosts that are observed performinga sanning ativity during a time interval. Similarly, one might want to identify the setof users of some servie provided by the loal network (e.g. web servies) to the outsideworld during the interval. The use of sets and bags allows abstrating from individualbehaviors to lusters of ativities. It is also important to mention that this lustering isperformed on the data monitored by the CERT, that is a very large amount of pakets perseond. As a onsequene, the lustering tools have been built on Net�ows (see Setion2.3.2 for more details). This an lead to the same drawbaks as the ones previouslydesribed with other Net�ow-based appliations. The author however mentions a futurepaket to Net�ow ode that should be inluded within the SiLKtools to limit the Net�owperturbations. This work is important for us as it appears to be one of the �rst initiativesto fous on malware data analysis. It seems relevant at this stage to ite a sentene ofthe doument ([151℄), whih is also a major priniple of the HoRaSis method presentedin the next hapters."Sets and set theory are abstrations that failitate reasoning about manylasses of problems."



2.4. Summary 272.4 Summary2.4.1 Observations from this State-of-the-ArtFrom the previous setions, it seems quite lear that most of the e�ort has been devotedto the design of e�ient arhitetures, whih:1. apture original and spei� malware ativities.2. analyze the very same partiular and spei� malware ativities.Some of them are very promising, and we believe that the researh should go on withthe same eagerness. However, we also believe from this observation that there is a learlak of ommonly shared information. Many researh studies aim at designing toolsand arhitetures, without proving �rst that there is high value in doing so. In otherterms, the seurity ommunity fails to �nd onrete validation examples. Furthermore, theglobal understanding of malware ativities is still unknown. We an ite for instane therelationships between attaks and networks, the order of magnitude of di�erent malwarepropagating in the wild, their loalization, et. An illustration lies in the numerousartiles and publiations whih aim at deteting large sweeping sans [217, 135℄. The�rst suh algorithm in the literature was that used by the Network Seurity Monitor(NSM) [109℄, whih has rules to detet any soure IP address onneting to more than 15distint destination IP addresses within a given time window. Suh approahes presentthe same limitations, that is, one the window size is known it is easy for attakers toevade detetion by simply inreasing their sanning interval. Snort implements similarmethods [209℄. Does it seem relevant to ativate this Snort feature?The previous approahes have interesting approahes but the major problem remainsthat there is no available information to work on. Furthermore, one data is olletedfrom the honeypots, there is no existing tehnique or framework whih helps at grabbingthe useful information by taking bene�t of their partiular property.Finally, we want to reall an interesting event: the European IP Network RIPE, inharge of alloating IP addresses and administrating AS bloks organized in the ourseof year 2005 a global meeting between ISPs. One of the most important onlusions was[152℄:Attak �ngerprint sharing and similar mehanisms need to be further researhed,developed and deployed to ombat the existing threats.



28 2. Bakground and Related Work2.4.2 First ConlusionsThe honeypots do not, oneptually speaking, represent any major breakthrough and areertainly no roket siene. However, they bring an important set of information, onlydediated to maliious ativities. The interpretation of this dataset is then di�erent fromthe one performed by IDSs, as this drastially redues a priori the false positive rates. Theurrent tehniques are only based on aquired tehnologies, one being the tra� analysisin terms of �ows, the other one being simple statistis. This leads to wonder to whihextent it an be interesting to develop a spei� analysis for that type of information. Inaddition, this implies not to stay in a global perspetive, like telesopes, but to have anearer, more re�ned view of the attaks from a loal perspetive. This omplementaryapproah might reveal original threats whih annot be observed otherwise. And vie-versa.The next hapter aims at desribing the distributed environment whih has beendeployed in order to gather more loal information and at presenting the orrespondingdataset whih has been olleted. We feel it is important to let the reader understandwhere the information is oming from, and how it has been stored during the three �rstyears of the leurré.om projet. We will also show how we designed, built and deployedthis environment, and how it omplements and addresses the weaknesses of the previouslydesribed approahes.
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Chapter 3
The Information Generation

An expert problem solver must be endowed withtwo inompatible qualities,a restless imagination and a patient pertinaity.(Howard W. Eves)
3.1 IntrodutionAs the state-of-art presented in Chapter 2 has highlighted it, there is a need of data andinformation to start aquiring a global knowledge of maliious ativities that our in thewild. Arhives of tra� data over a long period of time are rare and di�ult to get aessto due to privay laws or data seurity onerns. For those whih exist, we note a lakof details onerning their origins, the hallenge and osts of handling large amount ofdata, and a potential interferene with urrent network operations and aounting (mixof prodution and unexpeted tra�).This setion aims at explaining how it has been possible, over several years, to olletmeaningful data from honeypot platforms plaed in di�erent networks and ountries,thanks to the suess of the Leurré.om Projet. This setion ould have been introduedin an experimental setion at the end of the doument, but we think it is important for thereader to understand the rihness of the data and its urrent uniqueness before desribingthe analysis theory. The reader who is already aware of the Leurré.om Projet datasetan skip this Setion and move ahead to Chapter 4.



30 3. The Information Generation3.2 The Leurré.om Projet3.2.1 The ObjetivesThe projet we have launhed aims at disseminating similar honeypot sensors everywherethanks to motivated partners, on a voluntary basis. Partners are invited to join thisopen projet and install a honeypot sensor on the premises of their own networks. We,at Institut Euréom, take are of the installation by furnishing the sensor image andon�guration �les. Thus, the installation proess is automati. In exhange, we give thepartners aess to the entralized database and its enrihed information. A dediated website has been developed to make researh faster and more e�ient. The projet has startedtriggering interest from many aademi, industrial, and governmental organizations. Asof this writing, around 35 platforms are deployed in 25 di�erent ountries overing the�ve ontinents. We keep installing new ones regularly.3.2.2 PriniplesOn the hoie of a honeypot sensorThe deployment of honeypot sensors in a variety of plaes requires �rst to hoose the mostappropriate sensor types. As it has been detailed in Setion 2.2.1, the seurity ommunityoften distinguishes two major ategories. First, there are sensors running on real systems(OSs, servies, users, et). They belong to the high interation ategory. Seondly, othersexist, whih interation is limited to a few emulation sripts. They belong to the lowinteration ategory. Eah of them presents interesting advantages but also limitations,that are summarized in Table 3.1 extrated from [212℄. In the row entitled Work toDeploy and Maintain, one �nds the time required to run and to maintain the honeypot.In the Knowledge to develop one, one sees the amount of prerequired knowledge to builda honeypot environment. The Compromise Whised row express the expeted goal of thehoneypot, that is, if it aims at being ompromised, or in a more restrited and mode, ifit aims at olleting malware tra� without letting an intruder enter the system . TheLevel of Risk row is an indiator of the risk run when implementing a honeypot into asystem.
It seems straightforward, from Table 3.1, that Low interation is adapted to the re-quirements of the Projet desribed in previous Setion 3.2.1. Indeed, partners an befrom any ountry, and the tasks of deployment and maintenane of the sensors must re-main aeptable. Furthermore, the risks must be as low as possible to motivate partners



3.2. The Leurré.om Projet 31Table 3.1: Level Interation and Honeypotslevel of Interation Low HighInformation Gathering Connetion Attempts AllWork to deploy and Maintain Easy Di�ultCompromise Wished No YesKnowledge to Develop Low HighLevel of Risk Low Highin joining the projet. It seems hard to imagine asking industry partners to join theprojet and introdue new vulnerabilities in their network.Low interation is the most sensible hoie at this stage. Unfortunately, informationwhih is olleted from it might di�er from real systems. More generally, it is importantto qualify and quantify the amount of information that might di�er when using one ofthe two interation sensors. We have published a detailed omparative analysis in thisdiretion in [187℄. It is brie�y summarized in the next setion.A omparison between Low and High HoneypotsWe have desribed in [187℄ two distint honeypot platforms. They have been alledH1 andH2. H1 is a high interation honeypot, running three di�erent OSs and various servies.H2 is a low interation honeypot, based on an open tool alled honeyd [9℄. H2 has beenon�gured in a very partiular way: we have sanned the open ports in H1 and openedthe very same ones in the honeyd on�guration �le for eah of the three virtual mahines.Some servie sripts that are available in [9℄ have been linked to open ports, like port80 (web server) or port 21 (ftp). As a onsequene, H2 an be seen as o�ering a similaryet simpli�ed behavioral model as H1. We onnet every day to both host mahines inthe same way to retrieve tra� logs and hek the integrity of hosen �les. Data is thenstored in the very same database (desribed in Setion 3.5.3).The paper reports a omparison over 3 months of data. The results show in partiularthat:1. Both approahes provide very similar global statistis based on the olleted infor-mation. High-interation honeypots are more or less attaked the same way thanlow interation ones.2. A omparison of data olleted by both types of environments leads to an interestingstudy of maliious ativities that are hidden by the noise of less interesting ones.One example has been the disovery of sans targeting one out of two suessiveIPs [187℄. Another example is that 3% of ativities whih have targeted only twovirtual mahines out of the three have preisely targeted two windows mahines on



32 3. The Information Generationboth environments H1 and H2.3. This analysis highlights the omplementarities of the two approahes: a high in-teration honeypot o�ers a simple way to ontrol the relevane of low interationhoneypot on�gurations and an be used as an e�etive "etalon system". Thus, bothinteration levels are required to build an e�ient network of distributed honeypots.Algorithms have been desribed to make this omparison automatially, but we re-port the authors to [187℄ for more details and illustrations of these ontributions. Theimportant result worth keeping in mind is that:Lemma: The ollet is not biased by the use of low interation honeypots in adistributed sensor network. Furthermore the deployment of a few number of ontiguoushigh interation ones an help ontrolling the relevane of the olleted information.In the next setion, the on�guration whih has been used to build H2 is detailed.
3.2.3 Honeypot SensorsThe sensors whih have been deployed along with the Leurré.om projet are based onseveral open soure utilities, whih emulate operating systems and servies. The basibuilding blok used is honeyd [23℄. The sensor only needs a single host station, whih isarefully seured by means of aess ontrols and integrity heks. This host implementsa proxy ARP. This way, the host mahine answers to requests sent to several IP addresses.Eah IP is bound to a ertain pro�le (or personality in the honeyd jargon). Thus, theemulation apaity of the sensor is limited to a on�guration �le and a few sripts1.The sensor we are using emulates three Operating Systems: Windows 98, Windows NTServer and Linux RedHat 7.3, respetively2. Some servie sripts that are available in[23℄ have been linked to open ports, like port 80 (web server) or port 21 (ftp), amongothers. A simple sensor arhiteture is presented in Figure 1. Finally, we onnet to thehost mahine to retrieve tra� logs and hek the integrity of the system �les every day.Next setions aim at presenting the global data whih has been olleted so far and itspartiular storage at the Institut Euréom.1New emulation sripts have appeared during the last months of this thesis: FakeNetBIOS emulatestra� on ports UDP 137 and 138 only [66℄. Sriptgen desribed in [138℄ generates in an automated andlever way sripts derived from tpdump traes. They were not available when we started deploying thesensors.2These OSs have been hosen three years ago to mimi and thus to be ompared with other highinteration honeypots already emulating these OSs.
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Figure 3.1: Arhiteture of a Honeypot Sensor3.3 Global Piture3.3.1 First FiguresSome platforms have started running in February 2003. Eah month, new partners omeand inrease the volume of data. Some global statistis are listed here.� Number of observed distint IP Addresses: 989,712� Number of reeived pakets: 41,937,600� Number of emitted pakets: 39,911,933� Total number of olleted pakets: 81,849,533� Number of reeived TCP pakets: 74,428,652, that is 90.93% of all pakets� Number of reeived UDP pakets: 635,363, that is 0.77% of all pakets� Number of reeived ICMP pakets: 4,218,109, that is 5.16% of all pakets� Others: (malformed pakets, et) 2,567,409, that is 3.14% of all paketsIn short, with a maximum of platforms up and running at this time writing, it ispossible to observe more than 5000 new IP addresses per day, and ollet 100000 newpakets issued by these IPs. This represents an important volume of data, and the numbersinrease eah day, as new partners join the projet. This explains in the next hapter theneed to lassify the data in suh a way that any kind of lookup an be e�iently performed.



34 3. The Information Generation3.3.2 First AnalysesThis setion aims at presenting global statistis, whih are the historial motives of thiswork. Some results have been desribed in [88, 89℄. We present here four interesting datarepresentations whih are part of the initial observations we made.Average Number of Attaking IPs per Honeypot EnvironmentFigure 3.2 shows the average number of attaking IPs observed eah day and per en-vironment. Values are de�nitely not uniform, and it is important to notie that someenvironments (identi�ers 12 or 5) an be attaked almost 100 times more than others(identi�ers: 20 or 32).
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Figure 3.2: Average Number of Attaking IPs per Honeypot Environment
Number of IP Soures observed per Day and per EnvironmentFigure 3.3 shows the number of IP addresses observed per day and per environment. Wehave represented three di�erent environments for larity onerns, but the others presentsimilar harateristis. Dates are omprised between February 1st 2005 and Marh 31st2005. We note here that a given platform might not observe the same number of distintIPs over days, and some high variations an our. We also note that for a given day,three platforms an observe very di�erent numbers of distint IP soures.
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Figure 3.3: Distint IP Soures Observed per Day on Three SensorsAverage Number of Bytes sent by Attaking IPs per platform (TCP payloads)Figure 3.4 gives the average data payload3 that have been observed in average on allplatforms between May and July 2005, when all platforms have been up and running forseveral days. This is of ourse not ompletely meaningful, as it is also highly dependent tothe emulation level of the honeypot sensors. It however indiates that some environmentspresent very strong di�erenes ompared to others, in terms of reeived bytes.
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Figure 3.4: Average Number of Bytes sent by Attaking IPs per Platform (TCP payload)
3Data payload inludes all data for layers 4+, exept TCP and UDP headers (with options for TCP).



36 3. The Information GenerationAverage Number of Attaking IPs per hour (apture time)Figure 3.5 shows the umulative number of attaking soures that have been observed indi�erent hours during the day on any environment. We onsider here the whole dataset.For instane, the �rst olumn gives the number of distint IPs whih have sent their�rst paket to an environment between midnight and 1am, the seond between 1am and2am, et. The onsidered time is the apture time, that is, the time on the environmentobserving the ativity. These simple statistis show a strong temporal pattern, with aboutthird less attaks during night hours than working hours. This statistis have also beenprodued for several periods during the year (over months, 2-months and 6-months), butthey show the very same property than by looking at the global dataset.
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Figure 3.5: Average Number of Attaking IPs per Hour (loal time)
3.3.3 On the Advantages of Loal Distributed SensorsThe �rst graphs presented in Setion 3.3.2 indiate in a lear manner that sensors olletativities whih might di�er from sensors to sensors. They are not faing same ativities.From another point of view, Figure 3.6 presents on one side the ativities on port 445as shown by a web site (Dshield [14℄) during September 2004, to be ompared with theativities olleted on one of our sensors during the same period in Figure 3.7.The peak observed on September 26th does not appear in any Dshield reports ormailing list posts. The reason for this has not been investigated further by the partner.The Leurré.om dataset ontain numerous similar examples. Nevertheless, it learly showsthat loal observations might di�er from global trends. This laim is also defended in[82℄. The authors demonstrate di�erenes observed in lass A IP ranges and smaller



3.3. Global Piture 37

Figure 3.6: Dshield vs Leurré.om data: Dshield [14℄

Figure 3.7: Dshield vs Leurré.om data: Leurré.om datasubnetworks along at least three dimensions: over all protools and servies, over a spei�protool and servie and over a partiular worm signature. This leads to the two followinglemmas, onsidered for the di�erent analyses we intend to perform in the next hapters.Lemma 1: Loal observations of maliious ativities DO NOT bring same informa-tion as more global tehniques. This arhiteture is thus a omplementary and essentialapproah.Lemma 2: Loal sensors share some ommon similarities, but the global statistisalso indiate strong dissimilarities w.r.t. monitored ativities.3.3.4 First DisussionsThe analysis of Leurré.om data ould stop here. The previous setions have demonstratedthe usefulness of deploying loal sensors, and the new dimension it an bring for monitoringmalware ativities. Other similar examples have been detailed in our earlier publiations[186, 192℄. However, these �rst results also highlight the motivations for further analyses.



38 3. The Information GenerationIt would be interesting for instane to haraterize the di�erenes between platforms.Current tehniques are however quite limited to diretly understand the exat meaningof these di�erenes and the relationships between them. The HoRaSis framework shouldhelp improving the knowledge aquisition and the extration of new information in anautomati way, that is, it should perform analysis steps further than simple statistis.
3.4 Observation Positioning
3.4.1 Sensors LimitationsOne �rst remark goes to the deployment of sensors. It has been shown that their deploy-ment brings interesting and omplementary information. However, we have not presentedthe impat of their on�guration to the quality of the data olletion [54℄. This is anotherdimension whih is not taken into aount in the following setions. A few preliminaryexperiments have been onsidered in the ourse of this work and reported in [192℄, but itis admitted, in the following, that the whole experiments have been applied on a uniquesensor on�guration. It is also worth mentioning that sensors are, and this is not a realsurprise, not perfetly undetetable. None of the existing honeypot-based systems are,and honeyd, the software on whih the Leurré.om sensors are built, follows this rule. Asan illustration, an experiment has been presented by Kohno et al. in [129℄. They havepresented a tehnique to remotely �ngerprint hardware devies via remote lok skew es-timation, and tested it on honeyd platforms. The sensor time is not maintained via NTPor SNTP, and the �ngerprint of honeyd would be possible by sending ICMP TimestampRequests (type 13) against honeypot sensors. Therefore, we have arefully looked for suhpakets and have observed only 38 of them so far. They are unlikely due to this detetionmehanism, as they have been observed one year before the �rst publi referene to thatproblem. Another bug has been found in the early versions of honeyd (< 0:8, [9℄), whihhas not been used. A system running honeyd an be deteted as it replies to invalid TCPpakets (with SYN and RST �ags) -whih it should not.In a general manner, this has to be related to the work presented in [187℄. Suhrisks an be minimized by frequently omparing the sensor aptures with other "etalonsystems". Attempts to �ngerprint the honeypot sensors would also be interesting insofaras it would indiate that this monitoring disturbs some partiular ommunities.



3.4. Observation Positioning 393.4.2 About Non-Observable Maliious AtivitiesDisussionAs it has been said in the previous setion, sensors implement the very same honeydon�guration. There might be some attaks the sensors will not monitor due to theiron�guration. It is by nature impossible to ath every maliious ativity in the Internet,but it is expeted to have a very good overview of the major threats with quite standardmahine on�gurations.In addition, the environment will not observe a unique attak, dediated to a targetwhih is not a Leurré.om sensor. It does not pretend to be a perfet early warningsystem. However, suh a distributed system ould help identifying the ommon ativities,also alled bakground radiations in [171℄4 and to detet new threats and ativity hangesmonitored by the di�erent environments.Worm Propagation StrategiesThere are now many worm speies, and some books have already started building phy-logeneti lassi�ations. We an ite as examples the noteworthy study of Szor et al. in[223℄, or the one of Filiol et al. in [100℄. As they both explain, worms are network virusesrepliating on networks. They all present a large diversity of spreading strategies. Amongthem, we note:� Loal-Subnet propagation: it involves worms sanning for vulnerable hosts in a lass-C or smaller subnet. It usually inreases the number of infeted mahines morequikly, as the worm an �nd less proteted mahines and a less heteregeneousnetwork environment one the �rewall is bypassed. This tehnique has been usedby the Code Red II 5 and Nimda worms for instane [228℄. If the worm limits itspropagation to a very small subnet that is not overed by a honeypot sensor, itsativities will remain unobserved by the proposed arhiteture. On the other hand,the risk remains for the same reason limited to the unovered subnet.� Hit list propagation: This tehnique is applied when the worm propagates basedon a list of vitims. This list is given by the attaker, either by a hard-written listof IPs/networks, or by olleting information from publily available resoures. Atheoretial worm, named Flash Worm, propagating this way, has been studied byStaniford et al. in [216, 215℄.4Bakground radiation re�ets fundamentally nonprodutive tra�, either maliious (�oodingbaksatter, sans for vulnerabilities, worms) or benign (mison�gurations) in [171℄.5Code Red II has three propagation strategies, one being to favor loal lass-C subnets [157℄.



40 3. The Information GenerationAtivities will never be deteted by one of the Leurré.om sensors if the propagationis too loal. This will also be the ase of propagations over a restrited hitlist.3.5 Data Storage3.5.1 A NeedData logged by eah Leurré.om sensor is opied to a entralized mahine. The sizes ofthe logs highly depend on the sensor and the ativities against it. Figure 3.8 representsthe umulative size of logs olleted during the onsidered period.
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Figure 3.8: Cumulative Log Size Colleted from the SensorsThe tra� is limited during the �rst months of 2003 to a few dozens of Megabytes permonths, as the only sensors working at this time were the ones implemented at Eureom.The regular inrease in 2004 orresponds to the �rst phases of the Leurré.om projetand its �rst partners. The steep inrease in 2005 is the manifestion of the keen interest tothe projet from multiple ommunities. It seems important, from Figure 3.8, to organizedata in an e�ient way, in order to query it easily. The data organization is desribed inthe next paragraphs.3.5.2 De�nitionsThis data needs to be properly organized, as it will be used for further analysis andexperiments. In theory, no tra� should be observed from the mahines we have set up.As a matter of fat, many pakets hit the di�erent virtual mahines, oming from di�erentIP addresses. Typially, if an attaker deides to hoose one of our honeypots as her nextvitim, she tries to establish diret TCP onnetions or to send UDP, or ICMP, pakets



3.5. Data Storage 41against it. She an behave di�erently when targeting eah of the three virtual mahines.As a onsequene, we distinguish in the database three major lasses of information:1. Information that haraterizes the attaking soure. It inludes its IP address, thedate it has been observed, the domain and geographial loation assoiated to thisaddress,et.2. Information that haraterizes the behavior of the attaking soure against theglobal sensor. It inludes the number of virtual mahines it has targeted, the globalduration it has been observed on it, the way it has targeted the virtual mahines(sequene vs. parallel), et.3. Information that haraterizes the behavior of the attaking soure with respet toa single virtual mahine. It inludes the sequene of ports that have been targetedon that mahine, the data sent, the number of exhanged pakets, et.For the sake of oniseness, we do not want to desribe the full database arhiteturehere. All details are preisely desribed in [184℄. We just want to point out that most ofthe omparisons that are presented in the following rely on this e�ient way to organizethe information. This organization leads us to frequently make use of the following fourde�nitions that derive from the previous lassi�ation.De�nition 3.1. Soure: A Soure orresponds to an IP address observed on one or manyplatforms, and for whih the inter-arrival time di�erene between onseutive reeivedpakets does not exeed a given threshold (25 hours). The time di�erene is omputed byonverting all times to GMT.As an illustration, two pakets observed at "2005-02-17 10:00:00 GMT" (Sensor A)and at "2005-08-05 13:00:00 GMT+5" (Sensor B) whih share the same IP soure addresswill be assoiated to two distint attaking Soures.De�nition 3.2. Global_Session: A Global_Session is the set of pakets whih havebeen exhanged between one Soure and all Honeypot Environments of the Leurré.omdistributed monitoring system.De�nition 3.3. Large_Session: A Large_Session is the set of all pakets whih havebeen exhanged between one Soure and a partiular Honeypot Environment (sensor).De�nition 3.4. Tiny_Session: A Tiny_Session is the set of pakets whih have beenexhanged between one Soure and a single Virtual Mahine. As eah honeypot Envi-ronment is made of three virtual mahines, a Large_Session is assoiated to 1, 2 or 3Tiny_Sessions.



42 3. The Information Generation3.5.3 ER diagramA dediated database has been designed to store the information at di�erent abstrationlevels. The UML diagram in Figure 3.9 o�ers its over simpli�ed struture. Many toolsare used to enrih the data. For instane, for eah Soure, we look for, and inlude inthe database, its geographial loation (Maxmind, Netgeo, IP2loation [11, 63, 117℄), itspassive OS �ngerprinting attak (p0f, etterap, diso [24, 7, 4℄), its name by means ofdomain name lookups, et. The details are arefully desribed in [184℄. A more ompleteview of the UML diagram, inluding important attributes, is presented in Annexe A.

Figure 3.9: UML Diagram: Relationships between De�nitions
3.5.4 Web interfaeTwo distint web interfaes have been developed along with the Leurré.om projet. One isthe publi projet web site, www.leurreom.org. It presents some global statistis, withoutmentioning any partner name nor IP address 6. The partnership o�er is desribed on thesite and many papers are available on it. The other interfae is a proteted GUI to thedatabase, with a personal aess for eah partner. Some useful queries are implemented toease the task of the partner. A diret aess to the database has also been made possiblefor more personal or omplex queries. Both are brie�y presented in Annexe B.6A Non-Dislosure Agreement has been signed by all partners to keep suh information on�dential.



3.5. Data Storage 433.5.5 Colletion IssuesSensors StabilityHoneypot sensors are not perfetly stable. They might be down for some days for severalreasons, like eletrial problems, network hanges or human inidents (powering o�, et).This introdues a bias in the data olletion and analysis, as missing data an have twodi�erent meanings: either there was an important derease of the attak during a period,or the platform was not working. It is important to distinguish between these two senariosfor the analysis. The missing logs are reported in a dediated table of the database. Wenote that 10% of log �les are globally missing. To address this issue whih might impatglobal statistis, it has been implemented an interpolation tehnique alled Cubi Spline.This name omes from the fat that this proedure losely approximates a tehnique thathas long been used by draftsmen. A draftman who wishes to plot a smooth urve througha set of n+ 1 observations will plae a set of weights on a thin elasti rod alled a spline.The weights are plaed in suh a way that the rod passes over eah of the observed points.The draftsman then traes the urve formed by the rod. The theoretial details an befound in [43℄. As many other tehniques, an interpolation annot be perfet, exept inrare ases (mathematial funtions), and it is hard to estimate the error. However, theubi spline interpolation has some interesting features, ompared to other tehniques:� Splines are smooth and ontinuous aross an interval. A polynomial, for instane,�tted to many data points, ould exhibit errati behavior.� The spline urve interpolates the data while remaining within the range of thedataset.� Splines are piee-wise de�ned funtions whose individual urves meet at the points.� The splines not only interpolate the data but math the �rst and seond derivativesat the points.The set of points are alled the knots. The set of ubi splines on a �xed set of knots, formsa vetor spae for ubi spline addition and salar multipliation. An example is shownas illustration in Figure 3.10 .This Figure represents on the light urve an errati funtion(y = (sin(x) + os(x)) 34 ), while the bolder urve has been generated by onneting datapoints (the knots) along the above line with a ubi spline funtion. While the �t is notperfet, it does losely approximate the funtion without a great degree of divergene.Future work will onsist in adapting other interpolation funtions whih would suit morelosely the properties of the urves under study.



44 3. The Information Generation

Figure 3.10: A Cubi Spline Interpolation of y = (sin(x) + os(x)) 34Data SynhronizationAnother potential issue is the Synhronization problem between sensors, as it has beenreported by Lamport in [133℄. For seurity onerns, there is no Network Time Protool(NTP) daemon running on the platforms. Thus, omparing the ativities on the sensorsonsists in determining the time lag between sensors. It is performed by performingperiodi date ommands whih results are then stored in the database. The rate error ofeah sensor is quite onstant over months and never exeeds a few seonds per month.In the other hapters, we work on the stored data, and for some similarity studies, makeuse of the Cubi Spline interpolation tehnique. When done, this is expliitly mentioned.Furthermore, the synhronization is not a major issue in the results presented in thisthesis, as the analysis we present is not bias signi�antly by the desynhronization e�ets.3.5.6 ConlusionFigure 3.11 presents in a simple diagram the di�erent steps that are followed, from the tp-dump pakets fethed on eah sensor to the global database ontents whih are the founda-tions of the next hapters. The database is preisely built around a small number of infor-mation ategories, alled Soures, Global_Sessions, Large_Sessions and Tiny_Sessions.These de�nitions desribed in Setion 3.5.2 are a �rst attempt to organize the olleteddata and start making omparisons and analyses. The generalization sripts presented inFigure 3.11 aim at deriving the attributes of these new information levels from the rawpakets tables. We have also onsidered several tools to enrih this information, some ofthem being ommerial solutions, others being open soure software or hand-made sripts.



3.5. Data Storage 45The database arhiteture is �exible enough to insert a posteriori results from other toolswhih are not onsidered today.The data olletion and storage were a preliminary and intuitive work, that has beenenrihed all along the projet. The obtained dataset is quite unique and represents severalyears of data. It an be wondered whether valuable information an be extrated from suha dataset, and how should the analysis be performed to do it. The �rst statistis tend toindiate that sensors ollet similar but also di�erent tra�. As a onsequene, it wouldbe interesting at this stage to distinguish the di�erent ativities whih are monitored.The next hapters preisely justify a way to analyze data and haraterize the ativitiesobserved on the Leurré.om sensors. We are following, as expeted from the Introdution,the diretions to build an HoRaSis framework.
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Chapter 4
Disrimination Step: FingerprintingAtivities

Problems worthy of attak,prove their worth by hitting bak.(Piet Hein)4.1 Introdution4.1.1 Need for Classi�ationIn the Leurré.om Projet, tra� is olleted from eah honeypot sensor with tpdump.The dump �les ontain plain raw pakets. Information as suh is not intuitive. A �rst stepis to store pakets aording to their respetive protool levels, as it has been detailed inChapter 3. Pakets by themselves are also not really meaningful, as their analysis remainsfastidious. We presented in Setion 3 some global statistis on pakets, but the analysis atthis stage remains at a too oarse level. We also observed when storing suh pakets intothe database, that grouping pakets aording to their origins and destinations is helpful.This led us to reate four distint information levels, alled Soures, Global_Sessions,Large_Sessions and Tiny_Sessions1.They represent all four di�erent abstration levels. By hoosing di�erent abstrationlevels we an swith between levels and analyze the appropriateness of the abstration fora spei� situation.1Complete de�nitions are in Chapter 3.



48 4. Disrimination Step: Fingerprinting AtivitiesAbstration mehanisms are often omplex, and provide means for identi�ation anddesign of invariant omponents and strutures [206, 201, 210℄. One of them is lassi-�ation, often omplemented by two other underlying mehanisms: generalization andspeialization.In the following, we present a generalization proess, that will lead to a useful abstra-tion level of the data. This abstration level generates lusters that will be the basis ofthe automati analysis proess that we present in Chapter 5.4.1.2 Conepts and ChallengesPrevious work has shown that address bloks in di�erent networks an see di�erent tra�traes [82, 186℄. Furthermore, the global statistis extrated from the database (seeSetion 3.3.3) also indiate that eah sensor presents unique properties ompared withone another, in terms of the number of observed IP soures, targeted ports, reeivedbytes, et. Thus, sensors do not monitor exatly the same 'events'. To exemplify thisproperty, we make use of the following terminology:De�nition 4.1. AnAtivity is the set of ations performed by an IP soure on a honeypotsensor.An ativity an be haraterized by a given Large_Session. We remind here thata Large_Session is the set of pakets exhanged between an IP soure and a honeypotsensor. So, rephrasing the previous remarks, we have observed so far that:Observation: Honeypot sensors do not monitor exatly the same ativities.The HoRaSis framework aims at better understanding the ativities that are moni-tored through the distributed network of sensors. One impliation would be to omparesomehow the ativities on eah sensor, in order to determine what makes them di�erand what kind of information this an bring. The HoRaSis framework must ontain afuntionality that helps at omparing ativity �ngerprints; an ativity �ngerprints beingde�ned as:De�nition 4.2. An ativity �ngerprint is a set of parameters that haraterize an ativityobserved on a honeypot sensor.The set of parameters we hose to perform this study is detailed in the next se-tion. Continuing previous reasoning, it seems reasonable to think that attaking tools,if they onsist of purely automatized deterministi ativities, should generate the verysame ativity �ngerprints on all targeted sensors. This leads us to formulate the followingassumption:



4.2. Fingerprints of Ativities 49Assumption: If the attaking tool has a deterministi behavior, we must observe thevery same ativity �ngerprint on all sensors whih have been the target of this attakingtool.Most of the tools have, as far as we observed, no random behavior, and share thisdeterministi property2. In Setion 4.2 we desribe the set of parameters used as ativity�ngerprints. In Setion 4.3, we explain that this theoretial ativity �ngerprint might dif-fer due to network distorsion, e.g. losses. These phenomena are not part of the �ngerprintand then must be onsidered when omparing the ativities. We have developed dediatedalgorithms to group e�iently the IP soures sharing an idential ativity �ngerprint whileonsidering these network distorsions.The analysis we intend to perform requires to group maliious ativities (in a generalsense) that share a ommon �ngerprint. Clustering tehniques are natural andidates forthis task. Note that the proposed solution might not be (and does not pretend to be) theunique one. We make use of tehniques steering from a large variety of researh domains,from knowledge disovery to data mining, and other solutions might be possible. Thegoal here is to present, based on the experiene gained with our data, HoRaSis, a simplebut meaningful tehnique to organize and lassify data. This method is validated andprodues, at eah step, new interesting results whih ontribute to the �nal analysis.4.2 Fingerprints of Ativities4.2.1 De�nitionsWe make use, all along the thesis, of the terms ativities �ngerprint and luster. Theymust so be arefully de�ned:De�nition 4.3. A Cluster is a set of IP soures having exhibited the same ativity �n-gerprint on a honeypot sensor.De�nition 4.4. We opy here the de�nition of �ngerprint found in [80℄. A Fingerprintis: 1. An impression on a surfae of the urves formed by the ridges on a �ngertip, espe-ially suh an impression made in ink and used as a means of identi�ation.2. A distintive or identifying mark or harateristi: "the invisible �ngerprint that'sused on labels and pakaging to sort out genuine produts from ounterfeits" (GeneG. Marial, [80℄).2We disuss in Setion 4.6.2 situations when this assumption might not be valid.



50 4. Disrimination Step: Fingerprinting Ativities3. a DNA �ngerprint, a hemial �ngerprint.We are interested in the seond and generi de�nition. The �ngerprint should not bean add-on. A �ngerprint is a unique set of parameters that allow haraterizing an objet.There might be many �ngerprints for a given objet (just like the eye , DNA or thumb,et for human beings), but it is important to remark that the ombination of several�ngerprints remain a �ngerprint. Here, we propose to identify �ngerprints of attak toolsfrom the honeypot datasets, in order to analyze and orrelate them, to understand attakproesses and detet new threats, et. We also show in the following setions the �rstadvantages this lassi�ation brings to the analysis. Based on the previous remarks, wean de�ne an Ativity Fingerprint as:De�nition 4.5. An Ativity Fingerprint is an analytial evidene that haraterizes aspei� maliious ativity on any sensor of a group of IP soures.4.2.2 Analytial EvideneWe want to de�ne the �ngerprints of an attak in terms of a few parameters. In a passivemanner, all the info we reeive onstitute the �ngerprint. However, we need to determinethe dimension of this �ngerprint. We base this step on our own experiene of tra�monitoring, and on tehniques ommonly used for network monitoring. This leads us tode�ne the following list of attributes:1. The number of targeted virtual mahines on the honeypot platform2. The sequenes of ports: From the ordered pakets (reeived time) sent to one vir-tual mahine, we extrat the exat sequene of distint targeted ports. Figure 4.1illustrates the de�nition.3. The total number of pakets sent by the attaking soure4. The number of pakets sent by the attaking soure to eah honeypot virtual mahine5. The duration of the attak6. The inter-arrival time between pakets reeived by the targeted mahine7. Ordering of the attak8. The paket ontents (if any) sent by the attaking soureWe an also imagine to take other parameters into aount, like the paket size. Thisinformation is often misleading, as some protools implement padding to build normalizedsize pakets. This whould not allow us to disriminate several attaks using suh protools.



4.2. Fingerprints of Ativities 51This is the main reason why we foused on paket payload only, as delivered to the upperlayer. These seven attributes are more preisely detailed and justi�ed in the followingsetions.
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Figure 4.1: A Ports Sequene Assoiated to an Observed Ativity4.2.3 Classi�ation RequirementsThe analytial evidene of an ativity �ngerprint is made of all onrete attributes pre-viously listed and observed diretly from olleted data. They do not require partiulartools (only tra� sni�ng and simple omputations) to ompute them. An o�ensive toolan have di�erent ativities, depending on the way it is on�gured. We want to �ndlusters, i.e. groups of IP soures that share the same ativity �ngerprints.Preliminary analysis of the tra� we have srutinized has revealed that network distur-bane might a�et in some ways the ativity �ngerprint. Obviously, the lusters we intendto obtain must not be biased by these disturbanes whih are not diretly related to theattak ativity. As a onsequene, the HoRaSis framework must ontain a lassi�ationmehanism for the IP soures whih onsider this problem.Generalization proess has been used to haraterize DoS attaks in [115℄, and it is,as far as we know, the only publiized e�ort whih is going so far in the generalizationproess of the tra�. The authors identify the attak stream, that is the sequene of attakpakets reated by the host mahine and the attak tool. However, the attak stream isshaped by many fators: number of attakers, attak tool, operating system, host CPU,network speed, host load, and network ross-tra�. Sine they de�ne an attak senarioas a ombination of the attaker and attak tool, the �ngerprinting tehniques should berobust to variability in host load and network ross tra�.The lassi�ation task onsists in assigning objets to lasses (groups) on the basisof measures made on the objets. Classi�ation is unsupervised if lasses are unknown,and if we want to disover them from the data (luster analysis) [110℄. Classi�ation



52 4. Disrimination Step: Fingerprinting Ativitiesis supervised if lasses are prede�ned. In this ase, we an use a (training or learning)set of labeled objets to form a lassi�er for the lassi�ation of future observations. Inour situation, we have no prede�ned lasses. However, as we explain below, we have agood intuition based on the experiene of digging into the database on possible lasses,or at least attributes to build lasses. Thus, the proposed lassi�ation method must beunsupervised but ontrolled.Clustering omes into two general �avors: Partitioning or Hierarhial [61℄. Parti-tioning usually requires to pre-speify the number k of mutually exlusive and exhaustivegroups (k-means, self-organizing maps, PAM, et). The hierarhy-based lustering meth-ods produe a tree or dendogram. They avoid speifying how many lusters are appro-priate by providing a partition for eah k obtained from utting the tree at some level.This tree an be built in two distint ways:� bottom-up: agglomerative lustering� top-down: divisive lusteringSome tehniques also exist to estimate the number of lusters (silhouette width in PAM[92℄, Gap statistis [230℄, et). In our situation, we have no indiation on the initialnumber of lasses. Furthermore, the initial dataset is the whole database, that is allpakets olleted so far. Our lustering tehnique should be in this ase a hierarhy-based and top-down approah. It is important to point out that lustering annot notwork. That is, every lustering methods will return lusters. Clustering helps to groupinformation and it is a visualization (abstration) tool for learning more about the data.To onlude, we intend to lassify attaking Soures aording to their ativity �nger-prints on eah platform. Some lustering tehniques are applied to make this grouping,and the global method, presented in the next setions, is a hierarhy-based and top-downapproah.4.3 Clustering Algorithm4.3.1 High Level DesriptionThe purpose of lassi�ation here is to group all the IP soures that share ommonharateristis as de�ned in the previous setion. This task is however not as simple as itappears, for at least two reasons. First, tra� in the network is subjet to a few botheringe�ets, e.g. losses, delays or reordering. Seond, the notion of similarity assoiated toeah parameter is not learly de�ned. There exists dozens of distane funtions, andothers an also be generated. To deal with these potential issues, we split the lusteringalgorithm into four steps:



4.3. Clustering Algorithm 531. We withdraw all network in�uenes from the dataset;2. We lassify the data aording to deterministi parameters;3. We luster the soures together aording to non-deterministi parameters;4. We validate the lusters and provide a onsisteny attribute.Eah of these steps is presented in the following subsetions.
4.3.2 Network DisturbanesIntrodutionWe are interested in this setion in estimating the impat of some network e�ets, andespeially losses and reordering, in the analysis of attaks. As an illustration, onsider theanalysis of Win32.Rbot.H whih is desribed in [40℄. Win32.Rbot.H is an IRC ontrolledbakdoor that spreads by sanning ports 139 and 445 respetively. If reordering or paketlosses our, the sequene of ports an be altered, and so will the analysis in an indiretmanner. Win32.Rbot.H ould then be assoiated to ports sequenes {139}, {445} (if loss),or {445,139} (if reordering), instead of the "exat" sequene {139,445}. To the best of ourknowledge, no study of the impat of paket losses and/or reordering on attak forensishas been arried out so far. We have desribed the whole study in [193℄, and we providein the following the main results.In addition, we are olleting pakets on preise and unique loations, the Honeypotsensors. The general problem of vantage points has been detailed in [177℄: the loationwhere pakets apture is performed an signi�antly skew the interpretation of the ap-ture, in quite non-apparent ways. Some vantage-point issues annot be orreted withoutadditional information, and this leads to a fundamental problem in network intrusiondetetion of adversaries being able to exploit vantage-point ambiguities to evade seuritymonitoring [196, 102℄. In our ase, data olletion is made at the reeiver side. Only asmall fration of the tra� from the attaking Soure is observed: the sole pakets target-ing the Leurré.om sensors. As a onlusion, existing solutions from the tra� analysis�eld are not diretly appliable to our ase [71, 120, 169, 241℄. This led us to devise anew solution that we detail in the next setion. This solution is based on a partiular IPheader �eld. An advantage of this method is that it relies on layer 3 information and isthus appliable to TCP, UDP and ICMP tra� altogether.



54 4. Disrimination Step: Fingerprinting AtivitiesReordering and LossesWe have foused on some partiular network e�ets, namely the paket losses, retrans-mission, dupliates and forward reordering. A good de�nition of forward reordering anbe found in [48℄ and is illustrated in Figure 4.2. It refers to pakets sent by a soure whihare not reeived in the orret order at the reeiver side.

Figure 4.2: Forward Reordering from [48℄In order to detet forward reordering, we have developed a tehnique relying on apartiular IP �eld alled the identi�ation �eld, or IPID that is normally used in fragmentreassembly (see RFC 791 for more details [90℄). As RFCs do not learly speify it, this �eldis implemented in di�erent ways, depending on OS �avors. Five di�erent implementationsenarios have been observed so far ([30℄):� Senario 1 : IPID is a non-null (C) onstant.� Senario 2 : IPID is inreased by a standard inrement of one for eah sent paket.� Senario 3 : IPID is inreased by an o�set of 256 eah time a paket is sent. Thisresults from an unintentional error in Mirosoft IP stak.� Senario 4 : IPID is randomly hosen eah time a paket is sent.� Senario 5 : IPID is always a zero value.The authors in [49, 62℄ report that the id �eld in the IP Header is generally imple-mented as a simple ounter inremented by one eah time an IP paket is sent. Bellovinalso uses this partiular property in [49℄ to detet NATs and to ount the number of ative



4.3. Clustering Algorithm 55hosts behind them. We have demonstrated in [193℄ that most of the tra� we ollet hasthe very same property. More preisely, around 75% of the soures having sent more thanone paket share this property. It has also been demonstrated in [193℄ thatit is quiteunlikely that ordered sequenes of IPIDs ould be due to random e�ets and, thus, thatany disorder is most likely the representation of reordering e�ets.We present in [193℄ a few algorithms to detet paket reordering whih are appliableto the soures that use inremental IPIDs. In these ases, as presented in Figure 4.3, thereeiver will only observe pakets with IPID n and n+2 (resp. n and n+512), and not theone with n+1 (resp.n+256) in ase of a paket loss and an IPID sequene n; n+2; n+1(resp.n; n + 512; n+ 256) in ase of reordering.
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(n+1) -> n ?Figure 4.3: Honeypot-oriented Observations during Paket Losses or ReorderingFor example, we identify reordering by looking at the sequenes of reeived paketsfrom eah attaking soure on a honeypot environment (Large_Sessions). Eah mismathbetween the sequene of IPIDs and the sequene of apture timestamps is labeled as areordering. Algorithm 1 provides the pseudo-ode to detet reordering for an attakingsoure sending pakets (Pkti)1<i<N aptured at time (Ti)1<i<N with IPIDs (IPIDi)1<i<N .Suh sessions are �agged with a reordering �ag.Algorithm 1 IPID Analysis: Reordering detetionfor eah sequene of pakets and eah attaking sourewithin the set of those identi�ed as implementing senarios 2 or 3 doif 9 i 2 [1::N � 1℄ verifyingTi < Ti+1 AND IPIDi > IPIDi+1 (mod216) thendetet_reordering = truebreakend ifend forTo avoid reordering e�ets, the easiest solution onsists in ordering pakets by theirIPIDs when the soure is labeled with a reordering �ag.



56 4. Disrimination Step: Fingerprinting AtivitiesA missing IPID an either be due to a loss or simply to pakets sent by the Soure toother destinations. At this stage, we an only make assumptions on the missing pakets,and label the orresponding pakets session with loss labels. The statistis method wehave presented in [193℄ however helps providing a good on�dene on the labeling. De-teted losses will be taken into aount in the following when omparing paket traes.There is no easy way however to interpolate the missing pakets, exept by statistiallyinterpolating the tra� with the others on quite similar ports. We limit in the followingthe loss impats by generalizing the parameters of the ativity �ngerprint.Dupliates and RetransmissionIt might happen that the network dupliates the original paket and generates at least twopakets with the very same sequene number. The auses and impats of these anomalieshave been extensively studied in [119, 174, 155℄.Brosh et al. have presented an interesting way to lassify out-of-sequene pakets,by omparing only two headers �elds, namely the IPID and the TCP sequene numbers.Following Jaiswal et al. in [119℄, they have de�ned an out-of-sequene (OOS) paket tobe a paket whih TCP sequene number is smaller than previously observed sequenenumbers (reeiver time) in that onnetion. Dupliates, as well as reordering and re-transmission, are lassi�ed as presented in Figure 4.4. Dupliates are easily identi�ed asompletely idential pakets, inluding tp sequene numbers and IPID. We remove thembefore any further analysis in our data. Reordering is deteted and �xed as presented inthe previous setion.

Figure 4.4: Classi�ation Proess of Out-of-Sequene Pakets [57℄Retransmission orresponds to the two other outputs (see Figure 4.4). It is importantto note that retransmission and loss are di�erent, and might not be orrelated. As some



4.3. Clustering Algorithm 57attak tools might implement partiular transport layer3, a loss ould not be detetedand not imply a retransmission. This is illustrated in Figure 4.5 where the �rst �gurepresents a loss followed by a retransmission, while the seond �gure represents a losswithout retransmission. Both senarios are possible, but in the seond ase, we miss onepaket. On the ontrary, it is su�ient in the �rst ase to reorder the out-of-sequenepaket to get the initial sequene of pakets.
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(b) Loss without Retrans-missionFigure 4.5: Impat of Loss and RetransmissionOther biasesWe have shown in the previous setion how to limit the impat of paket retransmissions,dupliates and reordering. Other network disturbanes exist, like the time it takes for apaket to travel from its soure to its destination (delay, sometimes alled lateny and itsvariations aka jitter).We explain in the following how to deal with the remaining e�ets, inluding:� paket loss� delay, jitterAnother network e�et is the IP dynami alloation. This issue has been avoided thanksto the de�nition of a Soure (Setion 3.5.2). We onsider an IP as the same soure as longas the observed IP ativity does not ontain more than a 25-hour period of inativity.However, lots of other network problems might be onsidered. As an illustration, it has3An interesting summary of the ambiguities in the true semantis of observed tra� has been presentedby Paxson in a reent talk [175℄.



58 4. Disrimination Step: Fingerprinting Ativitiesbeen shown in [203℄ that the simple task of identifying the end of a TCP onnetionis not easy, as many �avors are urrently implemented in TCP staks and despite thereommendations in RFCs [182, 38, 173℄. It is also worth mentioning at this stage thestudy presented by Paxson et al. in [176℄, whih aims at desribing a few problems thatmight arise while onduting Internet Measurement. More preisely, the author fousesin [176℄ on some imperfet apture devies, whih an exhibit limitations both intrinsito their design and how we use them. This danger of misoneption an lead to errors inequating what we are atually measuring with what we wish to measure. Paxson pointsout a few of these problems, inluding:� Measuring TCP paket loss by ounting retransmitted pakets, leads to overlookingthe problem of pakets retransmitted unneessarily, or of pakets repliated by thenetwork (see [119℄ for a study that expliitly aknowledges this di�ulty, and [39℄for a study demonstrating that di�erenes in the two rates an be quite signi�ant).� tpdump only produes an end-of-run summary of the total number of drops, so itis not possible to assoiate drops with the point in time at whih they ourred.� tpdump, as a majority of tools, su�ers from implementation �aws. As an illus-tration, major advisories appeared in 2004, as researhers found that tpdumpould rash or misbehave after parsing partiular protools like L2TP (port 1701),ISAKMP (port 500) or RADIUS (ports 1645,1646,1812,1813).As a omplementary illustration, it has been studied in a student projet [65℄ sometehniques to determine network anomalies due to attak rafted pakets or to apturebugs and misbehaviors. The author fous on some TTL anomalies. This is another net-work in�uene that has not been onsidered at this time on the lassi�ation mehanism.We have, however, determined a bug in the apture of Snort, whih modi�ed partiular�elds (TTLs and IPIDs) due to a ode error in the TCP stream4 preproessor.We an imagine to study all of the potential biases, and this must de�nitely be done.However, this is a huge amount of work, and not an easy task. We avoid the problemin the following by generalizing some attributes, like the number of pakets, with regardsto these potential network in�uenes. This generalization approah remains realisti andfeasible in the sope of our study.DrawbaksThe tehniques presented to address the impat of reordering, retransmission, dupliatesmodify the data and an be onsidered as an attempt to normalize the monitored tra�.It is worth pointing out here that suh a normalization of the tra� might lead to somedrawbaks. By withdrawing dupliates, we might miss partiular types of attaks, e.g. theones that sent very same rafted pakets (all pakets having the very same ip/tp layer, in



4.3. Clustering Algorithm 59terms of seq number, et.). As a onsequene, we limit the number of suh data hangesto one per Tiny_Session. This is justi�ed as a large majority of onnetions onern asmall number of sent pakets. Thus, these network in�uenes should remain limited. Themost di�ult point is to determine ertain riteria, whih help deiding if the observedphenomenon is only due to an artifat unrelated to the attak, or if the phenomenon itselfis an additional feature of the attak. The framework must tolerate network anomalies,instead of withdrawing them all, in order not to bias attak analysis. This remark alsojusti�es why we have not looked at other disturbanes and why we leave them for futurework.4.3.3 Disrete ParametersDi�erent parameter ategoriesIn�uenes due to the network have been aounted for in the previous setion, and someof them have been anelled. They are not related to the attak proesses. The followingstep onsists in lassifying data. The �ngerprint attributes have been brie�y desribedin Setion 4.2.2. Two paket traes (Large_Sessions) will be said similar if all of their�ngerprint attributes (see Setion 4.2.2) are similar. It implies that a similarity funtionmust be de�ned for eah attribute. These funtions must at least onsider the previouslymentioned ase of losses. We estimate that some attributes are less impated by losses(or delays) than others. Those we believe annot be impated by losses are alled disretevalues hereafter and are desribed in the next setion. Others highly �utuate dependingon losses. They are generalized in Supervised Intervals whih are detailed hereafter.Disrete ValuesWhen applying mahine learning in pratial settings the �rst di�ulty is raised by theattribute evaluation phase for the data at hand. The basi idea of attribute seletionalgorithms is searhing through all possible ombinations of attributes in the data to �ndwhih subset of attributes works the best for predition. The seletion is done by reduingthe number of attributes of the attribute vetors, keeping the most meaningful attributes(whih together onvey su�ient information to make learning tratable), disriminatingones, and removing the irrelevant or redundant ones. In pratie, the hoie of a learningsheme (the next phase) is usually far less important than oming up with a suitable setof attributes.We ome out with three major disrete attributes out of the seven haraterizing anativity �ngerprint (see Setion 4.2.2), that seem harateristi of di�erent attak tool�ngerprints and represent major semantis:



60 4. Disrimination Step: Fingerprinting Ativities1. Attribute A: The number of targeted mahines: An IP soure an target either 1,2 or 3 virtual mahines in eah Leurré.om environment.2. Attribute B: The ordering of the attak against virtual mahines. If the virtualmahine has targeted several virtual mahines, we give a boolean value 0 if thepakets were sent in sequene and 1 otherwise. In sequene means that the Souresends all its pakets to a virtual mahine before targeting another one.3. Attribute C: The list of ports sequenes used against eah virtual mahine of anenvironment.Figure 4.6 presents the umulative distribution funtion (CDF) of the number of re-eived pakets per Virtual Mahine, for eah IP soure (that is, eah Tiny_Session inthe Leurré.om terminology). 30% of the Tiny_Sessions ontain at less 3 pakets. Thismakes the number of mahines quite stable against paket losses, and on�rm our hoieof Attribute A as a �rst lustering riterion. This property is also valid with ports, evenif the average number of pakets per port per Tiny_Sessions is smaller. Furthermore,due to the omplexity of the interpolation proesses, it is reasonable, in a �rst stage, toonsider the sequenes of ports as a disrete value. A re�nement will be proposed in thenext hapter. Following the very same idea, it would also have been possible to onsiderthe sequenes of targeted virtual mahines instead of their number. The hoie has beenjusti�ed by the fat that whenever IP soures target several virtual mahines (VMs), theyfollow the natural order of the VM IP addresses of a sensor in 99,7% of the ases.
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Figure 4.6: CDF: # Reeived Pakets per Virtual MahineThe attribute evaluation an be done in di�erent ways. They are listed hereafter,aording to the entropy of lasses. We ompute the entropy H of eah lass probabilitydistribution P as: H(Class) = � Xx2ClassP (x):log(P (x)) (4.1)



4.3. Clustering Algorithm 61� The Information Gain evaluates the worth of an attribute by measuring the infor-mation gain with respet to the lass.InfoGain(Class; Attribute) = H(Class)�H(ClassjAttribute) (4.2)� The Information Gain Ratio that evaluates the worth of an attribute by measuringthe gain ratio with respet to the lass.GainR(Class; Attribute) = (H(Class)�H(ClassjAttribute))H(Attribute) (4.3)� The Symmetrial Unertainty that evaluates the worth of an attribute by measuringthe symmetrial unertainty with respet to the lass.SymmU(Class; Attribute) = 2 � H(Class)�H(ClassjAttribute)H(Class) +H(Attribute)(4.4)� The Chi-Squared Statisti �2 (or Pearson-Chi-squared statisti) evaluates the worthof an attribute by omputing the value of the hi-squared statistis with respet tothe lass. The omputation is made between eah pair of attributes in order to feeda ontingeny table.�2 is then quite easily derived from the table and express howrelated the two attributes are.We intend in the following to evaluate the attributes thanks to the Information GainRatio (IGR), also used in some deision tree algorithms like C4.5 ([198℄), as it providesa fairer value than the Information Gain only. Indeed, this last notion tends to favorattributes that have many values. It is important to note here that we intend to keep allof the hosen parameters whih depit an ativity �ngerprint. However, given a samplespae of p dimensions, it is possible that some dimensions are less disriminatory thanothers. This measure intends to quantify this di�erene.In Table 4.1, we give the number of lusters obtained by splitting the whole dataset(from February 1st 2003 to July 31st 2005) depending on the number of hosen attributes:
It an be observed from Table 4.1 that Attribute B is not really disriminatory. Itsoverall Information Gain Ratio remains very small. In other words, its ontribution to thelassi�ation is not really signi�ant. Atually, this is not surprising as it provides quiteredundant information with Attribute A and as it disriminates the ativities on severalvirtual mahines only. This table provides an interesting estimate of the orrelation amongparameters, in the ase this orrelation is not straightforward.



62 4. Disrimination Step: Fingerprinting AtivitiesTable 4.1: Classi�ation in funtion of some disrete valuesSplitting Attributes Number of lusters Info(F)Attribute A 3 1.0940Attribute B 2 0.0034Attribute C 46446 4.269547Attributes A and B 4 0.760566Attributes A and C 46476 4.269695Attributes B and C 46449 4.269569Attributes A and B and C 46479 4.269717
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Figure 4.7: Distribution of Sizes among ClustersFigure 4.7 gives the distribution of sizes among lusters (y-axis in thousands of lus-ters). There is a lear prevalene for small ones. In a more general manner, only 2702lusters ontain at least �ve Soures, 8759 at least 2 and 1699 at least 10. We re-mind here that the database ontains 1431093 Large_Sessions, that is, there is a verysmall diversity of attaks with respet to Attributes A, B and C (in average, there is143109346479 � 31 Large_Sessions per luster). It is also important to note that more than95% of large_Sessions are thus inluded within 2702 lusters. Without onsidering otherattributes, this leads to the following orollary:Corollary: The grouping of maliious ativities by ports sequenes and number of tar-geted virtual mahines indiates that there does not exist a large variety of ombinationsin the wild.4.3.4 Supervised IntervalsAttributes DesriptionWe de�ned in the previous setion some attributes with disrete values. Classi�ationis simple in this ase, as any ombination of n values de�nes a new lass. There are



4.3. Clustering Algorithm 63other attributes, however, that haraterize a �ngerprint, but whih annot be onsideredas di�erent for eah di�erent disrete values beause the gain ratio would be very loseto zero, as there would be too many generated lasses. In other words, in suh ase, avery same �ngerprint an have an interval of values for a given attribute. Among theseparameters, we onsider:� Attribute D ! Duration: The total duration during whih an attaking sourewas observed on one honeypot environment. It is omputed, for a given soure, asthe di�erene between the date the last paket has been reeived on the environmentand the date the �rst paket has been reeived. This attribute aims at onsideringnetwork delays as a simple artifat of the Internet and not as intrinsi features ofthe attak ativities.Duration = t(last_reeived_paket)� t(first_reeived_paket) (4.5)� Attribute E ! Number of pakets sent to eah virtual mahine by an attakingsoure. This attribute also varies beause of paket losses. Variations might besimple artifat of the Internet and not intrinsi features of the attak ativities.� Attribute F! Average inter-request time: the average time interval between eahpaket reeived from the attaking soure.
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Figure 4.8: Distribution of the Duration Values over all Large_SessionsIt is not obvious to perform a good generalization with respet to di�erent and unpre-ditable distributions. For example, Figure 4.8 desribes the distribution of the durationvalues (Attribute D), in seonds, over all Large_Sessions in the database. A simple glaneat the �gure indiates the hard task of generalizing suh an attribute. A ontrario, Figure4.9 presents the very same distribution, but limited to Large_Sessions within lusters2404 and 1062 (obtained after having onsidered the disrete attributes in Setion 4.3.3).



64 4. Disrimination Step: Fingerprinting AtivitiesThese two lusters are relatively larger than the average, and onsist of a few dominantpeaks. We onsider for instane, that the two peaks of Cluster 2404 haraterize twodi�erent �ngerprints.
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(b) Cluster 1062Figure 4.9: Examples of Duration Distribution among Two ClustersModal properties of these three parametersAs illustrated by the previous example, it seems important here to hek that all lustersshare the same property: there exist for Attributes D, E and F lear peaks that an beused to generalize their values. In order to prove this assumption, we make use of aso-alled peak piking tehnique. Peaks of a distribution are often alled modes. Manytehniques whih aim at extrating them automatially have been proposed [131, 134℄. Inthe following, we intend to prove that there are a few of them in eah luster, and thattheir orresponding bins stem for the majority of their omponents. A bin is omputedby a given baseline around the peak value. The baseline is determined aording to thetolerane we give around the values (see Figure 4.10). The hoie of a tolerane thresholdis justi�ed in the following, as it does not really impat on this demonstration.The tehnique is detailed in Algorithm 2. We extrat the weight of the 5 higherpeaks of eah luster and we ompute their global weight (relative to the luster size,in %). These relative weights aross lusters are then represented in Figure 4.11 forAttribute D4. The x-axis represents the indexes of the 1699 lusters gathering more than10 large_Sessions. All values are higher than 85% (exept for the 2 largest lusters, outof the 1699 onsidered lusters). In other words, the majority of the distribution of eahattribute D, E or F an be expressed by no more than half a dozen of peaks. It seems thusrelevant to apply this simple peak piking tehnique to all lusters in order to generalizethe attribute values.4The graph of Attributes E and F are very lose to this one.
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BaselineFigure 4.10: Peak Terminology of a Given DistributionAlgorithm 2 Distribution Properties of Attributes D,E and Ffor all Attributes Ai with tolerane �i dofor all Clusters Cj doWeight(Wij) = 0Compute the distribution Dijwhile There exists dominant peaks & ounter < 5 doExtrat Dominant Peak PkCompute its baseline:Interval [Pk � �i℄This bin has a weight wij(k)Weight(Wij) = Weight(Wij) + wij(k)Remove the bin from Distribution DijInrement ounter +1end whileend forPlot distribution of Weight(Wij)end forGeneralization ProessAs another illustration, Figure 4.12 represents the distribution of attribute F, i.e. theaverage inter-arrival time, over all Large_Sessions. The x-axis desribes the attributevalues while the y-axis represents the frequeny of the values in terms of Large_Sessions.Clusters also present interesting modal distributions, as it has been desribed in an anal-ysis of Inter-Arrival Times (IATs) in [242℄ arried out in ooperation with Zimmermannet al. The analysis of some modal harateristis has led to interesting results, and the�ndings of two di�erent ativity anomalies:� A strange IAT peak of value 28800s involving UDP port 38293: it turned out tobe the mison�guration of a Norton Antivirus automati update server against apartiular sensor. [242, 16℄.
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Figure 4.11: Modal Property of Attribute D: Weight of First 5 Peaks� A strange IAT peak of value 9754s involving UDP port 1026: this port is used byMirosoft Windows operating systems for the Windows Messenger servie, amongother things. At least one worm is also known to propagate via a vulnerability usingthis servie [242, 19℄. This port is also known to be utilized for the distribution ofspam over the Windows Messenger servie [20℄. The tra� has been periodiallysent by two Chinese servers and monitored by several honeypot sensors.As shown through the examples in [242℄, there are some lear and meaningful peaks.We use a dediated algorithm to generalize these values aording to some partiularthresholds that are explained hereafter. In general, we have deided to keep on splittingthe lasses with ertain tolerane indies (or bin baselines), where a tolerane index isde�ned for eah attribute. The tolerane indexes are assoiated to probabilities of lossand delay in the network. The tehnique is summarized in Algorithm 3. It simply onsistsin onsidering peaks by dereasing frequeny. For eah peak, the baseline is omputedaording to the tolerane index. We also avoid the situation where there is a baselineoverlap: in this ase, the new baseline does not take values already inluded in the otherbaseline. An illustration of suh a senario is presented in Figure 4.13. Baseline of Bin 2is shorten as it partially overs baseline of Bin 1.For eah attribute presented above, we have used the tolerane thresholds presentedin Table 4.2. Small variations of the di�erent tolerane indexes does not make largelassi�ation hanges. This is quite straightforward when looking at the two examplespresented in Figure 4.9.
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Figure 4.12: Distribution of Average Inter-Request Time ValuesTable 4.2: Tolerane indexes �iduration 2%total number of reeived pakets 8%reeived pakets per Virtual Mahine 8%average inter-paket time 2%Information Gain and RemarksThe Information Gain summarizing this new lustering step is presented in Table 4.3. Weonly present the outome of this method applied on the previous 2702 lusters, that isthe ones grouping at least 5 soures (97,5% of all Large_Sessions). Globally speaking, allattributes are quite equally disriminatory. The splitting aused by Attribute D assoiatedto F, i.e. the observation duration and the average inter arrival time) does not bring moreadditional information than the attributes onsidered alone. This is not totally surprising,as the attributes are not ompletely unorrelated: the values of Attribute F are simplyomputed by dividing Attribute E by Attribute D for eah Large_Session. This explainsthat the Information Gain Ratio is similar when onsidering Attributes (D and E), or (D,E and F).



68 4. Disrimination Step: Fingerprinting AtivitiesAlgorithm 3 Proess of Generalizationfor all Attributes Ai with tolerane �i doCompute the distribution DiOrder Di in dereasing orderfor all Frequent Values Di(j) doTake Interval with:�min = min(Di(j):(1� �i); 0)�max = Di(j):(1 + �i)for all Other already-built intervals [a; b℄ doif a > �min AND a � �max then�max = a� 1end ifif b � �min AND b < �max then�min = b + 1end ifend forAdd new interval [�min;�max℄ in the listend forend for Table 4.3: Classi�ation with Supervised IntervalsSpliting Attributes F Number of lusters Info(F)Attribute D 4109 1.0940Attribute E 3100 0.0034Attribute F 3085 4.2696Attributes D and E 4813 0.7606Attributes D and F 4703 1.0962Attributes E and F 3112 4.3121Attributes D and E and F 4815 4.31274.3.5 Validation: Unsupervised Classi�ationIntrodutionAt this stage, we have lassi�ed the data aording to 6 major attributes, desribed inSetions 4.3.3 (disrete values) and 4.3.4 (supervised intervals). Another attribute hasbeen mentioned but has not been onsidered so far: it is the payload of pakets, whih isalso an interesting �ngerprint attribute. It does not �t into the previous two ategories.Taking the exat values is not relevant, as many �elds in the protool layers 5+ ofteninlude timestamps or other identi�ers, whih make the payload somehow unique. Moregenerally, two major issues must be onsidered before omparing Large_Sessions andtheir assoiated data payloads:
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Figure 4.13: Peak Piking: Intersetion btw Baselines� First, when omparing two Large_Sessions in terms of all pakets sent by eah at-taking soure to an environment. Eah Large_Session onsists in several payloadsto be ompared with.� Seond, Payloads an inlude some random or hanging �elds that must not disturbthe omparison.A distane funtion is applied between payloads of eah Large_Session from a givenluster. This funtion is alled the Levensthein distane and is disussed in the nextparagraph. The lustering top-down hierarhy is explained in the following paragraph, aswell as the splitting riteria to get the new lusters.Levenshtein-based Phrase DistaneIn order to validate the onsisteny of lusters, we onsider paket data ontents. Thepayloads of all pakets sent from the same soure are onatenated to form a simple textphrase thanks to the tethereal utility [6℄. Tethereal is the ommand line version of thepopular network tra� analyzer tool ethereal. It allows examining data from a apture�le and browsing detailed information for eah paket in a text format. Thus, we onsidereah phrase as a onatenation of tethereal lines, with jj separators. Figure 4.14 givesa short phrase of an ftp attak for illustration. Eah luster gathers all attak souresthat are assumed to be due to a single root ause, i.e. to the use of the same attaktool against our honeypots. We de�ne for eah attak soure its assoiated attak phrase.Then, we ompare for eah attak of one given luster distanes to all others phrasesof the same luster. This tehnique is based on the Levenshtein edit distane whih isexplained below.The Levenshtein distane (LD) algorithm has been used in many domains, suh as
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Figure 4.14: Simple Appliation of the Levenshtein Distanespell heking, speeh reognition, DNA analysis or plagiarism detetion. It is a measureof the similarity between two strings, whih we will refer to as the soure string (s) andthe target string (t) [10℄. The distane (sometimes alled edit distane) is the number ofdeletions, insertions, or substitutions required to transform s into t. For example,� If s is "Agpuser�home.om" and t is "Agpuser�home.om", then LD(s; t) = 0,beause no transformation is required to hange s into t as they already are identiasare needed.� If s is "Agpuser�home.om" and t is "Mgpuser�home.om", then LD(s; t) = 1,beause one substitution (hange "A" to "M") is su�ient to transform s into t.In general the two omponents of the phrase distane (i.e. the string distane and thepositional distane) an have a di�erent ost from the default (that is 1 for both) to giveanother type of phrase distane. There is a third omponent: a ost whih gives weights onthe phrases that have less exat mathes. It is desribed in details by Roger et al. in [10℄.This third omponent is disabled by default (i.e. it has a 0 ost), but it an be enabled withustom ost. The method we apply sums the phrase distane from the words from the set(i.e. formed by the de�ned set of haraters) and the phrase distane is alulated fromthe "words" belonging to the omplementary set. Moreover, the algorithm used to �nd thedistane is the "Stable marriage problem" one [114, 148℄. This is a mathing algorithm,used to harmonize the elements of two sets on the ground of the preferene relationships.The positional distane only limits the impat of paket loss when omparing the attakphrases and omputing their global distane. More omplex methods ould have alsobeen onsidered, most of them being urrently tested in bioinformatis to ompare DNAsequenes [58, 220, 229℄. We leave this study for future work, as this simpler solutionperforms well with our dataset, as we will show later.



4.3. Clustering Algorithm 71Hierarhy-based lusteringThe hierarhy lustering tehnique whih has been hosen to split within a same luster allLarge_Sessions that have similar payload sentenes is the lassial pyramidal lusteringmodel built by an agglomerative bottom-up algorithm [94, 52, 53℄. The goal is to obtain ahierarhial struture where eah lass of Large_Sessions is also partioned into sub-lassesand so on, aording to a given distane funtion between lasses. The distane betweentwo sublusters (or sub-lasses) is the maximum of all pairwise distanes between sentenesontained in eah subluster. Applying the Levenshtein phrase distane ombined with ahierarhy threshold �Lev (whih is an upper bound of the maximum value of all pairwisedistanes) ould generate new lusters from the original luster, gathering Large_Sessionswith similar payload ontents (similarity given by small values of the phrase distanes).As an illustration, we present in Figure 4.15 a pyramid built from the 8 payload sentenes(wk; 0 < k < 9) assoiated to a given luster, as well as the resulting four sublustersobtained by onsidering a given hierarhy threshold �Lev (the y-axis representing theonsidered inter-luster distane). Let fCi;j j j 2 Ng be the set of lusters obtainedfrom the original Ci luster (onsidering attributes: A 9 9 KF ). We estimate the initialluster onsisteny ~Ci by omputing the ratio of the largest size obtained among the newsublusters over the initial Ci ardinality:~Ci = max(ard(Ci;j; 8j))ard(Ci) (4.6)If the value is lose to 1, it means that the luster size has not signi�antly dereasedduring the splitting proess. To illustrate this de�nition, it is worth notiing that theluster onsisteny ~Ci is equal in Figure 4.16 to 2939 .Another interesting value is the Splitting Ratio SR, whih intuitively represents thenumber of obtained sublusters after applying the Levenshtein validation phase.SR(Ci) = 1ard(jCi;jexists) = 1#ObtainedSublusters (4.7)We have omputed the SR values obtained with several Levenshtein lustering thresholds�Lev 2 [10::200℄. We �rst remark that the splitting does not hange signi�antly when �Levvaries. We also note some ases where the splitting remains very low. These partiularases are disussed in the next setions, as well as the exat splitting riteria we have ho-sen, based on these experiments. Both indies Splitting Ratio SR and luster onsisteny~Ci are employed to quantify and evaluate the impat of hierarhy-based splitting. Theyan also be used with other splitting methods as well.Splitting PhaseIt is important to note that some worms, also alled polymorphi worms, an hange theirform of funtionality as they propagate from mahine to mahine [130℄. For instane,



72 4. Disrimination Step: Fingerprinting Ativities
Levenshtein Threshold

w1 w2 w3 w4 w5 w6 w7 w8Figure 4.15: Pyramid: Levenshtein-Based Distane Splitting
Cluster Ck

Figure 4.16: Splitting: Cluster Consistenysome families of worms ontain an enryption engine, that ould be very simple, e.g. justinserts no-ops (unneessary system alls) into the worm ode to evade signature-baseddetetion engines, or ould be as sophistiated as enrypting the entire worm using arandom seed for every hop so as to evade detetion during transit. Interesting studieshave been presented by E. Filiol in [99, 100℄. To date, only a few omputer wormshave used polymorphism suessfully [223℄. In a more general ase, many pakets anbe enrypted or might ontain random parts. Thus, the length and the ontent of thepakets in a Session an be or not stati, but are harateristi of suh attaks. If suha polymorphi worm exists, it will generate a luster, as previously desribed, but witha very low onsisteny value, in terms of the Levenshtein distane. All pakets shouldbe quite di�erent in terms of payload sentenes. The luster should not be split in thatase. For the same reasons, it might happen that a small �eld hanges over the sessionsof a very same attak. This an be a di�erent identi�er, or a timestamp that makes allpayload sentenes slightly di�erent. In this situation, the luster must also not be split.We deide to split lusters only if utting the hierarhy at threshold distane �d does



4.3. Clustering Algorithm 73not lead an high value of the index d, d being omputed as:d = # Obtained Sublusters# Soures grouped in the initial Cluster (4.8)d gives an indiation of the number of reated sublusters ompared to the number ofinitial elements. We have presented in [242℄ the impat of splitting the existing lustersaording to these two parameters. There is no real sense hoosing high values for both �dand d, aording to the previous remarks. We however note that there is no real splittingimpats when hoosing small �d or d. The splitting phase is quite stable for small values.In the following, we onsider the new lusters, obtained by hoosing the following values:� �d = 50� d = 0.2It is also important to keep in mind that the de�nition of d does not re�et the sizedistribution of sublustering. As an illustration, onsider a luster Ck of ardinality �Ck.We guarantee with the previous method that the splitting phase annot generate morethan d � �Ck new lusters. However, both extreme senarios are possible:1. The method generates exatly d � �Ck, eah of size 1d2. The method generates two lusters, one being of size 1 and one being of size �Ck� 1This does not present major drawbaks, exept that we ould onsider in the seond asethe marginal luster of ardinality 1 as a strong exeption of the bigger one. We take thedeision, however, to reate two new sublusters, as we estimate that there might existother reasons that ould explain why this single soure annot be linked to the others.It is important to note that eah time this tehnique does not deide to split a luster,aording to the Levenshtein Distane, it estimates that there is a too large variety ofdi�erent payloads within the luster. This an be explained for two reasons: either theluster gathers too many unique attaks, or the luster is made of enrypted attaks. Thisase has been found for 5 lusters.4.3.6 Global Consisteny IndexNew lusters an be obtained thanks to the Levenshtein phrase distane. We stop at thisstage the disrimination phase (lustering), as we onsider that all the riteria whih havebeen determined as important for an attak tool �ngerprint, have been taken into aountin the lustering approah. However, it is still possible to imagine new riteria to hek



74 4. Disrimination Step: Fingerprinting Ativitiesthe onsisteny of ertain lusters. For instane, we an imagine home-made attakingtool whih ontains a bug, and whih has the partiularity of inrementing by 1 the TTLvalue of eah paket it sends (modulo the maximum value 256). Suh a tool exists, andhas been reported in an analysis of the TTL �eld in [65℄. This new attribute an then beonsidered as an additional �ngerprint attribute for the luster (or lusters) whih is (are)assoiated to this tool (or on�gurations of that tool). On the other hand, this attributemight be a relevant attribute for that luster only. We thus onentrate on the assessmentof the onsisteny of the urrent lustering.We de�ne a ladder, the Global Consisteny Ladder, whih represents the Global Con-sisteny index (GCI) of a luster. Eah time a preise attribute like the one previouslymentioned (inremented TTL) is determined, GCI is inremented by 1 (GCI + 1) if theattribute mathes the assoiated luster, and deremented (GCI � 1) otherwise. Theladder is depited in Figure 4.17. The mathing is performed from the same equation pre-sented by Equation 4.8 and a threshold of 90%. This means that if the attribute propertyovers more than 90% of the luster, the luster is said to be onsistent with respet tothe attribute (GCI + 1).The GCI of eah luster might hange. Some students at Eureom have worked onpartiular tools that have made the assoiated lusters hange their GCI value [65℄. Bydefault, the value is otherwise 0.
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4.3. Clustering Algorithm 754.3.7 Inremental Version of the AlgorithmPreliminariesThe lassi�ation desribed in the previous setions remains a method whih is appliedone, on olleted data. Launhing it on a simple omputer an take several hours, andeven days. This annot work to arry out the analysis on arrivig data, to build early-warning systems. In other words, a newly observed Soure should be lassi�ed aordingto the already existing lassi�ation. Thus, we propose, in the following, an adaptivetehnique whih aims at providing an inremental omplement of the algorithm presentedin the previous setion. The tehnique highly depends on the type of attributes, as thelustering method. Thus, three inremental steps are identi�ed, for eah attribute type.This inremental step is important as HoRaSis an ontribute to the building of anearly-warning system. In this ase, the inoming data should be analyzed and storedas fast as possible. This explains why we do not simply use fuzzy algorithms and haveimplemented more supervised ones. It is also worth noting that if the new monitoredativity (Large_Session) annot be related to already built lusters, then it means thatthe ativity has not been observed so far. A report must be sent to the owner of theplatform and a spei� onern should be taken for this partiular ativity. These twofeatures have been implemented in the Leurré.om projet. First, anomalies are listed onthe interfae for all users. Seond, reports are sent periodially to eah partners, withdi�erent levels of details depending on the partner interests. An example of suh a reportan be found in Annexe E.Disrete valuesTaking the examples of Attributes A, B or C desribed in Setion 4.3.3, it is easy tosee that the inremental version will �rst o�er to ompare the triplets already observed.Otherwise, let Soure Si be the new Soure and its assoiated tra� to a given honeypotenvironment: If the triplet Ai; Bi; Ci does not exist, a new luster is reated.Modal propertiesAttributes D, E and F are based on the modal properties of their distribution. Wekeep for eah luster an array of their values in a dereasing order aording to theirintensity. For eah new inoming data from Soure Si, we update the array. The inomingSoure inreases by one the peak orresponding to the values of its Attributes D, E andF. Furthermore, eah of these values an normally be attahed to an existing interval.Otherwise, a new interval is reated following initial algorithm presented in Setion 4.3.4.The reason why peaks are monitored is justi�ed by the fat that if a new peak modi�es the



76 4. Disrimination Step: Fingerprinting Ativitiestop 10 existing ones, it means that the initial frequeny intervals are not valid anymore.In other words, the initial distribution has signi�antly hanged. To date, this has nothappened. In addition, it is important to note here that if there are too frequent updates,this will indiate that the distributions do not math the modal property anymore. Thus,it is something worth investigating. We have applied the algorithm presented in Setion4.3.4 during three periods of three months and for lusters de�ned in this period. Wehave then ompared the obtained algorithms in terms of peaks and resulting intervals.The results are reported in Table 4.4. They learly show the stability of eah peak overseveral months. Table 4.4: Classi�ation with Supervised IntervalsOt-De 04 Jan-Mar 05 Apr-Jun 05Similar top 5 peaks 94% 97% 98%Avg Interval Overlap 3% 3% 5%Avg Weight of the top 5 peaks 85% 91% 89%
Inremental Hierarhy-Based PartitioningWe saw in Setion 4.3.5 how the lustering tehnique is re�ned by an hierarhy algorithmwhih splits the Large_Sessions sharing homogeneous payload sentenes with the Lev-enshtein distane. This tehnique must also exhibit an inremental property in order toavoid the rebuilding of the hierarhy tree from srath at eah insertion. Sensitivity toinput ordering is one of the major issues in inremental hierarhial lustering [101℄. Abasi method to update the tree would be to ompare all the existing lusters with thenew values. If the distane is higher than a �xed threshold, then the omparison withthe luster is onsidered unsuessful. We however propose to make use of the partiularstruture of a hierarhy tree, as proposed in [231℄. A luster hierarhy is basially a treestruture with leaf nodes representing singleton lusters that over single data points.Eah node in the tree maintains three types of information: luster enter, luster sizeand luster density. The luster density desribes the spatial distribution of hild nodesof a node. We de�ne a lusters density as the maximum distane to the losest neigh-bor among the lusters members. Figure 4.18 represents the same pyramid as the onedesribed in Figure 4.15. It inludes, however, the nodes information previously listed.Our approah for inorporating a new Large_Session payload sentene into the lusterhierarhy onsists of two stages. During the �rst stage, the algorithm loates a node in thehierarhy that an host the new payload sentene. The seond stage performs hierarhyrestruturing, hanging the density and size attributes of involved nodes. The approahis desribed in Algorithm 4:
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Figure 4.18: Pyramid: Inremental Hierarhy ApproahOther optimized versions might exist to parse the tree in more e�ient way than thistop-down approah. However, we are not in a situation where this optimization reallymatters. The inremental version is to date fast enough. This diretion is also left forfuture work.
4.4 The Resulting Fingerprints4.4.1 Global StatistisThe resulting number of lusters, inluding the ones whih have not been split beauseof their heterogeneity with their ontent (see the Levenshtein distane splitting riterionin Setion 4.3.5) is 8382. The average splitting ratio is thus 83824815 = 1:74. If we alsoonsider the ones with less than 5 Soures whih have not been onsidered in the seondpart of the algorithm, the tehnique has lassi�ed the whole dataset within 52159 distintlusters. In other words, 52159 di�erent ativity �ngerprints have been observed alongthe several months of data olletion. This validation has an impat on the small numberof lusters whih are still quite large after having onsidered attributes A 9 9 KF . Thelimited splitting ratio is also due to the lak of su�ient payloads. More interation fromthe honeypot sensors would improve the ratio and the global disrimination proess.This step gives the �nal lusters. These are the attak �ngerprints we are looking for,as they gather all IPs sharing the same parameters. We detail and disuss the resultinglustering hereafter.



78 4. Disrimination Step: Fingerprinting AtivitiesAlgorithm 4 Inremental Algorithm for Hierarhy ClusteringRes_Clus ;New attribute wk to insert (payload sentene)Let CH be the Clustering Hierarhy Tree for Attribute AParse the tree in a top-down mannerfor all luster Ni in CH with density �i dofor all Values wi(j) doCompute ŵi = MAX(d(wi(j); wk))d() being here the Levenshtein-based phrase distaneend forend forConsider the node Ni with the largest depth that veri�es:ŵi < �iif Node Ni exists thenreturn Nilink wk to node Niif Node Ni inluded in a luster Cr thenRes_Clus = CrelseRes_Clus = fwkgSend a notie indiating the reation of a new lusterend ifelseCreate new node with losest node and Vk as hild nodesSend a notie indiating that the new entry does not math previous hierarhyUpdate tree path information if neessary for parents nodesRes_Clus = fwkgend if4.4.2 Attakers vs. SannersOne of the attribute whih is taken into aount when building lusters is the number oftargeted virtual mahines on the Honeypot environment (Attribute A in the lusteringproess). Figure 4.19 represents two di�erent evolutions over time. The �rst urve (-o-)represents all ativities (Large_Sessions), whih have targeted a single virtual mahineon one honeypot environment, while the seond urve (-x-) represents all ativities whihhave targeted all virtual mahines in an environment. Values are given in perentages,and we do not represent the ativities against two virtual mahines only, as they stemfor less than 8% of the total number of ativities and for eah month.We also onsiderall honeypot environments. We let same analyses but performed on eah environmentfor future work. It is interesting to observe that in the �rst 6 months of the experiment,the seond ategory of ativities was largely dominant, while in the last 6 months, it isthe opposite situation. We note that at the beginning of 2004 (11th month), the trendabruptly hanged. We have heked that it annot be only explained by popular worms
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Figure 4.19: Larges_Sessions Targeting All vs. One Virtual Mahines from Feb.2003ative at this date like Sasser5.This result also shows that sans on several onseutive IPs are still ommon. Inaddition, we have shown in [187℄ that almost all sans whih target three onseutive IPsare programmed to hit them sequentially in inreasing IP address order. In other words,it ould be su�ient to de�ne three unused IP addresses at the beginning of a networkrange, and blok all external IPs that try to ontat these three IPs in sequene. It wouldde�nitely blok a large part of the so-alled bakground radiation tra�.Claim: This example shows the importane of monitoring malware ativities overlong periods of time. This allows determining quite easily the new trends and globalhanges of monitored ativities. It also gives the opportunity to adapt seurity defensesto these trends.4.4.3 Ports, Ports Sequenes and ClustersPorts Sequenes and ClustersTable 4.5 shows the di�erenes between the notion of ativity on a port, as reported inseveral web sites, and the onrete number of lusters assoiated to that port. The �rstolumn of Table 4.5 presents the top 10 ports given by the Internet Storm Center forthe month of Deember 2005 [14℄. The seond olumn presents the number of distintsequenes of ports whih have been observed inluding this port, and the third olumnrepresents the number of lusters6, or ativity �ngerprint targeting at least that port on5Sasser atually appeared three months after the abrupt derease of the �rst urve, in the last daysof April 2004 [26℄.6All lusters, inluding the ones of size equal to 1.



80 4. Disrimination Step: Fingerprinting Ativitiesa leurré.om sensor during the same month.Table 4.5: Ports vs Clusters: di�erent information levelsPorts Sequenes of Ports ClustersTCP 1026 221 446TCP 6881 11 4TCP 445 10447 16568TCP 80 7504 2464TCP 27015 2 1TCP 135 7437 13122TCP 40000 5 2TCP 53 134 112TCP 1025 9715 3413TCP 65535 34 8
As a reminder, it is important to understand that there might exist more ports se-quenes than lusters. For instane, a given luster an represent an ativity whih hasdi�erent behaviors on eah virtual mahine, and an thus target di�erent ports. We �rstobserve from table 4.5 that there are a large number of sequenes of ports. They area �rst indiation that many di�erent attaks target a same port. The seond olumngives the number of distint suspiious ativities observed at least on that port. Withno surprise, there is an important number of ativities against the popular ports. It isworth investigating, at this stage, if some unexpeted peaks on a port are due to a singleativity or several ones. This step is made possible by the monitoring of attak ativitiesinstead of port statistis. This observation leads to the two following laims:Claim: An analysis of malware ativities annot be limited only to statistis on asingle port.Claim: An analysis of malware ativities annot even be limited only to statistis onthe ports sequenes.Clusters already give a better notion of ativities, and are thus more meaningful forstudying tra� on honeypots. We will show in the next hapter that ativities mightshare ommon features that are also worth being investigated.4.4.4 Interesting Ativity BehaviorsOne of our experiments related in [192℄ has led us to look at the lusters assoiated tothe Deloder worm. The detetion of the Deloder worm among the lusters is desribed



4.4. The Resulting Fingerprints 81in more details in Annexe D. This worm, whih spreads over Windows 2K/XP mahines,attempts to opy and exeute itself on remote systems, via aessible network shares.It tries to onnet to the IPC$ share7 and uses spei� passwords. In Figure 4.20, werepresent, per month and per ountry of origin, the amount of attak soures ompromisedby the Deloder worm that have tried to ontat the honeypot sensors. More details of theDeloder identi�ation are presented in Annexe D.

Figure 4.20: Deloder Ativity (Nb assoiated attak soures)A surprising observation from Figure 4.20 is the rapid derease of its propagationaround July 2003. [157℄ mentions that the shutdown of CodeRedII was preprogrammedfor Otober 1, 2001. [222℄ mentions that Welhia worm self terminated on June 1st, 2004,or after having run 120 days. A similar mehanism ould have been used for Deloder but,as far as we know, no one has ever made mention of it publily. In the absene of suh amehanism, it is worth trying to imagine the reasons for suh a sudden death. We haveome with the following possible senarios:1. Deloder is still ative but our virtual mahines are not sanned anymore, for someunknown reasons. Statistially speaking, this seems unlikely and should be validatedby means of other similar platforms.2. All mahines have been pathed. Deloder has been eradiated. This is anotherunlikely senario sine Deloder has targeted a large number of platforms, manyof them being personal omputers whih will probably never be pathed. Newersuessful worms targeting the same port (eg Sasser, Welhia, the Korgo family,et.) tend to on�rm this.7or ADMIN$,C$,E$ shares depending on the Deloder variants.



82 4. Disrimination Step: Fingerprinting Ativities3. Deloder bots are listening on IRC hannels for ommands to run attaks. One ofthese ommands might have told them to stop the propagation proess. In thisase, the Deloder worm is not visible anymore but its botnet remains as dangerousas before.At this point in time, unless a pre programmed shutdown is inluded in the Deloder wormode, we onsider the third option as the most plausible one. A de�nitive answer to thatquestion ould be brought forward by someone who has aess to the Deloder worm ode,whih we have not. If our assumption holds true, this would imply that worms writers havedeveloped a new strategy. Instead of ontinuously trying to ompromise more mahines,they have deided to enter into a silent mode when the size of their botnets is su�ient[219℄. By doing so, they dramatially redue the likelihood of seeing an in-depth studyof their worm being done as invisible worms are de�nitely less interesting to the seurityommunity than virulent ones. The bottom line of our �ndings is that suh an in-depthanalysis of that worm is probably worth being done if it has not been done yet. Sleepingworms might atually be more sophistiated and nefarious than ative ones. We alsodedue the following laim from this example:Claim: Distributed sensor monitoring oupled with time analysis of attak �ngerprintsgives a good overview of the attak evolution over time. Fast inreases or dereases ofativities should be onsidered as abnormal behaviors, worth being investigated.Other examples have been disussed in [192℄. Due to spae limitations, we report theinterested reader to this work.4.4.5 Attak Tool Identi�ationCluster SignaturesThe �rst step before doing any attak tool identi�ation is to build a Cluster Signature,whih represents the values of eah attribute A 9 9 KF used by the lustering tehnique.The disrete values are diretly extrated for attributes A 9 9 K C, or the supervisedintervals for attributes D 9 9 KF .The main issue to determine a relevant luster signature is the generalization of theattak phrases. The idea onsists here in generating a regular expression from the di�erentattak phrases, by taking the same approah as with the Levenshtein distane. Eahdeteted deletion, insertion or substitution is replaed by a star �. This method has beenarefully desribed in [165℄, and is illustrated by Figure 4.21.More sophistiated tehniques have been developed by researh ommunities in bioin-formatis (Pattern Disovery [178℄ ) like the ELPH Gibbs sampler ([181℄) and the teire-
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leurre*comFigure 4.21: An Example of the Attak Phrase Generalizationsias algorithm ([200℄). Future work will onsist in testing and applying suh tehniquesto replae the simple generalization mehanism urrently implemented. However, theLevenshtein-based distane is urrently su�ient for the lustering re�nement.As a onlusion, eah luster an be summarized by a signature. Figure 4.22 showssuh an example. It symbolizes an ativity observed on one single platform against thefollowing TCP ports 80,135,139,445,1025,1433,2082,2745,3127, 5000 and 6129 for a oupleof seonds (8s � t � 10s). The ativity targets a unique virtual mahine,
* Payloads: yes (DCOM, Netbios, WebDav)

CLUSTER ID: IDENTIFICATION:

2145
W32/Gaobot.worm.gen.k
Backdoor.Agobot.Id
W32/Agobot−GM (sophos), also known as:

FINGERPRINT:

* Number Targeted Virtual Machines: 1
* Ports Sequence: 2745,2082,135,1025,445,3127,6129,139,1433,5000,80
* Number Packets sent VM: 33
* Global Duration: 7s < t < 11s
* Avg Inter Arrival Time: < 1sFigure 4.22: Example of a Cluster Signature

Toward an automati identi�ation tehniqueThe luster presented in Figure 4.22 an be easily identi�ed by googling as one out of thenumerous Agobot variants [208℄. Unfortunately, the general part whih assoiates a nameto eah ativity �ngerprint (luster), is urrently missing in the presented framework.An on-going work intends to automatially link well-known exploit databases to attak�ngerprints [226, 234℄.The observed lusters an be well-known ativities, or other ativities hidden in thenoise of bigger ones. These signatures have been applied to reate new Snort alerts in thestandard IDMEF format in [165℄. The goal is here to add another information soure tothe urrent alert orrelation engines, in order to re�ne their analysis. The presentationof this work is out of the sope of this doument, even if it illustrates a onrete usage ofthe information provided by eah luster.



84 4. Disrimination Step: Fingerprinting AtivitiesThe method whih we prone to identify tools is:� First, look at potential tool andidates on Inident mailing lists.� Seond, run all of them in a seure environment against a honeypot sensor, toompare their traes with the lusters signature.� Third, if a math is found, it indiates that suh a �ngerprint has already beenobserved. The luster size an also present for a given period of time the frequenyof suh ativity. On the other hand, no mathing learly indiates that the toolandidate, as suh, has not been observed during the whole monitoring period.To date, a few ases have been analyzed. Some tools have been determined by theprevious method and have been detailed in [242℄. They inlude:� The RTSP sanner, exploiting a vulnerability on port 554 [112℄.� The Grim's ping ftp sanner [2℄.� The Roadkil's ftp probe [116℄.� The SQLSnake worm (against port 1433) [8℄.� The SFind.exe sanner (against port 1433 also) [103℄.� et.This is however a fastidious task. One reason lies in the large amount of attak tools,or at least instanes of attak tools that have been observed so far. The number of distintlusters gives here a good hint of the value. Seond, many tools are not available, or hardto �nd, as they are shared by a small ommunity of users. These tools, on the other hand,would not be observed without the preliminary studies whih we have made so far, andthe partiular environment given by the Leurré.om set up. It is thus quite unlikely thatthese tools are well-known in the seurity ommunity.4.5 Mislassi�ed Tra� and Re�nementA Soure has been de�ned as an IP address during a ertain time window, dependingon the inter-arrival time of the pakets it sent. Pakets sent within a 25-hour slidingwindow are attahed to the same Soure. Looking at the tra� whih generated lustersof size 1 leads to the onlusion that the lustering method annot be applied for partiularsenarios, like the one illustrated in Figure 4.23. This diagram represents the arrival times



4.5. Mislassified Traffi and Refinement 85of pakets from a given IP Address to the honeypot sensor. This IP address orrespondsto a HPOpenview server (or more preisely a HP Systems Insight Manager HPSIM ) thatperiodially sans mahines in the network, using di�erent layer 3 protools and transportlayer ports (UDP 161: SNMP, TCP 280: http-management, TCP 80: http) [29℄. We havepresented in Figure 4.23 its ativity over a 7-day period, but it is important to note thatit has been observed for �ve months.

Figure 4.23: Observation of HPSIM AtivitiesAording to our de�nitions, this tra� will be split into four distint Sessions, andfour di�erent Soures. However, it is also lear at this point that the honeypot platformfaes the very same ativity. The �ngerprint of this ativity should group the four Sessions.Thus, it appears that the previous tehnique does not suit well for very long and reurrentyet not periodi proesses like this one. Small lusters orresponding to suh senariosshould be gathered into the same one. Thus, mislassi�ed tra� might orrespond tosome partiular mison�gured mahines and/or network management ativities. Insteadof keeping them unlassi�ed, it has been deided to group them by relaxing the lusteringonditions. These partiular mislassi�ed ativities are thus simply determined by verysimple parameters. We deide to merge all very small lusters (less than 2 Soures) if andonly if :Parameter 1: They ontain the very same IP addresses.parameter 2: They are haraterized by the same list of ports for eah targeted virtualmahine.We thus relax the onstraints of the lustering algorithm but we also add a third onstraintto hek that we deal with a senario similar to the one presented in Figure 4.23 :



86 4. Disrimination Step: Fingerprinting Ativities� The IP addresses in all lusters must be in the same subnet as the targeted virtualmahines.Suh a property aims at identifying the reurrent ativities from a given mahine pluggedin the same subnet than the honeypot sensor. As an illustration, the four lusters rep-resented in Figure 4.23 are merged into a single luster as they verify the three previousonstraints. This tehnique allows to merge 64% of the Large_Sessions that were foundin unique lusters (ontaining less than 2 Soures). These new lusters are interestingbut remain anedotal, as they are quite likely no maliious tra�. They are reportedhowever to eah network administrator in order for them to hek the on�guration ofthe orresponding mahines and to stop if neessary these ativities against the honeypotenvironments. Applying suessively the lustering and this re�nement algorithm, we �ndthat 4% of the Large_Sessions remain within lusters of size 1. Some possible reasons arelisted in the following setions.4.6 Potential Evasions Mehanisms4.6.1 Potential SenariosOur lustering algorithm has the advantage of grouping similar ativities. It is howeverimportant to notie that the lustering method an be evaded. This ould bias thelustering tehnique. This would also indiate that suh a monitoring of ativities in thewild disturb some ommunities at the origin of some tra�. Many evasion senarii havehowever been onsidered at this time writing, and the lustering method remains e�ientwith most of them. A brief summary of the three most likely is given below:1. Senario 1: What if an ativity had a random duration on the attaked platforms?First, TCP timeouts indue many onstraints for this approah. Indeed, most TCPimplementations utilize a drop timer whih indiates the time period after whiha onnetion not responding to keepalive probes may be onsidered as dead. Se-ond, the splitting phase would generate an abnormally high splitting ratio. In otherwords, the randomness would make these attributes loose their modal properties.It would thus disturb the generalization proess desribed in Setion 4.3.4 by gener-ating too many peaks. A splitting threshold limits this e�et and allows detetingsuh a new trend. This senario has not been observed so far. However, some toolsalready o�er suh a feature, like advsan whih allows setting some variables suhas the number of onurrent threads, the delay or the sanning duration [28℄.2. Senario 2: What if an ativity would send several random pakets in addition tothe ones neessary for launhing the attak? This would also disturb the splittingphase due to Attribute D. As with the previous ase, a splitting threshold allows



4.6. Potential Evasions Mehanisms 87deteting suh a trend. However, this senario, as the previous one, an be detetedbut is not rigorously addressed in the urrent version of the Algorithm. The splittingindiates that it has not been observed yet.3. Senario 3: What if the attak targets a random port before or after having tar-geted the one against whih the exploit is launhed? This senario annot be easilydeteted by the urrent lustering tehnique. It would however indue an importantvariation in the number of distint ports sequenes (Attribute A). Another detetionmehanism would be here to build a graph with ports as nodes (verties), and thenumber of ports sequenes inluding the two ports as the edge weight between twonodes. Nodes with a high degree or a high variation in their degrees would detetsuh a senario. This method is not implemented yet and is left for future work.Our lustering tehnique works well, and has been proved e�ient on the datasetolleted for the last three years. However, attak tehniques an hange very fast, andthe method must stay adapted to new hanges. We have presented in this setion possibleattaks against our lustering algorithm. The �rst two are orretly onsidered at thistime by the tehnique. To date, it is not the ase of Senario 3. However, new trends anbe quite easily identi�ed, whih is by itself something important and whih justi�es thesensors deployment.4.6.2 The Witty Worm SenarioWe have noted in previous Setion 4.5 that 4% of the Large_Sessions are assoiated tolusters of Size 1. They might be due to losses that were not orretly onsidered duringthe generalization proess. Another explanation ould also be that we are monitoringpartiular ativities like the Witty worm: This worm has been arefully desribed bythe members of Caida in [22℄. It is the �rst worm to target a partiular set of seurityproduts � in this ase Internet Seurity System's BlakICE and RealSeure. It infetedand destroyed only omputers that had partiular versions of this software running. Thesetools ontain a Protool Analysis Module (PAM) to monitor appliation tra�. ThePAM routine in version 3.6.16 of iss-pam1.dll that analyzes ICQ server tra� assumesthat inoming pakets on port 4000 are ICQv5 server responses but this ode ontain aseries of bu�er over�ow vulnerabilities. To propagate, the worm thus generates paketswith a random destination IP address, a random size between 796 and 1307 bytes, anda random destination port. The worm payload of 637 bytes is padded with data fromsystem memory to �ll this random size and a paket is sent out from soure port 4000.In this senario, the ativity �ngerprinting as de�ned in our lustering will not work,as the worm does not target partiular ports on the mahine, but the �rewall itself. Thus,eah paket reeived on our sensor from Witty worm ativities are likely to be found inlusters of size 1 (di�erent destination ports, di�erent payloads, et). Looking to the



88 4. Disrimination Step: Fingerprinting AtivitiesSoure ports, it appears that only 2045 Large_Sessions share this property. It is normalas Witty was not a very ative worm [22℄.Thus the remaining lusters of size 1 are not artifat of this worm. However, thisexample shows an interesting evasion tehnique. The ativities whih intend to targettools apturing tra�8 (like �rewall, IDSs), instead of servies listening on the mahineports, will not be orretly lassi�ed. It might also be the ase for rafted pakets whihtarget network sni�ers like ethereal or tpdump. Suh ativities an however be monitoredby analyzing several parameters (soure ports for instane) for Large_Sessions assoiatedto lusters of very small sizes.4.7 SummaryThis setion has been rih in information. It seems important, at this stage, to summarizewhat has been shown so far. First, the tra� olleted by the Leurré.om projet hasbeen gathered in a partiular way: as eah sensor of the projet presents the very sameon�guration, we have grouped all Attak Soures sharing similar ativity �ngerprintson the sensors. The grouping has been made possible thanks to a partiular lusteringalgorithm. Network e�ets are taken into aount before and while grouping Soures.Then, a small number of parameters are onsidered as de�ning a �ngerprint and helpgrouping all the Soures. The grouping has been also eased by the properties of someattributes:� Number of targeted virtual mahines� Ordering of the attaks against the virtual mahines� Sequenes of ports targeted against the virtual mahines� Duration of the observed ativity� Average time between sent pakets� Total number of paket sent by the soure on the sensor� Data payload sent by the soure on the sensorThe lustering tehnique is by itself extensible and other tehniques an be integratedinstead of, or in addition to the ones presented and justi�ed in this doument. Thisdiretion will learly be onsidered as the next steps of the projet.8It is not neessary for the apture to be in promisuous mode.



4.7. Summary 89The study of the attak �ngerprints presents very valuable information. Some resultshave been desribed in the previous setions. Some other results an be found in relatedpapers [183, 186, 192, 187, 242℄. These lusters are the basis for forensis investigation.They provide a very interesting abstration level to distinguish and ompare ativitiesbetween sensors and to distinguish the ativities. Many studies an be performed at thisdata abstration level, inluding:� The temporal evolution of ativities in a long term perspetive;� The determination of unique or global ativities on the sensors;� The statistial evaluation of the ativities per platform;� The early warning of newly observed ativities;� The orrelation between monitored ativities and alerts generated in the networkhosting the honeypot sensor;� et.The framework ould thus be limited at this abstration level. Indeed, all the briks tobuild interesting studies now exist. We have performed a few of them, whih have involvedpartiular lusters (ativity �ngerprints). However, some important remarks emerge fromthese preliminary studies. When lusters are studied, there are some reurrent questionswhih arise, e.g. 'an the property observed on that luster be generalized to otherlusters?' 'Is this property somehow related to other properties?'There might exist similarities between isolated ativities (lusters), and the urrenttehnique does not manage to automatially extrat all of them. We intend to move onestep further, and propose in the next hapter a tehnique to identify these similaritiesin an automati way, as de�ned by the initial requirements of the HoRaSis frameworkde�ned in the Introdution.To onlude this hapter, it is important to repeat one more that all the analysisbriks have been reated. They are the attak ativities against the Leurré.om dis-tributed network of sensors. The next two hapters will present an automated approahto extrat all these ativities that share strong similarities. They are illustrated all alongby several experienes that have been arried out. This o�ers to the analyst an interest-ing framework to better understand and analyze the ativities. This will omplete theHoRaSis framework.



90 4. Disrimination Step: Fingerprinting Ativities



91
Chapter 5
Correlative Analysis
5.1 Preliminary Studies5.1.1 IntrodutionIn Chapter 4, we have shown how to lassify IP soures sharing similar ativity �ngerprintson our sensors and how to group them into so alled lusters. Further to this lassi�ationmehanism, this setion intends, by means of three short examples, to illustrate the pos-sible relationships that might exist between some �ngerprints. These relations have beenfound by digging into data, one thing leading to another. All of them have been reportedin our previous publiations ([67, 242, 186℄), but are brie�y summarized in the next threesubsetions. At this stage, it seems important to hek in an automati way if othersimilar relationships exist among the lusters, and determine the kind of information itan bring to the analyst.5.1.2 Case Study 1: Country C SpeialtiesWe have desribed several interesting results onerning Country C1 in [67℄. This honey-pot environment presents some interesting features that have been detailed and related.Among them, we distinguish:1. Very loal attaks: attaks against Sensor C all originate from the same ountrythan where C is loated.1The ountry is atually Taiwan. A omplete analysis of this ase study an be found in [67℄, as thislast doument has been written with the partner's onsent.



92 5. Correlative Analysis2. Original attaks (attak �ngerprints whih have been observed on the sole SensorC).First, we ompare the ountries assoiated to the soures having targeted Sensor Cwith those having targeted a Sensor F (loated in Frane). We observe in Figure 5.1 thatthe ountries at the origin of the attaks against Sensor C and Sensor F are very di�erent.The Figure provides the top �ve ountries on eah sensor, and all the other ountries aregrouped into the others ategory. We notie that 28003 distint IP addresses (70% of theattaks) observed on Sensor C are oming from the very same ountry, Taiwan. This fatis in ontrast with Sensor F where 53674 distint IPs, that is 51% of all observed IPs, arefound in the others ategory. Thus, there is no lear prevalene of attaking ountries onSensor F. Suh a partiularity is only enountered in the C Sensor. It has been on�rmedby omparing with the other platforms as well.

Figure 5.1: Attaking Countries Observed on Sensors C and FIt has also been shown in [67℄ that Sensor C has been targeted by very surprisingattaks, whih are unique to this sensor. They are most likely due to some spei�malware sanning randomly the loal network and its viinity. Among them, we �ndfrequent attaks targeting ports {8080,3128,1080,1813,80}. Suh attaks have not beenobserved in any other honeypot sensor.5.1.3 Case Study 2: Attaks From Serbia-MontenegroDigging into the data, it has been disovered that YU (aronym of Serbia-Montenegro)2is quite an ative ountry, as it belongs to the top �fteen most attaking ountries over allthe dataset. Strangely enough, all the attaks oming from YU have targeted a uniqueenvironment. We illustrate this in Figure 5.2, with a snapshot of the Leurré.om web2As of 2006, YU is depreated in favor of CS,as spei�ed in the standard ISO 3166-1



5.1. Preliminary Studies 93interfae. The Figure represents the distribution of attaks oming from YU over thehoneypot sensors and per month. Sensor 6 (Env_6 in the Figure) is the only one thathas been periodially targeted. From our preliminary studies, we have also found thatthe attak tools, or �ngerprints on this Sensor were not assoiated to YU only: in otherwords, several ativities observed on the onsidered Sensor 6 have been monitored onother platforms, but they have been all identi�ed as oming from YU on that sole Sensor.
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Figure 5.2: Attaks from YU Observed on Eah Honeypot Sensor per Month5.1.4 Case Study 3: Apparent Temporal RelationsWe have shown in the previous hapter and publiations ([242, 186, 192℄) that the lustersobtained by the lustering algorithm are oherent in terms of their ontents and may alsoreveal worth-investigating attak features (like the geographial loations of the attaks,the attak ordering, the raw pro�le of attaking mahines, et). We have been able toname a few of those lusters by omparing the �ngerprints of some known tools on ourhoneypot, obtained in a ontrolled environment, to the �ngerprints obtained in the wild.However, this task is tedious, and only a few dozens of tools have been learly identi�ed sofar. To further omplement our lustering method, we looked at the time behavior of thelusters. Indeed, as illustrated by Figures 5.3, where the y-axis represents the number ofIP addresses assoiated to eah luster, as a funtion of time (with a granularity of 3 dayson the x-axis), some lusters learly exhibit a similar time evolution. It is however strikingthat those similar (w.r.t. time) lusters orrespond to very di�erent attak �ngerprints.What is more, Figures 5.4 further highlight that the global ativities against some of thoseports (by summing the ativities of all the lusters targeting those ports) are ompletelyunorrelated. Without going into the details, intervals between brakets show periodswhere no evident time orrelation is notieable. We report the reader to [194℄ for morein-depth treatment of this phenomena. An important onlusion from those examplesis that some temporal orrelations exist between attak �ngerprints that seem otherwise



94 5. Correlative Analysisunrelated. This result learly deserves further investigation, and it will be done in Setion5.4.7.

Figure 5.3: Examples of Time Correlation between Clusters5.1.5 Interesting AnalysesThe previously desribed examples highlight the fat that some questions an frequentlyappear when looking into the data. Do we observe more numerous attaks in averageoming from a very spei� ountry against some sensors? Do the other sensors alsomonitor attaks oming from their loal hosting network? In a more general way, wouldit be possible to �nd other lusters sharing partiular distributions in terms of the originsof the soures? And in terms of the targeted sensors? Of ourse, the geographial loationof the soures is de�nitely not the only question that might arise. For instane, whihother lusters share temporal relationships? What are all the temporal relationships thatan be dedued from the whole ativity �ngerprint lassi�ation? If so, do the groupof time-orrelated lusters also present some similarities in terms of the origin (ountry,domain) of the attak, or at least on the Operating Systems launhing suh ativities?These simple but reurrent questions have led us to de�ne a new method that wouldautomatially deal with these reurrent questions by onsidering the various similarities



5.2. The Theory 95

Figure 5.4: Observed Ativities on some Targeted Portsthat might exist among lusters. They will enable us to determine in an automati wayall the ases whih have been observed oinidentally so far.
5.2 The Theory5.2.1 Underlying MotivationsLet try �rst to summarize what has been presented so far. We have gathered the tra�olleted from a distributed honeypot environment, aording to the �ngerprint of theativities. Eah luster gathers all IP soures sharing the same �ngerprint, or attakativity, on a honeypot platform. The honeypot data is now turned into lusters, and therest of this thesis intends to prove the interest of working at this abstration level. First,it is important to note that many analyses are appliable on the lusters. We distinguishtwo distint analysis lasses:� Intra-Cluster Analysis: Within a luster, the analysis aims at extrating featuresthat are more spei� to this luster than to others, in order to enrih the knowledgeand understanding of the phenomenon whih has reated those traes (root auseof the ativity �ngerprint).� Extra-Cluster Analysis: The analysis aims at �nding relationships between lusters,and potentially to group a few of them sharing ommon harateristis.



96 5. Correlative AnalysisThis hapter o�ers to address both analysis lasses. The �rst type of analysis aims at�nding spei� features of some attaks. When they are learly identi�ed, they an beused to improve and hek the onsisteny of the luster and to improve the mathing ofnew inoming Sessions andidates. The seond type of analysis aims at heking if theprevious features are shared as well as other properties by several lusters. The tehniqueto extrat suh information between lusters must satisfy at least three major onstraints:1. Modularity: Any kind of analysis should be easily appliable and ompared withother results. Attak mehanisms are more and more omplex, or at least, imagina-tive. It is sensible to think that an analysis might not be relevant for long periodsof time, and an be evaded by new attak harateristis.2. Cross-Analysis: The ombinations of existing analyses must be ross-orrelated to�nd, if they exist, emerging properties. The a priori knowledge might help hoosingthe analysis methods, but new lusters orrelation might emerge a posteriori byrossing analyses.3. Validation: It is quite frequent that the analysis relies on several parameters (in-dexes, thresholds, et). Several values should be tested and ompared on the dataset to estimate their impat and the stability of the analysis w.r.t. suh parameters.Obviously enough, there are other onstraints, that have been respeted from the begin-ning of this researh. The solution must remain intuitive and meaningful, and it mustsale to the dataset, that is it should deal with at least thousands of lusters and to a fewmillions of IP soures. With respet to all these riteria, we have onsidered applying amethod based on the graph theory. Before explaining what has led to this deision, let�rst summarize the global lustering overview: we have N lusters, N being in the orderof a few thousands. In the worst ase, an extra-luster analysis an show up relationsamong all the lusters, that is N(N�1)2 . From another perspetive, if N = 1000, we get499500 relations, and in a more normal ase, if N = 50000, we get 1:25:109 relation-ships. This relationship among lusters annot be interpreted easily. The omputationremains quite important. We want to extrat the useful, most important sets of lustersthat present strong relationships. This kind of problem might be addressed by severaltehniques issued from the Disovery Knowledge domain. However, we an also add someother onstraints. First, the solution should work with multiple similarity funtions, thatis, for any analysis we will potentially perform. Seond, the solution should be able totake into aount many ombinations of analyses, that is, we fous on a large disov-ery method. The method should follow simple and non ounter-intuitive steps, and theoutome should remain readable and exploitable by the analyst.Among solutions to determine relationships between large datasets, one simple butwidespread solution onsists in applying assoiation rule (AR) mining, whih have a widerange of appliations in many areas of business pratie and researh - from the analysis ofonsumer preferenes or human resoure management, to the history of language [37, 242℄.For instane, these tehniques enable analysts and researhers to unover hidden patterns



5.2. The Theory 97in large data sets for so-alled market basket analysis, whih aims at �nding regularitiesin the shopping behavior of ustomers of supermarkets. With the indution of assoiationrules one tries to �nd sets of produts that are frequently bought together, so that from thepresene of ertain produts in a shopping art one an infer (with a high probability) thatertain other produts are present. AR algorithms indue rules (A and B imply C), whilewe want to �nd sets of lusters sharing similarities. The notion of rule dedution amonglusters an be interesting but does not orrespond exatly to the previously desribedriteria.Another area that deals with information extration from data sets is graph and matrixtheories. Graphs, or matries, are widely used with large data. Matries an be onerepresentation of satellite images, or graphs an be the representation of large lass Anetworks. Many tehniques and methods have been designed in this diretion to deal withbig datasets. Graph-Theory is a mature and important researh domain, whih is veryinteresting in this situation. Graphs an be easily visualized by end-analysts, and manyalgorithms have already been developed, in a large panel of areas, like teleommuniations,image proessing, video monitoring, et. Many mathematial problems have found theirsolutions in a simple graph abstration.The solution we propose in the following answers the previous requirements. It isbased on a partiular set of graphs alled liques ([56℄), and algorithms whih aim atextrating dominant sets (maximal weighted liques) out of eah analysis graph.5.2.2 Building Similarity MatriesThe tehnique we present an be applied on matries expressing similarities. Thus, asa preliminary step, it is important to explain the di�erent logi stages whih lead ananalysis on the lusters to be turned into a matrix omposed of integers or real values.The starting point is the harateristi whih is under srutiny. This harateristi isassoiated to either an extra or intra luster analysis. Then, several steps are required toexpress the harateristi in terms of a similarity matrix among lusters. They are listedbelow:1. De�nition of a harateristi2. Representation of this harateristi (as a vetor, for instane)3. Quanti�ation of this representation (values to be inluded in the vetor for instane)4. De�nition of a distane to measure how far away two lusters are w.r.t. this har-ateristi5. To insert the values in the similarity matrix assoiated to the analysis



98 5. Correlative AnalysisIt is important to note that eah of these steps an be implemented in di�rent ways. Wepresent the ones we have applied in the next Setion 5.3 by means of several examples.The di�erent steps lead to the reation of a matrixM, with the similarity value betweenCluster i and Cluster j being reported inM(i; j) andM(j; i) (symmetrial matrix). Thediagonal only ontains null values. Let now assume we have these similarity matries.Next setion intends to show how they an be used to extrat information out of them.5.2.3 The TheoryA lique Cl in a simple undireted graph G is a set of nodes suh that there is in G anedge between every pair of nodes in the set Cl. A lique of k nodes is alled a k-lique.The size of the largest lique in the graph is alled the lique number of that graph. Asa simple example, every omplete (fully onneted) graph Kn is a lique onsisting of alln nodes as illustrated in Figure 5.5 with 3-lique and 4-lique. Let G be an undiretionaledge-weighted graph with no self-loops G = (V;E; w) where V = (C1; :::; CN) is the vertexset, E � V x V its edge set and w() be the weighted funtion assoiated to eah edge :De�nition 5.1. Maximal Cliques: A lique is a subset Cl � V suh that (i; j) 2 E forall i; j 2 Cl. A lique is maximal if it is not ontained within any other lique.We formalize the problem of disovering �ngerprint relationships as the problem ofsearhing for edge-weighted maximal liques in the graph of N nodes (or lusters). Indeed,in the past, some authors have argued that maximal lique is the stritest de�nition ofa luster [41℄. The proess is the following: we �nd a maximal lique in the graph andremove the edges of that lique from the graph; we repeat the proess sequentially withthe remaining set of nodes and edges, until there remain non-trivial3 maximal liques inthe graph. The leftover nodes after the removal of maximal liques are dissimilar frommost of the nodes. All these steps are detailed in the next Setion.5.2.4 Relation Disovery: Maximal Cliques using Dominant SetsThe ConeptMany graph-theoreti lustering algorithms onsist in searhing for ertain ombinatorialstrutures in the similarity graph, suh as a minimum spanning tree, or a minimumut and, among these methods, a lassial approah redues to a searh for a ompletesubgraph, namely a lique. Unfortunately, while the minimum spanning tree and the3The notion of non-trivial liques will be disussed in the next Setions.
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4−clique

3−clique

Figure 5.5: Simple Examples of Cliquesminimum ut (and variations thereof) are notions that are expliitly de�ned on edge-weighted graphs, the onept of a maximal tree is de�ned on unweighted graphs, but ithas also been generalized to the edge-weighted ase [56℄.Finding maximal liques in an edge-weighted undireted graph is a lassial problemin graph theory. Sine ombinatorially searhing for maximal liques is omputationallyhard, numerous approximations to the solution of this problem have been proposed [199℄.For our purposes, we adopt the approximate approah of iteratively �nding dominant setsof maximally similar nodes in a graph [172℄. Beside providing an e�ient approximationto �nding maximal liques, the framework of dominant sets naturally provides a prinipledmeasure of the ohesiveness of a lass as well as a measure of node partiipation in itsmembership lass. This measure of lass partiipation may be used for an instane basedrepresentation of a lique [128℄.We have introdued in Setion 5.2.2 the notion of similarity matries whih an be usedto express ertain similarities among lusters. Suh matries an also be seen as graphrepresentations. We represent the similarity matrix as an undiretional edge-weightedgraph with no self-loops G = (V;E; w) where V = (C1; :::; CN) is the vertex set (the listof lusters), E � V x V is the edge set, and w: E ! R+ is the positive weight funtion(the similarity values inserted in the matrix). In summary, we represent the graph G withthe orresponding weighted adjaeny (or similarity) matrix, whih is the n x n symmetrimatrix A(i,j) de�ned as: ai;j = (w(i; j) 8 (i,j) 2 E0 otherwise (5.1)This matrix is omputed using the notion of similarity desribed in Setion 5.2.2. Toquantize the ohesiveness of a node in a luster, let us de�ne the average weighted degreeof a node, as desribed in [172℄. Let S � V be a non-empty subset of verties and k 2 S,



100 5. Correlative Analysissuh that: awdegS(k) = 1jSjXj2S akj (5.2)Observe that awdegfkg(k) = 0 for any k 2 V . In addition, for j =2 S, we de�ne:
�S(k; j) = akj � awdegS(k) (5.3)�S(k; j) measures intuitively the similarity between nodes k and j with respet to theaverage similarity between node k and its neighbors in S. Note that �S(k; j) an eitherbe positive or negative, and that �fkg(k; j) = akj, for all k; j 2 V with k 6= j.We are now in a position to formalize the notion of indution of node-weights, whihis aptured by the following reursive de�nition. Let S � V be a non-empty subset ofverties and k 2 S. The weight of k w.r.t. S is:

wS(k) = (1 if jSj = 1Pj2S�fkg�S�fkg(j; k)wS�fkg(j) otherwise (5.4)Moreover, the total weight of S is de�ned to be:
W (S) =Xk2S wS(k) (5.5)Note that wfk;jg(k) = wfk;jg(j) = akj, for all k; j 2 V (k 6= j). Also observe that wS(k) isalulated simply as a funtion of the weights on the edges of the subgraph indued by S.Intuitively, wS(k) gives us a measure of the overall similarity between �ngerprint k andthe verties of S�fkg with respet to the overall similarity among the verties in S�fkg.We are now in a position to de�ne dominant sets. A non-empty subset of vertiesS � V suh that W (T ) > 0 for any non empty T � S, is said to be dominant if:1. wS(k) > 0, 8k 2 S, i.e. internal homogeneity2. wS[fkg(k) < 0, 8k =2 S, i.e. external homogeneity



5.2. The Theory 101Algorithm 5 Generating Dominant Sets within weighted graphsfor all weighted graph G = (V;E; w) with N nodes doP = ;, be the set of dominant setswhile stopping_riterion(G) doS  dominant_set(G)P  P [ fSgE  E�ESend whileend forConsidering this de�nition introdued in [172℄, the algorithm we have designed basi-ally onsists of iteratively �nding a dominant set in the graph and then removing involvededges from the graph, until all verties have been lustered. The algorithm is explainedin pseudo-ode in Algorithm 5.In this pseudo ode, the proedure dominant_set(G) �nds a dominant set in theurrent graph G. The proedure is based on a tehnique proposed by Pavan et al. in[172℄, and disussed in more details in the next paragraphs.The funtion stopping_riterion(G) simply heks whether the urrent graph is validaording to a few onstraints we add (for instane if it ontains at least two verties ornot). This is also detailed in the following paragraphs. The assignment of node weightsnaturally provides us with a measure of the overall similarity of a dominant set. Given adominant set S � V , we measure its overall ohesiveness with:
ohesiveness(S) = 12Pk2S awdegS(k)ws(k)W (S) (5.6)As a remark, it would have been possible, in Algorithm 5 to remove the nodes insteadof the edges, at eah algorithm iteration. However, this senario prevents us from de-termining some other interesting relationships among lusters. Figure 5.6 presents suha problemati situation: The �rst dominant graph that is extrated is fB;C; Fg. If wethen remove nodes B,C and F from the graph, we miss the other dominant set C;D;G.Simply removing the edges B � C;C � F;B � F avoids suh a situation, as fC;D;Ggis then extrated in a next algorithm iteration. In addition, F will not appear in a nextdominant set as it is now isolated4.4We remind here that a degree of a vertex is the number of edge ends at that vertex. A vertex ofdegree zero (with no edge onneted) is said to be isolated.
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Figure 5.6: Removing Edges vs. Removing NodesEstimating Dominant SetsThe theory of dominant sets seems attrative. There is however a major limitation. Thedesribed algorithm would require awful amount of time to ompute the weights W (S) ofall potential subset andidates. Assume a graph of Æ nodes. This implies omputing theweights of 2Æ � Æ andidate subsets, and the weight of eah node in the subset w.r.t. thesubset (wS(k)). At this stage, it is thus a theoretial approah to determine orrelationbetween lusters, but it ould not be applied in our onrete dataset. However, theauthors in [172℄ have proved the tight orrespondene between the problem of �ndingdominant sets in an edge-weighted graph and the one of �nding solutions of a quadratiproblem. They propose to �rst loalize a solution of the quadrati problem with anappropriate ontinuous optimization tehnique, and then piking up the support set ofthe solution found. In other words, solving the problem of extrating dominant sets anbe translated into the one of making a partiular temporal expression onverge. Solvingsuh equations makes use of partiular funtions, alled repliator equations, whih arealso used in theoretial biology and evolutionary game theory, sine they are applied tomodel evolution over time of relative frequenies of interating, self-repliating entities.The disrete time dynamial equations turn out to be a speial ase of a general lass ofdynamial systems in the ontext of Markov hains theory. Getting bak to the pseudo-ode in 5, the proedure dominant_set(G) simply involves the simulation of the followingdynamial system5:
xi(t+ 1) = xi(t) (Ax(t))ix(t)TAx(t) (5.7)Starting from an arbitrary initial state (t = 0), this repliator dynamial system is at-trated by the nearest asymptotially stable point. This orresponds to a dominant set,as it has been proven in [172℄. In more details, the stable vetor (xi)i<V orrespondsto what the authors alled the weighted harateristi vetor xS: a non-empty subset ofverties S admits a weighted harateristi vetor xS if it has non-null total weight W(S).xS is de�ned as:5x(t)T being the transposed vetor of x(t).
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xSi = xS(i) = (wS(i)W (S) if i 2 S0 otherwise (5.8)The demonstration of this property an be found in [199℄. It is worth mentioning that byde�nition, dominant sets always admit a weighted harateristi vetor. Charaterizingthe omplexity of this approah appears to be di�ult sine it involves the simulationof dynamial system. However, we have noted experimentally that the system onvergesquite quikly (t < 1000) when applied to all examples presented in the next Setion.Furthermore, in our experiments, the initial vetor hoie does not apparently impat the�nal results. This property has been heked by running di�erent tests with various initialvetors. All have onverged in a very short amount of time to the same solution.Stopping CriterionWe have mentioned at the beginning of this setion and in Algorithm 5 a funtion alledstopping_riterion() that stops the exeution of the algorithm after extrating nontrivialmaximal liques. More generally, it is important to speify some restritions that havebeen imposed to the method. One is the stopping riterion. Indeed, the algorithm stops,theoretially, when the simpli�ed matrix does not ontain edges anymore. However, thelast dominant sets are not really meaningful. In addition, performing the algorithm whilesome edges remain brings a major drawbak: the tehnique will produe dominant sets,whatever their onrete weight, ompared to the others. It an be easily imagined thesenario where all nodes are isolated, exept two, whih are linked by an extremely smallweight. The algorithm will automatially extrat them as last dominant sets, whereas wewould not onsider them as meaningful in the ontext of this study.One solution would onsist in speifying the maximum number of dominant sets to beextrated (or numerus lausus). This solution works �ne with simple graph samples, butsome limitations remain:� The number of meaningful dominant sets varies depending on the analyzed graph.It is thus hard to adapt this value between graphs, and, as we will explain later, toombinations of graphs.� Among the extrated dominant sets, we ould have meaningless ones within thoseseleted by the numerus lausus.Another approah onsists in setting a few global riteria that the algorithm musthek.



104 5. Correlative Analysis� The matrix does not ontain edges anymore. All nodes are isolated. This ase isquite obvious.� The algorithm generates a too large dominant set. �1 is the maximal overage valueof the dominant set. If the ratio between the number of nodes ontained in theextrated set and the total number of nodes in the graph exeeds �1, the algorithmstops, as the dominant set is not pertinent (or at least the hosen harateristi).The value we set is �1 = 75%. This ase has not been observed so far, as theliques we extrat are (for this time writing) quite small. This phenomenon andepend on the similarity matries whih have been used. Thus, a uniform or nondisriminatory matrix would be exluded by this riterion. The maximal overagevalue will also be used in the next Setions to represent the relative size of eahdominant set among all IPs ontained in a luster. It is also important to notethat in suh spei� situation, the omplementary set would be also worth beinginvestigated. Indeed, if 90% of the lusters are very similar with respet to a givenharateristi, it would be relevant to understand why the remaining 10% lustersare not.� We observe that most of the last extrated dominant sets are ouples. They areextrated until none remains, that is, all nodes beome isolated. However, theseouples might present limited interest, espeially if they all share the same weightvalue. We thus preise that the last ouples with same values are not onsidered asdominant sets in the following. An illustration is provided in the next paragraph.A Short ExampleAn illustration is better than a long explanation. Thus let us onsider the analysis matrixpresented in Figure 5.7. The initial weighted graph linking the �ve involved lusters anbe found in Figure 5.7(a). We intuitively observe that the subset of verties {1,2,3} isdominant, and this may be intuitively explained by observing that the edge weights inter-nal to that set (60,65 and 70) are larger than those between internal and external verties(whih are between 5 and 25). As this example suggests, the main property of a domi-nant set is that the overall similarity among internal nodes is higher than that betweenexternal and internal nodes, and this fat is the motivation of onsidering a dominant setas a partiular grouping of nodes (i.e. lusters). More preisely, the algorithm onvergesto the following weighted harateristi vetor xS, S = f1; 2; 3g:� xf1;2;3g(1) = 0:3360� xf1;2;3g(2) = 0:3062� xf1;2;3g(3) = 0:3579� xf1;2;3g(4) = 0



5.2. The Theory 105� xf1;2;3g(5) = 0The edges involved in the �rst dominant set are removed from the graph as shownin Figure 5.7(b). A new dominant set, omposed of {1,4,5} emerges. The new weightedharateristi vetor xS, S = f1; 4; 5g is then:� xf1;4;5g(1) = 0:3636� xf1;4;5g(2) = 0� xf1;4;5g(3) = 0� xf1;4;5g(4) = 0:3636� xf1;4;5g(5) = 0:2727The dominant set is also removed in the next step presented in Figure 5.7(). A dominantset made of two nodes (3 and 4) is �nally extrated from the resulting graph.Without the stopping riterion desribed in the previous paragraph, the next extrateddominant set would be {2,5}, as illustrated in Figure 5.7(d). However, we are not on-vined by the orrelation between these two nodes. First, their shared edge has quite asmall weight. Seond, this value is not learly dominant, if it is ompared with the otherremaining weight values, that are exatly similar. Aording to the stopping riterion, itis thus not identi�ed as a dominant set.In onlusion, the algorithm extrats the three dominant sets in this order:1. {1,2,3}2. {1,4,5}3. {3,4}This example ends the theory setion. The reader who took enough time to go throughit now understands that the whole tehnique relies on the so-alled weighted similaritymatries. We do not pretend, in this doument, to show all potential matrix andidates.It is even more impossible that the number of andidate matries is only limited by theresearher imagination and the available resoures. Based on the experiene we haveaquired along the projet, we propose a few of them, whih are arefully motivated bypreliminary studies. Suh studies are presented in Setion 5.1, and the resulting matrieswe have deided to manipulate are detailed in Setion 5.4. The underlying expetationis at least to �nd by this automati approah an enrihed version of the results of thepreliminary studies.
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(d) Step 4Figure 5.7: Dominant Set Extration: A Simple Example



5.3. Building Similarity Matries 1075.3 Building Similarity Matries5.3.1 Charateristis RepresentationsThis setion aims at detailing the few similarity matries whih have been used in thisthesis. As it has been mentioned in Setion 5.2.2, there are several steps whih lead fromthe abstrat harateristi we intend to study on the lusters to the similarity matrix�lled with �gures.The �rst step onsists in representing the harateristi of the analysis. We haveonsidered, over this thesis, three major representation types:� Representation 1: ! Vetors: they are used to ompare the distribution of a ertainlass of attributes over the lusters. Assume for instane that Charateristi C anbe expressed by the set of Attributes A, then eah Attribute Ai is a new dimensionof that vetor. The number of Large_Sessions assoiated to that luster, and whihshare the property of Attribute Ai (8i) gives the dimension value for the vetor.� Representation 2: ! Intervals Intersetion: the intersetion is omputed to deter-mine whih Large_Sessions among several lusters share a same property. Thisrepresentation has been applied, for instane, to ompare the ommon IP addresseswhih have been observed with di�erent �ngerprints at di�erent periods (see Setion5.4.6).� Representation 3: ! Time Series: a partiular representation of time series, usingthe SAX method, has been applied to ompare the evolution over time of lusters.This time series representation will be detailed in Setion 5.4.7. We group thedesription of this representation and the assoiated distane into a single setionin order to ease the understanding of both of them. It is however important to keepin mind that they are two distint steps (so potentially alterable) whih lead to amatrix expressing temporal similarities.Senarios presented in Setion 5.4 exemplify these three representations.5.3.2 Potential DistanesDisussionFrom the beginning of this Setion, we have indi�erently used terms like similarity mea-sures or distane funtions. The thesis annot inlude all and one distane funtions,but it is often more easy to �nd distane funtions in the literature, depending on the



108 5. Correlative Analysistype of the performed analyses. The dominant set method, however, must be appliedwith similarity matries, as indiated in Setion 5.2.4 and not distane matries. Thereare some guidelines that all similarity funtions should follow. These guidelines are in-trinsially linked to what they must express. We must pay great are to testing whetherthese mathematial tehniques are atually appropriate when dealing with lusters. Forinstane, some of the properties of mathematial metris are not always ideal for desrib-ing distanes between lusters. The next Setions present a few ase studies in what ango wrong if we are not areful and sensitive to the goal of our work, whih is not usingmathematial ideas of distane but inferring similarity of meaning in attak �ngerprints(lusters). To make things more lear, we have distinguished two partiular notions: oneis alled distane, and one similarity.Distane FuntionsA distane funtion alloates a value to a pair of points in a spae whih indiates howfar those points are from one another. Let S be a �nite set. A distane on S is a funtionD: S x S 7! <+ satisfying the following two properties:� Symmetry: 8v; w 2 S, D(v; w) = D(w; v)� Non-Negativity: 8v; w 2 S, D(v; w) � 0The most standard distane measures in mathematis are alled metris, whih mustsatisfy ertain onditions or axioms. However, we do not impose here that the distanefuntions obey the triangular inequality6, and self similarities D(i,i) are not de�ned7. Wehave used distanes to build so far the analysis matries A_p summarized in Table 5.4.We present here as illustration some distanes that have been frequently used overour experiments. One again, they are not the unique ones, but the framework gives agood opportunity to ompare resulting analysis matries. They will be named Distane 1,Distane 2, Similarity 3 and SAX Distane respetively in the following Setions. Theyare assoiated to the three distint harateristi representations desribed in Setion5.3. The two Distane 1 and Distane 2 have been hosen with a partiular underlyingidea: the orrelation between attak �ngerprints, or lusters, is often transposed to aomparison and proximity evaluation of their respetive distributions aording to somepartiular attributes. The distributions are simple vetors of dimension n, n being thenumber of possible attributes in the distribution. This orresponds to Representation 1.Distane 3 is a distane dediated to omparing interval intersetions, that is Represen-tation 2. Distane SAX is the distane related to the partiular representation of timeseries (symbols) we have previously desribed. It thus orresponds to Representation 3.6D(a; b) +D(b; ) � D(a; )7The similarity matries we are using must have null values all along their diagonal.



5.3. Building Similarity Matries 109Both the representation and the distane are presented in the very same Setion, to easethe understanding of this method.Distane 1The �rst distane we deide to use in order to ompare two distributions is the simpleeulidean one. This distane between two points x and y in an Eulidean Spae <n isgiven by: d1(x; y) = jx� yj =rXni=1 jxi � yij2 (5.9)Distane 1 gives a good feeling of the loseness of eah luster within the attribute dimen-sions, but it does not provide any idea of whih attributes are more involved than othersin the distribution. In other words, as presented in Figure 5.8, three distributions anhave a lose distane but not the same oordinates. Cluster 1 has no attribute oordinate,while Cluster 2 and Cluster 3 share a same diretion along with Attribute 3. This distaneis thus interesting but limited, and it justi�es the hoie of omplementing it by Distane2.
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Figure 5.8: Peak Piking Distane between Distributions
Distane 2This distane also aims at omparing distributions. Indeed, there are many possibledistanes to ompare two groups of values. Some of them being to ompute the largestross-distane, the shortest one, the one between entroids, et [70℄. A distribution isrepresented as a simple vetor, the dimension being the distribution attributes, and thevalues being the attribute frequenies. For eah of this vetor, we apply a peak pikingtehnique, whih aims at piking most frequent peaks. All peaks that are � times moreintense than the average distribution are extrated and ordered in dereasing order8.This list of peaks is then ompared with the list of another distribution. A distane of 1haraterizes a omplete math of their ordered list of peaks, otherwise its value remains8We onsider � = 2 in the report, as most of the distribution are not uniformly distributed and theypresent lear peak ativities like the one illustrated in Figures 5.8.



110 5. Correlative Analysisnull. In a more formal way, the distane is de�ned as:Let ~d1 and ~d2 be two vetors of size n[pp1℄ = peak_piking(~d1)[pp2℄ = peak_piking(~d2)[pp1℄ and [pp2℄ being ordered sequenes of peaksdist(~d1; ~d2) = (0 if [pp1℄ = [pp2℄1 otherwise (5.10)Two ordered sequenes [pp1℄ and [pp2℄ are equal, if for eah i, pp1(i) = pp2(i). Thepeak_piking funtion is detailed by Algorithm 6:

Figure 5.9: Peak Piking: Conept and ExampleAlgorithm 6 Details of the peak_piking FuntionRequire: A distribution vetor ~dx of size nEnsure: Ordered list of prevalent peaks ppx1: Compute the average value of ~dx2: �dx = 1nPi dx(i)3:4: for all dimensions dx(k) do5: if dx(k) > � �dx then6: ppx  � ppx; k7: end if8: end for9: Order ppx by dereasing distribution frequenyFigure 5.9 represents a given distribution of one luster. The peak_piking algorithmwill then return the following list: ppx = f3; 2g. If we now onsider again the example ofFigure 5.8, Cluster 1 would be found with pp1 = ;, Cluster 2 with pp2 = f2g and Cluster3 with pp2 = f2g. Thus, only Cluster 2 and Cluster 3 are orrelated with a distane of



5.3. Building Similarity Matries 1111. The frequeny is not rounding. However, it might happen that two frequenies sharean equal value. In this ase, the respeted order is the one given by the list of attributes,in order to ensure in this ase a same peak sequene. The presented distane ful�lls thesymmetry and non-negativity of eah distane property. This is however not a metriinsofar as the triangular inequality is not satis�ed. It also does not give any informationon the amplitude of the peaks.These two distanes have been applied by looking at partiular distributions amonglusters, detailed in the following paragraphs. They inlude:1. The distribution of ountries as origins of attaks2. The distribution of targeted Environments3. The distribution of Operating Systems having launhed attaks against the honeypotsensors4. The distribution of IP distanes between attaking mahines and targeted honeypotsensorsSimilarity 3This similarity aims at omparing the intersetions between two lusters. It an be sum-marized in theory like the following:Let A and B be two distint sets,simIP (A;B) = A \BA +B � A \B (5.11)To summarize, the more ommon elements sets A and B have, the more importantthis value beomes. The minimum is 0 and the maximum is 1. This similarity funtionhas been applied for a very partiular analysis: the ommon IP addresses that have beenobserved using several �ngerprints at di�erent dates. This similarity matrix is justi�edand detailed in the following Setion.SAX Representation and SAX DistaneAn interesting orrelation among lusters is their temporal evolution. The Leurré.omdatabase ontains data olleted for many months (even years), thus it seems importantto ompare how attak �ngerprints evolve over time. It seems all the more relevant thatmany worm models haraterize di�erent steps in the life yle of a worm (generally 3:



112 5. Correlative AnalysisSlow�Start Phase, Epidemi Phase and Slow-Finish Phase, as desribed in [51℄). Howmany �ngerprints follow suh pattern? Are these models really aurate? To answer allthese questions, we have built an analysis matrix expressing some temporal similaritiesamong lusters. The major problem is to formulate suh temporal similarity. We havepresented in [183℄ an interesting method that aims at omparing the time evolution oflusters. The Time Series method that has been applied is alled the Symboli AggregateApproXimation (SAX), and as already been proven e�ient in a large variety of domains.The authors propose in [142, 73℄ a symboli representation for time series, that allows fordimensionality redution and indexing with lower-bounding distane measure. In lassidata mining tasks suh as lustering, lassi�ation, indexing, et, SAX is as good as well-known representations suh as Disrete Wavelet Transform (DWT) and Disrete FourierTransform (DFT), while requiring less storage spae [142, 73℄.
Figure 5.10: Time Series Analysis: SAX-Based Steps

Figure 5.11: Appliation of the SAX Steps on a Time SeriesIn the on�guration we use, eah Cluster Ck is assoiated to a given time series Tsk.The steps of the SAX method are represented in Figure 5.10 with the orrespondingnotations. We invite the interested reader to look at the full method desription formore details on eah of these steps, whih are respetively the Dimensionality Redution,the Disretization and the Symboli Representation. The dimensionality redution isknown as the Pieewise Aggregate Approximation (PAA [125℄), or Segmented Means[238℄. The disretization tehnique is built on the reation of breakpoints, that determinesymbols with equiprobability. One the breakpoints have been obtained, the serie anbe disretized in the following manner. All the PAA oe�ients that are below thesmallest breakpoint are mapped to the symbol a, all oe�ients greater than or equal to



5.3. Building Similarity Matries 113the smallest breakpoint and less than the seond smallest breakpoint are mapped to thesymbol b, et. Figure 5.11 illustrates the idea.The distane between two SAX representations (as the one in Figure 5.11) Ck andCj of length n redued into w symbols, is then given by the following distane funtiondetailed in [142, 73℄:
d(k; j) =rnwvuut wXi=1 (dist(k;i; j;i))2 (5.12)The subfuntion dist() an be implemented using a lookup table that gives the distanevalue between eah harater of the alphabet. An example of suh a table is given inFigure 5.12 for an alphabet of ardinality 4. The distane an be read o� by examiningthe orresponding row and olumn. For example dist(a; b) = 0 and dist(a; ) = 0:67. Thedetails on how to build suh a lookup table an be found in [142, 73℄.

Figure 5.12: Example of a Lookup Table for an Alphabet of Cardinality 4It is important to notie that SAX, or at least the disretization and symbolizationsteps, ould have been implemented as an original peak piking tehnique. The peaks anbe extrated by looking at all attributes that have the highest symbols (d in Figure 5.11).We report the interested reader to [194℄, in whih we detail the whole SAX analysis.Similarity MeasuresA similarity measure is the onverse of a distane funtion. Similarity funtions take apair of points and return a large similarity value for nearby points, a small similarityvalue for distant points. If A and B are highly similar objets, than intuitively they have



114 5. Correlative Analysissmall distanes. A ontrario, a large distane might indue that A and B are similar.At some points, it will be more important to laim that they are similar if this largedistane is rare, instead of having the majority of distane values in the same range. Asan illustration, a A mark will be more prestigious for a student if he is the only one ofhis promotion getting it than if 90% manage to reah this mark. The attentive readerwill notie that we have mixed both notions in the previous paragraphs. Distanes 1,2and SAX are three distane funtions, whereas Similarity 3 is, at its name indiates, asimilarity measure.One way to transform a distane funtion into a similarity measure is to take thereiproal, the standard method for transforming between resistane and ondutane inphysis and eletronis. There exist many other distributional similarity measures. Agood start referene an be the state of the art presented by Lee et al. in [136℄.To address the problem of transforming a distane into a similarity , we have used thefollowing transformation: let apply an Analysis A_p, the vetor is made of n distanevalues d1; d2; :::; dk; :::; dn. The similarity orresponding to the distane dk is omputed asfollows: wk = dmax � dk (5.13)dmax is the maximum distane value found in A_p. The resulting matrix omposed ofall wk is alledM_p, and is the Similarity Matrix of Analysis p. The theory of dominantsets an then be applied on eah of the eightM_p resulting from the Distane matriesdesribed in Table 5.4. We have introdued all the elements neessary to start presentingthe similarity matries we have used in this thesis. They are all arefully listed in thenext Setion.
5.4 Similarity Matries: Appliations5.4.1 Introdution and Chosen DistanesWe emphasize the fat that there is no reativity limit on building similarity matries,as there is a large hoie of similarity measures, and a few others an be designed onpurpose to serve the analysis. We do not laim to list all of them. Interesting studieson existing distanes and similarity funtions an be found in [95, 124, 225, 141, 108℄.We present in the following the ones that have appeared as the most simple and relevantfor the preliminary studies. Eah distane, or similarity funtion, addresses a partiularanalytial question, related to the previously desribed examples.



5.4. Similarity Matries: Appliations 1155.4.2 Geographial LoationPresentationIt has been shown in Case Study 1 that some lusters might present very strong rela-tionships in terms of the originating ountry of the attak. It is thus important at thisstage to de�ne an analysis matrix expressing the relationship in terms of the geographialorigins of the lusters attaks. Clusters that have very lose perentage of IP attaksissued from the same ountries should be onsidered more similar than those whih havedi�erent ones. There are 191 ountries members of the United Nations and 192 ountriesare reognized by the United States State Department9. The Leurré.om dataset has ob-served over the onsidered period addresses oming from 185 distint ountries. However,some ountries are frequently observed, while a few remain very rare. To build simplematries, we have deided to limit the distribution of the top 30 ountries presented inTable 5.1, that stem for 91.5% of all observed Soures.
The distribution attributesEah luster is the gathering of IP soures sharing a same �ngerprint on a Honeypot plat-form. It is suggested here to ompute the ountry frequeny as the ratio (in perentage)between attaking soures identi�ed as oming from one partiular ountry over the totalattaking soures within the same luster. This gives the distribution of 30 ountries overeah luster. An alternative would be to hoose the real number of IP soures per oun-try instead of the ratios. The distribution would then represent two distint informationtypes: the ratio of ountries over the luster, and the amount of soures inluded in theluster. The vetor we present desribes the �rst type of information. The seond onewill be expressed by another vetor. Both might then be ombined, as we will disuss inSetion 5.5.1. The matrix resulting from the �rst vetor ategory and distane 2 is alledA_Geo.9Many soures o�er di�erent answers, and depending on the soure, there are 189, 191, 192, 193 or194 independent ountries in the world today. The United Nations has 191 members (inluding EastTimor, the newest nation) but that number does not inlude the Vatian, an independent nation. TheUS State Department reognizes 192 independent ountries around the world and does not inlude forinstane Taiwan as China laims that Taiwan is simply a provine of China. The 192 ountries also donot inlude East Timor, Palestine, Greenland, Western Sahara, et.



116 5. Correlative Analysis5.4.3 Targeted EnvironmentsThis new vetor aims at �nding orrelation between lusters that have targeted partiularenvironments, in omparison with those whih have been observed on the majority of Hon-eypot sensors. The motivation omes from the �rst observations made with Case Study 1and the platform in ountry C. This matrix will help determining if suh phenomena arealso observed against other environments. The resulting matrix is alled A_Env. Theproess of generating the matrix is similar to the one desribed for A_Geo. We omputeeah environment frequeny as the ratio (in perentage) between the �ngerprints observedon that environment over the total number of �ngerprints represented in the very sameluster.5.4.4 Attaking Operating SystemsMany malware propagate thanks to spei� operating systems. A large majority of themare urrently spreading over Windows mahines [223℄. It is even said that most of theurrent malware are not dangerous for old versions of Windows (Windows 3.1, 98SE,et.). An illustration omes from August 2005, a week after Mirosoft issued a path forthe Plug-and-Play vulnerability desribed in Mirosoft's August 2005 Seurity BulletinMS05�039. The Zotob (w32.zotob.worm) worm family sans the Internet looking forunpathed Windows 2000 mahines, then downloads maliious ode to those mahinesvia remote aess; users of Windows 95, 98, and Me are not onsidered to be targets.Windows XP SP2 users should be safe unless they have enabled Null sessions [3℄. Usersof Ma OS X, Linux, and Unix are not a�eted. Zotob �ngerprints will typially beharaterized by Windows 2000 (or undetermined) operating systems, given the passive�ngerprinting analysis performed on the Leurré.om dataset. Is it the only one working onWindows 2000 mahines only? Some other malware are also spreading over less ommon,but not less immune, operating systems, like Linux (Adore, Ramen, Lion worms), MACOSes (SH/Renepo.A worm for instane), CISCO IOS ([104℄) . It is thus interesting toorrelate attaks that are identi�ed as oming from these spei� Operating Systems.We ompute eah OS frequeny as the ratio (in perentage) between the �ngerprintsobserved running on that OS over the total number of �ngerprints represented in the verysame luster. The resulting matrix is alled A_OSs.Table 5.2 gives the di�erent OSs that have been found on this experiment. They havebeen hosen aording to their frequeny on the global dataset. Other Operating Systemsare more seldomly observed. It is sometimes hard to determine with passive �ngerprintingtehniques the exat OS, espeially if the amount of pakets remains limited. A �ngerprintan then be ounted twie, both as Windows 2000 and Windows NT, if the OS passive�ngerprint looks like Windows NT,2000. This lak of preision is due to the passive�ngerprinting tools we have used: etterap, diso and p0f [24, 4, 7℄. The details of passive�ngerprinting are arefully detailed in [240℄. For building the matrix, we have used the



5.4. Similarity Matries: Appliations 117tool that appears to be the most reliable one at this time writing: p0f. The urrent versionuses a number of detailed metris, often invented spei�ally for p0f, and ahieves a veryhigh level of auray. It provides four di�erent detetion modes:1. Inoming onnetion �ngerprinting (SYN mode, default)2. Outgoing onnetion (remote party) �ngerprinting (SYN+ACK mode)3. Outgoing onnetion refused (remote party) �ngerprinting (RST+ mode)4. Established onnetion �ngerprinting (stray ACK mode)Modes 1, 3 and 4 are the most soliited ones in the on�guration of our platforms.
5.4.5 Name Resolution and Regular ExpressionsIntrodutionThe Leurré.om dataset ontains reverse DNS10 lookups [154℄. This funtion normallyturns an IP address into a hostname. For example, it might turn 192:168:0:5 intohost.example.om. This property does not work in many ases, inluding the ones wherethe IP is simply not registered in a DNS server, or in the ase the DNS server is notorretly on�gured to answer reverse DNS queries (orret DNS entry is "5.0.168.192.in-addr.arpa" in our example). A domain name usually onsists of two or more parts (teh-nially alled labels), separated by dots. For example host:example:om.1. The rightmost label onveys the top-level domain (TLD, for example, the addresshost.example.om has the top-level domain om).2. Eah label to the left spei�es a subdivision or subdomain of the domain above it.3. Finally, the leftmost part of the domain name (usually) expresses the hostname.The rest of the domain name simply spei�es a way of building a logial path tothe information required; the hostname is the atual target system name for whihan IP address is desired. For example, the domain name host.example.om has thehostname "host".10The Domain Name System, or DNS, is a system that stores information about hostnames and domainnames in a type of distributed database on networks, suh as the Internet. Of the many types ofinformation that an be stored, most importantly it provides a physial loation (IP address) for eahdomain name, and lists the mail exhange servers aepting e-mail for eah domain.



118 5. Correlative AnalysisFor eah luster, we have deided to build two distint distributions, whih are represent-ing the TLD and the hostname.Distribution over TLDsIn order to build the attribute vetor, we need to limit the number of possible TLDs. Wethus onsider as attributes all TLDs that have been observed from at least 10 observed IPaddresses in the whole database. We ount 178 out of all TLDs, inluding the undeter-mined one. We introdue this lass of TLD as there is an important number of unresolvednames in the Leurré.om dataset. More preisely, they orrespond to 39% of all observedattaking IPs. Furthermore, we note that a few of the seleted TLDs an be assoiatedto a large volume of observed IPs. In the dereasing order of importane, we an ite thefour major ones :net, :om, :jp and :de. Distane 2 is also applied to eah pair of TLDvetors (one vetor per luster). The resulting matrix built is alled A_TLDs.Distribution over Hostname typesThe hostnames often reveal some information about the type of mahine the IP hasbeen assigned to. For instane, we an estimate the number of personal mahines bylooking at spei� strings in the omplete hostname. If the hostname inludes stringssuh as '%dial%','%dsl%' or '%able%', there is a good probability that those mahinesare personal omputers. We have lassi�ed the mahines within �ve major ategories.We list them in Table 5.3 with their assoiated regular expressions. Distane 2 is againapplied, this time to eah pair of hostname vetors (one vetor per luster). The resultingmatrix is alled A_Hostnames.
5.4.6 Common IPsAnother meaningful matrix is the one that reveals the perentage of ommon IP addressesbetween lusters. It an be imagined that an address A.A.A.A �rst launhes attak Y(for example a san), and then, a few days later ome bak to launh attak Z. Aordingto the lassi�ation we made so far, address A.A.A.A appears as two Attaking Soures(time interval between appearane dates is longer than the de�ned 25-hour threshold),eah of them having left a di�erent �ngerprint on the honeypot sensors.This senario also implies that the address A.A.A.A is not dynami. In these ases,the two involved lusters should show up a large number of ommon IP addresses, evenif this is not a full overage.



5.4. Similarity Matries: Appliations 119There are also some worms that take bene�ts of ports opened by other worms. Afamous example is the Dabber worm that exploits the same vulnerability than anotherone alled Sasser in order to spread. It uses piees of ode installed by the Sasser-FTPexploit appliation to burrow into a PC, remove Sasser, and install a server on the infetedmahine to further propagate. We an expet, aording to this senario, and if the volumeof ativities is representative enough, that lusters assoiated to Sasser and Dabber willshare ommon IPs. The requirement onsists in making this analysis generi in order to�nd, if they exist, all relationships similar to this one. To build the analysis matrix, itappears that both Distane 1 and Distane 2 are not onvenient. We annot adapt thetwo initial distanes in this situation, as there is no partiular distribution (and vetors afortiori). Thus, the resulting matrix A_CommonIPs is built from the Similarity 3.We have also explained in Setion 4 that some soures might not be properly lassi�edwithin lusters, after having applied the lustering tehnique. The small resulting lustersshare many ommon IPs identi�ed by several soures. Suh relationship should appearas well with suh a similarity matrix.5.4.7 Time Series AnalysisWe do not explain here the building of the matrix whih express the temporal similaritybetween lusters. The SAX method has already been arefully desribed in the previousSetion 5.3.2. A spei� distane funtion whih makes use of the symboli representationof the time series has been presented. The resulting matrix is alled A_SAX.5.4.8 IP ProximitiesIPs_Dist De�nitionFor this analysis, we have made use of an original vetor. We use a partiular omparisonthat returns the �rst bit position from whih two IP addresses IP1 and IP2 di�er, witha Big-Endian approah. This distane thus gives the ith bit position between IP1 andIP2. An illustration is presented in Figure 5.13. The �rst bit whih di�er betweenIP1 = X:X:X:X and IP2 = Y:Y:Y:Y is at position 1, so the distane is 1. The obtainedvalue is thus within the interval [0; 32℄. This operation is performed for eah pair oflarge_Session within a luster and the onsidered vetor is simply the distribution ofthese values over all the luster. As a �rst onsequene, attaks whih favor spei�CIDR masks should have a partiular distribution with a high peak around CIDR values.Indeed, some malware have been found favoring the propagation over loal networks,hanging the last IP bits. Code Red II implements a similar strategy [157℄. This wormwill 1/8th of the time generates a random IP not within any ranges of the loal IP Address.1/2th of the time, it will stay within the same lass A range of the loal IP Address 3/8th



120 5. Correlative Analysisof the time, it will stay within the same lass B range of the loal IP Address. If the IPthe worm generates is 127.x.x.x, 224.x.x.x, or the same as the loal systems IP addressthen the worm will skip that IP address and generate a new IP address. Therefore, thisworm has a partiular signature in terms of IP distanes. Over the whole �ngerprintsharaterized by Code Red, the distribution should tend to the above ratios.Code Red II has been arefully analyzed and modeled [157, 243℄. Zotob worm alsopropagates by keeping the �rst 2 bytes and tries to onnet to random IP addresseswithin the same B-lass (255.255.0.0) than the ompromised mahine [3℄. However, reverseengineering of worm odes is a time-onsuming task, and it does not help determining ifother malwares propagate and follow the same harateristis. To provide suh answers,the matrixA_IPprox is built from this IPs_Dist vetors. As an example, the distributionwould be inremented by 1 for attribute number 1, after having omputed the valuepresented in Figure 5.13 and desribed at the beginning of this Setion.
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Distribution +1 +10 0 0 0 0 0 ..... 0 0 0 0 0 0 0 0Figure 5.13: IP_Dist Computation and Distane DistributionIt is important to note that this partiular tehnique to ompute IP distanes be-tween attakers and attakees does not allow to identify the malware whih propagate byswithing dediated bits in the IP address of their vitim. Another approah would haveonsisted for analyzing suh tools in omputing the umulative bit-to-bit XOR betweenIP1 and IP2. This would have been the �nal distribution presented at the bottom ofFigure 5.13, after having performed all the XORs. This new similarity would indiate thedi�erent malware odes that hange spei� bits from the infeted IP to propagate. Suha senario will not show up from the previous distane. However, this seond analysisis left for future work, as this senario seems at this time writing less used by popularworms [223℄.5.4.9 SummaryWe have presented in the last paragraphs the Analysis matries whih are used with themethod of dominant set extration. We summarize in Table 5.4 their names and theirprinipal features.



5.5. Derived Properties 1215.5 Derived Properties5.5.1 Mixing Similarity MatriesThe matries have been reated, based on some analyses we intended to automatize. Itould be interesting, at this stage, to hek if there are groups of lusters sharing severalharateristis. In other words, it would be relevant to determine all the lusters whihare linked eah other within distint dominant sets. One solution onsists in looking forthe intersetion of extrated dominant sets.Algorithm 7 Combination of Analysesfor all Mp Similarity Matrix of Analysis p, 0 < p < N + 1 doCompute DS(Mp) ~Mp(k)the extrated dominant setsDS(Mp) = f ~Mp(k)gas desribed in Setion 4.2.end forfor all Combinations Ci ofMp doCompute the new dominant setsassoiated to Ci:DS(Ci) = Ti2Ci ~Mi(k)end forThe algorithm an be found in Algorithm 7. It simply omputes the intersetionof dominant sets extrated for eah matrix individually. It an be easily proved thatomputing the intersetion of liques (we remind here that dominant sets are maximalweighted liques) generates liques. The algorithm works on the orresponding 2P � 1ombinations of analyses, P being the number of matries. In this thesis, we present 8matries (see Table 5.4). It thus implies 55 di�erent ombinations of matries. Figure5.14 desribes the situation with three analysis matries, labeled A1, A2 and A3.
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Figure 5.14: Mixing 3 Similarity Matries: an Example



122 5. Correlative AnalysisAnother approah would have been to ombine matries into another resulting matrix,and extrat dominant sets from it. There is however a di�ulty in mixing up matries.The mixing ould be performed by omputing a weighted average value of eah edgeoming from the initial matries. In other words, for two analyses matries A and B, a newresulting matrix C will be Cnxn = [ij℄= 1�A+�B :(�A:Anxn + �B:Bnxn) = 1�A+�B :[�A:aij +�B:bij℄. For the sake of larity, we do not investigate this possibility here, and only presentresults from the simple intersetion method desribed in Algorithm 7. An issue might alsoarise in the ase where analysis matries are not of the same size, that is, are not performedon the same set of lusters. In this situation, the method must be applied on the set oflusters ommon to both analyses, that is the intersetion of liques that have been usedfor the two analyses. Indeed, the dominant node sets are extrated with respet to othernodes in the graph. Thus, the intersetion of dominant sets must be onsidered for thesame set of nodes. For some larity onerns, we will not investigate this possibility here,and only present results from the simple intersetion method desribed by Algorithm 7.In other words, we onsider for all following analyses the same set of lusters (the oneswith size larger than 10 Soures as desribed in Setion).
5.5.2 Algorithm LimitationsApplying this algorithm on eah Similarity MatrixM_p enables us to deal with any sizeof graphs, from small to large ones (with thousands of nodes). However, it presents somenegative points that are worth being mentioned and onsidered.

1. There is no guarantee on the order of whih the sets are found. Let imagine that twosets share an equal weight on the Similarity Matrix, there is no way to determinewhih one will be extrated �rst. This is not a real problem, however, as both willbe extrated and olleted.2. The resulting dominant sets highly depend on the weights distribution in the matrix.(onstant high values distanes?) We have deided not to extrat the overlargedominant sets, but there is no way to handle this limitation better, exept by re�ningthe initial analysis and maybe by hanging the distane funtion.3. The resulting dominant sets might also be biased in the ase the matrix ontainstoo many disonneted nodes, as the dominant sets are omputed as the maximalweighted liques within the omplete graph.



5.5. Derived Properties 1235.5.3 Validation: Relation ProjetionConeptThe matrix analysis onsiders potential similarities among ativity �ngerprints, also alledlusters. It would be interesting to determine if the similarities are still valid on eahenvironment, or if they are emerging properties when looking at the �ngerprints over allsensors. This implies to build the same approah than previously desribed but on a smallluster portion; the large_Sessions assoiated to this luster and to a given Environment.We propose in this setion a method to test the relationship observed between lustersper Environment (honeypot sensor). This is also an interesting approah to evaluate therelevane of the dominant sets resulting from the previous algorithms.First SolutionWe deide in the following to projet eah luster onto the di�erent environment dimen-sions. Suh a projetion is desribed as follows (see Figure 5.15 as an illustration): Aluster is by de�nition the set of IP soures sharing the same attak �ngerprints againsthoneypot environments. We all Pi(Cj) the set of soures having targeted the environ-ment number i with the �ngerprint assoiated to Cluster Cj. The weight of this subsetof IP soures is de�ned as:
Wght(j; i) = ard(Pi(Cj))Pk ard(Pk(Cj)) (5.14)It represents the weight of soures in a luster with respet to the environment. We anompute this value for eah luster of the dominant set. The average value gives theaverage weight of the environment representation within the luster. Thus, high valuesindiate the environment is strongly represented within the luster, while a small valueindiates that luster harateristi is not strongly represented on the environment.Another SolutionAnother solution would be to build other matries to �lter relationships in terms ofenvironments. Eah similarity funtion will be applied to the Large_Sessions of a lusterfrom a given honeypot environment. This method is however very ostful. It an beonsidered, but in some very spei� ases. Let assume the database has urrently Eenvironments. The user gives diretly the matries orresponding to eah luster partition,



124 5. Correlative Analysisthat is, one matrix per environment. However, the average partitioning of N lusters into�N partitions (0 < � � E) indues a potential inrease of N2(�2�1)�N(��1)2 edges, that is,for N = 30000 and � = 15, 1011 more edges than between initial lusters. It seems moresensible to restrit this analysis to the previously extrated lusters.
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Figure 5.15: Projetion on Honeypot Environments5.6 ConlusionSuspiious ativities have been lassi�ed aording to the �ngerprints they leave on eahhoneypot sensor. The �rst results have shown very interesting properties and trigger theneed to automate the analysis. This hapter has presented a graph-based tehnique to helpidentifying groups of ativity �ngerprints that share strong similarities. The preliminaryanalyses have helped orienting the reation of simple similarity matries. The next hapterintends to �rst hek that the ase studies found and desribed in Setion 5.1 are orretlyfound, and that all similar properties are disovered for all lusters. It is also expetedat this stage to disover other interesting relationships by omputing the intersetionbetween dominant sets extrated from distint matries.



5.6. Conlusion 125
Table 5.1: Countries onsidered in the distribution (% Total Soures)USA 18.2%China 10.6%Germany 6.5%Taiwan 6.0%Serbia-Montenegro 5.8%Frane 4.5%Republi of Korea 4.1%Japan 3.7%Canada 3.6%UK 3.6%Spain 3.4%Italy 2.4%Poland 2.2%Russia 1.8%Sweden 1.7%The Netherlands 1.6%Brazil 1.1%Turkey 1.1%Switzerland 1.0%Greee 1.0%Portugal 0.9%Austria 0.9%Australia 0.9%Danemark 0.9%Hong-Kong 0.8%Belgium 0.8%Mexique 0.8%Israel 0.6%Norway 0.5%Finland 0.5%



126 5. Correlative Analysis
Table 5.2: Considered Operating Systems used to build A_OSsChosen Operating SystemsWindows 98 SP2Windows NT 4.0Windows 2000 (All servie paks 1-4)Windows XP Servie Pak 1Windows XP Servie Pak 2Linux (RedHat, Debian, Mandrake: 2.4-2.6)Solaris (versions 8 and 9)OpenBSD (versions 3.0-3.4))FreeBSD (versions 4.6-4.8)Ciso IOS (all versions)
Table 5.3: Hostnames Classi�ation based on Regular-ExpressionsHostname Category Regular ExpressionsPersonal Mahines %dial%,%dsl%,%able%Mail Servers %pop%,%smtp%,%imap%,%mail%Web Servers %web%,%http%Routers %.iso%,%route%,%gw%Unresolved names %undetermined%

Table 5.4: Analysis Matries used in this thesisMatrix Name Similarity Meaning btw lustersA_Geo Distribution of attaking ountriesA_Env Distribution of targeted environmentsA_OSs Distribution of attaking OSsA_IPprox Attaking soures IP proximitiesA_TLDs Distribution of attaking Top-Level DomainsA_Hostnames Attaking mahine typesA_CommonIPs Shared attaking IPsA_SAX Temporal evolution over weeks
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Chapter 6
Automated Knowledge Disovery
6.1 Preliminary Results6.1.1 SummaryThis setion aims at presenting the appliation of the method presented in Chapter 5 onthe lusters built and detailed in Chapter 4. We have onsidered the whole Leurré.omdataset representing ativities during one year and a half, i.e. fromApril 2004 to November2005. In brief, the tra� olleted on the di�erent Leurré.om honeypot sensors has beenlustered aording to traes left by the observed IPs on a given platform. Eah lusterthus gathers all IP Soures having the very same �ngerprint on at least one sensor. Aontrario, it an be found a same Soure in di�erent lusters, but this senario is rare: itwould mean that a Soure has been observed during the same period of time attakingseveral sensors in di�erent ways. The results shown so far have led to the remark thatthere exists di�erent and potentially orrelated similarities between these lusters. Thetehnique presented in Chapter 5 aims at extrating dominant sets (or liques) fromsimilarity matries and it has been designed to automatially extrat the similarities wehave notied so far among lusters. This hapter details the onrete results and theinformation whih has been inferred from the dominant sets.6.1.2 Example 1: A_GeoTwo important points have been explained in Setion 5: �rst, the dominant set extrationis a tehnique that an work on any kind of similarity matries. Seond, a small numberof matries (see Table 5.4) an be easily derived from all experiments we have onduted



128 6. Automated Knowledge Disoveryby hand. As a follow-up, this setion intends to show that suh matries an easily help�nding similarities between lusters in an automati way, and more importantly, that theextrated similarities have been found for all lusters in the urrent dataset.The �rst matrix whih has been introdued in Setion 5.4.2 is A_Geo. It presents ananalysis of the distribution of attaking ountries per luster. Clusters oming from a fewand lear idential ountries will be onsidered as similar. We intend here to extrat alllusters that present suh strong relationships.The dominant set extration algorithm generates 9 liques from matrix A_Geo. Theirmajor harateristis are presented in Table 6.1. Eah lique is identi�ed by a dediatedidenti�er (Clique ID). We introdue a simple indiator (in perentage) whih gives ahint of the degree of di�erene between lusters within a dominant set, named CliqueRelevane1. It indiates how lusters within a dominant set di�er between eah otherwith respet to the two following attributes:� The average perentage of distint targeted ports among sequenes of ports betweeneah ouple of lusters.� The perentage of lusters whih have di�erent numbers of targeted virtual ma-hines.The more di�erent the lusters within a dominant set are (in terms of targeted mahinesand ports), the more relevant we label the dominant set. In other words, it means that weput here more emphasis on lusters whih have very distint �ngerprint harateristis (interms of targeted ports or number of targeted mahines) but whih share a very strongommon property expressed by the dominant set. We ompute the Clique Relevane asthe produt of the two previous perentages (expressing a new perentage). This is nota perfet solution, but it is a �rst indiator to ompare relanes of dominant sets. It isomputed as follows:The Clique Coverage value provides the ratio of involved Large_Sessions within thelique out of the total number of Large_Sessions onsidered in the dataset. It gives agood inentive of the pratial volume of Large_Sessions of the lique over the dataset.Thus, a small Clique Coverage would imply that the similarity (or similarities) assoiatedto that lique is quite rare in the dataset, while a large value indiates that it is a ommonrelationship. The Peaks attribute is related to our de�nition of similarity, whih aims atpiking peaks. Eah lique is the manifest, as suh, of a di�erent sequene of distributionpeaks. The peaks are here the most frequent attaking ountries.
1We remind here that a dominant set is a partiular lique, alled the maximal weighted lique.



6.1. Preliminary Results 129Algorithm 8 Computing Clique Relevanevar1 = 0var2 = 0Require: Clique CLIQUE i be a set of k lusters Cj; 1 � j � kfor all Cm; Cl, 1 � m < l � k lusters of CLIQUE i doCompute the perentage p1 of ommon portsOver the respetive sequene of portsSee Cluster Signatures in Setion 4.4.5Ex: Cm : f445; 135; 80g and Cl : f80g ! 13var1 = var1 + (1� p1)Compute var2 as:if Num_Targetsm ! = Num_Targetsl thenvar2 = var2 + 1end ifend forvar1 = 2k(k�1) � var1 (normalized value)var2 = 2k(k�1) � var2 (normalized value)Clique Relevane= var1 � var2 � 100 (ombined perentage)It an be noted that there is a prevalene of lusters very spei� to Asian ountries,as we have observed manually. Peak extration is quite stable, insofar as most of thepeaks are limited to 2 or 3. Furthermore, we note that the magnitude order of the peak isnot really important in this situation: we do not observe liques orresponding to peaks{P1,P2} and then {P2,P1} for instane, that is di�erent sequenes of similar peaks2.6.1.3 Example 2: A_EnvThe seond matrix we have de�ned in the previous setion is A_Env. Peaks are, in thisase, sequenes of Environment IDs. The results of the dominant set extration algorithmgenerates this time 12 liques. They are all presented in Table 6.2, with the same olumnde�nitions than those already used in Table 6.1.We note from Table 6.2 that peaks are various and not numerous for eah dominantset. Six liques involve a single environment. As an illustration, we note that 30 distint�ngerprints (or lusters) are spei� to platform 20, and 28 are only observed on platform6, et. This on�rms one more the distintive nature of some attaks. All those whihhave been observed on a unique set of honeypot sensors appear in the list of Table 6.2.2In addition, we note that only 8 ountries (CN, US, YU, GR, JP, KR, CA, TW) out of 192 appearin the liques! CN appears in 6 out of 9 liques, YU in 2, JP in 2, KR in 2 and all others in only onelique.



130 6. Automated Knowledge DisoveryTable 6.1: Cliques obtained from Matrix A_GeoClique ID # Clusters Clique Relevane Clique Coverage (%) PeaksID 1 20 61.7 2.17 {CN}ID 2 14 50.4 2.08 {CN,US}ID 3 12 6.5 0.95 {YU}ID 4 11 8.8 0.82 {YU,GR}ID 5 10 43.4 1.78 {CN,US,JP}ID 6 6 58.7 0.49 {CN,KR}ID 7 10 8.1 1.98 {CN,CA}ID 8 4 33.4 0.39 {CN,KR,JP}ID 9 9 37.6 0.98 {CN,US,TW}Table 6.2: Cliques obtained from Matrix A_EnvClique ID # Clusters Clique Relevane Clique Coverage (%) PeaksID 1 30 3.5 4.62 {20}ID 2 28 12.3 2.39 {6}ID 3 20 13.5 3.00 {20,8}ID 4 18 31.8 2.39 {32}ID 5 14 5.6 2.01 {20,25}ID 6 26 31.9 3.88 {25}ID 7 43 4.1 6.42 {6,31}ID 8 10 54.3 0.97 {8,6}ID 9 8 8.3 0.93 {6,8}ID 10 14 5.1 1.60 {23}ID 11 12 17.3 2.28 {10}ID 12 5 61.2 0.42 {25,20,36}6.1.4 Example 3: A_Geo vs. A_Env
We present in Table 6.3 the result of the intersetion between liques obtained from the twoprevious analyses. Rows are the liques presented in Table 6.1 from the A_Geo analysis,while olumns are the liques desribed in Table 6.2. The values in the ells indiate thenumber of lusters two liques have in ommon. The other value (between brakets) isomputed as the number of lusters in the intersetion divided by the minimum ardinalityof the root liques. The value is given as a perentage (%). This perentage gives anindiation of the number of lusters within an initial matrix that are also found after theintersetion. A value of 100% means that all lusters sharing harateristi A also shareharateristi B when interseting matries A_A with A_B3.3Assuming that the number of lusters in A is smaller or equal to the number of lusters in B.



6.1. Preliminary Results 131Table 6.3: Clique Intersetion from A_Env and A_Geo1 2 3 4 5 6 7 8 9 10 11 121 0 0 0 0 0 4 (20%) 0 0 0 0 0 1 (20%)2 0 0 0 0 0 0 0 0 0 0 1 (8.3%) 1 (20%)3 0 7 (58.3%) 0 0 0 0 0 0 0 0 0 04 0 7 (63.6%) 0 0 0 0 0 0 0 0 0 05 0 0 0 0 0 0 0 0 0 0 0 06 0 0 0 0 0 0 0 0 0 0 0 07 0 0 0 0 0 2 (20%) 0 0 0 0 0 08 0 0 0 0 0 0 0 0 0 0 0 09 0 0 0 1 (11.1%) 0 0 0 0 0 0 0 0The intersetion of the lique ID 3 from A_Geo and ID 2 of A_Env is a new liqueontaining 7 lusters. These 7 lusters are 7 distint �ngerprints whih have been issuedfrom Serbia-Montenegro on the Environment 6. Table 6.4 provides a few details assoiatedto eah Cluster. It highlights the diversity of the attaks identi�ed thanks to this method,but also the surprising fat that all �ngerprints have been observed against a Mirosoftport (445). The luster details, however, indiate these ativities have nothing else inommon4. Yet, they are only issued from one spei� ountry to a unique platform. The7 �ngerprints an be presented to the administrator in harge of the Network hosting thehoneypot Environment 6. It is again important to notie that we have found here all�ngerprints that share both a strong orrelation in terms of origin of the attaks and oftargeted environments. The method has enabled us to �nd all of them, whereas in ourpreliminary studies, we had found only one, by a tedious proess of trials and errors.
Table 6.4: Clusters from A_Env ID 2 and A_Geo ID 3Cluster Ports Sequenes Avg Duration Number VMs Rv payload1 {445} 7h 1 0 byte2 {445} 15s 1 40 bytes3 {445} 5s 1 0 byte4 {445} 15min 2 0 byte5 {445} 15min 2 240 bytes6 {445} 2min 2 105 bytes7 {445} 10s 2 0 byte

4The other luster parameters are also very di�erent.



132 6. Automated Knowledge Disovery6.1.5 Time Correlation between FingerprintsAbout the A_SAX MatrixTable 6.5: Cliques obtained from Matrix A_SAXClique ID # Clusters Clique Relevane Clique Coverage (%)ID 1 9 2.1 3.06ID 2 5 11.7 0.65ID 3 7 2.5 3.04ID 4 4 28.2 0.40ID 5 5 12.4 0.40ID 6 3 67.8 0.31ID 7 4 0 0.39ID 8 3 35.1 0.61ID 9 3 0 0.98
We present in Table 6.5 the result of the dominant set extration algorithm applied to thematrix A_SAX. This matrix gives the similarity between �ngerprints in terms of timeseries as omputed with the SAX tehnique (see Setion 5.4.7). We limit the details to thenine �rst dominant sets, whereas 38 dominant sets have been extrated in total. Thereis a maximal size of 12 lusters for one partiular dominant set. 32 of them also groupno more than 5 lusters. The method has been applied with the following parameters,justi�ed in [194℄:� Alphabet Size: 5� Compression Ratio: 8We have hosen a ompression ratio equal to 8. The �ngerprint ativities observed withinthe same �xed time window of 8 days are thus ounted together. There is one SAXsymbol for eah value. This simply means that the evolution of the ativity �ngerprintsare ompared per period of 8 days, instead of a per day granularity. One motivation is thatmost of the ativities , exept about a hundred ones whih are large enough, have a timeseries whih is too irregular: the time series are often made of long periods of inativity,and, onversely, very intensive periods. Furthermore, there is no spei� requirement forthis time sale. A disussion about ompressions ratios is presented in Setion 6.1.6.There are a few surprising liques, showing expliitely that lusters share similar timeevolutions. It is in agreement with the preliminary remarks presented in Setion 5.1.4. It



6.1. Preliminary Results 133is important to note that the probability of getting one similarity out of K symbolizedtime series of size w, with the previously hosen parameters is:P = K:(K � 1)2 :(1325)w (6.1)The probability of getting one similarity out of 600 time series is thus smaller than 10�6.A �rst remark is that the size of eah lique is relatively small. The largest lique doesnot inlude more than 9 lusters. The others are limited to three or two lusters. On theother hand, it is also very surprising to �nd so many similarities for suh a long period.Table 6.6 presents for eah lique the di�erent ports assoiated to eah of its luster.Dominant set with ID 9 orresponds to the senario desribed in Setion 4. The tool haslaunhed suessive attaks against two losed ports on all virtual mahines, respetivelyports 5554 and 99985. Two small lusters have been reated, one assoiated to the portssequene {9898}, and one to sequene {5554}. They are both residues of losses, and havebeen identi�ed by means of the lusters temporal similarity. As we have mentioned inChapter 4, the task of interpolating losses is quite hard. Suh a result, however, showsthat this task an be addressed in original ways.Table 6.6: Some liques obtained from Matrix A_SAXClique ID Ports ListsID 1 f80g,f139gID 2 f139g,f1433gID 3 f1434_udpg,f445; 135gID 4 f1433g,f1434_udpg,f445; 135gID 5 f80g,f1434gID 6 f445gID 7 f445g,f135g,f5000g,f6129gID 8 f80g,f22gID 9 f9898g,f5554g,f5554; 9898g
Crossing Matries: A_SAX with A_ommonIPs, A_Hostnames and A_OSsThis setion aims at presenting the results of interseting the dominant sets obtainedfrom the di�erent matries introdued in Chapter 5. Table 6.7 represents the detailsof the intersetion between A_SAX and the other matries. The olums provide the5It is worth mentioning here that many web sites like [145℄ assoiate ativities on ports 5554 and 9898to the dabber worm. They preise that the worm �rst send its exploit via port 5554, and then sans port9898 to hek that its bakdoor is orretly opened. It is preisely said that: Sequential sans on port5554 and 9898 are an indiator of a dabber infetion.In our situation, both ports are losed, thus thissenario annot be possible and the lique indiates another ativity over the very same ports.



134 6. Automated Knowledge Disoverynumber of ommon lusters, as well as the perentage of lusters existing in the initialA_SAX dominant sets, and whih are still orrelated after the intersetion with the othermatries6. Table 6.7: Intersetion btw A_SAX and other matriesIntersetion A_SAX # Common Clusters % initial lusterswith A_ommonIPs 7 6.1%with A_Hostnames 35 30.7%with A_OSs 102 86.5%
Without going into the details of eah intersetion, it seems that lusters whih sharetemporal similarities also share either ommon IPs or similar patterns of hostnames. Therossing with A_OSs also on�rms that most of these lusters are issued from Windowsor undetermined mahines, as the perentage is a little bit higher than the average values(82.4% Windows mahines and 8.4% unresolved names are found in the whole dataset7).This intersetion, however, is quite limited at this stage and exampli�es the limitations ofurrent passive OS �ngerprinting tehniques, whih have an important unertainty aboutthe OS versions (resp. kernels).We distinguish three major senarii from the analyses we have desribed in [194℄:1. Dominant sets involving lusters that share lear relationships w.r.t.ports sequenes: while the sequenes of ports di�er from one luster signatureto another (see the de�nition of a luster signature in Setion 4.4.5), one port se-quene is always a pre�x of the other. Let PSa and PSb be the ports sequenesassoiated to a pair of lusters Ca; Cb. We �nd in this senario that PSa = (PSb; �)or PSb = (PSa; �). Suh a behavior is a harateristi of sophistiated tools thatalways san the same sequene of ports on a mahine, but stop sanning if ever oneof the ports is losed. The use of time analysis is thus a good way to �nd out thistype of tools. It represents a ostless alternative to a omplex reverse engineeringof the ode (that �rst needs to be aptured!) that would reveal that the tool stopssanning a mahine whenever a port in the pre-de�ned sequene of sanned ports islosed. This property is one reason that motivates the need for enrihing the diver-sity of the sensors on�guration in a near future. It is also important to notie thatthis senario an be easily ross-orrelated with the attributes of the lusters fromthe dominant sets. The number of targeted virtual mahines for all these lustersis equal to 1 or 2 (out of 3), and the port status of eah virtual mahine must bedi�erent.6We remind here that, by de�nition of a lique, the intersetion of two liques an only be one liqueor an empty set.7aording to p0f Passive Fingerprint tool [24℄



6.1. Preliminary Results 1352. Loss interpolation: As desribed in the previous Setion, a few lusters of smallsizes ould be orrelated in terms of time series with larger ones, but they are notbeause of insidious losses. Unlike the previous senario, the lusters share severalommon ports, exept that one is missing ompared to the other port sequenes.This senario is also easily validated by heking that targeted ports are urrentlylosed on the mahines, and that all ombinations of missing ports are equallydistributed. Formalization of losses and interpolation approahes are two taskswhih are left for future work.3. Dominant sets involving lusters that do not math the previous senarii:they stem for 12 dominant sets, out of the 38 extrated ones. They are expressionsof what has been alled multi-headed worms in [194℄: These worms ombine severalknown exploits within a single piee of software. This is not a new tehnique,as the very �rst worm, the Internet worm, did already ontain several infetiontehniques [211℄. However, the spei�ity of this lass of attaks is that only oneof the available exploits will be used to launh an attak against a given target.In other words, mahines targeted by those multi-headed tools see di�erent attaksoriginating from di�erent soures that an easily be interpreted as di�erent tools.As a onsequene, the fat that several exploits have been ombined within a singlepiee of ode remains invisible to the vitims as long as the malware is not apturedand analyzed. If the spread of the malware is not too aggressive, its existene mayremain unknown for a while. A few of these sophistiated tools have already beenidenti�ed, e.g. Welhia. However, this is the result of their maliious ativitieson users' mahines and there is a high probability that some other similar, butstealthier, tools of this type are urrently ative in the Internet. The identi�ationof these tools remains a great hallenge, and the omparison of attak �ngerprintsover time enables us to identify a few of them.From the liques perspetive, we have identi�ed a variant of the worm Nahi, alsoalled Welhia [222℄ that exploits one of the following vulnerabilities:� DCOM RPC vulnerability desribed in MS03-026 bulletin� WebDav vulnerability desribed in MS03-007 bulletin� Workstation Servie vulnerability desribed in MS03-049 bulletin Welhia is an ex-ample of multi-headed tools. To infet other mahines, it randomly hooses an IPaddress and then attaks it either against port 135 or port 445, but not both (itis thus a real multi-headed tool). From our platform viewpoint, traes left by ma-hines infeted by Welhia look very di�erent. They are thus stored in two di�erentlusters, one for the attaks against a unique virtual mahine on port 135 while theother ontains attaks against port 445.Another example of suh multi-headed tools is Spybot.FCD [64, 221℄. This tool tries toexploit Windows vulnerabilities either on port 135, 445 or 443. In the ase of Spybot.FCD,



136 6. Automated Knowledge Disoverywe have thus observed three similar lusters in the lique. Welhia, Spybot.FCD orW32.Kobot.A are examples of multi-headed stealthy tools that have been studied andanalyzed. Many more remain to be identi�ed. Our time signature analysis provides asimple and e�ient way to reveal their existene. It should provide valuable input to otherresearh teams interested in studying spei� attak tools and/or in reverse engineeringthem.6.1.6 Cheking Time Series TehniqueAlphabet size Impat on the CliquesThis small setion aims at showing that the graph approah presented in Chapter 5 anbe used to hek the lique onsisteny with di�erent analysis tehniques or algorithm�avors. It has been explained in [194℄ that the alphabet size would normally not impatseverely the similarity analysis. A short omparison is presented in the following for threedi�erent alphabet sizes (or disrete degrees): 4, 5 and 6. The results are presented withdi�erent ompression ratios in the next paragraph.Compression ratio impat on the CliquesWe intend to present here the impat of di�erent ompression ratios on the method ofdominant set extration. Table 6.8 gives for di�erent values of alphabet sizes (As) andompression ratios (CRs8) the orresponding number of dominant sets. The numberof dominant sets remains quite stable, when hanging either the alphabet size or theompression ratios, around the ones we have used (A = 5 and CR = 8). It is howeverinteresting to notie that hanging the alphabet size for a given ompression ratio does notimpat muh on the dominant sets, whih keep gathering the same lusters (exept a fewexeptions). The opposite is not true: for a given alphabet size, the di�erent ompressionratios might indue ompletely di�erent sets of lusters, even if the overall number ofliques is quite similar. The reason is explained through a small example presented inFigure 6.1. The x-axis represents a given time window, while the y-axis represents thetime series amplitude. With regards to ompression ratio 2 (that represents the wholeurve into a single SAX symbol), the two urves in this �gure are orrelated, as theyglobally have the very symbol {a}. Unfortunately, the ompression ratio 1 (two SAXsymbols for eah urve) gives two di�erent sequenes of symbols, resp. {a,a}, and {a,b}.SAX is an e�ient tehnique to determine similarities between time series, however, thegranularity of the time series is also an important fator as some peak e�ets an besmoothed and hidden. The details of SAX analysis are desribed in [194℄.8The di�erent CR values have been hosen so that the length of the initial time series remains amultiple of the ompressed one.



6.1. Preliminary Results 137Table 6.8: A_SAX:Alphabet Sizes vs. Compression RatiosCR 2 CR 4 CR 5 CR 8 CR 10A 4 2 30 31 40 101A 5 3 28 28 38 65A 6 3 23 27 35 58
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Figure 6.1: SAX and Compression Ratios
Conlusion on SAXThis setion leads to two major remarks: First, omparing the resulting liques enable usto determine the stability of the liques aording to these various analysis tehniques.Seond, the hosen example, SAX, with di�erent parameter values (CR 2 [4; 8℄, AS 2f4; 5; 6g), keeps providing very stable liques. This on�rms the results presented in [194℄that the SAX approah is quite stable for sensible parameter hoies. They do not impatthe analysis. Future work will onsist in applying SAX to other types of series, and notneessarily temporal ones, but still related to the Leurré.om dataset.SAX is a lear example of the value of dominant sets to evaluate the impat of di�erenttehniques on the dataset. For a given tehnique, it is thus possible to test the extratedliques and hek their stability over the parameters.



138 6. Automated Knowledge Disovery6.2 Knowledge Disovery6.2.1 Surprising ResultsEah extrated dominant set requires at this stage an in-depth analysis. The �rst resultshave permitted to determine the attak senarios whih have been observed (somehow)by hane so far. In the following Setion, we present two di�erent dominant sets whihhave been piked up and analyzed. It is important to note here that all dominant sets areworth being investigated, as they do not express the same information. Unfortunately,due to spae and time limitations, we limit their analysis to two partiularly interestingones.6.2.2 Case Study 1We fous in this setion on two dominant sets whih have been introdued in Table 6.2with IDs 8 and 9. These dominant sets group together all ativity �ngerprints (or lusters)whih have targeted two honeypot sensors in partiular: namely sensors 6 and 8. The�rst one is plaed in a European industry network, while the seond one runs on anAsian aademi network. The IPs in use are apparently not orrelated. Furthermore, theintersetions of this lique with matriesA_TLDs and A_IPprox are invariant. In otherwords, this lique is inluded in one dominant set extrated from A_TLDs, in anotherdominant set from A_IPprox. The lique however does not appear when omputing theintersetion with A_SAX dominant sets.The vetor assoiated to the related dominant set ofA_IPprox is the peak {24}. Thisresult an be interpreted as follows: the �ngerprints assoiated to the onsidered lustershave been observed on these two unique sensors, and they have been left by mahines fromthe /24 network they belong to. This result is on�rmed when omputing the intersetionof the liques with the other matrix A_TLDs. It provides, without any surprise, the Toplevel Domain of the two /24 networks. A deeper analysis of the lusters signatures revealsthat all the �ngerprints have been eah time observed against the two virtual mahinesemulating Windows. They have targeted their port 135 (Mirosoft Remote ProedureCall RPC9), but in a large variety of manners (in terms of duration, payload, et).This analysis thus provides an interesting example of a weird, or at least unusual,ativity, and indiates a few things:� The involved lusters only onern the two Windows mahines. It is very unlikelythat they have been targeted randomly. The attak was a priori aware of the9An RPC servie is a protool that allows a omputer program running on one host to ause ode tobe exeuted on another host without the programmer needing to expliitly ode for this.



6.2. Knowledge Disovery 139operating systems running on these mahines. It imposes that a sanning phase fromdi�erent IP soures have been launhed and have been suessful in determining theOS of our virtual mahines.� The attak always target port 135, but in a large variety of manners, and the�ngerprints are unique to these two platforms.� They annot be interpreted as Windows radiations noises, as there is no servierunning on port 135 of the virtual mahines and they do not respond to multiastrequests.� There should be di�erent attakers, insofar as the attak has been launhed severaltimes on the virtual mahines, without being suessful.� There is no evident temporal pattern between the di�erent attaks. It is thus not aproess trying to test the Windows mahines in a periodi manner. It an however bea monitoring proess distributed over di�erent mahines with random time intervals.This example leads to the following onlusion:Observation: Both lass C networks where Sensors 6 and 8 are running host a om-mon (or very similar) botnet. Let �rst reall the botnet de�nition, as given in[149, 111℄:"a botnet is a struture onsisting of many ompromised mahines whih an be re-motely managed (in general from an Internet Relay Chat IRC hannel)". The authorsreport suh 'many-to-many' tools, and their numerous remarks orretly math the previ-ously desribed senario. The ativities we are observing haraterize a very same botnetlaunhing multiple attaks against port 135 on the same lass C windows mahines thanthe ompromised ones. In addition, the ativity �ngerprints haraterize this botnet, asits �ngerprints have not been observed in any other honeypot sensors.6.2.3 Case Study 2The extration of dominant sets from the A_SAX matrix has also shown that somelusters are temporarily orrelated, while they group ativity �ngerprints on di�erentports. One example is the lique with ID 8 on Table 6.6: it involves three lusters, linkedto two distint ports sequenes {80} (one luster) and {22} (two lusters). The lique hasbeen observed as well with a SAX alphabet size of 6.The analysis is not obvious, as the intersetions with other matries remain empty.However, this information, if it does not allow to onlude on the ativity, helps deter-mining what property it does not present. The empty intersetions with matries likeA_TLDs, A_IPprox, A_Hostnames and A_Geo therefore indiate there is no obvi-ous relationships among the Soures of eah luster. The empty orrelation with matrixA_Env also indiates that the ativities have not targeted the same sets of honeypot



140 6. Automated Knowledge Disoverysensors. There is no payload, whereas ports were opened on some virtual mahines. Et.In short, there are very few properties between these three lusters, exept that they allbelong to the large dominant set representing Windows mahines with A_OSs. Thisintersetion, unfortunately, does not help so muh the analysis.There is a unique property shared by these ativities, apart from their strong temporalrelationship: they are all grouping �ngerprints whih target the three virtual mahines.Observation: The three lusters represent sanning ativities. They have beenobserved on all honeypot sensors indi�erently. Their strong temporal similarity tends,however, to indiate that they have a ommon root ause and are launhed in parallel bya large number of mahines in the wild.Nothing else an be dedued at this stage. Further ross-analyses would maybe en-rihed this initial observation. In addition, it would be interesting, in this senario, toompare the ativities of the sanning IPs from a more global Internet point of view. Asit was stated from the beginning of this thesis, the approah we o�er is omplementaryto other larger visions, like telesopes, darknets and blakholes. These solutions have allbeen introdued in Chapter 3. They would typially enrih this ase study.
6.3 Disussion6.3.1 Abnormal Correlation and Potential ImprovementsThe example of SAX is rih, in the sense that it learly shows the values and limitationsof the dominant set method. Among its advantages, it enables to ompare di�erentparameters from one tehnique (see the di�erent alphabet sizes and ompression ratios).It also gives a good framework to ompare di�erent tehniques. However, the weakestor most sensitive point remains the intrinsi matrix. Most of the attention must be paidto the similarity funtion it represents and the harateristis it intends to highlight.Moreover, the �nal intersetions are obviously limited to the existing matries. Furtherinquiries might be required after piking up one lique. If suh inquiries starts beingfrequent, it will be relevant to also express their harateristis in terms of a similaritymatrix.Another issue is the understanding of overonsistent intersetions: in the senariowhere the intersetion onserves the large majority of lusters in the initial lique, itseems important to understand why a small number does not follow this rule. Either theyare exeptions worth investigating, or error re�ets of the hosen similarity funtions.Both senarii are hard to disriminate to date. Finally, the previous ase studies havebeen interpreted from the two randomly hosen dominant sets. This interpretation, if notompletely automati, must be simpli�ed and lear to the analyst. Next setion o�ers asimple method to ease the interpretation step.



6.3. Disussion 1416.3.2 On the Labeling of Dominant SetsSome examples have been presented so far. The method however generates all possibledominant sets, given the similarity matries. The idea onsists in avoiding to extratseveral times the dominant sets for a given similarity matrix. Thus, the lusters involvedin a lique are labeled by the doublet made of:1. The similarity matrix unique identi�er2. The di�erent dominant sets identi�ers for this matrix when the luster is assoiatedto one of themIt is important to note here that a luster an be labeled twie or even more for the samesimilarity matrix, if it is related to several extrated liques from that matrix. The labelsare then an easy way to work on Clusters and to onsider all the analyses made so far. Asimple shema illustrates the labeling proess in Figure 6.2.
Cluster C_i

A(SAX):A(Env):

A(Geo):

A(TLDs):

A(OSs):

A(Hostnames):

Dominant Set ID 3

Dominant Set ID 5

A(commonIPs):

Dominant Set ID 13

Dominant Set ID 9
Dominant Set ID 21

Figure 6.2: Labeled Clusters6.3.3 On the Derivation of ObservationsAs the ase studies have shown in Setion 6.2.1, there is good value in extrating asummary of all observations obtained so far. It has also been notied that the lustersmight not be all in the same sets of dominant sets. It is thus worth mentioning theseases as well. To date, we derive the observations based on the Algorithm 9. It simplyonsists in labeling eah luster with all dominant sets it belongs to, and also the matrixanalyses in whih it was not involved (not inluded in any resulting dominant set). Thislabeling proess enables us to omplete the luster signature as illustrated by Figure 6.3.This Signature is the one of a Blaster variant. The identi�ation task was quite easydue to a few publiations on that worm, like [42, 93℄. The worm exploits a remote pro-edure all (RPC) vulnerability of Mirosoft Windows 2000 and Windows XP operatingsystems. The infetion steps have already been presented in Figure 2.2 of Setion 2.3.2.



142 6. Automated Knowledge DisoverySeven distint lusters have been identi�ed as Blaster variants in our dataset. Only threehave been found orrelated with the temporal matrixA_SAX (Clique ID 21). The othershave not been found for two reasons:� They are less frequent and have not been onsidered in the 683 lusters onsideredas big enough for the SAX analysis (time series).� Even though, they have very di�erent temporal patterns and have been �rst observedfour months after the �rst Blaster infetions in August 11th, 2003.The luster has been merged with other lusters by the A_OSs. Unfortunately, thepreision of our �ngerprinting method does not let us preisely determine, to date, whatWindows mahines were mostly infeted. It would have been interesting, however, tovalidate the Symante laim in [21℄. Aording to this antivirus ompany, the wormdeides whether it will use the exploit ode for Windows XP with a 80% probability, orthe one for Windows 2000 with 20% probability. These two senarii belong to two distintlusters in our ase, as the �ngerprints are distint. This is thus a variant of what hasbeen alled multi-headed tool in previous Setion 6.1.5.Algorithm 9 Deriving observations from the dominant sets labelingLet Ci be one lusterexpressing an ativity �ngerprint on the sensors(See Chapter 4)Let L(Ci) be the sets of labels attahed to Cifor all Dominant Sets DSk from Charateristi analysis Ap doif (p; k) 2 L(Ci) thenCluster Ci has harateristi ApList all other lusters linked to DSkelseCluster Ci does not show up with harateristi Apend ifend for6.3.4 SummaryWe an now work on the �ngerprint level, and quite easily perform analyses by simplylooking at labels, instead of digging one more into the data. This ends here the HoRaSisframework we were looking at, as it seems the urrent method ful�lls the requirementslisted in the introdution. Other interesting reporting approahes an omplement thelabeling previously desribed. The method, however, enables, at this stage, any analystto understand the ativities on the network where the honeypot sensor is plaed, as wellas their distintiveness and their relationships with others. The framework is quite opento develop other analyses.
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A(OSs): clique 3

FINGERPRINT:

CORRELATIVE ANALYSIS:

* Number Targeted Virtual Machines: 3
* Ports Sequence VM1: {135,4444,135,4444}
* Ports Sequence VM2: {135}
* Ports Sequence VM3: {135}

* Number Packets sent VM2: 3
* Number Packets sent VM3: 3
* Global Duration: < 5s
* Avg Inter Arrival Time: < 1s

* Number Packets sent VM1: 10

CLUSTER ID: IDENTIFICATION:

W32.Blaster.A (symantec), also known as:
W32/Lovesan.worm.a (McAffee)
Win32.Poza.A (CA)
Lovesan (F−Secure)
WORM_MSBLAST.A (Trend)
W32/Blaster (Panda)
Worm.Win32.Lovesan (KAV)

* Payloads: 72 bytes + 1460 bytes + 244 bytes

1931

A(SAX): clique 21
A(Env): 
A(Geo):
A(Hostnames):
A(TLDs):
A(commonIPs):
A(IPprox): Figure 6.3: New Cluster Signature
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Chapter 7
Conlusions and Perspetives
ConlusionsSummaryWe have proposed in the previous Chapters to reate a kind of identity ard for eah ativ-ity observed against the honeypot sensors. These ards express two di�erent informationategories:1. First, the harateristis of the ativity �ngerprints whih enable us to disriminatethis ativity from others.2. Seond, the orrelation that might exist between all ativity �ngerprints. Thisorrelation might exist for several reasons, some of them having been disussedalong the thesis.A few thousands of distint identity ards have been extrated from the data olletedwith the Leurré.om projet by several sensors deployed for many months in a large varietyof plaes. These ards an then be reused for di�erent purposes, inluding the followingones:� To determine the root auses of some ativities.� To insert the information they arry for event and alert orrelation, as an additionalontextual information soure.



146 7. Conlusions and Perspetives� To detet new or original abnormal ativities and provide meaningful informationfrom this disovery.� To understand the life yles of ativities over a long period of time.� To validate assumptions and to explode myths.� To model ertain ativities or improve urrent models.The method we have proposed is omposed of several steps, from data storage ofraw pakets to lassi�ation of pakets into ativity �ngerprints and given prominene ofrelationships among these �ngerprints. Several tehniques have been applied and tuned toreah this abstration level, inluding lustering and graph-oriented algorithms. Severalsteps of the method have been published along with this thesis, and have also beendesribed in the respetive hapters of the doument. Some listed appliations havealso started being investigated, like the modeling aspets and the insertion of ontextualinformation within alert orrelation engines.CritisThe framework we propose has also some limitations, or, said di�erently, a few points thatmust be onsidered or/and improved in the future. The proposed tehniques have beenhosen beause of their relevane and their simpliity, and they have helped building aninteresting framework. These applied tehniques have proved that they were appliablein our ontext as they have provided interesting results. Other tehniques however mightbe applied as well. This work is at the intersetion of various researh domains. We havetried to build something oherent. This work does not mean that no other solution existsor annot be applied. A ontrario, this framework would really bene�t from the workof speialists improving eah step of this tehnique. Some other potential appliationsshould be worth being tested.The experiments have also learly shown that the urrent interation of the honeypotsensors is limited. The tehnique would really bene�t from additional tra� to improve thedisrimination phase and ollet more exploit information. The new Sryptgen tehniquedesribed in [138℄ will solve this problem and should be deployed in the Leurré.om sensorssoon. It is also important to keep omparing regularly the ativities on di�erent interationhoneypots, in order to hek that the honeypot sensor itself does not introdue partiularbias in the ollet of data; or it is important, at least, to qualify and quantify this bias.We have presented a mehanism to deal with this problem in [187℄.The framework does not inlude, by de�nition, too many detetion mehanisms, as itis not its initial purpose. However, it seems relevant, at this stage, to inorporate severalmehanisms whih would detet hanges, either diretly related to attak �ngerprints, orother more global trends. They will be very useful, among other things, for reporting



7. Conlusions and Perspetives 147the ativities and for warning against reent abnormal ativities. These mehanisms anbe inserted at di�erent steps of the framework. We have mentioned some of them alongthe thesis, but other tehniques, derived from the Intrusion Detetion System (IDS) �eld,ould also be easily integrated. In addition, the framework has not been optimized withthe prospet of being an e�ient early-warning system. The tuning of some steps toshorten the warning delays might also be possible. An additional advantage of detetinghanges an also be to potentially adapt the disrimination step and to reate a neworrelative analysis between the observed ativities.ConlusionEhoing the Introdution, there were two major questions we wanted to address in thisthesis. First, we wondered if the dataset at our disposal, whih represents maliious a-tivities olleted by various sensors in the world, ontains useful and original information.All examples ited in this thesis bring a lear a�rmative answer to that question: dataolleted loally for a long time period enables to better understand the ativities thatour in the Internet and are de�nitely worth being onsidered. Seondly, we were lookingfor a possible framework alled HoRaSis that would automatize the adequate analysis ofthe data. If it exists, it should at least follow a few properties that have been detailed inthe introdution.Along this thesis, we have presented an analysis tehnique whih has both on�rmedthe preliminary �ndings we made and has permitted to aquire a new and original knowl-edge out of the huge amount of olleted data from the Leurré.om projet. This analysistehnique is open to other approahes, due to its interesting approah of lassifying data.Its modular aspets ease the evolution of the mehanism and the plug-in of additionalanalysis layers. Finally, the methods we have proposed to lassify data and extrat in-formation remain intuitive enough for the analyst to understand the outome of thetehnique. In other words, the proposed tehnique is not an obsure or magial blakbox, and the analyst should now be able to understand all the steps that have led us topartiular observations.As a onlusion, we have orretly presented over this thesis a HoRaSis framework,with respet to the properties imposed in the Introdution. The proposed framework isthe bases for Honeypot tRa� analySis. It has been implemented and applied on the dataolleted from the Leurré.om distributed network of honeypot sensors.The HoRaSis framework we have de�ned is a key element in our argumentation infavor of a better knowledge aquisition of malware ativities. However, we think thatthe proposed framework presents more value by the questions it arises than by its imple-mentation itself. Instead of being an end in itself, this framework is the illustration ofpositions defended in this doument. We thus hope it will provide food for thoughts forfuture work. We onlude by giving a hint of potential researh diretions whih seem



148 7. Conlusions and Perspetivespromising.PerspetivesAs previously mentioned, we believe that the framework we have proposed opens newinteresting perspetives, and also many questions.� Global vs. Loal Monitoring: it is lear from this presented work that both ap-proahes are omplementary. A omplete analysis of attak proesses learly re-quires the two positioning. We have not addressed, in this thesis, the problem ofmaking them interat and exhange information. They both provide di�erent ab-stration levels and it would be interesting to merge the two approahes within ageneral monitoring system, able to interpret both types of abstration, and thus,understand their respetive limitations.� Dynami Con�guration of Sensors: To determine the �ngerprints of ativities, ithas been assumed that all sensors share the very same on�guration. However, itwould be worth diversifying the on�gurations, with di�erent types of servies andoperating systems. in other words, it would be interesting to opy the diversity ofreal world systems into the network of sensors. Unfortunately, a few issues mustthen be orretly addressed. First, this approah might require quite numeroussensors deployed over the Internet. Seond, the ross-orrelation between ativity�ngerprints and on�gurations must be arefully understood and formalized. Thedatabase arhiteture used within the Leurré.om projet has however been designedwith this perspetive in mind.� Context Provisioning: To date, eah ativity is reported as a ard, inluding its �n-gerprint parameters and the labels haraterizing partiular orrelation with otherativities. From another point of view, vulnerabilities and exploits are frequentlypublished and many inidents are also reported. They all form an additional infor-mation ontext that might help understanding the monitored ativities. It wouldthus be interesting to assoiate both and express their potential relationships.� Sensor Positioning: The sensors have all been plugged in a large variety of plaes,in front of partners' networks. It would be interesting to determine if a very sameframework an be applied with sensors inside a private network. This, however,presents a few privay issues, and most of the partners would be relutant to sharesuh information. On the other hand, the disrimination phase of the frameworkmight help the administrator in her analysis. A diret appliation would then bethe insertion of the resulting information into the orrelation engines she uses.It is not an ordinary fat that we end a thesis with so many researh diretions. Wehave wanted to highlight the large exploratory �elds whih have appeared when onsider-



7. Conlusions and Perspetives 149ing the requirement of a better understanding of malware ativities. Suh an understand-ing is neessary and possible to aquire. We hope that it is now demonstrated with theproposed HoRaSis framework.
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Appendix A
Entity Relationship Diagram
The following diagram has been desribed in [184℄. It represents the database strutureused to store the data from eah Leurré.om honeypot sensor.
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Figure A.1: Data Storage: Database Arhiteture
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Appendix B
Leurré.om Interfaes
This Appendix epresents two di�erent Sreenshots. Figure B.1 is the global publi projethomepage, with global statistis on the dataset. Figure B.2 is a simple GUI that isaessible for partners to write queries on the database.

Figure B.1: Publi Interfae www.leurreom.org
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Figure B.2: Partner DB Interfae: GUI
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Appendix C
Reporting Ativities on the Leurré.omProjet
Figure C.1 is a sreenshot of the main reporting page eah partner an aess and whereshe an get information on her spei� Leurré.om honeypot sensor.

Figure C.1: Partner Reports from the Leurré.om Interfae
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Appendix D
Identi�ation of Deloder among theAtivity Fingerprints
This appendix is related to the desription of the Deloder worm presented in Setion 4.4.4.The Deloder worm spreads by sanning random IPs, and attempts to onnet toWindows 2000 or XP shares, whih is TCP port 445 (SMB over TCP).Barford et al. presents in [237℄ an interesting signature of the worm that an bemathed with the ativity �ngerprints we have. Figure D.1 has been extrated from oneof the signatures presented in [237℄.The lusters derived from Deloder are then easily identi�ed. They have the followingparameter values:� Number Virtual Mahines = 1� Targeted Ports Sequene= f445; 139g� Number Reeived Pakets = [20; 23℄� Duration < 10s� Date First Observation = Marh2003� Payloads Netbios as detailed in [237℄1

1It is also interesting to note that Snort has no partiular rule for Deloder. The worm generates Snortalerts for IPC share aess only.
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Figure D.1: Deloder Signature [237℄


