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Introduction

This thesis is divided into three parts. They are independent and can be read separately. This
short introduction aims at summarizing briefly the theme of each part.

Part I : Geometric spanning trees

Random graph theory has started with the celebrated work of Erdés and Rényi in the sixties. In
their work, the distribution of the edges of the graph is independent and uniformly distributed
on the set of pairs of vertices.

A geometric graph is a graph where the vertices are points scattered in some metric space
and where the set of edges depends on the relative positions of the vertices. As an alternative
of Erdos and Rényi theory, in geometric graphs, the randomness is based on the randomness of
the vertex set and not anymore on the edges. The independence of the edges is often replaced
by the hypothesis that the set of vertices is a Poisson point process, or in a discrete version, a
regular grid with independent thinning.

This conceptual difference has an impact on the mathematical tools developed to analyze
these fundamental structures. For example, the connectedness of a geometric random graphs
is percolation theory, and the distribution of the neighbors of a vertex is computed thanks to
stochastic geometry.

We can distinguish two classes of geometric graphs. A first class contains the graphs such
that the set of neighbors of a vertex is determined thanks to the local configuration of the vertex
set. For example, the graph associated to the Boolean model is built by putting an edge between
two points if their distance is less than some radius R (which can be random or deterministic).
Another famous example is the Delaunay triangulation. There is an edge between two vertices
if there exists a closed ball containing the two vertices but no other vertices. We will refer to
this graph as self-organizing graphs since only few geometrical information are needed to build
the neighbors of a vertex.

The graphs obtained through a combinatorial optimization belong to the second class of
geometric graphs. These graphs minimize a global functional, and the geometric information
they use are therefore much more sophisticated. When the vertex set is an infinite number
of points, the mere existence of these graphs is a non-trivial question. On a finite number
of vertices, a celebrated example is the traveling salesman problem, that is the shortest self-
avoiding path containing all vertices. Another fundamental example is the minimal spanning
tree which is the tree containing all vertices and with the shortest total edge length.

In the first part of this thesis, the attention is focused on the properties of paths through
random points. We fix a distinguished vertex, taken as the origin. On a connected graph, from

ix



any vertex, there exists a family of paths leading to the origin. In first passage percolation,
we examine the properties of the path minimizing the total edge length. Similarly, a path in
the minimal spanning tree minimizes the maximum of the length of the edges on the path.
These paths are thus obtained via an optimization procedure. There exist also self-organizing
methods of selecting a path inside the family of paths leading to the origin. In this case the
path is built iteratively. A simple example is as follows, in the Delaunay triangulation, at each
vertex, the next vertex on the path is the neighboring vertex with has the closest direction with
the origin (compass routing).

The set of paths leading to the origin builds a spanning tree of the vertex set. In Chapter 1,
this tree is called the navigation tree, and we will analyze the properties of the self-organizing
navigation trees. We examine the convergence of these navigation trees for the local weak
convergence toward a limit forest. Our main effort will be done on the number of edges in
the path leading a vertex to the origin, when this vertex is far from the origin. We will derive
various asymptotic results depending on the nature of the graph. The analysis of the deviation
of this path will lead us to characterize the semi-infinite self-avoiding paths of the navigation
trees.

In Chapter 2 we focus our attention on the particular example of a self-organizing tree, the
radial spanning tree. On this specific example, we will present also alternative proofs of the
results obtained in the previous chapter. We will also use stochastic geometry tools to compute
the distribution of an edge and the mean degree of a vertex.

In Chapter 3, we examine the path between two vertices in the minimal spanning tree. In
order to answer a question of Aldous, we will analyze the maximal edge length in the path. This
will lead us to relate some properties of the minimal spanning tree with the scaling relations in
percolation.

We cannot conclude the presentation of the first part of this thesis without mentioning some
applications of spanning trees in communication networks. This field of application was already
present in the pioneering work of Erdos and Rényi. The vertices represent users in a network
and the communication betweens users are performed through a path in the connection graph
associated to the network. The understanding of the properties of the paths on the graph is
of prime interest. The analysis of the paths obtained via a combinatorial optimization gives
the best achievable bounds on the behavior of the network. For example, the flooding of the
network is described by first passage percolation. Self-organizing graphs and paths have also
found a new field of application with the development of large self-organized networks, such as
peer to peer overlay networks or ad-hoc wireless networks. In this context, the mathematical
analysis may have two major contributions: the performance analysis of current structures and
the design of new networks more adapted to large scale.

Part II : Spatial random access networks

The development of wireless networks has created a variety of new problems for mathematicians.
Among them, new problems are emerging in the field the stability of stochastic processes. The
second part of this thesis is devoted to the stability analysis of random access protocols where
a spatial interaction between the users in the system is taken into account.

In a spatial network, some sources receive or send information through a common channel.
The foundations of wireless communication are given by the information theory. It is not in the
scope of this thesis to explore this field, however we can point out two main features of spatial
networks:

- the sources behave independently: they only share information through the common
channel.



- the common channel has a spatial reuse property: two sources far away may access the
channel at the same time.

Section D in Appendix is an attempt to define a general paradigm for a wide class of problems
in spatial networks.

The architecture of spatial networks falls into two categories: coordinated and non-coordinated
networks. In a coordinated network, there exists a set of base stations which may enforce a
control policy to optimize the performance of the system. A cellular network is an example
of such system. The sources are mobile users and the base stations control the access. In a
non-coordinated network, there is not this hierarchical structure. The sources are left to their
own and the effect of interference is not anymore tempered by a coordinated access policy. The
analysis of these two category differs significantly.

Another criterion of classification relies on the probabilistic model used. The sources may
be saturated or not saturated. A source is saturated if it is always present in the network: the
sources have always information to send or receive. A natural question is then to understand
the behavior of the network when the number of sources grows large. If the sources are not
saturated, a source leaves the network when its piece of information has been received or sent.
The network is filled by an arrival process of sources and a fundamental question is the stability
of the system.

In Chapter 4, the sources are saturated and non-coordinated. We perform a mean-field
analysis of random access protocols with exponential back-off. In particular, we prove that, as
their number grows large, the sources become independent from each other. In the limit, we
establish that the distribution of back-offs satisfies a differential equation.

In Chapter 5, the sources are non-coordinated and non-saturated. We present a model
which captures the spatial reuse property of spatial networks. This model may be thought as
a spatial version of an aloha protocol. The stability of the workload is examined. We prove
that the workload properly scaled converges to its fluid limits, and we examine the differential
equation satisfied by the fluid limits.

In Chapter 6, the sources are non-saturated and coordinated. We examine the stability
region of a queueing system where the processing rates of the servers depend on the position of
the users.

Finally, in Chapter 7, the sources are saturated and coordinated. We examine the properties
of the system when the sources are distributed according to an ergodic point process on the
plane.

In summary, the chapters of the second part of this thesis may be classified as follows:

non-saturated | saturated

non-coordinated chapter 5 chapter 4
coordinated chapter 7 chapter 6

Part III : Spatial point processes

Point processes, used as background material in the first two parts of this thesis, are the core
of the Chapters 8 and 9.

In Chapter 8, we examine the dead leaves tessellation. This model of stochastic geometry has
been introduced by Matheron. We review and extend known results in the unifying framework
of Palm distribution.



In Chapter 9, we derive a Monte Carlo method to simulate the derivatives of the expectation
of functionals of a marked Poisson point process. The Monte Carlo simulation is based on new
formulas for these derivatives. This method finds some application in geometric probability,
and in the level crossing probability of Poisson shot-noise processes.

Contributions

This thesis is the result of a common work with some fellows. Each collaboration has been a
great learning opportunity with these brilliant scientists.

Chapters 1 and 2 are the fruits of a joint work with Francois Baccelli. Chapter 1 is based
on [36] and Chapter 2 on [16] and [17].

Chapter 3 is a collaboration with Marc Lelarge on a problem raised by David Aldous and
pointed to us by Neil O’Connell.

Chapter 4 is a joint work with David Mac Donald and Alexandre Proutiere. The corre-
sponding paper is [39].

Chapter 5 is a long collaboration with Sergei Foss and Seva Vsevolod. This unusual work
has not come to an end yet.

Chapters 6 and 7 have benefitted from discussions with Francgois Baccelli and Bartlomiej
Blaszczyszyn. Paragraph §6.3.2 is the beginning of a work with Marc Lelarge. Apart, from this
paragraph, Chapter 6 is based on [38] and Chapter 7 on [37] and on the research report [35].

Chapter 8 is a joint work with Yann Gousseau and Frangois Roueff, this chapter is contained
in [40].

Finally, Chapter 9 is a collaboration with Giovanni Luca Torrisi. It is a slight extension of
[41].
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Chapter 1

Navigation on a Poisson point
process

Résumé Sur un ensemble de points localement fini, une navigation construit un chemin sur
cet ensemble qui relie un point a un autre. L’ensemble des chemins aboutissant & un point
donné définit un arbre : I’arbre de navigation. Dans ce article, nous étudions les propriétés de
I'arbre de navigation lorsque 1’ensemble de points est un processus ponctuel de Poisson sur R%.
Nous examinons la distribution de fonctionnelles stables, la convergence faible locale de ’arbre
de navigation, la moyenne asymptotique d’'une fonctionnelle le long d’un chemin, la forme de
I’arbre de navigation et ses fins topologiques. Nous illustrons notre travail sur les graphes de
type "small world” et nous y établissons de nouveaux résultats. Ce travail est motivé par des
applications en géométrie computationelle et dans les résaux auto-organisés.

Abstract On a locally finite point set, a navigation defines a path through the point set from
a point to an other. The set of paths leading to a given point defines a tree, the navigation
tree. In this article, we analyze the properties of the navigation tree when the point set is
a Poisson point process on R?. We examine the distribution of stable functionals, the local
weak convergence of the navigation tree, the asymptotic average of a functional along a path,
the shape of the navigation tree and its topological ends. We illustrate our work in the small
world graphs, and new results are established. This work is motivated by applications in
computational geometry and in self-organizing networks.



1.1 Introduction

1.1.1 Navigation: definition and perspective

In this chapter, we examine decentralized navigation algorithms on random graphs. Let N be
a locally finite point set and O a point in R? taken as the origin sometimes denoted by 0. For
z,y € R |z| will denote the Euclidian norm and (x,%) the usual scalar product. B(X,r) is
the open ball of radius » and center x, and S ! = {z € R? : |2| = 1} is the d-dimensional
hyper-sphere.

Definition 1.1.1 Assume that O € N, a navigation (with root O) is a mapping A from N to
N such that for all X in N there exists a finite k satisfying A¥(X) = O. A navigation on a
graph G = (N, E) is a navigation such that (X, A(X)) € E.

With a navigation with root O, we can define a navigation with root ¥ by Ay (X;N) =
Y + A(X —Y;S_y o N) where S, is the translation by z: if BC R%, S,B = {y:y —z € B}.

In this chapter we will analyze the decentralized navigation algorithms. For a navigation
defined on a graph G, a decentralized navigation is such that Ay (X) depends only on X, Y and
the set of vertices adjacent to X in G. A navigation is always decentralized on the complete
graph, so the meaning of this definition is unclear and it is not intrinsic to A, we will give later
a better definition.

Navigation algorithms have emerged recently in papers in four different classes of problems
(at least). A first class of problem which has recently drawn much attention is the small world
phenomenon. As it is pointed by Kleinberg [104], the small world phenomenon relies on the
existence of shortcuts in a decentralized navigation on a small world graph. Extension and
refinements of his results have been carried out by Franceschetti and Meester [68], Ganesh et
al. [70], [59].

A second field of application is computational geometry. Kranakis, Singh and Urrutia [110]
have introduced the compass routing (some numerous variants exist). The Ph.D. Thesis of
Morin [127] gives a review of this class of problems. Computer scientists do not analyze the
probabilistic properties of navigation algorithms, they rather examine if a given algorithm is a
proper navigation, that is if it converges in a finite number of hops to its root.

The ideas of computational geometry may benefit the design of real world networks. A first
field of application is sensor and ad-hoc networks, see for example the survey papers of Akyildiz
et al. [2] and Ko and Vaidya [108]. A second application is self-organized overlay and peer-to-
peer networks. Each node in the network receives a virtual coordinate in some naming space,
and the messages are routed along a geometric navigation algorithm, see Plaxton, Rajaraman
and Richa [135], Liebeherr, Nahas and Si [114] or Kermarrec, Massoulié and Ganesh [69].

Lastly, in the probabilistic literature a few authors have examined decentralized navigation
algorithms (under other names). Baccelli, Tchoumatchenko and Zuyev [23] have analyzed a
navigation on the Delaunay graph. Others examples include the Poisson Forest of Ferrari,
Landim and Thorisson [64] and the Directed Spanning Forest introduced by Gangopadhyay
Roy and Sarkar [71] (see also Penrose and Wade [131] and Chapter 2).

The aim of the present work is to find a unified approach to these problems.

We give three canonical examples of navigation. Among those three, only the last will draw
our attention. These examples are nevertheless useful to understand the context better.

A natural navigation is the shortest path on a connected graph G = (N, E). Let g be a
functional on E (g is a cost function) and let II(X,Y") denote the set of paths in G from X to
Y, i.e. the finite sequences of vertices in N (Xo, ..., X3) such that Xog = X, (X;,X;+1) € E



0<i<k—-1and X =Y. Provided that it is uniquely defined the shortest path is

k—1

m(X,Y) = arg inf (x,, .. x,)enx,y) Zg(Xi7 Xiy1):

i=0
If 7(X,Y) = (X{§,..., X)), the shortest path navigation is: A} (X) = X}. For g = 1, the
shortest path is the path which minimizes the number of hops from X to Y in G: it corresponds
to the graph distance between X and Y. Shortest paths on specific graphs have drawn much
attention. In particular Vahidi-Asl and Wierman ([155],[156]) have studied the shortest path
on the Delaunay graph of a Poisson point process for g = 1, see also Pimentel [134]. On the
complete graph of a Poisson point process and ¢g(X,Y) = |X — Y%, 3 > 2 an in-depth analysis
was performed by Howard and Newman in [93]. The shortest path is the continuum analog of
the celebrated first passage percolation on the regular Z%lattice. The shortest path navigation
has poor decentralization properties, nevertheless it gives the best achievable performance of a
decentralized navigation.

A random walk on G is a decentralized navigation provided that the random walk is recurrent:
the length of the path is the hitting time of Y starting from X. In the recurrent case, this
hitting time is almost surely finite for all pairs (X,Y). However, on an infinite graph, even
in the recurrent case, one might expect that the walk is null recurrent: the expectation of the
length is infinite. Therefore random walks will not provide interesting navigation algorithms.
More efficient decentralized navigation algorithms exist.

An important decentralized navigation is the maximal progress navigation. If A is a navi-
gation, the progress is defined as:

PX) = [X] = [AX)].

An appealing class of decentralized navigation is the subclass of navigation such that the
progress is non-negative for all X. On a graph G = (N, E), the maximal progress naviga-
tion is the navigation which maximizes the progress: A(X) =Y if (X,Y) € E and |Y] is
minimal. Note that the maximal progress navigation will not be a proper navigation on all
graphs, some additional properties on the graph (or on the point set) have to be added. Some
breaking ties rules should also be defined to guarantee the uniqueness of this navigation.

1.1.2 Directed Navigation

A navigation links a point X to another Y. When X is far from Y, the progress made is roughly
equal to (X — Ay (X),X —Y)/|X — Y| that is the progress made along an axis with direction
Y — X. Hence in most circumstances, we expect that a navigation behaves asymptotically as
a directed navigation. Let e; € S9! a directed navigation with direction e; is a mapping A,
from N to N such that for all X in N, lim(A* (X),e1) = 400. On a graph G = (N, E), a
directed navigation is a directed navigation such that for all X € N, (X, A, (X)) € E.

As pointed above, directed navigation will appear as natural limiting objects for navigation.
We will actually see later what type of convergence has to be considered.

The directed progress is defined as:

Pel(X) = <~’461(X)’61> - <X7 61>'

A few examples of decentralized directed navigation may be found in the literature: directed
path on the Delaunay tessellation [23], the Poisson forest [64], the directed spanning forest [71],
[131].

On a graph, we also define the maximal directed progress navigation as the navigation which
maximizes the directed progress. The maximal directed progress navigation is the limit mapping
of the maximal progress navigation.



1.1.3 Navigation Tree and Navigation Graph

Assume that O € N, a navigation A to the origin O defines a graph: the navigation tree which
will be denoted by 7o = (IV, Ep). It is defined by

(X,)Y)e Eyif A(X)=Y or A(YY) = X.

It is easily checked that 7; is actually a tree: if there were a loop it would be contradictory
with the assumption that A(X)* = O for k large enough. 7y is the union of all the paths from
X € N to O. Note that 7y is a spanning tree of N.
For a directed navigation, we define similarly the directed navigation forest, 7o, = (N, E¢,)
by
(X,Y)€E,, if A, (X) =Y or A, (V) = X.

We check similarly that 7, is a forest. We will prove that 7, is the natural limit of 7y for the
local weak convergence of Aldous and Steele [5].

Extending the navigation tree to the origin to any point of IV, we can also define the
navigation graph Uycn7y and the directed navigation graph U, cga-17¢,. These two graphs
record the set of possible navigation from one point to another (or in a direction).

We can now state an intrinsic definition for a decentralized navigation:

Definition 1.1.2 A navigation A (to the root O) is decentralized if A(X) depends only of X,
O and the edges adjacent to X in Ty.

With this definition a shortest path navigation is not a decentralized algorithm, whereas a
maximal progress navigation is decentralized.

1.1.4 Poisson Point Process and Poisson Weighted Infinite Tree

We will pay attention to A*(X) on a locally finite point set containing X and 0, and respectively
for a directed navigation, to .Afjl (0) where e; € S%! and 0 is a point of the point set. In our
analysis, we will prove convergence results for two types of probabilistic models.

The first model is the usual Poisson point process (PPP), N, of intensity one on R?. We
will denote: N° = N + 6y and N%* = N + 6x + &p. From Slyvniak Theorem, N (resp. N%X)
is a PPP on its Palm version at 0 (resp. (0, X)) (see in Apppendix §B.3). Intuitively, N° (resp.
NOX) can be understood as a PPP conditioned on having an atom at 0 (resp. atoms at 0
and X). It is not a restriction to assume that the intensity of the PPP is one, with a proper
rescaling, our results extend to any positive intensity. Indeed, if N = 3" 7, is a realization
a PPP of intensity one, then Ny =) _n0,-1/47, is a PPP of intensity A > 0.

The second model is the Poisson Weighted Infinite Tree. Following the brilliant approach of
Meester and Franceschetti in [68], we will try to understand the intrinsic behavior of a navigation
through a virtual model which is the simplest possible probabilistic model. To this end we build
a Poisson weighted infinite tree (PWIT') which is a slight variation of Aldous’ PWIT [5]. We fix
aroot X € R? and define the PWIT T%X as follows. The points of N»X¥\{X} are the vertices
of first generation in T%X. T9X is defined iteratively at each generation: at each vertex Y the
subtree rooted at Y consisting of all descendants of Y is a PWIT T%Y and the Poisson point
processes are drawn independently of the others. Note that there is a vertex located at 0 at
each positive generation. Thus each generation has a different copy of the origin in order to
guarantee that 7% is indeed a tree.

For a decentralized navigation, it is important to note that the distribution of (X, A(X)) is
the same in the PWIT 7% and in the PPP N%X. However the joint distribution of (A*(X))ren
is not the same in the PWIT and the PPP. It is much simpler on the PWIT.



For a directed navigation A.,, let Xj, = A* (X) and Fy, = 0{Xo, ..., Xj.}. A key feature of
the PWIT is the relation

P(Xjt+1 — Xk € -|Fi) = P((0, A, (0)) € -). (1.1)

This last property is the (spatial) memoryless property of the directed navigation on the PWIT.
Similarly, for a navigation A and X = A*(X), we have:

P(Xgy1 € | Fr) = P(Xpy1 € | Xk), (1.2)

the sequence (X )ren is a Markov chain with 0 as absorbing state. With an abuse of terminology
we will call also this property the memoryless property of a navigation on a PWIT. More
generally for a navigation on a PPP, we introduce the two following definitions which are the
core of this work.

Definition 1.1.3 - A navigation A is a memoryless navigation if Equation (1.2) holds
(and respectively for a directed navigation with Equation (1.1)).

- A navigation is regenerative if there exists a stopping-time (on a enlarged probability
space) 0 > 0 such that A is a memoryless navigation and the distribution of 0(X) is
independent of X for |Xg| > xo (and respectively for a directed navigation).

The stopping time 6 will be called a regenerative time. If there exists a regenerative time,
there exists an increasing sequence (6,,),n € N, which we will call a regenerative sequence such
that 6y = 0, the distribution of (6,41 — 0y )nen is iid and for | Xy | > xg

Respectively for a directed navigation, we will have 6y = 0, the distribution of (6,41 — 0 )n is
iid and
P(X9n+1 — X@n S ‘fgn) = ]P’(X@l —Xp € )
A memoryless navigation will be much simpler to analyze. We will prove under some as-
sumptions that a navigation on a PPP will contain a regenerative sequence, that is an embedded

memoryless navigation. This idea is the cornerstone of this work.
All the examples of navigation algorithms we have in mind satisfy the following property:

A(X) is FY

B(OJXD—measurable,

where for a Borel set B, F g is the smallest o-algebra such that the point set NN B is measurable.
A sufficient condition for this type of navigation to be memoryless is that for all ¢t € N and all
Borel sets A:

If AcC B(0,|Xg|) then P(N(A) = t|F,) =P(N(A) =1t), (1.3)

in other word, N N B(0, |Xk|) is a PPP of intensity 1.

1.1.5 Examples
Small world graphs

The small world graph is a graph G = (N°, E) such that vertices X € N and Y € N are
connected with probability f(|X — Y|) independently of the other, and f is a non-increasing
function with value in [0, 1]. We assume, as t tends to infinity, that:

ft) ~ct™?,



with ¢ > 0 and 8 > 0. More formally, we add marks to IV to obtain a marked point process:
N =3, 6x,.vi, where V;, = (Vi )men € [0, 1]V is independent of the collection N, (Vi )m<n
is an iid sequence of uniform random variables on [0,1], V,,;, = 1 and V,;,, = Vipp. For X, Y in
N, we will write V(X,Y) for V,,,, where n and m are the index of X and Y. The small world
graph is defined by:

(X, Y)e FifV(X,Y) < f(|X =Y.

Note that the degree of a vertex in the small world graph could not be infinite for small choices
of 3 (indeed for 3 < d). The maximal progress navigation from X € N to 0 is defined as:

A(X) = argmin{|Y]: (X,Y) € E}.

As such, the small world graph has isolated points and navigation is ill-defined on non-connected
graphs. To circumvent this difficulty three possibilities arise:

1. We enlarge slightly E to ensure a positive progress for X € N. This is the approach
followed by Ganesh et al. in [70], [59].

2. The marks V are not anymore independent of NV, they are conditioned on the event that
a positive progress is feasible at any point X of V.

3. Loops are allowed and the model is unchanged but if A(X) = X then a new set of
neighbors for X = A(X) is drawn independently of everything else.

We will focus on model 2, models 1 and 3 will also be discussed. The directed navigation with
direction e; is defined similarly,

Ae, (X) = argmax{(Y,e1) : (X,Y) € E°}.

Let He,(z) = {y € R?: (y,e1) > (x,e;)}, the directed navigation to be properly defined if the
set of neighbors of X in H,, are a.s. finite (that is § > d).

Compass Routing on Delaunay Graph

Compass Routing and its numerous variants is a popular navigation in computer science. It was
introduced by Kranakis et al. in [110], see also Morin [127]. Let G = (N, E) denote a locally
finite connected graph. Compass routing on G to 0 is a navigation defined by

X X-Y

A(X) = argmax{(m, W> 1 (X,Y) € E},

In words: A(X) is the neighboring point of X in G which is the closest in direction to the
straight line 0X. Compass routing is not a proper navigation on any graph, a variant of this
routing called Face Routing is a proper navigation. As it is pointed by Liebeherr et al. in [114],

on a Delaunay Graph Compass Routing is a proper navigation.
The associated directed navigation is naturally:

X-Y

A, (X) = argmax{(eq, XV

) (X,Y) € E},

i.e. the direction of (X, A(X,e1)) is the closest from e;. The algorithm in Baccelli et al. [23] is
closely related (but not equivalent).



Radial Navigation
For X,Y € N% X #0, [Y| < |X] it is defined as:

AX) =|Y| if N(B(X,|X —Y|) N B,|X]) = 0.

A(X) is the closest point from X which is closer from the origin. Radial navigation has an
a.s. positive progress and A(X) is a.s. uniquely defined. The directed navigation associated to
radial navigation is: if X, Y € N and (Y — X,eq) >0

A (X) =Y if N(B(X,|X —Y|)NHe, (X)) =0.

That is A, (X) is the closest point from X which has a larger e;-coordinate.

The corresponding navigation tree is the radial spanning tree and it is analyzed in the next
chapter. The directed spanning forest is the directed navigation forest associated with A, .
This model is examined in [71], [131] and in the next chapter.

The radial navigation will be more specifically analyzed in Chapter 2.

Road Navigation

Road navigation models a car on R? starting at a point X and driving to a destination point 0.
A road R(X,e) is the straight line passing through X with direction e € S9!, The following
model has been introduced by Baccelli (private communication).

We consider a family of probability distributions on S, {IIx}, X € R% The starting
point X is on a road Ry with random direction e(X) with distribution IIx. It drives to the
closest point on Ry of 0: the orthogonal projection of 0 on Ry. From this new point, say X1, a
new road R; starts with direction independently drawn and distribution IIx,. The driver goes
to Xg, the closest point on R; of 0 and so on until it finally reaches its destination (if he ever
does).

Note that if ILy (X*) = 0, where X+ = {e € S9! : (¢, X) = 0} then the road navigation has
an a.s. positive progress. To be sure that the driver will finally manage to reach its destination
we have to assume at least that there exists zp such that IIx(X/|X]|) > 0 for | X| < xo.

Our work covers the particular case when the distribution |(e(X), X/|X|)| converges weakly
as | X| tends to infinity.

Generalizations of this model include higher dimensional roads (as hyperplanes) or even
successive projections of the origin on more complex sets than straight lines. Note that adding
more roads at each point and choosing the road with the best possible direction is already
included in the original model. Road navigation is not really a navigation since its maps a
point in R? to another point in R?. All the results presented for regular navigation also apply
to road navigation. Road navigation is clearly memoryless.

Remark 1.1.4 In §1.7.1 (at the end of this chapter), two other examples of navigation are
given.

1.1.6 Overview of the Results

In this paragraph, we illustrate some of the results with the small world navigation, Model 2.

We will denote by
7.‘.d/2 4 27Td/2
T Taez+y M Y1 = T(d/2)

the d-dimensional volume of B(0,1) and the d-dimensional surface area measure of S%~1.



Local Weak Convergence of the Navigation Tree

In Section 1.2, we will state some general conditions under which the navigation tree converges
to the directed navigation forest for the local weak convergence on graphs as defined by Aldous
and Steele in [5].

For a graph G = (N, E), we define S, 0 G = (S, N, E) as the graph obtained by translating
all vertices N by x and keeping the same edges.

As an example, on the small world graph, let 7¢, (V) denote the directed navigation forest
built on the point set N and 7y(/N) the navigation tree built on the point set N.

Proposition 1.1.5 Assume 3 > d in the small world graph. If |X,| tends to +o0o and X,, /| Xy|
to ey then S_x, o To(N®%n) converges to T_o,(N°) for the local weak convergence.

Let Fx(t) =P(P(X) <t) be the distribution function of the progress at X, and for 5 > d,
let F(t) = P(P.,(0) <t) denote the distribution function of the directed progress. we will also
show how to compute these distributions using some basic stochastic geometry tools, we obtain
the following proposition.

Proposition 1.1.6 For the Model 3, assume d > 2, the following properties hold:
1. If B > d, as t goes to infinity:
_ 9 7 w/2
F(t) ~ Mtd_ﬁ/ cos® =4 6de.
p—d 0
2. If B> d, Fx converges weakly to F'.

3. IfB=d, let Fx be the distribution of P(X) = —In(1-P(X)/X) € [0, +0c], Fx converges
weakly to F with [ F(s)ds = i € (0,+00).

4. If d —2 < B < d, the distribution of |A(X)|/|X|17% converges weakly to a non degen-
erated distribution.

The limit distribution in statements 3 and 4 is computed explicitly. For d > 3 and 0 < § <
d— 2, the same method can be used to prove a convergence of the properly scaled progress. The
computation for d = 1 is simpler and the same result holds with different constants. Finally
this proposition implies a similar result on Model 2, in statement 1, it suffices to divide by
P(P(0) =0) = exp(— fHel(O) f(y))dy) and statements 2, 3, and 4 hold without change.

Path Average
The path from X to 0 in the navigation tree 7y is given by a sequence of vertices 7(X) = (Xo =
X, o Xpr(x) = 0) where H(X) is the generation of X in 7y:

H(X) = inf{k : A¥(X) =0}.

Let g be a measurable function from R? x R? to R, G(0) = 0 and

GX)= D 9(Xp, Xps1) = g(X, AX)) + GA(X)). (1.4)
k=0

In Section 1.3, we will state the various convergence results that can be expected for Equa-
tion (1.4) for a memoryless navigation. This amounts to analyze a non-homogeneous renewal



process. In Section 1.4, analogous results for regenerative navigation will be obtained as corol-
laries.

In the PWIT model on the small world graph, Proposition 1.2.6 will imply a result on the
convergence of H(X) for all # > d —2.

Proposition 1.1.7 For the maximal progress navigation in the small world graph of the PWIT
model,

If B>d+1 and p= [rF(dr), a.s.

H(X) 1
o ) _ L
IX|—oo | X]| 0

-Iff=d+1 as.
) HX)ln|X| 1
lim —————— = —.

-Ifge(d,d+1)

H(X) < o

H(X
liminf E ( )>0 and thUPE‘X’ﬁ—d .

[X|—oo | X[P—d

| X |—o0

- If B=d and i as in Proposition 1.2.6 a.s.

H(X) 1
1m -=.
X|—oo In|X| [

-Ifd-2< 8 <d, as.
H(X) 1

111 = — .
|X|—oo Inln | X| In(1 — %)

How to prove that a navigation is regenerative 7

In Section 1.4, we explain a general method to prove that a navigation algorithm is regenerative.
This original method relies on geometric properties of the navigation and tail bounds in the
GI/GI/oo queue.

As an example, we will prove that the small world navigation on a PPP has good regenerative
properties for § < d and 8 > d + 2. Our method fails in the case d < § < d + 2.

Proposition 1.1.8 - If 8>d+1, A is regenerative.
- If B> d+ 2 there exists ;> 0 such that a.s.
H(X) 1
lim ——= = —.
[X|—oo | X]

- If B=d and i as in Proposition 1.1.6 a.s.

HX) 1
1m = —.
X|—oo In|X| [

-Ifd-2< 8 <d, as.
H(X) 1
im =— .
|X|—oo Inln | X| In(1 — %)

This proposition implies that the PWIT model gives the exact order of magnitude for H(X).
It is also worth to mention that our method has enabled us to determine the exact asymptotic

limit for 8 € (d — 2,d].



Path Deviation and Tree Topology

In Section 1.5, we examine the path from X to O in the navigation tree. For regenerative
navigation algorithms, we establish an upper bound on the maximal deviation of this path with
respect to the straight line OX:
A(X) = max ‘Xk - Yk’,
0<k<H(X)
with X, = (X, X/|X|)X/|X| is the projection of X} on the straight line OX.

Using the terminology of Howard and Newman in [93], this bound will enable us to find
conditions under which 7j is an f-straight tree. In particular, it will characterize the semi-
infinite paths of the navigation tree.

On the small world navigation, we obtain the following proposition.

Proposition 1.1.9 There exists C > 1, such that if v > C(d+1)/(B—d), then for some n > 0,
there exists C71 > 0 such that

P(A(X) > [X[") < Cy[X] 747,
and Ty is f-straight with f(z) = |z~ L.

A bound for the constant C' could be explicitly computed. We only point out that for a small
world navigation on a PWIT, C = 1.

Shape of the Navigation Tree

Finally, in Section 1.6 we will state a shape theorem for regenerative navigation algorithms.
We define
To(k) = {X € N : A¥(X) = 0}.

We restrict our attention to the following case: a.s., lim x| % = %, where p > 0 is the

asymptotic directed mean progress. Under some additional assumptions, we will state that for
all € > 0 there exists a.s. K such that if £ > K:

NN B(0,(1 —e€)kp) C To(k) C B(0,(1+ €)kp),

and moreover a.s. and in L1:
|70(k)| d
— u”.
makd

On the small world graph, we will obtain the following proposition.

Proposition 1.1.10 Let u (resp. i) as in Proposition 1.1.8 (resp. Proposition 1.1.6).

- There exists C > 1 such that if 3 > (C' + 1)d 4 2C, for all € > 0 there exists a.s. K such
that if k > K:
NNB(0,(1—e¢eku) CTolk) C B, (14 e)ku).

Moreover a.s. and in L':
|7o(k)| d

- If B =d, for all ¢ > 0 there exists a.s. K such that if k > K:
N N B(0, 1%y © Ty(k) € B(0, e TR,

Moreover a.s. and in L':
In |To (k)|

. — df.



-Ford—2<p<d,leta=1—(d—f)/2, for all e > 0 there exists a.s. K such that if
k> K:
N N B(0,exp(alt=9%)) € To(k) € B(0, exp(alToF)).
Moreover a.s. and in L' :
Inln [ To k)|
k

— Ina.
Again, a bound for the constant C could be computed. In the PWIT model C' = 1.

1.1.7 Notations and Preliminaries

If not otherwise mentioned, if + € R%, |z| will denote the Euclidian norm and (-,-) the usual
scalar product. B(X,r) will denote the open ball of radius r and center z, S*! = {z € R¢ :
|z| = 1} is the d-dimensional hyper-sphere. If A is a set, |A| will denote the cardinal of A and
A the closure of this set for the underlying topology. The d-dimensional volume of B(0,1) is
T = % and wy_1 = I?ZTd—d//;)7 is the d — 1-dimensional area of S% 1. For e; € S9! and
X € RY H (X) ={Y : (Y — X,e1) > 0}. If the choice of e; is not important will sometimes
simply write H(X) instead of H — e1(X). ° is the set of measurable Ry — R, functions
tending to 0 at +o0.

If N is a countable set of points in R? with no accumulation points, we write for all bounded
sets A: N(A) =Y, .y 1(z € A). A set of points N of R? is said to be non-equidistant if there
do not exist points z,y, z,t of N such that {z,y} # {z,t} and |x —y| = |z —t|. We define a nice
point set as a non-equidistant locally finite point set, a Poisson point process (PPP) of positive
intensity is a.s. nice. It is good to note that on nice sets, the maximal progress navigation and
the radial navigation are well defined.

Several qualitative results of the present paper involve constants. For the sake of clarity, we
will use Cy to denote a positive constant to be thought of as small and C'; to denote a positive
constant to be thought of as large. The exact value of Cy and C; may change from one line
to the other and we could for example write : Cy/C; = Cp. The important point is that Cy
and C] are constants that may depend on the dimension d but they will never depend on other
parameters of the problem.

1.2 Convergence of navigation to directed navigation

1.2.1 Stable Functionals and Local Weak Convergence

In this paragraph we prove that under some conditions the navigation tree tends weakly to
the directed navigation tree, for the local weak convergence. We consider a navigation A with
non-negative progress on a PPP N of intensity 1. Proving the convergence of the navigation
tree is not a difficult task, provided that we use the right concepts.

We introduce an important class of functional, the stable functionals. This class was first
introduced by Lee [113] and it was further developed by Penrose and Yukich (see for example
[132], [133]); it is slightly modified here to suit to our framework.

Definition 1.2.1 Let F(X, N) be a measurable function valued in a complete separable metric
space. F is stable on N if for all X € R? there exists a random variable R(X) > 0 such that
F(X,N) is fg(x R(X))—measumble and R(X) is stochastically upper bounded uniformly in X.

A graph G = (N, E) is a stable graph if for all X € N, V(X,N) ={Y € N: (X,Y) € E} (ie.
the set of vertices adjacent to X in G) is a stable functional.



A is the maximal progress navigation on a stable graph G = (N, E). (1.5)

This condition is still quite general since a navigation with a positive progress is always a
maximal progress navigation on its associated navigation tree. We defined the maximal directed
progress navigation with direction e; € S9! as

Ao, (X) =argmax{(Y — X,e1) : Y € N, (X,Y) € E}.

Let G° be the graph built on N? and G the graph built on N. The navigation A is defined
on G° and the directed navigation 4., on G.

Lemma 1.2.2 Let X € RN\{0} and e; € S9! with cos§ = (X/|X|,e1). Under the foregoing
Assumption (1.5) there exists a function e € £° with

PLA(X) # A, (X)) < e(|X]) +€(1/0). (1.6)
Proof. By Equation (1.5) there exists h € ¢° such that for all X, P(p(X) > t) < h(t), and

K(X.el

theta

(X.el)

Figure 1.1: The sets L(X,e1) and K (X, e1).

V(X,N) is F g( X X))—measurable. Without loss of generality we suppose X = xe,, > 0 and
0 >0. Let K(X,eq) = {Y € R : |Y| > |X|,(Y — X,e1) < 0} and L(X,e;) = {YV € R? :
Y| < |X],(Y — X,e1) > 0}, the sets L(X,e1) and K(X,ep) are depicted in Figure 1.1. Set
S(X) = NN B(X,p(X)), AX) = argmin{|Y] : Y € S(X)} and A, (X) = argmin{(Y,e;) :
Y € S(X)}. If p(X)+ p(0) < |X|, S(X)N{K(X,e1)UL(X,e1)} = 0 and A, (X) = A(X) then
Ae, (X) = A(X). It follows

P(A_¢, (X) # A(X)) < P(p(X) +p(0) > |X|) +P(S(X) N L(X,e1) # 0)
+P(S(X)NK(X,e1) #0) +P(A., (X) # AX)). (1.7)

The first term of Equation (1.7) is easily computed : P(p(X) + p(0) > |X|) < h(|X]/2).
To upper bound the second term of Equation (1.7), we notice that L(X,e;) is contained in
a cone of apex 0 (see Figure 1.1). Let Cy be a cone issued from 0 with apex 6, we have:

P(S(X) N L(X,e1) # 0) P(N NCp N B(0,07Y2) #0) + P(p(X) > 671/2)

<
< 1 —exp(—Cof'?) + n(67Y/?).



The third term of Equation (1.7) is upper bounded similarly. Let K, (X, e1) be the largest
half of K(X,e1); we have

P(S(X)NK(X,e1) £0) < 2IP’(S(X) AKX, e1) £ 0)
< (N N Carcsm(Q‘ ‘)—1—6 N B( ) 7& Q)) + Q]P’(p(X) > t)
< 20— exp(—COt(arcsin(ﬁ) +6)) + h(t).

If 1/4/]X] < 6, we choose t = \/[X]| else we pick t = 1//0.

It remains to bound the last term of Equation (1.7). For Y € B(X, p(X)), let K'(Y, X,e1) =
{Z € B(X,p(X)) :|Z| > |Y|,(Z — Y,e1) <0}, that is the set of points with a larger norm but
a smaller projection on eq; we have K'(X, X, e1) = K(X,e1). We can then bound the last term
as we have bounded the third term:

P(A., (X) # A(X)) P(3Y € S(X): K'(Y,X,e1) NN # )
P(p(X) = 1) + P(N(B(X,1)) = n)

+27’LP(N N Carcsm( ET(BS ‘ t))+0 N B(O t) 7£ @)

<
<

We pick t = min(|X|,1/6)"/3¢, n = |X|'/2 | then using the inequality P(N(B(X,t)) > n) <
exp(—nln o o5a), we get the required bound. O

Let 7T¢, denote the directed navigation forest associated to A, and 7y the navigation tree
associated to A. A functional is stable on a graph G if it is stable on its vertex set.

Theorem 1.2.3 Let F' be a stable functional on T_.,. If Equation (1.6) holds then as x tends
to +oo, the distribution of F(xey,Ty) converges in total variation toward the distribution of

F(0,7 ).

Proof. We set X = xej, > 0 and we build 7y and 7_., on the same PPP. For all » > 0, we
define the event Jy(X) = {7 N B(X,t) = 7_., N B(X,t)}. F is a stable functional on 7_, for
a radius R(X), we have:

P(F(X,To) # F(X,T-c,)) < P(Jp) (X))
< P(R(X) >t) + P(Ji(X))
< P(R>1t) + P(UyennpxnAlY) # A—e, (Y))
< P(R>t)+P(N(B(X,t)) = n) + ne(z — t) + ne((x — £)/t),

where we have used Equation (1.6).
For n > 0, we fix ¢ such that P(R > ¢) < n. Note also that P(N(B(X,t)) > n) <

exp(—nln 7%7). Hence taking, n = [1/1/f ()], we deduce that

limsupP(F(xel,’]f)) 75 F(xelnyel)) < m,

and it follows lim, P(F(xe1, 7o) # F(ze1,7_¢,)) = 0.
To complete the proof, notice that 7_., is stationary: F(ze;,7_,) and F(0,7_.,) have the
same distribution. |

Remark 1.2.4 It is easy to check that the vector X — A(X) (and hence the progress P(X))
or the degree at X are stabilizing functional for 7_. . So are the first £ segments of the path
from X to the origin in 7_.,, for all finite k, or the subtree of the directed navigation forest
rooted in X and of depth k.



Theorem 1.2.3 has to be related to the convergence of graphs as it is defined for the Objective
Method (refer to [5]). Let S, denote the natural translation on geometric graphs induced by
the translation by x of point sets. As an immediate corollary we have:

Corollary 1.2.5 If Equation (1.6) holds and if |X,| tends to +oo and X, /|X,| to ey then
S_x, 0To(N%%n) converges to T_.,(N°) for the local weak convergence. Moreover if (e}),n € N
converges to ey then Ten converges to T, for the local weak convergence.

1.2.2 Sketch of Application: Spatial Average

In this paragraph, we explain how to prove the convergence of the spatial average of a stable
functional of the navigation tree. It is not in the scope of this paragraph to state a precise result
but rather to point out the good references. In the Chapter 2, Section 2.6 a detailed analysis
will be done on the radial spanning tree. Let F' be a stable functional on the navigation tree
with value on R;. We consider the sum

T(r)= Y 1(X € B(0,r)F(X,T).

We assume that the conclusion of Theorem 1.2.3 holds, that mx = EF(X,7j) depends only
on | X| and that mg, converges to m = EF(0,7;,). From Slyvniack-Campbell Formula (see
Appendix, §B.3)

T
ET(r) = wd_l/ Mae, 24 e,
0

With the change of variable : ¢ = 7, this leads to :

T 1
E (;) = Wd—1 / 7falil"ntrel dt,
r 0

The dominated convergence theorem together with lim, 4o Mze, = m gives:

T
Jim B L)

T—00 rd

1
= wdlm/ =1t = mmg.
0

Indeed we can hope to prove a stronger result: the almost sure and weak convergence of
% to mmy, that is the convergence of T'(r) = 1/EN(B(0,7)) > xeny 1(X € B(0,7))F(X, 7o)
toward 1/EN(B(0,7)) > xeny L(X € B(0,7))F(X,Te, ).

The weak convergence could be derived from Theorem 2.1 of Penrose and Yukich [133]. To
prove an almost sure convergence, we consider a slightly different problem, we draw indepen-
dently N points uniformly and get a finite point set Fry = {0, X1, ..., Xy} and we build the
navigation tree TOFN on the point set Fry. We define T'(Fy) = ZnN:1 F(Xn,%FN), assume for

example that F is homogeneous of order o, T(AF) = A*T(F) for A > 0. N(B(0,r))/r? tends
I(r)

a.s. toward mg. Thus, by homogeneity, in order to prove that —7° converges almost surely
toward mgm it is necessary and sufficient to prove that fogj))/d tends to mr®/4. Since we have

already computed the mean of %, it is sufficient to prove that ]\%_Ffj /)d converges a.s. toward a

constant. If T satisfies a smoothness property, this will be a consequence of Rhee and Talagrand
concentration inequalities, refer to the monographs of Yukich [161] and Steele [145].

It is important to notice that spatial average and path average have no reason to be equal
when the navigation is not memoryless: lim, .o 1/N(B(0,7)) - xep(o, F(X, Ze,) could differ

from lim| x| o 1/H(X) ZkH:(é()fl F(A*(X),T.,). We will illustrate this remark on the radial

navigation in the next chapter.




1.2.3 Example: Progress Distribution in the Small World

In this paragraph, we give an example of a computation of the distribution of a local functional
of 7., and 7.

We consider the navigation on the Small World A and the directed navigation depicted
Ae, in §1.1.5, Model 3. We will soon check that the directed navigation is defined if and only
if 3 > d. Let F denote the distribution function of the directed progress in the Small World
P., (0) = (A, (X),e1) and Fx the distribution function of the progress at X in the Small World
P(X) = |X]| - JA(X)].

Lemma 1.2.6 Assume d > 2, the following properties hold:

1. If B > d, as t goes to infinity:

. 92 w/2
F(t) ~ %td 6/0 cos®~10de.

2. If B > d then for all function e € £°

lim sup P74 Fyx(t) — F(t)| = 0.
[X|—=+o0 < | Xe(|X])

3. If d—2 < 3 < d, the distribution of \A(X)\/\X]l_% converges weakly and

A
sup (|1 20 40x) £0) < o

4. If B=d, let Fx be the distribution P(X)=—In(1 — P(X)/X) € [0, +00], Fx converges
weakly to F with [ F(s)ds = i € (0,+00). Moreover, for all ¢ in £°

lim sup  eX|Fx(t) — F(t)] = 0.
| X|—=+00 t<In | X]e(|1 X))

As we will see in the next section, the weak convergence results given in statements 2, 4
and 3 of this lemma will be used to derive various limits.

For d > 3 and 0 < 8 < d — 2 the reader should be convinced that similar weak convergence
results hold. To avoid longer computations, we will not try to compute the explicit scaling at
which the distribution of |.A(X)| exhibits a non-degenerated limit.

The computation for d = 1 is simpler and the same result holds with different constants.
Note that this lemma implies a similar result on Model 2, in statement 1, it suffices to rescale
by P(P(0) = 0) = exp(— [ 0) f(y))dy) and statements 2, 4, and 3 hold without change.

All the distributions can be computed explicitly. The dlstrlbutlon F in statement 4 is
given by Equation (1.9) and the weak limit of |A(X)|/|X ]1 % has a distribution obtained in
Equation (1.8).

Proof. The proof relies on explicit computations and does not involve any subtle argument, we
skip most details.

Statement 1.

Let G = (N, E) denote the Small World graph and V(X) = {Y : (X,Y) € E} the set of
neighbors of X in the graph G, V(X) is a non-homogenous Poisson point process of intensity



f(|X — z|)dz. We have
P(P(0) >t) = P(V(0)NH(te) # 0)
= 1—exp(— d
p( /H(tel)f(y) y)

~ / fw)dy,
H(ter)

as t tends to infinity. Let Ay = f’H(te1) f(y)dy, writing y = r cos fe; + rsin ey with (e1,e3) =0

and ey € S9!, we obtain

w/2 oo
A = 2wd2/ / f(r)rd_ldrde
0 t/ cos

w/2 oo
~ de_g/ / er®=P=1drde
0 t/ cos
/2

2cwg_ T t
~ 92 CWq—9 / (—)dfﬁde
0

08—d cos 6
2) _ 7r/2
~ Mtd_ﬁ/ cos?=20do.
B—d 0

Statement 2.
We can suppose without loss of generality that X = —xe;, with z > 0. By definition, for
t <
P(P(X)>t) = P(V(X)N B0,z —t)(t) #0)

= 1ROV e [ 11X ~uhay)

C - (1— (@) exp(— / (X = yl)dy)

B(0,x—t)

In R? for u € (0,1) and 0 < @ < arcsin(l — u), the straight line with equation y = tané
intersects the sphere of radius u and center (1,0) at two points of respective norms A(¢,u) and
B(6,u). A direct computation leads to

o W@-—u), v
AB,u) = cosf(1—4/1— cos2 6 )_COSH OCOSH)

w(2 — u) u u
B _ 1+4/1- 25 = 2cos — :
(07 u) cos 6( + (3052 0 ) cos 6 cos 0 + 0( COS 0)

Let A(z) = fB(o o—t) F(X —y|)dy, we get as t, x tend to infinity and ¢/z tends to 0:

arcsin(1—t/z) rxzB(6,t/x) g1
Ae(z) = 2wd_2/ / fr)yr® - drdd
0 x

A(B,t/x)
arcsin(1—t¢/z) rxzB(0,t/z)
~ de_g/ / er®=P=14rdo
0 zA(0,t/x)
2cwq_9

arcsin(1—t/z)
A R R
- 0



It follows also

w/2 arcsin(1—t/z) rzA(0,t/x)
[Ae(z) — A(t)] < / f(r)rdldrdé?—i—/ / f(r)yri=tdrde
arcsin(1—t/x) 0 t/ cos(9)

arcsin(1—t/z) poo
+/ / f(r)yrd=tdrds.
0 T

B(0,t/x)
If t = 297 Pe(z), with € € £°, we easily get that t7~¢|As(z) — A(t)| tends to 0.
Statement 3.
Let U(X) = |A(X)|/z* = (z — P(X))/2® with | X| =2 and a = 1 — (d — 8)/2 € (0,1). Let
0 < s < x'=% we have

PO <5) = 1= f@ep= [ F1X i),
= 1—(1— f(z))exp(—Ag—sa(2)),

with as z tends to 400, uniformly in s < 27 o > o

arcsin(sz®~1)  pxB(0,1—sz*1)
Apspo(x) ~ 2wd_2/ / er™P=1drdg
0 zA(0,1—sx—1)

S:Bail)

arcsin(
~ 2§wd_ﬁ2 / (xB(,1 — sz 1))4P — (2A(0,1 — sz 1)) P ap.
- 0

We have B(6, 1—sz* 1) = cos 0(14+/s222(@=1) / cos2 § — tan2 0) = cos O(14+/s225~4/ cos2 § — tan2 )
and A(0,1 — sx®71) = cos (1 — /5220~ / cos2  — tan? ). Hence as = tends to oo:

(zB(0,1—s2" )9 P —(2A(0,1—s2°"1))4P ~ 2(d—B) 2P cos?# 9\/52x5*d/ cos? f — tan? 0.

and we obtain:

arcsin(sz(8—4)/2)
Ap—spo(z) ~ dewg o / 2977 cos?P 0\/32x5*d/ cos? ) — tan? df
0

~ 4cwd,232.

Finally we have proved that uniformly in s < z(@=8)/2-n ( for some n > 0):

lim P(U(X) > s) = exp(—4cwg_25%). (1.8)

| X|—o00
and this concludes the proof of statement 3.

Statement 4. Similarly, we still suppose that X = —xe;, with z > 0, let s > 0 and
u=1--exp(—s) € (0,1):

P(P(X)>s) = P(P(X)> xu)
= O fEpenl [ X )
as above with A(x) = fB(OJ_t) FX —y|)dy:

arcsin(l—u) paB(0,u)
2wg_o / / f(r)yritdrds
0 zA(0,u)

arcsin(1—u) paxB(0,u)
~ 2wq_9 / / ¢/rdrdf
0 zA(0,u)

arcsin(1—u) B(a u)
~ 2cw/ In ~—~df
-2 0 A(eau)

Ay ()




We define

) arcsin(exp(—s)) B(H 1-— exp(—S))
i L o | , do 1.9
(S) exp( CWdq—2 A n A(a, 1-— eXp(_S)) ) ( )

= 1- eXp(—C/ lex — y|~Ydy).
B(0,exp(—s))

A direct analysis shows that, as s tends to +oo:

F(s) ~ dcwg_ge™ . (1.10)

The statement 4 follows. O

1.3 Path average for memoryless navigation

In this section we assume that A is a memoryless navigation and we derive various results on
the asymptotic of H(X), the generation of X in the navigation tree 7.

1.3.1 Finite Mean Progress

Non-Homogeneous Renewal Equation

In this paragraph, we consider Equation (1.4). We assume that the distribution of g(X, A(X))
and P(X) is invariant by rotations with center 0. Let x > 0, z(z) = Eg(ze1, A(ze1)), Z(z) =
EG(zey) and F, the distribution of P(ze;). from the independence property of the memoryless
navigation, we deduce immediately:

Z(x) = z(x) + /093 Z(x —r)Fy(dr), (1.11)
We define also the mean generation, U(x) = EH (z):
U(z) = 1+/Ow U(z —r)Fy(dr), (1.12)
Let f be a non-negative function, the f-distance between two measures p and v on R is:

dr(p,v) = su r)u(dr) — r)v(dr)|,
= e [ vt~ [ v

where the supremum us taken over continuous functions with compact support. If f = 1, the

f-distance is the usual total variation distance. We assume:

(1) Z(x) is finite for all x.

(i)  F, converges in f-norm to F the directed distribution of progress with f(r) =1+ r.
(i) p= [y°rF(dr) € (0,+00).
(

iv)  z is a bounded Riemann function and | = lim,_,; 2(z) exists and is positive.

Theorem 1.3.1 Let a < b, under the foregoing assumptions, as x tends to infinity,

l b—
Z(x)~—xz. and U(x+a)—U(z+b) — ¢
u [

The proof relies on the Renewal Theorem and on a few technical lemmas.



Lemma 1.3.2 There exists a positive constant Cy such that
Z(x) < Ci(z+1).

Proof. Let M(x) = supg<;<, Z(t) and L an upper bound for z. M(z) is finite (Assumption (i)),
M is non-decreasing and

M(z) <L+ /096 M(x —r)F,(dr).

From Assumption (ii), the sequence of measures F, converges in total variation and F'({0}) < 1
(indeed p > 0 by Assumption (iii)). Thus we may find zy > p > 0 such that for all x > =z,
F([0, p],z) < 1/2. We deduce for z > x:

M (x) §L+%M(m)+%M(m—p),

which in turn implies:

M(z) < %x + M (xp).

a

Lemma 1.3.3 Let §(x) = C [y (x —r +1)|Fy(dr) — F(dr)|. 0 is a bounded Riemann function
and
lim §(z) = 0.

r—00

Proof. Since d(x) < C1 [;°(r + 1)|Fy(dr) — F(dr)| this lemma follows immediately from As-
sumption (ii). O
We state a straightforward corollary of the Renewal Theorem as it is stated in Feller [62].

Theorem 1.3.4 Ify is a bounded Riemann function, the solution Y of the renewal equation:

Y(z) =y(x) + /Ol“ Y(x —r)F(dr)

satisfies as x tends to infinity:

Now we can turn to the proof of Theorem 1.3.1.
Proof. Let Z be the solution of the renewal equation given by:

Z(x) = z(x) + /Ox Z(x — r)F(dr).

Assumption (iv) and Theorem 1.3.4 (applied to y(z) = z(x)) imply that Z(z) ~ lz/u. Note
also:

|Z(x) — Z(x)] < /mZ(x—r)|Fm(dr)—F(dr)|—|—/x|Z(az—r)—Z(:c—r)|F(dr)
0 0
< d@)+ [ 12 =)= 2o = n)|Plar),

where §(x) is a bounded Riemann function in view of Lemmas 1.3.2 and 1.3.3. From Lemma
1.3.3 and Theorem 1.3.4 (applied to y(z) = d(x)):



Hence:
Z(x) ~ Z(z) ~ —.
i

It remains to prove the more precise statement on the measure U. Let U the solution of
Equation (1.12) where F, is replaced by F. Let g be a non-decreasing function with g(z) < x
and g(x)/x tends to 0 at infinity (g will be chosen later). We set z(z) = 1(a,b)(z — g(x)) and
define Z and Z as above. Note that Z(z) = U(z — g(x) — a) — U(z — g(z) — b) (resp. for Z and
U).

F' cannot be arithmetic since F' is the limit of a distance between two points in a PPP. Then
the Renewal Theorem (first form) (§XI.1 in [62]) implies:

lim Z(z) = lim U(z —a) — Uz —b) = b—a.

Tr—00 Tr—00 IU,

(1.13)
Moreover, with ¢ as in Lemma 1.3.3:
|Z(x) — Z(x)] < /mZ(ﬂ:—r)|F (dr) — F(dr) |—|—/ |Z(x —r) (:c—r)|F(dr)
< / |Z(x — 1) — Z(z — 7)|F(dr)
z—g(x) _
< s+ [ 126 =0 - Ze =)

indeed Z(z—r) and Z(z—r) are equal to 0 for z —r—g(z—7) < a < 0 and thus for 7 > z —g(z).
We deduce by Equation §XI.1 (1.5) in [62]:

Z(2) — Z(2)] < / ( )5(7“)(7(d7"). (1.14)

) = mp < oo, let &(x) =
Yonmpl(z € I,). § is a bounded Riemann function and limg_, e 5( ) = lim, oo m, = 0. By
Lemma 1.7.1 (at the end of this chapter), we may suppose that g has been chosen so that
f;—g(x) (r)dr tends to 0 as x tends to infinity.
Equation §XI.1 (1.17) in [62] stated for Equation (1.14) asserts:

Set I, = [n,n + 1), n € N. From Assumption (i) sup,ey, o(x

. 1 ¢
lim |Z(z) — Z(z)] < — lim d(r)dr = 0.
T—00 M =00 Jo g(z)
The theorem follows then from Equation (1.13). O

Remark 1.3.5 Z is the expectation of the weight of the path from ze; to —H,, (0) in the
directed navigation tree.

Law of Large Numbers

We now prove an almost sure convergence result for H(X) on the path 7(X) from X to 0 in
the memoryless navigation with non-negative progress.

Proposition 1.3.6 Assume that Fx converges weakly as |X| tends to infinity to F' and that

(Fx) is uniformly integrable then a.s.

O HX) 1
lim @ —t=-—
(X|=+o0 [X]  p

)

where p = [ rF(dr) < oo



Before proving this proposition, we will state two lemmas. The first lemma will be often
used.

Lemma 1.3.7 Let A is a navigation with a.s. positive progress on a PPP or a PWIT. Let
g > 0, 7(X) = inf{k > 0 : |A*(X)| < 20}, and let £(X) be a positive R? — R, function
tending to oo as |X| tends to oo. If a.s. (resp. in LP) 7(X)/l(X) converges to Z then a.s.
(resp. in LP) H(X)/¢(X) converges to Z.

Proof. We have:
FX)SHX)<T(X)+  swp  H(Y),
YE€B(0,20)NN"¥(X)

hence it is sufficient to prove that, for s small enough:

E sup exp(sH(Y)) < 0.
Y eNNB(0,x0)

The progress is a.s. positive: A(X) € B(0,|X]), it follows that for a navigation on a PPP:
E supy e nnB(0,20) eXP(sH (Y)) < Eexp(sN(B(0, z9))) < oo.

For a navigation on a PWIT, the proof is slightly different. The vertices in T%¥ of first
generation is a PPP, and [A(X)| < #(X) with ¢{(X) = argsupycnnpo,x) Y] C(X,t) =
B(0,|X|)\B(0,|X| —t), t(X) is a stopping time for the filtration {]:(],y(xt) Yo<t<|x|- Since N N
C(X,t) is independent of N N B(0,t), we obtain: Eexp(sH(Y)) < Eexp(sN(B(0,]Y])) <
oo for s small enough. Let (Ug),k € N, be an iid sequence of r.v. with the distribution
of exp(sN(B(0,zp))). From the independency of the subtrees in a PWIT and using Wald’s
formula, we get

N(B(0,z0))
E sup exp(sH(Y))<E Z Uy, = mgzdEU; < oo.
YeNNB(0,z0) k=0
O
We consider the following property:
If € € €0 then lim x| o I V| Py (t) — F(1)]dt = 0. (1.15)

From Markov Inequality, Property (1.15) is implied by the stronger property, for some o > 1:

If e € ° then lim sup Y| Fx(t) — F(t)|dt =0,
[ X|=00 <X (X))

which has already appeared in Lemma 1.2.6. The next lemma asserts that Property (1.15) is
implied by the assumptions done in Proposition 1.3.6.

Lemma 1.3.8 If F'x converges in f-norm to F with f(r) = r then Property (1.15) holds. Con-
versely, if Fx converges weakly to F' and {Fx } xcgra is uniformly integrable then Fx converges
in f-norm to F with f(r) =

Proof. Let n > 0, there exists xg such that for all X, | X| > =,

sup |/1/) )Fx (dr) — /¢ F(dr)| <n.
P:lap(r)|<r



Let Ax(t) =1—|Fx(t) — F(t)] and I = {t : Fx(t) > F(t)}, we have

/Zx(t)dt = /|FX (t)|dt
= /I/t FX(dr)dt—/I/tOOF(dr)dt—/IC/tOOFX(dr)dt—ir/c/tooF(dr)dt
[oExtan - [or

<N

where we have used Fubini’s Theorem and set ¢(r) = rl(r € I) — rl(r € I¢), |p(r)| < r.

We now prove the converse statement, the hypothesis imply that for all > 0 there exists T'
such that foralle )dt<77andf (t)dt <mn. Let (r) <r, I ={t: Fx(t) > F(t)}
and ¢(r) =rl(rel)— 7“][(7“ € I°). As above:

’/w(r)FX(dT) _/w(T)F(dT)’ < /¢(T)Fx(dr)—/¢(r)F dr

< [ - ol
T
< 2n+/0 |Fx (t) — F(t)|dt.

and the second term tends to 0 by assumption. O
We turn to the proof of Proposition 1.3.6.

Proof. We first assume that p > 0. Let 0 < < p1/2 and ¢(X) = 1//]X], by Lemma 1.3.8 we

may find xg and a function f such that if | X| > z¢:

Lt < VIXDF®) = f(t) < Fx(t) < F(t) + f(2).

where [ f(t)dt <mn, f(t) < F(t) and f\/_F — f(t)dt >
Let 7(X) = inf{n : | X,| < xo} and (Uy),n € N, (resp.

variables with tail distribution 1 A (F + f) (resp F — f). We
= |X| = 32 Vel (Vi < Vo),

7+(X) =inf{n: |Y,| <zo} and 7_(X)=inf{n:|Z,|> zo}.

Vn),n € N) be an iid sequence of
e now define: Y, = | X| — Zz;é Us,

From Lemma 1.7.2 (at the end of this chapter):

st

L (X) > 1) Zn £ 1(r(X) > n)|Xn| £ 1(r(X) > n)Y,

We deduce that:

t t
r(X) < 7(X) < 7 (X). (1.16)
We have EU,, < p+n and EV,,1(V,, < \/Z¢) > p — 2n. By the elementary renewal Theorem,
a.s.:
X 1 X 1
lim inf %) > .and  limsup 7+(X) < . (1.17)
XX T x X[ T a2

From Equations (1.16) and (1.17) we get a.s.: liminfx 7(X)/|X| > 1/(p+n) and limsupy 7(X) /| X| <
1/(x — 2n). Then by Lemma 1.3.7, H(X)/|X]| tends a.s. to 1/u. For u = 0, considering only
7_(X), the same proof works. O



1.3.2 «a-Stable Model

We now turn to the case, 0 < a <1, ¢> 0:

c

F(t) ~i oo o (118)

In this model, the directed progress is a.s. finite but it has an infinite mean. This case is slightly
more complex than the previous. The tail of F' is very large and due to some large jumps, the
directed navigation differs significantly from the navigation. In view of Lemma 1.2.6, the extra
assumption is
If e € 0 then lim  sup t%|Fx(t) — F(t)| =0. (1.19)
| X[ =00 < |X]e(|X])
This assumption is a uniformity assumption on the convergence of Fx to F' to guarantee that
the tail of F'x converges uniformly to the tail of F'.

Proposition 1.3.9 Let x, a random variable with a-stable distribution: Eexp(—sxa) = exp(—s®).
If Equations (1.18) and (1.19) hold then

lim P(H(X) > 1) > P2 > T — a)ct)

and

This proposition is somewhat disappointing: we have not managed to prove that H(X)/| X |*
converges in law. Equation (1.19) is the best convergence that we can hope to prove however
it is not sufficient: directed navigation and navigation do not have the same exact asymptotic
behavior.

Proof. The proof of this proposition is similar to the proof of Proposition 1.3.6. Let ¢(X) € £°
such that |X|e(|X|) tends to infinity and fix n € (0,c). By Equation (1.19), we may find z
such that for all X with | X| > zo:

L(t < [X[e(|X)(F () —nf(t)) < Fx(t) < F(t) +nf(t), (1.20)

where 0 < nf(t) < F(t) and f(t) ~t~%.
Let 7(X) = inf{n : |X,| < z0} < H(X). Following the proof of Theorem 1.3.6 and using
Lemma 1.7.5 (at the end of this chapter), the right hand side of Equation (1.20) gives:

7(X)
| X

limyinf P( > 1) > P(x, "/ > T(1 - a)(c+n)t).

The proof of the left hand side of Equation (1.20) uses Lemma 1.7.7 (at the end of this
chapter):
. E7(X) < 11—«
im sup — < .
x X (XDt T e—n

Since this last equation holds for all function €(] X|) tending to 0 at infinity we deduce:

Then using Lemma 1.3.7 we deduce that limsup EH (X)) /| X|* < co. We can go one step further,
using Remark 1.7.8, we have: limsupy EH(X)/|X|* < 2(1 — «)/c. Indeed, fix n > 0 and let
er(X) = |X|'/*, for | X| large enough, for all k: EH(X)/|X|/ktet=D/k < 9(1—a)/c+n. (from
Equation (1.69)). O



Remark 1.3.10 If we had supposed instead that the directed progress tail was equivalent to
I(t)/t* for a slowly varying function [ then the same type of convergence result holds with | X |*
replaced by | X|*/I(|X]).

1.3.3 Relatively Stable Model
We now turn to a limit case for some ¢ > 0:

F(t) ~itoo 7 (1.21)
Proposition 1.3.11 If Equation (1.21) holds and

If e € £° then lim sup t|Fx(t) — F(t)] =0, (1.22)
| X|=00 <] xe(| X1)

then a.s.

. HX)ln|X| 1

lim —————— =~
Proof. The proof is similar to the proof of Proposition 1.3.9. We fix a function €(X) tending to
0 with | X |e(X) tending to infinity. Equation (1.20) still holds with f(¢) ~ 1/t. Using Lemmas
1.7.6 and 1.7.7, we deduce:

H(X)In|X 1
a.s. liminfw > =

EH(X)In | X]e(|X])
X

and limsup <

| X|—00

1
c

If €(|X|) = | X|7'/", we have: limsup w < n/(c(n —1)). This last equation holds for

all n, hence: lim sup w <1/e. O

1.3.4 Scaled Progress

We discuss in this paragraph cases when P(X) does not converge toward an asymptotic progress
but rather | X|~*(|X| — P(X)) for some 0 < o < 1.

Scale Free Progress

A case which has an important impact in applications is o = 1: the scaled distribution
of progress, P(X)/|X|, converges weakly to a non-degenerate limit. Following Meester and
Franceschetti in [68], a navigation is scale free if the distribution of P(X)/|X| does not depend
on X. Similarly the distribution is asymptotically scale free if the distribution of P(X)/|X| con-
verges weakly to a non degenerate limit. Let P(X) = —In(1 — P(X)/|X|) € Ry U {400} and
Fx(t) = P(P(X) < t). Note that P(P(X) = co) may be positive. We assume that F converges
weakly to some limit distribution F. Define for 0 <i < H(X) — 1, P; = —In(1 — P(X;)/|Xi]),
we have | Xj| = | X]| Hf:_ol(l — P(X;)/|X;|) and In | Xy| = In|X| — Zf:_ol P;. The corresponding
path in RU {—o0} is #(X) = {In|X|,In|X| — Py, ..., —o0}. Let 7(X) = sup{n : In|X,| < 0},
from Lemma 1.3.7 a.s. 7(X) and H(X) are equivalent as |X| tends to infinity (provided that
they tend to infinity). We may apply Proposition 1.3.6 to the path 7(X) up to In|X;(x)|. We
deduce the following proposition.

Proposition 1.3.12 If Fy converges weakly to F as | X| tends to infinity and (Fx) is uniformly
integrable then a.s.
H(X) 1
X400 In|X| @’

where fi = [ sF(ds) < oo.



Subcritical Case

We study the case when (|X| — P(X))|X|™® is non-degenerate for some 0 < a < 1. Let
U(X) = [AX)[X[™* = (1X] = P(X))[X[™

Proposition 1.3.13 Assume that sup xcpe E(|InU(X)||U(X) # 0) < 400 then a.s.

HX) 1
|X|—+4oo InIn| X Ina’

Note that the proposition does not require any weak convergence of U(X) toward a non-
degenerate limit. The following proof is perhaps longer than necessary.
Proof. For 1 < k < H(X), let U, = |Xpl|Xp_1|™% If k < H(X), In|Xg| = oFIn|X]| +
S @F 7 In U, hence:
In|X;| = o*In|X| 4+ Ry, (1.23)

with |Ri| < Z = Y%, o | InU;|. With the convention that Z, = 0 for k > H(X),
(Zk, Xk), k € N, is a Markov chain and
L1 = ol + |1n Uk+1|.

Let 0 < # < 1—a, by assumption there exists C; such that supycps EL(U(X) # 0)|In U(X)| <
C1 (with the convention "0 x oo = 07). It follows

E(WH(X) >k +1)(Zkr — Zi)| 2k = 2) —1-a)z+C

<
< —pz+Cil(z€C), (1.24)

with C = {z € Ry : 2 < C1/(1 — o — 3)}. Equation (1.24) is a geometric drift condition on a
Markov chain (see (V4), p371 in Meyn and Tweedie [123]). Let K = inf{k > 1: Z; € C}, by
Theorem 15.2.5 in [123], for some s > 0,

sup E(esEN X)) | 70 = 2) < 0. (1.25)
zeC

Set g = exp(l1 + C1/(1 — a — (3)), by Lemma 1.3.7, it is sufficient to show that a.s.

T(X) 1

|X\1~I>I<1H>o Inln|X| Ina’

where 7(X) = inf{k > 0 : |Xj| < zo}. We fix € > 0 and let (X"),n € N, be a sequence
in R? such that |X"| tends to infinity. We define K(n,¢) = |—(1 + ¢)(Inln|X"|)/(Ina)]| and
K'(n,e) = H(X)Ainf{k > K(n,€) : Z € C}. From Borel-Cantelli Lemma and Equation (1.25),
a.s. for n large enough K'(n,€/3) < 2K(n,e/3) < K(n,¢). Therefore for n large enough, from
Equation (1.23):

In ‘XK(n,e)’ <In ‘XK'(n,e/fi)‘ < (ln ’Xn’)ie/s + Cl/(l — Q= ﬁ) < Inzy,
and it follows that a.s.

. 7(X) 1
im su -
X plnln]X\ - ha

The same computation can be done with K (n, —e) to get a lower bound. O



1.3.5 Average along a Path

We have so far taken interest only in H(X), more generally we may try to find some almost
sure convergence results for

GX)= > g(Xi Xip1) = g(X, A(X)) + G(AX)).

1=0
H(X) is the case g = 1. This is straightforward to generalize our results to G(X). The same

analysis can be done and we obtain for example:

Lemma 1.3.14 Assume that H(X) tends almost surely to infinity, that (9(X, A(X)) xcra con-
verges weakly as | X| tends to infinity and (9(X, A(X))xera is uniformly integrable then a.s.:

where v(g) = lim x|, 1o Eg(X, A(X)).

The proof of this lemma is omitted since it is identical to the proof of Proposition 1.3.6.
It is possible to get a convergence result even when no weak convergence holds.

Lemma 1.3.15 Assume that H(X) tends almost surely to infinity, that v(g) = lim| x|, 1o Eg(X, A(X))
exists and that sup yepa E|lg(X, A(X)|? is finite, then a.s.

G(X)

e 7100)

Proof. As above F,, denotes the o-algebra generated by Xy, ..., X,,. Since E(|g(X, Xi11)|?) <
M < oo, from Theorem VII.9.3 of Feller [62] a.s.

H(X)—1
li — X, X —E(g( Xk, X =0. 1.2
pm kz_;) 9( X, Xppi1) — E(9(Xp, Xppt1)|F5) = 0 (1.26)

For a memoryless navigation E(g(Xg, Xi+1)|Fx) = E(9(Xk, Xr+1)|Xk), thus our assumption
implies a.s. lim| x| o0 E(g(Xy, Xg41)|Fx) = v(g) and consequently a.s.:

H(X)-1
|X\1EI}FOOW kZ:O E(g(Xk, X1)|F) = v(9)- (1.27)

Equations (1.26) and (1.27) lead to:

>

H(X)
. G(X) . 1
] VA | L Xi, X111) = v(9g).
T T e T 1g( ks Xpt1) = v(g)

i

a

Remark 1.3.16 If the assumptions of the lemma hold with ¢(X,Y’) = |X| — |Y|, then, since
9(X, A(X)) = P(X), we obtain, a.s.:

[ X]

This is an alternative proof for the convergence of H(X)/|X| (under different conditions).



1.4 Path Average for Navigation

We now turn to a more challenging question: the analysis of decentralized navigation on a PPP.
The analysis in the PWIT or in a memoryless navigation was greatly simplified by the fact that
the progress P(X}) was depending on the past history Fr = o(Xj,..., X;) through the sole
position of Xj. This property enabled us to rewrite the path as a non-homogeneous random
walk.

As it pointed in [59] there is a technical issue to cope with in a navigation .4 on the PPP: the
dependency structure is much more complicated. In the Small World navigation for example, if
A(X) =Y then it implies that there are (stochastically) fewer points of N? in B(0, |Y]). So the
navigation along these edges will not have the nice property of the navigation on the PWIT.
We will circumvent this difficulty by a coupling argument, more precisely we will prove that
the navigation in the Small World is regenerative.

1.4.1 Path Average for Regenerative Navigation

In this paragraph, we exhibit some sufficient conditions for a regenerative navigation to have
converging path averages. Let A be a regenerative navigation and 6 its regenerative time: A’
is a memoryless navigation. We define P(X) = |X| — |A(X)| and PY(X) = | X| — |A%(X)|. Let
0o =0, 6; =0 and 0}, = 0(X};,_1), for k > 1. We define H?(X) = inf{k > 0: A%(X) = 0}. The
next lemma is elementary but nevertheless useful.

Lemma 1.4.1 Let ((X) be a positive R? — R, function tending to oo as | X| tends to co. We
assume:

1. HY(X)/0(X) tends a.s. to 1/p, u > 0.

2. EO =0 < .

Then the following limit holds a.s.

lim M:

|X]| =400 £(X)

= |l

Proof. Note that 60 xy_1 < H(X) < 0p0(x) hence:

Omoxy-1 _ HX) _ Onox)
ax) S S

Let A = A? we can apply Lemma 1.3.14 to g(X, A(X)) = 6(X): we get that GHe(X)/HG(X)
converges almost surely to 6. O

This simple lemma states that the behavior on regenerative navigation relies on the behavior
of its embedded memoryless navigation.

1.4.2 Directed Navigation on the Discrete Lattice Small World

The aim of this paragraph is pedagogical: on the simplest example we build a regenerative
sequence. The point set NV is a thinned 1-dimensional lattice. More precisely, let (U;),: € Z,
be a sequence of iid Bernoulli random variable, P(U; = 1) = p > 0. A point i € Z is in N if

U, =1:
N => U
iE€EZ



The connection graph G = (N, E) is a Small World graph: vertices i and j are connected
with probability: |i — j]*ﬁ , B > 1, independently of the other conditioned on the event that i
has at least one neighbor on its right. Let (V;;),7 < 4,1,j € Z, be a sequence of random variable
on [0,1] and V;; = Vj;, Vi; = 0. There is an edge between i and j if Vj; < [i —j|7". We consider
a maximal directed progress navigation to the right:

A(i) =sup{j € N : (i,5) € E} =sup{j € N : Vi; < |i — j| °}.

We assume that (Vj;),i < j,4,j € Zis independent and uniformly distributed conditioned on
the event: © = U;€; and Q; = {3, U;1(Vi; < |j — i|7%) > 0}. In the computations (Vj;),i <
J,i,J € Z will denote a sequence of iid variables uniform on [0, 1]. We have P(ijl Ujl(f/ij <
j—il ) >0 =1- [[>(1 - j%) =L

As above the directed progress is defined by P(i) = A(i) —i > 0. For ¢t > 1:

P(P@)=t) = NP({UA(Vigre <t7) =13 () {UkL(Vig > |k —i| ") = 0})

k>t+i+1
_ 2 _ P
= Mg lla-5)
j>t

From similar computations, we also obtain for § > 1, as t tends to infinity:

P(P(i) > t)=1—A(1— E“ - %))2(1 - j%) ~ %tl_ﬁ. (1.28)

It follows that P(i) is almost surely finite for § > 1 and that EP(7) is finite for 5 > 2.

We define Xg = 0, X = A¥(0), P, = P(Xy) = Xp+1 — Xp. Let Nj = NN[j+1,+00] —
J, Nx, = > ;»1 Ux,+i0i, Nx, is the future of the navigation sequence. In particular Ny =
> i1 Uidi, where (U;) are iid Bernoulli variable. The distribution of Nx,,k > 1, is not as
simple as the distribution of Ny: X} and (U;)i>x, are correlated: the navigation is anticipating
with respect to the natural spatial filtration.

Consider the same navigation on Z with the same Vj;: A(i) = sup{j € Z : V;; < |i — j|7P}.
Similarly, we can compute the distribution of P(i) = A(i) —i. It is important to notice that

P(i) > P(i) and for t € N:

P(P(i) = P(i)) = Ap and P(P(i) — P() > t) < C 20, (1.29)
for some positive constant C;. The first equality comes from the fact that P(P(i) = P(i)) =
P(Uzu = 1) = AP(Uz,y = DI U;Vij > 0) = Ap. The second inequality in Equation
(1.29) stems for the fact that A(i) = max(A(i), A*(7)), where A*(7) is the ancestor of i in
the dual point set: U = 1 — U;. As in Equation (1.28), the tail of A*(i) — 4 is equivalent
to (1 — p)t'=P/(8 —1). For t > 1, a direct computation leads to P(P(i) — P(i) > t) =
P(A*(i) = A1) = 1) = P(3;5,(1 = Uay1)1(Vo.a) 45 < MA@ +577) > 0) < C1#°179) indeed
on the event {U; = 0}, V; and V; have the same distribution.

Let Xo =Yy =0, Yy, = A(Xy_1). Fy is o-algebra generated by the variables (X1,Y7), ..., (Yi, Xk)

Theorem 1.4.2 If 3 > 2, A is regenerative: there exists a.s. a {Fy}ren-stopping time 6 > 1
such that:

L
Nx,|Fo = No.
If 6 > 3, Ef < oc.



This theorem may appear weird: the process X is anticipating but there exists a stopping
time 6 which guarantee a regenerative property. This paradox vanishes if we remind that 6 is
a stopping time with respect to the filtration in time F; and includes the variable Y3 which
looks forward X in space. Fy is thus the horizon of spatial anticipation at time k.

In order to prove Theorem 1.4.2, we will use a coupling between X and Y.

Lemma 1.4.3 Assume that there exists an a.s. finite time 6 € N* such that

Xp = max y;
6 k<0 ks

then 0 is a regenerative time.

Proof. Let Z, = maxy<y, Yy By definition V,, = sup{j € Z : Vx,; < |i — j|7P} hence
Zn=sup{j > Zp—1:Vx, ; <[i—j|"°}.

Assume now that Xg = Zp, 0 > 1: Nx, = > ;o1 Ux,4i0i = 2 ioq Uzy+i0i. Let I = {iy, ..., 05}
be a finite subset in N\{0} and N(I) = Y ,.;U;. The smallest o-algebra such that Nj is
measurable is the o-algebra generated by the collection (N(j + I) = t),I € N\{0},¢ € N. It
thus suffices to prove P(N(Xy + ) = t|Fyp) = P(N(I) = t) for all finite subsets I of N\{0} and

t € N. To this end, we write:

P(N(Xg+ 1) =t|Fp) = P(N(Zo+1)=t, [ ({Vxijrze > (G + Zo — X))} Fp)

0<I<0 jeI

= PIN(Zo+ 1) =t () ({Vxijrze > (G + Zo — X1)P}, F)1.30)
0<I<6 jeI

= P(N(I)=t) (1.31)

Equation (1.30) holds since for all j > 0, P(Ny<icn{Vx1j42. > (G + Zn — X1)™}) = 1 and
Equation (1.31) comes from the fact that, given Noc;<, {Vx,j+2, > (G + Zn — X1) 7P}, Ujiz,,
is a Bernoulli variable with parameter p. - O

We need a natural definition to compare two point sets. Let N! = Y ois1 Ul-léi and N? =

¢
Z¢21 UZ? §; we say that N! SS N? if for all finite subset of positive integers I and t € N:
P(Y i Ul > 1) <P, U > 1).

Lemma 1.4.4
st
NXk‘fk < Np. (1.32)

Proof. Let I be a subset of N\{0}, as in the proof of Lemma 1.4.3, we write:

P(NXe+1)=t|Fx) = P(NXg+ D) =t, [ [ {Vxijex, > (G + Xe — X))} )
0<I<k jeI
< PINXp+ 1) =t [ (WVxjrx, > G+ Xe — X)), Fi)
0<I<k jeI
< P(N(I) =1),

indeed, as already pointed, for j > 0 given yc;cp{Vx, jix, > (G + Xk — X)) 7P}, Ujix, is a

Bernoulli variable with parameter p. O
We can now prove Theorem 1.4.2.

Proof. Let Z, = maxp<, Yy and W,, = Z,, — X,, > 0, Wy = 0. By Lemma 1.4.3 it suffices to

prove that there exists a time 6 > 1 such that Wy = 0. We rewrite W, as:



W, = 11;1%XH(E—X,L)

= 121%((}/@ -Xi)+ (X — X))

1<i<n

n—1
= max ((Y;— X)) — > _ P,
k=i

(where by convention ZZ;IL = 0). We note that P, > 1. Let (0%)ren be a sequence of iid
copies of variables with distribution Y7, we deduce:

st n—1

WnS( max (Ui—l_ Z 1))+

2<i<n—1 ,
k=i—1

That is W, is upper bounded by the largest residual service time in a GI/GI/oo queue (see
Appendix C.2). By Lemma C.2: for § > 2, 0 is a.s. finite, and for § > 3, Ef < oc. O
As a consequence of Theorem 1.4.2 we have the following:

Corollary 1.4.5 If 3 > 3, there exists a constant p > 0 such that:

AF(0)
P

Proof. Assume 3 > 3, by Theorem 1.4.2 there exists an increasing sequence (6,,),n € N, 6y = 0,
01 =10, 0,41 — 0, is iid and E(6,,41 — 0,,) < co. This sequence satisfies: Nx,, £ Ny. We define:

9k+171
P]f:Xek-H — Xoy, = Z B
=6,
The sequence (PY),k € N, is iid.
P(P, > t|F,) < 1(t > W,)F(t) + 1(t < Wy,). (1.33)

As t tends to infinity, from Equation (1.28), we have F(t) = P(Py > t) ~ %tlfﬁ. It follows

6—1
EP) <EOEPy+E» W, < oc.
=0

Therefore, Corollary 1.4.5 follows from the strong of law of large numbers. O

Our method fails for 3 € (1,3). For example for 1 < 3 < 2, we expect that AF(0) is of
order of magnitude kY/(B=1) Nevertheless, this approach paves the way to proofs of asymptotic
results to directed navigation on PPP.

1.4.3 Directed Navigation on a Small World

In this paragraph, we extend the results established on the discrete lattice to Poisson Point
Processes on R%. The method is exactly the same but the coupling is different.

We recall the model introduced in §1.1.5. The navigation graph if G = (N°, E), N is PPP
on R%. We mark N to obtain a marked point process: N = > 06X,V Where Vi, = (Vii)ien €



[0,1)N. For X,Y in N, we will write V(X,Y) for V,,; where n and i are the index of X and Y.
Let f be a measurable function from R, to [0, 1] such that for a constant ¢ > 0 and § > d:

C
J(t) ~—hoo 7

The Small World Graph is defined by:
(X, Y)e FifV(X,Y) < f(|X =Y.

We fix a direction e; in §4~1. The maximal progress navigation from X € N to 0 is defined

as:
Ae, (X) = argmax{(Y,e1) : (X,Y) € E}.

We define H(X) = {z € R?: (x — X, e;) > 0}, the directed progress is positive if A(X,e1) €
H(X). We assume that the marks (Vj;),7 < j,7,j € N are independent and uniformly dis-
tributed conditioned on the event: Q = {VX € N : fH(X (V(X,z) < |x — X|7#)N(dx) > 0}.

Let F' be the distribution of the directed progress: P, (X) = (X,e1) — (A(X,e1),e1) (which
does not depend on e7). In this section P, (X) will be denoted for short by P(X) and P, =
P(Xk;a 61)

The aim of this section is to prove the following theorem:

Theorem 1.4.6 The following assertions holds:
- If B >d+1, A is regenerative.
- If B> d+ 2, there exists a constant p > 0 such that:
k
(A1) m

k u

The remaining part of this subsection is devoted to the proof of Theorem 1.4.6. The proof

is analog to the proof in the lattice case.
Proof. The set of neighbors of X in G is denoted by V(X). It is a thinning a N and V(X) is a
non-homogeneous Poisson point process with intensity: f(]X — z|)dz conditioned on {V(X) N
H(X) # 0}. It the next computation V(X) will denote a PPP of intensity f(|X —z|)dz obtained
by an independent thinning of N. If A is a Borel set in H(X), 0 ¢ A then P(V(X)(A) =
= exp(— [, f(IX = z|)dz) and P(V(X)(A) = 0) = P(V(X)(A) = 0)P(V(X)(H(X) N A°) >

)/IP( (X)(H(X)) > 0). We then write:

P(N(A) = k|A c H(X1)) = P(V(X)(A) = 0|N(A) = k)P(N(A) = k)/P(V(X)(4) = 0)

— z|)dz k
I HE T eptctal s [ 0 — i

= (41— | J0X =)t esp(—lAl+ [ (X ~apan).

= (1-

In other words: N NH(X;) is a Poisson point process of intensity: (1 — f(|X — x|))dx. Since
f tends to 0, far from X7, the distribution N NH(X;) and N N H(0) are close. We formalized
this idea with the next lemma.

Lemma 1.4.7 For all X there exists a random variable Y (X) > (X, e1) + P(X) such that for
all Borel sets A with A C H(Y (X)e1), t € N:

P(N(A) = t|Y (X)) = P(N(A) =t). (1.34)
P(Y(X) — (X, e1) > t) < O1t% 5. (1.35)



This lemma states that there exists an a.s. finite length Y (X) such that beyond Y (X), N
given X; is distributed as an homogeneous PPP.
Proof. NNH(X + P(X)ey) is a PPP of intensity (1 — f(]X — z|))dz. We build a coupling to
retrieve a PPP of intensity 1. Let V(X) be a PPP with intensity f(|X — z|)dz and independent
of N. Since V(X)NH(X + P(X)e;) and NNH(X 4+ P(X)e;) are independent: (V(X)+ N)N
H(X + P(X)ey) is a PPP of intensity 1 on H(X + P(X)e;). V(X) is a.s. a finite point set.

Let p(X) be the radius of the smallest ball containing V' (X), we have:

P(p(X) > £) = 1 — exp(~ /B o T @) <

We define:
Y(X) = (X, e1) + max(P(X), p(X)),
and clearly Equation (1.35) holds. If A is a Borel set in H(Y (X)e1) then (V(X)+ N)(A) =
N(A). Since (V(X)+ N)NH(X + P(X)ey) is a PPP of intensity 1, we deduce Equation (1.34).
a
We build a non-increasing sequence (Zj) such that for A C H(Zge1),

P(N(A) = t|Xo, ...., Xy, Z¢) = P(N(A) = t). (1.36)

We set Z; = Y7 = Y(X), from Lemma 1.4.7, given Zy, N N H(Z1e1) is a PPP of intensity
1. NN H(Xz2) is a thinning of N. Hence, given Z; and X3, N N H(max(Xs, Z1e1)) is a PPP
(1 — f(|X1 — z|))dz. As in the proof of Lemma 1.4.7, let V(X;) be a PPP with intensity
f(]X; — z|)dz and independent of N. Let p; denotes the smallest ball which contains V (X7),
and Y3 = (X1, e1) + max(p1, P1). We define:

Zy = max(Y7,Y3).

Equation (1.36) for & = 2. More generally we define iteratively, Y, = max((Xx_1,e1) +
pi—1, (XK, e1)), and Z, = maxj<Y;. Equation (1.36) holds for this sequence. Let Fj, be
o-algebra generated by ((X1,Y1), ..., (Xk, Yx)). Since py is independent of N we have

P(Yy — (Xp, e1) > t|Fi) < P(pp > t) < Cit4F. (1.37)

The coupling we have build for a PPP on R? is different for the coupling that we have used

on the Z lattice. Let Nx = NNH(X) — X. We endow the set of point processes of the natural
t

partial order relation: N; SS Ny if for all Borel sets A and ¢t € N, P(N1(A) > t) < P(N2(A4) > t).

The next Lemma is similar to Lemma 1.4.4.

Lemma 1.4.8 .
S
N, |Fr < No (1.38)
and consequently for some Cy > 0,
(i) P(Py = 1|1Fk) = Co. .
(it) P(Yy, = (Xy, e1)|Fx) = Co.
Proof. Equation (1.38) is a direct consequence of the fact that Ny, is a non-homogeneous PPP
of intensity Hf;ol(l — flz+ X — X)) < 1L
Assertion (i) stems from the fact that the progress is a.s. positive. Indeed, let A'(X) =

argmin{(Y,e1) : Y € NNH(X),(X,Y) € E}. The set of vertices in V(X) is a.s. finite hence
a.s. (A(X)— X,e1) > 0. A direct computation shows that P({A’(0),e1) > t) is positive for all



t. From Equation (1.38), there are stochastically fewer points in Nx, given Fj than in a PPP
of intensity 1. We thus have the lower bound P(Py > t|F;) > P((A'(0),e1) > t).
Statement (ii) follows from:

P(Yy, = (Xg, e1)|Fi) > P(pr, < 1)P(Py, > 1|F) > Cp.

a
Note that Equation (1.37) and Statement (i) in Lemma 1.4.8 imply that there exists a
variable o such that:

t
Yi— XplFi <o, Plo=0)>0 and P(oc>t) < CytdP. (1.39)

As in the lattice case, we define W,, = Z,, — (X,,,e1) > 0, Wy = 0. With the convention
that inf over an empty set is o0, let g = 0, 6,41 = inf{k > 6,, : W), = 0}. We have:

st n—1

W, < (_max (05-1 — Z Tk))Jr,

2<i<n—1
k=i—1

where (op)ren is a sequence of iid copies of o given in Lemma 1.4.7 and (7% )ken is a sequence
of iid copies of 7 with P(1 = 1) =1 —P(7 = 0) = Cp, as in Lemma 1.4.8, Assertion (i). W, is
upper bounded by the largest residual service time in a GI/GI/oo queue (see Appendix C.2).
The remainder of the proof is then as in Corollary 1.4.5. O

1.4.4 Navigation in a Small World

Main Result

We continue our analysis to the model 2 introduced in §1.1.5. As in the §1.4.3, let F' be the
distribution of the directed progress: P.,(X) = (X, e1) — (A(X, e1),e1) and Fx the distribution
of the progress P(X) = |X| — |A(X)|. Let H(X) be the generation of X that is: H(X) =
inf{k >0: A¥(X) =0}. Let X = A¥(X) and P, = P(X}) = | Xp| — | Xpp1)-

Theorem 1.4.9 - If 6 >d+1, A is regenerative.

- If B>d+2 and p as in Theorem 1.4.6 a.s.

H(X 1
i X)L
X|—oo [X[
- If B=d, a.s. and i as in Lemma 1.2.6 a.s.
. H(X) 1
11m = —.
|X|—oo In|X| [
-Ifd—2< 6 <d, as.
I H(X) 1
im =— .
|X|—oo Inln | X| In(1— dgﬁ)

In view of Lemma 1.2.6 this theorem is of the same type than the convergence results we have
proved in the PWIT. The PWIT approzimation gives the exact order of magnitude for H(X).
It is also worth to mention that our method has enabled us to determine the exact asymptotic

limit for 8 € (d — 2,d].



Proof of Theorem 1.4.9: 5 > d

Step One: Regenerative Sequence

For B8 > d + 2, we build a sequence (6,) of stopping time on an enlarged filtration of
(X0, ..., Xp). The proof is close to the proof of Theorem 1.4.6. We will only focus on the
differences.

Lemma 1.4.10 For all X there exists a random variable 0 < Y (X) < |X| — P(X) such that
for all Borel sets A with A C B(0,Y (X)), t € N:

P(N(A) = t[Y (X)) = P(N(A) = ¢). (1.40)

Moreover for all X :
P(IX| - Y (X) >1t) < Cit? b, (1.41)

N N B(0,X) is a Poisson point process of intensity: (1 — f(]X — z|))dz (under its Palm
version at 0). The proof uses the same coupling than Lemma 1.4.7.
Proof. Let V(X) be a PPP with intensity f(|X — z|)dz and independent of N. Since V(X)N
B(0,|X| — P(X)) and NN B(0,|X| — P(X)) are independent: (V(X)+ N)NB(0,|X| - P(X))
is a PPP of intensity 1 on B(0,|X|— P(X)) in its Palm version at 0. V(X) is a.s. a finite point
set. Let p(X) be the radius of the smallest ball containing V (X), we have for a some C; > 0

(not depending on X):

P(o(X) 2 ) =L-exp(~ [ fla)de) < 7.
B(0,t)c
We then define: Y (X) = (| X| — max(P(X), p(X)))". O
Let py denote the smallest ball which contains V (X}), where V (X}) is a PPP with intensity
f(I Xk — x|)dz and independent of N. We define Yy = |X| and Y = (min(|Xx_1| — pk, | Xk|)) ™
and Fy be o-algebra generated by (X1,Y1),..., (X, Yx), Let Zp = |X| and

Zy = min(Zg_1, | Xp_1| — pr, | Xz]) = min Y.

0<I<k
For A C B(0, Zy), we have:
P(N(A) =t|Fi) =P(N(A) =1). (1.42)
The next lemma is the analog of Lemma 1.4.8.
Lemma 1.4.11 For all Borel set A C B(0,|Xg|), t € N:
P(N(A) > t|F,) <P(N(A) > t). (1.43)

and consequently:
(i) if | Xkl > 2, P(Py > 1|1Fy) = Co,
(i3) if | Xg| > 2, P(Xgq1 = Yey1|Fr) > Co.

Proof. We omit most the proof which is similar to the proof of Lemma 1.4.8. We only explain
statement (i). Let A'(X) = argmax{|Y|: Y € NN B(0,|X]|),(X,Y) € E}. The progress is a.s.
positive and the set of vertices in V(X) is a.s. finite. Hence |X| — |A'(X)| > 0 and a direct
computation shows that P(|X|— |A(X)| > 1) > P(V(X)N(B(0,|X|)\B(0,|X|-1)) =0) > Cy
for | X| > 2. From Equation (1.43), there are stochastically fewer points in N N B(0, | X|) given



Fi than in a PPP of intensity 1. We thus have the lower bound, for all ¢ > 0 P(P > t|Fy) >
P(|X| — [A(X)] > t|X = Xp). O

Since pr and X} are independent, P(|Xy| — Y3 > t|F) < P(pr > t) < C1t? 8. This last
equation and statement (ii) in Lemma 1.4.11 imply that there exists a variable o such that, if
| X| > 2:

st
(Vi — X)) Fr<o, Plo=0)>0 and P(o>1t)<Cit? b (1.44)

Exactly as in the lattice case, we define W,, = |X,,| — Z,, > 0, Wy = 0 and for n > H(X),
W, = 0. We have:
st n—1

W= (25?3&3_1(‘”—1 - kngk))+a (1.45)

where (o )ken is a sequence of iid copies of o given in Equation (1.44) and (7%)ren is a sequence
of iid copies of 7 with 7 = 1 with probability Cy and 0 otherwise, as in Lemma 1.4.11.

By Equation (1.45), W, is upper bounded by the largest residual service time in a GI/GI/oo
queue (see Appendix C.2). Let W, be the right hand side of Equation (1.45) and # = inf{k >
1: W, = 0}. By Lemma C.2 (in Appendix): if 8 > d+ 1, 0 is a.s. finite and if 3 > d + 2:
Ef < co. By Equation (1.42), 6 is a regenerative time for the the small world navigation.

Step Two: Embedded memoryless navigation

A% is a memoryless navigation (for |X| > 2). We define:

6—1
PP(X) = |X| - [Xg| = 3 .
k=0

P(P, > t|F) < Fx()1(t > W) + 1(t < Wy), (1.46)

¢ _

where W, Sg M, P(M >t) < Citt=B=d and Fx(t) < Ctd=h8. 1t (Ug)ren denotes an iid
sequence of variables such that P(Uy > t) = 1 A C1t%~¢ with Uy independent of Fj,, we have
from Equation (1.46):

>

-1
PIX) Q= (U + W),
0

B
Il

We have EQ = EOEU + Ezg Wi < oo (from cycle formula, see Baccelli and Brémaud §3.1
[20]). It follows also that (P?(X))yega is uniformly integrable.

The next step is to identify lim x| EPY(X). For the directed navigation with direction
e1, the same regenerative time 6 was defined and Theorem 1.4.6 gives:

EP? (0) = uEf.

P? (X) is a stabilizing functional of the small world graph and the distribution of P? (0) does
not depend on e;. Hence from Theorem 1.2.3, P%(X) converges weakly to P/ (0). Since
(P?(X)) xega is uniformly integrable, we obtain:

lim EP?(X)=EP’ (0) = uEf.

| X|—o00

Thus we can apply Proposition 1.3.6 and Lemma 1.4.1 and we deduce that H(X)/|X| tends
a.s. to 1/p.



Proof of Theorem 1.4.9: g =d

We define the scaled free progress as P, = —In(1 — P/|Xx|). We have In|Xj| = In|X]| —
Zf:_ol P,. We follow step by step the proof of the case 8 > d with a major difference: we
need to consider scaled variables. We need also to be careful with the event {P(X) = oo} =
{P(X) = |X|}: in this paragraph, we will use the convention ”In 8 = 0”. We define Y (X) =
min(|A(X)|,sup{t : B(0,t) N V(X) = 0}), where V(X) is a PPP intensity f(Jz — X|) and
independent of everything else, as in Lemma 1.4.10 we obtain:

Lemma 1.4.12 There exists a random variable 0 < Y(X) < |A(X)| such that for all Borel
sets A with A C B(0,Y (X)), t € N:

P(N(A) = t|Y (X)) = P(N(A) = t).

Moreover for all X :

> s|Y(X) > 0) < O exp(—2s).

We define the sequence (Y}) and (Zj) as previously. Equation (1.42) still holds, and the analog
of Lemma 1.4.11 reads:

Lemma 1.4.13 For all Borel sets A C B(0,|X|), t € N:
P(N(A) > t|F,) <P(N(A) > t).

At this point of the proof an obstacle shows up, P(P; > 1|Fx) > Cy > 0 does not implies
the same statement on the scaled progress Py. To circumvent this problem, we define the event:

Q. = {VX e R": NOn B(0,|X|) > €| X|}.

It is easy to check that P(Q¢) > 0 for € < ¢p and lim, o+ P(£2) = 1.
Let P.(-) denote the conditional probability given €2.. Under P, Lemmas 1.4.12 and 1.4.13
still hold. Moreover since a point in B(0,¢|X|) is at most at distance (1+t)|X| of | X|, we have:

P(P, > 1|1Fx) = P(Pp > |Xile ! Fp)
1— (1= (1— f((1+e b x)))) X

>
> 1 —exp(—€ X|4f((1+ e H|X]),

where we have used the assumption that f is non-increasing. Then, since f(t) ~ ct~% we deduce
that there exists xg such that for all X € R?, | X| > zq:

P (P, > 1|F;,) > C..

Similarly, by Lemma 1.4.12 and 1.4.13, there exists a r.v. ¢ such that:

X
Pe(lnM > §|Fi, Y1 > 0) <P(o > s) with P(0c =0) >0 and P.(o > s) < C;exp(—2s).

Yit1
(1.47)
We define H'(X) = inf{k > 0,Y; = 0}. H(X)/In|X| converges a.s. is equivalent to

H'(X)/In|X| converges a.s.. Indeed py is independent of Xy and [Xp/(x)| < ppr(x), hence
|H'(X) — H(X)| < N(B(0, prr(x))- For n < H'(X), Wy, = In(|X,,|/Z,) > 0, we have

|Xn| 1 |Xn+1|
n

Wpt1 = max(W,, —In , ,
il ( " |Xn+1| Yn+1



and it follows
st n—1

+
Wy, < (2Srlr'1ga;<71(ai,1 - k;lm)) , (1.48)
where (0% )ken is a sequence of iid copies of o given in Equation (1.47) and (7%)ren is a sequence
of iid copies of 7 with P.(7 > 1) > C.. W, is upper bounded by the largest residual service time
in a GI/GI/oo queue (see Appendix C.2). Let € be the first positive time at which the queue
appearing on the left hand side of Equation (1.48) is empty. By Lemma C.1 (in Appendix): 6
is a.s. finite and for some C, > 0:
Ecexp(Ceh) < 0. (1.49)
We define P?(X) = Y2971 B.. Using Equations (1.49), (1.46) and Lemma 1.2.6, we deduce
that for all 0 < € < €y, (L(P?(X) < 00)P?(X))yecge is uniformly integrable. We assume
for the while that P? converges weakly and we define ji, = lim| x| o0 E.P?(X)/E.(f). From
Proposition 1.3.12 we obtain

HX) 1

P.—as. i _
a5 |X\H—I>loo In |X| ,ae

Since Q. C QL for € > €, jic does not depend on ¢, and we drop the € in its expression, . = fi'.

Notice also that {€2;/, }nen is an increasing sequence of events and U,(2; /,, = €2, so finally

H(X) 1

P—a.s. li = —.
T P X[ T

It remains to prove that P? converges weakly. For simplicity, we will only consider Model

3, with obvious change, the proof applies also to Model 2. We cannot apply Theorem 1.2.3

and instead we prove this fact directly. Let [y x denote the distribution of Py(X). Lemma

1.2.6 asserts that Fj x converges weakly to F' given by Equation (1.9). As already pointed,

N N B(0,|X1]) is a Poisson Point process of intensity Ax,(y)dy = (1 — f(|Xo — y|))dy. We thus
have

P(P(X) 2 ol71) = 1= (L f(X ) exp(~ [ FUX1 = y)Axo (9)dy)
B(0,|X1le™?)

with the change of variable z = y/|X1| and ¢; = X;/|X;|, we end up with:

P(PL(X) > s|F1) = 1—(1—f(!X1\))eXp(—/ . X F (X fler—2) (1= £ (| X [leoe™ —2))d2),

(0,e

Since |X;| = |X|e_15°, P(Py(X) + Pi(X) > s) is equal to:
LB - (Xl M exp(— [ e tPxpe X e — 20)(1 - F(X o — e )a),
B(0,e=5—F0)
Letting | X| tends to infinity and finally we deduce that:
Bo(X) + Pi(X) = Qo+ Q1

where (Qk) ke 18 an iid sequence of variables with common distribution function F. Similarly

for all n € N we have:
n—1 ~ n—1 ~
Y B(X) =) Qe
k=0 k=0

From Wald’s Formula, E, Zz;é Qr = EEQ. Since the sequence (Zz;é Py(X)) is uniformly
integrable we deduce that lim| x| EZZ;% P (X) = EAEQ; and it follows

~/

o= p.



Proof of Theorem 1.4.9: d—2< 3 <d

The proof follows from Proposition 1.3.13 and the argument used in the case § = d. Let
a=1—(d—B)/2, we define for 1 < k < H(X), Uy = | X|/|X-1]|* and Uy, = 0 for k > H(X).

Let p = | Xi| — sup{t : B(0,t) NV (X)) = 0}, where V(X}) is a PPP intensity f(|z — Xz|)
and independent of everything else. We define the sequences (Yy) and (Z) as usual : Y), =
min((| Xg—1| — pe—1)", | Xk|) and Z = ming<; ¥;. Let s > 0, we have:

| Xq| | X4
Pn 2L > vy > 0) < Pn——"1 > 4ly; > 0)
il (%] = o)
(1] = po)*
S P(anl—anZS‘Y1>O)
X _
< B0 2 o3 # 0+ P S > sy < X))

< Cyexp(—Cos?).
Let H'(X) = inf{k > 1:Y, =0} and W,, = In(|X,,|/Z,,) > 0. The remainder of the proof is as
in §1.4.4 with obvious changes.

1.4.5 Decentralized Navigation
How to prove that a navigation is regenerative 7

In this paragraph we generalize the coupling method used in the small world graph to other
navigation. We will only explain under which type of conditions our method applies to other
navigation schemes. We consider a navigation A on a PPP N which satisfies the hypothesis
of Theorem 1.2.3. The associated directed navigation is denoted by A.,, and we assume that
the distribution of P., (0) = (A, (0) — 0,e1) does not depend on e; (the directed progress
distribution is isotropic). We define H(X) = inf{k : A¥(X) = 0} and as usual our aim is to
prove that a.s.

H(X) 1
Xl
. . JE<A’§1 (0),e1) . . .
with g = limy oo —4—— € (0, +00). To do so, we will try to answer the following question:

Under which conditions a navigation is regenerative 7

Step One : Regenerative time on the directed navigation.

We define Xy = 0 and X;, = A (0), P., j = P, (Xy). Let E(X) = (X, A, (X)) be the edge
vector and B, = E(Xg). H(X)={Y : (Y — X,e1) >0} and Ny = NNH(X) — X.

The first assumption is:

(i) If No is a PPP of intensity N(z)dz, N4, (o) is a PPP of intensity (1 — ¢p()(x)) Az —
A, (0)), with x — ¢po)(x) measurable and taking value in [0,1].

Let Yy = 0 and Fy = 0{ Xy, Yo}, by induction we define a non-decreasing sequence Y and
a filtration Fj. Let V(0) be a PPP with intensity ¢z, (z)dz and independent of N given Fj.
Then (N + Ny, ) is a PPP of intensity 1 on H(0). Our coupling method will only work if V(0)
is an a.s. finite set. We will assume for each k:

(ii) For some a > 2, E((IH(O) op, (x)dr)*|Fr) < Ci.



From assumption (ii), V(0) is a.s. a finite point set. Let py be the radius of the smallest ball
containing V' (0), we have:

Ploo > 1) =1~ Bexp(~ [ bmy(0)d) < Cyt .
B(0,t)°NH(0)
We define:
Y; :max(<X0,61>+p0,<X1,61>) and F; =.7:0\/0'{X1,Y1}.

Using Assumption (ii), we have, for ¢ > 0:
]P’(Yl — <X1,€1> > t) < P(po > t) < Cit™®

Similarly

P(Y; = (X1,e1)) > Eexp(— o) ¢p,(z)dz) > exp(—C1) = Cp.

Now if A is a Borel set in H(Yie1) then (Sx,V(0) + N)(A) = N(A) where Sy N =} 67, 4 if
N =3, 6r,. Since (V(0) + Nx,) N H(Y1e1 — X1) is a PPP of intensity 1, we deduce:

L
Ny,e, |F1 = Np.

Assume now that we have built a sequence (Yj)o<k<n—1 and a filtration (Fj)o<k<n—1 =
VZ;éU{Xk, Y} such that for all k£ <n — 1:

L .
Nzkel ‘fk =Ny with Z,= Oréllas)% Y. (150)

st
0< Yy — (Xk,e1))|Fr <o with Plo>t)<Cit™™ and P(oc=0)>C. (1.51)

From Assumption (i), Nx, is a PPP of intensity A, (z)dz where:

n

(@) = (1= ¢p, () A-1( — Xp + Xpo1) = H(l — ¢p, (z — Xy + X))
k=0

Let V(n —1) be a PPP with intensity ¢, (2)A\n—1(z — X;, + Xpn—1)dr and independent of N

given (E,,Fn-1). (V(n—1)+ N)NH(X,) is a PPP of intensity An—1(x — Xy + X,—1)dx. We
define py,_1 as the radius of the smallest ball containing V(n — 1) and:

Y, =max({X,—1,€1) + pn-1,(Xn,e1)) and F,=F,—1Vo{X,,Y,}

Since Ap—1 < 1, we check as we did for k = 1 that the tail inequality in Equation (1.51) holds
for k = n. Moreover we have:

P(Y, = (Xn,e1)|Fn-1) > Eexp(— ( )¢En_1($)d$)|fn—1) > ().
H(O

Equation (1.50) follows also from the same reasoning. Indeed assume that A is a Borel set in

H(Zpe1) then (Sx,V(n—1)+ N)(A) = N(A) and we conclude as we did for n = 1.

Step Two : Embedded memoryless directed navigation.
At this point, we introduce a new assumption:

(ili) For some positive constants Cy, Cy: P(Pe, , > C1|Fy) > Co



We then have built a sequence (Yj)o<kp<n—1 satisfying Equations (1.50) and (1.51). As usual,
we define W,, = (X,,,e1) — Z, > 0, and let § = inf{k > 1: W) = 0} (with the convention that
inf over an empty set is +00). We have:

st n—1

W, < (_ max (-1 — Z Tk))+,

2<i<n—1 :
k=i—1

where (op)ren is a sequence of iid copies of o and (7;)ren is a sequence of iid copies of T with
P(r = C1) = Cp and P(t = 0) = 1 — Cp, as it is given by Assumption (iii). By Lemma C.2
(in Appendix): 6 is a.s. finite and Ef < co. The directed navigation is thus regenerative, let
PY(0) = Z;(l) P,, i, from the strong law of large numbers, a.s.

(AL (0),e1)
IT — p where p= IEPGGI(O)/IEG.

Note at this point that p is positive but may be infinite.

Step Three: Navigation

Now we turn back to the navigation from X to 0, Xo = X, X = A(X)* and P, = Xj,1—X.
N%X is a PPP in its Palm version at (0, X). We assume that the set of assumptions (i), (ii)
and (iii) extends to the navigation as well:

(") If NN B(0,|X|) is a PPP of intensity A(x)dz, N N B(0,|A(X)|) is a PPP of intensity
(1 = dp00) (@) Az — A(X) + X).

(i) E((fp,x)) ¢E.(@)d2)*|Fp) < Ch.
(111’) For ‘X’ > Zo, ]P’(Pk > Cl’fk) > CQ.

As we previously did, we define by iteration Yy = | X| and Y}, = min(| Xy_1|—p, | Xk|), where
pr. is the radius of the smallest ball containing V' (k — 1) a PPP with intensity ¢p, (2)\g—1(z —
X + Xj—1)dz and independent of N given (Ej, Fi—1). Let Z, = min(Zy_1,Y)) = ming<;<; Y]

st
and W,, = |X,,|—Z,,. Aslong as | X| > zg, W), < (maxo<i<n—1(0i—1 _22;1‘171 1)), we define 0
as the first positive time at which the GI/GI/oco queue is empty. By Lemma C.2 (in Appendix),
Ef < 0o. We have proved that the navigation is regenerative. Then we introduce:

0—1
PY(X) = |X| = [Xg| = D P
k=0
From Theorem 1.2.3, P?(X) converges weakly to Peg1 (0). The following assumption guarantee
that the convergence holds also il L*
(iv) PY(X) is uniformly integrable.
It remains to apply Proposition 1.3.6 and Lemma 1.4.1, we finally obtain:

a.s M—»

X

S



Example of Application: Radial Navigation

Radial navigation is an example of application of our method. In dimension 2, the radial
navigation is regenerative and 6, its regenerative time satisfies: Eexp(sf) < oo for all s > 0.
Assumptions (i) and (i) hold with

¢p()(r) = Lz € B(X — A(X), |X — A(X)])).

Indeed, on a nice point set N, Y = A(X) if and only if |Y| < | X| and NNB(0,|X|)NB(X, |X —
Y)) = 0.

Let A, denote the directed radial navigation and Xj = A’;l(o). In order to prove assump-
tions (ii) and (ii’), notice that:

/ ( )¢Ek(w)dw = / 1(z € H(0) N B(Xy — Xpi1, | Xy — Xps1]))do < wa Xip — Xpa|® (1.52)
H(O

Let D,, = H(0) Uf‘:ol B(Xk — X, | X — Xk11]), Nx,, is a PPP of intensity A, (z)dz = (1—1(z €
D,,))dx. We assume that the dimension d is 2. We define the cones c, = {z = (1,0) € R?: § €
[0,0)} for > 0, and ¢, = {z = (r,0) € R? : § € (,0]} for a < 0. The following lemma is
proved in Chapter 2.

Lemma 1.4.14 For all n,
cx C D, or c_z C D,.

This lemma implies in particular that:

7\,2
P(1X) — Xpp1| > ) < e 2.

From Equation (1.52), we deduce, for all s € R:

E(exp(s ¢g, (z)dx)|Fi) < co.
H(0)

This last equation implies assumptions (ii) and (ii’). It remains to check that assumptions
(iii) and (iii’) hold. Let = = (r,6), expressed in polar coordinates with basis (0,e1), r > 0,
0 € [0,7/2]. The set Dy has the following property: if x € Dy then for all 0 < a < 6,
(r,a) € Dy (and resp. if 0 € [—7/2,0] for all 8 < o < 0). This last property implies that

t
Pe, k| Fr SZ P., o (see Chapter 2 for details). Assumptions (iii) and (iii’) follow.

1.5 Navigation Tree Topology

1.5.1 Maximal Deviation, Tree topology and f-straightness

We turn back to a navigation 4 with a non-negative progress and we assume that an associated
directed navigation A, exists for all e; € R%. Let X = A¥(X), Py = | Xy| — | Xpp1|, H(X) =
inf{k : A¥(X) = 0}, Fx = 0{Xo,..., X3} and let X}, = (Xy, X/|X|)X/|X| be the projection
of X}, on the straight line 0X. The path from X to 0 in the navigation tree 7y is denoted by
7(X) = {Xo, X1,...,0}. m(X) may be seen as a piecewise linear curve in R?. The maximal
deviation of this curve is defined by

A(X) = X — Xil. 1.
(X) og/@%;@' K — Xkl (1.53)



To understand the intrinsic structure of 7y we need to characterize its ends. An end is a
semi-infinite self-avoiding path in 7y, starting from the origin: (0 = Xg, X1,...). The set of
ends of a tree is the set of distinct semi-infinite, self-avoiding paths (two semi-infinite paths are
not distinct if they share an infinite sub-path). A semi-infinite path (0 = Xy, X1,...) has an
asymptotic direction if X, /|X,| has a limit in the unit sphere S?~!. Following Howard and
Newman in [93], some properties of the semi-infinite self-avoiding paths in 7 follows from tail
bounds on A(X).

For X € N, let I1,,:(X) be the set of offspring of X in the 7y, namely the set X’ € N such
that X € 7(X’). We now state a definition introduced in [93].

Definition 1.5.1 Let f € (°, a tree is said to be f-straight at the origin, if for all but finitely
many vertices :

Hout(X) - C(X7 f(’X‘))7
where for all X € R and e € RY, C(X,e) ={Y ¢ R : §(X,Y) < €} and O(X,Y) is the angle
(in [0, 7]) between X and Y.
The following result shows how to relate f-straightness to A(X).

Proposition 1.5.2 Let T be a random spanning tree on a PPP with an atom at 0. Let v €
(0,1) and n > 0, if P(A(X) > |X|?) < C1|X|74" and supxepa E|X — A(X)|" < 0o for some
r > (d+1)/y then T is f-straight at the origin for f(z) = |z[7~1.

Proof. We first prove that the number K of points 7,, of N such that A(T),,) > |T,|” is a.s.
finite. From Slivnyak-Campbell’s Formula :

EK = E Y 1AT) > L[
TheN

— s / P(A() > [2])ada
0

< wdl/ 24! min(l,Clx_d_")dx<oo.
0

We define
By, ={3X € N:|X|<2zand [X — AX)| > 27}

Using the inequalities P(N(B(0, 7)) > t) < exp(—tIn(t/(emgz?))) and sup y cga E|X — A(X)|" <
C1, we have

E|X — AX)|"
P(B,.) < P(N(B(0,2x)) > e*r2%%) + 62ﬂd2d$d%f4{()|
T
< exp(—ezﬂd2dxd) + 20 mg2%ad
< Clxd—r'y

From Borel-Cantelli Lemma, it follows that there is some finite random zy so that for
X € N\B(0,zg), | X —A(X)| < |X|". The rest of the proof uses the same argument as Lemma
2.7 of [93] (with 1 — 6 replaced by 7). O

f-straight trees have a simple topology described by Proposition 2.8 of [93] and restated in
Proposition 1.5.3.

Proposition 1.5.3 Let 7 be an f-straight spanning tree on a PPP. The following set of prop-
erties holds almost surely:



- every semi-infinite path has an asymptotic direction,

- for every u € S, there exists at least one semi-infinite path with asymptotic direction
u7

- the set of u’s of ST such that there is more than one semi-infinite path with asymptotic
direction u is dense in ST1.

In the following subsection we prove under some assumptions that 7y is f-straight with

flx) =217,

1.5.2 Memoryless Isotropic navigation

We start with the simplest case in order to illustrate the method used to derive bounds on
P(A(X) = [X]7).

We assume in this paragraph that the navigation is memoryless with non-negative progress.
Let e1, ez € S971, we define U(ey,e3) = {R € U : R(ea) = e1}, where U is the orthogonal
group of R,

Definition 1.5.4 A navigation A is isotropic if for all e1, es in Sl x>0 and R € U(ey,eq):
RA(zes) £ A(zey),

Note that if we consider X # 0 and e1, es in S with (e;, X/|X|) = 0 for i = 1,2, the definition
implies that (A(X),e1) £ (A(X),e2). We can apply this fact to e; = —ez and we deduce
E<A(X), €1> =0.

All the navigation algorithms we have introduced are isotropic.

Theorem 1.5.5 Let~y € (1/2,1), if the navigation is isotropic, memoryless, with non-negative
progress and:

- A(zey) — xer converges weakly to A_.,(0) as x tends to +o0o.
- supyepd E|X — A(X)|" < 0o with r > (d+ 1)/
- For | X| > zo, P(P(X) > ¢) > € with zg,c,e > 0.
Then for some n > 0, there exists C such that
P(A(X) > [X[") < Y[ X[,
and Ty is f-straight with f(z) = |z|7~1.

The second statement follows immediately from the first and Proposition 1.5.2. We will see
in the proof of Theorem 1.5.5 that we may pick any n in (0,7 — (d+1)/7), thus as an immediate
corollary, we have:

Corollary 1.5.6 If the navigation is isotropic, memoryless and with non-negative progress and:
- A(zey) — zer converges weakly to A_.,(0) as x tends to +o0o.
- supyeprd E|X — A(X)|" < oo for all T > 1.
- For | X| > zo, P(P(X) > ¢) > € with zg,c,e > 0.
Then for all € > 0 and n € N, there exists C1 such that
P(A(X) > |X|Y27) < ¢y X[
and Ty is f-straight with f(z) = |z|~1/2te.



1.5.3 Proof of Theorem 1.5.5

Navigation in a cone

We fix v > 1/2 and we assume first that there exists 0 < a < /2 such that
AX) - X € Cla, - X/|X]), (1.54)

where C(a,e1) = {YV € RA{0} : cosa < (e1,Y/|Y|)} U {0} (that is the cone with apex a and
direction ey).
Let e1,es € S 1 with (e1, es) = 0 and we assume that X = |X|e;. We take interest to

Up = (Xg,e1) and Vi = (X, e2).

Let F' = vect(eq, e2), X,f the orthogonal projection of Xj on F, and (cos 0, sin 6) the coordi-
nates of the projection of X,f/]X,f\ on the basis (e1,e2). Let Ry € U such that R Xy = | Xk|e1

and €5 = R, 'es. We define py, = (XF — XE |, X /|Xy]) and q = (X[, — XF k) (see figure

1.2). We have py, > 0 (since the navigation has non-negative progress, Xy1 € B(0,|X%|)) and
Vier = Vi + qgcos by — pgsin by, (1.55)
Uky1 = Uk — prcosty — qxsin by,
tanf, = Vk/Uk

,,,,,,,,,,,,,,,,,,,,,,,, Vk+1
XK~ VK

\thetak

el

Figure 1.2: qx, p, 0 and Vi

If the navigation is isotropic and memoryless then the distribution of p; and ¢, depends
only on |Xj|. From the isotropy we also have that E(gy cos 0| Fy) = cos 0xE(qx|Fr) = 0. Let
Vi = Viax with

K =inf{k: V), <0 or |Ug| < 2”7 tan a},

K is a {F }ren-stopping time. Since 6y € (0,7) for k < K we have:
E(Vii1|Fi) = Vi — sin 0, E(py| Fi) < Vg,

and for k > K, B(V/,,|Fx) = V| = Vk. Therefore (V)ren is a supermartingale (for the
filtration {Fj}ren). Let Sp = 0, S, = Zz;é qr and M,, = maxo<i<n Sg. (Sk),k € N, is a
martingale with mean 0.

Lemma 1.5.7 If k < K and M < z7,

Vi, < Sk.



Proof. We prove this result by iteration, by symmetry we can suppose that 0 < 6 < 7/2.
Since X — A(X) € C(o, X/|X]), |gx| < pxtana. Notice also that if My < z7 and k < K then
tan 0 = Vi, /Uy < 27/(tan az?) < 1/tan a. By Equation (1.55), it is sufficient to prove that for
tanf € [0,1/tan ) and |g| < ptan«

gcosfB —psinf < q

If ¢ > 0, there is nothing to prove. If ¢ < 0 then we have to check that |q| < psin6/(1 — cos6).
However since |g| < ptana < p/tanf < psin€/(1 — cosf) since 1/tanf = cosf/sinf <
sin@/(1 — cos6). O

Lemma 1.5.8 Let v’ <r, for allt > 0, there exists Cy > 0 such that
P(M, > n"t) < Cin'".

Proof. This lemma is a consequence of Theorem 3.1 Equation (3.3) of Gut [84] (see also Theorem
2 in Baum and Katz [27]). This theorem is stated for a sum of independent variables but it
applies to our case also. Indeed, we have the following two key features:

1. (|gx|)ken is stochastically bounded by an iid sequence (Zy )peny with P(Z; > t|Fg) < Cit™ ",
thus EZ" < oo.

2. (qr)ken are nearly independent: if n,m, k # | € N, qu"“qlm = 0 and E|gi"¢?™| <
EZ?"EZ*™.

Since the proofs of Gut, Baum and Katz rely only Markov inequality and truncation, their
results apply to our case. O

Lemma 1.5.9 For a memoryless navigation, if for |X| > zo, P(P(X) > ¢) > € > 0 then for
all i < ce, there exist constants C1 and Cy such that:

P(H(X) > |X|/n) < Cy exp(—Co|X]).

Proof. Let 7(X) = inf{k : | Xx| < 20} and (Bg), k € N be an iid sequence of Bernoulli variables
with P(By =0) =1—eand P(B; = 1) = e. We write 1/u =1/p' +n, for n > 0 and p/ < ce,
we have:

P(H(X) > |X|/u) < P(N(B(0,20) = n|X[) + P(r(X) > [X]|/n')
X/ -1
P(N(B(0,20) > n|X[) +P( Y Fi < |X] - o)
k=0
X/ -1
< P(N(B(0,29) > n|X]) +P( Y By <|X|/e)
k=0

IN

< Crexp(—Cy| X))

where we have the inequality P(N(B(0,z0)) > t) < exp(—tln(t/(ergzd))) and Hoeffding’s

inequality: for ¢ < ne, ]P’(Zz;é B < t) < 2exp((t — ne)?/(2n)). O
We are now in position to conclude the proof of Theorem 1.5.5 when Equation (1.54) holds.
For I < n, let S;, = Zz;ll qk, Sip = 0, M, = maxo<p<n Sk and m,, = maxo<p<n, —Sk =

| ming<x<p Sk|. Finally, we define

K' =inf{k: |Uy| < 27 tana}



A slight variation of Lemma 1.5.7 gives if k < K', m,, < 27 and M,, < z7: V;, < maxo<j<i Sip <
Sk + my. Hence

P(Oér/,lga};( Vi > 27, K' <n) <P(M, >27/2) +P(m, > 27/2). (1.56)
<k<K'

Note also that changing (gz) into (—gz) in Lemma 1.5.8 gives P(m,, > nt) < Cyn'~"". From
the isotropy of the navigation, we get:

x7 il
PA(X) > ———) < 2dP(sup Vi >
(A( )_\/Ecosoz - (kzlg k_COSQ)

< 2dP > 7 1.

< (o Dax Vi 2 a7) (1.57)
< 2dP( max Vi > 2", K' <x/u)+2dP(H(X) > z/p)

0<k<K’
< Oyt 1oy exp(—Cox) (1.58)

Equation (1.57) stems from the following fact: if |Ug| < z7tana and |Vi| < 27 then (since
A(X) € B(0,]X])) Vi1 < /U? + V2 <27/cosa. In Equation (1.58) we have used Equation

(1.56), Lemma 1.5.8 and Lemma 1.5.9. If r’ is close enough to 7 we have v’ — 1 > d and this
conclude the proof of Theorem 1.5.5 when Equation (1.54) holds.

General Case

The general case is a consequence of the previous case. Indeed there exists «, such that with
| X|=2>0:

P(A(X) — X € Clag, —X/z)) > % (1.59)

where C(a, e1) was defined after Equation (1.54). We assume that «, is the minimum angle
such that Equation (1.59) holds.

Lemma 1.5.10

s
a=supa, < —.
x>0 2

Proof. Let X = —zej, x > 0 and A., the associated directed navigation of A, A(X) — X
converges weakly to A, (0). The directed navigation has non-negative progress and there
exists § € [0,7/2) such that P(A., (0) € C(B,e1)) > 3/4. Hence for x > z; large enough:
a, < B <m/2.

For x < x¢, P(N°(B(0,2)) > 1) < 1/2 hence a, = 0.

It remains to treat the case zo < x < 1. Let L(x,3) = B(0,2)N{X +C°(B,e1)}, it appears
easily that |L(z, 8)| < |L(x1,3)| < C18x¢ and

PAX) =X ¢C(B,e1)) < P(N(L(z,8) N B(0,t)) > 0)

Therefore for 3 large enough P(A(X) — X € C(B,e1)) > % and this concludes the proof. O

Now we define § = inf{k > 1 : X} — X;_; € C(,e1)} where a was defined in Lemma
1.5.10. From Lemma 1.5.10, # is dominated by a geometric variable with parameter 1/2. We
then consider:

A(X) = A’(X).



A is an isotropic navigation with non-negative progress moreover it satisfies Equation (1.54)
holds. We will denote denote by * a variable defined in the previous paragraph for A. For
example

K =inf{k:V;, <0or |Uy] <27 tana}.

Let v’ < r” < r A rough bound and a use of Markov inequality gives:

n—1
PAX) = X[ >1) < P(O>n)+P()_ [Xpe1 — Xx| > t)
k=0
n—1
< 2774+ P(|Xps1 — Xi| > t/n)
k=0
< 9—n + Clnr-‘rlt—r
S Clt_r//a

by picking n = [cInt/In2]. We deduce that for all v’ < r:

sup EJA(X) — X|" < co.
XeRd

We can thus apply Theorem 1.5.5 to A and we get:
P(A(X) > [X]7) < ol X |~

this last inequality does not lead directly to the desired result. We circumvent this difficulty
by introducing a new variable:

Vi= max V-V = max Vl—f/k,

0, <I<0k41 0, <I<0p41
where 6y =0, 01 =1 and 01 = inf{l > 0 : X; — X;_1 € C(a,e1)}. We have:

Lemma 1.5.11 Let " < r', for all t > 0 there exists a constant Cy such that:

P( max Vj > tn?) < Cpn' "

0<k<n
Proof. The proof uses always the same type of rough stochastic bounds. Using Holder inequality,
we have:

o0

EVi™ < Y E1(0k > n)|Voern — Vosnal”
n=1
o

S @O =) ENVoprn — Vogrnaal” )"

n=1

IN

[oe)
< Z 2_("_1)(1_7’”/7"/)(E|ng+n - X9k+n—1|rl)ru/r/
n=1

< (Ch,

indeed, for n > 1, | Xg, 4 — ng+n_1|7"l is given Xy, 1,,—1 independent of 6. We thus have
uniformly in X: P(Vy, > t|Fx) < P(Z), > t) with (Zk)ken is an iid sequence and

P(Z, > t|Fp) = LA CLt™".



The final step follows from elementary inequalities:

P(max Vi >tn?) < P(max Z; > tn?)

0<k<n 0<k<n

n—1

< 1-J[P(2 = tn7)
k=0

< 1—(1=Cyt e

< 1 —exp(=Cyt " 0t

S Clt_rllnl_,yr//.

for n large enough. We then relax the assumption on n by increasing Cf. O

The end of the proof is as in the previous paragraph:

P(ALX) 2207) < B(AX) 2 a7) 4 B( max Vi > a”) + B(H(X) > w/p)

!

R
< Cl$1 yr

1.5.4 Isotropic Regenerative Navigation

With Theorem 1.5.5, we have treated so far the case of memoryless navigation. For isotropic
regenerative navigation a similar result holds. Let A be a regenerative navigation with regen-
erative time #: A% is a memoryless navigation. We define:

L/(x) = X, — X|.
(X) o?;?fe' k |

We have the following corollary of Theorem 1.5.5.

Corollary 1.5.12 Let v € (1/2,1), if the navigation is isotropic, regenerative, with non-
negative progress and

- supyera ELY(X)" < oo with r > (d+1) /v
- For |X| > zo, P(P(X) > ¢) > € with xg,c,e > 0.
Then for some n > 0, there exists C such that
P(A(X) 2 [X[7) < Cy|X [,
and Ty is f-straight with f(z) = |z|'~7.

Proof. The proof as already being done in §1.5.3. Indeed, let e;, ey in S with (e1,ep) = 0

and X = zej, z > 0. We define Vi, = (X}, ez) and A(X) = A?(X). We may apply Theorem

1.5.5 to A and as in §1.5.3, let V), = maxg, <;<q,,, Vi — Va, < L%(Xp,). Lemma 1.5.11 holds

and we conclude similarly. O
The next corollary is a consequence of Corollary 1.5.6.

Corollary 1.5.13 If the navigation is isotropic, regenerative, with non-negative progress and
- supyerd ELY(X)" < oo for all r > 1.
- For | X| > zo, P(P(X) > ¢) > € with zg,c,e > 0.
Then for all ¢ > 0 and n € N, there exists C1 such that
P(A(X) > [X]124) < Cofx| ™,

and Ty is f-straight with f(z) = |z|~1/2Fe.



A simple way to bound L?(X) is to note that for r € N:

[% 0

LX) < (O 1% — Xpa])" <0771 [ Xp = X"
k=1 k=1

As an application, for the navigation on the small world graph with connection function f(r) ~
cr—P, using a couple of times Holder inequality, we obtain:

Corollary 1.5.14 For (3 > d, there exists C > 1 such that if v > C(d+ 1)/(8 — d), then for
some 1 > 0, there exists C such that

P(A(X) > |X[7) < Ca| X[~
and Ty is f-straight with f(z) = |z|7~L.
Note that a bound for the constant C' could be explicitly computed. We only point out that
for a Small World navigation on a PWIT, C' = 1.
Proof. For 8 > d, the small world navigation is isotropic regenerative with non-negative progress.

Moreover we have P(|X —A(X)| > t) < Cyct?P, similarly the tail of 6 is bounded by a constant
times t2+9=8. We then use Equation (1.5.4) and Holder inequality. |

1.6 Shape of the Navigation Tree

1.6.1 Shape of Memoryless Navigation

Another interesting feature is the set of points at tree-distance less than k from the origin
To(k) = {X € N : A¥(X) = 0}. The set of assumptions under consideration is:

(1) A is a memoryless navigation with non-negative progress.
(AZ.6.2) (i1)  supxepe EP(X)" < oo for some r > d + 2
(iit)  Fx converges weakly to F with u = [rF(dr) > 0.

Theorem 1.6.1 Under the foregoing Assumption (A1.6.2), for all € > 0 there exists a.s. K
such that if k > K:

NNB(0,(1—e€kp) CTo(k) C B0, (1+ €)kp). (1.60)
Moreover a.s. and in L' : 78|
0 d
o - (1.61)

In other words, the navigation tree generated by a PPP inside a ball grows linearly with the
number of points. The main aim of this section is to prove Theorem 1.6.1, and in particular the
fact that G /k? a.s. tends to a constant when k tends to co. In the literature, this constant is
known as the volume growth. The intuition behind Theorem 1.6.1 is as follows: from Proposition
1.3.6, a point k£ hops away from the origin is asymptotically at Euclidean distance Dy ~ ku
from the origin. The ball of radius Dy contains ﬂdDg points in N asymptotically. In order to
prove Theorem 1.6.1, we need an estimate of the tail of the fluctuations of H(X) around its
mean. The proof of the next theorem is the heart of the proof of Theorem 1.6.1.

Theorem 1.6.2 Under the foregoing Assumption (A1.6.2), let v’ < r, for all v < u, there
exists a positive constant Cy:

if | X|<nv—1andn>1, PH(X)>n)<Cnlnw—|X))"".
Similarly for v > p:
if |1 X|>14+nvandn>1, PH(X)<n)<Cn(X|—nv)™".



In particular if v > p, consider n = |z/(2v)], we obtain:
P(H(X) > ) < ay|x [, (1.62)
v

(and similarly for v < p).
Strengthening the assumptions of Theorem 1.6.2, we naturally obtain:
Proposition 1.6.3 Under the foregoing Assumption (A1.6.2), with (ii) replaced by:
(ii") supycra Eexp(sP(X)) < oo for some s > 0,
for all v < p, there exists positive constants Cy, Cy:
if | X| <nv andn>1, PH(X)>n) < CeColw=IXD,
Similarly for v > p:
if | X| >nvandn>1, PH(X)<n)<Cre 001X,

We first prove Theorem 1.6.1.
Proof. We define G, = |To(k)| = > xen LH(X) < k), Gy, is the size of the ball of center 0 and
radius k for the graph-distance in 75. We start with the proof of Equation (1.61), let € € (0, 1),
we write

G = N(BO, k)| < 3 A(X & B(O,uk) 0 H(X) < k)

XeN
+ 3 1(X € B(0,uk) N H(X) > k)
XeN
< ) WX €B(0,(1+e)uk) N H(X) < k)
XeN

FN (B0, (1 + uk)\B(0, (1 - e)uk))

+ 3 (X € B(0,(1— e)uk) N H(X) > k)
XeN
< Ix+ Jip + L.

From Slyvniak-Campbell’s formula and using Equation (1.62) for v = u(1 + €/2):

El, = P(H(X) <k)dX

/Rd\Bmv(He)uk)

o

— ! —

< wdl/ Cra' ™" 2% dx
(1+e)pk

< Cl kd*?““rl )

From the Borel Cantelli Lemma, we obtain that almost surely I, = 0 for k large enough.
Similarly, let v = (1 — ¢/2)p, we get:

EL, = / P(H(X) > k)dX
B(0,(1—¢)pk)

(1=e) /od—1
< wdl/ Chk(kv —z) " 2% dx
0

wg_1C27 [A-mk -1,

(kep) =1 o
0

Clel—r’kd—r’-l—l.

IN



We deduce that almost surely L = 0 for k large enough.
The ergodic properties of the PPP imply that

[z Jod
converges almost surely and in mean toward 2dm4(pe)?~! (notice that N (B(0, (14-¢)uk)\B(0, (1—

€)pk)) is not an increasing sequence of convex sets, to prove this convergence, we need to use
the independency properties of the PPP). We thus have proved that for all € > 0, almost surely,

Jim sup |G, — N(B(0, uk))|
k kd

< 2dmg(pe)?t.

Hence, almost surely,
_Gp . N(B(0, pk)) d
hlgnﬁ = hlgnT = Tqu”.
The convergence in L' convergence is a consequence of Scheffe’s Lemma.
Equation (1.60) holds since we have seen that a.s. for k large enough I} and Lj are both
equal to 0. I is the cardinal of 7 (k) N B(0,p+¢€)¢ and Ly is the cardinal of 7 (k)N B(0,p —¢).
O

1.6.2 Proof of Theorem 1.6.2 and Proposition 1.6.3

We now turn to the proof of Theorem 1.6.2.

As usual let X = A¥(X) and H(X) = inf{k : X3 = 0}. For 1 < k < H(X), we define the
progress: Py(X) = |Xj_1| — | Xk| and for k > H(X), Py(X) = 0. We fix ' <" <r.

Case v < .

There exists v/ > 0 such that v/ < v < p and |X| < v'n — 1. Since (P(X)) is uniformly
integrable, there exists zy such that:

if | X| > zop then EP(X) > v. (1.63)

Let [ < n we have:

n—1
P(H(X)>n) = P()_ P <I|X])
k=0

n—Il—1
< P(N(B(0,20)) > 1)+ P( Y P <|X|— )
k=0
I n—Il—1 n—Il—1
< exp(—lln——)+P ( > P —E(BulF) < |X|—20— > E(PilF) )
em Lo k=0 k=0
I n—Il—1
< exp(—lln—7—) + P ( 3 P~ E(BiXi) < |X|— (n— v ) (1.64)
em .%'0 =0

where in Equation (1.64) we have used Equation(1.63) together with Assumption (i): E(Py|Fy) =
E(P;|Xy) and

n—I[(—1

{kZOPk<|X|—$0}C U {|Xk|2x0}c U {E(Pk|Xk)ZV}-

0<k<n—I—-1 0<k<n—I—-1
We define Yy, = P, — E(Py|X), we notice by Assumption (ii):
EYk =0 and E‘Yk‘r < Cl.

The sequence (Y)ren is not independent however, it is nearly independent:



1. (|Yi|)ren is stochastically dominated by an iid sequence (Zy)ren with EZ]" < oco.
2. If p,g € N and k # [ then EY 'Y = 0 and EY,*Y,*! < EZPEZ}".

We can thus apply Lemma 1.7.3 which is stated for iid variables but still holds since it is based
only on truncation and a systematic use of Markov inequalities. We obtain if m > 1 and
v —|X|/m > ty, to > 0:

m—1
P> Py —E(PulXy) < |X| —mw) < Cym(mv — | X])7",
k=0

Hence, using this last inequality in Equation (1.64), and considering [ = |(v//v — 1)n] we get,
(since (n — v > nv' > |X|)

P(H(X)>n) < exp(—Con)+ Cin(nv/' —|X|)™", (1.65)

then since n > (nv' — | X|) /v, we obtain our result (with v/ instead on v).
Case v > p. This case is slightly simpler, there exists x; such that:

if | X| > 1 then EP(X) <. (1.66)

Following the same computation as in the case v < p

n—1
P(H(X)<n) = P} P.=IX])
k=0

IN

n—1
]P’(Zpk > ’X‘ - .%'1)
k=0

n—1 n—1
P(Y Py — B(Pl Fi) > [X| — a1 — > E(P|Fr)) (1.67)
k=0 k=0
n—1
< PO P —E(PilXp) > |X| —nw)
k=0
< Om(|X|=nv)™",

IN

where we have used the same argument and Lemma 1.7.3.

Proposition 1.6.3

The proof of Proposition is identical. It suffices to use Lemma 1.7.4 instead of Lemma 1.7.3
in Equations (1.65) and (1.67).

1.6.3 Shape of Regenerative Navigation

We extend Theorems 1.6.1 and 1.6.2 to regenerative navigation. Let 4 be a regenerative
navigation and 6 its associated regenerative time. We define PY(X) = |X| — |Xy| = |X]| —
|A%(X)|, the assumptions are as follows

(1) A is a regenerative navigation with non-negative progress.
(A1.6. 3) (1)  supyepe EP?(X)" < 0o and Ef" < oo for some r > d + 2
(iit)  Fx converges weakly to F' with [ rF(dr) > 0.

We denote by 6 = lim| x|, Ed(X) and p =1/ [ +F(dr) > 0. From Proposition 1.3.6 and
Lemma 1.4.1, as | X| tends to infinity a.s. H(X)/|X| — p. Not surprisingly, we obtain the next
two results as corollaries of Theorems 1.6.1 and 1.6.2.



Corollary 1.6.4 Under the foregoing Assumption (A1.6.3), let ' < r, for all v < p, there
exists a positive constant Cy:

if | X|<nv—1andn>1, PH(X)>n)<Cnlw—|X))"".

Similarly forv > p :

!

if | X| >1+nvandn>1, PH(X)<n)<Cn(X|—nv)".

Corollary 1.6.5 Under the foregoing Assumption (A1.6.3), the conclusions of Theorem 1.6.1
hold for A.

Corollary 1.6.5 follows from Corollary 1.6.4 exactly as Theorem 1.6.2 implies Theorem 1.6.1.
We now prove corollary 1.6.4.
Proof. Let () denote the regenerative sequence, A(X) = A%(X) and H?(X) = inf{k : Xy, =
0} = sup{k : A¥(X) =0}.

We assume first that |[X| < nv — 1 and v < p. We may find 0 < § < @ such that
V' =v0/5 < pand |X| <v'n—1. We get

P(H(X)>n) < P(H(X)> %) +P(82) <n)

l5)-1

< P(H'(X) > 5)+P( Y Opar — Ok <)
k=0
211
< PH(X)> %) +P (‘ (Orp1 — Op — 0) |> n(1 —8/0) — 1 )(1.68)
k=0

We may apply Theorem 1.6.2 to A and # = 16 < pf since we have | X| < nv/—1 < (%)(v'0) — 1.
The first term in the latter inequality (1.68) is thus bounded by Cin/d(nv/8/6 — |X|)™" =
Cin/d(nv — |X|)™"". We can also apply Lemma 1.7.3 to the sequence of iid variables Y; =
0x11 — 0 — 0. Thus we may upper bound the second term in Equation (1.68) by Cy(1 —6/6 —
1/n)~"'n'="" for n large enough to guarantee 1 —0/5 — 1/n > to with 0 < ty < 1 —0/§. Finally
we obtain (since n > (nv — | X|)/v) for n large enough:

P(H(X) > n) < Cin(nv — | X))

By increasing suitably C; we obtain the result for all n > 1. O
Similarly, as a consequence Proposition 1.6.3, we obtain the following corollary.

Corollary 1.6.6 Under the foregoing Assumption (A1.6.3), with (ii) replaced by:
(i) sup yepa Eexp(sP?(X)) < co and Eexp(sf) < oo for some s > 0,
for all v < p, there exists positive constants Cy, C:
if | X| <nv andn>1, PH(X)>n) < Cre Colw=IXD,
Similarly for v > p:
if | X| >nv andn>1, PH(X)<n) < CpeColw=IXD,

As an example, for the small world navigation, we easily get:



Corollary 1.6.7 - For 8 > d, there exists C > 1 such that if f > (C + 1)d + 2C, then the
conclusions of Corollaries 1.6.4 and 1.6.5 hold true with u computed in Theorem 1.4.6.

- For B =d, let i be as in Theorem 1.4.9, for all € > 0 there exists a.s. K such that if
k> K:
N A B(0,exp((1 — ki) © To(k) < B(O, exp((1 + )ki)).
Moreover a.s. and in L' :
In|7(k)|
k
-Ford—2<p<d, letaa=1—(d—p)/2, for all € > 0 there exists a.s. K such that if
k> K:

— dfi.

N 1 B(0,exp(a’~9%) € Ty(k) € B(0, exp(a+F)).
Moreover a.s. and in L' :
Inln [Zo (k)|
k

— Ina.

1.7 Miscellaneous

1.7.1 Further examples of navigation
Ray Navigation

This navigation is built up artificially from the directed navigation introduced by Ferrari et
al. in [64] to obtain their Poisson forest. The main interest of this navigation is that its
mathematical analysis is fairly simple, indeed this navigation is memoryless for a PPP.

-

t

Figure 1.3: Left: A(X) =Y if the dashed region has no point (dim. 2). Right: R(X,t) in dim.
3.

For X € RI\{0} andt € Ry, let C(X) = {Y € R?: |Y| < |X],0 < (X,Y) < |X]||Y|cos(27 A
|X|71)}. C(X) is a cone intersected with B(0, X) tuned to guarantee that for | X| > 1, C(X) N
0B(0,|X]) is a calotte on S?~! with (d — 1)-Lebesgue measure the volume of the unit ball in
R4 (ie. 7%2/T(d/2 +1)). If 0 € N, the ray navigation from 0 to X is defined as (see Figure
1.3):

AX)=1Y] if |Y|<|X]|and C(X)NB(0,|X|—]Y]) NN =0.

Let R(X,t) denote the open cylinder of height ¢ > 0 with direction e; generated by a (d — 1)-
dimensional ball of center X and radius 1 orthogonal to e; (see Figure 1.3). The directed
navigation introduced by Ferrari et al. is:

A (X)=1Y] if (Y —X,e1)>0and R(X,(Y —X,e1)) NN = 0.



Hierarchical Navigation

In view of applications, it is interesting to consider more sophisticated navigation algorithms,
for example the closest point between the ancestor given by a radial navigation and a small
world navigation.

A more appealing model is as follows. We divide our locally finite point set N into point
sets N1 and Ny. If X € Nj then a navigation A; is performed on the point set N and if X € No
then a navigation A, is performed.

We consider the following example, in a network there are two types of vertices, N1 and Ns.
Vertices in Np are highly connected whereas vertices in Ny are poorly connected. The intensity
of Nj is much smaller than the intensity of Ny. Let Gp = (N3 U Na, Ep) be the Delaunay
graph on N1 U Ny and Ggw = (N1, Esw) denote a small world graph on Nj. In a wireless
communication scenario, Ep could be a wireless link (short) and Egy a wired link (long), No
is the set of wireless users in an ad-hoc network and N7 the set of entry points to a wired
networks. A maximal progress navigation is performed on the graph G = (N, Ep U Esw). A
hierarchical structure naturally appears, a navigation from X € Ny to 0 € Ny will probably
start by short links on Gp until it finally reaches a point in N; then long links on Ggy are
followed until the path gets close of the destination. Then the path ends with a sequence of
short links on Gp to its destination.

It is of course possible to combine more general navigation schemes by dividing N into k
point sets.

1.7.2 Collection of technical Lemmas

Lemma 1.7.1 Let f be a measurable non-negative function and limg_. 1 f(x) = 0. There
exists a measurable positive non-decreasing function g(x) with lim,_,o g(x) = 0o such that:

z+g(z)
lim fly)dy = 0.

T—400 z

Proof. Let F(z) = sup,>, f(y), I satisfies the same hypothesis than f and [’ is non-increasing.
If F(xz) =0 for x large enough any function g will work. Otherwise F'(x) > 0 and the function
g(x) = 1/+/F(z) trivially satisfies all the requirements. Indeed:

z+g(x)
/ fW)dy < g(x)F(z) < VF@).
O

Lemma 1.7.2 Let (X,),n € N, be a sequence of real valued random variables adapted to a

t
filtration {F,},n € N. Assume that X, 1|F, Sg Y, where Y is a random variable. Then for all

stopping time N :
N o
D Xk <) Y,
k=1 k=1

where (Yy),k € N, is a iid sequence with the distribution of Y.

Note that the sequence (Yy)ren is not necessarily independent of N.
Proof. For all n in N, we check easily that

n st n
AN
k=1 k=1



We assume first that a.s. N < n. Notice 1(N > (k + 1)) is Fy-measurable, thus Xy 1(N >
t
E+1) Sg ViI(N >k +1). Since a.s. S0, X = Sop_ 1(N > k) X}, we deduce:

N o N
IEEDRTE
k=1 k=1
For the general case, we consider N,, = N An and we let n tends to infinity. O

Lemma 1.7.3 Let (Xi),k € N, be a sequence of iid real valued random variable. We assume
that EX, = 0 and E|X;|" < oo for some r > 1. Then for all 1 < v’ <r, and ty > 0 there exists
C4 such that, for allt > tg and n > 1:

n
P(|> Xyl >tn) < Cyt™"n'"
k=1

Proof. A proof of this lemma follows step by step the proof of Theorem 4 of Baum and Katz
[27]. As it is pointed there, we can suppose that the distribution of X; is symmetric. Let
X,[fn] = X1 (X < tn), we write:

n
WY Xl Ztn) < n TInB(|X] > ) + \ZXt"Pm

< tTEIX) 407 R Z X > ),

where we have used Markov inequality. We bound the second term exactly as in the proof of
Theorem 4 of [27], let p be an even integer strictly larger than 2r' — 1, from Markov inequality

/ i / —2 2
n" 1P| Z X > ) < o P EXT 4onn - DEXIT EXI 4 )

Let {2y, ...,2i,,} be a partition of r into positive even integers, the corresponding term in the
preceding expansmn is bounded by t~Pn” '+m—p— 1IEX [tn]*t EX] 7" Note that EX; [tn] * <Chif

2i < r and EXF"] < Cyt?"'n=r"if 20 > o', Hence if W = {j : 2i; > r'} we bound the term
by Oyt~ Prr'+m—p=1 [Liew tz” —r'p2ii=r" < Oy IWIr P ew 245 £ (). Tt is proved in Theorem 4

of [27] that f(n) € EO, 1t remains to check the exponent in t: a = —|W|r —p+ D ew 2. If
W = ) then it reduces to « = —p < —r’ and if |IW| > 1 since ZJGW . < 27 we obtain « S —r!
and this concludes the proof. O

Lemma 1.7.4 Let (Xj)r be a sequence of real random variables and {Fy}i a filtration of this
process. If E(Xp+1]|Fn) = 0 and P(|X,41| > t|F,) < Crexp(—Cot) then for all ty > 0, there
exist positive constants Cy, C1 such that for all t > tg:

1 n
P(|— > Xyl = t) < Crem
k=1

Proof. This lemma relies on a classical computation on large deviations, we only give a sketch
of the proof. Let A,(A\) = InE(e*Mn|F,_1) and A%(t) = supy A\t — A, ()), the Fenchel-Legendre
transform of A,,. With have A} (0) = 0, the condition P(|X,,4+1| > t|F,) < C1 exp(—Cyt) ensures
that for ¢ # 0, A’ (t) is positive and lower bounded uniformly in n by a positive Cy. For t > 0,
A’ is non-decreasing and convex (refer to [57]), hence if t > tg > 0, AX(t) > ¢ ”(fo) > tCy.
As usual for upper bounds in large deviation, the rest of the proof follows from Chernoftf’s
inequality. O



1.7.3 A few results of Renewal Theory

Lemma 1.7.5 Let So =0 and S,, = Zz;é Uy where (Uy) is an i.i.d. sequence of positive reals
with common distribution F. We assume that for some 0 < a < 1 and ¢ > 0, as t goes to
infinity F(t) ~ c/t*. Define 7(x) = inf{n : S, > x}, as x tends to +oo we have:

T(x) 1 —1/a
o NG a)cxa ’

where X 15 an a-stable random variable.

Proof. This lemma is a restatement of Equation (XI.5, 5.6) in [62]. O
This lemma is a corollary of Rogozin’s Relative Stability Theorem (Theorem 8.8.1. of [31]).

Lemma 1.7.6 Let Sy = 0 and S, = Z;é U where (Uy) is an i.i.d. sequence with common
distribution F. We assume that for some ¢ > 0, as t goes to infinity F(t) ~ c/t. Define
7(z) = inf{n : S, >z}, as x tends to +o0, a.s. we have:

T(z)lnz 1

lim —— = —.
T—+00 T C

Lemma 1.7.7 Let Sy = 0 and S, (u) = Y72 1(Uy, < w)Uy, where (Uy) is an i.i.d. sequence of
positive reals with common distribution F'. We assume that for some 0 < a < 1 and ¢ > 0, as

t goes to infinity F(t) ~ c/t*. Let 7.(z) = inf{n : Sy(xe(x)) > x}, with lim, .o e(x) = 0 and
lim, o xe(x) = 00 Then as x tends to infinity, a.s.:

. E7(x) 1-«
lim = .
z x%(r)*! ¢

Similarly, if F(t) ~c/t, a.s.:

lim =
x x

E7e(x) In(ze(x)) 1

Proof. Notice that m(z) = EU,1(U, < we(x)) ~p 2! %(2)!7%¢/(1 — a). We have 2 < S, () <
T+ Uy (), thus from Wald equality, we have: x < m(z)E7.(z) < 2 +EU, (o) 1(U, (2) < z€(2)) <
2(1+¢€(z)). Hence for = large enough: x%(x)* 1(1—a)/c < Er(z) < 2%(x)* (1 + e(x))(1 -
a)/c. For ae =1, the proof is identical. O

Remark 1.7.8 Assume 0 < o < 1 and let e;(2) = |z|~/* so that ze(x) = |z|*~D/E. For
k> 1, we have my(z) = EULL(Uy < |z|*=D/F) ~p x(=e)E=D/ke /(1 — o) = I () uniformly in
k: lim, supy~; my/lk(z) = 1. As in the proof of Lemma 1.7.7, for = large enough, for all k£ we
have B, (z) < a!/k+ate=D/k(1 4 |2|~1/*¥)(1 — @) /c. Therefore:

Er, () e

ims < . .
hm;up sip krat-D/k = 2 . (1.69)







Chapter 2

The Radial Spanning Tree of a
Poisson Point Process

Résumé Nous analysons une navigation particuliere, la navigation radial et son arbre de nav-
igation associé, I’arbre couvrant radial. Cet arbre a une structure radiale simple avec ’origine
prise comme racine. L’ensemble des sommets est une réalisation d’un processus ponctuel de
Poisson.

Nous utilisons des idées issues de la géométrie stochastique pour étudier des fonctionelles
locales de ’arbre aléatoire, comme la distribution de la longueur d’une aréte ou le degré moyen
d’un sommet. Loin de 'origine, nous prouvons que ces propriétés locales sont proches de celles
de ’arbre couvrant dirigé introduit par Bhatt et Roy.

Nous utilisons ensuite la théorie des chaines de Markov a espace continu pour analyser des
propriétés non locales de I'arbre, comme la forme et la structure des chemins semi-infini ou
encore I’ensemble des sommets de génération inférieure a k de 'origine.

Cette classe d’arbre couvrant a des applications dans de nombreux domaines et en particulier
dans les résaux de capteurs ou 'information est rassemblée vers un noeud central.

Abstract We analyze a particular navigation, the radial navigation and its associated nav-
igation tree, the radial spanning tree. This tree has a simple radial structure with the origin
as its root. The set of vertices is a realization of an homogeneous Poisson point process of the
plane.

We first use stochastic geometry arguments to analyze local functionals of the random tree
such as the distribution of the length of the edges or the mean degree of the nodes. Far away
from the origin, these local properties are shown to be close to those of the directed spanning
tree introduced by Bhatt and Roy.

We then use the theory of continuous state space Markov chains to analyze some non local
properties of the tree such as the shape and structure of its semi-infinite paths or the shape of
the set of its nodes less than k generations away from the origin.

This class of spanning trees has applications in many fields and in particular in wireless
sensor communication networks where information has to be gathered at a central node.
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2.1 Introduction

In this chapter we analyze carefully the navigation tree associated to the radial navigation,
Radial Spanning Tree (RST). This tree holds similarities with the minimal directed spanning
tree ([71], [131], [130]) and the Poisson forest (as defined in [64], [63]). The mathematical
analysis of the RST is conducted on a homogeneous Poisson point process (PPP) on the plane.
The scope of this chapter is two-fold: to prove some local geometric properties using stochastic
geometry and to derive asymptotic properties such as the characterization of the semi-infinite
paths. We will use the theory developed in Chapter 1 and present also some alternative direct
proofs.

In the next section, we give the basic definition and we summarize our main results. Section
2.3 gives various distributions on local properties on the tree. In Section 2.4 we focus on the
Directed Spanning Forest (DSF) which can be seen as the limit of the RST far away from the
origin. In Sections 2.5.1 and 2.5.3, we prove asymptotic shape theorems on the RST. Section
2.5.2 contains a proof of a law of large numbers on a semi-infinite path of the RST and Section
2.6 the proof of a law of large numbers for the spatial averages. Finally in Section 2.7, we
discuss some extensions of the RST, and in particular the case of multiple cluster heads, and
give some open questions.

2.2 The Radial Spanning Tree

2.2.1 Definition

As in the previous chapter, | - | will denote the Euclidian norm on R, (-,-) the usual scalar
product, and B(X,r) the open ball of radius 7 and center X. A set of points N of R? is said to
be non-equidistant if there do not exist points X,Y, Z, T of N such that {X,Y} # {Z,T} and
X -Y|=|Z-1T|
If N is a countable set of points in R? with no accumulation points, we write for all bounded
sets A:
NA) =) 1(X € A),

XeN

Let N be a countable set of points in R?, non-equidistant, with no accumulation points and
such that 0 € N. The RST of N, 75 = (N, E) is the navigation tree associated to the radial
navigation A, if XY € N°, X #£0:

AX) = Y] if N(B(X,[X =Y])n B(0,]X])) =0,

(with the convention that A(0) = 0). The non-equidistant property is needed to ensure that
there is no tie: a vertex X which is not the origin has exactly one nearest neighbor which
is closer to the origin. In this chapter we will consider only point sets in the plane R2. All
the results should extend to higher dimension. We consider an orthonormal basis (0, e, ey).
Consider now some homogeneous Poisson point process N on the plane, with intensity A > 0
and N° = N + ¢, its Palm version. Since the Poisson point process is a.s. non equidistant,
we can a.s. generate the RST 7y of NV, Since, 7y is scale-invariant, without loss of generality,
we can set A = 1, for a general ), all results follow by multiplying distances by v/A. From
the invariance of the PPP by rotation, we deduce also that the law of the RST is invariant by
rotation. An instance of such RST is given in Figure 2.1.

We now define another random graph which is closely related to the RST. Let (0, e1, e2) be
an orthonormal basis of R2. On a locally finite non-equidistant point set N, we define, 7, the
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Figure 2.1: Radial spanning tree of 1000 points uniformly and independently distributed in the
unit square.

Directed Spanning Forest (DSF) with direction e; as the directed navigation forest associated
to the directed navigation, if X,Y € N:

Ao (X) =Y i N(B(X,|X = Y]) N Hey (X)) = 0,

where He, (X) = {Y € R?: (e1,Y — X) > 0}. The ancestor of X € N is the nearest point of
N which has a strictly larger ej-coordinate. This random graph was first introduced by Bhatt
and Roy in [28] and it also holds some similarities with the Poisson forest.

2.2.2 Notation

The cardinality of set S will also be denoted by |S|. We will denote the generation of X € N°
as:
H(X) =inf{k >0: A¥(X) =0},

mo(X) is the path from X to the origin, defined as the sequence of ancestors of X: my(X) =
{X, A(X),--- , AHX)(X) = 0}. In Section 2.5.1, mo(X) will also be thought of as a piecewise
linear curve in R?, namely as the union of the edges of this sequence.

Throughout the chapter, we will focus on functionals F' defined on the vertices of 7g, such
as the length of the edge (X,.A(X)), its orientation etc. For any X € R? F(X) is defined on
the tree 7y constructed over N%¥ = NO 4 §x. This definition is consistent with Slyvniak’s
theorem: if P is the probability measure of the Poisson point process N, the Palm measure of
N with two points 0 and X is P dx * §g. Hence if X # 0, a.s. N%¥ is non-equidistant and
F(X) can be interpreted as the value of the functional F' conditioned on the fact that X is a
vertex of the tree.

From the isotropy of the PPP, the law of F(X) will often depend on X only through its
radius | X|. Consequently we will often write F'(|X|) instead of F(X).



Several qualitative results of the present chapter involve constants. For the sake of clarity,
we will use Cy to denote a positive constant to be thought of as small and C; to denote a
positive constant to be thought of as large. The exact value of Cy and C; may change from one
line to the other and we could for example write: Cy/Cy = Cy. The important point is that Cj
and (' are universal constants that will never depend on the parameters of the problem.

2.2.3 Summary of Results
Topology of the Radial Spanning Tree

We have seen that if N is a Poisson point process under its Palm version, 7j is a.s. a tree. We
will check also that this tree is a.s. locally finite (i.e. no vertex has an infinite degree).

The next step to understand the intrinsic structure of 7 is to characterize its ends. An end
is a semi-infinite self-avoiding path in 7j, starting from the origin: (0 = X, X1, ...). The set of
ends of a tree is the set of distinct semi-infinite, self-avoiding paths (two semi-infinite paths are
non distinct if they share an infinite sub-path).

A semi-infinite path (0 = Xy, X1,...) has an asymptotic direction if X,,/|X,| has an a.s.
limit in the unit sphere S*.

The following theorem will be a consequence of Proposition 2.8 in Howard and Newman
[93] and the work of chapter 1. It characterizes the ends of the RST:

Theorem 2.2.1 For all € > 0, Ty is f-straight at 0 with f(r) = r~Y2%T¢. In particular, the
following set of properties holds almost surely:

- every semi-infinite path has an asymptotic direction,
- for every u € S, there exists at least one semi-infinite path with asymptotic direction u,

- the set of u’s of S* such that there is more than one semi-infinite path with asymptotic
direction w is dense in S'.

This theorem shows that the RST strongly differs from the minimal spanning tree. In di-
mension two, it has been proved that the minimal spanning tree has only one end (see Alexander
[7])-

Another property of the tree of interest to us is the set of points at tree-distance less than

k from the origin To(k) = {X € N : A¥(X) = 0}.

Theorem 2.2.2 There exists a constant p > 0 such that for all e > 0, there exists a.s. K such
that for k > K large enough:

NN B(0,(1 —e€kp) C To(k) C B(0, (1 + €)kp). (2.1)
Moreover a.s. and in L*:
To(k
7’ 0/52 ) — 7Tp2, (2.2)

In other words, the graph-diameter of the RST generated by a Poisson Point Process inside
a ball grows linearly with the number of points.



Geometry of the Radial Spanning Tree

We will focus on two types of geometrical results. The first type concerns functionals F'(X, 7p)
which depend only on vertices around X. For example, we will give explicit formulae for the
distributions of L(X) = |X — A(X)| (the length of the edge with the ancestor), P(X) =
|X| — |A(X)| (the progress to the origin) and the expectations of the degree D(X) of node X
in the tree.

More generally, we will prove a limit theorem for stable functionals, see Definition 1.2.1. We
will prove the following theorem where 7_., denotes the DSF with direction —e,.

Theorem 2.2.3 Let F be a stabilizing functional for T_., . As x tends to infinity, the distri-
bution of F(xe,,Ty) converges in total variation toward the distribution of F(0,7_.,).

This type of result has already been proved for the maximal progress navigation, see Theorem
1.2.3. As it is pointed by Corollary 1.2.5, it can be easily related to the local weak convergence
of geometric graphs as it is defined for the Objective Method (refer to Aldous and Steele [5]).

The second class of geometrical results is of different nature: it concerns the path 7y(X)
from X to the origin. The simplest result bears on H(X), the generation of X in the RST, that
is the cardinal of mo(X). Let X = A¥(X) be the sequence of points in 7o(X). Along the line
of Howard and Newman [93], it is interesting to look at ZkH:(é()fl | Xkt1 — Xi|¥, with a > 0.
More generally, we will prove:

Theorem 2.2.4 Let p be the constant defined in Theorem 2.2.2. There exists a probability
measure 7(-) on R such that if g(X) is a measurable function from R? to R, |g(X)| < C1(1 +
| X|Y) for some a > 0, then a.s.:

H(X)

H(X) 1 1
lim ——+=—- and lim —— X, 1 — X = 7(g),
X|oteo |X] P KT 2 Ik = Xelxi) = 7o)

®

b
Il
—

where [ul, is the vector u rotated by an angle —0 and v = r cos 0.e, +1rsinb.e, ([ul, is the vector
u expressed in the local coordinates of v). We also have a.s.:

H(zeg)
1
I Xp1 — Xp) = 2.
Jm e ; 9(Xj-1 = Xp) = 7(9) (2.3)

We prove in Section 2.4 that the probability measure m can be interpreted as the stationary
measure on the infinite edge process in the DSF. Theorem 2.2.4 is a law of large numbers and
7 can be understood as the limit probability measure of an edge conditioned on being on a
semi-infinite path.

Theorems 2.2.3 and 2.2.4 are of different nature. In particular the mean of L(X) is different
from the average of the lengths of the edges along the path my(X). The paradox vanishes if we
understand that being on a long path is a bias. We will discuss this point in Section 2.6.

2.3 Local Properties of the Radial Spanning Tree

2.3.1 Distribution of the Length of Edges
Let X € R? and L(X) = | X — A(X)|. Let 0 < r < |X]|, we get:

P(L(X) =r) = 1(r < |X)P(N(B(X,r)nB(0,|X]) =0))
= 1(r < |X[)eMIXIn), (2.4)



where M (x,r) is the volume of the lune of the right part of Figure 2.2. Using the formula for
the surface depicted by the left figure of Figure 2.2, we get that:

Miz,r) = (o - 22y 2 2 £ D), 25)
with
.
¢ = 2arcsin 7

\\ theta

Figure 2.2: Left: the surface of the dashed lens is equal to @\20 — sin 26|. Right: the dashed

lune.
L(ze,). L(x) has a density on

With an abuse of notation, for z > 0, we define: L(x)

(0,z) equal to
d
aM(m, ryeM@r)
and a mass at z equal to
—x2(2m/3—sin(27/3) _ efx2(27r/37\/§/2). (2.6)

efM(:v,:v) —e

Notice that the distribution function of L(x) is not stochastically monotone in x. Its mean

EL(x) which is plotted in Figure 2.3, is not monotone in x either.

_ 0
i} /\ B |
/ [ ~
/ os] | —
o [ — _
|
|

Figure 2.3: Left: Mean of L(x) in function of z. Right: Mean of P(x) in function of x.



2.3.2 Edge Distribution

Given L(X) = r < |X|, consider the angle (X)) of the edge from X to A(X) in the tree. Using
the property of the right part of Figure 2.2 that ¢ = 7/2 — ¢/2, we get that #(X) is uniformly
distributed on the interval: (7 +arg(X)—1, 7+ arg(X)+1), with cos ¢ = sin(¢/2) = r/(2|X]),
that is ¢ = arccos ﬁ Given L(X) = |X|, the angle (X)) is m + arg(X).

The joint distribution function of (L(X),0(X)) will be denoted by & x|(dr,df) and is equal
to

d

p=
1(6 € (m + arg(X) — 7 + arg(X) +w>>%

+0)x| ()0t arg(X) ()~ MUXLIXD), (2.7)

1(r € (0,1X]))—M(|X],r)e”MIXEN) g

The progress is defined as P(X) = |X| — | A(X)|. The mean progress is plotted in function
of = | X]| in Figure 2.3.

2.3.3 Mean Degree of a Vertex
Degree at the Origin

The degree of the origin is

D) = S LUN(B(T,|T|)NB(,[T]) = 0).
TEN\0

Hence, using Campbell’s formula, we get

ED(0) = 2x / e~ (2n/3=sin@n/3) . gy — 2.56. (2.8)
0

o1 /3 —/3/2

The following property is also of interest. The degree of a vertex in the minimal spanning
tree is bounded, similarly we have

Lemma 2.3.1 The degree of node 0 is upper bounded by 5 a.s.

Proof. Order the points directly attached to the origin by increasing polar angle. Let X and Y
denote two neighboring points in this sequence. Assume |0X| < |0Y|. Denote by ¢ the angle
between these two vectors. We have

XY |2 = [0X]? + |0V |2 — 2{0X||0Y| cos .
Since Y is attached to the origin, necessarily |XY|? > [0Y'|2, which implies that
2(0X ||0Y | cos ¢ < [0X |2,

Using now the assumption that [0X| < |0Y|, we get cos ¢ < 1/2. Hence |¢| > 7/3. ]



Figure 2.4: Left: Q(t,p,0). Right: The o and (3 angles.

Degree outside the Origin
The degree of a vertex X # 0 is given by:

D(X)=1+ 1(T| > [X)L(N(B(T,|X = T|) N B(0,|T]) = 0)1(0 ¢ B(T\|X —T1)).(2.9)
TeN

Indeed, a point T' of modulus larger than | X| shares an edge with X if and only if there is no
point of smaller modulus closer from 7" than X.

Let X # 0, |X| = =z, using Slivnyak-Campbell’s Formula (see in Appendix §B.3) while
taking the expectation of Equation (2.9),

ED(X) = 1+EY L(N(B(T,|X —T|)nB(0,|T]) =0)
TeN
1z <|T|)1 (|T|>|X 1)

arccos(
= 1_|_/ / e~ Q@0 i,
p>x arccos(

where Q(x, p,0) is the dashed surface in Figure 2.4 for X = xze, and T = (p,d). The condition
that |T'| > |X — T| (or equivalently that 6 belongs to the interval (— arccos(;—p),arccos(;—p))
translates the fact that the origin should not be contained in this lune. Hence

arccos(z5) 2 2 2

4 P o _ p°Hz®—2pxcosb o

-1 / / —52a 51n2a|e . Emnd P61 51112ﬁ|pdpd07
p>x

arccos( 2% 3

where « and 3 are the angles depicted in Figure 2.4.
If u= 2, we have: cosa = (1 —u?)/2+u ' cosf and 8 = (7 — ) /2. Finally,

arccos(5-) W22 )
ED(X) = 1+ 2x21u>1 / e*T(2afsm 2a)
0

12 .
6—7(1+u2—2u cosG)(ﬂ—a—sma)ududG. (210)

The mean degree is plotted in Figure 2.5.
The following lemma is remarkable in view of Lemma 2.3.1.



Figure 2.5: ED(X) as function of z > 0.

Lemma 2.3.2 The degree of a node of the DSF is not bounded and in the RST a.s.

sup D(X) = 4o0.

XeN
Proof. Let A_., (X) be the ancestor of X in the DSF with direction —e,. The DSF built on
the point set {X,, = (27",3"),n € N} U {0} gives: for all n, A_. (X,) = 0, in particular the
degree of the origin is infinite.

We now prove the second statement of the lemma.

Let M € N*; forn > 0, we define U,, = [27"—¢€,27"4¢| X [3" —¢€, 3" +¢]|, U_1 = [—€, €| X[—¢, €],
Anr = B(0,4M)\(U—1<p<m Up) and Ep(X) = {N(X + Ay) =0, N(X +U,) =1,-1<n <
M?}. We have P(Ep (X)) =6 > 0 and if | X — Y| > 24M | Ep(X) and Ep(Y) are independent
(for e is small enough).

For e small enough, if Fj;(X) occurs, the point in U_1(X) has degree at least M in 7., .
Similarly for the RST, if |X| is large enough and if Ej/(X) occurs, the point in U_;(X) has
degree at least M in 7.

Using the independence of the events Ej(2k4Me,), k € N, we deduce that these events
appear infinitely often and this concludes the proof. O

2.3.4 Limit Distribution of an Edge Length

A direct computation gives:

2
lim P(L(X) > 1) = exp(——). (2.11)
| X |—+o0 2
In particular,
lim EL(X) / S R (2.12)
1m = e 2 T = —==. .
| X[ —+00 0 V2

By similar arguments, the asymptotic progress has for Laplace transform

1 [ /2 2
lim Ee P = —/ / e_srcoseexp(—ﬂ)ﬂ'rdrde
| X[ =00 T Jr=0J0=—7/2 2

oo pr/2 2
= / / efsrcosgexp(—ﬂ)rdrd& (2.13)
r=0J0=—m/2 2



In particular, the mean asymptotic progress is

oo pm/2 2
lim EP(X) = — exp(— ) cos Odrdf) = v2 (2.14)
T Jr=0Jo=—n/2 2

| X |—+00 7T

L and P are distributed respectively as the length of the edge (0, 4., (0)) and its z-coordinate
in the DSF. This result is contained in Theorem 2.2.3 that we will prove in §2.3.6.

With the same reasoning applied to the degree, with H,, (0) = {Y € R?: (e,,Y) > 0}, we
get:

| X]?
2

z +o0 2
= 1—1—/2/ exp(—ﬂ)rdrde
= Jo 2
2.

2.3.5 Expectation of the Number of Crossing Edges

lim ED(X) = 1+/ exp(— )dX
Hex(o)

| X|—+o0

(NE]

Let z > 0, D(x) = D(ze;) and C(x) be the number of edges connecting a vertex inside
B(0,z) and a vertex outside. Almost surely, we can sort the points of N by increasing norm
0= |Xo| < |X1] <---. We have:

C(1Xn41]) = C(Xnl) + D(Xnt1) — 2.

It follows that:

C(x) = D)+ Y (D(Xy) - 2).

| Xk <z

Taking expectation, we deduce from Campbell’s formula that
T
EC(z) = ED(0) + 2r / (ED(t) — 2)tdt,
0

In §2.3.4, we proved that lim, .4 ED(z) = 2 and ED(x) > 2. Hence the evaluation of
the asymptotic behavior of EC(z) requires that of ¢ = —lim,_, 1o 2?2ED(x)". We would then
deduce: limy_, 1o EC(z)/x = c¢. The exact computation of ¢ is beyond the scope of this work.

Let v be an arc on the circle of radius r and center 0 and let C(r,~) be the counting measure
of the number of edges crossing v. From the invariance by rotations of the PPP, we deduce that
EC(r,v) = l(w)EC(T) where [(7y) is the length of the arc. In other words, the point process of

27r
edge crossings on the circle of radius r is stationary and with intensity pu(r) = %(:)

2.3.6 Proof of Theorem 2.2.3

Let X € R®\{0} and A_., (X) be the ancestor of X in 7_,, with direction —e; (a given vector
in S'). We define 6 as the angle between e; and X. The next lemma compares A(X) with
A_¢,(X) if we build 7y and 7_., (with direction —e;) on the same PPP, N°. The next lemma
is analog of Lemma 1.2.2.

Lemma 2.3.3 Let X € R?\{0}, there exists Cy such that

P(AX) £ A (X)) < 1ACH(1/|X] +0).
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Figure 2.6: The sets L(X,e;) and K (X, ey).

Proof. Without loss of generality we suppose X = ze,, > 0 and 6 > 0. Let K(X,e;) ={Y €
R?: Y| > |X],{Y — X,e1) <0} and L(X,e1) = {Y € R?: |Y| < | X[, (Y — X,e1) > 0}. These
sets are depicted in Figure 2.6. We note that if A_., (X) ¢ K(X,e1) and A(X) ¢ L(X,e;)U{0},
then A_., (X) = A(X) and hence

P(A_e, (X) # A(X)) < P(A_ (X) € K(X,e1))
HP(A(X) € L(X, e1)) + P(A(X) = 0).

The last term is easily computed: P(A(X) = 0) = e~ M(®:2),

To upper bound the second term, we notice that L(X,e;) is contained in a cone of angle 6
(see Figure 2.6); hence P(A(X) € L(X,e1)) < 6/m7.

The first term is upper bounded similarly. Let K_(X,e;) be the lower part of K(X, e1); we

have
P(A_¢, (X) € K(X,e1)) <2 P(A_(X) € K_(X,e1))

<
—7r2 . r

< 2re” ™" (arcsm(2—) + 0)dr
x

>

< Ci(1/x+0).

Theorem 2.2.3 is then a consequence of Lemma 2.3.3 and Theorem 1.2.3.

2.4 The Directed Path

The directed spanning forest is the key object for the asymptotic analysis of the RST. This
section is dedicated to the analysis of the paths originating from some vertex. In this section,
we will prove in particular the following theorem:

Theorem 2.4.1 A_.  is a regenerative navigation, its regenerative time, 0, satisfies for some
s> 0:
E exp(sf) < oo.

In §1.4.5 we have already sketched a proof of this result. In this section, we will present an
alternative proof. This proof is longer than the proof presented in §1.4.5, however it will give
more results and it shows a nice connection with the theory of Markov chains on general state
space.



2.4.1 The Underlying Markov Chain

We denote by X, = A", (Xo) the n'" ancestor of point Xy in the DSF with direction —e,.
The edge between X; and X;_1 is U; = X;_1 — X;. Let Uy = —Xj. From the definition of the
tree, the z-coordinate of U; is positive (almost-surely) and we have:

n n
Xn:—ZUl and X,, — X = — Z U, for k < n.
=0 I=k+1

The conditional probability of U,,+1 given (U, .., Uy,) can be analytically determined. Indeed
let H be the half-plane (z > 0), Dy = H and let

n—1

Dn =HN{J B(Xs — X, [Uksa])}¢ (2.15)
k=0

(see Figure 2.9). Given (Uy, ..,Uy), Uny1 admits the following density in polar coordinates:

]l(ng)eDn?“d?“d@
1/1(0(0, ’I“) M Dn) ’

d
—1B(0,7) N D, |e1BOmINDx] (2.16)
,
where vy denotes the 1-dimensional Lebesgue measure and C(X,r) the circle of radius r and
center X.
Let D,, be the set given by Equation (2.15) for some fixed nodes Xy, ..., X;,. The following
two lemmas will have important applications.

Lemma 2.4.2 Let (ry,60,) denote the coordinates of U,. Then for all 0 < a < /2,

P(10,]| < a | Dyp—1,70) >

210

For —m/2 < a < B <7/2, if the cone {(r,0);0 € [a, ]} is included in Dy_1, then

08—«

™

]P)(Hn € [aaﬁ] | anlyrn) >

Proof. Fix r, in view of the geometry of D,,,

dus(r) = {6 € (=5, 5) : (r.6) € Doy} = (=0-(r), 0+(r)),

T
2
with 0 <604 < 3.

From Equation (2.16), for a fixed r, the pdf of ; conditioned on r, = r is uniform on
(=0_(r),04+(r)). If 0 < a and 64 < «, then P(|0,,| < « | 7, = 7, Dy,—1) = 1; else, supposing
for example 6 > «, then

PO, <a|rn=r,Dp_1) > PO<6b,<a|r,=r,Dy1)

Q@ @
> > —.
- 0,460 "7
The proof of the second assertion is similar. O
Define the cones
ca = {x=(r0)cR*:0€(0,a)},for a>0

ca = {z=(r,0)€R*:0 ¢ (a,0]},for a<O0.



Lemma 2.4.3 For all n,
cx C D, or c_z C D,.

In particular if (rn, 6y) denote the coordinates of Uy, then

7ru2

]P)(Tn > u|Xn71,Xn72a s >X0) <e 12.

Proof. The proof relies on a simple geometrical argument. Suppose first n = 2 and consider a
circle Cy of radius ry and center 0 (set to be X7) and another circle Cy of radius r and center
Xo, 0 € Cy. In polar coordinates, X is at (r1,601) and Xo at (62,7r2). For |0y — 61| < 7, the
equation of C; in polar coordinates is 7 = 271 cos(f — 1) (see Figure 2.7). The point X is
somewhere on Cy; suppose for example that it is in the orthant 6, € [-F,0]. If 6; & [-7, —T]
or 71 > 2rg cos 61, then Dy contains cz.

Figure 2.7: Ds and the largest cone with origin X5 contained in Do

Suppose instead 0; € [—m, —75] and 71 < 2rpcosfy (see Figure 2.7). We have to prove that
the largest cone with origin X5 contained in Dy contains cz or c_z.

The worst case is when X5 is at M, defined as the intersection of C; and C in the orthant
0 € [-5,0]. We have M = (rg, ¢), with ¢ = 61 + arccos(z=). In this case, an easy calculation
shows that the largest cone contained in Do with origin M = X5 is {x = M + (r,0) : 0 €
(=5 — 01 +20,5 + ¢)}. The worst case is reached when ¢ = %1, since §; > —m. We deduce
that max(§ + 01 —2¢, 5 +¢) > §.

This concludes the proof for n = 2. For n > 3, the largest cone contained in D,, with origin
X, is tangent to (at most) two circles, and the same conclusion holds. O

A sample path together with the associated exclusion discs is given in Figure 2.8.

From Equation (2.16), the process {U,},n € N is not Markov. We may circumvent this
difficulty by defining:

m—2
Top1 = inf{m > m HO{ () B(Xm — X, [Uksa])}° = 0}, (2.17)
k=71n—1

with T0 — 1.

Each 7, is a stopping time with respect to the internal history of {U,, }. We call these times
markovian times (we will soon see why).

Let L; = |U;+1] denote the lenght of the edge from X; to X; 1 and P; the absolute value of
the progress realized by this edge.
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Figure 2.8: A sample path and the associated discs.

The projection of H\D,, = H N {B(X1 — Xo, |U1|)} on the z-axis is {&; = Lo — Py. More
generally, denote by &, the projection of H\D,, = HN{U}Zy B(X,,— X, [Us+1])} on the z-axis.
This sequence satisfies the recurrence relation

§nt1 = max(gn — Py, Ly — Pn)a n=>1, (2'18)
so that for all n > 1,
n—1
€n = lfélgl(Li—l - kzlpk)-
—7—

and the markovian time 77 is then simply rewritten as:
mn=inf{m>1 P, >&,}.
For instance, on the realization of Figure 2.9, m; = 4.
Lemma 2.4.4 For allm > 1,
P(7i, — Tn—1 > n| Dy) < Cre” " and P(7y, > fm| D) < Chre~Com
for some positive constants (3,Cy, Cy (depending on D, ), so that in particular T, is a.s. finite.

Proof. This result follows from the statement of Lemma C.1 (in Appendix). We explain the
connection between the setting Lemma C.1 and the current setting in the particular case m = 0.

We first show that for all n, the random variable &, defined in (2.18) is bounded from above
by &,, where &, is the maximal residual service time just before the n-th arrival in a GI/GI /o0
queue with i.i.d. service times {L,} and i.i.d. inter-arrival times {P,} where:

- L, is the distance from X; to the closest point in the cone (either cr and c—x ) that is
fully included in D; if there is only one such cone. If both cr and c—» are included in D,
6
then one selects one of them at random;
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Figure 2.9: The process Xy, X1, .., X, the associated Uy, ..., U, and in dashed H\D,.

- P, is defined as follows: one samples an independent Poisson point process N’ of intensity
1 and one picks the point of

(NN D;)U(N'nD{NH)) N B(X;, L)
which has the smallest progress from X;.

Since for all 7, L; < I~/Z and P; > ﬁz a.s. an immediate induction gives §; < él a.s., where él
is defined by the same recursion but with L; and P, in place of L; and P;,. This recursion is
that of the maximal residual service time just before the arrivals in a GI/GI/oco queue (see in
Appendix §C.2).

Using a Loynes type argument (see in Appendix §C.1), the sequence {g}} is easily seen to be
stochastically monotone in i and to converge weakly to a non degenerate limit € when i tends
to infinity.

Pick a such that P(§ < a) =1n > 0. Let (ry,60,) be the polar coordinates of U,,. In view of
the remark preceding the lemma,

P(rp =m | Do) P(&m < a)P(rpq1 cos(0my1) = a | D)

>
> P(€ < a)P(rms1c08(0mi1) > a | D).

Let ¢(r, ) denote the set {(p,0) : p < r;|0| < a}. From Lemma 2.4.2, for all sets D,,, for
all a € (0, 5):

P(rmy1 08041 > a | D)

v

P(rm41€080mi1 > a; |0, < a | Dy)
& —va(e( by )N D)

cosa’
s

v

a2a

o __ao
—e cos2 a = ,U > O
T

v

Let B B
T = inf{m >1 P, > Sm}

Since 71 < 79, in order to prove the finiteness of 71 (or the exponential bound on the tail of its
law), it is enough to prove this property on 7. O



For n > 1, we define the path between two successive stopping times as the point process:
¢, =1{0,X, _, — X7 41,00, Xr o1 — X1} (2.19)

and we define &g = {0, Xo — X;1}. From Lemma 2.4.4, for all n, ®,, is a finite point process on
X =R, xR. We endow the set Ny of finite point processes on X with the usual weak topology,
(Nx, B(Nx)), making a complete metric space (see Daley and Vere-Jones [55] for details).

Theorem 2.4.5 {®,},n € N, is a positive and uniformly ergodic Harris chain.

The proof is organized in several steps. All definitions on Markov Chains are taken from
Meyn and Tweedie [123].

Markov Property Almost surely, we may write: &, = {0, X7,..., X} }, where the z-
coordinates of the X[ are increasing. By the definition of 7,,, for all n, we have:

D, =HNB(-U,

n

U=

It follows from Equation (2.16) that the law of U,, +; = X7 depends on @y, ..., ®,, only through
U’rn = X’rn—l - XTn'

More generally, since H N B(X,, — Xj, |Ug+1]) = 0 implies H N B(X,,, — X, |Ug+1]) = 0 for
m > n, it follows that for all m > 7,

m—1
Dy, =HN{ U B(Xm — X, [Uk11])},
k=1n—1

which depends only on U, ..., Uy,. In particular, for all n,
P(®,41 € | Poy ey @) = P(Ppp1 € -U;,) = P(Ppy1 € | Dy),

since U, is a functional of ®,, only, which completes the proof of the Markov Property.

In what follows, it will be useful to consider more general initial conditions than the two-
point @ defined above. Any finite point process ® on X with ® = {0, X9, ..., XJOV} and satisfying
the constraint

Dy =HNB(-Up,|Un|)¢

is an acceptable initial condition when taking 7p = N. A special case is that where ® = {0}
where N =0 and Dy = H.

In what follows, for a point pattern ® as above, we will also use the notation X;(®) for the
i-th point, N(®) for the number of points, D(®) for the set Dy.

As commonly done in Markov chain theory, we will denote by Pg the probability P(:|®g = @)
and by Pj the probability P(®,, € -|®g = @), with & = {0, X;,.., Xn} a finite point process
satisfying the above property. In particular, Py (or P§) will denote the probability measure of
the process conditioned on ®y = {0}.

Note that Py depends on ® only through D(®).

Irreducibility and Aperiodicity For A € B(Ny), define:
o4 =min{n >1:, € A} (2.20)

and
L(®,A) = P(og < o0|Pg = D).



The irreducibility of a Markov Chain on Ny relies on the existence of a measure v on B(Ny)

such that, for all A in B(Nx):
v(A) > 0 implies L(®, A) > 0 for all € Ny. (2.21)

For all sub o-algebras G of B(N), let PL|g denote the restriction of P} to G.

Let F denote the sub o-algebra of B(Nx) generated by the set {N(®) = 1} N {X1(P) €
B}, B € O"}, where O" denotes the positive orthant R x R;. We choose v to be Polly:.

As already pointed out, P} depends on ® only through D(®). In view of Equation (2.16),
if D(®)NOT = OT, then PL|# and P§|# are equivalent measures. So if D(®)NOT = O and
PY(A) > 0, for some A € F, we have then P§(A4) > 0 so that L(®, A) > 0.

Consider now the case where D(®) N O1 # OF. The first point of @1 is X1(P1) = Uyyy1-
Let (R1,01) be the coordinates of X;(®1). Let (0,&) denote the projection on the z axis of the
set H\D(®). From Equation (2.16), P(Rycos©1 > &,01 >0) > 0. If Rjcos©; >, 10+ 1isa
Markovian time, so that 7 = 79 + 1, and D(®1) = H N B(=U., |U|)¢. If in addition ©; > 0,
D(®1) N OF = OF, from what precedes, for A € F and such that P}(A) > 0, then P2(A) > 0,
which implies L(®, A) > 0.

The irreducibility is thus proved. The proof of the aperiodicity is along the same lines.

Small Set A set S € B(Ny) is small if there exists an integer n > 0 and a non-trivial measure
v on B(Ny) such that for all A € B(Ny)

inf PR(4) = v(A). (2.22)

For ® = {0, X1, ..., X;(¢)} in Nx, we define (R(®),0(®)) as the coordinates of X; — X; 1.
For r > 0 and 0 < a < 7/2, let S(r, ) € B(Nx) be defined by
S(r,a) ={® € Ny : |10(?)| < o, R(®) < r}. (2.23)

Let G denote the sub o-algebra of B(Ny) generated by the sets {7(®) = 1}N{X;(®) € B}, B €
Cy, where C,, denotes the cone

Co={(r,0) eR*:0 ¢ [-71/2 +a,7/2 —a]}.

We now prove that
S =8(ra) (2.24)

is a small set for v = g(r, @) P¢|g and n = 1, where g(r, «) is a positive constant to be determined
below.
From Equation (2.16), for all ® € S,

P@(Xl(q)l) S Ca,T((I)l) = 1)

Ps(|©1] < 7/2 —a,Ricos©1 > 1)
Py(|©1] <7/2 —a, Ry cos©1 > 1)

2 —a _rix/2-a)
ue sinZa = g(r,a) > 0.

Y

Y

T
Note also that from Equation (2.16), for all B C &,

Ps(X1 € B| | ©1]| <7/2 —a,RicosO1 > 1)
= Py(X1(®1) e B||©1] <7/2—a,RicosO; >r).

These two remarks imply that for all A € G

]P’q)(q)l c A) > g(?“, Oé)PQ(q)l < A),

which concludes the proof.



Positivity and Uniform Ergodicity Let os = inf{n > 1: ®,, € S} be the first return time
to § with S defined as above.

Lemma 2.4.6 For all > 0, S = S(r,7/6), we have supg Egos < oo. More precisely
supg P(0s > n) < (1 — 8(r))", with 6(r) = (1 — e~™/12) /6.

Proof. From Lemma 2.4.2 and Lemma 2.4.3, for all n,

Plr, < 7,00 < % | Xoo1,. .., Xo) = =(1 — e ™?/12),

=

Hence, for all &,

Pe(R(®1) < r,|0(d1)| < %) > —(1— e ™/12), (2.25)

1

6

from which one easily deduces that supg Fpos < oo. o
In view of Theorem 10.4.10 and 16.0.2 of [123], {®,,} is positive and uniformly ergodic.

2.4.2 Limit Theorems

We follow the approach of Athreya and Ney (see [13]). Since the Markov Chain ® is positive
Harris recurrent, we can build an increasing sequence of finite stopping times Ny, (on an enlarged
probability space) such that Ny = 0 and

P@O(‘I)n € AN, = n) = M(A)Pcbo (Nk = ’I’L), (2.26)

where 1 is a probability measure on Ny. Therefore, Ny —1 is a regenerative time: the sequences
(Ppin,),n €N, and (®,),0 <n < Nj — 1, are independent.

Lemma 2.4.6 implies that Ny — Nj_1 is stochastically dominated by a geometric law. We
define 0, = 7y, with 7, defined in (2.19); since &, < r (with &, defined in (2.18)), from Lemma
2.4.4, P(Oxq1 — O > t|Fy,) < C1exp(—Cok), for some positive constants. We deduce the proof
of Theorem 2.4.1.

For ® = {0,X1,...,X;} in Ny, we define f(®) = > _; max(1,|X,|%), o > 1. Using the

upper bounds of Lemma 2.4.4 and Lemma 2.4.3, we get

os—1

sup Eo (Y f(®r)) < oo, (2.27)
TES k=0

where og is defined by Equation (2.20) and S is the small set defined above.
Let II be the invariant distribution of the Markov chain. We define the invariant distribution
of the edge process Xy — X1,.., X1 — X5, ... as:

T—1
m(A) = En(r) 'En(Q_ 1(Xip1 — X)) € 4)), AeR% (2.28)
=0

We may now deduce the limit theorem.

Theorem 2.4.7 For all measurable functions g, let S, = Zz;é 9( X1 — Xg). If g(x) <
max(C,|z|*) for C >0, a > 0 then a.s.:

T—1
lim Sn = EH(T)flEH(Z 9( X111 — X)) = 7(g),



Let G(®) = S0 (9(Xi41 — X)) — 7(9)); if
v’ = Bu(G(®0)?) +2)  En(G(®0)G(Py)) > 0,
k=1

then a central limit theorem also holds:
1
YVn

If v =0 then %(Sn —7(g)) tends a.s. to 0.

(S — 7(9)) % N(0,1).

This theorem characterizes the asymptotic behavior of a path in the directed spanning
forest.
Proof. Theorem 2.4.7 is a direct application of Theorem 17.0.1 of [123]. Theorems 14.2.3, 14.2.4
and 14.3.7 of [123] along with Equation(2.27) ensure that all requirements are fulfilled. O

Corollary 2.4.8 There exists positive constants p, py and for a > 0, l, such that

. 1 n—1
7}1_{205 Z(Xk — Xkt1,€2) = Pz = D, (2.29)
k=0
1 n—1
nlLH;O E Z |<X/€ - Xk?-f—la €y>| = Dy (230)
k=0
1 n—1
.1 oy
Jim_ ~ kz_o | Xpr1 — Xl L. (2.31)

By simulation of 20000 hops of the chain, one obtains that p ~ .504, p, ~ .46 and l; ~ .75.
The value of p is significantly larger than the mean asymptotic progress as evaluated in (2.14).
The latter can be seen as the expectation of the progress from point Xy = 0 under the Palm
probability of the Poisson point process IV, whereas p is the expectation of the progress under
another measure: for all n, let P, = |Uy,.e,| be the progress from the n-th ancestor of point
Xo = 0. From the above analysis, the law of P, under the Palm probability of N converges
weakly to a limit when n tends to infinity, and p is the mean of the limit law. A similar
observation holds for [y when compared to (2.12): as it is the case for progress, on a long
path, the magnitude of the hop from a point to its ancestor is "boosted” by the presence of its
offspring.

Note that it is also possible to derive a functional central limit theorem for the sequence
(Xk )k from Theorem 17.4.4 of [123].

Remark 2.4.9 An interesting question along the line of [64] and [71] is whether the Directed
Spanning Forest is almost surely a tree, namely whether two sequences of ancestors coalesce
almost surely (in dimension 2 and 3). Similarly, every vertex has almost surely a finite number
of successors. Ome can also expect that the Directed Spanning Tree converges toward the
Brownian Web, (see [154], [63], [65]). If this holds true, then the Directed Spanning Tree has
only one semi-infinite path whereas in view of Theorem 2.2.1, the RST has a semi-infinite path
in every direction. The edge process of successive ancestors in the RST converges in some sense
toward the edge process of successive ancestors in the Directed Spanning Tree; however the two
trees have a completely different topology.



2.4.3 Maximal Deviation

We end this section with a result on the deviation of the path from its mean. In this paragraph,
we assume that X = ze,, z > 0. Let 7_,,(X) denote the path from X in the DSF with direction
—ez; T_e, (X) may be seen as a piecewise linear curve (t,Y (t));<, in R%2. The maximal deviation
of this curve between z’ and x with ' < z is defined as

A(z,2') = d(m_e, (re,),0X) = sup |Y(¢)]. (2.32)

tez! x|
Theorem 2.4.10 For all ' < x, for all e > 0 and all integers n,
P(A(2,2) > |2 —2/|77) = Ole — /| ).

This theorem is a consequence of Theorem 2.4.1 and Corollary 1.5.13 (which is stated for a
navigation but extend similarly to a directed navigation).

2.5 The Radial Path

Let 7(X) denote the path from X to the origin in the RST. This path (a sample of which is
depicted in Figure 2.10) may be seen as a piecewise linear curve in R?. We denote by H(X)
the generation of X in the RST. As for the DSF, we will denote by Xo, X1, ..., Xg(x) = 0 the
sequence of the successive ancestors of Xy = X in the RST. In this section we will assume that

09"

0.8

0.79

0.6+

0.5+

4 + +
0479 01 02 03 04 05

Figure 2.10: An example of radial path (with its origin in (1/2,1/2)). The initial point is of
generation 26.

X = ze, with x > 0. One of the important differences with the path m(X) of the directed
spanning tree studied in the last section is that the sequence (Xk.€;)ren 1S not necessarily a
monotone sequence in k.



2.5.1 Maximal Deviation of the Radial Path

The aim of this paragraph is to bound the tail of the distribution of:

A(X) = A(z) =d(m(X),02) = sup inf |X — X|, (2.33)
Xemp(X) X'€0x

where 0z denotes the z-axis.

The machinery developed in Chapter 1, Section 1.5 (and in particular Corollary 1.5.13) can
be used to obtain directly the result. We will instead present an alternative proof which does
not use the fact that the radial navigation is regenerative. For all ¢t € R, we define:

Y(t) = max(0,sup{y: (t,y) € mo(X)})
Z(t) = max(0,—inf{y: (t,y) € m(X)}),

where the supremum over an empty set is taken to be —oo. Notice that Y (z) =0, Y'(¢) = 0 for
t ¢ [—x, x|, sup;egr Y () = sup{X.e, : X € mo(X)} and:

A(z) = max(sup Y (t),sup Z(t)).
teR teR
Now let 71p(X) denote the path from X = xe, in the directed spanning tree with direction
—ez, when building this tree on the same point process as the RST, but with all points below
the line 0z removed. The path 7o(X) may be parameterized by the z-coordinate of the process

fio(X) = {(t, Y (#)),t < a}.
The key result of this subsection is the following:

Theorem 2.5.1 For all t <z, Y(t) < Y (¢).

Proof. The proof of this result is in two steps.

We first prove that if the two curves share a common point T of the point process, namely if
(t,Y(t)) = (t,Y(t)) = T for some T € N (like for instance T = X), then the segment of mo(X)
from T to its ancestor is never above that from 7' to its ancestor in 7p(X).

Let y = Y (t) = Y(t) > 0. The ancestor of T in the radial (resp. directed) tree is denoted
by S (resp. S). If S = S, then the segments from T to its ancestor coincide in the two trees
and the property is proved. If S # S and S € L_, the property also holds since S € L¢.

Let H~(t) denote the left half-plane (z < t). If S # S and S € L¢ , then S € H~(¢t)\B(0, |T),
and since S € L¢ , S is necessarily above B(0, |T'|), the property is proved in this case too.

To complete the proof, we now show that the curve my(X) cannot cross the curve 7y(X) to
enter the region above mo(X) at a location which is not a point of the point process. Suppose
that the two curves intersect as indicated and that the intersection takes place between nodes
Xi = (&, 9;) and X¢+1 = (&i41,Pit1) in the directed spanning tree and between nodes X; =
(xj,y5) and Xj11 = (2j41,y;41) in the RST. Because of the assumptions on the intersection,
one can assume &; > #;41 and x; > x;41. Let L denote the closed half plane below the line
(X, Xj41). We have X; € L¢ and Xi+1 eL.

Suppose that #; < x;. The ancestors of X;, X;41 and X are both in H™(Z;). From
the construction of the directed spanning tree, for any point X of the point process lying
in H(#;), Xiy1 € B(X;,|X; — X|). Using the fact that #; < xj and y; < §j, we get that
B(X;, |Xi — Xj41]) " H~(#;) N L € B(Xj,|X; — X;11|) N'H~ (&) N L. Now, by construction of
the RST, B(Xj, |X] — Xj+1|) N H_(CAEZ) NL= {X]’+1}. It follows that Xi+1 = Xj+1.

If ; > x;, then simple geometric arguments show that necessarily, Xi_i.l = X;. O



Corollary 2.5.2 For all ¢ > 0 and all integers n,
1 € —n
P(A(X) = [X[27) = O(IX|™).

Proof. Let x > 0 and 7_._(X) be the path from X = ze, in the directed spanning forest with
direction —e,, obtained when using the same point process as in the RST but when removing
all points above the line 0z. We define Z(t) from 7_, (X) as we defined Y (t) from 7o(X).
From Theorem 2.5.1 we have: Z(t) < Z(t).

By symmetry, the law of the process Z(.) is the same as the law of Y() To derive the
result it is enough to prove that:

P( sup Y (t)> x%+e) =0(z™").
te[—z,z]

We have already proved this statement for the path m_., (X) in the directed chain built on
the whole Poisson point process. The difference between m_._ (X) and 7., (X) appears on the
vicinity of the line Ox. Thus the supremum should not be to much affected.

To formalize this idea, consider the event, v > 0,

Ay, ={3a €R? with |a| <2z and |a— A(a)| > 27}.
Following the proof of Lemma 5.2 of [93], we have
]P)(A'y,az) <Ci eXp(_COx?Y)'

Fix e >0, ¢ <€ <eandy < i On A

S supte[_$7$]?(t) > 22t then for
x = |X| large enough, there exists at least a point of 7#(X) N N with its y-coordinate in
the interval [x%“/,Qx%“/]. Let Xo = (z0,y0) be the rightmost such point. Note that |xg| >
z3te > VZ. The path #p(X) coincides with the path mo(Xg) on the interval [z1/2+¢ | |zo]]
provided the maximal deviation of my(Xg) (with respect to the line 0Xg) is less than :U%JFE”;
indeed the infimum of my(Xy) will then be lower bounded by yo — zate — gate 5 (for
x large enough). By Theorem 2.5.1, the event {A(m(Xy)) > x%+5”} is a subset of A, =
Urenno,e)\B0,va) LAUT| =T (777 |(T)) = 227"}, where A(y,y)(n_e, (T)) is the maxi-
mal deviation of the path 7., (7') with respect to the straight line with direction e; of the path
7e, (T') taken between the abscises y and y’. From Theorem 2.4.10 there exists a constant Cy
(depending on €”) such that P(A(|T|, =|T|)(x_g/7y(T)) > |T|z+") < C1|T|~". Now, let I > e,
we get:

1 e’
P(Aer z) P(UrennoenBo,va) AT =T (7 —7)r|(T)) = IT|2%})

<
< P(N(B(0,z)) > Iwz?) + lnzCy|z| ™2

Thus P(Aer ;) = O(|X|™") for all integer n. Using this remark, we have:

P( sup Y(t)zx%JrE) < P(A,.) +P(Aw,)

te|—x,z] B

From Proposition 1.5.2, we deduce Theorem 2.2.1.



2.5.2 Law of Large Numbers on the Radial Path

The aim of this section is to prove Theorem 2.2.4. We use the notation introduced at the
beginning of §2.5. Let Xo = X, Xj,..., Xg(x) = 0 be the successive ancestors of X in the RST.
The edge between X; and X;_; is U; = X;_1 — X;. Let Uy = — X, we have:

n n
Xn:—ZUl and X, — X, =— Z U,.
=0 I1=k+1

We define Dy = B(Xj, | Xo|) and
D,, = B(X,, |X,|) N {UZ;&B(X,1 — Xk, |Uk+1]) }¢- (2.34)
The distribution of U, 11 given (Uy, .., U,) is:

]I,(ng)eDn?"d’l"de
1/1(0(0, ’I“) N Dn)

d
L(r < [Xn|)-v2(B(0,r) 0 Dy)e” 2 F 00N +cd_x,(r,0),

where c is a normalizing constant.

Let g be a measurable R? — R function, we suppose that |g(X)| < max(C,|X|*) for some
positive constants C' and a. Without loss of generality we can suppose that g is continuous. A
classic limit argument will extend result to any measurable g. We define the statistical average
of g on my(X) as:

H(X)
SH(x) = 9([Xn—1 — Xnlx, 1)

n

®

Il
—

where [u], is the vector u rotated by an angle —f and v = rcosf.e, + rsinf.e, ([u], is the
vector u expressed in the local coordinates of v).
We will first prove that:

lim

X|otoo H(X) m(9), (2.35)

where 7 is defined by Equation (2.28).
Results on the matter will follow from the corresponding results on the directed path. We
may divide the proof of Theorem 2.2.4 is in three steps.

Step I: Regenerative Time

In this part, we prove that the radial navigation is a regenerative navigation:

Lemma 2.5.3 A is a regenerative navigation and its associated regenerative time, 6 satisfies
for some s > 0:

Eexp(sf) < +o0.

Proof. As explained in Chapter 1, §1.4.5, this lemma is mainly a consequence of Lemma 2.4.3
which also holds for the RST. An alternative proof of this lemma is given in [18]. This longer
proof is based on a coupling due to Athreya and Ney (see [13]). We do not reproduce it here.
O



Step II: Identification of the Limit

Let V,, = [Un]x,,_,, 0 the regenerative time given by Lemma 2.5.3 and

The next step is to identify lim| x| ES?(X). As explained in §1.4.5, the stopping time 6
is obtained from a coupling with a GI/GI/ co queue. We can also define on the DSF with
direction —e,; = —X/|X| the same regenerative time and we introduce:

0
Sgez( ) Zg(Ufez,n)’
n=1

where U_, , = A" /(X) — A", (X). The continuity of g and Theorem 2.2.3 imply that
S?(X) converges weakly to S?, ( ) as |X| tends to infinity. Moreover, by Theorem 2.4.7,
ESY, (0) = m(g)0, where 6 = EH From Lemma 2.5.3, there exist positive constants Cyp, Cy
such that P > k) < Cy exp(—Cpk). Then using the Cauchy-Schwartz inequality, we get

ES(X) = Y E(L 9(Ve(X)))
k=1
< ZCHGXP(—Cok) Eg*(Vi(X)).
k_

By Lemma 2.4.3, g(V;(X)) is stochastically dominated by C;(1 + Z¢), where P(Z > t) <
e~™*/12 The set {S° (X)} xere is thus uniformly integrable, we deduce that a.s.

. ] _ 7
\X|IE>I41—OOES (X) =7(g9)0. (2.36)

Step III: Convergence

The proof is identical to proofs of Lemmas 1.3.15 and 1.4.1. We rewrite them applied to our
context. Let F,, be the o-algebra generated by (Xp, ..., X;,). Lemma 2.5.3 implies the following:

Lemma 2.5.4 For all zg large enough, there exists an increasing sequence of finite stopping
times {0}, k € N, (on an enlarged probability space) such that 8y = 0, for all k > 0 and n > 0,
P(8k41— 0 > n|Fy,) < Crexp(—Con), for some positive constants and for 0 < k < K(X) with
K(X) = sup{k : | Xq,| > 20}, (Ugy41,---,Ug,,,) depends on Fy, only through | X, |.

Lemma 2.5.5 Almost surely, H(X) and K(X) tend toward infinity as |X| tends to infinity.

Proof. Let 8 < 1 and Ag, = {3a € N, with |a| <2z and |a — A(a)| > 2”}. The proof of
Lemma 5.2 of [93] implies that P(Ag ) = O(|z|™9) for all q.

On A% x| H(X) > ||X|*”]. Let M be the number of points in N such that H(X) <
|X|7#. From Campbell’s Formula: EM < 27 [;°P(Ag,)zdz < co. Hence M is finite almost
surely.

To prove that K (X) is finite, notice that

]P’(aqul — 0 > n‘fgk) < Ch eXp(—CQTL)



which implies that a.s. limsupy, 0 /k < C1 < oo. Hence, a.s. for k large enough | X ¢4 > o
implies that K (x) > k. Pick k = ||x|'~#] and the proof is similar to the proof for H(X). OWe
may write:

S | K H(X)
HX) .
H(X)  H(X) kzzl Se X+ Fox ) Zﬂg(v")'
K(X)+1

There is almost surely a finite number of edges in B(0, x¢); thus, from Lemma 2.5.5, the second
term tends a.s. to 0. From Equation (2.36), we also obtain that a.s.

K(X)

lim s K Z X)|Fo,) = m(9)0.
k=1

Moreover using the same arguments as in Equation (2.36), we get E(|Sk(X)|?) < M < co. We
can then apply Theorem VII.9.3 of Feller [62] which gives

K(X)

= . 1 ~ _
$1520K ; Si( IETMW ; E(Sk(x)|Fs,) = 7(9)0, a.s.

For g = 1, we deduce that a.s. H(X)/K(X) tends to §. This ends the proof of Equation
(2.35).
The proof of Equation (2.3) is a consequence of Theorem 1.5.2 and Equation (2.35). For all

k, a.s. as z tends toward infinity, [X;_1 — Xj]|x,_, tends toward Xj_; — Xj. If g is continuous,
we deduce that 1/H (ze,) kH:(fe””) 9(Xg—1—Xy) and 1/H (ze,) ZkH:(f) 9([Xk—1 — Xk]x,_,) have

the same limit. If g is not continuous, we conclude by a usual limit argument.

Corollary 2.5.6 The following a.s. limits hold:

. H(X) 1
lim ——=-—.
(X|—+o0 [X]  p
H(X)-1 I
lim Xk - Xk ¢ = _oz.
x| =oo | X kzzo e =5

where p and l, are defined in Corollary 2.4.8.

2.5.3 Shape of the RST

Figure 2.11 depicts the sequence 7 (k), of subtrees with nodes less than k generations away
from the origin.

We define Gy, = |7o(k)|; Gy is the size of the ball of center 0 and radius k for the graph-
distance on the RST. Theorem 2.2.2 is a consequence of Lemma 2.5.3 and Corollary 1.6.5. By
Corollary 1.6.6 we also have the following:

Proposition 2.5.7 For all ¢ < p, there exists a positive constants Cy, C1:
if |X| <ng andn >1, P(H(X)>n) < CreComa=IXD),
Similarly for ¢ > p:

if |X| >ng andn>1, P(H(X) < n) < Cpe” 00XI=na),



soil Rl

Figure 2.11: The subtrees 7yp(k) for k ranging from 1 to 10.

2.6 Spatial Averages of Edge Lengths
Consider the total edge length of the RST for points included in the ball B(0, x)

Lo= ) 1(X € B(0,2))|X — AX)|.

XeN

As an example, for the Minimal Spanning Tree, the subadditive ergodic theorem implies that
% tends almost surely toward a constant. We prove that the same result holds for the RST
(with of course a larger constant). From Slivnyak-Campbell’s Formula

EL, = 27 / EL(t)tdt.
0

With the change of variable u = %, this leads to

L 1
E—; = 27?/ uEL(zu)du,
x 0

The dominated convergence theorem together with Equation (2.12) gives

1
lim EL—; = 27?/ uidu =7/V2.
rmoo T 0o V2
We will prove a stronger result: % converges almost surely and in L' toward 7/ V2. ZTo
prove this, we consider here a slightly different problem. We sample n points uniformly and
independently on the unit disk. This defines a finite point set F,, = {0, X1, ..., X;;}. We can
then construct the RST associated to this point set. The total edge length of this RST is

n

L(Fy) =) Xy — A(X)|-

k=1

First notice that £ is homogeneous of order 1: for all sets F}, as above and all positive real
numbers r, we have L(rF,) = rL(F,), where rF,, = {0,rX1,...,rX,,}. Using this and the fact

that the ratio N(B(0,))/x? tends a.s. toward m, it is easy to check that % converges a.s.
toward 7//2 if and only if Lfﬁ”) tends to \/g . Since we have already computed the mean of
%, it is sufficient to prove that % converges a.s. toward a constant.

To prove the last property, we use the smoothness of £(F},) (Theorem 2.6.1) and the Rhee
and Talagrand concentration inequalities.



Theorem 2.6.1 There exists a positive constant Cy such that for all finite subsets F' and G as
defined abowve,

[L(FUG) - L(F)| < C1V/[G],
in particular: L(F) < C1+/]F].

Proof. L clearly satisfies the subadditive property: for all finite subsets F' and G,
L(IFUG) < L(G)+ L(F). (2.37)

From Lemma 3.4.1 of [145], we deduce that there exists a constant C such that L(F') < C1+/|F|.
Subadditivity then implies:

L(F)>L(FUG) —L(G) > LIFUG) — C1v/G].

It remains to prove that L(F) < L(F U G) + C11/|G]|, for all finite sets F' and G as above.
Let Y € G and suppose that the points X1, ..., X,, of F' all have Y as ancestor in the RST
built over the set {0} U FUG. In particular | X;| > |Y|. Suppose | X}| > |X;| then

X, —YP <X — X2 = | Xp — Y2+ |X; - V)P = 2|X), - Y||X; — Y|cos Xz Y X

Thus if Xﬁj < I |Xg - Y| <|X; — Y| The inequality |X; — Y|+ |X; — Y|? — 2| X}, —
Y||X; — Y] cos XpY X; < |X;—Y|? holds for | X, — Y| € [0,2|X; — Y| cos XxY X;] D [0,|X; — Y.
It follows that:

| Xk| > |X;| and ij <3
implies (2.38)
X5, = Y] < |X; — Y] and | X, - X;| < |X; -V

Let ©(Y, X) denote the oriented angle between 0Y and 0X. Due to the origin if X is
connected to Y # 0 in the RST then [O(Y, X)| < 7/2. We index the n points of F' connected
to Y by their increasing oriented angle O(Y, X) such that |©(Y, X()| is minimal . Xj,..., Xy
are the points counted clockwise from Xo: O(Y, Xo) < O(Y, X;) < ... < O(Y, X;) < 7/2 and
X_1,..., X_g are the points counted counter-clockwise from Xy with n =d+d' + 1 (see right
picture in Figure 2.12). We need a tie-breaking rule: if ©(Y, X) = O(Y, X’) the point with the
higher norm has an index closer to 0. -

Assume now that for a given j > 0 we have both [X;i1| > |X;| and X;YV X;1; < %,
Then from Equation (2.38): | X1 — Y| < |X; — Y|, X1 belongs to the set G(X;) of points
closer to Y than X; and with a norm larger than X;. However by elementary considerations
X € G(X;) implies that |©(Y, X)| < |O(Y, Xj)| (see left picture in Figure 2.12) and this
contradicts O(Y, X;41) > O(Y, X;) (the strict inequality comes from the tie-breaking rule).
Similarly for j < 0: if X; Y X; < T then |X;_;| < |X;].

There are at most 6 points such that Xi?)?zqu > % (i >0)or XYX; . > 7 (1 <0).
Therefore from Equation (2.38) there are at most 6 points such that: (i > 0 and |X;41| < |X;]
and | X;—1 — X;| <|X; —Y]|) or (i <0 and | X;41| > |X;| and | X;+1 — X;| < |X; —Y|) does not
hold.

Let Ap(X) denote the ancestor of X in the RST built on the set {0} U F. We have

LF) = 31X - Ap(X)

XeF
= > LAr(X) = Apue(X))IX = Aruc(X)+ D Y X - Ap(X)|
XeF YeG XeFnARL 4 (Y)

IN

LIFUG)+ > > X — Ap(X)| = |X =Y.

YeG XeFnALL L (Y)



Figure 2.12: On the left, the dashed area is G(X;) , on the right, the set of connected points to
Y.

If Fn A;bG(Y) ={X_a¢,..., X0, ..., Xq}, for at most 6 points, |X; — Aruc(X;)| = |X; = Y| >
|Xi = Xia| > [Xim1 — Ap(Xi-1)| (i > 0) or | X; =Y[ > | X1 — X4 > [ Xip1 — Ap(Xit1)| (1 <0)
does not hold.

Henceforth, if J denotes the set of points such that the preceding inequality does not hold
and H(Y) ={X4, X_¢} UJ, we have |[H(Y)| < 8 and

d
> X —Ap(X)] < D] IXi - Xi
i=1

XeFNARL o (Y)\H(Y)
&
+ Z | X — X_iqa|
=2
< > X — Apua(X)].
XeFNALo(Y)

If H=UyecqH(Y), we have |H| < 8|G|. Using subadditivity, we deduce
LF)<LFUG)+L(H)<L(FUG)+ C/8|G|.

a

Theorem 2.6.1 ensures that we can apply a concentration inequality to the functional £
(Theorem 1 of Rhee [138] and Theorem 11.3.2 of Talagrand [150)): % converges a.s. toward

its mean. Finally, we have proved that a.s. and in L!,
lim =% = 7/v/2. (2.39)
More generally, for a > 1, we define

LONF) =Y |X - AX)|~

XeF

The proof of Theorem 2.6.1 is unchanged if we replace £(® by £ (however the constant C; does
depend on «). Define

o0 TrT2
Aa = a/ r®te™ 5 dr = B|A_., (0)|*. (2.40)
0



From Equation (2.11), using Campbell formula, we get that

lim EL® (z)/z? = mha.

r—+00
We finally deduce:

Theorem 2.6.2 For all « > 1 a.s. and in L',

We can rewrite this result as 1/N(B(0,)) > ycn [ X — A(X)|* tends a.s. toward A,. That
is, the spatial average of the lengths of the edges tends toward the distribution of the length of
(0,A44(0)) in the DSF.

It is crucial to notice that A\, < l,: the spatial average and the average along a long path
do not coincide.

Remark 2.6.3 We have done our analysis on the length of an edge, of course the same type
of result could be obtained for other stabilizing functional. So in order to derive weak laws for
stabilizing functionals, we can invoke Theorem 2.1 of [133].

2.7 Model Extension and Open Problems

2.7.1 Greedy Forests

The radial spanning tree lies in a large class of spanning forests which are locally defined. We
could extend the definition of the radial spanning tree over a point set N as follows.

Let [ be a measurable function from N to R and L be a measurable function from N x N
to R. Suppose that for all X,Y,Z,T € N, {X,Y} # {Z, T}, L(X,Y) # L(Z,T), for x # y
I(X) # I(Y) and I[(N) has no accumulation point. Then we can define the following forest
F = (N,E): for [(Y) <I(X) : (X,Y) € Eif and only if Y = argmingey 2)<i(x) L(X, Z).

When I(X) = |X|, L(X,Y) = |X — Y], we define the radial spanning tree, if [(X) = (X, e,)
and L(X,Y) = |X — Y], this is the directed spanning forest. If L(X,Y) is the length of well
chosen cylinder, we obtain the Poisson Forest of [64].

2.7.2 The Radial Spanning Tree of a Voronoi Cell

An interesting way to extend the RST is to consider two independent Poisson point processes,
No = {X0}, the point process of cluster heads (we use here the terminology of sensor networks,
which motivate this extension), of intensity Ao and Ny = { X!}, the point process of nodes, with
intensity A;. The first point process tessellates the plane in Voronoi cells. We denote by V;, the
Voronoi cell of point X2 w.r.t. the points of Ny. Two forests can then be defined in relation
with this tessellation:

e The family of internal RSTs: the n-th tree of this forets, 7,,, is the RST built using the
points of N7 that are contained in V,,, with XS as a root.

e The family of local RSTs: if node X belongs to V,,, one defines its ancestor as the point
of (N7 U{X%}) N B(X?,|X — X?|) that is the closest to X. Notice that this ancestor
does not necessarily belong to V;,. Nevertheless, this rule defines a forest too (see Lemma
2.7.1). One then defines the n-th local RST tree U, as the tree which is the union of all
the paths from nodes with ultimate ancestor XJ.



Figure 2.13: Local Voronoi radial spanning trees (in blue) of 600 nodes uniformly and inde-
pendently distributed in the unit square, w.r.t 10 cluster heads (in red), also uniformly and
independently distributed in the unit square. The Voronoi cell of one of the cluster heads is
depicted in red.

In what follows, we concentrate on the second case which can be analyzed using the same type
of tools as in §2.3. Figure 2.13 depicts a sample of such a forest.

Lemma 2.7.1 Almost surely, there exists no node X of Ny such that the sequence of ancestors
of X based on the local RST rule contains node X.

Proof. Let {Y;}i>0 be the sequence of ancestors of X = Y,. If ¥; = X for some ¢ > 0, then
necessarily the points of {Y;} belong to different Voronoi cells (if this were not the case, then the
distance to the cluster head of the cell to which all points belong would be strictly decreasing,
which forbids cycles). Then one can then rewrite {Y;}i>o as

{Yvi}izo = {Zo(l), N ,Zo(no), Zl(l), N ,Zl(nl), N ,Zj(l), N ,Zj(k), }

with Z;(1),...,Z;(n;) € W, for all 0 <1 < j, where {W,};>0 is a sequence of cells such that
Wy # Wiy for all I < j, n; is a sequence of integers and Z;(k) = X. Let S; denote the cluster
head of W;. Then the definition of the local RST implies that a.s.

| X — So| =1Z0(1) — So| > |Zo(2) — So| > -+ > |Zo(no) — So| > |Z1(1) — So.
Since Z;(1) belongs to Wi, we have a.s.
1Z1(1) = So| > [Z1(1) — Sal.
For the same reasons, forall [=1,...,5—1
1Z21(1) = Sil > |Z1(2) = Si| > -+~ > |Zi(m) = Si > [Zi42(1) = S
and

‘Zl+1(1) — Sl’ > ’Zl+1(1) — Sl+1‘7 a.s.



In addition
1Z;(1) = Si| > 1Z1(2) = Si| > -+ > |Z;(k) = S5 = | X — Sol.

Hence a contradiction. O
Let £, denote the total length of all edges from nodes in V,,. Let Ej denote the Palm
probability w.r.t. Ng. We have

L= (X}, € V)L,

where L,, is the length of the link that connects X! to its ancestor. Using the fact that
X}t eV, iff No(B(X},|X}, — X2|)) = 0 and the fact that L, > u with u < | X} — X0| iff
N1(B(X},,u)nB(X2,|X} — X9))) =0, we get from Campbell’s formula that

Ey <Z (X}, € Vn)Lm> = 271)\1/ e N0 (/ eAlM(r’“)du> rdr,
r u=0

m =0

with M (7, u) the lune defined in §2.3.1. Hence

Ey (Lo) = 277)\1/ e omr? </ e)‘lM(r’”)du> rdr. (2.41)
u=0

r=0

2.7.3 Some open problems

The local geometry of the RST is rather well understood. Unfortunately, the distribution of the
degree of a vertex is still unknown. We have computed only its mean. It would be appealing to
compute this distribution at least in the DSF. In contrast with what happens in the Minimal
Spanning Tree, the degree is not upper bounded and so the moments of this distribution could
be large.

Properly scaled, the path w(X) of successive ancestors of X in the DSF, converges weakly
toward the Brownian Motion. An interesting problem is to find a functional central limit
theorem for mp(X). Along this line, we may prove that the DSF converges weakly toward the
Brownian Web. Proving a weak limit for the RST is a challenging question.






Chapter 3

Minimal spanning tree and Scaling
Relations for percolation

Résumé Nous nous intéressons au poids maximal des arétes du chemin reliant deux som-
mets de 'arbre couvrant minimal. Nous proposons une preuve d’un Ansatz de Aldous relié
a l'existence d’une densité pour cette variable aléatoire. Enfin, nous élargissons la méthode
proposée en esquissant des connections entre certaines propriétés de ’arbre couvrant minimal
et les relations d’échelle en percolation.

Abstract We consider the maximal weight of the edges on the path between two vertices in
the minimal spanning tree. We propose a proof for an Ansatz of Aldous related to the existence
of a density for this random variable. Finally, we enlarge our picture and sketch some relations
between some properties of the minimal spanning tree and the scaling relations in percolation.
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3.1 Introduction

The minimal spanning tree (MST) is one the most studied structure in combinatorial optimiza-
tion, see the monographs of Steele [145], Yukich [161] or Penrose [129] for an overview of the
known properties of the Fuclidean MST. There are however few known results on the geomet-
ric properties of the paths between two vertices in this tree. In this chapter, we examine some
properties of these paths and relate them with scaling exponents in percolation. This work has
not reached a satisfactory stage yet. It is however interesting to present it in this thesis. In
particular, it appears clearly that the mathematical tools involved in the analysis of the paths
in the MST differs significantly from the paths in the regenerative navigation trees.

We first define the euclidean minimal spanning tree on a non-equidistant and locally finite
point set of RY. A point set {n;}; is non-equidistant if the interpoint distances (|n; — n;|,i < 5)
are all distinct, where | - | is the euclidean norm. With a slight abuse of notation, a locally
finite point set ® will also be represented as a counting measure: ® = 3. 0,,. Let ® be a
non-equidistant and locally finite point set of R?, and G(®) be the subgraph consisting of
those edges e = (v, w) with v,w € ® and |v — w| < ¢t. The minimal spanning forest (MSF) is a
spanning forest on ® defined by

e = (v,w) € MSF(®) if the connected components containing v and w in G},_,|(®) are
disjoint and not both infinite.

This definition is consistent: on a finite point set, the MSF is the spanning tree which minimizes
the total edge length. If ® is a Poisson point process, G|,_,|(®) has at most one infinite
connected component. In dimension 2, it can be shown that the MSF in indeed a tree (see
Alexander [7]).

From now on, we consider a Poisson point process ® = >, of rate 1 in R2. Let ®° =
8o + ®, by Slyniack Theorem, ®© is a Poisson point process in its Palm version at O. Let
G(®9) be the subgraph consisting of those edges e = (v, w) with v,w € ®° and |v —w| < t. Gy
is a continuum percolation graph with deterministic radius ¢ (refer to Meester and Roy [121]),
we will denote by r. the critical range at which an infinite connected component appears. For
an edge e = (v, w), we define:

l(e) = |v—w
perc(e) = inf{t:v and w in the same component of G}
perc*(e) = inf{t:v and w in the same component of G;\{e}}
o(e) = l(e) —perc(e) > 0.

We define a function p on Ry by

plx) = EZ 1(0 < 6(0,m) < ).

Ansatz 7 in Aldous [4] reads:

Ansatz 3.1.1 0
lim sup 10, )
z|0 x

< 00

The Ansatz is stated for continuum percolation. As it is pointed in [4], due to the inde-
pendence of edges, the analog of this Ansatz for discrete percolation is straightforward. In
this note, we present an alternative proof of the Ansatz in two dimensions which relies on the
scaling relations of percolation near the critical range. The scaling relations are supposed to



follow a universality principle: they depend on the dimension and not on the neighboring graph.
Therefore our proof is general and it does not use any particular feature of discrete percolation.

Properly speaking, in Kesten [103], the scaling relations in 2D percolation have been rig-
orously proved for a large class of discrete graphs. Undoubtedly, the scaling relations are also
satisfied for continuum percolation with deterministic radius. A proof of this fact should not
be hard to obtain.

Scaling relations do also exist in higher dimension. Rigorous proofs of these relations is an
active research field.

In this chapter, in Section 3.2, we first present the main steps of the proof of the Ansatz. In
Section 3.3 and Section 3.4, we prove some technical results in continuum percolation. Finally
in Section 3.5, we add a comment on the connections between minimal spanning tree and critical
exponents.

3.2 Main steps of the proof

We need to introduce some continuum percolation terminology: for any r and A, we define the
probability measure Pg”f under which @ is a Poisson point process of intensity A and an edge
e from the complete graph ® is said to be open (resp. closed) if £(e) < 7 (resp. £(e) > r).
We denote by G© the open cluster containing the origin : GY = G2. Let r.(\) = r./vA be
the critical radius for the Poisson continuum percolation model of density A and deterministic
radius, i.e. for r < r.(A\) the number of vertices in any open cluster is finite whereas for r > r.(\)
there exists an unique unbounded open cluster.

We give now the main steps of the proof of the Ansatz, the technical proofs are given in
the next sections. Throughout this chapter, we denote by C,Cy,Cs ... positive constants not
depending on the parameter of the problem.

Lemma 3.2.1 For any € > 0, we have

forO<t<r.—e, POt(perc(O,t) € [t — ,t)) < Cyx,
fort>r.—ce, POL(perc(O,t) € [t — z,1)) < Crze” 2t

We now concentrate on the case t € (r. — €,7. + €). Under ng, we define the event
A={tea®}.
We have
POY(pere(0,t) € [t —z,t)) = PLHA) —PTE (A). (3.1)

Using coupling and scaling properties of the Poisson point process, we can translate variations in
the radius of the Boolean model to variations in the intensity of the model (our main motivation
being to use a continuous analog of Russo’s Formula). More precisely, the transformation on R?:
X +— 0X maps a Poisson point process of intensity A into a Poisson point process of intensity
Ao~2. We deduce that:
O7£ —_ O7o.£
P)\,r (A) - PAJ*Q,TU(A)'
Applying these relations, with o =¢/(t — z) in (3.1), we obtain
loX’ _ O,t Ot
P¥%(perc(0,t) € [t —x,t)) = P (A) - IP’U_Q,t(A) (3.2)

+PO4, (A) — PO, (A).

o2t



We show in Section 3.3.2 that the second difference is bounded by:

POL (A) — P (A)| < O, (3.3)

o2t o2t

For the first difference, we need the next lemma which is a consequence of Theorem 2.1 in Zuyev
[165]. This is a continuous analog of Russo’s Formula.

Lemma 3.2.2 For all A > 0 and all positive t # r.(X):

0 _o o
a]}”)\f(A) = EA,;EEV(IP%

where,
P={X eR?:1(t € GO(@X)) £ 1(t € GO (1)}

and v denote the Lebesque measure on R?. A point X in P is a pivotal point for the event A.

Hence we have as z tends to 0 (recall that o = t/(t — x)),

- 0
PYHA) P04 (4) < (1-072) sup 519’%(14)
7 Ae€[o—2,1]
~ 2 s E(P)
Xe[o—2,1]

The difficulty of Ansatz 3.1.1 is on the bound of ¢ — E.;v(P) in the neighborhood of r.. The
following Lemma will imply the Ansatz.

Lemma 3.2.3 There exist C > 0 and n > 0 such that for allt € (r. — €,rc +€) and all X in a
neighborhood of 1,

-1
o

VA

The proof of Lemma 3.2.3 is postponed to Appendix. It relies on the scaling relations in
2D-percolation. The scalar n can be related to a critical exponent of 2D-percolation.
We now show how Lemma 3.2.3 implies that

,t

ESL(P) < C ‘t -

rete
/ PO (perc(O,t) € [t — x,t))dt < Cz. (3.4)

c—€

Indeed, by Equations (3.2) and (3.3), it is sufficient to bound:

PO (A) —POL (A) o

o2t

x Tt

O7£
E)\(w,t),ty(P)’

where A(z,t) € ((1 —z/t)?,1) and o = . First for t € (r. — €,7¢), we have by Lemma 3.2.3,

O7£ O7£
/” Sl Pﬂ’t(A)dt < /TC |t — |t < 400
> c .
Te—¢€ x re—e€

We now consider the case t € (r.,r. + €). First note that for any C > 0,

/rc(lJrC:v) [pgf( A) — ]}»JO}Q (
T

c

tdt < r2(C' 4 Cz/2).



Take C' > 0 such that for all t € [r.(1+Cz),r.+€| and x small enough, we have r.//\(z,t) <
re(1 + Cx). This is possible since A(z,t) > 1 — (24 z/t)z/t, and in this case, we have,

[t —7re/ /A, t)| 7 < |t —ro(1 4+ Ca)| 71

Hence, we obtain

O,t Ot
/me PTH(A) — IP’OfQ,t(A) e
>~ 1

Ansatz 3.1.1 follows from Lemma 3.2.1 and Equation (3.4).

3.3 Continuum percolation far from critcial radius

We first introduce some notations. For a set S C R2, we denote by d(S) = sup{|z—y|, z,y € S}
its diameter. For x € R? and r > 0, B(z,r) denotes the open ball of radius 7 centered at x. For
n € N we denote S(n) = [-n,n]?. For z € R? and S C R?, we define dist(x, S) = inf{|z—y|,y €
St.

Under the probability measure Pg’f, the occupied region is Uy cgo.: B(X,r/2) and the vacant
region is the complement of the occﬁpied region. The occupied component of the origin W is
defined by ]P’f’f(W = UxegoB(X,r/2)) = 1. The vacant component containing the point ¢/2
is denoted by7V. More generally, for r > 0 the occupied region at level r is Uxcgo.eB(X,7/2)
and we denote W, = UycgoB(X,7/2) the occupied component of the origin at level r and V;
the vacant component containing the point ¢/2 at level r.

3.3.1 Proof of Lemma 3.2.1

Since we may assume that all interdistances are different, there exists an unique (X,Y") € (99:t)?
such that perc(O,t) = |X — Y/, indeed (X,Y) is the edge of the MST on the path from the
origin to t with maximal length.

First consider the case t < r. —e. Let S, = zt/2 + S(t/2) where z € Z2. If the event
{perc(O,t) € [t — x,t)} occurs, there is some z € Z? such that W N S, # () and there exists
X,Y € ®N S, such that | X — Y| € [t — x,t). Note that we have for any z € Z2,

P (EX,Y € NS, [X —Y|€[t—x,t) = O+ ).
Hence we have

POt (perc(O,t) € [t — z,t))
< S PYEW NS, £0,3X,Y € ®(S.), | X — Y| €[t —a,1))

z2€Z2
< |5+ Y PUEWNS. £0) | C(+tP)a, (3.5)
z ||2]>2
where we denote ||z|| = max(z1,22). Lemma 3.3 of [121] ensures that the sum of (5.13) is finite

fort <r.—e.

The case t > r.+ € is quite similar. If the event {perc(O,t) € [t —x,t)} occurs, there is some
z € 7% such that V;_, N S, # 0 and there exists X,Y € ®N S, such that | X — Y| € [t — z,1).



Hence we have

PO perc(O,t) € [t—x,t)) < |5+ Y P (VNS £0) | CO+ )
z, |lz—t/2]>2

< Cre @iy, (3.6)

where (3.6) follows from Lemma 4.1 of [121] and the fact that

PUY (Viee NS, # 0) < PYY (d(View) > |12 — £/2])) -

3.3.2 Proof of (3.3)
To bound the second difference, note that

PO% (A) = PO (B(L.t) NGO £0)

o2t

]P)O,OI (A) — P?_27t(B(UL t) M GO 7& @)7

o2t

where B(X,r) denotes the open ball of radius 7 > 0 centered at X € R?. Hence we have

P (A) — P9 (A)| < P(®(B(t,t)AB(ot,t)) > 1) < Ct?a,

o~2t o~2t

where B(t,t)AB(ot,t) = B(t,t)\B(ot,t) U B(ot,t)\B(t,t) denotes the symmetric difference.
This is exactly (3.3).

3.3.3 Proof of Lemma 3.2.2

Our Lemma 3.2.2 is a slight extension of Theorem 2.1 of Zuyev [165] (to non-compact set).
First note that for any X € P, we have ®(B(X,t/2) NP) < 2, so that there exists a constant
C; > 0 depending on ¢ such that,

(P) < Cv(P).

For n € N we define S(n) = [-n,n]? and A(n) = {t € GO(®NS(n))}, where GO (®NS(n)) is
the connected component of G N S(n) containing the origin. We have clearly A(n) C A(n+1)
and A = U, A(n), thus we have

POHA) = 3 (PRH(AM + 1) = PUH(AW)) ) -
n>0
Since A(n) depends on the Poisson point process in the compact set S(n), we can apply Theorem
2.1 of [165]. Suppose that the event A(n) occurs, then the pivotal points are the point of ®
that are in the intersection of all paths from O to t in G¢(® N S(n)). Clearly the critical and
boundary sets for the event A(n) are empty. Hence we have

e 10
Y BOHAMm) = ESH@(P)),
with
Pn={X e R?: 1{t € GP(294X N S(n))} # 1{t € G2 (291N S(n))}}.
Consider first the case t < r.(\). Note that for all n, we have P,, C W (where W is the

occupied component of the origin) and for n > d(W) (the diameter of W), we have P,, =P C W,
hence ®(P,,) < Cyw(W) and then

0
P (Aln 1))

SBOHAW)| < SRS VL < dow )],



Summing over n, we have

STEYHvW){n < d(W)}] = ES{[dW)v(W)] < 7S fld(W)?] < oo,
n>0

and the fact that the expectation is finite follows from Lemma 3.3 of [121].
From the dominated convergence theorem, we have

SESA) = Y o (B A + 1) ~ B A))

b
n>0

= —EO’E [Z‘P nt1) — P(Pp )]

= JEQ/®(P)] = B u(P).
where the last equality follows from Campbell formula for Poisson point processes.

The argument is quite similar for the case ¢t > r.(\). Recall that V' is the vacant component
containing the point t/2. If V' = (), we have ®(P) < 3 because there exists a point 1 of ®
at distance less than ¢/2 from ¢/2 and then P C {O,t,n}. Assume now that V' # (. Then
for any n € ® NP, we have dist(n, V) < t/2, otherwise we can find u,v with dist(u,V) =
dist(v,V) = t/2 and |u — v| < ¢ such that n,u,v are connected which would contradict the
fact that i belongs to P. In particular for n > d(V) 4 t/2, we have P, = P C V<2, where
V<2 = {z, dist(z,V) < t/2}. Note that if V' # @, for all n, we have P, C V<¥/2 and hence
we have

D(Pn) <3+ Cy(d(V) +1/2)%,

and the rest of the proof is similar with the use of Lemma 4.1 of [121].

3.4 Proof of Lemma 3.2.3

To simplify the notations and in order to keep them as close as possible to the usual notations
in percolation, we denote by IP; the probability measure ng.

The occupied component is defined by = = U,cgo:B(x,t/2). An occupied path is a path
contained in Z; and a vacant path is a path contained in Zf. We say there is a horizontal
occupied crossing of a rectangle R = [a,b] X [c,d] if there is a path in =, N R from {a} X [c,d]
to {b} x [¢,d]. Vertical crossings and vacant crossings are defined analogously.

We define
o((n,m),i,t) = P4(3 an occupied crossing in direction ¢ of [0,n] x [0, m]),

o*((n,m),i,t) =1 —o(n,m,i,t) = P;(3 a vacant crossing in direction i of [0,n] x [0, m]),

where direction 1 (resp. 2) means horizontal (resp. vertical). It follows from Lemma 3.3 of
[121] that there exists C1,Cs and ¢ = (9¢) 7120 > 0 such that if

o((L,3L),1,t) <e, (3.7)
then we have

P, ( S(L) ~° 8S(kL) )g Cre=Cek, (3.8)



Similarly if (3.7) holds with o replaced by ¢*, then (see Lemma 4.1 of [121]),
P, ( S(L) ~? 8S(kL) )g Cre=Cek,

Thanks to Russo-Seymour-Welsh theorem of Roy for vacant crossings ([121] Theorem 4.2), we
can find § > 0 such that

o((L,L),1,t) =1 — o*((L, L), 1,t) < &,

implies (3.7) and similarly for o replaced by ¢* thanks to the RSW theorem of Alexander for
occupied crossings (Theorem 2.1 of [6]).

Following Kesten [103], we define for § > 0 defined above:

_f min{n:o((n,n),1,t) >1 =46} if t>r,
L) = { min{n : o((n,n),1,t) < 0} if t<r..

L(t) = n can be understood as the critical range at which G N S(n) and G2 N S(n) start to
differ significantly. It is good to note that L(t) goes to infinity as ¢ goes to 7.
It should now be clear that (see Figure 3.1), under P;:

x € P if and only if

1. there exist two occupied paths, r1 (resp. r3), from O to B(x,t/2) (resp. from t to

B(x,t/2));

2. there exist two vacant paths r5 and r} from x to t/2, r1 and rs separate 5 and r}.

4

,/"\;(“\B(x,tfz)

*

Figure 3.1: In solid line occupied paths and and in dashed vacant paths.

For any rectangle R for which B(v,t/2) lies inside R, we define the events:

I'(v, R) = { there exist two occupied paths r1 and r3 from B(v,t/2) to OR and two vacant
paths r5 and r; from B(v,t/2) to OR; the paths 1,713,735, 74 are all contained in the interior of
R except for their endpoint on OR; r1 and r3 separate r5 and r}.}

Q(v, R) = { there exist two paths r1 and rs from from B(v,t/2) to the left and right edge
of R, respectively, and two paths r3 and r; on G* from B(v,t/2) to the top and bottom edge of
R.}

In the litterature, if I'(v, R) occurs, the point v is called a four-arm.



Clearly if x € P, the events I'(x, R;) and I'(t/2, R;) occurs for any rectangle R, (with side

size larger than ¢/2) such that x € R, and O,t ¢ R, and any rectangle R; such that t/2 € R,

and x ¢ R;. In particular if we can chose R, and R; such that R;/ N Ri/ 2 = (0, then we have

Py(z € P) < Py(I'(z, Ry))Pu(T(¢/2, Ry)).

We will use this upper bound for small values of ||z|| < L(t). For large value of ||z|| > L(t), we
will use

Pz € P) < Py(T'(z, Ry))P(T'(t/2, Ry))Py( Ry ~° Ry),

for well-chosen rectangles R, and Rj.
Then Lemma 3.2.3 will follow from the following results. The notation f(¢) < g(t) means
that there exists C' such that as ¢ tends to r.: 1/Cf(t) < g(t) < Cf(¢t).

Lemma 3.4.1 Ift <n < L(t) then uniformly in z,
Py(T(z, 2 + S(n))) < CP,. (0, S(n))).
Lemma 3.4.2 Ifn < L(t):
o ((n0),1,6) = o((n,m), 1Lre)| < [t = reln?y, (20, S()) ),

and in particular:

[t = 7ol < L)y, (20, (L) ) -
Lemma 3.4.3 There exists v > 0 such that
L(t) > Clt —re|™". (3.9)

There exists & > 0 such that
P,.(Q(0,S(n)) < Cn~1/. (3.10)

The proof of Lemma 3.4.3 is postponed to the next paragraph.
We now show how Lemma 3.2.3 follows from these results.
For z = (21, 22) € Z?%, we define

S. =[(z1 — 1)L, (21 + 1)L] x [(22 — 1)L, (22 + 1)L].

We have

Ew(P) = /]12{2 Pi(x € P)dx

< 8t +/ Py(x € P)dr+ Y / Py(z € P)dzx.
S(L)\S(8t) ., ZEZQ\{O} z

! J

We first consider I. Let R, = z + S(|z|/3) and Ri(z) = t/2 + S(|z|/3), we have for
xz € S(L)\S(8t),

Py(x € P)dx Py(T(z, R.))Pe(T'(t/2, Re(x)))

CP,. (20, 5(21/3)))%,



where the last inequality follows from Lemma 3.4.1. Hence we have I < C fS(L NS(80) P, (0, S(|z|/3)))*d
Now take 0 < n < 1/(24), with ¢ as in Equation (3.10), we have

| B@(0.8(elf3) P
S(L\S(81)
= s Fr A0 S/ B 200, (213
L\S(8¢)
< C / |20 5= (L) g
N L)\S(8t)
S C|t—’l"c| 1+77’

where in the first inequality we use Lemma 3.4.2 for the upper bound of the first term and
Equation (3.10) for the second term.
For z € Z? and = € S, we define R!, =z + S(L/3) and R, =t/2+ S(L/3), then we have

Pi(z € P) < Py(D(x,R.))PuT(t/2, R)B(S(L) ~° S(min(z1, 22)L)°)

<
< OP, (0, S(L/3))2P(S(L) ~° S(min(z1, 22)L)°)

Hence we have

Z/ Pi(x € P)dz < CLQPTC(Q(O, S(L/3)))2 Z 016—02 min(z1,22)
z#0 240
< CL?P, (20, S(L)))?,

where the firs inequality follows from Equation (3.8). Now from Lemma 3.4.2, we get L?P,._(Q(O, S(L)))?
Clt — re| 'P,..(2(0, S(L))). Now from Lemma 3.4.3, we have

P, (20, S(L))) < Clt —r]"/?,
which gives

J < Clt —r |1/,

3.4.1 Proof of Lemma 3.4.3

We start by proving Inequality (3.10). Notice that
P,, (2(0,5(n)) )< P, (O ~° 85(n)).

For discrete percolation, it is a classical result that P, (O ~° 8S(n))) < Cn~'/% for some § > 0
(see Theorem 11.89 in Grimmett [81]). With slight changes, the proof extends to continuum
percolation. For the sake of completeness, we sketch the argument as it is presented in Grim-
mett’s book. By Theorem 3.4 in Alexander [6], there exists € > 0 such that for all n > 2r. and
ie{1,2}

a*((3n,n),i,r.) > €.

Let LR*((n,m)) denote the event that there exists a left-right vacant crossing of the box|0, n] x
[0,m] and O*(n) the event that there exists a vacant closed circuit in S(3n)\S(n) containing
O in its interior. By FKG inequalilty we have (see Lemma 11.75 in Grimmett [81]), for all
n > 2r.:

P, (0*(n)) > P, (LR*(3n,n))* > €.



Let ug = 2r. + 1 and for k > 1, ux = 3ug_1 + r., we notice that the events {O*(uy)}ren are
independent, hence for all k£ > 0,

P,.(O ~? 95 (3ug))) P,..(O*(u;) does not occur for 0 <[ < k)

<

Now, let n € N and k,, such that: 3up, <n < 3ug, 41, it follows that:
P, (O ~° 3S(n))) < Pr. (0 ~ 05(3uy,))) < (1 — )t

ug is an arithmetico-geometric sequence and wup = 3*(ug + 7./2) — /2, hence as n goes to
infinity k, ~Inn/In3 and (3.10) follows.

It remains to check (3.9). By Lemma 3.4.2, there exists C' such that, in a neighbourhood of
Tel

t—re ™ < L@, (2(0,8(L1) ).

Then using Inequality (3.10),
= < CLEEYS,

and we obtain precisely Inequality (3.9).

3.5 A comment on critical exponents and minimal spanning
tree

To simplify notations, we consider in this section a discrete percolation model. For = € Z%, we
write z; for the i coordinate of 2. The norm |- | is defined by

| = miax [z].
=1

The Z? lattice is the graph G = (Z% E?) with vertex set Z¢ and edge set E¢ = {(z,y) : |z —y| =
1}.

On cach edge e € E? we define a length £(e¢) = & and the edge lengths are iid random
variables whose common distribution £ has finite mean, a bounded continuous density function
bounded by f.

We may assume without loss of generality that the weight of the edges is uniform on [0, 1]
and we denote by P the corresponding (product) probability. Let O = (0,0), 1 = (1,0) and e;
is the edge (O, 1) and ¢; its length. For p € [O, 1], under P,, ¢; = p and an edge is said to be
open (resp. closed) if {(e) < p.

In two dimension, it is widely believed that the scaling relations do not depend on the graph
under consideration. It has been proved (see Smirnov and Werner [144]) for the triangular lattice
that the following critical exponents exist:

& (p) = lp = pel 7T and L(p) = |p — pe 0. (3.11)
where as x — 00,
[P, (0 is connected to x by a finite cluster) = exp(—z/£*(p) + o(x)),

As it has been first pointed in Alexander [7], the MST is closely related to percolation. It is
therefore natural to expect that the critical exponents have a key role in the intrinsic properties
of the MST. We illustrate this remark on a simple functional of the MST. Let G* be the dual



graph of G on the vertex set (1/2,1/2)+Z2: e* € G* is the edge that crosses e € G. The weight
associated to the dual edge e* of e is £(e*) =1 — {(e). The MST is a.s. a tree, and we define:

A=Y 1(vell(0,1)),

vEZ2

where I1(O, 1) is the set of vertices in the MST connecting O to 1. A is the length of the path
I1(0, 1).
Let e} = (u*,v*) be the dual of the edge e; = (O, 1). Note that, by FKG inequality:

P,(A >n) P,(u*~ (0, [n/2]) by a finite cluster and v* ~ (0, —[n/2]) by a finite cluster)

P,(u* is connected to (0, [n/2]) by a finite cluster)?
exp(—n/¢" (1 —p) + o(n))

AVARAVARY]

We then write:

1
EA = /ZPP(AZn)dp
0

n>0
1
e /0 £ (p)dp.

We deduce that if Equation (3.11) holds true:
EA = 0.

Note that the same reasoning gives also Ep = oo where p = max{|v| : v € II(O,1)}. Indeed,
we have P,(p > n) > P,(u* is connected to (0,n) by a finite cluster)?.

These simple facts are examples of the relation between the MST and the critical exponents
in percolation. A more general study of this phenomenon could be carried on. The following
lemma would allow to treat the case p < p. and p > p. similarly:

Lemma 3.5.1 The dual graph of the MST of G is also the MST of G*.
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Chapter 4

Random Multi-access Algorithms, a
Mean Field analysis

Résumé Nous effectuons une analyse de type ”champ moyen” pour une classe d’algorithmes
multi-acces aléatoires avec ”back-off” exponentiel. En particulier, nous prouvons que l'itération
du point fixe de Bianchi est bien justifiée dans la limite ou le nombre d’utilisateurs actifs devient
grand.

Abstract We perform a mean field analysis of a class of random multi-access algorithms with

exponential back-off. In particular we prove that the Bianchi’s fix point iteration is indeed
justified in the limit when the number of active users is large.
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4.1 Introduction

Random multi-access protocols, from the first version of Abramson’s ALOHA algorithm [1] to
the most recent protocols in IEEE802.xx standards [94], have concentrated a lot of research
efforts. These efforts even increased recently due to the development of decentralized random
access protocols for wireless Local Access Networks (LANs) and Ad-Hoc networks. However,
theoretical results characterizing the stability and the performance of such protocols are quite
rare, due to the extreme complexity arising because of the inherent interaction between sources.

In analyzing random access protocols, we can distinguish different kinds of models. First
infinite population models where users are assumed to arrive arbitrarily and randomly in the
system according to some point processes. In these models, each user generally has a single
packet to transmit and leaves the system after successful transmission. In these scenarios,
stability of protocols received a lot of attention: for example, the exponential backoff algorithm
is unstable for all positive user arrival rate, this was first conjectured by Kelly [100] and proved
by Aldous [3]. Other algorithms, see for example proposals by Hajek-van Loon [86], proved to
stabilize the system for non-zero user arrival rates.

Other models consider a finite population: the number of users is fixed. In this class of
models, we can further distinguish two cases: saturated sources where users always have a
packet to send and unsaturated sources where packet arrivals are governed by some exogeneous
arrival processes. The first case corresponds more or less to data traffic, where the congestion
control mechanism ensures that buffers are never empty, whereas the second case is more
appropriate in modelling streaming traffic. In case of unsaturated sources, stability is again a
major issue, please refer to the work by Hastad et al. [90] and references therein for a review
of existing results and open issues.

In the present chapter we consider a finite number of saturated sources. In this context,
the stability analysis is simplified, because queues are not considered. The major issue is then
to determine the performance of protocols, i.e., we would like to evaluate the throughput of
the system and of each source, packet transmission delay, ... These performance parameters
are largely unknown. This is due to the fact that the inherent interactions between sources
have proven to be extremely complex to model and analyze. A very popular approach to
circumvent this difficulty consists in decoupling the source behaviors, i.e., assuming that the
(re)-transmission processes of the different sources are mutually independent. This assumption
allows one to derive explicit estimates of the performance. This approach was for example
applied by Bianchi [29] to analyze the IEEE 802.11 Decentralized Coordination Function (DCF)
algorithm and since then has been widely used to accurately predict the performance of similar
protocols. Using mean field techniques, we prove that, for a wide range of random back-off
algorithms, the decoupling assumption is asymptotically exact as the number of sources grows.
In the specific case of exponential back-off algorithm (the DCF is based on this algorithm), the
mean field analysis provides the transient and stationary distributions of the (re)-transmission
processes.

The remainder of this chapter is organized as follows. In Section 4.2 we introduce the finite-
source model and present the basic principle for random back-off algorithms. In Section 4.3 the
mean field results, that justify the decoupling approach, are presented. Section 4.4 contains the
proofs of the main results.

Notations. Let S be a separable, complete metric space, P(S) denotes the space of proba-
bility measures on S. £(X) is the law of the S-valued random variable X. D(R",S) the space
of right-continuous functions with left-handed limits, with the Skorohod topology [30].



4.2 Random back-off algorithms

We consider N users sharing a common access channel in a decentralized manner. Time is
slotted and users are assumed to be synchronized. We consider saturated users only, which
means that each user has always a packet to transmit. For data traffic, this assumption is more
realistic than to assume that each user generates packets according to some predefined point
process.

Each user runs a back-off timer. When a user is in stage s € N, her/his back-off timer is
chosen according to a geometric random variable with mean W slots. The back-off timer is
decremented at each slot where the channel is idle, until it reaches 0 in which case, the user
attempts to use the channel. If the transmission is successful, the stage becomes S(s) where
S : N — N is a non-increasing function. If a collision occurs the stage becomes C(s), where
C : N — N is an increasing function. Then a new back-off timer is chosen. The assumption
that the back-off timer is chosen according to a geometric r.v. is not crucial, and we believe the
derived results hold for general distributions. The geometric distribution simplifies the analysis,
since given that her/his stage is s, a user will attempt the channel with probability ps = 1/Ws.
Then, at time slot ¢, the state of the system is fully described by the attempt probabilities of all
users, plN (t), i =1,...,N. The set of possible values for the attempt probabilities is denoted
by B. For the sake of simplicity we assume that B is at most denumerable. We denote by
po = sup B the maximum attempt probability. We may re-define functions S and C' : B — B
expressing a successful and a collision respectively: Given that the attempt probability of a
user is p and that she/he attempts to use the channel, the attempt probability becomes S(p)
(resp. C(p)) in case of successful transmission (resp. collision).

Finally, the evolution of the state of the system is described by the following recursion: for
all 7 and ¢,

Y (t+1) = pN (O 1y, spr o+ [ SO O] Ly, @wsp @) + O] | L= @) | Luiw<oy @)
J#i J#i
(4.1)
where the U;(t)’s are ii.d. r.v. uniformly distributed on [0,1]. Having geometric backoffs
implies that these r.v. are of course independent of the r.v. U;(s), i =1,..., N, for all s < ¢.

Example 4.2.1 (Exponential backoff) Most of MAC protocols use a so-called exponential
backoff procedure. This is the case for the Ethernet or for the DCF function in wireless LANs.
For these protocols the attempt probabilities are values of the set B = {pgy X 27k ke N} and the
functions S and C' are defined by:

S(p)=po and C(p) = max(p/2,po x 25).
K may be finite or not. Unless otherwise mentioned, K = co.

We study the large N asymptotics. To this aim, we need an adequate renormalization. Note
first that when the number of users grows large, the stationary probability a user attempts to
use the channel must decrease and ultimately tend to zero, otherwise the global throughput
will become negligible. Then, the mean time between two consecutive changes in the value of
the backoff parameter is roughly inversely proportional to the stationary attempt probability.
The above observations suggest the following renormalization:

¢N(t) = N x plV[N x t] where [z] denotes the greatest integer in . (4.2)

The set of possible values for qu (t) is B. In case of Examples 1 and 2, it means that pg
is replaced by pg/N. In general, it means that the set of possible values for piv (t) becomes
{p/N,p € B}. The process ¢'(.) may be seen as a D(R™, B)-valued process.



4.3 Convergence theorems

4.3.1 Transient behavior

The following theorem constitutes the main result of the chapter and states that when the
number of sources become large, the backoff timers of all sources evolve independently from
each other. In short, users behave independently when the number of users grows. The result
also identifies the limit behavior of the distribution of the backoff timers.

Theorem 4.3.1 We assume that the initial values qu(O), 1=1,...,N, are exchangeable and
chaotic. This means the empirical measure ,uév of the qiN (0) converges weakly to a deterministic
limit Qq. In practice the assumption that the qZN(O) are i.i.d. suffices. There exists a probability
measure Q@ on D(R™,B) such that for all subset I C N of finite cardinal |1,

Jim £ (g ()ier) = Q%M weakly in P(DR", B)I"). (4.3)
—00

To establish this result, we use the method developed by Sznitman [149] and further inves-
tigated by Graham [80]. The empirical measure on path space, with samples in P(D(R™, B)),

is defined as
| N
=5 D 8, (4.4)
i=1

where ¢V stands for the process ¢¥(-). From Sznitman [149] Proposition 2.2, we know that
(4.3) is equivalent to:

A}gnoo L(uN) =6g weakly in P(P(D(RT,B))). (4.5)
Moreover, (4.5) allows us to consider functionals on D(R™,B) such as the indicator of the
event that a sample path backs off more than b in a finite time interval [0,7]. Let X denote
a canonical trajectory in D(R*,B). Let ¢ denote this functional on X. Then (uV,¢) is the
proportion of the particles that back off more than b over the time interval b. If we studied the
weaker convergence of u)Y — Q(t) then we could not obtain sample path information like this.
For a large class of protocols such as the exponential backoff protocol, we are also able to
characterize the evolution of the distribution of the backoff of a source when the number of
sources grows large, i.e., to evaluate the marginals of Q.

Theorem 4.3.2 In case of exponential backoff, the marginals of Q satisfy the following set of
differential equations: define by Qr(t) = Q()({2 *po}),

d;ik( t) =2'"Fp, <Qk—1( 1 — exp(— 22 PoQi(t Qk( )) C forallk>1,  (46)
on o
dt Z “poQu(t) exp(~ Z 27" poQi(t)) — poQo(t). (4.7)

4.3.2 Stationary regimes

We now investigate the system behavior in equilibrium. We consider here exponential backoff
protocols only. We first prove that when the number of sources IV is fixed, the backoff process
(gN(t)); is ergodic. The theorem below is proved assuming py < In2, which is consistent with
usual MAC protocols (in case of the DCF, py = 1/32). The results actually hold for any py.



Theorem 4.3.3 In case of exponential backoff, the Markov chain (qlN(t )i 1s positive recurrent.
Furthermore the set of laws of g (0) in equilibrium is tight, i.e., Ls (g (0)) is tight.
Proof. It can be easily proved that the considered Markov chain is irreducible. Consider an
arbitrary source, say source 1. Its backoff is less than that in a fictive system, where all
other sources attempt to use the channel with highest probability py/N. In this fictive system,
log(Ngd¥ (t)/po) evolves as a Markov chain with transition matrix P = (p;;) defined by: pgy =
1—po(1—a)/N, ponr = poa/N and pip = po2~"(1—a)/N, piy = 1—p5—i/N, piis1 = po2 'a/N. a =
1—(1—po/N)N=1 < 1/2 (since pg < In2). The analysis of this Markov chain is straightforward,
it is positive recurrent and we can also prove that in this fictive system, the mean value of q{v (0)
in stationary regime is po(1 — 2a)/(1 — a). We deduce that (¢)¥(¢)) in the actual system is also
ergodic and that Fg[ql¥ (0)] < po(1 — 2a)/(1 — a), which provides the desired tightness. 0
It can be easily proved that the dynamic system described by differential equations (4.6)-
(4.7) admits a unique equilibrium gy, = (gx)x defined by:

VE, g =21 - "), q@=5¢ and S=> 27",

The stability of this equilibrium point is obtained remarking that the gradient matrix of the
dynamical system has eigenvalues with strictly negative real part at the equilibrium point. We
let the study of the global stability of (4.6)-(4.7) for future work. In the following we will assume
that it is globally stable. We are now able to characterize the system behavior in equilibrium
when the number of sources grows large.

Theorem 4.3.4 In equilibrium, for all subset I C N of finite cardinal |I|,

. I .
Jim Lo (6 (Dier) = " weakly in P(D®T, B)), (4.8)
This theorem is proved in Section 4.4. It states that in equilibrium, the behavior of sources
are independent. It then implies that the decoupling approach used by Bianchi is asymptotically
correct when the number of sources grows large.

4.4 Proof of Theorems 4.3.1 and 4.3.2

4.4.1 Proof of Theorems 4.3.1 and 4.3.2

Step 1. The sequence L(u”) is tight in P(P(D(R*,B))). Thanks again to Sznitman [149]
Proposition 2.2, we only have to prove that £(q¥(.)) is tight in P(D(RT,B)). The jumps of
q}¥(.) are included in those of a Poisson process of intensity py. the jump sizes are bounded (by
1). We conclude by the tightness criterion in Ethier-Kurtz [61] p 128.

Step 2. We can mimic the Step 2 in [80]. We show that any accumulation point of £(u™)
satisfies a certain martingale problem. For f € L*(B), the bounded and forcibly measurable
functions of B — R, define f*(¢) = f(S(q)) — f(q) and f¢(q) = f(C(q)) — f(q) (s and ¢ stand
for success and collision, respectively). Now, for f € L*>®(B),

P 1) - £(a¥ () = Z EED pr )
k=
[Nt]

= Z gfvzvN fvlvN(t),



where

fin SIS (&) o (&)
MRt = Z A q, ﬁ {NUz(k)<qN(N)}H1{NUJ k)>qN (&)} 71_[(1— N )
JF#i J#i
e (F o (%) o (%
i (qlN(ﬁ)) Lovvim<ed (s Hl{NU k)>q %)}) NN (1_H(1_ %
7 J#i
and where
; son k(&) S NIy BN o (%)

J#i J#i

The proofs of the two following lemmas are given at the end of this section.

Lemma 4.4.1 For the martingale M55N (t) defined at (4.9), the Doob-Meyer Brackets (M /N M3

t|flloO(1/N) as N — oo uniformly in i # j.

Lemma 4.4.2 The martingale MM (t) defined at (4.9) satisfies

MESN () = f(q (1) — / Gf(uyal (v)dv + N (1) (4.10)
where

Gf (@) =q- (f*(@) = f(q)) exp(=(Id, ) +q- f*(q) (4.11)
and where €/ = t||f]|loeO(1/N) uniformly in i.

If indeed 1V does converge to @ then (4.10) will converge to a solution of a martingale prob-
lem. Recall that X denotes a canonical trajectory in D(R™, B). A probability Q in P(D(R™, B))
solves the non-linear martingale problem if

Mtf = f(Xy) = f(Xo) — /0 GF(Q(s), Xs)ds (4.12)

is a @Q-martingale. It solves the martingale problem starting at ¢ if Q(0) = Q.

Let II®° be an accumulation point of £L(uY). Let R € P(D(R™T,B)) belong to the support
of II*°. Recall as in [80] that the projection map X — X; is R-a.s. continuous for all ¢ except
perhaps in at most a countable subset D of R;. Further, as in [80], we may check that
D={te Ry :TI*°({R:te Dg) > 0} is at most denumerable.

Lemma 4.4.3 R satisfies the non-linear martingale problem (4.12)

The continuity of X — X implies Ry = Qg, [I°°-a.s.. The proof is postponed to the end of the
section.

Step 3. We now show the solution to (4.12) is unique so R = Q. We can mimic Theorem 3.3
in [80] to show the solution to the martingale problem (4.12) is unique. We remark G f(u,q) =

fg(f(y) — f(x)J(u, x,dy) where

J(p, z, dy) = wexp(—(Id, 1)) (05 (dy) — do(2)(dy)) + 2dc(z)(dy)-

N> I



NeXt’ ||J(:U’a$a )|| <z §p0 and

(e, 2, ) = J(B,2,)ll < xexp(=(Id,a)) — exp(—(Id, 5))]
< [l —exp((Id, o) — (Id, 5))]
< aC(ld,a) - (Id, B)
< poClle— B
where || - || denotes the total variation norm. As in Theorem 3.3 in [80] we use Proposition 2.3

in [80] to establish the solution to the martingale problem (4.12) is unique.

Step 4. We have now proved convergence because any subsequence converges to the same limit
Q. We can now identify this limit for the protocols considered in Examples 1 and 2. If @) satisfies
the martingale problem then (Q(t)):>0 solves the non-linear Kolmogorov equation derived by
taking the expected value:

Q) — (£.Q(0)) = /O (GF(Q(s), 0); Q(s))ds. (4.13)

Applying (4.13) to f = 1, o-& for all k, we get the set differential equations (4.6)-(4.7) in case
of exponential backoff.

Proof of Lemma 4.4.1.
MFPHN(t) is a martingale by the Dynkin formula.

Next, we define the following variables : SY = 1{NU-(lc)<qN(%)} [T 1{NUj(k)>qN(%)} and
’ T —14 J

N _
Ck = Yovoy<¥ (o (1= Tl vy a5y
Si]\;c = 1 if the user ¢ is the only user accessing the channel at time k and C;) = 1 if a
collision occurs for user i at time k. Both these events have a probability less than py/N.

Note in particular for ¢ # j that :
SHCN. =0, SN.SN. =0, SNCN =0 and P(CLCN, =1)=0(1/N?), (4.14)

where the last equation stands uniformly in ¢, j.
In the sequel, Ey(.) will denote E(|(p) (k))i). Ep)(SY,) and Ey ) (SP,) are bounded

by po/N. With this notation, we can rewrite as Equation 4.9 as :

[Nt]—1
7 s k c k
M) = 37 PN () (SN — Buw SN + @ (NC% — BywCl) (4.15)
k=0

To prove Lemma 4.4.1, we first show EM5UN (#) M52V (t) tends to 0. Since (M/HN (1)) is
a martingale this product is equal to :

(N1
S kj S k
EMPIN O MP2N @) = Z Ef (Q{V(N)) (S — BugoSti) f (fév(ﬁ)) (S2% — Ev Sar)
k=0
C k C kj
+Ef (Q{V(N)) (C = By COiy) f (@év(ﬁ)) (Co% — EugnCal)
C k S k
+2Ef (Q{V(N)) (C%s = EuayCly) f (Cév(ﬁ)) (55% — EugrySak) -

Using (4.14), it appears easily that each term of the sum is bounded by ||f||.c©O(1/N?) and
the lemma follows.



Proof of Lemma 4.4.2.

N -1 . (kt1)/N t
/ Gr Y, ()ds = 3 /WN] G (¥, g (s))ds + /[NWNgfwéV,qu(v))ds
k=0
N -1 i1 w 1 [Nt
> s G+ [ G G
—0
Hence
Fi,N ~ N 1A N NW IR N NW
e < kZO G 10 =, Gl @ (Dl + Gl [ GG ()
i, N 1 N N k 1 N N k
< Z G~ f(k)—ﬁgf(ﬂk/Naqi (N))|+N|gf(ﬂk/mqi (ﬁm

The last term of this inequality is less than 3po||f||eo/N (since ¢ () < po/N). To finish the
proof, it remains to bound the terms appearing in the sum and, giving a closer look at G, it
suffices to bound exp(—1/N ZZ LaN(k/N)) — [Tiz; (1= ¢ (k/N)/N) by O(1/N) uniformly in
1,7. We have :

af (k/N) | ol (/)
N )t I‘.

N N
=% TSI 0¥ (/) _ H(l_wN/N))‘ < e — N A (1
i#]

Using for example the inequality for z € (0,1), |In(1—z)+z| < we deduce the required

bound.

ZBQ
20-2)2
Proof of Lemma 4.4.3.

We mimic the proof in Step 2 of Theorem 3.4 of [80]. For the sake of completeness, we
detail the proof.
Take 0 < 51 < 53 < ---8, < s < t outside D and g € L>®°(B*). Take f € L>(B). The map
G:ReP(D(RT,B))
t
= (1000 = 1) = [ 01 (R X)) (X X))

is II°°-a.s. continuous.
Let IV be the law of u?, following [80], we write :

(G2 1Y) = B(GEY)?)

= (%Z(f g ( / Gf (s ai (u))d )9(va(81)a---anV(8k))>2

N 2
_F (ﬁ Z <Mf,z,N £) — Mf,z‘,N(s) _ (eﬁz‘,N(t) _ efﬂ‘,N(s))) glq (s1),... ,q{v(sk()2;>6)



Let ¢tV = g(qZN(sl), . ,qlN(sk)) and for a process Y let Y, =Y; — Y. Using exchangeability,
from Equation (4.16) we obtain:

N

1 N N 2

@) = B(3 3 (MEY =) glaN (1), 0 (1))
1=1

1 AN 1N 2
= NE((Mgt _Ez,t )gl’N) +

N-1 LN LNy 1N 2,N 2,N\ 2 N
—E(Msft _ei,t )g” (Msft _ei,t )g7

Lemmas 4.4.1 and 4.4.2 imply that (G2, TI") tends to 0. From Fatou’s Lemma, (G2, 11>°) <
limpy (G2, TIV) = 0 and thus [1®-a.s, G(R) = 0. Since this holds for arbitrary 0 < s; < s3 <
---sp < s < toutside D and g € Cy(B¥) it follows that R satisfies the non-linear martingale
problem (4.12).

4.4.2 Proof of Theorem 4.3.4

Let (¢¥(0)); with law the invariant law of the system with N users. By symmetry, (¢ (0));
is exchangeable. We define IV = 1/N Zf\il qZN. By Theorem 4.3.3, Hév is tight, consider an
accumulation point II5°. We cannot apply directly Theorem 4.3.1 since we do not know wheter
the subsequence of Hév converges weakly toward a deterministic limit.

We now circumvent this difficulty. Asin step 1 in the proof of Theorem 4.3.1, we deduce from
Sznitman [149] Proposition 2.2, that TIV is tight in P(P(D(R*,B))). Let R in P(D(R*,B))
in the support of an accumulation point of IIV. We can prove similarly that Lemma 4.4.3 still
holds for R.

By Step 3 of Theorem 4.3.1, the solution of the martingale problem is unique and R solves
it with initial condition Ry. The global stability of (4.6)-(4.7) implies that lim; 100 Rt = gst.
However, by stationarity, ITV and Hév are equal, we deduce immediately that the support Hév
is reduced to g5+ and Ry = ¢st.

Theorem 4.3.4 is then a consequence of Theorem 4.3.1.






Chapter 5

A Random Multiple Access Protocol
with Spatial Interactions

Résumé Nous étudions un protocole d’acces de type aloha ou les utilisateurs ont des in-
teractions locales. Nous établissons que le modeéle fluide du systéme satisfait une équation
différentielle. Nous prouvons un résultat partiel de stabilité de cette équation différentielle. La
condition de stabilité du systeme est laissée comme une conjecture.

Abstract We analyze an aloha type access protocol where users have local interactions. We
establish that the fluid model of the system satisfies a differential equation. We prove a partial
result on the stability of this differential equation. The stability region of the system is stated
as a conjecture.
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5.1 Introduction and the main result

5.1.1 A spatial Aloha

We consider a random spatial service system governed by an ALOHA-type algorithm. More
precisely, time is slotted, at each slot £, users arrive at the system, and at each slot every user in
the system requires service (transmission) with a certain probability (transmission probability).

Aloha system was first proposed in Abramson [1]. The slotted scheme was introduced in
Roberts [139]. We shall consider the latter setting. In conventional slotted Aloha model, there
is one server, at the beginning of each time slot n, a total number W,, of users is available

C
and each of them requires service (transmission) with probability p, = W independently of

the other users. A user can transmit (receive service) only if he is the (;Lnly user requiring
transmission at the slot. Service time is usually assumed to equal 1 so that the server is always
free at any moment n. It is easy to show that for this systems the throughput is equal to e~}
(if B¢ < e~ ! then the Markov Chain {W,,} is recurrent, if E¢; > e~ then it is transient).

One can also consider so-called decentralized algorithms used when the information on
number of users present in the system is not available. These algorithms are based upon
information about previous time slot: whether there was a conflict, successful transmission
or no user required service. For such a system, under independence and exponential moment
assumptions for &,, Hajek [85] proved that E¢, < e~! ~ 0.37 is necessary and sufficient for
the existence of a stable regime. Mikhailov [124] generalized this result by weakening the
exponential moment assumption to the requirement that only the second moment need exist,
while Foss [66] generalized it further by dropping both this and independence assumptions.
We also refer to Douc et al. [60] for a nice survey of the results in various directions and, in
particular, in this area.

These analyses ignore the network’s spatial diversity and, in particular, the fact that there
may be only partial interaction between users, depending on the distance between them. The
development of decentralized random access protocols for wireless networks has created a new
need of theoretical results on the stability and performance of such protocols when the spatial
interaction between the sources is taken into account.

In this work, a new model is presented which captures a main feature of wireless networks:
the spatial reuse of a common communication channel. This feature brings a new conceptual
difficulty in the analysis of the stability of random access protocols.

The remainder of this paragraph is organized as follows. The end of this introduction is
devoted to the description of the model and the statement of our main result. In Section 5.2 we
prove that the fluid limits of the workload in the system satisfy a differential equation. Section
5.3 is devoted to the behavior of the fluid limits on the boundary on the positive orthant. In
Section 5.4 we present the proof of our main result. In Section 5.5 we present a result on the
rates of convergence to the stable regime of the system. Section 5.6 contains some interesting
results on behaviour of the solutions to the differential equation satisfied by fluid limits. Finally,
in Section 5.7 we conclude by some extensions of our model.

5.1.2 Model Description

Let G = (V,€) be a non-oriented graph with a finite set of vertices, say V = {1,..., K}. We
suppose that G is connected. We use the standard notion of the graph distance in G. Denote
by D the maximal graph distance in G (the diameter of G). For i € V, let V; = {i} U{j € V:
such that (i, j) € £}, that is the set of vertices at distance at most 1 in the graph for i.

We introduce the following service system with spatial (neighborhood) interactions associ-
ated with the graph G. We assume that time is slotted, i.e., arrivals and services may occur



only at times n = 1,2,.... Suppose that there are service stations at each point of G. The
arrival process is denoted by A = (A(n))nen, where A(n) € N¥ is the number of users arriving
at time n at each vertex. For ¢ > s, denote by A(t,s) = Ziia A(n) the number of users
arriving between time ¢ and s—. We suppose that (A(n)) is an i.i.d. sequence. We suppose also
that EA;(n) = A >0 foreveryi=1,..., K.

Let W(n) € RE be the workload at time n in the system, that is W;(n) is the number
of users at vertex i at time n. At time n, a user at vertex i requires service independently
of the others with probability 1/ .y, W;(n). This user receives service if he is the only
user requiring service in V; at time n. We suppose that all service times are equal to 1 and
that any user leaves the system immediately upon the service completion. Let N;(n) be the
number of users requiring service at time n at vertex i. N;(n) is a Binomial random variable

1
2jev, Wj(n)
conditioned on W (n). W is clearly an irreducible Markov Chain on N¥. We have the following
relation on the values of workload at subsequent time instances:

with parameters (W,(n), ) and (NV;(n)),1 < i < K are independent variables

Wi(n) = Wi(n — 1) + A;(n) — L(N;(n — 1) = 1) H 1(Nj(n —1) =0). (5.1)
jevi\{i}
To show explicitly the dependence of W(n) on the initial condition W(0) = = we may

sometimes write W*(n).
If x; > 0, the i-th component of drift vector is given by the following expression:

B [Wi(1)=Wi(0)|IW(0) = 2 ]= A== <1 : ) 11 (y#)ﬂ

2 kev; Tk 2 kev; Tk jeViL} Zkevj Lk
(5.2)
and if z; = 0, then E [ W;(1) — W;(0)|W(0) = = |= A.

We rewrite the expression for the drift vector in the following way:
E[W(1)—W(0)W(0) =z |= Al - G(z).

Here 1 is the unit vector (1; = 1 for all i € K) and G is a function from R¥ to R¥X defined by

r;i—1 ;
. — 1 A , 1 . A
Gl(ﬂf) = m (1 ZkEVi $k> H]E‘/’i\{l} <1 Zkevj l‘k> , lf T > 07

For z € RX, we define ¢;(z) i Let ¢(z) = (¢1(2),...,0x(x)). Note that G; is

- Zjer Ty

bounded by 1 and if } ;v 2 > 0 then

lim Gy(tz) = Gi(z) = ¢i(z)e =iev 9@,
t——+o00
In particular G; is homogeneous of order 0, i.e., G;(cx) = Gi(x) for any ¢ > 0.

We now make some comments on the model. We assume that the graph G is V' — 1 regular:
the cardinal of V; is equal to V for all i. First notice that the graph G is not necessarily
completely symmetric. Figure 5.1 shows an example of a 3-regular graph which is not completely
symmetric.

Note also that the system is not monotone. Indeed x < y (component-wise) does not imply
that W*(1) is dominated stochastically by W¥(1) (check this by coupling). The system is



Figure 5.1: A regular graph which is not completely symmetric.

neither monotone with respect to the graph structure. If G; is embedded into Ga, this does
not imply that the workload process built on the graph G is dominated stochastically by the
workload built on the graph Gb.

Let Gy denote the fully isolated graph (that is the set of edges of Gy is empty). The workload
built on Gy is the usual slotted aloha on each node. Remark that a necessary condition for
a user to leave the system is to be the single user in its node to emit. We then deduce the
workload built on Gj is dominated stochastically by the workload built on any other graph.
The stability condition of the usual slotted aloha is A < e™!, we will thus suppose so far that
A<e b

Similarly, let Gx be the complete graph on V), the sum of the workloads Zfi 1 Wi is the
usual slotted aloha. A sufficient condition for a user to leave the system is to be the single
user in the whole system to emit. Thus the workload built on G dominates stochastically the
workload built on all its subgraphs. Thus a sufficient condition for stability is A < e™!/K.

5.1.3 Main result

We first explain the intuition hidden behind the result.

The access protocol favors an equilibrium of the workload in the network: assume that the
workload at node ¢ is much larger than the workload in its neighboring nodes, V;. Then ¢;(z)
will be close to 1 whereas for all the nodes j in V;, ¢;(x) will be close to 0. Thus the workload
at node j in V; will tend to get closer to the workload at node i. This balance mechanism hints
that the diagonal A = {z € RE .z = 29... = T} is attractive.

If the workload is on the diagonal: W (0) = ¢l where ¢ € N*, we obtain:

1 1 Ve—1
EW(Q) -W(O)W(0) =cl) = (A= (1 - )" )L

Hence, as ¢ tends to infinity, the drift vector converges to (A —e™!/V)1.

So finally, we end up with the conjecture that if A < e=!/V the Markov chain W is ergodic
whereas if A > e™1/V, W is transient.

This conjecture is clearly true for Gy and Gk.

The reasons led to this conjecture appear to be wrong (as will follow from the results of
Section 5.6), in general the diagonal is not attractive). However, the conjecture itself is true
and we can formulate our main result that will be proved in Section 5.4.

Theorem 5.1.1 If A < e~1/V the Markov chain W is ergodic.
A classical strategy to analyse the positive recurrence of this type of Markov chain is via the

fluid approximation. We will prove that the fluid approximation satisfies an ordinary differential
equation.



5.2 Fluid Approximation Method

5.2.1 General Properties

In what follows, we endow RX with the L'-norm: |z| = Zszl |zg]. Let (2"),n € N, be a
sequence in N¥ such that lim,, [2"| = co. For t € [0,T], we define:

xogey = WUl

||

To simplify the notation, for ¢t € R, we set W (t) = W([t]).

Let D([0, T], RX) denote the space of cadlag functions from [0, 7] to R¥ endowed with the
usual Skorokhod topology, i.e., distance between functions f; and fs is given by the following
expression:

dr(fy, f2) = inf sup {lg(t) —t[ + p(f1(9(t)), f2(t))},
te[0,7
where p is the L'-metric in R¥, and the outer infimum is taken over all monotone continuous
functions g : [0,7] — [0, 7] such that g(0) = 0 and ¢g(7") = T". Denote by ID([0,c0)) the space
of RE-—valued cadlag functions on [0, 00) with the metric
oo

_ —r_dr(fi, f2)
d(f1, f2) = 21:2 L+dr(fi, fo

Note that X™ € D([0, 7], R¥) for all n.

Lemma 5.2.1 (i) For any sequence ™ such that |z"| — oo, a.s. the family A = {(X"),n € N}
has a compact closure in the Skorokhod topology and an accumulation point z of A is almost
surely continuous.

(ii) Function z is Lipschitz with the constant K max{\,1}.

Proof of Lemma 5.2.1

(i) One can obtain the proof of this assertion following the lines of proof of [53], Theorem
4.1 or [146], Theorem 7.1. Formally, the proofs of mentioned theorems are given for multi-class
networks. However, as it is pointed out in [67], the tightness of such families holds under weaker
conditions (see [67], Assumption 2.19).

(ii) Since Gj is bounded by 1:

A n n Klx™ o
0= X7 < e { G K0
7| "]
1 et
< max W Z Vk,K(t—S) s
k=[lz"|s]

Where Vj, is the total number of arrivals at time k. Since {Vj}ren is an ii.d. sequence and
with EVy; = KA. By the law of large numbers, the result now follows if we let n — oo.
O

Definition 5.2.2 Any accumulation (in Skorokhod topology) point z of the sequence X, is
called fluid limit. The collection of all fluid limits is called the fluid model.

Note that it follows from the definition of X™ and z that z;(t) > 0 for all i = 1,..., K and
for all t.



Corollary 5.2.3 The trajectories of fluid limits are self-similar. More precisely, for any fluid
limit z and for any u > 0 such that P(|z(u)| > 0) > 0, the random process {Z(t),t > 0} with

conditional distribution ( )
_ z(u+t

is also a fluid limit on the set |z(u)| > 0.

This result may be obtained following the lines of proof of Stolyar [146], Lemma 6.1. How-
ever, the same remark as the one given in the proof of Lemma 5.2.1, (i) applies here.

Definition 5.2.4 We say that the fluid model is stable if there exists a deterministic time tg
and € > 0, such that for all fluid limits z satisfying |2(0)| =1, |2(t)| < e fort >ty a.s.

Definition 5.2.5 The fluid limit is unstable if there exists a positive deterministic constant c
such that for all fluid limits, liminf,_, |2(¢)|/t > ¢ a.s.

The definition of fluid stability is standard and appears in most papers dealing with the
fluid approximation method. Our definition of fluid instability is not usual and unnecessarily
restrictive. In our setting, it appeared to be convenient to work with this definition.

5.2.2 Fluid model criterion for stability

Theorem 5.1.1 can be restated via the fluid approximation method.

Lemma 5.2.6 (i) If the fluid model is stable then W is ergodic.

(i) If the fluid model is unstable then W is transient.

Proof. (i) One can obtain again the proof of this assertion following the lines of proof of Dai
[53] or Stolyar [146] which are given for multi-class networks.
(ii) Theorem 3.2 of Meyn [122] states statement (ii) for multi-class queueing networks. Here
again, the Meyn’s proof applies also to our framework without major change.
O

By Lemma 5.2.6, Theorem 5.1.1 can be restated as:

Theorem 5.2.7 If A\ < e~ 1/V the fluid model is stable whereas if A\ > e~1/V, the fluid model
s unstable.

5.2.3 Fluid Limit Evolution Equation

Zi(t)
2 z(t)

JjeV;

In what follows we write ¢;(t) = ¢;(2(t)) =

Theorem 5.2.8 For any fluid limit z. Assume for all i, 3,y 2j(t) > 0. Ift >0, 2 has a
derivative at point t and a right-derivative at 0 if t = 0. Moreover, fort > 0:

, - > et -
zi(t) =X — pi(t)e €Y =\ —Gi(z(t)). (5.3)

For t =0 this equation holds with the right derivative.



Under the assumptions of the Theorem, this differential equation admits a unique solution,
thus all the converging subsequences of (X™) converge toward the same deterministic limit.

When the assumption: for all i, jevi 2j(0) > 0 is not fulfilled some boundary effects arise.
These boundary conditions are discussed in Section 5.3.

Proof of Theorem 5.2.8

(i) We first suppose that z;(t) > 0, we need the following technical result.

Lemma 5.2.9 There exists C > 0 such that |G;(z) — Gi(2)| < min(1,C/a;) if x; > 2.

Proof ot Lemma 5.2.9
Using that |[e™¥ — e¥2| < |y; — yo| for all y1,y2 > 0, we obtain the following:

1 1 T
In(1-—=——— ||+ z;n[1- b= A)
< D ke, xk) ]EZV ( ’ < 2kev; xk) 2kev; xk>(

1 y2
—— Then, using that |In(1 —y) + y| < ———— for y € (0,1)
D kev; Tk 2(1—y)?

|Gi(x) — Gi(z)| <

For every j, denote y; =

, we obtain that

02
Gile) = Cul@) < w3 N

The required bound follows now from the facts that
yj < 1/x;, xjy; <1 and y; <1/2

for all j € V;.
a
Assume now that ¢ = 0 (result for arbitrary ¢ follows from the self-similarity of fluid limits).
Let x = 2(0). Suppose that s < z;. Let k < |z"|s, then WZ" (k) > a1 — k > |2"|(27/|2"] — s).
Hence, WZ" (k) > 2 for k < |2"|s for large enough n.

7
. — (0 B
We need to show that lim,_,o zs) = z(0) = A—G;(2(0)). Consider the following expression:
s

[lz™]s]—1
n n 1 Z‘n $n
Xi'(s) — X;"(0) = kg Z (W (k+1) = W (k)
k=0
1 [lz™]s]—1
= ZﬂWW+WMWWWWM
] 2
Llz™]s]—1
1 n n n
tro 2L (W 1) = BV e+ DIWE ()
k=0
1 [lz™]s]—1 1 Llz™|s]
= — (W™ (k) + = Y D, .
2 A GOVTEN) g O D (5.5)

where

D =W (k) — E (W (R)[W (k= 1)) = Ai(k) = A+ qi(k) — B (@ (k)W (k — 1))



1 xS
where g;(k) = I(Ni(k—1) = 1) [T ev;\ g3y {(N;(k—1) = 0). We have @ B2 (Aik)=2) = 0

a.s. when n — oo and we can use Theorem VII.3 of Feller [62] (applied to by = 1/k) to deduce
that almost surely

[|z™]s]
o Y (@)~ B 0w - 1) — 0 56)
k=1

as n — oo.
It remains to find the limit of the first term in Equation (5.5). We decompose this term as
follows:

1 Llz"]s]—1 1 ||z |s]—1 ) .
— Y. A-GWE)) == > <)\ e <X" (7))) + €(t,n),
o] & o] & 2]
where by Lemma 5.2.9
Llz"]s] -1 1 1 [|z"]s|—1 1
t < (C—— < -

k=0

as n — oo uniformly in s < z;. Further, from the uniform convergence of X™ to z and the
continuity of G we deduce that

Llz"]s]=1 |

2i(s) —2(0) _ 1;::0 @ <Z <$_ﬂ|)) _

s n—o0 |z™|s

Since & "l Z SJ Gi(z(EL o] 1)) is a Riemann sum of a continuous bounded function, it converges

to fo du and we have
(s) — 2 5 Gy d -
lir%M =)= hr%w =\ — Gi(2(0)). (5.7)
S— S S— S

(ii) it remains to treat the case: z;(0) = 0 and } .y, 2;(0) > 0. Notice that Gi(z(0)) = 0.

In view of Equations (5.5) and (5.6) it suffices to show that

L="|s]—1
sli%l-ﬁ-nlggo |z [s kzo G(W™ (k) =0. (58)

By assumption, there exits j € V; such that 2;(0) = lim,_.cc 27 /[2"[ > & > 0. Let € > 0, in
particular there exists ng such that for all n > ng, 7 /|z"| > o and 27 /|2"| <.

Let n > ng, pick 0 < s < o and fix € < «, then for n large enough, W&" (k) < e[|+ A4;(0, k),
ijn(k) > a|z™| — k and:

e Wi (k)
GWT (k) < Wi (k) + W7 (k)
elz™| 4+ A;(0, k)

(a+€e)|zn| — k




By the strong law of large numbers, a.s. lim; o A;(0,¢)/t = A. Let Ay > A, we deduce
that a.s. we may find ko such that for kg < k < s|z™| (we may suppose |z"| large enough to be
larger that ko/s):

n elz™ + Mk
GW* (k) < —————,
( ( ))_(a—i-e)\x"\—k:
and
lz"|s]—1 L="|s]—1
1 n ko € 1 kA1
— G,(W* (k) < _
> GVTR) < Tmt et D G R
k=0 k=0
A direct computation shows that:
L= |s]—1
. 1 k)\l S
k=0
We obtain, almost surely:
L="|s]—1 . s
li — (W < In(1 — —
im sup ] kZ:O Gi(W*™ (k) < P A1(s + aln( a))

Since this last inequality holds for all € > 0 and Ay > A, we have:

Llz"]s)—1
lim sup ] Z G (W™ (k) < =A(s +aln(l — 2))
" k=0

It then follows immediately that:

=[] -1
Slirél+11mrbsupm kzzo Gi(W* (k)) = 0.

5.3 Properties of the Fluid Limit on the Boundary

Conjecture 5.3.1 We think that any fluid limit z has a right-derivative at point 0 in all
coordinates for any vector z(0) (even if there exists i such that x; = z;(0) =0 for all j € V;). We
also believe that 2 (0) does not depend on the sequence ™ and depends only on x = lim,, ™ /|z"|.
If it is so then all fluid limits are deterministic functions.

In this Section, we will prove a weaker statement that we will be sufficient to prove that
the boundary of the positive orthant does not play any role in the stability of the fluid model.
Denote

= inf{t > 0:|2(t)| < h}.

Assume that |2(0)] = 1 then max; 2;(0) > 1/K. The fact that z(t) > A — 1 for all 4 and ¢

implies also that
€

Tl—e 2 m (5.9)

Theorem 5.3.2 Assume that |2(0)| = 1. Then there exist positive constants b and €y such that
for any € € (0, €), min; z;(t) > be for any t € [ce, T1—c) where ¢ = 1/K(1 — \).



The following corollary is immediate:
Corollary 5.3.3 For any 0 <e <1, z;(t) >0 for all0 <t < 1_.
The forthcoming Lemma 5.6.1 and Corollary 5.3.3 imply:
Corollary 5.3.4 Assume that |z(0)| > 0, then either:
- there exists ¢ such that z(c) = 0 and z(t) remains in H for allt € (0,¢) or,
- z(t) remains in H for allt > 0.

In particular when z;(0) = 0, then Corollary 5.3.3 implies that the accumulation points of
{M} as t tends to 0T are included in [b, ].

The rest of this paragraph is devoted to the proof of Theorem 5.3.2. We first begin by some
technical lemmas.

Lemma 5.3.5 There exist positive constants K1 > 1 and Ko such that, for any fluid limit z,
if zi(t) > K12;(t) for two neighboring nodes i and j then z; (t) > K.

Proof of Lemma 5.53.5
Note that existence of z;- (t) is guaranteed by Theorem 5.2.8. Indeed z;(t) > 0 and therefore
Zkevj zk(t) > 0. To prove Lemma 5.3.5, note that

7t 7@ 1
RN R R R e

and we may take K1 =2/A — 1 and Ky = \/2.

z;(t) > A

a

Lemma 5.3.6 There exist constants C; > Cy > 0 such that for any h > 0 if |2(0)] > hy and
min; z;(0) > C1h then min; z;(t) > Cyhy for all t < .

Proof of Lemma 5.5.6

C
Let D be the maximal graph distance of G. Put C] = !

1
ﬁ and put CQ == —D—1° We

KD
may prove Lemma 5.3.6 for h = 1. The result for arbitrary h fohows from the self—sirriilarity of
fluid limits.
It is enough to show that for any ¢ < 7 if min; z;(t) > C; then there exists 0 < s < oo such
that
miin zi(t+s) > Cy (5.10)

and
min z;(u) > Cy forall t<u<t+s. (5.11)
(2

Indeed, assume that the last statement holds and Lemma 5.3.6 is not valid. Then there exists
t < 71 such that min; z;(t) < Cs. It follows from the continuity of fluid limit that there exists the
last moment v < ¢ when min; z;(v) > C7. However, our last statement implies that there exists
s > 0 such that min; z;(v+ s) > C7 and min; z;(u) > Cy for all v < u < wv+s. Clearly, v+s < ¢
that contradicts our assumption on v being the last moment before ¢ when min; z;(v) > Cj.
Let now ¢ be any time such that ¢ < 7 and min; z;(¢t) > C. Note that max; z;(t) > 1/N =
C'lKlDJrl since t < 71. To simplify notation, assume that z;(¢) = max; z;(t). Let T be such that
z1(t+u) > Cle) for all 0 < v < T'. Note that z;(u) > A —1 for all 7 and u. This implies that

s QT - KP)  CIEP(K - 1)

> T T (5.12)



Let now d be the maximal distance in G from node 1. Clearly, d < D. For j =1,...,d, denote
by A; the set of nodes at distance j from node 1.

We show that there exists 0 < s < T such that (5.10) and (5.11) hold. First, we show that
min z;(u) > Cy for all t < u < t+ T. Note that z;(u) > Cj foralli € Aj and t <u<t+T.
Indeed, assume that there exists i € A; and t < u < ¢t 4+ T such that z;(u) < C;. Then,
by continuity, there exists last moment ¢ < u; < w such that z;(u;) > Cy. Lemma 5.3.5
implies that z;(ul) > Ky > 0 and hence, there exists time ug > uj such that z;(uz) > C; that
contradicts our assumption on ;. Using induction and following the same arguments we can
show that z;(u) > Cl/K{_l foralli € Aj and t <u < t+ T for any j = 1,...,d. Hence,
min; z;(u) > Cl/Kf_l > C’l/KlD_1 =Coforallt<u<t+T.

Let us now show that there exists 0 < s < T such that (5.10) holds. For every j =1,...,d,
denote by ¢; time needed to achieve level C1 K f = starting from the level Cy /K f ! and moving

Kd*l _ 1 d
M. Note that (5.10) and (5.11) hold with s = > ¢;

with the speed Ky. Clearly, t; = —
’ K2K{ ! Jj=1

d
if T'> > t;. Indeed, minjc 4, z; will achieve level C’lefl not later than at the moment ¢ + ¢;
=1
and Wﬂjl not become smaller than this level before time ¢+ 7T, since all nodes in A; are neighbors
of node 1 and 21 (u) > KP for all t < u < t+ T. Note also that minje, 2; will become greater
than Cle_z not later than at the moment ¢ + ¢; + ¢ since it can not become smaller than
C1/K; before time ¢ 4 t; and after this time it either is greater than C’le72 or grows with
the speed at least Ko (this follows from Lemma 5.3.5 and the fact that any node in Ay has a
neighbor in A;). We can continue these arguments to prove that min;e 4, z; will become greater

d d
than C; at the moment not later than t + Y ¢; if T > > ;.

=1 =1
Note that
d _ _ _
S = Ci(E - DA+ K+ + KDY oK - 1)(K¢ 1)
Z o _ - —
= KoK{™! KyK{ (K — 1)
K4 -1 KP -1
Ky(K; —1) = Ky(K; —1)

If we take K3 = A/2 and K7 = 2/A — 1 then (1 — A\)/Ks = K7 — 1. Note also that in this
d
case K7 > 2. It now follows from (5.12) and (5.13) that "> > ¢;.
i=1

One can see from the proof of Lemma 5.3.6 that the following (stronger) result holds.

Lemma 5.3.7 For any hy > 0 there exists ﬁ; > 0 such that for any hy < ﬁ; there exists
0 < hg < hg such that if |2(0)| > hy and min; z;(0) > hg then min,; z;(t) > hs for all t < 1p,.

ha
KKP+

Remark 5.3.8 Lemma 5.3.7 is valid with ﬁ; =

Proof of Theorem 5.3.2

The proof of Theorem 5.3.2 is similar to that of Lemma 5.3.6.

Ky(Kp—1 1-— Ko(Kp—1
2(D1 )e < D61 for all € < ¢y and takea:Q(Dil)
(K —1) = KK{F (K" —1)

Take €g such that . In this

1—¢

——5-7 and in view of Lemma 5.3.7 and Remark 5.3.8, it is enough to prove that
KK{*

case, ae <

min; z;(ce) > ae.



Let D be the graph distance of G. Note that max; z;(0) > 1/K. Assume that z(0) =
max; z;(0).
Let T be such that z;(u) > aeKP for all 0 < u < T. Note that z(t) > X\ — 1 for all i and ¢.
This implies that
1/K —aeKP 11— KaeKP
1-x K(1-))
Let now d be the maximal distance in G from node 1. Clearly, d < D. For j = 1,...,d,
denote by A; the set of nodes at distance j from node 1. For every j = 1,...,d, denote by t;

T > (5.14)

time needed to achieve level ae K f —J starting from the level 0 and moving with the speed Ko.

aeK97I D
Clearly, t; = Kl . Denote T1 = ) t;. Note that
2 j=1

_ae(KP —1) € B
T = Kﬂél T Ra oy -« (5.15)

Following the same arguments as in the proof of Lemma 5.3.6, we can show that min; z;(ce) =
min; z;(Th) > ac if Ty <T.
It remains to prove that 77 < T'. This is so due to (5.14), (5.15) and the fact that ae <
1-¢
KKP+H

Remark 5.3.9 Denote by v(z,h,b) = inf{t > 2z : |2(t)] < h or min;z(t) < b} the time
(after moment z) of the first exit from the set {|z| > h} N{min; z; > b}. Theorem 5.5.2 implies
that there exist b > 0 and z > 0 such that T1_. = v(ze, 1 — €, be) for any initial condition z(0)
with |z(0)| = 1.

5.4 Proof of Theorem 5.1.1

In this Section we present the proof of our main result. We start with the proof of stability.
Due to Theorem 5.2.7 it is enough to prove that there exists a deterministic time ¢g such that
for all fluid limits z satisfying |2(0)| = 1, z(¢) = 0 for t >ty a.s.

Lemma 5.4.1 If z;(t) >0 for alli=1,..., K then

. —1
and hence, if A < S5-,

for some ¢ > 0.

Proof of Lemma 5.4.1.
Clearly, it is sufficient to prove the following inequality

Zzz‘%exp{— > 80]} .
4 (&

JEV;
sz -V
k

(5.16)



where we slightly abuse notation by writing z; instead of z;(t). We can write the LHS of the
previous inequality in the following form:

me(yi)

; 1
., Yi=—> ¢j—In— and f(z) = €*. Function f is convex and
zk:zk jeV; 2

>_pi =1, hence, 3 pif(yi) = f(O_piy:) and

Zi

where p; =

Zzi%’eXP{_ > %} ,
5 jeV; 2 zi
>exp{ — P — = hnh— . 0.17
R D5 DRI .17
k

T iev; i g

Z Zi 1
Consider now : w; and ' In — separately:
zz: > 2k ]g\:/ ! zz: 2% i
k k
D% Y P Z%‘_szi 7
2 i geVs J eV J
_ - = =1. 5.18
ZZ% Z% > 2k > 2k > %k (518)
g eV k k k

(we used the facts that j € V; if and only if ¢ € V; and that ¢; Z‘; zi = zj.)
eV
Note that the function In is concave, hence,

ya OIS

In— <lIn —— | =In =In|———\| =V 5.19
;sz i ;szwi > 2k > 2k (5.19)
k k k k

Inequality (5.16) follows now from (5.17), (5.18) and (5.19).
a
Proof of Theorem 5.1.1.
Corollary 5.3.3 implies that if |2(0)] = 1 then z;(t) > 0 for all s = 1,..., K and all ¢ > 0.
Then we can use Lemma 5.4.1. Note also that for any positive values of {z;} it holds that

S~a; > /> 2. Hence, Lemma 5.4.1 implies that
i \/

(Z_ z?(t)) << [> 20

/Z zf(t) < —g/2

and hence,

and the result follows.



5.5 Rates of Convergence

In this section, we obtain rates of convergence of W, to its stationary distribution in the total
variation norm. Define the total variation distance between measures m; and mo by

[lm1(-) = m2(-)|| = sup
lg|<1

[owman - [ g(ym(dw‘.

Theorem 5.5.1 Assume that A < e 1/V and EA;(n)P*! < oo for some p > 1 and for all
i=1,...,K and n. Then

lim nP||P"(z,-) —x(-)|| =0, zeN&,

n—oo

where P™(z,-) — distribution of W*(n) and ©(-) — stationary measure for W.

Proof of Theorem 5.5.1
The proof of Theorem 5.5.1 is based on the following lemma which is an analogue of Propo-
sition 5.3 of Dai and Meyn [54].

Lemma 5.5.2 Assume that the conditions of Theorem 5.5.1 are satisfied. Then for some
constants ¢ < 0o, d > 0 and a finite set C,

7o ()
E| > Wrm)P | <claft!
n=0

for any x € NX where 7¢(8) = min(n > 6 : W(n) € O).

Proof of Lemma 5.5.2
The proof of Lemma 5.5.2 follows the lines of proof of Proposition 5.3 of [54].
It follows from Theorem 5.2.7 that there exists tg such that

L W (alto)

le|—o0 ||

=0

W (|zfto) "+

a.s. Note also that the family of random variables{ } is uniformly integrable

‘x’erl
since
[olto §~K P |z|to K ptl
|W2(||to) [P (Zm=02i:1Ai(m)) | 2m=0 (ZizlAi(m)>
FE o = o
x T z|to
t K p+1
ZL?:% <zz=1 Az(m)>

and the family is uniformly integrable. The latter is guaranteed

|z[to
by the existence of EA;(m)P*! for all i = 1,..., K and for all m. Hence,

B[ (alto)t]

— 0.
|| o0 ||+t

Choose L such that .
E [[W*(|z|ty)PH!] < §|x|p+1 (5.20)



for |x| > L. Define as in the proof of Proposition 5.3 of [54], the sequence of stopping times
oo = 0,01 =t(z), and o011 = 0+ 05,01,k > 1, where t(x) = tomax(L, |z|), § — shift operator
on the sample space. We assume that ¢y is an integer. The stochastic process Wy = W(og) is
a Markov chain with transition kernel

Pz, A) = P(W*(t(z)) € A).
Now (5.20) implies that

R N A 1
E{[WA = [Wol [ Wo = &} < —Zfal! + blo(a),

where set C = {z : x| < L} and b is some constant. The Comparison Theorem (Meyn and
Tweedie [123], p. 337) yields that

kv—1 kv—1

> W)t > W k)P
n=0 n=0

where k, = min(k > 1 : W(k) € C}. To prove Lemma 5.5.2 , we first show that for some
constant cg,

< 2{|z[P™ + bl (z)} (5.21)

Ok+1
E|> [W¥n |p|f0k] < coW*(op)Pt! (5.22)

N=og

which by the strong Markov property amounts to
EZ:IVVm )P < colafP™

This follows from the fact that

Hx) ta) / n K Potz) [te) K P
S <Y (3 am) <3 (33
n=0 \m=0 i=1 n=0 \m=0 i=1
a.s. and from our assumption that FA;(m) < oo for all i = 1,..., K and for all m. Substituting
(5.22) into (5.21), we have
Ok+1
ZE > I >|p|fak] Ik < k] < claf*,
N=og

By Fubini’s theorem and the smoothing property of the conditional expectation, the LHS is
precisely E [Z(”f* (1+|[W*(n)[P)]. The proposition now follows from the fact that oy, >

Tc(toL).
O

We now use Proposition 5.4 of [54] with ¢ = 1. Applied to our case, it gives the following
bound:

E{VWQ)) = VW O)IW(0) =z} < —f(z) + & (5.23)
with V(z) = E (3720 W2 () and /() = |aP.
Note that Lemma 5.5.2 implies that V(z) < c|z|[P*. Now (5.23) yields that
E{V(W (1)) = V(W(0)|W(0) = 2} < V(x) 71 + blc

for the set C' = {x : |x| < L} and for some constant b. The result now follows from Theorem

2.5 of Douc et al. [58].
O



5.6 Local Stability of Fluid Limits on the positive Orthant

In this Section we investigate the behaviour of the solution to the differential equation satisfied
by fluid limits. In particular, we show that if input rate A is sufficiently small then the diagonal
is locally unstable.

5.6.1 Orbits of the fluid limits

Denote H = {x ¢ RX : 2, >0 forall i=1,...,K}and 1 = (1,...,1)'. For z(t) in H, the
Differential Equation (5.3) is restated in close form as:

i(t) = F(o(2(1))), (5.24)

with F(z); = A — xie_zjevixj. Let A={x € H:zy =2x9.. =z} and C, = {z € H :
|z/|z| — 1/K| < u}, u > 0, Cy is a cone with direction A. We note that the diagonal is an
orbit of the differential equation: F(4(cl)) = (A —e1/V)1. We are going to prove that the
diagonal is also locally attractive.

Lemma 5.6.1 Assume that |2(0)| € H, then either:
- there exists ¢ such that z(c) = 0 and z(t) remains in H for allt € (0,c) or,

- z(t) remains in H for allt > 0.

Proof of Lemma 5.6.1.

Restricted on the open set H, F o ¢ is C*°(R"™). Therefore, the solutions of Equation (5.24)
are locally uniquely defined as long as z(¢) remains in H. Now, suppose on the contrary that
t — z(t) leaves H at time c at y = limy_.— 2(t) € 90H\{0}.

Let a; = limsup,;_,.- ¢(2(¢)), a; € [0,1]. Since y # 0 there exists ¢; and iz such that y;, =0
and y;, > 0. Note also that G is connected implies that there exists k£ such that y; = 0 and
>_jev, Yk > 0 (consider the path from 4; to i2). Hence, ay = 0 and lim,_, .- Fi(¢(2(1))) = A > 0,
this implies that ¢ — x(t) increases on a left neighborhood of ¢, this is contradictory with
yr = limy_,. 2(t) = 0. O

Lemma 5.6.1 implies that for an initial condition in H, the fluid limit z(¢) remains in H or
finally reaches 0 at time c¢. By convention, we set that ¢(0) = 1/V, thus after time ¢, the orbit
of z remains on the diagonal: for t > 0, 2(t +¢) = (A — e~ }/V)1t. Notice also that if » € H,
then F'(¢(z)) < Al (component wise). In view of Lemma 5.6.1 this immediately implies that if
z(0) is in H then the maximal solution of Equation (5.24) is defined on R;. Lemma 5.6.1 also
implies that if z(0) = lim,, 2™ /|2"| € H then the fluid limit is deterministic.

Let A be the adjacency matrix of G and {vy,...,vx } its eigenvalues with v; < ;1. The
spectral gap v is defined by:

v = Ii1<11[r(1(yK — V) = VK — VK 1.

Note that since G is V — 1 regular, vx = V. The main result of this section is the following.

Theorem 5.6.2 If A\ > %(1 - ;}—22), there exists w > 0 such that for all solution t — z(t) of
Equation (5.24) with initial condition in C,,

lim ¢(z(t)) = 1/V.

t—+00

If A< %(1 — &—22) the diagonal is locally unstable.



Corollary 5.6.3 If A > Q(l - L22)} there exists w > 0 such that if z(t) is a solution of
Equation (5.24) with an initial condition z(0) in C,,

- if A< e 1)V, then there exists ¢ > 0 such that, z(c) = 0.

- if A> eV, then z(t) ~ (A —e LV

Proof of Corollary 5.6.3

Let z(t) be the maximal solution with z(0) € H. From Theorem 5.6.2, lim ¢(z(t)) = 1/V.
Since F is C*°(R") on a neighborhood of 1/V, lim; .40 2(t) = (A — e /V)1. If X # e 1/V,
this implies that, as ¢ tends toward infinity:

2(t) ~ (A —e V)t (5.25)

Suppose first that A — e~/V < 0 then from Equation (5.25), z(t) leaves H in finite time.
Lemma 5.6.1 implies in turn that there exists ¢ > 0 such that z(c) = 0. The first assertion of
Corollary 5.6.3 is proved. O

Remark 5.6.4 The first statement of Corollary 5.6.3 can be strengthened in the following
way:

there exists 6 > 0 and v > 0 such that for all z(0) € C,, z(4|z(0)|) = 0.
Indeed, let § such that 0 < §~! < e~1/V — \. There exist ¢ > 0 such that for all i and z € C,
#(2); < —6. We then define v = min(u, €)
5.6.2 Proof of Theorem 5.6.2

This theorem is an application of the stability theory for differential equations.

Spectral Analysis

We need to consider the eigenvalues of D(F o ¢)(z), for z € A, where D f(z) is the differential
of f at x. F o ¢ is homogeneous of degree 0: for all ¢ > 0, F(¢(cx)) = F(¢(x)). Hence:

D(F o ¢)(cl) = ¢ 'D(F o ¢)(1).

Since A is an orbit of Equation (5.24), 1 is an eigenvector of D(F o ¢)(1) associated with the
eigenvalue 0.

Lemma 5.6.5 The eigenvalues of D(Fo¢)(1) are (0, A1, -+, Ax—1) with A\; = —%(V—VK,i)Q
. In particular, for all i > 1, \; < 0.

Proof of Lemma 5.6.1 A direct computation leads to:

6_1(V71) f s e
— i 9=
(D(F 0 ¢)(1))ij = v;lV uv; if jeV\i,

—EVinV| it jgvi
Not surprisingly, D(F o ¢)(1).1 = 0. Indeed let M = —eV3D(F o ¢)(1), using the fact that
[ViuV;| =2V — |V;NV}|, we deduce that:

K
(M1); =V(V -1)=2V(V -1+ > _[VinV;| =Y _[VinV;| -V =0,
i j=1



Let E denotes the identity matrix and A the adjacency matrix of G, since (4%);; = |V;iNV}],
we have the following decomposition:

M =V?E-2VA+ A*=(A-VE)%

A is irreductible by hypothesis (G is connected), thus (A — VE) is an ML-Matrix (refer
to Seneta [142]). In graph theory, this matrix is refered as the Laplacian matrix of G. From
Corollary 1 of Theorem 1 in Seneta [142], the spectral radius of A is V, Theorem 2.6 (d) of
[142] implies that dim Ker(A — VE) = 1 and all the eigenvalues of (4 — E)? different from 0
are positive reals (remind that the spectrum of A is real). Lemma 5.6.5 is proved. O

Orbit of 1o z

We define:
K

SofreH Y w1} = Hn (L) ({1}) = p(H),
i=1
where ¢(z) = z/|z|. ¥ is clearly a C*°-convex manifold of codimension 1. We define the
following differential equation on X:

y=DY(y)F(ey)) = aly). (5.26)
with an initial condition y(0) in ¥. « is a C*°(X) function and «a(y) € T, (X) the tangent space
of ¥ at y. The next step is to compare the orbits of Equation (5.26) and Equation (5.24). The
next lemma asserts that the orbits of the solution of § = «a(y) and ¢ o x where t — 2(t) is a
solution of Equation (5.24) are indeed equal.

Lemma 5.6.6 Let 2(0) in H and z(t) the mazimal solution of Equation (5.24). Let y(t) be
the mazimal solution of y = G(y), with initial condition y(0) = (z(0)), then it is defined on
R4 and there exists an increasing continuous bijective function p: Ry — Ry such that:

yop=thoz

Proof of Lemma 5.6.6.

This lemma is a classical result. For an initial condition in H, we have F(z(t)) < AL.
Indeed, while z(t) € H it is clear. If z(t) ¢ H, from Lemma 5.6.1, z(t) € A N —H, thus
F(z(t)) = (A= 1/Ve 1)1 < A1). It follows that |z(t)| = D1 7(t) S KX+ YU 2(0).

Suppose now that for all ¢, z(t) € H, then OJFOO ﬁ‘;(s)
value theorem, we deduce that there exists an increasiné continuous function v such that:

v(t) d
for all ¢ > 0, . (5.27)

0 Zf(:l zj(s)

diverges. By the intermediate

In particular:

Let w =1 ozov, w(0) =¢(w(0)) =y(0). We have:

w(t) = i(t)




1 is homogeneous of order 0 and thus for all ¢ > 0, Di(cz) = ¢ 1Dt (z). Tt follows that:

i) = Puls S

= G(w(t)).

)-F(w(t))

The solution of the differential equation is unique, therefore w(t) = y(t). The lemma is
proved with p = =1,

If z(t) leaves H, from Lemma 5.6.1, there exists ¢ such that z(c) = 0 and z(t) = (A —
e t/V)(t — ¢)1 for t > c. Then the mapping v is build on [0,¢] as we did previously and for
t > ¢, v(t) =v(c) +t— c. Then the same proof holds. O

About the behaviour of u, we have easily the following:

Lemma 5.6.7 Let € > 0 and 7.(z(0)) = inf{t : |2(t)| < €}, for all 0 <t < 7.(2(0)),

1 K\ t
—In(—=t+1) <pu) < -

Proof of Lemma 5.6.7. We start with the lower bound, if ¢ < 7.(z(0)) then, Y " | z;(s) > €
for all s € [0,t], hence, by Equation (5.27), we get v(t)/e > t, since v = mu~!, we deduce the
lower bound. Similarly, for the upper bound, we notice that, > " ; z;(s) < |2(0)| + K \s, and
by Equation (5.27) we get, 1/(K\)In(K\/|z(0)|v(t) +1) <t. O

Local stability of ¢ o z.

yo = 1/K is an equilibrium point of Equation (5.26). In the next lemma we prove that this
equilibrium is locally stable.

2

Lemma 5.6.8 If A > %(1 — &5, there exists u > 0 such that for all solutions t — y(t) of
Equation (5.26) with |y(0) — yo| < u,

lim sup ly(t) —1/V| =0.
=00 y(0)e]y(0)—yol<u

Proof of Lemma 5.6.8.

We denote by Da(y)|r, ), the differential of a at y restricted to the K — 1 dimensional
subspace T} (). We examine if all the eigenvalues of Da(yo)\Ty(g) have a negative real part,
this will imply the local stability (refer for example to Coddington and Levinson [47]). If
D% (y)(+,-) denote the second differential of ¢ at y, seen as a bilinear mapping. We have:

Da(y) = D*Y(y)(F(¢(y)),") + D(y)D(F o $)(y). (5.28)

The first term in this last equation is a matrix and its entry (i, j) is equal to:

K ) )
> S po()s
k=1

For y = yo, F(é(y0)) = (A — e~ 1/V)1, and a straightforward computation gives:

D*P(yo)(F(6(y0)), ) = (A —e ' /V)(J — KE),



where FE is the identity matrix and J is the matrix with all its entries equal to 1. We also have
Diy(yo) = (KE — J)/K. Finally, Equation (5.28) can be rewritten as:

Da(yo) = 1/K(KE = J) ( D(F o 6)(yo) = (A~ ™ /V)E ).

(KE — J) commutes with all symmetric matrices and (K E — J) has two eigenvalues K (with
multiplicity K — 1) and 0 (with multiplicity 1, associated to the eigenvector 1). By Lemma
5.6.5, the eigenvalues of D(F o ¢)(yo) — (A — e 1/V)E are

0<i<K-—1:p=—-e"V—-vg )?/Vi-Xte V.

The eigenvector associated to pp = A — e~!/V is 1. Thus we have proved that A — e~ !/V is
an eigenvalue of multiplicity 1 for Da(yp) and that the other eigenvalues are (p;);>1. These
eigenvalues have negative real parts if and only if 1 = —e7142/V3 — X +e71/V < 0, that is
A > e (1 —~+2/V?)/V. The vector space generated by the associated eigenvectors is precisely
the tangent hyperplane Ty, (X) = 1+, the hyperplane orthogonal to 1. O

We can then prove Theorem 5.6.2. Let |2(0)| € C,, and y(0) = 2(0)/|2(0)|, by Lemmas 5.6.6
and 5.6.8:

lim (z(t)) = lim y(u(t)) =1/K.

t—-+o00 t—+00

In particular, ¢(z(t)) tends toward 1/V as ¢ tends toward infinity.
Due to the continuity of F' o ¢ and Lemma 5.6.7, we also obtain:

Lemma 5.6.9 If A > e~ 1/V, then

671

Jim sup - [F(6(2(1) = (A= 7)1 =0.
0 2(0)eTNCy,

5.7 Extensions of the model

5.7.1 Random neighbourhood

In this Subsection we consider a possible extension of our model. Assume there is a fixed number
of points 1,..., K and a set of non-directed graphs {gj }le each having points 1,..., K as its
vertices. Assume that at each time n the neighbourhood relations are given by the graph
G where 7, are independent identically distributed random variables taking value j with
probability p;. The need to consider such a variability of neigbourhood relations may be
justified by, for instance, the fact that a change of environment conditions may lead to a change
of the radius and/or direction of interactions.

Denote by Vij the neighbourhood of the point 7 in the graph G/ and by Vij its cardinal. We
assume that the system is in some sense "regular”: EV,™" =V for all i.

Following the proof of Theorem 5.2.8, one can show that fluid limits of the model described
above satisfy the following differential equation

/ L - X e
5(t) = A=Y prgf(t)e <V

where gof (t) are defined in an obvious way. Using the same methods as those used in the proof

of Theorem 5.1.1 it can be shown that the system with random neighbourhood is stable if
-1
€
A< —.
v



5.7.2 Non-regular graphs with space-inhomogeneous input

Assume now that EVZA771 = V; and V; are not necessarily equal. Put V' = max V. Assume also
(2
that E£' = A; so that the input is "space-inhomogeneous”. Put A = max ;. Clearly, all the
1

results concerning fluid limits hold in this case too, and it is easy to see that one can prove the
following result.

-1

Theorem 5.7.1 The system described above is stable provided A < 67.

5.7.3 Infinite Graph

We have supposed that the number of vertex K was finite, however since K does not appear
in the stability condition e™!/V, we believe that the same stability result on V-regular infinite
graphs. The same remark holds for the following continuous model.

5.7.4 Continuous Model

Let T be the unit torus of R4*! and fix an origin 0 in T¢ (the only reason we choose the torus
and not any compact set of R? is to avoid any boundary effect). We consider a i.i.d. arrival
process A = (A, )nen where A, is a stationary point process on T¢ of intensity A. The workload
at time n, W,,, is now a.s. a locally finite atomic measure on T¢, a user is an atom of W,,. For
a Borel set B, W,,(B) is the number of users in B at time n.

Let S be a symmetric open Borel set of T%: y € S implies —y € B. S is the range of
interactions between users, typically S is a ball of radius R and center 0. We suppose that the
boundary of S has a finite d — 1-Lebesgue measure.

For € T and a set B, we denote the Minkowski addition by  + B = {z + v,y € B}.
At each time slot, a user located at x € S emits independently of the others with probability
1/Wy(x 4+ S). A user located at z leaves the system if and only if he is the only user emitting
inxz+S.

Let N,, be the counting measure of users emitting at time n. N, is absolutely continuous
with respect to W,,. For a Borel set B, N,,(B) is the number of users emitting in B. We have
the following relation

W,=W,_1+ A, — / ]l(Nn_l(m + S) = 1)Nn_1(d$),
Td

which is a continuous version of Equation (5.1). W is a Markov chain on the space M of finite
measures on T¢, which a separable metric space. Markov chain theory is thus well defined on
M.

Let v denote the d-dimensional Lebesgue measure. We can state the following conjecture:

Conjecture 5.7.2 If A < e~ /v(S) then W is Harris recurrent. If X\ > e~/v(S) then W is
transient.

This conjecture is an anolog of the stability result on the discrete model.

5.7.5 Shot-noise Interaction

In the continuous model, another type of interaction worth to be mentioned and analyzed. Let
N,, be the counting measure of users emitting at slot n, r — [(r) be a nonincreasing positive



function, and | - | be the euclidean norm. In the shot-noise interaction model, an emitting user
leaves the system if:

Lo o= sVt <
T\{z}



Chapter 6

Stability of spatial queueing systems

Résumé Dans ce chapitre nous étudions un systeme de files d’attente dans lequel un processus
spatio-temporel d’arrivée de clients est servi par un ensemble dénombrable de serveurs. Les
clients ont des positions dans l'espace et les serveurs servent a des débits qui varient suivant
la position. La charge est vue comme une mesure de Radon et les serveurs adaptent leur
allocation de puissance en fonction de la charge actuelle. Nous établissons la région de stabilité
de ce systeme de files d’attente sous les hypotheses usuelles d’ergodicité. L’étude de la région de
stabilité fournit un résultat contre-intuitif sur I'impact de la coopération entre les serveurs. Deux
sous-classes de politiques d’allocation sont également étudiées : les politiques monotones qui
préservent une relation d’ordre naturelle pour la charge et les politiques cellulaires ou ’espace
est partagé entre les serveurs. Le domaine des réseaux de communication sans-fils est une
application naturelle de ce modele.

Abstract In this chapter, we analyze a queueing system that is characterized by a space-time
arrival process of customers who are served by a countable set of servers. Customers arrive at
points in space, and the server stations have space-dependent processing rates. The workload is
seen as a Radon measure, and the server stations adapt their power allocation with the current
workload. We derive the stability region of the queuing system in the usual stationary ergodic
framework. The analysis of this stability region gives a counter-intuitive result on the impact
of cooperation between server stations. Two subclasses of policies are also studied: monotone
policies which preserve a natural ordering of the workload, and cellular policies where the space
is divided among the server stations. The field of wireless communication networks is a natural
application for the model.
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6.1 Introduction: Model description

In this chapter, we analyze a space-time arrival process of customers served by a countable set
of servers. This model is closely related to other allocation problems studied by Tassiulas and
Ephremides [151] and Bambos et al. [159], [10], [24],[25], [26]. We consider a system where
some jobs arrive exogenously and they are located in the space R?. A set of server stations serve
the incoming jobs and each server station processes jobs at a rate depending on the location of
the job, and a random environment variable.

This model is motivated by large scale wireless communication networks but it could suit
other types of infinite queuing systems. In a wireless network scenario the customers are mobile
users who want to receive some data from a network consisting of a set of base antennas. The
position of a mobile user with respect to a base station determines the processing rate at which
the base station serves the mobile user. A user may receive data simultaneously from several
base stations, and an important issue is to find a resource sharing policy which maximizes the
throughput of the network. Applications of this work to wireless networks are given in Chapter
7, Section 7.4. Other applications of resource allocation problems include flexible manufacturing
systems and computing systems with competing tasks in a random environment.

In this chapter, we establish some results on the stability of this queuing system. An
important aspect of this model is that the workload is not a vector in Ri but an atomic
measure with a total mass that is possibly infinite. This modelling contribution is the proper
way to handle large spatial queuing systems and this setting could be used successfully in other
spatial models. Another feature is that the number of server stations in the system may be
infinite. All our results are proved in the stationary ergodic framework and independency is
never required. The proofs of stability are based on generalizations of Loynes’ sequences to
general metric spaces. Some ideas of optimization theory are also used in the analysis of the
stability region, and they pave the way to other developments.

The remainder of this section describes the model under consideration. Section 6.2 is ded-
icated to the stability analysis of our model. In Section 6.3, we examine a subclass of policies
which preserves a kind of monotonicity for the workload measure. In Section 6.4 we determine
the stability region when the spatial intensity measure is absolutely continuous with respect to
the Lebesgue measure.

6.1.1 Customers arrival point process

All the random variables are defined on a common probability space (€2, F, P). This space is
endowed with a measurable flow {0;},t € R. We suppose that (P, 6,) is ergodic.

The customers (or jobs) are points of a marked point process A. Namely A is a spatial
marked point process on R x R? with marks on R;. The point process is represented as a
counting measure A =) 04T X p,om}» Where 4 is the Dirac mass measure. The n‘" job arrives
at time 7T}, € R located at X,, € R% and it requires a service time of o, € R;. We assume that A
is compatible with the flow 6: if A(w) =", 97, X0} then Ao O (w) =7, 61—t X .00} We
assume also that for all bounded Borel sets B C R4 EA(B) = EY., 1((T,, X») € B) < oo.
Thus the intensity of A is a Radon measure and can be expressed as A(dx)dt (see for example
Lemma A2.7.11., p.634 in Daley and Vere-Jones [55]). A is not necessarily a finite measure on
R?, and between time ¢ and t' > ¢ an infinite number of jobs may arrive.

We define Pﬁx’x(-) as the Palm probability of the point process A at (t,z) € R (refer
to [55], chapter 12). Since A is compatible with 6;, we have: PZ’I(-) = Pg’x(ﬁ_t-). ot will
denote the required service time of a customer arriving at time ¢ in x under Pﬁ"w. We assume
that 0 < E%%(0q ;) < +00, A(dx)-a.e.. Remind that E%*(0g,) can be interpreted as the mean
service time requirement of a typical customer arriving at x.



6.1.2 Server stations policy

There is a countable set of server stations indexed by J. The server j serves a customer located
at = at rate r;(z). We assume that z — r;(z) is a positive measurable function and

lim r;(z) =0, (6.1)
|z|—+o00
where | - | denotes the Euclidean norm. The server stations are in a random environment

and their processing powers vary over time. At time ¢, the total processing power available is
€j(t) € Ry. This process is compatible with the shift: €;(t) = €; 00y, and p; = Fej < +o00.

W4 is the workload at time ¢, it is the set of all jobs waiting to be processed. W; is an atomic
measure on R?, and [ Wi(dzx) is the sum of the remaining service times over all customers in
B.

The server stations divide their processing power among active customers according to a
policy scheme. This power allocation depends on the current workload. The system cannot
process an infinite amount of service in finite time in a bounded set, more precisely:

for all bounded borel set B, ij sup rj(z) < +oo. (6.2)
j zeB

Definition 6.1.1 Let M be the set of Radon measures on R?, endowed with the vague topology
(refer to [55]). A policy m = (7;)jes s a measurable mapping from M x Q to M7 satisfying,
for allw € Q:

/ mj(m,w)(dz) < €;(w) (6.3)
R4

mj(m,w) is absolutely continuous with respect to m. (6.4)

The policy enforced at time t is w(Wy, Ow).

The server stations cannot allocate more than their total processing power (Equation (6.3)).
If the total workload in a set is zero, no processing power is allocated to this set (Equation
(6.4)). The server station j achieves at time ¢ an instantaneous service rate for a job located
at z of: rj(z)mj(Wy)({z}).

The policies under consideration are stationary: if W is stationary then (W, 6yw) is also
stationary. The study of non-stationary policies is performed in [151] in a similar framework,
in this article the authors show that the non-stationary and stationary policies have the same
performances (as far as stability is concerned).

Here is a simple example of a deterministic policy defined for atomic measures:

n 0 if m is the measure zero
mj (m) = €j0,+ otherwise .
J
where, x;r = arg max{x cri(z)L(m({x}) > 0)} If multiple choices of z are possible, choose

the first in the lexicographic order. With this policy, the server stations serve the user with
the best processing rate first. In particular this policy is work conserving: if Wy is not the null
measure, the server is active.



6.1.3 Evolution Equation

The time evolution of the workload measure is given by the equation: for all Borel sets B and
t' > t,

Wy (B) = Wi(B) + /t ’ /B 7oaA(ds x dr) ~ 3 /t ’ /B ri(@)m (Ws) (da)ds.  (6.5)

Using Borovkov’s terminology (see [42], chap. 4), Equation (6.5) defines a stochastic recursive
process: we can write Wy, = fr(Wr, A?h), where A?h denotes the trajectory of the arrival
point process A between ¢ and t + h.

Under a given policy 7, for a Radon measure m, we define W™ as the workload at time ¢

if WO =m.

6.1.4 Some Examples

Example 6.1.2 All jobs arrive on a countable set of points: {x;},7 € N, with no accumulation
points. These points are waiting rooms and A\; = EA([0,1] x {z;}) < +o0. In this example, the
system reduces to a multi-class job traffic with processing rates depending both on the class
and the server station. The stability region of this type of system has been examined in [159].

Example 6.1.3 In a wireless communication scenario, d = 2, the server stations are base an-
tennas, and the customers are mobile users who receive some data from the network. The server
station j is located at Y; € R? and its processing rate function is r;(z) = L(z,Y;)/I(z), where
L(z,y) is the attenuation function on the channel between x and y and I(z) = >, 7 L(2,Y}) is
a shot noise process. A common assumption on the attenuation function is L(x,y) ~ |y — x|~ %,
with o > 2. Motivations for this model are given in Chapter 7.

Example 6.1.4 When ¢; € {0,1}, the model has a random connectivity. The server stations
are switched on or switched off. At time ¢, if €;(t) = 1 (resp. 0) the base station j is switched
on (resp. switched off) (see also [26]).

6.2 Stability Analysis

6.2.1 Stability Region

A policy 7 is stable if there exists a point process M such that {M o 6;},t € R, is a solution
of Equation (6.5). The queuing system is said to be stable if there exists a stable policy. This
definition is called stochastic stability in [24]. In §6.2.4, we examine a stronger definition of
stability.

The parameter of the queuing system is the arrival marked point process A. Let N be the
set of arrival processes of finite intensity and finite mean service time, we define:

Vj, f; is non-negative, measurable and A(dz)-a.e. >, fj(z) = 1},

0,z )
N?Z = {A € N : 3f € F such that: Vj, / WM(M) < pj}, (6.6)
R4 J
0,z )
N* = {A € N : 3f € F such that: Vj, / WM(M) < pj}. (6.7)
R4 J



These sets are generalized continuous versions of the stability sets introduced in [159]. Note

0, .
that [ Wde) is a traffic load: EE{$ (00,2)A(dz) is the mean service time per surface
J

unit and r;(x) is the processing rate at « for server station j. We can now state our main result:

Theorem 6.2.1 For the queuing model described above,
- if A e N*, then there exists a stable policy,

- if there is a stable policy then A € N°°.

The stability region depends on the distribution of A only through its means. To fix ideas, if
there is only one server station then all jobs arrive at the same location, say 0. The stability
region is thus given by E%O(O'Q,O))\(O) < p171(0): this is the usual condition p < 1 for G/G/1
queues.

In the proof of the theorem, we establish that to a given stable policy 7 corresponds (f;)jers
in F such that:

[ B o,
Rd -

rj(x)
f; is the proportion of service carried by the server j for users in x in the stationary regime.
The converse mapping is also available, for a set of functions (f;);es in F such that the above
inequality is satisfied with a strict inequality, there exists a stable policy. In fact this last
assertion will only be proved for a dense subset of functions of F. The weakness of this theorem
is the lack of precision on the policy which achieves the maximum permissible loading. The
policy we build in the proof of the theorem is not practical.

6.2.2 Necessity for stability of Theorem 6.2.1

This technical lemma is needed in what follows (for a proof, see Lemma 2.2.1 [20]).

Lemma 6.2.2 Let Z be a non-negative a.s. finite random variable, such that for a given t,

Z —Zob, € LYP), then E(Z — Zo0;) =0.

We assume that there exists a stable policy 7 and a stationary workload measure Wy = Wo0;.
Let B be a bounded Borel set, from Equation (6.5),

W o 6,(B) // 052 A(ds x dz) /Hh/ )7 (W 0 0,))(da)ds.

Let 7j(B) = E(m;(W)(B)), 7; is a Radon measure, and Equation (6.3) gives [pa 7j(dz) < pj.
Using Assumption (6.2), we obtain

E(|W o 6,(B)—W(B)|) <t /B E%"(00,4)A(dx) 1Y p; sup () < +oo.

Thus W o §,(B) — W(B) € L'(P), applying Lemma 6.2.2:
0 = i(x)m;(dx). .
Jy e = X [ riormsan) 65)

Since Equation (6.8) holds for all bounded Borel sets, the measures: }_;r;(z)7;(dz) and

Eg’x(ao,x))\(dx) are equal. In particular the measure r;(x)7;(dz) is absolutely continuous with



respect to E%m(ao7m))\(dx). Let 7j(x) be the Radon-Nicodym derivative of 7;(dx) with respect

to A(dz) and fj(z) = % We deduce from (6.8) that for all Borel B:

/B ES" (00.2)A(dx) :; /B £i(@)ES" (00.2)M\(dx).

. _ E%% (50.0) i (x
Thus A(dz)-a.e. >, fj(z) = 1land f € F. Finally, Jpa Tj(dx) < pjreads [pq %A(dw) <

pj and the second assertion of Theorem 6.2.1 follows.

6.2.3 Sufficiency for stability of Theorem 6.2.1

We first find some properties on the set N'° as it is defined in Section 6.2.1. For z € R?, let
Jr ={Jj: fj(x) > 0} and for a set B, Jp = UzepTs-

Proposition 6.2.3 If N* is not empty, there is a f € F such that for all j, x — fij(x) is
continuous and for all bounded set B, |Jg| is finite.

Proof. To simplify notations, v;(dz) will denote the measure A ((0()) ”))\(dm) and J is set to be

N. Let f € F such that Vj, p; = fRd fj(x)vj(dz) < 1. Let G be a open bounded set. For all j,

from Lusin’s Theorem (see for example [141]) there exists a sequence of continuous functions

on G, g7(-), such that vj(dz)-ae., 0 < g7(2) < f;(z) and lim, I 97 (x)v;(dz) = Jo fi(@)v;(de).
We have . g7 (x) < 1=}, fj(z). Let €"(x) =1-3_,, g7 (x). We deﬁne

nin | gH@)+ Ljme™(z) if ze@
fj(x)_{f;(x) = if rda.

We check that f™ is in F and for n large enough: Vj, [pa [ (@)vj(dz) < 1. By iterating this
construction for a set of open sets covering the R?, we deduce that there exists an f € F, such
that Vj, pj = fRd [i(x)vj(dz) <1 and f; continuous.

Now we turn to the second part of the proposition. Let K be a compact subset, f; as

above and max(p;, ) < p; < 1. We define g;(z) = f];/fv), Jga 95 (@)v;(dx) = % < 1 and
J J

>_;9j(x) > 1. For all z, there exists j, such that 221:1 gj(x) > 1. By continuity, since K is

compact, jx = Sup,cg js is finite. It is immediate to check that fj(z) = % has all the
i<z 99

required properties. O

We can then turn back to the proof of Theorem 6.2.1. We suppose A € N®: there exists

(f;),7 € J, in F such that for all j, [5 ’T(mf‘:;f’())\(da@) < 1. We can assume that f has the
properties given in Proposition 6.2.3. For a given policy 7 and an initial atomic workload m,

we define the set:
A1) = {:c : rj(:v)/o T (W ({a})ds < fi(z) (m({z}) +/[0 Do)

x € AT'(t) means that the contribution of server j is a proportion of at most f;(z) of the jobs
arrived at z. Consider the following non-stationary policy: for all j € J and t > 0:

() = €j(t)0ps  if A%V:w)#@
0 if  AM(t) =0

052 A(ds x dz)) },

(6.9)

where, 2} = arg max {z: 1z € AXVO(t))]L(Wt({x}) > 0))rj(z)} if multiple choices of x; are
possible, choose the first in the lexicographic order. The existence of this policy follows from



Assumption (6.1). The policy m divides the workload among all servers with proportions f;
and processes the jobs at the faster available rate. m;(t) is the policy enforced at time ¢, and
with the usual notations, 7;(t) = m;(W;™).

Note also that if AT(T) = () for some T', then the server j will only serve after time T jobs
arrived after time T and for ¢ > 0:

ATt +T) = AJ(t) o Or. (6.10)

Let B be a bounded Borel set, we have:

W,(B) — /0 t /B 000 A(ds x d) _Zj: /O t /B ()5 (s) (da)ds
- 3 / t [ H@esats < in -3 [ t | i) (s) o)

:Z/ YW (d),

W :/Ot/B%A(ds x dz) —/Ot/Bﬂj(s)(dx)ds. (6.11)

We now define a total order <; on R%: x =; y if r;(x) > r;(y) or rj(z) = r;(y) and = is in
the lexicographic order smaller than y. A Borel set B is a j-maz set if B = Uyep{x : x =; y}.

where:

Lemma 6.2.4 For a j-maz set B:

Wi(B) = max /fﬂ WO (d) // fi J“A(dsxdx) /Ot ¢;(s)ds,

1 O-S x h
e /B%Tw‘“ds <o) [[ o))"

Proof. The policy 7w divides the system with the set of servers J into different queues, one for
each server in J with an incoming workload equal to:

Z/(:/B [i(2)os s A(ds x dx).

Wt] (B) is the rescaled workload: the server j serves the user at x with a unit processing rate. If
B is a j-max set, from the definition of policy 7}, the server j allocates all its processing power
to B if the workload in B is not 0. The customers in R\ B are served if there is no customer in
B. Thus the statement of the lemma follows from the usual formula for the G/G/1 queue. O

Let My = W o0 6_; be the Loynes’ sequence under policy 7 and M J = WO o0 f0_;. We have:

Z/r] t]dx

Lemma 6.2.4 implies that Mtj (B) is a non-decreasing sequence for a j-max set. We say that two
processes {X;}ier, and {Y;}icr, couple if there exists 1" such that for t > T: X; =Y;.

Lemma 6.2.5 Ast tends to infinity, Mtj couples a.s. with Mgo, a finite random measure.



Proof. Let B be a j-max set, from the Birkhoff’s Theorem a.s.:

ti@m;/ /ff A(ds x dz) /"CJT’@((’WW@

Therefore M? (B) = (supg<p<t f I fjix(af 2 A(ds x dr)—h)T is a bounded increasing sequence

and it couples with MZ,(B) = (SupPper, f I3 fjrf(;)s’”” A(ds x dz) — h)™T.

R? is a j-maz set and for any set B: M (B) < M (R%) < M, (R%). Thus a subsequence
M (B) converges to M (B) and M is well defined as a finite random measure.

Since W/ (RY) is a G/G /1 queue, we can define T the first time after the coupling time with
M o Ht(Rd) such that W/ (Rd) =0, T is a.s. finite. In view of Equation (6.10), for t > T,
WJ M, o 6. Thus: MJ WJ of_; = = M, and M] couples with M] O

Let B be a bounded set. For the choice of f given by Proposition 6.2.3:

Mi(B) = 3 [ ry(e) i da), (6.12)

with Jp finite. We deduce from Lemma 6.2.5 that M;(B) couples a.s. with My (B) =
Yieas I rj(2) M (dx). We thus have proved the existence of the limit: lim;_o My = M.
To conclude the proof, it remains to prove that M, is a stationary solution of Equation (6.5)
for a policy 7.

Along the line of Lemma 6.2.5, we can also prove that the process {Mngs 005 }o<s<p couples
with {MZ, o 05 }o<s<n for any positive h. From Equation (6.11):

M, , 06,(B) = /i h/ %A(dsxdx)_/m/wj(at,s)(dx)ds
- / /fﬂ A(ds x dz) / /wje 1t + 5)(dw)ds.

If Z denotes the coupling time of {Mngs 0 05(B)}o<s<h,jegy, for t > Z we have:

/Oh/Bwj(at,t + 5)(dz)ds = M2 o 6;,(B) — / / ff A(ds x dz).

For all h, the right hand side of the last equation does not depend on t, thus m;(6_s,t + s)
couples a.e. with a measure 773»(3) = lim; mj(0_¢,t + s). Let T” such that the coupling occurs,
we have 77 (s) = lim 7 (0117 005, t +T" — s+ 5) = 7;(T") 0 Os_17. As a consequence, 7' is a
stationary policy and M, is a stationary solution of Equation (6.5). Theorem 6.2.1 is proved.

Remark 6.2.6 In the particular case described in example 6.1.2, a simpler proof is available.
0,z (s

We have : ), 2B :j((;f)i)f’(%) = p; < 1. Consider the following deterministic policy defined

for atomic measure with atoms on {x;},i € N:

(xl))‘ E 7 Z(0-0 :Bz)‘

Tj (551)/0]

mj(m)({zi}) = e;1(m({z}) # 0)=

Computing My({x;}), it appears that this policy is stable.



6.2.4 Convergence toward a Stationary Solution

If there exists a stationary regime in a queuing system it is important to know if for any
initial condition the workload converges in some sense to the stationary regime. The following
proposition gives a positive answer for the policy defined in the proof of Theorem 6.2.1.

Proposition 6.2.7 If the policy scheme defined by Equation (6.9) is enforced, for any finite
initial workload at time t = 0, for all bounded Borel set B, {W;yr(B)},t € R, converges in
variation toward {M o 0;(B)},t € Ry, as T tends to infinity.

Note that the workload measure does not converge in variation, convergence happens only
on bounded sets. The proposition states that the workload converges in variation for the vague
topology.

Proof. The proof relies on the following fact: if a stochastic process {X;} couples with {Y 0 6;}
then {X; 7}, t € Ry, converges in variation toward {Y o6;},t € R, as T tends to infinity (see
Lindvall [115] or Theorem 2.4.1. of [20]).

From Lemma 6.2.4, W} (R?) is G/G/1 queue, therefore the coupling of W} (R%) for any initial
condition follows from Property 2.4.1. in [20]. For a general Borel set B, it suffices to notice
Wtj (B) < W/(R%). The same arguments used in the proof of Theorem 6.2.1 works to show that
W/ (B) couples for any initial condition. If B is a bounded set, Wy(B) = > ieTs I3 ri(2) Mj (dz).
Since Jp is finite, the coupling also occurs. O

6.3 Monotone cone policies

6.3.1 Loynes’ sequence for Monotone policies

The policy we have defined to prove the sufficiency part of Theorem 6.2.1 is not interesting.
In particular, it requires the knowledge of the functions f;. Along the line of the work done
in [151], [10], [24], it would be very appealing to find some stable policy which does not rely
on the knowledge of the parameters of the system. In this section, we first give some material
on Loynes’ sequence on Polish space and then we establish some sufficient conditions on the
stability.

The framework of Loynes’ Theorem for general Polish space is given in §2.5.2. of [20], (see
also §C.1, in this Appendix). The space M is a Polish space for the vague topology (refer to
[55]). We define a partial order < on M, the set of Radon measures on R%. Let m and m/ be
two Radon measures, m’ < m if for all bounded Borel set B in R? m/(B) < m(B). A policy is
said to be monotone if m’ < m implies for all t € R, W™ < W™

In the sequel 0 will denote the null measure on R?. The Loynes’ sequence (My, t € Ry) is
defined as the workload at time 0 when the workload was the null measure at time —t, that is:

M; =W o6_,.
These two classical lemmas are straightforward.

Lemma 6.3.1 Let (my,,n € N) be a monotone sequence in M for <, such that for all bounded
Borel sets B, my(B) is bounded. Then, (my,n € N) converges in M for the vague topology.

Lemma 6.3.2 Suppose 7 is a monotone policy then {M;},t € Ry, is non-decreasing sequence

(for =).

In view of Lemma 6.3.2, the Loynes’ sequence is of particular interest for the class of monotone
policies. Indeed, if (M;),t € R4, is an non-decreasing sequence and is bounded by a random



Radon measure Z (for <), using Lemma 6.3.1, M; converges a.s. in M and we can then define
the Loynes’ variable as:
My = lim M;.
[ee] t—g—noo t

Monotone policies are quite natural in our setting. Most known processing policies are
monotone. Here comes an important example.

Example 6.3.3 This class of policies has emerged in papers, see [151] [10], [24]. Let a > 0,
we define for an atomic policy m, A;(m) = argmax {z : m({z})*r;(z)} and:

_atl .
mi(m) = 4 CUMe 2igen oy (@)™ o 00 im0
0 if m=0.
where C'(m) is the constant such that [pq m;(m)(dz) = €; if m # 0. Notice that w(cm) = m(m)
for ¢ > 0. For finite workload measures, it can be shown that this policy is monotone. However,
it is not clear whether or not this policy is stable when A € N3,

Definition 6.3.4 Let g be a measurable mapping from M to M. We say that g is left con-
tinuous (resp. right continuous) if for all non-decreasing (resp. non-increasing) converging
sequence (my),n € N, of M, lim,, g(my,) = g(lim,, m,,).

It is consistent to define some continuity properties with converging sequences since M is a
complete metric space. Right continuous policies are not of practical interest, indeed a work con-
serving policy cannot be right continuous. The cone policies of example 6.3.3 are left continuous.
We define the discontinuity set of a function h as disc(h) = {z : h(z) not continuous at z}.

Proposition 6.3.5 Suppose 7; is left continuous and \(disc(rj)) = 0 for all j € J. When
M is Radon, it is a stationary solution of Equation (6.5).

Proof. By definition, WMt = WtOJrS of_; = Wto+s 0f0_s_t00s = Mg 00, hence, using Equation
(6.5), for a Borel set B and t € R:

Myypo0h(B) = WM(B

= / /USJ; (ds,dx)

2 / [ ri@)m (M 00.) o). (6.13)

If (tx),k € N, is an increasing sequence converging toward +oo, (M, 450 05),k € N, is a non-
decreasing sequence converging toward My, o 0. Since m; is left continuous, we have for the
vague convergence: limy_, oo 7 (My, 45 0 0s) = m; (Moo 0 05).

For A = ), 01, Xp,0n, We define C = {X,,,n € N} and let B be a bounded Borel set
such that C N 9B = . OB avoids a countable set of points in R?. From Equation (6.5) and
Assumption (6.4), Mo 0 05 and 7;(Ms) o 6, are atomic measures and they are supported by
>k 0x, (T < s). Thus, for B as above and s in R, we obtain 7;(Ms 0 6,)(0B) = 0. Note
also that A(disc(rj)) = 0 implies that a.s. m(My o 6,)(disc(r;)) = 0. From Lemma B.2 (in
Appendix), we deduce a.s.:

Jin [ (@m0 00.)(d0) = [ 13m0 06,)(do)



Now, from Assumption (6.2), >_; foh Jp7i(@)mj(Myys 0 05)(dx) < 375 hsup,eprj(z) < 400, by
the dominated convergence theorem, a.s.:

Mao 0 0,(B) = Mao(B) + /O " /B 057$A(ds,dx)—zj: /0 " /B (@) (Mo 0 65)(d2).

Then, using the forthcoming Lemma 6.3.6, this last equation is indeed satisfied for all Borel
sets and M, is a stationary solution. O

Lemma 6.3.6 Let C be a countable set of points in R and C the set of bounded Borel sets of
R? with C N OB = (). Then:

- C is an algebra and the o-algebra generated by C, o(C) is the Borel o-algebra B.

- From a measure m defined on C, there is a unique extension to m on B.

Proof. From the relations: 0(ANB) C 0AN9IB, 0(AUB) C 0AUIB and 9(A°) = A it follows
that C is an algebra.

B is the o-algebra of the algebra generated by the open rectangles of R%. To prove the first
assertion of our lemma, it suffices to prove that the rectangle )0, 1[¢ can be written as UpenBn,
where By C Bs... C By, € C. To this end, consider the rectangle R, =]e,1—¢[?, with 0 < € < 1.
If e #€, OR.NOR. = (). Since C' is countable there can only be a countable set of € such that
C N IR, # (. In particular, there exists an increasing sequence €, such that C N IR, = 0.
We have proved the first statement of the lemma. The second assertion is the Caratheodory’s
Extension Theorem. O

The assumptions of Proposition 6.3.5 can be changed as follows. Let E = {w € Q : 3T, V¢ >
T, Mi(w) = Ms(w)}. On E, M, converges in variation (or couples). We easily check that F
is a f-invariant event and by ergodicity P(FE) € {0,1}. If P(E) = 1 then M; couples with
M, a.s. and the assumptions on the continuity of 7; and r; are no more needed to ensure the
stationarity of M.

Corollary 6.3.7 For a given policy w, if My = Wy o 0_4 couples with My, then My is a
stationary workload solution of Equation (6.5).

6.3.2 Stability of cone policies and saturation rule

A cone policy is policy m such that for all ¢ > 0, m7(cm) = w(m). The policy 7+ described
in §6.1.2 and the policy described in Example 6.3.3 are examples of cone policies. In this
paragraph, we show how to determine the stability region of some monotone cone policies.
This technique uses the saturation rule developed by Baccelli and Foss [21] (we will refer to
[20], §2.11.3-4). In this paragraph we will assume that:

(1) X has a compact support K,
(A 0.5. 2) (i) x — r;(z) is continuous,

(i4i) €j =1 (the environment is deterministic).

Assumptions (ii) and (iii) may be overcome. Assumption (i) is of more fundamental nature. It
relies on the saturation rule as it is stated in [20], the arrival process intensity needs to have a
finite total mass.

Let W/™ be the workload at time ¢ > 0 when at time 0 the initial workload is m and when

the arrival process is empty:

— t —
W™ =m— Z/o rj.mi(Wi")ds.
J



We define the Radon measure associated to the arrival load intensity: v(dz) = Eg’m (00,2)A\(dx),
the time needed to empty this load is

r=inf{t >0: WY =0}.

From Assumption (i), the arrival point process A can be rewritten as:

A= Z 5{Tk7Xk7Uk}’
keZ

where a.s. Tp < Trpy1 and Ty = sup{k : T < 0}. We define a partial ordering on the
arrival counting measures. Let A; = Zkgo 04Ty, Xy,00) With support on R_ x R? x R4 and
Ay = Zkgo 5{T127Xk7‘7;€}7 Ay < Ag if for all k <0, T,é < T} and O';C < 0. A policy is externally
monotone if A; <; Ay and for some ¢t > 0, W2 (Az) = 0 implies that W2 (A7) = 0, where W (A;)
is the workload at time ¢ > 0 when the arrival counting measure is A;. Note that a externally
monotone policy is also a monotone policy.

The next result gives a simple criterion to determine the stability of externally monotone
cone policies. Note however that proving that a policy is externally monotone may require some
work.

Theorem 6.3.8 Under the foregoing assumptions (A6.3.2), let ™ be a work conserving exter-
nally monotone cone policy. Assume that for all t, the mapping m +— th(Rd) 18 continuous
for the vague topology on M. The policy is stable if T < 1 and unstable if T > 1.

Proof. Let t > 0 and ¢ > 0, we easily check that for any cone policy, the following nice scaling
property holds:

m
t

Wi = tWer, (6.14)

For ¢t > s, the arrival process between times s and ¢ is AL =, 1(s < T < 1)1 Xy 00} L€t
A(s,t) = > U(s < Tj, < t)dyx,,0,)- For s >0, we define the maximal dater of the system by

Zg=inf{t >0: WP (A500_,) =0},

that is the time needed to empty the system when the arrival process is restricted to the interval
[—s,0). We introduce:

Zy=inf{t >0: WtA(_S’O) = 0}.

Note that the external monotonicity of the policy 7 implies that Z; < ZS. From Equation
(6.14)

=inf{t>0:W, = (RY) =0}

Z, —_A(=5,0)
S

The ergodicity of A implies that a.s. A(;S’O)
A(=s,0)

continuity, for all ¢, Wt > (RY) converges as s tends to infinity a.s. to Wt” (R9).
Fix jo € J, from Equation (6.2) and Assumption (ii), there exists C' > 1 such that

converges to v for the vague topology. Thus by

Vo € K :rj(z) < C and rj(z) > C~L. (6.15)
The policy is work conserving, therefore if W;(R?) > 0 and h < CW;(R?),

C'h < Wy(RY) — Wi (RY) < Ch.



This last property implies the continuity of Zs, so we finally obtain

. Zs . 7Y (mod

lim — =inf{t > 0: W/(R%) = 0}.

s—+o0 8
Fort > s,let X (A) = inf{u > 0: W2(AL) = 0}, be the time of last activity in the network when
the arrival process is AL. We can apply the saturation rule to X. Indeed all the assumptions
(1)-(4) p.162 in [20] are satisfied. Causality is clear, homogeneity and separability come from
Assumption (iii) and external monotonicity comes from the assumption that 7 is externally
monotone.
Assume first that 7 < 1. By Theorem 2.11.3 in [20], a.s. lim;_,o, Z; = Z is finite. Equation

(6.15) implies an upper bound on the total mass of My = WP 0 60_, = W2(AL 0 0_;):

MR <CZ, < CZ.

We deduce that the Loynes’ variable is well defined. The stability is then a consequence of
Proposition 6.3.5.

Assume on the contrary that there exists a stationary solution of Equation (6.5), say (Y;):cr.
We need to show that 7 < 1. Let t > 0, since 0 <X Y_;, the monotonicity of m implies that
M,; <Yjy. Therefore by Proposition 6.3.5, the Loynes’ variable is well defined. Equation (6.15)
implies a lower bound on the total mass of M;:

C~1Z; < My(RY) < Yo (RY).

This last inequality implies that a.s. limy .o Z; < 0o. By Theorem 2.11.3 in [20] we deduce
that 7 < 1. O

6.4 Spatial Allocation

In this section, we suppose that the spatial arrival intensity A(dz) is absolutely continuous with
respect to the Lebesgue measure: it is expressed as A(z)dz. From Theorem 6.2.1 the stability
relies on:
. . 1 E%x(UO,x)fj(x)
p = inf sup — 4
JEF jeg Pj Jrd rj(x)
If p < 1, the system is stable, if p > 1, the system is unstable. In this section, we analyze this
optimization problem. The geometry of the network is hidden in the processing rates r;. There
is a mapping from an f in F to a stable policy w, an optimal policy is thus given by a choice
of f that maximizes the permissible traffic load.

Az)dz. (6.16)

6.4.1 Optimal Spatial Allocation
We define:

0,x o (1
Pj(f) 1 /Rd EA ( O,JB)fJ( )

_ p_J @) AMz)dx and p(f) = Slj}P pi(f).

F is a convex closed set and f +— p(f) is a convex function, thus the minimum of Equation
(6.16) is reached and we define

Fr=A{feF:p(f)=nr}

The extremal points of the convex set F are the measurable functions such that f;(z) =
1(xz € Vj), for a Borel set V;. This class of function is called tessellation. A tessellation is



a partition of the space: there exists a set D of null measure such that each point in R\ D
belongs to a unique V;. The policy scheme which corresponds to a tessellation is a cellular
policy: a customer is served only by one server station.

Proposition 6.4.1 If p is finite there is an f € F such that:

Vi, pi(f) =p-

If there is a finite number of server stations, all f € F* satisfy the above equation.

Proof. Let f € F and suppose for example, p1(f) < p2(f), since, p2(f) > 0, fo is not a.e.
equal to 0. Thus, there exists a measurable non negative function x +— ¢(z) such that f5(x) =
f2(x) —e(x) >0, fi(z) = fi(z) + e(z) <1 and pa(e) > 0. Let f5(z) = f;(z), for j ¢ {1,2}.
f¢ € F and we have p1(f€) = p1(f) + pi(€) and pa(f€) = p2(f) — p2(€). Thus for pi(e) small
enough, supjeqy 2y pj(f€) < supjeqi oy pj(f) and p(f) < p(f).

Suppose now that f € F*, then f€ is also in F*. By iterating the construction above for all
J»j', such that p;(f) < pj(f), the proposition follows. O

Proposition 6.4.1 as an intuitive meaning: for an optimal spatial allocation, the traffic load
is the same on each server station. We can prove a more surprising result. We say that the
processing rates are singular if there exist j, k in J, a constant C > 0 and a Borel set A of
positive Lebesgue measure such that:

Vo e A, rj(z) = Cri(z).

Proposition 6.4.2 If p is finite and if the processing rates are not singular, then there is an
f € F* which is a tessellation.
If there is finite number of server stations, all f € F* are tessellations.

This proposition gives a counter-intuitive result: the server stations do not need to share
the jobs to reach the stability region. All the difficulty is to find the optimal tessellation which
reaches the optimum. This result is not very surprising from the point of view of convex
optimization: it only asserts that the extremum is reached at an extremal point.

The definition of singular processing rates is purely technical and does not rely on any
natural assumption on the processing rates. In the wireless scenario (example 6.1.3) if Y; # Y},
for all 5,k € J and [ is a strictly convex function then the processing rates are non-singular.
Proof. We consider the f € F* given by proposition 6.4.1. Let E = f1(]0,1[)~! N f2(]0, 1))~ .
In this proof, p will denote the Lebesgue measure. We have to show that p(F) = 0. Assume
instead that u(E) > 0, we can suppose without loss of generality that pu(E) < +oo. Let A, B
be disjoint compact sets of positive Lebesgue measure included in F, these sets exist in view
of Theorem 2.14 in Rudin [141] (Riesz Representation Theorem). We consider the function
¢(x) =1(x € A) — sl(x € B), s > 0.

Let f{(z) = fi(x) + ed(x), f5(x) = fa(x) — ed(x) and fe(z) = fi(x) for i & {1,2}. T e >0
is small enough, f€ and f~¢ are in F and for ¢ € {1,2}:

pi(17) = pi(f) £ epi(d) = p £ epi(1a) F sepi(1p).

Since f € F*, max(p1(f*€), p2(f*)) > p and we deduce that sign(pi(¢)) = sign(p2(a)),
where sign is the sign function (sign(0) = 0, and for =z # 0, sign(z) = %) It follows
that for all real s, p1(14) — sp1(1p) and p2(14) — sp2(1p) have the same sign. Therefore
the vectors (p1(14),p1(1B)) and (p2(14),p2(1p)) are colinear: there exists Cy p such that:



p1(1a) = Ca pp2(la): Cap cannot depend on B and by symmetry does not depend neither
on A. Thus, exists C' > 0 such that:

p1(1a) = Cp2(14).

This last equality has been proved for any compact set included in F. From Theorem 2.14 in
[141], it can be extended to any Borel set included in E. Thus, for all A C F with p(A) > 0,

0,z 0,
M(lA) .fA By lo0s) o Ea (OO’”))dx = 0. We can apply Theorem 1.40 of [141] and conclude that

p171() p2r2()
a.e. in E:1 ' o

C'ri(z) = ra(x).

This contradicts our hypothesis on the processing rates and therefore p(E) = 0. We have
proved that there exists f in F* such that a.e. fj(z) = 1(z € V;) and u(V;NVy) =0 for j # k.
We deduce that (1(V})) c7 is a tessellation in F*. O

6.4.2 Cellular Policies

Let {V;},j € J, be a tessellation, a cellular policy with cells {V;}; is a policy scheme satisfying
for all j and m € M: m;(m)(R4\V;) = 0. From Proposition 6.4.2, cellular policies reach the
stability region under some assumptions. We say that a cellular policy is work-conserving if
m(V;) > 0 implies 7;(m)(V;) = 1.

Proposition 6.4.3 Let {V;},j € J, be a tessellation with bounded sets, any work conserving
cellular policy with cells {V;}; is stable if:

v, /u)\dx < pj.
v, T’](CC) ( ) J

0,z
If there is a j such that: fvj W)\(dx) > p; then any cellular policy with cells {V;}; is
J

unstable.

This proposition is analog to the result on a single server queue which asserts that the
stability does not depend on the discipline, provided it is work-conserving. There is no inter-
action between server stations when a cellular policy is used, hence it is sufficient to prove the
following: suppose that the intensity measure A is finite and that there is a unique server. If
A € N¢ then any work conserving policy is stable, if A ¢ N*° any working policy is unstable.
This result on multi-class queues is mainly known. For the sake of completeness, we give a
proof of this fact.

When there is only one server in the system, the system reduces to a multi-class queue. So
the condition A € N is restated as:

[ B,
re  7(T) ’

where r is the processing rate for the server providing service for a user located at x and p is
the expectation of the available processing power.

Proposition 6.4.4 Suppose that the intensity measure A(dx) is finite and that there is a unique
server. If A € N then any work conserving policy is stable.



Proof. Since A is a finite Radon measure, N = Zn {Tn. 73

on R with finite intensity E(N fRd . For a glven work conserving policy m, define

= Jpa Mjf((f;: . From Equatlon (6.5), we deduce that for ¢t € [T, Tht1): Yy = (Y(Tn—) +

fT dt) . Y} does not depend on the policy and Y; is the usual workload for G/G/1

r(Xn

queue. The workload for this queue is equal to [pa A(dz)ES (5 UO fRd A on Adz) <
Similarly, we define W,, = Wr, _ and it appears that (W,,),n Z O 1s generated by a stochastic
recurrence, see [42], [20].

If Wy is an atomic measures with a finite set of atoms on R then a.s. so is W; for ¢t > 0.
We define the following policy on atomic measures with a finite set of atoms:

. €0y i m#0
: (m)H{o if m=0.

where 7 = argmin{x : 1(m({z}) > 0)r(z)}. If multiple choices of ™ are possible, we choose
the first in the lexicographic order. 7~ is the work conserving policy which dedicates all the
processing power to the slowest customer. 7~ is monotone and M, (B) < M; (R%). As already
pointed, M, (R?) is the Loynes’ sequence for the usual stable G/G/1 queue. From Lemmas
6.3.1, 6.3.2, we deduce that M, converges a.s. toward the Loynes’ variable M.

Consider now any work conserving policy m, we define similarly the Loynes’ variable M;
for policy m, My(RY) < M; (R?) < My (R?). The event A = {M; = 0} is a renovating
event for My, and since the workload of the G/G/1 queue is Strlctly less than 1, PY(A) >
Py (M (RY) = 0) > 0. From Theorem 2.5.3 and Property 2.5.5 of [20], we deduce that M;
converges to a stationary solution My, and that M; couples with M., (in the strong backward
sense). O

Restating Property 2.4.1 of [20], we can also prove that from any finite initial condition m,
W™ couples with M, o 6; (as t tends toward +o0). |

6.4.3 Homogeneous Networks

In this subsection, we establish the stability region in the wireless communication scenario
(example 6.1.3).

Spatially Ergodic Network.

The arrival point process A is supposed to be stationary in time and space. The intensity of
A is denoted by A and E%m (00,z) = 0. We assume that the attenuation function is radial and
positive: L(z,Y;) = I(]Y; — z|) with 7 — rl(r) € L'(R;). We assume that the point pattern
{Y;}jen is a realization of an ergodic point process on the plane R? of intensity v > 0. From
Campbell’s Formula, we have: FI(x) =v fR rl(r)dr < 4o00. The stability of the system relies

on:
pal = inf sup @)1 )dac
fEF jeN Jr2 l(|:C—Y|)

If Ao < p. the system is stable, if Ao > p. the system is unstable.

Lemma 6.4.5 p. is a.s. constant.

Proof. (fj)jen — (fj(- —v))jen is a bijection on F. It follows that for all y, p is invariant under
translations by y. Thus, for all a > 0, from ergodicity, P(p > a) € {0, 1}. ]



Honeycomb Network.

The server stations are located on a regular hexagonal grid of radius R. We index the server
stations by Z? and with a complex representation of R2, the server station (p,q) is located at
Y, = R(p+ qe's). Let {V;},7 € Z?, be the associated Voronoi tessellation: = € V; if for all
J # 4, lx =Y;| <|r—Yj|. A simple argument on the symmetry of the hexagonal grid leads
to the following proposition which implies that the Voronoi cellular network is optimal for the
honeycomb grid.

Proposition 6.4.6 For the honeycomb network,

1 _ I(x) "
pe ‘/v () ™

We turn to the analysis of the stability region when the server stations are located more ran-
domly. We now assume that the server stations are located according to a realization of a
Poisson Process of finite intensity v > 0.

Poisson Network.

Proposition 6.4.7 We assume that limsup, ., ll((4:)) > 0, [ is non-increasing and r?l(r) €

LY(Ry). If {Y;}jen is an homogeneous Poisson point process of finite intensity v > 0 then a.s.
pe = 0.

Thus, in the homogeneous Poisson case, the system cannot be stable. Note that if I(r) =
min(1,7~%), a > 3, the assumptions of the proposition hold. Whatever the intensity of the
base stations is, a local behavior of the Poisson point pattern will lead to a global instability.
This negative result is similar to the results in the static case obtained, see the forthcoming
Theorem 7.3.14. The assumptions of this proposition are not optimal, in particular the number
4 is arbitrary and the assumption on the monotony of [ can easily be relaxed.

Proof. Suppose p. > 0 and let B(0, R) denote the open ball of radius R with center 0. We
define the annulus A,, = B(0, (n+ 1)R)\B(0,nR). The area of A, is |A,| = (2n +1)7R? . Let
6 > e? vand Sg = £ ~ > >4 (G |M<oo.

I(4R)
For a Poisson pomt process P, the event:

QR = {(I)(B(07 QR)) = O} N {(I)(AQ) > QSR} MNp>2 {(I)(An) < chn’}
has positive probability. Indeed, the sets A,, are disjoint and using Lemma 1.2 of [129]:
P(Np®(An) < 0]A,) HP n) < 0lAL]) >0

On Qp, for z € B(0,R) we have I( ) =22 l(lz = Yj[) > ®(A2)I(4R). Moreover if Y; € Cp,
since fB(O,R) [z )l(‘x(%‘)da@ < ps

(Vd I l((n=1R)
/B(OR) fi(x)dz < S AR (6.17)

It follows:

Samizsn [ g = Y Z/

J B(0,R) n>2Y;cA,

l((n—1)R)
ST ;’A"‘ I(aF)

IN

IN
M'I —



Since ), fB(O R) fi(x)dx = mR? and ®(B(0,2R)) = 0, we deduce:

Z 1(Y; € ./42)/ fi(x)dx > 7T_R2

2
i B(0,R)

Using this last equation with Equation (6.17) for n = 2, we obtain:

< I(R) 2
Pe = 1(4R) 7R
From the hypothesis on [, for R large enough, we find a contradiction. We have done our
reasoning on the event Qp, since P(Qg) > 0, by ergodicity of the Poisson point process, the
result is extended on the whole o-algebra. O



Chapter 7

Spatial Capacity of Wireless
Networks

Résumé Dans ce chapitre nous étudions un modele de macrodiversité dans les réseaux CDMA
(Code Division Multiple Access). Les différences entre la voie montante (de l'usager vers la
station de base) et la voie descendante (de la station de base vers l'usager) aboutissent & deux
modeles différents qui sont étudiés en parallele. Pour satisfaire les demandes des usagers en
terme de débit, il est nécessaire de mettre en oeuvre une politique de controle des puissances des
signaux émis. Dans le cas d’un réseau fini sur la voie descendante, on démontre une condition
nécessaire sur la politique optimale d’allocation des puissances. Ce résultat montre que la
macrodiversité sur la voie descendante a une influence limitée. L’étude des réseaux infinis se
conduit dans le cadre des processus stationnaires ergodiques. Sur la voie montante, il existe
une condition nécessaire et suffisante d’existence d’une allocation de puissance permettant de
satisfaire les usagers. Cette condition est du type “p < 17, ou p n’est fonction que de la demande
moyenne de débit et du nombre moyen par unité de surface des usagers et des stations de base.
Sur la voie descendante, a I'inverse, il est démontré que si les usagers sont répartis dans l’espace
suivant des réalisations d’un processus de Poisson homogene, alors il n’existe presque stirement
pas de politique de controle de puissance qui permette de satisfaire toutes les demandes des
usagers. Enfin, dans un scénario dynamique nous montrons comment il est possible d’appliquer
les résultats du Chapitre 6 & la macrodiversité dans les résaux sans-fils sur la voie descendante.

Abstract In this chapter we define and analyze a general model of macrodiversity in CDMA
networks (Code Division Multiple Access). Some differences between the uplink (from users to
base stations) and downlink (from base stations to users) lead to two different models which are
studied in parallel. In order to satisfy the bit rate requirements of users, it is necessary to enforce
a control policy of emitted powers. For a finite network on the downlink, we prove a necessary
condition on the optimal power allocation policy. This result shows that macrodiversity has a
limited impact on the downlink. The analysis of infinite networks is led in the framework of
stationary ergodic point processes. On the uplink, there is a necessary and sufficient condition
on the existence of a power allocation which guarantee a given set of bit rate requirements for
users. This condition is of type “p < 1”7, where p depends on the average bits rate requirement
of users and on the average number per unit of surface of users and base stations. On the
contrary, on the downlink, it is proven that if the location of users in space is a realization of
a homogeneous Poisson point process, then almost surely there is no power allocation which
satisfies all the users’ demands. Finally in a dynamic scenario we show that it is possible to
apply the results of Chapter 6 to the wireless networks in macrodiversity on the downlink.

157



7.1 Introduction

This chapter deals with the capacity of wireless multiple access networks. Primarily, it cov-
ers the analysis of CDMA networks (Code Division Multiple Access) in macrodiversity. In a
network in macrodiversity the base stations are fully coordinated and they jointly code (for
downlink) or decode (for uplink) the emitted signals. Macrodiversity networks supersedes the
traditional cellular architecture of wireless networks where each user is attached to a unique
base station based on its location. As an intermediate architecture, there are load balanced
networks, where each user is attached to a unique base station but this allocation depends on
the whole configuration of the network. Computing the load capacity of such networks is an
important issue of wireless communications. This problem relies on finding a power allocation
satisfying all users in the network.

The problem of power control and load constraints in CDMA networks has drawn much
attention. However, most authors are only considering CDMA networks without macrodiversity.
On the downlink in the seminal papers of Gilhousen et al. [72] and Zander [163], [162], the
authors rely the solution of the power control problem to a condition of the type:

p(T) < 1, (7.1)

where T' is a square non negative matrix depending on the channel state and p(7") denote the
spectral radius of T'. Baccelli et al. [15], [14] have developed a probabilistic geometric model
to analyze the feasibility condition given by Equation (7.1). The users and the base stations
are instances of spatial point processes and the authors compute the probability that a base
station satisfies the SINR ratio requirement of each users in its cell. In this chapter, we extend
the geometric model of Baccelli et al. to networks in macrodiversity.

On the uplink, Hanly [87], [88] has solved the power control problem for finite networks in
macrodiversity. The solution of the power control problem reduces to a condition of the type:

M
> hi <N, (7.2)
i=1

where N and M are the numbers of base stations and users respectively and h; is the SINR
requirement of the i** user. In the present chapter, we generalize the work of Hanly to infinite
networks where users and base stations are instance of ergodic point processes.

The feasibility conditions given by Equations (7.1) and (7.2) can be understood as a condi-
tion of the type: ”p < 1”7 where p is the load of the network. In this chapter, we compute the
value of the load both on uplink (denoted by p1), and downlink (denoted by p|) in a proba-
bilistic setting where the channel condition depend on the relative positions of users and base
stations. This modelling contribution will enable to understand better what is the impact of
the geometry of the network in its capacity. On the uplink, if the mean SINR requirement
is denoted by h, the mean number of users (respectively base stations) per surface unit is A,
(resp. As) we will obtain (Theorem 7.2.3):

As

" (7.3)

pr=h
hAs is the mean SINR requirement per surface unit, so that the geometrical term of the uplink
load reduces to 1/A,,.

On the downlink for a network with IV base stations and M users, we will prove, for networks
either cellular, load balanced or in macrodiversity, that the downlink load is asymptotically
equal, as M grows large, to:

ol ~ b7, (7.4)



(Theorem 7.3.10) where ~y is explicitly computed and depends on the relative position of the
base stations.

Both Equations (7.3) and (7.4) show that the load may be decomposed as a mean SINR
requirement per surface unit (hAs; on the uplink, AM on the downlink) and a geometric term
(1/Ay on the uplink and v on the downlink). This decoupling between mean SINR and geometry
is of prime interest: given a required level of user quality of service, we can design a network
architecture.

On the downlink, another consequence of our results is the comparison between the var-
ious possible levels of cooperation between base stations: macrodiversity, load balancing and
cellular networks. We will hint that the main improvement between a fixed cell network and
a macrodiversity network seems to be in the flexibility into affecting each user to a specific
base station and not on the possibility to share a user between several base stations (Theorem
7.3.5). In other words, load balancing is as efficient as user sharing (i.e. macrodiversity). We
will prove that the constant v appearing in Equation (7.4) is the same for a network in macro-
diversity, load balanced or for an optimal cellular network. On the contrary, as already known,
for the uplink, macrodiversity has a much larger impact and appears as a major improvement
compared to traditional cellular network structure.

In this chapter, we are primarily concerned by the impact of the locations of users and
base stations on the capacity of the network. To this end, somewhat artificially, the path gain
between a user located at 2 and a base station located at y will be set as L(z,y). Averaging over
the channel conditions we will often assume that the path gain depends only on the distance
between x and y. This assumption is not meant to be realistic, however it captures the spatial
features of wireless networks.

The remainder of this chapter is organized as follows. Section 7.2 is devoted to the macrodi-
versity on the uplink. In §7.2.1, we introduce our model, its key features are the spatial location
of base stations and users, and the SINR requirements of each user. In §7.2.2 we extend Hanly’s
Theorem to ergodic spatial point processes of users and base stations and establish Equation
(7.3).

In Section 7.3, we analyze the downlink. We present the model in §7.3.1 and establish
a necessary and sufficient condition for the feasibility of the power control problem in §7.3.2.
§7.3.3 gives a characterization of the optimal power allocation. This characterization establishes
a bound on the increase of capacity brought by macrodiversity in a network. In §7.3.5, we pay
attention to the limit downlink load as the number of users grows large and we establish
Equation (7.4). In §7.3.7 we extend our results to infinite networks and prove a negative result
for the feasibility of power control problem when the point process of users is a Poisson point
process.

At last, in Section 7.4, we propose a dynamic model where users arrive and leave the system
after completion of a service. We show that this model is covered by our work in Chapter 6

7.2 Uplink

7.2.1 Model description

We consider a network consisting of M users and N base stations. The users are located at
points {X; }1<i<ym € R? and the base station at points {Y;}1<j<n € R?. We denote by U(z,y)
the channel gain from y to =, =,y € R2. |U(xz,y)| represents the path loss due to shadowing,
fading and distance attenuation effects.

In an uplink multiple access network in macrodiversity, each user sends independently from
the other a signal and the base stations are jointly decoding the received signals. This kind
of channel is known as multi-receiver networks (see Hanly and Whiting [89]). A base sta-



tion j receives a signal equal to the sum of all the signals sent by the users plus an exter-
nal white Gaussian noise. Let w = (wj)i<j<n denote the power of the noise vector, U =
(U(Xi,Y}))1<i<m,1<j<N, the channel matrix. The user i sends a signal s;. Let s = (s;)1<i<m
be the vector of the signal sent by users. Then mathematically the signals received by the base
stations is a RM>1 vector:

v="U's +w.

We set the channel bandwidth to AHz and we suppose that user i requires a rate R; in bits
per second. Let S; = E(|s;]?) and n; = E(|w;|*) denote the powers of the signals. If the users
are sending their signals independently, it is known (see [89]) that the rate vector (Ry, ..., Rar)
is achievable if and only if there exists S € Ri\[[ such that:

SilU (X, Y5) [
15+ 2oz Sm|U (X, V)

N
Vi, R; <Alogy(1+
j=1

7):

We restrain ourselves to the sufficient condition:

Si|U (X, Y;)?
0+ oM S| U(Xm, Y5)2

N
Vi, Ri<Alogy(1+ >
j=1

).

This last condition is only sufficient but when M is large it is expected not to be far from being
necessary. Let L(X;,Y;) = |U(X;,Y;)|*> denote the attenuation function. Thus, feasibility of a
given rate vector is equivalent to a minimal requirement on the signal to interference ratio:

, L(X:,Y;)S;
- < .
Vi, h’—zanerL(Xm,Yj)Sm’ (7.5)

J

where h; = 2f/2 — 1 with an abuse of language h; will be called the SINR requirement of user
i. The power allocation problem is stated as follows, for a given vector of bit rates (R;); does
there exists a power vector (.9;); such that the set inequalities (7.5) is satisfied. The following
theorem solves the power allocation problem:

Theorem 7.2.1 (Hanly) Suppose that for all 4, j, L(X;,Y;) > 0 and n; > 0.
Then, there exists a solution of (7.5) if and only if

M
Zhi < N.
i=1

This theorem is surprising , since the feasibility condition does not rely on the geometry of
the network (i.e. the coefficients L(X;,Y;)).

7.2.2 Stochastic Model

In this paragraph, we generalize the work done by Hanly in [87] for stochastic infinite networks.
This generalization proves that Hanly’s Theorem is not due to the finiteness of the network but
is intrinsic to uplink communications in macrodiversity.

We follow the probabilistic setting of [15]. The set of users is a marked point process
IT, = {(X;, hi)}i, where X; is the location of the user ¢ and h; is its SINR requirement. We
model similarly the base stations by a point processes on R?%: II; = {(Y;,7;)};, n; is the noise
power. We can suppose 7; > 0 and h; > 0 for all ¢, j. Moreover, II,, and II; are supposed to be
a stationary and ergodic marked point processes. We denote by A, (resp. As) the intensity of



IT, (resp. II;) which are assumed to be finite. The Palm probability of the process II,, (resp.
I1,) is denoted by P? (resp. P?), (for an introduction to Palm probability, refer to Daley and
Vere-Jones [55]). We assume that E%(hg) < oo. We remind that E%(hg) may be understood as
the mean SINR requirement of typical user. At last, we consider a radial positive attenuation
function, that is: L(z,y) = I(|]z — y|).

In infinite networks, the power control problem is still given by the set of inequalities (7.5).
A SINR vector (h;)i>0 > 0 is feasible, if there exists a power allocation (S;);>¢ such that the
set of inequalities (7.5) is satisfied.

Following Hanly [87], we introduce:

. RJrN - R+N
. L(X;,Y;) —

The power allocation problem is equivalent to finding S € RN such that, component-wise:

G(S) < S.

Lemma 7.2.2 With the foregoing assumptions, there exists a power allocation satisfying (7.5)
with probability 0 or 1.

Proof. The event {Equation (7.5) has a solution} = {there exists S, such that G(S) < S} is
invariant under a translation on R? since the value G(S) does not change if we translate simul-
taneously all users and all base stations. Thus, by ergodicity, this event has probability 0 or 1.
g

We define the uplink load by:
Ay
pr = )\—SES(ho)- (7.6)

The following result is a natural extension of Theorem 7.2.1.

Theorem 7.2.3 We assume that E(n, 1) < 400 and that one of the two following conditions
holds:

-z xl(x) is in L'(R) and z +— zl(z) is non-increasing,

- or, there exists 3 > 1 such that z + z%I(x) is integrable.
then

- If py > 1, then (7.5) has almost surely no solution.

- If py < 1, then (7.5) admits almost surely a solution.

An analogy can be made between this theorem and the stability of G/G/s queues. The
intensity of user arrival is Ay, Ay EO(ho) is the mean SINR requirement per surface unit and A,
plays the role of the number of service booths per surface unit. As for G/G/s queues, the limit
case ’}\—:Eo(ho) = 1 is harder and the power allocation problem is not solved for these networks.

As for finite networks, The feasibility condition depends only on the bit rates requirement
and the density of users and base stations in the network.

The technical hypothesis on [(x) is used to ensure a rapid decay of the tail of the shot-noise
process y . 1(|X;|). It covers a usual model for the attenuation function: I(z) ~ 7%, a > 2.
The assumption E9(ny') < +oo simplifies the proof of the sufficient condition. The result
should hold for weaker assumptions.

The proof of Theorem 7.2.3 is done in the next paragraph. The main idea is to follow the
lines of the original proof of Theorem 7.2.1 and use ergodicity to ensure convergence and some
uniform bounds on shot noise processes.



7.2.3 Proof of Theorem 7.2.3

The following lemma on shot noise processes is needed in the proof. In what follows, | - | is the
Euclidean norm and B(z, R) is the closed ball of center = and radius R.

Lemma 7.2.4 Let I = {(X;, Z;)}; be a stationary marked point process on R? x R,. We
suppose IT has a finite intensity A and E°(Zp) < oo. Let a < 1 and x — I(z) a non-negative
function on R. If 2 — 2% i(z) is integrable and = +— x%!l(x) is non-increasing on a neigh-
borhood of 400, or if there exists ¢ > 0 such that 2 +— 2%~1%¢](x) is integrable. Then, almost
surely:

liminf sup Z Zil(|lx — X;|) = 0.

R—+o0 z€B(0,aR) X;¢B(0,R)

Proof. Suppose for example, x +— x%~1l(x) is non-increasing on a neighborhood of 400 For n

integer, let Cp,(R) = {x € R?: 2 € B(0, (n+1)R)\B(0,nR)}. We can write for all z € B(0, aR):

Y Zi(lz - X)) <Y U(n—a)R)D Zilx,conn):
n=1 X,’

X;¢B(0,R)

If 74 denote the d-dimensional Lebesgue measure of the unit ball, from Campbell formuli,
we deduce:

E sup Z Zil(|Jz — X5))
x€B(0,aR) X;¢B(0,R)

[e’e) +o00
< A;l((n —a)R) /Rd/o 2lyec,(ry PO (dz)dx
<A f} I((n — a)R)E®(Zo)mg R ((n + 1)* — n)

n=1

< MCRE"(Zy) i I((n — a)R)R¥1nd—1,

n=1

where C' is a constant depending on the dimension d only. From the hypothesis on x +—
2% 1(x), we can apply the dominated convergence theorem to conclude:

lim B sup Zil(|z = Xif) = 0.
R—+o00 xEB(OvaR)Xi¢%(:OR) Z |

In order to get the result in almost sure convergence, it suffices to recall that from any
sequence converging in Ll, we can extract a sequence converging almost surely. We thus obtain
the stated result. The case z +— @~ 1+¢(z) in L!(R) is similar. ]

The next lemma will be used to build a stationary solution. The proof is straightforward.

Lemma 7.2.5 With the hypothesis of Theorem 7.2.3, the mapping G as it is defined in §7.2.2
is continuous on Gil(RjN) for the L*™-norm: ||S||= sup;cy |Sil-

Proof of theorem 7.2.3.  The idea is to follow the proof of Hanly in the finite case and use
ergodicity and the uniform bound given by Lemma 7.2.4 to extend to infinite case.

Case pr > 1.

Suppose that there exists a solution of (7.5) with a positive probability. From Proposition
7.2.2, this solution exists almost surely, we denote the solution by S = (.S;). We have component-
wise G(S) < S. Let 0 = (0);en, notice that almost surely for all 4, G(0); > 0. The function G is



monotonous component-wise: if S < S then G(S) < G(S’). We deduce that G(0) < G(S) < S
and for all i, G™(0); is an increasing sequence and is upper bounded by S;. This sequence
converges toward SF, which by continuity (Lemma 7.2.5) satisfies S* = G(S*). Since G is
invariant under a translation, we can define a solution (S) as a mark on II,. For the sake of
simplicity, we drop the " exponent in S* and suppose directly G(S) = S, S; > 0.

We consider the thinned point process: I, ; = >, 1 S;<t0{X,,h;,5;}» this marked point process
is still stationary and ergodic. Let A, be its intensity. The Palm probability of II,, ; is Pg,t(-) =
PY(-|So € [0,t)), (see Baccelli and Brémaud [20]). Let a < 1, and, to simplify notations, let
Ng =1I4(B(0,R)), Mr =11,(B(0,R)) and M; p = IL,+(B(0, R)). Now, from the ergodicity of
our model, almost surely:

. Mt aR )‘ut 2
li g h; = d 1 — = —a". .
RHHJI:OO NR Py, att Rirfm Npg As “ (7 7)

Let Z; = 77;1, now, from Lemma 7.2.4, almost surely:

liminf  sup Z;il(|X; = Y;]) =0. (7.8)
R—+00 x,eB(0,aR) ngéBZ(O,R)

The integrability of E9(hg) implies that lim o EQ(hol(hg > t)) = 0. This last limit
implies thanks to ergodicity and an exchange of limit (justified by Fubini’s Theorem):

lim lim — Zh]l (hi > 1) (7.9)

Then we do the following decomposition:

Mur

1
; Z; hi = ST kit D (ki > 1) (7.10)

Ne €It NB(0,aR) R =

The first term of the right hand side of Equation (7.10), say A, is upper bounded by:

1 SiL(X;,Y))

A = — Z Z ' 1y
Nr X, €lltNB(0,aR) j=1 nj =+ Zm 15 L(XmaY})

1 SiL(X;,Y;)

< _— 1y 4]
- NR Z Zn]+2m 1S L(XmaY])

X;€ll,NB(0,aR) j=1

D D S )

R X.emt,nB(0,aR) Y;¢B(0,R)

Mt
< 1+tN sup > Zi( X - Vi)
R X,;eB(0, aR)YjéB(O’R)

We can compute the liminfr_,o of Equation (7.10) on both side and then let ¢ tends to
infinity. From Equation (7.7), the left hand side of the previous inequality converges to p;
whereas from Equations ((7.7), (7.8) and (7.9), the right hand side is bounded by 1 (by letting
t tends to infinity). Thus p; < 1is a necessary condition of the feasibility of the power allocation
problem.

Case p1 < 1 and h; < h for all i.



The central argument of Hanly is a change of variables and an application of Brouwer’s
fixed point theorem (see Goebel and Kirk [75]). Hanly defines:

g: Qyen(hi,+00] — R
(t)ien — (5250

and

RJFN — Rt
fi : fo'e) (Si+1)L(XivY')

Let € > 0 and define:

o { @10~ @nfhi1+0.
(ti)ien = (®5(F))ien ’
where: ' .
fiogi(ti) if fiog(t) € [hi(1+€), <]
Pi(t) = ¢ hi(l+e) fiog(t) <hi(l+e)
1 fiog(t)>1
From Assumption Eo(na ) < +o0 and Lemma 7.2.4, it is easy to see that f; is continuous
on @;enl=r5 —hi _ o 1] for the L>®-norm. Thus, ¢ is a continuous map. @,cy[hi(1 + €),1] is

a compact convex set and hence by Brouwer’s fixed point theorem: there exists ¢¢ such that
¢ (t¢) = t¢. We will first show that we can extract a converging sequence from ¢¢.

We consider the thinned point process: 1" = Zj ]Lnj>w]lzil(IXi—Yj\)<q5{ijj}’ this point
process is still stationary and ergodic. Let AS™ be its intensity. Since, 3 1(|X; —Y;]) is almost
surely finite for all j and n; > w, for ¢ large and w small, we still have:

Au

)\q wEO(hO)

thus we can suppose directly that >, [(|X; — Yj|) < ¢ and n; > w for all j.

Let a > h large enough to guarantee »L < a and suppose t§ > a. Then S = (g(t¢)); <

aﬁlhz Hence a < tf < f;(5¢) < o h Z XZ_’Y < a. Thus, we have proved: for all i,

¢ € [hi,a]. We thus can extract a sequence ¢ converglng toward t € @);cnlhi, a]. We now want
to show that lim. ¢ g(t) exists. To do so, we prove that for all i, there exists ¢; such that for
all € < ¢, t§ satisfies: t§ > h;(1+¢;).

Suppose that for some @, for all n > 0, there exists € < n such that: t§ = hi(1 +¢€). We
consider a sequence of such e. Let Sy, = (9(t))m and I5 =3 S5, L(Xn, Y]) the interference
at base station j. We have I5 > e 1L(X;,Y;), thus for all j: hmeﬁo I5 = +oo. Since tj, =

max(_; %4_%('“%), hi(1 + €)), by a dominated convergence argument we deduce that S},
cannot be bounded, hence for all k:

lim t§, = hy.
e—0
Since pt < 1, there exists o > 1 such that:

Ay

2
E%(h 1
>\s u( 0) <

Thus, ergodicity implies:

2
lim lim — > #f = Aud E%(hg) < 1. (7.11)




Since t€ is a fixed point, we have for € < a™!:

Mar
N_R;tE N Zqﬁz t) Z: 10 g(t), (7.12)
We write:
1 MC!R
Nn Zfz‘og(te)
Mar NR
> Yy MR }iﬂ)
RS 50 i+
N Nr I;+ZLXZ,Y)
__Z 3 L(X;, Yj)(e ' +1)
w
R 521 x,¢B(0,aR)
N Ne 1o 430 L(X5,Y))

J
Z ul _|_[€

L(Xi,y)(e ' + 1)'

w

— sup
veB(O.R) x,¢B(0,aR)

Now, by letting R tend toward infinity, using Lemma 7.2.4, we obtain:

N 143 L(X5, Y))
L > L j iy
lim inf Z fi 0 g(t9) > lim Z S

i=1

We can apply the ergodic theorem for point processes (see [55]):

Zi L(Xi’ 0)

+ E?

hmmf— Z fiog(t) > EO( )s

R—+o00 IN —|— IE

letting € tend toward 0 and using the dominated convergence theorem, we conclude that:

lim li f— (%)
fng o fnf Zfzog

This last inequality together with (7.12) contradicts (7.11). Thus we cannot have t = h;(1+¢)
an infinite number of times. We have proved that for € < ¢;, t§ > h;(1 + ¢;). Since g;(t) = ; f;%
is a continuous map on [h;(1 + €;),a], we can define: S} = g¢;(t;) = lim¢ .0 g;(t{). From the

continuity of f;:

SH+1
i S* — hl ! ;
(%) = b
which is equivalent to:
> S*L(X;,Y;
=Y TL(X:,Y))

j=1 77.7 + Zzil S;knL(Xm’Y?) .

This concludes the proof of the theorem when h; < h for all 4.



Case py < 1, general case.
hs

Let h > 0, we consider a new user point process: I/, = ZJWM{X. prhig-1y- Since, by
3 h

hypothesis, the marked point process {(X;, h;)} is ergodic, I, is a stationary ergodic marked

point process, its marks: h(%}fl are upper bounded by h. Moreover, if we find a power

allocation satisfying (7.5) for IT/,, by additivity of (7.5), we have found a solution of (7.5) for

IT,. A direct computation shows that A}, < )\u(% + P%(hg > h)). Hence for h large enough,
%Eg,(ho) < 1. This conclude the proof in the general case. O

7.3 Downlink

7.3.1 Model Description

We consider the same network as in the previous section, with the same notations. There are M
users and N base stations. In a downlink multiple access network in macrodiversity, the base
stations are jointly coding a signal for each user and users are decoding independently. This
kind of channel is known as multiple input multiple output (MIMO) broadcast channel (see in
particular Caire and Shamai [46], Goldsmith, Jindal and Vishwanath [77]). A user i receives
a signal equal to the sum of all the signals sent by the base stations plus an external white
Gaussian noise. As above, w = (w;); denote the noise vector, U = (U(X;,Y})); , the channel
matrix and U; = (U(X;,Y)); the channel vector to i . The base station j sends a signal s;; to
the user i. Let s; = (s4;); be the vector of the signal sent to . Then the signals received by
users is a vector of size N equal to

M
u:UZsi—i-w,
i=1

Let I'; be the covariance matrix of (s;;)1<j<n and n; = E(|w;|*) the power of the noise at
i. User i requires a rate R; in bits per second. If we make the assumption, that for all j, for
all m # 14, the signals s,,; are regarded as noise by the base stations in the coding of signal s;,
the gaussian channel capacity theorem (refer to Cover and Thomas [49]) implies that the rate
vector R = (Ry, ..., Ryr) is achievable if:

UT,U;
i + Ui* Zm;éi FmUi

(This last condition is only sufficient and it is not necessary.) In this work, we only consider
achievable rates satisfying in Equation (7.13) in the case where I'; is diagonal: the base stations
are sending uncorrelated signals to each user. This is a natural assumption for an efficient
coding. We note S;; = T';(j,j) and l;; = L(X;,Y;) = |U(X;,Y;)|? the attenuation function.
Thus the rate vector R = (Ry, ..., Rar) is achievable if there exists a power allocation (S;;) such
that:

Vi, R; < Alogy(l+ ). (7.13)

> L(Xi, Y;) Sy
i+ 225 L(Xi, Y5) 3 si Smi ™

thus, letting h; = 1 — 27 5/2 | feasibility of a given rate vector is equivalent to the existence a
power allocation (.S;;) such that:

_ 2. L(Xi, Y5) 554
S+, L(X0 Y)) S Sy

The set of inequalities (7.14) is our macrodiversity model for multiple access downlink
networks. Note that the definition of the SINR h; = 1 — 275/ is not consistent with the

Vi, (7.14)



definition of h; on the uplink (that is h; = ofti/A _ 1). However since they will play exactly
the same role, we use the same notation for these two scalars, in the limit A large, they are
equivalent.

7.3.2 Power Allocation Algebras

In this section, we study the power allocation problem (7.14), following Baccelli, Blaszczyszyn
and Tournois [15].
We introduce the set of stochastic matrices:

A= {A = (aij) S RMXN,A >0,V1 Zaij = 1}.
J

A matrix A in A will be called an allocation matrix.
The following obvious lemma restates Equation (7.14).

Lemma 7.3.1 An power allocation (S;;)1<i<nm,1<j<n is a solution of (7.14) if and only if there
exists a non-negative matrix A € A such that:

. L(X;,Y;)S;;
V’L,] alhz < — J .
T T+ 30 L(XG,Y)) 3o, Sy

For a fixed A = (aj;), the restatement given by Equation (7.15) reduces our problem to
a power allocation problem without macrodiversity as it is addressed in [15]. Our M x N
macrodiversity network is equivalent to a M N x N fixed cell network: each user X; is subdivided
into N independent users (X7 )1<;j<n, X7 is affiliated to base station j and has SINR requirement
of a;jh;. We define the linear mapping:

T{A — RNxN

(7.15)

A — T:(Ziaijhi%)1§j7k§]v

Let p(T) denote the spectral radius of the square matrix 7. We then have the following
necessary and sufficient condition:

Proposition 7.3.2 Let,

p1 = min p(T (4)) (7.16)

Equation (7.15) has a solution if and only if p; < 1.

p, is the downlink load of the network. Since p(T +T) < p(T) + p(T), p, is computed as
an optimization of a convex function over a convex set.
Proof. Note that p| = p(7T(A*)), A* € A. This proposition is a consequence of Propositions
3.1 to 3.3 of [15] in the finite dimensional case. For the reader convenience, we sketch the main
idea. Consider the allocation matrix A*. The base station j guarantees an individual signal to
noise ratio of at least h;a;; to user i. We define S; has the total power emitted by station j:
S; =Y, 5. Let S = (S5;); be the vector of total emitted powers, by elementary calculations
that Equation (7.15) implies component-wise: S > 7 (A*)S + b, where b contains the noise of
the channel. This inequality is solved by the Perron-Frobenius theory, and the existence of a
non-negative vector S relies on whether or not the spectral radius of 7 (A*) is less than one. It
remains to prove that if the inequality for the total emitted powers S has a solution, then it is
possible to compute the individual powers S;;. O

On the uplink, the feasibility of the power control problem did not depend on the geometry
of the network. On the downlink, on the contrary, in the computation of p|, the locations of
the users is relevant.



Lemma 7.3.3 If A € A*:

SR ENES S (7.17)

The right hand side bound of (7.17) is simply obtained by removing all base stations but
one in the network. This bound cannot be improved without taking into account the locations
of the users (see Remark 7.3.4). We can compare the left hand side with Theorem 7.2.1. On
the uplink, there is a solution to the power allocation if and only if 1/N Zf‘il h; < 1. On the
downlink this condition is only necessary.

Proof. For any matrix T, trace(T) = Zi‘il hi = 3_; Aj, where (};); are the eigenvalues of T
Since p(T') is the largest eigenvalue, we deduce the left hand side.

It remains the right hand side of Equation (7.17). Consider the allocation matrix A € A

where the j% column is 1 and all the others are set to 0. We immediately check: p(7(A)) =

> i b O

Remark 7.3.4 There exists configurations such that the two bounds of Equation (7.17) are
reached.

A limit configuration reaching left hand side of Equation (7.17). Consider a network on a
line and suppose to simplify: M = KN, K integer. Then place the base stations Y} at locations
jr and place K users (X{,...,X};) at jr. Consider now the allocation A = (a;;), a;; taking
value 1 if X; is an X7, and 0 otherwise. We can check directly that if L(z,y) goes to 0 as
the distance between z and y goes to infinity, p(7(A)) tends to + Zi‘il h; as r tends toward
infinity.

A configuration reaching right hand side of Equation (7.17). Consider, the case where all
M users are at the same location. We define I; = L(X;,Y;) > 0 and let D be the diagonal
matrix whose diagonal is (I, ...,{x). In this case, we have T'= DM D, with M, = Y, a;jh;.
T and M have the same spectral radius. Then notice that M = U1?, where U and 1 are RV
positive vectors and it follows that p(T') = p(M) = 1'U = ", h;.

7.3.3 Optimal Power Allocation

In this paragraph, we state an interesting property shared by the optimal allocation matrices
Ac A ={Ac A:p(T(A) =p,}.

For the sake of simplicity, we will suppose that for all z,y € R% L(x,y) > 0. We can also
suppose that if T'= 7 (A) where A € A*:

ik, Ty > 0. (7.18)

Indeed, if T}, = 0 for some k, then the 4t row is equal to 0. Thus, T and the sub-matrix of T
obtained by removing the j** row and the j* column have the same spectral radius.
For A € cA, we define two sets:

I(A) ={ic{1,..,M},3a;; € (0,1) for some j},

J(A) = {(iaj)7ai7j S (07 1)}

I(A) is understood as the set of users for which two or more base stations are actively con-
tributing to satisfy its SINR requirement. For a discrete set K, |K| denotes the cardinal of K.
We have the following theorem:



Theorem 7.3.5 We assume that for all integer n, for all sequences i1, ..., %, of {1,..., M} and
for all sequences of distinct integers ji, ..., j, of {1,..., N}, we have (with ju4+1 = j1):

n

H lix g (7.19)

— lk7]k+1

Then if A € A*:
|J(A)| — |[I(A)] < N. (7.20)

Corollary 7.3.6 If A € A* |I(A)| < N.

This theorem gives an upper bound to the number of users which are really in macrodiversity,
i.e. to the number of users which are receiving a signal from more than two different base
stations. Provided that the assumption is satisfied, this upper bound does not depend on the
geometry. This bound is also surprisingly small: on a typical wireless network, M > N, so the
proportion of users in macrodiversity is small.

We denote A = {A € A: Vi,j a;; € {0,1}}, the set of allocation matrices such that each
user is affiliated to a unique base stations, the load-balanced downlink load is defined as:

p| = min p(7 (A4)).
AcA
py is the load corresponding to a network where each user is affiliated to a unique base station.

In view of Theorem 7.3.5, we may guess that p|/p, is close to 1. In fact, in the special case,
N =2 (two base stations) we can actually show that the two minima are equal. In the §7.3.5,
we will state that this intuition makes sense when M grows large.

Assumption (7.19) is not very restrictive in our context. In a probabilistic setting, it would
be easily almost surely satisfied.

The proof of Theorem 7.3.5 is postponed to the next paragraph. It does not contain any
intuition on the result. Note however that even if Theorem 7.3.5 may be surprising in view of
its application, it is quite natural if p,| is seen as the minimum of a convex function, 7" — p(T),
on a compact convex set, A. With reasonable assumptions, this minimum is reached on the
boundary of the set A, that is the subset of A

7.3.4 Proof of Theorem 7.3.5

In the following, ||-|| is any given norm on R¥*¥ and (-, -) is the usual scalar product on RY. I
is the identity matrix in RV*Y | Two lemmas are necessary before turning to the proof. The
first lemma is simply an expansion of order 1 of T'— det(xI — T') in the neighborhood of T'.

Lemma 7.3.7 Let ®7(x) be the characteristic polynomial of T and Adj(T) its adjoint; for all
H € RY*N we have:

Orip(x) )+ Z ikAdj(2l = T)jx + o([|H]]). (7.21)

For T € T(A), we define: Hy = {H e RVN : T+ H € T(A)}.
Lemma 7.3.8 If T' € 7(A*) then on a neighborhood V, of the null matrix:
VH € Hr NV, <HUT,U)T> <0, (7.22)

where, v and wp are respectively the left and right eigenvectors of T associated to eigenvalue
p(T).



Proof. From Equation (7.18), T' is primitive, hence (from Seneta [142]): Adj(p(T)] —T) =
@ (p(T))wrvh and /(p(T)) > 0. For = = p(T'), Equation (7.21) reduces to:

711 (p(T)) = 7(p(T))(Hor, wr) + o[ H]|). (7.23)

If T € T(A*), then p(T + H) > p(T) for all H € HT. This implies &7,y (p(T)) < 0 for H
sufficiently small. (7.22) follows from (7.23) and ®/.(p(T)) > 0. O

We can now prove Theorem 7.3.5.

Proof of Theorem 7.3.5.

Let A = (a;5) € A* and T' = T(A). w and v are the right and left eigenvectors of T’
associated to p(T"). For each iy € I, we can find j; # jo such that a;, ;; > 0 and a;, j, > 0, we
define the matrice A€ by:

(A9)ij = Aij + €0,4,6 4, — €000, (6 is the Kronecker symbol).

For € > 0 small enough A° and A~ are in A, hence H =T (A°) =T and —H =T (A ) -T
are both in Hy. We can apply Lemma 7.3.8 and it follows:

0 = (Hv,w)
= O ligron) (2 — 72
K

liojl liojz
The last equality implies, since l;,; > 0 and v > 0:
Wiy Wg

= 22 (7.24)
liojl liojz

The end of the proof relies on a simple argument on graphs. Let I = I(A) and J = J(A4),
without loss of generality, we can suppose I = {1, ..., |I|}. Let J; = {j, (i,4) € J}.

We now define the embedded non-oriented graphs G; on the set {1,..,N} of base stations.
We put an edge in G; between ji, js if there exists an integer ig < ¢ such that j; and j, are in
Ji,- From what precedes, this implies (7.24).

Similarly we define the graph J; by putting an edge between j; and js if j; and jo are in
J;. By construction, we have Uézlji =G.

We now remark that Assumption (7.19) together with Equation (7.24) implies that if there
is a path leading from j; to j2 in G;, there cannot be any edge between j; and jo in J;4+1. In
other words, a set of connected nodes in G; and a set of connected nodes in J;11 cannot have
more than one common node.

Let N; be the number of non-isolated nodes in G; and n.(i) be the number of connected
components in G; not reduced to an isolated node. We obtain:

Ny = | L.

The constraint on our embedded graphs implies that adding the edges of J;+1 to G; can either
merge two distinct connected components of G;, increase a connected component or add a new
connected component. In these three possible cases, the following formula is satisfied:

Nit1 = N; + ‘Ji-l—l‘ + HC(Z + 1) — nc(z) —1,
at last, by summing this last equation from 1 to |I| — 1, we obtain
[J] =] < N = ne(|I]),

which in turn implies Equation (7.20). Since |J;| > 2, |J| > 2|I| and the corollary follows. O



7.3.5 Asymptotic Load

Even for the simplest probabilistic models, the computation of p| is by far less easy than the
computation of p;. In this paragraph, we show however that it is possible to compute the
scaling limit of p; when the number of users tends to infinity.

The N base stations are fixed and deployed in a bounded region Q C R2. We consider an
ergodic sequence of users {X;, h;}iez with h; independent of X;, 0 < E(hp) < o0, X; € Q and
for all measurable subset A C Q, P(X; € A) = [, AM(x)dz. A(x) is the spatial intensity (or
density here) of users in Q. As last the attenuation L(z, y) is positive.

We pay attention to the load in the network when the set of users is {X;, hz }1<2<M where

hZ(M = h;/M is the scaled SINR of user i. In this paragraph, we need to explicit the dependency
of the problem in M so that we define Ay = {A = (a;;) € RN : fori > M a;; =0, for 1 <
1< M z a;j = 1}, Ao is simply denoted by A and we 1ntroduce the linear mapping;:

A — RNXN
Ty j
M {A > T:(ZiaijhEM)%)léj,kSN

7, is simply denoted by 7 (this is consistent with its definition in §7.3.2). The downlink load
associated to the set of users {X;, hZ }1<Z< M is by definition:

(M) _ _1
pi = min p(Ty(A)) = 57 min p(7(A)).

(ar)

For load balanced allocations, we define similarly, A, and 2

Lemma 7.3.9 There exists 0 < p{® < pJ° such that almost surely:

lim p{™ = p* and  lim M = 5. 2
Y L (7:2)
Proof. For p < ¢ € N, we define A, ; = {A = (a;5) € RTXN : fori ¢ {p,---,q} a;; =0, forie
{p,- ,q} Zj a;j = 1}, the set of allocations matrices for users indexed from p to g. Note
that if Ay, € A4, we have T(Ay4) = T(A1p) + 7 (Apt1,4), where the matrices A; ), € Ay,
and Apy14 € Apt1,4 are obtained from A; 4 by setting to 0 all rows not in {1,p} and {p+1,q}
respectively. Since, p(T' +T') < p(T') + p(T') we deduce:

<
A p(T(A)) A p(T(A)) + Al p(T(A)).

The existence of p}° and p7° follows then directly from Kingman’s subadditive ergodic theorem.
The positivity of p}° is a consequence of Lemma 7.3.3. O

Before stating the main result of this paragraph, we need a couple of definitions.

A set of measurable functions, f; : R* — R, 1 < j < N is said to be singular if there exists
a measurable set A of positive Lebesgue measure and a constant C' such that f;(z) = C fi(x)
for some j # k. By extension, the base stations locations is said to be singular if the set of
attenuation functions x — L(z,Y;) is singular. This notion of singularity is purely technical
and it is not a strong assumption in view of applications.

A tessellation is a collection of measurable sets partitioning the region €2, we denote by
V ={V = (Vj)igj<n : almost everywhere }_; 1y, (z) = 1} the set of tessellation composed
of N sets. We identify two tessellations V and V' in V if for all j, 1y, and ]LVJ.’ are almost

everywhere (a.e.) equal.



Theorem 7.3.10 If the base stations locations are non singular then

P =py = E(ho)v,

where

7 = minp(7'(V))

L(z,Y;
and T'(V)jr = fvj Lgmy’;g)\(x)dx

This theorem sheds a new light on the downlink load when the number of users is large.
First, it strengthens the intuition that macrodiversity and load balancing lead to the same level
of load in the network. Secondly, we have been able to compute explicitly the limit behavior of
the asymptotic behavior of the network. As an example, a practical consequence is the following
approximation for a set of M users located at (X;) with SINR requirement (h;), from Equation
(7.25) we get:

M
pL~Y Y b
j=1

We have completely decoupled the SINR requirement and the geometry of the network which
is contained in the scalar ~.

There is a third consequence of Theorem 7.3.10. Define V* = (V*); as the optimal tessel-
lation (defined up to null measure sets) such that:

p(T' (V")) = .

We consider a traditional cellular network architecture with associated cells VJ* with M users

(X;) distributed according to A(z)dx with SINR requirement (hZ(M)). The user ¢ is attached to

base station j if X; € V: that is the associated allocation matrix A3, satisfies: for ¢ < M,
aj;, = LW(X; € V). The cellular downlink load is equal to ﬁEM) = p(Tm(A3)). Asthe number of
users M grows large, from the law of large number, ﬁiM) tends to E(hg)y. Therefore an optimal
cellular architecture has asymptotically the same load than a network in macrodiversity.

The proof of Theorem 7.3.10 is postponed to the next paragraph.

Example 7.3.11 Hexagonal Grid. € = [0,1]? is seen as a torus to avoid boundary effects,
and the users are uniformly distributed on 2. We suppose that the set of base stations is located
on a regular hexagonal grid of radius R = 1/L, with L integer. We index our base station with
two indices in {0,--- , L — 1} and with a complex representation of R?, the base station (p, q) is
located at Y, , = R(p + ge's). Let {V;} be the Voronoi Tessellation of the hexagonal network
(that is, x € Vj if for all j' # j, | = Yj| < |v — Yj|). If L(x,y) = I(|z — y|), then the symmetry

of the network leads to
I
Y= / (@) dz,
Vo,0 l(‘x’)

where I(z) = > ;I(Jz — Yj[). This last equation has an intuitive meaning: in a symmetric
network, the optimal cellular architecture is obtained by equalizing the individual load of each
base station.




7.3.6 Proof of Theorem 7.3.10

Let V = (V}); a tessellation in V and AM) € Ay the allocation matrix corresponding to the
cellular network with cells (V;);: for i < M, al-j(M) = 1(X; € V;). By ergodicity, for all j, k a.s.
we have:

T M)y . — M 2Vdx
Nl[_)OOT(A )jk E(hO)/v- L(m’}/}))\( )dx.

The spectral radius is a continuous function of the entries of the matrix. Hence, taking the
infimum over V, we thus deduce:

p1° < p° < E(ho)y.

It remains to prove that E(hg)y < pi°. To this end, we define the following set of measurable
functions:
F={f=fih<n: fi Q> Ry, ae. > fi(z) =1}
J
F is the convex hull of the set of tessellations.
Let AM) = (aZ(]M)) be a sequence of allocation matrices such that piM) = p(T(AM)Y)) /M.
(M)

J

oy 1 g (M)
My = MZ%’ 0x;-
=1

We define the empirical allocation measure p as,

For each j, the sequence {M§M)} M is tight, so that we may extract a converging subsequence
to a limit measure p; (for the weak convergence of measures). Notice that:

N an 1 M

M
DITLERE
]:1 =1

letting M tends to infinity, we get:

N

> ni=10

j=1

with £y(4) = [, A(z)dz. In particular p; is absolutely continuous with respect to . Let
/7 be the Radon-Nikodym derivative of y; with respect to . fQ A(z)dx = 1 implies that

fr=(f;) € F. It h(z) = 3, 1(z = X;)h;, the entry (j, k) of the matrix T(AM)) /M is equal
to:
| oy e

The spectral radius is a continuous function of the entries of the matrix (remember that the
size of T(AM)) is fixed to N x N, so no continuity problem may occur). We obtain:

P = E(ho)p(T'(f))-
where / Lo )
T(f)jx Z/L(Tyj)fj(x))\(m)dm.

(Assume first that h; takes a finite number of distinct values and then extend to the general
case).



It remains to prove that p(7'(f*)) = ~. First note that by definition of p{°:
T'(f*)) = min p(T’ . 7.26
AT (F7)) = min p(T°(£)) (7.26)

So that p(7'(f*)) is the minimum of a convex function over a compact convex set. The last
step is the following Lemma:

Lemma 7.3.12 If the base stations locations are not singular then
= min p(7'(V)) = min p(7’
v =minp(T°(V)) = min p(T(f))

This lemma is a continuous analog of Theorem 7.3.5.
Proof. We consider the f* € F given by Equation (7.26). Let E = f;(]0,1[)~! n f5(]J0,1))~ .
In this proof, ¢ will denote the Lebesgue measure. We need to show that ¢(E) = 0. Suppose
instead that ¢(E) > 0, we can suppose without loss of generality that ¢(F) < +oc. For ¢y small
enough, there exists ' C F with £(E’) > 0 such that for all x € E', min(fi(x), f2(x)) > € and
max(fi(x), fa(x)) <1—e. Let A C E" and let ff(x) = fi(z) + ela(x), f5(x) = fo(x) — ela(z)
and ff(z) = f;j(z) for j ¢ {1,2}. If 0 < € < €o, f° and f~° are in F.

Let T = p(7'(V*)) and w and v are the right and left eigenvectors of p(T') = 7. We can
apply Lemma 7.3.8 to H = 7'(f¢) and —H = T'(f~¢), we deduce that:

0 = (Hv,w)
w1 w9

= eA(%L(m,Yk)Uk)(L(%Yl) - L(w,Yg)))\(x)dm'

The last equality implies,

1 1
w ———dx = w —dx. 7.27
Sremt = e (r21)

Thus, for all A included E’, such that ¢(A) > 0:

1 / 1 J wp 1 / 1 J 0
r— — x=0.
0 Ja T ™ ™ w0 Ja T )
We can apply Theorem 1.40 of [141] and conclude that a.e. in E’:

L(z,Y1) = %L(ﬂﬁaYQ)-
2

This contradicts our hypothesis the non singularity assumption. Therefore ¢(F) = 0. We have
also proved that the minimum is uniquely reached (up to null measure sets). O

7.3.7 Infinite Networks

In the previous paragraph, we have computed the downlink load as the number of users grows
large and the number of base stations is fixed. As on the uplink, it is an appealing idea to
compute p| for infinite networks, that is when both the numbers of users and base stations are
infinite. The power control problem is still given by the set of inequalities (7.14) and Lemma
7.3.1 remains obviously true. Thus, we can still follow the line of [15]. We can still define A
and the linear mapping 7. Proposition 7.3.2 has an infinite dimensional analogue.

First, we recall some results on infinite recurrent matrices. Let us denote by 7" = (Tﬂg),
the n'® power of T. The power series Tik(z) = >, T73,z" have a common convergence radius
R(T) = M%; p(T) is by definition the spectral radius of 7. Tj;(R) is finite or infinite at the
same time gor all j, making T respectively transient or recurrent. For more refer to Seneta
[142]. As a consequence of Propositions 3.1 to 3.3 of [15].



Proposition 7.3.13 Let,

p| = min p(T (A)),

- if p; < 1 then Equation (7.14) has a solution ,
- if p; > 1 then Equation (7.14) does not admit any solution,

- if py =1 and p; = p(7(A*)), Equation (7.14) has a solution if 7 (A*) is transient.

We model base stations and users by considering two point processes on R?: Il = {Y;}4
and I, = {(X;, hi,mi) }i, hi and n; are the marks of the point process. The marks are supposed
identically distributed, independent and independent of the rest of the model. We suppose that
the point process of users I, is a stationary Poisson process of intensity A, > 0. At last, we
consider a radial attenuation function, that is: L(z,y) = [(|x — y|). As usual, we can suppose
I(r) >0 for all r € RT.

We have the following negative result:

Theorem 7.3.14 For t € R, let l; : r — [(max(r —¢,0)), we denote by ||-||oc the uniform norm.
If:

-
lim[leo =1, (7.28)

then:
p) = +oo, almost surely.

Assumption (7.28) is used to get a continuity of the entries of 7 (A) with respect to the
users’ locations {X; };en. However, the theorem should be true for a larger class of attenuation
functions.

This result asserts that whatever the intensity of base stations is, there is no solution of
the power allocation problem. It implies that some admission congestion protocol must be
enforced in a CDMA network on the downlink. Otherwise, as the proof of Theorem 7.3.14
shows, there will always be a local concentration of users which saturates the whole network.
If we compare to Theorem 7.2.3, this result is in complete opposition with what happens on
the uplink. Theorem 7.3.14 is somewhat disappointing, the stationary point process for users’
location framework does not lead to a right concept of spatial load.

The proof of Theorem 7.3.14 relies on classical results on spectral radius (see [142] for
details).

Lemma 7.3.15 Let T and S be non-negative matrices (possibly infinite), then:
SV k Ty > Sjp, then p(T) > p(S), )
- for all square sub-matrix 7" of T', p(T") > p(T).

Proof of Theorem 7.3.14. Without loss of generality we can suppose that h; > 0, indeed
> L(hi > 0)6x, h,n, is still a poisson point process with independent marks. Let R, h be some
positive real numbers and M an integer. The event A; = {II,(B(X;,R)) > M} N{vXy €
B(X;,R), hy > h} has a positive probability, provided h small enough. Hence using the
independency property of Poisson processes, » .14, = co almost surely. We consider one of
these configurations.

Without loss of generality, we can also suppose i = 1 and X; = 0: Vk € {1..M}, X €
B(0, R) and hy, > h.

Fix 1 > e > 0 from Hypothesis (7.28), for e small enough, there exists R such that:

Vo € B(0,R),Yy € R?,  [I(jx —y]) = UlyD| < Ulyl)e.



Hence, for all X; € B(0, R) we easily check:

L(0.Y) L(XiYi) |_ e L(0.Y)
L(0,Yj)  L(X3Y;) 17 1—€L(0,Y))

(7.29)

Let T =T(A), we have
]k >T k = hZaU L Z’

and, by lemma 7.3.15, p(T) > p(T).
Now, if TW) denotes the sub-matrix of T' extracted from the first N rows and N columns,
from (7.29), we deduce:

F(V)
T, = h(l -

— L Z aij. (7.30)

Moreover, there exists N such that ijl SM ai; > M(1 —¢). For such N, define, the
N x N matrix, T®Y), with T](liv) is equal to the right hand side of (7.30). From lemma 7.3.15,
p(T) > p(T™)) > p(T™)). Computing the spectral radius of T™), we obtain:

p(T) = p(T™N)) > WM (1 - 20).

We thus have proved that p(T") cannot be upper bounded.

7.4 Dynamic Model on the Downlink

7.4.1 User Arrival Process

We now describe a model of data flows on a CDMA network in macrodiversity. A time com-
ponent is added to the model: the users arrive and leave the system. As above we suppose
we have a set of base stations deployed on the plane. The users arrive in the network with a
service requirement and they leave when it has been fulfilled. A given user, say n, arrives in
the network, at time 7;,, located in point X, of the plane and it requires to receive an amount
a bits 0,. Our user n can receive its data from any base station in the network. The set of
our user is a simple marked point process A, we denote by A([0,t] x B) the number of users
arriving in the set B C R? between times 0 and ¢t. We suppose that:

B(A(0,1] x B)) =t /B Ada), (7.31)

where A(dz) is a measure finite on all bounded set (i.e. a Radon measure ) and E is the
expectation. \(dz) is the spatial intensity of our space-time point process A.

In particular, Equation (7.31) implies that A is time-stationary. We make however a stronger
probabilistic assumption on A, namely we suppose that A is time-ergodic, in particular (from
Birkhoff’s Theorem) it implies that almost surely (a.s.):

1
lim = Z 1(T,, € [0,t],X,, € B)o, = / EY" (00.2)\(dx),
t - B ’

where Pg’x(-) is the Palm measure of A at (0,x). nggﬁ(ao,x) is the mean number of bits required
by a user arriving at = under the Palm distribution. We assume that the bits requirements of
users satisfy: EY” (00.4) < 400.



For example, if the spatial intensity is Adx, then the arrival of users is also space-stationary.
For example A could be a space-time homogeneous Poisson point process. In applications,
there can also be some hot-spots where the density of users is high, a spatial intensity measure
of type A(z)dz would describe this kind of users’ patterns. We could also consider a scenario
where there are some fixed entry points to other networks: in this case, A(dx) would have a
Dirac mass at entry points.

Let T) be the time of departure of the user n of our arrival point process A and for ¢ in
the interval [T),,T},), 0y, (t) denotes the remaining number of bits at time ¢ the user n wants to
receive: o(T,) = o, and o(T))) = 0.

At time t the workload in the network is a measure on R? with atoms at users locations.
More formally, the workload at time ¢, W4, is defined as:

Zon 1(t € [Ty, T)))dx,,, (7.32)

where J, is a unit mass at z. For a set B, W;(B) is the total number of bits required by users
in B at time t.

7.4.2 Base Station Adaptive Policy

We now describe how the base stations are serving the users. In a macrodiversity network, the
base stations can serve any user, wherever it is. Let r,(t) be the bit rate achieved for user n
in the system at time t. As above A is the bandwidth of the channel, with the notation of

§7.3.1, let h,(t) =1 -2 ~2” be the bit rate that user n receives from the network at time
t and A(t) = (an;(t)) € V the allocation matrix at time t. Let hp;(t) = an;(t)h,(t) be the

instantaneous bit rate given by station j to user n: 3, hn;(t) =
we require that hy;(t) can be positive only when ¢ lies in [T},, 7).

In CDMA networks, the signal bandwidth is large (A is around 1.5 MHz). In view of
Equation (7.3.1), for large bandwidth the capacity of the channel becomes linear with the
power of the signal. The following approximation is thus justified:

%an(t) =—ry(t) = AIOgQ( Z hnj(1))
log(2 Z hn]()

In our system, at any given time, the base stations can adapt the bit rates H(t) = {hy;(t)},
provided that they can solve the power allocation problem. In view of Proposition 7.3.2, it is
sufficient to guarantee that:

. For consistency,

22

th Xn ;) <1, (7.33)

indeed, the spectral radius of a substochastic matrix is upper bounded by 1. Since we have
defined the workload as an atomic measure, along this line, we also define the policy enforced
at time ¢ by the base station j as an atomic measure with atoms at users’ locations:

Xn)
Zhn] Xn’Y.'])(SXn

From Equation (7.33), the constraint on the policy is: [o m;(t)(d) < 1. All the computation
is unchanged if we replace the strict inequality in this last equation by a less or equal. For a
subset of the plane, 7;(t)(B) is the ratio of processing power that the base station dedicates to
users in B. Note in particular that for a set B:

if We(B) = 0 then for all j, m;(t)(B) =0, (7.34)



which states that the base stations are sharing their processing power among active users.
From a mathematical point of view, it asserts that the policy is absolutely continuous with
respect to W.
From the discussion above, if the policy enforced at time ¢ depends only on the workload
at time ¢, the policy enforced by the base stations is a policy is the sense given in Chapter 6.
We can then rewrite the Workload Equation (7.32) in a bounded set B, for t,h € R,:

Wisn(B) = Wi(B)+ [T [ 00 aAlds x dz) — o 0 [ [y K522 (s) (dr)ds, (7.35)

in words: the total number of bits at time ¢ + A brought by users in the Set B is equal to the
total number of bits which was brought at time t plus the bits brought by the newcomers in
set B between ¢ and ¢ + h and minus all the work done by the base stations in this set during
this time.

We recognize exactly an evolution equation given by Equation (6.5). We can thus apply the
results of the previous chapter to the macrodiversity scenario on the downlink.

For TDMA networks, stability considerations are addressed by Bonald et al. in [34], [33].
In [34], a single cell is considered, they derive the stability region and they address the problem
of fairness among active users. In [33], they include to their model the mobility of users inside
the cell and they prove some bounds on the total workload.

7.4.3 Canonical Example

In order to fix ideas, we illustrate our results on a classical example of CDMA network. Suppose
that the base stations of our networks are located on an regular hexagonal grid. The distance
between two adjacent sites is L km. A sequence of users arrives in the network. We suppose
that this user arrival process is an homogeneous space-time point process of intensity A > 0. A
is the spatial density of newcomers in a time units. We suppose that each user wants to receive
in mean o bits of data from the base stations.

We assume that the available bandwidth on the channel is AHz. The attenuation function
(or path loss function) from an emitting point y to a receiving point z supposed to be equal to:
K|z —y|™®, where K is a positive constant and | - | denotes the Euclidean distance.

From Theorem 6.2.1, we deduce the following:

A < A¢ then the network is stable, if A > A the network is unstable.

The analytical expression of the critical density A, is given by Proposition 6.4.6, using an
approximation given in Karray et al. [99], [14]:

2 A 0.94
Ao & 1
log(2)v/3 oT2!

For A =1MHz, L =1 km, a =4, 0 =1 Mo, the above formula gives: A, ~ 510 users per
square kilometer and per hour. An other interpretation of this numerical result gives a good
insight. Ao is the mean number of bits pumped per surface unit per time unit: this is the bit
rate per surface unit of our network. For our numerical example, the maximal rate per surface
unit is: 1,13 megabits per square kilometer and per second.

From Proposition 6.4.2, \. is the same for the network in macrodiversity and for the tra-
ditional hexagonal cell networks. Therefore, macrodiversity has not increased the maximal
density of users the system is able to handle.

If instead of the hexagonal grid, we had supposed that the stations sites was a Poisson point
process then, by Proposition 6.4.7:

)7L (7.36)

a—2

Ae = 0. a.s.

The system is never stable, whatever the density of base stations is.



7.4.4 Slow Fading and Mobility

Framework. We now extend our stability result to a more complex model. We suppose that the
attenuation depends on the time. Namely we suppose that at time ¢, the attenuation function
is equal to: L(z,Yj;t).

The shot-noise I depends on the time and is then equal to I(x;t) = >, L(x,Yy;t). Let

pi(xst) = L(;E’Z;)’t) be the processing rate at time ¢ for the base station j. For technical reasons,

we require that for all j, the mappings (u;(-;t))tcr are taking value into a countable set of
processing rates mappings: (,U?)neN-
We define Z;(t) € N as the random variable which drives the state of the processing rate

pi(z;t) = Mij ®) (x). We assume that the random variables Z;(t) are time-ergodic. Let

pj = Ppj(t) = pf) = P(Z;(t) = n).
Following the results of Chapter 6, we define the following sets in our time varying setting:

F = {f = (z — fjn(x))jen such that, Vj,n, A(dx)-a.e. Zf],n(:c) =1and fj,(z) > 0}.

7
s _ . , vy Ey"(090.) (@) 0 A
N —{AGN. df € F such that: Vj,n, /]12{2 W)\(dx)<pj@},

and N* is defined similarly with < instead of <. The interpretation follows: f;,(x) is the
proportion of service which is performed by the base station j for a typical user arriving in x
when the station is in state n. From Theorem 6.2.1.

- if A € N3, then there exists a stable policy,

- if there is a stable policy then A € A/*.

Slow Fading. There are two types of fading in wireless communications, slow and fast fading.
Fast fading is caused by multi-path propagation of the signal from a base station to a user. In a
CDMA setting, fast fading is not a relevant feature. Fast fading is relevant for TDMA schemes
and can be used in opportunistic scheduling. On the contrary, slow fading has an impact
in CDMA networks. Slow fading or shadowing is due to the random environment between
base stations and users. For example moving obstacles on the propagation path. Fading can
be characterized by a collection of random field processes of mean one: G;(t,z) € Ry. The
attenuation function is then taken to be equal to:

Lz, Yj;t) = Gj(t, 2)l(|x — Y1),

where [(r) is the usual radial attenuation function used in the simple model.

For slow fading, (G;(-;t))jen is well approximated by independent log-normal fields. A
model for its correlation function is given by Gudmundson in [82].

Mobility. Our framework can also be used to include a simple type of mobility. Consider a
random field process with value on R?:

X(z,t) € R?.
X (z,t) receives the following interpretation: X (x,t) is the position at time ¢ of all users which
arrived in z at any time. In particular the user (7},, X,,) is located in X (¢, X,,) at time ¢. Note

then that X,, is not anymore the position of the user n. This model is not fully realistic but
leads to a computable stability region. The attenuation function is then taken to be equal to:

Lz, Y3 t) = 1(| X (2,) = Yj]).

As a simple example, X (z,t) could take a few distinct value around .
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Chapter 8

The dead leaves model : a general
tessellation modeling occlusion

Résumé Nous étudions un exemple particulier de tessellation aléatoires, le modele de feuilles
mortes. Ce modele, étudié initialement par I’école de morphologie mathématique, est défini par
une surimposition séquentielle de fermés aléatoires. Il fournit un outil naturel pour étudier
le phénomene d’occlusion, ingrédient essentiel dans la formation d’images visuelles. Nous
généralisons des résultats de G. Matheron, et en particulier nous calculons la probabilité que
n compacts soient inclus dans des parties visibles. Ce résultat donne une caractérisation de la
distribution de la frontiere de la tessellation des feuilles mortes.

Abstract We study a particular example of general random tessellation, the dead leaves
model. This model, first studied by the mathematical morphology school, is defined as a
sequential superimposition of random closed sets. It provides the natural tool to study the
occlusion phenomenon, essential ingredient in the formation of visual images. We generalize
results from G. Matheron, and in particular we compute the probability for n compact sets to
be included in wisible parts. This result characterizes the distribution of the boundary of the
dead leaves tessellation.
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8.1 Introduction

The dead leaves model has been introduced by Matheron in [118]. This model results from
sequential superimposition of random sets. As such, it provides the natural tool for studying
the non-linear occlusion phenomena, of great importance in image modeling and processing.
However, to the best of our knowledge, this model has not been systematically investigated,
and even its mere definition lacks some precision. Our purpose in this chapter is twofold: first
to provide a rigorous definition of the model as a random tessellation, second to give new proofs
or extensions of Matheron’s results in the framework of Palm calculus.

A first motivation to study this model comes from applications. Amongst existing stochastic
models for natural images, the dead leaves is the only one whose definition agrees with their
physical formation. Several recent studies have demonstrated the ability of specific dead leaves
models to reproduce most known statistics of natural images, see Ruderman [140], Alvarez,
Gousseau and Morel [8], Lee, Mumford and Huang [112]. The model has also been proposed
as a tool to resample random fields for texture synthesis, see Gousseau [78]. Other examples of
application come from material sciences, see Jeulin [97] and Gille [73].

As a second motivation, let us stress that the dead leaves model provides non-trivial ex-
amples of general random tessellations, in the sense that their cells are general closed sets. In
particular, they are not necessarily polygonal, connected or convex, as it is the case for the most
popular tessellation models, such as Poisson flats, Voronoi or Delaunay tessellations. Note that
non-convex and non-polygonal cells are encountered in the case of Johnson-Mehl tessellation
(see e.g. Kendall, Mecke and Stoyan [102]), but that there are relatively few such examples.
Therefore, there are few studies of “general” tessellations, even though classical formulae origi-
nally proved in the convex and polygonal case have been shown to hold in more general contexts,
see Stoyan [147], Weiss and Zihle [160] and Cowan and Tsang [52].

In Section 8.2 we first recall some facts on random closed sets and slightly reformulate Moller
[125] and Stoyan [147] to define random tessellations and typical cell distributions. In Section
8.3 we define the dead leaves model as a random tessellation obtained from an initial Poisson
process, and give some of its elementary properties. Then, in Section 8.4, we generalize results
from G. Matheron. In order to do so in a rigorous way, we make use of point processes theory
through the systematic use of Palm calculus. We first give the probability for n compact sets to
be included in n different visible parts, a result which completely characterizes the distribution
of the boundary of our model as a random closed set. Then we compute the distribution
of “objects” that remain completely visible. Eventually, we reobtain in the Palm calculus
framework a nice result from G. Matheron giving the length distribution of the intersection of
objects with a line of fixed direction, stating in particular that its expectation is divided by two
as a result of occlusion.

Previous work. The dead leaves model was introduced in Matheron [118], an internal note
written in an informal style, but containing all basic ideas. The model is defined as the super-
imposition of infinitesimal boolean models, and formula for the probability of a compact set to
be included in a visible part and for the distribution of completely visible parts, among other
things, are derived. Most of these definitions and results are stated in the book by Serra [143].
Jeulin further studied this model in [96], still with the same infinitesimal formalism, and gave
an explicit formula for the joint probability of two compact sets to be included in visible parts.
In [95] he generalizes the model to the case of random functions and extend to this setting
formulae for the distribution of visible parts and for inclusion probabilities. Cowan and Tsang,
in a very interesting paper [51], make use of mean value formulae for tessellations to derive the
expectations of various quantities such as the number of connected components of visible parts
or the length of their boundaries per surface unit.



8.2 Basic definitions

8.2.1 Closed Sets and Tessellations

Let F, G and K be respectively the sets of all closed, open and compact sets of R%, d > 1. Let
us denote for any A C R,

FA={FeF :FNA=0} and Fa={FecF:FnA#0D}.

The Borel o-field Bx on F is generated by the basis of open sets {FX K ¢ K;Fq,G € G}.
Borel sets are defined on G and K in a way similar to those of F, see Matheron [119]. A
random closed set (RACS) of R? is a measurable function from a probability space (2, S, P)
into (F, Bx). For any sets A and B, we will denote

AcB={zcR¢: 2 +BCA} and A@B={x+y:2€Ayc B}

where B = {—z,2 € B}. A© B is called the erosion of A by B, and A @ B the dilation of A
by B. Measurability properties of these operators are established in Matheron [119].

A o-finite measure on F' := F\{0} (endowed with its Borel o-algebra Bz) is a measure
taking finite values on Fr, for all K € K, see [119]. We denote by Nz the set of o-finite
counting measures on (F',Bz). For all M € Nz, we write M = ). 0F,, where 0, is the
unit mass measure at point F;. The boundary of M is defined as OM = |J; OF;, where OF;
denotes the topological boundary of F;. A point process on F’ is a measurable function from a
probabilistic space to (Ng, By, ), where By, is the usual o-field on Nz, see e.g. Daley and
Vere-Jones [55].

Following Stoyan [147], a tessellation of R? is defined as follows.

Definition 8.2.1 Let T =Y. 0p, € Ng. We say that T is a tessellation of R? if
(i) U, F = RC.
(i) for alli # j, IntF; N F; =0, where IntF' denotes the interior of F,

or equivalently if {(IntF});, 0T} is a partition of R?.

Note that T' € Nz implies that the number of cells Fjs hitting a compact set is finite. This
condition is added in the original definition in [147], where the F;s are marks of a point process
N =736, on R?, where x; is called the centroid of F;. The centroids are unimportant for the
definition of a tessellation but they are quite useful for defining the typical cell distribution as
we will recall below.

Let 7 be the set of all tessellations in Nz. Expressing assertions (i) and (ii) as limits of the
elementary sets operations (F, F') — FUF' (F,F') — FNF' and F — 0F, whose measurability
may be found in [119, Section 1-2], one easily gets that 7 € Byr,,. A random tessellation of
R? is then defined as a point process T' on F', such that T' € 7 almost surely (a.s.). Classical
examples of random tessellations (see the references in [102, Chapter 10] and [128]) include
Poisson hyperplanes processes, Delaunay, Voronoi and Johnson-Mehl tessellations. A standard
approach (see e.g. [9], [50], [120], [125] or [102]), which applies in these examples, is to define
0T directly as a RACS without considering the underlying random tessellation. However, it
is not always possible to recover the F;’s from 0T (they may not be connected, see [52] and
Remark 8.3.7 below for a precise example).



8.2.2 Typical Cell distribution

In [125] a typical cell is defined by using the Palm distribution of a simple marked point
process N = 3.0z, F, of points in R™ with marks in F’, stationary with respect to shifts
N w— > 0p—aF—a T € R?. More precisely, let us denote by u the intensity of N, which we
assume to be finite, and by ]P’?V its Palm distribution (see in Appendix B.2). Let x¢ be the
point nearest to the origin and Fy be its corresponding cell. Then the typical cell distribution
is defined on the o-field Z of all translation-invariant events in Bz by x — P (Fp € x), x € Z.
A result in [125], proven in the case of tessellations whose cells are bounded polytopes, can be
easily extended as follows.

Proposition 8.2.2 Let B be a Borel set in R% such that

0<v(F;®B) <400 foralli a.s., (8.1)
where v is the Lebesque measure on R™. Then p=E), %9%39) and
1(0 € F;, ® B)1(F; €
P?V(FOGX:—EZ OBLEEY) o1,

v(F; @ B) ’

When starting from a stationary point process M = . dp, on F', a marked point process
N can be obtained by constructing points z; = A(F;), where A is such that A(F; — z) =
A(F;) — x. Classical examples for A include the set-centroid, the median point or the extremal
point in a given direction. Observe that, under Condition (8.1), it is always possible to define
such a set-centroid by taking for each coordinate the median of the marginal measure of v
restricted to F; @ B; for instance, the first coordinate is then defined as the smallest x such that
v((F; @ B) N (—o0,2] x R¥™1) > v(F; @ B)/2. As noticed by [125], the typical cell distribution
should not depend on the choice of the x;s, which is insured by Proposition 8.2.2 provided that
one can find a Borel set B for which (8.1) is fulfilled. This will be the case for the dead leaves
model considered below.

In order to define the typical cell of a tessellation, assume that

{0<V(Fi)<oo

V(OF) — for all 7 a.s. (8.2)

Note that the first condition above is Condition (8.1) with B = {0}. The second condition en-
ables to define, almost everywhere, Fi,} as the cell to which the point  belongs. By stationarity
of N, Fygy is defined a.s. Applying Proposition 8.2.2, we then get

1 0 1 1(Foy €X)
o (Frop) and Py (Fp € x) : ME HEy)
We thus obtain the formula of the typical cell distribution derived in [120], [125] (when the F}’s
are bounded polytopes) and [50] (when the F}’s are uniformly bounded polytopes).

We end this section with a limit theorem. Let B, = B(0,r,) be the ball centered at 0 of
radius r,, where r,, — 0o. Let (A4, )nen be any increasing sequence of compact convex sets such
that for all n, B, C A,. The individual ergodic theorem (Proposition 10.2.IT of [55] and in
Appendix, Proposition B.5) easily yields the following.

p=E

x el (8.3)

Proposition 8.2.3 If N is ergodic and satisfies (8.2), then, for all x € Z,

>, 1(F; € y) D0
lim Sy An)(F D _POU(Fyex) as. (8.4)
i v(E;)




Equation (8.4) is a weighted average, where each F; has a weight equal to its proportion
included in A,. From a statistical point of view, (8.4) can be used for deriving a strongly
consistent estimator of IP’(])V(FO € x) for a given x € Z. Under stronger hypothesis on the cells,
there may be different sequences having the same limit as in (8.4). For example, if the cells are
uniformly bounded (as in [50]), Relation (8.4) implies, a.s.,

S, W(F e x)W(FCAy) L S U(F e x)L(F N A, #0)

S ECA) T S (FnA, £0)

Sufficient conditions under which these equalities hold are studied in [52].

PR (Fo € x) = lim

8.3 The dead leaves model

8.3.1 Definition

The dead leaves model is obtained through sequential superimposition of random objects falling
on R%. Let > ien Oz,,t; be a homogeneous Poisson point process on the half-space R? x (—00, 0]
with intensity one. Let P be a probability measure on (F,Br), and (X;);en, be i.i.d. random
variables on F with distribution P and independent of the Poisson point process above. Equiv-
alently, ® = ). 0, +, x, is a Poisson point process on RY x (—00,0] x F with intensity measure
v(dx)dtP(dX).

We write (€2, S, P) for the probabilistic space on which ® is defined and E for the expectation
with respect to P. From now on, X will always denote a random variable on F with distribution
P independent of all other variables, and E will denote the expectation with respect to P.

Definition 8.3.1 For all i € N, the random closed set x; + X; is called o leaf and

Vi=(@+X)\ [ U (z;+ntX)) (8.5)
tj€(t;,0)

is called a visible part.
From now on we assume that X satisfies the following three conditions:
(C-1) For all K € K, Ev(X @& K) < +o0,
(C-2) There exists a ball B with strictly positive radius, such that Ev(X © B) > 0.
(C-3) X is a regular closed set, i.e. X is the closure of its interior, P-a.s.

Proposition 8.3.2 We denote by M the point process on F' obtained by removing all sets with
empty interior in the collection {V;}, that is,

M = " 1{IntV; # 0} by, . (8.6)

Then M is a random tessellation of RY. Moreover N = Y, 1{IntV; # 0} 6, v; is stationary,
mizing and has finite intensity.

Remark 8.3.3 The condition IntV; # () in the definitions of M and N is adopted for conve-
nience as it eliminates visible parts with zero d-dimensional Lebesgue measure. The question
arises whether M’ := >, 1{Vj # (0} dy; also verifies such property. For simple examples of X, it
is easily shown that M = M’ a.s. but we do not know whether this equality is true under the
general assumptions (C-1)-(C-3). In any case, because (8.5) implies that dV; C Uy, ~¢,0{IntV}},
we always have OM = OM’.



In order to prove Proposition 8.3.2 we will make use of the following two lemmas. The first
one, which is easy to prove by referring to the definition of the intensity of the Poisson point
process @, will be repeatedly needed in the sequel.

Lemma 8.3.4 Let K be a bounded Borel set, —o0o < s1 < s9 < 0 and define

D (s1,82) = Zﬂ{ti C (s1,82] and K C x; + X;}
i

DK (s1,80) = Zﬂ{ti C (s1,82] and K Nx; + X; # 0} .

D (t1,ts) and DK (ty,t3) are Poisson random variables with respective means (to—t1) Ev(XOK)
and (tz — tl)EV(X@K).

Lemma 8.3.5 If K is a Borel set of R such that Ev(X © K) > 0, then K is almost surely
covered by some leaf x; + X;. As a consequence, any bounded set is a.s. covered by a finite
number of leaves.

Proof. Let us fix t < 0. Using Lemma 8.3.4, the probability P(®x(¢,0) = 0) that none of the
leaves x; + X; with ¢ < t; < 0 satisfies K C x; + X; is exp(tEv(X © K)), which yields the first
assertion. Now let B be a ball such that Condition (C-2) is satisfied, that is Ev(X & B) > 0.
Since any bounded set K is covered by a finite number of balls with the same radius as B, it
also follows that K is covered by Uy~ (x; + X;) for some T < 0. O
Proof. [Proof of Proposition 8.3.2] Let us now show that, P-a.s., M € Nz. In fact, we show
that, P-a.s., M' := Y, 1(V; # 0)dv, € Ng (which implies M € Nz), that is, that only a
finite number of visible parts V; may intersect a given compact set K. By Lemma 8.3.5, P-a.s.,
there exists a negative T such that K is covered by leaves z; + X; satisfying ¢; > T'. It follows
that the visible parts intersecting K correspond to leaves falling after time 7. The number
of such leaves is thus ®*(T,0), which is finite P-a.s. by Lemma 8.3.4 with Condition (C-1).
To show that M is a random tessellation, we now verify that it satisfies Conditions (i) and
(ii) of Definition 8.2.1. Let T' < 0. Since Uy s7V; C Uysr(z; + X;) and since a point in
x; + X; either belongs to V; or to z; + IntX; for some t; > t;, we have Up~r(z; + X;) =
U,>7Vi. Therefore by Lemma 8.3.5 we get, P-a.s., U;V; = R%. We observe from Condition
(C-3) that IntV; = (27 + IntX;) N {Ny, 5, (25 + X;)C}. It follows that IntV; = @ if and only
if Vi C Ugst, (w5 + Xj) = Up»,Vj. Indeed, the “if” part is obvious, while the “only if” part
is obtained by observing that z; + IntX; C My~ (z; + X;) implies the same inclusion for
z; + IntX; = z; + X; DO V;. Finally, consider a realization of ® such that M’ € Nz and
U;V; = R%, which happens P-a.s., as we have shown above. Pick any point € R%. Since
M' € Nz, there exists a positive and finite number of indices i such that z € V; and hence
one ¢ such that x € V; and = ¢ V; for all t; > t;. By the above characterization, this implies
IntV; # (). Hence U{V; : IntV; # 0} = R?, that is, M satisfies Condition (i) of Definition 8.2.1.
Condition (ii) of Definition 8.2.1 is easily obtained from (8.5) and (C-3) by considering the cases
t; > t; and t; > t; successively.

Next we show stationarity and mixing property. Define

00> Gatx, > L(IntV; # 0)d,, v, - (8.7)

Recall that P denotes the distribution of the initial (homogeneous) Poisson point process ®,
so that Pp = PoII7! is the distribution of N. Further observe that translations on the x;’s
correspond to translations on the V;’s through II. It follows that the stationarity and the mixing
property of N (with respect to shifts N — > 8,z vi—z, © € R?) are inherited from .



It remains to prove that the intensity p of N is finite. For all T' < 0, let Np := ) dz, v, 1(¢; >
T,IntV; # (). Let pur denote the intensity of Np; we have upr < EY " 1(x; € [0,1]",t; > T) <
—T', hence pr is finite. By monotone convergence, since pr is non-decreasing as T’ decreases
to —oo, u = limp_,_ o ur. Below we provide a uniform upper bound for p7, which will thus
apply to p and conclude the proof. Using Proposition 8.2.2 with B given by (C-2), we get

B 10eVi®B)_ '
“T_EZ—V(%GBB) 1(t; > T, IntV; # ()

<v(B)'E) 1{0 €z + X; ® B,0 ¢ Uy, ny(w; + IntX; © B)},

)

where the inequality follows both from v(V; ® B) > v(B), and V; @ B C (z; + X; ® B)\ Uy, >4
(z; + IntX; © B), which in turn follows from (8.5) and standard properties of morphological
operations. Now, Campbell’s theorem and Slivnyak’s theorem yield

P < ——= / 1(0 e z+ X @ B)P(0 ¢ Uy, >e{zi + IntX; © B})dtv(dzx)P(dX).
v(B) [T,0] xR x F

Noticing that Uy, >¢(z; + IntX; © B) is a boolean model with intensity ¢, we thus get

1 0 1 Ev(X®B)
<—FEv(X®B tkv(X © B))dt <
i < o PYX 0 5) [ esp(tBv(X 0 B))ar < o e,
which is finite under (C-1) and (C-2). O

In the definition of M, we assume that ), d,, ;, has intensity one. However, rescaling the
x;’s is equivalent, up to a global rescaling of the model, to a rescaling of X and any order
preserving modification of the ¢;’s is unimportant as seen from the definition.

Definition 8.3.6 The point process M defined in Proposition 8.3.2 is called the dead leaves
tessellation associated with the RACS X.

Remark 8.3.7 The dead leaves model clearly shows the necessity to define a tessellation
through its cells, and not only its boundary. Indeed, visible parts defined by (8.5) are not
necessarily connected. see Figure 8.2.

8.3.2 Perfect simulation

The term “dead leaves model” originates from a more natural definition which consists in
putting each new leaf above the previous ones and then considering the stationary distribution
of this Markov process. Let K be a compact set of R?. A classical “coupling from the past”
argument enables perfect simulation of the stationary distribution restricted to K, by putting
each new leaf below the already fallen leaves until K is completely covered (see the illustrating
web applet [101]). This elegant argument was first introduced for the dead leaves model in
[152]. In Figures 8.1 and 8.2 we show simulations of the model computed this way. To visualize
the model each grain is allocated a random gray level.

8.3.3 Regularity properties of visible parts

Some almost sure regularity results about visible parts are a consequence of the following
remark. From Lemma 8.3.4, a visible part V; is P-a.s. equal to a leaf x; + X; to which a finite
number of other leaves have been removed. Now remark that if A is a closed set and B an open
set, then 9 (A\ B) = (0A\ B)U (0B N A). It follows that dV; is a finite union of sets, each of



Figure 8.1: on the left, simulation of a dead leaves model, where the grain X is a disk with
constant radius. On the right, simulation of a dead leaves model, where the grain Xj is a disk
with a uniformly distributed radius.

which is included in z; + 0X; for some t; > t; so that some regularity properties on 90X are
inherited by the dV;’s. Note however that possible convexity of the grain X is not inherited by
the V;’s.

Proposition 8.3.8 We have v(OM) = 0 P-a.s. if and only if v(0X) =0 P-a.s.

Proof. The discussion above implies that v(9V;) < th>t¢ v(0X;) P-a.s. Since OM = U;0V;,
v(0X) = 0 P-a.s. implies v(0M) = 0 P-a.s. -

Now, v(0M) = 0 P-a.s. implies v(0V;) = 0 for all 7 and in particular for all cells such that
Vi = x; + X; (the so-called relief cells studied in the forthcoming Section 8.4.2). We will see in
Remark 8.4.6 below that this in turn implies v(0X) = 0 P-a.s. O

If IntV; # 0 then v(V;) > 0. Besides, V; C x; + X; is bounded P-a.s. by (C-1). If in
addition v(0X) = 0 P-a.s., then we are in the framework of Section 8.2.2 for tessellations. When
v(0X) = 0, one says that X is v-regular, a property that neither implies nor is implied by (C-3).
It is easy to find a set X which is v-regular and not closed regular, for instance a set containing
isolated points. To construct a closed regular set which is not v-regular, one can proceed as
follows (for d > 2). Let v be the (d — 1)-dimensional Lebesgue measure on the hyperplane
{x = (x1,...,24) : 1 = 1/2}. Then there exists a homeomorphism % : [0,1] — [0,1]¢ such
that v + 7 = v o h, see [76]. It follows that X := h([0,1/2]%) is not v-regular although it is
closed regular.

8.4 Some characteristics of the dead leaves tessellation

8.4.1 Inclusion probabilities and boundary distribution

The main practical result from the original paper by Matheron introducing the dead leaves
model [118] is concerned with a functional, defined on compact sets of the plane, equal to the
probability that a given compact set is included in a visible part of the model. It is shown that,



Figure 8.2: simulations of dead leaves models. Left: the grain X is a rectangle with a direction
uniformly distributed in [0, 7]. Right: the grain is a more complicated shape, the distribution
of its size being uniform.

for a non-empty K € K,

Ev(IntXoK)

P(K C IntV; for some i € N) = -
Ev(XeK)

(8.8)

Considering simple examples of possible K’s such as bipoints or segments leads to valuable
geometric information on the model.

In what follows, we generalize this result by taking interest in the probability that n compact
sets are included in n distinct visible parts. We define

QM(Ky,...,K,) =P(K, Cc IntV;,,..., K, CIntV;, for somet;, < --- <t; <0).

Proposition 8.4.1 Let us denote

FO(Ky, ..., Ky) = Ev(IntX © Ky) [[ Bv (IntX © K)) N (X © K; 1)€), (8.9)
j=2
and .
GM(Ky,..., Ky =[] Bv (X0 K)), (8.10)
j=1
where, for all j =1,...,n,
J
K; =] Kk (8.11)
k=1
Then

 FO(Ky,...,K,)
a G(n)(Klv' .. aKn)

QM(Ky,... . Ky) (8.12)

Remark 8.4.2 Note that (C-2) implies Ev(X) > 0 and thus that G (K7, ..., K,) does not
vanish for non-empty compact sets.



Proof. Within this proof section, we fix n non-empty compact sets Ky, ..., K, and we write
Q™ for Q(")(Kl, ..., K}). Summing over disjoint events we have that

QW =E ) 1, < <t;, <0) ] 1K cIntV;) |, (8.13)
j=1

where the sum is taken over all n-tuples of points in ®. First note that only n-tuples of distinct
points may be considered in this sum and that, from the definition of visible parts in (8.5) and
(C-3), the summand in this equation may be written as

]l(til <<, < 0) ﬁ ]l(K] C (xij —|—ID'EXZ'].)) H ]l(K] N (mz —{—XZ) = @) (814)

j=1 ti>t;

In the simplest case n = 1, this amounts to say that Q) is the probability that there exists a
leaf X; such that K is included in IntX; and is not hit by subsequent leaves. We will now apply
the Campbell Formula to compute this expectation, and therefore need the following notation.
Let £ := R? x (—00,0] x F. We write N (N for n = 1) for the space of o-finite counting
measures on £". For all n > 1, we define the point process on £", o) = Zil,...,z‘n 5%1,---,%”’
where the sum is taken over all indices (i1,...,4,) such that z;,...,z, are distinct points of

®. We define a function f from " x N to R so that (8.14) reads JACETR Y ™). Applying
the refined Campbell Theorem (see [55]) to compute the expectation in (8.13), we get

QM = / / 1(Z,¢)P?(do) o(dZ))
Zegn qbe/\/(") 1;[ i)

where Z = {%;}"_,, po is the intensity measure of ® and PZ is the Palm distribution of the

process ®™ at Z. Applying the generalized Slivnyak Theorem (see [102] and in Appendix
§B.3) gives

Jj=D

n
QM = / E [f(z, (®+ 05+ + 5gn)<">)] [T #etdz;), (8.15)
Zeen j=1
where, as usual, E is the expectation associated to ®. Writing Z; = (Z;, th, X]) forj=1,...,n,

with {; < --- < t,, < 0, by definition of f, we have
F(Z(®+ 05 + -+ +05,)™) = f(Z,0M) =

H]l(K] CCEj—FInth) Hﬂ(Kjflm(jj +X]):®)
=1 Jj=2

n—1
IIT II mEn@+x)=0| [J] 1E,N(@@+X)=0), (816)

Jj=1 tie(fj,ngFl} tkE(En,O}

with K ; as defined in (8.11). The expectation in (8.15) is computed as follows. Since ® is a
Poisson process, the last line of (8.16) can be written as a product of independent terms whose
expectations can be computed using that, at fixed s < t < 0, and for K compact,

P(K N (z; +X;) =0 for all t; € (s,t]) = exp ((s — t) Ev(X & K))



(see Lemma 8.3.4). Next, 1ntegrat1ng with respect to 1(t; < --+ < t, < 0)dt ...dt, and using
a change of variable u; = ¢; — ¢;41, for j = 1,. — 1, we obtain

n
=[[Bv(xek,)™
j=1

/ TT00 € &+ i) | [ T, 0 G+ %) = 0) | [Tz Ps,).
R2xF) \ G2 j=2 j=1

The first term of the right-hand side of the previous equation is (G("))_l, and the term of the
second line writes

f[ (/Mf (K; i+ IIntX)I(K; N@E+X)= @)da?P(dX)) ,

with the convention K, = (). Now, for two compact sets A and B, we have

/ 1(A C (2 4+ IntX))L(B N (2 + X) = O)(da)P(dX) = Ev((IntX © A) N (X & B)),

which, along with the last equations, yields F(™ and then (8.12). O

For n = 1, we get the original result of Matheron, (8.8), and the case n = 2 was treated in
[96]. Note that from the Q(™)’s, we can compute the probability

P(K; C IntV;,,..., K, C IntV;, for some iy,..., i, € N)

and thus the probability for n connected compact sets K, ..., K, to avoid the boundary of the
dead leaves tessellation. For n = 2 for instance, this is

P((Ky U Ky) NOM = 0) = QB (K1, Ka) + Q¥ (K2, K1) + QW (K1 UKy).

Moreover, it is easily seen that if we consider the random field obtained by independently
coloring each visible part, then Proposition 8.4.1 enables to compute the finite dimensional
distributions of this field. This is a useful result in the context of image modeling, see [79].
Next, we show that the knowledge of Q™ for all n characterizes the distribution of &M in
(F,Br).

Proposition 8.4.3 The distribution of the boundary OM is uniquely determined by the func-
tionals Q™ , n e N.

Proof. The distribution of M is characterized by its capacity functional defined for every
compact set K by P(F ﬁ K 0), see [119]. Let K € K, let 7, > 0 be a sequence converging to
0, and for each n, let {x }, 1,..N, be finite sequences in K such that K C C,, = U;B(a},1y),
where B(x,r) is the (closed) ball centered at @ with radius . Note that since each Cp is a
finite union of connected compact sets, the knowledge of the QW i eN, uniquely determines
P(C, N OM = ). Now since C,, | K, we have that F¢» 1 FX and thus that P(C,, N OM =
0) 1 P(KNOM = (). 0



8.4.2 Typical relief cells

In this section, we take interest in the distribution of cells that remain completely visible. This
problem was first addressed in [118], see also [117], [143] and [95].

Definition 8.4.4 A cell V; is a relief cell if (x; + X;) = Vi. Denote by N, = >, 1(V; =
(@i + X;))0s,.v, the point process of relief cells.

As in the proof of Proposition 8.3.2, one can show that N, is stationary and mixing. From
Condition (C-3) if V; = (x; + X;) then IntV; # (. It follows that N, is a thinning of N and
since N has finite intensity, so has ..

Proposition 8.4.5 The typical relief cell distribution is absolutely continuous with Tespect to

_ P(dF)
P with Radon-Nikodym derivative F Ev(IntX © F , wh = —_——
wt adon-Nikodym derivative F' +— (Mr v(In )) where p, : - Ev(ntX & 1)

1s the intensity of N,.

Remark 8.4.6 As a consequence of this Proposition, the typical relief cell distribution and
the leaf distribution P are equivalent measures on Z. This remark completes the proof of the
“only if” part of Proposition 8.3.8.

Proof. N, is a simple point process with finite intensity. We denote by IP _ the Palm distribution
of N,. Writing N, = > dgr,vr, we have, for all x € Z,

PR, (Vi €x) = M—EZH (Vi € ) (af € 0,1]%)

i

— —EZ]I(VZ-GX, z € 0,17, (mi+ X0 (zy +IntX;) =0) .

tj€(t;,0]
From Slivnyak’s theorem and Campbell’s formula,
1
P (Viex) = — P(z+F)n | (z;+IntX;) = 0) v(dz)dtP(dF)

Hr JR2xR_ xx tet0]
1 .

= — exp(tEv(IntX & F)) dtP(dF)
Hr JR_xx
1 S

— — [ [Ev(tX & F)] ' P(dF),
Hr Jx

where the second equality follows from Lemma 8.3.4. Taking xy = F’, we also find the announced
formula for the intensity. O
For example, we can compute the area distribution of a typical relief cell. For xs = {F €

F:v(F) > s}, we find B, (v(X()) = p; ! [ v(F)[Ev(IntX @ F)]~! P(dF).

Remark 8.4.7 For d = 2, if X is convex and isotropic a.s., we obtain the original result of
Matheron by applying the Steiner Formula to compute pu,. Let [(K) denote the length of 0K,
for K convex, we have p, = E [(v(X) + 2{(X)El(X) + Ev(X))7!].



8.4.3 Cells intersected with a line

We now take interest in the intersection between the dead leaves model and a fixed line D. In
this section we take d > 2 and, in addition to (C-1)-(C-3), we assume that

(C-4) v(0X) =0 a.s. and, for any line D', D' N 90X is either empty, finite or has positive vp
measure a.s.,

where vp/ is the one-dimensional Lebesgue measure on D’. This assumption is for instance
verified if X is a finite union of convex sets, a.s.

We will compute the Palm distribution of the point process M N D and, in the case where
X is convex, prove a result from [118] in the Palm calculus framework.

Lemma 8.4.8 OM N D is a point process on D.

Proof. Since OM is a locally finite union of sets dV;s a.s. and since, for all ¢, dV; is included in
a finite union of sets (x; + 0Xj), it is sufficient to show, that, a.s., for any j, (z; + 0X;) N D
is a finite or empty set. Let us suppose that this does not hold. By (C-4), it implies that with
positive probability, there exists j such that vp(xz; +0X;) > 0. Thus Evp{U;(z; +0X;)} > 0.
Without loss of generality, we let D be the first coordinate axis. By Fubini’s theorem and
translation invariance, we obtain

Ev U(xj + 8XJ) = / EVDy U(:C] + aX]) dy >0,
j yeRI! j
where, for any y = (y2, .. .,%4), Dy is the line parallel to D going through the point (0, ya, . .., yaq)-
Thus, a.s., there exists j such that Ev(0X;) > 0, which is in contradiction with (C-4). O
We let u be a unit vector colinear to D, denote by [0, zu] the segment {Azu, A € [0,1]} and
define, for all z > 0,

L(x) = P(0, zu] C IntV; for some i € N) = QW ([0, zu]) = Egﬁ?;é?f’_;ﬁ%%

(8.17)

where Q) is defined above in Section 8.4.1 and the last equality follows from (8.8).

From now on we denote by Ny = >, d,, the simple point process defined in Lemma 8.4.8,
with points in R, write Py, for its law and ]P’?Vl for its associated Palm distribution. We index IV,
such that {y;} is increasing and yp < 0 < y;. The following lemma links the Palm distribution
of Ny to L.

Lemma 8.4.9 Let Ny =), 4y, be the simple stationary point process defined above. Then L(x)
is absolutely continuous, has a negative right derivative L'(0) at x = 0 and, almost everywhere,

P, (g1 > ) = (8.18)

L'(0)°

Proof. Observe that L(x) = Py, (y; > z) for all non-negative x. Let A be the intensity of N,.
The inversion formula (see for example [20]) gives, for all z > 0,

L(z) =Pn,(y1 > z) = )\/ P?Vz(yl > t)dt.

By derivating we obtain that L'(x) = —AIP’?VZ(yl > z). Observing that IP’(])VZ(yl =0) =0, we
obtain the differentiability of L at the origin and L'(0) = =X < 0. O



We end this section by considering the case of an a.s. convex X. First, we introduce the
geometric covariogram yx of X, defined for > 0 by

vx(z) :=v(X N (zud X)).

Note that the covariogram is usually defined on R?, but that here we only take interest in a
half-line. Let p,1 denote the orthogonal projection on the hyperplane orthogonal to u and v,
denote the (d — 1)-dimensional Lebesgue measure on this hyperplane. If X is convex, then vx
is a convex function on [0, Wy ), where Wy, is the width of X in direction u, and is identically
zero outside this interval. Moreover, it is continuously differentiable on [0, W) with derivative
V() = —vui[pyr (X N (zud X)) > —vy1 (per (X)), see [119]. From (C-1) and (C-2), we
have Ev,i(py1(X)) < oo. Hence, Eyx is absolutely continuous with derivative E (v (z))
almost everywhere; from now on we simply write Ev(z) for E (7% (z)). Moreover v (z) is
right continuous at z = 0 and so is E~’ (x) by dominated convergence, so that Eyx (z) has the
right-hand derivative Ev (0) = —Ev,1 (py1 (X)) at z = 0.

Definition 8.4.10 The intercept distribution (in the direction u) of X is defined as

_ Byl oy (8.19)

RPN

Remark 8.4.11 The term intercept distribution refers to the fact that vx'(z)/vx’(0) is the
probability distribution of the length of the intersection of X with lines having direction u
uniformly distributed among those hitting X, see [143].

Proposition 8.4.12 Let M be a dead leaves model associated to a RACS X which is convex
with intercept distribution Fx a.s. and let IP’?VZ and y1 be defined as above. Then, for all x > 0,

o] 1 +oo
/ P, (y1 > ) dt = 5(1 + Kx)™! Fx(t)dt, (8.20)

T

where K = —Evx'(0)/Evx(0).

Proof. It can be shown that, when X is convex, v(X &[0, —zu]) = vx(z) and v(X &[0, —zu]) =
vx(0) + zvy1 (pyr (X)). Since vy1 (pyr (X)) = —Evx'(0), Relation (8.17) yields

B Evx(x)
L) = Box0) — 2B 0)

and the result then follows from (8.18) and (8.19) through easy calculations. O

Let us finally notice that P?Ve(yl > x) may be seen (as in section 8.2.2) as the length
distribution of the “typical cell” of the tessellation DN M := >, 1{V;N D # 0} éy,np, and thus
as the intercept distribution of the typical cell of M (which is not convex). Notice also that by
taking = 0 in formula (8.20), we obtain

+o0

1
E?Vg(yl) = 5 0 FX(t) dt7

which says (see Remark 8.4.11) that, for a convex X, the mean intercept in any direction is
divided by two as a result of occlusion.



Chapter 9

Monte Carlo methods for sensitivity
analysis of Poisson-driven stochastic
systems

Résumé Nous donnons des méthodes de Monte Carlo pour estimer la sensibilité de certaines
fonctionnelles de Processus de Poisson. Nous appliquons nos résultats a des systemes stochas-
tiques qui ont un intérét en probabilité géométrique, en files d’attente et dans les assurances.

Abstract We give Monte Carlo methods to estimate the sensitivity of suitable functionals of

independently marked Poisson processes. We apply our results to stochastic systems which are
of interest in geometric probability, in queueing and insurance.
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9.1 Introduction

Sensitivity (or perturbation) analysis is concerned with evaluating derivatives, with respect to
parameters of interest, of performance measures of discrete-event systems. There are several
motivations for being interested in such a question: the main reasons are the applications to
optimization and control of complex systems occurring, for instance, in queueing and insur-
ance. The concept of sensitivity analysis was introduced by Ho and Cao [91], and has been
addressed by many authors (see, for instance, the book by Glassermann [74] and the references
cited therein). There are mainly three ways to handle this problem: the infinitesimal pertur-
bation analysis (IPA), the likelihood ratio method (LRM), and the rare perturbation analysis
(RPA). We refer the reader to L’Ecuyer [111] and Suri and Zazanis [148] for more insight into
the IPA method, and to Reimann and Weiss [137] for more details on the LRM. It is worthwhile
to mention the work by Decreusefond [56] where, using Malliavin calculus, it is shown that IPA,
RPA and LRM can be seen as a part of the stochastic calculus of variations.

In this chapter we focus on sensitivity analysis of suitable functionals of Poisson processes
using the RPA method. The functionals we consider are of interest in view of applications
geometric probability, in queueing and in insurance. Let N* be an independently marked Poisson
process (IMPP) with intensity A > 0, (N?) a suitable functional (see Subsection 9.2.2) of the
whole trajectory, and suppose we wish to compute the derivative %E [(NM)]. We distinguish
two different RPA methods: the virtual and the phantom. The virtual RPA method may
be attributed to Reiman and Simon [136], and has been revisited by Baccelli and Brémaud
[19]. Following the ideas of these articles we propose a Monte Carlo algorithm to compute the
derivative. Basically, under suitable assumptions, we evaluate the limit

. E[p(NM2Y) — ¢(NY)]
Al}\rgo AN '

The key idea is to use the superposition property of Poisson processes to generate N 2A: by a
coupling argument the process NAT2 is generated from a small perturbation of N*. The phan-
tom RPA method was introduced by Brémaud and Vazquez-Abad [45]. Following the ideas of
these authors, we propose an alternative Monte Carlo algorithm to compute the derivative. Ba-
sically, under suitable conditions, we compute the limit

Lo BIO(VY) — (N8
AX—0 AN '

The key idea is to use the thinning property of Poisson processes to generate NA~2: similarly
to the previous case, the process N*~2* is generated from a small perturbation of N* by a
coupling argument. We also give Monte Carlo methods to compute the n' order derivatives
£ Blo(N)].

As an example we examine the sensitivity of functionals stabilizing some geometric graph.
Moreover, by using importance sampling and large deviations techniques, we show that these
results can be applied to estimate the sensitivity of stochastic systems described in terms of
Poisson shot noise processes (for instance, the simple teletraffic model of Example 1, intro-
duced by Kostantopoulos and Lin [109], and studied also by Kliippelberg, Mikosch and Schéarf
[107]). Similarly, Monte Carlo estimators for the derivatives, with respect to the intensity rate
of the arrival process, of the tail probability of the stationary waiting time in a M/GI/1 queue
can be obtained. In this case we are able to find asymptotically optimal Monte Carlo estimators
for the first order derivative.

The chapter is organized as follows. In Section 2 we fix notations and we give some prelimi-
naries about analyticity and differentiability of functionals of Poisson processes. We present our
results in Section 3. In Section 4 we apply our results to stochastic systems driven by Poisson
shot noise and compound Poisson processes. A numerical illustration is given in Section 5.




9.2 Preliminaries

9.2.1 Some notations

Let d € N, d > 1 and B(z,r) denote the open ball of center  and radius » in R%. O is a point
in R? taken as the origin. m; will denote the d-dimensional Lebesgue measure of the unit ball
in Ry and | - | the euclidian norm.

Let M be a complete separable metric space and AN the space of all counting measures
on RY x M, defined on the Borel o-field B(R?) @ B(M). In this chapter we assume that each
measure in N is locally finite that is it is finite on each set of the form A x K, where A is
a bounded Borel set, and K € B(M). We endow the space N with its usual topology (see,
for instance, the book by Daley and Vere-Jones [55] for the details). A (locally finite) marked
point process on R? with marks in M is a measurable mapping N : Q — N defined on some
probability space (€2, F, P). Any point process on R? with marks in M can be represented as

N = Z 6(Tnvzn)’

nezZ

where §(; ., (t,2) € R? x M, is the Dirac measure on B(R?) @ B(M), that is for any A € B(R?),
K € B(M), d4.)(A x K) =1if (t,2) € Ax K and 0 otherwise. Here {T}, },.ez is a sequence of
Ré-valued random variables (where R? = R% U {#00}) such that if |T},| < oo, then T}, < Ty,
and {Z, }nez is a sequence of M-valued random marks. Throughout this work, we denote the
set of points of N in B(O,t) x M by Nj;, the number of points of N in B(O,t) x M by Ny, and
by FN the o-field

FN =6¢{N(C x D):C e BR?Y,C C B(O,t),D € B(M)}, t>0.
Moreover, if T' is an .7-"tN -stopping time we set
FN =og{FeF:Fn{T <tleFN,t>0}.

Let N' = {(T!,, Z!)}nez be a marked point process on R? with marks in M. As usual in the
context of point processes, we set

/ (N, t,2)N(dt x dz) = (N, T, Z0)61, (RY),
RixM nez

for any measurable functional 1) : N’ x R% x M — R¢ such that the sum is well defined.

As already mentioned in the Introduction, throughout this chapter we denote by N* an
IMPP of intensity A > 0: that is the ground process {7, }ncz is a homogeneous Poisson process
with intensity A, the random marks {Z, },cz are independent and identically distributed (i.i.d.
for short), and the sequences {T}, }nez and {Z, }nez are independent. Finally, we recall that N*
is actually a Poisson point process on R? x M with intensity measure Adt x Q(dz), where Q is
the common distribution of the marks.

9.2.2 Analyticity and differentiability of functionals of Poisson processes

Our analysis is based on a result, due to Zazanis [164], concerning the analyticity of functionals
of Poisson processes, which we briefly recall. Let ¢ be a measurable functional from N to R,
f(A) = E[p(NM)], A > 0, [a,b) an interval of the positive half-line, and consider the following
conditions:

For any A > 0, there exists an .7-}N A—stopping time 7* such that (9.1)



H(NH) is f%k—measurable.
For any A € [a,b) E[|¢(N*)|"] < oo for some ~ > 1. (9.2)
For any \ € [a,b), there exists s = s(\) > 0 such that (9.3)
Elexp(s(T*)%)] < oc.
It holds
Theorem 9.2.1 Assume (9.1), (9.2), and (9.3), then f(\) is analytic on [a,b).
It is worthwhile to mention that in its paper Zazanis considers the stronger assumptions:
(i) For any X € [a,b) E[¢p*(NY)] < occ.
(i) d=1.
Assumption (i) is in place of (9.2), however the differentiability of f holds under the weaker
hypothesis (9.2), as can be easily realized by a right use of Holder inequality in the proof of
Lemma 2 of [164].
Assumption (ii) seems to be more limitative. As it can realized from Section 2 in Zazanis
[164], what matters in Zazanis’s proof is that the function A — E[¢(N?)] is a mapping from

R4 to R. Then the only small differences are contained in Equation (1) and the statement of
Lemma 1. Equation (1) should be replaced by:

dP)\7T . )\ Nr d
Por =( - )" exp(—mgT\ — a)).

Lemma 1 need also some light modification. We will prove an analog lemma (see Lemma 9.3.4).

An important result on the differentiability of f(A) in a neighborhood of the origin is given
by Baccelli, Hausenfuss and Schmidt [22] (see Theorems 2 and 3 therein). The main differences
between the work by Zazanis and that one of Baccelli et al. are the following. In their paper
Baccelli et al. give sufficient conditions (different from those one in the work by Zazanis) for
the m-differentiability of f(A) on [0,b), and they give an explicit expression for the m-th order
derivatives. However, their condition on the existence of uniform coupling times is too strong
for our purposes. This is the main reason for which we have chosen the approach of Zazanis. It
is worthwhile to remark that in this chapter we computed the m-th order derivatives under
a set of assumptions which differs from that one in Baccelli et al., and we give Monte Carlo
estimators to compute these derivatives by simulation.

Throughout this chapter we refer to the following definition of monotonicity for functionals
of marked point processes. In the following the symbol supp(x) denotes the support of the

counting measure p € N, i.e. if =37 7w, 2.), SupP() = {(tn; 2n) ez

Definition 9.2.2 Let ¢ be a measurable functional from N to R, N a locally finite marked
point process on R with marks in M, and T an .7-"tN -stopping time such that ¢(N) is .7-"%\7 -
measurable. We say that the couple (¢, T) is nonincreasing (nondecreasing) if, for all u,p' €
N, supp(p) C supp(p') implies T(pn) > T(W') (T(p) < T(W')). The couple (¢,T) is said
monotone if it is nonincreasing or nondecreasing.

We give a couple of examples as a guide to intuition. Assume d = 1 and for pu € N, define
the functional ¢(u) = 1 A t1, being ¢; the first (unmarked) point of 1 on (0,00). Let N be a
marked point process on R x M and define T' = T}, being T} the first (unmarked) point of N
on (0,00). Then it can be easily checked that (¢,7") is nonincreasing but it is not nondecreas-
ing. Now define T'= 1, then (¢,T') is nonincreasing and nondecreasing.



9.3 Rare perturbation analysis

9.3.1 Rare Perturbation Analysis of monotone functionals: the first order
derivative

In this subsection we compute the first order derivative of f in the case of monotone function-
als. The following Theorem 9.3.1 holds.

Theorem 9.3.1 Under assumptions of Theorem 9.2.1, if moreover the couple (¢, T™) is mono-
tone then, for all A € [a,b),

A

7O = TaBITNUGN + 6, 5) — 6NV)] = B | 22 (6(N) — 6(NA — 6(7/72,)»] (9.4)

A

1

=B L g O = 6V — Il 2

)

Here, given T, T is a random variable uniformly distributed on B(O,T?), and independent of

N?; 7 has law Q and it is independent of N* and 7; given the collection of points N‘)%M (7', 2"

1s a random variable uniformly distributed on the collection.
To prove this theorem we need two preliminary propositions:

Proposition 9.3.2 Under assumptions of Theorem 9.2.1, if moreover the couple (¢, T?) is
nonincreasing then, for all A € [a,b),

') = maEI(TN SN 45, 5) — o(NV))] (9.5)
where T and Z are defined in Theorem 9.5.1.

Proposition 9.3.3 Under assumptions of Theorem 9.2.1, if moreover the couple (¢,TA) 18
nondecreasing then, for all X € [a,b),

N2,
FO) =B | =F(6(N%) = (N — 6<T/,Z/)>>]
—p|k / (G(NY) — (N> — 5y ))NM(dt x d=) (9.6)
A JBoo. M xM (&%) 7

where (7', Z") is defined in Theorem 9.3.1.

To prove these propositions we need in turn the following lemmas:

Lemma 9.3.4 Under assumptions (9.1) and (9.3), for all X € [a,b), there exists s' = s'(A) > 0
such that Elexp(s'N, )] < oc.

Lemma 9.3.5 Under assumptions of Theorem 9.2.1, for all o € [0,7), the function A +—
E[|¢(N*)|?] is analytic on [a,b), and therefore continuous.

We start showing Lemma 9.3.4.
Proof. Let s be given by assumption (9.3), and set C = Elexp(s(T*)9)] and 6§ > e*mg\. We
notice that

P(Npx > k) < P((TY)? > k/8) + P(Nj 1510 > k), for all k > 0. (9.7)



By the usual inequality for the Poisson distribution (see, for instance, the book by Penrose
[129], Lemma 1.2) we have

)
A
P(N(k/é)l/d > k) < exp <—(/<:/2) log <7Td—)\>> , forall k>0. (9.8)

Therefore, by (9.7), (9.8) and Markov inequality, it follows that, for all £ > 0,

P(N%A > k) < Cexp <—§kz) + exp <—(kz/2) log <7Tj—)\>> .
Finally, we easily deduce that, for 0 < s’ < min{s/d, 3 log(§/ma\)}, E[exp(s’Nq):A)] =14 (e —
1) k>0 exp(s'k) P(N2, > k) < oo. O
We now prove Lemma 9.3.5.
Proof. The conclusion is trivial for @ = 0. Assume « > 0 and define, for ;. € A, the functional
®(u) = |p(u)|*. The corresponding assumptions (9.1) and (9.3) are trivially satisfied. Further-
more, using Holder inequality for = v/a > 1 we get

E[|@(N)|°]V? = E[|¢(N)["]*/" < o0,

where as usual N = N*. The conclusion follows by Theorem 9.2.1. O
We now prove Proposition 9.3.2. For this we use the so-called virtual Rare Perturbation

method considered in [19] (see also Vazquez-Abad [157]).

Proof. To render the notation more easy we set N = N* and T = T*. A straightforward

computation gives

1
Ello(N +02)) = oI N] = 7 /B o BN +6(1.)) — (N)|dtQ(d)
1
B W/RdxM“b(NJF‘S(t,z)) — p(N)|dtQ(dz), a.s., (9.9)

where the latter equality follows by condition (9.1). Indeed, by the F¥-measurability of ¢(N)
follows the f;v+5(t’z)—measurability of ¢(N +d(4,)) for each (¢, z), and therefore (N + 0 .)) =
#(N) for any t € R? with [t| > T. Thus the integrability of the random variable T(gb(N—i—(S(T 2))—

#(N)) follows by Lemma 9.3.9 which we state and prove later on in this chapter. Let N’ =
> nez 01, z1) be an IMPP with intensity A\, such that Z] has law @ and N’ is independent
of N. By an elementary property of Poisson processes, N + N’ is an IMPP with intensity
A+ AX. Here we choose A\ small enough so that A + A\ < b. Consider the .7-"tN N /—stopping
time TATAA = T given by condition (9.1). By the monotonicity assumption on (¢, T) we have
that 77 < T a.s.. Thus ¢(N + N') is also f%VJFN/—measurable, and therefore

$(N) =¢(Nip) and G(N +N') =¢((N + N')p). (9.10)

We notice that
fAA+AN = f(A)

= E[¢(N + N') = ¢(N)]/AX

AN
_ ALAE STAN) = k)(@(N + N') — ¢(N))
E>1
_ ALAEH(N'T — 1)(@(N + N') — ¢(N))] (9.11)
LB > 26V + V) — s(N))), (9.12)

AN



where the second equality follows noticing that on {N}. = 0} by (9.10) we have ¢(N) =
¢(N + N'). Fix a € (1,7), by Lemma 9.3.5 the function A\ — E[|¢(N)|*] is continuous on
[a,b). Therefore there exists a positive constant C' > 0 such that E[|¢(N)|*] < C* and E[|¢(N +
N')|%] < C*. Using Holder and Minkowski inequalities we have

1-1/« 1/a
E[L(NF: 2 2)(6(N + N) = o(N)] | <( P(Np22) ) (Bl + N') = 6(V)|°] )

(A)\)kﬂgTdk AT | Ve
<0 (|3 BV o)
>2

< 20(mg AN)XA= ) (B[T2d])1-1e, (9.13)

By assumption (9.3) we have E[T?d] < co. Therefore, by inequality (9.13) it follows that the
term in (9.12) goes to zero, as AX — 0. Since N’ is independent of N it follows

E[(Nf = 1)(6(N + N') = ¢(N))] = E[B[L(Nf = 1)(¢(N + N') = ¢(N)) | N]]
= B[AmgTe 2T Bl(¢(N + N') — 6(N)) | N, Nj = 1]]
= E[AAmT% 2T E[(¢(N + 8r.2)) — O(N)) [ N]]

. wdA)\E[Tde—AMde(gb(N+6(TZ)) B(N))]. (9.14)

Thus by the dominated convergence theorem the term in (9.11) converges to mqE[T%(¢(N +

5(7,2)) — ¢(N))], as AN — 0. O
We now prove Proposition 9.3.3. For this we use the so-called phantom Rare Perturbation

method introduced in [45] (see also [157]).

Proof. Set N = N* and T = T*. By condition (9.1) we have ¢(N — §(p+ z+)) = ¢(N) a.s., for

all T* ¢ B(O,T) and therefore

/ G(N) — G(N — 80))|N(dt x d2) = / G(N) — S(N — 80.))|N(dt x dz). (9.15)
B(O.T) Rdx M

Thus the integrability of the random variable f(O,T}xM((b(N) — ¢(N — 61,.)))N(dt x dz) fol-
lows by Lemma 9.3.10 which we state and prove later on in this chapter. Let {3, }n,ecz be an
iid. sequence of Bernoulli random variables defined by P(3, =0) =1— P(8, =1) = A)\/)\
and independent of N. Consider the thinned IMPP of intensity A — A\ given by N = NA~4A

> nez Bnd(t,,z,)- By condition (9.1) and the monotonicity assumption on (¢,T') it follows that
#(N) and ¢(N) are FN-measurable. The equality in (9.6) is given by the following computa-
tions:

B [SE@N) = 0l = )| = B[ B[ FEG0) - 9 = 80) | M|
1
=B (5 [ O = 6N )Nt dz)] .
We finally show
PO=B (5 [ (O <N = 8 Nl dz)] . (9.16)

By the independence of {3, }ncz and N we have, for 0 < k < Np,

P(Ny — Ny =k|N) = <A];T> <%>k <1 - %)NT%.



This equation implies

E[1(Ng — Np = k)(¢(N) — ¢(N))] =
(JZT> <%>k (1 N %)NM E[¢(N) = ¢(N) | N, Ny — Np = k:]] .

By the FN-measurability of ¢(N) and ¢(N) we have E[L(Nr — Ny = 0)(¢(N) — ¢(N))] =
0. Therefore

E

E[¢(N) — (N)]
AN

() = F(A=AN)/AN =

— E Z} L(Nr — Np = k)($(N) — ¢<N>)}

~ Lol <ﬂ) (1 - Q)NTEWN) ~ S(V)|N, Ny — Ky = 1]

A A A
- (9.17)
Ay B 10— B > 2)(6(V) - 6()] . (9.18)

We notice that, given N, the random variable ¢(N)|{Ny — Ny = 1} has the same law of
(N — (7, z1y). Thus, using obvious notations,

o
() J BOT(w)x M

E[¢(N) = (N) [N =, Ny = Np = 1] = (B1) — Bl — Fe))uldt x d2).

(9.19)
By the dominated convergence theorem and (9.19) it follows that, as AX — 0, the term in
(9.17) goes to

1

25/ o P~ 9N =B IN a2

The conclusion follows if we prove that the term in (9.18) goes to zero as A\ — 0. Fix a € (1,7),
by Lemma 9.3.5 the function A — E[|¢(N)|%] is continuous on [a,b). Therefore there exists a
positive constant C' > 0 such that E[|¢(N)|%] < C* and E[|¢(N)|*] < C*. Using Holder and
Minkowski inequalities we have

B [1(Vr — r > 2)(0(V) — o) | < (PN~ 82 2)) " (Bllov) — o(W)17)
Nr k Np—k] T
(B (62
- (9.20)
As can be easily checked, for any n > 2 and p € (0,1),
i (;)p’”(l —p)t " < %nzp? (9.21)

m=2
Thus by (9.20) and (9.21) the modulus of the term in (9.18) can be bounded from above by

1-1/a

2C (1/2 <%>2E[N%]> ,



and this quantity goes to zero as AX — 0, since E[N%] < oo by Lemma 9.3.4. |
We finally show Theorem 9.3.1.

Proof. For ease of notation we set again N = N* and T = T*. Throughout this proof we assume

(¢, T) nonincreasing. A similar argument (using first Proposition 9.3.3) can be applied in the

nondecreasing case. As for (9.9) we have

1
mql?

BON +5,2) = oVINl = =5 [ (0N +6.) —o(N)HQUE2), as (022

By (9.22) and Proposition 9.3.2 it follows

PO = BTGV + 8, 5) — o)) = | EION 46, 5) — o(N)lde. — (9.23)

R4

Using the same argument as for (9.15) and the Slyvniak-Mecke theorem (see, for instance, Daley
and Vere-Jones [55]) we get

£ B[ [, (60V) = 6N )N (et x 02
Rax M

[ (6V) = 6N = 3Nt x )
B(O,T)xM

=) [ BlON +6,2) —o(N)ldt.  (924)

The conclusion follows by equalities (9.23), (9.24), and equality (9.6), which does not depend
on the monotonicity of the couple (¢, 7). O

9.3.2 Higher order derivatives

In this subsection we generalize Theorem 9.3.1 giving some Monte Carlo methods to compute
the n'"-order derivative f(™(\) of f at \.

Let ¢ be a measurable functional from A to R. As in [136] and Blaszczyszyn [32], for u € N,
n>1and (t1,21), ..., (tn, 2n) € R x M, define

¢(t1,21),...,(tn,zn) (:U’) = D(tla s ,tn) Z(_l)nik Z o} (:u + Z 6(t¢,z¢)> ) (925)

k=0 WE{(Z)} em

where D(t1, ... ,t,) = 1({t1,...,t, are distinct}) and {(})} denotes the collection of all subsets
with cardinality k of {1,...,n}. For u € N, n > 1 and (t1,21),..., (tn, 2n) € R? x M, define
also

=1

We notice that ¢, ), (tn,2) (1) (and therefore Pt1:21)tno2n) (1)) is invariant by permu-
tations in the sense that for any permutation o of {1,...,n} ¢(to(1)720(1))7"'7(t<7(n)7zo(n))(M) =
¢(t1,z1),...,(tn,zn)(ﬂ)- Furthermore, as can be easily seen reasoning by induction on n > 1, we
have for distinct t1,...,tn41

Dty 1) (st yomst) () = Dty 200 () (B Ot zmin)) = Pltr,1)smm(brom) (1) (9.27)
and

¢(t1721)7---,(tn+1,2n+1) (,U) _ ¢(t1721)7---,(tn72n) (,U) - ¢(t1721)7---,(tn72n) (,U' _5 (9.28)

(tn+1vzn+1)) .

The following Theorem 9.3.6 holds.



Theorem 9.3.6 (We use the convention that the sum over an empty set is zero and k!/(k —
n)! =0 for n > k). Under assumptions of Theorem 9.3.1, for all A € [a,b) and n > 1,

n mn (N)\A)n 7! T i

f( )()\) = E[(T)\)d ¢(7—1,Zl)7 ,(q—mZn)(N)\)] E #(ﬁ( 1521)5( n7Zn)(N>\) (9.29)
=FE [(1/\") Z U200 (T3, 20) (N (9.30)

i ((Tf7ZT),---7(T572*))€(N‘TA)

NA // " "

=B |——T% 420 2 (N | 9.31

ey () (931)
Here, given T, , Tn are independent, uniformly distributed on B(O,T), and independent
of N>‘ Zl, .. Z are mdependent with law Q, and independent of N* and T1,...,Tn; given
the collection of points N\TM (11, 2%), ..., (1}, Z!) are independent and uniformly distributed on

the collection, and {(TI,Z{’) (1), ZIN} is uniformly distributed on the set of subsets of n
dzstmct points of N2, ; the symbol ( |TA) " denotes the set of the n-tuples of n distinct points

f |T>‘

Note that both equations (9.30) and (9.31) imply that £ ()\) = 0 if T* < T,, with probability
one, being Tj, the n'" point on (0, 00) of the Poisson process.
To prove this Theorem 9.3.6 we need the following preliminary propositions:

\TA’

Proposition 9.3.7 Under assumptions of Proposition 9.3.2, for all X € [a,b) and n > 1,
f(n)()‘) =T E[(T)\)dn¢(n Z1),.. ,(Tn,Zn)(NA)]’ (9-32)
where T1, ..., Tn, 21, el Zn are defined in Theorem 9.3.6.

Proposition 9.3.8 Under assumptions of Proposition 9.3.3, for all A € [a,b) and n > 1,

e /
fMON) =E ( )\n) P21 Zn) (N (9.33)
=B |(1/3") > pUT A0 TZI N [ (9.34)

i (7,20, (T5 Z50)) €N )BT

where (11, 2}), ..., (75, Z!) and (N2, )®" are defined in Theorem 9.3.6.

T

To prove these propositions we need in turn Lemmas 9.3.9 and 9.3.10 below. For any u € N
and n > 1, define the functionals

P(p) = / |D(t1,21) s (t,z) (W) b1 - dEn Q(d21) - Q(dzn) (9.35)
(Rex M)™

and (with the convention that the sum over an empty set is zero)

=3 et ) (9:36)

{(thzl)r'w(tnvzn)}cﬂ

where the sum is taken on sets of n distinct points of u. It holds



Lemma 9.3.9 Under assumptions of Theorem 9.2.1, if moreover the couple (¢, T*) is nonin-
creasing then, for all \ € [a,b) and o € [1,7), E[(N*)?] < oo for any a € [1,7).

Lemma 9.3.10 Under assumptions of Theorem 9.2.1, if moreover the couple (¢, T)‘) 8 non-
decreasing then, for all X € [a,b) and o € [1,7), E[x(N*)?] < oo for any a € [1,7).

We start showing Lemma 9.3.9.

Proof. For simplicity of notation set T = T» and N = N*. Let ¢ > 1 be such that g < v
and p > 1 such that 1/p + 1/¢ = 1. Moreover, let N’ be the IMPP defined in the proof of
Proposition 9.3.2 with AX chosen so that A+ A\ < b and E[exp(2paAlryT4)] < oo. Reasoning
by induction on n > 1 it can be easily realized that condition (9.1) implies

¢(t1721)7~~~7(tn72n)(N) = 0 fOI‘ any (tl, e ,tn) ¢ B(O, T)n, (937)

and therefore
v = [ 001 200,y (V] 1 - A0 Q1) . Q).
O, T)xM)"

It follows

Y(N) < miTrin (” (rgT)*
—\k B(O,T)x M)k

(N v Za a0 > ‘ dty ... dtxQ(dz1) ... Q(dzx)

< Tdnz (k)E[|¢<N+ N\ N = b, N)
< T + NN () POV = k)
k=0

< B + NN () g e
- =0 k (A)ded)k

n! , " (AATgT )k
= @ ETIEIN £ IS omt—
< (A"A‘)n exp(2ANT T E[|¢(N + N')| | N).

Using Jensen and Hélder inequalities we deduce that

n!

E[p(N)*] < (WY Elexp(2aAMmqT?) (E[|¢(N + N')| | N])“]

< (o) ElespCaddmaT) B0V + N[ | ]

< (o) Elexp(adraar P E[6(V + N0 < o

O

We now show Lemma 9.3.10.
Proof. Set T = T* and N = N*. Let (N|T)®" denote the set of the n-tuples of n distinct points
of Nir, and similarly N ®n the set of the n-tuples of n distinct points of N. Moreover, let ¢ > 1
be such that ag < v, p > 1 such that 1/p 4+ 1/q = 1, N the IMPP defined in the proof of
Proposition 9.3.3 and s > 0 such that E[exp(sN)] < co (see Lemma 9.3.4). Here we choose A\



in such a way that 2palog (A/(A — A))) < s. Reasoning by induction on n > 1 it can be easily
realized that condition (9.1) implies

p'totn(N) =0 for any (ty,...,t,) ¢ B(O,T)", (9.38)
and therefore
X(N) = > |70 T Z0) ()| (9.39)
{17, 27),- (T, Z5) N
=1/n! Z |¢(vazf)7---7(Ti{,Z;)(N)| (9.40)
(TF,27)- (T, Z5) ) E(N) &
=1/n! Z |20 (T Z0) ()| (9.41)
(T{27),(T55, 23) ) E(N )&
= 1/n E [(Np)"|¢™ 200 B (N)| | N] (9.42)

where the equality in (9.40) follows from the invariance by permutations of ¢! (1), the
equality in (9.41) follows by (9.38), and the equality in (9.42) follows by the definition of
(11, 21),..., (1), Z}). If Np <n, x(N) =0, and if Ny > n, we deduce that

X(N) < E [ (N)"| gl 20020 ()| N |

n k
cowre|S T Jo(v- T ||
k=0 iy, i el (1)} i=1

n

= r Y () Bl |, — N = i
k=0

< (v B IS () POvr = e = K )
k=0
PV S\ RNy — k) (AN TR O AN
= (vp) E[|¢<N>||N1k§%(k) (5 (-5
A
A=A

Nt B
< K(Ng)" ( ) E[l6(R)|| V], (0.43)

where K = (ﬁ)n Y r—o k'(g) Finally, using Jensen, Holder and Cauchy-Schwartz inequalities
we get

aNT
BNV < K08 () (=55 ) w(wa]

A paNT
< K°E |(Ngp)Pen
= (Nr) (A—AA)

1/p
E[|¢(N)[*)"e

1/(2p)

(5= )N] ElJ$() )1 < oo,

< KozE[(NT)Zpan]l/(Qp)E AN

We now show Proposition 9.3.7.



Proof. Set T =T and N = N*. Note that by (9.37) we have
¢(N) = WZILE[Tdn’¢(Tl,21)7m7(7n72n)(N)’ ’ N]

Thus the integrability of Td”¢(T1 A Zn)(N ) for any n > 1 follows by Lemma 9.3.9. We

prove formula (9.32) by induction on n > 1. As already shown it holds for n = 1. Let {/;
be the functional defined as 1 without the modulus. By (9.1) and (9.37) it is easily seen that
{/;( N)is Fp N_measurable. The couple (zZ, T)is nonmcreasmg by the monotonicity assumption on
(¢, T). Assume the inductive hypothesis f™()\) = E[¢)(N)] for n > 1. Fix o € (1,7), by Lemma
9.3.9 we have E[|¢)(N)|?] < oo for each A € [a,b). Define the random variables 7,11 and Zy, 41
as follows: given T', 7,41 is uniformly distributed on B(O T) and independent of N, 71,..., Ty;

Zn+1 has law @ and is independent of N,7q,..., 741 and VAT Z By Proposition 9.3.2 we
get

D) = ma BTN + 3 A~p—&m»

(Tn41,Zn+1

The conclusion follows noticing that by (9.37) and (9.27) we have

maE[T*((N + 6

(Tn+1,Zn41)

)= BN = [ BN+ 6) — SN Q)

= /(RdXM)n+l E[¢(t1721),...,(tn+1,zn+1)(N)] dtl o dtn+1

Q(dzl) . Q(dzn+1)

_n+1 d(n+1 ~ 5
=7, " E[T ( )¢(Thzl),__.,(rn+172n+1)(N)]'

We now prove Proposition 9.3.8.
Proof. Set T =T* and N = N*. By (9.39)-(9.42) we get

(Np)"

E
)\n

BED R () | N] (V)"
Thus the integrability of %(]ﬁ(T{’Z{)""’(TJL’Z;)(]\/) for any n > 1 follows by Lemma 9.3.10. We

prove formula (9.33) by induction on n > 1. As already shown it holds for n = 1. Let X be the
functional defined by

~ n! ; ;
el R et
{(t17Z1)7"'7(tn7Zn)}Cﬂ

Since

TN) = 1/A7 3 T 20T 23 ()
((Tl*7Zf)7"'7(T;{7Z:L))€(N\T)®n

(see (9.39)-(9.41)) we have that X () is &~ -measurable. The couple (X, T) is nondecreasing by
the monotonicity assumption on (¢,T'). Since for each n > 1

Np)™ /
SCJ(N) = F [%gb(q—lv )7 7(7— Z ) ‘ N:|
(see (9.41)-(9.42)) the equality in (9.34) holds. Assume the inductive hypothesis f(™()\) =
E[xX(N)] for n > 1. Fix a € (1,7), by Lemma 9.3.10 we have E[|X(N)|%] < oo for each
A € [a,b). Let (7),41,Z),,1) be a random variable such that, given Njp, it is independent of



(11, 21),- -+, (13, Z},) and uniformly distributed on the collection N|p. By Proposition 9.3.3 we
get

FotD(\) = B %(Q(N) XN =6, 22 +1)))]

The conclusion follows noticing that by (9.28)

EX(N) =X(N =6 .z, ) I N] =

B|(5L) @B ) GBI oy ) | N] =

B |:< ) Tle )5 n+17 n+1) ‘ N:|

We now show Theorem 9.3.6.
Proof. As usual set T = T» and N = N*. Throughout this proof we assume (¢,T) nonin-
creasing. A similar argument can be considered if (¢,T') is nondecreasing (in this case use
Proposition 9.3.8 in place of Proposition 9.3.7). We first notice that the equality (9.30) holds
without assuming (¢, 7)) monotone (see (9.41)-(9.42)). Let ¢ be the functional defined in the
proof of Proposition 9.3.7 and Y the functional defined in the proof of Proposition 9.3.8. The
equalities in (9.29) follow if we prove

a

E[p(N)] = E[X(N)]; (9.44)
indeed by Proposition 9.3.7 we have f(()\) = E[()(N)]. Equality (9.44) follows since by the

extended Slyvniak-Campbell theorem (see Mgller and Waagepetersen [126] or Equation (10.2)
in Appendix) and the invariance by permutation of (b(tl’zl)""’(t"’zn)(u) we have

ROV = Y AR )
{17, 20), (T3, Z5)}CN

(Réx M)™

= / Elbty 21),0(tnyzn) (V)] dt1 - dt, Q(d21) . .. Q(d2n)
(Rdx M)™
= E[)(N))].

Gt 71 (tn 2n) <N +y %,Z,.))] dty . dtnQ(dz) ... Q(dzn)

i=1

It remains to show equality (9.31). For this we notice that by the properties of the functional
Plt21)y s (tnzn) it follows

%(N) = n'/)\n Z ¢(T1*7Zf)7"'7(T;§7Z¢*L)(N)
{(Tl*vz*)v 7( no n)}CN\T
_ Np! Np (TF,2),- (T, Z5)
- )\”(NT—n)!l/<n> 2 ¢ (V)
{17, 27), (T, Z5) N
Nrp! 1"

f— - (T ’ //)7' 7(7-7{74/72’:{

where the latter equality follows from the invariance by permutations of (u). O



9.4 Applications

In this section, we apply Theorems 9.3.1 and 9.3.6 to obtain Monte Carlo estimators for the
sensitivity of stable functionals in geometric probability and for suitable performance measures
of Poisson shot noise and compound Poisson processes.

9.4.1 Stable functionals in geometric probability

Assumption (9.1) is closely related to the definition of stable functionals given in Chapter 1,
Definition 1.2.1. Thus geometric probability is a natural field of application of Theorems 9.3.1
and 9.3.6.

As an example, we consider the dead leaves model analyzed in Chapter 8. The dead leaves
tessellation is denoted by M?* = > 0z, v;, where V; is the visible part of the leaf z; + X; (see
definition 8.3.6), and N* = 3", 65,4, x, is the associated PPP of intensity A. Let Vi, be the
cell containing 0, its associated leaf is denoted by (o} + Xy By Equation (8.3), the typical
cell distribution is

v(Vioy)

where p is the intensity of M? and v the usual Lebesgue measure. For all i, we define R; as
the radius of the smallest ball containing the leaf x; + X;. The sensitivity analysis of the typical
cell distribution is an application of Theorems 9.3.1 and 9.3.6. Indeed, let ¢(N?*) = 1(Vioy €
A)/v(Vigy) and T' = max{(t;, RY) : 0 € (z; + X;) and Int(V;) # 0}, clearly Assumption (9.1)
is satisfied. Note that the couple (¢, T) is also nondecreasing. Then, assume for example that
X is a closed ball of random radius r. By Lemma 8.3.4, Assumption (9.3) will be satisfied
provided that Fexp(sr?) < oo for some s > 0 (we do not give more details to this fact).

P'(Vpe)=1/E

9.4.2 Poisson shot noise processes

A Poisson shot noise process with drift is a stochastic process of the form

St)=>_ H(t —Tn, Zn)Log(Tn) — ct,

n>1

where {7, } ez are the points of a homogeneous Poisson process with intensity A > 0, {Z,, }nez
is a sequence of i.i.d. nonnegative random variables with distribution @, ¢ > 0 is a posi-
tive constant (drift), H :R? x [0,00)—[0, 00) is a nondecreasing continuous function such that
H(t,z) = 0 for nonnegative times. Throughout this work we shall assume H(oco,z) = 2z and
P(0< Z) <o0)>0.

A standard performance measure associated with S(¢) is the level crossing probability

fulh) =P (T} <0)  u>0,

where
T =inf{t >0:S(t) > u},

and T} = oo if {...} = (). Below we give two examples of the stochastic model described above.
Example 1: A telefraffic model

(see [109] and [107])

Consider a computer network, and let the points {7}, },>1 of a Poisson process with intensity
A > 0 be the times when a new ON-period of an individual source starts. If we denote by



{Z,}n>1 the lengths of the ON-periods, then the number of active computers in the network
at time ¢ is
X(t) = Z Lo, 7,1t = Tn) (0,4 (Th)-

n>1

Now, consider a single server queue with service rate ¢ > 0 and traffic intensity X (¢), and
suppose that a source sends a signal at unit rate. The corresponding workload process at time
t is the positive part of

S(t) = /0 X(s)ds —ct =Y min{t — Ty, Zu Lo (T) — ct.

n>1

When the buffer is not finite the queue length is sup,~q S(¢), and therefore for a finite buffer
with capacity u > 0 the overflow probability is overestimated by fu(A).

Example 2: Risk processes with delayed claims

(see Kliippelberg and Mikosch [106, 105], and Brémaud [44])

The interpretation of the process S(¢) in the insurance context is the following. Suppose that
claims occur according to a homogeneous Poisson process {1}, },>1 with intensity A > 0, and
the insurance company honors a claim happened at time 7,, at the rate h(- —T},, Z,,). Then the
total amount paid in the time interval (0, ] is

N H(t =T, Zn) 1o g(Tn),

n>1

where H(t,z) = fg h(s,z)dz. If we assume that the insurance company has an initial capital
u > 0, and we denote by ¢ > 0 the gross premium risk, the corresponding ruin probability
coincides with the performance measure f, ().

9.4.3 Sensitivity analysis of stochastic systems described by Poisson shot
noise processes

By using large deviations techniques in [44] it is proved that under the following assumptions:

k(0) = E[e??1] < 0o for all § in a neighborhood of 0, say (0,7) (9.45)
¢ > AE[Zy], (9.46)
and
there exists w > 0 such that A(k(w) — 1) — cw =0 (9.47)
it holds
fu(N) <e ™, for all w >0 (9.48)
and )
lim —log fu(\) = —w. (9.49)
U—00 U,

Thus, under (9.45), (9.46), and (9.47) the performance measure f,(\) goes to zero not slower

than an exponential rate. This yields problems if we want to estimate f,(A) by an efficient Monte

Carlo simulation. Indeed, consider the crude Monte Carlo estimator %22:1 ]l{s&k) < oo} of

fu(X), where sq(}), e ,sgn) are n independent simulations of 7)) under the original law P. To
keep fixed the relative error

quA) (fu@)(ln— JZ(M))”Q,



n has to grow exponentially with u. Moreover, since f,(\) < 1 for any u > 0, the simulation
time can be infinity. In Torrisi [153] we have overcome these difficulties by using importance
sampling. The idea is to consider independent simulations of qu‘ under another suitable law.

Let {F;}+>0 denote a filtration such that, for any 6 for which x(#) < oo, the process %
is an Fi-martingale, being

C(t) =Y Znloy(Tn)-
n>1

Consider the family of laws {FPp}g..(9)<o0 defined as follows: the probability measure Py is
absolutely continuous with respect to the original law P on the o-field F;, for each ¢t > 0, and
the corresponding density is

Jnp SHC(1)

t - E[eGC’(t)]

We point out (see, for instance, Brémaud [43]) that, under Py, the process {7, },>1 is a ho-
mogeneous Poisson process with intensity Ak (), independent of the sequence {Z,, },>1 of i.i.d.

)

=exp{0C(t) — Xt(k(0) — 1)}. (9.50)

random variables, whose common law PG(Z
mon law @), with density

is absolutely continuous with respect to their com-

dPG(Z) B 602
iQ ¥ = wey

The following result is proved in [153], and gives a family of laws admissible for simulations,

i. e. a family of laws under which the simulation time is finite.

Proposition 9.4.1 Under assumptions (9.45), (9.46), (9.47), if moreover

)\E[Zlegzl] —¢>0  for some 8 € (0,n), (9.51)
then Py is an admissible law for simulations, that is P(;(Tlf‘ < o0) =1, for all u > 0.

The importance sampling estimator of f, () is the unbiased estimator defined by

1 & gP,Pa
EZ ¢
k=1
(1) t&")

where ty, 7, ... are n independent simulations of Ty) under Pj.

In Theorem 9.4.2 below we combine the importance sampling technique and formulas in
Theorem 9.3.1 to obtain Monte Carlo estimators for the sensitivity % fu(\). Let N* denote
the IMPP which defines S(t), and consider, for each (locally finite) counting measure u =

> ez O(tn,2n) 00 R X (0,00) and 6 such that £(f) < oo, the functionals

¢o(p) = exp {—9 > 2l o) (tn) + AT (1) (5(6) — 1)} ; (9.52)

nez
where the notation 7))(x) means that the hitting time is computed on the points of . It holds

Theorem 9.4.2 Assume (9.45), (9.46), (9.47), and (9.51) for some 6 < w. Moreover, suppose
that the function 6 — r(6), 0 € (0,n) is steep, namely lim,, .o, E[Z1e%2%1] = co whenever {6,,}
is a sequence converging to n. Then, for all u > 0,

dfu(\ N2,
fdi ) — BT 65V + Siriy) =GNV = By | == (05(N%) — d5(N* - 5(7/,2/)))]
1
=E5 15 /(07% (o,oo)(%(NA) — ¢5(N* = 0(1.)) )N (dt x dz)] ,




where, Ej denotes the expectation under Py given qu‘,

tributed on [O,Tj‘], and independent of N*; 7 has law Pgﬁz), and it is independent of N* and

T; given the collection of points Nlé“’

T 1s a random variable uniformly dis-

(7', Z") is a random variable uniformly distributed on the
collection.

Since S(t) has continuous paths, then T, is an F A—s‘copping time. By the exponential change
of measure we get, for all u > 0,

fu(A) = BT < 00)] = Bglexp{~0C(T2) + AT (5(0) = D}
= Ejl5(N)],
where ¢ is defined by (9.52). One can easily realized that assumption (9.1) is satisfied, and
that the couple (¢, T;') is nonincreasing. Thus, Theorem 9.4.2 follows by Theorem 9.3.1 if we

show that ¢ is a bounded functional, and the corresponding condition (9.3) holds. We start
proving the boundedness of ¢;.

Lemma 9.4.3 Assume (9.45), (9.46), and (9.47). If moreover (9.51) is verified for some b <w,
then ¢5(p) < e~ for all (locally finite) counting measures ju on RY x (0,00) and u > 0.

Proof. The function § — A(k(#) — 1) — cf vanishes at 0, goes to 400 as § — +o0, and is strictly
negative in a right neighborhood of 0 (indeed, it has a strictly negative first derivative in 0). By
the intermediate values theorem there exists a positive 8* € (0,7) such that

AMr(O*) —1) —cd* = 0.
Since the function (0,7) 3 6 — A(k(0) — 1) — ¢f is convex, §* = w is unique. Thus, since 6 <w,
it holds R R

Ak(#) —1) —ch <0. (9.53)

A straightforward computation gives, for all counting measures = 7 61, ~,) on R%x (0, 00),

¢g(p) = exp {—52 20 (0.1 () (tn) + AT () (5(8) — 1)}

nel

< exp {—5 (Z H(T2 (1) =t 2n) Lo, 1 (uy) (n) — cTQ(u)) + T ()N (0) — 1) - 05]}

nez
= exp{—Bu + T (W)[Mx(0) — 1) — ]} < e, (9.54)

where in (9.54) the equality follows by the definition of 7)), and the inequality by (9.53). O

To check the corresponding condition (9.3) we need the following Proposition 9.4.4, which
is proved in Macci, Stabile and Torrisi [116] (see Proposition 3.1 therein). Here we consider the
notion of large deviations principle, for which we refer the reader to the book by Dembo and
Zeitouni [57].

Proposition 9.4.4 Assume (9.45) and the function k(-) steep. Then the stochastic process

<@) o satisfies a large deviations principle with rate function A*(x) = supger (6 — A(0)),
t=>

where A(0) = M(k(0) — 1) — ¢, that is, for any Borel set B,

. « | S(t)
— < — 7
$1nfo A (CC) htm inf 7 logP < ; S B)

< limsupilogP <$ € B) < — inf A*(z),

t—o0 zEB

being B° and B the interior and the closure of B, respectively.



Lemma 9.4.5 Under assumptions of Proposition 9.4.4, if moreover (9.51) holds, then there
exists a neighborhood [a,b) of X\, with a > 0, such that, for all X' € [a,b), there exists s' =
s'(A) > 0 such that E@[exp(s’Tj‘/)] < 0.

Proof. By assumption (9.51) there exists a neighborhood [a,b) of A, with a > 0, such that, for
all X € [a,b),
NE[Z1e?1] — ¢ > 0.

Set k(0) = E(;[egzl]. Since

~

by our assumptions it follows that K(f) < oo on the right neighborhood of 0 (0,17 — 6), and
that %(-) is steep. Let S’(t) be the Poisson shot noise process with drift, and ground Poisson

process of intensity \'. By Proposition 9.4.4 the stochastic process (S/t(t)) . satisfies a large
t>

deviations principle with respect to P; with rate function A*(z) = supgeg (0 — A(6)), where

A(O) = Nk(0)(R(0) — 1) — cf. Since P(0 < Z; < 00) > 0 we have E[Zleazl] > 0. Thus we
can choose a € (0, E[Z1¢%%1]) such that ¥ = Na — ¢ > 0. By the large deviations principle of
S'(t)

<T> with respect to P, and the properties of the rate function A* we have
>0

1 ! ~
tlim i log P <St(t) < ’y) = —A\*(y). (9.55)

By (9.55) it follows that for any € > 0 there exists ¢ = ¢1(¢) such that

! ~
p; (S t(t) < 7> <e W=t forall t > . (9.56)

Moreover, for any u > 0 there exists to = t2(u) such that

S'(t)
t

Pé(Tlf‘l >t) < Py(S'(t) <u) < Py < < ’y) , forall t > ts. (9.57)

Therefore, by (9.56) and (9.57), for any €,u > 0 there exists ¢ = t(e,u) such that
PyTY > 1) < e N forall > 1. (9.58)

Now, let 0 < s/ < A* (7) — e. The conclusion follows noticing that by (9.58) for any ¢,u > 0
there exists ¢ = #(e,u) such that

[oe)
Bylexp( T =145 [~ BTy > oy
0
_ 0o
<1455t + s// e (A=) =5ty o
t
Od

The following generalization of Theorem 9.4.2 follows by applying Theorem 9.3.6. Let
, and gbétl’zl)"“’(t"’zn) be defined, respectively, as in (9.25) and (9.26) with ¢y



Theorem 9.4.6 (We use the same convention of Theorem 9.3.6). Under assumptions of The-
orem 9.4.2, for all u >0 and n > 1, we have

A \n
dnf“()\) A A (NT’\) (11,20, (71,21) A
:E"Tn" N :E’\ u Al’l”’"«’”N
W BT (V)] = By | (N
TE 23, (TS 22
:E§ (1/)\71) Z gbél 1) )(NA)
| ((Tl*vzik)v 7(Tnvz;:))e( ‘T)\)®n
N2, !
T>\ (T ) //)7 7(T 72//) )\
=F; | ———*——¢"! NY|.
0 -(N%? — n)!)\"qS ( )]
Here, gwen TJ‘, T, ..., Tn are independent, uniformly distributed on [O,TJ‘], and independent
of N*; Zl, ..., Zyn are independent with law Pé(z), and independent of N* and 11,...,Ty; given
the collection of points N\TM (11, 24), ..., (1}, Z},) are independent and uniformly distributed on

the collection, and {(Tl,Z”) , (7 Z”)} is uniformly distributed on the set of subsets of n
distinct points of N, ; the symbol ( |T>\) " denotes the set of the n-tuples of n distinct points

of N|TA

T)"

9.4.4 Compound Poisson processes

A compound Poisson process with drift is a stochastic process of the form

t)=> Znloy(Tn) — ct,

n>1

where {T,, } ez are the points of a homogeneous Poisson process with intensity A > 0, {Z,, }nez
is a sequence of i.i.d. nonnegative random variables with law ), and ¢ > 0 is a positive
constant. Consider again the level crossing probability

fu(A):P<T3<oo>, u>0,
where
=inf{t > 0: K(t) > u},

T) = oo if {...} = ), and assume again P(0 < Z; < oo) > 0. By the well-known Cramér-
Lundberg approximation (see, for instance, Asmussen [11]) we have that, under (9.45), (9.46),
and (9.47), it holds

lim e f,(\) = AE[Z] —c

Tim_ Bz (9.59)

In particular, this result gives the exact asymptotics for the tail of the stationary waiting time
W in a M/GI/1 queue with arrival process {1}, },>1, service times {Z, },>1, and service rate
c. Indeed,

n>1

P(W > u) (supz —cX;) ) = fu(A), forall u >0,

where {X;};>1 are the inter-arrival times of the Poisson process.



9.4.5 Optimal estimators for sensitivity analysis in the compound Poisson
case

Let {Pg}gw(g)<oo be the family of probability measures defined by the exponential tilting
(9.50). In the case of compound Poisson processes, Proposition 9.4.1 is an easy consequence
of the law of large numbers for such processes. Moreover, we notice that Theorems 9.4.2 and
9.4.6 can be proved along similar techniques. In this subsection we prove that, in the compound
Poisson setting, under the law P, the estimators given by the corresponding Theorem 9.4.2:

5&1) = sz\(st(NA + 5(772)) - ¢w(N>\))a

A
32 — N
u A

[0 (NY) = b (N* = 50 21))]
and

R 1
=3 o OOV N G DNl x )
L X ,00

are asymptotically optimal in a sense we are going to define. Note that by assumption (9.47)
the functional ¢, defined in (9.52) reads

¢w(:u') = €xp {_w (Z Zn]l(O,TuA(M)] (tn) - CTS(M)) } ’

nel

for all (locally finite) counting measures p =, <7 0, =, on R x (0, 00).

The definition of optimality that will be considered is the following (see, for instance,
[11]). Let z(u) be an infinitesimal function, as u — oo, and 7, an unbiased estimator of z(u). As
already mentioned the empirical mean is not an efficient estimator, as u — oo. Indeed, a huge
number of replications of 7, is needed to achieve a fixed relative error. To get an asymptotically
efficient estimator of z(u) we look for an unbiased estimator ¢, of z(u) whose relative error is
asymptotically bounded. Since

E[§2] > 2*(u), for all u,

the best one can hope in terms of efficiency is

i
oo 2(u)

for some constant A > 1. This property is often difficult to achieve in practice, so one settles

for a slightly weaker condition
log \/FE|[q?
lim 28 VEWG] (9.60)
u—oo log z(u)

In such a case we say that §, is asymptotically optimal (as u — o0). Note that (9.60) is

equivalent to
1 E[q¢2
tim g OBV
u—oo  log z(u)

Furthermore, if ¢, is an unbiased estimator of z(u), and (jq(}), e ,q&"’ are n i.i.d. replicates of
du, it can be easily seen that (1/n)> ", qff) is asymptotically optimal for some n > 2 if and
only if (jl(tl) is such.

The following Proposition 9.4.7 can be found in [11] (see Proposition 9.4 therein) and gives

the exact asymptotics of a QE\A) as u — o0.




Proposition 9.4.7 Assume (9.45), (9.46), and (9.47). Then

e dfy(N)  Pw(c— NE[Z))
u—0oo U d\ N )\()\E[Zlewzl] - C)2 ‘

(1) 4(2)

Theorem 9.4.8 below gives the asymptotic optimality of 5y, 5y’ and §§f”) under P,,.

Theorem 9.4.8 Assume (9.45), (9.46), (9.47), and k(-) steep, then the estimators §1(}), 5@
(3)

and 8y’ are asymptotically optimal under P,,.

Proof. By the assumptions we deduce that AE[Z;e“%1] —c > 0, thus the hypotheses of Theorem

9.4.2 hold and we have that §1(}), §1(E) and §1(E’) are unbiased estimators of df’é—g\)‘). It remains to
prove
log \/ Ew[(5)2
lim inf s wl(8u )7 >1

umos Jog Tul)

, fori=1,2,3. (9.61)

Along similar lines as in the proof of Lemma 9.4.3, we can show that for any (locally finite)
counting measure g on R x (0,00) and u > 0, it holds ¢y, () < e™*. Therefore,

Ey[(30)%) < e By [(N72)?)/A%, i=2,3. (9.62)
and
E,[(30))%] < e B, [(T))?). (9.63)

Under P, > " 1(Z; — cX;) is a random walk with positive drift, indeed
Eu|Z) — ¢X1] = (A\E[Z1e“?] — ¢)/Mk(w) > 0
Therefore by the results in Gut [83] it follows
Eu[(N72)?] = Bul(T3)%] = O(u?). (9.64)
Finally, (9.61) follows by (9.62), (9.63), (9.64) and Proposition 9.4.7. O

Remark 9.4.9 We notice that, under assumptions of Theorem 9.4.8, Asmussen and Rubin-
stein [12] (see also [11]) proved that

By = (N%A/)\ o zj) e—wue—w(C(qu‘)—cTi‘—u)

is asymptotically optimal for f,(\), under P,. The estimators §1(}), §&2) and §&3) are alternative

to Uy.

9.5 A Numerical Illustration

In this section we give a numerical illustration. More precisely, we use two of the three estimators
in Theorem 9.4.2 to approximate the sensitivity df Zl&)\)’ where f, () is the overflow probability
corresponding to the teletraffic model described in Example 1. We denote by §; and $s the
"virtual” and the "phantom” estimates (respectively, the estimates corresponding to the first
and the third mean in the statement of Theorem 9.4.2). The corresponding sample variances
are denoted by o (81)? and o(82)2.

Assuming that the random variables Z,, are exponentially distributed with mean 3~! such that

B> Ac™ !, the steepness of x(-) and assumptions (9.45), (9.46), and (9.47) are easily checked. In




particular, w = B— Ac~L. Also, setting =3, A = 2, ¢ = 1, and taking § € {0.9,0.95} condition
(9.51) is satisfied and 0 < w. Thus, Theorem 9.4.2 can be applied to estimate df“o‘) by a Monte
Carlo algorithm. In the four tables below we summarize our simulation results When the number
of replications in each simulation is equal to 200, and the buffer capacity is u € {0.5,0.6,0.7}.
We report also the CPU time (in seconds) which shows that the ”virtual” rare perturbation
method is faster than the ”phantom” one. However, we do not know which estimator has the best
performance. Indeed, in order to build confidence intervals the key parameter is o/+/n, where
n is the number of samples. The number of samples generated up to time t is approximately
equal to t/t*, being t* the CPU time to generate one sample. Therefore, the key parameter to
compare the performance of the two simulation methods is ov/t*: the lower it is narrower is
the confidence interval. It is not clear whether or not a method achieves a better performance
than the other.

u o 51 | 0(81)? | CPU time | 0(51)%x CPU time

051095017 | 1.04 6 6.24
0.6 1095|020 | 0.77 7 5.39
0.710.95 019 | 140 8 11.2

u o 55 | 0(82)? | CPU time | 0(52)%x CPU time

0.51095|0.20 | 0.10 90 9
0.6 | 095 0.20 | 0.12 82 9.84
0.7 1095 | 0.20 | 0.08 78 6.24

u | 0 | 8 |o(31)%| CPU time | 0(31)2x CPU time

05109019 | 0.80 10 8
0609017 | 1.39 12 16.68
071091017 | 140 7 9.8

u | 0 52 | 0(82)? | CPU time | 0(52)?x CPU time
0.5]09|0.19 | 0.06 101 6.06

0.6 | 0.9 |0.18 | 0.07 150 10.5
0.7]109|0.17 | 0.06 250 15







Appendix

A The Coupling Method

The coupling method is a fruitful probabilistic tool. Its range of application is large: Markov
chain, renewal theory, perfect simulation or the Chen-Stein method. In this paragraph, we will
record a few simple results on this method.

A.1 The Coupling Inequality

The coupling method compares two probability measures on a measurable space.

Definition A.1 Let X (resp. X') be a measurable space endowed with a probability measure
P (resp. P'). A coupling is a random variable (X, X') with law P on X x X' such that the law
of X is P and the law of X' is P'.

We will assume that X = X’. When X and X’ are independent we obtain a trivial coupling
(Q is the product measure). However in the coupling method the aim is to build a coupling
(X, X’) such that a given cost function Ec(X, X’) is small, where E denotes the expectation
with respect to the measure IP. This constraint requires to introduce some dependency between
X and X’. We will only discuss the case ¢(x,y) = 1(z # y), (for a general discussion, refer to
Villani [158]). In this case, the aim of the coupling is to render X and X’ equal. We shall use
the total variation distance of two measures to determine to what extend it is possible.

The total variation distance is defined as:

)

d(P, P') = sup ‘ / fdP - / fdpP'

where the sup is taken over all the bounded measurable functions from X to R..

The coupling inequality is as follows:
Theorem A.2 (i) For all coupling (X, X') of P and P':

2P(X # X') > d(P, P)).

(i) There exists a coupling (Y,Y") such that the previous inequality is an equality, and Y and
Y’ are independent conditioned on {Y #Y'}.

For a proof, refer to Lindvall [115].

A.2 Stochastic Domination

Let (X, F) be a complete separable measurable (polish) space with a partial ordering <. A real
valued function is non-decreasing = < y implies f(z) < f(y).
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We consider two measures P and P’ on X. The stochastic ordering associated to =< is

defined by:
P <4 P if and only if /fdP < /fdP/,

for all non-decreasing measurable function. We will consider also the formulation with random
variables instead of probability measures. For two random variables X and X’ on X, we use
the notation X < X' if the law of X is dominated by the law of X’.

Strassen’s Theorem shows that the stochastic ordering <, corresponds to the ordering <
through a coupling. Note first that if (X, X’) is a random variable with law P on X x X
satisfying P-a.s. X < X', then X <4 X'. Strassen’s Theorem is the converse statement.

Theorem A.3 If P and P’ are probability measures on (X, F) satisfying P <g P’, then there
exists a coupling (X, X") with law P such that

P—a.s., X <X\

B Point processes

B.1 Vague convergence of locally finite measures

Let X be a Polish space (complete separable metric space). A measure p on X is locally finite
if u(A) is finite for all bounded Borel set A.

We define M as the set of locally finite measures on X, and Cp, the set of continuous functions
on X with bounded support. The vague convergence on M is defined by

we = o if for all f € Gy, klim /fd,uk = /fd,u.

It can be shown that the vague convergence is compatible with a distance d, that is there exists
a distance on M such that pr = p if and only if d(pug, u) — 0. This distance generates a
topology, the next theorem is central (for a proof refer to Daley and Vere Jones [55]).

Theorem B.1 M is a Polish space for the topology induced by the vague convergence.

The following lemma is an adaptation of Theorem 5.2 of Billingsley [30] to the vague topology
(see Proposition A.2.6.IT of [55]). We define the discontinuity set of a function h as disc(h) =
{z : h(x) not continuous at x}.

Lemma B.2 Let ux be a sequence in M converging for the vague convergence toward . Let
h be a bounded measurable function with p(disc(h)) =0 and A a bounded Borel set of R with

1(0A) =0, then: limy, [, h(x)pr(dx) = [, h(z)p(dz)

B.2 Stationary Point Process and Palm Theory

Palm theory is a powerful tool for the analysis of stationary point processes. In this section, we
sketch its classical construction. In dimension 1 a full treatment of this theory may be found
in Baccelli and Brémaud [20], in any dimension refer to Kallenberg [98], Daley and Vere-Jones
[55].

Let K be a Polish space and let M be the set of simple locally finite counting measures m
on X = R? x K such that m(- x K) is a Radon measure. m is referred as a marked counting
measure on R? with marks in K. A counting measure is simple if for all z € X, m({z}) € {0,1}.



Let m € M, z € R?%, we define the shifted measure 6,m by
0.m(C x B) =m(S,C x B),

where C' € Bga, the Borel g-algebra on R?, B € By, and S,C = {y e R? : y —x € C}.

A marked point process is a random variable on (M, F), where F is the Borel o-algebra
generated by the vague topology. Let P be a probability measure on (M, F) and N a marked
point process with law P.

A marked point process is stationary if for all z € R%:

Pod, =P.

Let N be a stationary marked point process such that for all compact sets C', EN(C x K)
is finite. C +— EN(C x K) is a Radon measure. Moreover by stationarity, EN(S,C x K) =
EN(C x K), therefore, this measure is absolutely continuous with respect to the Lebesgue
measure. The intensity of N is defined as Radon-Nykodym derivative of this measure with
respect to the Lebesgue measure:
5= EN(C x K)

- ov(O) 7
where v is the Lebesgue measure on R¢.

The Palm probability IP’?V is a probability measure on (M, F) defined by, for a Borel set C
with v(C) > 0,

P%(A) = %E/C 1(0.N € A)N(dx x K).

By stationarity, this definition does depend of the choice of C. Set A = {N ({0} x K) = 1}, we
have PQ;(A) = 1. Under the Palm distribution, there is P;-a.s. an atom at 0.

E?V will denote the expectation with respect to the Palm distribution ]P’?V. The next Propo-
sition is the celebrated Campbell-Mecke Formula.

Proposition B.3 Let N be a stationary point process in M with finite intensity. Let f be a
bounded measurable R x M — R function with compact support on RY.

E/ f(z,0.N)N(dz) = )\/ EQ f(z, N)dz.
X R4
Set N =, cn0{Xn,2.}> Xo the point closer to the origin, and f(z,m) = g(z,m({0} x -)), the

Campbell-Mecke Formula reads:

EY 9(Xn, Zn) =\ | EXglx, Zo)de.
n Rd

Set h(x,m) such that for PQ-a.e.

/ h(z,m)m(dz) = 1. (10.1)
R4

Applying Campbell-Mecke Formula to f(x,m) = h(x,0_,m)g(0_,m), we obtain the inversion
formula.

Proposition B.4 Let g be a bounded measurable M — R function.

Eg(N) = A\E% / h(x,0_yN)g(0_N)dx.
R4



Set m =), cnOfan,z,} i M. A classical example is the function h(z,m) = 1(z € Vo(m)),
where xg is the point closest to the origin and Vy(m) is the Voronoi cell associated to zo:
Vo(m) = {z € R? : ¥n, ||z — Xo|| < |lz — Xu||}, (|| - || denotes the usual Euclidean norm). h
satisfies Equation (10.1) and the inversion formula reads:

Eg(N) = A\EY / g(0_xN)dx.
Vo(IV)

The couple (P,0) is ergodic if for all events A such that for all x, 6, A = A, P(A) € {0,1}.
The following is an application of Birkhoff’s Theorem to ergodic point processes.

Proposition B.5 Let B,, = B(0,r,) be the open ball of radius r, and center 0. We assume
that (rn)nen 18 increasing and converges to infinity. If the point process N is ergodic and has
finite intensity then for all f € LY(P), P-a.s. and P};-a.s.

1
lim f(0:N)dx =Ef(N).
By s, (6=NN) (V)
Similarly for all f € LY(PY), P-a.s. and P%-a.s.

: 1 _ mo
11£n NGB, /Bn fOLN)N(dx) = Exf(N).

B.3 Poisson point processes and Slivnhyak-Campbell Formula

A stationary point process on R? is a Poisson point process of intensity \ if
- For all Borel sets C, N(C) has a Poisson distribution with parameter A\v(C).
- IfCN D=0, then N(C) and N(D) are independent.

Slyvniak’s Theorem asserts that the Palm distribution of a Poisson point process is simply:
P =P x 4o,

that is, for all events A: PQ,(A) = P(N + & € A). A Poisson point process in its Palm version
is simply a Poisson point process with an atom added at the origin.

The following proposition is the Slyvniak-Campbell Formula, this is a generalization of
Campbell formula.

Proposition B.6 If f is a bounded measurable (RH)™ x M — R function. If N is a Poisson
point process

E Z f({Xl,---,Xn},N):&/(Rd)nf<{x1,---,xn},N+Z5xk)dxl---dxn,
k=1

n!
{le"' 7Xn}CN
where the sum is over all subsets of n distinct points of N.

N=> 9 {X,,Z,} 18 @ independently marked Poisson point process on R? with marks in K of
intensity A if N (- x K) is a Poisson point process of intensity A and if the marks (Z,) are iid and
independent of N(- x ). If the law of Zj is denoted by @, N is a non-homogeneous Poisson
point process of intensity measure AdxQ(dz). Slyvniak’s Theorem extends to independently
marked Poisson point processes: PQ(A) = P(N + 00,72y € A), where Z has law @ and is
independent of N. Slivnyak-Campbell Formula extends as follows:

E > FUXLZ0), o (X, Zo) 1, N) = (102)

{(X17ZI)7"' 7(Xn7Zn)}CN

A" f ( {z1,-- ,x,}, N + 25{xk,2k} ) dzy -+ dznQ(dzy) - - Q(dzn).

|
iz (RexKC)m 1



C Queueing Theory

C.1 Loynes’ Sequence for stochastic recurrences

The material of this present paragraph is taken from Baccelli and Brémaud [20]. Let space X
be a Polish space endowed with a partial order < such that:

- there exists a minimal point in X denoted by 0,
- all non-decreasing sequences converge in the closure of X, X.

The workload of a queueing system often satisfies a stochastic recurrence:
Wn+1 - h(Wnaén)a (103)

where, n € N represents the time, (W),)nen is the workload sequence in X with 0 <X W,,, h is a
measurable function, and (§,)nez is a driving sequence taking value in some measurable space
Q. The driving sequence (&, )nez is a random variable on the state space (2, F,P), it is assumed
to be compatible with an ergodic shift operator 8: for n € Z, £, = £ 0 0", where £ = £.

A stationary solution of Equation (10.3) is a variable satisfying:

Wt = h(W, &),

indeed since the shift is stationary, W o # and W have the same law.
The Loynes’s sequence (M, )nen builds a stationary solution. It is defined as the workload
at time 0 when the workload was 0 at time —n, that is:

M, =W2%06_,,
where WY is the workload at time n when Wy = Y. Assume that the function h satisfies:
(i) 0 <X h(W,&) for all W and &.
(il) W <X W' implies h(W, &) < h(W',€).

From Assumption (i), 0 = h(0,€_(,41)) = WP o 0_(nt1)- From Assumption (ii), iterating n
times by h, it follows:
Mn j MnJrl-

(M,)nen is a nondecreasing sequence, therefore it converges in X to the Loynes’s variable:

M= lim M,.

n—-+o00

Secondly, notice that M,y 00 = W,SH 0 6_y, hence

M1 06 = h(My,§).

Note that the event A = {3N : My = M} is an invariant invent: indeed, A = {IN > 1:Vn >
N, M, 1 = M,} thus

0 'A={3IN>1:Yn> N, M, 100 = Mo} = {IN > 1:Yn > N,h(M,,&) = h(M,_1,£)} D A.

By ergodicity:
P(A) € {0,1}.



Thus if P(A) =1, M € X, P-a.s., and M satisfies:
M o6 = h(M,¢).

The Loynes’ variable is a stationary solution.
It is also important to note that M, < M. Moreover, by stationarity, the laws of W2 and
M,, are identical, therefore (see §A.2 on stochastic domination):

foralln e N: WY <, M,

the Loynes’s variable dominates the workload started empty. We will illustrate this nice prop-
erty in the next paragraph.

C.2 Tail Inequality in the GI/GI/co

Let {0y, 7w}, n € Z, be an i.i.d. sequence of R x R, -valued random variables representing the
service times and inter-arrival times in a GI/GI/oco queue. The random variables (o,,) and (7,)
are independent. We set Ty = 0 as the arrival time of customer 0; forn > 1, T;, = Zz;é Ty, is the
arrival time of the n* customer. Let Y € R, be a non-negative initial condition, independent

of the {0y, 7} sequence. We set Wom =Y, and for n > 1, we define

n—1 n—1 +
WT[LY} = max|Y — Z’Tk, max o;_1 — ZTk
1<i<n ‘

(where by convention S27=!. = 0). The random variable Wit s the largest residual service
time just after the arrival of the n* customer in the GI/GI/oo queue with initial condition Y.

Let F;, be the o-field generated by the random variables Y and {(oj,7%),k =0,...,n—1}.
Consider the {F, }-stopping time:

O(Y)=0=inf{n>1: W =o}. (10.4)

0 is the time needed to empty all queues.

Light Tail Case

The following additional assumptions are made:
(i) There exist a constant s > 0 such that : Eexp(so1) < oo and Eexp(sY) < oc.
(ii) ]P’(Tl > O) > 0.

(i) P(oy = 0) > 0.

Lemma C.1 Let 0 be the stopping time defined in Equation (10.4). Under the foregoing prob-
abilistic assumptions on'Y , (1) and (o,,), there exists s > 0 such that:

E exp(s#) < oo.



Proof. The Loynes’ sequence {M,,} of this GI/GI/oo queue is defined by My = 0 and

-1
M, = max (0;-1— ZTk)Jr, n > 1.
—n+1<i<0 -
=1

This sequence is non-decreasing in n and it a.s. converges to
-1
M = sup(o;_1 — Z )t (10.5)
i<0 k=i
The random variable M is a.s. finite. Indeed, we can easily obtain a stronger assertion. Let

s > 0 such that Eexp(so1) < oo (such s exists due to Assumption (i)), then:

-1

Eexp(sM) = Eexp(ssgg(ci_l—ZTk)+)
[

k=1
—1
< 1+ ZEexp(s(ai,l - Z’Tk))
i<0 k=i
< 1+ Eexp(so) ZEexp(—s\i\ﬁ) < 0.
i<0
Now, we define :
n—1
v(Y)=v=inf{n >2:Y — ZTk < 0}. (10.6)
k=0

From time v on, the initial workload does not count anymore, i.e. for n > v WT[LY} =

maxa<i<n(oi—1 — T, + T;—1)". Note that v has the same distribution as

—1
I/:max{ng—l:Y—ZTk<O}.

k=n

More generally,
v—1 v—1 c -1 —1
(ZTkaZTk?"‘aTl/l>:<Z Tk Z Tk‘a"'a7—1>a
k=0 k=1 k=—v'  k=—v'+1
which implies that M, and Wym have the same distribution. Since M,, < M, we have
wiYl <, M. (10.7)

Note that this bound is uniform in Y.
From Assumption (ii) we may find ¢ > 0 and € > 0 such that P(7; > ¢) > €. Let By =
cl(ry > ¢). Using the independency between 7 and Y and Hoeffding’s inequality:

i, (cen —Y)?
P(v>n) <P() By <Y)< Eexp(—-—5——

k=0

).

By assumption (i), Y is such that P(Y > t) < Cy exp(—Cpt), for some positive constants Cj,
C', hence:

(cen — ntg)?

Pv >n) < P > nty) + exp(— 52,7

) < Crexp(—Con). (10.8)



for some positive constants Cy, C, uniformly on the initial conditions Y. Hence we may found
some s > 0 such that Eexp(sv) < oc.

The sequence {W,EY}} is a {F,}-Markov chain and the random variables

Upnil = Un + IJ(W[Y]), n>1,

Un

with v(W) defined in (10.6) and with vy = v = v(Y), are {F,}-stopping times. Using what
precedes, one gets by induction that each v, is a.s. finite and that for all n,

P(vpt1 —vn > ml|F,,) = P(vpyr — vp > m|WV[Z]) < Crexp(—Com), Vm (10.9)
PWX | > 2|F,) =PWLL > oWl <P(M > 2), Va. (10.10)

Using (10.9) and a Chernoff type bound, one gets
P(v, > an) < Cy exp(—Cyn), (10.11)

for some positive constants «, Cy, C1.

We now turn back to the stopping time . First we prove that P(M = 0) = py > 0. M
is the stationary solution of the Markov Chain. Let M, be this stationary sequence, M; £
My = max(M; — 11,01), P(M; = 0) = P(M; < 7)P(0; = 0). Then assume that M > 0 a.s..
By assumption (iii) P(o; = 0) > 0 then M; > 71 a.s.. The independence of M; and 71 implies
that M > c almost surely. Notice that P(M < ¢) > P(M; — 11 < 2¢)P(o; =0) > P(e < M <
2¢)P(my > ¢)P(o1 = 0), hence M > ¢ a.s. implies M > 2¢ a.s.. By iteration, we get for all n
M > nc a.s. and this contradicts the finiteness of M.

Equation (10.9) implies that P(ngﬁl = 0|F,,) > P(M = 0) = po. In the same vein of what
precedes when using (10.11) and (10.10), one gets that:

P(Q > n) < (1 _pO)Ln/aJ + P(”Ln/aj > n) < Clefcon,

for some positive constants Cy, C. O

Heavy Tail Case

In this paragraph, the probabilistic assumptions are made:
(i) There exist a constant a > 1 such that : P(oy > t) < C1t~* and P(Y > t) < Cptt=«.
(ii) P(ry > 0) > 0.

(i) P(o; = 0) > 0.

Lemma C.2 Let 0 be the stopping time defined in Equation (10.4). Under the foregoing prob-
abilistic assumptions on'Y, (1,) and (0,,), 0 is a.s. finite. Moreover if « > 2, there exists
C1 > 0 such that:

E < oo and PO >t)<Cit? e

Proof. The proof follows the proof of Lemma C.1 in almost all aspects. We only outline the
proof. The tail of the stationary solution M is bounded differently. Let a > 0, we notice that:

P(sup(o; —ia) > t) =1 — [[(1 = P(o1 > t +ia)) < Cyt' ™.
20 i>0



From Assumption (ii) we may find ¢ > 0 and € > 0 such that P(7; > ¢) > €. Let By, = cl (7).
Fix 0 < a < ceandlet T = inf{n : Vn >, >, _, 7 > ia}, it follows from Hoeffding’s Inequality
that P(T" > n) < Cpexp(—Cin). Then we have:

P(M>t) < P(T>n)+P(max(oy,...,00) > t) + P(sgg(ai —ia) > t) (10.12)

< Cytte, (10.13)

(we pick n = [t7], 0 <y < 1) . We obtain similarly that:
P(Vpy1 — vy > ml|F,) < Crm!—

where v was defined as in the proof of Lemma C.1 by Equation (10.6). In particular, since
a> 2 E(vp41 —vn|Fu,) < A, for some A > 0. The relation P(Wiﬁl =0|F,,) > P(M =0) = po
still holds. Then, from Doob formula we get E(6)pg/\ < 1. The statement on the tail of 6
follows from a moderate deviation result of Baum and Katz (Theorem 4 in [27]): P(vp41 — vy >
m|F,, ) < Cim!~® implies that P(v, > en) < C1n?~® for € < A\. The proof is then parallel to

the proof of Lemma C.1. O

D A spatial network paradigm

The development of wireless networks has created a variety of new problems for mathematicians.
It is a difficult exercise to unify these problems in a single family. However, this paragraph is an
attempt to describe a general paradigm for spatial networks. This paradigm may be depicted
as a transport of measures.

On a metric space, say the Euclidean space R?, some sources have some pieces of information
to transport to a destination set. The source i is located at a point X; in R? and its destination
set is a collection of points (Y;;);. Two particular classes of problems are interesting. Each
source wants to reach a specific point: the destination set is a unique point. The other class
corresponds to a network where all the sources want to reach the same destination set.

The measure associated to the sources is an atomic measure written as

= Z hidx;,

where §x is a dirac measure at X and h; € R, is the amount of information that the source 4
transports to its destination set. The destination measure is equal to

v = Z hij(Sym. with  h; = Z hij.
2 J

This scenario is static and the question is: is it possible to transport p to v 7 In a probabilistic
setting, we would like to compute the probability of this event.

It remains to define the cost of transporting the measure p to v. If the sources are using the
same communication channel, the interference between the sources has to be taken into account.
Information theory gives the right parameter to evaluate the effect of this interference. It is
given by the signal to interference ratio (SIR). The cost function will be equal to the inverse of

the SIR:
n(Y) + > ks SeL( Xk, Y)
SiL(X;,Y) ’

where n(Y) > 0 is the power of a gaussian white noise at Y, S > 0 is the power of the signal
emitted by the source k and L(X,Y) is the path gain between X and Y. The path gain L(X,Y)

C(XZ', Y) =



tends to 0 as the distance between X and Y tends to infinity. 1(Y) = >, S, L(X},Y) is a shot-
noise process which evaluates the interference at Y. If the background noise is negligible this
cost function reduces to: 1(v)
Xi,V)= 5 —1.
X ¥) = SIix, 7)

A simple model is L(X,Y) = || X — Y| ™%, and an even simpler L(X,Y) = 1(|X - Y| < r),
where 7 > 0 is a positive range (the cost is then infinite beyond this range).

In the transport of measure, what matters is not the total cost of the transport, but the

maximum of the cost at each destination point. The transport from u to v will be feasible if
for all 7 and j, hijC(Xi,Y;‘j) < 1. (1014)

Indeed, in first approximation, the information theory predicts that the amount of information
that can be send is proportional to the SIR.

An important feature of spatial networks is the spacial reuse property. The interference
created by a source located at X decreases with distance.

Let give some examples drawn from the chapters of the Part II. In Chapter 4, we describe the
simplest model. All sources want to reach the same point, say 0. The path gain is L(X,0) =1,
the background noise 7(0) = 0, and the power of the signal S; = h;, h; € {0,1} is a random
variable. With the convention that 0 x oo = 0, Equation (10.14) is restated as

> hi<1,

that is, at most one source at the same time.

In Chapter 5 the sources are located at the vertices of a graph, G = (V, F) with V =
{1,..., K} is the set of vertices and E the set of edges. To simplify the model, the sources
located at k& want to reach a destination at Y, = k. The path gain is

L(L,k) = 1((I, k) € E),

n(0) =0, S; = h;, h; € {0,1} is a random variable. If Ny denotes the set of sources located at
k and Vj, the set of vertices sharing an edge with & (including k), Equation (10.14) gives:

forall ke {l,---, K}, > Y h<L

eV 1EN;

In Chapters 6 and 7, we present a model in the Euclidean space R?. All the sources want
to reach the same destination set (Y;);. Y; is a server station and it serves the source at a
rate depending on the position of the source. Formally, it will amount to suppose S; = 1 and
n(Y) = 0. Equation (10.14) is a constraint of the type

1Y)

for all ¢ and 7, hijm <
iy L]

In Chapters 6 and 7, the destination set is a set of server stations. These stations are
coordinated, and the transport problem relies on an optimization of the transport capacity of
the whole system. If H = {h = (hi;)ij : >_; hij = hi, hij > 0}, Equation (10.14) reduces to a
combinatorial optimization problem

inf suph;;C(X;,Y;5) <1 7

heH i,]p ij ( iy Z]) =
On the contrary in Chapters 4 and 5, there is no coordination in the transport, the source
compete for the same resource. In Chapter 4, all the sources compete together, whereas in
Chapter 5, the sources compete only among a local neighborhood.
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