
HAL Id: pastel-00001914
https://pastel.hal.science/pastel-00001914v1

Submitted on 29 Jul 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Abstraction de traces en analyse statique et
transformation de programmes.

Xavier Rival

To cite this version:
Xavier Rival. Abstraction de traces en analyse statique et transformation de programmes.. Informa-
tique [cs]. Ecole Polytechnique X, 2005. Français. �NNT : �. �pastel-00001914�

https://pastel.hal.science/pastel-00001914v1
https://hal.archives-ouvertes.fr

THÈSE
présentée à

l’ÉCOLE POLYTECHNIQUE

pour l’obtention du titre de

DOCTEUR DE L’ÉCOLE POLYTECHNIQUE
EN INFORMATIQUE

Xavier Rival

21 octobre 2005

Abstraction de Traces en Analyse Statique
et Transformations de Programmes

Traces Abstraction in Static Analysis
and Program Transformation

Président: Peter Lee

Professeur, Carneghie Mellon University, Pittsburgh, USA

Rapporteurs: Manuel Hermenegildo

Professeur, University of New Mexico, Albuquerque, USA

Mooly Sagiv

Professeur, Tel Aviv University, Tel Aviv, Israël

Examinateurs: Xavier Leroy

Directeur de Recherche, Inria Rocquencourt, France

Francesco Ranzatto

Professeur, Università di Padova, Italie

Directeur de thèse: Patrick Cousot

Professeur, École Normale Supérieure, Paris

École Normale Supérieure
Département d’Informatique

c© Xavier Rival, 2002–2005.

Cette thèse a été préparée à l’École Normale Supérieure (Paris), sous la direction de
Patrick Cousot. Elle a été financée principalement par un contrat d’allocation couplée
(Normalien) à l’École Polytechnique ; par ailleurs, pendant le début de cette thèse,
l’auteur a également bénéficié du statut d’élève Normalien. Cette recherche a égale-
ment été financée en partie par les projets Daedalus (projet européen IST-1999-20527
du programme FP5) et Astrée (projet français RNTL).

Les opinions présentées dans ce document sont celles propres de son auteur et ne reflètent
en aucun cas celles de l’École Polytechnique ou de l’École Normale Supérieure (Paris).

i

Résumé

Cette thèse est consacrée à l’étude d’abstractions d’ensemble de traces adaptées
à l’analyse statique et aux transformations de programmes. Cette étude a été
menée dans le cadre de l’interprétation abstraite.

Dans une première partie, nous proposons un cadre général permettant de
définir des analyses effectuant un partitionnement des traces. Cela permet en
particulier d’utiliser des propriétés définies par l’histoire des exécutions, pour
écrire des disjonctions de propriétés abstraites utiles lors de l’analyse statique.
Ainsi, nous obtenons des analyses plus efficaces, qui sont non seulement plus
précises mais aussi plus rapides. La méthode a été implémentée et éprouvée
dans l’analyseur de code C Astrée, et on obtient d’excellents résultats lors
de l’analyse d’applications industrielles de grande taille.

La seconde partie est consacrée au développement de méthodes permettant
d’automatiser le diagnostique des alarmes produites par un analyseur tel
qu’Astrée. En effet, en raison de l’incomplétude de l’analyseur, une alarme
peut, soit révéler une véritable erreur dans le programme, soit provenir d’une
imprécision de l’analyse.
Nous proposons tout d’abord d’extraire des slices sémantiques, c’est à dire des
sous-ensembles de traces du programme, satisfaisant certaines conditions ; cette
technique permet de mieux caractériser le contexte d’une alarme et peut aider,
soit à prouver l’alarme fausse, soit à montrer un véritable contexte d’erreur.
Ensuite, nous définissons des familles d’analyses de dépendances adaptées à
la recherche d’origine de comportements anormaux dans un programme, afin
d’aider à un diagnostique plus efficace des raisons d’une alarme.
Les résultats lors de l’implémentation d’un prototype sont encourageants.

Enfin, dans la troisième partie, nous définissons une formalisation générale de
la compilation dans le cadre de l’interprétation abstraite et intégrons diverses
techniques de compilation certifiée dans ce cadre.
Tout d’abord, nous proposons une méthode fondée sur la traduction d’inva-
riants obtenus lors d’une analyse du code source et sur la vérification indépen-
dante des invariants traduits.
Ensuite, nous formalisons la méthode de preuve d’équivalence, qui produit
une preuve de correction de la compilation, en prouvant l’équivalence du pro-
gramme compilé et du programme source.
Enfin, nous comparons ces méthodes du point de vue théorique et à l’aide de
résultats expérimentaux.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

ii

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

iii

Abstract

We study of abstractions for sets of traces adapted to static analysis and pro-
gram transformations in the abstract interpretation framework.

In the first part, we propose a general framework for control-based trace parti-
tioning in static analysis. In particular, this framework allows to use properties
of the history of program executions in order to express disjunctions of abstract
properties in static analyses. As a result, we obtain efficient analyses, improv-
ing not only precision but also execution time in most cases. This method was
implemented in the Astrée analyzer, devoted to the analysis of C programs.
Moreover, we report excellent result in the analysis of large critical real world
programs.

In the second part, we develop automatic techniques for the inspections of
alarms produced by an analyzer such as Astrée. Indeed, the analyzer is
incomplete, so an alarm raised by Astrée could be either a real bug or just
be due to an imprecision inherent in the analysis.
First, we propose to extract semantic slices, i.e. subsets of the program ex-
ecution traces, which satisfy some given conditions; this approach allows to
characterize more precisely the context corresponding to an alarm. Further-
more, in some cases, it helps to prove the alarm to be false; otherwise, it may
help to find a real error scenario. Then, we define families of dependence anal-
yses so as to track the origin of abnormal behaviors in programs, and to help
for a more efficient diagnosis of the reason why an alarm was raised.
We got encouraging results using a prototype, which we implemented.

In the last part, we define a general formalization for compilation in the ab-
stract interpretation framework and we integrate several approaches to certified
compilation in our framework.
First, we propose a method based on a translation of abstract invariants com-
puted in an analysis of the source code and on the checking of the the soundness
of the resulting invariants. This checking allows to trust the translated invari-
ant independently from any assumption about the soundness of the translation
or the source analysis.
Second, we formalize the translation equivalence approach, which amounts to
proving the correctness of compilation, by checking that the source program
and the compiled program are equivalent.
Last, we compare both techniques not only in the theoretical point of view but
also in a practical experiment.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

iv

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

v

Acknowledgments

My first thank goes to Patrick Cousot for accepting to be my advisor for my Master
Thesis and then for my PhD Thesis. He gave me the chance to work on challenging
topics, provided me a wonderful research environment and allowed me to be free of most
important choices in my work.

I also wish to express my gratitude to my PhD Jury. First, Manuel Hermenegildo and
Mooly Sagiv accepted to review it and to write reports. While doing this, they provided me
a great feedback and very helpful comments. Peter Lee, Xavier Leroy, Francesco Ranzato,
and Mooly Sagiv greatly contributed to the jury for my defense. I am very thankful for
all the great discussions before, during and after the defense, which I could have with the
jury members. In particular, the questions during the defense offered me some invaluable
opportunities to improve significantly the present manuscript.

During my PhD, I had the wonderful opportunity to work on the Astrée project. Taking
part to this challenging embedded software certification project was a key element to the
success of my work. Not only I found great topics to work on and a grand challenge
to work forward, but I also could enjoy fruitful discussions and collaborations with the
great members of the “magic team” Bruno Blanchet, Patrick Cousot, Radhia Cousot,
Jérôme Feret, Laurent Mauborgne, Antoine Miné and David Monniaux. I thank them
for the wonderful, enlightening experience a research collaboration with them is, in a
great ambiance. This project would never have happened without the trust of a group
of engineers at Airbus: I am very thankful to Famantanantsoa Randimbilolona and Jean
Souyris for submitting challenging goals to us and supporting us while they were not sure
we would make it. I also wish to thank Julien Bertrane for great discussions and for his
support. An additional thank goes to Julien Bertrane, Patrick Cousot, Jérôme Feret, and
David Monniaux for proof reading parts of my PhD manuscript.

I am very thankful to Joelle Isnard, Valérie Mongiat, Michelle Angely and Sylvia Imbert for
their very efficient management of the “Département d’Informatique” of the ENS, and for
their help in solving administrative issues. Moreover, Jacques Beigbeder and his assistants
make a huge effort keeping up the reliability and the safety of all these computers we use
so much —especially in the Astrée project.

I wish to deeply thank all my friends, who supported me in my effort toward this PhD,
in particular, my colleagues Charles Hymans and Francesco Logozzo, Yves Verhoeven,
who is always welcome in my office, and Pierre-Yves Auffret and Hee Son Kang, for all
the restaurants we visited together, and many others. I would also like to thank all the
visitors and scientists I had the chance to work, or discuss with in the ENS or at one
of the many conferences I attended: Shivali Agarwal, Elie Burzstein, Guillaume Capron,
Roberto Giacobazzi, George Necula, Damien Massé, Élodie-Jane Sims, Kwangkeun Yi...

I also need to mention all those who contributed to this thesis by giving me inspiration:
Björk, the Pink Floyds, and all the friends I met while practicing photography, hiking and
trekking.

Finally, I would like to thank my parents for giving me a taste for knowledge, science and

research and then for supporting me through all my studies.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

vi

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

CONTENTS vii

Contents

Résumé . i
Abstract . iii
Acknowledgments . v
Table of Contents . vii

I Introduction to Traces Abstractions 1

1 Introduction 3
1.1 Software Verification . 3

1.1.1 Need for Software Verification . 3
1.1.2 Current Trends in Software Verification 4
1.1.3 Context of the Thesis . 6

1.2 Outline of the Thesis . 6
1.2.1 Traces Abstractions . 6
1.2.2 Trace Partitioning . 7
1.2.3 Alarms Diagnosis . 8
1.2.4 Certification of Assembly Code . 8

2 Semantics and Abstraction 11
2.1 Basic Mathematical Notations . 11
2.2 Syntax and Semantics of a Simple Language 12

2.2.1 Syntax . 12
2.2.2 Semantics . 12
2.2.3 A Simple Language . 13
2.2.4 Extension with Procedures . 16
2.2.5 Extension to full C . 16
2.2.6 Under-Specified Behaviors . 18

2.3 Abstract Interpretation . 19
2.3.1 Notion of Abstraction . 20
2.3.2 Semantics as Fixpoints and Semantic Approximation 21
2.3.3 Enforcing Termination . 23
2.3.4 Program Transformations . 25

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

viii CONTENTS

3 Abstractions of Sets of Traces 27

3.1 Static Analysis . 27

3.1.1 The Abstraction . 27

3.1.2 Abstract Interpretation of a Simple Semantics 29

3.1.3 Numerical Abstract Domains . 32

3.1.4 Under-Specified Behaviors in the Standard Describing the Source
Language . 34

3.2 Denotational Abstraction . 34

3.2.1 Denotational Semantics . 34

3.2.2 Functions “From-To” . 37

3.2.3 Functions “Along Paths” . 38

3.2.4 Composition . 39

3.2.5 Static Analysis . 41

3.2.6 Symbolic Representation . 43

3.3 Backward Semantics and Analysis . 49

3.3.1 Backward Semantics . 49

3.3.2 Backward Static Analysis . 50

3.4 Projection Abstractions . 51

3.4.1 Variables Projection . 52

3.4.2 Control States Projection . 52

3.4.3 General Case . 53

3.4.4 Fixpoint-based Definition . 54

3.5 Hierarchies of Abstractions . 55

II Trace Partitioning 57

4 A Framework for Partitioning Traces 59

4.1 Partitioned Systems . 60

4.1.1 Partitioning Control States . 60

4.1.2 Partitioning Memory States . 61

4.1.3 Other Partitioning Criteria . 63

4.2 Control Partitioning of Transition Systems 65

4.2.1 Partitions and Coverings . 65

4.2.2 Soundness of Control Partitioning 69

4.2.3 Pre-Ordering Properties of Partitions 71

4.3 Trace Partitioning Abstract Domains . 72

4.3.1 The Trace Partitioning Domain . 72

4.3.2 Composing Store Abstraction . 76

4.3.3 Static Analysis with Partitioning and a Widening Operator 78

4.3.4 Denotational Style Partitioning Static Analysis 79

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

CONTENTS ix

5 Control-based partitioning 85
5.1 The Astrée Analyzer . 85

5.1.1 The Programs Analyzed by Astrée 85
5.1.2 The Purpose of the Analysis . 86
5.1.3 The Analyzer . 87

5.2 Partitioning Analysis . 90
5.2.1 Partitioning Criteria . 91
5.2.2 Application of Trace Partitioning 91
5.2.3 The Domain . 93
5.2.4 Structure of the Abstract Interpreter 96
5.2.5 Transfer Functions . 97

5.3 Implementation and Experimental Evaluation 99
5.3.1 Implementation of the Domain . 99
5.3.2 Strategies for Trace Partitioning . 101
5.3.3 Experimental Results . 102
5.3.4 Related Work . 107

6 Partitioning and Synchronous Product 109
6.1 The Partitioning . 109

6.1.1 Motivation for a New Instantiation of the Trace Partitioning Frame-
work . 109

6.1.2 Language Extension . 110
6.1.3 Semantic Extension . 111

6.2 Abstractions of the Concrete Extension . 113
6.2.1 Abstractions of the Extension . 113
6.2.2 Design of the Interpreter . 115

6.3 Automata as Abstractions . 117
6.3.1 Languages and Automata . 117
6.3.2 Abstraction Based on Automata . 118
6.3.3 Examples . 119

6.4 Numeric Abstractions . 125
6.4.1 Parikh Abstraction . 125
6.4.2 Composing Numerical Abstractions 127

III Alarm Inspection and Semantic Slicing 129

7 Semantic Slicing 131
7.1 Why to Extract Semantic Slices ? . 131

7.1.1 Incompleteness of Static Analysis: Alarms and Errors 131
7.1.2 Semantic Slices . 133
7.1.3 Extraction of Semantic Slices . 134

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

x CONTENTS

7.2 Semantic Slicing Criteria . 134
7.2.1 Criteria as Abstractions . 134
7.2.2 Initial and Final States . 135
7.2.3 Execution Patterns . 136
7.2.4 Input Constraints . 138
7.2.5 Combination of Criteria . 139

7.3 Approximation of Slices Defined by Set of Final States 140
7.3.1 Approximation of a Slice . 140
7.3.2 Forward Interpreter . 141
7.3.3 Backward Semantics and Backward Interpreter 141
7.3.4 Combination of Forward and Backward Analyses 147

7.4 Approximation of Semantic Slices . 149
7.4.1 Extension of the Analysis . 149
7.4.2 Examples . 150
7.4.3 Use of Syntactic Slicing for Reducing the Size of Programs 152
7.4.4 Implementation . 153
7.4.5 Comparison with Related Work . 155
7.4.6 Future Work . 156

8 Computation of Abstract Dependences 159
8.1 Motivation . 159
8.2 Notion of Dependences and Approximation 162

8.2.1 Dependences Induced by a Function 162
8.2.2 Dependences Induced by a Set of Traces 166
8.2.3 Approximation of Dependences . 169
8.2.4 Dependence Analysis . 172
8.2.5 Dependence Graphs . 177

8.3 Observable Dependences . 181
8.3.1 Dependences on Semantic Slices and Non-Monotonicity 181
8.3.2 Observable Dependences Induced by a Function 182
8.3.3 Observable Dependences Induced by a Set of Traces 184
8.3.4 Approximation of Observable Dependences 186
8.3.5 Refining Observable Dependences 187

8.4 Abstract Dependences . 189
8.4.1 Definition of Abstract Dependences 189
8.4.2 Hierarchies of Dependences . 193
8.4.3 Approximation of Abstract Dependences 194
8.4.4 Chains of Abstract Dependences . 197

8.5 Abstract Slices . 198
8.6 Implementation and Conclusion . 200

8.6.1 Case Study . 200
8.6.2 Comparison with Related Work . 201

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

CONTENTS xi

8.6.3 Perspectives . 202

IV Certified Compilation 203

9 Formalizing Compilation 205
9.1 Motivation . 205

9.1.1 Certification of Compiled Code . 205
9.1.2 Formalizing Compilation . 207

9.2 A Simple Assembly Language . 207
9.2.1 Syntax . 207
9.2.2 Semantics . 210

9.3 Compilation . 210
9.3.1 A Simple Example . 210
9.3.2 Abstraction . 214
9.3.3 Reduced Program . 215
9.3.4 Compilation of Function Calls . 219
9.3.5 Under-Specified Behaviors in the Source Language Semantics 219

9.4 Common Optimizations . 221
9.4.1 How to Cope Optimizations ? . 221
9.4.2 Code Simplification . 222
9.4.3 Instruction Level Parallelism (Scheduling) 223
9.4.4 Optimizations Transforming Paths 226
9.4.5 Structure Modifying Optimizations 228

10 Invariant Translation and Checking 229
10.1 Principle and Related Work . 229
10.2 The Invariant Translation . 231

10.2.1 Invariant Translation for the Reduced Compiled Program 231
10.2.2 Invariant Translation for the Whole Compiled Program 234
10.2.3 Invariant Translation in Presence of Under-Specified Behaviors in

the Source Language Standard . 237
10.2.4 Translated Invariant and Program Reduction 237

10.3 Invariant Checking . 238
10.3.1 Principle of Invariant Checking . 238
10.3.2 Issues with the Precision of Transfer Functions 239
10.3.3 Practical Experience . 242

11 Proof of Semantic Equivalence 245
11.1 Principle and Related Work . 245
11.2 Design of a Translation Validation Procedure 247

11.2.1 Formalization and Soundness of the Approach 247
11.2.2 Adapted Decision Procedure . 251

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

xii CONTENTS

11.2.3 Issues with the Computation of the Reduced Programs 253
11.2.4 Issues due to Under-Specified Behaviors in the Semantics of the

Source Language . 254
11.3 Application to Invariant Translation . 254

11.3.1 Soundness of the Approach . 255
11.3.2 Comparison with Invariant Checking 255
11.3.3 On the Need for Invariant Translation and Safety Checking 258

11.4 Application to Real Software . 258

V Conclusion 261

12 Future Directions 263
12.1 Trace Partitioning . 263
12.2 Alarm Investigation . 263
12.3 Certified Compilation . 264

Bibliography . 264
List of Figures . 277
List of Definitions . 281
List of Theorems and Lemmata . 285
List of Examples . 287
List of Remarks . 289
Indexes . 291

Index of Symbols . 291
Index of Terms . 297

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

Part I

Introduction to Traces Abstractions

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

Chapter 1

Introduction

1.1 Software Verification

1.1.1 Need for Software Verification

In the last decades, software took a growing importance into all kinds of systems. For
instance, the design of the hardware and software parts of the command of transportation
system typically represents 30 % to 40 % of the cost of the whole development; moreover,
most of this fraction is due to the testing and debugging stages.

Moreover, complex systems require complex, intricate and large software. As an ex-
ample, the typical size of current designs for fly-by-wire control systems ranges from 100
000 to 1 000 000 LOCs (lines of code), whereas it used to be typically 10 times smaller
10 years ago.

The consequence of this increasing complexity is that the probability for bugs and
failures is dramatically increased, unless the development process is extremely rigorous.
Moreover, the consequences of a software failure range from an insignificant imprecision
in the computation to the worse unexpected behavior such as the crash of a whole system;
in particular, it may cause great human or economic damage, and thus, is not acceptable.

The risk for bugs to occur and to cause major damage is not theoretical. We could
cite many examples of famous bugs. For instance, an integer overflow arising in a low
importance task caused both the main and the backup control systems to shut down, 30
seconds after the take-off of the Ariane 501 launcher in 1996, resulting in the destruction
of the rocket [ea96]. The imprecision in floating point computations caused the failure of
a Patriot missile launch in 1992 and dozens of deaths. Even when they do not result in a
dramatic failure, bugs may cause tremendous over-costs: for example, multiple issues in
the development of the baggage handling system of the Denver airport resulted in a two
years schedule overrun and a $ 116 million budget overrun, in 1995. Many other “software
horror stories”can be found, e.g. in http://www.cs.tau.ac.il/~nachumd/horror.html,
ranging from the most peculiar to the most dramatic reports.

As a consequence of the importance of software, we notice an increasing interest in

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

4 CHAPTER 1. INTRODUCTION

software verification methods.

1.1.2 Current Trends in Software Verification

In the last thirty years a large range of software verification techniques have been devel-
oped, so as to tackle various applications.

Properties: First, let us summarize the most common properties, to be checked by
software verification systems.

Safety properties express that programs “should not go wrong”. In particular, the
absence of runtime-errors or the absence of undefined behaviors are safety properties.
Obviously, such properties are of a great interest, when checking the design of critical sys-
tems, such as flight control systems. In particular, the failure of the Ariane 5 launch is the
result of the violation of a simple safety property about the integer conversions. A com-
mon approach to check such properties consists in computing such an over-approximation
of the real behavior of the programs, and to use this approximation in order to check that
the programs never break some safety conditions.

Another family of crucial properties are resource usage properties. Indeed, em-
bedded software are usually real-time programs, so that the overuse of memory or time
resources would result in the loss of the system. Functional properties state that the
system should perform some actions under some conditions. For instance, liveness prop-
erties state that a program should eventually achieve some “good condition”. Security
properties assert that non-authorized users should not be able to acquire any information
about private computations or to corrupt any critical process.

In this thesis, we focus on safety properties, and we more particularly attempt at
proving the absence of runtime errors. Though, most of the algorithms described in this
thesis would apply to other problems.

Verification methods: The verification of software designs used to consist mainly in
testing and debugging methods. The idea is to run a program with various (randomly or
manually generated) sets of inputs, and to check that the properties of interest are not
violated in the “test runs”. However, the drawback of these solutions is that the number
of possible real executions is nearly infinite and all situations cannot be tested. Moreover,
the cost of testing is cumbersome; in particular, a change in the program should be tested
exhaustively.

As a consequence, automatic, formal methods were proposed, so as to increase the
level of confidence in the results and to cut down the cost.

The principle of Abstract Interpretation [CC77] based Static Analysis is to elab-
orate a model of the execution for programs, then to choose an over-approximation
of the program behaviors, and last, to derive analyzers for computing such an over-
approximation automatically. This method is sound, but not complete: in case the
over-approximation satisfies all safety conditions, then the program is proved correct;

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

1.1. SOFTWARE VERIFICATION 5

otherwise, we should investigate the reasons for the failure in order to prove the safety,
and conclude either that there is a real bug, or that the abstraction should be refined.
In the last few years, several successful static analyzers were implemented so as to ver-
ify memory properties [LAS00], the absence of runtime errors [BCC+02, BCC+03a], the
absence of buffer overruns [DRS03], the correctness of pointer operations [VB04].

Model Checking is a technique based on the abstraction of a program into a (e.g.,
boolean) model and on the application of SAT-solving methods so as to determine whether
dangerous states are accessible. Modern developments in this area allowed for a refinement
of the model [CGJ+00] if the checking phase fails to establish the property of interest.
A major difficulty of this approach is to synthesize the model from the program and the
property to check; in particular the size of the model is critical for the checking phase
to be practical. These techniques have been applied in many areas, such as hardware
verification [DSC98], software verification [BR01]...

Another approach consists in using Theorem Proving methods, in order to prove
the correctness conditions of the program. The definition of the model is critical (if
the model is wrong, the proof of correctness with respect to the model is useless), and
is difficult to automatize. Furthermore, the automation of the proofs can be a major
problem, whereas manual proofs incur major costs. Moreover, the adaptation of proofs
for modified programs may also turn out to be very costly, compared to fully automatic
methods. A major achievement of this approach was the generation of certified code
following the B method [Abr89] for the most critical parts of the control system of the
“Meteor” line of Paris subway, despite a tremendous cost.

Perspectives: At this point, the use of formal methods in the development and veri-
fication of critical systems is not standard, even though we notice a growing interest in
these areas.

In the last few years, various quality and safety standards have been elaborated for the
most critical applications. For instance, the DO178-B regulation [TCoA99] requires the
observance of strict rules in the design of software for aircrafts: the level of criticality of
each part of the code should be determined, the relation between the result of successive
development stages should be established, the safety of the most critical sub-systems
should be ensured and verified —if possible, formally.

As a consequence, we notice an increasing need for verification tools able to tackle
large critical applications. Moreover, it seems that verification methods should apply to
the real code (the validation of a model may not be considered a sufficient guarantee).
In particular, the scalability of the analyses is crucial, due to the growing size of the
applications.

Last, it is utterly important that the methods integrate naturally in the development
process. Indeed, the verification should help in the design of better software, and not
impede the development. In practice, the verification method should preferably be au-
tomatic and provide immediately usable results (readable invariants, help in the alarm
investigation process).

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

6 CHAPTER 1. INTRODUCTION

1.1.3 Context of the Thesis

This thesis was developed in the context of the Astrée project (http://www.astree.
ens.fr). Astrée [BCC+03a] is an academic, abstract interpretation [CC77] based
static analyzer developed in the École Normale Supérieure and in the École Polytech-
nique by Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux and myself. The Astrée static ana-
lyzer aims at proving the absence of runtime errors in large, embedded programs, written
in C [ANS99]; it can also be used in order to prove other classes of safety properties.

This project greatly impacted the choices made in this thesis, and the choice of the
areas to investigate:

1. trace partitioning, i.e., design of trace domains, which allow to express disjunc-
tions of properties and to use properties about the history of executions in order to
discriminate different elements of the disjunctions;

2. alarm investigation, i.e., assistance to the user, when facing alarms raised by As-

trée, which could be either the sign of true errors or the consequence of imprecisions
in the analysis;

3. certified compilation, so as to bring the results of analyses like Astrée to the
assembly level and to provide a functional certification of the compiled programs.

These three topics turn out to present strong relations: indeed, they all focus on ab-
stractions of traces. For instance, trace partitioning is formalized as a traces abstract
domain. The alarm investigation algorithms greatly benefit from the trace partitioning
technique. Moreover, the abstractions used in the formalization of slicing and compilation
are similar. As a consequence, the core of this thesis consists in the study of abstractions
of sets of traces.

Last, we implemented and tested on real-world, large applications most of the algo-
rithms and techniques presented in this Thesis.

1.2 Outline of the Thesis

In this section, we motivate, review, and summarize the main parts of the thesis.

1.2.1 Traces Abstractions

In the first part, we set up our main mathematical notations and review common abstrac-
tions for sets of traces. This part should ensure the self-contained-ness of the thesis, so
that a reader who is not familiar with either of the basic notions used in the following
should find here the fundamental notions, whereas the knowledgeable reader can safely
skip Chapter 2 and Chapter 3 and use them as a reference.

Chapter 2 sets up the syntax and the semantics of a simple imperative language, which
we use throughout the rest of the thesis; it also gives a short introduction to abstract
interpretation [CC77].

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

1.2. OUTLINE OF THE THESIS 7

Chapter 3 introduces four common abstractions for sets of traces, which are widely
used in the thesis:
• the static analysis based on numerical abstractions allows to derive insightful invari-

ants about programs;
• the denotational semantics abstracts sets of traces into functions; it allows to derive

efficient analyzers;
• backward denotational semantics is similar to the latter, yet it maps outputs into

sets of possible inputs;
• the projection abstractions allow to focus on some observation of the history of

programs.

1.2.2 Trace Partitioning

The second part is devoted to trace partitioning.
Chapter 4 sets up a framework for defining trace partitioning domains, which allow to

state properties about the history of program executions and to rely on these properties
in order to let disjunctions of abstract properties be handled in static analyses. This
framework is generic; a set of partitions of the traces is taken as a parameter. Moreover,
static and dynamic analyses are allowed: dynamic partitioning analyses do not fix the
partitions in the beginning, which makes them rather powerful. The following two chapters
instantiate this framework, so as to solve specific problems.

Chapter 5 focuses on the design and implementation of a trace partitioning domain
in Astrée. Basically, this domain performs a control-history based partitioning; for
instance, it allows to remember what branch of a conditional statement was taken, long
after the exit of the conditional (and many other similar refinements).

This domain can be seen as a generalization of [HT98], and of data-flow analyses
techniques, like qualified paths-based analyses [HR80], call-string analyses [SP81]. In
particular, it allows for more partitioning criteria, for more flexibility in the handling of
partitions (partitions can be merged, when disjunctions are not useful anymore) and for
dynamic strategies.

This technique is particularly adapted to the analysis of imperative programs, since it
tends to find the properties which should guide disjunctions in the control history (e.g., in
tests). We provide extensive experimental data, showing the effectiveness of the approach
in Astrée.

Chapter 6 proposes a second instantiation of the trace partitioning framework, which
is adapted to a finer analysis of the behavior of programs. The principle is to analyze
a kind of synchronous product [HLR93] of the program with an abstract system, which
expresses some property about the history of executions. For instance, the abstract system
may state that two properties occurred a same number of times, or that some property
has just occurred for the first time. We found two applications for this technique: we
introduced it in order to assist the alarm investigation process (Part III), but it could
also be used in order to prove functional properties of programs (even though we have

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

8 CHAPTER 1. INTRODUCTION

not deeply investigated this possibility yet).

1.2.3 Alarms Diagnosis

The third part focuses on the issue of the diagnosis of alarms raised by the Astrée ana-
lyzer. Indeed, Astrée is sound (it reports all possible errors), but not complete: it may
fail to prove the correctness of a correct program. This is the price to pay for soundness
and automation: indeed, the properties Astrée attempts to prove are undecidable.

As a consequence, alarms represent a major issue for end-users. Indeed, an alarm may
correspond either to an imprecision in the analysis, or to a true error. In the former case,
the end-user usually needs a counter-example, so as to document the bug found by the
analysis; in the latter, the user also expects some help in order to tune the parameters
of the analysis or to understand the need for a new domain. The purpose of this Part is
to provide the user with some assistance in this task, even if we do not propose a fully
automatic solution yet (this would be a major long-term challenge).

In Chapter 7, we describe a semantic slicing technique, which allows to compute
invariants for a subset of the traces of a program. The semantic slices are defined by
abstractions, such as the data of some set of final states, some condition on the inputs
of the program and some abstract system (in the sense of Chapter 6). The principle of
semantic slicing is to compute abstract invariants thanks to a forward-backward static
analysis.

In case the set of traces leading to the error condition of an alarm can be proved empty,
then the alarm is false; otherwise, the semantic slice should help characterizing the alarm
in a more precise way. Moreover, the specification of a more precise semantic slice may
allow to check the occurrence of an error in some given conditions.

Early experimental results show that this techniques can be significantly helpful in the
diagnosis of alarms reported by Astrée. A prototype was able to prove an alarm to be
false, and produced relevant semantic slices, showing several alarms real errors, in large
real-world applications.

Chapter 8 introduces several notions of dependences, so as to help the alarm investiga-
tion process. Observable dependences restrict to the dependences, which can be observed
in a semantic slice of a program, so that we can focus on the dependences generated by
a program in a specific error context, and track the source for the error more precisely.
Abstract dependences allow for further restrictions: only dependences, which can be ob-
served through some abstraction are retained. For instance, when looking for the cause of
an overflow alarm, we suggest to look at the way large values propagate in the program,
first; this way, we can find unstable retroactions, or the point where values grow above
some bound. We propose early experimental results as well.

1.2.4 Certification of Assembly Code

The fourth part is devoted to certified compilation.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

1.2. OUTLINE OF THE THESIS 9

Indeed, the regulations for critical software (e.g., in aeronautics [TCoA99]) require the
final code to be certified; the certification of the source code is not considered a strong
guarantee, since the compiler may be buggy, and should not be trusted (if the compiler is
wrong, then the compiled code may be unsafe, even though the source code is sound). We
need to verify two properties: first, the compiled program should be safe (i.e., it should
cause runtime errors); second it should implement the functions specified at the source
level.

We formalize compilation in Chapter 9. The goal of our formalization is to state the
strongest property of the source code which is retained in the compiled program, so that
we can design, formalize, and compare techniques for certified compilation. Moreover,
this generic framework allows for certification methods to be defined in a generic way:
the algorithms of Chapter 10 and Chapter 11 are largely independent of the compiler, the
optimizations and the target architecture.

In practice the correctness of the compilation of two programs boils down to the
existence of a bijection between an abstraction of the semantics of the source program
and an abstraction of the semantics of the compiled program. In the most simple case,
this bijection can be defined by a mapping between source and assembly control states
(resp. memory locations). In the case of optimizing compilation, further abstractions
should be applied, which account for the loss of structure inherent in the optimizations.

We propose to translate invariants produced by a source analyzer (e.g., Astrée) in
Chapter 10. The idea is to use the relation between source and compiled programs, which
we set up in Chapter 9 so as to derive a sound assembly invariant from a source invariant.
However, the translation relies on the assumption that the compilation is correct. There-
fore, we perform an independent checking of the correctness of the translated invariant:
if this phase succeeds, the translated invariant can be trusted, even if the translation of
the source invariant is wrong. This technique allows to prove the safety of the compiled
program independently. We implemented this method and report experimental results.

We consider the equivalence checking (or translation validation) methods in Chap-
ter 11. This technique reduces the verification of the equivalence of the source and of
the compiled program to the checking of local equivalence conditions, which is the task
of a theorem prover. We propose a full implementation of this technique and apply it to
large programs. Since it proves the compilation correctness, it also allows to replace the
invariant checking procedure of Chapter 10, and also reduces the amount of invariants to
translate. Therefore, we compare the invariant checking and the translation validation
methods in the theoretical point of view and in the light of the experimental results.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

10 CHAPTER 1. INTRODUCTION

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

Chapter 2

Semantics and Abstraction

The purpose of this chapter is to introduce the main notations to be used in the following of
this thesis. We do not attempt to provide a full description of the Abstract Interpretation
theory or of program semantics, so we also provide bibliographic references.

We define in Section 2.2 a syntax and a semantics for a simple imperative language,
which we use in the parts devoted to static analysis, slicing and certified compilation. We
provide a short introduction to Abstract Interpretation in Section 2.3.

2.1 Basic Mathematical Notations

An order relation is a transitive, reflexive and antisymmetric binary relation; an ordering
is a set together with an order relation.

A complete lattice is an ordering (E,<), such that any subset of E has a lower upper
bound (lub) and a greater lower bound (glb); in particular, the lub (resp. glb) of ∅ is
denoted with ⊥ (resp. >); it is the least (resp. greatest) element of E. We denote lubs
(resp. glbs) with ∨ (resp. ∧).

The existence of lubs and glbs for arbitrary sets of elements is usually considered a
very strong assumption; hence, we may only assume the existence of binary lubs and glbs.
A lattice is an ordering with binary lubs and glbs.

If (D,⊆) is a lattice and F : D → D, then a fixpoint of F is an element x ∈ D such
that F (x) = x; a post-fixpoint of F is an element x ∈ D such that F (x) ⊆ x. The most
important results about fixpoints are:

• the set of fixpoints of a monotone function F over a lattice is a lattice [Tar55]; in
particular, such a function enjoys a least fixpoint (denoted lfpF) and a greatest
fixpoint (denoted gfpF). In particular, lfpF is the least post-fixpoint of F and
F (x) ⊆ x =⇒ lfpF ⊆ x.
• in case F is defined over a complete lattice, and continuous (i.e., preserves lubs),

then lfpF = ∪{F n(⊥) | n ∈ � }.
Last, we write Card(E) for the number of elements of a set E.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

12 CHAPTER 2. SEMANTICS AND ABSTRACTION

2.2 Syntax and Semantics of a Simple Language

2.2.1 Syntax

We describe an imperative program with a transition system.

More precisely, we let � denote a set of values; � denote a finite set of memory locations
(aka variables). A memory state (or store) describes the values stored in the memory at
a precise time in the execution of the program; it is a mapping of program variables into
values. A store is a function σ ∈ � , where � = � → � . Note that real programs can
use only a finite amount of memory, which makes our assumption that the number of
variables be finite valid.

A control state (or program point) roughly corresponds to the program counter at a
precise time in the execution of the program; we usually write � for the set of control
states.

A state s is a pair made of a control state l ∈ � and a memory state σ ∈ � . We
will consider programs may cause errors. For this purpose, we introduce an error state,
which we denote with Ω. We write � for the set of states, so � = � × � ∪ {Ω}. In some
rare cases, we will not consider the error state for the sake of simplicity; if stated so, then

� = � × � .

A program is defined by a set � of control states, a set of initial states � i, and a
transition relation (→) ⊆ � × � , which describes how the execution of the program may
step from one state to the next one.

In practice, � i = {l i} × � , where l i ∈ � is the entry control state, i.e. the first point
in the program.

An error may occur at state s, if s→ Ω; an error occurs at state s if s→ Ω is the only
transition from s. If an error may occur at state s, we say that s is a dangerous state. Of
course, the error state shall always be supposed to be blocking: ∀s ∈ � , ¬(Ω→ s).

We call edge a pair (l0, l1) ∈ � 2, such that there exists a transition from l0 to l1.
Last, we usually assume that a program has no blocking state, except the error state

and the states (le, ρ), where le is the “exit” control state of the program, corresponding to
the end of the program (we usually do not need to make the exit control state explicit).
In other words, a state is either Ω, or an exit state or there is at least one transition to
another state.

2.2.2 Semantics

We assume here that a program P is defined by the data of a tuple (� , � ,→, � i). The
most common semantics for describing the behavior of transition systems is the operational
semantics, which we sketch here. It was introduced, e.g. in [Plo81].

An execution of a program is represented with a sequence of states, called a trace; the
semantics of the program collects all such executions:

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

2.2. SYNTAX AND SEMANTICS OF A SIMPLE LANGUAGE 13

Definition 2.2.1. Trace, Semantics.

A trace σ is a finite sequence 〈s0, . . . , sn〉 where s0, . . . , sn ∈ � . We write � ? (or, Σ for
short) for the set of such traces, and length(σ) for the length of σ.
A trace of P is a trace such that any two successive states are bound by the transition
relation: ∀i, si → si+1. The semantics JP K of P is the set of traces of P , i.e. JP K =
{〈s0, . . . , sn〉 ∈ Σ | s0 ∈ � i ∧ ∀i, si → si+1}.

Note that we restrict to finite traces. Other classical definitions of operational se-
mantics include infinite traces [Cou97a]. The infinite traces of a system correspond to
non-terminating executions; they can be deduced from the finite traces.

Our choice proves sufficient for our needs in this thesis.

2.2.3 A Simple Language

We propose a simple instantiation for the general definitions of labeled transition systems
and semantics, with a simple imperative language, which we use in the following. This
language intends to modelize a small, fragment of the C language [ANS99].

Types: We consider a subset � of the types of the C language, including:
• float: floating point numbers [CS85];
• int: machine integers;
• bool: booleans —which are usually defined as an enumeration type in C programs;
• τ []: arrays of elements of type τ .

Other data types should be considered (various integers and floating point sizes, pointers,
structures, enumeration types, unions).

Values: Each basic type corresponds to a set of values:
• �

is the set of n bits IEEE-754 floating point values;
• � = {−2m, . . . , 2m − 1} denotes the machine integer values;
• � = {true, false} denotes the set of boolean values.

Hence, the set of values is � =
�] �] � , unless specified otherwise.

L-values and memory locations: An l-value l ∈ � is a special expression, which
evaluates into a set of memory location(s): variables, array look-ups are l-values (See the
grammar on Figure 2.1(a)).

A scalar variable (i.e. integer, boolean, floating point) corresponds to a unique memory
location. A variable t of type array τ [] corresponds to a pointer to a region in the memory;
an array has a length n ∈ �

, which denotes the size of the corresponding region. The
l-value t[i] stands for the i-th cell of the array t; it corresponds to the i-th sub-region of t.

The semantics of an l-value maps a store into a memory location (in the case where
non-determinism is allowed in expressions, it would return a set of memory locations).
We do not define it formally here, since it would be straightforward, yet technical: hence,

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

14 CHAPTER 2. SEMANTICS AND ABSTRACTION

in the following, we consider the case of variables only and abusively do not distinguish a
variable and the corresponding memory location.

Expressions: An expression e ∈ � is either a constant, or an l-value, or a unary operator
ª ∈ {−,¬, castτ→τ ′} applied to one expression, or a binary operator ⊕ ∈ {+, ?,∧, . . .};
it evaluates into a scalar type value. Note that the semantics of an expression JeK maps
a store into a value; this definition rules out non-determinism and errors at the level of
expressions (they will be handled at the level of statements). The syntax of expressions
can be found on Figure 2.1(a). The semantics of expressions is defined by straightforward
induction on the syntax:

• if v ∈ � , then JvK(ρ) = v;
• if x is a variable, then JxK(ρ) = ρ(x) (the case of general l-values would be: JlK(ρ) =

ρ(JlK(ρ)));
• if e ∈ � , then JªeK(ρ) = fª(JeK(ρ)) where fª is the semantic interpretation of ª

(the case of binary expressions is similar).

In case, we consider non-determinism (e.g., if we introduce a random expression rnd(V),
which may evaluate to any value in V ⊆ �), then the semantics of an expression maps a
store into a set of values (JeK : � → P(�)).

Statements: Programs are made of statements. A statement s ∈ � is either a sequence
of statements s0; . . . ; sn (also called block, denoted with b), or an assignment x := e
(where x ∈ � , e ∈ �), or a conditional if(e) s0 else s1 (where e is an expression and s0, s1

are statements), or a loop statement while(e) s0 (where e is an expression and s0 is a
statement). Moreover, we define the two following kinds of statements, so as to model
non-determinism and errors:

• The input(x ∈ V) statement (where l ∈ � and V ⊆ �) reads a random value in V
and writes it into the memory location corresponding to x.
• The assert(e) statement (where e ∈ �) checks that condition e holds; otherwise, it

causes an error.

Control states: We defined control states in Section 2.2.2. We assign a control state
to each statement, which corresponds to the status of the execution right before the
statement is executed. Moreover, there is a control state right at the end of each block.

Transition relation: The rules defining the transition relation are defined on Fig-
ure 2.1(b). If ρ ∈ � , x ∈ � , v ∈ � , we write ρ[x ← v] for the store obtained by writing
the value v into variable x in the store ρ; ρ[x ← v] is such that (ρ[x ← v])(x) = v and
y 6= x⇒ (ρ[x← v])(y) = ρ(y).

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

2.2. SYNTAX AND SEMANTICS OF A SIMPLE LANGUAGE 15

v(v ∈ �) ::= n ∈ � | f ∈ � | b ∈ �
l(l ∈ �) ::= x variable

| l[e] array look-up (l ∈ � , e ∈ �)
e(e ∈ �) ::= v value

| l l-value
| ªe unary expression (ª ∈ {−,¬, castτ→τ ′})
| e⊕ e binary expression (⊕ ∈ {+, ?,∧, . . .})

s(s ∈ �) ::= l := e assignment
| if(e) s else s conditional
| while(e) s loop
| input(x ∈ V) reading of input, V ⊆ �
| assert(e) assert statement
| s; . . . ; s block

(a) Grammar

assignment l0 : l := e; l1
(l0, ρ)→ (l1, ρ[x← v]) where v = JeK(ρ)

conditional l0 : if(e) {l t
0 : st; l t

1 } else {l f
0 : sf ; l f

1 } l1
(l0, ρ)→ (l t

0 , ρ) if JeK(ρ) = true

(l0, ρ)→ (l f
0 , ρ) if JeK(ρ) = false

(l t
1 , ρ)→ (l1, ρ)

(l f
1 , ρ)→ (l1, ρ)

loop l0 : while(e) {l b
0 : st; l b

1 } l1
(l0, ρ)→ (l b

0 , ρ) if JeK(ρ) = true
(l0, ρ)→ (l1, ρ) if JeK(ρ) = false
(l b

1 , ρ)→ (l0, ρ)

input l0 : input(x ∈ V); l1
(l0, ρ)→ (l1, ρ[x← v]) if v ∈ V

assertion l0 : assert(e); l1
(l0, ρ)→ (l1, ρ) if JeK(ρ) = true
(l0, ρ)→ Ω if JeK(ρ) = false

(b) Transition relation

Figure 2.1: A simple language

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

16 CHAPTER 2. SEMANTICS AND ABSTRACTION

2.2.4 Extension with Procedures

In some cases, we will consider procedures as well. Figure 2.2 displays a very rough
extension of the mini-language introduced in Section 2.2 into a language with procedures.
Basically, a function call statement branches to the control state at the beginning of
the called function; the function return branches back to the point right after the call
statement.

Of course, a function might be called during the execution of another function, so that
a stack is required in order to recover the right calling point: the function call pushes the
calling point onto the stack, whereas the function return pops the last calling point on the
top of the stack and branches to this point. As a consequence, we have to extend the states
with a stack (Figure 2.2(b)) and extend the transition relation as well (Figure 2.2(c)).

Programs containing functions with arguments and/or return values can be encoded
into this extension of the language, thanks to variables; therefore, we do not introduce
such features formally in the language.

2.2.5 Extension to full C

In practice, the analyses described in this thesis (and the tools implemented in the Astrée

project) focus on a large fragment of the C language (or of some assembly language in
the last Part of the thesis). The choice of a restricted language was made so as to allow
for a more concise presentation.

Among the other features of the language, which we consider, we can cite:

• all arithmetic data-types, including integer, floating-point and bit-fields (which
mostly results in more cases to consider);
• more general data structures, including structures, enumerations, pointers, unions

(though, dynamic memory allocation is currently not addressed);
• variables scopes (local, global...) and kinds (auto, static, volatile);
• initializers in variable declarations;
• non recursive functions, with parameters and/or return values;
• classical control structures, including switch statements, forward goto statements;
• library functions can be handled thanks to stubs, i.e. pieces of code modelizing their

effect (or the observation of their effect we wish to consider), by over-approximating
the possible modification of the values in the environment.

Most of the above features could be added into the simple language, which we introduced
above either by adding some extra cases or by encoding new features into the simpler
constructions.

The main C language features which are currently not considered are:

• recursive functions;
• dynamic memory allocation.

The reason for the choice of this fragment of the C language stems from the nature of
the programs considered in the Astrée project: at the time we write this thesis, we

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

2.2. SYNTAX AND SEMANTICS OF A SIMPLE LANGUAGE 17

Set of function names a finite set
�

Extension of statements s(∈ �) ::= . . . | call f
Functions a function is a pair (f, s) ∈ � × �

Program a program p is defined by:
a set of functions fp

a main function mp

(a) Syntax

Stacks � = (
� × �)? (finite sequences of function names)

States � f = � × � × �

(b) States

We define a new transition relation (→f) ∈ � f × � f , as follows:

Call statement l0 : call f ; l1 :
(κ, l0, ρ)→f ((l1, f) · κ, l , ρ)

where

l is the entry control state of f
l0 is the calling point
l1 is the return point

Return ((l1, f) · κ, l , ρ)→f (κ, l1, ρ)

where

l is the exit point of procedure f
l1 is the return point saved on the stack
κ is the stack before the call

Other statements if (l , ρ)→ (l ′, ρ′) in the code of function f , then:
∀κ ∈ � , (κ, l , ρ)→f (κ, l ′, ρ′)

Initial states: � i
f = {(li, ε)} × �

an initial state is defined by

the empty stack ε
the entry point li of the main function mp

any memory state ρ ∈ �

(c) Semantics

Figure 2.2: Procedural extension of a simple language

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

18 CHAPTER 2. SEMANTICS AND ABSTRACTION

mostly considered families of critical embedded programs (more precisely described in
Section 5.1.1), which should include neither recursion nor dynamic memory allocation
due to specific safety constraints for real-time systems.

2.2.6 Under-Specified Behaviors

Case of the C language: The semantics of the simple language we described in the
previous subsections leaves no non-deterministic choice (except, maybe for a well-specified
input statement). However, this situation is rather rare, when dealing with real-world
programming languages. In practice, the full semantics of a language like C does not
specify completely the behavior of programs: some cases are left unspecified either because
they depend on the architecture or because the compilation techniques may favor some
choices for the sake of efficiency.

For instance, the ANSI C specification [ANS99] reports four kinds of not fully specified
behaviors:

• Undefined behaviors consist in erroneous situations, where the International Stan-
dard imposes no requirement about what should happen. We can cite the following
examples:

– conversion of an integer value producing a value outside the range than can be
represented;

– the dereference of a pointer to an object whose lifetime has ended;
– pointer conversion producing a value with an incorrect alignment.

• Unspecified behaviors are cases where the International Standard provides several
possibilities but does not impose any requirement on which is chosen:

– the evaluation order of the sub-expressions corresponding to most binary oper-
ators (for instance, +,−, . . .); moreover, the order side effects are performed in
is also unspecified, in case the sub-expressions enclose side-effects (for instance,
if the value of x is 4, then the result of the left to right evaluation of (x++)+x
is 9 whereas the result of the right to left evaluation is 8);

– the timing of static initialization;
– the value of padding bits.

• Implementation-defined behaviors are unspecified behaviors which should be doc-
umented for each implementation (compiler, target architecture, options). These
include for example:

– the result of the conversion of an integer value v into a signed integer type
whose range does not contain v;

– the accuracy of floating point operations;
– the result of the conversion of a pointer into an integer.

• Locale-specific behaviors depends on cultural and linguistic conventions; they mostly
consist in definitions of character sets and output formats.

The full list of not fully specified behaviors is quite long (roughly 20 pages, in the Appendix
J of [ANS99]) and should all be taken into account, when writing a formal semantics of

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

2.3. ABSTRACT INTERPRETATION 19

full C.

Extension of the semantics: A first solution consists in describing all the choices
allowed by the standard.

In general, accounting for all possibilities due to the unspecified behaviors described
above turns out a cumbersome solution: not only the definition of the transitions requires
writing many cases, but the resulting semantics is not precise enough for most applications.
In the case of embedded systems, the programmer knows what compiler and what options
are going to be used and what the target architecture is. Therefore, a more practical
approach proceeds by defining a finer semantics, where all known choices are hard-coded:
the implementation-defined behaviors (and locale-specific behaviors) turn into well known
behaviors. For instance, the accuracy of floating point computations on a Power-PC chip
is specified by the IEEE-754 standard [CS85], whereas Intel x86 chips internally use 80-
bits registers, hence may provide greater precision than regular 64-bits double arithmetics.

The choice of a specific compiler may even allow to restrict some unspecified behaviors,
such as the evaluation order: many compilers are known to generate code corresponding
to a right-to-left evaluation of sub-expressions or procedure arguments.

The undefined operations producing unpredictable results can also be considered errors
(i.e., transitions into Ω). All in all, it is desirable to specify as many non specified cases
as possible to make the design of static analyses easier, either by considering them errors
or by specifying them. Leaving a behavior unspecified results in a less precise analysis,
which accounts for any implementation.

Overall, there are various levels of specification of how the basic elements of the pro-
gramming language behave:
• the standard;
• the user comprehension of the language: the user may rely on some assumptions

inherent in the implementation(s) of the language to be used;
• the final implementation (defined by a processor, a compiler...)

Normally, the view of the user should be a refinement of the standard; the final implemen-
tation should also be a further specialization of it. During this thesis, we shall attempt to
verify this double assumption.

2.3 Abstract Interpretation

In most cases, the concrete semantics is not adequate for automatic reasoning, since
it is infinite, and not decidable. In particular, the operational semantics introduced in
Section 2.2.2 is not decidable. In this section, we recall the most basic results of the
abstract interpretation framework [CC77, CC79], which we use in the following in order
to design sound, decidable or useful, approximate semantics, in order to prove properties
about programs and program transformations.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

20 CHAPTER 2. SEMANTICS AND ABSTRACTION

PSfrag replacements

x

y

PSfrag replacements

x

y

PSfrag replacements

x

y

Figure 2.3: Approximations of the disc x2 + y2 ≤ 1 with polyhedra

2.3.1 Notion of Abstraction

Section 2.2.2 described a form of operational semantics, which is very convenient in order
to express the meaning of programs, by completely detailing their executions. Indeed, the
trace semantics fully describes the behavior of programs. However, part of the peculiar
details of the operational semantics can or should generally be abstracted away in order
to design static analyses and program transformation schemes. In this section, we write
(D,⊆) for the ordering underlying the concrete domain.

An abstract semantics assigns denotations to programs in an abstract domain. An ab-
stract domain [CC77] is an ordering (D],v), related with the concrete domain. Intuitively,
an element of D] can be seen as a property of programs; the ordering can be considered a
precision ordering: x] v y] means that the property x] is stronger than the property y].
Note that other orderings might be considered in the abstract level (decidable subset of v,
termination ordering). A comprehensive discussion of abstract interpretation frameworks
can be found in [CC92b].

The correspondence between the concrete and the abstract domains is the most crucial
step in the definition of an abstraction. A soundness relation is a set R ⊆ D ×D], such
that (x, x]) ∈ R if and only if x enjoys the abstract property x]. In practice, tighter
relations can often be exhibited between the concrete domain and the abstract domain:
• a concretization function γ : D] → D maps an abstract property x] into the greatest

concrete element (e.g., the largest set of traces) which enjoys property x];
• an abstraction function α : D → D] maps a concrete element x into the strongest

abstract property x] which holds true for x.
If they exist, these “adjoint” functions are monotone.

Obviously these functions may not always exist, as shown in the following example:

Example 2.3.1. Non-existence of α.

We consider sets of points in the 2-dimensions plane. Abstract elements are convex
polyhedra [CH78], i.e. conjunctions of constraints of the form ax + by ≤ c, where a, b, c
are real numbers. Let E be the disc x2 + y2 ≤ 1. It is well-known that there is no
best approximation of E in the set of polyhedra, even if one can find “arbitrarily good”
approximations of the E in the domain of polyhedra, as shown on Figure 2.3.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

2.3. ABSTRACT INTERPRETATION 21

In this thesis, we always assume the existence of a concretization function; in some
cases, abstraction functions will be available as well.

In favorable cases, both functions exist and form a Galois connection [CC77]:

Definition 2.3.1. Galois connection.

A Galois connection between (D,⊆) and (D],v) is a pair of function (α, γ) such that:

∀x ∈ D, ∀y ∈ D], α(x) v y ⇐⇒ x ⊆ γ(y)

Such a Galois connection is denoted (D,⊆) −−−→←−−−α
γ

(D],v)

For a complete overview of the many properties of Galois connection and abstraction
relations, we refer the reader to [CC92a].

2.3.2 Semantics as Fixpoints and Semantic Approximation

We now show how one can design a sound approximation for a concrete semantics in
some given abstract domain; in practice, the construction does not depend on the abstract
domain, which can be considered a parameter.

Semantics as fixpoints: We can define the concrete semantics introduced in Sec-
tion 2.2.2 as a least fixpoint, in the complete lattice (P(Σ),⊆):

Lemma 2.3.1. Fixpoint form for the operational semantics.

The operational semantics of P is such that:

JP K = lfp⊆S iF−→P

where F−→
P

is the semantic function, defined by:

F−→
P

: Σ → Σ
E 7→ E ∪ {〈s0, . . . , sn, sn+1〉 | 〈s0, . . . , sn〉 ∈ E ∧ sn → sn+1}

and S i collects the “initial traces”, i.e. the traces made of one initial state (since any
state is supposed initial in JP K, so S i = {〈s〉 | s ∈ � i}).

Proof.

First, let us note that the function F−→
P

is a monotone function over the lattice (P(Σ),⊆),
so it has a least-fixpoint (as mentioned in Section 2.1). Second, F−→

P
is continuous, defined

on a complete lattice, so its least-fixpoint satisfies the following equality:

lfpS iF−→
P

=
⋃

n∈ �

F n
P (∅)

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

22 CHAPTER 2. SEMANTICS AND ABSTRACTION

where F n
P denotes the n-th iterate of F−→

P
.

Proving that JP K is equal to the least-fixpoint amounts to proving by induction on n
the property

∀σ ∈ Σ, length(σ) ≤ n + 1 =⇒
(

σ ∈ JP K ⇐⇒ σ ∈
n⋃

k=0

F k(S i)

)

(the induction is straightforward)
Â

In practice most semantics can be written as least-fixpoints in a similar way.

Relations among fixpoints: The design of an abstract semantics usually follows from
choice of a concrete semantics and of an abstraction by applying a “fixpoint-transfer
theorem”, such as:

Theorem 2.3.2. Fixpoint transfer.

We assume that D,D] are complete lattices, and we let x ∈ D, y ∈ D]. Let F : D → D
and F] : D] → D]. Then:
• if α : D → D] is an abstraction function, α(x) = y and α ◦ F = F] ◦ α, then

α(lfpxF) = lfpyF
].

• if γ : D] → D is a concretization, x ⊆ γ(y), and F ◦ γ ⊆ γ ◦ F], then lfpxF ⊆
γ(lfpyF

]).

Proof.

Such results can be proved by straightforward inductions on the sequences of iterates.
Â

Another noticeable fact is that a fixpoint might be checked by computing only one
iterate:

Theorem 2.3.3. Fixpoint checking.

Let F] : D] → D], and x] ∈ D]. Let us assume that:
• there is a concretization function γ : D] → D (note that it is monotone);
• the concrete semantic function F : D → D is monotone;
• F] abstracts F , i.e., F ◦ γ ⊆ γ ◦ F];
• F](x]) v x]

Then, lfpF ⊆ γ(x]).

Proof.

We write x for γ(x]). Since F] abstracts F , F (x) = F ◦ γ(x]) ⊆ γ ◦ F](x]); moreover,
γ is monotone and F](x]) v x], so γ ◦ F](x]) ⊆ γ(x]) = x; by transitivity, F (x) ⊆ x, so
lfpF ⊆ x.
Â

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

2.3. ABSTRACT INTERPRETATION 23

2.3.3 Enforcing Termination

The fixpoint-transfer scheme presented in Section 2.3.2 leaves one issue to be addressed:
the sequences of abstract iterates might be infinite, in case the abstract domain has infinite
increasing chains. Therefore, in case we wish the abstract semantics to be computable,
we replace the abstract join operator with a widening operator [CC77], which is an ap-
proximate join [CC92b], with additional termination properties:

Definition 2.3.2. Widening operator.

A widening is a binary operator ∇ on D], which satisfies the two following properties:
1. ∀x], y] ∈ D], x] v x]∇y] ∧ y] v x]∇y]

2. For any sequence (xn)n∈ � , the sequence (yn)n∈ � defined below is not strictly increas-
ing: {

y0 = x0

∀n ∈ �
, yn+1 = yn∇xn+1

It is possible to replace property 1 with the weaker property γ(x])∪γ(y]) ⊆ γ(x]∇y]),
and to recover the same properties of the widening operator.

The following theorem [CC77] shows how widening operators make it possible to com-
pute in a finite number of iterations a sound over-approximation for the concrete proper-
ties:

Theorem 2.3.4. Abstract iteration with widening.

We assume that a concretization γ : D] → D is defined and that F] is such that
F ◦ γ ⊆ γ ◦ F]. Let x ∈ D, x] ∈ D], such that x ⊆ γ(x]). We define the sequence
(xn)n∈ � as follows: {

x0 = x]

∀n ∈ �
, xn+1 = xn∇F](xn)

Then, the sequence (xn)n∈ � is ultimately stationary and its limit lim(xn)n∈ � is a sound
approximation of lfpxF :

lfpxF ⊆ γ(lim(xn)n∈ �)

Proof.

• Termination: The termination follows from Definition 2.3.2, Property 2 applied
to the sequence (yn)n∈ � = (F](xn))n∈ � .
Indeed, the sequence (xn)n∈ � is increasing: if n ∈ �

, then xn v xn∇yn = xn+1

(by Property 1 in Definition 2.3.2). The sequence (xn)n∈ � is not strictly increasing;
hence, it is ultimately stationary: there exists n0 ∈

�
such that it converges after

n0 iterations: xn0 = xn0+1.
• Soundness: As we mentioned that xn0 = xn0+1, we deduce that xn0 = xn0∇F](xn0).

Therefore, F](xn0) v xn0 . The soundness follows from Theorem 2.3.3.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

24 CHAPTER 2. SEMANTICS AND ABSTRACTION

The conclusions of Theorem 2.3.4 follow.
Â

Theorem 2.3.4 describes the scheme of a classical static analysis: apply a sound ab-
stract counterpart to the concrete semantic function and widening until success of a ter-
mination test (i.e., F](xn) = xn).

Example 2.3.2. Non monotonicity of widening.

A classical widening on the abstract domain of intervals removes non-stable constraints.
For instance, if we consider only widening on the right bound, then [a, b]∇[a, c] is [a, c] if
c ≤ b (stable constraint) and [a, +∞[otherwise (unstable constraint).
This operator obviously enforces the convergence of any sequence of iterates after two
iterations.
Let us consider the abstract function F] : [a, b] 7→ [a + 5, min(b + 10, 50)]. Carrying
out an abstract iteration from I = [0, 50] converges in one iteration (I∇F](I) = I); the
iteration starting from I ′ = [0, 10] converges after the second iteration and the limit is
[0, +∞[, which is a less precise limit even though I ′ v I. This simple case exemplifies
the non-monotonicity induced by widening operators. In practice, abstract transformers
are rarely monotone.

In general, the abstract semantic function does not achieve monotonicity; Exam-
ple 2.3.2 illustrates one of the reasons for this.

The choice of efficient widening operators is a crucial step in the definition of successful
program analyses. Moreover, finer iteration strategies can be proposed. For instance, one
can use a more precise abstract lower upper bound operator during the first iterations
or for all even iterations; these strategies still achieve termination and may provide more
precise results

In practice, the result of a widening iteration can often be improved:

Remark 2.3.1. Decreasing iteration.

We keep the notations of Theorem 2.3.4 and let x]
l be the limit of the widening sequence.

Since lfpxF ⊆ γ(x]
l) and F (lfpxF) = lfpxF , and γ is monotone, we can conclude that

lfpxF ⊆ γ(F](x]
l)). By induction, we can show that we can apply an arbitrary number

of times the operator F], and still get a sound over-approximation of the concrete least
fixpoint.
In practice, such a sequence may noticeably improve the precision. The termination of
this “post-widening” sequence is usually enforced with a narrowing operator [CC77].

Last, we point out that other, more general definitions for widening operators can be
used in practice; in particular, the termination assumption may be asserted for a different
ordering than the precision ordering induced by the concretization function (See [CC92b]
for more details).

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

2.3. ABSTRACT INTERPRETATION 25

2.3.4 Program Transformations

We shall also use the notion of abstraction in order to compare the semantics of programs
resulting from program transformations. Basically, a program transformation is a function
F mapping a program into another program.

Semantic abstraction allows to describe the transformation in the semantic level. This
approach was suggested by [CC02].

Let Ds (resp. Dt) be the concrete domain for expressing the semantics of source (resp.
target) programs. We assume two abstractions (D]

s, αs, γs) and (D]
t , αt, γt), of Ds and Dt

respectively, can be defined such that there exists a function JFK : D]
s → D]

t such that, for
all program p, then αt(JF(p)K) = JFK(αs(p)). Then, we say that JFK provides a semantic
definition for the program transformation as shown in the diagram below.

P
F

- F(P)

JP K

semantics
?

JF(P)K

semantics
?

αs(JP K)

αs
?

JFK
- αt(JF(P)K)

αt
?

In particular, in case both semantics are defined using least-fixpoints, then we expect JFK
to relate the execution steps of the source and transformed programs.

We do not claim here that this framework should allow formalizing any program trans-
formation. However, it provides a description for a large range of program transformations,
as shown in the case of non-optimizing or optimizing compilation in Chapter 9.

Next chapter provides suitable abstractions of sets of traces, for the formalization of
program transformations; in particular, an example will be provided in Section 3.4.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

26 CHAPTER 2. SEMANTICS AND ABSTRACTION

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

Chapter 3

Abstractions of Sets of Traces

This chapter is devoted to simple abstractions for sets of traces, which will be thoroughly
used in the remaining of the thesis: Section 3.1 describes abstractions for static analysis;
Section 3.2 defines denotational abstractions for sets of traces, as functions mapping states
into sets of states. Section 3.3 introduces a backward semantics. Section 3.4 deals with
projection abstractions.

3.1 Static Analysis

This section introduces the structure of a simple abstract interpreter. We detail the struc-
ture and the implementation of the Astrée analyzer [BCC+02, BCC+03a, CCF+05] later,
in Section 5.1: Astrée is quite different from the simple abstract interpreter described
here. However, the abstractions introduced here will be used throughout the rest of the
thesis.

3.1.1 The Abstraction

Set of traces of interest: In this section, we consider a program P defined by the data
of a tuple (� , � , � i,→). We focus on the approximation of the executions of P , i.e. on the
states which appear in a trace of P .

We proceed to the abstraction of traces into reachable states: we wish to abstract the
traces into an approximation for the set of states S which appear in at least one trace in
T . In the following, we approximate all the states distinct from Ω: deciding whether Ω
is reachable from the set of all reachable, non-error states is usually straightforward (it
amounts to checking whether there exists a state s such that s→ Ω in the set S).

As a consequence, we wish to approximate the set of traces T = {〈s0, . . . , sn〉 ∈
(� × �)? | ∃ρ0 ∈ � , s0 = (l i, ρ0)}. We recall that T = lfp � iF (Lemma 2.3.1).

Abstraction of traces: We assume that an abstract domain (D]� ,v) for representing
sets of stores is defined, together with a concretization function γ

�
: D]� → P(�).

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

28 CHAPTER 3. ABSTRACTIONS OF SETS OF TRACES

We let the abstraction for approximating the concrete semantics be defined by:
• the abstract domain D] = � → D]� , with the pointwise ordering induced by v

(which we also write v);
• the concretization function γ : I ∈ D] 7→ {〈(l0, ρ0), . . . , (ln, ρn)〉 ∈ (� × �)? |
∀i, ρi ∈ γ

�
(I(li))}.

Intuitively, this very simple abstraction collects the memory states corresponding to each
control state and applies the store abstraction to the resulting set of stores.

Abstract operations: Moreover, we assume that the domain D]� provides some sound
abstract operations:
• a least element ⊥, such that γ

�
(⊥) = ∅;

• a greatest element >, such that γ
�
(>) = � ;

• an abstract join operator t, approximating the concrete join operator (∀x, y ∈
P(�), x], y] ∈ D]� , x ⊆ γ

�
(x])∧y ⊆ γ

�
(y]) =⇒ x∪y ⊆ γ

�
(x]ty])) and a widening

operator ∇ (Section 2.3.3).
• a sound counterpart guard : � × � ×D]� → D]� for the concrete testing of conditions:

∀ρ ∈ � , e ∈ � , b ∈ � , d ∈ D]� ,
ρ ∈ γ

�
(d)

∧ JeK(ρ) = b

}
=⇒ ρ ∈ γ

�
(guard(e, b, d))

Since the operator guard : (e, b, d) 7→ d trivially satisfies the above assumption, we
assume that the guard operator is reductive: ∀ρ ∈ � , e ∈ � , b ∈ � , γ

�
(guard(e, b, d)) ⊆

γ
�
(d).

• a sound counterpart assign : � × � ×D]� → D]� for the concrete assignment:

∀ρ ∈ � , ∀l ∈ � , e ∈ � , d ∈ D]� ,
ρ ∈ γ

�
(d)

∧ JlK(ρ) = x
∧ JeK(ρ) = v

 =⇒ ρ[x← v] ∈ γ

�
(assign(l, e, d))

• a sound counterpart forget : � ×D]� → D]� for the “variable-forget” operation, which
writes a random value into a variable:

∀ρ ∈ � , ∀l ∈ � , ∀v ∈ � , ∀d ∈ D]� ,
ρ ∈ γ

�
(d)

∧ JlK(ρ) = x

}
=⇒ ρ[x← v] ∈ γ

�
(forget(l, d))

Intuitively, each of these operators should mimic a common operation of the language in
a sound (or conservative) way. For instance, the assign operation inputs a pre-condition d
and an assignment and returns an over-approximation of the post-condition, which may
be reached after carrying out the assignment operation from d. Soundness is a critical
requirement for the results of the analysis to be proved correct with respect to the concrete

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

3.1. STATIC ANALYSIS 29

semantics; as a consequence it is considered the most important characteristic of abstract
operations.

An abstract operator may be imprecise: for instance, assign may return an element
including many spurious stores (for instance, it may return >). Such imprecisions may
result in useless invariants (e.g., it may result in a large number of false alarms, when
trying to prove the safety of a program); therefore, the design of transfer functions usually
attempts to avoid coarse imprecisions whenever they may affect the result of the analysis.

Section 3.1.2 defines a simple abstract interpreter for the language introduced in Sec-
tion 2.2.3; Section 3.1.3 proposes ways of building instantiations for D]� .

3.1.2 Abstract Interpretation of a Simple Semantics

First, we define a family (transfer
l ,l ′

)l ,l ′∈ � of sound abstract transfer functions, using the

abstract operations provided in Section 3.1.1, which are displayed on Figure 3.1. It is

assignment l0 : x := e; l1
transfer

l0,l1
: d 7→ assign(x, e, d)

conditional l0 : if(e) {l t
0 : st; l t

1 } else {l f
0 : sf ; l f

1 } l1
transfer

l0,l t
0

: d 7→ guard(e, true, d)

transfer
l0,l f

0
: d 7→ guard(e, false, d)

transfer
l t
1 ,l1

= transfer
l f
1 ,l1

: d 7→ d

loop l0 : while(e) {l b
0 : st; l b

1 } l1
transfer

l0,l b
0

: d 7→ guard(e, true, d)

transfer
l0,l1

: d 7→ guard(e, false, d)

transfer
l b
1 ,l0

: d 7→ d

input l0 : input(x ∈ V); l1
transfer

l0,l1
: d 7→ guard((x ∈ V)], true, forget(x, d))

where the condition (x ∈ V)] soundly approximates (x ∈ V) :
(ρ(x) ∈ V) =⇒ J(x ∈ V)]K(ρ) = true

assertion l0 : assert(e); l1
transfer

l0,l1
: d 7→ guard(e, true, d)

Figure 3.1: A simple abstract interpreter

designed so as to satisfy the following soundness property:

Lemma 3.1.1. Transfer functions soundness.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

30 CHAPTER 3. ABSTRACTIONS OF SETS OF TRACES

Let l , l ′ ∈ � , ρ, ρ′ ∈ � , d ∈ D]� . Then:

ρ ∈ γ
�
(d)

∧ (l , ρ)→ (l ′, ρ′)

}
=⇒ ρ′ ∈ transfer

l ,l ′
(d)

Proof.

Straightforward case analysis.
Â

Furthermore, we note that the element I0 ∈ D] defined below safely approximates the
set of initial traces � i (� i ⊆ γ(I0)):

I0 :

{
l i 7→ >
l 6= l i 7→ ⊥

Following Theorem 2.3.2, we define the abstract interpreter as a function F] defined by:

F] : D] → D]

I 7→ λ(lpost ∈ �) · I(lpost) t
(⊔{transfer

lpre,lpost
(I(lpre)) | lpre ∈ � }

)

This interpreter is sound:

Theorem 3.1.2. Soundness of the simple abstract interpreter.

The sequence (In)n∈ � defined by the element I0 above and ∀n ∈ �
, In+1 = In∇F](In)

is monotone, ultimately stationary; so it has a limit I]. Moreover, the limit I] is such
that:

T ⊆ γ(I])

Proof.

It follows from Lemma 3.1.1 that F] is a sound approximation for the concrete semantic
function F .
The result follows from Theorem 2.3.4, since T = lfp � iF .
Â

Note that the interpreter provided here is not particularly efficient. In particular,
more care needs to be taken for the iteration strategy. Any fair strategy for applying
abstract transfer functions results in a sound analysis [Cou81]; however, not all strategies
are efficient:
• Applying all local transfer functions for each iteration would turn out costly and

useless, since most local transfer functions would not refine any invariant, as is
the case of a block of instructions with no branching. Common analyzers rely on

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

3.1. STATIC ANALYSIS 31

a fair, asynchronous iteration strategy: each iteration applies some local transfer
functions, and any local transfer function is eventually applied. Such strategies are
usually based on a work-list containing the control states a new invariant could be
computed for. More details are provided on this topic in [HDT87].
• Secondly, applying the widening operator at any control state in the control flow

graph would turn costly and imprecise; therefore, an adequate set of widening control
states should be determined prior to the analysis, using e.g. the algorithm presented
in [Bou93].

We describe the approach followed in the Astrée project in Section 3.2.5. This approach
follows the syntax tree of programs and only requires local invariants to be saved at loop
heads (minimal invariant storage during the analysis).

Example 3.1.1. Issues related to the choice of the iteration strategy.

Let us consider the transition system below:

(l0, t)

(l1, t) (l2, t)

(l3, t)

Then, the strategy which computes local invariants for l0, l1, l3 first, and then for l2 is not
optimal: the invariant at point l3 needs to be computed twice, so the first computation of
this invariant is useless.
Iteration strategies based on the program structure rather than the control flow (as in
Section 3.2.5) eliminate this issue.

Verification of absence of runtime errors: We stated in the beginning of this chapter
that we abstract only the states except Ω. However, the invariant I allows to check the
absence of runtime errors: indeed, it is usually straightforward to express a condition
which is satisfied by any state s such that s → Ω. After computing I, the analyzer
performs this verification and output warnings whenever it finds out that some states in
γ(I) may be dangerous.

Backward analysis: We may want to restrict to a set of final states instead of a set of
initial states as done previously. Then, we would need to implement a backward analysis,
which is conceptually the dual of a forward analysis.

Indeed, let � f ⊆ � be a set of final states and Tbw be the set of traces {〈s0, . . . , sn〉 ∈
Σ | sn ∈ � f ∧ ∀i, si → si+1}. Then, Tbw boils down to a least fixpoint:

Tbw = lfpS fF←−
P

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

32 CHAPTER 3. ABSTRACTIONS OF SETS OF TRACES

where:

F←−
P

: P(Σ) → P(Σ)
E 7→ E ∪ {〈s−1, s0, . . . , sn〉 ∈ Σ | 〈s0, . . . , sn〉 ∈ E ∧ s−1 → s0}

and S f = {〈s〉 | s ∈ � f} (see Lemma 2.3.1).
An approximation for Tbw can be computed by abstract interpretation, by defining

backward abstract transfer functions for each language construction and computing an
abstract post-fixpoint in the same way as in Theorem 3.1.2. Backward analysis was
studied, e.g. in [Cou78, Cou81].

3.1.3 Numerical Abstract Domains

In Section 3.1.1, we left the domain for representing sets of stores as a parameter and
simply stated that such a domain should provide a series of “abstract operations”. We
discuss now common choices for this domain.

Numerical domains: A very large range of domains have been introduced for handling
numerical constraints:
• Non-relational domains abstract each variable separately, such as:

– the domain of intervals [CC77] expresses constraints of the form a ≤ x ≤ b,
where x ∈ � and a, b are constants;

– the domain of arithmetic congruences [Gra89] describes constraints of the form
x ∈ a

�
+ b, where x ∈ � and a, b are constants;

• Relational domains express constraints involving several variables, at a higher
cost, such as:

– the Karr domain [Kar76] expresses linear equalities among program variables,
such as a ? x + b ? y + c ? z + . . . = c;

– the polyhedra abstract domain [CH78] handles linear inequalities among pro-
gram variables, such as a ? x + b ? y + c ? z + . . . ≤ c;

– the octagon abstract domain [Min01] restricts to inequalities of the form ±x±
y ≤ c where x, y ∈ � and c is a constant;

Some examples are displayed in Figure 3.2

Boolean abstractions: As in the case of numeric variables, we can use:
• Non-relational abstractions: for instance, we can use P(�) so as to describe the

set of possible values for a boolean variables;
• Relational abstractions, e.g. based on binary decision diagrams (BDDs) [Bry86].

Combining domains: First, the mapping of concrete variables into abstract memory
locations should be addressed in general, when in presence of unbounded structures. The

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

3.1. STATIC ANALYSIS 33

�������������
�������������
�������������

�������������
�������������
�������������

�
�
�

�
�
�

PSfrag replacements

x

y

(a) Intervals

PSfrag replacements

x

y

(b) Congru-
ences

���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������

PSfrag replacements

x

y

(c) Octagons

�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������

PSfrag replacements

x

y

(d) Polyhe-
dra

Figure 3.2: A few numerical domains (for two variable environments)

literature is this domain is rather broad: we can cite memory and domain combination
[CL05], analyses targeted at inferring properties about the memory layout [SRW02].

Second, the abstract domain for representing sets of stores should usually account for
various kinds of predicates evoked in the previous paragraphs:

• in some cases, a new domain can be obtained directly from a more simple one, as
is the case of the relations among boolean and numerical values used in Astrée :
this domain inputs a domain for representing numerical values as a parameter (see
above).
• in most cases, a product allows to build a new domain from several domains. Then,

a reduction operation [CC79] is usually required so as to allow the constraints of
one domain to refine the information in the other domains.

The following definition formalizes the notion of reduced product:

Definition 3.1.1. Reduced product.

Let (D]
0, γ0) and (D]

1, γ1) be two abstractions of a same concrete domain D.

Then, the product abstraction (D]
p, γp) is defined by:

• D]
p = D]

0 ×D]
1;

• ∀(x0, x1) ∈ D]
p, γp(x0, x1) = γ0(x0) ∩ γ1(x1).

A drawback of this domain is that distinct abstract elements may have the same con-
cretization; for instance, it is common that γp(x0,⊥) = γp(⊥, x1) = ∅
The reduced product is the quotient of D]

p by the relation R defined by:

(x0, x1)R(x′0, x
′
1) ⇐⇒ γp(x0, x1) = γp(x

′
0, x
′
1)

In practice, only an approximation of it may be computed.

Other techniques for combining abstract domains and defining more powerful abstract
domains have been proposed e.g., in [CC79].

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

34 CHAPTER 3. ABSTRACTIONS OF SETS OF TRACES

3.1.4 Under-Specified Behaviors in the Standard Describing the
Source Language

We pointed out in Section 2.2.6 that the standard describing languages like C often leaves
many cases unspecified. In practice, the static analysis is performed in order to discover
properties (for instance, to check the absence of runtime errors) in programs supposed to
be used in some known real conditions: as a consequence, it is crucial that the semantics
used for designing the analysis be sound with respect to the target architecture. Otherwise,
the analyzer may not discover possible issues, resulting in crashes.

Moreover, the concrete semantics J.K can be chosen among all possible refinements of
the standard, so as to take into account some features provided by the architecture(s) the
program should be compiled for. This way, a better level of precision can be achieved;
in particular, we may wish to avoid getting warnings about possible errors, which would
occur only with another implementation. For instance, taking into account the way the
integer conversions are performed allows for a greater precision.

On the other hand it is possible to design a conservative analysis, which produces
valid results no matter what the target architecture is. This is the case of the analysis
of floating point operations in Astrée [BCC+03a]: the techniques described in [Min04]
make it possible to perform a sound analysis of floating point operations whatever the
rounding algorithm used in the target architecture is (provided it complies with the IEEE-
754 standard [CS85]).

Please note, that we proposed to represent non-desirable undefined behaviors with
errors (transition into Ω instead of a non-deterministic transition into an unknown state):
if the semantics used for the analysis is designed this way and the analysis is sound, we
can expect getting warnings from the analyzer whenever such an undefined behavior may
be encountered, even if a programmer relied on the fact this behavior would be defined
or somewhat correct in the target architecture.

3.2 Denotational Abstraction

The denotational abstraction is one of the most common abstractions of sets of traces; it
basically amounts to forgetting completely the history of program executions, and keeping
only some kind of relation between the initial state and the final state of each trace.

3.2.1 Denotational Semantics

Abstraction into functions: The classical definition of denotational semantics [Sco70]
introduces functions mapping initial states into final states, as a way do define the mean-
ing of programs. Intuitively, it forgets about all intermediate states and collects the
relation between initial and final states. Denotational semantics is an abstraction of the
operational semantics [Cou97a].

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

3.2. DENOTATIONAL ABSTRACTION 35

In this thesis, we factor the control states out of the states, when using the denotational
semantics, by partitioning this functional representation into sets of traces from a control
state l` to a control state la or into sets of traces following some paths in the control flow
graph. This amounts to defining functions mapping memory states into sets of memory
states (there may be several output states due to non-determinism). Therefore, we write
Den for the set of functions � → P(�) (we also make a slight abuse of notation and let
◦ be defined over Den by ∀φ0, φ1 ∈ Den, φ1 ◦ φ0 : ρ 7→ ∪{φ1(ρ

′) | ρ′ ∈ φ0(ρ)}).
Hence, we define an abstraction of a set of traces into a function mapping a store into

a set of stores, that throws away the control states, as follows:

Definition 3.2.1. Abstraction into a function.

We let the functional abstraction of sets of traces be defined by:

(P(Σ),⊆) −−−→←−−−
αF

γF

(� → P(�),⊆)

αF : P(Σ) → (� → P(�))
E 7→ λ(ρ0 ∈ �).{ρn ∈ � | 〈(l0, ρ0), . . . , (ln, ρn)〉 ∈ E}

γF : (� → P(�)) → P(Σ)
Φ 7→ {〈(l0, ρ0), . . . , (ln, ρn)〉 ∈ E | ρn ∈ Φ(ρ0)}

(we use the same notation for the pointwise ordering over � → P(�) as for the conven-
tional ordering over P(�)).

Note that this definition abstracts the initial and final control states away; more careful
abstractions are presented in the following two subsections, by composing this abstrac-
tion with several abstractions that aim at defining what set of traces the abstraction of
Definition 3.2.1 should be applied to.

Remark 3.2.1. Relational semantics and predicate transformers.

It has been observed in [Cou97a] that the denotational semantics is also equivalent to other
common forms of semantics, including relational semantics [MT91], predicate trans-
former semantics [Dji75]. We follow the denotational presentation for the sake of con-
venience.

Collecting sub-traces: Before we set up definitions of denotational semantics along
paths or between control states in programs, we need to solve the following problem: our
current definition of JP K collects traces starting from the initial points only; however, we
need to collect all “sub-traces” in order to capture the behavior of P , say, between l0 and
l1; otherwise, if l0 is not the entry point, we would not be able to isolate the “parts” of
executions of P starting from l0.

Two traces σ0, σ1 such that the last state of σ0 and the last state of σ1 can be combined
together in a single, longer execution trace:

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

36 CHAPTER 3. ABSTRACTIONS OF SETS OF TRACES

Definition 3.2.2. Concatenation of traces, sub-trace.

Let σ = 〈s0, . . . , sn〉 and σ′ = 〈s′0, . . . , s′m〉 be two traces. If sn = s′0, we define the
concatenation σ _ σ′ of σ and σ′ by:

σ _ σ′ = 〈s0, . . . , sn, s
′
1, . . . , s

′
m〉

We let this operation be defined for sets of traces as well (and abusively use the same
notation for the concatenation of sets of traces).
We say that σ is a sub-trace of σ′ (and we write σ 4 σ′) if and only if there exist two
traces σ0, σ1 such that σ′ = σ0 _ σ _ σ1.

We can now define what kind of sets of traces we are interested in:

Definition 3.2.3. closed set of traces.

Let E be a set of traces. We say that E is:
• closed if and only if:

∀σ, σ′,∈ Σ such that (σ _ σ′) is defined, (σ _ σ′) ∈ E =⇒ (σ ∈ E ∧ σ′ ∈ E)
• strongly closed if and only if:

∀σ, σ′,∈ Σ such that (σ _ σ′) is defined, (σ _ σ′) ∈ E ⇐⇒ (σ ∈ E ∧ σ′ ∈ E)
We write C[Σ] for the set of strongly closed sets of traces.

Intuitively a set of traces E is closed in the sense of Definition 3.2.3 if and only if it
is closed under the 4 relation: if σ 4 σ′ and σ′ ∈ E , then σ ∈ E . Strongly closed sets of
traces are also closed under concatenation.

We remark that it is possible to complete any set of traces into a closed set of traces:

Definition 3.2.4. Trace closure operator.

We let clos : P(Σ)→ P(Σ) be the closure operator defined by clos(E) = {σ ∈ Σ | ∃σ ′ ∈
Σ, σ 4 σ′}.

Clearly, clos is an upper closure operator (it is extensive, monotone and idempotent),
and ∀E ⊆ Σ, clos(E) is closed.

Finally, we can express the “new” semantics, which we are interested in by: JP Kc =
clos(JP K); clearly, JP Kc is closed. We note that JP Kc is strongly closed: if σ and σ′ are
two traces of P , which can be concatenated, then σ _ σ′ ∈ JP Kc.

This new semantics can be written as a least fixpoint as well. In fact, this new
semantics is equivalent to JP K: we can write a Galois bijection which relate Σ and C[Σ],
and prove the equivalence between JP K and JP Kc by a trivial fixpoint transfer argument
(Theorem 2.3.2).

In the following, we may simply write JP K for JP Kc (and mention that we are using the
strongly closed semantics), since both semantics express the same behaviors. Of course,
we consider the closed version in this section.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

3.2. DENOTATIONAL ABSTRACTION 37

3.2.2 Functions “From-To”

We introduce an abstraction that keeps only the traces between two control points:

Definition 3.2.5. From-To abstraction.

For any pair of control points l `, la ∈ � , we define the following Galois connection:

(P(Σ),⊆) −−−−−−→←−−−−−−
αt [l`,la]

γt [l`,la]

(P(Σ),⊆)

αt [l`,la] : P(Σ) → P(Σ)
E 7→ {〈(l0, ρ0), . . . , (ln, ρn)〉 ∈ E | l0 = l` ∧ ln = la}

This defines a family of Galois connections (i.e., one Galois connection for each pair
(l`, la)).

A first partitioned denotational semantics is obtained by composing this abstraction
with the functional abstraction introduced in the previous subsection:

Definition 3.2.6. Functional, From-To abstraction.

For any pair of control points l `, la ∈ � , we define the following Galois connection:

(P(Σ),⊆) −−−−−−−→←−−−−−−−
αtF [l`,la]

γtF [l`,la]

(Den,⊆)

αtF [l`,la] = αF ◦ αt [l`,la]

γtF [l`,la] = γt [l`,la] ◦ γF

This abstraction is mostly useful when we need to consider only the effect of a piece of
code on the memory state. In particular, we will use this kind of abstractions in order to
define dependences induced by fragments of programs and to reason about the semantic
equivalence of programs.

Example 3.2.1. From-To semantics.

Let us consider the P program below:

l0 : if(x < 4) {
l1 : x = 4;
l2 : } else {
l3 : y = x + 3;
l4 : }
l5 : . . .

Then, the semantics αtF [l0,l5]JP K maps initial stores into final stores; for instance if ρ(x) =
0, then αtF [l0,l5]JP K(ρ) = {ρ[x← 4]}.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

38 CHAPTER 3. ABSTRACTIONS OF SETS OF TRACES

3.2.3 Functions “Along Paths”

Path in the control flow: A path p is a sequence of control states l0 · l1 · . . . · ln. The
length of such a path is n (number of control states involved minus one or equivalently,
number of edges considered) and is denoted len(p). We write P (l `, la) for the set of paths
from l` to la.

The semantics of s restricted to a path is the set of traces in JsK that follow this path;
it defines an abstraction of the standard, trace semantics:

Definition 3.2.7. Path abstraction.

For all path p, we let the path abstraction be defined by the following Galois connection:

P(Σ) −−−−→←−−−−
αp[p]

γp[p] P(Σ)

αp[p] : P(Σ) → P(Σ)
E 7→ {〈(l0, ρ0), . . . , (ln, ρn)〉 ∈ E | p = l0 · l1 · . . . ln}

Similarly as in the last subsection, we can apply the abstraction of traces into functions
after this abstraction:

Definition 3.2.8. Functional, path abstraction.

For any path p, we define the following Galois connection:

(P(Σ),⊆) −−−−−→←−−−−−
αpF [p]

γpF [p]

(Den,⊆)

αpF [p] = αF ◦ αp[p]

γpF [p] = γp[p] ◦ γF

It defines a Galois connection for each path.

This abstraction is useful when we need to isolate the behavior of programs on some
path(s) e.g., in order to prove some semantic equivalence between paths in different pro-
grams.

The restriction of the semantics to paths allows to partition the from-to semantics, as
shown in the following lemma:

Lemma 3.2.1. Partitioning of the graph-denotational semantics.

Let l`, la ∈ � . Then, for any set of traces E ⊆ Σ,

αt [l`,la](E) =
⋃
{αp[p](E) | p ∈ P (l`, la)}

Moreover, if p, p′ are two distinct paths, then, clearly αp[p](E) ∩ αp[p′](E) = ∅.
Furthermore, for any ρ ∈ � ,

αtF [l`,la](E)(ρ) =
⋃
{αpF [p](E)(ρ) | p ∈ P (l`, la)}

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

3.2. DENOTATIONAL ABSTRACTION 39

(in other words {αpF [p](E)(ρ) | p ∈ P (l`, la)} partitions αtF [l`,la](E)(ρ) since the elements
of this set are pairwise disjoint.)

Proof.

Straightforward.

Â

Example 3.2.2. Path semantics.

We consider the program of Example 3.2.1, and the semantics between l0 and l5. There
are two paths between these two points: pt = l0 · l1 · l2 · l5 and pf = l0 · l3 · l4 · l5. Let ρ ∈ � ,
such that ρ(x) = 0. Then:

• αpF [pt](JP K)(ρ) = {ρ[x← 4]};
• αpF [pf](JP K)(ρ) = ∅.

3.2.4 Composition

We now relate two natural operations:

• the concatenation of traces;
• the composition of functions.

Composition as an approximation of composition: We propose a characterization
of the composition of the semantics along paths for closed sets of traces:

Lemma 3.2.2. Composition along paths.

Let E be a closed set of traces. Let p = l0 · . . . · ln · . . . · lm be a path. We let p′ = l0 · . . . · ln
and p′′ = ln · . . . · lm. Then:

αpF [p](E) ⊆ αpF [p′′](E) ◦ αpF [p′](E)

In case E is strongly closed:

αpF [p](E) = αpF [p′′](E) ◦ αpF [p′](E)

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

40 CHAPTER 3. ABSTRACTIONS OF SETS OF TRACES

Proof.

(case where E is closed). Let ρ, ρ′′ ∈ � . Then:

ρ′′ ∈ αpF [p](E)(ρ)
⇐⇒ ∃〈(l0, ρ0), . . . , (ln, ρn), . . . , (lm, ρm)〉 ∈ E , ρ0 = ρ ∧ ρm = ρ′′

⇐⇒ ∃σ′ = 〈(l0, ρ0), . . . , (ln, ρn)〉, σ′′ = 〈(ln, ρn), . . . , (lm, ρm)〉,
σ′ _ σ′′ ∈ E ∧ ρ0 = ρ ∧ ρm = ρ′′

=⇒ ∃〈(l0, ρ0), . . . , (ln, ρn)〉, 〈(ln, ρn), . . . , (lm, ρm)〉 ∈ E , ρ0 = ρ ∧ ρm = ρ′′

since E is closed
⇐⇒ ∃ρ′ ∈ � , ∃〈(l0, ρ0), . . . , (ln, ρn)〉, 〈(ln, ρn), . . . , (lm, ρm)〉 ∈ E ,

ρ0 = ρ ∧ ρn = ρ′ ∧ ρm = ρ′′

⇐⇒ ∃ρ′ ∈ αpF [p′](E)(ρ), ρ′′ ∈ αpF [p′′](E)(ρ′)
⇐⇒ ρ′′ ∈ αpF [p′′](E) ◦ αpF [p′](E)(ρ)

which concludes the proof.
In case E is strongly closed, the implication in the middle of the proof can be turned
into an equivalence.
Â

Closed sets of traces and fixpoint-definitions: The following theorem shows that
a strongly closed set of traces can be described by a least fixpoint equation:

Theorem 3.2.3. Strongly set of traces as a least fixpoint.

Let E ⊆ Σ. Then, there exists F : Σ→ Σ and a set I ⊆ Σ such that:
• if E is closed, then E ⊆ lfpIF
• if E is strongly closed, then E = lfpIF .

Proof.

We let:
• I = E ∩ {〈s〉 | s ∈ � };
• R is the relation {(s, s′) ∈ � 2 | 〈s, s′〉 ∈ E}.

We let:

F : P(Σ) → P(Σ)
E 7→ I ∪ {〈s0, . . . , sn, sn+1〉 | 〈s0, . . . , sn〉 ∈ E ∧ (sn, sn+1) ∈ R}

Clearly, F is continuous, so lfpF =
⋃

n∈ � F n(∅).
Let us assume that E is closed. Then, we can show by induction on the length of σ that
σ ∈ E =⇒ σ ∈ F n(∅):
• if n = 1, then σ ∈ I = F 0(∅);
• if n ≥ 1 and the property holds for n, and σ has length n + 1, then σ = σ ′ _ σ′′,

where σ′ has length n and σ′′ = 〈sn−1, sn〉 has length 2. Therefore, the induction
hypothesis implies that σ′ ∈ F n(∅); moreover, (sn−1, sn) ∈ R; as a consequence,
σ ∈ F n+1(∅).

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

3.2. DENOTATIONAL ABSTRACTION 41

As a consequence, σ ∈ lfpF .
If E is strongly closed, then the proof of the converse implication is similar.
Â

This theorem could be used as a basis in order to relate fixpoint definitions for trace
semantics and denotational semantics. We shall use it in order to provide fixpoint defini-
tions for semantics derived by applying some abstractions to more simple semantics.

3.2.5 Static Analysis

We propose here to build a denotational abstract interpreter from the denotational se-
mantics, that gives similar results as the simple interpreter described in Section 3.1.2. We
use the same notations.

Definition and soundness of the interpreter: Let s ∈ � be a statement; we write l `
(resp. la) for the control point before (resp. after) s. We let the denotational semantics
of s be the function JsKδ = αtF [l`,la](JsK). The abstract semantics of s is the function

JsK] : D]� → D]� , which inputs an abstract pre-condition and returns a strongest post-
condition. It should be sound in the sense that the output of the abstract semantics
should over-approximate the set of output states of the underlying, concrete denotational
semantics.

We propose on Figure 3.3 the definition of a very simple denotational semantics-based
interpreter.

statement s abstract semantics

x := e; JsK] : d 7→ assign(x, e, d)

if(e){s0}else{s1} JsK] : d 7→ Js0K
](guard(e, true, d)) t Js1K

](guard(e, false, d))

while(e){s} JsK] : d 7→ guard(e, false, lfp]F]) where

F] : D]� → D]�

d0 7→ d0 t JsK](guard(e, true, d))

and lfp] computes an abstract post-fixpoint

input(x ∈ V); JsK] : d 7→ guard(x ∈ V], forget(x, d))

assert(e); JsK] : d 7→ guard(e, true, d)

Figure 3.3: A simple abstract interpreter

The abstract semantics displayed in Figure 3.3 is sound:

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

42 CHAPTER 3. ABSTRACTIONS OF SETS OF TRACES

Theorem 3.2.4. Soundness of the analysis.

The abstract semantics soundly approximates the denotational semantics:

∀ρ, ρ′ ∈ � , d ∈ D]� , ρ ∈ γ
�
(d) ∧ ρ′ ∈ JsKδ(ρ) =⇒ ρ′ ∈ γ

�
(JsK](d))

Proof.

By induction on the structure of the code.
The case of the loop is based on the soundness of the lfp] operator; in practice, it is
derived from a widening operator ∇ �

over D]� , so the soundness and termination of lfp]

follow from Section 2.3.3.
Â

As a corollary, the abstract semantics is sound with respect to the standard, opera-
tional semantics. Indeed, if l` : s; la is a program, then:

∀〈(l`, ρ`), . . . , (la, ρa)〉 ∈ JsK, ∀d ∈ D]� , ρ` ∈ γ
�
(d) =⇒ ρa ∈ γ

�
(JsK](d))

Comparison with iterations over a control flow graph: This approach is currently
used in Astrée and presents many advantages, due to the fact that no global iteration
strategy should be implemented (since the abstract interpretation proceeds recursively on
the syntax of the programs):
• This abstract semantics is based on an efficient iteration strategy. In particular,

no work-list or other algorithm is needed, since the strategy is fully defined by the
control flow of the programs. Moreover, the order abstract transfer functions are
applied in is optimal in the sense that the issue mentioned in Example 3.1.1 never
occurs.
• This approach requires no local invariant storage, except for the computation of

loop invariants with lfp]; in practice, the analyzer needs to keep one invariant at
the head of each loop while analyzing the body of it.
• The set of widening points is also completely defined; it corresponds to loop heads.

Computation of an invariant over D]: We propose to derive from the interpreter in
Figure 3.3 an abstract interpreter computing an invariant in D] = � → D]� : we still wish
to get a local invariant for each control state as a result of the analysis.

Similarly, we may be interested in other outputs from the analyzer, such as alarm
reports, in case the result of the analysis does not prove all critical operations safe.

We propose a “two-modes” analyzer:
• a Check mode, for any phase in the analysis except iterations in loops before a

post-fixpoint is reached (i.e., before an over-approximation of the concrete states is
reached); all analysis side effects should be performed in this mode;

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

3.2. DENOTATIONAL ABSTRACTION 43

• an Iter mode, for the computing post-fixpoints for loops; this mode does not carry
out any analysis side effect (computation of the final, safe local abstract invariants
or alarm reports).

This way, we can note that the analyzer interprets any statement exactly once in Check
mode (the case of inter-procedural programs requires taking into account all the calls to
each function).

Delaying all side effects to the final stage of the analysis is important for several
reasons. First, some earlier iterations may involve less precise invariants if the analyzer
computes a sequence of decreasing iterations (Remark 2.3.1) in the end, so that the alarms
or exported invariants would be less precise (more false alarms, or worse invariants than
those actually available in the end of the analysis). Second, the export of local invariants
requires a lot of memory, so it is practically preferable to delay it to the end of the analysis.

We let M denote {Check, Iter}. We write JP K]M for the extended abstract interpreter;

it is a function from M × D] × D]� into M × D] × D]� (we focus on the computation
of the approximation of all reachable states; the computation of a superset of alarms
would be similar). The definition of this extended abstract interpreter follows the rules
in Figure 3.3. Here are two rules:
• case of an assignment l` : x := e; la:

JsK]M : (Iter, d, I) 7→ (Iter, assign(x, e, d), I)

(Check, d, I) 7→ (Check, d′, I′) where

d′ = assign(x, e, d)
I′(la) = d′

I′(l) = I(l) if l 6= la

• case of a loop l` : while(e){s}; la:
– in Iter mode (loop in another loop), then:
JsK](Iter, d, I) = (Iter, guard(e, false, lfp]F]), I)

– in Check mode, then we let d ∈ D]� , I ∈ D] and let d′, I′ be defined by

(Iter, d′, I′) = lfp]F]

F] : D]� → D]�

d0 7→ d0 t JsK](guard(e, true, d))

We also write d′′ = guard(e, false, d′), and let I′′ be derived from I′ by I′′(la) =
d′′ Then: JsK](Check, d, I) = (Check, d′′, I′′).

We could extend Theorem 3.2.4, by proving that this interpreter not only computes a
sound output invariant, but also a sound over-approximation of all reachable states for
the given input invariant (just as in Section 3.1) (or a safe superset of alarms).

3.2.6 Symbolic Representation

The denotational semantics, which we introduced in Section 3.2.1 is not computable: it
does not provide a more convenient way to represent the functions mapping initial stores

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

44 CHAPTER 3. ABSTRACTIONS OF SETS OF TRACES

Expressions:

e(∈ ���) ::= . . . | is alias(l, l′)(where l, l′ ∈ �) | rnd(V)(where V ⊆ �)

Symbolic transfer functions:

δ(∈ �
) ::= ¤

| bx0 ← e0, . . . , xn ← enc x0, . . . , xn ∈ � , e0, . . . , en ∈ �

∀i, j, i 6= j ⇒ xi 6= xj

| be ? δ0 | δ1 c e ∈ � , δ0, δ1 ∈
�

Figure 3.4: Grammar of symbolic transfer functions

to final stores for a piece of program than the program itself. We propose here a way of
doing so, which is based on symbolic transfer functions [CL96].

Syntax: A symbolic transfer function is:

• either the “void” function ¤, which denotes the absence of transition (blocking func-
tion);
• or a parallel assignment bx0 ← e0, . . . , xn ← enc where ∀i, j, i 6= j =⇒ xi 6= xj;
• or a conditional be ? δ0 | δ1 c where e is an expression and δ0, δ1 are symbolic

transfer functions.

We write
�

for the set of symbolic transfer functions. We note that the empty assignment
does not modify the content of the memory, and just returns the input store; hence, it
corresponds to the identity function; we will write ι for it.

The requirement that the l-values in the parallel assignment should be pairwise distinct
is crucial for the semantics of the function to be properly defined. In practice, we always
make sure to define only symbolic functions that fulfill this requirement.

In the following, we assume that the expressions in symbolic transfer functions provide
two additional features:

• alias testing: is alias(l, l′) (where l, l′ ∈ �) returns true if l and l′ evaluates to the
same memory location and returns false otherwise (this operator allows to guarantee
that all l-values in a parallel assignment should be distinct, by introducing alias
testing);
• non-determinism: rnd(V) returns any value in V (where V ⊆ �).

The full grammar of symbolic transfer functions is displayed in Figure 3.4.

Semantics: The semantics of expressions is defined straightforwardly. Note that the
semantics of an expression e ∈ ��� is a function JeK : � → P(�), since we allowed non-
determinism.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

3.2. DENOTATIONAL ABSTRACTION 45

Intuitively, a symbolic transfer function δ denotes a store transformer; hence, the
semantics of a symbolic transfer function δ ∈ �

is a function JδK : � → P(�). We let it
be defined as follows:
• ∀ρ ∈ � , J¤K(ρ) = ∅;
• Let ρ ∈ � , l0, . . . , ln ∈ � � , e0, . . . , en ∈ � � , and ∀i, xi = JliK(ρ) and Vi = JeiK(ρ).

Then, if ∀i, j, i 6= j =⇒ xi 6= xj, then

Jbl0 ← e0, . . . , ln ← encK(ρ) = {ρ[x0 ← v0, . . . , xn ← vn] | ∀i, vi ∈ Vi}

• If e ∈ � � , δ0, δ1 ∈
�
, then

Jbe ? δ0 | δ1 cK(ρ) =

Jδ0K(ρ) if JeK(ρ) = {true}
Jδ1K(ρ) if JeK(ρ) = {false}
Jδ0K(ρ) ∪ Jδ1K(ρ) if JeK(ρ) = {true, false}

(note that there is no case JeK(ρ) = ∅; intuitively, the evaluation of the semantics of
any expression for any store should contain at least one value).

Symbolic transfer functions-based definition: We propose on Figure 3.5 the sym-
bolic transfer functions corresponding to all one-step transitions, for the simple language
we introduced in Section 2.2.3. This definition simply mimics the transition rules provided
in Figure 2.1(b). The soundness of the encoding writes down as follows:

∀l , l ′ ∈ � , ∀ρ, ρ′ ∈ � , (l , ρ)→ (l ′, ρ′) ⇐⇒ ρ′ ∈ Jδl ,l ′K(ρ)

Intuitively, δl ,l ′ encodes the transition from l to l ′.

Remark 3.2.2. Errors.

If a statement l0 : s; l1 : . . . causes an error, then the corresponding transition between l0
and l1 is described by the transfer function ¤ (blocking situation).
We may also choose to define explicitly the transitions from l0 to Ω with a transfer function
δl0,Ω; we choose not to define these transitions explicitly.

Composition and semantics along paths or sets of paths: A syntactic composition
operator ⊕ :

� × � → �
is defined for this language, such that:

∀δ0, δ1 ∈
�
, Jδ1 ⊕ δ0K = Jδ1K ◦ Jδ0K

Basically, this operator:
• substitutes in the expressions that appear in δ1 the l-values assigned in δ0 with the

assigned values;
• stacks the conditions from δ0 and δ1 (this corresponds to a kind of product);

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

46 CHAPTER 3. ABSTRACTIONS OF SETS OF TRACES

assignment l0 : x := e; l1
δl0,l1 = bx← ec

conditional l0 : if(e) {l t
0 : st; l t

1 } else {l f
0 : sf ; l f

1 } l1
δl0,l t

0
= be ? ι | ¤ c

δl0,l f
0

= be ? ¤ | ι c
δl t

1 ,l1 = ι

δl f
1 ,l1

= ι

loop l0 : while(e) {l b
0 : st; l b

1 } l1
δl0,l b

0
= be ? ι | ¤ c

δl0,l1 = be ? ¤ | ι c
δl b

1 ,l0 = ι

input l0 : input(x ∈ V); l1
δl0,l1 = bx← rnd(V)c

assertion l0 : assert(e); l1
δl0 l1 = be ? ι | ¤ c

Figure 3.5: Semantics defined with symbolic transfer functions

• handles possible aliasing problems by inserting tests of the form is alias(l, l′) (where
l and l′ are l-values which maybe aliased) in order to carry out sound memory
updates.

The soundness of such an operator is described in details and proved in, e.g. [Col96].

We can note that ∀δ ∈ �
, ι ◦ δ = δ ◦ ι = δ, so ι indeed is an identity element for ◦.

Another important point is that symbolic simplifications may take place either when
computing the composition of a series of symbolic transfer functions or at any time (before,
after, or in the middle of the composition of functions), by applying any computable sim-
plification function simplify :

� → �
, such that ∀δ ∈ �

, Jsimplify(δ)K = JδK (and simplify(δ)
is simpler to analyze, to compose, or for other tasks). Among the simplifications one may
envisage, we can cite:

• the boolean simplifications due to assignments followed by the test of boolean con-
ditions;
• the removal of redundant is alias expressions (with might be simplified in true or

false thanks to a trivial alias analysis);
• various arithmetic simplifications, depending on data-types: for instance, x−x = 0,

x + x = 2x and x + (y + z) = (x + y) + z hold for modular integer arithmetic;
however the latter identity does not hold in floating point computations (indeed,
the “+” operator is not associative due to the overflows).

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

3.2. DENOTATIONAL ABSTRACTION 47

At this point, we can use symbolic transfer functions in order to define the denotational
semantics along a path:

Lemma 3.2.5. Semantics on a path.

We consider a program s and let E = JsK. Let p = l0 · l1 · . . . · ln be a path. Then,

αpF [p](E) = Jδln−1,ln ⊕ δln−2,ln−1 ⊕ . . .⊕ δl0,l1K

Proof.

The proof is done by induction on the length of the path:
• case of a path of length 0: αpF [l0](E) = JιK
• case of a path of length 1: αpF [l0·l1](E) = Jδl0,l1K, by definition of δl0,l1 ;
• case of a path of length n + 1 (we assume the property holds for paths of length

lesser than n):
We let p = l0 · . . . · ln+1 be a path of length n + 1; we write p′ for l0 · . . . · ln, and
p′′ = ln · ln+1. The induction hypothesis states that αpF [p′](E) = δln−1,ln ⊕ . . .⊕ δl0,l1 .
Then:

αpF [p](E) = αpF [p′′](E) ◦ αpF [p′](E) by Lemma 3.2.2
= Jδln,ln+1K ◦ Jδln−1,ln ⊕ . . .⊕ δl0,l1K by induction hypothesis
= Jδln,ln+1 ⊕ δln−1,ln ⊕ . . .⊕ δl0,l1K syntactic composition

This concludes the proof.
Â

We may also be interested in the denotational semantics defined for a collection of
paths, which would be defined as the join of the semantics over each path. We propose a
result for finite sets of paths starting from a single point (sets of paths which do not start
from the same point are not relevant in practice):

Lemma 3.2.6. Semantics over finite sets of paths.

Let l0 ∈ � and P be a finite set of paths starting from l0, such that p ∈ P implies that
no prefix of p belongs to P (i.e., P can be seen a set of paths in a tree, from the root to
the leaves; in particular, P does not contain a path to an inner-node of the tree). We
let αpF [P](E) be defined by:

αpF [P](E) : � → P(�)
ρ 7→ ⋃{αpF [p](E)(ρ) | p ∈ P}

Then, there exists a symbolic transfer function δ such that αpF [P](E) = JδK.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

48 CHAPTER 3. ABSTRACTIONS OF SETS OF TRACES

Proof.

The proof relies on the assumption made on the structure of P : it can be seen as a
tree with root l0; a path p ∈ P represents a branch inside the tree, starting at the root,
ending at a leaf. Hence, the proof can be done by induction on the depth of the tree
underlying P and by case analysis over the statement at l0.

First, the case where the tree has depth 0 is straightforward: either P = ∅ and δ = ¤
or P = {l0} and δ = ι.

We now consider the inductive case and handle separately each possible definition for
the label l0:
• case of an assignment l0 : x = e; l1:

Either P = {l0 · l1} or P is made of paths of the form l0 · l1 · In the former case,
δ = δl0,l1 ; in the latter case, the induction property ensures that there exists δ ′ ∈ �

,
such that Jδ′K is equal to αpF [P ′](E), where P ′ = {l1 · . . . ln | l0 · l1 · . . . · ln ∈ P}, so δ
is obtained by composition.
• case of a condition l0 : if(e){l t

0 · · · }else{l f
0 · · · }:

We let Pt = {l t
0 · . . . · ln | l0 · l t

0 · . . . · ln ∈ P} and Pf = {l f
0 · . . . · ln | l f

0 · . . . · ln ∈ P}.
By induction, we know that we can represent the semantics of Pt (resp. Pf) with
δt ∈

�
(resp. δf). Therefore, we can represent {l0 · l t

0 · . . . · ln ∈ P} with δt ⊕ be ? ι |
¤ c = be ? δt | ¤ c; similarly, we get be ? ¤ | δf c in the case of the false branch.
In the end, we get:

αpF [P](E) = be ? δt | δf c

• other cases can be handled similarly (with composition of transfer functions and
joins for conditions).

This concludes the proof.

Â

Use in static analysis: A similar algebra of symbolic transfer functions was originally
introduced by [CL96] as a means to increase the precision of static analyses.

Let us assume that D]� defines a Galois connection (Definition 2.3.1) (we let α
�

denote
the abstraction function). We write δ] for α

� ◦ JδK ◦ γ
�

(most precise abstract transfer
function corresponding to δ; an upper approximation of it is usually computed).

If ζ = Jδ0K ◦ . . . ◦ JδnK then ζ] v δ]
0 ◦ . . . ◦ δ]

n since λx · x v γ
� ◦ α

�
. In general,

ζ] @ δ]
0 ◦ . . . ◦ δ]

n: this strict inequality corresponds to a loss of precision.

For instance, relational abstract domains often handle more precisely complex op-
erations (assignments and guards of complex expressions) when done in one step as is
the case for the octagons [Min01] for some linear assignments like y := Σi ai ? xi where
ai ∈

�
. Symbolic transfer functions help in such cases, since they group atomic assign-

ments together and form larger expressions, which the domain may analyze better than
the sequence of simple assignments.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

3.3. BACKWARD SEMANTICS AND ANALYSIS 49

Use in program transformations: Symbolic transfer functions allow to express and
handle in a computer the denotational semantics along paths and along finite sets of paths
(introduced in Section 3.2.2 and Section 3.2.3); this is most useful in order to prove e.g.,
that a program transformation preserves some abstraction of the standard semantics, as
will be done for compilation, in Chapter 9.

3.3 Backward Semantics and Analysis

The previous section introduced denotational semantics as a function from inputs to
outputs. However, in some cases, one may be interested in the converse; therefore, we
define a backward semantics as well. Furthermore, we extend the abstract interpretation
of the denotational semantics.

3.3.1 Backward Semantics

Abstraction into backward functions: The backward abstraction is a function map-
ping any output state to the set of input states, which may lead to it:

Definition 3.3.1. Backward semantics.

The backward function abstraction of sets of traces is defined by:

(P(Σ),⊆) −−−−→←−−−−
α←−

F

γ←−
F

(� → P(�),⊆)

α←−F : P(Σ) → (� → P(�))
E 7→ λ(ρn ∈ �).{ρ0 ∈ � | ∃〈(l0, ρ0), . . . , (ln, ρn)〉 ∈ E}

(the concretization γ←−F can be derived from α←−F straightforwardly)

This semantics is equivalent to a backward predicate transformer [Dji75].

Obviously, this abstraction is equivalent to the (forward) denotational abstraction
introduced in Section 3.2.1, as remarked in [Cou97a]. Indeed, we can turn an “input-
to-output” mapping into an “output-to-input” mapping (and vice-versa) by applying the
following function, which is defined for any pair of sets (A,B):

Inv : (A→ P(B)) −→ (B → P(A))
f 7→ λ(b ∈ B) · {a ∈ A | b ∈ f(a)}

In particular, for any set of traces E , the following properties hold:

αF (E) = Inv(α←−F (E)) α←−F (E) = Inv(αF (E))

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

50 CHAPTER 3. ABSTRACTIONS OF SETS OF TRACES

Extension to backward semantics: In Section 3.2, we composed the abstraction to
functions with “path” or “from-to” abstractions, so as to choose the granularity of the
(forward) denotational semantics. The same step should also be done in the case of the
backward semantics. In particular, we can define the backward semantics between two
control states. For each pair (l `, la) ∈ � 2:

α←−tF [l`,la]
(E) = α←−F ({〈(l0, ρ0), . . . , (ln, ρn)〉 ∈ E | l0 = l` ∧ ln = la})

= α←−F ◦ αt [l`,la](E)

3.3.2 Backward Static Analysis

The approximation of the co-reachable states from a set of final states proceeds in a similar
way as the forward analysis described in Figure 3.3.

We write
←−−
JsK] : D]� → D]� for a backward semantics for statements. Such a function

should be sound in the usual way: it should compute an over-approximation of the set of
input states which may lead to some output state.

We define an abstract backward assignment function
←−−−
assign : � × � × D]� → D]� ,

satisfying the usual soundness property (as in Section 3.1.1).

Such a backward interpreter is displayed in Figure 3.6. This interpreter is sound:

statement s abstract semantics

x := e;
←−−
JsK] : d 7→ ←−−−assign(x, e, d)

if(e){s0}else{s1}
←−−
JsK] : d 7→ guard(e, true,

←−−
Js0K

](d)) t guard(e, false,
←−−
Js1K

](d))

while(e){s} JsK] : d 7→ lfp]

guard(e,false,d)
F] where

F] : D]� → D]�

d0 7→ guard(e, true,
←−−
JsK](d0))

and lfp] computes an abstract post-fixpoint

input(x ∈ V);
←−−
JsK] : d 7→ forget(x, d)

assert(e);
←−−
JsK] : d 7→ guard(e, true, d)

Figure 3.6: Backward abstract interpreter

Theorem 3.3.1. Soundness of the backward abstract interpreter.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

3.4. PROJECTION ABSTRACTIONS 51

l0 : int i = 4;
l1 : int j = 5;
l2 : int k, l;
l3 : if(i < j){
l4 : k = i + j;
l5 : } else {
l6 : k = k − j;
l7 : }
l8 : l = l + k;
l9 : . . .

(a) Source program Ps

l2 : int l;
l8 : l = l + 9;
l9 : . . .

(b) Transformed program Pr

Figure 3.7: Constant propagation

Let l` : s : la be a program, ρ`, ρa ∈ � , and d ∈ D]� . Then,

ρa ∈ γ
�
(d)

ρ` ∈ α←−tF [l`,la]
(JsK)(ρa)

}
=⇒ ρ` ∈ γ

�
(
←−−
JsK](d))

A number of refinements to this simple analysis could be implemented. In particular,
we may use the forward analysis to refine the resulting invariants, by doing local iterations
[Gra92].

3.4 Projection Abstractions

In some cases, we may wish to forget only part the history of the executions of programs,
while keeping other relevant parts of the history of executions. Therefore, we propose some
families of “projection” abstractions, which allow to forget about parts of the execution of
programs, by fixing some “granularity” for the observation of states and projecting states
in traces according to this observation.

Along this section, we consider a very simple program transformation as an example
to illustrate the various definitions: constant propagation [Kil73] with followed by code
elimination [WM94]. We derive the semantics of the target program by applying some
projections to the semantics of the source program.

In this section, we focus on the following running example:

Example 3.4.1. Constant propagation and dead code elimination.

Let us consider the program in Figure 3.7(a). Constant propagation reveals that i, j are
constant, and the condition i < j evaluates to true; hence, k is also constant. As a result

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

52 CHAPTER 3. ABSTRACTIONS OF SETS OF TRACES

most statements (and variables) can be removed: the program in Figure 3.7(b) produces
the same result, as far as l is concerned.

3.4.1 Variables Projection

The first kind of projection we consider proceeds by abstracting away some memory
locations. More precisely, if � denotes the set of memory locations, then, we let � ⊆ � be
a restricted set of memory locations, collecting the memory locations, which still appear
in the transformed program. We write � for � → � , � = � × � and we also let Σ denote
the set of traces over � . We let the store projection operator Πstore

� be defined by:

Πstore
� : � → �

ρ 7→ λ(x ∈ �) · ρ(x)

Then, we let Πstate� be defined by:

Πstate� : � → �
(l , ρ) 7→ (l , Πstore

� (ρ))
Ω 7→ Ω

This function can be lifted into a projection of traces in a straightforward way. It allows
to define an observation of the semantics of programs, which takes into account only some
chosen variables of the program.

In the case of constant propagation, a variable which is proved constant by the initial
analysis can be removed from the program; therefore, it should not be included in � .

Example 3.4.2. Constant propagation and variable removal.

For instance, in the example in Figure 3.7, the variables i, j, k are proved constant and
propagated; hence, they should be removed: � = {l}.

3.4.2 Control States Projection

The second kind of projection we consider abstracts away some control states. More
precisely, if � denotes the set of control states, then, we let � ⊆ � denote the restricted
set of control states, which still appear in the transformed program. We let � denote

� × � and Σ be the set of traces over � . If i, j ∈ �
, we write Li, jM for the set of integers

{k ∈ � | i ≤ k ∧ k ≤ j}. We let the trace projection operator Πtrace
� be defined by:

Πtrace
� : Σ → Σ

〈(l0, ρ0), . . . , (ln, ρn)〉 7→ 〈(li0 , ρi0), . . . , (lik , ρik)〉
where

{
i0 < i1 < . . . < ik
{ij | j ∈ L0, kM} = {i ∈ L0, nM | li ∈ � }

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

3.4. PROJECTION ABSTRACTIONS 53

Intuitively, it erases any state corresponding to a control state not in � . In case we added
an error state Ω, it should also be preserved by Πtrace

� . More precisely, Πtrace
� (〈(l0, ρ0),

. . . , (ln, ρn), Ω〉) = 〈(li0 , ρi0), . . . , (lik , ρik), Ω〉, where i0 < i1 < . . . < ik and {ij | j ∈
L0, kM} = {i ∈ L0, nM | li ∈ � }.

Example 3.4.3. Control states removal.

In the case of constant propagation and dead code removal we should abstract away:
• control states corresponding to unreachable states (though, this projection does not

change the semantics, since it erases states which are not reachable): this is the case
of l6 and l7 in the example;
• control states corresponding to assignments with constant left and right sides, which

are removed, as is the case for l4, l5 in the example (note that the conditional at l3
can be removed as well).

3.4.3 General Case

In practice, both control states and memory locations projections need to be used in the
same time. For instance, the example displayed in Figure 3.7 requires both the removal
of some control states and of some memory locations. Therefore, we use the following
notations:
• Πstore

� and Πstate
� were defined in Section 3.4.1;

• Πtrace
�

, � carries out the control states projection mentioned in Section 3.4.2 and applies

Πstate
� to the remaining states.

The projection abstraction of sets of traces is defined by:

Definition 3.4.1. Projection abstraction.

Let the functions αΠ〈
�

, � 〉 and γΠ〈
�

, � 〉 by defined by:

αΠ〈
�
, � 〉 : P(Σ) → P(Σ)

E 7→ {Πtrace
�

, � (σ) | σ ∈ E}

γΠ〈
�
, � 〉 : P(Σ) → P(Σ)

E 7→ {σ ∈ Σ | Πtrace
�
, � (σ) ∈ E}

Then, there is a Galois connection (P(Σ),⊆) −−−−−−→←−−−−−−
αΠ〈 � , � 〉

γΠ〈 � , � 〉
(P(Σ),⊆).

Example 3.4.4. Constant propagation and dead code elimination.

In the example given in Figure 3.7, the following restricted sets shall be used:
• � = {l} (� = {i, j, k, l});
• � = {l2, l8, l9} (� = {li | i ∈ L0, 9M}).

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

54 CHAPTER 3. ABSTRACTIONS OF SETS OF TRACES

The correctness of the constant propagation and dead code removal transformation can
be described by the abstraction relation:

JPrK = αΠ〈
�

, � 〉(JPsK)

Intuitively, all traces of the transformed system are obtained from the traces of the original
system by removing all control states and memory locations, except those in � , � .

This relation is a particular case of the scheme introduced in Section 2.3.4. The
formalization of program transformations often requires this kind of abstractions to be
used, e.g. when some parts of the source program are deleted. A similar approach
shall be used in the formalization of other program transformations, such as slicing and
compilation.

3.4.4 Fixpoint-based Definition

A fixpoint based definition is always very convenient in order to establish semantic prop-
erties of programs (e.g., static analysis); therefore, we wish to find a fixpoint definition
for the projection of the semantics of a program P .

First, we consider the case of control state projection (i.e., we assume that � = �):

Lemma 3.4.1. Fixpoint definition.

Let P be a program, and � ⊆ � .

Then, αΠ〈 � 〉(JP K) is strongly closed.

Moreover, αΠ〈 � 〉(JP K) writes down as a least fixpoint: there exists F : P(Σ) → P(Σ),
such that:

αΠ〈 � 〉(JP K) = lfp∅F

Proof.

We write E for αΠ〈 � 〉(JP K).

We start with the proof of strong closure of E . Let σ ′0, σ
′
1 ∈ E such that σ′0 _ σ′1 is

defined. Therefore, we can write σ′0 = 〈. . . , (l, ρ)〉 and σ′1 = 〈(l, ρ), . . .〉 (the concate-
nation of σ′0 and σ′1 exists; hence, the last state in σ′0 is the same as the first state in
σ′1). Moreover, there exist σ0, σ1 ∈ JP K such that αΠ〈 � 〉(σ0) = σ′0 and αΠ〈 � 〉(σ1) = σ′1
and we can choose σ0, σ1 such that the last state of σ0 is (l, ρ), and the same for the
first state of σ1. As a consequence, σ0 _ σ1 exists. Last, we can prove easily that
Πtrace

� (σ0 _ σ1) = Πtrace
� (σ0) _ Πtrace

� (σ1) = σ′0 _ σ′1, so σ′0 _ σ′1 ∈ E .
The converse implication is straightforward (i.e., E is closed: if σ ′0 _ σ′1 ∈ E , then
σ′0, σ

′
1 ∈ E).

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

3.5. HIERARCHIES OF ABSTRACTIONS 55

Last, the fixpoint definition follows from Theorem 3.2.3.
Â

In the case of store projection, such a result is not automatic. Indeed, the property
(σ′0, σ

′
1 ∈ E) =⇒ σ′0 _ σ′1 ∈ E does not hold, because the last state of σ0 and the first

state of σ1 (where σ0, σ1 are defined as above) may not be equal: in fact, the assumption
guarantees only the equality of the values of the variables in � (it tells nothing about the
variables in � \ �).

3.5 Hierarchies of Abstractions

We presented several semantics in this chapter, and stated abstraction relations between
some of them. For instance, we described a common static analysis framework as an
abstraction of trace semantics in Section 3.1.

This approach can be used in a systematic way, for defining, comparing, and integrating
different semantics in hierarchies of abstractions. In particular, [Cou97a] relates various
abstraction of trace semantics in a hierarchy of abstractions. Other authors applied this
approach to other families of semantics: for instance, [GM03] extends the standard notion
of traces into a notion of transfinite traces (i.e., sequences of elements indexed with ordinal
numbers) and derives other kinds of semantics as abstractions.

In the following, we use the common abstractions recalled in this chapter and define
new abstractions, so that we could relate them in hierarchies as well, even though we do not
present it this way. For instance, the formalization of the invariant translation technique
(Chapter 10) will require a common abstraction of the static analysis of Section 3.1 and
of the semantic projection of Section 3.4 to be defined.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

56 CHAPTER 3. ABSTRACTIONS OF SETS OF TRACES

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

Part II

Trace Partitioning

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

Chapter 4

A Framework for Partitioning Traces

As mentioned in Section 3.1, generic abstract interpreters can be defined, which compute
an over-approximation of the reachable states, and which accept an abstract domain
for representing sets of stores as a parameter. This domain expresses various kinds of
constraints among variables. Most of the domains cited in Section 3.1.3 cannot express
any non trivial disjunction, which might be necessary for some property (such as the
absence of runtime errors) to be proved. Indeed, many commonly used abstract domains
like intervals, octagons, polyhedra only express convex constraints; therefore the abstract
join operation incurs a loss of precision as depicted in the figure below, which may not
allow the property of interest to be proved successfully.

Furthermore, some disjunctions might be necessary, that involve not only program
variables but also more complex properties, such as (an abstraction of) the history of
execution, therefore it is desirable to provide abstractions, which allow to express disjunc-
tions and to take the properties of program executions into account. The purpose of this
part of the thesis is to introduce families of abstractions of sets of traces, which are able
to express such constraints. These abstractions perform a partitioning of the set of traces,
based on the observation of the history of executions.

�������������
�������������
�������������

�������������
�������������
������������� �������������

�������������
�������������
�������������
�������������
�������������

PSfrag replacements

octagon o1

octagon o2

imprecision in

the computation of o1 t o2

This chapter aims at introducing a general framework for control-based trace parti-
tioning [MR05]. Section 4.1 reviews common cases of partitioning and motivates the need
for further abstractions to be developed. Section 4.2 introduces and formalizes the core
trace partitioning framework. Section 4.3 focuses on the application of this framework to
static analysis, using static or dynamic partitions.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

60 CHAPTER 4. A FRAMEWORK FOR PARTITIONING TRACES

4.1 Partitioned Systems

4.1.1 Partitioning Control States

First of all, we underline that partitioning the reachable states with the control states is a
rather common approach in static analysis. Later, we generalize drastically this technique.

In this chapter, we do not consider errors, so that � = � × � . Indeed, our goal is to
refine analyses similar to the analyses described in Section 3.1 and Section 3.2.5, which
aim at computing an over-approximation of the reachable states except Ω (we argued in
Section 3.1.2 that it was feasible to deduce an over-approximation of the dangerous states
from the results of such an analysis).

In the following, whenever the concretization function is defined straightforwardly from
the abstraction function, we provide the abstraction function only: in a complete lattice,
any monotone abstraction function defines a unique concretization [CC77].

Non procedural case: Indeed, the analysis proposed in Section 3.1 relies on this kind
of partitioning. The abstraction of sets of traces can be seen as a two steps abstraction:

1. abstraction of traces into states, with partitioning:

(P(Σ),⊆) −−−−−→←−−−−−
α � (�)

γ � (�)

(� → P(�),⊆)

α � (�) : P(Σ) → (� → P(�))
E 7→ λ(l ∈ �) · {ρ ∈ � | 〈. . . , (l , ρ)〉 ∈ E}

2. abstraction of sets of states, defined by the concretization function γ
�

: D]� →
P(�) (Section 3.1.1).

Note that the abstraction in step 1 collects the stores in the end of traces; this is equivalent
to collecting all stores in traces since we consider closed sets of traces (Section 3.2.4): if
σ is an execution of a program P , then any prefix of σ is also an execution of P .

The first step includes a partitioning in the sense of [CC92a, §4.2.3.2]. Indeed, it
amounts to partitioning the set of states using the partition {{(l , ρ) | ρ ∈ � } | l ∈ � };
the resulting domain is in bijection with � → P(�).

Procedural case: In case the language features procedures, similar abstractions are
usually implemented.

We consider the procedural extension introduced in Section 2.2.4. When designing
an analysis for such a procedural language, one faces the problem of deciding how to
replace the abstraction mentioned in step 1 above. Among the possible choices, we can
cite [SP81]:
• the full abstraction of the stack: we may simply abstract away the stack and

keep only the control states (analysis insensitive to the calling context):

α � (� ×{ε}) : P(Σ) → (� → P(�))
E 7→ λ(l ∈ �) · {ρ ∈ � | ∃κ ∈ � , ∃〈. . . , (κ, l , ρ), . . .〉 ∈ E}

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

4.1. PARTITIONED SYSTEMS 61

• the partitioning with the stack: we may keep the stack, i.e. abstract traces into
functions mapping pairs made of a stack and a control state into a set of memory
states (analysis completely sensitive to the calling context):

α � (� × �) : P(Σ) → ((� × �)→ P(�))
E 7→ λ((κ, l) ∈ (� × �)) · {ρ ∈ � | 〈. . . , (l , ρ), . . .〉 ∈ E}

This approach amounts to inlining functions; it works only in the case of non-
recursive function calls (the stack may grow infinite in the case of recursive calls).
At the time this thesis is written, the Astrée analyzer relies on this technique.

Many intermediate abstractions exist, which allow to retain a good level of precision in
some cases and abstract long sequences of calls (the main such technique is k-limiting).

Another approach to the analysis of procedural programs is to modelize the effect of
each function (intra-procedural phase) and then, to perform a global iteration [RHS95].
This technique relies on the resolution of the reachability along“inter-procedural realizable
paths”; then, it restricts the abstract domain so as to allow a conservative, yet precise
recovery of the stack configurations (this method was also used in slicing [HRB88]).

4.1.2 Partitioning Memory States

Another interesting approach to partitioning consists in partitioning the set of memory
states. Let us consider the program on Figure 4.1(a), which computes the absolute value
of x. We assume that the variables x, sgn have mathematical integer values (we do not
take machine integers, modular arithmetics or possible overflows into account here). Then,
this program is safe in the sense that it never crashes whatever the initial value for x (in
the case of 32-bits machine integers, it would not work as expected for x = −232, which
is the reason for the above assumption). However, if we analyze it with the domain of
intervals (using the abstract interpreter introduced in Section 3.1), we would find:

• sgn = −1 at l2;
• sgn = 1 at l4;
• sgn ∈ [−1,−1] t [1, 1] at l5, i.e. sgn ∈ [−1, 1].

As a consequence, the analysis would report a possible division by 0 at point l5, since
0 ∈ [−1, 1]. We note that this stems from an imprecision due to the abstract join computed
at the exit of the conditional. Furthermore, the analyzer would not prove that y ≥ 0 at
l6, due to the lack of relation between sgn and the sign of x in the abstract environment.

A first possible refinement relies on disjunctive completion [CC79], i.e., the possible
values for a variable are abstracted into the union of a set of intervals. An important
drawback of disjunctive completion is its cost: when applied to a finite domain of cardinal
n, it produces a domain of 2n elements, with chains of length n + 1. Moreover, the design
of a widening for the domains obtained by disjunctive completion is a non-trivial issue;
in particular, a good widening operator should decide which elements of a partition to
merge or to widen.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

62 CHAPTER 4. A FRAMEWORK FOR PARTITIONING TRACES

int x, sgn;
l0 if(x < 0){
l1 sgn = −1;
l2 }else{
l3 sgn = 1;
l4 }
l5 y = x/sgn;
l6 . . .

(a) Absolute value

int x, y;
l0 n = 0;
l1 y = 0;
l2 while(true){
l3 y = y + (−1)n ∗ 5;
l4 n = n + 1;
l5 }
l6 . . .

(b) Alternating iterations

int i;
float x, y;
x is assumed to be in a range [0, n]

l0 int i = 0;
l1 i = castfloat→intx;
l2 y = ty[i] + (x− castint→floati) ∗ (ty[i + 1]− ty[i])
l3 . . .

(c) Interpolation

Figure 4.1: Examples

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

4.1. PARTITIONED SYSTEMS 63

A second solution to these issues is to refine the abstract domain, so as to express a
relation between x and sgn. For instance, we would get the following constraint, at point
l5: {

x < 0 ⇒ sgn = −1
x ≥ 0 ⇒ sgn = 1

Such an abstraction would be very costly if applied exhaustively, to any variable (especially
if the program to analyze contains thousands of variables, as is the case of the applications
mentioned in Section 5.1.1), therefore a strategy should be used in order to determine
which relations may be useful to improve the precision of the result. However, the choice
of the predicates which should guide the partitioning (i.e., x < 0 in the above example)
may not always be obvious.

4.1.3 Other Partitioning Criteria

The two previous subsections presented partitioning abstractions which are necessary in
order to produce relevant results (partitioning with control states) and precise results (par-
titioning with the values of some variables). However, these techniques are not completely
satisfactory.
• First of all, we noted in Section 4.1.2 that the design of partitioning numerical

abstract domains is not easy, due to the cost and the need for choosing accurately
what relation to use for the partitioning and to issues in the design of efficient
widening operators.
• Secondly, this kind of partitioning will not allow to express all the constraints we

might be interested in. For instance, in the program displayed in Figure 4.1(b), a
naive interval analysis will not provide a bound for the value of y. However, the
values of y are cyclic: at l3, after an odd number of iterations in the loop, y = 0
and, after an even number of iterations, y = 5, so that y is bounded.
Consequently, one would succeed in proving the property of interest by performing
a partitioning of the memory states based on the parity of the variable i. Again,
this solution presents a major drawback: the analyzer would have to choose what
predicate to use in order to perform the right partitioning; in particular, it should
choose the variable i, possibly among thousands of other variables.
However, the above property is clearly based on a case analysis on an abstraction
of the history of the execution of the program (case analysis on the parity of the
number of iterations).
In this example, the goal for the partitioning is to prove the safety of the program;
however, we may also wish to express some more complex properties of programs.
For instance, we may want to prove that some property holds for certain iteration
numbers or to show that if some property holds at iteration n, then some other
property holds at iteration n−1 or n+1. All these cases involve similar disjunctions
based on the history of the control flow: most of the time, the disjunctions of interest
can be read in the control flow.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

64 CHAPTER 4. A FRAMEWORK FOR PARTITIONING TRACES

PSfrag replacements

x i i + 1

y]

f(x)

f

Imprecise range

Figure 4.2: Analysis of an interpolation and imprecision

• In the program in Figure 4.1(a), the disjunction which is needed in order to prove
the safety of the program also amounts to a case analysis on the history of the
execution. Indeed, at point l5:

– if the execution flowed through the true branch, then sgn = −1;
– if the execution flowed through the false branch, then sgn = 1.

• Other kinds of disjunctions, which do not naturally follow from tests can be ex-
pressed easily in this framework.
For instance, let us consider the case of the interpolation function in Figure 4.1(c),
which aims at approximating a function f :

� → �
(for instance, f = sin, cos . . .),

using a discretization, and an approximation with floating point numbers and linear
interpolations. Basically, the array ty represents the image of integer values by f :
ty[i] approximates the value of f(i).
When analyzing this program with, e.g. the domain of intervals, a range is computed
for i at l1, and then, the assignment at l2 is performed: since the memory locations
corresponding to the array lookups depend on i, the analyzer should consider any
value in the range known for i at l2 and compute the join of all the results. Not
only this join would incur a loss of precision, but also, the application of the formula
on the right hand side for a value of x and a value of i such that i 6= |x| (where
|x| denotes the absolute value of x) may lead to very imprecise results. We can see
this imprecision in Figure 4.2, where x is not in the range [i, i + 1] and the abstract
computation generates a very imprecise result y], compared to the concrete result
f(x).
This issue can be solved either by a partitioning by the value of i inside the domain
D]� or by a partitioning of the traces by the value of i at point l1. The advantage
of the latter approach is that the partitions do not need to be recomputed if i is
assigned again at some point. Indeed, the partitioning is guided by the value of i as
a result of the statement at l1, and not by the value of i at any time.

Last, a crucial point is that the partitions should not be global: making them local should
help in reducing the cost of partitioning to a minimum.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

4.2. CONTROL PARTITIONING OF TRANSITION SYSTEMS 65

4.2 Control Partitioning of Transition Systems

4.2.1 Partitions and Coverings

We first set up the notions of partitioned set and partitioned system.

Partitioning function: A covering of a set F is a family of subsets of F , such that any
element of F belongs to some element of the family. A partition is a covering such that
any two distinct elements of the family are disjoint; in particular, for any element x ∈ F ,
there exists a unique element A of the partition such x ∈ A. In the following, we need to
index the elements of coverings (resp. partitions); hence, the following definition resorts
to functions, defined on a set of indexes.

Definition 4.2.1. Partitioned set.

Let E,F be two sets, and δ : E → P(F). Then:
• δ is a covering of F if and only if:

∀x ∈ E, δ(x) 6= ∅

and,

F =
⋃

x∈E

δ(x)

• δ is a partition of F if and only if it is a covering and:

∀x, y ∈ E, x 6= y =⇒ δ(x) ∩ δ(y) = ∅

We note that a covering (resp. partitioning) δ of F defines an abstraction of (P(F),⊆):

Lemma 4.2.1. Partitioning abstraction.

Let αP(δ) and γP(δ) be defined by:

αP(δ) : P(F) → (E → P(F))
E 7→ λ(x ∈ E) · E ∩ δ(x)

γP(δ) : (E → P(F)) → P(F)
φ 7→ ⋃

x∈E φ(x)

Then, if δ is a covering, it defines a Galois connection (P(F),⊆) −−−−−→←−−−−−
αP(δ)

γP(δ)

(E →
P(F),⊆), and αP(δ) is into (Galois injection).
Moreover, if δ is a partition, then αP(δ) is one-to-one (Galois bijection).

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

66 CHAPTER 4. A FRAMEWORK FOR PARTITIONING TRACES

Proof.

Straightforward application of the definition of coverings and partitions.

Â

Definition 4.2.1 would allow to set up very general notions of trace partitioning. In
particular, the partitioning of traces using the control state of the last state of the traces
(Section 4.1.1) fits in this framework (with E = �); the case of calling stacks is similar
(with either E ≡ � , or E = � × � , or other partitions). We may even design some
weaker partitions: for instance, we may decide to merge together the state corresponding
to several distinct control states (with a partition E of �). However, we wish to derive
the partitions from the history of executions; therefore the following paragraph introduces
the notion of partitioned system.

Partitioning transitions: In the following, we assume that a program P is given, and
defined by (� , � i,→). We consider partitions finer than the partition defined by E = �
only. More precisely, we let � be a set of tokens, and T = P(�).

We define extended transition systems as transition systems over the sets of labels
extended with a set of tokens T ⊆ � ; it is basically defined by T and by an extension
of the set of initial states and an extension of the transition relation. Such a system P0

is a covering of P1 if and only if it simulates the transitions of P1; moreover, P0 is a
partition if and only if any transition in P1 is simulated by exactly one transition in P0

(and the same for the initial states). System P0 is complete in case it does not add any
fictitious transition, when compared to P1. Intuitively, a complete partition or covering
P0 shall describe the same set of traces as P1, up-to some information added in the control
states. The main difference between a covering and a partition is that the covering may
not ensure the unicity of the counterpart of the traces of the initial program.

The extra information embedded in the control structure of the extended system will
be the basis of the partitioning abstraction. The notions of covering, partitioning and
complete systems are formalized in the following definition.

Definition 4.2.2. Partitioned system.

Let T ∈ T. We write � T for the set of partitioned control states � ×T , � T for the set of
partitioned states � T × � , and � i

T ⊆ � T for a set of partitioned initial states, and →T

for a transition relation among partitioned states. An extended system is defined by the
data of a tuple (T, � i

T ,→T). Last, ΣT denotes the set of traces made of states in � T .

For all T, T ′ ∈ T and τ : T → T ′, we define the forget functions for control states, for

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

4.2. CONTROL PARTITIONING OF TRANSITION SYSTEMS 67

states and for traces as follows:

π �
τ : � T → � T ′

(l , t) 7→ (l , τ(t))
π

�
τ : � T → � T ′

((l , t), ρ) 7→ (π �
τ (l , t), ρ)

πΣ
τ : ΣT → ΣT ′

〈s0, . . . , sn〉 7→ 〈π �
τ (s0), . . . , π

�
τ (sn)〉

We consider the extended systems PT = (� T , � i
T ,→T) and PT ′ = (� T ′, � i

T ′,→T ′), and
the function τ : T → T ′.
1. PT is a τ -covering of PT ′ if and only if:

• � i
T ′ ⊆ π

�
τ (� i

T)

• ∀s0 ∈ � T , s′1 ∈ � T ′, π
�
τ (s0)→T ′ s

′
1 =⇒ ∃s1 ∈ � T ,

{
s′1 = π

�
τ (s1)

s0 →T s1

2. PT is a τ -partition of PT ′ if and only if:
• ∀s′ ∈ � i

T ′, ∃!s ∈ � i
T , s′ = π

�
τ (s)

• ∀s0 ∈ � T , s′1 ∈ � T ′, π
�
τ (s0)→T ′ s

′
1 =⇒ ∃!s1 ∈ � T ,

{
s′1 = π

�
τ (s1)

s0 →T s1

3. PT is τ -complete with respect to PT ′ if and only if:
• ∀s ∈ � i

T , π
�
τ (s) ∈ � i

T ′

• ∀s0, s1 ∈ � T , s0 →T s1 =⇒ π
�
τ (s0)→T ′ π

�
τ (s1)

The notions of “complete covering” or “complete partition” are derived from the above
definition as well.

Example 4.2.1. Partitioned systems.

We make the assumption that � is a singleton here, so that we can discard stores com-
pletely; then, transition relations are mere relations among control states. Let us consider
the two extended systems P0 and P1, displayed respectively in Figure 4.3(a) and in Fig-
ure 4.3(b).
• the original system represents a program with a conditional statement followed by

one statement (each branch of the conditional contains exactly one statement);
• P0 is isomorphic to the original system; it corresponds to T0 = {t}
• P1 is an extended system defined by T1 = {t0, t1, t2}.

We consider the following forget function τ : λ(ti ∈ T1) · t .
Then, any execution of P0 corresponds to exactly one execution of P1: for instance,
〈(l0, t), (l1, t), (l3, t), (l4, t)〉 corresponds to 〈(l0, t0), (l1, t1), (l2, t1), (l4, t0)〉. In particular,
any transition step in P0 is mimicked by a transition step in P1 as mentioned in Defini-
tion 4.2.2, point 2. Therefore, P1 is a τ -partition of P0.
Similarly, we can check that any execution, including one-step transitions of P1 corre-
sponds to some execution of P1. Hence, P1 is τ -complete with respect to P0.
These two properties make P1 a very useful extended system, in the analysis of P0.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

68 CHAPTER 4. A FRAMEWORK FOR PARTITIONING TRACES

(l0, t)

(l1, t) (l2, t)

(l3, t)

(l4, t)

(a) System P0

(l0, t0)

(l1, t1) (l2, t2)

(l3, t1) (l3, t2)

(l4, t0)

(b) System P1

(l0, t0)

(l1, t1) (l2, t2)

(l3, t1) (l3, t2)

(l4, t1) (l4, t2)

(c) System P2

Figure 4.3: Partitioned systems

Intuitively, the extended system P1 corresponds to a partition of P0 obtained by delay-
ing the merge in the exit of the conditional statement after the statement following the
conditional, i.e. at point l4; this amounts to doing the following rewriting:

l0 : if(e){
l1 : s1

}else{
l2 : s2

}
l3 : s3

l4 : . . .

−→

(l0, t0) : if(e){
(l1, t1) : s1;
(l3, t1) : s3

}else{
(l2, t2) : s2;
(l3, t2) : s3

}
(l4, t0) : . . .

In particular, applying this partitioning to the example presented in Figure 4.1(a) would
solve the imprecision. Indeed, it would allow proving that sgn cannot be equal to 0 at l5,
so that the division by sgn is safe; moreover, it allows proving that the absolute value of
x computed in y is always positive.
The System P2 displayed in Figure 4.3(c) is also a complete partition of P0. It amounts do
performing a similar partitioning of the conditional structure without merging the traces
at point l4. Such a partitioning would be more costly if applied to many if-statements in
a large program.
In fact, we can also note that P2 is a complete partition of P1.

Remark 4.2.1. Extending the notion of covering.

We may extend the definition of covering, by replacing function τ with a relation (⇒τ

) ⊆ T × T ′. Then, function π �
τ becomes a relation (⇒ �

τ) ⊆ � T × � T ′.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

4.2. CONTROL PARTITIONING OF TRANSITION SYSTEMS 69

Intuitively, t ⇒ �
τ t ′ means that token t is “simulated” by t ′ in PT ′. Clearly, this definition

is weaker, since a token t may be simulated by several tokens in PT ′. Moreover, it defines
similar forget functions for control states, states and traces (which we shall all note ⇒ �

τ).
The results in the following would extend to this weaker definition of covering system.

At this point, we do not require the set of partitions to be finite. This assumption is
not required in order to prove the partitioning correct. However, we shall assume that

� T (hence, T) is finite whenever partitions must be computer representable; in particular,
when defining the partitions used in a static analysis, T will always be supposed finite.

Trivial extension: We let tε ∈ � and write Tε = {tε}. The trivial extension of P is the
extended system Pε = (� ε, � i

ε,→ε), where:
• � ε = � × Tε;
• � i

ε = {((l , tε), ρ) | (l , ρ) ∈ � i};
• ((l0, tε), ρ)→ε ((l1, tε), ρ) ⇐⇒ (l0, ρ)→ (l1, ρ).

This extended system is isomorphic to P (the traces of both programs are equal up to
isomorphism); it is the “simplest” extension of P . We write πΣ

ε for the trivial mapping of
traces of Pε into traces of P .

4.2.2 Soundness of Control Partitioning

The ultimate goal of this chapter is to define an abstraction as the data of a partition
(or covering) and an abstraction of the semantics of the corresponding extended system.
Therefore, in the two following subsections, we set up an ordering, so as to compare the
semantics of partitioned systems and build an ordering among partitioned systems.

The semantics of extended systems is defined in the usual way, as in Section 2.2.2.
Furthermore, we propose to partition the semantics with the partitioned control states
including the token (i.e., we choose E = � T = � × T), of the last state in the traces,
which amounts to applying the same abstraction as α � (�) (Section 4.1.1) in the case of
the extended system:

Definition 4.2.3. Partitioned semantics.

If PT is the extended system (T, � i
T ,→T), we let JPT K

p be the partitioned semantics
defined by:

JPT K
p = αP(δ � T

)(JPT K)

where δ � T
is defined by:

δ � T
: P(Σ) → (� T → P(Σ))
E 7→ λ((l , t) ∈ � T) · {σ ∈ E | ∃ρ ∈ � , σ = 〈. . . , ((l , t), ρ)〉}

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

70 CHAPTER 4. A FRAMEWORK FOR PARTITIONING TRACES

The properties of covering (resp. partitioning, complete) systems extend to their
semantics, as pointed out in the following lemma (the definitions for covering, partitioning
and complete extended systems were designed so as to achieve these properties): for
instance, a complete partition PT of PT ′ provides a unique counterpart σ for any trace
σ′ of PT ′ . In the following, we consider the programs PT = (T, � i

T ,→T) and PT ′ =
(T ′, � i

T ′,→T ′), and τ : T → T ′.

Lemma 4.2.2. Semantic adequation —traces.

Then:
• If PT is a τ -covering of PT ′, then:

∀l ′ ∈ � T ′, ∀σ′ ∈ JPT ′K
p(l ′), ∃l ∈ � T ,

{
l ′ = π �

τ (l)
∃σ ∈ JPT K

p(l), σ′ = πΣ
τ (σ)

• If PT is a τ -partition of PT ′, then:

∀l ′ ∈ � T ′, ∀σ′ ∈ JPT ′K
p(l ′), ∃!(l , σ) ∈ � T × ΣT ,

l ′ = π �
τ (l)

σ ∈ JPT K
p(l),

σ′ = πΣ
τ (σ)

• If PT is τ -complete with respect to PT ′, then:

∀l ∈ � T , ∀σ ∈ JPT K
p(l), πΣ

τ (σ) ∈ JPT ′K
p(π �

τ (l))

Proof.

The proofs for these properties are similar, so we consider the last one only.
Therefore, we assume that PT is τ -complete with respect to PT ′ , and that l ∈ � T , σ ∈
JPT K

p(l), and we attempt to prove that πΣ
τ (σ) ∈ JPT ′K

p(π �
τ (l)).

We write σ = 〈s0, . . . , sn〉 and ∀i, s′i = π
�
τ (si) (so that σ′ = 〈s′0, . . . , s′n〉 = πΣ

τ (σ)).
• First, we prove by induction on the length of σ that σ ′ ∈ JPT ′K:

– s0 ∈ � i
T ; since PT is τ -complete with respect to PT ′ , s′0 = π

�
τ (s0) ∈ � i

T ′;
– Let i ∈ �

, 0 ≤ i < n. Since σ ∈ JPT K, si →T si+1; hence, s′i →T ′ s
′
i+1, because

PT is τ -complete with respect to PT ′ .
• Second, we prove that πΣ

τ (σ) ∈ JPT ′K
p(π �

τ (l)): since σ ∈ JPT K
p(l), σ ∈ JPT K; hence,

πΣ
τ (σ) ∈ JPT ′K (as proved in the first point). Moreover, σ′ ends at point π �

τ (l), since
s′n = π

�
τ (sn). Hence, πΣ

τ (σ) = σ′ ∈ JPT ′K
p(π �

τ (l))
The cases of partitioning and covering systems are similar.
Â

Let Γτ be the function defined by:

Γτ : (� T → P(ΣT)) → (� T ′ → P(ΣT ′))
Φ 7→ λ(l ′ ∈ � T ′) ·

⋃{πΣ
τ (Φ(l)) | l ∈ � T , τ(l) = l ′}

Here are a few trivial properties of the Γτ functions:

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

4.2. CONTROL PARTITIONING OF TRANSITION SYSTEMS 71

Lemma 4.2.3. Properties of Γτ .

• For all τ , Γτ is monotone.
• If τ0 : T0 → T1, τ1 : T1 → T2, then Γτ1◦τ0 = Γτ1 ◦ Γτ0.

Proof.

Straightforward.
Â

The following theorem comes as a straightforward consequence of Lemma 4.2.2; it is
an important step in proving the soundness of the partitioning abstractions.

Theorem 4.2.4. Semantic adequation.

With the above notations:
• If PT is a τ -partition or a τ -covering of PT ′, then JPT ′K

p ⊆ Γτ (JPT K
p) (soundness).

• If PT is τ -complete with respect to PT ′, then Γτ (JPT K
p) ⊆ JPT ′K

p (completeness).
• Hence, if PT is a τ -complete partition of PT ′, or a τ -complete covering of PT ′, then
JPT ′K

p = Γτ (JPT K
p) (adequation).

• If PT is a partitioning system of PT ′, then:

∀l , l ′ ∈ � T , l 6= l ′ =⇒ Γτ (JPT K
p)(l) ∩ Γτ (JPT K

p)(l ′) = ∅

4.2.3 Pre-Ordering Properties of Partitions

In the following, we use an ordering among partitions. Therefore, we study the pre-
ordering properties of the following relations, among extended transition systems:
• “is a covering of” (for some forget function τ);
• “is a partition of” (for some forget function τ);
• “is complete with respect to” (for some forget function τ).
Then, we can prove that, any such ordering 2 is transitive:

Lemma 4.2.5. Transitivity.

Let us consider PT = (T, � i
T ,→T), PT ′ = (T ′, � i

T ′,→T ′), and PT ′′ = (T ′′, � i
T ′′,→T ′′).

Furthermore, we consider the forget functions τ : T → T ′, and τ ′ : T ′ → T ′′. Then:
• if PT is a τ -covering (resp. τ -partition) of PT ′ and PT ′ is a τ ′-covering (resp. τ -

partition) of PT ′′, then PT is a (τ ′ ◦ τ)-covering (resp. (τ ′ ◦ τ)-partition) of PT ′′.
• if PT is τ -complete with respect to PT ′ and PT ′ is τ ′-complete with respect to PT ′′,

then PT is (τ ′ ◦ τ)-complete with respect to PT ′′.

Proof.

We can first remark that π �
τ ′◦τ = π �

τ ′ ◦ π �
τ (and similarly for the other forget functions).

Let us prove the second point (transitivity of completeness).

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

72 CHAPTER 4. A FRAMEWORK FOR PARTITIONING TRACES

• Let s ∈ � i
T . Then, π

�
τ (s) ∈ � i

T ′, since PT is τ -complete with respect to PT ′ . More-
over, π

�
τ ′◦τ (s) = π

�
τ ′ ◦ π

�
τ (s) ∈ � i

T ′′, since PT ′ is τ ′-complete with respect to PT ′′ .
• Let s0, s1 ∈ � T , such that s0 →T s1. Again, we apply successively the two as-

sumptions of completeness and derive π
�
τ (s0) →T ′ π

�
τ (s1), since PT is τ -complete

with respect to PT ′ ; and then, π
�
τ ′◦τ (s0)→T ′′ π

�
τ ′◦τ (s1), since PT ′ is τ ′-complete with

respect to PT ′′ .
The proof of the first point is similar.
Â

Moreover, the relations mentioned above are clearly reflexive:

Lemma 4.2.6. Reflexivity.

Let PT = (T, � i
T ,→T) and τ : T → T ; t 7→ t . Then, clearly PT is a τ -covering (resp.

partition) of PT and PT is τ -complete with respect to itself.

Such an ordering should allow to compare the precision of partitions (yet, note that
the more precise partition is the greater element, instead of the smaller, as is usually the
case in static analysis) and to define valid computational orderings [CC92b], which we will
illustrate in the next section.

4.3 Trace Partitioning Abstract Domains

The last section described the partitioning of transition systems. We now build on top of
this material a partitioning domain of traces, with partitions based on the control flow, and
define further partitioning abstractions, by composing stores and numerical abstractions.

4.3.1 The Trace Partitioning Domain

Definition of the basis: In this section, we assume that a transition system P =
(� , � i,→) is given, and we consider the complete coverings of P ; we write B for this set
of extended systems.

First, we let 2 be the order among extended systems defined by:

PT0 2 PT1 ⇐⇒ ∃τ : T1 → T0, such that PT1 is a τ -covering of PT0

As remarked in Section 4.2.3, we may choose other definitions for 2, such as:

PT0 2 PT1 ⇐⇒ ∃τ : T1 → T0,

{
PT1 is a τ -partition of PT0

PT1 is τ -complete with respect to PT0

In case the property on the right side is satisfied, we also write PT0 2τ PT1 for τ , so as to
make τ explicit.

The trivial extension of P is clearly the least element of B for 2.
Note that other choices for B and 2 could have been made and would have allowed

to prove the same results in the following.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

4.3. TRACE PARTITIONING ABSTRACT DOMAINS 73

Example 4.3.1. The ordering over the basis.

We showed in Example 4.2.1 that the systems P0, P1 and P2 are such that:

P0 2 P1 2 P2

The domain: At this point we can define the trace partitioning domain. An element
of this domain should denote:
• a covering PT of the original transition system;
• and a semantic denotation for each control state l of the covering PT :

– in the basic domain, this denotation shall be a set of traces ending at point l ;
– in the abstract domain, this denotation shall be an invariant in D]� .

More formally:

Definition 4.3.1. Trace partitioning domain.

An element of the trace partitioning domain is a tuple (T, PT , Φ), where:
• T ∈ T;
• PT denotes a complete covering (T, � i

T ,→T) of P ;
• Φ is a function Φ : � T → P(ΣT).

We write � for the set of such tuples.

Let (T0, PT0 , Φ0), (T1, PT1 , Φ1) ∈ � . Then, we write (T0, PT0 , Φ0) 0τ (T1, PT1 , Φ1) —or,
for short (T0, PT0 , Φ0) 0 (T1, PT1 , Φ1)— if and only if:
• PT0 2τ PT1 for τ ;
• Φ0 ⊆ Γτ (Φ1).

It follows from the results presented in Section 4.2.3 that 0 defines a pre-ordering on
� .

The concretization function: The concretization of an element (T, PT , Φ) of � is a
set of traces of the initial system, which is computed by:

1. merging all the partitions together, by projecting Φ onto the trivial extension Pε of
P (i.e., applying function Γτε) and then collapsing the partitions with γP(� T);

2. applying the isomorphism πΣ
ε between traces of Pε and P .

It is defined formally in the following definition:

Definition 4.3.2. Concretization function.

We let γ � be the concretization function defined by

γ � = πΣ
ε ◦ γP(� T) ◦ Γτε

Or equivalently, by:

γ � : � → Σ
(T, PT , Φ) 7→ {πΣ

ε (σ) | ∃l ∈ � T , σ ∈ Φ(l)}

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

74 CHAPTER 4. A FRAMEWORK FOR PARTITIONING TRACES

PSfrag replacements

Structure

Hierarchy of domains

(tε, Pε)

(T1, PT1)

(T0, PT0)

tε → Σtε

T1 → ΣT1

T0 → ΣT0

τ1⇀ε

Γτ1⇀ε

τ1⇀0

Γτ1⇀0

τ0⇀ε

Γτ0⇀ε

least element

Figure 4.4: Structure of the partitioning domain

Clearly, this function is monotone.

Soundness of the partitioned systems: A last, trivial yet very important remark is
that the partitioning of the initial system is sound:

Theorem 4.3.1. Soundness of control partitioning.

Let (T0, PT0), (T1, PT1) ∈ T×B, such that PT0 2τ PT1.
• Then, (T0, PT0 , JPT0K

p) 0τ (T1, PT1 , JPT1K
p).

• In particular, in case (T0, PT0) = (Tε, Pε), then we get the soundness with respect to
the original transition system: JP K ⊆ γ � (T1, PT1 , JPT1K

p).

Proof.

The first point follows from Theorem 4.2.4; the second is a corollary of the first point.
Â

This domain structure can be related to the cofibered domain structure defined in
[Ven96]. More precisely, the element of the basis fixes a partition of the original system,
and the last argument of the tuple corresponding to an element of the domain � provides
a semantic denotation defined in a domain relative to the basis element. Figure 4.4 gives
an overall intuition about the structure of the partitioning domain � .

The presentation in [Ven96] relies on categories; we use orderings instead, but the
principle is similar: the structure of the basis provides the frame for a hierarchy of domains.
The comparison of elements across distinct domains in the frame can be done thanks to
the projection functions Γτ provided by the ordering on the basis.

Gain in precision: In this paragraph, we assume that we consider complete coverings
for the definition of the trace partitioning domain. Let (T, PT , Φ) ∈ � be an element of the

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

4.3. TRACE PARTITIONING ABSTRACT DOMAINS 75

domain. This element describes the same set of traces as the initial program P . However,
it allows for a more precise description of sets of traces ending at each control state than
the usual abstractions (i.e., the α � (�) abstraction defined in Section 4.1.1), if there exists
a control state l ∈ � , σ, σ′ ∈ JP K, such that σ and σ′ both end at l but are not in the
same partitions, when mapped into the extended system PT . This gain in precision really
pays off, when a further abstraction (such as the abstraction defined by γ

�
) is composed,

as done in the next subsection.

Comparison with other approaches to partitioned systems: Our approach con-
siderably generalizes the trace partitioning technique of [HT98], since we leave the choice
of partitions as a parameter: various partitioning strategies can be implemented (for in-
stance, we allow the merge of partitions). Our framework and the technique presented
in [HT98] both present some strong similarities with reduced cardinal power [CC79]. In-
deed, reduced cardinal power is a powerful definition for abstractions representing sets of
functions from A to B, based on abstractions of A and of B. The principle of [HT98]
is to allow the partitioning of traces at test points in conditional statements and loops
(unrolling of the first iterations); however, elements of partitions cannot be merged and
dynamic partitioning is not allowed (the abstraction of A, i.e. the set of tokens, is defined
once for all by the structure of programs). Our framework allows for a wider spectrum
of criteria to be used for creating or merging partitions and the partitioning can be per-
formed dynamically, since we can refine the transition system. Moreover, our approach
extends significantly conventional reduced cardinal power techniques, since each element
in the basis defines a new image domain (in fact, we consider a family of domains).

The path sensitive techniques [HR80] proposed in data flow analysis do not allow for
abstractions of sets of paths to be considered. In our settings, a token stands for an
approximation for a set of paths, which renders the design of analyses more flexible.

Other authors proposed to perform a partitioning of memory states or to convert
part of the data into control structures, as can be done for boolean variables and tests
[JHR99]. However, this solution presents several drawbacks in our opinion. In particular,
the relations partitions are based on may not be found straightforwardly in the memory
states; in the other hand, a partitioning guided by the control flow is rather intuitive.
Another drawback comes from the fact that the method exposed in [JHR99] is based on a
refinement process, which would not be so effective in the case of the Astrée analyzer. By
contrast this approach seem to be more effective for the analysis of synchronous programs.

The following subsections express fundamental properties of � :

• composition of further abstractions (such as the abstraction of sets of stores into
collections of predicates), in Section 4.3.2;
• application to static analysis and definition of widening operators on such domains,

in Section 4.3.3;
• implementation of efficient analyzers in Section 4.3.4.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

76 CHAPTER 4. A FRAMEWORK FOR PARTITIONING TRACES

4.3.2 Composing Store Abstraction

We derive a new partitioning abstraction from Definition 4.3.1, by abstracting sets of
stores into collections of constraints in the same way as in Section 3.1.1. Therefore, we
assume that an abstraction (D]� ,v) is defined for representing sets of stores is defined,
together with a concretization function γ

�
: D]� → P(�), which defines the meaning of a

set of abstract constraints as the set of stores which satisfy them.
The partitioning abstract domain is derived from � by replacing functions mapping

extended labels into sets of traces with functions mapping extended labels into elements
of D]� :

Definition 4.3.3. Partitioning abstract domain.

An element of the partitioning abstract domain is a tuple (T, PT , Φ]), where:
• T ∈ T;
• PT = (T, � i

T ,→T) is a complete covering of P ;
• Φ] is a function Φ] : � T → D]� .

We write �] for the set of such tuples.

Remark 4.3.1. Representation of abstract values.

An abstract value is a value in � T → D]� = (� × T) → D]� . By curryfication; it is
isomorphic to a value in � → (T → D]�). This latter representation turns out to be very
natural in practice: each control state corresponds to an abstract value in the partitioning
domain D]� ,

� = T → D]� , which maps partitioning tokens into sets of stores; hence, it
allows to describe precisely the partitions associated to each program point.

The ordering is also inherited from Definition 4.3.1. Indeed, we let:

Γ]
τ : (� T → D]�) → (� T ′ → D]�)

Φ] 7→ λ(l ′ ∈ � T ′) ·
⊔{Φ(l) | l ∈ � T , τ(l) = l ′}

If the join operator t of D]� is not associative, commutative, the definition of Γ]
τ would

not be unique, which would cause various technical complications; therefore, we assume
that t is associative and commutative in our presentation.

Definition 4.3.4. Ordering.

Let (T0, PT0 , Φ
]
0), (T1, PT1 , Φ

]
1) ∈ � , and a function τ : T1 → T0. Then, we write

(T0, PT0 , Φ
]
0) 0

]
τ (T1, PT1 , Φ

]
1) (or, for short (T0, PT0 , Φ

]
0) 0

] (T1, PT1 , Φ
]
1)) if and only

if:
• PT0 2τ PT1;
• Φ]

0 v Γ]
τ (Φ

]
1).

It follows from the results presented in Section 4.2.3 that 0 defines a pre-ordering on
� .

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

4.3. TRACE PARTITIONING ABSTRACT DOMAINS 77

The concretization of an element of �] into an element of � applies the concretization
function γ

�
pointwise, i.e. by applying it to Φ].

Definition 4.3.5. Concretization.

γ]� : �] → �
(T, PT , Φ]) 7→ (T, PT , λ(l ∈ � T) · γ � ◦ Φ](l))

We remark, that (T, PT , Φ]) may provide a better approximation of JP K than an el-
ement in D] = � → D]� whenever the extended system distinguishes traces of P , i.e., if
there exists a control state l , and σ, σ′ ∈ JP K such that σ and σ′ both end at l and are in
different partitions, when mapped into traces of PT .

In the other hand, any approximation for JP K in D] can be translated in an equivalent
abstraction in (T, PT , Φ]), for any choice of (T, PT). As a consequence, we expect the
partitioning domain to provide results at least as good as the non partitioning domain,
and strictly better results when the (T, PT) allows to distinguish real traces of P .

At this point, we can state a few remarks, which should give a better understanding
of the structure of the partitioning domain.

Remark 4.3.2. Computational ordering and precision ordering.

The ordering introduced in Definition 4.3.4 is essentially a computational ordering [CC92b].
Indeed, an analysis starts with a coarse partition, defined by the program control structure
and then may perform some refinements of the system. When a refinement is performed,
the basis element is replaced with a greater element, and so is the current abstract invari-
ant. Therefore, the abstract computation should produce monotone sequences of elements
for the ordering of Definition 4.3.4.
Next subsection proposes the definition of an extrapolation operator based on the same
computational order.

Remark 4.3.3. Direction of the ordering on the basis.

We pointed out in the end of Section 4.2.3 that the ordering among elements of the basis
is an inverse for the precision ordering: the greater for 2, the more precise the partition.
Therefore, one may suggest using the opposite ordering. However, this approach has
several drawbacks:
• It would not capture the precision ordering better than the current ordering. In-

deed, we may have (T0, PT0 , Φ
]
0) 0

] (T1, PT1 , Φ
]
1) even though PT0 and PT1 are not

comparable for 2; opposing the ordering on the basis would not help here.
• It would be possible to write the analysis so that it starts with a completely parti-

tioned system (which may not be easy to define, depending on the instantiation of
the partitioning framework) and use the opposite ordering as a computational order-
ing also (the analysis should merge partitions so as to ensure termination): however,

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

78 CHAPTER 4. A FRAMEWORK FOR PARTITIONING TRACES

we found this idea less intuitive; in particular, it is easier to reason about creating
partitions instead of deciding whether to collapse partitions.

4.3.3 Static Analysis with Partitioning and a Widening Opera-
tor

The domain introduced in Section 4.3.2 allows to carry out a static analysis of P , with a
partitioning domain. However, several approaches to such analyses are feasible:

• static partitioning relies on the choice of a fixed partition;
• dynamic partitioning allows for the partition to be refined during the static

analysis.

The latter approach is more powerful but may also result in a more involved implemen-
tation. In particular, in case infinitely many partitions might be chosen and different
partitions can be used for successive iterations in an abstract fixpoint computation, the
termination of the analysis shall be enforced by the use of a widening operator. For in-
stance, it may start analyzing a loop by unrolling the first iterates and decide to give up
the unrolling at some point, so as to guarantee termination of the analysis.

The definition of a widening operator on �] is necessary when infinite or very large
sets of partitions shall be used, and when (quick) termination is required, e.g. for static
analysis. This issue would not occur in case the set of partitions was chosen once for all.

We propose to define a widening operator for �] by:

• choosing a widening ∇ �
over D]� ;

• choosing a widening ∇B over the basis;
• defining a pairwise widening over �].

Formally, the widening operator for the partitioning domain is defined by:

Definition 4.3.6. Widening for the partitioning domain.

If (T0, PT0 , Φ
]
0), (T1, PT1 , Φ

]
1) ∈ � , then, we let:

(T0, PT0 , Φ
]
0)∇p(T1, PT1 , Φ

]
1) = (T2, PT2 , Φ

]
2)

where:

• PT2 = PT0∇BPT1, so that PT0 2τ0 PT2 and PT1 2τ1 PT2;
• Φ]

2 = (Φ]
0 ◦ τ0)∇ �

(Φ]
1 ◦ τ1) (pointwise application of ∇ �

to elements of � T2 → D]�).

Indeed, this approach leads to a widening over the partitioning abstract domain, as
shown in the following theorem:

Theorem 4.3.2. Widening for partitioning domains.

The operator ∇p is a widening operator on � , in the sense of Definition 2.3.2.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

4.3. TRACE PARTITIONING ABSTRACT DOMAINS 79

Proof.

Proving Point 1 in Definition 2.3.2 is straightforward, so we consider Point 2.
Let (Tn, PTn , Φ]

n)n∈ � be a sequence elements of � , and (T ′n, PT ′n
, Φ′]n)n∈ � be defined as:

(T ′0, PT ′0
, Φ′]0) = (T0, PT0 , Φ

]
0)

(T ′n+1, PT ′n+1
, Φ′]n+1) = (T ′n, PT ′n

, Φ′]n)∇p(Tn, PTn , Φ]
n)

Then:
• by definition of the widening over the basis ∇B, the element of the basis stabilizes

after finitely many iterations: ∃n ∈ �
, ∀m ∈ �

, m ≥ n =⇒ PTm = PTn .
• if we consider the subsequence (T ′m, PT ′m

, Φ′]m)m∈ � ,m≥n, then ∀m ≥ n, T ′m = T ′n ∧
PT ′m

= PT ′n
; and the sequence (Φ′]m)m∈ � is a widening sequence in � T ′n

→ D]� ; � T ′n
is

finite and ∇ �
is a widening over D]� , therefore this sequence is ultimately stationary.

This proves that the sequence (T ′n, PT ′n
, Φ′]n)n∈ � is ultimately stationary; hence, ∇p is a

widening operator over � .
Â

Again, our widening operator can be compared with a widening operator on a cofibered
domain [Ven96]. Basically, a widening operator for � should stabilize the basis first (i.e.,
enforce the termination of the partition refinement process), and then stabilize the image
in the abstract domain D]� ; therefore, an alternate definition for ∇p would delay the

widening in D]� until the element of the basis reaches a limit.
The definition of widening operators for partitioning domains, allowing dynamic par-

titioning was first proposed in [Bou92]: the purpose of this setup was to compute approx-
imation of numerical functional graphs based on a reduced cardinal power [CC79]. The
principle of this abstraction was to map the elements of a partition of the set of inputs
into an over-approximation of their image; refining this partition during the analysis was
made possible by a widening operator over partitions.

4.3.4 Denotational Style Partitioning Static Analysis

The design of static analyzers as abstractions of the denotational semantics of statements
was proposed in Section 3.2.5. In particular, we showed that this design allows for nat-
ural and efficient iteration strategies. Therefore, we propose to adapt this scheme to
partitioning analyses.

Partitioning denotational semantics: First, we apply the “from point to point” de-
notational abstraction αtF [l`,la].

More precisely, we consider in this subsection an extended system PT , such that P 0τ

PT , and let l`, la ∈ � . The concrete denotational semantics from l ` to la maps an “input”
state at l` to the set of possible “output” states at l a. Hence, the denotational semantics
in the extended system should map tuples made of a partitioning token and a store into
similar tuples:

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

80 CHAPTER 4. A FRAMEWORK FOR PARTITIONING TRACES

Definition 4.3.7. Partitioned denotational semantics.

We define the abstraction function αtF � [l`,la] : P(Σ) → ((� × �) → P(� × �)), where
αtF � [l`,la](E) is defined by:

αtF � [l`,la](E) : (� × �) → P(� × �)
(t`, ρ`) 7→ {(ta, ρa) | ∃σ ∈ E , σ = 〈((l`, t`), ρ`), . . . , ((la, ta), ρa)〉}

We write γtF � [l`,la] for the corresponding concretization function.

Last, the partitioned denotational semantics is αtF � [l`,la](JPT K
p).

Static, abstract partitioning denotational semantics: The denotational-style static
analyzer of Section 3.2.5 was derived as an abstraction of the denotational semantics;
therefore, we propose to derive a static analyzer for the partitioned system in the same
way. However, we should note a slight difference: in Definition 4.3.7, an initial state
consists in a pair made of a partitioning token and a store. Hence, the abstract semantics
follows the same scheme:

Definition 4.3.8. Partitioned abstract denotational semantics.

We write D]� ,
� for T → D]� . A function JPT K

]� [l`,la]
: D]� ,

� → D]� ,
� is a sound abstract

semantics of PT , between l` and la if and only if:

∀(t , ρ), (t ′, ρ′) ∈ � × � , ∀dp ∈ D]� ,
�

ρ ∈ dp(t)
(t ′, ρ′) ∈ αtF � [l`,la](JPT K)(t , ρ)

}
=⇒ ρ′ ∈ JPT K

]� [l`,la]
(dp)(t ′)

In this sense, JPT K
]� [l`,la]

should be an approximation of the denotational semantics
introduced in Definition 4.3.7.

The partitioned denotational abstract semantics is sound with respect to the standard
semantics of the initial system:

Theorem 4.3.3. Soundness of the static partitioning analysis.

Let (T, PT) ∈ B such that (Tε, Pε) 2τ (T, PT).

Let dt ∈ D]� ,
� , (t , ρ) ∈ � × � such that ρ ∈ dt(t). Moreover, we let ρ′ ∈ αtF [l`,la](JP K)(ρ).

Then, there exists t ′ such that:

ρ′ ∈ JPT K
]� [l`,la]

(dp)(t ′)

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

4.3. TRACE PARTITIONING ABSTRACT DOMAINS 81

Proof.

The above result follows from the soundness of the control partitioning (Theorem 4.3.1)
and the soundness of the abstract semantics JPT K

]� [l`,la]
(Definition 4.3.8).

Â

In practice, an abstract semantics JPT K
]� [l`,la]

is defined in a similar way as the abstract
semantics of statements described in Section 3.2.5, and in Figure 3.3.

Moreover, we can remark that the abstract semantics JPT K
]� [l`,la]

may postpone the
computation of abstract joins so as to approximate two sets of control flows in distinct
partitions. This ability allows in many cases for a greater precision (even if a local im-
provement in precision does not always guarantee a global improvement, since several
abstract operators including widening usually are not monotone).

Example 4.3.2. Denotational style abstraction of a if-statement.

We consider the program introduced in Example 4.2.1. In particular, this program is
equivalent to the transition system P0, displayed in Figure 4.3(a). We consider the parti-
tion defined by the system P1 (Figure 4.3(b)): the analysis partitions the traces depending
on the branch of the if-statement they visited until point l4 (the partitions are merged at
this point).
We present the static analysis of various statements in this piece of code (the analysis
is carried out on P1) and show what kind of inputs (resp. outputs) are accepted (resp.
produced) by the abstract semantics of each statement in the program:
• statement s1 (true branch of the conditional): the only partitions before and after

this statement is t1, to Js1K
]� [l1,l3] is a function:

Js1K
]� [l1,l3] : ({t1} → D]�) −→ ({t1} → D]�)

(the analysis propagates the partition t1);
• statement s2: dual of s1;
• conditional structure (statement s = if(e) s1 else s2): it splits the partition t0 into

two sets of traces corresponding to t1 and t2; hence, JsK]� [l1,l3] is a function:

JsK]� [l1,l3] : ({t0} → D]�) −→ ({t1, t2} → D]�)

• statement s3 (statement right after the conditional): it inputs two partitions cor-
responding to t1 and t2 and outputs similar partitions; however, the partitions are
merged right after the analysis of the statement (at point l4), so we can write down
Js3K

]� [l3,l4] as a function:

Js3K
]� [l3,l4] : ({t1, t2} → D]�) −→ ({t0} → D]�)

• the whole program inputs and outputs only one partition, corresponding to t0, so its
abstract semantics is a function:

JP1K
]� [l1,l3] : ({t0} → D]�) −→ ({t0} → D]�)

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

82 CHAPTER 4. A FRAMEWORK FOR PARTITIONING TRACES

Making the partitioning dynamic: The above definition introduces a static form
of partitioning: the analysis of the statement may not change the partitions, e.g. by
refining the system. Therefore, we propose a new definition for an abstract semantics for
statements, which may refine the partitions.

First, we define a new partitioning abstract domain for approximating sets of stores
and partitions:

Definition 4.3.9. Domain for dynamic partitioning.

An element of the domain is a tuple (T, PT , dT), where:
• T ∈ � ;
• PT is a complete covering (T, � i

T ,→T) of the initial system P ;
• dp ∈ D]� ,

� is such that ∀t ∈ � \ T, dp(t) = ⊥.

We write D]
δ � ,

� for this domain; the ordering is the pointwise extension of the orderings

on the basis and on D]� .

The latter condition ensures that dp assigns invariants to “relevant” tokens only: the
invariant corresponding to a token not in T (i.e., not in the current extended system) or
to a token not relevant at the current program point (such as t2 at points l1 the program
P0 introduced in Figure 4.3(a)) should be ⊥.

A partitioning abstract semantics can be defined as follows:

Definition 4.3.10. Dynamic partitioning analysis.

The abstract semantics of PT between l` and la is a function JPT K
]� [l`,la]

: D]
δ � ,

� → D]
δ � ,

�

such that, if (T, PT , dT), (T ′, PT ′ , dT ′) ∈ D]
δ � ,

� are such that (T ′, PT ′ , d
′
T ′) = JPT K

]� [l`,la]
(T,

PT , dT), then, there exists τ : T ′ → T satisfying the following conditions:
• PT ′ refines PT , i.e. PT 2τ PT ′;
• d′T ′ approximates the output of PT ′ at la when the input at l` is described by dT in the

previous system in a sound manner, which is expressed by the following condition,
where dT ′ = dT ◦ τ :

∀(t , ρ), (t ′, ρ′) ∈ � × � ,
(t ′, ρ′) ∈ αtF � [l`,la](JPT ′K)(t , ρ)
ρ ∈ dT ′(t)

}
=⇒ ρ′ ∈ d′T ′(t ′)

Note that the soundness of the “abstract transfer function” in the second of point of
Definition 4.3.10 is expressed in the refined system: the input invariant dT is refined into
dT ′ first, and then the abstract transition is performed in T ′.

This abstract semantics is sound as well:

Theorem 4.3.4. Soundness of the dynamic partitioning analysis.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

4.3. TRACE PARTITIONING ABSTRACT DOMAINS 83

Let (T, PT) ∈ B such that (Tε, Pε) 2τ (T, PT). Let dt ∈ D]� ,
� , (t , ρ) ∈ � × � such that

ρ ∈ dt(t). We write (T ′, PT ′ , d
′
T ′) for the result of the analysis JPT K

]� [l`,la]
(T, PT , dT).

Moreover, we let ρ′ ∈ αtF [l`,la](JP K)(ρ). Then, there exists t ′ such that

ρ′ ∈ d′T ′(t ′)

Proof.

The above result follows from the soundness of the control partitioning (Theorem 4.3.1)
and the soundness of the abstract semantics JPT K

]� [l`,la]
(Definition 4.3.10).

Â

Again, the core of the soundness of the analysis lies in the definition of the abstract
transformers in the refined transition system, which should soundly approximate the par-
titioning of the transitions of the original system.

Example 4.3.3. Denotational style abstraction of a if-statement.

Example 4.3.2 demonstrates the analysis of a conditional statement, based on a static
partitioning of P0 into P1.
In the case of dynamic partitioning, the main difference is that, before the analysis of the
conditional, the system under consideration is P0 and that the analysis refines P0 into P1

at point l1 (beginning of the conditional). After this refinement, the book-keeping of the
partitions is the same as in Example 4.3.2.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

84 CHAPTER 4. A FRAMEWORK FOR PARTITIONING TRACES

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

Chapter 5

Control-based partitioning

In this chapter, we describe the implementation of a domain for control flow-based trace
partitioning inside the Astrée analyzer, and we provide experimental evidence of the
efficiency of the approach. This domain is enabled in all analyses, so as to improve the
precision of Astrée. We provide a few examples as well, so as to show how partitioning
contributes to improving the partition.

We give a quick description of the Astrée analyzer in Section 5.1. Section 5.2 de-
scribes the analysis, by instantiating the framework introduced in Chapter 4 and providing
abstract transfer functions for the partitioning and merging of traces. Section 5.3 pro-
vides facts about the implementation (in particular, about the strategies used in order
to determine when to perform partitioning); it concludes with experimental results and a
comparison with related work.

5.1 The Astrée Analyzer

Astrée is an academic static analyzer developed in the École Normale Supérieure and
in the École Polytechnique by Bruno Blanchet, Patrick Cousot, Radhia Cousot,
Jérôme Feret, Laurent Mauborgne, Antoine Miné, David Monniaux and myself.
The Astrée static analyzer aims at proving the absence of runtime errors in large, em-
bedded programs, written in C [ANS99]. Various aspects of the Astrée static analyzer
were described in [BCC+02, BCC+03a, CCF+05]. A user manual was written as well
[BCC+03b].

5.1.1 The Programs Analyzed by Astrée

The development of the Astrée analyzer started in fall 2001. Early positive results
were reported in early 2002, with the analysis with 0 false alarms of some 10 000 LOCs
example program.

At this point, the analyzer was designed in order to analyze large embedded applica-
tions, written in C. The main specificities of these programs are:

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

86 CHAPTER 5. CONTROL-BASED PARTITIONING

• the large size: up to more than 100 000 LOCs, and 10 000 global variables;
• the control structure: these programs implement synchronous applications trans-

lated into C programs. For more information about synchronous programming, we
refer the reader to the definition of the synchronous languages Lustre [HCRP91], Es-
terel [BG92], and Signal [ABG95]. More precisely, they consist in a large loop, which
should be executed every t milliseconds. For each iteration of the main loop, some
routines read a large set of inputs, perform computations involving both the inputs
and some state variables storing the state of the system and send some outputs:

while(true){
HLoop executed every t msI

HRead inputs from sensorsI
input(xin); input(yin); . . .

HComputation of the new internal stateI
X0 = . . . ; X1 = . . . ;

HSending of outputsI
xout = . . . ; yout = . . . ;

}

• the floating point computations: most of the routines involve floating point com-
putation, including linear filtering, non linear control with feed-back, interpolations
from input values, limiters, conversions into/from integer values and bit fields...
• the large number of conditions, and control flow stored in boolean vari-

ables: a large number of boolean variables store the state of the system and greatly
impact the control flow in the body of the main loop (e.g., initialization and reset
variables, raising edge detectors...).

These specificities led to crucial implementation choices, so as to ensure scalability first;
and then, to refine the analysis whenever a false alarm was discovered. This strategy
allowed us to discover the nature of the predicates required for inferring precise invariants
of these families of programs and then, to implement the adequate abstract domains.
Whenever the addition of a new domain was required, we strove to maintain the scalability
of the analysis.

This approach allowed us to report on the successful analysis of a large part of the
Airbus A340 aircraft fly-by-wire device in 2003. Several versions of the next generation of
fly-by-wire systems (developed for the Airbus A380 aircraft) were successfully analyzed in
2004 and 2005. A more detailed report of the performances of Astrée will be provided
in Section 5.3.3.

At the time of the writing of this thesis, other families of programs are being considered
as well.

5.1.2 The Purpose of the Analysis

The purpose of the analysis is to discover all possible runtime errors (i.e., failed operation
causing the computer to crash or to switch to an abnormal state), detailed below. Of

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

5.1. THE ASTRÉE ANALYZER 87

course, Astrée over-approximates the behaviors of the program being analyzed; there-
fore, it may report false alarms, i.e. Astrée may report not being able to prove the
correctness of some critical operation, despite no real execution crashes at this point. In
case Astrée raises no alarm after analyzing a program, then the program can be con-
sidered safe in the sense that it should neither crash nor produce an erroneous value at
runtime. Of course, this conclusion depends on the soundness of the analyzer and on the
correctness of the assumptions made about the system (including, compliance to the C
semantics [ANS99], to the choices made compiler, correctness of the assumptions made
about the input values such as their range...).

The ultimate goal in the design of the analyzer is to reduce the number of false alarms,
while preserving the efficiency of the analysis. In case the analysis generates some alarms,
the program may be erroneous or the alarms may be due to the approximation inherent
in the static analysis. Therefore, all alarms should be investigated. Part III deals with
the investigation of the alarms.

The purpose of Astrée is to discover any possible runtime error, where the definition
of “runtime error” collects the following cases:
• fatal errors and undefined behaviors in the sense of the ANSI’99 C semantics

[ANS99], including memory errors (e.g., array index out of bounds), integer division
by 0. Some architecture dependent behaviors may not be considered errors (then,
the analyzer should comply with the specification of the target architecture, and of
the compiler). The issue of under-specified behaviors and their classification as errors
or defined behaviors according to the choices relative to a given implementation was
discussed in Section 2.2.6.
• generation of infinite floating point values (floating point overflows) or of the

“Not-A-Number” floating-point value (e.g., after a division 0/0).
• non-compliance with programming guidelines, which forbid, e.g. the overflow

of short integer variables out of the rangle [−32 768, 32 767], even though the result
may be well-defined on some specific platform: for instance, if short integers values
are stored in 32-bits registers during computations, then a value resulting from an
overflow may be exactly representable, so the behavior of the system may not be
affected.
• failure to prove the correctness of a user-defined assertion.

It follows from the success of the analysis of a program that the only possible interrupts
are clock ticks, which is an essential requirement for the safety of synchronous programs.

5.1.3 The Analyzer

Overall structure of the analyzer: A run of the Astrée analyzer consists in a
sequence of phases:

1. Preprocessing and preparation of the analysis:
• parsing, and merging of programs implemented in multiple files: this phase

produces a very low level syntax tree, without explicit types;

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

88 CHAPTER 5. CONTROL-BASED PARTITIONING

• typing and synthesis of a higher level syntax tree, for a limited, yet rather
large subset of ANSI C 99 [ANS99] (for instance, some peculiar C-initializers
are rejected at this stage);
• code simplification, including constant propagation à la Kildall [Kil73] and

the removal of dead statements;
• verification of the semantic definition of the code independently from

the evaluation order (since the [ANS99] norm leaves the evaluation order
implementation undefined): more precisely, we check that the order side effects
are performed in should not depend on the C compiler; this property is crucial
for the analysis to be free of any assumption on the order of evaluation (the
analyzer cannot simulate all different execution orders);
• inclusion of analysis directives, which should guide the analysis of the

code, either by suggesting hints to the relational abstract domains about what
packs of variables relations should be computed for (aka, “packing strategy”),
and partitioning directives (we discuss the insertion of partitioning directives
in Section 5.3.2;
• translation into a last internal representation, with all expressions “flat-

tened”: at this point, there should be no control flow in expressions (i.e., lazy
logical operators, conditional evaluations) containing side-effects; moreover,
function calls are expanded into sequences of atomic operations;

2. Analysis and output of the results:
• initialization of the abstract domains, following the parameterization of the

analyzer;
• analysis, i.e. computation of invariants for the program, following Section 3.2.5;
• checking of the safety of the critical operations, in the check phase of

the iteration;
• optional export of invariants into files.

A large number of options allows to tune the analysis (by enabling or disabling abstract
domains, tuning the iteration strategy, asserting assumptions about the end-user seman-
tics, e.g. about the under-specified behaviors, as suggested in Section 2.2.6), to configure
the parallel mode or disable it, the output of the analyzer (verbosity of the text mes-
sages, enabling or disabling of warnings for some alarms), the export of invariants (by
selecting what domains and what control states information should be exported for), the
pre-processing steps and to require the analyzer to produce various debug outputs.

A separate tool provides an interface for visualizing invariants (it requires the invariants
being exported into a file in the end of the analysis).

The iterator: The iterator is designed in the denotational style presented in Sec-
tion 3.2.5. However, the analysis of a statement outputs not only an invariant but also
some reports for the alarms (in case the analyzer does not prove the execution of the
statement is safe) during the last iteration of the analysis (check mode), and it also allows
to store local invariants to the disk (producing a result similar to those of the interpreter

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

5.1. THE ASTRÉE ANALYZER 89

presented in Section 3.1.2).
Hence, the interpreter function carries out several parameters, which impact greatly

the iteration strategy and the application of the transfer functions:
• a flag indicates the iteration mode, i.e. whether or not the analyzer should check

the safety of critical operations and report alarms (in the case of a loop, the ana-
lyzer should not do so before it computes an over-approximation of the semantics
of the loop; hence, only the last iteration is performed in “check” mode) —this it-
eration scheme with two modes Iter and Check follows the principle described in
Section 3.2.5;
• some flags describing the state of the iterator; in the case of the analysis of loops, they

guide the widening strategy and the definition of transfer functions (e.g., reductions).

The abstract domains: Astrée is based on a large collection of abstract domains.
The core of the abstract domain aims at approximating sets of stores in a similar way
as D]� in Section 3.1.1. In fact, this domain is split into two parts: a structure domain
describes a mapping of concrete program variables into abstract memory cells, and a
relational domain, which approximates sets of functions from abstract memory cells into
values. This abstraction is performed after the following abstractions:

1. partitioning abstraction of traces, as explained in this Chapter;
2. abstraction of forward branching flows, following a principle based on continuations

semantics: an abstract element encloses not only the current abstract flow, but also
abstract branching flows, together with the labels they are branching to (function
exit, control state after a cases-statement, exit of a loop...).

The numerical abstract domain is built as a reduced product of a series of domains; each
of them allows to express specific kinds of constraints:
• the interval domain [CC77] collects range constraints of the form:

x ∈ [a, b]

All safety properties of interest (except user defined assertions) can be expressed
with such invariants; however, this domain does not allow for precise invariants to
be inferred.
• the octagon domain [Min01] expresses relations of the form

±x± y ≤ c

This domain allows for relational invariants to be computed for pieces of code im-
plementing limiters, computing an absolute value...
• a dedicate domain performs the translation of arithmetic expressions into interval

linear forms [Min04], i.e. expressions of the form
∑

k Ik · xk, where for all k, Ik is
an interval and xk a variable. This domain has several purposes:

– allowing the transfer functions of relational domains like octagons to be used,
even in the case of complex expressions;

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

90 CHAPTER 5. CONTROL-BASED PARTITIONING

– taking rounding errors into account in the abstract interpretation of floating
point expressions.

• a symbolic domain [Min06] collects symbolic equalities relations among variables,
which can be used so as to perform a reduction of the abstract values of other
domains;
• a domain for the analysis of filters [Fer04b] represents predicates useful for

proving the stability of filters. For instance, in the case of a second order filter,
the value of xn of x at iteration n is computed from the previous values using a
formula like xn = a ? xn−1 + b ? xn−2. If the filter is stable, we would usually be able
to prove that any pair made of two successive values lies in an ellipsöıd. However,
when this proof needs to be performed automatically, it may require the use of
polyhedra with a large number of faces (very costly abstraction, complex transfer
functions); therefore, a specific domain represents ellipsöıd predicates explicitly and
detects filters.
• a domain of arithmetic geometric progressions [Fer04a] allows to bound slowly

diverging floating point computations, so as to prove that they do not diverge after
a long (yet not infinite) execution.
• a domain of boolean relations using the principles of BDDs [Bry86] in order to

express relations among boolean variables and mixed relations (relations among
boolean and arithmetic variables). In the latter case, the elements of the domain
consist in trees with boolean relations at the nodes and numerical relations at the
leaves.

Implementation: Most of the analyzer is written in Objective Caml [OCa]; however,
it uses a few libraries written in C. At the time of the writing of this thesis, it amounts
to 70 000 lines of Objective Caml and 9 000 lines of C code (mainly, the octagon library,
and some low level routines used for setting the rounding mode).

It is noticeable that the soundness of the analysis does not depend on the architecture
the analysis is performed on: at this time, Astrée has been successfully used on a large
number of architectures, including Intel Pentium, AMD 64, Sun UltraSparc, and Power-
PC architectures, running various operating systems including Linux, Unix, Microsoft
Windows and Mac OSX.

We provide detailed results about performances in execution time, memory usage, and
precision in Section 5.3.3.

5.2 Partitioning Analysis

We now introduce the trace partitioning domain integrated in the Astrée analyzer,
together with some examples showing how it contributes to improving the precision.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

5.2. PARTITIONING ANALYSIS 91

5.2.1 Partitioning Criteria

First, we list the criteria for trace partitioning in Astrée :

1. Partitioning of conditional structures, by delaying the merge of flows after the
end of the conditional;

2. Partitioning of loop structures, by distinguishing the first iterations in the
analysis of the loop body and delaying the merge of flows after the end of the loop.
This criterion allows for:
• more precise invariants to be derived in the first iterations, thanks to unrolling;
• relations between numbers of iterations and values to be inferred and used after

the loop, thanks to the delayed abstract join;
3. Partitioning guided by the value of a variable x at some point l (the partitions

are computed at point l and not modified by an assignment to x): this partitioning
is similar to a case analysis based on the value of a variable (this partitioning scheme
is most useful when dealing with weak updates, and array accesses);

4. Inlining of functions (as suggested in Section 4.1.1);
5. Merge of partitions: the cost of successive creations of partitions would be pro-

hibitive in practice. For instance, the partitioning of a conditional structure multi-
plies by 2 the number of partitions in the current flow, so a series of n conditional
structures would lead to a 2n blow-up, which is not acceptable (no scalable analy-
sis can afford an exponential cost). Therefore, we avail ourselves the possibility of
merging together useless partitions (i.e. partitions which are not expected to lead
to further improvements in precision), in any order.

Some of these cases could be handled by rewriting the code. This approach is depicted
in Figure 5.1(a), in the case of the partitioning of a conditional structure (case 1), as
suggested in Example 4.2.1: the statements following the conditional are duplicated in
the end of both branches. Case 2 (loops) and case 4 (function inlining) could be handled
in a similar manner. For instance, Figure 5.1(b) displays the rewriting equivalent to the
unrolling of the first iteration of a loop.

However, we show in Section 5.2.3 that the design of a trace partitioning domain was
preferable, so that finer partitions can be handled.

5.2.2 Application of Trace Partitioning

Before we set up the partitioning domain, we provide a few examples, so as to show how
the main criteria for partitioning introduced in Section 5.2.1 are useful, in Astrée.

Linear interpolation function, via indirection arrays: We consider the case of the
interpolation function flin described in Figure 5.2 first.

The body of this function determines what formula should be used by localizing in
what range x can be found, using a loop and an array of input values. Then, two arrays
contain the coefficients which should be used in order to compute the value of flin(x).

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

92 CHAPTER 5. CONTROL-BASED PARTITIONING

l0 : if(e){
l1 : s1

}else{
l2 : s2

}
l3 : s3

l4 : . . .

−→

(l0) : if(e){
(l1) : s1;
(l3) : s3

}else{
(l2) : s2;
(l3) : s3

}
(l4) : . . .

(a) Partitioning of a conditional

l0 : while(e){
l1 : s0;
l2 : }
l3 : s1;
l4 : . . .

−→

(l0) if(e){
(l1) s0;
(l0) while(e){
(l1) s0;
(l2) }
(l3) s1;
(l4) }else{
(l3) s1;
(l4) }
(l4) . . .

(b) Loop unrolling

Control states in parentheses denote partitioned control states.

Figure 5.1: Code rewriting

Clearly, the output of this function is bounded: ∀x, flin(x) ∈ [−1, 2].

However, inferring this most precise range is not feasible with a standard interval
analysis, even if we partition the traces depending on the values which i may take at
point l3. Let us try with −100 ≤ x ≤ 0: then, we get i ∈ {0, 1} at point l3. The range for
y at point l4 is [−0.5 + 0.5× (−100.),−0.5] = [−50.5,−0.5] (this range is obtained in the
case i = 1; the case i = 0 yields y = −1). Accumulating such huge imprecisions during
the analysis may cause the properties of interest (e.g. the absence of runtime errors or
the range of output values) not to be proved. We clearly see that some relations between
the value of x and the value of i are required here.

Our approach is to partition the traces according to the number of iterations in the
loop. Indeed, if the loop is not iterated, then i = 0 at point l3 and x < −1; if it is iterated
exactly once, then i = 1 at point l3 and −1 ≤ x ≤ 1 and so forth. This approach yields the
most precise range. Let us resume the analysis, with the initial constraint −100 ≤ x ≤ 0.
The loop is iterated at most once and the partitions at point l3 give:

• 0 iteration: i = 0; x < −1; y = −1
• 1 iteration: i = 1; −1 ≤ x ≤ 0; −1 ≤ y ≤ −0.5.

Therefore, the resulting range is y ∈ [−1,−0.5], which is the optimal range (i.e. exactly
the range of all the output values that can be observed in concrete executions starting
with −100 ≤ x ≤ 0).

This optimal result is obtained thanks to a partitioning of the traces by the number
of iterations in the loop. The partitions can be merged after the output of the function,
since they should not result in any further gain in precision.

Linear interpolation function, via discretization: The second example consists in
another kind of interpolation function: the input value is discretized, and then a formula

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

5.2. PARTITIONING ANALYSIS 93

PSfrag replacements

x

y

0

1

1
y =

−1 if x ≤ −1
−0.5 + 0.5× x if − 1 ≤ x ≤ 1
−1 + x if 1 ≤ x ≤ 3
2 if 3 ≤ x

(a) Function

l0 : int i = 0;
l1 : while(i < n && x > tx[i + 1])
l2 : i ++ ;
l3 : y = tc[i]× (x− tx[i]) + ty[i]
l4 : . . .

tc = {0; 0.5; 1; 0}
tx = {0;−1; 1; 3}
ty = {−1;−0.5;−1; 2}

(b) Implementation

Figure 5.2: Linear interpolation, via indirection arrays

depending on the discretized value is applied to it. More precisely, if |x| = n, and f is the
function to approximate, then the interpolation flin returns f(n) + (x − n) × (f(n + 1) −
f(n)). From the mathematical point of view, it is a particular case of the interpolation
function considered in the previous paragraph, where the values stored in the array tx are
successive integer values. In the example presented in Figure 5.3, the array ty is such that
ty[n] = f(n). Any interpolation based on a regular partition of a bounded range could
be implemented in a similar way, by applying a linear function to the argument so as to
recover a partition of the form 0, 1, . . . , n.

We found that this kind of interpolations were rather common, e.g. for approximating
trigonometric functions. For the same reason as in the case of the previous interpolation
function, the computation of a precise range for the output of flin requires some precise
relation between n and x.

However, the possible values for n cannot be related to distinct control flow paths;
therefore, we propose to perform a partitioning guided by the value of n computed at l1.
Doing the same partitioning at point l2 would not allow for relations between x and i to
be obtained.

5.2.3 The Domain

Need for a trace partitioning domain: As we pointed out in Section 5.2.1, some
of the partitioning configurations could have been carried out by rewriting the code.
However, we enumerate a number of reasons in favor of the design of a real domain.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

94 CHAPTER 5. CONTROL-BASED PARTITIONING

PSfrag replacements

x

y

0 1 2 3 4 5

if n ≤ x < n + 1, where n ∈ �
y = f(n) + (x− n)× (f(n + 1)− f(n))

(a) Mathematical definition

l0 : int n = 0;
l1 : n = castfloat→intx;
l2 : y = ty[n] + (x− castint→floatn) ∗ (ty[n + 1]− ty[n])
l3 : . . .

(b) Implementation

Figure 5.3: Linear interpolation function, via discretization

First, the “syntactic transformation” approach is limiting. In particular, it
would not allow to represent and handle large sets of partitions in the same way as a
dedicate domain would:

• a domain allows to represent more partitions than mere syntactic rewriting, since not
all possible partitions need to be generated during the analysis despite the syntactic
approach would require to generate them all prior to the analysis;
• a syntactic rewriting of the code would be inherently static, which is not practically

compatible with very large sets of partitions. For instance, a partitioning guided
by the values of a variable may generate a huge number of partitions if the variable
may take a large number of values (e.g., thousands of values); in this case, a built-in
strategy would not perform the partitioning (by not sending the partitioning order
to the domain), whereas the decision whether to partition or not would need to be
made prior to the analysis in the case of syntactic partitioning. In this case, the
implementation of a partitioning domain allows to tune the partitioning strategy
during the analysis, so that better decisions can be taken about whether or not
some partitions should be generated.

Secondly, as we pointed out above, the partitions sometimes need to be merged
together. Currently, some strategies determine where and which partitions should be
merged (we discuss the choice of partitioning strategies in Section 5.3.2). Moreover, the
last partition created may not be the first our strategies decide to collapse, which implies
that the structure of partitions should be found in abstract elements (in particular, the
code rewriting approach would fail to offer the same level of flexibility).

Thirdly, in some cases, partitions could be created in a lazy way only not only for

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

5.2. PARTITIONING ANALYSIS 95

cost reasons, as in the following cases:

• in the case of a function call, where the function is the result of the dereference
of a pointer, the control flow can only be known at analysis time (only a crude
approximation is available prior to the analysis);
• some strategies may determine that a loop should be unrolled n times and the

analysis may prove that after m < n iterations the execution of the loop terminates;
then a syntactic unrolling would not make sense.

Last, the inspection of analysis results is easier, when the invariants can be related
to the original program, with accurate partition names (i.e., tokens in the scheme of
Chapter 4). Rewriting large pieces of code as suggested in Figure 5.1 would make the
understanding of the result of static analyses more difficult, since the user would have
to relate the invariants computed for the transformed program to the original program.
By contrast, the values of the partitioning domain should tell what partitions numerical
constraints correspond to, thanks to the partitioning tokens.

Elements: We now define formally the instantiation of the framework presented in
Chapter 4 corresponding to the criteria listed in Section 5.2.1.

Intuitively, the creation of a partition corresponds to a partitioning directive which
roughly correspond to a criterion as introduced in Section 5.2.1. We provide the formal
definition of directives in Figure 5.4(a). The name of each directive corresponds very
intuitively to a criterion listed in Section 5.2.1, except for the last one: the directive
part〈None〉 is included here for the sake of implementation only, and stands for a void
directive (we explain the use of this directive in Section 5.3.1).

The name of a partition (i.e., token corresponding to it, in the sense of Section 4.2.1)
consists in the series of the partitioning directives encountered before creating this par-
tition. We give the formal definition for tokens in Figure 5.4(b). We note that each
partitioning directive encloses a control state, which stands for the point the partition
was generated at. The directive part〈None〉 stands for a void directive, and as such, it
can be removed from tokens without changing their meaning: in other words, the equality
on tokens is defined modulo removal of void directives (i.e., part〈None〉 :: part〈If , l , b〉 =
part〈If , l , b〉).

For instance, in the case of a conditional at point l , two partitions are created right
after the testing of the condition, corresponding to the directives “true branch of the
conditional at point l ” and “false branch of the conditional at point l ”. When these
partitions are merged, these directives are removed from the names of the partitions.

As usual, we write D]� for the domain for representing sets of stores (Section 3.1.1).
In the same way as in Section 4.3.4, the domain D]� ,

� is defined as � → D]� .

Hints (or directives) in the code: A pre-processing phase inserts directives as special
commands in the source code. We do not introduce them formally here (the directives are
represented as text between braces in programs). Intuitively, directives in the code cause

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

96 CHAPTER 5. CONTROL-BASED PARTITIONING

d ::= part〈If , l , b〉 traces in the b branch of the conditional at point l
| part〈While, l , n〉 traces with exactly n iterations in the loop at point l
| part〈While, l , > n〉 traces with more than n iterations in the loop at point l
| part〈Val, l , x = n〉 traces such that x = n at point l
| part〈Fun, l , f〉 traces calling f at point l
| part〈None〉 void directive

(a) Directives (notation for directives: d ∈ D)

t ::= ε empty stack, initial partition
| d :: t ′ addition of a directive on top of t ′

(b) Tokens (t ∈ �)

Figure 5.4: Naming partitions

directives to be added in tokens (partition creation) or be deleted from tokens (partition
merge).

Widening: The set of tokens is clearly infinite, since the length of tokens as sequences
of directives is not bounded. Even in case we limit the length of tokens, the number of
tokens is very large: indeed, if we fix l ∈ � and x ∈ � , the number of directives of the
form part〈Val, l , x = n〉 is equal to the number of integer values in the language (i.e.,
in practice 232). Therefore, the termination of the analysis should rely on a widening
operator, designed as in Section 4.3.3.

In practice,

• the widening operator on the basis forbids the synthesis of arbitrary long tokens, by
preventing the generation of tokens containing two directives corresponding to the
same control point: basically, this operator interrupts the generation of partitions;
• the generation of partitions after a directive recommending the partitioning guided

by the values of a variable x is performed only if the size of the set of possible values
for x determined by the analysis is small enough (e.g., below 1000);
• the current partitioning strategy is designed so as not to keep partitions beyond the

scope they should improve the precision in; this strategy allows to merge partitions
soon enough, so that the widening operator does not need to collapse partitions
down in Astrée (widening is applied at loop heads only [Bou93]).

5.2.4 Structure of the Abstract Interpreter

As stated in Section 5.1.3, the iterator consists in a function mapping statements into
abstractions of their denotational semantics, as defined in Section 3.2.5. As a consequence,

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

5.2. PARTITIONING ANALYSIS 97

the design of the abstract interpreter follows the principle described in Section 4.3.4: the
abstract interpretation JsK] of a statement s should map a pair (PT , dT) ∈ B × D]� ,

� ,

where ∀t 6∈ T, dT (t) = ⊥ into a pair (PT ′ , d
′
T ′) ∈ B × D]� ,

� , where PT ′ is a refinement
of PT and d′T ′ is an over-approximation of the output of s when applied to the input dT

(Definition 4.3.10).
The iterator of Astrée does not keep track of the whole refined program PT . Instead,

it keeps track of the current partitions, i.e. of the tokens corresponding to a set of partitions
covering the ongoing flows:

Definition 5.2.1. Ongoing token set.

The ongoing token set corresponding to the abstract flow dT ∈ D]� ,
� is tokensT 〈dT 〉 =

{t ∈ � | dT 6= ⊥}.

This notion was implicitly illustrated in Example 4.3.2 (we described the partitioning
abstract interpretation of an if -statement).

If (T, PT , dT) is the result of the static analysis of a statement, then, the property
tokensT 〈dT 〉 ⊆ T is straightforward.

The abstract interpretation JsK] of a statement s simply maps an element dT ∈ D]� ,
�

into a second element d′T ′ ∈ D]� ,
� : all the information about the partitioning carried out

by the analysis are enclosed in the dT element.
This is a common advantage of denotational style abstract interpreters: this iteration

scheme keeps only the information which are useful for the end of the analysis and discards
the values which were useful only in the past and will not be required anymore. For
instance, we remarked that the analyzer presented in Section 3.2.5 does not need to store
invariants at every control point. The restriction to the set of tokens corresponding to the
ongoing flows is similar.

This approach is feasible, since the partitioning tokens contain all the information
about the transitions associated to them.

Last, we note that the pre-processing phase inserts hints in the code and selects this
way a family of extended systems which may be used during the analysis. As a conse-
quence, most of the partitioning decisions are made statically; the only decisions taken at
analysis time are whether or not to obey to some directives. In this sense, the partition-
ing implemented in Astrée is dynamic, but mostly determined statically; reducing the
number of choices made at analysis time simplifies the implementation.

5.2.5 Transfer Functions

We consider three kinds of transfer functions:
• the “partition creation” transfer function generate new partitions;
• the “partition merge” folds partitions together;
• the“standard” transfer functions (i.e., which are not specific to partitioning analyses

and do not modify the partitions) stand for e.g., abstract assignments, conditions...

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

98 CHAPTER 5. CONTROL-BASED PARTITIONING

“Usual” transfer function, e.g. assignment: we extend pointwisely the usual trans-
fer functions presented in Section 3.1.1 to D]� ,

� .

Partition creation: we let generate : D × D]� ,
� → D]� ,

� be the partition creation

abstract transfer function. It inputs a directive ∂ and an abstract element d ∈ D]� ,
� and

adds the directive ∂ to all ongoing tokens in d. Formally, it outputs an element d′, defined
by: {

tokensT 〈d′〉 = {(∂ :: t) | t ∈ tokensT 〈d〉}
∀t ∈ tokensT 〈d〉, d′(∂ :: t) = d(t)

Partition merge: we let merge : P(D)×D]� ,
� → D]� ,

� be the transfer function for merg-
ing partitions. It collapses partitions by removing any directive in D from the partition
names (tokens). Therefore, merge inputs a set of directives D and an abstract element
d and returns a new abstract element d′, where any reference to the directives in D are
removed. Formally, if D = {∂}, then d′ is defined by:

(∂i0 :: . . . :: ∂im) ∈ tokensT 〈d′〉 ⇐⇒

(∂0 :: . . . :: ∂n) ∈ tokensT 〈d〉
{ik | k ∈ L0,mM} = {i ∈ L0, nM | ∂i 6= ∂}
i0 < . . . < im

With the above notations, d′(∂i0 :: . . . :: ∂im) = d(∂0 :: . . . :: ∂n)

The above definition extends straightforwardly to the case where D is not necessarily a
singleton.

The soundness of an analyzer using this abstract domain follows from Theorem 4.3.4.

Example 5.2.1. Transfer functions in a partitioning analysis.

Figure 5.5 displays a simple piece of code, containing an if-statement (Figure 5.5(a)).
The pre-processing phase of Astrée includes some directives in the code, which specify
what partitions should be created. We assume that the strategies recommend to partition
the traces in the beginning of the if-statement and to merge the partitions at point l5, as
shown in Figure 5.5(b)). Here are the main steps of the analysis:
• at point l0, only one partition exists; it corresponds to the void token ε;
• when entering the if-statement, the analyzer creates two partitions corresponding

to the directives part〈If , l0, true〉 (true branch) and part〈If , l0, false〉 (false branch):
at this step it applies the transfer functions d 7→ generate(part〈If , l0, true〉, d) and
d 7→ generate(part〈If , l0, false〉, d);
• the analysis of the body of both branches involves usual transfer functions;
• at point l4, the join of the invariants corresponding to both branches should be com-

puted, so that we get an invariant d4, such that tokensT 〈d4〉 = {part〈If , l0, true〉 ::
ε, part〈If , l0, false〉 :: ε};
• at point l5 the analyzer merges the partitions together, by applying the transfer func-

tions d 7→ merge({part〈If , l0, true〉, part〈If , l0, false〉}, d).

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

5.3. IMPLEMENTATION AND EXPERIMENTAL EVALUATION 99

l0 : s0;
l1 : if(c){
l2 : s1

}else{
l3 : s2

}
l4 : s3;
l5 : s4;

(a) Initial
program

l0 : s0;
HPartition the traces in the following if statementI

l1 : if(c){
l2 : s1

}else{
l3 : s2

}
l4 : s3;

HMerge the partitions of the if statement at this pointI
l5 : s4;

(b) Program with directives added

Figure 5.5: Partitioning analysis of a if -statement: directives

5.3 Implementation and Experimental Evaluation

Last, we provide some details about the implementation of the partitioning domain, of its
use in practice (i.e., the partitioning strategies) and of the performances of the resulting
analyzer.

5.3.1 Implementation of the Domain

The data-structure: In practice, tokensT 〈dT 〉 can be considered the set of paths into
the leaves of a tree, where each edge is labeled with a directive. Therefore, trees are a
natural representation for the elements of D]� ,

� , with elements of D]� at the leaves and
with directives as labels for the edges:

Definition 5.3.1. Representation of the elements of D]� ,
� .

The physical representation of the elements of D]� ,
� is defined by induction by:

dT ::= leaf[d] where d ∈ D]� (leaf D]� element)

| node[φ] where φ ∈ D → D]� ,
� (function mapping directives into D]� ,

�)

The use of this representation is exemplified in Example 5.3.1, after we define the
transfer functions.

Remark 5.3.1. Use of the part〈None〉 directive.

In some cases, we may have to represent an invariant dT , such that t ∈ tokensT 〈dT 〉
and (∂ :: t) ∈ tokensT 〈dT 〉 (for some token t and some directive ∂). Then, the above

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

100 CHAPTER 5. CONTROL-BASED PARTITIONING

definition does not provide a way to represent the invariant corresponding to t since t
is a prefix of ∂ :: t and Definition 5.3.1 does not allow for numerical invariants to be
assigned to nodes of the trees (numerical invariants correspond to leaves only).

The part〈None〉 directive solves this problem: indeed, part〈None〉 :: t is equivalent to t ,
and a numerical invariant can be assigned to the leaf corresponding to part〈None〉 :: t .
Such configurations do not occur in the analysis; they may arise in the invariant export
(Section 5.1.3), when all local invariants corresponding to a control state l0 (possibly in
different contexts, e.g., for different function calls) should be represented together. In
particular the abstract join operator may generate part〈None〉 directives.

The transfer functions: The implementation of the transfer functions proceeds by
induction on the structure of the trees. Indeed, let us consider the three kinds of transfer
functions, which we introduced in Section 5.2.5 (in the following, we augment the names
of the transfer functions for the partitioning domain with the index �):

• Abstract binary operators, e.g. join are defined by induction on the structure
of trees.
If the join of the set of paths in both trees contains two tokens t0, t1 such that t0 is
a strict prefix of t1, then t0 is replaced with part〈None〉 :: t0 so that the result can
be represented, as explained in Remark 5.3.1.
• “Usual” transfer functions: we consider the case of the guard � : � × � ×D]� ,

� →
D]� ,

� transfer function, which inputs a condition e ∈ � , a boolean b ∈ � , and an
abstract element d and outputs an over-approximation of the stores in d which
evaluate e into b (in the case of assignments, variable forget... are similar). The
definition of guard � is based on the function guard defined over D]� :

∀e ∈ � , ∀b ∈ � ,

{
guard � (e, b, leaf[d]) = leaf[guard(e, b, d)]

guard � (e, b, node[φ]) = node[∂p 7→ guard(e, b, φ(∂p))]

• Partition creation: the partition creation abstract transfer function generate :

D ×D]� ,
� → D]� ,

� inputs a partitioning directive ∂ and an abstract element d and
pushes the token ∂ on top of the tokens. Basically, it mimics the creation of a
partition triggered by the directive ∂, which amounts to adding a node on top of
each leaf in d, with a branch indexed by ∂ in between:

∀∂ ∈ D,

{
generate(∂, leaf[d]) = node[∂ 7→ leaf[d]]

generate(∂, node[φ]) = node[∂p 7→ generate(∂, φ(∂p))]

In practice, the partition generation function takes into account the names of the
partitions, so as to create only some partitions.
• Partition merge: the transfer function merge : P(D) ×D]� ,

� → D]� ,
� inputs D ⊆

D, d ∈ D]� ,
� ; it goes recursively through the tree representing d and removes all

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

5.3. IMPLEMENTATION AND EXPERIMENTAL EVALUATION 101

occurrences of a directive in D. The implementation follows the following algorithm:

∀D ∈ P(D),

merge(D, leaf[d]) = leaf[d]
merge(D, node[φ]) = node[φ′]

where

φ′ :

∂ 6∈ D ∪ {part〈None〉} 7→ merge(D,φ(∂))

part〈None〉 7→
{

∂(part〈None〉)
t (

⊔{d at a leaf of φ(∂) | ∂ ∈ D})

The directive part〈None〉 allows to fold together some branches leaving from a node.
If all branches can be folded, then these directives can be safely removed from the
tree:

node[{part〈None〉 7→ d0}]→ d0

Example 5.3.1. Application to the partitioning of an if-statement.

We consider the program described in Example 5.2.1, with the partitioning strategy dis-
played in Figure 5.5(b). We assume that the analysis starts with a single partition (i.e.,
only one ongoing token at point l0).
As a shortcut, we write ∂t for part〈If , false, l1〉 and ∂f for part〈If , true, l1〉, and d for any
invariant in D]� . Dotted lines denote the partitions which are not generated, since the
analysis proves them empty. Figure 5.6 displays the partitions obtained when the analysis
reaches each control state in this program:
• statement s0 does not generate any new partition, so the layout of the abstract

element for l1 (Figure 5.6(a)) is the same as for l0 (Figure 5.6(b));
• the conditional causes a partitioning of the traces at l1, so two trees are created

after this point (yet, the partition corresponding to false is not created explicitly in
the true branch, since it would be empty), which are depicted in Figure 5.6(c) and
Figure 5.6(d);
• the abstract join outputs a new abstract element, with two partitions corresponding

to both sides of the conditional at point l4 (Figure 5.6(e));
• the merge of partitions is performed after the analysis of s3, so that the tree in l5

reduces to a leaf (Figure 5.6(f)) at in l0.

5.3.2 Strategies for Trace Partitioning

Implementation of a partitioning strategy: As mentioned in Section 5.1.3, a pre-
processing phase generates hints for the abstract domains, including the partitioning do-
main. Such hints specify the cases where partitions might be helpful in order to compute
more precise invariants. In the analysis phase, partitioning may or may not be performed
at these points, depending on the choice of the interpreter. Indeed, in case the pre-
processing phase recommends a partitioning guided by the values of a variable v and the

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

102 CHAPTER 5. CONTROL-BASED PARTITIONING

PSfrag replacements

d

(a) l0

PSfrag replacements

d

(b) l1

PSfrag replacements

d d

∂t ∂f

(c) l2

PSfrag replacements

d d

∂t ∂f

(d) l3

PSfrag replacements

d d

∂t ∂f

(e) l4

PSfrag replacements

d

(f) l5

Figure 5.6: Application to the partitioning of an if -statement

analyzer infers too large a range for v (i.e., the number of generated partitions would be
prohibitive), the analyzer will not perform the partitioning. Similarly, it will not create
empty partitions: for instance, in the case of a conditional statement which should be par-
titioned, if the analysis proves the condition always evaluates to true, then, the partition
corresponding to the false branch will not be generated.

Strategies for generating “good” partitions: At the time we are writing this thesis,
the design of the partitioning strategies was mostly done by Laurent Mauborgne. We
enumerate a few cases where the current pre-processing phase suggests partitions to be
generated:
• sequences of conditional statements: partitioning the traces in the first if -statement

may greatly improve the precision in the following conditional statements, if the
condition of the second if -statement depends on the content of the branches of the
first one, or if its value depends on the value of the condition of the first if -statement.
• assignment to an integer variable i used as an array index: the partitioning guided

by the value of i generates some relations with the variables in the right hand side
of the assignment and may improve the precision of the subsequent array operation,
since distinct array cells are treated separately, in a refined environment. This
criterion causes the right partitions to be generated in the case of the interpolation
function with regular discretization of the input, which we presented in Section 5.2.2,
and Figure 5.3.
• small loops assigning an integer variable i used e.g., as an array index: the unrolling

of the loop allows for the same kind of relations to be computed as in the previous
point; hence, it results in the same opportunities for gains in precision. This criterion
triggers the generation of the right partitions in the case of the interpolation function
with indirection arrays, which we described in Section 5.2.2 and Figure 5.2.

5.3.3 Experimental Results

This last subsection provides a few experimental data, which were collected when running
the analyzer on several families of programs described in Section 5.1.1.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

5.3. IMPLEMENTATION AND EXPERIMENTAL EVALUATION 103

Methodology for the benchmarks: The results below were obtained on 2 GHz Bi-
opteron machines, with 8 Gb of RAM (total) and 1 Mb of cache memory (per processor),
running Linux. All the analyses reported below used only one processor, despite Astrée

also features the ability of being ran in “parallel” mode.
The analyzer was ran on a series of programs, chosen among two families of embedded

codes, which we detail in the table below. Programs in family 1 (denoted with P 1
i) are

older, and of smaller size than programs in family 2 (denoted with P 2
i).

Program Size Functions Variables
(LOCs) Global and static Local

int float int float

P1
1 370 20 23 87 2 0
P1

2 9 500 236 35 100 835 4 8
P1

3 70 000 2 010 11 700 27 400 22 516
P2

1 70 000 1 150 71 400 8 670 11 700 5 700
P2

2 226 000 3 410 35 700 24 900 44 300 21 900
P2

3 400 000 5 680 58 700 35 500 83 400 35 100

Partitioning strategy: The following table displays the results of the partitioning
strategy. We give the total number of conditional structures, and the number of partitioned
conditional structures. We provide similar information about the partitioning of loop
structures; however, only the internal loops are taken into account here (we recall that
a program in either families consists in a main loop, which contains most of the code).
Last, we mention the number of directives recommending a partitioning guided by the
values of a variable.

Program Size Conditional Loops Value-
based

(LOCs) partitioned total partitioned total partitioning

P1
1 370 4 28 1 1 0
P1

2 9 500 18 283 1 3 0
P1

3 70 000 498 4617 3 5 112
P2

1 70 000 300 2624 106 106 0
P2

2 226 000 1805 9381 591 591 19
P2

3 400 000 2802 17562 906 916 32

Overall, partitioning directives are inserted in the case of 10 % to 20 % of the conditional
structures and for almost all internal loops. The partitioning guided by the values of
variables tend to have less importance (much fewer directives inserted, and only in the
larger applications).

Analysis with partitioning enabled: In the following T.p.I. stands for “Time per
iteration”; it corresponds to the average time spent in one iteration of the main loop

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

104 CHAPTER 5. CONTROL-BASED PARTITIONING

of the program being analyzed. This time is roughly representative of the efficiency of
the transfer functions and of the precision of the abstract control flow. The number
of iterations assesses the efficiency of the convergence. The global time of the analysis
depends both on the efficiency of transfer functions and the speed of the convergence.

Times are written in seconds (s); amounts of memory in megabytes (Mb).
The first benchmark displays the result of the analysis with the default settings: trace

partitioning is enabled and the directives are inserted by the automatic strategy, evoked
in Section 5.3.2.

Size Memory
peak (Mb)

Analysis
time (s)

Iterations T.p.I.
(s)

False
alarms

P1
1 370 45 1.96 9 0.21 0
P1

2 9 500 175 104 17 6.1 8
P1

3 70 000 636 2 818 35 80.5 0
P2

1 70 000 434 1 064 20 53.2 0
P2

2 226 000 1 533 17 035 51 334 0
P2

3 400 000 2 423 36 480 72 507 0

Global impact of partitioning: First, we compare the results of the analyses with
or without trace partitioning enabled: the table below displays the results without trace
partitioning. Note that the partitioning inherent in the function calls (function inlining)
is not affected by the disabling of trace partitioning: turning off partitioning removes the
partitioning relative to loop iterations, conditional and values of variables only.

The number in parentheses allow to compare with the default, partitioning analyses.

Size Memory peak Analysis time Iterations, T.p.I. Alarms

P1
1 370 45 (-) 1.55 (-21 %) 9, 0.17s 0 (0)
P1

2 9 500 170 (- 3 %) 87 (- 17 %) 17, 5.1s 8 (8)
P1

3 70 000 660 (+ 3 %) 1 614 (- 43 %) 35, 46.1s 750 (0)
P2

1 70 000 376 (-13 %) 921 (- 13 %) 20, 46s 443 (0)
P2

2 226 000 1 341 (- 12 %) 37 274 (+ 112 %) 282, 134s 5 402 (0)
P2

3 400 000 2 040 (- 16 %) 34 147 (- 6 %) 127, 269s 7 524 (0)

This first comparison shows the great impact of partitioning in most cases, and especially
in the case of the large applications, i.e., the programs which compare most closely with
real applications due to their size and structure. The first two programs are experimental
programs, which do not comprise all the features of the largest applications and involve
smaller chains of computations, so the trace partitioning does not impact the number of
alarms. Yet, the invariants are noticeably less precise, even in the case of the first example.
The analyses of larger, real-world applications generate dramatic number of alarms: trace
partitioning proves a crucial technique for the success of Astrée.

Secondly, we remark that the execution time is not necessarily better when trace
partitioning is disabled. In particular, the analysis of the two largest programs require

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

5.3. IMPLEMENTATION AND EXPERIMENTAL EVALUATION 105

a much larger number of iterations when trace partitioning is turned off: this effect was
most noticeable in the case of the second program in the second family (282 iterations
instead of 52!). In fact, a lower precision may result in a longer analysis time for many
reasons related to the exploration of a larger state space:

• the widening of the analyzer attempts to stabilize variables, with a widening thresh-
old scale [BCC+03a]; therefore, if some variable cannot be stabilized to a small range
(for instance, because some property cannot be proved due to the trace partition-
ing being turned off), it goes through a longer sequence of widened ranges (when
the range of a variable is not stable, the analyzer attempts to find a larger, stable
range), before it eventually reaches the “top” value (i.e., range containing all con-
crete values). This is an explanation for larger numbers of iterations in the case of
less precise analyses.
• the control flow of the static analysis need to be more exhaustive when the precision

is worse: for instance, in the case of a conditional, a less precise input invariant
may require the analysis of both branches of the conditional whereas a more pre-
cise invariant may require analyzing only one branch, hence, require less time to
complete.

Overall, we remark that the time per iteration is lower in the case of non-partitioning
analyses and the partitioning analyses tend to require a lower number of iterations How-
ever, it is difficult to say for sure what is the most important factor: we may guess that
only the first factor plays a significant role here (longer analyses due to longer widening
chains), but we should remark that the non-partitioning transfer functions handle much
simpler data-structures. The latter factor may explain the shorter iterations as well.

Moreover, it is rather intuitive that one iteration of a partitioning analysis should
take longer than one iteration of a non-partitioning analysis; however, the cost in time
of trace partitioning (whether global analysis time or time per iteration) never turns out
prohibitive.

Last, we remark that partitioning analyses require more memory in most cases; this
result is to be expected, since partitioning analyses generate more data-structures and
handle more numerical invariants. Yet, this cost is rather reasonable, since it never goes
above 20 % (10 % average). This is mostly due to the fact that most partitioning criteria
are local: they do not yield huge sets of global partitions, thanks to the insertion of merge
directives (Section 5.2.1).

In the following, we focus on several kinds of partitioning criteria and measure their
impact on the results of the analysis.

Impact of the partitioning of conditional structures: Second, we compare the
default, partitioning analysis with analyses carried out without some partitions. The table
below reports the result of the analysis without partitioning of conditional structures.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

106 CHAPTER 5. CONTROL-BASED PARTITIONING

Size Memory peak Analysis time Iterations, T.p.I. Alarms

P1
1 370 45 (-) 1.96 (-) 9, 0.17s 0 (-)
P1

2 9 500 173 (- 1 %) 88 (- 15 %) 17, 5.2s 8 (-)
P1

3 70 000 616 (- 3 %) 5 004 (+ 76 %) 32, 156s 398 (0)
P2

1 70 000 467 (+ 8 %) 1 466 (+ 38 %) 20, 73.2s 389 (0)
P2

2 226 000 1 680 (+ 10 %) 199 500 (+ 1071 %) 290, 688s 5 190 (0)
P2

3 400 000 2 735 (+ 12 %) 187 773 (+ 415 %) 125, 1502s 5 542 (0)

The results in precision fall between the results of the partitioning analysis and the results
of the non-partitioning analysis. In the case of the largest applications, the number of
alarms is still dramatic.

In the resource usage point of view, these results are much worse than those of the non-
partitioning analysis and of the partitioning analysis. Not only the number of iterations
but also the time per iteration tend to be worse than those of the partitioning analysis
(despite simpler structures being used). At this point, we can imagine that not only the
disabling of the partitioning of if -statements caused the analyzer to go through longer
widening chains but also that it resulted in a coarser approximation of control flow.
Another possibility is that the imprecision due to the absence of partitioning after if -
statements may cause more imprecise partitions based on other criteria (loops, values of
variables) to be generated, resulting in worse performances.

Inner loops partitioning: The table below reports the result of the analysis with the
partitioning of loops disabled.

Size Memory peak Analysis time Iterations, T.p.I. Alarms

P1
1 370 45 1.96 (-) 9, 0.21s 0 (-)
P1

2 9 500 173 (-1 %) 85 (-18 %) 17, 5s 8 (-)
P1

3 70 000 596 (- 6 %) 3 928 (+ 39 %) 63, 62.3s 529 (0)
P2

1 70 000 391 (- 10 %) 12 319 (+1 058 %) 292, 42.2s 208 (0)
P2

2 226 000 1 400 (- 9 %) 14 277 (- 16 %) 75, 190s 2 954 (0)
P2

3 400 000 2 204 (- 9 %) 41 932 (+ 15 %) 115, 364s 4 017 (0)

Again, we remark that loop partitioning is crucial for the precision of the analyses in
the case of large applications, since the analysis of the four larger applications generates
hundreds or thousands of false alarms. The invariants generated for the other programs
are also significantly less precise, even though the imprecision does not cause a larger
number of alarms.

In the analysis time point of view, the same comments as above apply: in general the
number of iterations is bigger, the time per iteration is smaller. In some cases (P 2

2), the
analysis is faster; in other cases (P1

3 ,P2
1 ,P2

3) it is slower. We note that P2
1 requires a very

large number of iterations.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

5.3. IMPLEMENTATION AND EXPERIMENTAL EVALUATION 107

Impact of value-guided partitioning:

Size Memory peak Analysis time Iterations, T.p.I. Alarms

P1
1 370 45 (-) 1.58 (- 27 %) 9, 0.18s 0 (-)
P1

2 9 500 173 (-) 82 (- 20 %) 17, 4.8s 8 (8)
P1

3 70 000 682 (+ 7 %) 2 236 (+ 26 %) 33, 67.8s 563 (0)
P2

1 70 000 438 (+ 1 %) 1 335 (+ 25 %) 20, 66.7s 4 (0)
P2

2 226 000 1 550 (+ 1 %) 16 589 (- 3 %) 66, 251s 3 (0)
P2

3 400 000 2 434 (-) 26 165 (- 28 %) 64, 409s 8 (0)

The impact of partitioning guided by values is less significant than the impact of the
previous partitioning criteria, except in the case of the program P 1

3 (dramatic number of
alarms).

We report no important difference regarding to the analysis time. Yet, we note that
the more precise analysis of P2

2 requires more iterations.
Overall, it turns out extremely difficult to explain all variations in resources required

by static analyses: no rule allows to predict the speed of an analysis; and, in practice,
too many factors play a role, even though one may be able to tell in some cases what the
most important ones are.

5.3.4 Related Work

As a conclusion of this chapter about the implementation of trace partitioning in the
Astrée static analyzer, we provide some data about related work.

We can find several occurrences of refinements of the control structure in the literature
about data-flow analysis. For instance, [SP81] studied the most common approaches to
inter-procedural analyses. A finer handling of paths in control flow graphs was proposed
in [HR80]: it proceeds by integrating some information about the paths in the edges of
the control flow graph, so as to allow for a finer approximation of the control flow to be
computed. In particular, this technique was used in order to infer sets of feasible paths,
so as to allow for more precise data-flow analyses. Similarly [BGS97] determines branch
correlations so as to detect incompatible branchings and cut down the approximation of
the set of feasible paths. Our approach not only performs intuitive abstractions of the
paths, but also takes the path into account dynamically during the analysis.

The qualified flow analysis technique was extended with path profiles [BL96] in [AL98]:
profiling data should determine a set of hot paths (i.e., more frequently taken); then,
these paths can be analyzed separately, with a higher precision (no path joins). Similarly,
the express lane transformation [MR03] aims at duplicating hot paths, so as to improve
precision. However, this approach does not apply in our case. First, profiling very large
applications with very large numbers of variables does not seem a realistic solution (at
least in the analysis time point of view). Secondly, this approach analyzes all “non-hot
paths” together (i.e., with no partitioning), which would result in a low precision, with
possibly many alarms. Indeed, the precision required in the analysis of a path for proving

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

108 CHAPTER 5. CONTROL-BASED PARTITIONING

it safe is not related to how frequently it is used; therefore, our approach ignoring the
frequency of paths is more adapted to program certification.

A trace partitioning static analysis framework was proposed in [HT98]; however, this
framework does not allow for the merge of partitions. Therefore, it incurs an exponential
cost (in the number of if and while statements). Moreover, it does not allow for the
dynamic partitioning guided by the values of a variable.

Recently, a large number of path sensitive analyses were proposed and implemented
in various frameworks, such as [BR01, FLL+02] and contributed to the verification of
complex properties. However, path sensitivity is very costly in practice: we could not
apply this technique to a single iteration of the main loop of either of the programs
considered in Section 5.3.3. An interesting solution to the cost of path sensitivity (yet,
not applicable in our case) proposed in [DLS02] relies on the encoding of the property of
interest into an automaton (finite state machine): the transitions in the automaton can
be used as criteria for partitioning the paths, and a heuristic is introduced so as to merge
paths as well.

Other partitioning techniques have been introduced to cope with specific problems. For
instance, analyzing weak updates (e.g., update of array cells, where the index may take
any value in a large range) in a precise manner may require some amount of partitioning
to be performed: indeed, [GRS05] proposes a dynamic partitioning of array cells, so as
to find the right compromise between full smashing (all cells are abstracted into a same
abstract cell) and full array expansion (all cells are mapped into distinct abstract cells).
In this work, the partitioning is guided by the operations (e.g., array lookup). As a
consequence, this approach is very adapted to the analysis of specific kinds of operations
(array initialization, array copying, sorting), but does not apply to any program that
does not involve arrays. Our primary goal was to address imprecisions inherent in the
abstract join operator and not specifically to the weak updates, so we did not compare
extensively our results with those of the analysis introduced in [GRS05]. Though, a
detailed comparison of such techniques with our approach in a specific settings would be
an interesting direction for future works.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

Chapter 6

Partitioning and Synchronous
Product

We propose a second instantiation for the trace partitioning framework, which we set up
in Chapter 4. The purpose of this instantiation is to partition traces according to an
abstraction of the history of program executions defined by a collection of “events”.

This approach should allow to discriminate traces which satisfy some conditions de-
fined as an abstraction of the history of program executions (such as: condition P was
satisfied at point l0 in the previous iteration in a loop and is violated in the current
iteration) prove some functional properties of programs.

We define a collecting semantics for expressing these properties in Section 6.1; then,
we set up a framework for defining generic abstractions of this collecting semantics in
Section 6.2, in order to derive some decidable approximation of it: Section 6.3 specializes
it with automata. Section 6.4 specializes it with numerical domains.

6.1 The Partitioning

6.1.1 Motivation for a New Instantiation of the Trace Partition-
ing Framework

We proposed a framework for partitioning traces in Chapter 4 and a first instantiation
of it in Chapter 5, so as to improve the precision of static analyzers (the approach was
integrated into Astrée and contributed to the precision and efficiency of the analyses).
The purpose of this chapter is to provide a second instantiation of the trace partitioning
framework.

We wish to use partitions of traces in order to:
• discriminate sets of executions satisfying certain properties, such as“some event

occurred an even number of times” or “some property will occur during the next
iteration of some loop”. These properties cannot be expressed by the instantiation of
the partitioning framework proposed in Chapter 5, yet they can clearly be expressed

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

110 CHAPTER 6. PARTITIONING AND SYNCHRONOUS PRODUCT

using partitions of the set of traces in the sense of Chapter 4. In particular, the
constructions presented in this chapter will be thoroughly used in the definition of
semantic slicing, which we introduce in Chapter 7.
• integrate the properties of interest in the static analysis so as to let the

analyzer make more sensible abstractions, and allow the proof to succeed. This
goal was secondary, when we developed the abstractions mentioned in this chapter.
However, it seems that these abstractions could play a great role in the verification
of simple functional properties of programs by Astrée.

The trace partitioning framework of Chapter 4 is most adapted to the definition of
such a collecting semantics and of such abstractions.

The approach proposed in this chapter is related to the synchronous product of the
program to analyze with an adapted control structure: this method has been proposed
and widely used for the verification of synchronous programs [HLR93]. For instance,
[Jea03] carries out a partitioning of the boolean control structure of a product of Lustre
programs with their specification (implemented as a monitor), so as to check that the
programs abide by the specifications.

This method is very popular in model checking [EMCP02]; it allows to take the prop-
erty of interest into account during the model refinement steps and in the model checking
stage.

The purpose of this chapter is two folds:

• we wish to integrate these methods into an existing analyzer; the definition of a
trace partitioning domain turns out an efficient solution towards that goal;
• we intend to set up a collecting semantics, which takes into account a broad family

of “monitors”; the choice of the monitor amounts to choosing an abstraction of sets
of tokens (moreover, this approach allows “abstract” monitors to be defined, hence,
allows for more flexibility in the analyses).

6.1.2 Language Extension

We first extend the syntax of the simple language defined in Section 2.2 with a new
statement, called cnt. Intuitively, the cnt statements count the number of times they are
executed, and remember in which order.

First, we define the syntax and standard semantics of this new kind of statement, in the
same way as in Section 2.2.2; this standard semantics basically ignores the cnt statements.
Indeed, keeping track of the execution of cnt statements requires carrying some tokens in
the sense of Section 4.2, so that Section 6.1.3 defines a non standard semantics, so as to
keep track of the execution of the cnt statements; it will be based on extended systems.

Definition 6.1.1. cnt-statement.

The syntax of the cnt-statement is: l : cnt; l ′ :

The standard semantics of a cnt-statement is the same as the semantics of a skip state-

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

6.1. THE PARTITIONING 111

ment. For instance, the statement l : cnt; l ′ : . . . defines the following set of transitions:

∀ρ ∈ � , (l , ρ)→ (l ′, ρ)

6.1.3 Semantic Extension

As mentioned in Section 6.1.2, the semantics of the cnt-statement should keep track of
the number of times they are executed and in which order. This requires some extension
of the semantics to be defined, which amounts to choosing a suitable extended system, in
the sense of Definition 4.2.2.

We assume that a program P is chosen. First, we define a set of extended tokens:

Definition 6.1.2. Tokens.

The set of directives is D = {∂l | l ∈ � }.
The set � of tokens is made of stacks of tokens, hence is generated by the following
grammar:

t(t ∈ �) ::= ε (empty stack, initial partition)
| ∂l :: t where l ∈ � , t ∈ � (push, stack)

Intuitively, a directive records the control state corresponding to a cnt statement, and
a token collects the list of the cnt statements in the order they are executed in: ε stands for
the empty list (initial configuration); the token ∂l :: t is generated after running a l : cnt;
statement, from the configuration t . The following definition sets up the corresponding
extended transition system:

Definition 6.1.3. Extended system.

The transition relation of the extended system is defined by the following rules:
• for the counter statement l : cnt; l ′:

∀ρ ∈ � , t ∈ � , ((l , t), ρ)→ � ((l ′, ∂l :: t), ρ)

• for any other transition in the original system, if (l , ρ)→ (l ′, ρ′), then for any token
t ∈ � , ((l , t), ρ)→ � ((l ′, t), ρ′).

The set of initial control states of the extended system is � i
� = (l i, ε) (� i

� = � i
� × �).

We write P � for this extended system.

The following remark is straightforward:

Theorem 6.1.1. A complete partition.

The system P � is a τ -complete partition of the trivial extension Pε of the initial program
P , where τ : t 7→ tε.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

112 CHAPTER 6. PARTITIONING AND SYNCHRONOUS PRODUCT

Proof.

The properties listed in Definition 4.2.2 can be established straightforwardly.
Â

Example 6.1.1. Infinite loop, with cnt-statement.

Let us consider the following infinite loop:

l0 : bool b;
l1 : while(true){
l2 : cnt;
l3 : input(b);
l4 : if(b){
l5 : cnt;
l6 : }
l7 : }
l8 : . . .

We give fragments of some traces of the program and the extended system derived from
it in the table below (we show the control states only, and abstract the stores away for
the sake of concision); note that σi stands for a trace of the initial system, whereas σ ′i
denotes the corresponding trace in the extended system:

initial program P extended system P �

σ1 = 〈l0, l1, l2, l3, l4, l7,
l1, l2, l3, l4, l7〉

σ′1 = 〈(l0, ε), (l1, ε), (l2, ε), (l3, ∂l2 :: ε), (l4, ∂l2 :: ε), (l7, ∂l2 :: ε),
(l1, ∂l2 :: ε), (l2, ∂l2 :: ε), (l3, ∂l2 :: ∂l2 :: ε),
(l4, ∂l2 :: ∂l2 :: ε), (l7, ∂l2 :: ∂l2 :: ε)〉

final sequence of tokens: ∂l2 :: ∂l2 :: ε
σ2 = 〈l0, l1, l2, l3, l4, l5,

l6, l7, l1, l2, l3,
l4, l7〉

σ′2 = 〈(l0, ε), (l1, ε), (l2, ε), (l3, ∂l2 :: ε), (l4, ∂l2 :: ε), (l5, ∂l2 :: ε),
(l6, ∂l5 :: ∂l2 :: ε), (l7, ∂l5 :: ∂l2 :: ε), (l1, ∂l5 :: ∂l2 :: ε),
(l2, ∂l5 :: ∂l2 :: ε), (l3, ∂l2 :: ∂l5 :: ∂l2 :: ε),
(l4, ∂l2 :: ∂l5 :: ∂l2 :: ε), (l7, ∂l2 :: ∂l5 :: ∂l2 :: ε)〉

final sequence of tokens: ∂l2 :: ∂l5 :: ∂l2 :: ε
σ3 = 〈l0, l1, l2, l3, l4, l7,

l1, l2, l3, l4, l5, l6〉
σ′3 = 〈(l0, ε), (l1, ε), (l2, ε), (l3, ∂l2 :: ε), (l4, ∂l2 :: ε), (l7, ∂l2 :: ε),

(l1, ∂l2 :: ε), (l2, ∂l2 :: ε), (l3, ∂l2 :: ∂l2 :: ε),
(l4, ∂l2 :: ∂l2 :: ε), (l5, ∂l2 :: ∂l2 :: ε),
(l6, ∂l5 :: ∂l2 :: ∂l2 :: ε)〉

final sequence of tokens: ∂l5 :: ∂l2 :: ∂l2 :: ε

These three examples show that the tokens retain the order and the control states corre-
sponding to the cnt statements which were executed:
• in the case of σ1, the branch of the conditional is taken neither in the first iteration

nor in the second: hence, ∂l5 does not appear in σ′1;

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

6.2. ABSTRACTIONS OF THE CONCRETE EXTENSION 113

• in the case of σ2, the conditional is ran in the first iteration and not in the second:
hence, ∂l5 appears in σ′2 after the first occurrence of ∂l2 only;
• in the case of σ3, the conditional is ran in the second iteration only: hence, ∂l5

appears in σ′2 after the second occurrence of ∂l2 only.

Clearly, the number of tokens which may appear in the semantics of the extended
system is infinite. However, the static analyses defined in Section 4.3 require the number
of tokens to be finite, or at least that only a finite number of tokens is generated during
the analysis. Therefore, we propose to design abstractions for these tokens defined as
sequences of directives.

6.2 Abstractions of the Concrete Extension

6.2.1 Abstractions of the Extension

We introduce in this section an abstraction for the extended system presented in Sec-
tion 6.1.3, which proceeds by abstracting the set of tokens � introduced in Section 6.1.2.

Definition 6.2.1. Token abstraction.

A token abstraction is defined by a set �] and a function γ � : �] → P(�). A element of
�] is called an abstract token; the function γ � is called token concretization.

A token forget relation can be defined from γ � , in the like of⇒ �
τ in Remark 4.2.1. We

write (⇒γ �) ⊆ (� × t]) for this relation; it is defined by:

∀t] ∈ �], ∀t ∈ � , (t ⇒γ � t]) ⇐⇒ (t ∈ γ � (t]))

In case the abstract tokens form a partition of P(�), then, for all t ∈ � there exists a
unique t] ∈ �] such that t ∈ γ � (t]) so the relation ⇒γ � can be turned into a function.

Given an abstraction for tokens, we can design an abstract extended system as follows:

Definition 6.2.2. Abstract extended system.

An abstract extended system is an extended system P �] = (� �] , � i
�] ,→ �]) using abstract

tokens and such that P �] is a ⇒γ � -covering of P � , in the sense of Remark 4.2.1:
• ∀s ∈ � i

� , ∃s′ ∈ � i
�] , s′ ⇒γ � s;

• ∀s0, s1 ∈ � � , ∀s′0 ∈ � �] , (s0 ⇒γ � s′0 ∧ s0 → � s1) =⇒ ∃s′1 ∈ � �] ,

{
s1 ⇒γ � s′1
s′0 → �] s′1

Clearly, the abstract extended system can be systematically derived from the extended
system P � and from the definition (�], γ �) of the token abstraction. As noted above,
in case �] forms a partition of P(�), ⇒γ � can be turned into a function, so that the

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

114 CHAPTER 6. PARTITIONING AND SYNCHRONOUS PRODUCT

above definition can be based on the standard notion of covering, defined by a function
(Definition 4.2.2).

Overall, our approach proceeds by a two steps extension of the original system, as
depicted in the diagram below:

1. extension of P into the complete partition P � , so as to define the non-standard
semantics;

2. choice of an abstraction of P � , defined by an abstraction (�], γ �) of � , so as to
abstract the non-standard semantics.

P �]
1

P
non standard semantics

- P �
�]

2

-

�]
1

-

P �]
2

. . .
-

Theorem 6.2.1. Abstract extended systems as coverings.

An abstract extended system P �] is a covering of the initial system P , with respect to
the trivial projection function.

Proof.

The transitivity result in Theorem 4.2.5 applies.
Â

We now present an abstraction of the extended system defined in Example 6.1.1:

Example 6.2.1. Abstraction.

We write occurencesL∂ ∈ tM for the number of occurrences of ∂ in t .
We propose a very simple abstraction of tokens, with two abstract values:
• t]

= stands for the tokens where the number of occurrences of ∂l2 is the same as the
number of occurrences of ∂l5;
• t]

< stands for the tokens where the number of occurrences of ∂l5 is strictly smaller
than the number of occurrences of ∂l2 (t]

> is defined similarly).
Formally,

γ � : t]
< 7→ {t | occurencesL∂l5 ∈ tM < occurencesL∂l2 ∈ tM}

t]
= 7→ {t | occurencesL∂l5 ∈ tM = occurencesL∂l2 ∈ tM}

t]
> 7→ {t | occurencesL∂l5 ∈ tM > occurencesL∂l2 ∈ tM}

Basically, the elements in the partition corresponding to the token t]
= are such that the

true branch in the conditional is always taken, whatever the iteration number.
Then, the abstract extended system is defined by:

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

6.2. ABSTRACTIONS OF THE CONCRETE EXTENSION 115

• in the beginning, the number of the execution, occurencesL∂l2 ∈ tM = occurencesL∂l5 ∈
tM, since t = tε in the beginning of the execution (neither ∂l2 nor ∂l5 have been en-
countered yet);
• the transitions related to the statement l5 : cnt; l6 are the following:

∀ρ ∈ � ,

((l5, t]
<), ρ) → �] ((l6, t]

<), ρ)

((l5, t]
<), ρ) → �] ((l6, t]

=), ρ)

((l5, t]
=), ρ) → �] ((l6, t]

>), ρ)

((l5, t]
>), ρ) → �] ((l6, t]

>), ρ)

The transitions defined by the other cnt statement are similar. The other transitions
can be derived straightforwardly from the standard semantics (Section 2.2.2).

We can note that the abstract tokens form a partition of the set of concrete tokens, so
that the abstract extended system is a covering of P � defined by a function instead of a
mere relation ⇒γ � .

6.2.2 Design of the Interpreter

We now propose to extend the abstract interpreter defined in Section 3.2.5.

Abstract operations: The definition of such an interpreter requires �] to provide an
initial abstract token and an abstract counterpart for the operation which adds a directive
on top of a token.

Definition 6.2.3. Abstract initial token.

An abstract initial token is an element t]
ε ∈ �] such that ε ∈ γ � (t]

ε).

Definition 6.2.4. Abstract push operation.

An abstract push operation is a function push : �] ×D → P(�]), such that:

∀t]
0 ∈ �], ∂ ∈ D, t ∈ γ � (t]

0), ∃t]
1 ∈ push(t]

0, ∂), (∂ :: t) ∈ γ � (t]
1)

We exemplify the above definitions in the case of Example 6.2.1:

Example 6.2.2. Abstract initial token and push operation.

We let:

• t]
ε = t]

= be the abstract initial token;

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

116 CHAPTER 6. PARTITIONING AND SYNCHRONOUS PRODUCT

• push be defined by:

push : (t]
<, ∂l2) 7→ {t]

<}
(t]

<, ∂l5) 7→ {t]
<, t]

=}
(t]

=, ∂l2) 7→ {t]
<}

(t]
=, ∂l5) 7→ {t]

>}
(t]

>, ∂l2) 7→ {t]
>, t]

=}
(t]

>, ∂l5) 7→ {t]
>}

Partitioning, forward abstract interpreter: In the same way as in Section 3.2.5,
Section 4.3.4 and Section 5.2.4, we define an abstract interpreter in denotational style,
by induction on the syntax of programs. The abstract interpretation of a statement s
should be defined as usual by a function JsK] : D]� ,

� → D]� ,
� , satisfying the conventional

soundness property stating that it approximates the behavior of the statement.
We treat the case of a few statements:
• the most interesting case is of the cnt-statement, which should recompute partitions,

by applying the push function to abstract tokens:

Jl : cntK] : d 7→ λ(t]
0 ∈ �]) ·

⊔
{d(t]

1) | t]
0 ∈ push(t]

1, ∂l)}
• the case of the other statements is rather straightforward, since they do not affect

the abstract partitions; for instance, in the case of the assignment:

Jx := eK] : d 7→ λ(t] ∈ �]) · assign(x, e, d(t]))

Basically, the semantics of other statements proceeds by a pointwise extension of
the abstract operations defined in D]� .

An abstract join operator in D]� ,
� can also be defined by extending pointwisely the stan-

dard operator. In case the domain �] is infinite, a widening operator can be defined for
D]� ,

� in the same way.
The resulting analysis is sound, in the sense of Theorem 4.3.3, since the abstract

interpreter satisfies the assumption in Definition 4.3.8.

Partitioning, backward interpreter: The extension of the backward abstract inter-
preters defined in Section 3.1.2 and Section 3.3.2 is similar. The only difference is that
the abstract transfer function for the cnt-statement should be based on a counterpart for
the removal of directives from the top of tokens:

Definition 6.2.5. Abstract pop operation.

An abstract push operation is a function pop : �] ×D → P(�]), such that:

∀t]
0 ∈ �], ∂ ∈ D, (∂ :: t) ∈ γ � (t]

0), ∃t]
1 ∈ pop(t]

0, ∂), t ∈ γ � (t]
1)

This operator corresponds to the converse of push.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

6.3. AUTOMATA AS ABSTRACTIONS 117

Implementation of the partitioning domain: We implemented a generic domain
for this form of trace partitioning in Astrée, i.e. a layer (below the control-based trace
partitioning described in Chapter 5: an abstract value consists in a control-based partition
of partitions based on the cnt-statements of abstract elements in D]�) which inputs the
abstraction �], γ � as a parameter. It currently works only for finite abstractions, which
can be specified:
• by automata chosen by the user as explained in Section 6.3;
• or by numerical abstractions introduced in Section 6.4.

Possible extension with dynamic partitioning: At the time of the writing of this
thesis, dynamic partitioning was not implemented, since it has not turned out necessary
yet. In fact, the partitioning domain is largely related to the nature of the properties we
wish to express, e.g. in semantic slicing (introduced in Chapter 7), so that we do not
expect the choice of the partitions to come out of the analysis.

However, the approach presented in this Section could be extended into a dynamic
partitioning by:
• fixing a hierarchy of token abstractions for P � ;
• choosing an initial abstraction (for instance, the trivial extension of P , i.e. the

abstraction mapping any token t ∈ � into tε);
• defining an abstract semantics for the cnt-statement which may refine token ab-

straction, e.g. by creating new abstract tokens;
• implementing a widening operator, which should enforce the termination of the

token abstraction refinement process.
In the following of this chapter, we provide several instantiations for the abstract

domain �]. Despite dynamic partitioning has not been implemented yet, we propose
some domains, which may lead to powerful analyses, even though the design of adapted
widening operators remains as a major issue.

6.3 Automata as Abstractions

6.3.1 Languages and Automata

In this section, we propose to perform a simple restriction: we assume that � is finite;
hence, it is naturally equivalent to an automaton. As a consequence, the partitioning of
the traces is based on the state(s) reached in a finite automaton, by reading the word
corresponding to the tokens introduced in Definition 6.1.2.

Before we state the abstractions, we fix some notations. For a comprehensive intro-
duction to automata, we refer the reader to [Knu62].

We write � for a set of states; an automaton defines a transition relation over a subset
of � , indexed with directives in D:

Definition 6.3.1. Automaton.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

118 CHAPTER 6. PARTITIONING AND SYNCHRONOUS PRODUCT

An automaton A is a triple (� A, qi
A,ÃA), where:

• � A ⊆ � is a finite set of states;
• qi

A is the initial state;
• (ÃA) ⊆ � A ×D × � A is the transition relation.

If (q, ∂, q′) ∈ (ÃA), then we also write q
∂
ÃA q′.

Moreover, we use the standard graphical representation for automata. We write � for
the set of finite automata over the set of directives.

Definition 6.3.2. Semantics of an automaton.

Let A be an automaton (� A, qi
A,ÃA).

Each state q of A recognizes a language L[q] ⊆ � , defined by induction by the following
rules (this definition is equivalent to a least fixpoint definition):
• ε ∈ L[qi

A];

• if t ∈ L[q] and q
∂
ÃA q′, then (∂ :: t) ∈ L[q′].

We say that an automaton is adequate if it satisfies the following property:

∀q ∈ � A, ∂ ∈ D, ∃q′ ∈ � A, q
∂
ÃA q′

Intuitively, an adequate automaton should have “enough transitions” so that there is no
blocking configuration (q, t , ∂); as a consequence, any concrete token can be represented:
∀t ∈ � , ∃q ∈ � A, t ∈ L[q].

6.3.2 Abstraction Based on Automata

The abstraction: Clearly, an adequate finite automaton provides exactly the struc-
ture required for a finite token abstraction (Section 6.2.1) and an abstract interpreter
(Section 6.2.2) to be defined, as stated in the following theorem, which also defines the
automata-based abstraction:

Theorem 6.3.1. Automata-based abstraction.

Let A be an adequate automaton. Then, the following set-up defines a valid token
abstraction:
• �] = � A;
• γ � : (q ∈ � A) 7→ L[q];
• t]

ε = qi
A;

• push : ((q, ∂) ∈ � A ×D) 7→ {q′ ∈ � A | q ∂
ÃA q′}.

We write P � A � for the abstract extended system resulting from the application of the
abstraction defined by A to the extended system P � .

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

6.3. AUTOMATA AS ABSTRACTIONS 119

Proof.

The above elements straightforwardly define an abstract extended system in the sense
of Definition 6.2.2.
Â

Issues about a dynamic partitioning domain: The extension of this family of static
abstractions into a dynamic partitioning abstraction would require a widening operator
to be defined on the set � of finite automata and also a dynamic process to refine the
structure during the analysis.

One the most promising approaches to the first problem consists in tree schemata
[Mau00]. Tree schemata are designed so as to represent possibly infinite sets of trees;
moreover, they and can be extended with counters [Mau99, §5], which could be used as
the basis for defining widening operators for abstractions of sets of trees.

6.3.3 Examples

We now give a few examples of abstractions based on automata.

Control-based partitioning: Some cases of control-based partitioning described in
Section 5.2.1 can be handled with the partitioning based on automata techniques, as
shown in the following examples:

Example 6.3.1. Loop unrolling.

Let us consider the program below:

l0 : while(b){
l1 : cnt;
l2 : . . .
l3 : }

Then, the abstraction defined by the automaton below allows to perform a loop unrolling
of the first two iterations:

q0 q1 q2
∂l1 ∂l1

∂l1

Indeed, q0 stands for the traces which did not enter the body of the loop; q1 stands for
the traces which entered the loop body exactly once; q2 stands for the traces which went
through point l1 at least twice (i.e., after two or more iterations in the loop). Therefore,
the abstraction based on this automaton is adapted to the partitioning of the first iteration
of the loop in the program.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

120 CHAPTER 6. PARTITIONING AND SYNCHRONOUS PRODUCT

Example 6.3.2. Conditional partitioning.

Let us consider the program below:

l0 : s0;
l1 : if(c){
l2 : cnt;
l3 : s1

}else{
l4 : cnt;
l5 : s2}
l6 : s3;

Then, the partitioning of the traces by the branch of the if-statement they went through
can be simulated by a partitioning based on the automaton below:

q0

q1 q2

∂l2

∂l3

Indeed, q1 (resp. q2) should collect the traces which entered into the true (resp. false)
branch of the conditional.

However, the abstraction presented in Section 6.3.2 does not implement the dynamic
partitioning strategies, which we designed in Section 5.2; in particular, it is not adapted
to the analysis of value-based partitioning. Moreover, the data-structures described in
Section 5.3 allow for more efficient algorithms.

Discriminating traces: Therefore, we propose now a series of abstractions, which allow
to discriminate sets of traces achieving various properties. In this paragraph, we elaborate
on the theme of the simple loop of Example 6.3.1:

l0 : while(b){
l1 : cnt;
l2 : . . .
l3 : }

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

6.3. AUTOMATA AS ABSTRACTIONS 121

Example 6.3.3. Iterations parity.

The automaton below allows to partition the traces with the parity of the number of
iterations in the loop as a criterion:

qe qo

∂l1

∂l1

Clearly, qe (resp. qo) abstracts the executions which went through l1 an even (resp. odd)
number of times. This automaton is adequate to analyze the program displayed in Fig-
ure 4.1(b).

Example 6.3.4. Last iterations.

The automaton below allows to partition the traces so that the last two iterations are
distinguished.

q0 q1 q2

lc

∂lc ∂lc

This is particularly useful in order to analyze the behavior of a program under the assump-
tion that some event occurs in the last iteration, and to infer that some other property
holds in the previous iteration(s). Semantic slicing (Chapter 7) will exploit this kind of
abstractions, so as to characterize the states encountered in the last iterations before some
event occurs (e.g., an error).

More complex properties: Now, we come back to the example with two counter
statements, which was presented in Example 6.1.1. More precisely, we envisage a program
derived from the code in Example 6.1.1 and attempt to prove some property about it.

First, we formalize the abstraction introduced in Example 6.2.1:

Example 6.3.5. Back to Example 6.2.1.

We let A be the automaton depicted in Figure 6.1(a). Then, this automaton defines the
same abstraction as we described in Example 6.2.1 and Example 6.2.2.
Basically, a simple reachability analysis would prove that the state t]

> is useless: the
statement l2 : cnt is executed at least as often as l5 : cnt. Therefore, we could use a
more simple automaton as well, with only two states t]

<, t]
=, despite it is not adequate;

this automaton is displayed in Figure 6.1(b) (it can be used in the analysis since the token
t]
> is not generated during the analysis with the automaton displayed in Figure 6.1(a)).

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

122 CHAPTER 6. PARTITIONING AND SYNCHRONOUS PRODUCT

t]
< t]

= t]
>

∂l5

∂l2

∂l5

∂l2

∂l2 , ∂l5 ∂l2 , ∂l5

(a) Initial abstraction

t]
< t]

=

∂l5

∂l2

∂l2 , ∂l5

(b) Simplified automaton

Figure 6.1: Abstractions as automata

A simple program, with the same structure is displayed in Figure 6.2. This program
contains two counters (which we assume to have natural integer values): i is incremented
whenever l2 : cnt is executed; j is incremented whenever l5 : cnt is executed (in the
beginning, both counters are equal to 0). Our purpose is to provide an instantiation
automaton to the generic partitioning abstract interpreter defined in Section 6.2.2, so as
to prove the property:

i = j at point l1 =⇒ b is always true

Example 6.3.6. Failed partitioning analysis.

We first attempt to prove it using the automaton proposed in Example 6.3.5, after sim-
plification (Figure 6.2(c)).

We assume that the analysis resorts to the octagon abstract domain [Min01]; in fact
we mostly care about the range for i − j. We assume that the analyzer uses the trivial
iteration strategy, i.e. it computes a local invariant for li+1 after an invariant is found
for li except for the loop: after an invariant is found for l7, it re-computes an invariant
for l1. Stabilization should be observed at the loop head l1. Last we assume that the
first iterations use the t operator (so that delaying widening would not improve the final
invariant).

The table in Figure 6.3 displays the most significant first steps in the analysis (note
that local invariants are functions from tokens into numerical invariants). The invariant
would stabilize if we apply widening right after this point. After stabilization, we get the
following invariant:

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

6.3. AUTOMATA AS ABSTRACTIONS 123

l0 : bool b;
int i, j = 0;

l1 : while(true){
l2 : cnt;

i = i + 1;
l3 : input(b);
l4 : if(b){
l5 : cnt;

j = j + 1;
l6 : }
l7 : }
l8 : . . .

(a) Program

{
i = j at point l1

=⇒ b is always true
or equivalently:{

i = j at point l1
=⇒ ∂l5 = ∂l2

(b) Property

t]
< t]

=

∂l5

∂l2

∂l2 , ∂l5

(c) Initial abstraction

t]
<−1 t]

=−1 t]
=

∂l5

∂l2

∂l5

∂l2

∂l2 , ∂l5

(d) Successful abstraction

Figure 6.2: Two counters

l1

{
t]
= 7→ i− j ≥ 0

t]
< 7→ i− j ≥ 1

widening, and stabilization

l3

{
t]
= 7→ ⊥

t]
< 7→ i− j ≥ 1

stable, final invariant

l6

{
t]
= 7→ i− j ≥ 0

t]
< 7→ i− j ≥ 0

stable, final invariant

l7

{
t]
= 7→ i− j ≥ 0

t]
< 7→ i− j ≥ 0

stable, final invariant

Clearly, the analysis fails to prove the property of interest, from the beginning of the
second iteration in the loop. The reason for this failure is that all traces of the program
ending in point l3 are in the partition corresponding to t]

<; from this point, the analysis
does not distinguish a trace such that b is always true (i.e., which always went through
the true branch of the conditional) and a trace such that b is not always true (e.g., not
in the first iteration).
Therefore, another abstraction should be considered.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

124 CHAPTER 6. PARTITIONING AND SYNCHRONOUS PRODUCT

Point Invariant

l1

{
t]
= 7→ i− j = 0

t]
< 7→ ⊥ initialization

l3

{
t]
= 7→ ⊥

t]
< 7→ i− j = 1

first iteration in the loop

l6

{
t]
= 7→ i− j = 0

t]
< 7→ i− j = 1

l7

{
t]
= 7→ i− j = 0

t]
< 7→ i− j = 1

l1

{
t]
= 7→ i− j = 0

t]
< 7→ i− j = 1

abstract join

l3

{
t]
= 7→ ⊥

t]
< 7→ i− j ∈ [1, 2]

second iteration in the loop

l6

{
t]
= 7→ i− j ∈ [0, 1]

t]
< 7→ i− j ∈ [1, 2]

l7

{
t]
= 7→ i− j ∈ [0, 1]

t]
< 7→ i− j ∈ [1, 2]

l1

{
t]
= 7→ i− j ∈ [0, 1]

t]
< 7→ i− j ∈ [1, 2]

union, property lost

Figure 6.3: Sequence of iterates of a failed analysis

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

6.4. NUMERIC ABSTRACTIONS 125

Example 6.3.7. Successful partitioning analysis.

We propose a new abstraction so as to distinguish the traces such that b has always been
true but the conditional has not been ran yet in the current iteration and the other traces
(mainly at points l3, l4). The corresponding automaton is depicted on Figure 6.2(d); note
that the state t]

< is split into two states t]
=−1 and t]

<−1, with the following concretizations:

γ � : t]
=−1 7→ {t | occurencesL∂l5 ∈ tM = occurencesL∂l2 ∈ tM− 1}

t]
<−1 7→ {t | occurencesL∂l5 ∈ tM < occurencesL∂l2 ∈ tM− 1}

We sketch the analysis in the table presented in Figure 6.4. The invariant would stabi-
lize if we apply widening right after this point. After stabilization, we get the following
invariant:

l1

t]
= 7→ i− j = 0

t]
=−1 7→ i− j ≥ 1

t]
<−1 7→ i− j ≥ 1

invariant at the head of the loop

l3

t]
= 7→ ⊥

t]
=−1 7→ i− j = 1

t]
<−1 7→ i− j ≥ 2

l6

t]
= 7→ i− j = 0

t]
=−1 7→ i− j ≥ 1

t]
<−1 7→ i− j ≥ 1

l7

t]
= 7→ i− j = 0

t]
=−1 7→ i− j ≥ 1

t]
<−1 7→ i− j ≥ 1

Obviously, the property of interest is proved, since at l1, for t]
=, i = j.

The above example shows how the trace partitioning proposed in this chapter can be
helpful in proving user properties. The same kind of technique will also be most useful in
the case of semantic slicing, introduced in Chapter 7.

6.4 Numeric Abstractions

6.4.1 Parikh Abstraction

We propose a second family of abstractions, which are based on the number of occurrences
of each directive in a token. More precisely, if we let p denote the number of cnt-statements
in the program, each abstraction is defined by a numeric abstractions for sets of vectors
of

�
p, where a vector collects the number of times each directive was encountered.

This abstraction of tokens into vectors of integers is exactly the Parikh vector [Par66]
abstraction:

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

126 CHAPTER 6. PARTITIONING AND SYNCHRONOUS PRODUCT

Point Invariant

l1

t]
= 7→ i− j = 0

t]
=−1 7→ ⊥

t]
<−1 7→ ⊥

initialization

l3

t]
= 7→ ⊥

t]
=−1 7→ i− j = 1

t]
<−1 7→ ⊥

first iteration in the loop

l6

t]
= 7→ i− j = 0

t]
=−1 7→ ⊥

t]
<−1 7→ ⊥

l7

t]
= 7→ i− j = 0

t]
=−1 7→ i− j = 1

t]
<−1 7→ ⊥

l1

t]
= 7→ i− j = 0

t]
=−1 7→ i− j = 1

t]
<−1 7→ ⊥

union, second abstract iteration

l3

t]
= 7→ ⊥

t]
=−1 7→ i− j = 1

t]
<−1 7→ i− j = 2

l6

t]
= 7→ i− j = 0

t]
=−1 7→ i− j = 1

t]
<−1 7→ i− j = 1

l7

t]
= 7→ i− j = 0

t]
=−1 7→ i− j = 1

t]
<−1 7→ i− j ∈ [1, 2]

end of the second iteration

l1

t]
= 7→ i− j = 0

t]
=−1 7→ i− j = 1

t]
<−1 7→ i− j ∈ [1, 2]

union, beginning of the third iteration

.

l1

t]
= 7→ i− j = 0

t]
=−1 7→ i− j ∈ [1, 2]

t]
<−1 7→ i− j ∈ [1, 3]

union, beginning of the fourth iteration

Figure 6.4: Analysis with a refined set of partitions

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

6.4. NUMERIC ABSTRACTIONS 127

Definition 6.4.1. Parikh abstraction.

We let �]
P = P(D → �

) be the Parikh abstraction domain, with the pointwise ordering
(p = Card(D)).
The abstraction function γ � P : �]

P → P(�) is defined by:

γ � P : Φ 7→ {∂l0 :: . . . :: ∂ln | ∃φ ∈ Φ, ∀∂ ∈ D, Card((){i ∈ � | ∂li = ∂) = φ(∂)}

Moreover, we define:
• the abstract initial token t]

εP = λ(∂ ∈ D) · 0;
• the abstract push operation push

P
: �]

P ×D → �]
P defined by:

push
P

: ({φ}, ∂) 7→
{

λ(∂′ ∈ D) ·
{

φ(∂) + 1 if ∂ = ∂ ′

φ(∂′) otherwise

}

(Φ, ∂) 7→ {push
P
(φ, ∂) | φ ∈ Φ}

The Parikh abstraction maps any token t into a function which associates to any
directive ∂ the number of times it appears in t . The initial token t]

εP maps any directive to 0
(the abstract initial token contains no directive). The abstract push operation increments
by one the image of the token pushed in the Parikh abstraction (which corresponds to the
action of a concrete token push).

This set up straightforwardly defines an abstract extended system in the sense of
Definition 6.2.2.

6.4.2 Composing Numerical Abstractions

Definition: The second steps consists in applying a numerical abstraction to the sets
of Parikh vectors (Definition 6.4.1).

Definition 6.4.2. Vector abstraction.

Let D]� be a numeric domain, for representing sets of functions mapping directives into
integer values.

Such an abstraction trivially composes with the Parikh abstraction. In particular,
• the initial token should be an abstract value approximating t]

εP;

• the abstract push operation derives from the common assign operator (the push
operation corresponds to the incrementation of the number of occurrences of the
corresponding directive).

Examples of abstractions: Various numerical abstractions can be used as a vector
abstraction:
• k-Limiting, which amounts to replacing any value larger than some integer k with
> in the Parikh vectors (so that we get a finite domain);

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

128 CHAPTER 6. PARTITIONING AND SYNCHRONOUS PRODUCT

• Congruences, so as to express, e.g., cyclic behaviors, properties on counters, cyclic
buffers (like buffers stored in arrays).
• Affine equalities (Karr), so as to express that the number of times two events hap-

pened are equal up to some constant;
• Difference bound matrices, so as to express that the number of times event e1 hap-

pened is smaller than the number of times event e2 happened plus some constant;
At the time of the writing of this thesis, we found only k-limiting and congruences ab-
straction useful. These abstractions were used in semantic slicing (Chapter 7).

Remark 6.4.1. Widening operators.

If we use an infinite numeric domain to abstract Parikh vectors, a widening operator is
needed so as to ensure the convergence of the iteration sequences (Definition 4.3.6). Note
that this operator applies to partitions, i.e. to elements of P(D]�). As a consequence, the
definition of widening operators for such domains is a non-trivial issue.
At this time, we have not implemented such a domain yet, so this is a major area for
future work.

Comparison with the “automaton-based abstraction”: We proposed two families
of domains. The first one involves automata, and is adapted for the case of finite abstrac-
tions, known in advance. In particular, it allows to express properties about the order the
events occur in. On the other hand, the extension into a dynamic partitioning seems a
rather tedious issue, which should require completely new domains to be defined.

The second one is purely based on numerical abstractions; it forgets everything about
the order the events occur in. A finite numerical abstraction may be reduced into an
automaton as well; however, the advantage with the numerical approach is that only
the tokens which are needed, are created at analysis time, since this approach creates
abstract tokens dynamically (whereas the automata should be completely defined before
the analysis starts).

Overall, both families of domains are rather complementary, so that it seems interesting
to implement an equivalent for the reduced product (Definition 3.1.1), in the case of token
abstractions.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

Part III

Alarm Inspection and Semantic
Slicing

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

Chapter 7

Semantic Slicing

Static analyzers like Astrée [BCC+02, BCC+03a] are sound but incomplete: the results
of an analysis are provably sound, but the analysis mail fail to establish some property
P despite P holds true. The alarms produced by a static analyzer are a major issue for
end-users, since an alarm may result either from a true error or from an imprecision in
the analysis.

We propose to extract semantic slices, i.e. to characterize a subset of the trace seman-
tics of a program with abstract invariants, so as to provide a better view of the concrete
context of an alarm raised by a static analyzer. Semantic slices can be used either to
prove an alarm false or to design and check real error scenarios.

We proposed this framework in [Riv05b].
We detail the motivations for semantic slicing in Section 7.1. We describe semantic

slicing criteria in Section 7.2. Then, we provide algorithms for the extraction of semantic
slices in Section 7.3. We conclude in Section 7.4 with examples, early results in the
implementation of our technique in the Astrée analyzer and comparisons with other
techniques.

7.1 Why to Extract Semantic Slices ?

7.1.1 Incompleteness of Static Analysis: Alarms and Errors

In this chapter, we consider static analyses, which aim at proving the absence of runtime
errors such as Astrée ; yet, our algorithms could apply to other safety analyses as well.
The most favorable result a static analysis can provide is the success of the proof that
the analyzed program is safe, i.e. that it causes no runtime error whatever the inputs.
However, buggy programs exist, so one may expect errors to be found by static analyzers.

However, static analyzers usually are not complete: analyzers like Astrée cannot
compute the most precise invariant for any program, due to the imprecision inherent
in the abstraction, in the abstract operations, in the abstract join operator and in the
widening. In particular, they may fail to prove a program safe, despite the fact that it is

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

132 CHAPTER 7. SEMANTIC SLICING

not dangerous, due to excessively imprecise invariants. In this case, the analyzer will also
report an alarm.

As a consequence, alarms are a major issue for end-users. Indeed, an alarm reported
by the analyzer means that the program may be unsafe but does not prove that it is
indeed unsafe; therefore, the user needs to tell the “true” alarms from the “false” alarms,
in order to decide whether to fix the program or to consider it safe. Figure 7.1 presents
three examples of programs causing an analyzer to raise an alarm.

• Let us consider the code in Figure 7.1(a); in particular, we focus on the assertion in
the end of the program. This program is safe, since |x| > 10 ⇒ (x < −10 ∨ 10 <
x). Not all analyzers would infer this property. Indeed, proving the safety of the
assertion at l8 requires carrying out a relation among boolean and integer variables.
For instance, Astrée handles such relations, but may not infer any relation between
b, x, y, in case the relation packing strategy mentioned in Section 5.1.3 chooses not
to include these variables in a same pack; in this case, the assertion at l8 would not
be proved correct and the analyzer would raise an alarm. A very simple tuning of
the packing strategy would solve the alarm; yet, a user may need some help from
the analyzer before proposing the right hint, especially if non-specialist in static
analysis. We would also expect a refining analysis to help proving the safety of this
program.
• The program displayed in Figure 7.1(b) is not safe. Indeed, if the input at l4 is

negative, then the assertion at l5 fails in the next iteration. Obviously, an analyzer
like Astrée would report an alarm in such a case; yet, a non-experienced user may
need some more precise information in order to understand the problem and fix the
program. In particular, an error scenario would be particularly helpful in order to
understand the origin of the failure.
• For the sake of the example, we assume that machine integer values are math-

ematical integers (there are no integer overflows). Then, the program presented
in Figure 7.1(c) is safe, since it is well known that ∀x, y, z ∈ �

, ∀n ≥ 3, xn =
yn + zn =⇒ x = y = z = 0 (Fermat’s theorem, proved in [Wil95]). However, the
proof for this property is far beyond the abilities of any static analyzer at the time
we write this thesis: the proof basically required more than 300 years of research
since the theorem was stated for the first time; and it does not seem feasible to au-
tomatize such a process (note that there exist simpler proofs for small values of n,
but proving the program safe would require proving the property for any integer n,
so it amounts to proving Fermat’s theorem). Therefore, any analyzer like Astrée

would fail on this example, because the abstract domain would be limited to a set
of properties and logical formulas which does not allow expressing a proof of the
mathematical theorem involved. As a consequence, we do not intend to provide a
verification of any safe program.

The above series of examples show two cases we intend to improve the analysis of: in the
case of Figure 7.1(a), we expect to refine the analysis and show the safety of the program;
in the case of Figure 7.1(b), we wish to discover an example of error; finally, the case of

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

7.1. WHY TO EXTRACT SEMANTIC SLICES ? 133

l0 : float x, y; bool b;
l1 : input(x);
l2 : if(x > 0){
l3 : y = x;
l4 : }else{
l5 : y = −x;
l6 : }
l7 : b = (y > 10);
l8 : assert(b⇒ (x < −10 ∨ 10 < x));

(a) False alarm (absolute value)

l0 : int x, y;
l1 : x = 1;
l2 : y = 1;
l3 : while(true){
l4 : input(x);
l5 : assert(y > 0);
l6 : y = x;
l7 : }

(b) True error

l0 : int x, y, z, n;
l1 : input(x);
l2 : input(y);
l3 : input(z);
l4 : input(n);
l4 : if(n ≥ 3 ∧ x > 0

∧y > 0 ∧ z > 0){
l5 : assert(xn 6= yn + zn);
l6 : }

We assume machine integers are not bounded
(no modular arithmetics; � =

�
)

Mathematical property:
∀(x, y, z) ∈ � 3,
(∃n ∈ �

, n ≥ 3 ∧ xn = yn + zn)
=⇒ x = 0 ∨ y = 0 ∨ z = 0

(c) Verification requiring a very complicated theorem

Figure 7.1: Cases of alarms

Figure 7.1(c) is particularly involved and is not addressed in this thesis.

7.1.2 Semantic Slices

Our goal is to provide some support in the alarm investigation process. We propose
resorting to automatic, sound static analysis techniques so as to refine an initial static
analysis into an approximation of a subset of traces that actually lead to an error (aka,
set of erroneous traces).

In particular, if we consider the case of a safe program, such as the piece of code
presented in Figure 7.1(a), the set E of erroneous traces is empty. The alarm follows
from the failure of the analyzer to prove the emptiness of E . In case a refinement of the
initial analysis proves that E = ∅, then the program is proved safe by the refining analysis
despite the failure of the initial analysis. We propose to perform this refinement by taking
the error condition into account. Therefore, the refining analysis should include some
backward phases.

In the case of a dangerous program, such as the fragment presented in Figure 7.1(b),

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

134 CHAPTER 7. SEMANTIC SLICING

the set of erroneous traces E is definitely not empty. Moreover, we wish to extract an error
scenario, i.e. a set of conditions on the execution of the program, which entails that an
error occurs at the point where alarm is raised. Therefore, we wish to exhibit a witness,
i.e. a set of erroneous traces E ′ ⊆ E , such that E ′ 6= ∅.

In the following, a subset of the traces of the program is called a semantic slice. Indeed
a semantic slice shall denote a part of the semantics of the program, whereas a syntactic
slice [Wei81] was defined as a syntactic subset of the program.

The purpose of this chapter is to extract relevant semantic slices.

7.1.3 Extraction of Semantic Slices

A semantic slice is defined by a criterion, which combines a collection of constraints on
program executions. Among the criteria we are going to consider, we can cite:
• initial and final states, so as to restrict to e.g., traces leading to some dangerous

state(s);
• execution patterns, so as to restrict to some sets of paths in the control flow: for

instance, we may choose to focus on the traces which iterate a loop at least twice,
or on the traces which iterate a loop an even number of times;
• input constraints, so as to fix a set of inputs and to restrict to the traces corre-

sponding to these inputs.
Semantic slicing criteria are abstractions for sets of traces. We describe precisely the
various semantic slicing criteria in Section 7.2.

As usual, we wish to compute approximations for semantic slices. Therefore, we resort
to the same abstraction for sets of traces, derived from an abstraction for sets of stores, as
in Section 3.1.1. The extraction of a semantic slice will be based on a sequence of forward
and backward analyses, which refine more and more the invariants. Static analyses for
approximating semantic slices are described in Section 7.3.

Last, the ultimate goal would be to synthesize accurate semantic slicing criteria au-
tomatically, so as to propose a helpful scenario for an alarm. At the time we write this
thesis, this point is still work in progress. Yet, an important tool for that is presented
in the Chapter 8: abstract dependences aim at discovering chains of dependences among
variables, which may cause an error to occur.

7.2 Semantic Slicing Criteria

7.2.1 Criteria as Abstractions

In this chapter, we consider a program P , defined by a tuple (� , � ,→, � i) and its semantics
JP K ⊆ Σ, which we introduced in Definition 2.2.1.

A criteria for semantic slicing aims at defining a set of traces. Therefore, we define a
criterion as an abstraction for a set of traces.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

7.2. SEMANTIC SLICING CRITERIA 135

Definition 7.2.1. Semantic slicing criterion.

A semantic slicing domain is an abstraction of sets of traces defined by a domain � and
a concretization function γ � : � → P(Σ).
The ordering v of � is inherited from γ � and the inclusion ordering over P(Σ):

∀c0, c1 ∈ � , c0 v c1 ⇐⇒ γ � (c0) ⊆ γ � (c1)

We call an element c ∈ � a semantic slicing criterion.

In practice, we will use semantic slicing in order to extract sets of traces of programs
which satisfy some conditions (described by the semantic slicing criterion); as a conse-
quence, we define a semantic slice as the set of traces of a program, which also belong to
the concretization of the criterion:

Definition 7.2.2. Semantic slice.

Let � be a semantic slicing domain, c ∈ � . Then, the semantic slice of the set of traces
E (resp. of program P) specified by the criterion c is the set of traces Slice � 〈E , c〉 (resp.
Slice � 〈JP K, c〉) defined by:

Slice � 〈E , c〉 = E ∩ γ � (c)

(resp. Slice � 〈JP K, c〉 = JP K ∩ γ � (c))

At this point, all the abstractions of sets of traces we have presented before would
work: abstraction with numerical invariants, with functions, with projections... However,
most of these abstractions would not be of the greatest interest here. Therefore, the
following subsections review various useful semantic slicing criteria:
• initial and final states in Section 7.2.2;
• execution patterns in Section 7.2.3;
• constraints on the input values in Section 7.2.4.

7.2.2 Initial and Final States

The first domain of semantic slicing criteria we introduce is the restriction to a set of
initial and final states. Such a slicing criterion consists in the data of a set of initial states
and a set of final states; the concretization of such a criterion is the set of all traces from
an initial state to a final state:

Definition 7.2.3. Final states slicing criterion.

The semantic slicing domain capturing “initial and final states” criteria is defined by:
• � i−f = P(� i)× P(�);
• γi−f : (I,F) 7→ {〈s0, s1, . . . , sn−1, sn〉 ∈ Σ | s0 ∈ I, sn ∈ F}.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

136 CHAPTER 7. SEMANTIC SLICING

Note that we assume that the set of initial states specified in the criterion is a subset
of the initial states of the program. We could remove this assumption and study slices
defined by any set of initial states; however, such slices may not consist only in (parts of)
real executions.

The most important application for such criteria consists in fixing a set of traces ending
in a dangerous state. Then, deciding whether the program is unsafe amounts to checking
that this slice is empty (the program is safe) or non empty (the program has an erroneous
trace), as pointed out in Section 7.1.2.

In the following, we make the assumption that both I and F are of the form {l }×M ,
where M ⊆ � : the set of initial states of interest is defined by one control state and a set
of memory states (and the same for the set of final states). This assumption is made so
as to make the notations and future technical developments more simple, even though it
is also rather natural:
• a program has only one entry control state; I should just refine the initial condition

on the executions;
• the purpose of F is to specify a final condition to investigate; it usually corresponds

to an alarm raised by the static analyzer, so it usually also corresponds to only one
control state, and a set of final memory states.

A very efficient way to represent such criteria proceeds by choosing a control state l ,
and an abstract invariant d ∈ D]� : indeed, such a pair defines a set of states {l }×γ

�
(d).

Example 7.2.1. Semantic slicing based on the final state.

For instance, in the case of the program presented in Figure 7.1(a), we should study the
semantic slice defined by the set of final states

F = {(l8, ρ) | ρ ∈ � , ρ(b) ∧ −10 ≤ ρ(x) ≤ 10}

This set of states can be represented as a pair (l , d), as suggested above.

7.2.3 Execution Patterns

A second family of slicing criteria selects sets of traces that satisfy some control flow
history properties, defined by abstractions introduced in Chapter 6. For instance, we may
decide to focus on traces which spend an even number of iterations in a loop.

In this section, we assume that the user inserted some cnt-statements in the program,
which correspond to special actions like “entering in a loop” or “running statement s”.
The criteria should account for sets of sequences of such actions (each action corresponds
to the control state of the cnt-statement).

A criterion is defined by:
• an automaton A = (� A, qi

A,ÃA);
• a final state qf

A ∈ � A, which recognizes the set of sequences of actions we want to
extract.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

7.2. SEMANTIC SLICING CRITERIA 137

We use the same notations as in Chapter 6: for instance, � denotes the set of sequences
of actions; P � stands for the extended system introduced in Section 6.1.3.

The criterion is defined formally as follows:

Definition 7.2.4. Execution patterns criterion.

The domain ��� of execution patterns criteria is defined by ��� = � × � .
Let (A, qf

A) ∈ ��� , where A = (� A, qi
A,ÃA). We write τ : (� × � A)→ � for the standard

forget function. Then, we define the concretization γ � (A, qf
A) of (A, qf

A) by:

γ � (A, qf
A) = πΣ

τ (JP � A � Kp(qf
A))

The above definition uses the abstract extended system in order to state the set of
traces of P which also correspond to a path from qi

A to qf
A in A (the operator πΣ

τ removes
the states of A in the traces of P � A �).

This family of criteria applies nicely to the distinction of loop iterations, as shown in
the following example:

Example 7.2.2. Criterion for the specification of execution patterns.

Let us consider the program in Figure 7.1(b). Obviously, it will not fail during the first
iteration in the loop, since y = 1; however, it may fail at any other iteration. Therefore, it
would seem wise, to exclude the first iteration, when looking for a witness (i.e., erroneous
trace).
First, we add a cnt-statement anywhere inside the loop so as to count actions correspond-
ing to some point in the loop body, i.e. the number of iterations (Figure 7.2(a)).
Second, we select an automaton, which allows to distinguish the “positive” iterations and
a state in the automaton corresponding to this selection. For instance, we could choose
the automaton A displayed in Figure 7.2(b) and the state qn (q0 corresponds to the first
iteration; qn to any other iteration).

Similarly, we could slice out the traces with an even number of iterations in a loop (as
in Example 6.3.3) or the traces with at least 2 iterations in the loop and distinguish the
last two iterations (as in Example 6.3.4).

Remark 7.2.1. Precision improvement inherent in trace partitioning.

Here, the partitioning of the program guided by the choice of an automaton is targeted at
the specification of a set of traces to extract, as a semantic slice. However, we shall note
in the following sections that this choice may also improve the precision of the semantic
slice, by helping the static analysis to infer more precise invariants, in a similar way as
we did in Chapter 5.
For instance, distinguishing the last two iterations before some event occurs may help the
backward analysis to produce better results, in the same way as forward analyses may
benefit from the unrolling of the first iterations in a loop.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

138 CHAPTER 7. SEMANTIC SLICING

l0 : int x, y;
l1 : x = 1;
l2 : y = 1;
l3 : while(true){
l4 : input(x);
l5 : assert(y > 0);
l6 : y = x;
l8 : cnt()
l7 : }

(a) Modified code

q0 qn

∂l8

∂l8

(b) Automaton

Figure 7.2: Exclusion of the first iteration

7.2.4 Input Constraints

A third family of slicing criteria discriminates traces characterized by the values read by
input-statements: a criterion defines a set of valid inputs for each input-statement; the
semantic slice is the set of traces satisfying the property that all input values satisfy the
criterion.

In fact, we can define a wider family of criteria, by enforcing constraints not only on
the input values but also on any value, at any point in the program.

In the formal definition below, the criterion is represented with a function, which
defines the set of valid input values.

Definition 7.2.5. Input constraints criterion.

The domain � in of “input constraints criteria” is defined by � in = (� × �)→ � .
Let ν ∈ � in. Then, the concretization of ν is defined by:

γin(ν) = {〈(l0, ρ0), . . . , (ln, ρn)〉 ∈ Σ | ∀i ∈ L0, n− 1M, ∀x ∈ � , ρi+1(x) ∈ ν(li, x)}

Of course, in practice, only a few points and a few variables should be affected by the
slicing, so that a sparse representation for function ν ∈ � in should be used instead.

Such a family of criteria is most useful in order to study the behavior of a program in
presence of some special inputs, and also, in order to check that some set of inputs result
in a crash of the program (i.e., to check an error scenario).

Example 7.2.3. Input constraints and errors.

Let us consider again the program in Figure 7.1(b). We observed that an error occurs
when the value of the input value for x at point l4 is negative. Indeed, if this value is
negative, then at the next iteration, y < 0, so that the program crashes at l5.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

7.2. SEMANTIC SLICING CRITERIA 139

Therefore, we let ν be defined by:

ν : (� × �) → �
(l4, x) 7→ {−1}
(l , v) 6= (l4, x) 7→ �

This criterion selects all the traces satisfying the condition that the input statement always
reads the negative value −1.
However, not all these traces cause the program to fail. Indeed, a trace which does not
complete more than one iteration in the loop does not end in an error state (we recall
that the semantics we consider is prefix-closed).

Intuitively, we need to combine the above criterion with the criterion introduced in
Example 7.2.2; this is the goal of the next subsection.

7.2.5 Combination of Criteria

Criteria can be combined thanks to a kind of product.

Definition 7.2.6. Product of criteria.

Let (� 0, γ0) and (� 1, γ1) be two domains of semantic slicing criteria. We let the product
domain of semantic slicing criteria (� p, γp) be defined by:
• � p = � 0 × � 1;
• ∀(c0, c1) ∈ � p, γp(c0, c1) = γ0(c0) ∩ γ1(c1).

In particular, we can apply this construction to the semantic slicing criterion domains
introduced in the previous subsections and combine the criteria introduced in Exam-
ple 7.2.2 and Example 7.2.3:

Example 7.2.4. Combination of semantic slicing criteria.

We consider the same program as in Example 7.2.2. Two semantic slicing criteria were
introduced so as to study this example: the first one restricts to traces with more than
one iteration in the loop; the second to traces characterized with negative inputs only.
The combination of both criteria following Definition 7.2.6 results in a set of traces which
all crash at point l5. Moreover, the corresponding semantic slice is non-empty: clearly,
this program has traces with more than one iteration and which always read negative
values at l4. As a consequence, this semantic slice defines a valid error scenario, which
proves the program to be indeed buggy.

Other ways of combining the domains of semantic slicing criteria can be proposed as
well. In particular, one may wish to introduce first a partitioning of the system so as to
define both a set of execution patterns and a set of input constraints dependent on the
partition: this approach allows to express composite criteria expressing e.g., that some
input is read at iteration 1 and some other input is read at iteration 2 and so on...

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

140 CHAPTER 7. SEMANTIC SLICING

7.3 Approximation of Slices Defined by Set of Final

States

7.3.1 Approximation of a Slice

We study the semantic slices defined by the data of a set of final state(s) (Section 7.2.2)
first; the case of other semantic slicing criteria is the subject of the Section 7.4.

Principle of the abstraction: In this section, we consider a program P defined as
usual and a pair of sets of states: I represents initial states; and F represents final
states. We focus on the criterion c = (I,F) ∈ � i−f , and wish to approximate the slice
Slice �

i−f
〈JP K, c〉.

The static analysis approximates the semantics of P with an invariant in the domain
D] = � → D]� (Section 3.1): it maps a control state l into a local invariant, which
approximates the set of memory states observed at point l . Semantic slices should improve
the understanding of the results of static analyses, and should be computed statically.
As a consequence, we propose to define the semantic slice as an invariant in D], which
characterizes a set of traces defined by the concretization function of D], introduced in
Section 3.1.1. As a consequence, the domain for representing semantic slices takes an
abstract domain for representing sets of stores as a parameter (in practice, we use the
domain described in Section 5.1.3), which might be based on any relational and non-
relational abstraction (Section 3.1.3).

Definition 7.3.1. Approximation of semantic slices.

We use the same notations as above. Formally, an approximation of the semantic slice
Slice �

i−f
〈JP K, c〉 is an invariant I ∈ D], such that:

Slice �
i−f
〈JP K, c〉 ⊆ γ(I)

In particular, semantic slicing strongly differs from regular slicing methods. In syn-
tactic slicing [Wei81, HRB90], a criterion collects some control states and some variables
of interest; the goal of syntactic slicing is to generate a syntactic slice, i.e. a syntactic
subset of the program, including all statements which may affect the observation of the
semantics restricted to the projection of the criterion. The advantage of this approach is
that the result of slicing is very easy to interpret (since, it is just a piece of code).

However, syntactic slicing presents several drawbacks. First, it may generate large
slices, if the criterion depends directly or indirectly on most of the statements in the
program. Second, it does not provide much information about the runtime behavior of
the program being analyzed. Indeed, we expect semantic slices to characterize some set
of executions and not only their trajectories in the code. Moreover, the sets of traces we
intend to characterize should be defined by some semantic property (e.g., sets of initial
and final states), and we expect the semantic slice to account for this property.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

7.3. APPROXIMATION OF SLICES DEFINED BY SET OF FINAL
STATES 141

Fixpoint definition: Abstract invariants are usually computed by abstract interpreta-
tion of the program, i.e. computation of an abstract post-fixpoint. Therefore, we seek for
a fixpoint-based definition of the semantic slice.

By definition, Slice �
i−f
〈JP K, c〉 = {〈s0, . . . , sn〉 ∈ JP K | s0 ∈ I ∧ sn ∈ F}. Therefore,

Slice �
i−f
〈JP K, c〉 =

−→T ∩←−T , where:

−→T = {〈s0, . . . , sn〉 ∈ JP K | s0 ∈ I}
←−T = {〈s0, . . . , sn〉 ∈ JP K | sn ∈ F}

We proved the trace semantics semantics to be definable as the least fixpoint of a forward

semantic function F−→
P

in Lemma 2.3.1. We note that
−→T is defined in a similar way as the

trace semantics of P , except that we replace the set of initial states with a smaller set of

initial states I. Lemma 2.3.1 implies that
−→T is the least fixpoint of F−→

P
from the set TI

of traces made of a single state in I.
Similarly, we remarked that the set of traces which terminate in some set of states

can be expressed as a least fixpoint, when we introduced backward analysis in the end of

Section 3.1.2: therefore,
←−T is the least fixpoint of the backward semantic function F←−

P
,

from the set of traces TF made of a single state in F .
As a conclusion:

Slice �
i−f
〈JP K, c〉 = lfpTIF−→P ∩ lfpTFF←−

P

7.3.2 Forward Interpreter

First, let us note that the forward fixpoint
−→T = lfpTIF−→P can be approximated by a

standard, forward static analysis as shown in Section 3.1 and Section 3.2.5.
In practice, the implementation of this analyzer follows the structure proposed in

Section 3.2.5. We need the analyzer to generate an invariant for each control state, so we
use in practice the analyzer with two modes Check and Iter introduced in Section 5.1.3.
When considering large programs, not all local invariants can be saved in the memory, so
we used refined implementation techniques, detailed in Section 7.4.4.

In the following, we write I0 for the result of this forward analysis. The soundness

boils down to
−→T ⊆ γ(I0).

7.3.3 Backward Semantics and Backward Interpreter

Approximation of the backward fixpoint: Second, we need to perform a backward
analysis, so as to approximate the least fixpoint corresponding to the backward semantic
function.

However, the backward analysis of some operations may be rather imprecise. For
instance, let us consider the program displayed in Figure 7.3.

The backward analysis of the last statement forgets the value of b: indeed, when
starting the backward analysis from point l4, there is no way to guess the value of b before
its value is modified. Hence, at point l3, the backward analysis considers that b may have

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

142 CHAPTER 7. SEMANTIC SLICING

l0 : b := true;
l1 : if(b) {

. . .
} else {

. . .
}

l2 : b′ := ¬b ∨ b′′

l3 : input(b ∈ �);
l4 : . . .

assumption:
b is not modified
in any branch of the if -statement

Figure 7.3: Backward analysis of a simple program

any boolean value. As a consequence, the backward analysis of the assignment at l2 cannot
provide any information about the value of b′′ at point l2, even if we know that b′ is equal
to true in the end of the program: in this case, we would expect the backward analyzer
to infer that b′′ is equal to true at point l2. Furthermore, the backward analysis executes
both branches of the if -statement, even though only the true branch is executed.

In fact, this kind of issue occurs whenever a variable is assigned. Overall, a purely
backward analysis would fail to compute a precise approximation of semantic slices due
to these shortcomings.

As a consequence, we propose to take the results of the forward analysis into account,
when performing the backward analysis. Indeed, in the above program, the forward
analysis would produce a rather precise invariant, including the following predicates:
• b is equal to true until l4;
• only the true branch of the conditional is taken; any point in the false branch can

be considered unreachable in the semantic slice.
These properties should be taken into account during the backward analysis, so as to
produce precise slices.

The interpreter: The conclusion of the previous paragraph is that the backward anal-

ysis should not approximate
←−T ; it should rather input the approximation I0 of

−→T , which
was computed by the forward analyzer and refine it into a new invariant, approximating

the intersection
−→T ∩←−T .

Therefore, we need a new backward interpreter which associates to any statement s

a function
←−−
JsK] : (D] × D]�) → (D] × D]�), defined by induction over the syntax of the

statements. This interpreter should input a pair made of a “global invariant” I and a
“local invariant” d representing a set of input states for s we wish to over-approximate
the ancestors of; then, it should output a pair made of a refined “global invariant” I′ and
of an approximation d′ of the input stores. Basically, I′ should be a refinement of I (i.e.,
I′ v I) such that:
• for all control state l in s, I′(s) is derived from I(s) and from the approximation of

the output d;

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

7.3. APPROXIMATION OF SLICES DEFINED BY SET OF FINAL
STATES 143

• for all control state l not in s, then I′(s) = I(s) (the analysis does not modify the
invariant outside of the analyzed statement).

In fact, the definition of such an analyzer would be more technical and would involve
more arguments:
• First, this analyzer performs side effects, whenever it refines the “global invariant”;

therefore, it should carry out an argument specifying a mode for the analysis (Check
or Iter), as in Section 3.2.5.
• Second, the backward analysis should start from the set of final states F specified

in the slicing criterion. When the backward analysis starts, s is the whole program;
but F may specify some states inside the program and not necessarily in the end of
the program. In this case, the backward analysis should start from the control state
specified in F , and not from the end of the program as the backward interpreter in
Section 3.3.2 does.

These two issues make the definition of the backward analyzer in the style of the interpreter
of Figure 3.3 very technical and not intuitive. Therefore, we provide the definition of the
backward transfer functions instead (we do not account for the refinement of the “global

invariant” here, which is done in Check mode only), in Figure 7.4. We write
←−−−−−−−
transfer

l0,l1
for the backward abstract transfer function between l0 and l1. Each transfer function
inputs two invariants: d` stands for the invariant at the point right before the statement
(which should be refined in the backward analysis), and da represents the invariant after
the statement. As a consequence, the backward assignment operator is also supposed to
input two arguments now.

Note that several transfer functions can be chosen, e.g., for conditions. Indeed, com-
puting the meet of d` and da seems a standard way of computing the “backward effect”
of these edges; however, one may also want to enforce the condition with the help of the
guard operator, so as to refine further the invariants. This issue will be considered more
carefully in the next section.

The backward interpreter inputs I0 and produces a refined invariant I1, which satisfies
the soundness condition below:

Theorem 7.3.1. Soundness: backward approximation of the semantic slice.

Let us assume that I0 is a sound approximation of
−→T ∩←−T (e.g., the invariant resulting

from the forward abstract interpretation (Section 7.3.2). Then, the invariant I1 is sound:

−→T ∩←−T ⊆ γ(I1)

Moreover, it refines I0: I1 v I0.

The backward assignment: All the transfer functions used in Figure 7.4 but the
backward assignment are common, so we propose to discuss the latter in depth here.

Let us consider an assignment lpre : x := e; lpost, and a pair of local invariants d` and da
which respectively denote the invariants available at point lpre and lpost (after the forward

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

144 CHAPTER 7. SEMANTIC SLICING

assignment l0 : x := e; l1←−−−−−−−
transfer

l0,l1
: (d`, da) 7→

←−−−
assign(x, e, d`, da)

conditional l0 : if(e) {l t
0 : st; l t

1 } else {l f
0 : sf ; l f

1 } l1←−−−−−−−
transfer

l0,l t
0

: (d`, da) 7→ d` u da or guard(e, true, d` u da)
←−−−−−−−
transfer

l0,l f
0

: (d`, da) 7→ d` u da or guard(e, false, d` u da)
←−−−−−−−
transfer

l t
0 ,l0

= (d`, da) 7→ d` u da
←−−−−−−−
transfer

l t
1 ,l1

= (d`, da) 7→ d` u da

loop l0 : while(e) {l b
0 : st; l b

1 } l1←−−−−−−−
transfer

l0,l b
0

: (d`, da) 7→ d` u da or guard(e, true, d` u da)
←−−−−−−−
transfer

l0,l1
: (d`, da) 7→ d` u da or guard(e, false, d` u da)←−−−−−−−

transfer
l b
1 ,l0

: (d`, da) 7→ d` u da

input l0 : input(x ∈ V); l1←−−−−−−−
transfer

l0,l1
: (d`, da) 7→ d` u forget(x, da)

assertion l0 : assert(e); l1←−−−−−−−
transfer

l0,l1
: (d`, da) 7→ d` u da

Figure 7.4: Backward transfer functions

analysis, d` = I0(lpre) and da = I0(lpost)). Basically, we expect the analyzer to refine the
local invariant d`, by taking into account the fact that the post-condition da should hold.

In the proofs below, we let ρ ∈ γ
�
(d`); we write v = JeK(ρ) and we also assume

ρ[x← v] ∈ γ
�
(da).

We distinguish boolean and scalar types for the assigned variable:
• case where x is a boolean variable:

←−−−
assign(x, e, d`, da) =

{
guard(e, forget(x, guard(x, da)) u d`)

t guard(¬e, forget(x, guard(¬x, da)) u d`)

Indeed, let us assume v = true. Then ρ ∈ γ
�
(forget(x, guard(x, da))), due to the

hypothesis on ρ[x ← true]. Moreover, JeK(ρ) = true, so ρ ∈ γ
�
(guard(e, forget(x,

guard(x, da)))), which shows the soundness of the transfer function defined above.
• case where x is a scalar (i.e., integer or floating point) variable:

1. Linearization: First, the expression e can be linearized into an interval linear
form lin(e, d`) = af +

∑
k ak · xk, where xk is a variable and Ik is an interval

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

7.3. APPROXIMATION OF SLICES DEFINED BY SET OF FINAL
STATES 145

(the arithmetic operators for scalars are extended to intervals). Note that this
linear interval form can be computed only from d` (using da would not be
sound, if x appears in the right side of the expression i.e., if x is modified by
the assignment).

2. Refinement of interval invariants: For any variable y ∈ {x} ∪ {xk | k}, we
write Ipre

y (resp. Ipost
y) for the interval constraint for y in d` (resp. da).

Our purpose is to compute a refined interval I ref
xk

for any variable xk in the
right hand side of the assignment in interval linear form (if x does not appear
in the right-hand side, then I ref

x = Ipre
x).

Let us focus on variable xj. The soundness of linearization implies that:

v ∈
(
∑

k 6=j

ak · Ipre
xk

)
+ aj · ρ(xj)

Hence, if 0 6∈ aj:

ρ(xj) ∈
(
v − (

∑
k 6=j ak · Ipre

xk
)
)

/aj since we can divide by aj

∈
(
Ipost

x −
(∑

k 6=j ak · Ipre
xk

))
/aj since v ∈ Ipost

x

Therefore, if we let

Iref
xj

=

((
Ipost

x − (
∑

k 6=j

ak · Ipre
xk

)

)
/aj

)
∩ Ipre

xj

then, we get a sound, refined invariant for xj before the assignment. This
formula is the core of a backward assignment operator for the interval domain.
If 0 ∈ aj, we cannot use this method to refine the constraint Ipre

xj
.

Note that d` is used not only for computing the refined intervals but also to
derive the interval linear form.

3. Other abstract domains: other abstract domains may or may not provide
any support for backward analysis; for instance, the filter domain of [Fer04b]
does not. We consider the case of the octagon abstract domain; this domain
provides backward transfer functions for assignment using interval linear forms
[Min04]. We should distinguish two cases:

– If x ∈ {xk | k} (i.e., x appears in the right side of the interval linear form
assignment):
The default backward assignment operator provided by octagons is the
function interv substitute var; it takes a linear interval form as an
argument, yet it currently works in the exact case only (and behaves as a
forget operator otherwise), so it infers new relations for variable xk if and
only if ak = [−1,−1] or ak = [1, 1]. In this case, we compute dref

` defined
by:

dref
` = interv substitute var(x, (

∑
k(ak · xk)) + af , da)

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

146 CHAPTER 7. SEMANTIC SLICING

– If x 6∈ {xk | k} (i.e., x does not appear in the right side of the assignment):
The operator interv add constraint behaves like a guard operator, in-
volving an interval linear form; hence, it allows for more precise handling
of the expression but this will only work if the corresponding variables are
not modified by the assignment (this is the reason why we assume here
that x 6∈ {xk | k}; the assumption that x is a sure l-value is also important
here).
In this case, we compute dref

` defined by:

dref
` = forget(x, d0)
d0 = interv add constraint(d1, (

∑
k(ak · xk)) + af − x ≤ 0)

d1 = interv add constraint(da, (
∑

k(ak · xk)) + af − x ≥ 0)

The following examples show how this backward transfer functions can be applied to a
few simple assignments.

Example 7.3.1. Backward assignment; case of a boolean variable.

We extract the boolean assignment l2 : b′ := ¬b ∨ b′′; l3 from the program displayed in
Figure 7.3, and we consider the invariants (for the sake of the example, we assume that
the abstract elements collect sets of non relational boolean constraints; hence, an invariant
maps each boolean variable to the set of possible values for this variable):

d` = {b = true, . . .}
da = {b = true, b′ = true, . . .}

Let us apply the formula for the boolean backward assignment:

guard(¬(¬b ∨ b′′), forget(b′, guard(¬b′, da)) u d`) = ⊥
guard((¬b ∨ b′′), forget(b′, guard(b′, da)) u d`) = guard((¬b ∨ b′′), forget(b′, da) u d`)

= guard((¬b ∨ b′′), {b = true, . . .} u d`)
= guard((¬b ∨ b′′), {b = true, . . .})
= {b = true, b′′ = true, . . .}

As a consequence,
←−−−
assign(b, (¬b ∨ b′′), d`, da) = {b = true, b′′ = true, . . .}, so that this

backward transfer function is able to infer that b′′ is equal to true before the assignment.
We recall that we have shown that this would not be possible to achieve with a transfer
function, which would not take d` into account.

Example 7.3.2. Backward assignment; domain of intervals.

We consider the assignment x := y · x + z, with the invariants:

d` = {x ≥ 0, y ∈ [1, 2], z ∈ [1, 2], . . .}
da = {x ∈ [3, 4], . . .}

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

7.3. APPROXIMATION OF SLICES DEFINED BY SET OF FINAL
STATES 147

Let us assume that the linearization stage converts the right-hand side y · x + z into
x := [1, 2] · x + z (another choice would be to turn x into an interval; however, note that
the range for x in d` is infinite so it would be a very bad choice).
Then, the backward assignment refines the range for x into [0.5, 3].

Obviously, additional issues arise, when the left-hand side of the assignment is not a
“sure-l-value”; for instance, if it is an array cell, which cannot be determined precisely
using d`, then, not all formulas above apply (in particular, the transfer functions for
octagons), so a rough approximation may need to be computed instead.

7.3.4 Combination of Forward and Backward Analyses

Need for a sequence of forward-backward analyses: In Section 7.3.1, we wrote
the semantic slice as the intersection of two fixpoints; this formula served as a basis for
the derivation of an abstract interpretation-based approximation of the semantic slice.

However, the invariant I1 (Theorem 7.3.1) may not be the optimal approximation for
the semantic slice in the abstract domain. For instance, let us assume that the backward
analysis reveals that no trace is going through the true branch of a conditional in the
program below:

l : if(e) {
st;
} else {

sf ;
}

l ′ : s′;
l ′′ . . .

Then, a refining forward analysis from I1 may refine the local invariants inside s′, since
the possible imprecision due to the least upper bound at l ′ no longer occurs. Note that a
further backward analysis would likely improve the results inside sf also.

Therefore, we propose to implement a refining forward analysis and to iterate the
refining forward-backward process as proposed, e.g., in [Cou78, CC92a].

Refining forward iteration: We derive the refining forward interpreter from the stan-
dard forward interpreter mentioned in Section 7.3.2 (in particular, the transfer func-
tions and the iteration strategy are the same). The main difference is that the refin-
ing interpreter should input a global invariant I ∈ D] approximating the semantic slice
(Slice �

i−f
〈JP K, c〉 ⊆ γ(I)) to refine and use it so as to restrict each forward step.

Therefore, when analyzing a statement l0 : s; l1 : . . ., the refining analyzer should:
• input an invariant d0 ∈ D]� for point l0 and an invariant I ∈ D];
• compute a refined invariant d1 ∈ D]� for point l1;
• return the local invariant d1 u I(l1);
• if in Check mode, store d1 u I(l1) as the refined invariant for point l1.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

148 CHAPTER 7. SEMANTIC SLICING

As a consequence, this refining forward analyzer is similar to the backward analyzer of
Section 7.3.3, regarding to the side effects of the analysis. In the end of the analysis, it
produces a refined invariant I′ v I, which is still a sound approximation of the semantic
slice:

Slice �
i−f
〈JP K, c〉 ⊆ γ(I′)

Sequence of analyses: We now state the definition of the sequences of forward and
backward analyses:

Definition 7.3.2. Refining sequence.

We define the refining sequence of invariants (In)n∈ � as follows:
• I0 was defined in Section 7.3.2, as the result of the initial forward analysis;
• I1 was defined from I0 in Section 7.3.3, as the result of the refining backward anal-

ysis; for all n ∈ �
, we let I2n+1 be derived from I2n in the same way;

• for all n ∈ �
, we compute I2n+2 by applying the refining forward analysis to I2n+1.

Obviously, this sequence of invariants is sound and decreasing:

Theorem 7.3.2. Properties of the refining sequence.

The sequence (In)n∈ � is:
• sound: ∀n ∈ �

, Slice �
i−f
〈JP K, c〉 ⊆ γ(In);

• decreasing: ∀n ∈ �
, In+1 v In.

Proof.

Both results follow from the properties of the refining forward and backward inter-
preters.
Â

Local iterations: The above refinement process is not optimal from the efficiency point
of view. In the case of the if -statement considered above, it amounts to completing the
backward analysis of the whole program before doing a new forward analysis so as to
refine the invariant at label l.

We might want to compute local iterations [Gra92], that is perform forward and back-
ward local analysis steps during a same iteration phase. For instance, Figure 7.4 displays
transfer functions without and with one local iteration for conditions. Let us consider
the backward analysis of the condition in the statement l0 : if(e) {l1 . . .} (we consider the
transfer function between l0 and l1):

• the standard backward transfer function is
←−−−−−−−
transfer

l0,l0
: (d`, da) 7→ d` u da;

• if we apply the forward transfer function from l0 to l1, then we get a function
(d`, da) 7→ guard(e, true, d`uda); applying the backward function again would lead
to (d`, da) 7→ guard(e, true, d`uda)ud` = guard(e, true, d`uda) (since we assume
that guard is supposed to be reductive —see Section 3.1.1).

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

7.4. APPROXIMATION OF SEMANTIC SLICES 149

The same local forward-backward strategy may be applied to large pieces of code; however,
the choice for such strategies is very broad and most of them would turn out costly.

In practice, we found that the refinement process done with an expressive, relational
abstract domain (like the domain present in Astrée) does not require much local it-
erations (except in the case of conditions as described above). Carrying out iterative
refinements on large blocks of code (e.g. functions) was a more efficient strategy.

7.4 Approximation of Semantic Slices

7.4.1 Extension of the Analysis

Before we can exemplify the computation of approximations for semantic slices, we need
to extend the algorithm described in Section 7.3 to other semantic slicing criteria.

We use the same notations as in Section 7.3; in particular, we still consider a program
P , characterized as usual by (� , � , � i,→).

Execution patterns: Let us assume that some cnt-statements have been inserted in
P and that a criterion (A, qf

A) ∈ ��� has been selected, as in Section 7.2.3.
Intuitively, the semantic slice collects traces of the extended system P � A � starting from

a state indexed with qi
A, and ending in states indexed with qf

A. Consequently, the semantic
slice is defined (up to the removal of partitioning tokens) in P � A � by the following sets
of initial and final states:

I = {((l , qi
A), ρ) ∈ (� × � A)× � | (l , ρ) ∈ � i}

F = {((l , qf
A), ρ) ∈ (� × � A)× � | (l , ρ) ∈ � }

Therefore, the algorithm of Section 7.3 applies to the extraction of such a slice; the main
difference is that the algorithm should be applied to P � A � .

Remark 7.4.1. More powerful partitioning domains and analyzes.

First, we note that the numeric abstractions proposed in Section 6.4 can be used instead
of the automaton-based abstraction, both for the definition of the criterion and for the
analysis.
Second, we mentioned, e.g., in Section 6.3.2, that the extension of the partitioning analy-
sis into a dynamic partitioning analysis could be envisaged as well. For instance, we may
assume that
• the criterion specifies an abstraction defined by the automaton A;
• the analysis starts with the abstraction defined by A, but may refine it as suggested

in Section 4.3.3 so as to compute a more precise approximation of the semantic
slice.

These extensions have not been implemented yet; however, we consider these solutions
significant ideas for future work.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

150 CHAPTER 7. SEMANTIC SLICING

Input values: Let us consider a criterion ν ∈ � in (constraints on the values), defined as
in Section 7.2.4. For the sake of simplicity, we consider a statement l0 : input(x ∈ V); l1 :
. . ., and assume that ν only bounds the value of x at point l1.

Let σ = 〈. . . , (l0, ρ0), (l1, ρ1), . . .〉 be a trace in the semantic slice associated to ν (σ ∈
Slice �

in
〈JP K, ν〉). Then, ρ1(x) ∈ ν(l1, x). As a consequence, all the traces in the semantic

slice are also traces of the program P ′ derived from P by replacing the above input-
statement with l0 : input(x ∈ ν(l1, x)); l1 :

Therefore, the semantic slice can be approximated in the same way as in Section 7.3,
using a (slightly) different transfer function between points l0 and l1.

7.4.2 Examples

This section examines the examples proposed in Section 7.2, and focuses on the approxi-
mation of the corresponding semantic slices.

Example 7.4.1. Resolution of a false alarm (Example 7.2.1 continued).

We recall the program under consideration in Figure 7.5. As previously, the semantic

l0 : float x, y; bool b;
l1 : input(x);
l2 : if(x > 0){
l3 : y = x;
l4 : }else{
l5 : y = −x;
l6 : }
l7 : b = (y > 10);
l8 : assert(b⇒ (x < −10 ∨ 10 < x));

Figure 7.5: A false alarm solved

slice is defined by the following set of final states:

F = {(l8, ρ) | ρ ∈ � , ρ(b) ∧ −10 ≤ ρ(x) ≤ 10}

The table below summarizes the invariants computed in the first iterates of the refinement
process (we perform a non-relational analysis).

point I0 I1 I2

l1 > ⊥ ⊥
l2 > ⊥ ⊥
l7 y ≥ 0

{
x ∈ [−10, 10]
y > 10

⊥

l8

{
y ≥ 0
b ∈ {true, false}

{
x ∈ [−10, 10]
b = true

⊥

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

7.4. APPROXIMATION OF SEMANTIC SLICES 151

The last column shows that the semantic slice is proved empty by the second refining
iteration (second forward phase), even though the analysis is rather rough (non-relational
invariants only).

Example 7.4.2. Alarm pointing out a true error (Example 7.2.4 continued).

We recall the program under consideration on Figure 7.6, together with the automaton
and the input function specifying the slicing criterion.

l0 : int x, y;
l1 : x = 1;
l2 : y = 1;
l3 : while(true){
l4 : input(x);
l5 : assert(y > 0);
l6 : y = x;
l8 : cnt()
l7 : }

(a) Modified code

q0 qn

∂l8

∂l8

(b) Automaton

ν : (� × �) −→ P(�)
(l4, x) 7→ {−1}
(l , z) 6= (l4, x) 7→ �

(c) Input constraint

Figure 7.6: Scenario for a true error

We have observed previously that this program was unsafe; if it inputs a negative value
for x, then it crashes in the next iteration. Therefore, the criterion:
• restricts to the traces characterized with negative inputs at point l4;
• distinguishes the first iteration in the loop and the following iterations.

The table below summarizes the result of the forward analysis (i.e., I0):

point q0 qn

l3

{
x = 1
y = 1

{
x = −1
y = −1

l5

{
x = −1
y = 1

{
x = −1
y = −1

l6

{
x = −1
y = −1

{
x = −1
y = −1

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

152 CHAPTER 7. SEMANTIC SLICING

The above approximation of the semantic slice shows that the program reaches an erro-
neous state in the second iteration in the loop. Since this semantic slice is not empty (this
program clearly has executions lasting more than one iteration and such that the inputs
are negative), it proves correct the error scenario, we previously gave the intuition of. As
a conclusion, this program is indeed flawed.

7.4.3 Use of Syntactic Slicing for Reducing the Size of Programs

Program slicing: The algorithm for the extraction of semantic slices, which we pre-
sented in the previous sections suffers some significant practical weaknesses:

• it requires each analysis to save a local invariant for each control state, i.e., at each
statement, which would result in a dramatic memory cost, when applied to large
programs;
• it leads to the forward-backward analysis of the whole program, which would result

in rather long execution times due to the analysis of the full program, even if only
part of the program is relevant to the alarm to investigate.

Therefore, we propose to use regular, syntactic slicing techniques [Wei81, HRB90] so as
to restrict the amount of code the refining analyses should be applied to.

Let us assume that a program s is given, which contains a statement l0 : assert(e).
Whether or not an error occurs at this point depends on the variables which appear in
the expression e. Therefore, the idea is to restrict to the syntactic slice defined by the
control point l0 and the variables which appear in e.

The correctness of slicing guarantees that the observation of the slice restricted to l0,
and to the variables in e includes the corresponding observation of the original program.
As a consequence, applying the semantic slicing technique to the syntactic slice is a sound
solution.

Reducing the size of slices: Even though slicing should reduce significantly the size
of slices, we may want even smaller slices. Various methods serve that goal:

• First, we can use a more precise dependence analysis in order to determine a smaller
slice. We investigate dependence analyses in Chapter 8, and observable dependences
(Section 8.3) provide an adequate solution for restricting to the dependences, which
can be observed on some subset of the program executions.
• Second, we may perform “aggressive slicing”, i.e., remove some statement s0, even

though the alarm under investigation may depend on s0. Of course, this solution
would not be sound, since it would not take into account the effect of s0 during the
semantic slicing. Therefore, we approximate the effect of s0. For instance, if s0 is an
assignment x := e, we can simply approximate s0 with the statement input(x ∈ �).
We detail this approach in [Riv05b].

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

7.4. APPROXIMATION OF SEMANTIC SLICES 153

7.4.4 Implementation

The semantic slicing algorithms were implemented in the Astrée analyzer, and applied
to simple programs and to large applications.

Alarm investigation process: A typical alarm investigation session proceeds as fol-
lows:

1. do a forward analysis, determine a superset of the possible errors;
2. choose an alarm to investigate; restrict to a syntactic slice [Wei81] including the

alarm point;
3. define I,F , attempt to prove the alarm wrong with forward-backward refinement;

otherwise, a more precise alarm context slice is found;
4. in case of failure, specialize even more the alarm context, by defining more restrictive

slicing criteria
5. in case no attempt to get the analyzer to prove the emptiness of the semantic slice

as we did in Example 7.4.1 succeeds, then attempt to prove the alarm corresponds
to a true error by choosing a set of inputs and alarm context, in the same way as in
Example 7.4.2.

Parameterization of the forward-backward analysis: The refining analysis can be
applied either to the whole program or to some user-specified functions. Currently, it
requires the storage of local invariants at all control points, in the functions the forward-
backward analysis should be performed in.

The number of forward-backward iterations is also left as a parameter. The default
value is 10, but we observe stabilization after 3 to 4 iterations in most cases.

We use the backward assignment operator defined in Section 7.3.3; the other abstract
transfer functions are defined as usual.

More details about the implementation of the slicer will be given in Chapter 8.

Application to some large applications: We applied this technique to the alarms
raised by Astrée on a series of 3 early development versions of some critical embedded
programs (bugs were not unlikely in the development versions).

The table below presents the results of the initial analysis. For each program, we give
the size of the code, the number of functions, the analysis time and the number of alarms;
each alarm was assigned a label, so that we can name it in the following discussion.

Size of the C code (lines) 70 000 226 000 400 000
Number of functions 650 1 900 2 900
Analysis time (I0) in sec. 1 300 16 200 37 500
Number of alarms 4 1 0
Alarm labels a1, a2, a3, a4 a5 -

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

154 CHAPTER 7. SEMANTIC SLICING

Syntactic slicing showed that a2 (resp. a4) is a direct consequence of a1 (resp. a3); hence,
we restricted to the investigation of a1, a3 and a5.

The computation of a semantic slice for the corresponding dangerous states on the
slices revealed rather informative conditions on the inputs. Specializing some inputs and
carrying out a new, forward analysis allowed to prove the alarms a true error, thanks to
an input specification as in Example 7.4.2.

The table below provides some data about the process: the number of input con-
straints is the number of points an input constraint (Definition 7.2.5) had to be specified
for; the number of execution patterns corresponds to the number of criteria in � � (Defi-
nition 7.2.4). The size of the slices (number of lines, functions and variables) involved in
the alarms show that a1, a3 were rather subtile; a5 was much simpler. The number of ad-
ditional constraints generated during the forward-backward refinement is rather difficult
to express simply due to the trace partitioning, and to the use of sophisticated numerical
domains; we can only mention that it is much higher than the number of variables or
of program points. One forward-backward iteration necessitates a reasonable amount of
resources for these slices (up to 1 min., 80 Mb).

Alarm a1 a3 a5

Size of the slice (lines) 1280 4096 244
Number of functions in the slice 29 115 8
Number of variables in the slice 215 883 30
including: int, bool, float variables 15, 60, 146 122, 553, 208 7, 11, 23
Execution patterns 2 2 2
Input constraints 4 4 2

The only manual step is the choice of adequate execution patterns and of constraints on
the inputs, so as to get an error scenario; in all the above cases, these numbers are very
low, which shows the amount of work for the user is very reasonable: only 4 inputs had
to be chosen in the most complicated case (a3). However each of these choices had to
be made carefully, with respect to complex conditions on bit-fields and arithmetic values.
The choices for the execution patterns to examine only required considering very few
simple pattern criteria, akin to the automaton used for distinguishing the first iteration
in Example 7.2.2 (the automaton is displayed in Figure 7.2(b)).

All errors found involve intricate floating point computations. For instance, a5 is due to
a mis-use of (interpolated) trigonometric functions, leading to a possibly negative result,
causing a square root computation to fail.

Use for alarm resolution: We could also experiment the ability of the system to solve
an alarm. Indeed, we considered a“legacy”alarm in the second development version, i.e. a
false alarm, which was solved by a refinement of the analysis (improvement of the relational
domain packing options evoked in Section 5.1.3), before semantic slicing was implemented.
We disabled these relational domain packing strategies and could successfully prove the
alarm false (as we did in Example 7.4.1).

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

7.4. APPROXIMATION OF SEMANTIC SLICES 155

Early experimental conclusions: The use of the system reduced the alarm inves-
tigation time to a few hours in the worst case we faced; the refining analyses are fully
automatic and default parameters (fixed number of global forward-backward steps, no
local iterations) did not have to be twicked too much to give good results. Fully manual
inspection of such alarms would have required days of work and would have made the def-
inition of an error scenario much more involved. Moreover, we could successfully classify
all alarms as true errors, which means that no false alarm remains.

7.4.5 Comparison with Related Work

The idea of computing automatically a characterization of a set of program executions is
not new.

For instance, some forms of“conditioned slicing” [KL88, CCL98] attack a similar prob-
lem. However, these methods are essentially based on a purely syntactic process, not only
for the extraction but also for the shape of the result: a slice is defined in [Wei81] as a
subset of the program statements, and these forms of slicing also produce syntactic slices.

Such forms of slicing have been employed for debugging tasks. Recent advances in
this area led to the implementation of conditioned slicing tools like ConSIT [FDHH04],
which could be applied to testing and software debugging [HHF+02]. However, our sys-
tem is able to produce semantic slices, i.e., to provide global information about a set of
executions instead of a mere syntactic subset of the program; this is a major advantage
when investigating complex errors. The downside is that our technique relies on more
sophisticated algorithms; however, syntactic slicing alone would not help significantly the
alarm inspection process in Astrée.

The search for counter-examples and automatic refinement has long been a motivation
in the model-checking-based systems, such as [CGJ+00, BNR03, PHR04, GRS00]. In
particular, the automatic refinement process plays a great role in the determination of
the set of predicates (i.e. abstract domain) needed for a precise analysis [BMMR01]. Our
goal is to bring such methods in static analyzers like Astrée, yet for a different purpose
i.e., to solve the few, subtile alarms, after an already very precise analysis [BCC+03a] (the
construction of the domain requires no internal refinement process).

Another closely related form of slicing is path slicing [JM05]: in case a static analyzer
or a model-checker returns a path, where it claims that a program may be unsafe (i.e.,
it fails to prove that all executions going through that path satisfy all relevant safety
conditions), then this technique slices the program relatively to this paths, which allows
for more precise analyses to be performed and counter-examples finding techniques to
be applied. This approach was applied to the Slam model-checker [BR02], and allowed
to achieve a higher selectivity rate (lower number of false alarms). By contrast, the
technique we propose is not specific to a path, since the number of possible paths to a
point where Astrée produces a warning tends to be rather large. Instead, our approach
allows considering sets of paths thanks to execution patterns (Section 7.2.3; this solution
turns out more adapted in our case. Furthermore, we allow for other families of criteria

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

156 CHAPTER 7. SEMANTIC SLICING

to be considered as well.

Forward-backward analysis schemes have been applied, e.g. in [Jea03], to the inference
of safety properties. Some static analysis systems have been extended with counter-
examples search facilities: [GJJM03] relies on random test generation; [Ere04] uses a
symbolic under-approximation of erroneous traces and theorem proving. The main dif-
ference is that we chose to start with an over-approximation of erroneous traces until
conditions on inputs are precise enough so that a counter-example could be found since
the search space for counter-examples was huge in our case, due to the size of the pro-
grams. For instance, the systematic exploration of paths as in [Ere04] over length above
1 000, with hundreds of variables would require a tremendous amount of memory and
time. Moreover, we allow abstract error scenario to be tested unlike [GJJM03, Ere04]:
this reduces the amount of input constraints to fix to a minimum. On the other hand, at
this time, we still do not perform the automatic generation of counter-examples, which is
left as a future work.

7.4.6 Future Work

At the time of the writing, we have plans for extending the framework for semantic slicing
presented in this chapter, in addition to the improvement of the current implementation,
which is still not really usable by a non-specialist.

Allow for automatic refinement of criteria: A first, very important area for future
work consists in refining the criteria in a semi-automatic or automatic way. For instance,
we would like to allow some kind of dynamic partitioning of the execution pattern criteria.

The two main difficulties to solve in order to achieve that goal are:

• the choice of relevant refinements: for instance, choosing sensible refinements
for the automaton given in the “execution pattern” criterion (Section 7.2.3) from
the numerical invariants is a difficult task, which requires efficient strategies to be
discovered;
• the definition of a widening for the domain of criteria is also a tedious issue,

even if tree schemata may provide the basis for some solution (Section 6.3.2).

Automatizing the search for error scenarios: Second, the automatic generation
for error scenarios is a very challenging and important goal. The semantic slicing exposed
here should help to determine a precise over-approximation for erroneous traces; however,
a more convincing result would be a counter-example, which would precisely tell the user
what the bug is.

For instance, [Ere04] collects and then solves symbolic constraints so as to find a
counter-example. We plan to attempt to implement similar techniques in the near future.
Semantic slicing will definitely help in narrowing the search space, hence in speeding up
the counter-example search process.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

7.4. APPROXIMATION OF SEMANTIC SLICES 157

Obviously, the generation of counter-examples would require the computation of an
under-approximation of the erroneous traces; yet, such an under-approximation may turn
out to contain fictitious traces only, which is a major issue.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

158 CHAPTER 7. SEMANTIC SLICING

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

Chapter 8

Computation of Abstract
Dependences

We study various forms of dependences, so as to localize the cause for some behaviors
of programs. In particular, we wish to track the causes for erroneous behaviors, such as
divisions by 0, overflows...

We choose to set-up definitions of dependences, which are close to the common defi-
nition of non-interference [GM82], so as to start with a semantic notion of dependence,
which is more adapted for defining extensions than classical syntactic definitions. We
state this framework in Section 8.2.

Then we propose several extensions of this classical notion of dependence. First, we
define observable dependences in Section 8.3, by restricting to a subset of the traces of a
program, i.e., to a semantic slice. Second, we introduce abstract dependences in Section 8.4,
as a way to relate abstract properties in programs as well. We provide algorithms for
approximating each form of dependence.

Then, we discuss informally the extraction of slices in Section 8.5, using the various
forms of dependences, which we introduce in this chapter.

We conclude the chapter in Section 8.6 with a short case study, namely a comparison
with related work and we outline the main perspectives for continuing this work.

8.1 Motivation

We introduced semantic slicing in Chapter 7 as a means to extract effectively a subset
of the traces of a program, so as to attempt to solve the alarms generated by a static
analysis. In particular, semantic slicing can prove an alarm false, by proving that no real
execution causes the corresponding runtime error. It can also be helpful in producing and
checking an error scenario, i.e., a trace resulting in a runtime error. Therefore, semantic
slicing is helpful in the alarm investigation process.

However, this technique does not solve all the issues, which arise when trying to
understand the origin of an alarm:

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

160 CHAPTER 8. COMPUTATION OF ABSTRACT DEPENDENCES

• the origin of imprecision or errors is not found: semantic slicing only provides
refined conditions for an error to happen; yet, finding what part of the program may
cause an error is a completely different issue, which we definitely want to address.
• the amount of data to inspect may still be cumbersome: indeed, the in-

variants computed during semantic slicing may contain a huge amount of relevant
information, and a user would expect some help about what to look at first.
• the synthesis of semantic slicing criteria is still not automatic: we did not

provide any automatic way to guess useful semantic slicing criteria in Chapter 7;
however, this might turn out a difficult task —especially for non-experienced users.

Obviously, the first point presents some similarities with a problem of dependences. In
fact, it is very difficult to define what the“cause” for an error is. In practice, a programmer
investigating a bug attempts to reconstitute the sequence of events, which caused a failure
to occur: the investigation starts from the point where the error occurs; then, the origin
of the values of the variables affecting the error should be checked and so on recursively.
The manual alarm investigation technique proceeds similarly, by looking at invariants.
This approach can clearly be assimilated to a kind of dependence analysis, starting from
the error or alarm point.

The second point, i.e., choosing what part of the invariants should be investigated first
also reduces to the resolution of a problem of dependences: indeed, it is very natural to
focus on the dependences of the variables incriminated in the alarm first, and then to look
at what the error condition depends on.

The third point does not reduce straightforwardly to a problem of dependences. How-
ever, we can distinguish the following issues:

• the initial criterion should be determined by an alarm raised by the analyzer; more
precisely, it should specialize the analysis to a case where an error does occur;
• the refined criteria should refine the semantic slice, and try to improve the character-

ization of the traces leading to an error; moreover, it should refine first the analysis
of the statements encountered before the alarm, and which impact the variables
involved in the alarm, so as to provide a better understanding of the immediate
context of the alarm first.

Clearly, the dependences from the error condition, in the semantic slice should be useful in
the case of refined criteria, since the dependences computed from the alarm point should
tell what part to refine first.

Syntactic slicing [Wei81] is based on a dependence analysis as well; however, it focuses
on the extraction of all the statements the criterion depends on. By contrast, we would
be interested in dependence chains rather than in the whole slice, even though the slice
may also be useful in a second step.

However, program slicing techniques [Wei81, HRB90] usually rely on syntactic de-
pendences: indeed, the dependences collected in the slicing process are characterized by
“def-use” conditions. We may wish to focus on more informative dependences, so as to
track and characterize the causes for errors. We illustrate this issue in the following

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

8.1. MOTIVATION 161

example.

Example 8.1.1. Semantic slice and dependences.

Let us consider the program P in Figure 8.1(a); in particular, we focus on the semantic
slice defined by the constraints displayed in Figure 8.1(b). Intuitively, the criterion spec-
ifies some initial condition (e.g., a condition on the dynamic inputs of the program) and
it aims at studying the traces which result in a large value of y.

l0 if(x > 5){
l1 y = 1 000 ? x;
l2 } else {
l3 y = y + z;
l4 }
l5 . . .

(a) Code

Initial condition (l0):
x ∈ [0, 10]
y ∈ [0, 5]
z ∈ [−4, 15]

Final condition (l5):
y ≥ 1 000

(b) Semantic slicing cri-
terion

Figure 8.1: Dependence analysis for alarm investigation

In the table below, we provide a synthetic characterization of the semantic slice defined
by the criterion (we use interval invariants).

Point Invariant
x y z

l0 [0, 10] [0, 5] [−4, 15]
l1 [6, 10] [0, 5] [−4, 15]
l2 [6, 10] [6 000, 10 000] [−4, 15]
l3 ⊥ ⊥ ⊥
l4 ⊥ ⊥ ⊥
l5 [6, 10] [6 000, 10 000] [−4, 15]

Obviously, no trace in the semantic slice goes through the false branch of the conditional,
since this branch would only generate small values for y under the input condition given
above. Moreover, we can see in the semantic slice that the first occurrence of a large value
in the program occurs at point l2, after the assignment y = 1 000 ? x.
As a consequence, we intend to define a dependence analysis such that:
• the dependences induced in the false branch are not collected;
• the dependence from (l5, y) to the assignment y = 1 000?x is more important, hence

should be collected in priority.

Before we tackle the definition of dependences fulfilling the requirements stated in
Example 8.1.1, we need to choose a framework for expressing dependences, which is the
goal of the next section.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

162 CHAPTER 8. COMPUTATION OF ABSTRACT DEPENDENCES

8.2 Notion of Dependences and Approximation

First, we set up a framework for reasoning about dependences. The notions and notations
used in this section will be used thoroughly later in this chapter.

The definitions of dependences we are going to set up are based on denotational ab-
stractions; as a consequence, we assume that JP K is the “strongly closed” version of the
semantics of programs defined in Section 3.2.1. In fact, we go even further and assume
that JP K collects all the traces of P starting from any state, i.e., we let JP K = lfp∅FP ,
where:

FP : P(Σ) −→ P(Σ)
E 7→ {〈s〉 | s ∈ � } ∪ {〈s0, . . . , sn, sn+1〉 ∈ Σ | 〈s0, . . . , sn〉 ∈ E ∧ sn → sn+1}

We will refine this assumption in Section 8.3; indeed the definition of observable traces
will allow to restrict —among others— to the traces starting from some initial state.

8.2.1 Dependences Induced by a Function

Defining dependences: Dependences have a nicer formulation when considering func-
tions instead of mere traces: an output depends on the inputs which may affect its result.
Hence, we start with a study of the dependences expressed on functions. Later, we shall
use the abstraction of traces into functions defined in Section 3.2.

Definition 8.2.1. Dependences.

Let φ ∈ Den, x0, x1 ∈ � . We say that φ induces a dependence of x1 on x0 if and only
if there exist ρ0 ∈ � , va, vb ∈ � such that φ(ρa)(x1) 6= φ(ρb)(x1) where ρi = ρ0[x0 ← vi].

Such a dependence is written x1
φ
Ã x0 (or x1 Ã x0, when there is no ambiguity about

the function φ).

Intuitively, there is a dependence of x1 on x0 if a single modification of the input value
of x0 may result in different outputs for x1. In other words, there is a dependence of x1 on
x0 if and only if the observation of the output value for x1 gives some information about
the input value for x0.

Example 8.2.1. Dependences of functions.

Let x, y ∈ � . Let us consider the function φ ∈ Den defined by

φ(ρ) =

{
{ρ[y ← x]} if ρ(b) = true
∅ if ρ(b) = false

Then, if ρ0 ∈ � , and z ∈ � , φ(ρ0[b← false])(z) = ∅ 6= φ(ρ0[b← true])(z); hence, z
φ
Ã b.

Similarly, we would prove that y Ã x.

Last, if z ∈ � \ {y}, we could prove that z
φ
Ã z, and that φ has no other dependence.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

8.2. NOTION OF DEPENDENCES AND APPROXIMATION 163

Dependences and non-secrecy: Definition 8.2.1 presents some deep similarities with
the notion of non-interference (or secrecy) [GM82], which is commonly used in the area
of security. In this setting, the set of variables � is usually partitioned into two parts:

• the “low” variables (� L) may be public (their value may be read by anyone);
• the “high” variables (� H) should be private: only authorized users should access

them; moreover, other users should not be able to derive any information about
high variables, e.g., by observing the value of low variables.

We assume that such a partition is given; then, secrecy usually boils down to:

Definition 8.2.2. Secrecy.

Let φ ∈ Den. We say that φ is secure if and only if the following condition holds:

∀ρ0, ρ1 ∈ � ,
(
∀x ∈ � L, ρ0(x) = ρ1(x)

)
=⇒ ∀x ∈ � L, φ(ρ0)(x) = φ(ρ1)(x)

Intuitively, if φ is secure, then observing the low outputs does not provide any informa-
tion about the high inputs: indeed, if two inputs may only differ in the value of the high
variables, then the resulting outputs should have the same low observation; otherwise,
a non-authorized user could infer some knowledge about the private (high) variables by
simply looking at the values of the public (low) variables.

Other authors used similar formalisms in order to describe, e.g., information flows in
programs [Den76, DD77].

By contrast, in the definition of dependences (Definition 8.2.1), we can note two im-
portant differences:

• the partition of � in low and high variables is not the same for the inputs and for
the outputs, as summarized in the table below (we keep the notations of Defini-
tion 8.2.1):

Input Output
High � H

in = {x0} � H
out = � \ {x1}

Low � L
in = � \ {x0} � L

out = {x1}
• we say that there is a dependence if we can observe a modification of the value of

x0 before applying φ by observing the value of x1 after: therefore, the existence of a
dependence is the opposite of secrecy (a function is secure if there is no dependence).

Consequently, our notion of dependence is a equivalent to a form of “non-secrecy”or “non-
non-interference”. The reason why we adopt such a definition is that we wish to start with
a semantic definition of what a dependence is, so as to be able to design various extensions
and refinements later; the syntactic definitions traditionally used in slicing would not allow
this to be done.

Dependence abstraction: We now define the set of dependences of a function:

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

164 CHAPTER 8. COMPUTATION OF ABSTRACT DEPENDENCES

Definition 8.2.3. Dependence set.

We use the same notations as in Definition 8.2.1. We let the dependence set Df [φ] of
φ be the set of dependences induced by φ:

Df [φ] = {(x0, x1) | x1
φ
Ã x0} ∈ Depf

We write Depf = P(� 2), so that Df [φ] ∈ Depf .

Note that, in the following, the “f” index stands for dependences induced by functions.

Example 8.2.2. Non-determinism and dependences.

We let x1 ∈ � , and φ be the function defined by φ : ρ 7→ {ρ[x1 ← v] | v ∈ � }. Intuitively,
φ represents the semantics of a random statement.
Let x0 be any variable and ρ be a store. Then, ∀v ∈ � , φ(ρ[x0 ← v])(x1) = � . Therefore,
(x0, x1) 6∈ Df [φ].

Let x0 ∈ � \ {x1}. Then, we can check straightforwardly that x0
φ
Ã x0, since φ(ρ)(x0) =

{ρ(x0)}.
Hence,

Df [φ] = {(x0, x0) | x0 ∈ � ∧ x0 6= x1}

We derive an abstraction for sets of elements of Den from the function φ 7→ Df [φ]:

Definition 8.2.4. Dependence abstraction.

We consider Depf = P(� × �), with the usual set inclusion ordering. Then, we have a
Galois connection:

(P(Den),⊆) −−−−→←−−−−
αD

γD

(Depf ,⊆)

where:
αD : P(Den) → Depf

Φ 7→ {(x0, x1) | ∃φ ∈ Φ, x1
φ
Ã x0}

γD : Depf → P(Den)
D 7→ {φ ∈ Den | Df [φ] ⊆ D}

The proof that (αD, γD) define a Galois connection is straightforward.
Please note that a dependence set is an abstraction of a set of functions and not for a

single function. In particular, the function φ 7→ Df [φ] is not even monotone, as stated in
the following remark, so that it is not possible to define a Galois connection, where Df [.]
would be the abstraction function.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

8.2. NOTION OF DEPENDENCES AND APPROXIMATION 165

Remark 8.2.1. Non monotonicity.

The function φ 7→ Df [φ] is not monotone: ∃φ, φ′, ∀ρ ∈ � , φ(ρ) ⊆ φ′(ρ)∧Df [φ] * Df [φ
′].

For instance, the upper element of Den is φ> : ρ 7→ � ; and, Df [φ>] = ∅, so proving the
non monotonicity of the Df [.] operator reduces to finding a function which has at least
one dependence. This is possible if the number of elements of � is greater than 2, which
is always the case in practice.

Approximation of composition: We noted in Section 3.2 that the function composi-
tion operator ◦ is the counterpart for the concatenation of statements, execution paths...
Therefore, we propose to determine the dependences of the composition of functions: if
φ0, φ1 ∈ Den, then we wish to derive an approximation for Df [φ1 ◦ φ0]. The Á operator
simply composes dependences:

Definition 8.2.5. Junction of dependence sets.

Let D,D′ ∈ Depf . We define the junction of D and D′ denoted with DÁD′ by

DÁD′ = {(x, x′′) ∈ � 2 | ∃x′ ∈ � , (x, x′) ∈ D ∧ (x′, x′′) ∈ D′}

Lemma 8.2.1. Monotonicity of the junction operator.

The operator Á is monotone: if D0,D
′
0,D1,D

′
1 ∈ Depf are such that D0 ⊆ D′0 and

D1 ⊆ D′1, then D0 ÁD1 ⊆ D′0 ÁD′1.

Proof.

Let (x, x′′) ∈ D0 Á D1. Then, there exists x′ ∈ � , such that (x, x′) ∈ D0 and
(x′, x′′) ∈ D1. By assumption, D0 ⊆ D′0, so (x, x′) ∈ D′0; similarly, (x′, x′′) ∈ D′1.
As a consequence, (x, x′) ∈ D′0 ÁD′1.
Â

The operator Á over-approximates the dependences of the composition of functions:

Theorem 8.2.2. Composition of dependences —approximation.

The operator Á is a sound approximation for “;” (or ◦); that is, if φ0, φ1 ∈ Den such
that,

Df [φ1 ◦ φ0] ⊆ Df [φ0]ÁDf [φ1]

Proof.

We write D for Df [φ0]ÁDf [φ1]; we let φ = φ1 ◦ φ0. Let x0, x2 ∈ � . Let us assume that

(x0, x2) 6∈ D and show that ¬(x2
φ
Ã x0).

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

166 CHAPTER 8. COMPUTATION OF ABSTRACT DEPENDENCES

Since (x0, x2) 6∈ D, ∀x1 ∈ � ,
(
¬(x1

φ0
Ã x0) ∨ ¬(x2

φ1
Ã x1)

)
. Let ρ ∈ � , v, v′ ∈ � . We let:

ρ0 = ρ[x0 ← v] ρ′0 = ρ[x0 ← v′]
P1 = φ0(ρ0) P ′1 = φ0(ρ

′
0)

P2 = φ1(P1) P ′2 = φ1(P
′
1)

We intend to show that φ(ρ0)(x2) = φ(ρ′0)(x2), that is P2(x2) = P ′2(x2).
The execution of φ0 modifies the value of at most a finite number of variables. Let V
be the set of modified variables by executing φ0 either from ρ0 or from ρ′0 and W be the
set {x ∈ � | P1(x) 6= P ′1(x)}.
Clearly, W is finite. Moreover, if x1 ∈W , then x1

φ0
Ã x0; hence, ¬(x2

φ1
Ã x1).

We prove straightforwardly by induction on Card(W) that:

∀Q1, Q
′
1 ∈ P(�),

W = {x ∈ � | Q1(x) 6= Q′1(x)}
x1 ∈W =⇒ ¬(x2

s1
Ã x1)

}
=⇒ φ1(Q1)(x2) = φ1(Q

′
1)(x2)

• if Card(W) = 0, then, Q1 = Q′1, so the result is obvious;
• if Card(W) = n + 1 and the property holds for n, then we can pick up an element

x1 ∈ W and let W ′ = W \ {x1}. We define Q′′1 = {ρ1[x1 ← ρ′1(x1)] | ρ1 ∈ Q1, ρ
′
1 ∈

Q′1}. Then:

φ1(Q1)(x2) = φ1(Q
′′
1)(x2) since ¬(x2

φ1
Ã x1) and ∀x ∈ � \ {x1}, Q1(x) = Q′′1(x)

= φ1(Q
′
1)(x2) by induction hypothesis, and since Card(W ′) = n

Therefore, the property applies to the above set W and P2(x2) = P ′2(x2).
Â

8.2.2 Dependences Induced by a Set of Traces

In the following, a dependence observed on a set of traces states that“the value of variable
x1 at point l1 depends on the value of variable x0 at point l0”. We derive such dependences
from the dependences induced by a function obtained by applying to E either of the
abstractions of sets of traces into functions, which we introduced in Section 3.2.

Definition: First, we define the dependences between two fixed control states:

Definition 8.2.6. From-to Dependences.

Let E be a set of traces. For any pair of points l0, l1 ∈ � , the “from-to” dependence set
Df [E | l0, l1] is defined by:

Df [E | l0, l1] = Df [αtF [l0,l1](E)]
By extension, if s is a statement, then: Df [s | l0, l1] = Df [JsK | l0, l1] = Df [αtF [l0,l1](JsK)].

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

8.2. NOTION OF DEPENDENCES AND APPROXIMATION 167

The dependences for the whole set of traces collect all from-to dependences:

Definition 8.2.7. Dependences.

The dependence set of E is:

Dt[E] = {((l0, x0), (l1, x1)) ∈ (� × �)2 | (x0, x1) ∈ Df [E | l0, l1]} ∈ Dept

Moreover, we let Dept = P((� × �)2), so that Dt[E] ∈ Dept. By extension, Dt[s] =
Dt[JsK].

Note that, in the following, the “t” index stands for dependences induced by sets of
traces.

We can also restrict the observation of dependences to a path:

Definition 8.2.8. Dependences along a path.

Let l`, la ∈ � and p ∈ P (l`, la). We let Df � 〈p〉[E] be the dependence sets induced by E,
restricted to the path p by taking into account the traces on the path p only:

Df � 〈p〉[E] = Df [αpF [p](JEK)]

Note that, in the following, the “
� 〈p〉” index stands for dependences (induced by a

function or a set of traces) along path p.

Path decomposition: In particular, we note that the set of dependences along all paths
between a pair of points partitions the from-to dependences between these two points;
this result will play a significant role in the definition of a computable approximation for
dependences:

Theorem 8.2.3. Approximating the from-to dependences.

Let x0, x1 ∈ � and l0, l1 ∈ � . Then:
• if (x0, x1) ∈ Df [E | l0, l1], then there exists p ∈ P (l0, l1), such that (x0, x1) ∈ Df � 〈p〉[E];
• as a consequence, of the previous point:

Df [E | l0, l1] ⊆
⋃
{Df � 〈p〉[E] | p ∈ P (l0, l1)}

Proof.

We show the contraposition: we assume that ∀p ∈ P (l0, l1), (x0, x1) 6∈ Df � 〈p〉[E] and we
show that (x0, x1) 6∈ Df [E | l0, l1].

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

168 CHAPTER 8. COMPUTATION OF ABSTRACT DEPENDENCES

Let ρ ∈ � and v, v′ ∈ � . We intend to show that αtF [l0,l1](E)(ρ[x0 ← v])(x1) =
αtF [l0,l1](E)(ρ[x0 ← v′])(x1). Let us note that:

αtF [l0,l1](E)(ρ[x0 ← v])(x1)
=

⋃{αpF [p](E)(ρ[x0 ← v])(x1) | p ∈ P (l0, l1)} because of Lemma 3.2.1

The assumption (x0, x1) 6∈ Df � 〈p〉[E] implies that, for any path p ∈ P (l0, l1), we have:

αpF [p](E)(ρ[x0 ← v])(x1) = αpF [p](E)(ρ[x0 ← v′])(x1)

Hence,

αtF [l0,l1](E)(ρ[x0 ← v])(x1) =
⋃{αpF [p](E)(ρ[x0 ← v′])(x1) | p ∈ P (l0, l1)}

= αtF [l0,l1](E)(ρ[x0 ← v′])(x1) (as above)

This concludes the proof.
Â

We note that the approximation of Df [E | l0, l1] given in Theorem 8.2.3 is usually strict,
and might affect the precision of analyses, as shown in the following example:

Example 8.2.3. Dependences in a program.

Let us consider the program P below:

l0 : if(b) {
l1 : x = 4;
l2 : } else {
l3 : x = 4;
l4 : }
l5 : . . .

Then, there are two paths pt, pf (one path through each branch of the conditional) from l0
to l5, so Theorem 8.2.3 gives the approximation: Df [P | l0, l5] ⊆ Df � 〈pt〉[P] ∪Df � 〈pf〉[P].
However,

• the same value is assigned to x whatever the path, so ¬((l5, x)
P
Ã (l0, b));

• αpF [pt](JP K) = Jbb ? bx ← 4c | ¤ cK, hence (b, x) ∈ Df � 〈pt〉[P] (and the same for
Df � 〈pf〉[P]).

As a consequence, Df � 〈pt〉[P] ∪Df � 〈pf〉[P] is a strict over-approximation of Df [P | l0, l5].
In fact, this example reveals even worse imprecisions: for instance, if y ∈ � \ {b, x}, then
(b, y) ∈ Df � 〈pt〉[P]. Such imprecisions will be addressed in the Section 8.2.4.

Errors and non-termination: Let us consider the program l0 : assert(b); l1. If b is
false, then the program crashes (the execution stops), so that the image of the denotational
semantics of this program is ∅; if b is true, then it behaves like the identity function. As a

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

8.2. NOTION OF DEPENDENCES AND APPROXIMATION 169

consequence, for all x ∈ � , (l1, x)Ã (l0, b). We may not want to include such dependences.
Either this would amount to include ways too many dependences, or these dependences
would not have a practical interpretation, if we wish to understand the way x 6= b is
computed.

Note that the same issue occurs with non-termination: if we consider l0 : while(b){}; l1,
if b is true, the execution never reaches point l1.

The common solution to this issue consists in using a “lazy semantics” [CF89], allow-
ing erroneous executions to continue with an additional “error-flag” turned on; similarly,
looping execution can continue after diverging, with only the ultimately constant variables
well-defined after the point of divergence. The presentation used in [CF89] is denotational,
but other authors [GM03] also proposed lazy versions of trace semantics (roughly, they
allow “transfinite traces”).

Basically, our framework works in both cases (i.e., for standard semantics as well as
for lazy semantics).

8.2.3 Approximation of Dependences

We address in this subsection the computation of an approximation of the dependence set
introduced in Definition 8.2.7.

Local dependences: In a real program, the dependences induced by each statement
can be determined pretty easily by local rules.

In our present set-up, this local description of the dependences of the program can be
defined by an approximation of the dependences induced by one-step transitions.

Definition 8.2.9. Local dependences.

We define the local dependences induced by a set of traces E as the dependences that
can be observed on paths of length 1:

Dloc = {((l0, x0), (l1, x1)) ∈ (� × �)2 | l0, l1 ∈ � ∧ (x0, x1) ∈ Df [αp[l0·l1](E)]} ∈ Dept

In the following we assume that we are able to compute an over-approximation of Dloc

and write Da
loc for this approximation.

Approximation of the dependences along a path: We need to set up a counterpart
for Á on Dept; which should approximate the concatenation of traces.

Definition 8.2.10. Approximation for composition.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

170 CHAPTER 8. COMPUTATION OF ABSTRACT DEPENDENCES

We let the » operator be defined on Dept by:

∀D0,D1 ∈ Dept,
D0 »D1 = {((l0, x0), (l2, x2)) ∈ (� × �)2 |

∃l1 ∈ � , x1 ∈ � , ((l0, x0), (l1, x1)) ∈ D0 ∧ ((l1, x1), (l2, x2)) ∈ D1}

Lemma 8.2.4. Algebraic properties of ».

The operator » enjoys the following properties:
1. it is monotone: if D0,D

′
0,D1,D

′
1 ∈ Dept are such that D0 ⊆ D′0 and D1 ⊆ D′1, then

D0 »D1 ⊆ D′0 ÁD′1.
2. it is distributive over ∪:

∀D0,D
′
0,D1 ∈ Dept,

{
(D0 ∪D′0)»D1 = (D0 »D1) ∪ (D′0 »D1)
D1 » (D0 ∪D′0) = (D1 »D0) ∪ (D1 »D′1)

3. it is associative:

∀D0,D1,D2 ∈ Dept, D0 » (D1 »D2) = (D0 »D1)»D2

Proof.

Straightforward algebraic proofs.
Â

Many definitions for dependence analyses and security analyses involve a type-system.
In fact, such type-system-based analyses hide a fixpoint definition [Cou97b]; moreover, we
wish to make the fixpoint explicit, so as to be able to perform various refinements, such
as using a better iteration strategy, computing a reduced product analysis, augmenting
the control states with partitioning tokens...

Semantics as a strongly closed set of traces: We recall that we are using the
strongly closed version of the semantics of programs in this chapter.

Computable approximation: We intend to prove the correctness of the approxima-
tion of the dependences of a program with a least-fixpoint equation, defined as follows:

Theorem 8.2.5. Approximation of dependences.

We assume that E is a strongly closed set of traces; Da
loc is a sound approximation of

the local dependences in E. We let the backward dependence analysis function F←−
D

and
∆D be defined by:

F←−
D

: Dept → Dept

D 7→ Da
loc »D ∪D

∆D = {((l , x), (l , x)) | l ∈ � , x ∈ � } ∈ Dept

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

8.2. NOTION OF DEPENDENCES AND APPROXIMATION 171

Then,

Dt[E] ⊆ lfp∆D
F←−

D
=
⋃

n∈ �

F n
←−
D

(∆D)

First, we prove that F←−
D

computes over-approximations for the dependences along
paths.

Lemma 8.2.6. Path Composition.

Let l`, la ∈ � , p ∈ P (l`, la), and n = len(p). Then,

∀(x, x′) ∈ Df � 〈p〉[E], ((l`, x), (la, x
′)) ∈ F n

←−
D

(∆D)

Proof.

We prove this property by induction on the length n of p:
• if n = 0, then p writes down p = l0; hence, αp[p](E) = {〈(l0, ρ0)〉 | ρ0 ∈ � }, αpF [p](E) =

λ(ρ ∈ �).{ρ} and Df � 〈p〉[E] = {(x0, x0) | x0 ∈ � }. Therefore, if (x, x′) ∈ Df � 〈p〉[E],
then x = x′ and ((l0, x), (l0, x′)) ∈ ∆D = F 0

←−
D

(∆D).
• if n ≥ 0, then, we assume that the property holds for any path of length n and prove

it for a path p of length n + 1.
We assume that p = l0 · l1 · . . . · ln · ln+1. We write p′ = l0 · l1 and p′′ = l1 · . . . ln · ln+1

(ie. l` = l0 and la = ln+1). Then:

Df � 〈p〉[E]
= Df [αpF [p](E)]
= Df [αpF [p′′](E) ◦ αpF [p′](E)] by Lemma 3.2.2 and strong closure of E
⊆ Df [αpF [p′](E)]ÁDf [αpF [p′′](E)] by Theorem 8.2.2
= Df � 〈p′〉[E]ÁDf � 〈p′′〉[E]

Note that the closure of E would not be enough: it would give the inclusion
αpF [p](E) ⊆ αpF [p′′](E) ◦ αpF [p′](E) but Df [.] is not monotone, as we pointed out
in Remark 8.2.1.
Let (x0, xn+1) ∈ Df � 〈p〉[E]. We draw from the above inequality that there exists
x1 ∈ � such that (x0, x1) ∈ Df � 〈p′〉[E] and (x1, xn+1) ∈ Df � 〈p′′〉[E]. As a consequence:

– (x0, x1) ∈ Df � 〈p′〉[E] and p′ is a path of length 1, so ((l0, x0), (l1, x1)) ∈ Da
loc;

– (x1, xn+1) ∈ Df � 〈p′′〉[E], and p′′ has length n; therefore, we can apply the induc-
tion hypothesis to p′′; we deduce that ((l1, x1), (ln+1, xn+1)) ∈ F n

←−
D

(∆D).
Hence,

((l0, x0), (ln+1, xn+1)) ∈ Da
loc » F n

←−
D

(∆D)

((l0, x0), (ln+1, xn+1)) ∈ Da
loc » F n

←−
D

(∆D) ∪ F n
←−
D

(∆D)

((l0, x0), (ln+1, xn+1)) ∈ F n+1
←−
D

(∆D)

As a consequence, ∀(x0, xn+1) ∈ Df � 〈p〉[E], ((l0, x0), (ln+1, xn+1)) ∈ F n+1
←−
D

(∆D).

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

172 CHAPTER 8. COMPUTATION OF ABSTRACT DEPENDENCES

This concludes the proof of the lemma.
Â

We now come back to the proof of the main theorem:
Proof.

We have two subproofs to complete:
• Definition of the least-fixpoint: Let us note that F←−

D
is continuous; hence, the

least-fixpoint is defined.
• Soundness: Let ((l0, x0), (l1, x1)) ∈ Dt[E]. So, (x0, x1) ∈ Df [E | l0, l1]. Conse-

quently, we deduce from Theorem 8.2.3 that there exists a path p ∈ P (l0, l1) such
that (x0, x1) ∈ Df � 〈p〉[E]. If we write n = len(p), then Lemma 8.2.6 ensures that
((l0, x0), (l1, x1)) ∈ F n

←−
D

(∆D). The conclusion is: ((l0, x0), (l1, x1)) ∈ lfp∆D
F←−

D
.

As a conclusion, lfp∆D
F←−

D
exists and Dt[E] ⊆ lfp∆D

F←−
D

.
Â

8.2.4 Dependence Analysis

Theorem 8.2.5 provides a very useful approximation for the dependences of a transition
system, expressed as a least fixpoint. However, a few points should still be addressed
before an efficient and usable dependence analysis can be implemented:
• effective definition of Dloc;
• computability of the least fixpoint;
• refinement of the analysis.

Approximation of local dependences: First, we focus on the definition of an ap-
proximation Da

loc for Dloc. Theorem 8.2.8 provides a straightforward approximation for
the dependences induced by a symbolic transfer function, which we will refine later. This
approximation corresponds to the syntactic approximation commonly used e.g., in slicing.
Before, we prove the main theorem, we mention that the result of the evaluation of an
expression e depends at most on the variables in e:

Definition 8.2.11. Used variables.

The set use(e) of variables used in an expression e ∈ � is defined by a straightforward
induction over e:

∀v ∈ � , use(v) = ∅
∀x ∈ � , use(x) = {x}
∀e0, e1 ∈ � , use(e0 ⊕ e1) = use(e0) ∪ use(e1)

Lemma 8.2.7. Dependence of an expression.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

8.2. NOTION OF DEPENDENCES AND APPROXIMATION 173

Let e ∈ � , ρ ∈ � , x ∈ � , v, v′ ∈ � . Then,

JeK(ρ[x← v]) 6= JeK(ρ[x← v′]) =⇒ x ∈ use(e)

Proof.

Straightforward induction on the structure of e
Â

Theorem 8.2.8. Dependence of a symbolic transfer function.

Let δ ∈ �
. The dependence Df [JδK] (Df [δ] for short) can be approximated by Da

f [δ], which
is computed by induction over δ as follows:

Da
f [¤] = ∅

Da
f [bx0 ← e0, . . . , xn ← enc] = {(x, xi) | x ∈ use(ei)} ∪ {(x, x) | ∀i, x 6= xi}

Da
f [be ? δt | δf c] = {(x, y) | x ∈ use(e), y ∈ � } ∪Da

f [δt] ∪Da
f [δf]

Proof.

By induction on the structure of δ:
• case of ¤:

Let x0, x1 ∈ � , ρ ∈ � , and v, v′ ∈ � . Then, J¤K(ρ[x0 ← v])(x1) = ∅ = J¤K(ρ[x0 ←
v′])(y1), so (x0, x1) 6∈ Df [¤]. Hence, Df [¤] = ∅.
• case of δ = bx0 ← e0, . . . , xn ← enc:

Let (y0, y1) ∈ Df [¤], ρ ∈ � , v, v′ ∈ � such that JδK(ρ[y0 ← v])(y1) 6= JδK(ρ[y0 ←
v′])(y1). There are two cases:

– if ∃i ∈ L0, nM, y1 = xi: Then, JδK(ρ[y0 ← v])(y1) = JeiK(ρ[y0 ← v]) and
JδK(ρ[y0 ← v′])(y1) = JeiK(ρ[y0 ← v′]); so JeiK(ρ[y0 ← v]) 6= JeiK(ρ[y0 ← v′]);
hence, y0 ∈ use(ei).

– if ∀i ∈ L0, nM, y1 6= xi: Then, JδK(ρ[y0 ← v]) = ρ[y0 ← v](y1) and JδK(ρ[y0 ←
v′)](y1) = ρ[y0 ← v′](y1); hence, JδK(ρ[y0 ← v])(y1) 6= JδK(ρ[y0 ← v′])(y1)
entails that y0 = y1.

As a conclusion, Df [δ] ⊆ {(x, xi) | x ∈ use(ei)} ∪ {(x, x) | ∀i, x 6= xi}.
• case of δ = be ? δt | δf c:

Let (y0, y1) ∈ Df [¤], ρ ∈ � , v, v′ ∈ � such that JδK(ρ[y0 ← v])(y1) 6= JδK(ρ[y0 ←
v′])(y1). There are two cases:

– if JeK(ρ[y0 ← v]) = JeK(ρ[y0 ← v′]): then, either δt, or δf , or δt and δf are
executed in both cases, so it follows that (y0, y1) ∈ Df [δt] ∪Df [δf].

– if JeK(ρ[y0 ← v]) 6= JeK(ρ[y0 ← v′]) then, y0 ∈ use(e).
Therefore, Df [δ] ⊆ {(x, y) | x ∈ use(e), y ∈ � } ∪ Df [δt] ∪ Df [δf]. We apply the
induction hypothesis and draw the conclusion that Df [δ] ⊆ {(x, y) | x ∈ use(e), y ∈

� } ∪Da
f [δt] ∪Da

f [δf].

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

174 CHAPTER 8. COMPUTATION OF ABSTRACT DEPENDENCES

As a consequence, ∀δ ∈ �
, Df [δ] ⊆ Da

f [δ].

Â

Remark 8.2.2. Dependences and aliases.

Let us assume we consider a language which features aliasing, and that x and y point to
the same memory location. Obviously, if z depends on ?x, then it depends also on ?y.
Therefore, in presence of aliasing, we would have to perform some kind of alias analysis
[CBC93, Deu94] first, and then use the results so as to compute the local dependences.

In the following sections, we will introduce many refinements for this approximation
of Df [δ]. In particular, the restriction of the inputs/outputs of a function (e.g., due to
semantic slicing) may remove dependences.

Another significant improvement in precision comes from the ability to compose sym-
bolic transfer functions and compute dependences globally for a path, instead of composing
several approximation. We already pointed out in Section 3.2.6 that the global approx-
imation of paths may improve the precision of static analysis. The following example
demonstrate this phenomenon in dependence analysis.

Example 8.2.4. Precision improvement.

Let us consider the following transfer functions:

δ0 = bx ? ι | ¤ c δ1 = bz ← x ∨ yc

Then, Da
f [δ0] = {(u, u) | u ∈ � } ∪ {(x, u) | u ∈ � } and Df [δ1] = {(u, u) | u ∈ � , u 6=

z} ∪ {(x, z), (y, z)}; so:

Df [δ0]ÁDf [δ1]
= {(u, u) | u ∈ � }Á {(u, u) | u ∈ � , u 6= z}
∪ {(x, u) | u ∈ � }Á {(u, u) | u ∈ � , u 6= z}
∪ {(u, u) | u ∈ � }Á {(x, z), (y, z)}
∪ {(x, u) | u ∈ � }Á {(x, z), (y, z)}

= {(u, u) | u ∈ � , u 6= z} ∪ {(x, u) | u ∈ � , u 6= z} ∪ {(x, z), (y, z)} ∪ {(x, z)}
= {(x, u) | u ∈ � } ∪ {(u, u) | u ∈ � , u 6= z} ∪ {(y, z)}

However, simplify(δ1⊕δ0) = simplify(bx ? bz ← x∨yc | ¤ c) = bx ? bz ← truec | ¤ c,
so that Df [simplify(δ1 ⊕ δ0)] = {(x, u) | u ∈ � } ∪ {(u, u) | u ∈ � , u 6= z}.

We gave an encoding of all the one-step transitions in symbolic transfer functions in
Figure 3.5; therefore, an approximation for Dloc follows from the approximation of the
dependences induced by any transfer function (Theorem 8.2.8).

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

8.2. NOTION OF DEPENDENCES AND APPROXIMATION 175

Computability: Theorem 8.2.5 provides a least-fixpoint approximation for the depen-
dences induced by a set of traces, hence by a program. We mentioned that function F←−

D

is continuous, so the least-fixpoint is reached after ω iterations: lfp∆D
F←−

D
= ∪{F n

←−
D

(∆D) |
n ∈ � }.

However, Dept is finite, since the number of control states in a program is finite and
so is the number of variables. Therefore, the least-fixpoint can in fact be reached after a
finite number of iterations.

Remark 8.2.3. Procedural programs.

If we consider a procedural analysis, then each control state encloses a calling stack. If
a program contains recursive functions, then the set of control states is no longer finite,
since there exist an infinity of control stacks; then, we should apply some abstractions to
the stacks, as in Section 4.1.1 (such abstractions can be defined as extended systems, as
in Section 4.2).
Similarly, in case dynamic memory allocation is allowed, then the number of possible
memory cells is infinite, so that an abstraction for memory locations should be defined.

Improving precision: We pointed out in Example 8.2.3 some imprecisions inherent in
the approximation of the dependences between two points with the join of the dependences
along all paths between these two points (Theorem 8.2.3).

Let l`, la ∈ � . Intuitively, if a variable x is not modified on any path between l ` and
la if l` precedes la (i.e., any execution reaching l ` eventually reaches la), then x at la
may not depend on any variable but x at l `. Let us formalize this argument:

Definition 8.2.12. Control state precedence.

Let l`, la ∈ � . We say that l` precedes la (implicitly: with respect to a set of traces E,
or to the semantics of program s), which we denote by l ` ≺ la if and only if:

∀ρ ∈ � , ∃〈s0, . . . , sn〉 ∈ E , s0 = (l , ρ) ∧ ∃ρ′ ∈ � sn = (l ′, ρ′)

The relation ≺ is transitive; it is usually neither reflexive (case of unreachable states)
nor antisymmetric (case of e.g., loops).

Then, the criterion evoked above can be stated as follows:

Theorem 8.2.9. Precedence, dependence and variable update.

Let l , l ′ ∈ � such that l ≺ l ′, and x, x′ ∈ � such that ((l , x), (l ′, x′)) ∈ Dt[E], and
x 6= x′. Then, there exists a path from l to l ′ where the value of x′ changes, ie. is
updated at least once; in fact the following stronger result holds:

∃ρ ∈ � , ∃p ∈ P (l , l ′), ∃v ∈ αpF [p](E)(ρ)(x′) ∧ v 6∈ ρ(x′)

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

176 CHAPTER 8. COMPUTATION OF ABSTRACT DEPENDENCES

Proof.

Let us assume that l ≺ l ′, ((l , x), (l ′, x′)) ∈ Dt[E], and x 6= x′. There exist ρ ∈
� , v0, v1 ∈ � , such that φ(ρ0)(x

′) 6= φ(ρ1)(x
′), where φ = αpF [l]l ′(E), and ∀i ∈ {0, 1},

ρi = ρ[x← vi].
The precedence property entails that ∀i ∈ {0, 1}, φ(ρi)(x

′) 6= ∅. The dependence entails
that ∃i, φ(ρi)(x

′) 6= {ρ(x′)}; hence, ∃v ∈ � , v ∈ φ(ρi)(x
′). The main result follows.

Â

The precedence relation can be computed syntactically; moreover, the set of variables
modified between any pair of control states can be approximated by a simple static anal-
ysis, which we do not describe here. More precisely, this analysis would over-approximate
the set of tuples (l , l ′, x′) such that x′ is modified on at least one path from l to l ′.

Then, the dependence analysis is the result of a reduced product of the analysis de-
scribed in Theorem 8.2.5 and of the analysis approximating the updates of variables.

Example 8.2.5. Precedence among control states.

Let us consider the definition of the ≺ relation in the case of the simple language intro-
duced in Section 2.2:
• if P contains an assignment l0 : x := e; l1, then, clearly l0 ≺ l1 (the case of input

statements, sequences, if statements are similar);
• the case of an assert statements l0 : assert(e); l1 is more interesting:

– in the standard settings, some traces from l0 may not reach l1, due to the
assertion being violated; as a consequence l0 6≺ l1 (so we keep the spurious
dependences mentioned in the end of Section 8.2.2);

– by contrast, in the “lazy semantics” approach [CF89], then any trace from l0
eventually reaches l1 (since an erroneous trace continues, with an error flag
enabled), so that l0 ≺ l1.

The case of a loop statement l0 : while(e){. . .}; l1 is similar (i.e., l0 ≺ l1 holds only
in the lazy semantics approach). As a consequence, we confirm that our framework
accommodates both approaches; in practice though, we use the lazy one (since we
are interested in backward dependences from errors only).

Example 8.2.6. Precedences among control states (Example 8.2.3 continued).

Clearly, l0 ≺ l5; moreover, if y ∈ � \ {x}, then y is not modified on any path between l0
and l5, so there is no dependence (l5, y)Ã (l0, b) (in fact, (l5, y)Ã (l0, z) =⇒ z = y).

In practice, most implementations of dependence analyses distinguish data and control
dependences, which avoids the need for this simple refinement. However, the advantage
of our approach is to start with a semantic definition of dependences, to derive a rather
rough computable approximation and to refine it later. The price to pay for this approach
was the need to recover the distinction between data and control dependences.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

8.2. NOTION OF DEPENDENCES AND APPROXIMATION 177

8.2.5 Dependence Graphs

Backward dependence: Theorem 8.2.5 provides a means to compute all the depen-
dences in a program. However, one usually does not need to compute all the dependences:
the purpose of dependence analyses is usually to figure out what may affect the value of
a variable x at point l , or to extract a slice.

As a consequence, we define a notion of criterion, which states what part of the program
we wish to compute the dependences of:

Definition 8.2.13. Criterion.

A criterion C is a set of pairs made of a control point and a variable C ∈ P(� × �).

In particular, if an alarm is raised at point l due to the possible failure of an assertion
assert(e), then, we should consider the criterion C = {l } × use(e).

The set of entities the criterion depends on is defined as follows:

Definition 8.2.14. Backward dependence induced by a criterion.

Let E be a strongly closed set of traces, and C ∈ P(� × �). Then, the backward depen-

dence induced by (E , c) is the set of dependences
←−
dep[E](C) defined by:

←−
dep[E](C) = {((l , x), (l ′, x′)) ∈ Dt[E] | (l ′, x′) ∈ C} = Dt[E] ∩

←−C π

where
←−C π = (� × �)× C.

Extraction of a backward dependence: We propose to derive an algorithm for ex-
tracting the backward dependences induced by a criterion from the fixpoint-based defini-
tion of all the dependences of a program.

In the following, we write ∆CD for C2.

Theorem 8.2.10. Backward dependence analysis.

We let
←−
depa[E](C) = lfp∆C

D
F←−

D
.

The backward dependences can be safely approximated by
←−
depa[E](C):

←−
dep[E](C) ⊆ ←−depa[E](C)

Proof.

First, we prove that F n
←−
D

(∆D) ∩←−C π = F n
←−
D

(∆CD) by induction over n:

• if n = 0, then: F 0
←−
D

(∆D) ∩←−C π = ∆D ∩
←−C π = C2 = ∆CD = F 0

←−
D

(∆CD).

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

178 CHAPTER 8. COMPUTATION OF ABSTRACT DEPENDENCES

• if n ≥ 0, let us assume the property holds for n and show it for n + 1:

F n+1
←−
D

(∆D) ∩←−C π =
(
Da

loc » F n
←−
D

(∆D) ∪ F n
←−
D

(∆D)
)
∩←−C π

=
(
Da

loc » F n
←−
D

(∆D)
)
∩←−C π ∪ F n

←−
D

(∆D) ∩←−C π

Let l , l ′′ ∈ � , x, x′′ ∈ � and let us consider the first term:

((l , x), (l ′′, x′′)) ∈
(
Da

loc » F n
←−
D

(∆D)
)
∩←−C π

⇐⇒
{

((l , x), (l ′′, x′′)) ∈ Da
loc » F n

←−
D

(∆D)

((l , x), (l ′′, x′′)) ∈ ←−C π

⇐⇒ ∃l ′ ∈ � , x′ ∈ � ,

((l , x), (l ′, x′)) ∈ Da
loc

((l ′, x′), (l ′′, x′′)) ∈ F n
←−
D

(∆D)

(l ′′, x′′) ∈ C

⇐⇒ ∃l ′ ∈ � , x′ ∈ � ,

{
((l , x), (l ′, x′)) ∈ Da

loc

((l ′, x′), (l ′′, x′′)) ∈ F n
←−
D

(∆D) ∩←−C π

⇐⇒ ((l , x), (l ′′, x′′)) ∈ Da
loc »

(
F n
←−
D

(∆D) ∩←−C π

)

As a consequence,

F n+1
←−
D

(∆D) ∩←−C π

= Da
loc »

(
F n
←−
D

(∆D) ∩←−C π

)
∪
(
F n
←−
D

(∆D) ∩←−C π

)

= Da
loc » F n

←−
D

(∆CD) ∪ F n
←−
D

(∆CD) (induction hypothesis)

= F n+1
←−
D

(∆CD)

The intermediate result follows.
From this point, the proof of the theorem is straightforward. Indeed:

←−
dep[E](C)
= Dt[E] ∩

←−C π

⊆ (lfp∆D
F←−

D
) ∩←−C π by Theorem 8.2.5

=
(⋃

n∈ � F n
←−
D

(∆D)
)
∩←−C π

=
⋃

n∈ �

(
F n
←−
D

(∆D) ∩←−C π

)

=
⋃

n∈ � F n
←−
D

(∆CD) due to the intermediate result

= lfp∆C
D
F←−

D

This concludes the proof of the theorem.
Â

In practice, a pre-analysis phase collects all the local dependences of the program in a
dependence graph [HRB90]. Then, backward dependences can be extracted by computing
a closure (i.e., fixpoint computation) of the dependences in the graph, starting from the
criterion.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

8.2. NOTION OF DEPENDENCES AND APPROXIMATION 179

Example 8.2.7. Backward dependence (Example 8.1.1 continued).

Let us consider the program P displayed in Figure 8.1(a) (Example 8.1.1). We focus on
the backward dependences induced by the criterion (l5, y).

Then, all the local dependences involved in the computation of
←−
depa[JP K]({(l5, y)}) are

displayed in Figure 8.2.
As a result

←−
depa[JP K]({(l5, y)}) is equal to the set of dependences,

{(l5, y), (l4, y), (l3, y), (l3, z), (l2, y), (l1, x), (l0, x), (l0, y), (l0, z)} × {(l5, y)}

(l5, y)

(l4, y)

(l2, y)

(l3, y)

(l3, z)

(l1, x)

(l0, y)

(l0, z)

(l0, x)

Figure 8.2: Local dependences involved in the approximation of the backward depen-
dences induced by {(l5, y)}

Forward dependences: The fixpoint algorithms proposed in Theorem 8.2.5 and Theo-
rem 8.2.10 work backwards: they seek for dependences in the opposite direction compared
to the direction of program executions. We could propose forward algorithms as well.

In particular, we let the forward dependence semantic function be defined by:

F−→
D

: Dept → Dept

D 7→ D ∪D »Da
loc

The forward analysis provides the same approximation of the dependences of a set of
traces:

Theorem 8.2.11. Forward approximation of dependences.

Let E be a strongly closed set of traces. Then, lfp∆D
F−→

D
= lfp∆D

F←−
D
. As a consequence,

Dt[E] ⊆ lfp∆D
F−→

D

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

180 CHAPTER 8. COMPUTATION OF ABSTRACT DEPENDENCES

Proof.

This result follows from the fact that the iterates in both fixpoints are equal: ∀n ∈
�
, F n
←−
D

(∆D) = F n
−→
D

(∆D). This equality can be proved by induction over n.

But, we prove first the following property, by induction over n: ∀n ∈ �
, F n

←−
D

(Da
loc) »

Da
loc = Da

loc » F n
←−
D

(Da
loc).

• if n = 0, then F 0
←−
D

(∆D)»Da
loc = ∆D »Da

loc = Da
loc = Da

loc »∆D = Da
loc » F 0

←−
D

(∆D);
• if n ∈ �

, and the property holds for n, then:

F n+1
←−
D

(∆D)»Da
loc

= (Da
loc » F n

←−
D

(∆D) ∪ F n
←−
D

(∆D))»Da
loc

= (Da
loc » F n

←−
D

(∆D))»Da
loc ∪ F n

←−
D

(∆D)»Da
loc (distributivity ∪ over »)

= Da
loc » (F n

←−
D

(∆D)»Da
loc) ∪ F n

←−
D

(∆D)»Da
loc (associativity of »)

= Da
loc » (Da

loc » F n
←−
D

(∆D)) ∪Da
loc » F n

←−
D

(∆D) (induction hypothesis)

= Da
loc » (Da

loc » F n
←−
D

(∆D) ∪ F n
←−
D

(∆D)) (distributivity ∪ over »)

= Da
loc » F n+1

←−
D

(∆D)

The proof of equality of the iterates from this point is straightforward.
Then, the equality of the forward and backward fixpoints follows from a straightforward
induction over the iterates.
Â

Moreover, if we define the forward dependences induced by a criterion as the dual of←−
dep[E], F−→

D
also provide an over-approximation for such forward dependences:

Theorem 8.2.12. Forward dependence analysis.

Let E be a strongly closed set of traces and C ⊆ P(� × �).

Let us write
−→C π = C × (� × �). Then, the forward dependences induced by (E , C) is the

set of dependences:

−→
dep[E](C) = {((l , x), (l ′, x′)) ∈ Dt[E] | (l , x) ∈ C} = Dt[E] ∩

−→C π

Then, if we let
−→
depa[E](C) be defined by

−→
depa[E](C) = lfp∆C

D
F−→

D
, then

−→
dep[E](C) ⊆

−→
depa[E](C).

Proof.

Entirely similar to Theorem 8.2.10.
Â

Forward dependences collect what depends on a criterion. In the following, we mostly
use backward dependences, since we are interested in causes of results rather than in
consequences. Hence, we usually let “dependences” mean “backward dependences”, unless
stated otherwise.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

8.3. OBSERVABLE DEPENDENCES 181

Most of the results and definitions given in the following sections would also apply in
the case of forward (observable or abstract) dependences.

For a discussion about the applications of forward dependences (e.g., in the extraction
of forward slices), we refer the reader to [HRB90, HDSS96].

8.3 Observable Dependences

We now propose a first refinement for the notion of dependences. Indeed, when considering
a semantic slice, we do not consider all the traces of the program. As a result, we may wish
to refine the algorithm for computing dependences, which we described in Section 8.2.3,
so as to take into account the restriction to a smaller set of traces.

8.3.1 Dependences on Semantic Slices and Non-Monotonicity

A natural approach would be to define the dependences for a semantic slice E ′ of E as the
dependences induced by E ′. However, this definition would result in very non-intuitive
dependences, which would not correspond to what we want to capture. Indeed, we recall
that the E 7→ Dt[E] function is not monotone.

As a result, dependences of semantic slices would be plagued with meaningless fictitious
dependences, as illustrated in the following example.

Example 8.3.1. Fictitious dependences in a semantic slice.

We consider the following program s, with two variables x, y:

l0 : input(x);
l1 : input(y);
l2 : . . .

This program does not induce any dependence across distinct variables. However, we may
consider the subset clos(E) of JsK, where:

E = { 〈(l0, (x = 0, y = 0)), (l1, (x = 4, y = 0)), (l2, (x = 4, y = 4))〉,
〈(l0, (x = 0, y = 0)), (l1, (x = 2, y = 0)), (l2, (x = 2, y = 2))〉 }

Clearly, E ⊆ JsK. However, we note that the value read for y at l1 is always the same
as the value of x at this point; hence, this new set of traces defines a dependence of
((l1, x), (l2, y)), which was not induced by JsK.
This example shows the non-monotonicity of the dependence operator, even when applied
to semantic slices of a same program.

We note that the dependence (l2, y)Ã (l1, x) in the above example has no satisfactory
interpretation. Indeed, the fact that y always has the same value as x stems from the
choice of the semantic slicing criterion rather than the actual behavior of the program, even

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

182 CHAPTER 8. COMPUTATION OF ABSTRACT DEPENDENCES

though we expect dependences to provide information about the origin of the program
results (as opposed to the semantic slicing choices).

As a consequence, we propose to work on a definition for observable dependences
instead.

8.3.2 Observable Dependences Induced by a Function

First, we define observable dependences of functions, with constraints on the inputs and
on the outputs.

Definition 8.3.1. Function slice.

A slice of a function φ ∈ Den is defined by a pair (Mi, Mo) ∈ (P(�))2, where Mi is an
input constraint and Mo is an output constraint. The meaning of this function slice is
described by:

φ̃ : ρ 7→
{

φ(ρ) ∩Mo if ρ ∈ Mi

∅ if ρ 6∈ Mi

Observable dependences: An observable dependence is a dependence, which is re-
vealed in the semantic slice under consideration:

Definition 8.3.2. Observable dependences.

Let φ ∈ Den, Mi, Mo ⊆ � , x0, x1 ∈ � . We say that φ induces an observable dependence
of x1 on x0 in the semantic slice (Mi, Mo) if and only if

∃ρ ∈ Mi, ∃va, vb ∈ Mi(x0), φ(ρ[x0 ← va])(x1) ∩Mo(x1) 6= φ(ρ[x0 ← vb])(x1) ∩Mo(x1)

We write x1
φ
ÃMi Z⇒Mo x0 if such a dependence exists. Last, we let Dsf [φ; Mi Z⇒ Mo]

denote the set {(x0, x1) ∈ � 2 | x1
φ
ÃMi Z⇒Mo x0} of dependences which are observable on

the semantic slice defined by Mi, Mo.

Note that, in the following, the “f” index stands for observable dependences (with
respect to a semantic slice, which should be mentioned).

Example 8.3.2. Observable dependences.

Let us consider the input constraint b = true and the function φ introduced in Exam-
ple 8.2.1:

φ(ρ) =

{
{ρ[y ← x]} if ρ(b) = true
∅ if ρ(b) = false

Then, if z ∈ � , we can show that z does not depend on b (it is not possible to exhibit two
distinct values for b in the input constraint). As a consequence,

Dsf [φ; Mi Z⇒ Mo] = {(x, y)} ∪ {(z, z) | z ∈ � }

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

8.3. OBSERVABLE DEPENDENCES 183

Intuitively, we focus on the executions, which satisfy the condition of an if-statement.
As a consequence, we restrict to a single path: all traces in the slice go through the same
branch of the if-statement. As a consequence, the absence of dependence on b was to be
expected.

Hierarchy of observations: The definition of observable dependences allows to recover
a kind of monotonicity result:

Theorem 8.3.1. Hierarchy of observable dependences —case of functions.

Let Mi, M ′
i , Mo, M ′

o ⊆ � , such that Mi ⊆ M ′
i and Mo ⊆ M ′

o, and φ ∈ Den. Then:

∀x0, x1 ∈ � , x1
φ
ÃMi Z⇒Mo x0 =⇒ x1

φ
ÃM ′i Z⇒M ′o x0

An important corollary of this property is that ∀x0, x1 ∈ � , x1
φ
ÃMi Z⇒Mo x0 =⇒ x1

φ
Ã

�
Z⇒

�

x0. In other words, the observable dependences are a subset of the dependences:

∀x0, x1 ∈ � , x1
φ
ÃMi Z⇒Mo x0 =⇒ x1

φ
Ã x0

Proof.

We propose to prove two simple properties first:

• we assume that Mo = M ′
o and prove the monotonicity with respect to the input

constraint:
Let us assume that x1

φ
ÃMi Z⇒Mo x0. Then, there exist ρ ∈ Mi, va, vb ∈ � such that

∀i ∈ {a, b}, vi ∈ Mi(x0) and φ(ρa)(x1) 6= φ(ρb)(x1), where ρi = ρ[x0 ← vi]. Since

Mi(x0) ⊆ M ′
i (x0), ∀i ∈ {a, b}, vi ∈ M ′

i (x0), so x1
φ
ÃM ′i Z⇒Mo

x0.
• we assume that Mi = M ′

i and prove the monotonicity with respect to the
output constraint:

Let us assume that x1
φ
ÃMi Z⇒Mo x0. Then, there exist ρ ∈ � , va, vb ∈ � such that

φ(ρa)(x1)∩Mo(x1) 6= φ(ρb)(x1)∩Mo(x1), where ρa and ρb are defined as usual. Then,
Mo(x1) ⊆ M ′

o(x1), which entails φ(ρa)(x1) ∩M ′
o(x1) 6= φ(ρb)(x1) ∩M ′

o(x1), since:

∀E,E ′, A,B, E ∩B = E ′ ∩B ∧ A ⊆ B =⇒ E ∩ A = E ′ ∩ A

As a result, x1
φ
ÃMi Z⇒M ′o x0.

The result of the theorem follows from the composition of the two results above.

Â

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

184 CHAPTER 8. COMPUTATION OF ABSTRACT DEPENDENCES

Approximation of composition: The approximation of the dependences of φ1 ◦ φ0

was a crucial step in the definition of an algorithm for approximating the dependences of
a program; therefore, we extend this result here.

Theorem 8.3.2. Composition of observable dependences —approximation.

Let M0, M1, M2 ∈ P(�), and φ0, φ1 ∈ Den. Let φ̃ be the composition of the semantic

slice φ̃0 of φ0 defined by (M0, M1) with the semantic slice φ̃1 of φ1 defined by (M1, M2):

φ̃ : ρ 7→
{

φ1(φ0(ρ) ∩M1) ∩M2 if ρ ∈ M0

∅ if ρ 6∈ M0

Then, we have the following approximation:

Dsf [φ̃; M0 Z⇒ M2] ⊆ Dsf [φ0; M0 Z⇒ M1]ÁDsf [φ1; M1 Z⇒ M2]

Proof.

Similar to the proof of Theorem 8.2.2.
Â

8.3.3 Observable Dependences Induced by a Set of Traces

In this section, we consider a set of traces E (typically, E = JP K for some program P) and
a semantic slice E ′ ⊆ E . We propose to define the observable dependences, corresponding
to the semantic slice E ′. Note that we assume that E ′ is strongly closed (so that the
closeness of the semantic slices is addressed in the end of this subsection).

Remark 8.3.1. Strong closure of semantic slices.

The assumption that the semantic slice E ′ be strongly closed is crucial for the definition
of observable dependences to make sense and also for the algorithms, which we describe
in the following subsections for approximating such dependences to be sound.
As a consequence, we require that the semantic slicing function described in Chapter 7
inputs and returns strongly closed sets of traces only. In particular, we replace the defi-
nition of semantic slices (Definition 7.2.2) with the following definition (� is a semantic
slicing domain, c ∈ �):

Slice � 〈E , c〉 = clos(JP K ∩ γ � (c))
We recall that clos completes a set of traces by adding all the sub-traces, so this operator
returns closed sets of traces.
Establishing the strong closure requires proving that, if σ, σ ′ ∈ Slice � 〈E , c〉 are such that
σ _ σ′ is defined, then σ _ σ′ ∈ Slice � 〈E , c〉. This property is trivial in the case of the
initial and final states slicing criteria and of the input constraints slicing criteria.
In the case of the execution patterns criteria, the property is clearly true if we consider
that the control states enclose the partitioning tokens (i.e., we should use � � instead of �
in the dependence analysis).

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

8.3. OBSERVABLE DEPENDENCES 185

Definition: The definition of observable dependences of a semantic slice extends Def-
inition 8.3.2. The observable dependences between two points or along a path are the
dependences of the underlying function, constrained with the set of input and output
states which are observable in E ′, relatively to this transition.

The observable from-to dependences are defined by:

Definition 8.3.3. Observable dependences.

Let l0, l1 ∈ � and x0, x1 ∈ � . We define the input and output constraints:

Mi = {ρ0 ∈ � | ∃〈(l0, ρ0), . . .〉 ∈ αt [l0,l1](E ′)}
Mo = {ρ1 ∈ � | ∃〈. . . , (l1, ρ1)〉 ∈ αt [l0,l1](E ′)}

We say that there exists an observable dependence of (l1, x1) on (l0, x0) and we write
(l1, x1)Ã[E ′] (l0, x0) if and only if:

(x0, x1) ∈ Dsf [αtF [l0,l1](E); Mi Z⇒ Mo]

We write Dst[E | E ′] for the observable dependences induced by the semantic slice E ′ of
E; it is defined by:

Dst[E | E ′] = {((l0, x0), (l1, x1)) ∈ (� × �)2 | (l1, x1)Ã[E ′] (l0, x0)}

Note that the above definition is based on the definition of constraints on the input
and outputs of the function; however, it uses the function defined in the initial transition
system:

The definition of observable dependences Ds � 〈p〉[E | E ′] along a path p is similar (it is
based on αp[p] instead of αt [l0,l1]).

Hierarchies of observable dependences: The “monotonicity” of the observable de-
pendences with respect to the semantic slice follows straightforwardly from Theorem 8.3.1.

Theorem 8.3.3. Hierarchy of observable dependences —case of sets of traces.

Let E0, E1 be two semantic slices of E such that E0 ⊆ E1. Then:

Dst[E | E0] ⊆ Dst[E | E1]

In particular, if E ′ is a semantic slice of E, then Dst[E | E ′] ⊆ Dst[E | E] = Dt[E]:
the dependences observable in a semantic slice form a subset of the dependences of the
initial set of traces.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

186 CHAPTER 8. COMPUTATION OF ABSTRACT DEPENDENCES

A very important consequence of Theorem 8.3.3 is that we can focus on the depen-
dences of an approximation E ′′ of a semantic slice E ′, when studying E ′. Indeed, we may
not be able to compute E ′; hence, we would not be able to compute any safe approximation
of the observable dependences of E ′ without the property proved in this Theorem.

At this point, we can illustrate the notion of observable dependences, induced by a
semantic slice:

Example 8.3.3. Dependences observable in a semantic slice (Example 8.1.1
continued).

Let us consider the observable dependences for the semantic slice, which we defined in
Example 8.1.1.

We completely described dependences induced by the criterion {(l5, y)} in Example 8.2.7.

The traces in the semantic slice all go through the true branch; as a result, the depen-
dences which were due to the false branch are no longer observable. As a result, we get
the following set of observable dependences

{(l5, y), (l2, y), (l1, x), (l0, x)} × {(l5, y)}

Obviously, this set of dependences is significantly smaller than the set of dependences
computed in Example 8.2.7.

8.3.4 Approximation of Observable Dependences

In this section, we still consider a strongly closed semantic slice E ′ of a set of traces E .

Approximation of local, observable dependences: As in Section 8.2.3, we define
an approximation for local dependences:

Definition 8.3.4. Local, observable dependences.

We let the local observable dependences Dloc[E | E ′] be defined by:

Dloc[E | E ′] =
⋃
{Ds � 〈l0·l1〉[E | E ′] | l0, l1 ∈ � }

As usual, only an over-approximation Da
loc[E | E ′] of Dloc[E | E ′] can be computed in

practice. Since Dloc[E | E ′] ⊆ Dloc (same proof as Theorem 8.3.3), we can use Dloc as an
approximation. We show in Section 8.3.5 how to refine Dloc into a more precise, yet still
safe, over-approximation of Dloc[E | E ′].

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

8.3. OBSERVABLE DEPENDENCES 187

Computable approximations of observable dependences: The fixpoint approxi-
mation still holds in the case of the observable dependences:

Theorem 8.3.4. Approximation of observable dependences.

As in Theorem 8.2.5, we let ∆D = {((l , x), (l , x)) | l ∈ � , x ∈ � } and

F←−
D

: Dept → Dept

D 7→ D ∪Da
loc[E | E ′]»D

(note that the definition of F←−
D

is based on Da
loc[E | E ′] instead of Da

loc).

Then:

Dst[E | E ′] ⊆ lfp∆D
F←−

D

Proof.

Follows the same steps as the proof of Theorem 8.2.5.

Â

In particular, the computation of the observable dependences induced by a criterion
also generalizes straightforwardly (Theorem 8.2.10).

8.3.5 Refining Observable Dependences

In this section, we consider how to cut down an approximation of the observable depen-
dences induced by the semantic slice E ′. Most of the refinements proposed here can be
applied when computing the approximation Da

loc[E | E ′] for the local dependences.

Removal of unreachable control states: In case some control state is unreachable in
the semantic slice E ′, then it does not appear in any dependence observable in this slice:

Theorem 8.3.5. Dependences and unreachable states.

Let l , l ′ ∈ � , x, x′ ∈ � . Then, ((l , x), (l ′, x′)) ∈ Dst[E | E ′] implies that l and l ′ are
reachable (i.e., there exists a trace 〈. . . , (l , ρ), . . .〉 in E ′, and the same for l ′).

Proof.

Let us assume that l is not reachable. If we use the same notations as in Definition 8.3.3,
then Mi = ∅; moreover, we get the result Dsf [αtF [l ,l ′](E); ∅ Z⇒ Mo] = ∅ from the definition
of the observable dependences of a function (Definition 8.3.2), since we cannot find two
distinct values va, vb in Mi(x). We conclude that ((l , x), (l ′, x′)) 6∈ Dst[E | E ′].

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

188 CHAPTER 8. COMPUTATION OF ABSTRACT DEPENDENCES

Similarly, if l ′ is not reachable, then Mo = ∅ and Dsf [αtF [l ,l ′](E); Mi Z⇒ ∅] = ∅. As a
conclusion ((l , x), (l ′, x′)) 6∈ Dst[E | E ′].
Â

As a consequence, any non-reachable state does not appear in Dst[E | E ′] and should not
be considered in Da

loc[E | E ′]. If Da
loc[E | E ′] is a sound over-approximation of Dloc[E | E ′],

then so is the following:

Da
loc[E | E ′] \ {((l , x), (l ′, x′)) ∈ (� × �)2 | l or l ′ is not reachable}

In practice, such an approximation should be computed by a sound static analysis of the
program (prior to dependence analysis).

Removal of constant variables: A similar argument holds for constant variables:

Theorem 8.3.6. Dependences and constant variables.

Let l ∈ � and x ∈ � . If x may take at most one value v at point l in the semantic slice
E, then, there is no dependence to (l , x).

Proof.

Similar to the proof of Theorem 8.3.5: if x is constant at point l , then we cannot find
two distinct values for x at l and we cannot exhibit a dependence ((l , x), (l ′, x′)).
Â

Example 8.3.4. Removal of constant variables (Example 8.2.3 continued.

In the case of the program in Example 8.2.3, x = 4 at l5, for any execution of the program;
as a consequence, the dependence (l5, x)Ã (l0, b) does not hold.

Constant expressions: If an expression is constant in a semantic slice, then it does
not induce any dependence. Indeed, if e always evaluates to the same value v, then its
value depends on nothing, so we can provide a better approximation for the dependences
induced by an assignment or a condition than the result of Lemma 8.2.7. Of course, this
refinement also applies to sub-expressions. Note that this refinement somewhat extends
the previous one (removal of constant variables).

For instance, if a static analysis proves that x and y are equal (they take the same
value) in the semantic slice under consideration, then the assignment t = u + 2 ? (x− y)
induces a dependence tÃ u.

Partitioning and dependence analysis: The analysis carried out in the semantic
slicing may resort to some kind of trace partitioning (either control-based [MR05], as in
Chapter 5 or in order to distinguish execution patterns [Riv05b], as in Section 7.2.3).
Then, the same principle could be applied to the dependence analysis. In particular, this

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

8.4. ABSTRACT DEPENDENCES 189

approach allows to benefit from precise abstract invariants, so it may increase the number
of contexts the above refinements can be applied in.

Example 8.3.5. Partitioning dependence analysis.

Let us consider the program below:

l0 : if(b) {x0 = y}
else {x1 = y};
if(b′) {z = x0}
else {z = x1};

l1 : . . .

We focus on the semantic slice collecting all executions going through the same branch in
both if statements. Then, the partitioning dependence analysis infers only one dependence
from (l1, z), namely (l0, y).
The non-partitioning analysis would also include dependences on (l0, b), (l0, b

′), (l0, x1),
(l0, x0). We can see that this refinement allows for global precision improvements.

8.4 Abstract Dependences

We propose a further strengthening of the notion of dependences, after introducing the
observable dependences in Section 8.3. More precisely, we wish to distinguish dependences,
which can be observed even if we perform an abstraction of sets of control states: these
dependences are abstract dependences.

8.4.1 Definition of Abstract Dependences

Abstractions: When investigating the causes for an alarm, we are not interested in all
computations. Only the computations, which may cause an error are relevant.

For instance, if we focus on an alarm corresponding to a possible overflow, we are usu-
ally interested in finding out where large values stem from, and how they may propagate
in the program. Similarly, if a specification provides normal ranges for the variables (for
instance, the type system of the ADA programming language allows for such information
to be included in the declaration of variables), we may want to search how abnormal
values propagate.

As a consequence, we introduce dependences between abstractions. In the following,
we consider abstractions of sets of values: we write ��� � for the set of such abstractions,
which define a Galois connection [CC77] (Definition 2.3.1). An element of ��� � is a tuple

(D,α, γ), defining a Galois connection (P(�),⊆) −−→←−−α
γ

(D,v) (we do not explicit the
order when writing an element of ��� � , for the sake of concision). For short, we usually
write � 0 for the tuple (D0, α0, γ0).

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

190 CHAPTER 8. COMPUTATION OF ABSTRACT DEPENDENCES

Abstract dependences induced by functions: We now embed abstractions into
dependences (the case of observable dependences is postponed):

Definition 8.4.1. Abstract dependences.

Let � 0 = (D0, α0, γ0) and � 1 = (D1, α1, γ1) be two abstractions, x0, x1 ∈ � , and φ ∈ Den.
We say that φ induces an abstract dependence of (x1, � 1) on (x0, � 0) if and only if:

∃ρ ∈ � , ∃da, db ∈ D0,

α1(φ(ρa)(x1)) 6= α1(φ(ρb)(x1))
where γ0(di) 6= ∅
and ρi = ρ[x0 ← γ0(di)]

Such a dependence will be denoted by (x1, � 1)
φ
Ã (x0, � 0).

Furthermore, we let the set of abstract dependences D
]
f [φ] induced by φ be defined by:

D
]
f [φ] = {((x0, � 0), (x1, � 1)) ∈ (� × ��� �)2 | (x1, � 1)

φ
Ã (x0, � 0)}

Intuitively, (x1, � 1) depends on (x0, � 0) if substituting to x0 two values which can be
distinguished by α0 results in x1 having different values, distinguished by α1 after the
execution of φ. The following example illustrates the usefulness of the approach:

Example 8.4.1. Abstract dependences of a function.

In this example, we consider that values are natural integers (i.e., � =
�
) and that the

abstraction � = (D,α, γ) is defined by D = {⊥, d0, d1,>}, and:

γ :

⊥ 7→ ∅
d0 7→ {v ∈ � | |x| < 1 000}
d1 7→ {v ∈ � | |x| ≥ 1 000}
> 7→ �

Let us focus on the function:

φ : � −→ �
ρ 7→ ρ[z ← (x mod 2) ? y]

In the standard settings of Definition 8.2.1, φ induces two dependences z Ã x and z Ã y.
However, if we consider abstract dependences, though the situation is rather different:
• if we let ρ(x) = 1, then φ(ρ)(z) = ρ(y), so that we can verify straightforwardly that

φ induces an abstract dependence (z, �)Ã (y, �);
• however, whether the value of x is large or not does not affect the output of φ so

that (z, �) does not depend on (x, �).
Of course, we may consider different abstractions instead of � , and get different results.

For instance, if � ′ is the parity abstraction, then (z, �) φ
Ã (x, � ′).

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

8.4. ABSTRACT DEPENDENCES 191

We now prove that this definition of abstract dependences generalizes “concrete” de-
pendences, which we introduced in Definition 8.2.1.

Theorem 8.4.1. Dependences are abstract dependences.

We write � id for the identity abstraction, i.e. the tuple (Did, αid, γid) characterized by
Did = P(�), αid = γid = λ(X ∈ P(�)) ·X.
Let φ ∈ Den, x0, x1 ∈ � . Then:

x1
φ
Ã x0 ⇐⇒ (x1, � id)

φ
Ã (x0, � id)

Proof.

Let us assume that x1
φ
Ã x0. Then, there exist ρ ∈ � , va, vb ∈ � , such that φ(ρa)(x1) 6=

φ(ρb)(x1), where ∀i, ρi = ρ[x0 ← vi]. Let di = {vi}. Then, clearly, ∀i, {ρi} = ρ[x0 ←
γid(di)] and αid(φ(ρa)(x1)) 6= αid(φ(ρb)(x1)), which proves that (x1, � id)

φ
Ã (x0, � id).

Let us assume that (x1, � id)
φ
Ã (x0, � id). Then, there exist ρ ∈ � , da, db ∈ P(�), such

that αid(φ(ρa)(x1)) 6= αid(φ(ρb)(x1)) where ∀i, ρi = ρ[x0 ← di], and ∀i, di 6= ∅. Then,
∃v ∈ φ(ρa)(x1), v 6∈ φ(ρb)(x1) (or the converse holds and we may just permute a and b
and recover the above statement). As a consequence, ∃va ∈ � , v ∈ φ(ρ[x0 ← va])(x1)
(since φ(ρa) = {φ(ρ[x0 ← v]) | v ∈ da}). We can pick up any vb ∈ db. Clearly,

v 6∈ φ(ρ[x0 ← vb])(x1). This shows that x1
φ
Ã x0.

Â

Abstract observable dependences: We generalize the notion of observable depen-
dences in the same way:

Definition 8.4.2. Abstract dependences.

Let φ ∈ Den, Mi, Mo ⊆ � , x0, x1 ∈ � , � 0, � 1 ∈ ��� � . We say that φ induces an abstract
dependence of (x1, � 1) on (x0, � 0) in the semantic slice defined by (Mi, Mo) if and only
if:

∃ρ ∈ Mi, da, db ∈ D0,

α1(φ(ρa)(x1) ∩Mo(x1)) 6= α1(φ(ρb)(x1) ∩Mo(x1))
where γ0(di) ∩Mi(x0) 6= ∅
and ρi = ρ[x0 ← γ0(di) ∩Mi(x0)]

We write (x1, � 1)
φ
ÃMi Z⇒Mo (x0, � 0) if such a dependence holds.

Furthermore, we let the abstract dependence set D
]
sf [φ; Mi Z⇒ Mo] of φ be defined by:

D
]
sf [φ; Mi Z⇒ Mo] = {((x0, � 0), (x1, � 1)) ∈ (� × ��� �)2 | (x1, � 1)

φ
ÃMi Z⇒Mo (x0, � 0)}

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

192 CHAPTER 8. COMPUTATION OF ABSTRACT DEPENDENCES

As we can see, this definition is obtained directly as a generalization of the defini-
tions for observable (Definition 8.3.2) and abstract (Definition 8.4.1) dependences. In the
following, we consider abstract dependences only, so as to make the presentation more
simple; however, all the results presented here generalize to the case of observable, abstract
dependences.

We can note that abstract dependences are a kind of dual of the notion of abstract
non-interference [GM04], even though [GM04] provides several definitions of “abstract”
secrecy and none of them exactly corresponds to our settings: it seems closer to the
notion of 〈η, ρ, φ〉-Secrecy, where η, ρ and φ respectively denote the abstraction applied
to the low inputs (in our case, the identity), the abstraction applied to the low outputs
(in our case, the observation of the results is defined by both the observation Mo and the
abstraction � 1) and φ is the abstraction on the high inputs (in our case, the observation
Mi and the abstraction � 0). Though, the motivation for abstract non-interference is rather
different than ours, and most of the methods presented in [GM04] aim at proving secrecy or
discovering for what domains secrecy holds. By contrast, we focus on computing relevant
sets of dependences (and not proving the absence of dependences).

Definition for sets of traces: We derive the abstract dependences of a set of traces
from the abstract dependences induced by a function as usual, i.e., by applying the defi-
nition of function dependences to denotational abstractions of the set of traces.

As a consequence, we focus on a strongly closed set of traces E :

Definition 8.4.3. Abstract dependences —case of sets of traces.

Let l0, l1 ∈ � , � 0, � 1 ∈ ��� � and x0, x1 ∈ � . Then, we say that E induces an abstract
dependence of (l0, x0, � 0) on (l1, x1, � 1) if and only if:

((x0, � 0), (x1, � 1)) ∈ D
]
f [αtF [l0,l1](E)]

As usual, we let (l1, x1, � 1)
φ
Ã (l0, x0, � 0) denote such a dependence.

Moreover, we write D
]
t[E] for the set of abstract dependences induced by φ, defined by:

D
]
t[E] = {((l0, x0, � 0), (l1, x1, � 1)) ∈ (� × � × ��� �)2 | (l1, x1, � 1)

φ
Ã (l0, x0, � 0)}

We can now restrict even further the dependences induced by the semantic slice of
Example 8.1.1:

Example 8.4.2. Example 8.2.7 revisited.

Let us inspect again the dependences of the program displayed in Figure 8.1(a). All de-
pendences from (l5, y) were listed in Example 8.2.7, and we expect to cut down these
dependences a little bit, by restricting to abstract dependences, corresponding to the ab-
stract � which we introduced in Example 8.4.1.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

8.4. ABSTRACT DEPENDENCES 193

In fact, the only abstract observable dependence from (l5, y, �) is (l5, y, �) Ã (l2, y, �).
Indeed, there is no dependence in the false branch (since it is unreachable in the semantic
slice); moreover, the x may not take any large value.

8.4.2 Hierarchies of Dependences

In the same way as we could compare sets of observable dependences corresponding to
comparable observations, we can also state a similar “monotonicity” result in the case of
abstract dependences. Intuitively, the existence of an abstract dependence implies the
existence of a dependence for any pair of more concrete abstractions. In other words,
abstract dependences express a stronger property than mere dependences.

We prove this result in the settings of Definition 8.4.1, i.e., we do not consider observ-
able abstract dependences here. We would deal with the observable abstract dependences
in a similar way.

Theorem 8.4.2. Hierarchy of abstract dependences.

Let � 0 = (D0, α0, γ0), � ′0 = (D′0, α
′
0, γ
′
0), � 1 = (D1, α1, γ1), � ′1 = (D′1, α

′
1, γ
′
1) be four

abstractions in ��� � , such that there exist two Galois connections:

D′0 −−−→←−−−
α′′0

γ′′0
D0 D′1 −−−→←−−−

α′′1

γ′′1
D1

and such that
α0 = α′′0 ◦ α′0 α1 = α′′1 ◦ α′1
γ0 = γ′0 ◦ γ′′0 γ1 = γ′1 ◦ γ′′1

We assume that (x1, � 1)
φ
Ã (x0, � 0). Then, the following dependences hold:

1. (x1, � ′1)
φ
Ã (x0, � 0);

2. (x1, � 1)
φ
Ã (x0, � ′0);

3. (x1, � ′1)
φ
Ã (x0, � ′0).

Proof.

By assumption, (x1, � 1)
φ
Ã (x0, � 0), hence, there exist ρ ∈ � , da, db ∈ D0, such that

α1(φ(ρa)(x1)) 6= α1(φ(ρb)(x1)) where ρi = ρ[x0 ← γ0(di)] and γ0(di) 6= ∅. We prove the
first two points under that assumption:
1. if α′1(φ(ρa)(x1)) = α′1(φ(ρb)(x1)), then α1(φ(ρa)(x1)) = α′′1 ◦ α′1(φ(ρa)(x1)) = α′′1 ◦

α′1(φ(ρb)(x1)) = α1(φ(ρb)(x1)), which does not hold; so α′1(φ(ρa)(x1)) 6= α′1(φ(ρb)(x1)),
which proves the first point.

2. we let d′i = γ′′0 (di); then ρi = ρ[x0 ← γ′0(d
′
i)], since γ0 = γ′0 ◦ γ′′0 ; hence, there

exist d′a, d
′
b ∈ D′0 that satisfy the definition of abstract dependence; since γ ′0(d

′
i) 6= ∅

(otherwise, we would have γ0(di) = γ′0(d
′
i) = ∅), this proves the second point.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

194 CHAPTER 8. COMPUTATION OF ABSTRACT DEPENDENCES

The third point follows from the above two points; it can be proved in two steps (applying
abstraction on the left side, then on the right side of the dependence arrow).

Â

An immediate consequence of Theorem 8.4.2 is that abstract dependences are a subset
of the “standard” dependences:

Theorem 8.4.3. Abstract dependences and standard dependences.

Let x0, x1 ∈ � and � 0, � 1 ∈ ��� � be such that (x1, � 1)
φ
Ã (x0, � 0). Then, x1

φ
Ã x0.

Proof.

We simply apply Theorem 8.4.2 with � ′0 = � ′1 = � id; the conclusion follows from
Lemma 8.4.1.
Â

At this point, we have a full hierarchy of dependences:
• mere dependences correspond to the negation of non-interference;
• observable dependences are dependences which can be observed, even if only a sub-

set of the traces is available; furthermore, the smaller the semantic slice, the fewer
dependences we can observe on it (if the slice contains all the traces, then all de-
pendences are observable);
• abstract dependences are dependences which can be observed, even if we can dis-

tinguish an abstraction of values (and not just values); moreover, the coarser the
abstractions, the fewer dependences we can observe through it.

Example 8.4.3. Hierarchy of dependences.

We sum up the various kinds of dependences induced by the program displayed in Fig-
ure 8.1(a) (Example 8.1.1). In particular, only one abstract observable dependence re-
mains, which points directly to the line, where y is assigned a large value, and also where
a large value appears for the first time in the execution of the program. Consequently,
this notion of dependence turns out to be adequate in order to find out the origin of the
large value for y at point l5.

8.4.3 Approximation of Abstract Dependences

We have proved the notion of abstract dependence to be useful for the investigation of
alarms; however, we need to set up algorithms for this notion to be really of any practical
interest. Therefore, we propose to extend the fixpoint algorithms.

Approximation of composition: We let Dep
]
f denote P((� × ��� �)2). We define the

dependence composition operator as usual:

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

8.4. ABSTRACT DEPENDENCES 195

(l5, y)

(l4, y)

(l2, y)

(l3, y)

(l3, z)

(l1, x)

(l0, y)

(l0, z)

(l0, x)

dependence

observable dependence

abstract dependence

Figure 8.3: Local dependences involved in the approximation of the backward depen-
dences induced by {(l5, y)}

Definition 8.4.4. Composition of abstract dependences.

Let D0,D1 ∈ Dep
]
f . Then, we let D0 Á

] D1 be defined by

D0 Á
] D1 = {((x0, � 0), (x2, � 2)) ∈ (� × ��� �)2 | ∃(x1, � 1) ∈ � × ��� �

((x0, � 0), (x1, � 1)) ∈ D0 ∧ ((x1, � 1), (x2, � 2)) ∈ D1}

We note that this composition operator can be defined more simply, when applied to
dependences of functions:

Theorem 8.4.4. Alternate definition of Á].

Let φ0, φ1 ∈ Dep
]
f . Then:

D
]
f [φ0]Á

] D
]
f [φ1] = {((x0, � 0), (x2, � 2)) ∈ (� × ��� �)2 | ∃x1 ∈ �

((x0, � 0), (x1, � id)) ∈ Da
f [φ0] ∧ ((x1, � id), (x2, � 2)) ∈ Da

f [φ1]}

Proof.

It is easy to prove a double inclusion:
• the definition in Theorem 8.4.4 is clearly included in the one introduced in Defini-

tion 8.4.4;

• the converse inclusion follows from the result of Theorem 8.4.2: if (x1, � 1)
φ0
Ã (x0, � 0),

then (x1, � id)
φ0
Ã (x0, � 0) (a similar result holds for φ1).

The theorem follows.
Â

The soundness of Á] with respect to ◦ follows:

Theorem 8.4.5. Composition of abstract dependences —approximation.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

196 CHAPTER 8. COMPUTATION OF ABSTRACT DEPENDENCES

Let φ0, φ1 ∈ Den. Then:

D
]
f [φ1 ◦ φ0] ⊆ D

]
f [φ0]Á

] D
]
f [φ1]

Proof.

Using the alternate definition for Á] when applied to dependence sets, the proof of the
theorem follows the same steps as the proof of Theorem 8.2.2.
Â

In fact, the conclusion of Theorem 8.4.4 (and the fact that it plays a great role in
the proof of Theorem 8.4.5) hides a major weakness in this approximation of the function
composition. Indeed, it means that the approximate abstract dependences computed when
considering a path p will also include mere, concrete dependences, which we precisely wish
to get rid of.

Fixpoint-based approximation: Even though we pointed out a significant issue with
the approximation of ◦, we state the fixpoint-based approximation for abstract depen-
dences (a deeper study will reveal other drawbacks, and allow for an alternate method to
be stated).

We assume that D
a]
loc over-approximate the abstract local dependences and that »]

extends Á] to Dep
]
t = P((� × � × ��� �)2). Furthermore, we let ∆]

D = {((l , x, �), (l , x, �)) |
(l , x, �) ∈ � × � × ��� � } ∈ Dep

]
t , and:

F]
←−
D

: Dep
]
t → Dep

]
t

D 7→ D ∪D
a]
loc »

] D

Theorem 8.4.6. Fixpoint approximation of abstract dependences.

D
]
t[E] ⊆ lfp∆]

D
F]
←−
D

Proof.

Similar as the proof of Theorem 8.2.5.
Â

However, this theorem does not give an effective way of computing a precise approxi-
mation of the set of abstract dependences since bounding precisely the local dependences
presents several major difficulties:

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

8.4. ABSTRACT DEPENDENCES 197

• ��� � is not countable and not computer representable, or has a prohibitive size, even
if the number of possible values is finite and small. As a consequence, some kind of
approximation is necessary (it could be justified by the result on the hierarchy of
abstract dependences).
• the hierarchy result does not apply straightforwardly: proving that there is no de-

pendence (x0, � 0)
φ
Ã (x1, � 1) tells nothing about a dependence (x0, � ′0)

φ
Ã (x1, � ′1),

where, for instance, � ′0 is more concrete than � 0, but � ′1 is more abstract than (or
not comparable to) � 1.
• the major precision issue encountered in the approximation for ◦ also prevents from

computing relevant abstract dependences (i.e., from refining the classical depen-
dences).

Overall, these issues stem from the nature of the problem, which the least-fixpoint result
of Theorem 8.4.6 tackles. Indeed, D

]
t[E]∩(� × � × ��� �)×{(l0, x0, � 0)} collects all the tuples

which may affect the observation of the abstraction � 0 of x0 at point l0; in particular it
includes all kinds of properties, which may affect this observation. This is far beyond what
we wish to achieve in priority: our purpose is to find out the immediate causes for some
event (such as an error) to occur. As a consequence, we propose to narrow our setup.

8.4.4 Chains of Abstract Dependences

Restriction to dependence chains: We adopt the following restrictions, so as to
compute relevant abstract dependences:
• restrict to some set of abstractions � ⊆ ��� � : not all abstractions are intuitive or

informative (for instance, we may focus on abstractions which discriminate “large
values”);
• limit the closure to a chain of immediate causes, which may affect the criterion (so

that, more intricate causes should not be considered, at least in a first approach).
These restrictions lead us to the notion of dependence chains:

Definition 8.4.5. Abstract dependence chain.

A dependence chain is a sequence (l0, x0, � 0), . . . , (ln, xn, � n) of elements of � × � × ��� � ,
such that:

∀i, ((li, xi, � i), (li+1, xi+1, � i+1)) ∈ D
a]
loc

Let � ⊆ ��� � . Then, we say that the chain (l0, x0, � 0), . . . , (ln, xn, � n) is � -abstract if
∀i, � i ∈ � .

Obviously, in case (l0, x0, � 0), . . . , (ln, xn, � n) is an � -abstract dependence chain for

E , there exists a dependence (ln, xn, � n)
E
Ã (l0, x0, � 0). However, the converse does not

hold true. It may be the case that no � -abstract chain exists between (l0, x0, � 0) and
(ln, xn, � n), but there exists a non � -abstract chain on the same path. Therefore, the
abstract dependence chains do not provide an over-approximating of dependences; they

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

198 CHAPTER 8. COMPUTATION OF ABSTRACT DEPENDENCES

are at most useful for providing an under-approximation (defined by the two restrictions
mentioned in the beginning of this subsection).

Computation of dependence chains: The computation of all the � -abstract depen-
dence chains from a criterion (l0, x0, � 0) ∈ � × � × ��� � can be achieved via a least-fixpoint
algorithm similar to the one proposed in Theorem 8.2.5. However, we should use an
approximation of the local � -abstract dependences. The set of local dependences (Defi-
nition 8.2.9) is such an approximation. We propose to improve this rough approximation
with refinements, as we did in Section 8.3.5.

Refinements: We assume that we consider the � -abstract dependences of a semantic
slice E ′ of E (Definition 8.4.2).

Then, all the refinements introduced in Section 8.3.5 apply, since abstract dependences
are a subset of dependences (hence, if we can prove that there is no dependence between
(l0, x0) and (l1, x1), then there is no abstract dependence either).

Moreover, we can also propose an abstract version of the “removal of constant vari-
ables” in the case of abstract dependences. We assume that we have computed an ap-
proximation E ′] ∈ � → (� → P(�)) of the semantic slice E ′ (Chapter 7). Let us consider
(l0, x0, � 0), (l1, x1, � 1) ∈ � × � × ��� � . If there exists a minimal element d0 of D0\{⊥} (where
⊥ is the least element of D0) such that E ′](l0)(x0) ⊆ γ0(d0), then the abstract domain D0 is
not able to distinguish the values observed for x0 at l0 in the semantic slice. An obvious ap-
plication of Definition 8.4.1 shows that there is no dependence (l1, x1, � 1)Ã[E ′] (l0, x0, � 0).
For instance, this refinement applies if � 0 abstracts together all “normal” (i.e., not too
large) values and if all values for x0 at point l0 are “normal”.

Example 8.4.4. Abstract dependence chains.

In the case of the program presented in Figure 8.1(a) (Example 8.1.1), the above refine-
ment allows to restrict the set of abstract dependences from (l5, y) to a unique dependence
(to (l2, y)) i.e., to recover the result displayed in Figure 8.3.
As a consequence, there is only one � -abstract dependence chain from (l5, y), and it leads
to (l2, y), which turns out to be the point where an “abnormal” value appears for the first
time in the sequence of computations leading to y, due to x being multiplied by a large
number. In this example, we remark that abstract dependence chains are effective as a
means to track a special kind of error.

8.5 Abstract Slices

Slicing: Slicing [Wei81] aims at selecting a subset of the statements of a program which
may play a role in the computation of some variable x at some point l . The principle is
to include in the slice any statement at point l ′ that may modify a variable x′ such that
(l , x) depends on (l ′, x′).

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

8.5. ABSTRACT SLICES 199

The semantics of program slicing is rather subtle for several reasons:
• The notion of dependences involved in slicing is quite different to the one we consid-

ered in Section 8.2. For instance the slice of l0 : x = 3; l1 : y = x; l2 extracted using
the criterion (l2, y) should include the statement l0 : x = 3; l1 as well, even though
(l2, y) does not depend on (l1, x) according to Definition 8.3.3, since x is constant at
l1 (and so is y at l2).
• The usual expression of slicing correctness resorts to some kind of projection of

the program semantics (Section 3.4), which is preserved by slicing. However, the
removal of non-terminating loops (or of possible sources for errors) may cause the
slice to present more behaviors than the projection of the semantics of the source
program. This issue can be solved by considering a non-standard lazy semantics
[CF89], which is preserved by the transformation, yet this approach is not natural
for static analysis. We already discussed the use of such non-standard semantics as
a basis for dependence analysis in Section 8.2.2.

As a consequence, we propose a transformation which should be more adapted to static
analysis, and to the discovery of the origin of alarms.

Smaller, non-executable slices: The semantic slices introduced in Chapter 7 ap-
proximate program executions with abstract invariants. Such an invariant together with
a (subset of a) syntactic slice allows to describe even more precisely a set of program
executions:

Definition 8.5.1. Abstract slice.

An abstract slice S] of a program s is defined by a sound invariant �]S : � → P(�) for S]

and a subset s′ of the program statements, which is defined by the set of corresponding
control states � S.

The semantics of a semantic slice is defined both by the program transitions (for the
statements which are included in the slice) and by the abstract invariants:

Definition 8.5.2. Abstract slice semantics.

The semantics Js′K]S of the abstract slice collects all the traces 〈(l0, ρ0), . . . , (ln, ρn)〉 such
that:
• ∀i, ρi ∈ �]S(li);
• ∀i, (li ∈ � S ∧ li+1 ∈ � S ∧ (li, ρi)→ (li+1, ρi+1)) =⇒ (li, ρi)→ (li+1, ρi+1).

Obviously, the definition of abstract slices leaves the choice of the syntactic slice un-
determined. However, the purpose of abstract slices is to restrict to the most interesting
parts of the program, relatively to some abstract observation; hence, we propose to com-
pute abstract dependence chains and include any assignment which affect a variable in
a dependence chain: this way, the slice preserves only the � -abstract dependence chains
and abstracts any other statement of the program into the invariants in S]. Let us note
that this notion allows to solve the two points mentioned earlier in this subsection:

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

200 CHAPTER 8. COMPUTATION OF ABSTRACT DEPENDENCES

• Parts of the program that are not immediately relevant to the criterion under in-
vestigation (in the sense that they do not appear in the dependences introduced in
Definition 8.2.1, Definition 8.3.2 and Definition 8.4.1) do not need to be included
into the slice anymore; instead, they can be replaced with program invariants (in
the semantic slice). For instance, the assignment l0 : x = 3; l1 can be replaced with
the invariant x = 3 at point l1. Obviously, applying this principle to larger programs
may result in huge gains in slice sizes. Furthermore, the loss in precision might be
limited if we use precise, relational invariants.
• The intersection with program invariants limits the loss of precision induced by e.g.,

the removal of a loop.

Example 8.5.1. Abstract slice.

Let us consider the program of Figure 8.1(a), together with its input/output conditions.
Figure 8.3 displays the local, observable and abstract dependences that can be recursively
composed when starting from (l5, y). In case we compute an abstract slice for this program,
starting from (l5, y), we find only one � -abstract dependence chain (Example 8.4.4).
As a consequence, we get the abstract slice defined by the set of control states � S =
{l1, l2, l5}. In particular, the abstract slice contains the assignment l1 : y = 1000 ? x; l2,
with the invariant (x ∈ [5, 10]), which gives a likely cause for the error.

8.6 Implementation and Conclusion

8.6.1 Case Study

We implemented a dependence analysis and procedures to refine results of dependence
analyses into observable abstract dependences in Astrée (for tracking large values and
overflows), together with an abstract slice extraction algorithm.

We chose to modify some 70 kLOC real world application, so as to make some retroac-
tions unstable (Astrée proves the absence of overflow in the original version). The
purpose of this early experiment was to check the ability of the abstract dependence
analysis to track where overflows were coming from.

The static analysis by Astrée takes roughly 20 minutes and uses 500 Mb on a Bi-
opteron 2.2 Ghz with 8 Gb of RAM. The computation of the dependence graph (by
collecting all local dependences and applying local refinements) takes 72 seconds and re-
quires 300 Mb, on the same machine; this phase provides all data required to extract a
slice from any criterion. The slice extraction computes a least fixpoint from the crite-
rion (Theorem 8.2.10) and applies recursively local dependences; in the case of abstract
dependences, this amounts to collecting � -abstract dependence chains. The typical slice
extraction time is about 5 seconds, with low memory requirements (around 110 Mb).

The table below displays the gain in size obtained by computing abstract slices for a
series of alarms (size of slices are in LOCs):

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

8.6. IMPLEMENTATION AND CONCLUSION 201

Slicing point a1 a2 a3

Classical slice 543 368 1572
Abstract slice 39 160 96

The resulting slices proved helpful for finding the direct consequences of errors like over-
flows; moreover, it seemed promising for deriving automatically semantic slicing criteria,
which was one of the motivations for our present work.

We remarked that the refinements presented in Section 8.3.5 played a great role in
keeping the size of dependences down.

Cyclic abstract dependence chains suggest some kind of partitioning could be done
in order to isolate certain execution patterns; they also allow to restrict the part of the
program to look at in order to define an adequate input for defining an error scenario,
so that we envisage synthesizing input constraints in the future. Another possible use
for abstract slices is to cut down the size of programs to analyze during alarm inspection
sessions, by abstracting into invariants parts of the code to analyze.

8.6.2 Comparison with Related Work

We proposed a framework for defining and computing valuable dependence information,
for the understanding and refinement of static analysis results. Early experiments [Riv05a]
back-up favorably the usefulness of this settings, so that we can safely expect it to provide
good hints for the choice of semantic slicing criteria [Riv05b].

Our definition for dependences is strongly related to the definition of non-interference
[GM82], which is commonly used in language-based security [SM03]. This approach is
rather different compared to the more traditional ways of defining dependences in pro-
gram slicing, which rely on program dependence graphs [HRB90, HRB88], yet these two
problems are related [ABHR99, Aba99]. We found that the main benefit of the “depen-
dences as interference”definition is to allow for wide varieties of refinements for dependence
analyses and extensions for the definition of dependences to be stated, proved correct and
implemented.

Moreover, our definition of abstract dependences is closely related to the notion of
abstract non-interference introduced in [GM04] in the security area, which aims at clas-
sifying program attackers as abstract-interpretations. The authors of [GM04] propose to
compute the strongest safe attacker of a program by resolving an equation on domains
by fixpoint. In our settings, the abstraction on the output is fixed by the kind of alarm
being investigated; moreover, the dependence analysis should discover the variables the
criterion depends on and not only for what observation. As a result, we noticed that the
algorithms proposed in [GM04] do not apply to our goal, even though the notion is closely
related. Development in both areas should be related in the future.

Program slicing [Wei81] is another area related to our work. Many alternative notions
of slices [HDSS96, Tip95] have been proposed since the very first, syntactic versions of
slicing. In particular, conditioned slicing [CCL98] aims at extracting slices preserving
some executions of programs, specified by, e.g., a relation on inputs. Our approach goes

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

202 CHAPTER 8. COMPUTATION OF ABSTRACT DEPENDENCES

beyond these methods: indeed, a set of program executions defined by a semantic prop-
erty (e.g., leading to an error) is characterized precisely by semantic slicing [Riv05b]; these
invariants allow to refine precisely the dependences. Dynamic slicing [KL88, FDHH04]
records states during concrete executions and inserts dependences among the correspond-
ing nodes according to a standard, rough dependence analysis, in order to produce “dy-
namic”, non-executable slices. This approach is adapted to debugging; yet it does not
allow to characterize precisely a set of executions defined by semantic constraints either.

There exist a wide variety of methods applied to error cause localization. For instance,
[BNR03] proposes to characterize transitions that always lead to an error in abstract mod-
els; however, this kind of approach requires enumerating the predicates and/or transitions;
hence, it does not apply to Astrée, due to the number of predicates in the abstract in-
variants (domains nearly infinite).

Debugging methods start with a concrete trace, which we precisely do not have, since
alarms arise from abstract analyzes.

8.6.3 Perspectives

Currently, the implementation still requires a considerable amount of work in order to
become really practical, even though we are able to propose early experimental results
obtained with a prototype; the purpose of this short experiments was merely to assess
whether this technique would provide some insightful results.

Moreover, we wish to investigate the automatic generation of semantic slicing criteria,
and to use dependences in order to assist it.

Last, another possible direction for future work would be to express abstract depen-
dences involving more complicated, e.g. relational abstractions. Indeed, tracking the
origin of an alarm raised in the analysis of z =

√
x + y requires looking at dependences

involving the property x + y < 0. This would require a much more general definition of
dependences, so as to let dependences among predicates, and not just dependences among
variables.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

Part IV

Certified Compilation

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

Chapter 9

Formalizing Compilation

The two previous parts of this thesis aim at improving the precision of static analyses of
source code (e.g., C programs). However, the certification of executable programs may
require properties to be proved at the object code level, if the analysis of the source code
cannot be considered a sufficient guarantee. Object code is usually produced by compiling
source programs. Therefore, we envisage now the certification of compiled programs.

This chapter aims at describing our main motivations in certified compilation and
at defining an adequate model for compilation, so that certification algorithms can be
designed independently from the compiler we design them to work for. The next two
chapters describe two methods for certified compilation: invariant translation and check-
ing in Chapter 10, and translation validation (aka equivalence checking) in Chapter 11.

We detail the goal of these approaches to certified compilation in Section 9.1. We
present the salient features of a simple, yet representative assembly language in Section 9.2.
Section 9.3 formalizes the notion of non-optimizing compilation. We consider the case of
optimizing compilation in Section 9.4.

9.1 Motivation

9.1.1 Certification of Compiled Code

Compilers are complex pieces of software; hence, we should expect them to potentially
contain bugs. For instance, the Gnu C Compiler (gcc) amounts to more than 500 000
LOCs (Lines Of Code). Bug reports are rather frequent (and can be consulted on
http://gcc.gnu.org/ml/gcc-bugs/). A compiler bug may have several consequences:
crash of the compilation (which can be considered harmless, since it would not cause any
severe damage), failure to comply with the semantics of the source language (e.g., wrong
implementation of typing conversions, which may cause a fatal interruption to be raised at
execution time), production of incorrect code (with many possible consequences, ranging
from unexpected runtime errors to mis-implementation of critical functions of the source
program). Obviously, the consequences of the production of incorrect code should be con-

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

206 CHAPTER 9. FORMALIZING COMPILATION

sidered a very serious risk in the case of critical applications. The non-compliance with
the semantics of the source language is also a serious issue: indeed, the analysis of source
programs by analyzers like Astrée is based on the semantics of the source language;
hence, in case the compiler does not comply with the semantics, then one cannot consider
the result of the analysis a proof for the safety of the executable program (we proposed
an in-depth discussion of the choice of a reference semantics in case the standard leaves
some behaviors under-specified in Section 2.2.6). Last, the very definition of some errors
can be stated in a more easy way at the assembly level, as is the case of integer arithmetic
operations (in particular, verifying the absence of runtime errors at the assembly level
allows to validate the assumptions about the way the compiler handles under-specified
behaviors, as we remarked in Section 3.1.4).

In the next chapters, we will consider two approaches to certified compilation:

• Invariant traduction [Nec97, Riv03]: The goal of this method is to attempt to
check that some abstract property of the source program also holds true for the
compiled program. In particular, this approach allows to check that the executable
code enjoys some safety properties (e.g., the absence of runtime errors or the safety
of memory operations). Therefore, it is a good way to get a good level of confidence
in the safety of the program actually executed i.e., the assembly program instead of
the source code.
• Translation validation [PSS98, Riv04b]: This approach proves the semantic equiv-

alence of the source and the compiled program, using theorem proving methods. It
allows to prove the functional correctness of the compiled program, i.e. that it im-
plements correctly the functions described in the source program. It is also adapted
to the documentation of the compilation, which is required by some domain-specific
development regulations [TCoA99].

Other approaches to certified compilation exist. In particular, we can cite theorem proving
methods, which are based on a formal proof of the compiler: in case the compiler can be
proved correct and the proof is trusted, then the functional equivalence of the source and
compiled programs holds for any source program. Similarly, in case the source program
is proved safe, the assembly program is safe. The downside of this solution is that it is
often considered expensive (proving a compiler requires an important human effort) or
not practical (in case the code of the compiler is not freely available or may be modified
frequently). Another drawback of this approach is that it applies only when the code of the
compiler is known; it is not practical in the case of a third party compiler. Moreover, the
proofs should be maintained in the same time as the compiler itself, which may represent
a significant cost. At the time we are writing this thesis, we can cite the proof of a mini-
compiler in the Coq proof assistant [Ber98]. A more ambitious, ongoing project aims at
proving a fully functional optimizing C compiler [Ler06]: among the results achieved so
far, we can cite the extraction of a compiler back-end for a significative subset of the C
language into Power-PC assembly code after proving the correctness of the compiler in
Coq.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

9.2. A SIMPLE ASSEMBLY LANGUAGE 207

9.1.2 Formalizing Compilation

We start this part with a formalization of compilation. The purpose of this approach is to
define what should be meant by “compilation correctness” in a first step, before we state
the compilation certification algorithms. The advantage of this approach is to make the
certification algorithms as parametric as possible.

Indeed, a compiler may carry out the translation of programs in many different ways,
and we would like to avoid algorithms or implementations of certification methods to be
specific to a particular compiler or to a given architecture. In particular, we may point
out the following issues:
• The translation of some structures (e.g., conditions, function calls) depends on the

architecture and the Application Binary Interface (ABI) the code is compiled for.
Basically, a certifier should accepts an ABI description and parameters describing
implementation specific choices about behaviors under-defined in the source lan-
guage standard (Section 2.2.6) as parameters.
• Most compilers attempt to produce optimized code, i.e. by reducing the size of the

object code (number of instructions) or by making it faster. For instance, modern
architectures allow several instructions to be executed in the same time thanks to
instruction level parallelism, so as to speed up computations involving instructions
that require several cycles to complete (typically, memory operations fall in this
case).

Therefore, we start by giving a model of compilation (with or without optimizations) in
this chapter, which should capture precisely the properties preserved by compilation. The
algorithms described in the next chapters will be based on the model given in this chapter.

The goal of this approach is to allow the reuse of these algorithms for a different
compiler than the one chosen to assess them during their design, with a reduced amount
of adaptations.

9.2 A Simple Assembly Language

First, we define a simple assembly language, derived from the Power-PC 32-bits assem-
bly language, which was used in all the prototypes implemented during this thesis. This
processor features a rather symmetric RISC (Reduced Instruction Set Computing) archi-
tecture, so that the instruction set is quite simple to study.

9.2.1 Syntax

Memory cells: The architecture considered here features several kinds of memory lo-
cations: registers and memory cells. More precisely, we consider:
• General-Purpose Registers (for short, gpr): the ngpr (in practice, ngpr = 32)

general-purpose registers are used for integer arithmetic and computations involving
pointers; they are denoted with gpri (where 0 ≤ i < ngpr);

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

208 CHAPTER 9. FORMALIZING COMPILATION

• Floating-Point Registers (for short, fpr): the nfpr (in practice, nfpr = 32) floating-
point registers are used for (32 and 64 bits) floating-point computations; they are
denoted with fpri (where 0 ≤ i < nfpr);
• Condition Registers (cr): the ncr (in practice, ncr = 8) condition registers store

the result of conditions and determine the result of conditional branchings as well;
they are denoted with cri (where 0 ≤ i < ncr);
• Memory cells: they store the value of global or local variables. A memory cell is

characterized with an integer address: we write M[d] for the memory cell of address
d, where d is an integer.

Real architectures feature more registers. More precisely, one usually finds special purpose
registers for controlling the behavior of the processor regarding to exception handling,
the behavior of floating-point operations (rounding mode, activation or deactivation of
interruptions for overflows or underflows...), machine state, memory management (e.g.,
definition of active segments)... We restrict to the main registers in order to make the
presentation more readable. Anyway, these special registers would be abstracted away
when defining the correctness of compilation, in Section 9.3.

Values: General-purpose (resp. floating point) registers store integer (resp. floating
point) values. Memory cells store fixed length bit-fields, which may be interpreted either
as integers or as floating-point values.

Condition registers store values corresponding to the result of the evaluation of con-
ditions: LT stands for “less than”; EQ stands for “equal” and GT stands for “greater
than”.

Control states are represented with program counter values (i.e., integers).

Instructions: We consider a reduced kernel of the Power-PC assembly language:
• arithmetic operations: the classical 3-registers arithmetic instructions input two

scalar values read in registers and store the result into a third register in case the
computation succeeds; they cause the execution to crash otherwise (e.g., division by
0); such instructions are denoted with op gpri, gprj, gprk where op corresponds to
the operation (op ∈ {add, mul, fadd, . . .});
• load of a constant value into a register: the instruction li gpri, v assigns the

value v to register gpri (it also allows to load a constant value into a floating point
register);
• load from the memory: if d is an integer and x is either an integer register or an

integer value, then the instruction load gpri, d (x) loads the content of the memory
location of address d + x into the register gpri, if it is a valid address; otherwise, it
causes the execution of the program to crash due to a memory error; this instruction
allows the access to scalar and compound type variables (this instruction also works
for floating point registers);
• store into the memory: the instruction store gpri, d (x) carries out the converse

operation;

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

9.2. A SIMPLE ASSEMBLY LANGUAGE 209

memory location notation value

general-purpose register gpri, where 0 ≤ i < ngpr integer
floating-point register fpri, where 0 ≤ i < nfpr floating-point
condition register cri, where 0 ≤ i < ncr � = {LT, EQ, GT}

(a) Memory locations and values

instruction notation

arithmetic operations op gpri, gprj, gprk where op ∈ {add, mul, fadd, . . .}
load constant li gpri, v, where v ∈ �

load from memory load gpri, d (x),
where d ∈ �

and x is an integer register or value
store into memory store gpri, d (x),

where d ∈ �
and x is an integer register or value

comparison cmp cri, gprj, gprk

branching b l , where l ∈ �
conditional branching bc(c) cri, l , where c ∈ � , l ∈ �

(b) Instruction set

Figure 9.1: A micro Power-PC assembly language

• comparison: the instruction cmp cri, gprj, gprk compares the values contained in
registers gprj and gprk and stores the result into register cri (the same instruction
is also defined for floating point registers): for instance, if the value in gprj is smaller
than the value in gprk, then, this instruction assigns the value LT to the condition
register cri;
• branching: if l is a control state, the instruction b l directs the execution to the

instruction corresponding to line l (by modifying the program counter);
• conditional branching: if c is a condition (i.e., condition register value) and l

a control state, then the instruction bc(c) cri, l branches to the instruction corre-
sponding to line l if the condition register cri contains a value equal to c; otherwise
the execution continues at the next instruction.

Other instructions may be introduced, when dealing with particular features of the pro-
cessor.

Figure 9.1 summarizes the definition of the fragment of the Power-PC assembly lan-
guage considered in this thesis.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

210 CHAPTER 9. FORMALIZING COMPILATION

9.2.2 Semantics

The semantics of the assembly language can be defined in a similar way as for the source
language in Section 2.2.3:
• the assembly stores are completely defined by the sets of memory locations and

corresponding values introduced in Section 9.2.1;
• the control states were also defined in Section 9.2.1 (a control state corresponds to

a value for the program counter);
• the definition of a set of states follows from the definitions of control and memory

states;
• a transition relation defines what computation steps are feasible, for each instruction

in the language.
We define the transition relation by the means of a family of symbolic transfer functions, as
proposed in Section 3.2.6. Figure 9.2 defines the symbolic transfer functions corresponding
to each instruction in the language.

More precisely, if l is the control state right before an instruction, then nxt(l) denotes
the control state right after the instruction (i.e., right before the next instruction). For
each instruction, we give on Figure 9.2 the transfer function δl ,nxt(l) and any other transfer
function corresponding to an edge, which may be taken; if no symbolic transfer function
is expressly defined for the edge from l to l ′, then this transfer function is δl ,l ′ = ¤.
Moreover, we use the following definitions:
• we write is ok(e0 ⊕ e1) for the boolean expression which evaluates to true if the

evaluation of the expression e0 ⊕ e1 succeeds; it evaluates to false if the evaluation
of e0 ⊕ e1 results in an error;
• we write is addr(d) for a boolean expression which evaluates to true if the integer

d denotes a valid address.
Our choice to resort to symbolic transfer functions for this definition is motivated by
the fact that we will need to express the semantics of assembly programs along some
finite paths, as defined in Section 3.2.3, so as to compare source and compiled programs.
Symbolic transfer functions are precisely well adapted for this application.

9.3 Compilation

9.3.1 A Simple Example

In this section, we focus on non-optimizing compilation: we assume that the transforma-
tions performed by the compiler are simple and preserve the structure of programs (no
interleaving of the compiled code for successive expressions, no global rewriting of the
control structures). Our purpose is to define what properties of the source program is
preserved by the compilation. More involved transformations (including optimizations)
will be considered in Section 9.4.

Let us look at the example given in Figure 9.3: on Figure 9.3(a), we show a source

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

9.3. COMPILATION 211

instruction symbolic transfer function(s)

arithmetic operation
op gpri, gprj, gprk δl ,nxt(l) =

{
bis ok(gprj ⊕ gprk) ? bgpri ← gprj ⊕ gprkc
| ¤c

where ⊕ is the operation corresponding to op

load constant
li gpri, v δl ,nxt(l) = bgpri ← vc

load from memory
load gpri, d (x) δl ,nxt(l) = bis addr(d + x) ? bgpri ←M[d + x]c | ¤ c

store into memory
store gpri, d (x) δl ,nxt(l) = bis addr(d + x) ? bM[d + x]← gpric | ¤ c

comparison
cmp cri, gprj, gprk

δl ,nxt(l) =

bgprj < gprk ? bcri ← LTc
| bgprj = gprk ? bcri ← EQc
| bcri ← GTccc

branching
b lb δl ,nxt(l) = ¤

δl ,lb = ι

conditional branching
bc(<) cri, lb δl ,nxt(l) = bcri = LT ? ¤ | ι c

δl ,lb = bcri = LT ? ι | ¤ c

Figure 9.2: Symbolic transfer functions

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

212 CHAPTER 9. FORMALIZING COMPILATION

i, x : integer variables
t : integer array of length n ∈ �

, where n is a parameter

l s
0 i := −1;

l s
1 x := 0;

l s
2 while(i < n){

l s
3 i := i + 1;

l s
4 x := x + t[i]

l s
5 }

l s
6 . . .

(a) Source program Ps

l c
0 li gpr0, −1

l c
1 store gpr0, i (0)

l c
2 li gpr1, 0

l c
3 store gpr1, x (0)

l c
4 load gpr0, i (0)

l c
5 li gpr1, n

l c
6 cmp cr0, gpr0, gpr1

l c
7 bc(≥) cr0, l c

18

l c
8 load gpr0, i (0)

l c
9 li gpr1, 1

l c
10 add gpr0, gpr0, gpr1

l c
11 store gpr0, i (0)

l c
12 load gpr0, i (0)

l c
13 load gpr1, x (0)

l c
14 load gpr2, t (gpr0)

l c
15 add gpr1, gpr1, gpr2

l c
16 store gpr1, x (0)

l c
17 b l c

4

l c
18 . . .

(b) Assembly program Pc

Figure 9.3: Example compilation

program, which computes the sum of the elements of an integer array t of length n; on
Figure 9.3(b), we show a compiled version, with no optimization.

Clearly, this transformation is straightforward: the series of instructions corresponding
to each instruction in the source code appear clearly as blocks of consecutive instructions,
as summarized in the table below:

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

9.3. COMPILATION 213

instruction series of assembly instructions
(denoted with the corresponding program counter)

l s
0 : i := −1; l c

0 , l c
1

l s
1 : x := 0; l c

2 , l c
3

condition of the loop at ls2 l c
4 , l c

5 , l c
6

and conditional branching l c
7

l s
3 : i := i + 1; l c

8 , l c
9 , l c

10, l c
11

l s
4 : x := x + t[i] l c

12, . . . , l c
16

loop back edge l c
17

end of the program (l s
6) l c

18

In particular, any computation corresponding to the assignments at l s
0 and l s

1 is finished
before the code corresponding to the loop is executed. Therefore, we can relate precisely
the state of the assembly program at l c

4 to the state of the source program at point l s
2 .

In fact, we can establish a similar relation for any control state in the source program,
as displayed in Figure 9.4(a). This mapping is defined formally as a function Π � , which
maps control states in the source program into control states in the compiled program,
according to the relation mentioned above.

In fact, a similar remark applies to memory locations. The content of the memory
cell of address x corresponds to the value of variable x, whenever we reach a control
state in correspondence, according to Figure 9.4(a). Therefore, we provide a mapping
of memory locations in Figure 9.4(b). Again, this mapping Π � is defined as a function,
which maps source memory locations into assembly memory locations, according to the
relation exhibited between the source and compiled programs.

Π � : l s
0 7→ l c

0

l s
1 7→ l c

2

l s
2 7→ l c

4

l s
3 7→ l c

8

l s
4 7→ l c

12

l s
5 7→ l c

17

l s
6 7→ l c

18

(a) Control states mapping

Π � : x 7→ M[x]
i 7→ M[i]
t[j] 7→ M[t + j]

(note: memory alignments
are not taken into account
in this example)

(b) Memory locations mapping

Figure 9.4: Mapping between source and compiled programs

Note that registers and “intermediate” control states (i.e., assembly control states in
the middle of the blocks encoding source instructions) do not appear in the mappings
displayed in Figure 9.4, since they do not have a counterpart in the source program.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

214 CHAPTER 9. FORMALIZING COMPILATION

9.3.2 Abstraction

The previous subsection showed a simple example of compilation and showed what control
states and memory locations of both programs could be related. Therefore, we now provide
a formalization of compilation, using the scheme given in Section 2.3.4, so as to describe
what is meant by “correct compilation”.

In particular, Section 9.3.1 shows that some control states or memory states of the
assembly program cannot be related with anything in the source program. This suggests
using the projection abstraction introduced in Section 3.4, so as to remove them: the
semantics of the source program can be related to an abstraction of the assembly program,
defined by a subset of control states and memory locations. Moreover, a compiler may
remove some control states and variables of the source program, for instance, if it carries
out some kind of constant propagation and/or dead-code elimination (such as the example
given in Section 3.4).

Therefore, we define restricted sets of control states and memory locations, as in
Section 3.4.1 and Section 3.4.2. We write � s (resp. � c) for the memory locations of the
source (resp. compiled) program, and � s (resp. � c) for the set of control states of the
source (resp. compiled) program. Moreover, we introduce the following restricted sets:

• for the source program: � s ⊆ � s and � s ⊆ � s;
• for the assembly program: � c ⊆ � c and � c ⊆ � c.

Moreover, we extend the notations for states and for traces to the source and compiled
programs accordingly: .s denotes an object of the source program; .c denotes an object of
the compiled program; · denotes a restricted set, as in Section 3.4. For instance, we write
Σs for the set of restricted traces for the source program.

Let Π � : � s → � c and Π � : � s → � c be two bijections, defined in the same way as
in Section 9.3.1. We let the store mapping Π

�
: � s → � c be defined by Π

�
(ρ) = λ(x ∈

� c) · ρ((Π �)−1(x)). We let the state mapping Π � : � s → � c be defined by Π � (l , ρ) =
(Π � (l), Π

�
(ρ)) and Π � (Ω) = Ω. Moreover, we define the trace mapping ΠΣ by:

ΠΣ : Σs → Σc

〈s0, . . . , sn〉 7→ 〈Π � (s0), . . . , Π � (sn)〉

Definition 9.3.1. Correctness of compilation.

We say that the compilation of Ps into Pc is ΠΣ-correct if and only if ΠΣ is a bijection
between the projected traces of the source and of the compiled program:

αΠ〈
�

s, � s〉
(JPsK)

ΠΣ' αΠ〈
�

c, � c〉
(JPcK)

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

9.3. COMPILATION 215

This situation can be described in the diagram below, similar to the one in Sec-
tion 2.3.4.

Ps

compilation
- Pc

JPsK

semantics
?

JPcK

semantics
?

αΠ〈
�

s, � s〉
(JPsK)

αΠ〈
�

s, � s〉
?

ΠΣ

- αΠ〈
�

c, � c〉
(JPcK)

αΠ〈
�

c, � c〉
?

Intuitively, the correctness of the compilation of Ps into Pc states that an execution of Pc

corresponds to an execution of Ps up-to some bijection and reciprocally.

Example 9.3.1. Projections.

In particular, in the example of Section 9.3.1,
• � s = � s and � s = � s;
• � c = {M[x],M[i]} ∪ {M[t + j] | j ∈ L0, n− 1M};
• � c = {l c

0 , l c
2 , l c

4 , l c
8 , l c

12, l c
17, l c

18}
As a consequence, the compilation of Ps into Pc (Figure 9.3) is correct in the sense of
Definition 9.3.1, with respect to the mappings given in Figure 9.4.

This statement can be compared to what could be expressed using bisimulation meth-
ods [Mil90]. However, we stress the importance of the projection abstractions involved
in the definition of the correctness of compilation. Indeed, the generalization to some
basic optimizations in Section 9.4 will mainly be based on a tuning of these abstractions.
Moreover, these abstractions allow to define what compilation preserves, i.e. a kind of
invariant for the transformation.

Remark 9.3.1. Dealing with scopes.

Most of the time, variables have a limited scope: for instance, local variables are only
relevant in a block of code or in a function. Therefore, the set of memory locations
depends on the control state. As a result, the mapping of memory locations Π � should
depend on the control state: it should be defined as a function Π � : � s × � s → � c, such
that Π � (l , x) is the assembly memory location corresponding to x at point l .

9.3.3 Reduced Program

We now propose to provide a least-fixpoint definition for the projected semantics, defined
in Section 9.3.2. Basically, we propose to give a constructive version of the result given
in Lemma 3.4.1 in Section 3.4.4, by defining a “program reduction” technique, allowing

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

216 CHAPTER 9. FORMALIZING COMPILATION

to replace an assembly program with another program, which is equivalent modulo the
abstraction defined in Section 9.3.2.

First, we make a few assumptions:

• we consider here the case of the assembly program only, i.e. we assume � s = � s

and � s = � (the compiler does not remove any part of the program): the technique
explained below would also apply to the source program; we restrict to the compiled
program for the sake of simplicity;
• we assume that Π � (l i

s) = l i
c , i.e., the entry point of the source program corresponds

to the entry point of the assembly program;
• we assume that the compiler does not insert a loop in the assembly program, which

does not correspond to a loop in the source program, so that any loop in the compiled
code corresponds to a loop in the source code.

The first assumption is made so as to keep the presentation short; the latter two hypotheses
are very reasonable (we expect any compiler to satisfy them).

As a consequence of the second assumption, any loop in the compiled program Pc

contains at least one point in � c.

The principle of program reduction is to define transitions corresponding to several
steps in Pc, between control states in � c:

Definition 9.3.2. Reduced program.

The reduced program P r
c is defined as follows:

• the set of control states is � c;
• the initial control state is l i

c ;
• the transition relation is defined by a family of symbolic transfer functions derived

from the symbolic transfer functions of Pc by composition along sets of paths: if
l`, la ∈ � c, then δl`,la is the symbolic representation of the denotational semantics
corresponding to the set of paths of the form l ` · l0 · . . . · ln · la, ∀i ∈ L0, nM, li 6∈ � c

(the symbolic representation for a set of paths was defined in Lemma 3.2.6).

In practice, the computation of the reduced program relies on the composition op-
eration ⊕ (Section 3.2.6), and possibly on some simplification operation simplify. The
advantages inherent in the use of a simplification function at this point will be stated in
the following chapters (i.e., they appear at verification time).

Compilers often split paths for conditions: for instance, the branching corresponding
to a condition like e0 ∨ e1 ∨ e2 may be split in several branchings, so as to not to evaluate
e1, e2 if e0 is true. Should that case arise, Lemma 3.2.6 provides an algorithm to associate
a single symbolic transfer function to the resulting set of paths.

Moreover, the computation of the reduced program requires the restricted sets of
control states and memory locations to be known. In practice the compilers provide
debugging information (such as Stabs or Dwarf formats), including mappings Π � , Π � ,
which allow to define the restricted sets. Some algorithms were proposed so as to recover

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

9.3. COMPILATION 217

these mappings, when the compiler does not provide these information, e.g. in [TG00b,
TG00a].

Example 9.3.2. Projection of control states.

For instance, let us we consider the assembly program in Figure 9.3(b), with the restricted
sets defined in Example 9.3.1. Then, the table of symbolic transfer functions for the
reduced program P r

c is defined as follows:

δl c
0 ,l c

2
= bgpr0 ← −1, M[i]← −1c

δl c
2 ,l c

4
= bgpr1 ← 0, M[x]← 0c

δl c
4 ,l c

8
=

bM[i] < n ? bcr0 ← LT, gpr0 ←M[i], gpr1 ← nc
| bM[i] = n ? ¤

| ¤cc

δl c
4 ,l c

18
=

bM[i] < n ? ¤
| bM[i] = n ? bcr0 ← EQ, gpr0 ←M[i], gpr1 ← nc

| bcr0 ← GT, gpr0 ←M[i], gpr1 ← nccc
δl c

8 ,l c
12

= bgpr0 ←M[i] + 1, gpr1 ← 1, M[i]←M[i] + 1c
δl c

12,l c
17

=

{
bgpr0 ←M[i], gpr1 ←M[x],
gpr2 ←M[t + M[i]], M[x]←M[x] + M[t + M[i]]c

δl c
17,l c

4
= ι

The soundness and completeness of this transformation with respect to the projection
of the operational semantics writes down as follows:

Theorem 9.3.1. Adequation.

JP r
c K = αΠ〈 � c〉

(JPcK)

Proof.

By induction on the length of traces.

Â

This definition of reduced programs focuses on the elimination of control states only;
the elimination of the memory locations which we would like to abstract away (such as the
registers) can be carried out as a second step, by erasing these from the transfer functions
of the reduced program:

Example 9.3.3. Projection of memory locations.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

218 CHAPTER 9. FORMALIZING COMPILATION

For instance, let us consider the assembly program of Figure 9.3(b), with the restricted
sets defined in Example 9.3.1. Then, the table of symbolic transfer functions for the
reduced program P r

c is defined as follows:

δl c
0 ,l c

2
= bM[i]← −1c

δl c
2 ,l c

4
= bM[x]← 0c

δl c
4 ,l c

8
= bM[i] < n ? ι | bM[i] = n ? ¤ | ¤ c c

δl c
4 ,l c

16
= bM[i] < n ? ¤ | bM[i] = n ? ι | ι c c

δl c
8 ,l c

11
= bM[i]←M[i] + 1c

δl c
11,l c

15
= bM[x]←M[x] + M[t + M[i]]c

δl c
15,l c

4
= ι

We can remark that in the above example, the symbolic transfer functions for the
compiled program correspond exactly to the symbolic transfer functions for the source
program up to the mapping for memory locations Π � , which we give below:

Example 9.3.4. Source program.

The non-void symbolic transfer functions for the source program Ps given in Figure 9.3(a)
are the following:

δl s
0 ,l s

1
= bi← −1c

δl s
1 ,l s

2
= bx← 0c

δl s
2 ,l s

3
= bi < n ? ι | ¤ c

δl s
2 ,l s

6
= bi < n ? ¤ | ι c

δl s
3 ,l s

4
= bi← i + 1c

δl s
4 ,l s

5
= bx← x + t[i]c

δl s
5 ,l s

2
= ι

In case some parts of the source program are removed and cannot be related to the
compiled program, the same program reduction technique can be applied to the source
program. At this point, we can state the definition of the correctness of compilation in
terms of the reduction of the source and compiled programs:

Definition 9.3.3. Correctness of compilation, in terms of reduced programs.

Let Ps be a source program, compiled into Pc. We write P r
s and P r

c for the reduced
programs and ΠΣ for the trace mapping defined by the mappings Π � and Π � . Then, the
compilation is ΠΣ-correct if and only if ΠΣ is a bijection between the semantics of the
restricted source program and the semantics of the restricted compiled program:

JP r
s K

ΠΣ' JP r
c K

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

9.3. COMPILATION 219

We have to prove that this definition is equivalent to our previous definition for com-
pilation correctness (Definition 9.3.1):

Proof.

This statement of the correctness of compilation is equivalent to Definition 9.3.1, since
the adequation of program reduction (given in Theorem 9.3.1) implies the equality
JP r

c K = αΠ〈
�

c, � c〉
(JPcK), and similarly for the compiled program.

Â

9.3.4 Compilation of Function Calls

We described a procedural extension of our simple source language in Section 2.2.4.

A procedural extension of the assembly language of Section 9.2 would be rather similar,
except that it would represent a stack inside the memory, so as to record where the function
return instruction should branch to. By contrast, in Section 2.2.4, the stack is a mere
extension of the control states. As a consequence, the main issue with the formulation
of compilation correctness in presence of procedures is to map the state of the physical
representation of the stack with the “syntactic” stack κ used in Section 2.2.4.

Last, it is a common practice to have the local variables stored in the stack, which
makes the definition of Π � slightly more involved. Indeed, the mapping memory locations
depends on the program point, since not all local variables are visible at any given program
point. Therefore, Π � should bound tuples made of a source control state, a source memory
location, and a memory location in the compiled program: Π � ⊆ � × � s× � c. In particular,
Π � should account for the lifetime of variables.

9.3.5 Under-Specified Behaviors in the Source Language Se-
mantics

We pointed out in Section 2.2.6 that the standard of a language like C typically leaves
many cases under-specified, so as to allow for realistic implementations to be provided for
various architectures and for various levels of optimization. If some behavior in a source
program Ps is not specified by the standard, it is rarely the case that all behaviors can be
observed when considering the compiled program Pc.

For instance, we mentioned the evaluation order of sub-expressions (hence, the order
subsequent side effects are performed in). A compiler will always hard code one possible
order (for example, a left to right order). Even if the compiler does not always choose the
same order, for a given expression, a unique order will be chosen (only one sequence of
code is produced).

Therefore, the compiled program presents fewer behaviors than the source program.
However, Definition 9.3.1 assumes that there exists a bijection between the behaviors of
both programs, so this definition does not work here.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

220 CHAPTER 9. FORMALIZING COMPILATION

Three solutions to the problem of under-specified behaviors in the semantics of the
source language were proposed in Section 2.2.6.

Refining the source semantics according to the implementation choices: An
obvious solution proceeds by specifying the choices defined by the implementation of
interest: for instance, if we know that we are going to use a compiler, which performs
left to right evaluation, then, we can rely on this scheme, when considering the source
program as well, since any execution corresponding to another order is irrelevant. Of
course, Definition 9.3.1 works perfectly in this case.

Considering unpredictable results errors: A second choice amounts to considering
undefined behaviors errors. Indeed, the C standard leaves many behaviors undefined
because they correspond to situations which are expected to cause the program to crash
unless the implementation performs a large amount of extra verification (such as array
bound-checks) and even then, there is no clear solution about what the resulting value
should be. Such a situation should be considered a major problem.

However, the downside of this approach is the fact that the occurrence of undefined
behaviors in Ps does not entail that Pc is unsafe: an incorrect source statement may be
compiled into a safe piece of code. For instance, a dereference of an object whose lifetime
has ended may work if the memory corresponding to the object is not freed or re-allocated.

A first solution is to consider only programs that do no go wrong, with respect to the
source semantics (i.e., there is no transition into the error state Ω, which can be checked
using an analyzer like Astrée [BCC+03a]).

A second solution amounts to augmenting Definition 9.3.1 so as to take into account
the fact that an error in Ps may correspond to any behavior in Pc, which can be done in
two steps: first, non-deterministic choices should be added to the semantics of P r

s (using
abstraction function which extends traces ending in Ω with longer sequences of states
including undefined behaviors); second, the semantics of P r

c should be included into the
image by ΠΣ of the extended semantics or P r

s . Of course, we still need to require that, for
any safe execution of P r

s , there exists one execution of P r
c which simulates it: as a result,

we need to write an inclusion relation in the other direction as well (otherwise, we would
consider correct a compilation where no trace in Pc corresponds to any safe trace in Ps).

Unspecified behaviors in the source language semantics: The last strategy is to
leave several possibilities in the definition of the semantics of the source language. In
this case, it is not possible to map any execution of P r

s into an execution of P r
c . As

we remarked, Definition 9.3.1 does not work in this case, so we need to change it. The
intuition is that a trace of P r

c corresponds to some trace of P r
s , so that we should require

an inclusion of the form below:

αΠ〈
�

c, � c〉
(JP r

c K) ⊆ ΠΣ(αΠ〈
�

s, � s〉
(JP r

s K))

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

9.4. COMMON OPTIMIZATIONS 221

Again, an inclusion in the other direction is needed in order to capture a precise definition
of compilation correctness.

Extended definition: As a conclusion, the extended definition of compilation correct-
ness should write down as a pair of inclusions involving several semantics. A first inclusion
should state that all behaviors of the compiled program correspond to executions consid-
ered possible by the source program semantics. A second inclusion should state that any
safe execution of the source program has a counterpart in the compiled program. We
propose to write down this extended definition at the reduced program level:

Definition 9.3.4. Correctness of compilation, with under-specified behaviors.

With the same notation as in Definition 9.3.3, we say that the compilation of Ps into
Pc is ΠΣ-correct if and only if:

JP r
c K ⊆ ΠΣ(αunder def(JP

r
s K)) and ΠΣ(αsafe(JP

r
s K)) ⊆ JP r

c K

where:
• αunder def extends traces resulting in behaviors considered erroneous or unspecified

with all possible sequences of states, in the same way as demonic semantics [Cou97a]
abstract non-termination into an undefined result;
• αsafe selects traces where all transitions are defined with no ambiguity.

In the following chapters, we will work with the initial definition (Definition 9.3.3)
and discuss briefly the case of under-specified behaviors in the standard describing the
source language (i.e., the case where Definition 9.3.4 states what a correct compilation is)
afterwards.

9.4 Common Optimizations

9.4.1 How to Cope Optimizations ?

In the previous section, we assumed the compiler produces rather simple code, i.e. does
not try to improve the code generated and just translates instructions in a separate (the
object code for consecutive statements does not overlap), context insensitive way (a same
source statement is translated in the same way, whatever the place where it occurs in
the program). This assumption usually is not valid. Even simple compilers attempt to
increase the efficiency of the code they produce, e.g. by avoiding to store useless variables.
Real compilers carry out much more ambitious transformations, by changing the order of
instructions (e.g., instruction level parallelism) or deeply modifying execution paths (e.g.,
loop optimizations, such as loop unrolling). For a comprehensive introduction to compiler
optimizations, we refer the reader to classical compilation books, such as [App99, WM94]
or to the survey [BGS94].

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

222 CHAPTER 9. FORMALIZING COMPILATION

The main issue with optimizations is that they tend to break the correspondences
we set up in Section 9.3.2; as a consequence, the definition of compilation correctness
given in Section 9.3.2 is broken, and so is the notion of reduced program introduced in
Section 9.3.3. Not only the definition we stated previously would fail, but deciding what
variables or control states of the source and compiled program should be related to a
counterpart in the compiled program may not be obvious.

Optimizations usually either simplify the structure of compiled programs or re-organize
the structure of the code, so as to improve performances. Therefore, we propose to
adapt the definition of compilation correctness so as to consider such simplifications or
re-organizations correct compilation. The new, extended definitions are based mainly on
a careful extension of the program abstraction technique introduced in Section 9.3.2 and
of more general algorithms for program reduction.

In the following, we consider the case of a series of representative optimizations and
apply this methodology.

9.4.2 Code Simplification

One of the most simple optimizations a compiler may carry out is the removal of dead
code and of dead variables.

Constant propagation and dead-code elimination: Most compilers carry out a
constant propagation analysis [Kil73], so as to remove constant variables, constant assign-
ments, and evaluate constant conditions. We showed how this transformation is formalized
inside the abstract interpretation framework in Section 3.4, by defining a projection of the
semantics of the source program. Therefore, this transformation fits in our initial frame-
work, since we based the definition for the correctness of compilation on an abstraction of
the source program, defined by restriction of the source control states (� s) and memory
locations (� s): we simply need to abstract away the control states corresponding to the
instructions removed by the transformation.

Removal of dead-variables: In case a variable is not used anymore after some point,
the compiler may remove it from the memory, so as to reduce memory usage. Then, such
a variable cannot be related to any memory location after some point in the assembly
program. This transformation is handled by a relational mapping Π � : � s× � s → � c, akin
to the solution proposed in Remark 9.3.1. Indeed, this definition for memory location
mappings allows to discard a variable at any point in the program.

Copy propagation and register coalescing: Compilers attempt to keep a variable
that is used several times in a piece of code in a register and not to store it back into the
memory before using it again. Again, we need to twick the mapping for memory locations.
More precisely, we request Π � to map a pair (l , x) into a set of assembly memory locations,
which store the same value as x at point l.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

9.4. COMMON OPTIMIZATIONS 223

The following example illustrates this solution:

Example 9.4.1. Register coalescing.

In the body of the loop of the source program Ps displayed in Figure 9.3(a), variable i is
used several times, therefore it may be stored into a register. This would amount to replace
the body of the loop with the following piece of code, where the instruction corresponding
to l c

12 is removed (smaller optimized code, hence faster execution):

l c
8 load gpr0, i (0)

l c
9 li gpr1, 1

l c
10 add gpr0, gpr0, gpr1

l c
11 store gpr0, i (0)

l c
13 load gpr1, x (0)

l c
14 load gpr2, t (gpr0)

l c
15 add gpr1, gpr1, gpr2

l c
16 store gpr1, x (0)

Then, after point l c
11, i corresponds to both gpr0 and M[i]. Hence, we would let:

Π � (l s
4 , i) = Π � (l s

5 , i) = {gpr0,M[i]}

9.4.3 Instruction Level Parallelism (Scheduling)

We envisage now the case of a transformation which compromises the correspondence of
program points; our study focuses on instruction scheduling. Instruction Level Parallelism
(ILP or scheduling) aims at using the ability of executing several instructions simultane-
ously featured by modern architectures, so as to cut down the cost of several cycles long
instructions. The number of cycles lost in the execution of an instruction is called the
latency: a latency of one means that the execution of an instruction lasts two cycles in-
stead of one. Several kinds of scheduling should be distinguished: hardware scheduling
is implemented in the processor, which performs an ordering of instructions at run-time;
the correctness of hardware scheduling is part of the specification of the processor, so its
verification is beyond the scope of this thesis. Hence, it is somewhat part of the processor
specification. By contrast, software scheduling is performed at compile time. Of course,
we focus here on software scheduling.

A detailed introduction to software scheduling can be found in [App99], Chapter 20.
The principle of software scheduling is to re-order the instructions of the compiled code,
so as to allow independent tasks to be performed in the same time. For instance, if we
consider a piece of code s0; s1; s2 made of three instructions, such that s1 and s2 do not
depend on s0 but s2 depends on the result of s1: then, performing s1 before s0 does not
change the behavior of the program, and may allow the execution of s2 to be started
faster. Therefore, the re-ordered code s1; s0; s2 would produce a similar result and may
yield better performances. The diagram below illustrate this fact; obviously, s2 can start
earlier in the case of the “re-scheduled” code.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

224 CHAPTER 9. FORMALIZING COMPILATION

��������������������

��������������������

PSfrag replacements
s0

s1

s2

cycles

progression
lost cycle

PSfrag replacements
s0

s1

s2

cycles

progression

Obviously, software scheduling does not fit in the correctness definition presented in
Section 9.3.2, since the pieces of code corresponding to distinct source statements might be
inter-wound, due to assembly instructions being permuted, which prevents from defining
a mapping Π � , as shown in the example below.

Example 9.4.2. Software scheduling.

We assume that all instructions have a latency of 1, which is not completely realistic:
usually memory instructions have a longer latency due to slower chips being accessed,
whereas arithmetic instructions have no latency, since they are performed by a specialized
unit inside the processor. In fact, the latency of a memory instruction depends on many
parameters, including the layout of the cache. Our assumption is made for the sake of
the simplicity of the example only.
We consider the two pieces of code in Figure 9.5. The non-optimized code displayed in
Figure 9.5(a) corresponds to the result of the register coalescing optimization presented in
Example 9.4.1. The execution of this piece of 8 instructions lasts 12 cycles: for instance,
the execution of the load instruction at l n

1 should complete before the addition at l n
2 can

be performed. Figure 9.5(b) presents an optimized version of this program, so as to cut
down the number of stall cycles to 1: The mapping Π � relates the source control state

l n
0 li gpr1, 1

l n
1 load gpr0, i (0)

l n
2 add gpr0, gpr0, gpr1

l n
3 store gpr0, i (0)

l n
4 load gpr1, x (0)

l n
5 load gpr2, t (gpr0)

l n
6 add gpr1, gpr1, gpr2

l n
7 store gpr1, x (0)

l n
8 . . .

(a) Non-optimized code

l o
0 load gpr0, i (0)

l o
1 li gpr1, 1

l o
2 add gpr0, gpr0, gpr1

l o
3 load gpr1, x (0)

l o
4 load gpr2, t (gpr0)

l o
5 store gpr0, i (0)

l o
6 add gpr1, gpr1, gpr2

l o
7 store gpr1, x (0)

l o
8 . . .

(b) Optimized code

Figure 9.5: Software scheduling

l s
4 with l n

3 . However, this mapping can no longer be defined in the case of the optimized
program. Indeed, the value of x at l s

4 corresponds to the value of M[x] at l o
3 (where it

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

9.4. COMMON OPTIMIZATIONS 225

is copied into a register by a load instruction), whereas the value of i corresponds to the
value of M[i] at l o

7 (i.e., after the new value is written into the memory).

As illustrated in the example above, the difficulty in the definition of Π � stems from
the fact that the value of two source memory locations x0, x1 may correspond to the values
of assembly memory locations at distinct control states in the optimized code.

As a consequence, we need to give a relaxed definition for the mappings Π � and Π � ,
allowing to map a single control state l s ∈ � s of the source program into a series of control
states l c

0 , . . . , l c
n in the compiled code and to map a source memory location xs into a tuple

made of a memory location xc of the compiled program and a control state l c
i chosen in

the series l c
0 , . . . , l c

n .
Such a series of assembly control states is called a fictitious control state; we introduce

this notion together with the corresponding definitions for Π � and Π � :

Definition 9.4.1. Fictitious control state, fictitious state.

In case l s ∈ � s corresponds to the sequence of assembly control states l c
0 , . . . , l c

n , we
introduce a fictitious label l f representing this sequence and a set of fictitious memory
locations Xl f ⊆ ({l c

0 , . . . , l c
n }× � c): the couple (x, l c

i) represents the memory location x,
and states that it should be observed at point l c

i . Furthermore, we assert that Π � (ls) = lf .
Let 〈(l c

0 , ρc
0), . . . , (l c

n , ρc
n)〉 be a sequence of states corresponding to the above sequence of

control states. We project them into a fictitious state (lf , ρf), where ρf is defined by:

∀(l c
i , xc) ∈ Xl f , ρf (xc) = ρc

i(xc)

Then, Π � (xs) = xc means that the value of xs corresponds to the value of xc at a point
l c
i , such that (l c

i , xc) ∈ Xl f .

We illustrate this notion in the case of the optimized code presented in Example 9.4.2:

Example 9.4.3. Example 9.4.2 continued.

We let l f be the fictitious control state corresponding to l s
3 in the optimized program

displayed in Figure 9.5(b), and define the fictitious state as follows:
• l f stands for the sequence l o

2 , l o
3 , l o

4 , l o
5 , l o

6 , l o
7 ;

• the set of fictitious memory locations Xl f and the mapping Π � are defined by:
– Π � (i) = {M[i]} and M[i] is observed at l o

7 : (l o
7 ,M[i]) ∈ Xl f ;

– Π � (x) = {M[x]} and M[x] is observed at l o
2 : (l o

2 ,M[x]) ∈ Xl f ;
– the values for t are not modified and may be observed at any point in l o

2 , . . . , l o
7 .

The situation is illustrated in the Figure 9.6; it shows what point variables x and i should
be observed at.

The last issue is the computation of the reduced compiled program. Obviously, the
algorithm presented in Section 9.3.3 needs to be generalized. The new algorithm proceeds

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

226 CHAPTER 9. FORMALIZING COMPILATION

PSfrag replacements

x

i

l o
0 l o

2 l o
7 l o

8

Figure 9.6: Scheduling and fictitious locations

by composing partial symbolic transfer functions, representing the modification of the
fictitious memory locations instead of the standard memory locations. We illustrate the
results of the computation of the symbolic transfer functions in the following example:

Example 9.4.4. Computation of symbolic transfer functions.

We consider the computation of the symbolic transfer functions in the case of Exam-
ple 9.4.3. After abstraction of the registers, we get the expected results:

δl o
0 ,l f = bM[i]←M[i] + 1c

δl f ,l o
7

= bM[x]←M[x] + M[t + M[i]]c
Obviously, these symbolic transfer functions between fictitious control states are very well
fitted to the various certification algorithms stated in the next chapters.

9.4.4 Optimizations Transforming Paths

Many compilers carry out structure modifying optimizations such as loop unrolling and
branch optimizations. These transformations reduce the time spent in branchings and
interact well with the scheduling optimizations considered in Section 9.4.3). These trans-
formations break the program point mapping Π � in a different way: one source point may
correspond to several assembly points (not to a sequence of points).

In this section, we focus on loop unrolling. This optimization consists in grouping two
successive iterations of a loop, as is the case in the example below.

Example 9.4.5. Loop unrolling.

We use the same syntax as for source programs for the sake of convenience and concision
(the transformation envisaged here is similar to loop unrolling in assembly programs,
up-to some details, which can be abstracted away in the same way as in the previous
sections). We present two programs in Figure 9.7: the initial, non optimized program Pn

(Figure 9.7(a)) consists in a loop with a counter i; the optimized code Po (Figure 9.7(b)),
with the loop unrolled. Indeed, one iteration in the loop of Po corresponds to two iterations
in the loop of Pn. We use the index e (resp. o) is used for control states corresponding
to the even (resp. odd) iteration numbers.
The source control state l n

2 corresponds to two control states in P ′, namely l o
2,e and l o

2,o);
and the same for l n

3 . We also duplicated l n
1 into l o

1,e and l o
1,o for the sake of the example.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

9.4. COMMON OPTIMIZATIONS 227

l n
0 : i := 0;

l n
1 : while(i < 2n) {

l n
2 : B;

l n
3 : i := i + 1; }

l n
4 : . . .

(a) Initial program Pn

l o
0 : i := 0;

l o
1,e : while(i < 2n){

l o
2,e : B;

l o
3,e : i := i + 1;

l o
1,o :

l o
2,o : B;

l o
3,o : i := i + 1; }

l o
4 : . . .

(b) Optimized program Po

Figure 9.7: Loop unrolling

Example 9.4.5 presents the main difficulty with loop unrolling: the points inside the
loop are not in direct correspondence with the program points of the initial program. In
fact, a point in the loop of Pn corresponds to two points in Po, so that there is no way to
define a bijective Π � function.

The solution consists in using the trace partitioning framework of Chapter 4 so as to
define a non-standard semantics for Pn with the following properties:
• the non-standard semantics should mimic the behavior of the transformed program;
• it should also be an abstraction of the standard semantics.

This amounts to stating the correctness of the compilation of some complete partition
(or complete covering) of Ps (Definition 4.2.2) into Pc, following Definition 9.3.1. As a
consequence, stating the correctness of a transformation like loop unrolling requires only
a straightforward extension of our definition for compilation correctness.

Let us apply this extended definition to Example 9.4.5:

Example 9.4.6. Compilation up-to partitioning.

We state the correctness of the transformation considered in Example 9.4.5.
In fact, Po is a complete partition of Pn, with the following notations:
• the set of tokens T is {t , te, to} (t is the “default” token, te corresponds to “even”,

and to to “odd”);
• the control states of Po are defined as follows:

l o
0 = (l n

0 , t)
l o
1,e = (l n

1 , te)
l o
2,e = (l n

2 , te)
l o
3,e = (l n

3 , te)

l o
1,o = (l n

1 , to)
l o
2,o = (l n

2 , to)
l o
3,o = (l n

3 , to)
l o
4 = (l n

4 , t)

• the forget function τ maps any token into the “trivial” token tε (Section 4.2.1).
As a consequence, the extended definition applies immediately.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

228 CHAPTER 9. FORMALIZING COMPILATION

The correctness of many other loop and path transformations could be proved correct
in the same way.

9.4.5 Structure Modifying Optimizations

The list of optimizations which could be studied here could grow infinite.
For instance, we gave more general definitions of variable mappings in [Riv04b], so

as to formalize structure modifying optimizations, which may change the flows of values,
such as loop reversal. We do not claim that all optimizations could be formalized with
the abstractions and mappings introduced in this chapter; however, we believe that our
methodology is general enough, so that a large number of optimizations can be dealt with.

In the next two chapters, we focus on compilation certification. Basically, the goal
of the abstractions αΠ〈

�
s, � s〉

and αΠ〈
�

c, � c〉
is to establish what the compilation certifica-

tion should care about, while the mappings Π � , Π � establish the relation between both
programs.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

Chapter 10

Invariant Translation and Checking

We propose to compile invariants computed during an analysis of the source program.
This approach should be more efficient and produce more precise invariants than the
analysis of the compiled program. This technique can be considered a generalization of
the Proof Carrying Code technique [Nec97]. We formalize it inside the framework for
defining compilation correctness introduced in Chapter 9 in Section 10.2.

Moreover, we discuss the issue of the independent checking of the translated invariant
in Section 10.3, which should provide a higher level of confidence in the result.

Last, we provide implementation feed-back.

10.1 Principle and Related Work

The purpose of this chapter is to compute abstract invariants for compiled programs, so
as to prove their safety. Moreover, the safety properties of interest may be expressed
more simply at the assembly level: in particular memory errors depend on the assembly
memory model and the nature of the code generated, since the C norm leaves many be-
haviors “undefined”, as we pointed out in Section 2.2.6. For instance, we wish to compute
invariants akin to those produced by Astrée [BCC+02, BCC+03a, CCF+05], and rely
on them in order to check that critical operations such as memory accesses or arithmetic
operations never cause any run-time error.

In theory, the static analysis presented in Section 3.1 extends to the assembly language
presented in Section 9.2. However, this approach requires solving several practical issues:

• Compilation induces a loss of control structure. In particular, conditions, loops
and conditional statements are compiled into graphs with goto edges. Therefore, the
computation of the least fixpoint inherent in the static analysis requires computing
an adequate set of widening points [Bou93]. Moreover, a strategy for limiting the
storage of local invariants would be required in order to allow the analysis to scale
up (see [HDT87] for details). This would amount to recovering the control structure,
which was lost at compile time.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

230 CHAPTER 10. INVARIANT TRANSLATION AND CHECKING

• Compilation causes the expansion of data-structures: arrays, enumerations,
structures, union types are all translated into series of bytes. Therefore, an assembly
level analyzer would deal with low level data-structures only.
• Assembly level invariants are tedious to read. In case the analyzer does not con-

clude the code is safe, a diagnosis should be made for the alarms produced by the
analysis. However, an assembly level analyzer would produce assembly level invari-
ants, which would not be very helpful for the user. More generally, the invariants
should be human readable and allow for a straightforward interpretation. As a con-
sequence, we would need to relate the results of the analysis to the source program,
so as to let the user understand whether the code indeed contains a bug. Again,
this would amount to recovering the structure lost at compile time.

These arguments plead in favor of using the results of a source analysis for the certification
of the compiled code. Of course, this would not be possible for any static analysis. For
instance, analyses for determining low level properties of assembly programs cannot be
done at the source level. For instance, cache prediction [AFMW96, FMW97], pipeline
behavior [TF98] and worst case execution time [TFW00] analyses were implemented; they
do not suffer the problems mentioned above and yield very good results (namely, precise
bounds for worst case execution times). We can also cite the analysis of memory accesses
in executables in [BR04], aimed at checking the security of assembly programs. The Java
Virtual Machine [LY05] (aka JVM, developed by SUN) provides another common example
of assembly level analysis. Indeed, the JVM performs a series of data-flow analyses in order
to check the compliance of byte-code files with the Java byte-code standard, before running
them. Among the properties verified, we can cite the type safety, the right definition of
the stack (size and type of the arguments)...

However, at the time we write this thesis, we are aware of no analysis for determining
high level properties at the assembly level, such as precise bounds on the range of variables.

We propose to translate the results produced by a source analyzer such as Astrée

into invariants for the compiled program. Such a translation is based on the relation
between the source and the compiled program defined by Π � , Π � . Moreover, we perform an
independent checking of the safety of the translated invariants, justified by the soundness
of fixpoint checking (Theorem 2.3.3). The goal of this independent checking is not to rely
on the soundness of the compiler.

This solution has several advantages. First, it allows to carry out the fixpoint com-
putation at the source level, using the most structured code: a fine iteration strategy is
needed in order to infer precise invariants, which is easier to do at the source level (as in
Section 3.2.5). Second, it allows to cope with alarms and to interpret the analysis results
at the source level. Last, the final checking should give a sufficient level of confidence in
the analysis results.

This approach presents some strong similarities with Proof Carrying Code systems
(PCC), which were introduced in [Nec97], as a means to compile types with programs.
The initial goal of PCC was to let a source producer provide some evidence of the safety of
the code (i.e., the compliance with a pre-defined safety policy); the code consumer would

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

10.2. THE INVARIANT TRANSLATION 231

run a program only after checking the safety using the annotations provided by the code
producer. The implementation of a certifying compiler, producing types together with
the compiled code is described in [NL98]. However, a significant difference is that PCC
systems usually assume that the traduction of the type information is performed by the
compiler, which we cannot do, since we use a generic compiler: by contrast, we assume
the compilation correct in the sense of Definition 9.3.1 (which is a weaker assumption)
and base the translation procedure upon the mappings Π � , Π � . Finally, other authors
extended the PCC framework. For instance, [App01] focused on the reduction of the
trusted base, i.e. of the amount of code the soundness of the PCC system depends on. It
is based on the reduction of the set of axioms to use for the type checking to a minimal
number of rules.

Similarly, the Java byte-code compiler embeds enough information in the byte-code
programs, so as to reduce the inference task that the Java byte-code verifier should per-
form.

Other authors focused on the definition of Typed Intermediate Languages, (TIL) such
as [MTC+96, TMC+96], as a means to keep information about source ML programs in or-
der to make further optimizations possible and trustable. Basically, well-typed programs
should not produce some kinds of errors (the memory allocation should be safe). The
principle of Typed Intermediate Languages is to require transformations (compilation,
optimization) to preserve types, which entails that they preserve the safety. This method-
ology was extended to a Typed Assembly Language (TAL) in [MCG+99]: The purpose
of this work was also to design a safe compiler for a type-safe subset of C. This compiler
is also supposed to translate types together with programs. Among the applications of
these typed languages, we can cite the definition and trustable compilation of type-safe
C-like languages, such as Cyclone [GMJ+02] and CCured [NMW02]. The TAL technique
was extended by [XH01] so as to rely on more expressive types, i.e. dependent types, in
order to verify more complex properties.

The implementation of invariant translation and invariant checking in the abstract
interpretation framework was presented in [Riv03, Riv04a], as a means to design an as-
sembly code analyzer similar to Astrée [BCC+03a], which would work for compiled code.
This chapter follows the presentation of these papers.

Section 10.2 describes and proves correct the invariant translation procedure; Sec-
tion 10.3 discusses the main issues of the invariant checking.

10.2 The Invariant Translation

10.2.1 Invariant Translation for the Reduced Compiled Pro-
gram

Assumptions: In this section, we consider a source program Ps and a compiled program
Pc. Moreover, we assume that the compilation of Ps into Pc is sound in the sense of

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

232 CHAPTER 10. INVARIANT TRANSLATION AND CHECKING

Definition 9.3.3. In particular, the correctness of the compilation guarantees the existence
of two mappings:

• Π � : � s → � c where � s ⊆ � s and � c ⊆ � c;
• Π � : � s → � c where � s ⊆ � s and � c ⊆ � c.

As usual, we let P r
s (resp. P r

c) denote the reduced program associated to Ps (resp. Pc).
Moreover, the soundness of compilation guarantees that ΠΣ(JP r

s K) = JP r
c K, where ΠΣ is

the trace mapping derived from Π � and Π � , thanks to the statement based on reduced
programs (Definition 9.3.3).

We also perform a static analysis of the source program. More precisely, we write
D]�

,s for the abstract domain for representing source stores, and γ]�
,s : D]�

,s → P(� s) for

the corresponding concretization function. As usual, we let D]
s denote the domain for

abstracting sets of traces, defined as in Section 3.1.1 by D]
s = � s → D]�

,s and γs denote

the concretization function γs : D]
s → P(Σs). We write Is ∈ D]

s for the invariant produced
by the static analysis and remember the soundness condition:

∀〈. . . , (l , ρ)〉 ∈ JPsK, ρ ∈ γ]�
,s(Is(l))

We consider in this section a simplified version of the example of Figure 9.3 (note that
the initial value of i is 0 instead of −1):

Example 10.2.1. Compiled program.

We let Ps and Pc be the programs displayed respectively in Figure 10.1(a) and in Fig-
ure 10.1(b). This compilation is correct in the sense of Section 9.3.3, with:

• for the source program, � s = � s = {i}, and � s = � s = {l s
0 , l s

1 , l s
2 , l s

3 , l s
4 };

• for the assembly program, � c = {M[i]}, and � c = {l c
0 , l c

2 , l c
6 , l c

10, l c
11};

• the control state mapping:

Π � : l s
0 7→ l c

0

l s
1 7→ l c

2

l s
2 7→ l c

6

l s
3 7→ l c

10

l s
4 7→ l c

11

• the memory location mapping: Π � : i 7→M[i]

In the following, we consider a simple interval analysis: D]�
,s = � → Intervals〈 � 〉, where

Intervals〈 � 〉 collects all the intervals of values ranging in the set of machine integers � and:

γIntervals〈 � 〉 : Intervals〈 � 〉 → P(�)
Φ → {ρ ∈ � | ∀x ∈ � , ρ(x) ∈ Φ(x)}

We choose intervals for the sake of simplicity; however, the results in this section would
obviously generalize to other domains.

The most basic interval analyzer would compute the following invariants:

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

10.2. THE INVARIANT TRANSLATION 233

l s
0 : int i := 0;

l s
1 : while(i < 100) {

l s
2 : i := i + 1;

l s
3 : }

l s
4 : . . .

(a) Source program Ps

l c
0 : li gpr0, 0

l c
1 : store gpr0, i (0)

l c
2 : load gpr0, i (0)

l c
3 : li gpr1, 100

l c
4 : cmp cr0, gpr0, gpr1

l c
5 : bc(≥) cr0, l c

11

l c
6 : load gpr0, x (0)

l c
7 : li gpr1, 1

l c
8 : add gpr2, gpr0, gpr1

l c
9 : store gpr2, x (0)

l c
10 : b lc2

l c
11 : . . .

(b) Assembly program Pc

Control state Interval for i
l s
0 �

l s
1 [0, 100]

l s
2 [0, 99]

l s
3 [1, 100]

l s
4 [100, 100]

In the following, we attempt to derive local invariants for Pc from Is; we consider the
case of control states in the reduced program first.

Properties of the reduced compiled program: Let lc ∈ � c, ρc ∈ � c, and a trace
σc = 〈. . . , (lc, ρc)〉 ∈ JP r

c K. The correctness of the compilation guarantees the existence of
a trace σs ∈ JP r

s K, such that ΠΣ(σs) = σc. As a consequence, there exist ls ∈ � s, ρs ∈ � s,
such that σs = 〈. . . , (ls, ρs)〉. Hence, Π � (ls) = lc, and ρs = ρc ◦ Π � .

Moreover, the soundness of the analysis entails that ρs ∈ γ]�
,s(Is(ls)), i.e. ρc ◦ Π � ∈

γ]�
,s(Is(ls)).
The function Π � is a bijection, therefore we can compute its inverse (Π �)−1. As a

consequence ρc ∈ (Π �)−1 ◦ γ]�
,s(Is(ls)).

Therefore, we can derive an invariant for the restricted compiled program:

Theorem 10.2.1. Invariant for P r
c .

Let Ir
c be the invariant defined by:

Ir
c : � c → D]�

,s

lc 7→ Is((Π �)−1(lc))

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

234 CHAPTER 10. INVARIANT TRANSLATION AND CHECKING

Then, Ir
c is a sound invariant for P r

c :

∀〈. . . , (lc, ρc)〉 ∈ JP r
c K, ρc ∈ (Π �)−1 ◦ γ]�

,s(I
r
c(lc))

Proof.

Follows from the above remark about ρc.
Â

Theorem 10.2.1 provides the skeleton of an invariant for the assembly program; how-
ever, it fails to deliver any precise information about the values of any variable at any
point in � c \ � c. Refining the result of Theorem 10.2.1 is the purpose of the following
subsection.

Example 10.2.2. Example 10.2.1 continued.

As a consequence of Theorem 10.2.1, we deduce the following invariant for P r
c :

Control state Interval for M[i]
l c
0 �

l c
1 [0, 100]

l c
2 [0, 99]

l c
3 [1, 100]

l c
4 [100, 100]

10.2.2 Invariant Translation for the Whole Compiled Program

Let D]�
,c be a domain for representing sets of stores for the target language, and γ]�

,c :

D]�
,c → P(� c) be the associated concretization function. In practice, the domain D]�

,c is

similar to D]�
,s: for instance, in case the source analysis generates interval invariants, the

translated invariants also consist in interval constraints. Moreover, we assume that we are
able to compute abstract transfer functions for the target language: we assume that, for
all l , l ′ ∈ � c, d ∈ D]�

,c, ρ ∈ γ]�
,c(d), ρ′ ∈ � c such that (l , ρ) → (l ′, ρ′), then ρ′ ∈ δ]

l ,l ′(d)

(intuitively, δ]
l ,l ′ stands for an over-approximation δl ,l ′).

We propose to derive from Ir
c an invariant for Pc in two steps: first, we envisage the

case of a control state in � c; second, we consider a control state in � c \ � c.

Case of a point lc in � c: Then, Ir
c(lc) provides us with invariants for variables in � c, but

no information about the other memory locations in the compiled program: for instance,
it does not tell us anything about the registers. Therefore, we map Ir

c(lc) into an invariant
Ic(lc), which is defined in a domain expressing constraints for variables in � c, using a kind

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

10.2. THE INVARIANT TRANSLATION 235

of“injection function” inject. In all cases we are aware of, this step is straightforward, since
abstract values denote collections of constraints, and Ic(lc) simply stands for the same
set of constraints as Ir

c(lc), but in a richer domain (since more variables are allowed). For
instance, in the case of an interval analysis, the arithmetic registers are mapped into the
interval containing all possible values (>).

Example 10.2.3. Example 10.2.2 continued.

The abstract domain D]�
,c maps condition registers into subsets of � (non-relational ap-

proximation) and general purpose registers and memory locations into integer intervals.
The case of the condition registers is not so obvious: we may naively consider that a set
of possible condition values would be adequate.
In this case, at any point in � c, the invariant Ic should store:
• intervals similar to those in Example 10.2.2 for M[i];
• no information for general purpose registers, i.e., the interval � ;
• no information for the condition registers, i.e., the abstract value � .

As a consequence, we get at this stage the following invariant:

control state M[i] gpr0 gpr1 cr0

l c
0 � � � �

l c
2 [0, 100] � � �

l c
6 [0, 99] � � �

l c
10 [1, 100] � � �

l c
11 [100, 100] � � �

Case of a point in � c \ � c: Let us consider the case of a point lc 6∈ � c now.
There exists at most finitely many feasible paths p = l c

0 · . . . · l c
n such that l c

0 ∈ � c,
∀i > 0, l c

i 6∈ � c and lc = l c
n (a path is feasible if and only if there exists a real program

execution following it). Let P be the set containing all such paths.
Let us consider a trace σc in JPcK ending in lc: there exists ρc ∈ � c, such that σc =

〈. . . , (lc, ρc)〉. This trace starts at the entry point in the program so it encounters at least
one control state in � c. Therefore, we consider the last such control state in σc and let l c

0

denote it. Furthermore, σc follows a path in P after that point. Let us write l c
0 · . . . · l c

n for
that path (where l c

0 ∈ � c, l c
n = lc); then, σc = 〈. . . , (l c

0 , ρc
0), . . . , (l c

n , ρc
n)〉. The soundness

of the translated invariant for l c
0 ∈ � c entails that ρc

0 ∈ γ]�
,c(Ic(l c

0)). The soundness of the

transfer functions δ]
.,. implies that:

ρc ∈ δ]
l c
n−1,l c

n
◦ . . . ◦ δ]

l c
0 ,l c

1
(Ic(l c

0))

Therefore ρc ∈ Ic(l c
n), where:

Ic(l c
n) =

⊔{
δ]

l c
n−1,l c

n
◦ . . . ◦ δ]

l c
0 ,l c

1
(Ic(l c

0)) | l c
0 · . . . · l c

n ∈ P
}

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

236 CHAPTER 10. INVARIANT TRANSLATION AND CHECKING

(where Ic(l c
0) is defined as above since l c

0 ∈ � c)
To summarize:

Definition 10.2.1. Translated invariant.

We let the translated invariant be defined by:
• if l c ∈ � c, then:

Ic(l c) = inject(Ir
c(l c))

• if l c 6∈ � c, we define P as above and:

Ic(l c) =
⊔{

δ]
l c
n−1,l c

n
◦ . . . ◦ δ]

l c
0 ,l c

1
(inject(Ir

c(l c
0))) | l c

0 · . . . · l c
n ∈ P ∧ l c

n = l c
}

Theorem 10.2.2. Soundness of the translated invariant.

First, we sum up the assumptions made in this section:
• the invariant Is soundly approximates JPsK;
• the compilation of Ps into Pc is sound.

Then, the translated invariant Ic (Definition 10.2.1) is sound:

∀〈. . . , (l , ρ)〉 ∈ JPcK, ρ ∈ γ]�
,c(Ic(l))

Proof.

The soundness follows from the two previous paragraphs.
Â

Theorem 10.2.2 provides a sound way of deriving an invariant Ic for the compiled
program from an invariant for the source program. We illustrate the result in our example:

Example 10.2.4. Example 10.2.3 continued.

The table below displays the translated invariant Ic:

control state M[i] gpr0 gpr1 cr0

l c
0 � � � �

l c
1 � [0, 0] � �

l c
2 [0, 100] � � �

l c
3 [0, 100] [0, 100] � �

l c
4 [0, 100] [0, 100] [100, 100] �

l c
5 [0, 100] [0, 100] [100, 100] {LT, EQ}

l c
6 [0, 99] � � �

l c
7 [0, 99] [0, 99] � �

l c
8 [0, 99] [0, 99] [1, 1] �

l c
9 [0, 99] [1, 100] [1, 1] �

l c
10 [1, 100] � � �

l c
11 [100, 100] � � �

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

10.2. THE INVARIANT TRANSLATION 237

In many regards, this invariant is not optimal. For instance, no information about the
value of cr0 is inferred for l c

6 , . . . , l c
11, even though we might expect to find some. This is

due to the fact that we do not perform a global analysis of the target program.

Need for invariant verification: A major drawback of Theorem 10.2.2 is that the
proof assumes the soundness of the compilation, despite one of the main reasons for
analyzing the assembly code instead of the source code was to certify the compiled code,
even if it is produced by a non-trusted compiler. As a consequence, we will consider
the problem of checking the translated invariant in an independent way: this will be the
purpose of Section 10.3.

10.2.3 Invariant Translation in Presence of Under-Specified Be-
haviors in the Source Language Standard

We mentioned in Section 2.2.6 that the standard describing the source language may leave
some behaviors under-specified and we proposed an extended definition for compilation
correctness in Section 9.3.5, so as to accept as correct compilation transformations which
specialize the source standard by considering some under-specified behaviors errors and
defining others.

Only the inclusion of the behaviors of the compiled program in those of the source
program is required in the proof of Theorem 10.2.2. As a consequence, Theorem 10.2.2
still holds if we replace Definition 9.3.1 with Definition 9.3.4.

In other words, the translation should be performed only if the semantics used for the
source analysis is sound with respect to the choices made by the compiler. Otherwise, the
compiled program may fall into cases not taken into account during the analysis of the
source program, so the translated invariant may be unsound. For instance, the compiler
and the target architecture should comply with the assumptions made about evaluation
order, floating-point precision, integer conversions... In particular, if some under-specified
behavior is considered an error during the source code analysis, the translated invariant
does not account for any other possibility, even though compilation translates this unsound
computation into a perfectly defined computation in the compiled program.

10.2.4 Translated Invariant and Program Reduction

As we pointed out in Section 9.4, other forms of program reduction may be required:
• the source program may be reduced as well (e.g., in order to cope with the removal

of dead variables): in this case, we need to forget all constraints about the variables
in � \ � s, by applying the forget operator, which we introduced in Section 3.1.1;
• more complicated abstractions might be involved in the definition of correctness of

compilation, in the case of more complex optimizations: then, the corresponding
abstractions should be applied in the abstract level.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

238 CHAPTER 10. INVARIANT TRANSLATION AND CHECKING

We followed this methodology in order to extend the invariant translation algorithm to
various optimizations in [Riv04b]. In particular, the nature of the mapping between source
and compiled programs conditions the nature of the invariants, which can be translated:
for instance, optimizations such as scheduling may impede the translation of relational
invariants if two variables cannot be made available at a same point.

Moreover, some optimizations allow for the traduction of finer invariants. This is the
case of loop unrolling (Section 9.4.4): a partitioning analysis distinguishing even and odd
iterations (Chapter 4) would produce more precise invariants, which can be translated
exactly.

10.3 Invariant Checking

We proved the soundness of the translated invariant in Theorem 10.2.2, under the assump-
tion that the compiler is sound. Obviously, we do not wish to rely on this assumption,
since the compiler may be wrong. Therefore, we consider the independent checking of the
translated invariant now: in this section, we no longer assume the compiler be correct, or
even the source invariant be sound.

10.3.1 Principle of Invariant Checking

We propose to follow the fixpoint checking method presented in Theorem 2.3.3: if F is a
monotone concrete semantic function, F] is a sound abstract semantic function, approx-
imating F with respect to a monotone concretization function γ, and d is an abstract
element such that F](d) v d, then lfpF ⊆ γ(d). The invariant checking theorem below
corresponds to a slight improvement upon Theorem 2.3.3.

We could either perform the checking of Ir
c or of Ic. In the following, we perform the

verification of Ir
c: this approach makes sense, since Ic is computed from Ir

c.

Theorem 10.3.1. Invariant checking.

Let Ir
c ∈ (� c → D]�

,s) be a candidate invariant for the compiled, reduced program. In
case the property below holds, then the invariant Ir

c is a sound approximation of JP r
c K:

for all feasible path l0 · . . . · ln,
l0 ∈ � c

ln ∈ � c

∀i ∈ L1, n− 1M, li 6∈ � c

 =⇒ δ]

ln−1,ln
◦ . . . ◦ δ]

l0,l1
(Ir

c(l0)) v Ir
c(ln)

(10.1)

Proof.

Applying the result of Theorem 2.3.3 would require a slightly different (and more
approximate) definition for F]:

F] : I 7→ λ(ln ∈ � c) ·
⊔{δ]

ln−1,ln
◦ . . . ◦ δ]

l0,l1
(I(l0)) | l0 ∈ � c ∧ ∀i ∈ L1, n− 1M, li 6∈ � c}

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

10.3. INVARIANT CHECKING 239

Instead, we avoid to compute the abstract join (which is a major source of imprecision);
therefore, we cannot deduce Theorem 10.3.1 directly from Theorem 2.3.3, even though
the principle of the proof is similar.
In the following, we assume that the checking mentioned in Theorem 10.3.1 succeeds.
Let l ∈ � c, and ρ ∈ � c. We assume that ρ ∈ γ]�

,c(I
r
c(l)). We propose to show that any

transition in the restricted compiled program from (l , ρ) leads to another state, which
is safely approximated by Ir

c.

Let (l ′, ρ′) ∈ � c, such that there is a transition (l , ρ)→ (l ′, ρ′) in the restricted, compiled
program. We show that ρ′ ∈ γ]�

,c(I
r
c(l ′)).

Theorem 9.3.1 implies that there exists a trace σc = 〈(l , ρc), . . . , (l ′, ρ′c)〉 of the compiled
program, such that Πtrace

�
c, � c

(σc) = 〈(l , ρ), (l ′, ρ′)〉. We let p = l · l0 · . . . · ln · l ′ be the

path underlying σc. The soundness of the local transfer functions ensures that ρ′ ∈
γ]�

,c(δ
]
ln,l ′ ◦ . . . ◦ δ]

l ,l0
(Ir

c(l))). Moreover, the success of the invariant checking insures that

δ]
ln,l ′ ◦ . . . ◦ δ]

l ,l0
(Ir

c(l)) v Ir
c(l ′); the monotonicity of γ]�

,c implies that ρ′ ∈ γ]�
,c(I

r
c(l ′)).

Similarly, we can prove that the initial states for the restricted program are in the
concretization of Ir

c.
As a conclusion, it follows that Ir

c over-approximates the semantics of the restricted,
compiled program. Note that this proof is very similar with a “global” fixpoint transfer.
Â

A major drawback of the checking is that it requires implementing almost a full ab-
stract interpreter for the target language: the main part, which does not need to be
implemented is the abstract post-fixpoint engine (i.e., we do not have to implement the
iterator, to choose a widening strategy...). However, the most important issues with the
invariant checking procedure are described in Section 10.3.2.

10.3.2 Issues with the Precision of Transfer Functions

Incompleteness of the abstract transfer functions: Theorem 10.3.1 provides a
sound invariant checking procedure; however, we do not prove the completeness of the
procedure. In fact, the invariant checking procedure described by Theorem 10.3.1 is not
complete. Similarly, if γ is monotone, and F ◦ γ ⊆ γ ◦ F] but the verification condition
F](x) v x fails (for instance, if F](x) and x are not comparable, or due to a lack of local
monotonicity of F]), then it does not entail that γ(x) is not a valid over-approximation
for the concrete least fixpoint.

Example 10.3.1. Incompleteness of the invariant checking.

Let us assume that concrete and abstract values are positive natural integers, F :
� →

�
, x 7→ 4, F] :

� → �
, x 7→ x + 4 and γ : n 7→ n. Clearly F] soundly over-approximates

F : ∀n ∈ �
, F (n) ≤ F](n).

Then, F](4) 6≤ 4 (so that the checking fails) even though F (4) = 4 (i.e., the “invariant”
4 is sound).

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

240 CHAPTER 10. INVARIANT TRANSLATION AND CHECKING

Among the reasons, which may lead to the invariant checking to fail despite Ir
c is

sound, we can cite:

• the possible non-monotonicity of the transfer functions involved in the invariant
checking;
• the imprecision of the transfer functions and of the abstract domain used for the

analysis of the restricted, compiled program.

In the following of this subsection, we describe examples for precision issues, which may
require the invariant checking to fail. These problems occur in practice, and led to the
development of refined domains for the invariant checking to succeed in [Riv03, Riv04a].

Example 10.3.2. Failure of invariant checking.

In particular, the checking of the translated invariant given in Example 10.2.2 fails at
the entrance in the loop body. Indeed, the certification condition states that δ]

l c
5 ,l c

6
◦ . . . ◦

δ]
l c
2 ,l c

3
(Ir

c(l c
2)) v Ir

c(l c
6).

However, this condition amounts to δ]
l c
5 ,l c

6
(Ic(l c

5)) v Ir
c(l c

6), where Ic is given in Exam-

ple 10.2.4 (up-to the abstraction of registers), and the latter condition fails, since the
range for M[i] is [0, 100] at point l c

5 ; it is [0, 99] at point l c
6 (we note that the failure is

observed for M[i] which belongs to � c, so that we cannot blame the fact that we considered
Ic instead of Ir

c for this failure).

Indeed, the value of M[i] is not modified in this sequence of instructions, yet the values in
the range [0, 99] go through the branch to l c

6 due to the test. The reason why the checking
analysis does not remark this is the result of the lack of a relation between the value of cr0

and the numerical invariants. In fact, the condition is tested on a copy of M[i], which
also impedes the invariant checking.

Conditions: As we remarked in Example 10.3.2, the checking of conditions requires
relations between the values of the condition registers and the other abstract values to
be maintained. This issue was solved in [Riv04a] by a partitioning domain, where each
possible value of the condition register is mapped into a value of D]�

,c.

Use of copies: Most assembly operations affect registers. As a consequence, the eval-
uation of an assignment or of a condition requires the content of memory locations to be
copied into registers. This copy might impede the invariant checking, as in the case of
conditions (Example 10.3.2).

In particular, if the source analysis relies on the fact that some equality relations x = y
holds, then the assembly analysis should establish a relation of the form gpri = gprj

(where x and y are respectively copied into gpri and gprj).

Example 10.3.3. Symbolic simplification and invariant checking.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

10.3. INVARIANT CHECKING 241

We pointed out that the simplification of symbolic transfer functions along paths could be
used as a means to improve the precision of static analyses. In particular, we found that
they solve the issue reported in Example 10.3.2.
Indeed, δ]

l c
5 ,l c

6
◦ . . . ◦ δ]

l c
2 ,l c

3
can be simplified straightforwardly into (we abstract the registers

away here):

bM[i] < 100 ? ι | ¤ c
This symbolic transfer function allows for a successful local invariant checking.
The reason why symbolic composition and simplification helps here is that it reconstructs
the structure of the computations as in the source program and reduces the invariant
checking to similar conditions as those used in the source analysis.

Low level operations: Other low level operations may require special care. In partic-
ular:
• The verification of memory operations requires the alignment of the addresses to

be checked carefully. For instance, 32-bits architectures often use addresses corre-
sponding to bytes: a cell of an integer array is 4 bytes long; therefore, the indexes
should be congruent to 0 modulo 4. As a consequence, the reading of an integer
array cell determined by an index in a range [a, b] can be checked precisely only if
the checker is able to prove that the index is congruent to 0 modulo 4; otherwise,
the checker should also take into account the possibility of reading parts of two con-
secutive cells, which may return a very different result. We exemplify this situation
in Figure 10.1. This issue can be solved by doing a congruence analysis [Gra89].
• The low-level implementation of data conversions may involve complex properties.

For instance, the implementation of the conversion of an integer value into a floating
point value in the Power-PC architecture, is commonly compiled into a sequence
of bitwise operations, subtractions and rounding (as shown in Example 11.3.1).
Precisely analyzing the whole conversion would require the sequence of operations
to be recognized by the verifier as a conversion, since the abstract primitives for
bitwise operations and subtractions would be very different from a conversion.

Optimizing compilation: If the compiler performs optimizations, additional informa-
tion may be needed for the invariant checking to succeed. Indeed, let us consider the
example of loop unrolling: a “for” loop which should be executed 2n times can be unrolled
into a “for” loop which should be executed n times, which divides by 2 the number of
times the exit conditions need to be tested. Then, verifying the local correctness condi-
tion requires proving that the exit test always fails after an odd number of iterations in
the loop in the source code (i.e., that the unrolling of the loop is a sound transformation).

More generally, when an optimization relies on the results of an analysis performed by
the compiler, the invariant checker should perform an analysis at least as precise as the
analysis performed by the compiler.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

242 CHAPTER 10. INVARIANT TRANSLATION AND CHECKING
PSfrag replacements

0 1 2 3

0x00 0x10 0x00 0x11

1 cell = 1 byte

alignment = half byte (4 bits)

(c) Memory layout

Source: access to cell i, where i ∈ [0, 1]
Assembly: access to cell i, where i ∈ [0, 2] ∧ i ≡ 0 mod (2)
analysis: values read
no congruence analysis {0x0010, 0x1000, 0x0011, . . .}
alignments not handled precisely value 0x1000 mistakenly read
congruence analysis {0x0010, 0x0011}
alignments handled precisely no imprecision

(d) Read from the memory

Figure 10.1: Memory alignments and invariant checking

Issues inherent in the existence of under-specified behaviors in the source lan-
guage semantics: We argued in Section 10.2.3 that the invariant translation is sound
provided the semantics of the source program safely over-approximates the behaviors of
the compiled programs (only one of the two inclusions introduced in Definition 9.3.4 is
required).

Basically, the case of the invariant checking step is similar. Indeed, let us consider
the local verification along a feasible path given in Theorem 10.3.1. Then, the condition
expressed in Equation 10.1 is an instance of a more general formula expressing that the
transition corresponding to this path in the assembly program is over-approximated by
the transition in the source program in the abstract level. Since this condition lies in
the abstract level it does not entail that a similar condition holds in the concrete level,
though we can expect the invariant checking to fail if the source analysis does not take
into account all possible behaviors in the current architecture.

In particular, if the source analysis considers some behavior an error, whereas it is
compiled into a safe execution, we can expect the compilation to fail here.

10.3.3 Practical Experience

Implementation of a prototype: We implemented the invariant translation and in-
variant checking technique in a prototype in 2002 [Riv03, Riv04a].

• The source programs are written in C. The prototype was designed so as to handle

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

10.3. INVARIANT CHECKING 243

families of synchronous applications (Section 5.1.1), in the same way as Astrée.
• The compiled programs are Power-PC assembly programs, including Stabs debug-

ging information. During our experiment, we used the gcc compiler, even though
any other compiler for the same architecture, with the same kind of debugging
information could have been used instead.
We restricted to non-optimized code.
• The purpose of the invariant translation was to prove the safety of the compiled

programs i.e., the absence of runtime errors (e.g., division by 0, wrong access to the
memory) and of “user-defined wrong behaviors” (such as integer or floating-point
overflows).

The structure of the C analyzer is rather similar to the early version of the Astrée

analyzer [BCC+02]. It uses a domain collecting interval constraints, clock constraints
[BCC+02], and trace partitioning (with part of the features of the partitioning domain
introduced in Chapter 5). The invariant translator generates similar invariants.

The invariant checking required a few refinements to be implemented: partitioning
with the value of the condition register, product with a domain for representing equality
relations, product with a congruence domain [Gra89].

Benchmark and conclusion: The whole prototype was successfully ran on a few sim-
ple applications, including the 400 lines program mentioned in Section 5.3.3. In particular,
invariant checking was successful, i.e., the translated invariant is proved correct indepen-
dently from any assumption on the compiler and on the source code analysis (using the
technique introduced in Theorem 10.3.1). Moreover, the translated invariant resulted in
only one false alarm, which was present in the source analysis. This alarm was fixed later
by a refinement of the source analyzer, so that we would expect an improved checker to
produce no false alarm as well (the checker was not maintained by then, as explained
below).

However, the amount of resources required by the tool were rather disappointing. We
sum up the time and memory required for each step of the process in the table below.
These measurements were done on an Intel Pentium III laptop (1 GHz), with 384 Mb of
RAM.

Step Time (s) Memory (MB)

Source code analysis 2.5 15
Assembly code parsing 1.5 -
and mapping construction
Invariant translation 4.5 20
Invariant checking 5.5 27

The main issue with the invariant checking lies in the memory requirement of the proce-
dure. Indeed, large part of the data sharing ensured during the source analysis is lost in
the translation, which causes the structures representing assembly invariants to use more

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

244 CHAPTER 10. INVARIANT TRANSLATION AND CHECKING

memory and, to a lesser extent, the computation of the abstract transfer functions for the
invariant checking to be slower.

By contrast, the very heavy use of data-sharing plays a considerable role in the source
analysis; in particular, it allows for a lower memory usage, and for very fast operations,
such as the computation of abstract joins.

A much more efficient translation and checking procedure could have been designed
at the cost of the ease of maintenance of the invariant checker. However, the abstract
domains developed in Astrée were updated and modified very frequently. Moreover, the
translation validation approach sounded more promising at this point. As a consequence,
we did not maintain the invariant checker for a long period, and did not attack the
certification of large programs.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

Chapter 11

Proof of Semantic Equivalence

We focus on the automated proof of equivalence between source and compiled programs.
The principle of this approach is to prove the functional correctness of the compiled
program with respect to the source code, by checking the equivalence of local computation
steps at a given level of abstraction.

We discuss the issues inherent in the certification of the equivalence between source
and compiled programs in Section 11.1. We formalize the translation validation technique
[PSS98] in the framework, which we set up in Chapter 9 in Section 11.2.

Then, we prove this technique adapted proving the safety of compiled programs in
Section 11.3. Indeed, when the proof of equivalence succeeds for some abstraction, then
any more abstract invariant can be translated safely.

We provide implementation results showing the scalability of the method in Sec-
tion 11.4. In the difference to other tools, our prototype does not input intermediate
representations but rough source and compiled programs (so that the whole compilation
is certified).

11.1 Principle and Related Work

We pointed out in Section 9.1 that the verification of the functional correctness of the
compiled code was a very challenging and important goal in certified compilation. Indeed,
it is particularly important to be sure that the compiled program indeed does what the
source code says it should. More precisely, we wish to check that a trace of the compiled
program corresponds to a trace of the source program and vice-versa, as in Definition 9.3.1.

Otherwise, we may encounter various kinds of (possibly dramatic) errors: either mis-
functioning due to the wrong implementation of the functions defined in the source code,
or runtime errors due to a flawed translation.

Moreover, the proof of equivalence between source and compiled programs can be
considered a strong documentation for the assembly code: indeed, it should describe
what memory location corresponds to what source variable and prove this correspondence

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

246 CHAPTER 11. PROOF OF SEMANTIC EQUIVALENCE

correct. As such, it can be used for the certification of critical compiled programs, e.g. in
embedded systems and in aeronautics [TCoA99].

Several solutions to this issue can be found in the literature.

Theorem proving: A first approach consists in proving the compiler formally, with the
help of a proof assistant.

It has been applied successfully to simple “toy” compilers, e.g. in [Ber98]. More
recently, [Str02] presented a formal proof of correctness of a compiler for a subset of Java
Card: this proof was the result of an extensive formalization of Java and on the verification
of the compiler inside the Isabelle/HOL theorem proving environment [Pau94]. Currently,
the Concert project led in the Inria aims at proving a fully functional, (moderately)
optimizing compiler for a large subset of the C language [Ler06].

Of course, such techniques are relevant only when the code of the compiler is publicly
available. Moreover, this approach tends to be costly: not only the formal proofs tend to
be long and not completely automated but also, a change in the code of the compiler may
require parts (or all) of the proof to be rewritten.

Translation validation: A second solution proceeds by performing the equivalence
proof on a per-program basis: any time a program is compiled, it should be checked.

This approach, known as translation validation, was introduced by [PSS98]: this work
focused on a synchronous compiler for the Signal language [ABG95]. Another similar tool
was described in [Nec00]; the approach followed in this work is based on the checking of
phases of an optimizing compilation, based on the RTL intermediate representation. This
technique was also employed in [ZPFG02, ZPF+02] so as to certify an Intel compiler for
the Intel Itanium.

We also implemented a prototype based on the principles of translation validation
in [Riv04b]: the certification of compilation should be done for every critical program.
However, our tool is not based on any intermediate representation (it inputs source and
assembly programs). Moreover, no knowledge about how the compiler works is assumed,
except that it should produce standard debugging information.

Invariant translation: A last solution is to resort the invariant translation technique,
which we described in Chapter 10.

Indeed, in case the invariant checking defined in Section 10.3 succeeds, then the prop-
erty corresponding to the invariant is proved sound, independently from any assumption
about the compiler. As a consequence, it proves that the compilation preserves some
property of the source program in the compiled program. Obviously, the property pre-
served is not strong enough for our goal: it does not show that the assembly program
implements correctly every function in the source code.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

11.2. DESIGN OF A TRANSLATION VALIDATION PROCEDURE 247

11.2 Design of a Translation Validation Procedure

In this section, we focus on the formalization and on the proof of the correctness of the
approach. In the end, we also relate our implementation results.

11.2.1 Formalization and Soundness of the Approach

The intuition behind translation validation is rather simple: if the source and the com-
piled program are “locally” equivalent, then, we can prove them globally equivalent. The
purpose of this section is to state the local equivalence checking technique and to prove
that it entails the correctness of the compilation.

Notations, and assumptions: In this section, we consider a source program Ps, and
a compiled programs Pc. We use the same notations as in the previous chapters. In
particular, we define as usual:
• restricted sets of memory locations � s ⊆ � s, and � c ⊆ � c;
• restricted sets of control states � s ⊆ � s, and � c ⊆ � c;
• a mapping of memory locations Π � : � s → � c;
• a mapping of control states Π � : � s → � c;
• reduced programs P r

s and P r
c , defined by the above restricted sets.

However, we do not assume that the compilation of Ps into Pc is sound. Indeed: our
purpose is to state some conditions and to prove that the compilation of Ps into Pc is
sound under this assumption.

We also require the restricted programs to be defined by tables of symbolic transfer
functions: if ls, l ′s ∈ � s, then δls,l ′s denotes the transfer function describing all one-step
transitions from ls to l ′s . We write→r

s (resp. →r
c) for the transition relation corresponding

to the restricted source (resp. compiled) program.
Last, we require l i

s (resp. l i
c) to be the entry point of P r

s (resp. P r
c), and that Π � (l i

s) = l i
c

(as in Section 9.3.3).

Local equivalence: We now set up the “local equivalence” property; intuitively, it
states that one step in the restricted source program should correspond to one step in the
restricted compiled program.

Definition 11.2.1. Local equivalence.

We say that the programs Ps and Pc are locally equivalent with respect to Π � and Π � if
and only if the following property holds:

∀ls, l ′s ∈ � s, ∀ρc, ρ
′
c ∈ � c, if lc = Π � (ls) and l ′c = Π � (ls), then:

(ls, ρc ◦ Π �)→r
s(l ′s , ρ′c ◦ Π �)⇐⇒ (lc, ρc)→r

c(l ′c , ρ′c)

This property can also be stated in terms of symbolic transfer functions:

∀ls, l ′s ∈ � s, ∀ρc ∈ � c, if lc = Π � (ls) and l ′c = Π � (ls), then:
Jδls,l ′s K(ρc ◦ Π �) = Jδlc,l ′c K(ρc) ◦ Π �

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

248 CHAPTER 11. PROOF OF SEMANTIC EQUIVALENCE

A global way of stating local equivalence: At this point, we can provide another
way of stating the local equivalence, which is based on a global statement.

We write F r
s (resp. F r

c) for the semantic function of the restricted source program
(resp. of the restricted compiled program); we recall that F r

s is defined by:

F r
s : P(Σs) −→ P(Σs)
E 7→ E ∪ {〈s0, . . . , sn, sn+1〉 ∈ Σs | 〈s0, . . . , sn〉 ∈ E ∧ sn→r

ssn+1}

Moreover, if we let � i

s = {〈(l i
s , ρ)〉 | ρ ∈ � s}, the semantics of P r

s is defined by JP r
s K =

lfp � i
s
F r

s . Of course, the same properties and notations hold for the compiled program.

Lemma 11.2.1. Local equivalence, global formula.

The programs Ps and Pc are locally equivalent if and only if:

∀E ∈ P(Σs), ΠΣ(F r
s (E)) = F r

c (ΠΣ(E))

Proof.

Implication ⇒: Let us assume that Ps and Pc are locally equivalent with respect to
Π � and Π � .
Let E ∈ P(Σ). We assume that E is a singleton E = {σ} for some trace σ. Let us write
σ = 〈ss

0, . . . , s
s
n〉, and ΠΣ(σ) = 〈sc

0, . . . , s
c
n〉, where ∀i, sc

i = Π
�
(ss

i). Then:
• ΠΣ(F r

s (E)) = {〈ss
0, . . . , s

s
n, ss

n+1〉 | ss
n→r

ss
s
n+1};

• ΠΣ(F r
s (E)) = {〈sc

0, . . . , s
c
n, sc

n+1〉 | sc
n→r

ss
c
n+1}

Moreover, the local equivalence entails that:

∀ss
n+1 ∈ � s, ∀sc

n+1 ∈ � c, ss
n→r

ss
s
n+1 ⇐⇒ sc

n→r
ss

c
n+1

Therefore,
ΠΣ(F r

s (E)) = F r
c (ΠΣ(E))

The results for any set E ∈ P(Σ) follows from the case of singletons, since ΠΣ, F r
s , and

F r
c are continuous. Indeed, if E ⊆ Σs, then

ΠΣ(F r
s (E)) = ΠΣ(F r

s (
⋃{{σ} | σ ∈ E}))

= ΠΣ(
⋃{F r

s ({σ}) | σ ∈ E}) since F r
s is continuous

=
⋃{ΠΣ(F r

s ({σ})) | σ ∈ E} since ΠΣ is continuous
=

⋃{F r
c (ΠΣ({σ})) | σ ∈ E} as shown above

= F r
c (ΠΣ(

⋃{{σ} | σ ∈ E})) since ΠΣ, F r
c are continuous

= F r
c (ΠΣ(E))

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

11.2. DESIGN OF A TRANSLATION VALIDATION PROCEDURE 249

The “global statement” for local equivalence follows.
Implication ⇐: We assume that the “global statement” for local equivalence holds and
establish the local one.
Let ls, l ′s ∈ � s, lc = Π � (ls), l ′c = Π � (l ′s), ρc, ρ

′
c ∈ � c. We write ρs = ρc ◦ Π � and

ρ′s = ρ′c ◦ Π � . We assume that (ls, ρs)→r
s(l ′s , ρ′s).

We let E = {〈(ls, ρs)〉}. We know that:
• ΠΣ(F r

s (E)) = F r
c (ΠΣ(E));

• ΠΣ(E) = {〈(lc, ρc)〉};
• 〈(ls, ρs), (l ′s , ρ′s)〉 ∈ F r

s (E), so that 〈(lc, ρc), (l ′c , ρ′c)〉 ∈ ΠΣ(F r
s (E)) = F r

c (ΠΣ(E)).
At this point, expanding the definition of F r

c allows us to derive the result:

(lc, ρc)→r
c(l ′c , ρ′c)

As a conclusion, the “local” statement for local equivalence, which we gave in Defini-
tion 11.2.1 holds.
Â

Soundness: We now state and prove the soundness of translation validation:

Theorem 11.2.2. Soundness of translation validation.

If Ps and Pc are locally equivalent with respect to Π � and Π � , then the compilation of Ps

into Pc is correct, with respect to the same mappings, i.e. :

JP r
s K

ΠΣ' JP r
c K

Proof.

We assume that Ps and Pc are locally equivalent.
Then, The result follows directly from Lemma 11.2.1 and from a fixpoint transfer theo-
rem like Theorem 2.3.2. Indeed:
• ΠΣ(� i

s) = � i

c;
• ΠΣ(F r

s (E)) = F r
c (ΠΣ(E)).

As a consequence, a straightforward induction proves that

ΠΣ(lfp � i
s
F r

s) = lfp � i
c
F r

c

i.e.,

ΠΣ(JP r
s K) = JP r

c K

Moreover, ΠΣ is clearly a bijection.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

250 CHAPTER 11. PROOF OF SEMANTIC EQUIVALENCE

This proves the correctness of compilation of Ps into Pc, with respect to the mappings
Π � and Π � as stated in Theorem 9.3.3.

Â

The technique stated in the theorem above can be applied straightforwardly to the
program considered in Section 9.3.1.

Example 11.2.1. Translation validation.

Let Ps (resp. Pc) denote the source (resp. compiled) program introduced in Figure 9.3(a)
(resp. Figure 9.3(b)). The mappings Π � and Π � for this pair of programs were given in
Figure 9.4.

The symbolic transfer functions for the the restricted program P r
s (resp. P r

c) were given
in Example 9.3.3 (resp. in Example 9.3.4).

These tables of transfer functions obviously satisfy the local equivalence property stated
in Definition 11.2.1.

For instance, let us check the transitions between point l s
4 and l s

5 : these points of the
reduced source program correspond to the control states l c

11 and l c
15 in the reduced compiled

program. Moreover:

δl s
4 ,l s

5
= bx← x + t[i]c

δl c
11,l c

15
= bM[x]←M[x] + M[t + M[i]]c

Since Π � (x) = M[x] and Π � (t[i]) = M[t + M[i]], the two symbolic transfer functions
above describe the same transitions up to Π � .

The case of the other transitions is similar.

As a conclusion, Ps and Pc enjoy the local equivalence property.

Remark 11.2.1. Formal compiler proof.

We mentioned in Section 11.1 that theorem proving was a solution for establishing the
correctness of the compiler once for all. Then, the proof of correctness should establish a
result similar to the equivalence stated in Theorem 11.2.2 for all programs Ps and Pc.

However, we should distinguish several kinds of proofs:

• proofs based on big-steps semantics, akin to denotational or relational semantics
(Section 3.2) only focus on initial and final states; they do not tell much about the
local behavior of programs;
• proofs based on small-steps semantics proceed by establishing some kind of local

equivalence property, similar to the one introduced in Definition 11.2.1.

Of course, the latter kind of proofs is more informative; indeed, such proofs provide a
rather strong link between the source and the compiled programs.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

11.2. DESIGN OF A TRANSLATION VALIDATION PROCEDURE 251

11.2.2 Adapted Decision Procedure

The purpose of this section is to propose an algorithm for checking the local equivalence
property defined in the previous section. The decision procedure should input a pair of
symbolic transfer functions (δs, δc) (where δs describes a transition in P r

s , and δc describes
a transition in P r

c), and attempts to prove that P r
s and P r

c are equivalent:

Definition 11.2.2. Symbolic transfer functions equivalence.

The functions δs and δc are equivalent if and only if

∀ρs ∈ � s, ρc ∈ � c, ρc = Π
�
(ρs) =⇒ Π

�
(δs(ρs)) = δc(ρc)

Obviously, checking the local equivalence property stated in Definition 11.2.1 reduces
to proving the equivalence of symbolic transfer functions, in the sense of Definition 11.2.2.

Of course, we do not expect the decision procedure to be complete, since the equiva-
lence of symbolic transfer functions is undecidable; therefore, it may fail to establish the
equivalence of two equivalent symbolic transfer functions.

As usual, we expect the decision procedure to be sound: if it succeeds, then the two
arguments should be equivalent in the sense of Definition 11.2.2.

The algorithm exposed here is much more simple than the algorithm which we effec-
tively implement; indeed, this algorithm presents a very high asymptotic complexity, so
that a rather tricky implementation is somewhat required in order to achieve fast (i.e.,
practical) decision procedures.

Our procedures may handle assumptions under the form of finite lists of boolean
expressions (aka conditions); we write an assumption C (condition shall be denoted c0, . . .).

Equivalence of expressions: Before we describe the algorithm, we mention two im-
portant subroutines. The first one attempts to prove two expressions equivalent.

Definition 11.2.3. Expression equivalence.

Let e0, e1 be two expressions, with variables in � c and C be an assumption. We say that
e0 and e1 are equivalent under the assumption C if and only if, for all store ρ ∈ � c,

(∀ci ∈ C, JciK(ρ) = true) =⇒ Je0K(ρ) = Je1K(ρ)

If the procedure proves e0 and e1 equivalent, we write C ` e0 ∼ e1.
In our implementation, a very large number of rules needed to be included in the

decision procedures; we give a few examples here:
• Equality of constants: some constant (e.g., floating point constants) have several

representations, including hexadecimal representations, standard representations.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

252 CHAPTER 11. PROOF OF SEMANTIC EQUIVALENCE

• If C ` e0 ∼ e1, then, for any expression e and any operator ⊕, C ` e0 ⊕ e ∼ e1 ⊕ e.
• Faster implementations for comparisons: for instance, if e0 is an integer expression,

then testing whether e0 < 0 amounts to checking whether the sign bit of the result of
the evaluation of e0 is 1 (this can be implemented with a shift right); this allows to
test some simple conditions without using the condition register (fewer instructions),
which we described in Section 9.2.1.
Many other examples of faster operators can be found in practice.

In practice, we are interested with the case where e0 is an expression based on source
variables and e1 is an expression based on assembly memory locations. This case reduce
to the previous case. Indeed, we can substitute source variables with assembly memory
locations in e0, thanks to Π � ; we write Π � (e0) for the resulting expression. Then, we can
apply the regular decision procedure to (Π � (e0), e1).

Search for contradictions in sets of hypotheses: The second important function
attempts to find a contradiction among a set of hypotheses. If this procedure succeeds
on an assumption C, we write C ` false. The soundness of this procedure states, that if
C ` false, then:

{ρ ∈ � c | ∀ci ∈ C, JciK(ρ) = true} = ∅
Among the examples of rules for this decision procedure, we can cite the standard rules
below:

C; e0 < e1; e0 ≥ e1 ` false C; b;¬b ` false

Equivalence of symbolic transfer functions: We write C |= δs ∼ δc if the procedure
succeeds in proving the equivalence of δs and δc. The algorithm of the decision procedure
is described as a set of rules in Figure 11.1.

This decision procedure can be proved sound:

Theorem 11.2.3. Equivalence of symbolic transfer functions.

Let C be an assumption, and (δs, δc) be a pair of symbolic transfer functions. We assume
that C |= δs ∼ δc. Then:

∀ρs ∈ � s, ρc ∈ � c, ρc = Π
�
(ρs) ∧ (∀ci ∈ C, JciK(ρ) = true) =⇒ Π

�
(δs(ρs)) = δc(ρc)

In particular, if C is empty, then δs and δc are equivalent in the sense of Defini-
tion 11.2.3.

Proof.

By induction on the proof trees for deriving C |= δs ∼ δc.
Â

Example 11.2.2. Equivalence of symbolic transfer functions.

The rules presented in Figure 11.1 allow to prove the equivalence of all transfer functions
involved in Example 11.2.1, in a very straightforward manner.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

11.2. DESIGN OF A TRANSLATION VALIDATION PROCEDURE 253

incompatible branches
C ` false

False
C |= δs ∼ δc

empty functions Empty
C |= ¤ ∼ ¤

assignments
C ` es ∼ ec Π � (xs) = xc

Assign
C |= bxs ← esc ∼ bxc ← ecc

n-ary assignments generalizes the case of unary assignments

conditional (1)
C; e |= δs

t ∼ δc C;¬e |= δs
f ∼ δc

If l
C |= be ? δs

t | δs
f c ∼ δc

conditional (2)
C; e |= δs ∼ δc

t C;¬e |= δs ∼ δc
f

Ifr
C |= δs ∼ be ? δc

t | δc
f c

Figure 11.1: Decision procedure

Implementation: The decision procedure inputs two symbolic transfer functions and
attempts to prove their equivalence, by applying the rules from the conclusion to the
premises and close each branch in the proof with a rule among False, Empty and Assign.
All rules in Figure 11.1 but the False rule are guided by the nature of the transfer functions
on both sides. In practice, the decision procedure should attempt to derive contradictions
among the hypotheses, so as to apply the rule False as soon as possible.

11.2.3 Issues with the Computation of the Reduced Programs

We discussed the issue of optimizations in Section 9.4, and showed that alternate forms
of program reductions should be used when the compiler performs optimizations.

When the assembly code is optimized, the algorithm for translation validation should
be applied to the reduced programs defined in Section 9.4. When it succeeds, it proves
the correctness of the compilation with respect to the mappings used for the computation
of the reduced programs.

As a consequence, the main difference in the translation validator lies in the assem-
bly and source front-ends, since they should also compute the transfer functions for the
reduced source and assembly programs. We described this technique and provided some
implementation results in [Riv04b].

Moreover, additional analyses might be required if the compiler carries out some op-
timization after doing a static analysis of the source code, in the same way as in Sec-
tion 10.3.2. For example, if the compiler unrolls a “for” loop which should be executed 2n

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

254 CHAPTER 11. PROOF OF SEMANTIC EQUIVALENCE

times, then the translation validation will succeed only if it is able to rely on the fact that
the exit condition is always false after an odd number of iterations (this can be established
by a simple congruence analysis [Gra89]). In general, when the compiler needs to infer
some property in order to generate sound code, we can expect translation validation to
require the same fact, so that additional analyses may need to be implemented. Such
facts should be sent to the decision procedure as hypotheses.

11.2.4 Issues due to Under-Specified Behaviors in the Semantics
of the Source Language

We pointed out in Section 2.2.6 that the standard describing the source language may
leave some behaviors under-defined. Moreover, we discussed how to extend the definition
for compilation correctness to the case where the source program semantics may allow
more behaviors than the compiled program semantics in Section 9.3.5. We proposed an
alternate definition of compilation correctness in Definition 9.3.4, so as to deal with such
peculiar cases, where the semantics of the restricted compiled program corresponds to a
subset of the semantics the restricted source program. However, in the case of translation
validation, the checking procedure described in Section 11.2.2 performs an equivalence
checking, so it needs to be replaced with a more specific procedure so as to allow particular
cases.

In practice, two solutions are possible:

• specializing the semantics of the source program, so as to make exactly the same
choices as the compiler; this is usually possible in a large number of cases, such as
floating point computations, since the rounding modes and the rounding policy is
usually well-specified and can be controlled by the user;
• proving only the inclusion of the transitions of the compiled program in the transi-

tions of the source program, which can still be considered a strong guarantee.

Obviously, the second solution has the following drawback: it does not prove that all safe
executions of the source program correspond to a safe execution in the assembly program,
since it proves only a one way inclusion. However, another way to recover a stronger result
is to perform this inclusion testing and to prove that the assembly program is safe, using
a translated invariant, as explained in the following section (see Section 11.3.3).

11.3 Application to Invariant Translation

In this section, we study the link between the translation validation and the invariant
checking procedure, which we introduced in Section 10.3.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

11.3. APPLICATION TO INVARIANT TRANSLATION 255

11.3.1 Soundness of the Approach

First of all, we show that, if the translation validation succeeds, then some class of invari-
ants for the source, restricted program can be translated safely.

Therefore, we assume that the same conditions as in Section 10.2 are fulfilled. We
use the same notations as well; in particular, we assume that a sound abstract invariant
Is ∈ � s → D]� for P r

s is given.

Theorem 11.3.1. Invariant translation justification.

Let us assume that the test of local equivalence of Ps and Pc succeeds and that Is is a
sound invariant for Ps.
Then, the invariant Ir

c defined as in Section 10.2.1 provides a sound approximation for
the semantics of the reduced, compiled program:

∀〈. . . , (lc, ρc)〉 ∈ JP r
c K, ρc ∈ (Π �)−1 ◦ γ]�

,s(I
r
c((Π �)−1(lc)))

Proof.

Follows from Theorem 10.2.1 and Theorem 11.2.2.
Â

As a consequence, Is can be used as the basis for computing an invariant Ic for the
whole compiled program Pc, as done in Section 10.2.2.

Please note that only the translation an abstraction of Is, which is “more abstract”
than the semantics used for stating the compilation correctness (and for the translation
validation) is possible here. For instance, if we stated compilation correctness by observing
only relations between initial and final states, then we would not be able to translate local
invariants for all control states in the program.

11.3.2 Comparison with Invariant Checking

The result, which we provided in the last subsection shows that the approach consisting in
performing a proof of equivalence and then an invariant translation somewhat turns out
to be a substitute for the invariant translation and invariant checking. Indeed, translation
validation proves the equivalence of the restricted semantics of the source and compiled
program, so that the correctness of the translated invariant does not depend on the cor-
rectness of compilation anymore.

Invariant checking and translation validation are two ways to check an identity among
least-fixpoint formulas:
• invariant checking performs a global fixpoint checking, by verifying local soundness

conditions; it is specific to some abstract domain;
• translation validation relies on the local checking of the hypotheses of a fixpoint

transfer theorem; it is not specific to any abstraction.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

256 CHAPTER 11. PROOF OF SEMANTIC EQUIVALENCE

Translation validation presents several advantages here:
• it proves a stronger property: as shown above, the soundness of the translated

invariant can be deduced from translation validation, but the converse does not
hold (the success of invariant checking does not prove the compilation correct);
• it is not specific to any abstract domain or abstraction, except the program reduc-

tion, which was used in order to prove the correctness of compilation;
• by contrast, the invariant checking procedure consists in an abstract interpreter,

which should be precise enough to:
– validate invariants produced by a source analyzer (which means that it should

be at least as precise as the source analyzer used to synthesize Is);
– deal with the specific features of the assembly languages, such as the issues

mentioned in Section 10.3.2.
• the practical cost of translation validation turns out rather reasonable, as the bench-

marks, which we provide in Section 11.4 prove; on the contrary, the implementation
of invariant checking turned out involved and the resulting performances disappoint-
ing, as we pointed out in Section 10.3.3.

The better efficiency of the translation validation stems from the fact that it allows for
equivalent, more simple expressions to be recognized among the symbolic transfer func-
tions for the source program. Indeed, the decision procedure described in Section 11.2.2
can be enhanced so as to prove simplified assembly transfer functions, when it succeeds
in proving the equivalence. For instance, this possibility turns out particularly useful in
the following case:

Example 11.3.1. Conversion of a short integer into a floating point.

Let us consider the compilation of the source statement f = castshort→floati. As we can
remark, the computations involved in the conversions are quite involved. Figure 11.2
shows the corresponding sequence of assembly code produced by gcc. In this example, we
explain how this algorithm works. First, note that the floating point registers store 64-bit
floating points (i.e., values of type double).
We recall that the most common floating point data-types are respectively 32 bits (“float”
C type) and 64 bits (“double” C type) long. Moreover, a floating point value is made of
• a sign bit s;
• an exponent e (8 bits for float, 11 bits for double) decremented with a bias b (re-

spectively 127 and 1023);
• and a mantissa m of n bits (n = 23 for float, n = 52 for double).

The value corresponding to such a floating point number is 2e−b ·(1+2−n ·m) (the mantissa
represents a fraction in the range [0, 1]). For more details about the representation of
floating point numbers, we refer to [CS85].
We can summarize the conversion algorithm displayed in Figure 11.2 as follows:
• i is represented as a 32-bit integer (it was originally a 16-bit integers), thanks to the

instruction extsh ;
• the xoris instruction flips the highest bit in i;

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

11.3. APPLICATION TO INVARIANT TRANSLATION 257

lis 11,f@ha load the address of f
lis 9,i@ha

lhz 0,i@l(9) gpr0 ← i
extsh 0,0 sign extension
lis 9,0x4330 gpr9 ← 0x4330 0000 0000 0000

lis 10,.LC0@ha

la 10,.LC0@l(10) gpr10 ← C0

lfd 13,0(10) fpr13 ← 0x4330 0000 0000 0000 1111 1 . . . 1
xoris 0,0,0x8000 gpr0 ← gpr0 ⊕ 0x8000 0 . . . 0
stw 0,12(31)

stw 9,8(31)

lfd 0,8(31) fpr0 ← 〈gpr9 | gpr0〉
fsub 0,0,13 fpr0 ← fpr0 − fpr13

frsp 0,0 rounding into a floating point value
stfs 0,f@l(11) store result in f

Figure 11.2: Conversion of a short integer into a floating point

• then, a bit-bield made of an hexadecimal constant and of i is formed and loaded into
a 64-bit floating point register; the value of this result is 252 + 231 + i, as a double;
• the constant C0 = 252 + 231 is loaded into another floating point register;
• the difference is computed (fsub), so that we get i expressed as a double;
• last the frsp instruction rounds the double of value x into a 32-bit floating point

value (this rounding does not change the value, it merely modifies the internal rep-
resentation in order to comply with the floating point representation).

The translation validation decision procedure recognizes some sub-expressions as conver-
sions, when a conversion appears in the source expression. Moreover, it can produce a
simplified transfer function, containing a mere type conversion. This higher level op-
eration would be more amenable to static analysis, e.g., in the invariant propagation
(Section 10.2.2).
By contrast, a satisfactory handling of such sequences of assembly instructions in the in-
variant checking would require an abstract domain to be designed so as to collect expres-
sions and allow other domains to use them; this would make the design of the invariant
checker tedious. Intuitively, an invariant checker would use a kind of symbolic domain
which would precisely reconstruct and recognize the conversion before applying a dedicate
transfer function; therefore, it would do strictly more work than the translation validator
in this case.

The issue described in Example 11.3.1 did not arise in the program P1
1 considered in

Section 10.3.3, so that we came across this problem after applying translation validation to
larger programs. This increased our confidence in the adequation of translation validation
to our goal.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

258 CHAPTER 11. PROOF OF SEMANTIC EQUIVALENCE

11.3.3 On the Need for Invariant Translation and Safety Check-
ing

Let us assume that the correctness of the compilation of Ps into Pc can be proved by
translation validation, and that we wish to prove that Pc is safe. Moreover, we assume
that the analysis of Ps proves it safe.

The translation of source invariants may seem useless, since the source and the assem-
bly program are proved equivalent and the source program is also proved safe. However,
we may still wish to perform the invariant translation for several reasons, which we list
here.

Improving the level of certification : Indeed, the definition of the runtime errors
may be more natural at the assembly level, so that the verification of the safety conditions
using the translated invariants can still be useful as a more advanced guarantee that the
analyzed code be safe. We chose to perform it in the implementation, which we describe in
Section 11.4 (it was also a great opportunity to compare the approach based on translation
validation and the approach based on invariant checking in practice).

Certification using a source semantics with under-specified behaviors : We
related in Section 11.2.4 the issues in translation validation in case we are not able to
express precisely the semantics of the source program, due to some undefined behaviors
(Section 2.2.6). Basically, we proposed to prove the inclusion of the behaviors of the
compiled program in those of the source program.

However, the main drawback of this approach is that it does not prove that under
some conditions where no error occurs in the source program, the compiled code performs
at least one of the actions, which are possible according to the source language semantics.
A solution to this issue is to use a translated invariant in order to prove that no error
occurs at this point in the compiled program:

• translation validation proves an inclusion of JP r
c K in JP r

s K (modulo some abtractions
and some trace mappings), which corresponds to the first point in Definition 9.3.4;
• invariant translation ensures that, whenever some transition is possible in the source

code, there is at least one in the compiled code, which corresponds to the second
point in Definition 9.3.4.

11.4 Application to Real Software

We implemented this approach in Objective Caml [OCa] in 2003, and checked its ability to
scale up. We reported about this prototype in [Riv04b]. Our tool performed an invariant
translation preceded by a translation validation step which allows to deal with simplified
assembly symbolic transfer functions when translating invariants and to avoid coping with

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

11.4. APPLICATION TO REAL SOFTWARE 259

abstract invariant checking, since the latter technique generated disappointing results in
Section 10.3.3.

Implementation: Our goal was to certify automatically both the compilation and the
absence of runtime errors (aka, RTE) in the compiled assembly programs. The target
architecture is a 32 bits version of the Power-PC processor; the compiler is gcc 3.0.2 for
Embedded ABI (cross-compiler). The source invariants are computed by the Astrée

analyzer [BCC+03a] (we give more details about Astrée in Section 5.1) and achieve a
very low number of false alarms when used for checking RTE.

This prototype was aimed at validating the compilation of programs of the first family
of embedded applications presented in Section 5.3.3. We describe the main characteristics
of these programs in Section 5.1.1.

The translation validator handles most C features (excluding dynamic memory allo-
cation through pointers which is not used in the family of highly critical programs under
consideration): procedures and functions, structures, enumerations, arrays and basic data-
types and all the operations on these data-types. The fragments of Power-PC assembly
language handled by our implementation is ways larger than the fragment described in
Section 9.2 as well. In particular, a restricted form of alias is needed so as to validate
the passing by reference of some function arguments like arrays. Non-determinism is also
accommodated (volatile variables). The mappings Π � (for variables) and Π � (for program
points) are extracted from standard debugging information. The verifier uses the Stabs
format (hence, it inputs assembly programs including these data), in the same way as the
invariant translator and invariant checker described in Section 10.3.3.

The decision procedure involved in the translation validation is based on the same
principle as the decision procedure described in Section 11.2.2, even though the imple-
mentation is particularly tricky so as to keep the cost down. Moreover, it required two
very simple analyses to be performed, so as to collect additional assumptions:

• an analysis collecting equality relations;
• a congruence analysis [Gra89], so as to check the correctness of memory accesses.

Moreover, the verification of the soundness of the assembly code requires only interval
constraints to be translated: other constraints do not need to be translated, which makes
the invariant translation much more efficient and simple.

The whole development amounts to about 33 000 lines of Objective Caml code: The
various parsers and interfaces (e.g. with the source analyzer) are about 17 000 lines; the
kernel of the certifier (the implementation of the symbolic transfer functions and the
prover) is about 6 000 lines; the symbolic encoding functions (i.e., the formal definition of
the semantics of the source and assembly languages) are about 3 000 lines; the invariant
translator and the certifier are about 5 000 lines. The most critical and complicated part
of the system corresponds to the symbolic composition and simplifications (2 000 lines)
and to the prover (1 500 lines).

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

260 CHAPTER 11. PROOF OF SEMANTIC EQUIVALENCE

Benchmarks: The whole process was ran on a 2.4 GHz Intel Xeon with 4 Gb of RAM.
Translation validation succeeds on the three programs: no alarm is raised; hence the com-
piled programs are proved equivalent to the source code. The results of the benchmarks
are given in the table below (sizes are in lines, times in seconds).

Code Size Time Alarms
Source Assembly Parsing Parsing Mapping Translation Invariant Trans. RTE

(LOCs) (LOCs) C Power-
PC

building validation translation valid.

P1
1 370 1 930 0.04 0.08 0.03 0.14 0.23 0 0
P1

2 9 500 56 600 0.53 0.96 0.39 0.62 8.22 0 0
P1

3 70 000 344 000 2.97 13 0.81 9.45 84.5 0 0

Conclusions: First, we note that translation validation succeeds (no alarm); as a con-
sequence, the compilation is proved correct, and the invariant translation is also justified.
Second, the translated invariant allows the certification of the compiled code. Note that
[Riv04b] reported a few alarms in the case of P1

3 : these were due to the use of a former
version of Astrée. The Astrée analyzer was improved since this date and now allows
to compute a more precise invariant for this program, achieving the result of 0 false alarm.

Last, we are pleased to note that this technique does scale up, in the difference to the
implementation of invariant checking, which we described in Section 10.3.3.

Perspectives: At the time of the writing, we are working on a new, improved imple-
mentation, so as to replace the initial prototype. It focuses on the certification of binaries,
instead of assembly code. In particular, we hope to improve the handling of debugging
information and the decision procedure, (we envisage to make it safer, e.g., by letting it
generate proof terms).

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

Part V

Conclusion

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

Chapter 12

Future Directions

In this thesis, we examined various abstractions for sets of traces and applied these to
the resolution of various static analysis problems, all related to the certification of safety
critical embedded systems.

Let us review the main contributions and the opportunities of future work correspond-
ing to the three main parts of the thesis.

12.1 Trace Partitioning

We proposed a powerful, generic framework for trace partitioning and applied it to several
practical problems. First, we derived and implemented a trace partitioning domain in
Astrée, which turned out to play a major role in the performance of the analyzer, both
in time and in precision. Second, we designed a domain, which allows to state powerful
properties of executions, and which is particularly helpful in alarm investigation.

The most important area for future work in this part seems to be the improvement of
the technique proposed in Chapter 6.

• First, we envisage to use this domain in order to prove significant functional prop-
erties of programs, with the help of the Astrée static analyzer.
• Second, we could extend the automata-based abstraction (Section 6.3) with a widen-

ing operator.
• Last, we could also explore the idea of using an abstract system derived from the

property of interest in order to guide the widening strategy.

12.2 Alarm Investigation

We provided the basis for setting up semi-automatic alarm investigation tools. In partic-
ular, we proposed various families of relevant slicing criteria and algorithms for extracting
semantic slices of programs, which is a very important step, when considering very large

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

264 CHAPTER 12. FUTURE DIRECTIONS

programs, as is the case in the Astrée project. Second, we formalized families of depen-
dences adapted to the alarm investigation: first, we restrict to the dependences, which are
observable in a semantic slice; second, we consider in priority the dependences which have
significant chances to be among the causes of abnormal behaviors (such as the occurrence
of large values in programs, and in abstract invariants). These methods were implemented
in prototypes based on Astrée, and we obtained positive early results.

Obviously, much work remains to be done, before we can implement an automatic
alarm investigation module inside Astrée :
• Automatize the synthesis of semantic slicing criteria, from the invariants generated

by Astrée, and from the results of the abstract dependence analyses.
• The synthesis of error scenarios should be automatized; for instance, we plan to

investigate the generation of collections of constraints, so as to characterize inputs,
which would always cause an error.
• Other kinds of abstract dependences should be studied, e.g., in order to consider

more involved families of predicates.

12.3 Certified Compilation

We set up a general formalization for compilation. We defined and formalized several
certified compilation algorithms in this framework, including the invariant translation,
the invariant checking and the translation validation techniques. We implemented and
compared these methods; in the end, we conclude that the equivalence checking method
(translation validation) presents many advantages over the invariant checking technique.
Not only it verifies the correctness of compilation, but also it turns out more efficient
(in time) than the invariant checking. Overall, the translation validation prototype was
plainly successful in proving the correctness of the compilation of large applications in a
reasonable amount of time.

At this point, we are working on the improvement of the translation validation pro-
totype, which should be used in industrial certification processes. Another direction for
future work consists in considering other programming paradigms, such as synchronous
languages.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

Bibliography

[Aba99] M. Abadi. Secrecy by typing in security protocols. Journal of the ACM,
46(5):749–786, 1999. ACM Press, New York.

[ABG95] P. Amagbégnon, L. Besnard, and P. Le Guernic. Implementation of the data-
flow synchronous language Signal. In Conference on Programming Language
Design and Implementation (PLDI’95), pages 163–173, La Jolla (USA), June
1995. ACM Press, New York.

[ABHR99] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus of
dependency. In 26th Symposium on Principles of Programming Languages
(POPL’99), pages 147–160, San Antonio (USA), 1999. ACM Press, New York.

[Abr89] J.-R. Abrial. A formal approach to large software construction. In Mathe-
matics of Program Construction (MPC), volume 375 of LNCS, pages 1–20,
Groningen (The Netherlands), June 1989. Springer.

[AFMW96] M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm. Cache Behavior Predic-
tion by Abstract Interpretation. In 3rd Static Analysis Symposium (SAS’96),
volume 1145 of LNCS, pages 51–66, Aachen (Germany), September 1996.
Springer.

[AL98] G. Ammons and J. R. Larus. Improving data-flow analysis with path pro-
files. In Conference on Programming Languages, Design and Implementation
(PLDI’98), pages 72–84, Montréal (Canada), November 1998. ACM Press,
New York.

[ANS99] ANSI ISO/IEC. International Standard – Programming Languages – C, 1999.

[App99] A. W. Appel. Modern Compiler Implementation in ML. Cambridge Univer-
sity Press, 1999.

[App01] A. W. Appel. Foundational Proof-Carrying Code. In 16th Symposium on
Logics in Computer Science (LICS’2001), pages 247–256, Boston (USA), June
2001. IEEE Computer Society Press.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

266 BIBLIOGRAPHY

[BCC+02] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D.
Monniaux, and X. Rival. Design and Implementation of a Special-Purpose
Static Program Analyzer for Safety-Critical Real-Time Embedded Software,
invited chapter. In T. Mogensen, D.A. Schmidt, and I.H. Sudborough, editors,
The Essence of Computation: Complexity, Analysis, Transformation. Essays
Dedicated to Neil D. Jones, volume 2566 of LNCS, pages 85–108. Springer,
October 2002.

[BCC+03a] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D.
Monniaux, and X. Rival. A Static Analyzer for Large Safety Critical Soft-
ware. In Conference on Programming Languages, Design and Implementation
(PLDI’03), pages 196–207, San Diego (USA), June 2003. ACM Press, New
York.

[BCC+03b] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D.
Monniaux, and X. Rival. User Manual of the Astrée Static Analyzer.
Astrée, 2003.

[Ber98] Y. Bertot. A certified compiler for an imperative language. Technical Report
RR-3488, INRIA, 1998.

[BG92] G. Berry and G. Gonthier. The Esterel synchronous programming lan-
guage: design, semantics, implementation. Science of Computer Program-
ming, 19(2):87–152, 1992. Elsevier Science Publishers.

[BGS94] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler transformations for
high-performance computing. ACM Computing Surveys, 26(4):345–420, 1994.
ACM Press, New York.

[BGS97] R. Bod́ık, R. Gupta, and M. L. Soffa. Refining data flow information using
infeasible paths. In 6th European Software Engineering Conference and 5th
ACM SIGSOFT Symposium on Foundations of Software Engineering, pages
361–377, Zurich (Switzerland), September 1997.

[BL96] T. Ball and J. R. Larus. Efficient path profiling. In IEEE/ACM International
Symposium on Microarchitecture (MICRO 96), pages 46–57, Paris, France,
December 1996.

[BMMR01] T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani. Automatic
predicate abstraction of c programs. In Conference on Programming Lan-
guages, Design and Implementation (PLDI’01), pages 203–213, Snowbird
(USA), June 2001. ACM Press, New York.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

BIBLIOGRAPHY 267

[BNR03] T. Ball, M. Naik, and S. K. Rajamani. From symptom to cause: localizing
errors in counterexample traces. In 30th Symposium on Principles of Pro-
gramming Languages (POPL’03), pages 97–105, New Orleans (USA), Jan-
uary 2003. ACM Press, New York.

[Bou92] F. Bourdoncle. Abstract interpretation by dynamic partitioning. Journal of
Functional Programming, 2(4):407–423, 1992. Cambridge University Press.

[Bou93] F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In Inter-
national Conference on Formal Methods in Programming and their Applica-
tions, volume 735 of LNCS, pages 128–142, Novosibirsk, Russia, June 1993.
Springer.

[BR01] T. Ball and S. K. Rajamani. Automatically validating temporal safety prop-
erties of interfaces. In 8th International SPIN Workshop, volume 2057 of
LNCS, pages 103–122, Toronto (Canada), May 2001. Springer.

[BR02] T. Ball and S. K. Rajamani. The slam project: debugging system software via
static analysis. In 29th Symposium on Principles of Programming Languages
(POPL’02), pages 1–3, Portland (USA), January 2002. ACM Press, New
York.

[BR04] G. Balakrishnan and T. W. Reps. Analyzing memory accesses in x86 executa-
bles. In 13th International Conference on Compiler Construction (CC’04),
LNCS, pages 5–23, Barcelona (Spain), April 2004. Springer.

[Bry86] R.E. Bryant. Graph based algorithms for boolean function manipulation.
IEEE Transactions on Computers, C-35:677–691, August 1986.

[CBC93] J. Choi, M. Burke, and P. Carini. Efficient flow-sensitive interprocedural
computation of pointer-induced aliases and side effects. In 20th Symposium on
Principles of Programming Languages (POPL’93), pages 232–245, Charleston
(USA), January 1993. ACM Press, New York.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In
4th Symposium on Principles of Programming Languages (POPL’77), pages
238–252, Los Angeles, California, January 1977. ACM Press, New York, NY.

[CC79] P. Cousot and R. Cousot. Systematic design of program analysis frameworks.
In 6th Symposium on Principles of Programming Languages (POPL’79),
pages 269–282, San Antonio, Texas, January 1979. ACM Press, New York,
NY.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

268 BIBLIOGRAPHY

[CC92a] P. Cousot and R. Cousot. Abstract interpretation and application to logic
programs. Journal of Logic Programming, 13(2–3):103–179, 1992. Elsevier
Science Publishers.

[CC92b] P. Cousot and R. Cousot. Abstract interpretation frameworks. Journal of
Logic and Computation, 2(4):511–547, August 1992. Oxford University Press,
Oxford, UK.

[CC02] P. Cousot and R. Cousot. Systematic design of program transformation
frameworks by abstract interpretation. In 29th Symposium on Principles
of Programming Languages (POPL’02), pages 178–190, Portland, Oregon,
January 2002. ACM Press, New York, NY.

[CCF+05] P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné, D. Monniaux, and
X. Rival. The ASTRÉE analyzer. In European Symposium On Programming
(ESOP’05), volume 3444 of LNCS, pages 21–30, Edimburgh (Scotland), April
2005. Springer.

[CCL98] G. Canfora, A. Cimitile, and A. De Lucia. Conditioned program slicing.
Information and Software Technology, 40(11-12):595–608, November 1998.
Special issue on program slicing.

[CF89] R. Cartwright and M. Felleisen. The Semantics of Program dependence.
In Conference on Programming Languages, Design and Implementation
(PLDI’89), pages 13–27, Portland (USA), June 1989. ACM Press, New York.

[CGJ+00] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. In 12th Conference on Computer Aided Ver-
ification (CAV’00), volume 1855 of LNCS, pages 154–169, Chicago (USA),
July 2000. Springer.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In 5th Symposium on Principles of Programming
Languages (POPL’78), pages 84–97, Tucson, Arizona (USA), January 1978.
ACM Press, New York.

[CL96] C. Colby and P. Lee. Trace-Based Program Analysis. In 23rd Symposium
on Principles of Programming Languages (POPL’96), pages 195–207, St. Pe-
tersburg Beach, (USA), January 1996. ACM Press, New York.

[CL05] B.-Y. Chang and R. Leino. Abstract interpretation with alien expressions
and heap structures. In 4th International Conference on Verification, Model
Checking and Abstract Interpretation (VMCAI’05), volume 3385 of LNCS,
pages 147–163, Paris (France), January 2005. Springer.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

BIBLIOGRAPHY 269

[Col96] C. Colby. Semantics-based Program Analysis via Symbolic Composition of
Transfer Relations. PhD thesis, Carnige Mellon Univeristy, August 1996.

[Cou78] P. Cousot. Méthodes itératives de construction et d’approximation de points
fixes d’opérateurs monotones sur un treillis, analyse sémantique des pro-
grammes. PhD thesis, Université de Grenoble, 1978.

[Cou81] P. Cousot. Semantic foundations of program analysis. In S.S. Muchnick
and N.D. Jones, editors, Program Flow Analysis: Theory and Applications,
chapter 10, pages 303–342. Prentice-Hall, Inc., Englewood Cliffs, New Jersey,
1981.

[Cou97a] P. Cousot. Constructive design of a hierarchy of semantics of a transition
system by abstract interpretation. Electronic Notes in Theoretical Computer
Science, 6, 1997. Elsevier Science Publishers.

[Cou97b] P. Cousot. Types as abstract interpretations. In 24th Symposium on Prin-
ciples of Programming Languages (POPL’97), pages 316–331, Paris, January
1997. ACM Press, New York.

[CS85] IEEE Computer Society. IEEE standard for binary floating-point arithmetic.
Technical report, ANSI/IEEE Std 754-1985, 1985.

[DD77] D. Denning and P. Denning. Certification of programs for secure information
flow. Communications of the ACM, 20(7):504–513, July 1977. ACM Press,
New York.

[Den76] D. Denning. A lattice model of secure information flow. Communications of
the ACM, 19(5):236–243, May 1976. ACM Press, New York.

[Deu94] A. Deutsch. Interprocedural may-alias analysis for pointers: beyond k-
limiting. In Conference on Programming Languages, Design and Implemen-
tation (PLDI’94), pages 230–241, Orlando (USA), June 1994. ACM Press,
New York.

[Dji75] E. W. Djikstra. Guarded commands and formal derivation of programs. Com-
munications of the ACM, 18(8):453–457, August 1975. ACM Press, New York,
NY.

[DLS02] M. Das, S. Lerner, and M. Seigle. Esp: Path-sensitive program verification
in polynomial time. In Conference on Programming Languages, Design and
Implementation (PLDI’02), pages 57–68, Berlin (Germany), May 2002. ACM
Press, New York.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

270 BIBLIOGRAPHY

[DRS03] N. Dor, M. Rodeh, and M. Sagiv. CSSV: Towards a realistic tool for statically
detecting all buffer overflows in C. In Conference on Programming Languages,
Design and Implementation (PLDI’03), pages 155–167, San Diego (USA),
June 2003. ACM Press, New York.

[DSC98] D. Déharbe, S. Shankar, and E. M. Clarke. Model checking vhdl with cv.
In Formal Methods in Computer-Aided Design (FMCAD’98), volume 1522 of
LNCS, pages 508–514, Palo Alto (USA), November 1998. Springer.

[ea96] J. L. Lions et al. ARIANE 5, flight 501 failure, report by the inquiry board,
1996.

[EMCP02] O. Grumberg E. M. Clarke and D. Peled. Model-Checking. MIT Press, 2002.

[Ere04] G. Erez. Generating counter examples for sound abstract interpretation.
Master’s thesis, Tel Aviv University, 2004.

[FDHH04] C. Fox, S. Danicic, M. Harman, and R. M. Hierons. ConSIT: a fully au-
tomated conditioned program slicer. Software - Practice and Experience,
34(1):15–46, 2004. Wiley.

[Fer04a] J. Feret. The arithmetic-geometric progression abstract domain. In 6th
conference on Verification, Model-Cecking and Abstract Interpretation (VM-
CAI’05), volume 3385 of LNCS, pages 2–18, Paris (France), January 2004.
Springer.

[Fer04b] J. Feret. Static analysis of digital filters. In European Symposium On Pro-
gramming (ESOP’04), number 2986 in LNCS, Barcelona (Spain), April 2004.
Springer.

[FLL+02] C. Flanagan, K. R. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata.
Extended static checking for java. In Conference on Programming Languages,
Design and Implementation (PLDI’02), pages 234–245, Berlin (Germany),
May 2002. ACM Press, New York, NY.

[FMW97] C. Ferdinand, F. Martin, and R. Wilhelm. Applying Compiler Techniques
to Cache Behavior Prediction. In Workshop on Languages, Compilers and
Tools for Real-Time Systems (LCT-RTS), pages 37–46, Las Vegas (USA),
June 1997. ACM Press, New York.

[GJJM03] F. Gaucher, E. Jahier, B. Jeannet, and F. Maraninchi. Automatic state
reaching for debugging reactive programs. In 5th International Workshop on
Automated Debugging (AADEBUG’03), Ghent (Belgium), September 2003.

[GM82] J. A. Goguen and J. Meseguer. Security policies and security models. In
IEEE Symp. on Security and Privacy. IEEE Computer Society Press, 1982.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

BIBLIOGRAPHY 271

[GM03] R. Giacobazzi and I. Mastroeni. Non-standard semantics for program slicing.
Higher-Order and Symbolic Computation (HOSC), 16(4):297–339, 2003. Spe-
cial issue on Partial Evalution and Semantics-Based Program Manipulation.

[GM04] R. Giacobazzi and I. Mastroeni. Abstract non-interference: parameterizing
non-interference by abstract interpretation. In 31st Symposium on Principles
of Programming Languages (POPL’04), pages 186–197, Venice (Italy), janvier
2004. ACM Press, New York.

[GMJ+02] D. Grossman, J. G. Morrisett, T. Jim, M. W. Hicks, Y. Wang, and J. Ch-
eney. Region-based memory management in Cyclone. In Conference on Pro-
gramming Languages, Design and Implementation (PLDI’02), pages 282–293,
Berlin (Germany), May 2002. ACM Press, New York.

[Gra89] P. Granger. Static analysis of arithmetical congruences. In International
Journal of Computer Mathematics, volume 30, pages 165–190, 1989.

[Gra92] P. Granger. Improving the results of static analyses programs by local
decreasing iteration. In Foundations of Software Technology and Theoret-
ical Computer Science (FSTTCS’92), volume 652 of LNCS, pages 68–79.
Springer, December 1992.

[GRS00] R. Giacobazzi, F. Ranzato, and F. Scozzari. Making abstract interpretations
complete. Journal of the ACM, 47(2):361–416, 2000. ACM Press, New York,
NY.

[GRS05] D. Gopan, T. W. Reps, and M. Sagiv. A framework for numeric analysis of
array operations. In 32nd Symposium on Principles of Programming Lan-
guages (POPL’05), pages 338–350, Long Beach (USA), January 2005. ACM
Press, New York.

[HCRP91] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The syn-
chronous dataflow programming language Lustre. Proceedings of the IEEE,
79(9):1305–1320, September 1991. IEEE Computer Society Press.

[HDSS96] M. Harman, S. Danicic, Y. Sivagurunathan, and D. Simpson. The next 700
slicing criteria. In 2nd UK workshop on program comprehension, Durham
University (UK), July 1996.

[HDT87] S. Horwitz, A. J. Demers, and T. Teitelbaum. An efficient general itera-
tive algorithm for dataflow analysis. Acta Informatica, 24(6):679–694, 1987.
Springer.

[HHF+02] R. M. Hierons, M. Harman, C. Fox, L. Ouarbya, and M. Daoudi. Conditioned
slicing supports partition testing. Journal of Software Testing, Verification
and Reliability., 12(1):23–28, 2002.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

272 BIBLIOGRAPHY

[HLR93] N. Halbwachs, F. Lagnier, and P. Raymond. Synchronous observers and
the verification of reactive systems. In Algebraic Methodology and Software
Technology (AMAST ’93), Workshops in Computing, pages 83–96, Twente
(Netherlands), June 1993. Springer.

[HR80] L. H. Holley and B. K. Rosen. Qualified data flow problems. In 7th Symposium
on Principles of Programming Languages (POPL’80), pages 68–82, Las Vegas
(Nevada), June 1980. ACM Press, New York.

[HRB88] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence
graphs. In Conference on Programming Languages, Design and Implementa-
tion (PLDI’88), pages 35–46, Atlanta (USA), June 1988. ACM Press, New
York.

[HRB90] S. Horwitz, T. Reps, and D. Binkley. Interprocedural Slicing using Program
Dependence Graphs. ACM Transactions On Programming Languages And
Systems (TOPLAS), 12(1):26–60, January 1990. ACM Press, New York.

[HT98] M. Handjieva and S. Tzolovski. Refining static analyses by trace-based par-
titioning using control flow. In 5th International Static Analysis Symposium
(SAS’98), volume 1503 of LNCS, pages 200–214, Pisa (Italy), September
1998. Springer.

[Jea03] B. Jeannet. Dynamic partitioning in linear relation analysis: Application
to the verification of reactive systems. Formal Methods in System Design,
23(1):5–37, 2003.

[JHR99] B. Jeannet, N. Halbwachs, and P. Raymond. Dynamic partitioning in analyses
of numerical properties. In 6th Static Analysis Symposium (SAS’99), volume
1694 of LNCS, pages 39–50, Venice (Italy), September 1999. Springer.

[JM05] R. Jhala and R. Majumdar. Path slicing. In Conference on Programming Lan-
guages, Design and Implementation (PLDI’05), pages 38–47, Chicago (USA),
June 2005. ACM Press, New York.

[Kar76] M. Karr. Affine relationships among variables of a program. Acta Informatica,
6:133–151, 1976. Springer.

[Kil73] G. Kildall. A unified approach to global program optimization. In 1st Sym-
posium on Principles of Programming Languages (POPL’73), pages 194–206,
Boston (USA), October 1973. ACM Press, New York.

[KL88] B. Korel and J. W. Laski. Dynamic program slicing. Information Processing
Letters, 29(3):155–163, November 1988. Elsevier Science Publishers.

[Knu62] D. E. Knuth. The Art of Computer Programming. Addison-Wesley, 1962.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

BIBLIOGRAPHY 273

[LAS00] T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analyses.
In 7th Static Analysis Symposium (SAS’00), volume 1824 of LNCS, pages
280–301, Santa Barbara (USA), June 2000. Springer.

[Ler06] X. Leroy. Formal certification of a compiler back-end, or: Programming a
compiler with a proof assistant. In 33rd Symposium on Principles of Pro-
gramming Languages (POPL’06), Charleston (USA), January 2006. ACM
Press, New York.

[LY05] T. Lindholm and F. Yellin. The Java(tm) Virtual Machine Specification.
SUN, 2005.

[Mau99] L. Mauborgne. Representation of Sets of Trees for Abstract Interpretation.
PhD thesis, École Polytechnique, 1999.

[Mau00] L. Mauborgne. Tree schemata and fair termination. In 7th Static Analyis
Symposium (SAS’00), volume 1824 of LNCS, pages 302–320, Santa Barbara
(USA), June 2000. Springer.

[MCG+99] G. Morrisett, K. Crary, N. Glew, D. Grossman, R. Samuels, F. Smith, and
D. Walker. TALx86: A Realistic Typed Assembly Language. In 1999 ACM
SIGPLAN Workshop on Compiler Support for System Software, pages 25–35,
Atlanta (USA), may 1999.

[Mil90] Robin Milner. Operational and algebraic semantics of concurrent processes. In
Jan van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume
B: Formal Models and Sematics, pages 1201–1242. Elsevier and MIT Press,
1990.

[Min01] A. Miné. The Octagon Abstract Domain. In Analysis, Slicing and Trans-
formation (in WCRE), pages 310–319, Stuttgart (Germany), October 2001.
IEEE Computer Society Press.

[Min04] A. Miné. Relational abstract domains for the detection of floating-point run-
time errors. In European Symposium On Programming (ESOP’04), volume
2986 of LNCS, pages 3–17. Springer, April 2004.

[Min06] A. Miné. Symbolic methods to enhance the precision of numerical abstract
domains. In 7th International Conference on Verification, Model Checking
and Abstract Interpretation (VMCAI’06), volume 3855 of LNCS, pages 348–
363, Charleston (USA), January 2006. Springer.

[MR03] D. Melski and T. W. Reps. The interprocedural express-lane transformation.
In 12th International Conference on Compiler Construction (CC’03), volume
2622 of LNCS, pages 200–216, Varsaw (Poland), April 2003. Springer.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

274 BIBLIOGRAPHY

[MR05] L. Mauborgne and X. Rival. Trace Partitioning in Abstract Interpreta-
tion Based Static Analyzers. In European Symposium On Programming
(ESOP’05), volume 3444 of LNCS, pages 5–20, Edimburgh (UK), April 2005.
Springer.

[MT91] R. Milner and M. Tofte. Co-induction in relational semantics. Theoretical
Computer Science, 87(1):209–220, 1991. Elsevier Science Publishers.

[MTC+96] G. Morrisett, D. Tarditi, P. Cheng, C. Stone, R. Harper, and P. Lee. The
TIL/ML Compiler: Performance and Safety Through Types. In 1996 ACM
SIGPLAN Workshop on Compiler Support for Systems Software, Tucson
(USA), May 1996.

[Nec97] G. C. Necula. Proof-Carrying Code. In 24th Symposium on Principles of
Programming Langauges (POPL ’97), pages 106–119, Paris, January 1997.
ACM Press, New York.

[Nec00] G. C. Necula. Translation Validation for an Optimizing Compiler. In Con-
ference on Programming Language Design and Implementation (PLDI’00),
pages 83–94, Vancouver, Canada, June 2000. ACM Press, New York.

[NL98] G. C. Necula and P. Lee. The Design and Implementation of a Certifying
Compiler. In Conference on Programming Languages, Design and Implemen-
tation (PLDI’98), pages 162–173, Montréal, Canada, November 1998. ACM
Press.

[NMW02] G. C. Necula, S. McPeak, and W. Weimer. Ccured: type-safe retrofitting of
legacy code. In 29th Symposium on Principles of Programming Languages
(POPL’02), pages 128–139, Portland, Oregon, January 2002. ACM Press,
New York.

[OCa] OCaml. The objective caml system. http://paulliac.inria.fr/ocaml.

[Par66] R. Parikh. On context-free languages. Journal of the ACM, 13(4):570–581,
October 1966. ACM Press, New York.

[Pau94] L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of LNCS.
Springer, 1994. with contributions by Tobias Nipkow.

[PHR04] G. J. Pace, N. Halbwachs, and P. Raymond. Counter-example generation in
symbolic abstract model-checking. Software and Tools for Technology Trans-
fer (STTT), 5(2-3):158–164, March 2004. Springer.

[Plo81] G. D. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, Aarhus University, Denmark, September 1981.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

BIBLIOGRAPHY 275

[PSS98] A. Pnueli, O. Shtrichman, and M. Siegel. Translation Validation for Syn-
chronous Languages. In 25th International Colloquium on Automata, Lan-
guages and Programming (ICALP’98), volume 1443 of LNCS, pages 235–246,
Aalborg (Denmark), July 1998. Springer.

[RHS95] T. Reps, S. Horwitz, and M. Sagiv. Precise interprocedural dataflow analysis
via graph reachability. In 22nd Symposium on Principles of Programming
Languages (POPL’95), pages 49–61, San Francisco (USA), January 1995.
ACM Press, New York.

[Riv03] X. Rival. Abstract Interpretation-based Certification of Assembly Code. In
4th International Conference on Verification, Model Checking and Abstract
Interpretation (VMCAI’03), volume 2575 of LNCS, pages 41–55, New York
(USA), January 2003. Springer.

[Riv04a] X. Rival. Invariant Translation-based Certification of Assembly Code. Soft-
ware and Tools for Technology Transfer, 6(1):15–37, July 2004. Springer.

[Riv04b] X. Rival. Symbolic transfer functions-based approaches to certified com-
pilation. In 31st Symposium on Principles of Programming Languages
(POPL’04), pages 1–13, Venice (Italy), January 2004. ACM Press, New York.

[Riv05a] X. Rival. Abstract dependences for alarm diagnosis. In 6th Asian Symposium
on Programming Languages and Systems (APLAS’05), volume 3780 of LNCS,
pages 347–363, Tsukuba (Japan), November 2005. Springer.

[Riv05b] X. Rival. Understanding the origin of alarms in astrée. In 12th Static
Analysis Symposium (SAS’05), volume 3672 of LNCS, pages 303–319, London
(UK), September 2005. Springer.

[Sco70] D. Scott. Outline of a mathematical theory of computation. Technical mono-
graph, Oxford University Computing Lab, Programming Research Group,
1970.

[SM03] A. Sabelfeld and A. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, special issue on Formal Meth-
ods for Security, 21(1):5–19, 2003. IEEE Computer Society Press.

[SP81] M. Sharir and A. Pnuelli. Two approaches to interprocedural data flow analy-
sis. In S.S. Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory
and Applications, chapter 7, pages 189–233. Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1981.

[SRW02] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-
valued logic. ACM Transactions On Programming Languages And Systems
(TOPLAS), 24(3):217–298, 2002. ACM Press, New York, NY.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

276 BIBLIOGRAPHY

[Str02] M. Strecker. Formal verification of a Java compiler in Isabelle. In Confer-
ence on Automated Deduction (CADE), volume 2392 of LNCS, pages 63–77,
Copenhagen (Denmark), July 2002. Springer.

[Tar55] A. Tarski. A lattice theoretical fixpoint theorem and its application. Pacific
Journal of Mathematics, 5:285–310, 1955.

[TCoA99] Radio Technical Commission on Aviation. DO-178B. Technical report, Soft-
ware Considerations in Airborne Systems and Equipment Certification, 1999.

[TF98] H. Theiling and C. Ferdinand. Combining Abstract Interpretation and ILP
for Microarchitecture Modelling and Program Path Analysis. In 19th IEEE
Real-Time Systems Symposium, pages 144–153, Madrid (Spain), December
1998. IEEE Computer Society Press.

[TFW00] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and Precise WCET Pre-
diction by Seperate Cache and Path Analyses. Real-Time Systems, 18(2/3),
May 2000. Springer.

[TG00a] C. Tice and S. L. Graham. Key Instructions: Solving the Code Location Prob-
lem for Optimized Code. Research Report 164, Compaq Systems Research
Center, september 2000.

[TG00b] C. Tice and S. L. Graham. A Practical, Robust Method for Generating
Variable Range Tables. Research Report 165, Compaq Systems Research
Center, September 2000.

[Tip95] F. Tip. A survey of program slicing techniques. Journal of Programming
Languages, 3(3), 1995. Chapman and Hall.

[TMC+96] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A
Type-Directed Optimizing Compiler for ML. In Conference on Programming
Language Design and Implementation (PLDI’96), pages 181–192, Philadel-
phia (USA), May 1996. ACM Press.

[VB04] A. Venet and G. Brat. Precise and efficient array bound checking for large em-
bedded C programs. In Conference on Programming Languages, Design and
Implementation (PLDI’04), pages 231–242, Washington (USA), June 2004.
ACM Press, New York.

[Ven96] A. Venet. Abstract Cofibered Domains: Application to the Alias Analysis
of Untyped Programs. In 3rd Static Analysis Symposium (SAS’96), volume
1145 of LNCS, Aachen (Germany), September 1996. Springer.

[Wei81] M. Weiser. Program slicing. In 5th International Conference on Software
Engineering, pages 439–449, May 1981.

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

BIBLIOGRAPHY 277

[Wil95] A. Wiles. Modular elliptic curves and Fermat’s last Theorem. Annals of
Mathematics, 1995.

[WM94] R. Wilhelm and D. Maurer. Compiler Design. Springer, 1994.

[XH01] H. Xi and R. Harper. A dependently typed assembly language. In Inter-
national Conference on Functional Programming, pages 169–180, Florence,
Italy, September 2001. IEEE Computer Society Press.

[ZPF+02] L. Zuck, A. Pnueli, Y. Fang, B. Goldberg, and Y. Hu. Translation Run-Time
Validation of Optimized Code. In Electronic Notes in Theoretical Computer
Science, volume 65. Elsevier Science Publishers, 2002.

[ZPFG02] L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. VOC: A Translation Valida-
tor for Optimizing Compilers. In Electronic Notes in Theoretical Computer
Science, volume 65. Elsevier Science Publishers, 2002.

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

278 BIBLIOGRAPHY

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

List of Figures

2.1 A simple language . 15
2.2 Procedural extension of a simple language 17
2.3 Approximations of the disc x2 + y2 ≤ 1 with polyhedra 20

3.1 A simple abstract interpreter . 29
3.2 A few numerical domains (for two variable environments) 33
3.3 A simple abstract interpreter . 41
3.4 Grammar of symbolic transfer functions 44
3.5 Semantics defined with symbolic transfer functions 46
3.6 Backward abstract interpreter . 50
3.7 Constant propagation . 51

4.1 Examples . 62
4.2 Analysis of an interpolation and imprecision 64
4.3 Partitioned systems . 68
4.4 Structure of the partitioning domain . 74

5.1 Code rewriting . 92
5.2 Linear interpolation, via indirection arrays 93
5.3 Linear interpolation function, via discretization 94
5.4 Naming partitions . 96
5.5 Partitioning analysis of a if -statement: directives 99
5.6 Application to the partitioning of an if -statement 102

6.1 Abstractions as automata . 122
6.2 Two counters . 123
6.3 Sequence of iterates of a failed analysis . 124
6.4 Analysis with a refined set of partitions . 126

7.1 Cases of alarms . 133
7.2 Exclusion of the first iteration . 138
7.3 Backward analysis of a simple program . 142
7.4 Backward transfer functions . 144

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

280 LIST OF FIGURES

7.5 A false alarm solved . 150
7.6 Scenario for a true error . 151

8.1 Dependence analysis for alarm investigation 161
8.2 Local dependences involved in the approximation of the backward depen-

dences induced by {(l5, y)} . 179
8.3 Local dependences involved in the approximation of the backward depen-

dences induced by {(l5, y)} . 195

9.1 A micro Power-PC assembly language . 209
9.2 Symbolic transfer functions . 211
9.3 Example compilation . 212
9.4 Mapping between source and compiled programs 213
9.5 Software scheduling . 224
9.6 Scheduling and fictitious locations . 226
9.7 Loop unrolling . 227

10.1 Memory alignments and invariant checking 242

11.1 Decision procedure . 253
11.2 Conversion of a short integer into a floating point 257

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

List of Definitions

2.2.1 Trace, Semantics . 13
2.3.1 Galois connection . 21
2.3.2 Widening operator . 23
3.1.1 Reduced product . 33
3.2.1 Abstraction into a function . 35
3.2.2 Concatenation of traces, sub-trace 36
3.2.3 closed set of traces . 36
3.2.4 Trace closure operator . 36
3.2.5 From-To abstraction . 37
3.2.6 Functional, From-To abstraction . 37
3.2.7 Path abstraction . 38
3.2.8 Functional, path abstraction . 38
3.3.1 Backward semantics . 49
3.4.1 Projection abstraction . 53
4.2.1 Partitioned set . 65
4.2.2 Partitioned system . 66
4.2.3 Partitioned semantics . 69
4.3.1 Trace partitioning domain . 73
4.3.2 Concretization function . 73
4.3.3 Partitioning abstract domain . 76
4.3.4 Ordering . 76
4.3.5 Concretization . 77
4.3.6 Widening for the partitioning domain 78
4.3.7 Partitioned denotational semantics 80
4.3.8 Partitioned abstract denotational semantics 80
4.3.9 Domain for dynamic partitioning 82
4.3.10 Dynamic partitioning analysis . 82
5.2.1 Ongoing token set . 97
5.3.1 Representation of the elements of D]� ,

� 99
6.1.1 cnt-statement . 110
6.1.2 Tokens . 111
6.1.3 Extended system . 111
6.2.1 Token abstraction . 113

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

282 List of Definitions

6.2.2 Abstract extended system . 113
6.2.3 Abstract initial token . 115
6.2.4 Abstract push operation . 115
6.2.5 Abstract pop operation . 116
6.3.1 Automaton . 117
6.3.2 Semantics of an automaton . 118
6.4.1 Parikh abstraction . 127
6.4.2 Vector abstraction . 127
7.2.1 Semantic slicing criterion . 135
7.2.2 Semantic slice . 135
7.2.3 Final states slicing criterion . 135
7.2.4 Execution patterns criterion . 137
7.2.5 Input constraints criterion . 138
7.2.6 Product of criteria . 139
7.3.1 Approximation of semantic slices 140
7.3.2 Refining sequence . 148
8.2.1 Dependences . 162
8.2.2 Secrecy . 163
8.2.3 Dependence set . 164
8.2.4 Dependence abstraction . 164
8.2.5 Junction of dependence sets . 165
8.2.6 From-to Dependences . 166
8.2.7 Dependences . 167
8.2.8 Dependences along a path . 167
8.2.9 Local dependences . 169
8.2.10 Approximation for composition . 169
8.2.11 Used variables . 172
8.2.12 Control state precedence . 175
8.2.13 Criterion . 177
8.2.14 Backward dependence induced by a criterion 177
8.3.1 Function slice . 182
8.3.2 Observable dependences . 182
8.3.3 Observable dependences . 185
8.3.4 Local, observable dependences . 186
8.4.1 Abstract dependences . 190
8.4.2 Abstract dependences . 191
8.4.3 Abstract dependences —case of sets of traces 192
8.4.4 Composition of abstract dependences 195
8.4.5 Abstract dependence chain . 197
8.5.1 Abstract slice . 199
8.5.2 Abstract slice semantics . 199
9.3.1 Correctness of compilation . 214

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

List of Definitions 283

9.3.2 Reduced program . 216
9.3.3 Correctness of compilation, in terms of reduced programs 218
9.3.4 Correctness of compilation, with under-specified behaviors 221
9.4.1 Fictitious control state, fictitious state 225
10.2.1 Translated invariant . 236
11.2.1 Local equivalence . 247
11.2.2 Symbolic transfer functions equivalence 251
11.2.3 Expression equivalence . 251

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

284 List of Definitions

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

List of Theorems and Lemmata

2.3.1 Fixpoint form for the operational semantics 21
2.3.2 Fixpoint transfer . 22
2.3.3 Fixpoint checking . 22
2.3.4 Abstract iteration with widening 23

3.1.1 Transfer functions soundness . 29
3.1.2 Soundness of the simple abstract interpreter 30
3.2.1 Partitioning of the graph-denotational semantics 38
3.2.2 Composition along paths . 39
3.2.3 Strongly set of traces as a least fixpoint 40
3.2.4 Soundness of the analysis . 42
3.2.5 Semantics on a path . 47
3.2.6 Semantics over finite sets of paths 47
3.3.1 Soundness of the backward abstract interpreter 50
3.4.1 Fixpoint definition . 54

4.2.1 Partitioning abstraction . 65
4.2.2 Semantic adequation —traces . 70
4.2.3 Properties of Γτ . 71
4.2.4 Semantic adequation . 71
4.2.5 Transitivity . 71
4.2.6 Reflexivity . 72
4.3.1 Soundness of control partitioning 74
4.3.2 Widening for partitioning domains 78
4.3.3 Soundness of the static partitioning analysis 80
4.3.4 Soundness of the dynamic partitioning analysis 82

6.1.1 A complete partition . 111
6.2.1 Abstract extended systems as coverings 114
6.3.1 Automata-based abstraction . 118

7.3.1 Soundness: backward approximation of the semantic slice 143
7.3.2 Properties of the refining sequence 148

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

286 List of Theorems and Lemmata

8.2.1 Monotonicity of the junction operator 165
8.2.2 Composition of dependences —approximation 165
8.2.3 Approximating the from-to dependences 167
8.2.4 Algebraic properties of » . 170
8.2.5 Approximation of dependences . 170
8.2.6 Path Composition . 171
8.2.7 Dependence of an expression . 172
8.2.8 Dependence of a symbolic transfer function 173
8.2.9 Precedence, dependence and variable update 175
8.2.10 Backward dependence analysis . 177
8.2.11 Forward approximation of dependences 179
8.2.12 Forward dependence analysis . 180
8.3.1 Hierarchy of observable dependences —case of functions 183
8.3.2 Composition of observable dependences —approximation 184
8.3.3 Hierarchy of observable dependences —case of sets of traces 185
8.3.4 Approximation of observable dependences 187
8.3.5 Dependences and unreachable states 187
8.3.6 Dependences and constant variables 188
8.4.1 Dependences are abstract dependences 191
8.4.2 Hierarchy of abstract dependences 193
8.4.3 Abstract dependences and standard dependences 194
8.4.4 Alternate definition of Á] . 195
8.4.5 Composition of abstract dependences —approximation 195
8.4.6 Fixpoint approximation of abstract dependences 196

9.3.1 Adequation . 217

10.2.1 Invariant for P r
c . 233

10.2.2 Soundness of the translated invariant 236
10.3.1 Invariant checking . 238

11.2.1 Local equivalence, global formula 248
11.2.2 Soundness of translation validation 249
11.2.3 Equivalence of symbolic transfer functions 252
11.3.1 Invariant translation justification 255

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

List of Examples

2.3.1 Non-existence of α . 20
2.3.2 Non monotonicity of widening . 24
3.1.1 Issues related to the choice of the iteration strategy 31
3.2.1 From-To semantics . 37
3.2.2 Path semantics . 39
3.4.1 Constant propagation and dead code elimination 51
3.4.2 Constant propagation and variable removal 52
3.4.3 Control states removal . 53
3.4.4 Constant propagation and dead code elimination 53
4.2.1 Partitioned systems . 67
4.3.1 The ordering over the basis . 73
4.3.2 Denotational style abstraction of a if -statement 81
4.3.3 Denotational style abstraction of a if -statement 83
5.2.1 Transfer functions in a partitioning analysis 98
5.3.1 Application to the partitioning of an if -statement 101
6.1.1 Infinite loop, with cnt-statement 112
6.2.1 Abstraction . 114
6.2.2 Abstract initial token and push operation 115
6.3.1 Loop unrolling . 119
6.3.2 Conditional partitioning . 120
6.3.3 Iterations parity . 121
6.3.4 Last iterations . 121
6.3.5 Back to Example 6.2.1 . 121
6.3.6 Failed partitioning analysis . 122
6.3.7 Successful partitioning analysis . 125
7.2.1 Semantic slicing based on the final state 136
7.2.2 Criterion for the specification of execution patterns 137
7.2.3 Input constraints and errors . 138
7.2.4 Combination of semantic slicing criteria 139
7.3.1 Backward assignment; case of a boolean variable 146
7.3.2 Backward assignment; domain of intervals 146
7.4.1 Resolution of a false alarm (Example 7.2.1 continued) 150
7.4.2 Alarm pointing out a true error (Example 7.2.4 continued) 151

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

288 List of Examples

8.1.1 Semantic slice and dependences . 161
8.2.1 Dependences of functions . 162
8.2.2 Non-determinism and dependences 164
8.2.3 Dependences in a program . 168
8.2.4 Precision improvement . 174
8.2.5 Precedence among control states . 176
8.2.6 Precedences among control states (Example 8.2.3 continued) 176
8.2.7 Backward dependence (Example 8.1.1 continued) 179
8.3.1 Fictitious dependences in a semantic slice 181
8.3.2 Observable dependences . 182
8.3.3 Dependences observable in a semantic slice (Example 8.1.1 continued)186
8.3.4 Removal of constant variables (Example 8.2.3 continued 188
8.3.5 Partitioning dependence analysis 189
8.4.1 Abstract dependences of a function 190
8.4.2 Example 8.2.7 revisited . 192
8.4.3 Hierarchy of dependences . 194
8.4.4 Abstract dependence chains . 198
8.5.1 Abstract slice . 200
9.3.1 Projections . 215
9.3.2 Projection of control states . 217
9.3.3 Projection of memory locations . 217
9.3.4 Source program . 218
9.4.1 Register coalescing . 223
9.4.2 Software scheduling . 224
9.4.3 Example 9.4.2 continued . 225
9.4.4 Computation of symbolic transfer functions 226
9.4.5 Loop unrolling . 226
9.4.6 Compilation up-to partitioning . 227
10.2.1 Compiled program . 232
10.2.2 Example 10.2.1 continued . 234
10.2.3 Example 10.2.2 continued . 235
10.2.4 Example 10.2.3 continued . 236
10.3.1 Incompleteness of the invariant checking 239
10.3.2 Failure of invariant checking . 240
10.3.3 Symbolic simplification and invariant checking 240
11.2.1 Translation validation . 250
11.2.2 Equivalence of symbolic transfer functions 252
11.3.1 Conversion of a short integer into a floating point 256

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

List of Remarks

2.3.2 Decreasing iteration . 24
3.2.0 Relational semantics and predicate transformers 35
3.2.2 Errors . 45
4.2.1 Extending the notion of covering 68
4.3.1 Representation of abstract values 76
4.3.1 Computational ordering and precision ordering 77
4.3.1 Direction of the ordering on the basis 77
5.3.0 Use of the part〈None〉 directive . 99
6.4.0 Widening operators . 128
7.2.2 Precision improvement inherent in trace partitioning 137
7.4.0 More powerful partitioning domains and analyzes 149
8.2.2 Non monotonicity . 165
8.2.3 Dependences and aliases . 174
8.2.4 Procedural programs . 175
8.3.2 Strong closure of semantic slices . 184
9.3.1 Dealing with scopes . 215
11.2.1 Formal compiler proof . 250

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

290 List of Remarks

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

INDEX OF SYMBOLS 291

Index of Symbols

Abstract dependences
approximation

Dep
]
f , 194

Dep
]
f , 196

Abstract interpretation
D], 20
γ, 20
α, 20
∇ (widening), 23
lfp], 41
⊥,>,t, 28

Abstract slices
S], �]S, � S, 199

JsK]S, 199
Abstract syntax

� , 12
� , 12

� , 12
� , 12

� , 12
Ω, 12
→, l i, � i, 12

Abstract transfer functions
transfer

l ,l ′
, 29

guard, 28
assign, 28
forget, 28
←−−−−−−−
transfer

l ,l ′
, 143

←−−−
assign, 50
inject, 234

Assembly language (Power-PC), condition
values

LT, EQ, GT, 208
� , 209

Assembly language (Power-PC), memory
M[x], 208

Assembly language (Power-PC), registers

gpri, ngpr, 207
fpri, nfpr, 208
cri, ncr, 208

Assembly language (Power-PC), seman-
tics

is ok(e), 210
is addr(e), 210

Assembly language (Power-PC), syntax
op, add, mul, sub, div, 208
li, 208
load, 208
store, 208
cmp, 209
b, 209
bc, 209
nxt(l), 210

Compilation
mappings

Π � , 213
Π � , 213
Π

�
, 214

Π � , 214
ΠΣ, 214

reduced programs
P r

s , P
r
c , 218

� s, � s, � c, � c, 214
δs, δc, 251
F r

s , F
r
c , 248

source code
Ps, 214

under-specified behaviors
αunder def , αsafe, 221

Control states
l , 12
lpost, 30
lpre, 30

Denotational abstraction
Den, 34

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

292 INDEX OF SYMBOLS

JsKδ, 41
αtF [l`,la], γtF [l`,la], 37
αt [l`,la], γt [l`,la], 37

Dependences
abstraction

Df [φ], 164
Depf , 164
αD, γD, 164
Df [E | l , l ′], 166
Dt[E], 167
Dept, 167
Df � 〈p〉[E], 167

approximation
F←−

D
, ∆D, 170

C, 177
∆CD, 177←−
depa[E], 177−→
depa[E], 180
F−→

D
, 179

Da
f [δ], 173

backward←−
dep[E],←−E π, 177

composition
Á, 165
», 169

forward−→
dep[E],−→E π, 180

local dependences
Dloc, 169
Da

loc, 169
relation

x
φ
Ã x′, 162

security
� L, � H, 163
� L

in, � H
in, � L

out, � H
out, 163

Dependences, abstract
abstractions
� , 189
��� � , 189
� id, Did, αid, γid, 191
� , 197

approximation

D
a]
loc, 196

∆]
D, 196

F]
←−
D

, 196
composition
Á], 194
»], 196

functions
D

]
f [φ], 190

D
]
sf [φ; Mi Z⇒ Mo], 191

sets of traces
D

]
t[E], 192

Dependences, observable
approximation

Dloc[E | E ′], 186
Da

loc[E | E ′], 186
functions

x
φ
ÃMi Z⇒Mo x′, 182

Dsf [φ; Mi Z⇒ Mo], 182
sets of traces

(l , x)Ã[E ′] (l ′, x′), 185
Dst[E | E ′], 185
Ds � 〈p〉[E | E ′], 185

Extended systems
abstract token operations

t]
ε , 115

push, 115
pop, 116

abstract tokens
�], γ � , 113
⇒γ � , 113

forget functions
τ , 66
π �

τ , π
�
τ , πΣ

τ , 66
⇒τ ,⇒ �

τ , 68
τε, 73
πΣ

ε , 69
Γτ , 70

syntax and semantics
� T , � i

T , � i
T , � T ,→T , ΣT , 66

tokens
� ,T, 66

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

INDEX OF SYMBOLS 293

t]
<, t]

=, t]
>, 114

t]
<−1, t]

=−1, 125
trivial extension

tε, Tε, � ε, � i
ε,→ε, 69

Fixpoints
lfp, 11
gfp, 11

Fragment of C
float, int, bool, τ [], � (C types), 13
true, false, 13�
, � , � (sets of values), 13

� , 13
� , 14
� , 14
input, 14
assert, 14
if , else,while, 14
castτ0→τ1 (cast), 14
use, 172

Functional abstraction
αF , γF , 35

Initial, final states
l`, la, 34
ρ`, ρa, 42
t`, ta, 80

Interval abstraction
Intervals〈.〉, γIntervals〈.〉, 232

Invariant translation
D]�

,s, γ
]�

,s (source abstract domain), 232

D]
s, γs (source abstraction), 232

Is (source invariant), 232
D]�

,c, γ
]�

,c (assembly abstract domain),
234

Ir
c (restricted translated invariant), 233

Ic (translated invariant), 234

Mathematical notations
|x|, 64
Card(E), 11
Li, jM, 52
E?, 13

length, 13
occurencesLd ∈ sM (occurrences in

strings), 114
≺, 175
φ̃, 182

Paths, path abstraction
P (l`, la), 38
len, 38
αp[p], γp[p], 38
αpF [p], γpF [p], 38

Procedural fragment of C�
, 17

� , 17
� f , 17
call f , 17
→f , 17

� i
f , 17

Projection abstraction
� , � , Σ, 52
Πstore

. , 52
Πstate

. , 52
� , 52
Πtrace

. , 52
αΠ〈

�
, � 〉, γΠ〈

�
, � 〉, 53

Semantic equivalence
C ` e ∼ e′, 251

Semantic slicing
criteria

� , γ � , 135
c, 135

domains of criteria
� i, 139
⊗, 139

� i−f , γi−f , 135
��� , γ � , 137

� in, γin, 138
semantic slices

Slice � 〈E , c〉, 135
Semantics

Σ, 13
JP K, 13

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

294 INDEX OF SYMBOLS

ρ[x← v], 14
F−→

P
, S i, 21

F←−
P

, 31
Static analysis

abstraction
D]� , α

�
, γ

�
, 27

∇ �
, 42

D], α, γ, 28
J.K], 41
Inv, 49

backward
� f , S f , 31
Tbw, 31
α←−F , γ←−F , 49
α←−tF [l`,la]

, 50
←−−
JsK], 50
lin, d`, da, d

ref
` , Ipre

x , Ipost
x , Iref

x , 144
forward

S , T , 27
modes

Check, 42
Iter, 43
M, 43
J.K]M , 43

Symbolic transfer functions
�

(set of), 44
¤ (empty), 44
bx← ec (assign), 44
be ? δ0 | δ1 c (condition), 44
ι (identity), 44
is alias(l, l′) (alias test), 44
rnd(V), 44
��� (expressions), 44
⊕ (composition), 45
δl ,l ′ (transition), 45
simplify (simplification), 46

δ]
l ,l ′ (abstract transfer function), 234

Trace closure
C[Σ], 36
clos, 36
J.Kc, 36

Trace partitioning
abstract domain

�], 76
0],0]

τ , 76
Γ]

τ , 76
γ]� , 77
D]� ,

� , 76
∇p, 78

abstract transfer functions
generate, 98
merge, 98

abstraction
α � (�), γ � (�), 60
αP(δ), γP(δ), 65

basis of extended systems
B, 72
2, 71
2τ , 72
∇B, 78

concrete domain
� , 73
0,0τ , 73
γ � , 73

data structures
tokensT 〈dT 〉, 97
leaf[d], node[φ], 99

denotational abstraction
JPT K

]� [l`,la]
, 80

αtF � [l`,la], γtF � [l`,la], 80

D]
δ � ,

� , 82
directives
D, 96
part〈Val, l , x = n〉, 96
part〈If , l , b〉, 96
part〈None〉, 95
part〈While, l , n〉, 96
part〈While, l , > n〉, 96
part〈Fun, l , f〉, 96
∂, 98
cnt, 110
∂l , 111

driven by automata

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

INDEX OF SYMBOLS 295

� , 117
� A, qi

A, qf
A,ÃA, 117

P � A � , 118
� , 118

∂
ÃA, 118
L[d], 118

procedural abstraction
α � (� ×{ε}), 60
α � (� × �), 61

semantics
JPT K

p, 69
δ � T

, 69
with Parikh abstraction

�]
P, γ � P, 127

t]
εP, 127

push
P
, 127

Traces
_ (concatenation), 36
4 (sub-trace ordering), 36
TI , 141

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

296 INDEX OF SYMBOLS

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

INDEX OF TERMS 297

Index of Terms

ABI, 207
abstract domain, 20, 27, 32–33, 89
abstract interpretation, 4, 19–25
abstract non-interference, 201
abstract transfer function, 48
abstraction function, 20
alarm, 150–152

false, 150
alarms, 132–133
arrays

weak updates, reads, 102
assembly language, 207–210
Astrée, 6, 16, 42–43, 61, 85–107, 110,

131, 229
automata, 117
automatic refinement, 156
automaton, 136

backward
abstract assignment, 143–147
abstract transfer functions, 143
analysis, 50, 143
semantics, 49

binary decision diagram, 32, 90

C
language, 13–19
standard, 18, 87

cofibered domain, 74, 79
compilation, 210–215
complete lattice, 11
completeness, 4
composition

semantic, 39
symbolic transfer functions, 45

computational ordering, 77
concrete semantics, 19
concretization function, 20
congruences, 128
constant propagation, 51–55, 222

covering, 65
critical software, 3

dangerous state, 136
dead code elimination, 51–55, 222
debugging, 155
denotational abstraction, 34–49, 79–83, 97
denotational semantics, 34, 46
dependences, 162

abstract, 189–193
abstract, observable, 191
backward, 177–179
errors and non-termination, 169
forward, 179–181
hierarchies of, 193
observable, 182–189

disjunctive completion, 61
DO-178B regulation, 5, 206, 246
dynamic partitioning, 75, 78–79, 82, 97

embedded software, 3, 16, 85
error scenario, 151, 156
errors, 12, 14, 19, 31, 45, 86
expression, 14
extended transition systems, 66

fixpoint, 11, 21
checking, 22

fixpoint transfer, 22
floating point, 13, 34, 90

conversion, 256
IEEE-754 standard, 19

forget functions, 66
functional properties, 4

Galois bijection, 65
Galois connection, 21
Galois injection, 65
gcc, 205
glb, 11

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

298 INDEX OF TERMS

greater lower bound, 11
greatest-fixpoint, 11

incompleteness, 131–133
instruction level parallelism, 223
interval linear form, 145–146
invariant checking, 238–239
invariant translation, 206, 231–234
iteration strategy, 30–31, 42

Java virtual machine, 230

k-limiting, 127

l-value, 13
lazy semantics, 169, 199
least-fixpoint, 11
linear interpolation, 64, 91, 92, 102
liveness properties, 4
loop unrolling, 226, 241
lower upper bound, 11
lub, 11

memory layout abstraction, 33
model checking, 5
model-checking

automatic refinement, 155
counter-examples, 155

narrowing, 24
non-determinism, 14
non-interference, 163, 201
non-relational domains, 32

operational semantics, 12, 20, 21
optimization, 207, 221, 241

Parikh abstraction, 125
partition, 65
partitioning, 60

criteria, 91, 95
state, 61
strategy, 102
tokens, 66, 95, 110

path

semantics on a, 38–39, 47
semantics on a set of paths, 47

polyhedra abstract domain, 20
post-fixpoint, 11
Power-PC assembly language, 207–210
predicate transformers, 35
procedures, 16, 60, 107, 219
program, 12
program transformations, 25, 49, 54
projection

abstraction, 53, 217
control states, 52
memory locations, 52

proof carrying code, 230–231

reduced cardinal power, 75
reduced product, 33, 89
reduced program, 216
relational domains, 32
restricted set

control states, 52
memory locations, 52

safety properties, 4
scheduling, 223
security, 4, 163
semantic slice, 134, 135
semantic slicing, 125
semantic slicing criteria, 134, 160

execution patterns, 136
initial and final states, 135
input constraints, 138

semantics, 12, 18, 21
slicing

conditioned, 155, 201
dynamic, 202
syntactic, 134, 152, 201

soundness, 4, 28, 30, 41, 131
state, 12
statement, 14
static analysis, 4, 27, 41, 48
static partitioning, 75, 80, 97
symbolic simplification, 46

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

INDEX OF TERMS 299

synchronous product, 110
synchronous programs, 86

theorem proving, 5
trace partitioning domain, 72–85
traces, 12

closed set of, 36, 39
concatenation, 36, 39
strongly closed set of, 36, 39, 40

translation validation, 206, 245
typed assembly (or intermediate) language,

231

under-specified behaviors, 18–19, 34, 87,
219, 237, 242, 254

widening, 23–24, 31, 42, 78, 96, 128

Traces Abstraction in Static Analysis and Program Transformation Xavier Rival

300 INDEX OF TERMS

Xavier Rival Traces Abstraction in Static Analysis and Program Transformation

